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ABSTRACT

Grid cells in the entorhinal cortex of the mammalian brain exhibit striking hexagon
firing patterns in their response maps as the animal (e.g., a rat) navigates in a 2D
open environment. The responses of the population of grid cells collectively form
a vector in a high-dimensional neural activity space, and this vector represents the
self-position of the agent in the 2D physical space. As the agent moves, the vector
is transformed by a recurrent neural network that takes the velocity of the agent as
input. In this paper, we propose a simple and general conformal normalization of
the input velocity for the recurrent neural network, so that the local displacement
of the position vector in the high-dimensional neural space is proportional to the
local displacement of the agent in the 2D physical space, regardless of the direc-
tion of the input velocity. Our numerical experiments on the minimally simple
linear and non-linear recurrent networks show that conformal normalization leads
to the emergence of the hexagon grid patterns. Furthermore, we derive a new the-
oretical understanding that connects conformal normalization to the emergence of
hexagon grid patterns in navigation tasks.

1 INTRODUCTION

The mammalian hippocampus formation encodes a “cognitive map” (Tolman, 1948; O’keefe &
Nadel, 1979) of the animal’s surrounding environment. In the 1970s, it was found that the rodent
hippocampus contained place cells (O’Keefe & Dostrovsky, 1971), which typically fired at specific
locations in the environment. Several decades later, another prominent type of neurons called grid
cells (Hafting et al., 2005; Fyhn et al., 2008; Yartsev et al., 2011; Killian et al., 2012; Jacobs et al.,
2013; Doeller et al., 2010) were discovered in the medial entorhinal cortex. Each grid cell fires
at multiple locations that form a hexagonal periodic grid over the field (Fyhn et al., 2004; Hafting
et al., 2005; Fuhs & Touretzky, 2006; Burak & Fiete, 2009; Sreenivasan & Fiete, 2011; Blair et al.,
2007; Couey et al., 2013; de Almeida et al., 2009; Pastoll et al., 2013; Agmon & Burak, 2020).
Grid cells interact with place cells and are believed to be involved in path integration (Hafting et al.,
2005; Fiete et al., 2008; McNaughton et al., 2006; Gil et al., 2018; Ridler et al., 2019; Horner et al.,
2016), which calculates the agent’s self-position by accumulating its self-motion, allowing the agent
to determine its location even when navigating in darkness. Thus, grid cells are often considered
to form an internal GPS system in the brain (Moser & Moser, 2016). While grid cells were mostly
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studied in the spatial domain, it was proposed that grid-like response may also exist in non-spatial
and more abstract cognitive spaces (Constantinescu et al., 2016; Bellmund et al., 2018).

Various computational models have been proposed to explain the striking firing properties of
grid cells. Traditional approach designed hand-crafted continuous attractor neural networks
(CANN) (Amit, 1992; Burak & Fiete, 2009; Couey et al., 2013; Pastoll et al., 2013; Agmon & Burak,
2020) and studied them by simulation. More recently two pioneering papers (Cueva & Wei, 2018;
Banino et al., 2018) learned recurrent neural networks (RNNs) on path integration tasks and demon-
strated that grid patterns emerge in the learned networks. These results have been further developed
in (Gao et al., 2019; Sorscher et al., 2019; Cueva et al., 2020; Gao et al., 2021; Whittington et al.,
2021; Dorrell et al., 2022; Xu et al., 2022). In addition to RNN models, principal component anal-
ysis (PCA)-based basis expansion models (Dordek et al., 2016; Sorscher et al., 2019; Stachenfeld
et al., 2017) with non-negativity constraints have been proposed to model the interaction between
grid cells and place cells.

While prior work has shed much light on the grid cells, the mathematical principle and the compu-
tational mechanisms that underlie the emergence of hexagon grid patterns are still not well under-
stood (Cueva & Wei, 2018; Sorscher et al., 2023; Gao et al., 2021; Nayebi et al., 2021; Schaeffer
et al., 2022). The goal of this paper is to propose a simple and general mechanism in the recurrent
neural network of grid cells that leads to the emergence of hexagon grid patterns of grid cells.

Specifically, the activities of the population of grid cells collectively form a vector in a high-
dimensional neural space. This high-dimensional vector is a representation of the 2D self-position
of the agent in the 2D physical space. Adopting terminology in the deep learning literature, we call
this vector the position embedding (Vaswani et al., 2017). As the agent navigates in the environment,
the position embedding is transformed by a recurrent neural network that takes the velocity of the
agent as input. For the recurrent network, we propose a novel conformal normalization mechanism
that modulates the input velocity by the ℓ2-norm of the directional derivative of the transformation
defined by the recurrent network. Under conformal normalization, the local displacement of the
position embedding in the high-dimensional neural space is proportional to the local displacement
of the agent in the 2D physical space, regardless of the direction of the input self-velocity. As a con-
sequence, the 2D Euclidean space is embedded conformally as a 2D manifold in the neural space,
and this 2D manifold forms an internal 2D coordinate system of the 2D physical environment, thus
mathematically realizing the notion that grid cells form an internal GPS system (Moser & Moser,
2016).

We then numerically examine two minimally simple models of the recurrent network. One is a
linear model that models the movement of the position embedding on the 2D manifold. The other
is a non-linear model that additionally also constrains the 2D manifold as the fixed points of the
non-linear transformation when the input velocity is zero. Our numerical experiments show that
our proposed conformal normalization leads to the hexagon grid patterns in both models. We also
provide a new theoretical understanding that connects the conformal normalization to the emergence
of the hexagon grid patterns in the general setting.

Our work provides a novel mechanism that leads to the hexagon grid patterns of grid cells. Our
linear and non-linear models based on the proposed mechanism may serve as useful building blocks
for future modeling of grid cells and place cells. In summary, our contributions are as follows.
(1) We propose a simple and general conformal normalization mechanism for the recurrent neural
network of grid cells that leads to hexagon grid patterns observed in grid cells. (2) Our numerical
experiments on both linear and non-linear models demonstrate that conformal normalization leads
to the emergence of hexagon grid patterns. (3) We provide a theoretical understanding that connects
our conformal normalization mechanism to hexagon grid patterns in the general setting.

2 BACKGROUND: POSITION EMBEDDING AND TRANSFORMATION

This section provides the background of position embedding and recurrent transformation. See (Gao
et al., 2021) for more details.
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(a) (b) (c)

Figure 1: (a) Recorded response maps of 4 different grid cells (from Moser et al. (2014)). (b) The self-position
x= (x1,x2) in 2D physical space is represented by a vector v(x) in the d-dimensional neural space. When the
agent moves by ∆x, the vector is transformed to v(x+∆x) = F(v(x),∆x). (c) Illustration of basis expansion
model A(x | x′) = ∑

d
i=1 ui,x′vi(x), where vi(x) is the response map of i-th grid cell, shown at the bottom.

A(x | x′) is the response map of place cell associated with x′, shown at the top. ui,x′ is the connection weight
(from Gao et al. (2021)).

2.1 POSITION EMBEDDING

When the agent is at the self-position x = (x1,x2) within a 2D domain in R2, the activities of the
population of grid cells form a vector v(x) = (vi(x), i = 1, ...,d), where vi(x) is the activity of the
i-th grid cell at position x. See Figure 1(b). The dimensionality d is the number of grid cells. We call
the space of v the neural space, and we embed the 2D x as a vector v(x) in the d-dimensional neural
space. We call this vector the position embedding by adopting the commonly used terminology in
deep learning (Vaswani et al., 2017). We normalize ∥v(x)∥ = 1, so that v(x) is on the (d− 1)-
sphere. ∥v(x)∥2 can be interpreted as the total energy of the neurons in v(x).

For each grid cell i, vi(x), as a function of x, represents the response map of grid cell i. The intrigu-
ing observation in neuroscience is that the response map exhibits a periodic hexagonal grid pattern,
with different grid cells having varying scales, orientations, and spatial shifts (phases). Figure 1(a)
displays the response maps of four different grid cells.

2.2 RECURRENT TRANSFORMATION

At self-position x = (x1,x2), if the agent makes a movement ∆x = (∆x1,∆x2), then it moves to
x+∆x. Correspondingly, the vector v(x) is transformed to v(x+∆x). The general form of the
transformation can be formulated as:

v(x+∆x) = F(v(x),∆x), (1)

where F can be parametrized by a recurrent neural network (RNN), and the recurrent transformation
F takes ∆x as an input. See Figure 1(b). We may call ∆x the input velocity if we assume a unit time
period for the movement. We call (1) the recurrent transformation model.

The input velocity ∆x can also be represented as (∆r,θ) in polar coordinates, where ∆r is the dis-
placement along the direction θ ∈ [0,2π], so that ∆x= (∆x1 = ∆r cosθ ,∆x2 = ∆r sinθ). The trans-
formation model then becomes

v(x+∆x) = F(v(x),∆r,θ), (2)

where we continue to use F(·) for the recurrent transformation (slightly overloading the notation).

2.3 PLACE CELLS

The vector v(x) serves to inform the agent of its adjacency to different positions, via a linear read-
out mechanism:

A(x | x′) = ⟨v(x),u(x′)⟩=
d

∑
i=1

ui(x
′)vi(x), (3)

where A(x |x′), as a function of x, can be considered as the response map of the place cell associated
with the place x′. In open field, the measured response map A(x | x′) can be well approximated
by a Gaussian adjacency kernel A(x | x′) = exp(−∥x−x′∥2/2σ2) for a certain scale parameter
σ . u(x′) = (ui(x

′), i = 1, ...,d) is a d-dimensional read-out vector and can be regarded as the
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connection weight from grid cell i to the place cell associated with x′. The right-hand side of
Equation (3) implies that the response maps of grid cells vi(x) may serve as basis functions to
expand the response map A(x | x′) of place cell associated with x′ (Figure 1(c)). We call (3) the
basis expansion model.

Path integration. The above recurrent transformation model (1) and the basis expansion model
(3) enable the agent to navigate. Suppose the agent starts from x0, with vector representa-
tion v0 = v(x0). If the agent makes a sequence of moves (∆xt , t = 1, ...,T ), then the vector
v is updated by vt = F(vt−1,∆xt). At time t, the self-position of the agent can be decoded by
x̂= argmaxx′⟨vt ,u(x

′)⟩, i.e., the place x′ that is the most adjacent to the self-position represented
by vt . This enables the agent to infer and keep track of its position based on its self-motion even in
darkness.

3 CONFORMAL NORMALIZATION

This section presents our conformal normalization mechanism for the recurrent transformation.

3.1 NORMALIZATION IN NEUROSCIENCE AND DEEP LEARNING

Divisive normalization is a canonical operation widely observed in the cortex and has been exten-
sively used in previous models in computational neuroscience (Geisler & Albrecht, 1992; Carandini
& Heeger, 2012; Heeger, 1992; Schwartz & Simoncelli, 2001), which may emerge due to the recur-
rent computations between the excitatory and inhibitory neurons (Rubin et al., 2015; Niell, 2015). In
deep learning models, batch normalization (Ioffe & Szegedy, 2015; Ioffe, 2017), layer normalization
(Ba et al., 2016) and group normalization (Wu & He, 2018) are ubiquitous and indispensable.

3.2 DEFINITION

Consider the general recurrent transformation v(x+∆x) = F(v(x),∆r,θ), where ∆x = (∆x1 =
∆r cosθ ,∆x2 = ∆r sinθ), θ is the heading direction, and ∆r is the displacement.

Definition 1 The directional derivative of F at (v,θ) is defined as

f (v,θ) =
∂

∂a
F(v,a,θ) |a=0 . (4)

With the above definition, the first order Taylor expansion at ∆r = 0 gives us

v(x+∆x) = v(x)+ f (v(x),θ)∆r+o(∆r). (5)

We define conformal normalization of the recurrent transformation so that the displacement of the
position vector in the neural space is proportional to the displacement of the agent in the 2D physical
space, regardless of the direction of the movement. This can be achieved by modulating the input
velocity by the norm of the directional derivative of the transformation.

Definition 2 The conformal normalization of ∆r at v(x) is defined as

∆r =
s∆r

∥ f (v(x),θ)∥
, (6)

where ∥ ·∥ is the ℓ2 norm, s is either a learnable parameter or the average of ∥ f (v(x),θ)∥ over the
directions θ .

The conformal normalization of the original recurrent transformation F(v(x),∆r,θ) is defined as
F(v(x),∆r,θ), so that after conformal normalization, the transformation is changed to

v(x+∆x) = F(v(x),∆r,θ). (7)
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3.3 CONFORMAL 2D MANIFOLD

Proposition 1 With conformal normalization (6) and (7), we have

∥v(x+∆x)−v(x)∥= s∥∆x∥+o(∥∆x∥). (8)

(8) is called conformal isometry.

The proof is straightforward. For the transformation (7), the first order Taylor expansion gives

v(x+∆x) = v(x)+ f (v(x),θ)∆r+o(∆r) = v(x)+ s f (v(x),θ)∆r+o(∆r), (9)

where f (v,θ) = f (v,θ)/∥ f (v,θ)∥ is a unit vector with ∥ f (v,θ)∥= 1, which leads to (8).

Conformal isometry (8) means that as the agent moves by ∥∆x∥ in the 2D physical space, the
position embedding v moves by s∥∆x∥ in the d-dimensional neural space, regardless of the heading
direction θ . Conformal isometry leads to conformal embedding, i.e., a local coordinate system
around x (e.g., a polar coordinate system) is mapped to a local coordinate system around v(x)
without distortion of shape except for a scaling factor s.

Suppose the agent navigates within a 2D domain D, e.g., a square, and if s is a constant over x, then
the 2D domain D is embedded as a 2D manifold M = (v(x),x ∈ D) in the neural space. This 2D
manifold M is conformal to the 2D physical domain D. We may imagine D as a piece of flat paper.
We can fold or bend it into M without distortion by stretching except for a global scaling factor
s. Then M forms a 2D coordinate system of the physical domain without distortion except global
scaling, e.g., magnification, so that the local distance between two position embeddings informs the
agent of the physical distance between the two positions. The movement of v on M can be realized
by the recurrent transformation F . Thus (M,F) becomes a mathematical realization of an internal
GPS system (Moser & Moser, 2016).

In fact, the positions x and x′ in our model do not need to be actual 2D coordinates and there is
no need to assume an a priori 2D coordinate system. x and x′ can be discretized and indexed by
discrete indices. Our model only needs to know the heading direction θ and self-displacement ∆r
that connect different nearby positions. The learned v associated with position x (which may be
just an index) will form the 2D coordinate of x. That is, our model learns to place the positions on
a conform 2D coordinate system.

Is it too wasteful to use a high-dimensional v to represent 2D coordinates? The answer is no. v can
inform the agent of its adjacency to any position x′ via a linear read-out vector u(x′) (i.e., linear
probing), even though adjacency A(x|x′) is highly non-linear in x and x′. That is, v(x) serves as
linear basis functions to expand any non-linear value functions of x. This is related to the Peter-Weyl
theory (Taylor, 2002) where group representation gives rise to linear basis functions.

3.4 LINEAR MODEL

We shall numerically study the following linear model:

v(x+∆x) = (I +B(θ)∆r)v(x) = v(x)+B(θ)v(x)∆r. (10)

where the directional derivative is f (v,θ) =B(θ)v(x). Thus the conformal normalization is

∆r =
s∆r

∥B(θ)v(x)∥
. (11)

The conformal normalization of the linear model then becomes

v(x+∆x) = v(x)+ s
B(θ)v(x)

∥B(θ)v(x)∥
∆r. (12)

The above model is similar to the “add + layer norm” operations in the Transformer model (Vaswani
et al., 2017).

3.5 NON-LINEAR MODEL

We shall also numerically study the following non-linear model:

v(x+∆x) = R(Wv(x)+B(θ)v(x)∆r), (13)

5



Preprint

where W is a learnable matrix, and R() is element-wise non-linear rectification, such as Tanh and
GeLU (Hendrycks & Gimpel, 2016). For this model, the directional derivative is

f (v,θ) = R′(Wv)⊙B(θ)v, (14)

where R′() is calculated element-wise, and ⊙ is element-wise multiplication. The conformal nor-
malization then follows (6) and (7).

While the linear model is defined for v(x) ∈ M on the manifold, the non-linear model further
constrains v(x) = R(Wv(x)) for v(x) ∈M, where ∆r = 0. If R(Wv) is furthermore a contraction
for v that are off M, then M consists of the attractors of R(Wv) for v around M. The non-linear
model (13) then becomes a continuous attractor neural network (CANN) (Amit, 1992; Burak &
Fiete, 2009; Couey et al., 2013; Pastoll et al., 2013; Agmon & Burak, 2020).

See Appendix A.1.1 for eigen analysis.

3.6 MULTIPLE BLOCKS AND MULTI-SCALE COORDINATE SYSTEMS

The grid cells form multiple modules or blocks (Barry et al., 2007; Stensola et al., 2012), and the
response maps of grid cells within each module share the same scale. We thus assume that B(θ)
is block diagonal, i.e., v(x) consists of sub-vectors, and each sub-vector is operated on by a sub-
matrix on the diagonal of B(θ). In the non-linear model, we assume W is a full matrix. For each
sub-vector, we normalize its ℓ2 norm to be the same constant. Each sub-vector is on a 2D manifold,
which serves as a coordinate system at a particular scale. For multiple modules, we have coordinate
systems of multiple scales or resolutions. The notion of local distance also changes with scale.

3.7 LEARNING

To learn the system, we discretize x ∈ D and θ ∈ [0,2π]. The input consists of place cell adjacency
kernels A(x | x′). The output consists of (v(x),u(x′),B(θ)) for the linear model, and additionally
W for the non-linear model. The loss terms are:

L0 = Ex,x′ [(A(x|x′)−⟨v(x),u(x′)⟩)2], (15)

L1 = Ex,∆x[∥v(x+∆x)−F(v(x),∆x)∥2], (16)

where F() is the transformation after conformal normalization. The expectations can be approx-
imated by Monte Carlo averages of random samples of x, x′, and ∆x within their ranges. L0 is
for the basis expansion of place cell kernels. We assume u(x′) ≥ 0 because the connections from
grid cells to place cells are excitatory (Zhang et al., 2013; Rowland et al., 2018). L1 is for one-step
transformation in path integration.

In the numerical experiments, we jointly learn the position embedding v(x), read-out weights u(x′),
and transformation model F() by minimizing the total loss: L = L0 +λ1L1. A special case of L1
with ∆x= 0 enforces the fixed point condition.

4 THEORETICAL UNDERSTANDING

(a) (b) (c) (d)

Figure 2: (a) (F(·,∆x),∀∆x ∈ R2) is a group of transformations, and this transformation group is a repre-
sentation of the 2D additive Euclidean group (R2,+). (b) A 2D torus embedded in 3D space (from Banchoff
(1968)). (c) Square lattice. (d) Hexagon lattice.

In this section, we seek to connect our conformal normalization to the hexagon grid pattern in the
general setting. In the following, Step 1 follows Gao et al. (2021), and Step 2 substantially expands
Xu et al. (2022). We add Step 3 to justify the hexagon lattice.
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Step 1: Abelian Lie group. The group of transformation (F(·,∆x),∀∆x) acting on the
manifold (v(x),∀x) form a representation of the 2D additive Euclidean group (R2,+),
i.e., F(v(x),∆x1 + ∆x2) = F(F(v(x),∆x1),∆x2) = F(F(v(x),∆x2),∆x1), ∀x,∆x1,∆x2, and
F(v(x),0) = v(x), ∀x. See Figure 2(a) for an illustration. Since (R2,+) is an abelian Lie group,
(F(·,∆x),∀∆x) is also an abelian Lie group.

Step 2: Torus topology. Because the elements of v(x) are neuron firing rates, they are bounded.
Thus the manifold (v(x),∀x) is compact, and (F(·,∆x),∀∆x) is a compact group. It is also con-
nected because the 2D domain is connected. According to a classical theorem in Lie group theory
(Dwyer & Wilkerson, 1998), a compact and connected abelian Lie group has a topology of a torus,
i.e., Sr

1, where each S1 is topologically a circle, and r is the rank or dimensionality of the torus.

There are multiple blocks (or modules) in v(x), each of which is operated separately by a block of
the block-diagonal B(θ). We may assume each block (or module) has the minimal rank 2 (rank 1
can be considered a degenerate special case, see below). Otherwise, we can continue to divide the
block into sub-blocks, each of which operates separately. For notation simplicity, we continue to use
F(·,∆x) and v(x) to denote the transformation and position embedding of a single block. If the torus
formed by (F(·,∆x),∀∆x) is 2D, then its topology is S1×S1, where each S1 is a circle. Thus we can
find two 2D vectors ∆x1 and ∆x2, so that F(·,∆x1) = F(·,∆x2) = F(·,0). As a result, v(x) is a 2D
periodic function so that v(x+k1∆x1 +k2∆x2) = v(x) for arbitrary integers k1 and k2. We assume
∆x1 and ∆x2 are the shortest vectors that characterize the above 2D periodicity. According to the
theory of 2D Bravais lattice (Ashcroft et al., 1976) (see Appendix A.1.3 for details), any 2D periodic
lattice can be defined by two primitive vectors (∆x1,∆x2) (rank 1 degenerate case corresponds to
one primitive vector being 0). The torus topology is supported by neuroscience data (Gardner et al.,
2022). A 2D torus is commonly visualized as a donut shape in 3D space, as shown in Figure 2(b).
But it can be more naturally imagined as a 2D rectangle with periodic boundary conditions.

If the scaling factor s is constant over different positions, then as the position x of the agent moves
from 0 to ∆x1 in the 2D space, v(x) traces a perfect circle of circumference s∥∆x1∥ in the neural
space due to conformal isometry, i.e., the geometry of the trajectory of v(x) is a perfect circle
up to bending or folding but without distortion by stretching. The same with movement from 0
to ∆x2. Since we normalize ∥v(x)∥ to be a constant, the two circles have the same radius and
thus they also have the same circumferences, hence we have ∥∆x1∥ = ∥∆x2∥ (which also implies
that rank 1 degenerate case is forbidden by conformal normalization). According to Bravais lattice
theory (Ashcroft et al., 1976), the periodic lattice with two equal-length primitive vectors can only
be square or hexagon, as illustrated by Figure 2(c) and (d).

Step 3: Fourier analysis. The Fourier transform of a 2D period function f (x) can be written as
a linear superposition of Fourier components f (x) = ∑k f̂ (ωk)ei⟨ωk,x⟩, where ωk = k1a1 + k2a2,
k = (k1,k2) are two integers, and (a1,a2) are primitive vectors in the reciprocal space. For square
or hexagon lattice with ∥∆x1∥ = ∥∆x2∥ = ρ , we have ∥a1∥ = ∥a2∥ = 2π/ρ , and the lattice
in the reciprocal space remains to be square or hexagon respectively. For a 2D Gaussian adja-
cent kernel centered at origin, A(x) = 1

2πσ2 exp(−∥x∥2/2σ2), its 2D Fourier transform is Â(ω) =

exp(−σ2∥ω∥2/2), which goes to zero as ∥ω∥ → ∞. Therefore we only need to consider frequency
components Ω = {ω : ∥ω∥ ≤ D} for a big enough D. For each x, let e(x) = (ei⟨ωk,x⟩,ωk ∈ Ω) be
the column vector formed by the Fourier components within Ω. Let v(x) = Me(x) for a matrix
M . Let us assume the dimensionality of v(x) is no less than the dimensionality of e(x). Then the
least square regression on v(x) amounts to the least squares regression on e(x). The hexagon lattice
packs more Fourier components into Ω than the square lattice with the same ∥a1∥= ∥a2∥= 2π/ρ .
All these discrete Fourier components are orthogonal to each other. Thus the hexagon v(x) pro-
vides a better least squares fit to the kernel function A(x) in the basis expansion. Different blocks
have different scales of ∥a1∥ = ∥a2∥ as well as different orientations to pave the whole frequency
domain. Our results expand upon previous theoretical arguments using optimal packing density to
justify the optimality of hexagonal grids (Wei et al., 2015; Mathis et al., 2015). See Appendix A.1
for more on theoretical understanding.
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5 EXPERIMENTS

We conducted numerical experiments to train both linear and non-linear models. Within these ex-
periments, we use a square open area measuring 1m×1m that was subdivided into 40× 40 spatial
bins. The dimensions of v(x), representing the total number of grid cells, are 360 for the linear
model and 192 for the non-linear model. For both models, we partition v(x) into multiple blocks
with block size 24.

For the response map of the place cell associated with x′, we use the Gaussian adjacency kernel with
A(x|x′) = exp(−∥x−x′∥2/(2σ2)), where σ = 0.07. For transformation, the one-step displacement
∆r is set to be smaller than 3 grids. The scaling factor s is taken to be the average of ∥ f (v(x),θ)∥
over θ . s can also be a learnable parameter, and Appendix A.2.1 contains result with learnable s.

5.1 HEXAGON PATTERNS

Figures 3 and 4 show the learned firing patterns of v(x) = (vi(x), i = 1, ...,d) over the 40× 40
lattice of x for linear and non-linear models. Each image represents the response map for a grid cell,
with every row displaying the units learned within the same module. The emergence of hexagonal
patterns in these activity patterns is evident. Within each module, scales, and orientations remain
consistent, but they exhibit different phases or spatial shifts. Our findings highlighted the essential
role of conformal normalization; in its absence, the response maps displayed non-hexagon or stripe-
like patterns. Ablation results can be found in Appendix A.2.2. To show generality, we also provide
results for both models with different block sizes.

Figure 3: In the linear model, hexagon grid firing patterns are observed in the learned v(x). Each row
displays the firing patterns of all the cells within a single module, with each module comprising 24 cells. The
units illustrate the neuron activity throughout the entire 2D square environment. The figure presents patterns
from five randomly chosen modules.

(a) Tanh activation (b) GeLU activation

Figure 4: Results of the non-linear models. We randomly chose 8 modules and showed the firing patterns with
different rectification functions.

To evaluate how closely the learned patterns align with regular hexagonal grids, we report the grid-
ness scores in Table 1. These scores are derived from grid cell literature (Langston et al., 2010;
Sargolini et al., 2006). We also present the percentage of valid grid cells that meet the criteria of a
gridness score greater than 0.37.
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Table 1: Gridness scores and valid rates of grid cells of learned models.

Model Gridness score % of grid cells

Banino et al. (2018) 0.18 25.2
Sorscher et al. (2019) 0.48 56.1
Gao et al. (2021) 0.90 73.1
Ours (Linear) 0.86 82.5
Ours (Non-linear) 0.87 87.6

5.2 PATH INTEGRATION

We assess the ability of the learned model to execute accurate path integration in two different sce-
narios. First of all, for path integration with re-encoding, we decode v → x̂ to the 2D physical
space via x̂= argmaxx′⟨v,u(x′)⟩, subsequently encode v← v(x̂) back to the neuron space inter-
mittently. This approach aids in rectifying the errors accumulated in the neural space throughout
the transformation. Conversely, in scenarios excluding re-encoding, the transformation is applied
exclusively using the neuron vector v. In the left panel of Figure 5, the model adeptly handles path
integration up to 30 steps (short distance) without the need for re-encoding. For path integration with
longer distances, we evaluate the learned model for 100 steps over 300 trajectories. As shown in the
right panel of Figure 5, with re-encoding, the path integration error for the last step is 0.003, while
the average error over the 100-step trajectory is 0.002. Without re-encoding, the error is relatively
larger, where the average error over the entire trajectory is approximately 0.024, and it reaches 0.037
for the last step.

Figure 5: Results for path integration. Left: path integration for 30 steps without re-encoding. The black line
represents the real trajectory and the red one is the inferred trajectory by the learned model. Right: results for
long distance (100-step) path integration error with and without re-encoding over time by the non-linear model.

6 LIMITATIONS

Our work focuses on the study of grid cells. We assume that place cells are modeled by Gaussian
adjacency kernels in the open environment. We do not seek to model place cells beyond that. On the
other hand, our model of grid cells can potentially be integrated into a more sophisticated model of
place cells. In our study of grid cells, we focus on general transformation and a simple and general
conformal normalization mechanism. We study the linear model and non-linear model as concrete
machine learning models due to their simplicity. It is possible that the biological grid cell system
employs similar normalization scheme, but it is difficult to test this hypothesis against available
neuroscience data.

7 RELATED WORK

In computational neuroscience, hand-crafted continuous attractor neural networks (CANN) (Amit,
1992; Burak & Fiete, 2009; Couey et al., 2013; Pastoll et al., 2013; Agmon & Burak, 2020) were
designed for path integration. In machine learning, the pioneering papers (Cueva & Wei, 2018;
Banino et al., 2018) learned RNNs for path integration. However, RNNs do not always learn hexagon
grid patterns. PAC-based basis expansion models (Dordek et al., 2016; Stachenfeld et al., 2017) and
some theoretical accounts based on learned RNNs (Sorscher et al., 2023) rely on non-negativity
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assumption and the difference of Gaussian kernels for the place cells to explain the hexagon grid
pattern. (Dorrell et al., 2022) proposes a loss function to learn grid cells.

Our work is based on (Gao et al., 2021; Xu et al., 2022), where the conformal isometry is constrained
by an extra loss term that is rather unnatural. In contrast, in our work, the conformal isometry is
built into the recurrent network intrinsically via a simple and general normalization mechanism, so
that there is no need for extra loss term. While (Gao et al., 2021) focuses on the linear model in
numerical experiments, our paper studies the non-linear model extensively. Our paper also provides
a deeper and more comprehensive theoretical understanding.

8 CONCLUSION

Divisive normalization has been extensively studied in neuroscience and is ubiquitous in modern
deep neural networks. This paper proposes a conformal normalization mechanism for recurrent
neural networks of grid cells, and shows that the conformal normalization leads to the emergence of
hexagon grid patterns. The proposed normalization mechanism is simple and general, and it leads to
a conform embedding of the 2D Euclidean space in the high-dimensional neural space, formalizing
the notion that the grid cells collectively form an internal GPS system.
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A APPENDIX

A.1 MORE THEORETICAL UNDERSTANDING

A.1.1 EIGEN ANALYSIS OF TRANSFORMATION

For the general transformation, v(x+∆x) = F(v(x),∆x), we have

v(x) = F(v(x),0), (17)
v(x+∆x) = F(v(x+∆x),0), (18)

thus

∆v = v(x+∆x)−v(x) = F ′v(v(x))∆v+o(∥∆v∥), (19)

where

F ′v(v) =
∂

∂∆
F(v+∆,0) |∆=0 . (20)

Thus ∆v is in the 2D eigen subspace of F ′v(v(x)) with eigenvalue 1.

At the same time,

v(x+∆x) = F(v(x),∆x) = v(x)+F ′∆x(v(x))∆x, (21)

where

F ′∆x(v) =
∂

∂∆x
F(v,∆x) |∆x=0 . (22)

Thus

∆v = F ′∆x(v(x))∆x, (23)

that is, the two columns of F ′
∆x(v(x)) are the two vectors that span the eigen subspace of F ′v(v(x))

with eigenvalue 1. If we further assume conformal embedding which can be enforced by conformal
normalization, then the two column vectors of F ′

∆x(v(x)) are orthogonal and of equal length, so that
∆v is conformal to ∆x.

The above analysis is about v(x) on the manifold. We want the remaining eigenvalues of F ′v(v(x))
to be less than 1, so that, off the manifold, F(v,0) will bring v closer to the manifold, i.e., the
manifold consists of attractor points of F , and F is an attractor network.

A.1.2 PERMUTATION GROUP

The learned response maps of the grid cells in the same module are shifted versions of each other,
i.e., there is a discrete set of displacements {∆x}, such as for each ∆x in this set, we have vi(x+
∆x)=v j(x), where j =σ(i,∆x), and σ is a mapping from i to j that depends on ∆x. In other words,
∆x causes a permutation of the indices of the elements in v(x), and F(·,∆x)∼= σ(·,∆x), that is, the
transformation group is equivalent to a subgroup of the permutation group. This is consistent with
hand-designed CANN. A CANN places grid cells on a 2D “neuron sheet” with periodic boundary
condition, i.e., a 2D torus, and lets the movement of the “bump” formed by the activities of grid cells
mirror the movement of the agent in a conformal way, and the movement of the “bump” amounts
to cyclic permutation of the neurons. Our model does not assume such an a priori 2D torus neuron
sheet, and is much simpler and more generic.

A.1.3 BACKGROUND ON BRAVAIS LATTICE

Named after Auguste Bravais (1811-1863), the theory of Bravais lattice was developed for the study
of crystallography in solid state physics.

In 2D, a periodic lattice is defined by two primitive vectors (∆x1,∆x2), and there are 5 different
types of periodic lattices as shown in Figure 6. If ∥∆x1∥= ∥∆x2∥, then the two possible lattices are
square lattice and hexagon lattice.
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Figure 6: 2D periodic lattice is defined by two primitive vectors.

For Fourier analysis, we need to find the primitive vectors in the reciprocal space, (a1,a2), via the
relation: ⟨ai,∆x j⟩= 2πδi j, where δi j = 1 if i = j, and δi j = 0 otherwise.

For a 2D periodic function f (x) on a lattice whose primitive vectors are (a1,a2) in the reciprocal
space, define ωk = k1a1 + k2a2, where k = (k1,k2) are a pair of integers (positive, negative, and
zero), the Fourier expansion is f (x) = ∑k f̂ (ωk)ei⟨ωk,x⟩.

See http://lampx.tugraz.at/˜hadley/ss1/crystaldiffraction/fourier/
2dBravais.php for more details. Figure 6 as well as Figure 2(c) and (d) are taken from the
above webpage.

A.2 MORE EXPERIMENT RESULTS

A.2.1 LEARNED PATTERNS

In Figures 7 and 8, we show the autocorrelograms of the learned grid patterns from the linear and
non-linear models.

Figure 7: Autocorrelograms of the learned patterns for the linear model.

We further tried with varying module sizes. Figure 9 visualizes the learned patterns when we fix the
total number of grid cells but adjust the module size to 12 or 36. Importantly, the number or size of
blocks doesn’t impact the emergence of the hexagonal grid firing patterns.

Furthermore, for the non-linear model, we experimented with different rectification functions, in-
cluding GeLU. Our evaluations of the learned patterns yielded a gridness score of 0.87 and a ratio
of grid cells at 78.65%. As depicted in Figure 10, hexagonal grid firing patterns can emerge using
diverse activation functions.
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Figure 8: Autocorrelograms of the learned patterns for the non-linear model.

Finally, for scaling factor s, we tried to learn it as a free parameter. In Figure 11, we show the
learned hexagonal patterns for the linear model with 12 block size, which indicates that multi-scale
grid patterns can be learned with or without learnable s.

(a) Block size is 12. (b) Block size is 36.

Figure 9: For the linear model, the learned patterns of v(x) with 12 and 36 cells in each block. We randomly
select 6 blocks for each model and show 12 cells of those blocks.

Figure 10: Firing patterns of the non-linear model with GeLU activation.

A.2.2 ABLATION STUDIES

In this section, we show ablation results to investigate the empirical significance of certain compo-
nents in our model for the emergence of hexagon grid patterns. First, the emergence of hexagon
patterns is dependent on conformal normalization for both linear and non-linear models. Also, it
is necessary for B(θ) to be a block-diagonal matrix in order to learn multi-scale hexagon firing
patterns.
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Figure 11: Learned patterns with learnable scaling factor s.

(a) Linear model without
conformal normalization

(b) Non-linear model without
conformal normalization

(c) Without block-diagonal
assumption

Figure 12: Results of ablation on certain components of the model. (a) Learned patterns without conformal
normalization in the linear model. (b) Learned patterns without conformal normalization in the non-linear
model. (c) Learned patterns without the block-diagonal assumption for B(θ) in the linear model.
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