
Galois Theory in 1500 Words 
 
Written by Tiny Epiphany 
 
For a long time, people wondered whether it is possible to write down something like the 
"quadratic formula" for cubic, quartic and quintic polynomials with integer coefficients. We now 
know that for cubic and quartic polynomials, this is possible. But for degree 5 polynomials and 
beyond, it isn't. A proof of this was scribbled down hastily by Galois the night before his duel. 
Galois linked together field theory and group theory in a beautiful way to answer this very 
question. 
 
GaloiV¶V ASSUoach: The Big Idea 
 
WKaW dReV ZULWLQJ dRZQ a ³IRUPXOa´ IRU URRWV RI a SRO\QRPLaO UeaOO\ PeaQ? FRU RQe, Ze¶d be 
writing down the roots in terms of rational numbers and a combination of +, -, x, ÷, and radicals 
(taking n-th roots). This is a very limited set of operations, and certainly not all real numbers can 
be written this way -- ʌ, IRU e[aPSOe, caQ¶W be ZULWWeQ WKLV Za\. We Va\ WKaW ʌ LV QRW solvable in 
radicals. 
 
Are the roots of polynomials with integer coeffLcLeQWV VROYabOe LQ UadLcaOV? TKRVe URRWV aUeQ¶W 
just any UeaO QXPbeU, aQd ceUWaLQO\ ʌ LV QRW a URRW RI aQ\ SRO\QRPLaO ZLWK LQWeJeU cReIILcLeQWV. 
Yet Galois showed that there are some degree-5 polynomials with roots that are not solvable in 
radicals. To see how he did this, we first need some terminology about fields, field extensions, 
and groups. 
 
Fields 
 
The set of rational numbers Q is an example of a field: a set of things you can add, subtract, 
PXOWLSO\ aQd dLYLde. We caQ ³e[WeQd´ Q LQWR bLJJeU ILeOdV by adjoining things to it. For example, 
L=Q(¥2) -- pronounced "Q adjoined root two" -- is defined to be the smallest field that contains 
bRWK Q aQd ¥2, aQd LV cORVed XQdeU +, -, [, aQd ·. HeUe eOePeQWV RI Q(¥2) aUe e[acWO\ QXPbeUV 
that can be written in the IRUP (a+b¥2)/(c+d¥2) ZKeUe a, b, c, d aUe LQWeJeUV. We caOO VXcK a ILeOd 
L a (field) extension over Q (written L/Q). 
 
WKeQ Ze'Ue adMRLQLQJ ¥2 WR Q WR cRQVWUXcW Q(¥2), ZKaW Ze'Ue UeaOO\ dRLQJ LV adMRLQLQJ WR Q a 
root of the polynomial f(x)=x² -2. We could do this with other higher-degree polynomials. Let 
p(x) be a polynomial with integer coefficients (and no repeating roots). We define the splitting 
field K of p(x) to be the smallest field containing both Q and all the roots of p(x). For example, 
the splitting field of p(x)=x²+1 has roots i and -i so a splitting field K of p(x) is K=Q(i,-i)=Q(i). 
(The last equality is true because 0 and i are in Q(i), so -i=0-i is also in Q(i)). 
Conversely, we call an extension K/Q a Galois extension if it is the splitting field of some 
polynomial p(x). From before, Q(i)/Q is a Galois extension. 
 
Q-Fixing Automorphisms 
 



An automorphism F of a field K is an isomorphism from K to itself, where the algebraic structure 
is preserved -- specifically, F(a+b)=F(a)+F(b), F(ab)=F(a)F(b). In the case that K is an extension 
RI Q, Ze¶Ue PRUe LQWeUeVWed LQ aXWRPRUSKLVPV RI K WKaW KaV F([)=[ IRU aOO [ LQ Q (RU WKaW F IL[eV 
elements of Q). An automorphism F of K is a Q-fixing automorphism if it has this property. 
 
There are two Q-IL[LQJ aXWRPRUSKLVPV RI L=Q(¥2): WKe LdeQWLW\ aXWRPRUSKLVP (caOO LW e) WKaW 
WaNeV eacK eOePeQW RI Q(¥2) WR LWVeOI, aQd aQ aXWRPRUSKLVP (caOO LW W) WKaW WaNeV aQ\WKLQJ IURP Q 
WR LWVeOI, aQd ¥2 WR -¥2. IW LV SRVVLbOe WR VKRZ WKaW WKeUe LV e[acWOy one such automorphism t. 
 
Groups 
 
A group LV a VeW ZLWK a "cRPSRVLWLRQ" RSeUaWLRQ � ZLWK aQ LdeQWLW\ eOePeQW. FURP abRYe, WKe VeW 
of Q-fixing automorphisms of K, denoted G(K/Q) LV a JURXS ZLWK � beLQJ IXQcWLRQ cRPSRVLWLRQ, 
and e being the identity elemenW. ObVeUYe WKaW Ze dR QRW UeTXLUe � WR be cRPPXWaWLYe (VR a�b Pa\ 
QRW be WKe VaPe aV b�a LQ WKLV caVe). 
 
Two groups are isomorphic if they have the same algebraic structure -- L.e. WKe\¶Ue eVVeQWLaOO\ WKe 
same group except the elements have different names. It is useful to see whether G(K/Q) is 
isomorphic to a group that we know and understand. Two important classes of groups that are 
well understood are cyclic groups and permutation groups. 
 
Examples of Groups 
 
The cyclic group C(n) of order n is the set {0,1,2,3,..,n-1`, ZLWK � beLQJ addLWLRQ PRd Q. FURP WKe 
e[aPSOe RI L=Q(¥2), L KaV G(L/Q)=^e,W` ZLWK � beLQJ IXQcWLRQ cRPSRVLWLRQ. TKLV LV acWXaOO\ 
isomorphic to C(2)={0, 1}. 
 
Permutation groups consist of functions that permute some "letters". We'll use S(n) to denote the 
group of permutations of n letters. For example, S(3) is all the permutations of letters {a, b, c}. A 
function F that takes aĺb, bĺa, cĺc is one such permutation (and hence an element of S(3)). 

The Fundamental Theorem of Galois Theory 
 
Galois noticed that for a Galois extension K/Q, there is a link between "subfields" of K 
containing Q, and "subgroups" of G=G(K/Q). The quoted words mean exactly what you might 
think -- a subfield of K is a field L that is contained in K (and is closed under +, -, x, ÷). For 
e[aPSOe, Q LV a VXbILeOd RI R, aQd Q LV a VXbILeOd RI Q(¥2). A subgroup of G is a group H that is 
cRQWaLQed LQ G (WKaW LV cORVed XQdeU � aQd cRQWaLQV WKe LdeQWLW\ eOePeQW).  For example, the subset 
{0,2,4} is a subgroup of C(6) = {0,1,2,3,4,5}. 
 
More concretely, there is a 1-1 correspondence between subfields of L and subgroups of H: 

x For a subfield L of K containing Q, there is a subgroup H of G corresponding 
exactly to the automorphisms that fix all of L -- i.e. f(x)=x for all x in L, not just Q. 
x The reverse is true as well: if H is a subgroup of G, then there is some subfield L 
of K containing Q that is fixed by all of H. 



In particular, whenever L/Q is itself a Galois extension, H is a normal subgroup of G (i.e., gH = 
Hg for all g in G), so that the quotient G/H = {gH: g in G} is another group. This group G/H 
turns out to be isomorphic to G(L/Q). 
 
FRU a cRQcUeWe e[aPSOe, OeW¶V WaNe K=Q(L, ∛2). IW¶V SRVVLbOe WR VKRZ WKaW K/Q LV a GaORLV 
extension, and that G=G(K/Q) is isomorphic to S(3). In particular, the subfields of K are Q(i) and 
Q(∛2), and they correspond to subgroups of S(3) isomorphic to C(3) and S(2). We saw before 
that Q(i) is a Galois extension, and C(3) happens to be normal in S(3). 
 
Linking Back to the Big Idea 
 
Suppose p(x) is a degree 5 polynomial, and that it has a root x that is solvable in radicals. Then 
really, x is in some field K containing Q, where K can be "built up" from Q by successively 
adMRLQLQJ (Q¥Į), WKe Q-WK URRW RI Į, IRU VRPe Q, and some Į in the current field. For example, take 
[=¥(2+ ¥5). We VeW L=Q(¥5) aQd K=L(¥(2+¥5)) WR "bXLOd XS" K LQ WKLV PaQQeU. 
 
Solvable Fields 
 
In general, we call an extension K/Q solvable if K=K0⊇K1⊇K2⊇...⊇Q, where each K(i-
1)=KL(Q¥Į) IRU VRPe Q, and some Į in Ki. This is exactly the construction we had a paragraph 
ago. As another example, K=Q(i, ∛2) is a solvable extension since Q(i, ∛2)=Q(i)(∛2)⊇Q(i)⊇Q is 
LQ WKe deVLUed IRUP (UecaOO L=¥(-1)). 
 
For a polynomial p(x) in Q, the splitting field K of p(x) is the smallest field containing all the 
roots of p(x), so the roots of p(x) are solvable in radicals if and only if K is solvable. 
 
Solvable Groups 
 
We can actually assume (ignoring some subtleties) that each K(i-1)/Ki from above is a Galois 
extension. In this case each G(K(i-1)/Ki) is actually isomorphic to C(n) for some n. 
 
Thus in order for a field extension K/Q to be solvable, G=G(K/Q) must be in a particular form: 
there has to be a chain of subgroups,  G=G0⊇G1⊇G2⊇...⊇{e}, where each Gi is a normal 
subgroup of G(i-1) and Gi/G(i-1)=C(n) for some n, and {e} is the trivial group with just the 
identity element. In the case of K=Q(i, ∛2), the chain of subgroups looks like 
G(K/Q)=S(3)⊇C(3)⊇{e}. 
 
A Quintic Formula Cannot Exist 
 
To recap, roots of p(x) being solvable in radicals requires the splitting field K of p(x) to be a 
solvable field, which in turn requires G(K/Q) to be a solvable group. 
 
But with a little group theory, we can show that S(5) is not solvable. Further, any quintic 
polynomial with two non-real roots has Galois group S(5). These last facts require some more 
concepts to develop, but in any case -- not all roots of quintic polynomials are solvable in 
radicals. 


