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PREFACE TO THE FIRST EDITION

This book is a considerable expansion of lectures I gave at the School of
Mathematical and Physical Sciences, University of Sussex during the winter
term of 1986. The audience included postgraduate students and faculty members
working in particle physics, condensed matter physics and general relativity. The
lectures were quite informal and I have tried to keep this informality as much as
possible in this book. The proof of a theorem is given only when it is instructive
and not very technical; otherwise examples will make the theorem plausible.
Many figures will help the reader to obtain concrete images of the subjects.

In spite of the extensive use of the concepts of topology, differential ge-
ometry and other areas of contemporary mathematics in recent developments in
theoretical physics, it is rather difficult to find a self-contained book that is easily
accessible to postgraduate students in physics. This book is meant to fill the gap
between highly advanced books or research papers and the many excellent intro-
ductory books. As a reader, [ imagined a first-year postgraduate student in theo-
retical physics who has some familiarity with quantum field theory and relativity.
In this book, the reader will find many examples from physics, in which topo-
logical and geometrical notions are very important. These examples are eclectic
collections from particle physics, general relativity and condensed matter physics.
Readers should feel free to skip examples that are out of their direct concern.
However, I believe these examples should be the theoretical minima to students
in theoretical physics. Mathematicians who are interested in the application of
their discipline to theoretical physics will also find this book interesting.

The book is largely divided into four parts. Chapters 1 and 2 deal with the
preliminary concepts in physics and mathematics, respectively. In chapter 1,
a brief summary of the physics treated in this book is given. The subjects
covered are path integrals, gauge theories (including monopoles and instantons),
defects in condensed matter physics, general relativity, Berry’s phase in quantum
mechanics and strings. Most of the subjects are subsequently explained in detail
from the topological and geometrical viewpoints. Chapter 2 supplements the
undergraduate mathematics that the average physicist has studied. If readers are
quite familiar with sets, maps and general topology, they may skip this chapter
and proceed to the next.

Chapters 3 to 8 are devoted to the basics of algebraic topology and
differential geometry. In chapters 3 and 4, the idea of the classification of spaces
with homology groups and homotopy groups is introduced. In chapter 5, we



define a manifold, which is one of the central concepts in modern theoretical
physics. Differential forms defined there play very important roles throughout this
book. Differential forms allow us to define the dual of the homology group called
the de Rham cohomology group in chapter 6. Chapter 7 deals with a manifold
endowed with a metric. With the metric, we may define such geometrical
concepts as connection, covariant derivative, curvature, torsion and many more.
In chapter 8, a complex manifold is defined as a special manifold on which there
exists a natural complex structure.

Chapters 9 to 12 are devoted to the unification of topology and geometry.
In chapter 9, we define a fibre bundle and show that this is a natural setting
for many physical phenomena. The connection defined in chapter 7 is naturally
generalized to that on fibre bundles in chapter 10. Characteristic classes defined
in chapter 11 enable us to classify fibre bundles using various cohomology
classes. Characteristic classes are particularly important in the Atiyah—Singer
index theorem in chapter 12. We do not prove this, one of the most important
theorems in contemporary mathematics, but simply write down the special forms
of the theorem so that we may use them in practical applications in physics.

Chapters 13 and 14 are devoted to the most fascinating applications of
topology and geometry in contemporary physics. In chapter 13, we apply the
theory of fibre bundles, characteristic classes and index theorems to the study of
anomalies in gauge theories. In chapter 14, Polyakov’s bosonic string theory is
analysed from the geometrical point of view. We give an explicit computation of
the one-loop amplitude.

I would like to express deep gratitude to my teachers, friends and students.
Special thanks are due to Tetsuya Asai, David Bailin, Hiroshi Khono, David
Lancaster, Shigeki Matsutani, Hiroyuki Nagashima, David Pattarini, Felix E A
Pirani, Kenichi Tamano, David Waxman and David Wong. The basic concepts
in chapter 5 owe very much to the lectures by F E A Pirani at King’s College,
University of London. The evaluation of the string Laplacian in chapter 14 using
the Eisenstein series and the Kronecker limiting formula was suggested by T Asai.
I would like to thank Euan Squires, David Bailin and Hiroshi Khono for useful
comments and suggestions. David Bailin suggested that I should write this book.
He also advised Professor Douglas F Brewer to include this book in his series. I
would like to thank the Science and Engineering Research Council of the United
Kingdom, which made my stay at Sussex possible. It is a pity that I have no
secretary to thank for the beautiful typing. Word processing has been carried out
by myself on two NEC PC9801 computers. Jim A Revill of Adam Hilger helped
me in many ways while preparing the manuscript. His indulgence over my failure
to meet deadlines is also acknowledged. Many musicians have filled my office
with beautiful music during the preparation of the manuscript: I am grateful to
J S Bach, Ryuichi Sakamoto, Ravi Shankar and Erik Satie.

Mikio Nakahara
Shizuoka, February 1989



PREFACE TO THE SECOND EDITION

The first edition of the present book was published in 1990. There has been
incredible progress in geometry and topology applied to theoretical physics and
vice versa since then. The boundaries among these disciplines are quite obscure
these days.

I found it impossible to take all the progress into these fields in this second
edition and decided to make the revision minimal. Besides correcting typos, errors
and miscellaneous small additions, I added the proof of the index theorem in terms
of supersymmetric quantum mechanics. There are also some rearrangements of
material in many places. I have learned from publications and internet homepages
that the first edition of the book has been read by students and researchers from a
wide variety of fields, not only in physics and mathematics but also in philosophy,
chemistry, geodesy and oceanology among others. This is one of the reasons
why I did not specialize this book to the forefront of recent developments. I
hope to publish a separate book on the recent fascinating application of quantum
field theory to low dimensional topology and number theory, possibly with a
mathematician or two, in the near future.

The first edition of the book has been used in many classes all over the world.
Some of the lecturers gave me valuable comments and suggestions. I would like
to thank, in particular, Jouko Mikkelsson for constructive suggestions. Kazuhiro
Sakuma, my fellow mathematician, joined me to translate the first edition of the
book into Japanese. He gave me valuable comments and suggestions from a
mathematician’s viewpoint. I also want to thank him for frequent discussions
and for clarifying many of my questions. I had a chance to lecture on the material
of the book while I was a visiting professor at Helsinki University of Technology
during fall 2001 through spring 2002. I would like to thank Martti Salomaa for
warm hospitality at his materials physics laboratory. Sami Virtanen was the course
assisitant whom I would like to thank for his excellent work. I would also like to
thank Juha Vartiainen, Antti Laiho, Teemu Ojanen, Teemu Keski-Kuha, Markku
Stenberg, Juha Heiskala, Tuomas Hytonen, Antti Niskanen and Ville Bergholm
for helping me to find typos and errors in the manuscript and also for giving me
valuable comments and questions.

Jim Revill and Tom Spicer of IOP Publishing have always been generous
in forgiving me for slow revision. I would like to thank them for their generosity
and patience. I also want to thank Simon Laurenson for arranging the copyediting,
typesetting and proofreading and Sarah Plenty for arranging the printing, binding



and scheduling. The first edition of the book was prepared using an old NEC
computer whose operating system no longer exists. I hesitated to revise the
book mainly because I was not so courageous as to type a more-than-500-page
book again. Thanks to the progress of information technology, IOP Publishing
scanned all the pages of the book and supplied me with the files, from which I
could extract the text files with the help of optical character recognition (OCR)
software. I would like to thank the technical staff of IOP Publishing for this
painstaking work. The OCR is not good enough to produce the IXTEX codes for
equations. Mariko Kamada edited the equations from the first version of the book.
I would like to thank Yukitoshi Fujimura of Peason Education Japan for frequent
TgX-nical assistance. He edited the Japanese translation of the first edition of the
present book and produced an excellent I“TgX file, from which I borrowed many
LUTEX definitions, styles, diagrams and so on. Without the Japanese edition, the
publication of this second edition would have been much more difficult.

Last but not least, I would thank my family to whom this book is dedicated.
I had to spend an awful lot of weekends on this revision. I wish to thank my
wife, Fumiko, and daughters, Lisa and Yuri, for their patience. I hope my
little daughters will someday pick up this book in a library or a bookshop and
understand what their dad was doing at weekends and late after midnight.

Mikio Nakahara
Nara, December 2002



HOW TO READ THIS BOOK

As the author of this book, I strongly wish that this book is read in order. However,
I admit that the book is thick and the materials contained in it are diverse. Here
I want to suggest some possibilities when this book is used for a course in
mathematics or mathematical physics.

ey

)

3)

“)
(5)

A one year course on mathematical physics: chapters 1 through 10.
Chapters 11 and 12 are optional.

A one-year course on geometry and topology for mathematics students:
chapters 2 through 12. Chapter 2 may be omitted if students are familiar with
elementary topology. Topics from physics may be omitted without causing
serious problems.

A single-semester course on geometry and topology: chapters 2 through
7. Chapter 2 may be omitted if the students are familiar with elementary
topology. Chapter 8 is optional.

A single-semester course on differential geometry for general relativity:
chapters 2, 5 and 7.

A single-semester course on advanced mathematical physics: sections 1.1-
1.7 and sections 12.9 and 12.10, assuming that students are familiar with
Riemannian geometry and fibre bundles. This makes a self-contained course
on the path integral and its application to index theorem.

Some repetition of the material or a summary of the subjects introduced in

the previous part are made to make these choices possible.



NOTATION AND CONVENTIONS

The symbols N, Z, Q, R and C denote the sets of natural numbers, integers,
rational numbers, real numbers and complex numbers, respectively. The set of
quaternions is defined by

H={a+bi+cj+dkla,b,c,deR}

where (1,1, j,K) isabasis suchthati - j = —j-i =k, j-k=—-k-j =1,
kii=—i-k=j,i?= j>=k?>= —1. Notethati, j and k have the 2 x 2 matrix
representations i = i03, | = iop, K = io] where o; are the Pauli spin matrices

(01 (0 —i (1 0
T=\1 0 2=\1i o 3=\o -1 )

The imaginary part of a complex number z is denoted by Im z while the real part
is Rez.

We put ¢ (speed of light) = # (Planck’s constant/27) = kg (Boltzmann’s
constant) = 1, unless otherwise stated explicitly. We employ the Einstein
summation convention: if the same index appears twice, once as a superscript
and once as a subscript, then the index is summed over all possible values. For
example, if x runs from 1 to m, one has

m
A"By, =) A"By.
n=l
The Euclid metricis g, = 8., = diag(+1, ..., 41) while the Minkowski metric

is gv = Ny = diag(—1, +1, ..., +1).
The symbol O denotes ‘the end of a proof’.



QUANTUM PHYSICS

A brief introduction to path integral quantization is presented in this chapter.
Physics students who are familiar with this subject and mathematics students who
are not interested in physics may skip this chapter and proceed directly to the next
chapter. Our presentation is sketchy and a more detailed account of this subject
is found in Bailin and Love (1996), Cheng and Li (1984), Huang (1982), Das
(1993), Kleinert (1990), Ramond (1989), Ryder (1986) and Swanson (1992). We
closely follow Alvarez (1995), Bertlmann (1996), Das (1993), Nakahara (1998),
Rabin (1995), Sakita (1985) and Swanson (1992).

1.1 Analytical mechanics

We introduce some elementary principles of Lagrangian and Hamiltonian
formalisms that are necessary to understand quantum mechanics.

1.1.1 Newtonian mechanics

Let us consider the motion of a particle m in three-dimensional space and let X(¢)
denote the position of m at time r.! Suppose this particle is moving under an
external force F (X). Then X (#) satisfies the second-order differential equation
d2x (1)
m——— = F(x(t 1.1
- (x(1)) (1.1)
called Newton’s equation or the equation of motion.
If force F(X) is expressed in terms of a scalar function V(X) as F(X) =
—VV(X), the force is called a conserved force and the function V (x) is called
the potential energy or simply the potential. When F is a conserved force, the

combination
E= (Y v (1.2)
-2 \dr '

is conserved. In fact,

dE dxp d®x; 9V dxg d’ ;. AV \ dxk
_— = _— _— = —_— _— _— = 0
dt k:; . [m dr dr? + dxy dt Xk: e + oxy | dt

1 We call a particle with mass m simply ‘a particle m’.



where use has been made of the equation of motion. The function E, which is
often the sum of the kinetic energy and the potential energy, is called the energy.

Example 1.1. (One-dimensional harmonic oscillator) Let x be the coordinate
and suppose the force acting on m is F(x) = —kx, k being a constant. This force
is conservative. In fact, V(x) = %kx2 yields F(x) = —dV(x)/dx = —kx.
In general, any one-dimensional force F(x) which is a function of x only is
conserved and the potential is given by

Vi) = — / (&) de.

An example of a force that is not conserved is friction F = —ndx/df. We
will be concerned only with conserved forces in the following.

1.1.2 Lagrangian formalism
Newtonian mechanics has the following difficulties;

1. This formalism is based on a vector equation (1.1) which is not very easy to
handle unless an orthogonal coordinate system is employed.

2. The equation of motion is a second-order equation and the global properties

of the system cannot be figured out easily.

The analysis of symmetries is not easy.

4. Constraints are difficult to take into account.

(O8]

Furthermore, quantum mechanics cannot be derived directly from
Newtonian mechanics. The Lagrangian formalism is now introduced to overcome
these difficulties.

Let us consider a system whose state (the position of masses for example)
is described by N parameters {g;} (1 < i < N). The parameter is an element
of some space M .2 The space M is called the configuration space and the {¢;}
are called the generalized coordinates. If one considers a particle on a circle, for
example, the generalized coordinate ¢ is an angle 6 and the configuration space
M is a circle. The generalized velocity is defined by ¢; = dg; /dt.

The Lagrangian L(g,q) is a function to be defined in Hamilton’s
principle later. We will restrict ourselves mostly to one-dimensional space but
generalization to higher-dimensional space should be obvious. Let us consider
a trajectory q(t) (t € [t;,ty]) of a particle with conditions ¢(;) = ¢; and
q(ty) = qy. Consider a functional®

Iy
SIq (D), (1)) = / L(g. ) di (13)
t

2 A manifold, to be more precise, see chapter 5.
3 A functional is a function of functions. A function f (o) produces a number f(x) for a given number
x. Similarly, a functional F[e] assigns a number F[ f] to a given function f(x).



called the action. Given a trajectory ¢(¢) and ¢(¢), the action S[g, ¢] produces
a real number. Hamilton’s principle, also known as the principle of the least
action, claims that the physically realized trajectory corresponds to an extremum
of the action. Now the Lagrangian must be chosen so that Hamilton’s principle is
fulfilled.

It turns out to be convenient to write Hamilton’s principle in a local form
as a differential equation. Suppose g(¢) is a path realizing an extremum of S.
Consider a variation 8¢ (¢) of the trajectory such that 8¢ (¢;) = dq(ty) = 0. The
action changes under this variation by

tr f
68 = / L(g +5q,c’1+8c'1)dt—/ L(g,q)dt
1 t

_/t"' OL _ dOLY s 4 (14)
=), \og “arag)™ '

which must vanish because ¢ yields an extremum of S. Since this is true for any
34, the integrand of the last line of (1.4) must vanish. Thus, the Euler-Lagrange
equation

—_——=0 (1.5)

————_—~=0 (1<k<N). (1.6)

If we introduce the generalized momentum conjugate to the coordinate gy
by

oL
Dk = —— (1.7)
gk
the Euler-Lagrange equation takes the form
d oL
Pk _ 9% (1.8)
dr 8qk

By requiring this equation to reduce to Newton’s equation, one quickly finds the
possible form of the Lagrangian in the ordinary mechanics of a particle. Let us
put L = %mq2 — V(Q). By substituting this Lagrangian into the Euler-Lagrange
equation, it is easily shown that it reduces to Newton’s equation of motion,

mgy + — =0. (1.9)
g
Let us consider the one-dimensional harmonic oscillator for example. The
Lagrangian is
L(x,x)= 2m)c — —kx (1.10)



from which one finds mx + kx = 0.

It is convenient for later purposes to introduce the notion of a functional
derivative. Let us consider the case with a single degree of freedom for simplicity.
Define the functional derivative of S with respect to g by

8Slg. 41 _ lim {S[g(t) +e8(t — ), ¢(t) + 8t — )] — Slq (1), C](f)]}
8q(s) ~ e—0 &

(1.11)
Since

S [q(t) +e8(t —s),q() + E%S(I - s):|
= /dtL (q(t) +&8(t —s),q(t) +8%5(l‘ — s))
. oL oL d )
:/dtL(q,q)+8fdt (—8(t—s)+—,—5(t—s)> + O0(e%)
dq dt

d
=Slg.q]l+e¢ (—( ) — Ea_(s)> + O,

the Euler—Lagrange equation may be written as

o3 - <%)(s)—0 (1.12)
3q(s) ~ g dq e '

Let us next consider symmetries in the context of the Lagrangian formalism.
Suppose the Lagrangian L is independent of a certain coordinate gi.* Such
a coordinate is called cyclic. The momentum which is conjugate to a cyclic
coordinate is conserved. In fact, the condition dL/d¢q; = 0 leads to

dpe  d 9L L

(1.13)
At dr 8qk 3qk

This argument can be mathematically elaborated as follows. Suppose the
Lagrangian L has a symmetry, which is continuously parametrized. This means,
more precisely, that the action S = [dr L is invariant under the symmetry
operation on g (t). Let us consider an infinitesimal symmetry operation g () —
g (t) + 8qx(¢) on the path g (r).> This implies that if g (¢) is a path producing
an extremum of the action, then g (t) — gk (¢) + d4qx(¢) also corresponds to an
extremum. Since S is invariant under this change, it follows that

ly aL d aL aL 7
88 = Sqr [ — — —— Sqgr— | =o.
/r,- Xk: Qk<3q1< df3ék>+;[ Qk&I}

4 Of course, L may depend on ¢g. Otherwise, the coordinate gy is not our concern at all.
5 Since the symmetry is continuous, it is always possible to define such an infinitesimal operation.
Needless to say, §q(#;) and 8¢ (7) do not, in general, vanish in the present case.



The first term in the middle expression vanishes since ¢ is a solution to the Euler—
Lagrange equation. Accordingly, we obtain

> 8aqr(t) pit) =) 8qx(tp) palty) (1.14)
k k

where use has been made of the definition pr = 0L/dqgx. Since #; and ¢y
are arbitrary, this equation shows that the quantity ), 8qx(r) pr(¢) is, in fact,
independent of ¢ and hence conserved.

Example 1.2. Let us consider a particle m moving under a force produced by a
spherically symmetric potential V (r), where r, 6, ¢ are three-dimensional polar
coordinates. The Lagrangian is given by

L = Im[i? +r2(6? +sin? 0¢%)] — V ().
Note that g = ¢ is cyclic, which leads to the conservation law

2 sin? 9(;'5 = constant.

oL
8¢p— o mr
¢
This is nothing but the angular momentum around the z axis. Similar arguments
can be employed to show that the angular momenta around the x and y axes are
also conserved.

A few remarks are in order:

e Let O(g) be an arbitrary function of g. Then the Lagrangians L and
L + dQ/dr yield the same Euler—Lagrange equation. In fact,

0 do d 0 do
a@(“a)‘a[@(”?)]
_aL id_Q_gg_gi@Q.)

dac  dgr i r9g 1 0 \ g

8do _daQ

oqr dt dr 9gy

e An interesting observation is that Newtonian mechanics is realized as an
extremum of the action but the action itself is defined for any trajectory. This
fact plays an important role in path integral formation of quantum theory.

1.1.3 Hamiltonian formalism

The Lagrangian formalism yields a second-order ordinary differencial equation
(ODE). In contrast, the Hamiltonian formalism gives equations of motion which
are first order in the time derivative and, hence, we may introduce flows in the



phase space defined later. What is more important, however, is that we can make
the symplectic structure manifest in the Hamiltonian formalism, which will be
shown in example 5.12 later.

Suppose a Lagrangian L is given. Then the corresponding Hamiltonian is
introduced via Legendre transformation of variables as

H(q,p)= ) prdx — L(g, 9, (1.15)
k

where ¢ is eliminated in the left-hand side (LHS) in favour of p by making use of
the definition of the momentum p; = 9L(q, q)/dqk. For this transformation to
be defined, the Jacobian must satisfy

api 92L
det| —— ) =det| —— | #£0
9q; 94iq;j

The space with coordinates (g, px) is called the phase space.
Let us consider an infinitesimal change in the Hamiltonian induced by dgx
and Spy,

. . oL oL .
SH =Y |8pdx + prdde — —8qx — —8au
k

9qk Gk
. oL
= Z Sprgr — —8qx | -
P gk
It follows from this relation that
oH . 0H oL
— = G, —_—= - (1.16)
Opik gk gk

which are nothing more than the replacements of independent variables.
Hamilton’s equations of motion are obtained from these equations if the Euler—
Lagrange equation is employed to replace the LHS of the second equation,

oH . oH

Ge=-—  pk=—7—. (1.17)
Pk 94k
Example 1.3. Let us consider a one-dimensional harmonic oscillator with the
Lagrangian L = %qu - %ma)zqz, where w? = k/m. The momentum conjugate
to g is p = dL/dg = mgq, which can be solved for g to yield ¢ = p/m. The
Hamiltonian is
2

. -\ _ P 1 2 2
H(q,p)=pq—L(Qq.4) = 5—+ smow7q". (1.18)
2m 2
Hamilton’s equations of motion are:
dp 2 dg _p
—=— — == 1.19
dr e dt m (1.19)



Let us take two functions A(gq, p) and B(gq, p) defined on the phase space of
a Hamiltonian H. Then the Poisson bracket [A, B] is defined by 6

d0A 0B dA 0B

[A,B]=Z<—————>. (1.20)
k

dqk Opk  Opk Iqk
Exercise 1.1. Show that the Poisson bracket is a Lie bracket, namely it satisfies

[A, c1B1 + c3Ba2] = ci[A, Bi1] + ¢32[A, Bs] linearity (1.21a)
[A, B] = —[B, A] skew-symmetry  (1.21b)
[[A, B],C]1+[[C, A]l, Bl1+[[B,C],Al1=0 Jacobi identity. (1.21c¢c)

The fundamental Poisson brackets are
[pi, pjl = lgi,qj1=0 lgi, pj1 = dij. (1.22)

It is important to notice that the time development of a physical quantity
A(gq, p) is expressed in terms of the Poisson bracket as

Z dA qu dA dpi
qu dr dpk dr
_ Z (dA oH dA 8H>
k

dgy dpr  dpk 9qx
=[A, HI. (1.23)

If it happens that [A, H] = 0, the quantity A is conserved, namely dA/dt = 0.
The Hamilton equations of motion themselves are written as

dpi dgk
= =pr. H
[pr, H] a

dr
Theorem 1.1. (Noether’s theorem) Let H (gk, px) be a Hamiltonian which is
invariant under an infinitesimal coordinate transformation gx — ¢; = qx +

efk(q). Then

= [qr. H]. (1.24)

Q=Y pfi(q) (1.25)
k

is conserved.

Proof. One has H (qx, px) = H(qy, p}) by definition. It follows from ¢; =
qr + £fr(q) that the Jacobian associated with the coordinate change is

/
dq i afi(q)
Aij = — :5” +8
g g
6 When the commutation relation [A, B] of operators is introduced later, the Poisson bracket will be
denoted as [A, B]pp to avoid confusion.




up to O(e). The momentum transforms under this coordinate change as
- 3f
pi = Y pily = 821’1 -
J
Then, it follows that

0= H(q;i, P — H gk, po)

8H a
=— f( ) 2 2
p/ 3611'
8H aﬁ
=¢|—filg) — }
[ 317, "og;
dQ
= H’ =&—,
elH,Q]=¢ a
which shows that Q is conserved. O

This theorem shows that to find a conserved quantity is equivalent to finding
a transformation which leaves the Hamiltonian invariant.

A conserved quantity Q is the ‘generator’ of the transformation under
discussion. In fact,

o1 i 09 099i 00| _ N\ _ .
lgi, O] = ; [8% 5 omn 8%} = ;alkfk@ = fi(q)

which shows that §¢q; = ¢fi(q) = ¢lqi, O].

A few examples are in order. Let H = p?/2m be the Hamiltonian of a free
particle. Since H does notdepend on ¢, it is invariantunder g — g+¢-1, p — p.
Therefore, Q = p - 1 = p is conserved. The conserved quantity Q is identified
with the linear momentum.

Example 1.4. Let us consider a paticle m moving in a two-dimensional plane with
the axial symmetric potential V (r). The Lagrangian is

L(r,0) = im@* +r’¢*) — V(r).
The canonical conjugate momenta are:
pr = mr po = mr6.
The Hamiltonian is

H:p,r'+p9é—L_ﬁ+&+V(r)
2m  2mr?
This Hamiltonian is clearly independent of 6 and, hence, invariant under the
transformation

O—60+¢-1, Po — Do-



The corresponding conserved quantity is
OQ=pg-1= mr

that is the angular momentum.

1.2 Canonical quantization

It was known by the end of the 19th century that classical physics,
namely Newtonian mechanics and classical electromagnetism, contains serious
inconsistencies. Later at the beginning of the 20th century, these were resolved by
the discoveries of special and general relativities and quantum mechanics. So far,
there is no single experiment which contradicts quantum theory. It is surprising,
however, that there is no proof for quantum theory. What one can say is that
quantum theory is not in contradiction to Nature. Accordingly, we do not prove
quantum mechanics here but will be satisfied with outlining some ‘rules’ on which
quantum theory is based.

1.2.1 Hilbert space, bras and kets

Let us consider a complex Hilbert space’

H={l¢), 1¥),...}. (1.26)

An element of H is called a ket or a ket vector.
A linear function & : H — C is defined by

alc1yn) + calyn)) = cra(yn)) + coa(|¥2) Vei € C, |¢hi) € H.

We employ a special notation introduced by Dirac and write the linear function
as («| and the action as (@|y¥) € C. The set of linear functions is itself a vector
space called the dual vector space of 7, denoted H*. An element of # is called
a bra or a bra vector.

Let {|e1), |e2), ...} be a basis of .8 Any vector |y) € H is then expanded
as |y) = Y, Ylex), where ¥ € C is called the kth component of ). Now let
us introduce a basis {{¢1], (¢2], ...} in H*. We require that this basis be a dual
basis of {|eg)}, that is

(8,’|€j) = 5,’j. (1.27)

7 In quantum mechanics, a Hilbert space often means the space of square integrable functions LZ(M)
on a space (manifold) M. In the following, however, we need to deal with such functions as §(x) and
¢** with infinite norm. An extended Hilbert space which contains such functions is called the rigged
Hilbert space. The treatment of Hilbert spaces here is not mathematically rigorous but it will not cause
any inconvenience.

8 We assume H is separable and there are, at most, a countably infinite number of vectors in the basis.
Note that we cannot impose an orthonormal condition since we have not defined the norm of a vector.



Then an arbitrary linear function («| is expanded as {«| = ), ax(ex|, where
ai € C is the kth component of {«|. The action of {(«¢| € H* on |y) € H is now
expressed in terms of their components as

(aly) = wa, (eilej) = Za,w, = Zomm (1.28)

One may consider |¢) as a column vector and (x| as a row vector so that {(«|y)
is regarded as just a matrix multiplication of a row vector and a column vector,
yielding a scalar.

It is possible to introduce a one-to-one correspondence between elements in
H and H*. Let us fix a basis {|ex)} of H and {(ex|} of #*. Then corresponding to
[¥) = > i Yklek), there exists an element (| = ), ¥ (ex| € H*. The reason
for the complex conjugation of v, becomes clear shortly. Then it is possible to
introduce an inner product between two elements of 4. Let |¢), |{/) € H. Their
inner product is defined by

(1), 1¥) = (BlY) = Zaskwk (1.29)

We customarily use the same letter to denote corresponding bras and kets. The
norm of a vector |y) is naturally defined by the inner product. Let |||¢)] =

(¢|¥). It is easy to show that this definition satisfies all the axioms of the norm.
Note that the norm is real and non-negative thanks to the complex conjugation in
the components of the bra vector.

By using the inner product between two ket vectors, it becomes possible
to construct an orthonormal basis {|ex)} such that (le;), le;)) = (eilej) = §;j.
Suppose |¥) = >, ¥klex). By multiplying (ex| from the left, one obtains
(ex|¥) = Y. Then |) is expressed as |¢) = ) (ex|¥)lex) = 3 lex) (ex|¥).

Since this is true for any |1), we have obtained the completeness relation

> e el =1, (1.30)
k
I being the identity operator in H (the unit matrix when # is finite dimensional).

1.2.2 Axioms of canonical quantization

Given an isolated classical dynamical system such as a harmonic oscillator, we
can construct a corresponding quantum system following a set of axioms.

Al. There exists a Hilbert space H for a quantum system and the state of the
system is required to be described by a vector |¢y) € H. In this sense,
[¥r) is also called the state or a state vector. Moreover, two states |y) and
cly) (c € C, ¢ # 0) describe the same state. The state can also be described
as a ray representation of 7{.



A2.

A3.

A4.

AS.

A physical quantity A in classical mechanics is replaced by a Hermitian
operator A acting on H.° The operator A is often called an observable.

The result obtained when A is measured is one of the eigenvalues of A, (The
Hermiticity of A has been assumed to guarantee real eigenvalues.)

The Poisson bracket in classical mechanics is replaced by the commutator

[A, B]= AB — BA (1.31)

multiplied by —i/fi. The unit in which i = 1 will be employed hereafter
unless otherwise stated explicitly. The fundamental commutation relations
are (cf (1.22))

(i, g1 =[pi. Pj1=0 (i, pj1=16;;. (1.32)
Under this replacement, Hamilton’s equations of motion become

dg; 1. dp;
2 = 4. H
dr i[q’ I dr

1
= ~[pi. H]. (1.33)

When a classical quantity A is independent of ¢ explicitly, A satisifies the
same equation as Hamilton’s equation. By analogy, for A which does not
depend on ¢ explicitly, one has Heisenberg’s equation of motion:

diA _ LA, A (1.34)

d i 7 '
Let |¥/) € H be an arbitrary state. Suppose one prepares many systems, each
of which is in this state. Then, observation of A in these systems at time ¢
yields random results in general. Then the expectation value of the results is
given by

(VIADIY)

A= ———. 1.35
(A) W) (1.35)

For any physical state |{) € H, there exists an operator for which [¢/) is one
of the eigenstates.!?

These five axioms are adopted as the rules of the game. A few comments

are in order. Let us examine axiom A4 more carefully. Let us assume that |y) is
normalized as |||¥)||> = (¥|y¥) = 1 for simplicity. Suppose A(t) has the set of
discrete eigenvalues {a, } with the corresponding normalized eigenvectors {|n)}:!!

A@MIn) = azln)  (nln) = 1.

9 An operator on H is denoted by ". This symbol will be dropped later unless this may cause
confusion.

10This axiom is often ignored in the literature. The raison d’etre of this axiom will be clarified later.
1 Since A(t) is Hermitian, it is always possible to choose {|n)} to be orthonormal.



Then the expectation value of A(r) with respect to an arbitrary state

W)=Y Yuln) Y= (nly)

WIADIY) =Y Yt mlA@)In) =) anlPal®.

n

From the fact that the result of the measurement of A in state |n) is always a,, it
follows that the probability of the outcome of the measurement being a,, that is
the probability of |i/) being in |n), is

[Yal? = lnly)?.

The number (n|y) represents the ‘weight’ of the state |n) in the state |¢) and is
called the probability amplitude.
If A has a continuous spectrum a, the state |1) is expanded as

V) =/da V(a)la).

The completeness relation now takes the form
/da la){a| = 1. (1.36)

Then, from the identity [ da’|a’)(a’|a) = |a), one must have the normalization
(@'|la) =8(a" — a), (1.37)

where §(a) is the Dirac §-function. The expansion coefficient ¥ (a) is obtained
from this normalization condition as ¥(a) = {(a|y¥). If |) is normalized as
(¥|r) = 1, one should have

1=/da da’ y*(a)y(a’)(ala’) =/da|1ﬁ(a)|2-
It also follows from the relation
(WIAly) =/a|w<a>|2da

that the probability with which the measured value of A is found in the interval
la,a + da]is |1//(a)|2 da. Therefore, the probability density is given by

p(a) = laly) . (1.38)

Finally let us clarify why axiom A5 is required. Suppose that the system
is in the state |y) and assume that the probability of the state to be in |¢)
simultaneously is |(1//|¢)|2. This has already been mentioned, when |{) is an
eigenstate of some observable. Axiom A5 asserts that this is true for an arbitrary
state ).



1.2.3 Heisenberg equation, Heisenberg picture and Schrodinger picture

The formal solution to the Heisenberg equation of motion

~

dA 1 . .
— =—[A, H]
dr i
is easily obtained as A R
A(t) = e A0)e 11, (1.39)

Therefore, the operators A(t) and A(O) are related by the unitary operator
0(t) = e 11 (1.40)

and, hence, are unitary equivalent. This formalism, in which operators depend on
t, while states do not, is called the Heisenberg picture.

It is possible to introduce another picture which is equivalent to the
Heisenberg picture. Let us write down the expectation value of A with respect
to the state [¢/) as

(A@D) = (Wl A0)e 1|y
= (y1e#HA0) e H|y)).

If we write |y (1)) = e H7|y/), we find that the expectation value at ¢ is also
expressed as

(A1) = (Y (OIAO) Y (1)) (1.41)

Thus, states depend on ¢ while operators do not in this formalism. This formalism
is called the Schrodinger picture.

Our next task is to find the equation of motion for |1 (¢)). To avoid confusion,
quantities associated with the Schrodinger picture (the Heisenberg picture) are
denoted with the subscript S (H), respectively. Thus, |V (t))s = e |y y
and Ag = AH(O). By differentiating |y (¢))s with respect to 7, one finds the
Schrodinger equation:

d N
iallﬁ(t))s = H[y(1))s. (1.42)

Note that the Hamiltonian H is the same for both the Schrodinger picture and the
Heisenberg picture. We will drop the subscripts S and H whenever this does not
cause confusion.

1.2.4 Wavefunction

Let us consider a particle moving on the real line R and let X be the position
operator with the eigenvalue y and the corresponding eigenvector |y); x|y) =
v|y). The eigenvectors are normalized as (x|y) = 6(x — y).



Similarly, let ¢ be the eigenvalue of p with the eigenvector |g); plg) = qlq)

such that (plg) = §(p — q).
Let |¢) € H be a state. The inner product

V(x) = (x|¥) (1.43)

is the component of |¢/) in the basis |x),

V) = f ) (x| dx ) =f1ﬁ(X)IX) dx.

The coefficient ¥(x) € C is called the wavefunction. According to the
earlier axioms of quantum mechanics outlined, it is the probability amplitude of
finding the particle at x in the state |¢), namely [ (x)|? dx is the probability of
finding the particle in the interval [x, x + dx]. Then it is natural to impose the
normalization condition

/dx [y 1> = (wly) =1 (1.44)

since the probability of finding the particle anywhere on the real line is always
unity.

Similarly, ¥ (p) = (p|¥) is the probability amplitude of finding the particle
in the state with the momentum p and the probability of finding the momentum
of the particle in the interval [p, p + dp]is [¥(p)|*> dp.

The inner product of two states in terms of the wavefunctions is

(1) =/dX<¢IX><XI¢) =/dx Y () (x), (1.45a)

=/dp {(¥lp)(ple) =/dp V(P (p). (1.45b)

An abstract ket vector is now expressed in terms of a more concrete
wavefunction ¥ (x) or ¥ (p). What about the operators? Now we write down the
operators in the basis |x). From the defining equation x|x) = x|x), one obtains
{(x|x* = (x|x, which yields after multiplication by |} from the right,

(x|X1Y) = x(x|y) = x¥(x). (1.46)

This is often written as (Xy)(x) = x(x).
What about the momentum operator p? Let us consider the unitary operator

Ua) = e 197,
Lemma 1.1. The operator U (a) defined as before satisfies

Ua)|x) = |x + a). (1.47)



Proof. It follows from [%, p] = i that [X, p"] = inp"~! forn = 1,2,....
Accordingly, we have

(£, Ua)] = |:)? Z %ﬁ”} =aU(a)

which can also be written as
2U()|x) = U@ (& + a)lx) = (x + a)U(a)|x).

This shows that U (Aa)|x) « |x 4+ a). Since U (a) is unitary, it preseves the norm
of a vector. Thus, U(a)|x) = |x + a). O

Let us take an infinitesimal number . Then
Ue)lx) = |x + &) >~ (1 —iep)|x).

It follows from this that
lx +&) —|x) e>0 . d
= —>

plx) - i—|x) (1.43)
—ie dx
and its dual d
lp= EFelz e d (1.49)
ie dx
Therefore, for any state |1), one obtains
R .d .d
(xIply) = —i—(x|¥) = —i—P(x). (1.50)
dx dx

This is also written as (py)(x) = —i dy(x)/dx.
Similarly, if one uses a basis | p), one will have the momentum representation
of the operators as

d
Xlp) = —id—lp) (1.51)
P
plp) = plp) (1.52)
d
(pIX1¥) =id—1ﬁ(p) (1.53)
P
(plply) = pv(p). (1.54)

Exercise 1.2. Prove (1.51)—(1.54).

Proposition 1.1.

P (1.55)

1
(xlp) = N

1 .
(plx) = me*“’x (1.56)



Proof. Take |Y) = |p) in the relation

R R . d
(pY)(x) = (x|ply) = —ld—l/f(x)
X
to find d
p(xlp) = (x|plp) = —id—<XIp).
X
The solution is easily found to be
(x|p) = Ce'P~.

The normalization condition requires that
S(x —y)=(xly) = (X|/|P)<P| dply)

— CZ/dp elP(x—y)
= C2278(x — y),

where C has been taken to be real. This shows that C = 1/+/27. The proof of
(1.56) is left as an exercise. O

Thus, ¥ (x) and ¥ (p) are related as

v(p) = (ply) = /dx (plx){x|y) = / %ei‘”‘l//()ﬂ (1.57)
which is nothing other than the Fourier transform of 1 (x).

Let us next derive the Schrodinger equation which v (x) satisfies. By
applying (x| on (1.42) from the left, we obtain

<x|i%|x/f(r)> = (x|H|Y (1))

where the subscript S has been dropped. For a Hamiltonian of the type H =
p%/2m + V (%), we obtain the time-dependent Schridinger equation:
2m

I#(t)>
1 d?

= Yx, )+ Vx)w(x, ), (1.58)

 2mdx?

52
2 + V@)

.d _
151ﬁ(x, )= (x

where ¥ (x, t) = (x| (¢)).
Suppose a solution of this equation is written in the form ¥ (x,?) =
T (t)¢(x). By substituting this into (1.58) and dividing the result by ¥ (x, 1),

we obtain )
i7'(t)  —¢"(x)/2m + V(x)¢(x)

T(t) ¢ (x)




where the prime denotes the derivative with respect to a relevant variable. Since
the LHS is a function of ¢ only while the right-hand side (RHS) of x only, they
must be a constant, which we label E. Accordingly, there are two equations,
which should be solved simultaneously,

iT'(t) = ET(t) (1.59)
2

2mdx?

The first equation is easily solved to yield

¢(x) +V(x)¢p(x) = Ed(x). (1.60)

T(t) = exp(—iEt) (1.61)

while the second one is the eigenvalue problem of the Hamiltonian operator
and called the time-independent Schrodinger equation, the stationary state
Schrodinger equation or, simply, the Schrodinger equation. For three-
dimensional space, it is written as

1
—%szﬁ(x) + V(X)e(X) = E¢(X). (1.62)

1.2.5 Harmonic oscillator

It is instructive to stop here for the moment and work out some non-trivial
example. We take a one-dimensional harmonic oscillator as an example since
it is not trivial, it is still solvable exactly and it is very important in the folllowing
applications.

The Hamiltonian operator is

P2
H="+4-mo’%> [£pl=i (1.63)
2m 2

The (time-independent) Schrodinger equation is

2 1
—%@tp(x) + Emwzle/f(x) = EY(x). (1.64)

By rescaling the variables as £ = \/mwx, ¢ = E /hiw, one arrives at

Y+ (e — &)Y =0. (1.65)
The normalizable solution of this ordinary differential equation (ODE) exists only
whene =¢, = (n+ %) (n=0,1,2,...) namely
E=E,=(n+bHo (n=012,..) (1.66)
and the normalized solution is written in terms of the Hermite polynomial
e/

— (_1\eE2
H,() =(=1"e &

(1.67)



as
maw

2npl /T

This eigenvalue problem can also be analysed by an algebraic method.
Define the annihilation operator 4 and the creation operator a' by

mw 1
a=.—X+i,/—p 1.69
a 2 +i Zma)p ( )
A L L (1.70)
a’ = —X — —DPD. .

2 Zma)p

The number operator N is defined by

Y(E) = Hy(£)e 5772, (1.68)

N =a'a. (1.71)

Exercise 1.3. Show that

[a,a1=1a",a"1=0 [a,a'1=1 (1.72)
and
[N,al = —a [N,a"1=a'. (1.73)
Show also that
H=N+bHo. (1.74)

Let |n) be a normalized eigenvector of N,
N |n) = n|n).
Then it follows from the commutation relations proved in exercise 1.3 that

N(aln)) = (@N — a)|n) = (n — 1)(aln))
N@'ny) = @'N +a"hin) = (n + 1)@'n)).

Therefore, 4 decreases the eigenvalue by one while a' increases it by one, hence
the name annihilation and creation. Note that the eigenvalue n > 0 since

n = (n|Nin) = (nla")(@ln)) = llaln)|* > 0.

The equality holds if and only if ajn) = 0. Take a fixed ng > 0 and apply a
many times on |ng). Eventually the eigenvalue of a¥|no) will be negative for
some integer k > ng, which is a contradiction. This can be avoided only when ng
is a non-negative integer. Thus, there exists a state |0) which satisfies a|0) = 0.
The state |0) is called the ground state. Since N|0) = afa|0) = 0, this state is



the eigenvector of N with the eigenvalue 0. The wavefunction ¥o(x) = (x|0) is
obtained by solving the first-order ODE

1 [/d
(xlal0) =/ 57— (ax//o(x) +ma)x1//0(x)> —=0. (1.75)

The solution is easily found to be
Yo(x) = Cexp(—mwx?/2) (1.76)

where C is the normalization constant given in (1.68). An arbitrary vector |n) is
obtained from |0) by a repeated application of 4.

Exercise 1.4. Show that |
In) = —(a")"|0) (1.77)
V!

satisfies ]\7|n) = n|n) and is normalized.

Thus, the spectrum of N turns out to be Spec N = {0,1,2,...} and hence
the spectrum of the Hamiltonian is

Spec H = {1.3.3,...}. (1.78)

1.3 Path integral quantization of a Bose particle

The canonical quantization of a classical system has been discussed in the
previous section. There the main role was played by the Hamiltonian and the
Lagrangian did not show up at all. In the present section, it will be shown that
there exists a quantization process, called the path integral quantization, based
heavily on the Lagrangian.

1.3.1 Path integral quantization

We start our analysis with one-dimensional systems. Let x(z) be the position
operator in the Heisenberg picture. Suppose the particle is found at x; at time
t; (>0). Then the probability amplitude of finding this particle at x s at later time
tr (>t;)1s

(xf,trlxi, ti) (1.79)

where the vectors are defined in the Heisenberg picture,
X(@t)lxi, ti) = xilxi, ti) (1.80)
X@p)lxp, tr) =xplxp, tr). (1.81)

12We have dropped S and H again to simplify the notation. Note that |x;, #;) is an instantaneous
eigenvector and hence parametrized by the time #; when the position is measured. This should not be
confused with the dynamical time dependence of a wavefunction in the Schrodinger picture.



The probability amplitude (1.79) is also called the transition amplitude.
Let us rewrite the probability amplitude in terms of the Schrodinger picture.
Let X = x(0) be the position operator with the eigenvector

X|x) = x|x). (1.82)

Since x has no time dependence, its eigenvector should be also time independent.
If . -
2@t = e'fltigeiHl (1.83)

is substituted into (1.80), we obtain
eiﬁ”)?e*iﬁ’" |xi, i) = xilxi, t;).
By multiplying e~ from the left, we find
Rle 0, 1)) = xile ™0 |, )],

This shows that the two eigenvectors are related as

i, 1) = e xy), (1.84)
Similarly, we have
o 1p) = e |xy), (1.85)
from which we obtain .
(xp trl = (xple Hir, (1.86)

From these results, we express the probability amplitude in the Schrodinger
picture as

Copotplei i) = feple HO 0 ). (1.87)

In general, the function

hix,y: ) = (xle P y) (1.88)

is called the heat kernel of H. This nomenclature originates from the similarity
between the Schrodinger equation and the heat equation. The amplitude (1.87) is
the heat kernel of H with imaginary S:

(xpotrlxi ti) = h(xp, x;;i(tr — 1)). (1.89)

Now the amplitude (1.87) is expressed in the path integral formalism. To
this end, we consider the case in which 7y — f; = ¢ is an infinitesimal positive
number. Let us put x; = x and xy = y to simplify the notation and suppose the
Hamiltonian is of the form

N P>
H=—+4+V(X). (1.90)
2m



Figure 1.1. The integration contour.

We first prove the following lemma.

Lemma 1.2. Let a be a positive constant. Then

m .
/ e’ qp = | X (1.91)

oo ia

Proof. The integral is different from an ordinary Gaussian integral in that the
coefficient of p? is a pure imaginary number. First replace p by z = x +iy. The
integrand exp(—iaz?) is analytic in the whole z-plane. Now change the integration
contour from the real axis to the one shown in figure 1.1. Along path 1, we have
dz = dx and hence this path gives the same contribution as the original integration
(1.91). The contribution from paths 2 and 4 vanishes as R — oco. Noting that the
variable along path 3 is z = (1 — i)x, we evaluate the contribution from this path

as B
(1 —i)/ °°e_2ax2dx — —ei4 [T
-, a

The summation of all the contribution must vanish due to Cauchy’s theorem and,

hence,
o0
/ dp e—iap2 — e—ij‘[/4 z — l O
o0 Voa V ia

Now this lemma is employed to obtain the heat kernel for an infinitesimal
time interval.

Proposition 1.2. Let H be a Hamiltonian of the form (1.90) and & be an
infinitesimal positive number. Then for any x, y € R, we find that

exp |iey —| ———
2mwie 2 e

., (%) } + O + O(e(x — y)z)i|. (1.92)

(xle e ]y) =




Proof. The completeness relation for the momentum eigenvectors is inserted into
the LHS of (1.92) to yield

(xle i |y) = / dk(xle = |k) (k| y)

_ /%e—ikye—isﬁxeikx
2

where

Now we find from the commutation relation of 3, = d/dx and e'** that
e = ike™ +e%¥a, = e* (ik + 8,).
Repeated application of this commutation relation yields
et = ek +9,)" (n=0,1,2,..)
from which we obtain
—ie[—03/2m+V ()] gikx _ gikx g—ie[—(ik+0:)2/2m+V ()]

e
Therefore,

(xlefilfleb}) _ dk ik (=) g —ie[—(ik+x) 2/2m+V (x)]
271’

_ /%efi[ek2/2m7k(x7y)]efie[7ik3x/m733/2m+V(x)] 1
2

where the ‘1’ at the end of the last line is written explicitly to remind us of the
fact 9,1 = 0. If we further put p = /e/2mk and expands the last exponential
function in the last line, we obtain

(xle_igﬁb}) — lz_meim(x—y)z/Zsf;_pe—i[p—i-»,/m/Zs(x_y)]z
& T

PV 2 n
XZ ‘8) [,/ pax—28—+V(x)] .




If weputg = p + /m/2e(x — y) and use lemma 1.2, we obtain:

(xlefl€1:1|y> — 2_meinl(x7y)2/2€ / d_qe*iqz
V e 2w

o2y (;
( g)ﬂ(x—waxwx)
£

X |:1 + (—ie)V(x) +

+ O(*) + O(elx — y|2)}

— | iem/Dl—y) el
2rie

X exp [—ieV (%) +O@E?) + Os|x — y|2)j| .

Thus, the proposition has been proved. O

Note that the average value (x + y)/2 appeared as the variable of V in (1.92).
This prescription is often called the Weyl ordering.

It is found from (1.92) that the integrand oscillates very rapidly for |x — y| >
J/€ and it can be regarded as zero in the sense of distribution (the Riemann—
Lebesgue theorem). Therefore, as x — y < &, the exponent of (1.92) approaches
the action for an infinitesimal time interval [0, &],

AS:/OS dr [%vz— V(x)] ~ [%uz—vu)]s (1.93)

where v = (x — y)/e is the average velocity and x is the average position.
Equation (1.92) also satisfies the boundary condition for ¢ — 0,

(rle e y) 22 (xly) = 8(x — y). (1.94)

This can be shown by noting that

/OO dx m eim(x—y)z/Z@ =1
ooV 2mie '

The transition amplitude (1.79) for a finite time interval is obtained by
infinitely repeating the transition amplitude for an infinitesimal time interval one
after another. Let us first divide the interval 7y — ¢; into n equal intervals,

P
n

Putfy =t; and ty = t9+¢€k (0 < k < n). Clearly t, = t¢. Insert the completeness
relation

1= /kalxk,fk)(xk,tkl (I<k=n-1



for each instant of time #; into (1.79) to yield
(xf telxi, ti) = (xf, tf|/dxnfl|xnfl’ ti—1){Xn—1, th—1l
X /dxnlexnfz,tnfz).../dX1IX1,11)<X1,t1|x0, 10).

Let us consider here the limit ¢ — 0, namely n — oo. Proposition 1.2 states that
for an infinitesimal ¢, we have

(X tilxk—1, t—1) = | s
2wie
m Xk — Xg—1 2 Xk—1 + Xk
ASp=¢e|l=|————) - v [——=] .
2 e 2

Therefore, we find

where

n—1

. m n/2
epotytai) = fim (52" [ [T exp(
<

If n — 1 points x1, x2, ..., x,—1 are fixed, we obtain a piecewise linear path from
X0 to x, via these points. Then we define S({xx}) = >, ASk, which in the limit
n — oo can be written as

n
i ASk). (1.95)
k=1

t
() "= S[x ()] = / "t [0~ veo). (1.96)

t

Note, however, that the S[x(¢)] defined here is formal; the variables x; and x;_
need not be close to each other and hence v = (xx — xx—1)/e may diverge. This
transition amplitude is written symbolically as

ty m
Jtrlxitiy = | D i dt (=02 -V i|
(eptrlxi, 1) / xexp[‘/,i (5 -vw)
.
= /Dx exp [i/" dtL(x,)'c):| (1.97)
t

which is called the path integral representation of the transition amplitude. It
should be stressed again that the ‘v’ is not well defined and that this expression is
just a symbolic representation of the limit (1.95).

The integration measure is understood as

/Dx = summation over all paths x (¢) with x(#;) = x;, x(ty) = x5  (1.98)



! (x5 )

(x;, 1)

X

Figure 1.2. All the paths with fixed endpoints are considered in the path integral. The
integrand exp[iS({xx})] is integrated over these paths.

see figure 1.2. Although Dx or S({xt}) is ill defined in the limit n — oo, the
amplitude (x 7, t7|x;, t;) constructed from Dx and S({x;}) together is well defined
and hence meaningful. This point is clarified in the following example.

Example 1.5. Let us work out the transition amplitude of a free particle moving
on the real axis with the Lagrangian

L =1mi? (1.99)

The canonical conjugate momentum is p = dL/dx = mx and the Hamiltonian is
P2

H=px—-L=—. (1.100)
2m

The transition amplitude is calculated within the canonical quantum theory as

(opstplx, i) = (eple AT ) = /dp(xf|e‘i”|p><p|xi>

_ / 4P Gip(y—xi) =T (02 /2m)
2

m im(xy —x;)?
= — 1.101
V 2miT exP( 2T (1.101)
where T =ty — ;.

This result is obtained using the path integral formalism next. The amplitude
is expressed as

n/2
(xr,trlxi, ;) = lim ( ” ) /dxl...dxnfl

n—o00 \27ie

n 2
exp [iezg (%) ] (1.102)

k=1



where ¢ = T'/n. After scaling the coordinates as

m\1/2
Yk = (g) Xk
the amplitude becomes

w2 /e \(=1D/2
(xp.tplxi t) = lim ( r ) (—8)

n—oo \27rig m

/dyl ...dy,—1exp [iZ()’k - Ykl)z} (1.103)

k=1

It can be shown by induction (exercise) that

s b
/dy1 ...dy,—1exp [i Z(yk — Yk—l)21| = = elOn=y0)"/n_
n

k=1

Taking the limit n — oo, we finally obtain

n2 (2mie\" V2 1
(xp, trlxi, i) = lim ( ~ ) ( ) —_eimlxy—xi)*/2ne)
I n—o0 \2rie m N

. _ 2
[ T (1.104)
2miT 2T

It should be noted here that the exponent is the classical action. In fact, if we
note that the average velocity is v = (xy — x;)/(ty — t;), the classical action is

found to be 5
o1 —

Su :/ dt Ly = MO = X7
t; 2 Z(Zf - ti)

It happens in many exactly solvable systems that the transition amplitude takes
the form .
(cp,trlxi, i) = AeSd, (1.105)

where all the effects of quantum fluctuation are taken into account in the prefactor
A.
1.3.2 Imaginary time and partition function

Suppose the spectrum of a Hamiltonian H is bounded from below. Then it is
always possible, by adding a postive constant to the Hamiltonian, to make H
positive definite;

SpecH ={0 < Eg < E} < E» <---}. (1.106)



It has been assumed for simplicity that the ground state is not degenerate. The

=iflt given by

e = 3" T () (1.107)
n

spectral decomposition of e

is analytic in the lower half-plane of ¢, where H |[n) = E,|n). Introduce the Wick
rotation by the replacement

t=—it (rteRy) (1.108)

where R} is the set of positive real numbers. The variable 7 is regarded as
imaginary time, which is also known as the Euclidean time since the world
distance changes from > — x% to —(z2 4 x?). Physical quantities change under
this change of variable as

dx dx
= — =1—
dr dr
e—lﬁt —e Hr

A el —veol cicen [ ar| - (dx)2 v

1/ti |:me — (xi|_1—1 /ﬂ T —Em el (x)
3 Y| L (dx 2 v
_—/U . Em(a) +V@) |

Accordingly, the path integral is expressed in terms of the new variable as
(g, trlxi, t) = (Xflefﬁ(r-’;t") |x;)

_ -y [l ar )y )]
_ /Dxe Jel a5 ) v , (1.109)

where D is the integration measure in the imaginary time t.
For a given Hamiltonian H, the partition function is defined as

ZB) =TrePH (>0, (1.110)

where the trace is over the Hilbert space associated with H.
Let us take the eigenstates {|E,)} of H as the basis vectors of the Hilbert
space; .
H|E,) = Ey|En), (Em|En) = 8mn.

Then the partition function is expressed as

ZB) =Y (Eale P E,) = S (Eale 51| Ey)

n

n
=) e (1.111)
n



The partition function is also expressed in terms of the eigenvector |x) of X.
Namely

2p) = [ dxtrle i), (1.112)
If B is identified with the Euclidean time by putting 8 = iT', we find that
—iAT

(eple ™ T ) = (xple™PH |x),

from which we obtain the path integral expression of the partition function

B
Z(B) = /dy/ Dx exp{ —/ dr <lm)'c2+ V(x))}
£(0)=x(B)=y 0 2
_ B 1
= / Dx exp{ —/ dr (—mx2+V(x)> } (1.113)
periodic 0 2

where the integral in the last line is over all paths periodic in [0, 8].

1.3.3 Time-ordered product and generating functional
Define the T -product of Heisenberg operators A(¢) and B(¢) by
TTA(1)B(12)] = A1) B(2)0(11 — 12) + B(12) A(t1)0 (12 — 11) (1.114)

0(t) being the Heaviside function.!? Generalization to the case with more than
three operators should be trivial; operators in the bracket are rearranged so that the
time parameters decrease from the left to the right. The T-product of n operators
is expanded into n! terms, each of which is proportional to the product of n — 1
Heaviside functions. An important quantity in quantum mechanics is the matrix
element of the T -product,

(xp tp|TIR@DX(Ep) - - - X W)X, 1), (ti <ti,t, ... ta <tg). (1.115)

Suppose f; < t; < fp < --- <t < ty in equation (1.115). By inserting the
completeness relation

o0
= [ dubtenl =120
—0oQ
into equation (1.115), we obtain
(xp,tplX(tn) - - X(t)|xi, ;)

= (Xf,lfl)?(tn)v/dxnlxn,tn)(xn,tnl'"f(fl)/dxllxl,t1)<X1,t1|Xi,li)

= /dxl codxp, x ...X;1<)Cf,lf|x;1,f;1> s (xn, tr|xgL 1) (1.116)

13 The Heaviside function is defined by

0 x<O
6(x) =
) il x>0



where use has been made of the eigenvalue equation X () |xz, t) = xg|xk, t). If
(Xk, tr|xx—1, tx—1) in the last line is expressed in terms of a path integral, we find

(ot &) .. R () X, 1) = /Dxx(tl) Cox(ty)e'S. (1.117)

It is crucial to note that X(#) in the LHS is a Heisenberg operator, while
x(tx) (=x;) in the RHS is the real value of a classical path x(¢) at time #.
Accordingly, the RHS remains true for any ordering of the time parameters in
the LHS as long as the Heisenberg operators are arranged in a way defined by the
T-product. Thus, the path integral expression automatically takes the 7 -product
ordering into account to yield

(xp, tplTIX(t) .. X)X, 1) = /Dxx(tl) . x(tp)e'S, (1.118)

The reader is encouraged to verify this result explicitly for n = 2.
It turns out to be convenient to define the generating functional Z[J] to
obtain the matrix elements of the 7 -products efficiently. We couple an external
field J(r) (also called the source) with the coordinate x(¢) as x(¢)J(¢) in the

Lagrangian, where J (¢) is defined on the interval [#;, 7 ¢]. Define the action with
the source as

y
Slx(@), J(@)] =/ dt[%m)'cz— Vix)+xJI. (1.119)
t
The transition amplitude in the presence of J(¢) is then given by
Iy
(xp,trlxi ti)y = /Dx exp |:1/ dr (%m)'c2 - Vx) +xJ)i|. (1.120)
t

The functional derivative of this equation with respectto J(¢) (t; <t < ty) yields

'
(xp,trlxi, ti)y =/Dx ix(t) exp |:i/f dt(%m)'cz— V(x)+xJ)i|.

ti
(1.121)
Higher functional derivatives are easy to obtain; the factor ix (#;) appears in the
integrand of the path integral each time §/6J(¢) acts on (xz, t¢|x;, t;) ;. This is
nothing but the matrix element of the T-product of the Heisenberg operator x ()
in the presence of the source J(¢). Accordingly, if we put J(¢) = 0 in the end of
the calculation, we obtain

8J (1)

(po tpIT [x(t) .. x ()] x4, i)

5" .
/Dx RUNONIG)

= (—1i) m (1.122)

J=0

It often happens in physical applications that the transition probability
amplitude between general states, in particular the ground states, is required



rather than those between coordinate eigenstates. Suppose the system under
consideration is in the ground state |0) at ; and calculate the probability amplitude
with which the system is also in the ground state at later time fy. Suppose
J(t) is non-vanishing only on an interval [a, b] C [#;, t7]. (The reason for this
assumption will become clear later.) The transition amplitude in the presence of
J (t) may be obtained from the Hamiltonian H/ = H — x(t)J(¢) and the unitary
operator U’ (tf,t;) of the Hamiltonian. The transition probability amplitude
between the coordinate eigenstates is

(xptrlxicti)y = (e lUY @y, 1))
= (xrleHUDYT (b, a)e @D |5y, (1.123)
where use has been made of the fact H/ = H outside the interval [a, b]. By

inserting the completeness relations of the energy eigenvectors ), |n)(n| = 1
into this equation, we obtain

(g tplxiti)s =Y (xple” D mym| U (b, a)|n) (nle ™ H ) |x;)
m,n

= Y e DT BT () (nlxi) (M U (B, @) ).

m,n

(1.124)
Now let us Wick rotate the time variable t+ — —it under which the exponential
function changes as e 1Bt 5 e~ET  Then the limit Tf —> 00,T; —> —O00

picks up only the ground states m = n = 0. Alternatively, we may introduce a
small imaginary term —iex? in the Hamiltonian so that the eigenvalue has a small
negative imaginary part. Then only the ground state survives in the summations
over m and n under Ty — 00, T; — —0Q.

After all we have proved that

lim (xp.trlxi.t)s = (xp|0)0]xi) Z[J] (1.125)
tf—>00
ti——00
where we have defined the generating functional
Z[J1= (0|U?(b,a)|0) = lim (0|U7(t,1;)|0). (1.126)
tf—>00
ti——00
The generating functional may be also expressed as
(xr, trlxis ti)s
=00 (xf10)(0]x;)

t;——00

Z[J] = (1.127)

Note that the denominator is just a constant independent of Z[J]. Now we have
found the path integral representation for Z[J],

Z[J] =J\//Dx S/l (1.128)



where the path integral is over paths with arbitrarily fixed x; and xy. The
normalization constant V" is chosen so that Z[0] = 1, namely

Nl= /Dx elSx.0],

It is readily shown that Z[J] generates the matrix elements of the T-product
between the ground states:

8}1
[J] . (1.129)

(OIT [x(t1) - - - x(1,)110) = (—i)”mz
n J=0

1.4 Harmonic oscillator

We work out the path integral quantization of a harmonic oscillator, which is an
example of systems for which the path integral may be evaluated exactly. We also
introduce the zeta function regularization, which is a useful tool in many areas of
theoretical physics.

1.4.1 Transition amplitude

The Lagrangian of a one-dimensional harmonic oscillator is

L = Imi* = tma?x?. (1.130)
The transition amplitude is given by
gty t) = [ Dx &SR0 (1131)

where S[x(1)] = z:f L dt is the action.
Let us expand S[x] around its extremum x.(¢) satisfying
3S[x]
ox

=0. (1.132)

x=xc(t)

Clearly x.(t) is the classical path connecting (x;, #;) and (x s, ) and satifies the
Euler-Lagrange equation
¥e 4+ w?xe = 0. (1.133)

The solution of equation (1.133) satifying x¢(#;) = x; and xc(ty) = x is easily
obtained as

1
xc(t) = — [xfsinw(t —t;) +x; sinw(ty —1)] (1.134)
sinwT :

where T =ty — ;. Substituting this solution into the action, we obtain (exercise)
Se = S[xc]

= m[(x% + x2) coswT — 2xsx;]. (1.135)



Now the expansion of S[x] around x = x, takes the form

1 828[x]
Ste+ v1 = Sl + 3 / dnd Yy @g s 130

where y(t) satisfies the boundary condition y(#;) = y(tf) = 0. Note that (1) the
first-order term vanishes since §S[x]/dx = 0 at x = x. and (2) terms of order
three and higher do not exist since the action is second order in x. Therefore, this
expansion is exact and this problem is exactly solvable as we see later.

By noting that

8 AN B ST AR :
Sx(tl)/,i dt [2mx(t) —2ma) x(t)]

2
— md—tlzx(tl) — mw-x(t1)

dZ
—m|— +o? x(t)
dr?

and that 5x(t1)
x (1
=48(t) —
52 (1) (t1 — 1)
we obtain the second-order functional derivative
82S[x] ez,
_— = — §(t — 12). 1.137
sananm) a2 TR (137

Substituting this into equation (1.136) we find that

m d? 2
Sxe + 1 = STl - o / dryds y (o) ( 5+ 02 ) 50— 1)
: 1

= S[xd] + %/dt(yz — 2y, (1.138)

where the boundary condition y(#;) = y(ty) = 0 has been taken into account.
Since Dx is translationally invariant,'* we may replace Dx by Dy to obtain

. cm (g2 2 2
(xpy tplxi, 1) = e'S[Xc]/ Dy % Ji 407D, (1.139)
o y(t)=y(17)=0
Let us evaluate the fluctuation part

Iy = / Dy el% Jo #G7=ey) (1.140)
- DHOo=yxm=0

14Integrating over all possible paths x () with x(#;) = x; and x(¢f) = x is equivalent to integrating
over all possible paths y(¢) with y(#;) = y(ty) = 0, where x(¢) = xc(t) + y(1).



where we have shifted the 7 variable so that #; now becomes r = 0. We expand
y(#) as
. nmt
y(z)=2ansmT (1.141)
neN
in conformity with the boundary condition. Substitution of this expansion into the
integral in the exponent yields

r . T nw\2
R G (O
0 neN

The Fourier transform from y(¢) to {a,} may be regarded as a change of variables
in the integration. For this transformation to be well defined, the number of
variables must be the same. Suppose the number of the time slice is N + 1,
including t+ = 0 and t+ = T, for which there are N — 1 independent yy.
Correspondingly, we must put a, = 0 forn > N — 1. The Jacobian associated
with this change of variables is

3 :
Jy = det aﬂ — det |:sin <"”T">} (1.142)

dn

where #; is the kth time step when [0, T'] is divided into N infinitesimal steps.

This Jacobian can be evaluated most easily for a free particle. Since the
transformation {yx} — {a,} is independent of the potential, the Jacobian should
be identical for both cases. The probability amplitude for a free particle has been
obtained in (1.104) leading to

1 \2 m ) L \12 _
aT '50 - N [ - :|= ! xc.
b Tlxi 0) (ZniT) exp |17 (v = xi) <2mT) ¢
(1.143)

This is written in terms of a path integral as
eiSlixe] / Dy &% Jo 413, (1.144)
y(0)=y(1)=0

By comparing these two expressions and noting that

—/ dty _)mzanrr

n=1

we arrive at the equality

L \/2
< - ) :/ Dyeit i 37
2mil ¥(O)=y(1)=0

12
lim J daj ... day— i
N N <2ni£) / ... can ‘eXp(lm AT

=
|
Q
SN
9
o
=
[\*)
N——

3
I
-



By carrying out the Gaussian integrals, it is found that

1 \"? 1AM samiT 2
= 1 J —
(271iT> Nooe N (2nie> [[1 n < w2 )

1 \Y?2 1 4iT \NV D72
lim J
Nooo N(zm) (N—l)!< 72 )

from which we finally obtain, for finite N, that

Jy = NN2o=W=D2xN=l(n _ 1y, (1.145)

The Jacobian Jy clearly diverges as N — oo. This does not matter at all,
however, since we are not interested in Jy on its own but a combination with
other (divergent) factors.

The transition amplitude of a harmonic oscillator is now given by

1 \M?
(x7, Tlx;,0) = lim Jy ( : ) eiSlxe]
‘ N—o00 2mie

mT =1 nir\2
. 2 2
x/dal...daNlexp[1—4 lan{(—T) —w }j|
n=
(1.146)

The integrals over a, are simple Gaussian integrals and easily carried out to yield

Josl izl -] - () - 2]

By substituting this result into equation (1.146), we obtain

N/2
> eiSlxcl

2miT

AR -]

Lxe] [ [ ) 1.147
(2niT> ¢ ’[[1 <nn> ( )

The infinite product over n is well known and reduces to

N 2 .
T T
lim | — <")—> e (1.148)
N—>c><>n:1 niw wT

(xp,trlxi, i) = Nllm IN (




Note that the divergence of Jy cancelled with the divergence of the other terms
to yield a finite value. Finally we have shown that

w 172 .
(xg,trlxi i) = (7) e!Sbel

2risinwT
= Unisinor/) P 2siner O T Al
(1.149)

1.4.2 Partition function
The partition function of a harmonic oscillator is easily obtained from the

eigenvalue £, = (n + 1/2)w,

[e.¢]

Tre Pl = 3 e firt/20 _ !

=— . (1.150)
= 2 sinh(Bw/2)

The inverse temperature 8 can be regarded as the imaginary time by putting
iT = B. Then the partition function may be evaluated from the path integral
point of view.

Method 1: The trace may be taken over {|x)} to yield

Z(B) = f dx (x|e A x)

1/2
_ w
N <27ri(—i sinhﬁw))

w
dx exp i | ——————(2x2 cosh fw — 2x>
x/ exp 1|:—2i sinh,Ba)( x“ cosh Bw X )i|

w 1/2 . 1/2
- <2n sinh,Bw) [wtanh(,Ba)/Z):|
1

~ 2sinh(Bw/2)

(1.151)

where use has been made of equation (1.149).
The following exercise serves as a preliminary to Method 2.

Exercise 1.5. (1) Let A be a symmetric positive-definite n x n matrix. Show that

/dx1 .. dxn exp(— inAijxj) = 7'[”/2(detA)71/2 = 71’”/21_[)”._1/2
i,j i
(1.152)



where }; is the eigenvalue of A.
(2) Let A be a positive-definite n x n Hermite matrix. Show that

/dzl dzy...dz, dz, exp ( — ZZiAi,/Zj> = 7-[’1(d,etA)_l =" HA;I.
ij i
(1.153)

Method 2: We next obtain the partition function by evaluating the path
integral over the fluctuations with the help of the functional determinant and the
¢-function regularization. We introduce the imaginary time t = if and rewrite
the path integral as

o sl fool 5]
YO)=y(T)=0 2 dr?
— ijexpl:—l/dty(—£+a))i|
YO)=y(8)=0 2 dr?

where we noted the boundary condition y(0) = y(8) = 0. Here the bar on D
implies the path integration measure with imaginary time.

Let A be an n x n Hermitian matrix with positive-definite eigenvalues
Mk (1 <k < n). Then for real variables x;, we obtain from exercise 1.5 that

n

o0 1
dxk) e 2 Zp,q XpApgXg _
l_[ </oo l_[ )Lk det

k=1

where we neglected numerical factors. This is a generalization of the well-known

Gaussian integral
/oo dxe_ % sz = 2—]-[
—0 A

for A > 0. We define the determinant of an operator O by the (properly
regularized) infinite product of its eigenvalues A; as Det O = [], Ax.'> Then
the previous path integral is written as

1 d? 1
/y(O):y(ﬂ) ODy P [ /dt y( de2 e > } VDetp(—d2/dr2 + w?)’
(1.154)
where the subscript ‘D’ implies that the eigenvalues are evaluated with the
Dirichlet boundary condition y(0) = y(8) = 0.
The general solution y(t) satisfying the boundary condition is written as

y(1) = \/_Zynsin”%’. (1.155)
neN

15We will use “det’ for the determinant of a finite dimensional matrix while ‘Det’ for the (formal)
determinant of an operator throughout this book. Similarly, the trace of a finite-dimensional matrix is
denoted ‘tr’ while that of an operator is denoted “Tr’.




Note that y, € R since y(t) is a real function. Since the eigenvalue of the
eigenfunction sin(nwz/B) is A, = (nw/B)* + w?, the functional determinant
is formally written as

d? 5 ad ad nm \? 5
Detp —F+a) = l_ll)»,,zl—[ (?) + w

The first infinite product in the last line is written as

d2
DCtD — @ .

We will evaluate this infinite product through the ¢-function regularization. Let
O be an operator with positive-definite eigenvalues A,. Then we have formally

logDet(’):Trlog(’):Zlogkn. (1.157)
n

Now we define the spectral ¢ -function as

to(s) = (1.158)

ke
The RHS converges for sufficiently large Re s and {p(s) is analytic with respect
to s in this region. Moreover, it can be analytically continued to the whole s-plane
except at a possible finite number of points. By noting that

dlo(9)|
4 = ;log)»n

s=0
we arrive at the expression

dso(s)
ds

Det O = exp [—

} . (1.159)
s=0

We replace O by —d?/dz? in the case at hand to find

i —2s ,3 2s
Cdz/drz(s)=2(?) =<;) £ (25) (1.160)

n>1

where ¢ (2s) is the celebrated Riemann ¢-function. It is analytic over the whole
s-plane except at the simple pole at s = 1. From the well-known values

(0 =-%  ¢(0)=—1log(2n) (1.161)



we obtain

B

¢! 2020 = 2log (;) £(0) +2¢'(0) = — log(2).

We have finally shown that

d2
DetD (—F) = elOg(2ﬁ) frd zﬁ (1]62)

d2 00 ,30) 2
Detp <_P + a)2> = 2;3}:[1 [1 - (p—n> } : (1.163)

The infinite product in this equation is well known but let us pretend that we are
ignorant about this product.
The partition function is now expressed as

0 2y-1/2 1/2
~pH _ pr 7
e [2/31!:[1{1+(m) | o] - 1o

By comparing this with the result (1.151), we have proved the formula

ad Bw 2 o
}:[l|:1+(E>:|—,3—wsmh(ﬂw)

and that

namely

ad ( xz) sinh(7 x)
]_[ 1+ ) =——. (1.165)
n TX

n=1

What about the infinite product expansion of the cosh function? This is given
by using the path integral with respect to the fermion, which we will work out in
the next section.

1.5 Path integral quantization of a Fermi particle

The particles observed in Nature are not necessarily Bose particles whose position
and momentum operators obey the commutation relation [ p, x] = —i. There are
particles called fermions whose operators satisfy anti-commutation relations. A
classical description of a fermion requires anti-commuting numbers called the
Grassmann numbers.



1.5.1 Fermionic harmonic oscillator

The bosonic harmonic oscillator in the previous section is described by the
Hamiltonian!'®
H = %(a'a +aa')

where a and a' satisfy the commutation relations
[a,a’l=1 [a,al=1[da",a']=0.
The Hamiltonian has eigenvalues (n 4+ 1/2)w (n € N) with the eigenvector |n):
Hin) = (n + poln).
Now suppose there is a Hamiltonian
H=13("c-chHo. (1.166)

This is called the fermionic harmonic oscillator, which may be regarded as
a Fourier component of the Dirac Hamiltonian, which describes relativistic
fermions. If the operators ¢ and ¢ should satisfy the same commutation relations
as those satisfied by bosons, the Hamiltonian would be a constant H = —w/2.
Suppose, in contrast, they satisfy the anti-commutation relations

{e,cV=cc +cfe=1 {e,c}={c", cfy=o0. (1.167)
The Hamiltonian takes the form
H=1ce—(1-cchHlw=N-Do (1.168)

where N = c¢Tc. Itis easy to see that the eigenvalue of N must be either 0 or 1.
In fact, N satisfies N2 = c¢fectfe = N, namely N(N — 1) = 0. This is nothing
other than the Pauli principle.

Let us study the Hilbert space of the Hamiltonian H. Let |n) be an
eigenvector of H with the eigenvalue n, where n = 0, 1 as shown earlier. It
is easy to verify the following relations;

w w
H10)=-=10)  H[l)= =)

Aloy=11)  c0)=0 =0 cl1) = |0).

It is convenient to introduce the component expressions

16We will drop " on operators from now on unless this may cause confusion.



Exercise 1.6. Suppose the basis vectors have this form. Show that the operators
have the following matrix representations

o 0 0 o= 0 1
“\1 0 ) —\0 0 )’
1 0 o1 0
N‘(o 0)’ H‘E(o —1>‘
The commutation relation [x, p] = i for a boson has been replaced by
[x, p] = 0 in the path integral formalism of a boson. For a fermion, the anti-

commutation relation {c, ¢} = 1 should be replaced by {6, 6*} = 0, where 6 and
6* are anti-commuting classical numbers called Grassmann numbers.

1.5.2 Calculus of Grassmann numbers

To distinguish anti-commuting Grassmann numbers from commuting real and
complex numbers, the latter will be called the ‘c-number’, where ¢ stands for
commuting. Let n generators {601, ..., 6,} satisfy the anti-commutation relations

{6;,0;}=0 Vi, j. (1.169)

Then the set of the linear combinations of {6;} with the c-number coefficients is
called the Grassmann number and the algebra generated by {6;} is called the
Grassmann algebra, denoted by A”. An arbitrary element f of A" is expanded

as
n
FO) = fo+ Y fibi+ > fij0if+ -
i=1 i<j
=D 4 Zf” by B, (1.170)
O<k<n ! (i}
where fo, fi, fij,...and f; . ; are c-numbers that are anti-symmetric under the

exchange of any two indices. The element f is also written as

fO=" fakb .. 00 (1.171)

ki=0,1

Take n = 2 for example. Then

) = fo+ fi61 + 262 + f126162
= foo + f1061 + f0162 + f11616>.

The subset of A" which is generated by monomials of even (resp. odd) power in
Ok is denoted by A’} (A"):

A" = AL @ A" (1.172)



The separation of A" into these two subspaces is called Z,-grading. We call an
element of A’} (A") G-even (G-odd). Note that dim A" = 2" while dim A’} =
dim A" =20=D,

The generator 6; does not have a magnitude and hence the set of Grassmann
numbers is not an ordered set. Zero is the only number that is a c-number as well
as a Grassmann number simultaneously. A Grassmann number commutes with a
c-number. It should be clear that the generators satisfy the following relations:

07 =0
Ok, 6k, - . - Ok, = Ekjhy.. k0102 .. .0n (1.173)
Ok, 6k - Ok, =0 (m > n),

where

+1 if {ky...k,}is an even permutation of {1 ...n}
Eky.dky = 1 —1 if{ky...k,}is an odd permutation of {1 ...n}
0 otherwise.

A function of Grassmann numbers is defined as a Taylor expansion of the
function. When n = 1, for example, we have

e =146

since higher-order terms in 6 vanish identically.

1.5.3 Differentiation

It is assumed that the differential operator acts on a function from the left:

00; _ 0 4 s (1.174)
30, — 0, 1V ‘
It is also assumed that the differential operator anti-commutes with ;. The
Leibnitz rule then takes the form

8(99)—86’].9 9_39k_59 8ix0 (1.175)
90, I T g, kT Ve, T CUTk T OikT: :
Exercise 1.7. Show that
0 0 d 0
(1.176)

36 06, 00, 96,

It is easily shown from this exercise that the differential operator is nilpotent
82

962

1

=0. (1.177)

Exercise 1.8. Show that
—0;,+0;,— =§;;. 1.178
a0; 7 oe Y ( )

1



1.5.4 Integration

Supprisingly enough, integration with respect to a Grassmann variable is
equivalent to differentiation. Let D denote differentiation with respect to a
Grassmann variable and let / denote integration, where integration is understood
as a definite integral. Suppose they satisfy the relations

(1) ID =0,
(2) DI =0,
(3) D(A)=0= I[(BA) = I(B)A,

where A and B are arbitrary functions of Grassmann variables. The first relation
states that the integration of a derivative of any function yields the surface term
and it is set to zero. The second relation states that a derivative of a definite
integral vanishes. The third relation implies that A is a constant if D(A) = 0 and
hence it can be taken out of the integral. These relations are satified if we take
I o D. Here we adopt the normalization / = D and put

/d@f(@):%. (1.179)

We find from the previous definition that

/ al / a6
dd=—=0 ddo =— =1.
a6 a6

If there are n generators {6y}, equation (1.179) is generalized as

3 9 3
d01d6, ... d6, £ (1,02, ... 0y) = — — ... —

= 01,62, ...,0,).
36, 96, aenf(l 2 )

(1.180)
Note the order of d and 9/96.

The equivalence of differentiation and integration leads to an odd behaviour
of integration under the change of integration variables. Let us consider the case
n = 1 first. Under the change of variable 8’ = af (a € C), we obtain

af @)  af@
/d@f(@): ];(9): ];(9///0“)=a/d9/f(9’/a)




which leads to d9’ = (1/a)d6. This is readily extended to the case of n variables.
Let6; — 91-/ = a,'jej. Then

9 9
46y .. .6, f(6) = — ... 6
/ B 6) = 5 5 [ O)
n 89,21 39,2)1 9 9

. ——f(a7'0)
L 96, 06 " 06,
538 a Gty i f@'e)
= ki knQky1 -« Qhyn 777« - -
= 26, 96,

deta/d@{...@,’lf(a_le/).
Accordingly, the integral measure transforms as
do; dbs...0, = detadd; do;...do,. (1.181)

1.5.5 Delta-function

The 5-function of a Grassmann variable is introduced as
/d@é(@—cx)f(@):f(a) (1.182)

for a single variable. If we substitute the expansion f(#) = a + b8 into this
definition, we obtain

/dea(e—a)(a+b9)=a+ba

from which we find that the §-function is explicitly given by
30 —a) =6 —a. (1.183)

Extension of this result to n variables is easily verified to be (note the order of
variables)
3O —a) = (0 —ap) ... (00 — )0 —ay). (1.184)

The integral form of the §-function is obtained from
/dg el = /dé} (1+i£0) =16

as

8(9)=9=—i/d§ei‘59. (1.185)



1.5.6 Gaussian integral

Let us consider the integral
= / o do ... do* de, e 2 O M (1.186)

where {6;} and {6} are two sets of independent Grassmann variables. The n x n
c-number matrix M is taken to be anti-symmetric since 6; and 6;* anti-commute.
The integral is evaluated with the help of the change of variables 6; =}, M;;0;
as

I = detM / doy doy ... doy deje= 2%

n
= detM [/ do* do(1 + 9/9*)}
det M. (1.187)

We prove an interesting formula as an application of the Gaussian integral.

Proposition 1.3. Let a be an anti-symmetric matrix of order 2n and define the
Pfaffian of a by

1
Pf(a):zn—w Z sgn(P)aiyiy - - - Giyy_ i, - (1.188)
Permutations of

{1, ion}

Then
deta = Pf(a)’. (1.189)

Proof. Observe that

n
I= /d@zn...d91exp|: Zea,, ,} T '/dez,l del(ZGiaijej)
L
= Pf(a).

Note also that

1
= /d@zn...del dés, .. .de exp[E > (iaijb; +9;ai,-9;)]
ij

Under the change of variables

1
W= O 0D, = —— (O — 6,
V2 V2i



we obtain the Jacobian = (—1)" and
6:0; + 6,07 = nin; —nini
2
dnop ...dn;dny, ...dnT = (=1)" dni dny . ..dn2, dns,,

from which we verify that

Pf(a)? = /dm dnt ... dn,dn3, exp[zn;"aijnj} = deta. O
ij

Exercise 1.9. (1) Let M be a skewsymmetric matrix and K; be Grassmann
numbers. Show that

t t t —
1...d6, e*% = vdetM e ! . .
do de 0-M-60+"K-0 2}1/2 detM K-M~-K/4 (1 ]90)

(2) Let M be a skew-Hermitian matrix and K; and K l.* be Grassmann numbers.
Show that

/d@f‘ d6y ... dor dg, e MOHKTOH0TK — qor gy K MK (] 19])

1.5.7 Functional derivative

The functional derivative with respect to a Grassmann variable can be defined
similarly to that for a commuting variable. Let y/(¢) be a Grassmann variable
depending on a c-number parameter ¢ and F[y(¢)] be a functional of ¥. Then we

define
SFly(®)] 1
S —{F[y (@) +edt —s)] = Fly ()]}, (1.192)
Y (s) €

where ¢ is a Grassmann parameter. The Taylor expansion of F[{(¢) —ed(t — s5)]
with respect to ¢ is linear in ¢ since €2 = 0. Accordingly, the limit & — 0 is
not necessary. A word of caution: division by a Grassmann number is not well
defined in general. Here, however, the numerator is proportional to ¢ and division
by € simply means picking up the coefficient of ¢ in the numerator.

1.5.8 Complex conjugation

Let {6;} and {6} be two sets of the generators of Grassmann numbers. Define the
complex conjugation of 6; by (6;)* = 6" and (9]")* = ;. We define

0:0)* = 979?. (1.193)

Otherwise, the real c-number 6;0F does not satisify the reality condition
0;07)* = 06}



1.5.9 Coherent states and completeness relation

The fermion annihilation and creation operators ¢ and c¢' satisfy the anti-
commutation relations {c, ¢} = {cT, CJ'} = 0 and {c, cT} = 1 and the number
operator N = c'¢ has the eigenvectors |0) and |1). Let us consider the Hilbert
space spanned by these vectors

H = Span{|0), [1)}.
An arbitrary vector | f) in H may be written in the form

1f) =10)fo + 1) f1,

where fo, f1 € C.
Now we consider the states

|0) = 10) + [1)6 (1.194)
0] = (0] + 6" (1] (1.195)

where 0 and 6* are Grassmann numbers. These states are called the coherent
states and are eigenstates of ¢ and ¢’ respectively,

clf) =10)0 = 16)0, Olc" = 6%(0] = 6*(].
Exercise 1.10. Verify the following identities;
0'16) = 14676 =7,

©1f) = fo+06"f1,
O1cT1f) = (011) fo = 6% fo = 6*(01 £),

a
(Olelf) = (0100 fi = 222 {01f)-

Let
h(c, ") = hoo + hioc” 4+ hore + hiic’e hij € C

be an arbitrary function of ¢ and ¢'. Then the matrix elements of & are
(O1h10) = hoo  (O|R|1) = ho1 (11h10) = h1o  (1Ih|1) = hoo + h11.
It is easily found from these matrix elements that
(O1116") = (hoo + 0*h1o + ho16' + 6*60"h11)e” . (1.196)

Lemma 1.3. Let |6) and (6| be defined as before. Then the completeness relation
takes the form

/de*de 10)(0]e 0" = 1. (1.197)



Proof. Straightforward calculation yields
fde*d9|9)<9|e—9*9
= /de* do(]0) + [1)0)({0] + 6*(1])(1 — 6*6)

= /de* d6 (10)(0] + [1)6(0] + [0)6* (1] + [1)86*(1]) (1 — 6*6)

=10)(0] + [1)(1] = I. 0

1.5.10 Partition function of a fermionic oscillator

We obtain here the partition fuction of a fermionic harmonic oscillator as an
application of the path integral formalism of fermions. The Hamiltonian is
H = (c'c — 1/2)w, which has eigenvalues +w/2. The partition function is then

1
Z(B)=Tre PH = Z(nle*ﬁHln) =eP9/2 4 e7P2/2 = 2 cosh(Bw/2).

n=0
(1.198)

Now we evaluate Z(8) in two different ways using a path integral. We start our
exposition with the following lemma.

Lemma 1.4. Let H be the Hamiltonian of a fermionic harmonic oscillator. Then
the partition function is written as

Tre PH = /de*de(—me*ﬂ”w)e*m. (1.199)

Proof. Let us insert the completeness relation (1.197) into the definition of a
partition function to obtain

ZB)y= Y (nlePn)

n=0,1

Zfde*dee*9*9<n|9><9|e*ﬂ”|n>

= Z/d@*d@ (1 —6*0)((n]0) + (n|1)0)((Ole PH |n) + 6% (1]e P |n))

- Z/d@*de(l — 0*0)[(0le PH |n)(n|0)

—0*0(11e PH |n)(n|1) + 60le PH |n) (n|1) + 0*(11ePH |n) (n]0)].



The last term of the last line does not contribute to the integral and hence we may
change 6* to —0*. Then

AEDY / do* do(1 — 0*0)[(0le™""|n)(n]0)

—0*0(1le P |n)(n|1) + 0(0le PH|n)(n|1) — 6*(11e P |n) (n|0)]

- /de*de e "0 (—ple FH|p). 0

Accordingly, the coordinate in the trace is over anti-periodic orbits. The
Grassmann variable is 6 at T = 0 while —0 at t = 8 and we have to impose an
anti-periodic boundary condition over [0, ] in the trace.

Use the expression

e PH = lim (1 — BH/N)N
N—oo

and insert the completeness relation at each time step to find

Z(B) = lim [ do*doe "% (—0|(1 — BH/N)N|0)

N—oo
N—1 Vo
= i de* do d9*d9 72)1:_1 0;0”
Nl—r>noo E/ k k€
x (—=01(1 — eH)|ON_1)(On-1]...101)(611(1 — eH)|H)
N
= i 467 doy e~ Ln=1 056n
Ngnoo/]!j[l k GOk €

X (ONI(1 = eH)|ON-1)(ON-1]...101)(01](1 —eH)| — On)

where we have put e = /N and 6 = -0y = 6p, 0" = —0y = 6.
Each matrix element is evaluated as

(6| H |Ok_1)
Okl(1 — e )lbr—1) = (BklO—1) | | — e = ===
(Okl(1 — eH)|Or—1) = (6k|6k 1)[ € Gelr_1) }

~ (9k|9k_1)e*€(9k|H\9k71>/(9k\9k71>
— 01 =00 1—1/2)

— eew/2e(l —ew)0; k1 .



The partition function is now expressed in terms of the path integral as

N
Z) = lim P2 T [ db; dore™ Tam b5t e(1=60) Lot Oy
N—oo kel

N
=P fim [] / 40} dfge TretlO; En—bu 1) e06}6,1)

N—oo
k=1
ul T
— B2 | * —-6"-B-6
e Ngnoo]_[ / d6; dbre , (1.200)
k=1
where
0
6> .
o=\ . 0" = (07,65, ....0%)
On
1 0 ... 0 -y
y 1 0 0
BN — 0 y 1 0
00 ... vy 1
with y = —1 + ew in the last line. We finally find from the definition of the

Gaussian integral of Grassmann numbers that
Z(B) =P/ lim det By =ef“/? lim [1+ (1 — Bw/N)"]
N—o0 N—oo
=eP*/2(1 4+ e7P?) = 2cosh L pw. (1.201)

This should be compared with the partition function (1.151) of the bosonic
harmonic oscillator.

This partition function is also obtained by making use of the ¢-function
regularization. It follows from the second line of equation (1.200) that

N
Z(B) = P22 lim l_[ / dg}j dore™ Yo [(1—ew)0) (6, —0,-1) /e +w0,i0,]
N—o00 kel

p d
= efo/2 / DO*DH exp [ — / dr o* ((1 —ew)— + w) 9}
0 dr
po/2 d
=e€ Detappc | (1 — Sa))d— +w]).
T

Here the subscript APBC implies that the eigenvalue should be evaluated for the
solutions that satisfy the anti-periodic boundary condition 8(8) = —0(0). It



might seem odd that the differential operator contains . We find later that this
gives a finite contribution to the infinite product of eigenvalues. Let us expand
the orbit 6(7) in the Fourier modes. The eigenmodes and the corresponding
eigenvalues are

i(2 1 i(2 1
exp <7n1( " )1:) , (1-— sa))im( ntl) + o,
B p
where n = 0,%1,42,.... It should be noted that the coherent states are

overcomplete and that the actual number of degrees of freedom is N, which is
related to € as ¢ = §/N. Then we have to truncate the product at —N/4 < k <
N /4 since one complex variable has two real degrees of freedom. Accordingly,
the partition function takes the form

N/4

Z(B) = ePuw/2 NILmOO l_[ [i(l _ Ea))w _|_wi|

k=—N/4 p

— oP0/2g—Bw)2 lo—O[ [<2n(nﬁ— 1/2) >2 . wz]

k=1
G k=D 5 Bo )
—ﬂ[ B }E[I’L(n(zn—l))]

The first infinite product, which we call P, is divergent and requires
regularization. Note, first, that

log P = 221 [2”(1‘}31/2)}

Define the corresponding ¢ -function by
s o[22k =17 (B
¢<s)—;[7ﬂ ] = (2n> £(s.1/2)

with which we obtain P = 6_22 O Here

9]

1
{(s,a)zgm O<a<l (1.202)

is the generalized ¢ -function (the Hurwitz ¢ -function). The derivative of f(s)
ats = 0 yields

~ 1
¢'0) = 10g< 4 )E(O 1/2) +¢'(0,1/2) = —5 log2,



where use has been made of the values !7

£0,1/2)=0  ¢'(0,1/2) = —%log2.

Finally we obtain i
P =e X0 _glog2 _ o (1.203)

Note that P is independent of § after regularization.
Putting them all together, we arrive at the partition function

2
Z(p) = 2]_[ [ (m) } (1.204)

By making use of the well-known formula

X s x2
WS T e 1.205
cosh3 H[ t2an = 1)2] (1.205)

we obtain
Bw
Z(B) = 2cosh - (1.206)

Suppose, alternatively, we are ignorant about the formula (1.205). Then,
by equating equation (1.201) with equation (1.204), we have proved the formula
(1.205) with the help of path integrals. This is a typical application of physics
to mathematics: evaluate some physical quantity by two different methods
and equate the results. Then we often obtain a non-trivial relation which is
mathematically useful.

1.6 Quantization of a scalar field

1.6.1 Free scalar field

The analysis made in the previous sections may be easily generalized to a case
with many degrees of freedom. We are interested, in particular, in a system with
infinitely many degrees of freedom; the quantum field theory (QFT). Let us
start our exposition with the simplest case, that is, the scalar field theory. Let
¢ (x) be areal scalar field at the spacetime coordinates x = (X, x") where X is the
space coordinate while x© is the time coordinate. The action depends on ¢ and its
derivatives 9, ¢ (x) = d¢(x)/dxH:

S = /dxc(q),am). (1.207)

17 The first formula follows from the relation £(s,1/2) = (2% — 1)¢(s), which is derived from
the identity ¢ (s, 1/2) + ¢(s) = 2° Z;il[l/(Zn — 1)% +1/(2n)%] = 25¢(s). The second formula
is obtained by differentiating ¢ (s, 1/2) = (2% — 1)¢(s) with respect to s and using the formula
(0) =—1/2.



Here £ is the Lagrangian density. The Euler-Lagrange equation now takes the

form
0 < oL > oL
— — = =0. (1.208)
dxH \ 9(3.0) ¢

The Lagrangian density of a free scalar field is

Lo(¢. dup) = —5(3,09" ¢ + m*¢?). (1.209)

The Euler-Lagrange equation derived from this Lagrangian density is the Klein—
Gordon equation
(O -m?¢ =0, (1.210)

where 0 = 943, = —32 + V2.
The vacuum-to-vacuum amplitude in the presence of a source J has the path
integral representation (0, 00|0, —oo)’ o Zo[J], where

ZolJ] = /quexp [i/dx <£o+J¢+ %8¢2)j| (1.211)

where the ie term has been added to regularize the path integral.'® Integration by
parts yields

ZolJ] = /D¢exp [i/dx(%{q&(ﬂ—m2)¢+i8¢2}+1¢)] (1.212)

Let ¢ be the classical solution to the Klein—-Gordon equation in the presence
of the source,
0 —m?+ie)pe = —J. (1.213)

The solution is easily found to be

pen) == [ dy A =305 0) (1214)
where A(x — y) is the Feynman propagator
_ L ek
Alx —y) = dk —5—. 1.215
= (27T)d/ k2 +m? —ic ( )

Here d denotes the spacetime dimension. Note that A(x — y) satisfies
O —m?+ie)Alx —y) =8%x — y).
It is easy to show that (exercise) the functional Zy[J] is now written as

ZolJ] = Zp[0] exp [ — %/dx dyJ(x)A(x — y)J(y)i|. (1.216)

18 Alternatively, we can introduce the imaginary time 7 = ix9 to Wick rotate the time axis.



It is instructive to note that the propagator is conversely obtained by the functional
derivative of Zo[J],

i 82Zol]
"~ Zo[0]18J (x)8J ()

Alx — y) (1.217)

J=0
The amplitude Zp[0] is the vacuum-to-vacuum amplitude in the absence of

the source and may be evaluated as follows. Let us introduce the imaginary time

x* = 7 = ixY. Then, we obtain

20i01 = [ Doexp [% [axo@- m%qb}
= [Det@ —mH17'2, (1218)

where O] = 82 + V? and the deteminant is understood in the sense of section 1.4,
namely it is the product of eigenvalues with a relevant boundary condition.
A free complex scalar field theory has a Lagrangian density

Lo=—0,0 0" ¢ —m>|p)> + Jo* + T*¢ (1.219)

where the source terms have been included. The generating functional is now
given by

ZolJ, J*] = /D¢D¢* exp [i/dx (ﬁo—i8|¢|2)i|

= /D¢D¢* exp [i/dx (" —m> +ie)p + J*¢ + J¢*}i|.

(1.220)
The propagator is now given by
i 82ZolJ, J*]
Alx —y) = . (1.221)
Zo10, 01 87*(x)8J () |y ey
By substituting the Klein—-Gordon equations
O-—mp.=—J (O—m>p}=—-J* (1.222)

we separate the generating functional as

ZolJ, J*1 = Zy[0, 0] exp |: - i/dx dyJ*(x)A(x — y)J(y):| (1.223)
where
Zol0, 0] = /D¢D¢* exp[—i/dx¢*(m—m2 —is)¢i|

= [Det(d — m»)]™". (1.224)

Wick rotation has been made to occur at the last line.



1.6.2 Interacting scalar field

It is possible to add interaction terms to the free field Lagrangian (1.209),

L(}, 0u9) = Lo(@, 3u9) — V(9). (1.225)

The possible form of V (¢) is restricted by the symmetry and renormalizability of
the theory. A typical form of V is a polynomial

V(g) = %qﬁ" n=>3neh)

where the constant ¢ € R controls the strength of the interaction. The generating
functional is defined similarly to the free theory as

Z[J] = /D¢ exp [i / dx (1@ —m>¢ — V(¢) + Jqs}] (1.226)

The presence of V (¢) makes things slightly more complicated. It can be handled
at least perturbatively as

Z[J] = /D¢exp |:—i/de(¢)j| exp [i/dx {£0+J¢}:|
1 6

exp |:—i/de <T5J(x)):|/D¢exP [i/dx {£o+J¢}:|

[ vy (12 }zm
exp —1/ x <18J(x)) 0
0 Nk
Z/dxl.../dxk(kl!)
k=0

v(1—5 ) v(1—5 )Z[J] (1.227)
“\ision ) \Gsiam ) 2OV '

The generating functional Z[J] generates the vacuum expectation value
of the T-product of field operators, also known as the Green function
Gn(x1,...,x),as

Gn(xt, ..., x0) = (0[T[p(x1) ... (x)]]0)

_ iz[u
T 8T (x1)...87(xp)

(1.228)

J=0

Since this is the nth functional derivative of Z[J] around J = 0, we obtain the
functional Taylor expansion of Z[J] as

oo

1 n
Z[J] = ZE[H/dxi J(x»}(omcb(xl)...¢(xn>]|0>
i=1

n=1

— (0|Te/ /Py, (1.229)



The connected n-point functions are generated by W[J] defined by
Z[J] =e W1, (1.230)

The effective action I"[¢.] is defined by the Legendre transformation

Il = W[J] — /dt dXJ el (1.231)
where
;7 OWLJ]
o = (B)” = 7 (1.232)

The functional I'[¢¢] generates one-particle irreducible diagrams.

1.7 Quantization of a Dirac field

The Lagrangian of the free Dirac field v is

Lo =Yg —m)y, (1.233)
where § = y#9,,. In general A = y*A,,. Variation with respect to ¥ yields the

Dirac equation
@if —m)y =0. (1.234)

The Dirac field, in canonical quantization, satisifes the anti-commutation
relation

{2 x), v y)=8(x —y). (1.235)

Accordingly, it is expressed as a Grassmann number function in path integrals.
The generating functional is

Zoln. nl = /D&va exp [i/dx (¥ GQd —m)y +yn + ﬁw)} (1.236)

where 7, n are Grassmannian sources.
The propagator is given by the functional derivative with respect to the
sources,

82 Zoli, ]

SO = S sty
g i +m+ie)AQx — y)
_W/ m_@ +m+tie)A(x —y

(1.237)

where A(x — y) is the scalar field propagator.
By making use of the Dirac equations

Q@ —my=—n  GGQF +m) =i (1.238)



the generating functional is cast into the form
Zoln, nl = Zol0, 0] exp [—i/dx dyn(x)S(x — Y)n()’)} . (1.239)

After Wick rotation 7 = ix?, the normalization factor is obtained as

Z0[0, 0] = Det(if —m) = HA,' (1.240)
i
where 2; is the ith eigenvalue of the Dirac operator if — m.

1.8 Gauge theories

At present, physically sensible theories of fundamental interactions are based
on gauge theories. The gauge principle—physics should not depend on how we
describe it—is in harmony with the principle of general relativity. Here we give
a brief summary of classical aspects of gauge theories. For further references, the
reader should consult those books listed at the beginning of this chapter.

1.8.1 Abelian gauge theories

The reader should be familiar with Maxwell’s equations:

divB =0 (1.241a)
9B

5 Tl E=0 (1.241b)
divE = p (1.241¢)
JE .

5, —culE=—]. (1.241d)

The magnetic field B and the electric field E are expressed in terms of the vector
potential A, = (¢, A) as

A
B =curl A E = o grad ¢. (1.242)

Maxwell’s equations are invariant under the gauge transformation
Ay — A+ 0ux (1.243)

where x is a scalar function. This invariance is manifest if we define the
electromagnetic field tensor F,, by

0 —E. —E, —E,
E. 0 B, —-B
E, -B, 0 B
E., B, —B, 0

Fup =0, A, — 0,A, = (1.244)



From the construction, F is invariant under (1.243). The Lagrangian of the
electromagnetic fields is given by

Lem = — 5 Fu F*™ + Ay j* (1.245)
where j* = (p, |).
Exercise 1.11. Show that (1.241a) and (1.241b) are written as
g Fyy + 0y Fog + 0y Fgy, =0 (1.246a)
while (1.241c) and (1.241d) are
o, FHY = jH (1.246b)
where the raising and lowering of spacetime indices are carried out with the
Minkowski metric n = diag(—1, 1,1, 1). Verify that (1.246b) is the Euler—
Lagrange equation derived from (1.245).
Let ¢ be a Dirac field with electric charge e. The free Dirac Lagrangian
Lo = Yy d, +m)y (1.247)
is clearly invariant under the global gauge transformation
Y e Ty g el (1.248)

where o € Ris a constant. We elevate this symmetry to invariance under the local
gauge transformation,

Y- e Wy el (1.249)
The Lagrangian transforms under (1.249) as
Y(iyHa, +m)yy — Yy, + ey o +m)y. (1.250)

Since the extra term ed,o looks like a gauge transformation of the vector
potential, we couple the gauge field A, with ¢ so that the Lagrangian has a local
gauge symmetry. We find that

L= yliy" (3, —ieA,) +mly (1.251)
is invariant under the combined gauge transformation,

I/f N I//, — e—iea(x)l/f I/_f N &/ — 1’Deieoz(x)

(1.252)
Ay — Al = Ay — Bu0(x).



Let us introduce the covariant derivatives,
V=0, —ieAy V;L =0, — ieA;L. (1.253)
The reader should verify that V4 transforms in a nice way,
Vi =e Wy, y. (1.254)
The total quantum electrodynamic (QED) Lagrangian is
LqEp = — 3 F* Fuy + ¥ (Qy"Vy +m)y. (1.255)

Exercise 1.12. Let ¢ = (¢1 + ig)/~/2 be a complex scalar field with electric
charge e. Show that the Lagrangian

L =" (V) (Vi9) +m’¢’¢ (1.256)
is invariant under the gauge transformation

¢ — e Wy ¢" — pleler® Ay — Ay — dpa(x). (1.257)

1.8.2 Non-Abelian gauge theories

The gauge transformation just described is a member of a U(1) group, that
is a complex number of modulus 1, which happens to be an Abelian group.
A few decades ago, Yang and Mills (1954) introduced non-Abelian gauge
transformations. At that time, non-Abelian gauge theories were studied from
curiosity. Nowadays, they play a central role in elementary particle physics.

Let G be a compact semi-simple Lie group such as SO(N) or SU(N). The
anti-Hermitian generators {7y} satisfy the commutation relations

[Tw. Tpl = fup” Ty (1.258)

where the numbers fyg” are called the structure constants of G. An element U
of G near the unit element can be expressed as

U = exp(—0“Ty). (1.259)
We suppose a Dirac field ¢ transforms under U € G as
v —>Uy ¥ —yU". (1.260)

[Remark: Strictly speaking, we have to specify the representation of G to which
Y belongs. If readers feel uneasy about (1.260), they may consider ¢ is in the
fundamental representation, for example.]

Consider the Lagrangian

L= Yliy" @, + gA,) +mly (1.261)



where the Yang—Mills gauge field A, takes its values in the Lie algebra of G, that
is, A, can be expanded in terms of T, as A, = A, “T,. (Script fields are anti-
Hermitian.) The constant g is the coupling constant which controls the strength
of the coupling between the Dirac field and the gauge field. It is easily verified
that £ is invariant under

Yo' =Uy Yy =yl

, o . (1.262)
Ay — A, =UAU + g0, U".

The covariant derivative is defined by V,, = 9, + gA,, as before. The covariant
derivative V¢ transforms covariantly under the gauge transformation

V' =UVuy. (1.263)
The Yang-Mills field tensor is
T =0, A, — A, +glA Al (1.264)
The component F,,* is
Fi® = 0,A,% — 8,A,% + g s, " AP ALY . (1.265)

If we define the dual field tensor +J,, = %e,w,(,\’f“, it satisfies the Bianchi
identity,

Dy« FH =09, %« FH + g[A,, T+ =0. (1.266)
Exercise 1.13. Show that J,, transforms under (1.262) as
F— UT LU (1.267)
From this exercise, we find a gauge-invariant action
Lym = — 5 (T F ) (1.268a)
where the trace is over the group matrix. The component form is
Lym = —3F*Fu,f (T Tp) = 3 F* Fuva (1.268b)

where we have normalized {7y} so that tr(7,Tg) = —%805,3. The field equation
derived from (1.268) is

DuF v = 0, F 0 + glAu, Fn] = 0. (1.269)



1.8.3 Higgs fields

If the gauge symmetry is manifest in our world, there would be many observable
massless vector fields. The absence of such fields, except for the electromagnetic
field, forces us to break the gauge symmetry. The theory is left renormalizable if
the symmetry is broken spontaneously.

Let us consider a U(1) gauge field coupled to a complex scalar field ¢, whose
Lagrangian is given by

L=—3F" Fu + (Vud) (Vid) — 2676 —v7)%. (1.270)

The potential V(¢) = A(¢p'¢ — v?)? has minima V = 0 at |¢| = v. The
Lagrangian (1.270) is invariant under the local gauge transformation

Ay — Ay —dua ¢p—e @y pT - el (1.271)

This symmetry is spontaneously broken due to the vacuum expectation value
(VEV) (¢) of the Higgs field ¢. We expand ¢ as

¢ = i[v + p(x)]e @/ ~ %[v + p(x) +ia(x)]

V2

assuming v # 0. If v # 0, we may take the unitary gauge in which the phase of
¢ is ‘gauged away’ so that ¢ has only the real part,

1

P(x) = —@w+ pkx)). (1.272)
V2
If we substitute (1.272) into (1.270) and expand in p, we have
L= — %FMF’” + %3,“08“,0 + %EZAMAM(UZ + 200 + p?)
— 1A% p% + 4vp® + pY). (1.273)

The equations of motion for A, and p derived from the free parts are
3V Fyu +2620%A, =0 8,0%p + 2070 =0. (1.274)

From the first equation, we find A, must satisfy the Lorentz condition 9, A* = 0.
The apparent degrees of freedom of (1.270) are 2(photon) 4 2(complex scalar) =
4. If VEV # 0, we have 3(massive vector) + 1(real scalar) = 4. The field Ag has
a mass term with the wrong sign and so cannot be a physical degree of freedom.
The creation of massive fields out of a gauge field is called the Higgs mechanism..

1.9 Magnetic monopoles

Maxwell’s equations unify electricity and magnetism. In the history of physics
they should be recognized as the first attempt to unify forces in Nature. In spite
of their great success, Dirac (1931) noticed that there existed an asymmetry in
Maxwell’s equations: the equation div B = 0 denies the existence of magnetic
charges. He introduced the magnetic monopole, a point magnetic charge, to make
the theory symmetric.



1.9.1 Dirac monopole

Consider a monopole of strength g sitting at r = 0,
div B = 47 g83(r). (1.275)

It follows from A(1/r) = —4x83(r) and V(1/r) = —r/r3 that the solution of
this equation is
B =gr/r. (1.276)

The magnetic flux ® is obtained by integrating B over a sphere S of radius R so
that
P = f B.-dS=4ng. 1.277)
S

What about the vector potential which gives the monopole field (1.276)? If
we define the vector potential AN by

—8y N 8X N
AN, = AN, = AN. =0 1.278a
YT rr 42 YT r(r+2) ¢ ( )

we easily verify that
curl AN = gr/r3 + 47 g8(x)8(y)0(—2). (1.279)

We have curl AN = B except along the negative z-axis (9 = ). The singularity
along the z-axis is called the Dirac string and reflects the poor choice of the
coordinate system. If, instead, we define another vector potential

S 8y S —8X

AS. = AS, = AS. =0 1.278b
x r(r—z) y r(r—z) 4 ( )

we have curl AS = B except along the positive z-axis (¢ = 0) this time. The
existence of a singularity is a natural consequence of (1.277). If there were a
vector A such that B = curl A with no singularity, we would have, from Gauss’
law,

<I>=y§ B~dS:%curledS=/ div(curl A)dV =0
N S 1%

where V is the volume inside the surface S. This problem is avoided only when
we abandon the use of a single vector potential.

Exercise 1.14. Let us introduce the polar coordinates (r, 6, ¢). Show that the
vector potentials AN and AS are expressed as

g(l —cosh)
AN(ry=2- """ 1.280
® rsing P (1.2802)
1 6
AS(r)z—ig( + cos6) 5 (1.280b)
rsinf

where & = —sing &, +cos¢ &,.



1.9.2 The Wu-Yang monopole

Wu and Yang (1975) noticed that the geometrical and topological structures
behind the Dirac monopole are best described by fibre bundles. In chapters 9
and 10, we give an account of the Dirac monopole in terms of fibre bundles and
their connections. Here we outline the idea of Wu and Yang without introducing
the fibre bundle. Wu and Yang noted that we may employ more than one vector
potential to describe a monopole. For example, we may avoid singularities if
we adopt AN in the northern hemisphere and AS in the southern hemisphere
of the sphere § surrounding the monopole. These vector potentials yield the
magnetic field B = gr/r3, which is non-singular everywhere on the sphere.
On the equator of the sphere, which is the boundary between the northern and
southern hemispheres, AN and AS are related by the gauge transformation,
AN — AS = grad A. To compute this quantity A, we employ the result of exercise
1.14,
N S 2g
AT — A° = ——8& = grad(2g¢) (1.281)
rsinf
where use has been made of the expression
of . 1of 1 af,

df =Yg 29 : .
grad f =28+ 5%t nd 00

Accordingly, the gauge transformation function connecting AN and AS is
A =2g¢. (1.282)

Note that A is ill defined at & = 0 and 8 = m. Since we perform the gauge
transformation only at 6 = 7 /2, these singularities do not show up in our analysis.
The total flux is

@:fcurlA-dszf curlAN-dS+/ curl AS . dS (1.283)
S Un Us

where Ux and Us stand for the northern and southern hemispheres respectively.
Stokes’ theorem yields

o= 7{ AN.ds—% As.ds=7§ (AN — AS) . ds
equator equator equator

= .(f grad(2g¢) - ds = 4gm (1.284)
equator
in agreement with (1.277).

1.9.3 Charge quantization

Consider a point particle with electric charge e and mass m moving in the field
of a magnetic monopole of charge g. If the monopole is heavy enough, the



Schrodinger equation of the particle takes the form

1
2m
It is easy to show that under the gauge transformation A — A + grad A, the
wavefunction changes as ¥ — exp(ieA /Ac)y. In the present case, AN and AS
differ only by the gauge transformation AN — AS = grad(2g¢). If ¥ and ¥ are
wavefunctions defined on Un and Us respectively, they are related by the phase
change

e \2
(p — ZA) W(r) = Ev(r). (1.285)

Y3 (r) = exp (%ECA) v (). (1.286)

Let us take # = /2 and study the behaviour of wavefunctions as we go round
the equator of the sphere from ¢ = 0 to ¢ = 27. The wavefunction is required to
be single valued, hence (1.286) forces us to take

2eg
il R,

netr. (1.287)
hic

This is the celebrated Dirac quantization condition for the magnetic charge; if
the magnetic monopole exists, the magnetic charge takes discrete values,
ficn
&= 2e
By the same token, if there exists a magnetic monopole somewhere in the
universe, all the electric charges are quantized.

nel. (1.288)

1.10 Instantons

The vacuum-to-vacuum amplitude in the Euclidean theory is
Z = (0]0) /D¢ e 519.0,9] (1.289)

where S is the Euclidean action. Equation (1.289) shows that the principal
contribution to Z comes from the values of ¢ (x) which give the local minima
of S[¢, 0,¢]. In many theories there exist a number of local minima in addition
to the absolute minimum. In the case of non-Abelian gauge theories these minima
are called instantons.

1.10.1 Introduction

Let us consider the SU(2) gauge theory defined in the four-dimensional Euclidean
space R*. The action is

S = /d4x£(x) = /d4x[—%tr?wf¥“”] (1.290)



where the field strength is

T =0, A0 — A, + glAL, AVl (1.291)
with - o4
Ay = AMUE Fw = FMUO‘E.
The field equation is
DuFpy = 0, F v + glAw, F ] = 0. (1.292)

In the path integral only those field configurations with finite action
contribute. Suppose A, satisfies

A, = iU®19,Ux)  as|x] - oo (1.293)

where U (x) is an element of SU(2). We easily find that J,,, vanishes for the A,
of (1.293). We require that on sphere S° of large radius, the gauge potential be
given by (1.293).

Later we show that this configuration is characterized by the way in which
$3 is mapped to the gauge group SU(2). Non-trivial configurations are those that
cannot be deformed continuously to a uniform configuration. They were proposed
by Belavin et al (1975) and are called instantons.

1.10.2 The (anti-)self-dual solution

In general, solving a second-order differential equation is more difficult than
solving a first-order one. It is nice if a second-order differential equation can
be replaced by a first-order one which is equivalent to the original problem. Let
us consider the inequality

/ d*x tr (0 £ 5F,0) > 0. (1.294)

Clearly (1.294) is saturated if
T =T (1.295)

If the positive sign is chosen, JF is said to be self-dual while the negative sign
gives an anti-self-dual solution. If (1.295) is satisfied, the field equation is
automatically satisfied since

Dy ==xD, % F =0 (Bianchi identity). (1.296)

As we will show in section 10.5, the integral

0= ﬁ d*x trFy, « FH (1.297)



is an integer characterizing the way $3 is mapped to SU(2). If 7 is self-dual then
Q is positive, and if J is anti-self-dual then Q is negative. From (1.294), we find
(note that *J,,, ¥ F*¥ = F,,F*") that

/ d*x QF W IF™ £ 2% F x FH) > 0. (1.298)

From this inequality and the definition of the action, we find that
S > 872|0| (1.299)

where the inequality is saturated for (1.295). Let us concentrate on the self-dual
solution ' = *J. We look for an instanton solution of the form

A, =if(Ux)19,U(x) (1.300)

where r = |x| and
fr)—=1 asr— oo (1.301a)
Ux) = %(m — ix;07). (1.301b)

Substituting (1.300) into (1.295), we find that f satisfies

dfr)
dr

r

=271 - f). (1.302)

The solution that satisfies the boundary condition (1.301a) is

2

fr) (1.303)

o
242

where A is a parameter that specifies the size of the instanton. Substituting this
into (1.300) we find that

ir?

Au(x) = mU(x)_IBMU(x) (1.304)

and the corresponding field strength

422
g’M.l)(-x) = 2 +)\’2 122% (1305)
where . |
oij = E[ai’aj] g0 = Eai = —00;. (1.306)

This solution gives Q = 41 and S = 872



Problems

1.1 Consider a Hamiltonian of the form

Ho [ | L (22) & Loy 14
~[ax |5 (5) #5007 v

where V (¢) (> 0) is a potential. If ¢ is a time-independent classical solution, we
may drop the first term and write H[¢] = Hi[¢] + Ha[¢], where

Hl[qb]z%fd"x (V) Hz[qs]z/d”x V().

(1) Consider a scale transformation ¢(x) — ¢(Ax). Show that H;[¢]
transforms as

Hil¢] — H{[¢] = 2"V Hi[¢]  Hil¢l - H3[9] = 2" Halg].
(2) Suppose ¢ satisfies the field equation. Show that
(2 —n)Hil¢] —nHa[¢] = 0.

[Hint: Take the A-derivative of Hlk[qﬁ] + Hz)‘ [¢] and put A = 1.]
(3) Show that time-independent topological excitations of H[¢] exist if and
only if n = 1 (Derrick’s theorem). Consider ways out of this restriction.



MATHEMATICAL PRELIMINARIES

In the present chapter we introduce elementary concepts in the theory of maps,
vector spaces and topology. A modest knowledge of undergraduate mathematics,
such as set theory, calculus, complex analysis and linear algebra is assumed.

The main purpose of this book is to study the application of the theory of
manifolds to the problems in physics. Vector spaces and topology are, in a sense,
two extreme viewpoints of manifolds. A manifold is a space which locally looks
like R" (or C*) but not necessarily globally. As a first approximation, we may
model a small part of a manifold by a Euclidean space R” (or C") (a small
area around a point on a surface can be approximated by the tangent plane at
that point); this is the viewpoint of a vector space. In topology, however, we
study the manifold as a whole. We want to study the properties of manifolds and
classify manifolds using some sort of ‘measures’. Topology usually comes with
an adjective: algebraic topology, differential topology, combinatorial topology,
general topology and so on. These adjectives refer to the measure we use when
classifying manifolds.

2.1 Maps

2.1.1 Definitions

Let X and Y be sets. A map (or mapping) f is a rule by which we assigny € Y
for each x € X. We write
f:X—>Y. 2.1

If f is defined by some explicit formula, we may write

fixm— f(x) 2.2)

There may be more than two elements in X that correspond to the samey € Y. A
subset of X whose elements are mapped to y € Y under f is called the inverse
image of y, denoted by f~!(y) = {x € X|f(x) = y}. The set X is called
the domain of the map while Y is called the range of the map. The image of
the map is f(X) = {y € Y|y = f(x) for some x € X} C Y. The image
f(X) is also denoted by im f. The reader should note that a map cannot be
defined without specifying the domain and the range. Take f(x) = expx, for
example. If both the domain and the range are R, f(x) = —1 has no inverse



image. If. however, the domain and the range are the complex plane C, we find
f~Y(=1) = {(2n+ )7i|n € Z}. The domain X and the range Y are as important
as f itself in specifying a map.

Example 2.1. Let f : R — R be given by f(x) = sinx. We also write
f : x > sinx. The domain and the range are R and the image f(R) is [—1, 1].
The inverse image of O is F~10) = {nm|n € Z}. Let us take the same function
f(x) =sinx = (¢ —e ™) /2ibut f : C — C this time. The image f(C) is the
whole complex plane C.

Definition 2.1. If a map satisfies a certain condition it bears a special name.

(a) Amap f : X — Y is called injective (or one to one) if x # x’ implies
f&) # f(X).

(b) Amap f : X — Y is called surjective (or onto) if for each y € Y there
exists at least one element x € X such that f(x) = y.

(c) Amap f : X — Y is called bijective if it is both injective and surjective.

Example 2.2. Amap f : R — R definedby f : x > ax (a € R —{0}) is
bijective. f : R — R defined by f : x — x? is neither injective nor surjective.
f R — Rgivenby f : x — expx is injective but not surjective.

Exercise 2.1. Amap f : R — R defined by f : x > sinx is neither injective
nor surjective. Restrict the domain and the range to make f bijective.

Example 2.3. Let M be an element of the general linear group GL(n, R) whose
matrix representation is given by n x n matrices with non-vanishing determinant.
Then M : R* — R*, x — Mux is bijective. If det M = 0, it is neither injective
nor surjective.

A constant map ¢ : X — Y is defined by c¢(x) = yo where yy is a fixed
element in Y and x is an arbitrary element in X. Givenamap f : X — Y, we
may think of its restriction to A C X, which is denoted as f|4 : A — Y. Given
twomaps f : X — Y and g : Y — Z, the composite map of f and g is a map
gof: X — Zdefinedby go f(x) = g(f(x)). A diagram of maps is called
commutative if any composite maps between a pair of sets do not depend on how
they are composed. For example, in figure 2.1, f o g = h o jand f o g = k etc.

Exercise 2.2. Let f : R — R be definedby f : x — x>and g : R — R by
g:x —>expx. Whatarego f:R— Rand fog: R — R?

If A C X, an inclusion map i : A — X is defined by i(a) = a for any
a € A. An inclusion map is often written as i : A < X. The identity map
idy : X — X is a special case of an inclusion map, for which A = X. If
f : X — Y definedby f : x — f(x) is bijective, there exists an inverse map
f~':Y — X, suchthat f~': f(x) — x, which is also bijective. The maps f



z > W

Figure 2.1. A commutative diagram of maps.

and f~! satisfy f o f~' = idy and f~' o f = idx. Conversely,if f : X — Y
and g : ¥ — X satisfy f og = idy and g o f = idy, then f and g are bijections.
This can be proved from the following exercise.

Exercise 2.3. Show thatif f : X — Yand g : Y — X satisfy go f =idy, f is
injective and g is surjective. If this is applied to f o g = idy as well, we obtain
the previous result.

Example 2.4. Let f : R — (0, 0co) be a bijection defined by f : x +— expx.
Then the inverse map f~! : (0,00) — Ris f7! : x +— Inx. Letg :
(=m/2,7/2) — (—1,1) be a bijection defined by g : x — sinx. The inverse
mapisg~':x > sin"!x.

Exercise 2.4. The n-dimensional Euclidean group E” is made of an n-
dimensional translationa : x — x +a (x,a € R*) and an O(n) rotation R : x —
Rx, R € O(n). A general element (R, a) of E" actson x by (R, a) : x — Rx+a.
The product is defined by (R, a2) x (Ry,a1) : x — Ro(R1x 4 a1) + az, that
is, (R2, a2) o (R1, a1) = (RaR1, Rraj + az). Show that the maps a, R and (R, a)
are bijections. Find their inverse maps.

Suppose certain algebraic structures (product or addition, say) are endowed
with the sets X and Y. If f : X — Y preserves these algebraic structures, then f
is called a homomorphism. For example, let X be endowed with a product. If f
is a homomorphism, it preserves the product, f(ab) = f(a) f (b). Note that ab is
defined by the product rule in X, and f(a) f (b) by thatin Y. If a homomorphism
f is bijective, f is called an isomorphism and X is said to be isomorphic to Y,
denoted x = y.



2.1.2 Equivalence relation and equivalence class

Some of the most important concepts in mathematics are equivalence relations
and equivalence classes. Although these subjects are not directly related to maps,
it is appropriate to define them at this point before we proceed further. A relation
R defined in a set X is a subset of X2. Ifa point (a, b) € X?isin R, we may write
aRb. For example, the relation > is a subset of R2. If (a,b) € >, thena > b.

Definition 2.2. An equivalence relation ~ is a relation which satisfies the
following requirements:

(i) a ~ a (reflective).
@ii) If a ~ b, then b ~ a (symmetric).
(iii) If @ ~ b and b ~ ¢, then a ~ c (transitive).

Exercise 2.5. If an integer is divided by 2, the remainder is either O or 1. If two
integers n and m yield the same remainder, we write m ~ n. Show that ~ is an
equivalence relation in Z.

Given a set X and an equivalence relation ~, we have a partition of X into
mutually disjoint subsets called equivalence classes. A class [a] is made of all
the elements x in X such that x ~ a,

[a] ={x € X|x ~a} 2.3)

[a] cannot be empty since a ~ a. We now prove that if [a] N [b] # @ then
[a] = [b]. First note that @ ~ b. (Since [a] N [b] # @ there is at least one
element in [a] N [b] that satisfies ¢ ~ a and ¢ ~ b. From the transitivity, we
have a ~ b.) Next we show that [a] C [b]. Take an arbitrary element a’ in [a];
a’ ~ a. Then a ~ b implies b ~ d/, that is a’ € [b]. Thus, we have [a] C [b].
Similarly, [a] D [b] can be shown and it follows that [a] = [b]. Hence, two
classes [a] and [b] satisfy either [a] = [b] or [a] N [b] = @. In this way a set X
is decomposed into mutually disjoint equivalence classes. The set of all classes
is called the quotient space, denoted by X/ ~. The element a (or any element
in [a]) is called the representative of a class [a]. In exercise 2.5, the equivalence
relation ~ divides integers into two classes, even integers and odd integers. We
may choose the representative of the even class to be 0, and that of the odd class
to be 1. We write this quotient space Z/ ~. Z/ ~ is isomorphic to Z», the cyclic
group of order 2, whose algebra is defined by 0+ 0 =0,04+1 =140 =1
and 1 4+ 1 = 0. If all integers are divided into equivalence classes according to
the remainder of division by rn, the quotient space is isomorphic to Z,, the cyclic
group of order n.

Let X be a space in our usual sense. (To be more precise, we need the
notion of topological space, which will be defined in section 2.3. For the time
being we depend on our intuitive notion of ‘space’.) Then quotient spaces may
be realized as geometrical figures. For example, let x and y be two points in R.



X — 27 X X+ 27
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Figure 2.2. In (a) all the points x + 2nw, n € Z are in the same equivalence class [x]. We
may take x € [0, 277) as a representative of [x]. (b) The quotient space R/ ~ is the circle
st

Introduce a relation ~ by: x ~ y if there exists n € Z such that y = x + 27n.
It is easily shown that ~ is an equivalence relation. The class [x] is the set
{...,x —2m,x,x +2m,...}. Anumber x € [0, 2r) serves as a representative of
an equivalence class [x], see figure 2.2(a). Note that 0 and 27 are different points
in R but, according to the equivalence relation, these points are looked upon as
the same element in R/ ~. We arrive at the conclusion that the quotient space
R/ ~ is the circle S = {el?|0 < 6 < 2x}; see figure 2.2(b). Note that a point
g is close to a point 27t — ¢ for infinitesimal . Certainly this is the case for S',
where an angle ¢ is close to an angle 2w — ¢, but not the case for R. The concept
of closeness of points is one of the main ingredients of topology.

Example 2.5. (a) Let X be a square disc {(x, y) € R?| |x| > 1, |y| = 1}. If we
identify the points on a pair of facing edges, (—1, y) ~ (1, y), for example, we
obtain the cylinder, see figure 2.3(a). If we identify the points (—1, —y) ~ (1, y),
we find the Mobius strip, see figure 2.3(b). [Remarks: If readers are not familiar
with the Mobius strip, they may take a strip of paper and glue up its ends after
a m-twist. Because of the twist, one side of the strip has been joined to the
other side, making the surface single sided. The Mobius strip is an example
of a non-orientable surface, while the cylinder has definite sides and is said to
be orientable. Orientability will be discussed in terms of differential forms in
section 5.5.]

(b) Let (x1, y1) and (x2, y2) be two points in R? and introduce an equivalence
relation ~ by: (x1, y1) ~ (x2,¥2) if x2 = x1 + 2mwny, and yo = y1 + 2mwny,
ny,ny € Z. Then ~ is an equivalence relation. The quotient space R,/ ~ is
the torus 72 (the surface of a doughnut), see figure 2.4(a). Alternatively, T2 is



(a)
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(b) A

1,y
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Figure 2.3. (a) The edges |x| = 1 are identified in the direction of the arrows to form a
cylinder. (b) If the edges are identified in the opposite direction, we have a Mobius strip.

y (a) (b)
(x,y+271)(x+277 y+ 2m) -
2n ’
s : e 1
. (x, y) A (x+27,y) L
, ® X
0. 27

Figure 2.4. If all the points (x + 2mny, y + 27ny), nx,ny € Z are identified as in (a),
the quotient space is taken to be the shaded area whose edges are identified as in (b). This

resulting quotient space is the torus T2,

represented by a rectangle whose edges are identified as in figure 2.4(b).
(c) What if we identify the edges of a rectangle in other ways? Figure 2.5
gives possible identifications. The spaces obtained by these identifications are
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Figure 2.5. The Klein bottle (a) and the projective plane (b).

called the Klein bottle, figure 2.5(a), and the projective plane, figure 2.5(b),
neither of which can be realized (or embedded) in the Euclidean space R3 without
intersecting with itself. They are known to be non-orientable.

The projective plane, which we denote R P2, is visualized as follows. Let us
consider a unit vector n and identify n with —n, see figure 2.6. This identification
takes place when we describe a rod with no head or tail, for example. We are
tempted to assign a point on S to specify the ‘vector’ n. This works except for
one point. Two antipodal points N = (8, ¢) and —n = (w — 6, 7w + ¢) represent
the same state. Then we may take a northern hemisphere as the coset space %/ ~
since only a half of S is required. However, the coset space is not just an ordinary
hemisphere since the antipodal points on the equator are identified. By continuous
deformation of this hemisphere into a square, we obtain the square in figure 2.5(b).

(d) Let us identify pairs of edges of the octagon shown in figure 2.7(a). The
quotient space is the torus with two handles, denoted by X», see figure 2.7(b).
Y, the torus with g handles, can be obtained by a similar identification, see
problem 2.1. The integer g is called the genus of the torus.

(e) Let D*> = {(x,y) € R*|x> + y> < 1} be a closed disc. Identify the
points on the boundary {(x,y) € R%x2 + y2 = 1}: (x1, y1) ~ (x2,y2) if
x% + y% = x% + y% = 1. Then we obtain the sphere S as the quotient space
D?/ ~, also written as D?/S!, see figure 2.8. If we take an n-dimensional disc
D" = {(xg,...,x") € R*|(x0)? + - -- + (x)? < 1} and identify the points on
the surface $"~!, we obtain the n-sphere $”, namely D”/S”_1 = S".

Exercise 2.6. Let H be the upper-half complex plane {t € C|Im t > 0}. Define a
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Figure 2.6. If n has no head or tail, one cannot distinguish n from —n and they must
be identified. One obtains the projective plane R P2 by this identification n ~ —n;
RP2~ §2 / ~. It suffices to take a hemisphere to describe the coset space. Note, however,
that the antipodal points on the equator are identified.

(a)

a4

a

Figure 2.8. A disc D? whose boundary § lis identified is the sphere 52,

group

SL(2,Z)E{(Z 2 )

a,b,c,deZ,ad—bc:l}. 2.4)



Introduce a relation ~, for 7, t/ € H, by T ~ 1’ if there exists a matrix

A:(Z Z)ESL(Z,Z)

such that
' = (at +b)/(ct +d). 2.5)

Show that this is an equivalence relation. (The quotient space H/SL(2, Z) is
shown in figure 8.3.)

Example 2.6. Let G be a group and H a subgroup of G. Let g, ¢’ € G and
introduce an equivalence relation ~ by g ~ g’ if there exists 4~ € H such that
g’ = gh. We denote the equivalence class [g] = {gh|h € H} by gH. The class
gH is called a (left) coset. gH satisfies either gH N g'H = @ or gH = g'H.
The quotient space is denoted by G/H . In general G/H is not a group unless H
is a normal subgroup of G, thatis, ghg™' € H forany g € Gand h € H. If
H is a normal subgroup of G, G/H is called the quotient group, whose group
operation is given by [g] * [g'] = [gg’], where x is the product in G/H. Take
ghe[g] and g’h’e[g']. Then there exists h”e H such that hg’ = g’h” and hence
ghg'h’ = gg'h”h'e[gg’]l. The unit element of G/H is the equivalence class [e]
and the inverse element of [g] is [g_l].

Exercise 2.7. Let G be a group. Two elements a, b € G are said to be conjugate
to each other, denoted by a ~ b, if there exists g € G such that b = gag™'. Show
that ~ is an equivalence relation. The equivalence class [a] = {gag~!|g € G} is
called the conjugacy class.

2.2 Vector spaces

2.2.1 Vectors and vector spaces

A vector space (or a linear space) V over a field K is a set in which two
operations, addition and multiplication by an element of K (called a scalar), are
defined. (In this book we are mainly interested in K = R and C.) The elements
(called vectors) of V satisfy the following axioms:

(i u+v=v+u.

(i) UW+v)+w=u+ (v+ w).

(iii) There exists a zero vector 0 such that v + 0 = v.
(iv) For any u, there exists —u, such that u + (—u) = 0.
(v) c(U+v) =cu+co.

(vi) (¢ +d)u =cu+du.

(vii) (cd)u = c(du).

(viii) 1u = u.

Here u, v, w € V and ¢, d € K and 1 is the unit element of K.



Let {v;} be a set of k (>0) vectors. If the equation
X101 +x202 + -+ xx0 =0 (2.6)

has a non-trivial solution, x; # O for some i, the set of vectors {v;} is called
linearly dependent, while if (2.6) has only a trivial solution, x; = O for any i,
{v;} is said to be linearly independent. If at least one of the vectors is a zero
vector 0, the set is always linearly dependent.

A set of linearly independent vectors {e€;} is called a basis of V, if any
element v € V is written uniquely as a linear combination of {€;}:

v=ole| +v’er +---+1"€,. 2.7)

The numbers v € K are called the components of v with respect to the basis
{ej}. If there are n elements in the basis, the dimension of V is n, denoted by
dim V = n. We usually write the n-dimensional vector space over K as V (n, K)
(or simply V if n and K are understood from the context). We assume 7 is finite.

2.2.2 Linear maps, images and kernels

Given two vector spaces V and W, amap f : V — W is called a linear map
if it satisfies f(ajvy + a2v2) = a1 f(vy) + a2 f(v2) for any ay,a; € K and
v1,v2 € V. A linear map is an example of a homomorphism that preserves the
vector addition and the scalar multiplication. The image of f is f(V) C W and
the kernel of f is {v € V|f(v) = 0} and denoted by im f and ker f respectively.
ker f cannot be empty since f(0) is always 0. If W is the field K itself, f is
called a linear function. If f is an isomorphism, V is said to be isomorphic to
W and vice versa, denoted by V. = W. It then follows that dim V = dim W.
In fact, all the n-dimensional vector spaces are isomorphic to K", and they are
regarded as identical vector spaces. The isomorphism between the vector spaces
is an element of GL(n, K).

Theorem 2.1. If f : V — W is a linear map, then
dim V = dim(ker ) 4+ dim(im f). 2.8)

Proof. Since f is a linear map, it follows that ker f and im f are vector spaces,
see exercise 2.8. Let the basis of ker f be {g;,..., 0,} and that of im f be
{h},...,h;}. Foreachi (1 <i < s), take h; € V such that f(h;) = h} and
consider the set of vectors {Q;, ..., g,, N1, ..., hg}.

Now we show that these vectors form a linearly independent basis of V.
Take an arbitrary vector v € V. Since f(v) € im f, it can be expanded as f(v) =
ct h! = ¢’ f(h;). From the linearity of £, it then follows that f (v—c'h;) = 0, that
is v — c’h; € ker f. This shows that an arbitrary vector v is a linear combination
of {0;,...,0,,h1,...,hg}. Thus, V is spanned by r + s vectors. Next let us



assume a’g; + b'h; = 0. Then 0 = f(0) = f(a'g; +b’h ) —b’f(h y = bh

which implies that b’ = 0. Then it follows from a'g; = 0 that a' = 0, and
the set {Q;,..., 0,, h1, ..., hs} is linearly independent in V. Finally we find
dimV =r + s = dim(ker f) 4+ dim(im f). O

[Remark: The vector space spanned by {hy, ..., hs} is called the orthogonal
complement of ker f and is denoted by (ker f)*.]

Exercise 2.8. (1) Let f : V — W be a linear map. Show that both ker f and im f
are vector spaces.

(2) Show that a linear map f : V — V is an isomorphism if and only if
ker f = {0}.

2.2.3 Dual vector space

The dual vector space has already been introduced in section 1.2 in the context of
quantum mechanics. The exposition here is more mathematical and complements
the materials presented there.

Let f : V — K be a linear function on a vector space V(n, K) over a
field K. Let {€;} be a basis and take an arbitrary vector v = vle + -+ + v'e,.
From the linearity of f, we have f(v) = vl f(e)) +---+v"f(e,). Thus, if we
know f (&) for all i, we know the result of the operation of f on any vector. It is
remarkable that the set of linear functions is made into a vector space, namely a
linear combination of two linear functions is also a linear function.

(a1 f1 + a2 f2)(v) = a1 f1(v) + a2 f2(v) (2.9)

This linear space is called the dual vector space to V(n, K) and is denoted by
V*(n, K) or simply by V*. If dimV is finite, dim V* is equal to dim V. Let
us introduce a basis {¢*'} of V*. Since e* is a linear function it is completely
specified by giving e*! (e;) forall j. Let us choose the dual basis,

CHERI (2.10)

Any linear function f, called a dual vector in this context, is expanded in terms
of {e*1}, |
f = fie*. (2.11)

The action of f on v is interpreted as an inner product between a column vector
and a row vector,

f) = fie¥'(v'e)) = fivie*(e)) = fiv'. (2.12)

We sometimes use the notation {, ) : V* x V — K to denote the inner product.
Let V and W be vector spaces with a linear map f : V — W and let
g : W — K be a linear function on W (g € W*). It is easy to see that the
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Figure 2.9. The pullback of a function g is a function f*(g) = g o f.

composite map g o f is a linear function on V. Thus, f and g give rise to an
element 4 € V* defined by

h(v) = g(f(v)) velV. (2.13)

Given g € W*,amap f : V — W has induced a map & € V*. Accordingly,
we have an induced map f* : W* — V* defined by f*: g — h = f*(g), see
figure 2.9. The map # is called the pullback of g by f*.

Since dim V* = dim V, there exists an isomorphism between V and V*.
However, this isomorphism is not canonical; we have to specify an inner product
in V to define an isomorphism between V and V* and vice versa, see the next
section. The equivalence of a vector space and its dual vector space will appear
recurrently in due course.

Exercise 2.9. Suppose { f ;} is another basis of V and {f *1} the dual basis. In

terms of the old basis, f; is written as f = A_ij e; where A € GL(n, K). Show
that the dual bases are related by e* = f*/A;'.

2.2.4 Inner product and adjoint

Let V = V(m, K) be a vector space with a basis {€;} and let g be a vector space
isomorphism g : V — V* where g is an arbitrary element of GL(m, K). The
component representation of g is

g v/ — gijvl. (2.14)

Once this isomorphism is given, we may define the inner product of two vectors
vy, v € V by

g(v1, v2) = (gvy, v2). (2.15)
Let us assume that the field K is a real number R. for definiteness. Then
equation (2.15) has a component expression,

g(v1,v2) = vi'gjiva’. (2.16)



We require that the matrix (g;;) be positive definite so that the inner product
g(v, v) has the meaning of the squared norm of v. We also require that the metric
be symmetric: g;; = gj; so that g(vy, v2) = g(v2, v1).

Next, let W = W(n, R) be a vector space with a basis { f,} and a vector
space isomorphism G : W — W*. Givenamap f : V — W, we may define the
adjoint of f, denoted by 7, by

G(w, fv) = g(v, fw) (2.17)

where v € V and w € W. It is easy to see that ( f) = f. The component
expression of equation (2.17) is

w“Gaﬂf’sivi :vigijfjaw“ (2.18)

where f#; and fja are the matrix representations of f and f respectively. If
gij = 8ij and Gog = Sug, the adjoint f reduces to the transpose f' of the matrix
f.

Let us show that dimim f = dimim f. Since (2.18) holds foranyv € V
and w € W, we have Gaﬁfﬁi = gij 7, thatis

f=g¢"'fG" (2.19)

Making use of the result of the following exercise, we obtain rank f = rank f,
where the rank of a map is defined by that of the corresponding matrix (note that
g € GL(m, R) and G € GL(n, R)). It is obvious that dimim f is the rank of a
matrix representing the map f and we conclude dimim f = dimim f.

Exercise 2.10. Let V. = V(m,R) and W = W, R) and let f be a matrix
corresponding to a linear map from V to W. Verify that rank f = rank f* =
rank(M f'N), where M € GL(m, R) and N € GL(n, R).

Exercise 2.11. Let V be a vector space over C. The inner product of two vectors
v and vy is defined by . '

g(vi, v2) =1 gijv’ (2.20)
where ~ denotes the complex conjugate. From the positivity and symmetry of the
inner product, g(vy, v2) = g(v2, v1), the vector space isomorphism g : V — V*
is required to be a positive-definite Hermitian matrix. Let f : V — W be a
(complex) linear map and G : W — W* be a vector space isomorphism. The
adjoint of f is defined by g(v, fw) = G(w, fv). Repeat the analysis to show
that

(@) f = g f7G", where T denotes the Hermitian conjugate, and
(b) dimim f = dimim f

Theorem 2.2. (Toy index theorem) Let V and W be finite-dimensional vector
spaces over a field K and let f : V — W be a linear map. Then

dimker f — dimkerf: dimV — dim W. (2.21)



Proof. Theorem 2.1 tells us that
dim V = dimker f + dimim f
and, if applied to f W=V,
dim W = dimker f + dimim f.
We saw earlier that dimim f = dimim f, from which we obtain
dim V — dimker f = dim W — dimker f. O

Note that in (2.21), each term on the LHS depends on the details of the map
f. The RHS states, however, that the difference in the two terms is independent of
f! This may be regarded as a finite-dimensional analogue of the index theorems,
see chapter 12.

2.2.5 Tensors

A dual vector is a linear object that maps a vector to a scalar. This may be
generalized to multilinear objects called tensors, which map several vectors and
dual vectors to a scalar. A tensor 7 of type (p, ¢) is a multilinear map that maps
p dual vectors and g vectors to R,

p q
T-QvVRV->R (2.22)

For example, a tensor of type (0, 1) maps a vector to a real number and is
identified with a dual vector. Similarly, a tensor of type (1, 0) is a vector. If
 maps a dual vector and two vectors to a scalar, w : V* x V x V — R, w is of

type (1, 2).
The set of all tensors of type (p, q) is called the tensor space of type (p, q)

and denoted by Tf; . The tensor product t = u ® v € Tf; ® Tf; ,/ is an element of
p+p’
‘.Tq g defined by
t(a)l,...,a)p,él,...,é},,/;ul,...,uq,vl,...,vq/)
=p(or, ..., 0p; U1, ..., ug)V(E1, . Eps VL, vg) (2.23)

Another operation in a tensor space is the contraction, which is a map from
a tensor space of type (p, q) to type (p — 1, g — 1) defined by

.., e ) (2.24)
where {€;} and {e*'} are the dual bases.

Exercise 2.12. Let V and W be vector spaces and let f : V — W be a linear
map. Show that f is a tensor of type (1, 1).



2.3 Topological spaces

The most general structure with which we work is a topological space. Physicists
often tend to think that all the spaces they deal with are equipped with metrics.
However, this is not always the case. In fact, metric spaces form a subset of
manifolds and manifolds form a subset of topological spaces.

2.3.1 Definitions

Definition 2.3. Let X be any set and 7 = {U;|i € I} denote a certain collection of
subsets of X. The pair (X, T) is a topological space if 7 satisfies the following
requirements.

NP, XeT.

(ii) If 7 is any (maybe infinite) subcollection of I, the family {U;|j € J}
satisfies Uje Uj € T.

(iii) If K is any finite subcollection of I, the family {Ui|k € K} satisfies
Nikek Ur € T.

X alone is sometimes called a topological space. The U; are called the open
sets and 7 is said to give a topology to X.

Example 2.7. (a) If X is a set and 7T is the collection of all the subsets of X, then
(1)—(iii) are automatically satisfied. This topology is called the discrete topology.
(b)Let X beasetand 7 = {4, X}. Clearly T satisfies (i)—(iii). This topology
is called the trivial topology. In general the discrete topology is too stringent
while the trivial topology is too trivial to give any interesting structures on X.

(c) Let X be the real line R. All open intervals (a, b) and their unions
define a topology called the usual topology; a and » may be —oo and oo
respectively. Similarly, the usual topology in R” can be defined. [Take a product
(a1, by) x --- x (ay, by) and their unions. . . .]

Exercise 2.13. In definition 2.3, axioms (ii) and (iii) look somewhat unbalanced.
Show that, if we allow infinite intersection in (iii), the usual topology in R reduces
to the discrete topology (and is thus not very interesting).

A metric d : X x X — R is a function that satisfies the conditions:

(1) dx,y)=d(y,x)
(i) d(x,y) > 0 where the equality holds if and only if x = y
(i) d(x,y) +d(y,z) > d(x,z2)

forany x, y, z € X. If X is endowed with a metric d, X is made into a topological
space whose open sets are given by ‘open discs’,

Us(X) ={y e X|ld(x,y) < ¢} (2.25)



and all their possible unions. The topology 7 thus defined is called the metric
topology determined by d. The topological space (X, 7T) is called a metric space.
[Exercise: Verify that a metric space (X, 7)) is indeed a topological space.]

Let (X, T) be a topological space and A be any subset of X. Then 7 = {U;}
induces the relative topology in A by 7' = {U; N A|U; € T}.

Example 2.8. Let X = R'! and take the n-sphere S",
(xo)z + (xl)z et (x")2 =1. (2.26)

A topology in S” may be given by the relative topology induced by the usual
topology on R+,

2.3.2 Continuous maps

Definition 2.4. Let X and Y be topological spaces. A map f : X — Y is
continuous if the inverse image of an open set in Y is an open set in X.

This definition is in agreement with our intuitive notion of continuity. For
instance, let f : R — R be defined by

—x+1 x<0

2.27
—x—i—% x > 0. ( )

f(X)={

We take the usual topology in R, hence any open interval (a, b) is an open
set. In the usual calculus, f is said to have a discontinuity at x = 0. For an
open set (3/2,2) C Y, we find f~1((3/2,2)) = (-1, —1/2) which is an open
set in X. If we take an open set (1 — 1/4,1 4+ 1/4) C Y, however, we find
£~ = 1/4,1 + 1/4)) = (—1/4,0] which is not an open set in the usual
topology.

Exercise 2.14. By taking a continuous function f : R — R, f(x) = x2 as an

example, show that the reverse definition, ‘a map f is continuous if it maps an
open set in X to an open set in Y’, does not work. [Hint: Find where (—¢, +¢) is
mapped to under f.]

2.3.3 Neighbourhoods and Hausdorff spaces

Definition 2.5. Suppose T gives a topology to X. N is a neighbourhood of a
point x € X if N is a subset of X and N contains some (at least one) open set U;
to which x belongs. (The subset N need not be an open set. If N happens to be
an open set in 7, it is called an open neighbourhood.)

Example 2.9. Take X = R with the usual topology. The interval [—1, 1] is a
neighbourhood of an arbitrary point x € (—1, 1).



Definition 2.6. A topological space (X,7T) is a Hausdorff space if, for an
arbitrary pair of distinct points x, x’ € X, there always exist neighbourhoods
U, of x and U, of x’ such that U, N Uy = @.

Exercise 2.15. Let X = {John, Paul, Ringo, George} and Uy = @,U; =
{John}, Uy = {John, Paul}, U3 = {John, Paul, Ringo, George}. Show that 7 =
{Uo, Uy, Uz, Uz} gives a topology to X. Show also that (X, 7) is not a Hausdorff
space.

Unlike this exercise, most spaces that appear in physics satisfy the Hausdorff
property. In the rest of the present book we always assume this is the case.

Exercise 2.16. Show that R with the usual topology is a Hausdorff space. Show
also that any metric space is a Hausdorff space.

2.3.4 Closed set

Let (X, 7) be a topological space. A subset A of X is closed if its complement
in X is an open set, thatis X — A € 7. According to the definition, X and @ are
both open and closed. Consider a set A (either open or closed). The closure of A
is the smallest closed set that contains A and is denoted by A. The interior of A
is the largest open subset of A and is denoted by A°. The boundary b(A) of A is
the complement of A° in A; b(A) = A — A°. An open set is always disjoint from
its boundary while a closed set always contains its boundary.

Example 2.10. Take X = R with the usual topology and take a pair of open
intervals (—oo, a) and (b, o0) where a < b. Since (—o0, a) U (b, 00) is open
under the usual topology, the complement [a, b] is closed. Any closed interval
is a closed set under the usual topology. Let A = (a,b), then A = [a,b].
The boundary b(A) consists of two points {a, b}. The sets (a, b), [a, b], (a, b],
and [a, b) all have the same boundary, closure and interior. In R”, the product
[a1, b1] X - -+ x [an, by] is a closed set under the usual topology.

Exercise 2.17. Whether a set A C X is open or closed depends on X. Let us take
an interval I = (0, 1) in the x-axis. Show that / is open in the x-axis R while it
is neither closed nor open in the xy-plane R?.

2.3.5 Compactness
Let (X, 7) be a topological space. A family {A;} of subsets of X is called a
covering of X, if

Jai=x.

iel

If all the A; happen to be the open sets of the topology 7, the covering is called
an open covering.



Definition 2.7. Consider a set X and all possible coverings of X. The set X is
compact if, for every open covering {U;|i € I}, there exists a finite subset J of [
such that {U;|j € J} is also a covering of X.

In general, if a set is compact in R?, it must be bounded. What else is
needed? We state the result without the proof.

Theorem 2.3. Let X be a subset of R*. X is compact if and only if it is closed and
bounded.

Example 2.11. (a) A point is compact.
(b) Take an open interval (a, ) in R and choose an open covering U, =
(a,b—1/n),n € N. Evidently

J Un = (@, b).

nez

However, no finite subfamily of {U,} covers (a, b). Thus, an open interval (a, b)
is non-compact in conformity with theorem 2.3.

(c) $" in example 2.8 with the relative topology is compact, since it is closed
and bounded in R**1.

The reader might not appreciate the significance of compactness from the
definition and the few examples given here. It should be noted, however, that some
mathematical analyses as well as physics become rather simple on a compact
space. For example, let us consider a system of electrons in a solid. If the solid
is non-compact with infinite volume, we have to deal with quantum statistical
mechanics in an infinite volume. It is known that this is mathematically quite
complicated and requires knowledge of the advanced theory of Hilbert spaces.
What we usually do is to confine the system in a finite volume V surrounded by
hard walls so that the electron wavefunction vanishes at the walls, or to impose
periodic boundary conditions on the walls, which amounts to putting the system in
atorus, see example 2.5(b). In any case, the system is now put in a compact space.
Then we may construct the Fock space whose excitations are labelled by discrete
indices. Another significance of compactness in physics will be found when we
study extended objects such as instantons and Belavin—Polyakov monopoles, see
section 4.8. In field theories, we usually assume that the field approaches some
asymptotic form corresponding to the vacuum (or one of the vacua) at spatial
infinities. Similarly, a class of order parameter distributions in which the spatial
infinities have a common order parameter is an interesting class to study from
various points of view as we shall see later. Since all points at infinity are
mapped to a point, we have effectively compactified the non-compact space R”
to a compact space S" = R" U {oo}. This procedure is called the one-point
compactification.



2.3.6 Connectedness

Definition 2.8. (a) A topological space X is connected if it cannot be written as
X = X1 U X», where X and X, are both open and X; N X, = . Otherwise X
is called disconnected.

(b) A topological space X is called arcwise connected if, for any points
x,y € X, there exists a continuous map f : [0, 1] — X such that f(0) = x
and f(1) = y. With a few pathological exceptions, arcwise connectedness is
practically equivalent to connectedness.

(c) A loop in a topological space X is a continuous map f : [0,1] - X
such that f(0) = f(1). If any loop in X can be continuously shrunk to a point, X
is called simply connected.

Example 2.12. (a) The real line R is arcwise connected while R — {0} is not.
R" (n > 2) is arcwise connected and so is R" — {0}.

(b) S is arcwise connected. The circle S 1'is not simply connected. If n > 2,
§" is simply connected. The n-dimensional torus

T"=8" xS x - x §! (n>?2)

n

is arcwise connected but not simply connected.
(c) R? — R is not arcwise connected. R2 — {0} is arcwise connected but not
simply connected. R? — {0} is arcwise connected and simply connected.

2.4 Homeomorphisms and topological invariants

2.4.1 Homeomorphisms

As we mentioned at the beginning of this chapter, the main purpose of topology
is to classify spaces. Suppose we have several figures and ask ourselves which
are equal and which are different. Since we have not defined what is meant by
equal or different, we may say ‘they are all different from each other’ or ‘they
are all the same figures’. Some of the definitions of equivalence are too stringent
and some are too loose to produce any sensible classification of the figures or
spaces. For example, in elementary geometry, the equivalence of figures is given
by congruence, which turns out to be too stringent for our purpose. In topology,
we define two figures to be equivalent if it is possible to deform one figure into the
other by continuous deformation. Namely we introduce the equivalence relation
under which geometrical objects are classified according to whether it is possible
to deform one object into the other by continuous deformation. To be more
mathematical, we need to introduce the following notion of homeomorphism.

Definition 2.9. Let X1 and X» be topological spaces. Amap f : X1 — Xrisa
homeomorphism if it is continuous and has an inverse f -1 X, — X, which is



Figure 2.10. (a) A coffee cup is homeomorphic to a doughnut. (b) The linked rings are
homeomorphic to the separated rings.

also continuous. If there exists a homeomorphism between X and X5, X is said
to be homeomorphic to X, and vice versa.

In other words, X1 is homeomorphic to X» if there exist maps f : X1 — X»
and g : X2 — Xj suchthat fog =idy,,and go f =idy,. Itis easy to show that
a homeomorphism is an equivalence relation. Reflectivity follows from the choice
f = idx, while symmetry follows since if f : X1 — X» is a homeomorphism
sois f -1 x, - x4 by definition. Transitivity follows since, if f : X1 — X3
and g : X2 — X3 are homeomorphisms sois g o f : X1 — X3. Now we divide
all topological spaces into equivalence classes according to whether it is possible
to deform one space into the other by a homeomorphism. Intuitively speaking,
we suppose the topological spaces are made out of ideal rubber which we can
deform at our will. Two topological spaces are homeomorphic to each other if we
can deform one into the other continuously, that is, without tearing them apart or
pasting.

Figure 2.10 shows some examples of homeomorphisms. It seems impossible
to deform the left figure in figure 2.10(b) into the right one by continuous
deformation. However, this is an artefact of the embedding of these objects
in R3. In fact, they are continuously deformable in R*, see problem 2.3. To
distinguish one from the other, we have to embed them in s3 , say, and compare
the complements of these objects in $3. This approach is, however, out of the
scope of the present book and we will content ourselves with homeomorphisms.

2.4.2 Topological invariants

Now our main question is: ‘How can we characterize the equivalence classes
of homeomorphism?’ 1In fact, we do not know the complete answer to this
question yet. Instead, we have a rather modest statement, that is, if two spaces
have different ‘topological invariants’, they are not homeomorphic to each
other. Here topological invariants are those quantities which are conserved under
homeomorphisms. A topological invariant may be a number such as the number
of connected components of the space, an algebraic structure such as a group or



a ring which is constructed out of the space, or something like connectedness,
compactness or the Hausdorff property. (Although it seems to be intuitively
clear that these are topological invariants, we have to prove that they indeed
are. We omit the proofs. An interested reader may consult any text book on
topology.) If we knew the complete set of topological invariants we could specify
the equivalence class by giving these invariants. However, so far we know a partial
set of topological invariants, which means that even if all the known topological
invariants of two topological spaces coincide, they may not be homeomorphic to
each other. Instead, what we can say at most is: if two topological spaces have
different topological invariants they cannot be homeomorphic to each other.

Example 2.13. (a) A closed line [—1, 1] is not homeomorphic to an open line
(—1, 1), since [—1, 1] is compact while (—1, 1) is not.

(b) A circle S' is not homeomorphic to R, since S' is compact in R* while
R is not.

(c) A parabola (y = x?) is not homeomorphic to a hyperbola (x> — y> = 1)
although they are both non-compact. A parabola is (arcwise) connected while a
hyperbola is not.

(d) A circle S! is not homeomorphic to an interval [—1, 1], although they
are both compact and (arcwise) connected. [—1, 1] is simply connected while
S1 is not. Alternatively S' — {p}, p being any point in S' is connected while
[—1, 1] — {0} is not, which is more evidence against their equivalence.

(e) Surprisingly, an interval without the endpoints is homeomorphic to a line
R. To see this, letus take X = (—m/2,7/2)and Y = Randlet f : X — Y be
f(x) = tanx. Since tan x is one to one on X and has an inverse, tan~! x, which
is one to one on R, this is indeed a homeomorphism. Thus, boundedness is not a
topological invariant.

(f) An open disc D? = {(x, y) € R?|x2 + y? < 1} is homeomorphic to R2.
A homeomorphism f : D> — R? may be

X y
f(x,y):<\/1_x2_y2,\/1_x2_y2> (2.28)
while the inverse f~! : R? — D?is

ey = ( al , ) ) (2.29)
VI+x2+y2 J1+x24)2
The reader should verify that f o f~! = idgo, and f~' o f = idp2. As we

saw in example 2.5(e), a closed disc whose boundary S! corresponds to a point
is homeomorphic to S2. If we take this point away, we have an open disc. The
present analysis shows that this open disc is homeomorphic to R?. By reversing
the order of arguments, we find that if we add a point (infinity) to R?, we obtain
a compact space S2. This procedure is the one-point compactification $? =
R? U {oo} introduced in the previous section. We similarly have §” = R” U {o0}.



(2) A circle S' = {(x,y) € R?|x% +y2 = 1} is homeomorphic to a square
I? = {(x,y) € B|(|x| = 1,]y| < D, (Ix| < 1,]y| = 1)}. A homeomorphism
f : I* — S! may be given by

fy) = (; %) = Jx? 42 (2.30)

Since r cannot vanish, (2.27) is invertible.

Exercise 2.18. Find a homeomorphism between a circle S' = {(x, y) € R?|x? +
y? = 1} and an ellipse E = {(x, y) € R?|(x/a)* + (y/b)* = 1}.

2.4.3 Homotopy type

An equivalence class which is somewhat coarser than homeomorphism but which
is still quite useful is ‘of the same homotopy type’. We relax the conditions in
definition 2.9 so that the continuous functions f or g need not have inverses. For
example, take X = (0,1) and Y = {O}andlet f : X — Y, f(x) = 0 and
g:Y — X,g(0) = 1. Then f o g = idy, while g o f # idx. This shows that an
open interval (0, 1) is of the same homotopy type as a point {0}, although it is not
homeomorphic to {0}. We have more on this topic in section 4.2.

Example 2.14. (a) S! is of the same homotopy type as a cylinder, since a cylinder
is a direct product S' x R and we can shrink R to a point at each point of S!. By
the same reason, the Mobius strip is of the same homotopy type as S'.

(b) A disc D? = {(x, y) € R?|x% + y? < 1} is of the same homotopy type
as a point. D> — {(0, 0)} is of the same homotopy type as S'. Similarly, R* — {0}
is of the same homotopy type as S' and R*> — {0} as S2.

2.4.4 Euler characteristic: an example

The Euler characteristic is one of the most useful topological invariants.
Moreover, we find the prototype of the algebraic approach to topology in it. To
avoid unnecessary complication, we restrict ourselves to points, lines and surfaces
in R3. A polyhedron is a geometrical object surrounded by faces. The boundary
of two faces is an edge and two edges meet at a vertex. We extend the definition
of a polyhedron a bit to include polygons and the boundaries of polygons, lines or
points. We call the faces, edges and vertices of a polyhedron simplexes. Note that
the boundary of two simplexes is either empty or another simplex. (For example,
the boundary of two faces is an edge.) Formal definitions of a simplex and a
polyhedron in a general number of dimensions will be given in chapter 3. We are
now ready to define the Euler characteristic of a figure in R>.

Definition 2.10. Let X be a subset of R?, which is homeomorphic to a polyhedron
K. Then the Euler characteristic x (X) of X is defined by

x (X) = (number of verticies in K) — (number of edges in K)
+ (number of faces in K). (2.31)
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Figure 2.11. Example of a polyhedron which is homeomorphic to a torus.

The reader might wonder if x (X) depends on the polyhedron K or not. The
following theorem due to Poincaré and Alexander guarantees that it is, in fact,
independent of the polyhedron K.

Theorem 2.4. (Poincaré-Alexander) The Euler characteristic x (X) is indepen-
dent of the polyhedron K as long as K is homeomorphic to X.

Examples are in order. The Euler characteristic of a point is x(-) = 1 by
definition. The Euler characteristic of a line is y ( ) =2—1=1,since a
line has two vertices and an edge. For a triangular disc, we find yx (triangle) =
3 -3 41 = 1. An example which is a bit non-trivial is the Euler characteristic of
S'. The simplest polyhedron which is homeomorphicto S! is made of three edges
of a triangle. Then x (S') = 3 —3 = 0. Similarly, the sphere S? is homeomorphic
to the surface of a tetrahedron, hence X(SZ) =4 —6+4+4 = 2. Itis easily seen
that S is also homeomorphic to the surface of a cube. Using a cube to calculate
the Euler characteristic of S2, we have X(SZ) =8 — 12+ 6 = 2, in accord with
theorem 2.4. Historically this is the conclusion of Euler’s theorem: if K is any
polyhedron homeomorphic to $2, with v vertices, e edges and f two-dimensional
faces, thenv —e + f = 2.

Example 2.15. Let us calculate the Euler characteristic of the torus T2.
Figure 2.11(a) is an example of a polyhedron which is homeomorphic to 72.
From this polyhedron, we find x(T2) = 16 — 32 + 16 = 0. As we saw
in example 2.5(b), T2 is equivalent to a rectangle whose edges are identified;
see figure 2.4. Taking care of this identification, we find an example of a
polyhedron made of rectangular faces as in figure 2.11(b), from which we also
have x (T'?) = 0. This approach is quite useful when the figure cannot be realized
(embedded) in R3. For example, the Klein bottle (figure 2.5(a)) cannot be realized
in R? without intersecting itself. From the rectangle of figure 2.5(a), we find
x (Klein bottle) = 0. Similarly, we have x (projective plane) = 1.



Figure 2.12. The connected sum. (a) S?4S% = 52, (b) T?4T% = %,.

Exercise 2.19. (a) Show that x (Mobius strip) = 0.

(b) Show that x(X;) = —2, where X, is the torus with two handles (see
example 2.5). The reader may either construct a polyhedron homeomorphic to X,
or make use of the octagon in figure 2.6(a). We show later that x (X,) = 2 — 2g,
where X, is the torus with g handles.

The connected sum XY of two surfaces X and Y is a surface obtained by
removing a small disc from each of X and Y and connecting the resulting holes
with a cylinder; see figure 2.12. Let X be an arbitrary surface. Then it is easy to
see that

X =X (2.32)

since 2 and the cylinder may be deformed so that they fill in the hole on X; see
figure 2.12(a). If we take a connected sum of two tori we get (figure 2.12(b))

T27? = 5,. (2.33)
Similarly, ¥, may be given by the connected sum of g tori,
T 47?4 - 4T% = 3. (2.34)
—————
¢ factors

The connected sum may be used as a trick to calculate an Euler characteristic
of a complicated surface from those of known surfaces. Let us prove the following
theorem.

Theorem 2.5. Let X and Y be two surfaces. Then the Euler characteristic of the
connected sum XY is given by

x(X8Y) = x(X) 4+ x(¥) = 2.



Proof. Take polyhedra Kx and Ky homeomorphic to X and Y, respectively. We
assume, without loss of generality, that each of Ky and Ky has a triangle in it.
Remove the triangles from them and connect the resulting holes with a trigonal
cylinder. Then the number of vertices does not change while the number of edges
increases by three. Since we have removed two faces and added three faces,
the number of faces increases by —2 + 3 = 1. Thus, the change of the Euler
characteristicis 0 —3 41 = —2. O

From the previous theorem and the equality x (TZ) = 0, we obtain x (X,) =
0+0—-2=—-2and x(X;) =g x0—-2(g — 1) =2 — 2g, cf exercise 2.19(b).

The significance of the Euler characteristic is that it is a topological invariant,
which is calculated relatively easily. We accept, without proof, the following
theorem.

Theorem 2.6. Let X and Y be two figures in R?. If X is homeomorphic to Y, then
X (X) = x(Y). In other words, if x(X) # x(Y), X cannot be homeomorphic to
Y.

Example 2.16. (a) S' is not homeomorphic to S2, since x(S!) = 0 while
x (5% = 2.

(b) Two figures, which are not homeomorphic to each other, may have the
same Euler characteristic. A point () is not homeomorphic to a line (—) but
x() = x(—) = 1. This is a general consequence of the following fact: if a
figure X is of the same homotopy type as a figure Y, then x(X) = x(Y).

The reader might have noticed that the Euler characteristic is different from
other topological invariants such as compactness or connectedness in character.
Compactness and connectedness are geometrical properties of a figure or a space
while the Euler characteristic is an integer x(X) € Z. Note that Z is an
algebraic object rather than a geometrical one. Since the work of Euler, many
mathematicians have worked out the relation between geometry and algebra
and elaborated this idea, in the last century, to establish combinatorial topology
and algebraic topology. We may compute the Euler characteristic of a smooth
surface by the celebrated Gauss—Bonnet theorem, which relates the integral of
the Gauss curvature of the surface with the Euler characteristic calculated from
the corresponding polyhedron. We will give the generalized form of the Gauss—
Bonnet theorem in chapter 12.

Problems

2.1 Show that the 4g-gon in figure 2.13(a), with the boundary identified,
represents the torus with genus g of figure 2.13(b). The reader may use
equation (2.34).

22LetX ={1,1/2,...,1/n,...} be asubset of R. Show that X is not closed in
R. Show that Y ={1,1/2,...,1/n,...,0}is closed in R, hence compact.



Figure 2.13. The polygon (a) whose edges are identified is the torus X¢ with genus g.

2.3 Show that two figures in figure 2.109(b) are homeomorphic to each other. Find
how to unlink the right figure in R*.

2.4 Show that there are only five regular polyhedra: a tetrahedron, a hexahedron,
an octahedron, a dodecahedron and an icosahedron. [Hint: Use Euler’s theorem.]



HOMOLOGY GROUPS

Among the topological invariants the Euler characteristic is a quantity readily
computable by the ‘polyhedronization’ of space. The homology groups are
refinements, so to speak, of the Euler characteristic. Moreover, we can easily read
off the Euler characteristic from the homology groups. Let us look at figure 3.1.
In figure 3.1(a), the interior is included but not in figure 3.1(b). How do we
characterize this difference? An obvious observation is that the three edges of
figure 3.1(a) form a boundary of the interior while the edges of figure 3.1(b) do
not (the interior is not a part of figure 3.1(b)). Clearly the edges in both cases
form a closed path (loop), having no boundary. In other words, the existence of
a loop that is not a boundary of some area implies the existence of a hole within
the loop. This is our guiding principle in classifying spaces here: find a region
without boundaries, which is not itself a boundary of some region. This principle
is mathematically elaborated into the theory of homology groups.

Our exposition follows Armstrong (1983), Croom (1978) and Nash and Sen
(1983). An introduction to group theory is found in Fraleigh (1976).

3.1 Abelian groups

The mathematical structures underlying homology groups are finitely generated
Abelian groups. Throughout this chapter, the group operation is denoted by +
since all the groups considered here are Abelian (commutative). The unit element
is denoted by 0.

3.1.1 Elementary group theory

Let G; and G, be Abelian groups. A map f : G; — G is said to be a
homomorphism if

fx+y)=fx)+ ) (3.1

for any x, y € G1. If f is also a bijection, f is called an isomorphism. If there
exists an isomorphism f : G; — G2, G is said to be isomorphic to G;, denoted
by G| = G,. For example, amap f : Z — Z, = {0, 1} defined by

fen) =0 fen+1)=1



Figure 3.1. (a) is a solid triangle while () is the edges of a triangle without an interior.

is a homomorphism. Indeed

fCm+2n)=fQRm+n)=0=04+0= f2m)+ f(2n)
fem+ 1421+ )= fRm+n+1)=0=1+1
— fCm+ 1)+ fCn+1)
fCm+142n)=fRm+n+1)=1=14+0
= fC2m+ 1)+ f(2n).

A subset H C G is a subgroup if it is a group with respect to the group
operation of G. For example,

kZ=1{knlneZ} keN

is a subgroup of Z, while Z, = {0, 1} is not.
Let H be a subgroup of G. We say x, y € G are equivalent if

x—yeH (3.2)

and write x ~ y. Clearly ~ is an equivalence relation. The equivalence class to
which x belongs is denoted by [x]. Let G/H be the quotient space. The group
operation + in G naturally induces the group operation 4 in G/H by

[x]+ [yl =[x+ y]. (3.3)

Note that 4 on the LHS is an operation in G/H while 4 on the RHS is thatin G.
The operation in G/H should be independent of the choice of representatives. In
fact, if [x'] = [x],[y'] = [y],thenx —x' = h,y — y' = g forsome h,g € H
and we find that

Xty =x+y—(h+g elx+y]

Furthermore, G/H becomes a group with this operation, since H is always a
normal subgroup of G; see example 2.6. The unit element of G/H is [0] = [A],



he H IfH =G,0—x € G forany x € G and G/G has just one element [0].
If H={0}, G/H is G itself since x — y = O if and only if x = y.

Example 3.1. Let us work out the quotient group 7Z/27. For even numbers
we have 2n — 2m = 2(n — m) € 27 and [2m] = [2n]. For odd numbers
2n+1)—2m+1) =2(n—m) € 2Z and [2m+1] = [2n+1]. Even numbers and
odd numbers never belong to the same equivalence class since 2n—(2m+1) ¢ 27Z.
Thus, it follows that

2./27 = {[0], [1]}. (3.4)

If we define an isomorphism ¢ : Z /27 — Z, by ¢([0]) = 0 and ¢([1]) = 1, we
find Z /27 = 7. For general k € N, we have

7/KZ= Ui (3.5)

Lemma 3.1. Let f : Gi — G> be a homomorphism. Then
(a) ker f = {x|x € G, f(x) = 0} is a subgroup of G,
(b)im f = {x|x € f(G1) C G} is a subgroup of G».

Proof. (a) Letx,y € ker f. Thenx+y € ker f since f(x+y) = f(x)+ f(y) =
040 = 0. Note that 0 € ker f for £(0) = f(0)+ f(0). We also have —x € ker f
since f(0) = f(x —x) = f(x) + f(—x) =0.

(b) Let y; = f(x1),y2 = f(x2) € im f where x1, x> € G;. Since f is a
homomorphism we have y; +y» = f(x1)+ f(x2) = f(x1 +x2) € im f. Clearly
0 € im f since f(0) = 0. If y = f(x), —y € im f since 0 = f(x —x) =
F() + f(—x) implies f(—x) = —y. 0

Theorem 3.1. (Fundamental theorem of homomorphism) Let f : G; — G»
be a homomorphism. Then

Gi/kerf =im f. (3.6)

Proof. Both sides are groups according to lemma 3.1. Define a map ¢
Gi/kerf — imf by ¢([x]) = f(x). This map is well defined since for
x" € [x], there exists h € ker f suchthat x’ = x +h and f(x') = f(x +h) =
f&x)+ f(h) = f(x). Now we show that ¢ is an isomorphism. First, ¢ is a
homomorphism,

e(x]1+ DD =e(x +yD) = f(x+y)
= f@x)+ f() = e(xD + o(yD.

Second, ¢ is one to one: if ([x]) = ¢([y]), then f(x) = f(y)or f(x)— f(y) =
f(x —y) = 0. This shows that x — y € ker f and [x] = [y]. Finally, ¢ is onto:
if y € im f, there exists x € G such that f(x) =y = ¢([x]). O

Example 3.2. Let f : 7 — Z,be defined by f(2n) = 0and f(2n+1) = 1. Then
ker f = 27 and im f = 7 are groups. Theorem 3.1 states that Z /27 = Z», in
agreement with example 3.1.



3.1.2 Finitely generated Abelian groups and free Abelian groups
Let x be an element of a group G. For n € Z,nx denotes
X4+--+x (ifn > 0)
—
n

and
(—x)+ -4+ (—x) (ifn < 0).

n]

If n = 0, we put Ox = 0. Take r elements x1, ..., x, of G. The elements of G of
the form
nixy+ -+ npx, (ni€Z,1<i<r) (3.7

form a subgroup of G, which we denote H. H is called a subgroup of G
generated by the generators xi,...,x,. If G itself is generated by finite
elements xq, ..., xr, G is said to be finitely generated. If n1x; +---+n,x, =0
is satisfied only when ny = --- = n, = 0, x1, ..., x, are said to be linearly
independent.

Definition 3.1. If G is finitely generated by r linearly independent elements, G is
called a free Abelian group of rank r.

Example 3.3. Z is a free Abelian group of rank 1 finitely generated by 1 (or —1).
Let Z & Z be the set of pairs {(i, j)|i, j € Z}. Itis a free Abelian group of rank 2
finitely generated by generators (1, 0) and (0, 1). More generally

LOLD--- DL
—_—

r

is a free Abelian group of rank r. The group Z, = {0, 1} is finitely generated by
1 but is not free since 1 is not linearly independent (note 1 + 1 = 0).

3.1.3 Cyclic groups

If G is generated by one element x, G = {0, =x, +2x, ...}, G is called a cyclic
group. If nx # 0 for any n € Z — {0}, it is an infinite cyclic group while if
nx = 0 for some n € Z — {0}, a finite cyclic group. Let G be a cyclic group
generated by x and let f : Z — G be a homomorphism defined by f(n) = nx.
f maps Z onto G but not necessarily one to one. From theorem 3.1, we have
G =im f = Z/ker f. Let N be the smallest positive integer such that Nx = 0.
Clearly

ker f = {0, £N,£2N,...} = NZ (3.8)

and we have
G=EZ/NZ=Zy. 3.9



If G is an infinite cyclic group, then ker f = {0} and G = Z. Any infinite cyclic
group is isomorphic to Z while a finite cyclic group is isomorphic to some Z .

We will need the following lemma and theorem in due course. We first state
the lemma without proof.

Lemma 3.2. Let G be a free Abelian group of rank r and let H (#£0) be a subgroup
of G. We may always choose p generators x1, ..., xp, out of r generators of G
so that kyx1, ..., kpx, generate H. Thus, H = k1Z @ ... ® k,Z and H is of
rank p.

Theorem 3.2. (Fundamental theorem of finitely generated Abelian groups)
Let G be a finitely generated Abelian group (not necessarily free) with m
generators. Then G is isomorphic to the direct sum of cyclic groups,

C=L® - ®LOLy, & L, (3.10)
———

-
where m = r + p. The number r is called the rank of G.
Proof. Let G be generated by m elements x1, . .., x,,, and let

f7® --®Z—G
[ —

m

be a surjective homomorphism,
Sy, .o ) =nixr + -+ Ry X,
Theorem 3.1 states that

L@ ---@ZL/ker f =G.
—_————

m
Since ker f is a subgroup of
ACEERY/
———

m

lemma 3.2 claims that if we choose the generators properly, we have
kerf =EKNZ@ - - DkpZ.
We finally obtain

CZZ® - ®L/ker f2LD - BL/KZD - DkyL)
——— ———
m m
27®- - ®LOL D ® Ly, O
———
m—p
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Figure 3.2. 0-, 1-, 2- and 3-simplexes.

3.2 Simplexes and simplicial complexes

Let us recall how the Euler characteristic of a surface is calculated. We first
construct a polyhedron homeomorphic to the given surface, then count the
numbers of vertices, edges and faces. The Euler characteristic of the polyhedron,
and hence of the surface, is then given by equation (2.31). We abstract this
procedure so that we may represent each part of a figure by some standard object.
We take triangles and their analogues in other dimensions, called simplexes, as
the standard objects. By this standardization, it becomes possible to assign to
each figure Abelian group structures.

3.2.1 Simplexes

Simplexes are building blocks of a polyhedron. A 0-simplex (pg) is a point, or
a vertex, and a 1-simplex (pop1) is a line, or an edge. A 2-simplex (pop1p2) is
defined to be a triangle with its interior included and a 3-simplex (pop1p2p3) is
a solid tetrahedron (figure 3.2). It is common to denote a 0-simplex without the
bracket; (po) may be also written as pg. It is easy to continue this construction
to any r-simplex (popi...pr). Note that for an r-simplex to represent an r-
dimensional object, the vertices p; must be geometrically independent, that is, no
(r — 1)-dimensional hyperplane contains all the r + 1 points. Let po, ..., p,
be points geometrically independent in R” where m > r. The r-simplex
or = (po, - - ., pr) is expressed as

r r
x:Zcipi,cizO,Zcizl}. 3.11)
=0 i=0

(co, . .., cr) is called the barycentric coordinate of x. Since o, is a bounded and
closed subset of R, it is compact.

Let g be an integer such that 0 < g < r. If we choose ¢ + 1 points
Pigs - - -» Piy out of po,..., pr, these g + 1 points define a g-simplex o, =
(Dig> - -+ piq), which is called a g-face of o,. We write o, < o, if 0, is a face of

crrz{xelR’"
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Figure 3.3. A O-face pg and a 2-face (p pr p3) of a 3-simplex (pgp1p2p3)-

or. If o4 # o, we say o, is a proper face of o,, denoted as 0, < o,. Figure 3.3
shows a O-face pg and a 2-face (pj pa p3) of a 3-simplex {pop1 p2p3). There are
one 3-face, four 2-faces, six 1-faces and four O-faces. The reader should verify

r+l ) A 0-simplex is defined

that the number of g-faces in an r-simplex is < g+1

to have no proper faces.

3.2.2 Simplicial complexes and polyhedra

Let K be a set of finite number of simplexes in R™. If these simplexes are nicely
fitted together, K is called a simplicial complex. By ‘nicely’ we mean:

(i) an arbitrary face of a simplex of K belongs to K, that is, if ¢ € K and
o’ <o theno’ € K; and

(ii) if o and o’ are two simplexes of K, the intersection o N ¢’ is either empty
or a common face of o and ¢/, that is, if o, 6’ € K then eitheroc No’ = @
orcNo’' <ogando No’ <o’.

For example, figure 3.4(a) is a simplicial complex but figure 3.4(b) is not.
The dimension of a simplicial complex K is defined to be the largest dimension
of simplexes in K.

Example 3.4. Let o, be an r-simplex and K = {o'|oc’ < o,} be the set of
faces of o,. K is an r-dimensional simplicial complex. For example, take



(a) (b)

Figure 3.4. (a) is a simplicial complex but (b) is not.

03 = (pop1p2p3) (figure 3.3). Then

K = {po, p1, p2, p3, {pop1), {Pop2), {PoP3),
(p1p2), {P1P3), (P2P3), {PoP1P2), {POP1P3),
(pop2p3), {P1p2p3), {PopP1P2P3)}- (3.12)

A simplicial complex K is a set whose elements are simplexes. If each
simplex is regarded as a subset of R” (m > dim K ), the union of all the simplexes
becomes a subset of R”. This subset is called the polyhedron | K| of a simplicial
complex K. The dimension of |K| as a subset of R” is the same as that of K;
dim|K| =dimK.

Let X be a topological space. If there exists a simplicial complex K and a
homeomorphism f : |K| — X, X is said to be triangulable and the pair (K, f)
is called a triangulation of X. Given a topological space X, its triangulation is
far from unique. We will be concerned with triangulable spaces only.

Example 3.5. Figure 3.5(a) is a triangulation of a cylinder S! x [0, 1]. The reader
might think that somewhat simpler choices exist, figure 3.5(b), for example. This
is, however, not a triangulation since, for oo = (pop1p2) and 0’2/ = (p2p3po), we
find op N 62’ = (po) U (p2), which is neither empty nor a simplex.

3.3 Homology groups of simplicial complexes

3.3.1 Oriented simplexes

We may assign orientations to an r-simplex for r > 1. Instead of (...) for an
unoriented simplex, we will use (. ..) to denote an oriented simplex. The symbol
o, is used to denote both types of simplex. An oriented 1-simplex o1 = (pop1) is
a directed line segment traversed in the direction pg — p1 (figure 3.6(a)). Now
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Figure 3.5. (a) is a triangulation of a cylinder while (b) is not.
(@ (b) Po
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Figure 3.6. An oriented 1-simplex (a) and an oriented 2-simplex (b).
(pop1) should be distinguished from (p; pg). We require that
(pop1) = —(p1po). (3.13)
Here ‘—’ in front of (pipo) should be understood in the sense of a finitely

generated Abelian group. In fact, (p1po) is regarded as the inverse of (pop1).
Going from pg to p; followed by going from p; to pp means going nowhere,

(pop1) + (p1po) = 0, hence —(p1po) = (pop1)-

Similarly, an oriented 2-simplex o2 = (pop1p2) is a triangular region
pop1p2 with a prescribed orientation along the edges (figure 3.6(b)). Observe that
the orientation given by pop1 p2 is the same as that given by p2pop1 or p1papo
but opposite to popa2p1, p2p1po or p1pop2. We require that

(pop1p2) = (p2pop1) = (p1p2po)
= — (pop2p1) = —(p2p1po) = —(p1pop2).

Let P be a permutation of 0, 1, 2

01 2
P —< ik )
These relations are summarized as

(pipjpk) = sgn(P)(pop1p2)



where sgn(P) = +1 (—1) if P is an even (odd) permutation.
An oriented 3-simplex 03 = (pop1p2p3) is an ordered sequence of four
vertices of a tetrahedron. Let

01 2 3
P_<ijkl>

(pipjpipr) = sgn(P)(pop1p2p3).

be a permutation. We define

It is now easy to construct an oriented r-simplex for any » > 1. The
formal definition goes as follows. Take r + 1 geometrically independent points
po, p1, ..., pr in R™. Let {p;;, pi, ..., pi } be a sequence of points obtained by
a permutation of the points po, ..., p,. We define {po, ..., p,} and {pi;, ..., pi,}

to be equivalent if
(00 1)
g i1 ... If

is an even permutation. Clearly this is an equivalence relation, the equivalence
class of which is called an oriented r-simplex. There are two equivalence
classes, one consists of even permutations of po,..., p, the other of odd
permutations. The equivalence class (oriented r-simplex) which contains
{po, ..., pr} is denoted by o, = (pop1...pr), while the other is denoted by
—or = —(pop1 - .. pr)- In other words,

(Piy Piy - - - Pi,) = sgn(P)(pop1 ... pr). (3.14)
For r = 0, we formally define an oriented O-simplex to be just a point
00 = Po.
3.3.2 Chain group, cycle group and boundary group

Let K = {04} be an n-dimensional simplicial complex. We regard the simplexes
oy in K as oriented simplexes and denote them by the same symbols o, as
remarked before.

Definition 3.2. The r-chain group C,(K) of a simplicial complex K is a free
Abelian group generated by the oriented r-simplexes of K. If » > dim K, C,-(K)
is defined to be 0. An element of C, (K) is called an r -chain.

Let there be I, r-simplexes in K. We denote each of them by o,; (1 <i <

I). Then ¢ € C,(K) is expressed as

Iy
c=Y coni e (3.15)
i=1
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Figure 3.7. (a) An oriented 1-simplex with a fictitious boundary pj. (b) A simplicial
complex without a boundary.

The integers c; are called the coefficients of ¢. The group structure is given as
follows. The addition of two r-chains, ¢ = ), c;o; and ¢’ = ), cjoy;, is

c+c = Z(ci + ci)oy.i. (3.16)
i

The unit element is 0 = Zi 0 - oy, while the inverse element of ¢ is —c =
> ;(—=ci)oyi. [Remark: An oppositely oriented r-simplex —o; is identified with
(—=Do, € Cr(K).] Thus, C,(K) is a free Abelian group of rank 7,

CKYZEZLOLD - - DL. (3.17)
—
I

Before we define the cycle group and the boundary group, we need to
introduce the boundary operator. Let us denote the boundary of an r-simplex
oy by 0,0,. 9, should be understood as an operator acting on o, to produce its
boundary. This point of view will be elaborated later. Let us look at the boundaries
of lower-dimensional simplexes. Since a 0-simplex has no boundary, we define

dopo = 0. (3.18)
For a 1-simplex (pgp1), we define

d1(pop1) = p1 — po. (3.19)

The reader might wonder about the appearance of a minus sign in front of pg.
This is again related to the orientation. The following examples will clarify this
point. In figure 3.7(a), an oriented 1-simplex (pop>) is divided into two, (pop1)
and (p1p2). We agree that the boundary of (pop2) is {po} U {p2} and so should
be that of (pop1) + (p1p2). If 91 (pop2) were defined to be pg + p2, we would
have 91 (pop1) + d1(p1p2) = po+ p1 + p1 + p2. This is not desirable since p;
is a fictitious boundary. If, instead, we take 91 (pop2) = p2 — po, we will have
91(pop1) + 01(p1p2) = p1 — po+ p2 — p1 = p2 — po as expected. The next
example is the triangle of figure 3.7(b). It is the sum of three oriented 1-simplexes,



(pop1) + (p1p2) + (p2po). We agree that it has no boundary. If we insisted on
the rule 91 (pop1) = po + p1, we would have

01(pop1) + 31(p1p2) + d1(p2po) = po+ p1+ p1+ p2+ p2 + po

which contradicts our intuition. If, on the other hand, we take 9;(pop1) =
pP1 — po, we have

01(pop1) + 91(p1p2) +01(p2po) = p1 —po+p2—p1+po—p2=0

as expected. Hence, we put a plus sign if the first vertex is omitted and a minus
sign if the second is omitted. We employ this fact to define the boundary of a
general r-simplex.

Leto,(po...pr) (r > 0) be an oriented r-simplex. The boundary 9,0, of
oy is an (r — 1)-chain defined by

r

dor = ) (=1'(pop1... pi .. pr) (3.20)
i=0

where the point p; under " is omitted. For example,
02(pop1p2) = (p1p2) — (pop2) + (Pop1)
3(pop1p2p3) = (p1p2p3) — (pop2p3) + (pop1p3) — (Pop1p2)-

We formally define dpog = O forr = 0.
The operator 9, acts linearly on an element ¢ = Zi cior,; of C(K),

arc = Z Cidyoni. (3.21)
i

The RHS of (3.21) is an element of C,_1(K). Accordingly, d, defines a map
0, : Cr(K) = C,_1(K). (3.22)

oy is called the boundary operator. It is easy to see that the boundary operator
is a homomorphism.

Let K be an n-dimensional simplicial complex. There exists a sequence of
free Abelian groups and homomorphisms,

. . ‘
0 - (k) 2 c 1K) 222 k) s cok) 5 0 (3.23)

where i : 0 — C,(K) is an inclusion map (0 is regarded as the unit element
of C,(K)). This sequence is called the chain complex associated with K and
is denoted by C(K). It is interesting to study the image and kernel of the
homomorphisms ;.



Definition 3.3. If ¢ € C,(K) satisfies
dyc =0 (3.24)

c is called an r-cycle. The set of r-cycles Z,(K) is a subgroup of C,(K) and is
called the r-cycle group. Note that Z,(K) = kerd,. [Remark: If r = 0, doc
vanishes identically and Zo(K) = Cy(K), see (3.23).]

Definition 3.4. Let K be an n-dimensional simplicial complex and let ¢ € C,(K).
If there exists an element d € C,41(K) such that

¢ =d1d (3.25)

then c is called an r-boundary. The set of r-boundaries B,(K) is a subgroup
of C,(K) and is called the r-boundary group. Note that B,(K) = imd,1.
[Remark: B, (K) is defined to be 0.]

From lemma 3.1, it follows that Z,(K) and B, (K) are subgroups of C,(K).
We now prove an important relation between Z,(K) and B, (K), which is crucial
in the definition of homology groups.

Lemma 3.3. The composite map 9, 0 9;41 : Cr41(K) — C,_1(K) is a zero map;
that is, 9, (3,41¢) = 0 for any ¢ € Cy41(K).

Proof. Since 9, is a linear operator on C,(K), it is sufficient to prove the identity
0y 0 3,41 = 0 for the generators of C,1(K). If r =0, 99 0 91 = 0 since Jp is a
zero operator. Let us assume r > 0. Take 0 = (po ... prpr+1) € Cr41(K). We
find

r+1
O (Br110) =0, » (=D (po...pi ... pri1)
i=0
r+1

= Z(—l)iar(po...ﬁi...pr+1>

r+l

= Z(—U’(Z(—l)’(m - Pre1)
r+1 .
+ Y (—1)f‘(po...ﬁi...ﬁ,-...pr+1)>
j=i+l
=Y (=D (po.. Ry )
j<i

=Y =DM (po...pi-Pjpri1) =0 (3.26)

j>i



which proves the lemma. g

Theorem 3.3. Let Z,(K) and B,(K) be the r-cycle group and the r-boundary
group of C,(K), then

B.(K) C Z,(K)  (CC(K)). (3.27)

Proof. This is obvious from lemma 3.3. Any element ¢ of B,(K) is written as
¢ = 0r41d for some d € C,41(K). Then we find 9,¢ = 9,(d,+1d) = 0, that is,
¢ € Z,(K). This implies Z,(K) D B,(K). O

What are the geometrical pictures of r-cycles and r-boundaries? With our
definitions, d, picks up the boundary of an r-chain. If ¢ is an r-cycle, d,c = 0 tells
us that ¢ has no boundary. If ¢ = 9,41d is an r-boundary, c is the boundary of d
whose dimension is higher than ¢ by one. Our intuition tells us that a boundary
has no boundary, hence Z,(K) D B,(K). Those elements of Z,(K) that are not
boundaries play the central role in this chapter.

3.3.3 Homology groups

So far we have defined three groups C,(K), Z,(K) and B,(K) associated with
a simplicial complex K. How are they related to topological properties of K or
to the topological space whose triangulation is K? Is it possible for C,(K) to
express any property which is conserved under homeomorphism? We all know
that the edges of a triangle and those of a square are homeomorphic to each other.
What about their chain groups? For example, the 1-chain group associated with a
triangle is

Ci(Ky) = {i(popy) + j(p1p2) + k(p2po)li, j, k € Z}
YRSV ASY/

while that associated with a square is
Cl(K2)ZEZOLDLDL.

Clearly C1(K1) is not isomorphic to C1(K3), hence C,(K) cannot be a candidate
of a topological invariant. The same is true for Z,(K) and B,(K). It turns out
that the homology groups defined in the following provide the desired topological
invariants.

Definition 3.5. Let K be an n-dimensional simplicial complex. The rth
homology group H,(K), 0 < r < n, associated with K is defined by

H.(K) = Z,(K)/Br(K). (3.28)

[Remarks: If necessary, we define H,(K) = O forr > norr < 0. If we
want to stress that the group structure is defined with integer coefficients, we



write H,(K; Z). We may also define the homology groups with R-coefficients,
H,(K; R) or those with Zy-coefficients, H,(K; Z>).]

Since B,(K) is a subgroup of Z,(K), H,(K) is well defined. The group
H,(K) is the set of equivalence classes of r-cycles,

H,(K) = {[zllz € Z,(K)} (3.29)

where each equivalence class [z] is called a homology class. Two r-cycles z and
7’ are in the same equivalence class if and only if z — z’ € B, (K), in which case z
is said to be homologous to z’ and denoted by z ~ 7 or [z] = [z/]. Geometrically
z — 7/ is a boundary of some space. By definition, any boundary b € B, (K) is
homologous to 0 since b — 0 € B, (K). We accept the following theorem without
proof.

Theorem 3.4. Homology groups are topological invariants. Let X be
homeomorphic to Y and let (K, f) and (L, g) be triangulations of X and Y
respectively. Then we have

H.(K)= H, (L) r=0,1,2,.... (3.30)
In particular, if (K, f) and (L, g) are two triangulations of X, then
H.(K)= H, (L) r=0,1,2,.... (3.31)

Accordingly, it makes sense to talk of homology groups of a topological
space X which is not necessarily a polyhedron but which is triangulable. For an
arbitrary triangulation (K, f), H,(X) is defined to be

H/(X)=H(K) r=0,1,2,.... (3.32)

Theorem 3.4 tells us that this is independent of the choice of the triangulation

(K, ).

Example 3.6. Let K = {po}. The O-chain is Co(K) = {ipo|li € Z} = Z. Clearly
Zo(K) = Co(K) and Bp(K) = {0} (dopo = 0 and po cannot be a boundary of
anything). Thus

Hy(K) = Zo(K)/Bo(K) = Co(K) = Z. (3.33)

Exercise 3.1. Let K = {po, p1} be a simplicial complex consisting of two 0-
simplexes. Show that

HK) =292 =0 (3.34)
{0} (r #0).



Example 3.7. Let K = {po, p1, (pop1)}. We have

Co(K) = {ipo+ jpili, j € Z}
Ci(K) = {k(popD) |k € Z}.

Since (pop1) is not a boundary of any simplex in K, B1(K) = {0} and
Hi(K) = Z1(K)/Bi(K) = Z1(K).
If z =m(pop1) € Z1(K), it satisfies
d1z = mdi(pop1) = m{p1 — po} = mpy —mpo = 0.
Thus, m has to vanish and Z{(K) = 0, hence
Hi(K)=0. (3.35)
As for Hy(K), we have Zy(K) = Co(K) = {ipo + jp1} and

Bo(K) = imdy = {01i(popDli € Z} = {i(po — pVli € Z}.

Define a surjective (onto) homomorphism f : Zo(K) — Z by
flpo+jp) =i+

Then we find
ker f = f1(0) = Bo(K).

Theorem 3.1 states that Zo(K)/ker f =im f = Z, or
Ho(K) = Zo(K)/Bo(K) = Z. (3.36)
Example 3.8. Let K = {po, p1, p2, (pop1), (p1p2), (p2po)}, see figure 3.7(D).
This is a triangulation of § 1 Since there are no 2-simplexes in K, we have

Bi(K) = 0 and Hi(K) = Zi(K)/Bi(K) = Zi(K). Letz = i(pop1) +
Jj(p1p2) + k(p2po) € Z1(K) where i, j, k € Z. We require that

01z =1i(p1 — po) + j(p2 — p1) + k(po — p2)
=Gk —=Dpo+ (G —jp+(G—kp2=0.

This is satisfied only when i = j = k. Thus, we find that
Z1(K) = {i{(pop1) + (p1p2) + (p2po)}li € Z}.
This shows that Z1(K) is isomorphic to Z and

Hi(K)=Z7Z1(K) =Z. (3.37)



Let us compute Hp(K). We have Zo(K) = Cyp(K) and

Bo(K) = {01[l(pop1) + m(p1p2) +n(p2po)lll, m,n € Z}
={n—-Dpo+U—m)p1+(m—n)p2|l,m,n €Z}.

Define a surjective homomorphism f : Zo(K) — Z by
flpo+jpi+kp2) =i+ j+k

We verify that
ker f = £7'(0) = Bo(K).

From theorem 3.1 we find Zo(K)/ker f =im f = Z, or
Ho(K) = Zo(K)/Bo(K) = Z. (3.38)

K is a triangulation of a circle § I and (3.37) and (3.38) are the homology
groups of S!.

Exercise 3.2. Let K = {po, p1, p2, p3, (pop1), (p1p2), (p2p3), (P3po)} be a
simplicial complex whose polyhedron is a square. Verify that the homology

groups are the same as those of example 3.8 above.

Example 3.9. Let K = {po, p1, p2, (pop1), (p1p2), (P2p0), (Pop1p2)}; see
figure 3.6(b). Since the structure of O-simplexes and 1-simplexes is the same

as that of example 3.8, we have
Ho(K) = Z. (3.39)

Let us compute H{(K) = Z1(K)/B1(K). From the previous example, we
have

Z1(K) = {i{(pop1) + (p1p2) + (p2po)}li € Z}.
Letc = m(pop1p2) € C2(K). If b = 92c € B1(K), we have

b =m{(p1p2) — (pop2) + (pop1)}
= m{(pop1) + (p1p2) + (pP2p0)} m € 7.

This shows that Z1(K) = B1(K), hence
H{(K) = Z1(K)/B1(K) = {0}. (3.40)

Since there are no 3-simplexes in K, we have B>(K) = {0}. Then
Hy)(K) = Z2(K)/B2(K) = Z(K). Let z = m(pop1p2) € Z>(K). Since
02z = m{(p1p2) — (pop2) + (pop1)} = 0, m must vanish. Hence, Z; (K) = {0}
and we have

H>(K) = {0}. (3.41)



Exercise 3.3. Let

K = {po, p1, p2, p3, (pop1), (pop2), (Pop3), (p1p2), (P1p3), (P2P3),
(pop1p2), (pop1p3), (Pop2p3), (P1p2p3)}
be a simplicial complex whose polyhedron is the surface of a tetrahedron. Verify

that
Hy(K)=7Z H{(K) = {0} Hy(K) = 7. (3.42)

K is a triangulation of the sphere S and (3.42) gives the homology groups of S2.

3.3.4 Computation of Hy(K)

Examples 3.6-3.9 and exercises 3.2, 3.3 share the same zeroth homology group,
Hy(K) = Z. What is common to these simplicial complexes? We have the
following answer.

Theorem 3.5. Let K be a connected simplicial complex. Then

Ho(K) = 7. (3.43)

Proof. Since K is connected, for any pair of O-simplexes p; and p;, there exists
a sequence of 1-simplexes (p;pk), (pkp1), .., (Pmpj) such that 91 ((p;pr) +
(pkp) + -+ + (pmpj)) = pj — pi.- Then it follows that p; is homologous
to pj, namely [p;] = [p;]. Thus, any O-simplex in K is homologous to p; say.

Suppose
Iy

z= Znipi € Zo(K)
i=1
where Iy is the number of O-simplexes in K. Then the homology class [z] is
generated by a single point,

[z] = [Zmp:} = Zni[Pi] = Zni[Pl]-

It is clear that [z] = 0, namely z € Byo(K), if Y _n; = 0.

Leto; = (pj1pj2) (1 < j < I;)be 1-simplexesin K, I; being the number
of 1-simplexes in K, then

Bo(K) = im 0y
{di(n1o1 +---+npop)lny, ... ,ny € 7}
={nmi(pr2—p1)+--+ny(pn2—pn)Ini, ..., ny € L}

Note that n; (1 < j < Iy) always appears as a pair +»; and —n; in an element
of Bo(K). Thus, if

z=Y njpj€Bo(K) then Y n;=0.
' j

J



Po P> Ps P1

G 2NIC4NE
CRVACNVAS

Py Pa Ps Po

Figure 3.8. A triangulation of the Mobius strip.

Now we have proved for a connected complex K that z = ) n;p; € Bo(K) if
and only if > " n; = 0.
Define a surjective homomorphism f : Zo(K) — Z by
Iy
fupr+---+nppr) = Zmr

i=1

We then have ker f = f~1(0) = Bo(K). It follows from theorem 3.1 that
Ho(K) = Zo(K)/Bo(K) = Zo(K)/ker f =im f = Z. 0

3.3.5 More homology computations

Example 3.10. This and the next example deal with homology groups of non-
orientable spaces. Figure 3.8 is a triangulation of the Mobius strip. Clearly
B>(K) = 0. Let us take a cycle z € Z»(K),

z=1i(pop1p2) + j(p2p1p4) + k(p2pap3)
+ I(p3paps) + m(p3psp1) + n(p1pspo).

z satisfies

02z = i{(p1p2) — (pop2) + (pop1)}
+ j{(p1pa) — (p2p4a) + (p2p1)}
+ k{(pap3) — (p2p3) + (p2p4)}
+ {(paps) — (p3ps) + (p3pa)}
+m{(psp1) — (p3p1) + (p3ps)}
+ n{(pspo) — (p1po) + (p1ps)} = 0.

Since each of (pop2), (p1p4), (p2p3), (P4ps), (p3p1) and (pspo) appears once
and only once in 9,7, all the coefficients must vanish,i = j =k =1l=m =n =



0. Thus, Z>(K) = {0} and
Hy(K) = Z2(K)/B2(K) = {0}. (3.44)

To find H;(K), we use our intuition rather than doing tedious computations.
Let us find the loops which make complete circuits. One such loop is

z = (pop1) + (p1p4) + (paps) + (pspo).

Then all the other complete circuits are homologous to multiples of z. For
example, let us take

2 = (p1p2) + (p2p3) + (p3ps) + (psp1).

We find that z ~ 7’ since

z—2' = ®{(p2p1pa) + (p2pap3) + (p3paps) + (P1ps5po)}-

If, however, we take

2" = (p1pa) + (paps) + (pspo) + (pop2) + (p2p3) + (p3p1)

we find that 7”7 ~ 2z since

2z — 2" =2(pop1) + (p1p4) + (paps) + (pspo) — (pop2)
= (p2p3) — (p3p1)
= 0{(pop1p2) + (P1pap2) + (p2pap3) + (p3p4ps)
+ (p3psp1) + (pop1ps)}-

We easily verify that all the closed circuits are homologous to nz, n € Z. H{(K)
is generated by just one element [z],

H\(K) = {ilz)li € Z} = 7. (3.45)

Since K is connected, it follows from theorem 3.5 that Ho(K) = {i[p.]li €
7} = 7, p, being any 0-simplex of K.

Example 3.11. The projective plane RP? has been defined in example 2.5(c) as
the sphere S? whose antipodal points are identified. As a coset space, we may
take the hemisphere (or the disc D?) whose opposite points on the boundary S
are identified, see figure 2.5(b). Figure 3.9 is a triangulation of the projective
plane. Clearly B>(K) = {0}. Take a cycle z € Z»>(K),

z = my(pop1p2) +ma(popap1) + m3(popspa)
+ m4(pop3ps) +ms(pop2ps) + me(p2pap3)
+ m7(papspa) +mg(p2p1ps) +mo(p1p3ps) +mio(p1pap3).
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Figure 3.9. A triangulation of the projective plane.

The boundary of z is

02z = m1{(p1p2) — (pop2) + (pop1)}
+ m2{(pap1) — (pop1) + (popa)}
+ m3{(psp4) — (pop4) + (pops)}
+ ma{(p3ps) — (pops) + (pop3)}
+ ms{(p2p3) — (pop3) + (pop2)}
+ me{(pap3) — (p2p3) + (p2p4)}
+ m7{(pspa) — (p2p4) + (p2ps)}
+ ms{(p1ps) — (p2ps) + (p2p1)}
+ mo{(p3ps) — (p1ps) + (p1p3)}
+ mio{(pap3) — (p1p3) + (p1pa)} = 0.

Let us look at the coefficient of each 1-simplex. For example, we have (m; —
m2)(pop1), hence m; — my = 0. Similarly,

—my+ms=0,mg —ms=0,my —m3 =0,m; —mg =0,
mg —mig =0, —my+mig=0,ms —mg =0,mg —m7 =0,
me +mig = 0.



These ten conditions are satisfied if and only if m; = 0, 1 <i < 10. This means
that the cycle group Z,(K) is trivial and we have

Hy(K) = Z>(K)/B2(K) = {0}. (3.40)

Before we calculate H{(K), we examine H,(K) from a slightly different
viewpoint. Let us add all the 2-simplexes in K with the same coefficient,

10
7= Zmaz,i m e 7.
i=1

Observe that each 1-simplex of K is a common face of exactly two 2-simplexes.
As a consequence, the boundary of z is

02z = 2m(p3ps) + 2m(psp4) + 2m(pap3). (3.47)

Thus, if z € Z(K), m must vanish and we find Z;(K) = {0} as before. This
observation remarkably simplifies the computation of H;(K). Note that any 1-
cycle is homologous to a multiple of

z = (p3ps) + (pspa) + (pap3)

cf example 3.10. Furthermore, equation (3.47) shows that an even multiple of z is
a boundary of a 2-chain. Thus, z is a cycle and z + z is homologous to 0. Hence,
we find that

Hi(K) = {[z]l[z] + [z] ~ [O]} = Z>. (3.48)

This example shows that a homology group is not necessarily free Abelian but
may have the full structure of a finitely generated Abelian group. Since K is
connected, we have Hy(K) = Z.

It is interesting to compare example 3.11 with the following examples.
In these examples, we shall use the intuition developed in this section on
boundaries and cycles to obtain results rather than giving straightforward but
tedious computations.

Example 3.12. Let us consider the torus T2. A formal derivation of the homology
groups of 72 is left as an exercise to the reader: see Fraleigh (1976), for example.
This is an appropriate place to recall the intuitive meaning of the homology
groups. The rth homology group is generated by those boundaryless 7-chains
that are not, by themselves, boundaries of some (r + 1)-chains. For example,
the surface of the torus has no boundary but it is not a boundary of some 3-
chain. Thus, Ho(T?) is freely generated by one generator, the surface itself,
H>(T?) = 7. Let us look at H,(T?) next. Clearly the loops a and b in figure 3.10
have no boundaries but are not boundaries of some 2-chains. Take another loop

a’. a’ is homologous to a since a’ — a bounds the shaded area of figure 3.10.



Figure 3.11. ¢; and b; (1 <i < g) generate H; (Xg).

Hence, H,(T?) is freely generated by a and b and H{(T?) = Z & 7Z. Since T? is
connected, we have Ho(T?) = 7.

Now it is easy to extend our analysis to the torus X, of genus g. Since X has
no boundary and there are no 3-simplexes, the surface X, itself freely generates
Hy(T?) = 7. The first homology group H 1(X,) is generated by those loops
which are not boundaries of some area. Figure 3.11 shows the standard choice for
the generators. We find

Hi(Zg) = {itlari] + jilb1] + - - - +iglagl + jelbel}
=SLOLD---DL. (3.49)

2g

Since X, is connected, Ho(X,) = Z. Observe that a;(b;) is homologous to the
edge a; (b;) of figure 2.12. The 2g curves {a;, b;} are called the canonical system
of curves on X.

Example 3.13. Figure 3.12 is a triangulation of the Klein bottle. Computations of
the homology groups are much the same as those of the projective plane. Since
By(K) = 0, we have Hy(K) = Z>(K). Let z € Z>(K). If z is a combination
of all the 2-simplexes of K with the same coefficient, z = > moy ;, the inner
1-simplexes cancel out to leave only the outer 1-simplexes

0z = —2ma
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Figure 3.12. A triangulation of the Klein bottle.

where a = (pop1) + (p1p2) + (p2po). For 9>z to be 0, the integer m must vanish
and we have

H>(K) = Z»(K) = {0}. (3.50)

To compute H;(K) we first note, from our experience with the torus, that
every 1-cycle is homologous to ia + jb for some i, j € Z. For a 2-chain to have
a boundary consisting of @ and b only, all the 2-simplexes in K must be added
with the same coefficient. As a result, for such a 2-chain z = ) moy ;, we have
dz = 2ma. This shows that 2ma ~ 0. Thus, H1(K) is generated by two cycles a
and b such that a + a = 0, namely

H\(K) = {ilal+ j[blli,j € Z} = Z» & Z. (3.51)

We obtain Hy(K) = Z since K is connected.



3.4 General properties of homology groups

3.4.1 Connectedness and homology groups

Let K = {po} and L = {po, p1}. From example 3.6 and exercise 3.1, we have
Hy(K) = Z and Ho(L) = Z &Z. More generally, we have the following theorem.

Theorem 3.6. Let K be a disjoint union of N connected components, K =
K1 UKy U---UKy where K; N K; = #. Then

H,(K) = Hy(K1) ® H-(K2) ® - - - ® H(Kn). (3.52)

Proof. We first note that an r-chain group is consistently separated into a direct
sum of N r-chain subgroups. Let

I
Cr(K) = { > cioni
i=1

where I, is the number of linearly independent r-simplexes in K. It is always
possible to rearrange o; so that those r-simplexes in K| come first, those in K>
next and so on. Then C, (K) is separated into a direct sum of subgroups,

C,'EZ}

Cr(K)=Cr(K1)® Cr(K2) & - D Cr(Kn).
This separation is also carried out for Z,(K) and B,(K) as

Z/(K)=Z (K1) ® Z(K2) ® - ® Z(KN)

B (K) = B/ (K1) ® B/ (K2) & --- ® B-(Kn).
We now define the homology groups of each component K; by

H,(K;) = Z,(K;)/Br(K;).
This is well defined since Z,(K;) D B,(K;). Finally, we have
H.(K) = Z,(K)/B(K)
=Z(K)® - ®Z(Kn)/Br (K1) @+ ® Br(Kn)

={Z,(K1)/B- (K} ® --- ®{Z(KN)/Br(KN)}
=H(K|)®---® H.(Kp). o

Corollary 3.1. (a) Let K be a disjoint union of N connected components,
K1, ..., Ky. Then it follows that

H(K)ZEZ®---DZ. (3.53)
N factors

(b)If Hy(K) = Z, K is connected. [Together with theorem 3.5 we conclude
that Hy(K) = Z if and only if K is connected.]



3.4.2 Structure of homology groups

Z,(K) and B,(K) are free Abelian groups since they are subgroups of a free
Abelian group C,(K). It does not mean that H,(K) = Z,(K)/B,(K) is also free
Abelian. In fact, according to theorem 3.2, the most general form of H,(K) is

H(K)Z2® - @LOLy ® - ® Ly, (3.54)
f

It is clear from our experience that the number of generators of H,(K) counts
the number of (r 4+ 1)-dimensional holes in |K|. The first f factors form a free
Abelian group of rank f and the next p factors are called the torsion subgroup
of H,(K). For example, the projective plane has H{(K) = Z; and the Klein
bottle has H{(K) = 7Z & Z>. In a sense, the torsion subgroup detects the
‘twisting’ in the polyhedron | K |. We now clarify why the homology groups with
Z-coefficients are preferable to those with Z,- or R-coefficients. Since Z» has no
non-trivial subgroups, the torsion subgroup can never be recognized. Similarly,
if R-coefficients are employed, we cannot see the torsion subgroup either, since
R/mR = {0} for any m € Z — {0}. [For any a, b € R, there exists a number
c € Rsuchthata — b =mec.] If H.(K; 7Z)is given by (3.54), H,(K; R) is

H(K;R =ZRORD---OR. (3.55)
—_———
f

3.4.3 Betti numbers and the Euler-Poincaré theorem

Definition 3.6. Let K be a simplicial complex. The rth Betti number b, (K) is
defined by
b,(K) =dim H,(K; R). (3.56)

In other words, b, (K) is the rank of the free Abelian part of H,(K; Z).
For example, the Betti numbers of the torus 72 are (see example 3.12)
bo(K) =1, bi(K) =2, by(K) =1
and those of the sphere $? are (exercise 3.3)
bo(K) =1, b1(K) =0, by (K) =1.
The following theorem relates the Euler characteristic to the Betti numbers.

Theorem 3.7. (The Euler-Poincaré theorem) Let K be an n-dimensional
simplicial complex and let 7, be the number of 7-simplexes in K. Then

n n
X(K) =) (=11 =) (=1)br(K). (3.57)
r=0 r=0
[Remark: The first equality defines the Euler characteristic of a general

polyhedron |K|. Note that this is the generalization of the Euler characteristic
defined for surfaces in section 2.4.]



Proof. Consider the boundary homomorphism,
o : Cr(K; ]R) g Crfl(K; ]R)

where C_1(K; R) is defined to be {0}. Since both C,_(K; R) and C,(K; R) are
vector spaces, theorem 2.1 can be applied to yield

I

dim C, (K ; R) = dim(ker 9,) + dim(im 0, )
=dimZ,(K; R) +dim B,_1(K; R)

where B_(K) is defined to be trivial. We also have

br(K) = dim H,(K; R) = dim(Z,(K; R)/B, (K; R))
= dimZ,(K; R) —dim B, (K; R).

From these relations, we obtain

X(K) =) (=1L = ) (1) (dim Z,(K: B) + dim B,_1 (K: R))
r=0 r=0

= D (=1 dimZ,(K; B) - (=)' dim B,(K; B)
r=0

= Z(—l)’br(l(). O
r=0

Since the Betti numbers are topological invariants, x (K) is also conserved
under a homeomorphism. In particular, if f : |K| — X and g : |[K'| - X are
two triangulations of X, we have x (K) = x(K'). Thus, it makes sense to define
the Euler characteristic of X by x (K) for any triangulation (K, f) of X.

Figure 3.13. A holein § 2 whose edges are identified as shown. We may consider 52 with
g such holes.



Problems

3.1 The most general orientable two-dimensional surface is a 2-sphere with A
handles and g holes. Compute the homology groups and the Euler characteristic
of this surface.

3.2 Consider a sphere with a hole and identify the edges of the hole as shown in
figure 3.13. The surface we obtained was simply the projective plane RP2. More
generally, consider a sphere with ¢ such ‘crosscaps’ and compute the homology
groups and the Euler characteristic of this surface.



HOMOTOPY GROUPS

The idea of homology groups in the previous chapter was to assign a group
structure to cycles that are not boundaries. In homotopy groups, however, we
are interested in continuous deformation of maps one to another. Let X and Y
be topological spaces and let 3 be the set of continuous maps, from X to Y. We
introduce an equivalence relation, called ‘homotopic to’, in F by which two maps
f, g € F are identified if the image f(X) is continuously deformed to g(X) in
Y. We choose X to be some standard topological spaces whose structures are
well known. For example, we may take the n-sphere S” as the standard space and
study all the maps from S” to Y to see how these maps are classified according to
homotopic equivalence. This is the basic idea of homotopy groups.

We will restrict ourselves to an elementary study of homotopy groups, which
is sufficient for the later discussion. Nash and Sen (1983) and Croom (1978)
complement this chapter.

4.1 Fundamental groups

4.1.1 Basic ideas

Let us look at figure 4.1. One disc has a hole in it, the other does not. What
characterizes the difference between these two discs? We note that any loop in
figure 4.1(b) can be continuously shrunk to a point. In contrast, the loop « in
figure 4.1(a) cannot be shrunk to a point due to the existence of a hole in it. Some
loops in figure 4.1(a) may be shrunk to a point while others cannot. We say a loop
« is homotopic to 8 if o can be obtained from 8 by a continuous deformation. For
example, any loop in Y is homotopic to a point. It turns out that ‘homotopic to’
is an equivalence relation, the equivalence class of which is called the homotopy
class. In figure 4.1, there is only one homotopy class associated with Y. In X,
each homotopy class is characterized by n € Z, n being the number of times the
loop encircles the hole; n < 0 if it winds clockwise, n > 0 if counterclockwise,
n = 0 if the loop does not wind round the hole. Moreover, Z is an additive group
and the group operation (addition) has a geometrical meaning; n 4+ m corresponds
to going round the hole first n times and then m times. The set of homotopy
classes is endowed with a group structure called the fundamental group.



Figure 4.1. A disc with a hole (a) and without a hole (b). The hole in (a) prevents the loop
o from shrinking to a point.

4.1.2 Paths and loops

Definition 4.1. Let X be a topological space and let I = [0, 1]. A continuous
map « : I — X is called a path with an initial point x¢ and an end point x; if
a(0) = xp and a(1) = x1. If ®(0) = «a(1) = xp, the path is called a loop with
base point xq (or a loop at xp).

For x € X, a constant path ¢, : I — X isdefined by c,(s) =x,s € [. A
constant path is also a constant loop since ¢, (0) = ¢, (1) = x. The set of paths
or loops in a topological space X may be endowed with an algebraic structure as
follows.

Definition 4.2. Let o, B : I — X be paths such that (1) = (0). The product of
a and B, denoted by « * B, is a path in X defined by

1
wxBls) = 12C9 ?issii 4.1

pas—1) 1

see figure 4.2. Since a(1) = B(0), o * B is a continuous map from I to X.
[Geometrically, @ * B corresponds to traversing the image «(/), in the first half,
then followed by 8 (/) in the remaining half. Note that the velocity is doubled.]

Definition 4.3. Leta : I — X be a path from xq to x1. The inverse path ! of
is defined by
o ls)=all—s) sel. 4.2)

[The inverse path a~! corresponds to traversing the image of « in the opposite
direction from x; to xg.]

Since a loop is a special path for which the initial point and end point agree,
the product of loops and the inverse of a loop are defined in exactly the same way.



B

a+f3
a(1) = B(0)

l

a(0)

Figure 4.2. The product « * 8 of paths & and 8 with a common end point.

It seems that a constant map cy is the unit element. However, it is not: o * a!
is not equal to cx ! We need a concept of homotopy to define a group operation in
the space of loops.

4.1.3 Homotopy

The algebraic structure of loops introduced earlier is not so useful as it is. For
example, the constant path is not exactly the unit element. We want to classify the
paths and loops according to a neat equivalence relation so that the equivalence
classes admit a group structure. It turns out that if we identify paths or loops that
can be deformed continuously one into another, the equivalence classes form a
group. Since we are primarily interested in loops, most definitions and theorems
are given for loops. However, it should be kept in mind that many statements are
also applied to paths with proper modifications.

Definition 4.4. Leta, B : I — X be loops at xg. They are said to be homotopic,
written as « ~ B, if there exists a continuous map F : I x I — X such that

F(s,0) = a(s), F(s,1) = B(s) Vs el

(4.3)
FO,t) = F(1,1) = xo vVt e l.
The connecting map F is called a homotopy between « and .
It is helpful to represent a homotopy as figure 4.3(a). The vertical edges of
the square I x I are mapped to xo. The lower edge is a(s) while the upper edge
is B(s). In the space X, the image is continuously deformed as in figure 4.3(b).

Proposition 4.1. The relation o« ~ B is an equivalence relation.



B(s)

I % F(s, o) X
t

a(s)

Figure 4.3. (a) The square represents a homotopy F' interpolating the loops « and B. (b)
The image of « is continuously deformed to the image of 8 in real space X.

G
t
p
F
o
—
S

Figure 4.4. A homotopy H between « and y via B.

Proof. Reflectivity: o ~ «. The homotopy may be given by F(s,t) = «(s) for
anyt € I.
Symmetry: Let o ~ $ with the homotopy F (s, t) such that F(s, 0) = a(s),
F(s,1) = B(s). Then B ~ «, where the homotopy is given by F (s, 1 — 7).
Transitivity: Leta ~ fand 8 ~ y. Then o ~ y. If F(s, t) is a homotopy

between « and S and G(s,t) is a homotopy between S and y, a homotopy
between « and y may be (figure 4.4)

F(s, 2t) 0

His. 1) ==
s, 1) =
G(s,2t—1) L<t<



4.1.4 Fundamental groups

The equivalence class of loops is denoted by [«] and is called the homotopy
class of «. The product between loops naturally defines the product in the set of
homotopy classes of loops.

Definition 4.5. Let X be a topological space. The set of homotopy classes of loops
at xo € X is denoted by 71 (X, xo) and is called the fundamental group (or the
first homotopy group) of X at xo. The product of homotopy classes [«] and [S]
is defined by

la] *[B] = [« = B]. (4.4)

Lemma 4.1. The product of homotopy classes is independent of the representa-
tive, thatis, ifa ~ o’ and B ~ B/, thena * B ~a’ x B’.

Proof. Let F(s, t) be a homotopy between « and o’ and G(s, t) be a homotopy
between B and 8. Then

F(2s,1) 0
H(s, t) =

GQ2s —1,1)
is a homotopy between @ x 8 and o’ * B/, hence o * B ~ o’ * B’ and [a] * [B] is
well defined. d

Theorem 4.1. The fundamental group is a group. Namely, if o, 8, . . . are loops at
x € X, the following group properties are satisfied:

(1) (la] = [BD) = [¥] = [a] = ([B] * [¥]D
2) [a] * [cx] = [a] and [cy] * [@] = [@]  (unit element)
(3) [a] * [@~1] = [cx], hence [@]~! = [@~!] (inverse).

Proof. (1) Let F (s, t) be a homotopy between (« * 8) * ¢ and « * (8 * ). It may
be given by (figure 4.5(a))

4s 141t
o 0<s<—
14+t 4
1+1¢ 2+t
F(,)=3p@ls—t—1) — <s<—
4 4
ds —t —2 2+t
y <s <l.
2—t 4

Thus, we may simply write [« * 8 * y] to denote [(« x ) * y] or [« * (B * y)].



Y a
t t
a f v a Cx
— —_—
S S

Figure 4.5. (a) A homotopy between (« * B) *y and « * (B * y). (b) A homotopy between
o % cy and «.

(2) Define a homotopy F (s, t) by (figure 4.5(b))

2s t+1
* 141 O=s= 2
F(s,t) =

t+1
X — <s<l1.

2
Clearly this is a homotopy between « * ¢, and «. Similarly, a homotopy between
¢y * a and « is given by

-2
F(s,t) =
(s.2) 2s — 141t 1—t< <1
) .
* 1+1¢ 2 T~

This shows that [«] * [cx] = [a] = [cx] * [].
(3)Defineamap F : I x I — X by

Fs.1) = a(2s(1 —1)) 0<
YU le@ - -1y 1<

Clearly F(s,0) = o * o~ land F(s, 1) = ¢y, hence

[ x ™' = [a] * [0 '] = [ex].

This shows that [@ '] = [a]~!. O

In summary, 1 (X, x) is a group whose unit element is the homotopy class
of the constant loop cx. The product [«] * [B] is well defined and satisfies the



1

Figure 4.6. From a loop « at xg, aloop ™" * « % 1 at x| is constructed.

group axioms. The inverse of [«] is [@]7! = [@~!]. In the next section we
study the general properties of fundamental groups, which simplify the actual
computations.

4.2 General properties of fundamental groups

4.2.1 Arcwise connectedness and fundamental groups

In section 2.3 we defined a topological space X to be arcwise connected if, for
any xo, x1 € X, there exists a path « such that «(0) = x¢ and «(1) = x7.

Theorem 4.2. Let X be an arcwise connected topological space and let xp, x; €
X. Then 1 (X, x¢) is isomorphic to 1 (X, x1).

Proof. Let n : I — X be a path such that n(0) = xp and n(1) = xj.
If « is a loop at xq, then n~ ! x o % 1 is a loop at x| (figure 4.6). Given an
element [o] € 71(X, x0), this correspondence induces a unique element [o'] =
[n’1 * o x 1] € w1 (X, x1). We denote this map by P, : m1(X, xo) — m1(X, x1)
so that [/] = P, ([«]).

We show that P, is an isomorphism. First, Py is a homomorphism, since for
[a], [B] € 71 (X, x0), we have

Pyl * [B]) = [~ % [a] * [B] * [7]
= [~ "% [ed * ] * [n "1 [B1* ]
= P,([a]) * P, ([B]).

To show that P, is bijective, we introduce the inverse of P,. Define a map
P,)’1 s (X, x1) = m1(X, xo) whose action on [¢] is Pn’1 (') = [pxaxn=1].



Clearly P~! is the inverse of P, since
PrloPy(lel) = Py (I s x ) = xn xaxnxn '] =[al.

Thus, P, ' o P = idx, (x,xp)- From the symmetry, we have P o P! = idy, (x.x))-
We find from exercise 2.3 that P, is one to one and onto. O

Accordingly, if X is arcwise connected, we do not need to specify the base
point since 71 (X, xo) = 71(X, x1) for any xo, x; € X, and we may simply write
m1(X).

Exercise 4.1. (1) Let n and ¢ be paths from xq to x1, such that n ~ ¢. Show that
P, = P;.
(2) Let ny and ¢ be paths such that n(1) = ¢(0). Show that Py,; = P; o Py.

4.2.2 Homotopic invariance of fundamental groups

The homotopic equivalence of paths and loops is easily generalized to arbitrary
maps. Let f, g : X — Y be continuous maps. If there exists a continuous map
F: X x I — Y suchthat F(x,0) = f(x) and F(x, 1) = g(x), f is said to be
homotopic to g, denoted by f ~ g. The map F is called a homotopy between f
and g.

Definition 4.6. Let X and Y be topological spaces. X and Y are of the same
homotopy type, written as X =~ Y, if there exist continuous maps f : X — Y
and g : Y — X suchthat fog ~ idy and g o f ~ idxy. The map f is
called the homotopy equivalence and g, its homotopy inverse. [Remark: If X is
homeomorphic to ¥, X and Y are of the same homotopy type but the converse is
not necessarily true. For example, a point {p} and the real line R are of the same
homotopy type but { p} is not homeomorphic to R.]

Proposition 4.2. ‘Of the same homotopy type’ is an equivalence relation in the
set of topological spaces.

Proof. Reflectivity: X ~ X where idy is a homotopy equivalence. Symmetry:
Let X ~ Y with the homotopy equivalence f : X — Y. Then Y ~ X, the
homotopy equivalence being the homotopy inverse of f. Transitivity: Let X ~ Y
andY ~ Z. Suppose f : X — Y, g : Y — Z are homotopy equivalences and
'Y —> X,g :Z — Y, their homotopy inverses. Then

(8o f)(f'og)=g(fof)g ~goidyog =gog ~idz
(f'oghgof)=f'(gog)f ~ floldyof=fof~idy

from which it follows X >~ Z. O



Figure 4.7. The circle R is a retract of the annulus X. The arrows depict the action of the
retraction.

One of the most remarkable properties of the fundamental groups is that two
topological spaces of the same homotopy type have the same fundamental group.

Theorem 4.3. Let X and Y be topological spaces of the same homotopy type. If
f : X — Y is a homotopy equivalence, 1 (X, xo) is isomorphic to 71 (Y, f(x0)).

The following corollary follows directly from theorem 4.3.

Corollary 4.1. A fundamental group is invariant under homeomorphisms, and
hence is a topological invariant.

In this sense, we must admit that fundamental groups classify topological
spaces in a less strict manner than homeomorphisms. What we claim at most is
that if topological spaces X and Y have different fundamental groups, X cannot
be homeomorphic to Y. Note, however, that the homotopy groups including the
fundamental groups have many applications to physics as we shall see in due
course. We should stress that the main usage of the homotopy groups in physics
is not to classify spaces but to classify maps or field configurations.

It is rather difficult to appreciate what is meant by ‘of the same homotopy
type’ for an arbitrary pair of X and Y. In practice, however, it often happens that
Y is a subspace of X. We then claim that X ~ Y if Y is obtained by a continuous
deformation of X.

Definition 4.7. Let R (#0) be a subspace of X. If there exists a continuous map
f : X — Rsuchthat f|g =idg, R is called a retract of X and f a retraction.

Note that the whole of X is mapped onto R keeping points in R fixed.
Figure 4.7 is an example of a retract and retraction.



Figure 4.8. The circle R is not a deformation retract of X.

Definition 4.8. Let R be a subspace of X. If there exists a continuous map
H : X x I — X such that
H(x,0)=x H(x,1)e R forany x € X 4.5)
Hx,t)=x foranyx € Randanyt € I. (4.6)
The space R is said to be a deformation retract of X. Note that H is a homotopy

between idx and a retraction f : X — R, which leaves all the points in R fixed
during deformation.

A retract is not necessarily a deformation retract. In figure 4.8, the circle R
is a retract of X but not a deformation retract, since the hole in X is an obstruction
to continuous deformation of idx to the retraction. Since X and R are of the same
homotopy type, we have

m(X,a) Em(R,a) a€R. “4.7)

Example 4.1. Let X be the unit circle and Y be the annulus,

X ={?0 <0 <27} (4.8)
Y={r’l0<0<2n, 1 <r<? (4.9)
see figure 4.7. Define f : X < Y by f(e¥) = e andg : ¥ — X by

g(re?) = ¢l Then fog:re? > e and go f : e — e?. Observe that
f og ~idy and g o f = idyx. There exists a homotopy

Hre? ty={1+ ¢ — 1)1 —1)e

which interpolates between idxy and f o g, keeping the points on X fixed.
Hence, X is a deformation retract of Y. As for the fundamental groups we have
m1(X,a) Em(Y,a) wherea € X.



Definition 4.9. If a point a € X is a deformation retract of X, X is said to be
contractible.

Letc, : X — {a} be a constant map. If X is contractible, there exists a
homotopy H : X x I — X such that H(x,0) = ¢,(x) = aand H(x,1) =
idx(x) = x for any x € X and, moreover, H(a,t) = a for any t € I. The
homotopy H is called the contraction.

Example 4.2. X = R" is contractible to the origin 0. In fact, if we define
H:R'xI — Rby H(x,t) = tx, we have (i) H(x,0) =0and H(x,1) = x
for any x € X and (ii) H(0, 1) = O for any ¢t € I. Now it is clear that any convex
subset of R" is contractible.

Exercise 4.2. Let D? = {(x,y) € R? |)c2 + y2 < 1}. Show that the unit circle
S! is a deformation retract of D> — {0}. Show also that the unit sphere S” is a
deformation retract of D"*! — {0}, where D"*! = {x € R*!||x| < 1}.

Theorem 4.4. The fundamental group of a contractible space X is trivial,
m1(X,x0) = {e}. In particular, the fundamental group of R" is trivial,
71 (R, x0) = {e}.

Proof. A contractible space has the same fundamental group as a point {p} and a
point has a trivial fundamental group. O

If an arcwise connected space X has a trivial fundamental group, X is said
to be simply connected, see section 2.3.

4.3 Examples of fundamental groups

There does not exist a routine procedure to compute the fundamental groups,
in general. However, in certain cases, they are obtained by relatively simple
considerations. Here we look at the fundamental groups of the circle S! and
related spaces.

Let us express S' as {z € C||z] = 1}. Defineamap p : R — S! by
p : x — exp(ix). Under p, the point 0 € R is mapped to 1 € S!, which is
taken to be the base point. We imagine that R wraps around S! under p, see
figure 4.9. If x, y € R satisfies x — y = 2nm(m € Z), they are mapped to the
same point in S'. Then we write x ~ y. This is an equivalence relation and the
equivalence class [x] = {y|x — y = 27m for some m € 7} is identified with
a point exp(ix) € S'. It then follows that S' = R/277Z. Let f : R — R be
a continuous map such that f (0) = 0 and f (x 4+ 2m) ~ f (x). It is obvious
that f(x +27) = f(x) + 2nm for any x € R, where n is a fixed integer. If
x ~y(x —y=2mm), we have

FOO) = F) = f(y+2mm) — f(y)
= F(y) + 2mn — F(y) = 2wmn
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Figure 4.9. Themap p : R — § I defined by x + exp(ix) projects x + 2mm to the same
point on S1, while f' : R — R, such that f(O) = 0 and f'(x +27m) = f'(x) + 2nm for
fixed n, defines amap f : S I 5 sl The integer n specifies the homotopy class to which
f belongs.

hence f(x) ~ f(y). Accordingly, f : R — R uniquely defines a continuous
map f : R/27Z — R/2nZ by f([x]) = po f(x), see figure 4.9. Note that f
keeps the base point 1 € S! fixed. Conversely, given amap f : S — S!, which
leaves 1 € s! fixed, we may define a map f : R — R such that £(0) = 0 and
fx+2m) = f(x)+2mn.

In summary, there is a one-to-one correspondence between the set of maps
from S! to S! with £(1) = 1 and the set of maps from R to R such that f(0) = 0
and f(x +2m) = f(x) + 2mn. The integer n is called the degree of f and is
denoted by deg( f). While x encircles S' once, f(x) encircles S! n times.

Lemma4.2. (1) Let f,g : S' — S! such that f(1) = g(1) = 1. Then
deg(f) = deg(g) if and only if f is homotopic to g.
(2) For any n € 7, there exists amap f : S' — S! such that deg(f) = n.



Proof. (1) Let deg(f) = deg(g) and f g : R — R be the correspondlng maps.
Then F(x 1) = tf(x) + (1 - t)g(x) is a homotopy between f(x) and g(x). It
is easy to verify that F = p o Fisa homotopy between f and g. Conversely,
if f ~g: 8" — S there exists a homotopy F : S! x I — S! such that
F(1,1) = 1 forany ¢+ € I. The corresponding homotopy F : R x I — R
between f and g satisfies F(x 42w, 1) = F(x, ) 4+ 2n7w for some n € Z. Thus,

deg(f) = deg(g).
(2)f X +— nx induces a map f : st — st with deg(f) = n. (|

Lemma 4.2 tells us that by assigning an integer deg( f) toamap f : S' — §!
such that f(1) = 1, there is a bijection between 7] (S', 1) and Z. Moreover, this
is an isomorphism. In fact, for f, g : S' — S!, f % g, defined as a product of
loops, satisfies deg(f * g) = deg(f) + deg(g). [Let f(x 4+ 27) = f(x) + 27n
and g(x + 2m) = g(x) + 2mm. Then f x g(x +27) = f * g(x) + 2w (m + n).
Note that * is not a composite of maps but a product of paths.] We have finally
proved the following theorem.

Theorem 4.5. The fundamental group of S' is isomorphic to Z,
m(sh = Z. (4.10)
[Since S! is arcwise connected, we may drop the base point.]

Although the proof of the theorem is not too obvious, the statement itself is
easily understood even by children. Suppose we encircle a cylinder with an elastic
band. If it encircles the cylinder n times, the configuration cannot be continuously
deformed into that with m (#n) encirclements. If an elastic band encircles a
cylinder first n times and then m times, it encircles the cylinder n 4+ m times in
total.

4.3.1 Fundamental group of torus

Theorem 4.6. Let X and Y be arcwise connected topological spaces. Then
w1 (X x Y, (x0, ¥0)) is isomorphic to w1 (X, xo) & 71 (Y, yo).

Proof. Define projections p; : X xY — Xand pp : X xY — Y. Ifaisa
loop in X x Y at (xg, yo), @1 = p1(«) is a loop in X at xp, and oy = pr (@)
is a loop in Y at yg. Conversely, any pair of loops o of X at xg and oy of ¥
at yp determines a unique loop @ = (o1, @2) of X x Y at (xg, yg). Define a
homomorphism ¢ : 71(X X Y, (x0, y0)) — 71(X, x0) ® m1(Y, yo) by

o([a]) = ([o1], [a2]).

By construction ¢ has an inverse, hence it is the required isomorphism and
71X x Y, (x0, y0)) = w1 (X, x0) ® 71 (¥, o). O



Example 4.3. (1) Let T2 = S x S! be a torus. Then
nrHznshenSHzzez. (4.11)
Similarly, for the n-dimensional torus

T" =S x S x ... x !

n

we have
Tn(THEZOZD---D7Z. 4.12)
—_————

n

(2)LetX = S!' xRbea cylinder. Since 71 (R) = {e}, we have

X)) =T fe) = 7. (4.13)

4.4 Fundamental groups of polyhedra

The computation of fundamental groups in the previous section was, in a sense, ad
hoc and we certainly need a more systematic way of computing the fundamental
groups. Fortunately if a space X is triangulable, we can compute the fundamental
group of the polyhedron K, and hence that of X by a routine procedure. Let us
start with some aspects of group theories.

4.4.1 Free groups and relations

The free groups that we define here are not necessarily Abelian and we employ
multiplicative notation for the group operation. A subset X = {x;} of a group G
is called a free set of generators of G if any element g € G — {e} is uniquely
written as o

g =)clllxé2 'o'x,"[’ (4.14)
where n is finite and iy € Z. We assume no adjacent x; are equal; x; # xjy1.
Ifi; = 1, x;! is simply written as x;. If i; = 0, the term x;° should be dropped
from g. For example, g = a’b~2ch? is acceptable but 1 = a3a=2cb? is not. If
each element is to be written uniquely, # must be reduced to & = ac. If G has a
free set of generators, it is called a free group.

Conversely, given a set X, we can construct a free group G whose free set of

generators is X. Let us call each element of X a letter. The product

w=x|'x2--xh (4.15)
is called a word, where x; € X andi; € Z.If i; # 0 and x; # x4 the word is
called a reduced word. It is always possible to reduce a word by finite steps. For
example,

a?b7303a* b2t = a7 2% b3t = aPbi e



A word with no letters is called an empty word and denoted by 1. For example,
it is obtained by reducing w = a°.

A product of words is defined by simply juxtaposing two words. Note that a
juxtaposition of reduced words is not necessarily reduced but it is always possible
to reduce it. For example, if v = a’c3b% and w = b~ 2c%b3, the product vw is
reduced as

vw = a®c 3223 = a3 = aPe bR,

Thus, the set of all reduced words form a well-defined free group called the free
group generated by X, denoted by F[X]. The multiplication is the juxtaposition
of two words followed by reduction, the unit element is the empty word and the
inverse of

SO VIO S
w = x| X, X,

18

Exercise 4.3. Let X = {a}. Show that the free group generated by X is
isomorphic to Z.

In general, an arbitrary group G is specified by the generators and certain
constraints that these must satisfy. If {x;} is the set of generators, the constraints
are most commonly written as

r=xlxleooxt =1 (4.16)

and are called relations. For example, the cyclic group of order n generated by x
(in multiplicative notation) satisfies a relation x” = 1.

More formally, let G be a group which is generated by X = {x;}. Any
element g € G is written as g = xilx£2 ... x,", where we do not require that
the expression be unique (G is not necessarily free). For example, we have
x! = x"*1in Z. Let F[X] be the free group generated by X. Then there is a
natural homomorphism ¢ from F[X] onto G defined by

Kl B iyl yin e G (4.17)

Note that this is not an isomorphism since the LHS is not unique. ¢ is onto since X

generates both F[X] and G. Although F[X] is not isomorphic to G, F[X]/ ker ¢
is (see theorem 3.1),

F[X]/kergp = G. (4.18)

In this sense, the set of generators X and ker ¢ completely determine the group
G. [kerg is a normal subgroup. Lemma 3.1 claims that ker¢ is a subgroup
of F[X]. Letr € kerg, thatis, r € F[X] and ¢(r) = 1. For any element
x € FIX], we have p(x~'rx) = ¢(x"Dopp(x) = ¢ p(e() = 1,
hence x " 'rx € kerg.]



In this way, a group G generated by X is specified by the relations. The
juxtaposition of generators and relations

(X1, oo Xps T, - n, Fg) (4.19)
is called the presentation of G. For example, Z, = (x; x") and Z = (x; ).

Example 4.4. Let Z @ Z = {x"y™|n, m € Z} be a free Abelian group generated
by X = {x, y}. Then we have xy = yx. Since xyx~'y~! = 1, we have a relation
r = xyx~'y~l. The presentation of Z @ Z is (x, y : xyx~y~1).

4.4.2 Calculating fundamental groups of polyhedra

We shall be sketchy here to avoid getting into the technical details. We
shall follow Armstrong (1983); the interested reader should consult this book
or any textbook on algebraic topology. As noted in the previous chapter, a
polyhedron |K| is a nice approximation of a given topological space X within
a homeomorphism. Since fundamental groups are topological invariants, we have
m1(X) = 71 (|K|). We assume X is an arcwise connected space and drop the base
point. Accordingly, if we have a systematic way of computing 71 (| K|), we can
also find 71 (X).

We first define the edge group of a simplicial complex, which corresponds to
the fundamental group of a topological space, then introduce a convenient way of
computing it. Let f : |K| — X be a triangulation of a topological space X. If we
note that an element of the fundamental group of X can be represented by loops
in X, we expect that similar loops must exist in | K | as well. Since any loop in |K |
is made up of 1-simplexes, we look at the set of all 1-simplexes in | K |, which can
be endowed with a group structure called the edge group of K.

An edge path in a simplicial complex K is a sequence vgvy . . . v of vertices
of |K|, in which the consecutive pair v;v;4+] is a 0- or 1-simplex of |K|. [For
technical reasons, we allow the possibility v; = v;11, in which case the relevant
simplex is a O-simplex v; = v;j41.] If v9 = v (=v), the edge path is called
an edge loop at v. We classify these loops into equivalence classes according to
some equivalence relation. We define two edge loops « and B to be equivalent
if one is obtained from the other by repeating the following operations a finite
number of times.

(1) If the vertices u, v and w span a 2-simplex in K, the edge path uvw may
be replaced by uw and vice versa; see figure 4.10(a).

(2) As a special case, if # = w in (1), the edge path uvw corresponds to
traversing along uv first then reversing backwards from v to w = u. This edge
path uvu may be replaced by a 0-simplex u and vice versa, see figure 4.10(D).

Let us denote the equivalence class of edge loops at v, to which vvy ... vg—1v
belongs, by {vv; ... vg—1v}. The set of equivalence classes forms a group under
the product operation defined by

{vuy ... .ug—1v} = {vvy...vi—jv} = {vuyr...ug—1vvy...vi—1v}. (4.20)



Figure 4.10. Possible deformations of the edge loops. In (a), uvw is replaced by uw. In
(b), uvu is replaced by u.

The unit element is an equivalence class {v} while the inverse of {vvy ... vg_1v}
is {vvg_1 ... v1v}. This group is called the edge group of K at v and denoted by
E(K;v).

Theorem 4.7. E(K; v) is isomorphic to 71 (| K |; v).

The proof is found in Armstrong (1983), for example. This isomorphism
¢ : E(K;v) = m(JK|; v) is given by identifying an edge loop in K with a loop
in |K|. To find E(K; v), we need to read off the generators and relations. Let L
be a simplicial subcomplex of K, such that

(a) L contains all the vertices (0-simplexes) of K;
(b) the polyhedron |L| is arcwise connected and simply connected.

Given an arcwise-connected simplicial complex K, there always exists a
subcomplex L that satisfies these conditions. A one-dimensional simplicial
complex that is arcwise connected and simply connected is called a tree. A tree
T is called the maximal tree of K if it is not a proper subset of other trees.

Lemma 4.3. A maximal tree Ty contains all the vertices of K and hence satisfies
conditions (a) and (b) above.

Proof. Suppose Ty does not contain some vertex w. Since K is arcwise
connected, there is a 1-simplex vw in K suchthatv € Ty and w & Ty, Tm Y
{vw} U {w} is a one-dimensional subcomplex of K which is arcwise connected,
simply connected and contains 7y, which contradicts the assumption. O

Suppose we have somehow obtained the subcomplex L. Since |L| is simply
connected, the edge loops in |L| do not contribute to E(K; v). Thus, we can
effectively ignore the simplexes in L in our calculations. Let vg (=v), vy, ..., vy,
be the vertices of K. Assign an ‘object’ g;; for each ordered pair of vertices v;, v;
if (v;v;) is a 1-simplex of K. Let G(K; L) be a group that is generated by all g;;.
What about the relations? We have the following.



(1) Since we ignore those simplexes in L, we assign g;; = 1if (v;v;) € L.
(2) If (vjvjuv) is a 2-simplex of K, there are no non-trivial loops around v; v v
and we have the relation g;; gjxgki = 1.

The generators {g;;} and the set of relations completely determine the group
G(K; L).

Theorem 4.8. G(K; L) is isomorphicto E(K; v) ~ w1 (|K|[; v).

In fact, we can be more efficient than is apparent. For example, g;; should
be set equal to 1 since g;; corresponds to the vertex v; which is an element of
L. Moreover, from g;jg;i = gii = 1, we have g;; = gj_il. Therefore, we only
need to introduce those generators g;; for each pair of vertices v;, v; such that
(vivj) € K—Landi < j. Since there are no generators g;; such that (v;v;) € L,
we can ignore the first type of relation. If (v;v;vg) is a 2-simplex of K — L such
thati < j < k, the corresponding relation is uniquely given by g;jgjr = gik
since we are only concerned with simplexes (v;v;) such thati < j.

To summarize, the rules of the game are as follows.

(1) First, find a triangulation f : |K| — X.

(2) Find the subcomplex L that is arcwise connected, simply connected and
contains all the vertices of K.

(3) Assign a generator g;; to each 1-simplex (v;v;) of K — L, for whichi < j.

(4) Impose a relation g;;gjk = g if there is a 2-simplex (v;v;v) such that
i < j < k. If two of the vertices v;, v; and vy form a 1-simplex of L, the
corresponding generator should be set equal to 1.

(5) Now m1(X) is isomorphic to G(K; L) which is a group generated by {g;;}
with the relations obtained in (4).

Let us work out several examples.

Example 4.5. From our construction, it should be clear that E(K; v) and G(K; L)
involve only the 0-, 1- and 2-simplexes of K. Accordingly, if K® denotes a 2-
skeleton of K, which is defined to be the set of all 0-, 1- and 2-simplexes in K,
we should have

(K] Z mi (1K), (4.21)

This is quite useful in actual computations. For example, a 3-simplex and its
boundary have the same 2-skeleton. A 3-simplex is a polyhedron | K| of the solid
ball D3, while its boundary |L| is a polyhedron of the sphere S. Since D3 is
contractible, 71 (|K|) = {e}. From (4.21) we find m(SZ) = m(K|) = {e}. In
general, for n > 2, the (n + 1)-simplex 0,41 and the boundary of o, have the
same 2-skeleton. If we note that 0,41 is contractible and the boundary of 0,11 is
a polyhedron of §”, we find the formula

71(8") = {e} n>2. (4.22)
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Figure 4.11. A triangulation of a 3-bouquet. The bold lines denote the maximal tree L.

Example 4.6. Let K = {v1, v, v3, (V1v2), (V1v3), (12v3)} be a simplicial
complex of a circle S'. We take v; as the base point. A maximal tree may be
L = {v1, v2, v3, (v1v2), (v1v3)}. There is only one generator g»3. Since there are
no 2-simplexes in K, the relation is empty. Hence,

7 (SH = GK; L) = (g23:0) =L (4.23)
in agreement with theorem 4.5.

Example 4.7. An n-bouquet is defined by the one-point union of n circles. For
example, figure 4.11 is a triangulation of a 3-bouquet. Take the common point
v as the base point. The bold lines in figure 4.11 form a maximal tree L. The
generators of G(K; L) are g12, g34 and g5¢. There are no relations and we find

m1(3-bouquet) = G(K; L) = (x, v, z; ¥). (4.24)

Note that this is a free group but not free Abelian. The non-commutativity can
be shown as follows. Consider loops « and S at v encircling different holes.
Obviously the product o % % ~! cannot be continuously deformed into 8, hence

la]  [B]* [a] ™! # [B]. or
[a] * [B] # [B] * [o]. (4.25)
In general, an n-bouquet has n generators gi2,..., &n—12, and the

fundamental group is isomorphic to the free group with n generators with no
relations.
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Figure 4.12. A triangulation of the torus.

Example 4.8. Let D? be a two-dimensional disc. A triangulation K of D? is given
by a triangle with its interior included. Clearly K itself may be L and K — L is
empty. Thus, we find 71 (K) = {e}.

Example 4.9. Figure 4.12 is a triangulation of the torus 72. The shaded area is
chosen to be the subcomplex L. [Verify that it contains all the vertices and is both
arcwise and simply connected.] There are 11 generators with ten relations. Let us
take x = go2 and y = go4 and write down the relations

(a)

(b)

(©

(@

(e)

®

802
X

803
1

837
X

834
1

824

802

827
1

837
878
1
848
848
X

824

807

807
X

838
838
X

828

804

—

g07 =X
g7 =x
g =x
g4g =X
824X = g28
Xgu =y



(o) 804 846 = 806 —> 806 =Y

y 1

(h) 801 816 = 806 — &l6=1Y
1 y

) 816 88 = 818 — &I8=1Y
y 1

)] 812 838 = L1838 — &ny=Y
1 y ’

It follows from (e) and (f) that x ! yx = gog. We finally have

802 = 807 = £37 = 838 = 848 = X
804 = 806 = 816 = 818 = 828 =Y
gu=x"'y

with a relation x 'yx = y or

xyx~hy Tl =1. (4.26)

This shows that G(K; L) is generated by two commutative generators (note
xy = yx), hence (cf example 4.4)

GK;L)=(x,y;xyx 'y hzzez (4.27)

in agreement with (4.11).

We have the following intuitive picture. Consider loops ¢ = 0 — 1 —
2—>0and 8 =0 — 3 - 4 — 0. The loop « is identified with x = gg» since
g12 = go1 = | and B with y = go4. They generate 71 (T2) since « and 8 are
independent non-trivial loops. In terms of these, the relation is written as

axpBxralxpl ~c, (4.28)

where ¢, is a constant loop at v, see figure 4.13.

More generally, let X, be the torus with genus g. As we have shown in
problem 2.1, X, is expressed as a subset of R?> with proper identifications at
the boundary. The fundamental group of X, is generated by 2g loops «;, B;
(1 <i < g). Similarly, to (4.28), we verify that

8
l_[(ai ¥ Bixa w1 ~ ¢ (4.29)

i=1

If we denote the generators corresponding to «; by x; and §; by y;, there is only
one relation among them,

8
[Jeavix vy h =1 (4.30)
i=1
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Figure 4.13. The loops « and B satisfy the relation « * g * alxpg=l ~cp.

0 1 2 X 0
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0 X 2 - 1 0

Figure 4.14. A triangulation of the Klein bottle.

Exercise 4.4. Figure 4.14 is a triangulation of the Klein bottle. The shaded area is
the subcomplex L. There are 11 generators and ten relations. Take x = go2 and
y = gos and write down the relations for 2-simplexes to show that

1 (Klein bottle) = (x, y; xyxyfl). 4.31)

Example 4.10. Figure 4.15 is a triangulation of the projective plane RP>. The
shaded area is the subcomplex L. There are seven generators and six relations.



Figure 4.15. A triangulation of the projective plane.

Let us take x = g»3 and write down the relations

(@ g3 gu = gu — gu=x
X 1
(b) 824 846 = 826 —> 86=2X
X 1
© g12 86 = 816 — &l6=X
1 X
d 813 836 = gl6 —> 86=2X
1 X
() 835 86 = &6 — 85 =X
1 x
) g3 g5 = gs — x*=1
X X 1

Hence, we find that
71 (RP?) = (x; x%) = Zo. (4.32)

Intuitively, the appearance of a cyclic group is understood as follows.
Figure 4.16(a) is a schematic picture of RP%. Take loops « and B. It is easy
to see that « is continuously deformed to a point, and hence is a trivial element of
71 (RP?). Since diametrically opposite points are identified in RPZ, B is actually
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a Q=q a Q=P
7\ N
g VAR
P P=FP P P=0Q

Figure 4.16. (a) « is a trivial loop while the loop $ cannot be shrunk to a point. (b)  * 8
is continuously shrunk to a point.

a closed loop. Since it cannot be shrunk to a point, it is a non-trivial element of
71 (RP?). What about the product? 8 * 8 is a loop which traverses from P to Q ~
P twice. It can be read off from figure 4.16(b) that 8 *x 8 is continuously shrunk
to a point, and thus belongs to the trivial class. This shows that the generator x,
corresponding to the homotopy class of the loop S, satisfies the relation x> = 1,
which verifies our result.

The same pictures can be used to show that

T (RP3) = 7, (4.33)

where RP3 is identified as S° with diametrically opposite points identified,
RP3 = $3/(x ~ —x). If we take the hemisphere of S° as the representative,
RP3 can be expressed as a solid ball D? with diametrically opposite points on the
surface identified. If the discs D? in figure 4.16 are interpreted as solid balls D3,
the same pictures verify (4.33).

Exercise 4.5. A triangulation of the Mobius strip is given by figure 3.8. Find the
maximal tree and show that

1 (Mobius strip) = Z. (4.34)

[Note: Of course the Mdbius strip is of the same homotopy type as S', hence
(4.34) is trivial. The reader is asked to obtain this result through routine
procedures.]

4.4.3 Relations between H1(K) and 71(|K]|)

The reader might have noticed that there is a certain similarity between the first
homology group H;(K) and the fundamental group 71 (| K|). For example, the
fundamental groups of many spaces (circle, disc, n-spheres, torus and many more)
are identical to the corresponding first homology group. In some cases, however,
they are different: Hi(2-bouquet) = 7Z & Z and 71 (2-bouquet) = (x, y : @), for



example. Note that Hj(2-bouquet) is a free Abelian group while 71 (2-bouquet)
is a free group. The following theorem relates 771 (| K|) to H{(K).

Theorem 4.9. Let K be a connected simplicial complex. Then Hi(K) is
isomorphic to 71 (|K|)/F, where F is the commutator subgroup (see later) of
i (|KY).

Let G be a group whose presentation is (xj; 7). The commutator
subgroup F of G is a group generated by the elements of the form x;x jxi_lxj_l.
Thus, G/F is a group generated by {x;} with the set of relations {r,} and

{xixjxl._lxj 1}. The theorem states that if 71 (|K|) = (x; : ry), then H{(K) =

(xi = rm, xixjxi_lxj_l). For example, from 1 (2-bouquet) = (x, y : ), we find

w1 (2-bouquet)/ F = (x, y; xwx by hzzez

which is isomorphic to Hj(2-bouquet).
The proof of theorem 4.9 is found in Greenberg and Harper (1981) and also
outlined in Croom (1978).

Example 4.11. From 1 (Klein bottle) = (x, y; xyxy~!), we have

m1(Klein bottle) / F = (x, y; xyxyil, xyxilyfl).

1

Two relations are replaced by x> = 1 and xyx~'y~! = 1 to yield

71(Klein bottle) /F = (x, y; xyx " ly~!, PR YAV
= H;(Klein bottle)

where the factor Z is generated by y and Z» by x.

Corollary 4.2. Let X be a connected topological space. Then 1 (X) is isomorphic
to H1(X) if and only if 1 (X) is commutative. In particular, if 1 (X) is generated
by one generator, 1 (X) is always isomorphic to H1(X). [Use theorem 4.9.]

Corollary 4.3. If X and Y are of the same homotopy type, their first homology
groups are identical: H{(X) = H{(Y). [Use theorems 4.9 and 4.3.]

4.5 Higher homotopy groups

The fundamental group classifies the homotopy classes of loops in a topological
space X. There are many ways to assign other groups to X. For example, we may
classify homotopy classes of the spheres in X or homotopy classes of the tori in
X. It turns out that the homotopy classes of the sphere S” (n > 2) form a group
similar to the fundamental group.



4.5.1 Definitions

Let I" (n > 1) denote the unit n-cube I x --- x I,

I" ={(s1,...,s)0<s; <1(1 <i <n)}. (4.35)
The boundary 91" is the geometrical boundary of 1",

oI" = {(s1,...,s,) € I'| some s; =0 or 1}. (4.36)

We recall that in the fundamental group, the boundary 9/ of I = [0, 1] is mapped
to the base point x¢. Similarly, we assume here that we shall be concerned with
continuous maps « : 1" — X, which map the boundary 97" to a point xg € X.
Since the boundary is mapped to a single point xo, we have effectively obtained
S™ from I"; cf figure 2.8. If 1" /91" denotes the cube I whose boundary 91" is
shrunk to a point, we have /" /91" = §". The map « is called an n-loop at xp. A
straightforward generalization of definition 4.4 is as follows.

Definition 4.10. Let X be a topological space and «, 8 : I" — X be n-loops at
xo € X. The map « is homotopic to 8, denoted by o ~ B, if there exists a
continuous map F : I" x I — X such that

F(s1,...,85:,0) =a(s1,...,5n) (4.37a)
F(Sls"'vsnvl)zﬁ(sli"'vsn) (4‘37b)
F(st,...,8:,1) =x0 for (s1,...,sp) € oI, t e l. (4.37¢)

F is called a homotopy between « and 8.

Exercise 4.6. Show that « ~ B is an equivalence relation. The equivalence class
to which « belongs is called the homotopy class of o and is denoted by [«].

Let us define the group operations. The product « * 8 of n-loops @ and g is
defined by

1

o (2851, ..., 8,) 0 3
1.

B2si—1,.... 50

S1

axB(S1,...,8n) = : (4.38)

A IA
IA A

S1

=

The product « * B looks like figure 4.17(a) in X. It is helpful to express it as
figure 4.17(b). If we define o' by

ofl(sl,...,sn)Eot(l—s1,...,sn) (4.39)

it satisfies
a”! *o(S1,...,8,) ~ *a_l(s1, e Sn) ™~ Cxo (ST, .y Sn) (4.40)
where cy, is a constant n-loop at xo € X, ¢y, : (s1,...,8,) = xp. Verify that

both o % B and &~ ! are n-loops at xg.
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o)

Figure 4.17. A product « * 8 of n-loops « and .

Definition 4.11. Let X be a topological space. The set of homotopy classes of
n-loops (n > 1) at xg € X is denoted by 7, (X, x¢) and called the nth homotopy
group at xg. 7, (x, xo) is called the higher homotopy group if n > 2.

The product « * B just defined naturally induces a product of homotopy
classes defined by
[a] * [B] = [a * B] (4.41)

where o and 8 are n-loops at xg. The following exercises verify that this product
is well defined and satisfies the group axioms.

Exercise 4.7. Show that the product of n-loops defined by (4.41) is independent
of the representatives: cf lemma 4.1.

Exercise 4.8. Show that the nth homotopy group is a group. To prove this, the
following facts may be verified; cf theorem 4.1.

(D) ([ee] = [BD * [y] = [a] = ([B] = [y D.
() [a] * [cx] = [ex] * [a] = [a].

(3) [a] * [@~1] = [cy], which defines the inverse [¢]~! = [a¢™!].

We have excluded mo(X, xo) so far. Let us classify maps from I° to X. We
note 1 = {0} and 3/° = @. Let o, B : {0} — X be such that «(0) = x and
B(0) = y. We define o« ~ g if there exists a continuous map F : {0} x [ — X
such that F(0,0) = x and F(0, 1) = y. This shows that « ~ g if and only if
x and y are connected by a curve in X, namely they are in the same (arcwise)
connected component. Clearly this equivalence relation is independent of xo and
we simply denote the zeroth homology group by 7o(X). Note, however, that
o(X) is not a group and denotes the number of (arcwise) connected components
of X.



B

Figure 4.18. Higher homotopy groups are always commutative, o * 8 ~ 8 * .

4.6 General properties of higher homotopy groups

4.6.1 Abelian nature of higher homotopy groups

Higher homotopy groups are always Abelian; for any n-loops « and 8 at xg € X,
[] and [B] satisfy
[a] *[B] = [B]* [c]. (4.42)

To verify this assertion let us observe figure 4.18. Clearly the deformation is
homotopic at each step of the sequence. This shows that o * 8 ~ B * o, namely
[al = [B] = [B] * [c].

4.6.2 Arcwise connectedness and higher homotopy groups

If a topological space X is arcwise connected, m,(X, xo) is isomorphic to
(X, x1) for any pair xo, x; € X. The proof is parallel to that of theorem 4.2.
Accordingly, if X is arcwise connected, the base point need not be specified.

4.6.3 Homotopy invariance of higher homotopy groups

Let X and Y be topological spaces of the same homotopy type; see definition
4.6. If f : X — Y is a homotopy equivalence, the homotopy group 7, (X, x¢)
is isomorphic to 7, (Y, f(x0)); cf theorem 4.3. Topological invariance of higher
homotopy groups is the direct consequence of this fact. In particular, if X is
contractible, the homotopy groups are trivial: 7, (X, xo) = {e},n > 1.

4.6.4 Higher homotopy groups of a product space

Let X and Y be arcwise connected topological spaces. Then
(X X Y) ZEm,(X) ® m,(Y) (4.43)

cf theorem 4.6.

4.6.5 Universal covering spaces and higher homotopy groups

There are several cases in which the homotopy groups of one space are given by
the known homotopy groups of the other space. There is a remarkable property



between the higher homotopy groups of a topological space and its universal
covering space.

Definition 4.12. Let X and X be connected topological spaces. The pair (X, D),
or simply X, is called the covering space of X if there exists a continuous map
p : X — X such that

(1) p is surjective (onto)

(2) for each x € X, there exists a connected open set U C X containing
x, such that p’1 (U) is a disjoint union of open sets in )? each of which is
mapped homeomorphically onto U by p.

In particular, if X is simply connected, (f , p) is called the universal
covering space of X. [Remarks: Certain groups are known to be topological
spaces. They are called topological groups. For example SO(n) and SU(n) are
topological groups. If X and X in definition 4.12 happen to be topological groups
and p : X — X to be a group homomorphism, the (universal) covering space is
called the (universal) covering group.]

For example, R is the universal covering space of S', see section 4.3. Since
S is identified with U(1), R is a universal covering group of U(1) if R is regarded
as an additive group. The map p : R — U(1) may be p : x — e'2™*. Clearly p
is surjective and if U = {e'™*|x € (xo — 0.1, xo + 0.1)}, then

Pl W) = Jxo—0.14n,x0+0.1+n)
nez

which is a disjoint union of open sets of R. It is easy to show that p is also a
homomorphism with respect to addition in R and multiplication in U(1). Hence,
(R, p) is the universal covering group of U(1) = S'.

Theorem 4.10. Let (i , p) be the universal covering space of a connected
topological space X. If xo € X and Xo € X are base points such that p(xp) = xo,
the induced homomorphism

P (X, X0) = 74 (X, x0) (4.44)

is an isomorphism for n > 2. [Warning: This theorem cannot be applied if n = 1;
71 (R) = {e} while 71 (S!) = Z.]

The proof is given in Croom (1978). For example, we have m,(R) = {e}
since R is contractible. Then we find

T, (SY = 7,(UQ)) = {e} n>2. (4.45)

Example 4.12. Let " = {x € R**!| |x|? = 1}. The real projective space RP" is
obtained from S$” by identifying the pair of antipodal points (x, —x). It is easy to



see that S” is a covering space of RP” for n > 2. Since m1(S") = {e} forn > 2,
S" is the universal covering space of RP" and we have

7, (RP™) 2 17, (S™). (4.46)

It is interesting to note that RP3 is identified with SO(3). To see this let
us specify an element of SO(3) by a rotation about an axis n by an angle 6
(0 < 6@ < m) and assign a ‘vector’ £ = 0n to this element. 2 takes its value in
the disc D? of radius 7. Moreover, 7n and —zn represent the same rotation and
should be identified. Thus, the space to which €2 belongs is a disc D3 whose anti-
podal points on the surface S? are identified. Note also that we may express RP>
as the northern hemisphere D3 of $3, whose anti-podal points on the boundary $>
are identified. This shows that RP3 is identified with SO(3).

It is also interesting to see that $3 is identified with SU(2). First note that
any element g € SU(2) is written as

_ a —E 2 2
g_<b = ) lal”+ |b|” = 1. 4.47)

If we write a = u + iv and b = x + iy, this becomes S3,
W+ +xr 4y =1.
Collecting these results, we find
71.(SOQR)) = mp(RP?) = 7,(S°) = 7,(SUQ))  n > 2. (4.48)

More generally, the universal covering group Spin(n) of SO(n) is called the spin
group. For small n, they are

Spin(3) = SU(2) (4.49)
Spin(4) = SU(2) x SU(2) (4.50)
Spin(5) = USp(4) 4.51)
Spin(6) = SU4). 4.52)

Here USp(2N) stands for the compact group of 2N x 2N matrices A satisfying

A'JA = J, where
(0 Iy
J_<_IN O).

4.7 Examples of higher homotopy groups

In general, there are no algorithms to compute higher homotopy groups 7, (X).
An ad hoc method is required for each topological space for n > 2. Here, we
study several examples in which higher homotopy groups may be obtained by
intuitive arguments. We also collect useful results in table 4.1.



Table 4.1. Useful homotopy groups.

T 3 Y 5 e
SO@3) Zo O Z Zo Z Z 12
SO4) Zy O Z+Z Zo+7Zy Zy+Zy Zip+Zip
SO(5) Z, 0 Z Zy Zy 0
SO(6) Z, 0 Z 0 Z 0
SO(n) n>6 Z, 0 Z 0 0 0
u) Z 0 0 0 0 0
SU(2) 0 0 Z Zy Zy Z 12
SU@®) 0 0 Z 0 Z Ze
SUm) n>3 0 0 Z 0 Z 0
52 0 Z Z Zs Z, Z1»
53 0 0 Z Z Z, Z1»
54 0 0 0 Z Z, Zy
G 0 0 Z 0 0 Zs
Fy 0 0 Z 0 0 0
Eg 0 0 Z 0 0 0
Eq 0 0 Z 0 0 0
Eg 0 0 Z 0 0 0

Example 4.13. If we note that ,(X, x¢) is the set of the homotopy classes of
n-loops S” in X, we immediately find that

Ta(S" x) =Z >l (4.53)

If @« maps S” onto a point xo € S”, [«] is the unit element 0 € Z. Since both
I"/91" and S" are orientable, we may assign orientations to them. If ¢ maps
I" /01" homeomorphically to S in the same sense of orientation, then [«] is
assigned an element 1 € Z. If a homeomorphism o maps /" /91" onto $” in an
orientation of opposite sense, [«] corresponds to an element —1. For example,
let n = 2. Since I?/31%> = S?, the point in I can be expressed by the polar
coordinate (0, ¢), see figure 4.19. Similarly, X = $2 can be expressed by the
polar coordinate (6', ¢). Leta : (8, ¢) — (8',¢") be a 2-loopin X. If ' = 0
and ¢/ = ¢, the point (9, ¢') sweeps S? once while the point (6, ¢) scans I>
once in the same orientation. This 2-loop belongs to the class +1 € (52, x¢).
Ifa: 0,¢) — (@,¢) is given by 8’ = 0 and ¢’ = 2¢, the point (8, ¢')
sweeps S2 twice while (6, ¢) scans I% once. This 2-loop belongs to the class
2e 71’2(52, Xxo). In general, the map (0, ¢) — (0, ko), k € 7Z, corresponds to the
class k of 72(S2, xp). A similar argument verifies (4.53) for general n > 2.

Example 4.14. Noting that S” is a universal covering space of RP" forn > 2, we
find
T (RP") E7,(SH = Z n>2. (4.54)
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Figure 4.19. A point in / 2 may be expressed by polar coordinates (6, ¢).

[Of course this happens to be true for n = 1, since RP! = §'.] For example, we
have 7 (RP?) = 75(S%) = 7. Since SU(2) = §° is the universal covering group
of SO(3) = RP3, it follows from theorem 4.10 that (see also (4.48))

713(SO(3)) = 73(SUQ)) = m3(S%) = Z. (4.55)

Shankar’s monopoles in superfluid *He-A correspond to non-trivial elements
of these homotopy classes, see section 4.10. 73(SU(2)) is also employed in the
classification of instantons in example 9.8.

In summary, we have table 4.1. In this table, other useful homotopy groups
are also listed. We comment on several interesting facts.

(a) Since Spin(4) = SU(2) x SU(2) is the universal covering group of SO(4),
we have 7,(SO4)) = 7, (SUQ2)) & 7, (SUQ2)) forn > 2.

(b) There exists a map J called the J-homomorphism J : 7;(SO(n)) —
k40 (S™), see Whitehead (1978). In particular, if k = 1, the homomorphism
is known to be an isomorphism and we have 71(SO(n)) = m,+1(S"). For
example, we find

71(SO(2)) = 73(S?) = 7Z
71(SO3)) = 74(S°) = m4(SU(2)) = 74(SO3)) = Zo.

(c) The Bott periodicity theorem states that

.y ~ {e} ifkiseven
7k (U(n)) = m(SU(n)) = {Z ks odd (4.56)



forn > (k + 1)/2. Similarly,

{e} ifk=2,4,56 (mod8)
1(0(n) = e (SOm) = 17, ifk=0,1 (mod 8) (4.50)
Z ifk=3,7 (mod38)

for n > k + 2. Similar periodicity holds for symplectic groups which we
shall not give here.

Many more will be found in appendix A, table 6 of Ito (1987).

4.8 Orders in condensed matter systems

Recently topological methods have played increasingly important roles in
condensed matter physics. For example, homotopy theory has been employed to
classify possible forms of extended objects, such as solitons, vortices, monopoles
and so on, in condensed systems. These classifications will be studied in
sections 4.8-4.10. Here, we briefly look at the order parameters of condensed
systems that undergo phase transitions.

4.8.1 Order parameter

Let H be a Hamiltonian describing a condensed matter system. We assume H is
invariant under a certain symmetry operation. The ground state of the system need
not preserve the symmetry of H. If this is the case, we say the system undergoes
spontaneous symmetry breakdown.

To illustrate this phenomenon, we consider the Heisenberg Hamiltonian

H=-J)S:Sj+h-)s (4.57)

@) i

which describes N ferromagnetic Heisenberg spins {S;}. The parameter J is a
positive constant, the summation is over the pair of the nearest-neighbour sites
(i, j) and h is the uniform external magnetic field. The partition function is
Z = tre P where B = 1/T is the inverse temperature. The free energy F
is defined by exp(—B F) = Z. The average magnetization per spin is

m= —Z<si>=iE (4.58)

where (...) = tr(...e #H")/Z. Let us consider the limit h — 0. Although H
is invariant under the SO(3) rotations of all S; in this limit, it is well known that
m does not vanish for large enough § and the system does not observe the SO(3)
symmetry. It is said that the system exhibits spontaneous magnetization and
the maximum temperature, such that m # 0 is called the critical temperature.



The vector m is the order parameter describing the phase transition between
the ordered state (M 7 0) and the disordered state (m = 0). The system is still
symmetric under SO(2) rotations around the magnetization axis m.

What is the mechanism underlying the phase transition? The free energy is
F = (H) — TS, S being the entropy. At low temperature, the term 7§ in F
may be negligible and the minimum of F is attained by minimizing (H ), which
is realized if all S; align in the same direction. At high temperature, however, the
entropy term dominates F and the minimum of F' is attained by maximizing S,
which is realized if the directions of S; are totally random.

If the system is at a uniform temperature, the magnitude |m| is independent
of the position and m is specified by its direction only. In the ground state, m
itself is expected to be independent of position. It is convenient to introduce
the polar coordinate (6, ¢) to specify the direction of m. There is a one-to-one
correspondence between m and a point on the sphere S2. Suppose m varies as a
function of position: m = m(x). At each point X of the space, a point (8, ¢) of
$2 is assigned and we have a map (6(X), ¢ (X)) from the space to S2. Besides
the ground state (and excited states that are described by small oscillations
(spin waves) around the ground state) the system may carry various excited
states that cannot be obtained from the ground state by small perturbations.
What kinds of excitation are possible depends on the dimension of the space
and the order parameter. For example, if the space is two dimensional, the
Heisenberg ferromagnet may admit an excitation called the Belavin—Polyakov
monopole shown in figure 4.20 (Belavin and Polyakov 1975). Observe that m
approaches a constant vector (Z in this case) so the energy does not diverge. This
condition guarantees the stability of this excitation; it is impossible to deform this
configuration into the uniform one with m far from the origin kept fixed. These
kinds of excitation whose stability depends on topological arguments are called
topological excitations. Note that the field m(x) defines a map m : S — 2
and, hence, are classified by the homotopy group 72(S?) = 7Z.

4.8.2 Superfluid “‘He and superconductors

In Bogoliubov’s theory, the order parameter of superfluid “He is the expectation
value

(P()) = W(r) = Ag(x)e'*™ (4.59)
where ¢ (X) is the field operator. In the operator formalism,
¢ (X) ~ (creation operator) + (annihilation operator)

from which we find the number of particles is not conserved if W (X) # 0. This
is related to the spontaneous breakdown of the global gauge symmetry. The



Figure 4.20. A sketch of the Belavin—Polyakov monopole. The vector m approaches Z as
|X| = oo.

Hamiltonian of “He is

VZ
H= /dxqﬂ(x) (—g — u) B (X)

+ é/dx dys" (Ve V(Ix = YD ()p (). (4.60)
Clearly H is invariant under the global gauge transformation
P (X) — e (x). 4.61)
The order parameter, however, transforms as
W(X) — eXd(X) (4.62)

and hence does not observe the symmetry of the Hamiltonian. The
phenomenological free energy describing “He is made up of two contributions.
The main contribution is the condensation energy

B
4!
where @« ~ ao(T — T.) changes sign at the critical temperature T ~ 4 K.
Figure 4.21 sketches Fo for T > T, and T < T,. If T > T, the minimum
of Fg is attained at W(x) = 0 while if 7 < T, at |¥| = Ag = [—(6a/B)]"/2.
If W (x) depends on X, we have an additional contribution called the gradient
energy

Fo = %|\1:(x)|2 + =)t (4.632)

Ferad = 3KV (X) - VU(X) (4.63b)
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Figure 4.21. The free energy has a minimum at |¥| = 0 for T > T¢ and at || = A for
T <T.

K being a positive constant. If the spatial variation of W (X) is mild enough, we
may assume Ay is constant (the London limit).
In the BCS theory of superconductors, the order parameter is given by
(Tsuneto 1982)
Vop = (Ya (X)Pp(X)) (4.64)

Yo (X) being the (non-relativistic) electron field operator of spin ¢ = (4, ). It
should be noted, however, that (4.64) is not an irreducible representation of the
spin algebra. To see this, we examine the behaviour of W, under a spin rotation.
Consider an infinitesimal spin rotation around an axis N by an angle 6, whose
matrix representation is

0,
R=DL+ 1§n Opu,
o0y, being the Pauli matrices. Since v, transforms as ¥, — Raﬁiﬁ/g we have
Wop — Ro® Wop RgP = (R-W - RYyp

8
= |:\I/ +i—n(ecV¥o; — \1—’020')i|
2 af

where we note that crltl = —020,02. Suppose Wup X i(02)ap. Then ¥ does not

change under this rotation, hence it represents the spin-singlet pairing. We write
Wap(X) = A(X)((02)ap = Ao ()€™ (i02)ap. (4.652)

If, however, we take
Wep(X) = A¥(X)i(oy - 02)ap (4.65b)



we have
Wep — [AF + 88“")‘nUA;\](iaﬂ - 02)ap-

This shows that A* is a vector in spin space, hence (4.65b) represents the spin-
triplet pairing.

The order parameter of a conventional superconductor is of the form (4.65a)
and we restrict the analysis to this case for the moment. In (4.65a), A(X) assumes
the same form as W (x) of superfluid *He and the free energy is again given by
(4.63). This similarity is attributed to the Cooper pair. In the superfluid state,
a macroscopic number of “*He atoms occupy the ground state (Bose—Einstein
condensation) which then behaves like a huge molecule due to the quantum
coherence. In this state creating elementary excitations requires a finite amount
of energy and the flow cannot decay unless this critical energy is supplied. Since
an electron is a fermion there is, at first sight, no Bose—Einstein condensation.
The key observation is the Cooper pair. By the exchange of phonons, a pair of
electrons feels an attractive force that barely overcomes the Coulomb repulsion.
This tiny attractive force makes it possible for electrons to form a pair (in
momentum space) that obeys Bose statistics. The pairs then condense to form
the superfluid state of the Cooper pairs of electric charge 2e.

An electromagnetic field couples to the system through the minimal coupling

Forad = 3K |0 — 2¢A,) AX|. (4.66)

(The term 2e is used since the Cooper pair carries charge 2e.) Superconductors
are roughly divided into two types according to their behaviour in applied
magnetic fields. The type-I superconductor forms an intermediate state in which
normal and superconducting regions coexist in strong magnetic fields. The
type-II superconductor forms a vortex lattice (Abrikosov lattice) to confine the
magnetic fields within the cores of the vortices with other regions remaining in
the superconducting state. A similar vortex lattice has been observed in rotating
superfluid *He in a cylinder.

4.8.3 General consideration

In the next two sections, we study applications of homotopy groups to the
classification of defects in ordered media. The analysis of this section is based
on Toulouse and Kléman (1976), Mermin (1979) and Mineev (1980).

As we saw in the previous subsections, when a condensed matter system
undergoes a phase transition, the symmetry of the system is reduced and this
reduction is described by the order parameter. For definiteness, let us consider the
three-dimensional medium of a superconductor. The order parameter takes the
form ¥ (X) = Ag(X)e*™). Let us consider a homogeneous system under uniform
external conditions (temperature, pressure etc). The amplitude Ag is uniquely
fixed by minimizing the condensation free energy. Note that there are still a large
number of degrees of freedom left. 1 may take any value in the circle ' = U(1)
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Figure 4.22. A circle §! surrounding a line defect (vortex) is mapped to U(1) = § L This

map is classified by the fundamental group 1 (U(1).

determined by the phase e. In this way, a uniform system takes its value in
a certain region M called the order parameter space. For a superconductor,
M = U(1). For the Heisenberg spin system, M = S2. The nematic liquid crystal
has M = RP? while M = 52 x SO(3) for the superfluid *He-A, see sections 4.9—
4.10.

If the system is in an inhomogeneous state, the gradient free energy cannot be
negligible and i may not be in M. If the characteristic size of the variation of the
order parameter is much larger than the coherence length, however, we may still
assume that the order parameter takes its value in M, where the value is a function
of position this time. If this is the case, there may be points, lines or surfaces in the
medium on which the order parameter is not uniquely defined. They are called the
defects. We have point defects (monopoles), line defects (vortices) and surface
defects (domain walls) according to their dimensionalities. These defects are
classified by the homotopy groups.

To be more mathematical, let X be a space which is filled with the medium
under consideration. The order parameter is a classical field ¥ (x), which is also
regarded as a map ¥ : X — M. Suppose there is a defect in the medium. For
concreteness, we consider a line defect in the three-dimensional medium of a
superconductor. Imagine a circle S! which encircles the line defect. If each part
of S! is far from the line defect, much further than the coherence length &, we
may assume the order parameter along S' takes its value in the order parameter
space M = U(1), see figure 4.22. This is how the fundamental group comes into
the problem; we talk of loops in a topological space U(1). The map S' — U(1)
is classified by the homotopy classes. Take a point ry € S' and require that ry be
mapped to xo € M. By noting that 771 (U(1), xo) = Z, we may assign an integer
to the line defect. This integer is called the winding number since it counts how
many times the image of S! winds the space U(1). If two line defects have the



same winding number, one can be continuously deformed to the other. If two
line defects A and B merge together, the new line defect belongs to the homotopy
class of the product of the homotopy classes to which A and B belonged before
coalescence. Since the group operation in 7Z is an addition, the new winding
number is a sum of the old winding numbers. A uniform distribution of the order
parameter corresponds to the constant map ¥ (x) = xo € M, which belongs to
the unit element 0 € Z. If two line defects of opposite winding numbers merge
together, the new line defect can be continuously deformed into the defect-free
configuration.

What about the other homotopy groups? We first consider the dimensionality
of the defect and the sphere S” which surrounds it. For example, consider a point
defect in a three-dimensional medium. It can be surrounded by S? and the defect
is classified by w2 (M, x¢). If M has many components, 77o(M) is non-trivial. Let
us consider a three-dimensional Ising model for which M = {|} U {1}. Then
there is a domain wall on which the order parameter is not defined. For example,
if S=1forx < 0and S= for x > 0, there is a domain wall in the yz-plane
at x = 0. In general, an m-dimensional defect in a d-dimensional medium is
classified by the homotopy group (M, x¢) where

n=d-m-—1. (4.67)

In the case of the Ising model, d = 3, m = 2; hence n = 0.

4.9 Defects in nematic liquid crystals

4.9.1 Order parameter of nematic liquid crystals

Certain organic crystals exhibit quite interesting optical properties when they are
in their fluid phases. They are called liquid crystals and they are characterized
by their optical anisotropy. Here we are interested in so-called nematic liquid
crystals. An example of this is octyloxy-cyanobiphenyl whose molecular structure

is
NE[ -—©-©— T CBH‘”‘

The molecule of a nematic liquid crystal is very much like a rod and the order
parameter, called the director, is given by the average direction of the rod. Even
though the molecule itself has a head and a tail, the director has an inversion
symmetry; it does not make sense to distinguish the directors n = — and —n =
<. We are tempted to assign a point on S? to specify the director. This works
except for one point. Two antipodal points N = (6, ¢) and —n = (w — 6, 7 + ¢)
represent the same state; see figure 4.23. Accordingly, the order parameter of the
nematic liquid crystal is the projective plane RP2. The director field in general



Figure 4.23. Since the director n has no head or tail, one cannot distinguish n from —n.
Therefore, these two pictures correspond to the same order-parameter configuration.

Figure 4.24. A vortex in a nematic liquid crystal, which corresponds to the non-trivial
element of | RP?) = Zy.

depends on the position r. Then we may define a map f : R®> — RP2. This
map is called the texture. The actual order-parameter configuration in R? is also
called the texture.

4.9.2 Line defects in nematic liquid crystals

From example 4.10 we have 71 (RP?) = Z, = {0, 1}. There exist two kinds
of line defect in nematic liquid crystals; one can be continuously deformed into
a uniform configuration while the other cannot. The latter represents a stable
vortex, whose texture is sketched in figure 4.24. The reader should observe how
the loop o is mapped to RP? by this texture.

Exercise 4.9. Show that the line ’defect’ in figure 4.25 is fictitious, namely the
singularity at the centre may be eliminated by a continuous deformation of
directors with directors at the boundary fixed. This corresponds to the operation
14+1=0.



Figure 4.25. A line defect which may be continuously deformed into a uniform
configuration.

Figure 4.26. The texture of a point defect in a nematic liquid crystal.

4.9.3 Point defects in nematic liquid crystals

From example 4.14, we have m2(RP?) = 7. Accordingly, there are stable point
defects in the nematic liquid crystal. Figure 4.26 shows the texture of the point
defects that belong to the class 1 € Z.

It is interesting to point out that a line defect and a point defect may be
combined into a ring defect, which is specified by both 71 (RP?) and 7> (RP?),
see Mineev (1980). If the ring defect is observed from far away, it looks like



Figure 4.27. The texture of a ring defect in a nematic liquid crystal. The loop « classifies
T (RP2) while the sphere (2-loop) B classifies (RPZ).

a point defect, while its local structure along the ring is specified by 71 (RP?).
Figure 4.27 is an example of such a ring defect. The loop « classifies 771 (RP?) =
7 while the sphere (2-loop) g classifies 72 (RP?) = Z.

4.9.4 Higher dimensional texture

The third homotopy group 7 (RP?) = Z leads to an interesting singularity-
free texture in a three-dimensional medium of nematic liquid crystal. Suppose
the director field approaches an asymptotic configuration, say n = (1,0, 0)",
as |[r| — oo. Then the medium is effectively compactified into the three-
dimensional sphere S3 and the topological structure of the texture is classified
by m3(RP?) = Z. What is the texture corresponding to a non-trivial element of
the homotopy group?

An arbitrary rotation in R? is specified by a unit vector €, around which the
rotation is carried out, and the rotation angle «. It is possible to assign a ‘vector’
Q = «eto this rotation. It is not exactly a vector since 2 = reand —Q2 = —nwe
are the same rotation and hence should be identified. Therefore, 2 belongs to the
real projective space RP3. Suppose we take ng = (1, 0, 0)' as a standard director.
Then an arbitrary director configuration is specified by rotating ng around some
axis eby an angle «: N = R(e, @)Ng, where R(e, «) is the corresponding rotation
matrix in SO(3). Suppose a texture field is given by applying the rotation

ae(r) = f(r)f (4.68)



|
}

@) (b)

Figure 4.28. The texture of the non-trivial element of 73 (RPZ) = Z. (a) shows the
rotation ‘vector’ ae. The length o approaches 7 as |r| — co. (b) shows the corresponding
director field.

to Ny, where f is the unit vector in the direction of the position vector r and

0 =0
f(r)={ '

T r — OQ.

Figure 4.28 shows the director field of this texture. Note that although there
is no singularity in the texture, it is impossible to ‘wind off” this to a uniform
configuration.

4.10 Textures in superfluid *He-A

4.10.1 Superfluid *He-A

Here comes the last and most interesting example. Before 1972 the only example
of the BCS superfluid was the conventional superconductor (apart from indirect
observations of superfluid neutrons in neutron stars). Figure 4.29 is the phase
diagram of superfluid *He without an external magnetic field. From NMR and
other observations, it turns out that the superfluid is in the spin-triplet p-wave
state. Instead of the field operators (see (4.65b)), we define the order parameter
in terms of the creation and annihilation operators. The most general form of the
triplet superfluid order parameter is

3
(CakCp—k) O Y (10207, )y (K) (4.692)
n=1



Solid

30 1
;8, B-phase
° 20+
5
§ Normal Fermi
a liquid

10 1

0 1 2 3

Temperature (mK)

Figure 4.29. The phase diagram of superfluid He.

where « and § are spin indices. The Cooper pair forms in the p-wave state hence
d, (k) is proportional to Y1, ~ k;,

3
dy (k) = Z AoA ik;. (4.69b)
i=1

The bulk energy has several minima. The absolute minimum depends on the
pressure and the temperature. We are particularly interested in the A phase in
figure 4.29.

The A-phase order parameter takes the form
Aui =dy (A +iA2); (4.70)

where d is a unit vector along which the spin projection of the Cooper pair
vanishes and (A1, Aj) is a pair of orthonormal unit vectors. The vector d takes
its value in S2. If we define | = A; x A,, the triad (A}, A, 1) forms an
orthonormal frame at each point of the medium. Since any orthonormal frame
can be obtained from a standard orthonormal frame (€, €, €3) by an application
of a three-dimensional rotation matrix, we conclude that the order parameter of
3He-A is $2 x SO(3). The vector | introduced here is the axis of the angular
momentum of the Cooper pair.

For simplicity, we neglect the variation of the d-vector. [In fact, d is locked



along I due to the dipole force.] The order parameter assumes the form
Aj = Mo(A; + Ay, (4.71)

where Al, 82 and | = 81 X Az form an orthonormal frame at each point of
thAe mAediuAm. Let us take a standard orthonormal frame (e, €, ). The frame
(A1, Ay, 1) is obtained by applying an element g € SO(3) to the standard frame,

g: (e, e,8) = (A, Ay D). (4.72)

Since g depends on the coordinate x, the configuration (A 1(x), Az(x), f(x))
defines a map ¥ : X — SO(3) as x — g(x). The map v is called the texture
of a superfluid *He.! The relevant homotopy groups for classifying defects in
superfluid 3He-A are 7,(SO(3)).

If a container is filled with 3He-A, the boundary poses certain conditions on
the texture. The vector | is understood as the direction of the angular momentum
of the Cooper pair. The pair should rotate in the plane parallel to the boundary
wall, thus | should be perpendicular to the wall. [Remark: If the wall is diffuse,
the orbital motion of Cooper pairs is disturbed and there is a depression in the
amplitude of the order parameter in the vicinity of the wall. We assume, for
simplicity, that the wall is specularly smooth so that Cooper pairs may execute
orbital motion with no disturbance.] There are several kinds of free energy and
the texture is determined by solving the Euler—Lagrange equation derived from
the total free energy under given boundary conditions.

Reviews on superfluid 3He are found in Anderson and Brinkman (1975),
Leggett (1975) and Mermin (1978).

4.10.2 Line defects and non-singular vortices in >He-A

The fundamental group of SO(3) = RP3 is m(RP3) = Z, = {0, 1}.
Textures which belong to class 0 can be continuously deformed into the uniform
configuration. Configurations in class 1 are called disgyrations and have
been analysed by Maki and Tsuneto (1977) and Buchholtz and Fetter (1977).
Figure 4.30 describes these disgyrations in their lowest free energy configurations.

A remarkable property of Z, is the addition 1 + 1 = 0; the coalescence of
two disgyrations produces a trivial texture. By merging two disgyrations, we may
construct a texture that looks like a vortex of double vorticity (homotopy class
‘2’) without a singular core; see figure 4.31(a). It is easy to verify that the image
of the loop « traverses RP3 twice while that of the smaller loop 8 may be shrunk
to a point. This texture is called the Anderson—-Toulouse vortex (Anderson and
Toulouse 1977). Mermin and Ho (1976) pointed out that if the medium is in a
cylinder, the boundary imposes the condition (e (boundary) and the vortex is
cut at the surface, see figure 4.31(b) (the Mermin-Ho vortex).

' The name ‘texture’ is, in fact, borrowed from the order-parameter configuration in liquid crystals,
see section 4.9.
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Figure 4.30. Disgyrations in 3He-A.
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Figure 4.31. The Anderson—Toulouse vortex (a) and the Mermin—-Ho vortex (b). In (b) the
boundary forces | to be perpendicular to the wall.
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Since 712(]RP3 ) = {e}, there are no point defects in 3He-A. However,
73(RP3) = 7Z introduces a new type of pointlike structure called the Shankar
monopole, which we will study next.

4.10.3 Shankar monopole in 3He-A

Shankar (1977) pointed out that there exists a pointlike singularity-free object
in He-A. Consider an infinite medium of 3He-A. We assume the medium is
asymptotically uniform, that is, (Al, Az, f) approaches a standard orthonormal
frame (€|, €, €3) as |x| — oo. Since all the points far from the origin are mapped
to a single point, we have compactified R* to S3. Then the texture is classified
according to 73(RP3) = Z. Let us specify an element of SO(3) by a ‘vector’
Q = 6nin RP3 as before (example 4.12). Shankar (1977) proposed a texture,

Q) = ; ) @.73)
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Figure 4.32. The Shankar monopole: (a) shows the ‘vectors’ €(r) and (b) shows the triad
(A1, Ay, I). Note that as |r| — oo the triad approaches the same configuration.

where f(r) is a monotonically decreasing function such that

=17 =0 (4.74)
0 r = 00.

We formally extend the radius of RP3 to 27 and define the rotation angle modulo
2. This texture is called the Shankar monopole, see figure 4.32(a). At first sight
it appears that there is a singularity at the origin. Note, however, that the length
of Q is 27 there and it is equivalent to the unit element of SO(3). Figure 4.32(b)
describes the triad field. Since 2(r) = 0 as r — oo, irrespective of the direction,
the space R? is compactified to S3. As we scan the whole space, 2(r) sweeps
SO(3) twice and this texture corresponds to class 1 of 73(SO(3)) = Z.

Exercise 4.10. Sketch the Shankar monopole which belongs to the class —1 of
73(RP3). [You cannot simply reverse the arrows in figure 4.32.]

Exercise 4.11. Consider classical Heisenberg spins defined in R?, see section 4.8.
Suppose spins take the asymptotic value

nx) — e |x| > L (4.75)

for the total energy to be finite, see figure 4.20. Show that the extended objects in
this system are classified by 72(S2). Sketch examples of spin configurations for
the classes —1 and +2.

Problems

4.1 Show that the n-sphere S” is a deformation retract of punctured Euclidean
space R"*1 — {0}. Find a retraction.



4.2 Let D? be the two-dimensional closed disc and S' = dD? be its boundary.
Let f : D> — D? be a smooth map. Suppose f has no fixed points, namely
f(p) # pforany p € D?. Consider a semi-line starting at p through f(p) (this
semi-line is always well defined if p # f(p)). The line crosses the boundary at
some point ¢ € S'. Then define f : D* — S! by f(p) = ¢q. Use 71(S") = Z
and (Dz) = {0} to show that such an f does not exist and hence, that f must
have fixed points. [Hint: Show that if such an f existed, D% and S! would be of
the same homotopy type.] This is the two-dimensional version of the Brouwer
fixed-point theorem.

4.3 Construct a map f : 3 — % which belongs to the elements 0 and 1 of
73(82) = Z. See also example 9.9.



MANIFOLDS

Manifolds are generalizations of our familiar ideas about curves and surfaces to
arbitrary dimensional objects. A curve in three-dimensional Euclidean space is
parametrized locally by a single number ¢ as (x(¢), y(¢), z(¢)), while two numbers
u and v parametrize a surface as (x (u, v), y(u, v), z(u, v)). A curve and a surface
are considered locally homeomorphic to R and R?, respectively. A manifold,
in general, is a topological space which is homeomorphic to R locally; it may
be different from R™ globally. The local homeomorphism enables us to give
each point in a manifold a set of m numbers called the (local) coordinate. If a
manifold is not homeomorphic to R” globally, we have to introduce several local
coordinates. Then it is possible that a single point has two or more coordinates.
We require that the transition from one coordinate to the other be smooth. As
we will see later, this enables us to develop the usual calculus on a manifold.
Just as topology is based on continuity, so the theory of manifolds is based on
smoothness.

Useful references on this subject are Crampin and Pirani (1986), Matsushima
(1972), Schutz (1980) and Warner (1983). Chapter 2 and appendices B and C of
Wald (1984) are also recommended. Flanders (1963) is a beautiful introduction
to differential forms. Sattinger and Weaver (1986) deals with Lie groups and Lie
algebras and contains many applications to problems in physics.

5.1 Manifolds

5.1.1 Heuristic introduction

To clarify these points, consider the usual sphere of unit radius in R>. We
parametrize the surface of S2, among other possibilities, by two coordinate
systems——polar coordinates and stereographic coordinates. Polar coordinates 6
and ¢ are usually defined by (figure 5.1)

X = sinf cos ¢ y =sinfsin¢ z = cosé, 6.1

where ¢ runs from 0 to 27 and € from O to 7. They may be inverted on the sphere
to yield

2 2
+
6 = tan™! yETY ¢ = tan~! X. 5.2)
X

Z



Figure 5.1. Polar coordinates (6, ¢) and stereographic coordinates (X, Y) of a point P on
the sphere S 2,

Stereographic coordinates, however, are defined by the projection from the North
Pole onto the equatorial plane as in figure 5.1. First, join the North Pole (0, 0, 1)
to the point P(x,y,z) on the sphere and then continue in a straight line to
the equatorial plane z = O to intersect at Q(X, Y,0). Then X and Y are the
stereographic coordinates of P. We find

X Y
X = Y = . (5.3)
-z -z
The two coordinate systems are related as
X = cot %9 cos ¢ Y = cot%@ sin ¢. 5.4

Of course, other systems, polar coordinates with different polar axes or
projections from different points on S2, could be used. The coordinates on the
sphere may be kept arbitrary until some specific calculation is to be carried out.
[The longitude is historically measured from Greenwich. However, there is no
reason why it cannot be measured from New York or Kyoto.] This arbitrariness
of the coordinate choice underlies the theory of manifolds: all coordinate systems
are equally good. 1t is also in harmony with the basic principle of physics: a
physical system behaves in the same way whatever coordinates we use to describe
i.



Another point which can be seen from this example is that no coordinate
system may be usable everywhere at once. Let us look at the polar coordinates
on S2. Take the equator (§ = %n) for definiteness. If we let ¢ range from O to
27, then it changes continuously as we go round the equator until we get all the
way to ¢ = 2m. There the ¢-coordinate has a discontinuity from 27 to 0 and
nearby points have quite different ¢-values. Alternatively we could continue ¢
through 277. Then we will encounter another difficulty: at each point we must
have infinitely many ¢-values, differing from one another by an integral multiple
of 2. A further difficulty arises at the poles, where ¢ is not determined at all.
[An explorer on the Pole is in a state of timelessness since time is defined by the
longitude.] Stereographic coordinates also have difficulties at the North Pole or
at any projection point that is not projected to a point on the equatorial plane; and
nearby points close to the Pole have widely different stereographic coordinates.

Thus, we cannot label the points on the sphere with a single coordinate
system so that both of the following conditions are satisfied.

(i) Nearby points always have nearby coordinates.
(i) Every point has unique coordinates.

Note, however, that there are infinitely many ways to introduce coordinates that
satisfy these requirements on a part of S2. We may take advantage of this fact to
define coordinates on S2: introduce two or more overlapping coordinate systems,
each covering a part of the sphere whose points are to be labelled so that the
following conditions hold.

(i) Nearby points have nearby coordinatcs in at least one coordinate system.
(ii") Every point has unique coordinates in each system that contains it.

For example, we may introduce two stereographic coordinates on $2, one a
projection from the North Pole, the other from the South Pole. Are these
conditions (i") and (ii’) enough to develop sensible theories of the manifold? In
fact, we need an extra condition on the coordinate systems.

(>iii) If two coordinate systems overlap, they are related to each other in a
sufficiently smooth way.

Without this condition, a differentiable function in one coordinate system
may not be differentiable in the other system.
5.1.2 Definitions
Definition 5.1. M is an m-dimensional differentiable manifold if

(i) M is a topological space;

(ii) M is provided with a family of pairs {(U;, ¢;)};

(iii) {U;} is a family of open sets which covers M, thatis, U;U; = M. ¢; isa
homeomorphism from U; onto an open subset U; of R” (figure 5.2); and



Figure 5.2. A homeomorphism ¢; maps U; onto an open subset U l’ C R™, providing
coordinates to a point p € U;. If U; N U; # ¢, the transition from one coordinate system
to another is smooth.

(iv) given U; and U; such that U; N U; # @, the map ¢;; = ¢; o (p;l from
@;j(Ui NU;j) to ¢;(U; N Uj) is infinitely differentiable. '

The pair (U;, ¢;) is called a chart while the whole family {(U;, ¢;)} is
called, for obvious reasons, an atlas. The subset U; is called the coordinate
neighbourhood while ¢; is the coordinate function or, simply, the coordinate.
The homeomorphism g; is represented by m functions {x'(p), ..., x™(p)}. The
set {x*(p)} is also called the coordinate. A point p € M exists independently of
its coordinates; it is up to us how we assign coordinates to a point. We sometimes
employ the rather sloppy notation x to denote a point whose coordinates are
{x', ..., x™}, unless several coordinate systems are in use. From (ii) and (iii), M
is locally Euclidean. In each coordinate neighbourhood U;, M looks like an open
subset of R” whose element is {x!, ..., x™}. Note that we do not require that M
be R™ globally. We are living on the earth whose surface is $2, which does not
look like R? globally. However, it looks like an open subset of R? locally. Who
can tell that we live on the sphere by just looking at a map of London, which, of
course, looks like a part of R29!

1 Strictly speaking the distance between two longitudes in the northern part of the city is slightly



If U; and U; overlap, two coordinate systems are assigned to a point in
U; NUj. Axiom (iv) asserts that the transition from one coordinate system to
another be smooth (C*). The map ¢; assigns m coordinate values x* (1 < u <
m) to a point p € U; N U;, while ¢; assigns y” (1 < v < m) to the same
point and the transition from y to x, x* = x*(y), is given by m functions of m
variables. The coordinate transformation functions x#* = x*(y) are the explicit
form of the map ¥j; = ¢; o (pl._l. Thus, the differentiability has been defined
in the usual sense of calculus: the coordinate transformation is differentiable if
each function x*(y) is differentiable with respect to each y”. We may restrict
ourselves to the differentiability up to kth order (C¥). However, this does not
bring about any interesting conclusions. We simply require, instead, that the
coordinate transformations be infinitely differentiable, that is, of class C*°. Now
coordinates have been assigned to M in such a way that if we move over M in
whatever fashion, the coordinates we use vary in a smooth manner.

If the union of two atlases {(U;, ¢;)} and {(V;, ¥;)} is again an atlas, these
two atlases are said to be compatible. The compatibility is an equivalence
relation, the equivalence class of which is called the differentiable structure. It is
also said that mutually compatible atlases define the same differentiable structure
on M.

Before we give examples, we briefly comment on manifolds with
boundaries. So far, we have assumed that the coordinate neighbourhood U; is
homeomorphic to an open set of R”. In some applications, however, this turns
out to be too restrictive and we need to relax this condition. If a topological space
M is covered by a family of open sets {U;} each of which is homeomorphic to an
opensetof H™ = {(x!,..., x™) e R"|x™ > 0}, M is said to be a manifold with
a boundary, see figure 5.3. The set of points which are mapped to points with
x™ = 0 is called the boundary of M, denoted by dM. The coordinates of 9 M
may be given by m — 1 numbers (xl, ..., x™1 0). Now we have to be careful
when we define the smoothness. The map ¥;; : ¢;(U; NU;) — ¢;(U; N Uj)
is defined on an open set of H™ in general, and v;; is said to be smooth if it is
C® in an open set of R™ which contains ¢;(U; N U;). Readers are encouraged to
use their imagination since our definition is in harmony with our intuitive notions
about boundaries. For example, the boundary of the solid ball D? is the sphere S2
and the boundary of the sphere is an empty set.

5.1.3 Examples

We now give several examples to develop our ideas about manifolds. They are
also of great relevance to physics.

Example 5.1. The Euclidean space R™ is the most trivial example, where a single
chart covers the whole space and ¢ may be the identity map.

shorter than that in the southern part and one may suspect that one lives on a curved surface. Of
course, it is the other way around if one lives in a city in the southern hemisphere.
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Figure 5.3. A manifold with a boundary. The point p is on the boundary.

Example 5.2. Let m = 1 and require that M be connected. There are only two
manifolds possible: a real line R and the circle S!. Let us work out an atlas of S!.
For concreteness take the circle x2 + y! = 1 in the xy-plane. We need at least
two charts. We may take them as in figure 5.4. Define (pl_l :(0,27) — S' by

¢! 10 (cosh,sind) (5.52)

whose image is st — {(1, 0)}. Define also w;l (=7, ) = S! by
go{l 10— (cosb,sind) (5.5b)

whose image is S' — {(—1,0)}. Clearly gol_l and @, I are invertible and all the
maps ¢1, ¢2, (pfl and ¢, !"are continuous. Thus, ¢1 and ¢y are homeomorphisms.
Verify that the maps ¥12 = ¢1 o g02_1 and Yo = ¢ o (pl_l are smooth.

Example 5.3. The n-dimensional sphere S” is a differentiable manifold. It is

realized in R"*! as
n

Z(x")2 =1. (5.6)

i=0
Let us introduce the coordinate neighbourhoods
Uiy = {0 x!, ..., x" e "x' > 0} (5.7a)
Ui = {(x% x',...,x") e $"x' <0}. (5.7b)
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Figure 5.4. Two charts of a circle S!.

Define the coordinate map ¢;+ : Ui+ — R" by

eir (0, xy =0 T (5.8a)
and g;— : U;— — R" by
ei (X0 xy =0 T X ), (5.8b)

Note that the domains of ¢; 1 and ¢;_ are different. ¢;+ are the projections of the
hemispheres U+ to the plane x* = 0. The transition functions are easily obtained
from (5.8). Take S? as an example. The coordinate neighbourhoods are U+, Uyt

and U,+. The transition function ¥y x4 = ¢,_ o (ple is given by

Uyxt (v, 2) = (\/1 —yr=z% Z) (5.9)

which is infinitely differentiable on U,y N Uy _.

Exercise 5.1. At the beginning of this chapter, we introduced the stereographic
coordinates on S2. We may equally define the stereographic coordinates projected
from points other than the North Pole. For example, the stereographic coordinates
(U, V) of a point in S — {South Pole} projected from the South Pole and (X, ¥)
for a point in S — {North Pole} projected from the North Pole are shown in figure
5.5. Show that the transition functions between (U, V) and (X, Y) are C* and
that they define a differentiable structure on M. See also example 8.1.

Example 5.4. The real projective space RP” is the set of lines through the origin
in R*H Ifx = (xo, ..., x™) # 0, x defines a line through the origin. Note
that y € R**! defines the same line as x if there exists a real number a # 0
such that y = ax. Introduce an equivalence relation ~ by x ~ y if there



Figure 5.5. Two stereographic coordinate systems on S 2 The point P may be projected
from the North Pole N giving (X, Y) or from the South Pole S giving (U, V).

exists a € R — {0} such that y = ax. Then RP" = (R"*! — {0})/ ~. The
n + 1 numbers x°, x!, ..., x" are called the homogeneous coordinates. The
homogeneous coordinates cannot be a good coordinate system, since RP” is an
n-dimensional manifold (an (n + 1)-dimensional space with a one-dimensional
degree of freedom killed). The charts are defined as follows. First we take the
coordinate neighbourhood U; as the set of lines with xt # 0, and then introduce

the inhomogeneous coordinates on U; by
gl =x7/x". (5.10)
The inhomogeneous coordinates

0 1 i—1 i+1
g(i) = (g(i)’ 5(;), ey 5(l,~) , g(l,') s ey 58))

with é(il.) = 1 omitted, are well defined on U; since xt # 0, and furthermore
they are independent of the choice of the representative of the equivalence class
since x/ /x' = y//y" if y = ax. The inhomogeneous coordinate &(;) gives the

coordinate map ¢; : U; — R", that is

@i (0 x e O T xE xT x  xx)
where x//x’ = 1is omitted. For x = (x% x!,...,x") € U; N U; we assign
two inhomogeneous coordinates, é(ki) = x¥/x and é(kj) = x*/xJ. The coordinate



transformation ¥;; = ¢; o (pj_1 is
Yij 1 £y &y = (7 /xDEL. (5.11)

This is a multiplication by x/ /x’.

In example 4.12, we defined RP" as the sphere S with antipodal points
identified. ~This picture is in conformity with the definition here. As a
representative of the equivalence class [x], we may take points |x| = 1 on a line
through the origin. These are points on the unit sphere. Since there are two points
on the intersection of a line with S” we have to take one of them consistently,
that is nearby lines are represented by nearby points in S”. This amounts to
taking the hemisphere. Note, however, that the antipodal points on the boundary
(the equator of ™) are identified by definition, @O0 x) ~ =0, ™.
This ‘hemisphere’ is homeomorphic to the ball D" with antipodal points on the
boundary S"~! identified.

Example 5.5. A straightforward generalization of RP”" is the Grassmann
manifold. An element of RP" is a one-dimensional subspace in R**!. The
Grassmann manifold G , (R) is the set of k-dimensional planes in R*. Note that
G1.n+1(R) is nothing but RP”. The manifold structure of Gy ,(R) is defined in a
manner similar to that of RP”.

Let My ,(R) be the set of k x n matrices of rankk (k < n). Take A =
(aij) € My »(R) and define k vectors &; (1 <i < k) in R" by a; = (a;;). Since
rank A = k, k vectors &; are linearly independent and span a k-dimensional plane
in R". Note, however, that there are infinitely many matrices in My , (R) that yield
the same k-plane. Take g € GL(k, R) and consider a matrix A = gA € M n (R).
A defines the same k-plane as A, since g simply rotates the basis within the k-
plane. Introduce an equivalence relation ~ by A ~ A if there exists g € GL(k, R)
such that A = gA. We identify G , (R) with the coset space M , (R)/GL (k, R).

Let us find the charts of Gy ,(R). Take A € My ,(R) and let {Ay, ..., A/},
| = (Z), be the collection of all k x k minors of A. Since rank A = k, there exists
some A, (1 < o <) such that det A # 0. For example, let us assume the minor
A1 made of the first k columns has non-vanishing determinant,

A= (A1, A) (5.12)

where ;4\41 isa k x (n — k) matrix. Let us take the representative of the class to
which A belongs to be

AT A = (I, ATV AD) (5.13)
where I is the k x k unit matrix. Note that Al_1 always exists since det A1 # 0.
Thus, the real Fgegrees of freedom are given by the entries of the k x (n — k)
matrix Afl - A1. We denote this subset of Gy ,(R) by U;. Uj is a coordinate
neighbourhood whose coordinates are given by k(n — k) entries of Al_1 - AL
Since U; is homeomorphic to Rk we find that

dim G, (R) = k(n — k). (5.14)



In the case where detA, # 0, where A, is composed of the columns

(i1, i2, ..., ix), we multiply A, 1 to obtain the representative
column — i i ... ik
1 0o ...... 0
1 ..o 0 o1 L 0o ...
Aa ' A = ... . P e e e e e e . PR (5'15)
0 0 ...... 1

where the entries not written explicitly form a k x (n — k) matrix. We denote this
subset of M ,(R) with det Ay # 0 by Uy. The entries of the k x (n — k) matrix
are the coordinates of U,.

The relation between the projective space and the Grassmann manifold is
evident. An element of M| ,11(R) is a vector A = (xO, xi .. ., x™). Since the
ath minor A, of A is a number x¢, the condition det A, # 0 becomes x“ # 0.
The representative (5.15) is just the inhomogeneous coordinate

GO0 X XX

= Ox xlx L x Y x Y =1, X xY).

Let M be an m-dimensional manifold with an atlas {(U;, ¢;)} and N be an n-
dimensional manifold with {(V;, ¥/;)}. A product manifold M x N is an (m+n)-
dimensional manifold whose atlas is {(U; x V;), (¢i, ¥;)}. A pointin M x N
is written as (p, q), p € M, g € N, and the coordinate function (¢;, ¥;) acts on
(p, q) to yield (¢;(p), ¥j(p)) € R™*". The reader should verify that a product
manifold indeed satisfies the axioms of definition 5.1.

Example 5.6. The torus T?isa product manifold of two circles, T2 = s' x s1.If
we denote the polar angle of each circle as §; mod 2z (i = 1, 2), the coordinates
of T2 are (6, 62). Since each S! is embedded in R?, 72 may be embedded in R*.
We often imagine T? as the surface of a doughnut in R3, in which case, however,
we inevitably have to introduce bending of the surface. This is an extrinsic feature
brought about by the ‘embedding’. When we say ‘a torus is a flat manifold’, we
refer to the flat surface embedded in R*. See definition 5.3 for further details.
We may also consider a direct product of n circles,

T"=8"xS" x ... x S'.

n

Clearly T" is an n-dimensional manifold with the coordinates (01, 6, ..., 6;)
mod2z. This may be regarded as an n-cube whose opposite faces are identified,
see figure 2.4 forn = 2.

5.2 The calculus on manifolds

The significance of differentiable manifolds resides in the fact that we may use
the usual calculus developed in R*. Smoothness of the coordinate transformations
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Figure 5.6. A map f : M — N has a coordinate presentation ¥ o f o el R" 5 R,

ensures that the calculus is independent of the coordinates chosen.

5.2.1 Differentiable maps

Let f : M — N be a map from an m-dimensional manifold M to an n-
dimensional manifold N. A point p € M is mapped to a point f(p) € N, namely
f:pr— f(p),seefigure 5.6. Take a chart (U, ¢) on M and (V, i) on N, where
p € U and f(p) € V. Then f has the following coordinate presentation:

Yofop l:R" > R". (5.16)

If we write p(p) = {x*} and ¥ (f(p)) = {¥*}, ¥ o f o ¢~ ! is just the usual
vector-valued function y = ¥ o f o ¢~ !(x) of m variables. We sometimes use
(in fact, abuse!) the notation y = f(x) or y* = f%(x*), when we know which
coordinate systems on M and N are in use. If y = ¥ o f o ¢~ !(x), or simply
y¥¢ = fYxH), is C*° with respect to each x*, f is said to be differentiable at
p or at x = @(p). Differentiable maps are also said to be smooth. Note that
we require infinite (C*°) differentiability, in harmony with the smoothness of the
transition functions ;;.

The differentiability of f is independent of the coordinate system. Consider
two overlapping charts (Uy, ¢1) and (U3, ¢2). Take a point p € Uy N U, whose
coordinates by ¢ are {xi‘ }, while those by ¢, are {x;}. When expressed in

terms of {x{‘}, f takes the form ¢ o f o gofl, while in {x}}, ¥ o f o ¢;1 =



Yofo (pl_l(gol o (pz_l). By definition, {12 = ¢ o (pz_l is C°. In the simpler
expressions, they correspond to y = f(x1) and y = f(x1(x2)). It is clear that
if f(x1) is C* with respect to x{‘ and x1(x2) is C* with respect to x}, then
y = f(x1(x2)) is also C*° with respect to x}.

Exercise 5.2. Show that the differentiability of f is also independent of the chart
in N.

Definition 5.2. Let f : M — N be a homeomorphism and ¥ and ¢ be coordinate
functions as previously defined. If ¥ o f o ¢! is invertible (that is, there exists a
mapgo fl oy andbothy = o fop l(x)andx =gpo f oy 1(y)
are C*°, f is called a diffeomorphism and M is said to be diffeomorphic to N
and vice versa, denotedby M = N.

Clearly dimM = dimN if M = N. In chapter 2, we noted that
homeomorphisms classify spaces according to whether it is possible to deform
one space into another continuously. Diffeomorphisms classify spaces into
equivalence classes according to whether it is possible to deform one space to
another smoothly. Two diffeomorphic spaces are regarded as the same manifold.
Clearly a diffeomorphism is a homeomorphism. What about the converse? Is
a homeomorphism a diffeomorphism? In the previous section, we defined the
differentiable structure as an equivalence class of atlases. Is it possible for a
topological space to carry many differentiable structures? It is rather difficult
to give examples of ‘diffeomorphically inequivalent homeomorphisms’ since it is
known that this is possible only in higher-dimensional spaces (dimM > 4). It
was believed before 1956 that a topological space admits only one differentiable
structure. However, Milnor (1956) pointed out that S7 admits 28 differentiable
structures. A recent striking discovery in mathematics is that R* admits an infinite
number of differentiable structures. Interested readers should consult Donaldson
(1983) and Freed and Uhlenbeck (1984). Here we assume that a manifold admits
a unique differentiable structure, for simplicity.

The set of diffeomorphisms f : M — M is a group denoted by Diff(M).
Take a point p in a chart (U, ¢) such that ¢(p) = x*(p). Under f € Diff(M),
p is mapped to f(p) whose coordinates are ¢(f(p)) = y*(f(p)) (we have
assumed f(p) € U). Clearly y is a differentiable function of x; this is an active
point of view to the coordinate transformation. However, if (U, ¢) and (V, ¥) are
overlapping charts, we have two coordinate values x* = ¢(p) and y* = i (p) for
apoint p € UN V. The map x — y is differentiable by the assumed smoothness
of the manifold; this reparametrization is a passive point of view to the coordinate
transformation. We also denote the group of reparametrizations by Diff(M).

Now we look at special classes of mappings, namely curves and functions.
An open curve in an m-dimensional manifold M is a map ¢ : (a, b)) — M where
(a, b) is an open interval such that a < 0 < b. We assume that the curve does
not intersect with itself (figure 5.7). The number a (b) may be —oo (+00) and
we have included O in the interval for later convenience. If a curve is closed, it is
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Figure 5.7. A curve ¢ in M and its coordinate presentation ¢ o c.

regarded as a map ¢ : S' — M. In both cases, c is locally a map from an open
interval to M. On a chart (U, ¢), a curve c(¢) has the coordinate presentation
x=¢oc:R—> R",

A function f on M is a smooth map from M to R, see figure 5.8. On a chart
(U, ¢), the coordinate presentation of f is given by f o ¢! : R” — R which is
a real-valued function of m variables. We denote the set of smooth functions on
M by F(M).

5.2.2 Vectors

Now that we have defined maps on a manifold, we are ready to define other
geometrical objects: vectors, dual vectors and tensors. In general, an elementary
picture of a vector as an arrow connecting a point and the origin does not work in
a manifold. [Where is the origin? What is a straight arrow? How do we define a
straight arrow that connects London and Los Angeles on the surface of the Earth?]
On a manifold, a vector is defined to be a tangent vector to a curve in M.

To begin with, let us look at a tangent line to a curve in the xy-plane. If the
curve is differentiable, we may approximate the curve in the vicinity of xo by

y — y(x0) = a(x — xo) (5.17)

where a = dy/dx|x=y,. The tangent vectors on a manifold M generalize this
tangent line. To define a tangent vector we need a curve ¢ : (a,b) — M and
a function f : M — R, where (a, b) is an open interval containing t = 0, see
figure 5.9. We define the tangent vector at ¢(0) as a directional derivative of a
function f(c(¢)) along the curve c(¢) at t = 0. The rate of change of f(c(¢)) at
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Figure 5.8. A function f : M — R and its coordinate presentation f o o L.

t = 0 along the curve is

df(c(®)) (5.18)
|, '
In terms of the local coordinate, this becomes
A dxt () 5.19)
axﬂ dt =0 ' '

[Note the abuse of the notation! The derivative df/dx" really means a(f o
¢~ 1(x))/8x".] In other words, df(c(t))/dt at t = 0 is obtained by applying
the differential operator X to f, where

X = XH* (i) (X“ — M ) (5.20)
dxH dt =0
that is,
dfe@)| (3 _
5 t=()_X (aw) = X[f]. (5.21)

Here the last equality defines X[ f]. Itis X = X*9d/0x" which we now define as
the tangent vector to M at p = ¢(0) along the direction given by the curve c(¢).

Example 5.7. If X is applied to the coordinate functions ¢(c(t)) = x"(¢), we

have i B i
1= () (3) - £
dt oxV dt

t=0
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Figure 5.9. A curve ¢ and a function f define a tangent vector along the curve in terms of
the directional derivative.

which is the uth component of the velocity vector if 7 is understood as time.

To be more mathematical, we introduce an equivalence class of curves in M.
If two curves ¢ () and ¢, () satisfy

M O =c0=p
bt e@)|  _ dete)

@ | dr

t=0

c1(t) and c> (¢) yield the same differential operator X at p, in which case we define
c1(t) ~ ca(t). Clearly ~ is an equivalence relation and defines the equivalence
classes. We identify the tangent vector X with the equivalence class of curves
@) daf(e)
dr n

¢(0) = c(0) and
=0 dr

()] = {’c“(t)

} (5.22)
t=0

rather than a curve itself.

All the equivalence classes of curves at p € M, namely all the tangent
vectors at p, form a vector space called the tangent space of M at p, denoted
by T, M. To analyse T, M, we may use the theory of vector spaces developed in
section 2.2. Evidently, e;, = 9/0x" (1 < u < m) are the basis vectors of M,
see (5.20), and dim7T,M = dim M. The basis {e,} is called the coordinate
basis. If a vector V € T, M is written as V = V*e,, the numbers V* are called
the components of V with respect to e,,. By construction, it is obvious that a
vector X exists without specifying the coordinate, see (5.21). The assignment of



the coordinate is simply for our convenience. This coordinate independence of
a vector enables us to find the transformation property of the components of the
vector. Let p € U; NUj and x = ¢;(p), y = ¢;j(p). We have two expressions for
X eTpyM,

X = X" 9 — ~Mi.
dxH adyH
This shows that X* and X* are related as
~ oyH
o= xv 2 (5.23)
dxV

Note again that the components of the vector transform in such a way that the
vector itself is left invariant.

The basis of T,M need not be {e,}, and we may think of the linear
combinations ¢; = A;"e,, where A = (A;*) € GL(m,R). The basis {¢;} is
known as the non-coordinate basis.

5.2.3 One-forms

Since T, M is a vector space, there exists a dual vector space to 7, M, whose
element is a linear function from 7, M to R, see section 2.2. The dual space is
called the cotangent space at p, denoted by T;‘M . Anelementw : T,M — Rof
T;M is called a dual vector, cotangent vector or, in the context of differential
forms, a one-form. The simplest example of a one-form is the differential d f of
a function f € F(M). The action of a vector V on f is V[ f] = V*af/ax" € R.
Then the actionof d f € T;‘ M onV e T,M is defined by
of
df,Vy=V[f]l=V*¥F— eR (5.24)
dxH
Clearly (df, V) is R-linear in both V and f.
Noting that df is expressed in terms of the coordinate x = ¢(p) as
df = (3f/0x*)dx*, it is natural to regard {dx"} as a basis of T;‘M. Moreover,
this is a dual basis, since

0 oxV
12 — — v
<dx , —3xﬂ> =i 8y (5.25)

An arbitrary one-form w is written as
® = w, dx* (5.26)

where the ), are the components of w. Take a vector V = V*9/9x" and a one-
form w = w,dx*. The inner product { , ): T;‘M x TpM — R is defined
by

0]
(0, V) =w, V" <dx“, F> =w, V'8 = w,V*. (5.27)
x



Note that the inner product is defined between a vector and a dual vector and not
between two vectors or two dual vectors.

Since w is defined without reference to any coordinate system, for a point
p € UiNUj, we have

w = w,dx* = o, dy”
where x = ¢;(p) and y = ¢;(p). From dy” = (dy”/0x")dx" we find that

~ axH
By = w, = (5.28)

5.2.4 Tensors

A tensor of type (g, r) is a multilinear object which maps g elements of T;‘M and
r elements of T, M to areal number. Tl p(M) denotes the set of type (g, r) tensors
at p € M. An element of ‘J’Z p(M) is written in terms of the bases described earlier
as

d 0

T=TM"M, —...
g T gk

dx''. . dx". (5.29)
Clearly this is a linear function from
IT,M ®" T,M

toR LetV; = vl.“a/ax“ (1 <i <r)and w; = wjudx” (1 <i < g). The action
of T on them yields a number

. Vi
T(wi,...,00 Vi,..., V) =THHa, o, g, V) RN VAL

In the present notation, the inner product is (@, X) = w(X).

5.2.5 Tensor fields

If a vector is assigned smoothly to each point of M, it is called a vector field
over M. In other words, V is a vector field if V[ f] € F(M) for any f € F(M).
Clearly each component of a vector field is a smooth function from M to R. The
set of the vector fields on M is denoted as X(M). A vector field X at p € M
is denoted by X| s which is an element of 7, M. Similarly, we define a tensor
field of type (g, r) by a smooth assignment of an element of T p(M) at each
point p € M. The set of the tensor fields of type (g,r) on M is denoted by
J7(M). For example, ‘J’?(M ) is the set of the dual vector fields, which is also
denoted by QY (M) in the context of differential forms, see section 5.4. Similarly,
Tg(M) = F(M) is denoted by Q°(M) in the same context.
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Figure 5.10. A map f : M — N induces the differential map fy : TpM — T¢p)N.

5.2.6 Induced maps

A smooth map f : M — N naturally induces a map f called the differential
map (figure 5.10),
Se i TpM — Trp)N. (5.30)

The explicit form of f, is obtained by the definition of a tangent vector as a
directional derivative along a curve. If g € F(N), then g o f € F(M). A vector
V € T, M actson go f to give anumber V[go f]. Now we define f,V € Ty, N
by

(fxV)lgl=Vigo f] (5.31)
or, in terms of charts (U, ¢) on M and (V.y/) on N,
(fVgo ¥ M= Vigo fop™ ()] (5.32)

where x = ¢p(p) and y = ¥ (f(p)). Let V = V#9/ax* and f,V = W*3/dy*.
Then (5.32) yields

9 X 9
il - _yr_ 9 -1
we 3y [gov ™ WMI=Vi—Tlgo fop ().
If we take g = y*, we obtain the relation between W% and V#,
0
o __ N o
W = Vi (). (5.33)

Note that the matrix (dy®/dx*) is nothing but the Jacobian of the map f :
M — N. The differential map f is naturally extended to tensors of type (g, 0),

fe: Tg’p(M) — Tg’f(p)(N).

Example 5.8. Let (x!, x2) and (yl,y2,y3) be the coordinates in M and N,
respectively, and let V = ad/dx' + b3d/dx> be a tangent vector at (x!, x2).



Let f : M — N be a map whose coordinate presentation is y =
(!, x2, /1 = (x1)2 = (x2)2). Then

L0y 9 ] ] ybooy2\ 9

xt gy ay! dy y dy

Exercise 5.3. Let f : M — N and g : N — P. Show that the differential map of
the composite map go f : M — P is

(80 f)x = gxo fs (5.34)

A map f : M — N also induces a map

e T)Z"(p)N — T;‘M. (5.35)
Note that f, goes in the same direction as f, while f* goes backward, hence
the name pullback, see section 2.2. If we take V € T,M and w € f( p)N the
pullback of w by f* is defined by

(ffw,V) = (o, fiV). (5.36)

The pullback f* naturally extends to tensors of type (0, r), f* : T? f(p)(N ) —

7'9’ »(M). The component expression of f * is given by the Jacobian matrix
(0y%/9x™), see exercise 5.4.

Exercise 5.4. Let f : M — N be a smooth map. Show that for v = w,dy* €
f(p)N the induced one-form f*w = §, dx* € T,;M has components
ay“
L= W P (5.37)
Exercise 5.5. Let f and g be as in exercise 5.3. Show that the pullback of the
composite map g o f is

(go f)*=f"og" (5.38)

There is no natural extension of the induced map for a tensor of mixed type.
The extension is only possible if f : M — N is a diffeomorphism, where the
Jacobian of f~! is also defined.
Exercise 5.6. Let 5
™" iy ® dx”
be a tensor field of type (1, 1) on M and let f : M — N be a diffeomorphism.
Show that the induced tensor on N is

(e 0 ® dx” oy“ oxV\ o _®d
\T axr ) \oyP v

where x* and y“ are local coordinates in M and N, respectively.
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Figure 5.11. (a) An immersion f which is not an embedding. (b) An embedding g and
the submanifold g(S!).

5.2.7 Submanifolds

Before we close this section, we define a submanifold of a manifold. The meaning
of embedding is also clarified here.

Definition 5.3. (Immersion, submanifold, embedding) Let f : M — N be a
smooth map and let dim M < dim N.

(a) The map f is called an immersion of M into N if fs : T,M — TN
is an injection (one to one), that is rank f;, = dim M.

(b) The map f is called an embedding if f is an injection and an immersion.
The image f(M) is called a submanifold of N. [In practice, f (M) thus
defined is diffeomorphic to M.]

If f is an immersion, f* maps T, M isomorphically to an m-dimensional
vector subspace of Ty(,) N since rank f, = dim M. From theorem 2.1, we also
find ker f,, = {0}. If f is an embedding, M is diffeomorphic to f(M). Examples
will clarify these rather technical points. Consider a map f : S' — R? in figure
5.11(a). It is an immersion since a one-dimensional tangent space of S is mapped
by fi to a subspace of T'¢( p)Rz. The image f(S') is not a submanifold of R? since
f isnotan injection. Themap g : S' — R? in figure 5.11(b) is an embedding and
g(8") is a submanifold of R?. Clearly, an embedding is an immersion although
the converse is not necessarily true. In the previous section, we occasionally
mentioned the embedding of §” into R"*!. Now this meaning is clear; if S” is
embedded by f : §" — R**! then S” is diffeomorphic to f(S").

5.3 Flows and Lie derivatives

Let X be a vector field in M. An integral curve x(¢) of X is a curve in M, whose
tangent vector at x(¢) is X|,. Given a chart (U, @), this means
n

S Xr ) (5.39)
dr . ’



where x*(¢) is the pth component of ¢ (x(¢)) and X = X*9/dx". Note the abuse
of the notation: x is used to denote a point in M as well as its coordinates. [For
later convenience we assume the point x(0) is included in U.] Put in another
way, finding the integral curve of a vector field X is equivalent to solving the
autonomous system of ordinary differential equations (ODEs) (5.39). The initial
condition x(’f = x*(0) corresponds to the coordinates of an integral curve at r = 0.
The existence and uniqueness theorem of ODEs guarantees that there is a unique
solution to (5.39), at least locally, with the initial data x(’f . It may happen that
the integral curve is defined only on a subset of R, in which case we have to
pay attention so that the parameter ¢ does not exceed the given interval. In the
following we assume that ¢ is maximally extended. It is known that if M is a
compact manifold, the integral curve exists for all # € R.

Let o (¢, x0) be an integral curve of X which passes a point x¢ at t = 0 and
denote the coordinate by o* (¢, xo). Equation (5.39) then becomes

%a“(t,xo) = X*(o (¢, x0)) (5.40a)

with the initial condition
a"(0, x0) = x{;. (5.40b)

The mapo : R x M — M is called a flow generated by X € X(M). A flow
satisfies the rule
o(t, o™ (s, x0)) =o(t+s,x0) (5.41)

for any s, # € R such that both sides of (5.41) make sense. This can be seen from
the uniqueness of ODEs. In fact, we note that

%Uﬂ(taUﬂ(SaXO)) = X"(o(t, 0" (s, x0)))

a(0,0(s, x9)) = a(s, xo)

and

d R+ )
—0 s, x0) =
dr T A+

o(0+s,x9) =0a(s, xp).

o’ (t+s,x0) = X" (o (t + 5, x0))

Thus, both sides of (5.41) satisfy the same ODE and the same initial condition.
From the uniqueness of the solution, they should be the same. We have obtained
the following theorem.

Theorem 5.1. For any pointx € M, there exists a differentiablemap o : RxM —
M such that

(1) o(0,x) = x;
(i) t — o (t, x) is a solution of (5.40a) and (5.40b); and



(iii) o(t,o*(s,x)) = o(t + s, x).

[Note: We denote the initial point by x instead of x¢ to emphasize that o is a map
Rx M — M.]

We may imagine a flow as a (steady) stream flow. If a particle is observed at
apoint x at ¢t = 0, it will be found at o (¢, x) at later time ¢.

Example 5.9. Let M = R* and let X ((x, y)) = —yd/dx + x3/dy be a vector
field in M. It is easy to verify that

o(t,(x,y)) = (xcost — ysint, xsint + ycost)

is a flow generated by X. The flow through (x, y) is a circle whose centre is at
the origin. Clearly, o (¢, (x,y)) = (x,y) if t = 2nm,n € Z. If (x,y) = (0,0),
the flow stays at (0, 0).

Exercise 5.7. Let M = R?, and let X = yd/dx + x9/dy be a vector field in M.
Find the flow generated by X.

5.3.1 One-parameter group of transformations

For fixed r € R, a flow o (¢, x) is a diffeomorphism from M to M, denoted by
oy : M — M. Itis important to note that o; is made into a commutative group by
the following rules.

(1) o7(05(x)) = 0145(x), thatis, o7 0 05 = 0y4;
(ii) oo = the identity map (= unit element); and
(iii) oy = (07)" .

This group is called the one-parameter group of transformations. The
group locally looks like the additive group R, although it may not be isomorphic
to R globally. In fact, in example 5.9, 02,4+ Was the same map as o; and we find
that the one-parameter group is isomorphic to SO(2), the multiplicative group of
2 x 2 real matrices of the form

cosf —sinf
sin6 cosf
or U(1), the multiplicative group of complex numbers of unit modulus e’

Under the action of o, with an infinitesimal ¢, we find from (5.40a) and
(5.40D) that a point x whose coordinate is x* is mapped to

ol (x) = 0¥ (e, x) = x* + e X* (x). (5.42)

The vector field X is called, in this context, the infinitesimal generator of the
transformation o;.



Given a vector field X, the corresponding flow o is often referred to as the
exponentiation of X and is denoted by

ot (t, x) = exp(tX)x". (5.43)

The name ‘exponentiation’ is justified as we shall see now. Let us take a parameter
t and evaluate the coordinate of a point which is separated from the initial point
x = 0(0,x) by the parameter distance ¢ along the flow o. The coordinate
corresponding to the point o (¢, x) is

i (d )2 H (s, x)
— | —) o*(s, x
=0 2! \ds o

1+td+t2 d 2+ (s, x)
JR— J— —_— DEEY O’ s’x
ds 2! \ds

s=0

d
o, x) = x* +t—o"(s, x)
ds

s=0

I
¢
>
o
/N
-~
&l
N~
Q
=
~
\?J
=
A

(5.44)

The last expression can also be written as o (¢, x) = exp(tX)x*, as in (5.43).
The flow o satisfies the following exponential properties.

@) 0(0,x) =x =exp(0X)x (5.45a)
. do(t, x) d
(i1) ” = Xexp(tX)x = E[exp(tX)x] (5.45b)
(ii1) o(t,o(s,x)) =o(t,exp(sX)x) = exp(tX) exp(s X)x
=exp{(t +s)X}x =0 + s, x). (5.45¢)

5.3.2 Lie derivatives

Leto(t, x) and 7 (¢, x) be two flows generated by the vector fields X and Y,

w —X" (0 (s, x)) (5.46a)
\)
% —YR(z(t, x)). (5.46b)

Let us evaluate the change of the vector field Y along o (s, x). To do this, we have
to compare the vector Y at a point x with that at a nearby point x’ = o, (x),
see figure 5.12. However, we cannot simply take the difference between the
components of Y at two points since they belong to different tangent spaces
TyM and Ty, ()M the naive difference between vectors at different points is
ill defined. To define a sensible derivative, we first map Y|, () to TxM by
(0-¢)x : Ty, ()M — T M, after which we take a difference between two vectors
(0—¢)x Ylg,(x) and Y|, both of which are vectors in Ty M. The Lie derivative of
a vector field Y along the flow o of X is defined by

1
LxY = lim —[(o—e)«Y|oex) — Ylx]- (5.47)
e—0¢&



Figure 5.12. To compare a vector Y|, with Y|, (), the latter must be transported back to
x by the differential map (o—¢ ).

Exercise 5.8. Show that LxY is also written as

o1
LxY = lim —[Y], — (Us)*Y|<Lg(x)]
e—>0¢

|
= lim —[Y|U€(x) — (0e)+ Y [x].

e—0¢

Let (U, ¢) be a chart with the coordinates x and let X = X*9/9x* and
Y = Y#3/3x" be vector fields defined on U. Then o, (x) has the coordinates
x4+ e XH(x) and

Y|og(x) = Y,u(xv + SXv(x))eu|x+sX
~ [YH(x) + SXu(x)aqu(x)]e;L'x—i-sX

where {e,,} = {9/0x"} is the coordinate basis and 9, = 9/9x". If we map this
vector defined at o, (x) to x by (0_¢)«, we obtain

[YH(x) + X ()8 Y (0)]9,[x” — e XV (x)]ev]s
=[Y*(x) + sxk(x)axyﬂ(x)][a; — eaﬂx”(x)]evu
= YH(x)eplx + e[ X (x)8, Y (x) — YH(x)3, X" (0)]evlx + O(e?).
(5.48)
From (5.47) and (5.48), we find that

LxY = (X"9,Y" — Y 3, X")ey. (5.49a)



Exercise 5.9. Let X = X*9/ox" and Y = YH09/dx" be vector fields in M.

Define the Lie bracket [ X, Y] by
(X, Y1f = X[Y[f1] - YIX[f]I
where f € F(M). Show that [X, Y] is a vector field given by
(X0, YY" —YH3,XV)e,.
This exercise shows that the Lie derivative of ¥ along X is

LxY =[X,Y].

(5.50)

(5.49b)

[Remarks: Note that neither XY nor Y X is a vector field since they are second-
order derivatives. The combination [ X, Y] is, however, a first-order derivative and

indeed a vector field.]
Exercise 5.10. Show that the Lie bracket satisfies
(a) bilinearity
[X,c1Y1 + c2Y2] = c1lX, Y1] + e2l X, Y2l
[c1X1 + c2X2, Y] = a1l X1, Y] + 2l X2, Y]

for any constants c¢; and ¢,
(b) skew-symmetry
[X,Y]=—-[YX]

(c) the Jacobi identity

(X, Y], Z]+[[Z, X]. Y]+ [[Y, Z], X] = 0.

Exercise 5.11. (a) Let X, Y € X(M) and f € F(M). Show that
LyxY =fIX.Y]-Y[fIX
Lx(fY)=fI[X,Y]+ X[f]Y.
(b)LetX,Y € X(M) and f : M — N. Show that

f*[Xa Y]= [f*X’ f*Y]~

(5.51a)
(5.51b)

(5.52)

Geometrically, the Lie bracket shows the non-commutativity of two flows.
This is easily observed from the following consideration. Let o (s, x) and t(¢, x)
be two flows generated by vector fields X and Y, as before, see figure 5.13. If we
move by a small parameter distance ¢ along the flow o first, then by § along 7,

we shall be at the point whose coordinates are

™8, 0(e,x)) = (8, x" + X" (x))
~ x4+ e XH () +8YH(xY +eXV(x))

~xt e XH(x) 4+ 8YH(x) +e8XV (x)0, Y (x).



(t, X)

Figure 5.13. A Lie bracket [ X, Y] measures the failure of the closure of the parallelogram.

If, however, we move by § along 7 first, then by ¢ along o, we will be at the point

oM (e, t(8,x)) = ot (e, x" +8Y"(x))
> xH +8YH(x) + eX*(xV + 87V (x))
~xt L SYH(x) + e XH(x) 4+ e8YV (%), XH (x).
The difference between the coordinates of these two points is proportional to the

Lie bracket,
™8, 0(e, x)) —at(s, T(8, x)) = &d[X, Y™

The Lie bracket of X and Y measures the failure of the closure of the
parallelogram in figure 5.13. It is easy to see LxY = [X, Y] = 0 if and only
if
o(s,t(t,x)) =1(,0(s,x)). (5.53)
We may also define the Lie derivative of a one-form w € Q'(M) along
X € X(M) by

o1
Lxw = slg% E[(Us)*whrg(x) — wlx] (5.54)

where w|, € T;M is w at x. Put w = w,dx". Repeating a similar analysis as
before, we obtain

(06) @], (v) = @u (¥) dx" + e[ XV (X) Dy (x) + 3 XY (x)wy (x)] dx*

which leads to
Lxw= (X", + 0, X" w,)dx". (5.55)

Clearly Lxw € T, (M), since it is a difference of two one-forms at the same point
X.



The Lie derivative of f € (M) along a flow o, generated by a vector field
X is

1
Lxf = elgr}) g[f(cre(x)) — f]

= lim é[ FOM 4 eXH ) — fOM)]
of

which is the usual directional derivative of f along X.
The Lie derivative of a general tensor is obtained from the following
proposition.

Proposition 5.1. The Lie derivative satisfies
Lx(n+n)=Lxti +Lxt (5.57a)
where #; and ; are tensor fields of the same type and
Lx(t1®n)=(Lxt) @b+t (Lxtr) (5.57b)

where ¢ and t, are tensor fields of arbitrary types.

Proof. (a) is obvious. Rather than giving the general proof of (b), which is full
of indices, we give an example whose extension to more general cases is trivial.
Take Y € X(M) and w € Q' (M) and construct the tensor product ¥ ® w. Then
(¥ ® w)|,(x) is mapped onto a tensor at x by the action of (0_¢)s+ ® (oe)™:

[(0—¢)s ® (0:)*1(Y ® ®)|oy(x) = [(0-¢):Y ® (0e) @]l

Then there follows (the Leibnitz rule):
1
Lx(Y @)= lim —[{(0_¢)+Y ® (0e) 0}|x — (Y @ )]
e—0¢&

1
= lim ~[(0-¢)«Y ® {(0)"® — @} + {(0-¢)+Y =V} ® 0]
e—>0¢
=Y Q® (Lxw)+ (LxY) R w.
Extensions to more general cases are obvious. d

This proposition enables us to calculate the Lie derivative of a general tensor
field. For example, lett =, dx* ® e, € T} (M). Proposition 5.1 gives

ACXt = X[tuv] dx* ® ey, + tuv(ﬁx dxﬂ) ® ey + tﬂ,v dx* ® (EXEV).
Exercise 5.12. Let t be a tensor field. Show that

Lixyit = LxLyt — LyLxt. (5.58)



5.4 Differential forms

Before we define differential forms, we examine the symmetry property of
tensors. The symmetry operation on a tensor w € T? (M) is defined by

Po(Vy,..., Vi) =w(Vpay, ..., Vp@) (5.59)
where V; € T, M and P is an element of S, the symmetric group of order r.
Take the coordinate basis {e,,} = {9/0x"}. The component of w in this basis is
W(epys uys -y €)= Opypg.gey-

The component of Pw is obtained from (5.59) as

Powley ,epy, ... eu) = Oupyp@)--HpP)

For a general tensor of type (g, r), the symmetry operations are defined for g
indices and r indices separately.
Forw € ‘J"r) »(M), the symmetrizer S is defined by

Sw= — Z Pw (5.60)

while the anti-symmetrizer A is

1
Aw:; E sgn(P)Pw (5.61)
PeS,

where sgn(P) = +1 for even permutations and —1 for odd permutations. Sw is
totally symmetric (that is, PS®w = Sw for any P € S,) and Aw is totally anti-
symmetric (PAw = sgn(P)Aw).

5.4.1 Definitions

Definition 5.4. A differential form of order r or an r-form is a totally anti-
symmetric tensor of type (0, ).

Let us define the wedge product A of r one-forms by the totally anti-
symmetric tensor product

dxM AdxM2 AL AdxPr = Z sgn(P) dx P AdxHPO AL AdXHPO | (5.62)
PeS,
For example,
dx* Adx’ = dx* @ dx¥ — dx’ ® dx*
dx* Adx# Adx’ = di? @ dx* @ dx” + dx’ @ dx* @ dx*
+dx* @ dx’ @ dx* — dx* @ dx” @ dx*
—dx’ @ dxt @ dx* — dxt ® dx* ® dx".



It is readily verified that the wedge product satisfies the following.

(i) dx" A...Adx* =0if some index u appears at least twice.
(i) dx" A ... AdxPr =sgn(P)dxPM AL A dxHPO),
(iii) dx*t A ... A dx* is linear in each dx*.

If we denote the vector space of r-forms at p € M by (M), the set of
r-forms (5.62) forms a basis of Q;,(M ) and an element w € Q; (M) is expanded

as
1
O = =0y dx™ A dxH2 AL A dxPr (5.63)
r!

where @y, ..., are taken totally anti-symmetric, reflecting the anti-symmetry
of the basis. For example, the components of any second-rank tensor wy, are
decomposed into the symmetric part o;,,, and the anti-symmetric part o, :

Oy =0(uv) = 3(@uy + Ouy) (5.64a)

Qv =0[] = 5(@py — Ouy). (5.64b)

Observe that 0, dx* A dx¥ = 0, while ,, dx* A dx” = wp,, dx* A dx”.
Since there are (':') choices of the set (w1, 2, ..., i) outof (1,2, ..., m)
in (5.62), the dimension of the vector space Q;,(M ) is

my\ m!
<r> T m =)

For later convenience we define Q%(M) = R. Clearly Q},(M) = TiM. If
r in (5.62) exceeds m, it vanishes identically since some index appears at least
twice in the anti-symmetrized summation. The equality () = (,”,) implies
dim Q;,(M) = dim Q’,’,"’(M). Since Q;,(M) is a vector space, Q;(M) is
isomorphic to QZ‘_’ (M) (see section 2.2).

Define the exterior product of a g-form and an r-form A : Q(,’,(M) X
QL (M) — Q(,’,Jrr(M) by a trivial extension. Let w € QF(M) and & € QL (M),
for example. The action of the (g 4 r)-form w A & on g + r vectors is defined by

(@ANEYV1, s Vgir)

1
= P Z sgn(P)o(Vpay, ..., Ve@)EVpg+1)s - VPg+r)
o PESq+y

(5.65)

where V; € T,M. If ¢ +r > m, w A & vanishes identically. With this product,
we define an algebra

QM) = QY (M) ® Q) (M) & ... & Q) (M). (5.66)



Table 5.1.

r-forms Basis Dimension
QO(M) = F(M) {1} 1

Qlmy =T*Mm {dxH} m

Q2(M) {dxH1 A dxH2} m(m —1)/2

Q3 (M) {dxHt AdxP2 AdxM3)  m(m — 1)(m —2)/6
.Q’"(M) {dxl/\dxz./\...dx'"} |

Q;(M ) is the space of all differential forms at p and is closed under the exterior
product.

Exercise 5.13. Take the Cartesian coordinates (x, y) in R?. The two-form dx Ady
is the oriented area element (the vector product in elementary vector algebra).
Show that, in polar coordinates, this becomes »dr A d6.

Exercise 5.14. Let& € Q(Z,(M), n e Q;,(M) and w € Q;(M). Show that

ENE=0 if ¢ is odd (5.67a)
Enn=(=D"nnE (5.67b)
EAMNAw=EAN0Aw®). (5.67¢)

We may assign an r-form smoothly at each point on a manifold M. We
denote the space of smooth r-forms on M by Q" (M). We also define QM) to
be the algebra of smooth functions, F(M). In summary we have table 5.1.

5.4.2 Exterior derivatives

Definition 5.5. The exterior derivative d, is a map Q" (M) — Q"1 (M) whose
action on an r-form

= — 1 0
o= r'wm,,,mdx Ao oA dxPr

is defined by
r!

1/ 8
drow = — <Fa)ﬂ],_,u,) dx¥ Adx™ AL A dxtr (5.68)
X

It is common to drop the subscript  and write simply d. The wedge product
automatically anti-symmetrizes the coefficient.



Example 5.10. The r-forms in three-dimensional space are:

() wo = f(x,y,2),

(i) w1 = wx(x,y,2) dx + wy(x, y,2)dy + ©:(x, y,2) dz,

(iii) wp = wyxy(x, y, 2) dx Ady + wy (x, y,2) dy Adz + @z (x, y, 2) dz Adx
and

(iv) @3 = wyy;(x,y,2)dx Ady Adz.

If we define an axial vector a** by e*"*w,;, a two-form may be regarded as a
‘vector’. The Levi-Civita symbol ¢*"* is defined by e 7 (VPP PG) = son(P) and
provides the isomorphism between X (M) and Q2(M). [Note that both of these
are of dimension three.]

The action of d is

) 0 a 0
(i) dwp = _fdx+_fdy+_fdz’
ox ay 9z
.. aa)y 8(1))( 8(1)2 aa)y
(i) dow; = —_— — dx Ady + | ———)dy A dz
ox ay ay 9z
0 0
@x _ T2 dz Adx,
0z dx
dwy ad Owyy
(i) dap = [ 222 4 Z9x | TP ) 40 A dy A dz and
ox ay 0z

@iv) dws = 0.

Hence, the action of d on wy is identified with ‘grad’, on w; with ‘rot’ and on w;
with ‘div’ in the usual vector calculus.

Exercise 5.15. Let & € Q4(M) and w € Q" (M). Show that
dé Aw)=dé Ao+ (=€ A dw. (5.69)

A useful expression for the exterior derivative is obtained as follows. Let us
take X = X"9/3x",Y = ¥Y"9/9x" € X(M) and o = w, dx* € QY(M). Itis
easy to see that the combination

X[o@)] = Y[oX)] —o(X,Y]) = %(X”Y“ - X"Y")
is equal to dw (X, Y), and we have the coordinate-free expression
do (X, Y) = X[o()] = Y[o(X)] — o(X, Y]). (5.70)
For an r-form w € Q" (M), this becomes

d(,l)(Xl, "'aX}’-'rl)

,
=) DT XioXr o Ki e Xe)

i=1

+Y DX X1 X Xin L X X ) (571

i<j



where the entry below ~ has been omitted. As an exercise, the reader should
verify (5.71) explicitly for r = 2.
We now prove an important formula:

=0 (ordy41d, =0). (5.72)

Take |
w = r—!wm._.ur dx™ AL Adxt e QT(M).

The action of d? on w is

1 %0
o = — ——L gh Adx? AdxM AL AdxP
r! 9x*axv
This vanishes identically since Bza)m ] dx*dx" is symmetric with respect to A
and v while dx* A dx” is anti-symmetric.

Example 5.11. Tt is known that the electromagnetic potential A = (¢, A) is a
one-form, A = A, dx" (see chapter 10). The electromagnetic tensor is defined
by F = dA and has the components

0 —E, —E, —E,
E, 0 B, —B
E, —B, 0 B
E, B, -B, 0

(5.73)

where 9
E=-V¢p - —A and B=VxA
ax0

as usual. Two Maxwell equations, V - B = 0 and 0B/dt = —V x E follow from
the identity dF = d(dA) = 0, which is known as the Bianchi identity, while the
other set is the equation of motion derived from the Lagrangian (1.245).

A map f : M — N induces the pullback f* : f( N o= T M and
f* is naturally extended to tensors of type (0, r); see section 5.2. Smce an
r-form is a tensor of type (0, r), this applies as well. Let ® € Q"(N) and
let f be amap M — N. At each point f(p) € N, f induces the pullback
JrQ N — Q)M by

(ffo)Xi, ..., X)) = o(fiX1, ..., fiXr) (5.74)
where X; € T, M and f, is the differential map T, M — Ty, N.
Exercise 5.16. Let&, w € Q"(N) and let f : M — N. Show that

d(f*w) = f*dw) (5.75)
[TEnw) = (f") A (ffw). (5.76)



The exterior derivative d, induces the sequence

| d"'l— — dm_ -
0 -5 0 2 oty s &2 om0 (5.77)

where i is the inclusion map 0 < °(M). This sequence is called the de Rham
complex. Since d? = 0, we have imd, C kerd,+1. [Take w € Q"(M). Then
d;o € imd, and d,11(d,w) = 0 imply d,® € kerd,11.] An element of kerd, is
called a closed r-form, while an element of imd,_; is called an exact r-form.
Namely, w € Q" (M) is closed if dw = 0 and exact if there exists an (r — 1)-form
¥ such that o = dy. The quotient space kerd,/imd,_; is called the rth de
Rham cohomology group which is made into the dual space of the homology
group; see chapter 6.

5.4.3 Interior product and Lie derivative of forms

Another important operation is the interior product iy : Q" (M) — Q" 1(M),
where X € X(M). For w € Q" (M), we define

ixoX1,....,. X)) =X, X1,..., Xr_1). (5.78)
For X = X#9/9x" and w = (1/rD)wy,...., dx™ A ... Adx? we have

1
r—1!
1 r

== D XMoo, (CDT AT AL AR AL AR
r

iyw = X 0upy..p, dx2 A oA dx P

s=1

(5.79)

where the entry below ~ has been omitted. For example, let (x, y, z) be the
coordinates of R?. Then

io,dx Ady) =dy, i, (dyAdz) =0, i (dz Adx) = —dz.

The Lie derivative of a form is most neatly written with the interior product.
Let = w,dx" be a one-form. Consider the combination

(dix +ixd)o = d (X" ) +ix[§ @0y — dywy) dxk A dx"]
= (wud X" + XH*ywy) dx” + X* (0, 0p — 3y0y,) dx”
= (wud X" + X" 0, 0,) dx”.

Comparing this with (5.55), we find that

Lxw = (dix +ixd)w. (5.80)



For a general r-form w = (1/r)wy,..u, dx*t A ... A dx#r, we have
1 N
Lxw = lim —((o¢) |, (x) — @lx)
e—=0 &

1
= er_!avwm---urdx“' Ao Adxtr
r 1 s
+ZBMX”r—!wu,_,_$,_,u,dx“' A Adxt (5.81)
s=1
We also have

(dix +ixd)w

1 r
=1 Z[avxmwm---us---ur + X" dvop, ., ]

T s=1

x (=1 Vdx¥ Adx™ AL AdxBs AdxPr
1
+ ;[X”Bva)m._.urdx“' Ao A dxPr

,
+ )X g, (D X" AP A LA AL A dxP]

s=1

1 , —~
= D 100 X" @y iy (=1 T X AR AL A AL A P

s=1

1
+ = X" dywpy s, XA LA A
r!

If we interchange the roles of u; and v in the first term of the last expression and
compare it with (5.81), we verify that

dix +ix d)w = Lxw (5.82)
for any r-form w.
Exercise 5.17. Let X, Y € X(M) and w € Q" (M). Show that
ifx.yjo = X(iyw) — Y(ixw). (5.83)
Show also that iy is an anti-derivation,
ix(wAn) =ixoAn+ (=1 wAixn (5.84)

and nilpotent,
i} =0. (5.85)

Use the nilpotency to prove

L‘,xixa) = ixﬁxa). (5.86)



Exercise 5.18. Lett € T7,(M). Show that

Vi-..Vm V] AUy V1...Vm

n n
(Lxt)ifn = X4, gl +Z By, X g1t —Z QXM 1Rt (5 )
s=1

s=1

Example 5.12. Let us reformulate Hamiltonian mechanics (section 1.1) in terms
of differential forms. Let H be a Hamiltonian and (¢*, p,) be its phase space.
Define a two-form

w=dp, Adg" (5.88)

called the symplectic two-form. If we introduce a one-form
0 =q"dpy, (5.89)
the symplectic two-form is expressed as
w = do. (5.90)

Given a function f (g, p) in the phase space, one can define the Hamiltonian
vector field

Xf=rtrne ———. (5.91)

Then it is easy to verify that

0 0
inw — __f dp“ — _f dq“ = —df.

pu ag+

Consider a vector field generated by the Hamiltonian

= . (5.92)
dpu dq*  dgH dpy
For the solution (¢*, p,,) to Hamilton’s equation of motion

dg* OoH d oH
g7 o Qe 9H (5.93)

dr apy dr agh

we also obtain d 3 do* 3 d
—%Pu ¢ 04 9 _ (5.94)

dr op, dr agh  dt’

The symplectic two-form w is left invariant along the flow generated by X g,

L:XHCL) = d(ixHa)) +ixH(dw)

=d(ix,w) = —d’H =0 (5.95)

where use has been made of (5.82). Conversely, if X satisifes Lxw = 0, there
exists a Hamiltonian H such that Hamilton’s equation of motion is satisfied



along the flow generated by X. This follows from the previous observation that
Lxw = d(ixw) = 0 and hence by Poincaré’s lemma, there exists a function
H(q, p) such that

i XxXw = —dH .

The Poisson bracket is cast into a form independent of the special coordinates
chosen with the help of the Hamiltonian vector fields. In fact,

ix, (ix,) = —ix,(dg) = ~- % — T8 _p elpp. (5.96)

5.5 Integration of differential forms

5.5.1 Orientation

An integration of a differential form over a manifold M is defined only when
M is ‘orientable’. So we first define an orientation of a manifold. Let M be
a connected m-dimensional differentiable manifold. At a point p € M, the
tangent space 7, M is spanned by the basis {e,} = {9/dx"}, where x* is the
local coordinate on the chart U; to which p belongs. Let U; be another chart such
that U; N U; # ¥ with the local coordinates y*. If p € U; N U;, T, M is spanned
by either {e,} or {e,} = {8/dy“}. The basis changes as

- axH
ey = ay—a €u- (597)

If J = det(dx*/3y“) > 0on U; N Uj, {e,} and {e,} are said to define the same
orientation on U; N U; and if J < 0, they define the opposite orientation.

Definition 5.6. Let M be a connected manifold covered by {U;}. The manifold
M is orientable if, for any overlapping charts U; and U;, there exist local
coordinates {x"} for U; and {y*} for U; such that J = det(dx"/9y%) > 0.

If M is non-orientable, J cannot be positive in all intersections of charts.
For example, the Mobius strip in figure 5.14(a) is non-orientable since we have
to choose J to be negative in the intersection B.

If an m-dimensional manifold M is orientable, there exists an m-form w
which vanishes nowhere. This m-form w is called a volume element, which
plays the role of a measure when we integrate a function f € F(M) over M.
Two volume elements @ and o’ are said to be equivalent if there exists a strictly
positive function 7 € F(M) such that ® = he'. A negative-definite function
h' € F(M) gives an inequivalent orientation to M. Thus, any orientable manifold
admits fwo inequivalent orientations, one of which is called right handed, the
other left handed. Take an m-form

w=h(p)dx" A...Adx" (5.98)



(a)

Al

|
[}

Figure 5.14. (a) The Mobius strip is obtained by twisting the part B’ of the second
strip by 7 before pasting A with A’ and B with B’. The coordinate change on B is

yl= xl, y2 = —x2 and the Jacobian is —1. (b) Basis frames on the Mdbius strip.

with a positive-definite #(p) on a chart (U, ¢) whose coordinate is x = @(p).
If M is orientable, we may extend w throughout M such that the component
h is positive definite on any chart U;. If M is orientable, this w is a volume
element. Note that this positivity of % is independent of the choice of coordinates.
In fact, let p € U; N U; # ¥ and let x** and y* be the coordinates of U; and U,
respectively. Then (5.98) becomes

_ (25 gy " dytn = npydet [ 25 dy! dy™
w= (p)ay/“ y A.../\ayﬂm yHtm = h(p)de 8—y" VAo AdY™.
(5.99)

The determinant in (5.99) is the Jacobian of the coordinate transformation and
must be positive by assumed orientability. If M is non-orientable, @ with a
positive-definite component cannot be defined on M. Let us look at figure 5.14
again. If we circumnavigate the strip along the direction shown in the figure,
o = dx A dy changes the signature dx A dy — —dx A dy when we come back to
the starting point. Hence, w cannot be defined uniquely on M.

5.5.2 Integration of forms

Now we are ready to define an integration of a function f : M — R over an
orientable manifold M. Take a volume element w. In a coordinate neighbourhood
U; with the coordinate x, we define the integration of an m-form fw by

fwa/ F@ k(e o)y dxt .. dx™. (5.100)
Ui oU;)



The RHS is an ordinary multiple integration of a function of m variables. Once
the integral of f over U; is defined, the integral of f over the whole of M is given
with the help of the ‘partition of unity’ defined now.

Definition 5.7. Take an open covering {U;} of M such that each point of M is
covered with a finite number of U;. [If this is always possible, M is called
paracompact, which we assume to be the case.] If a family of differentiable
functions ¢; (p) satisfies

H0=ei(p)=1
(i) ¢i(p) = 0if p ¢ U; and
(iii) e1(p) + e2(p) + ... =1 for any point p € M
the family {e(p)} is called a partition of unity subordinate to the covering {U;}.

From condition (iii), it follows that

fp)=)_f(pep) =Y fi(p) (5.101)

where f;(p) = f(p)ei(p) vanishes outside U; by (ii). Hence, given a point
p € M, assumed paracompactness ensures that there are only finite terms in the
summation over i in (5.101). For each f;(p), we may define the integral over U;
according to (5.100). Finally the integral of f on M is given by

/Mfa)s Z/Uﬁw (5.102)

Although a different atlas {(V;, ¥;)} gives different coordinates and a different
partition of unity, the integral defined by (5.102) remains the same.

Example 5.13. Let us take the atlas of S! defined in example 5.2. Let U; =
ST —{(1,0)}, Uy = S' — {(=1,0)}, &1(8) = sin*(6/2) and £2(0) = cos2(6/2).
The reader should verify that {g;(0)} is a partition of unity subordinate to {U;}.
Let us integrate a function f = cos” 6, for example. [Of course we know

2
/ df cos? =n
0

but let us use the partition of unity.] We have

2 0 b4 0
/ do cos?6 = / do sin® = cos’ 0 —i—/ do cos® = cos’6
Sl 0 2 2

-7
= %n + %n =m.

So far, we have left & arbitrary provided it is strictly positive. The reader
might be tempted to choose % to he unity. However, as we found in (5.99), h
is multiplied by the Jacobian under the change of coordinates and there is no
canonical way to single out the component /; unity in one coordinate might not
be unity in the other. The situation changes if the manifold is endowed with a
metric, as we will see in chapter 7.



5.6 Lie groups and Lie algebras

A Lie group is a manifold on which the group manipulations, product and inverse,
are defined. Lie groups play an extremely important role in the theory of fibre
bundles and also find vast applications in physics. Here we will work out the
geometrical aspects of Lie groups and Lie algebras.

5.6.1 Lie groups

Definition 5.8. A Lie group G is a differentiable manifold which is endowed with
a group structure such that the group operations

)-:GxG— G, (g1,8)~ 81-&
() ':G— G, g g!

are differentiable. [Remark: It can be shown that G has a unique analytic structure
with which the product and the inverse operations are written as convergent power
series. ]

The unit element of a Lie group is written as e. The dimension of a Lie group
G is defined to be the dimension of G as a manifold. The product symbol may be
omitted and g - g7 is usually written as g; g». For example, let R* = R—{0}. Take
three elements x, y, z € R* such that xy = z. Obviously if we multiply a number
close to x by a number close to y, we have a number close to z. Similarly, an
inverse of a number close to x is close to 1/x. In fact, we can differentiate these
maps with respect to the relevant arguments and R* is made into a Lie group with
these group operations. If the product is commutative, namely g1g> = g2g1, we
often use the additive symbol + instead of the product symbol.

Exercise 5.19.

(a) Show that R = {x € Rlx > 0} is a Lie group with respect to
multiplication.

(b) Show that R is a Lie group with respect to addition.

(c) Show that R? is a Lie group with respect to addition defined by (x1, y1) +
(x2, y2) = (x1 +x2, y1 + y2).

Example 5.14. Let S' be the unit circle on the complex plane,

S'=1{e?16 e R (mod 27)).
The group operations defined by el’e’? = el@+9) and (ei)~! = e are
differentiable and S! is made into a Lie group, which we call U(1). It is easy
to see that the group operations are the same as those in exercise 5.19(b) modulo
2.

Of particular interest in physical applications are the matrix groups which
are subgroups of general linear groups GL(n, R) or GL(n, C). The product of



elements is simply the matrix multiplication and the inverse is given by the matrix
inverse. The coordinates of GL(n, R) are given by n? entries of M = {xij}.
GL(n, R) is a non-compact manifold of real dimension nZ.

Interesting subgroups of GL(n, R) are the orthogonal group O(n), the

special linear group SL(n, R) and the special orthogonal group SO(n):

O(m) ={M € GL(n, R)\MM"' = M'M = I,,} (5.103)
SL(n,R) = {M € GL(n, R)|det M = 1} (5.104)
SO(n) = O(n) N SL(n, R) (5.105)

where ' denotes the transpose of a matrix. In special relativity, we are familiar
with the Lorentz group

0(1,3) = {M € GL@&, R)|MnM' = n}

where 7 is the Minkowski metric, n = diag(—1, 1, 1, 1). Extension to higher-
dimensional spacetime is trivial.

Exercise 5.20. Show that the group O(1,3) is non-compact and has four
connected components according to the sign of the determinant and the sign of the

(0, 0) entry. The component that contains the unit matrix is denoted by 01(1, 3).

The group GL(n, C) is the set of non-singular linear transformations in C”,
which are represented by n x n non-singular matrices with complex entries. The
unitary group U(n), the special linear group SL(n, C) and the special unitary
group SU(n) are defined by

Un)={M eGLn,Q)IMM" = MM =1} (5.106)
SL(n,C) = {M € GL(n, C)|det M = 1} (5.107)
SU(n) = U(n) N SL(n, C) (5.108)

where T is the Hermitian conjugate.

So far we have just mentioned that the matrix groups are subgroups of a Lie
group GL(n, R) (or GL(n, C)). The following theorem guarantees that they are
Lie subgroups, that is, these subgroups are Lie groups by themselves. We accept
this important (and difficult to prove) theorem without proof.

Theorem 5.2. Every closed subgroup H of a Lie group G is a Lie subgroup.

For example, O(n), SL(n, R) and SO(n) are Lie subgroups of GL(n, R). To
see why SL(n, R) is a closed subgroup, consider a map f : GL(n,R) — R
defined by A +— detA. Obviously f is a continuous map and f~'(1) =
SL(n, R). A point {1} is a closed subset of R, hence £~1(1) is closed in GL(n, R).
Then theorem 5.2 states that SL(n, R) is a Lie subgroup. The reader should verify
that O(n) and SO(n) are also Lie subgroups of GL(n, R).



Let G be a Lie group and H a Lie subgroup of G. Define an equivalence
relation ~ by g ~ g’ if there exists an element & € H such that ¢’ = gh. An
equivalence class [g]isaset {gh|h € H}. The coset space G/H is a manifold (not
necessarily a Lie group) with dim G/H = dim G —dim H. G/H is a Lie group if
H is a normal subgroup of G, that is, if ghg ™! € H forany g € Gandh € H. In
fact, take equivalence classes [g], [¢'] € G/H and construct the product [g][g'].
If the group structure is well defined in G/H, the product must be independent
of the choice of the representatives. Let gh and g’h’ be the representatives of [g]
and [g'] respectively. Then ghg'h’ = gg'h”’h’ € [gg'] where the equality follows
since there exists A’ € H such that hg’ = g’h”. It is left as an exercise to the
reader to show that [g]_1 is also a well defined operation and [g]_l = [g_l].

5.6.2 Lie algebras

Definition 5.9. Let a and g be elements of a Lie group G. The right-translation
R, : G — G and the left-translation L, : G — G of g by a are defined by

R,g =ga (5.109a)
L,g =ag. (5.109b)

By definition, R, and L, are diffeomorphisms from G to G. Hence, the
maps L, : G - G and R, : G — G induce L4y : T,G — T4eG and
Rux : TG — TgqG; see section 5.2. Since these translations give equivalent
theories, we are concerned mainly with the left-translation in the following. The
analysis based on the right-translation can be carried out in a similar manner.

Given a Lie group G, there exists a special class of vector fields characterized
by an invariance under group action. [On the usual manifold there is no canonical
way of discriminating some vector fields from the others.]

Definition 5.10. Let X be a vector field on a Lie group G. X is said to be a left-
invariant vector field if L, X|, = X|.

Exercise 5.21. Verify that a left-invariant vector field X satisfies

ox'(ag) 0 0
LaX|y = X'(9) ot | = X"(ag)
dxH(g) ox ag ax

(5.110)
ag

where x*(g) and x*(ag) are coordinates of g and ag, respectively.

A vector V € T,G defines a unique left-invariant vector field Xy throughout
G by
Xvlg = LgsV g€G. (5.111D)

In fact, we verify from (5.34) that Xvlag = LagxV = (LaLg)sxV = LasxLgsV =
LaxXvlg. Conversely, a left-invariant vector field X defines a unique vector
V = X]|, € T.G. Let us denote the set of left-invariant vector fields on G by



g. The map 7.G — g defined by V +— Xy is an isomorphism and it follows
that the set of left-invariant vector fields is a vector space isomorphic to 7,G. In
particular, dimg = dim G.

Since g is a set of vector fields, it is a subset of X(G) and the Lie bracket
defined in section 5.3 is also defined on g. We show that g is closed under the
Lie bracket. Take two points g and ag = L,g in G. If we apply L, to the Lie
bracket [X, Y] of X, Y € g, we have

Lax[X, Y]lg = [LaxXlg, LasY |g] = [X, Y]lag (5.112)

where the left-invariances of X and Y and (5.52) have been used. Thus, [X, Y] €
g, that is g is closed under the Lie bracket.

It is instructive to work out the left-invariant vector field of GL(n, R). The
coordinates of GL(n, R) are given by n? entries x"/ of the matrix. The unit
element is e = I, = (8). Let g = {x(g)} and @ = {x"/(a)} be elements
of GL(n, R). The left-translation is

Lig =ag =y x"(@x"(g).

Take a vector V. = V4 3/3x" |, € T,G where the V'/ are the entries of V. The
left-invariant vector field generated by V is

Xvlg=LeV = Y VIi—| xM(g)x"(e)

=
axi |,

dxkm
ijklm 8

0]
— ZVU kl(g)(sl ! . —

= > MV =

ak/

8
=2 VY= k,

where gV is the usual matrix multlphcatlon of g and V. The vector Xy |, is often
abbreviated as gV since it gives the components of the vector.

The Lie bracket of Xy and Xw generated by V = Viig / x|, and W =
Wig/axi|, is

(5.113)

) 9
_ k b
[(Xv, Xwlly = > xM(e)v¥ el X UQW? - (V& W)
9
= @lv. W])”—..‘ : (5.114)
ax ¢

Clearly, (5.113) and (5.114) remain true for any matrix group and we establish
that

LguV =gV (5.115)
[Xv, Xwllg = Lg«[V, W] = g[V, W]. (5.116)



Now a Lie algebra is defined as the set of left-invariant vector fields g with
the Lie bracket.

Definition 5.11. The set of left-invariant vector fields g with the Lie bracket
[ , 1:gxg— giscalled the Lie algebra of a Lie group G.

We denote the Lie algebra of a Lie group by the corresponding lower-case
German gothic letter. For example so(n) is the Lie algebra of SO(n).

Example 5.15.

(a) Take G = R as in exercise 5.19(b). If we define the left translation L, by

X — x + a, the left-invariant vector field is given by X = 9/dx. In fact,
_da+x) 9 B 9 _x

. ax da+x) 9x+a) cta

LaxX

Clearly this is the only left-invariant vector field on R. We also find that
X = 0/06 is the unique left-invariant vector field on G = SO(2) = {(e?10 <

6 < 2m}. Thus, the Lie groups R and SO(2) share the common Lie algebra.

(b) Let gl(n, R) be the Lie algebra of GL(n, R) and ¢ : (—¢, €) — GL(n, R)
be a curve with ¢(0) = I,,. The curve is approximated by c(s) = I, + sA +
O(s?) near s = 0, where A is an n x n matrix of real entries. Note that
for small enough s, detc(s) cannot vanish and c(s) is, indeed, in GL(n, R).
The tangent vector to c(s) at I, is c’(s)|s=0 = A. This shows that gl(n, R)
is the set of n x n matrices. Clearly dimgl(n, R) = n? = dimGL(n, R).
Subgroups of GL(n, R) are more interesting.

(c) Let us find the Lie algebra sl(n, R) of SL(n,R). Following this
prescription, we approximate a curve through I,, by ¢(s) = I, +sA+ O (s?).
The tangent vector to ¢(s) at I, is ¢(s) ‘s:O = A. Now, for the curve c(s) to
be in SL(n, R), c(s) has to satisfy detc(s) = 1 +strA = 1, namely tr A = 0.
Thus, s[(n, R) is the set of n x n traceless matrices and dim sl(n, R) = n%2—1.
(d) Let c(s) = I, + sA + O(s?) be a curve in SO(n) through I,,. Since
c(s) is a curve in SO(n), it satisfies c(s)'c(s) = 1I,. Differentiating this
identity, we obtain ¢’(s)'c(s) + c(s)'c’(s) = 0. Ats = 0, this becomes
A'+ A = 0. Hence, so(n) is the set of skew-symmetric matrices. Since
we are interested only in the vicinity of the unit element, the Lie algebra
of O(n) is the same as that of SO(n): o(n) = so(n). It is easy to see that
dimo(n) = dimso(n) =nn — 1)/2.

(e) A similar analysis can be carried out for matrix groups of GL(n, C).
gl(n, C) is the set of n x n matrices with complex entries and dim gl(n, C) =
2n? (the dimension here is a real dimension). sl(n, C) is the set of traceless
matrices with real dimension 2(n®> — 1). To find u(n), we consider a
curve ¢(s) = I, + sA + O(s?) in U(n). Since c(s)Tc(s) = I,, we
have ¢/(s)Tc(s) + c(s)Tc’(s) = 0. Ats = 0, we have AT + 4 = 0.



Hence, u(n) is the set of skew-Hermitian matrices with dimu(n) = nZ.

su(n) = u(n) N sl(n) is the set of traceless skew-Hermitian matrices with
dimsu(n) = n* — 1.

Exercise 5.22. Let

coss —sins O
c(s) = sins coss O
0 0 1

be a curve in SO(3). Find the tangent vector to this curve at /3.

5.6.3 The one-parameter subgroup

A vector field X € X(M) generates a flow in M (section 5.3). Here we are
interested in the flow generated by a left-invariant vector field.

Definition 5.12. A curve ¢ : R — G is called a one-parameter subgroup of G
if it satisfies the condition

P(M)P(s) = ¢t + ). (5.117)

It is easy to see that ¢(0) = e and ¢_1(t) = ¢ (—t). Note that the curve ¢
thus defined is a homomorphism from R to G. Although G may be non-Abelian,
a one-parameter subgroup is an Abelian subgroup: ¢ (1)p(s) = ¢ +5) =
¢(s+1) = ()p(0).

Given a one-parameter subgroup ¢ : R — G, there exists a vector field X,

such that
do” (1)

dr

We now show that the vector field X is left-invariant. First note that the vector
field d/dt is left-invariant on R, see example 5.15(a). Thus, we have

= XM (o). (5.118)

d

(Lt)*a

d

= — 5.119
o (5.119)

t
Next, we apply the induced map ¢, : T;R — T4)G on the vectors d/dt|p and
d/dr|r,

d do* (¢ 0

d—| = O} g =Xl (5.120a)
dr | dr |y 9gH|,
d do™ (¢ 0

Or—| = LSOl = X|, (5.120b)
dr|, dr |, 9g* |,

where we put ¢ (¢) = g. From (5.119) and (5.120b), we have

(¢L:) d = ¢«L d
t*dto— * t*dt

= X|,. (5.121a)
0



It follows from the commutativity ¢ L, = Lg¢ that ¢pxL;x = Lgyps. Then
(5.121a) becomes

d d
¢¢MEL=Lﬁ@EL=Lﬁm& (5.121b)

From (5.121), we conclude that
LgiXle = X|g. (5.122)

Thus, given a flow ¢(¢), there exists an associated left-invariant vector field
X e€g.

Conversely, a left-invariant vector field X defines a one-parameter group of
transformations o (¢, g) such that do (¢, g)/dt = X and 0 (0, g) = g. If we define
¢:R— Gbyo(t) =o0(t,e), the curve ¢ () becomes a one-parameter subgroup
of G. To prove this, we have to show ¢ (s + 1) = ¢(s)¢(¢). By definition, o
satisfies

%a(r, o(s,e)) =X(o(t,o(s,e))). (5.123)

[We have omitted the coordinate indices for notational simplicity. If readers feel
uneasy, they may supplement the indices as in (5.118).] If the parameter s is fixed,
o(t,d(s)) =p(s)p(t)isacurve R — G at ¢p(s5)¢p(0) = ¢(s). Clearly o and &
satisfy the same initial condition,

0(0,0(s,e)) =a(0,d(s)) = ¢(s). (5.124)

o also satisfies the same differential equation as o':

ds t 1)) = d t) = (L d t
L6 B0) = PO = (Lo 590

= (L))« X (9(2))
=X (@ (s)p (1)) (left-invariance)

=X (@, ¢(s)). (5.125)
From the uniqueness theorem of ODEs, we conclude that
P(s+1) =d(s)p(). (5.126)

We have found that there is a one-to-one correspondence between a one-
parameter subgroup of G and a left-invariant vector field. This correspondence
becomes manifest if we define the exponential map as follows.

Definition 5.13. Let G be a Lie group and V € T,G. The exponential map
exp : T.G — G is defined by

expV = ¢y (1) (5.127)



where ¢y is a one-parameter subgroup of G generated by the left-invariant vector
field Xy g = Lo« V.

Proposition 5.2. Let V € T,G and lett € R. Then
exp(tV) = ¢y (1) (5.128)
where ¢y () is a one-parameter subgroup generated by Xy |, = Lgs V.

Proof. Let a # 0 be a constant. Then ¢y (at) satisfies

=aV

— i (t)
- dt ¢V t=0

< (at)
dt¢v ¢ t=0

which shows that ¢y (at) is a one-parameter subgroup generated by Lg.aV. The
left-invariant vector field Lg.aV also generates ¢,y (t) and, from the uniqueness
of the solution, we find that ¢y (at) = ¢,y (¢). From definition 5.13, we have

exp(aV) = ¢av (1) = ¢y (a).
The proof is completed if a is replaced by 7. d

For a matrix group, the exponential map is given by the exponential of a
matrix. Take G = GL(n, R) and A € gl(n, R). Let us define a one-parameter
subgroup ¢4 : R — GL(n, R) by

2 n
t t
ba(t) =exp(tA) =1, + 1A + EAZ +ot ;A" SR (5.129)
In fact, ¢4 (¢) € GL(n, R) since [¢4 "1 = ¢4 (—1) exists. It is also easy to see
da(t)Pa(s) = @(t + 5). Now the exponential map is given by
1 1
¢A(1)=exp(A):I,,+A+5A2+---+;A”+---. (5.130)

The curve g exp(tA) is a flow through ¢ € G. We find that

d
Egexp(tA) = LgsA = Xulg
=0

where X 4 is a left-invariant vector field generated by A. From (5.115), we find,
for a matrix group G, that

LgxA = X4l = gA. (5.131)

The curve g exp(tA) defines a map o, : G — G by o0;(g) = gexp(tA) which is
also expressed as a right-translation,

01 = Rexp(tA)- (5.132)



5.6.4 Frames and structure equation

Let the set of n vectors {Vi, V», ..., V,} be a basis of 7,G where n = dimG.
[We assume throughout this book that » is finite.] The basis defines the set of n
linearly independent left-invariant vector fields {X1, X5, ..., X} at each point g
in G by Xﬂ‘g = Lg+V,. Note that the set {X,} is a frame of a basis defined
throughout G. Since [ X, X,]|¢ is again an element of g at g, it can be expanded
in terms of {X,} as

(X, Xu] = ™ Xa (5.133)

where ¢ ,w’\ are called the structure constants of the Lie group G. If G is a matrix

group, the LHS of (5.133) at g = e is precisely the commutator of matrices V),
and V,,; see (5.116). We show that the Cuv)‘ are, indeed, constants independent of
g. Let ¢,,,” (e) be the structure constants at the unit element. If Lg, is applied to
the Lie bracket, we have

[X,l,l,a Xv]|g = Cuvk(e)X)nlg

which shows the g-independence of the structure constants. In a sense, the
structure constants determine a Lie group completely (Lie’s theorem).

Exercise 5.23. Show that the structure constants satisfy

(a) skew-symmetry
C;/,v)L = _CUMA (5.134)

(b) Jacobi identity
CuvTCrpt A coptent +evptert = 0. (5.135)

Let us introduce a dual basis to {X .} and denote it by {6#}; (6%, X,) = st
{6+} is a basis for the left-invariant one-forms. We will show that the dual basis
satisfies Maurer—Cartan’s structure equation,

do* = —Jen 0¥ A O™ (5.136)
This can be seen by making use of (5.70):

doH (X, X3) = Xou[0"(X)] — Xa[0"(X)] — 6% ([Xy, X3]1)
= Xv[(sf] - Xk[allj] — 0" (v X)) = —cnn*

which proves (5.136).
We define a Lie-algebra-valued one-form 6 : T,G — T,.G by

0:X > (Ly)X= (L), 'X X eT,G. (5.137)

6 is called the canonical one-form or Maurer—Cartan form on G.



Theorem 5.3. (a) The canonical one-form 6 is expanded as
0=V, Q0" (5.138)

where {V,,} is the basis of 7,.G and {6/} the dual basis of T,)G.
(b) The canonical one-form 6 satisfies

do + 5[0 A61=0 (5.139)
where d6 = V,, ® d6# and
[0 AO]=[V,, Vi1 ®6* A6, (5.140)
Proof.

(a) Take any vector ¥ = Y*X, e T,G, where {X,} is the set of frame
vectors generated by {V,,}; X, |g = Lg« V. From (5.137), we find

0(Y) = YPO(X,) = YH(Lgs) ' [LgxVu]l = YHV,,.
However,
Ve ®0M)(Y) =Y"V,0%(X,) =YV, 88 =YHV,.
Since Y is arbitrary, we have § =V, ® 6H.
(b) We use the Maurer—Cartan structure equation (5.136):
A0+ 5[0 A0 = =3V, ® 0" ANO* + SV, ®0" A" =0

where the ¢, * are the structure constants of G. O

5.7 The action of Lie groups on manifolds

In physics, a Lie group often appears as the set of transformations acting on a
manifold. For example, SO(3) is the group of rotations in R?, while the Poincaré
group is the set of transformations acting on the Minkowski spacetime. To study
more general cases, we abstract the action of a Lie group G on a manifold M.
We have already encountered this interaction between a group and geometry. In
section 5.3 we defined a flow in a manifold M asamapo : Rx M — M, in
which R acts as an additive group. We abstract this idea as follows.

5.7.1 Definitions

Definition 5.14. Let G be a Lie group and M be a manifold. The action of G on
M is a differentiable map o : G x M — M which satisfies the conditions

(1) agle,p)=p forany p e M (5.141a)
(ii) o(g1,0(82, p)) =o0(g182, p)- (5.141b)



[Remark: We often use the notation gp instead of o (g, p). The second condition
in this notation is g1(g2p) = (g122)p.]

Example 5.16. (a) A flow is an action of R on a manifold M. If a flow is
periodic with a period T, it may be regarded as an action of U(1) or SO(2)
on M. Given a periodic flow o (¢, x) with period T, we construct a new action
o(exp(2rit/T), x) = o(t, x) whose group G is U(1).

(b) Let M € GL(n, R) and let x € R". The action of GL(n, R) on R” is
defined by the usual matrix action on a vector:

oM, x)=M -x. (5.142)

The action of the subgroups of GL(n, R) is defined similarly. They may also act
on a smaller space. For example, O(n) acts on §"~Y(r), an (n — 1)-sphere of
radius r,

o:0m) x " r) —» L), (5.143)

(c) It is known that SL(2, C) acts on a four-dimensional Minkowski space

My in a special manner. For x = (xo,xl,xz,x3) € My, define a Hermitian
matrix,
0 3 1 +.2
X" +x X —1x
X(x) =xto, = ; 5.144
) u (x1+1x2 xo_x3) (5.144)

where 0, = (2, 01, 02, 03), 0; (i =1, 2, 3) being the Pauli matrices. Conversely,
given a Hermitian matrix X, a unique vector (x*) € My is defined as

xt = Lo, X) (5.130)

where tr is over the 2 x 2 matrix indices. Thus, there is an isomorphism between
M, and the set of 2 x 2 Hermitian matrices. It is interesting to note that
det X (x) = (x92 — (x12 — (x?)2 — (x3)? = —X'nX = —(Minkowski norm)Z.
Accordingly

detX(x) >0 if x is a timelike vector
=0 if x is on the light cone
<0 if x is a spacelike vector.

Take A € SL(2, C) and define an action of SL(2, C) on M4 by
o(A,x)= AX(x)AT (5.145)

The reader should verify that this action, in fact, satisfies the axioms of definition
5.14. The action of SL(2,C) on My represents the Lorentz transformation
O(1, 3). First we note that the action preserves the Minkowski norm,

deto (A, x) = detfAX (x)AT] = det X (x)



since det A = det AT = 1. Moreover, there is a homomorphism ¢ : SL(2, C) —
O(1, 3) since
ABXBHAT = (AB)X(AB)".

However, this homomorphism cannot be one to one, since A € SL(2, C) and —A
give the same element of O(1, 3); see (5.145). We verify (exercise 5.24) that the
following matrix is an explicit form of a rotation about the unit vector Ai by an
angle 6,

(% 0 0
A = exp [—iE(ﬁ . a)i| = cos 512 —1i(f - o) sin > (5.146a)

The appearance of 8 /2 ensures that the homomorphism between SL(2, C) and the
O(3) subgroup of O(1, 3) is indeed two to one. In fact, rotations about fi by 6 and
by 27 +6 should be the same O(3) rotation, but A7 +6) = —A(#) in SL(2, C).
This leads to the existence of spinors. [See Misner et al (1973) and Wald (1984).]
A boost along the direction i with the velocity v = tanh « is given by

A :exp[%(ﬁ ~a)] :cosh%]z—i—(ﬁ -a)sinh%. (5.146b)

We show that ¢ maps SL(2, C) onto the proper orthochronous Lorentz group
01(1, 3) ={A € O(1,3)|det A = +1, Agp > 0}. Take any

A:(Z Z)eSL(Z,(C)

and suppose x* = (1, 0, 0, 0) is mapped to x’#. If we write ¢(A) = A, we have

o 1 w1 a b a ¢
X _Etr(AXA)_Etr[<c d)(l; J):|

1
= 5<|a|2 + 1B+ le* +1d*) > 0

hence Agg > 0. To show det A = +1, we note that any element of SL(2, C) may
be written as

A= el 0 cosf  sinf el” B
o 0 e@ —sinBe™  cosB

(2 o Y cos(B/2)  sin(B/2)e” \ 5
- 0 e/ —sin(8/2)e™  cos(B/2)

— 2n2R2
= M“N-B;
where B = B(% is a positive-definite matrix. This shows that ¢(A) is positive

definite:
detp(A) = (det p(M))*(det p(N))*(det p(Bo))> > 0.



Now we have established that ¢(SL(2, C)) C 01(1, 3). Equations (5.146a) and

(5.146b) show that for any element of 01(1, 3), there is a corresponding matrix
A € SL(2, ©), hence ¢ is onto. Thus, we have established that

9(SL(2,0) =0l (1,3). (5.147)

It can be shown that SL(2, C) is simply connected and is the universal covering
group SPIN(1, 3) of 01(1, 3), see section 4.6.

Exercise 5.24. Verify by explicit calculations that

® i6/2
e™! 0
A= ( 0 2 >

represents a rotation about the z-axis by 6;

(b)

A= cosh(a/2) + sinh(a/2) 0
o 0 cosh(a/2) — sinh(«/2)

represents a boost along the z-axis with the velocity v = tanh «.

Definition 5.15. Let G be a Lie group that acts on a manifold M byo : G x M —
M. The action o is said to be

(a) transitive if, for any p1, po» € M, there exists an element g € G such
that o (g, p1) = p2;

(b) free if every non-trivial element g # e of G has no fixed points in M,
that is, if there exists an element p € M such that o (g, p) = p, then g must be
the unit element e; and

(c) effective if the unit element e € G is the unique element that defines the
trivial action on M, i.e. if o (g, p) = p for all p € M, then g must be the unit
element e.

Exercise 5.25. Show that the right translation R : (a,g) — R,g and left
translation L : (a, g) — L,g of a Lie group are free and transitive.
5.7.2 Orbits and isotropy groups

Given a point p € M, the action of G on p takes p to various points in M. The
orbit of p under the action o is the subset of M defined by

Gp=A{o(g,p)lg € G}. (5.148)

If the action of G on M is transitive, the orbit of any p € M is M itself. Clearly
the action of G on any orbit Gp is transitive.



Example 5.17. (a) A flow o generated by a vector field X = —yd/dx + xd/dy is
periodic with period 27, see example 5.9. The action o : R x R*> — R? defined
by (¢, (x, y)) — o (¢, (x, y)) is not effective since o 27 n, (x, y)) = (x, y) forall
(x,y) € R2. For the same reason, this flow is not free either. The orbit through
(x,y) # (0,0) is a circle S! centred at the origin.

(b) The action of O(n) on R" is not transitive since if |x| # |x'|, no element
of O(n) takes x to x’. However, the action of O(n) on S"*~! is obviously transitive.
The orbit through x is the sphere $”~! of radius |x|. Accordingly, given an action
o : 0O(n) x R" — R, the orbits divide R" into mutually disjoint spheres of
different radii. Introduce a relation by x ~ y if y = o(g, x) forsome g € G. It
is easily verified that ~ is an equivalence relation. The equivalence class [x] is an
orbit through x. The coset space R? /O(n) is [0, 0o0) since each equivalence class
is parametrized by the radius.

Definition 5.16. Let G be a Lie group that acts on a manifold M. The isotropy
group of p € M is a subgroup of G defined by

H(p) ={g € Glo(g, p) = p}. (5.149)
H (p) is also called the little group or stabilizer of p.

It is easy to see that H (p) is indeed a subgroup. Let g1, go € H(p), then
g182 € H(p) since o(g182, p) = o(g1,0(g2, p)) = o(g1, p) = p. Clearly
e € H(p) since o (e, p) = p by definition. If g € H(p), then g*1 € H(p) since
p=oe.p)=0('g.p)=0(g o p) =0 p.

Exercise 5.26. Suppose a Lie group G acts on a manifold M freely. Show that
H(p) = {e} forany p € M.

Theorem 5.4. Let G be a Lie group which acts on a manifold M. Then the
isotropy group H (p) for any p € M is a Lie subgroup.

Proof. For fixed p € M, we define amap ¢, : G — M by ¢,(g) = gp. Then
H (p) is the inverse image (p;1 (p) of a point p, and hence a closed set. The group
properties have been shown already. It follows from theorem 5.2 that H (p) is a
Lie subgroup. O

For example, let M = R? and G = SO(3) and take a point p = (0,0, 1) €
R3. The isotropy group H (p) is the set of rotations about the z-axis, which is
isomorphic to SO(2).

Let G be a Lie group and H any subgroup of G. The coset space G/H admits
a differentiable structure and G/H becomes a manifold, called a homogeneous
space. Note that dimG/H = dimG — dim H. Let G be a Lie group which
acts on a manifold M transitively and let H (p) be an isotropy group of p € M.
H (p) is a Lie subgroup and the coset space G/H (p) is a homogeneous space.



In fact, if G, H(p) and M satisfy certain technical requirements (for example,
G/H (p) compact) is, it can be shown that G/H (p) is homeomorphic to M, see
example 5.18.

Example 5.18. (a) Let G = SO(3) be a group acting on R? and H = SO(2) be
the isotropy group of x € R*. The group SO(3) acts on S? transitively and we
have SO(3)/SO(2) = S2. What is the geometrical picture of this? Let g’ = gh
where g, ¢’ € G and h € H. Since H is the set of rotations in a plane, g and
g’ must be rotations about the common axis. Then the equivalence class [g] is
specified by the polar angles (6, ¢). Thus, we again find that G/H = S2. Since
SO(2) is not a normal subgroup of SO(3), §? does not admit a group structure.

It is easy to generalize this result to higher-dimensional rotation groups and
we have the useful result

SO + 1)/SO(n) = S". (5.150)
O(n + 1) also acts on S” transitively and we have
O(n+1)/0(n) = S". (5.151)
Similar relations hold for U(n) and SU(n):
U(n +1)/U(n) = SU® + 1)/SU(n) = §2+1. (5.152)

(b) The group O(n + 1) acts on RP” transitively from the left. Note, first,
that O(n + 1) acts on R in the usual manner and preserves the equivalence
relation employed to define RP” (see example 5.12). In fact, take x, x’ € R*+!
and g € O(n + 1). If x ~ x’ (that is if x’ = ax for some a € R — {0}), then it
follows that gx ~ gx’ (gx’ = agx). Accordingly, this action of O(n 4 1) on R"*!
induces the natural action of O(n + 1) on RP". Clearly this action is transitive
on RP". (Look at two representatives with the same norm.) If we take a point p
in RP", which corresponds to a point (1,0, ...,0) € R**! the isotropy group
H(p) s

+1 0 0 0
0
H(p) = 0 = 0(1) x O(n) (5.153)
: O(n)
0

where O(1) is the set {—1, +1} = Z,. Now we find that
O+ 1)/[0(1) x O(n)] = §"/Z, = RP". (5.154)

(c) This result is easily generalized to the Grassmann manifolds: Gy ,(R) =
O(n)/[0(k) x O(n — k)]. We first show that O(n) acts on Gy, (R) transitively.



Let A be an element of G , (R), then A is a k-dimensional plane in R”. Define an
nxn matrix P4 which projects a vector v € R” to the plane A. Let us introduce an
orthonormal basis {ej, ..., e¢,} in R" and another orthonormal basis { fi, ..., fk}
in the plane A, where the orthonormality is defined with respect to the Euclidean
metric in R”. In terms of {¢;}, f, is expanded as f, = ), fuie; and the projected
vector is

Pyv = (f) fi+- + Wfi) fi
= Y ifufij 4 vifuifie =Y vifai faje)-
ij ia,j

Thus, P4 is represented by a matrix
(Pa)ij = Zfaifaj. (5.155)

Note that Pﬁ = Py, P,Z = P4 and tr P4 = k. [The last relation holds since it is
always possible to choose a coordinate system such that

Py = diag(1,1,...,1,0,...,0).
—_——— ———
k n—k

This guarantees that A is, indeed, a k-dimensional plane.] Conversely any matrix
P that satisfies these three conditions determines a unique k-dimensional plane in
R", that is a unique element of Gy , (R).

We now show that O(n) acts on G , (R) transitively. Take A € Gy, (R) and
g € O(n) and construct Pp = gPy gil. The matrix Pp determines an element
B € G n(R) since Pé = Pp, P, = Pg and tr Pg = k. Let us denote this
action by B = o(g, A). Clearly this action is transitive since given a standard

k-ﬁlimensignal basis of A, {fi,..., fx} for example, any k-dimensional basis
{f1, ..., fr} can be reached by an action of O(n) on this basis.
Let us take a special plane Cp which is spanned by the standard basis
{f1,..., fr}. Then an element of the isotropy group H (Co) is of the form
k n—k
(& 0 k
M_<O gz)n—k (5.156)

where g1 € O(k). Since M € O(n), an (n — k) x (n — k) matrix go must be an
element of O(n — k). Thus, the isotropy group is isomorphic to O(k) x O(n — k).
Finally we verified that

Gin(R) = O(n)/[O(k) x O(n — k)]. (5.157)
The dimension of G ,(R) is obtained from the general formula as
dim G¢ » (R) = dim O(n) — dim[O(k) x O(n — k)]
=inn—1) — [$k(k— D)+ n — ) —k —1)]
=k(n —k) (5.158)



in agreement with the result of example 5.5. Equation (5.157) also shows that the
Grassmann manifold is compact.

5.7.3 Induced vector fields

Let G be a Lie group which acts on M as (g, x) — gx. A left-invariant vector
field Xy generated by V e T,G naturally induces a vector field in M. Define a
flow in M by

o(t,x) =exp(tV)x, (5.159)

o(t,x) is a one-parameter group of transformations, and define a vector field
called the induced vector field denoted by V¥,

d
VE, = Eexp(tV)x (5.160)

=0
Thus, we have obtained amap f : 7.G — X(M) defined by V — Ve,

Exercise 5.27. The Lie group SO(2) acts on M = R? in the usual way. Let
0 -1
(1)

cost —sint )

be an element of s0(2).

(a) Show that
sint  cost

exp(tV) = (

and find the induced flow through

x=<x>eR2.
y

(b) Show that V|, = —yd/dx + x3/dy.

Example 5.19. Let us take G = SO(3) and M = R3. The basis vectors of 7,G
are generated by rotations about the x, y and z axes. We denote them by X, X
and X, respectively (see exercise 5.22),

00 0 0 0 1
Xc={0o0o -1 |, x,=[ 0 0o0], Xx,=
01 0 -1 .0 0

—1
0
0

S = O
S OO

Repeating a similar analysis to the previous one, we obtain the corresponding
induced vectors,

" a a
, X;=—y—+x—

g N " 9
Xy=—z2—-+y— Xj=—x—+z o oy

dy | 7oz y 9z ox



5.7.4 The adjoint representation
A Lie group G acts on G itself in a special way.

Definition 5.17. Take any a € G and define a homomorphism ad, : G — G by
the conjugation,
ad, : g +— aga™ . (5.161)

This homomorphism is called the adjoint representation of G.

Exercise 5.28. Show that ad, is a homomorphism. Defineamapo : G xG — G
by o (a, g) = ad,g. Show that o (a, g) is an action of G on itself.

Noting that ad,e = e, we restrict the induced map adgs : TgG — Tuq,G to
g=e,

Ad, : T,.G — T,G (5.162)
where Ad, = adg«|7,g. If we identify T.G with the Lie algebra g, we have
obtained a map Ad : G x g — g called the adjoint map of G. Since
adgadps = adgps, it follows that Ad,Ad, = Adyp. Similarly, Ad,-1 = Ad;1
follows from ad,-1,adu«|7,6 = id7,6.

If G is a matrix group, the adjoint representation becomes a simple matrix
operation. Let g € G and Xy € g, and let oy(¢) = exp(tV) be a one-

parameter subgroup generated by V € T,G. Then adg acting on oy (¢) yields
1

gexp(tV)g~ ! =exp(tgVg™"). As for Adg we have Ad, : V > gVg~! since
d
Adg,V = —[adg exp(tV)]
dr =0
d
= —exp(tgVg™H| =gVg . (5.163)
dr =0
Problems

5.1 The Stiefel manifold V (m, r) is the set of orthonormal vectors {€} (1 <i <
r)in R™ (r < m). We may express an element A of V (m, r) by an m x r matrix

(ep, ..., e). Show that SO(m) acts transitively on V (m, r). Let
1 o ... 0
0 1 ... 0
=Ly 0
o o0 ... 0
o o0 ... 0

be an element of V (m, r). Show that the isotropy group of Ag is SO(m—r). Verify
that V(m,r) = SO(m)/SO@m —r) anddim V(m,r) = [r(r — 1)]/2+r(m —r).
[Remark: The Stiefel manifold is, in a sense, a generalization of a sphere. Observe
that V(m, 1) = "1



5.2 Let M be the Minkowski four-spacetime. Define the action of a linear operator

* 1

Q" (M) — Q*" (M) by

r=0: *lz—dxo/\dxl/\dxz/\dx3;

r=1: sdx’ = —dx/ A dx* A dx? xdx? = —dx! A dx? A dx?;
r=2: xdx’ A dx! = dx* A dx© xdx’ Adx® = —dx/ A dxk;
r=3: wdx! A dx? Adx® = —dx” wdx’ Adxd A dx® = —dxk;
r=4: *dxo/\dxl/\dxz/\dx3=1;

where (i, j, k) is an even permutation of (1,2, 3). The vector potential A and

the

electromagnetic tensor F are defined as in example 5.11. J = J,dx* =

pdx® + ji dx* is the current one-form.

(a)
(b)

(©

Write down the equation d * F = xJ and verify that it reduces to two of the
Maxwell equations V- E = pand V x B —9dE /3t = j.

Show that the identity 0 = d(d « F) = d * J reduces to the charge
conservation equation

9
aﬂJﬂza—’;Jrv.j:o.

Show that the Lorentz condition 9, A* = 0 is expressed asd * A = 0.



DE RHAM COHOMOLOGY GROUPS

The homology groups of topological spaces have been defined in chapter 3. If
a topological space M is a manifold, we may define the dual of the homology
groups out of differential forms defined on M. The dual groups are called the
de Rham cohomology groups. Besides physicists’ familiarity with differential
forms, cohomology groups have several advantages over homology groups.

We follow closely Nash and Sen (1983) and Flanders (1963). Bott and Tu
(1982) contains more advanced topics.

6.1 Stokes’ theorem

One of the main tools in the study of de Rham cohomology groups is Stokes’
theorem with which most physicists are familiar from electromagnetism. Gauss’
theorem and Stokes’ theorem are treated in a unified manner here.

6.1.1 Preliminary consideration

Let us define an integration of an r-form over an r-simplex in a Euclidean space.
To do this, we need first to define the standard n-simplex , = (pop1 ... pr) in
R” where

po=(0,0,...,0)
p1=(,0,...,0)
pr=10(0,0,...,1)

see figure 6.1. If {x*} is a coordinate of R, &, is given by

xﬂzo,zxﬂgl}. 6.1)

oy = {(xl,...,xr) eR
pu=1

An r-form w (the volume element) in R” is written as

w=ax)dx' Adx? A... Adx".



z
Y A

P2 Ps
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> X
Po P
Py P
X / N\

Figure 6.1. The standard 2-simplex 6o = (pgopip2) and the standard 3-simplex
03 = (popP1P2P3)-

We define the integration of w over g, by

[0)5[ a(x)dx'dx?.. . dx" 6.2)

where the RHS is the usual r-fold integration. For example, if r = 2 and
w = dx A dy, we have

1 1—x
/w:/dxdy:/dx/ dy =
) ) 0 0

Next we define an r-chain, an r-cycle and an r-boundary in an m-
dimensional manifold M. Let o, be an r-simplex in R" and let f : 0, &> M
be a smooth map. [To avoid the subtlety associated with the differentiability of
f at the boundary of o, f may be defined over an open subset U of R", which
contains o,.] Here we assume f is not required to have an inverse. For example,
im f may be a point in M. We denote the image of o, in M by s, and call it a
(singular) r-simplex in M. These simplexes are called singular since they do not
provide a triangulation of M and, moreover, geometrical independence of points
makes no sense in a manifold (see section 3.2). If {s,;} is the set of r-simplexes
in M, we define an r-chain in M by a formal sum of {s,;} with R-coefficients

=

c= Zaism- a; € R (6.3)
i

In the following, we are concerned with R-coefficients only and we omit the
explicit quotation of R. The r-chains in M form the chain group C, (M). Under
f : o — M, the boundary do, is also mapped to a subset of M. Clearly,
dsy = f(doy) is a set of (r — 1)-simplexes in M and is called the boundary of



sr. s, corresponds to the geometrical boundary of s, with an induced orientation
defined in section 3.3. We have a map

3 : Cr(M) — Cr_ 1 (M). (6.4)

The result of section 3.3 tells us that 9 is nilpotent; 32 = 0.

Cycles and boundaries are defined in exactly the same way as in section 3.3
(note, however, that Z is replaced by R). If ¢, is an r-cycle, dc, = 0 while if ¢,
is an r-boundary, there exists an (» + 1)-chain ¢, such that ¢, = dc,4+1. The
boundary group B, (M) is the set of r-boundaries and the cycle group Z, (M)
is the set of r-cycles. There are infinitely many singular simplexes which make
up C,(M), B (M) and Z,(M). It follows from 92 = 0 that Z,(M) D B.(M); cf
theorem 3.3. The singular homology group is defined by

H,(M) = Z,(M)/B,(M). (6.5)

With mild topological assumptions, the singular homology group is isomorphic to
the corresponding simplicial homology group with R-coefficients and we employ
the same symbol to denote both of them.

Now we are ready to define an integration of an r-form w over an r-chain in
M. We first define an integration of w on an r-simplex s, of M by

/ w=| ffo (6.6)
Sy oy
where f : 6, — M is a smooth map such that s, = f(5,). Since f*w is

an r-form in R", the RHS is the usual r-fold integral. For a general r-chain
c =) ;as,i € C,(M), we define

/w: Zai/ . (6.7)

6.1.2 Stokes’ theorem
Theorem 6.1. (Stokes’ theorem) Let w € '~ (M) and ¢ € C,(M). Then

/da):/ w. (6.8)
c dc

Proof. Since c is a linear combination of r-simplexes, it suffices to prove (6.8) for
an r-simplex s, in M. Let f : 6, — M be a map such that f(6,) = s,. Then

/ do = / F*(dw) = / d(f*w)

where (5.75) has been used. We also have

/ w = fw.
asy A0,



Note that f*w is an (r — 1)-form in R". Thus, to prove Stokes’ theorem

/ dow = / w (6.9a)
Sy sy

it suffices to prove an alternative formula
/ dyr = ) (6.9b)
& 36,
for an (r — 1)-form ¢ in R". The most general form of ¥ is
Y= aux)dx' AL Ade T Ad T AL Ay

Since an integration is distributive, it suffices to prove (6.9b) for ¢ = a()c)d)c1 A
... Adx""!. We note that

da
r—1°-%"
) ax’

3
Ay = —dx" Adx' AL AdT = (-1 del AL A Ade

ax
By direct computation, we find, from (6.2), that
0
/ dy = (=1)"! / 28 gt d
& or ax’”
=302 9

= (—1)“1/ dx!. ..dx’_lf dx”
220,57 i< 0 ax”

= (—1)r_1/dx1...dxr_l

r—1

x[ (xl,...,xr],l—Zx“> —a(xl,...,xrl,0>i|.

u=1

For the boundary of 6;, we have

90, = (p1, p2, ..., pr) — (Po, P2, .-, Pr)
+ -+ (=D"(po. p1, .-\ Pr=1)-

Note that ¥ = a(x)dx' A ... A dx"~! vanishes when one of x!,..., x" 7! is
constant. Then it follows that

.....

since x! = 0 on (po, p2, ..., pr). In fact, most of the faces of d5, do not

contribute to the RHS of (6.9b) and we are left with



Since (po, p1,---, pr—1) is the standard (r — 1)-simplex (x* > 0, ZL_:ll xH <
1), on which x” = 0, the second term is

(—1)’/ wz(—l)’/ aCxl, oo 0y de! L da
(POsP1sPr—1) Or—_1

The first term is

.......... n=1
r—1
:(—1)”1/ a(xl,...,xrI,I—Zx“)dxl...dxr1
Or—1 n=l1
where the integral domain (pi, ..., p,) has been projected along x” to the
(p1, ---, Pr—1, po)-plane, preserving the orientation. Collecting these results, we
have proved (6.9b). [The reader is advised to verify this proof for m = 3 using
figure 6.1.] d

Exercise 6.1. Let M = R? and w = a dx+b dy+c dz. Show that Stokes’ theorem
is written as

/ curlw - dS = f w - dS (Stokes’ theorem) (6.10)
S c

where @ = (a,b,c) and C is the boundary of a surface S. Similarly, for
Y= %w,uv dx* A dxV, show that

/ divy dV = f ¥ -dS (Gauss’ theorem)
1% S
where Yt = g** Y0 and S is the boundary of a volume V.

6.2 de Rham cohomology groups

6.2.1 Definitions

Definition 6.1. Let M be an m-dimensional differentiable manifold. The set of
closed r-forms is called the rth cocycle group, denoted Z" (M). The set of exact
r-forms is called the rth coboundary group, denoted B"(M). These are vector
spaces with R-coefficients. It follows from d? = 0 that Z" (M) D B"(M).

Exercise 6.2. Show that

(a)ifw e Z' (M) and € Z*(M), thenw A € Z" 5 (M);
(b)ifw € Z"(M) and ¢ € B*(M), then w A Y € B"(M); and



(c)if w € B"(M) and € BS(M), then w A € B"5(M).
Definition 6.2. The rth de Rham cohomology group is defined by
H'(M;R) = Z"(M)/B"(M). (6.11)

Ifr <—lorr>m+1, H (M; R) may be defined to be trivial. In the following,
we omit the explicit quotation of R-coefficients.

Let o € Z"(M). Then [w] € H"(M) is the equivalence class {@' €
7'M = o +dy, ¥ € Q”I(M)}. Two forms which differ by an exact
form are called cohomologous. We will see later that H” (M) is isomorphic to
H,(M). The following examples will clarify the idea of de Rham cohomology
groups.

Example 6.1. When r = 0, B(M) has no meaning since there is no (—1)-form.
We define Q! (M) to be empty, hence B(M) = 0. Then H'(M) = ZO°(M) =
{(f € QM) = F(M)|df = 0}. If M is connected, the condition df = 0 is
satisfied if and only if f is constant over M. Hence, H°(M) is isomorphic to the
vector space R,

H'M) =R (6.12)

If M has n connected components, d f = 0 is satisfied if and only if f is constant
on each connected component, hence it is specified by n real numbers,

HMZ=ZROoR® ---®R. (6.13)
N— ———

n

Example 6.2. Let M = R. From example 6.1, we have Ho%R) = R. Let us
find H'(R) next. Let x be a coordinate of R. Since dimR = 1, any one-form
w € Q'(R) is closed, dw = 0. Let w = fdx, where f € F(R). Define a function
F(x) by

F(x) = / f(s)ds € F(R) = Q'(R).
0
Since dF (x)/dx = f(x), w is an exact form,

dF(x)

a):fd_x: dx:dF

Thus, any one-form is closed as well as exact. We have established
HY(R) = {0}. (6.14)

Example 6.3. Let S' = {e?|0 < 6 < 2x}. Since S! is connected, we have
HO(S") = R. We compute H'(S') next. Let w = f(#)d0 € QI(SY). Isit



possible to write = dF for some F € F(S')? Let us repeat the analysis of the
previous example. If = dF, then F € F(S') must be given by

6
F(0) = / YACAY S
0

For F to be defined uniquely on S', F must satisfy the periodicity F(27) =
F(0) (=0). Namely F must satisfy
2
F(Qm) = f(6)do’ =0.
0
If we define amap A : Q!(S!) — R by
2

Aiw=fdo > @) do’ (6.15)
0

then B'(S!) is identified with ker A. Now we have (theorem 3.1)
H'(SH) =Q'(S")/kerA =imA = R. (6.16)

This is also obtained from the following consideration. Let w and o’ be closed
forms that are not exact. Although w — ' is not exact in general, we can show
that there exists a number a € R such that @’ — aw is exact. In fact, if we put

2 2
(,l:/ (1)/// w
0 0

2w
/ (0 —aw) =0.
0

This shows that, given a closed form @ which is not exact, any closed form «’ is
cohomologous to aw for some a € R. Thus, each cohomology class is specified
by a real number a, hence HI(SH =R

we have

Exercise 6.3. Let M = R*> — {0}. Define a one-form w by

= a2
212 12

w dy. (6.17)

(a) Show that w is closed.
(b) Define a ‘function” F(x,y) = tan"'(y/x). Show that o = dF. Is w
exact?



6.2.2 Duality of H, (M) and H"(M); de Rham’s theorem

As the name itself suggests, the cohomology group is a dual space of the
homology group. The duality is provided by Stokes’ theorem. We first define
the inner product of an r-form and an r-chain in M. Let M be an m-dimensional
manifold and let C,(M) be the chain group of M. Take ¢ € C,(M) and w €
Q"(M) where 1 <r < m. Define an inner product( , ):C,(M)xQ" (M) —
R by

c,o (c,w) = /a) (6.18)

Clearly, (c, w) is linear in both ¢ and w and ( , @) may be regarded as a linear
map acting on ¢ and vice versa,

(c1+cz,a))=/ a)=/ w—i—/ w (6.19a)
c1+cp cq cy

(c,w1 +w2) = /(an +w) = /a)l +/w2. (6.19b)

Now Stokes’ theorem takes a compact form:
(¢, dw) = (dc, w). (6.20)

In this sense, the exterior derivative operator d is the adjoint of the boundary
operator d and vice versa.

Exercise 6.4. Let i) c € B,(M), w € Z"'(M) or (i) c € Z,(M), w € B"(M).
Show, in both cases, that (¢, w) = 0.

The inner product ( , ) naturally induces an inner product A between
the elements of H,.(M) and H"(M). We now show that H,(M) is the dual
of H"(M). Let [c] € H (M) and [w] € H"(M) and define an inner product
A:H.(M)x H (M) — R by

Al [o]) = (¢, ) = / o, 621)

c

This is well defined since (6.21) is independent of the choice of the
representatives. In fact, if we take ¢ + d¢’, ¢’ € Cr+1(M), we have, from Stokes’
theorem,

(c 43, w) = (c, w) + (¢, dw) = (¢, w)

where dw = 0 has been used. Similarly, for w 4+ dyr, ¢ € Q-1 (M),
(c,o+dy) = (c,w) + (3¢, ¥) = (c, ®)

since dc = 0. Note that A( , [w]) is a linear map H,(M) — R, and A([c], )is
a linear map H" (M) — R. To prove the duality of H,.(M) and H" (M), we have



to show that A( , [w]) has the maximal rank, that is, dim H,(M) = dim H" (M).
We accept the following theorem due to de Rham without the proof which is
highly non-trivial.

Theorem 6.2. (de Rham’s theorem) If M is a compact manifold, H,(M) and
H’ (M) are finite dimensional. Moreover the map

A:HM)x H (M) — R
is bilinear and non-degenerate. Thus, H” (M) is the dual vector space of H,(M).

A period of a closed r-form  over a cycle c is defined by (¢, w) = [ ..
Exercise 6.4 shows that the period vanishes if w is exact or if ¢ is a boundary. The
following corollary is easily derived from de Rham’s theorem.

Corollary 6.1. Let M be a compact manifold and let k be the rth Betti number
(see section 3.4). Let ¢y, c2, ..., cx be properly chosen elements of Z,.(M) such
that [¢;] # [Cj].

(a) A closed r-form v is exact if and only if

fw=o (I <i<k). (6.22)
Ci
(b) For any set of real numbers b1, by, .. ., by there exists a closed r-form w
such that
/ w = b; (1<i<k). (6.23)
Ci

Proof. (a) de Rham’s theorem states that the bilinear form A([c], [@]) is non-
degenerate. Hence, if A([c;], ) is regarded as a linear map acting on H" (M),
the kernel consists of the trivial element, the cohomology class of exact forms.
Accordingly, 1 is an exact form.

(b) de Rham’s theorem ensures that corresponding to the homology basis
{[ci1}, we may choose the dual basis {[w;]} of H" (M) such that

A(lci], [o;]) = / wj = 8jj. (6.24)

Ci

If we define w = Z;(:l b;w;, the closed r-form w satisfies

/w:bi
Ci

as claimed. O

For example. we observe the duality of the following groups.



(a) HOM) = Hy(M) ZR @ --- ® R if M has n connected components.

n

by H' (SHZ Hi(SHZR
Since H" (M) is isomorphic to H,(M), we find that
b"(M) =dimH" (M) = dim H,(M) = b,(M) (6.25)

where b, (M) is the Betti number of M. The Euler characteristic is now written as
m

x (M) = Z(—l)’b’(M). (6.26)
r=1

This is quite an interesting formula; the LHS is purely fopological while the RHS
is given by an analytic condition (note that dw = 0 is a set of partial differential
equations). We will frequently encounter this interplay between topology and
analysis.
In summary, we have the chain complex C (M) and the de Rham complex
Q5 (M),
— Gy L ) () —
(6.27)

— Q- l(M) Q’(M) 2 QM) «—

for which the rth homology group is defined by
H,(M) = Z,(M)/B,(M) = ker 9, /im 0,4
and the rth de Rham cohomology group is defined by

H'(M) = Z'(M)/B" (M) = kerd,;/imd,.

6.3 Poincaré’s lemma

An exact form is always closed but the converse is not necessarily true. However,
the following theorem provides the situation in which the converse is also true.

Theorem 6.3. (Poincaré’s lemma) If a coordinate neighbourhood U of a
manifold M is contractible to a point pg € M, any closed r-form on U is also
exact.

Proof. We assume U is smoothly contractible to py, that is, there exists a smooth
map F : U x I — U such that

F(x,0) =x, F(x,1) = po forx e U.



Let us consider an r-form n € Q" (U x I),

n=a i dx't AL Adx
+bj g () de AdaIt AL A oI

(6.28)

where x is the coordinate of U and ¢ of /. Define amap P : Q"(U x I) —

Q" 1(U) by

1
Py = </ dsbj,.j_, (x, s)) dx/U AL oA dxIT
0

(6.29)

Next, defineamap f; : U — U x I by f;(x) = (x,t). The pullback of the first

term of (6.28) by f* is an element of Q" (U),
frn=ai i (x,0)dxt AL Adx" € QT(U).
We now prove the following identity,
d(Pn) + Pdn) = fi*n— fo*n.

Each term of the LHS is calculated to be
1 . .
dPn = d</ ds bjl---jr—]) dx/t AL A dxIr-!
0

1 b . . ,
=f ds [ —Z==L ) dxdr Adadt AL L. A didrt
0 oxJr

04, .., i i i
Pdn="P dx'+t Adx" AL oA dT

8xir+l

+ <—a’alt) df Adxit AL A dxt

OxJr

1 .
- [/ ds (Mg—”'l’)}dx“ Ao Adxt
0 N
1 .
— [/ ds <7abg'“j’“)]dxﬁ AdxUA LA dxdT
0 X

Collecting these results, we have
1 o
04, ..i, i i
d(Pn)+ P(dn) = ds | — ) |dx"" A...AdX"
0 as
= lai.i, (@, D) = aiyi, (6, 0)1dx™ AL A dx”
= fi'n— fo*n.

b, : - :
+ <M> dx/r A dt A dx /! /\.../\dxjrli|

(6.30)

6.31)



Poincaré’s lemma readily follows from (6.31). Let w be a closed r-form on a
contractible chart U. We will show that w is written as an exact form,

w = d(—PF*w), (6.32)

F being the smooth contraction map. In fact, if n in (6.31) is replaced by
F*w e Q" (U x I) we have

dPF*w + PdF*w = fi* o F*w — fy" o F*w
= (Fo fi)'w—(Fo fo)'w (6.33)
where use has been made of the relation (fog)* = g*o f*. Clearly Fo f1 : U —
U is a constant map x — pg, hence (F o f1)* = 0. However, F o fy = idy,
hence (F o fp)* : Q"(U) — Q7 (U) is the identity map. Thus, the RHS of
(6.33) is simply —w. The second term of the LHS vanishes since w is closed;

dF*w = F* dw = 0, where use has been made of (5.75). Finally, (6.33) becomes
w = —dP F*w, which proves the theorem. O

Any closed form is exact at least locally. The de Rham cohomology group is
regarded as an obstruction to the global exactness of closed forms.

Example 6.4. Since R is contractible, we have
H R") =0 1<r<n. (6.34)

Note, however, that H O(R”) =R

6.4 Structure of de Rham cohomology groups

de Rham cohomology groups exhibit quite an interesting structure that is very
difficult or even impossible to appreciate with homology groups.

6.4.1 Poincaré duality

Let M be a compact m-dimensional manifold and let ® € H"(M) and n €
H™™"(M). Noting that w A 5 is a volume element, we define an inner product
(,Y:H (M) x H" (M) - Rby

(w,n) = / w A . (6.35)
M

The inner product is bilinear. Moreover, it is non-singular, that is, if @ # 0
or n # 0, (w, n) cannot vanish identically. Thus, (6.35) defines the duality of
H"(M) and H""(M),

H (M)=H"T"(M) (6.36)



called the Poincaré duality. Accordingly, the Betti numbers have a symmetry
by = bp—r. (6.37)

It follows from (6.37) that the Euler characteristic of an odd-dimensional space
vanishes,

X(M) =Y (=1)'b, = %{ D (=1)b+ Z(—l)m’bmr}
= %{ D (=1)br - Z(—l)’br} — 0. (6.38)

6.4.2 Cohomology rings
Let [w] € HY(M) and [n] € H"(M). Define a product of [w] and [n] by

[@] A [n] = [ A D). (6.39)

It follows from exercise 6.2 that w A 7 is closed, hence [@w A 7] is an element of
H97"(M). Moreover, [@ A 7] is independent of the choice of the representatives
of [w] and [n]. For example, if we take o’ = w + dvr instead of w, we have

[T A =[w+dy) Anl=loAn+di Anl=[wAn]

Thus, the product A : H9(M) x H" (M) — H97" (M) is a well-defined map.
The cohomology ring H*(M) is defined by the direct sum,

H*(M) = EB H'(M). (6.40)
r=1

The product is provided by the exterior product defined earlier,
A H*(M) x H*(M) — H*(M). (6.41)

The addition is the formal sum of two elements of H*(M). One of the
superiorities of cohomology groups over homology groups resides here. Products
of chains are not well defined and homology groups cannot have a ring structure.

6.4.3 The Kiinneth formula

Let M be a product of two manifolds M = M| x M;. Let {a)f’} 1 <i<
bP(M))) be a basis of HP (M) and {nip} (1 <i < bP(My)) be that of HP (M»).
Clearly w! A n;_p (1 < p <r)isaclosed r-form in M. We show that it is not
exact. If it were exact, it would be written as

o AP =d@P P ABTP HyP ASTTPTY (6.42)

J



for some P! € QPTI(M)), p7F € QTP (M), yP € QP(M) and 8" P! €
Qr-! (Mp). [If p = 0, we put aP 1 =0] By executing the exterior derivative
in (6.42), we have

ol AP = daP P ABTTP 4 (=1)P P AdBTP

+dy? AP (= 1)PyP AdsTTPTL (6.43)

By comparing the LHS with the RHS, we find «?~! = 8”77~ = 0, hence

r— . . . . r— .
a)ip A 1,"" = 0 in contradiction to our assumption. Thus, a)ip A1 P is a non-

trivial element of H” (M). Conversely, any element of H” (M) can be decomposed
into a sum of a product of the elements of H? (M) and H" =7 (M) forO < p <r.
Now we have obtained the Kiinneth formula

H' (M) = P [H" (M) ® HI(M2)]. (6.44)
prg=r

This is rewritten in terms of the Betti numbers as

BI(M) =Y bP(M)b(M). (6.45)
p+a=r

The Kiinneth formula also gives a relation between the cohomology rings of the
respective manifolds,

H*(M)= Y H'M)=Y_ @ H(M)® HI(My)
r=1

r=1 p+q=r

=Y H/(M)® ) HY(M) = H* (M) ® H*(M>). (6.46)
p q

Exercise 6.5. Let M = M| x M,. Show that
X (M) = x(My) - x(M2). (6.47)

Example 6.5. Let T2 = S! x S! be the torus. Since H(S!) = R and H'(S!) =
R, we have

H'TH=R®R=R (6.482)
H'TH=RR ®R®R) =R® R (6.48b)
HX TH=RQR=R (6.48¢)

Observe the Poincaré duality HOT?) = HX(T?). [Remark: R ® R is the tensor
product and should not be confused with the direct product. Clearly the product
of two real numbers is a real number.] Let us parametrize the coordinate of T2



as (01, 62) where 6; is the coordinate of S'. The groups H’ (T?) are generated by
the following forms:

r=0: wo = o co € R
r=1: ) = c1do; + ¢} d ci,ci €R (6.49a)
r=2: wy = cpdb; A dO, c e R

Although the one-form d6; looks like an exact form, there is no function 6; which
is defined uniquely on S!. Since X(Sl) =0, we have yx (T?) =0.
The de Rham cohomology groups of

T"=58'x ... x §!
———
n

are obtained similarly. H"(T") is generated by r-forms of the form

do’t AdO AL AdOT (6.50)
where i; < iy < --- < i, are chosen from 1, ..., n. Clearly
. n
b =dimH (T") = ( > (6.51)
r

The Euler characteristic is directly obtained from (6.51) as
n
T = -1 =1-D"=0. 6.52
x()Z()(J() (6.52)

6.4.4 Pullback of de Rham cohomology groups

Let f : M — N be a smooth map. Equation (5.75) shows that the pullback f*
maps closed forms to closed forms and exact forms to exact forms. Accordingly,
we may define a pullback of the cohomology groups f* : H"(N) — H" (M) by

fflol=[f"o]  [o] € H(N). (6.53)

The pullback f* preserves the ring structure of H*(N). In fact, if [w] € HP(N)
and [n] € HY(N), we find

(ol AlnD) = ffloAn] = [f*(@An)]
=[ffon ffnl =[f ol ALf*]. (6.54)
6.4.5 Homotopy and H Iom)

Let f, g : M — N be smooth maps. We assume f and g are homotopic to each
other, that is, there exists a smooth map F : M x I — N such that F(p,0) =



f(p) and F(p,1) = g(p). We now prove that f* : H"(N) — H"(M) is equal
tog*: H'(N) - H'(M).

Lemma 6.1. Let f* and g* be defined as before. If w € Q" (N) is a closed form,
the difference of the pullback images is exact,

ffo—go=dy ¢ eQ\M). (6.55)
Proof. We first note that

f=7Foj, g=Fofi
where f; : M — M x I (p — (p,t)) has been defined in theorem 6.3. The
LHS of (6.55) is
(Fo fo)'w—(Fo fi)*o= fy o Ffo— f{"o Ffw
= — [dP(F*w) + Pd(F*w)] = —dP F*w

where (6.33) has been used. This shows that f*w — g*w = d(— P F*w). O

Now it is easy to see that f* = g* as the pullback maps H"(N) — H"(M).
In fact, from the previous lemma,

[ffo - g'wl = [fw] - [g*w] = [dy] = 0.
We have established the following theorem.

Theorem 6.4. Let f,g : M — N be maps which are homotopic to each
other. Then the pullback maps f* and g* of the de Rham cohomology groups
H"(N) — H"(M) are identical.

Let M be a simply connected manifold, namely 7;(M) = {0}. Since
H{(M) = m1(M) modulo the commutator subgroup (theorem 4.9), it follows
that H{ (M) is also trivial. In terms of the de Rham cohomology group this can be
expressed as follows.

Theorem 6.5. Let M be a simply connected manifold. Then its first de Rham
cohomology group is trivial.

Proof. Let w be a closed one-form on M. Itis clear that if w = d f, then a function
f must be of the form

p
fp) = / ® (6.56)
Po

po € M being a fixed point.
We first prove that an integral of a closed form along a loop vanishes. Let
a:l — Mbealoopat p € Mandletc, : I — M (t — p) be a constant



loop. Since M is simply connected, there exists a homotopy F (s, t) such that
F(s,0) = a(s) and F(s,1) = cp(s). We assume F : [ x I — M is smooth.
Define the integral of a one-form w over «(/) by

f a):/ a*w (6.57)
a(l) Sl

where we have taken the integral domain in the RHS to be S' since 7 = [0, 1] in
the LHS is compactified to S I From lemma 6.1, we have, for a closed one-form
,

afw— c’;a) =dg (6.58)
where g = — P F*w. The pullback c,w vanishes since c), is a constant map. Then

(6.57) vanishes since 3S! is empty,

/ a*w:/ dg:/ g=0. (6.59)
st st 38!

Let B8 and y be two paths connecting pg and p. According to (6.59), integrals
of w along B and along y are identical,

[ o=] w
B 140

This shows that (6.56) is indeed well defined, hence w is exact. O
Example 6.6. The n-sphere S" (n > 2) is simply connected, hence
H'(S) =0 n>2. (6.60)
From the Poincaré duality, we find
HO(S™ = H'(S") =R (6.61)
It can be shown that
H (8" =0 l<r<n-1. (6.62)

H™(S") is generated by the volume element 2. Since there are no (n + 1)-forms
on S", every n-form is closed. 2 cannot be exact since if @ = dy, we would

have
/ Q= / dy = Yy = 0.
sn sn asn

The Euler characteristic is

0 is odd
X(8") =1+ (=1 =: "ot (6.63)
2 niseven.



Example 6.7. Take S? embedded in R? and define
Q =sinfdf A d¢ (6.64)

where (0, ¢) is the usual polar coordinate. Verify that Q is closed. We may
formally write Q2 as

Q = —d(cosf) A d¢p = —d(cosb do).

Note, however, that €2 is not exact.



RIEMANNIAN GEOMETRY

A manifold is a topological space which locally looks like R*. Calculus on a
manifold is assured by the existence of smooth coordinate systems. A manifold
may carry a further structure if it is endowed with a metric tensor, which is
a natural generalization of the inner product between two vectors in R” to an
arbitrary manifold. With this new structure, we define an inner product between
two vectors in a tangent space T, M. We may also compare a vector at a point
p € M with another vector at a different point p’ € M with the help of the
‘connection’.

There are many books about Riemannian geometry. Those which are
accessible to physicists are Choquet-Bruhat et al (1982), Dodson and Poston
(1977) and Hicks (1965). Lightman et al (1975) and chapter 3 of Wald (1984)
are also recommended.

7.1 Riemannian manifolds and pseudo-Riemannian manifolds

7.1.1 Maetric tensors

In elementary geometry, the inner product between two vectors U and V is
defined by U - V = Z;"zl U;V; where U; and V; are the components of the
vectors in R”. On a manifold, an inner product is defined at each tangent space
T,M.

Definition 7.1. Let M be a differentiable manifold. A Riemannian metric g on
M is a type (0, 2) tensor field on M which satisfies the following axioms at each
point p € M:

(1) gp(U7 V) = gp(v’ U)v
(ii) gp(U, U) = 0, where the equality holds only when U = 0.

Here U,V € TyM and g, = glp. In short, g, is a symmetric positive-definite
bilinear form.

A tensor field g of type (0, 2) is a pseudo-Riemannian metric if it satisfies
(i) and

(i) if gp(U, V) =0forany U € T,M, then V = 0.



In chapter 5, we have defined the inner product between a vector V € Ty
and a dual vector w € T;‘M asamap (, ): T;‘M x To,M — R. If there
exists a metric g, we define an inner product between two vectors U, V € T,M
by g,(U, V). Since g, isamap T,M ® T,M — R we may define a linear
map g,(U, ) : T,M — Rby V — g,(U,V). Then g,(U, ) is identified
with a one-form wy € TyM. Similarly, o € T;M induces Vi, € TpM by
(w,U) = g(V,, U). Thus, the metric g, gives rise to an isomorphism between
T,M and T;‘M .

Let (U, ¢) be a chart in M and {x*} the coordinates. Since g € ‘J'S(M), it is
expanded in terms of dx* ® dx" as

8p = g (p)dx" @ dx". (7.1a)
It is easily checked that
d d
guw(p) =gp 8)6—“’ @ = guu(p) (p e M). (7.1b)

We usually omit p in gy, unless it may cause confusion. It is common to
regard (g,y) as a matrix whose (u, v)th entry is g,,. Since (g,,) has the
maximal rank, it has an inverse denoted by (g"") according to the tradition:
guwg"* = ¢"guu = &), The determinant det(g,) is denoted by g. Clearly

det(g"") = g~!. The isomorphism between TpM and T;M is now expressed as
oy = guwlU”, Ut = g"w,. (7.2)

From (7.1a) and (7.1b) we recover the ‘old-fashioned’ definition of the
metric as an infinitesimal distance squared. Take an infinitesimal displacement
dx#9/0x" € T, M and plug it into g to find

3 3 a9
ds? = g (dx* —, dx" =dxtdx’ g —, —
axHt axVv axHt  axV

= guv dx* dx". (7.3)

We also call the quantity ds? = guv dx™ dx” a metric, although in a strict sense
the metric is a tensor g = g, dx"* ® dx".

Since (g"') is a symmetric matrix, the eigenvalues are real. If g
is Riemannian, all the eigenvalues are strictly positive and if g is pseudo-
Riemannian, some of them may be negative. If there are i positive and j negative
eigenvalues, the pair (7, j) is called the index of the metric. If j = 1, the metric
is called a Lorentz metric. Once a metric is diagonalized by an appropriate
orthogonal matrix, it is easy to reduce all the diagonal elements to &-1 by a suitable
scaling of the basis vectors with positive numbers. If we start with a Riemannian
metric we end up with the Euclidean metric § = diag(l, ..., 1) and if we start
with a Lorentz metric, the Minkowski metric n = diag(—1, 1, ..., 1).



If (M, g) is Lorentzian, the elements of T, M are divided into three classes
as follows,

i) gWU,U)>0— U isspacelike,
(i) gWU,U) =0 — U is lightlike (or null), (7.4)
(iii) gWU,U) <0 —> U is timelike.

Exercise 7.1. Diagonalize the metric

(g;w) =

[=Nel )
[N el
(= e )
- o O O

to show that it reduces to the Minkowski metric. The frame on which the
metric takes this form is known as the light cone frame. Let {eg, e1, €2, €3}
be the basis of the Minkowski frame in which the metric is g, = 1,y. Show
that {e4, e_, €3, e3} are the basis vectors in the light cone frame, where e1 =
(e1 £ eo)/«/z. LetV = (V*t, Vv, V2, V3) be components of a vector V. Find
the components of the corresponding one-form.

If a smooth manifold M admits a Riemannian metric g, the pair (M, g) is
called a Riemannian manifold. If g is a pseudo-Riemannian metric, (M, g)
is called a pseudo-Riemannian manifold. If g is Lorentzian, (M, g) is called
a Lorentz manifold. Lorentz manifolds are of special interest in the theory
of relativity. For example, an m-dimensional Euclidean space (R",§) is a
Riemannian manifold and an m-dimensional Minkowski space (R™,7) is a
Lorentz manifold.

7.1.2 Induced metric

Let M be an m-dimensional submanifold of an n-dimensional Riemanian
manifold N with the metric gy. If f : M — N is the embedding which induces
the submanifold structure of M (see section 5.2), the pullback map f* induces
the natural metric gyy = f*gn on M. The components of g, are given by

o ofF
EMuv(x) = gNOlﬂ(f(x))af:—p, 8£V

(7.5)

where f* denote the coordinates of f(x). For example, consider the metric of the
unit sphere embedded in (R3, 8). Let (6, ¢) be the polar coordinates of $2 and
define f by the usual inclusion

f:(0,¢)— (sinfcos ¢, sinf sin¢, cos6)



from which we obtain the induced metric

af* afp
guvdx" @ dx" = 50:/33)7 dxV

=df ® df + sin” 0 dp @ dép. (7.6)

dx* @ dxV

Exercise 7.2. Let f : T?> — R3 be an embedding of the torus into (R3, 8) defined
by
f:(0,¢9)— (R4+rcosf)cose, (R+rcosbh)sing, rsinb)

where R > r. Show that the induced metric on T2 is
g=r2d0 ®dO + (R + rcos0)*dp ® de. (1.7)

When a manifold N is pseudo-Riemannian, its submanifold f : M — N
need not have a metric f*gy. The tensor f*gy is a metric only when it has a
fixed index on M.

7.2 Parallel transport, connection and covariant derivative

A vector X is a directional derivative actingon f € F(M) as X : f — X[f].
However, there is no directional derivative acting on a tensor field of type (p, q),
which arises naturally from the differentiable structure of M. [Note that the Lie
derivative Ly X = [V, X] is not a directional derivative since it depends on the
derivative of V.] What we need is an extra structure called the connection, which
specifies how tensors are transported along a curve.

7.2.1 Heuristic introduction

We first give a heuristic approach to parallel transport and covariant derivatives.
As we have noted several times, two vectors defined at different points cannot be
compared naively with each other. Let us see how the derivative of a vector field
in a BEuclidean space R" is defined. The derivative of a vector field V = V*eg,
with respect to x” has the uth component

aVH I VR, xV+AxY, )= VRO, xY, .0
= 1m .
axV Ax—0 AxV
The first term in the numerator of the LHS is defined at x + Ax = (x!, ..., x" +
AxV, ..., x™), while the second term is defined at x = (x*). To subtract V#(x)

from V*(x + Ax), we have to transport V#(x) to x + Ax without change and
compute the difference. This transport of a vector is called a parallel transport.
We have implicitly assumed that V|, parallel transported to x + Ax has the same
component V#(x). However, there is no natural way to parallel transport a vector
in a manifold and we have to specify how it is parallel transported from one point



to the other. Let \7| x+Ax denote a vector V|, parallel transported to x + Ax. We
demand that the components satisfy

VA (x 4+ Ax) — V*(x) « Ax (7.8a)
(VE £ W) (x + Ax) = VA(x + Ax) + WHh(x + Ax).  (7.8b)

These conditions are satisfied if we take
VE(x + Ax) = VA (x) — VF()TH,; (x) Ax”. (7.9)

The covariant derivative of V with respect to x" is defined by

axH

o Ve AY) - VE(x 4+ Ax) 0 JVH
im — =
Ax"—0 AxVY oxH oxVY

)
+ v*rm) — . (7.10)

This quantity is a vector at x + Ax since it is a difference of two vectors V| ax
and V|y4ax defined at the same point x + Ax. There are many distinct rules
of parallel transport possible, one for each choice of I'. If the manifold is
endowed with a metric, there exists a preferred choice of I, called the Levi-Civita
connection, see example 7.1 and section 7.4.

Example 7.1. Let us work out a simple example: two-dimensional Euclidean
space (R?,8). We define parallel transportation according to the usual sense
in elementary geometry. In the Cartesian coordinate system (x, y), all the
components of I' vanish since V#(x + Ax,y + Ay) = V/*(x, y) for any Ax
and Ay. Next we take the polar coordinates (r, ¢). If (r, ¢) +— (r cos ¢, r sin¢)
is regarded as an embedding, we find the induced metric,

g =dr@dr +r?d¢ ® do. (7.11)

LetV = V73/dr +V?3/d¢ be a vector defined at (r, ¢). If we parallel transport
this vector to (r + Ar, ¢), we have a new vector V. = V' 3/0r|,1arg) +
Ve 8/8¢|(r+m’¢,) (figure 7.1(a)). Note that V" = V cos 6 and V® = V(sin 0/r),
where V = /g(V, V) and 6 is the angle between V and 3/dr. Then we have
V' =V’ and

Po— L _ysays By
r—+ Ar r

By comparing these components with (7.9), we easily find that
I"py=0 Tp=0 T% =0 T%5=-. (7.12a)

Similarly, if V is parallel transported to (r, ¢ + A¢), it becomes

SO -9
V=vV"— + VP —
O | p+09) 90 1 (.9+00)
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Figure 7.1. ¥ is a vector V parallel transported to (a) (r + Ar, ¢) and (b) (r, ¢ + A¢).

where

V' =V cos(® — Ap) ~ VcosO + VsindAp = V' + VOrAd
and

~ in(@ — A in 0 A A

o _ySnO@ AP S0 02l e _yr AP

r r r r
(figure 7.1()). Then we find
r r ¢ 1 ¢
Myr=0  Tlgg=—r TP == T%;=0 (7.12b)

Note that the T satisfy the symmetry I'*,, = T'*,,. It is also implicitly assumed
that the norm of a vector is invariant under parallel transport. A rule of parallel
transport which satisfies these two conditions is called a Levi-Civita connection,
see section 7.4. Our intuitive approach leads us to the formal definition of the
affine connection.

7.2.2 Affine connections

Definition 7.2. An affine connection Visamap V : X(M) x X(M) — X(M), or
(X, Y) — VxY which satisfies the following conditions:

Vx(Y+Z)=VxY +VxZ (7.13a)
Vix4+v)Z =VxZ +VyZ (7.13b)
Vi)Y = fVxY (7.13¢)

Vx(fY) = X[fIY + fVxY (7.13d)



where f € F(M)and X, Y, Z € X(M).

Take a chart (U, ¢) with the coordinate x = ¢(p) on M, and define m3
functions T'*,,, called the connection coefficients by

Vve,u = Vevep. = e)hr)hv,u (7.14)

where {e,} = {9/0x"} is the coordinate basis in 7,M. The connection
coefficients specify how the basis vectors change from point to point. Once the
action of V on the basis vectors is defined, we can calculate the action of V on
any vectors. Let V. = V#e¢, and W = WVe, be elements of T),(M). Then

VyW =VEV, (We,) = V¥ (e [WHe, + W'V, e))

AW
= V# (WJFW r* ) (7.15)

Note that this definition of the connection coefficient is in agreement with the
previous heuristic result (7.10). By definition, V maps two vectors V and W to a
new vector given by the RHS of (7.15), whose Ath componentis V#V,, W* where

awr

y
VW=

+TH WY, (7.16)
Note that V,, W* is the Ath component of a vector V, W = V, We; and should
not be confused with the covariant derivative of a component W*. VyW is
independent of the derivative of V, unlike the Lie derivative Ly W = [V, W].
In this sense, the covariant derivative is a proper generalization of the directional
derivative of functions to tensors.

7.2.3 Parallel transport and geodesics

Given a curve in a manifold M, we may define the parallel transport of a vector
along the curve. Let ¢ : (a,b) — M be a curve in M. For simplicity, we assume
the image is covered by a single chart (U, ¢) whose coordinate is x = ¢(p). Let
X be a vector field defined (at least) along c(¢),

Xlewry = XM (c®))eplew (7.17)
where ¢, = 9/dx". If X satisfies the condition
VyX =0 for any ¢ € (a, b) (7.18a)

X is said to be parallel transported along c(f) where V = d/dr=
(dx* (c(t))/dt)eylcq) is the tangent vector to c(¢). The condition (7.18a) is
written in terms of the components as
dx* dxV(c(z
(c(1) x>

l"ﬂ

=0. 7.18b
dr dt ( )



If the tangent vector V (¢) itself is parallel transported along ¢ (), namely if
VyV =0 (7.19a)

the curve c(¢) is called a geodesic. Geodesics are, in a sense, the straightest
possible curves in a Riemannian manifold. In components, the geodesic
equation (7.19a) becomes

dZx# dxV dx*
+ MUA
dr? dr dr

=0 (7.19b)

where {x**} are the coordinates of c(f). We might say that (7.19a) is too strong to
be the condition for the straightest possible curve, and instead require a weaker
condition

VyV =fV (7.20)

where f € F(M). ‘Change of V is parallel to V’ is also a feature of a straight
line. However, under the reparametrization ¢ — ¢’, the component of the tangent

vector changes as
dx# dr dx*

—_— % —_—
dr de dr
and (7.20) reduces to (7.19a) if ¢’ satisfies

d% B fdt’
dr2 ~ 7 e’

Thus, it is always possible to reparametrize the curve so that the geodesic equation
takes the form (7.19a).

Exercise 7.3. Show that (7.19b) is left invariant under the affine reparametrization
t —>at+b(a,beR).

7.2.4 The covariant derivative of tensor fields

Since Vx has the meaning of a derivative, it is natural to define the covariant
derivative of f € F(M) by the ordinary directional derivative:

Vxf=X[f] (7.21)
Then (7.13d) looks exactly like the Leibnitz rule,
Vx(fY) = (Vx )Y + fVxY. (7.13d")
We require that this be true for any product of tensors,

Vx( ®T) =(VxT1) @ Tr +T1 ® (VxTr) (7.22)



where T7 and 75 are tensor fields of arbitrary types. Equation (7.22) is also true
when some of the indices are contracted. With these requirements, we compute
the covariant derivative of a one-form w € Q!(M). Since (w,Y) € F(M) for
Y € X(M), we should have

X[{w, Y)] = Vx[{w, Y)] = (Vxo,Y) + (0, VxY).
Writing down both sides in terms of the components we find
(Vxw)y = XFdw, — X'T? ;. (7.23)
In particular, for X = e,, we have
(Vuw)y = dpwy — T* ;. (7.24)
For w = dx", we obtain (cf (7.14))
V,dx” = TV 5 dx* (7.25)

It is easy to generalize these results as

Madp o Al A KA
Vil = Olpggig + T oty gy + -+
A AleAp—1K P Al.Ap
+ ety — Uou by —
Alep

= T oy byt 1k (7.26)

Exercise 7.4. Let g be a metric tensor. Verify that
(Vo = 0gap — FKvAgKu - Fkvug)uc- (7.27)

7.2.5 The transformation properties of connection coefficients

Introduce another chart (V, ¥) such that U NV # @, whose coordinates are
y = ¥ (p). Let {e,} = {0/0x"} and {f,} = {9/9y“} be bases of the respective
coordinates. Denote the connection coefficients with respect to the y-coordinates
by re gy- The basis vector f, satisfies

Vi fp =T ap fy- (7.28)
If we write f, = (0x*/dy*)e,, the LHS becomes

v _v axH _ 92xH Ix* dxt v
S8 =V, By—ﬁeﬂ = 3y°‘3yﬁ_eﬂ+ﬁ8y—ﬂ e en

92xY n dx* Bx“FV
=—4+ —— ey.
dy2oyp = 9y« ayb A



Since the RHS of (7.28) is equal to F”aﬁ (0xV/3y?)e,, the connection coefficients
must transform as

dx* dxk dy” %x¥ oy

py O ayY L, ORY a7
op y® dyP oxV A 3y2dyP axv

(7.29)
The reader should verify that this transformation rule indeed makes Vx Y a vector,

namely
X0 Y +T7 05 YP) £, = X2 (0, YY + T3, Y ey

In the literature, connection coefficients are often defined as objects which
transform as (7.29). From our viewpoint, however, they must transform according
to (7.29) to make VxY independent of the coordinate chosen.

Exercise 7.5. Let I be an arbitrary connection coefficient. Show that r’ wo+ * v
is another connection coefficient provided that * wv 1s a tensor field. Conversely,

suppose I'*,,, and T'*,,, are connection coefficients. Show that T'* ,, — T'*,,, is a
component of a tensor of type (1, 2).

7.2.6 The metric connection

So far we have left I" arbitrary. Now that our manifold is endowed with a metric,
we may put reasonable restrictions on the possible form of connections. We
demand that the metric g, be covariantly constant, that is, if two vectors X
and Y are parallel transported along any curve, then the inner product between
them remains constant under parallel transport. [In example 7.1, we have already
assumed this reasonable condition.] Let V be a tangent vector to an arbitrary
curve along which the vectors are parallel transported. Then we have

0=VylgX, )] =V (Vi) (X, Y) + g(Vi X, Y) + g(X, V, V)]
= VKXMYU(VKg);w

where we have noted that V, X = V, .Y = 0. Since this is true for any curves and
vectors, we must have
(Ve =0 (7.30a)

or, from exercise 7.4,
akguv - kagw - FK)ng/(p_ =0. (7.30b)

If (7.30a) is satisfied, the affine connection V is said to be metric compatible or
simply a metric connection. We will deal with metric connections only. Cyclic
permutations of (A, u, v) yield

8#8% - ka.vgkk - FKuAng =0 (7.30c)
Ogap — Fkvkgku - FKu,ugKA =0. (7.30d)



The combination —(7.30b) + (7.30c) + (7.30d) yields
_akguv + a,ugvk + 8\)81/}. + TK)L/,LgKU + TKAUgK,u - 2FK(uv)gK)L =0 (7.31)

where T, = 2T = T — T and ') = %(FKW + I'4y). The
tensor 7y, is anti-symmetric with respect to the lower indices T%;, = —T* ;.
and called the torsion tensor, see exercise 7.6. The torsion tensor will be studied
in detail in the next section. Equation (7.31) is solved for I'“(,,, to yield

K

1
T () = { } +5 (T, + T.°) (7.32)

KV

where {;fv} are the Christoffel symbols defined by

K 1
{MV} = Egk)h (augvk + 0vgua — akguv) . (7.33)

Finally, the connection coefficient I is given by
T =T uwy + Ty

K 1
= {/w} + E(TUKM+TMKV +T,0). (7.34)
The second term of the last expression of (7.34) is called the contorsion, denoted
by K.t

K* = 5(T% 0 + T,.5, + T,5 ). (7.35)

v

If the torsion tensor vanishes on a manifold M, the metric connection
V is called the Levi-Civita connection. Levi-Civita connections are natural
generalizations of the connection defined in the classical geometry of surfaces,
see section 7.4.

Exercise 7.6. Show that T, obeys the tensor transformation rule. [Hint: Use
(7.29).] Show also that K*[,,) = $T*,, and Kiuy = —Kyue Where Ky =
gK)LK)L;w-

7.3 Curvature and torsion

7.3.1 Definitions

Since I' is not a tensor, it cannot have an intrinsic geometrical meaning as
a measure of how much a manifold is curved. For example, the connection
coefficients in example 7.1 vanish if the Cartesian coordinate is employed while
they do not in polar coordinates. As intrinsic objects, we define the torsion tensor



T :X(M)® X(M) — X(M) and the Riemann curvature tensor (or Riemann
tensor) R : X(M) ® X(M) ® X(M) — X(M) by

T(X,Y)=VyxY —-VyX—[X,Y] (7.36)
R(X,Y,Z)=VxVyZ —VyVxZ — Vix v|Z. (7.37)

It is common to write R(X, Y)Z instead of R(X, Y, Z), so that R looks like an
operator acting on Z. Clearly, they satisfy

T(X,Y)=-T(,X), R(X,Y)Z = —R(Y, X)Z. (7.38)

At first sight, 7 and R seem to be differential operators and it is not obvious that
they are multilinear objects. We prove the tensorial property of R,

R(fX,gY)hZ = fVx{gVy(hZ)} — gVy{fVx(hZ)} — fXI[g]Vy(hZ)

+gY[f1Vx(hZ) — fgVix,y1(hZ)

= fgVx{Y[hlZ 4+ hVyZ} — gf Vy{X[h]Z + hVx Z}
— f8lX, Y1[h]Z — fghVix vZ

= fg{VxVyZ — VyVxZ — Vix v1Z}

= fghR(X,Y)Z.

Now it is easy to see that R satisfies

R(X,Y)Z = X"Y*Z" R(ey, e))ey (7.39)

which verifies the tensorial property of R. Since R maps three vector fields to a
vector field, it is a tensor field of type (1, 3).

Exercise 7.7. Show that T defined by (7.36) is multilinear,
T(X,Y)=X"Y"T(ey,ev) (7.40)
and hence a tensor field of type (1, 2).

Since T and R are tensors, their operations on vectors are obtained once their
actions on the basis vectors are known. With respect to the coordinate basis {e,,}
and the dual basis {dx*}, the components of these tensors are given by

T 0 = (dx*, T(ey, e,)) = (dx*, Ve, — Vye,)
= (dx*, ey — Ty ey) = T*,, — T, (7.41)
and
R0 = (dx*, R(ey, ey)en) = (dx*, V, Vyer — V,Vye;)
= (dx", V(T yey) — Vo (T vep))
= (dx*, (8, T )en + T8 upes — (3T ua)ey — T, T8 ee)
= 3, 0% 5 — 8 T% s+ D70y — T 5T, (7.42)
We readily find (cf (7.38))
T =-T"y R =—Ruu (7.43)



Figure 7.2. It is natural to define V parallel transported along a great circle if the angle V
makes with the great circle is kept fixed. If V' at p is parallel transported along great circles
C and C’, the resulting vectors at g point in opposite directions.

XH A+ gt S

Vel(q)

Figure 7.3. A vector Vj at p is parallel transported along C and C’ to yield V¢ (r) and
Vi (r) at r. The curvature measures the difference between two vectors.

7.3.2 Geometrical meaning of the Riemann tensor and the torsion tensor

Before we proceed further, we examine the geometrical meaning of these tensors.
We consider the Riemann tensor first. A crucial observation is that if we parallel
transport a vector V at p to g along two different curves C and C’, the resulting
vectors at ¢ are different in general (figure 7.2). If, however, we parallel transport
a vector in a Euclidean space, where the parallel transport is defined in our
usual sense, the resulting vector does not depend on the path along which it
has been parallel transported. We expect that this non-integrability of parallel
transport characterizes the intrinsic notion of curvature, which does not depend



on the special coordinates chosen. Let us take an infinitesimal parallelogram
pqrs whose coordinates are {x*}, {x* 4 e}, {x* + e* + §*} and {x* + &"}
respectively, e# and 8 being infinitesimal (figure 7.3). If we parallel transport
a vector Vo € T, M along C = pqr, we will have a vector Vc(r) € T, M. The
vector Vj parallel transported to g along C is

Vg(CI) = Vou - Vé(FMvK(P)gv'
Then Vg (r) is given by
VEr) = VE@Q) — VE@T e (g)8"
= V' = V{TH e’ — [V§ — VT o (p)ef]
x [T# e (p) + T (p)e18”
= V(;L - Vé(rﬂux(P)Sv - V(;(F'uwc(p)av
= VI 0 (p) — T2 0 (P)THp ()18

where we have kept terms of up to order two in ¢ and §. Similarly, parallel
transport of Vy along C’ = psr yields another vector V¢/ (r) € T, M, given by

VEr) = Vi = VETH e (p)8Y — VET e (p)e”
— VE 10T 5 (p) = TP ()T, (p) 18"
The two vectors at r differ by
Ver(r) — Ve(r) = Vy [T e (p) — 00T 5 (p)
— T2 (P)T 05 (p) + TP e ()T, (p)]*8"
= VERM 088" (7.44)

We next look at the geometrical meaning of the torsion tensor. Let p € M
be a point whose coordinates are {x*}. Let X = ete, and ¥ = &'e, be
infinitesimal vectors in T, M. If these vectors are regarded as small displacements,
they define two points g and s near p, whose coordinates are {x* 4+ ¢*} and
{x* + 6"} respectively (figure 7.4). If we parallel transport X along the line ps,
we obtain a vector sr; whose component is e — e*TH#,,8Y. The displacement
vector connecting p and ry is

pri = ps 4+ sr; = 8" + et —TH;e*8".
Similarly, the parallel transport of §* along pq yields a vector

pro = pq + qry = e + 8% — T, ™8V,
In general, ; and r, do not agree and the difference is

rary = pry — pri = (T, — TH; et 8” = TH,, 648V, (7.45)



Figure 7.4. The vector grp (sry) is the vector ps (pq) parallel transported to g (s). In
general, r{ # rp and the torsion measures the difference rpry.

Thus, the torsion tensor measures the failure of the closure of the parallelogram
made up of the small displacement vectors and their parallel transports.

Example 7.2. Suppose we are navigating on the surface of the Earth. We define a
vector to be parallel transported if the angle between the vector and the latitude is
kept fixed during the navigation. [Remarks: This definition of parallel transport
is not the usual one. For example, the geodesic is not a great circle but a straight
line on Mercator’s projection. See example 7.5.] Suppose we navigate along
a small quadrilateral pgrs made up of latitudes and longitudes (figure 7.5(a)).
We parallel transport a vector at p along pgr and psr, separately. According
to our definition of parallel transport, two vectors at r should agree, hence the
curvature tensor vanishes. To find the torsion, we parametrize the points p, g, r
and s as in figure 7.5(b). We find the torsion by evaluating the difference between
pr1 and pro as in (7.45). If we parallel transport the vector pg along ps, we
obtain a vector sry, whose length is R sinfd¢. However, a parallel transport
of the vector ps along pg yields a vector gr, = gr. Since sr has a length
Rsin(@ — df)d¢ >~ Rsinfd¢ — Rcosf df d¢, we find that rir, has a length
Rcos6dfde¢. Since rirp is parallel to —d/d¢, the connection has a torsion
T¢’9¢, see (7.45). From gyy = R? sin29, we find that 17 has components
(0, —cot6 d9 d¢). Since the ¢-component of riry is equal to T¢’9¢,d9d¢, we
obtain T%g4 = — cot 6.

Note that the basis {d/06, 9/0¢} is not well defined at the poles. It is known
that the sphere S? does not admit two vector fields which are linearly independent
everywhere on S2. Any vector field on $? must vanish somewhere on S and



(6 — db, ¢) (6 —do, ¢ + do)

’H

s r=r,

p q
(6, ¢) (6, ¢ + d¢)

Figure 7.5. (a) If a vector makes an angle o with the longitude at p, this angle is kept fixed
during parallel transport. (b) The vector sr| (gr;) is the vector pq (ps) parallel transported
to s (q). The torsion does not vanish.

hence cannot be linearly independent of the other vector field there. If an m-
dimensional manifold M admits m vector fields which are linearly independent
everywhere, M is said to be parallelizable. On a parallelizable manifold, we
can use these m vector fields to define a tangent space at each point of M. A
vector V), € T, M is defined to be parallel to V, € T, M if all the components of
V, at T, M are equal to those of V,, at T, M. Since the vector fields are defined
throughout M, this parallelism should be independent of the path connecting p
and ¢, hence the Riemann curvature tensor vanishes although the torsion tensor
may not in general. For §”, this is possible only when m = 1, 3 and 7, which is
closely related to the existence of complex numbers, quaternions and octonions,
respectively. For definiteness, let us consider

4
D= 1}

§3 = {(xl,x2,x3,x4>
i=1

embedded in (R*, §). Three orthonormal vectors

e (x) = (—x% x!, —x* x¥)
e3(x) = (—x*, —x3, x%, x1)
2

are orthogonal to x = (xl,x ,x3,x4) and linearly independent everywhere
on S3, hence define the tangent space T, S>. Two vectors V(x) and V(y)



are parallel if V1(x) = Y c'e/(x) and Va(y) = Y c'e(y). The connection
coefficients are computed from (7.14). Let gej(X) be a small displacement
under which x = (x!,x?, x3,x*) changes to X’ = X + ee|(x) = {x' —

ex?, x2 + ex!, x3 — ex*, x* + ex3}. The difference between the basis vectors

at X and X' is @ (X)) — &(X) = (—x3 —ex®, x* + ex3, x! —ex?, —x%2 —ex) —
(—x3, x4 x!, —x?) = —ee3(x) = el*12€,(X), hence |, = —1, T, =
F212 = 0. Similarly, F321 = 1 hence we find T312 = —2. The reader
should complete the computation of the connection coefficients and verify that
TAMU = —2 (42) if (Anv) is an even (odd) permutation of (123) and vanishes
otherwise.

Let us see how this parallelizability of S° is related to the existence of
quaternions. The multiplication rule of quaternions is

N e A B RGN
= (el = x292 33 oyt 2 a2yl Byt 3
x1y3 — x2y4 —l—x3y1 +x4y2,x1y4 +x2y3 — x3y2 +x4yl). (7.47)
$3 may be defined by the set of unit quaternions
3 ={(!, 22 3 xhHx-x=1)

where the conjugate of x is defined by X = (x!, —x2, —x3, —x*). According to

(7.46), the tangent space at Xo = (1, 0, 0, 0) is spanned by

e =(0,1,0,0) €& =1(0,0,1,0 e =(0,0,0,1).

Then the basis vectors (7.46) of the tangent space at X = (x!, x2, x3, x%) are
expressed as the quaternion products
e(x)=e-x eX)=e-X e (x) = €3 - X. (7.48)

Because of this algebra, it is always possible to give a set of basis vectors at an
arbitrary point of S3 once it is given at some point, Xg = (1, 0, 0, 0), for example.

By the same token, a Lie group is parallelizable. If the set of basis vectors
{V1, ..., Vi) at the unit element e of a Lie group G is given, we can always find
a set of basis vectors of T, G by the left translation of {V,} (see section 5.6),

Lgx
Vi, Vi) =5 {Xilg, -+ Xnlg)- (7.49)

7.3.3 The Ricci tensor and the scalar curvature

From the Riemann curvature tensor, we construct new tensors by contracting the
indices. The Ricci tensor Ric is a type (0, 2) tensor defined by

Ric(X,Y) = (dx", R(e,, Y)X) (7.50a)



whose component is
Ricyy = Ric(ey, e,) = R* 1y (7.50b)
The scalar curvature R is obtained by further contracting indices,

R = g""Ric(ey, ev) = 8" Ricpy. (7.51)

7.4 Levi-Civita connections

7.4.1 The fundamental theorem

Among affine connections, there is a special connection called the Levi-Civita
connection, which is a natural generalization of the connection in the classical
differential geometry of surfaces. A connection V is called a symmetric
connection if the torsion tensor vanishes. In the coordinate basis, connection
coefficients of a symmetric connection satisfy

F)Lp.v = F)\v,u« (7.52)

Theorem 7.1. (The fundamental theorem of (pseudo-)Riemannian geometry)
On a (pseudo-)Riemannian manifold (M, g), there exists a unique symmetric
connection which is compatible with the metric g. This connection is called the
Levi-Civita connection.

Proof. This follows directly from (7.34). Let V be an arbitrary connection such
that

~ K
FKMU = {’uv} + KKMU

where {;fv} is the Christoffel symbol and K the contorsion tensor. It was shown

in exercise 7.5 that I'*,, = T wv + 1,0 is another connection coefficient if ¢ is

a tensor field of type (1, 2). Now we choose t“,,, = —K*,, so that
K K 1 KA
r uy = =38 (8ug)~v + avgku - a)»gp.v)~ (7.53)
78y 2
By construction, this is symmetric and certainly unique given a metric. g

Exercise 7.8. Let V be a Levi-Civita connection.

(a) Let f € F(M). Show that
VoV f =YV, f. (7.54)
(b) Let w € Q1(M). Show that

do = (V,0), dx* A dx". (7.55)



Figure 7.6. On a surface M, a vector V), € Tp M is defined to be parallel to Vg € Ty M if
the projection of V; onto T, M is parallel to V), in our ordinary sense of parallelism in RZ.

(c)Let w € QU(M) and let U € X(M) be the corresponding vector field:
UM = g™ w,. Show that, for any V € X (M),

g(VxU, V) = (Vxw, V). (7.56)
Example 7.3.

(a) The metric on R? in polar coordinates is g = dr ® dr + r2d¢ ® d¢.
The non-vanishing components of the Levi-Civita connection coefficients
are F¢’r¢ = F¢¢r =r~1and I'" 4y = —r. This is in agreement with the
result obtained in example 7.1.

(b) The induced metric on $? is ¢ = df ® df + sin” 6 d¢ ® d¢. The non-
vanishing components of the Levi-Civita connection are

I4s =—cosfsing [y =T?4 = cotb. (7.57)

7.4.2 The Levi-Civita connection in the classical geometry of surfaces

In the classical differential geometry of surfaces embedded in R3, Levi-Civita
defined the parallelism of vectors at the nearby points p and ¢ in the following
sense (figure 7.6). First, take the tangent plane at p and a vector V), at p, which
lies in the tangent plane. A vector V, at g is defined to be parallel to V), if the
projection of V; to the tangent plane at p is parallel to V, in our usual sense.
Now take two points ¢ and s near p as in figure 7.7 and parallel transport the
displacement vectors pg along ps and ps along pgq. If the parallelism is defined
in the sense of Levi-Civita, the displacement vectors projected to the tangent
plane at p form a closed parallelogram, hence this parallelism has vanishing
torsion. As has been proved in theorem 7.1, there exists a unique connection
which has vanishing torsion, which generalizes the parallelism defined here to
arbitrary manifolds.



Figure 7.7. If the parallelism is defined in the sense of Levi-Civita, the torsion vanishes
identically.

7.4.3 Geodesics

When the Levi-Civita connection is employed, we can compute the connection
coefficients, Riemann tensors and many relations involving these by simple
routines. Besides this simplicity, the Levi-Civita connection provides a geodesic
(defined as the straightest possible curve) with another picture, namely the
shortest possible curve connecting two given points. In Newtonian mechanics,
the trajectory of a free particle is the straightest possible as well as the shortest
possible curve, that is, a straight line. Einstein proposed that this property should
be satisfied in general relativity as well; if gravity is understood as a part of the
geometry of spacetime, a freely falling particle should follow the straightest as
well as the shortest possible curve. [Remark: To be precise, the shortest possible
curve is too strong a condition. As we see later, a geodesic defined with respect
to the Levi-Civita connection gives the local extremum of the length of a curve
connecting two points. ]

Example 7.4. In a flat manifold (R™, §) or (R™, n), the Levi-Civita connection
coefficients I' vanish identically. Hence, the geodesic equation (7.19b) is easily
solved to yield x* = At + B*, where A* and B" are constants.

Exercise 7.9. A metric on a cylinder S' x R is given by g = d¢ ® d¢ + dz ® dz,
where ¢ is the polar angle of S! and z the coordinate of R. Show that the geodesics
given by the Levi-Civita connection are helices.

The equivalence of the straightest possible curve and the local extremum of
the distance is proved as follows. First we parametrize the curve by the distance s
along the curve, x* = x*(s). The length of a path ¢ connecting two points p and

q is
I(c) = /ds = /,/g x'*xV ds (7.58)
C Cc -

where x’* = dx*/ds. Instead of deriving the Euler-Lagrange equation from
(7.58), we will solve a slightly easier problem. Let F = %gwx“‘x’” and write



(7.58) as I(c) = f o L(F)ds. The Euler-Lagrange equation for the original
problem takes the form

d [ dL dL
— (—) Ea—) (7.59)

ds \ 9x’* x>

Then F = L?/2 satisfies

d (9F IF d (oL L 9L dL 9L dL
—(—>——=L[—(—>——:|+——=——. (7.60)

ds \ 9x’* ax* ds \ 9x’* ax* ax’* ds ax'* ds

The last expression vanishes since L = 1 along the curve; dL/ds = 0. Now
we have proved that F also satisfies the Euler—Lagrange equation provided that L
does so. We then have

d , 1 agw
el wy _ Z XMV
a5 ) T
— 8g}»l‘~ Py + g d2xH 18glw X iV
dxV s T 2

d2x* l(agm g aguv)ﬂd’vv =0. (7.61)

BT 3 ax¥ | axt ax* ) ds ds
If (7.61) is multiplied by g“*, we reproduce the geodesic equation (7.19b).

Having proved that L and F satisfy the same variational problem, we take
advantage of this to compute the Christoffel symbols. Take S2, for example. F is
given by %(9’ 2 4+ sin® 9¢'%) and the Euler—Lagrange equations are

d2 dg\’
—— —sinf cos6 —¢ =0 (7.62a)
ds? ds

d2

d°¢ de do
— +2cotd—— =0. 7.62b
ds? * ds ds ¢ )

It is easy to read off the connection coefficients I'4y = —sinfcosé and

%49 = %44 = cotb, see (7.57).

Example 7.5. Let us compute the geodesics of S%. Rather than solving the
geodesic equations (7.62) we find the geodesic by minimizing the length of a
curve connecting two points on S2. Without loss of generality, we may assign
coordinates (01, ¢9) and (62, ¢p) to these points. Let ¢ = ¢(0) be a curve
connecting these points. Then the length of the curve is

(%) d¢ 2
— 02 [ 22
I(c)_/g1 \/ 14+ sin <d9> do (7.63)



which is minimized when d¢/d6 = 0, that is ¢ = ¢9. Thus, the geodesic is a
great circle (0, ¢o), 61 < 0 < 05. [Remark: Solving (7.62) is not very difficult.
Let & = 6(¢) be the equation of the geodesic. Then

do  do d¢ d2e  d% dq) de d%¢
ds ~ do¢ ds ds? ~ dg? de ds?’
Substituting these into the first equation of (7.62), we obtain
a0 (dp\*  do d? o\
— —¢ + ——¢ — sinf cos 6 ¢ =0. (7.64)
d¢? \ ds d¢ ds? ds

The second equation of (7.62) and (7.64) yields

2 2
0 do
—— —2cotfd [ — ) —sinfcosh =0. (7.65)
dg? d¢
If we define f(0) = cot@, (7.65) becomes
2
af
=0
dg? =

whose general solution is () = cotd = Acos¢ + B sing or
Asinf cos¢ + Bsinfsing — cosf = 0. (7.66)

Equation (7.66) is the equation of a great circle which lies in a plane whose normal
vectoris (A, B, —1).]

Example 7.6. Let U be the upper half-plane U = {(x, y)|y > 0} and introduce
the Poincaré metric
_ dx®dx+dy®dy

(7.67)
y2
The geodesic equations are
4 2 1.7
x'—==xy'=0 (7.68a)
y
1
y// _ _[x/z + 3}/2] =0 (7.68b)
y

where x’ = dx/ds etc. The first equation of (7.68) is easily integrated, if divided
by x’, to yield

/

=

(7.69)



Xo

Figure 7.8. Geodesics defined by the Poincaré metric in the upper half-plane. The geodesic
has an infinite length.

where R is a constant. Since the parameter s is taken so that the vector (x/, y')
has unit length, it satisfies (x?4+y?)/y? = 1. From (7.69), this becomes
YR+ ('/y)* =Tlor

dy o dr
yW/1—y2/R2  sint

where we put y = R sin¢. Equation (7.69) then becomes

ds =

2
x' =2 = Rsin?t.
R

Now x is solved for 7 to yield

, dx ds
x= | x'ds= | ——dt
ds dr

= /Rsintdt = —Rcost + xg.

Finally, we obtain the solution
x =—Rcost+xg y = Rsint (y >0) (7.70)

which is a circle with radius R centred at (xp, 0). Maximally extended geodesics
are given by 0 < ¢ < & (figure 7.8) whose length is infinite,

T—& ds T—¢& 1
I = /dS —/ / ,—dt
0+ 0+e SIN?

1 +cost|"~¢

o)
2 gl—cost

oQ.

O+¢ e—0

7.4.4 The normal coordinate system

The subject here is not restricted to Levi-Civita connections but it does take an
especially simple form when the Levi-Civita connection is employed. Let c(¢) be



a geodesic in (M, g) defined with respect to a connection V, which satisfies

d
cO=p. | =X=X'e eT,M (1.71)
P

where {e,} is the coordinate basis at p. Any geodesic emanating from p is
specified by giving X € T, M. Take a point g near p. There are many geodesics
which connect p and gq. However, there exists a unique geodesic ¢, such that
cqg(1) = q. Let X4, € T,M be the tangent vector of this geodesic at p. As
long as g is not far from p, g uniquely specifies X, = Xffeﬂ € T,M and
¢ :q — Xg serves as a good coordinate system in the neighbourhood of p.
This coordinate system is called the normal coordinate system based on p with
basis {e;,}. Obviously ¢(p) = 0. We define a map EXP : T,M — M by
EXP : X, > ¢q. By definition, we have

P(EXP Xl'e,) = X/, (7.72)

With respect to this coordinate system, a geodesic c(¢) with ¢(0) = p and
c(1) = g has the coordinate presentation

p(c() = XM = X[t (7.73)

where X ﬁ; are the normal coordinates of g.

We now show that Levi-Civita connection coefficients vanish in the normal
coordinate system. We write down the geodesic equation in the normal coordinate
system,

d>xH dxv dx*

A
T H XD = T (XD XX, (7.74)

0=

Since F“vx(p)X};Xf]‘ = 0 for any X}; at p for which r = 0, we find I'* ;. (p) +
I'*;,(p) = 0. Since our connection is symmetric we must have

I(p) = 0. (1.75)

As a consequence, the covariant derivative of any tensor ¢ in this coordinate
system takes the extremely simple form at p,

Yyt = X[1]. (7.76)

Equation (7.75) does not imply that ['**,, vanishes at g (#p). In fact, we
find from (7.42) that

RKA;w(P) = 3uFKvA(P) - avFKuA(p) (7.77)

hence 8, I, (p) # 0if R, (p) # 0.



7.4.5 Riemann curvature tensor with Levi-Civita connection

Let V be the Levi-Civita connection. The components of the Riemann curvature
tensor are given by (7.42) with
K
=
. {/w}

while the torsion tensor vanishes by definition. Many formulae are simplified if
the Levi-Civita connections are employed.

Exercise 7.10.

(a) Let g = dr ® dr 4+ r2(d6 ® d6 + sin’ 6 d¢ ® d¢) be the metric of (R?, §),
where 0 < 6 < m,0 < ¢ < 2m. Show, by direct calculation, that all the
components of the Riemann curvature tensor with respect to the Levi-Civita
connection vanish.

(b) The spatially homogeneous and isotropic universe is described by the
Robertson-Walker metric,

dr ® dr
1 —kr?

g = —dt®dt+a’(t) < +7r2(do ® do + sin® 6 do ® d¢)> (7.78)

where k is a constant, which may be chosen to be —1, 0 or +1 by a suitable
rescalingof r and 0 < 0 < 7,0 < ¢ < 2w. If k = +1, r is restricted to
0 < r < 1. Compute the Riemann tensor, the Ricci tensor and the scalar
curvature.

(c) The Schwarzschild metric takes the from

2M
g= _<1——> dr ® dr
r

+ dr @ dr + r*(d6 ® do +sin’ 0 d¢ ® dg) (7.79)

1
2M
1 — 2=
;
where 0 < 2M < r,0 <6 < m, 0 < ¢ < 2mw. Compute the Riemann
tensor, the Ricci tensor and the scalar curvature. [Remark: The metric (7.79)

describes a spacetime of a spherically symmetric object with mass M.]

Exercise 7.11. Let R be the Riemann tensor defined with respect to the Levi-
Civita connection. Show that

1 < 828/(/1. 828)»# azgfcv azg,uv )

R = — — _
v =0\ 9xkox” | ax<ax’  axroxk | dxkoxk

+ 8en(T8 e, Ty — T80, ,0)



where Ry = gt RY,, wv- Verify the following symmetries,

Rirw = —Riavp (cf (7.43)) (7.80a)
Riapw = —Roucpy (7.80b)
R = Ruvien, (7.80c)
Ricyy = Ricyy,. (7.80d)

Theorem 7.2. (Bianchi identities) Let R be the Riemann tensor defined with
respect to the Levi-Civita connection. Then R satisfies the following identities:

R(X,Y)Z + R(Z,X)Y + R(Y,Z)X =0

(the first Bianchi identity) (7.81a)
(VxR)X, 2)V + (VZR)(X, V)V + (VY R)(Z, X)V =0
(the second Bianchi identity). (7.81b)

Proof. Our proof follows Nomizu (1981). Define the symmetrizor & by
6{fX,Y,2)}) = fX,Y,Z2)+ f(Z,X,Y)+ f(Y,Z,X). Let us prove the
first Bianchi identity G{R(X, Y)Z} = 0. Covariant differentiation of the identity
T(X,Y)=VxY —VyX — [X, Y] = 0 with respect to Z yields
0=Vz{VxY - VyX —[X, Y]}
=VzVxY —VzVyX —{Vixv1Z +1Z,[X, Y]]}

where the torsion-free condition has been used again to derive the second equality.
Symmetrizing this, we have

0=6{VzVxY - VzVWyX —Vixv1Z - [Z,[X, Y]]}
— S{VzVxY — VzVyX — Vix.y)Z} = G{R(X. Y)Z)

where the Jacobi identity G{[ X, [Y, Z]]} = 0 has been used.

The second Bianchi identity becomes G{(VxR)(Y, Z)}V = 0 where &
symmetrizes (X, Y, Z) only. If the identity R(T (X, Y), Z)V = R(VxY —VyX —
[X, Y], Z)V = 0is symmetrized, we have

0=6{R(VxY,Z) — R(VyX,Z)—- R([X,Y], 2)}V
=6{R(VzX,Y) - R(X,VzY) — R(X,Y], 2)}V. (7.82)

If we note the Leibnitz rule,

VzZ{R(X,Y)V} = (VzR)(X,Y)V
+ R(X,Y)VzV 4+ R(VzX,Y)V + R(X,VzY)V

(7.82) becomes

0=6{-(VzR)(X,Y) +[Vz, R(X,Y)] — R(X, Y], Z2)}V.



The last two terms vanish if R(X,Y)V = {[Vx, Vy] — V|x,y]}V is substituted
into them,

S{[Vz, R(X, V)] - R(X, Y], 2)}V
=6{[Vz, [Vx, Vvl = [Vz, Vix,v1] = [Vix,v1, Vz] + Viix,v1,z1}V
=0

where the Jacobi identities G{[Vz, [Vx, Vy1l} = &{[[X, Y], Z]} = 0 have been
used. We finally obtain G{(Vx R)(Y, Z)}V = 0. O

In components, the Bianchi identities are

RK}\.MU + RKMU)\. + RKU}\.M =0

(the first Bianchi identity) (7.83a)
(Ve B s0 + (VuR e + (Vo R 5 = 0
(the second Bianchi identity). (7.83b)

By contracting the indices £ and p of the second Bianchi identity, we obtain an
important relation:

(Vi Ric)aw + (VR 306 — (VyRic)ye = 0. (7.84)
If the indices A and v are further contracted, we have V,,(R§ — 2Ric)*, =0 or
V,.G" =0 (7.85)

where G*V is the Einstein tensor defined by
G" = Ric™ — 1g"'R. (7.86)

Historically, when Einstein formulated general relativity, he first equated the Ricci
tensor Ric*’ to the energy—momentum tensor 7/V. Later he realized that 7"¥
satisfies the covariant conservation equation V,,T#" = 0 while Ric"” does not.
To avoid this difficulty, he proposed that G*V should be equated to 7#". This
new equation is natural in the sense that it can be derived from a scalar action by
variation, see section 7.10.

Exercise 7.12. Let (M, g) be a two-dimensional manifold with g = —dr ® dr +
R2(t)dx ® dx, where R(¢) is an arbitrary function of 7. Show that the Einstein
tensor vanishes.

The symmetry properties (7.80a)—(7.80c) restrict the number of independent
components of the Riemann tensor. Let m be the dimension of a manifold (M, g).
The anti-symmetry Ryxuv = — Rjcvy implies that there are N = (') independent
choices of the pair (u, v). Similarly, from Ry, = —Rycpuv, we find there are



N independent pairs of (k, A). Since Ry, iS symmetric with respect to the
interchange of the pairs (k, ) and (u, v), the number of independent choices of
the pairs reduces from N? to (N ; l) = LN(N + 1). The first Bianchi identity

RK)\.MU + Rk,uvk + RKvML =0 (7.87)

further reduces the number of independent components. The LHS of (7.87) is
totally anti-symmetric with respect to the interchange of the indices (A, u, v).
Furthermore, the anti-symmetry (7.80b) ensures that it is totally anti-symmetric
in all the indices. If m < 4, (7.87) is trivially satisfied and it imposes no additional
restrictions. If m > 4, (7.87) yields non-trivial constraints only when all the
indices are different. The number of constraints is equal to the number of possible
ways of choosing four different indices out of m indices, namely ('Z). Noting
that ('Z) = m(m — 1)(m — 2)(m — 3)/4! vanishes for m < 4, the number of
independent components of the Riemann tensor is given by

F(m) = %(";) [('Z) + 1} - <'Z) - 1—12m2(m2 —1). (188

F (1) = 0 implies that one-dimensional manifolds are flat. Since F(2) = 1, there
is only one independent component Ri212 on a two-dimensional manifold, other
components being either O or =R1212. F(4) = 20 is a well-known fact in general
relativity.

Exercise 7.13. Let (M, g) be a two-dimensional manifold. Show that the
Riemann tensor is written as

RK}\}L\) = K(gngu - gl«ugm) (7.89)

where K € F(M). Compute the Ricci tensor to show Ricy, o g,». Compute the
scalar curvature to show K = R/2.

7.5 Holonomy

Let (M, g) be an m-dimensional Riemannian manifold with an affine connection
V. The connection naturally defines a transformation group at each tangent space
T, M as follows.

Definition 7.3. Let p be a point in (M, g) and consider the set of closed loops at
p, {c(®)|0 <t <1,¢(0) = ¢c(1) = p}. Take a vector X € T, M and parallel
transport X along a curve c(¢). After a trip along c(¢), we end up with a new
vector X, € TpM. Thus, the loop c(¢) and the connection V induce a linear
transformation

P.:TyM — T,M. (7.90)

The set of these transformations is denoted by H (p) and is called the holonomy
group at p.



We assume that H(p) acts on T, M from the right, P.X = Xh (h €
H(p)). In components, this becomes P.X = X*h,"e,, {e,} being the basis
of T, M. It is easy to see that H (p) is a group. The product P P, corresponds to
parallel transport along c first and then ¢’. If we write P; = P, P,, the loop d is
given by

c(2t) 0

A=Y 001

1
=t=3 (7.91)
<t<l1
The unit element corresponds to the constant map ¢,(t) = p (0 <t < 1) and
the inverse of P, is given by P.-1, where ¢ (1) = ¢(1 — t). Note that H(p) is
a subgroup of GL(m, R), which is the maximal holonomy group possible. H (p)
is trivial if and only if the Riemann tensor vanishes. In particular, if (M, g) is
parallelizable (see example 7.2), we can make H (p) trivial.

If M is (arcwise-)connected, any two points p, ¢ € M are connected by a
curve a. The curve a defines amap 7, : T,M — T, M by parallel transporting a
vector in T, M to T, M along a. Then the holonomy groups H (p) and H (q) are
related by

H(g)=7,"H(p)t4 (7.92)

hence H (q) is isomorphic to H (p).

In general, the holonomy group is a subgroup of GL(m, R). If V is a metric
connection, V preserves the length of a vector, g,(P.(X), P:(X)) = gp(X, X)
for X € T, M. Then the holonomy group must be a subgroup of SO(m) if (M, g)
is orientable and Riemannian and SO(m — 1, 1) if it is orientable and Lorentzian.

Example 7.7. We work out the holonomy group of the Levi-Civita connection on
$? with the metric g = d ® df + sin? d¢ ® d¢. The non-vanishing connection
coefficients are F9¢¢ = —sin# cos# and F¢¢9 = F¢9¢ = cot 6. For simplicity,
we take a vector eg = 9/06 at a point (6p, 0) and parallel transport it along a
circle 6 = 0y, 0 < ¢ < 2m. Let X be the vector ey parallel transported along the
circle. The vector X = X%ep + X%e, satisfies

3,X? — sinfpcospX? =0 (7.93a)
35 X? + cotpX? = 0. (7.93b)

Equations (7.93a) and (7.93b) represent the harmonic oscillations. Indeed if we
take a ¢-derivative of (7.93a) and use (7.93b), we have

ex? o cosh dx?®  d?x°
—— —sinfycosp—— =
g2 0% T dg2
The general solution is X? = A cos(Co¢) + B sin(Co¢), where Cyp = cos 6.
Since X? = 1 at ¢ = 0 we have

—cos?6pX? = 0. (7.94)

_sin(Cog)

X% =cos(Cop) X% = :
sin By



After parallel transport along the circle, we end up with

X(¢p =2m) = cos(Rm Cp)eyg —

sin@rCod) (7.95)

sin 6y

Now the vector is rotated by ® = 27 cos 6y, with its magnitude kept fixed. If we
take a point p € S? and a circle in S which passes through p, we can always find
a coordinate system such that the circle is given by 6 = 6y (0 < 6 < 7) and we
can apply our previous calculation. The rotation angle is —27 < ® < 27 and we
find that the holonomy group at p € §2 is SO(2).

In general, S (m > 2) admits the holonomy group SO(m). Product
manifolds admit more restricted holonomy groups. The following example is
taken from Horowitz (1986). Consider six-dimensional manifolds made of the
spheres with standard metrics. Examples are 56 83 x §3.82 x §2 x §2, 70 =
S! x ... x S!. Their holonomy groups are:

(i) S%: H(p) =SO0(6).

(i) S3 x $3: H(p) =SO(3) x SO®3).

(i) $2 x $2 x §2: H(p) = SO(2) x SO(2) x SO(2).
(iv) T®: H(p) is trivial since the Riemann tensor vanishes.

Exercise 7.14. Show that the holonomy group of the Levi-Civita connection of
the Poincaré metric given in example 7.6 is SO(2).

7.6 Isometries and conformal transformations

7.6.1 Isometries

Definition 7.4. Let (M, g) be a (pseudo-)Riemannian manifold. A diffeomor-
phism f : M — M is an isometry if it preserves the metric

ferpm =8p (7.96a)
thatis, if g r(p) (feX, fxY) = gp(X,Y) for X, Y € T, M.
In components, the condition (7.96a) becomes

9y 3y’ = 7.96b
X W&xﬁ(f(ﬁ)) = guw(p) (7.96b)

where x and y are the coordinates of p and f(p), respectively. The identity map,
the composition of the isometries and the inverse of an isometry are isometries; all
these isometries form a group. Since an isometry preserves the length of a vector,
in particular that of an infinitesimal displacement vector, it may be regarded as a
rigid motion. For example, in R?, the Euclidean group E”, that is the set of maps
fix— Ax+T (A €SO), T € R"), is the isometry group.



7.6.2 Conformal transformations

Definition 7.5. Let (M, g) be a (pseudo-)Riemannian manifold. A diffeomor-
phism f : M — M is called a conformal transformation if it preserves the
metric up to a scale,

fferm=¢7g, oeT(M) (7.97a)
namely, g r(p) (fi X, fxY) =e*g,(X,Y) for X,Y € T,M.
In components, the condition (7.97a) becomes
8y ayP
axH axV

The set of conformal transformations on M is a group, the conformal group
denoted by Conf(M). Let us define the angle 6 between two vectors X = X9,
Y =Y"3, e T,M by

gaﬂ(f(p)) = ezo(p)g,uv(l’) (7.97b)

gp(Xs Y) _ g,quMYU
\/gp(XaX)gp(Ya Y) \/g;,yXé“X"g,(AYKYA

If f is a conformal transformation, the angle 8’ between f, X and f,Y is given by

cosf = (7.98)

ezogWXMYU =cosf

cosf =

ez”g;,,XU(" . e2crgk)\y/< Y*

hence f preserves the angle. In other words, f changes the scale but not the
shape.

A concept related to conformal transformations is Weyl rescaling. Let g and
g be metrics on a manifold M. g is said to be conformally related to g if

gp=e2Wg,. (7.99)

Clearly this is an equivalence relation among the set of metrics on M. The
equivalence class is called the conformal structure. The transformation g —

20 ¢ is called a Weyl rescaling. The set of Weyl rescalings on M is a group
denoted by Weyl(M).

Example 7.8. Let w = f(z) be a holomorphic function defined on the complex
plane C. [A C*°-function regarded as a functionof z = x +iyandz = x —iy is
holomorphicif 9; f(z, z) = 0.] We write the real part and the imaginary part of the
respective variables as z = x + iy and w = u + iv. The map f : (x, y) — (u, v)
is conformal since

5 2 du  \? v v\’
du” +dv” = dx+—dy +{ —dx + —dy
ox ay ox dy

[(w) (auﬂ ,
PN () | @x? +ay?) (7.100)
ax dy



where use has been made of the Cauchy—Riemann relations

ou ov ou ov

ax oy dy  ox
Exercise 7.15. Let f : M — M be a conformal transformation on a Lorentz

manifold (M, g). Show that f : T,M — Ty, M preserves the local light cone
structure, namely

timelike vector >  timelike vector
e null vector — null vector (7.101)
spacelike vector +> spacelike vector.

Let g be a metric on M, which is conformally related to g as g = e2*(Pg.
Let us compute the Riemann tensor of g. We could simply substitute g into
the defining equation (7.42). However, we follow the elegant coordinate-free
derivation of Nomizu (1981). Let K be the difference of the covariant derivatives
V with respect to g and V with respect to g,

K(X,Y)=VxY — VyY. (7.102)

Proposition 7.1. Let U be a vector field which corresponds to the one-form do':
Zlo] = {do, Z) = g(U, Z). Then

K(X,Y) = X[o]Y + Y[o1X — g(X, Y)U. (7.103)

Proof. It follows from the torsion-free condition that K (X, Y) = K (¥, X). Since
Vxg = Vxg =0, we have

X[g(Y, 2)] = Vx[g(Y, 2)] = g(Vx, Z) + g(Y,Vx Z)
and also

X[3(Y, 2)] = Vx[e* g(¥, Z)]
=2X[0]e* g(Y, Z) + e*[g(Vx, Z) + g(Y, Vx Z)].

Taking the difference between these two expressions, we have
g(K(X,Y),Z) + g(Y, K(X, Z)) = 2X[o]g(Y, Z). (7.104a)
Permutations of (X, Y, Z) yield

g(K(Y,X),Z)+ g(X,K(Y, Z)) = 2Y[o]g(X, Z) (7.104b)
¢(K(Z,X),Y)+g(X,K(Z,Y)) =2Z[c]g(X, Y). (7.104c)

The combination (7.104a) + (7.104b) — (7.104c¢) yields

¢(K(X,Y),Z) = X[o]g(¥, Z) + Y[olg(X, Z) — Z[o1g(X,Y).  (7.105)



The last term is modified as
Zlolg(X,Y) =g, 2)g(X,Y) =g, X)U, Z).
Substituting this into (7.105), we find
g(K(X,Y)—X[o]Y = Y[o]X +g(X,Y)U,Z)=0.
Since this is true for any Z, we have (7.103). O
The component expression for K is

K(eua ey) = v;/,ev - Vp,ev = (f‘)t;w - FAMU)EA

=eylole, +evlole, — gley, ey)g dcoes

from which it is readily seen that

I, =T40 +8%,0,0 + 8" 4000 — gu g dco. (7.106)

To find the Riemann curvature tensor, we start from the definition,

R(X, Y)Z = ﬁxﬁyz — ﬁyﬁxz — ﬁ[X,Y]Z
= Vx[VyZ + K(Y, 2)] — Vy[VxZ + K(X, Z)]
—{Vix.nZ+ K(X,Y], Z2)}
=Vx{WWZ+ KX, 2)}+ K(X,VyZ+ K(Y, 2))
—Vy{VxZ+K(X,2)) — K, VxZ + KX, Z))
—{Vixv1Z + K(X, Y], 2)}. (7.107)

After a straightforward but tedious calculation, we find that

R(X,Y)Z = R(X,Y)Z + (Vx do, Z)Y — (Vy do, Z)X
—g(Y,2)VxU +Y[o]Z[o]X
—g(Y, Z2)U[o)X + X[olg(Y, Z)U
+g(X, Z)VyU — X[o1Z[o1Y
+g(X, Z)U[o)Y — Y[olg(X, Z)U. (7.108)

Let us define a type (1, 1) tensor field B by
BX = —X[o]U + VxU + $U[o]X. (7.109)
Since g(VyU, Z) = (Vydo, Z) (exercise 7.8(¢c)), (7.108) becomes

R(X,Y)Z = R(X,Y)Z — [g(Y, Z)BX — g(BX, Z)Y
+g(BY, Z)X — g(X, Z)BY]. (7.110)



In components, this becomes

K

R Ay = RK}\.MU - gv)\B,uK + gsABME(SKv - gEABvéaku + gp_)LBvK

(7.111)
where the components of the tensor B are
B, = — 3,0U" + (V,U)* + 1U[018,"
= — 3,08 810 + g (3,000 — T% 1 9:0) + $8™8,00:08,, .
(7.112)
Note that B, = guABu'\ = By,.
By contracting the indices in (7.111), we obtain
Ricyy = Ricyy — guvBi — (m —2)By,, (7.113)
R =R —2(m—1)B;"* (7.114a)
where m = dim M. Equation (7.114a) is also written as
guwR =R —2(m — 1)B;* g, (7.114b)

If we eliminate g,wB,\’\ and By, in R¥ auv in favour of Ric and R and separate
barred and unbarred terms, we find a combination which is independent of o,

1 . . : :
CK)\}LV = RKA//.U + m(Rlckugku - RlCmgw + Rlckvgku - Rlckugku)

+ m(&mgku — 8kv&in) (7.115)
where m > 4 (see problem 7.2 for m = 3). The tensor C is called the Weyl
tensor. The reader should verify that Cy; = Cen -

If every point p of a (pseudo-)Riemannian manifold (M, g) has a chart
(U, @) containing p such that g,, = ez“SW, then (M, g) is said to be
conformally flat. Since the Weyl tensor vanishes for a flat metric, it also vanishes
for a conformally flat metric. If dimM > 4, then C = 0 is the necessary and
sufficient condition for conformal flatness (Weyl-Schouten). If dim M = 3, the
Weyl tensor vanishes identically; see problem 7.2. If dimM = 2, M is always
conformally flat; see the next example.

Example 7.9. Any two-dimensional Riemannian manifold (M, g) is conformally
flat. Let (x, y) be the original local coordinates with which the metric takes the
form

ds? = gyy dx? 4 2g,y dx dy + gyy dy?. (7.116)



Let g = gxx8yy — g)%y and write (7.116) as

8xy + f
N

XX gxx

ds? = (@dx Sy ~ 1V dy>.

) (Vo an 4 S8

According to the theory of differential equations, there exists an integrating factor
A(x,y) = A1(x, y) + ir2(x, y) such that

8xy T14/8 ) .
A VEgxxdx + ———dy | =du+idv (7.117a)
< H v/ 8xx
8xy — /8 ) .
&y dx + ————dy ) =du —idv. (7.117b)
< » v/ 8xx

Then ds? = (du? + dv?)/|A|? and by setting 1|72 = e2°, we have the desired
coordinate system. The coordinates (u, v) are called the isothermal coordinates.
[Remark: If the curve u = a constant is regarded as an isothermal curve, v = a
constant corresponds to the line of heat flow.]

For example, let ds? = d62 +sin”  d¢? be the standard metric of $2. Noting

that

d 0 1
— logftan = | = —
do 2 sin 6
we find that f : (0, ¢) — (u, v) defined by u = log | tan %0| and v = ¢ yields a

conformally flat metric. In fact,

do?
ds? = sin?6 ( +d¢ ) = sin? 0(du? + dv?).
sin? 6

If (M, g) is a Lorentz manifold, we have integrating factors A(x, y) and
u(x,y) such that

A <\/gxxdx+ Byt V8 V_gdy) = du + dv (7.118a)
8xx
8xy =/ —8&
M| A/8xxdx + —————d ):du—dv. (7.118b)
( g Nl

In terms of the coordinates (u, v) the metric takes the form ds? =271 pﬁl (du2 —
dv?). The product Au is either positive definite or negative definite and we may
set 1/|Au| = €% to obtain the form

ds? = +e% (du? — dv?). (7.119)

Exercise 7.16. Let (M, g) be a two-dimensional Lorentz manifold with g =
—dr ® dr + t2dx ® dx (the Milne universe). Use the transformation |¢| — e” to
show that g is conformally flat. In fact, it is further simplified by (n, x) > (u =
e’ sinh x, v = e” cosh x). What is the resulting metric?



7.7 Killing vector fields and conformal Killing vector fields

7.7.1 Killing vector fields

Let (M, g) be a Riemannian manifold and X € X(M). If a displacement X, &
being infinitesimal, generates an isometry, the vector field X is called a Killing
vector field. The coordinates x* of a point p € M change to x* + ¢ X*(p) under
this displacement, see (5.42). If f : x* > x* 4+ ¢ X" is an isometry, it satisfies
(7.96b),
(X 4 eX) d(x* + eX)
axk axV

After a simple calculation, we find that g,, and X* satisfy the Killing equation

ga(x +eX) = guv(x).

x* O guv + 0 X" giev + 3uXAgW\ =0. (7.120a)
From the definition of the Lie derivative, this is written in a compact form as
(Lxgu =0. (7.120b)

Let ¢, : M — M be a one-parameter group of transformations which generates
the Killing vector field X. Equation (7.120b) then shows that the local geometry
does not change as we move along ¢;. In this sense, the Killing vector fields
represent the direction of the symmetry of a manifold.

A set of Killing vector fields are defined to be dependent if one of them
is expressed as a linear combination of others with constant coefficients. Thus,
there may be more Killing vector fields than the dimension of the manifold. [The
number of independent symmetries has no direct connection with dim M. The
maximum number, however, has; see example 7.10.]

Exercise 7.17. Let V be the Levi-Civita connection. Show that the Killing
equation is written as

(VuX)y 4+ (Vo X)) = 9, X, 4 00X, — 2T, X5 = 0. (7.121)

Exercise 7.18. Find three Killing vector fields of (R?,8). Show that two of
them correspond to translations while the third corresponds to a rotation; cf next
example.

Example 7.10. Let us work out the Killing vector fields of the Minkowski
spacetime (R“, n), for which all the Levi-Civita connection coefficients vanish.
The Killing equation becomes

Xy +0d,X, =0. (7.122)
It is easy to see that X, is, at most, of the first order in x. The constant solutions

Xp =8 (0<i<3) (7.123a)



correspond to spacetime translations. Next, let X, = a,,x", a,, being constant.
Equation (7.122) implies that a,,, is anti-symmetric with respect to . <> v. Since

(g) = 6, there are six independent solutions of this form, three of which

XGo=0  X¢m==¢jmx" (1= j,mmn<3) (7.123b)
correspond to spatial rotations about the x/-axis, while the others
Xwo=x"  Xgm=—8mx® (1 <k,m<3) (7.123¢)

correspond to Lorentz boosts along the x¥-axis.

In m-dimensional Minkowski spacetime (m > 2), there are m(m + 1)/2
Killing vector fields, m of which generate translations, (m — 1), boosts and
(m — 1)(m — 2)/2, space rotations. Those spaces (or spacetimes) which admit
m(m + 1)/2 Killing vector fields are called maximally symmetric spaces.

Let X and Y be two Killing vector fields. We easily verify that

(i) alinear combinationaX + bY (a, b € R) is a Killing vector field; and
(i) the Lie bracket [X, Y] is a Killing vector field.

(i) is obvious from the linearity of the covariant derivative. To prove (ii), we use
(5.58). We have E[X,Y]g = ﬁxﬁyg - ,Cyﬁxg = 0, since ,ng = ,Cyg = 0.
Thus, all the Killing vector fields form a Lie algebra of the symmetric operations
on the manifold M; see the next example.

Example 7.11. Let g = d6 ® df + sin® 6 d¢ ® d¢ be the standard metric of S2.
The Killing equations (7.121) are:

09 Xo + 09 Xe =0 (7.124a)
0pXp + 09Xy +2sinf cosfXg =0 (7.124b)
09Xy + 0pXo —2cotf Xy = 0. (7.124¢)

It follows from (7.124a) that Xy is independent of 6: Xp(6,¢) = f(P).
Substituting this into (7.124b), we have

Xy = —F(¢)sinf cost + g(0) (7.125)

where F(¢) = f¢ f(¢) d¢p. Substitution of (7.125) into (7.124c¢) yields

2 .2 dg  df .
—F(¢)(cos” 0 — sin” ) + 0 + @ + 2 cotf(F(¢)sinb cosd — g(0)) = 0.

This equation may be separated into

dg _ 45
g~ 2eotfs®) = 3 F (o).



Since both sides must be separately constant (=C), we have

j—g —2cotfg(®) = C (7.126a)
4 4 F(¢) = —C (7.126b)
o ¢) = —C. :

Equation (7.126a) is solved if we multiply both sides by exp(— [ df 2cotd) =
sin~2 6 to make the LHS a total derivative,

1(8(9)>_ c
do \sin26)  sin6’

The solution is easily found to be

g(0) = (C1 — Ccoth)sin® 6.
Differentiating (7.126b) again, we find that f is harmonic,

Xo(¢) = f(¢) = Asing + Bcos¢
F(¢p) = —Acos¢p + Bsing — C.

Substituting these results into (7.125), we have

X(0,¢9) = — (—Acos¢ + Bsing — C)siné cosf + (C; — C cot) sin? 9
= (Acos¢ — Bsing)sinf cosf + C sin 6.

A general Killing vector is given by

9 9
X=X"—+x%—
30 3¢

d d
=A <sin¢a—9 +cos¢cot6‘£>

d 0 d
B — — i t0 — Ci—. 7.127
+ (COS¢89 sin ¢ co 8¢> + 18¢ ( )
The basis vectors
L ¢a+ t9'¢8 (7.1282)
= —cos¢p— + cotf sin¢p— .128a
* 90 EY)
L in ¢ 0 + cotf ¢ 9 (7.128b)
= sin¢p— + cotO cos p— .
Y 90 d¢
0
L. = — 7.128
z ¢ ( )

generate rotations round the x, y and z axes respectively.



These vectors generate the Lie algebra so(3). This reflects the fact that S?
is the homogeneous space SO(3)/SO(2) and the metric on S2 retains this SO@3)
symmetry (see example 5.18(a)). In general S = SO(n + 1)/SO(n) with the
usual metric has dimSO(n + 1) = n(n + 1)/2 Killing vectors and they form
the Lie algebra so(n + 1). The sphere S§” with the usual metric is a maximally
symmetric space. We may squash S" so that it has fewer symmetries. For
example, if S considered here is squashed along the z-axis it has a rotational
symmetry around the z-axis only and there exists one Killing vector field L, =

3/0¢.

7.7.2 Conformal Killing vector fields

Let (M, g) be a Riemannian manifold and let X € X(M). If an infinitesimal
displacement given by ¢ X generates a conformal transformation, the vector field
X is called a conformal Killing vector field (CKV). Under the displacement
x* — x* 4+ ¢ X*, this condition is written as

A(xXF + X)) d(x* + eX™)
dxH dxV

ger(x +eX) =¥ g, (x).

Noting that 0 « ¢, we set 0 = g /2, where € F(M). Then we find that g,
and X* satisfy

Lxgu = X :guw + 3 X" gev + 0 X g0 = Vg (7.129a)
Equation (7.129a) is easily solved for i to yield

v X8 gM 3 gy + 20, XM

m

(7.129b)

where m = dim M. We verify that

(i) a linear combination of CKVs is a CKV: (Lox+4sv8)uv = (@@ + b¥)guv
where a,b € R, Lx g,y = ¢guv and Ly guy = ¥&uv;

(ii) the Lie bracket [X, Y] of a CKV is again a CKV: Lix,yjg = (X[¥] —
YipDguv-

Example 7.12. Let x* be the coordinates of (R", §). The vector
D =xt— (7.130)

(dilatation vector) is a CKV. In fact,

Lp8uy = 3ux 8 + X80 = 28,10



7.8 Non-coordinate bases

7.8.1 Definitions

In the coordinate basis, T, M is spanned by {e, } = {9/0x"} and T;‘M by {dx*}.
If, moreover, M is endowed with a metric g, there may be an alternative choice.
Let us consider the linear combination,

ad
by = eyt — {e"} € GL(m, R) (7.131)
axH
where dete,”* > 0. In other words, {é,} is the frame of basis vectors which is
obtained by a GL(m, IR)-rotation of the basis {e,,} preserving the orientation. We
require that {¢,} be orthonormal with respect to g,

g(Cu,p) = ey’ eg” guv = bugp- (7.132a)

If the manifold is Lorentzian, §ug should be replaced by n,5. We easily reverse
(7.132a),
uv = ea,ueﬂuaaﬁ (7.132b)

where e”, is the inverse of e,*'; e 60" = 8,7, e et = §%g. [We have used
the same symbols for a matrix and its inverse. So long as the indices are written
explicitly it does not cause confusion.] Since a vector V is independent of the
basis chosen, we have V = Ve, = V¥, = V¥4 e,. It follows that

VI = V%t VY=,V (7.133)

Let us introduce the dual basis {é“} defined by (é“, ég) = 8%g. 6 is given
by
0% = e dxt. (7.134)

In terms of {é“}, the metric is
g = gudx" ®dx" = 8p0” ® 6°. (7.135)

The bases {€,} and {é“} are called the non-coordinate bases. We use «, A,
u, v, ...(a, B, v,§,...) to denote the coordinate (non-coordinate) basis. The
coefficients e,* are called the vierbeins if the space is four dimensional and
vielbeins if it is many dimensional. The non-coordinate basis has a non-vanishing
Lie bracket. If the {é,} are given by (7.131), they satisfy

(e, epllp = cap” (P)ey|p (7.136a)

where
cap? (p) = €’ v[ea"0ep” — eptdueq”1(p). (7.136b)



Example 7.13. The standard metric on S? is
g=d0®do +sin*0dp®dp =6' ® ' +6° ® 6> (7.137)
where §! = d6 and % = sin6 d¢. The ‘zweibeins’ are

eg=1 ely=0

(7.138)
29 =0 ez¢ = siné.
The non-vanishing components of caﬂ” are c122 = _C212 = —cotf.
Exercise 7.19. (a) Verify the identities,
8P = ghve® ef, g =8"Peytep". (7.139)

(b) Let y* be the Dirac matrices in Minkowski spacetime, which satisfy
{y®, yP} = 2n®f. Define the curved spacetime counterparts of the Dirac matrices
by y* = e, "*y“. Show that

{y", vy =2¢"". (7.140)

7.8.2 Cartan’s structure equations

In section 7.3 the curvature tensor R and the torsion tensor 7 have been defined
by
R(X,Y)Z =VxVyZ —VyVxZ - Vix v1Z
T(X,Y)=VxY —VyX —[X,Y].
Let {€,} be the non-coordinate basis and {é"‘} the dual basis. The vector fields
{éq} satisfy [éq, €g] = cap” €, . Define the connection coefficients with respect to

the basis {4} by
Vaés = Vs, 05 = IV upéy. (7.141)

Letéy = eqey,. Then (7.141) becomes eg” (duep” +ep T a)ey = I gpey Ve,
from which we find that

I'op =e" e (0uep” + eﬂ)‘F”MA) =e’ e Vyeg”. (7.142)
The components of 7 and R in this basis are given by
T%, = (6%, T(eg,¢,)) = (6%, Vgé, — Vyég — [6g,é)])
= Fa/gy — Fayﬁ — Cﬁya. (7.143)
Raﬁyg = (07, V;,Vgéﬂ — ngyéﬁ — V[éyyé“éﬁ)
= (0%, V) (T%spéc) — VsT*péc) — cys" Velp)
=¢,[[%sp] — es[T%, 8] + TspT% e — T g %50 — )5 T%p.
(7.144)



We define a matrix-valued one-form {w” g} called the connection one-form by
¥ =T%,50". (7.145)

Theorem 7.3. The connection one-form w”g satisfies Cartan’s structure
equations,

d6% + g A OP =T (7.146a)
do®s + 0%, Ao’ g = R% (7.146b)

where we have introduced the torsion two-form 7% = %T“ ﬂyéﬁ A 07 and the
curvature two-form R%4 = 1 R pys0” A 6°.

Proof. Let the LHS of (7.146a) act on the basis vectors ¢, and és,
d6* (2, 5) + [, 6, )(0%, &5) — (67, &) ) (@, é5)]

= {&,[(6%, &5)] — &s[(0%, &,)] — (0%, [&y, &51)} + (@5, &) — (0%, é5))

— _Cytsa + Fayé _ Fa(sy — Ta]/(s
where use has been made of (5.70). The RHS acting on é,, and 5 yields
3Tpel (07, 2,)(0°, &) — (6°,8,)(67 . 25)] = Tys

which verifies (7.146a).
Equation (7.146b) may be proved similarly (exercise). O

Taking the exterior derivative of (7.146a) and (7.146b), we have the Bianchi
identities

dT* + g ATP = R%g A 6P (7.147a)
dR%g + @, AR g — R*, A’ =0. (7.147b)

These are the non-coordinate basis versions of (7.81a) and (7.81b).

7.8.3 The local frame

In an m-dimensional Riemannian manifold, the metric tensor g, has m(m+1)/2
degrees of freedom while the vielbein e, has m? degrees of freedom. There are
many non-coordinate bases which yield the same metric, g, each of which is
related to the other by the local orthogonal rotation,

0% — 0" (p) = A%s(P)E’ (p) (7.148)
at each point p. The vielbein transforms as

e (p) —> €“u(p) = A%s(p)eP L (). (7.149)



Unlike «, A, u, v, ... which transform under coordinate changes, the indices
a, B,y, ... transform under the local orthogonal rotation and are inert under
coordinate changes. Since the metric tensor is invariant under the rotation, A%g
satisfies

A%g8usA®, =8p,  if M is Riemannian (7.150a)
A%gnesA®, =ng,  if M is Lorentzian. (7.150b)

This implies that {A%g(p)} € SO(m) if M is Riemannian with dim M = m and
{A%g(p)} € SO(m — 1, 1) if M is Lorentzian. The dimension of these Lie groups
ism(m — 1)/2 = m*> — m(m + 1)/2, that is the difference between the degrees
of freedom of e, and g,,,. Under the local frame rotation A%g(p), the indices
o, B,v,6,... are rotated while «, A, u, v, ... (world indices) are not affected.
Under the rotation (7.148), the basis vector transforms as

by —> &, =eg(ATNP,. (7.151)

Let r = t",e, ® dx" be a tensor field of type (1, 1). In the bases {é,}
and {é“}, we have r = t“ﬁéa ® é/s, where t%g = e%*,eg"t,. If the new
frames {e,,} = {éﬁ(A_l)ﬁa} and {6%} = {A“ﬁéﬁ} are employed, the tensor ¢
is expressed as

t=1"gél, ®0" =1"ge, (A7), @ AP50°
from which we find the transformation rule,
1% —> 1" = A%, 17 s(A7)? .
To summarize, the upper (lower) non-coordinate indices are rotated by A (A™1).
The change from the coordinate basis to the non-coordinate basis is carried out
by multiplications of vielbeins.

From these facts we find the transformation rule of the connection one-form
w®g. The torsion two-form transforms as

T% — T = d"™ + g A O"F = A"p[d6F + 0P, AO7].
Substituting 6 = A” ﬁéﬁ into this equation, we find that
WgAP, = A%0®, —dAY,.
Multiplying both sides by A~! from the right, we have
W% =A% 0" s(A7) 5+ A%, (dAT g (7.152)

where use has been made of the identity dA A1+ AdA~! = 0, which is derived
from AA~! = 1,,.
The curvature two-form transforms homogeneously as

R%g — R = A%, R" (A7) (7.153)

under a local frame rotation A.



7.8.4 The Levi-Civita connection in a non-coordinate basis

Let V be a Levi-Civita connection on (M, g), which is characterized by the metric
compatibility Vxg = 0, and the vanishing torsion FAW — FAW = 0. Itis
interesting to see how these conditions are expressed in the present approach.
The components r’ wv and I'* g, are related to each other by (7.142). Let (M, g)
be a Riemannian manifold (if (M, g) is Lorentzian, we simply replace dqp all
below by 74p). If we define the Ricci rotation coefficient 'y, by 8,515, the
metric compatibility is expressed as

Lopy = 8a3e8;\e,3“VMey)‘ = —5a5eyke,3“vﬂe%
= —8y5¢°ep"Vyey" = —Typq (7.154)
where V, ¢ = 0 has been used. In terms of the connection one-form wyg =

Sayw? g, this becomes
Wef = —Wpa. (7.155)

The torsion-free condition is
dé% + w%g A 6P = 0. (7.156)

The reader should verify that (7.156) implies the symmetry of the connection
coefficient I'*,, = I'*,, in the coordinate basis. The condition (7.156) enables
us to compute the cog? of the basis {é}. Let us look at the commutation relation

Cap” ey = 6w, 5] = Valp — Vpéq (7.157)

where the final equality follows from the torsion-free condition. From (7.141),
we find that
cap?’ =T — T gq. (7.158)

Substituting (7.158) into (7.144) we may express the Riemaun curvature tensor in
terms of I' only,

R%gys = ¢, [T%sp] — es[T% gl + T¥spT%,c — T, 8T%;
— (Ty5 = T%5, )T %p. (7.159)

Example 7.14. Let us take the sphere S? of example 7.13. The components of
e”,, are

elo=1 e'y=0 =0 e =sinb. (7.160)

We first note that the metric condition implies wj; = w2 = 0, hence ol =

@’y = 0. Other connection one-forms are obtained from the torsion-free
conditions,

d(do) + w's A (sin@dp) =0 (7.161a)

d(sinf d¢) + w?1 A d6 = 0. (7.161b)



From the second equation of (7.161), we easily see that @?; = cos#d¢ and the

metric condition w1y = —wy| implies w'y = —cos 0d¢. The Riemann tensor is
also found from Cartan’s structure equation,

w2 Aoty = IR 150" A GP (7.162a)

do', = SR 2,p0% A 6P (7.162b)

dw?; = LR? 130" A 6P (7.162¢)

w1 Ay = SR?*2450% AP (7.162d)

The non-vanishing components are R0 = —Rl% = sinf, R%jp =

—R?|5; = —sin®. The transition to the coordinate basis expression is carried

out with the help of e,* and e*,,. For example,

1 Rl — 1
26 77 sing’
Example 7.15. The Schwarzschild metric is given by

2M
ds? = — <1 ——) dr* +

r

B

R’ 409 = ea’ePye’ 9¢’ 4 R gy =

2 20902 | «inl 2
71 o dr< 4+ r<(d8“ + sin“ 0 d¢~)
,

=-0"®0°+0'®0' +02®0>+0°x6° (7.163)
where

o 2M\'/? . VANE
=(1-"—) d o'=(1-"— dr

r r (7.164)
02=rdd 6% =rsin6de.

The parameters run over the range 0 < 2M < r,0 <6 <mand0 < ¢ < 2m.

The metric condition yields a)oo = = wH = a)33 = 0 and the torsion-free
conditions are:

dl(1 —2M /) 2di]+ % A 6P =0 (7.165a)

dl(1 —2M/r) dri+ w'g A 0P =0 (7.165b)

d(rdo) +w’s A0P =0 (7.165c¢)

d(rsin@ de) +w’s AGP =0. (7.165d)

The non-vanishing components of the connection one-forms are

M 2M\!?
a)01 =a)10=r—2dt a)zl =—a)12= (1_T> do

1/2
a)31 = —0)13 = <1 — —) sin 6 d¢ a)32 = —a)23 = cos 6 do.
r
(7.166)



The curvature two-forms are found from the structure equations to be

OM Ay - OM Ay A
RY, =R10=—390/\91 R02=R20=——390/\92
r r

M.y A M~ 4
R03=R30=——390/\93 R'; = —R? :-—39‘/\92 (7.167)

r r

M~ IM ~,  ~
Rly=-R\1=-50"A0° R:3=-RH="50"10

r r

7.9 Differential forms and Hodge theory

7.9.1 Invariant volume elements

We have defined the volume element as a non-vanishing m-form on an m-
dimensional orientable manifold M in section 5.5. If M is endowed with a
metric g, there exists a natural volume element which is invariant under coordinate
transformation. Let us define the invariant volume element by

Qu =+lgldx' Adx® A A dx™ (7.168)

where g = detg,, and x* are the coordinates of the chart (U, ¢). The m-form
Q) is, indeed, invariant under a coordinate change. Let yA be the coordinates of
another chart (V, ¥) with U NV # (. The invariant volume element is

ax* oxVY 1 m
det nguv dy /\/\dy

in terms of the y-coordinates. Noting that dy* = (dy*/dx") dx*, this becomes

dxH ay*
det( al )‘\/Lgldet(a—yv)dxl/\dxz/\.../\dxm
X

ay¥
=+/|gldx! Adx® A .. Adx™.

If x* and y* define the same orientation, det(dx*/dy*) is strictly positive on
U NV and Q}y is invariant under the coordinate change.

Exercise 7.20. Let {é“} = {e%,dx"} be the non-coordinate basis. Show that the
invariant volume element is written as

Qu=leldx' Adx>A... A" =0 AP A ... AO" (7.169)
where e = dete” ;.

Now that we have defined the invariant volume element, it is natural to define
an integration of f € 3 (M) over M by

/fQME/fJ@dxldxz...dxm. (7.170)
M M



Obviously (7.170) is invariant under a change of coordinates. In physics, there
are many objects which are expressed as volume integrals of this type, see
section 7.10.

7.9.2 Duality transformations (Hodge star)

As noted in section 5.4, Q" (M) is isomorphic to Q™" (M) on an m-dimensional
manifold M. If M is endowed with a metric g, we can define a natural
isomorphism between them called the Hodge * operation. Define the totally
anti-symmetric tensor € by

+1 if (w2 ... Wm) is an even permutation of (12...m)

Cprpgem = 1 —1 if (ip2 ... 1) is an odd permutation of (12...m)
0 otherwise.
(7.171a)
Note that
g2t gmvlglizv2 o gﬂmvmé‘vlvz...vm — gilguluz---ﬂ-m' (7.171b)

The Hodge * is a linear map * : Q" (M) — Q™" (M) whose action on a basis
vector of Q" (M) is defined by

* (dx™ Adx"2 AL Adx?)

_ sl gkt

= g oy XA LAY (7.172)
m—r).

r+1

It should be noted that %1 is the invariant volume element:

Vigl

*1 = o b A A LA dxt = lgldxt AL A ™
For |
w = r_!wmﬂz---ur dx™ Adx*2 AL AdX € QT(M)
we have
VI8l
= mwmm.-.uﬁmm"'mvr+|.-.vm dx" AL Adx T (7.173)
If we take the non-coordinate basis {#*} = {e”, dx*}, the % operation
becomes
~ ~ 1 ~ ~
*@ AL AO%) = ———— 1 L NN L 7.174
( ) e r)!E BritoBm ( )
where
+1 if (o1 ...0y,) is an even permutation of (12...m)
Eayam = 3y —1 if (a1 ...04) is an odd permutation of (12...m)  (7.175)

0 otherwise



and the indices are raised by 8¢ or n#.

Theorem 7.4.
xkw=(—1)"""gy. (7.176a)

if (M, g) is Riemannian and
xxw= (=)=, (7.176b)

if Lorentzian.

Proof. It is simpler to prove (7.176a) with a non-coordinate basis. Let

1 ~ N
w= —'a)a]_._are‘”‘l A NOYT,
r.

Repeated applications of * on w yield

1 1

KO = — Q.. oL
r

I mg Brat-Bm

1 ~ ~
x —'eﬂf“"'ﬁmm,,,y,@)’l AL AOY
r

(_l)r(mfr)
= Dcy...otp Eay.c.tr Brgt oo B EVI-Vr Bra1 B
By
x OV AL AOY
(_l)r(mfr)

= Twa]..,a,éal VANVAN éar = (_1)r(m7r)w

TRl m = r)!
«,

where use has been made of the identity
Z 80[]---Dlr/3r+l---ﬂmsyl---VrﬂH—]---,Bméyl VANPIRAAN éV’ =rl(m— r)!éa' VANPRAVAN é‘a,.
By

The proof of (7.176b) is left as an exercise to the reader (use detn = —1). O

Thus, we find that (—1)""*=") % % (or (—1)!*7"=") % %) is an identity map
on Q" (M). We define the inverse of * by

L= (=1)'") (M, g) is Riemannian (7.177a)
1= (=!I (M, g) is Lorentzian. (7.177b)

7.9.3 Inner products of r-forms

Take
1

= _ 11 I
W= r'wm,,,mdx A A dxHr

= s dx*U AL A dxt



The exterior product w A %7 is an m-form:

1 V18l i

W N *x1 = me,_.u,ﬁv]...urm T ool
x dx*U AL A AP Adx P AL Adx e
1 1
— Vi &
= r! Zwm...uﬂ? r'(m _ r)!SV]---Ver+I---Mm
v
1 m
X Epppir itV 181AXT AL AdX
1
1
= ;a)m_nurn‘“ Pr/lgldx’ Ao Adx™. (7.178)

This expression shows that the product is symmetric:
WA *N =1 A *o. (7.179)

Let {é“} be the non-coordinate basis and

w= —|a)a1,.,ar9“‘ A NG
r

1 A .
"= _lnal...argal AL AOY,
r!

Equation (7.178) is rewritten as

1 . .
WA x) = ;wal,,.a,n“'---“rel AL AO™ (7.180)

Since o A %8 is an m-form, its integral over M is well defined. Define the
inner product (w, n) of two r-forms by

(w,n) = /a)/\*n

1
— Mwm...u,n“““a/|g|dx‘ o.dx™. (7.181)

r!

Since w A *11 = n A *w, the inner product is symmetric,
(@,n) =, w). (7.182)
If (M, g) is Riemannian, the inner product is positive definite,
(a, ) > 0. (7.183)

where the equality holds only when @ = 0. This is not true if (M, g) is Lorentzian.



7.9.4 Adjoints of exterior derivatives

Definition 7.6. Let d : Q"~1(M) — Q' (M) be the exterior derivative operator.
The adjoint exterior derivative operator df: Q" (M) — Q"1 (M) is defined by

d" = (=)™ dx (7.184a)
if (M, g) is Riemannian and
d' = (=)™ % dx (7.184b)
if Lorentzian, where m = dim M.
In summary, we have the following diagram (for a Riemannian manifold),

(-1 )mr+m+ld

Qm—=r (M) Qm7r+] (M)
T l (7.185)
at

QM — s QY m.
The operator d' is nilpotent since d is: d? = sd # xd% oc %d%s = 0.

Theorem 7.5. Let (M, g) be a compact orientable manifold without a boundary
anda € Q"(M), B € Q"1 (M). Then

d,a) = (B,d"a). (7.186)

Proof. Since both dB A xa and B A «d'a are m-forms, their integrals over M are
well defined. Let d act on 8 A *«,

d(B Axa) =dB Axa — (—1)" B Adx*a.

Suppose (M, g) is Riemannian. Noting that d % « is an (m — r + 1)-form and
inserting the identity map (— 1) TDIn=0n=r+Dl 4y — (—pymr+m+r+l 4 4 in
front of d * « in the second term, we have

d(B A #a) = dB A ko — (=)™ B A w(xd % ).

Integrating this equation over M, we have

/d,B/\*ot—/ BA#[(=D)" M wd ko] = / d(B A *a)
M M M

= BAxax=0
oM
where the last equality follows by assumption. This shows that (df, @) =
(B,d"a). The reader should check how the proof is modified when (M, g) is
Lorentzian. a



7.9.5 The Laplacian, harmonic forms and the Hodge decomposition
theorem

Definition 7.7. The Laplacian A : Q" (M) — Q" (M) is defined by
A=d+d"H?=dd" +d'd. (7.187)

As an example, we obtain the explicit form of A : QO(M) — QO(M). Let
f € F(M). Since d' f = 0, we have

Af =d'df = —xdx (9, fdx™)

Vgl
= — xd (maufgﬂkskvz...vm dxv2 VANPISAVAN dem
1
= - *m8”[ 18188y f1€3y.. vy dx” A dX2 AL A dxm
= —xd[V]glg" 0, flg  dx AL A dx™
= L VTglg ™9 f] (7.188)
= ) . )
Vgl a

Exercise 7.21. Take a one-form w = w, dx* in the Euclidean space (R", §).
Show that
w=— x".
o dxHIxH

Example 7.16. In example 5.11, it was shown that half of the Maxwell equations
are reduced to the identity, dF = d?A = 0, where A = A w dx# is the vector
potential one-form and F' = dA is the electromagnetic two-form. Let p be the
electric charge density and j the electric current density and form the current one-
form j = ny,j"dx* = —pdr + j - dX. Then the remaining Maxwell equations
become

d'F =dfdA = j. (7.189a)

The component expression is

oE .
V-E=p VXB_EZJ' (7.189b)
The vector potential A has a large number of degrees of freedom and we can
always choose an A which satisfies the Lorentz condition d'A = 0. Then
(7.189a) becomes (dd" + dTd)A = AA = .

Let (M, g) be a compact Riemannian manifold. The Laplacian A is a
positive operator on M in the sense that

(0, Aw) = (o, (dTd + ddHw) = (do, dw) + (@', d w) > 0 (7.190)



where (7.183) has been used. An r-form w is called harmonic if Aw = 0 and
closed (coclosed) if do = 0 (dfw = 0). The following theorem is a direct
consequence of (7.190).

Theorem 7.6. An r-form w is harmonic if and only if w is closed and coclosed.
An r-form w is called coexact if it is written globally as
wr =d By (7.191)

where B,41 € QT (M) [cf a form w, € Q' (M) is exact if o, = da,_p,
ar_1 € Q"1 (M)]. We denote the set of harmonic r-forms on M by Harm” (M)
and the set of exact r-forms (coexact r-forms) by dQ"~'(M) (d'Q"+1(M)).
[Note: The set of exact r-forms has been denoted by B” (M) so far.]

Theorem 7.7. (Hodge decomposition theorem) Let (M,g) be a compact
orientable Riemannian manifold without a boundary. Then Q" (M) is uniquely
decomposed as

Q'(M) =dQ" "' (M) @ d"Q (M) @ Harm” (M). (7.192a)
[That is, any r-form w, is written globally as
wr =da,_1 +d" Bt + v, (7.192b)
where o, _1 € QY (M), Bry1 € QTI(M) and y, € Harm" (M).]

If r = 0, we define Q' (M) = {0}. The proof of this theorem requires the
results of the following two easy exercises.

Exercise 7.22. Let (M, g) be as given in theorem 7.7. Show that

(a1, d"Bry1) = (dotr—1, ) = (" Bry1, 1) = 0. (7.193)
Show also that if w, € Q" (M) satisfies
a1, @) = (d Bry1, 0) = (r, 0r) =0 (7.194)

for any do,_; € dQ" (M), d'B,1 € dTQ (M) and y, € Harm’ (M), then
w, = 0.

Exercise 7.23. Suppose w, € Q' (M) is written as w, = A, for some i, €
Q"(M). Show that (w,,y,) = 0 for any y, € Harm"(M). The proof of the
converse ‘if w, is orthogonal to any harmonic r-form, then w;, is written as Ay,
for some ¥, € Q" (M)’ is highly technical and we just state that the operator A~
(the Green function) is well defined in the present problem and i, is given by
A_la)r.

Let P : Q"(M) — Harm’" (M) be a projection operator to the space of
harmonic r-forms. Take an element w, € Q"(M). Since w, — Pw, is orthogonal
to Harm” (M), it can be written as A, for some ¥, € Q" (M). Then we have

wr =dd"y,) +d'(dy,) + Po,. (7.195)

This realizes the decomposition of theorem 7.7.



7.9.6 Harmonic forms and de Rham cohomology groups

We show that any element of the de Rham cohomology group has a unique
harmonic representative. Let [w,] € H"(M). We first show that w, €
Harm’ (M) @ dQ"~'(M). According to (7.192b), w, is decomposed as w, =
Vr +day—1 + dT,BrH. Since dw, = 0, we have

0 = (dwy, Br41) = (dd" Br41, Brs1) = (' Brg1, dTBrt1).

This is satisfied if and only if d*,BrJr] = 0. Hence, w; = y»+da,—1. From (7.195)
we have
wr = Po, +dd'y) = Po, +dd"A" w,. (7.196a)

y» = Pw, is the harmonic representative of [w,]. Let @, be another representative
of [wy]: & —w, =dn,_1, -1 € Q" L(M). Corresponding to (7.196a), we have

oy = Poy +dd"'A7S,) = Pw, +d(..) (7.196b)

where the last equality follows since dn,— is orthogonal to Harm” (M) and hence
its projection to Harm” (M) vanishes. (7.196a) and (7.196b) show that [w,] has a
unique harmonic representative Pw, .

This proof shows that H" (M) C Harm" (M). Now we prove that H" (M) D
Harm” (M). Since dy, = O for any y, € Harm" (M), we find that Z" (M) D
Harm’ (M). We also have B" (M) N Harm’ (M) = ¢ since B" (M) = dQ2"~1(M),
see (7.192a). Thus, every element of Harm" (M) is a non-trivial member of
H” (M) and we find that Harm" (M) is a vector subspace of H" (M) and hence
Harm" (M) C H"(M). We have proved:

Theorem 7.8. (Hodge’s theorem) On a compact orientable Riemannian manifold
(M, g), H" (M) is isomorphic to Harm" (M):

H" (M) = Harm" (M). (7.197)

The isomorphism is provided by identifying [w] € H"(M) with Pw €
Harm” (M).

In particular, we have
dimHarm" (M) =dim H" (M) = b" (7.198)
b" being the Betti number. The Euler characteristic is given by
x (M) = Z(—l)’b’ = Z(—l)’ dim Harm” (M) (7.199)

see theorem 3.7. We note that the LHS is a topological quantity while the RHS is
an analytical quantity given by the eigenvalue problem of the Laplacian A.



7.10 Aspects of general relativity

7.10.1 Introduction to general relativity

The general theory of relativity is one of the most beautiful and successful
theories in classical physics. There is no disagreement between the theory
and astrophysical and cosmological observations such as solar system tests,
gravitational radiation from pulsars, gravitational red shifts, the recently
discovered gravitational lens effect and so on. Readers not very familiar with
general relativity may consult Berry (1989) or the primer by Price (1982).

Einstein proposed the following principles to construct the general theory of
relativity

(I) Principle of General Relativity: All laws in physics take the same forms in
any coordinate system.

(IT) Principle of Equivalence: There exists a coordinate system in which the
effect of a gravitational field vanishes locally. (An observer in a freely falling
lift does not feel gravity until it crashes.)

Any theory of gravity must reduce to Newton’s theory of gravity in the weak-
field limit. In Newton’s theory, the gravitational potential ® satisfies the Poisson
equation

AD =4rnGp (7.200)

where p is the mass density. The Einstein equation generalizes this classical result
so that the principle of general relativity is satisfied.

In general relativity, the gravitational potential is replaced by the components
of the metric tensor. Then, instead of the LHS of (7.200), we have the Einstein
tensor defined by

Guv = Ricpy — 58uR. (7.201)

Similarly, the mass density is replaced by a more general object called the
energy—momentum tensor 7,,. The Einstein equation takes a very similar
form to (7.200):

Guy =8nGTyy. (7.202)

The constant 87 G is chosen so that (7.202) reproduces the Newtonian result in
the weak-field limit. The tensor 7, is obtained from the matter action by the
variational principle. From Noether’s theorem, 7},, must satisfy a conservation
equation of the form V, T#" = 0. A similar conservation law holds for G, (but
not for Ric,,). We shall see in the next subsection that the LHS of (7.202) is also
obtained from the variational principle.

Exercise 7.24. Consider a metric

2P o
800=—1—c—2 goi =0 8ij = 0ij 1<i,j<3



and T, given by Tpy = pcz, Toi = T;j = 0 which corresponds to dust at
rest. Show that (7.202) reduces to the Poisson equation in the weak-field limit
(@/c* < 1.

7.10.2 Einstein—Hilbert action

This and the next example are taken from Weinberg (1972). The general theory
of relativity describes the dynamics of the geometry, that is, the dynamics of
guv- What is the action principle for this theory? As usual, we require that the
relevant action should be a scalar. Moreover, it should contain the derivatives of
guv: | +/1g]d"x cannot describe the dynamics of the metric. The simplest guess
will be Sgn oc [ R4/Tgld"x. Since R is a scalar and /Tg[dx!dx?...dx™ is
the invariant volume element, Sgy is a scalar. In the following, we show that
Sen indeed yields the Einstein equation under the variation with respect to the
metric. Our connection is restricted to the Levi-Civita connection. We first prove
a technical proposition.

Proposition 7.2. Let (M, g) be a (pseudo-)Riemannian manifold. Under the
variation g,y — guv + 88uv, &Y, g and Ricy,, change as

(a) 8¢ = —g"“ g 5g (7.203)

(b) g = g8 6guv.  8y/Igl = 3/1glg" 8gu (7.204)
(¢) Ricyy = V8T, — V,8T% ¢, (Palatini identity). (7.205)

Proof. (a) From gg*" = 8", it follows that

0=05(gc18"") = 888" + gendg™.

Multiplying by g€ we find that §g"¥ = —gH< g*V8g,;.

(b) We first note the matrix identity In(det g,,) = tr(Ing,,). This can be
proved by diagonalizing g,,. Under the variation 8g,,,, the LHS becomes 5g g7 !
while the RHS yields g"" - 8g,,, hence 8g = gg"V8g.v. The rest of (7.204) is
easily derived from this.

(c)LetI" and T be two connections. The difference T" = T' — I" is a tensor
of type (1, 2), see exercise 7.5. In the present case, we take T to be a connection
associated with g + §g and I with g. We will work in the normal coordinate
system in which I' = 0 (of course dI" # 0 in general); see section 7.4. We find

SRic,y = 08T ) — 8,07 = V8T — V% 0.

[The reader should verify the second equality.] Since both sides are tensors, this
is valid in any coordinate system. d

We define the Einstein—Hilbert action by

1

4
= | Ry/=gd*x. 2
Sex l(mG/R g d*x (7.206)



The constant factor 1/167 G is introduced to reproduce the Newtonian limit when
matter is added; see (7.214). We prove that § Sy = 0 leads to the vacuum Einstein
equation. Under the variation g — g + 8¢ such that §g — 0 as |x| — O, the
integrand changes as

8(R/—g) = 8(g"" Ricyy/—g)
= 8g" Ricyu/—8 + 8" SRicwv/—g + RE(V—28)
= — g" g"8gRicy/—8
+ 8" (ViedT* = VT )/ =8 + 3R/ 88" 880

We note that the second term is a total divergence,

Vk(g'uvarkv,u\/ —-8) — Vu(gw5rkmv -g)
= af((glw(srkp.vv —g) — 81}(8“”51—"{1(#\/ -g)

and hence does not contribute to the variation. From the remaining terms we have

1 , 1 s
BSm = T (—ch/” + 5Rg’”) 8gm/—g d*x. (7.207)

If we require that 6 Sgy = 0 under any variation 6g, we obtain the vacuum Einstein
equation,
Guv = Ricyy — 38R =0 (7.208)

where the symmetric tensor G is called the Einstein tensor.
So far we have considered the gravitational field only. Suppose there exists
matter described by an action

Sm = / L(p)/—gd*x (7.209)

where £(¢) is the Lagrangian density of the theory. Typical examples are the real
scalar field and the Maxwell fields,

Ss=-—1 /[guvamav(p +m?p?1/—gd*x (7.210a)
Sep = — 1 / FunFP' g d'x (7.210b)

where F,, = 0,A, — 0,A, = V, A, — V, Ay, If the matter action changes by
3SM under §g, the energy—-momentum tensor 7V is defined by

§SM = %/T“”Sgﬂm/—g d*x. (7.211)



Since g, is symmetric, TV is also taken to be so. For example, 7),, of a real
scalar field is given by

8
T =2 g S
= 0,00 P — 220(8" D pDrp + m? ). (7.212)

Suppose we have a gravitational field coupled with a matter field whose
action is Syr. Now our action principle is

3(Sgn + Sm) =0 (7.213)
under g — g + ég. From (7.207) and (7.211), we obtain the Einstein equation
Gy =8nGTy,. (7.214)

Exercise 7.25. We may add an extra scalar to the scalar curvature without spoiling
the invariance of the action. For example, we can add a constant called the
cosmological constant A,

~ 1

Sen = _/ (R + A)/—g d*x. (7.215)
167G M

Write down the vacuum Einstein equation. Other possible scalars may be such
terms as RZ, Ric* Ricyy or Ry R<MY,

7.10.3 Spinors in curved spacetime
For concreteness, we consider a Dirac spinor ¥ in a four-dimensional Lorentz
manifold M. The vierbein e, defined by

Suv = €“ e unup (7.216)

defines an orthonormal frame {é“ = e%,dx"} at each point p € M. As noted
before, «, B, y, ... are the local orthonormal indices while u, v, A, ... are the
coordinate indices. With respect to this frame, the Dirac matrices y* = e*,y*
satisfy {y%, y#} = 2n*f. Under a local Lorentz transformation A® g(p), the
Dirac spinor transforms as

V(p) = p(MY(p)  V(p) = F(ppAd)~! (1.217)

where ¥ = ¥ 7y% and p(A) is the spinor representation of A. To construct an
invariant action, we seek a covariant derivative Vyy which is a local Lorentz
vector and transforms as a spinor,

Vol — p(A) AP Vpy. (7.218)



If we find such a V1, an invariant Lagrangian may be given by
L=y (iy*Vo+m)y (7.219)
m being the mass of 1. We note that e, "9, v transforms under A (p) as
ea" 0V — AoPes oMY = Ad"es"[p(A)du Y + dup (AW (7.220)
Suppose V, is of the form
Vo = e [0, + 2,19 (7.221)
From (7.218) and (7.220), we find that 2, satisfies
Q= p(M)Qup (M) = dup(M)p(A) L (7.222)

To find the explicit form of €2, we consider an infinitesimal local Lorentz
transformation A4?( p) = 8o + eaP( p). The Dirac spinor transforms as

¥ — exp[3ie®’ Saply = [1 + 1ie®P Soply (7.223)

where Xyp = %i [ya, yﬂ] is the spinor representation of the generators of the
Lorentz transformation. Xyg satisfies the o(1, 3) Lie algebra

i[Zag, Zysl = 1yaZas — Nya Lgs + Nsg Lya — Nsa Dy B- (7.224)
Under the same Lorentz transformation, €2, transforms as
Q= (14 11 Sep)Q, (1 — Lie?° %, 5) — 18,6 Top(1 — Lie?° 2, 5)
= Qu + 5ie [Zap, Q] — 310,6%F op. (7.225)

We recall that the connection one-form w®g transforms under an infinitesimal
Lorentz transformation as (see (7.152))

o = 0%g +e% 0" — 0% e g —de% (7.226a)
or in components,
Faﬂﬂ — l—‘awg + 8‘1},1—‘)/1“3 — l—‘am,eyﬁ — aue“ﬁ. (7.226b)
From (7.224), (7.225) and (7.226b), we find that the combination
Q= 1M, P Sap = Lie?,V,eP S yp (7.227)
satisfies the transformation property (7.222). In fact,
3ir®, P oep — L@, P 46,17 P — T, 67 — 9,6%P) Sap
= 30, P Sap + i, T7 P Sop — Ty e"P Zap)
- %iaﬂg“ﬁ Yap
= 5ir%, P sup + Lie®[Sqp, 107 0251 — 1i0,6% Sop.



We finally obtain the Lagrangian which is a scalar both under coordinate
changes and local Lorentz rotations,

L= yliy*e @ + 3, Spy) +mly (7.228)

and the scalar action
Sy = /M d*x /=g liy®es (3, + 1P, Tp,) + mly. (7.229a)
If ¢ is coupled to the gauge field A, the action is given by
S = /M d'x /=g Pliyea” 8 + Au + 3i07,7 Bgy) +mly. (7.229b)

It is interesting to note that the spin connection term vanishes if dim M = 2.
To see this, we rewrite (7.229a) as

Sy =3 /M x /=gPliy* 3 + 307, (iy#, Tpy ) +mly (72299

where y* = y%e," and we have added total derivatives to the Lagrangian to
make it Hermitian. The non-vanishing components of X are X1  [y0, y1] « v3,
where y3 is the two-dimensional analogue of y5. Since {y*, y3} = 0, the spin
connection term drops out from Sy .

7.11 Bosonic string theory

Quantum field theory (QFT) is occasionally called particle physics since it deals
with the dynamics of particles. As far as high-energy processes whose typical
energy is much smaller than the Planck energy (~10'° GeV) are concerned there
is no objection to this viewpoint. However, once we try to quantize gravity in
this framework, there exists an impenetrable barrier. We do not know how to
renormalize the ultraviolet divergences that are ubiquitous in the QFT of gravity.
In the early 1980s, physicists tried to construct a consistent theory of gravity
by introducing supersymmetry. In spite of a partial improvement, the resulting
supergravity could not tame the ultraviolet behaviour completely.

In the late 1960s and early 1970s, the dual resonance model was extensively
studied as a candidate for a model of hadrons. In this, particles are replaced
by one-dimensional objects called strings. Unfortunately, it turned out that
the theory contained tachyons (imaginary mass particles) and spin-2 particles
and, moreover, it is consistent only in 26-dimensional spacetime! Due to
these difficulties, the theory was abandoned and taken over by quantum
chromodynamics (QCD). However, a small number of people noticed that the
theory must contain the graviton and they thought it could be a candidate for the
quantum theory of gravity.



X0, 1)
X0, 10)

Figure 7.9. The trajectories of an open string (@) and a closed string (b). Slices of the
trajectories at fixed parameter () are also shown.

Nowadays, supersymmetry has been built into string theory to form the
superstring theory, which is free of tachyons and consistent in ten-dimensional
spacetime. There are several candidates for consistent superstring theories. It is
sometimes suggested that complete mathematical consistency will single out a
unique theory of everything (TOE).

In this book, we study the elementary aspects of bosonic string theory in the
final chapter. We also study some mathematical tools relevant for superstrings.
The classical review is that of Scherk (1975). We give more references in
chapter 14.

7.11.1 The string action

The trajectory of a particle in a D-dimensional Minkowski spacetime is given by
the set of D functions X*(7), 1 < u < D, where t parametrizes the trajectory.
A string is a one-dimensional object and its configuration is parametrized by two
numbers (o, T), o being spacelike and t timelike. Its position in D-dimensional
Minkowski spacetime is given by X* (o, t), see figure 7.9. The parameter o can
be normalized as o € [0, w]. A string may be open or closed. We now seek an
action that governs the dynamics of strings.

We first note that the action of a relativistic particle is the length of the world

line,
St o . .
S = m/ ds = m/ dr (=XHX,)'/? (7.230)
Si T
where X* = dX*/dr. For some purposes, it is convenient to take another
expression,

§=-1 / dr /g(g 7' X* X, —m?) (7.231)



where the auxiliary variable g = g, is regarded as a metric.

Exercise 7.26. Write down the Euler-Lagrange equations derived from (7.231).
Eliminate g from (7.231) making use of the equation of motion to reproduce
(7.230).

What is the advantage of (7.231) over (7.230)? We first note that (7.231)
makes sense even when m? = 0, while (7.230) vanishes in this case. Second,
(7.231) is quadratic in X while the X-dependence of (7.230) is rather complicated.

Nambu (1970) proposed an action describing the strings, which is
proportional to the area of the world sheet, the surface spanned by the trajectory
of a string. Clearly this is a generalization of the length of the world line of a
particle. He proposed the Nambu action,

dcr

" [— det(d, X" 35X ,)]'/? (7.232)

2wl

where €0 = 7,£! = o and 9, X* = 9X*/0E%. The parameter 7; (ty) is the
initial (final) value of the parameter T while o’ is a parameter corresponding to
the inverse string tension (the Regge slope).

Exercise 7.27. The action S is required to have no dimension. We take o and t to
be dimensionless. Show that the dimension of o’ is [length]z.

Although the action provides a nice geometrical picture, it is not quadratic
in X and it turned out that the quantization of the theory was rather difficult. Let
us seek an equivalent action which is easier to quantize. We proceed analogously
to the case of point particles. A quadratic action for strings is called the Polyakov
action (Polyakov 1981) and is given by

S =

dcr dr V—ggP 8. X" 35X, (7.233)

dmal

where g = det g and g = (g’l)“ﬂ. If the string is open, the trajectory is
a sheet while if it is closed, it is a tube, see figure 7.9. It is shown here that the
action (7.233) agrees with (7.232) upon eliminating g. It should be noted though
that this is true only for the Lagrangian. There is no guarantee that this remains
true at the quantum level. It has been shown that the quantum theory based on the
respective Lagrangians agrees only for D = 26. The action (7.233) is invariant
under

(i) local reparametrization of the world sheet
T — 7/(1,0) o — d(t,0) (7.234a)

(i) Weyl rescaling

8ap = 8hp ="V gup (7.234b)



(iii) global Poincaré invariance
Xt — XM = A X " +a* AeSO(D—1,1) aeRP. (7.234c)
These symmetries will be worked out later.

Exercise 7.28. Taking advantage of symmetries (i) and (iii), it is always possible
to choose gqp in the form gug = 14. Write down the equation of motion for X*
to show that it obeys the equation

1P 9,05 X" = 0. (7.235)

7.11.2 Symmetries of the Polyakov strings

The bosonic string theory is defined on a two-dimensional Lorentz manifold
(M,g). The embedding f : M — RP is defined by £* + X" where
{£¥} = (7, o) are the local coordinates of M. We assume the physical spacetime
is Minkowskian (R”, ) for simplicity. The Polyakov action

S=-3 / 4% /=28 9 X" 95X "1y (7.236)

is left invariant under the coordinate reparametrization Diff(M) since the volume
element ./—gd?¢ is invariant and g*# 3, X" 9p X, is a scalar.

Now we are ready to derive the equation of motion. Our variational
parameters are the embedding X" and the geometry go5. Under the variation
3 X*, we have the Euler—Lagrange equation

d(v/—gg*PsX,) = 0. (7.237a)
Under the variation §gqg, the integrand of S changes as
8(V/—88"P 0, X" 05X ,) = 8/—88"P 0 X" 0 X, + /—868P 3 X" 05X,
= — 3V —88ys88" 8P 0, X" 0p X,
+ /—g8gP 8, X" 0 X,

where proposition 7.2 has been used. Since this should vanish for any variation
3gap, we should have

Tup = 0 X" 9p X, — $8ap(87° 3, X 05X ,) = 0. (7.237b)
This is solved for gqp to yield
8up = 0 X" X"y, (7.238)

showing that the induced metric (the RHS) agrees with gqg. Substituting (7.238)
into (7.236) to eliminate g,g, we recover the Nambu action,

s=-1 / 42t \/— det(3, X5 X ). (7.239)



By construction, the action S is invariant under local reparametrization of
M, (%) — {£'*(&)}. In addition to this, the action has extra invariances. Under
the global Poincaré transformation in D-dimensional spacetime,

XM o XM = AR XY 4 gH (7.240)

the action S transforms as
S— - %/dzg vV _ggaﬁaa(AMKXK '|'au)aﬁ(Av)LX)L + av)mw
_ 1 2 of K A % v
= - 2/d EV—88"" 0. X aﬁX (A" A Amw)-

From A*¢A"ynun = nii, we find that S is invariant under global Poincaré
transformations. The action S is also invariant under the Weyl rescaling,
8up(t,0) — ez“(”")ga,ﬂ(r, o) keeping (7, o) fixed. In fact, S transforms as

S — —%/dzg —e4"ge_2"g“ﬁ3aX“8ﬁX”nW

and hence is left invariant. Note that the Weyl rescaling invariance exists only
when M is two dimensional, making strings prominent among other extended
objccts such as membranes.

Since dimM = 2, we can always parametrize the world sheet by the
isothermal coordinate (example 7.9) so that

gap = €27 T ngp. (7.241)

Then the Weyl rescaling invariance allows us to choose the standard metric 74
on the world sheet. The metric g has three independent components while the
reparametrization has two degrees of freedom and the Weyl scaling invariance
has one. Thus, so long as we are dealing with strings, we can choose the standard
MELTIC Ngp.

We end our analysis of Polyakov strings here. Polyakov strings will be
quantized in the most elegant manner in chapter 14.

Exercise 7.29. Let (M, g) and (N, h) be Riemannian manifolds. Take a chart U
of M in which the metric g takes the form

g = glw(x) dx“ ® dxv.
Take a chart V of N on which £ takes the form
h = Gap($)dg” ® do”.

Amap¢ : M — N defined by x — ¢(x) is called a harmonic map if it satisfies

1
ﬁaﬂ[\/gg“”auqs“] +T%,8,0%0,¢ g"" = 0. (7.242)



Show that this equation is obtained by the variation of the action

S=3 / d"x /28" 9,¢% 0u " hap (¢) (7.243)

with respect to ¢. Applications of harmonic maps to physics are found in Misner
(1978) and Sanchez (1988). Mathematical aspects have been reviewed in Eells
and Lemaire (1968).

Problems

7.1 Let V be a general connection for which the torsion tensor does not vanish.
Show that the first Bianchi identity becomes

S{R(X,Y)Z} = S{T (X, [Y, ZD} + S{Vx[T (Y, 2)]}

where & is the symmetrizer defined in theorem 7.2. Show also that the second
Bianchi identity is given by

S{(VxR)(Y,Z2)}V =6{R(X,T(Y, Z2))}V

where G symmetrizes X, Y and Z only.
7.2 Let (M, g) be a conformally flat three-dimensional manifold. Show that the
Weyl-Schouten tensor defined by

Copww = VuRicyy — VuRiciy — $(gudhR — £, R)
vanishes. It is known that Cy,, = 0 is the necessary and sufficient condition for
conformal flatness if dim M = 3.

7.3 Consider a metric
g=—-dt@dr +dr @dr + (1 —4u*)r’d¢ @ dp + dz ® dz

where 0 < < 1/2 and u # 1/4. Introduce a new variable

¢=0-4w)¢

and show that the metric g reduces to the Minkowski metric. Does this mean that
g describes Minkowski spacetime? Compute the Riemann curvature tensor and
show that there is a stringlike singularity at r = 0. This singularity is conical (the
spacetime is flat except along the line). This metric models the spacetime of a
cosmic string.



COMPLEX MANIFOLDS

A differentiable manifold is a topological space which admits differentiable
structures. Here we introduce another structure which has relevance in physics.
In elementary complex analysis, the partial derivatives are required to satisfy the
Cauchy-Riemann relations. We talk not only of the differentiability but also of
the analyticity of a function in this case. A complex manifold admits a complex
structure in which each coordinate neighbourhood is homeomorphic to C”" and
the transition from one coordinate system to the other is analytic.

The reader may consult Chern (1979), Goldberg (1962) or Greene (1987)
for further details. Griffiths and Harris (1978), chapter O is a concise survey of
the present topics. For applications to physics, see Horowitz (1986) and Candelas
(1988).

8.1 Complex manifolds

To begin with, we define a holomorphic (or analytic) map on C”. A complex-
valued function f : C" — C is holomorphic if f = f; + i f, satisfies the
Cauchy-Riemann relations for each z# = x* + i y#,

of _ap  oh _ oh .
dxH  gyk axn  dyr’ '
Amap (f',..., f") : C" — C" is called holomorphic if each function f*
(1 < A < n) is holomorphic.

8.1.1 Definitions
Definition 8.1. M is a complex manifold if the following axioms hold,

(i) M is a topological space.

(i) M is provided with a family of pairs {(U;, ¢;)}.

(iii) {U;} is a family of open sets which covers M. The map ¢; is a
homeomorphism from U; to an open subset U of C". [Hence, M is even
dimensional.]

(iv) Given U; and U; such that U; N U; # @, the map ¥;; = ¢; o (pi_1 from
@i(UiNUj) to @;j(U; NUj) is holomorphic.



The number m is called the complex dimension of M and is denoted as
dimg M = m. The real dimension 2m is denoted either by dimg M or simply
by dim M. Let z# = ¢;(p) and w’ = ¢;(p) be the (complex) coordinates of
a point p € U; N U; in the charts (U;, ¢;) and (U}, ¢;), respectively. Axiom
(iv) asserts that the function w” = u” 4+ iv” (1 < v < m) is holomorphic in
z* = x* + iy*, namely

ou’  9v¥ ou’ v’

axv 9y’ ayv ~ oxv l=p, v=m.

These axioms ensure that calculus on complex manifolds can be carried out
independently of the special coordinates chosen. For example, C” is the simplest
complex manifold. A single chart covers the whole space and ¢ is the identity
map.

Let {(U;, ¢i)} and {(V;, ¥;)} be atlases of M. If the union of two atlases is
again an atlas which satisfies the axioms of definition 8.1, they are said to define
the same complex structure. A complex manifold may carry a number of complex
structures (see example 8.2).

8.1.2 Examples

Example 8.1. In exercise 5.1, it was shown that the stereographic coordinates of
apoint P(x, y, z) € §? — {North Pole} projected from the North Pole are

_(_* y
(X’Y)_(l—z’ 1—z>

while those of a point P(x, y, z) € S — {South Pole} projected from the South

Pole are
X -y
o, vy=(—, .
1+z 14z

[Note the orientation of (U, V) in figure 5.5.] Let us define complex coordinates

Z=X+1iY, Z=X-iY, W=U+iV, W=U—iV.
W is a holomorphic function of Z,

x —1iy 1 —z . X —iY 1
W = = X—-iY)=——— =—.
14z 14z X2+v? Z

Thus, S? is a complex manifold which is identified with the Riemann sphere

C U {o0}.

Example 8.2. Take a complex plane C and define a lattice L(w;, @) = {wym +
wyn|lm,n € 7} where w1 and wy are two non-vanishing complex numbers such



=1

Figure 8.1. Two complex numbers w;| and w, define a lattice L(wj, wp) in the complex
plane. C/L (w1, wy) is homeomorphic to the torus (the shaded area).

Y

that wr/w; ¢ R; see figure 8.1. Without loss of generality, we may take
Im(wz/wy) > 0. The manifold C/L(w; , wy) is obtained by identifying the points
71,22 € C such that z; — zp = wim + wyn for some m,n € 7Z. Since the
opposite sides of the shaded area of figure 8.1 are identified, C/L (w1, wp) is
homeomorphic to the torus 72. The complex structure of C naturally induces
that of C/L(w1, wy). We say that the pair (w;, w;) defines a complex structure on
T2. There are many pairs (1, wz) which give the same complex structure on 72,

When do pairs (w1, w2) and (o], @) (Im(w2/w1) > 0, Im(w/w]) > 0)
define the same complex structure? We first note that two lattices L(w1, w) and
L(w/, w)) coincide if and only if there exists a matrix!

a b
< ¢ d ) € PSL(2,7)=SL(22,7)/ 7,

oY a b w1
(S)-(Ca)(a) ®2

This statement is proved as follows.
Suppose

W' [ a b w] a b
(2)-(2 8)(z) (2 5)omm

I The group SL(2, Z) has been defined in (2.4). Two matrices A and —A are identified in PSL(2, Z).

such that



Since o}, @} € L(wi, 1), we find L(w], w},) C L(w1, w2). From

()= 7))

we also find L(w1, w2) C L(w], }). Thus, L(w1, w2) = L(w], »). Conversely,
if L(w1, w2) = L(w}, ), ] and o) are lattice points of L(w1, 2) and can be
written as w| = dw| + cw; and ), = bw| + awy where a,b,c,d € Z. Also
w1 and wy may be expressed as w; = d'w| + ¢'w) and wy = b'w]| + a’w), where
a',b',c’,d € Z.Then we have

w \_(d V oy _(d PV a b w1
w )\ d wy, | d c d W
from which we find
a b a b\ (10
cd d c d) \Lo 1)

Equating the determinants of both sides, we have (a’d’ — b'c’)(ad — bc) = 1. All
the entries being integers, this is possible only when ad — bc = £1. Since

; b d—>b ;
Im(w—,z)zlm< a)l—i-aa)z): a ¢ Im(w—,z)>0
| dwy + can lc(w2/w1) + d|? w}

we must have ad — bc > 0, that is,

a b
< d ) e SL(12,7Z).

a b

d

(¢

ﬁ\

In fact, it is clear that
e SL(12,7Z)

defines the same lattice as
a b
(¢ 4)
and we have to identify those matrices of SL(2, Z) which differ only by their
overall signature. Thus, two lattices agree if they are related by PSL(2,Z) =
SL(2,7Z)/Z;.

Assume that there exists a one-to-one holomorphic map 4 of C/L (w1, w2)
onto C/L(wy, @) where Im(wz/w1) > 0, Im(w2/w1) > 0. Let p : C —
C/L(w1,w)and p : C — C/L(w;, @7) be the natural projections. For example,
p maps a point in C to an equivalent point in C/L (w1, w2). Choose the origin 0
and define /. (0) to be a point such that p o h,(0) = h o p(0) (figure 8.2),

C SN C

7 17 (8.3)
C/L(w1, w)) —2—— C/L(G1. ).
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Figure 8.2. A holomorphic bijection & : C/L(wy, wy) — C/L(w;, @) and the natural
projections p : C — C/L(wy, wy), p: C — C/L(w;, ®) define a holomorphic bijection

Then by analytic continuation from the origin, we obtain a one-to-one
holomorphic map %, of C onto itself satisfying

pohi(z) =ho p(2) forallz € C (8.4)

so that the diagram (8.3) commutes. It is known that a one-to-one holomorphic
map of C onto itself must be of the form z — h4(z) = az + b, where a, b € C
and a # 0. We then have h,(w1) — h«(0) = aw; and hy(w2) — he(0) = aws.
For h to be well defined as a map of C/L(w;, w) onto C/L(&®1, @), we must
have awy, awy € L(w1, @), see figure 8.2. By changing the roles of (w1, w2)
and (o}, w}), we have aw1, ad; € L(wy, w2) where @ # 0 is a complex number.
Hence, we conclude that if C/L(w1, wp), C/L(w;1, @) have the same complex
structure, there must be a matrix M € SL(2, Z) and a complex number A (=a— 1

such that _
<‘31)=AM(‘”‘>. (8.5)
wy wy

Conversely, we verify that (w1, @2) and (o], a)/z) related by (8.5) define the same
complex structure. In fact,

(o) w5
w) w2
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Figure 8.3. The quotient space H/PSL(2, Z).

define the same lattice (modulo translation) and we may take 4, : C — C to be
z+ 7+ b. L(wy, w2) and L(Awi, Awy) also define the same complex structure.
We take, in this case, hy : 2 — Az + b.

We have shown that the complex structure on T2 is defined by a pair of
complex numbers (w;, wy) modulo a constant factor and PSL(2, Z). To get rid of
the constant factor, we introduce the modular parameter T = wy/w; e H={z €
C|Im z > 0}, to specify the complex structure of 72. Without loss of generality,
we take 1 and t to be the generators of a lattice. Note, however, that not all of
7 € H are independent modular parameters. As was shown previously, T and
1’ = (at + b)/(ct + d) define the same complex structure if

a b
( e d > € PSL(2,7Z).

The quotient space H/PSL(2, Z) is shown in figure 8.3, the derivation of which
can be found in Koblitz (1984) p 100, and Gunning (1962) p 4.

The change © — 1’ is called the modular transformation and is generated
byt - t+ 1and t — —1/t. The transformation t — 7 + 1 generates a
Dehn twist along the meridian m as follows (figure 8.4(a)). (i) First, cut a torus
along m. (ii) Then take one of the lips of the cut and rotate it by 2 with the other
lip kept fixed. (iii) Then glue the lips together again. The other transformation
T — —1/7 corresponds to changing the roles of the longitude / and the meridian
m (figure 8.4(b)).

Example 8.3. The complex projective space CP" is defined similarly to RP";
see example 5.4. The ntuple z = 0, ..., 7" e ¢! determines a complex
line through the origin provided that z # 0. Define an equivalence relation
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Figure 8.4. (a) Dehn twists generate modular transformations. (b) T — —1/t changes
the roles of [ and m.

by z ~ w if there exists a complex number a # 0 such that w = az.
Then CP" = (C*t! — {0})/ ~. The (n + 1) numbers z°, z!, ..., z" are
called the homogeneous coordinates, which is denoted by [zo, z4, ..., z"] where

(2%, ..., 2" is identified with (1z°, ..., Az") (A # 0). A chart U,, is a subset of
€1 — {0} such that z* # 0. In a chart U 1> the inhomogeneous coordinates are
defined by é("ﬂ =7"/7* (v # p). InU,NU, # 9, the coordinate transformation
Y : C' — (&” is

v
A A% e
50y = 8w = ZaS- (8.6)
Accordingly, v, is a multiplication by z”/z*, which is, of course, holomorphic.

Example 8.4. The complex Grassmann manifolds Gy, (C) are defined similarly
to the real Grassmann manifolds; see example 5.5. G , (C) is the set of complex
k-dimensional subspaces of C*. Note that CP" = G1 ,+1(0).

Let My ,(C) be the set of k x n matrices of rank k (k < n). Take
A, B € M ,(C) and define an equivalence relation by A ~ B if there exists
g € GL(k, C) such that B = gA. We identify Gy ,(C) with My ,(C)/GL(k, C).
Let {A1, ..., A;} be the collection of all the k x k minors of A € M ,(C). We
define the chart U, to be a subset of Gy, (C) such that det A, # 0. The k(n — k)
coordinates on U, are given by the non-trivial entries of the matrix A;'A. See
example 5.5 for details.



Example 8.5. The common zeros of a set of homogeneous polynomials are a
compact submanifold of CP" called an algebraic variety. For example, let
P(z°, ..., 7" be a homogeneous polynomial of degree d. If a # 0 is a complex
number, P satisfies

P@z’,...,az") =a’PE°, ..., 7).

This shows that the zeros of P are defined on CP"; if P(Z°,...,z") = O then
P([zo, ..., 2"]) = 0. For definiteness, consider

P(ZO, Zl, Z2) — (ZO)Z + (ZI)Z + (22)2
and define N by
N ={[z° 7", 221 e CP?|P(:% 7!, 2%) = 0}. (8.7)
We define U, as in example 8.3. In N N Uy, we have
(£ + [Ep))> +1=0

where S(’g) = 7//7° (note that z® # 0). Consider a holomorphic change of
coordinates (g(lo),g(zo)) - (n! = é(lo), n? = [S(IO)]2 + [é(zo)]z + 1). Note that
d(n', n*)/0(§). &) # Ounless &) = 22 = 0. Then NNUpNU2 = {(n'. 11°) €
C?|n? = 0} is clearly a one-dimensional submanifold of C2. If 5(20) =272 =0,we
have (§(,, §5)) = (' = [5)* +[§5) 1> + 1, ¢? = £G) for which the Jacobian
does not vanish unless g(‘o) =z'=0.Then NNUyNU; ={(¢", ¢») e C|¢! =
0} is a one-dimensional submanifold of C2. On N NUy N U; N Uy, the coordinate
change n' — ¢2 is a multiplication by z2/z! and is, hence, holomorphic. In this
way, we may define a one-dimensional compact submanifold N of CP?2.

A complex manifold is a differentiable manifold. For example, C" is
regarded as R*" by the identification z* = x* + iy*, x*, y* € R. Similarly,
any chart U of a complex manifold has coordinates (z', ..., z) which may be
understood as real coordinates (x!, y!, ..., x™, y™). The analytic property of the
coordinate transformation functions ensures that they are differentiable when the
manifold is regarded as a 2m-dimensional differentiable manifold.

8.2 Calculus on complex manifolds

8.2.1 Holomorphic maps

Let f : M — N, M and N being complex manifolds with dim¢ M = m and
dimg N = n. Take a point p in a chart (U, ¢) of M. Let (V, ¥) be a chart of N
such that f(p) € V. If we write {z"} = ¢(p) and {w"} = ¥ (f(p)), we have a
map ¥ o fog~!: C" — C". If each function w” (1 < v < n) is a holomorphic



function of z#, f is called a holomorphic map. This definition is independent
of the special coordinates chosen. In fact, let (U’, ¢”) be another chart such that
UNU’' # @ and z* = x" 4 iy" be the coordinates. Take a point p € U N U’. If
w' = u’ 4 iv¥ is a holomorphic function with respect to z, then

ou” du” oxt  ou” 9yl 9v” 9y v’ 9xt avY

ax’t  dxk gx* + E)y_ﬂ8y’)‘ a ayH dy’* + xk ay’* o ayr

We also find du’/dy”* = —dv¥/dx™. Thus, w" is holomorphic with respect to
7' too. It can be shown that the holomorphic property is also independent of the
choice of chartin N.

Let M and N be complex manifolds. We say M is biholomorphic to
N if there exists a diffeomorphism f : M — N which is also holomorphic
(then f~' : N — M is automatically holomorphic). The map f is called a
biholomorphism.

A holomorphic function is a holomorphic map f : M — C. There is
a striking theorem; any holomorphic function on a compact complex manifold
is constant. This is a generalization of the maximum principle of elementary
complex analysis, see Wells (1980). The set of holomorphic functions on M
is denoted by O(M). Similarly, O(U) is the set of holomorphic functions on
UcM.

8.2.2 Complexifications

Let M be a differentiable manifold with dimgrM = m. If f : M — Cis
decomposed as f = g + ih where g, h € F(M), then f is a complex-valued
smooth function. The set of complex-valued smooth functions on M is called the
complexification of 3 (M), denoted by F(M )(C. A complexified function does
not satisfy the Cauchy—Riemann relation in general. For f = g +ih € F(M )C,
the complex conjugate of f is f = g — ih. f is real if and only if f = f.

Before we consider the complexification of 7,M, we define the
complexification vCofa general vector space V with dimg V = m. An element
of VC takes the form X + i¥ where X ,Y € V. The vector space VC becomes
a complex vector space of complex dimension m if the addition and the scalar
multiplication by a complex number a + ib are defined by

(X1 +1iY) + (X2 +112) = (X1 + X2) +i(Y1 + 12)
(a+ib)(X +1iY) = (@X — bY) +i(bX + aY)
V is a vector subspace of VCsince X € V and X +i0 € VC may be identified.
Vectors in V' are said to be real. The complex conjugate of Z = X + iY is

Z =X —1iY. Avector Z isreal if Z = Z.
A linear operator A on V is extended to act on V< as

AX +1Y) = A(X) +1A(Y). (8.8)



If A - R is a linear function (A € V™), its extension is a complex-valued
linear function on V€, A : V€ — C. In general, any tensor defined on V
and V* is extended so that it is defined on V' and (V*)C. An extended tensor is
complexified as ¢t = #; + it», where #; and 1, are tensors of the same type. The
conjugate of 1 is f = t; — ifp. If t = 1, the tensor is said to be real. For example
A:VC > Cisreal if A(X +1Y) = A(X —iY).

Let {ex} be a basis of V. If the basis vectors are regarded as complex
vectors, the same basis {e;} becomes a basis of VC. To see this, let X = Xkek,
Y = Y¥e; € V. Then Z = X + iY is uniquely expressed as (X +iY*)er. We
find dimg V = dim¢ VC.

Now we are ready to complexify the tangent space T, M. If V is replaced by
T, M, we have the complexification T, M Cof T, M, whose element is expressed
as Z =X +1iY (X,Y € T,M). The vector Z acts on a function f = f1 +if2 €
F(M)C as

ZIf1=X[A +if2]l +iY[ 1 +if2]
=X[A]l =YLl +i{X[ A1+ YA (8.9)

The dual vector space T;‘M is complexified if w,n € T;‘M are combined as
¢ = w + in. The set of complexified dual vectors is denoted by (T;M)(C.

Any tensor ¢ is extended so that it is defined on T, M C and (T;M )(C and then
complexified.

Exercise 8.1. Show that (T;‘M)(C = (TPMC)*. From now on, we denote the
complexified dual vector space simply by T;‘M C.

Given smooth vector fields X, Y € X (M), we define a complex vector field
Z = X +1iY. Clearly Z|, € T,M C. The set of complex vector fields is the
complexification of X(M) and is denoted by X (M )C. The conjugate vector field
of Z=X4iYisZ=X—iY. Z=Zif Z € X(M), hence X(M)C > X(M).
The Lie bracketof Z = X +iY, W = U +1iV € DC(M)(C is

[X +iV, U +iV] ={[X,U] - [Y, VI} + {[X, V] + [Y, U]} (8.10)

The complexification of a tensor field of type (p, g) is defined in an obvious
manner. f w, n € Q' (M), E =w+in € Q! (M)(C is a complexified one-form.

8.2.3 Almost complex structure

Since a complex manifold is also a differentiable manifold, we may use the
framework developed in chapter 5. We then put appropriate constraints on
the results. Let us look at the tangent space of a complex manifold M with
dim¢ M = m. The tangent space T, M is spanned by 2m vectors

d d ad d
{ﬁ:...,m?a—yl,...,ay—m} (8.11)



where z# = x* + iy" are the coordinates of p in a chart (U, ¢). With the same

coordinates, T;‘M is spanned by

{dx‘,...,dxm;dy‘,...,dym}. (8.12)
Let us define 2m vectors
0 1 o .0
— =] — —i— (8.13a)
azkt 2 | oaxH ayH
9 ! _8 '—8 (8.13b)
- = _ 1 .
ozt 2 | oxm oyH

where 1 < pu < m. Clearly they form a basis of the 2m-dimensional (complex)
vector space T, M C. Note that 9 Joz* = 3/dz*. Correspondingly, 2m one-forms

dz"* = dx* +idy* dzt = dx* —idy* (8.14)
form the basis of T;‘MC. They are dual to (8.13),
(dz",0/0z") = (dz",9/9z") = 0 (8.15a)
(dz",9/0z") = (dz", 8/97") = 8",. (8.15b)
Let M be a complex manifold and define a linear map J, : T,M — T,M
by
d d d 9
Il — | =— Il — ) =——— (8.16)
axH ayH ayH axH
Jp is a real tensor of type (1, 1). Note that
I} = —idr,m. (8.17)

Roughly speaking, J, corresponds to the multiplication by £i. The action of J,
is independent of the chart. In fact, let (U, ¢) and (V, ) be overlapping charts
with ¢(p) = z#* = x* + iy* and ¥ (p) = w* = u” +iv*. On U NV, the
functions z#* = z*(w) satisfy the Cauchy—Riemann relations. Then we find

ax’ 9

()= SR
P\ our ) — 7P\ gum axv duh dyY

We also find that J,d/dv* = —3/du’*. Accordingly, J, takes the form

(0 -1,
()

with respect to the basis (8.11), where I, is the m x m unit matrix. Since all
the components of J, are constant at any point, we may define a smooth tensor
field J whose components at p are (8.18). The tensor field J is called the almost

_9yY 0
T vk dyY

ax” 9 a

vk gxv

vk’

(8.18)



complex structure of a complex manifold M. Note that any 2m-dimensional
manifold locally admits a tensor field J which squares to —I»,,. However, J may
be patched across charts and defined globally only on a complex manifold. The
tensor J completely specifies the complex structure.

The almost complex structure J), is extended so that it may be defined on

T,MC,
Jp(X +1Y) = J,X +1J,Y. (8.19)

It follows from (8.16) that
J,0/9z" =1id/9z" Jy0/0z" = —id/azh. (8.20)
Thus, we have an expression for J,, in (anti-)holomorphic bases,

b ]
_idot ey it ey T
Jp=1dz" ® P 1dz"* ® Pt (8.21)

whose components are given by

(i, 0
J,,_< o _iL, ) (8.22)

Let Z € TpM(C be a vector of the form Z = Z#9/9z". Then Z is an eigenvector
of Jp; J,Z = iZ. Similarly, Z = Z*9/9z" satisfies J,Z = —iZ. In this way
M Cofa complex manifold is separated into two disjoint vector spaces,

M = T,M* & T,M~ (8.23)

where
TyM* ={Z e T,M“|J,Z = £iZ). (8.24)

We define the projection operators P~ : T,M C M + by

PE = Lhw FiJp). (8.25)
In fact, J,P*Z = 5(J, FiJ2)Z = +iP*Z forany Z € T,M*. Hence,

7+ =Pz e T,M*. (8.26)
Now Z € T,,M(C is uniquely decomposed as Z = Z+* 4+ Z~ (Z* ¢ T,,Mi).
T,M™ is spanned by {9/9z"} and T,M~ by {3/37"}. Z € T,M™" is called a

holomorphic vector while Z € T, M~ is called an anti-holomorphic vector.
We readily verify that

T,M~ =T,M* ={Z|Z € T,M"}. (8.27)
Note that

dime T,M* = dimg T,M~ = 1 dimg T,M© = L dime M.



Exercise 8.2. Let (U, ¢) and (V, ) be overlapping charts on a complex manifold
M and let z#* = ¢(p) and w* = v(p). Verify that X = X*9/9z", expressed
in the coordinates w*, contains a holomorphic basis { a/ Bw“} only. Thus, the

separation of T, M C into T,M * is independent of charts (note that J is defined
independently of charts).

Given a complexified vector field Z € X(M )C, we obtain a new vector field
JZ e T)C(M)(C defined at each point of M by JZ|, = J, - Z|,. The vector field
Z is naturally separated as

Z=2zY+z~ zt=P*z (8.28)

where Z* = P*Z. The vector field Z+ (Z7) is called a holomorphic (anti-
holomorphic) vector field. Accordingly, once J is given, X(M )C is decomposed
uniquely as

XM)C = XMt @ X(M)~. (8.29)

Z=272"+27Z" eX(M)Cisrealifand only if ZT = Z—.

Exercise 8.3. Let X,Y € X(M)T. Show that [X,Y] € X(M)T. [If X,Y €
X(M) ,then [X,Y] € X(M)™.]

8.3 Complex differential forms

On a complex manifold, we define complex differential forms by which we will
discuss such topological properties as cohomology groups.

8.3.1 Complexification of real differential forms

Let M be a differentiable manifold with dimgk M = m. Take two g-forms
w,n € QZ(M) at p and define a complex g-form { = o + in. We denote the
vector space of complex g-forms at p by SZ(,’, (M)(C. Clearly Q% M) C Q% (M)(C.
The conjugate of ¢ is ¢ = w — in. A complex g-form ¢ is real if ¢ = ¢.

Exercise 8.4. Letw € Q‘Z, (M)C. Show that

aVi,....Vp)=wlVi,....,Vy)  VieT,M". (8.30)
Show also that w + 1 = @+7, Aw = A® and ® = w, where w, € Q% (M)C and
reC

A complex g-form o defined on a differentiable manifold M is a smooth
assignment of an element of Q‘,’,(M )C. The set of complex g-forms is denoted by
QM. A complex g-form ¢ is uniquely decomposed as { = w + in, where
w,n € QI(M).



The exterior product of { = w + in and & = ¢ + iy is defined by

{AE=(o+in A(p+iY)
=A@ —nAY)+ilwAY +1Ae). (8.31)

The exterior derivative d acts on { = w + in as
d¢ =dw+idn. (8.32)
d is a real operator: dZ = dw —idy = d¢.
Exercise 8.5. Let w € Q4(M)C and & € Q" (M) . Show that

WAE=(DTEAw (8.33)
dwAE) =dwAE + (=)o A dE. (8.34)

8.3.2 Differential forms on complex manifolds

Now we restrict ourselves to complex manifolds in which we have the
decompositions TpM(C =T,M" ®T,M~ and X(M)C = XMt @ X (M)~

Definition 8.2. Let M be a complex manifold with dimc M = m. Let w €
Qi’,(M)(C (g < 2m) and r, s be positive integers such that r +s = ¢g. Let V; €
TpM(C (1 <i < gq) be vectors in either T,,M+ orTyM™. Ifw(Vq,...,Vy) =0
unless r of the V; are in TPMJr and s of the V; are in T, M~ w is said to be of
bidegree (7, s) or simply an (r, s)-form. The set of (r, s)-forms at p is denoted by
Q;’S(M ). If an (7, s)-form is assigned smoothly at each point of M, we have an
(r, s)-form defined over M. The set of (r, s)-forms over M is denoted by Q"*(M).

Take a chart (U, ¢) with the complex coordinates ¢(p) = z*. We take the
bases (8.13) for the tangent spaces T,,Mi. The dual bases are given by (8.14).
Note that dz* is of bidegree (1, 0) since (dz*, 9/9z") = 0 and dz* is of bidegree
(0, 1). With these bases, a form w of bidegree (r, s) is written as

1

= s dzM AL AdZH AT AL A AT, (8.35)

The set {dz*! A ... Adz* A dZ" A ... A dZ"™} is the basis of Q) (M). The
components are totally anti-symmetric in the u and v separately. Let z* and w*
be two overlapping coordinates. The reader should verify that an (r, s)-form in
the z* coordinate system is also an (r, s)-form in the w" system.

Proposition 8.1. Let M be a complex manifold of dimc M = m and w and & be
complex differential forms on M.

(@) Ifw e Q47 (M) thenw € Q"9(M).
(b) Ifwe Qq’r(M) andg c Qq/’r/(M), then o /\é = Qq+q/)r+r/(M).



(c) A complex g-form w is uniquely written as

o= o (8.36a)

r+s=q
where "% € Q" (M). Thus, we have the decomposition

QI(M)C = EB Q" (M). (8.36b)
r+s=q

The proof is easy and is left to the reader. Now any g-form w is decomposed

as
o= ¥ o
r+s=q
! M1 153 —V1 —Vs
Y o A n a2 A
ris=q r.s.
(8.37)
where
- ad d d ad 238
Wy, vy..0y = @ m,...,m,ﬁ,...,ﬁ . ( . )

Exercise 8.6. Let dimc M = m. Verify that

. s ") (™ if0<r,s<m
dimg Ql;“(M) = r/J\'s

0 otherwise.

Show also that dimg Sz‘,’,(M)(C = Zr+s=q dimg Q" (M) = (2;1)‘

8.3.3 Dolbeault operators

Let us compute the exterior derivative of an (r, s)-form w. From (8.35), we find

1 d d
W= — ) o A L q=A
rlg! az)L M-y V] Vs dZ 8E)L w/ll...,urvl...vsdz

xdzM AL AdZP AdZE AL A AT (8.39)

dw is a mixture of an (r + 1, s)-form and an (», s + 1)-form. We separate the
action of d according to its destinations,

d=9d+409 (8.40)



where 3 : Q"(M) — Q"15(M) and 3 : Q"5(M) — Q"$T1(M). For example,
if o = wypdz* A dz", its exterior derivatives are

8 —

dw = w—’;”dzk Adz?* A dZY
0z

) do

B = LG A dh A dZ = =BGl dZ A dE
8z 07

The operators 3 and 9 are called the Dolbeault operators. 3
If w is a general g-form given by (8.37), the actions of @ and 9 on w are

defined by
do= Y 0" o= ) Jo". (8.41)
r+s=q r+s=q

Theorem 8.1. Let M be a complex manifold and let ® € QI(M )(C and & €
QP (M)C. Then

30w = (00 4+ 00)w = 00w =0 (8.42a)
9@ = dw, 93 = dw (8.42b)
AwAE) =dwAE+ (=10 A JE (8.42¢)
AwAE)=0dwAE+ (—1)w A JE. (8.424d)

Proof. It is sufficient to prove them when w is of bidegree (r, ).
(a) Since d = 8§ + 9, we have
0=dw=040)0+ 0w =00w+ (30 + 00)w + J dw.

The three terms of the RHS are of bidegrees (r + 2,s), (r + 1,5 + 1)
and (r, s + 2) respectively. From proposition 8.1(c), each term must vanish
separately.

(b) Since d@ = dw, we have

3@ + 9@ = do = (3 + 9)w = o + .

Noting that dew and Jw are of bidegree (s + 1,7) and 9@ and dw are of
(s, 7 + 1), we conclude that 3@ = dw and 9 = dw.

(c) We assume o is of bidegree (r, s) and & of (+/, s”). Equation (8.42c) is
proved by separating d (w A §) = dow A § + (—1)%w A d&, into forms of
bidegrees (r +r' +1,s +s)and (r + 7', s +5" + 1). d

Definition 8.3. Let M be a complex manifold. If w € Q"O(M) satisifies dw = 0,
the r-form w is called a holomorphic r-form.



Let us look at a holomorphic O-form f € F(U )(C on a chart (U, ¢). The
condition d f = 0 becomes

d
anA:o | <% <m=dime M. (8.43)
Z

A holomorphic 0-form is just a holomorphic function, f € F(U )C. Letw €
Q"O(M), where 1 <r <m = dimc M. On a chart (U, ¢), we have
1
w= ;wmmmdz’“ A AdZ?r. (8.44)

Then dw = 0 if and only if
d
P 0
namely if @y, .. ,, are holomorphic functions on U.
Let dimg M = m. The sequence of C-linear maps

QM) - @ty 2 -
2 @rm=tay 22 grm (8.45)

is called the Dolbeault complex. Note that 3> = 0. The set of a-closed (r, 5)-
forms (those w € Q"*(M) such that dw = 0) is called the (r, s)-cocycle and is
denoted by ZgS(M). The set of d-exact (r, s)-forms (those @ € Q"(M) such

that w = 95 for some n € Q"1 (M)) is called the (r, S)-coboundary and is
denoted by Bgs (M). The complex vector space

HE* (M) = Z2* (M) B (M) (8.46)

is called the (r, s)th 9-cohomology group, see section 8.6.

8.4 Hermitian manifolds and Hermitian differential geometry

Let M be a complex manifold with dimc M = m and let g be a Riemannian
metric of M as a differentiable manifold. Take Z = X+iY, W = U+iV e T,M C
and extend g so that

8p(Z, W) =gp(X,U) —gp(Y, V) +ilgp(X, V) + g, (Y, U)]. (8.47)

The components of g with respect to the bases (8.13) are

guv(p) = gp(8/9z",9/9z") (8.48a)
guv(p) = gp(3/09z",9/97") (8.48b)
gm(p) = gp(d/9z",9/9z") (8.48c¢)

gmv(p) = gp(3/07",9/97"). (8.48d)



We easily verify that

v = 8vus 8y = 8vps 8mv = 8vims Suv = gmv» guv = &uv-
(8.49)

8.4.1 The Hermitian metric

If a Riemannian metric g of a complex manifold M satisfies
gp(JpX, JpY) = gp(X,Y) (8.50)

ateach point p € M andforany X, Y € T, M, g is said to be a Hermitian metric.
The pair (M, g) is called a Hermitian manifold. The vector J, X is orthogonal
to X with respect to a Hermitian metric,

gp(JpX. X) = gp(Jp X, JpX) = —g,(JpX, X) = 0. (8.51)

Theorem 8.2. A complex manifold always admits a Hermitian metric.

Proof. Let g be any Riemannian metric of a complex manifold M. Define a new
metric g by

g’p(X, Y)= %[gp(X, Y)+gp(JpX, JpY)] (8.52)
Clearly g,(JpX, Jp,Y) = §,(X,Y). Moreover, g is positive definite provided
that g is. Hence, g is a Hermitian metric on M. a

Let g be a Hermitian metric on a complex manifold M. From (8.50), we find
that

_ d d _ 7 d 7 d _ d d _
8w = 8 9z’ 9z =8 oz o ) T 8 9z 9z ) Suv

hence g, = 0. We also find that gzz = 0. Thus, the Hermitian metric g takes
the form

g = guwdz" ® dz¥ + gpdz" ® dz". (8.53)
[Remark: Take X,Y € T,M™. Define an inner product 2, in T,M* by

hy(X,Y) =g,(X,Y). (8.54)

It is easy to see that &, is a positive-definite Hermitian form in 7, M. In fact,

hX,Y)=g(X,Y)=g(X,Y)=h(,X)

and h(X, X) = g(X, X) = g(X1, X1) + (X2, X2) > 0 for X = X +iX,. This
is why a metric g satisfying (8.50) is called Hermitian.]



8.4.2 Kaibhler form

Let (M, g) be a Hermitian manifold. Define a tensor field 2 whose action on
X, YeT,Mis

Q,(X,Y)=g,(J,X,Y)  X,Y eT,M. (8.55)

Note that  is anti-symmetric, Q(X,Y) = g(JX,Y) = g(JZX, JY) =
—g(JY, X) = —Q(Y, X). Hence, Q2 defines a two-form called the Kéhler form
of a Hermitian metric g. Observe that €2 is invariant under the action of J,

QUX,JY)=g(J*X,JY)=g(J’X, J*Y) = Q(X,Y). (8.56)

If the domain is extended from 7, M to T, M C, Q2 is a two-form of bidegree
(1, 1). Indeed, for the metric (8.53), it is found that

Q 0 0 7 0 0 . 0
—_—, —— = —_—, —— =1 = U.
azk 9zY dzh - 9zY Buv

We also have

d a d ) a a
Q) =00 Qs ) =igw =2 (g )
()= 255 o) =io0 =2 (5 3%)

Thus, the components of €2 are

Qu=Qm =0 Qv = =y = iguv. (8.57)
We may write
Q =ig,vdz" ® dz¥ — igy, d7" @ dz = ig,s dz" A dZ". (8.58)
2 is also written as
Q=—Jdz* AdZ” (8.59)
where J;5 = guxjxv = —iguv. Q2 is areal form;
Q= —igy dz* AdZ” = igypdz’ AdZ* = Q. (8.60)

Making use of the Kahler form, we show that any Hermitian manifold, and
hence any complex manifold, is orientable. We first note that we may choose an
orthonormal basis {1, Jéy, ..., én, Jen}. In fact, if g(e1,e1) = 1, it follows
that g(Jey, Jey) = g(er, e1) = 1 and g(éy, Je;) = —g(Jeéy, e1) = 0. Thus ¢
and Je; form an orthonormal basis of a two-dimensional subspace. Now take &
which is orthonormal to ¢; and Jeé; and form the subspace {é>, Jé;}. Repeating
this procedure we obtain an orthonormal basis {¢1, Jéy, ..., ém, Jén}.

Lemma 8.1. Let Q2 be the Kahler form of a Hermitian manifold with dim¢ M =
m. Then

QA...AQ
—————
m

is a nowhere vanishing 2m-form.



Proof. For the previous orthonormal basis, we have

Q (e, Jéj) =g(Je;, Jéj) = ;) Q (e, é/) =Q(Jé;, Jéj) =0.

Then it follows that
QA...AQr, Jer, ..., em, Jem)

m

= Z Q@py, Jepy) ... 2(€pwm), Jepim))
P
=m!Q e, Jer)...QEy, Jey) = m!

where P is an element of the permutation group of m objects. This shows that
Q A ... A cannot vanish at any point. g

Since the real 2m-form Q A ... A Q vanishes nowhere, it serves as a volume
element. Thus, we obtain the following theorem.

Theorem 8.3. A complex manifold is orientable.

8.4.3 Covariant derivatives

Let (M, g) be a Hermitian manifold. We define a connection which is compatible
with the complex structure. It is natural to assume that a holomorphic vector
V € T,M™ parallel transported to another point g is, again, a holomorphic vector
Vig) € T,M*. We show later that the almost complex structure is covariantly
conserved under this requirement. Let {z*} and {z* + Az"} be the coordinates of
p and g, respectively, and let V = V#9/9z"|, and Vig) = VFz+ Az)d/09zM,.
We assume that (cf (7.9))

Vi(z+ A7) = VH(2) — VH@TH () AL, (8.61)
Then the basis vectors satisfy (cf (7.14))

R 9
M@ =r MV(Z)@- (8.62a)

Since 9/07" is a conjugate vector field of 3/9z*, we have

9 = 9
I (8.62b)

VE A=

Mazv -

where Fxﬁg = F)‘,w. r’ wv and Fxﬁg are the only non-vanishing components of
the connection coefficients. Note that V,,0/9z" = Vizd/9z” = 0. For the dual
basis, non-vanishing covariant derivatives are

Vpde" =TV de" Vpdz' =-T";57% (8.63)



The covariant derivative of X* = X#9/9z* € X(M)™ is
ad
V. Xt =@, X" + x”r*,w)a—A (8.64)
Z

where 8, = 3/dz/*. For X~ = X"3/97" € X(M)~, we have
B

Vv, X" =9,X"
a KT a7

(8.65)

since ['* w = r uv = 0. As far as anti-holomorphic vectors are concerned, V,,
works as the ordinary derivative d,,. Similarly, we have

9
VXt = 37X — 8.66
- PRy d
VzX~ = (dzX* + X'T m)ﬁ' (8.67)

It is easy to generalize this to an arbitrary tensor field. For example, if 1 =
' dz* ® dx¥ ® 8/97*, we have

(Vi)™ = Bty — 10" T8 ey — 1,6 T8
(Vft)uu)L = affuv)\ + IMV‘EFAFE.

We require the metric compatibility as in section 7.2. We demand that

Vi 8uv = Viguv = 0. In components, we have
gy — &l e =0 Oeguv — g, T em = 0. (8.68)

The connection coefficients are easily read off:
M =g"8gs v =g degur (8.69)

where {g"*} is the inverse matrix of g,7; gﬂxgx" =46,", " gz = 8" A metric-
compatible connection for which I'"(mixed indices) = 0 is called the Hermitian
connection. By construction, this is unique and given by (8.69).

Theorem 8.4. The almost complex structure J is covariantly constant with respect
to the Hermitian connection,

(VeI = (VeI = (Ve )5 = (Ved)s# = 0. (8.70)
Proof. We prove the first equality. From (8.22), we find
(Ve )oH = 8i8,* — i86HT5 ) +18,5THs = 0.

Other equalities follow from similar calculations. d



8.4.4 Torsion and curvature

The torsion tensor T and the Riemann curvature tensor R are defined by

T(X,Y) = Vx¥ — Vy X — [X, Y] (8.71)
R(X,Y)Z = VxVyZ — VyVxZ — Vix.yiZ. (8.72)

We find that

T a9\ (in in) 0
ozt azy) M
The non-vanishing components are

TH 0 =Th —Th = g (9,8, — g, z) (8.73a)
T =T — Mo = ¢ (dgwe — dvgme) - (8.73b)
As for the Riemann tensor, we find, for example, that

RKML\) = 8MFKU)L - 8\)1—«“)\ + FnU)LFK,un - Fn,u)\rkvn'

If (8.69) is substituted, we find that
K — 74 1 K _ £k kK _
R = 0,8 3ug,\g +g 8/181)8@ —ovg augxg —8 auavgxg
+8°10,8,58 " 08,7 — 8 "0u8:8 D8, = 0

where use has been made of the identity gE’( n 8pr=— gnzaM gE’( etc. In general,
we find that

Rs,p = RSup =R =Rz =0 (8.74)

where A and B are any (holomorphic or anti-holomorphic) indices. As a result,
we are left only with the components Rz, R .5, R€ v and R* T Note that

we have a trivial symmetry R*,; = —R";uz. So the independent components
are reduced to Rz, and R® v = R¥ ;v We find that
kav = 8,7F'< — 8/7(85'( avg,\é) (8.75a)

RS, = 0T 5 = 0, (8" dyge)- (8.75b)



Exercise 8.7. Show that

Reso = gre RS 30 = 37du @i — &7 Ozgres v 807 (8.76a)
R =8 R 5w = dudvgs, — 8" 0u8,500es, (8.76b)
Rirus =gt RS 3 = — Ry (8.76¢)
R =8 R = — R (8.76d)

Verify the symmetries

Rermy = — Ruemy R =R w ®.77)
Let us contract the indices of the Riemann tensor as
Ruv = R ey = —05(8*0,,8,7) = —0v0, log G (8.78)

where G = det(g,5) = /g. To obtain the last equality, we used an identity
3G = GgM"g,w; see (7.204). We define the Ricci form by

R =iR,pdz* AdZ" =i0dlogG. (8.79)

R is a real form; R = —iddlogG = —iddlogG = 9. From the identity
99 = —% d (8 — 9), we find R is closed; dR o d2 (9 — ) log G = 0. However,
this does not imply that 9 is exact. In fact, G is not a scalar and (3—9) log G is not
defined globally. SR defines a non-trivial element c; (M) = [R/2nx] € H 2(M ; R)
called the first Chern class. We discuss this further in section 11.2.

Proposition 8.2. The first Chern class c1 (M) is invariant under a smooth change
of the metric g — g + §g.

Proof. It follows from (7.204) that § log G = g"*"8g,5. Then

SR = 8109 log G = 100g" 88,y = —1d (9 — 0)ig""8gyv.

Since g’wég,ﬁ is a scalar, w = —%(8 - 5)g“55g,m is a well-defined one-form on
M. Thus, R = dw is an exact two-form and [PR] = [*R + 8R], namely c| (M) is
left invariant under g — g + 48g. d

8.5 Kiihler manifolds and Kihler differential geometry

8.5.1 Definitions

Definition 8.4. A Kihler manifold is a Hermitian manifold (M, g) whose Kahler
form 2 is closed: dS2 = 0. The metric g is called the Kihler metric of M.
[Warning: Not all complex manifolds admit Kahler metrics.]



Theorem 8.5. A Hermitian manifold (M, g) is a Kahler manifold if and only if
the almost complex structure J satisfies

VuJ =0 (8.80)

where V, is the Levi-Civita connection associated with g.

Proof. We first note that for any r-form w, dw is written as
1
dw =Vo = —'Vﬂa)ul,,,vr dx* Adx"t AL AdxY. (8.81)
r!

[For example,

VQ = 1V Quudxt A dx® Adx”
= 22w — T Qv — M0 Qi) dx™ A dx# A dx?
= 39, Qudxt A dx A dx? = dQ
since I" is symmetric.] Now we prove that V,,J = 0 if and only if V,,Q = 0. We
verify the following equalities:

(VzZ)(X,Y) =Vz[QX, V)] - Q(VzX,Y) — Q(X, VzY)
=VzI[g(UX, V)] -g(JVzX,Y) —g(JX,VzY)
=(Vze)(UX,Y)+g(VzJX,Y)—g(UVzX,Y)
=g(VzJX —JVzX,Y) =g((Vz])X,Y)

where Vzg = 0 has been used. Since this is true for any X, Y, Z, it follows that
VzQ =0ifandonlyif VzJ = 0. O

Theorems 8.4 and 8.5 show that the Riemann structure is compatible with
the Hermitian structure in the Kahler manifold.
Let g be a Kahler metric. Since d$2 = 0, we have
(@ + d)iguy dz* A dz"
= i0,.guv dz* A dz A dZ” +id5gur T A 2 A dZ
= 3i(02.8uv — dugav) dz* A dzH A dZ”

+ 51w — dyg,7) A8 A d" AdZY =0
from which we find

0guv _ g\ 8g_ui _ 38_,1; (8.82)
az* dzH a7 07




Suppose that a Hermitian metric g is given on a chart U; by
guv = 0,05 K (8.83)

where KC; € F(U;). Clearly this metric satisfies the condition (8.82), hence it is
Kahler. Conversely, it can be shown that any Kahler metric is locally expressed
as (8.83). The function K; is called the Kihler potential of a Kahler metric. It
follows that = i99/C; on U;.
Let (U;, ¢;) and (Uj, ¢;) be overlapping charts. On U; N U, we have
d d o 0

az_/’t 82” K:,' dZM ® dzv = WWK:/ dw“ ® dw’g

where z = ¢;(p) and w = ¢;(p). It then follows that

gw*owf 9 9 . 2 D
9z¢ 97" Juw gwP 1 9zt 9T

Ki. (8.84)

This is satisfied if and only if ;(w, w) = K;(z,2) + ¢ (z) + ¥ (z) where ¢;;
(i) is holomorphic (anti-holomorphic) in z.

Exercise 8.8. Let M be a compact Kahler manifold without a boundary. Show
that
Q"=QA...AQ
—

m

is closed but not exact where m = dimgc M [Hint: Use Stokes’ theorem.] Thus,
the 2mth Betti number cannot vanish, 52" > 1. We will see later that b>? > 1 for
I<p=<m.

Example 8.6. Let M = C" = {(z',...,z™)}. C" is identified with R*" by the
identification z* — x* +iy*. Let § be the Euclidean metric of R*"

a a ad a
Sl == ) =5 = ) =8
dxH  dxV ayt - dyv
a a
|l—,— ) =0
dxH  ayV

Noting that J3/dx* = 9/dy* and J3/dy* = —0/0x*, we find that § is a
Hermitian metric. In complex coordinates, we have

0 0 J d
0l—, — |=0l—=—=])=0
oz’ 9z A Fad

3 0 3 0 1
|l—, = )=6—=7, — ) = =80
<azﬂ 32”> (azu 31”) 2 1

(8.85a)

(8.85b)



The Kahler form is given by
i m i m
— BoAdeh — = Iz Iz
Q_zxdz AdzZ _2de A dyH, (8.86)
u= p=

Clearly, d2 = 0 and we find that the Euclidean metric § of R2™ is a Kahler metric
of C". The Kéhler potential is

K=3) 27" (8.87)
The Kahler manifold C" is called the complex Euclid space.

Example 8.7. Any orientable complex manifold M with dim¢c M = 1 is Kahler.
Take a Hermitian metric g whose Kahler form is 2. Since €2 is a real two-form, a
three-form d€2 has to vanish on M. One-dimensional compact orientable complex
manifolds are known as Riemann surfaces.

Example 8.8. A complex projective space CP™ is a Kahler manifold. Let
(Uy, ¢o) be a chart whose inhomogeneous coordinates are ¢y (p) = g(”a), vV # o
(see example 8.3). It is convenient to introduce a tidier notation {{" )|l < v <
m} by

w=0"w sa-1 My =0" za. (888

{¢V @)} is just a renaming of {§")}. Define a positive-definite function

m m—+1 ZU 2
Ka(P) =) 18" @PP+1=)"|= (8.89)
v=I v=1
Atapoint p € Uy, N Up, Ko(p) and Kg(p) are related as
2
Ke(p) = r Kg(p). (3.90)
Then it follows that
b2 zP
log Ky =logKpg +log — +log —. (8.91)
¢ z

Since z# /z* is a holomorphic function, we have 8 log z# /z* = 0. Also
dlogzP /7% = dlogzh /7% = 0.

Then it follows that B B
00 logKy = 001og Kpg. (8.92)



A closed two-form €2 is locally defined by
Q=100 log Ky. (8.93)

There exists a Hermitian metric whose Kihler form is . Take X,Y €
T,CP" and define g : T,CP" ® T,CP" — Rbyg(X,Y) = Q(X,JY). To
prove that g is a Hermitian metric, we have to show that g satisfies (8.50) and is
positive definite. The Hermiticity is obvious since g(J X, JY) = —Q(JX,Y) =
QY,JX) = g(X,Y). Next, we show that g is positive definite. On a chart
(Uq, o), We obtain )

Q=202 o g (8.94)
8{“8{
where we have dropped the subscript («) to simplify the notation. If we substitute
the expression (8.89) for K on U, we have

e Sl — o
Q_IZ (Z|§-A|2+1)2

de* A dz’. (8.95)
TRV

Let X be a real vector, X = X"9/a¢" +X"0/9c" and JX = iX"9/9c" —
iX"9/07". Then
Su(L 1P+ D) —¢1g”
21 1)2 XX
QLM+ 1)

gX.X)=Q(X.JX)=2)

J7RY)
2 -2
=2[Z|X“|2<Z|m2+1)— > Xk KD;HZH)
1% A 1% A
From the Schwarz inequalityZ|X“| Z|§ 1? Z|X“§ 1%, we find the

metric g is positive definite. ThlS metric is called the Fublm—Study metric of
Cp".

A few useful facts are:

(a) S? is the only sphere which admits a complex structure. Since S* ~ CP!, it
is a Kahler manifold.

(b) A product of two odd-dimensional spheres 21 x §2"*1 always admits a
complex structure. This complex structure does not admit a Kahler metric.

(c) Any complex submanifold of a Kahler manifold is Kahler.

8.5.2 Kaibhler geometry
A Kabhler metric g is characterized by (8.82):

08uv _ 98w 08uv 38,5

az* dzH a7 07"



This ensures that the Kahler metric is forsion free:
T 0 = ¢ (08,6 — 08,8) =0 (8.96a)
T = " (dzgwe — dvgme) = 0. (8.96b)

In this sense, the Kahler metric defines a connection which is very similar to the
Levi-Civita connection. Now the Riemann tensor has an extra symmetry

RSy = —05(8" 0ug;p) = —05(e" r8,5) = R \uaw (8.97)
as well as those obtained from (8.97) by known symmetry operations,
RFXEU = RFEXV’ Rkkﬁv = Rkvﬁ)u RFXMV = RFWL} (8.98)

The Ricci form R is defined as before,
R = —idyd, log G dz" A dzZ".

Because of (8.97), the components of the Ricci form agree with Ric,v; Ry =
R*cuv = R v = Ricyy. If Ric =R = 0, the Kihler metric is said to be Ricci
flat.

Theorem 8.6. Let (M, g) be a Kiahler manifold. If M admits a Ricci flat metric A,
then its first Chern class must vanish.

Proof. By assumption, SR = 0 for the metric #. As was shown in the previous
section, R(g) — R(h) = R(g) = dw. Hence, c;(M) computed from g agrees
with that computed from / and hence vanishes. d

A compact Kahler manifold with vanishing first Chern class is called a
Calabi-Yau manifold. Calabi (1957) conjectured that if c¢; (M) = 0, the Kahler
manifold M admits a Ricci-flat metric. This is proved by Yau (1977). Calabi—Yau
manifolds with dimc M = 3 have been proposed as candidates for superstring
compactification (see Horowitz (1986) and Candelas (1988)).

8.5.3 The holonomy group of Kihler manifolds

Before we close this section, we briefly look at the holonomy groups of Kahler
manifolds. Let (M, g) be a Hermitian manifold with dimc M = m. Take a
vector X € T,M™ and parallel transport it along a loop ¢ at p. Then we end up
with a vector X’ € T,,MJr where X * = XH*h,*. Note that V does not mix the
holomorphic indices with anti-holomorphic indices, hence X’ has no components
in T, M~. Moreover, V preserves the length of a vector. These facts tell us that
(h."(c)) is contained in U(m) C O(2m).

Theorem 8.7. If g is the Ricci-flat metric of an m-dimensional Calabi—Yau
maifold M, the holonomy group is contained in SU(m).



Figure 8.5. X € T, M T is parallel transported along pgrs and comes back as a vector
X' eT,M*.

Proof. Our proof is sketchy. If X = X"9/3z" € T,M™ is parallel transported
along the small parallelogram in figure 8.5 back to p, we have X’ € T, M whose
components are (cf (7.44))

X'® = X" 4 XVRE 65 (8.99)

from which we find -
ht =68,"+ R"Mxe’(é . (8.100)

U(m) is decomposed as U(m) = SU(m) x U(1) in the vicinity of the unit element.
In particular, the Lie algebra u(m) = T,(U(m)) is separated into

u(m) = su(m) @ u(l). (8.101)

su(m) is the traceless part of u(m) while u(1) contains the trace. Since the present
metric is Ricci flat, the u(1) part vanishes,

RKK”jé‘Mgv = %ugsﬂgv =0.

This shows that the holonomy group is contained in SU(m). [Remark: Strictly
speaking, we have only shown that the restricted holonomy group is contained in
SU(m). This statement remains true even when M is multiply connected.] a

8.6 Harmonic forms and 3-cohomology groups
The (r, S)th 3-cohomology group is defined by

Hg’S(M) = Z%S(M) /Bg“‘ (M). (8.102)



An element [w] € ng,s (M) is an equivalence class of d-closed forms of bidegree

(r, s) which differ from w by a 9-exact form,
(@] ={n e Q" (M)|dn=0,0—n =03y, ¥ € Q" L(M)). (8.103)

Clearly Hg’S(M) is a complex vector space. Similarly to the de Rham

cohomology groups, the 5—cohom910gy groups of C" are trivial, that is, all the
closed (r, s)-forms are exact. The d-cohomology groups measure the topological
non-triviality of a complex manifold M.

8.6.1 The adjoint operators 3" and 5T

Let M be a Hermitian manifold with dim¢ M = m. Define the inner product
between a, B € Q" (M) (0 <r,s <m)by

(@ B) = / o AFB (8.104)
M

where * : Q" (M) — Q"7""75(M) is the Hodge * defined by
¥ =B =B (8.105)

where *8 is computed according to (7.173) extended to Q" (M )(C. [Remark: *
maps an (r, s)-form to an (m — s, m — r)-form since it acts on a basis of Q"*(M),
up to an irrelevant factor, as

M1 M V1 Vs~ oMM _ _ V1D
sdz"M AL oAdZPT AdZTEP AL AdZYS ~ e "Myt T &

h SVs-%—]---Vm
x dz L AL A dZR A dZY T AL AdZY .

Note that the above e-symbols are the only non-vanishing components in a
Hermitian manifold. Now it follows that % : Q"5 (M) — Q" ""=5(M).]

We define the adjoint operators 87 and 3 ofdandd by

@ 38) = @0, f)  (a,3B) = (@ a B). (8.106)

The operators 3" and 3 change the bidegrees as 87 : Q"5 (M) — Q'~L5(M)
and 3 : QS (M) — QN (M). Clearly d = 37 + 3 Noting that a
complex manifold M is even dimensional as a differentiable manifold, we have
(see (7.184a))

di = — xd=x*. (8.107)

Proposition 8.3.

ot

ot = — % 0%, ' = — %0 x%. (8.108)



Proof. Let w € Q’_I’S_(M) and ¥ € Q" S(M). If we note that w A ¥y €
Qm=Lm (M) and hence d(w A ¥¥) = 0, we find that

d@AFY) =@ AFY) = do AFY + (=)l A dyY)
=9 AFY 4+ (=) T lo A (=) P IRFIGY)
= 0w AFY 4+ @ A FFIFY (8.109)
where use has been made of the facts 3%y € Q2" S~1(M), ¥x8 = * % § and

(7.176a). If (8.109) is integrated over a compact complex manifold M with no
boundary, we have

0= 0w, V) + (w, FIFY).

The second term is

(w, %OFY) = (w, % * Y) = (@, %0 * V).

We finally find 0 = (dw, ¥) + (w, %3 * ¥), namely 3" = — % 3. The other
formula 5T = — % J follows similarly. d

As a corollary of proposition 8.3, we have
@H2 =@ =o. (8.110)

8.6.2 Laplacians and the Hodge theorem
Besides the usual Laplacian A = (dd" 4 dfd), we define other Laplacians A and
Azona Hermitian manifold,
Ay=@+3)2=03"+3"0 (8.111a)
As=@+9)2 =090 +39. (8.111b)
An (r, s)-form w which satisfies Ayw = 0 (Azw = 0) is said to be d-harmonic

(3-harmonic). If Ajw = 0 (Azw = 0), w satisfies do = 3w =00w = 5Ta) =
0).
We have the complex version of the Hodge decomposition. Let Harmgs (M)

be the set of d-harmonic (r, s)-forms,
Harm%s(M) ={we Q”(M)lAga) = 0}. (8.112)

Theorem 8.8. (Hodge’s theorem) ©2>*(M) has a unique orthogonal decomposi-
tion:

QS (M) =3 (M) @3 Q0 (M) @ Harm>* (M) (8.113a)



namely an (r, s)-form w is uniquely expressed as

w=3a+3 p+y (8.113b)

where o € Q1 (M), B € QT (M) and y € Harm%S(M).

The proof is found in lecture 22, Schwartz (1986), for example. If w is o-
closed, we have 3w = 33'8 = 0. Then 0 = (8,33 ) = (3 .3 ) > 0
implies 5T,B = 0. Thus, any closed (7, s)-form w is written as ® = y + A,
a € Q™71 (M). This shows that ng,s M) C Harm%s (M). Note also that
Harmgs(M) C ZgS(M) since 9y = 0 for y € Harmgs(M). Moreover,
Harm%S(M) N Bg’S(M) = { since Bg’S(M) = 9Q"™~ (M) is orthogonal to
Harmgs(M). Then it follows that Harmgs(M) = HBfS(M). If P: Q5 (M) —
Harrngs (M) denotes the projection operator to a harmonic (r, s)-form, [w] €
Hg’S(M ) has a unique harmonic representative Pow € Harmgs (M).

8.6.3 Laplacians on a Kéhler manifold

In a general Hermitian manifold, there exist no particular relationships among
the Laplacians A, Ay and Az. However, if M is a Kahler manifold, they are
essentially the same. [Note that the Levi-Civita connection is compatible with the
Hermitian connection in a Kédhler manifold.]

Theorem 8.9. Let M be a Kahler manifold. Then
A =275 =2A3. (8.114)

The proof requires some technicalities and we simply refer to Schwartz
(1986) and Goldberg (1962). This theorem puts constraints on the cohomology

groups of a Kihler manifold M. A form w which satisfies dw = éTa) =0
also satisfies 9w = d'w = 0. Let w be a holomorphic p-form; dw = 0.

Since w contains no dz* in its expansion, we have 5Ta) = 0, hence Azw =
(5 5T + 5T5)a) = 0. According to theorem 8.9, we then have Aw = 0, that is any
holomorphic form is automatically harmonic with respect to the Kahler metric.
Conversely Aw = 0 implies dw = 0, hence every harmonic form of bidegree
(p, 0) is holomorphic.

8.6.4 The Hodge numbers of Kiihler manifolds

The complex dimension of HZ®(M) is called the Hodge number »"*. The
cohomology groups of a complex manifold are summarized by the Hodge



diamond,

pm.m

bm,m—l bm—l,m

b0 pm=lil . plm=l p0m 1 (8.115)

bl,O bO,l
bO’O

These (m + 1)? Hodge numbers are far from independent as we shall see later.

Theorem 8.10. Let M be a Kahler manifold with dimc M = m. Then the Hodge
numbers satisfy

(a) b = b7 (8.116)
(b) b = pmrmes, (8.117)

Proof. (a) If w € Q"*(M) is harmonic, it satisfies Azw = Ayw = 0. Then the
(s, r)-form @ is also harmonic, Azw = 0 since Azw = Ajw = Azw = 0 (note
that Ay = Agz). Thus, for any harmonic form of bidegree (7, s), there exists a
harmonic form of bidegree (s, ) and vice versa. Thus, it follows that b™* = b*-",
(b) Let w € Q"5(M) and ¢ € Hgir’mﬂ (M). Then @ A 1 is a volume element
and it can be shown (Schwartz 1986) that [, y @ A ¥ defines a non-singular
map Hg’S(M ) X Hé"fr’mfs(M ) — C, hence the duality between Hg’S(M ) and

Hg"_”m_s(M). This shows that Hg’S(M) is isomorphic to Hg"_r’m_s(M) as a
vector space and it follows that dimc ng,s (M) = dimc Hglir’mfs (M) hence

br,S — bmfr,mfs. D

Accordingly, the Hodge diamond of a Kahler manifold is symmetric about
the vertical and horizontal lines. These symmetries reduce the number of
independent Hodge numbers to (%m + D2 if m is even and %(m + D(m + 3)
if m is odd.

In a general Hermitian manifold, there are no direct relations between the
Betti numbers and the Hodge numbers. If M is a Kahler manifold, however,
theorem 8.11 establishes close relationships between them.

Theorem 8.11. Let M be a Kéhler manifold with dimc M = m and oM = 0.
Then the Betti numbers b? (1 < p < 2m) satisfy the following conditions;

@ b= ) b (8.118)
r4s=p
® b liseven (1<p=<m) (8.119)

) b7 >1 (1<p<m) (8.120)



Proof. (a) Hg’S(M ) is a complex vector space spanned by Az-harmonic (r, 5)-
forms, Hg’S(M) = {[wllo € Q" (M), Azw = 0}. Note also that, H?(M)
is a real vector space spanned by A-harmonic p-forms, H”(M) = {[w]lw €
QP (M), Aw = 0}. Then the complexification of H?” (M) is Hf”(M)(C = {[w]|w €
QP (M)C, Aw = 0}. Since M is Kihler, any form w which satisfies Azw = 0 also
satsifies Aw = 0 and vice versa. Since

QP(M)C = Bpp5—p Q" (M)
we find that
I'Ip(]W)(C == @r-{—s:pHr’S (M)

Noting that dimg H?(M) = dim¢c H? (M)C, we obtain b? = 3 b,

(b) From (a) and (8.116), it follows that

b2p71 — Z s =2 Z b,

r+s=2p—1 r+s=2p—1
r>s

r+s=p

Thus, 52~ must be even.
(c) The crucial observation is that the Kéahler form € is a closed real two-
form, dS2 = 0, and the real 2 p-form

QP =QA...AQ
—_———
p

is also closed, d2” = 0. We show that Q7 is not exact. Suppose Q2P = dn for
some 7 € Q2P~1(M). Then Q" = Q" P A QP =d (Q" P An). It follows from
Stokes’ theorem that

/ Qm = / Q" An) = f Q" P Ay =0.
M M oM

Since the LHS is the volume of M, this is in contradiction. Thus, there is at least
one non-trivial element of H2P (M) and we have proved that b*? > 1. O

If a Kahler manifold is Ricci flat, there exists an extra relationship among
the Hodge numbers, which further reduces the independent Hodge numbers, see
Horowitz (1986) and Candelas (1988).

8.7 Almost complex manifolds

This and the next sections deal with spaces which are closely related to complex
manifolds. These are somewhat specialized topics and may be omitted on a first
reading.



8.7.1 Definitions

There are some differentiable manifolds which carry a similar structure to
complex manifolds. To study these manifolds, we somewhat relax the condition
(8.16) and require a weaker condition here.

Definition 8.5. Let M be a differentiable manifold. The pair (M, J), or simply
M, is called an almost complex manifold if there exists a tensor field J of type
(1, 1) such that at each point p of M, Jg = —idrpM. The tensor field J is also
called the almost complex structure.

Since J 5 = —idTp M, Jp has eigenvalues %i. If there are m 4 i, then there
must be an equal number of —i, hence J), is a 2m x 2m matrix and J; = —Dy.
Thus, M is an even-dimensional manifold. Note that not all even-dimensional
manifolds are almost complex manifolds. For example, S* is not an almost
complex manifold (Steenrod 1951). Note also that we now require a weaker
condition Jg = —Iu. Of course, the tensor J, defined by (8.16) satisfies
J 3 = — I, hence a complex manifold is an almost complex manifold. There
are almost complex manifolds which are not complex manifolds. For example, it
is known that S® admits an almost complex structure, although it is not a complex
manifold (Frohlicher 1955).

Let us complexify a tangent space of an almost complex manifold (M, J).
Given a linear transformation J,, at 7, M such that J 5 = —I,, weextend J, to a

C-linear map defined on 7, M©. J, defined on 7, M also satisfies Jg = —Dun,
X +iY) = DX +iJ)Y = =X +i(=Y) = (X +iY)

where X,Y € T,M. Let us divide TPM(C into two disjoint vector subspaces,
according to the eigenvalue of J,,

T,MC =T,M* & T,M~ (8.121)

where
TyM* ={Z e T,M"|J,Z = £iZ). (8.122)

Any vector V € TpM(C is written as V. = W; + W», where W, W» € TpM+.
Note that J,V = iW; — iW,. At this stage the reader might have noticed that we
can follow the classification scheme of vectors and vector fields developed for the
complex manifolds in section 8.2. In fact, the only difference is that on a complex
manifold the almost complex structure is explicitly given by (8.18), while on
an almost complex manifold, it is required to satisfy the less strict condition
J 5 = — ;. To classify the complexified tangent spaces and complexified vector

spaces, we only need the latter condition. Accordingly, we separate 7, M C into
TpMi and X(M)C into X(M)*, although there does not necessarily exist a basis



of T,M™ of the form {3/3z"}. For example, we may still define the projection

operators
P = Lidr,m FiJp) : T,MC — T,M*. (8.123)

We call a vector in T, M + (T, M ™) a holomorphic (anti-holomorphic) vector and
a vector field in X(M)™* (X(M)™) a holomorphic (anti-holomorphic) vector field.

Definition 8.6. Let (M, J) be an almost complex manifold. If the Lie bracket of
any holomorphic vector fields X, ¥ € X (M) is again a holomorphic vector field,
[X,Y] € XT(M), the almost complex structure J is said to be integrable.

Let (M, J) be an almost complex manifold. Define the Nijenhuis tensor
field N : X(M) x X(M) — X(M) by

NX,Y)=[X,YI+JJX, Y]+ JIX,JY]-[JX,JY]. (8.124)

Given a basis {e# = 9/0x"} and the dual basis {dx*}, the almost complex
structure is expressed as J = J,”dx* ® d/dx". The component expression
of N is

N(X,Y) = (X 3Y* =Y 0,X")e,
+ BT X 0, Y — Y8, (J X ) ey
+ LMX 9 (JPYE) = T YR, X ey
— (X5, (LYY = YR, (LM XM ey
= X Y [ L @I + BH @O L)
— MBI + L@ T e (8.125)

Thus, N is indeed linear in X and Y and hence a tensor. If J is a complex
structure, J is given by (8.18) and the Nijenhuis tensor field trivially vanishes.

Theorem 8.12. An almost complex structure J on a manifold M is integrable if
and only if N(A, B) =0 forany A, B € X(M).

Proof. LetZ =X +iY,W =U +1iV € DC(M)(C. We extend the Nijenhuis tensor
field so that its action on vector fields in (M) is given by

N(Z, W) =[Z, W]+ J[JZ, W+ J[Z,IW] = [JZ, JW]
={N(X,U) = N(Y, V)} +i{N(X, V) + N(Y, U)}. (8.126)

Suppose that N(A, B) = 0 for any A, B € X(M). From (8.126), it turns
out that N(Z, W) = 0 for Z, W € XC(M). Let Z, W € Xt (M) c X(M)C.
Since JZ =iZ and JW =iW, we have N(Z, W) = 2{[Z, W] +iJ[Z, W]}. By
assumption, N(Z, W) = 0 and we find [Z, W] = —iJ[Z, W] or J[Z, W] =



i[Z, W], that is, [Z, W] € X+(M). Thus, the almost complex structure is
integrable.

Conversely, suppose that J is integrable. Since XC(M) is a direct sum of
Xt (M) and X~ (M), we can separate Z, W € XC(M) as Z = Zt + Z~ and
W = W' + W~. Then

NZ,W)=NZ ", WH+NZT,W)H+NZ  ,WH+NZ,W).

Since JZ* = 4iZ* and JW* = £iW™®, it is easy to see that N(Zt, W™) =
N(Z~—, WT) = 0. We also have

N@Zt, WH = [zt W+ Jlizt, WH+ J[ZT, iwt] = [iZz1,iwT]
=2[ZF, Wr=2[ZzT,Wt]=0

since J[ZT, W] = i[Z+, WT]. Similarly, N(Z~, W™) vanishes and we have
shown that N(Z, W) = 0forany Z, W € xC (M). In particular, it should vanish
for Z, W € X(M). O

If M is a complex manifold, the complex structure J is a constant tensor
field and the Nijenhuis tensor field vanishes. What about the converse? We now
state an important (and difficult to prove) theorem.

Theorem 8.13. (Newlander and Nirenberg 1957) Let (M, J) be a 2m-dimensional
almost complex manifold. If J is integrable, the manifold M is a complex
manifold with the almost complex structure J.

In summary we have:

Integrable almost _ Vanishing Nijenhuis — Complex manifold.
complex structure tensor field

8.8 Orbifolds

Let M be a manifold and let G be a discrete group which acts on M. Then the
quotient space ' = M/G is called an orbifold. As we will see later there are
fixed points in M, which do not transform under the action of G. These points
are singular and the orbifold is not a manifold in general. Thus, even though we
start with a simple manifold M, the orbifold M /G may have quite a complicated
topology.

8.8.1 One-dimensional examples

To obtain a concrete idea, let us consider a simple example. Take M = R? which
is to be identified with the complex plane C. Let us take G = Z3 and identify
the points z, e>"/3z and e*"1/3z. The orbifold M/G consists of a third of the



Figure 8.6. The orbifold C/Z3 is a third of the complex plane. The edges of the orbifold
are identified as shown in the figure. V becomes a vector V after parallel transportation
along C. The angle between V and V is 27 /3.

complex plane and after the identification of the edges we end up with a cone,
see figure 8.6. It is interesting to see what the holonomy group of this orbifold
is. We use the flat connection induced by the Euclidean metric of C. Then, after
the parallel transport of a vector V along the loop C (this is indeed a loop!), we
obtain a vector V which is different from V after the identification. Observe that
the angle between V and V is 277/3. It is easy to verify that the holomony group
is Z3. Since the holonomy is trivial for the loop Cp which does not encircle the
origin, we find that the curvature is singular at the origin (recall that the curvature
measures the non-triviality of the holonomy, see section 7.3). In general the fixed
points (the origin in the present case) are singular points of the curvature. Note,
however, that C/Z3 is a manifold since it has an open covering homeomorphic to
R2.

A less trivial example is obtained by taking the torus as the manifold. We
identify the points z and z + m + ne'™3 (m,n € Z) in the complex plane; see
figure 8.7(a). If we identify the edges of the parallelogram OPQR, we have the
torus T2. Let Z3 acton T2 as « : z > e27/3z. We find that there are three
inequivalent fixed points z = (n/+/3)e”/% where n = 0, 1 and 2. This orbifold
I' = C/Zj5 consists of two triangles surrounding a hollow; see figure 8.7(b). If
the flat connection induced by the flat metric of the torus is employed to define the
parallel transport of vectors, we find that the holonomy around each fixed point is
73.



RAFI/:‘!

SN

1

/S
Figure 8.7. Under the action of Z3, points of the torus T2 are identified. The shaded area

is the orbifold I' = T2 /Z3. If the edges of the orbifold are identified, we end up with the
object in figure 8.7(b), which is homeomorphic to the sphere 52,

Figure 8.8. The conical singularity. The origin does not look like R” or C".

8.8.2 Three-dimensional examples

Orbifolds with three complex dimensions have been proposed as candidates for
superstring compactification. The detailed treatment of this subject is outside the
scope of this book and the reader should consult Dixson et al (1985, 1986) and
Green et al (1987).

Let T = C?/L be a three-dimensional complex torus, where L is a lattice
in C3. For definiteness, let (z1, 22, z3) be the coordinates of C® and identify z;
and z; +m + ne” i/3 Under this identification, T is identified with a product of
three tori, T = T} x T» x T3. T admits, as before, the action of Z3 defined



by @ z; — 62”1/31,'. If each z; takes one of the values O, (1/«/5)61”/6,
(2/+/3)e™/°, the action of « leaves the point (z;) invariant. Thus, there are
33 = 27 fixed points in the orbifold. In the present case, the fixed point is a
conical singularity (figure 8.8) and the orbifold cannot be a manifold. [Remarks:
The appearance of the conical singularity can be understood more easily from a
simpler example. Let (x,y) € C? and let Z, act on C2 as (x,y) — =+(x, y).
Then the orbifold I' = C2/Z, has a conical singularity at the origin. In fact, let
[(x, )] = (x2, xy, y?) = (X, Y, Z) be an embedding of I" in C>. Note that X, ¥
and Z satisfy a relation Y> = X Z. If X, Y and Z are thought of as real variables,
this is simply the equation of a cone.]



FIBRE BUNDLES

A manifold is a topological space which looks locally like R”, but not necessarily
so globally. By introducing a chart, we give a local Euclidean structure to a
manifold, which enables us to use the conventional calculus of several variables.
A fibre bundle is, so to speak, a topological space which looks locally like a direct
product of two topological spaces. Many theories in physics, such as general
relativity and gauge theories, are described naturally in terms of fibre bundles.

Relevant references are Choquet-Bruhat ez al (1982), Eguchi et al (1980) and
Nash and Sen (1983). A complete analysis is found in Kobayashi and Nomizu
(1963, 1969) and Steenrod (1951).

9.1 Tangent bundles

For clarification, we begin our exposition with a motivating example. A tangent
bundle T M over an m-dimensional manifold M is a collection of all the tangent
spaces of M:

™™ = | T,M. 9.1)
PEM

The manifold M over which T'M is defined is called the base space. Let {U;} be
an open covering of M. If x* = ¢;(p) is the coordinate on U;, an element of

U = | ) .M
peU;

is specified by a point p € M and a vector V = VH¥(p)(d/dx")|, € TyM.
Noting that U; is homeomorphic to an open subset ¢(U;) of R™ and each
T,M is homeomorphic to R", we find that TU; is identified with a direct
product R” x R™ (figure 9.1). If (p, V) € TU;, the identification is given by
(p, V) = (x*(p), V¥(p)). TU; is a 2m-dimensional differentiable manifold.
What is more, 7' U; is decomposed into a direct product U; x R™. If we pick up
a point # of TU;, we can systematically decompose the information u contains
into a point p € M and a vector V € T,M. Thus, we are naturally led to the
concept of projection 7 : TU; — U; (figure 9.1). For any pointu € TU;, w(u)
is a point p € U; at which the vector is defined. The information about the vector



T,M=Rm

U,

p
M——"’/
Ui=Rm

Figure 9.1. A local piece TU; ~ R™ x R™ of a tangent bundle T M. The projection 7
projects a vector V € Tp M to p.

is completely lost under the projection. Observe that 7~ !(p) = TyM. In the
context of the theory of fibre bundles, T}, M is called the fibre at p.

It is obvious by construction that if M = R™, the tangent bundle itself is
expressed as a direct product R x R". However, this is not always the case
and the non-trivial structure of the tangent bundle measures the topological non-
triviality of M. To see this, we have to look not only at a single chart U; but also
at other charts. Let U; be a chart such that U; N U; # ¥ and let y* = {/(p) be
the coordinates on U;. Take a vector V € T, M where p € U; N U;. V has two
coordinate presentations,

0 -0
V= V“—M = V“—M . 9.2)
ax » ay »
It is easy to see that they are related as
~ ayY
VY= Vi, 9.3
T (P) 9.3)

For {x"} and {y"} to be good coordinate systems, the matrix (Gl‘i) = (dy"/ox")
must be non-singular: (Gl‘i) € GL(m, R). Thus, fibre coordinates are rotated
by an element of GL(m, R) whenever we change the coordinates. The group
GL(m,R) is called the structure group of TM. In this way fibres are
interwoven together to form a tangent bundle, which consequently may have quite
a complicated topological structure.

We note en passant that the projection  can be defined globally on M. It
is obvious that 7 () = p does not depend on a special coordinate chosen. Thus,
m: TM — M is defined globally with no reference to local charts.



Let X € X(M) be a vector field on M. X assigns a vector X|, € T,M
at each point p € M. From our viewpoint, X is looked upon as a smooth map
M — T M. This map is not utterly arbitrary since a point p must be mapped to
apoint u € TM such that 7(u) = p. We define a section (or a cross section)
of TM as a smooth map s : M — TM such that ¥ o s = idy. If a section
s; : U; — TU; is defined only on a chart U, it is called a local section.

9.2 Fibre bundles

The tangent bundle in the previous section is an example of a more general
framework called a fibre bundle. Definitions are now in order.

9.2.1 Definitions

Definition 9.1. A (differentiable) fibre bundle (E, w, M, F, G) consists of the
following elements:

(i) A differentiable manifold E called the total space.

(ii) A differentiable manifold M called the base space.

(iii) A differentiable manifold F called the fibre (or typical fibre).

(iv) A surjection 7 : E — M called the projection. The inverse image
7 (p) = F, = F is called the fibre at p.

(v) A Lie group G called the structure group, which acts on F on the left.
(vi) A set of open covering {U;} of M with a diffeomorphism ¢; : U; x F —
7~ 1(U;) such that 7 o ¢i(p, f) = p. The map ¢; is called the local
trivialization since ¢, ! maps 7~ YU;) onto the direct product U; x F.
(vii) If we write ¢;(p, f) = ¢ip(f), the map ¢;, : F — F,is a
diffeomorphism. On U; N U; # @, we require that ¢;; (p) = ¢;; odjp:
F — F be an element of G. Then ¢; and ¢; are related by a smooth map
tij :UiNUj — G as (figure 9.2)

¢j(p, ) = ¢i(p. 1ij(p) f)- 9.4

The maps #;; are called the transition functions.

[Remarks: We often use a shorthand notation E —> M or simply E to denote a
fibre bundle (E, 7, M, F, G).

Strictly speaking, the definition of a fibre bundle should be independent of
the special covering {U;} of M. In the mathematical literature, this definition
is employed to define a coordinate bundle (E, w, M, F, G, {U;}, {¢;}). Two
coordinate bundles (E,, M, F, G, {U;}, {¢i}) and (E, 7w, M, F, G, {V;}, {¢i})
are said to be equivalent if (E, 7w, M, F, G, {U;} U {V;}, {¢:} U {;}) is again a
coordinate bundle. A fibre bundle is defined as an equivalence class of coordinate
bundles. In practical applications in physics, however, we always employ a certain



ti{p) = ¢ip'Bjp f

1) -~

U;n Y

Figure 9.2. On the overlap U; NUj, two elements f;, f; € F are assigned tou € bt (p),
p € Ui NUj. They are related by #;; (p) as f; = 1;;(p) f;.

definite covering and make no distinction between a coordinate bundle and a fibre
bundle.]

We need to clarify several points. Let us take a chart U; of the base space M.
71U is a direct product diffeomorphic to U; x F, ¢l._1 7 W U) > U; x F
being the diffeomorphism. If U; N U; # ¥, we have two maps ¢; and ¢; on
Ui NUj. Let us take a point u such that w7 (u) = p € U; N U;. We then assign
two elements of F', one by ¢, I and the other by qb;],

¢ W =(p. f), 7 @) =(p, f7) ©9.5)

see figure 9.2. There exists amap #;; : U; N U; — G which relates f; and f; as
fi = tij(p) fj. This is also written as (9.4).

We require that the transition functions satisfy the following consistency
conditions:

tii (p) = identity map (p el (9.6a)
ti(p)=ti(p)~" (peUnUj) (9.6b)
tij(p) - tjk(p) = ti(p) ~ (p € UiNU;j N Uy). (9.6¢)

Unless these conditions are satisfied, local pieces of a fibre bundle cannot be glued
together consistently. If all the transition functions can be taken to be identity
maps, the fibre bundle is called a trivial bundle. A trivial bundle is a direct
product M x F.



Given a fibre bundle E —> M , the possible set of transition functions is
obviously far from unique. Let {U;} be a covering of M and {¢;} and {$i} be two
sets of local trivializations giving rise to the same fibre bundle. The transition
functions of respective local trivializations are

1 (p) = ¢, 0 ) p (9.7a)

iy (p) = ;) 0b)p: (9.7b)
Define a map g;(p) : F — F ateach point p € M by

gi(p) =) © ip- 9.8)

We require that g;(p) be a homeomorphism which belongs to G. This
requirement must certainly be fulfilled if {¢;} and {¢;} describe the same fibre
bundle. It is easily seen from (9.7) and (9.8) that

fij(p) = gi(p) " otij(p) o g (p). 9.9)

In the practical situations which we shall encounter later, #;; are the gauge
transformations required for pasting local charts together, while g; corresponds
to the gauge degrees of freedom within a chart U;. If the bundle is trivial, we may
put all the transition functions to be identity maps. Then the most general form of
the transition functions is

ti(p) = g(p) g (p). (9.10)

Let E —— M be a fibre bundle. A section (or a cross section) s : M — E
is a smooth map which satisfies 7 os = idy. Clearly, s(p) = 5|, is an element of
Fp = 771 (p). The set of sections on M is denoted by I'(M, F). If U C M, we
may talk of a local section which is defined only on U. I'(U, F) denotes the set of
local sections on U. For example, I'(M, T M) is identified with the set of vector
fields X' (M). It should be noted that not all fibre bundles admit global sections.

Example 9.1. Let E be a fibre bundle E Z5 s! witha typical fibre F = [—1, 1].
Let Uy = (0,27) and U = (—m, ) be an open covering of S! and let
A = (0,7) and B = (m, 27) be the intersection Uy N Us, see figure 9.3. The
local trivializations ¢; and ¢, are given by

o ) =(0,1), b (w)=(6,1)

for® € A andt € F. The transition function #12(6), 6 € A, is the identity map
t12(0) : t — t. We have two choices on B;

M ¢ @) =6, 0,05 W) = ©,1)
(D) ¢y ') = 0, 1), ¢, ' () = (6, —1)



Uy

B

Figure 9.3. The base space S I"and two charts U; and U, over which the fibre bundle is
trivial.

(a) (b)

Figure 9.4. Two fibre bundles over S I: (@) is the cylinder which is a trivial bundle § s,
(b) is the Mobius strip.

For case (I), we find that 715(6) is the identity map and two pieces of the local
bundles are glued together to form a cylinder (figure 9.4(a)). For case (II), we
have t12(0) : t — —t, 0 € B, and obtain the Mobius strip (figure 9.4(b)). Thus, a
cylinder has the trivial structure group G = {e} where e is the identity map of F
onto F while the Mdbius strip has G = {e, g} where g : t — —t. Since g = e,
we find G = Z,. A cylinder is a trivial bundle S' x F, while the Mdbius strip is
not. [Remark: The group Z, is not a Lie group. This is the only occasion we use
a discrete group for the structure group.]

9.2.2 Reconstruction of fibre bundles

What is the minimal information required to construct a fibre bundle? We now
show that for given M, {U;}, #;; (p), F and G, we can reconstruct the fibre bundle
(E,m, M, F, G). This amounts to finding a unique 7, E and ¢; from given data.
Let us define
XEUU,’ x F. 9.11)
1

Introduce an equivalence relation ~ between (p, f) € U; x F and (q, f') €
Uj x Fby (p, f) ~ (g, f)ifand only if p = g and f" = #;;(p)f. A fibre
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Figure 9.5. A bundle map f : E' — E induces amap f : M’ — M.

bundle E is then defined as

E=X/~. (9.12)
Denote an element of E by [(p, f)]. The projection is given by
7 [(p, Hl = p. (9.13)
The local trivialization ¢; : U; X F — 7~ N U;) is given by
¢i : (p, )= [(p, NI (9.14)

The reader should verify that E, 7 and {¢;} thus defined satisfy all the axioms of
fibre bundles. Thus, the given data reconstruct a fibre bundle £ uniquely.

This procedure may be employed to construct a new fibre bundle from an old
one. Let (E, w, M, F, G) be a fibre bundle. Associated with this bundle is a new
bundle whose base space is M, transition function #; (p), structure group G and
fibre F’ on which G acts. Examples of associated bundles will be given later.

9.2.3 Bundle maps

Let E —> M and E' = M’ be fibre bundles. A smooth map f : E' — E
is called a bundle map if it maps each fibre F ;, of E’ onto F, of E. Then f
naturally induces a smooth map f : M’ — M such that f(p) = ¢ (figure 9.5).
Observe that the diagram

E L E u R )
,,i ln ,,i ln (9.15)
v Lom p N q

commutes. [Caution: A smooth map f : E' — E is not necessarily a bundle
map. It may map u,v € F;, of E' to f(u) and f(v) on different fibres of E so

that 7 (f (1)) # 7 (f (v)).]
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Figure 9.6. Given a fibre bundle £ I M, a map f : N — M defines a pullback bundle
f*E over N.

9.2.4 Equivalent bundles

Two bundles £ ', Mand E 5> M are equivalent if there exists a bundle map
f 1 E' - Esuchthat f : M — M is the identity map and f is a diffeomorphism:

e L E
,,i ln (9.16)
M9y

This definition of equivalent bundles is in harmony with that given in the remarks
following definition 9.1.

9.2.5 Pullback bundles

Let E - M be a fibre bundle with typical fibre F. If amap f : N — M is
given, the pair (E, f) defines a new fibre bundle over N with the same fibre F'
(figure 9.6). Let f*E be a subspace of N x E, which consists of points (p, u)
such that f(p) = w(u). f*E = {(p,u) € N x E|f(p) = w(u)} is called the
pullback of E by f. The fibre F), of f*E is just a copy of the fibre Fy(,) of E. If

we define f*E ILN by m : (p,u) — pand f*E SR E by (p, u) — u, the
pullback f*E may be endowed with the structure of a fibre bundle and we obtain
the following bundle map,

f*E > E (pou) > u

m| |7 m| = | 9.17)

N L owm p Lo
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Figure 9.7. The transition function tl?; of the pullback bundle f*E is a pullback of the
transition function 7;; of E.

The commutativity of the diagram follows since 7w (m2(p, u)) = 7(u) = f(p) =
f (@i (p,u)) for (p,u) € f*E. In particular, if N = M and f = idy, then two
fibre bundles f*E and E are equivalent.

Let {U;} be a covering of M and {¢;} be local trivializations. {f~!(U;)}
defines a covering of N such that f*FE is locally trivial. Take u € E such
that 7 (u) = f(p) € U; for some p € N. If qbl._l(u) = (f(p), fi) we find
1,0171 (p,u) = (p, f;) where y; is the local trivialization of f*E. The transition
function t;; at f(p) € U; N U; maps fj to f; =t;;(f(p))fj. The corresponding
transition function t;;' of f*Eatp e f~Y(U)N f_l(Uj) also maps f; to f;; see
figure 9.7. This shows that

15 (p) = ti; (f(p)). (9.18)

Example 9.2. Let M and N be differentiable manifolds with dimM = dim N =
m. Let f : N — M beasmoothmap. The map f inducesamapny : TN — TM
such that the following diagram commutes:

TN 2 TMm

”‘l |7 9.19)

N LM

Let W = W"9/dy" be a vector of T, N and V = V*9/9x" be the corresponding
vector of Tr(pyM. If TN is a pullback bundle f*(T M), 2 maps T, N to T¢(,) M
diffeomorphically. This is possible if and only if 7> has the maximal rank m at



each point of TN. Let o(f(p)) = (f'(¥),..., f™(y)) be the coordinates of
f(p) in a chart (U, ¢) of M, where y = ¢(p) are the coordinates of p in a chart
(V,¥) of N. The maximal rank condition is given by det(df*(y)/dy") # 0 for
any p € N.

9.2.6 Homotopy axiom

Let f and g be maps from M’ to M. They are said to be homotopic if there
exists a smooth map F : M’ x [0,1] — M such that F(p,0) = f(p) and
F(p,1) = g(p) forany p € M’, see section 4.2.

Theorem 9.1. Let E —— M be a fibre bundle with fibre F and let f and g be
homotopic maps from N to M. Then f*FE and g*FE are equivalent bundles over
N.

The proof is found in Steenrod (1951). Let M be a manifold which is
contractible to a point. Then there exists a homotopy F' : M x I — M such
that

F(p,0)=p F(p,1) = po

where po € M is a fixed point. Let E > M be a fibre bundle over M and
consider pullback bundles 4GE and hiE, where h,(p) = F(p,t). The fibre
bundle /7 E is a pullback of a fibre bundle {po} x F and hence is a trivial bundle:
hiE ~ M x F. However, hjE = E since hy is the identity map. According to
theorem 9.1, hSE = FE is equivalent to h’fE = M x F, hence E is a trivial bundle.
For example, the tangent bundle TR is trivial. We have obtained the following
corollary.

Corollary 9.1. Let E > M be a fibre bundle. E is trivial if M is contractible to
a point.

9.3 Vector bundles

9.3.1 Definitions and examples

A vector bundle E —— M is a fibre bundle whose fibre is a vector space. Let
F be R¥ and M be an m-dimensional manifold. It is common to call k the
fibre dimension and denote it by dim E, although the total space E is m + k
dimensional. The transition functions belong to GL(k, R), since it maps a vector
space onto another vector space of the same dimension isomorphically. If F is a
complex vector space CX, the structure group is GL(k, C).

Example 9.3. A tangent bundle 7M over an m-dimensional manifold M is a
vector bundle whose typical fibre is R, see section 9.1. Let u be a point in
TM such that 7 (u) = p € U; N Uj, where {U;} covers M. Let x* = ¢;(p)



(y* = @;(p)) be the coordinate system of U; (U;). The vector V corresponding
to u is expressedas V = VH*9/dx"|, = v 0/9y*|,. The local trivializations are

¢ '@ =(p, (V) b ) = (p (VM. (9.20)
The fibre coordinates {V/*} and {V*} are related as
V= G*,(p)VY (9.21)

where {G*,(p)} = {(0x*/dy")p} € GL(m,R). Hence, a tangent bundle
is (TM,n, M, R", GL(m, R)). Sections of TM are the vector fields on M,
X(M)=T(M,TM).

For concreteness let us work out 7'S2. Let the pair Ux = §2 — {South Pole}
and Us = §2 — {North Pole} be an open covering of S2. Let (X,Y) and (U, V)
be the respective stereographic coordinates (example 8.1). They are related as

U=X/X*+Y>) V=-Y/X*+Y?. (9.22)
Take u € T'S? such that w(u) = p € UNx N Us. Let ¢n and ¢g be the respective

local trivializations such that ¢y 1(u) = (p, Vﬁf ) and ¢g l(u) = (p, VS“ ). The
transition function is

o(Uu,vVv 1 — i
tsn(p) = ( ) < cos 20 sin 26 ) 9.23)

AX,Y) 12 sin20 —cos26
where we have put X = r cos6 and Y = r sin 6. The transition of the components
of the tangent vectors consists of a rotation of {ViM } by an angle 20 followed by a

rescaling. The reader should verify that s (p) = fsn( p)_l.

Example 9.4. Let M be an m-dimensional manifold embedded in R™+k. Let
N, M be the vector space which is normal to 7, M in R thatis, U -V = 0
with respect to the Euclidean metric in R"** for any U € NpMand V € T, M.
The vector space N, M is isomorphic to R*. The normal bundle

NM = || NyM
peM

is a vector bundle with the typical fibre R¥.

Consider the sphere S> embedded in R*. The normal bundle NS is
imagined as S? whose surface is pierced perpendicularly by straight lines. NS? is
a trivial bundle 52 x R.

A vector bundle whose fibre is one-dimensional (F = R or C) is called a
line bundle. A cylinder S x R is a trivial R-line bundle. A Mobius strip is also a
real line bundle. The structure group GL(1, R) = R— {0} or GL(1, C) = C—{0}
is Abelian.



In the following, we often consider the canonical line bundle L. Recall that
an element p of CP” is a complex line in C**! through the origin (example 8.3).
The fibre 7 ~! (p) of L is defined to be the line in C**! which belongs to p. More
formally, let 1 ntl = Ccpn x €1 be a trivial bundle over CP". If we write an
element of 1" ™! as (p, v), p € CP", v € C"*!, L is defined by

L={(p,v)eI"lv=ap,aeC).
The projection is (p, v) 5.

Example 9.5. The (trivial) complex line bundle L = R3 x C is associated with
the non-relativistic quantum mechanics defined on R3. The wavefunction ¥ (x) is
simply a section of L.

Let us consider a wavefunction ¥ (X) in the field of a magnetic monopole
studied in section 1.9. When a monopole is at the origin, 1 (X) is defined on
R3 — {0} and we have a complex line bundle over R — {0}. If we are interested
only in the wavefunction on 2 surrounding the monopole, we have a complex
line bundle over S2. Note that S2 is a deformation retract of R® — {0}.

9.3.2 Frames

On a tangent bundle 7'M, each fibre has a natural basis {d/dx"} given by the
coordinate system x* on a chart U;. We may also employ the orthonormal basis
{éy} if M is endowed with a metric. 3/3dx* or {&,} is a vector field on U; and the
set {3/3x"} or {¢,} forms linearly independent vector fields over U;. It is always
possible to choose m linearly independent tangent vectors over U; but it is not
necessarily the case throughout M. By definition, the components of the basis
vectors are
a/ox* = (0, ..., 0, 1, 0, ..., 0)

or
ég= O, ..., 0, 1, 0, ..., 0.

These vectors define a (local) frame over U;, see later.

Let E 3> M be a vector bundle whose fibre is R (or C¥). On a chart
U;, the piece 7~ 1(U;) is trivial, 7 ~1(U;) = U; x R¥, and we may choose k
linearly independent sections {e1(p), ..., ex(p)} over U;. These sections are said
to define a frame over U;. Given a frame over U;, we have a natural map F), — F
(=RF or C¥) given by

V =V%,(p) —> {V¥ € F. (9.24)
The local trivialization is

o7 (V) = (p, (VE(P)D). (9.25)



By definition, we have

¢ (p,{0, ..., 0, 1, 0, ..., 0} =eqx(p). (9.26)

Let U; N U; # ¥ and consider the change of frames. We have a frame
{e1(p),...,ex(p)} on U; and {e1(p), ..., éx(p)}on U;, where p € U; NU;. A
vector ég(p) is expressed as

ep(p) = ea(p)G(P)%p (9.27)
where G(p)®g € GL(k, R) or GL(k, C). Any vector V € 7w~ !(p) is expressed as
V = Vq(p) = Veu(p). (9.28)

From (9.27) and (9.28) we find that
Ve =G (p)¥ v (9.29)

where G~ (p)?,G(p)*, = G(p)P,G 1 (p)*, = 8. Thus, we find that the
transition function #;; (p) is given by a matrix G “1(p).

9.3.3 Cotangent bundles and dual bundles

The cotangent bundle 7*M = | peM T;M is defined similarly to the tangent
bundle. On a chart U; whose coordinates are x*, the basis of T;‘M is taken to be

{dx', ..., dx™}, which is dual to {3/dx*}. Let y* be the coordinates of U; such
that U; N U; # @. For p € U; N Uj, we have the transformation,
gyit
dyt = dev (22 . (9.30)
axV »

A one-form w is expressed, in both coordinate systems, as
- B & I3
o =w, dx" =a,dy

from which we find that
oy =Gu"(p)wy (9.31)

where G,”(p) = (0x"/dy"), corresponds to the transition function #;; (p). Note
that T(M, T*M) = Q' (M).

This cotangent bundle is easily extended to more general cases. Given a
vector bundle E 2> M with the fibre F , we may define its dual bundle E* M.
The fibre F* of E* is the set of linear maps of F to R (or C). Given a general basis
{ex(p)} of Fj, we define the dual basis {6%(p)} of F; by (0% (p), eg(p)) = 6%g.



9.3.4 Sections of vector bundles

Let s and s” be sections of a vector bundle E > M. The vector addition and the
scalar multiplication are pointwisely defined as

(s +5)(p) =s(p) +5'(p) (9.32a)
(fs)(p) =f(p)s(p) (9.32b)

where p € M and f € F(M). The null vector O of each fibre is left invariant
under GL(k, R) (or GL(k, C)) and plays a distinguished role. Any vector bundle
E admits a global section called the null section s9 € I'(M, E) such that
(o ! (so(p)) = (p, 0) in any local trivialization.

For example, let us consider sections of the canonical line bundle L over
CP". Let ", be the inhomogeneous coordinates and {z"} be the homogeneous
coordinates on U, . The local section s, over Uy, is of the form

Sy = {so(ﬂ), ey 1, ’g_-n(ﬂ)} € (Cn+l.

The transition from one coordinate system to the other is carried out by a scalar
multiplication: s, = (z*/z")s,. Let L* be the dual bundle of L. Corresponding
to s, we may choose a dual section sz such that s:; (sx) = 1. From this, we find
that the transition function of s, is a multiplication by z"/z*, s7 = (z"/2")s).

A fibre metric £, (p) is also defined pointwisely. Let s and s’ be sections
over U;. The inner product between s and s’ at p is defined by

(s,8)p = hu (p)s™(p)s”" (p) (9.33a)
if the fibre is R¥. If the fibre is C* we define
(5,5 p = R (p)st(p)s”" (p). (9.33b)

We have more about this subject in section 10.4.

9.3.5 The product bundle and Whitney sum bundle

Let E > M and E' 5 M’ be vector bundles with fibres F and F’ respectively.
The product bundle

axm’

EXE —s MxM (9.34)
is a fibre bundle whose typical fibre is F @ F’. [A vector in F @ F’ is written as

<V‘I//) where V. e Fand W € F'.

Vector addition and scalar multiplication are defined by

(o )+ ()= (i)



(0)-(n)

Let {eo} and { fg} be bases of F and F’ respectively. Then {eq} U { fg} is a basis
of F @ F' and we find that dim(F @ F’) = dim F +dim F'.] If 7 (u) = p and
7' (u") = p’ the projection 7 x 7" actson (u, u’) € E x E’ as

7 x 7' (u,u’) = (p, p). (9.35)
The fibre at (p, p) is F), ® F}/’,. For example, if M = M; x M,, we have
TM =TM; x TM,.

Let E > M and E' > M be vector bundles with fibres F and F’
respectively. The Whitney sum bundle E & E’ is a pullback bundle of E x E’
by f: M — M x M defined by f(p) = (p, p),

E®E > ExE
”ll lnxn/ (9.36)
v L omxwm
Thus, E®QE' = {(u,u’) € EXE'|w x7'(u,u’) = (p, p)}. The fibre of a Whitney

sum bundle is F @ F’. (w x 7')~'(p) is isomorphic to 7~ (p) & 7'~ 1(p) =
F, ® F;,. In short, E @ E’ is a bundle over M whose fibre at p is F), ® F;,. Let

{U;} be an open covering of M and {tlf } and {15/} be the transition functions
of E and E’ respectively. Then the transition function 7j; of E @ E’ is a
(dim F + dim F’) x (dim F 4+ dim F’) matrix

tE(p) 0 )
Ti(py=| Y : (9.37)
/ ( 0 1(p

which acts on F @ F’ on the left.

Example 9.6. Let E = TS? and E' = NS? defined in R*. Take u € TS? and
v € NS? whose local trivializations are qbfl (u) =(p, V) and t/ffl W) =(q, W),
respectively, where p, g € S2,V € R and W € R. If (i, v) is a point of the
product bundle E x E’, we have a trivialization ®; j; = ¢; x ¥; such that

<I>7j1 w,v)=(p,q; V,W). (9.38a)

If, however, (u, v) € E @ E’, u and v satisfy the stronger condition 7 (1) = 7’ (v)
(=p, say). Thus, we have

O, v) = (p; V, W), (9.38b)

The Whitney sum TS2@ NS?, §2 being embedded in R3, is a trivial bundle over
52, whose fibre is isomorphic to R3.



9.3.6 Tensor product bundles

Let E —> M and E' —=> M be vector bundles over M. The tensor product
bundle E @ E’ is obtained by assigning the tensor product of fibres F,, ® F ;, to
each point p € M. If {e,} and { fg} are bases of F and F', F ® F' is spanned by
{ex ® fp} and, hence, dim(E ® E') = dim E x dim E’.

Let @ E =E®---Q® E be the tensor product bundle of r E. If {e,} is the
basis of the fibre F of E, the fibre of Q" E is spanned by {ey, ® - - - Q@ eq, }. If we
define A by

eg Neg=ey Qeg—ep ey 9.39)

we have a bundle A"(E) of totally anti-symmetric tensors spanned by {ey, A
... A ey, }. In particular, 2" (M), the space of r-forms on M, is identified with
C(M, A" (T*M)).

Exercise 9.1. Let E{, E> and E3 be vector bundles over M. Show that ® is
distributive:
E1 ® (E2® E3) = (E1 Q E2) @ (E1 Q E3). (9.40)

Express the transition functions of E1 ® (E2 @ F3) in terms of those of Eq, E»
and E3.

9.4 Principal bundles

9.4.1 Definitions

A principal bundle has a fibre F which is identical to the structure group G. A
principal bundle P 5 M is also denoted by P(M, G) and is often called a G
bundle over M.
The transition function acts on the fibre on the left as before. In addition, we
may also define the action of G on F on the right. Let ¢; : U; x G — 7~ N U)
be the local trivialization given by ¢f1(u) = (p, gi), where u € 7~ YU;) and
p = 7 (u). The right action of G on 771 (U;) is defined by q)i_l(ua) = (p, gia),
that is (figure 9.8),
ua = ¢i(p, gia) 941)

forany a € G and u € 7w~ !(p). Since the right action commutes with the
left action, this definition is independent of the local trivializations. In fact, if
peU;NU;,

ua = ¢;j(p, gja) = ¢j(p,tji(p)gia) = ¢i(p, gia).

Thus, the right multiplication is defined without reference to the local
trivializations. This is denoted by P x G — P or (u,a) +— ua. Note that
w(ua) = m(u). The right action of G on P (p) is transitive since G acts on G
transitively on the right and F), = 7~ 1(p) is diffeomorphic to G. Thus, for any
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Figure 9.8. The right action of G on P.

Ui, uy € n’l(p) there exists an element a of G such that u; = uza. Then, if
m(u) = p, we can construct the whole fibre as P (p) = {uala € G}. The action
is also free; if ua = u for some u € P, a must be the unit element e of G. In fact,
ifu = ¢i(p, gi), we have ¢;(p, gia) = ¢i(p, gi)a = ua = u = ¢i(p, gi). Since
¢; is bijective, we must have g;a = g;, thatis, a = e.

Given a section s1(p) over U;, we define a preferred local trivialization
¢i Ui x G — 7~ 1(U;) as follows. Foru € n’l(p), p € U, there is a unique
element g, € G such that u = s;(p)g,. Then we define ¢; by ¢fl ) = (p, gu)-
In this local trivialization, the section s; (p) is expressed as

si(p) = ¢i(p, e). (9.42)

This local trivialization is called the canonical local trivialization. By definition
¢i(p,8) = ¢i(p,e)g =si(p)g. If p e Ui NUj, two sections s;(p) and s (p) are
related by the transition function #;; (p) as follows
si(p) = ¢i(p,e) = ¢j(p,tji(ple) = ¢;(p, tji(p))

=¢j(p,o)tji(p) = s;(p)tji(p). (9.43)
Example 9.7. Let P be a principal bundle with fibre U(1) = S' and the base
space S2. This principal bundle represents the topological setting of the magnetic
monopole (section 1.9). Let {Un, Us} be an open covering of S2, Un (Us) being

the northern (southern) hemisphere. If we parametrize S by the usual polar
angles, we have

Uxn={0.9)0<6 <7/2+¢,0=<¢ <2r}
Us={0.9)In/2—e <6 <m,0=<¢ <2n}.



The intersection Unx N Us is a strip which is essentially the equator. Let ¢ and
¢s be the local trivializations such that

ox W) = (p, ) ¢ W) = (p,e®s) (9.44)

where p = m(u). Take a transition function #Ns(p) of the form e"® where n
must be an integer so that fnys(p) may be uniquely defined on the equator. Since
tns maps the equator S' to U(1), this integer characterizes the homotopy group
m1(U(1)) = Z. The fibre coordinates an and ag are related on the equator as

eloN — glndgias (9.45)

If n = 0, the transition function is the unit element of U(1) and we have a
trivial bundle Py = S? x S'. If n # 0, the U(1)-bundle P, is twisted. It is
remarkable that the topological structure of a fibre bundle is characterized by an
integer. The integer characterizes how two local sections are pasted together at
the equator. Accordingly, the integer corresponds to the element of the homotopy
group 71 (U(1)) = Z.

Since U(1) is Abelian, the right action and the left action are equivalent.

Under the right action g = eld we have
on' (ug) = (p, eONFD) (9.46a)
o5 (ug) = (p, el@T), (9.46b)

The right action corresponds to the U(1)-gauge transformation.

Example 9.8. 1f we identify all the infinite points of the Euclidean space R™, the
one-point compactification S = R" U {oo} is obtained. If a trivial G bundle is
defined over R™ we shall have a new G bundle over $” after compactification,
which is not necessarily trivial. Let P be an SU(2) bundle over $* obtained from
R* by one-point compactification. This principal bundle represents an SU(2)
instanton (section 1.10). Introduce an open covering {Un, Us} of s4,

Un={(x,y,2,0lx% +y* + 22 + 1% < R* + ¢}
Us = {(x,y, 2, DR —& < x> + y* + > + 1%

where R is a positive constant and ¢ is an infinitesimal positive number. The
thin intersection Un N Us is essentially $3. Let tns( p) be the transition function
defined at p € Un N Us. Since tns maps $3 to SU(2), it is classified by
73(SU(2)) = Z. The integer characterizing the bundle is called the instanton
number. If 7ys(p) is taken to be the unit element ¢ € SU(2), we have a trivial
bundle Py = S x SU(2), which corresponds to the homotopy class 0. Non-trivial
bundles are obtained as follows. We first note that SU(2) = §3 (example 4.12).
An element A € SU(2) is written as

()



where [u]? + |[v]? = 1. Separating u and v asu = t + iz and v = y + ix, we
find 2 4+ x> + y? + 72 = 1. Thus SU(2) is regarded as the unit sphere $> and
m3(SU2)) = 73(S3) = Z classifies maps from $3 to SU(2) = §3. The identity
map f 1 83 — §3 = SUQ2) is

t+iz y+ix
f(x’y’z’t)'_)(—y—i-ix t—iz)
= th +i(xoy + yoy, + z07) (9.47)

where I is the 2 x 2 unit matrix and the o, are the Pauli matrices. Let us take
apoint p = (x,y,z,t) e UNNUs. If R = (x2 4+ y2 + 22 + 1%)V/2 denotes the
radial distance of p, the vector (x/R, y/R, z/R, t/R) has unit length. We assign
an element of SU(2) to the point p as

1 .
tns(p) = E(ﬂz +i Zx’cr,-). (9.48)

Let ¢~ and ¢s be the local trivializations,

o) = (pgn) o5 W) = (p,gs) (9.49)

where p = m(u) and gn, gs € SU(2). On Uy N Us, we have
1 . .
oN = E(tlz +1Zx’ai)gs. (9.50)
1

While (¢, X) scans S3 once, tns( p) sweeps SU(2) once, hence this bundle
corresponds to the homotopy class 1 of 73(SU(2)). It is not difficult to see that
the transition function corresponding to the homotopy class n is given by

1 !
iNs(p) = ﬁ(ruinloi) : (9.51)

To continue our study of monopoles and instantons, we have to introduce
connections (the gauge potentials) on the fibre bundle. We will come back to
these topics in the next chapter.

Example 9.9. Hopf has shown that $3 is a U(1) bundle over S2. The unit three-
sphere embedded in R* is expressed as

G2+ D2+ D)2+ = 1.

If we introduce z° = x! +ix2 and z! = x3 + ix*, this becomes

12°2 +12'12 = 1. (9.52)



Figure 9.9. Stereographic coordinates of the sphere S2. (X, Y) is defined with respect to
the projection from the North Pole while (U, V') with respect to the projection from the
South Pole.

Let us parametrize S as
EV+E+E =1
The Hopf map 7 : §3 — S? is defined by

el =2(x"x® + 2%t (9.53a)
g2 =202 — xlah (9.53b)
£ =2+ H? - () - ohH (9.53¢)

It is easily verified that 7 maps S° to S since
EV+EP+E =1+ 0D+ @+ D P =1
Let (X, Y) be the stereographic projection coordinates of a point in the
southern hemisphere Us of S? from the North Pole. If we take a complex plane
which contains the equator of S2 7 = X + 1Y is within the circle of unit radius.
We found in example 8.1 that (figure 9.9)
_%-l+i%-2_x1+ix2 ZO

Z = = = — . 54
il e e ML) (9.54a)

Observe that Z is invariant under
% zh = 2% azh

where A € U(l). Since |A| = 1, the point (1z% Az') is also in S3. The
stereographic coordinates (U, V) of the northern hemisphere Uy projected from
the South Pole are given by
1 _ g2 3, 5.4 1
—1i i
il S e i M SR (9.54b)

W=U+iV = =
+1 1+€:3 x1+ix2 ZO




Note that Z = 1/ W on the equator Un N Us.
The fibre bundle structure is given as follows. We first define the local
trivializations, ¢S_1 s N (Us) > Us x U(1) by

@,z > (22" 212D (9.55a)
and ¢y 1 771 (Un) — Un x U(1) by
%, 2H = (21720, 2°/12%). (9.55b)

Observe that these local trivializations are well defined on each chart. For
example, z° # 0 on Uy, hence both z!/z° = U + iV and z°/ |z°| are non-
singular. On the equator, £ = 0, we have |z°| = |z!| = 1/+/2. Accordingly, the
local trivializations on the equator are

¢§] (% 2H) — (ZO/ZI, V2zh (9.56a)
and
o' @02 e (21720, V220, (9.56b)
The transition function on the equator is
«/EZO 1 )
Ns(§) = /ol =& +1&° e U(D). (9.57)

If we circumnavigate the equator, 7ns(§) traverses the unit circle in the complex

plane once, hence the U(1) bundle S> I, 82 is characterized by the homotopy
class 1 of w1 (U(1)) = Z. Trautman (1977), Minami (1979) and Ryder (1980)
have pointed out that a magnetic monopole of unit strength is described by the
Hopf map $3 = §2.

The Hopf map can be understood from a slightly different point of view. We
regard S° as a complex one-sphere

St ={%zH e ClLP + 12 P =1).
Define a map « : S(lC — CP! by
%2 = 1% 2H) = (A E0 2Hi e € —{0}). (9.58)

Under this map, points of 3 of the form A(z%, z), |A| = 1 are mapped to a single
point of CP! = S2. This is the Hopf map 7 : $3 — S obtained earlier. This
is easily generalized to the case of the quaternion H. The quaternion algebra is
defined by the product table,

i2=j2=k2=-1 ij=—ji=
jk=—kj=i ki=—ik=]j



An arbitrary element of H is written as
g=t+ix+ jy+Kkz

Clearly the unit quaternion |g| = (2 4+ x% + y*> +z%)1/2 = 1 represents §° =
SU(2). The quaternion one-sphere is given by

Sip=1q%. ¢" e B lg°P +1¢' P = 1) (9.59)

which represents S7. The Hopf map, in this case, takes the form
7 S — HP! (9.60)

where HIP! is the quaternion projective space whose element is
[(¢° a1 = (g’ ¢") € B In € H—{0}). (9.61)
Points of S7 with |§| = 1 are mapped under this map to a single point of

HP! = §* and we have the Hopf map

78— st (9.62)

The fibre is the unit quaternion S* = SU(2). The transition function defined by
the Hopf map belongs to the class 1 of 73(SU(2)) = Z. An instanton of unit
strength is described in terms of this Hopf map.

Octonions define a Hopf map 7 : S'5 — $8. This differs from other Hopf
maps in that the fibre S7 is not really a group. So far we have not found an
application of this map in physics.!

Example 9.10. Let H be a closed Lie subgroup of a Lie group G. We show
that G is a principal bundle with fibre H and base space M = G/H. Define
the right action of H on G by g +— ga, g € G, a € H. The right action is
differentiable since G is a Lie group. Define the projectionnw : G - M = G/H
by the map m : g — [g] = {ghlh € H}. Clearly, g, ga € G are mapped to
the same point [g] hence 7(g) = m(ga) (=[g]). To define local trivializations,
we need to define a map f; : G — H on each chart U;. Let s be a local
section over U; and g € n’l([g]). Define f; by fi(g) = s([g])’lg. Since
s([g]) is a section at [g], it is expressed as ga for some a € H and accordingly,
s([g)'g = a'g7lg = a=' € H. Then we define the local trivialization
¢i : Ui x H— Gby
¢ (2) = (3], fi(2))- (9.63)
It is easy to see that f;(ga) = fi(g)a (@ € H) hence ¢>lf1(ga) = (p, fi(g)a) is
satisfied. Useful examples are (see example 5.18)
O(n)/O(n — 1) = SO(n)/SO(n — 1) = §"~! (9.64)
U(n)/U( — 1) = SU®n)/SU@M — 1) = §2" 1. (9.65)

' Octonions are also known as Cayley numbers. The set of octonions is a vector space over R but
not a field. The product is neither commutative nor associative. See John C Baez, The Octonions
math.RA/0105155 for a recent review.



9.4.2 Associated bundles

Given a principal fibre bundle P(M, G), we may construct an associated fibre
bundle as follows. Let G act on a manifold F on the left. Define an action of
geGonP x Fby

u, f) — (ug, g~ ' f) (9.66)

where u € P and f € F. Then the associated fibre bundle (E, 7, M, G, F, P)
is an equivalence class P x F/G in which two points (u, f) and (ug, g~ f) are
identified.

Let us consider the case in which F is a k-dimensional vector space V. Let p
be the k-dimensional representation of G. The associated vector bundle P x, V
is defined by identifying the points (u, v) and (ug, p(g)~'v) of P x V, where
u € P,g € Gand v € V. For example, associated with P(M, GL(k, R)) is a
vector bundle over M with fibre R¥. The fibre bundle structure of an associated
vector bundle E = P x, V is given as follows. The projection 7g : E — M is
defined by g (u, v) = (). This projection is well defined since 7 (u) = 7 (ug)
implies 7z (ug, p(g)~'v) = m(ug) = 7 (u, v). The local trivialization is given
by ¢; : Ui xV — nb?l(Ui). The transition function of E is given by p(#;; (p))
where #;; (p) is that of P.

Conversely a vector bundle naturally induces a principal bundle associated
with it. Let E —> M be a vector bundle with dimE = k (i.e. the fibre is
R or C*). Then E induces a principal bundle P(E) = P(M,G) over M
by employing the same transition functions. The structure group G is either
GL(k, R) or GL(k, C). Explicit construction of P(E) is carried out following
the reconstruction process described in section 9.1.

Example 9.11. Associated with a tangent bundle 7M over an m-dimensional
manifold M is a principal bundle called the frame bundle LM = | J pem LpM
where L, M is the set of frames at p. We introduce coordinates x* on a chart U;.
The bundle T, M has a natural basis {0/dx"} on U;. A frame u = {X1, ..., X}
at p is expressed as

Xo = XHed/0x"|, l<a<m (9.67)
where (X*,) is an element GL(m, R) so that {X,} are linearly independent. We

define the local trivialization ¢; : U; x GL(m,R) — =~ '(U;) by ¢i_l(u) =
(p, (X*4)). The bundle structure of LM is defined as follows.

OIfu = {Xy1,..., X} is a frame at p, we define 7y : LM — M by
7 (u) = p. ,
(ii) The action of @ = (a';) € GL(m, R) on the frame u = {X{, ..., X;,} is

given by (u, a) — ua, where ua is a new frame at p, defined by

Yp = Xqag. (9.68)



Conversely, given any frames {X,} and {Yg} there exists an element of
GL(m,R) such that (9.68) is satisfied. Thus, GL(m,R) acts on LM
transitively.

(iii) Let U; and U; be overlapping charts with the coordinates x* and y*,
respectively. For p € U; N U, we have

Xo = X"qd/0x"], = X1ed/dy"|, (9.69)

where (X*4), (X4) € GL(m, R). Since X", = (3x*/dy"), X", we find
the transition function tl%( p) to be

th(p) = ((3x"/3y") ) € GL(m, R). (9.70)

Accordingly, given T M, we have constructed a frame bundle LM with the
same transition functions.

In general relativity, the right action corresponds to the local Lorentz
transformation while the left action corresponds to the general coordinate
transformation. It turns out that the frame bundle is the most natural framework in
which to incorporate these transformations. If {X,} is normalized by introducing
a metric, the matrix (X*,) becomes the vierbein and the structure group reduces
to O(m); see section 7.8.

Example 9.12. A spinor field on M is a section of a spin bundle which we now
define. Since GL(k, R) has no spinor representation, we need to introduce an
orthonormal frame bundle whose structure group is SO(k). As we mentioned in
example 4.12, SPIN(k) is the universal covering group of SO (k). [To define a spin
bundle, we have to check whether the SO (k) bundle lifts to a SPIN (k) bundle over
M. The obstruction to this lifting is discussed in section 11.6.]

To be specific, let us consider a spin bundle associated with the four-
dimensional Lorentz frame bundle LM, where M is a four-dimensional Lorentz
manifold. We are interested in a frame with a definite spacetime orientation as
well as a time orientation. The structure group is then reduced to

07 (3.1) = {A € 0B, )| detA = +1, Ao” > O}. 9.71)

The universal covering group of O;r (3, 1) is SL(2, C), see example 5.16(c). The
homomorphism ¢ : SL(2, C) — O?‘(3, 1) is a2 : 1 map with kerp = {I», —D}.
The Weyl spinor is a section of the fibre bundle (W, 7, M, 2, SL(2,C)). The
Dirac spinor is a section of

(D, 7, M,C* SL(2,C) & SL(2, 0)). (9.72)

A section of W is a (1/2,0) representation of O$(3, 1) and a section of
(W,m, M,C? SL(2,C)) is a (0, 1/2) representation, see Ramond (1989) for
example. A Dirac spinor belongs to (1/2,0) & (0, 1/2).

The general structure of the spin bundle will be worked out in section 11.6.



9.4.3 Triviality of bundles

A fibre bundle is trivial if it is expressed as a direct product of the base space and
the fibre. The following theorem gives the condition under which a fibre bundle
is trivial.

Theorem 9.2. A principal bundle is trivial if and only if it admits a global section.

Proof. Let (P, 7, M, G) be a principal bundle over M and let s € I'(M, P)
be a global section. This section may be used to show that there exists a
homeomorphism between P and M x G. If a is an element of G, the product
s(p)a belongs to the fibre at p. Since the right action is transitive and free, any
element u € P is uniquely written as s(p)a for some p € M and a € G. Define
amapd: P —> M x G by

d:s(p)ar— (p,a). 9.73)

It is easily verified that ® is indeed a homeomorphism and we have shown that P
is a trivial bundle M x G.

Conversely, suppose P = M x G. Let¢ : M x G — P be a trivialization.
Take a fixed element g € G. Then s, : M — P defined by so(p) = ¢(p, g)isa
global section. O

Is there a corresponding theorem for vector bundles? We know that any
vector bundle admits a global null section. Thus, we cannot simply replace P by
E in theorem 9.2. Let us consider the associated principal bundle P(E) of E.
By definition, E and P(E) share the same set of transition functions. Since the
twisting of a bundle is described purely by the transition functions, we obtain the
following corollary.

Corollary 9.2. A vector bundle E is trivial if and only if its associated principal
bundle P(E) admits a global section.

Problems

9.1 Let L be the real line bundle over S' (i.e. L is either the cylinder S! x R or
the Mobius strip). Show that the Whitney sum L & L is a trivial bundle. Sketch
L & L to confirm the result.

9.2 Let 2, be the volume element of S§” normalized as f oS = 1. Let
f: 82"~1 — §" be a smooth map and consider the pullback f*<2,,.

(a) Show that f*, is closed and written as dw,,—1, where w,—1 is an (n — 1)-
form on S2*—1.
(b) Show that the Hopf invariant

H(f)= / wp—1 A dwy—1
§2n—1



is independent of the choice of w,_1.

(c) Show that if f is homotopic to g, then H(f) = H(g)-

(d) Show that H(f) = 0 if n is odd. [Hint: Use w,—1 A dw,—1 = %d(a)n_l A
wp-1).]

(e) Compute the Hopf invariant of the map 7 : §° — S2 defined in example 9.9.



10

CONNECTIONS ON FIBRE BUNDLES

In chapter 7 we introduced connections in Riemannian manifolds which enable us
to compare vectors in different tangent spaces. In the present chapter connections
on fibre bundles are defined in an abstract though geometrical way.

We first define a connection on a principal bundle. Our abstract definition
is realized concretely by introducing the connection one-form whose local form
is well known to physicists as a gauge potential. The Yang—Mills field strength
is defined as the curvature associated with the connection. A connection on a
principal bundle naturally defines a covariant derivative in the associated vector
bundle. We reproduce the results obtained in chapter 7, applying our approach to
tangent bundles. We conclude this chapter with a few applications of connections
to physics: to gauge field theories and Berry’s phase. We follow the line of
Choquet-Bruhat et al (1982), Kobayashi (1984) and Nomizu (1981). Details will
be found in the classic books by Kobayashi and Nomizu (1963, 1969). See also
Daniel and Viallet (1980) for a quick review.

10.1 Connections on principal bundles

There are several equivalent definitions of a connection on a principal bundle.
Our approach is based on the separation of tangent space T, P into ‘vertical’
and ‘horizontal’ subspaces. Although this approach seems to be abstract, it is
advantageous compared with other approaches in that it clarifies the geometrical
pictures involved and is defined independently of special local trivializations.
Connections are also defined as g-valued one-forms which satisfy certain axioms.
These definitions are shown to be equivalent.

We briefly summarize the basic facts on Lie groups and Lie algebras, since
we shall make extensive use of these (see section 5.6 for details). Let G be a
Lie group. The left action L and the right action R, are defined by Lyh = gh
and Rgh = hg for g,h € G. Lg induces a map Lgy : Th(G) — Tgn(G). A
left-invariant vector field X satisfies Ly« X|; = X|gp. Left-invariant vector fields
form a Lie algebra of G, denoted by g. Since X € g is specified by its value at the
unit element e, and vice versa, there exists a vector space isomorphism g = 7,G.
The Lie algebra g is closed under the Lie bracket, [Ty, Tg] = fup” T}, where {15}
is the set of generators of g. f,g” are called the structure constants. The adjoint
action ad : G — G is defined by adsh = ghg™!. The tangent map of ad, is



called the adjoint map and is denoted by Adg : 7,(G) — Tope—1(G). If restricted
to T.(G) = g, Adg maps g onto itself; Adg : g — gas A — gAg L Aeq.

10.1.1 Definitions

Let u be an element of a principal bundle P(M, G) and let G, be the fibre at
p = w(u). The vertical subspace V, P is a subspace of T, P which is tangent to
Gp at u. [Warning: T, P is the tangent space of P and should not be confused
with the tangent space T, M of M.] Let us see how V,, P is constructed. Take an
element A of g. By the right action

Rexptayt = uexp(tA)

a curve through u is defined in P. Since 7w (u) = w(uexp(tA)) = p, this curve
lies within G ,. Define a vector At eT,P by

d
A*f) = qp/ (wexptA)li=o (10.1)

where f : P — R is an arbitrary smooth function. The vector A* is tangent to
P at u, hence A* € V, P. In this way we define a vector A* at each point of P
and construct a vector field A%, called the fundamental vector field generated
by A. There is a vector space isomorphism # : g — V, P given by A — A",
The horizontal subspace H, P is a complement of V,, P in T, P and is uniquely
specified if a connection is defined in P.

Exercise 10.1.

(a) Show that 7, X =0 for X € V, P.
(b) Show that # preserves the Lie algebra structure:

[A* B*] = [A, BI". (10.2)

Definition 10.1. Let P(M, G) be a principal bundle. A connection on P is a
unique separation of the tangent space 7, P into the vertical subspace V, P and
the horizontal subspace H,, P such that

G 1T,P=H,P®V,P.

(i) A smooth vector field X on P is separated into smooth vector fields
X% e H,Pand XV e V,Pas X = X" + xV.

(iii) Hyg P = RgsH, P for arbitrary u € P and g € G; see figure 10.1.

The condition (iii) states that horizontal subspaces H,P and H,,P on
the same fibre are related by a linear map Ry, induced by the right action.
Accordingly, a subspace H, P at u generates all the horizontal subspaces on the
same fibre. This condition ensures that if a point u is parallel transported, so is its
constant multiple ug, g € G; see later. At this point, the reader might feel rather
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Figure 10.1. The horizontal subspace Hyg P is obtained from H,, P by the right action.

uneasy about our definition of a connection. At first sight, this definition seems
to have nothing to do with the gauge potential or the field strength. We clarify
these points after we introduce the connection one-form on P. We again stress
that our definition, which is based on the separation 7, P = V, P® H, P, is purely
geometrical and is defined independently of any extra information. Although the
connection becomes more tractable in the following, the geometrical picture and
its intrinsic nature are generally obscured.

10.1.2 The connection one-form

In practical computations, we need to separate 7, P into V, P and H,P in a
systematic way. This can be achieved by introducing a Lie-algebra-valued one-
form w € g ® T*P called the connection one-form.

Definition 10.2. A connection one-form w € g® T* P is a projection of T, P onto
the vertical component V,, P ~ g. The projection property is summarized by the
following requirements,

(i) w@H=A Aeg (10.3a)
(i)  Rjw=Ad; 10 (10.3b)

that is, for X € T, P,
Riwug(X) = wug (R X) = g~ ' wu (X)g. (10.3b))

Define the horizontal subspace H, P by the kernel of w,

H.P = (X e T,Plo(X) = 0}. (10.4)



To show that this definition is consistent with definition 10.1, we prove the
following proposition.

Proposition 10.1. The horizontal subspaces (10.4) satisfy
Rg«H,P = HygP. (10.5)

Proof. Fix a pointu € P and define H, P by (10.4). Take X € H, P and construct
Rg«X € T,4 P. We find

o(RgX) = Riw(X) = g 'w(X)g =0

since w(X) = 0. Accordingly, R+ X € H,, P. We note that R, is an invertible
linear map. Hence, any vector ¥ € H,g P is expressed as ¥ = Rg. X for some
X € H, P. This proves (10.5). O

We have shown that the definition of the connection one-form w is equivalent
to that of the connection, since w separates 7, P into H, P @V, P in harmony with
the axioms of definition 10.1. The connection one-form w defined here is known
as the Ehresmann connection in the literature.

10.1.3 The local connection form and gauge potential

Let {U;} be an open covering of M and let o; be a local section defined on each
U;. Itis convenient to introduce a Lie-algebra-valued one-form A; on Uj, by

Ai =ofw e g® QU)). (10.6)

Conversely, given a Lie-algebra-valued one-form A;, on U;, we can reconstruct a
connection one-form @ whose pullback by o/* is A,;.

Theorem 10.1. Given a g-valued one-form A; on U; and a local section o; : U; —
7~ 1(U;), there exists a connection one-form w such that A; = Ul.*a).

Proof. Let us define a g-valued one-form w on P by
o =g 7 Aigi+ ¢ dpgi (10.7)

where dp is the exterior derivative on P and g; is the canonical local
trivialization defined by ¢;" ! u) = (p, gi) foru = o;(p)gi. We first show
that o w; = A;. For X € T,M, we have

o/ wi(X) = wi(0ixX) = 1" A;(0ixX) + dpgi(0ixX)
= A; (1.0 X) +dpgi(0ixX)



U

Figure 10.2. The canonical local trivialization defined by the local section o; over U;.

where we have noted that 0, X € T, P and g; = e at o;, see figure 10.2. We
further note that .0,y = idrp(M) and dpg;(0;xX) = 0 since g = ¢ along 0;, X.
Thus, we have obtained o, w; (X) = A; (X).

Next we show that w; satisfies the axioms of a connection one-form given in
definition 10.2.

(i) Let X = A" € V,P,A € g. It follows from exercise 10.1(a) that
7+ X = 0. Now we have

wi (A" = g7 dpgi (A") = gi(w)™! w
! =0
= &)\ gi(u) % _ A
t =0

(ii) Take X € T, P and h € G. We have
R} (X) = 0 (RpeX) = g Ai (T Ris X) giun + 811y AP Giun (Rw X).
Since gjun = giyh and Ry X = m, X (note that m R, = m), we have
Riwi(X) = h™ g Ai (mu X) giuh + h ™" ;' dpgiu (COh
=h~ wi (X)h

where we have noted that

d
Siuh P giun (RieX) = gy =iy o
t=0

1,1 d

=h"lg o h=h""g dpgiu (X)h.

t=0

8iy (1)




Here y (¢) is a curve through u = y (0), whose tangent vector at u is X.
Hence, the g-valued one-form w; defined by (10.7) indeed satisfies A; =
O’i*a),' and the axioms of a connection one-form. O

For w to be defined uniquely on P, i.e. for the separation T, P = H,P®V, P
to be unique, we must have w; = w; on U; N U;. A unique one-form w is then
defined throughout P by w|y;, = w;. To fulfil this condition, the local forms A;
have to satisfy a peculiar transformation property similar to that of the Christoffel
symbols. We first prove a technical lemma.

Lemma 10.1. Let P(M, G) be a principal bundle and o; (0;) be a local section
over U; (Uj) suchthat U; NU; # @. For X € T,M (p € U; N Uj), 0ixX and
0« X satisfy

]

0jsX = Ryp(0iX) + (177" dtij (X))* (10.8)

where t;; : U; NU; — G is the transition function.

Proof. Take a curve y : [0, 1] — M such that y(0) = p and y(0) = X. Since
oi(p) and o;(p) are related by the transition function as o;(p) = o;(p)t;j(p)
(see (9.43)), we have

d
= E{Ui(t)tij(t)}

d
ojxX = —oj(y(1))
j* dr ! t=0 t=0
d d
= —oi(t) - t;j(p) + 0i(p) - T

t;j(t
” j (1)

t=0

. d
Ry, +(0ixX) + 0 (p)tij (p) 1d—n,» (t)
' t t=0

where o; () stands for o; (¥ (¢)) and we have assumed that G is a matrix group for
which Ry X = Xg. We note that

d
tii(p) "t (X) =1 (p)7! 31 ®

t=0

d
= —[t;;(p) 't (0]

eT,(G) =g
” (G) =g

t=0

[Note that #; (p)’ltij(y(t)) = e at t = (.] This shows that the second term of
0« X represents the vector field (ti;ldti (X N* ato i (p). (]

The compatibility condition is easily obtained by applying the connection
one-form w on (10.8). We find that

oFo(X) = R 0(0:X) + zl.;l dij (X)

= ti;lw(cri*X)tij + ti;I de;; (X)



where the axioms of definition 10.2 have been used. Since this is true for any
X e Ty, M, this equation reduces to

Aj = tiylﬂitij + t’-;l d;;. (10.9)
This is the compatibility condition we have been seeking.

Conversely, given an open covering {U;}, the local sections {o;} and the
local forms {A;} which satisfy (10.9), we may construct the g-valued one-form w
over P. Since a non-trivial principal bundle does not admit a global section, the
pullback A; = 0w exists locally but not necessarily globally. In gauge theories,
A; is identified with the gauge potential (Yang—Mills potential). As we have
seen in the monopole case, the monopole field B = gr/r3 does not admit a
single gauge potential and we require at least two A; to describe this U(1) bundle
over S2.

Exercise 10.2. Let P(M, G) be a principal bundle over M and let U be a chart of
M. Take local sections o1 and o7 over U such that o2 (p) = o1(p)g(p). Show
that the corresponding local forms A; and A, are related as

Ay =g 'A1g+ g dg. (10.10a)
In components, this becomes

Azu = 87 (P A1 (P)g(P) + 87 (P)Bug () (10.10b)
which is simply the gauge transformation defined in section 1.8.

Example 10.1. Let P be a U(1) bundle over M. Take overlapping charts U; and
U;. Let A; (Aj) be alocal connection form on U; (U;). The transition function
tij : UiNUj — U(1) is given by

tij(p) = expliA(p)]  A(p) € R (10.11)
A; and A; are related as
Aj(p) =ti; ()~ Ai (P)tij (p) + i (p) ™" diij (p)
=A;(p) +idA(p). (10.12a)
In components, we have the familiar expression
Aju =Aip +10,A. (10.12b)
Our connection A, differs from the standard vector potential A, by the Lie
algebra factor: A, =iA,.

Here we note again that w is defined globally over the bundle P(M, G).
Although there are many connection one-forms on P(M, G), they share the same
global information about the bundle. In contrast, an individual local piece (gauge
potential) A; is associated with the trivial bundle 7 ! (U;) and cannot have any
global information on P. It is w or, equivalently, the frotal of {A;} satisfying
the compatibility condition (10.9), which carries the global information about the
bundle.



10.1.4 Horizontal lift and parallel transport

Parallel transport of a vector has been defined in chapter 7 as transport without
change. Parallel transport of an element of a principal bundle along a curve in M
is provided by the ‘horizontal lift” of the curve.

Definition 10.3. Let P(M, G) be a G bundle and let y : [0, 1] — M be a curve
in M. Acurve y : [0, 1] — P is said to be a horizontal lift of y if r oy = y
and the tangent vector to y (¢) always belongs to Hj(,)P.

Let X be a tangent vector to 7. Then it satisfies w(X) = 0 by definition.
This condition is an ordinary differential equation (ODE) and the fundamental
theorem of ODEs guarantees the local existence and uniqueness of the horizontal
lift.

Theorem 10.2. Let y : [0,1] — M be a curve in M and let ug € n_l(y(O)).
Then there exists a unique horizontal lift y (¢) in P such that y (0) = uy.

Let us construct such a curve y. Let U; be a chart which contains y and
take a section o; over U;. If there exists a horizontal lift y, it may be expressed
as y(t) = oi(y(t))gi(t), where g;(t) stands for g;(y(¢)) € G. Without loss of
generality, we may take a section such that o; (y(O)) = y(0), that is g;(0) = e.
Let X be a tangent vector to y(¢) at y(0). Then X = y«X is tangent to y at
ug = y(0). Since the tangent vector X is horizontal, it satisfies a)(X )=0. A
slight modification of lemma 10.1 yields

X =gi() o Xgi (1) + [gi(1) " dgi (X)]*.

By applying w on this equation, we find

o _ _1dgi()
0=0wX) =g w0 X)gi ) + &) 1gd'—t.
Multiplying on the left by g;(¢), we have
dg; (1)
A = — 08 0. (10.138)

The fundamental theorem of ODEs guarantees the existence and uniqueness of
the solution of (10.13a).
Since w(0ixX) = o w(X) = A;(X), (10.13a) is expressed in a local form

dgi ()
dr
whose formal solution with g; (0) = e is

! dxt
0 t

v ()
= Pexp < —

as

= —Ai(X)gi (1) (10.13b)

Aip (y (1)) dx“) (10.14)
y(0)



where P is a path-ordering operator along y (r).! The horizontal lift is expressed
as y (1) = oi(y (1)gi(y (1).

Corollary 10.1. Let 7’ be another horizontal lift of y, such that y/(0) = y(0)g.
Then y'(¢) = y(t)g forall ¢ € [0, 1].

Proof. We first note that the horizontal subspace is right invariant, Rg.H,P =
Hy, P. Let y be a horizontal lift of y. Then y, : t — y(t)g is also a horizontal
lift of y (¢) since its tangent vector belongs to Hyg P. From theorem 10.2 we find
7’ is the unique horizontal lift which starts at 7 (0)g. a

Example 10.2. Let us consider the bundle P(M,R) = M x R where M =
RZ — {0}. Let ¢ : ((x, y), f) — u € P be a local trivialization, where (x, y) are
the coordinates of M while f is that of the additive group R. Let

_ ydx —xdy

d
x2+y2 +df

be a connection one-form. It is easily verified that w satisfies the axioms of
the connection one-form. In fact, for A* = Ad/df, A € R being an element
of the Lie algebra of additive group, we have w(A*) = A. Furthermore,
Reywo = 0w = g 'wg, since R is Abelian. Let y : [0,1] — M be a
curve t — (cos2mt,sin2mt). Let us work out a horizontal lift which starts at

((1,0), 0). Let
d dxd dya df d

dr  drox | dray | dr of

be tangent to y (). For X to be horizontal, it must satisfy

dx y dyx df df

— S -+ —=-2 —.
drr2  drr? At Sy

The solution is easily found to be f = 27t + constant. We finally find the
horizontal lift y passing through ((1, 0), 0),

y(t) = ((cos2mt, sin2mt), 2mwt) (10.15)

which is a helix over the unit circle.
Under the group action (right or left does not matter), f translates to
f + g, g € R The shifted horizontal lift is

Ve (t) = ((cos2mt, sin2mt), 2wt + g). (10.16)

1 A (y (@) and A, (v (s)) do not commute in general and the exponential in (10.14) is not well

defined as it is. Let A(¢) and B(¢) be t-dependent matrices. Then the action of P is

A(t)B(s) (t>s

PLAMDB(s)] = ) :
B(s)A(t) (s >1).

Generalization to products of more matrices should be obvious.
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Figure 10.3. A curve y (r) in M and its horizontal lifts y (t) and y(¢)g.

Let y : [0,1] — M be a curve. Take a point ugy € n_l(y(O)). There is
a unique horizontal lift y (¢) of y (¢) through ug, and hence a unique point u; =
7(1) € = (¥ (1)), see figure 10.3. The point u; is called the parallel transport
of ug along the curve y. This defines a map I'(y) : 771 (y(0)) — 7~ 1(y(1))
such that ug + uy. If the local form (10.14) is employed, we have

1
Ui =cri(1)fPexp<—/ AiMWdt) (10.17)
0

Corollary 10.1 ensures that I'(y) commutes with the right action R,. First
note that R, I"(y) (uo) = u1g and I'(y) Ry (o) = I'(¥) (uog). Observe that y (1)g
is a horizontal lift through uog and u;g. From the uniqueness of the horizontal
lift through ugg, we have u1g = I'(y) (uog), that is RI"(¥)(uo) = I'(y) Rg (uo).
Since this is true for any ug € 7~ (y(0)), we have

R,T'(7) =T(7)R,. (10.18)

Exercise 10.3. Let y be a horizontal lift of y : [0,1] — M. Consider a map
reg=Y:7 Y y@1)) = 7~ (y(0)) where 7~ (r) = (1 — ). Show that

rg-hH=rg L (10.19)



Consider two curves « : [0,1] — M and 8 : [0,1] — M such that
a(1) = B(0). Define the product « * 8 by

Let @) : 7 Y (a(0)) » 7 Ya(l)) and T'(B) : 7~ 1(B0) — 7 1(B)).
Show that o
C(axpB)=T(B)ol(@). (10.20)

Exercise 10.4. Let us write u ~ v, if u, v € P are on the same horizontal lift.
Show that ~ is an equivalence relation.

10.2 Holonomy

10.2.1 Definitions

Let P(M, G) be a principal bundle and let y : [0, 1] — M be a curve whose
horizontal lift through uy € n’l(y(O)) is . In the last section, we defined
amap I'(y) : 771(y(0)) — 7~ '(y(1)) which maps a point uy = 7(0) to
u1 = y(1). Letus consider two curves «, g8 : [0, 1] = M witha(0) = (0) = pg
and «(1) = B(1) = p;. Take horizontal lifts @ and 8 of « and B such that
a(0) = B(O) = ug. Then @(1) is not necessarily equal to ,5(1). This shows that if
we consider a loop y : [0,1] = M at p = y(0) = y (1), we have y(0) # y(1) in
general. A loop y defines a transformation t,, : 77 (p) = 771 (p) on the fibre.
This transformation is compatible with the right action of the group,

Ty (ug) = 7, (u)g (10.21)

which follows immediately from (10.18). We note that 7, depends not only on
the loop y but also on the connection.

Example 10.3. Consider an R-bundle over M = R? — {0}. The connection
one-form  and the loop y in example 10.2 define a map 7, : 7~ (1,0) —>
771((1,0)) givenby g > g+ 271, g € R

Take a pointu € P with 7(u) = p and consider the set of loops Cp,(M) at
p; Cp(M) ={y : [0, 1] = M|y (0) = y(1) = p}. The set of elements

®, ={g € Glt,(u) =ug,y € Cp(M)} (10.22)

is a subgroup of the structure group G and is called the holonomy group at u. The
group property of @, is easily derived from exercise 10.3. If o, Band y = a * B
are loops at p, we have 7, = 74 o 74, hence

Ty () = 18 0 To(u) = T4 (Ugn) = Tp(U) 8o = UZLEn



where 74 (1) = ug, etc. This shows that

8y = 8p8a- (10.23)

The constant loop ¢ : [0,1] +— p defines the identity transformation
7. : u + u. The inverse loop y~! of y induces the inverse transformation
T,-1 = T}fl, hence g, -1 = g;l.

Exercise 10.5. (a) Let t,(u) = ugy. Show that

To(ug) = ug(ady go) = ug(g ™' gug). (10.24)

Verify that
D0 Za'd,a. (10.25)

(b) Let u,u’ € P be points on the same horizontal lift 7. Show that
o, = O,

(c) Suppose that M is connected. Show that all &, are isomorphic to each
other.

Exercise 10.6. Let A; = A;, dx"* be a gauge potential over U; and y a loop in
Ui. Lett,(u) =ugy,u € P, g, € G. Use (10.14) to show that

gy = Pexp < — f Aip dx“). (10.26)
Y

LetC 2 (M) denote the set of loops at p, which are homotopic to the constant
loop at p. The group

D) = {g € G|ty () = ug.y € C(M)} (10.27)

is called the restricted holonomy group.

10.3 Curvature

10.3.1 Covariant derivatives in principal bundles
We defined the exterior derivative d : Q" (M) — Qt!(M) in chapter 5. An
r-form 7 is a real-valued form acting on vectors,

n:TMA...ANTM — R

We will generalize this operation so that we can differentiate a vector-valued r-
form¢ € Q"(P) RV,
¢.:TPAN...NTP—>YV

where V is a vector space of dimension k. The most general form of ¢ is
¢ = Zﬁzl 9* ® ey, {ey} being a basis of V and ¢* € Q" (P).



A connection @ on a principal bundle P(M, G) separates T, P into H, P &
V,P. Accordingly, a vector X € T, P is decomposed as X = X + XV where
X" e H,P and X" € V,P.

Definition 10.4. Let p € Q"(P)® V and X1, ..., X,41 € T, P. The covariant
derivative of ¢ is defined by

Do(X1,....Xrs) =dpo(XT, ... X2 ) (10.28)

where dp ¢ = dp ¢* ® ¢,.

10.3.2 Curvature

Definition 10.5. The curvature two-form 2 is the covariant derivative of the
connection one-form w,

Q=Dwe Q*P)®g. (10.29)
Proposition 10.2. The curvature two-form satisfies (cf (10.3b))
RiQ=a"'Qa aedG. (10.30)

Proof. We first note that (Rg.X Y = R (X" (Rux preserves the horizontal
subspaces) and dp R} = R*dp, see (5.75). By definition we find

RIQ(X,Y) = Q(RaxX, RixY) = dpo (Rax X)™ | (Rax¥)™)
=dpw (Res X", Ry YH) = RE dpow (X, Y1)
=dpRiw (X, YH)
=dp (a 'wa) (X", Yy =a "dpw (X¥,YH)a
=a"'QX,Y)a
where we noted that a is a constant element and hence dpa = 0. O

Take a g-valued p-form { = ¢* ® Ty and a g-valued g-form n = n% ® Ty
where ¢¢ € QP (P), n® € Q4(P), and {T,} is a basis of g. Define the commutator
of ¢ and n by

[E,nl=¢An—(=DPnpng
= T Tpt® AP — (=DM TpTun® A ¢
=[To. Tg1 ® ¢* AP = fup? T, @ ¢* A 1P, (10.31)
If we put ¢ = 5 in (10.31), when p and g are odd, we have
[£.61=20 NE = fup” Ty @ AP
Lemma 10.2. Let X € H,PandY € V,P. Then [X, Y] € H,P.



Proof. Let Y be a vector field generated by g(¢), then

LyX =[Y, X] = lim ™" (Rg(r) X — X).

t—0

Since a connection satisfies RgyH, P = Hy,4 P, the vector Rg(;)«X is horizontal
and sois [Y, X]. O
Theorem 10.3. Let X,Y € T,P. Then Q and w satisfy Cartan’s structure
equation

QX,Y) =dpw (X,Y) + [0(X), ®(Y)] (10.32a)
which is also written as

Q=dpo+wAo. (10.32b)

Proof. We consider the following three cases separately:

(i) LetX,Y € H,P. Then w(X) = w(Y) = 0 by definition. From definition
10.5, we have Q(X,Y) = dpw (X7, YH) = dpw (X, Y), since X = X and
=y,

(i) Let X € H,P and Y € V, P. Since Y = 0, we have Q(X,Y) = 0. We
also have w(X) = 0. Thus, we need to prove dpw (X, Y) = 0. From (5.70), we
obtain

dpo (X, Y) = Xo(¥) — Yo(X) —o(X,Y]) = Xo¥) — o(X, Y]).

Since Y € V,, P, there is an element V € g such that Y = V# Then w(Y) = V is
constant, hence Xw(Y) = X - V = 0. From lemma 10.2, we have [X, Y] € H,P
sothat w([X,Y]) = 0and we finddpw (X,Y) = 0.

(iii) For X, Y € V, P, we have Q (X, Y) = 0. We find that, in this case,

dpo (X, Y) = Xo(¥) — Yo(X) — o(X,Y]) = —o(X, Y]).

We note that X and Y are closed under the Lie bracket, [ X, Y] € V,, P, see exercise
10.1(b). Then there exists A € g such that

o([X,Y])=A

where A" = [X, Y]. Let B = X and C* = Y. Then [0 (X), w(Y)] = [B, C] =
A since [B, C1* = [B*, C*]. Thus, we have shown that

0=dpo(X,Y) +o(X,Y]) =dpo(X,Y) + [0(X), (Y)].

Since €2 is linear and skew symmetric, these three cases are sufficient to show
that (10.32) is true for any vectors.
To derive (10.32b) from (10.32a), we note that

[0, 0](X, Y) = [Ty, Tglo® A 0P (X, Y)
= [T, Tgllo® (X)) (V) — o (X) 0™ (V)]
= [0(X), (V)] — [0(Y), o(X)] = 2[e(X), o (Y)].
Hence, 2(X,Y) = (dpw + %[a), o)(X,Y)=({dpo+owAw)(X,Y). O



10.3.3 Geometrical meaning of the curvature and the Ambrose-Singer
theorem

We have shown in chapter 7 that the Riemann curvature tensor expresses the non-
commutativity of the parallel transport of vectors. There is a similar interpretation
of curvature on principal bundles. We first show that Q (X, Y) yields the vertical
component of the Lie bracket [ X, Y] of horizontal vectors X, Y € H, P. It follows
from w(X) = w(Y) = 0 that

dpow (X, Y) = Xo(Y) — Yoo (X) — o([X. Y]) = —o([X, Y]).
Since X7 = X, YH =Y, we have
QX,Y)=dpo(X,Y)=—-w(X,Y). (10.33)

Let us consider a coordinate system {x"} on a chart U. Let V = 9/ ax! and
W = 9/0x%. Take an infinitesimal parallelogram y whose corners are O =
{0,0,...,0}, P = {£0,...,0},Q = {£6,0,...,0} and R = {0,46,0,...,0}.
Consider the horizontal lift y of y. Let X, Y € H, P such that 7, X = ¢V and
.Y = 6W. Then

A (X YTy = etV W] =es |- 2 | =0 (10.34)
ax1’ 9x2

that is [X, Y] is vertical. This consideration shows that the horizontal lift y of
a loop y fails to close. This failure is proportional to the vertical vector [X, Y]

connecting the initial point and the final point on the same fibre. The curvature
measures this distance,

QX,Y)=—-o(X,Y)=A (10.35)

where A is an element of g such that [X, Y] = A*.

Since the discrepancy between the initial and final points of the horizontal
lift of a closed curve is simply the holonomy, we expect that the holonomy group
is expressed in terms of the curvature.

Theorem 10.4. (Ambrose-Singer theorem) Let P(M, G) be a G bundle over a
connected manifold M. The Lie algebra h of the holonomy group @, of a point
up € P agrees with the subalgebra of g spanned by the elements of the form

Qu(X,Y) X,Y e H,P (10.36)

where a € P is a point on the same horizontal lift as ug. [See Choquet-Bruhat et
al (1982) for the proof.]



10.3.4 Local form of the curvature

The local form JF of the curvature 2 is defined by
F=0"Q (10.37)

where o is a local section defined on a chart U of M (cf A = o*w). F is expressed
in terms of the gauge potential A as

F=dA+AANA (10.38a)

where d is the exterior derivative on M. The action of F on the vectors of 7 M is
given by
FX,Y)=dA(X,Y) + [AX), AY)]. (10.38b)

To prove (10.38a) we note that A = o*w, oc*dpw = do*w and 6*({ A ) =
0*¢ A o*n. From Cartan’s structure equation, we find

F=o0"dpo+wAw)=do*wo+c*ornc*o=dA+AAA.

Next, we find the component expression of F on a chart U whose coordinates
are x* = @(p). Let A = A, dx* be the gauge potential. If we write
F = %3’” wv dx® A dx”, a direct computation yields

Fpw = Ay — 0y Ay + [Au, Ayl (10.39)

J is also called the curvature two-form and is identified with the (Yang-Mills)
field strength. To avoid confusion, we call 2 the curvature and F the (Yang—
Mills) field strength. Since A, and J,, are g-valued functions, they can be
expanded in terms of the basis {7} of g as

Ap=A0Ty  Fuy=Fn°T,. (10.40)

The basis vectors satisfy the usual commutation relations [Ty, Tg] = fop” T,. We
then obtain the well-known expression

Fin® =0,A% —0,A,% + f/g,,“AMﬁAUV. (10.41)
Theorem 10.5. Let U; and U; be overlapping charts of M and let J; and J; be

field strengths on the respective charts. On U; N U, they satisfy the compatibility
condition,

ffj = Adt,.;' ¥ = t’-;lffitij (10.42)

where t;; is the transition function on U; N U;.



Proof. Introduce the corresponding gauge potentials A; and A,
Fi=dA; + A ANA; Fj=dA; +A; ANA;.
Substituting A; = tl.;lfl,'t,'j + ti;ldti ; into F;, we verify that
Ty =d; Aty + 17 diyj)
+ (li;l-Aitij + ti;1 deij) A (ti;lﬂi tij + tl-;l dtij)
= [—tl.;1 dij A ti;l.Aifij + tl.;l dA;t;;
— ;A Adry — 17 e o A deg)
+ [tl.;lfli A Aiti; + t,.;‘Ai A dt;j
+ 1 dey ot A At o de A deg)
= t’.;l(dfli + Ai N AL = f,;lffri’ij
where use has been made of the identity dr=! = —¢~!dr ¢+~ 1. O

Exercise 10.7. The gauge potential A is called a pure gauge if A is written locally
as A = g~ ! dg. Show that the field strength F vanishes for a pure gauge A. [It
can be shown that the converse is also true. If ¥ = 0 on a chart U, the gauge
potential may be expressed locally as A = g~ ' dg.]

10.3.5 The Bianchi identity

Since w and 2 are g-valued, we expand them in terms of the basis {7} of g as
w = w"Ty, @ = Q*T,. Then (10.32b) becomes

Q¥ =dpa® + fz,%0f A . (10.43)
Exterior differentiation of (10.43) yields
dpQ® = fg,* dpa® A ? + f5,%0P Adpo?. (10.44)
If we note that w(X) = O for a horizontal vector X, we find
DQX,Y,Z)=dpQ (X", YH 7zHy =0
where X, Y, Z € T, P. Thus, we have proved the Bianchi identity
DQ =0. (10.45)

Let us find the local form of the Bianchi identity. Operating with o* on
(10.44), we find that 6*dpQ = d - 0*Q = dF for the LHS and

o*(dpw Aw —wAdpw) =do*w Ac*w —c*w Ado*w
=dAANA—-AANJA=FAA-AANT



for the RHS. Thus, we have obtained that
DF=dF+AANF-TFAA=dF+[A,TF]=0 (10.46)
where the action of D on a g-valued p-form 1 on M is defined by
Dn =dn 4+ [A, nl. (10.47)
Note that DF = dF for G = U(1).

10.4 The covariant derivative on associated vector bundles

A connection one-form w on a principal bundle P (M, G) enables us to define the
covariant derivative in associated bundles of P in a natural way.

10.4.1 The covariant derivative on associated bundles

In physics, we often need to differentiate sections of a vector bundle which is
associated with a certain principal bundle. For example, a charged scalar field in
QED is regarded as a section of a complex line bundle associated with a U(1)
bundle P(M,U(1)). Differentiating sections covariantly is very important in
constructing gauge-invariant actions.

Let P(M, G) be a G bundle with the projection 7 p. Let us take a chart U; of
M and a section o; over U;. We take the canonical trivialization ¢; (p, e) = i (p).
Let y be a horizontal lift of a curve y : [0, 1] — U;. We denote y(0) = po
and y(0) = up. Associated with P is a vector bundle E = P x, V with the
projection g, see section 9.4. Let X € T, M be a tangent vector to y (¢) at po.
Lets € I'(M, E) be a section, or a vector field, on M. Write an element of E as
[(u, v)] = {(ug, p(g)’1v|u € P,v € V, g € G}. Taking a representative of the
equivalence class amounts to fixing the gauge. We choose the following form,

s(p) = [(oi(p), E(p))] (10.48)

as a representative.

Now we define the parallel transport of a vector in E along a curve y in M.
Of course, a naive guess ‘£ is parallel transported if £(y (7)) is constant along y (¢)’
does not make sense since this statement depends on the choice of the section
oi(p). We define a vector to be parallel transported if it is constant with respect to
a horizontal lift y of y in P. In other words, a section s(y (¢)) = [(y(¢), n(y (t)))]
is parallel transported if 7 is constant along y (¢). This definition is intrinsic since
if /(1) is another horizontal lift of y, then it can be written as y'(t) = y(f)a,
a € G and we have (we omit p to simplify the notation)

[(F @), n()] = [(F'®a™", nt)] = (7' (1), a” " n(0)]

where 7(¢) stands for n(y(¢)). Hence, if 1(¢) is constant along y (), so is its
constant multiple a! n(t).



Now the definition of covariant derivative is in order. Let s(p) be a section
of E. Alongacurve y : [0, 1] - M we have s(¢t) = [(y(¢), n(t))], where y (¢) is
an arbitrary horizontal lift of y (). The covariant derivative of s(¢) along y (¢) at
po = y(0) is defined by

):| (10.49)
t=0

where X is the tangent vector to y () at po. For the covariant derivative to be
really intrinsic, it should not depend on the extra information, that is the special
horizontal lift. Let ’(t) = 7 (t)a (a € G) be another horizontal lift of y. If 7'(¢)
is chosen to be the horizontal lift, we have a representative [(7(f), a~'n(1))].
The covariant derivative is now given by

t :O):|

=|(7'Oa", En(t)
t=0 dr

which agrees with (10.49). Hence, Vxs depends only on the tangent vector X
and the sections s € I'(M, E) and not on the horizontal lift  (¢). Our definition
depends only on a curve y and a connection and not on local trivializations. The
local form of the covariant derivative is useful in practical computations and will
be given later.

d
Vxs = [(37(0), an(y(t))

570 d -1
[(V( ) gl T}

So far we have defined the covariant derivative at a point pg = y(0). It
is clear that if X is a vector field, Vx maps a section s to a new section Vys,
hence Vy is regarded as a map I'(M, E) — I'(M, E). To be more precise, take
X € X(M) whose value at p is X, € T,M. There is a curve y(t) such that
y(0) = p and its tangent at p is X ,. Then any horizontal lift  (¢) of y enables
us to compute the covariant derivative Vxs|, = Vx,s. We also define a map

V:I'(M,E) - I'(M, E) ® Q' (M) by
Vs(X)=Vys XeXM) sel(M,E). (10.50)

Exercise 10.8. Show that

Vx(ais1 + azs2) = a1Vxst +axVyss (10.51a)
V(ais1 + azs2) = a1Vsy +axVsy (10.51b)
Via X\ +a,X)s = a1Vx,s + a2 Vx,s (10.51c)
Vx(fs) = X[fls+ fVxs (10.51d)
V(fs)=(df)s+ fVs (10.51e)
Vixs = fVxs (10.51%)

wherea; € R, s,s' € (M, E) and f € F(M).



10.4.2 A local expression for the covariant derivative

In practical computations it is convenient to have a local coordinate representation
of the covariant derivative. Let P(M, G) be a G bundle and E = P x, G be an
associate vector bundle. Take a local section o; € I'(U;, P) and employ the
canonical trivialization o;(p) = ¢;(p,e). Let y : [0, 1] — M be a curve in U;
and y its horizontal lift, which is written as

y (1) = 0i(1)gi (1) (10.52)

where g; () = gi(y(¢)) € G. Take a section ey (p) = [(0i(p), e,0)] of E, where
00 is the ath basis vector of V; (e,°)? = (84)P. We have

ea®) = [T (0) e = [(7(0), gi(1) " Lea)]. (10.53)

Note that g;(1)~! acts on e,° to compensate for the change of basis along . The
covariant derivative of e, is then given by
1:0):|

d
= [(m), —gi()™! {d—gim} gi()ey? )}
t =0

= [7(0)gi(0) ", Ai (X)ea")] (10.54)

(500 Lioiir)-1e.0
Vxeq = [(V(O), g i e}

where (10.13b) has been used. From (10.54) we find the local expression,
Vxeq = [(0i(0), Ai(X)ea)]. (10.55)

Let A; = Aj, dx* = A,ﬂo‘ﬁ dx# where A,-M”‘ﬂ = A,ﬂy(Ty)“ﬁ. The second
entry of (10.55) is

dx# dx#
0 0 0
Ai(X)ey, = —dt eg .A,'Mﬁyéay = —dt ‘Aiﬂﬁaeﬁ .

Substituting this into (10.55), we finally have

dx# dx#
Viea = | (0:0), o—AiP es®) | = S—AiP s (10.562)
dt « dt o
or
Vey = AP yep. (10.56b)
In particular, for a coordinate curve x*, we have
Vasaxnea = Ain ep. (10.57)

It is remarkable that a connection A on a principal bundle P completely specifies
the covariant derivative on an associated bundle E (modulo representations).



Exercise 10.9. Let s(p) = [(0i(p), & (p))] = &“(p)ey be a general section of E,
where & (p) = £%(p)es. Use the results of exercise 10.8 to verify that

_ )3
)] et e
(10.58)

Vxs = [(01(0) é + Ai (X)§;

By construction, the covariant derivative is independent of the local
trivialization. This is also observed from the local form of Vxs. Let o;(p) and
o;j(p) be local sections on overlapping charts U; and U;. On U; N U}, we have
0j(p) = 0i(p)tij (p). In the i-trivialization, the covariant derivative is

| )]

= <q,~ ©) -1, a(lijgj) +Ai (X138

Vxs = <6:(0) €+A(X)E,

)
B

where use has been made of the condition (10.9). The last line of (10.59) is Vxs
expressed in the j-trivialization.

We have found that the covariant derivative defined by (10.49) is independent
of the horizontal lift as well as the local section. The gauge potential A;
transforms under the change of local trivialization so that Vs is a well-defined
section of E. In this sense, Vyx is the most natural derivative on an associated
vector bundle, which is compatible with the connection on the principal bundle
P.

= <a,(0) g’—i—A](X)é]

Example 10.4. Let us recover the results obtained in section 7.2. Let FM be a
frame bundle over M and let T M be its associated bundle. We note FM =
P(M,GL(m,R)) and TM = FM x,R", where m = dim M and p is the m x m
matrix representation of GL(m, R). Elements of gl(m, R) are m x m matrices.
Let us rewrite the local connection form A; as I'“ ;g dx*. We then find that

Vajoxreq = [(01(0), Tpee®)] = TP qep (10.60)

which should be compared with (7.14). For a general section (vector field),
s(p) =l(oi(p), Xi(p)] = X;*(p)ea, we find

ad
Vi axns = (a—ﬂx + I ﬁxﬂ> o (10.61)
which reproduces the result of section 7.2. It is evident that the roles played by the
indices o, B and p in I'* ;g are very different in their characters; u is the Q! (M)
index while « and 8 are the gl(m, R) indices.



Example 10.5. Let us consider the U(1) gauge field coupled to a complex scalar
field ¢. The relevant fibre bundles are the U(1) bundle P(M, U(1)) and the
associated bundle E = P x, C where p is the natural identification of an element
of U(1) with a complex number. The local expression for w is A; = A;;, dx*,
where A;;, = A;(9/9x") is the vector potential of Maxwell’s theory. Let y be
a curve in M with tangent vector X at y(0). Take a local section o; and express
a horizontal lift 7 of y as 7 (1) = o0;(1)e!?®. If 1 € C is taken to be the basis
vector, the basis section is

e = [(oi(p), DI

Let ¢(p) = [(0i(p), D(p))] = ®(p)e (& : M — C) be a section of E, which
is identified with a complex scalar field. With respect to ¥ (), the section is given
by

(1) =dOIF®). UM ™H] (10.62)

where U (1) = '), The covariant derivative of ¢ along y is
do _ - _
Vx¢ = 170, UO) DI+ 2O (0), UO) " Ai(X) - D]

4o dxt 9P
. — YM .
= (dt + A )e =X <axu +Am<1>> e. (10.63)

Example 10.6. Let us consider the SU(2) Yang—Mills theory on M. The relevant
bundles are the SU(2) bundle P(M,SU(2)) and its associated bundle £ =
P x, C?, where we have taken the two-dimensional representation. The gauge
potential on a chart U; is

Aj = Agy dxt = Ap° (‘;—‘1‘) dxt (10.64)

where oy /2i are generators of SU(2), o, being the Pauli matrices. Let e,”
(e = 1, 2) be basis vectors of C2 and consider sections

ea(p) = [(0i1(p), ea")] (10.65)

where o;(p) defines a canonical trivialization of P over U;. Let ¢(p) =
[(0i (p), ®*(p)es”)] be a section of E over M. Along a horizontal lift 7(r) =
o (p)U @), U(t) € SU(2), we have

(1) =[F®), UD 0% ()es ). (10.66)
The covariant derivative of ¢ along X = d/dr is
do* (0
Vi = [(17(0), U(0>—1%ea°>}
+170), UO) A (X)* 5P (0)e”)]

I DY
:xu(a +Ai @ ) (10.67)



where (10.13b) has been used to obtain the last equality.

Exercise 10.10. Let us consider an associated adjointbundle Eg = P x poqg Where
the action of G on g is the adjoint action V. — Ad,V = g Vg, V e gand
g € G. Take a local section 0; € I'(U;, P) such that y(t) = o0;(t)g(¢). Take a
section s(p) = [(0i(p), V(p))] on Eg, where V (p) = V*(p)Ty, {Ts} being the
basis of g. Define the covariant derivative Dys by
>:| . (10.68a)
t=0

d
Dys = [(;7(0), o (Adgy-1 V()

Show that
Dys = [<o,~(0), WO | 400, v )}
dt t=0
A%
_ e (W N fﬁymmﬁvv> [(01(0), T)l. (10.68b)

10.4.3 Curvature rederived

The covariant derivative Vys defines an operator V : '(M,E) - I'(M,E ®
Q' (M)) by (10.50). More generally, the action of V on a vector-valued p-form
s®n,n € QP(M), is defined by

Vis®n) =(Vs) An+s®dn. (10.69)

Let U; be a chart of M and o; a section of P over U;. We take the canonical local
trivialization over U;. We now prove

VVey = e ® F;P, (10.70)

where ey = [(07, €°)] € T(U;, E). In fact, by straightforward computation, we
find

VVey, = V(eg ®Aiﬂa) = Veg /\.Aiﬂa +ep® dAiﬂa
=ep® ALy + AP, ANAT ) = e @ TP,

Exercise 10.11. Let s(p) = £*(p)eq(p) be a section of E. Show that

VVs = eq ® F;% 48P (10.71)

10.4.4 A connection which preserves the inner product

Let E —— M be a vector bundle with a positive-definite symmetric inner product
whose action is defined at each point p € M by

g i per(p) >R (10.72)



Then g is said to define a Riemannian structure on E. A connection V is called
a metric connection if it preserves the inner product,

d[g(s,s")] = g(Vs,s') + g(s, Vs). (10.73)
In particular, if we take s = ey, s’ = ep and set g(eq, eg) = gup, We find
dgop = Ai" 0 gyp + Ai” ggay- (10.74)

This should be compared with (7.30b). If E = T M and, moreover, the torsion-
free condition is imposed, our connection reduces to the Levi-Civita connection
of the Riemannian geometry.

Given an inner product, we may take an orthonormal frame {¢, } such that
g(éq, ég) = 84p. The structure group G is taken to be O(k), k being the dimension
of the fibre. The Lie algebra o(k) is a vector space of skew symmetric matrices
and the connection one-form w satisfies

% = —al,. (10.75)

Theorem 10.6. Let E be a vector bundle with inner product g and let V be the
covariant derivative associated with the orthonormal frame. Then V is a metric
connection.

Proof. Since g is bilinear, it suffices to show that
dlg(s, )] =g(Vs,s') + g(s, Vs')

for s = fé, and s’ = f'ég where f, f/ € F(M). In fact, the LHS is
dlg(féa, f'ép)] = dlff'8ap] = d (ff')8ap while the RHS is

8(Vfeéa, f'ep) +g(féa,V [f'ep)
=g(df éa + feyo”q, f'ep) + g(féu,df ep + f'&,07 p)
=dff Sup + [f'@" ubyp + fAf " Sup + £ 0 pSay
=d(ff") 8ap

where (10.75) has been used to obtain the final equality. O

10.4.5 Holomorphic vector bundles and Hermitian inner products

Definition 10.6. Let E and M be complex manifolds and 7 : E — M a
holomorphic surjection. The manifold E is a holomorphic vector bundle if the
following axioms are fulfilled.

(i) The typical fibre is C* and the structure group is GL(k, C).
(ii) The local trivialization ¢; : U; x C* — 7~ 1(U;) is a biholomorphism.



(iii) The transition function t;; : U; NU; — G = GL(k, C) is a holomorphic
map.

For example, let M be a complex manifold with dimgc M = m. The
holomorphic tangent bundle 7M™+ = pem IpM * is a holomorphic vector
bundle. The typical fibre is C" and the local basis is {9/dz"}.

Let & be an inner product on a holomorphic vector bundle whose action at
pEMishy: 77 (p) x 771 (p) — C. The most natural inner product is a
Hermitian structure which satisfies:

i) hp(u,av+bw) =ahy(u,v)+bh,u,w), foru,v,w € 7 Y(p),a,beC;
(i) hp(u,v) =h,(v,u), u,vex(p);

(iii) hp(u,u) >0, hp(u,u) = 0if and only if u = ¢;(p, 0); and

(iv) h(s1,s2) € F(M)C for sy, o € T(M, E).

A set of sections {é1, ..., €} is a unitary frame if
h(e;, é;) = 6. (10.76)

The unitary frame bundle LM is not a holomorphic vector bundle since the
structure group U(m) is not a complex manifold.

Given a Hermitian structure &, we define a connection which is compatible
with h. The Hermitian connection V is a linear map '(M, E) - I'(M,E ®
T*MC) which satisfies:

A V(fs)=(@df)s+ fVs, f € FMC, s e (M, E);

@ii) d[h(s1,s2)] = h(Vsy, s2) 4+ h(s1, Vs2); and

(iii) according to the destination, we separate the action of V as Vs = Ds + Ds,
Ds (Ds) being a (1, 0)-form ((0, 1)-form) valued section. We demand that
D =24.

It can be shown that given E and a Hermitian metric %, there exists a unique
Hermitian connection V. The curvature is defined from the Hermitian connection.
Let {¢1, ..., é} be a unitary frame and define the local connection form AP, by

Véy = épAP,. (10.77)
The field strength is defined by
F=dA+ANA. (10.78)

We verify that
VVéy = V(egAPy) = é5F7P,. (10.79)

We prove that both A and F are skew Hermitian:
AB +A%g = h(Véy, ég) + h(éy, Vég) = dh (éq, ég) = dSep =0
Fhy+Fep =dAP, + AP, AAY 4 +dAYs + A%, AAY,
=d(APy —AP) + AP, NAY  + ATy AAY, = 0.



Thus, we have shown that
Al =—AB, TP, =—Fag, (10.80)

Next we show that Fis a (1, 1)-form. Let {&,} be a unitary frame. F cannot
have a component of bidegree-(0, 2) since

égFPy = VVéy = (D + 3)(D + 3)éy = DDéy + (D3 + dD)é,.

It follows from F#, = —F g that F has no component of bidegree-(0, 2), and,
hence, F has no component of bidegree-(2, 0) either. Thus F#, is a two-form of
bidegree-(1, 1).

10.5 Gauge theories

As we have remarked several times, a gauge potential can be regarded as a local
expression for a connection in a principal bundle. The Yang—Mills field strength is
then identified with the local form of the curvature associated with the connection.
We summarize here the relevant aspects of gauge theories from the geometrical
viewpoint.

10.5.1 U(1) gauge theory

Maxwell’s theory of electromagnetism is described by the U(1) gauge group. U(1)
is Abelian and one dimensional, hence we omit all the group indices «, g, . ..
and put the structure constants fog” = 0. Suppose the base space M is a four-
dimensional Minkowski spacetime. From corollary 9.1, we find that the U(1)
bundle P is trivial, namely P = R* x U(1) and a single local trivialization over
M is required. The gauge potential is simply

A=A, dx. (10.81)

Our gauge potential A differs from the usual vector potential A by the Lie algebra
factor i: A, =iA,. The field strength is

F =dA. (10.82a)
In components, we have
Fuv =0A,/0xH — A, /ox". (10.82b)
J satisfies the Bianchi identity,
dF=FAA-AANTF=0. (10.83a)

This should be expected from the outset since F is exact, ¥ = dA; and hence
closed, dF = d>A = 0. In components, we have

a)LStIJ.U + aust)\,u + 8/1.?111 =0. (1083b)



If we identify the components F,, = iFy, with the electric field E and the
magnetic field B as

E;i = Fio, Bi = e Fjx (i, j,k=1,2,3) (10.84)
(10.83b) reduces to two of Maxwell’s equations,

B
VxE—i—E:O V-B=0. (10.83c)
These equations are geometrical rather than dynamical. To find the dynamics, we
have to specify the action. The Maxwell action Sp[.A] is a functional of A and
is given by

SmlA] E%/ Fu I d*x = —%/ F . F* d*x. (10.85a)
R4 R4
Exercise 10.12. (a) Let 3, = %?K)‘SKAMU be the dual of JF,,,. Show that
SmlA] = —%/ F AT, (10.85b)

(b) Use (10.84) to show that
—1F,F* = L(E* - BY). (10.86)

Show also that
Fuy * F* =B.E. (10.87)

By the variation of Sm[A] with respect to A,, we obtain the equation of
motion,

9, F" = 0. (10.882)

We find this equation is reduced to the second set of Maxwell’s equations (in the

vacuum):

JE
V-E=0 VxB---=0. (10.88b)

10.5.2 The Dirac magnetic monopole

We have studied Maxwell’s theory of electromagnetism defined on R*. The
triviality of the base space makes the U(1) bundle trivial. Poincaré’s lemma
ensures that the field strength F is globally exact: § = dA. It is interesting to
extend our analysis to U(1) bundles over a non-trivial base space. We assume
everything is independent of time for simplicity.



The Dirac monopole is defined in R? with the origin O removed. R?> — {0}
and S? are of the same homotopy type and the relevant bundle is a U(1) bundle
P(S2, U(l)). $? is covered by two charts

Un={0.9)0<6<ir+e} Us={6.9lin—e<o=<n)

where 6 and ¢ are polar coordinates. Let w be an Ehresmann connection on P.
Take a local section on (os) on Un (Us) and define the local gauge potentials

AN = oo As = ogw.
We take An and Ag to be of the Wu—Yang form (section 1.9),
AN =ig(1 — cos0) d¢ As = —ig(1l 4+ cos8) d¢ (10.89)

where g is the strength of the monopole.

Let tns be the transition function defined on the equator Un N Us. INs
defines a map from S! (equator) to U(1) (structure group), which is classified
by 71 (U(1)) = Z, see example 9.7. Let us write

ins(¢) = explip(@)]  (¢p:S' - R). (10.90)
The gauge potentials Ax and Ag are related on Uy N Us by
AN = tg Asins + fng dins = As + idg. (10.91)
For the gauge potentials (10.89), we find
dp = —i(AN — As) =2g d¢.

While ¢ runs from O to 27 around the equator, ¢(¢) takes the range
2
Ap = /dgp = f 2¢dep =4ng. (10.92)
0
For tng to be defined uniquely, A¢ must be a multiple of 27,

Ap/2m =2g € T (10.93)

which is the quantization condition of the magnetic monopole. The integer 2g
represents the homotopy class to which this bundle belongs. This number is also
obtained by considering FNy = dAn and Fs = dAs (N = iFy etc). The total

flux @ is
CD:/B'dS:/ dAN—i-/ dAg
§2 Un Us

2
= / AN—/ As =2g/ d¢ = 4ng. (10.94)
st St 0

Thus, the curvature, that is the pair of the field strengths dAN and dAs,
characterizes the twisting of the bundle. We discuss this further in chapter 11.
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Figure 10.4. The Aharonov—Bohm experiment. B = 0 outside the solenoid.

10.5.3 The Aharonov-Bohm effect

In the elementary study of electromagnetism, the electric and magnetic fields (that
is F,) are of central interest. The vector potential A and the scalar potential
¢ = Ap are considered to be of secondary importance. In quantum mechanics,
however, there are a variety of situations in which F,, are not sufficient to
describe the phenomena and the use of A, = (A, Ao) is essential. One of these
examples is the Aharonov-Bohm effect.

The Aharonov—Bohm (AB) experiment is schematically described in figure
10.4. A beam of electrons with charge e is incoming from the far left and forms
an interference pattern on the screen C. A solenoid of infinite length is placed in
the middle of the beam. A shield S prevents electrons from penetrating into the
solenoid. Accordingly, the electrons do not feel the magnetic field at all. What
about the gauge field A;,?

For simplicity, we make the radius of the solenoid infinitesimally small,
keeping the total flux ® = |, ¢ B -dSfixed. Itis easy to verify that

A ye 10 Ag=0 10.95
(r)_< 2712 272’ ) 0= (10.93)
satisfies f(V x A)-dS = dand V x A = 0 forr # 0. The vector potential
does not vanish outside the solenoid. Classically, the solenoid cannot have any
influence on electrons since the Lorentz force e(v x B) vanishes on the path of
the beam.



In quantum mechanics, the Hamiltonian H of this system is

1 /9 :
e (ax_ﬂ - ieAM) LV (10.96)

where V() represents the effect of the experimental apparatus. Semiclassically,
we can distinguish between the paths y1 and yyy in figure 10.4. We write the
wavefunction corresponding to y1 (yir) as ¥y (Y1) when A = 0. If A # 0, the
wavefunction is given by the gauge-transformed form,

r
wiA(r)Eexp(ie/ A(r/)«dr/>wi(r) (i =110 (10.97)
P

where P is a reference point far from the apparatus. Let us consider a
superposition wIA + 1//1’?‘ of wavefunctions wIA and wﬁA such that I//IA(P) =
wl'?(P). Its amplitude at a point Q on the screen is

YNQ) + Y (Q) = exp <ie/ A(r') 'dr/>¢1(Q)
Vi

+ exp (ie/ Ar') - df,)l//H(Q)
v

= exp <ie/ A«dr/) [exp (ie?{ AodW)?,h(Q) +I//H(Q)j|
yi v

(10.98)

where y = y1 — yp. It is evident that even though B = 0 at the points in
space through which the electrons travel, the wavefunction depends on the vector
potential A. From Stokes’ theorem, we find that

%Adr’:/(VxA)dS:/BdS:@ (10.99)
14 S S

where § is a surface bounded by y . From this and (10.98), we find the interference
pattern should be the same for two values of the fluxes ®, and ®y, if

e(®y — Pp) =27 nem. (10.100)

What is the geometry underlying the Aharonov—Bohm effect? Since the
problem is essentially two dimensional, we consider a region M = R> — {0},
where the solenoid is assumed to be at the origin. The relevant bundles are the
principal bundle P (M, U(1)) and its associated bundle E = P x, C, where U(1)
acts on C in an obvious way. The bundle E is a complex line bundle over M,
whose section is a wavefunction .

Let us define a Lie-algebra-valued one-form A = iA = iA, dx*. The
covariant derivative associated with this local connection is D = d + A, where



A is given by (10.95). Since dA = F = 0, this connection is locally flat. Let
us consider the unit circle S ! which encloses the solenoid at the origin. We
parametrize S I as el? (0 < 6 < 2m) and write the connection on S as

KO
A =1i—4db. (10.101)
2

This is obtained from (10.95) by putting » = 1. We require that the wavefunction
¥ be parallel transported along S' with respect to this local connection, namely

Dy (0) = (d + i%d@) ¥ (0) = 0. (10.102)

The solution of (10.102) is easily found to be
Y (0) = e 10/ (10.103)

Taking this section ¢y amounts to neglecting the velocity of the electrons. The
holonomy I' : 7710 = 0) - 77 '(8 = 27) = 7~ 1( = 0) is found to be

T ¥ (0) — e Py (0). (10.104)

In an experiment, a toroidal permalloy (20% Fe and 80% Ni) has been used
to eliminate the edge effects (Tonomura et al 1983). The dimensions of the
permalloy are several microns and it is coated with gold to prevent electrons from
penetrating into the magnetic field.

10.5.4 Yang-Mills theory

Let us consider SU(2) gauge theory defined on R*. The bundle which describes
this gauge theory is P(R*, SU(2)). Since R* is contractible, there is just a single
gauge potential

A=A,%T, dx* (10.105)

where Ty, = 0 /21 generate the algebra su(2),

[Ty, Tg]l = €upy Ty .

The field strength is
F=dA+AAA= 1T, dx" Adx? (10.106a)
where
F o = dp Ay — 0 Ay + [Au, Ayl = F,°T, (10.106b)
Fun® = 8, Avg — 0y Aua + €apy AppAvy. (10.106¢)

The Bianchi identity is
DF =dF +[A, F]=0. (10.107)



The Yang—Mills action is
SymlAl = —3 / tw(F Ty =1 / tr(F A ). (10.108)
M M

The variation with respect to A, yields

D,IF* =0 or D+x3F =0. (10.109)

10.5.5 Instantons

A path integral is well defined only on a space with a Euclidean metric. To
evaluate this integral, it is important to find the local minima of the Euclidean
action and compute the quantum fluctuations around them. Let us consider the
SU(2) gauge theory on a four-dimensional Euclidean space R*. The local minima
of this theory are known as instantons (or pseudoparticles, Belavin et al (1975)),
see section 1.10. It is easy to verify that the Euclidean action is

SEulAl = }‘/ tr(F 0, FH) = —%/ tr(F A «F) (10.110)
M M

where the Hodge * is taken with respect to the Euclidean metric. As has been
shown in section 1.10 the field strength corresponding to instantons is self-dual
(anti-self-dual),

T =T (10.111)

The action of a self-dual (anti-self-dual) field configuration is

StulAl = -1 /M (T A*F) = F1 /M tr(F A F). (10.112)

Let us consider the topological properties of an instanton. We require that
Au(x) = gx)'og(x)  as|x|— L (10.113)

for the action to be finite, where L is an arbitrary positive number. Since x| = L
is the sphere $3, (10.113) defines a map g : $3 — SU(2) which is classified
by 73(SU(2)) = Z. How is this reflected upon the transition function? We
compactify R* by adding the infinity. We suppose the South Pole of $* represents
the points at infinity and the North Pole the origin. Under this compactification,
we separate R* into two pieces and identify them with the southern hemisphere
Us and the northern hemisphere Uy of S+ as

Un ={x e R*||x| < L +¢) (10.114a)
Us ={x € R*||x| > L — ¢} (10.114b)

see figure 10.5. We assume there is no ‘twist’ of the gauge potential on Us and
choose
As(x) =0 x € Us. (10.115)
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Figure 10.5. One-point compactification of R* to 5%,

Then all the topological information about the bundle is contained in An(x) or
the transition function #Ns(x) on the ‘equator’ s3 (=UnNUs). Since Ag = 0, we
have, for x € Ux N Us,

AN = tg Asins + tyg dins = 15g dins. (10.116)

Thus, g(x) in (10.113) is identified with the transition function fns(x) and
classifying the maps g : S — SU(2) amounts to classifying the transition
functions according to 73(SU(2)) = Z; see example 9.11.

We now compute the degree of a map g : S> — SU(2) following Coleman
(1979). First note that SU(2) ~ S? since

'L +1to; € SUQ) o 2+ (M2 =1.

Thus, maps g : $3 — SU(2) are classified according to 73(SU(2)) = w3 (83 =
Z.. We easily find the following.

(a) The constant map
g0 :x €8> eeSUQ) (10.117a)

belongs to the class O (i.e. no winding) of 73(SU(2)).
(b) The identity map (this is, in fact, the identity map $3 > 53

1 .
gl x> —[x*h + xloi], 1?2 = x> + (x%? (10.117b)
r

defines the class 1 of 73(SU(2)). The explicit form of the gauge potential
corresponding to this homotopy class is given in section 1.10.
(c) The map
gn= )" x> r "x*h +xloi]" (10.117¢)

defines the class n of 73(SU(2)).

We recall that the strength (charge) of a magnetic monopole is given by the
integral of the field strength F = d.A over the sphere S%. We expect that a similar



relation exists for the instanton number. Since instantons are defined over S*, we
have to find a four-form to be integrated over S*. A natural four-formis A J. In
the following, we shall omit the exterior product symbol when this does not cause
confusion (F2 stands for ¥ A F). Observe that tr 32 is closed,

dirF? = tr[dFTF + FdF]
= tr{—[A, FIF - F[A,F]} =0 (10.118)

where use has been made of the Bianchi identity dF + [A, 3] = 0. [Remarks: In
the present case, (10.118) seems to be trivial since any four-form on $% is closed.
Note, however, that (10.118) remains true even on higher-dimensional manifolds.]
By Poincaré’s lemma, the closed form tr F2is locally exact,

r¥? =dK (10.119)

where K is a local three-form. Thus, tr ¥2 is an element of the de Rham
cohomology group H*(S*). Later tr ¥ is identified with the second Chern
character and K its Chern—Simons form, see chapter 11.

Lemma 10.3. The three-form K in (10.119) is given by
K =tu[AdA + 247 (10.120)
Proof. A straightforward computation yields
dK = t[(dA)? + F(dAA? — AdAA + A% dA)]
= tr[(F — A (T — AP
+ (T - AHA? — AT - ADHA+ AT - AN
= ] — AF — FA* + A* + 3(FA® - ATA+ A’F — AY)]
where use has been made of the identity dA = F — A2. Now we note that
wtA* =0 wATA=—-uwA’T = —uTA>
For example, we have
r AFA = L tr A, Ty Ay dx® A dx? A dx Adx”
= — S U A AT dx” Adx A det Adxt = —r APF

where the cyclicity of the trace and the anti-commutativity of dx# have been used.
Then dK becomes

dK = u[F? — A*F — FA? + {FA® + (FA> + AF) + A’F)]
= trF?
as has been claimed. O

Lemma 10.4. Let A be the gauge potential of an instanton. Then it follows that

/ tr&"z:—%/ trA>. (10.121)
s4 S3



Proof. From Stokes’ theorem, we find that

/tr?2=/ dK:/K
Un Un s3

where Uy is defined by (10.114) and §3 = 9Un. Since F = 0 on S3, we obtain

K = tfAdA + 2A%) = tf AT — AD) + 3A4%) = —Lu A’

on S3, from which we find that

/ trﬁ"Z:/ tr?zz—%/ tr A3
Un S4 §3

where we have added f Us tr 52 = 0 since Ag = 0. O

Note that tr F2 is invariant under the gauge transformation,

r¥? - g 'F2g] = w I

Thus, it is reasonable to assume that tr ¥2 indeed contains a certain amount
of topological information about the bundle, which is independent of particular
connections. Let us consider the gauge fields (10.117a—c) given before. We find:

(a)

(b)

For go(x) = e, we have A = 0 on S>. Since the bundle is trivial we may
take A = 0 throughout S*. Then ¥ = 0, hence

/ rF? = —5/ rA3 =0. (10.122)
s4 §3

Note that this relation is true for any gauge potential which is obtained from
A = 0 by smooth gauge transformations, that is for any gauge potential of
the form A(x) = g(x)~'dg (x), x € §*.

Next consider a gauge potential whose value on S is given by (10.117b) as

1 1
A=—(x*—ixkop)d <—(x4 + ixl(n)> . (10.123)
r

r

A considerable simplification is achieved if we note that the integrand tr.A3
should not depend on the point on S> at which it is evaluated since g maps
$3 onto SU(2) = §3 in a uniform way. So we may evaluate it at the North
Pole (x* = 1, X = 0) of the unit sphere. We then find A = ioy dx* and

rA® =1 trlo;o ok ] dx’ A dxd A dxk

2eijkdx’ Adx/ Adek =12dx! Adx® Adx®. (10.124)



Next we note that (x',x2 x3) is a good coordinate system on each
hemisphere of S3 and w = dx!' A dx? A dx3 is a volume element at the
North Pole. We find

/ rA = 12/ w = 1227?) = 247>
S3 S3

where 2777 is the area of the unit sphere S>. We finally obtain

1
—— | u5’= / rA3 =1. (10.125)
87'[2 S4 2477,’2 3

(c) Next we consider the map g, : $3 = SU®2) given by (10.117¢c). We
show that go = gig1 has a winding number 2. We divide $3 into the
northern hemisphere UIEI3) and the southern hemisphere US(3). Given a map
g1 : 83 — SU(2), it is always possible to transform g smoothly to gin
which has the winding number one and giN(x) = e for x € Us(3)~ All the
variation takes place on U1£13)~ Similarly, g; may be deformed to g5 with the

same winding number and g1s(x) = e for x € UI£I3). Under this deformation,

g2 becomes
(3)
(x) x e U,
X) —> ! X) = 8IN N
g2(x) 8 (x) 215(x) ‘e Us(3)o

For A(x) = g5(x)~1dg} (x) (x € §?), we have

1 ;1 B . L
24]-[3 53 trA” = 247_[2 (\/(;IE;) tr(glN dglN) + U(}) tr(gls dgls)

N

=1+1=2. (10.126)
Repeating the same procedure we find for A(x) = g,; ldg, that
1
- F=—— | wAl=n. (10.127)
8m2 Jga 2472 g3

Collecting these results we establish the following theorem.

Theorem 10.7. The degree of mapping g : S — SU(2) is given by

: /t(*ld)3 I/t EAY (10.128)
= — T = — ry{ — . .
"= 24n2 3 & 98 2 ) \2m

10.6 Berry’s phase

In quantum mechanics, we define a wavefunction up to the phase. In most
cases, the phase is neglected as an irrelevant factor. Berry (1984) pointed out
that if the system undergoes an adiabatic change, the phase may have observable
consequences.



10.6.1 Derivation of Berry’s phase

Let H(R) be a Hamiltonian which depends on some parameters collectively
written as R. Suppose R changes adiabatically as a function of time, R = R(¢).
The Schrodinger equation is

d
HR@)|y (@) = igllﬁ(l)l (10.129)
We assume the system at ¢ = 0 is in the nth eigenstate, |1 (0)) = |n, R(0)) where
H(R(0))|n, R(0)) = E,(R(0))|n, R(0)). (10.130)

What about the state |1/ (7)) at later time r > 0?7 We assume the system is always
in the nth state, i.e. no level crossing takes place (adiabatic assumption).

Exercise 10.13. A naive guess of [/ (2)) is

t
1 (1)) = exp [ - if ds E,Z(R(s))}ln, R(1)) (10.131)
0

where the normalized state |n, R()) satisfies
H(R®)|n, R(®)) = E,(R®))|n, R(t)). (10.132)
Show that (10.131) is not a solution of (10.129).

Since (10.131) does not satisfy the Schrodinger equation, we have to try
other possibilities. Let us introduce an extra-phase 71, (¢) in the wavefunction:

t

l¥ (1)) = exp [in(t) - i/ E,,(R(s))dsi||n, R(t)). (10.133)
0

Inserting (10.133) into the Schrodinger equation (10.129), we find
HR@)IY (@) = Ex(R®)|¥ (1))
for the LHS (see (10.132)) and

dn, (1)
dr

d
iall//(m = [— + En(R(t)):| 1Y (1))
+ exp |:i77,Z (t) — i/ E,(R(s)) ds}i%m, R(1))

for the RHS. Equating these, it is found that 1, () satisifes

() d
o =it RO In RO)). (10.134)




By integrating (10.134), we obtain
t
m@ =i [ 0 RO, RS

R(?)
- i/ (n, R|VRrIn, R)AR (10.135)
R(0)

where VR stands for the gradient in R-space. Note that 7, (¢) is real since

2Re(n, R(s)| - |n R(s))

d

= {m. R In R(s)) + (d_ n, R(S)I) In, R(s))

d
= d—<n, R(s)In, R(s)) =
s
Suppose the system executes a closed loop in R-space; R(0) = R(T) for some
T > 0. We then have

r d
m(T) = i/ (n, R(s)ld—ln, R(s))ds
0 N

R(T)

= i/ (n, R|VRIn, R)dR. (10.136)
R(0)

Since R(T') = R(0), the last expression seems to vanish. However, the integrand

is not necessarily a total derivative and 1, (T') may fail to vanish. The phase 1, (T")

is called Berry’s phase (Berry 1984).

It was Simon (1983) who first recognized the deep geometrical meaning
underlying Berry’s phase. He observed that the origin of Berry’s phase is
attributed to the holonomy in the parameter space. We shall work out this point
of view following Berry (1984), Simon (1983), Aitchison (1987) and Zumino
(1987).

10.6.2 Berry’s phase, Berry’s connection and Berry’s curvature

Let M be a manifold describing the parameter space and let R = (Ry, ..., Ri)
be the local coordinate. At each point R of M, we consider the normalized nth
eigenstate of the Hamiltonian H (R). Since a quantum state |n; R) cannot be
distinguished from e'?|n; R), a physical state is expressed by an equivalence class

IR = {gIR)|g € U} (10.137)

where we omit the index n since we are interested only in the nth eigenvector
(figure 10.6). At each point R of M, we have a U(l) degree of freedom and we
have a U(l) bundle P(M, U(1)) over the parameter space M. The projection is
given by 7(g|R)) = R.



gIR)

|R)

M

Figure 10.6. The fibre of a quantum mechanical system which depends on adiabatic
parameters R.

Fixing the phase of |R) at each point R € M amounts to choosing a section.

Let 0(R) = |R) be a local section over a chart U of M. The canonical local
trivialization is given by

' (IR) = (R, e). (10.138)

The ‘right’ action yields
¢$~' (IR -©) = (R e)g = (R g). (10.139)

Now that the bundle structure is defined, we provide it with a connection.
Let us define Berry’s connection by

A=A, dR" = (R|d|R)) = —(d(R])|R) (10.140)

where d = (d/dR*)dR* is the exterior derivative in R-space. Note that A is
anti-Hermitian since

0 =d(RIR)) = (d(RDIR) + (RId|R) = (R|d|R)* + (R|d|R).

To see (10.140) is indeed a local form of a connection, we have to check the
compatibility condition. Let U; and U; be overlapping charts of M and let
0i(R) = |R); and 0;(R) = |R); be the respective local sections. They are
related by the transition function as |R); = |R);#;; (R). We then find that

Aj(R) = j{RIAIR); = #;; (R (RI[dIR)i#;; (R) + [R)dt;; (R)]
Ai(R) +1; (R ~ldt; (R). (10.141)

The set of one-forms {A;} satisfying (10.141) defines an Ehresmann connection
on P(M,U(1)).



The field strength F of A is called Berry’s curvature and is given by

(R R
F=dA = ([d(R]) AW|R)) = AR R) dR* AdR". (10.142)
oRH oRY
After an example from atomic physics, we shall clarify how this geometrical
structure is reflected in Berry’s phase.

Example 10.7. Let us consider a quantum mechanical system which contains
‘fast’ degrees of freedom r and ‘slow’ degrees of freedom R. For example, we
may imagine an electron moving under the potential of slowly vibrating ions.
Suppose the Hamiltonian is given by

P 2

P
H=—+_—+V(I;R 10.143
om T TVIR ( )

where p(P) is the momentum canonical conjugate to r(R). As a first
approximation, we may consider the slow degrees of freedom are ‘frozen’ at some
value R and consider an instantaneous sub-Hamiltonian

2
h(R) = 2p_m +V(; R (10.144)

and the eigenvalue problem
h(R)|R) = €2 (R)IR) (10.145)

where | R) stands for the nth eigenvector |n; R) of the ‘fast’ degrees of freedom.
We assume that the eigenvalue is isolated and non-degenerate. Berry’s connection
is A(R) = (R|d|R), while the curvature is ¥ = (d(R]) A (d|R)).

It is interesting to see how the fast degrees of freedom affect the slow degrees
of freedom. We assume the total wavefunction is written in the form

U(r; R) = ®(R)|R) (10.146)

and find the ‘effective’ Schrodinger equation which ®(R), the wavefunction
of the ‘slow’ degrees of freedom, satisfies. The eigenvalue problem of the
Hamiltonian (10.143) is

HY(r: R) = — ﬁ[Véd)(R)lR) +2VR®(R) - VR|R) + ®(R)V4|R)]
— @(R)ivaR) +®(R)V(r; R)IR)
2m

= E,(R)®(R)|R).

If we multiply (R| on the left and use the Schrodinger equation (10.145), this
equation becomes

1
—W[V%@(R) +2VRO(R) - (RIVRIR) + ®(R)((RIVRIR))’]
+ € (R)P(R) = E,(R)P(R) (10.147)



where we have employed the Born—Oppenheimer approximation, in which all the
matrix elements except the diagonal ones are neglected,

(n;RIVRIW; RY=0  n' #n. (10.148)

Now the effective Hamiltonian for |®(R)) is given by

1 B 2
Heﬁ(”)E—W (W —i—AM(R)) +&,(R) (10.149)

where A, is a component of Berry’s connection,

3
Au(R) = (Rl IR). (10.150)

It is remarkable that the fast degrees of freedom have induced a vector potential
coupled to the slow degrees of freedom. Note also that the eigenvalue ¢,(R)
behaves as a potential energy in Hegr. This ‘spontaneous creation’ of the gauge
symmetry reflects the phase degree of freedom of the wavefunction |R).

The Schrodinger equation describing the adiabatic change is
.d
H(R(®))|R(), 1) =1E|R(t),t) (10.151a)

where we note that |R(¢), f) has an explicit -dependence as well as an implicit
one through R(#). Berry assumes that

t
IR(t), 1) =exp ( - i/ E, (1) dt)ei"<’>|R(r)> (10.152a)
0

where | R) is an instantaneous normalized eigenstate of H (R),
H(R)|R) = E,(R)|R) (RIR) = 1. (10.153)

The first exponential is the ordinary dynamical phase while the second one is
Berry’s phase. It is convenient for our purpose to define an operator

H(R)=H(R) — E,(R) (10.154)

to dispose of the dynamical phase. The state | R) is the zero-energy eigenstate of
H(R): H(R)|R) = 0. The solution of the modified Schrodinger equation,

H(R)IR(®), 1) :i%|R(t),t) (10.151b)

is then given by _
IR(®), 1) = "D |R(1)). (10.152b)



We found in (10.136) that 7 is given by

(" dR* 9 . (RO
n(t) =1/0 ds——(R(&) 722 IR() ZI/R((» (RId|R). (10.155)

We show that Berry’s phase is a holonomy associated with the connection
(10.140) on P(M,U(1)). Take a section o (R) = |R) over a chart U of M. Let
R :[0,1] - M be aloopin U .2 'We write a horizontal lift of R(7) with respect
to the connection (10.140) as

R(t) = o (R(1))g(R()) (10.156)
where g(R(0)) is taken to be the unit element of U(1). The group element g(z)
satisfies (10.13b),

9@ 1= —a( ) = _(reyd
80T = A( dt)- (RO IRO) (10.157)

where g(¢) stands for g(R(#)). From g(#) = exp(in(¢)), we obtain

dn()
1— = —

d
” (R(I)IEIR(ID

which is easily integrated to yield

1
n(1) :i/ (R(s)|di|R(s)>ds =if<R|d|R>. (10.158)
0 A\

Let us note that R(0) = R(1), hence |[R(0)) = |R(1)). Then explin(1)] is
regarded as a holonomy (figure 10.7)

R(1) =exp<—y§(R|d|R>> - |R(0)). (10.159a)

Exercise 10.14. Let S be a surface in M, which is bounded by the loop R(?).
Show that

R(1) = exp ( — % 3") -|R(0)) (10.159b)
s
where J is given by (10.142).

Example 10.8. Let us consider a spin-% particle in a magnetic field with the
Hamiltonian

(10.160)

H(R)=R~a=< Rs Rl_iRz).

R +iR; —R3

2 We shall be a little sloppy in our notation.



Figure 10.7. If the parameter changes adiabatically along a loop R(z), the state with initial
condition |R(0)) becomes |R(1)) which is different from | R(0)) in general. The difference
is the holonomy and is identified with Berry’s phase.

The parameter R corresponds to the applied magnetic field. This is a two-level
system taking eigenvalues £|R|. Let us consider the eigenvalue R = +|R].
According to the prescription just described, we introduce a Hamiltonian H(R) =
H (R) — |R| and consider the zero-energy eigenstate of H(R) given by

(10.161)

|R>N=[2R(R+R3)]—1/2< R+ R )

R +iR;
The gauge potential is obtained after a straightforward but tedious calculation as

.RydRy — R{dR»

Ax =n(R|d|IR)N = -I—————. 10.162
N = N(RId|R)n O RR T Ry) ( )
The field strength is
i RiydR) AdR3 + Ry dR3 AdR| + R3dR; AdR
?:dA:% () 3+ R ;3 1+ R3dR; 2 (10.163)

So far we have assumed that the state |R) is isolated. However, this
assumption breaks down if R = 0, in which case two eigenstates are degenerate.
Surprisingly, this singularity behaves like a magnetic monopole in R-space. To
see this, we introduce polar coordinates 6 and ¢ in R-space,

Ri = Rsinf cos¢ R> = Rsinf sin ¢ R3 = Rcosf.



The state (10.161) is expressed as

. cos(6/2)
IR)N = < e sin(©/2) ) (10.164)
This state is singular at & = , reflecting that |R)y is not defined for R3 = —R.

Consider another eigenvector

IR)s =e Ry = ( ¢ cos(0/2) )

sin(6/2)
R; —iR
_ _ —1/2 1 2
=[2R(R — R3)] ( R — R > (10.165)
with the same eigenvalue. This eigenvector is singular at 6 = 0, that is at

R3 = R. Corresponding to these vectors, we have Berry’s gauge potentials in
polar coordinates,

An =3i(1 —cos®)dp O #m (10.166a)
As =— 3i(1 +cosf)dp 6 #0. (10.166b)

They are related by the gauge transformation,
As = AN — idg = An + €l® de71¢ (10.167)

where g(mw/2,¢) = exp(—i¢) is identified with the transition function fNs.
Equation (10.166) is simply the vector potential of the Wu—Yang monopole of
strength —%, see sections 1.9 and 10.5. The total flux of the monopole is
® =4n(—3) = —27.

The analogy between the present problem and the magnetic monopole is
evident by now. If we fix the amplitude R of the magnetic field, the restricted
parameter space is S2. At each point R of §2, the state has a phase degree
of freedom. Thus, we are dealing with a U(1) bundle P(Sz, U(1)), which also
describes a magnetic monopole. For each choice of the parameters R, we have
a fibre corresponding to the nth eigenstate |n; R). The fibre at R consists of the
equivalence class [|R)] defined by (10.137). The projection 7 maps a state to
the parameter on which it is defined: 7 : e?|R) — R € S2. As we have seen,
this bundle is non-trivial since it cannot be described by a single connection. The
non-triviality of the bundle implies the existence of a monopole at the origin. Note
that R = O (that is, B = 0) is a singular point at which all the eigenvalues are
degenerate.

Next we turn to the problem of holonomy. Take a standard point R(0)
on $? and choose a vector |[R(0)). We choose a loop R(#) on $? and execute
a parallel transportation of |R(0)) along R(¢), after which it comes back as
a vector exp[in(1)]|R(0)). The additional phase n represents the holonomy



7 Y R) - 7~ (R) and corresponds to Berry’s phase. From (10.158), n(1)

is given by
R S

where F = dA is the field strength and S is the surface bounded by the loop R(z).
It follows from (10.168) that Berry’s phase 1(1) represents the ‘magnetic flux’
through the area S.

Exercise 10.15. Use (10.165) to show that

i RpdR; — Ry dR;

Ag =
2" R(R—R3)

(10.169)

Show also that
RydR| — R dR»

C(R+R)(R—Ry)’
Observe that d¢ is singular at R3 = +R.

d¢ = (10.170)

Problems

10.1 Consider a two-dimensional plane M with coordinate R and a wavefunction
Y which depends on R adiabatically as v = ¥ (r,R). Let R : [0,1] - M
be a loop in M and suppose ¥ (r, R(1)) = —(r, R(0)), that is the phase of i
changes by 7 after an adiabatic change along the loop. Show that there is a point
within the loop at which the adiabatic assumption breaks down. See Longuet-
Higgins (1975).



11

CHARACTERISTIC CLASSES

Given a fibre F, a structure group G and a base space M, we may construct
many fibre bundles over M, depending on the choice of the transition functions.
Natural questions we may ask ourselves are how many bundles there are over M
with given F and G, and how much they differ from a trivial bundle M x F. For
example, we observed in section 10.5 that an SU(2) bundle over S% is classified
by the homotopy group 73(SU(2)) = Z. The number n € Z tells us how the
transition functions twist the local pieces of the bundle when glued together.
We have also observed that this homotopy group is evaluated by integrating
tr F2 € H*(S%) over §*, see theorem 10.7.

Characteristic classes are subsets of the cohomology classes of the base
space and measure the non-triviality or twisting of a bundle. In this sense, they
are obstructions which prevent a bundle from being a trivial bundle. Most of the
characteristic classes are given by the de Rham cohomology classes. Besides their
importance in classifications of fibre bundles, characteristic classes play central
roles in index theorems.

Here we follow Alvalez-Gaumé and Ginsparg (1984), Eguchi et al (1980),
Gilkey (1995) and Wells (1980). See Bott and Tu (1982), Milnor and Stasheff
(1974) for more mathematical expositions.

11.1 Invariant polynomials and the Chern—Weil homomorphism

We give here a brief summary of the de Rham cohomology group (see chapter 6
for details). Let M be an m-dimensional manifold. An r-form w € Q" (M) is
closed if dw = 0 and exact if w = dn for some € Q"~1(M). The set of closed r-
forms is denoted by Z” (M) and the set of exact r-forms by B" (M). Since dz =0,
it follows that Z" (M) D B"(M). We define the rth de Rham cohomology group
H" (M) by

H' (M)=Z"(M)/B"(M).

In H" (M), two closed r-forms w; and w» are identified if w; — wp = dn for some
n € Q"1 (M). Let M be an m-dimensional manifold. The formal sum

H*M)=H'M)® H' (M) ® --- & H™(M)

is the cohomology ring with the product A : H*(M) x H*(M) — H*(M)
induced by A : HP(M) x HI(M) — HPT(M). Let f : M — N be a



smooth map. The pullback f* : Q"(N) — Q"(M) naturally induces a linear
map f* : H"(N) — H"(M) since f* commutes with the exterior derivative:
f*do = df*w. The pullback f* preserves the algebraic structure of the
cohomology ring since f*(w A1) = f*o A f*n.

11.1.1 Invariant polynomials

Let M(k,C) be the set of complex k x k matrices. Let S"(M(k, C)) denote
the vector space of symmetric r-linear C-valued functions on M (k, C). In other
words, a map

P :® M(k,C) — C

is an element of S” (M (k, C)) if it satisfies, in addition to linearity in each entry,
the symmetry

P(ai,...,a;,...,aj,...,a)

= P(al,....aj,....a,...,a) 1<i,j<r (11.1)

where a, € GL(k, C). Let

S Mk C) =& §'(Mk.O)

denote the formal sum of symmetric multilinear C-valued functions. We define a
product of P € SP (M (k, C)) and Q € S9(M (k, C)) by

PO(X1..... Xpiq)
! Zﬁ(x Xp(m) QX X ) (11.2)
= P()s---> P P I)seee P .
P+a! 4 ) ) (p+D) (p+)
where P is the permutation of (1,..., p + ¢). S*(M(k, C)) is an algebra with
this multiplication.
Let G be a matrix group and g its Lie algebra. In practice, we take
G = GL(k,C),U(k) or SU(k). The Lie algebra g is a subspace of M(k, C)

and we may consider the restrictions S”(g) and $*(g) = EBrzO S"(g). PeS (9)
is said to be invariant if, for any g € G and A; € g, P satisfies

P(Adg Ay, ...,Adg A;) = P(Ay,..., A)) (11.3)
where Adg A; = g 'A;g. For example,
P(A1, Az, ..., A)) = sti(AL, A, ..., Ay)

1
P} E tr(Apcy, Ap2)s -+, AP@r)) (11.4)
P



is symmetric, r-linear and invariant, where ‘str’ stands for the symmetrized trace
and is defined by the last equality. The set of G-invariant members of S” (g) is
denoted by 1"(G). Note that g; = g» does not necessarily imply " (G1) =
I"(G>). The product defined by (11.2) naturally induces a multiplication

IP(G)® 11(G) — IP19(G). (11.5)

The sum I*(G) = ®r20 I"(G) is an algebra with this product.
Take P € I"(G). The shorthand notation for the diagonal combination is

P(A)=P(A,A,...,A) Acg. (11.6)

r

Clearly, P is a polynomial of degree r and called an invariant polynomial. P is
also Ad G-invariant,

P(Adg A) = P(g"'Ag)=P(A) AcggeG. (11.7)

For example, tr(A") is an invariant polynomial obtained from (11.4). In general,
an invariant polynomial may be written in terms of a sum of products of P, =
tr(A").

Conversely, any invariant polynomial P defines an invariant and symmetric
r-linear form P by expanding P(1jA| + - - - + £, A,) as a polynomial in ;. Then
1/r! times the coefficient of 71, - - - ¢, is invariant and symmetric by construction
and is called the polarization of P. Take P(A) = tr(A3), for example. Following
the previous prescription, we expand tr(11A| + 1Az + 13 A3)? in powers of t1, 1>
and 3. The coefficient of 111,13 is

tr(A1A2A3z + A1A3A2 + A2A1A3 + ArA3A1 + A3A1Ar 4+ A3A2A))
=3tr(A1A2A3 + A2A1A3)

where the cyclicity of the trace has been used. The polarization is
P(A1, A2, A3) = 3 r(A1A2A3 + A2A1A3) = str(A1, Az, A3).

In the previous chapter, we introduced the local gauge potential A = A, dx*
and the field strength F = %3’” w dx” A dx" on a principal bundle. We have
shown that these geometrical objects describe the associated vector bundles as
well. Since the set of connections {A;} describes the twisting of a fibre bundle,
the non-triviality of a principal bundle is equally shared by its associated bundle.
In fact, if (10.57) is employed as a definition of the local connection in a vector
bundle, it can be defined even without reference to the principal bundle with which
it is originally associated. Later, we encounter situations in which use of vector
bundles is essential (the Whitney sum bundle, the splitting principle and so on).



Let P(M,C) be a principal bundle. We extend the domain of invariant
polynomials from g to g-valued p-forms on M. For A;n; (A; € g,n €
QPi(M); 1 <i <r), wedefine

P(Aini, ..., Arm) =m A... AN P(A1, ..., A)). (11.8)
For example, corresponding to (11.4), we have

Str(Aing, ..., Arn) =1 AL Anestr(Ag, ..., Ap).
The diagonal combination is

P(An)=nn...AnP(A). (11.9)

r

The action P or P on general elements is given by the r-linearity. In particular,
we are interested in the invariant polynomial of the form P (J) in the following.
The importance of invariant polynomials resides in the following fundamental
theorem.

Theorem 11.1. (Chern—Weil theorem) Let P be an invariant polynomial. Then
P (9) satisfies

(a)dP @) =0.
(b) Let F and F’ be curvature two-forms corresponding to different
connections A and A’. Then the difference P(F") — P(F) is exact.

Proof. (a) It is sufficient to prove that dP(3) = 0 for an invariant polynomial
P.(3) which is homogeneous of degree r, since any invariant polynomial can be
decomposed into homogeneous polynomials. First consider the identity,

B¢ Xigr, .., 87 Xrg) = Br(X1, ..., X))

where g; = exp(tX) and X, X; € g. By putting ¢t = 0 after differentiation with
respect to ¢, we obtain

Zﬁ,(Xl,...,[X,',X],...,X,)=O. (11.10)
i=1

Next, let A be a g-valued p-form and 2; be a g-valued p;-form (1 < i < r).
Without loss of generality, we may take A = Xn and 2; = X;n; where X, X; € g
and n (n;) is a p-form (p;-form). Define

(2, Al = ni AnlXi, X]
=XiX(mi An) — (=DPPIXXi(n A mi). (1L.11)



Let us note that

P, ..., [Q% Al ..., Q)
SMAADADA L ADPA(XL, L X X X))
—(=DPPimgp AL ADAD AL
A P(X0, L XX XS
=DANA ... A (=1)PP1H+PD)
X Po(X1, ..., [Xi, X1, ..., X,).

From this and (11.10), we find
r
D (=PI Py, L [0, AL L Q) = 0. (11.12)
i=1
Next, consider the derivative,

dP, (1, ..., Q) =dm A ... An)P(X1, ..., Xp)

N
- Z(—l)(”'+"'+”i—1)(m AoAdDE AL AT
i=1

X Pr(X1, .o, Xiy oo Xp)

= Z(—l)(l’l*"'*f’f*l)ﬁ,(szl,...,in,...,Q,). (11.13)

i=1

Let A=A and Q; = Fin (11.12) and (11.13) for which p = 1 and p; = 2. By
adding O of the form (11.12) to (11.13) we have

dP. (F,...,9)

~

=ZI3,(?,...,D3",...,CF):O (11.14)

since DF = dJF + [A, F] = 0 (the Bianchi identity). We have proved
dP, () =dP(F,....F) =0.

(b) Let A and A’ be two connections on E and let F and J’ be the respective
field strengths. Define an interpolating gauge potential A;, by

Ar=A+10 0=A —A) 0<t<l1 (11.15)



so that Ag = A and A = .A’. The corresponding field strength is
F, =dA, + A, AA, = F +tDO + 1262 (11.16)

where DO = df + [A,0] =d6 + A A O + 6 A A. We first note that

I d
Pr(st/)_Pr(?)=Pr(9:1)_Pr(?O)2/0 dtapr(?t)

b~ /d
=r/ dfPr <—?t,?t,...,?t>. (1117)
0 dr

From (11.16), we find that

%P,(?,) =rbB.(DO +2:6%,F, ..., F))
=rP. (DO, F:,....F) +2rt P (0%, F,,....F). (11.18)
Note also that
DF; =dF; + [A, Fil = —[Ar, Fi) + [A, F1] = 1[5, 6]

where use has been made of the Bianchi identity D, ¥, = dF; + [A;, F;] = 0. [D
is the covariant derivative with respect to A while D; is that with respect to A;.]
It then follows that

d[ PO, T, ..., F)]
=P.d0,%,....5)— (r —DP.(0,dF,, ..., F)
=P.(DO,F,....F)—(r —DP.(6,DF;,....F)
=P.(DO,Fs,....,F) — (r — DtPr(0,[F,0),Fs ..., F)  (11.19)

where we have added a 0 of the form (11.12) to change d to D. If we take
Q=A=0,0=---=Q,, =Fin (11.12), we have

2P,0%,F,,.... )+ —1DP.®,[5:,61,F,...,5)=0.

From (11.18), (11.19) and the previous identity, we obtain

d -
aPr((ft) =rd[P 0, T, ..., D]

We finally find that
1 ~
P(F) — P(F) = d[r/ PA — AT, ..., F) dt:|. (11.20)
0

This shows that P, (") differs from P, (F) by an exact form. O



We define the transgression 7 P.(A’, A) of P, by

1
TP.(A,A) = r/O diP. (A — A, Ty, ..., F) (11.21)

where P, is the polarization of P,. Transgressions will play an important role
when we discuss Chern—Simons forms in section 11.5. Let dim M = m. Since
P, (") differs from P,,(F) by an exact form, their integrals over a manifold M
without a boundary should be the same:

/Pm(‘&”)—/ Pm(fr'”)zf dTPm(.A’,.A)zf Pu(A,A)=0. (11.22)
M M M aM

As has been proved, an invariant polynomial is closed and, in general, non-
trivial. Accordingly, it defines a cohomology class of M. Theorem 11.1(b)
ensures that this cohomology class is independent of the gauge potential chosen.
The cohomology class thus defined is called the characteristic class. The
characteristic class defined by an invariant polynomial P is denoted by xg(P)
where E is a fibre bundle on which connections and curvatures are defined.
[Remark: Since a principal bundle and its associated bundles share the same
gauge potentials and field strengths, the Chern—Weil theorem applies equally to
both bundles. Accordingly, E can be either a principal bundle or a vector bundle.]

Theorem 11.2. Let P be an invariant polynomial in /*(G) and E be a fibre bundle
over M with structure group G.

(a) The map
xe : I"(G) - H*(M) (11.23)

defined by P — yxg(P) is a homomorphism (Weil homomorphism).
(b) Let f : N — M be a differentiable map. For the pullback bundle f*E of
E, we have the so-called naturality

XrE = f"XE- (11.24)
Proof. (a) Take P, € I"(G) and Py € I°(G). If we write F = F“T,, we have

(PP F)=FA . AFUNFPA . ATFP
1

(r +s)!

= P.(F) A P(F).

Pr(Tay, ..., Ta, ) Pu(Tp,, ..., Tp,)

Then (a) follows since P.(F), Py(F) € H*(M).

(b) Let A be a gauge potential of £ and F = dA + A A A. It is easy to verify
that the pullback f*A is a connection in f*E. In fact, let A; and A; be local
connections in overlapping charts U; and U; of M. If #;; is a transition function



on U; N Uj, the transition function on f*E is given by f*t;; = t;; o f. The
pullback f*A; and f*A; are related as

[fA; = f*(t,';l-/qitij + tl;l dt;;)
= (f*1;; VAN 13j) + (FF1 DA 1),

This shows that f*A is, indeed, a local connection on f*E. The corresponding
field strength on f*E is

d(f*Ap) + ffAi A fRA = fHldA + A AA = 7T
Hence, f*P(3;) = P(f*3F;), thatis f*xg(P) = xre(P). O

Corollary 11.1. Characteristic classes of a trivial bundle are trivial.

Proof. Let E ", M be a trivial bundle. Since E is trivial, there exists a map
f : M — {p}such that E = f*Eqg where Ey —> {p} is a bundle over a
point p. All the de Rham cohomology groups of a point are trivial and so are the
characteristic classes. Theorem 11.2(b) ensures that the characteristic classes x g
(=f*xk,) of E are also trivial. O

11.2 Chern classes

11.2.1 Definitions

Let E —> M bea complex vector bundle whose fibre is C*. The structure group
G is a subgroup of GL(k, C), and the gauge potential A and the field strength F
take their values in g. Define the total Chern class by

c(F) = det (I + E) . (11.25)
2

Since J is a two-form, c(J) is a direct sum of forms of even degrees,
cC@=14+c1P)+c2F)+--- (11.26)

where ¢;(F) € Q2 (M) is called the jth Chern class. In an m-dimensional
manifold M, the Chern class c¢;(J) with 2j > m vanishes trivially. Irrespective
of dim M, the series terminates at ¢x(F) = det(iF /27) and ¢;(F) = 0 for j > k.
Since ¢ (J) is closed, it defines an element [c; (F)] of H 2i(M).

Example 11.1. Let F be a complex vector bundle with fibre C* over M, where
G = SUQ2) and dimM = 4. If we write the field F = F%(0y/2i), F¢ =
%3’“,“, dx* A dxV, we have

dm:w@+iwmmﬂ
27



— det 1+ GQ/27)(F3/21)  (i/27)(F! —iF2)/2i
= ¢ A2m)(F +iF%) /21 1 — (1i/27)(F3/2i)

=1+%(%)2 (P AT 4T AT 452452 a127)
Individual Chern classes are

c(F) =1

c1(F)=0

i\ TYA T iF

Higher Chern classes vanish identically.

(11.28)

For general fibre bundles, it is rather cumbersome to compute the Chern
classes by expanding the determinant and it is desirable to find a formula which
yields them more easily. This is done by diagonalizing the curvature form.
The matrix form J is diagonalized by an appropriate matrix g € GL(k, C) as
g’1 (iF/2n)g = diag(xy, ..., xx), where x; is a two-form. This diagonal matrix
will be denoted by A. For example, if G = SU(k), the generators are chosen to be
anti-Hermitian and a Hermitian matrix i /27 can be diagonalized by g € SU(k).
We have

det(I + A) = det[diag(1 + x1, 1 +x2,..., 1 + xp)]

k
= [Ta+xp
j=1

=140+ +x0) + (x4 -+ 4 Xp—1x%)
+ o (4 )
=1+trA+{(rA)? —twA? + - +detA.  (11.29)

Observe that each term of (11.29) is an elementary symmetric function of {x;},

So(xj) =1

k
Si(xj) = ij
j=1

Sz(x]') = inx]'

i<j

(11.30)

Sk(xj) = x1x2. .. Xk



Since det(/ 4+ A) is an invariant polynomial, we have P(F) = P(gFg™}) =
P(2m A/1), see (11.7). Accordingly, we have, for general F,

co(F) =1

@ =wa=t(ggt)= L
1 =trA=tr ang _2ntr3‘

@) = M A)? - wA? = Lipn 2T A —u@ gy D

e (F) = det A = (i/27)  det F.
Example 11.1 is easily verified from (11.31). [Note that the Pauli matrices (in
general, any element of the Lie algebra su(n) of SU(n)) are traceless, tro, = 0.]
11.2.2 Properties of Chern classes

We will deal with several vector bundles in the following. We often denote the
Chern class of a vector bundle E by c(E). If the specification of the curvature is
required, we write ¢(Jg).

Theorem 11.3. Let E —~ M be a vector bundle with G = GL(k, C) and
F = Ck.

(a) (Naturality) Let f : N — M be a smooth map. Then
c(f*E) = f*c(E). (11.32)

(b) Let F > M be another vector bundle with F = ¢! and G = GL(, ©).
The total Chern class of a Whitney sum bundle E @ F is

c(E® F)=c(E)Ac(F). (11.33)
Proof.

(a) The naturality follows directly from theorem 11.2(a). Since the curvature
of f*Eis Fp«g = f*TF, the total Chern class of f*E is

R da L.
c(f*E) = det (1+ Zﬂ?f E> = det <I + an rJrE>
= f*det <1 + i?E) = f*e(E).

(b) Let us consider the Chern polynomial of a matrix

as(50)



[Note that the curvature of a Whitney sum bundle is block diagonal: Fggr =
diag(Fg, Fr).] We find that

iA iB
det(1+2 ) zdee( Tt O
2 0 I+ 27
iB iC
=det|{ ]+ — |det{ I+ — | =c(B)c(C).
2 2

This relation remains true when B and C are replaced by Fg and I, namely
c(Feor) = c(FE) Ac(TF)
which proves (11.33). O
Exercise 11.1. (a) Let E be a trivial bundle. Use corollary 11.1 to show that
c(E)=1. (11.34)

(b) Let E be a vector bundle such that £ = E{ & E; where E| is a vector
bundle of dimension k; and E> is a trivial vector bundle of dimension k. Show
that

¢G(E)=0 ki+1<i<ki+k. (11.35)

11.2.3 Splitting principle

Let E be a Whitney sum of n complex line bundles,
E=L1®L, & - DLy (11.36)
From (11.33), we have
c(E) =c(L1)c(L2)...c(Ly) (11.37)

where the product is the exterior product of differential forms. Since ¢,(L) = 0
for r > 2, we write
cLi) =14+ci (L) =1+x. (11.38)

Then (11.37) becomes
n
c(E) =]_[(1 + X;). (11.39)
i=1

Comparing this with (11.29), we find that the Chern class of an n-dimensional
vector bundle E is identical with that of the Whitney sum of n complex line
bundles. Although E is not a Whitney sum of complex line bundles in general,
as far as the Chern classes are concerned, we may pretend that this is the case.
This is called the splitting principle and we accept this fact without proof. The
general proof is found in Shanahan (1978) and Hirzebruch (1966), for example.



Intuitively speaking, if the curvature J is diagonalized, the complex vector
space on which g acts splits into k independent pieces: C* — C @ --- @ C. An
eigenvalue x; is a curvature in each complex line bundle. Since diagonalizable
matrices are dense in M (n, C), any matrix may be approximated by a diagonal
one as closely as we wish. Hence, the splitting principle applies to any matrix. As
an exercise, the reader may prove (11.33) using the splitting principle.

11.2.4 Universal bundles and classifying spaces

By now the reader must have some acquaintance with characteristic classes.
Before we close this section, we examine these from a slightly different point of

view emphasizing their role in the classification of fibre bundles. Let £ M
be a vector bundle with fibre C¥. It is known that we can always find a bundle

E =5 M such that
EQEZMxC! (11.40)

for some n > k. The fibre F), of E at p € M is a k-plane lying in C". Let Gy, (C)
be the Grassmann manifold defined in example 8.4. The manifold G ,(C) is
the set of k-planes in C*. Similarly to the canonical line bundle, we define the
canonical k-plane bundle Ly ,(C) over Gy ,(C) with the fibre Ck. Consider a
map f : M — Gy, (C) which maps a point p to the k-plane F), in C".

Theorem 11.4. Let M be a manifold with diimM = m and let E —— M be a
complex vector bundle with the fibre C¥. Then there exists a natural number N
such that forn > N,

(a) there exists amap f : M — G, ,(C) such that
EZ= f*Lin(©) (11.41)

) f*Lyn(©) = g*Lgn(C) if and only if f,g : M — Gy n(C) are
homotopic.

The proof is found in Chern (1979). For example, if E I Misa complex

line bundle, then there exists a bundle E ., M such that E DE=MxC"and
amap f : M — G1,(C) = CP"~! such that E = f*L, L being the canonical
line bundle over CP"~!. Moreover, if f ~ g, then f*L is equivalent to g*L.
Theorem 11.4 shows that the classification of vector bundles reduces to that of
the homotopy classes of the maps M — Gy, (C).

It is convenient to define the classifying space G (C). Regarding a k-plane
in C" as that in C"*!, we have natural inclusions.

Gk (©) = Gip4+1(C) — -+ — G (©) (11.42)



where

o
Gr(© = | Gia(O. (11.43)
n=k
Correspondingly, we have the universal bundle L; — G (C) whose fibre is
Ck. For any complex vector bundle E > M with fibre C¥, there exists a map
f:M — Gi(C) such that E = f*L;(C).
Let E —> M be a vector bundle. A characteristic class X is defined as a
map x : E — x(E) € H*(M) such that

X(f*E) = f*x(E)  (naturality) (11.44a)
X(E) = x(E") if E is equivalent to E’. (11.44b)

The map f* on the LHS of (11.44a) is a pullback of the bundle while f* on
the RHS is that of the cohomology class. Since the homotopy class [f] of
f + M — Gi(C) uniquely defines the pullback

F* L HY(Gr) — H*(M) (11.45)

an element x (E) = f*x(Gx) proves to be useful in classifying complex vector
bundles over M with dim E = k. For each choice of x(Gy), there exists a
characteristic class in E.

The Chern class c(E) is also defined axiomatically by

() c(f*E) = f*c(E) (naturality) (11.46a)
(ii) c(E) =co(E) D c1(E) D - D cr(E)

ci(E) e HE(M); ¢i(E)=0 i>k (11.46b)

(iii) c(E® F)=c(E)c(E) (Whitney sum) (11.46¢)

@iv) c(L)y=1+x (normalization) (11.464d)

L being the canonical line bundle over CP". It can be shown that these axioms
uniquely define the Chern class as (11.25).

11.3 Chern characters

11.3.1 Definitions

Among the characteristic classes, the Chern characters are of special importance
due to their appearance in the Atiyah—Singer index theorem. The total Chern
character is defined by

ch(%) = trexp (%) =Z : tr(%) ) (11.47)

i
=17



The jth Chern character ch; () is

1 i\
chj(F) = f'tr(—> . (11.48)
J! 2

If2j > m = dim M, ch; (F) vanishes, hence ch(J) is a polynomial of finite order.
Let us diagonalize J as

iF (1T .
— > g — | g = A = diag(xy, ..., xk) g € GL(k, C).
2 2

The total Chern character is expressed as

k
trlexp(A)] = Z exp(x;). (11.49)
j=1

In terms of the elementary symmetric functions S, (x;), the total Chern character
becomes

- | 1, 13
Z +xj+axj+§xj+'~
j=I

k
Zexp(xj) =
j=1

1
=K+ 81() + 551G = 28()1++- . (11.50)

Accordingly, each Chern character is expressed in terms of the Chern classes as

cho(F) =k (11.51a)
chi (&) = c1(F) (11.51b)
chh(F) = %[cl(ﬁ")2 —2¢2(P)] (11.51¢)

where k is the fibre dimension of the bundle.

Example 11.2. Let P be a U(1) bundle over S2. If An and Ag are the local
connections on Ux and Us defined in section 10.5, the field strength is given by
F; =dA; i =N, S). We have
iF
ch(@) =1+ = (11.52)
2

where we have noted that 3 = 0 (n > 2) on S2. This bundle describes the
magnetic monopole. The magnetic charge 2g given by (10.94) is an integer
expressed in terms of the Chern character as

N:L/ 3'”:/ ch (9). (11.53)
2 S2 S2



Let P be an SU(2) bundle over S*. The total Chern class of P is given by
(11.27). The total Chern character is

iF\ 1 [iF)?
h =2 — — — ) . 11.54
ch(%) +tr(2n)+2tr<2n> (11.54)

Ch(F) terminates at chy(F) since F" = 0 for n > 3. Moreover, trF = 0 for
G = SU(2), n = 2. As we found in section 10.5, the instanton number is given

by
! t<i5t)2— hy (F 11.55
§A4r§ —'/5402()' (11.55)

In both cases, ch; measures how the bundle is twisted when local pieces are
patched together.

Example 11.3. Let P be a U(1) bundle over a 2m-dimensional manifold M. The
mth Chern character is

1 3’ m 1 . m 1 m
— (=) =— (=) |2Fmwdc" Adx’
m! 2 m! \ 21 2

1 i m
% E 3‘/411)1 "'{fﬂmvm dx’“ /\dxvl /\.../\dx“"’ /\dXVm

. m
1

which describes the U(1) anomaly in 2m-dimensional space, see chapter 13.

Example 11.4. Let L be a complex line bundle. It then follows that

iF iF
ch(L) = trexp il =e'=1+x xEI—. (11.56)
2 2
For example, let L —> CP! be the canonical line bundle over CP! = $2. The
Fubini—Study metric yields the curvature
- dz AdZ
F=—-80In(l+|z») = ——— 11.57
A+ =73 (1157)
see example 8.8. In real coordinates z = x + iy = r exp(if), we have
dx And dr nd6
F =2 Y (11.58)
(1 +x2+y2)2 (1 +r2)2
From ch(F) = 1 + tr(iF/27), we have
hy (F) 1rdrAdo (11.59)
c = .
! 7 (1+r2)?
Chy (L), the integral of ch; (%) over 52 is an integer,
Chy(L) = —+ [ _rdrdd _ /oot_zdt— 1 (11.60)
TR avm2r T - '



11.3.2 Properties of the Chern characters

Theorem 11.5. (a) (Naturality) Let E . M be a vector bundle with F =
Ck. Let f : N — M be a smooth map. Then

ch(f*E) = f*ch(E). (11.61)

(b) Let E and F be vector bundles over a manifold M. The Chern characters
of E®Q F and E & F are given by

ch(E ® F) = ch(E) A ch(F) (11.62a)

ch(E & F) = ch(E) & ch(F). (11.62b)

Proof. (a) follows from theorem 11.2(a).
(b) These results are immediate from the definition of the ch-polynomial.

1 [iAY
ch(A) = —tr| —
W =X 5(5)
be a polynomial of a matrix A. Suppose A is a tensor product of B and C,

A=BQRC=BQI+1QC (notethat Frgr = Fg ® I + I ® Fr). Then we
find that

Let

1\ 27

1(iy :
ch(B®C)=Zf(L) tr(B®I+1®C)
7 J
i J

1 /i ; .
-y o (é) 3 <;l) tr(B™) tr(CI ™)
A

m=1
I [iBY'< 1 _ [iCY'
-y —u(E “ (=) = ch(B)ch(C).
;m! r(zn) Xn:n! r<2n> ch(B)ch(C)

Equation (11.62a) is proved if B is replaced by 3¢ and C by Fr.

If A is block diagonal,
B 0
A= < 0 C ) =BopC
we have
ch(B&C)= ). L(d jtr(BEBC)j
N jt\2n

j
= § i(i) [tr(B7) + tr(C7)] = ch(B) + ch(C).
jl\2m

This relation remains true when A, B and C are replaced by Frgr, Fg and Fp
respectively. |



Let us see how the splitting principle works in this case. Let L; (1 < j < k)
be complex line bundles. From (11.62b) we have, for E = L1 ® L, & --- @ Ly,

ch(E) = ch(L1) ® ch(Ly) @ - - - ® ch(Ly). (11.63)

Since ch(L;) = exp(x;), we find
ch(E) = ]_[ exp(x;) (11.64)

which is simply (11.50). Hence, the Chern character of a general vector bundle £
is given by that of a Whitney sum of k complex line bundles. The characteristic
classes themselves cannot differentiate between two vector bundles of the same
base space and the same fibre dimension. What is important is their integral over
the base space.

11.3.3 Todd classes

Another useful characteristic class associated with a complex vector bundle is the

Todd class defined by
.
Td(F) = ]‘[ ﬁ (11.65)

where the splitting principle is understood. If expanded in powers of x;, Td(J)
becomes

By
Td (F) = ]‘[(1 + %) +Z(—1)’< ‘(Zk), ,”‘)

J

=1+§ij 122x + 7 ijxk+
J

j<k
=1 +%c1(3~)+ﬁ[cl(?>2+cz(?>]+~- (11.66)
where the By are the Bernoulli numbers
Bl =} By = By =5 By = 55 Bs=2
The first few terms of (11.66) are:
Tdo(%) =1 (11.67a)
Tdi(F) = 1c (11.67b)
Td(F) = (et +2) (11.67c)
Td3(F) = Hcic2 (11.67d)
Tds(F) = 755(—c] +4cfer + 3¢5 + cre3 — ca) (11.67¢)

Tds(F) = g (—cie2 + 3cic3 + cfes — cres) (11.67)



where ¢; stands for ¢; ().

Exercise 11.2. Let E and F be complex vector bundles over M. Show that

Td(E @ F) = Td(E) A Td(F). (11.68)

11.4 Pontrjagin and Euler classes

In the present section we will be concerned with the characteristic classes
associated with a real vector bundle.

11.4.1 Pontrjagin classes

Let E be a real vector bundle over an m-dimensional manifold M with dimp E =
k. If E is endowed with the fibre metric, we may introduce orthonormal frames
at each fibre. The structure group may be reduced to O(k) from GL(k, R). Since
the generators of o(k) are skew symmetric, the field strength J of E is also skew
symmetric. A skew-symmetric matrix A is not diagonalizable by an element of a
subgroup of GL(k, R). It is, however, reducible to block diagonal form as

0 A 0
-1 0
A — 0 A2
—A 0
0
iXq
—iA 0
- A2 (11.69)
—ily
0

where the second diagonalization is achieved only by an element of GL(k, C). If
k is odd, the last diagonal element is set to zero. For example, the generator of
0(3) = s0(3) generating rotations around the z-axis is

The total Pontrjagin class is defined by

p(F) = det (I + i) . (11.70)
2



From the skew symmetry F' = —F, it follows that

dt1+3r dt1+?t det| [ J
e — ) =de — ) =de - — .
2 2 2
Therefore, p(F) is an even function in F. The expansion of p(F) is

pEH) =1+p1(H+pa(F)+--- (L7

where p;(J) is a polynomial of order 2 and is an element of HY (M;R). We
note that p;(F) = 0 for either 2j > k = dim E or 4j > dim M.!
Let us diagonalize F/2m as

—ix
ix] 0
F .
— > A= 1x2 (11.72)
2w 0 ixp
where x;p = —Ar /27, Ai being the eigenvalues of J. The sign has been chosen

to simplify the Euler class defined here. The generating function of p(J) is given
by

[k/2]
p(@) =detd +4) = [J 1 +xD) (11.73)
i=1
where
k/2 if k is even

k/21 == {(k —1)/2 ifkisodd.

In (11.73) only even powers appear, reflecting the skew symmetry. Each
Pontrjagin class is computed from (11.73) as

[k/2]
pi@ = > xtxl.. .xl. (11.74)

lj
i1<ip<...<ij

To write p;(F) in terms of the curvature two-form F/2m, we first note that
j [k/2]
F \2J . . 5i
- — J —92(—1)/ J
tr<2n> =trA< =2(-1) E] X7
1=

1 Although p;, () = 0, p (B) need not vanish for a matrix B. p;, will be used to define the Euler
class later.



It then follows that

1/ 1\
pi(@) =) xt= -3 (Z) tr 2 (11.75a)
i
1 2
)= Tt =5 (5] - 2]
i<j i i
1 1 ¢ 252 4
=252 [(trF2)? — 2t T4 (11.75b)
T
2.2.2
p3(F) = Z XPXTXE
i<j<k
1 1 ¢ 243 2 4 6
=13 [-(trF) +6uFtrF  —8trF°] (11.75¢)
pa(F) = Z x x,%x
i<j<k<l
1 /1
384( )[(u?z)“ 2 F)2 wF* +320F e F°
+12(tr 542 — 48 r I8 (11.75d)
k
5y =222 x2 = () detF 11.75

The reader should verify that
p(E® F) = p(E) A p(F). (11.76)

It is easy to guess that the Pontrjagin classes are written in terms of Chern
classes. Since Chern classes are defined only for complex vector bundles, we must
complexify the fibre of E so that complex numbers make sense. The resulting
vector bundle is denoted by E C LetAbea skew-symmetric real matrix. We find
that

14+ x 0
1—)61

det(7 +iA) = det 1+
0 I —x2

[k/2]

= [T =) =1-pi(A) + pa(A) —
i=1



from which it follows that
pi(E) = (=1) e (E©). (11.77)

Example 11.5. Let M be a four-dimensional Riemannian manifold. When the
orthonormal frame {é,} is employed, the structure group of the tangent bundle
T M may be reduced to O(4). Let R = %Ra,gé?“ A 68 be the curvature two-form
(R should not be confused with the scalar curvature). For the tangent bundle, it is
common to write p(M) instead of p(R). We have

1
12874

[(rRY)? —2uRY.  (11.78)
T 8w

Each Pontrjagin class is given by

R 1
det(1+2—)=1——2trR +

po(M) = 1 (11.79a)
1 1
p1(M) = ~53 trR? = ——gnznaﬁnﬂa (11.79b)
1 4
M) = rR3Z —2aR* = — | detR. 11.7
P(M) = —— @R —2uRY] (271) etR (11.79¢)

Although p> (M) vanishes as a differential form, we need it in the next subsection
to compute the Euler class.

11.4.2 Euler classes

Let M be a 2/-dimensional orientable Riemannian manifold and let 7 M be the
tangent bundle of M. We denote the curvature by R. It is always possible to
reduce the structure group of 7 M down to SO(2/) by employing an orthonormal
frame. The Euler class e of M is defined by the square root of the 4/-form py,

e(A)e(A) = pi(A). (11.80)

Both sides should be understood as functions of a 2/ x 2/ matrix A and not of
the curvature R, since p1(R) vanishes identically. However, e(M) = e(R) thus
defined is a 2/-form and, indeed, gives a volume element of M. If M is an odd-
dimensional manifold we define e(M) = 0, see later.

Example 11.6. Let M = S* and consider the tangent bundle 7 S2. From example
7.14, we find the curvature two-form,

do A dg

Rop = —Repo = sin® 6

=sinf do A d¢

where we have noted that ggg = sin 6. Although p 1(52) = 0 as a differential
form, we compute it to find the Euler form. We have

1 1
p1(S?) = — 2 rR? = —Q[Refﬂ%e + ReyoRogl

1 2
= <— sinf df A d¢>)
2



from which we read off
1
e(S?) = — sin6 do A dg. (11.81)
2

It is interesting to note that

1 2 big
/ e(S?) = —/ dqb/ do sin =2 (11.82)
S2 27 0 0

which is the Euler characteristic of $2, see section 2.4. This is not just a
coincidence. Let us take another convincing example, a torus 72. Since 72 admits
a flat connection, the curvature vanishes identically. It then follows that e(TH =0
and x (T?) = 0. These are special cases of the Gauss—Bonnet theorem,

/ e(M) = x(M) (11.83)
M

for a compact orientable manifold M. If M is odd dimensional both e and x
vanish, see (6.39).

In general, the determinant of a 2/ x 2/ skew-symmetric matrix A is a square
of a polynomial called the Pfaffian Pf(A), 2

det A = Pf(A)2. (11.84)
We show that the Pfaffian is given by

(-1

PR(A) =

Z sgn(P)Ap(yP@)APB)P@) - - - APQI-1)PQI) (11.85)
P

where the phase has been chosen for later convenience. We first note that a skew-
symmetric matrix A can be block diagonalized by an element of O(2/) as

0 MM
-2 0 0
0 )
S'AS = A = —A2 0 . (11.86)
0 0 N

It is easy to see that

detA =detA = l_[klz
i=1
2 See proposition 1.3. The definition here differs in phase from that in section 1.5. It turns out to be
convenient to choose the present phase convention in the definition of the Euler class.



To compute Pf(A), we note that the non-vanishing terms in (11.85) are of the
form A12A34 ... A2j—1,21. Moreover, there are 2! ways of changing the suffices as
Ajj — Ajj, such as

A12A34.. . Agi—121 > A21A34 ... A2i—121
and /! permutations of the pairs of indices, for example,

A12A34.. . Ay—120 > A34Arn ... A2 00
Hence, we have

I
Pf(A) = (=)' A12A3a. .. Ay = (D' [ ] 4
i=1
Thus, we conclude that a block diagonal matrix A satisfies
det A = Pf(A)?.

To show that (11.84) is true for any skew-symmetric matrices (not necessarily
block diagonal) we use the following lemma,>

Pf(X'AX) = Pf(A) det X. (11.87)

If S'AS = A for S € O(2[), we have A = SAS', hence

1
Pf(SAS'Y) = Pf(A)detS = (—l)l l_[)\,' det S.
i=1

We finally find det A = Pf(A)2 for a skew-symmetric matrix A.
Note that Pf(A) is SO(2/) invariant but changes sign under an improper
rotation S (det S = —1) of O(2).

Exercise 11.3. Show that the determinant of an odd-dimensional skew-symmetric
matrix vanishes. This is why we put e(M) = 0 for an odd-dimensional manifold.

The Euler class is defined in terms of the curvature R as

e(M) = Pf(R/2m)
(=1!

= @l ZSgn(P)RP(l)PQ) .. Rpei-nyran- (11.88)
P

3 Since det(X'AX) = (det X)2 det A, we have Pf(X'AX) = Pf(A) det X. Here the plus sign should
be chosen since Pf(I'AT) = Pf(A).



The generating function is obtained by taking x; = —A; /2,
!
e(x) = x1x2...x] = l_[x,'. (11.89)
i=1

The phase (—1)! has been chosen to simplify the RHS.

Example 11.7. Let M be a four-dimensional orientable manifold. The structure
group of T M is SO(4), see example 11.5. The Euler class is obtained from (11.88)
as

e(M) = eTMR ARy (11.90)

2(47)?
This is in agreement with the result of example 11.5. The relevant Pontrjagin class
is

1
px(M) = o [(trR*)? — 2tr R*] = x7x3.

Since e(M) = x1x2, we have po(M) = e(M) A e(M). This is written as a matrix
identity,

2
12874 [(rA®)? — 2w A" = <W€ljklAijAkl) .

11.4.3 Hirzebruch L -polynomial and A-genus

The Hirzebruch L -polynomial is defined by
k

X
L(x) = J
x) l_[l tanh x ;

J=

lk i 22)1
= ,1:[1 (1 +Y (=1 o

n>1

an12."> (11.91)

where the B, are Bernoulli numbers, see (11.66). The function L(x) is evenin x;
and can be written in terms of the Pontrjagin classes,

L(3) =1+ 5p1+ 35(=pi +7p2) + 5i5(2p] — 13p1p2 +62p3) +--- (11.92)
where p; stands for p;(3). From the splitting principle, we find that
L(E® F) = L(E) A L(F). (11.93)
The A (A-roof) genus A(7) is defined by

k 2n
n 27 -2 n
= ]‘[ <1 +n2(—1) Wan? ) (11.94)



This is an even function of x; and can be expanded in p;. A is also called the
Dirac genus by physicists. It satisfies

A(E® F) = A(E) A A(F). (11.95)
A is written in terms of the Pontrjagin classes as
A@) =1 - Lpi+ =k5(TpT — 4p2)
+ geregs (—31p7 +44pipy — 16p3) + -+ - . (11.96)

Example 11.8. Let M be a compact connected and orientable four-dimensional
manifold. Let us consider the symmetric bilinear form o : H 2(M;R) x
H?*(M; R) — R defined by

o (ol [B]) = fMaAﬁ. (11.97)

o is ab? x b? symmetric matrix where b? = dim H%(M:; R) is the Betti number.
Clearly o is non-degenerate since o ([¢], [8]) = O for any [«] € HZ(M; R)
implies [8] = 0. Let p (g) be the number of positive (negative) eigenvalues of o
The Hirzebruch signature of M is

tM)=p—q. (11.98)

According to the Hirzebruch signature theorem (see section 12.5), this number
is also given in terms of the L-polynomial as

won = [ Lo =4 [ mon, (11.99)
M M

11.5 Chern-Simons forms

11.5.1 Definition

Let P;(3) be an arbitrary 2 j-form characteristic class. Since P;(J) is closed, it
can be written locally as an exact form by Poincaré’s lemma. Let us write

Pj(F) =d02j-1(A, F) (11.100)

where Q2;_1(A,3) e g® Q% =Y(M). [Warning: This cannot be true globally. If
P; = dQ;;_1 globally on a manifold M without boundary, we would have

/ Pm/2:/ dQm-1 =/ On-1=0
M M aM

where m = dim M.] The 2j — 1 from Q2;_1(A, J) is called the Chern—-Simons
form of P;(3). From the proof of theorem 11.2(b), we find that Q is given by the
transgression of P;,

1
02j-1(A, F) = TP;(A, 0) =j/ Pj(A, T, ..., T dt (11.101)
0



where ﬁj is the polarization of Pj, ¥ = dA + A2 and we set A’ = F' = 0. Since
Q21 depends on J and A, we explicitly quote the A-dependence. Of course,
A’ can be put equal to zero only on a local chart over which the bundle is trivial.

Suppose M is an even-dimensional manifold (dim M = m = 2I[) such that
oM # (. Then it follows from Stokes’ theorem that

/Pl(%:/ A0mr AT = [ Omoi (A, 5. (11.102)
M M oM

The LHS takes its value in integers, and so does the RHS. Thus Q,,—1 is a
characteristic class in its own right and it describes the topology of the boundary

oM.
11.5.2 The Chern—Simons form of the Chern character

As an example, let us work out the Chern—Simons form of a Chern character
ch; (J). The connection .A; which interpolates between 0 and A is

A =1A (11.103)
the corresponding curvature being
F,=t1dA +12A% =1tF + (12 — ) A% (11.104)
We find from (11.21) that
1 i Vol i1
Q2j4(fl,‘3")=(j_1)| 7 /Odtstr(A,‘"f', ). (11.105)
For example,
Ql(A,?)zé [ tr.A:étrA (11.106a)
i\ !
Q3(A,3’)=(—) / dt str(A, tdA + 12A%)
2 0
1/i\ 2
=3 <2L> r <Ad.A+§A3>. (11.106b)
T
1 i 3 1
0sA, ) ==(— / dr str[A, (tdA + 12A%)?]
2 \ 2w 0
1/ 5 3 3 3
=23 ) ¢ A@A? + ZA dA+§A . (11.106¢)

Exercise 11.4. Let J be the field strength of the SU(2) gauge theory. Write down
the component expression of the identity chy(F) = dQ3(A, F) to verify that (cf
lemma 10.3)

e[ M F 3 Fpn] = B [26M tr(Ay 0 Ay + FALALAL)]. (11.107)



11.5.3 Cartan’s homotopy operator and applications

For later purposes, we define Cartan’s homotopy formula following Zumino
(1985) and Alvarez-Gaumé and Ginsparg (1985). Let

Ar=Ag+1(A; —Ag) T =dA, + A? (11.108)
as before. Define an operator /; by
/A =0 [,F = §t(A1 — Ao). (11.109)
We require that /; be an anti-derivative,
li(npwg) = inp)wg + (=D np(iwg) (11.110)
for n, € QP (M) and w,; € Q9(M). We verify that

9A
dl + L d)A, = 1,(F, — AP = 81(A1 — Ag) = 8ta—tt

and

dl; + 1, d)3F; = d[st (A — Ao)] + L[ DTy — ATy + T 1A
= ot[d(A1 — Ap) + A (A1 — Ao) + (A1 — Ao)Ar]

03,
== (SZ‘DI(.A] - .A()) = 8tW

where we have used the Bianchi identity D;J;, = 0. This shows that for any
polynomial S(A, F) of A and F, we obtain

a
(dl;—i-ltd)s(./q;,?;)ZSIES(.A;,?I) (11111)
On the RHS, S should be a polynomial of A and F only and not of dA or
dJ: if S does contain them, dA should be replaced by F — A2 and dJ by

DF — [A,TF] = —[A, F]. Integrating (11.111) over [0, 1], we obtain Cartan’s
homotopy formula

S(A1, F1) — S(Ao, Fo) = (dko1 + ko1d)S(Ar, F1) (11.112)
where the homotopy operator kq; is defined by

1
kO]S(.A;,?t)E/ 8tl;S(.A;,?;). (11113)
0

To operate ko; on S(A, J), we first replace A and I by A, and JF, respectively,
then operate /; on S(A;, F;) and integrate over ¢.



Example 11.9. Let us compute the Chern—Simons form of the Chern character
using the homotopy formula. Let S(A,F) = ch;j11(F) and A; = A, Ag = 0.
Since dch;11(3F) = 0, we have

chj+1(%F) = (dko1 + ko1d)ch;+1(Fy) = dlkoich;+1(Fp)].

Thus, koich;j41(F) is identified with the Chern—Simons form Q2 41(A, J). We
find that

1 CAVAR
koich;i 1 1(F) = ————koitr | —
orchj+1(37) G 01 r(2n>

1 i j+1 1 11
BRI (Z> / h @)
! 0

1 /i V! .
== (2—) / St str(A, 7)) (11.114)
Jt\2n 0

in agreement with (11.105).

Although a characteristic class is gauge invariant, the Chern—Simons form
need not be so. As an application of Cartan’s homotopy formula, we compute the
change in Q2;11(A, F) under A — A8 = g ' A+dg T — F¢ =g 'Fg.
Consider the interpolating families Af and 7% defined by

A =17 ' Ag + g dg (11.1152)

F¢ = dAS + (A9 =g 'F.g (11.115b)

where ¥, = tF + (t2 — t)A2. Note that Ag = g’ldg, A‘f = A8, ?g = 0 and
F¢ = F%. Equation (11.112) yields

02 +1(A8, F8) — Q2j41(g'dg, 0) = (dkor + ko1d) Q2j+1(AF, FF). (11.116)

For example, let Qz;11 be the Chern-Simons form of the Chern character
chj+1(F). Since dQ2j11(AF, ) = chj11(FF) = ch;41(F:), we have

ko1 dQ2j4+1(Af, ) = koichj41(FF)
= koich;j11(F) = 02j11(A, F) (11.117)

where the result of example 11.9 has been used to obtain the final equality.
Collecting these results, we write (11.116) as

02 +1(A8, F8) — Q2j4+1(A, F) = 02j+1(g " 'dg, 0) + day (11.118)
where oy is a 2 j-form defined by

a2 (A, F,v) = ko1 Q211 (A, F¥)
= ko1 Q2j+1(A: +v,F)) (11.119)



where v = dg - g!. [Note that Q2 4+1(A, F) = Q2j11(gAg™ !, gFg~1).] The
first term on the RHS of (11.118)is

i

1 J+L 1 ,
sz+1(g—1dg,0>=—< ) fo sttfg ™ dg{(r* — (g~ dg)?}]

jt\2x
1 i j+1 ) 1 )
=— (—) ul(g~ " dg)* ] / 81(1* — 1)/
] 2 0
_ j_J! iy —14.72j+1

where we have noted that F;, = (t2 — t)(g_ldg)2 and

(H?

1
2 _ o= (1Y B(i i —(—1)/
/0 st =ty =(-1)'B(j+1,j+1) =1 EYENN

B being the beta function. The 2 + 1 form Q3;11(gdg, 0) is closed and, hence,
locally exact: dQ2;+1(g~'dg, 0) = ch;41(0) = 0.
As for ap; we have, for example,

1 . 2 1
o) = E <i) /(; ll‘ tr[(A[ + U){f[ - %(‘At + U)3]
1/ !
= <§) / st tr(—1A% — vA)
0
1[0\
- -1 (Z) t(wA) (11.121)

where we have noted that
tr A% = dx# A dx? tr(A d,) = —dx” A dx# tr(AyA,) = 0.

Example 11.10. In three-dimensional spacetime, a gauge theory may have a
gauge-invariant mass term given by the Chern—Simons three-form (Jackiw and
Templeton 1981, Deser et al 1982a, b). Since the Chern—Simons form changes
by a locally exact form under a gauge transformation, the action remains invariant.
We restrict ourselves to the U(1) gauge theory for simplicity. Consider the
Lagrangian (we put A = iA, F = iF)

L= _}TF;wFlw + }TmGMWFAuAv (11.122)

where F,,, = 9, A, —9,A,. Note that the second term is the Chern—Simons form
of the second Chern character F2 (modulo a constant factor) of the U(1) bundle.
The field equation is

F* +mxF’" =0 (11.123)



where
*xFH* = %e“’(AFK;\ FHY — Wy Ry

The Bianchi identity
duxFH =0 (11.124)

follows from (11.123) as a consequence of the skew symmetry of F/*V. It is easy
to verify that the field equation is invariant under a gauge transformation,

Ay — Ay + 0,6 (11.125)
while the Lagrangian changes by a total derivative,
L— —LFMFyy + Ime™ Fy(Ay + 3,0) = L+ 1md,(xF"9).  (11.126)
Equation (11.106b) shows that the last term on the RHS is identified with
03(A?, F%) — 03(A, F) ~ (A + d9)dA — AdA ~ d(6dA).

If we assume that F falls off at large spacetime distances, this term does not
contribute to the action:

/d3x£—> /d3x£+%/d3x8v(*F”9) = /d3x£. (11.127)

Let us show that (11.122) describes a massive field. We first write (11.123)
as

Vo v
M9, x Fy = —m % F".

Multiplying &, on both sides, we have
o x Fe — 0 % F), = —mFy,.
Taking the 3*-derivative and using (11.124), we find that
020, + m*) x F, =0 (11.128)

which shows that % F. is a massive vector field of mass m.

11.6 Stiefel-Whitney classes

The last example of the characteristic classes is the Stiefel-Whitney class. In
contrast to the rest of the characteristic classes, the Stiefel-Whitney class cannot
be expressed in terms of the curvature of the bundle. The Stiefel-Whitney class
is important in physics since it tells us whether a manifold admits a spin or not.
Let us start with a brief review of a spin bundle.



11.6.1 Spin bundles

Let TM —> M be a tangent bundle with dim M = m. The bundle TM is
assumed to have a fibre metric and the structure group G is taken to be O(m). If,
furthermore, M is orientable, G can be reduced down to SO(m). Let LM be the
frame bundle associated with T M. Let ¢; be the transition function of LM which
satisfies the consistency condition (9.6)

Lijtikti = 1 tii = 1.

A spin structure on M is defined by the transition function 7;; € SPIN(m) such
that
(tij) = tij Ljtixt = 1 tii =1 (11.129)

where ¢ is the double covering SPIN(m) — SO(m). The set of 7; j defines a spin
bundle PS(M) over M and M is said to admit a spin structure (of course, M
may admit many spin structures depending on the choice of 7;;).

It is interesting to note that not all manifolds admit spin structures. Non-
admittance of spin structures is measured by the second Stiefel-Whitney class
which takes values in the Cech cohomology group H2(M; Z»).

11.6.2 Cech cohomology groups

Let Z, be the multiplicative group {—1, +1}. A Cech r-cochain is a function
fGo,i1,...,iy) € Zp, defined on U;y N U;; N...NU;, # ¥, which is totally
symmetric under an arbitrary permutation P,

fGpoy, - ipe)) = flo, ..., 0ir).

Let C’ (M, Z5) be the multiplicative group of Cech r-cochains. We define the
coboundary operator § : C"(M; Z7) — ct\(M; 7)) by

r+1

Gf)Gos .- virp) = [ [ flo - onije o irgn) (11.130)

Jj=0
where the variable below the ~ is omitted. For example,
8f0)Go. i) = foli) folio)  fo € COM; Zo)
@fD)o. i1, i2) = fi(ir.i2) filio. i) filio. 1) fi € C'(M; Zo).

Since we employ the multiplicative notation, the unit element of C"(M; Z>) is

denoted by 1. We verify that § is nilpotent:

r+1

@)oo vire2) = [T flioneeeiifeite i) = 1

Jjk=1



since —1 always appears an even number of times in the middle
expression (for example if f(ip,..., fj, el fk, ... iry2) = —1, we have
f (o, ...,fk, ...,fj, ..., ir42) = —1 from the symmetry of f). Thus, we have
proved, for any Cech r-cochain f, that

2f=1. (11.131)

The cocycle group Z"(M; Z,) and the coboundary group B’ (M; Z);) are
defined by

Z'(M; Zo) = {f € C"(M; L) |5f = 1} (11.132)

B (M;Zy) ={f € C"(M; Zo)| f =5f', f' € C""\(M; Z»). (11.133)

Now the rth Cech cohomology group H' (M; 7Z) is defined by

H'(M; 7.5) = kers, /im8,_1 = Z'(M; 7o)/ B" (M; T.). (11.134)

11.6.3 Stiefel-Whitney classes

The Stiefel-Whitney class w, is a characteristic class which takes its values in
H" (M; 7). Let TM X Mbea tangent bundle with a Riemannian metric. The
structure group is O(m), m = dim M. We assume {U;} is a simple open covering
of M, which means that the intersection of any number of charts is either empty
or contractible. Let {¢;,} (1 < o < m) be a local orthonormal frame of T M over
U;. We have ejy = tjjej, where t;; : U; N U;j — O(m) is the transition function.
Define the Cech 1-cochain f (i, j) by

fG, j) = det(t;) = £1. (11.135)

This is, indeed, an element of C!(M; Z,) since f@,j) = f(j,i). From the
cocycle condition #;; ¢ tx; = I, we verify that
8f (. j. k) = det(r) det(r)i) det(ti;)
= det(t;jtjxti) = 1. (11.136)
Hence, f € ZY (M, 75) and it defines an element [f] of HY(M; 75). Now we
show that this element is independent of the local frame chosen. Let {e;4} be

another frame over U; such that ¢;, = h;e;j, h; € O(m). From ¢;o, = t_,'j €jo, WE
find t_l-j = hit;j h;l. If we define the O-cochain fj by fo(i) = deth;, we find that

£, j) = det(hitizh7") = det(h;) det(h ) det(t;;)
=3dfoi, j)fG, Jj)
where use has been made of the identity deth;1 = deth; for h; € O(m). Thus,
f changes by an exact amount and still defines the same cohomology class [ f 1.4

4 Note that the multiplicative notation is being used.



This special element w (M) = [f] € H'(M; Z») is called the first Stiefel—
Whitney class.

Theorem 11.6. Let TM —> M be a tangent bundle with fibre metric. M is
orientable if and only if w1 (M) is trivial.

Proof. If M is orientable, the structure group may be reduced to SO(m) and
f@,j) = det(t;j) = 1, and hence wi(M) = 1, the unit element of Z».
Conversely, if w1 (M) is trivial, f is a coboundary; f = &fy. Since fo(i) = £1,
we can always choose h; € O(m) such that det(h;) = fo(i) for each i. If
we define the new frame e¢;, = h;e;y, wWe have transition functions fij such
that det(7;;) = 1 for any overlapping pair (i, j) and M is orientable. [Suppose
f(@, j) = dett;; = —1 for some pair (i, j). Then we may take fo(i) = —1 and
fo(j) = +1, hence detf;j = —dett;; = +1.] O

Theorem 11.6 shows that the first Stiefel-Whitney class is an obstruction to
the orientability. Next we define the second Stiefel-Whitney class. Suppose M
is an m-dimensional orientable manifold and 7T M is its tangent bundle. For the
transition function #;; € SO(m), we consider a ‘lifting’ 7;; € SPIN(m) such that

o) =t tjii= 51;1 (11.137)

where ¢ : SPIN(m) — SO(m) is the 2 : 1 homomorphism (note that we have an
option t;; < fl-j or —fij). This lifting always exists locally. Since

Q(ijtiktxi) = tijtjxt = 1
we have 7;jfjifx; € kergp = {£I}. For f;; to define a spin bundle over M, they
must satisfy the cocycle condition,
ki = 1. (11.138)
Define the Cech 2-cochain f : U; N U; NUx — Zy by
Gijtikti = f(, j k)1 (11.139)

It is easy to see that f is symmetric and closed. Thus, f defines an element
wr(M) € HX(M, Z») called the second Stiefel-Whitney class. It can be shown
that wp (M) is independent of the local frame chosen.

Exercise 11.5. Suppose we take another lift —7;; of ;. Show that f changes by
an exact amount under this change. Accordingly, [ f] is independent of the lift.
[Hint: Show that f(i, j, k) — f(i, j.k)of1(i, j, k) where f1(i, j) denotes the
sign of +7;;.]

Theorem 11.7. Let T M be the tangent bundle over an orientable manifold M.
There exists a spin bundle over M if and only if w» (M) is trivial.



Proof. Suppose there exists a spin bundle over M. Then we define a set of
transition functions 7;; such that #;j7jxfx; = I over any overlapping charts U;, U;
and Uy, hence wa (M) is trivial. Conversely, suppose wo (M) is trivial, namely

fa. J. k) =38f1G, j. k) = fi(J, k) f1(, k) f1(k, i)

f1 being a 1-cochain. We consider the 1-cochain fi (i, j) defined in exercise 11.5.

If we choose new transition functions fl.’ ;= £ i f1(, j), we have
~ o~ .. 2
titaty = 81, j, 01" =1

and, hence, {fi’j} defines a spin bundle over M.

We outline some useful results:

(a)
1
w (CP™) =1  wy(CP™) = : m odd
X meven
x being the generator of H>(CP™; Z»).
(b)
wi(8™) = wa (") =1
(©

wi(Xg) = w2(2g) =1

¥, being the Riemann surface of genus g.

(11.140)

(11.141)

(11.142)
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INDEX THEOREMS

In physics, we often consider a differential operator defined on a manifold M.
Typical examples will be the Laplacian, the d’ Alembertian and the Dirac operator.
From the mathematical point of view, these operators are regarded as maps of
sections

D:T'(M,E) - T(M,F)

where E and F are vector bundles over M. For example, the Dirac operator is a
map F(M, E) - F(M, E), E being a spin bundle over M. If inner products are
defined on E and F/, it is possible to define the adjoint of D,

D' :T'(M, F) > I'(M, E).

Since it is a differential operator, D carries analytic information on the
spectrum and its degeneracy. In what follows, we are interested in the zero
eigenvectors of D and DT,

kerD = {s € I'(M, E)|Ds = 0}
kerD' = {s e (M, F)|D's = 0).

The analytical index is defined by
ind D = dimker D — dimker D".

Surprisingly, this analytic quantity is a topological invariant expressed in terms of
an integral of an appropriate characteristic class over M, which provides purely
topological information on M. This interplay between analysis and topology is
the main ingredient of the index theorem.

Our exposition follows Eguchi et al (1980), Gilkey (1984), Shanahan (1978),
Kulkarni (1975) and Booss and Bleecker (1985). The reader should consult these
references for details. Alvarez (1985) contains a brief summary of this subject
along with applications to anomalies and strings.

12.1 Elliptic operators and Fredholm operators

In the following, we will be concerned with differential operators defined on
vector bundles over a compact manifold M without a boundary. We exclusively
deal with a nice class of differential operators called the Fredholm operators.



12.1.1 Elliptic operators

Let E and F be complex vector bundles over a manifold M. A differential
operator D is a linear map

D:T(M,E)—TI'(M, F). (12.1)

Take a chart U of M over which E and F are trivial. We denote the local
coordinates of U as x**. We introduce the following multi-index notation,

M= (u1, m2, ...\ m) wj €Z,pmuj>0
IMI = p1 + po 4+ i
8|M| alil‘l"“‘HLm

T oM T gDy gy

Dy

If dim E = k and dim F = k’, the most general form of D is

[Ds)]* = Y AM*,(0)Dys*(x)  1<a<k (12.2)

IM|=N
1<a<k

where s(x) is a section of E. Note that x denotes a point whose coordinates are
x™. This slight abuse simplifies the notation. AM = (AM)®, is a k x k' matrix
which may depend on the position x. The positive integer N in (12.2) is called
the order of D. We are interested in the case in which N = 1 (the Dirac operator)
and N = 2 (the Laplacian). For example, if F is a spin bundle over M, the Dirac
operator D = iy*9d,, +m : I'(M, E) — I'(M, E) acts on a section ¥ (x) of E as

[DY ()] = i) 0¥’ () + my® (x).

The symbol of D is a k x k' matrix

o(D.&)= Y AM*(x)Em (12.3)

M|=N

where £ is a real m-tuple & = (&1,...,&,). The symbol is also defined
independently of the coordinates as follows. Let E > M be a vector bundle
andlet pe M, & € T;M ands € ngl(p). Take a section § € I'(M, E) such that
S(p) = s and a function f € F(M) such that f(p) =0anddf(p) =& € T;‘M.
Then the symbol may be defined by

1 -
o(D,&)s = MD(st)“" (12.4)

The factor fV automatically picks up the Nth-order term due to the condition
f(p) = 0. Equation (12.4) yields the same symbol as (12.3).



If the matrix o (D, &) is invertible for each x € M and each & € R" — {0},
the operator D is said to be elliptic. Clearly this definition makes sense only when
k = k'. Tt should be noted that the symbol for a composite operator D = D1 o D;
is a composite of the symbols, namely o (D, §) = o (D1, £)o (D>, £). This shows
that composites of elliptic operators are also elliptic. In general, powers and roots
of elliptic operators are elliptic.

Example 12.1. Let x* be the natural coordinates in R”. If E and F are real line
bundles over R, the Laplacian A : T'(R", E) — I'(R", F) is defined by

92 92

EW—F.”—FW' (12.5)

According to (12.3), the symbol is

o(A &) =) (5>
n
This is in agreement with the result obtained from (12.4),

1
(A, %’)s——A(f Hlp = Za( M)z(f Dy
af 95 o of af ~)

Axh dxk axk axh”

<f AS+2fAfS+2f ) ——

=) ()%

This symbol is clearly invertible for £ # 0, and hence A is elliptic.
However, the d’ Alembertian

9? 3? 3?
= 3(x1)2 +eeet 8()(’"_1)2 o 8()(’")2

(12.6)

is not elliptic since the symbol
c@E)=E+- -+ E"TH = ")
vanishes everywhere on the light cone,
E™?=ED +-+ ETH?

Exercise 12.1. Let M = R? and consider a differential operator D of order two.
The symbol of D is of the form

o(D, &) = Ang'e' +2A128"8% + Ange?.

Show that D is elliptic if and only if o (D, &) = 1 is an ellipse in £-space.



12.1.2 Fredholm operators

Let D : T'(M, E) — T'(M, F) be an elliptic operator. The kernel of D is the set
of null eigenvectors

ker D = {s e (M, E)| Ds = 0. (12.7)

Suppose E and F are endowed with fibre metrics, which will be denoted ( , )g
and (, )r, respectively. The adjoint DT I'(M, F) — I'(M, E) of D is defined
by

(s', Ds)p = (D's', s)g (12.8)
where s € '(M, E) and s’ € T'(M, F). We define the cokernel of D by
coker D =T'(M, F)/imD. (12.9)

Among elliptic operators we are interested in a class of operators whose
kernels and cokernels are finite dimensional. An elliptic operator D which
satisfies this condition is called a Fredholm operator. The analytical index

ind D = dimker D — dim coker D (12.10)

is well defined for a Fredholm operator. Henceforth, we will be concerned only
with Fredholm operators. It is known from the general theory of operators that
elliptic operators on a compact manifold are Fredholm operators. Theorem 12.1
shows that ind D is also expressed as

ind D = dimker D — dimker D". (12.11)
Theorem 12.1. Let D : '(M, E) — I'(M, F) be a Fredholm operator. Then
coker D = ker D' = {sel’(M, F)|DTS = 0}. (12.12)

Proof. Let [s] € coker D be given by
[s1={s" e (M, F)|s' =5+ Du,u € (M, E)}.

We show that there is a surjection ker DT — coker D, namely any [s] € coker D
has a representative sy € ker D*. Define s by

1 T

We find 5o € ker D' since Dso = D's — D'D(DTD)"'D's = Ds — Ds =
0. Next, let so,s, € ker D" and so # sp- We show that [so] # [s)] in
I'(M, F)/im D. If [so] = [s{], there is an element u € I'(M, E) such that
so — sy = Du. Then 0 = (u, D"(so — s}))g = (u, D" Du)g = (Du, Du)f > 0,
hence Du = 0, which contradicts our assumption so # sj. Thus, the map
so > [s] is a bijection and we have established that coker D = ker DT, O



12.1.3 Elliptic complexes

Consider a sequence of Fredholm operators,

D4 D; Dit1
o> T'M,Ei-1)) —T(M,E;)) —T(M,Ei;1) — --- (12.14)

where {E;} is a sequence of vector bundles over a compact manifold M. The
sequence (E;, D;) is called an elliptic complex if D; is nilpotent (that is
DjoD;_1 = 0)forany i. The reader may referto I'(M, E;) = Q;(M) and D; =d
(exterior derivative) for example. The adjoint of D; : '(M, E;) — I'(M, Ei+1)
is denoted by

D] :T(M, Ei+1) — T(M, E;).

The Laplacian A; : T'(M, E;) —» T'(M, E;) is
Ai=Di_1 D'y + D/ D;. (12.15)
The Hodge decomposition also applies to the present case,
si = Di_15i—1 + D isiy1 + hy (12.16)

where s;41 € I'(M, E;+1) and h; is in the kernel of A;, A;h; = 0.
Analogously to the de Rham cohomology groups, we define

H'(E, D) = ker D; /imD;_,.. (12.17)

As in the case of the de Rham theory, it can be shown that H i (E, D) is isomorphic
to the kernel of A;. Accordingly, we have

dim H(E, D) = dimHarm' (E, D) (12.18)
where Harm' (E, D) is a vector space spanned by {/;}. The index of this elliptic
complex is defined by

m ) ) m )
indD = Z(—l)’ dimH(E, D) = Z(—l)’ dimKker A, . (12.19)
i=0 i=0

The index thus defined generalizes the Euler characteristic, see example 12.2.

How is this related to (12.10)? Consider the complex I'(M, E) 3 I'(M, F).
We may formally add zero on both sides,

0T Ey 2 rim. )5 o (12.20)
where i is the inclusion. The index according to (12.19) is

dimker D — {dimI'(M, F) — dimimD} = dimker D — dim cokerD



where we have noted that dimimi = 0, kergp = I'(M, F) and cokerD =
kero/im D. Thus, (12.19) yields the same index as (12.10).

It is often convenient to work with a two-term elliptic complex which has the
same index as the original elliptic complex (E, D). This rolling up is carried out
by defining

E; EEPEzr, E_ EGrBEzr+1 (12.21)

which are called the even bundle and the odd bundle, respectively.
Correspondingly we consider the operators

A=0Dy + D), AT = ®(Dayry1 + D). (12.22)
r r

We readily verify that A : (M, E;) — I'(M,E_) and AT : (M, E_) —
I'(M, E;). From A and AT, we construct the two Laplacians

Ay=Ata= O(Dors1 + DY) (D5 + DYy 1)
= GP(DZr—lDTZr—l +D'5.Dy) = @ Ay, (12.232)

A_=AAT=® Ay, (12.23b)

Then we have

ind(Ex, A) = dimker Ay — dimker A_
= Z(—l)r dimker A, = ind(E, D). (12.24)

Example 12.2. Let us consider the de Rham complex Q2 (M) over a compact
manifold M without a boundary,

05 S o'onS ... L aran Lo (12.25)

where m = dim M and d stands for d, : Q"(M) — Q"t\(M). H"(E, D) defined
by (12.25) agrees with the de Rham cohomology group H,(M, R). The index is
identified with the Euler characteristic,

ind(Q* (M), d) = > (1) dim H'(M; R) = x(M). (12.26)
r=0

We found in chapter 7 that b” = dim H" (M.R) agrees with the number of linearly
independent harmonic r-forms: dim H" (M, R) = dim Harm" (M) = dimker A,
where A, is the Laplacian

Ay =(d+dH? =d,1d"_y +d7,d, (12.27)



dI : Q" (M) — Q" (M) being the adjoint of d,. Now we find that

x(M) =" (=1) dimker A,. (12.28)
r=0

This relation is very interesting since the LHS is a purely topological quantity
which can be computed by triangulating M, for example, while the RHS is given
by the solution of an analytic equation A,u = 0. We noted in example 11.6 that
x (M) is given by integrating the Euler class over M: x (M) = fM e(TM). Now
(12.28) reads

m
Z(—l)’ dimker A, =/ e(TM). (12.29)
r=1 M
This is a typical form of the index theorem. The RHS is an analytic index while
the LHS is a topological index given by the integral of certain characteristic
classes. In section 12.3, we derive (12.29) from the Atiyah—Singer index theorem.
The two-term complex is given by

QtMy = Q¥ M) QM) =oQ7 T M), (12.30)

The corresponding operators are
A=8y+d') AT =@y +d'y). (12.31)

It is left as an exercise to the reader to show that

ind(Q* (M), A) = dimker A, — dimker A_ = x(M). (12.32)

12.2 The Atiyah—Singer index theorem

12.2.1 Statement of the theorem

Theorem 12.2. (Atiyah-Singer index theorem) Let (E, D) be an elliptic
complex over an m-dimensional compact manifold M without a boundary. The
index of this complex is given by

Td(T M)

T (12.33)

ind(E, D) = (—1)'"<’"+1>/2/

’ ch(@(—l)rE,)

vol

In the integrand of the RHS, only m-forms are picked up, so that the integration
makes sense. [Remarks: The division by e(T M) can really be carried out at the
formal level. If m is an odd integer, the index vanishes identically, see below.
Original references are Atiyah and Singer (1968a, b), Atiyah and Segal (1968).]

The proof of theorem 12.2 is found in Shanahan (1978), Palais (1965) and
Gilkey (1984). The proof found there is based on either K-theory or the heat



kernel formalism. In section 13.2, we give a proof of the simplest version of the
Atiyah—Singer (AS) index theorem for a spin complex. Recently physicists have
found another proof of the theorem making use of supersymmetry. This proof is
outlined in sections 12.9 and 12.10. Interested readers should consult Alvarez-
Gaumé (1983) and Friedan and Windey (1984, 1985) for further details.

The following corollary is a direct consequence of theorem 12.2.

Corollary 12.1. Let I'(M, E) 2) I'(M, F) be a two-term elliptic complex. The
index of D is given by

ind D = dimker D — dimker D'

Td(T M)
_ (_1ym(m+1)/2 _
=(=D /M(chE chF)ie(TM) . (12.34)

vol

12.3 The de Rham complex

Let M be an m-dimensional compact orientable manifold with no boundary. By
now we are familiar with the de Rham complex,

St L L ot ant S . (12.35)

where Q" (M )(C =T'M,N'T*M C). We complexified the forms so that we may
apply the AS index theorem. The exterior derivative satisfies d> = 0. To show
that (12.35) is an elliptic complex, we have to show that d is elliptic. To find the
symbol for d, we note that

o(d, §)w=d(f5)|, =df A5+ fd5l, =& Aw

where p € M0 € Q" (M, f(p) = 0,df(p) = £5 € Q" (M and
S(p) = w; see (12.4). We find

o(d, &) =& A. (12.36)

This defines a map " (M)® — Q"t1(M)C and is non-singular if £ # 0.
Thus, we have proved that d : Q" (M)(C — QF "’I(M)(C is elliptic and, hence,
(12.35) is an elliptic complex. Note, however, that the operator d : Qk(M ) —>
Qk*1(M) is not Fredholm since kerd is infinite dimensional. To apply the index
theorem to this complex, we have to consider the de Rham cohomology group
H’ (M) instead. The operator d is certainly Fredholm on this space.

Let us find the index theorem for this complex. We note that
dimc H"(M; C) = dimgr H"(M; R). Hence, the analytical index is

indd = Z(—l)’ dimg H"(M; C)
r=0
- Z(—l)’dimR H (M;R) = x(M) (12.37)



where y (M) is the Euler characteristic of M. Suppose M is even dimensional,
m = 2I. The RHS of (12.33) gives the topological index

Td(T M)

) (12.38)

(_1)1(21+1)/ ch( % (1) A T*MC)
M r=0

vol

The splitting principle yields
m ror ok asC
ch(@(—l) A T*M )
r=0
=1 —ch(T*M®) + ch(A2T*MC) + - + (= 1)"ch(A"T* M)
m
=1-) e ([TM)+) e e I(TM) + -

i=1 i<j

+ (=me Mg e~ m(T M)

=[[a—eam®)
i=1

where we have noted that xi(T*MC) = —xi(TM(C). [Let L be a complex line
bundle and L* be its dual bundle. L ® L* is a bundle whose section is a map
C — Cateach fibre of L. L ® L* has a global section which vanishes nowhere
(the identity map, for example) from which we can show L® L* is a trivial bundle.
We have ¢1 (LQ®L*) = c1(L)+c1(L*) = 0, hence x(L*) = —x(L). The splitting
principle yields x; (T*M©) = —x; (T M©).] We also have

m
Cy _ Xi C
TATMC) = Em(TM )

!
e(TM) = [ [xi(rM©).

i=1

Substituting these in (12.38), we have

1
inddzf (—1)1(21‘“)(—1)1(l_[xi(TMC)) =/ e(TM). (12.39)
M i=1 M

If m is odd, it can be shown that (Shanahan (1978), p22)
indd =0 (12.40)

which is in harmony with the fact that e(T M) = 0 if dim M is odd. In any case,
the index theorem for the de Rham complex is

(M) = / e(TM). (12.41)
M



Example 12.3. Let M be a two-dimensional orientable manifold without
boundary. Equation (12.41) reads

1 1
x(M) = — / €PRop = — / Riz (12.42a)
47 M 27 M
which is the celebrated Gauss—Bonnet theorem. For dim M = 4, it reads as

x(M) = PO Ryp ARys. (12.42b)

327 2 M
12.4 The Dolbeault complex

We recall some elementary facts about complex manifolds (see chapter 8 for
details). Let M be a compact complex manifold of complex dimension m without
a boundary. Let z# = x* + iy" be the local coordinates and z/* = x* — iy*
their complex conjugates. T M T denotes the tangent bundle spanned by {3/9z*}
and TM~— = TM™ the complex conjugate bundle spanned by {d/0z*}. The
dual of TM™ is denoted by T*M ™ and spanned by {dz*} while that of T M~ is
T*M~ = T*M~ spanned by {dz*}. The space " (M)* of complexified r-forms
is decomposed as

M= o Qrim)
ptq=r

where Q7-9(M) is the space of the (p, g)-forms, which is spanned by a basis of
the form
dz# AL AdZPP AdZY AL A dZYe

The exterior derivative is decomposed as d = 8 + 9 where
d=dz* Ad/azt 8 =di* Ad/aTM
They satisfy 99 + 99 = 9> = 3% = 0. We have the sequences
2 araan S aration S (12.43a)
CLoaragny & rttaany A . (12.43b)

We are interested in the first sequence with p = 0,

R uaany A latiny &L (12.44)

This sequence is called the Dolbeault complex. B
To show that (12.44) is an elliptic complex, we compute the symbol for 9.
Let £ = £%1 + £1.0 be a real one-form at p € M, where £%! € Qg’l(M) and

N0 =01 e Q0.



Take an anti-holomorphic r-form w € QO (M). We find
0(d, 8w =0(f5) =0f A5+ f05], =" Ao
where f(p) =0, f(p) = %1, 5 € QO (M) and 5(p) = w. We have
c(d,6) =80 A (12.45)

From a similar argument to that given in the previous section, it follows that the
symbol (12.45) is elliptic. Thus, the Dolbeault complex (12.44) is an elliptic
complex.

The AS index theorem takes the form

- Td(TM®
indd = / ch<2(—1)’ A T*M‘)¥ (12.46)
M - e(TM) |,
The LHS is computed as follows. We first note that
ker 9, /imd,_; = H*" (M)
where H%" (M) is the d-cohomology group. Then the LHS is
n
indd = Z(—l)’bo" (12.47)

r=0

where b7 = dimc H%"(M) is the Hodge number. This index is called the
arithmetic genus of M.

Simplification of the topological index can be carried out as in the case of
the de Rham complex. We refer the reader to Shanahan (1978) for the technical
details. We have

n
Z(—l)rb‘“ = / TATM™) (12.48)
r=I1 M
where Td(T M) is the Todd class of TMT.
12.4.1 The twisted Dolbeault complex and the Hirzebruch—-Riemann-Roch
theorem
In the Dolbeault complex, we may replace Q%" (M) by the tensor product bundles
QO>’(M) ® V, where V is a holomorphic vector bundle over M,
3 3 3
LAt one v E Qe v S .. (12.49)

The AS index theorem of this complex reduces to the Hirzebruch—-Riemann-
Roch theorem,

inddy = / Td(T M)ch(V). (12.50)
M



For example, if m = dimg M = 1, we have

inddy = %dimv/ cl(TM+)+/ c1(V)
M M

iF
Q—g)dimV+ [ = (12.51)
M 2

since it can be shown that

/cl(TM+)=/ e(TM)=2—g
M

M

g being the genus of M.

12.5 The signature complex

12.5.1 The Hirzebruch signature

Let M be a compact orientable manifold of even dimension, m = 2/. Let [w] and
[17] be the elements of the ‘middle’ cohomology group H!(M; R). We consider a
bilinear form H!(M: R) x H(M; R) — R defined by

o([w], [n]) = / WA (12.52)
M
cf example 11.8. This definition is independent of the representatives of [w] and
[#]. The form o is symmetric if / is even (m = 0 mod 4) and anti-symmetric if
[ is odd (m = 2 mod 4). Poincaré duality shows that the bilinear form o has the
maximal rank ' = dim H'(M; R) and is, hence, non-degenerate. If [ = 2k is
even, the symmetric form o has real eigenvalues, b of which are positive and b~
of which are negative (b + b~ = b'). The Hirzebruch signature is defined by

(M) =bT —b". (12.53)

If [ is odd, T (M) is defined to vanish (an anti-symmetric form has pure imaginary
eigenvalues). In the following, we set [ = 2k.

The Hodge  satisfies *> = 1 when acting on a 2k-form in a 4k-dimensional
manifold M and hence * has eigenvalues +1. Let HarmZk(M ) be the set of
harmonic 2k-forms on M. We note that Harm* (M) = H?*(M; R) and each
element of HZ(M; R) has a unique harmonic representative. Harm* (M) is
separated into disjoint subspaces,

Harm® (M) = Harm? (M) @ Harm* (M) (12.54)

according to the eigenvalue of . This separation block diagonalizes the bilinear
form o. In fact, for o* € Harrnzik (M),

a(a)+,a)+)=/ a)+/\a)+=/ ot Ax0T = (0, 0T) >0
M M



where (o™, @T) is the standard positive-definite inner product defined by (7.181).
We also find

ol ,w )= —/ o A*xw- =—(w ,w ) <0
M

o 0) = —/ ot A xoT = —/ o Axot =—c(@,0)=0
M M

where we have noted that o A x8 = B A xa for any forms o and 8. Hence,
o is block diagonal with respect to Harmik (M) ® Harm?*(M) and, moreover,
b* = dimp Harmik (M). Now 7(M) is expressed as

(M) = dim Harmik (M) — dim Harm?*(M). (12.55)
Exercise 12.2. Let dim M = 4k. Show that
(M) = x(M) mod 2. (12.56)

[Hint: Use the Poincaré duality to show that y (M) = b* mod 2.]

12.5.2 The signature complex and the Hirzebruch signature theorem

Let M be an m-dimensional compact Riemannian manifold without a boundary
and let g be the given metric. Consider an operator

D=d+d. (12.57)

D is a square root of the Laplacian: % = dd" + d'd = A. To show that ®
is elliptic, it suffices to verify that A is elliptic since the symbol of a product of
operators is the product of symbols. Let us compute the symbol of A. As for d,
we have o (d, £)w = £ A w. As for d", it can be shown that (Palais 1965, pp77-8)

o(d, &) = —ig. (12.58)
Here i¢ : Q;,(M) — Q;jl (M) is an interior product defined by (cf. (5.79))

ig(dx?t AL A dxH)
r
= > (=D Hghitg, dett AL AR A LA dit
j=1

where the one-form under " is omitted and we put & = &, dx*. Now the symbol
of the Laplacian is obtained from (12.58) as

o(A, &) =0(dd" +d'd, §)w = —[£ A ig(w) + it (E A )]
= —is(®) Ao = —|¢Pw



where w is an arbitrary r-form and the norm || || is taken with respect to the given
Riemannian metric. Finally, we obtain

o(A,E) =—|E]* (12.59)

Thus, the Laplacian A is elliptic and sois ® = d 4 d".

Since the Laplacian A = D2 is self-dual on *(M), the index of A vanishes
trivially. It is also observed that ® = D on Q*(M) and, hence, ind® = 0.
To construct a non-trivial index theorem, we have to find a complex on which
D £,

Exercise 12.3. Consider the restriction D¢ of © to even forms, D¢ : Q¢(M )(C —
Q°(M)C where Q¢(M)C = 0% (M)C and Q°M)C = Q2+ (M)C. The
adjoint of ©¢ is D° = D¢ : Q°(M)C — Q°(M)C. Show that

ind®° = dimker ®°¢ — dimker ©° = x (M).

[Hint: Prove ker®® = @Harm* (M) and ker®° = @Harm**!(M). This
complex, although non-trivial, does not yield anything new.]

If dimM = m = 21, we have x * = (—1)"n for n € Q" (M)C. We define
an operator 7 : SZ’(M)(C — Q" (M)(C by

7 =i 0D (12.60)

Observe that 7 is a ‘square root’ of (—1)” *x % = 1. In fact, for w € Q’(M)C,

20— ir(r—1)+l

2w r(r—=D)+l+QI-r)QlI—-r—1)+l1

T(xw) =1 * K@

=i sk = (=1) k40 = (12.61)
where we have noted that r = 2 mod 2. We easily verify (exercise) that
(7,9} =70 +D7 =0. (12.62)

Let v act on Q*(M)(C = Q" (M)C. Since 72 = 1, the eigenvalues of 7w are +1.
Then we have a decomposition of Q*(M )(C into the %1 eigenspaces Q¥ (M) of
as

Q*MC = QT (M) & Q™ (M). (12.63)

Since © anti-commutes with 7, the restriction of ® to Q+ (M) defines an elliptic
complex called the signature complex,

Dy QT M) - Q° (M) (12.64)
where D1 = D|q+(ay). The index of the signature complex is

ind®; = dimker® — dimker®_
dimHarm(M)™ — dim Harm(M)~ (12.65)



where D_ = 501 (T QT (M) > QT (M) and Harm(M)* = {w € QT M) | D10 =
0}. On the RHS of (12.65), all the contributions except those from the harmonic
[-forms cancel out. To see this, we separate ker ®_ and ker ®_ as

ker®4 = Harm! (M)* @ Z [Harm’ (M)* & Harm™ " (M)™*]
0o<r<l
where Harm’ (M)* = Harm(M)* N Q" (M). If @ € Harm' (M), we have
wEmw € Harm” (M)* @Harm” " (M)*. Then amap w+7w — w—mw defines
an isomorphism between Harm’ (M)* @ Harm™~"(M)* and Harm' (M)~ @
Harm™~"(M)~. Now the index simplifies as

ind®_ = dim Harm** (M)* — dim Harm?* (M)~ (12.66)

where we put [ = 2k as before (the index vanishes if / is odd). It is important to
note that Harm? (M)* = Harmzik(M) since T = * in HarmZk(M), see (12.54).
Now the index (12.66) reduces to the Hirzebruch signature,

ind®; = t(M). (12.67)

The derivation of the topological index is rather technical and we simply
quote the result from Shanahan (1978). Let AT T*MC be the subspace of AT*MC
such that QF (M) = T (M, AXT*MC). Then we have

Td(T M©
topological index = (—1)" / ch(AtT*MC — A-T*MC) Td(TM™)
e(TM)

I
tanhx, /21 M tanh x;

where the last equality is true only for the 2/-forms in the expansion and x; =
xi(TM (C). Now we have obtained the Hirzebruch signature theorem

vol

(M) =/ L(T M) |vol (12.68)
M

where L is the Hirzebruch L-polynomial defined by (11.91). Since L is even in
Xi, T(M) vanishes if m = 2 mod 4. For example, t(M) = 0 form = 2. If m = 4,
we have

_ 1 _ 1 2
r(M)—/Mgpl(TM) = —24]12/&73. (12.69)

As in the case of the Dolbeault complex, we may twist the signature complex,
see Eguchi et al (1980), for example.

12.6 Spin complexes

The final example of classical complexes is the spin complex. This complex is
very important in physics since it describes Dirac fields interacting with gauge
fields and/or gravitational fields.



12.6.1 Dirac operator

Let us consider a spin bundle S(M) over an m-dimensional orientable manifold
M. We shall denote the set of sections of this bundle by A(M) = I'(M, S(M)).
We assume that m = 2/ is an even integer. The spin group SPIN(m) is generated
by m Dirac matrices {y“}, which satisfy

pet =y (12.70a)
{y®, yP) =26 (12.70b)

Throughout this chapter we assume that the metric has the Euclidean signature.
The Clifford algebra is generated by

Ly* y"y® (o0 < a2); ...

YOy o <. <ap); ..yt

The last generator is of particular importance and we define

ymH =il (12.71)

Our convention is such that (y”+1)2 = I and (y™*!)" = "1 It can be shown
from the general theory of the Clifford algebra that the y* are represented by
2! x 2! matrices with complex entries. It is convenient to take a representation of
{y*} such that y”"*! is diagonal,

m 1 0
ym = < . ) (12.72)

where 1 here is the 2/~ x 2/~ unit matrix.

Example 12.4. For m = 2, we take

W= yl=a P =iy%'=0

oy being the Pauli matrices,
(0 1 (0 —i (1 0
=10 2=1i o P3=\Vo -1 )

For m = 4, we may take

i
B _ 0 (04 B _ s -B _ .
ye= < —iaf 0 ) a” = (I, —io), a” = (I, io)

L 0
5__,0,1.23_ (D
Yy ==vryy (0_12>-



A Dirac spinor ¢ € A(M) is an irreducible representation of the Clifford
algebra but not that of SPIN(2/). Irreducible representations of SPIN(2/) are
obtained by separating A(M) according to the eigenvalues of y™*!. Since
(y™+t1)2 = I, the eigenvalues of y™*t!, called the chirality, must be 1. Then
A (M) is separated into two eigenspaces

AM) = AT(M) & A~ (M) (12.73)

where y"tly* = £y for y* € AT(M). The projection operators P+ onto
A® are given by

7)+

(1+y'"+‘)=(

(I —y"th = (

> (12.74a)

-

I
D= N =
-0 O O

SO O

) . (12.74b)

Thus, we may write!

+ ‘ﬁ+ + _ 0 _
v :< 0 )GA M), ¥ =<w—)eA (M).  (12.75)

The reader should verify that PT + P~ = 1,(P%H)? = P+ ptp- =
0, Pyt = y* and Py T = 0.
The Dirac operator in a curved space is given by (section 7.10)

Yy =iy Voo =iy"(Qu + 0¥ (12.76)

where w,, = %ia)ﬂ"‘/3 Yqp is the spin connection and y# = y%e,*. Let us prove
that iV is elliptic. Let f be a function defined near p € M such that f(p) = 0
andiy”o, f(p) =iy"§, =if. 2 Take a section ¥ € A(M) such that ¥ (p) = .
From (12.4), we have

oY, &)Y =iV( P, = QY HVI, = i§y
which shows that
o(iV.§) =if. (12.77)

If we note that & = £,&p yeyP = £1g,, we find that (12.77) is invertible for
ig # 0, hence 1Y is an elliptic operator.
It can be shown that {y“} is taken in the form

B _ 0 lOlﬂ oo =
= .- a'g=a 12.78
Y ( —igg 0 p=0ap ( )
' Note the minor abuse of the notation.

2 For a vector A = Atey, A denotes yHA,.



see example 12.4 for m = 2 and 4. Then (12.76) becomes

. 0 Df
iy = ( b 0 ) (12.79)
where
D=aPes" (B, +wy) D' =—alegh (3, +wy). (12.80)

Hence, D is, indeed, the adjoint of D (note that 0, + wy, is anti-Hermitian). For

( ‘”OJF ) e AT(M)

we have
v vt _ (0 DF vt 0
! o )= \Ub o o )=\ byt
while for
(‘ﬁo )GA_(M)
we have

o(2)-(7)

Hence, D = iYPT : AT(M) - A~(M) and D = iVP~ : A~ (M) —
AT(M). Now we have a two-term complex

2
AT (M) A~ (M) (12.81)
%
DT
called the spin complex. The analytical index of this complex is

ind D = dimker D — dimker D" = v} —v_ (12.82)

where vy (v_) is the number of zero-energy modes of chirality + (—).

Let us apply the AS index theorem to this case. Without getting into the
details of the Clifford algebra and the spin complex, we simply write down the
result. The AS index theorem for the spin complex (12.81) is

Td(T M)

— = + — A
vy v__/Mch(A (M) — A~ (M)) (T M)

vol

- / A(T M) |vol (12.83)
M

where A is the Dirac genus defined by (11.94). Since A contains only 4 j-forms,
v4 — v_ vanishes unless m = 0 mod 4. Of course, this does not necessarily imply
vy = v_ = 0. The proof of (12.83) will be given later in sections 12.9 and 12.10.



12.6.2 Twisted spin complexes

In physics, a spinor field may belong to a representation of a group G. For
example, the quark field in QCD belongs to the 3 of SU(3). A spinor which
belongs to a representation of G is a section of the product bundle S(M) ®
E, where E is an associated vector bundle of P(M, G) in an appropriate
representation. The Dirac operator Dg : AT (M) ® E — A(M)~ ® E in this
case is

Dg =iy%e" (3 + wu + A ) D4 (12.84)

where A, is the gauge potential on E. The AS index theorem for this twisted spin
complex is

vy —v_ = / A(TM)ch(E)|vol. (12.85)
M
For dim M = 2, we have
vy — v =/ chy(E) = L/ g (12.86)
M 27 Jm

while for dim M = 4,

vy — v = / [chy(E) + A1 (T M)chy(E)]
M

! t&f2+dimE/ rR? (12.87)
= —= r r . .
872 Jy, 19272 J,
Example 12.5. Let
M=T"=8"x...x5s"
————
2[ times

Then we find

2l
~ ~ 721 ~
ATM) = A(@ Tsl) ~[JAashH =1.
! 1
We also have A(TS%) = 1. Accordingly, the index of these bundles is
vy — Vo :/ ch(E)|vol. (12.88)
M

Example 12.6. Let us consider the monopole bundle P(S%, U(1)). If A is the
local gauge potential, the field strength is ¥ = d.A. The index theorem is
i 1
Vg — Vo = — F=—— F (12.89)
2w Js2 2w Js2

where 3 = iF. As was shown in section 10.5, the RHS represents the winding
number 711(U(1)) = Z and analytical information (the LHS) is now expressed in
a topological way (the RHS).



Let P(S4, SU(2)) be the instanton bundle. Expression (12.88) reads as

-1
vy — v =/ chy (%) = —/ tr 5. (12.90)
g4 87'[2 g4

The RHS represents the instanton number & € 73(SU(2)) = Z. Note that k > 0
if ¥ = xF whilek < 0if F = — % F. It can be shown that v_ = 0 (v = 0)
if k > 0 (k < 0), see Jackiw and Rebbi (1977). For example, let F be self-dual.
Suppose ¥~ € ker DT = ker DDY. From (12.80), we find that

DD Y™ =[(3, + AW)? +2i6,, Ty~ =0

where 0, = (1/41)(«*a” —a’o ™). Itis easily verified that oV is anti-self-dual
(0" = —% o) and hence 6, F*¥ = 0. Since (9, —i—AM)2 is a positive-definite
operator, it has no normalizable bound states. This verifies that ker DT =g.

12.7 The heat kernel and generalized ¢-functions

As we mentioned in section 12.2, there are several methods of proving the AS
index theorem. The heat kernel is relatively accessible to physicists and it also
has many applications to other problems in physics. The generalized ¢ -function
is related to the heat kernel and also has relevance in physics.

12.7.1 The heat kernel and index theorem

Let E be a complex vector bundle over an m-dimensional compact manifold M.
Let A : '(M, E) — I'(M, E) be an elliptic operator with eigenvectors |n) such
that

Aln) = Apln). (12.91)

We denote the set of eigenvalues of A by Spec A. We assume that A is non-
negative, i.e. all the eigenvalues are non-negative. Suppose there are ny modes
10,7), 1 <i < ng with vanishing eigenvalue. In other words,

dimker A = ny. (12.92)
These modes are called the zero modes. Define the heat kernel 4 (¢) by
h(r) = e 12, (12.93)
It is convenient to represent /(¢) in the coordinate basis as

hx,yi0) = (xIhOly) = (x1 Y e 2 ln) (nly)

= Y e (x|n)(nly). (12.94)



Multiple eigenstates should be counted as many times as they appear. We assume
(x|n) is orthonormal: f(n|x)(x|m)dx = &mn- The convergence of (12.93) for
¢t > 0 is guaranteed since A is non-negative. Taking the limit 1 — oo, we have

no
Mm a(x, yi0) = Z(XIO, i){0, ily) (12.95)

i=1

where the summation is over the zero modes |0, i) only. Thus, h = e~ A tends to
be the projection operator onto the space of zero modes as

no
e 18 12 > 10.0)(0. ). (12.96)
i=1
Define
h(t) = fh(x,x; t)dx = Ze*f“. (12.97)
n

Then it follows from (12.95) that
no = lim h(r). (12.98)
11— 00

It is easy to verify that & satisfies the heat equation,

(% + Ax> h(x,y;t) = 0. (12.99)

If A is the conventional Laplacian, (12.99) reduces to the ordinary heat equation.
The initial condition is

h(x,y;0) =Y (x|n){nly) =8(x — y) (12.100)

n

where the last equality follows from the completeness of the eigenvectors.

Exercise 12.4. Letu(x, t) be a solution of (12.99) such that u(x, 0) = u(x). Show
that

u(x,t) =/h(x,y;t)u(y)dy. (12.101)

[Hint: First verify that (12.101) satisfies the initial condition, next that it is a
solution of the heat equation.]

It is known that the solution of (12.99) has an asymptotic expansion for
t — ¢ given by

h(x,x;e) = Zai(x)si (12.102)



see Gilkey (1984). Similarly, /(¢) has an expansion
h(e)=)" aie' (12.103)
i

where a; = [ a;(x)dx.
Let £ and F be complex vector bundles over M and D : '(M,E) —
I'(M, F) be an elliptic operator. We define two Laplacians

Ap=D'D:T(M,E) - T"(M, E) (12.104a)
Arp=DD' :T'(M,F) = T'(M, F). (12.104b)

It is important to note that they have the same non-vanishing eigenvalues
including the degeneracy. To see this, let Ag|A) = A|A). Then there is a vector
D)) € I'(M, F) such that

Ar(DI)) = DD' D)) = DAg|A) = A(DA)).

Note that D|A) # O since ker A = ker D. Conversely, if |[u) € T'(M, F)
satisfies Ap|u) = ), then DT|u) € T'(M, E) is an eigenvector of A with
the same eigenvalue 1. Thus, we have found the symmetry>

Spec’ A = Spec’ Ar (12.105)

where the prime denotes that the zero eigenmodes are omitted.
Define two heat kernels 4g and hr by

he(x,y. 1) =Y e (x|n)(n]y) (12.106a)
hr(x,y, 1) = Ze_“’" (x|m)(m|y). (12.106b)
We have
tlirgol;E(t) = dimker Ag = dimker D (12.107a)
tllrgoﬁp(t) = dimker Ap = dimker D'. (12.107b)

What is more interesting is the index of D. Since ker D = ker A and ker DT =
ker A g, we have

ind D = dimker D — dimker D" = dim ker Ap —dimker Ap
= lim [hg(t) — hp()] = hg @) — hp@). (12.108)
11— 00

The final equality follows since the ¢- dependent part of hg (t) — hp (1) cancels out
by the symmetry (12.105). We expand hE (1) and hp(t) as

HE(t)=ZaiEti fzp(t)=2afti.

3 This is a kind of ‘supersymmetry’, see section 12.10.



Picking up #-independent terms, we have
mdD—aO —ag —/dx [ao (x)—ao (x)] dx (12.109)

where aO (x) are deﬁned in (12.102).

In general, ao (x) are local invariants written in terms of curvature two-
forms. In section 13.2, we use the heat kernel to prove the index theorem

indD=v, —v_ = / ch(F)lyol
M

for the twisted spin complex over a manifold with A(TM) = 1.

Exercise 12.5. Let D, DT, Ar and AF be as before. Show that

s s
Ag+s Afr+s

1(s) = tr[ i| Res >0 (12.110)

is independent of s. Show also that 7 (s) = ind D.
12.7.2 Spectral ¢-functions
Let E and F be vector bundles over M. Define a new function
/ o
Ce(x yis) =) (xln)(nly)Ar, Res > 0 (12.111)

where Agin) = XA,|n) and the prime denotes the omission of the zero modes
(A, = 0). A function {F(x, y; s) may similarly be defined for Ar. The functions
hg and ¢g are related by the Mellin transformation. To see this, we recall the
definition of the I'-function,

o0 o0
I'(s) E/ e dr = AS/ e Mdr
0 0

where A is taken to be strictly positive. From this we find
PO yis) = Z / “it (x| (n] )

= foozf—l[h(x,y; t)—Z(x|O,i)(O,i|y)]dt. (12.112)
0

i

We also note that

¢al(s) E/ S(x,x;8)dx = Z/A;S (12.113)
M n



is the spectral ¢-function defined in (1.158).

Exercise 12.6. Verify that

AT f(x) =/C(x,y; s)f(y)dy (12.114)

where the general power of an operator may be defined in the sense of an
eigenvalue, namely we put A™%|n) = A, *|n). Re s is assumed to be sufficiently
large so that (12.114) is well defined. [Hint: Use the completeness of the
eigenvectors. ]

Example 12.7. The following example is taken from Kulkarni (1975). Let M =
S! = {¢%} and E = F = a trivial line bundle over S! (a cylinder). Take an

operator A = —9%/962. From the eigenvalue equation,
82 in6 .
AL neZ
062
we find that

Am=n>  (Bln) = Qr)" /2,
The heat kernel is

hB1.601) = > e (B1]n) {n|62)

1 2t 4in(61—62)
2n(1+2e 1=0 (12.115)

while
£(O1,02:5) = > 0> (01]n) (n]62)

= L6 (12.116)
2

We easily verify that h@t) =1+ 3 e~"’! satisfies
* ~ x>
1+2/ e_x’dx<h(t)<1+2/ e ¥ dx.
1 0

We then find from these inequalities that
Too ~ Tooo
/ e_“dx—1<h(t)</ e Tdx +1
—00 —00

or by putting the value

[ear=ymire



we find N
VItV L < i) < St 2 0.
This shows that _
lim /(1) ~ St (12.117)
t—0

In general, the asymptotic series starts with ¢~ 4imM/2,

12.8 The Atiyah-Patodi-Singer index theorem

So far we have been concerned with index theorems defined on a compact
manifold without a boundary. In practical situations in physics, we often need
to find an index of an operator defined over a base space M with a boundary.
The extensions of the AS index theorem to these cases are discussed here. Our
argument is restricted to the spin bundle over M since this is the only situation we
shall be concerned with in chapter 13.

12.8.1 p-invariant and spectral flow

LetiY be a Hermitian Dirac operator defined on an odd-dimensional manifold M,
dimM = 2 + 1. Since iY is Hermitian, the eigenvalues A; are real. We define
the y-invariant of i¥ by the spectral asymmetry of iY,

,7521—21. (12.118)

>0 r<0

This is not well defined and requires a proper regularization. For example, we
may define n by limg_,¢ n(s) where

n(s) = Z/sgn(xk)p\krzf Res > 0. (12.119)

It can be shown that, under proper boundary conditions, 7 (s) has no pole at s = 0.

Exercise 12.7. Use the Mellin transformation

%F <#) a~6D/2 = /00 dx xe a>0
0

to verify that

0= Sy ST a2

Suppose a Dirac field is interacting with an external gauge potential A;, t €
[0, 1]. The Dirac operator i¥(A;) has a t-dependent eigenvalue problem. If
an eigenvalue of iV (A;) crosses zero, the n-invariant jumps by 2. This jump



(@

(b) n(t)
v /~t 1It1/ b oy
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Figure 12.1. Whenever an eigenvalue A crosses zero (a), the n-invariant jumps by +2 (b).

The sign depends on the way in which A crosses zero.

denotes the spectral flow from A 2 0 modes to A < 0 modes; if n jumps by
42 (—2), there is a flow of a state from A < OtoA > 0 (A > Oto A < 0), see
figure 12.1. In addition to the discontinuous change associated with the spectral
flow, i¥ also has a continuous variation n.. We have

1
d
Nt =1)—n(t=0)= / dt% +2 x (spectral flow). (12.121)
0

12.8.2 The Atiyah—Patodi-Singer (APS) index theorem

Let us consider a (2/ + 2)-dimensional Dirac operator

A .0 . 0 D
iDyjp = o1 + 0o ®iV(A,) = < Dt o ) (12.122a)
where
D=i3 —Y(A,) D' =id, + Y(A). (12.122b)

[Remark: The positions of D and D' are reversed since

a3 _ ( -1 0
#=(51)

for our choice of y-matrices; cf (12.79).]

Theorem 12.3. (Atiyah-Patodi-Singer theorem) Let M be an odd-dimensional
manifold and i¥ (A;) a Dirac operator on M interacting with an external gauge
field A;. Then,

ind D = dimker D — dimker DY
= / AR)Ch(F)lvol — NGV (A1) — n(Y (Ag))].
MxI
(12.123)



The general argument shows that the continuous part 7, of the n-invariant
satisfies

dr
Then the RHS of (12.123) is simply the spectral flow

1 d . n
/ ar :2/ AR)Ch(F) vo. (12.124)
0 MxI

L =1 —ne O)]+1/1dtdnc tral
—_ — — = — — —= —Spectra Ow.
2 n n 2 0 dr P

Thus, we find another expression for the APS index theorem,
indiﬁzprz = —spectral flow. (12.125)

The proof of the APS index theorem in its most general form is found in Atiyah et
al (1975a,b, 1976). The physicists’ proof is found in Alvarez-Gaumé et al (1985).
We use the APS index theorem to study the odd-dimensional parity anomaly in
section 13.6.

Example 12.8. To see why the spectral flow appears in the index theorem, we
consider an example taken from Atiyah (1985). Let M = S! and 0 be its
coordinate. Consider a Hermitian operator

3
iv, =i (% - it) =i+t tekR (12.126)

The term —it is thought of as a U(1) gauge potential. The eigenvector and the
eigenvalue of 1V, are

1
Var
Since SpeciV; = SpeciV,41, the family of operators iV; is periodic in ¢ with the

period 1, see figure 12.2. This periodicity manifests itself in the gauge equivalence
of iV; and iV;4:

Ynt () = e meZ) () =n+t.

ivt+] = eigiV,efig.
There is precisely unit spectral flow from A < Oto A > 0 at ¢t = 0 while ¢ changes
from —e to 1 — &, ¢ being a small positive number. From iV,, we construct a
two-dimensional Dirac operator

. . a . 0 D

1D2=101®5+02®1V,_( Dt 0 ) (12.127a)
where

D=id, +d —it D' =id, — g +1ir. (12.127b)

These operators act on functions which satisfy the boundary conditions

PO +2m,0)=¢0B,1)  ¢O,1+1)=e%0,1). (12.128)
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Figure 12.2. Time evolution of the eigenvalues of iV;. SpeciV; has period 1. The ith
eigenvalue crosses zero at ¢ = 0 and, hence, there is a unit spectral flow.

Let ¢ € ker D'. We have a Fourier expansion
P00, 1) =Y _an(t)e™™.
It follows from D' ¢o = 0 that
a,(t) + (n+t)ay(t) =0

which is easily solved to yield

( (n + t)z)
ay(t) =cpexp | — ) .

The boundary conditions (12.128) require that

(n+t+ D\ 0 n+0*\ e
;cn exp( 5 e = ;cn exp 5 e

from which we find that ¢, is independent of n. Thus, ker DT is one dimensional
and is spanned by the theta function,

2
$00.) = exp (- (n J; n”_ in9> . (12.129)



Suppose 00, 1) € ker D. If we put $0(0,1) = > by (1)e "% b, (1) satisfies
b, (1) — (n+ )by (1) = 0.

The solution of this equation is

2
ba(t) = by exp "L

and, hence, ¢~So cannot be normalized. This shows that
ind D = dimker D — dimker D" = —1

which agrees with —(spectral flow).

12.9 Supersymmetric quantum mechanics

We present, in the next section, the physicists’ proof of the index theorem in
its simplest setting. The proof is heavily based on path integral formulation of
supersymmetric quantum mechanics (SUSYQM), which will be outlined in the
present section.

We have studied the path integral quantization of bosons and fermions.
If these particles are combined together, there appears a new symmetry called
supersymmetry. We will introduce a special class of SUSYQM later, which
turns out to be crucial in the proof of an index theorem.

This and the next sections may be read separately from the previous sections.
The necessary tools are supplied to make these sections self-contained. Our
exposition follows Alvarez (1995) and Nakahara (1998). Original references are
Alvarez-Gaumé L (1983) and Friedan and Windey (1984, 1985).

12.9.1 Clifford algebra and fermions

We restrict ourselves to a particle moving in R® to start with. More general
settings will be studied later. Let {y;} = {¥1, Y2, Y3} be real Grassmann
variables, where i = 1, 2, 3 labels the coordinate index. They satisfy the algebra

Wi, v} =0
Let us consider the Lagrangian
i i
L= 51//1'1//1' - EeijkBiI//jiﬁk (12.130)
where B; is a real number. The canonical conjugate momentum for v; is

oL i



Then the Hamiltonian is

i i
HZ—WiEI/fi—L=§€ijkBil/fj¢k. (12.131)

The Poincaré one-form of this system is

0 = %I/fi dys;. (12.132)

The corresponding symplectic two-form is

w:d@:%dwi/\dwi (12.133)
from which we obtain the Poisson bracket
[V, 1Ykl = 18k (12.134)

Quantization of the system is achieved by replacing this Poisson bracket by the
anti-commutation relation

{Vj, ¥i} = k. (12.135)

This anti-commutation relation is called the Clifford algebra in R>. Let o; be the
ith component of the Pauli matrices. It is easily verified from the observation

{oj,on} =25k

that y; = o;/+/2 is the two-dimensional representation of the Clifford algebra.
It is known that the finite-dimensional irreducible representation of the Clifford
algebra is unique (modulo conjugate transformations). Thus, the Hilbert space of
this system turns out to be . = C2. The Hamiltonian is rewritten in terms of the
Pauli matrices as

H=-1B-o. (12.136)

This Hamiltonian is known as the Pauli Hamiltonian and describes a spin in a
magnetic field.

Similarly, the Clifford algebra defined in R?” and R*"*! acts on the Hilbert
space H = C".

12.9.2 Supersymmetric quantum mechanics in flat space

The Pauli Hamiltonian is made only of the spin coordinates y/; and is independent
of the space coordinate x;. Accordingly, it cannot describe a travelling spin. Now
the Hamiltonian is modified so that the spin may move around the space. This can
be realized by adding a kinetic term to the Hamiltonian. Let us consider a spin in
R? and put B = 0 to obtain the Hamiltonian

1. . i .
L = EXka + El/fkl/fk. (12.137)



The coefficients of this Lagrangian have been chosen so that the system has a
supersymmetry defined later. The canonically conjugate momenta are py = Xi
and my = —iyy /2, from which we obtain the Poisson brackets of the system

[xj, xxlpB = [P}, prlpB = 0 [xj, plpB = [V}, YilpB = d k-

It is easy to derive (anti)commutation relations from these Poisson brackets. The
canonical (anti)commutation relations are

[xj, xk] =[pj, pe] =0 [xj, k]l = {¥j, ¥u} = k- (12.138)
The Hamiltonian is

. .o l, 1
H:xj'pj—wjiwj—inp :_EA (12]39)
where A = ZZ:] 8,3 is the d-dimensional Laplacian. The Hilbert space on which
H acts is LZ(]R{d ) ® C?", where LZ(]R" ) stands for the set of square-integrable
functions in R? and n = [d/2] is the integer part of d /2.
Variation of the Lagrangian yields

. d i . i d
SL = ijij + Eal/fjw] + ijaal//j

Let us verify that the Lagrangian is invariant under the following supersymmetry
transformation
éxj =liey; Sy = —ex; (12.140)

where € is an ‘infinitesimal’ real Grassmann constant. In fact,

S R S
5L=1x]'€l/fj—§6xj'l/fj—51/fj6x]'

.. i, id . i,
= 1xj61//j — Eexj'l//j — Ea(wjexj') + Elfljexj'
id )

= — 5E(%-exj) (12.141)

and the action § = [ Ldr is left invariant. The corresponding charge (the

generator) is called the supercharge and defined through the Noether’s theorem
4
as

€Q =iepjyj =ieyjp; =iey;x;. (12.142)

Exercise 12.8. Show that

dxj =[x, €Q] (12.143)
Sy = (¥, €0} (12.144)

4 Note that the mass of the particle is set to unity and hence we have p; = X;.



These equations show that Q is the generator of SUSY transformations.

Let us take d = 2n to be an even integer and quantize the system in the
following. We introduce the matrix representation ¥; = y;/ V2, which is the
generalization of the two-dimensional representation introduced in the previous
subsection. Here y; are the d-dimensional Dirac matrices that satisfy the Clifford
algebra

{vj» v} = 28ij. (12.145)

The Hamiltonian acts on the Hilbert space
H — L2(]R2n) ® (CZ” .

The supercharge takes the form, upon diagonalizing the coordinate,

d
OQ=iYpi=—yj—. (12.146)
¥ipj ﬁy'/ ox;
The operator
d=vy; 0 (12.147)
= yj 8_x] .

is nothing but the Dirac operator in Euclidean space R?" and plays an important
role in the proof of the index theorem.

The hypercharge O transforms in an interesting way under an SUSY
transformation (12.140)

d .
50 = i((sl/fj))'Cj + il/fjaax]' = i(—é)'Cj))‘Cj +iy;(Geyr))

. ; (1., i
= —iex;X; +eyj; = —2ie (EXij + El/fjwj)
= —2iel. (12.148)

Namely, the variation of the supercharge under an infinitesimal SUSY
transformation is the Lagrangian!

We next consider the relation between the supercharge and the Hamiltonian
of the system. Let us consider successive SUSY transformations with Grassmann
parameters €1 and €. If a transformation with € is applied first and then €; next,
we obtain

€] . €) . . o
Xj —> xj+i€ey; = xj +i(e] + )y — i€1erx;
€ . g . . .
Vi — ¥ —e1xj = ¥j — (€1 + €)x; —iejey;
while if the order of the SUSY transformations is reversed,

Xj = xj +ile + )y —iererx;
Vi — ¥ — (€1 +e)X; —ieey;.



We find, from these results, the commutation relation of the SUSY variations:

) 0
[8ey, 8e;] = 8ey8e; — 8¢ 8¢, = —2161625. (12.149)
The observation that the commutation relation of two SUSY transformations
is a time derivative, i.e. the Hamiltonian, suggests that the anti-commutation
relation of the supercharge, the generator of the SUSY transformation, also yields
the Hamiltonian. In fact,

{0, 0} =20% =2(p,; ¥ (ipc¥)
= —pipk(YjVr + Vi) = —pjpidjk
= —2H.

After all, the SUSY algebra reduces to
0% = —H. (12.150)

Since Q is anti-Hermitian, the Hamiltonian is a Hermite operator with non-
negative spectrum.
In summary, we proved in equations (12.148) and (12.141) that

8 2ieL SL 1 40 12.151
0 = —2ie = 26 G (12.151)
If these equations are compared with the SUSY transformations (12.140) of
the coordinates x; and 1/;, we readily notice that the roles played by bosonic
quantities (x; and L) and the fermionic quantities (1; and Q) are interchanged.
Note that the variation of the supercharge Q in (12.151) is always a time derivative
of the Lagrangian L. This observation is crucial in constructing a SUS Y-invariant

Lagrangian out of a supercharge Q.

12.9.3 Supersymmetric quantum mechanics in a general manifold

Let M be a Riemannian manifold with dim M = 2n. The Riemannian metric is
dS2 = 8uv dx“ dxv

and the inner product of two vectors X and Y with respect to this metric is denoted
as
(X,Y)=gunX"Y".

The vector y*(¢) belongs to T M, at each instant of time ¢. Therefore,
Y (t) obeys the ordinary transformation rule for a vector under the coordinate
transformation x* — x™* = x"*(x"):
ax'H*

P Y=y (12.152)
X



Then, under the SUSY transformation § = §., the coordinates transform as

ax'H ax'H

e e P
and
92x/H ax'®
mo__ R v
o= 8x”8x)‘5x vt axV i
32x o .
= G VIV g (et = —ei

where the anti-commutativity of Grassmann numbers has been used to obtain the
last equality. These transformation rules show that the SUSY transformation is
covariant under the coordinate transformation x# — x'*.

The supercharge Q introduced in the previous subsection should be
generalized on the manifold M as

Q =i(k, V) = igun(x)ity". (12.153)

The SUSY-invariant Lagrangian on M is constructed from the SUSY variation of
this Q as

80 = 18 gudx MY + g it Y +igu Sy
= i3 guiey Sy + igu (i€ )Y + gt (—ex”)
1 i .
= —2ie | =g XXV + =gyt
2 2
i1 o
_Ex 5 (akguv — Ovgur — 8ugkv) /"
A . i
= —2ie <§guvxﬂxv + Egp.vl//vl//u + Exﬂgkprp;w‘ﬁkwv>

where

M= %gvp (92.8pu + 0u8ip — 9p82v)
is the Christoffel symbol associated with the Levi-Civita connection. Note the
symmetry F)";w = F)‘vu. By comparing this § Q with (12.151), we read off the
Lagrangian,

= o+ Lo (W4 v
Sl Dy 12.154
= 5()(, )C) —+ 5 1#, D—t . ( . )

Here Dvr/ Dt is the covariant derivative of i along the curve x(¢).



Exercise 12.9. Show that the SUSY variation of the Lagrangian is proportional to
the time derivative of the supercharge,

1 d
5L =~ 92 (12.155)
2 dr
The quantum version of the supercharge is
0~ gupty” (12.156)

that is the Dirac operator § on M.
Let us define some symbols that will be employed in the next section. The
connection one-form is
MH = dx*TH,, (12.157)

while the Riemann curvature two-form is
RE, =dI'H +TH ATC,. (12.158)
The Riemann curvature two-form is expanded in terms of dx” A dx? to yield

RM = LRY dxP A dx® (12.159)

vpo

the component of which is the ordinary Riemann curvature tensor. This
component is also written in terms of the connection V,, as

d d
K _ K
R)\.I;LU = <dx N Vﬂvvm - Vuvﬂw>
=0, I, — 0, + T, T, — T, T, (12.160)

12.10 Supersymmetric proof of index theorem

The proof of the index theorem in its simplest setting will be given in the present
section by making use of the supersymmetric quantum mechanics developed in
the previous section.

12.10.1 The index

Let us consider vector bundles E 4+ oM , E=E_®E_ andlet D be an elliptic
differential operator acting as

D:T(M,ET) > I'(M, E7).
It is possible, by using the fibre norm, to define the adjoint of D as

DT (M,E™) — I'(M, E™).



Assuming that D is Fredholm, the index
IndD = dimker D — dimker D' (12.161)

is well defined.

Theorem 12.4. The number ind D is invariant under a ‘small’ deformation of D.

Proof. Note, first, that DD' and DD are non-negative and, hence, it follows that
kerD =kerD'D  kerD' = kerDD'.

Let {¢,} be the orthonormal set of eigensections of DD : I'(M,E") —
(M, E"):

(DTD)(ﬁn = )Lnﬁbno

Define ¥, = D, /~/An for A, > 0, namely ¢, € (ker D). Then we find that
Y, is an eigensection with the same eigenvalue A,,, namely i, € (ker DL since

(DD Yy, = D(D"Dn) /v An = *n D/ An = An¥n.

Note also that {1, } is an orthonormal eigensection,

1 A
.| DD =— S =um-
)“n)\‘m (¢l| I(bm) m nm nm

(Ynlm) =

Thus, it follows that there is a natural isomorphism between (ker D)+ and
(ker D). Note, however, that there exists no such isomorphism between ker D
and ker D, Suppose N states in ker D obtain non-vanishing eigenvalues as a
result of a small perturbation of the operator D and dimker D decreases by N.
Then it follows from this observation that the same number of states must also
leave ker DT. Otherwise (ker D)+ is no longer isomorphic to (ker DHL. Similary,
if dimker D increases by N, dimker D" must also increase by N to keep the
pairing properties of (ker D) and (ker DT)L. Therefore, ind D is invariant under
small perturbations of D. O

Theorem 12.5. Let D be a Fredholm differential operator. Then its index is given
by
indD = Tre #P'P _ Ty —#PD' (12.162)

where 8 > 0 is areal constant. In fact, the index is independent of §.



Proof. The traces in (12.162) are over {¢,} and {y,}, respectively. Let {¢?}
and {I//io} be orthonormal eigensections of ker D and ker D, respectively, and
1 <i <dimkerDand1 < j < dimker DT. Then it follows that

Tr e*ﬂDTD —Tr ef"gDDT

=Y igule PP Pig) — > (Wule PP [y)

Jn 0 Jn#0

+Z¢°|¢° ZWQWQ)
= > e P ((Guldn) - x/fn|x/fn>+21—21

An #O
= dimker D — dimker D'
=indD.

Since the summations over i and j are independent of 8, ind D thus defined is
independent of 8. O

The trace that appears in theorem 12.5 is identified with the heat kernel.
Let E = E; @ E_ and define a differential operator acting on E by’ (cf
equation (12.79))

. (0 DY
1Q:( D 0 >.E—>E. (12.163)
Moreover, define a ‘Hamiltonian’ and a matrix I" by
il
.02 _( D'D 0 (1 0
H=_3{0) _( 0 pDt > I = ( 0o -1 ) (12.164)

Since Q thus defined is anti-Hermitian, the operator H is Hermite and non-
negative. The index of D is rewritten in a compact form by making use of I'
as

indD = Trre #H. (12.165)

Let M be a spin manifold, for which the second Stiefel-Whitney class
wy (M) is trivial. Accordingly, the SO(k) principal bundle over M may be lifted
to the SPIN(k) principal bundle as

SO(k) — SPIN(k).
4
M

Let E = A(M) be this spin bundle. Then, associated with A(M) is a Clifford
algebra {y*, y"} = 26"V, Let us define the chirality operator

Y1 =1"viv2 . von (12.166)

5 The operator Q will be identified with the supercharge later.



It follows from yzzn = 1 that the eigenvalues of y»,4 are restricted to be +1,
which we call chirality.

Exercise 12.10. Use the Clifford algebra to show that

Va1 =1 {vu vans1) = 0.

The set of sections I'(M, A) for an even k is not an irreducible representation
of SPIN(k) but can be decomposed into two subspaces according to the chirality
as

C(M,A)=T(M,AT)®T (M, A") (12.167)

where ¥ € I'(M, Ai) satisfy yo,+1¥+ = x¥t. We assign the fermion
number F = 0 to sections in I'(M, AT) while F = 1 for those in I'(M, A7).
Then the I" defined in (12.164) can be written as

r=(nr. (12.168)

It is clear that the operator Q flips the chirality and hence {Q, '} = 0.

Let Q be the Dirac operator on M and let ' = y»,,11. In fact, it follows from
exercise 12.11 that {Q, y2,+1} = 0 and y»,,4 is identified with (=Df. When T
is diagonalized as in (12.164), the chirality eigensections are expressed as®

Yy = < ‘/g ) Vo = ( 1/?, ) (12.169)

It should be then clear that D : T(M, At) - (M, A" )and D' : (M, A™) —
I'(M, A") are identified with D and DT, respectively, in (12.79). Accordingly,
the index of the Dirac operator is defined as

ind Q = dimker D — dim ker D (12.170)

Physicists often call the sections in ker D and ker DT zero modes. Then, the
index of the Dirac operator is the difference between the number of positive and
negative chirality zero modes. This index has a path integral expression as we see
in the next subsection.

12.10.2 Path integral and index theorem

Let us consider a Dirac operator Q on a 2n-dimensional spin manifold M. We
employ Euclidean time (+ — —it) from now on.

Let H = (i0)? = %gwp“p" be the Hamiltonian corresonding to Q. Then
the index of the Dirac operator has a path integral expression

ind Q = TrTe P = Tr(—l)Fe*ﬂH

= | DxDye huL (12.171)
PBC
® Note the slight abuse of notations. The symbols 1+ have been used to denote sections in I'(M, §)
as well as those in I'(M, Ai).



where the Lagrangian L has been introduced in (12.154),

1 " 1 Dy”
L= zgw(X)x“x” + zg;w(X)I/f” D

(12.172)

and PBC stands for the boundary condition in which the path integral is over
functions satisfying a periodic boundary condition over [0, 8]. The factor (—1)F
disappears if the anti-periodic boundary condition for the fermionic variables is
changed into a periodic one. This can be seen from the following observation. In
the path integral formalism, the trace with (— ¥ is (see section 1.5)

w(=DFe 7 =3 ni(=DFe  Hn)

n

= /de*d9<—9|(—1)"e*ﬁ”|9>e*9*9 (12.173)

where F = c'¢ is the Fermion number operator. By noting that
) =10)+11)6  (=DF|6) =10) = 1) = | —6)

this integral is cast into the form
/de*de(me*ﬁ”w)e*‘)*‘). (12.174)

Thus, by eliminating (—1)%, we have to change the boundary condition to a
periodic one.

This path integral is evaluated in the rest of this section to show that it reduces
to a topological index obtained from the Dirac A—genus.

The SUSY transformation in Euclidean time is obtained by the replacement
t — —it in (12.140) as

Sxt =ieyt Syt = —iex™.

As was shown in the previous subsection, the index is independent of § and,
hence, we may consider the limit 8 | 0 in computing the trace. By rescaling the
time parameter as t = s, we cast the action into the form

B 1 1 Dy
/0 dr [Egﬂv(x))'c“)'c”+§gw(x)1ﬁ“ Dl/jt j|

Tt detdx? 1 WPV s 17s
_/O [ﬁzguv()d d +2guv(x)1// si|~ (12. )

Thus, any path with x 7# 0 has an exponentially small contribution to the path
integral in the limit 8 | 0. Accordingly, the contributions to the path integral
come only from paths x(¢#) = constant in this limit. Clearly, these paths satisfy
the periodic boundary condition.




The periodic boundary condition forces us to take the set of loops in
M, which we will denote as L(M), as the configuration space of the bosonic
coordinates. To apply the saddle point method to the evaluation of the path
integral, we have to find the set M of the extrema of the action, namely the
solutions of the classical Euler—Lagrange equations

X 1
—gm(x) + 2RM,OW‘¢ =0 (12.176)
Dw gyt
= ey =o0. 12.177
Dt a N ( )

It is instructive to outline the derivation of these equations since the anti-
commutativity of Grassmann numbers and the symmetries of the Riemann tensor
are fully utilized. The Euler—Lagrange equation for y* is

0— JL d oL
Taye  dr \aye
1 DyY 1 " 1d
2gpu Dr — —gwl/f X FAp + = Zdl (gpvw )
1 Dy "
2 8pv—<— Dr — SivX F)Lp‘ﬁ +(akgpv)x ‘ﬁ +gpvw

By multiplying both sides by g"” and summing over p, we have

Dy* s up Iz
0= Dt — g ginx F)Lpl// +g (8Agpv)x (/e +‘ﬁ
DuH . ) DyH
= ];/ft + W‘ ‘i‘x)L I:g,up (8Agpv) - g”pgw«r'{p] W =2 Dt

which proves (12.177). Here, use has been made of the identity

Mp[(akgpv) - %(B;Lg,,p —+ angA — 81}8}4;)]
up% (92.8pv + 0u8ip — p8u0) =T,

in the square brackets in the second line above.
Let us prove the equation of motion for x* next. We find

aL d [ 3L
8x“ dt 8x“
Dyf 1
= —(%gaﬁ)x P+ (%ga,s)w l + 5 8ap¥” 9, TP g~

d 1
dt <g;wx + gaﬁl// F 1#)

—[guvk” + $(@rguv + dugun — Bugu) X i



+ %[gaﬁaﬂrf,( - 3Agaﬁrﬁk - goz/sa;\r,’i,(]1//“W(ffA
+ 58apX T Y TH A + 5 gap ¥ Th X" T, Y

DiV 1 p 5 5
= 8w, + 7 18ep0 T — 8apdh T — 018aplyi
+ &ypT Lo The + 8apTly TL Vo y* &
DY 1 B B B v oK)
= _gp.vD—t + E(BMFAK - 8AFMK + F/JJ(F)LK)I// v x

+5(8ypT Ty — D8up) T WY X",
The last term of the last line of this equation is written as

(87558 (018va + Bugur — Dv8rar) — D8up]Th Yoy i
= —3(018ap + 9pgra — Du&rp) T Y Y i
= —Taplh Yy it
= —gupTLg Db oy i
from which we obtain

vV
0= —gw% + %(aﬂrfk — T +Th 17 - rfyrgk)wwx*
vV
= _g;w% + %Ra/cukl//al//lcxk~
Equation (12.176) follows by renaming dummy indices.

Let us come back to the study of the solutions of the equations of motion
(12.176) and (12.177). Clearly, the pair x = constant and iy = constant is one of
solutions. Therefore, x,, : t = p € M is always contained in the solutions, which
may be written as M C M. Equation (12.176) reduces to the geodesic equation
when ¥y = 0 but not necessarily so in general. When the fundamental group
m1(M) is non-trivial, there exist non-contractible geodesics in general. Their
contributions to the path integral, however, vanish exponentially as exp(—c/8)
as B | 0 and, hence, are negligible.

Before we proceed to the proof of the index theorem, we need to explain the
saddle point method. Let us start with a simple example. Consider the integral

Z= / TS —rewm,
—oo N 2mh

The function f(x) is assumed to have only one minimum at x = xo and that
f(x) — ooasx — Z£oo. Let us consider the asymmptotic expansion of the
integral Z when the limit # — 0 is taken. Put x = xo + +/Ay and expand f(x) at
xo. Taking f’(xp) = 0 into account, we obtain the expansion

1 1 1
fx) = fxo) + Eﬁyzf”(m) + §ﬁ3/2y3f(3)(m) + Zﬁzy“f(“)(xo) SR



If this expansion is substituted into Z, we have

Z = e’f(xo)/h/oo dy

oo V21
Lo 1 1
X exp [_Eyzf/ (xo) — <§h1/2y3f(3)(x0) i mﬁy4f(4)(xo) L ﬂ .

Let us define the moment of y by
N T
V2

/ dy 2oz
V2T

" =

Then we finally obtain the expansion of Z as

—f(xo0)/h 1 1
z="— <exp [——h‘/2y3f<3><xo> — hy* P (x0) - D

M) 3! 4!

One might think that one will get terms of order O(A'/?) if (---) is expanded.
However, this is not the case since (y3) = 0 and one has (---) = 1+ O(h) in
reality. In the proof of the following index theorem, the parameter % is replaced
by B. The index is, however, independent of 8 and we conclude that terms of
order O(f8) vanish and, hence, we need to take only the extrema of the action and
the second-order fluctuations thereof into account.

Exercise 12.11. Use the previous expansion to prove the Staring formula
n! >~ «27ne™"n" (12.178)
forn > 1.

Let us come back to SUSYQM. We take the second-order fluctuation around
the solutions of the classical equations of motion in evaluating Z. The principal
contribution to the path integral comes from the solution x = xo and ¥ = . We
employ the Riemann normal coordinate based at x = x( to make our life easier.
This is to take a coordinate system in which the metric tensor satisfies conditions’

d
guv(x0) = dpuv M—Ag”’” (x0) = 0.

Thus, we have g = det g = 1. We define the fluctuations in this coordinate system
as

xP (1) = xf + €M)
Y (@) =Yy + 0t ().

7 Of course, this choice does not imply that the Riemann tensor vanishes in general.



Note here that dx* = d&*, dy* = dn*. The second-order expansion of the
action is now written as

p 1 dg* dg* 1 dp* dgv
=] dt |-——=—+p—+=-R ’ 12.179
2 /0 [2 FTRTRRE L +2 uo (X0)8 dt} ( )

where we have put

ﬁ,uv (x0) = %Ruvpo (xO)l/fé) I/I(()T

Needless to say, the zeroth-order action Sy = S(xo, ¥o) vanishes identically
Let us evaluate the index

indQ = / DEDne™2 (12.180)

using the second-order action S,. Here we have taken the translational invariance

of the path integral measure DxDy = DEDrn. Taking the periodic boundary
condition of &, n into account, their Fourier expansions are given by

g_.,u 2rint /B
f >

n=—oo

2mnt/ﬂ
77n .
-y

n=—0oo

The fluctuation operator for £ in S5 is

2 < d
—(SMV @ + RMV E
while that for 7 is
d
8
T

We have to consider the zero modes 50 and r)(’f , for which n = 0, separately in
the following Gaussian integrals.® Taking these into account, we write

1/2
indQ =N / ]_[ déo dng [DethC' (%%)}

—-1/2
2 d
x | Detpc =8y + Ruv(x0)—
dr? dt

—1/2
_N/ ]_[ [Dethc( 5’”;1 +R,w(x0)>} (12.181)

8 The integrations over &y and 7 are equivalent with those over xg and v




where / indicates that the zero modes are omitted while N is the normalization
factor, which takes care of the ambiguities associated with the ordering of
Grassmann numbers. Let us evaluate this factor now.

Since ind Q is independent of B, we put 8 = 1 for simplicity. We also
simplify our calculation by choosing the metric to be g,, = &,,. Then the
fermion and boson parts separate completely. The fermionic part is evaluated,
by noting Hfermion = 0, to yield

L
Tr yopg1 = Dwe—%fo Y- de
PBC

= Nf Deti;BC((g,uvat)l/z / dl/f(% e dl/fgn’

where 1#(’)‘ is the zero mode. The determinant is evaluated as follows. First, note
that the argument in section 1.5 shows that the determinant is, in fact,

Detppc (3 + @) = lirrg) Det’ ((1 — ew)d; + )
E—>

where we have introduced the harmonic oscillator frequency w, which will be set
to zero at the end of the calculation. The ‘partition function’ is

tr(—1)Fe™PH = 2sinh(Bw/2)
— gPo/2 Detppe (1 — ew)d; + ). (12.182)

Therefore, the determinant in the limit w — 0 is
Detppe (3;) = al)i_r)noe_ﬁ“’/ZZ sinh(Bw/2) = 1. (12.183)

Thus, we finally obtained

Tr yont1 =Nf/d1//(§ Cdyd (12.184)

We insert

Yo = = QU

further in the trace. Since Tr y22n = Tr I = 2", we obtain
Trys, . =2" =Ny / dyd . Ay QD)"Y L Yt = Np(—20)"

which leads to

Ny =i"
Next, we evaluate the normalization factor A}, of the boson part. If we employ
imaginary time in (1.101) to obtain (x, 1]x, 0) = (27)~!/2, we have

/DM*% 0 2 N 1 /ﬁ e )"/ﬁdxu
x"e =Np———— — =27 .
Det/2(=8,087) J | V2w el



The determinant is evaluated using the ¢ -function regularization as in section 1.4.
The eigenvalue of —d?/dr?> with the periodic boundary condition is A, =

(2nrr/,3)2 and then
, d? 27n\?
e (~55) = 1 ()’

neZ,n#0

The spectral ¢-function is

00 o) 271°° 2s
C )= Y. [(”7”” =2<£) £(2s)

neZ,n#0
from which we find
¢ /a2 (0) = 4log(B/2m)e™ BV r (25) 4 4> P12 (25) |5
= 4llog(B/21)¢ (0) + ¢'(0)] = —2log B.
Therefore, the determinant is

d2
Detppc (—@) =exp[—¢ a2 (0= B (12.185)

By putting 8 = 1, we find Detpp- (—dz/dtz) = 1. Thus, we have obtained the
normalization factor

Ny =1.
in

Putting these results together, we have shown that N' = NN, = i
Accordingly, the index is expressed as

ind Q =1" /l_[

Let us evaluate the functional determinant in (12.186). Since the Fermi
variables are contained only in ﬁuv (x0) and this is Grassmann-even, we pretend
this part is a commuting number for the time being. The anti-symmetry of the
Riemann tensor implies that Rw(xo) satisfies R,w = —RW Therefore, it is

d ~12
[Dethc( S'Wd +Rﬂv(xo)):| . (12.186)

possible, in an even-dimensional manifold M, to block-diagonalize RW in the
form

Ruv = . (12.187)



Let us concentrate on the first block. The operator
d -
_5;/,1) a + Rp,v (x0)

is real and, hence, the eigenvalues are made of complex conjugate pairs. Let us
express the determinant of this block in terms of the product of these complex
eigenvalues. We find

d

-0 N d?
det’ dr d = Det’ (@ + y12> = l_[ ()’12 - (27111/,3)2)
AN n#£0
2 »171?
2
- ) 11l - np
B 2n
n>1 n>1
. 2 2
— <M) . (12.188)
yi/2
Now the index is expressed as
2n
J’//2
do = nt 12.189
indQ =1" 1_[sm,Byj/Z ( )

The product with respect to j is written as

L et pr2 \"
B2 sinR/2)

Note that any Taylor expansion with respect to R terminates at finite order since
RP = 0for p > d/2.

We have evaluated the contributions of the second-order fluctuations around
a particular pair xg, Yo so far. Now we need to take the contributions coming
from all the solutions to the classical equations of motion into account. We have
noted before that the set M of the solutions of the equations of motion contains
the constant solution (xg, ¥o) as a subset and that the contributions from non-
constant solutions are exponentially small as § | 0. Therefore, we neglect all
periodic solutions except for constant solutions. If we note the expansion

1
M =xf =5+

VB

we find that the integral over x¢ is equivalent with that over &/+/B, namely
dx(’)‘ = déé‘ /+/B. This argument is also applied to the Grassmannian zero mode



and we find dlﬁ(’f = ﬂdng . In summary, the index is now written as

- 1/2
dx” BR/2
ind Q = 1" /l_[\/id% ﬂd/z <sinﬂ7i/2> ) (12.190)

We make the following change of variables to erase the apparent S-dependence
of the index,

“w
P
vy = \/231_/3 dyf = V2rpdyl.

Substituting
») 11 P o
ﬂRMU = E ERMVPU Xo Xo
into the integrand, we obtain
111 172
2n - Rp,vpa (XO)X() XO
indQ = i"/ [T dxé dxy det 2 12”121 . (12.191)
pu=l1 sin 5 E ZRuvpo (XO)XO X()

This is the Atiyah—Singer index theorem for the Dirac operator.

Let us rewrite the previous theorem in a more familiar form. Note that only
terms of order 2n in y in the integrand yield non-vanishing contributions upon
integration over [ [ d X(I)L . Note also that [ | dx(’; is just an ordinary volume element.
Then define the curvature two-form

Ryw = L Ryupo dx? A dx”. (12.192)

Then note that R/sinR is even in R and, hence, the integral is non-vanishing
only when n is even, that is only when d is a multiple of four. If this is the case,
the factor i” takes only £1 and we can formally replace the integrand as

R R

i" — — — .
sin R sinh R

The reader should verify the first few terms. Then the index is now written in the
well-known form as

1/2

R
ind Q = / det 227”1
sinh — —R

We, moreover, define the A—genus. Since R is anti-symmetric, it can be block-



diagonalized as

0 x
—x1 0
1
2=
0 x4
—x, 0
Then define the A—genus of M by
nooxi/2
Ay =] = 12.193
() l_[ sinhx;/2 ( )

j=1

where the RHS is defined by its formal expansion with respect to x;.
In summary, we have proved the Atiyah—-Singer index theorem in the
simplest setting (the spin complex).

Theorem 12.6. (Index theorem for a spin complex) The index of a Dirac
operator defined in M is

indQ:/ AM). (12.194)
M

Problems

12.1 In the text, we dealt only with compact manifolds. The extension of the AS
index theorem to non-compact manifolds is the Callias—Bott—Seely index theorem
(Callias 1978, Bott and Seely 1978). Here we consider the simplest case studied
by Hirayama (1983). Consider a pair of operators

1d . 1d
=-—— —iW() L'=—-——+iW()
idx idx
where W (4+00) = pu and W(—o0) = A.

(a) Show that Spec’ L"L = Spec’ LL", where the prime indicates that the zero
eigenvalues are omitted.
(b) Show that

J@ =t 2 )= R
T \LTL4+z LL +z) 2\ (24212 R2+12)°



13

ANOMALIES IN GAUGE FIELD THEORIES

In particle physics, symmetry principles are some of the most important
concepts in model building. Symmetries play crucial roles for the theory to be
renormalizable and unitary. The Lagrangian must be chosen so that it fulfils
the observed symmetry. Note, however, that the symmetry of the Lagrangian is
classical. There is no warranty that symmetry of the Lagrangian may be elevated
to a quantum symmetry, i.e., the symmetry of the effective action. If the classical
symmetry of the Lagrangian cannot be maintained in the process of quantization,
the theory is said to have an anomaly. There are many types of anomaly: the chiral
anomaly, gauge anomaly, gravitational anomaly, supersymmetry anomaly and so
on. Each adjective refers to the symmetry under consideration. In the present
chapter we look at the geometrical and topological structures of the anomalies
appearing in gauge theories.

We follow closely Alvarez-Gaumé (1986), Alvarez-Gaumé and Ginsparg
(1985) and Sumitani (1985). See Rennie (1990) and Bartlmann (1996) for a
complete analysis of the subject. Mickelsson (1989) and Nash (1991) have a
section on anomalies from a more mathematical point of view.

13.1 Introduction

Before we introduce topological and geometrical methods to anomalies, we give
a brief survey of the subject here. Let y be a massless Dirac field in four-
dimensional space interacting with an external gauge field A, = A,%T,, where
{Ty} is the set of anti-Hermitian generators of the gauge group G which is
compact and semisimple (SU(N), for example). The theory is described by the
Lagrangian

L=iyy*@, — A)Y. (13.1)

The Lagrangian is invariant under the usual (local) gauge transformation
V) = g Au) = g7 [ALW) + s (13.2)
It also has a global symmetry,

Yx) — e (x)  Px) = Px)el”® (13.3)



called the chiral symmetry. The chiral current js derived from this symmetry is

J&=yytysy. (13.4)

In general, whether the symmetry of a Lagrangian is retained under quantization
is not a trivial question. In fact, it has been shown that the chiral symmetry of £
is destroyed at the quantum level. Adler (1969) and Bell and Jackiw (1969) have
shown by computing the triangle diagram with an external axial current and two
external vector currents that the naive conservation law 9, jé‘ = ( is violated,

1

dujl = We““” tr F s T
1 2
=13t [e“““a,( <AlaﬂAv + gﬂmuﬂv)} (13.5)

where tr is a trace over the group indices. The current jé‘ which appears in (13.5)
has no group index, and, hence, (13.5) is called the Abelian anomaly.

It is interesting to study the behaviour of a current which carries the group
index. Consider a Weyl fermion ¢ which couples with an external gauge
field. The non-Abelian gauge current of the theory also satisfies an anomalous
conservation law which defines the non-Abelian anomaly. The action is given
by

L=y (VPry  Pr=3U £y (13.6)
The Lagrangian has the gauge symmetry
Ap— g Autog v gy (13.7)

The corresponding non-Abelian current is

Jr = YTy TP . (13.8)

It has been shown by Bardeen (1969) and Gross and Jackiw (1972) that, up to the
one-loop level, the current is not conserved,

1 1
Duif)* = 5551t [T"‘a,(e““” <AkaﬂAU + EAAAMAVH . (13.9)

At first sight, the RHSs of (13.5) and (13.9) look very similar. However, the
difference between the normalization and the numerical factors of % and % have
a deep topological origin. We shall see later that the Abelian anomaly in (2] + 2)
dimensions and the non-Abelian anomaly in 2/ dimensions are closely related but
in an unexpected manner.



13.2 Abelian anomalies

Henceforth, we work in an even-dimensional manifold M (dimM = m = 2I)
with a Euclidean signature. Four-dimensional results will readily be obtained by
putting m = 4. We assume our system is non-chiral, namely, the gauge field
couples to the right and the left components in the same way. Our convention is

i PV A T L VL e () LA

J/m+l’r — ym+l (ym+l)2 =41

The Lie group generators {7, } satisfy

T'e=-Ty [Ta.Tpl= fup?’T,  w(T*TP)=—1s.

13.2.1 Fujikawa’s method

Among several methods of deriving anomalies, Fujikawa’s way (Fujikawa 1979,
1980, 1986) reveals the topological and geometrical nature of the problem most
directly. This method is equivalent to the heat kernel proof of the relevant index
theorem.

Let ¥ be a massless Dirac field interacting with an external non-Abelian
gauge field A, . The effective action W[A] is given by

e~ WAL - /DwD&e*deiW (13.10)

where iV = iy#V, = iy* (8, + wu + Ay, With 0, = S0 % being the
spin connection of the background space. We compactify the space in such a
way that the geometry (the spin connection) plays no role. For example, this
can be achieved by compactifying R* to §* = R* U {00}, for which the Dirac
genus A(T M) is trivial; see example 12.5. If this is the case, the spin connection
is irrelevant and may be dropped from i¥. The classical action [ dx iV is
invariant with respect to the chiral rotation,

m+la

U — V" g s ey e (13.11)
We expand ¥ and ¥ as

= avi =) by (13.12)

where a; and b; are anti-commuting Grassmann variables,
{ai,a;} =0 {bi,bj} =0 {ai,bj} =0
and ; is an eigenvector of the Dirac operator

iYyi = 1. (13.13)



Since 1Y is Hermitian, A; is real. Since M is compact, ¥; can be normalized as
(ily)) = /dxw,.*(xw,»(x) = 8.

Now the path integrals over ¢ and v are replaced by those over a; and b; .
Consider an infinitesimal chiral transformation,

Y(x) = Px) 4+ ia(x)y™ v (x) (13.14a)
¥ (x) = P (@) + i ()a(x)y™ (13.14b)

As usual, we take @ = a(x) to be x-dependent. Under this change, the classical
action transforms as

/ dx ¢ivy — f dx (f + igay™ iV +iay™ )

= / dx YivVy +i / dx [y iV Y + PV @y Y]

f dx Yivy — / dx [y ™ Ty (9, + AV
+ Uy @y + A (@™ )]
/dx 1/}iy7¢+/dxa(x)auj,‘n‘+l(x) (13.15)

where we have used the anti-commutation relations {y*, y”*!} = 0 and
1 @) = Yy (x) (13.16)

is the chiral current. This is the higher-dimensional analogue of jé‘ defined
previously. If (13.15) were the only change caused by (13.14), naive application
of the Ward—Takahashi relation would imply the conservation of the axial current
n j,’nL 41 = 0. In quantum theory, however, we have an additional change, namely
the change of the path integral measure. Define the chiral-rotated fields by

Vv =y +iay™ My = Za,ﬁﬁi (13.17a)
V=0 +ivay™ = by (13.17b)

Now the measure changes as
/nda,- db; — /]‘[da;dz};. (13.18)
i i
From the orthonormality of {1/;}, we find that

al =(Wily') = (il +iey™y)
=Y Wil +iey™ yj)a; = > Cija; (13.19a)
j j



where

Cij = (Wil +iay™ ;) = 8 + iy ly™ ). (13.20)

The measure in terms of the new variables is

]_[ da); = [det C;;]™" ]_[ da; = exp(— trin Cjj) [ [ das
= exp[—trIn(/ + i (i [y" 'y D1 [ | das
~ exp(— triee(yi |y ;) [ | das

= exp(—iaZwiwm*‘wi))Hdai (13.21)

where the inverse of the determinant appears since a; and a; are Grassmann
variables, see Berezin (1966).! As for b; — blf, we have

by =Y bl +iay™ ) = Y Cjiby. (13.19b)
J J

The Jacobian for the change b; — l;; agrees with (13.21). Thus, the measure
transforms under the chiral rotation (13.17) as

]_[ da; db; — [ [ da] db} exp < - Zi/dx a(x) ) ¢;(x)ym+ll//n(x)).

(13.22)
Now the effective action has two expressions:

e WAl — /Hdai db; exp(—/dx 1/717%0)
= /l_[dagdé;exp(—/dxd_/ivw—/dxot(x)aﬂj,l,:ﬁ(x)
—Zi/dxa(x)A(x)) (13.23)

where

AG) = T 0y ). (13.24)

Since «(x) is arbitrary, we have

Oy (x) = —21A(x). (13.25)

1 See section 1.5. For example, we have fada = fca d(ca) = 1, ¢ € R and a being a real
Grassmann number. This shows that d(ca) = da/c.



Thus, naive conservation of an axial current does not hold in quantum theory.
This non-conservation of the current j,’; 41 is called the Abelian anomaly (or
chiral anomaly or axial anomaly).

How is this related to the topology? Let us look at the Jacobian (13.22)
and assume that «(x) is independent of x.> The integral in (13.22) is not well
defined and must be regularized. We introduce the Gaussian cut-off (heat kernel
regularization) as

/ dx A(x) = f dx > T 0y i () expl—(hi /M) 1 oo

= > (Wily" expl—GY/M)*11¥i) Moo (13.26)

In (13.26), 1/M? corresponds to the ‘time’ parameter ¢ in the previous chapter
and M — oo implies t — &. Let |1;) be an eigenstate of i¥ with non-vanishing
eigenvalue A;. Among the eigenstates, there exists a state |;)X = y”+1|y) with
eigenvalue —A;:

WX =ivy™ ) = —y" vy
= —ny" ) = —ilyn)*

where use has been made of the anti-commutation relation {y"*!,i¥} = 0. Since
iY is a Hermitian operator, eigenvectors which belong to different eigenvalues are
orthogonal, hence (; |¥;)* = (¥;|y™T!|¥;) = 0. This shows that

Wily™ expl—GQY /M)A W) = (Wily™ T i) expl— (i /M)?] = 0.

Thus, the contribution to the RHS of (13.26) comes only from the zero-energy
modes. Let |0,i) be the zero-energy modes of iV, (1 < i < ng). They are
not in an irreducible representation of the spin algebra and should be classified
according to the eigenvalue of y”"+!. We write

Y0, i) = %[0, ). (13.27)
Then, (13.26) becomes

[ e A = STl expl— G M ) oo

= > (000104 — Y7 (0.i0.0)-

i i

=v; —v_ =indiY (13.28)

where vy (v_) is the number of zero-energy modes with positive (negative)
chirality (v4 + v— = ng) and i¥ 4 is defined by

iy = ( 0. - ) iV = v

2 We are looking at the zero-momentum Ward—Takahashi relation.



The Atiyah—Singer index theorem now comes into the problem.
To show that (13.28), indeed, represents an integral of the relevant Chern
character, we first note that

(V) = — y"y VoV = —{8"" + S[y", v IV, Vi) + T ]
= — VuVFE = My vV 1T (13.29)

where use has been made of the relation [V, V, ] = F,,. Then

AG) =Y (Wi lx)xly™ expl(V2 + Sy, v 1F0)/ MY M co- (13.30)

i

Let us take m = 4 for definiteness. We introduce the plane wave basis as
d*k
(x[i) = w(ﬂkﬂkllﬁi)-
Then (13.30) becomes
dk’
Alx) = k) (K
(x) (271)4 f e Xijw/, Ky (K |x)

FLexpl(V2 + Gly", v 1T )/ ML) k)|

y—>x

dk
= / (27[)4 tryln-i-l eXp[(—k2 + %[yu’ yv]gjﬂv)/Mz]Maoo (13.31)

where use has been made of the completeness property
> (ki) (ilk') = @m)*stk — k).
i

In (13.31), we have replaced V2 by the symbol —k? since the residual terms
containing A do not survive in the limit M — oo. If we put k* = k*/M,
(13.31) becomes

dk -
A(x) = tr[y” exp(3[y". y" 15,0/ M) IM* f ) exp(—k?).
We expand the first exponential and use
wry? =twydyty’ =0 wydyRytylty? = 4

/dlz exp(—l?) =72



to obtain

1 5 1 v 2
Alx) = Etr |:)’ E{[)’MJ/ 15w} }W

-1
=52 tr €MV () F (). (13.32)

Note that the higher-order terms in the expansion of the exponential vanish in the
limit M — oo. The anomalous conservation law (13.25) now becomes

8,Lj5“ = 162 tre““”ﬁ"mf}‘w

1
= 53 W0 Ay + FAALAD] (13.33)

This is regarded as a local version of the AS index theorem. Let us write (13.33)
in terms of the field strength § = %3",“, dx* A dxV. We easily verify that

vy — v =/ dx By gy =/ cha (7). (13.34)
M M

This is the index theorem for a twisted spinor complex with trivial background
geometry (A(TM) = 1).
For dim M = m = 21, we have the following identity:

= dx 9, %, , = h; (%) = L iT Y 13.35
Vg — Vo = y X Oy = Mcl( )= Ml—!tr ) (13.35)

13.3 Non-Abelian anomalies

In the last section we considered the chiral current which is a gauge singlet (no
gauge indices). Now we turn to the study of the gauge current j*, where « is the
gauge index. Here we consider a chiral theory in which the gauge field A couples
only to the left-handed Weyl fermion yy. Suppose i transforms in a complex
representation r of the gauge group G. For example, suppose i belongs to a 3 of
SU(3). The effective action Wy [A] is given by

e WAl /Dle/_/ exp(— /dxl/_/iVH//) (13.36)
where
Vi =iyt @, +A)Pr  Pe=10Eym. (13.37)

The gauge current is
e =y TPy, (13.38)



Let v = v*T, be an infinitesimal gauge transformation parameter, g = 1 — v
under which we have

Ay = A +v) Ay, +dDA —v)=A, —Dyv (13.39)

where D, v = 9,v + [Ay, v] is the covariant derivative for a field in the adjoint
representation. The effective action transforms as

W, [A] - W, [A — Dv]
8
= W,[A] —/dx tr <DvﬁWr[A])

B
= W,[A] —/dx (30" +faﬁyAuﬁUV)WW,[A]

= W,[A] +/dx tr <U“DiWr[A]Q). (13.40)
SA
Since s
e WAl = (Y T, A+ y™ ™y a = (%)
"
we obtain
W.[A — Dv] — W,[A] = /dx tr(v* Dy (j")e)- (13.41)

We are naively tempted to regard (13.36) as det(i¥) = [] A, A; being the
‘eigenvalue’ of iY. A subtlety arises here: 1Y maps sections of Sy ® E to those
of S_ ® E, where E is the vector bundle associated with the G bundle and S+
are spin bundles with chirality . Accordingly, the equation i¥ ¥ = Ay is
meaningless. To avoid this difficulty, we formally introduce a Dirac spinor i and
define

e~ WrlAl — /Dle/_f exp(_/dx¢iﬁ¢> (13.42)

where iD is defined by
iD = iy"(d, +iA,Py) = ( i% 1%— ) (13.43)

where we have diagonalized y™*!. In (13.43), the gauge field A couples only
to the positive chirality field. Now the eigenvalue problem iD Y = A is well
defined. Note that iD is not Hermitian and A; is a complex number in general.
Moreover, we need to introduce right and left eigenfunctions separately by

iDy; = A (13.442)

XDy =nx" (DY i = hixi (13.44b)



Since f X;r Y dx = 0fori # j, we may choose an orthonormal basis,

/XTiI//j dx = &;. (13.45)

It should be noted that the eigenvalue A; is not gauge invariant. This follows from
the observation that

g(DUA))g ™" = giy [0y + & (A +8)8P+1g ™
=iD(A) —idgg™" +idgg™'PL #iD(A). (13.46)
If the equality were to hold in (13.46), g~'y; would satisfy iD(ASg 1y =
rig "y; when iD(A)Y; = A;¥;. Then SpeciD(A) would be gauge invariant.
Although individual eigenvalues are not gauge invariant, the absolute value of the
product of eigenvalues of iD is gauge invariant. In fact,
det(iD) det((iD)") = det(DGD)")
(id-)(d+) 0
= det . .
¢ < 0 QY)Y -)
= det(ig_idy) det(Y +iV_) (13.47)

where iJ; = (if_)" and i¥Y_ = (i¥,4)". This is simply the Dirac determinant
(up to an irrelevant factor det(id _id)),

[det(V)]? = det( iW‘Oim 1W+Oiy7_ ) = [det(iV4iV_)]? (13.48)

where iV is given by
. 0 ivY_
iv = < 7. 0 ) (13.49)

The Dirac determinant is gauge invariant, hence so is | det(iﬁ)l. It then follows
that Re W, [A] is gauge invariant since

exp(—W; [A]) exp(— Wy [A]) = det(iD) det((iD)") o det(iV4iV_)

is gauge invariant. Therefore, only the imaginary part of W, [A], that is the phase
of det(iD), may gain an anomalous variation under gauge transformations.

The anomaly may be computed by evaluating the Jacobian as before. The
functional measure is taken to be [ [; da; db;. We consider an infinitesimal gauge
transformation,

A— A—Dv v — ¥ oy V> — Y v (13.50)

where the gauge transformation rotates the positive chirality parts only. The
Jacobian factor is

/dx rv(x) Y (lx)y” ! (x|n) (13.51)



where (x|n) = v¥,(x) and (n|x) = X; (x) (note that (n| is not the Hermitian
conjugate of |r)). This integral is ill defined and must be regularized. As before,
we employ the Gaussian regulator,

/dx Mlim trv(x) Z(nly)y'"“(x|e_(ii))2/M2|n)
X—)y

/dx lim o)y e D MEs (13,52

X*)y

where use has been made of the completeness relation

> Iyl =1. (13.53)
n
It follows from (13.41) and (13.52) that

8 B
/ dxv*D,, ( —W, [A]) dx Mlim trfvy e~ WDV M2 5y,
1o
(13.54)
In the present case W, really changes under (13.50). The trace may be written as

oy H eGP /M Y — (P, — P_ye— (9-IT0)—GY-id)/ M
— tr[v Py @V/M*) _ gy p_eYiD/MY) (13 55)

(13.55) can be evaluated in the plane wave basis, which is straightforward but
tedious (see Gross and Jackiw (1972), for example). We derive the non-Abelian
anomaly from a topological viewpoint in the next section. For m = 4, the
anomalous variation is

WA — Dol — Wo[A] = f dx v* D, (j")a

1
= 5am2 /dx tr{v“Tae’(W"BK[AxauAv + %‘AA'AM-AU]}

1 143
m/tr{vd[}[dﬁl—i— LA (13.56)

The anomalous divergence of the gauge current is

D" = tr{ Ty e ™ 3 [A; 8, Ay + L ALA LA (13.57)

2472
This should be compared with (13.33). There are two differences between these
results: the two-thirds in front of A3 is replaced by a half and the overall factor is
different.



13.4 The Wess—Zumino consistency conditions

13.4.1 The Becchi-Rouet-Stora operator and the Faddeev—Popov ghost

Let W[A] be the effective action of the Weyl fermion in the complex
representation r of the gauge group G.3 In the previous section, we observed that
the change of W[A] under an infinitesimal gauge transformation §,A = —Dw is
given by

SyWIA] = —/(DMU)“ WIA] = / VD, (j*)a- (13.58)

8

SALY

Following Stora (1984) and Zumino (1985) we introduce the BRS operator
§ and the Faddeev—Popov ghost . Let Q" (G) be the set of maps from S to G.*
In addition to the ordinary exterior derivative d, we introduce another exterior
derivative 8 on 2" (G) which we call the Becchi-Rouet—Stora (BRS) operator.
In general, § is defined on an infinite-dimensional space but we may also consider
the restriction of S to a finite-dimensional compact subspace of Q™ (G), such as
S", parametrized by A“. Then 8§ may be written as § = dA%3/91%. We require
that d and S be anti-derivatives,

> =8> =d$+8d=0. (13.59)
If we define A = d + 8, A is clearly nilpotent,
A*=d*+dS+8d+8* =0. (13.60)
Under the action of g = g(x, A%), A transforms as
A-> A=g A+ dyg. (13.61)

Note that A is independent of A while A depends on A through g. Define the
Faddeev-Popov (FP) ghost by

w=g"18g. (13.62)
The actions of 8 on A and w are found to be

SA=8[g'(A+d)gl=—g '8gA— g7 ASg + g7'8(dg)
=-0A-(A-g ldg)w—g " d(Sg)
=—wA—- Aw—do=-Dpw (13.63a)
Sw=—g"18gg718g = —o”. (13.63b)
3 We drop the representation index r to simplify the expression.

4 The set Q™ (G) should not be confused with Q™ (M), the set of m-forms on M. The distinction
should be clear from the context.



It is easy to verify that S is nilpotent on A and w and, hence, on any polynomial
of A and w as it should be; see exercise 13.1. Define the field strength of A by

F=dA+ A? =g 9. (13.64)

We also define
A=g ' A+ANg=A+g'8Sg=A+ow (13.65a)
F=AA+A2 =g '9g=F (13.65b)

where (13.65b) follows since I = dA + A% = AA + A? (note that SA = 0). It
is found from theorem 10.1 that A is an Ehresmann connection on the principal
bundle and F its associated curvature two-form.

The existence of a non-Abelian anomaly implies that W[ A] does not vanish
under the action of the BRS operator 8 (w roughly corresponds to v; see (13.39)
and (13.63a)),

SWI[A] = Glw, Al (13.66)

Since W[A] is independent of w, 8 acts through A only. Before we write down
the Wess—Zumino consistency condition for the non-Abelian anomaly, we stop
here and consider the physical meaning of the BRS operator and the FP ghost.

Exercise 13.1. Verify from (13.63) that the actions of § on A and w are nilpotent,

A=0 S*w=0. (13.67)

13.4.2 The BRS operator, FP ghost and moduli space

To find the physical meaning of & and w, we need to examine the topology of
the gauge fields (Atiyah and Jones 1978, Singer 1985, Sumitani 1985). Let 2(
be the space of all gauge potential configurations on $”. For definiteness, we
take m = 4 but the generalization to arbitrary m is obvious. The topology
of 2 is trivial since, for any gauge potential configurations A; and A, the
combination tA; + (1 — t)Ay (0 < t < 1) is again a gauge potential on 4,
Note, however, that 2l does not describe the physical configuration space of the
gauge theory. We have to identify those field configurations which are connected
by G-gauge transformations. Let & be the space of all gauge transformations on
$* (& = Q*(G) in our previous notation). Then the physical configuration space
must be identified with 2/®, called the moduli space of the gauge theory. We
have seen in section 10.5 that the gauge field configuration on S* is classified by
the transition function g : S* — G, S3 being the equator of §*. In the present
case, A/ is classified by the transition function on the equator $3 — G and,
hence,

A/ ~ Q(G). (13.68)

Thus, each connected component of 2(/® is labelled by the instanton number k.
This component is denoted by Q;:(G).
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Figure 13.1. The BRS operator $ is the restriction of § along the fibre.

We note that the space 2 has a natural projection 7 : 2 — 2/® and can
be made into a fibre bundle whose fibre is &, see figure 13.1. Leta € A be a
representative of the class [a] € 2/® and let

AX) =g )@@ + dgx) (13.69)

be an element of 2 in [a]. We denote the exterior derivative operator in 2 by
8, which is a functional variation and should not be confused with the usual
derivative d; see Leinaas and Olaussen (1982). If § is applied on (13.69), we
find that

SA= —g '8gA+ g 'sag — g adg — g7 'd (8g)
=g 'sag —d(g '6g) — g 6gA — Ag '8¢
=g 'sag —Da(g "69) (13.70)

where D4 = d+[A, . The first term of (13.70) represents the derivative of A
along /& while the second represents that along the fibre; see figure 13.1. The
BRS transformation § is obtained by restricting the variation § along the fibre,

SA = 8Alfibre = —Dgw (13.71a)
where the FP ghost w is g7 !18g = g_lég‘ﬁbre. We also find that

Sw = swliee = —g 'Sgg '8g = —” (13.71b)

which reproduces (13.63a).



13.4.3 The Wess—Zumino conditions

Exercise 13.1 shows that § is nilpotent on any polynomial f of A and w,
82 f(w, A) = 0. (13.72)

The nilpotency is required by the interpretation of 8 as an exterior derivative
operator. In particular, we should have

SGlw, Al = $>W[A] = 0. (13.73)

This condition is called the Wess—Zumino consistency condition (WZ
condition) and can be used to determine the non-Abelian anomaly (Wess and
Zumino 1971, Stora 1984, Zumino 1985, Zumino et al 1984). If the anomaly G is
mathematically well defined, G should satisfy the WZ condition. This condition
is so strong that once the first term of G[w, A]is given, the anomaly is completely
pinned down.

13.4.4 Descent equations and solutions of WZ conditions

Stora (1984) and Zumino (1985) constructed the solution of WZ conditions as
follows. The Abelian anomaly in (2/ + 2)-dimensional space is given by

1 iF\*!
1 (F) = ——tr | — 13.74
chyy1(F) TN r<2ﬂ> ( )

where F = dA + AZ, A = g‘l(.A + d)g as before. Let Q24+1(A, F) be the
Chern—Simons form of chyy1(F),

chip1(F) =dQuy1(A F). (13.75)

Since the algebraic structure of the triplet (A, A, F) is exactly the same as that of
(d, A, F), we also have

ch 1 () =A01(AF) =A011(A+w, F) (13.76)

where we have noted that A = A+ w and F = F. If we expand Q1 (A, F) =
021+1(A+ w, F) in powers of w, we have

01 (AF) = 0% (A F) + 0} (0, A, F) + 03_,(», A, F)
4t Q%H‘l(w’ A, F) (13.77)

where Q7 is sthorderin w and r +s =2/ + 1.
We now note that chy; 1 (F) = ch;,1(F) since F = F = g~!Fg. In terms of
the Chern—Simons forms, this can be expressed as

AQy1 (A F) =dQo41(A, F). (13.78)



Substituting (13.77) into (13.78), we have

d+8)[0%, (A F)+ 0} (w, A F)
+o+ O w, A F) =d0Y, (A F). (13.79)

If we collect terms of the same order in w, we have the ‘descent equations’

8091 (A F)+d0Y(w, A F) =0 (13.80a)
804 (@, A,F) +d03%_ (w, A F) =0 (13.80b)
80 (w, A, F) +d0¥* ! (w, A, F) =0 (13.80¢)
$05 ™ (, A, F) =0, (13.80d)

Note here that § increases the degree of w by one, see (13.63). Let us look at the
2[-form Qél(a), A, F). If we put

Glw, A, F] E/ 0 (@, A, F) (13.81)
M
Glw, A, F] satisfies the WZ condition,
$Glw, A, F] = / 80 (w, A, F) = —/ dQ3_ (o, A, F)
M M
Z_/ Q%lfl(a),A,F)z()
oM

where we have assumed that M has no boundary and use has been made
of (13.80b). This shows that once Qél(a), A, F) is obtained, the anomaly
Glw, A, F] is easily found.

Proposition 13.1. Qél defined here is given by

I+1 1
1 _ (b _ -1
0y, A TF) = <2n> 7(1_ 1)!/0 St(1 — 1) strlwd(AF; )] (13.82)

[Note: In the proof, we tentatively drop the normalization factor (i/27)*! to
simplify the expressions. This factor will be recovered at the very end.]

Proof. We start with (11.105),

1 ! ~
Q1A+ w,3) = l_'/ Sttr[(A + w)T1
Jo



where

F=tF+ (2 — )(A + w)?
=F, + (2 = H{A, 0} + (* — Do’
F,=d(A) + (tA)>.

If we substitute f;'} into Q41 and collect terms of first order in w, we have:

%/Olattr[w?fﬁ- (12 — D)(ALA, 0]F~! + AT [A, 0] T2
+ AT A )]
B z‘lv/ drsulwd] + (% = NAGT A, ]l
+ FI2A, 0lF + )]

1
=5 / StstrfwF! + (12 — 0)IA[A, v]FI1]

:%/&str[a)ffi—i—l(t — (A, AloF ! + AwlA, F71])]

_ z‘lv / 8t strlo{F + 1t — (LA, AIF ™ — ALA,, F1)))

where str is the symmetrized trace defined by (11.8). Now we use
DI =dF T 4[4, F 71 =0

03,
W == CLA + I[A, A]

to change the final line of the previous equation to

%/ﬁtstr[ {3”+l(t—1)[< 83;’ —d.A) ?ﬁ_l+Ad3’f_l}H

1

_ le/wstr [w{?fﬂ(l — AT + (r - 1)88_3;’”'

Integrating by parts, we find that

0}/, A, F) = /8t(1 — 1) strlod(AFh).

1
(I7-1)
If we recover the normalization, we finally have

i
21

I+1 1
0}/(w, A, F) = ( ) 7/ 81(1 — 1) strlwd (AF—h).
(—=n!Jo



Form =2/ =2 and m = 4, we have
i \2
ng,A,F)==(5—>tawdA) (13.83a)
T
1 VAR 1 A3
Qu(w, A, F) = A G str(wd(AdA + 5 AY)). (13.83b)

These results are also verified by direct computations. Up to the normalization
factor, (13.83b) yields the non-Abelian anomaly in four-dimensional space; see
(13.56).

Sumitani (1984) pointed out that the approach to the non-Abelian anomalies
here is ad hoc and does not clarify the following points:

(1) The WZ condition (13.73) does not fix the normalization of the anomaly and,
moreover, the uniqueness of the solution is far from trivial.

(2) It is not clear why we should start from the Abelian anomaly in (m + 2)-
dimensional space.

To answer these questions we need to develop a more elaborate index
theorem called the family index theorem; see Atiyah and Singer (1984), Singer
(1985) and Sumitani (1984, 1985). In the next section, we outline the physicists’
approach to this problem, closely following the work of Alvarez-Gaumé and
Ginsparg (1984).

13.5 Abelian anomalies versus non-Abelian anomalies

Let us consider an m-dimensional Euclidean space (m = 2I) which is
compactified to S = R™ U {oo} and let G be a semisimple gauge group which
is simply connected (like SU(N) for which 71(SU(N)) is trivial). Consider a
one-parameter family of gauge transformations g(@, x) (0 < 6 < 2m) such that

g(0,x) =g(2m,x) =e. (13.84)

Without loss of generality, we may normalize g so that g(0, xo) = e at a point
xo € S™. Themap g : S! x §™ — G is classified according to the homotopy class
Tm+1(G). To see this we define the smash product X A Y of topological spaces
X and Y by the direct product X x Y with X VY = (x¢o x X) U (X X yp) shrunk
to a point. From figure 13.2, we easily find that ' A §” = §" A §! = g7+15
Repeated applications of this yield

S™A ST = gmrn, (13.85)

In the case which interests us, the conditions (13.84) make the direct product
S1 x §™ look topologically like S! A §™ = §™+1. Thus, g is regarded as a map

5 The readers may convince themselves by explicitly drawing S TAsl =52
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Figure 13.2. The smash product S1 A §™ ~ s7m+1,

from $"*! to G and is classified by 7,,41(G). Since we have a one-parameter
family in the space & = Q™ (G), we also have 7, 41(G) = 71(®). In practice,
we take G = SU(N) for which we have

Tt SUN) =Z  N=>Ltm+1. (13.86)

Now we take a ‘reference’ gauge field A in the zero instanton sector ' (G) for
which we may assume, without loss of generality, that the Dirac operator (13.49)
has no zero modes. Consider a one-parameter family of gauge potentials

ASD(x) = g7(60, x)(A(x) + d)g(6, x) (13.87)

where 6 parametrizes S'. In section 13.3, we observed that |detiﬁ| is gauge
invariant (see (13.47)) and only the phase of detiD may gain an anomalous
variation under a gauge transformation. This, in particular, implies that detiD
does not vanish for any 6. We write

exp{—W,[A2@]} = detiD(ASD) = [detiV (A)]'/? expliw(A, 0)] (13.88)

where 1Y is the Dirac operator (13.49) and exp[iw (A, 8)] is the anomalous phase
associated with the gauge transformation (13.87). Next we consider a two-
parameter family of gauge fields A" (0 < ¢ < 1) which interpolates between
A =0and A3®,

AN =180 0 <t <1). (13.89)

The parameter space specified by (¢, 6) is considered to be a two-dimensional unit
disc D* with polar coordinates (, #). On the boundary of the disc, D> = S',
the modulus of detiD(A!?) is a non-vanishing constant. The phase el w0 now
defines a map S! (=9 D?) — S' (=U(1)); see figure 13.3. As we move around
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Figure 13.3. The phase of the effective action W[AS ©)] defines a map S I o by
0 > e.0)  On the disc, there are points {p;} at which detiD(A"?) vanishes. The
winding number of the map § I - UQ) is obtained by summing a winding number along
C;.

the boundary of the disc, the phase winds around the unit circle. The winding
number of this map is an integer

1 (2 dw(A, 0
N = _/ w0 4. (13.90)
2 Jo 30

We find below that N is derived from the Abelian anomaly in (m 4 2) dimensions.

Exercise 13.2. Show that
WAL — wA©] = —27iN. (13.91)

Since g(2m) = g(0), (13.91) may be regarded as a Berry phase.

13.5.1 m dimensions versus m + 2 dimensions

We recall that our reference gauge field A supports no zero modes of the operator
iD(A). Since |detiD(A$®)| = |detiD(A)| # 0, the operator iD(A2®)) does
not admit zero modes either. Of course, iﬁ(A’ ‘%) may have zero modes since
A9 is not obtained from A by a gauge transformation in general. Suppose it
has a zero mode at p; = (¢;,0;). We assume they are isolated points. Since
detiD(A"?) is a regularized product of eigenvalues, it vanishes at p;. The
phase of detiD(A"?) may be homotopically non-trivial only around these points.
Moreover, the winding number at p; is determined by the eigenvalue which
vanishes at p;. For example, if 1, (¢, #) vanishes at p; it should be of the form

An(t,0) = f(t,0)e™i? (13.92)
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Figure 13.4.
where f(t;, 6;) = 0. The winding number at p; is
1 d
m;p = — —w;(t,0)ds (13.93)

2w C; ds

where C; is a small contour surrounding p;, see figure 13.3. Continuously
deforming the loop S' = 8D? into a sum of small circles C; enclosing p;, we
find that the total winding number is

1 a

N=— / 46 —=w(A, ) = > m. (13.94)
Now we show that the winding number N is related to the index theorem
in (m + 2)-dimensional space (m = 2[): N = indi¥,,.2 where i¥,, 47 is
the Dirac operator on S x §™ defined later. Let us consider a gauge theory
defined on D? x §™ whose coordinates are (t, 0, x). To avoid the boundary term,
we add another piece, D? x $™, with coordinates (s, 8, x), to form a manifold
$2 x §™ without a boundary; see figure 13.4. We call the patch (z, 6) the northern
hemisphere Uy and (s, ) the southern hemisphere Us. On the equator S! of S2,

we have t = s = 1. We choose the following local gauge potentials

An(r,6,x) =AY + g1 dyg (t,0) € Un (13.952)

As(s,0,x) =A (s,0) € Us (13.95b)

where A is the reference gauge field introduced previously. To elevate ANy =

ANy dx? and As = Asy dx* to the globally defined connection on the G bundle
over §2 x S™ we define the (m + 2)-dimensional gauge potentials

AN (1,0, x) = (As, Ag, Ay) = (0,0, Axp) (13.96a)

AS(S,Q,X) = (‘A.S'v'Ags‘A,u) = (01 Ov'AS,u)' (1396b)



On the equator (f = s = 1), we have Ay = g~ ' (As +A)g, where A = d+dy+d,
(note that d;g = 0). Thus, A = {An, A} defines a global connection on S? x §™.
Consider a Dirac operator iV ,+2 which couples to A. The index theorem for
Y ,u42 is given by

indiVy+2 = Ny —N_ = / chyy1(F) (13.97)
§2x§m
where F = AA + A% and N (N_) is the number of + (—) chirality zero modes
of i¥,,42 (chirality is defined in an (m -+ 2)-space).

Alvarez-Gaumé and Ginsparg (1984) have shown, using an adiabatic
perturbative computation, that each winding number m; must be ==1. Moreover,
the Dirac operator i¥,,42 has a zero mode at p; = (t,6;) with (m + 2)-
dimensional chirality x = m; = £1. Then the total winding number N = > m;
is given by the index Nt — N_. Now we have

1 7 dw(A,0
indiV 42 = / chy 1 (F) = — / do M. (13.98)
S2><Sm 27'[ 0 89

We easily find the non-Abelian anomaly from (13.98) including the
normalization. Since chj4+1 (F) = dQp+1(A, F), we have

/ chipi (F) = / chiyi (Fy) + / chiy1 (Fs)
S2x §m D2x S§m D2x S§m

B /Sl sm[QmH(ANvFN)b:l — Om+1(As, Fs)|s=1].

(13.99)
From (11.118), we find that
Om1 (AN, FN) =1 — Omy1(As, Fs)|s=1
= Ont1(g7 A8, 0) + Ay
i 1+1 !
= (=1 (Z) T r(g ' A" + Aa,y. (13.100)

The index theorem is now given by

NS |
indiV,42 = (—1)! <i) ﬁ /Swm tr(g”'Ag)" T (13.101)
Theorem 10.7 states that |, ¢ tr(g~'dg)? yields the winding number of the map
g: $3 — SU(2). In the same manner, (13.101) represents the winding number of
themap g : S"*! — G andis classified by 7,41 (G) (note that S'AS” = 7+,

Finally, we show that the non-Abelian anomaly should be identified with
Q. We first note that

/ Qm+l(AS’FS) =0
Sl gm



since the integrand is independent of df and, thus, cannot be a volume element of
S x $™. Then we have

di¥i2= [ 0un(? 40,540 13102
Slxsm

where o = g 'dgg and FEO = dA2@ 4+ (ALD)2 = ¢@)"1Fg(0).

If the integrand in (13.102) is expanded in w, only the term linear in dé

contributes to the integral. This term Q) (v, A8®, F8®)) is proportional to

df A (volume element in ™) and, hence, is a volume element of S' x $”. We

now have

SWIA]
HsA,

5wW[A]=/ tr oD

idg w(0, A) =27i | QO (w, A3, F8@) (13.103)
Sm

The explicit form of Q}n is given by (13.82). For m = 4, we find that

SWIA
/ tra)DMﬁM] = 2ri /S . 0} (w, A8 80

1 1
=5 / rod [Ag<9> dAs® 4 E(Ag“}))ﬂ
S
(13.104)

Putting 6 = 0 (g = e), we reproduce the anomalous divergence

Du (jﬂ>a =

1
St T €M 9, [AkaﬂAU + EAAAMAV} (13.105)
T

which is in agreement with (13.56). The present method guarantees that the
WZ condition yields the correct result. Moreover, it reproduces the anomalous
divergence including the normalization which cannot be fixed by the WZ
condition alone.

13.6 The parity anomaly in odd-dimensional spaces

So far, we have been working in even-dimensional spaces. One of the reasons
for this is that SO(2/ 4 1) has real or pseudo-real spinor representations but no
complex representations, hence no gauge anomaly is expected. However, we
can show that gauge theories in odd-dimensional spaces have a different kind
of anomaly called the ‘parity anomaly’, in which the parity symmetry of the
classical action is not maintained through quantization. It should be noted that
the parity anomaly in 2/ 4+ 1 dimensions is related to the Abelian anomaly in
2l 4 2 dimensions as was pointed out by Alvarez-Gaumé et al (1985).



13.6.1 The parity anomaly

Let M be a (2] + 1)-dimensional Riemannian manifold. We distinguish one
dimension from the others; that is we assume that M is of the form R x M or
S x M, where M is a 2/-dimensional compact manifold without a boundary. We
denote the coordinate of R or S! by 7 while that of M is denoted by x. The index
0 denotes the component in #-space while u denotes that in x-space. For example,
the components of the y-matrices are {y?, y* (1 < u < 21)}.

Define the ‘parity’ operation P by

Ao(t, x) — Ab(t, x) = —Ao(—t, x)
Ayt x) — Ai(t,x) =A,(—t,x)

Y(t, x) — P, x) =iy (-t x)
U(t, x) = PP, x) =iy (—1, ).

The classical action is invariant under the parity operation,

/dt dx ¥ivVy — — / dt dx ¥ (=1, x)yily°(@80 — Ao(—t, x))
+ Y @O + Ap (=1, )y Y (—t, x)
= /dt dx ¥ (1, x)ily° (80 + Ao (t, x))
+ P @y + A, X)) (2, x)

where we put t — —t in the final line. Let us see whether this invariance is
observed by the effective action. The effective action is given by the regularized
product of the eigenvalues of i¥Y. We employ the Pauli-Villars regularization to
regulate the product, that is

Lreg = XiVx +iMx (13.106)

is added to the original Lagrangian. The Pauli—Villars regulator x is a spinor
which obeys bosonic statistics and the limit M — oo is understood. The
regularized determinant is

detiy A
—WIA] _ = ! 13.107
€ detGY + iM) ll_[ N+ iM ( )

where we noted that x is bosonic. Here ; is the ith eigenvalue of iV; iVy; =
Ai Y. Under the parity operation, eigenvalues change sign,

ily° @0 — Ao(—1, %)) + ¥ (3 + Ai (=1, x) iy Wi (=1, x)

= iy'[y°(=8: — Ao(z, x)) — ¥ @ + Ai(r, )i (T, x)
= —xiiy i (T, x)



where T = —t. This shows that the effective action W[A] transforms under the
parity operation P as

WIA] - WIAT = -] | ﬁ = WIA] (13.108)

where the bar denotes complex conjugation. (13.108) shows that the imaginary
part of W is identified with the parity-violating part

WIA] — W[AP] = 2Im W[A]. (13.109)

Im W[A] is given by the n-invariant defined in section 12.8. In fact,

. )Li . —1
ImW[A] = lim Im < — In - ) = lim tan” (M/X\;)
zz' Ai +1M M—>oo’Z [hi

M—o00
b4 b4
=5<21—21>=5n. (13.110)
A>0 A<0

Thus, the Pauli—Villars regulator gives a regularized form for the n-invariant. We
finally have

ImW[A] = _—hstgnk A2 (13.111)
where the prime indicates the omission of zero modes.

13.6.2 The dimensional ladder: 4-3-2

It is remarkable that the parity anomaly (13.110) is closely related to the chiral
anomaly in a (2 + 2)-dimensional space (Alvarez-Gaumé et al 1985). Following
Forte (1987), we look at the dimensional ladder,

four-dimensional Abelian anomaly

\

three-dimensional parity anomaly (13.112)

|

two-dimensional non-Abelian anomaly.

We take My = S? x S? as a four-dimensional space. The Abelian anomaly
is given by the index

indiV4 = Ny —N_= / 3Mj5M = / chy (IF). (13.113)
52x 82 S§2x 82

As before, N (N_) is the number of positive (negative) chirality zero modes.
Let Q3 be the Chern—Simons form of chy(F); chy(F) = dQs3(A,F). Then



N =N, — N_ is given by
N= chy() = an(AN,FNH/ 405 (As. Fs)
S2x §2 UnxS? UsxS§2
/ [03(AN, FN) — dQO3(As, Fs)]
S1xs2

1

-1 3
=— 13.114
oyl TR (13.114)

where g is the gauge transformation connecting Ay and Ag; Ay = g~ !(As +
d 4+ dg)g. In the previous section, we have shown that N also represents the
non-Abelian anomaly

1 (2 dw(A,0
N — / g 2249 (13.115a)
27 Jo 36
where w is defined by
detiD(A2@) = A0 GetiD(A). (13.115b)

Here A is the reference gauge potential and
A3 = g7 (x, 0)(A + d)g(x, 0)iD = I+ AP,
Next, we show that N is also related to the parity anomaly in three-

dimensional space. Let i¥3 be a three-dimensional Dirac operator and define
a four-dimensional Dirac operator by

a
iDa[A] =0 ® 15 + 02 ®iV3[A/] (13.116)

where A, is a one-parameter family of gauge potentials interpolating Ay = A;=¢
and A; = A;=1. The Atiyah—Patodi—Singer index theorem (section 12.8) is

indidi == [ @+ e =n-ne=01 3117
SZxSixr

where we have noted that the Dirac genus A is trivial on §2 x §! x I. Suppose
Ao and A are related by a gauge transformation,

Ap =g (Ao + d)g (13.118a)
and consider an interpolating potential

Ay =tA1 + (1 —1)Ayp. (13.118b)



Since the spectrum of i¥3 is gauge invariant, in particular Speci¥3(Ag) =
SpeciY3 (A1), the n-invariant is also gauge invariant.® Then n(r = 0) = n(r = 1)
and the APS index theorem (13.117) yields

spectral flow = indilP4(A;)
= / chy(F) = / [Q3(A1, F1) — Q3(Ao, Fo)l
§2x 52 Slxs?

= /Sl . 03(g~'dg,0) =N. (13.119)

Thus, the spectral flow of the three-dimensional theory is given by the index N.
In summary, the map g : $2 x S' — G is understood in three different ways:

(1) g is a transition function at the boundary of two patches of a G bundle over
§2 x S§2. It yields the index N of the four-dimensional Abelian anomaly.

(2) Suppose Ag and A; = g~ !(Ag + d)g are gauge potentials on S x S'.
The gauge transformation function g measures the spectral flow N between
SpeiY3(Ap) and SpeiV3(Aj).

(3) g:5%x 8! - Ginduces amap S! — &, the winding number N of which
is identified with the non-Abelian anomaly in two-dimensional space.

Thus, we have obtained the ‘dimensional ladder’ 4-3-2. The extension to higher
dimensions is obvious.

6 Note that there is no gauge anomaly in odd-dimensional spaces.



14
BOSONIC STRING THEORY

In the present chapter, we study the one-loop amplitude of bosonic string
theory. Our example is the simplest one: closed, oriented bosonic strings in 26-
dimensional Euclidean space.! The action is the Polyakov action

s= L 4% 7y P oL X" 9p X, — i/ d* YR (14.1)
21 T, 4 T,
where X, is a Riemann surface with genus g. The second term is proportional
to the Euler characteristic y = 2 — 2g and, hence, determines the relative ratio
of multi-loop amplitudes; the g-loop amplitude is proportional to exp(—Xig). We
have not written down the possible counter terms explicitly.

In the following sections, we work out the path integral formalism of bosonic
strings. We first develop the necessary mathematical tools, namely differential
geometry on Riemann surfaces. Then the path integral expression for the vacuum
amplitude is written down. As an example, we compute the one-loop vacuum
amplitude. Our exposition is based on D’Hoker and Phong (1986), Polchinski
(1986) and Moore and Nelson (1986). There are many surveys of these topics,
for example, Alvarez-Gaumé and Nelson (1986), Bagger (1987), D’Hoker and
Phong (1988) and Weinberg (1988).

14.1 Differential geometry on Riemann surfaces

Riemann surfaces are real two-dimensional manifolds without boundary. In our
study of topology and geometry, we referred to them in various places. Here
we summarize the basic facts on Riemann surfaces, which will make this chapter
self-contained. We also introduce several new aspects of Riemann surfaces, which
provide enough background for the study of bosonic string amplitudes.

14.1.1 Metric and complex structure

Let X, be a Riemann surface of genus g. It was shown in example 7.9 that we
may introduce, in any chart U, the isothermal coordinates (¢ 1 52) in which the
metric is conformally flat:

g =e®de! @ de! +de? @ dg?). (14.2)

' The reason for D = 26 will be clarified in section 14.2.



Introduce the complex coordinates
=& +ig2 z=¢'—ig% (14.3)
Forms and vectors are spanned by
dz =dg' +idg?  dz =dg' —idg? (14.4a)
a L2 0 0 L2 + 1 0 (14.4b)
==——-i— == =—+i—]. .
ST 2 \agl ag2 ST 2 \agl o ag2
In terms of the complex coordinates, the metric takes the form
g = 4e¥CI[dz ® dZ + dZ ® dz]. (14.5)

The components of g are

87 = 87z = %620 8z:=8z=0 (14.62)
g% = git =020 gF=g%=0. (14.6b)

Let V be another chart of ¥, such that U NV # #. Let (w, w) be the
complex coordinates in V. The metric in V is

g =¢* WP dy @ du. (14.7)
The two expressions (14.5) and (14.7) should agreeon U NV,
29 dz @ dz = 27 ) dw ® du.
Since

dw ® dw = [(dw/3dz) dz + (0w /8Z)dZ] ® [(dw/3dz) dz + (dw/8Z)dZ]
x dz ® dz

we must have dw/dz = dw/dz = 0. [Another possibility, dw/dz = dw/dz =0
is ruled out if (z, z) and (w, w) define the same orientation.] Thus, it follows that

w = w(z) w = w(z) (14.8)
which verifies that ¥, is a complex manifold. We also have

e20(2.2) _ e20’(w,i})|3w/3z|2_ (14.9)

14.1.2 Vectors, forms and tensors

Let M = ;. The components of vector fields V?9/dz € TM™ and Vi3/dz7 €
T M~ transform as

V¥ = @Qw/dz)V: V¥ = Qw/d7)VZ. (14.10)



The components of differential forms w, dz € QM9(M) and w:dz € QO1(M)
transform as

op = Ow/2) o, wp=0w/7)  ws. (14.11)

These are identified with sections of the holomorphic (anti-holomorphic) line
bundles over M = X, for which the transition functions are holomorphic (anti-
holomorphic). The metric provides a natural isomorphism between 7M™ and
Q%1 (M) through )

w; = gz; V=, Vi = g%w;. (14.12)

Similarly, T M~ is isomorphic to w!-*(M):

w, =g:V:,  Vi=g%,. (14.13)

In general, given an arbitrary tensor, the metric allows us to trade all the z-indices
for z-indices. It is easy to see that

a D2 a1+p2 aq 2
ZoZ  ZeeZ Z..2 q 22\ P /z-/? Z..Z
2.2 2.2 - Tz...z - (gZZ) (g ) TZ...Z 7.7 ° (1414)
Pl P2 P1+a2 Pl P

This correspondence is an isomorphism. For example, observe that
_Z 22, 7.2 _ T2
Tz" — g7gzTz =17,

Thus, it is only necessary to consider tensors with pure z-indices. For these
tensors, we assign the helicity. Since T has z-indices only, it transforms under

7 — was
ow\"
T (o) T (14.15)
z

where n € Z is given by the number of upper z-indices minus the number of lower
z-indices. For example,

ow
TZZZ N Twww — <a_z> TZZZ‘
All that matters is the difference between the number of upper indices and the
number of lower indices. The tensor T, is left invariant under z — w and is
regarded as a scalar. The number 7 is called the helicity. The set of helicity-n
tensors is denoted by T

q
—~ =

~—

p

The helicity characterizes the irreducible representation of U(1) = SO(2).



So far we have assumed n is an integer. It can be shown that n = %

corresponds to the spinor field on .. In fact, the existence of spinors on the
Riemann surfaces is guaranteed by the triviality of the second Stiefel-Whitney
class of X,. The set T is identified with the holomorphic line bundle K over X,.
Then T1/2 is the square root of K: S}r = K = T where S, is the positive-
chirality spin bundle. Similarly, we have T~! = K = §2 where S_ is the
negative-chirality spin bundle.?

Example 14.1. Inreal indices, the helicity 41 vectors are given by V! £iV2. This
follows since

3 3 . .
vlﬁ + VZE =W +ivHa, + (V! —iv?)ss.

We put VZ = V! +iVZand Vi = V! —iV? ~ V,. The helicity 42 tensors are
T 43722 where T is a symmetric traceless tensor of rank two. In fact, we find

(L gl ol Var2( Lol g
ael T pgl g2 T Bg?2 AEl = g2 | g2 T BE!
=2(T"" +iT'9. ® 8, + 2(T"' —iT'%)9: ® .
Clearly T = 2(T' + iT'?) has helicity +2 and 7% = 2(T'! — iT'?) has
helicity —2 (note that g,zg,:T%* = T;;).
14.1.3 Covariant derivatives

The only non-vanishing Christoffel symbols of X, are (see (8.69))

[ = g0,z =200 Tz =g 08z = 20:0. (14.17)
For tensors in 7", we define two kinds of covariant derivative: V(zn) SN gt
and V" : 77 — g1 Let

T %, ,eT" (g — p=n).

We define

_ gziasz...zZ . (14.18a)

=[0; 4+ (g — p)Te 1T, ¢
= (0; +2nd,0)T*%,. .. (14.18b)

2 We use S+, instead of A4, to denote the spin bundles. The symbol AT is reserved for Laplacians.



In (14.18b), 2nd,o acts like a gauge potential A. We also define covariant
derivatives with respect to z,

Vi, =85V, v =gV (14.19)

The curvature two-form of K and the scalar curvature associated with the
Christoffel symbols are

F =R, :dz AdZ = —8:(20,0) dz A dZ
= —20,0;0 dz A dZ (14.20a)
R = g% Rics, + g%Ric;; = —8e7299,0:0. (14.20b)

Exercise 14.1. Verify that
Vi, = I R (14.21a)

n
Vi, =2e 20t hogene v =g (14.21b)

V(Z’n) and Vé”) are mutual adjoints with respect to a properly defined inner
product. Let T, U € T". We require that the inner product be invariant under a
holomorphic change of the coordinate z — w. Since

gz — |dw/dz| ;. d*zyg — dwg
T — (dw/d2)"T U — (dw/dz)"U.
We find the combination

(T,U) = /dzzﬁ(gzz)”TU (14.22)

is invariant under holomorphic coordinate transformations. Take 7 € T and
U € T"!. We find that

(U, Vi, T)

/ dZZ e202—n—162(n+1)a 026—20 BZT

= — 27”/d2z To:[e@ Do) (partial integration)

-2 / d?z eV 5.U + 2n + 1)(3.0)U]

- / &z VgV UIT = (—-vVu, 7).
This shows that

(an))T = -V, (14.23a)



Exercise 14.2. Show that

(Vén))f — _V(Zn_l)'

We define two kinds of Laplacian A?;) ST T g by

Al =—VIIVE = —2e72700,0; + 2n(0,0)0:]

Ay ==V ) VI = —2¢727[0,9z + 2n(0:0)0; + 2n(9.0:0)].

(n—1) Yz

Then it follows that
A:;) —A, = 4ne™%(9,0:0) = —%nR.
This shows, in particular, that

+ _ AT (=
A(O) = A(O) (= Aw)).

14.1.4 The Riemann-Roch theorem

(14.23b)

(14.242)
(14.24b)

(14.25)

(14.26)

Here we derive a version of the Riemann—Roch theorem from the Atiyah—Singer

index theorem following D’Hoker and Phong (1988).

Theorem 14.1. (Riemann—Roch theorem) Let X, be a Riemann surface of genus

g. Then the index of the operator Vén) is

dimg ker V" — dimc ker Vi, = (2n — 1)(g — D).

(14.27)

Proof. We use the heat kernel to evaluate the index. We first note that ker Vg'l) =
ker A(n) and ker V(Zn_l) = ker A:;l_l) (see (14.24)). The heat kernel IK,T of A:;)

satisfies

ot

where A = —24,0; is the flat-space Laplacian and
Va=A—-A =(- e 2%)A + 4ne 2% 9,0 0.

The Laplacian A also defines a heat kernel by

9
(EJrA)K(z,w;t):O

which is easily solved to yield

1
K(z,w;t) = 4—me_'2_w'2/2’.

0 0
(— + A%) Kz, w;t) = <5 +A-— Vn> Kz, w;t) =0



The perturbative computation and iteration yield
Kf@Zin =K1

t
+ / ds / dw K (z, w; t — )V, (W), (w, 25 5)
0

= K(z,7; t)—i—/ds/dwl((z, wit — )V, (w)K (w, z'; 5)

+/ds/ds//dv/dw1{(z, vt —8)V,(v)

x K@, wys —s)Vy(w)K (w, 2’5 5")

We are particularly interested in IK,T (z,z; t), t being small,

1 t
Kt z;t) = o +/ ds/dw Kz, wit—s)V,(w)K (w, z; 5) + O@).
T 0
(14.28)
If we take a coordinate system in which o = 0 at z, we have

o(w) >0+ 30w —2)+ doW —32)
+ 41020 (w — 2)? + 320 (0 — )% + 20.0:0|w — 221+ -+ - .

Due to rotational symmetry in two-dimensional space, only those terms with
one z-derivative and one z-derivative survive in the integral in (14.28). Terms
proportional to 9,00;0 cancel between the second and third terms in the
expansion and we are left with terms proportional to d,0;0. Now we have to
evaluate

'
/ ds/dsz(z,w;t—s)
0
X [20;0;0|w — Z|2Au, 4+ 4n(w — 2)9,0:0 031K (w, z; 5).

From the identities

/dzw K, w;t —s)|w— zIZAu;K(w, Z;8)

= %/dzwluﬂzexp —;luﬂ2
167252(t — 5) 2s(t —5)

e 4 0
3272s3(t — s) /d whwl exp( 2s(t —S)|w| )
_ (t—s5)2s —1)

273



and

/dsz(z,w;t—S)(Z — )35 K (w, z; 5)

1 /d2 t P t—s
= —F = w €X _ W =
3027252(1 — 5) P\T0 =9 4rr2

we find that

1 143n
Kf@zn=—+

it Ao +00). (14.29a)

We also have the diagonal part of the heat kernel X for A(_n),

Ky (2azs 1) = —
n S = g 127

From (14.29) and (14.20b), we obtain

1-3n 1+3(m—1 1-2
ind v = /dzz n 1+30=Dy o "/dsz
< 127 127

2n — 1
= - (B = -1 -1D

Ao + O1). (14.29b)

where
1 2
4

is the Euler characteristic of X,.

14.2 Quantum theory of bosonic strings

Now we are ready to introduce Polyakov’s formulation of bosonic strings, which
is based on the path integral over geometries. Since the string action contains an
enormous symmetry, we have to pay special attention to counting independent
geometries once and only once. This is achieved by the Faddeev—Popov trick.
Our argument will be restricted to the simplest case, namely closed orientable
bosonic strings; the theory is defined on Riemann surfaces.

14.2.1 Vacuum amplitude of Polyakov strings

According to the general prescription of the path integral formalism, the partition
function (vacuum-to-vacuum amplitude) of the string theory is given by

o0 o0
7 = Z Z = Z / DXDye SX-v] (14.30)

g=0 §=0



Figure 14.1. The total vacuum amplitude is given by summing over g-loop amplitudes.

see figure 14.1. To avoid confusion, we denote the genus by g and the metric by
y. The sum over genera amounts to the sum over the topologies. Zy is the g-loop
amplitude and is obtained by integrating over all metrics y and all embeddings X.
As we shall see later, the measure DX Dy is not well defined and we need some
modifications. The string action S[X, y] is taken to be

1 A
S[X,y]= E/d2$ VYo, X" X, + g /dzé JYR. (14.31)

The first term is the Polyakov action. The second term is proportional to the Euler

characteristic |

= | & =2-2
=g [ PeTR=2-2

and serves as the string coupling constant; the amplitude of a loop with genus g is
suppressed by the factor e"2*¢. Since this term is a topological invariant, it does
not affect the dynamics of the string. We are interested in Riemann surfaces of a
fixed genus g and drop this term. The first term of the action has the following
symmetries (section 7.11):

(A) Diff(%), the group of diffeomorphisms f : ¥, — X,. Let£% — 5/“(5) be
the coordinate expression for f. The new metric is the pullback of the old
one whose coordinate component expression is

Yap = [ Vap = gg—,);%m. (14.32)
The embedding also gets transformed as
Xt — f*XH = X\ (14.33)
The invariance of the classical action takes the form
SIX, y1=SLf*X, f*y1. (14.34)

(B) Weyl(Xg), the group of two-dimensional Weyl rescalings

Yap = Vap = € vap (14.35)



dx/}zg

Gauge slice

Figure 14.2. An element of £ x M is obtained by the action of Diff(X¢) * Weyl(Xg) on
an element (X, y) in the gauge slice.

where ¢ € F(Xg). The conformal invariance of S takes the form
S[X,y] = S[X, 71. (14.36)

The symmetries (A) and (B) must be preserved under quantization, otherwise
the theory has anomalies.

According to the standard Faddeev—Popov formalism, the degrees of
freedom corresponding to these symmetries have to be omitted when we define
Z,. For example, the string geometry specified by the pairs (X1, ;) and
(X2, y2) should not be counted independently if they are related by an element of
Diff(X,). Similarly, (X, y) and (X, e?y) should not be counted as independent
configurations. Unless special attention is paid, we would count the same
configurations infinitely many times, which leads to disastrous divergences. It
turns out that the space of all the geometries (X, y) can be separated into
equivalence classes (the gauge slice), any two points of which cannot be
connected by these symmetries, see figure 14.2.

To be more mathematical, let £ be the space of all the embeddings X :
Y = RP and let M ¢ be the space of all the metrics defined on ¥,. Naively,
the path integral is defined over £ x M,. Because of the symmetries (A) and
(B), however, the integral should be restricted to the quotient space (£ x M)/ G
where G = Diff(X,) * Weyl(Xy) is the gauge group.? The action of (£, e?) on
(X,y) e & x Mgis

(f,eN(X, ) = (f*X, e f*p). (14.37)

The quotient M,/G is called the moduli space of X, and is denoted by
Mod(X). We are also interested in the subgroup Diffy(X,) of Diff(X,), which

3 Here * denotes the semi-direct product. Note that Diff(Zg) N Weyl(Zg) # (. We shall come back
to this point later.



Figure 14.3. The mapping class group (MCG) is generated by Dehn twists around a;, b;
ande¢; (1 <i <g).

is a connected component of the identity map. The quotient space Teich(X,) =
M, /Diffp(X,) * Weyl(Zy) is called the Teichmiiller space of X,. The general
theory of Riemann surfaces shows that Teich(Xy) is a finite-dimensional universal
covering space of Mod(XZ,). Explicitly, we have

0 g=0
dimp Teich(Xy) = {2 g=1 (14.38)
6g—6 g=>2.

The group Diff(X,)/Diffp(Xg) is known as the modular group (MG) or the
mapping class group (MCG). The MCG is generated by the Dehn twists defined
in example 8.2. For the torus with genus g, the MCG is generated by 3g — 1 Dehn
twists around a;, b; and ¢; in figure 14.3. Unfortunately, these 3g — 1 Dehn twists
are not the minimal set of the generators. The general form of MCG for g > 2 is
not well understood.

From these arguments, the meaningful partition function turns out to be

DXD
Zy = / 2V Sixy (14.39)
exm, V (Diff x Weyl)

where V (Diff * Weyl) is the (infinite) volume of the space of Diff(X,)*Weyl(X;)
and takes care of the infinite overcounting of the same geometry. The order (the
number of elements) of MCG is denoted by [MCG]|. Clearly,

V (Diff * Weyl) = [MCG|V (Diffy * Weyl). (14.40)

14.2.2 Measures of integration

We have to define a sensible measure to carry out the integration (14.39) so that
the physical degrees of freedom and the gauge degrees of freedom are separated.
This separation of degrees of freedom requires the Jacobian,

DyDX — J(D physical)(D gauge). (14.41)



To find this Jacobian, we note that the Jacobian on a manifold M agrees with that
on TM. To see this, let x* (y*) be a coordinate of a chart U (V) of M such that
U NV # . The Jacobian of the coordinate change is J = det(dy*/dx"). Take
V e T, M. In components, we have V = u*9/dx* = v*d/dy*, where

v =u’(9y"/9x"). (14.42)

{u*} and {v*} are fibre coordinates of 7, M. The Jacobian J associated with this
coordinate change is

J = det(@v* /9u”) = det(dy*/ax") = J. (14.43)

This shows that the Jacobian at p € M is the same as that on 7, M. The Jacobian
J depends on p but not on the vector itself, since J depends only on p.

Example 14.2. Let (x, y) and (r, 0) be coordinates of R2, where x = r cos@ and
y = rsin 6. The Jacobian of the coordinate change is

a(x, y) _,
ar0)

J = det

Let us take
V = 0,8/0x + vy8/dy = v,8/3r + v99/30 € T,R>.
(vx, vy) and (v, vg) serve as fibre coordinates of TP]RZ. Since
Uy = V,0X/0r + vgdx /06 vy = v,0y/0r + vgdy /00
the associated Jacobian J is easily calculated to be

dx/dr dx/06

ay/ar ay/e0 | =

J = det[d(vy, vy) /3 (vr, v9)] = ‘

Let us derive this Jacobian in an indirect but suggestive way. We normalize
the measure d?v as*

1= /dzv exp(—3v[?) = /dvx dvy exp[—3(v7 + v])].

We also have [|[v2|? = vr2 + rzvé. Noting that the Jacobian is independent of v,
and vg, we have

1= J/dvr dvy exp[—%(vf + rzvg)] = Jr!

4 This normalization of the measure differs by a constant factor from the conventional one.



from which we find J = r. We use this procedure to find the functional measure
of string theory.’
This analysis enables us to write

DsyDSX = JDS(physical)D§(gauge) (14.44)

where §y (§X) is a small variation of the metric y (the embedding X) and is
regarded as an element of T, (M) (TxE). The meaning of the RHS becomes
clear in a moment.

Consider the diffeomorphism generated by an infinitesimal vector field §v
on X,. Since §v is infinitesimal, it belongs to Diffy(X,) rather than the full group
Diff(X,). The changes of the metric and the embedding under §v are (see (7.120))

Spvap = (Lsvy)ap = Vabvp + Vgduy  SpX = sv" 9, X. (14.45)
The changes of y and X under an infinitesimal Weyl rescaling e®? are
SWYap = 8PVap SwX =0. (14.46)

These changes belong to unphysical (gauge) degrees of freedom. In general, a
small change of metric is given by

3Vap = Sw¥ap + SDYap + (physical change)

-9
= 8¢Yap + Vadvp + Vpdva + 81"~ 5 yap (1) (14.47)

where the last term is called the Teichmiiller deformation of the metric, which
can neither be described by a diffeomorphism nor by a Weyl rescaling. As
mentioned before, {i} is a finite set, 1 < i < n = dimg Teich(Zy). It is
convenient for later purposes to separate §y into a traceless part and a part with a
non-zero trace. We write

8Vap = 5(]3)@3 + (P16v)gp + 5tiTiaﬁ (1) (14.48)
where Ty is the traceless part of the Teichmiiller deformation,

aVaﬂ l ) aVyzS

Tup = 522 = Syapy " =12, (14.49)
The operator Pj is defined by

(P10v)ap = Vabvg + Vgdvg — vup(Vydvy) (14.50)
and picks up the traceless part of Spyus while 8¢ is defined by

8¢ =8¢ + <Vy5v3’ + trace part ofSI%—)t/) (14.51)

5 1t should be kept in mind that we introduce the tangent space only to obtain the Jacobian. The
tangent space itself has no physical relevance.



where we do not need the explicit form in the parentheses.

As for the embeddings, we consider the quotient £ /Diff(X,). An arbitrary
embedding X is obtained by the action of Diff(X;) on some Xeé& /Diff(Xg).
Then a small change of the embedding is expressed as

§X = Sv% 0, X + 86X (14.52)

where the first term represents the change of X generated by §v while the second
is not associated with diffeomorphisms. Now the measure should look like

DSy DSX = J d"t DsvDS¢DSX . (14.53)

To define the measure, we need to specify a metric on the tangent space, see
example 14.2. We restrict ourselves to the so called ultralocal metric which is
quadratic and depends on yyg but not on dyyg. Define a metric for symmetric
second-rank tensors by

I8R112 = / d%& 7 (G £ uy®PyY®)shapdhys (14.54a)

where u > 0 is an arbitrary constant and
Gaﬁy& = yocyy/fiﬁ + yaéyﬁy _ )/a’B)/VB. (1455)

It is readily verified that G is the projection operator to the traceless part
(tr G“ﬂy‘séhyg = Yap G“ﬂy‘séhyg = 0) while uy®#y7? is that to the trace part.
In a finite-dimensional manifold, a metric defines a natural volume element. In
the present case, however, the measure cannot be defined explicitly and we have
to define it implicitly in terms of the Gaussian integral (see example 14.2),

/Dah exp(—518h|[3) = 1. (14.56a)
Similarly, the metrics for a scalar §¢, a vector v and a map §X* are defined by
18413 = / IV (14.54b)
Isv]} = /d2g VY Vapdv®svP (14.54c)
15X15 = /d2g JYSXHEX . (14.54d)
With these metrics, the measures are defined by
/D(Sq) exp(—%||8¢||)2,) =1 (14.56b)
/D(Sv exp(—%llévlli) =1 (14.56¢)

/Dax exp(—3[18X13) = 1. (14.56d)



Exercise 14.3. Show that |8y |2 and [|8X||3 are invariant under Diff(Z) but not
under Weyl(X,). This is the possible origin of conformal anomalies, see (14.84).

Before we proceed further, we need to clarify the overlap between Diff(X,)
and Weyl(X;). Suppose dv € ker Py, that is,

P18v = Vo 8vg + Vgduy — vap(Vy807) = 0. (14.57)

We find, for such év, that dpyes = (V,86v")yeg. A vector Sv € ker P
is identified with the conformal Killing vector (CKV), see section 7.7. It is
important to note that dp and w yield the same metric deformations if 3¢ is taken
to be V,,8v”. Thus, the set of the CKVs is identified with the overlap between
Diffy (%) and Weyl(X,). Let there be k independent CKVs on ¥, and denote
these by &% (1 < s < k). It is known from the theory of Riemann surfaces that

6 g=0
k=12 g=1 (14.58)
0 g>2.

We separate v into a part generated by the CKV, and its orthogonal complement,
which we write as
Sv* = 860% + 8a’ DY (14.59)

The tangent vector § X is also decomposed as
8X = 8X + 80% 9 X + 8a* D9 X M. (14.60)
The functional measures now become
DSyDsX — J d"8 rDs¢Ds d* 5 aDSX (14.61)

where we noted that the 7- and a-parameters are finite dimensional.
Let Diffé(Eg) be the subspace of Diffy(X,), which is orthogonal to the
CKYV. We have
V (Diffy) = V(Diff&) - V(CKV) (14.62)

V (Diffy  Weyl) = V (Diff}) V (Weyl)
= V (Diffy) V (Weyl)/ V (CKV). (14.63)

Take a slice p(r) of Mg. The slice is parametrized by n Teichmiiller
parameters. Any metric 7 related to y by G = Diff(X,) * Weyl(XZ,) is written as

7 =f*e’P)  f eDiff(Z,),e? € Weyl(Z,). (14.64)

We express a small deformation §y at y as a pullback of a deformation §y at
y =e%®p: 8y = f*(8y). Note that §y is a small diffeomorphism at the origin



of Diffp(X,) and, hence, can be described by a vector field §v. As was shown
in exercise 14.3, Diff(X;) is the isometry of the relevant vector spaces. It then
follows that

8715 = 1 /* GG, = 18715, ¥ =eP. (14.65)
At the point y, we decompose 8y as
8Vap = 0¢Yup + (P160)ap + 81’ Tigp (14.66)

where 3¢ has been redefined so that it includes the trace parts of the Teichmiiller
deformation and V,8vg + Vgduy, see (14.51).

Exercise 14.4. Show that T;,g at y is related to f}aﬂ aty as
Tiap = € Tiap. (14.67)

Now we are ready to give the explicit form of the measure. We first find the
Jacobian associated with the change Dév — DS8d*8a. We have

1=/D8Uexp(—%||év||)2,)
= J/D(Sf) d“s aexp(—5183] — 3116a’ ®yl13)
= J[det(®;, ®,)]" /2 (14.68a)
where
(D5, ) = / d* E\/Y Yup DL DL (14.68b)

[Remark: Although the matrix element (14.68b) is defined for Yy = e?p, we can
show that it is 1ndependent of e?. To see this, let us take a CKV <I>°‘ of the metric

v, V CDS,S + V/g CDW = ya/gVCI)S , where V is the covariant derivative with respect

to 7 and <I>w = )/a/g CDf. A simple calculation shows that ®,, = yup CIDSﬂ =e?d (199
satisfies

Va q)sﬂ + Vﬂ Dsq = e¢ (@a&)sﬂ + @ﬂ ci)sa + );aﬁ CD;/ ay¢)
= e Pup(V, BF + ©L9,9) = yupV, DY

V being the covariant derivative with respect to y. Thus, ®¢ = &% is a CKV
of the metric y = e?} and the CKV are taken to be ¢ independent.] Equation
(14.68a) shows that

Dév = [det(D,, B)]'/?>Dsv d s a. (14.69)
Now the total measure is written as

J[det(®,, ®,)1/?d"t Ds¢pDS d*s aDSX (14.70)



where J takes care of the rest of the variable changes.
The Jacobian J is now obtained from (14.60), (14.66), (14.70) and the
definition of the measures (14.56). We have

1= /DéyDéXeXp —3118¥ 115 — 3118X113)

= Jdet'?(®, @)/dnatmﬁmqs d*s aDs X

1 5 dvas |
X exp| — = [8¢vap + (P16V)op + 511 LY
2 ari
1 - . y
— 18X + 87% 0, X +5a5c1>gaaX||2}
= Jdet'? (@, @)/dﬂatmﬁ...exp —Limv?) (14.71)
where
ot
V= ‘;‘g M= ay/ot y P1| 0 0 _(A 0
s “\ 0 0 ax|®9Xx 1)\ C B)
a
§X
(14.72)

The matrix in the exponent of (14.71) is
. t cf 1 1 t
MM - A CT A 0 _ ATA —: c'C CTB
0 B C B B'C B'B
I x ATA 0
- < 0 B'B )( w1 ) (14.73)

where * and *x* are irrelevant. The last expression has been obtained from the

identity,
A B\ (1 B A—-BD7!'C 0
¢c D) \0 D D-lcC I )

The Gaussian integrals in (14.71) are readily evaluated to yield
1 = J det'/?(®, @) det™">(M" M)
= J det'/?(®, ®)[det(ATA) det(BTB)]71/2. (14.74)

To compute det!/ 2(ATA), we need to evaluate ||§y ||)2,. We have

sy |I> = /d% V(G oy B yrd)

X [8¢Yup + (P18D)ap + 8t Tiapl[8¢yys + (P18D)ys + 81/ Tjys]
= 4ul|8|I3, + | P16D||> + 81'6¢/ (T;, Tj) + 261 (P18, T).
(14.75)



In general, T; is not orthogonal to Pjdv. To separate 7; into parts orthogonal to
P18v and parallel to P;dv, we need to define the adjoint Pf of P;. P is an elliptic
operator which takes a vector field into a traceless symmetric tensor field. Thus,
P;r maps symmetric traceless tensors to vectors. For a symmetric traceless tensor
6h, we have

(P18v, 8h) = /d2g VY GPY3(P18v)opdhys
= /d2§ VY (VS0P + VP§u*)Shap
= /dzg VY80 (=2VP)Shep = (Sv, P, Sh)

where the inner product in the last expression is defined by (14.54c). Thus, it
follows that
(PIT(Sh)a = —Zvﬁéhaﬂ. (14.76)

Suppose 8h is orthogonal to Pidv. From the previous discussion, we have
(P18v, 8h) = (v, PIT(Sh) = 0. Since §v is arbitrary, 64 must be an element
of ker P;r , see figure 14.4. Now T; may be separated as

T; = PoT; + PLT; (14.77a)

where the projection operators Py and P, are defined by

1
Po=1-— P]—P;r PL =P T PIT. (14.77b)

PPy P/ Py

It is easy to verify that Py + Py = 1, PoPL = 0, Pf’Po = 0, PIT’Pl =
PIT, PoTl; =T;and P, T; =0 for T; e kerPfr etc. Thus (14.77a) is an orthogonal
decomposition of 7;. We write P, T; = Pju;, where

Let {¢} (1 < r < n) be a real basis of ker PIT, which is not necessarily
orthonormal. Then 7; can be expanded as (figure 14.5)

Ti=) Qi+ Piui. (14.78)

Taking an inner product between 7; and v,-, we find that

Qi = ) I, ) s W, ). (14.79)



P,
—_—
(ker Py)+ (ker PT)*
P}
-
CKV = ker P, {y;} = ker P}
0 B - 0

Figure 14.4. The map P and its adjoint P;r .

Gauge slice

{7}

{w}

Figure 14.5. {T;} spans the deformation tangent to the gauge slice while {1} spans ker Pi .

Finally, §y is decomposed into mutually orthogonal pieces as

Sy =8¢y + P1(8D + 8t'u;) + 8", Oy

(14.80a)

Correspondingly, the space of the metric deformation {§y} separates into the

direct sum

{8y} = {conf} @ {im P} @ {ker Plf}‘

(14.80b)



Substituting (14.80a) into (14.75), we obtain

18Y117 = 4ullsalP® + || P169]|?
+ 888t (T )y L ), s (W Ty (1481)

where 80 = 87 + 8¢ u; and the inverse in the last term refers to the inverse of the
matrix (ars) = (Y, ¥)). If we put V| = (81, 8¢, 80), we find that

det™12(ATA) = /d”SIDéquéﬁexp(—%thATAV])
_ / Db exp(—2ul|861%) / Do exp(—L1P171P)

x /d”8teXp{—%5fi(Ti, YL, )™ s (s, T8 )

(14.82)

-1/2
det(T, ¥)?
det(y, ¥) ) '

o (det PITPl)’l/2 (

Collecting the results (14.71) and (14.82), we have

—1/2
det(T, ¥)?
1= Jdet'/?(0, @) det™ /2 BT Bdet /2 P Py de(T, ) _
det(y, ¥)
The g-loop partition function is then given by
d"t DvD¢ det X
Zy = / U DuDgdet X 4 12 gt det™"2(®, )
V (Diff * Weyl)

S\ 172
M) e, (14.83)

x (det PPy
det(y, ¥)

The integral over a (the CKV) has been omitted since it is already included in the

¢-integration. Naively, the integral over v yields V(Diffé) and that over ¢ yields

V (Weyl). However, as exercise 14.3 shows, the measures DX and Dy depend

on the conformal factor. Polyakov (1981) has shown that, under the conformal

transformation y — e%?y, the measures transform as

DX — exp(24 5
4

/ d* Y (y*P oy pdpe + qu))DX (14.84a)
—26
Dy — exp <m / d’e ﬁ(y“ﬁ8a¢8ﬁ¢ + R(])))Dy. (14.84b)

Thus, the measure DX Dy is conformally invariant if and only if D = 26. This
number 26 is called the critical dimension. Henceforth, we always assume that



D = 26. Now (14.83) simplifies as

1
7z, =
&7 IMCG]|

/ d"t DX det'/? B'B det™ /% (®, @)

S\ 1/2
det(T,w)) o5 (14.85)

X (det PlT Py 7det(1//, n

We perform the X-integration to eliminate det'/> B B. We have
1= /DSXexp —L8x 1%
= J/D(si( d*8 aexp(— 116X + 8a* D8, X||%)
= J/DSXexp(—%llB)N(Hz)/dkéaexp(—%HSaSCI)?Ba)N(Hz)
= Jdet"'/>(BB)

and hence det'/?(BTB) is identified with the Jacobian of the transformation
X — (X, a). Thus, it follows that

/D)?det‘ﬂBTBe*S = / %e*s (14.86)

where V(CKV) = [ d*a is the volume of the CKV.
The integration over X is readily carried out. Let us write

/ DXe S = / DX exp[—3(X, AX)] (14.87a)
£ &

where

1
A=——303,J7v*Pd (14.87b)
N /YY" 0p

is the Laplacian acting on O-forms, see (7.188). We write down the explicit form
of the path integral (14.87a). Let ¥, be the eigenfunction of A,

Ay = Ay An € [0, 00) (14.88)

where v, are normalized as

(I/fnv I/fm) = /dzg \/?wnl/fm = 5nm«

The eigenvalue A is non-negative since A is positive definite. Let us expand X*

in vy, as
o

Xt =Y ally, =X +X" dieR (14.89)
n=0



where Xg = q Mo is the zero eigenfunction of A and X ' are the remaining
degrees of freedom. Correspondingly, the path integral (14.87a) is written as

/DXexp[——(X AX)] = /nda“exp(——Zk (@) )
/nd%/]‘[ndauexp(__zxn(au))

n#0 ®
— < / ]_[dag)(det’ A1 (14.90)
"

where the prime indicates that the zero mode is omitted. To integrate over the
zero mode, we note that the normalized eigenvector v is given by®

| 12
Yo = <w> . (14.91)

From X{| = a1, we have

—13
/ [Taeg = / [Taxgwo 0=V (m) (14.92)
Iz Iz

where V = [[]dX g is the spacetime volume. Collecting the results (14.90) and

(14.92), we find that
det’ A —13

where we have dropped V and other irrelevant constants.
Finally, we have obtained the expression for the g-loop partition function

, / & det(T, ¥)
$ 7 Jmoa V(CKV) det'2(y, y) det'/2(, @)

S pip g2 det A TP
14
where we have noted that
1
d"t :/ d"t. (14.95)
IMCG] J7eich Mod

If g > 2, the Riemann surfaces have no CKV and (14.95) reduces to
det(T, det A\
Zy = / &'t %(det/ P P12 <§7) . (14.96)
Mod  det'/2(y, ¥) &gy

6 Since Yo satisfies Ayg = 0, it is a harmonic function. Any harmonic function on a Riemann
surface must be a constant by the maximum principle.



14.2.3 Complex tensor calculus and string measure

Since any Riemann surface admits complex structures, we may take advantage of
this fact to compute string amplitudes. Many beautiful aspects of string theory
are revealed only when these complex structures are explicitly taken into account.
Here we rewrite the partition function in the language of complex differential
geometry.

We first fix the gauge in M, by choosing the isothermal coordinate system

y = 2e*[dz ® dZ + dZ ® dz]

where y;; = yz;; = %exp 20.7  Then the deformation of y under a
diffeomorphism generated by §v is (cf (14.45))

O0DVzz = sz(,il)&fz
n (14.97)
dpyez = Ve8vz + Vzdu: = yz: (V7 '8v° + V() 8v.).
Similarly, dwy generated by an infinitesimal conformal change is (cf (14.46))

Swyzz = 0dy:z Swyz. = 0. (14.98)

To see the action of the operator P; on vectors, we take §v° € TJ! and
Sv, € T~1. From (14.50), we find that

(P18v)* =2V §v° € 72 (14.99a)

(P16v); = 2V Dsu, € T72 (14.99b)

This shows that P; is a map:

P = V(zl) 0 . ‘J‘l U’*] (I2 (I72 14.100
1= (=1 : S? g 2] . (14. )
0 \2

Similarly, PlT maps traceless symmetric tensors to vectors. For §h% € T2 and
Sh., € T2, we have

(Pshy* = VPsh+ e T! (14.101a)
(P{8h), = V{_yh.. e T\, (14.101b)
Thus, P;r is a map:
T v 0 2 2 1 1
Pl={ " TPeT 25T Tl (14.102)
(-2)

7 In fact, the gauge is not uniquely fixed with this choice. We will invoke the uniformization theorem
later to fix the gauge completely.



The product P;r P is

2 gz

\ZEaY 0

PP :( o o . ):T‘@T‘—ﬁl@trl. (14.103)
(=2

Accordingly, the determinant in (14.96) becomes
(det’ P P1)'/? = (det VP'VF, et Vi, VI~D)1/2
= (det Af}AL 1))1 (14.104)

where A?;) are the Laplacians. We show that the spectrum of Aa) is the same as

that of A(_—1)~ Take an eigenfunction §v? of A(t),

A0t = —2e 493,27 3:80° = ASZ° (14.105)

where (14.21a) has been used. The eigenvalue A is a non-negative real number
(note A?;) are positive-definite Hermitian operators). Then we find

— e 2 3:e20,80° = —e 27 0,e20 9:80°

A(__l)(yzzm)
= — .22 %99,e209:507 = Ay.z007 (14.106)

which shows that y,z6v% is an eigenfunction of Ay with the same eigenvalue
M. It is easy to see that the converse is also true, see exercise 14.5. Thus, A(+1)

and A share the same eigenvalues and det’ A(+1) = det’ A}y Now (14.104)
becomes
(det’ P{P))'/? = det’ A}, =det' A}, (14.107)

Exercise 14.5. Let v, be an eigenvector of Ay, with an eigenvalue A. Show

that ¥%8v; is an eigenvector of At 1 with the same eigenvalue.

The physical change of the metric is the Teichmiiller deformation 87/ ;,
where t/ (u;) is the complex counterpart of ¢/ (7;). From our experience, we
know that the relevant part of the Teichmiiller deformation is symmetric and
traceless in the real basis. In the complex basis, this amounts to iz = wiz; = 0.
Accordingly, the general variation of the metric is given by

8Vee = VIV8T, + 87 iz, (14.1082)
8y:z = 8y (14.108b)
where we have redefined §¢ so that it includes the variation of §y,; due to §v

(note that dpy;; o ¥;:). In (14.108a), §v does not contain the CKV, that is,
87 € (ker Vi)t



To carry out the orthogonal decomposition of {§}, we need to define the
inner products in various spaces. The most natural choices are

18y 11> = / T o (14.109a)

I18y2z11% = / &’z Sy8yz8y (14.109b)
and

I18v, 1% = /d2z SV V2007 80%. (14.109¢)

Note that §y,,dz ® dz and 8y,;dz ® dz are different tensors; we have to specify
the inner product separately.

Following the argument in the previous subsection, we introduce the
orthogonal decomposition,

8y = VST, 4+ 8t iz = VIS0, + 87 i, (14.110)

where 85 = 87 + (projection of 87/ j1;z; into {im Vi~ "}). The orthogonality of
v{Vs%, and ;.. implies

0= (¥ Vv, 910 = [ 2 JTBU(=TE i)

where we have noted that Vz(fm = —V(Z;Z). Thus, we find that (figure 14.6)

$izz € ker Vi_, (14.111)

)

The explicit form of V(Z_z) shows that 9;¢;,, = 0, that is ker V(z_z) is the set
of holomorphic tensors of helicity —2. The tensor ¢; = ¢;;; dz ® dz is called the
quadratic differential while ;; = p;;;dz ® dz is the Beltrami differential, see
figure 14.7. In practical computations, it is often convenient to specify the gauge
slice by the Beltrami differential, see later. Now we have established that

{ker Pf} = {Quadratic differential} = {ker V(Z’iz)}. (14.112)
The Riemann—Roch theorem (14.27) takes the form
dimc ker V™D — dimc ker Vi, =3-3g (14.113)
Now we have separated {§y } into mutually orthogonal pieces
{8y} = {conf} ® {im V™ "} @ {ker Vi +ce (14.114)
which should be compared with (14.80b). The measure becomes

DSyDSX — J d"8tDsTDS¢DSX d*sa (14.115)



-1 T2

v
—
(ker V§ )L (ker Vi)t
¢ vf—2)
CKV = ker V& {¢;) = ker Vi_,,

Figure 14.6. The map Vz(f) and its adjoint Vf’ﬂ).

TG Gauge slice
{1}
» (¢}
[ ]

Figure 14.7. The Beltrami differential {{¢;} spans the deformation tangent to the gauge
slice while {¢;} spans ker V(Z_Z).

where n and k are the complex dimensions of the Teichmiiller space and the CKV,
respectively. The Jacobian is obtained by repeating the argument in the previous
subsection and we find that

1
Zo= | DyDX— o
e / YRV it Weyl) ©
+
— / dnTDX det/ A(l) |det(/‘La ¢)|2 e_S
Mod V(CKV) det(¢, ¢) det(P, D)

-5

(14.116)

Since we are integrating over complex variables, the power of a half in (14.96)



does not appear in (14.116). The X-integration yields

z _/ d't  |det(n, ¢)
7 Mod V(CKV) det(¢, ¢) det(d, d)

;e det A \ 7P
xdet AL (or ) (14.117)
[dz /7

14.2.4 Moduli spaces of Riemann surfaces

The spaces Mod(X,) and Teich(X,) have been defined as

Mod(Zg) = M /Diff(Sy)  Teich(Sg) = My /Diffo(Ty).

They are related through MCG = Diff(X;)/Diffo(Xg) as Mod(Z,) =
Teich(X,)/MCG. We look at these objects more closely here. We first note:
g dimg CKV CKV dimg Teich(3,) MCG
0 3 SL(2, C) 0 SL(2, R)
1 1 U(l) x U() 1 SL(2, Z) (14.118)
>2 0 empty 3g—3 ?

[Remark: MCG for g>2 can be expressed by 3g — 1 Dehn twists which are,
however, not minimal.] From (14.118), we immediately conclude that Zy = 0
since the Teichmiiller space is a single point and the volume of SL(2, C) is infinite.
Of course, this does not imply that the three amplitudes with vertex operators
vanish. In general, Mod(Z,) is topologically non-trivial although Teich(X,) is.
Teich(X,) is a universal covering space of Mod(X,) and the topological non-
triviality comes from MCG.

In actual computations, the uniformization theorem is very useful. In the
previous subsection, we first chose the Beltrami differential u;, then changed the
basis to ¢; € ker PlT . Our initial choice p; is motivated by the uniformization
theorem.

Theorem 14.2. (Uniformization theorem) Let X, be a torus with genus g. Then
itis conformally related to the constant-curvature Riemann surface, which is given
by the following:

g Riemann surface Metric signR
0 C U {oo} ds? =dz ®dz/(1+23)? +
) _ (14.119)
1 C/L ds* =dz ®dz 0
>2 H/G ds? =dz®dz/(Imz)>  —

where L is a lattice in C (see example 8.2), H the upper half-plane and G C
SL(2, R) is called the Fuchsian group. The metric for g > 2 is the Poincaré
metric, see example 7.6.



The proof of this theorem is found in Farkas and Kra (1980), for example.
Thanks to this theorem, we may always take constant-curvature metrics to form
the gauge slice in M,. This corresponds to a special choice of the Beltrami
differential w;. This slice defines the Weil-Petersson measure:

2
/d"r | det(r, 9)I° = /d(Weil—Petersson) (14.120)
det(¢, @)

see D’Hoker and Phong (1986).

Exercise 14.6. Compute the scalar curvature of the metrics given in (14.119).
Verify that they are independent of z and z.

14.3 One-loop amplitudes

As an illustration of the formalism developed in the previous section, we compute

the one-loop vacuum-to-vacuum amplitude of the closed orientable bosonic string
(=1

theory. Since dimcTeich(X1) = 1 and dimc ker V; = 1, we have
d ) det A \ "
7 =/ ’ (. 9l det’ A, <e27> . (14.121)
Mod V(CKV) (¢, ¢) - (P, D) [d* ey

To evaluate (14.121) we need to take several steps.

14.3.1 Moduli spaces, CKYV, Beltrami and quadratic differentials

In example 8.2, we have shown that the complex structure, namely the conformal
structure, of the torus is specified by a complex parameter t (Imt > 0). Figure
8.3 shows the moduli space

Mod(,) = M, /G = Teich(S,)/SL(2, Z) = H/SL(2, Z)

where H is the upper half-plane.

Take the torus T specified by the Teichmiiller parameter t = 71 + it (72 >
0). As a representative, we take a torus in figure 14.8. The metric in C naturally
induces a flat metric (as guaranteed by the uniformization theorem)

y = 3ldz ® dz + dZ ® dz]. (14.122)

The CKV are globally defined holomorphic vectors. We take ® = «d/dz as
the normalized basis of the CKV. The condition (®, ®) = 1 yields f d2z|a? =

172|o¢|2 = 1, thatis ¢ = r{ 12 (we have dropped the phase). The vector ®
generates translations in the complex plane,

i =z+1 0 +id). (14.123)



T T+ 1

Figure 14.8. The parallelogram whose complex structure is parametrized by 7.

We must note, however, that the translation is defined modulo the lattice;
r{l/z(v1 + iv?) and r{l/z(v1 +iv?) + (m + n) yield the identical translation.
This forces 12_1/2(111 + iv?) to lie within the parallelogram of figure 14.8. Since

T2:/d2Z:1—2*1/d2v

V(CKV) = /dzv =12 (14.124)

V (CKV) is found to be

Our next task is to evaluate the Weil-Petersson measure. On the torus there
is one quadratic differential ¢. Since ¢ € T2 is a globally defined holomorphic
differential, it must be of the form,

¢ =adz®dz aeC. (14.125)

To find the Beltrami differential, we evaluate the change of the metric under
a small variation of t. For this purpose, it is convenient to introduce the £*-
coordinate system in figure 14.8. The point A corresponds to (1,0) and B to
(0, 1). Accordingly, we have z = &! + t&2. Under a small change 87 of the
Teichmiiller parameter, we have, up to a conformal factor,

|dz|> — |d&! + (¢ + 87)d&E2|* = |dz + sTdE?)?
2

dz —dz

it

idz
dz+6t—|.
21

dz +dr

Comparing this with (14.110), we find that
Uz =1/2715. (14.126)



Here (§7)u is the complex conjugate of (§7)u in (14.110). Of course, this is a
reparametrization of the Teichmiiller space and does not affect the results. If the
reader feels awkward with this, s/he may choose 7T as the Teichmiiller parameter.
From (14.125) and (14.126), we have, up to irrelevant constants,

i

(M’ ¢) = /dzZﬁ(ﬁzg == 2_01—2 X a
2

(¢, ) = / &’z §%¢,, = a’no.

Finally, we have obtained
(7] G

G — O (14.127)

14.3.2 The evaluation of determinants

We first consider det’ P;r Py = det’ Aa). Since we take a flat metric, the Laplacian
takes quite a simple form,

Azq) =-23,0: = A (14.128)
where A is the Laplacian defined by (14.87b). Since

[eevr=[e:=n

the amplitude (14.121) reduces to

dr det’ A [det A\ "
21=/ == <e ) (14.129)
MOd 7:2 T2 TZ
0 ) 0

V(CKV) W-P [d’z

where we have used (14.124) and (14.127). We have factorized the integrand so
that the modular invariance is manifest, see exercise 14.7.

Let us compute the spectrum of A. It is convenient to express the Laplacian
in £*-coordinates. From

el =ifz— 1210 Er=(z—2))2in (14.130)
we readily find that
A= L[|r|2(a 2271010 + (82)? 14.131
=—7— 1)7 = 2110102 + (32)7] (14.131)
275
where 3; = 9/3&' etc. The eigenfunction satisfying the periodic boundary

condition on the torus is

Y (€) = exp[2mi(ng' + mg»]  (m.n) € Z°. (14.132)



Substituting this into (14.131), we find the eigenvalue

272
Amn = —5(m — tn)(m — Tn). (14.133)
51
The determinant is expressed as an infinite product:
1272
det A =[] Im+nf (14.134)
mmn "2

the product being taken for all integers (m, n) # (0, 0).
Clearly det’ A is ill defined and needs to be regularized. Let us introduce the
Eisenstein series (Siegel 1980, Lang 1987) defined by

3
m,n

the summation being taken for all integers (m, n) # (0, 0). This series converges
for Res > 1 and can be analytically continued to the complex s-plane. The series
E(t, s) has a simple pole at s = 1 where we have a Laurent expansion,

E(t,s) = —1+27'r[y In2 —In(ym2n(®H]+ O —1).  (14.136)

This expression is known as the Kronecker first limit formula and is essential
for our purposes. In (14.136), y = 0.57721...1s Euler’s constant and 1(7) is the
Dedekind n-function

n(t) = ei7'rr/12 l_[(l _ eZiTrnr)‘ (14.137)

n>1

Neglecting constant factors, we have

det’ A Im + tn|?
ex Inty + In——
o p( 2 Z 2

%)
s=| ())

9
exp (— Inty — g[fﬁE(T’ )]

= exp{—In[1 + E(t,0)] — E'(z, 0)}. (14.138)
To evaluate the exponent, we note the functional equation,
T T()E(t,s) =n V™9 TU —9)E(x, 1 —s). (14.139)
Taking the limit s — 0 in (14.139), we have
ra
SE(t,1—s) = n“%wﬂr, 5)
ra-—s)
(I—ys+-) ,
=a(1-2slnn+---)——[E(t,0) + E'(,0)s + - - -
( Tyt ) E@O+E @05 +-]

=nE(1,0) +[2(nw + p)E(z,0) + E'(z,0)]ms + - - - .



From (14.136), we also have
SE(t,1 —s) = —1 4+ 27s[y —In2 — In(/T2[n(@)|H)] + - - - .
Equating the coefficients of s and s', we find that
E(7,0) = —1 (14.140a)
E'(t,0) = —2[In27 + In(/T2|n(0)|?)]. (14.140b)
Substituting (14.140) into (14.138), we obtain

det’ A
(%)

Finally, it follows from (14.129) and (14.141) that

=exp[—E'(1,0)] = 'L’2|77('C)|4. (14.141)

dr _ _
Z =/ — 1, P (14.142)
Mod tz

A neat form of Z; is obtained if we define the discriminant
A(T) = ) n(0)*. (14.143)
Up to an irrelevant constant, the one-loop amplitude is

d
Z :/ S A (14.144)
Mod tz

A(7) is known as the cusp form of weight 12, implying

af+b _ 12
A (C'L’ +d) =(ct+d) A7) (14.145)

and c(0) = 0, where the c(n) are the Fourier coefficients,

Ar) = Zc(n)e2””if. (14.146)

n>0

Higher genus amplitudes are given by the cusp forms of other weights, see Belavin
and Knizhnik (1986), Moore (1986), Gilbert (1986) and Morozov (1987).

Exercise 14.7. Show that

7i/12

n@+1)=e""p)  p=1/7) = (—in) n(z) (14.147)

where the branch is chosen so that \/z > 0 if z > 0. Use this result to show
that dz/ 7,'22 and 7, 12|r)(r)|’48 are independently invariant under t — 7 + 1 and
T—> —1/1.
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