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Generative modeling

T Han*, E Nijkamp*, X Fang, M Hill, SC Zhu, YN Wu, CVPR, 2019
Images generated by the learned generator model:

Interpolation in latent space:
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Generative modeling

R Gao, Y Song, B Poole, YN Wu, and DP Kingma (2020)
Images generated by the learned energy-based models:
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Generative modeling

Images generated by the learned energy-based models:

Ying Nian Wu (UCLA) Latent Space EBM Bo Pang, Erik Nijkamp, Tian Han, S.-C. Zhu Papers can be downloaded from http://www.stat.ucla.edu/~ywu/research.html 4 / 33

http://www.stat.ucla.edu/~ywu/research.html


5/33

Generator model

x: observed example. z: latent vector.

pθ(x, z) = pα(z)pβ(x|z)

Non-informative prior model: uniform or isotropic Gaussian

z ∼ p0(z)

Generator model for image:

x = gβ(z) + ε

Generator model for sequence:

pβ(x|z) =

T∏

t=1

pβ(x(t)|x(1), ..., x(t−1), z)

Mapping unimodal prior to multimodal data distribution
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Energy-based prior model in latent space

B Pang*, T Han*, E Nijkamp*, SC Zhu, and YN Wu, NeurIPS, 2020
x: observed example. z: latent vector.

pθ(x, z) = pα(z)pβ(x|z)

Energy-based prior model: informative, learnable, empirical Bayes

pα(z) =
1

Z(α)
exp(fα(z))p0(z)

−fα(z): energy function, exponential tilting
Z(α): normalizing constant.
Standing on generator model

x = gβ(z) + ε
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Energy-based prior model in latent space

Energy-based prior model:

pα(z) =
1

Z(α)
exp(fα(z))p0(z)

fα(z): scalar valued, value, cost or objective, regularities and rules
z: low-dimensional, small network, less multimodal, easy to sample
Origin: statistical physics, Gibbs distribution, random field
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Energy-based prior model in latent space

Marginal:

pθ(x) =

∫
pθ(x, z)dz =

∫
pα(z)pβ(x|z)dz

Posterior:

pθ(z|x) = pθ(x, z)/pθ(x) = pα(z)pβ(x|z)/pθ(x)

Ying Nian Wu (UCLA) Latent Space EBM Bo Pang, Erik Nijkamp, Tian Han, S.-C. Zhu Papers can be downloaded from http://www.stat.ucla.edu/~ywu/research.html 8 / 33

http://www.stat.ucla.edu/~ywu/research.html


9/33

Maximum likelihood

Training examples (xi, i = 1, ..., n).

L(θ) =

n∑

i=1

log pθ(xi)

Learning gradient:

∇θ log pθ(x) = Epθ(z|x) [∇θ log pθ(x, z)]

= Epθ(z|x) [∇θ(log pα(z) + log pβ(x|z))]

pθ(z|x): inference, posterior, imputation
Similar to EM algorithm
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Maximum likelihood

Learning gradient for prior model:

δα(x) = ∇α log pθ(x) = Epθ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)]

pα(z): prior. pθ(z|x): posterior. Match prior to aggregated posterior
fα(z): value or critic, self-critical (adversarial)
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Maximum likelihood

Learning gradient for generation model:

δβ(x) = ∇β log pθ(x) = Epθ(z|x)[∇β log pβ(x|z)]

Reconstructing x by gβ(z)
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Prior and posterior sampling

Short run MCMC (Langevin dynamics):

z0 ∼ p0(z)
zk+1 = zk + s∇z log π(zk) +

√
2sεk, k = 0, ...,K − 1

e.g., K = 20
Can be amortized by learned networks for inference and synthesis sampling
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Learning and sampling algorithm

for t = 0 : T − 1 do

1. Mini-batch: Sample observed examples {xi}mi=1

2. Prior sampling: For each xi, sample z−i ∼ pαt(z)
3. Posterior sampling: For each xi, sample z+i ∼ pθt(z|xi)
4. Learning prior model:
αt+1 = αt + η0

1
m

∑m
i=1[∇αfαt

(z+i )−∇αfαt
(z−i )]

5. Learning generation model:
βt+1 = βt + η1

1
m

∑m
i=1∇β log pβt

(xi|z+i )

end

Ying Nian Wu (UCLA) Latent Space EBM Bo Pang, Erik Nijkamp, Tian Han, S.-C. Zhu Papers can be downloaded from http://www.stat.ucla.edu/~ywu/research.html 13 / 33

http://www.stat.ucla.edu/~ywu/research.html


14/33

Amortized sampling networks

Learned prior sampling: qψ(z) (flow-based model)
Learned posterior sampling: qφ(z|x) (encoder or inference model in VAE)
Perturbation of maximum likelihood:

∆(θ, φ, ψ) = DKL(pdata(x)‖pθ(x))

+DKL(qφ(z|x)‖pθ(z|x))−DKL(qψ(z)‖pα(z))

min
θ

min
φ

max
ψ

∆(θ, φ, ψ)

Positive phase for posterior sampling and negative phase for prior sampling
Variational learning and adversarial learning, contrastive divergence
Short run MCMC (or only MCMC for prior sampling)
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Image generation
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Image generation
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Short run MCMC
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Long run MCMC

Figure 4: Transition of Markov chains initialized from p0(z) towards p̃↵(z) for K0
0 = 2500 steps. Top:

Trajectory in the CelebA data-space for every 100 steps. Bottom: Energy profile over time.

3.4 Anomaly detection

We evaluate our model on anomaly detection. If the generator and EBM are well learned, then the
posterior p✓(z|x) would form a discriminative latent space that has separated probability densities for
normal and anomalous data. Samples from such a latent space can then be used to detect anomalies.
We take samples from the posterior of the learned model, and use the unnormalized log-posterior
log p✓(x, z) as our decision function.

Following the protocol as in [37, 79], we make each digit class an anomaly and consider the remaining
9 digits as normal examples. Our model is trained with only normal data and tested with both normal
and anomalous data. We compare with the BiGAN-based anomaly detection [79], MEG [37] and
VAE using area under the precision-recall curve (AUPRC) as in [79]. Table 4 shows the results.

Heldout Digit 1 4 5 7 9

VAE 0.063 0.337 0.325 0.148 0.104
MEG 0.281 ± 0.035 0.401 ±0.061 0.402 ± 0.062 0.290 ± 0.040 0.342 ± 0.034

BiGAN-� 0.287 ± 0.023 0.443 ± 0.029 0.514 ± 0.029 0.347 ± 0.017 0.307 ± 0.028
Ours 0.336 ± 0.008 0.630 ± 0.017 0.619 ± 0.013 0.463 ± 0.009 0.413 ± 0.010

Table 4: AUPRC scores for unsupervised anomaly detection on MNIST. Numbers are taken from [37] and
results for our model are averaged over last 10 epochs to account for variance.

3.5 Computational cost

Our method involving MCMC sampling is more costly than VAEs with amortized inference. Our
model is approximately 4 times slower than VAEs on image datasets. On text datasets, ours does
not have an disadvantage compared to VAEs on total training time (despite longer per-iteration time)
because of better posterior samples from short run MCMC than amortized inference and the overhead
of the techniques that VAEs take to address posterior collapse. To test our method’s scalability, we
trained a larger generator on CelebA (128 ⇥ 128). It produced faithful samples (see Figure 1).

4 Discussion and conclusion

4.1 Modeling strategies and related work

We now put our work within the bigger picture of modeling and learning, and discuss related work.

Energy-based model and top-down generation model. A top-down model or a directed acyclic
graphical model is of a simple factorized form that is capable of ancestral sampling. The prototype
of such a model is factor analysis [61], which has been generalized to independent component
analysis [32], sparse coding [53], non-negative matrix factorization [39], etc. An early example of a
multi-layer top-down model is the generation model of Helmholtz machine [29]. An EBM defines an
unnormalized density or a Gibbs distribution. The prototypes of such a model are exponential family
distribution, the Boltzmann machine [1, 30, 62, 40], and the FRAME (Filters, Random field, And
Maximum Entropy) model [83]. [81] contrasted these two classes of models, calling the top-down
latent variable model the generative model, and the energy-based model the descriptive model. [23]
proposed to integrate the two models, where the top-down generation model generates textons, while
the EBM prior accounts for the perceptual organization or Gestalt laws of textons. Our model follows

8
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Text generation

SNLI PTB Yahoo
Models FPPL RPPL NLL FPPL RPPL NLL FPPL RPPL NLL

Real Data 23.53 - - 100.36 - - 60.04 - -
SA-VAE 39.03 46.43 33.56 147.92 210.02 101.28 128.19 148.57 326.70
FB-VAE 39.19 43.47 28.82 145.32 204.11 92.89 123.22 141.14 319.96
ARAE 44.30 82.20 28.14 165.23 232.93 91.31 158.37 216.77 320.09
Ours 27.81 31.96 28.90 107.45 181.54 91.35 80.91 118.08 321.18

Table 2: FPPL, RPPL, and NLL for our model and baselines on SNLI, PTB, and Yahoo datasets.

3.3 Analysis of latent space

We examine the exponential tilting of the reference prior p0(z) through Langevin samples initialized
from p0(z) with target distribution p↵(z). As the reference distribution p0(z) is in the form of an
isotropic Gaussian, we expect the energy-based correction f↵ to tilt p0 into an irregular shape. In
particular, learning equation 10 may form shallow local modes for p↵(z). Therefore, the trajectory of
a Markov chain initialized from the reference distribution p0(z) with well-learned target p↵(z) should
depict the transition towards synthesized examples of high quality while the energy fluctuates around
some constant. Figure 3 and Table 3 depict such transitions for image and textual data, respectively,
which are both based on models trained with K0 = 40 steps. For image data the quality of synthesis
improve significantly with increasing number of steps. For textual data, there is an enhancement in
semantics and syntax along the chain, which is especially clear from step 0 to 40 (see Table 3).

Figure 3: Transition of Markov chains initialized from p0(z) towards p̃↵(z) for K0
0 = 100 steps. Top:

Trajectory in the CelebA data-space. Bottom: Energy profile over time.

judge in <unk> was not
west virginia bank <unk> which has been under N law took effect of october N
mr. peterson N years old could return to work with his clients to pay
iras must be
anticipating bonds tied to the imperial company ’s revenue of $ N million today
many of these N funds in the industrial average rose to N N from N N N
fund obtaining the the
ford ’s latest move is expected to reach an agreement in principle for the sale of its loan operations
wall street has been shocked over by the merger of new york co. a world-wide financial board of the companies said it wo
n’t seek strategic alternatives to the brokerage industry ’s directors

Table 3: Transition of a Markov chain initialized from p0(z) towards p̃↵(z). Top: Trajectory in the PTB
data-space. Each panel contains a sample for K0

0 2 {0, 40, 100}. Bottom: Energy profile.

While our learning algorithm recruits short run MCMC with K0 steps to sample from target dis-
tribution p↵(z), a well-learned p↵(z) should allow for Markov chains with realistic synthesis for
K 0

0 � K0 steps. We demonstrate such long-run Markov chain with K0 = 40 and K 0
0 = 2500

in Figure 4. The long-run chain samples in the data space are reasonable and do not exhibit the
oversaturating issue of the long-run chain samples of recent EBM in the data space (see oversaturing
examples in Figure 3 in [50]).

7
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Text generation
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Anomaly detection

Based on log p(x, z). Out of distribution examples
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Trajectory prediction

B Pang, T Zhao, X Xie, and YN Wu (2020)
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Figure 2. Qualitative results of our proposed method across 4 different scenarios in the Stanford Drone. First row: The best prediction result
sampled from 20 trials from LB-EBM. Second row: The 20 predicted trajectories sampled from LB-EBM. Third row: prediction results of
agent pairs that has social interactions. The observed trajectories, ground truth predictions and our model’s predictions are displayed in
terms of white, blue and red dots respectively.

trajectory predictions and improves over prior state-of-the-
arts performance on the Stanford Drone trajectory prediction
benchmark by 10.9% and on the ETH-UCY benchmark by
27.6%.
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8

fα(z|c): value or cost of trajectory given condition, inverse control
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Trajectory prediction
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ADE FDE

S-LSTM [1] 31.19 56.97
S-GAN-P [13] 27.23 41.44

MATF [52] 22.59 33.53
Desire [21] 19.25 34.05
SoPhie [42] 16.27 29.38
CF-VAE [3] 12.60 22.30
P2TIRL [7] 12.58 22.07

SimAug [24] 10.27 19.71
PECNet [28] 9.96 15.88

Ours 8.87 15.61
Table 1. ADE / FDE metrics on Stanford Drone for several methods compared to ours are shown. The lower the better.

ETH HOTEL UNIV ZARA1 ZARA2 AVG

Linear * [1] 1.33 / 2.94 0.39 / 0.72 0.82 / 1.59 0.62 / 1.21 0.77 / 1.48 0.79 / 1.59
SR-LSTM-2 * [51] 0.63 / 1.25 0.37 / 0.74 0.51 / 1.10 0.41 / 0.90 0.32 / 0.70 0.45 / 0.94

S-LSTM [1] 1.09 / 2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54
S-GAN-P [13] 0.87 / 1.62 0.67 / 1.37 0.76 / 1.52 0.35 / 0.68 0.42 / 0.84 0.61 / 1.21

SoPhie [42] 0.70 / 1.43 0.76 / 1.67 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.54 / 1.15
MATF [52] 0.81 / 1.52 0.67 / 1.37 0.60 / 1.26 0.34 / 0.68 0.42 / 0.84 0.57 / 1.13
CGNS [22] 0.62 / 1.40 0.70 / 0.93 0.48 / 1.22 0.32 / 0.59 0.35 / 0.71 0.49 / 0.97

PIF [26] 0.73 / 1.65 0.30 / 0.59 0.60 / 1.27 0.38 / 0.81 0.31 / 0.68 0.46 / 1.00
STSGN [50] 0.75 / 1.63 0.63 / 1.01 0.48 / 1.08 0.30 / 0.65 0.26 / 0.57 0.48 / 0.99

GAT [19] 0.68 / 1.29 0.68 / 1.40 0.57 / 1.29 0.29 / 0.60 0.37 / 0.75 0.52 / 1.07
Social-BiGAT [19] 0.69 / 1.29 0.49 / 1.01 0.55 / 1.32 0.30 / 0.62 0.36 / 0.75 0.48 / 1.00

Social-STGCNN [30] 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75
PECNet [28] 0.54 / 0.87 0.18 / 0.24 0.35 / 0.60 0.22 / 0.39 0.17 / 0.30 0.29 / 0.48

Ours 0.30 / 0.52 0.13 / 0.20 0.27 / 0.52 0.20 / 0.37 0.15 / 0.29 0.21 / 0.38
Table 2. ADE / FDE metrics on ETH-UCY for several methods compared to ours are shown. The models with * mark are non-probabilistic.
The rest of models used the best amongst 20 samples for evaluation. All models takes as an input 8 frames and predicts the next 12 frames.
Our model achieves the best average error on both ADE and FDE metrics. The lower the better.

Time Steps ADE FDE

(3, 6, 9, 12) 8.87 15.61
(4, 8, 12) 9.02 15.75

(12) 9.49 15.01
None 10.28 18.60

Table 3. ADE / FDE metrics on Stanford Drone for different design choice of plan. The lower the better.

Number of LD Sampling Steps ADE FDE

10 9.02 16.85
20 8.87 15.61
40 8.81 15.53

100 8.84 15.51
Table 4. ADE / FDE metrics on Stanford Drone for different number of steps for Langevin dynamics sampling. The lower the better.

distributions. LB-EBM is learned from expert demonstra-
tions (i.e., human trajectories) projected into the latent space.
Sampling from or optimizing the learned LB-EBM yields a
social-aware belief vector which is used to make a path plan.

It then helps to predict a long-range trajectory. The effective-
ness of LB-EBM and the two-step approach are supported by
strong empirical results and the ablation study. Our model
is able to make accurate, multimodal, and social compliant

7
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Molecule generation

B Pang, T Han, and YN Wu (2020)
simplified molecular input line entry systems (SMILES)

For the prior model, r↵ log p↵(z) = r↵f↵(z) � Ep↵(z)[r↵f↵(z)]. Thus the learning gradient for
an example x is

�↵(x) = r↵ log p✓(x) = Ep✓(z|x)[r↵f↵(z)] � Ep↵(z)[r↵f↵(z)]. (6)

↵ is updated based on the difference between z inferred from empirical observation x, and z sampled
from the current prior model.

For the generative model,

��(x) = r� log p✓(x) = Ep✓(z|x)[r� log p�(x|z)], (7)

where
PT

t=1 log p�(x(t)|x(1), ..., x(t�1), z) for text modeling which is about the reconstruction error.

Expectations in (6) and (7) require MCMC sampling of the prior model p↵(z) and the posterior
distribution p✓(z|x). Instead of learning a separate network for approximate inference, we follow [7]
and use Langevin dynamics for short run MCMC which iterates:

z0 ⇠ p0(z), zk+1 = zk + srz log ⇡(zk) +
p

2s✏k, k = 1, ..., K. (8)

where we initialize the dynamics from the fixed prior distribution of z, i.e., p(z) ⇠ N(0, Id) and
✏k ⇠ N(0, Id) is the Gaussian white noise. ⇡(z) can be either p↵(z) or p✓(z|x). In either case,
rz log ⇡(z) can be efficiently computed by back-propagation. The dynamics runs a fixed number of
K steps with step size s.Denote the distribution of zK to be ⇡̃(z). As shown in [1], the Kullback-
Leibler divergence DKL(⇡̃k⇡) decreases to zero monotonically as K ! 1.

Specifically, denote the distribution of zK to be p̃↵(z) if the target ⇡(z) = p↵(z), and denote the
distribution of zK to be p̃✓(z|x) if ⇡(z) = p✓(z|x). The learning gradients in equations (6) and (7)
are modified to

�̃↵(x) = Ep̃✓(z|x)[r↵f↵(z)] � Ep̃↵(z)[r↵f↵(z)], (9)

�̃�(x) = Ep̃✓(z|x)[r� log p�(x|z)]. (10)

We then update ↵ and � based on (9) and (10), where the expectations can be approximated by Monte
Carlo samples. See [7] for theoretical foundation of the resulting learning algorithm. The short-run
MCMC is efficient and mixes well in latent space due to the relative low-dimensionality of the latent
space.

3 Experiments

A standard molecule dataset, ZINC [3], is used in our experiments. The latent space dimension is 32.
The latent space energy-based model is implemented with a three-layer MLP with hidden dimension
200. The generator is a single layer LSTM with a hidden dimension of 1024 and the embedding
dimension is 512. Figure 1 shows sample molecules generated from the data and randomly generated
from our model.

(a) ZINC (b) Generated
Figure 1: Sample molecules taken from the ZINC dataset (a) and generated by our model (b).
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Molecule generation

simplified molecular input line entry systems (SMILES)

3.1 Validity, novelty, and uniqueness

We evaluate our model with three commonly used metrics: 1) validity, the percentage of valid
molecules among all the generated ones; 2) novelty, the percentage of generated molecules not
appearing in training set; 3) uniqueness, the percentage of unique ones among all the generated
molecules. All metrics are computed based on 10,000 randomly generated molecules. Our model
greatly improve previous LM-based models on validity and uniqueness and are competitive with
fragment-based model and graph-based models using valency check. It is interesting to notice that
the state-of-the-art graph-based models such as GCPN [13] and GraphAF [10], generate molecules
with low validity rates if valency check is not applied. It appears that the graph-based models do not
capture the chemical rules but instead strongly relies on explicit constraints. In contrast, our model is
able to automatically learn the rules from the data.

Model Model Family Validity w/ check Validity w/o check Novelty Uniqueness

GraphVAE (Simonovsky et al., 2018) Graph 0.140 - 1.000 0.316
CGVAE (Liu et al., 2018) Graph 1.000 - 1.000 0.998
GCPN (You et al., 2018) Graph 1.000 0.200 1.000 1.000
NeVAE (Samanta et al., 2019) Graph 1.000 - 0.999 1.000
MRNN (Popova et al., 2019) Graph 1.000 0.650 1.000 0.999
GraphNVP (Madhawa et al., 2019) Graph 0.426 - 1.000 0.948
GraphAF (Shi et al., 2020) Graph 1.000 0.680 1.000 0.991

ChemVAE (Gomez-Bombarelli et al., 2018) LM 0.170 - 0.980 0.310
GrammarVAE (Kusner et al., 2017) LM 0.310 - 1.000 0.108
SDVAE (Dai et al., 2018) LM 0.435 - - -
FragmentVAE (Podda et al., 2020) LM 1.000 - 0.995 0.998
Ours LM 0.955 - 1.000 1.000

Table 1: Performance obtained by our model against LM-based and graph-based baselines.

3.2 Molecular properties of samples

If a model distribution matches the data distribution well, marginal distributions of any statistics would
also match. Three properties are critical for molecule modeling, especially in de novo drug design:
1) octanol/water partition coefficient (logP) which measures solubility; 2) quantitative estimate of
drug-likeness (QED); 3) synthetic accessiblity score (SAS) which measures ease of synthesis. Each
property can be viewed a statistic of the molecule data. In Figure 2, we compare the distributions of
the three properties based on 10,000 samples from the data and our model. The distributions based on
FragmentVAE are also included for a reference. It is clear that our model produces distributions close
to data property distributions, even though there is not any explicit supervision given for learning the
three molecular properties. Also, our model evidently improve over FragmentVAE in this regard.

Figure 2: Distributions of molecular properties of data and 10,000 random samples from FragmentVAE and our
model.

4 Conclusion

This work proposes to jointly learn a latent space energy-based prior model and a simple autoregres-
sive generator for molecule modeling. Our approach yields a simple yet highly expressive model.
The learned model generates valid and unique molecules with character-level SMILES representation.
Key chemical properties of the generated samples closely resemble those of the data on a distribution
level. These results provide strong evidence that the proposed model is able to automatically learn
complicated chemical rules implicitly from the data.

4

Latent space EBM captures chemical rules implicitly
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Molecule generation

simplified molecular input line entry systems (SMILES)

3.1 Validity, novelty, and uniqueness

We evaluate our model with three commonly used metrics: 1) validity, the percentage of valid
molecules among all the generated ones; 2) novelty, the percentage of generated molecules not
appearing in training set; 3) uniqueness, the percentage of unique ones among all the generated
molecules. All metrics are computed based on 10,000 randomly generated molecules. Our model
greatly improve previous LM-based models on validity and uniqueness and are competitive with
fragment-based model and graph-based models using valency check. It is interesting to notice that
the state-of-the-art graph-based models such as GCPN [13] and GraphAF [10], generate molecules
with low validity rates if valency check is not applied. It appears that the graph-based models do not
capture the chemical rules but instead strongly relies on explicit constraints. In contrast, our model is
able to automatically learn the rules from the data.

Model Model Family Validity w/ check Validity w/o check Novelty Uniqueness

GraphVAE (Simonovsky et al., 2018) Graph 0.140 - 1.000 0.316
CGVAE (Liu et al., 2018) Graph 1.000 - 1.000 0.998
GCPN (You et al., 2018) Graph 1.000 0.200 1.000 1.000
NeVAE (Samanta et al., 2019) Graph 1.000 - 0.999 1.000
MRNN (Popova et al., 2019) Graph 1.000 0.650 1.000 0.999
GraphNVP (Madhawa et al., 2019) Graph 0.426 - 1.000 0.948
GraphAF (Shi et al., 2020) Graph 1.000 0.680 1.000 0.991

ChemVAE (Gomez-Bombarelli et al., 2018) LM 0.170 - 0.980 0.310
GrammarVAE (Kusner et al., 2017) LM 0.310 - 1.000 0.108
SDVAE (Dai et al., 2018) LM 0.435 - - -
FragmentVAE (Podda et al., 2020) LM 1.000 - 0.995 0.998
Ours LM 0.955 - 1.000 1.000

Table 1: Performance obtained by our model against LM-based and graph-based baselines.

3.2 Molecular properties of samples

If a model distribution matches the data distribution well, marginal distributions of any statistics would
also match. Three properties are critical for molecule modeling, especially in de novo drug design:
1) octanol/water partition coefficient (logP) which measures solubility; 2) quantitative estimate of
drug-likeness (QED); 3) synthetic accessiblity score (SAS) which measures ease of synthesis. Each
property can be viewed a statistic of the molecule data. In Figure 2, we compare the distributions of
the three properties based on 10,000 samples from the data and our model. The distributions based on
FragmentVAE are also included for a reference. It is clear that our model produces distributions close
to data property distributions, even though there is not any explicit supervision given for learning the
three molecular properties. Also, our model evidently improve over FragmentVAE in this regard.

Figure 2: Distributions of molecular properties of data and 10,000 random samples from FragmentVAE and our
model.

4 Conclusion

This work proposes to jointly learn a latent space energy-based prior model and a simple autoregres-
sive generator for molecule modeling. Our approach yields a simple yet highly expressive model.
The learned model generates valid and unique molecules with character-level SMILES representation.
Key chemical properties of the generated samples closely resemble those of the data on a distribution
level. These results provide strong evidence that the proposed model is able to automatically learn
complicated chemical rules implicitly from the data.
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Semi-supervised learning

B Pang, E Nijkamp, J Cui, T Han, and YN Wu (2020)

y: one-hot vector, (0, ..., 0, 1, 0, ..., 0). z: continuous dense vector.
Semi-supervised: y given for a small number of x.
Symbol-vector coupling, associative memory:

pα(y, z) =
1

Z(α)
exp(〈y, Fα(z)〉)p0(z)

Fα(z) = (F
(1)
α (z), ..., F

(c)
α (z), ..., F

(C)
α (z)): logit scores for C categories

Soft-max classifier:

pα(y|z) ∝ exp(〈y, Fα(z)〉) = exp(F (y)
α (z))
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Symbol-vector coupling

Marginal energy-based prior:

pα(z) =
1

Z(α)
exp(fα(z))p0(z)

fα(z) = log
∑

y

exp(〈y, Fα(z)〉)
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Likelihood-based semi-supervised learning

Only some x are labeled with y:

L(θ) =
∑

all

log pθ(x) + λ
∑

labeled

log pθ(y|x)
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Image data

SVHN CIFAR-10
Method 1000 Labels 4000 Labels

VAE M1+M2 64.0 ± 0.1 -
AAE 82.3 ± 0.3 -
JEM 66.0 ± 0.7 -
FlowGMM 82.4 78.2
Ours 92.0 ± 0.1 78.6 ± 0.3

TripleGAN 94.2 ± 0.2 83.0 ± 0.4
BadGAN 95.8 ± 0.03 85.6 ± 0.03
⇧-Model 94.6 ± 0.2 83.6 ± 0.3
VAT 96.3 ± 0.1 88.0 ± 0.1
Table 1: Accuracy on SVHN and CIFAR-10.

The second setting where a large pretrained language model is not available follows the setup used in
Gururangan et al. [14] where they proposed VAMPIRE. While the huge amount of text data required
for large transformer-based language model pretraining is available for some languages, such as
English, this scale of data is not available for all languages. We use the preprocessed data provided
by [14] and it contains 200 labeled data and 114,600 unlabeled documents for training. Follow [14],
a document is modeled by the unigram of its words. Thus, each document is a vector of vocabulary
size, V (V = 30, 000 for AGNews), and each element represents a word’s occurring frequency in the
document, modeled by a multinominal distribution. Notice that most popular SSL methods, such as
GAN-based models, data space EBM, and VAT, cannot be easily applied in this case since the data
space is discrete. We compare our model to VAMPIRE using unigram representation, self-training,
and supervised training with Glove word embeddings pretrained on in-domain and out-domain data
(see [14] for detailed descriptions of these baselines). The results are summarized in Table 3. Our
model clearly outperforms these baselines. It is worth pointing that FlowGMM is also applicable in
this setting. We attempted to apply FlowGMM to this task but achieved low accuracy.

AGNews-Bert
Method 200 Labels

RBF Label Spreading 36.1
FlowGMM 82.1 ± 1.0
Ours 82.0 ± 0.2

⇧-Model 80.2 ± 0.3
Table 2: Accuracy on AGNews with Bert embeddings.

AGNews-Unigram
Method 200 Labels

Self-training 77.3 ± 1.7
Glove (ID) 70.4 ± 1.2
Glove (OD) 68.8 ± 5.7
VAMPIRE 81.9 ± 0.5
Ours 84.5 ± 0.3

Table 3: Accuracy on AGNews with Unigram.

4.3 Tabular data

We use three tabular datasets from the UCI repository. Hepmass and Miniboone were utilized in
[18] for SSL and Protein was used in [46]. Protein has a continuous target variable and we follow
[46] to bin the targets into 10 equally weighted buckets. We use the same experimental settings as in
the two prior works. The number of labeled / unlabeled data for Hepmass, Miniboone, and Protein
are 20/140,000, 20/65,000, 100/41,057 respectively. Hepmass and Miniboone have 2 classes, while
Protein has 10 classes. We compare our model to RBF Label Spreading, JEM, FlowGMM, ⇧-Model,
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Text data

SVHN CIFAR-10
Method 1000 Labels 4000 Labels

VAE M1+M2 64.0 ± 0.1 -
AAE 82.3 ± 0.3 -
JEM 66.0 ± 0.7 -
FlowGMM 82.4 78.2
Ours 92.0 ± 0.1 78.6 ± 0.3

TripleGAN 94.2 ± 0.2 83.0 ± 0.4
BadGAN 95.8 ± 0.03 85.6 ± 0.03
⇧-Model 94.6 ± 0.2 83.6 ± 0.3
VAT 96.3 ± 0.1 88.0 ± 0.1
Table 1: Accuracy on SVHN and CIFAR-10.

The second setting where a large pretrained language model is not available follows the setup used in
Gururangan et al. [14] where they proposed VAMPIRE. While the huge amount of text data required
for large transformer-based language model pretraining is available for some languages, such as
English, this scale of data is not available for all languages. We use the preprocessed data provided
by [14] and it contains 200 labeled data and 114,600 unlabeled documents for training. Follow [14],
a document is modeled by the unigram of its words. Thus, each document is a vector of vocabulary
size, V (V = 30, 000 for AGNews), and each element represents a word’s occurring frequency in the
document, modeled by a multinominal distribution. Notice that most popular SSL methods, such as
GAN-based models, data space EBM, and VAT, cannot be easily applied in this case since the data
space is discrete. We compare our model to VAMPIRE using unigram representation, self-training,
and supervised training with Glove word embeddings pretrained on in-domain and out-domain data
(see [14] for detailed descriptions of these baselines). The results are summarized in Table 3. Our
model clearly outperforms these baselines. It is worth pointing that FlowGMM is also applicable in
this setting. We attempted to apply FlowGMM to this task but achieved low accuracy.

AGNews-Bert
Method 200 Labels

RBF Label Spreading 36.1
FlowGMM 82.1 ± 1.0
Ours 82.0 ± 0.2

⇧-Model 80.2 ± 0.3
Table 2: Accuracy on AGNews with Bert embeddings.

AGNews-Unigram
Method 200 Labels

Self-training 77.3 ± 1.7
Glove (ID) 70.4 ± 1.2
Glove (OD) 68.8 ± 5.7
VAMPIRE 81.9 ± 0.5
Ours 84.5 ± 0.3

Table 3: Accuracy on AGNews with Unigram.

4.3 Tabular data

We use three tabular datasets from the UCI repository. Hepmass and Miniboone were utilized in
[18] for SSL and Protein was used in [46]. Protein has a continuous target variable and we follow
[46] to bin the targets into 10 equally weighted buckets. We use the same experimental settings as in
the two prior works. The number of labeled / unlabeled data for Hepmass, Miniboone, and Protein
are 20/140,000, 20/65,000, 100/41,057 respectively. Hepmass and Miniboone have 2 classes, while
Protein has 10 classes. We compare our model to RBF Label Spreading, JEM, FlowGMM, ⇧-Model,

6

Ying Nian Wu (UCLA) Latent Space EBM Bo Pang, Erik Nijkamp, Tian Han, S.-C. Zhu Papers can be downloaded from http://www.stat.ucla.edu/~ywu/research.html 31 / 33

http://www.stat.ucla.edu/~ywu/research.html


32/33

Tabular data

and VAT. Tabel 4 summarizes the results. Our model outperforms all baselines across the three tabular
datasets.

Hepmass Miniboone Protein
Method 20 Labels 20 Labels 100 Labels

RBF Label Spreading 84.9 79.3 -
JEM - - 19.6
FlowGMM 88.5 ± 0.2 80.5 ± 0.7 -
Ours 89.1 ± 0.1 81.2 ± 0.3 23.1 ± 0.3

⇧-Model 87.9 ± 0.2 80.8 ± 0.01 -
VAT - - 17.1

Table 4: Accuracy on Hepmass, Miniboone, and Protein.

5 Conclusion

Semi-supervised learning based on latent space EBM prior with symbol-vector coupling is very
natural. For unlabeled data, the marginal EBM prior is in the form of sum of exponentials. For
labeled data, the conditional distribution of label given the inferred latent vector is a regular softmax
classifier. The semi-supervised learning can be based on a principled likelihood-based framework,
with inference computation being amortized by a variational inference network.

Our model may be interpreted as a generative classifier, where the latent vector used for classification
is inferred based on a top-down generative model. The top-down model and the posterior inference
captures the concept of information bottleneck [41] more naturally than bottom-up classifier. The
posterior inference of a top-down model may be more robust to adversarial perturbations than a
classifier defined on the input directly, because the posterior inference can explain away the adversarial
perturbations via the top-down model. The inference of the latent vector is aware of the underlying
symbol, and the symbol-vector coupling in our prior model may shed light on the interaction between
symbolic reasoning and continuous computation. We may consider a multi-layer top-down model
where each layer consists of dense sub-vectors coupled with symbolic one-hot sub-vectors, so that
continuous computation based on dense sub-vectors is aware of the corresponding symbols.

Our experiments show that our semi-supervised learning method outperforms existing methods on
text and tabular data. We shall continue to improve our method on image data. To rephrase the title
of this workshop, we cannot believe our principled model-based semi-supervised learning method
does not work better than existing methods on image data.

Acknowledgement

We thank the reviewers for their insightful comments and suggestions. The work is supported by NSF
DMS-2015577.

Appendix: learning latent EBM with divergence perturbation formulation

This section provides a theoretical formulation for learning latent EBM in general, where our model
is a special case. We can embed our learning method within this general formulation.

The latent EBM is of the following form:

p✓(z, x) =
1

Z✓
exp(f✓(x, z)). (13)

Marginally, p✓(x) =
R

p✓(z, x)dz, and the posterior is p✓(z|x) = p✓(z, x)/p✓(x).

Let pdata(x) be the data distribution that generates x. Maximum likelihood estimation (MLE)
minimizes DKL(pdata(x)kp✓(x)), where expectation with respect to pdata can be approximated by
averaging over observed examples.
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Discussion

Energy-based model in latent space: simple and expressive
Symbol-vector coupling: hippocampus, entorhinal cortex, visual cortex?
Fast learning fα and slow learning gβ?
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