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Abstract—Multi-view representation learning is challenging
because different views contain both the common structure and
the complex view specific information. The traditional generative
models may not be effective in such situation, since view-specific
and common information cannot be well separated, which may
cause problems for downstream vision tasks. In this paper, we
introduce a multi-view generator model to solve the problem of
multi-view generation and recognition in a unified framework.
We propose a multi-view alternating back-propagation algorithm
to learn multi-view generator networks by allowing them to share
common latent factors. Our experiments show that the proposed
method is effective for both image generation and recognition.
Specifically, we first qualitatively demonstrate that our model
can rotate and complete faces accurately. Then we show that
our model can achieve state-of-art or competitive recognition
performances through quantitative comparisons.

Keywords: Multi-view learning, Generator networks, Gait
recognition

I. INTRODUCTION

Multi-view data have become increasingly accessible in
many areas of scientific analysis including video surveillance,
social computing, and environmental science, where data are
collected from diverse domains, or described by different
feature sets, or different “views.” For example, a document can
be described using both images and audios, or be described
in multiple languages. Human’s identity can be represented
by multiple biometric features, such as face, gait, fingerprint,
iris etc. Human faces or gait sequences captured by multiple
cameras from different viewpoints can be utilized together for
person identification in uncontrolled environment. Therefore,
multi-view representation learning has wide applicability.

Consensus and complementarity are two main principles
behind the multi-view representation learning [1], [2]. Con-
sensus principle aims to maximize the agreement on the repre-
sentations learned from multiple distinct views. For example,
among unconstrained face recognition and gait recognition,
pose variations or viewpoint variations are the bottleneck
for real-world applications. In such applications, differences
between intra-subjects under two views are usually much
larger than the differences between inter-subjects under the
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same view, which makes the multi-view learning problem
challenging. Consensus principle is commonly employed by
various multi-view representation learning methods to ob-
tain a common representation for multiple heterogeneous
spaces. This usually comes in two types: (1) finding common
subspace across different views, and (2) transforming non-
normal views to normal view. For the first type, Canonical
Correlation Analysis (CCA) based algorithms [3]–[6] and
coupled projections (CP) based algorithms [7]–[9] are two
representative methods which tend to find a common subspace
such that the heterogeneous attributes can be eliminated in
this consensus subspace. Specifically, CCA based algorithms
aim to maximize the correlations (or the principal angles) of
variables among different views, while CP based algorithms
aim to minimize the distances between the projecting point
pairs that have similar relations in the original heterogeneous
sets. For the second type of consensus principle enforcement,
there are several notable models which transform the data
under different views into a normal view. Specifically, view
transformation based model (VTM) [10]–[12] performs a
linear transformation from non-normal views to normal view.
Stacked progressive auto-encoders (SPAE) [13] models further
extend VTM by using deep neural network to model complex
non-linear transformations from the non-frontal face images to
frontal ones in a progressive way. Recently, generative model
based methods, such as generative adversarial networks (GAN)
[14], have been employed to rotate images from non-normal
views to the normal view. TP-GAN [15] is proposed to recover
a frontal face in a data-driven way, while GaitGAN [16] is
proposed to generate the side view gait images as invariant
gait features for multi-view recognition task.

Different views of data usually contain complementary
information, therefore the complementarity principle states
that multiple views can be employed to comprehensively and
accurately represent the data. The complementarity principle
has also been employed by many multi-view representation
learning methods in different ways. For the task of human
identification at a distance, face and gait features are combined
to obtain better performance than the methods that only use
the face or gait feature alone. For example, Zhou and Bhanu
[17] conducts feature concatenation after normalization and
dimension reduction to fuse face and gait information. Xing



and Wang [18] fuses the gait and face features by computing
the weighted mean of the two projecting features in the
coupled subspace. For the task of human pose inference, the
image features and different pose information are connected
with one another in a latent space, which integrates the
complementary information underlying different views [19].

In contrast to the existing multi-view representation learning
methods, which usually utilize only the consensus principle
or the complementarity principle alone, we introduce a novel
multi-view generator network through shared latent represen-
tation (named MvGSR), which can essentially take advantage
of both the consensus and complementarity principles.

The contributions of our paper are as follows:
• We propose the multi-view generator network for shared

representation. The common knowledge for different
views can be easily learned by shared latent factors, and
view-specific characteristics can be effectively encoded
through view-specific generator net.

• We propose to improve the multi-view recognition by
generating data under arbitrary views through view-
specific generator nets, thus complementary knowledge
can be utilized through view-specific generator nets.
Combined with the alternating back-propagation algorith-
m, we can efficiently and effectively transform the data
from different views into any common view, therefore
further boosting the performance on recognition.

• We conduct experiments both qualitatively and quantita-
tively. We show qualitatively that our method can be nat-
urally used in image generation, including face rotation
and face completion. We then quantitatively show that
our method is competitive with or outperforms the state-
of-art baselines in terms of multi-view gait recognition.

II. MODEL AND ALGORITHM

A. Single-view generator model

Let Y be the observed signal of dimension D, such as an
image, an audio and a video sequence. We assume that Y can
be generated by a generator network [14]. At the top of the
network is a layer of latent factors Z = (Zk, k = 1, ..., d). The
model can be treated as a non-linear generalization of factor
analysis:

Y = G(Z;W ) + ε,

Z ∼ N(0, Id), ε ∼ N(0, σ2ID), (1)

where Z and ε are independent. G(Z;W ) is a non-linear
transformation parametrized by a top-down convolutional neu-
ral network that consists of multiple layers of deconvolution,
ReLU non-linearity, and up-sampling. W consists of all the
weight and bias parameters of the network.

B. Multi-view generator model

The traditional generator model has been shown to be
effective in image generation [14], [20]–[22]. However, if Y
is heterogeneous or inhomogeneous, the original generator
model can be less effective. The model tends to encode all

the variations in the data in the latent factors in a highly
non-linear and non-interpretable way. Although such Z can
be used to generate sharp images, they hardly contain any
useful information for downstream vision tasks. Therefore, we
introduce a multi-view generator model to solve this problem.

Suppose Y contains signals that come from m different
source domains, i.e., Y = {Y(1),Y(2), ...,Y(m)}. The num-
ber of domains can be determined by the specific application
and we assume the signals are obtained across m domains. To
effectively model the shared representations, we consider the
following model (2):

Y(1) = G1(Z;W1) + ε1
Y(2) = G2(Z;W2) + ε2
...
Y(m) = Gm(Z;Wm) + εm
Z ∼ N(0, Id) εv ∼ N(0, σ2ID)

(2)

where the vector of the latent factors Z is shared across signals
from different domains, and Gv denotes the generator sub-
network corresponding the v-th view, v ∈ {1, . . . ,m}. In this
way, the domain or view specific variation is encoded through
its corresponding view-specific generator sub-network, while
the latent factors are forced to represent the common features
among all the observations.

C. Multi-view alternating back-propagation

To learn from this multi-view generator model, we introduce
a multi-view alternating back-propagation algorithm based
on [22]. The generator model can be learned from training
examples {Yi, i = 1, ..., n} by the maximum likelihood
estimation (MLE). Since the error term ε is normally dis-
tributed, the MLE is equivalent to L2 reconstruction error∑n

i=1 ‖Yi − G(Zi;W )‖2. The basic idea of learning is to
iteratively optimize {Zi} and W until convergence. More rig-
orously, since the latent factors are random variables, sampling
method is employed to account for the uncertainty in Zi.

Specifically, for the training examples from m domains,
i.e., Y = {Y(1),Y(2), ...,Y(m)}, the model can be written
as Z ∼ p(Z) and [Y(v)|Z,Wv] ∼ p(Y(v)|Z,Wv), where
v ∈ {1, ...m}. The complete data log-likelihood is thus

log p(Y,Z;W ) = log

[
p(Z)

m∏
v=1

p(Y(v)|Z,Wv)

]

= −
m∑

v=1

1

2σ2
‖Y(v) −Gv(Z;Wv)‖2 −

1

2
‖Z‖2 +C,(3)

where C denotes the constant w.r.t Z and W . The network
parameter W = {W1,W2, ...,Wm} is learned by maximizing
the observed-data log-likelihood L(W ) which integrates out
the unknown latent factors Z. More precisely, the gradient of
L(W ) can be obtained from:

∂

∂Wv
L(W ) =

∂

∂Wv
log p(Y;W )

= Ep(Z|Y,W )

[
∂

∂Wv
log p(Y(v) | Z,Wv)

]
. (4)



The expectation can be approximated by Monte Carlo sam-
ples drawn from the posterior distribution p(Z|Y,W ) ∝
p(Y,Z;W ) = p(Z)

∏m
v=1 p(Y

(v)|Z;Wv). Specifically, the
latent factors are inferred using Langevin sampling method
and they are updated as follows:

Zt+1 = Zt +
δ2

2

∂

∂Z
log p(Y,Zt;W ) + δEt (5)

where the Gaussian standard random noise term E is added
to prevent the stochastic gradient step to be trapped by the
local modes, and δ denotes the step size of the Langevin
dynamics. It can be shown that given sufficient transition steps,
the obtained Z follows the posterior distribution. In this paper,
the transition of Z starts from the updated latent factors from
the previous learning iteration, so that the persistent updating
results in a sufficiently long chain to sample from the posterior
distribution while greatly reducing the computational burden
in that we only need to use a small number of transition steps
in each learning iteration.

For each training example Yi, we run Langevin dynamics
Eq.(5) to get the corresponding posterior sample Zi, then
this sample is used for gradient computation in Eq.(4). More
precisely, the parameter W is learned through Monte Carlo
approximation:

∂

∂Wv
L(W ) ≈ 1

n

n∑
i=1

[
∂

∂Wv
log p(Y

(v)
i | Zi;Wv)

]
. (6)

The whole algorithm iterates through two steps: (1) infer-
ential step that infers the latent factors through the Langevin
dynamics, and (2) learning step that updates the network
parameter W by stochastic gradient descent. Gradient com-
putations in both steps are powered by the efficient back-
propagation. The left part of Figure 1 illustrates the structure
and the training process of the proposed model.

D. Shared representation and recognition by generation

The proposed model can be used to learn the shared
representation (the latent factors Z) across multiple views.
On the one hand, our proposed multi-view generator learning
scheme is able to rotate data to different views and recover
the incomplete data from multiple views in the training stage.
On the other hand, the shared representation obtained from
our proposed scheme contains some identity information and
can be employed in recognition problem.

For multi-view recognition problem, suppose we have the
gallery dataset Yg and the probe dataset Yp coming from the
normal view and the test view, respectively. We can infer their
latent factors Zg and Zp, which are in the shared distribution,
and perform classification in this common subspace. Specifi-
cally, in the testing phase, when given data from any view v,
we can infer the corresponding latent vector Zv using Eq.(5)
and we change log p(Y,Z;W ) by using only the given view
v as:

log p(Y,Z;W ) = log
[
p(Z)p(Y(v)|Z,Wv)

]
= − 1

2σ2
‖Y(v) −Gv(Z;Wv)‖2 −

1

2
‖Z‖2 +C. (7)

Fig. 1. Overview of our method. The left panel illustrates the training process
of the proposed method. The right panel illustrates our method for multi-
view recognition task. Suppose the probe dataset Yp and the gallery dataset
Yg come from two different views p and g. Our method first infers their
latent factors Zg and Zp, and then generates Ŷp,v and Ŷg,v by feeding
the inferred latent factors Zp and Zg to a sub-network under some common
view. The complementary information for generating Ŷv under all views
(v ∈ {1, . . . ,m}) and the latent factors Z are employed by our method.

Moreover, we can improve the multi-view recognition by
generating data Ŷg,v and Ŷp,v by feeding the inferred latent
factors Zg and Zp to the sub-generators for a common
view v ∈ {1, . . . ,m}. Figure 1 illustrates this multi-view
recognition by generation scheme. It is worth noting that
although Yg and Yp are from different domains or views,
the generated Ŷg,v and Ŷp,v obey the same distribution, and
can be effective in recognition problem. Furthermore, we can
perform the match-score fusion [23] which combines both the
latent factors Z and the generated data Ŷv in all common
views v ∈ {1, . . . ,m}. This scheme has the advantage of
encoding both the common attributes (in Z) and view-specific
discriminating information (in Ŷv) through a unified way. Let
D(·, ·) denote the L2 distances between two matrices, and
define DZ ≡ D(zp,Zg), and Dv

Y ≡ D(ŷp,v, Ŷg,v), where
DZ and Dv

Y are both vectors which calculate the L2 distances
between a probe identity and the gallery set containing Ng

identities. The normalized match-score of latent factors zp and
Zg can be computed as:

SZ(z
p,Zg) =

exp{−DZ}∑Ng

i=1 exp{−DZ}(i)
, (8)

and the normalized match-score of the generated ŷp,v and
Ŷg,v can be computed as:

Sv
Y(ŷp,v, Ŷg,v) =

exp{−Dv
Y}∑Ng

i=1 exp{−Dv
Y}(i)

. (9)

Finally, we can fuse the match score of the latent factors Z and
the generated data Ŷv in all common views v ∈ {1, . . . ,m}
to obtain the fusing match score SF , defined as:

SF =

m∑
v=1

wiS
v
Y + wm+1SZ, (10)



Fig. 2. Face rotation results for different subjects. First column: face image under standard pose (0◦). Second to fifth column pairs: each pair shows the
rotated face by our method (left) and the ground truth target (right).

where wi, i ∈ {1, · · · ,m+1} are the fusing coefficients which
can be optimized on a validation set. The probe identity will
be classified to the class for which the fusing match score
is the largest. Utilizing the information from all the views
helps the recognition problem, since different identities may
be difficult to recognize in a particular view but may be easier
in some other views. We shall elaborate on these points in the
following experiment section. In this paper, we only focus on
the image domain, but note that the proposed framework can
also be used for other data domains.

III. EXPERIMENTS

A. Experiment setup and network structure

For the first qualitative experiment on faces, we scale the
face image so that the pixel intensities are within [−1, 1], and
we build up two generator nets, one for standard pose 0◦ (G1)
and one for another rotated pose (G2). For each generator net,
we adopt the structure similar to [21]. Specifically, we learn
a 5-layer convNet which has deconvolutional kernel of size
4×4 and of stride 2, and has 512, 256, 128, 64, 3 filters from
top to bottom. Each deconvolution layer is followed by ReLU
non-linearity and batch normalization [24] except the last layer
where tanh is used. For the quantitative experiment, we build
up eleven generator sub-nets, where for each sub-net, we use
the similar network structure except that we do not use batch
normalization and we use the sigmoid in the last layer. All the
input data for our experiments are normalized and cropped to
64×64. We use Adam optimizer [25] with initial learning rate
0.0002 and we run Langevin dynamics for 20 steps in each
iteration with step size 0.1.

B. Qualitative results on the Multi-PIE face database

Multi-PIE database [26] is one of the most widely used
face dataset which has a wide range of pose and illusion
conditions. Specifically, it consists of 3 sessions of images
of 249 identities under 15 poses and 20 different illumination
conditions. We train our model on a selected subset which cov-
ers 5 poses, i.e., {−60◦,−30◦, 0◦, 30◦, 60◦}, and 50 randomly
selected subjects under all illuminations. The subjects under
odd numbers of illumination conditions are used for training
and those under even numbers of illumination conditions are
used for testing. We show qualitatively that our model cannot

Fig. 3. Face completion results for different noise patterns. Each row repre-
sents the completion results under B20, R0.5 and R0.9 patterns respectively.
In each row, the first and fourth columns represent the masked images. The
second and fifth columns represent the images after filling in the missing
parts using our method. The third and sixth columns represent the ground
truth images.

only rotating faces, but can also learn to recover the incomplete
faces under different poses.

1) Rotation: We first consider generating faces with the
same identity and illumination condition but with the desired
pose. The input data to our model are the image pairs which
consist of the same subjects under the standard pose and the
desired pose. In the testing stage, we have image pairs of
10 testing subjects under these two poses, and we use images
under the standard pose as our gallery set and the other images
as our testing set. After training, given the gallery set, we first
run the Langevin dynamics for 200 steps based on G1 to get
the inferred latent factors. These factors are then fed into the
other learned generator net G2 to get the rotated images under
the desired pose.

Figure 2 shows the qualitative results of rotating face images
to −60◦, −30◦, 30◦, and 60◦. It can be seen that our shared
generator model can accurately generate face images under
different poses and they are visually similar to the ground
truth testing images.

2) Completion: The proposed shared generator model can
be adapted to the task of image completion in which we only
consider the observed or visible pixels for inference.

We experiment with two types of noise patterns: one is
the random pixel occlusion where we randomly block 50%
or 90% pixels of the training images. The other is random
patch occlusion where we randomly place a 20 × 20 block



Fig. 4. Multi-view gait generation results for different subjects. The first column shows the original GEIs, and the second to twelfth columns show the
generated GEIs under all the 11 views by our multi-view generative model. Specifically, the first row consists of one subject’s original GEI under 90◦ view,
and 11 generated GEIs by forward-propagating the inferred factors into the 11 sub-networks of our multi-view generator network. The second row consists of
the same subject’s original GEI under 0◦ view, and 11 generated GEIs under all the corresponding views as the first row. The third row consists of another
subject’s original GEI under 0◦ view, and 11 generated GEIs under all of the corresponding views as the first two rows. We can observe that, under each
view, the generated GEIs from the same subject are very similar, while the generated GEIs from different subjects can be easily distinguished.

on each training image. We denote these random patterns as
R0.5, R0.9 and B20 respectively.

Figure 3 shows completion results. It is clear that even
under severe occlusion, the proposed method can still get
sharp results. We compute the average per-pixel difference
between the recovered images and the corresponding ground
truth images to measure the recovery quality. For R0.5, we
have recover error 0.256, for R0.9 and B20, we have recover
errors 0.404 and 0.328 respectively.

Note that this task is challenging for existing methods
to learn useful representations [14], [20], [21]. Recently,
[22] proposes to directly learn the generator model from
incomplete data and shows promising initial results. However,
their method is only applied to one front view, whereas
the problem of how to efficiently learn multi-views remains
unexplored. Our proposed model directly shares the latent
factors across different views. Therefore, each sub-domain is
forced to communicate with other domains to agree upon the
common knowledge. Besides, each sub-domain only contains
the images from one view, thus a better generator net can be
learned.

C. Experiments on the CASIA gait database B

The CASIA gait database B [27] is one of the largest multi-
view gait databases. It contains 124 subjects captured from 11
viewing angles, namely 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦,
126◦, 144◦, 162◦, and 180◦. Under each view, there are ten
gait sequences for each person, including six sequences of
normal walking, two sequences of walking with a bag, and two
sequences of walking with a coat. We experiment on the gait
sequences of normal walking. Since Gait Energy Image (GEI)
[28] is a popular gait feature, which is efficient for computation
and is robust to noise, we employ it for our method’s input
and target images.

According to the experimental protocol defined in [16], [29],
the database is divided into two groups: the first group of the
62 subjects is used for constructing the training set and the
remaining 62 subjects are used for performance evaluation.
Suppose the gallery view and the probe view are denoted

by θG and θP , respectively. In the training phase, we use
the gait sequences from the training group under all the 11
views to alternatively infer the common identity factors and
learn the deconvolutional sub-network under each view. In the
recognition phase, the sequences from the evaluating group
under the gallery view θG are utilized to construct the gallery
set and the sequences from the evaluating group under the
probe view θP are utilized to form the probe set. Our method
can utilize two kinds of information learned from the proposed
model to perform multi-view gait recognition: (1) The shared
factors (the latent factors Z in Figure 1). For both the gallery
and probe GEIs, we infer their shared factors and use these
factors for recognition. (2) The generation of GEIs. For both
the gallery and probe GEIs, we first infer their shared factors,
and then generate new GEIs by feeding the inferred latent
factors into the sub-networks under some common views.
Figure 4 shows the generated GEIs through our multi-view
generative model. We employ these generated GEIs for further
classification. Our method performs a match-score fusion of
the above two kinds of information for the final multi-view
gait recognition (see Section II.D for detail).

To evaluate the performance of our algorithm, we compared
the proposed MvGSR with the following state-of-art methods:
FT-SVD [30], OVTM [10], RVTM [11],VTM-SR [12] , C3A
[6], SPAE [29], and GaitGAN [16]. As in experiments of those
methods, the probe view θP is selected as 54◦, 90◦ or 126◦.
For each selected probe view, we test on the gallery view
θG from the rest 10 viewing angles except the corresponding
probe view.

The experimental results are plotted in Figure 5, which
reveals several interesting observations. (1) Most of the algo-
rithms can obtain a high recognition rate when the viewing
angle difference between the gallery and probe is small.
The reason behind this high recognition rate is that gaits
between two closer views share more common information,
therefore only simple transformation of gaits is needed to have
a good performance. (2) When the angle difference between
the gallery and the probe is large, the deep learning gait recog-
nition methods, including SPAE, GaitGAN and the proposed
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Fig. 5. Comparisons of gait recognition rates for multi-view gait recognition
using different methods. The viewing angles of the probe data in subfigures
(a)-(c) are 54◦, 90◦ and 126◦, respectively. The viewing angles of the gallery
data are the rest 10 viewing angles except the corresponding probe viewing
angle.

MvGSR, perform better than the traditional linear methods,
such as FT-SVD, OVTM, RVTM, VTM-SR, and C3A. This
is because the deep learning methods can approximate highly
non-linear transformations, which are important for this task
with large viewpoint variation. (3) Generally speaking, the
proposed MvGSR method performs better then the other two
deep learning methods in most of the views. The proposed
method cannot only improve the recognition rate when the
viewpoint variation is not large, but it can also handle large
viewpoint variation quite well.

In Table I, we further summarize the experimental results
of three unsupervised methods, including C3A, SPAE, and the
proposed MvGSR, which obtain good performances as shown
in Figure 5, where we also include three supervised methods,
ViDP [31], CNN [32], and GaitGAN. It is worth noting that

TABLE I
COMPARISONS OF THE AVERAGE RECOGNITION ACCURACY UNDER THE
PROBE VIEWS θP = 54◦ , θP = 90◦ , θP = 126◦ , WHERE THE GALLERY

VIEW ARE THE REST 10 VIEWING ANGLES EXCEPT THE CORRESPONDING
PROBE VIEWING ANGLE. THE VALUES IN THE RIGHT MOST COLUMN ARE

THE AVERAGES RATES AT THE THREE PROBE VIEWS θP = 54◦ , θP = 90◦ ,
θP = 126◦ .

Methods\Probe angles θP = 54◦ θP = 90◦ θP = 126◦ Average
C3A 56.64% 54.65% 58.38% 56.56%
ViDP (Supervised) 64.2% 60.4% 65.0% 63.2%
CNN (Supervised) 77.8% 64.9% 76.1% 72.9%
SPAE 63.31% 62.1% 66.29% 63.9%
GaitGAN (Supervised) 64.52% 58.15% 65.73% 62.8%
MvGSR 66.53% 60.78% 65.19% 64.17%

it is generally unfair to directly compare the unsupervised
method with the supervised one, since the latter one needs to
utilize the label or other auxiliary information for training. As
we can observe from Table I, our method, as an unsupervised
generative model, obtains comparable results with these state-
of-art methods, and even performs better than some supervised
methods, such as ViDP and GaitGAN.

IV. CONCLUSION

This paper proposes to learn multi-view generator networks
through shared latent factors. We argue that the learned shared
representation can effectively encode the common knowledge
across different views, and the domain specific generator
networks can accurately obtain the domain related information.
Therefore, the proposed method can naturally enforce the con-
sensus and complementarity principles which a good shared
representation should follow. We conduct qualitative experi-
ments on face rotation and completion, demonstrating that our
method can be effectively utilized for generation tasks. We
also conduct quantitative comparisons with existing methods
for gait recognition, showing that our method, though trained
in unsupervised manner, is competitive or even becomes state-
of-art in many cases.
Future directions. The proposed model can be further in-
vestigated in two ways: First, we can extend our framework
for multi-modality learning in which data are coming from
different source domains, e.g., text, audio, iris etc. Second,
the input data to our model can be further relaxed so that
the data in different views do not need to have one to one
correspondence. We leave these as our future research.
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