
Machine Learning Methods

Ying Nian Wu
UCLA Department of Statistics and Data Science

Written with Claude
Figures taken from internet belong to original authors

Bibliographies to be added
Table of Contents Clickable for Convenient Reading

December 2024

ii

Contents

1 Linear, Piecewise Linear and Logistic Regression 1
1.1 Simplest Linear Regression . 2
1.2 Loss Function and Optimization . 3

1.2.1 Loss Function . 3
1.2.2 Finding the Minimum . 4
1.2.3 Vector Representation . 4
1.2.4 Geometric Interpretation . 5
1.2.5 Regression Towards the Mean . 5

1.3 Multiple Linear Regression . 6
1.3.1 Data Representation . 6
1.3.2 Model Formulation . 6
1.3.3 Vector Notation . 7
1.3.4 Loss Function and Gradient . 7
1.3.5 Geometric Interpretation . 7
1.3.6 General Solution Methods . 8

1.4 Piecewise Linear Regression and Modern Interpolation Paradigm 9
1.4.1 Piecewise Linear Model . 9
1.4.2 Overfitting and Regularization . 10
1.4.3 Neural Network Interpretation . 12
1.4.4 Implicit Regularization . 13
1.4.5 Benefits of Overparameterization . 14
1.4.6 Learning as Interpolatable Memorization 14
1.4.7 Double Descent Phenomenon . 15
1.4.8 Benign Overfitting . 17
1.4.9 Connection to Deep Learning . 19
1.4.10 Reflection: Classical versus Interpolation Paradigms 20

1.5 Logistic Regression and Classification . 22
1.5.1 Maximum Likelihood Perspective . 22
1.5.2 Logistic Regression Model . 23
1.5.3 Likelihood and Gradients . 24

1.6 Gradient Descent . 24
1.6.1 Generic Notation and Taylor Expansion 24
1.6.2 Geometric Interpretation . 25
1.6.3 Basic Algorithm . 25

iii

iv CONTENTS

1.6.4 Gradient Descent with Momentum 26

2 Multi-Layer Perceptron 29
2.0.1 Foundation . 29
2.0.2 Architecture Development . 30
2.0.3 Advanced Topics . 30
2.0.4 Notable Features . 30
2.0.5 Applications . 31

2.1 Logistic Regression as Perceptron . 31
2.1.1 Notation Comparison . 31
2.1.2 Network Architecture . 32

2.2 One Hidden Layer . 32
2.2.1 One-dimensional Input . 32
2.2.2 Two-dimensional Input . 33
2.2.3 Maximum Likelihood Estimation . 34
2.2.4 Chain Rule Backpropagation . 35
2.2.5 Overparameterization and Learning Dynamics 36

2.3 General Multi-layer Perceptron . 38
2.4 Backpropagation for General MLP . 40

2.4.1 Scalar Intuition . 41
2.4.2 Vector and Matrix Form . 41
2.4.3 Detailed Component-wise Verification 42

2.5 Stochastic Gradient Descent . 44
2.5.1 Mini-batch Structure . 44
2.5.2 Gradient Computation . 45
2.5.3 Update Rule . 45
2.5.4 Stochasticity from Mini-batches . 45
2.5.5 The Concept of Epochs . 45
2.5.6 Single-Epoch Learning . 46
2.5.7 Practical Considerations . 46
2.5.8 Advantages of Mini-batch SGD . 47
2.5.9 Single vs Multiple Epochs . 47

2.6 Adam Optimizer . 48
2.6.1 Recall: Momentum . 48
2.6.2 Adaptive Learning Rates . 48
2.6.3 Geometric Intuition . 48
2.6.4 Adam Algorithm . 48
2.6.5 Geometric Benefits . 49
2.6.6 Benefits in Practice . 49

2.7 Parameter Initialization . 50
2.7.1 Basic Principles . 50
2.7.2 Common Initialization Methods . 50
2.7.3 Variance Analysis . 51
2.7.4 Practical Guidelines . 52
2.7.5 Impact on Training Dynamics . 52

CONTENTS v

2.7.6 Initialization and Optimization Interplay 53
2.8 Multi-class Classification . 53

2.8.1 Common Examples . 53
2.8.2 Network Architecture . 55
2.8.3 From Logit Scores to Probabilities . 55
2.8.4 Loss Function Derivation . 56
2.8.5 Gradient Derivation . 56
2.8.6 Comparison: Binary vs Multi-class 56
2.8.7 Progressive Abstraction in Hidden Layers 57

2.9 Word Embedding . 59
2.9.1 Model Structure . 60
2.9.2 Interpretation of Embedding Matrix 60
2.9.3 Forward Pass Example . 60
2.9.4 Gradient Derivation . 61
2.9.5 Implementation Note . 61

2.10 The Profound Idea of Embedding . 62
2.10.1 From Sparse to Dense Representation 62
2.10.2 Thought Vectors . 62
2.10.3 Vector Operations in Neural Networks 63
2.10.4 Properties of Embedding Space . 63
2.10.5 Learning Embeddings . 64
2.10.6 Impact on Deep Learning . 64

2.11 Associative Memory . 64
2.11.1 Model Structure . 65
2.11.2 Interpretation . 65
2.11.3 Associative Memory . 66
2.11.4 Gradient Derivation . 66
2.11.5 Learning Dynamics . 66
2.11.6 Linear Associative Memory . 67
2.11.7 Non-linear Associative Memory . 68

2.12 Embedding for Recommender Systems . 70
2.12.1 Basic Model . 70
2.12.2 Learning from Observations . 70
2.12.3 Neural Network Interpretation . 70
2.12.4 Interpretation of User Embeddings 71
2.12.5 Mathematical Properties . 71
2.12.6 Addiction Mechanism . 71
2.12.7 Extension to Non-linear Models . 72

2.13 Superposition . 72
2.13.1 Beyond Individual Components . 72
2.13.2 Basis Representation . 72
2.13.3 Subspace Decomposition . 73
2.13.4 Example: Barack Obama Embedding 73
2.13.5 Mathematical Properties . 73
2.13.6 Implications . 74

vi CONTENTS

2.13.7 Neural Network Perspective . 74

2.14 Normalization . 75

2.14.1 RMS Normalization . 75

2.14.2 Geometric Interpretation . 75

2.14.3 Benefits for Loss Landscape . 75

2.14.4 Error Correction Properties . 76

2.14.5 Cosine Similarity . 76

2.14.6 Application in Neural Networks . 77

2.15 Dropout . 77

2.15.1 Basic Mechanism . 77

2.15.2 Testing Phase Adjustment . 78

2.15.3 Advantages and Intuitions . 78

2.15.4 Mathematical Analysis . 79

2.15.5 Implementation Considerations . 80

2.15.6 Fault Tolerance: RMS Norm vs Dropout Comparison 80

3 Convolutional Neural Networks 83

3.1 Neural Networks as Computer Programs . 84

3.1.1 Recall: The Neural Language . 84

3.1.2 Basic Operations in Neural Language 84

3.1.3 Neural Networks as Computer Programs 84

3.1.4 Programming with Vectors . 85

3.1.5 Learning as Program Writing . 85

3.1.6 Understanding Neural Programs . 86

3.2 Computer Vision . 86

3.2.1 Input Image Structure . 86

3.2.2 Layers and Representations . 87

3.2.3 Convolutional Layer Computation . 89

3.2.4 Dimension Considerations . 90

3.2.5 Inductive Bias in Convolution . 91

3.2.6 Subsampling in Convolutional Layers 93

3.2.7 Fully Connected Layer Computation 93

3.2.8 Channel and Kernel View . 94

3.2.9 1×1 Convolution . 94

3.3 Backpropagation in CNN . 95

3.3.1 Error Signal . 95

3.3.2 Backprop through FC Layers . 96

3.3.3 Backprop through Convolutional Layers 96

3.3.4 Backprop through Subsampling . 96

3.3.5 Parallelization . 96

3.3.6 Implementation Structure . 97

CONTENTS vii

4 Recurrent Neural Networks 99
4.1 Vector Evolution over Time . 100
4.2 Next Word Prediction . 101

4.2.1 Forward Computation . 101
4.2.2 Meaning of Hidden States . 101
4.2.3 Backpropagation Through Time . 102
4.2.4 Gradient Vanishing . 103

4.3 LSTM Innovation 1: Memory Stream . 104
4.3.1 Memory Stream . 105
4.3.2 Example: “I love machine learning” 105
4.3.3 Superposition in Memory Stream . 106
4.3.4 Detailed Gradient Calculation . 107
4.3.5 Memory Organization . 109

4.4 LSTM Innovation 2: Multiplicative Gates . 109
4.4.1 Key Innovations . 109
4.4.2 Memory Update Mechanism . 110

4.5 Multi-layer Recurrent Networks . 111
4.5.1 Backpropagation Through Layers and Time 112
4.5.2 Fast Generation/Inference . 114
4.5.3 Memory Streams . 115

4.6 Residual Stream . 115
4.6.1 Residual Stream Through Layers . 115
4.6.2 Residual Stream in MLPs: A Computational Time Perspective 116
4.6.3 Computational Time Interpretation 118
4.6.4 Contrast with Real Time . 118
4.6.5 Gradient Flow . 119
4.6.6 Residual Stream as Assembly Line 119
4.6.7 Learning Simplification . 119
4.6.8 Parallel with Memory Stream . 120
4.6.9 Gradient Flow as Quality Control . 120

4.7 Residual Stream as Learned Iterative Algorithm 121
4.7.1 Finite Step Iterative Algorithm . 121
4.7.2 Algorithm Without Explicit Objectives 121
4.7.3 Learned Update Rule . 122
4.7.4 Finite-Step Design . 122
4.7.5 Advantages of Learning the Algorithm 123
4.7.6 Neural Programs with For Loops . 123

4.8 Neural Programming Language . 124
4.8.1 Neural network as a computer program 124
4.8.2 Data as the Programmer . 124
4.8.3 Role of Residual Stream . 124
4.8.4 Foundation of Digital Intelligence . 125

4.9 Parameter Sharing Across Streams . 126
4.9.1 Memory Stream and Residual Stream 126
4.9.2 Rationale for the Difference . 126

viii CONTENTS

4.9.3 Adding Recurrence/Residual to CNNs 127
4.9.4 Computational Structure . 127
4.9.5 Advantages . 128

4.10 Vanilla RNN vs Temporal CNN . 128
4.10.1 With or Without Horizontal Recurrent Connections 128
4.10.2 Key Differences . 129

4.11 State Space Models . 130
4.11.1 Basic Formulation . 130
4.11.2 Unrolled Form . 130
4.11.3 Unifying Recurrent and Convolutional Views 131
4.11.4 Computational Advantages . 131

4.12 Continuous-Time State Space Model . 132
4.12.1 Memory Stream Form . 132
4.12.2 Zero-Order Hold (ZOH) Discretization 132

4.13 Mamba: Selective State Space Model . 133
4.13.1 Key Innovation . 133

4.14 Quantum Mechanics as RNN . 135
4.14.1 Basic Structure . 136
4.14.2 Special Properties . 136
4.14.3 Squared-Softmax and Born Rule . 137
4.14.4 Norm Conservation in Quantum Measurement 137
4.14.5 Hidden Layer as Fundamental Reality 138
4.14.6 Interface to Classical Reality . 138
4.14.7 The Role of the Observer . 139
4.14.8 Classical Reality as Rendered Display 139
4.14.9 Philosophical Implications . 139

5 Transformer and GPT 141
5.1 Embedding, Thought Vectors and Distributed Representations 142

5.1.1 Superposition Nature . 142
5.1.2 Information Extraction . 143
5.1.3 Properties . 144
5.1.4 Neural Operations . 144
5.1.5 Residual Stream: Building Superposition 145
5.1.6 Assembly Line Process . 145

5.2 Transformer Residual Stream . 145
5.2.1 Dual Retrieval Mechanism . 146
5.2.2 Assembly Line Process . 146
5.2.3 Two Forms of Retrieval . 147
5.2.4 Complementary Nature . 148
5.2.5 Attention Mechanism . 149
5.2.6 Mixture of Experts . 151

5.3 Complete Transformer Architecture . 153
5.3.1 Token and Position Embeddings . 153
5.3.2 Layer Processing . 153

CONTENTS ix

5.3.3 Output Generation . 153
5.3.4 Backpropagation and Parallelization 154

5.4 Associative Memory . 155
5.4.1 SVD as Memory Structure . 155
5.4.2 MLP as Query Generator . 156
5.4.3 Memory Cleaning . 157
5.4.4 Memory Editing . 157
5.4.5 Low-Rank Adaptation (LoRA) . 158
5.4.6 Query-Key-Value Projection as Assocative Memory 159

5.5 Reflection: A Matrix = A Thousand Rules 160
5.5.1 Matrix as Infinite Association Rules 160
5.5.2 Advantages over Discrete Systems . 160
5.5.3 Learnability through Backpropagation 161
5.5.4 Compositional Learning . 162
5.5.5 Implications . 162
5.5.6 Counter Argument: The Power of Abstract Logic 162

5.6 Architectural Comparison . 163
5.6.1 Bottom-up Architecture . 163
5.6.2 Context Access . 164
5.6.3 Memory Metaphor . 164
5.6.4 Inference Process . 165
5.6.5 Trade-offs . 165

5.7 Original Transformer for Translation . 166
5.7.1 Architecture Overview . 166
5.7.2 Three Types of Attention . 166
5.7.3 Encoder Matrix Implementation . 167
5.7.4 Decoder Masked Attention . 167

5.8 Transformer Family: Translation to BERT and GPT 168
5.8.1 Architectural Heritage . 168
5.8.2 BERT (Bidirectional Encoder Representations from Transformers) . . 168
5.8.3 GPT (Generative Pre-trained Transformer) 169
5.8.4 Core Distinctions . 169

5.9 Original Transformer Parameters . 170
5.9.1 Core Architecture Parameters . 170
5.9.2 Key Design Choices . 170

5.10 GPT-3 175B Architecture . 171
5.10.1 Key Parameters . 171
5.10.2 Parameter Distribution . 171
5.10.3 Computation Flow . 171
5.10.4 Design Choices . 172

5.11 Scaling Laws . 172
5.11.1 Power Law Relationships . 172
5.11.2 Optimal Allocation . 173
5.11.3 Chinchilla Scaling . 174
5.11.4 Implications . 174

x CONTENTS

5.11.5 Example Scales . 175
5.12 Two-Stage Training . 175

5.12.1 Pre-training Stage . 175
5.12.2 Instruction Fine-tuning . 175
5.12.3 Training Process . 176
5.12.4 Benefits of Two-Stage Approach . 177
5.12.5 Example Instructions . 177

5.13 Data Curation Pipeline . 178
5.13.1 Pre-training Stages . 178
5.13.2 Instruction Fine-tuning . 178
5.13.3 RLHF Data . 179
5.13.4 Quality Progression . 179
5.13.5 Continuous Improvement . 180

5.14 Reinforcement Learning from Human Feedback 180
5.14.1 Basic Concept . 180
5.14.2 Reward Modeling . 180
5.14.3 Bradley-Terry Model . 182
5.14.4 Policy Gradient Fine-tuning . 183
5.14.5 Comparison with Maximum Likelihood 185

5.15 Proximal Policy Optimization (PPO) . 186
5.15.1 Importance Sampling Form . 186
5.15.2 Motivation for Clipping . 186
5.15.3 PPO Clipped Objective . 186
5.15.4 Implementation Benefits . 187
5.15.5 Understanding PPO . 188

5.16 Vision Transformer (ViT) . 189
5.16.1 Image to Sequence . 190
5.16.2 Patch Embedding . 190
5.16.3 Processing Architecture . 190
5.16.4 Comparison with CNN . 190
5.16.5 Computational Aspects . 191
5.16.6 Practical Considerations . 191

5.17 CLIP: Contrastive Language–Image Pretraining 192
5.17.1 Dual Encoder Architecture . 192
5.17.2 Contrastive Loss . 193
5.17.3 Understanding Contrastive Learning 193
5.17.4 Temperature Scaling . 193
5.17.5 Training Process . 194
5.17.6 Applications . 194

6 Diffusion Model 195
6.1 Probability Preliminaries: Counting Population 196

6.1.1 Discrete Random Variables: Population Movement Between States . . 196
6.1.2 Continuous Random Variables: Population Distribution on a Line . . 198

6.2 Noising and Denoising: A Single Step . 199

CONTENTS xi

6.2.1 The Forward Noising Process . 199
6.2.2 The Backward Denoising Process . 199
6.2.3 Reversibility of the Noising Process 201
6.2.4 Why Score Reverses Noising . 201
6.2.5 Stochastic Denoising and Deterministic Denoising 202

6.3 Trajectory-Based Data Augmentation . 204
6.3.1 Motivation and Challenges . 204
6.3.2 Trajectory-Based Approach . 204
6.3.3 Learning the Generation Process . 205
6.3.4 Generation Process . 205
6.3.5 Comparison with Autoregressive Models 205

6.4 Simple Gaussian Trajectory Construction: Noising and Denoising 206
6.4.1 Forward Process Construction . 206
6.4.2 Transition Probability . 206
6.4.3 Terminal Distribution Analysis . 206
6.4.4 Derivation of the Reserve Transition Distribution 207
6.4.5 Uniqueness of Gaussian . 208
6.4.6 Necessity of Small Noise Variance . 208

6.5 Score-Based Parametrization . 209
6.5.1 Single Neural Network Parametrization 209
6.5.2 Learning the diffusion model . 210
6.5.3 Generation Process . 210
6.5.4 Alternative Loss: Predicting Clean Data 210
6.5.5 Noise Prediction . 210
6.5.6 Generation Process with Noise Prediction 211
6.5.7 Scaling . 211
6.5.8 UNet Parametrization of the Score Network 211

6.6 Variance Reduction via Trajectory Averaging 213
6.6.1 Multiple Trajectories Perspective . 213
6.6.2 Variance-Reduced Loss with Conditional Mean 214
6.6.3 Deriving Alternative Loss via Conditional Mean 214

6.7 Connection to Denoising Auto-Encoder and Vincent Identity 215
6.7.1 Denoising Auto-Encoder . 215
6.7.2 Proof of Vincent Identity . 215

6.8 Noise Prediction Parameterization . 216
6.8.1 Loss Function . 216
6.8.2 Training Algorithm . 217
6.8.3 Sampling Algorithm . 217

6.9 Maximum Likelihood and Kullback-Leibler Divergence 218
6.9.1 General Setting . 218
6.9.2 Extension to Trajectories . 218
6.9.3 Trajectory Distributions . 218
6.9.4 Learning the diffusion model . 219
6.9.5 Connection to KL Divergence . 220
6.9.6 Trajectory Distribution Factorization 220

xii CONTENTS

6.9.7 KL Divergence Decomposition . 220
6.9.8 Local KL Terms . 221
6.9.9 Final Objective . 221

6.10 Deterministic Sampling: t− 2 Reasoning . 221
6.11 Continuous Time Analysis . 222

6.11.1 Forward Process . 222
6.11.2 Stochastic Differential Equation (SDE) Backward 223
6.11.3 Deterministic Ordinary Differential Equation (ODE) Backward 223
6.11.4 Understanding Continuous Time Through Movies 224

6.12 Stochastic Noising and Deterministic Denoising 224
6.12.1 Distribution Preservation . 224
6.12.2 Intuitive Understanding . 225
6.12.3 Langevin Dynamics for Equilibrium Sampling 225
6.12.4 Non-equilibrium Sampling . 226

6.13 General Forward Process with Drift . 226
6.13.1 Forward Process Analysis . 226
6.13.2 Backward Processes . 227

6.14 Random Drift Process . 227
6.14.1 Process Comparison . 227
6.14.2 Accumulated Variance Analysis . 228
6.14.3 Deterministic Equivalence . 228
6.14.4 Backward Process . 228

6.15 Fokker-Planck Analysis . 229
6.15.1 Test Function Perspective . 229
6.15.2 SDE Analysis . 229
6.15.3 ODE Analysis . 230
6.15.4 SDE-ODE Equivalence . 230
6.15.5 Random Drift Analysis . 230
6.15.6 Extension to Multivariate Case . 230

6.16 Flow Matching with Straight Trajectories . 231
6.16.1 Design Principle . 231
6.16.2 Non-Markovian Trajectory Data . 231
6.16.3 Setup . 232
6.16.4 Backward Process Analysis . 232
6.16.5 Flow Matching Learning . 233
6.16.6 Connection to Noise and Score Prediction 233

6.17 Variance Scheduling . 234
6.17.1 Forward Process Construction . 234
6.17.2 Deriving the Marginal Distribution 234
6.17.3 Training and Sampling . 236
6.17.4 Forward Process SDE . 236
6.17.5 Backward Processes . 237

6.18 Applications of Diffusion Models . 238
6.18.1 Text-to-Image Generation . 238
6.18.2 Diffusion Transformer . 239

CONTENTS xiii

7 VAE and GAN 241
7.1 Maximum Likelihood and KL-Divergence . 242

7.1.1 Empirical Distribution and Log-likelihood 242
7.1.2 True Model Log-likelihood and Entropy 242
7.1.3 KL Divergence as Log-likelihood Gap 242
7.1.4 Information Geometric Interpretation 243
7.1.5 Implications . 243

7.2 Deconvolution Network with Latent Space 243
7.2.1 Structured Latent Representation . 243
7.2.2 Deconvolution Network Architecture 244
7.2.3 Training . 244
7.2.4 Latent Space Interpolation . 245
7.2.5 Applications . 246

7.3 Latent Variable Models: From Effect to Cause 246
7.3.1 Data Augmentation with Latent Variables 246
7.3.2 Generative Model Structure . 246
7.3.3 Manifold Learning Perspective . 247
7.3.4 Historical Connection: Factor Analysis 247

7.4 From Marginal to Joint KL Divergence . 247
7.4.1 Log-likelihood and KL Divergence . 247
7.4.2 Extension to Complete Data . 248
7.4.3 Key Decomposition . 248
7.4.4 Two Forms of ELBO . 249
7.4.5 Analysis of Gaps . 250

7.5 Inference Model . 251
7.5.1 From Data Augmentation to Learnable Inference 251
7.5.2 Joint Optimization . 251
7.5.3 Evidence Lower Bound with Learnable Inference 252
7.5.4 Interpreting Form 1 of the ELBO . 252
7.5.5 Interpreting Form 2 of the ELBO . 253
7.5.6 Mode Covering versus Mode Seeking Behavior 254
7.5.7 Connection to EM Algorithm . 255

7.6 Variational Autoencoder Implementation . 256
7.6.1 Neural Network Parametrization . 256
7.6.2 The Reparametrization Trick . 257
7.6.3 Computing the ELBO . 257
7.6.4 Training Algorithm . 257
7.6.5 Practical Considerations . 258
7.6.6 Generation and Reconstruction . 258

7.7 Comparison with Diffusion Models . 258
7.7.1 Latent Variable Structure . 258
7.7.2 Key Distinction: Fixed vs Learned Inference 259
7.7.3 Theoretical Guarantees . 259
7.7.4 Philosophical Perspective . 259

7.8 Generative Adversarial Networks . 260

xiv CONTENTS

7.8.1 Data Structure . 260
7.8.2 Learning the Discriminator . 261
7.8.3 Game-Theoretic Perspective . 261
7.8.4 Implementation Form . 262
7.8.5 Wasserstein GAN . 262
7.8.6 Mode Collapse . 263

8 Deep Reinforcement Learning 265
8.1 Theoretical Foundations of Sequential Decision Making 266

8.1.1 Basic Setup . 267
8.1.2 Key Functions . 267
8.1.3 Model-Based vs Model-Free Paradigms 268

8.2 Fundamental Theorems in Reinforcement Learning 268
8.2.1 Policy Gradient Theorem . 268
8.2.2 Fundamental Relationships in Value-Based RL 269
8.2.3 Implications . 271
8.2.4 Core Algorithm Derivations . 271
8.2.5 Advanced Methods . 272

8.3 The Game of Go . 273
8.3.1 Game Complexity . 273
8.3.2 Formal Game Definition . 273
8.3.3 Rules and Gameplay . 274

8.4 Neural Network Architecture . 274
8.4.1 Policy Network . 274
8.4.2 Value Network . 275

8.5 Training Methodology . 275
8.5.1 Supervised Learning of Policy Network 275
8.5.2 Reinforcement Learning of Policy Network 276
8.5.3 Training the Value Network . 276

8.6 Progressive Introduction to Monte Carlo Tree Search 276
8.6.1 From Simple Policy to Look-ahead Search 276
8.6.2 Basic Monte Carlo Look-ahead . 277
8.6.3 Advantage of Looking Ahead . 278
8.6.4 Foundation for Full MCTS . 279
8.6.5 Q-value Update on the Whole Branch 279
8.6.6 Policy-Guided Action Selection . 282
8.6.7 Full MCTS with Dynamic Tree Growth 284
8.6.8 Complementary Roles of Policy and Value for Search 287
8.6.9 Value Network and Bootstrap Principle 289

8.7 From AlphaGo to AlphaGo Zero . 291
8.7.1 Original AlphaGo Architecture . 291
8.7.2 The Key Insight . 292
8.7.3 The Natural Evolution . 292
8.7.4 Birth of AlphaGo Zero . 293
8.7.5 Why This Works . 293

CONTENTS xv

8.8 Reflections: System 1 and System 2 . 293
8.8.1 System 1 and System 2 in AlphaGo Zero 293
8.8.2 The Consciousness Parallel . 294
8.8.3 Learning as Memorization . 295
8.8.4 Primacy of Planning . 295
8.8.5 Generalization and Transfer . 296

8.9 Deep Q-Learning for Atari Games . 296
8.9.1 The Atari Environment . 297
8.9.2 Q-Learning Formulation . 297
8.9.3 Key Components . 297
8.9.4 Training Process . 298
8.9.5 Contrast with AlphaGo . 298
8.9.6 Practical Considerations . 298
8.9.7 Q-Learning and MCTS: Shared Principles 299

8.10 Policy Gradient Methods for Atari Games 300
8.10.1 Core Idea . 300
8.10.2 Policy Gradient Theorem . 301
8.10.3 REINFORCE Algorithm . 301
8.10.4 Variance Reduction . 301
8.10.5 Practical Implementation . 302
8.10.6 Comparison with Q-Learning . 302

8.11 Value-Based versus Policy-Based Methods 302
8.11.1 Fundamental Differences . 303
8.11.2 Key Properties . 303
8.11.3 Learning Characteristics . 304
8.11.4 Implementation Aspects . 304
8.11.5 Practical Trade-offs . 305
8.11.6 Empirical Results in Atari . 305
8.11.7 Motivation for Hybrid Approaches 306

8.12 Actor-Critic Methods for Atari Games . 306
8.12.1 Core Architecture . 306
8.12.2 Advantage Estimation . 307
8.12.3 Implementation for Atari . 308
8.12.4 Key Advantages for Atari . 308
8.12.5 Practical Considerations . 309
8.12.6 Comparison to Other Methods . 309
8.12.7 Proximal Policy Optimization (PPO) 310
8.12.8 Actor-Critic Implementation in PPO 311

8.13 Bootstrapping in Dense-Reward Settings . 313
8.13.1 Core Bootstrap Concept . 313
8.13.2 One-Step Bootstrap . 313
8.13.3 Multi-Step Bootstrap . 314
8.13.4 Why Bootstrap Works in Dense Rewards 314
8.13.5 Implementation Considerations . 315
8.13.6 Success in Practice . 316

xvi CONTENTS

8.13.7 Dense-Reward vs MCTS Bootstrapping 316
8.14 Temporal Difference Learning . 318

8.14.1 The TD Learning Principle . 318
8.14.2 Comparison with Other Methods . 319
8.14.3 TD Learning Properties . 320
8.14.4 Variants and Extensions . 320
8.14.5 Connection to Other Concepts . 321

8.15 On-Policy versus Off-Policy Learning . 321
8.15.1 Fundamental Definitions . 321
8.15.2 Mathematical Formulation . 322
8.15.3 Algorithm Examples . 322
8.15.4 Key Trade-offs . 322
8.15.5 Implementation Considerations . 323
8.15.6 Unified View . 324
8.15.7 Application Examples . 324

8.16 Dense versus Sparse Rewards . 324
8.16.1 Reward Characteristics . 324
8.16.2 Implications for Learning . 325
8.16.3 Solution Approaches . 326
8.16.4 Architectural Implications . 326

8.17 Model-Based vs Model-Free Approaches . 326
8.17.1 Model Definition . 326
8.17.2 Analysis by Game Type . 327
8.17.3 Algorithmic Approaches . 327
8.17.4 Hybrid Approaches . 328
8.17.5 Trade-offs Summary . 329

8.18 Model Predictive Control (MPC) . 329
8.18.1 Core Concept . 329
8.18.2 Mathematical Formulation . 330
8.18.3 Algorithm Structure . 330
8.18.4 Key Advantages . 331
8.18.5 Comparison to Other Methods . 331
8.18.6 Unifying View: MPC and AlphaGo Planning 331

8.19 Planning versus Policy Approaches . 333
8.19.1 Fundamental Distinction . 333
8.19.2 Computational Properties . 334
8.19.3 Information Usage . 334
8.19.4 Decision Quality . 335
8.19.5 Hybrid Approaches . 335
8.19.6 Domain-Specific Considerations . 336
8.19.7 Implementation Considerations . 337
8.19.8 Future Trends . 337

8.20 Relationship Between Planning and Control 338
8.20.1 Core Definitions and Distinctions . 338
8.20.2 Mathematical Formulations . 338

CONTENTS xvii

8.20.3 Key Distinctions . 339
8.20.4 Model Predictive Control: A Bridge 340
8.20.5 Comparative Analysis . 340
8.20.6 Modern Integration . 341
8.20.7 Future Directions . 342

8.21 Policy and Value Functions in Planning and Control 342
8.21.1 Fundamental Roles . 342
8.21.2 Integration in Planning . 343
8.21.3 Integration in Control . 343
8.21.4 Hybrid Architectures . 344
8.21.5 Learning Mechanisms . 345
8.21.6 Implementation Considerations . 345
8.21.7 Future Directions . 346

8.22 Online versus Offline Reinforcement Learning 346
8.22.1 Fundamental Distinctions . 346
8.22.2 Mathematical Formulation . 347
8.22.3 Key Challenges . 347
8.22.4 Modern Algorithms . 348
8.22.5 Implementation Considerations . 349
8.22.6 Applications . 350
8.22.7 Future Directions . 350

8.23 Summary . 351
8.23.1 Core Components in Deep RL . 351
8.23.2 Algorithm Classification . 351
8.23.3 Key Trade-offs . 352
8.23.4 Unified Learning Framework . 352
8.23.5 Domain-Specific Insights . 352

9 Trees and Boosting 355
9.1 Incremental Model Improvement: From Deep Learning to Trees 356

9.1.1 The Principle of Incremental Learning 356
9.1.2 Three Paradigms of Incremental Improvement 356
9.1.3 Geometric Interpretation . 356
9.1.4 Common Mathematical Structure . 356
9.1.5 The Role of Gradients . 357
9.1.6 Looking Ahead . 357

9.2 Decision Trees . 357
9.2.1 A Motivating Example . 357
9.2.2 Decision Rules and Tree Structure . 358
9.2.3 The Concept of Purity . 358
9.2.4 Splitting Criterion . 359
9.2.5 From Classification to Regression . 359

9.3 Regression Trees . 359
9.3.1 Mathematical Framework . 359
9.3.2 Optimization Problem . 360

xviii CONTENTS

9.3.3 Recursive Binary Splitting . 360
9.3.4 Split Selection Algorithm . 360
9.3.5 Tree Growing Procedure . 361
9.3.6 Statistical Properties . 361

9.4 Least Squares Boosting . 362
9.4.1 Basic Framework . 362
9.4.2 Regularized Optimization . 362
9.4.3 Tree Construction with Regularization 362
9.4.4 Extension to Weighted Least Squares 363
9.4.5 Complete Algorithm . 363
9.4.6 Connection to XGBoost . 363

9.5 XGBoost for Logistic Regression . 364
9.5.1 The Logistic Model . 364
9.5.2 Loss Function Analysis . 364
9.5.3 Adding a New Tree . 365
9.5.4 Geometric Interpretation . 367
9.5.5 The Golf Analogy . 367
9.5.6 Connection to Error Back-propagation 368
9.5.7 Tree Learning as Back-propagation 368
9.5.8 Connection to Iterative Reweighted Least Squares 369

9.6 Surrogate Loss Functions and Incremental Learning 371
9.6.1 The Role of Surrogate Losses . 371
9.6.2 Gradient Descent as Surrogate Minimization 371
9.6.3 Boosting and Surrogate Losses . 372
9.6.4 XGBoost’s Second-Order Surrogate 372
9.6.5 A Unified View Through Surrogate Functions 373
9.6.6 Design Principles for Surrogate Functions 373
9.6.7 Connection to Earlier Sections . 374

9.7 The “Lazy” Nature of Boosting and Implicit Regularization 374
9.7.1 Gradient Flow and Function Space 374
9.7.2 The Principle of Least Action . 375
9.7.3 Spectral Bias in Function Learning 375
9.7.4 Early Stopping as Complexity Control 375
9.7.5 Implicit Regularization Through Optimization 376
9.7.6 Comparison with Neural Networks 376
9.7.7 Practical Implications . 376

9.8 AdaBoost . 377
9.8.1 The Exponential Loss Framework . 377
9.8.2 Properties of Exponential Loss . 378
9.8.3 Forward Stagewise Additive Modeling 380
9.8.4 Optimal Base Classifier . 380
9.8.5 Optimal Weight Coefficient . 380
9.8.6 Weight Update Rule . 380
9.8.7 The Complete Algorithm . 381
9.8.8 Comparison with XGBoost . 381

CONTENTS xix

9.9 Random Forests . 383
9.9.1 Ensemble Framework . 383
9.9.2 Sources of Randomization . 383
9.9.3 Tree Construction . 384
9.9.4 Statistical Properties . 384
9.9.5 Variable Importance Measures . 385
9.9.6 Theoretical Results . 385
9.9.7 Comparison with Boosting Methods 386
9.9.8 Implementation Considerations . 386

10 Support Vector Machine 387
10.1 Primal Problem: Max Margin . 388

10.1.1 The Geometric Intuition . 388
10.1.2 The Separation Problem . 388
10.1.3 Connection to Standard SVM Formulation 389

10.2 From Primal to Dual: MinMax = MaxMin 390
10.2.1 The Lagrangian Formulation . 390
10.2.2 The Minimax Problem . 390
10.2.3 Equivalence of Max-Min Lagrangian to Primal Problem 390
10.2.4 Saddle Point and Max-Min Equality 391
10.2.5 Game Theoretic Interpretation of Max-Min Equality 393

10.3 Dual Problem: Min Distance . 395
10.3.1 Initial Dual Derivation . 395
10.3.2 Geometric Interpretation via frontal points 396
10.3.3 The Distance Interpretation . 396
10.3.4 The Minimum Distance Problem . 397
10.3.5 Projections and Separation . 397
10.3.6 Karush-Kuhn-Tucker (KKT) Conditions 398

10.4 Dual Coordinate Ascent . 398
10.4.1 Dual Problem with b = 0 . 398
10.4.2 Coordinate-wise Optimization . 398
10.4.3 Optimal Update . 399
10.4.4 Algorithm . 399
10.4.5 Implementation Details . 399

10.5 The Kernel Trick . 400
10.5.1 Motivation . 400
10.5.2 Kernel Function . 401
10.5.3 Kernelized Dual Problem . 401
10.5.4 Common Kernel Functions . 401
10.5.5 Mercer’s Theorem . 401
10.5.6 Kernelized Coordinate Descent . 402
10.5.7 Implementation Considerations . 402
10.5.8 Reproducing Kernel Hilbert Space . 402
10.5.9 Example: Gaussian RBF Kernel . 404

10.6 Soft Margin SVM . 404

xx CONTENTS

10.6.1 Motivation . 404
10.6.2 Primal Problem . 405
10.6.3 Lagrangian . 405
10.6.4 KKT Conditions . 406
10.6.5 Dual Problem . 406
10.6.6 Support Vector Cases . 406
10.6.7 Bias Term Computation . 407
10.6.8 Model Selection . 407

10.7 Sequential Minimal Optimization (SMO) . 407
10.7.1 Problem Structure . 407
10.7.2 Two-Variable Subproblem . 408
10.7.3 Analytical Solution . 408
10.7.4 Constraint Handling . 408
10.7.5 Algorithm and Convergence . 409
10.7.6 Connection to Coordinate Methods 409
10.7.7 Comparison of Incremental Learning Strategies 409

10.8 From Slack Variables to Hinge Loss . 411
10.8.1 Three Major Loss Functions . 411
10.8.2 Properties . 412
10.8.3 Derivatives . 412
10.8.4 Statistical Interpretation . 413
10.8.5 Practical Considerations . 413

10.9 A Unified View of Modern Learning Methods 413
10.9.1 General Framework . 413
10.9.2 Hidden Layer Characteristics . 414
10.9.3 Feature Construction . 414
10.9.4 Learning Paradigms . 415
10.9.5 Model Complexity Control . 415
10.9.6 Advantages and Trade-offs . 415
10.9.7 Practical Considerations . 416

10.10Model Complexity and Regularization . 417
10.10.1Fundamental Principle: Explaining Away Noise 417
10.10.2Three Views of Complexity . 417
10.10.3Controlling Complexity . 418
10.10.4Unified Understanding . 419
10.10.5Theoretical Guarantees . 419
10.10.6Modern Perspectives . 419
10.10.7Practical Implications . 419

Chapter 1

Linear, Piecewise Linear and Logistic
Regression

Figure 1.1: Gaussian paradigm: loss function (least squares), probabilistic formulation
(Gaussian distribution), theoretical optimality (Gauss-Markov theorem), and empirical ver-
ification (planetoid Ceres)

Everything is regression.
— Jan deLeeuw
Founding chair of UCLA Department of Statistics and Data Science

Chapter Overview

This chapter introduces fundamental concepts of machine learning through increasingly so-
phisticated regression models. We begin with the simplest linear regression using father-son

1

2 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

height data, which serves as a gentle introduction to key ideas of prediction, loss function,
and optimization.

We then extend to multiple linear regression, which forms the foundation of modern
machine learning. This framework introduces vector representations, matrix operations, and
geometric interpretations that will pervade throughout deep learning.

The chapter takes a significant turn with piecewise linear regression, which captures many
essential aspects of deep learning:

• ReLU network interpretation of piecewise linear functions

• Overparameterization and interpolation phenomena

• Implicit regularization through gradient descent

• Double descent behavior where more parameters can lead to better generalization

• Balance between memorization and generalization

Finally, we study logistic regression for classification, which introduces:

• Non-linear activation function (sigmoid)

• Probabilistic interpretation of outputs

• Maximum likelihood estimation

• Non-trivial example of gradient descent optimization

This progression builds from simple to complex, revealing how modern deep learning
emerges naturally from classical statistical concepts. The piecewise linear model serves as a
bridge between traditional statistics and neural networks, while logistic regression introduces
key nonlinear elements central to deep learning.

1.1 Simplest Linear Regression

Linear regression begins with training data consisting of paired observations. In our funda-
mental example, we study the relationship between fathers’ and sons’ heights, where each
pair represents a training example indexed from 1 to n.

i xi (Father’s Height) yi (Son’s Height)

1 x1 y1
2 x2 y2
...

...
...

i xi yi
...

...
...

n xn yn

Table 1.1: Structure of height data

1.2. LOSS FUNCTION AND OPTIMIZATION 3

The model predicts a son’s height using a simple linear formula si = xiβ, where:

• si represents the predicted height (linear score)

• xi is the father’s height (input)

• β is our model parameter to be learned

We measure the prediction error (residual) as ei = yi − si, which captures the difference
between actual and predicted values.

1.2 Loss Function and Optimization

1.2.1 Loss Function

To evaluate our model’s performance, we define a loss function that penalizes prediction
errors:

L(β) =
1

2

n∑
i=1

e2i =
1

2

n∑
i=1

(yi − xiβ)
2 (1.1)

The factor of 1
2
simplifies our derivative calculations. When divided by n, this function

is known as Mean Squared Error (MSE). The loss function forms a parabola with a unique
minimum point β̂.

−2 −1 0 1 2 3 4

1

2

3

4

5

β̂

β

L
(β
)

Figure 1.2: Loss function with minimum at β̂

4 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

1.2.2 Finding the Minimum

To find the minimum of our loss function, we calculate its derivative using the chain rule:

dL

dβ
=

n∑
i=1

∂L

∂ei
· ∂ei
∂si
· ∂si
∂β

(1.2)

=
n∑

i=1

ei · (−1) · xi (1.3)

= −
n∑

i=1

xiei (1.4)

= −
n∑

i=1

xi(yi − xiβ) (1.5)

We can find the minimum in two ways:

• Gradient Descent (Iterative Method):

– Start with an initial guess for β

– Update using βnew = βold − ηL′(βold)

– Use learning rate η (small positive number)

– Repeat until convergence

• Closed-form Solution (Direct Method):

– Set L′(β) = 0 and solve

– Obtain

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

(1.6)

1.2.3 Vector Representation

We can express our data more compactly using vector notation:

Index X (Fathers’ Heights) Y (Sons’ Heights)

1 x1 y1
2 x2 y2
...

...
...

n xn yn

Vector Form X =


x1

x2
...
xn

 Y =


y1
y2
...
yn


Table 1.2: Vector representation of data

1.2. LOSS FUNCTION AND OPTIMIZATION 5

Our model now involves four key vectors:

• Input vector X containing fathers’ heights

• Output vector Y containing sons’ heights

• Prediction vector Xβ̂

• Error vector e = Y −Xβ̂

1.2.4 Geometric Interpretation

Geometrically, Xβ̂ represents the projection ofY ontoX. The error vector e is perpendicular
to X, and the angle θ indicates the alignment between X and Y.

X

Y

Xβ̂

e

θ

Figure 1.3: Geometric view of linear regression

1.2.5 Regression Towards the Mean

To better understand the regression behavior, we first normalize our data using:

• Mean calculations:

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi (1.7)

• Standard deviation calculations:

σ2
x =

1

n

n∑
i=1

(xi − x̄)2, σ2
y =

1

n

n∑
i=1

(yi − ȳ)2 (1.8)

• Normalized data points:

x̃i =
xi − x̄

σx

, ỹi =
yi − ȳ

σy

(1.9)

The normalized model ỹi = βx̃i + ϵi has several important properties:

• The regression coefficient equals the correlation: β = cos θ

6 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

• For positive correlation, β is always less than 1

• Predictions move toward the mean: si = x̃iβ

In modern usage, “regression” has evolved to encompass any prediction of y from x,
regardless of whether it exhibits the original “toward mean” behavior, covering a wide range
of predictive techniques.

1.3 Multiple Linear Regression

Multiple linear regression extends our analysis to handle multiple input variables. Consider
predicting a child’s height using three predictors: father’s height, mother’s height, and child’s
gender.

1.3.1 Data Representation

The input variables are:

• xi1: Father’s height

• xi2: Mother’s height

• xi3: Child’s gender (0 for female, 1 for male)

Our target variable is yi, representing the child’s height. The data structure takes the
following form:

Observation Father’s Height (xi1) Mother’s Height (xi2) Gender (xi3) Child’s Height (yi)

1 x11 x12 x13 y1
2 x21 x22 x23 y2
...

...
...

...
...

n xn1 xn2 xn3 yn

Table 1.3: Multiple linear regression data structure

1.3.2 Model Formulation

The basic model extends the simple linear regression by including multiple terms:

si = β0 + xi1β1 + xi2β2 + xi3β3 (1.10)

Here, si represents the predicted height for child i, β0 is the intercept term, and β1, β2, β3

are the coefficients for each predictor.

1.3. MULTIPLE LINEAR REGRESSION 7

1.3.3 Vector Notation

We can express this model more compactly using vector notation. Initially:

xi =

xi1

xi2

xi3

 , β =

β1

β2

β3

 (1.11)

With model: si = β0 + x⊤
i β

For even more concise notation, we use extended vectors:

xi =


1
xi1

xi2

xi3

 , β =


β0

β1

β2

β3

 (1.12)

This gives us the simplified model: si = x⊤
i β

1.3.4 Loss Function and Gradient

The error for each observation is:

ei = yi − si = yi − x⊤
i β (1.13)

Leading to the loss function:

L(β) =
1

2

n∑
i=1

e2i =
1

2

n∑
i=1

(yi − x⊤
i β)

2 (1.14)

Using the chain rule, we calculate partial derivatives:

∂L

∂βk

=
n∑

i=1

∂L

∂ei
· ∂ei
∂si
· ∂si
∂βk

= −
n∑

i=1

eixik (1.15)

Setting these derivatives to zero gives us the normal equations:

n∑
i=1

eixik = 0, for k = 0, 1, 2, 3 (1.16)

1.3.5 Geometric Interpretation

The geometric interpretation extends to multiple dimensions with several key vectors:

• Xj: Column vector of (xij, i = 1, . . . , n)

• Y: Column vector of (yi, i = 1, . . . , n)

• Ŷ: Projection of Y onto span of Xj

8 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

• e: Error vector (ei, i = 1, . . . , n)

Figure 1.4: Least squares regression as projection

The error vector e remains perpendicular to all predictor vectorsXj, extending our simple
regression geometry to multiple dimensions.

1.3.6 General Solution Methods

For a general case with p variables, we define:

xi =


xi1

xi2
...
xip

 , β =


β1

β2
...
βp

 (1.17)

The gradient vector takes the form:

L′(β) =


∂L
∂β1

...
∂L
∂βp

 = −
n∑

i=1

xiei (1.18)

We can solve this optimization problem using two methods:

1. Gradient Descent:

β(t+1) = β(t) + η

n∑
i=1

xi(yi − x⊤
i β

(t)) (1.19)

1.4. PIECEWISE LINEAR REGRESSION ANDMODERN INTERPOLATION PARADIGM9

2. Closed-form Solution:

n∑
i=1

xi(yi − x⊤
i β) = 0 (1.20)

n∑
i=1

xiyi =
n∑

i=1

xix
⊤
i β (1.21)

β̂ = (
n∑

i=1

xix
⊤
i)

−1

n∑
i=1

xiyi (1.22)

In matrix form, we can write:

X =


x⊤
1

x⊤
2
...
x⊤
n

 = (X1, ...,Xj, ...,Xp) , Y =


y1
y2
...
yn

 (1.23)

Leading to the normal equations and OLS solution:

X⊤Xβ = X⊤Y (1.24)

β̂ = (X⊤X)−1X⊤Y (1.25)

For this solution to exist, we require:

• X⊤X must be invertible

• Columns of X must be linearly independent

• No severe multicollinearity among predictors

1.4 Piecewise Linear Regression and Modern Interpo-

lation Paradigm

Non-linear regression extends our modeling framework beyond simple linear relationships.
We’ll explore this through piecewise linear functions, discussing overfitting, regularization,
and connections to neural networks.

1.4.1 Piecewise Linear Model

The basic model takes a one-dimensional raw input xraw
i and transforms it using a set of

break points b1, . . . , bj, . . . , bp. At each break point, we create new features using the ReLU
(rectified linear unit) function:

xij = max(0, xraw
i − bj) (1.26)

10 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

Our prediction then becomes:

si = β0 +

p∑
j=1

xijβj (1.27)

where βj represents the change in slope at break point bj. The max(0, ·) function ensures
features only become active when xraw

i exceeds the break point. We assume the design points
{bj}pj=1 are designed and equally spaced over the range of x:

bj = xmin + j∆, ∆ =
xmax − xmin

p+ 1
(1.28)

i xraw
i xi1 xi2 · · · xip yi

1 xraw
1 max(0, xraw

1 − b1) max(0, xraw
1 − b2) · · · max(0, xraw

1 − bp) y1
2 xraw

2 max(0, xraw
2 − b1) max(0, xraw

2 − b2) · · · max(0, xraw
2 − bp) y2

...
...

...
...

. . .
...

...
n xraw

n max(0, xraw
n − b1) max(0, xraw

n − b2) · · · max(0, xraw
n − bp) yn

Table 1.4: Data structure for piecewise linear regression

Figure 1.5: Piecewise linear relationship

1.4.2 Overfitting and Regularization

To prevent overfitting, we employ two main regularization strategies:
1. L2 Regularization (Ridge):

1.4. PIECEWISE LINEAR REGRESSION ANDMODERN INTERPOLATION PARADIGM11

• Adds penalty term λ
∑p

j=1 β
2
j

• Loss function becomes: L(β) = 1
2

∑n
i=1(yi − si)

2 + λ
∑p

j=1 β
2
j

• Results in smoother curves and shrinks coefficients toward zero

2. L1 Regularization (Lasso):

• Uses penalty term λ
∑p

j=1 |βj|

• Loss function becomes: L(β) = 1
2

∑n
i=1(yi − si)

2 + λ
∑p

j=1 |βj|

• Creates sparse solutions by selecting fewer break points

12 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

Figure 1.6: Comparison of exact vs. regularized interpolation

1.4.3 Neural Network Interpretation

The piecewise linear model can be interpreted as a simple neural network with three layers:

• Input layer: Contains the raw input xraw

• Hidden layer: Applies ReLU activation max(·, 0) to create features

1.4. PIECEWISE LINEAR REGRESSION ANDMODERN INTERPOLATION PARADIGM13

• ReLU: Rectified Linear Unit is a commonly used nonlinear transformation in neural
network

• Output layer: Computes weighted sum for final prediction

xraw

x1

x2

x3

x4

s

−b 1
−b2

−b3−b
4

β
1

β2

β3

β 4

Figure 1.7: Neural network representation

1.4.4 Implicit Regularization

Gradient descent provides natural regularization through its optimization behavior:

• Gradient form: ∇L(β) = −
∑n

i=1 xiei

• Update rule: β(t+1) = β(t) + η
∑n

i=1 xiei

• Linear combination property: β̂ =
∑n

i=1 cixi

The solution has the minimum L2 norm property among all interpolating solutions. We
can prove this as follows:

• Let β̃ be any interpolating solution

• Define ∆ = β̃ − β̂

• Note that x⊤
i ∆ = 0 for all i

• By the Pythagorean theorem: ∥β̃∥2 = ∥β̂∥2 + ∥∆∥2

• Therefore ∥β̃∥2 ≥ ∥β̂∥2

That is, gradient descent is a lazy algorithm that travels the minimal distance from the
initial point to a solution. This laziness actually provides implicit regularization and may
prevent overfitting.

14 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

1.4.5 Benefits of Overparameterization

Overparameterization provides several advantages:

• Provides additional degrees of freedom

• Creates a more favorable and smoother optimization landscape

• Makes it easier to find global minima

The implicit regularization effects include:

• Finding minimum L2 norm solutions

• Producing smoother functions

• Improving generalization

• Natural bias toward simpler solutions

1.4.6 Learning as Interpolatable Memorization

In low-noise settings, learning becomes memorization through smooth interpolation:

• Perfect memorization:

x⊤
i β̂ = yi (exact fitting)

• Smooth interpolation between memorized points:

– Infinite possible interpolating functions exist

– Gradient descent selects smoothest interpolant

– Minimum norm solution: β̂ = argminβ{∥β∥2 : x⊤
i β = yi}

1.4. PIECEWISE LINEAR REGRESSION ANDMODERN INTERPOLATION PARADIGM15

Figure 1.8: Smooth interpolation (blue) versus oscillatory interpolation (red) between mem-
orized points

Success relies on:

• Clean, low-noise data enabling reliable memorization

• Sufficient overparameterization for flexible interpolation

• Implicit bias toward smooth connections between memorized points

This view reframes learning from noise-robust estimation to interpolatable memorization
with smooth generalization between points.

1.4.7 Double Descent Phenomenon

The model’s behavior exhibits three distinct regimes:

Underparameterized Regime (p < n)

When the number of break points is less than observations:

• Cannot achieve zero training loss

• Fitted curve is smooth but misses data points

• Training and test errors decrease with p

• MSE dominated by bias term

16 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

Interpolation Threshold (p ≈ n)

As p approaches n:

• Zero training loss becomes possible

• Fitted curve may show zig-zag patterns

• Test error typically peaks

• Especially when observed xi don’t align with break points

The zig-zag effect occurs because:

s(x) = β0 +

p∑
j=1

βj max(0, x− bj) (piecewise linear) (1.29)

yi = s(xi) (interpolation constraint) (1.30)

but xi ̸= bj typically (misalignment) (1.31)

Overparameterized Regime (p≫ n)

As we further increase break points:

• Maintains zero training loss

• Fitted curve becomes increasingly smooth

• Test error decreases again

• Implicit regularization takes effect

Number of Break Points (p)

Error
Threshold

Test Error

Training Error

p = n

Classical
Regime

Overparameterization
Regime

Figure 1.9: Double descent phenomenon: The test error (red) starts above training error
(blue) and shows a second descent in the overparameterized regime, eventually achieving
lower error than the classical minimum. The training error monotonically decreases to zero
at the interpolation threshold.

1.4. PIECEWISE LINEAR REGRESSION ANDMODERN INTERPOLATION PARADIGM17

The smoothing effect in overparameterization occurs because:

• More break points provide finer resolution

• Gradient descent finds minimum norm solution:

∥β∥2 = min{∥β̃∥2 : yi = s(xi) for all i} (1.32)

⇒ smoother interpolation (1.33)

• Adjacent break points interact more closely:

– Smaller spacing between break points

– no much misalignment with x values

– More gradual slope changes

– Better continuity properties

This phenomenon illustrates that:

• More parameters can lead to better generalization

• Interpolation doesn’t necessarily mean overfitting

• Implicit regularization plays crucial role

• Sweet spot may lie beyond classical wisdom

1.4.8 Benign Overfitting

The phenomenon of benign overfitting occurs when a model perfectly fits training data (zero
training error) yet still generalizes well to test data. This seemingly paradoxical behavior
challenges classical statistical wisdom and helps explain the success of modern overparame-
terized models.

Mathematical Characterization

Consider our piecewise linear model with p≫ n break points:

s(x) = β0 +

p∑
j=1

βj max(0, x− bj) (model) (1.34)

yi = s(xi) (perfect fit) (1.35)

E[(s(x)− y)2] ≈ σ2 (good generalization) (1.36)

Benign overfitting occurs when:

• Training error reaches zero:
∑n

i=1(yi − s(xi))
2 = 0

• Test error approaches optimal rate: ∥s− s∗∥L2 = O(σ
√

log n/n)

• Solution maintains smoothness: ∥β∥2 = O(1)

18 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

Conditions for Benign Overfitting

Several key factors enable benign overfitting:
1. Data Structure:

• Low-dimensional signal in high-dimensional space

• Rapidly decaying eigenspectrum of feature covariance

• Strong correlation among features

2. Noise Characteristics:

• Low noise level relative to signal strength

• Noise primarily in directions orthogonal to signal

• Bounded noise variance: E[ϵ2] ≤ σ2

3. Model Properties:

• Sufficient overparameterization: p≫ n

• Implicit regularization from optimization

• Local adaptivity of piecewise linear functions

Role of Implicit Regularization

Gradient descent plays a crucial role through two mechanisms:
1. Minimum Norm Solution:

β̂ = argmin
β
{∥β∥2 : yi = s(xi) for all i} (1.37)

2. Early Stopping Effect:

• Initially fits low-frequency components

• Progressively captures higher frequencies

• Natural balance between fit and smoothness

Connection to Double Descent

Benign overfitting helps explain the double descent phenomenon:

• Interpolation regime allows perfect memorization

• Overparameterization enables smooth interpolation

• Implicit regularization prevents harmful overfitting

• Test error continues decreasing beyond interpolation threshold

This relationship is captured by:

Test Error = Estimation Error︸ ︷︷ ︸
↓with p

+Approximation Error︸ ︷︷ ︸
↓with p

+Optimization Error︸ ︷︷ ︸
≈0 for p≫n

(1.38)

1.4. PIECEWISE LINEAR REGRESSION ANDMODERN INTERPOLATION PARADIGM19

Practical Implications

Understanding benign overfitting leads to several insights:

• More parameters can improve generalization

• Perfect training accuracy isn’t necessarily harmful

• Traditional bias-variance trade-off needs revision

• Early stopping may be unnecessary with sufficient overparameterization

These principles guide modern deep learning practice:

• Use more parameters than strictly necessary

• Train to zero training error when possible

• Rely on implicit rather than explicit regularization

• Focus on architecture design over regularization

This modern perspective fundamentally changes how we think about model complexity
and generalization, suggesting that the classical bias-variance trade-off may be too pes-
simistic in many practical scenarios.

1.4.9 Connection to Deep Learning

Our piecewise linear model directly connects to modern deep learning through several key
aspects:

ReLU Network Interpretation

The model is equivalent to a simple ReLU network:

s(x) = β0 +

p∑
j=1

βj max(0, x− bj) (piecewise linear) (1.39)

= Linear(ReLU(Linear(x))) (single hidden layer) (1.40)

This structure generalizes to deep networks:

• ReLU activation creates piecewise linearity

• Multiple layers compose piecewise linear functions

• Break points learned instead of pre-specified

20 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

Overparameterization and Memorization

Modern deep learning operates in heavily overparameterized regime:

parameters≫ data points (overparameterized) (1.41)

loss ≈ 0 (perfect memorization) (1.42)

Success depends on:

• Enough parameters to memorize training data

• Gradient descent finding smooth interpolation

• Low-noise, structured training data

Learning as Interpolation

Deep learning succeeds by:

• Memorizing clean training data perfectly

• Interpolating smoothly between memorized points

• Using overparameterization for flexibility

• Relying on optimization’s implicit regularization

This view fundamentally shifts from:

• (Underfitting vs overfitting) to (memorization vs. interpolation)

• Parameter counting to implicit smoothness

• Statistical estimation to interpolatable memorization

1.4.10 Reflection: Classical versus Interpolation Paradigms

Nature of Scientific Understanding

The classical paradigm aligns with fundamental scientific principles:

• Newton’s laws (F = ma):

– Remarkably simple mathematical form

– Vast explanatory power

– True out-of-domain generalization

• Formal logic:

– Simple deductive rules

– Universal reasoning principles

– Domain-independent validity

1.4. PIECEWISE LINEAR REGRESSION ANDMODERN INTERPOLATION PARADIGM21

Limitations of Interpolation

The modern interpolation paradigm faces fundamental constraints:

• Domain Limitation:

s(x) = β0 +

p∑
j=1

βj max(0, x− bj) valid only for x ∈ [xmin, xmax] (1.43)

• No Extrapolation:

– Cannot predict beyond training range

– No principled behavior outside domain

– Lacks theoretical underpinning for extension

• Complexity versus Simplicity:

– May miss simple underlying patterns

– Trades interpretability for flexibility

– Complex representation of simple phenomena

The success of overparameterized models in specific domains should not overshadow the
enduring value of seeking simple, fundamental principles that characterize natural phenom-
ena. True scientific understanding may require bridging the gap between these paradigms,
combining the flexibility of modern learning with the profound simplicity of classical physics
and logic.

Historical Parallel: From Ptolemy to Deep Learning

The tension between interpolation and fundamental principles has a remarkable historical
precedent. Ptolemy’s epicycle model, perhaps the earliest instance of overparameterization,
used cycles upon cycles to predict planetary motion:

r(t) =
N∑

n=1

Rne
iωnt (Fourier decomposition) (1.44)

This approach mirrors modern deep learning:

• Epicycles as basis functions for universal approximation

• Hierarchical structure similar to neural networks

• Perfect interpolation through overparameterization

In contrast, Newton’s simple F = ma explained the same phenomena with remarkable
parsimony. This enabled Gauss to predict the position of planetoid Ceres using just seven
observations—a triumph of fundamental principles over pure interpolation. Von Neumann
later captured this tension: ”With four parameters I can fit an elephant, and with five I
can make him wiggle his trunk.” This historical parallel challenges us to consider whether
modern deep learning, despite its practical success, might sometimes miss simpler underlying
patterns in its pursuit of perfect interpolation.

22 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

Figure 1.10: Left: Ptolemy’s epicycle model assumes Earth is the center of Solar system.
Right: Newton’s model assumes Sun to be the center, and Ceres is a planetoid.

1.5 Logistic Regression and Classification

Before introducing logistic regression, let’s briefly review multiple linear regression. In this
setting, we work with multiple input variables and a single output variable:

Observation xi1 xi2 · · · xip yi

1 x11 x12 · · · x1p y1
2 x21 x22 · · · x2p y2
...

...
...

. . .
...

...
n xn1 xn2 · · · xnp yn

Table 1.5: Multiple linear regression data structure

The model equation is si =
∑p

j=1 xijβj = x⊤
i β, where xi = (xi1, . . . , xip)

⊤ is the input

vector and β = (β1, . . . , βp)
⊤ contains the parameters.

1.5.1 Maximum Likelihood Perspective

From a probabilistic viewpoint, we assume:

p(yi|si) ∼ N (si, σ
2) =

1√
2πσ2

exp

(
−(yi − si)

2

2σ2

)
(1.45)

The likelihood function for all observations is:

n∏
i=1

p(yi|si) =
n∏

i=1

1√
2πσ2

exp

(
−(yi − si)

2

2σ2

)
(1.46)

1.5. LOGISTIC REGRESSION AND CLASSIFICATION 23

Taking the log-likelihood:

J =
n∑

i=1

[
−1

2
log(2πσ2)− (yi − si)

2

2σ2

]
(1.47)

Maximum likelihood estimation seeks θ̂ = argmaxθ J . This is equivalent to minimizing
the sum of squared errors, as L = −J reduces to minimizing

∑n
i=1(yi − si)

2.

1.5.2 Logistic Regression Model

Logistic regression extends this framework to binary classification, predicting class probabili-
ties rather than continuous values. We use the Bernoulli distribution p(yi|si) ∼ Bernoulli(pi)
with the sigmoid function:

pi = sigmoid(si) =
esi

1 + esi
(1.48)

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

si

p i

Figure 1.11: Sigmoid function

This gives us class probabilities:

• p(yi = 1|si) = pi =
esi

1+esi

• p(yi = 0|si) = 1− pi =
1

1+esi

The logit transformation provides an interpretation:

si = log

(
pi

1− pi

)
= logit(pi) (1.49)

24 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

1.5.3 Likelihood and Gradients

For a single observation, the likelihood is:

p(yi|si) =
eyisi

1 + esi
(1.50)

Taking the log:

log p(yi|si) = yisi − log(1 + esi) (1.51)

The gradients are:

• ∂ log p(yi|si)
∂si

= yi − pi

• ∂J
∂βk

=
∑n

i=1(yi − pi) · xik

• Vector form: J ′(β) =
∑n

i=1 xi(yi − pi)

This connects to linear regression through error terms:

• Linear regression: ei = yi − si

• Logistic regression: ei = yi − pi

Both share the gradient form J ′(β) =
∑n

i=1 xiei, allowing similar optimization techniques.

1.6 Gradient Descent

Gradient descent is a fundamental optimization algorithm widely used in machine learning.
We’ll focus on its geometric interpretation.

1.6.1 Generic Notation and Taylor Expansion

Consider a d-dimensional vector x and small change vector ∆x:

x =


x1
...
xk
...
xd

 , ∆x =


∆x1
...

∆xk
...

∆xd

 (1.52)

Using first-order Taylor expansion:

f(x+∆x)
.
= f(x) +

d∑
k=1

∂f

∂xk

∆xk (1.53)

= f(x) + ⟨f ′(x),∆x⟩ (1.54)

1.6. GRADIENT DESCENT 25

Where the gradient is:

f ′(x) =



∂f
∂x1
...
∂f
∂xk
...
∂f
∂xd

 (1.55)

Using inner product properties:

f(x+∆x)
.
= f(x) + ∥f ′(x)∥∥∆x∥ cos θ (1.56)

1.6.2 Geometric Interpretation

x1

x2

f ′(x)

∆x

θ

f ′(x)⊤∆x = ∥f ′(x)∥∥∆x∥ cos θ

Figure 1.12: Geometric interpretation of gradient descent

The gradient f ′(x) points in the steepest ascent direction, while −f ′(x) gives the steepest
descent direction. The gradient is always perpendicular to the function’s contours.

1.6.3 Basic Algorithm

Algorithm 1 Gradient Descent

1: Initialize x0

2: Choose learning rate η > 0
3: for t = 0, 1, 2, . . . until convergence do
4: xt+1 = xt − ηf ′(xt)
5: end for

26 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

Key factors affecting convergence:

• Learning rate η (too small: slow convergence; too large: overshooting)

• Function curvature (high curvature causes oscillation)

• Initial point x0 (critical for non-convex functions)

Figure 1.13: Gradient descent behavior with different learning rates and curvatures

1.6.4 Gradient Descent with Momentum

Algorithm 2 Gradient Descent with Momentum

1: Initialize x0, v0 = 0
2: Choose learning rate η > 0 and momentum coefficient γ ∈ [0, 1)
3: for t = 0, 1, 2, . . . until convergence do
4: vt ← γvt−1 + f ′(xt)
5: xt+1 ← xt − ηvt

6: end for

The velocity term follows an exponential moving average:

vt = γvt−1 + f ′(xt) (1.57)

= γ2vt−2 + γf ′(xt−1) + f ′(xt) (1.58)

=
t∑

i=0

γif ′(xt−i) (1.59)

The momentum coefficient γ has several interpretations:

1.6. GRADIENT DESCENT 27

• Physical: 1− γ acts as friction

• Statistical: γ weights past gradients

• Memory: γ determines history length

Momentum provides several advantages:

• Faster convergence (O(1/t2) vs. O(1/t))

• Reduced oscillation in high curvature regions

• Better escape from local minima

• Natural step size adaptation

28 CHAPTER 1. LINEAR, PIECEWISE LINEAR AND LOGISTIC REGRESSION

Chapter 2

Multi-Layer Perceptron

Figure 2.1: Multi-layer perceptron

Chapter Overview

This chapter presents a comprehensive study of Multi-Layer Perceptron (MLP), progressing
from fundamental concepts to advanced applications. The material is organized as follows:

2.0.1 Foundation

The chapter begins by establishing the connection between logistic regression and the per-
ceptron model, demonstrating how neural networks naturally extend from logistic regression.

29

30 CHAPTER 2. MULTI-LAYER PERCEPTRON

This foundational approach provides a clear conceptual bridge from classical statistical meth-
ods to modern neural architectures.

2.0.2 Architecture Development

The architectural concepts are developed in three main stages:

• Single hidden layer networks and their properties

• Progression to general multi-layer architectures

• Detailed explanation of backpropagation for both simple and complex networks

2.0.3 Advanced Topics

The chapter covers several sophisticated aspects of MLPs:

• Multi-class classification implementation and theory

• Word embeddings and their mathematical foundations

• Associative memory and information storage mechanisms

• The concept of superposition in neural representations

• Normalization techniques, with emphasis on RMS normalization

• Dropout as a regularization strategy

• Optimization methods, including:

– Stochastic Gradient Descent (SGD)

– Adam optimizer

2.0.4 Notable Features

The chapter is characterized by:

• Rigorous mathematical derivations and proofs

• Detailed diagrams and visual representations

• Practical implementation guidelines

• Connections between theory and real-world applications

2.1. LOGISTIC REGRESSION AS PERCEPTRON 31

2.0.5 Applications

The theoretical concepts are illustrated through several practical applications:

• Natural language processing through word embeddings

• Recommender system design and implementation

• Multi-class classification tasks

• Associative memory systems

This structure effectively bridges theoretical foundations with practical implementations,
making the material accessible for both understanding the mathematical underpinnings of
MLPs and implementing them in practice.

2.1 Logistic Regression as Perceptron

2.1.1 Notation Comparison

In logistic regression, we write:

si = x⊤
i β + β0 (2.1)

In neural network notation, we write:

si = x⊤
i w + b (2.2)

where:

• w corresponds to β: weights/coefficients

• b corresponds to β0: bias term

The probability is then computed as:

pi = σ(si) =
1

1 + e−si
(2.3)

32 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.1.2 Network Architecture

xi1

xi2

...

xip

si pi

1

w1

w2

wp

b

σ

Figure 2.2: One-layer neural network representation of logistic regression

In this architecture:

• Input nodes represent features xij

• Weights wj correspond to coefficients βj

• Bias term b corresponds to intercept β0

• Sigmoid activation σ transforms score si to probability pi

2.2 One Hidden Layer

The one hidden layer section examines the fundamental building block of modern neural
networks through a progressive study of architectures. Beginning with one-dimensional
input, it shows how ReLU activations create piecewise linear functions. This extends to
two-dimensional inputs where each hidden unit creates a “fold” in the input space, collec-
tively forming piecewise linear surfaces. The section demonstrates that despite its simplicity,
this architecture can approximate complex functions through the interplay of linear trans-
formations and non-linear activations. Maximum likelihood estimation provides the training
framework, while analysis of overparameterization reveals how gradient descent with zero
initialization offers implicit regularization, allowing the network to adapt its complexity to
the data while maintaining good generalization properties.

For clarity, we’ll drop the subscript i and describe a generic training example (x, y) or
(x, y).

2.2.1 One-dimensional Input

The network structure for 1D input:

2.2. ONE HIDDEN LAYER 33

x

h1

h2

h3

s

1 1

w
(1)

1

w
(1)
2

w (1)
3

b
(1
)

1

b
(1)
2

b
(1)

3

w (2)
1

w
(2)
2

w
(2)

3

b(2)

Figure 2.3: One-hidden-layer network with 1D input

For each hidden unit:

hk = ReLU(w
(1)
k x+ b

(1)
k) = max(0, w

(1)
k x+ b

(1)
k) (2.4)

This is equivalent to our previous non-linear regression model:

Previous model: s = β0 +
∑
j

βj max(0, x− bj) (2.5)

Current model: s = b(2) +
∑
k

w
(2)
k max(0, w

(1)
k x+ b

(1)
k) (2.6)

s = f(x) is a piecewise linear function.

2.2.2 Two-dimensional Input

The network structure for 2D input:

x1

x2

h1

h2

h3

s

1

1

w
(1)

11

w
(1
)

12

w (2)
1

b
(1
)

1

b(2)

Figure 2.4: One-hidden-layer network with 2D input

34 CHAPTER 2. MULTI-LAYER PERCEPTRON

The network structure is shown in Figure 2.4. For each hidden unit:

hk = max(0, w
(1)
k1 x1 + w

(1)
k2 x2 + b

(1)
k) (2.7)

The output is:

s = b(2) +
∑
k

w
(2)
k hk (2.8)

Each hidden unit hk creates a “fold” in the input space along the line:

w
(1)
k1 x1 + w

(1)
k2 x2 + b

(1)
k = 0 (2.9)

Figure 2.5: Each hidden unit creates a “fold”.

The resulting function s = f(x) is a piecewise linear surface created by these folds. See
Figure 2.5.

2.2.3 Maximum Likelihood Estimation

We start with the log-likelihood objective:

J = log p(y|s) (2.10)

For regression (Gaussian likelihood):

∂J

∂s
= y − s = error (2.11)

For classification (Bernoulli likelihood):

∂J

∂s
= y − p = error (2.12)

2.2. ONE HIDDEN LAYER 35

where p = σ(s)
In both cases, the error signal is the difference between the target and prediction, which

is then backpropagated through the network to compute gradients for all parameters.

2.2.4 Chain Rule Backpropagation

Let’s derive the gradients step by step using the chain rule. For clarity, let’s denote ∂J
∂s

= e
(the error signal).

Second Layer Gradients

For the second layer weights:

∂J

∂w
(2)
k

=
∂J

∂s

∂s

∂w
(2)
k

= e · hk (2.13)

For the second layer bias:

∂J

∂b(2)
=

∂J

∂s

∂s

∂b(2)
= e · 1 = e (2.14)

First Layer Gradients

For the first layer, we need to backpropagate through the ReLU function. Let’s denote:

δk =
∂J

∂hk

=
∂J

∂s

∂s

∂hk

= e · w(2)
k (2.15)

The ReLU derivative is:

ReLU′(z) =

{
1 if z > 0

0 if z ≤ 0
(2.16)

For 1D input:

∂J

∂w
(1)
k

=
∂J

∂hk

∂hk

∂w
(1)
k

(2.17)

= δk · ReLU′(w
(1)
k x+ b

(1)
k) · x (2.18)

For 2D input:

∂J

∂w
(1)
kj

=
∂J

∂hk

∂hk

∂w
(1)
kj

(2.19)

= δk · ReLU′(w
(1)
k1 x1 + w

(1)
k2 x2 + b

(1)
k) · xj (2.20)

For the first layer bias:

∂J

∂b
(1)
k

= δk · ReLU′(w
(1)
k1 x1 + w

(1)
k2 x2 + b

(1)
k) (2.21)

36 CHAPTER 2. MULTI-LAYER PERCEPTRON

Graphical Interpretation

x

hk

s

1 1

w
(1)
k w

(2)
k

b
(1)
k

b(2)

eδk · ReLU′

Figure 2.6: Forward and backward signal flow

The backpropagation process has an intuitive graphical interpretation:

1. The error e flows backward through the network.

2. At each ReLU unit:

• If the unit was inactive (input ≤ 0), no gradient flows back

• If the unit was active (input > 0), the gradient flows through unmodified

3. The gradients for weights are formed by:

• Error signal from above (δk)

• Activity state of the ReLU (ReLU′)

• Input to that weight (x or xj)

This creates a piecewise constant gradient field because of the ReLU function’s piecewise
linear nature.

2.2.5 Overparameterization and Learning Dynamics

For the one-hidden-layer network, overparameterization occurs when the number of hidden
units is large enough that the total number of parameters exceeds the number of training
examples:

1D case: (1 + 1)d+ (d+ 1) > n (2.22)

2D case: (2 + 1)d+ (d+ 1) > n (2.23)

where d is the number of hidden units, i.e., dimensionality of h, and n is the number of
training examples.

2.2. ONE HIDDEN LAYER 37

Interpolative Memory

In the overparameterized regime:

• The network can perfectly fit the training data.

• Each hidden unit hk creates a fold in the space

• The final function s = f(x) interpolates between training points

Implicit Regularization

When trained with gradient descent initialized at zero, the algorithm exhibits implicit reg-
ularization:

1. Any parameter configuration that interpolates the data is a global minimum

2. Among all interpolating solutions, gradient descent finds one with:

• Minimum norm weights

• Smoother function between data points

• Better generalization properties

Implications

This behavior has important implications:

• Despite having more parameters than data points, the network can generalize well

• No explicit regularization (like weight decay) is needed

• The choice of initialization and optimization algorithm provides implicit bias

• The learned function tends to be as simple as possible while fitting the data

For the piecewise linear network:

• Each ReLU creates a potential fold

• Gradient descent activates the minimal amounts of folds

• The resulting surface is as flat or as smooth as possible while interpolating the data

This explains why overparameterized neural networks can simultaneously:

• Achieve zero training error (perfect memory)

• Maintain good generalization (smooth interpolation)

• Adapt their complexity to the data (implicit regularization)

38 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.3 General Multi-layer Perceptron

The general multi-layer perceptron extends the single-hidden-layer architecture to multiple
layers of transformations, where each layer processes the output of the previous layer through
weights, biases, and non-linear activations. The breakthrough that enables training such deep
architectures is backpropagation, an elegant algorithm that efficiently computes parameter
gradients by propagating error signals backward through the network. Starting from the
output error, backpropagation systematically moves layer by layer in reverse, computing how
each parameter contributed to the final error. This process leverages the chain rule of calculus
to break down complex gradient calculations into a series of simpler local computations,
making the training of deep networks computationally tractable despite their complexity.
The algorithm’s efficiency and effectiveness have made it the cornerstone of modern deep
learning, enabling the training of increasingly deeper architectures.

A general multi-layer perceptron consists of L layers of transformations. Let h(l) ∈ Rdl

denote the output of layer l, and s(l) ∈ Rdl denote the pre-activation values.

For layers l = 1, . . . , L− 1:

s(l) = W(l)h(l−1) + b(l) (2.24)

h(l) = σ(s(l)) (2.25)

For the final layer (score):

s = h(L) = s(L) = W(L)h(L−1) + b(L) (2.26)

where:

• W(l) ∈ Rdl×dl−1 is the weight matrix

• b(l) ∈ Rdl is the bias vector

• σ(·) is an element-wise non-linearity (e.g., ReLU)

• h(0) = x is the input

2.3. GENERAL MULTI-LAYER PERCEPTRON 39

x1

x2

x3

x4

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(2)
1

h
(2)
2

h
(2)
3

s

Figure 2.7: MLP architecture with dimensions d0 = 4, d1 = 4, d2 = 3, and scalar output

Each unit in layer l computes:

s
(l)
k =

dl−1∑
j=1

W
(l)
kjh

(l−1)
j + b

(l)
k (2.27)

h
(l)
k = σ(s

(l)
k) (2.28)

This computation is a perceptron unit:

h
(l−1)
1

h
(l−1)
2

...

h
(l−1)
dl−1

s
(l)
k h

(l)
k

1

W (l)
k1

W
(l)
k2

W
(l)

kdl−
1

b
(l)

k

σ

Figure 2.8: Single perceptron unit in layer l

Each unit:

• Takes inputs from all units in the previous layer (h
(l−1)
j)

• Computes a weighted sum plus bias (s
(l)
k)

40 CHAPTER 2. MULTI-LAYER PERCEPTRON

• Applies non-linear activation (σ) to produce output (h
(l)
k)

The multi-layer perceptron is thus composed of many such perceptron units arranged in
layers, with the output of each layer serving as input to the next layer.

2.4 Backpropagation for General MLP

h
(l−1)
1

h
(l−1)
2

...

h
(l−1)
dl−1

s
(l)
k h

(l)
k

1

W (l)
k1

W
(l)
k2

W
(l)

kdl−
1

b
(l)

k

σ

Forward Pass

∂J

∂h
(l−1)
1

∂J

∂h
(l−1)
2

...

∂J

∂h
(l−1)
dl−1

∂J

∂s
(l)
k

∂J

∂h
(l)
k

σ′

W (l)
k1

W
(l)
k2

W
(l)

kdl−
1

Backward Pass

Figure 2.9: Forward and backward propagation through a layer

We start from the objective function:

J = log p(y|s) (2.29)

The error at the output layer is:

∂J

∂s
=

∂J

∂h(L)
=

∂J

∂s(L)
= error (2.30)

The backpropagation process through each layer. The complete diagram shows how
information flows:

• Forward pass: Computing h
(l−1)
j → s

(l)
k → h

(l)
k

2.4. BACKPROPAGATION FOR GENERAL MLP 41

• Backward pass: Computing ∂J

∂h
(l)
k

→ ∂J

∂s
(l)
k

→ ∂J

∂h
(l−1)
j

• Weight gradients: Combining values from both passes

2.4.1 Scalar Intuition

First, let’s understand backpropagation treating each quantity as a scalar:

Step 1: Through Non-linearity

For any layer l:

h(l) = σ(s(l)) (2.31)

∂J

∂s(l)
=

∂J

∂h(l)
· ∂h

(l)

∂s(l)
(2.32)

=
∂J

∂h(l)
· σ′(s(l)) (2.33)

Step 2: Through Linear Layer

For the previous layer:

s(l) = W (l)h(l−1) (2.34)

∂J

∂h(l−1)
=

∂J

∂s(l)
· ∂s(l)

∂h(l−1)
(2.35)

=
∂J

∂s(l)
·W (l) (2.36)

Step 3: Weight and Bias Gradients

For weights and biases:

∂J

∂W (l)
=

∂J

∂s(l)
· ∂s(l)

∂W (l)
(2.37)

=
∂J

∂s(l)
· h(l−1) (2.38)

∂J

∂b(l)
=

∂J

∂s(l)
(2.39)

2.4.2 Vector and Matrix Form

Now, we extend to vectors and matrices. We guess that we should transpose some vectors
to comply with matrix multiplication rules.

Step 1: Through Non-linearity

∂J

∂s(l)
=

∂J

∂h(l)
⊙ σ′(s(l)) (2.40)

where ⊙ denotes element-wise multiplication.

42 CHAPTER 2. MULTI-LAYER PERCEPTRON

Step 2: Through Linear Layer(
∂J

∂h(l−1)

)⊤

=

(
∂J

∂s(l)

)⊤

W(l) (2.41)

Note the dimensions for matrix multiplication:

•
(

∂J
∂s(l)

)⊤
is 1× dl

• W(l) is dl × dl−1

•
(

∂J
∂h(l−1)

)⊤
is 1× dl−1

Step 3: Weight and Bias Gradients

∂J

∂W(l)
=

∂J

∂s(l)
(h(l−1))⊤ (2.42)

∂J

∂b(l)
=

∂J

∂s(l)
(2.43)

Note that only in Step 2 do we use gradient transpose for convenient matrix multiplica-
tion. In other steps, we keep gradients as column vectors.

2.4.3 Detailed Component-wise Verification

Let’s verify each step of backpropagation using detailed subscripts.

Step 1: Through Non-linearity

The forward computation is:

h
(l)
k = σ(s

(l)
k) (2.44)

Therefore:

∂J

∂s
(l)
k

=
∂J

∂h
(l)
k

∂h
(l)
k

∂s
(l)
k

(2.45)

=
∂J

∂h
(l)
k

σ′(s
(l)
k) (2.46)

This matches the vector form with element-wise multiplication:

∂J

∂s(l)
=

∂J

∂h(l)
⊙ σ′(s(l)) (2.47)

2.4. BACKPROPAGATION FOR GENERAL MLP 43

Step 2: Through Linear Layer

The forward computation is:

s
(l)
k =

dl−1∑
j=1

W
(l)
kjh

(l−1)
j + b

(l)
k (2.48)

For component-wise gradient:

∂J

∂h
(l−1)
j

=

dl∑
k=1

∂J

∂s
(l)
k

∂s
(l)
k

∂h
(l−1)
j

(2.49)

=

dl∑
k=1

∂J

∂s
(l)
k

W
(l)
kj (2.50)

This sum is exactly the j-th component of:(
∂J

∂h(l−1)

)⊤

=

(
∂J

∂s(l)

)⊤

W(l) (2.51)

Step 3: Weight and Bias Gradients

For weights, using the chain rule:

∂J

∂W
(l)
kj

=
∂J

∂s
(l)
k

∂s
(l)
k

∂W
(l)
kj

(2.52)

=
∂J

∂s
(l)
k

h
(l−1)
j (2.53)

This matches the matrix form:

∂J

∂W(l)
=

∂J

∂s(l)
(h(l−1))⊤ (2.54)

For bias:

∂J

∂b
(l)
k

=
∂J

∂s
(l)
k

∂s
(l)
k

∂b
(l)
k

(2.55)

=
∂J

∂s
(l)
k

· 1 (2.56)

This matches the vector form:
∂J

∂b(l)
=

∂J

∂s(l)
(2.57)

The component-wise derivations confirm all three vector/matrix forms:

1. Element-wise multiplication for non-linearity

2. Gradient transpose with weight matrix for chain rule through layer

3. Outer product structure for weight gradients and direct copy for bias gradients

44 CHAPTER 2. MULTI-LAYER PERCEPTRON

Alternative: Column Vector Gradients

Instead of transposing gradients to row vectors, we can keep them as column vectors and
transpose the weight matrix. The forward computation is:

s(l) = W(l)h(l−1) + b(l) (2.58)

For component-wise gradient:

∂J

∂h
(l−1)
j

=

dl∑
k=1

∂J

∂s
(l)
k

W
(l)
kj (2.59)

=

dl∑
k=1

W
(l)
kj

∂J

∂s
(l)
k

(2.60)

This sum is exactly the j-th component of:

∂J

∂h(l−1)
= W(l)⊤ ∂J

∂s(l)
(2.61)

The two forms are equivalent:

• Row vector form:
(

∂J
∂h(l−1)

)⊤
=
(

∂J
∂s(l)

)⊤
W(l)

• Column vector form: ∂J
∂h(l−1) = W(l)⊤ ∂J

∂s(l)

The column vector form:

• Maintains gradient vectors in same orientation as forward vectors

• Rotates weight matrix instead of gradient vectors

• Makes matrix dimensions more explicit

2.5 Stochastic Gradient Descent

2.5.1 Mini-batch Structure

For a dataset of size N :

• Divide data into mini-batches of size B

• Number of mini-batches per epoch: T = ⌈N/B⌉

• Each mini-batch: Bt = {i1, ..., iB}

2.5. STOCHASTIC GRADIENT DESCENT 45

2.5.2 Gradient Computation

For mini-batch Bt at time step t:

gt = −
1

B

∑
i∈Bt

∇θJi(θ) (2.62)

where:

• gt is the average gradient at step t

• −Ji(θ) is the loss for example i

• θ represents model parameters

2.5.3 Update Rule

The SGD update becomes:

θt+1 = θt − ηgt (2.63)

where η is the learning rate.

2.5.4 Stochasticity from Mini-batches

The gradient gt is stochastic because:

• Different mini-batches give different gradients

• gt is an unbiased estimate of full gradient:

E[gt] =
1

N

N∑
i=1

∇θJi(θ) (2.64)

• Variance decreases with batch size:

Var[gt] ∝
1

B
(2.65)

2.5.5 The Concept of Epochs

One epoch means:

• Each training example seen once

• T mini-batch updates

• Full pass through the dataset

46 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.5.6 Single-Epoch Learning

For large datasets:

• Single epoch = N/B updates

• Can be sufficient if:

– Dataset is large enough

– Data has redundancy

– Task is simple enough

• Benefits:

– Faster training

– Fresh examples each update

– Good for online learning

2.5.7 Practical Considerations

Batch Size Selection

Trade-offs:

• Large B:

– More stable gradients

– Better hardware utilization

– More memory needed

• Small B:

– More updates per epoch

– Better regularization

– More noise in training

Learning Rate Selection

Considerations:

• Scale with batch size: η ∝
√
B

• Adjust for gradient variance

• Consider learning rate schedules

2.5. STOCHASTIC GRADIENT DESCENT 47

Data Shuffling

Between epochs:

• Randomly shuffle dataset

• Creates new mini-batches

• Reduces systematic biases

2.5.8 Advantages of Mini-batch SGD

1. Computational Efficiency:

• Parallelizable within batch

• Good hardware utilization

• Memory efficient

2. Statistical Efficiency:

• More frequent parameter updates

• Noise helps escape local minima

• Natural regularization

3. Online Learning:

• Can process streaming data

• Adapts to changing patterns

• Memory efficient

2.5.9 Single vs Multiple Epochs

Aspect Single Epoch Multiple Epochs

Data size needed Large Can be smaller
Learning One-pass Iterative refinement
Updates N/B E ·N/B
Memory Stream data Full dataset
Convergence Faster, rougher Slower, more precise

where E is the number of epochs.

48 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.6 Adam Optimizer

2.6.1 Recall: Momentum

Momentum accumulates past gradients:

vt = β1vt−1 + gt (2.66)

θt+1 = θt − ηvt (2.67)

where:

• gt is current mini-batch gradient

• vt is velocity (momentum)

• β1 is momentum coefficient (typically 0.9)

2.6.2 Adaptive Learning Rates

Different parameters may need different learning rates. Adam tracks squared gradients:

Gt = β2Gt−1 + g2t (2.68)

where:

• Gt is accumulated squared gradients

• g2t is element-wise square

• β2 is decay rate (typically 0.999)

2.6.3 Geometric Intuition

Different dimensions may have:

• Different scales of gradients

• Different curvatures of loss surface

• Different optimal step sizes

2.6.4 Adam Algorithm

Combining momentum and adaptive rates:

2.6. ADAM OPTIMIZER 49

Algorithm 3 Adam Optimizer (Simplified)

1: Initialize θ0, v0 = 0, G0 = 0
2: for t = 1 to T do
3: Compute mini-batch gradient gt
4: vt = β1vt−1 + gt ▷ Update momentum
5: Gt = β2Gt−1 + g2t ▷ Update squared grad
6: θt = θt−1 − ηvt/

√
Gt + ϵ ▷ Update

7: end for

2.6.5 Geometric Benefits

Momentum Benefits

• Accumulates consistent gradients

• Dampens oscillations

• Accelerates in flat regions

• Helps escape poor local minima

Adaptive Rate Benefits

• Automatically scales step sizes

• Larger steps for low curvature

• Smaller steps for high curvature

• Handles different parameter scales

For parameter i:

1√
Gt,i + ϵ

≈

{
large low curvature/small gradients

small high curvature/large gradients
(2.69)

2.6.6 Benefits in Practice

1. Robustness:

• Works well with default hyperparameters

• Handles different scales automatically

• Adapts to dataset characteristics

2. Efficiency:

• Faster convergence

50 CHAPTER 2. MULTI-LAYER PERCEPTRON

• Fewer hyperparameter tuning needs

• Good for sparse gradients

3. Stability:

• Combines benefits of momentum and adaptive rates

• Handles challenging loss landscapes

• Automatic step size adjustment

2.7 Parameter Initialization

The choice of initial parameters θ0 significantly impacts training dynamics and final model
performance. Proper initialization helps avoid problems like vanishing/exploding gradients
and broken symmetry.

2.7.1 Basic Principles

Key initialization objectives:

• Maintain variance across layers

• Break symmetry between units

• Enable efficient gradient flow

• Avoid saturation of non-linearities

2.7.2 Common Initialization Methods

Zero Initialization Setting all weights to zero:

W(l) = 0, b(l) = 0 (2.70)

Problems:

• All units compute identical functions

• Network loses expressivity

• Only works for final layer in some cases

Random Normal Initialization Drawing weights from normal distribution:

W
(l)
ij ∼ N (0, σ2) (2.71)

Issues:

• Variance grows with layer width

• May lead to vanishing/exploding gradients

• Scale parameter σ needs tuning

2.7. PARAMETER INITIALIZATION 51

Xavier/Glorot Initialization For layers with linear or tanh activation:

W
(l)
ij ∼ N

(
0,

2

nin + nout

)
(2.72)

where:

• nin is input dimension

• nout is output dimension

• Factor 2 maintains variance through linear transformation

He Initialization For ReLU networks:

W
(l)
ij ∼ N

(
0,

2

nin

)
(2.73)

Benefits:

• Accounts for ReLU’s zero gradient for negative inputs

• Maintains variance through ReLU non-linearity

• Particularly effective for deep networks

2.7.3 Variance Analysis

For a layer with weights W and input x:

Linear Case

Var[Wxj] = ninVar[Wij]Var[xj] (2.74)

Var[Wij] =
1

nin

(to maintain variance) (2.75)

ReLU Case For ReLU activation σ(x) = max(0, x):

Var[σ(x)] =
1

2
Var[x] (for zero-mean input) (2.76)

Var[Wij] =
2

nin

(to compensate) (2.77)

52 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.7.4 Practical Guidelines

Best practices for initialization:

1. Weight Initialization:

• Use He initialization for ReLU networks

• Use Xavier/Glorot for tanh/sigmoid networks

• Scale carefully based on layer dimensions

2. Bias Initialization:

• Generally initialize to zero

• May use small positive values for ReLU

• Consider problem-specific requirements

3. Special Cases:

• Initialize skip connections to identity

• Consider orthogonal initialization for RNNs

• Use pretrained weights when available

2.7.5 Impact on Training Dynamics

Good initialization enables:

• Faster convergence

• Better final performance

• More stable training

• Reduced likelihood of bad local minima

Poor initialization can lead to:

• Vanishing/exploding gradients

• Dead ReLU units

• Slow convergence

• Suboptimal solutions

2.8. MULTI-CLASS CLASSIFICATION 53

2.7.6 Initialization and Optimization Interplay

The choice of initialization affects:

1. Learning Rate Selection:

• Properly scaled initialization allows larger learning rates

• Poor initialization requires more conservative steps

2. Regularization Effect:

• Initial weights influence implicit regularization

• SGD with zero initialization has special properties

3. Optimizer Behavior:

• Affects momentum dynamics

• Impacts adaptive method scaling

• Influences early training trajectory

This initialization section naturally connects to both the SGD dynamics discussion above
and the practical training considerations that follow.

2.8 Multi-class Classification

When y is one-hot over multiple categories, each training example consists of input x and a
label indicating one of C possible categories:

y = (0, . . . , 0, 1, 0, . . . , 0)⊤ ∈ {0, 1}C (2.78)

The network outputs scores s ∈ RC , which are then transformed to probabilities:

p = softmax(s), pc =
esc∑C
j=1 e

sj
(2.79)

2.8.1 Common Examples

Object Recognition

Input x: Image (e.g., 224×224×3 RGB pixels)
Output y: Object category (one-hot over C classes)

Examples:

• ImageNet: C = 1000 object categories

– dog breeds (Labrador, Golden Retriever, ...)

– bird species (sparrow, eagle, ...)

54 CHAPTER 2. MULTI-LAYER PERCEPTRON

– everyday objects (chair, car, book, ...)

• CIFAR-10: C = 10 basic categories

– airplane, automobile, bird, cat, deer

– dog, frog, horse, ship, truck

Face Recognition

Input x: Face image (e.g., 112×112×3 RGB pixels)
Output y: Person identity (one-hot over C people)

Examples:

• Large-scale face recognition

– C ≈ 106 in modern systems

– Each c represents one person’s identity

• Classroom attendance system

– C ≈ 102 for a school

– Each c represents one student/teacher

Language Modeling

Input x: Sequence of words (w1, . . . , wt)
Output y: Next word wt+1 (one-hot over vocabulary)

Examples:

• English language model

– C ≈ 50, 000 common words

– Each c represents one word in vocabulary

• Character-level model

– C = 26 (English letters) or

– C ≈ 128 (ASCII characters)

• Subword tokenization

– C ≈ 30, 000 subword units

– Balances vocabulary size and coverage

2.8. MULTI-CLASS CLASSIFICATION 55

2.8.2 Network Architecture

For all these cases, the network:

• Takes domain-specific input x

• Processes through multiple layers h(1), . . . , h(L−1)

• Outputs C-dimensional scores s = h(L) ∈ RC

• Applies softmax to get probabilities p

2.8.3 From Logit Scores to Probabilities

The network outputs a vector of logit scores s ∈ RC , where each component sc represents the
unnormalized log-probability for category c. These scores are unbounded: sc ∈ (−∞,∞).

To convert scores to probabilities, we use the softmax function:

pc = softmax(s)c =
esc∑C
j=1 e

sj
(2.80)

Why “Softmax”?

The name “softmax” comes from its relationship to the ”hardmax” function:

• Hardmax: hardmax(s)c =

{
1 if sc > sj for all j ̸= c

0 otherwise

• Returns a one-hot vector (winner takes all)

• Not differentiable at boundaries

• Provides no gradient information

Softmax provides a “soft” version of max:

• Higher scores get higher probabilities

• All probabilities are positive and sum to 1

• Differentiable everywhere

• Provides useful gradient information

56 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.8.4 Loss Function Derivation

For a single training example with one-hot vector y:

J = log p(y|s) (2.81)

= log
∏
c

pycc (since y is one-hot) (2.82)

=
C∑
c=1

yc log pc (2.83)

=
C∑
c=1

ycsc − log
C∑

j=1

esj (2.84)

Note: −J is commonly used as the loss function, known as cross-entropy loss.

2.8.5 Gradient Derivation

Now let’s derive ∂J
∂sk

for any k:

∂J

∂sk
=

∂

∂sk

(
C∑
c=1

ycsc − log
C∑

j=1

esj

)
(2.85)

= δkc −
esk∑C
j=1 e

sj
(2.86)

= yk − pk (2.87)

Therefore:
∂J

∂s
= y − p = error (2.88)

2.8.6 Comparison: Binary vs Multi-class

Binary Classification

In binary classification, we typically:

• Choose class 0 as the base class and set its logit score to 0

• Only compute one logit score s for class 1

• Implicitly work with a 2D score vector (0, s)

Therefore:

p(y = 1|s) = es

e0 + es
= σ(s) (2.89)

p(y = 0|s) = e0

e0 + es
= 1− σ(s) (2.90)

This simplification:

2.8. MULTI-CLASS CLASSIFICATION 57

• Reduces parameters (only need one score)

• Makes computation numerically stable

• Is natural when one class is a reference class

Multi-class Classification

For C > 2 classes:

• We typically compute all C logit scores

• Setting one class’s score to 0 offers little benefit:

– No clear “reference” class

– Minimal computational savings

– Less symmetric treatment of classes

• Full score vector s ∈ RC provides:

– Symmetric treatment of all classes

– More natural gradient flow

– Better numerical stability across all classes

Binary Multi-class

Score s ∈ R (implicitly (0, s)) s ∈ RC

Activation σ(s) = es

1+es
softmax(s)c =

esc∑
j e

sj

Label y ∈ {0, 1} y ∈ {0, 1}C one-hot
J ys− log(1 + es) sc − log

∑
j e

sj

∂J
∂s

y − p y − p

The connection between binary and multi-class cases:

• Binary sigmoid is a special case of softmax with C = 2 and s0 = 0

• Both compute normalized exponentials

• Both give similar forms for gradients (y − p)

• Both maximize log-likelihood J (or minimize cross-entropy −J)

2.8.7 Progressive Abstraction in Hidden Layers

As we move through the layers of a multi-layer perceptron, the representations h(l) become
increasingly abstract, progressively discarding nuisance variations that are irrelevant to the
classification task.

58 CHAPTER 2. MULTI-LAYER PERCEPTRON

Hierarchical Abstraction

For a network with L layers, each layer l transforms the representation:

h(l) = f(W (l)h(l−1) + b(l)) (2.91)

The abstraction process follows:

x→ h(1) → h(2) → · · · → h(L−1) → s (2.92)

concrete −−−−−−−−→ abstract (2.93)

Nuisance Variation Removal

Consider face recognition where y represents identity. Each layer progressively removes
nuisance factors:

• h(1): Local features

– Retains: edges, textures, local patterns

– Removes: pixel-level noise, small translations

• h(2): Mid-level features

– Retains: facial parts, contours

– Removes: precise edge locations, lighting variations

• h(3): High-level features

– Retains: facial structure, key identity features

– Removes: pose variations, expressions

• h(L−1): Identity-specific features

– Retains: identity-determining characteristics

– Removes: hairstyle, clothing, background

Manifold Collapse

The representation space progressively ”collapses” around class-relevant information:

dim(Var(h(l)|y))↘ as l↗ (2.94)

This collapse has several properties:

• Within-class Convergence: As l increases

∥h(l)(x1)− h(l)(x2)∥ → 0 for x1, x2 in same class (2.95)

2.9. WORD EMBEDDING 59

• Between-class Separation: Simultaneously

∥h(l)(x1)− h(l)(x2)∥ → d > 0 for x1, x2 in different classes (2.96)

• Final Collapse: At the top layer

h(L−1)(x) ≈ vc for all x in class c (2.97)

where vc is a class-specific prototype vector

Information Flow Perspective

The abstraction process can be viewed through information theory:

I(h(l);x)↘ as l↗ (decreasing input information) (2.98)

I(h(l); y)↗ as l↗ (increasing class information) (2.99)

where I(·; ·) denotes mutual information.
This creates:

• Information Bottleneck: Each layer compresses input information while preserving
class information

• Minimal Sufficient Statistics: Final layers retain only information necessary for
classification

• Maximum Entropy Principle: Among representations with same class information,
network prefers most uniform

Practical Implications

This progressive abstraction has several benefits:

• Robustness: Higher layers become invariant to nuisance variations

• Generalization: Network learns to ignore task-irrelevant features

• Efficiency: Reduced dimensionality in higher layers

• Interpretability: Features become more semantic with depth

2.9 Word Embedding

Let’s consider predicting the next word given the current word using a simple MLP. We’ll
use the “Barack Obama” example where we want to predict “Obama” given “Barack”.

60 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.9.1 Model Structure

Input and output are one-hot vectors over vocabulary:

• x ∈ {0, 1}dvocabulary (e.g., one-hot for ”Barack”)

• y ∈ {0, 1}dvocabulary (e.g., one-hot for ”Obama”)

The model has two layers:

h = Wembedx (embedding) (2.100)

s = Wunembedh (scoring) (2.101)

where:

• h ∈ Rdmodel is the word embedding

• Wembed ∈ Rdmodel×dvocabulary

• Wunembed ∈ Rdvocabulary×dmodel

• Typically dmodel ≪ dvocabulary (e.g., 256 vs 50,000)

2.9.2 Interpretation of Embedding Matrix

The embedding matrix Wembed contains word embeddings in its columns:

Wembed =

 | | |
h1 h2 · · · hdvocabulary

| | |

 (2.102)

When x is a one-hot vector for the k-th word:

• x = (0, . . . , 0, 1, 0, . . . , 0)⊤ (1 at position k)

• h = Wembedx = k-th column of Wembed

• This selects the embedding vector for the k-th word

2.9.3 Forward Pass Example

For the ”Barack Obama” example:

x = one-hot(”Barack”) (2.103)

h = embedding of ”Barack” = Wembedx (2.104)

s = logit scores for next word = Wunembedh (2.105)

p = softmax(s) (prediction probabilities) (2.106)

The model should assign high probability to y = one-hot(”Obama”).

2.9. WORD EMBEDDING 61

2.9.4 Gradient Derivation

Starting from J = log p(y|s), we have:

∂J

∂s
= y − p (2.107)

Now let’s derive gradients for each layer:

Gradient for Unembedding

∂J

∂Wunembed

=
∂J

∂s
· ∂s

∂Wunembed

(2.108)

= (y − p)h⊤ (2.109)

This is an outer product: Rdvocabulary × Rdmodel .

Gradient for Hidden Layer

∂J

∂h
=

∂J

∂s
· ∂s
∂h

(2.110)

= (y − p)⊤Wunembed (2.111)

Note dimensions: Rdmodel = R1×dvocabulary × Rdvocabulary×dmodel

Gradient for Embedding

∂J

∂Wembed

=
∂J

∂h
· ∂h

∂Wembed

(2.112)

=
(
(y − p)⊤Wunembed

)
x⊤ (2.113)

This updates only the embedding of the input word:

• Since x is one-hot, Wembedx selects one column

• Only that column’s embedding gets updated

• The gradient is zero for all other word embeddings

2.9.5 Implementation Note

In practice:

• Avoid explicitly constructing one-hot vectors

• Use index operations to select embeddings

• This makes computation efficient despite large vocabulary

62 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.10 The Profound Idea of Embedding

After establishing neural networks as flexible function approximators through piecewise linear
transformations and ReLU rectifications, the concept of embedding emerges as perhaps the
most profound idea in deep learning.

2.10.1 From Sparse to Dense Representation

Traditional representations are often sparse:

• One-hot vectors: (0, . . . , 0, 1, 0, . . . , 0)

• Binary vectors: {0, 1}d

• Few-hot vectors: mostly zeros with few ones

An embedding transforms these into dense vectors:

sparse ∈ {0, 1}dsparse embedding−−−−−−→ dense ∈ Rddense (2.114)

where:

• Each component is a continuous real number

• Typically ddense ≪ dsparse

• All components are potentially meaningful

• Components learn to encode relevant features

2.10.2 Thought Vectors

An embedding can be interpreted as a “thought vector”:

• Each component represents a neuron’s activity

• The full vector represents a distributed pattern

• Similar concepts have similar patterns

• The pattern encodes semantic meaning

For example, a word embedding might encode:

“cat”→


0.82 (animal)
0.75 (pet)
0.31 (size)

−0.12 (aggression)
...

 (2.115)

2.10. THE PROFOUND IDEA OF EMBEDDING 63

2.10.3 Vector Operations in Neural Networks

Embeddings are central objects that can undergo various operations:

Linear Transformations

• Matrix multiplication: Wh

• Learnable transformations

• Change dimension and perspective

Element-wise Operations

• Non-linear activation: σ(h), e.g., ReLU: max(0, h)

• Element-wise product: h1 ⊙ h2

Vector Arithmetic

• Addition: h1 + h2

• Subtraction: h1 − h2

• Inner product: h⊤
1 h2

Famous example in word embeddings:

vec(“king”)− vec(“man”) + vec(“woman”) ≈ vec(“queen”) (2.116)

2.10.4 Properties of Embedding Space

The embedding space has meaningful structure:

• Distance: Similar concepts are close in the space

∥vec(“cat”)− vec(“dog”)∥ < ∥vec(“cat”)− vec(“car”)∥ (2.117)

• Direction: Differences capture relationships

vec(“Paris”)− vec(“France”) ≈ vec(“Berlin”)− vec(“Germany”) (2.118)

64 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.10.5 Learning Embeddings

Embeddings are learned through:

• Task-specific optimization

• Backpropagation of gradients

• Large-scale training data

The learning process:

• Discovers relevant features automatically

• Creates distributed representations

• Organizes semantic space meaningfully

• Captures complex relationships

2.10.6 Impact on Deep Learning

Embeddings are fundamental because they:

• Transform discrete symbols into continuous vectors

• Enable smooth optimization in neural networks

• Create meaningful semantic spaces

• Allow composition of concepts

• Support transfer learning

• Bridge symbolic and neural computation

This transformation from sparse, discrete representations to dense, continuous vectors
is perhaps the key that enables neural networks to process symbolic information and learn
meaningful representations from data.

2.11 Associative Memory

Let’s revisit the “Barack Obama” example with an associative memory layer. This model
captures word associations through an explicit transformation in the embedding space.

2.11. ASSOCIATIVE MEMORY 65

2.11.1 Model Structure

The model has three layers:

h(1) = Wembedx (embedding) (2.119)

h(2) = Wassociativeh
(1) (association) (2.120)

s = W⊤
embedh

(2) (scoring with tied weights) (2.121)

Dimensions:

• Wembed ∈ Rdmodel×dvocabulary

• Wassociative ∈ Rdmodel×dmodel

• h(1), h(2) ∈ Rdmodel

• x, s ∈ Rdvocabulary

2.11.2 Interpretation

Embedding Layer

When x is one-hot for “Barack”:

• h(1) is the embedding of “Barack”

• This captures semantic features of “Barack”

• h(1) is a column of Wembed

Associative Layer

Wassociative transforms embeddings:

• Maps word meanings to associated word meanings

• “Barack” → likely next words like “Obama”

• Learns patterns of word co-occurrence

Tied Weight Layer

Using W⊤
embed for unembedding:

• Same weights for embedding and unembedding

• Reduces parameters

• Forces consistency between input and output spaces

66 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.11.3 Associative Memory

Wassociative functions as associative memory:

• Maps one thought vector to associated thought vectors

• Learns common patterns in embedding space

• Captures semantic and syntactic relationships

For example:

h(2) = Wassociativeh
(1) ≈ embedding of likely next words (2.122)

2.11.4 Gradient Derivation

Starting from J = log p(y|s) with ∂J
∂s

= y − p:

Gradient for Embeddings

Due to weight tying:

∂J

∂Wembed

=
∂J

∂h(1)
· ∂h(1)

∂Wembed

+
∂J

∂s
· ∂s

∂Wembed

(2.123)

=

(
∂J

∂h(2)
Wassociative

)
x⊤ + (y − p)(h(2))⊤ (2.124)

Gradient for Association

∂J

∂h(2)
= (y − p)⊤Wembed (2.125)

∂J

∂Wassociative

=
∂J

∂h(2)
· ∂h(2)

∂Wassociative

(2.126)

=
(
(y − p)⊤Wembed

)
(h(1))⊤ (2.127)

2.11.5 Learning Dynamics

The model learns two aspects:

1. Word embeddings (Wembed):

• Semantic features of words

• Similar words get similar embeddings

2. Associations (Wassociative):

• Patterns of word co-occurrence

• Transforms meanings to likely next meanings

2.11. ASSOCIATIVE MEMORY 67

Weight tying ensures:

• Consistent embedding space

• Same features used for input and output

• More efficient parameter usage

The ”Barack Obama” example:

x = one-hot(”Barack”) (2.128)

h(1) = embedding of ”Barack” (2.129)

h(2) = transformation towards ”Obama”-like embeddings (2.130)

s = scores measuring similarity to all word embeddings (2.131)

2.11.6 Linear Associative Memory

Consider pairs of vectors (ai, bi) where i = 1, . . . , n. We want to construct a memory that
associates ai with bi.

Construction

Define the associative matrix as:

Wassociative =
n∑

i=1

bia
⊤
i (2.132)

If {ai} forms an orthonormal basis:

a⊤i aj =

{
1 if i = j

0 if i ̸= j
(2.133)

Perfect Recall

For any basis vector ak:

Wassociativeak =
n∑

i=1

bia
⊤
i ak (2.134)

=
n∑

i=1

biδik (2.135)

= bk (2.136)

This shows exact recall of associations for basis vectors.

68 CHAPTER 2. MULTI-LAYER PERCEPTRON

Example in Word Embeddings

In the “Barack Obama” context:

• ai: embeddings of input words

• bi: embeddings of associated next words

• Wassociative: learns these associations

2.11.7 Non-linear Associative Memory

We can extend this to a non-linear associative memory using an MLP structure:

h(1) = Wembedx (embedding) (2.137)

h(2) = σ(W
(in)
associativeh

(1)) (hidden association) (2.138)

h(3) = W
(out)
associativeh

(2) (output association) (2.139)

s = Wunembedh
(3) (scoring) (2.140)

This structure provides:

Non-linear Transformation

• σ(·) adds non-linearity to associations

• Each hidden unit creates a “fold” in embedding space with ReLU

• Complex associations can be learned

Memory as Interpolatable Function

The non-linear memory:

• Acts as a piecewise linear function in embedding space

• Can interpolate between learned associations

• Creates smooth transitions between memories

• Generalizes to novel inputs

2.11. ASSOCIATIVE MEMORY 69

h(1)

h
(2)
1

h
(2)
2

...

h
(2)
k

h(3)

W
(in

)

ass
oci

ati
ve

W (in)associative

W (out)associative

W
(ou

t)

ass
oci

ati
ve

σ(·)

Figure 2.10: Non-linear associative memory structure

Advantages over Linear Memory

1. Capacity:

• Can store more complex associations

• Not limited by input dimension

2. Generalization:

• Learns patterns in associations

• Interpolates between known pairs

3. Flexibility:

• Can capture non-linear relationships

• Adapts to data structure

Learning Dynamics

The network learns:

• W
(in)
associative: Extract relevant features

• Hidden layer activations: Create memory regions

• W
(out)
associative: Combine features for association

In the “Barack Obama” example:

• h(1): Embedding of “Barack”

• h(2): Non-linear features of association patterns

• h(3): Transformed embedding near “Obama”

• Network learns to associate related concepts

70 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.12 Embedding for Recommender Systems

2.12.1 Basic Model

For each user i and item j:

• User embedding: ai ∈ Rd

• Item embedding: bj ∈ Rd

• Rating prediction: rij ≈ ⟨ai, bj⟩

The prediction model is:

rij = a⊤i bj =
d∑

k=1

aikbjk (2.141)

2.12.2 Learning from Observations

Given observed ratings {rij : (i, j) ∈ Ω}, we solve:

min
ai,bj

∑
(i,j)∈Ω

1

2
(rij − ⟨ai, bj⟩)2 (2.142)

This learns:

• User preferences as vectors ai

• Item characteristics as vectors bj

• Each dimension captures a latent feature

2.12.3 Neural Network Interpretation

From an item-centric view:

• Input: One-hot item vector xj

• Embedding layer: bj = Wembedxj

• User-specific readout: rij = a⊤i bj

xj

Item j

bj rij

Rating
Wembed Wunembed = ai

Figure 2.11: Neural network view of recommender system, with user-specific readout weights

2.12. EMBEDDING FOR RECOMMENDER SYSTEMS 71

2.12.4 Interpretation of User Embeddings

The vector ai can be interpreted as:

• Neural readout weights in the brain

• Internal representation of preferences

• Control signals for desire/addiction

For example, in video recommendation:

ai =


0.9 (action)
0.2 (romance)
0.7 (sci-fi)

...

 , bj =


0.8 (action)
0.1 (romance)
0.6 (sci-fi)

...

 (2.143)

High rating predicted: ⟨ai, bj⟩ large when preferences align with content.

2.12.5 Mathematical Properties

The inner product structure implies:

• Similar items have similar embeddings bj

• Similar users have similar embeddings ai

• Rating is linear in both user and item features

Vector arithmetic works meaningfully:

• bsci-fi − bdrama captures genre difference

• ateen − aadult captures age preference difference

• These differences are consistent across embeddings

2.12.6 Addiction Mechanism

The embedding ai as neural weights suggests:

• Brain learns to recognize rewarding content

• Embedding adapts through experience

• Strong alignment (⟨ai, bj⟩ ≫ 0) creates addiction

Recommendation systems may:

• Learn and reinforce user preferences

• Create feedback loops strengthening ai

• Lead to increasingly specific content matching

72 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.12.7 Extension to Non-linear Models

We can extend to non-linear rating prediction:

rij = f(ai, bj) (2.144)

where f could be:

• Multi-layer neural network

• Non-linear feature interactions

• Context-dependent transformation

However, the linear model’s interpretability makes it valuable:

• Clear meaning of embeddings

• Interpretable feature dimensions

• Simple addiction mechanism

• Efficient computation

2.13 Superposition

2.13.1 Beyond Individual Components

Earlier examples of interpreting individual vector components were oversimplified:

”cat” ̸≈


0.82 (animal)
0.75 (pet)
0.31 (size)

...

 (2.145)

In reality, information is distributed across the entire vector through complex superposi-
tion patterns.

2.13.2 Basis Representation

An embedding vector h can be expressed in terms of an orthogonal basis:

h =
d∑

i=1

cibi (2.146)

where:

• (bi) forms an orthogonal basis: b⊤i bj = δij

• ci = h⊤bi are coefficients

• Each ci may correspond to interpretable features

2.13. SUPERPOSITION 73

2.13.3 Subspace Decomposition

More generally, we can decompose h into subspaces:

h =
K∑
k=1

BkCk (2.147)

where:

• Bk ∈ Rd×dk defines a subspace

• Ck ∈ Rdk encodes feature values

• gk = BkCk represents one aspect of information

2.13.4 Example: Barack Obama Embedding

Consider an embedding vector for ”Barack Obama”:

hBarack =
K∑
k=1

gk (2.148)

where each gk = BkCk captures different aspects:

g1 = presidency subspace (44th President) (2.149)

g2 = ethnicity subspace (African American) (2.150)

g3 = education subspace (Harvard Law) (2.151)

g4 = family subspace (Michelle, Malia, Sasha) (2.152)

g5 = political subspace (Democratic Party) (2.153)

... (2.154)

Properties of this decomposition:

• Each gk lives in its own subspace

• Subspaces may be approximately orthogonal

• Information is distributed but structured

• Features interact through vector addition

2.13.5 Mathematical Properties

Orthogonality

Ideally, subspaces are orthogonal:

B⊤
j Bk ≈ 0 for j ̸= k (2.155)

This enables:

74 CHAPTER 2. MULTI-LAYER PERCEPTRON

• Independent representation of features

• Clean separation of information

• Additive composition of meanings

Feature Extraction

To extract feature k:
Ck ≈ B⊤

k h (2.156)

This projects h onto subspace k.

2.13.6 Implications

This view of embeddings suggests:

• Information is holistically encoded

• Multiple features coexist through superposition

• Structure emerges from learning

• Interpretation requires subspace analysis

Important considerations:

• Basis vectors/subspaces may not be unique

• Decomposition may be approximate

• Some information may be entangled

• Context may affect interpretation

2.13.7 Neural Network Perspective

In neural networks:

• Hidden layers learn useful subspaces

• Attention mechanisms select relevant subspaces

• Non-linearities enable complex feature interaction

• Training shapes the decomposition structure

This rich representation allows:

• Complex semantic relationships

• Flexible feature composition

• Efficient information storage

• Robust generalization

2.14. NORMALIZATION 75

2.14 Normalization

2.14.1 RMS Normalization

For a vector h ∈ Rd, RMS normalization is:

RMSNorm(h) =
h√

1
d

∑d
i=1 h

2
i

=
h

∥h∥/
√
d

(2.157)

Properties:

• Normalizes vector to have RMS = 1

• Preserves direction but standardizes magnitude

• Scale-invariant: RMSNorm(αh) = RMSNorm(h) for α ̸= 0

2.14.2 Geometric Interpretation

e1

e2

hRMSNorm(h)

θ

Figure 2.12: RMS normalization projects vectors onto sphere of radius
√
d

2.14.3 Benefits for Loss Landscape

RMS normalization provides several advantages:

Magnitude Tolerance

• Only direction matters, not magnitude

• Error in ∥h∥ doesn’t affect normalized output

• Loss becomes:

L(θ) = f

(
h(θ)

∥h(θ)∥

)
(2.158)

76 CHAPTER 2. MULTI-LAYER PERCEPTRON

Smoother Loss Surface

Consider two vectors h1 and h2:

⟨RMSNorm(h1),RMSNorm(h2)⟩ = cos(θ12) (2.159)

This means:

• Loss depends on angles between vectors

• Gradients point towards correct direction

• Optimization becomes more geometrically natural

2.14.4 Error Correction Properties

RMS normalization provides fault tolerance:

• Scale Errors:

RMSNorm(αh+ ϵ) ≈ RMSNorm(h) for large α (2.160)

• Directional Recovery:

RMSNorm(h+ ϵ⊥) =
h+ ϵ⊥√

∥h∥2 + ∥ϵ⊥∥2/
√
d

(2.161)

where ϵ⊥ is noise perpendicular to h

• Gradient Stability:
∂

∂h
RMSNorm(h) is bounded (2.162)

2.14.5 Cosine Similarity

After RMS normalization, inner products become cosine similarities:

sim(h1, h2) =
h⊤
1 h2

∥h1∥∥h2∥
= cos(θ12) (2.163)

This has several implications:

• Measures pure directional alignment

• Bounded in [−1, 1]

• Natural for comparing semantic similarity

• Scale-invariant comparison metric

2.15. DROPOUT 77

2.14.6 Application in Neural Networks

In practice:

out = RMSNorm(h)γ (2.164)

where γ is a learnable scale parameter.

Benefits in neural networks:

• Training Stability:

– Consistent scale across layers

– Better gradient flow

– More predictable updates

• Representation Quality:

– Focus on directional information

– More robust feature extraction

– Better semantic organization

• Optimization Behavior:

– Smoother loss landscape

– More efficient training

– Better convergence properties

2.15 Dropout

2.15.1 Basic Mechanism

For a vector h ∈ Rd, dropout applies during training:

hdropout = m⊙ h (2.165)

where:

• m ∈ {0, 1}d is a random mask

• P (mi = 0) = p (dropout probability)

• P (mi = 1) = 1− p (keep probability)

• ⊙ denotes element-wise multiplication

78 CHAPTER 2. MULTI-LAYER PERCEPTRON

h1

h2

h3

h4

s

Training

h1

h2

h3

h4

s

×(1− p)

Testing

Figure 2.13: Dropout during training and testing phases

2.15.2 Testing Phase Adjustment

During testing, we use the expected value:

s = W⊤
outh · (1− p) (2.166)

or equivalently:

s = (W⊤
out · (1− p))h (2.167)

This scaling ensures:

• Expected activation matches training

• No random fluctuations at test time

• Smooth output for deployment

2.15.3 Advantages and Intuitions

Ensemble Effect

Each dropout mask creates a different sub-network:

sub-networks = 2d possibilities (2.168)

Benefits:

• Implicit model averaging

• Reduced overfitting

• Better generalization

2.15. DROPOUT 79

Feature Co-adaptation Prevention

Without dropout:

s =
d∑

i=1

wihi (features may co-depend) (2.169)

With dropout:

s =
d∑

i=1

miwihi (features must be robust) (2.170)

This forces:

• Independent feature usefulness

• More robust representations

• Reduced feature co-dependency

Information Distribution

Dropout encourages:

• Distributed representations

• Redundant feature encoding

• Robust information storage

Similar to biological systems:

• Neural redundancy

• Fault tolerance

• Distributed processing

2.15.4 Mathematical Analysis

Training Phase

For a single forward pass:

E[hdropout] = (1− p)h (2.171)

Var[hdropout] = p(1− p)h⊙ h (2.172)

Testing Phase

Scaling adjustment ensures:

Etrain[s] = Em[W
⊤
out(m⊙ h)] (2.173)

= W⊤
outh · (1− p) (2.174)

= stest (2.175)

80 CHAPTER 2. MULTI-LAYER PERCEPTRON

2.15.5 Implementation Considerations

Common Dropout Rates

Typical values:

• p = 0.5 for hidden layers

• p = 0.2 for input layer

• Adjust based on layer width

Training vs Testing

Two implementations:

• Scale at test time: W⊤
outh · (1− p)

• Scale weights: W⊤
out · (1− p)

2.15.6 Fault Tolerance: RMS Norm vs Dropout Comparison

Both RMS normalization and dropout exhibit distinct but complementary fault tolerance
properties, operating at different levels of the network’s computation.

Error Types and Correction

For a vector h ∈ Rd, each method handles different types of errors:

RMS Normalization Handles magnitude errors through projection:

RMSNorm(αh+ ϵ) ≈ RMSNorm(h) for large α (2.176)

For directional noise ϵ⊥ perpendicular to h:

RMSNorm(h+ ϵ⊥) =
h+ ϵ⊥√

∥h∥2 + ∥ϵ⊥∥2/
√
d

(2.177)

Dropout Handles structural errors through masking:

hdropout = m⊙ h, mi ∼ Bernoulli(1− p) (2.178)

Error statistics during training:

E[hdropout] = (1− p)h (2.179)

Var[hdropout] = p(1− p)h⊙ h (2.180)

2.15. DROPOUT 81

Correction Mechanisms

RMS Normalization

• Continuous Projection: Maps vectors to constant RMS sphere

∥RMSNorm(h)∥ =
√
d (2.181)

• Gradient Stability: Bounded derivatives∥∥∥∥ ∂

∂h
RMSNorm(h)

∥∥∥∥ ≤ C (2.182)

• Scale Invariance:

RMSNorm(αh) = RMSNorm(h) ∀α ̸= 0 (2.183)

Dropout

• Ensemble Effect: Implicit averaging over 2d sub-networks

stest = Em[W
⊤
out(m⊙ h)] = W⊤

outh · (1− p) (2.184)

• Feature Independence: Each component must be independently useful

s =
d∑

i=1

miwihi (forced robustness) (2.185)

• Information Distribution: Redundant encoding across features

P (featurei available) = 1− p (2.186)

Complementary Benefits

The methods provide synergistic fault tolerance:

1. Scale and Structure Protection:

• RMS norm: h→ h/∥h∥ (magnitude correction)

• Dropout: h→ m⊙ h (structural robustness)

2. Error Propagation Control:

• RMS norm prevents magnitude explosion/vanishing

• Dropout prevents co-adaptation and overfitting

3. Combined Guarantees:

∥RMSNorm(m⊙ h)∥ =
√
d (stable magnitude) (2.187)

E[m⊙ RMSNorm(h)] = (1− p)RMSNorm(h) (preserved direction) (2.188)

This complementary behavior suggests using both methods in practice, as they address
different aspects of network robustness and stability.

82 CHAPTER 2. MULTI-LAYER PERCEPTRON

Chapter 3

Convolutional Neural Networks

Figure 3.1: Convolutional neural network

Chapter Overview

Convolutional Neural Networks (CNNs) represent a specialized architecture in deep learn-
ing, fundamentally conceptualized as computer programs operating in a “neural language”
of vectors and transformations. These networks are specifically engineered for processing
structured data like images, where information maintains spatial organization. CNNs process
images through layers of local feature detectors that share weights across different positions,
embedding key assumptions about translation invariance and the importance of local pat-
terns. The architecture progressively transforms input images through convolutional layers
that detect local patterns, subsampling operations that reduce spatial dimensions, and fully
connected layers that integrate information globally. The implementation details encom-
pass channel organization, 1×1 convolutions, and the specific mechanics of backpropagation
through CNN architectures, with additional considerations for efficient parallel processing
on modern hardware.

83

84 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

3.1 Neural Networks as Computer Programs

3.1.1 Recall: The Neural Language

The fundamental operation in a multi-layer perceptron is:

h(l) = σ(W(l)h(l−1) + b(l)) (3.1)

This simple equation defines a basic “neural language” where:

• Objects are vectors (embeddings)

• Operations are learnable transformations

• Information flows through vectors

3.1.2 Basic Operations in Neural Language

The neural language consists of simple vector operations:

1. Linear Transformations:

• Matrix multiplication: Wh

• Learnable weights: W adapts during training

• Bias addition: +b

2. Element-wise Operations:

• Rectification: σ(h)

• Product: h1 ⊙ h2

• Addition: h1 + h2

3. Vector Products:

• Inner product: h⊤
1 h2

• Outer product: h1h
⊤
2

3.1.3 Neural Networks as Computer Programs

A neural network can be viewed as:

• A team of vectors passing messages

• Each vector holds a distributed pattern

• Messages transform through learnable operations

• Information flows through vector spaces

The computation flow:

h(0) → h(1) → h(2) → · · · → h(L) (3.2)

where each transition is governed by the neural language operations.

3.1. NEURAL NETWORKS AS COMPUTER PROGRAMS 85

3.1.4 Programming with Vectors

Key aspects of neural programming:

1. Objects:

• Vectors as fundamental units

• Each vector represents a pattern

• Projections onto subspaces encode features

2. Operations:

• Learnable transformations

• Simple element-wise functions

• Vector arithmetic

3. Control Flow:

• Forward propagation of information

• Backward propagation of gradients

• Layer-wise message passing

3.1.5 Learning as Program Writing

The neural program is written by:

• Training data providing examples

• Backpropagation computing updates

• Gradient descent optimizing parameters

• Loss function defining objectives

This process:

• Discovers useful transformations

• Learns meaningful representations

• Adapts to data patterns

• Creates reusable computations

86 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

3.1.6 Understanding Neural Programs

To understand a neural network:

• Follow vector messages

• Analyze transformation patterns

• Interpret learned representations

• Study information flow

Key questions:

• What pattern does each vector encode?

• How do transformations modify patterns?

• How does information combine and split?

• What features are extracted and composed?

This vector-centered view provides:

• Clear computational model

• Unified understanding of architectures

• Framework for designing networks

• Basis for analyzing behavior

With this foundation, we can now explore Convolutional Neural Networks as specialized
neural programs for processing structured data like images, where vectors will organize in
spatial patterns and share transformation parameters.

3.2 Computer Vision

3.2.1 Input Image Structure

At each pixel position (i, j), the input is a 3D color vector:

xij =

Rij

Gij

Bij

 ∈ R3 (3.3)

This forms our initial representation:

h
(0)
ij = xij (3.4)

3.2. COMPUTER VISION 87

3.2.2 Layers and Representations

As we progress through layers l = 1, . . . , L, the network builds increasingly complex repre-
sentations:

Early Convolutional Layers (l = 1, 2)

Local vectors h
(l)
ij detect primitive patterns:

• Basic Elements (spatial range: 3×3 pixels)

h
(1)
ij =



horizontal edges

vertical edges

diagonal bars

corners

color transitions

(3.5)

• Simple Compositions (spatial range: 5×5 pixels)

h
(2)
ij =



curves

circles

crosses

texture patterns

contour segments

(3.6)

Middle Convolutional Layers (l = 3, 4)

Local vectors encode object parts:

• Face Parts (spatial range: 7×7 to 11×11 pixels)

h
(3)
ij =



eyes

nose bridges

lip curves

eyebrows

ear shapes

(3.7)

• Car Parts (spatial range: 11×11 to 15×15 pixels)

h
(4)
ij =



wheels

headlights

windows

door handles

side mirrors

(3.8)

88 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Late Convolutional Layers (l = 5, 6)

Local vectors represent larger compositions:

• Face Regions (spatial range: 15×15 to 23×23 pixels)

h
(5)
ij =



eye-nose combinations

mouth-chin regions

cheek-ear areas

forehead-eyebrow segments

complete facial profiles

(3.9)

• Car Sections (spatial range: 23×23 to 31×31 pixels)

h
(6)
ij =



front grille assemblies

side body panels

rear trunk sections

roof-window combinations

complete car profiles

(3.10)

Fully Connected Layers (l = 7, 8)

Global vectors integrate complete object information:

• Object Configuration (h(7) ∈ Rd)

h(7) =



face arrangement (eyes-nose-mouth)

car structure (front-side-back)

object viewpoint features

global shape descriptors

spatial layout patterns

(3.11)

• Object Identity (h(8) ∈ Rc)

h(8) =



person identity features

car make/model features

categorical attributes

abstract object properties

classification logits

(3.12)

Each layer builds upon previous representations:

edges
3×3−−→ parts

7×7−−→ regions
15×15−−−→ objects

global−−−→ (3.13)

Key properties of this hierarchy:

3.2. COMPUTER VISION 89

• Spatial Range: Receptive field size grows with depth

• Pattern Complexity: Features become more sophisticated

• Semantic Level: Representations become more abstract

• Translation Invariance: Higher layers are more position-robust

h(0):

h(1):

h(2):

h(3):

spatial extent: 8, dim: d0 (RGB)

spatial extent: 8, dim: d1 (Conv)

spatial extent: 4, dim: d2 (Conv+subsample)

spatial extent: 1, dim: d3 (FC)

Figure 3.2: CNN structure showing progression from spatially arranged small vectors to
single large vector through convolution, subsampling, and fully connected transformations.

3.2.3 Convolutional Layer Computation

At position (i, j):

h
(l)
ij = σ

(
r∑

∆i=−r

r∑
∆j=−r

W∆i,∆jh
(l−1)
i+∆i,j+∆j + b(l)

)
(3.14)

where:

• r is the range of local shift (typically 1,2,3)

• W∆i,∆j is the weight matrix for shift (∆i,∆j)

• Weights are shared across all positions (i, j)

90 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

We can also write it as

h
(l)
ij = σ

(W−r,−r W−r,−r+1 · · · Wr,r

)


h
(l−1)
i−r,j−r

h
(l−1)
i−r,j−r+1

...

h
(l−1)
i+r,j+r

+ b(l)

 (3.15)

This form shows that:

• Local features are concatenated into a single vector

• One large linear transformation is applied

• The weight matrices are arranged to match the concatenation

The concatenated vector has dimension dl−1(2r+1)2, and the concatenated weight matrix
has dimension dl × dl−1(2r + 1)2.

The convolution operation represents a spatial composition where:

• Each h
(l−1)
i+∆i,j+∆j captures local features

• h
(l)
ij composes these local features

• The composition is learned through W∆i,∆j

3.2.4 Dimension Considerations

Let the dimensions be:

• h
(l−1)
ij ∈ Rdl−1 (input features)

• h
(l)
ij ∈ Rdl (output features)

For meaningful composition:
dl > dl−1 (3.16)

This increase in dimension allows:

• Integration of spatial information

• Detection of more complex patterns

• Composition of lower-level features

Example dimensions:

• Layer 1: d1 = 64 composing RGB (d0 = 3)

• Layer 2: d2 = 128 composing layer 1 features

• Layer 3: d3 = 256 composing layer 2 features

3.2. COMPUTER VISION 91

This progressive increase in feature dimensions enables the network to:

• Build hierarchical representations

• Combine local patterns into more complex features

• Maintain rich information about spatial composition

3.2.5 Inductive Bias in Convolution

Understanding Inductive Bias

The term ”inductive bias” consists of two key components:

• Inductive: Making general conclusions from specific examples

– Learn patterns from training data

– Generalize to unseen test data

– Extrapolate from finite samples to universal rules

• Bias: Prior assumptions that guide learning

– Architectural constraints on possible solutions

– Built-in preferences for certain patterns

– Restrictions on model’s hypothesis space

Convolution’s Inductive Biases

Weight sharing in convolutional layers embeds key assumptions:

h
(l)
ij = f

(∑
∆i,∆j

W∆i,∆jh
(l−1)
i+∆i,j+∆j

)
(3.17)

These assumptions create three main biases:

1. Translation Invariance

• What: Same operation everywhere

Wij = W for all (i, j) (3.18)

• Why Inductive: If a pattern is useful at position (i, j), it’s likely useful at (i′, j′)

• Why Biased: Assumes spatial position doesn’t matter for feature detection

92 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

2. Local Connectivity

• What: Process nearby pixels together

W∆i,∆j = 0 for ∥∆i∥, ∥∆j∥ > k (3.19)

• Why Inductive: Local patterns in training images generalize to test images

• Why Biased: Assumes distant pixels are conditionally independent

3. Hierarchical Composition

• What: Stack layers to build complexity

receptive field size(l) > receptive field size(l − 1) (3.20)

• Why Inductive: Simple patterns combine to form complex ones

• Why Biased: Assumes visual world has compositional structure

Benefits of These Biases

These inductive biases provide several advantages:

• Parameter Efficiency:

paramsCNN ≪ paramsMLP for same task (3.21)

• Sample Efficiency:

training examples neededCNN ≪ training examples neededMLP (3.22)

• Generalization:
E[test errorCNN] < E[test errorMLP] (3.23)

Trade-offs

The strength of these biases creates trade-offs:

• Advantages:

– Better generalization on natural images

– Fewer parameters to learn

– More interpretable features

• Limitations:

– May not suit non-spatial data

– Restricted in modeling global patterns

– Potentially over-specialized to vision

Therefore, CNN’s success stems from matching its inductive biases to the statistical
structure of visual data. The ”inductive” nature helps generalize from training to test
images, while the ”biases” encode our prior knowledge about visual world properties.

3.2. COMPUTER VISION 93

3.2.6 Subsampling in Convolutional Layers

Subsampling reduces spatial resolution through two steps:
1. Compute convolution as before.
2. Subsample the output:

h
(l)
ij ← h

(l)
si,sj (3.24)

where:

• s is the stride (typically 2)

• Only keep positions that are multiples of s

• Spatial resolution reduced by factor of s

Progressive Downsampling

With stride s = 2:

h
(1)
ij : full resolution (3.25)

h
(2)
ij ← h

(2)
2i,2j (3.26)

h
(3)
ij ← h

(3)
2i,2j (3.27)

... (3.28)

This creates progressive reduction:

• Each layer halves spatial dimensions

• Receptive field doubles relative to input

• Feature dimension typically increases

3.2.7 Fully Connected Layer Computation

Global integration of local features:

h(l) = σ

(∑
i,j

Wijh
(l−1)
ij + b(l)

)
(3.29)

where:

• Wij connects to position (i, j) in previous layer

• h(l) is a global thought vector

• All subsequent layers follow MLP structure

94 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

3.2.8 Channel and Kernel View

Let’s expand our vector-centered view to show explicit channels. At position (i, j):

• h
(l)
ij is a vector of dimension dl

• Each component k is a channel: h
(l)
ijk

• dl is the number of channels in layer l

Detailed Convolution Computation

For channel k at position (i, j) in layer l:

h
(l)
ijk = σ

(
dl−1∑
c=1

r∑
∆i=−r

r∑
∆j=−r

Wk,c,∆i,∆jh
(l−1)
i+∆i,j+∆j,c + b

(l)
k

)
(3.30)

where:

• k = 1, . . . , dl is output channel

• c = 1, . . . , dl−1 is input channel

• Wk,c,∆i,∆j is kernel weight

• b
(l)
k is bias for channel k

3.2.9 1×1 Convolution

A special case occurs when ∆i = ∆j = 0. This is called a 1×1 convolution:

h
(l)
ij = σ(W0h

(l−1)
ij + b(l)) (3.31)

where:

• W0 ∈ Rdl×dl−1

• No spatial composition is involved

• Each position transformed independently

Interpretation

1×1 convolution performs:

• Feature transformation at each spatial position

• Channel mixing without spatial context

• Pointwise non-linear transformation

3.3. BACKPROPAGATION IN CNN 95

This can be viewed as:

• A tiny MLP applied at each position (i, j)

• A learnable projection of the feature vector

• A way to adjust the number of channels

Common Uses

Applications include:

• Dimension Reduction:

dl < dl−1 (compression) (3.32)

• Dimension Expansion:

dl > dl−1 (enrichment) (3.33)

• Cross-channel Interaction:

h
(l)
ij = new combination of channels in h

(l−1)
ij (3.34)

Computational Efficiency

1×1 convolutions are efficient because:

• Minimal spatial operations

• Simple matrix multiplication at each position

• Fewer parameters than regular convolution

• Can be highly parallelized

3.3 Backpropagation in CNN

Starting from the log-likelihood objective:

J = log p(y|s), s = h(L) = s(L) = W(L)h(L−1) (3.35)

3.3.1 Error Signal

At the top layer:
∂J

∂s
=

∂J

∂h(L)
=

∂J

∂s(L)
= y − p (3.36)

96 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

3.3.2 Backprop through FC Layers

For a fully connected layer l:

h(l) = s(l) = W(l)h(l−1) (3.37)

∂J

∂h(l−1)
= (W(l))⊤

∂J

∂h(l)
(3.38)

∂J

∂W(l)
=

∂J

∂h(l)
(h(l−1))⊤ (3.39)

This is standard MLP backprop.

3.3.3 Backprop through Convolutional Layers

For a convolutional layer with spatial positions (i, j):

h
(l)
ij = σ(s

(l)
ij) (3.40)

s
(l)
ij =

∑
∆i,∆j

W
(l)
∆i,∆jh

(l−1)
i+∆i,j+∆j (3.41)

Backprop through non-linearity:

∂J

∂s
(l)
ij

=
∂J

∂h
(l)
ij

⊙ σ′(s
(l)
ij) (3.42)

Backprop to previous layer:

∂J

∂h
(l−1)
ij

=
∑
∆i,∆j

(W
(l)
∆i,∆j)

⊤ ∂J

∂s
(l)
i−∆i,j−∆j

(3.43)

Weight gradients:
∂J

∂W
(l)
∆i,∆j

=
∑
i,j

∂J

∂s
(l)
ij

(h
(l−1)
i+∆i,j+∆j)

⊤ (3.44)

3.3.4 Backprop through Subsampling

For a subsampling layer with stride s:

h
(l)
ij ← h

(l)
si,sj (3.45)

The error signal spreads:
∂J

∂h
(l)
si,sj

=
∂J

∂h
(l)
ij

(3.46)

3.3.5 Parallelization

FC Layer Parallelism

• Matrix multiplication can be parallelized

• Multiple samples in batch processed in parallel

3.3. BACKPROPAGATION IN CNN 97

Conv Layer Parallelism

• All positions (i, j) processed in parallel

• All channels within a position parallel

• Multiple samples in parallel

• Different (∆i,∆j) parallel

Subsampling Parallelism

• Forward: positions (i, j) independent

• Backward: error signal spreads independently

3.3.6 Implementation Structure

Three levels of parallelism:

Position : (i, j) independent (3.47)

Channel : feature dimensions parallel (3.48)

Batch : samples independent (3.49)

GPU/TPU implementation:

• Forward pass: parallel feature computation

• Backward pass: parallel gradient computation

• Weight updates: parallel accumulation

• Memory access: optimized for parallel ops

98 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Chapter 4

Recurrent Neural Networks

Figure 4.1: Recurrent neural network

Chapter Overview

This chapter explores Recurrent Neural Networks (RNNs) through a vector-centered per-
spective, focusing on how information evolves over time in neural architectures. It begins
by examining the basic structure of RNNs for tasks like next-word prediction, then delves
into the critical problem of gradient vanishing in deep sequences. The chapter introduces
two fundamental architectural innovations: the memory stream, which allows information to
persist over longer time spans horizontally through sequence steps, and the residual stream,
which enables information to flow vertically through computational layers. These com-
plementary streams serve as assembly lines - the memory stream accumulates temporal

99

100 CHAPTER 4. RECURRENT NEURAL NETWORKS

information while the residual stream builds up computational refinements. The discus-
sion extends to Long Short-Term Memory (LSTM) networks, which organize information
across different timescales using cell states and gate mechanisms. The chapter then exam-
ines multi-layer RNNs, explaining how information flows both through time and network
depth, with residual connections providing crucial paths for gradient flow. It explores the
relationship between RNNs and convolutional networks through state space models, which
provide a unifying framework for understanding temporal processing. The material advances
to cover continuous-time state space models and their discretization, leading to a discussion
of the Mamba architecture that introduces selective processing through input-dependent pa-
rameters. The chapter concludes with an intriguing parallel between RNNs and quantum
mechanics, presenting quantum systems as a special type of RNN where the hidden layer
represents fundamental reality and measurements create classical reality as rendered display.
Throughout, the chapter emphasizes how the memory streams and residual streams enables
deep neural architectures to effectively process both temporal and computational dimensions.

4.1 Vector Evolution over Time

We continue our vector-centered view of neural networks, now dealing with sequences where
vectors are indexed by time. The fundamental objects remain vectors (embeddings), but now
they evolve over time steps while maintaining the simple neural language of transformations.

At each time step t, we have:

• Input vector: xt

• Hidden state vector: ht

• Output vector: yt

The core recurrent computation is:

ht = tanh(Wrecurrentht−1 +Wembedxt + b) (4.1)

The hyperbolic tangent function tanh(x) is defined as:

tanh(x) =
ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
(4.2)

It is used as the activation function for its desirable properties:

• Output range (−1, 1)

• Symmetric around zero

• Strong gradients near origin

This vector-centered view emphasizes:

• Vectors as fundamental units of computation

• Same transformations applied at each time step

• Information flow through both time and network layers

• Hidden state vector as evolving memory

4.2. NEXT WORD PREDICTION 101

4.2 Next Word Prediction

Consider predicting the next word in the phrase “I love machine learning”.

4.2.1 Forward Computation

Starting with zero initial state:

h0 = 0 (4.3)

h1 = tanh(Wrecurrenth0 +Wembedx1 + b) input: ‘I’ (4.4)

h2 = tanh(Wrecurrenth1 +Wembedx2 + b) input: ‘love’ (4.5)

h3 = tanh(Wrecurrenth2 +Wembedx3 + b) input: ‘machine’ (4.6)

s = Wunembedh3 logit scores (4.7)

p = softmax(s) next word probabilities (4.8)

The target is y = x4 = one-hot vector for “learning”.

x1

“I”

h1

Wembed

x2

“love”

h2

Wembed

x3

“machine”

h3

Wembed

Wrecurrent Wrecurrent

s

p

x4

“learning”

Wunembed

softmax

Figure 4.2: RNN predicting next word (x4) given input sequence (x1, x2, x3)

4.2.2 Meaning of Hidden States

Each hidden state vector ht encodes:

• Semantic meaning of words seen so far

102 CHAPTER 4. RECURRENT NEURAL NETWORKS

• Grammatical structure being built

• Context for predicting next word

For example:

• h1: understands subject “I”

• h2: knows subject-verb “I love”

• h3: has complete context “I love machine”

4.2.3 Backpropagation Through Time

Starting from the prediction error:
∂J

∂s
= y − p (4.9)

Backprop proceeds backwards in time:

Through Unembedding

∂J

∂h3

= W⊤
unembed

∂J

∂s
(4.10)

∂J

∂Wunembed

=
∂J

∂s
h⊤
3 (4.11)

Through Each Time Step

For t = 3, 2, 1:

∂J

∂ht−1

= W⊤
recurrent

(
∂J

∂ht

⊙ (1− h2
t)

)
(4.12)

∂J

∂Wrecurrent

+ =

(
∂J

∂ht

⊙ (1− h2
t)

)
h⊤
t−1 (4.13)

∂J

∂Wembed

+ =

(
∂J

∂ht

⊙ (1− h2
t)

)
x⊤
t (4.14)

where:

• (1− h2
t) is the derivative of tanh

• + = indicates accumulation of gradients

• Gradients flow back through time

4.2. NEXT WORD PREDICTION 103

4.2.4 Gradient Vanishing

Let’s analyze how gradients flow backwards through our example “I love machine learning”.
The gradient must pass through multiple matrix multiplications and tanh derivatives:

∂J

∂h1

=
(
W⊤

recurrent

)2(∂J

∂h3

⊙ (1− h2
3)

)
⊙ (1− h2

2)⊙ (1− h2
1) (4.15)

This shows three potential sources of vanishing:

Tanh Derivative

The derivative of tanh has bounded magnitude:

tanh′(x) = 1− tanh2(x) (4.16)

≤ 1 for all x (4.17)

≈ 0 when |x| is large (4.18)

Therefore:

• Each (1− h2
t) factor can significantly reduce gradient

• Especially if hidden states saturate (near -1 or 1)

• Product of many such terms approaches zero

Recurrent Weight Matrix

Multiple multiplications by W⊤
recurrent can shrink gradients:

• If eigenvalues |λ| < 1: gradients vanish

• If eigenvalues |λ| > 1: gradients explode

• Difficult to maintain |λ| ≈ 1 through training

Time Steps

In our example:

• “learning” directly influences h3

• “machine” influences h2 through one step

• “love” influences h1 through two steps

• “I” influences h1 through three steps

104 CHAPTER 4. RECURRENT NEURAL NETWORKS

The gradient at each step is approximately:

∥ ∂J
∂h3

∥ ≈ c (4.19)

∥ ∂J
∂h2

∥ ≈ cα (4.20)

∥ ∂J
∂h1

∥ ≈ cα2 (4.21)

where α < 1 is a shrinkage factor from each step, and c is some constant.

Impact on Learning

The vanishing gradient means:

• Recent words (“machine”) are learned effectively

• Distant words (“I”) receive little learning signal

• Long-term dependencies are hard to capture

For example, in predicting “learning”:

• Strong update from “machine”

• Weak update from “love”

• Very weak update from “I”

This makes it difficult for the network to learn patterns like:

• Subject-verb agreement across distance

• Opening and closing parentheses

• Long-term thematic consistency

4.3 LSTM Innovation 1: Memory Stream

In the RNN model, the long term memory is stored in the learned weight matrices, and the
short term memory is stored in the hidden vector. Long Short-Term Memory (LSTM) uses
memory stream to maintain short-term memory over longer period of time.

We now discuss the first innovation of LSTM, memory stream.
We can reparametrize the RNN update with a skip connection (residual path):

ht = ht−1 + tanh(Wrecurrentht−1 +Wembedxt + b) (4.22)

4.3. LSTM INNOVATION 1: MEMORY STREAM 105

4.3.1 Memory Stream

While this formulation is sometimes called a “skip connection”, such terminology understates
its importance. It is more illuminating to view it as a “memory stream” or an “assembly
line”:

ht = ht−1 + tanh(Wrecurrentht−1 +Wembedxt + b) (4.23)

In this view, ht−1 represents the ongoing memory stream, and we keep adding new infor-
mation to it at each time step. The tanh(· · ·) term represents the new update to be added
to this stream.

Consider our ”I love machine learning” example:

h1 = h0 + tanh(Wrecurrenth0 +Wembed“I” + b) (4.24)

(memory stream now contains “I”)

h2 = h1 + tanh(Wrecurrenth1 +Wembed“love” + b) (4.25)

(memory stream accumulates “love”)

h3 = h2 + tanh(Wrecurrenth2 +Wembed“machine” + b) (4.26)

(memory stream adds “machine”)

Like an assembly line, each step takes the current state and adds new information, build-
ing up a comprehensive representation. The memory stream maintains all previously accu-
mulated information while incorporating new elements.

This stream view also clarifies the backpropagation dynamics. Gradients can flow freely
backward through the memory stream:

∂ht

∂ht−1

= I+W⊤
recurrentdiag(1− tanh2(· · ·)) (4.27)

The identity matrix I term is copy-paste operation that allows gradients to flow directly
backwards through the memory stream, while the second term represents additional gradient
flow through the update computation. This is analogous to being able to trace backwards
along the assembly line to see how each addition contributed to the final product.

4.3.2 Example: “I love machine learning”

Using our previous example:

h1 = h0 + tanh(Wrecurrenth0 +Wembedx1 + b) (‘I’) (4.28)

h2 = h1 + tanh(Wrecurrenth1 +Wembedx2 + b) (‘love’) (4.29)

h3 = h2 + tanh(Wrecurrenth2 +Wembedx3 + b) (‘machine’) (4.30)

s = Wunembedh3 (logit scores) (4.31)

p = softmax(s) (next word probabilities) (4.32)

106 CHAPTER 4. RECURRENT NEURAL NETWORKS

memory stream
h1

x1

“I”

Wembed

+
h2

x2

“love”

Wembed

Wrecurrent

+
h3

x3

“machine”

Wembed

Wrecurrent

+

memory stream memory stream

s

p

x4

“learning”

Wunembed

softmax

Figure 4.3: RNN with memory stream. Updates are added to the continuous memory stream,
with recurrent connections using L-shaped paths.

4.3.3 Superposition in Memory Stream

A key property of the memory stream is that it can accumulate multiple pieces of information
without necessarily confounding them, thanks to the high dimensionality of the vector space.
When the incremental updates are approximately orthogonal to each other, they can coexist
in a state of superposition.

Consider our running example:

h3 = h0 +∆h1 +∆h2 +∆h3 (4.33)

where each update is:

∆h1 = tanh(Wrecurrenth0 +Wembed“I” + b) (4.34)

∆h2 = tanh(Wrecurrenth1 +Wembed“love” + b) (4.35)

∆h3 = tanh(Wrecurrenth2 +Wembed“machine” + b) (4.36)

If these update vectors ∆ht are approximately orthogonal:

∆h⊤
i ∆hj ≈ 0 for i ̸= j (4.37)

then each component maintains its distinct contribution to the final representation. In high-
dimensional spaces, random vectors tend to be nearly orthogonal, making such superposition
possible.

This means the final state h3 can simultaneously encode:

4.3. LSTM INNOVATION 1: MEMORY STREAM 107

• Subject information from “I”

• Action semantics from “love”

• Object information from “machine”

The network can learn to:

h3 = α1vsubject + α2vaction + α3vobject (4.38)

where vsubject, vaction, vobject are nearly orthogonal basis vectors representing different semantic
roles, and αi are learned coefficients.

This superposition property is crucial because:

• It allows the memory stream to maintain multiple aspects of information simultane-
ously

• Each new update can add information without necessarily destroying previous content

• The network can learn to extract specific components when needed through the unem-
bedding matrix Wunembed

For example, to predict “learning” after “machine”, the model might need to access:

• The subject “I” to ensure semantic coherence

• The verb “love” to maintain the sentiment

• The noun “machine” for immediate context

All these components remain accessible because they exist in superposition in the high-
dimensional hidden state vector.

4.3.4 Detailed Gradient Calculation

Given ∂J
∂h3

, let’s calculate ∂J
∂h1

by considering all possible paths. Let’s use the notation:

gt = tanh(Wrecurrentht−1 +Wembedxt + b) (4.39)

so that:

h2 = h1 + g2 (4.40)

h3 = h2 + g3 = (h1 + g2) + g3 (4.41)

The gradient ∂J
∂h1

flows through four paths:

∂J

∂h1

=
∂J

∂h3︸︷︷︸
Path 1

+
∂J

∂h3

·W⊤
recurrent · diag(1− g23)︸ ︷︷ ︸

Path 2

+

∂J

∂h3

·W⊤
recurrent · diag(1− g22)︸ ︷︷ ︸

Path 3

+
∂J

∂h3

· (W⊤
recurrent)

2 · diag(1− g23) · diag(1− g22)︸ ︷︷ ︸
Path 4

(4.42)

Each path represents:

108 CHAPTER 4. RECURRENT NEURAL NETWORKS

• Path 1: Direct flow through memory stream

– h1 → h2 → h3

– Gradient flows unimpeded through identity connections

• Path 2: Through g3 computation

– h1 → h2 → g3 → h3

– Involves one Wrecurrent transformation

• Path 3: Through g2 computation

– h1 → g2 → h3

– Involves one Wrecurrent transformation

• Path 4: Through both g2 and g3 computations

– h1 → g2 → h2 → g3 → h3

– Involves two Wrecurrent transformations

The direct path (Path 1) alleviates the gradient vanishing problem because:

• It involves no weight matrices or activation function derivatives

• The gradient flows back unattenuated: ∂h3

∂h1
= I

• Even if other paths suffer from vanishing gradients (due to Wrecurrent eigenvalues or
tanh derivatives), this path ensures a strong learning signal

For comparison, in a standard RNN without the memory stream, we would only have
Path 4:

∂J

∂h1

=
∂J

∂h3

· (W⊤
recurrent)

2 · diag(1− g23) · diag(1− g22) (4.43)

which suffers from:

• Multiple matrix multiplications that can shrink gradients

• Multiple tanh derivatives that are bounded by 1

• No alternative paths for gradient flow

The memory stream thus provides robust gradient flow through Path 1, while the other
paths provide additional learning signals when conditions are favorable.

4.4. LSTM INNOVATION 2: MULTIPLICATIVE GATES 109

4.3.5 Memory Organization

Long Short-Term Memory (LSTM) organizes information in different time scales:

• Long-term memory: stored in weight matrices W

– Learned during training

– Captures general patterns and knowledge

– Persists across all sequences

• Short-term memory: stored in cell state vector ct

– Evolves during sequence processing

– Memory stream design helps it persist longer

– Temporary storage that resets between sequences

• Working memory: stored in hidden state vector ht

– Derived from ct for immediate computation

– Changes rapidly with each input

– Interface for reading from memory

4.4 LSTM Innovation 2: Multiplicative Gates

Figure 4.4: Long short-term memory

4.4.1 Key Innovations

LSTM introduces two key innovations over standard RNNs:

110 CHAPTER 4. RECURRENT NEURAL NETWORKS

Memory Stream for Short-Term Storage

The cell state ct follows a memory stream architecture:

ct = ct−1 +∆ct (4.44)

This parametrization allows ct to maintain information over longer time spans compared to
standard RNNs, bridging the gap between immediate and long-term memory. The additive
update structure creates paths for both information persistence and gradient flow.

Gate Control Vectors

Three gate vectors modulate information flow:

ft = σ(Wf [ht−1, xt] + bf) (forget gate) (4.45)

it = σ(Wi[ht−1, xt] + bi) (input gate) (4.46)

ot = σ(Wo[ht−1, xt] + bo) (output gate) (4.47)

These gates use the long-term knowledge stored in W matrices to control:

• How long information persists in ct

• What new information enters ct

• What parts of ct are exposed through ht

4.4.2 Memory Update Mechanism

The complete LSTM update demonstrates the interaction between different memory types:
1. Computing potential update using long-term memory:

∆ct = tanh(Wc[ht−1, xt] + bc) (4.48)

2. Updating short-term memory through memory stream:

ct = ct−1 ⊙ ft +∆ct ⊙ it (4.49)

3. Generating working memory:

ht = tanh(ct)⊙ ot (4.50)

The memory stream architecture of ct allows information to persist by:

• Providing direct paths for information flow (ct−1 → ct)

• Allowing selective updates through gates

• Maintaining additive accumulation over time

For example, in ”I love machine learning”:

4.5. MULTI-LAYER RECURRENT NETWORKS 111

• W matrices contain learned patterns about language

• ct maintains relevant context through the sequence

• ht provides immediate access to needed information

The combination of long-term memory in weights and enhanced short-term memory in
ct allows LSTM to:

• Apply learned patterns from training (W)

• Maintain context over sequences (ct)

• Access information as needed (ht)

It is worth noting that the separation between cell state ct and hidden state ht is not
strictly necessary. Simpler architectures like Gated Recurrent Units (GRU) successfully
combine these roles into a single vector, using a more streamlined gating mechanism while
maintaining the key benefits of the memory stream design.

4.5 Multi-layer Recurrent Networks

Multiple recurrent layers can be stacked, where each layer processes the sequence output by
the layer below. For a two-layer RNN:

h
(1)
t = tanh(W

(1)
recurrenth

(1)
t−1 +W

(1)
embedxt + b(1)) (Layer 1) (4.51)

h
(2)
t = tanh(W

(2)
recurrenth

(2)
t−1 +W

(2)
associativeh

(1)
t + b(2)) (Layer 2) (4.52)

The final prediction uses the top layer’s output:

s = Wunembedh
(2)
t (4.53)

p = softmax(s) (4.54)

112 CHAPTER 4. RECURRENT NEURAL NETWORKS

h
(1)
1

h
(2)
1

x1

“I”

W
(1)
embed

W
(2)
associative

h
(1)
2

h
(2)
2

x2

“love”

W
(1)
embed

W
(2)
associative

W
(1)
recurrent

W
(2)
recurrent

h
(1)
3

h
(2)
3

x3

“machine”

W
(1)
embed

W
(2)
associative

W
(1)
recurrent

W
(2)
recurrent

s

p

x4

“learning”

Wunembed

softmax

Figure 4.5: Two-layer vanilla RNN with associative connection between layers. Information
flows horizontally through time within each layer and vertically through associative memory
between layers.

4.5.1 Backpropagation Through Layers and Time

For our two-layer RNN with the final loss J , backpropagation must proceed sequentially
through both dimensions:

• Vertically: from Layer 2 down to Layer 1

• Horizontally: from time t back to t− 1

Starting with ∂J
∂s

at the output, the computation proceeds as follows:

At Time t = 3 (“machine”)

Layer 2 → Layer 1:

∂J

∂h
(2)
3

= W⊤
unembed

∂J

∂s
⊙ (1− h

(2)
3

2
) (4.55)

∂J

∂h
(1)
3

= W
(2)
associative

⊤ ∂J

∂h
(2)
3

⊙ (1− h
(1)
3

2
) (4.56)

4.5. MULTI-LAYER RECURRENT NETWORKS 113

At Time t = 2 (“love”)

Layer 2:
∂J

∂h
(2)
2

= W
(2)
recurrent

⊤ ∂J

∂h
(2)
3

⊙ (1− h
(2)
2

2
) (4.57)

Layer 1:

∂J

∂h
(1)
2

= W
(2)
associative

⊤ ∂J

∂h
(2)
2

⊙ (1− h
(1)
2

2
) +W

(1)
recurrent

⊤ ∂J

∂h
(1)
3

⊙ (1− h
(1)
2

2
) (4.58)

At Time t = 1 (“I”)

Layer 2:
∂J

∂h
(2)
1

= W
(2)
recurrent

⊤ ∂J

∂h
(2)
2

⊙ (1− h
(2)
1

2
) (4.59)

Layer 1:

∂J

∂h
(1)
1

= W
(2)
associative

⊤ ∂J

∂h
(2)
1

⊙ (1− h
(1)
1

2
) +W

(1)
recurrent

⊤ ∂J

∂h
(1)
2

⊙ (1− h
(1)
1

2
) (4.60)

Key observations:

• We must complete Layer 2 backprop at time t before Layer 1 backprop at time t

• Layer 1 receives gradients from:

– Layer 2 at the same time step (through W
(2)
associative)

– Its own next time step (through W
(1)
recurrent)

• Each step involves both matrix multiplication and tanh derivative

• Gradient vanishing compounds across both dimensions:

– Through depth (number of layers)

– Through time (sequence length)

This sequential backpropagation structure means:

• We cannot parallelize across time steps

• We must store all intermediate hidden states

• Learning becomes increasingly difficult for:

– Deep networks (many layers)

– Long sequences (many time steps)

114 CHAPTER 4. RECURRENT NEURAL NETWORKS

4.5.2 Fast Generation/Inference

While training requires backpropagation through both layers and time, generation (also
called inference in the literature) can be performed efficiently. For a two-layer network:

At each time step t, we only need to compute:

h
(1)
t = tanh(W

(1)
recurrenth

(1)
t−1 +W

(1)
embedxt + b(1)) (4.61)

h
(2)
t = tanh(W

(2)
recurrenth

(2)
t−1 +W

(2)
associativeh

(1)
t + b(2)) (4.62)

s = Wunembedh
(2)
t (4.63)

p = softmax(s) (4.64)

Generation is fast because:

• Only forward computation is needed

• Only current time step needs to be stored

• Previous hidden states can be discarded after use

• Computation at each step is constant-time

• Can generate indefinitely with fixed memory

Remark 1. The term “inference” comes from statistical learning, where model parameters
are “inferred” during training, and predictions are “inferred” during generation. In deep
learning literature, “inference” commonly refers to the generation process, emphasizing that
we’re using the trained network to infer what comes next in a sequence.

For example, generating text one word at a time:

• Store only current hidden states h
(1)
t , h

(2)
t

• Sample next word from probability distribution p

• Update hidden states for next step

• Repeat for as many words as needed

This is in contrast to training, which requires:

• Storing all intermediate states

• Computing gradients through all time steps

• Updating all parameters after seeing full sequence

4.6. RESIDUAL STREAM 115

4.5.3 Memory Streams

For a two-layer RNN with memory streams, the updates are:
Layer 1:

∆h
(1)
t = tanh(W

(1)
recurrenth

(1)
t−1 +W

(1)
embedxt + b(1)) (compute update) (4.65)

h
(1)
t = h

(1)
t−1 +∆h

(1)
t (memory stream 1) (4.66)

Layer 2:

∆h
(2)
t = tanh(W

(2)
recurrenth

(2)
t−1 +W

(2)
associativeh

(1)
t + b(2)) (compute update) (4.67)

h
(2)
t = h

(2)
t−1 +∆h

(2)
t (memory stream 2) (4.68)

Final prediction:

s = Wunembedh
(2)
t (compute logits) (4.69)

p = softmax(s) (get probabilities) (4.70)

Key properties:

• Each layer maintains its own memory stream

• Information flows freely through time in both streams

• Updates are computed using current inputs and previous states

• Memory accumulates additively at each layer

This architecture combines:

• Vertical depth through multiple layers

• Horizontal persistence through memory streams

• Associative mapping between layers

4.6 Residual Stream

4.6.1 Residual Stream Through Layers

For a two-layer RNN with residual stream:

h
(1)
t = tanh(W

(1)
recurrenth

(1)
t−1 +W

(1)
embedxt + b(1)) (Layer 1) (4.71)

h
(2)
t = h

(1)
t + tanh(W

(2)
recurrenth

(2)
t−1 +W

(2)
associativeh

(1)
t + b(2)) (Layer 2) (4.72)

The residual stream (vertical identity connection h
(1)
t +) can be viewed as flowing through

computational time:

116 CHAPTER 4. RECURRENT NEURAL NETWORKS

• Each layer represents one step of computation

• Information flows directly between layers through identity path

• Updates refine the representation at each computational step

This eases backpropagation through layers:

∂h
(2)
t

∂h
(1)
t

= I+W
(2)⊤
associativediag(1− tanh2(· · ·)) (4.73)

The identity term I provides:

• Direct gradient path between layers

• Unimpeded flow through computational time

• Protection against gradient vanishing through depth

4.6.2 Residual Stream in MLPs: A Computational Time Perspec-
tive

Figure 4.6: Residual Stream

Consider predicting ”Obama” given ”Barack”. With one-hot encoding:

4.6. RESIDUAL STREAM 117

• Input x: one-hot vector for ”Barack”

• Output y: one-hot vector for ”Obama”

Figure 4.7: Residual Stream

The computation proceeds through layers (or computational time steps):

h(1) = Wembedx (initial embedding) (4.74)

h(l) = h(l−1) + σ(W
(l)
residualh

(l−1) + b(l)) for l = 2, . . . , L (4.75)

s = Wunembedh
(L) (logit scores) (4.76)

p = softmax(s) (probabilities) (4.77)

118 CHAPTER 4. RECURRENT NEURAL NETWORKS

4.6.3 Computational Time Interpretation

We can rewrite this using computational time index t instead of layer index l:

h0 = Wembedx (initial state) (4.78)

ht = ht−1 + σ(W
(t)
residualht−1 + b(t)) for t = 1, . . . , T (4.79)

s = WunembedhT (final prediction) (4.80)

This highlights that:

• t represents steps of computation, not real time

• Each step refines the representation of ”Barack”

• The residual stream ht−1+ maintains a direct path to earlier computations

For example, the computation might:

• t = 0: Initial embedding captures ”Barack” as a name

• t = 1: Add features about being a first name

• t = 2: Add features about being presidential

• t = 3: Refine towards the specific person

• t = 4: Further refine for predicting the surname

Each update σ(W
(t)
residualht−1 + b(t)) adds new features while the residual stream ht−1+

preserves existing ones.

4.6.4 Contrast with Real Time

This computational time t differs from real time in several ways:

• Not tied to sequence order (unlike RNNs)

• All steps process the same input (”Barack”)

• Steps represent computational refinement

• Could potentially be parallelized

• Number of steps T is a design choice

The residual stream ensures:

• Information from initial embedding persists

• Gradients flow easily through computational steps

• Network can learn how many refinement steps are needed

• Each step can focus on adding new features

4.6. RESIDUAL STREAM 119

4.6.5 Gradient Flow

The gradient flows easily through computational time:

∂ht

∂ht−1

= I+W
(t)
residual

⊤
diag(σ′(· · ·)) (4.81)

The identity term from the residual stream ensures that:

• Initial embedding can directly influence final prediction

• Gradients can flow back through all computational steps

• Network can learn which refinements are useful

4.6.6 Residual Stream as Assembly Line

The residual stream computation:

h0 = Wembedx (initial representation) (4.82)

ht = ht−1 + σ(W
(t)
residualht−1 + b(t)) for t = 1, . . . , T (4.83)

can be viewed as an assembly line where:

• ht−1 is the current state of the product

• σ(W
(t)
residualht−1 + b(t)) is the incremental improvement

• Each step only needs to learn a small refinement

For the ”Barack” example:

h0 = basic name embedding (4.84)

h1 = h0 + first name features (4.85)

h2 = h1 + presidential features (4.86)

h3 = h2 + specific person features (4.87)

h4 = h3 + surname prediction features (4.88)

4.6.7 Learning Simplification

This assembly line structure simplifies learning because:

• Each step has a focused task

– Only learn the incremental improvement

– Don’t need to reproduce existing features

– Can specialize in specific refinements

120 CHAPTER 4. RECURRENT NEURAL NETWORKS

• Default behavior is identity

– If no improvement needed, set residual to zero

– Unnecessary computation can be skipped

– Network can learn how many steps are useful

• Progressive refinement

– Build features gradually

– Each step can be small and simple

– Complex transformations emerge from composition

4.6.8 Parallel with Memory Stream

The assembly line interpretation parallels the memory stream:
Memory Stream (Real Time):

• Flows horizontally through sequence steps

• Each step adds new temporal information

• Default is to maintain current memory

• Gradients flow easily through time

Residual Stream (Computational Time):

• Flows vertically through computational steps

• Each step adds refinements to representation

• Default is to maintain current features

• Gradients flow easily through layers

4.6.9 Gradient Flow as Quality Control

The ease of backpropagation:

∂ht

∂ht−1

= I+W
(t)
residual

⊤
diag(σ′(· · ·)) (4.89)

can be understood as efficient quality control:

• Error signals flow directly back through assembly line

• Each step gets clear feedback about its contribution

• Identity path ensures no loss of gradient signal

4.7. RESIDUAL STREAM AS LEARNED ITERATIVE ALGORITHM 121

• Easy to identify which refinements were helpful

This parallelism between assembly lines in:

• Real time (memory stream)

• Computational time (residual stream)

provides a unified view of how neural networks can process information efficiently through
both temporal and computational dimensions.

4.7 Residual Stream as Learned Iterative Algorithm

4.7.1 Finite Step Iterative Algorithm

The residual stream computation:

ht = ht−1 + σ(W
(t)
residualht−1 + b(t)) (4.90)

is structurally similar to iterative optimization algorithms like gradient ascent:

xt = xt−1 + η∇f(xt−1) (4.91)

Key parallels:

• Both update current state by adding an increment

• Both refine solution through multiple steps

• Both maintain the form: state + update

4.7.2 Algorithm Without Explicit Objectives

However, the residual stream differs crucially:

• Traditional iterative algorithms:

– Know the objective function f(x)

– Compute explicit gradients ∇f
– Follow a known optimization principle

• Residual stream:

– No explicit objective function

– Updates learned from data

– Discovers its own optimization principle

For the ”Barack” example:

122 CHAPTER 4. RECURRENT NEURAL NETWORKS

• Traditional approach would need:

– Explicit criterion for good representation

– Way to measure improvement direction

– Known update rule

• Residual stream learns:

– What features to extract

– How to refine them

– When to stop refining

4.7.3 Learned Update Rule

The network learns an update function:

∆ht = σ(W
(t)
residualht−1 + b(t)) (4.92)

which can be viewed as:

• A learned gradient-like quantity

• Implicitly optimizing some unknown objective

• Automatically adapting step sizes

• Discovering useful feature refinements

4.7.4 Finite-Step Design

The finite number of steps T means:

• Network must learn efficient updates

• Each step should be maximally useful

• No luxury of asymptotic convergence

• Must reach good solution in fixed steps

This constraint often leads to:

• More aggressive early refinements

• Progressive specialization of steps

• Efficient use of computational budget

4.7. RESIDUAL STREAM AS LEARNED ITERATIVE ALGORITHM 123

4.7.5 Advantages of Learning the Algorithm

This learned iterative process has benefits:

• No need to specify:

– Objective function

– Update rules

– Convergence criteria

• Can discover:

– Efficient transformation sequences

– Task-specific refinement patterns

– Optimal computation paths

• Adapts to:

– Data distribution

– Task requirements

– Computational constraints

The network essentially learns:

• What to optimize

• How to optimize it

• When optimization is sufficient

all implicitly through training on the end task.

4.7.6 Neural Programs with For Loops

The residual stream computation can be viewed as a for loop in a neural program:

h0 = Wembedx // initialize (4.93)

for t = 1 to T : // computational steps (4.94)

∆ht = σ(W
(t)
residualht−1 + b(t)) // compute update (4.95)

ht = ht−1 +∆ht // update state (4.96)

s = WunembedhT // final output (4.97)

124 CHAPTER 4. RECURRENT NEURAL NETWORKS

4.8 Neural Programming Language

4.8.1 Neural network as a computer program

This program is written in a simple neural language where:

• Basic objects are vectors

• Basic operations are:

– Matrix multiplication (Wh)

– Element-wise nonlinearity (σ(·))
– Addition (+)

• Control flow is implicit in network structure

• Parameters are learned from data

4.8.2 Data as the Programmer

The remarkable aspect is that this program is written by data via backpropagation:

• Traditional programming:

– Human writes explicit instructions

– Logic must be manually specified

– Updates must be precisely defined

• Neural programming:

– Data shapes the transformation matrices

– Logic emerges from learned patterns

– Updates are discovered automatically

4.8.3 Role of Residual Stream

The residual stream is crucial for learning deep for loops because:

• Provides stable gradient flow through many steps

• Makes each iteration focus on incremental improvements

• Allows program to build complexity gradually

• Enables learning of very deep computational sequences

4.8. NEURAL PROGRAMMING LANGUAGE 125

4.8.4 Foundation of Digital Intelligence

This ability to learn programs through data underlies the success of digital intelligence:

• Programs emerge from:

– Simple vector operations

– Learned transformations

– Multiple processing steps

• Complex behaviors arise from:

– Composition of simple operations

– Data-driven parameter adjustment

– Iterative refinement

• Intelligence emerges through:

– Learning computational patterns

– Discovering useful transformations

– Building hierarchical processing

The key innovations that enable this are:

• Simple neural language

– Universal vector representations

– Learnable matrix transformations

– Composable operations

• Residual streams

– Enable deep iteration

– Stabilize learning

– Allow complexity to emerge

• Backpropagation

– Writes programs through data

– Discovers useful computations

– Optimizes multi-step processes

This framework allows us to:

• Learn complex programs without explicit programming

• Discover computational patterns from examples

• Build intelligence through iterated refinement

• Scale to deeper and more sophisticated processes

126 CHAPTER 4. RECURRENT NEURAL NETWORKS

4.9 Parameter Sharing Across Streams

4.9.1 Memory Stream and Residual Stream

Memory Stream (Real Time):

ht = ht−1 + tanh(Wrecurrentht−1 +Wembedxt + b) (4.98)

where:

• Wrecurrent is shared across all time steps

• Same transformation matrix processes all temporal updates

• Reflects the uniform nature of time evolution

Residual Stream (Computational Time):

ht = ht−1 + σ(W
(t)
residualht−1 + b(t)) (4.99)

where:

• W
(t)
residual can be different for each step t

• Each computational step can learn a specialized transformation

• Reflects the progressive nature of computation

4.9.2 Rationale for the Difference

This distinction arises from different purposes:

• Memory Stream:

– Processing real sequences that follow consistent rules

– Same temporal dynamics apply at each step

– Natural to share parameters across time

• Residual Stream:

– Each step might need different refinements

– Early steps might handle basic features

– Later steps might perform specialized adjustments

For example:

• Memory Stream (”I love machine learning”)

– Same Wrecurrent processes each word

4.9. PARAMETER SHARING ACROSS STREAMS 127

– Temporal relationships follow consistent patterns

• Residual Stream (”Barack” → ”Obama”)

– W
(1)
residual might extract name features

– W
(2)
residual might add presidential features

– W
(3)
residual might refine for surname prediction

4.9.3 Adding Recurrence/Residual to CNNs

Standard convolutional layer:

h
(l)
ij = σ(

∑
∆i,∆j

W
(l)
∆i,∆jh

(l−1)
i+∆i,j+∆j + b(l)) (4.100)

We can add computational steps within each layer:

h
(l,0)
ij = σ(

∑
∆i,∆j

W
(l)
∆i,∆jh

(l−1,Tl−1)
i+∆i,j+∆j + b(l)) (init) (4.101)

h
(l,t)
ij = h

(l,t−1)
ij + σ(

∑
∆i,∆j

W
(l,t)
∆i,∆jh

(l,t−1)
i+∆i,j+∆j + b(l,t)) for t = 1, . . . , Tl (4.102)

Key features:

• Layer l allocated Tl computational steps

• Residual stream h
(l,t−1)
ij + maintains information flow

• Different kernels W (l,t) for different steps

• Initial features refined through multiple steps

4.9.4 Computational Structure

The computation proceeds as:

• First get features (e.g., eyes, nose, mouth) through standard convolution

• Then refine these features through Tl steps

• Each step can learn different refinement patterns

• Output feeds to next layer after Tl steps

128 CHAPTER 4. RECURRENT NEURAL NETWORKS

4.9.5 Advantages

This architecture offers:

• Flexible computation depth per layer

• Learned refinement strategies

• Strong gradient flow through residual stream

• Progressive feature improvement

The network learns:

• Initial feature extraction (W (l))

• Feature refinement patterns (W (l,t))

• How to effectively use allocated steps (Tl)

• Multi-scale feature processing

4.10 Vanilla RNN vs Temporal CNN

4.10.1 With or Without Horizontal Recurrent Connections

Vanilla two-layer RNN:

h
(1)
t = tanh(W

(1)
recurrenth

(1)
t−1 +W

(1)
embedxt + b(1)) (4.103)

h
(2)
t = tanh(W

(2)
recurrenth

(2)
t−1 +W

(2)
associativeh

(1)
t + b(2)) (4.104)

Temporal CNN version:

h
(1)
t = tanh(W

(1)
embedxt + b(1)) (4.105)

h
(2)
t = σ(

∑
∆t

W∆th
(1)
t−∆t + b(2)) (4.106)

4.10. VANILLA RNN VS TEMPORAL CNN 129

Vanilla RNN

h
(1)
1

x1

“I”

W
(1)
embed

h
(1)
2

x2

“love”

W
(1)
embed

W
(1)
recurrent

h
(1)
3

x3

“machine”

W
(1)
embed

W
(1)
recurrent

h
(2)
1

W
(2)
associative

h
(2)
2

W
(2)
associative

W
(2)
recurrent

h
(2)
3

W
(2)
associative

W
(2)
recurrent

Temporal CNN

(∆t = 0 to ∞)

h
(1)
1

x1

“I”

W
(1)
embed

h
(1)
2

x2

“love”

W
(1)
embed

h
(1)
3

x3

“machine”

W
(1)
embed

h
(2)
1 h

(2)
2 h

(2)
3

W∆t

Figure 4.8: Comparison of architectures. Top: Vanilla RNN with recurrent connections.
Bottom: Temporal CNN with unlimited receptive field (h

(2)
t can attend to all previous h

(1)
t−∆t).

4.10.2 Key Differences

Training:

• RNN:

– Must process sequence sequentially

– Backprop through time is sequential

– Needs to maintain all intermediate states

– Gradient flow through recurrent connections

• Temporal CNN:

– Can process all positions in parallel

– Backprop is parallel within kernel width

– Fixed receptive field size

– Direct gradient flow through conv weights

130 CHAPTER 4. RECURRENT NEURAL NETWORKS

Inference:

• RNN:

– Uses previous hidden states

– Can handle arbitrary sequence lengths

• Temporal CNN:

– Uses fixed time window

– Limited by kernel receptive field

4.11 State Space Models

4.11.1 Basic Formulation

A linear state space model consists of:

ht = Aht−1 +Bxt (state transition) (4.107)

yt = Cht (output mapping) (4.108)

This corresponds to RNN weights:

• A = Wrecurrent: temporal evolution

• B = Wembed: input projection

• C = Wunembed: output projection

4.11.2 Unrolled Form

We can unroll the recursion:

ht = Aht−1 +Bxt (4.109)

= A(Aht−2 +Bxt−1) +Bxt (4.110)

= A2ht−2 +ABxt−1 +Bxt (4.111)

= A3ht−3 +A2Bxt−2 +ABxt−1 +Bxt (4.112)

=
∞∑

∆t=0

A∆tBxt−∆t (4.113)

Therefore:

yt = Cht (4.114)

= C
∞∑

∆t=0

A∆tBxt−∆t (4.115)

=
∞∑

∆t=0

W∆txt−∆t (4.116)

where W∆t = CA∆tB are the convolutional weights.

4.11. STATE SPACE MODELS 131

4.11.3 Unifying Recurrent and Convolutional Views

The state space model unifies:

• Recurrent view:

– Sequential updates through ht = Aht−1 +Bxt

– Constant memory requirement

– Efficient for autoregressive generation

• Convolutional view:

– Parallel computation through yt =
∑

∆t W∆txt−∆t

– Explicit temporal dependencies

– Efficient for parallel training

4.11.4 Computational Advantages

This dual nature enables:

• Fast training:

– Use convolutional form

– Process all time steps in parallel

– Direct backpropagation through time

• Fast inference:

– Use recurrent form

– Constant memory per step

– Sequential generation

Moreover, the relationship W∆t = CA∆tB provides:

• Parameter efficiency through factorization

• Structured temporal dependencies

• Long-range interactions through powers of A

132 CHAPTER 4. RECURRENT NEURAL NETWORKS

4.12 Continuous-Time State Space Model

4.12.1 Memory Stream Form

Starting with continuous-time SSM:

h′(t) = Ah(t) +Bx(t) (4.117)

For small dt, using first-order approximation:

h(t+ dt)− h(t)

dt
≈ Ah(t) +Bx(t) (4.118)

h(t+ dt)− h(t) ≈ (Adt)h(t) +Bx(t)dt (4.119)

Therefore:

h(t+ dt) = (I+Adt)h(t) +Bx(t)dt (4.120)

This is in memory stream form where (I+Adt) represents the residual update.

4.12.2 Zero-Order Hold (ZOH) Discretization

Consider interval [t, t+∆] divided into N steps of size dt = ∆/N :

• Time variable: τ ∈ [t, t+∆]

• Input held constant: x(τ) = x(t) for τ ∈ [t, t+∆]

Homogeneous Case (Bx(t) = 0)

The homogeneous equation:

h′(τ) = Ah(τ) (4.121)

Using small time steps:

h(t+ dt) = (I+Adt)h(t) (4.122)

h(t+ 2dt) = (I+Adt)h(t+ dt) (4.123)

= (I+Adt)2h(t) (4.124)

Continuing for N steps:

h(t+∆) = (I+A∆/N)Nh(t) (4.125)

As N →∞:

h(t+∆) = eA∆h(t) (4.126)

4.13. MAMBA: SELECTIVE STATE SPACE MODEL 133

General Case

For the inhomogeneous equation with constant input:

h′(τ) = Ah(τ) +Bx(t) (4.127)

Let:
g(τ) = h(τ)− r(t) (4.128)

where r(t) is a particular solution satisfying:

Ar(t) +Bx(t) = 0 (4.129)

Therefore:
r(t) = −A−1Bx(t) (4.130)

Then:

g′(τ) = h′(τ) (4.131)

= Ah(τ) +Bx(t) (4.132)

= A(g(τ) + r(t)) +Bx(t) (4.133)

= Ag(τ) (4.134)

This gives us homogeneous equation for g(τ), so:

g(t+∆) = eA∆g(t) (4.135)

h(t+∆)− r(t) = eA∆(h(t)− r(t)) (4.136)

Therefore, the general discretization is:

h(t+∆) = eA∆h(t) + (eA∆ − I)A−1Bx(t) (4.137)

This gives us the discrete-time SSM:

Ad = eA∆ (4.138)

Bd = (eA∆ − I)A−1B (4.139)

such that:
h(t+∆) = Adh(t) +Bdx(t) (4.140)

4.13 Mamba: Selective State Space Model

4.13.1 Key Innovation

Mamba generalizes the linear SSM by making the state matrices input-dependent:

∆t,At,Bt,Ct = MLPs(xt) (selective parameters) (4.141)

ht = eAt∆tht−1 +Btxt (state update) (4.142)

yt = Ctht (output) (4.143)

Key features:

134 CHAPTER 4. RECURRENT NEURAL NETWORKS

Figure 4.9: Mamba

• Input-dependent discretization ∆t

– Different time steps for different inputs

– Selective processing of sequence elements

• Input-dependent state matrices At,Bt,Ct

– Adaptive state evolution

– Selective information flow

• Efficient hardware implementation

– Linear recurrence for fast inference

4.14. QUANTUM MECHANICS AS RNN 135

– Parallel computation for training

Mamba combines:

• SSM’s dual recurrent/convolutional nature

• Transformer-like selective processing

• Efficient linear state evolution

4.14 Quantum Mechanics as RNN

Figure 4.10: Quantum mechanics as liner recurrent neural network. The state vector rotates
in the hidden space according to the Schrodinger equation. The state vector is a superposition
of orthogonal basis vectors which are embeddings of observable classical states. |state⟩
denotes the embedding of “state”, e.g., 0 and 1 in qubit, or “alive” and “dead” of Schrodinger
cat.

Quantum mechanics can be conceptualized as a special type of recurrent neural network
(RNN) that does not involve learning but rather explains observational data. The system
requires three essential components: an input layer through Wembed that encodes classical
measurements into quantum states (wave function collapse), a hidden layer that evolves
according to the Schrödinger equation (h′(t) = −iHh(t)), and an output layer through
Wunembed that projects quantum states back to classical observations via the Born rule
(implemented as squared-softmax). The hidden layer represents fundamental reality itself—
not a simulation—functioning like a cosmic game engine, while our classical reality emerges
as a rendered display through the measurement-collapse cycle. This formulation emphasizes
that quantum mechanics is meaningless without an observer who exists outside the universe
and interfaces with it through measurements, and that the universe inherently “plays dice”
through the probabilistic nature of the Born rule.

136 CHAPTER 4. RECURRENT NEURAL NETWORKS

4.14.1 Basic Structure

Quantum mechanics can be formulated as a special RNN:

h(0) = Wembedx(0) (Initial observation) (4.144)

h′(t) = Wrecurrenth(t) (Schrodinger evolution) (4.145)

s(t) = Wunembedh(t) (Amplitude (logits)) (4.146)

p(t) = squared-softmax(s(t)) (Born rule) (4.147)

x(t) ∼ p(t) Universe does plays dice (4.148)

h(t) = Wembedx(t) (Bohr Wave function collapse) (4.149)

x(0) x(t) Classical Reality As Rendered Display

h(0) h(t) Quantum Reality As Game Engine

Wembed

Wrecurrent

Wembed

Figure 4.11: Minimal quantum RNN diagram showing the interaction between quantum and
classical reality through state transitions.

4.14.2 Special Properties

The weight matrices have specific physical meanings:

Evolution Matrix

Wrecurrent = −iH (4.150)

where:

• i is the imaginary unit

• H is the Hamiltonian operator

• H is Hermitian: H† = H

• Evolution preserves norm: e−iHt is unitary (rotation), thus ∥s(t)∥2 is constant for
squared-softmax.

• Eigen-values of H can be discrete, thus the word “quantum”.

4.14. QUANTUM MECHANICS AS RNN 137

Measurement Basis

Wembed = E (4.151)

W⊤
unembed = E (4.152)

where:

• E has orthogonal columns: E⊤E = I

• Each column is a basis state

• Input encoding and measurement use same basis

• Orthogonality ensures proper measurement probabilities

4.14.3 Squared-Softmax and Born Rule

The squared-softmax function implements Born’s rule for quantum measurement:

s(t) = E⊤h(t) (measurement amplitudes) (4.153)

pi(t) =
|si(t)|2

∥s(t)∥2
(Born rule) (4.154)

where ∥s(t)∥2 =
∑

i |si(t)|2. That is, we use square instead of exponential to calculate
probability of outcome i, and that’s why we call it squared-softmax.

4.14.4 Norm Conservation in Quantum Measurement

The squared-softmax probability comes from two key properties:

Unitary Evolution

The quantum state evolution preserves norm:

h(t) = eWrecurrentth(0) = e−iHth(0) (4.155)

∥h(t)∥2 = h(t)†h(t) = h(0)†eiHte−iHth(0) = ∥h(0)∥2 (4.156)

because e−iHt is unitary (pure rotation in complex space).

Orthogonal Measurement

The measurement basis preserves norm:

s(t) = E⊤h(t) (4.157)

∥s(t)∥2 = s(t)†s(t) = h(t)†EE⊤h(t) = h(t)†h(t) = ∥h(t)∥2 (4.158)

because E has orthogonal columns (EE⊤ = I).
Therefore:

138 CHAPTER 4. RECURRENT NEURAL NETWORKS

• ∥h(t)∥2 is constant (unitary evolution)

• ∥s(t)∥2 = ∥h(t)∥2 (orthogonal measurement)

• pi(t) = |si(t)|2/∥s(t)∥2 gives valid probabilities

This ensures:

• Conservation of probability:
∑

i pi(t) = 1

• Time-independent normalization

• Basis-independent total probability

4.14.5 Hidden Layer as Fundamental Reality

The hidden state h(t) represents the true quantum reality:

• Like a cosmic game engine:

– Evolution by −iH between measurements

– Unitary rotation preserves quantum information

– Contains complete quantum state information

• Two modes of evolution:

– Continuous: Schrödinger evolution (h′(t) = −iHh(t))

– Discrete: Wave function collapse (h(t) = Ex(t))

• Not a simulation but reality itself:

– Mathematical description of nature

– Alternates between evolution and measurement

– Collapse creates new initial conditions

4.14.6 Interface to Classical Reality

The basis matrix E provides the quantum-classical interface:

• Measurement process (E⊤):

– Projects quantum state to measurement basis

– Generates measurement amplitudes s(t)

– Probabilities through Born rule

• Wave function collapse (E):

– Reinstates pure state after measurement

– Maps classical outcome to new quantum state

– Starts new cycle of quantum evolution

4.14. QUANTUM MECHANICS AS RNN 139

4.14.7 The Role of the Observer

The observer plays a central role through measurement:

• Measurement and collapse cycle:

– Measure: x(t) ∼ squared-softmax(E⊤h(t))

– Collapse: h(t) = Ex(t)

– Evolution continues from new state

• Basis choice:

– Observer selects measurement basis E

– Choice determines possible outcomes

– Different bases reveal different aspects

• Creation of classical reality:

– Measurement actualizes potential outcomes

– Collapse ensures definite classical states

– Each measurement creates new branch

4.14.8 Classical Reality as Rendered Display

Classical reality emerges through the measurement-collapse cycle:

• Continuous process:

– Evolution in hidden layer (−iH)

– Measurement projects through interface (E⊤)

– Collapse reinitializes state (E)

• Creation of classical properties:

– No definite values until measured

– Measurement creates classical reality

– Collapse ensures consistent next evolution

4.14.9 Philosophical Implications

This view of quantum mechanics suggests:

• Fundamental hidden layer:

– Quantum state evolves unitarily

– Measurements interrupt evolution

140 CHAPTER 4. RECURRENT NEURAL NETWORKS

– Collapse restarts cycle

• Interface determines experience:

– E connects quantum and classical

– Measurement creates classical properties

– Collapse maintains quantum-classical consistency

• Participatory universe:

– Observers create reality through measurement

– Each observation collapses and reinitializes

– Classical reality emerges through observation cycle

Chapter 5

Transformer and GPT

Figure 5.1: Transformer

141

142 CHAPTER 5. TRANSFORMER AND GPT

Chapter Overview

This chapter explores Transformers and GPT architectures through a vector-centered per-
spective, emphasizing how information is organized through superposition in high-dimensional
spaces and processed through complementary retrieval mechanisms. At its core, the chapter
explains how neural networks can represent complex information by superimposing multi-
ple aspects in a single vector, allowing concepts like ”Barack Obama” to simultaneously
encode political, biographical, and temporal information in an efficiently retrievable form.
The residual stream serves as a central assembly line where this superposed information
is progressively refined and enhanced through alternating retrieval mechanisms: attention
retrieves information from context by dynamically weighting relevant parts of the input
sequence, while MLPs retrieve learned patterns from their weight matrices acting as asso-
ciative memory. This dual retrieval process - contextual through attention and memorized
through MLPs - enables Transformers to combine document-specific information with general
world knowledge. The chapter then examines the training process of Large Language Mod-
els, describing the two-stage approach of unsupervised pre-training followed by instruction
fine-tuning, where the model learns to align its capabilities with natural language instruc-
tions. It details how Reinforcement Learning from Human Feedback (RLHF) further refines
model behavior by learning from human preferences, using a reward model trained on hu-
man comparisons to guide policy optimization. The material also covers key architectural
innovations across the Transformer family, scaling laws governing model performance, and
specialized variants for vision and multimodal tasks. Throughout, the chapter emphasizes
how the interplay between superposition, residual stream processing, and complementary
retrieval mechanisms enables these models to process and generate human-like text while
being guided by human feedback.

5.1 Embedding, Thought Vectors and Distributed Rep-

resentations

We continue our vector-centered view of neural networks, now focusing on the Transformer
architecture, specifically the GPT (Generative Pre-trained Transformer) variant for next
word prediction. The fundamental objects remain vectors, but with a new mechanism for
information flow through attention rather than recurrence.

A neural network can transform a discrete input (e.g., ”Barack Obama”) into a high-
dimensional vector, also called a thought vector or distributed representation or embedding:

h = NN(”Barack Obama”) ∈ Rd (5.1)

5.1.1 Superposition Nature

This thought vector can be a superposition of nearly orthogonal components:

h = g1 + g2 + g3 + g4 + ... (superposition) (5.2)

g⊤i gj ≈ 0 for i ̸= j (near orthogonality) (5.3)

5.1. EMBEDDING, THOUGHTVECTORS ANDDISTRIBUTED REPRESENTATIONS143

Examples of components:

• g1: Democratic politician

– Party affiliation

– Political ideology

– Legislative history

• g2: U.S. President

– Executive role

– Time period (2009-2017)

– Presidential powers

• g3: Personal background

– Born in Hawaii

– Harvard Law graduate

– Community organizer

• g4: Family relationships

– Married to Michelle

– Father of Malia and Sasha

– Family history

5.1.2 Information Extraction

We can extract specific aspects using projection matrices:

gparty = Wpartyh (extract political party) (5.4)

gedu = Weducationh (extract education) (5.5)

gtime = Wtimelineh (extract temporal info) (5.6)

These extracted features can be converted to human-readable form:

sparty = Wunembedgparty (e.g., ”Democrat”) (5.7)

sedu = Wunembedgedu (e.g., ”Harvard Law”) (5.8)

stime = Wunembedgtime (e.g., ”44th President”) (5.9)

144 CHAPTER 5. TRANSFORMER AND GPT

5.1.3 Properties

This distributed representation has several key properties:

• Superposition:

– Multiple aspects coexist

– Information adds linearly

– No interference due to orthogonality

• Extractability:

– Different matrices extract different aspects

– Clean separation of features

– Interpretable outputs

• Compositionality:

– Components combine naturally

– Rich internal structure

– Hierarchical organization

5.1.4 Neural Operations

The network learns to:

• Embed: map inputs to distributed representations

• Transform: manipulate thought vectors

• Extract: project onto relevant subspaces

• Unembed: map back to interpretable outputs

This framework underlies modern neural architectures, where:

• Embeddings create thought vectors

• Hidden layers transform representations

• Attention combines relevant aspects

• Output layers extract specific information

5.2. TRANSFORMER RESIDUAL STREAM 145

5.1.5 Residual Stream: Building Superposition

The residual stream can be viewed as an assembly line that gradually builds up a superposed
representation:

h(1) = Wembed(”Barack Obama”) (initial embedding) (5.10)

h(l+1) = h(l) + g(l) (add new features) (5.11)

g(l) = Layerl(h
(l)) (compute new aspect) (5.12)

5.1.6 Assembly Line Process

Each layer adds new aspects to the representation:

h(1) = basic name embedding (5.13)

h(2) = h(1) + gpolitician (5.14)

h(3) = h(2) + gpresident (5.15)

h(4) = h(3) + gtime period (5.16)

h(5) = h(4) + gachievements (5.17)

Key properties:

• Incremental refinement:

– Each layer adds specific features

– Previous information preserved

– Aspects accumulate naturally

• Near orthogonality:

– New features g(l) nearly orthogonal

– Minimal interference

– Clean superposition

• Assembly line metaphor:

– Each station adds specific component

– Previous work preserved

– Quality control at each step

5.2 Transformer Residual Stream

The Transformer processes information through a residual stream, which acts as an assembly
line for building complex representations. Each layer reads from this stream, adds new
features, and writes back the enhanced representation.

146 CHAPTER 5. TRANSFORMER AND GPT

5.2.1 Dual Retrieval Mechanism

Residual Stream

Attention: retrieve from context, “France”

MLP: retrieve from memory, “Paris”

read

+ write
read

+ write

Figure 5.2: The capital of France is ... Each layer of Transformer interacts with the residual
stream.

The Transformer alternates between two types of information retrieval:
1. Attention: Retrieves from current context

• Reads current representation from stream

• Queries relevant context (”France”)

• Writes back context-enhanced features

• Like looking up information in current notes

2. MLP: Retrieves from learned knowledge

• Reads enhanced representation

• Associates learned patterns (”Paris”)

• Writes back knowledge-enhanced features

• Like consulting permanent memory

5.2.2 Assembly Line Process

For the query ”The capital of France is”, the residual stream gradually builds meaning:

h(l) = current representation (5.18)

h(l+ 1
2
) = h(l) + attention(”France in context”) (5.19)

h(l+1) = h(l+ 1
2
) +MLP(”capital relationship”) (5.20)

Each layer adds new aspects through superposition:

5.2. TRANSFORMER RESIDUAL STREAM 147

• Attention adds:

– Context-relevant features

– Relational information

– Current document knowledge

• MLP adds:

– Learned associations

– World knowledge

– Pattern completions

Example usage:

• Input: ”The capital of France is”

• Attention: focuses on ”France” in context

• MLP: retrieves learned association ”Paris”

• Combined: generates appropriate completion

The residual stream maintains these accumulated features while allowing each layer to
add new aspects without disrupting existing information. This assembly line structure en-
ables the Transformer to build increasingly sophisticated representations through successive
refinements.

5.2.3 Two Forms of Retrieval

The Transformer alternates between two fundamentally different types of retrieval:

Retrieval from Context

h
(l+ 1

2
)

t = h
(l)
t +Attention(h

(l)
1 , ..., h

(l)
i , ..., h

(l)
t) (context lookup) (5.21)

= h
(l)
t +

t∑
i=1

αtiWvh
(l)
i (weighted sum) (5.22)

Key properties:

• Uses multiple vectors h
(l)
i from context

• Dynamic weights αti computed from content

• Like searching through previous notes

• Information flows between positions

148 CHAPTER 5. TRANSFORMER AND GPT

Retrieval from Associative Memory

h
(l+1)
t = h

(l+ 1
2
)

t +MLP(h
(l+ 1

2
)

t) (memory lookup) (5.23)

= h
(l+ 1

2
)

t +W2σ(W1h
(l+ 1

2
)

t + b1) + b2 (learned association) (5.24)

Key properties:

• Operates on single vector h
(l+ 1

2
)

t

• Uses fixed learned weights W1,W2

• Like consulting permanent memory

• No interaction with other positions

5.2.4 Complementary Nature

These retrievals serve different purposes:

• Context retrieval:

– Integrates information across sequence

– Adapts to current content

– Handles dynamic relationships

– Multiple vector operation

• Memory retrieval:

– Applies learned knowledge

– Uses fixed associations

– Position-independent processing

– Single vector operation

Example for ”The capital of France is”:

Context : h
(l+ 1

2
)

t = h
(l)
t +

t∑
i=1

αtiWvh
(l)
i (find ”France”) (5.25)

Memory : h
(l+1)
t = h

(l+ 1
2
)

t +MLP(h
(l+ 1

2
)

t) (recall ”Paris”) (5.26)

This alternation between multi-vector context operations and single-vector memory op-
erations allows the Transformer to combine:

• Document-specific information

• General world knowledge

• Dynamic relationships

• Learned patterns

5.2. TRANSFORMER RESIDUAL STREAM 149

5.2.5 Attention Mechanism

ht

hi

Wq

Wk

Wv

qt

ki

vi

sti =
q⊤t ki√

dk
αti = softmax(sti)

αtivi

Query

Key

Value

Figure 5.3: Attention mechanism with arrow touching only the upper side of the weighted
value box.

The attention weights αti determine how much information to retrieve from each context
position:

Query-Key-Value Computation

qt = Wqh
(l)
t (query: what to look for) (5.27)

ki = Wkh
(l)
i (key: how to find it) (5.28)

vi = Wvh
(l)
i (value: what to retrieve) (5.29)

Attention Weight Computation

sti =
q⊤t ki√
dk

(scaled dot product) (5.30)

αti = softmax(sti) (normalize weights) (5.31)

=
exp(sti)∑t
j=1 exp(stj)

(explicit form) (5.32)

Key components:

• Query-Key interaction:

– q⊤t ki measures relevance

– Higher when vectors align

– Captures similarity patterns

150 CHAPTER 5. TRANSFORMER AND GPT

• Scaling factor:

–
√
dk prevents extreme gradients

– Maintains stable optimization

– Controls attention sharpness

• Softmax normalization:

– Ensures
∑

i αti = 1

– Creates probability distribution

– Sharpens attention focus

Final Retrieval

h
(l+ 1

2
)

t = h
(l)
t +

t∑
i=1

αtivi (weighted combination) (5.33)

= h
(l)
t +

t∑
i=1

exp(q⊤t ki/
√
dk)∑t

j=1 exp(q
⊤
t kj/
√
dk)

vi (full form) (5.34)

Example mechanism for ”The capital of France is”:

• Query: looking for ”capital of ”

• Keys: match against each context word

• High αti when i points to ”France”

• Value: retrieve relevant information

Multi-Head Implementation

In practice, use multiple attention heads in parallel:

headh = Attention(Wh
qht,W

h
khi,W

h
vhi) (5.35)

MultiHead = Wo[head1; ...; headH] (5.36)

Benefits:

• Different heads can:

– Focus on different patterns

– Attend to different positions

– Capture different relationships

• Parallel computation:

– Efficient implementation

– Rich feature combination

– Multiple viewpoints

5.2. TRANSFORMER RESIDUAL STREAM 151

5.2.6 Mixture of Experts

Similar to using multiple attention heads, Transformers can employ multiple expert networks
for enhanced memory retrieval:

Multi-Expert Computation

gt = Router(h
(l+ 1

2
)

t) (compute expert weights) (5.37)

= softmax(Wrh
(l+ 1

2
)

t) (routing logits) (5.38)

ejt = MLPj(h
(l+ 1

2
)

t) (expert computations) (5.39)

h
(l+1)
t = h

(l+ 1
2
)

t +
E∑

j=1

gjt e
j
t (weighted combination) (5.40)

Key properties:

• Multiple expert networks:

– Each specializes in different patterns

– Parallel to attention heads

– Divides computation across experts

• Router network:

– Learns to select relevant experts

– Creates sparse routing weights

– Adapts to input content

Parallel to Multi-Head Attention

The model employs two forms of parallel processing:

MultiHead = Wo[head1; ...; headH] (parallel attention) (5.41)

MultiExpert =
E∑

j=1

gjtMLPj (parallel experts) (5.42)

Complementary benefits:

• Multi-head attention:

– Parallel processing across positions

– Different attention patterns

– Context-based routing

152 CHAPTER 5. TRANSFORMER AND GPT

• Multi-expert recall:

– Parallel processing across experts

– Specialized knowledge bases

– Content-based routing

Example for ”The capital of France is”:

• Attention heads: Find relevant context about France

• Experts: Different experts for:

– Geographic knowledge

– Political entities

– Historical facts

• Combined: Rich multi-perspective retrieval

Implementation Details

Practical considerations:

• Load balancing:

– Encourage uniform expert utilization

– Prevent expert collapse

– Balance computation

• Sparse routing:

– Select top-k experts only

– Reduce computation overhead

– Maintain specialization

• Parallel computation:

– Efficient hardware utilization

– Scaled expert capacity

– Reduced latency

5.3. COMPLETE TRANSFORMER ARCHITECTURE 153

5.3 Complete Transformer Architecture

5.3.1 Token and Position Embeddings

For input token xt, we combine token and position embeddings:

etoken = Wembedxt (token embedding) (5.43)

epos = Wpost (position embedding) (5.44)

h
(1)
t = etoken + epos (combined embedding) (5.45)

t is one-hot vector.
Position embedding can be:

• Learned: Wpos ∈ Rd×Tmax

• Fixed sinusoidal:

epos(t, 2i) = sin(t/100002i/d) (even dimensions) (5.46)

epos(t, 2i+ 1) = cos(t/100002i/d) (odd dimensions) (5.47)

5.3.2 Layer Processing

Each layer processes through residual stream:

h
(l+ 1

2
)

t = h
(l)
t +Attention(h

(l)
1 , ..., h

(l)
t) (context retrieval) (5.48)

h
(l+1)
t = h

(l+ 1
2
)

t +MLP(h
(l+ 1

2
)

t) (memory retrieval) (5.49)

where attention computes:

qt = Wqh
(l)
t (5.50)

ki = Wkh
(l)
i (5.51)

vi = Wvh
(l)
i (5.52)

αti = softmax(
q⊤t ki√
dk

) (5.53)

Attention(h
(l)
1 , ..., h

(l)
t) =

t∑
i=1

αtivi (5.54)

5.3.3 Output Generation

Final unembedding for prediction:

h
(L)
t = final representation (5.55)

st = Wunembedh
(L)
t (logits) (5.56)

pt = softmax(st) (probabilities) (5.57)

154 CHAPTER 5. TRANSFORMER AND GPT

5.3.4 Backpropagation and Parallelization

The Transformer architecture enables highly efficient parallel training through two key as-
pects:

Attention Layer Parallelization

For a sequence of length T, backpropagation through attention follows:

∂L

∂h
(l)
t

=
T∑
j=t

∂L

∂h
(l+ 1

2
)

j

∂h
(l+ 1

2
)

j

∂h
(l)
t

(backward flow) (5.58)

∂L

∂αti

=
∂L

∂h
(l+ 1

2
)

t

vi (attention weights) (5.59)

∂L

∂vi
=

T∑
t=1

αti
∂L

∂h
(l+ 1

2
)

t

(value gradients) (5.60)

Key parallelization features:

• Position-wise operations:

– Query/Key/Value transformations

– Gradient computations for Wq,Wk,Wv

– MLP layer gradients

• Matrix operations:

– Attention score matrix S = QK⊤

– Value weighted sum AV

– Batch matrix multiplications

Cross-Layer Parallelization

The residual connections enable efficient layer-wise processing:

∂L

∂h(l)
=

∂L

∂h(l+1)
+

∂L

∂Layerl
(residual gradient) (5.61)

∂L

∂Layerl
= f ′(Layerl(h

(l))) (layer-specific gradient) (5.62)

Parallelization advantages:

• Pipeline parallelism:

– Different layers on different devices

– Overlapped forward/backward passes

5.4. ASSOCIATIVE MEMORY 155

– Efficient hardware utilization

• Memory efficiency:

– Gradient checkpointing options

– Selective activation storage

– Memory-compute trade-offs

Implementation benefits:

• GPU/TPU optimization:

– Batched matrix operations

– Hardware-specific kernels

– Memory access patterns

• Training acceleration:

– Multi-GPU data parallelism

– Distributed training

– Gradient synchronization

This parallelizable structure contrasts with sequential RNNs, enabling Transformers to
efficiently scale to long sequences and large models across multiple accelerators.

5.4 Associative Memory

5.4.1 SVD as Memory Structure

Linear transformation as associative memory:

y = Wx (basic transformation) (5.63)

W =
r∑

i=1

λibia
⊤
i (SVD decomposition) (5.64)

{ai} : a⊤i aj = δij (orthonormal questions) (5.65)

{bi} : b⊤i bj = δij (orthonormal answers) (5.66)

Basic association pairs:

Wak = λkbk (scaled association) (5.67)

W
ak
λk

= bk (direct association) (5.68)

156 CHAPTER 5. TRANSFORMER AND GPT

Interpolative property:

x =
∑
i

ciai (question combination) (5.69)

y = Wx =
∑
i

cibi (answer combination) (5.70)

This shows perfect interpolation:

• Input combines question patterns

• Output combines corresponding answers

• Linear coefficients preserved

• Smooth transition between memories

Example interpolation:

x = 0.7a1 + 0.3a2 (mixed question) (5.71)

y = 0.7b1 + 0.3b2 (mixed answer) (5.72)

Smoothly combines two stored associations (5.73)

Key properties:

• Perfect recall: Wak/λk = bk

• Linear mixing: coefficients preserved

• Continuous interpolation between memories

• Natural generalization to new inputs

5.4.2 MLP as Query Generator

One-hidden-layer MLP structure:

h = σ(W1x+ b1) (query generation) (5.74)

y = W2h+ b2 (answer retrieval) (5.75)

Interpretation:

• W1: maps input to query space

• σ(·): selects relevant query components

• W2: retrieves answers from queries

5.4. ASSOCIATIVE MEMORY 157

Query components in hidden layer:

hi = σ(w⊤
1ix+ b1i) (query strength) (5.76)

y =
∑
i

hiw2i (weighted answers) (5.77)

where:

• w1i: question patterns to look for

• hi: activation/relevance of each pattern

• w2i: associated answers to each pattern

5.4.3 Memory Cleaning

SVD truncation for output weights:

W2 =
r∑

i=1

λibia
⊤
i (full SVD) (5.78)

Wclean
2 =

∑
i:λi>ϵ

λibia
⊤
i (cleaned) (5.79)

Benefits:

• Removes weak associations

• Keeps strong query-answer pairs

• Better generalization

• More reliable retrieval

5.4.4 Memory Editing

Given SVD decomposition:

W =
r∑

i=1

λibia
⊤
i (original memory) (5.80)

Direct feature editing:

bk → bk +∆b (modify answer) (5.81)

Wedit =
∑
i ̸=k

λibia
⊤
i + λk(bk +∆b)a⊤k (edited memory) (5.82)

Localized editing:

∆W = λk∆b · a⊤k (rank-1 update) (5.83)

Wedit = W +∆W (modified memory) (5.84)

Properties:

158 CHAPTER 5. TRANSFORMER AND GPT

• Preserves other associations

• Minimal interference

• Linear update rule

• Controllable modification

5.4.5 Low-Rank Adaptation (LoRA)

Original model structure:

h = σ(W1x+ b1) (pre-trained query) (5.85)

y = W2h+ b2 (pre-trained retrieval) (5.86)

LoRA adds low-rank update:

Wnew = Wpre +BA (update) (5.87)

rank(BA) = r ≪ min(dout, din) (low rank) (5.88)

Parameter efficiency:

• Original: dout × din parameters

• LoRA: r(dout + din) parameters

• Typical r = 8 or 16

Different learning rates for B and A can be employed according to recent work of Bin
Yu’s group.

Interpretation as new memories:

BA =
r∑

i=1

λ̃ib̃iã
⊤
i (new associations) (5.89)

y = Wpreh+
r∑

i=1

λ̃i(ã
⊤
i h)b̃i (combined retrieval) (5.90)

Key properties:

• Adds new query-answer pairs

• Preserves pre-trained knowledge

• Efficient fine-tuning

• Linear interpolation still holds

Benefits for adaptation:

5.4. ASSOCIATIVE MEMORY 159

• Memory efficient:

– Small parameter count

– Share base model

– Multiple tasks possible

• Training efficient:

– Few parameters to optimize

– Better conditioning

– Faster convergence

• Knowledge preservation:

– Base model unchanged

– Add task-specific patterns

– Clean separation of knowledge

5.4.6 Query-Key-Value Projection as Assocative Memory

The projection from hidden state to attention components:

q = Wqh (query projection) (5.91)

k = Wkh (key projection) (5.92)

v = Wvh (value projection) (5.93)

Each projection is an associative memory.

Retrieval process:

1. Initialization Stage

• h→ q: retrieves question patterns

• h→ k: retrieves matching patterns

• h→ v: retrieves answer patterns

2. Context Retrieval Stage

• q, k: compute relevance scores

• v: combine relevant answers

We need associative memory to initialize the context retrieval process.

160 CHAPTER 5. TRANSFORMER AND GPT

5.5 Reflection: A Matrix = A Thousand Rules

5.5.1 Matrix as Infinite Association Rules

A learned matrix transformation W ∈ Rd×d operating on vectors x ∈ Rd can implement
what would require thousands of explicit rules in traditional symbolic systems. This power
stems from several fundamental properties:

• Continuous transformation space:

y = Wx (basic transformation) (5.94)

= W(
∑
i

ciei) (basis decomposition) (5.95)

=
∑
i

ci(Wei) (linearity) (5.96)

=
∑
i

ciri (transformed basis) (5.97)

where {ei} are basis vectors and {ri} are their transformations

• Superposition handling:

x = g1 + g2 + g3 + ... (input aspects) (5.98)

Wx = Wg1 +Wg2 +Wg3 + ... (transformed aspects) (5.99)

where each gi represents a different semantic component

5.5.2 Advantages over Discrete Systems

Traditional rule-based systems and knowledge graphs face inherent limitations:

• Discrete rules: “if A then B”

• Explicit relationships: “A is-a B”

• Manual specification required

• No natural interpolation

In contrast, matrix transformations offer:

• Continuous interpolation:

xα = (1− α)x1 + αx2 (input interpolation) (5.100)

Wxα = (1− α)Wx1 + αWx2 (smooth transition) (5.101)

5.5. REFLECTION: A MATRIX = A THOUSAND RULES 161

• Implicit feature interactions:

[Wx]i =
∑
j

Wijxj (component view) (5.102)

=
∑
j

w⊤
ijx (pattern matching) (5.103)

where each wij represents a learned pattern

5.5.3 Learnability through Backpropagation

A crucial advantage is the ability to learn optimal transformations through gradient descent:

L = Loss(Wx, y∗) (task objective) (5.104)

∂L

∂W
=

∂L

∂(Wx)
x⊤ (weight gradient) (5.105)

Wt+1 = Wt − η
∂L

∂W
(update rule) (5.106)

This enables several powerful capabilities:

• Automatic rule discovery:

– No manual specification needed

– Rules emerge from data

– Complex patterns discovered naturally

• Continuous refinement:

– Each update slightly improves transformation

– Smooth optimization landscape

– Natural handling of uncertainty

• Parallel updates:

∆Wij = −η
∂L

∂Wij

(element update) (5.107)

= −η[∂L

∂(Wx)
x⊤]ij (explicit form) (5.108)

All matrix elements update simultaneously

162 CHAPTER 5. TRANSFORMER AND GPT

5.5.4 Compositional Learning

Multiple matrix transformations can compose to learn hierarchical patterns:

h(1) = σ(W1x) (first layer) (5.109)

h(2) = σ(W2h
(1)) (second layer) (5.110)

y = W3h
(2) (output layer) (5.111)

Backpropagation enables end-to-end learning:

∂L

∂W1

=
∂L

∂h(1)

∂h(1)

∂W1

(chain rule) (5.112)

= (W⊤
2

∂L

∂h(2)
)⊙ σ′(W1x)x

⊤ (explicit form) (5.113)

This allows:

• Hierarchical feature learning

• Automatic feature composition

• Complex pattern discovery

5.5.5 Implications

This understanding suggests several key insights:

• Interpretability efforts should focus on understanding transformation spaces rather
than extracting discrete rules

• Architecture design should leverage continuous transformations rather than mimicking
symbolic reasoning

• The power of neural networks lies in their ability to learn rich continuous mappings
that transcend symbolic representations

The combination of expressive power and learnability through backpropagation explains
why matrix-based neural architectures have largely superseded traditional rule-based ap-
proaches in many domains. One matrix can implement thousands of implicit rules while
being automatically tuned through gradient descent, offering a fundamentally more power-
ful paradigm for artificial intelligence.

5.5.6 Counter Argument: The Power of Abstract Logic

While continuous matrices excel at learning from concrete instances, abstract logical reason-
ing offers distinct advantages through universal quantification and symbolic manipulation:

5.6. ARCHITECTURAL COMPARISON 163

• Universal rules:

∀x : Person(x) ∧Mortal(x)→WillDie(x) (covers all cases) (5.114)

∀x, y, z : Greater(x, y) ∧Greater(y, z)→ Greater(x, z) (transitivity) (5.115)

• Perfect generalization:

– No training examples needed

– Zero-shot transfer to new domains

– No distribution shift concerns

• Compositional reasoning:

P → Q, Q→ R ∴ P → R (valid inference) (5.116)

∀x : [∃y : Parent(y, x)]→ HasParent(x) (nested quantifiers) (5.117)

Key strengths of symbolic systems include:

• Verifiability: Proofs can be mechanically checked

• Transparency: Clear reasoning chains

• Meta-reasoning: Can reason about reasoning itself

This suggests complementary roles:

• Neural networks: Pattern learning from concrete instances

• Logical systems: Universal rules and abstract reasoning

The future may lie in hybrid systems that combine the pattern-recognition capabilities
of matrices with the abstract reasoning power of logic. Each approach offers distinct advan-
tages: matrices handle continuous patterns and learning from examples, while logic enables
universal quantification and formal verification.

5.6 Architectural Comparison

5.6.1 Bottom-up Architecture

GPT/Temporal Convolution approach:

Temporal Conv : ht = σ(
t∑

∆t=0

W∆tht−∆t) (all past tokens) (5.118)

GPT : ht = ht +
t∑

τ=1

αtτWvhτ (attention to past) (5.119)

Key properties:

164 CHAPTER 5. TRANSFORMER AND GPT

• Direct access to all previous tokens

• Parallel processing possible

• No information compression

• Like having all past notes visible

5.6.2 Context Access

RNN (working memory):

ht = f(ht−1, xt) (state update) (5.120)

= tanh(Wrecurrentht−1 +Wembedxt) (compress into state) (5.121)

GPT with KV cache (written notes):

CacheK = [k1, ..., kt] (stored keys) (5.122)

CacheV = [v1, ..., vt] (stored values) (5.123)

ht = attention(qt,CacheK ,CacheV) (look up notes) (5.124)

5.6.3 Memory Metaphor

RNN memory is like working memory:

• Must hold everything in state vector

• Information gets compressed

• Limited capacity

• Easy to forget

• Quick access but fragile

GPT memory is like pencil and paper:

• Writes down each token’s representation

• No compression needed

• Unlimited capacity (up to context length)

• Perfect recall

• Can look back at any point

5.6. ARCHITECTURAL COMPARISON 165

5.6.4 Inference Process

RNN generation:

• Maintain single state ht

• Update sequentially

• Must remember context in state

• Like keeping everything in mind

GPT generation with KV cache:

• Store all keys and values

• Add to cache at each step

• Look up relevant context

• Like referring to written notes

5.6.5 Trade-offs

RNN advantages:

• Fixed memory usage

• Fast inference (single state)

• Unbounded context length

• Natural sequential processing

GPT/KV cache advantages:

• No information loss

• Selective attention to past

• Parallel training

• Reliable long-term recall

This architectural difference explains why:

• GPT scales better with size

• Handles long-range dependencies better

• More computationally intensive

• Memory usage grows with sequence length

166 CHAPTER 5. TRANSFORMER AND GPT

5.7 Original Transformer for Translation

Example translation task:

English : ”I love machine learning”

Spanish : ”Amo el aprendizaje automático”

5.7.1 Architecture Overview

1. Encoder processes source sentence:

e
(1)
t = Wenc

embedxt (English embedding) (5.125)

e
(l+1)
t = e

(l)
t + BiAttn(e

(l)
t , e

(l)
1:n) + MLP(e

(l)
t) (encode context) (5.126)

2. Decoder generates translation:

h
(1)
t = Wdec

embedyt (Spanish embedding) (5.127)

h
(l+ 1

2
)

t = h
(l)
t + CausalAttn(h

(l)
t , h

(l)
1:t) (self-attention) (5.128)

h
(l+ 3

4
)

t = h
(l+ 1

2
)

t + CrossAttn(h
(l+ 1

2
)

t , e
(L)
1:n) (source attention) (5.129)

h
(l+1)
t = h

(l+ 3
4
)

t +MLP(h
(l+ 3

4
)

t) (process) (5.130)

5.7.2 Three Types of Attention

1. Bidirectional (Encoder):

• Full context: ”I love machine learning”

• Each word sees all others

• Builds rich source representations

2. Causal (Decoder self-attention):

• Sequential generation: ”Amo...”

• Only sees previous words

• Like GPT’s attention

3. Cross (Decoder source-attention):

• Attends to encoded source

• Access to full English sentence

• Guides translation decisions

5.7. ORIGINAL TRANSFORMER FOR TRANSLATION 167

5.7.3 Encoder Matrix Implementation

For sequence length n:

H ∈ Rn×d (all tokens) (5.131)

Q = HWQ, K = HWK , V = HWV ∈ Rn×d (projections) (5.132)

A = softmax(
QK⊤
√
d

)V (attention) (5.133)

Advantages:

• Single matrix multiplication

• All positions processed in parallel

• GPU/TPU efficient

• O(n2d) operations done in parallel

5.7.4 Decoder Masked Attention

Causal masking:

Mij =

{
0 if i ≥ j

−∞ if i < j
(mask matrix) (5.134)

A = softmax(
QK⊤
√
d

+M)V (masked attention) (5.135)

Example for ”Amo el”:

M =

0 −∞ −∞
0 0 −∞
0 0 0

 (5.136)

This ensures:

• Each position sees only past

• Still parallel computation

• Autoregressive property

• Training matches inference

168 CHAPTER 5. TRANSFORMER AND GPT

5.8 Transformer Family: Translation to BERT and GPT

5.8.1 Architectural Heritage

Original Transformer for translation had:

• Encoder: bidirectional attention on source

• Decoder: causal attention + cross-attention to source

• Both parts specialized for translation task

5.8.2 BERT (Bidirectional Encoder Representations from Trans-
formers)

Takes encoder architecture:

• Uses only bidirectional encoder layers

• Removes decoder and cross-attention

• Adapts for general language understanding

Masked Language Modeling:

• Randomly mask 15% of input tokens

• Replace with:

MASK token (80%)

– Random word (10%)

– Original word (10%)

• Model predicts original tokens

• Forces bidirectional understanding

[CLS] Token - The Team Captain:

• Special first token in every input

• Not tied to any input word

• Free to gather relevant information

• Like a captain summarizing team’s knowledge

• Used for sentence-level tasks

• Learns to aggregate sequence information

5.8. TRANSFORMER FAMILY: TRANSLATION TO BERT AND GPT 169

5.8.3 GPT (Generative Pre-trained Transformer)

Takes decoder architecture:

• Uses only causal decoder layers

• Removes encoder and cross-attention

• Focuses on text generation

Key differences:

• No masking tokens needed

• No special [CLS] token

• Pure autoregressive prediction

• Simpler but unidirectional

5.8.4 Core Distinctions

BERT:

• Bidirectional context

• Masked prediction task

• Good for understanding

• Special tokens for tasks

• Team-based information gathering

GPT:

• Unidirectional (left-to-right)

• Next token prediction

• Natural for generation

• No special tokens

• Sequential information processing

This split created two branches:

• Understanding models (BERT-like)

• Generation models (GPT-like)

• Each optimized for their task

• Different pre-training objectives

• Different downstream applications

170 CHAPTER 5. TRANSFORMER AND GPT

5.9 Original Transformer Parameters

5.9.1 Core Architecture Parameters

Base model:

dmodel = 512 (embedding dimension) (5.137)

dff = 2048 (feed-forward width) (5.138)

h = 8 (attention heads) (5.139)

dk = dv = dmodel/h = 64 (per-head dimension) (5.140)

Nenc = Ndec = 6 (number of layers) (5.141)

Big model:

dmodel = 1024 (5.142)

dff = 4096 (5.143)

h = 16 (5.144)

Nenc = Ndec = 6 (5.145)

5.9.2 Key Design Choices

Dimension ratios:

• Feed-forward: dff = 4dmodel

• Per-head: dk = dv = dmodel/h

• Equal encoder-decoder depth

Training details:

• Dropout: p = 0.1

• Label smoothing: ϵ = 0.1

• Warmup steps: 4000

• Adam optimizer: β1 = 0.9, β2 = 0.98

5.10. GPT-3 175B ARCHITECTURE 171

5.10 GPT-3 175B Architecture

5.10.1 Key Parameters

Model dimensions:

N = 175 billion parameters (5.146)

d = 12,288 (embedding dimension) (5.147)

L = 96 (number of layers) (5.148)

H = 96 (attention heads) (5.149)

dh = d/H = 128 (dimension per head) (5.150)

5.10.2 Parameter Distribution

Major parameter blocks per layer:

• Attention:

WQ,WK ,WV ∈ Rd×d (3 matrices) (5.151)

WO ∈ Rd×d (output projection) (5.152)

• MLP:

W1 ∈ R4d×d (up-projection) (5.153)

W2 ∈ Rd×4d (down-projection) (5.154)

Total parameters per layer:

Pattention = 4d2 (QKV + O) (5.155)

Pmlp = 8d2 (up + down) (5.156)

Player = 12d2 (total per layer) (5.157)

5.10.3 Computation Flow

Per sequence position:

• Memory: O(Ld) activations

• Compute: O(Ld2) operations

• Attention: O(LH(d/H)2) per key/query

Context window:

• Maximum length: 2048 tokens

• Attention memory: O(Ld+ T 2)

• Attention compute: O(LdT + T 2d)

172 CHAPTER 5. TRANSFORMER AND GPT

5.10.4 Design Choices

Key ratios:

• dh = 128 is fixed across scales

• MLP width = 4× embedding

• H scales with d keeping dh constant

• L chosen for compute efficiency

Training considerations:

• 8-way tensor parallelism

• Mixed precision training

• Gradient checkpointing

• Careful initialization scale

5.11 Scaling Laws

5.11.1 Power Law Relationships

Language model performance follows predictable power laws with respect to three key vari-
ables:

Model Size

Performance improves with parameter count:

L =

(
Nc

N

)αN

+ c1 (5.158)

where:

• L is the loss (prediction error)

• N is number of parameters

• αN ≈ 0.076 (empirical coefficient)

• Nc is critical model scale

5.11. SCALING LAWS 173

Dataset Size

Performance improves with training data:

L =

(
Dc

D

)αD

+ c2 (5.159)

where:

• D is dataset size (tokens)

• αD ≈ 0.095 (empirical coefficient)

• Dc is critical data scale

Compute Budget

Performance improves with training compute:

L =

(
Cc

C

)αC

+ c3 (5.160)

where:

• C is compute (FLOPs)

• αC ≈ 0.050 (empirical coefficient)

• Cc is critical compute scale

5.11.2 Optimal Allocation

Given compute budget C, optimal model size and data size follow:

Nopt ∝ C0.6 (5.161)

Dopt ∝ C0.4 (5.162)

This means:

• 60% of increased compute should go to model size

• 40% should go to dataset size

• Batch size scales more slowly

174 CHAPTER 5. TRANSFORMER AND GPT

5.11.3 Chinchilla Scaling

Recent findings suggest:

• Most models are over-parameterized

• Under-trained on data

• Optimal tokens/parameter ≈ 20

• More compute should go to training steps

For compute budget C:

Nchin ∝ C0.5 (5.163)

Dchin ∝ C0.5 (5.164)

5.11.4 Implications

These laws guide model development:

• Predictable returns:

– Can estimate performance gains

– Plan resource requirements

– Set realistic targets

• Resource allocation:

– Balance model vs data size

– Optimize training time

– Choose batch size

• Architecture design:

– Choose model depth vs width

– Set attention heads

– Balance MLP sizes

• Training strategy:

– Data sampling rates

– Learning rate schedules

– Optimization choices

5.12. TWO-STAGE TRAINING 175

5.11.5 Example Scales

Typical scales for different model sizes:

Base : N ≈ 125M, D ≈ 2.5B tokens (5.165)

Large : N ≈ 350M, D ≈ 7B tokens (5.166)

XL : N ≈ 1.3B, D ≈ 26B tokens (5.167)

XXL : N ≈ 175B, D ≈ 3.5T tokens (5.168)

5.12 Two-Stage Training

5.12.1 Pre-training Stage

Self-supervised learning on large text corpora:

h
(1)
t = Wembedxt (embed token) (5.169)

h
(l+1)
t = h

(l)
t + Layerl(h

(l)
t , h

(l)
1:t) (process context) (5.170)

pt = softmax(W⊤
embedh

(L)
t) (next token prediction) (5.171)

Training objective:

Jpretrain =
∑
t

log p(xt|x<t) (5.172)

Key aspects:

• Large-scale training data

• No human labels needed

• Learns general patterns

• Shared embedding matrix

• World knowledge in weights

5.12.2 Instruction Fine-tuning

Format training data as instruction-response pairs:

Input format:

Instruction: <task description>

Input: <specific instance>

Output: <desired response>

Example:

Instruction: Summarize the following text.

Input: Recent studies show that regular exercise...

Output: The research indicates that physical activity...

176 CHAPTER 5. TRANSFORMER AND GPT

Training objective:

Jinstruction =
∑
t

log p(yt|xinstruction, xinput, y<t) (5.173)

Key aspects:

• Much smaller dataset

• Human-curated examples

• Task-specific format

• Maintains general knowledge

• Aligns capabilities

5.12.3 Training Process

1. Pre-training phase:

• Start with random weights

• Train on internet-scale data

• Learn language patterns

• Acquire world knowledge

• General text prediction

2. Instruction tuning phase:

• Start with pre-trained model

• Train on instruction data

• Learn task formats

• Align with instructions

• Follow user requests

5.12. TWO-STAGE TRAINING 177

5.12.4 Benefits of Two-Stage Approach

1. Data efficiency:

• Pre-training: billions of tokens

• Instruction tuning: millions of examples

• Transfer of knowledge

• Few-shot learning ability

2. Task flexibility:

• General knowledge base

• Task-specific formatting

• Natural language interface

• Zero-shot generalization

5.12.5 Example Instructions

Different instruction types:

1. Direct command:

"Translate the following English text to French:"

2. Task description:

"You are a helpful assistant that writes emails."

3. Role-based:

"Act as an expert physicist explaining..."

4. Multi-step:

"First analyze the sentiment, then explain why..."

5. Format specification:

"Provide the answer in bullet points..."

This approach enables:

• Natural task specification

• Flexible interaction

• Clear user control

• Task composition

178 CHAPTER 5. TRANSFORMER AND GPT

5.13 Data Curation Pipeline

5.13.1 Pre-training Stages

1. Basic Internet Data:

• Web crawls (Common Crawl)

• Basic filtering:

– Remove spam/bot content

– Filter duplicate content

– Language identification

– Text quality heuristics

2. Higher Quality Sources:

• Books and academic papers

• Wikipedia

• Verified news sources

• Technical documentation

• Quality code repositories

3. Mixed-Quality Training:

• Weight different sources

• More tokens from high-quality sources

• Balance between breadth and quality

• Preserve diverse writing styles

5.13.2 Instruction Fine-tuning

Carefully curated instruction data:

• Human-written examples

• Task diversity:

– Writing and editing

– Analysis and reasoning

– Coding and math

– Q&A formats

• Clear evaluation criteria

• Quality control standards

5.13. DATA CURATION PIPELINE 179

5.13.3 RLHF Data

1. Preference Data:

• Human comparisons of outputs

• Consistent ranking criteria

• Coverage of edge cases

• Diverse evaluators

2. Constitutional Rules:

• Safety guidelines

• Ethical principles

• Behavior boundaries

• Response formats

5.13.4 Quality Progression

Data quality requirements increase:

• Pre-training:

– Billions of tokens

– Automated filtering

– Statistical quality metrics

• Instruction tuning:

– Millions of examples

– Human curation

– Task-specific validation

• RLHF:

– Thousands of comparisons

– Expert review

– Rigorous standards

180 CHAPTER 5. TRANSFORMER AND GPT

5.13.5 Continuous Improvement

Iterative refinement through:

• User interaction data

• Error analysis

• Bias detection

• Performance monitoring

• Community feedback

5.14 Reinforcement Learning from Human Feedback

5.14.1 Basic Concept

Language models can be viewed as decision-makers:

• Input x: question/instruction (like state in RL)

• Output y: answer/completion (like action in RL)

• Goal: maximize human satisfaction with responses

• Challenge: satisfaction isn’t directly programmable

5.14.2 Reward Modeling

Reward learning is sometimes called inverse reinforcement learning, i.e., based on the agent
behavior or preference, learn about the agent’s reward or value. In comparison, reinforcement
learning refers to the optimization of policy given the reward.

Model Architecture

Reward score computation:

h = Encoder(x, y) (process input-output pair) (5.174)

rϕ(x, y) = w⊤hfinal (scalar reward from final embedding) (5.175)

where:

• Same architecture as language model

• Single scalar output

• Learns to score completions

5.14. REINFORCEMENT LEARNING FROM HUMAN FEEDBACK 181

Bradley-Terry Model

Probability that response y1 is preferred over y2 given prompt x:

P (y1 ≻ y2|x;ϕ) =
exp(rϕ(x, y1))

exp(rϕ(x, y1)) + exp(rϕ(x, y2))
(5.176)

= σ(rϕ(x, y1)− rϕ(x, y2)) (logistic form) (5.177)

Training the reward model:

JRM(ϕ) =
∑

(x,y1,y2)∈D

logP (y1 ≻ y2|x;ϕ) (5.178)

=
∑

(x,y1,y2)∈D

log σ(rϕ(x, y1)− rϕ(x, y2)) (5.179)

where:

• rϕ(x, y): reward model with parameters ϕ

• D: human comparison data

• (x, y1, y2): prompt and response pairs where y1 preferred over y2

• Parameters ϕ learned to match human preferences

Properties

Bradley-Terry model advantages:

• Well-studied for pairwise comparisons

• Natural probabilistic interpretation

• Transitive preferences

• Smooth gradients for learning

Training considerations:

• Consistent human labeling crucial

• Coverage of response space

• Balance between different types of comparisons

• Quality control in human feedback

182 CHAPTER 5. TRANSFORMER AND GPT

5.14.3 Bradley-Terry Model

Sports Origins

Originally developed for ranking sports teams:

• Each team has strength score si

• Probability team i beats team j:

P (i beats j) =
exp(si)

exp(si) + exp(sj)
(5.180)

• Higher score difference → higher win probability

• Learns team strengths from match outcomes

Example interpretation:

• If si = sj: P(win) = 0.5

• si two points higher: strong favorite

• Can rank all teams on same scale

• Similar to Elo rating system

Adaptation to Response Ranking

Same principle for language model outputs:

si → rϕ(x, yi) (response score) (5.181)

P (y1 ≻ y2|x;ϕ) =
exp(rϕ(x, y1))

exp(rϕ(x, y1)) + exp(rϕ(x, y2))
(5.182)

= σ(rϕ(x, y1)− rϕ(x, y2)) (5.183)

where rϕ(x, y) plays the role of team strength, scoring how good response y is for prompt
x. Analogies:

• Team strength → response quality

• Match outcome → human preference

• League ranking → global quality scale

• Season records → preference dataset

Benefits of this approach:

• Well-studied mathematical properties

• Natural handling of transitivity

• Interpretable scores

• Efficient learning from comparisons

5.14. REINFORCEMENT LEARNING FROM HUMAN FEEDBACK 183

5.14.4 Policy Gradient Fine-tuning

Objective and Gradient

The original objective is to maximize expected reward:

J(θ) = Ex,y∼πθ
[rϕ(x, y)] (5.184)

=
∑
x

p(x)
∑
y

πθ(y|x)rϕ(x, y) (5.185)

To derive the policy gradient, we take the derivative with respect to θ:

∇θJ(θ) = ∇θ

∑
x

p(x)
∑
y

πθ(y|x)rϕ(x, y) (5.186)

=
∑
x

p(x)
∑
y

∇θπθ(y|x)rϕ(x, y) (5.187)

Using the likelihood ratio trick (∇θπθ = πθ∇θ log πθ):

∇θJ(θ) =
∑
x

p(x)
∑
y

πθ(y|x)∇θ log πθ(y|x)rϕ(x, y) (5.188)

= Ex,y∼πθ
[rϕ(x, y)∇θ log πθ(y|x)] (5.189)

Baseline

The original objective is to maximize expected reward:

J(θ) = Ex,y∼πθ
[rϕ(x, y)] (5.190)

=
∑
x

p(x)
∑
y

πθ(y|x)rϕ(x, y) (5.191)

Consider a modified reward with baseline:

r̃ϕ(x, y) = rϕ(x, y)− bϕ(x) (5.192)

J̃(θ) = Ex,y∼πθ
[r̃ϕ(x, y)] = J(θ)− Ep(x)[bϕ(x)] (5.193)

Thus J ′(θ) = J̃ ′(θ).
This key result shows we can subtract any state-dependent baseline without changing

the expected gradient.

Value Function and Advantage

The value function represents expected reward at state x:

Vϕ(x) = Ey∼π[rϕ(x, y)] (5.194)

For instance, for the question x, V measures the difficulty of x. For the task instruction x,
V measures the difficulty of the task.

184 CHAPTER 5. TRANSFORMER AND GPT

The advantage function measures relative improvement over expected value:

Aϕ(x, y) = rϕ(x, y)− Vϕ(x) (5.195)

Since value function is a valid baseline, we can express the policy gradient using advan-
tages:

∇θJ = Ex,y∼πθ
[rϕ(x, y)∇θ log πθ(y|x)] (5.196)

= Ex,y∼πθ
[Aϕ(x, y)∇θ log πθ(y|x)] (5.197)

Variance Analysis

Policy gradient’s high variance comes from several sources:

• Reward variation across states

• Long-term credit assignment

• Stochastic policy sampling

• State-dependent reward distributions

Advantage function helps reduce variance because:

• Normalizes rewards relative to state-specific expectations

• Removes state-dependent reward variation:

– Original: rϕ(x, y) varies with state

– Advantage: Aϕ(x, y) measures relative improvement

• Centers the learning signal:

– Ey∼πθ
[Aϕ(x, y)] = 0

– Positive advantage: better than average

– Negative advantage: worse than average

Empirical benefits:

• Smaller gradient variance

• More stable training

• Faster convergence

• Better final performance

5.14. REINFORCEMENT LEARNING FROM HUMAN FEEDBACK 185

Implementation

For each training batch:

1. Sample prompts x from dataset

2. Generate responses y ∼ πθ(·|x)

3. Compute rewards rϕ(x, y)

4. Estimate value function Vϕ(x)

5. Compute advantages Aϕ(x, y) = rϕ(x, y)− Vϕ(x)

6. Update policy:
θ ← θ + α · Aϕ(x, y)∇θ log πθ(y|x) (5.198)

Practical considerations:

• Need accurate value estimation

• Balance exploration/exploitation

• Prevent performance collapse

• Maintain language modeling capability

5.14.5 Comparison with Maximum Likelihood

Imitation Learning vs Policy Gradient

Maximum likelihood for imitation learning:

JMLE(θ) = E(x,y)∼D[log πθ(y|x)] (teacher data) (5.199)

∇θJMLE = E(x,y)∼D[∇θ log πθ(y|x)] (5.200)

Policy gradient with reward:

JPG(θ) = Ex,y∼πθ
[rϕ(x, y)] (self-generated) (5.201)

∇θJPG = Ex,y∼πθ
[rϕ(x, y)∇θ log πθ(y|x)] (5.202)

Key differences:

• Data source:

– MLE: y generated by a teacher

– PG: y generated by current policy πθ

• Learning signal:

– MLE: Direction from teacher’s actions

– PG: Weighted by reward rϕ(x, y)

186 CHAPTER 5. TRANSFORMER AND GPT

Why Self-Imitation Fails

Consider self-imitation (policy gradient with rϕ(x, y) = 1):

∇θJself = Ex,y∼πθ
[∇θ log πθ(y|x)] = ∇θEx,y∼πθ

[1] = 0 (5.203)

Therefore:

• Self-imitation provides no learning signal

• Reward breaks symmetry and enables learning, e.g., in RLHF.

5.15 Proximal Policy Optimization (PPO)

5.15.1 Importance Sampling Form

Express objective using old policy πold:

J(θ) = Ex,y∼πθ
[rϕ(x, y)] (5.204)

= Ex,y∼πold

[
πθ(y|x)
πold(y|x)

rϕ(x, y)

]
(5.205)

Define probability ratio:

ρθ(x, y) =
πθ(y|x)
πold(y|x)

(5.206)

With advantage:

JIS(θ) = Ex,y∼πold
[ρθ(x, y)Aϕ(x, y)] (5.207)

5.15.2 Motivation for Clipping

Challenges with pure importance sampling:

• Large ratios cause high variance

• Excessive policy changes

• Training instability

• Loss of learned behaviors

5.15.3 PPO Clipped Objective

Define clipped objective:

JPPO(θ) = Ex,y∼πold
[min (ρθAϕ, clip(ρθ, 1− ϵ, 1 + ϵ)Aϕ)] (5.208)

5.15. PROXIMAL POLICY OPTIMIZATION (PPO) 187

Three cases based on advantage and ratio:

JPPO(θ) = Ex,y∼πold


(1 + ϵ)Aϕ if Aϕ > 0 and ρθ > 1 + ϵ

(1− ϵ)Aϕ if Aϕ < 0 and ρθ < 1− ϵ

ρθAϕ otherwise

(5.209)

This means:

• Positive advantage (Aϕ > 0):

– Increase πθ but cap at (1 + ϵ)

– Prevents too large increases

– Stabilizes good behaviors

• Negative advantage (Aϕ < 0):

– Decrease πθ but cap at (1− ϵ)

– Prevents too large decreases

– Maintains exploration

• Within bounds:

– Use normal policy gradient

– Allow natural updates

– Trust region behavior

5.15.4 Implementation Benefits

This formulation provides:

• Stable learning

– Bounded policy changes

– Controlled exploration

– Reliable convergence

• Simple implementation

– No KL constraints

– First-order optimization

– Easy to tune

• Preservation of knowledge

– Prevents catastrophic changes

– Maintains learned behaviors

– Smooth policy evolution

188 CHAPTER 5. TRANSFORMER AND GPT

5.15.5 Understanding PPO

Trust Region in Data Space

Proximal Policy Optimization (PPO) implements a trust region in the data space through its
clipping mechanism. Unlike TRPO which operates in model space (KL-divergence between
policies) or simple gradient methods that work in parameter space, PPO directly controls
the ratio of action probabilities ρ(s, a) = πnew(a|s)/πold(a|s).

This data-space approach offers several advantages:

1. Direct control over behavioral changes

2. More interpretable constraints

3. Simpler implementation than model-space constraints

Active Learning Perspective

PPO’s clipping mechanism can be viewed as a form of selective learning, where certain
state-action pairs are actively removed from the learning process. When the probability
ratio ρ(s, a) exceeds the clipping threshold (1+ ϵ) for positive advantage, (1− ϵ) for negative
advantage, the gradient is stopped for that example. This is effectively a form of “negative
active learning” where the algorithm decides which examples to stop learning from, rather
than which examples to learn from.

Exploration-Exploitation Management

The clipping mechanism in PPO naturally manages the exploration-exploitation tradeoff:

For positive advantage A(s, a) > 0:

• When ρ(s, a) > 1 + ϵ, gradient flow stops

• This prevents over-exploitation by limiting how strongly the policy can commit to
advantageous actions

• Maintains exploration by preventing the policy from becoming too deterministic

For negative advantage A(s, a) < 0:

• When ρ(s, a) < 1− ϵ, gradient flow stops

• This prevents over-suppression of currently disadvantageous actions

• Preserves exploration by maintaining the possibility of revisiting these actions

5.16. VISION TRANSFORMER (VIT) 189

Implementation Perspective

While PPO is often presented through its objective function:

L = min(ρ(s, a)A(s, a), clip(ρ(s, a), 1− ϵ, 1 + ϵ)A(s, a)) (5.210)

A more natural implementation might use stop-gradient operations:

L =


stop gradient(ρ(s, a))A(s, a) if A(s, a) > 0 and ρ(s, a) > 1 + ϵ

stop gradient(ρ(s, a))A(s, a) if A(s, a) < 0 and ρ(s, a) < 1− ϵ

ρ(s, a)A(s, a) otherwise

This implementation more directly expresses the algorithm’s intention to halt learning
when policy changes exceed the trust region bounds.

5.16 Vision Transformer (ViT)

Figure 5.4: ViT

190 CHAPTER 5. TRANSFORMER AND GPT

5.16.1 Image to Sequence

Convert 2D image to sequence of patches:

Image ∈ RH×W×C (original) (5.211)

Patches ∈ RN×(P 2C) (sequence) (5.212)

N = HW/P 2 (sequence length) (5.213)

where:

• P × P : patch size (e.g., 16×16)

• N : number of patches

• Each patch flattened to vector

5.16.2 Patch Embedding

Linear projection of patches:

h
(1)
i = Wpatchxi +Wposi (patch + position) (5.214)

h
(1)
0 = Wclass ([CLS] token) (5.215)

5.16.3 Processing Architecture

Standard transformer layers:

h
(l+ 1

2
)

i = h
(l)
i +Attention(h

(l)
i , h

(l)
0:N) (global attention) (5.216)

h
(l+1)
i = h

(l+ 1
2
)

i +MLP(h
(l+ 1

2
)

i) (feature processing) (5.217)

5.16.4 Comparison with CNN

Similarities:

• Hierarchical processing

– CNN: through layers

– ViT: through transformer depth

• Feature learning

– CNN: convolutional filters

– ViT: attention patterns

• Position handling

– CNN: built into convolution

5.16. VISION TRANSFORMER (VIT) 191

– ViT: position embeddings

Key differences:

• Receptive field:

– CNN: local, grows gradually

– ViT: global from first layer

• Parameter sharing:

– CNN: weight tied across space

– ViT: attention weights dynamic

• Spatial structure:

– CNN: explicit in convolution

– ViT: learned through position

5.16.5 Computational Aspects

Memory and compute:

• CNN:

– O(HWC) memory

– Linear in image size

– Efficient for small images

• ViT:

– O(N2D) attention memory

– Quadratic in number of patches

– Better for larger patches

5.16.6 Practical Considerations

Training requirements:

• CNN:

– Strong inductive bias

– Works with less data

– Stable training

• ViT:

192 CHAPTER 5. TRANSFORMER AND GPT

– Needs more data

– Pre-training important

– More flexible patterns

Performance characteristics:

• CNN: better for small datasets

• ViT: scales better with data size

• Hybrid approaches possible

• Task-dependent trade-offs

5.17 CLIP: Contrastive Language–Image Pretraining

Figure 5.5: CLIP

5.17.1 Dual Encoder Architecture

Two parallel encoders:

zimg = fimg(image) (vision encoder) (5.218)

ztxt = ftxt(text) (text encoder) (5.219)

zimg, ztxt ∈ Rd (shared space) (5.220)

where:

• fimg: Vision Transformer or CNN

• ftxt: Text Transformer

• Outputs normalized: ∥z∥2 = 1

5.17. CLIP: CONTRASTIVE LANGUAGE–IMAGE PRETRAINING 193

5.17.2 Contrastive Loss

For batch of N (image, text) pairs:

sij =
z
(i)⊤
img z

(j)
txt

τ
(scaled similarity) (5.221)

pi =
exp(sii)∑
j exp(sij)

(image to text) (5.222)

qi =
exp(sii)∑
j exp(sji)

(text to image) (5.223)

Symmetric cross entropy loss:

L = − 1

2N

N∑
i=1

(log pi + log qi) (5.224)

5.17.3 Understanding Contrastive Learning

Matrix form of similarities:

S =


s11 s12 · · · s1N
s21 s22 · · · s2N
...

...
. . .

...
sN1 sN2 · · · sNN

 (5.225)

Loss encourages:

• Diagonal terms large (matching pairs)

• Off-diagonal terms small (non-matching)

• Symmetric treatment of modalities

• Hard negative mining within batch

5.17.4 Temperature Scaling

Role of temperature τ :

• Controls similarity sharpness:

– Lower τ : sharper distinctions

– Higher τ : softer matching

• Affects training dynamics:

– Gradient scaling

– Hard negative emphasis

– Learning stability

194 CHAPTER 5. TRANSFORMER AND GPT

5.17.5 Training Process

Key aspects:

• Large-scale data:

– Internet-scale image-text pairs

– Natural language supervision

– Diverse visual concepts

• Efficient implementation:

– All pairs computed in parallel

– GPU-efficient matrix operations

– Large batch sizes important

• Learned representations:

– Visual concepts align with language

– Zero-shot transfer possible

– Flexible visual reasoning

5.17.6 Applications

Zero-shot capabilities:

• Classification:

– Encode class names as text

– Match with image features

– No task-specific training

• Image retrieval:

– Text queries to image space

– Semantic similarity search

– Open vocabulary search

• Text retrieval:

– Image queries to text space

– Image captioning basis

– Cross-modal understanding

Chapter 6

Diffusion Model

Denoising Diffusion Probabilistic Models

Jonathan Ho
UC Berkeley

jonathanho@berkeley.edu

Ajay Jain
UC Berkeley

ajayj@berkeley.edu

Pieter Abbeel
UC Berkeley

pabbeel@cs.berkeley.edu

Abstract

We present high quality image synthesis results using diffusion probabilistic models,
a class of latent variable models inspired by considerations from nonequilibrium
thermodynamics. Our best results are obtained by training on a weighted variational
bound designed according to a novel connection between diffusion probabilistic
models and denoising score matching with Langevin dynamics, and our models nat-
urally admit a progressive lossy decompression scheme that can be interpreted as a
generalization of autoregressive decoding. On the unconditional CIFAR10 dataset,
we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On
256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our imple-
mentation is available at https://github.com/hojonathanho/diffusion.

1 Introduction

Deep generative models of all kinds have recently exhibited high quality samples in a wide variety
of data modalities. Generative adversarial networks (GANs), autoregressive models, flows, and
variational autoencoders (VAEs) have synthesized striking image and audio samples [14, 27, 3,
58, 38, 25, 10, 32, 44, 57, 26, 33, 45], and there have been remarkable advances in energy-based
modeling and score matching that have produced images comparable to those of GANs [11, 55].

Figure 1: Generated samples on CelebA-HQ 256 ⇥ 256 (left) and unconditional CIFAR10 (right)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

00
6.

11
23

9v
2

 [c
s.L

G
]

16
 D

ec
 2

02
0

Figure 6.1: Denoising Diffusion Probability Model

Chapter Overview

This chapter presents diffusion models, a powerful framework for generating complex high-
dimensional data by transforming simple Gaussian noise into structured data through an
iterative denoising process. The development begins with fundamental probability concepts,
illustrated through the intuitive analogy of one billion particles moving between states and

195

196 CHAPTER 6. DIFFUSION MODEL

Figure 6.2: q is our Pdata for generating the trajectory data.

returning to their original distribution. This population movement analogy provides con-
crete understanding for both discrete and continuous probability rules that underlie diffusion
models.

The mathematical framework builds from simple Gaussian trajectories where data points
are gradually perturbed with noise until they become pure Gaussian noise, and then learns
to reverse this process for generation. Key developments include variance reduction through
conditional expectations, alternative formulations based on directly predicting clean data,
and connections to classical results like Vincent’s identity (Tweedie’s formula). The t − 2
reasoning leads to deterministic denoising process. Taking limit leads to stochastic and ordi-
nary differential equations. Equivalence between stochastic and deterministic drifts justifies
flow matching.

For practical implementation, the framework is realized through neural networks (UNet
and Transformer architectures) that learn to gradually denoise data.

6.1 Probability Preliminaries: Counting Population

Understanding probability through population movement provides an intuitive foundation
for grasping diffusion models.

6.1.1 Discrete Random Variables: Population Movement Between
States

Consider a population of 1 billion people distributed across three states. This setup provides
a concrete way to understand fundamental probability concepts:

• p(x): Number (in billions) of people in state x (initial distribution)

• p(y|x): Fraction of people moving from state x to state y (transition probability)

• p̃(y): Number (in billions) ending up in state y (final distribution)

Three fundamental rules govern population movement:

1. Chain Rule: The joint count p(x, y) of people initially in x and ending in y is:

p(x, y) = p(x)p(y|x)

6.1. PROBABILITY PRELIMINARIES: COUNTING POPULATION 197

For example, if state 1 has 0.4 billion people and 30% move to state 2, then p(1, 2) =
0.4× 0.3 = 0.12 billion people start in state 1 and end in state 2.

2. Marginalization Rule: The final population p̃(y) in state y is:

p̃(y) =
∑
x

p(x, y) =
∑
x

p(x)p(y|x)

This sums up people arriving in y from all possible starting states.

3. Conditioning Rule: The fraction p(x|y) of people in state y who came from state x
is:

p(x|y) = p(x, y)

p̃(y)
=

p(x)p(y|x)∑
x p(x)p(y|x)

These three rules underlie all the probability calculations.
We call p(y|x) the forward conditional (where people go) and p(x|y) the backward

conditional (where people came from). We can interpret x as cause and y as effect, and
the conditioning rule is the Bayes rule.

While we can directly interpret our quantities as population counts and fractions, there
is an equivalent probabilistic interpretation: if we randomly sample one person from the
population of 1 billion people, then p(x) becomes the probability that this person is in state
x, and p(y|x) becomes the conditional probability that this person will move to state y
given that they are currently in state x. Similarly, p̃(y) represents the probability that our
randomly sampled person ends up in state y. This dual interpretation - as both population
counts and probabilities - helps build intuition for probability concepts. We’ll examine both
discrete and continuous cases.

Let’s illustrate with concrete numbers:

State (x) p(x) Interpretation
1 0.4 0.4 billion people
2 0.3 0.3 billion people
3 0.3 0.3 billion people

Table 6.1: Initial distribution

p(y|x) y = 1 y = 2 y = 3
x = 1 0.6 0.3 0.1
x = 2 0.2 0.5 0.3
x = 3 0.1 0.4 0.5

Table 6.2: Forward transition probabilities

Using these numbers, we can calculate:

p̃(1) = 0.4(0.6) + 0.3(0.2) + 0.3(0.1) = 0.33

Similar calculations give us p̃(2) and p̃(3).

198 CHAPTER 6. DIFFUSION MODEL

An important property emerges: if we take the p̃(y) people who ended up in state y and
send fraction p(x|y) back to state x, we recover the original distribution p(x). This is like
running time backward for one step - while each person may not return to their exact starting
point, the overall population distribution returns to its initial state. Mathematically:∑

y

p̃(y)p(x|y) = p(x)

This reversibility property is like a “one-step time machine” for probability distributions,
and it is crucial for understanding how diffusion models recover clean data from noisy data.
Just as we can reverse one step of diffusion by using the backward conditional probability,
diffusion models will learn to reverse multiple steps to recover clean data from noise.

6.1.2 Continuous Random Variables: Population Distribution on
a Line

For continuous random variables, we work with probability densities rather than direct prob-
abilities. The key relationship is:

probability = density× size

Consider 1 billion people (or particles) distributed along a continuous line where:

• p(x)∆x is the number of people in interval (x, x+∆x)

• p(y|x)∆y is the fraction moving from (x, x+∆x) to (y, y +∆y)

• p(x|y)∆x is the fraction in (y, y +∆y) who came from (x, x+∆x)

The same probability rules apply in continuous form:

1. Chain Rule:
p(x, y)∆x∆y = p(x)∆x · p(y|x)∆y

p(x, y) = p(x)p(y|x)

2. Marginalization Rule:

p̃(y)∆y =
∑
x

p(x, y)∆x∆y =
∑
x

p(x)∆x · p(y|x)∆y

p̃(y) =

∫
p(x, y)dx =

∫
p(x)p(y|x)dx

3. Conditional Rule:

p(x|y)∆x =
p(x, y)∆x∆y

p̃(y)∆y

p(x|y) = p(x, y)

p̃(y)
∝ p(x)p(y|x)

6.2. NOISING AND DENOISING: A SINGLE STEP 199

The proportionality in the conditional rule or Bayes rule holds when viewing x as the
variable and fixing y. The normalizing constant ensures the probabilities sum to 1.

These fundamental probability rules form the mathematical foundation for understanding
diffusion models, where we’ll see how data points (our “population”) spread out under noise
and how we can guide them back to their original distribution.

6.2 Noising and Denoising: A Single Step

After understanding basic probability rules, we can now study how data points get per-
turbed by noise and how we can recover the original data. This forms the foundation for
understanding diffusion models.

6.2.1 The Forward Noising Process

Consider a random variable x with probability density function p(x). We add Gaussian noise
to create a noisy observation y:

y = x+ e, where e ∼ N (0, σ2)

Since the noise e is independent of x, the conditional probability of y given x follows a
Gaussian distribution:

p(y|x) ∼ N (x, σ2)

Explicitly:

p(y|x) = 1√
2πσ2

exp

[
−(y − x)2

2σ2

]
This defines our forward process: how clean data x gets transformed into noisy data y.

6.2.2 The Backward Denoising Process

The more interesting question is: given a noisy observation y, what can we say about the
original x? This is answered by the backward conditional p(x|y).

Derivation Using Bayes Rule

From Bayes rule, we know:
p(x|y) ∝ p(x)p(y|x)

Taking the logarithm:

log p(x|y) = log p(x) + log p(y|x) + C

where C is a normalization constant.
Substituting the Gaussian form of p(y|x):

log p(x|y) = log p(x)− (y − x)2

2σ2
+ C ′

200 CHAPTER 6. DIFFUSION MODEL

Taylor Expansion

For small σ2, we expect x to be close to y. We can use Taylor expansion of log p(x) around
y:

log p(x) ≈ log p(y) +∇ log p(y)(x− y)

Substituting this into our expression:

log p(x|y) ≈ log p(y) +∇ log p(y)(x− y)− (y − x)2

2σ2
+ C ′

= log p(y)−∇ log p(y)(y − x)− (y − x)2

2σ2
+ C ′

Completing the Square

The quadratic terms in (y − x) determine the shape of our Gaussian. Let’s complete the
square:

−∇ log p(y)(y − x)− (y − x)2

2σ2

= − 1

2σ2

[
(y − x)2 + 2σ2∇ log p(y)(y − x)

]
= − 1

2σ2

[
(y − x+ σ2∇ log p(y))2 − (σ2∇ log p(y))2

]
Therefore:

log p(x|y) = − 1

2σ2
(x− (y + σ2∇ log p(y)))2 + C ′′

where C ′′ combines all terms not involving x.

Final Result

This quadratic form in log p(x|y) implies that p(x|y) is Gaussian with:

p(x|y) ∼ N (y + σ2∇ log p(y), σ2)

This result has a beautiful interpretation:

• The mean of x given y is y + σ2∇ log p(y)

• The first term y represents our noisy observation

• The correction term σ2∇ log p(y) pushes us toward regions of high probability density

• The variance σ2 represents our uncertainty in this reconstruction

The term ∇ log p(y) is called the score function. It tells us how to modify our noisy
observation to better match the clean data distribution. This insight is fundamental to
diffusion models, where we’ll need to learn this score function to guide noisy samples back
to clean data.

6.2. NOISING AND DENOISING: A SINGLE STEP 201

6.2.3 Reversibility of the Noising Process

Consider how distributions evolve under noising and denoising:

• Forward Evolution:

– Start with distribution p(x)

– Add noise: y = x+ e, where e ∼ N (0, σ2)

– End with more spread out distribution p̃(y)

• Backward Evolution (Time Machine):

– For each position y, optimal denoising is:

p(x|y) ∼ N (y + σ2∇ log p(y), σ2)

– The term σ2∇ log p(y) moves particles toward high-density regions

– This movement precisely counters the spreading effect of noise

– Why? Because noise spreads particles away from high-density regions

• Perfect Recovery:

– Taking particles at y and moving them by p(x|y) recovers p(x)
– Like running time backward for one step

– Individual particles may end up in different positions

– But the overall distribution returns exactly to p(x)

Moving toward high density is key: noise spreads particles out from dense regions (like
diffusion), so moving back toward density concentrates them again (like anti-diffusion). This
is why the score function ∇ log p(y) enables our probability “time machine” to work.

6.2.4 Why Score Reverses Noising

Consider our billion particles initially concentrated in regions of high probability density.
When we add noise, these particles spread out, moving from high-density to low-density
regions. Let’s understand why following the score function ∇ log p(y) precisely reverses this
spreading.

Particle Flow Under Noise

Imagine focusing on a small region around position y. The net flow of particles through this
region under noise has two components:

• Influx: Particles flowing in from nearby positions

• Outflux: Particles flowing out to nearby positions

202 CHAPTER 6. DIFFUSION MODEL

The difference between influx and outflux determines how the particle density changes.
In regions of high density:

• More particles are present to flow out

• Fewer particles are in surrounding regions to flow in

• Result: Net loss of particles (density decreases)

Conversely, in regions of low density:

• Fewer particles are present to flow out

• More particles are in surrounding regions to flow in

• Result: Net gain of particles (density increases)

This process continues until the density gradient disappears and particles are uniformly
spread out.

Score Function as Anti-Diffusion

The score function ∇ log p(y) points in the direction of steepest increase in log probability
density. For our billion particles:

• ∇ log p(y) points toward regions where more particles are concentrated

• The magnitude is larger when the density gradient is steeper

• Moving particles along σ2∇ log p(y) creates a flow opposite to noise diffusion

6.2.5 Stochastic Denoising and Deterministic Denoising

When recovering clean data from noisy observations, we have two approaches: stochastic
denoising that samples from the posterior distribution, and deterministic denoising that es-
timates the mean of the posterior. Let’s understand their relationship and why deterministic
denoising requires a critical half-step correction.

Stochastic Denoising

The posterior distribution p(x|y) is Gaussian with:

p(x|y) ∼ N (y + σ2∇ log p(y), σ2)

To sample from this distribution, we can write:

x = y + σ2∇ log p(y) + ẽ, ẽ ∼ N (0, σ2)

Let’s understand this process with our billion particles:

6.2. NOISING AND DENOISING: A SINGLE STEP 203

• Each noisy particle at position y moves along σ2∇ log p(y)

• Additional random noise ẽ is added to each particle

• This maintains uncertainty in our reconstruction

• The distribution of these samples matches p(x)

The Problem with Naive Deterministic Denoising

One might think to simply use the mean of the posterior:

x− = y + σ2∇ log p(y)

However, this leads to a paradox:

• If we take our stochastic sample x and write it in terms of x−:

x = x− + ẽ

• This reveals that x is just a noisy version of x−

• Therefore, x− must be too concentrated

• The distribution of x− will be more peaked than p(x)

Optimal Deterministic Denoising

The solution is to take a half-step along the score direction:

x = y +
1

2
σ2∇ log p(y)

To understand why this works, consider our billion particles:

• Stochastic denoising: Each particle takes a full step + random noise

• Full deterministic step: Particles over-concentrate

• Half deterministic step: Particles land with correct spread

We can verify this with a simple example:

• Initial clean distribution: p(x) = N (0, 1)

• After noise: p̃(y) = N (0, 1 + σ2)

• Score function: ∇ log p(y) = − y
1+σ2

• Full step result: N (0, 1− σ2) (too narrow)

• Half step result: N (0, 1) (exactly right)

204 CHAPTER 6. DIFFUSION MODEL

Relationship Between Approaches

The two approaches offer different trade-offs:

• Stochastic Denoising:

– Samples from full posterior distribution

– Maintains diversity in outputs

– Useful for generating multiple plausible reconstructions

• Deterministic Denoising:

– Provides single best estimate

– More computationally efficient

– Requires crucial half-step correction

Both approaches have their place in practice. Stochastic denoising is often used in gen-
erative models where diversity is desired, while deterministic denoising is preferred in appli-
cations requiring single, consistent outputs.

6.3 Trajectory-Based Data Augmentation

6.3.1 Motivation and Challenges

A fundamental problem in machine learning is modeling and generating high-dimensional
data such as natural images. Let pdata(x) denote the probability distribution of such data.
This distribution typically exhibits challenging properties:

• Complex, irregular density landscapes with multiple modes

• Concentration on low-dimensional manifolds within the ambient space

• Sharp transitions between regions of high and low density

Direct modeling of such distributions is challenging due to these characteristics.

6.3.2 Trajectory-Based Approach

Instead of directly modeling pdata(x), we introduce a trajectory-based approach:

1. Start with observed examples x0 ∼ pdata(x)

2. Construct trajectory data (x0,x1, . . . ,xT)

3. Design the endpoint xT to follow a simple distribution:

xT ∼ pT (xT) ∼ N (0, σ2
T I) (6.1)

6.3. TRAJECTORY-BASED DATA AUGMENTATION 205

6.3.3 Learning the Generation Process

The key idea is to learn a parametric model pθ(xt−1|xt) for each step of the reverse process.
This model attempts to approximate the true conditional distributions in the trajectory
data:

pθ(xt−1|xt) ≈ pdata(xt−1|xt) (6.2)

6.3.4 Generation Process

Generation follows a trajectory from xT to x0:

1. Sample xT ∼ pT (xT)

2. Iteratively sample:

xt−1 ∼ pθ(xt−1|xt) for t = T, . . . , 1 (6.3)

3. Obtain the generated sample x0

6.3.5 Comparison with Autoregressive Models

Both trajectory-based diffusion models and autoregressive models like GPT share a funda-
mental principle: decomposing a complex distribution into a sequence of simple steps.

Sequential Decomposition

Both approaches factor the joint distribution into conditional probabilities:

• GPT decomposes text generation as:

p(x) =
T∏
t=1

p(xt|x<t) (6.4)

• Trajectory-based models decompose data generation as:

p(x0) = p(xT)
T∏
t=1

p(xt−1|xt) (6.5)

Key Common Principles

Simplification through Steps Both approaches transform a complex modeling task into
a sequence of simpler ones:

• Each step in GPT: model p(xt|x<t) as a simple categorical distribution

• Each step in trajectories: model p(xt−1|xt) as a simple continuous distribution

206 CHAPTER 6. DIFFUSION MODEL

Chain Structure Both leverage a chain structure:

GPT: x1 → x2 → · · · → xn (6.6)

Trajectory: xT → xT−1 → · · · → x0 (6.7)

Remark 2. The core insight shared by both approaches is that complex distributions become
manageable when broken down into sequences of simple steps, each with a simple conditional
distribution.

6.4 Simple Gaussian Trajectory Construction: Noising

and Denoising

Let us consider a simple scheme for constructing trajectories through additive Gaussian
noise. This construction provides intuitive insight into the trajectory-based approach while
maintaining mathematical simplicity.

6.4.1 Forward Process Construction

We construct the trajectory through a simple additive process:

xt = xt−1 + et (6.8)

where:

• et ∼ N (0, σ2I) is Gaussian noise

• σ2 is a small variance parameter

• The noise terms et are independent across time steps

6.4.2 Transition Probability

This construction implies a simple transition probability:

pdata(xt|xt−1) = N (xt−1, σ
2I) (6.9)

Remark 3. This simple scheme transforms our original data point x0 into a sequence of
nearby points, creating a gentle path toward a more tractable distribution.

6.4.3 Terminal Distribution Analysis

Let us analyze the distribution of xT for large T (e.g., T = 1000). By iterating the forward
process:

6.4. SIMPLE GAUSSIAN TRAJECTORY CONSTRUCTION: NOISING ANDDENOISING207

xT = x0 +
T∑
t=1

et (6.10)

= x0 +
T∑
t=1

N (0, σ2I) (6.11)

By independence of the noise terms, we have:

xT |x0 ∼ N (x0, Tσ
2I) (6.12)

For large T , this implies:

• The variance grows as Tσ2

• The initial point x0 becomes negligible compared to accumulated noise

• The distribution approaches a Gaussian regardless of initial distribution

Remark 4. For Tσ2 ≫ ∥x0∥2, the terminal distribution xT effectively becomes N (0, Tσ2I),
independent of the starting point x0.

This provides a natural bridge between:

• The complex data distribution at t = 0

• A simple Gaussian distribution at t = T

6.4.4 Derivation of the Reserve Transition Distribution

Let us derive the crucial result for the reverse process pdata(xt−1|xt).

Bayes Rule Application

By Bayes rule:

pdata(xt−1|xt) =
pdata(xt|xt−1)pdata(xt−1)

pdata(xt)
∝ pdata(xt−1)pdata(xt|xt−1) (6.13)

Substituting the forward transition:

pdata(xt−1|xt) ∝ pdata,t−1(xt−1) exp

(
−∥xt − xt−1∥2

2σ2

)
(6.14)

where pdata,t−1 is the distribution pdata(xt−1). We add t − 1 to the subscript because it is
needed to avoid confusion in the next subsection.

208 CHAPTER 6. DIFFUSION MODEL

First Order Taylor Expansion

For notation simplicity, we temporarily drop the subscript data.
For small σ2, we expect xt−1 to be close to xt. Let’s expand log pt−1(xt−1) around xt:

log pt−1(xt−1) ≈ log pt−1(xt) +∇ log pt−1(xt)
⊤(xt−1 − xt) (6.15)

Therefore:

log p(xt−1|xt) ≈ c+∇ log pt−1(xt)
⊤(xt−1 − xt)−

∥xt − xt−1∥2

2σ2
(6.16)

= c− 1

2σ2
∥xt−1 − xt − σ2∇ log pt−1(xt)∥2 (6.17)

where c is a constant that has nothing to do with xt−1.

Key Result

The above quadratic form implies that for small σ2:

pdata(xt−1|xt) ≈ N (xt + σ2∇ log pdata,t−1(xt), σ
2I) (6.18)

Remark 5. This is a fundamental result showing that:

• The reverse process is Gaussian

• The mean involves the score function ∇ log pdata,t−1(xt)

• The variance equals the forward process variance σ2

6.4.5 Uniqueness of Gaussian

A crucial aspect of diffusion models is their reliance on Gaussian distributions. This is not an
arbitrary choice but a necessity driven by the curse of dimensionality. In high-dimensional
spaces like images, the iid Gaussian is essentially the only distribution that remains tractable.
It uniquely allows both simple sampling and efficient density evaluation. Other distributions
either become impossible to sample or have intractable normalization constants. Moreover,
the Gaussian has the crucial property that sums of independent Gaussians remain Gaussian
with closed-form parameters. This property is essential for diffusion models as it allows us to
track the distribution of accumulated noise in closed form. This uniqueness of the Gaussian
explains why the forward process must use Gaussian noise, why the reverse process must be
Gaussian, and why the terminal distribution must be Gaussian. There is simply no other
mathematically feasible choice in high dimensions.

6.4.6 Necessity of Small Noise Variance

The requirement that σ2 be small is fundamental to our diffusion framework. This choice
enables three crucial mathematical simplifications:

6.5. SCORE-BASED PARAMETRIZATION 209

Taylor Expansion For small σ2, we expect xt−1 to be close to xt, allowing first-order
Taylor expansion:

log pdata(xt−1) ≈ log pdata(xt) +∇ log pdata(xt)
⊤(xt−1 − xt) (6.19)

This approximation would fail for large σ2 as higher-order terms become significant.

Gaussian Approximation Small σ2 ensures the reverse transition remains approximately
Gaussian:

pdata(xt−1|xt) ≈ N (xt + σ2∇ log pdata(xt), σ
2I) (6.20)

Without small σ2, the reverse distribution could be arbitrarily complex, making modeling
and sampling intractable in high dimensions.

Remark 6. These simplifications are not just mathematical conveniences but practical ne-
cessities:

• Only Gaussian distributions are tractable in high dimensions

• Only simple parametric forms can be efficiently learned

• Only closed-form sampling procedures are computationally feasible

The small σ2 assumption thus enables the entire diffusion framework by ensuring we stay
within the realm of tractable computations.

6.5 Score-Based Parametrization

Based on our previous derivation, the reverse transition probability takes the form of a simple
Gaussian distribution. This makes modeling, learning, and generation very easy. In fact,
the simple Gaussian distribution is the only continuous distribution we can handle in high
dimension.

6.5.1 Single Neural Network Parametrization

A key insight is that we can model all timesteps with a single neural network:

pθ(xt−1|xt) = N (xt + σ2sθ(xt, t), σ
2I) (6.21)

where:

• sθ(xt, t) is a single neural network

• t is simply an additional input to the network

• The same parameters θ are used for all timesteps

Remark 7. This is a crucial efficiency: rather than learning T separate networks or main-
taining T sets of parameters, we learn a single network that handles all timesteps through
its time input t. We can embed t into a high-dimensional vector as an input to the network.

210 CHAPTER 6. DIFFUSION MODEL

6.5.2 Learning the diffusion model

The training loss function becomes:

L(θ) = Et,xt−1,xt

[
∥xt−1 − (xt + σ2sθ(xt, t))∥2

]
(6.22)

where t follows the uniform distribution, so that expectation is the average over t.

6.5.3 Generation Process

After learning the score network sθ(xt, t), generating a single sample is straightforward:

• Start with random noise: xT ∼ N (0, Tσ2I)

• Iteratively denoise using the learned score:

xt−1 = xt + σ2sθ(xt, t) + ẽt,

where ẽt ∼ N (0, σ2I)

• After T steps: x0 is our generated sample

The score sθ guides the noisy point back to high-density regions of the data distribution,
like a compass pointing toward the data manifold.

6.5.4 Alternative Loss: Predicting Clean Data

Instead of predicting the previous noisy state, we can aim directly for the clean data:

L(θ) = Et,x0,xt

[
∥x0 − (xt + tσ2sθ(xt, t))∥2

]
(6.23)

We shall derive this loss function rigorously later as a variance reduction scheme.
This modification has several advantages:

• Provides cleaner target (x0 instead of xt−1)

• Reduces accumulation of errors

• Better signal for learning

We can continue to use the same generation process above.

6.5.5 Noise Prediction

We can rewrite this in terms of noise prediction. Since:

xt = x0 + ϵt, where ϵt ∼ N (0, tσ2I) (6.24)

Let ϵθ(x, t) = −tσ2sθ(x, t). Then the loss becomes:

L(θ) = Et,x0,ϵt

[
∥ϵt − ϵθ(x0 + ϵt, t)∥2

]
(6.25)

This reformulation is intuitive: given a noisy observation x0+ϵt, predict how much noise
ϵt was added.

6.5. SCORE-BASED PARAMETRIZATION 211

6.5.6 Generation Process with Noise Prediction

After learning the noise prediction network ϵθ(x, t), we can generate samples by iteratively
removing predicted noise:

• Start with random noise: xT ∼ N (0, Tσ2I)

• For t = T, T − 1, ..., 1:

– Given xt, predict noise: ϵθ(xt, t)

– Remove predicted noise: xt−1 = xt − ϵθ(xt,t)
t

+ ẽt

– Where ẽt ∼ N (0, σ2I)

• Final sample is x0

Note that this is equivalent to our previous formulation since ϵθ(x, t) = −tσ2sθ(x, t), but
the interpretation is more intuitive: we directly predict and remove noise at each step.

6.5.7 Scaling

We can generalize the forward process to have

xt = ctxt−1 + et (6.26)

where et ∼ N (0, σ2
t), and we scale xt−1 by ct. We allow σ2

t to change over t. A typical choice

is ct =
√
1− σ2

t . We can also use βt = σ2
t , and αt = c2t . Such a scaling is not essential either

theoretically or practically. For backward sampling, we can first generate x̃t−1 = ctxt−1, and
then obtain xt−1 = x̃t−1/ct.

6.5.8 UNet Parametrization of the Score Network

Architecture Overview

The score network sθ(x, t) or noise predictor ϵθ(x, t) is typically implemented using a UNet
architecture, which has several advantageous properties for diffusion models:

• Multi-scale processing through downsampling and upsampling

• Feature preservation via skip connections

• Ability to capture both local and global context

• Memory efficiency through progressive feature compression

212 CHAPTER 6. DIFFUSION MODEL

Figure 6.3: UNet

Time Embedding

The timestep t is embedded into a high-dimensional vector through sinusoidal position en-
coding:

emb(t)i =

{
sin(t/100002i/d) if i even

cos(t/100002i/d) if i odd
(6.27)

where:

• d is the embedding dimension

• i indexes the dimension

• The embedding is then processed by an MLP: embθ(t) = MLP(emb(t))

Basic Building Blocks

The UNet consists of several key components:

ResNet Block Each resolution level contains ResNet blocks:

ResBlock(h, emb) = h+NNθ(GroupNorm(h) + Linear(emb)) (6.28)

6.6. VARIANCE REDUCTION VIA TRAJECTORY AVERAGING 213

t
0 t− 1 t

x0 xt

xt−1

Figure 6.4: Multiple trajectories connecting fixed endpoints x0 and xt, passing through
different possible xt−1 points.

Attention Block Self-attention is applied at lower resolutions:

Attention(h) = softmax(
QKT

√
dk

)V (6.29)

where Q,K,V are linear projections of the input features h.

6.6 Variance Reduction via Trajectory Averaging

The training objective involves nested expectations: an outer expectation over data points
x0 ∼ pdata(x0), and for each x0, inner expectations over trajectories x1, ...,xT sampled from
the noising process. In practice, we estimate these expectations using Monte Carlo sam-
pling. However, Monte Carlo estimation introduces variance that can slow down training.
A fundamental principle in statistical computing is to replace Monte Carlo averages with
closed-form expectations whenever possible, as this eliminates sampling variance (equivalent
to using infinitely many Monte Carlo samples for that particular averaging step). In our
case, while we must use Monte Carlo sampling for x0 from the empirical data distribution,
the inner expectations over trajectories have Gaussian structure that we can exploit. This
leads us to analyze how we can compute certain trajectory statistics in closed form, thereby
reducing the overall variance of our gradient estimates.

6.6.1 Multiple Trajectories Perspective

Consider a fixed data point x0, there can be a lot of trajectories, e.g., 1 trillion trajectories
starting from this x0. There may be 1 million of them go through the same point xt at time
t. Each such trajectory goes through a xt−1, so there are 1 million xt−1.

The average loss among these M = 1 million x
(m)
t , m = 1, ...,M is

1

M

M∑
m=1

∥x(m)
t−1 − (xt + σ2sθ(xt, t))∥2

2σ2
=
∥x̄t−1 − (xt + σ2sθ(xt, t))∥2

2σ2
+ constant (6.30)

214 CHAPTER 6. DIFFUSION MODEL

where

x̄t−1 =
1

M

M∑
m=1

x
(m)
t−1 → E[xt−1|x0,xt] (6.31)

Using x̄t−1 instead of xt−1 as target, we squeeze out the variance among the x
(m)
t−1.

For our Gaussian process, we can derive E[xt−1|x0,xt] in closed form:

Lemma 8 (Conditional Expectation). For the process xs = xs−1+es where es ∼ N (0, σ2I):

x̄t−1 = E[xt−1|x0,xt] =
1

t
x0 + (1− 1

t
)xt (6.32)

6.6.2 Variance-Reduced Loss with Conditional Mean

Let’s define the cumulative noise:

ϵt =
t∑

i=1

ei = xt − x0 ∼ N (0, tσ2I) (6.33)

where each ei ∼ N (0, σ2I) independently.

Recall the conditional mean:

x̄t−1 =
1

t
x0 + (1− 1

t
)xt (6.34)

6.6.3 Deriving Alternative Loss via Conditional Mean

The original loss using x̄t−1 is:

L(θ) = Et,xt−1,xt

[
∥x̄t−1 − (xt + σ2sθ(xt, t))∥2

]
Plugging in x̄t−1 =

1
t
x0 + (1− 1

t
)xt:

L(θ) = Et,x0,xt

[
∥1
t
x0 + (1− 1

t
)xt − (xt + σ2sθ(xt, t))∥2

]
Rearranging:

L(θ) = Et,x0,xt

[
∥1
t
(x0 − xt)− σ2sθ(xt, t)∥2

]
Scaling by t2 (which doesn’t change the optimal solution):

L(θ) = Et,x0,xt

[
∥x0 − (xt + tσ2sθ(xt, t))∥2

]
This is exactly our alternative loss targeting x0 directly.

6.7. CONNECTION TO DENOISING AUTO-ENCODER AND VINCENT IDENTITY215

6.7 Connection to Denoising Auto-Encoder and Vin-

cent Identity

6.7.1 Denoising Auto-Encoder

Our score-based diffusion model has a deep connection to denoising auto-encoders:

• The score network prediction xt + tσ2sθ(xt, t) is actually predicting E[x0|xt]

• This matches exactly the form of Vincent’s identity (also known as Tweedie formula):

E[x0|xt] = xt + tσ2∇ log pt(xt) (6.35)

• Therefore, when sθ(xt, t) is optimal, it must equal the true score ∇ log pt(xt)

This connection reveals that our diffusion model is essentially learning optimal denoising.
When we predict x0 from noisy xt, we’re performing denoising auto-encoding, with the score
function naturally emerging from the optimal denoising solution.

Remark 9. This equivalence explains why:

• Our model learns to denoise gradually

• The score function guides samples toward high density regions

• Predicting x0 directly is a natural objective

6.7.2 Proof of Vincent Identity

Setup

For a noisy observation xt, we want to compute:

E[x0|xt] =

∫
x0p(x0|xt)dx0 (6.36)

Proof Steps

Step 1: Bayes Rule

p(x0|xt) =
p(xt|x0)p(x0)

pt(xt)
(6.37)

Step 2: Gaussian Noise Model

p(xt|x0) =
1

(2πtσ2)d/2
exp

(
−∥xt − x0∥2

2tσ2

)
(6.38)

216 CHAPTER 6. DIFFUSION MODEL

Step 3: Compute Mean

E[x0|xt] =

∫
x0

p(xt|x0)p(x0)

pt(xt)
dx0 (6.39)

= xt + tσ2

∫
x0−xt

tσ2 p(xt|x0)p(x0)dx0

pt(xt)
(6.40)

= xt + tσ2∇xt log pt(xt) (6.41)

Remark 10. Key points in this derivation:

• Uses proper conditioning through Bayes rule

• Explicitly handles the Gaussian form of p(xt|x0)

• Score function emerges from the gradient of log marginal

6.8 Noise Prediction Parameterization

Based on our analysis of the conditional mean, we can parameterize the reverse process
through noise prediction:

ϵθ(xt, t) ≈ ϵt = xt − x0 (6.42)

where:

• ϵθ(xt, t) is a neural network that predicts the cumulative noise

• ϵt =
∑t

i=1 ei is the true cumulative noise

• The same parameters θ are used for all timesteps

6.8.1 Loss Function

The training objective is a simple mean squared error between predicted and actual noise:

L(θ) = Ex0,ϵt∥ϵt − ϵθ(x0 + ϵt, t)∥2 (6.43)

Remark 11. This formulation has several advantages:

• Direct prediction of the noise component

• Simple MSE loss without scaling factors

• Natural interpretation as denoising

• Good numerical conditioning

6.8. NOISE PREDICTION PARAMETERIZATION 217

6.8.2 Training Algorithm

Algorithm 4 Training Algorithm

Input: Training data {x(i)
0 }Ni=1, number of timesteps T , noise scale σ2

while not converged do:

(a) Sample minibatch {x(i)
0 }Bi=1 from training data

(b) Sample timesteps t ∼ Uniform(1, T) for each sample

(c) Sample noise ϵt ∼ N (0, tσ2I) for each sample

(d) Compute noisy samples xt = x0 + ϵt

(e) Compute loss L = 1
B

∑B
i=1 ∥ϵ

(i)
t − ϵθ(x

(i)
t , t(i))∥2

(f) Update θ using gradient descent on L

end while

6.8.3 Sampling Algorithm

Given a trained noise prediction model ϵθ(x, t), we can generate samples by reversing the
diffusion process:

Algorithm 5 Reverse Diffusion Sampling

Input: Noise prediction model ϵθ, time steps T , noise scale σ2

Initialize: Sample xT ∼ N (0, Tσ2I)

For each t = T, T − 1, . . . , 1:

(a) Sample noise: zt ∼ N (0, I)

(b) Denoise: xt−1 = xt − σ2

t
ϵθ(xt, t) + σzt

Output: Generated sample x0

Remark 12. In the sampling process:

• The predicted noise is scaled by σ2/t

• Random noise zt is added for stochasticity

• The process gradually denoises the sample from Gaussian noise to a data sample

218 CHAPTER 6. DIFFUSION MODEL

6.9 Maximum Likelihood and Kullback-Leibler Diver-

gence

6.9.1 General Setting

Let Pdata denote the true data distribution and Pθ denote our model distribution. The
maximum likelihood objective is:

max
θ

Ex∼Pdata
[logPθ(x)] (6.44)

In practice, the expectation Ex∼Pdata
is approximated by averaging over training data.

This is equivalent to minimizing the Kullback-Leibler divergence:

DKL(Pdata∥Pθ) = Ex∼Pdata

[
log

Pdata(x)

Pθ(x)

]
(6.45)

= Ex∼Pdata
[logPdata(x)]− Ex∼Pdata

[logPθ(x)] (6.46)

= H(Pdata)− Ex∼Pdata
[logPθ(x)] (6.47)

where H(Pdata) is the entropy of the data distribution.

Remark 13. Since H(Pdata) is constant with respect to θ, maximizing likelihood is equivalent
to minimizing DKL(Pdata∥Pθ).

6.9.2 Extension to Trajectories

For diffusion models, we consider trajectories x = (x0,x1, ...,xT). The distributions become:

• Pdata(x): Distribution over trajectories starting from real data

• Pθ(x): Model distribution over trajectories

The objective remains:

min
θ

DKL(Pdata∥Pθ) = min
θ

Ex∼Pdata

[
log

Pdata(x)

Pθ(x)

]
(6.48)

6.9.3 Trajectory Distributions

For diffusion models, we consider trajectories x = (x0,x1, ...,xT). The distributions decom-
pose as:

Pdata(x) = pdata(x0)
T∏
t=1

pdata(xt|xt−1) (6.49)

Pθ(x) = p(xT)
T∏
t=1

pθ(xt−1|xt) (6.50)

6.9. MAXIMUM LIKELIHOOD AND KULLBACK-LEIBLER DIVERGENCE 219

Maximum Likelihood Decomposition

The log-likelihood of a trajectory becomes:

logPθ(x) = log p(xT) +
T∑
t=1

log pθ(xt−1|xt) (6.51)

Taking expectation over the data distribution:

Ex∼Pdata
[logPθ(x)] = ExT∼pdata(xT)[log p(xT)] +

T∑
t=1

Ex∼Pdata
[log pθ(xt−1|xt)] (6.52)

= ExT∼pdata(xT)[log p(xT)] +
T∑
t=1

E(xt−1,xt)∼pdata(xt−1,xt)[log pθ(xt−1|xt)]

(6.53)

Remark 14. The key insight is that:

• The expectation over full trajectories decomposes into expectations over pairs (xt−1,xt)

• Each term involves the marginal distribution pdata(xt−1,xt)

• This allows us to optimize each conditional separately

6.9.4 Learning the diffusion model

The log-likelihood becomes:

log pθ(xt−1|xt) = −
∥xt−1 − (xt + σ2sθ(xt, t))∥2

2σ2
+ const (6.54)

The training loss function becomes:

L(θ) = Et,xt−1,xt

[
∥xt−1 − (xt + σ2sθ(xt, t))∥2

]
(6.55)

where t follows the uniform distribution, so that expectation is the average over t.

Remark 15. This formulation has several advantages:

• Direct optimization of log-likelihood

• Simple Gaussian form with learned mean

• Score function captured by neural network

220 CHAPTER 6. DIFFUSION MODEL

6.9.5 Connection to KL Divergence

The negative log-likelihood becomes:

−Ex∼Pdata
[logPθ(x)] = −ExT

[log p(xT)]−
T∑
t=1

Epdata(xt−1,xt)[log pθ(xt−1|xt)] (6.56)

= DKL(pdata(xT)∥p(xT)) +
T∑
t=1

Ext [DKL(pdata(xt−1|xt)∥pθ(xt−1|xt))] + const

(6.57)

This decomposition suggests two key properties:

• The terminal distribution p(xT) should match pdata(xT)

• Each reverse conditional pθ(xt−1|xt) should match pdata(xt−1|xt)

6.9.6 Trajectory Distribution Factorization

A key insight in our development is to factorize the trajectory distribution Pdata(x) in a
specific way that exploits our previous closed-form calculations. While the forward process
naturally suggests the factorization:

Pdata(x) = pdata(x0)
T∏
t=1

pdata(xt|xt−1) (forward) (6.58)

we instead choose:

Pdata(x) = pdata(x0)pdata(xT |x0)
T∏
t=1

pdata(xt−1|xt,x0) (conditional) (6.59)

This choice is motivated by our previous variance reduction analysis, where we found
that Epdata(xt−1|xt,x0)[∥xt−1 − (xt +

σ2

t
ϵθ(xt, t))∥2] has a closed-form solution. By introducing

pdata(xt−1|xt,x0) in our factorization, we can directly utilize this closed-form expectation in
the subsequent KL divergence calculations.

The model distribution remains:

Pθ(x) = p(xT)
T∏
t=1

pθ(xt−1|xt) (6.60)

6.9.7 KL Divergence Decomposition

The KL divergence becomes:

DKL(Pdata∥Pθ) = Ex∼Pdata

[
log

pdata(x0)pdata(xT |x0)
∏T

t=1 pdata(xt−1|xt,x0)

p(xT)
∏T

t=1 pθ(xt−1|xt)

]
(6.61)

= Ex0

[
log

pdata(x0)pdata(xT |x0)

p(xT)

]
+

T∑
t=1

Ex0,xt [DKL(pdata(xt−1|xt,x0)∥pθ(xt−1|xt))]

(6.62)

6.10. DETERMINISTIC SAMPLING: T − 2 REASONING 221

6.9.8 Local KL Terms

Each local KL term is:

DKL(pdata(xt−1|xt,x0)∥pθ(xt−1|xt)) (6.63)

= Ext−1∼pdata(xt−1|xt,x0)

[
log

pdata(xt−1|xt,x0)

pθ(xt−1|xt)

]
(6.64)

Since both distributions are Gaussian with same variance σ2I:

DKL(pdata(xt−1|xt,x0)∥pθ(xt−1|xt)) =
1

2σ2
∥E[xt−1|xt,x0]− (xt −

σ2

t
ϵθ(xt, t))∥2 (6.65)

6.9.9 Final Objective

Using E[xt−1|xt,x0] = xt − 1
t
ϵt, we get:

L(θ) = 1

2

T∑
t=1

Ex0,ϵt [∥ϵt − ϵθ(x0 + ϵt, t)∥2] (6.66)

Remark 16. Key insights:

• The conditional formulation naturally incorporates x0 information

• KL terms directly involve conditional means

• No expectation over xt−1 is needed

• Gives same objective but from a different perspective

6.10 Deterministic Sampling: t− 2 Reasoning

Consider omitting the noise term zt in the sampling process:

x̃t−1 = xt + σ2sθ(xt, t) (6.67)

where x̃t−1 denotes our deterministic update.
For the discussion below, assuming the score network sθ(xt, t) estimates the score function

∇ log pdata(xt) exactly for all t, and let us write

s(xt, t) = ∇ log p(xt),

where we drop the subscripts θ and data for simplicity.
Now let us assume xt ∼ p(xt). A key observation is that, given xt,

x̃t−1 + et = xt + σ2∇ log p(xt) + et ∼ p(xt−1|xt) (6.68)

where et ∼ N (0, σ2I), and is independent of xt, so that it is also independent of x̃t−1.
Thus marginally, x̃t−1 + et ∼ p(xt−1).

222 CHAPTER 6. DIFFUSION MODEL

This implies:

x̃t−1 ∼ p(xt−2) (6.69)

because xt−1 = xt−2 + et.

That is, x̃t−1 has the same marginal distribution as p(xt−2).

Therefore, our deterministic update:

xt−2 = xt + σ2s(xt, t) (6.70)

directly gives us samples from the distribution two steps earlier.

Remark 17. This reveals that:

• The deterministic process naturally takes double steps

• Adding noise zt is unnecessary for correct marginal distributions

• We could adjust the time indexing to reflect this two-step nature

6.11 Continuous Time Analysis

Let us rescale the time interval [0, T] to [0, 1] for clearer analysis. Let us redefine our new
σ2 to be the old σ2

T = Tσ2. Define:

∆t =
1

T
(6.71)

which will play the role of dt as T →∞. Thus our original σ2 becomes σ2/T = σ2∆t.

6.11.1 Forward Process

In discrete time:

xt+∆t = xt + et, et ∼ σ
√
∆tzt (6.72)

where zt ∼ N (0, I), and is independent of xt, thus et ∼ N (0, σ2∆tI)

Taking T →∞ (i.e., ∆t→ 0), this naturally becomes:

dxt = σdwt (6.73)

where wt is a standard Brownian motion, and

dwt ≈
√
∆tzt

Please note the
√
∆t scaling. It is the cause of the zig-zag path because the velocity

dwt/dt ≈
√
∆tzt/∆t = zt/

√
∆t→∞

6.11. CONTINUOUS TIME ANALYSIS 223

6.11.2 Stochastic Differential Equation (SDE) Backward

Moving backward in discrete time:

xt−∆t = xt + σ2∆tsθ(xt, t) + et, et ∼ σ
√
∆tzt (6.74)

where zt ∼ N (0, I), and is independent of xt.

As ∆t→ 0, this becomes:

dxt = −σ2sθ(xt, t)dt+ σdwt. (6.75)

This is called stochastic differential equation (SDE) because of the dwt term.

6.11.3 Deterministic Ordinary Differential Equation (ODE) Back-
ward

From our t− 2 property, the deterministic backward step is:

xt−2∆t = xt + σ2∆tsθ(xt, t) (6.76)

Taking the differential form:

xt−2∆t − xt

2∆t
=

1

2
σ2sθ(xt, t) (6.77)

−dxt

dt
=

1

2
σ2sθ(xt, t) (6.78)

Therefore:
dxt

dt
= −1

2
σ2sθ(xt, t) (6.79)

This is ordinary differential equation (ODE), which is deterministic.

Remark 18. Key insights from this analysis:

• The noise term
√
∆tzt gives proper scaling for continuous-time limit dwt

• The forward process converges to Brownian motion with variance σ2 as ∆t→ 0

• The backward SDE reverses time and adds a score-based drift term

• The 1
2
factor in ODE arises from taking double steps

• Both SDE and ODE preserve the marginal distributions

224 CHAPTER 6. DIFFUSION MODEL

6.11.4 Understanding Continuous Time Through Movies

The discrete difference equations with explicit ∆t and
√
∆t terms provide clearer intuition

than their differential counterparts:

• Forward Process as Movie Frames:

– Each step: xt+∆t = xt + σ
√
∆tzt

– ∆t represents time between movie frames

–
√
∆t term makes noise scaling explicit

– Like filming milk diffusing in coffee frame by frame

• Critical
√
∆t Scaling:

–
√
∆t term requires second-order Taylor expansion

– Creates characteristic zig-zag paths in diffusion

– Makes instantaneous velocity infinite as ∆t→ 0

– This “roughness” is fundamental to Brownian motion

• Backward Process as Reversed Movie:

– Stochastic: xt−∆t = xt + σ2∆tsθ(xt, t) + σ
√
∆tzt

– Like playing movie backward, frame by frame

– Score function guides particles back to structure

– Maxwell’s demon knowing which way to push particles

Remark 19. While rigorous SDE theory requires measure theory to properly count contin-
uous trajectories, the movie analogy with discrete frames of ∆t spacing provides intuitive
understanding of:

• Why
√
∆t scaling is natural

• How forward and backward processes relate

• Why paths are necessarily rough

• The essence of reversing diffusion

The measure-theoretic details, while mathematically important, are not essential for under-
standing the core principles.

6.12 Stochastic Noising and Deterministic Denoising

6.12.1 Distribution Preservation

Consider two processes:

6.12. STOCHASTIC NOISING AND DETERMINISTIC DENOISING 225

Forward (Noising)

xt = xt−∆t + et, et = σ
√
∆tzt (6.80)

where zt ∼ N (0, I), and is independent of xt−∆t.

Backward (Denoising)

xt−∆t = xt +
σ2∆t

2
∇ log pt(xt) (6.81)

From our previous derivation of the t − 2 property, we know that if xt−∆t in the two
above equations have the same marginal distribution.

6.12.2 Intuitive Understanding

Consider one million particles {x(i)
t−∆t}

1,000,000
i=1 that follow some distribution. The forward

and backward processes can be understood through their effects on this particle cloud:

Forward (Diffusion) When we add noise to each particle:

x
(i)
t = x

(i)
t−∆t + σ

√
∆tz

(i)
t (6.82)

the particle cloud becomes more diffused, as each particle randomly moves away from its
neighbors.

Backward (Condensation) The gradient step on log density:

x
(i)
t−∆t = x

(i)
t +

σ2∆t

2
∇ log pt(x

(i)
t) (6.83)

moves each particle toward regions of higher particle density, as ∇ log pt points in directions
where there are more particles. This condensation exactly counteracts the previous diffusion.

Remark 20. This balance explains why:

• Random noise spreads out the particle cloud

• Gradient flow concentrates particles

• These opposing forces preserve the marginal distribution

6.12.3 Langevin Dynamics for Equilibrium Sampling

The balance between diffusion and condensation suggests the Langevin dynamics for sam-
pling from a target distribution π(x):

226 CHAPTER 6. DIFFUSION MODEL

Equilibrium Langevin

xt+∆t = xt +
σ2∆t

2
∇ log π(xt) + σ

√
∆tzt, zt ∼ N (0, I) (6.84)

The coefficient 1
2
ensures perfect balance between:

• Forward diffusion spreading particles

• Backward condensation concentrating particles

Thus if xt ∼ π, then xt+1 ∼ pi as well.

6.12.4 Non-equilibrium Sampling

The denoising process is non-equilibrium because it transport pt to pt−∆t.

Non-equilibrium SDE

xt−∆t = xt + σ2∆t∇ log pt(xt) + σ
√
∆tzt (6.85)

The coefficient 1 instead of 1
2
means:

Non-equilibrium ODE

xt−∆t = xt +
σ2∆t

2
∇ log pt(xt) (6.86)

Remark 21. This comparison shows:

• Only equilibrium Langevin preserves the target distribution

• SDE and ODE change the distribution from pt to pt−∆t

• The 1
2
coefficient is crucial for proper sampling

6.13 General Forward Process with Drift

6.13.1 Forward Process Analysis

Consider a more general forward process:

xt+∆t = xt + f(xt, t)∆t+ σt

√
∆tzt, zt ∼ N (0, I) (6.87)

The two terms have different scaling:

• Drift term: f(xt, t)∆t ∼ O(∆t)

• Diffusion term: σt

√
∆tzt ∼ O(

√
∆t)

As ∆t→ 0, the diffusion dominates the drift since
√
∆t≫ ∆t. This creates the charac-

teristic zig-zag pattern.

6.14. RANDOM DRIFT PROCESS 227

6.13.2 Backward Processes

Backward SDE Following our previous derivation but with the general forward process:

xt−∆t = xt + [−f(xt, t) + σ2
t∇ log pt(xt)]∆t+ σt

√
∆tzt (6.88)

where:

• −f(xt, t)∆t reverses the drift

• σ2
t∇ log pt(xt)∆t provides score-based correction

• σt

√
∆tzt maintains the diffusion

Backward ODE The deterministic version becomes:

xt−∆t = xt + [−f(xt, t) +
σ2
t

2
∇ log pt(xt)]∆t (6.89)

Remark 22. Key observations:

• The SDE and ODE differ in both noise and score coefficient (1 vs 1/2)

• The score term scales with σ2
t as noise variance changes

• The
√
∆t scaling of noise remains crucial for continuous-time limit

• The drift terms use ∆t scaling for smooth paths

6.14 Random Drift Process

6.14.1 Process Comparison

Consider two stochastic processes on time interval [0, 1]:

Random Drift

xt+∆t = xt + f(xt, t)∆t+ σ(xt, t)∆tzt (6.90)

where E[zt] = 1, Var[zt] = I, and {zt} are independent.

Diffusion Process

xt+∆t = xt + f(xt, t)∆t+ σ(xt, t)
√
∆tzt (6.91)

The key difference is the scaling: ∆t vs
√
∆t.

228 CHAPTER 6. DIFFUSION MODEL

6.14.2 Accumulated Variance Analysis

For the random drift, the total accumulated variance:

N∑
k=1

σ2(xtk , tk)(∆t)2 →
∫ 1

0

σ2(xt, t)dt ·∆t→ 0 as ∆t→ 0 (6.92)

This is the Law of Large Number effect.
For the diffusion:

N∑
k=1

σ2(xtk , tk)∆t→
∫ 1

0

σ2(xt, t)dt remains finite (6.93)

This is the Central Limit Theorem effect.
This integral view shows:

• Random drift variance has extra ∆t factor, vanishing in limit

• Diffusion variance converges to a proper time integral

• The path-dependent nature through σ2(xt, t)

6.14.3 Deterministic Equivalence

For random drift, we can replace the stochastic process with its deterministic mean:

xt+∆t = xt + f(xt, t)∆t (6.94)

This preserves the marginal distributions.

6.14.4 Backward Process

We can reverse the process with a deterministic ODE:

xt−∆t = xt − f(xt, t)∆t (6.95)

No random term is needed since the forward process randomness vanishes in the limit.

Remark 23. This analysis reveals:

• Random drift averages out (Law of Large Numbers)

• Diffusion accumulates (Central Limit Theorem)

• ∆t vs
√
∆t scaling determines limiting behavior

• Only deterministic drift needs to be reversed

6.15. FOKKER-PLANCK ANALYSIS 229

6.15 Fokker-Planck Analysis

The t−2 property we derived earlier is remarkably powerful and provides complete intuition
about diffusion processes. Here we present Fokker-Planck analysis as a complementary tool,
focusing first on univariate case for clarity. While we could work purely in continuous or
discrete time, we maintain the ∆t and

√
∆t formulation throughout as it provides the clearest

window into drift versus diffusion behavior.

6.15.1 Test Function Perspective

The key is to analyze via test function. Consider a smooth test function h(xt) with fast
decaying tails. This can be viewed as a smoothed version of an indicator function:

• Indicator: 1(xt ∈ [a, b]) for interval [a, b]

• Smooth test function: h(xt) approximates indicator

• E[h(xt)] captures marginal distribution of xt: E[1(xt ∈ [a, b])] = P ((xt ∈ [a, b])

6.15.2 SDE Analysis

Consider the scalar SDE:

xt+∆t = xt + f(xt, t)∆t+ σ(xt, t)
√
∆tzt, zt ∼ N (0, 1) (6.96)

Evolution of test function expectation:

E[h(xt+∆t)]− E[h(xt)] = E[h(xt + f∆t+ σ
√
∆tzt)− h(xt)] (6.97)

= E[h′(xt)(f∆t+ σ
√
∆tzt) +

1

2
h′′(xt)σ

2∆t] + o(∆t) (6.98)

The
√
∆t term requires second-order Taylor because:

• First-order: E[
√
∆tzt] = 0

• Second-order: E[∆tz2t] = ∆t

• Higher-order terms vanish as ∆t→ 0

This gives Fokker-Planck equation:

∂pt
∂t

= − ∂

∂x
(fpt) +

1

2

∂2

∂x2
(σ2pt) (6.99)

230 CHAPTER 6. DIFFUSION MODEL

6.15.3 ODE Analysis

For deterministic ODE:
xt+∆t = xt + v(xt, t)∆t (6.100)

First-order Taylor suffices:

E[h(xt+∆t)]− E[h(xt)] = E[h′(xt)v∆t] + o(∆t) (6.101)

Giving continuity equation:
∂pt
∂t

= − ∂

∂x
(vpt) (6.102)

6.15.4 SDE-ODE Equivalence

Setup Given SDE with time-dependent noise:

xt+∆t = xt + f(xt, t)∆t+ σ(t)
√
∆tzt (6.103)

Find equivalent ODE:
xt+∆t = xt + v(xt, t)∆t (6.104)

Solution The equivalent ODE velocity simplifies to:

v(xt, t) = f(xt, t) +
1

2
σ2(t)

∂ log pt
∂x

(6.105)

6.15.5 Random Drift Analysis

For random drift:

xt+∆t = xt + f(xt, t)∆t+ σ(xt, t)∆tzt, E[zt] = 0 (6.106)

First-order Taylor suffices:

E[h(xt+∆t)]− E[h(xt)] = E[h′(xt)f∆t] + o(∆t) (6.107)

where σ∆tzt term vanishes due to E[zt] = 0.

6.15.6 Extension to Multivariate Case

The multivariate case follows the same principles with:

• Gradient ∇ replacing derivative ∂
∂x

• Divergence ∇· for flux terms

• Laplacian ∇2 for diffusion terms

• Matrix σσ⊤ for diffusion coefficient

6.16. FLOW MATCHING WITH STRAIGHT TRAJECTORIES 231

Remark 24. Key insights remain the same:

•
√
∆t noise requires second-order expansion

• Random drift needs only first-order terms

• Test functions capture distribution evolution

• Dimensionality affects notation but not principles

6.16 Flow Matching with Straight Trajectories

6.16.1 Design Principle

Unlike diffusion models that add noise incrementally, flow matching takes a fundamentally
different approach to constructing trajectories. The key idea is to first sample the endpoints
independently:

• Start point x0 ∼ pdata

• End point x1 ∼ N (0, I)

and then connect them with straight lines. This design choice has profound implications:

• No diffusion term (
√
∆t noise) is needed

• Only random drift (∆t scaling) appears

• The randomness comes entirely from the random endpoints

• The path between endpoints is deterministic

6.16.2 Non-Markovian Trajectory Data

The straight-line trajectories are non-Markovian:

• Each xt depends on both x0 and x1

• Knowing xt alone doesn’t determine xt−1

• Full trajectory is determined by endpoints

Multiple Path Perspective Consider one trillion possible straight paths:

• Each path connects some x0 ∼ pdata to x1 ∼ N (0, I)

• At time t, a point x might have 1000 different paths passing through it

• Each path suggests a different xt−∆t given xt = x

232 CHAPTER 6. DIFFUSION MODEL

Markovian Backward Process Despite the non-Markovian nature of trajectories, we
can use a Markovian backward process:

pθ(xt−∆t|xt) (6.108)

This corresponds to:

• Given xt, randomly selecting one of the paths through it

• Following that path to get xt−∆t

• Forgetting which path was chosen

Marginal Distribution Preservation Key property: If a population of particles follows
this backward process:

• Their distribution at each time t matches the marginal of trajectory data

• This holds even though individual trajectories may differ

• The randomness in path selection preserves the ensemble behavior

Remark 25. This reveals that:

• Non-Markovian data can be modeled with Markovian process

• Only marginal distributions matter for generation

• Path-level details can be forgotten

• Ensemble behavior is preserved through random path selection

6.16.3 Setup

Consider independent variables:

• x1 ∼ N (0, I)

• x0 ∼ pdata

Define the linear interpolation:
xt = (1− t)x0 + tx1 (6.109)

6.16.4 Backward Process Analysis

For this linear interpolation, the backward transition is:

xt−∆t = xt +∆t · (x0 − x1) = xt +∆tv(xt, t) (6.110)

where v(xt, t) = x0 − x1 is random (depends on random x0,x1) but:

• Has ∆t scaling (not
√
∆t)

• Therefore is a random drift process

• Can be replaced by its expectation by our previous analysis

6.16. FLOW MATCHING WITH STRAIGHT TRAJECTORIES 233

6.16.5 Flow Matching Learning

The goal is to learn velocity field vθ(xt, t) such that:

vθ(xt, t) ≈ E[v(xt, t)|xt] (6.111)

The learning objective is:

min
θ

Ex0,x1,t[∥vθ(xt, t)− v(xt, t)∥2] (6.112)

where:

• xt = (1− t)x0 + tx1 is the interpolated point

• v(xt, t) = x0 − x1 is the true velocity

• Training samples are pairs (x0,x1) with random t

Remark 26. Key insights:

• The straight-line interpolation gives random drift

• Random drift can be replaced by deterministic drift

• Learning matches the expected velocity field

• No diffusion term needed due to ∆t scaling

6.16.6 Connection to Noise and Score Prediction

When x1 ∼ N (0, I), we can rewrite:

xt = (1− t)x0 + tx1 = x0 + tx1 = x0 + tϵ (6.113)

where ϵ = x1 ∼ N (0, I).
The velocity becomes:

v(xt, t) = x0 − x1 = (xt − tx1)− x1 = xt − (t+ 1)x1 = xt − (t+ 1)ϵ (6.114)

Therefore:

∥vθ(xt, t)− v(xt, t)∥2 = ∥vθ(xt, t)− [xt − (t+ 1)ϵ]∥2 (6.115)

= ∥[vθ(xt, t)− xt] + (t+ 1)ϵ∥2 (6.116)

∝ ∥vθ(xt, t)− xt

t+ 1
+ ϵ∥2 (6.117)

This shows:

• Velocity prediction vθ is equivalent to noise prediction ϵθ = −vθ−xt

t+1

• Score estimation sθ = ∇ log pt = −ϵ
t
connects through vθ = xt + (t+ 1)sθ

234 CHAPTER 6. DIFFUSION MODEL

• All three views (velocity, noise, score) are equivalent up to scaling

Remark 27. This reveals that:

• Flow matching with Gaussian endpoints is a form of score matching

• The straight line property provides simple velocity-score relationship

• Training objectives differ only by time-dependent scaling

6.17 Variance Scheduling

In our previous formulation, we added fixed-variance Gaussian noise at each step: xt =
xt−1+et. An alternative approach is to scale the previous state while adding noise, ensuring
controlled variance growth. This leads us to introduce a variance schedule with parameters
{αt, βt}Tt=1 that carefully balances signal preservation and noise addition.

6.17.1 Forward Process Construction

We start by defining a single step of the forward process:

Definition 28 (Forward Step). Given position xt−1, the next position is:

pdata(xt|xt−1) = N (
√
αtxt−1, βtI) (6.118)

i.e., xt =
√
αtxt−1 + et, where et ∼ N (0, βt). where:

• βt ∈ (0, 1) controls the noise variance

• αt = 1− βt controls the scaling

6.17.2 Deriving the Marginal Distribution

Let’s derive q(xt|x0) step by step:

Lemma 29 (Two-Step Distribution). After two steps:

x2|x0 =
√
α2(
√
α1x0 +

√
β1ϵ1) +

√
β2ϵ2 (6.119)

=
√
α1α2x0 +

√
α2β1ϵ1 +

√
β2ϵ2 (6.120)

where ϵ1, ϵ2 ∼ N (0, I) independently.

Lemma 30 (Two-Step Variance). The variance after two steps is:

α2β1 + β2 = 1− α1α2 (6.121)

6.17. VARIANCE SCHEDULING 235

Theorem 31 (General Marginal). For any time t, we have:

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I) (6.122)

where:

ᾱt =
t∏

i=1

αi (6.123)

Proof. By induction on t:

1. Base case (t = 1): Directly from definition

2. Inductive step: Assume true for t− 1

3. For step t:

xt|x0 =
√
αtxt−1 +

√
βtϵt (6.124)

=
√
αt(
√
ᾱt−1x0 +

√
1− ᾱt−1ϵt−1) +

√
βtϵt (6.125)

4. Collecting terms:

• Mean:
√
αtᾱt−1x0 =

√
ᾱtx0

• Variance: αt(1− ᾱt−1) + βt = 1− ᾱt

The marginal can be written in terms of a single noise variable:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (6.126)

where ϵ ∼ N (0, I)

Remark 32. This construction ensures:

• At t = 0: ᾱ0 = 1, so x0 is unchanged

• As t increases: ᾱt decreases

• At t = T : If ᾱT ≈ 0, then xT ∼ N (0, I)

• The variance is always normalized: ᾱt + (1− ᾱt) = 1

236 CHAPTER 6. DIFFUSION MODEL

6.17.3 Training and Sampling

We can derive the training objective and sampling process by proper scaling:
Training Objective:

• Learn to predict the noise: ϵθ(xt, t) ≈ ϵ

• Simple L2 loss: L(θ) = Et,x0,ϵ∥ϵ− ϵθ(xt, t)∥2

• Sample t uniformly, ϵ ∼ N (0, I)

Sampling Process:

• Start: xT ∼ N (0, I)

• For t = T, ..., 1:

• xt−1 =
1√
αt
(xt − βt√

1−ᾱt
ϵθ(xt, t)) +

√
βtzt

• where zt ∼ N (0, I)

This schedule ensures smooth transformation between data and noise while maintaining
tractable Gaussian form at each step. The implementation remains simple despite the more
sophisticated variance control.

6.17.4 Forward Process SDE

Start with the variance scaling step:

xt =
√
αtxt−1 +

√
βtϵt, ϵt ∼ N (0, I) (6.127)

To connect to continuous time, we:

1. Replace discrete index with t+∆t:

xt+∆t =
√
α(t)xt +

√
β(t)ϵt (6.128)

2. Write α(t) = 1− β(t) and expand square root:

xt+∆t =
√

1− β(t)xt +
√

β(t)ϵt (6.129)

= (1− β(t)

2
)xt +

√
β(t)ϵt +O(β(t)2) (6.130)

3. Set β(t) = β̃(t)∆t for some function β̃(t):

xt+∆t = xt −
β̃(t)

2
xt∆t+

√
β̃(t)∆tϵt +O(∆t2) (6.131)

6.17. VARIANCE SCHEDULING 237

This gives forward SDE:

dxt = −
β̃(t)

2
xtdt+

√
β̃(t)dwt (6.132)

= f(xt, t)dt+ σ(t)dwt (6.133)

where:

• Drift: f(xt, t) = − β̃(t)
2
xt

• Diffusion: σ(t) =
√
β̃(t)

Remark 33. Key points:

• β(t) must scale with ∆t

• Drift comes from Taylor expansion of
√
1− β(t)

• Higher order terms vanish as ∆t→ 0

• Original discrete steps emerge when ∆t = 1

6.17.5 Backward Processes

Starting from forward SDE:

dxt = −
β̃(t)

2
xtdt+

√
β̃(t)dwt (6.134)

Backward SDE The backward SDE is:

dxt = [
β̃(t)

2
xt + β̃(t)∇ log pt(xt)]dt+

√
β̃(t)dwt (6.135)

In discrete time (∆t steps):

xt−∆t = xt + [
β̃(t)

2
xt + β̃(t)∇ log pt(xt)]∆t+

√
β̃(t)∆tzt (6.136)

Connection to DDPM Denoising Diffusion Probabilistic Models (DDPM) uses:

• Noise prediction: ϵθ = −∇ log pt(xt)

• β(t) = β̃(t)∆t

This gives DDPM update:

xt−∆t =
1√
α(t)

(xt −
β(t)√
1− ᾱ(t)

ϵθ(xt, t)) +
√

β(t)zt (6.137)

238 CHAPTER 6. DIFFUSION MODEL

Backward ODE The backward ODE takes drift term from SDE:

dxt

dt
=

β̃(t)

2
xt +

β̃(t)

2
∇ log pt(xt) (6.138)

In discrete time:

xt−∆t = xt + [
β̃(t)

2
xt +

β̃(t)

2
∇ log pt(xt)]∆t (6.139)

Connection to DDIM Denoising Diffusion Implicit Models (DDIM) maintains:

xt =
√
ᾱ(t)x0 +

√
1− ᾱ(t)ϵ (6.140)

Using predicted noise ϵθ(xt, t), DDIM update is:

xt−∆t =

√
ᾱ(t−∆t)

ᾱ(t)
xt −

√
1− ᾱ(t−∆t)

ᾱ(t)

√
1− ᾱ(t)ϵθ(xt, t) (6.141)

Remark 34. This comparison shows:

• DDPM follows stochastic backward SDE

• DDIM follows deterministic backward ODE

• Both preserve marginal distributions

• SDE provides exploration, ODE gives deterministic paths

• Different time discretizations give different practical algorithms

6.18 Applications of Diffusion Models

6.18.1 Text-to-Image Generation

Diffusion models can be extended to generate images from text descriptions:

• Basic Idea:

– Condition the denoising process on text input

– Convert text into embeddings using transformers

– Guide the noise removal based on text features

• Key Components:

– Text Encoder: Converts text to meaningful embeddings

– Cross-Attention: Connects text and image features

– UNet Architecture: Modified to incorporate text condition

6.18. APPLICATIONS OF DIFFUSION MODELS 239

Figure 6.5: Text to image/video generation

• Classifier-Free Guidance:

– Enhances text alignment during generation

– Balances between quality and text adherence

– Controls strength of text influence

6.18.2 Diffusion Transformer

An alternative architecture replacing UNet with transformers:

• Motivation:

– Better handles long-range dependencies

– More flexible architecture

– Improved scaling properties

• Key Features:

– Divides images into patches

– Uses global attention over entire image

– Incorporates time information at each layer

– Processes patches with transformer blocks

240 CHAPTER 6. DIFFUSION MODEL

• Advantages:

– Captures global image structure better

– More natural for incorporating conditions

– Simpler architectural design

Both approaches demonstrate how diffusion models can be adapted and enhanced for
specific applications while maintaining their core denoising principles.

Chapter 7

VAE and GAN

Figure 7.1: VAE

Chapter Overview

This chapter presents variational autoencoders (VAEs) through a natural progression from
classical statistical principles to modern deep generative models. We begin with maximum
likelihood estimation and its connection to KL divergence minimization. We then introduce
latent variables as a form of data augmentation, where observed data are viewed as effects
and latent variables as underlying causes.

The Evidence Lower BOund (ELBO) emerges naturally from considering the joint KL
divergence between data and model distributions. This perspective reveals deep connections
to classical methods: the EM algorithm appears as a special case where the inference model
is tied to the current model’s posterior. VAEs then emerge by making the inference model
learnable, leading to joint optimization of both generative and inference components.

The chapter concludes by connecting VAEs to diffusion models, showing how the latter
achieve simpler training and tighter bounds by replacing learned inference with a fixed
forward process. This development reveals how modern deep generative models both build
upon and strategically deviate from classical statistical principles.

241

242 CHAPTER 7. VAE AND GAN

We then turn to Generative Adversarial Networks (GANs), which take a radically differ-
ent approach by formulating generative modeling as a two-player game between a generator
and a discriminator. This game-theoretic perspective culminates in Wasserstein GAN, which
recasts the discriminator as a critic that scores image quality, providing a more stable and
interpretable training framework.

7.1 Maximum Likelihood and KL-Divergence

7.1.1 Empirical Distribution and Log-likelihood

Consider independent and identically distributed observations:

x1, ..., xn ∼ pdata(x)

The log-likelihood for a parametric model pθ is:

L(θ) = 1

n

n∑
i=1

log pθ(xi)

As n→∞, this converges to:

L(θ)→ Epdata [log pθ(x)]

7.1.2 True Model Log-likelihood and Entropy

For the true data distribution, we define:

L(pdata) = Epdata [log pdata(x)] = −H(pdata)

where H(pdata) is the entropy of the data distribution. This has two interpretations:

• −L(pdata) measures data complexity through entropy

• Higher entropy means data is more random/complex

• Lower entropy means data has more structure/simplicity

7.1.3 KL Divergence as Log-likelihood Gap

The gap between true and model log-likelihoods is:

L(pdata)− L(θ) = Epdata [log pdata(x)− log pθ(x)]

= DKL(pdata∥pθ)

Key insights:

• Maximum likelihood ≡ minimum KL divergence

• The gap is always non-negative: DKL ≥ 0

• Gap = 0 if and only if pθ = pdata

• Best achievable likelihood depends on data entropy

7.2. DECONVOLUTION NETWORK WITH LATENT SPACE 243

7.1.4 Information Geometric Interpretation

In the space of probability distributions:

• Each distribution is a point in an infinite-dimensional space

• Model family {pθ : θ ∈ Θ} forms a manifold

• pdata is typically off this manifold

• Maximum likelihood finds the ”closest” point on manifold to pdata

• ”Closest” is measured by KL divergence

• Like projection, but KL is asymmetric

This geometric view reveals:

• Model capacity = manifold complexity

• Optimization = finding shortest path on manifold

• Model misspecification = non-zero minimum KL

• Local minima = multiple projections possible

7.1.5 Implications

This framework provides deep insights:

• Links statistical estimation to geometry

• Shows how model complexity relates to manifold dimension

• Explains why simpler data (low entropy) is easier to model

• Provides geometric intuition for optimization algorithms

7.2 Deconvolution Network with Latent Space

7.2.1 Structured Latent Representation

For objects like chairs or cars, we can decompose the latent code into:

z = [ztype, zpose]

where:

• ztype ∈ {0, 1}K : One-hot encoding of chair type

– K different chair categories

244 CHAPTER 7. VAE AND GAN

– e.g., office chair, dining chair, armchair

• zpose ∈ Rd: Continuous camera pose parameters

– Azimuth angle θ ∈ [0, 360]

– Elevation angle ϕ ∈ [−90, 90]
– Distance r from object

7.2.2 Deconvolution Network Architecture

Generator G(z) maps latent code to image through progressive upsampling:

1. Input processing:

• Project ztype through embedding layer

• Process zpose through MLP

• Concatenate and reshape to initial feature map (h0, w0, c0)

2. Progressive upsampling layers:

(hi, wi, ci)→ (2hi, 2wi, ci+1)

Each block contains:

• Transposed convolution: stride 2 for spatial upsampling

• BatchNorm for training stability

• ReLU activation

• Skip connections from pose parameters

3. Final output layer:

• Conv layer to get desired channels (e.g., 3 for RGB)

• Tanh activation for [-1,1] output range

7.2.3 Training

Minimize reconstruction error:

min
G

E(x,z)∼data∥x−G(z)∥2

where:

• (x, z) pairs come from labeled dataset

• z contains ground truth type and pose

• ∥ · ∥2 is pixel-wise squared error

7.2. DECONVOLUTION NETWORK WITH LATENT SPACE 245

Figure 7.2: Latent space interpolation

7.2.4 Latent Space Interpolation

The structured latent space enables controlled interpolation:

• Type interpolation:

– Can crossfade between types:

zt = [(1− t)z1type + tz2type, zpose]

– Reveals learned manifold between categories

• Pose interpolation:

– Smooth rotation: interpolate azimuth

θt = (1− t)θ1 + tθ2

– View change: interpolate elevation

ϕt = (1− t)ϕ1 + tϕ2

– Distance variation: interpolate r

• Joint interpolation:

– Can simultaneously vary type and pose

– Reveals understanding of 3D structure

– Shows disentanglement of factors

246 CHAPTER 7. VAE AND GAN

7.2.5 Applications

This architecture enables:

• Novel view synthesis

• Category morphing

• Controlled object manipulation

• Understanding of learned 3D representations

7.3 Latent Variable Models: From Effect to Cause

7.3.1 Data Augmentation with Latent Variables

When modeling complex data x (e.g., images), we often observe:

• The distribution pdata(x) is highly multi-modal

• Data concentrates on a low-dimensional manifold

• Direct modeling of pdata(x) is challenging

Instead of modeling x directly, we augment each observation with latent variables z:

• z represents underlying causes (pose, lighting, style)

• x represents observed effects (actual images)

• For now, assume we know how to augment x with z (will be addressed in VAE)

7.3.2 Generative Model Structure

We decompose the joint distribution as:

pθ(x, z) = p(z)pθ(x|z)

where:

• Prior p(z) = N (0, I): simple, unimodal distribution

• Conditional pθ(x|z) = N (Gθ(z), σ
2I)

– Gθ(z) is the deconvolution network

– Maps latent causes to observed effects

– Includes learnable parameters θ

7.4. FROM MARGINAL TO JOINT KL DIVERGENCE 247

7.3.3 Manifold Learning Perspective

This model has several key properties:

• Maps simple p(z) to complex pθ(x)

– Input: unimodal Gaussian

– Output: multi-modal data distribution

– Gθ learns to ”fold” space to create modes

• Learns data manifold structure

– Gθ(z) traces out the data manifold

– z provides coordinates on this manifold

– Dimension of z controls manifold complexity

7.3.4 Historical Connection: Factor Analysis

This approach has deep roots in psychometrics:

• Factor analysis (early 20th century)

– z: underlying factors (intelligence, personality)

– x: observed test scores

– Linear Gθ(z) = Wz + b

• Modern neural generative models

– Same principle but nonlinear Gθ

– Much richer transformations possible

– Can capture complex manifold structure

7.4 From Marginal to Joint KL Divergence

7.4.1 Log-likelihood and KL Divergence

Let us start with the marginal distribution:

• Model log-likelihood:
L(θ) = Epdata(x)[log pθ(x)]

• True data log-likelihood:

L(pdata) = Epdata(x)[log pdata(x)]

This represents the best achievable log-likelihood by any model.

248 CHAPTER 7. VAE AND GAN

• Marginal KL divergence:

DKL(pdata(x)∥pθ(x)) = Epdata(x)[log pdata(x)− log pθ(x)]

= L(pdata)− L(θ)

7.4.2 Extension to Complete Data

When we augment x with latent variable z:

• Complete data model:
pθ(x, z) = p(z)pθ(x|z)

• Complete data distribution:

pdata(x, z) = pdata(x)pdata(z|x)

• Joint KL divergence:

DKL(pdata(x, z)∥pθ(x, z)) = Epdata(x,z)

[
log

pdata(x)pdata(z|x)
pθ(x, z)

]

7.4.3 Key Decomposition

Based on the decomposition
pθ(x, z) = pθ(x)pθ(z|x)

The joint KL can be decomposed:

Theorem 35 (Joint KL Decomposition).

DKL(pdata(x, z)∥pθ(x, z)) = DKL(pdata(x)∥pθ(x))
+ Epdata(x)[DKL(pdata(z|x)∥pθ(z|x))]

This leads to:

DKL(pdata(x, z)∥pθ(x, z)) = L(pdata(x))− Epdata(x)[log pθ(x)] + Epdata(x)[DKL(pdata(z|x)∥pθ(z|x))]
= L(pdata(x))− Epdata(x)[log pθ(x)−DKL(pdata(z|x)∥pθ(z|x))]
= L(pdata(x))− Epdata(x)[ELBO(x|θ)]

where
ELBO(x|θ) = log pθ(x)−DKL(pdata(z|x)∥pθ(z|x))

ELBO means evidence lower bound, which is a lower bound of the log-likelihood log pθ(x),
because DKL ≥ 0.

Define
ELBO(θ) = Epdata(x)[ELBO(x|θ)]

Then
DKL(pdata(x, z)∥pθ(x, z)) = L(pdata)− ELBO(θ)

7.4. FROM MARGINAL TO JOINT KL DIVERGENCE 249

7.4.4 Two Forms of ELBO

The above form of ELBO can be called “conceptual form” of ELBO. It is based on the
decomposition pθ(x, z) = pθ(x)pθ(z|x), where

pθ(x) =

∫
pθ(x, z)dz =

∫
p(z)pθ(x|z)dz

which is not intractable. As a result

pθ(z|x) =
pθ(x, z)

pθ(x)
=

p(z)pθ(x|z)∫
p(z)pθ(x|z)dz

is also not tractable.
However, the above form of ELBO shows clearly that it is a lower bound of log-likelihood.
For the “computational form” of ELBO, we can use the tractable decomposition

pθ(x, z) = p(z)pθ(x|z).

Then

DKL(pdata(x, z)∥pθ(x, z)) = Epdata(x,z)

[
log

pdata(x)pdata(z|x)
p(z)pθ(x|z)

]
= L(pdata(x))− Epdata(x)Epdata(z|x) [log p(z) + log pθ(x|z)− log pdata(z|x)]

= L(pdata(x))− Epdata(x)

[
Epdata(z|x)(log pθ(x|z))−DKL(pdata(z|x)∥p(z))

]
= L(pdata(x))− Epdata(x) [ELBO(x|θ)]

where
ELBO(x|θ) = Epdata(z|x)(log pθ(x|z))−DKL(pdata(z|x)∥p(z))

This form is used in computation. We will interpret it later.
Thus, the ELBO has two equivalent forms:

ELBO(x|θ) = log pθ(x)−DKL(pdata(z|x)∥pθ(z|x)) (Form 1)

= Epdata(z|x)[log pθ(x|z)]−DKL(pdata(z|x)∥p(z)) (Form 2)

Form 1 (Conceptual):

• Shows ELBO as log-likelihood minus inference gap

• Reveals why it’s a lower bound: DKL ≥ 0

• Not computable because:

– log pθ(x) requires intractable integration

– pθ(z|x) requires Bayes’ rule: pθ(z|x) = pθ(x|z)p(z)
pθ(x)

• Provides theoretical understanding of the bound’s tightness

250 CHAPTER 7. VAE AND GAN

Form 2 (Computational):

• Involves only tractable components:

– pθ(x|z): decoder network

– p(z): prior (e.g., N (0, I))

– pdata(z|x): inference model (to be learned)

• Can be directly optimized

• Suggests practical network architecture

• Leads naturally to implementation strategy

This duality is crucial:

• Form 1 helps us understand what we’re trying to achieve

• Form 2 shows us how to actually achieve it

• Together they bridge theory and practice

7.4.5 Analysis of Gaps

Inference Gap: The difference between model likelihood and ELBO

L(θ)− ELBO(θ) = Epdata(x)[log pθ(x)]− Epdata(x)[ELBO(x|θ)]
= Epdata(x)[log pθ(x)− ELBO(x|θ)]
= Epdata(x)[DKL(pdata(z|x)∥pθ(z|x))]

Model Gap: The difference between optimal and model likelihood

L(pdata)− L(θ) = Epdata(x)[log pdata(x)]− Epdata(x)[log pθ(x)]

= Epdata(x)[log
pdata(x)

pθ(x)
]

= DKL(pdata(x)∥pθ(x))

Total Gap: The joint KL divergence

L(pdata)− ELBO(θ) = DKL(pdata(x, z)∥pθ(x, z))

7.5. INFERENCE MODEL 251

ELBO(θ) L(θ) L(pdata)

Epdata(x)[DKL(pdata(z|x)∥pθ(z|x))]

DKL(pdata(x)∥pθ(x))

DKL(pdata(x, z)∥pθ(x, z))

Figure 7.3: Three KL divergences measuring different gaps

7.5 Inference Model

7.5.1 From Data Augmentation to Learnable Inference

The joint KL divergence involves pdata(z|x), which represents how latent variables are as-
signed to observed data. We can view this in two equivalent ways:

• As data augmentation: pdata(z|x) augments each observation x with latent variables z

• As missing data imputation: pdata(z|x) infers the missing latent variables for each x

Instead of fixing this conditional distribution, we can make it learnable:

pdata(z|x)→ qϕ(z|x)

This leads to a more general joint KL divergence:

DKL(pdata(x)qϕ(z|x)∥p(z)pθ(x|z))

7.5.2 Joint Optimization

The problem becomes a joint optimization over both the model θ and the inference model
ϕ:

min
θ,ϕ

DKL(pdata(x)qϕ(z|x)∥p(z)pθ(x|z))

This has several theoretical implications:

• The inference model qϕ(z|x) is learned along with the generative model pθ(x|z)

• Both models are treated symmetrically in the joint KL divergence

• The optimization naturally balances:

– Quality of latent variable inference (through qϕ(z|x))
– Quality of data generation (through pθ(x|z))

• The joint KL directly gives the negative ELBO (up to constant H(pdata)):

DKL(pdata(x)qϕ(z|x)∥p(z)pθ(x|z)) = L(pdata)− Epdata(x)[ELBO(x|θ, ϕ)]

252 CHAPTER 7. VAE AND GAN

7.5.3 Evidence Lower Bound with Learnable Inference

For each observation x, the ELBO with learnable inference model qϕ(z|x) has two equivalent
forms:

Definition 36 (ELBO with Learnable Inference).

ELBO(x|θ, ϕ) = log pθ(x)−DKL(qϕ(z|x)∥pθ(z|x)) (Form 1)

= Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z)) (Form 2)

The full objective is:

ELBO(θ, ϕ) = Epdata(x)[ELBO(x|θ, ϕ)]

This gives us:

DKL(pdata(x)qϕ(z|x)∥p(z)pθ(x|z)) = L(pdata)− ELBO(θ, ϕ)

Therefore, minimizing the joint KL divergence over both θ and ϕ is equivalent to maxi-
mizing the ELBO:

max
θ,ϕ

ELBO(θ, ϕ) ≡ min
θ,ϕ

DKL(pdata(x)qϕ(z|x)∥p(z)pθ(x|z))

7.5.4 Interpreting Form 1 of the ELBO

The first form of the ELBO directly shows its relationship to the log-likelihood:

ELBO(x|θ, ϕ) = log pθ(x)︸ ︷︷ ︸
log-likelihood

−DKL(qϕ(z|x)∥pθ(z|x))︸ ︷︷ ︸
inference gap

Since KL divergence is always non-negative, this form immediately reveals that ELBO is
indeed a lower bound on the log-likelihood:

ELBO(x|θ, ϕ) ≤ log pθ(x)

with equality if and only if qϕ(z|x) = pθ(z|x).
This form provides distinct interpretations for optimizing ϕ and θ:
For the inference parameters ϕ, the objective is clear: we want the learned inference

model qϕ(z|x) to approximate the true posterior pθ(z|x) under the current generative model.
This is achieved by minimizing the KL divergence term, which measures how far our inference
model is from the true posterior.

For the generative parameters θ, the objective reveals an interesting interplay. The
first term log pθ(x) encourages the model to assign high probability to the observed data.
However, the second term creates an additional constraint: the model’s posterior pθ(z|x)
should be close to the learned inference model qϕ(z|x). This means the generative model
must “bend” itself to accommodate the inference model — it must not only explain the data
well but do so in a way that makes the approximate inference accurate.

7.5. INFERENCE MODEL 253

This dual optimization creates a cooperative learning dynamic: while the inference model
tries to match the true posterior, the generative model simultaneously adjusts its structure
to make this inference task easier. In other words, θ is optimized not just for data likelihood
but also for inference accuracy, leading to models that are both powerful and amenable to
approximate inference.

This interpretation highlights why the ELBO is such an effective objective for learning
both generative and inference models. It naturally balances the competing goals of model
accuracy (high likelihood) and inference quality (low KL divergence), leading to models that
are both expressive and tractable. The fact that the generative model adapts itself to make
inference easier is particularly important in practice, as it means we can learn models that
are specifically structured to work well with our approximate inference procedures.

7.5.5 Interpreting Form 2 of the ELBO

The second form of the ELBO consists of two terms:

ELBO(x|θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−DKL(qϕ(z|x)∥p(z))︸ ︷︷ ︸
regularization term

The inference model qϕ(z|x) can be interpreted as producing a “fuzzy” point estimate
of the latent variable z conditioned on the observation x. Rather than outputting a single
deterministic value, it provides a distribution over possible values of z. The two terms in
Form 2 create competing objectives that balance each other:

The first term, Eqϕ(z|x)[log pθ(x|z)], is the expected log-likelihood of reconstructing x given
samples of z drawn from qϕ(z|x). This term encourages the inference model to produce values
of z that can effectively explain or reconstruct the observation x through the generative model
pθ(x|z). Crucially, because qϕ(z|x) produces a distribution rather than a point estimate,
pθ(x|z) must learn to explain x for a range of possible z values rather than a single optimal
z. If instead we were to use a deterministic point estimate for z, it could encode too much
information about x, leaving pθ(x|z) with little to learn. By maintaining uncertainty in z,
we force pθ(x|z) to learn meaningful patterns rather than relying on z to capture all the
details of x.

The second term, DKL(qϕ(z|x)∥p(z)), acts as a regularization term by measuring how
much the inferred distribution qϕ(z|x) deviates from the prior p(z). This KL divergence term
encourages the inference model to maintain uncertainty and avoid overly concentrated or
deterministic estimates. Importantly, this term can never become exactly zero unless qϕ(z|x)
exactly matches the prior p(z) for all x, which would make the inference model independent of
the input and therefore useless. The non-zero KL divergence reflects the fundamental trade-
off between maintaining uncertainty in the latent space while still extracting meaningful
information from the observations.

This interpretation reveals how the ELBO naturally balances between two competing
objectives: making the latent representations informative enough to enable accurate re-
construction while preventing them from becoming too specialized or deterministic. The
regularization effect of the KL term is crucial for learning robust and generalizable repre-
sentations, as it maintains a degree of “fuzziness” in the latent space that can help prevent

254 CHAPTER 7. VAE AND GAN

overfitting and enable better generalization. This fuzziness is not just a mathematical nicety
but serves a crucial role in learning: it prevents the latent variables from becoming a mere
lookup table for x and instead forces the model to learn meaningful, generalizable patterns
in the data.

7.5.6 Mode Covering versus Mode Seeking Behavior

An important distinction exists between two different KL divergence minimizations in vari-
ational inference:

min
θ

DKL(pdata(x)∥pθ(x)) versus min
ϕ

DKL(qϕ(z|x)∥pθ(z|x))

These objectives exhibit fundamentally different behaviors due to the asymmetric nature
of KL divergence:

Model Learning: Mode Covering When minimizingDKL(pdata(x)∥pθ(x)), the objective
becomes:

Epdata(x) [log pdata(x)− log pθ(x)]

The crucial term − log pθ(x) becomes arbitrarily large when pθ(x) approaches zero for any
x where pdata(x) > 0. This leads to mode-covering behavior: the learned model pθ(x) must
assign non-negligible probability to all regions where the data distribution has mass, even if
this means placing probability mass in regions between modes. This results in a model that
may generate samples that don’t look like real data points, as it tries to “cover” all modes
of the data distribution.

Inference: Mode Seeking In contrast, when minimizing DKL(qϕ(z|x)∥pθ(z|x)), the ob-
jective becomes:

Eqϕ(z|x) [log qϕ(z|x)− log pθ(z|x)]

Here, the expectation is taken with respect to qϕ(z|x). The inference model qϕ(z|x) can
avoid regions where pθ(z|x) is small by setting qϕ(z|x) to zero in those regions, incurring no
penalty. This leads to mode-seeking behavior: qϕ(z|x) tends to concentrate around a single
mode of pθ(z|x), potentially ignoring other modes entirely. The inference model will typically
underestimate the uncertainty in the posterior, producing overly confident predictions.

Implications This asymmetry has important practical implications:

• The generative model pθ(x) will tend to produce “blurry” samples as it tries to cover
all modes of the data distribution

• The inference model qϕ(z|x) will tend to be overconfident, potentially missing impor-
tant alternative explanations for the data

• This tension is inherent in the variational framework and helps explain some common
failure modes of VAEs, such as blurry reconstructions

7.5. INFERENCE MODEL 255

Understanding these different behaviors is crucial for both model design and interpre-
tation. For instance, if precise uncertainty quantification is important, one might need to
use more expressive inference models or alternative divergence measures that better capture
multimodal posteriors. Similarly, if sharp sample generation is desired, one might need to
modify the generative objective to avoid the mode-covering behavior.

7.5.7 Connection to EM Algorithm

The EM algorithm corresponds to setting the inference model to the current posterior:

qϕ(z|x) = pθt(z|x)

where θt is the parameter value at iteration t.
For each observation x, the ELBO takes two forms:

ELBO(x|θ, θt) = log pθ(x)−DKL(pθt(z|x)∥pθ(z|x))
= Epθt (z|x)[log pθ(x|z)]−DKL(pθt(z|x)∥p(z))

Key properties:

• At θ = θt, the first KL term vanishes:

ELBO(x|θt, θt) = log pθt(x)

• For any θ:
log pθ(x) ≥ ELBO(x|θ, θt)

• EM iterations guarantee monotonic improvement:

log pθt+1(x) ≥ ELBO(x|θt+1, θt)

≥ ELBO(x|θt, θt)
= log pθt(x)

The algorithm proceeds as:

• E-step: Use current θt to compute posterior

pθt(z|x) =
pθt(x|z)p(z)

pθt(x)

• M-step: Maximize second form of ELBO

θt+1 = argmax
θ

Epdata(x)Epθt (z|x)[log pθ(x|z)]

Note that DKL(pθt(z|x)∥p(z)) is constant w.r.t. θ

This shows:

256 CHAPTER 7. VAE AND GAN

• EM provides monotonic improvement via tight bound at θt

• The M-step only needs to optimize the expected complete log-likelihood

• The algorithm alternates between:

– Making the bound tight (E-step)

– Optimizing the tight bound (M-step)

VAE generalizes EM by:

• Allowing learned inference model independent of θ

• Trading bound tightness for tractability

• Enabling joint optimization of model and inference

7.6 Variational Autoencoder Implementation

7.6.1 Neural Network Parametrization

We implement both distributions using neural networks:

• Inference model (encoder) qϕ(z|x):

qϕ(z|x) = N (z;µϕ(x), diag(σ
2
ϕ(x)))

where µϕ(x) and σ2
ϕ(x) are neural networks

• Generative model (decoder) pθ(x|z):

– For continuous data:

pθ(x|z) = N (x;µθ(z), diag(σ
2
θ(z)))

– For binary data:

pθ(x|z) = Bernoulli(x;µθ(z))

• Prior remains fixed:

p(z) = N (z; 0, I)

7.6. VARIATIONAL AUTOENCODER IMPLEMENTATION 257

7.6.2 The Reparametrization Trick

To enable backpropagation through random sampling, we reparametrize the sampling pro-
cess:

• Instead of directly sampling:

z ∼ qϕ(z|x) = N (µϕ(x), diag(σ
2
ϕ(x)))

• We reparametrize using an auxiliary random variable:

ϵ ∼ N (0, I)

z = µϕ(x) + σϕ(x)⊙ ϵ

• This makes the sampling process differentiable:

– ϵ provides randomness

– µϕ(x) and σϕ(x) are differentiable transforms

– ⊙ denotes element-wise multiplication

7.6.3 Computing the ELBO

For a single observation x, we can now compute:

ELBO(x|θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z))
= Eϵ∼N (0,I)[log pθ(x|µϕ(x) + σϕ(x)⊙ ϵ)]−

1

2

d∑
j=1

(1 + log σ2
ϕ,j(x)− µ2

ϕ,j(x)− σ2
ϕ,j(x))

where:

• First term is estimated using Monte Carlo sampling

• KL term has closed form for Gaussian distributions

• d is the dimension of the latent space

7.6.4 Training Algorithm

For each minibatch:

1. Sample x from training data

2. Sample ϵ ∼ N (0, I)

258 CHAPTER 7. VAE AND GAN

3. Compute z = µϕ(x) + σϕ(x)⊙ ϵ

4. Compute ELBO estimate using:

• Reconstruction term: log pθ(x|z)
• KL term (closed form)

5. Update θ and ϕ using gradient ascent

7.6.5 Practical Considerations

• KL annealing: Gradually increase weight of KL term during training

Lβ = E[log pθ(x|z)]− βDKL(qϕ(z|x)∥p(z))

• Reconstruction scaling: Balance terms for high-dimensional x

Lα = αE[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z))

• Multiple samples: Reduce variance using more ϵ samples

Eqϕ(z|x)[log pθ(x|z)] ≈
1

L

L∑
l=1

log pθ(x|z(l))

7.6.6 Generation and Reconstruction

After training:

• Generation: Sample z ∼ N (0, I), then compute µθ(z)

• Reconstruction: Compute µϕ(x), then compute µθ(µϕ(x))

• Interpolation: Interpolate in z space between encodings of two images

7.7 Comparison with Diffusion Models

7.7.1 Latent Variable Structure

VAE and diffusion models can be unified under the same latent variable framework:

• VAE:

– Single latent vector: z ∈ Rd

– Joint distribution: pθ(x, z) = p(z)pθ(x|z)
– Requires learned inference: qϕ(z|x)

• Diffusion:

– Sequence of latents: z = (x1, ..., xT) where x0 = x

– Forward process: q(xt|xt−1) is fixed Gaussian

– Reverse process: pθ(xt−1|xt) is learned

7.7. COMPARISON WITH DIFFUSION MODELS 259

7.7.2 Key Distinction: Fixed vs Learned Inference

The fundamental difference lies in inference:

• VAE:

– Must learn inference model qϕ(z|x)
– Optimizes joint KL: DKL(pdata(x)qϕ(z|x)∥p(z)pθ(x|z))
– Challenging optimization over both θ and ϕ

• Diffusion:

– Forward process q(xt|xt−1) is fixed

– Results in supervised learning problem

– No variational inference needed

7.7.3 Theoretical Guarantees

Diffusion models offer stronger theoretical guarantees:

• Prior approximation:

– VAE: Assumes fixed N (0, I) prior

– Diffusion: xT provably converges to N (0, I) as T →∞

• Transition probabilities:

– VAE: Complex, learned pθ(x|z)
– Diffusion: pθ(xt−1|xt) provably approaches Gaussian for small noise

• ELBO tightness:

– VAE: Gap depends on quality of learned qϕ(z|x)
– Diffusion: Tighter bounds due to:

∗ Gaussian xT (exact prior)

∗ Near-Gaussian transitions

∗ No learned variational approximation

7.7.4 Philosophical Perspective

While diffusion models take the mathematical form of VAEs:

• They discard the core VAE principle of learned inference

• Replace variational learning with supervised learning

260 CHAPTER 7. VAE AND GAN

• Trade flexibility of learned inference for:

– Theoretical guarantees

– Easier optimization

– Tighter bounds

This reveals a fundamental insight:

Diffusion models succeed not by embracing VAE principles, but by carefully con-
structing a scenario where they can be avoided while maintaining the generative
capability.

7.8 Generative Adversarial Networks

Figure 7.4: GAN

7.8.1 Data Structure

Consider a training dataset structured as follows:

Source Data Label Size
Real data xi ∼ pdata(x) yi = 1 i = 1, . . . , n
Generated data x̃i = G(zi), zi ∼ N (0, I) ỹi = 0 i = 1, . . . , n

Table 7.1: Binary classification structure of GAN

7.8. GENERATIVE ADVERSARIAL NETWORKS 261

7.8.2 Learning the Discriminator

The discriminator D(x) models p(y = 1|x), the probability that x is real. The log-likelihood
for D is:

L(D) =
n∑

i=1

[logD(xi) + log(1−D(x̃i))]

=
n∑

i=1

[logD(xi) + log(1−D(G(zi)))]

As n→∞, this approaches:

L(D) = Ex∼pdata [logD(x)] + Ez∼N (0,I)[log(1−D(G(z)))]

= Ex∼pdata [logD(x)] + Ex̃∼pG [log(1−D(x̃))]

where pG is the distribution induced by G(z) with z ∼ N (0, I).

7.8.3 Game-Theoretic Perspective

This log-likelihood becomes a value function V (D,G) in a zero-sum game:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼N (0,I)[log(1−D(G(z)))]

where:

• Discriminator D aims to maximize V (D,G):

– Increase D(x) for real data

– Decrease D(G(z)) for generated data

• Generator G aims to minimize V (D,G):

– Make D(G(z)) close to 1

– Make generated samples indistinguishable from real data

This formulation:

• Turns generative modeling into a binary classification game

• Does not require explicit density estimation

• Leads to an adversarial training dynamic

262 CHAPTER 7. VAE AND GAN

7.8.4 Implementation Form

In practice, minimizing log(1−D(G(z))) provides weak gradients early in training when D
easily rejects poor samples. Instead, we use the equivalent form:

• For discriminator D, maximize:

LD = Ex∼pdata [logD(x)] + Ez∼N (0,I)[log(1−D(G(z)))]

• For generator G, maximize:

LG = Ez∼N (0,I)[logD(G(z))]

Training algorithm:

1. For each iteration:

• Sample minibatch of real data {xi}mi=1

• Sample minibatch of noise {zi}mi=1

• Update D using gradient ascent on LD

• Sample new noise {zi}mi=1

• Update G using gradient ascent on LG

7.8.5 Wasserstein GAN

W-GAN reframes the generator-discriminator relationship into an actor-critic setup:

• Critic f(x):

– Assigns real-valued scores to images

– Higher scores for ”better” (more realistic) images

– No sigmoid constraint (unlike GAN’s discriminator)

– Relationship to GAN: D(x) = sigmoid(f(x))

• Actor G(z):

– Tries to generate images that receive high scores from critic

– Gets clearer feedback through continuous scores

– No longer needs to ”fool” a binary classifier

• Objective:
min
G

max
f∈FL

Ex∼pdata [f(x)]− Ez∼N (0,I)[f(G(z))]

where FL is the set of 1-Lipschitz functions

• Interpretation:

7.8. GENERATIVE ADVERSARIAL NETWORKS 263

– Critic tries to assign high scores to real images, low scores to generated ones

– Generator tries to create images that receive high critic scores

– Lipschitz constraint ensures scores don’t become arbitrarily large

– More like a rating system than a binary real/fake classifier

This actor-critic perspective:

• Provides more informative learning signal than binary classification

• Makes the relationship between generator and critic more collaborative

• Better reflects the continuous nature of image quality

• Helps explain why W-GAN training is more stable

7.8.6 Mode Collapse

Mode collapse represents a significant challenge in GAN training where the generator G
learns to map different latent vectors z to a limited subset of the data distribution’s modes,
while ignoring others. This phenomenon can be understood as follows:

• Problem Definition:

– Generator G maps Gaussian noise z ∼ N (0, I) to only a few major modes of
pdata(x)

– Minor modes in the true data distribution are systematically ignored

– Multiple different inputs z1, z2, . . . , zk may map to the same or very similar outputs

• Mathematical Perspective:

pG(x)≪ pdata(x) for minor modes

pG(x) ≈ pdata(x) for a few major modes

• Causes:

– Discriminator optimization may focus on major modes first

– Generator can maximize Ez∼N (0,I)[logD(G(z))] by concentrating on these modes

– No explicit penalty for lack of diversity in generated samples

Consider a simple example where pdata(x) is a mixture of Gaussians:

pdata(x) =
k∑

i=1

πiN (µi,Σi)

Mode collapse occurs when G learns to generate samples primarily from components with
larger mixing coefficients πi, while ignoring components with smaller coefficients.

Several approaches have been proposed to address mode collapse:

264 CHAPTER 7. VAE AND GAN

• Minibatch discrimination: Compare generated samples within a minibatch

• Unrolled GANs: Look ahead several discriminator steps

• Multiple discriminators: Provide diverse feedback signals

• Modified objectives: Include terms that explicitly encourage diversity

The severity of mode collapse can be measured through metrics such as:

• Coverage: Fraction of true modes captured by G

• Quality-diversity tradeoff: Relationship between sample quality and diversity

• Birthday paradox test: Detecting duplicate samples in generated data

This challenge highlights a fundamental tension in GAN training between quality and
diversity of generated samples.

Chapter 8

Deep Reinforcement Learning

Figure 8.1: Reinforcement Learning

Chapter Overview

This chapter examines deep reinforcement learning through systematic comparisons of fun-
damental paradigms, using AlphaGo and Atari game mastery as illustrative case studies.
These domains serve as ideal counterpoints to highlight key dichotomies in reinforcement
learning approaches:

• Model-Based vs Model-Free: AlphaGo leverages Go’s perfect model for Monte
Carlo Tree Search, while Atari agents learn directly from experience without explicit
modeling. This contrast illuminates when and why model-based planning proves ad-
vantageous over pure model-free learning.

265

266 CHAPTER 8. DEEP REINFORCEMENT LEARNING

• Value-Based vs Policy-Based Methods: DQN’s success in Atari demonstrates
value-based learning with dense rewards, while policy gradient methods like PPO show
alternative advantages in policy space exploration. AlphaGo’s hybrid approach, com-
bining both paradigms, reveals their complementary strengths.

• On-Policy vs Off-Policy Learning: The trade-offs between on-policy methods
(PPO) and off-policy approaches (DQN) highlight fundamental tensions between sam-
ple efficiency and stability. These differences manifest distinctly in both domains,
informing algorithm choice.

• Dense vs Sparse Rewards: Atari’s frequent feedback enables direct bootstrapping
and temporal difference learning, while Go’s sparse terminal rewards necessitate so-
phisticated planning and value estimation. This reward structure profoundly impacts
algorithm design and effectiveness.

• Policy vs Planning: Pure policy methods (DQN, PPO) contrast with planning-
centric approaches (MCTS), revealing how environment characteristics influence the
balance between reactive policies and explicit planning.

Through these comparisons, we explore:

• How environment properties guide algorithm selection

• When to prefer different learning paradigms

• Trade-offs between computational complexity and performance

• Integration strategies combining multiple approaches

Modern frameworks like MuZero increasingly blur these distinctions, suggesting a unified
view where these apparent dichotomies represent different regions in a continuous space
of algorithms. This comparative lens provides deeper insight into reinforcement learning’s
fundamental principles and their practical manifestation in different domains.

8.1 Theoretical Foundations of Sequential Decision Mak-

ing

Since we already have some exposure to reinforcement learning in Chapter 5, where we
studied reinforcement learning from human feedback (RLHF), we shall begin this chapter
with theoretical foundation of Markov decision process (MDP). Readers without any prior
exposure to RL is encouraged to read Chapter 5 on RLHF first, or read about AlphaGo and
Atari first, before reading this section.

8.1. THEORETICAL FOUNDATIONS OF SEQUENTIAL DECISION MAKING 267

8.1.1 Basic Setup

Core components of an MDP:

• State space S: Set of all possible states

• Action space A: Set of all possible actions

• Transition model P (s′|s, a): Dynamic model

• Reward model R(s, a, s′): Immediate reward

• Discount factor γ ∈ [0, 1]: Future reward weighting

8.1.2 Key Functions

Policy

A policy π maps states to actions:

• Deterministic: π : S → A

• Stochastic: π(a|s) probability distribution over A

Value Functions

Two equivalent perspectives:

• State-value function:

V π(s) = Eπ

[
∞∑
t=0

γtrt|s0 = s

]
(8.1)

• Action-value function:

Qπ(s, a) = Eπ

[
∞∑
t=0

γtrt|s0 = s, a0 = a

]
(8.2)

Optimal Functions

V ∗(s) = max
π

V π(s) (8.3)

Q∗(s, a) = max
π

Qπ(s, a) (8.4)

π∗(s) = argmax
a

Q∗(s, a) (8.5)

The goal of RL is to find the optimal policies.

268 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.1.3 Model-Based vs Model-Free Paradigms

Model-Based Approach

When transition model is known/learned:

• Can simulate future states: s′ ∼ P (|s, a)

• Enables planning and trajectory optimization

• Examples: MCTS, MPC, Dynamic Programming

Model-Free Approach

When model is unknown/complex:

• Learn directly from experience

• No explicit model required

• Examples: Q-learning, Policy Gradient

8.2 Fundamental Theorems in Reinforcement Learn-

ing

8.2.1 Policy Gradient Theorem

Setup

Objective function:

J(θ) = Eπθ

[
∞∑
t=0

γtrt

]
(8.6)

We aim to prove:
∇θJ(θ) = Eπθ

[∇θ log πθ(a|s)Qπθ(s, a)] (8.7)

Proof

Start with state distribution ρπ(s):

J(θ) =
∑
s

ρπ(s)
∑
a

πθ(a|s)Qπθ(s, a) (8.8)

Taking gradient:

∇θJ(θ) =
∑
s

ρπ(s)
∑
a

[∇θπθ(a|s)Qπθ(s, a) + πθ(a|s)∇θQ
πθ(s, a)] (8.9)

=
∑
s

ρπ(s)
∑
a

πθ(a|s)
∇θπθ(a|s)
πθ(a|s)

Qπθ(s, a) + second term (8.10)

8.2. FUNDAMENTAL THEOREMS IN REINFORCEMENT LEARNING 269

Key insight: Second term sums to zero due to compatible value function approximation.
Using ∇θ log πθ(a|s) = ∇θπθ(a|s)

πθ(a|s)
:

∇θJ(θ) =
∑
s

ρπ(s)
∑
a

πθ(a|s)∇θ log πθ(a|s)Qπθ(s, a) (8.11)

Which gives our expectation form:

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Qπθ(s, a)] (8.12)

8.2.2 Fundamental Relationships in Value-Based RL

Return and its Recursive Structure

The total return (reward-to-go) from time t is:

Rt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · (8.13)

This infinite sum has a fundamental recursive structure. At its simplest:

Rt = rt + γRt+1 (8.14)

More generally, for any horizon m:

Rt = rt + γrt+1 + · · ·+ γm−1rt+m−1 + γmRt+m (8.15)

This recursive structure is the foundation for bootstrap-based methods in RL.

Value Functions and Their Definitions

For a policy π, we define two types of value functions:

vπ(s) = Eπ[Rt|st = s] (8.16)

Qπ(s, a) = Eπ[Rt|st = s, at = a] (8.17)

These expectations incorporate:

• Future rewards under policy π

• State transition dynamics P (s′|s, a)

• Discount factor γ

State-Action Value Relationships

Value functions under policy π are related:
vπ in terms of Qπ:

vπ(s) =
∑
a

π(a|s)Qπ(s, a) (8.18)

This averages Q-values over policy’s action choices.
Qπ in terms of vπ:

Qπ(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)vπ(s′) (8.19)

This shows immediate reward plus discounted future value.

270 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Bellman Equations for Policy Evaluation

Combining these relationships yields the Bellman equation for vπ:

vπ(s) =
∑
a

π(a|s)

[
r(s, a) + γ

∑
s′

P (s′|s, a)vπ(s′)

]
(8.20)

And for Qπ:

Qπ(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′)Qπ(s
′, a′) (8.21)

Optimal Value Functions

The optimal value functions are defined as:

v∗(s) = max
π

vπ(s) (8.22)

Q∗(s, a) = max
π

Qπ(s, a) (8.23)

These are related by:

v∗(s) = max
a

Q∗(s, a) (8.24)

Q∗(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)v∗(s′) (8.25)

Bellman Optimality Equation

Combining these yields the Bellman optimality equation:

Q∗(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)max
a′

Q∗(s′, a′) (8.26)

Define the Bellman optimality operator T :

(T Q)(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)max
a′

Q(s′, a′) (8.27)

Fixed Point Analysis

For any Q1, Q2:
∥T Q1 − T Q2∥∞ ≤ γ∥Q1 −Q2∥∞ (8.28)

This contraction mapping property implies:

• Unique fixed point Q∗

• Value iteration convergence: ∥T nQ0 −Q∗∥∞ ≤ γn∥Q0 −Q∗∥∞

• Rate of convergence controlled by γ

8.2. FUNDAMENTAL THEOREMS IN REINFORCEMENT LEARNING 271

Broader Implications

These relationships underpin major RL algorithms:

• Policy Evaluation: Uses Bellman equation for vπ

• Q-Learning: Approximates Bellman optimality

• Actor-Critic: Leverages both vπ and Qπ

• MCTS: Uses recursive structure of returns

Understanding these relationships helps explain why:

• Temporal difference methods work

• Bootstrap methods are efficient

• Value iteration converges

• Function approximation can be challenging

8.2.3 Implications

These theorems underpin:

• Policy Gradient: Direct policy optimization

• Q-Learning: Value iteration convergence

• Actor-Critic: Combines both insights

8.2.4 Core Algorithm Derivations

Figure 8.2: RL algorithms

272 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Policy Gradient

Objective: Maximize expected return

J(θ) = Eπθ

[
∞∑
t=0

γtrt

]
(8.29)

Policy Gradient Theorem:

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Qπθ(s, a)] (8.30)

Please refer to Chapter 5 RLHF part for a detailed comparison between policy gradient
learning and maximum likelihood learning (imitation learning).

Q-Learning

Based on Bellman optimality:

Q∗(s, a) = R(s, a) + γEs′

[
max
a′

Q∗(s′, a′)
]

(8.31)

Update rule:

Qk+1(s, a) = (1− α)Qk(s, a) + α
[
r + γmax

a′
Qk(s

′, a′)
]

(8.32)

Model Predictive Control

Optimize H-step trajectory:

max
at,...,at+H−1

H−1∑
k=0

γkr(st+k, at+k) (8.33)

subject to:
st+k+1 = f(st+k, at+k) (8.34)

8.2.5 Advanced Methods

Actor-Critic

Combines policy gradient with value estimation:

• Actor: Updates policy using critic’s value

∆θ ∝ ∇θ log πθ(a|s)A(s, a) (8.35)

• Critic: Estimates advantage function

A(s, a) = Qπθ(s, a)− V πθ(s) (8.36)

8.3. THE GAME OF GO 273

Bootstrap Principle

Key idea: Update estimates using other estimates

• Temporal Difference (TD) Learning:

V (st)← V (st) + α[rt + γV (st+1)− V (st)] (8.37)

• n-step returns:

G
(n)
t =

n−1∑
k=0

γkrt+k + γnV (st+n) (8.38)

• Trade-off between bias and variance

This theoretical foundation explains why:

• AlphaGo combines model-based planning (MCTS) with learned values

• Atari agents use model-free methods with bootstrapping

• MPC relies on explicit model and receding horizon

8.3 The Game of Go

8.3.1 Game Complexity

Go is an ancient board game that has challenged human intellect for over 2,500 years. Played
on a 19×19 grid, it presents a computational challenge of remarkable scale. The game tree
complexity of Go is estimated to be approximately 10170, far exceeding that of chess (10120).
This vast search space made Go particularly resistant to traditional game-playing algorithms
that had succeeded in other domains.

8.3.2 Formal Game Definition

The game of Go can be formally defined as follows:

• Board State (s): A state s represents a configuration of black and white stones on
the 19×19 board, along with the game history required by the ko rule. The state space
includes all legal board positions.

• Legal Actions (a): At each state s, a player can either place a stone at any empty
intersection (subject to the rules of Go) or pass. We denote the set of legal actions at
state s as A(s).

• Terminal States: A game terminates when both players pass consecutively. At this
point, the reward z is computed.

• Reward (z): The terminal reward z is +1 for a black win, −1 for a white win, and 0
for a draw, from black’s perspective. The winner is determined by counting territory
and captured stones according to Chinese rules.

274 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Figure 8.3: Alpha Go

8.3.3 Rules and Gameplay

Players alternate placing black and white stones on board intersections. The objective is to
surround and capture opponent stones while securing territory. Key rules include:

1. Stones must be placed on empty intersections

2. Groups of stones must maintain at least one liberty (adjacent empty intersection)

3. The ko rule prevents immediate repetition of board positions

4. Captured stones are removed from the board

This combination of simple rules and vast complexity made Go an ideal challenge for
advancing artificial intelligence beyond traditional game-playing approaches.

8.4 Neural Network Architecture

8.4.1 Policy Network

The policy network pσ(a|s) outputs a probability distribution over all legal moves a in posi-
tion s. It is parameterized by weights σ and consists of:

8.5. TRAINING METHODOLOGY 275

Figure 8.4: Policy and value networks

• Input: 19×19×48 image stack representing current and historical board positions

• Architecture: 13-layer convolutional neural network

• Output: Probability distribution over all 19×19+1 possible moves (including pass)

8.4.2 Value Network

The value network vθ(s) outputs a scalar value estimating the expected outcome from posi-
tion s. It is parameterized by weights θ and shares a similar architecture:

• Input: Same 19×19×48 image stack as policy network

• Architecture: Similar convolutional structure to policy network

• Output: Scalar value predicting expected outcome ∈ [−1, 1]

8.5 Training Methodology

8.5.1 Supervised Learning of Policy Network

The policy network was initially trained on expert human moves using stochastic gradient
descent to maximize the likelihood of the expert move a played in state s:

276 CHAPTER 8. DEEP REINFORCEMENT LEARNING

∆σ ∝ ∂ log pσ(a|s)
∂σ

(8.39)

This resulted in the supervised learning (SL) policy network pσ. A faster but less accurate
rollout policy pπ was also trained similarly for use during Monte Carlo tree search.

8.5.2 Reinforcement Learning of Policy Network

The policy network was further improved through self-play reinforcement learning. Games
were played between the current policy network and random previous iterations. The weights
were updated to maximize the expected outcome:

∆ρ ∝ ∂ log pρ(at|st)
∂ρ

zt (8.40)

where zt is the terminal reward at the end of the game. This policy gradient approach
led to the reinforcement learning (RL) policy network, which played more strongly than the
SL policy network.

8.5.3 Training the Value Network

The value network was trained using a novel approach to improve accuracy:

1. Generate self-play games using the RL policy network

2. For each position s, record the terminal reward z from player’s perspective

3. Train value network by regression to minimize mean squared error:

∆θ ∝ ∂(z − vθ(s))
2

∂θ
(8.41)

This approach differs from traditional reinforcement learning value networks in two key
ways:

• Uses self-play positions from strong policy network

• Regresses towards actual game outcomes rather than bootstrapped estimates

The resulting value network provides more accurate position evaluation than Monte Carlo
rollouts, especially in complex tactical situations where reading to the end of the game is
infeasible.

8.6 Progressive Introduction to Monte Carlo Tree Search

8.6.1 From Simple Policy to Look-ahead Search

At any given state s0, we have multiple ways to select an action:

8.6. PROGRESSIVE INTRODUCTION TO MONTE CARLO TREE SEARCH 277

Figure 8.5: Monte Carlo Tree Search

Direct Policy Approach

The simplest approach is to directly sample from the learned policy:

a0 ∼ p(a0|s0) (8.42)

One-Step Value Maximization

Alternatively, we can choose the action that maximizes the immediate next state’s value:

a0 = argmax
a0

v(s1) (8.43)

where s1 follows from taking action a0 in state s0.

8.6.2 Basic Monte Carlo Look-ahead

We can improve upon these simple approaches by looking deeper into the future through
Monte Carlo sampling. Here’s a basic version that illustrates the core concept:

Forward Simulation

For a fixed depth T = 20:

1. Start from state s0

2. Sample action sequence using policy:

at ∼ p(at|st) for t = 0, 1, . . . , 19 (8.44)

3. Generate corresponding states:

st+1 = f(st, at) for t = 0, 1, . . . , 19 (8.45)

4. Evaluate final state using value network:

v(s20) (8.46)

278 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Q-Value Estimation

Repeat the forward simulation N times. For each first action a0, compute:

Q(s0, a0) = E[v(s20)|s0, a0] (8.47)

where the expectation is approximated by averaging over all simulations that started with
a0.

Action Selection

In actual play, select the action with highest estimated Q-value:

a∗0 = argmax
a0

Q(s0, a0) (8.48)

8.6.3 Advantage of Looking Ahead

This simple Monte Carlo approach already illustrates a key insight: evaluating deeper po-
sitions (s20) provides more reliable information than evaluating immediate positions (s1).
This occurs for two fundamental reasons:

Future Sight Advantage

When evaluating v(s20) versus v(s1):

• v(s1) must implicitly predict the next 19 moves

• v(s20) sees their actual realization

• Tactical sequences that were uncertain at s1 have played out in s20

Averaging Advantage

The Q-value computation:

• Aggregates many evaluations of v(s20) for each a0

• Reduces variance through averaging

• Provides more robust assessment than single evaluation

• Captures different possible developments from each a0

8.6. PROGRESSIVE INTRODUCTION TO MONTE CARLO TREE SEARCH 279

8.6.4 Foundation for Full MCTS

This simple version lays the groundwork for understanding full MCTS by introducing:

• The concept of Q-values from forward simulation

• The advantage of deeper evaluation

• The role of Monte Carlo averaging

• The basic loop of:

– Forward simulation

– Terminal evaluation

– Backward value aggregation

The full MCTS algorithm, which we’ll examine next, builds upon these concepts by
adding:

• Adaptive action selection during simulation

• Tree structure to store statistics

• Value backpropagation through the tree

• Balance between exploration and exploitation

8.6.5 Q-value Update on the Whole Branch

Building upon our basic look-ahead search, we now track statistics for all state-action pairs
along each simulation path, not just at the root state.

Statistics Tracking

For each state-action pair (s, a) encountered in our simulations, we maintain:

• N(s, a): Visit count for this state-action pair

• W (s, a): Cumulative value from all visits

• Q(s, a) = W (s,a)
N(s,a)

: Average value estimate

280 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Simulation Process

Each simulation consists of:

1. Forward Pass:

• Start from s0

• Sample actions: at ∼ p(at|st) for t = 0, . . . , 19

• Generate states: st+1 = f(st, at)

• Store path: (s0, a0), (s1, a1), . . . , (s19, a19)

2. Leaf Evaluation:

vleaf = v(s20) (8.49)

3. Backward Update: For each (st, at) in the path, update:

N(st, at)← N(st, at) + 1 (8.50)

W (st, at)← W (st, at) + vleaf (8.51)

Q(st, at)←
W (st, at)

N(st, at)
(8.52)

Progressive Refinement

This approach provides several advantages:

• Multi-level Evaluation:

– Q-values computed at all depths

– Statistics improve with more simulations

– Different actions explored at each state

• Dynamic Updates:

– Q-values refine over time

– More visited paths get better estimates

– Natural balance of exploration/exploitation

• Information Reuse:

– Same leaf evaluation updates multiple Q-values

– Common subsequences benefit from multiple paths

– Efficient use of each simulation

8.6. PROGRESSIVE INTRODUCTION TO MONTE CARLO TREE SEARCH 281

Example Update

Consider a single simulation path:

s0
a0−→ s1

a1−→ s2 · · ·
a19−−→ s20 (8.53)

After evaluating v(s20) = vleaf , we update:

For t = 19 down to 0 :

N(st, at)← N(st, at) + 1

W (st, at)← W (st, at) + vleaf

Q(st, at)← W (st, at)/N(st, at)

Comparison with Basic Version

Improvements over the simpler approach:

• Information Capture:

– Before: Only root Q-values stored

– Now: Q-values at all depths

– Better use of each simulation

• Statistical Accuracy:

– Before: Separate averages for each a0

– Now: Integrated statistics across tree

– More efficient value estimation

• Search Structure:

– Before: Independent root simulations

– Now: Building blocks for tree search

– Foundation for guided exploration

This progressive refinement of Q-values sets the stage for the final MCTS version, where
we’ll introduce:

• UCT-style action selection

• Policy-guided exploration

• Tree structure maintenance

• Adaptive simulation strategies

282 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.6.6 Policy-Guided Action Selection

We now improve our 20-step lookahead by making action selection more sophisticated. In-
stead of purely sampling from the policy p(a|s), we select actions that balance exploiting
our accumulated knowledge (Q-values) with exploring promising actions suggested by the
policy.

Selection Formula

At each state st during the simulation, select action:

at = argmax
a

(
Q(st, a) + cp(a|st)

√∑
b N(st, b)

1 +N(st, a)

)
(8.54)

where:

• Q(st, a): Exploitation term (using accumulated knowledge)

• p(a|st): Policy prior (guiding exploration)

•
√∑

b N(st,b)

1+N(st,a)
: Visit count bonus term

• c: Exploration constant (typically around 1.0 to 5.0)

Term Analysis

• Exploitation Term Q(st, a):

– Represents accumulated knowledge

– Favors actions that have worked well

– More reliable as N(st, a) increases

– Drives convergence to best actions

• Exploration Term cp(a|st)
√∑

b N(st,b)

1+N(st,a)
:

– Encourages trying promising actions

– Decays with increasing visits

– Weighted by policy prior p(a|st)

– Scales with total visits
√∑

bN(st, b)

8.6. PROGRESSIVE INTRODUCTION TO MONTE CARLO TREE SEARCH 283

Dynamic Balance

The formula automatically adjusts exploration-exploitation balance:

• Early in Search:

– Small N(st, a) values

– Exploration term dominates

– Actions selected mainly based on policy

– Broad exploration of promising paths

• Later in Search:

– Larger N(st, a) values

– Q-values become more reliable

– Exploitation term gains importance

– Focus narrows to best-performing actions

Role of Policy Prior

The learned policy p(a|st) serves multiple purposes:

• Guides initial exploration

• Focuses search on promising actions

• Reduces effective branching factor

• Particularly valuable in large action spaces

Visit Count Scaling

The
√∑

bN(st, b) term provides important properties:

• Increases exploration bonus with more total visits

• Ensures continued exploration of alternatives

• Balances exploration across different tree depths

• Theoretically motivated by UCT analysis

284 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Example Scenarios

Consider a state st with two actions:
Early in search:

• Action 1: Q = 0.0, N = 1, p = 0.8

• Action 2: Q = 0.0, N = 1, p = 0.2

• Total visits = 2

• Exploration term dominates, Action 1 preferred due to higher policy probability

Later in search:

• Action 1: Q = 0.3, N = 50, p = 0.8

• Action 2: Q = 0.6, N = 20, p = 0.2

• Total visits = 70

• Q-values more reliable, Action 2 may be preferred despite lower policy probability

Implementation Benefits

This selection strategy provides several advantages:

• Automatic exploration-exploitation trade-off

• Efficient use of learned policy knowledge

• Theoretical guarantees from UCT framework

• Natural transition from exploration to exploitation

• Scalable to large action spaces

This improved action selection prepares us for the final step of full MCTS, where we’ll
add:

• Explicit tree structure

• Node expansion criteria

• Adaptive simulation depth

• More sophisticated backup strategies

8.6.7 Full MCTS with Dynamic Tree Growth

We now remove the fixed 20-step constraint and allow the tree to grow naturally through
node expansion. This leads to the complete MCTS algorithm that adapts its search depth
based on the most promising paths.

8.6. PROGRESSIVE INTRODUCTION TO MONTE CARLO TREE SEARCH 285

Tree Structure

Each node in the tree stores:

• State s

• Visit statistics for all actions a:

– N(s, a): visit count

– W (s, a): cumulative value

– Q(s, a) = W (s, a)/N(s, a): average value

• Children nodes (if expanded)

MCTS Steps

Each simulation consists of four phases:

1. Selection:

• Start at root node s0

• While at expanded node st, select action:

at = argmax
a

(
Q(st, a) + cp(a|st)

√∑
bN(st, b)

1 +N(st, a)

)
(8.55)

• Continue until reaching leaf node sL

2. Expansion:

• For leaf node sL, create child nodes for all legal actions, these child nodes will
become leaf nodes in the next round of selection

• Initialize statistics:

N(sL, a) = 0 (8.56)

W (sL, a) = 0 (8.57)

Q(sL, a) = 0 (8.58)

3. Evaluation:

• Evaluate leaf position using value network:

vleaf = vθ(sL) (8.59)

4. Backup:

• For each state-action pair (st, at) on path to root:

N(st, at)← N(st, at) + 1 (8.60)

W (st, at)← W (st, at) + vleaf (8.61)

Q(st, at)← W (st, at)/N(st, at) (8.62)

286 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Advantages Over Fixed-Depth Search

• Adaptive Depth:

– Tree grows deeper along promising paths

– Natural allocation of computation

– No artificial depth limit

– Better handling of variable-length sequences

• Efficient Memory Use:

– Only stores nodes that have been visited

– Memory grows with actual search effort

– Focuses resources on relevant parts of tree

– Avoids exponential memory growth

• Better Value Estimation:

– Values backed up from various depths

– Naturally weights different horizons

– Combines shallow and deep evaluations

– More robust position assessment

Tree Growth Properties

The tree expands asymmetrically:

• Promising Paths:

– Higher visit counts

– Deeper expansion

– More refined value estimates

• Unpromising Paths:

– Lower visit counts

– Shallower expansion

– Less computational investment

8.6. PROGRESSIVE INTRODUCTION TO MONTE CARLO TREE SEARCH 287

Comparison with Fixed-Depth Version

Key differences:

• Depth:

Depth =

{
20 Fixed version

Variable Full MCTS
(8.63)

• Memory:

Nodes =

{
O(20× |A|) Fixed version

O(Nsims × avg depth) Full MCTS
(8.64)

• Value Estimation:

vleaf =

{
vθ(s20) Fixed version

vθ(sL) Full MCTS
(8.65)

This full version of MCTS represents the algorithm as used in AlphaGo and similar
systems. The natural tree growth and adaptive search depth make it a powerful approach
for finding strong moves in complex games like Go.

8.6.8 Complementary Roles of Policy and Value for Search

The policy and value networks play distinct but complementary roles in controlling the
MCTS search space:

Policy Network: Reducing Search Breadth

The policy network p(a|s) helps control horizontal expansion:

• Without Policy:

– Must consider all legal moves equally

– Branching factor = full legal move set (≈ 250 in Go)

– Search breadth grows exponentially

– Most computation wasted on poor moves

• With Policy:

– Focus search on promising moves

– Effectively reduces branching factor

– p(a|s) guides exploration term:

cp(a|s)
√∑

bN(s, b)

1 +N(s, a)
(8.66)

– Computation concentrated on relevant variations

288 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Value Network: Reducing Search Depth

The value network v(s) helps control vertical expansion:

• Without Value:

– Must search to game termination

– Need deep rollouts for position evaluation

– Search depth = remaining game length

– Impractical in games like Go

• With Value:

– Can evaluate leaf nodes directly

– Shallower search trees suffice

– More accurate than rollout results

– Better handling of tactical positions

Combined Effect

Together, these networks dramatically reduce the search space:

Search Space = BreadthDepth Policy, Value−−−−−−−→ (Effective Breadth)Effective Depth (8.67)

Where:

• Policy reduces effective breadth from ≈ 250 to perhaps ≈ 50

• Value reduces effective depth from ≈ 150 to perhaps ≈ 20

• Combined reduction: 250150 → 5020

• Makes deep strategic search feasible

Search Quality

The reduction in search space actually improves search quality:

• Policy Impact:

– More visits to relevant moves

– Better statistics for key variations

– Reduced noise from irrelevant moves

• Value Impact:

– More accurate leaf evaluation

8.6. PROGRESSIVE INTRODUCTION TO MONTE CARLO TREE SEARCH 289

– Better handling of tactical positions

– Reduced variance compared to rollouts

This efficient division of labor between policy and value networks is a key reason for
MCTS’s success in complex games like Go, where the raw search space is astronomically
large. By controlling both breadth and depth of search, these networks make it possible to
perform meaningful strategic planning in otherwise intractable game trees.

8.6.9 Value Network and Bootstrap Principle

The value network enables powerful bootstrapping in MCTS, which is crucial for reducing
search depth while maintaining evaluation accuracy.

Basic Bootstrap Concept Value bootstrapping means:

• Each state value builds on future state values

• No need to search to terminal states

• Chain of value estimates:

v(st) ≈ rt + γv(st+1) (8.68)

Traditional MCTS Without Value Network Without bootstrapping:

• Must play out to game end

• Value only from terminal states z

• Long rollouts required

• High variance in estimates

• Computation grows with game length

MCTS With Value Network With bootstrapping:

• Can stop at leaf node sL

• Use value estimate v(sL)

• Short search trees suffice

• Lower variance estimates

• Computation independent of game length

290 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Bootstrap Chain Effect Creates a chain of increasingly reliable estimates:

Q(s0, a0)← r0 + γQ(s1, a1)← r1 + γQ(s2, a2)← · · · ← rL + γv(sL) (8.69)

Each step in the chain:

• Incorporates actual game dynamics

• Accumulates real intermediate rewards

• Benefits from search at future nodes

• Terminates with learned value estimate

Why Bootstrap Works Bootstrap is effective because:

• Value network trained on full game outcomes

• Each tree node aggregates many leaf evaluations

• Multiple simulations reduce estimation variance

• Search refines raw value predictions

• Shorter paths have less compounded error

Implementation Benefits This leads to practical advantages:

• Fixed-depth search trees possible

• Predictable computation per move

• Better tactical evaluation

• More simulations in same time

• Efficient memory usage

The bootstrap principle transforms MCTS from a terminal-state-focused search to an
efficient, bounded-depth procedure that can still capture long-term strategic considerations
through the value network’s learned knowledge.

8.7. FROM ALPHAGO TO ALPHAGO ZERO 291

Figure 8.6: AlphaGo Zero

8.7 From AlphaGo to AlphaGo Zero

8.7.1 Original AlphaGo Architecture

Training in London

The original AlphaGo system had two phases in different locations:

• In London (Training Phase):

– Train policy network πθ on human expert games

– Train value network vθ using self-play games

– Freeze the networks once training is complete

• In Seoul (Playing Phase):

– Use the fixed networks from London

– Combine them with MCTS for actual play

– No further training or updates

292 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.7.2 The Key Insight

Looking at this setup, a crucial realization emerges:

• MCTS with the networks plays better than the raw networks

• This suggests a natural improvement:

– Why not use MCTS self-play games to train the networks?

– The stronger play from MCTS could provide better training data

– This could be done right in London, no need for separate locations

8.7.3 The Natural Evolution

This insight leads to a progression of ideas:

Step 1: Use MCTS Self-Play

Instead of just human games:

• Let MCTS play against itself

• Use these games to train policy network:

πθ ← moves chosen by MCTS (8.70)

dwq21

• Use game outcomes to train value network:

vθ ← actual game results (8.71)

Step 2: Remove Human Knowledge

Then comes the radical thought:

• Why start with human games at all?

• Could start from random networks

• Let MCTS compensate for initial poor play

• Use game outcomes as ground truth

8.8. REFLECTIONS: SYSTEM 1 AND SYSTEM 2 293

8.7.4 Birth of AlphaGo Zero

This evolution naturally leads to AlphaGo Zero:

• Start with random networks

• Use MCTS to play games

• Train networks on MCTS games

• Repeat, creating a learning cycle:

Random
MCTS−−−→ Better Play

Training−−−−→ Better Networks
MCTS−−−→ Even Better Play (8.72)

8.7.5 Why This Works

The system can bootstrap from zero because:

• MCTS provides improvement over raw network performance

• Game outcomes give reliable training signals

• Each component helps improve the others:

– Better value network → better MCTS evaluation

– Better MCTS → finds stronger moves

– Stronger moves → better training data

– Better training data → improved networks

This progression from original AlphaGo to AlphaGo Zero shows how the desire to improve
an existing system, combined with some key insights, can lead to a simpler yet more powerful
approach. The ”Zero” in AlphaGo Zero represents not just the absence of human knowledge,
but the elegance of learning everything from first principles through self-play.

8.8 Reflections: System 1 and System 2

AlphaGo Zero’s architecture provides remarkable insights into the nature of intelligence and
learning, particularly when viewed through the lens of dual-process theory of cognition.

8.8.1 System 1 and System 2 in AlphaGo Zero

MCTS as System 2

Monte Carlo Tree Search embodies characteristics of System 2 thinking:

• Deliberate, step-by-step planning

• Explicit consideration of alternatives

294 CHAPTER 8. DEEP REINFORCEMENT LEARNING

• Resource-intensive computation

• Conscious-like sequential reasoning

• Look-ahead simulation of consequences

Neural Networks as System 1

The policy and value networks mirror System 1 characteristics:

• Fast, intuitive responses

• Pattern-based recognition

• Low computational overhead

• Subconscious-like immediate judgments

• Learned from experience

8.8.2 The Consciousness Parallel

Planning as Conscious Thought

MCTS exhibits key features of conscious processing:

• Sequential, one-step-at-a-time analysis

• Explicit representation of possibilities

• Working memory-like tree structure

• Deliberate evaluation of options

• Awareness-like focus of computation

Fast vs Slow Thinking

The system naturally implements Kahneman’s two speeds:

• Fast (System 1):

– Neural networks provide immediate evaluations

– Policy network suggests moves instantly

– Value network gives quick position assessments

• Slow (System 2):

– MCTS performs careful search

– Explicitly considers move sequences

– Accumulates evidence through simulation

8.8. REFLECTIONS: SYSTEM 1 AND SYSTEM 2 295

8.8.3 Learning as Memorization

System 1 Learning

A key insight emerges about neural network training:

• Networks primarily learn to memorize results of MCTS

• No need for complex RL algorithms

• Simple supervised learning suffices

• Goal is to memorize System 2’s conclusions

• Policy gradient/PPO not actually necessary

Symbiotic Relationship

The two systems support each other:

System 2 (MCTS)
provides training data−−−−−−−−−−−−→ System 1 (Networks)

guides search−−−−−−−→ System 2 (MCTS)
(8.73)

8.8.4 Primacy of Planning

Planning vs Reinforcement Learning

This analysis suggests a profound insight:

• Planning, not RL, is the key to intelligence

• Representation should be learned to facilitate planning

• RL could be replaced by simple distillation and memorization

• Planning provides ground truth for learning

• Planning is more fundamental than policy optimization

Evolutionary Implications

This suggests a compelling evolutionary story:

• Evolution needed to discover only two core algorithms:

– A universal planning mechanism (likely gradient descent)

– A simple learning algorithm (also gradient descent)

• Planning provides the conscious workspace

• Learning distills planning results into fast responses

• Combination creates powerful general intelligence

296 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.8.5 Generalization and Transfer

Planning Algorithm Generality

Planning has broad applicability:

• Works across diverse domains

• Requires only basic environment model

• Adapts automatically to new situations

• More generalizable than learned policies

Learning Algorithm Simplicity

Neural network training can be straightforward:

• Simple supervised learning from planning

• No complex RL machinery needed

• Focus on memorization and distillation

• Supports but doesn’t replace planning

This perspective suggests that AlphaGo Zero’s architecture might be more than just a
good design for playing Go - it might reflect fundamental principles about the nature of
intelligence, consciousness, and learning. The distinction between planning-based System 2
and learning-based System 1, along with their symbiotic relationship, could be a blueprint
for understanding both biological and artificial intelligence.

8.9 Deep Q-Learning for Atari Games

Figure 8.7: Deep Q learning for Atari

8.9. DEEP Q-LEARNING FOR ATARI GAMES 297

8.9.1 The Atari Environment

Unlike Go, Atari games present a distinctly different MDP structure:

• State (s): Raw pixel frames (typically 84×84 grayscale)

• Actions (A): Discrete joystick movements (typically 4-18 actions)

• Reward (r): Game score changes (dense and intermediate)

• Transition: Frame-to-frame dynamics (deterministic)

8.9.2 Q-Learning Formulation

Q-learning aims to learn the optimal action-value function:

Q∗(s, a) = E[r + γmax
a′

Q∗(s′, a′)] (8.74)

In Deep Q-Network (DQN), we approximate Q∗ using a neural network Qθ(s, a) with
parameters θ.

8.9.3 Key Components

Experience Replay

To break correlation between consecutive samples:

• Store transitions (st, at, rt, st+1) in replay buffer D

• Sample random minibatches for training

• Buffer size typically 1 million transitions

Target Network

To reduce moving target problem:

• Maintain separate target network Qθ− with parameters θ−

• Update θ− to θ every C steps (e.g., C = 10,000)

• Use θ− for computing target values

298 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.9.4 Training Process

For each step:

1. Select action using ϵ-greedy policy:

at =

{
random action with probability ϵ

argmaxa Qθ(st, a) otherwise
(8.75)

2. Execute action, observe reward rt and next state st+1

3. Store transition (st, at, rt, st+1) in D

4. Sample random minibatch of transitions (sj, aj, rj, sj+1) from D

5. Compute target values:

yj =

{
rj if episode terminates at step j + 1

rj + γmaxa′ Qθ−(sj+1, a
′) otherwise

(8.76)

6. Update θ by gradient descent on loss:

L(θ) = E(s,a,r,s′)∼D[(y −Qθ(s, a))
2] (8.77)

8.9.5 Contrast with AlphaGo

Key differences from AlphaGo include:

• No search component (pure Q-learning)

• Single-step updates vs game outcome

• Experience replay vs self-play games

• ϵ-greedy exploration vs PUCT

• Direct Q-value learning vs policy-value network

8.9.6 Practical Considerations

Critical implementation details:

• Frame stacking: Input 4 consecutive frames

• Reward clipping: Clip to [-1,1] range

• Gradient clipping: Prevent exploding gradients

• Decreasing ϵ schedule: 1.0 → 0.1 over first million frames

8.9. DEEP Q-LEARNING FOR ATARI GAMES 299

8.9.7 Q-Learning and MCTS: Shared Principles

Having examined Q-values and bootstrapping in MCTS, we can now see striking parallels
with Q-learning, despite their different applications and implementations.

Q-Value Similarities

Both methods maintain state-action values Q(s, a):

• MCTS Q-values:

– Q(s, a) = W (s, a)/N(s, a)

– Averages over tree search results

– Updated within each search tree

– Temporary, discarded after move selection

• DQN Q-values:

– Q(s, a) from neural network

– Learned from experience replay

– Updated through gradient descent

– Permanent, reused across episodes

Bootstrap Principle

Both methods use bootstrapping for value estimation:

• MCTS Bootstrap:
Q(st, at)← average of [v(sL)] (8.78)

where sL is a leaf node and averaging is over multiple simulations

• Q-Learning Bootstrap:

Q(st, at)← rt + γmax
a′

Q(st+1, a
′) (8.79)

Key Differences

Despite these similarities, important differences exist:

• Planning vs Learning:

– MCTS: Plans ahead using known model

– DQN: Learns from past experience

• Value Sources:

– MCTS: Value network v(sL) at leaves

300 CHAPTER 8. DEEP REINFORCEMENT LEARNING

– DQN: Actual rewards plus bootstrapped future values

• Update Scope:

– MCTS: Local to current search tree

– DQN: Global across all experiences

• Exploration Strategy:

– MCTS: Policy-guided UCT selection

– DQN: ϵ-greedy or other direct exploration

Complementary Strengths

Each approach has advantages in different contexts:

• MCTS Advantages:

– Better when model available

– Can look ahead explicitly

– More focused exploration

– Natural handling of large action spaces

• DQN Advantages:

– Works without environment model

– Learns from actual experience

– Reuses past knowledge

– Efficient with dense rewards

Understanding these connections and differences helps appreciate how similar principles
can manifest in different algorithms. While MCTS and DQN might appear very different
at first glance, they share fundamental ideas about value estimation and bootstrapping,
adapted to their respective domains and requirements.

8.10 Policy Gradient Methods for Atari Games

Please refer to Chapter 5 RLHF part for a detailed introduction and explanation of policy
gradient.

8.10.1 Core Idea

Unlike Q-learning which learns action-values, policy gradient directly optimizes the policy:

• Policy πθ(a|s): Neural network outputs action probabilities

• Objective: Expected sum of rewards J(θ) = Eπθ
[
∑

t rt]

• Update: Follow gradient of J(θ) to improve policy

8.10. POLICY GRADIENT METHODS FOR ATARI GAMES 301

8.10.2 Policy Gradient Theorem

The key theoretical result states:

∇θJ(θ) = Eπθ
[∇θ log πθ(at|st)Qπθ(st, at)] (8.80)

Leading to the update rule:

θ ← θ + α∇θ log πθ(at|st)Rt (8.81)

where Rt =
∑T

k=t rk is the observed return.

8.10.3 REINFORCE Algorithm

Basic implementation:

1. Run policy πθ for one episode:

• Collect (st, at, rt) for t = 1, . . . , T

• Calculate returns Rt =
∑T

k=t rk

2. Update policy:

θ ← θ + α
∑
t

∇θ log πθ(at|st)Rt (8.82)

8.10.4 Variance Reduction

Key improvements to reduce variance:

Baseline Subtraction

Use advantage instead of raw returns:

A(st, at) = Rt − V (st) (8.83)

where V (st) is learned state-value function (baseline).

Actor-Critic Architecture

• Actor: Policy network πθ(a|s)

• Critic: Value network Vw(s)

• Update rules:

θ ← θ + αθ∇θ log πθ(at|st)A(st, at)
w ← w + αw∇w(Rt − Vw(st))

2

302 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.10.5 Practical Implementation

For Atari games:

1. Network Architecture:

• Convolutional layers process 84×84×4 input frames

• Split into policy head (softmax over actions) and value head (scalar)

2. Training Process:

• Collect fixed-length trajectories (e.g., 128 steps)

• Compute advantages using Generalized Advantage Estimation (GAE):

AGAE(st, at) =
∞∑
l=0

(γλ)lδt+l (8.84)

where δt = rt + γV (st+1)− V (st)

• Update both policy and value networks

8.10.6 Comparison with Q-Learning

Advantages of policy gradient:

• Better handles continuous action spaces

• Can learn stochastic policies

• More stable learning in many cases

• Natural extension to actor-critic methods

Challenges:

• Higher variance in updates

• Sensitive to hyperparameter choices

• Often requires more samples

• Can converge to local optima

8.11 Value-Based versus Policy-Based Methods

After examining both Q-learning and policy gradient approaches, we can now systemati-
cally compare these two fundamental paradigms in reinforcement learning. This comparison
helps understand why actor-critic methods, which we will discuss next, aim to combine the
advantages of both approaches.

8.11. VALUE-BASED VERSUS POLICY-BASED METHODS 303

8.11.1 Fundamental Differences

Core Learning Target

The two approaches differ in their primary learning objective:

• Value-Based Methods:

– Learn action-value function Q(s, a)

– Policy is implicit: π(s) = argmaxaQ(s, a)

– Optimize through Bellman equation:

Q(s, a) = E[r + γmax
a′

Q(s′, a′)] (8.85)

• Policy-Based Methods:

– Learn policy πθ(a|s) directly

– No explicit value function required

– Optimize expected return:

J(θ) = Eπθ
[
∞∑
t=0

γtrt] (8.86)

8.11.2 Key Properties

Action Space Handling

Different capabilities in action space:

• Value-Based:

– Natural for discrete actions

– Challenging for continuous actions (requires discretization)

– Must evaluate all actions for max operation

– Harder to represent mixed strategies

• Policy-Based:

– Works for both discrete and continuous actions

– Can learn stochastic policies

– Natural parameterization of continuous actions

– Efficient in large/infinite action spaces

304 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.11.3 Learning Characteristics

Sample Efficiency

Efficiency comparison:

• Value-Based:

– Generally more sample efficient

– Can reuse samples through experience replay

– Better bootstrapping through value estimates

– More efficient with dense rewards

• Policy-Based:

– Generally less sample efficient

– Often requires on-policy samples

– Higher variance in gradient estimates

– Better with sparse rewards

Convergence Properties

Different convergence characteristics:

• Value-Based:

– Can oscillate due to max operator

– Susceptible to overestimation bias

– Guaranteed convergence in tabular case

– May be unstable with function approximation

• Policy-Based:

– Generally more stable learning

– Converges to local optimum

– Gradient estimates may have high variance

– Better theoretical guarantees with approximation

8.11.4 Implementation Aspects

Memory Requirements

Storage needs:

Memory =

{
O(|S| × |A|) Value-Based (table)

O(|θ|) Policy-Based (parameters)
(8.87)

8.11. VALUE-BASED VERSUS POLICY-BASED METHODS 305

Computational Complexity

Action selection cost:

Computation =

{
O(|A|) Value-Based (max operation)

O(1) Policy-Based (direct output)
(8.88)

8.11.5 Practical Trade-offs

When to Use Value-Based Methods

Preferred conditions:

• Discrete, manageable action space

• Dense reward structure

• Sample efficiency is priority

• Off-policy learning desired

• Deterministic optimal policy exists

When to Use Policy-Based Methods

Favorable scenarios:

• Continuous or large action space

• Stochastic policy required

• Sparse reward structure

• Stability is priority over sample efficiency

• Natural gradient updates desired

8.11.6 Empirical Results in Atari

DQN Performance

Value-based characteristics:

• Strong performance in games with clear action values

• Efficient learning of game mechanics

• Good at exploitation of learned strategies

• May struggle with exploration-heavy games

306 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Policy Gradient Performance

Policy-based characteristics:

• Better exploration through stochastic policies

• More stable learning curves

• Often slower to reach peak performance

• Superior in games requiring mixed strategies

8.11.7 Motivation for Hybrid Approaches

The complementary strengths and weaknesses of these approaches naturally motivate hybrid
methods:

• Value-Based Strengths:

– Sample efficiency

– Better bootstrapping

– Experience replay

– Strong exploitation

• Policy-Based Strengths:

– Stability

– Continuous actions

– Stochastic policies

– Better exploration

This motivates actor-critic methods, which we will examine next, as they attempt to
combine the advantages of both approaches while mitigating their respective weaknesses. The
actor-critic architecture represents a natural synthesis of these two fundamental paradigms,
leading to more robust and flexible algorithms.

8.12 Actor-Critic Methods for Atari Games

Actor-critic methods represent a powerful hybrid approach that combines the advantages of
both value-based and policy-based methods. For Atari games, these methods have proven
particularly effective due to their ability to handle large discrete action spaces while main-
taining stable learning.

8.12.1 Core Architecture

The actor-critic architecture consists of two main components:

8.12. ACTOR-CRITIC METHODS FOR ATARI GAMES 307

Actor (Policy Network)

The actor πθ(a|s) directly learns the policy:

• Takes game frames as input (typically 84×84×4)

• Outputs action probabilities for each possible Atari action

• Updated to maximize expected advantage:

max
θ

E[log πθ(a|s)A(s, a)] (8.89)

Critic (Value Network)

The critic Vϕ(s) learns state values:

• Shares convolutional layers with actor

• Outputs scalar state value estimate

• Updated to minimize TD error:

min
ϕ

E[(r + γVϕ(s
′)− Vϕ(s))

2] (8.90)

8.12.2 Advantage Estimation

A crucial component is accurate advantage estimation:

One-Step Advantage

The simplest form uses one-step TD error:

A(st, at) = rt + γVϕ(st+1)− Vϕ(st) (8.91)

Generalized Advantage Estimation (GAE)

GAE provides better advantage estimates through exponentially-weighted TD errors:

AGAE(st, at) =
∞∑
l=0

(γλ)lδt+l (8.92)

where:
δt = rt + γVϕ(st+1)− Vϕ(st) (8.93)

The parameter λ ∈ [0, 1] controls the bias-variance trade-off:

• λ = 0: One-step TD (low variance, high bias)

• λ = 1: Monte Carlo (high variance, low bias)

• Typical values: λ = 0.95

308 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.12.3 Implementation for Atari

Network Architecture

Shared convolutional backbone:

• Input: 84×84×4 stacked frames

• Conv layers: Same as DQN architecture

• Split into policy and value heads

• Policy head: Softmax over actions

• Value head: Single scalar output

Training Process

For each iteration:

1. Collect trajectories using current policy

2. Compute advantages using GAE

3. Update actor (policy) network:

θ ← θ + αθ∇θ log πθ(at|st)AGAE(st, at) (8.94)

4. Update critic (value) network:

ϕ← ϕ+ αϕ∇ϕ(Gt − Vϕ(st))
2 (8.95)

where Gt is the discounted sum of rewards

8.12.4 Key Advantages for Atari

Stability Improvements

Actor-critic methods provide several stability benefits:

• Reduced variance through value bootstrapping

• Shared feature learning between policy and value

• Natural curriculum through value estimation

• Stable credit assignment through GAE

8.12. ACTOR-CRITIC METHODS FOR ATARI GAMES 309

Sample Efficiency

Better sample efficiency through:

• Value-guided policy updates

• Efficient advantage estimation

• Reuse of experience for both networks

• Faster learning of action preferences

8.12.5 Practical Considerations

Hyperparameters

Critical parameters include:

• Learning rates: αθ (actor), αϕ (critic)

• GAE parameter: λ (typically 0.95)

• Discount: γ (typically 0.99)

• Value loss coefficient (balances losses)

• Batch size and optimization epochs

Implementation Tips

Key considerations:

• Normalize advantages batch-wise

• Use separate optimizers for actor and critic

• Clip gradient norms for stability

• Monitor value loss and policy entropy

• Consider frame stacking and reward scaling

8.12.6 Comparison to Other Methods

Versus Pure Policy Gradient

Advantages over policy gradient:

• Lower variance updates

• Better credit assignment

• Faster learning in early stages

• More stable optimization

310 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Versus DQN

Advantages over DQN:

• Can learn stochastic policies

• No replay buffer required

• Better exploration through policy entropy

• More natural action probability outputs

Actor-critic methods have become a cornerstone of modern deep RL, particularly for
challenging domains like Atari games. Their ability to combine the strengths of both policy-
based and value-based methods, while addressing the weaknesses of each, makes them a
powerful and practical choice. The use of advantage estimation and shared architecture
provides a robust foundation for learning complex behaviors in high-dimensional state spaces
with large discrete action sets.

8.12.7 Proximal Policy Optimization (PPO)

Please refer to Chapter 5 RLHF part for a detailed introduction and explanation of PPO. The
key idea of PPO is data filtering, i.e., in each learning step, stop gradient on those examples
where the current policy already assigns high probabilities to the advantageous actions or
low probabilities to the disadvantageous actions. The goal for doing this is to avoid over-
exploitation of the advantageous actions and under-exploration around the disadvantageous
actions. The “proximal” treatment is applied directly in data space, instead of policy space,
still less in parameter space.

PPO addresses the key challenge in policy gradient methods: how to determine the largest
possible improvement step without destroying the policy. It combines the sample efficiency
of TRPO with simpler implementation.

Clipped Objective

PPO’s key innovation is the clipped objective function:

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (8.96)

where:

• rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio

• ϵ is the clip parameter (typically 0.2)

• At is the advantage estimate

8.12. ACTOR-CRITIC METHODS FOR ATARI GAMES 311

8.12.8 Actor-Critic Implementation in PPO

PPO builds upon the actor-critic framework while introducing key innovations for stability.
Understanding its actor-critic implementation is crucial for grasping how PPO achieves its
performance improvements.

Network Architecture

PPO typically employs a shared-backbone architecture:

• Shared Layers:

– Common feature extractor (e.g., CNN for Atari)

– Parameter sharing improves learning efficiency

– Learns representations useful for both policy and value

• Policy Head (Actor):

– Outputs action probabilities πθ(a|s)
– Includes clipped objective:

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (8.97)

where rt(θ) =
πθ(at|st)

πθold
(at|st)

• Value Head (Critic):

– Outputs state value estimate Vϕ(s)

– Often includes clipped value objective:

LV F (ϕ) = max((Vϕ(st)−Rt)
2, (Vclipped(st)−Rt)

2) (8.98)

where Vclipped(st) = Vϕold
(st) + clip(Vϕ(st)− Vϕold

(st),−ϵ, ϵ)

Combined Loss Function

PPO optimizes a combined objective:

LTOTAL(θ, ϕ) = LCLIP (θ)− c1L
V F (ϕ) + c2L

ENT (θ) (8.99)

where:

• c1 balances value loss (typically 0.5)

• c2 controls entropy bonus (typically 0.01)

• LENT is the policy entropy term for exploration

312 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Advantage Estimation

PPO uses GAE for advantage estimation:

AGAE(st, at) =
∞∑
l=0

(γλ)lδt+l (8.100)

where:
δt = rt + γVϕ(st+1)− Vϕ(st) (8.101)

This requires maintaining both:

• Current policy for action selection

• Value function for advantage computation

Training Process

The actor-critic components are updated together:

1. Collect trajectories using current policy πθ

2. Compute advantages using critic Vϕ

3. For K epochs:

• Sample mini-batches of experience

• Update both actor and critic using LTOTAL

• Ensure updates stay within trust region

Key Innovations Beyond Basic Actor-Critic

PPO introduces several improvements:

• Trust Region Enforcement:

– Clipping in both policy and value updates

– Prevents destructively large updates

– Maintains proximity to old policy

• Multiple Update Epochs:

– Reuses each batch of experience

– More stable than single-pass updates

– Better sample efficiency

• Adaptive Advantage Estimation:

– GAE with learned value function

– Better credit assignment

– Reduced variance in updates

8.13. BOOTSTRAPPING IN DENSE-REWARD SETTINGS 313

Implementation Considerations

Practical aspects of the actor-critic implementation:

• Shared Parameters:

– Early layers share parameters

– Separate output layers for policy and value

– Backpropagation through both heads

• Update Ordering:

– Synchronous updates to both networks

– Gradient scaling for different objectives

– Advantage normalization before updates

• Memory Management:

– Store trajectories for multiple epochs

– Maintain old policy for ratio computation

– Track value predictions for GAE

This actor-critic implementation in PPO represents a sophisticated evolution of the basic
actor-critic framework, with additional mechanisms for stability and efficiency. The combi-
nation of clipped objectives, value function clipping, and entropy regularization helps achieve
stable learning while maintaining the advantages of the actor-critic architecture.

8.13 Bootstrapping in Dense-Reward Settings

8.13.1 Core Bootstrap Concept

The fundamental idea of bootstrapping is to update current estimates using subsequent
estimates:

• Don’t wait for final outcome

• Use next state’s estimate as surrogate target

• Chain together dense rewards

8.13.2 One-Step Bootstrap

Basic form across different algorithms:

314 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Q-Learning Form

Target = rt + γmax
a′

Q(st+1, a
′) (8.102)

• Immediate reward rt is known and reliable

• Next state’s value estimated by maxa′ Q(st+1, a
′)

• Only one step of real reward used

Actor-Critic Form

Target = rt + γV (st+1) (8.103)

• Same structure as Q-learning

• V (st+1) replaces maxa′ Q(st+1, a
′)

• Still one-step bootstrap

8.13.3 Multi-Step Bootstrap

Extend to n steps for better trade-off:

Target = rt + γrt+1 + γ2rt+2 + ...+ γnV (st+n) (8.104)

Benefits:

• Uses more real rewards

• Reduces reliance on value estimates

• Still maintains bootstrap advantage

8.13.4 Why Bootstrap Works in Dense Rewards

Key Properties

• Frequent Feedback:

– Many rt ̸= 0 in sequence

– Each reward provides real information

– Bootstrapped estimates mix real and predicted rewards

• Error Reduction:

– Value errors decrease with frequent updates

– Dense rewards provide constant correction

– Bootstrap target becomes increasingly accurate

8.13. BOOTSTRAPPING IN DENSE-REWARD SETTINGS 315

Advantage over Monte Carlo

Compared to waiting for episode end:

• Faster Learning:

Updates per step =

{
1 Monte Carlo

episode length Bootstrap
(8.105)

• Lower Variance:

– Short-term predictions more reliable

– Dense rewards reduce uncertainty

– Frequent corrections prevent error accumulation

8.13.5 Implementation Considerations

Trade-offs in Steps

Choice of bootstrap length:

• Short (1-step):

– Lower variance

– More bias from value estimates

– Faster learning in early stages

• Long (n-step):

– Higher variance

– More real rewards used

– Better final performance

TD(λ) Solution

Blend multiple step lengths:

Target = (1− λ)
∞∑
n=1

λn−1(
n∑

k=1

γk−1rt+k + γnV (st+n)) (8.106)

Benefits:

• Combines advantages of all step lengths

• Automatically adjusts based on value accuracy

• Practical implementation via eligibility traces

316 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.13.6 Success in Practice

Bootstrap effectiveness shown by:

• DQN Performance:

– Stable learning across many games

– Efficient value propagation

– Robust to hyperparameters

• A2C/A3C Results:

– Fast learning with n-step returns

– Good final performance

– Parallelizable updates

8.13.7 Dense-Reward vs MCTS Bootstrapping

Having explored bootstrapping in both contexts, we can now analyze their similarities and
differences.

Common Bootstrap Principle Both approaches build future values from estimates:

• Core Idea:

– Use estimated values of future states

– Chain value predictions together

– Avoid waiting for terminal outcomes

– Propagate information backwards

Key Differences

• Reward Structure:

– Dense Rewards (Atari):

Q(st, at)← rt + γQ(st+1, at+1) (8.107)

where rt provides frequent real feedback

– MCTS (AlphaGo):

Q(st, at)← average of [v(sL)] (8.108)

where intermediate rewards are zero

• Information Source:

8.13. BOOTSTRAPPING IN DENSE-REWARD SETTINGS 317

– Dense Rewards:

∗ Real rewards provide constant correction

∗ Each step gives meaningful feedback

∗ Value errors decrease with frequent updates

– MCTS:

∗ Value network provides leaf estimates

∗ No intermediate feedback

∗ Multiple simulations reduce variance

• Update Mechanism:

– Dense Rewards:

∗ Temporal difference updates

∗ Learning across episodes

∗ Permanent value estimates

– MCTS:

∗ Monte Carlo averaging within tree

∗ Reset after each move

∗ Temporary search statistics

Complementary Strengths Each form of bootstrapping excels in its domain:

• Dense-Reward Advantages:

– Real feedback at each step

– Natural learning progression

– Clear credit assignment

– Rapid value propagation

• MCTS Advantages:

– Explicit look-ahead

– Multiple evaluation paths

– Value accuracy through averaging

– Focused exploration

Implementation Impact The differences affect implementation:

• Dense Rewards:
Updates per step = 1 (8.109)

Single update from each real experience

• MCTS:
Updates per step = number of simulations (8.110)

Multiple updates from simulated paths

318 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Sample Efficiency Different approaches to improving estimates:

• Dense Rewards:

– Experience replay for data reuse

– Multi-step returns

– TD(λ) combinations

• MCTS:

– Multiple simulations per state

– Policy-guided exploration

– Value network refinement

This comparison reveals how the same fundamental principle of bootstrapping adapts
to different contexts. While dense-reward settings leverage frequent feedback for continuous
learning, MCTS uses bootstrapping for efficient tree search with sparse rewards.

8.14 Temporal Difference Learning

Temporal Difference (TD) learning represents one of the most fundamental ideas in reinforce-
ment learning, combining Monte Carlo ideas with dynamic programming’s bootstrapping.

8.14.1 The TD Learning Principle

Basic TD Update

The core TD learning update:

V (st)← V (st) + α[rt + γV (st+1)− V (st)] (8.111)

where:

• rt + γV (st+1) is the TD target

• rt is the immediate reward

• V (st+1) is the bootstrapped future value

• α is the learning rate

8.14. TEMPORAL DIFFERENCE LEARNING 319

The Bootstrap Mechanism

TD learning bootstraps in two key ways:

• Value Bootstrapping:

– Uses V (st+1) as proxy for future returns

– No need to wait for episode end

– One estimate builds on another

• Time Bootstrapping:

– Updates occur at each time step

– Each experience provides learning

– Quick propagation of value information

8.14.2 Comparison with Other Methods

Monte Carlo Methods

No bootstrapping:
V (st)← V (st) + α[Gt − V (st)] (8.112)

where Gt =
∑T

k=t γ
k−trk is the actual return

• Advantages:

– Unbiased estimates

– No bootstrap error

– Works without model

• Disadvantages:

– High variance

– Must wait for episode end

– Slower learning

Dynamic Programming

Full bootstrap:

V (s)←
∑
s′

P (s′|s, a)[r(s, a, s′) + γV (s′)] (8.113)

• Advantages:

– Full information usage

– Systematic updates

320 CHAPTER 8. DEEP REINFORCEMENT LEARNING

– Lower variance

• Disadvantages:

– Requires model

– Computationally expensive

– Bootstrap bias

8.14.3 TD Learning Properties

Bias-Variance Trade-off

TD learning balances:

• Bias:

– From bootstrapping

– Initial estimates affect learning

– Generally decreases over time

• Variance:

– Lower than Monte Carlo

– Better sample efficiency

– More stable learning

Online Learning

TD enables true online learning:

• Updates at each step

• No need to store episodes

• Immediate feedback incorporation

• Natural for continuing tasks

8.14.4 Variants and Extensions

n-step TD

Bridges TD and Monte Carlo:

G
(n)
t = rt + γrt+1 + ...+ γn−1rt+n−1 + γnV (st+n) (8.114)

• n = 1: Regular TD

• n =∞: Monte Carlo

• Intermediate n: Balance bias/variance

8.15. ON-POLICY VERSUS OFF-POLICY LEARNING 321

TD(λ)

Combines multiple n-step returns:

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t (8.115)

Advantages:

• Unified view of TD and MC

• Adaptive bias-variance trade-off

• Efficient computation through eligibility traces

8.14.5 Connection to Other Concepts

Q-Learning Connection

Q-learning is TD for state-action values:

Q(st, at)← Q(st, at) + α[rt + γmax
a

Q(st+1, a)−Q(st, at)] (8.116)

MCTS Connection

Similar bootstrap principle:

• Both build estimates from future values

• TD: Through temporal sequence

• MCTS: Through tree structure

• Both reduce reliance on terminal outcomes

TD learning represents a fundamental advance in reinforcement learning by introducing
bootstrapping in the temporal domain. Its ability to learn online and balance bias-variance
trade-offs makes it a cornerstone of modern RL algorithms.

8.15 On-Policy versus Off-Policy Learning

8.15.1 Fundamental Definitions

• Behavior Policy µ(a|s): Policy generating data

• Target Policy π(a|s): Policy being learned

• On-Policy: µ = π

• Off-Policy: µ ̸= π

322 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.15.2 Mathematical Formulation

On-Policy Updates

Direct expectation under current policy:

J(θ) = Eπθ
[Gt] = Es∼ρπ ,a∼πθ

[Qπ(s, a)] (8.117)

Off-Policy Updates

Uses importance sampling ratio:

ρt =
π(at|st)
µ(at|st)

(8.118)

Corrected expectation:

J(θ) = Eµ [ρtGt] = Es∼ρµ,a∼µ

[
πθ(a|s)
µ(a|s)

Qπ(s, a)

]
(8.119)

8.15.3 Algorithm Examples

On-Policy Methods

• SARSA:
Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)] (8.120)

• PPO/TRPO:

min
θ

E
[
min

(
πθ(a|s)
πθold(a|s)

A(s, a), clip(
πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ)A(s, a)

)]
(8.121)

Off-Policy Methods

• Q-Learning:

Q(st, at)← Q(st, at) + α[rt + γmax
a′

Q(st+1, a
′)−Q(st, at)] (8.122)

• DQN:
∆θ ∝ (r + γmax

a′
Qθ−(s

′, a′)−Qθ(s, a))∇θQθ(s, a) (8.123)

8.15.4 Key Trade-offs

Sample Efficiency

• On-Policy:

– Must discard old data

– Requires fresh samples

– Lower sample efficiency

8.15. ON-POLICY VERSUS OFF-POLICY LEARNING 323

• Off-Policy:

– Can reuse old data

– Experience replay

– Higher sample efficiency

Stability

• On-Policy:

– More stable learning

– No distribution shift

– Better convergence properties

• Off-Policy:

– Potential instability

– Distribution mismatch

– Need stabilization techniques

8.15.5 Implementation Considerations

On-Policy Implementation

Key requirements:

• Collect new data each iteration

• Update policy using only recent data

• Parallel environment sampling helps

• Example memory requirement: O(|batch size|)

Off-Policy Implementation

Key requirements:

• Maintain replay buffer

• Handle distribution shift

• Target networks for stability

• Example memory requirement: O(|replay buffer|)

324 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.15.6 Unified View

Both approaches optimize:

max
θ

Es∼ρ,a∼µ

[
πθ(a|s)
µ(a|s)

A(s, a)

]
(8.124)

where:

• On-policy: µ = πθold , recent data

• Off-policy: µ ̸= πθ, replay buffer

8.15.7 Application Examples

• AlphaGo:

– Initial SL policy: Off-policy (human data)

– RL improvement: On-policy (self-play)

• Atari:

– DQN: Off-policy with replay buffer

– A3C/PPO: On-policy with parallel actors

8.16 Dense versus Sparse Rewards

8.16.1 Reward Characteristics

Atari Games - Dense Rewards

Key properties of Atari reward structure:

• Frequency: Rewards obtained frequently during gameplay

– Points for collecting items

– Scores for hitting targets

– Continuous feedback for progress

• Temporal Structure:

Rtotal =
T∑
t=1

rt where many rt ̸= 0 (8.125)

• Intermediate Feedback:

– Rewards signal immediate action quality

– Clear correlation between good actions and score increase

– Multiple reward scales (small points vs bonus points)

8.16. DENSE VERSUS SPARSE REWARDS 325

Go - Sparse Rewards

Characteristics of Go’s reward structure:

• Frequency: Single reward at game end

Rtotal = z where z ∈ {−1, 0,+1} (8.126)

• Temporal Structure:

– No intermediate rewards (rt = 0 for all t < T)

– Only terminal state provides feedback

– Binary outcome (win/loss)

8.16.2 Implications for Learning

Impact on Q-Learning

• Atari (Dense):

– Q-values updated frequently

– Clear temporal difference signals

– Equation: Q(st, at)← Q(st, at) + α[rt + γmaxaQ(st+1, a)−Q(st, at)]

– Many informative updates due to rt ̸= 0

• Go (Sparse):

– Most Q-updates only propagate zero rewards

– Long credit assignment chains

– Difficult bootstrapping due to delayed feedback

– Need for auxiliary value estimation

Impact on Policy Gradient

• Atari (Dense):

∇θJ(θ) = E[∇θ log πθ(at|st)(
T∑

k=t

rk)] (8.127)

– Frequent reward signals guide policy updates

– Lower variance in gradient estimates

– Natural curriculum through score progression

• Go (Sparse):
∇θJ(θ) = E[∇θ log πθ(at|st)z] (8.128)

– Same reward z applied to all actions in episode

– Higher variance in gradient estimates

– Need for sophisticated value bootstrapping

326 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.16.3 Solution Approaches

Atari Solutions

Leverage dense reward structure:

• Direct reinforcement learning (DQN, A2C, PPO)

• Experience replay for sample efficiency

• Reward clipping to manage scale differences

• Frame stacking for temporal context

Go Solutions

Overcome sparse rewards:

• Monte Carlo tree search for lookahead

• Value network to predict long-term outcomes

• Self-play for training data generation

• Policy network to guide search

8.16.4 Architectural Implications

The reward structure fundamentally shapes algorithm design:

• Atari:

– Focus on efficient online learning

– Emphasis on exploration-exploitation

– Direct value estimation feasible

• Go:

– Need for explicit search

– Importance of self-play curriculum

– Reliance on learned value approximation

8.17 Model-Based vs Model-Free Approaches

8.17.1 Model Definition

A model provides the environment dynamics:

• State transition: P (st+1|st, at)

• Reward function: R(st, at, st+1)

8.17. MODEL-BASED VS MODEL-FREE APPROACHES 327

8.17.2 Analysis by Game Type

Go Model Characteristics

• Perfect Model Available:

– Deterministic transitions following game rules

– Next state exactly computable

– Zero intermediate rewards

– Model is computationally cheap

• AlphaGo’s Model Usage:

– MCTS uses perfect model for lookahead

– Each simulation computes exact next states

– No need to learn dynamics

– Value network complements perfect rollouts

Atari Model Characteristics

• Complex Visual Dynamics:

– High-dimensional pixel space (84×84×4)

– Complex object interactions

– Game physics and collision detection

– Visual effects and animations

• Learning the Model:
ŝt+1, r̂t = fϕ(st, at) (8.129)

where fϕ is a learned neural network

8.17.3 Algorithmic Approaches

Model-Free Methods

Learn directly from experience:

• Q-Learning (DQN):

Q(st, at)← Q(st, at) + α[rt + γmax
a

Q(st+1, a)−Q(st, at)] (8.130)

• Policy Gradient (PPO):

θ ← θ + α∇θ log πθ(at|st)At (8.131)

328 CHAPTER 8. DEEP REINFORCEMENT LEARNING

• Advantages:

– No model required

– Works with any environment

– Simple implementation

• Disadvantages:

– Sample inefficient

– No planning capability

– Limited transfer learning

Model-Based Methods

Use or learn environment dynamics:

• Go (MCTS):

– Use perfect model for tree search

– Combine with learned value/policy

– Plan optimal sequences

– Sample efficient due to perfect model

• Atari (World Models):

– Learn approximate dynamics model

– Use model for planning/imagination

– Challenge: model errors compound

– High computational cost

8.17.4 Hybrid Approaches

MuZero Architecture

Unifies model-based and model-free:

• Learn implicit dynamics model

• MCTS with learned model

• Works for both Go and Atari

• Key innovation: predict only relevant features

8.18. MODEL PREDICTIVE CONTROL (MPC) 329

Learning Components

MuZero learns three functions:

• Dynamics: st+k = gθ(st, at, ..., at+k−1)

• Policy: πθ(a|st)

• Value: vθ(st)

8.17.5 Trade-offs Summary

• Go:

– Perfect model available

– Model-based methods excel

– MCTS provides strong planning

• Atari:

– Complex visual dynamics

– Model-free methods more common

– Model learning is challenging

• Universal Approach (MuZero):

– Learn task-relevant dynamics

– Combine search and learning

– Bridge model-based/model-free gap

8.18 Model Predictive Control (MPC)

8.18.1 Core Concept

MPC combines model-based planning with receding horizon control:

• Plan actions for H-step horizon

• Execute only first action

• Replan at next step with updated state

330 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.18.2 Mathematical Formulation

At each time t, solve:

max
at,...,at+H−1

H−1∑
k=0

γkr(st+k, at+k) (8.132)

subject to:

st+k+1 = f(st+k, at+k) (8.133)

where:

• H is planning horizon

• f is dynamics model (learned or known)

• Only at is actually executed

8.18.3 Algorithm Structure

Repeat at each timestep:

1. State Estimation:

• Get current state st

• Update model if learning-based

2. Planning:

• Generate trajectories for horizon H

• Optimize action sequence

• Can use various optimization methods:

– Random shooting

– Cross-entropy method (CEM)

– Gradient-based optimization

3. Execution:

• Apply first action at

• Observe next state st+1

• Repeat process

8.18. MODEL PREDICTIVE CONTROL (MPC) 331

8.18.4 Key Advantages

• Robustness:

– Continuous replanning handles uncertainty

– Adapts to model errors

– Recovery from disturbances

• Flexibility:

– Works with learned or known models

– Can incorporate constraints

– Adjustable planning horizon

8.18.5 Comparison to Other Methods

• vs Pure Planning:

– More robust to model errors

– Lower computational cost

• vs Model-Free RL:

– More sample efficient

– Better online adaptation

– Requires good model

8.18.6 Unifying View: MPC and AlphaGo Planning

Both MPC and AlphaGo exemplify model-based planning, though in different domains.
Their core similarities reveal fundamental principles of planning in sequential decision mak-
ing:

Planning Structure

• Look-ahead Tree/Trajectory:

– AlphaGo: Tree expansion with MCTS

st → {(a, st+1)→ (a′, st+2)→ ...} (8.134)

– MPC: Trajectory optimization over horizon H

st → st+1 → ...→ st+H (8.135)

• Receding Horizon:

– AlphaGo: New MCTS tree at each state

– MPC: New trajectory optimization at each step

– Both: Execute first action, then replan

332 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Value Estimation

• Terminal Value:

– AlphaGo: vθ(sL) at leaf nodes

– MPC: Terminal cost h(st+H) or None

• Cumulative Reward:

– AlphaGo:
∑

t rt + vθ(sL)

– MPC:
∑H−1

k=0 r(st+k, at+k) + h(st+H)

Model Usage

• Transition Model:

snext =

{
Game rules AlphaGo (perfect model)

fθ(s, a) or f(s, a) MPC (learned/known model)
(8.136)

• Model Application:

– AlphaGo: Exact next states in tree search

– MPC: State predictions over horizon

Optimization Strategy

• Search Space:

– AlphaGo: Tree of discrete actions

– MPC: Sequence of continuous actions

• Selection/Optimization:

at =

{
argmaxa Upper Confidence Bound(st, a) AlphaGo

argmaxat:t+H−1

∑H−1
k=0 r(st+k, at+k) MPC

(8.137)

Key Principles Both Share

• Planning Horizon:

– Limited-depth forward planning

– Balance computation vs horizon length

– Replan after each execution

• Uncertainty Handling:

– Continuous replanning compensates for errors

8.19. PLANNING VERSUS POLICY APPROACHES 333

– Value estimation for beyond-horizon effects

– Model accuracy most critical in near term

• Computation Allocation:

– More computation for immediate actions

– Decreasing precision for future steps

– Real-time computation constraints

This comparison reveals that while AlphaGo and MPC were developed in different com-
munities (discrete games vs continuous control), they embody the same fundamental prin-
ciples of model-based planning: look-ahead with limited horizon, value estimation for long-
term effects, and continuous replanning for robustness.

8.19 Planning versus Policy Approaches

8.19.1 Fundamental Distinction

Policy Definition

A policy directly maps states to actions:

• Mapping: πθ(a|s) parameterized by θ

• Computation: Single forward pass through network

• Memory: Fixed size independent of decision

• Characteristics: Can be stochastic or deterministic

Planning Definition

Planning searches over future trajectories:

• Search Space: Tree or trajectory of depth H

• Computation: Variable based on search depth/width

• Memory: Grows with search space

• Characteristics: Usually deterministic given compute budget

334 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.19.2 Computational Properties

Policy Computation

Analysis of policy computational characteristics:

• Time Complexity: O(1) per decision

• Space Complexity: O(|θ|) for parameters θ

• Scaling: Fixed with state/action space size

• Parallelization: Highly parallelizable batch inference

Planning Computation

Analysis of planning computational requirements:

• Time Complexity: O(bd) for breadth b, depth d

• Space Complexity: O(bd) for tree storage

• Scaling: Exponential with horizon length

• Parallelization: Tree expansion can be parallelized

8.19.3 Information Usage

Policy Information Processing

How policies utilize available information:

• Historical Data: Learns patterns from past experiences

• Future Consideration: Implicit in learned parameters

• Uncertainty: Encoded in policy distribution

• Model Dependence: Can operate model-free

Planning Information Processing

How planning leverages information:

• Historical Data: Only through value estimates

• Future Consideration: Explicit trajectory evaluation

• Uncertainty: Handled through tree exploration

• Model Dependence: Requires accurate transition model

8.19. PLANNING VERSUS POLICY APPROACHES 335

8.19.4 Decision Quality

Policy Decisions

Quality characteristics of policy-based decisions:

• Optimality: Bounded by training experience

• Consistency: Deterministic if policy is deterministic

• Generalization: Handles novel states within training distribution

• Recovery: Must learn recovery strategies explicitly

Planning Decisions

Quality characteristics of planning-based decisions:

• Optimality: Improves with computation budget

• Consistency: May vary with search parameters

• Generalization: Perfect within model bounds

• Recovery: Natural through replanning

8.19.5 Hybrid Approaches

AlphaGo Integration

Combines policy and planning through:

• Policy network guides MCTS exploration

• Planning improves over policy decisions

• Value network evaluates leaf nodes

• Mathematical framework:

P (a|s) = softmax(Q(s, a)/τ) (8.138)

where

Q(s, a) =
W (s, a)

N(s, a)
+ cπ(a|s)

√∑
b N(s, b)

1 +N(s, a)
(8.139)

336 CHAPTER 8. DEEP REINFORCEMENT LEARNING

MuZero Advancement

Further integration through:

• Learned implicit model for planning

• Joint policy, value, and dynamics learning

• Planning used in both training and inference

• Unified model-free and model-based approaches

8.19.6 Domain-Specific Considerations

Policy-Favorable Conditions

Prefer policy when:

• Real-time decisions required

• Large/continuous action spaces present

• Accurate model unavailable

• Limited computation budget

• Environment highly stochastic

Planning-Favorable Conditions

Prefer planning when:

• Computation time available

• Accurate model exists

• Critical decisions required

• Environment near-deterministic

• Safety constraints important

Hybrid-Favorable Conditions

Use hybrid approach when:

• Domain complexity high (e.g., Go)

• Variable computation budget available

• Both speed and accuracy needed

• Rich state/action structure exists

• Long-term consequences significant

8.19. PLANNING VERSUS POLICY APPROACHES 337

8.19.7 Implementation Considerations

Policy Implementation

Key steps in policy implementation:

1. Design network architecture

2. Choose policy gradient algorithm

3. Configure experience collection

4. Set training hyperparameters

5. Implement inference pipeline

Planning Implementation

Key steps in planning implementation:

1. Define state transition model

2. Select search algorithm

3. Configure expansion strategy

4. Implement backup operations

5. Optimize computation allocation

8.19.8 Future Trends

The field increasingly moves toward:

• Dynamic computation allocation

• Adaptive planning depth

• Improved model learning

• Better policy-planning integration

• Hardware-aware algorithm design

This comparison reveals that modern deep reinforcement learning systems often benefit
from combining both approaches, using policies for rapid approximate decisions and planning
for refined decision-making when computation permits. The success of systems like AlphaGo
and MuZero demonstrates the power of properly balancing these complementary approaches.

338 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.20 Relationship Between Planning and Control

8.20.1 Core Definitions and Distinctions

Planning Characteristics

Planning is characterized by:

• Finding sequences of actions to reach desired states

• Operating primarily in state/action space

• Emphasis on look-ahead and trajectory generation

• Example: MCTS in AlphaGo finding sequences of moves

Control Characteristics

Control focuses on:

• Regulating system behavior to achieve/maintain desired states

• Operating in both state and dynamics space

• Emphasis on feedback and stability

• Example: PID controller maintaining robot joint angles

8.20.2 Mathematical Formulations

Planning Formulation

The planning problem can be stated as:

max
a1,...,an

n∑
i=1

r(si, ai) (8.140)

subject to:

si+1 = f(si, ai) (8.141)

where:

• ai are discrete or continuous actions

• si are system states

• r(si, ai) is the reward function

• f is the transition function

8.20. RELATIONSHIP BETWEEN PLANNING AND CONTROL 339

Control Formulation

The control problem is typically formulated as:

min
u(t)

∫ T

0

L(x(t), u(t))dt (8.142)

subject to:
ẋ(t) = f(x(t), u(t)) (8.143)

where:

• u(t) is the control input

• x(t) is the system state

• L is the cost function

• f represents system dynamics

8.20.3 Key Distinctions

Time Horizon

• Planning:

– Discrete-time formulation

– Finite horizon typically

– Coarser time discretization

• Control:

– Continuous-time or high-frequency discrete

– Often infinite horizon

– Fine-grained time discretization

State Space Treatment

• Planning:

– Discrete or discretized states

– Focus on reachability

– Often deals with combinatorial spaces

• Control:

– Continuous state spaces

– Focus on stability

– Usually deals with smooth spaces

340 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.20.4 Model Predictive Control: A Bridge

MPC represents a fusion of planning and control approaches:

Key Components

• Planning Aspect:

min
ut:t+H

t+H∑
k=t

L(xk, uk) (8.144)

• Control Aspect:

– Apply only first control input

– Continuous replanning

– Feedback incorporation

MPC Algorithm

At each timestep:

1. Measure current state xt

2. Solve optimization problem:

u∗
t:t+H = arg min

ut:t+H

t+H∑
k=t

L(xk, uk) (8.145)

subject to:

xk+1 = f(xk, uk) (8.146)

xk ∈ X (8.147)

uk ∈ U (8.148)

3. Apply u∗
t

4. Repeat at next timestep

8.20.5 Comparative Analysis

Computational Aspects

• Planning:

– Higher computational cost

– Better optimality for complex tasks

– Handles discontinuous objectives

8.20. RELATIONSHIP BETWEEN PLANNING AND CONTROL 341

– Harder real-time guarantees

• Control:

– Lower computational cost

– Better stability guarantees

– Continuous operation

– Easier real-time implementation

Uncertainty Handling

• Planning:

– Through search tree expansion

– Scenario-based planning

– Replanning on deviations

• Control:

– Through robust control methods

– Adaptive control

– Continuous feedback

8.20.6 Modern Integration

Hierarchical Framework

Modern systems often employ a hierarchical approach:

• High Level: Planning (slow update)

– Long-term trajectory generation

– Discrete decision making

• Mid Level: MPC (medium update)

– Trajectory optimization

– Constraint handling

• Low Level: Control (fast update)

– Trajectory tracking

– Disturbance rejection

342 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Learning Integration

Modern approaches incorporate learning:

• Neural network dynamics models

• Learned value functions

• Policy networks for initialization

• End-to-end differentiable planning

8.20.7 Future Directions

The field moves toward:

• Unified planning and control frameworks

• Learning-augmented MPC

• Multi-timescale integration

• Hardware-aware algorithms

While planning and control share the goal of decision-making in dynamic systems, they
represent complementary approaches optimized for different aspects of the problem. Modern
systems increasingly recognize that these approaches are not mutually exclusive but rather
can be integrated effectively at different levels of the control hierarchy.

8.21 Policy and Value Functions in Planning and Con-

trol

8.21.1 Fundamental Roles

Policy Functions

A policy π maps states to actions:

• Deterministic Policy: π : S → A

• Stochastic Policy: π(a|s) giving probability distribution over A

• Parameterized Form: πθ(a|s) with parameters θ

Value Functions

Value functions estimate expected returns:

• State Value: V π(s) = Eπ[
∑∞

t=0 γ
trt|s0 = s]

• Action Value: Qπ(s, a) = Eπ[
∑∞

t=0 γ
trt|s0 = s, a0 = a]

• Advantage: Aπ(s, a) = Qπ(s, a)− V π(s)

8.21. POLICY AND VALUE FUNCTIONS IN PLANNING AND CONTROL 343

8.21.2 Integration in Planning

Policy-Guided Planning

Policy networks enhance planning efficiency:

PUCT(s, a) = Q(s, a) + cπθ(a|s)
√∑

bN(s, b)

1 +N(s, a)
(8.149)

where:

• Q(s, a) is the action value from search

• πθ(a|s) guides exploration

• N(s, a) counts state-action visits

• c balances exploration and exploitation

Value-Guided Planning

Value functions enhance planning depth:

Vplan(s) = max
a

{
r(s, a) + γmax

a′
[λVθ(s

′) + (1− λ)Vtree(s
′)]
}

(8.150)

where:

• Vθ(s) is the learned value function

• Vtree(s) is the tree search value

• λ balances learned and searched values

8.21.3 Integration in Control

Policy-Based Control

Neural network policies for control:

u(t) = πθ(x(t)) + ϵ(t) (8.151)

where:

• u(t) is the control input

• x(t) is the system state

• ϵ(t) is exploration noise

• πθ is a neural network controller

344 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Value-Based Control

Value functions guide optimal control:

u∗(t) = argmax
u

[r(x, u) + γV (f(x, u))] (8.152)

where:

• f(x, u) is the system dynamics

• V (x) approximates optimal value function

• r(x, u) is immediate reward/cost

8.21.4 Hybrid Architectures

Model Predictive Control with Policy and Value

MPC enhanced by learned components:

J(ut:t+H) =
t+H−1∑
k=t

r(xk, uk) + Vθ(xt+H) (8.153)

subject to:

uk = πθ(xk) + ∆uk (8.154)

xk+1 = f(xk, uk) (8.155)

∥∆uk∥ ≤ ϵ (8.156)

where:

• Vθ(xt+H) provides terminal cost

• πθ(xk) initializes optimization

• ∆uk allows deviation from policy

• ϵ constrains policy deviation

AlphaGo-Style Planning with Control

Combining search and control:

at = argmax
a

[Qmcts(st, a) + αQcontrol(st, a)] (8.157)

where:

• Qmcts comes from tree search

• Qcontrol from control optimization

• α balances planning and control

8.21. POLICY AND VALUE FUNCTIONS IN PLANNING AND CONTROL 345

8.21.5 Learning Mechanisms

Policy Learning

Multiple approaches to policy improvement:

• Policy Gradient:
∇θJ(θ) = Eπθ

[∇θ log πθ(a|s)Aπ(s, a)] (8.158)

• Trust Region:

max
θ

E
[

πθ(a|s)
πθold(a|s)

Aπ(s, a)

]
s.t. DKL(πθold , πθ) ≤ δ (8.159)

Value Learning

Multiple approaches to value estimation:

• Temporal Difference:

Vθ(st)← Vθ(st) + α[rt + γVθ(st+1)− Vθ(st)] (8.160)

• Monte Carlo:
Vθ(st)← Vθ(st) + α[Gt − Vθ(st)] (8.161)

8.21.6 Implementation Considerations

Architecture Design

Key design decisions include:

• Network architectures for policy and value

• Integration depth in planning/control

• Balance between learned and optimized components

• Computational budget allocation

Training Strategy

Effective training requires:

• Off-policy data collection

• Experience replay management

• Value and policy updates scheduling

• Exploration strategy design

346 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.21.7 Future Directions

Emerging trends include:

• End-to-end differentiable planning

• Meta-learning for policy adaptation

• Multi-task value functions

• Hierarchical policy architectures

• Uncertainty-aware value estimates

Both policy and value functions serve crucial roles in modern planning and control sys-
tems. While traditionally these components were often used separately, contemporary ap-
proaches increasingly recognize their complementary nature and leverage both for enhanced
performance. The integration of these learned components with classical planning and con-
trol methods represents a promising direction for future research and development.

8.22 Online versus Offline Reinforcement Learning

8.22.1 Fundamental Distinctions

Online RL

Characterization of online learning:

• Environment Access: Direct interaction during training

• Data Collection: Agent actively gathers experiences

• Policy Update: Immediate updates from new experiences

• Exploration: Agent controls data collection strategy

Offline RL

Key characteristics of offline learning:

• Environment Access: No interaction during training

• Data Collection: Fixed dataset D of past experiences

• Policy Update: Limited to existing data distribution

• Exploration: Must leverage existing data coverage

8.22. ONLINE VERSUS OFFLINE REINFORCEMENT LEARNING 347

8.22.2 Mathematical Formulation

Online RL Objective

Standard RL objective with data collection:

max
θ

Eπθ
[
∞∑
t=0

γtrt] (8.162)

where experiences are collected using current policy:

(st, at, rt, st+1) ∼ πθ (8.163)

Offline RL Objective

Modified objective using fixed dataset:

max
θ

E(s,a,r,s′)∼D[
∞∑
t=0

γtrt] (8.164)

subject to distributional constraints:

D(πθ(·|s)∥πβ(·|s)) ≤ ϵ (8.165)

where:

• D is the fixed dataset

• πβ is the behavior policy that generated the data

• D is a divergence measure

• ϵ constrains deviation from data distribution

8.22.3 Key Challenges

Online RL Challenges

• Sample Efficiency:

Samples Needed ∝ |S| × |A|
ϵ2

(8.166)

• Exploration-Exploitation:

at = argmax
a

[Q(st, a) + c

√
log t

N(st, a)
] (8.167)

• Safety During Learning:

– Risk of poor actions during exploration

– Need for safe exploration strategies

348 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Offline RL Challenges

• Distribution Shift:
Eπθ

[Q(s, a)] ̸= ED[Q(s, a)] (8.168)

• Value Overestimation:

Q(s, a) ≈ r + γ max
a′∈supp(D)

Q(s′, a′) (8.169)

• Limited State Coverage:

– Unknown state-action combinations

– Uncertainty in unexplored regions

8.22.4 Modern Algorithms

Online Methods

Representative approaches:

• PPO: Trust region policy optimization

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (8.170)

• SAC: Maximum entropy RL

J(θ) = Eπθ
[
∞∑
t=0

γt(rt + αH(πθ(·|st)))] (8.171)

• DrQ: Data-regularized Q-learning

L(θ) = E(s,a,r,s′)∼B[(r + γmax
a′

Qθ′(aug(s
′), a′)−Qθ(aug(s), a))

2] (8.172)

Offline Methods

Key algorithms:

• BCQ: Behavior-Constrained Q-learning

a∗ = arg max
ai∼Gω(s)

Qθ(s, ai) (8.173)

• CQL: Conservative Q-Learning

LCQL(θ) = αEs∼D[log
∑
a

exp(Qθ(s, a))− Ea∼D[Qθ(s, a)]] (8.174)

• TD3+BC: TD3 with Behavior Cloning

πϕ(s) = argmax
a

[λQθ(s, a) + (1− λ)πβ(a|s)] (8.175)

8.22. ONLINE VERSUS OFFLINE REINFORCEMENT LEARNING 349

8.22.5 Implementation Considerations

Online Implementation

Key requirements:

• Environment Interface:

– Real-time interaction capability

– Reset functionality

– State/reward observation

• Experience Collection:

– Parallel environment instances

– Replay buffer management

– Exploration strategy

• Training Loop:

while not converged:


Collect experiences

Update policy

Evaluate performance

(8.176)

Offline Implementation

Essential components:

• Dataset Management:

– Efficient data storage

– Batch sampling

– Data preprocessing

• Policy Constraints:

– Support estimation

– Uncertainty quantification

– Distribution matching

• Training Process:

repeat until convergence:


Sample batch from D
Update with constraints

Validate on held-out data

(8.177)

350 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.22.6 Applications

Online RL Applications

Suitable domains:

• Simulated environments

• Game playing

• Robotic control in safe settings

• Continuous learning systems

Offline RL Applications

Appropriate use cases:

• Healthcare decision making

• Industrial process control

• Autonomous driving

• Recommendation systems

8.22.7 Future Directions

Emerging trends:

• Hybrid Approaches:

– Offline pre-training with online fine-tuning

– Selective environment interaction

– Data-driven exploration

• Theoretical Advances:

– Tighter bounds on offline learning

– Uncertainty quantification

– Causal inference integration

• Practical Improvements:

– Better support estimation

– More efficient constraints

– Scalable implementations

8.23. SUMMARY 351

The distinction between online and offline RL represents a fundamental trade-off between
data collection flexibility and real-world applicability. While online RL offers the potential
for continuous improvement through interaction, offline RL provides a path to leveraging
existing datasets in scenarios where direct environment interaction is impractical or unsafe.
Modern approaches increasingly explore combinations of both paradigms, seeking to leverage
their complementary strengths.

8.23 Summary

8.23.1 Core Components in Deep RL

All approaches can be understood through four fundamental components:

• Policy Network πθ(a|s):

– Direct action selection

– Can be deterministic or stochastic

– Works with or without planning

• Value Network Vθ(s) or Qθ(s, a):

– Long-term outcome prediction

– Guides policy improvement

– Enables bootstrapping

• Dynamics Model fθ(s, a):

– State transition prediction

– Either perfect (Go) or learned (Atari)

– Enables planning when available

• Planning Module:

– Action sequence optimization

– Uses model for lookahead

– Can combine with policy/value

8.23.2 Algorithm Classification

Different approaches emphasize different components:

Algorithm Policy Value Model Planning
AlphaGo ✓ ✓ Perfect MCTS
DQN Implicit ✓ No No
PPO ✓ ✓ No No
MPC Optional Optional ✓ Horizon-H
MuZero ✓ ✓ Learned MCTS

352 CHAPTER 8. DEEP REINFORCEMENT LEARNING

8.23.3 Key Trade-offs

Model-Based vs Model-Free

Choice depends on:

• Model availability/accuracy

• Computational budget

• Sample efficiency needs

• Planning horizon length

Planning vs Direct Policy

Balance between:

• Computation per decision

• Required optimality

• Environment predictability

• Real-time constraints

8.23.4 Unified Learning Framework

Most algorithms optimize some combination of:

L(θ) = E[(r + γVtarget − Vθ)
2]︸ ︷︷ ︸

value loss

+E[log πθA]︸ ︷︷ ︸
policy loss

+E[∥fθ(s, a)− s′∥2]︸ ︷︷ ︸
model loss

(8.178)

Where:

• Value target comes from bootstrapping or planning

• Advantage A comes from value or planning

• Model loss only present in model-based methods

8.23.5 Domain-Specific Insights

Different problems emphasize different components:

• Perfect Model + Sparse Reward (Go):

– Heavy planning (MCTS)

– Policy for search guidance

– Value for leaf evaluation

8.23. SUMMARY 353

• No Model + Dense Reward (Atari):

– Direct policy/value learning

– Bootstrapped updates

– Experience replay

• Learned Model + Control (MPC):

– Short-horizon planning

– Continuous replanning

– Model adaptation

This unified framework reveals that success in deep RL comes from appropriately com-
bining these components based on problem characteristics, computational resources, and
performance requirements. The field’s complexity arises not from the individual compo-
nents, but from the many ways they can be effectively combined.

354 CHAPTER 8. DEEP REINFORCEMENT LEARNING

Chapter 9

Trees and Boosting

Figure 9.1: Tree

Chapter Overview

This chapter builds from regression trees to modern boosting methods, starting with the
fundamental concept of recursive binary partitioning for piecewise-constant function ap-
proximation. From this foundation, we develop L2 boosting as a natural extension where
regression trees serve as base learners in iterative residual fitting, providing a simple yet
powerful framework for gradient descent in function space. This leads to XGBoost, which
enhances the boosting framework through second-order approximation of arbitrary loss func-
tions, elegantly transforming each iteration into a weighted least squares problem where
weights come from the Hessian and the working response is the negative gradient-to-Hessian
ratio. Having established this modern perspective, we then look back at two influential
historical developments: AdaBoost, which introduced the key ideas of exponential loss and
multiplicative weight updates, and Random Forests, which take a parallel rather than se-
quential approach to ensemble building through bootstrap aggregation and random feature

355

356 CHAPTER 9. TREES AND BOOSTING

selection. This organization emphasizes the mathematical progression from simple regression
trees to sophisticated boosting algorithms while acknowledging the historical developments
that shaped the field.

9.1 Incremental Model Improvement: From Deep Learn-

ing to Trees

9.1.1 The Principle of Incremental Learning

In the previous chapters, we studied deep learning models trained through gradient descent
and back-propagation. The core idea is simple yet powerful: start with an initial model and
incrementally improve it through small updates. Specifically, at each iteration t:

θt+1 = θt − η∇θL(θt) (9.1)

where θt represents the model parameters and η is the learning rate. Each update slightly
adjusts the model to better fit the training data.

9.1.2 Three Paradigms of Incremental Improvement

This chapter introduces two new approaches to machine learning - decision trees and boosting
- that also follow the principle of incremental improvement, albeit in different ways:

1. Gradient-Based Neural Networks: - Model: f(x; θ) parameterized by weights θ -
Increment: Small parameter updates via gradient descent - Update rule: θt+1 = θt−η∇θL(θt)

2. Decision Trees: - Model: Piecewise constant function on regions {Rm} - Increment:
Binary splitting of existing regions - Update rule: Rm → {Rm1, Rm2} via optimal splits

3. Boosting: - Model: Additive ensemble fM(x) =
∑M

m=1 hm(x) - Increment: Addition
of new base learners (trees) - Update rule: fM = fM−1 + hM

9.1.3 Geometric Interpretation

These three approaches can be understood geometrically:

1. Gradient Descent: - Moves continuously in the parameter space - Each step follows
the direction of steepest descent - Local linear approximation of the loss surface

2. Tree Growing: - Refines the partition of feature space - Each split creates a new
decision boundary - Piecewise constant approximation gets finer

3. Boosting: - Moves in function space - Each step adds a new function - Residual
fitting guides the improvement

9.1.4 Common Mathematical Structure

Despite their different appearances, these methods share a common mathematical structure:

9.2. DECISION TREES 357

1. Optimization Objective:

min
f

n∑
i=1

L(yi, f(xi)) + complexity(f) (9.2)

2. Iterative Improvement: - Start with simple model - Repeatedly apply local im-
provements - Stop when improvements become small

3. Bias-Variance Trade-off: - Initial model is biased but stable - Each increment
reduces bias - Too many increments increase variance

9.1.5 The Role of Gradients

Gradients play a central role in all three approaches:
1. Neural Networks: - Direct gradient descent in parameter space - Back-propagation

computes exact gradients - Learning rate controls step size
2. Decision Trees: - Split criterion approximates gradient - Greedy optimization at

each split - Binary decisions approximate continuous gradients
3. Gradient Boosting: - Explicit gradient descent in function space - Trees fit negative

gradients - Learning rate scales tree contributions
This unifying view helps us understand these seemingly different approaches as varia-

tions on the same theme: incremental model improvement guided by some form of gradient
information.

9.1.6 Looking Ahead

The rest of this chapter will explore trees and boosting in detail, keeping in mind their
connection to the gradient-based learning we’ve studied previously. We’ll see how these
methods:

- Offer different trade-offs between bias and variance
- Handle the curse of dimensionality
- Manage computational complexity
- Combat overfitting
- Achieve state-of-the-art performance in many applications
By understanding these methods through the lens of incremental improvement, we can

better appreciate their strengths, limitations, and relationships to deep learning.

9.2 Decision Trees

9.2.1 A Motivating Example

Consider a simple yet illustrative problem: classifying individuals as male or female based
on their height and weight measurements. While seemingly straightforward, this example
encapsulates the key ideas behind decision trees and their geometric interpretation.

Let (X1, X2) ∈ R2 represent the height and weight measurements respectively, and Y ∈
{0, 1} denote the gender (0 for female, 1 for male). Given a training dataset {(xi1, xi2, yi)}ni=1,
we aim to construct a predictor for unseen individuals.

358 CHAPTER 9. TREES AND BOOSTING

9.2.2 Decision Rules and Tree Structure

A decision tree makes predictions through a sequence of binary questions. For our example,
a simple tree structure might be:

Height > 180cm?

Weight > 80kg? Male

Female Male

No Yes

No Yes

Figure 9.2: Decision Tree Structure
Height (cm)

Weight (kg)

180

Height = 180

Weight = 80

Male

Female

Male

80

Figure 9.3: Feature Space Partition

• First split: Height > 180cm → Male

• For Height ≤ 180cm:

– Weight > 80kg → Male

– Weight ≤ 80kg → Female

9.2.3 The Concept of Purity

The quality of a partition is measured by the “purity” of the resulting regions. For a region
R containing nR observations, let pk(R) denote the proportion of class k observations in R.
Common purity measures include:

1. Misclassification error:
error(R) = 1−max

k
pk(R) (9.3)

2. Gini index:
Gini(R) = 1−

∑
k

pk(R)2 (9.4)

3. Cross-entropy:

Entropy(R) = −
∑
k

pk(R) log2(pk(R)) (9.5)

For binary classification (K = 2), all these measures are convex functions of the class
proportion p1(R), reaching their maximum at p1(R) = 0.5 and minimum at p1(R) ∈ {0, 1}.

9.3. REGRESSION TREES 359

9.2.4 Splitting Criterion

When considering a split s that partitions region R into RL and RR, we compute the reduc-
tion in impurity:

∆I(s, R) = I(R)− |RL|
|R|

I(RL)−
|RR|
|R|

I(RR) (9.6)

where I(·) is any of the impurity measures defined above. The optimal split s∗ maximizes
this reduction:

s∗ = argmax
s

∆I(s, R) (9.7)

9.2.5 From Classification to Regression

This framework extends naturally to regression problems where Y ∈ R. The key modifica-
tions are:

1. The prediction in each region R becomes the mean of the response values:

ĉR =
1

|R|
∑
i:xi∈R

yi (9.8)

2. The impurity measure becomes the mean squared error:

I(R) =
1

|R|
∑
i:xi∈R

(yi − ĉR)
2 (9.9)

This connection between classification and regression trees provides a unified framework
for understanding tree-based methods, which we will explore in subsequent sections.

9.3 Regression Trees

A regression tree constructs a piecewise constant prediction function through recursive par-
titioning of the feature space.

9.3.1 Mathematical Framework

Let (X, Y) be a random pair where X ∈ X ⊂ Rp represents the feature vector and Y ∈ R is
the response variable. Given training data {(xi, yi)}ni=1, our goal is to estimate the regression
function f(x) = E[Y |X = x].

A regression tree partitions X into M disjoint regions {Rm}Mm=1 and fits a constant value
in each region:

f(x) =
M∑

m=1

cmI{x ∈ Rm} (9.10)

where cm ∈ R is the prediction value for region Rm and I{·} denotes the indicator
function.

360 CHAPTER 9. TREES AND BOOSTING

Figure 9.4: Regression tree

9.3.2 Optimization Problem

The estimation procedure aims to minimize:

min
{Rm}Mm=1,{cm}Mm=1

{
n∑

i=1

(yi −
M∑

m=1

cmI{xi ∈ Rm})2 + λM

}
(9.11)

where λM serves as a complexity penalty controlling the total number of regions.

9.3.3 Recursive Binary Splitting

The optimization proceeds through recursive binary splitting. For a given region R, we
consider splitting it into two subregions based on a feature j and split point s:

RL(j, s) = {x ∈ R : xj ≤ s}
RR(j, s) = {x ∈ R : xj > s}

The optimal constant prediction within any region R is the mean of the responses:

ĉR =
1

|IR|
∑
i∈IR

yi (9.12)

where IR = {i : xi ∈ R} is the set of indices for observations in region R.

9.3.4 Split Selection Algorithm

The algorithm for finding the optimal split at each node proceeds through nested loops:

9.3. REGRESSION TREES 361

Algorithm 6 Optimal Split Selection

1: Input: Region R, data {(xi, yi)}i∈IR
2: Output: Optimal feature j∗ and split point s∗

3: Initialize L∗ ←∞ ▷ Best loss so far
4: for j = 1 to p do ▷ Loop over features
5: Sort observations in R by feature j
6: for i ∈ IR \ {max(IR)} do ▷ Loop over potential splits
7: if xij < xi+1,j then ▷ Unique split points only
8: s← (xij + xi+1,j)/2
9: Compute IL ← {k ∈ IR : xkj ≤ s}
10: Compute IR ← {k ∈ IR : xkj > s}
11: ĉL ← 1

|IL|
∑

k∈IL yk

12: ĉR ← 1
|IR|
∑

k∈IR yk
13: L(j, s)←

∑
k∈IL(yk − ĉL)

2 +
∑

k∈IR(yk − ĉR)
2

14: if L(j, s) < L∗ then
15: L∗ ← L(j, s)
16: j∗ ← j
17: s∗ ← s
18: end if
19: end if
20: end for
21: end forreturn (j∗, s∗)

9.3.5 Tree Growing Procedure

The full tree is grown through the following steps:

1. Start with all data in a single region R1 = X

2. For each current terminal region Rm:

(a) Find optimal split (j∗, s∗) using Algorithm 1

(b) If the decrease in loss exceeds λ, create two new regions

(c) Otherwise, leave Rm as a terminal node

3. Repeat step 2 until no further splits are beneficial

9.3.6 Statistical Properties

For any region Rm, the mean squared error can be decomposed as:

1

|Im|
∑
i∈Im

(yi − ĉm)
2 =

1

|Im|
∑
i∈Im

(yi − c∗m)
2 + (c∗m − ĉm)

2 (9.13)

where c∗m = E[Y |X ∈ Rm] is the conditional expectation in region Rm.

362 CHAPTER 9. TREES AND BOOSTING

9.4 Least Squares Boosting

9.4.1 Basic Framework

Let’s begin with the standard additive model framework but now explicitly incorporating
regularization terms:

f(x) =
M∑

m=1

hm(x) (9.14)

where each base learner hm(x) is a regression tree that can be written as:

hm(x) =
Jm∑
j=1

cmjI{x ∈ Rmj} (9.15)

Here:

• Rmj are disjoint regions partitioning the feature space

• cmj are the coefficients for each region

• Jm is the number of regions in the m-th tree

9.4.2 Regularized Optimization

At iteration m, given the current model fm−1(x), we solve:

min
hm

{
n∑

i=1

(ri − hm(xi))
2 + λ

Jm∑
j=1

c2mj + γJm

}
(9.16)

where:

• ri = yi − fm−1(xi) are the current residuals

• λ controls L2 regularization on region coefficients

• γ penalizes the number of regions

9.4.3 Tree Construction with Regularization

For a candidate split that divides region R into RL and RR:

1. Optimal coefficients with L2 regularization:

c∗L =

∑
i∈RL

ri

|RL|+ λ
(9.17)

c∗R =

∑
i∈RR

ri

|RR|+ λ
(9.18)

9.4. LEAST SQUARES BOOSTING 363

2. Split gain with both regularization terms:

∆L =
(
∑

i∈RL
ri)

2

|RL|+ λ
+

(
∑

i∈RR
ri)

2

|RR|+ λ
−

(
∑

i∈R ri)
2

|R|+ λ
− γ (9.19)

9.4.4 Extension to Weighted Least Squares

Now let’s extend this to include observation weights wi. The optimization becomes:

min
hm

{
n∑

i=1

wi(ri − hm(xi))
2 + λ

Jm∑
j=1

c2mj + γJm

}
(9.20)

This leads to modified formulas:

1. Optimal coefficients:

c∗L =

∑
i∈RL

wiri∑
i∈RL

wi + λ
(9.21)

c∗R =

∑
i∈RR

wiri∑
i∈RR

wi + λ
(9.22)

2. Split gain:

∆L =
(
∑

i∈RL
wiri)

2∑
i∈RL

wi + λ
+

(
∑

i∈RR
wiri)

2∑
i∈RR

wi + λ
−

(
∑

i∈R wiri)
2∑

i∈R wi + λ
− γ (9.23)

9.4.5 Complete Algorithm

Algorithm 7 Regularized Weighted L2 Boosting

1: Initialize: f0(x) = 0
2: for m = 1 to M do
3: Compute residuals: ri = yi − fm−1(xi)
4: Fit regularized tree hm(x):

1. Start with single region

2. For each leaf node:

• Find best split using regularized gain

• Split if gain > 0

3. Compute regularized coefficients for each region

5: Update: fm(x) = fm−1(x) + hm(x)
6: end for
7: return fM(x)

9.4.6 Connection to XGBoost

This formulation directly connects to XGBoost by observing that:

364 CHAPTER 9. TREES AND BOOSTING

1. For general loss functions, the second-order Taylor expansion leads to a weighted least
squares problem where:

• Weights: wi =
∂2l
∂f2

∣∣
f=fm−1(xi)

• Working response: ri = −∂l/∂f
wi

∣∣
f=fm−1(xi)

2. The regularization terms remain the same, providing:

• L2 regularization on leaf weights (λ term)

• Complexity penalty on tree structure (γ term)

This formulation shows how L2 boosting with explicit regularization naturally generalizes
to XGBoost’s framework for arbitrary loss functions through second-order approximation.

9.5 XGBoost for Logistic Regression

9.5.1 The Logistic Model

Consider binary classification where yi ∈ {0, 1}. The logistic model estimates probability
p(x) = P (Y = 1|X = x) through:

p(x) =
1

1 + e−f(x)
(9.24)

where f(x) is our additive model:

f(x) =
M∑

m=1

hm(x) (9.25)

9.5.2 Loss Function Analysis

For each observation (xi, yi), the negative log-likelihood loss is:

l(yi, f) = −yi log(p)− (1− yi) log(1− p) (9.26)

= −yi log
(

1

1 + e−f

)
− (1− yi) log

(
e−f

1 + e−f

)
(9.27)

= yi log(1 + e−f) + (1− yi)(f + log(1 + e−f)) (9.28)

= f(1− yi) + log(1 + e−f) (9.29)

The first and second derivatives are:

ri =
∂l

∂f
= (1− yi)−

1

1 + ef
= p− yi (9.30)

wi =
∂2l

∂f 2
=

ef

(1 + ef)2
= p(1− p) (9.31)

9.5. XGBOOST FOR LOGISTIC REGRESSION 365

9.5.3 Adding a New Tree

Having computed ri and wi, adding a new tree amounts to solving a weighted least squares
problem:

min
hm

{
n∑

i=1

wi(zi − hm(xi))
2 + λ

Jm∑
j=1

c2mj + γJm

}
(9.32)

where:

• zi = −ri/wi = −(pi − yi)/(pi(1− pi)) is the working response

• λ controls L2 regularization on leaf weights

• γ penalizes tree complexity

Tree Structure

The tree hm(x) takes the form:

hm(x) =
Jm∑
j=1

cmjI{x ∈ Rmj} (9.33)

where:

• Rmj are disjoint regions partitioning the feature space

• cmj are the leaf weights

• Jm is the number of leaves

Optimal Leaf Weights

For any region Rj, the optimal weight with regularization is:

c∗j = −
∑

i∈Rj
ri∑

i∈Rj
wi + λ

=

∑
i∈Rj

wizi∑
i∈Rj

wi + λ
(9.34)

This has an intuitive interpretation:

• Numerator sums the weighted working responses

• Denominator includes regularization λ

• More weight (wi) means more influence on leaf value

366 CHAPTER 9. TREES AND BOOSTING

Split Finding

For a candidate split dividing region R into RL and RR, the gain is:

∆L =
(
∑

i∈RL
ri)

2

2(
∑

i∈RL
wi + λ)

+
(
∑

i∈RR
ri)

2

2(
∑

i∈RR
wi + λ)

−
(
∑

i∈R ri)
2

2(
∑

i∈R wi + λ)
− γ (9.35)

The split finding algorithm proceeds as:

Algorithm 8 Finding Optimal Split

1: for each feature k do
2: Sort instances by feature k value
3: for each possible split point s do
4: Calculate rL =

∑
xik≤s ri, wL =

∑
xik≤swi

5: Calculate rR =
∑

xik>s ri, wR =
∑

xik>s wi

6: Calculate gain ∆L using formula above
7: if ∆L is maximum so far then
8: Update best split
9: end if
10: end for
11: end for

Tree Building Process

The complete tree is built recursively:

Algorithm 9 Building Tree hm

1: Start with all data in single region
2: Function BuildTree(Region R):
3: Find best split of R using Algorithm 1
4: if gain > 0 then
5: Split R into RL and RR

6: BuildTree(RL)
7: BuildTree(RR)
8: else
9: Make R a leaf with weight c∗R
10: end if

Practical Considerations

Additional constraints are often added:

• Maximum tree depth d

• Minimum sum of weights in each node

• Maximum number of leaves

These help prevent overfitting and ensure computational efficiency.

9.5. XGBOOST FOR LOGISTIC REGRESSION 367

9.5.4 Geometric Interpretation

The derivatives provide crucial geometric information:

1. First Derivative (ri):

• Represents the slope of the loss function

• ri = p− yi is the prediction error

• Large magnitude indicates we’re far from optimal

• Sign indicates direction of needed adjustment

2. Second Derivative (wi):

• Represents the curvature of the loss function

• wi = p(1− p) is highest at p = 0.5 (equals 0.25)

• Approaches 0 as p approaches 0 or 1

• Indicates how ”certain” our current prediction is

9.5.5 The Golf Analogy

This interplay between ri and wi parallels different stages of a golf game:

1. Early Predictions (p ≈ 0.5):

• Large wi ≈ 0.25 means high curvature

• Working response zi = −ri/wi is moderate

• Like a mid-range shot: balanced distance and precision

2. Very Wrong Predictions (p ≈ 0 for yi = 1 or p ≈ 1 for yi = 0):

• Small wi ≈ 0 means low curvature

• Large working response due to small denominator

• Like the first stroke: need big correction, less precision

3. Nearly Correct Predictions (p ≈ yi):

• Moderate wi but very small ri

• Small working response due to small numerator

• Like the final putt: small, precise adjustments

368 CHAPTER 9. TREES AND BOOSTING

9.5.6 Connection to Error Back-propagation

The gradient ri in XGBoost is analogous to the error term ei in neural network back-
propagation:

1. Neural Networks:

• Error ei is back-propagated through layers

• Weights are updated based on back-propagated error

• Each layer learns to reduce the propagated error

2. XGBoost:

• Gradient ri is the ”error” to be corrected

• New tree hm(x) learns to predict −ri/wi

• Each tree reduces the residual error

9.5.7 Tree Learning as Back-propagation

When fitting a new tree hm(x), we are effectively:

1. Computing the error signal: ri = pi − yi

2. Scaling by curvature: zi = −ri/wi

3. Learning a tree to predict this scaled error

4. Updating the model: fm = fm−1 + hm

This is analogous to neural network training where:

1. Forward pass computes predictions

2. Back-propagation computes error gradients

3. Network weights are updated to reduce error

The key difference is that instead of updating weights in a fixed architecture, we:

• Grow a new tree optimized for current errors

• Scale updates by local curvature (wi)

• Add the tree to our ensemble

This interpretation unifies gradient boosting with classical back-propagation, viewing
both as iterative error correction methods in different architectural paradigms.

I’ll convert the content into LaTeX format, creating a proper subsection that would fit
seamlessly into your chapter.

9.5. XGBOOST FOR LOGISTIC REGRESSION 369

9.5.8 Connection to Iterative Reweighted Least Squares

XGBoost’s treatment of logistic regression has deep connections to the classical iterative
reweighted least squares (IRLS) algorithm. This connection helps explain why XGBoost’s
second-order approximation is particularly effective and provides additional insight into its
optimization strategy.

IRLS for Regular Logistic Regression

In standard logistic regression, we minimize the negative log-likelihood:

L(β) =
n∑

i=1

[−yixT
i β + log(1 + ex

T
i β)] (9.36)

The Newton-Raphson update takes the form:

β(t+1) = β(t) − [H(β(t))]−1g(β(t)) (9.37)

where:

• g(β) =
∑n

i=1(pi − yi)xi is the gradient

• H(β) =
∑n

i=1 pi(1− pi)xix
T
i is the Hessian

• pi =
1

1+e−xT
i
β
is the predicted probability

This can be rewritten as a weighted least squares problem:

β(t+1) = argmin
β

n∑
i=1

w
(t)
i (z

(t)
i − xT

i β)
2 (9.38)

where:

• w
(t)
i = p

(t)
i (1− p

(t)
i) are the weights

• z
(t)
i = xT

i β
(t) +

yi−p
(t)
i

p
(t)
i (1−p

(t)
i)

is the working response

XGBoost as Functional IRLS

XGBoost generalizes this idea to function space. Instead of updating linear coefficients β, it
updates the function f by adding trees:

fm+1(x) = fm(x) + hm(x) (9.39)

The second-order Taylor expansion of the loss around fm gives:

L(fm + h) ≈
n∑

i=1

[l(yi, fm(xi)) + gihm(xi) +
1

2
hihm(xi)

2] (9.40)

where:

370 CHAPTER 9. TREES AND BOOSTING

• gi = pi − yi is the gradient

• hi = pi(1− pi) is the Hessian diagonal

This leads to the weighted least squares problem for finding the new tree:

hm = argmin
h

n∑
i=1

wi(zi − h(xi))
2 + Ω(h) (9.41)

where:

• wi = pi(1− pi) are the weights (exactly as in IRLS)

• zi = − gi
hi

= − pi−yi
pi(1−pi)

is the working response

• Ω(h) is the regularization on tree complexity

Theoretical Insights

This connection reveals several important theoretical insights:

1. Functional Generalization: XGBoost extends IRLS from parameter space to func-
tion space, replacing linear updates with tree additions. The fundamental structure of
the optimization remains the same, but the search space becomes much richer.

2. Weight Interpretation: The weights wi = pi(1 − pi) maintain their classical inter-
pretation:

• Small for confident predictions (pi near 0 or 1)

• Large for uncertain predictions (pi near 0.5)

• Automatically handle extreme probabilities

3. Working Response: The working response zi represents the desired shift in the
function value:

• Magnitude increases for misclassified points

• Direction determined by yi − pi

• Naturally scaled by prediction certainty

4. Regularization: XGBoost adds explicit regularization Ω(h) that:

• Controls tree complexity

• Prevents overfitting

9.6. SURROGATE LOSS FUNCTIONS AND INCREMENTAL LEARNING 371

Implementation Benefits

This IRLS perspective explains several practical advantages of XGBoost:

1. Numerical Stability: Like IRLS, the method naturally handles extreme probabilities
through the weighting scheme, preventing numerical instabilities in updates.

2. Efficient Updates: The quadratic approximation allows efficient tree building through
weighted least squares, making the optimization computationally tractable.

3. Natural Scaling: The Hessian weights provide automatic scaling of updates based on
prediction confidence, similar to the role of the Fisher information in classical maximum
likelihood estimation.

4. Interpretable Steps: Each tree addition can be viewed as a Newton step in function
space, providing theoretical guarantees on convergence similar to those in classical
IRLS.

This connection to IRLS provides both theoretical understanding and practical insights
into XGBoost’s effectiveness for logistic regression tasks, while the extension to function
space and the addition of regularization terms explain its superior performance compared to
classical approaches.

9.6 Surrogate Loss Functions and Incremental Learn-

ing

9.6.1 The Role of Surrogate Losses

Many machine learning algorithms can be understood through the lens of surrogate loss
functions - simpler, more tractable functions that we optimize in place of our original ob-
jective. This perspective provides another unifying view of gradient descent, boosting, and
other incremental learning methods.

9.6.2 Gradient Descent as Surrogate Minimization

Consider minimizing a function L(θ). At each iteration, gradient descent can be viewed as
minimizing a quadratic surrogate function:

Qt(θ) = L(θt) +∇L(θt)T (θ − θt) +
1

2η
||θ − θt||2 (9.42)

The three terms in this surrogate have clear interpretations:

• L(θt) is the current loss value

• ∇L(θt)T (θ − θt) provides the first-order approximation

• 1
2η
||θ − θt||2 is a proximal term limiting the step size

372 CHAPTER 9. TREES AND BOOSTING

The minimizer of this quadratic surrogate is precisely the gradient descent update:

θt+1 = argmin
θ

Qt(θ) = θt − η∇L(θt) (9.43)

This shows that gradient descent can be interpreted as constructing a surrogate quadratic
function at each step, finding its minimum exactly, and using that minimum as the next
iterate.

9.6.3 Boosting and Surrogate Losses

Different boosting algorithms can be understood through their choice of surrogate loss func-
tions. The most common choices include:

• AdaBoost: Uses exponential loss

Lexp(y, f) = exp(−yf) (9.44)

• LogitBoost: Uses logistic loss

Llog(y, f) = log(1 + exp(−yf)) (9.45)

• L2Boosting: Uses squared error loss

L2(y, f) =
1

2
(y − f)2 (9.46)

9.6.4 XGBoost’s Second-Order Surrogate

XGBoost takes this further by using a second-order surrogate function. At each step, for
adding a new tree hm(x), it minimizes:

Qm(h) =
n∑

i=1

[gih(xi) +
1

2
hih(xi)

2] + Ω(h) (9.47)

where:

• gi = ∂fm−1l(yi, fm−1(xi)) is the gradient

• hi = ∂2
fm−1

l(yi, fm−1(xi)) is the Hessian

• Ω(h) is a regularization term

This surrogate provides several advantages: it incorporates second-order information,
admits efficient optimization for tree structure, and provides natural regularization.

9.6. SURROGATE LOSS FUNCTIONS AND INCREMENTAL LEARNING 373

9.6.5 A Unified View Through Surrogate Functions

These methods share a common structure. The original problem seeks to minimize some
loss:

min
f

L(f) (9.48)

The iterative solution at each step t takes the form:

ft+1 = ft + argmin
h

Qt(h) (9.49)

where Qt is a surrogate function. Good surrogate functions share several key properties:

• Upper bound the original loss: Qt(h) ≥ L(ft + h)

• Match at the current point: Qt(0) = L(ft)

• Are easier to optimize than the original loss

9.6.6 Design Principles for Surrogate Functions

When designing surrogate functions, several key principles must be balanced:

1. Approximation Quality The surrogate should:

• Closely approximate the original loss

• Provide useful gradients for optimization

• Capture key properties like convexity

2. Optimization Ease The surrogate should have:

• Simple analytical form

• Efficient minimization algorithms

• Well-behaved derivatives

3. Statistical Properties The surrogate should ensure:

• Proper scoring rules

• Fisher consistency

• Robustness to noise

374 CHAPTER 9. TREES AND BOOSTING

9.6.7 Connection to Earlier Sections

This surrogate function perspective complements our earlier view of incremental learning.
Consider how each method employs both perspectives:

1. Gradient Descent

• Incremental view: Parameter updates

• Surrogate view: Quadratic approximation

2. Decision Trees

• Incremental view: Region splitting

• Surrogate view: Piecewise approximation

3. Boosting

• Incremental view: Function addition

• Surrogate view: Loss upper bound

Understanding both perspectives helps inform algorithm design, hyperparameter tun-
ing, convergence analysis, and performance optimization. This dual view reveals the deep
connections between seemingly different approaches to machine learning, all unified by the
principles of incremental improvement and surrogate optimization.

9.7 The “Lazy” Nature of Boosting and Implicit Reg-

ularization

Boosting methods, particularly gradient boosting with small step sizes, exhibit a surprising
resistance to overfitting despite the capacity to create arbitrarily complex functions. This
behavior parallels the success of overparametrized neural networks trained with gradient
descent, and both can be understood through the lens of algorithmic “laziness”.

9.7.1 Gradient Flow and Function Space

Consider the continuous-time gradient flow in function space:

∂ft
∂t

= −∇L(ft) (9.50)

For both neural networks and boosting:

• The space of possible functions is extremely rich

• Many different solutions can achieve zero training error

• The actual trajectory taken by the algorithm matters

9.7. THE “LAZY” NATURE OF BOOSTING AND IMPLICIT REGULARIZATION 375

9.7.2 The Principle of Least Action

Gradient-based methods follow a “lazy” path in the sense that they:

1. Take the path of steepest descent locally

2. Make minimal changes necessary to reduce the loss

3. Implicitly prefer “simpler” functions early in training

For boosting, this manifests in several ways:

fm+1 = fm − η∇L(fm) (9.51)

where:

• Small learning rate η ensures small steps

• Each tree focuses on current residuals

• Early trees capture “easy” patterns

9.7.3 Spectral Bias in Function Learning

Both boosting and neural networks exhibit a form of spectral bias:

1. Low-Frequency First:

• Early iterations learn smooth, global patterns

• Complex, high-frequency components emerge later

• This ordering provides implicit regularization

2. Mathematical Characterization: If we decompose the target function in frequency
components:

f ∗(x) =
∑
k

akϕk(x) (9.52)

The learning dynamics tend to prioritize lower-frequency basis functions ϕk(x) earlier
in training.

9.7.4 Early Stopping as Complexity Control

The ”lazy” nature of boosting means that:

Complexity(fm) ≈ O(mη) (9.53)

This leads to several important consequences:

1. Early stopping effectively controls model complexity

2. The number of iterations acts as a complexity penalty

3. The learning rate η scales the complexity growth

376 CHAPTER 9. TREES AND BOOSTING

9.7.5 Implicit Regularization Through Optimization

The optimization algorithm itself provides regularization through:

1. Incremental Learning:

∆fm = −η∇L(fm−1) (9.54)

Each step makes minimal changes needed to reduce the loss. Copy

2. Local Smoothness:

∥∆fm∥H ≤ η∥∇L(fm−1)∥H (9.55)

Changes are bounded in an appropriate function space norm.

3. Gradient Flow Path: The discrete updates approximate a continuous flow:

fm ≈ f0 − η

∫ m

0

∇L(ft)dt (9.56)

9.7.6 Comparison with Neural Networks

The parallels with neural networks include:

Property Boosting Neural Networks
Space Function space Parameter space
Updates Add new trees Adjust weights
Laziness Small learning rate Small learning rate
Early learning Global patterns Low-frequency components
Late learning Details High-frequency components

Table 9.1: Comparison of lazy learning properties

9.7.7 Practical Implications

This theoretical understanding suggests several practical guidelines:

1. Use small learning rates to promote ”lazy” learning

2. Monitor validation performance for early stopping

3. Expect early iterations to capture main effects

4. Allow longer training for fine-grained patterns

The ”lazy” nature of boosting thus provides an elegant explanation for its empirical success,
connecting it to broader principles of implicit regularization in modern machine learning.
This perspective helps explain why boosting can work well even without explicit regulariza-
tion, particularly when combined with early stopping.

9.8. ADABOOST 377

Figure 9.5: Adaboost

9.8 AdaBoost

9.8.1 The Exponential Loss Framework

Consider binary classification where yi ∈ {−1, 1}. We seek an additive model of the form:

fM(x) =
M∑

m=1

αmhm(x) (9.57)

where hm(x) ∈ {−1, 1} are base classifiers and αm are their weights. AdaBoost minimizes
the exponential loss:

L(f) =
1

n

n∑
i=1

exp(−yif(xi)) (9.58)

378 CHAPTER 9. TREES AND BOOSTING

Figure 9.6: Exponential loss upper bounds 0/1 loss

9.8.2 Properties of Exponential Loss

For binary classification where y ∈ {−1, 1}, AdaBoost minimizes the exponential loss:

L(f) =
1

n

n∑
i=1

exp(−yif(xi)) (9.59)

Relationship to Zero-One Loss

The zero-one loss is defined as:

L0−1(f) =
1

n

n∑
i=1

I{yif(xi) < 0} (9.60)

The exponential loss has several important relationships with zero-one loss:

Proposition 37 (Upper Bound). For any y ∈ {−1, 1} and f ∈ R:

I{yf < 0} ≤ exp(−yf) (9.61)

Proof. Consider two cases:

• If yf ≥ 0: Then I{yf < 0} = 0 ≤ exp(−yf)

• If yf < 0: Then I{yf < 0} = 1 < exp(−yf)

Therefore, exponential loss always upper bounds zero-one loss.

9.8. ADABOOST 379

Smoothness Properties

The exponential loss has several advantageous properties:

1. Differentiability: The loss is infinitely differentiable with:

∂

∂f
exp(−yf) = −y exp(−yf) (9.62)

∂2

∂f 2
exp(−yf) = exp(−yf) (9.63)

2. Strong Convexity: The second derivative is always positive:

∂2

∂f 2
exp(−yf) = exp(−yf) > 0 (9.64)

3. Gradient Magnitude: For misclassified points (yf < 0):∣∣∣∣ ∂∂f exp(−yf)
∣∣∣∣ = exp(−yf) > 1 (9.65)

This ensures strong gradients for correcting mistakes.

Statistical Implications

The properties of exponential loss lead to important consequences:

1. Population Minimizer: The minimizer of expected exponential loss is:

f ∗(x) =
1

2
log

P (Y = 1|X = x)

P (Y = −1|X = x)
(9.66)

which is a monotone transformation of the optimal Bayes classifier.

2. Margin Maximization: The exponential penalty on negative margins encourages:

• Correct classification (yf > 0)

• Large margins (large |f | when confident)

• Focus on hard examples (large loss when wrong)

These properties help explain why AdaBoost often shows good generalization despite
optimizing a seemingly aggressive loss function. The exponential loss provides:

• A computationally tractable upper bound on misclassification error

• Smooth gradients for optimization

• Strong penalties that drive margin maximization

• Theoretical connection to optimal Bayes classifier

380 CHAPTER 9. TREES AND BOOSTING

9.8.3 Forward Stagewise Additive Modeling

At iteration m, given current model fm−1(x), we seek:

(αm, hm) = argmin
α,h

n∑
i=1

exp(−yi[fm−1(xi) + αh(xi)]) (9.67)

This can be rewritten as:

n∑
i=1

wm
i exp(−αyih(xi)) (9.68)

where wm
i = exp(−yifm−1(xi)) are the current weights.

9.8.4 Optimal Base Classifier

For fixed α, the optimal hm minimizes:

n∑
i=1

wm
i exp(−αyih(xi)) (9.69)

Since h(xi) ∈ {−1, 1}, this is equivalent to minimizing:

eα
∑

yi ̸=h(xi)

wm
i + e−α

∑
yi=h(xi)

wm
i (9.70)

Define the weighted error:

ϵm =

∑
yi ̸=hm(xi)

wm
i∑n

i=1 w
m
i

(9.71)

9.8.5 Optimal Weight Coefficient

Given hm, differentiating with respect to α yields:

∂

∂α
[eαϵm + e−α(1− ϵm)] = 0 (9.72)

Solving this equation:

αm =
1

2
log

(
1− ϵm
ϵm

)
(9.73)

9.8.6 Weight Update Rule

The weights for the next iteration become:

wm+1
i = exp(−yifm(xi)) (9.74)

= exp(−yi[fm−1(xi) + αmhm(xi)]) (9.75)

= wm
i exp(−αmyihm(xi)) (9.76)

9.8. ADABOOST 381

After normalization:

wm+1
i ← wm+1

i∑n
j=1 w

m+1
j

(9.77)

9.8.7 The Complete Algorithm

These derivations lead naturally to the AdaBoost algorithm:

Algorithm 10 AdaBoost via Exponential Loss Minimization

1: Initialize: w1
i =

1
n
for i = 1, . . . , n

2: for m = 1 to M do
3: Fit hm(x) to minimize weighted error using weights wm

i

4: Compute ϵm =
∑n

i=1w
m
i I{yi ̸= hm(xi)}/

∑n
i=1w

m
i

5: Set αm = 1
2
log
(

1−ϵm
ϵm

)
6: Update wm+1

i = wm
i exp(−αmyihm(xi))

7: Normalize weights
8: end for
9: return fM(x) = sign

(∑M
m=1 αmhm(x)

)

9.8.8 Comparison with XGBoost

Loss Functions and Their Properties

The fundamental difference between AdaBoost and XGBoost begins with their loss functions:

1. AdaBoost: Exponential Loss

LAda(y, f) = exp(−yf) (9.78)

2. XGBoost: Logistic Loss (for binary classification)

LXGB(y, f) = log(1 + exp(−yf)) (9.79)

Key implications:

• AdaBoost’s exponential loss grows exponentially with negative margins, making it
more sensitive to outliers

• XGBoost’s logistic loss is bounded, providing better robustness

• XGBoost’s second derivative allows Newton-like updates

382 CHAPTER 9. TREES AND BOOSTING

Aspect AdaBoost XGBoost
Base Learner Type Classification Trees Regression Trees
Tree Depth Usually stumps (depth=1) Typically 3-6 levels
Node Prediction {−1, 1} Real-valued
Update Strategy Multiplicative weights Newton step

Table 9.2: Comparison of tree characteristics

Feature AdaBoost XGBoost
Regularization Implicit through early stop-

ping
Explicit L1/L2 terms plus
tree structure penalties

Parallelization Limited Extensive (feature parallel,
node parallel)

Memory Usage Lower (simpler trees) Higher (deeper trees, gradi-
ent info)

Hyperparameters Few (mainly iterations and
learning rate)

Many (tree depth, regu-
larization, sampling rates,
etc.)

Typical Use Cases Simple binary classification General-purpose ML (clas-
sification, regression, rank-
ing)

Table 9.3: Modern implementation comparison

Base Learners and Their Updates

Modern Implementation and Usage

XGBoost is generally more suitable for modern machine learning applications, especially
when:

• Dataset is large or high-dimensional

• Problem requires fine-tuned performance

• Computing resources allow for parallel processing

• Problem involves missing data or sparse features

However, AdaBoost remains valuable when:

• Interpretability is crucial (due to simpler trees)

• Computing resources are limited

• Problem is a straightforward binary classification

• Quick prototyping is needed

9.9. RANDOM FORESTS 383

9.9 Random Forests

Figure 9.7: Random forest

9.9.1 Ensemble Framework

While boosting builds an additive ensemble sequentially, Random Forests construct an en-
semble of trees in parallel:

fM(x) =
1

M

M∑
m=1

Tm(x) (9.80)

where {Tm}Mm=1 are individual decision trees, each built on a bootstrap sample of the
training data with a randomized feature selection process.

9.9.2 Sources of Randomization

Bootstrap Aggregating (Bagging)

For each tree m:

• Draw bootstrap sample Dm = {(x∗
i , y

∗
i)}ni=1 from training data

• Probability of observation i being selected:

P (i ∈ Dm) = 1− (1− 1

n
)n ≈ 0.632 (9.81)

384 CHAPTER 9. TREES AND BOOSTING

Random Feature Selection

At each node split:

• Randomly sample k features from the full set of p features

• Typical choices:

k =

{
⌊√p⌋ for classification

⌊p/3⌋ for regression
(9.82)

9.9.3 Tree Construction

For each tree Tm:

Algorithm 11 Random Forest Tree Construction

1: Draw bootstrap sample Dm

2: Initialize: single node tree
3: while nodes can be split do
4: for each terminal node R do
5: Sample k features randomly
6: Find best split s∗ among k features:

s∗ = argmin
s

 ∑
i∈RL(s)

(yi − ȳL)
2 +

∑
i∈RR(s)

(yi − ȳR)
2

 (9.83)

7: Split node if improvement exceeds threshold
8: end for
9: end while

9.9.4 Statistical Properties

Variance Reduction

For i.i.d. trees with variance σ2, the ensemble variance is:

Var(fM) = ρσ2 +
1− ρ

M
σ2 (9.84)

where ρ is the correlation between trees.

Out-of-Bag Error Estimation

For observation i, letMi be the set of trees not containing i in their bootstrap sample:

OOBi =
1

|Mi|
∑

m∈Mi

Tm(xi) (9.85)

9.9. RANDOM FORESTS 385

The OOB error estimate:

ErrOOB =
1

n

n∑
i=1

L(yi,OOBi) (9.86)

9.9.5 Variable Importance Measures

Mean Decrease in Impurity (MDI)

For variable j:

MDIj =
1

M

M∑
m=1

∑
t∈Tm

p(t)∆i(st)I(v(st) = j) (9.87)

where:

• p(t) is the proportion of samples reaching node t

• ∆i(st) is the impurity decrease at split st

• v(st) is the variable used in split st

Mean Decrease in Accuracy (MDA)

For variable j:
MDAj = ErrOOB − ErrjOOB (9.88)

where ErrjOOB is the OOB error after randomly permuting variable j.

9.9.6 Theoretical Results

Consistency

Under suitable conditions on the individual trees:

Theorem 38 (Random Forest Consistency). As n,M →∞:

E[(fM(X)− f ∗(X))2]→ 0 (9.89)

where f ∗ is the true regression function.

Rate of Convergence

For regression with bounded response:

Theorem 39 (Convergence Rate). With high probability:

∥fM − f ∗∥22 = O

(
log n

n

)
(9.90)

provided the trees are grown to an appropriate depth.

386 CHAPTER 9. TREES AND BOOSTING

Aspect Random Forest AdaBoost XGBoost
Ensemble Building Parallel Sequential Sequential
Tree Independence Independent Dependent Dependent
Weight Updates Equal weights Exponential Gradient-based
Overfitting Risk Low Moderate Moderate
Parameter Tuning Simple Moderate Complex

Table 9.4: Comparison of tree ensemble methods

9.9.7 Comparison with Boosting Methods

9.9.8 Implementation Considerations

1. Key Parameters:

• Number of trees M

• Number of features k at each split

• Minimum node size

• Maximum tree depth

2. Computational Aspects:

• Trivially parallelizable across trees

• Memory requirements scale linearly with M

• Can be updated online with new trees

Chapter 10

Support Vector Machine

Figure 10.1: SVM

Chapter Overview

Support Vector Machines (SVM) provide a geometric approach to classification by seek-
ing a maximum-margin separating hyperplane between classes, which can be understood as
finding the minimal distance between class convex hulls. The method begins with a simple
geometric intuition of projecting data onto a direction vector and maximizing the separa-
tion between classes, which leads to a convex quadratic optimization problem. Through
the introduction of slack variables and the hinge loss, SVMs elegantly handle non-separable
data, while the kernel trick enables nonlinear classification by implicitly mapping data to a
high-dimensional feature space where linear separation becomes possible. The optimization
problem can be solved in its dual form, revealing that the solution depends only on support

387

388 CHAPTER 10. SUPPORT VECTOR MACHINE

vectors (points on or violating the margin), making the method computationally efficient for
sparse solutions. This framework combines several fundamental machine learning principles:
geometric intuition, convex optimization, kernel methods, and regularization in reproduc-
ing kernel Hilbert spaces, which continue to influence modern machine learning approaches
despite limitations in scaling to very large datasets.

10.1 Primal Problem: Max Margin

10.1.1 The Geometric Intuition

Consider a binary classification problem with data points {(xi, yi)}ni=1 where xi ∈ Rp and
yi ∈ {−1,+1}. Instead of immediately introducing a separating hyperplane, let us begin
with a simpler geometric concept:

Definition 40 (Linear Separability via Projection). Two sets of points are linearly separable
if there exists a direction (unit vector) u ∈ Rp, ∥u∥ = 1, such that their projections onto u
are completely separated.

For any unit vector u, define:

a+ = min
i:yi=+1

⟨xi, u⟩ (10.1)

a− = max
i:yi=−1

⟨xi, u⟩ (10.2)

u

a+a− margin

Figure 10.2: Projection onto unit vector u. The margin a+ − a− is the separation between
the minimum projection of positive (blue) points and maximum projection of negative (red)
points.

10.1.2 The Separation Problem

The data is linearly separable if and only if there exists a unit vector u such that:

a− < a+ (10.3)

The quality of separation can be measured by the gap:

margin = a+ − a− (10.4)

10.1. PRIMAL PROBLEM: MAX MARGIN 389

This leads to a natural optimization problem:

max
∥u∥=1

(a+ − a−) (10.5)

10.1.3 Connection to Standard SVM Formulation

Let us define the midpoint and half-margin:

ā =
a+ + a−

2
(midpoint) (10.6)

∆ = a+ − ā = ā− a− (half-margin) (10.7)

To transform our geometric formulation into the standard SVM, we set:

w =
u

∆
(10.8)

b = − ā

∆
(10.9)

This construction has several important properties:

• For any point x with projection a = ⟨x, u⟩:

⟨w, x⟩+ b =
a

∆
− ā

∆
=

a− ā

∆

• For positive points: a ≥ a+, so:

⟨w, x⟩+ b ≥ a+ − ā

∆
= 1

• For negative points: a ≤ a−, so:

⟨w, x⟩+ b ≤ a− − ā

∆
= −1

• The norm of w is inversely proportional to the margin:

∥w∥ = ∥u∥
∆

=
1

∆

Therefore, maximizing the margin 2∆ is equivalent to minimizing ∥w∥, or more conve-
niently, minimizing 1

2
∥w∥2. The squared norm is preferred because:

• It avoids the square root in the objective function

• Its derivatives are simpler (linear in w)

• It maintains the convexity of the optimization problem

This gives us the standard primal SVM problem:

min
w,b

1

2
∥w∥2 (10.10)

s.t. yi(⟨w, xi⟩+ b) ≥ 1, i = 1, . . . , n (10.11)

The constraints ensure that all points are correctly classified with a margin of at least
1/∥w∥, while minimizing ∥w∥2 maximizes this margin.

390 CHAPTER 10. SUPPORT VECTOR MACHINE

10.2 From Primal to Dual: MinMax = MaxMin

10.2.1 The Lagrangian Formulation

Starting from our primal problem:

min
w,b

1

2
∥w∥2 (10.12)

s.t. yi(⟨w, xi⟩+ b) ≥ 1, i = 1, . . . , n (10.13)

We introduce Lagrange multipliers αi ≥ 0 for each constraint:

L(w, b, α) = 1

2
∥w∥2 −

n∑
i=1

αi[yi(⟨w, xi⟩+ b)− 1] (10.14)

10.2.2 The Minimax Problem

The primal problem is equivalent to:

min
w,b

max
α≥0
L(w, b, α) (10.15)

Under strong duality (which holds due to Slater’s condition), this equals:

max
α≥0

min
w,b
L(w, b, α) (10.16)

10.2.3 Equivalence of Max-Min Lagrangian to Primal Problem

The equivalence between the primal problem and its Lagrangian dual formulation relies on
strong duality. Let’s establish this rigorously.

Theorem 41 (Equivalence of Primal and Max-Min Lagrangian). For the SVM optimization
problem, the following equality holds:

min
w,b

1

2
∥w∥2 s.t. yi(⟨w, xi⟩+ b) ≥ 1 = min

w,b
max
α≥0
L(w, b, α) (10.17)

where L(w, b, α) = 1
2
∥w∥2 −

∑n
i=1 αi[yi(⟨w, xi⟩+ b)− 1]

Proof. First, observe that for any feasible (w, b):

max
α≥0
L(w, b, α) =

{
1
2
∥w∥2 if yi(⟨w, xi⟩+ b) ≥ 1 ∀i

+∞ otherwise
(10.18)

This is because:

• If any constraint is violated, say yk(⟨w, xk⟩ + b) < 1, then αk can be made arbitrarily
large, making L → +∞

10.2. FROM PRIMAL TO DUAL: MINMAX = MAXMIN 391

• If all constraints are satisfied, the maximum occurs at αi = 0 for all i

Therefore:

min
w,b

max
α≥0
L(w, b, α) = min

w,b

{
1
2
∥w∥2 if yi(⟨w, xi⟩+ b) ≥ 1 ∀i

+∞ otherwise
(10.19)

= min
w,b

1

2
∥w∥2 s.t. yi(⟨w, xi⟩+ b) ≥ 1 (10.20)

The last equality holds because any (w, b) violating the constraints would give an infinite
value, and thus cannot be optimal.

Remark 42. This equivalence is crucial because it:

1. Justifies the use of the Lagrangian formulation

2. Shows that the constraints are properly enforced

3. Enables the transition to the dual problem

Corollary 43 (Strong Duality). Under Slater’s condition (which holds for SVM), we have:

min
w,b

max
α≥0
L(w, b, α) = max

α≥0
min
w,b
L(w, b, α) (10.21)

This explains why:

• We can solve the dual problem instead of the primal

• The optimal values of both problems coincide

• The KKT conditions are both necessary and sufficient

10.2.4 Saddle Point and Max-Min Equality

Figure 10.3: Left: local minimum, e.g., x2 + y2. Middle: local maximum, e.g., −(x2 + y2).
Right: saddle point, e.g., x2 − y2.

The equality between maxα≥0minw,b L(w, b, α) and minw,bmaxα≥0 L(w, b, α) is not a co-
incidence but follows from the special structure of the Lagrangian. Let’s explore this deeply.

392 CHAPTER 10. SUPPORT VECTOR MACHINE

Definition 44 (Saddle Point). A point (w∗, b∗, α∗) is called a saddle point of L if for all
feasible (w, b, α):

L(w∗, b∗, α) ≤ L(w∗, b∗, α∗) ≤ L(w, b, α∗) (10.22)

Definition 45 (Concave-Convex Function). A function L(x, y) is called concave-convex if:

• For fixed y, x 7→ L(x, y) is convex

• For fixed x, y 7→ L(x, y) is concave

Lemma 46 (Structure of SVM Lagrangian). The SVM Lagrangian L(w, b, α) is:

1. Strictly convex in (w, b) for any fixed α

2. Linear (hence concave) in α for any fixed (w, b)

3. Defined on a convex domain

Proof. 1. For fixed α, the Hessian with respect to (w, b) is:

H =

[
I 0
0 0

]
(10.23)

which is positive semidefinite, making L convex in (w, b).
2. L is linear in α as it appears only in terms of the form αi(·).
3. The domains {(w, b)} = Rd+1 and {α : αi ≥ 0} are convex.

Theorem 47 (Saddle Point Existence). Under the conditions above, if (w∗, b∗, α∗) is a KKT
point of the SVM optimization, then it is a saddle point of L.

Proof. At the KKT point:

1. ∇w,bL(w∗, b∗, α∗) = 0 implies (w∗, b∗) minimizes L(·, ·, α∗)

2. Complementary slackness and primal feasibility imply α∗ maximizes L(w∗, b∗, ·)

Therefore:
L(w∗, b∗, α) ≤ L(w∗, b∗, α∗) ≤ L(w, b, α∗) (10.24)

Corollary 48 (Max-Min Equality). For the SVM problem:

max
α≥0

min
w,b
L(w, b, α) = min

w,b
max
α≥0
L(w, b, α) (10.25)

Proof. By the concave-convex property and convex domains:

max
α≥0

min
w,b
L(w, b, α) ≤ L(w∗, b∗, α∗) (10.26)

≤ min
w,b

max
α≥0
L(w, b, α) (10.27)

The reverse inequality always holds, so equality follows.

10.2. FROM PRIMAL TO DUAL: MINMAX = MAXMIN 393

Remark 49 (Geometric Interpretation). The saddle point property provides a geometric
interpretation:

• The optimal solution sits at a ”mountain pass”

• It’s a minimum along the primal directions (w, b)

• It’s a maximum along the dual directions α

• This geometry ensures the solution is unique and stable

Remark 50 (Algorithmic Implications). This structure suggests various algorithms:

• Primal-dual methods can alternate between max and min steps

• Gradient descent on (w, b) can be combined with ascent on α

• The saddle point structure guarantees convergence under appropriate conditions

10.2.5 Game Theoretic Interpretation of Max-Min Equality

The equality between maxmin and minmax can be elegantly understood through the lens
of two-player zero-sum games, as formalized by von Neumann.

Definition 51 (Two-Player Zero-Sum Game). A two-player zero-sum game consists of:

• Player 1 (minimizer) chooses strategy x ∈ X

• Player 2 (maximizer) chooses strategy y ∈ Y

• Payoff function f(x, y) where:

– Player 1 pays Player 2 amount f(x, y)

– Player 1 wants to minimize payment

– Player 2 wants to maximize payment

Remark 52 (Order of Play). Two scenarios are possible:

1. Player 1 moves first:

• Player 2 can observe and react optimally

• Results in payoff maxy f(x, y)

• Player 1 anticipates this: minx maxy f(x, y)

2. Player 2 moves first:

• Player 1 can observe and react optimally

• Results in payoff minx f(x, y)

• Player 2 anticipates this: maxy minx f(x, y)

394 CHAPTER 10. SUPPORT VECTOR MACHINE

Theorem 53 (von Neumann’s Minimax Theorem). If X and Y are compact convex sets,
and f(x, y) is continuous and concave-convex, then:

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y) (10.28)

Remark 54 (Implications). This remarkable equality implies:

1. The order of play doesn’t matter

2. Neither player can benefit from moving second

3. There exists an equilibrium strategy pair (x∗, y∗)

4. The value v∗ = f(x∗, y∗) is the game value

Example 55 (Application to SVM). For SVMs, we can interpret:

• Player 1: Primal variables (w, b)

• Player 2: Dual variables α

• Payoff: Lagrangian L(w, b, α)

• Game value: Optimal objective value

Remark 56 (Mixed Strategies). Even when pure strategy equilibria don’t exist:

• Players can randomize their choices

• Mixed strategy equilibria always exist

• The expected payoff satisfies max-min equality

Theorem 57 (Nash Equilibrium in Zero-Sum Games). In a two-player zero-sum game sat-
isfying von Neumann’s conditions:

1. A Nash equilibrium always exists

2. All Nash equilibria have the same value

3. The value equals minmax = maxmin

Remark 58 (Computational Aspects). The game theoretic view suggests:

• Iterative algorithms simulating alternating play

• Learning by repeated game playing

• Convergence to equilibrium strategies

• Connection to online learning and regret minimization

10.3. DUAL PROBLEM: MIN DISTANCE 395

Figure 10.4: Convex hulls

10.3 Dual Problem: Min Distance

10.3.1 Initial Dual Derivation

Starting from the primal problem:

min
w,b

1

2
∥w∥2 (10.29)

s.t. yi(⟨w, xi⟩+ b) ≥ 1, i = 1, . . . , n (10.30)

The Lagrangian is:

L(w, b, α) = 1

2
∥w∥2 −

n∑
i=1

αi[yi(⟨w, xi⟩+ b)− 1] (10.31)

Taking derivatives:

∂L
∂w

= w −
n∑

i=1

αiyixi = 0 =⇒ w =
n∑

i=1

αiyixi (10.32)

∂L
∂b

= −
n∑

i=1

αiyi = 0 (10.33)

Substituting back gives our initial dual form:

max
α

n∑
i=1

αi −
1

2

∥∥∥∥∥
n∑

i=1

αiyixi

∥∥∥∥∥
2

(10.34)

s.t. αi ≥ 0, i = 1, . . . , n (10.35)
n∑

i=1

αiyi = 0 (10.36)

396 CHAPTER 10. SUPPORT VECTOR MACHINE

Later, we can expand ∥∥∥∥∥
n∑

i=1

αiyixi

∥∥∥∥∥
2

= ⟨αiyixi αjyjxj⟩ (10.37)

=
n∑

i=1

n∑
j=1

αiαjyiyj⟨xi, xj⟩ (10.38)

when we want to employ the kernel trick.

10.3.2 Geometric Interpretation via frontal points

Let’s interpret w =
∑n

i=1 αiyixi geometrically by separating positive and negative classes:

w =
∑

i:yi=+1

αixi −
∑

i:yi=−1

αixi = x+ − x− (10.39)

where:

x+ =
∑

i:yi=+1

αixi (frontal positive point) (10.40)

x− =
∑

i:yi=−1

αixi (frontal negative point) (10.41)

This gives:

∥w∥2 = ∥x+ − x−∥2 (10.42)

10.3.3 The Distance Interpretation

The dual objective becomes:

max
α

n∑
i=1

αi −
1

2
∥x+ − x−∥2 (10.43)

The constraint
∑n

i=1 αiyi = 0 implies that the total weights for positive and negative
points are equal: ∑

i:yi=+1

αi =
∑

i:yi=−1

αi = λ (10.44)

for some λ > 0.

Definition 59 (Normalized Weights). Define:

γ+
i =

αi

λ
for yi = +1 (10.45)

γ−
i =

αi

λ
for yi = −1 (10.46)

10.3. DUAL PROBLEM: MIN DISTANCE 397

This gives: ∑
i:yi=+1

γ+
i = 1 (10.47)∑

i:yi=−1

γ−
i = 1 (10.48)

γ+
i , γ

−
i ≥ 0 (10.49)

This reveals that x̄+ = x+/λ and x̄− = x−/λ are convex combinations of points in their
respective classes:

x̄+ ∈ conv{xi : yi = +1} (10.50)

x̄− ∈ conv{xi : yi = −1} (10.51)

10.3.4 The Minimum Distance Problem

Therefore, the SVM dual is equivalent to finding the minimum distance between the convex
hulls of the positive and negative classes:

min
x̄+,x̄−

∥x̄+ − x̄−∥ (10.52)

s.t. x̄+ ∈ conv{xi : yi = +1} (10.53)

x̄− ∈ conv{xi : yi = −1} (10.54)

Theorem 60 (Geometric Interpretation). The following properties hold:

1. w points from x̄− to x̄+

2. The margin is twice the distance between convex hulls

3. Support vectors are the points with non-zero coefficients in these convex combinations

4. x̄+ and x̄− are on the frontal faces of the positive and negative convex hulls respectively

10.3.5 Projections and Separation

When we project any point x onto w = x+ − x−, we get:

⟨x,w⟩
∥w∥

=
⟨x, x+ − x−⟩
∥x+ − x−∥

(10.55)

Corollary 61 (Projection Properties). The projection reveals:

1. Support vectors from each class project to the same positions on w

2. Non-support vectors project beyond these positions

3. The margin width is 2
∥w∥ = 2

∥x+−x−∥

398 CHAPTER 10. SUPPORT VECTOR MACHINE

10.3.6 Karush-Kuhn-Tucker (KKT) Conditions

The complete set of KKT conditions:

1. Primal feasibility:

yi(⟨w, xi⟩+ b) ≥ 1 (10.56)

2. Dual feasibility:

αi ≥ 0 (10.57)

3. Complementary slackness:

αi[yi(⟨w, xi⟩+ b)− 1] = 0 (10.58)

The complementary slackness condition reveals that:

• If αi > 0: point lies exactly on the margin (yi(⟨w, xi⟩+ b) = 1)

• If αi = 0: point is either correctly classified beyond the margin or misclassified

10.4 Dual Coordinate Ascent

10.4.1 Dual Problem with b = 0

We first study a simple case where we assume b = 0. This is a reasonable assumption for
the kernel version.

With b = 0, our dual problem simplifies to:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨xi, xj⟩ (10.59)

s.t. αi ≥ 0, i = 1, . . . , n (10.60)

Note that we no longer have the constraint
∑n

i=1 αiyi = 0.

10.4.2 Coordinate-wise Optimization

For updating αi, fix all other αj (j ̸= i). Let’s write the objective in terms of αi:

f(αi) = αi +
∑
j ̸=i

αj −
1

2
α2
i ⟨xi, xi⟩ − αi

∑
j ̸=i

αjyiyj⟨xi, xj⟩ − const (10.61)

= αi −
1

2
Qiiα

2
i − αi

∑
j ̸=i

yiyjQijαj + const (10.62)

where Qij = ⟨xi, xj⟩ is the kernel matrix.

10.4. DUAL COORDINATE ASCENT 399

10.4.3 Optimal Update

Taking the derivative with respect to αi and setting to zero:

∂f

∂αi

= 1−Qiiαi −
∑
j ̸=i

yiyjQijαj = 0 (10.63)

Define the gradient component:

gi = 1− yi

n∑
j=1

yjQijαj = 1− yi⟨w, xi⟩ (10.64)

Then the optimal value for αi is:

αnew
i = max

{
0,

yigi
Qii

}
(10.65)

10.4.4 Algorithm

Algorithm 12 Dual Coordinate Ascent for SVM

1: Initialize: α = 0, w = 0
2: while not converged do
3: for i = 1 to n do
4: gi ← 1− yi⟨w, xi⟩
5: αold

i ← αi

6: αi ← max{0, yigi/Qii}
7: w ← w + (αi − αold

i)yixi

8: end for
9: end while

10.4.5 Implementation Details

1. Maintaining w:

• Keep w =
∑n

i=1 αiyixi in memory

• Update incrementally after each αi change

• Reduces computation of gi from O(n) to O(p)

2. Convergence Check:

• Monitor maximum KKT violation:

max
i
|yigi| ·min{αi, |1− yigi|} ≤ ϵ (10.66)

3. Shrinking Strategy:

• Skip updates for αi = 0 when yigi < 1

• Skip updates for αi > 0 when yigi = 1

400 CHAPTER 10. SUPPORT VECTOR MACHINE

10.5 The Kernel Trick

Figure 10.5: The kernel trick maps data to a feature space where linear separation is possible

10.5.1 Motivation

Observe that in our dual formulation and coordinate descent algorithm, the data xi appears
only through inner products ⟨xi, xj⟩. This suggests we can implicitly work in a higher-
dimensional feature space without explicitly computing the transformations.

Specifically, the original dual optimization problem is:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨xi, xj⟩ (10.67)

s.t. αi ≥ 0, i = 1, . . . , n (10.68)

This optimization problem only depends on ⟨xi, xj⟩. After optimization, we obtain (αi, i =
1, ...n), and

w =
n∑

i=1

αiyixi (10.69)

The decision function is

f(x) = ⟨w, x⟩ =
n∑

i=1

αiyi⟨xi, x⟩ (10.70)

so that x is classified as positive if f(x) ≥ 0. The decision function f(x) only depends on
⟨xi, x⟩.

If we cannot separate the positive and negative examples in the original x space, we can
map x to a higher dimensional Φ(x) so that they can be separated in the Φ space.

10.5. THE KERNEL TRICK 401

10.5.2 Kernel Function

Define a feature map Φ : X → F into a high (possibly infinite) dimensional feature space.
A kernel function computes inner products in this space:

K(x, z) = ⟨Φ(x),Φ(z)⟩F (10.71)

10.5.3 Kernelized Dual Problem

With the feature map, we can replace x by Φ(x). Then the dual optimization problem
becomes

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨Φ(xi),Φ(xj)⟩ (10.72)

s.t. αi ≥ 0, i = 1, . . . , n (10.73)

The above is equivalent to

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj) (10.74)

s.t. αi ≥ 0, i = 1, . . . , n (10.75)

The decision function is:

f(x) =
n∑

i=1

αiyi⟨Φ(xi),Φ(x)⟩ =
n∑

i=1

αiyiK(xi, x) (10.76)

10.5.4 Common Kernel Functions

1. Polynomial Kernel (degree d):

K(x, z) = (1 + ⟨x, z⟩)d (10.77)

Feature space includes all monomials up to degree d
2. Gaussian RBF Kernel:

K(x, z) = exp
(
−γ∥x− z∥2

)
(10.78)

Infinite-dimensional feature space
3. Sigmoid Kernel:

K(x, z) = tanh(κ⟨x, z⟩+ c) (10.79)

10.5.5 Mercer’s Theorem

Theorem 62 (Mercer’s Condition). A symmetric function K(x, z) is a valid kernel if and
only if its Gram matrix is positive semidefinite for any finite set {xi}ni=1:

n∑
i=1

n∑
j=1

cicjK(xi, xj) ≥ 0 ∀ci ∈ R (10.80)

This guarantees the existence of a feature space F and map Φ whereK(x, z) = ⟨Φ(x),Φ(z)⟩F .

402 CHAPTER 10. SUPPORT VECTOR MACHINE

10.5.6 Kernelized Coordinate Descent

The coordinate descent updates become:

1. Gradient computation:

gi = 1− yi

n∑
j=1

αjyjK(xi, xj) (10.81)

2. Optimal update:

αnew
i = max

{
0,

yigi
K(xi, xi)

}
(10.82)

10.5.7 Implementation Considerations

1. Kernel Cache:

• Store frequently used rows of kernel matrix

• Trade-off between memory and computation

2. Kernel Matrix Properties:

• Symmetric: K(xi, xj) = K(xj, xi)

• Diagonal elements constant for normalized kernels

3. Numerical Stability:

• Add small constant to diagonal (K(x, x) + ϵ)

• Maintain numerical precision in kernel computations

10.5.8 Reproducing Kernel Hilbert Space

Construction from Feature Maps

Let Φ : X → RD (possibly infinite-dimensional) be a feature map. Consider functions of the
form:

f(x) = Φ(x)⊤β (10.83)

g(x) = Φ(x)⊤γ (10.84)

where β, γ are vectors in RD.

Inner Product Structure

Define an inner product between functions through their parameters:

⟨f, g⟩H = ⟨β, γ⟩ = β⊤γ (10.85)

This induces a norm:
∥f∥2H = ⟨f, f⟩H = ∥β∥2 (10.86)

10.5. THE KERNEL TRICK 403

Kernel Function

The kernel function arises naturally as:

K(x, z) = Φ(x)⊤Φ(z) (10.87)

For any fixed x, define the function:

Kx(·) = K(, x) = Φ(·)⊤Φ(x) (10.88)

The Reproducing Property

Consider the inner product between f and Kx:

⟨f,Kx⟩H = ⟨Φ(·)⊤β,Φ(·)⊤Φ(x)⟩H (10.89)

= β⊤Φ(x) (10.90)

= f(x) (10.91)

This is the reproducing property:

⟨f,K(, x)⟩H = f(x) (10.92)

Implications

1. Evaluation Functional:

• For fixed x, the map f 7→ f(x) is continuous

• |f(x)| ≤ ∥f∥H
√

K(x, x) by Cauchy-Schwarz

2. Feature Expansion: Any function f ∈ H can be written as:

f =
n∑

i=1

αiK(, xi) (10.93)

for some n, coefficients {αi}, and points {xi}
3. Norm Computation: For f =

∑n
i=1 αiK(, xi):

∥f∥2H =
n∑

i=1

n∑
j=1

αiαjK(xi, xj) (10.94)

Properties of the RKHS

1. Uniqueness:

Theorem 63. For a positive definite kernel K, there exists a unique RKHS H with repro-
ducing kernel K.

2. Completeness: H is complete under the norm ∥ · ∥H
3. Dense Subset: The span of {K(, x) : x ∈ X} is dense in H

404 CHAPTER 10. SUPPORT VECTOR MACHINE

10.5.9 Example: Gaussian RBF Kernel

For K(x, z) = exp(−γ∥x− z∥2):
1. Feature Map:

Φ(x) = exp(−γ∥x∥2)

(
1,

√
2γ

1!
x1,

√
2γ

1!
x2,

√
2γ2

2!
x2
1, ...

)
(10.95)

2. Function Space:

H =

f :
∑
|α|≥0

|α|!
γ|α|∥fα∥

2 <∞

 (10.96)

where fα are coefficients in the Taylor expansion

Connection to SVM

The SVM optimization in RKHS becomes:

min
f∈H

1

2
∥f∥2H + C

n∑
i=1

max(0, 1− yif(xi)) (10.97)

f(x) =
n∑

i=1

αiyiK(xi, x) (10.98)

The RKHS norm naturally penalizes complexity:

∥f∥2H =
n∑

i=1

n∑
j=1

αiαjyiyjK(xi, xj) (10.99)

10.6 Soft Margin SVM

10.6.1 Motivation

When classes are not linearly separable, we introduce slack variables ξi ≥ 0 to allow for
violations of the margin constraints:

• ξi = 0: point is correctly classified and outside the margin

• 0 < ξi ≤ 1: point is correctly classified but inside the margin

• ξi > 1: point is misclassified

10.6. SOFT MARGIN SVM 405

Figure 10.6: Slack variables

10.6.2 Primal Problem

The optimization problem becomes:

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi (10.100)

s.t. yi(⟨w, xi⟩+ b) ≥ 1− ξi, i = 1, . . . , n (10.101)

ξi ≥ 0, i = 1, . . . , n (10.102)

where:

• C > 0 is the regularization parameter

• Larger C penalizes violations more heavily

• Smaller C allows for a wider margin

10.6.3 Lagrangian

The Lagrangian with dual variables αi ≥ 0 and µi ≥ 0:

L =
1

2
∥w∥2 + C

n∑
i=1

ξi −
n∑

i=1

αi[yi(⟨w, xi⟩+ b)− 1 + ξi]−
n∑

i=1

µiξi (10.103)

406 CHAPTER 10. SUPPORT VECTOR MACHINE

10.6.4 KKT Conditions

∂L
∂w

= w −
n∑

i=1

αiyixi = 0 (10.104)

∂L
∂b

= −
n∑

i=1

αiyi = 0 (10.105)

∂L
∂ξi

= C − αi − µi = 0 (10.106)

From the last equation and µi ≥ 0:

0 ≤ αi ≤ C (10.107)

10.6.5 Dual Problem

The dual optimization becomes:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨xi, xj⟩ (10.108)

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n (10.109)
n∑

i=1

αiyi = 0 (10.110)

10.6.6 Support Vector Cases

The KKT conditions reveal three types of points:

1. Non-support vectors (αi = 0):

• Correctly classified outside margin

• ξi = 0

2. Margin support vectors (0 < αi < C):

• Exactly on margin

• ξi = 0

3. Bounded support vectors (αi = C):

• Inside margin or misclassified

• ξi > 0

10.7. SEQUENTIAL MINIMAL OPTIMIZATION (SMO) 407

10.6.7 Bias Term Computation

For any margin support vector (0 < αi < C):

b = yi −
n∑

j=1

αjyj⟨xj, xi⟩ (10.111)

In practice, average over all margin support vectors:

b =
1

|S|
∑
i∈S

(
yi −

n∑
j=1

αjyj⟨xj, xi⟩

)
(10.112)

where S = {i : 0 < αi < C}.

10.6.8 Model Selection

The parameter C controls the trade-off between:

• Margin width (regularization)

• Training errors (empirical risk)

Typically chosen through cross-validation over a grid:

C ∈ {2−5, 2−3, ..., 213, 215} (10.113)

10.7 Sequential Minimal Optimization (SMO)

10.7.1 Problem Structure

Recall the dual optimization problem:

max
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj) (10.114)

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n (10.115)
n∑

i=1

αiyi = 0 (10.116)

Let Qij = yiyjK(xi, xj). Define the objective function:

f(α) =
n∑

i=1

αi −
1

2

n∑
i,j=1

αiαjQij (10.117)

408 CHAPTER 10. SUPPORT VECTOR MACHINE

10.7.2 Two-Variable Subproblem

Theorem 64 (SMO Subproblem). Given a feasible α, consider updating components i and
j while keeping others fixed. Then:

1. The equality constraint reduces to:

αiyi + αjyj = γ where γ = −
∑
k ̸=i,j

αkyk (10.118)

2. The subproblem in αj becomes:

min
αj

1

2
(α2

iQii + 2αiαjQij + α2
jQjj)− (αi + αj) (10.119)

s.t. 0 ≤ αj ≤ C (10.120)

αi =
γ − αjyj

yi
(10.121)

Proof. The first statement follows directly from the equality constraint. For the second,
substitute the expression for αi into the objective and collect terms.

10.7.3 Analytical Solution

Theorem 65 (Optimal Update). Let gi =
∑n

k=1 αkQik − 1 be the negative gradient compo-
nent. The optimal update for αj is:

αnew
j = αold

j +
yj(gi − gj)

Qii +Qjj − 2Qij

(10.122)

subject to box constraints.

Proof. 1. Substitute αi expression into objective to get quadratic in αj 2. Take derivative
and set to zero 3. Express gradient components using gi and gj 4. Solve for update

10.7.4 Constraint Handling

Lemma 66 (Box Constraints). The solution must satisfy L ≤ αnew
j ≤ H where:

If yi = yj:

L = max(0, αi + αj − C) (10.123)

H = min(C, αi + αj) (10.124)

If yi ̸= yj:

L = max(0, αj − αi) (10.125)

H = min(C,C + αj − αi) (10.126)

Proof. Apply the box constraints 0 ≤ αi, αj ≤ C to the equality constraint equation.

10.7. SEQUENTIAL MINIMAL OPTIMIZATION (SMO) 409

10.7.5 Algorithm and Convergence

Algorithm 13 Sequential Minimal Optimization

1: Initialize α = 0
2: while not converged do
3: Select index i violating KKT conditions
4: Select second index j ̸= i
5: γ ← −

∑
k ̸=i,j αkyk

6: Update αj using optimal update formula
7: Clip αj to [L,H]
8: Update αi to maintain

∑
k αkyk = 0

9: end while

Theorem 67 (Convergence). The SMO algorithm converges to the global optimum of the
dual problem.

Proof Sketch. 1. Each update strictly improves the objective unless at optimum 2. The
objective is bounded above (due to constraints) 3. The feasible set is compact 4. There are
finitely many possible working sets

10.7.6 Connection to Coordinate Methods

SMO can be viewed as a special case of block coordinate ascent where:

1. Block size is always 2

2. One variable (i) chosen by KKT violation

3. Second variable (j) chosen to maximize progress

4. Updates maintain feasibility exactly

This contrasts with standard coordinate descent which:

1. Updates one variable at a time

2. May temporarily violate equality constraint

3. Requires projection back to feasible set

10.7.7 Comparison of Incremental Learning Strategies

Both SMO and coordinate descent for SVMs can be viewed through the lens of incremental
model improvement, similar to how trees and boosting build models. Let’s examine these
connections:

410 CHAPTER 10. SUPPORT VECTOR MACHINE

Model Representation

Each method maintains and incrementally improves a model:

• SVM (SMO/Coordinate Descent):

f(x) =
n∑

i=1

αiyiK(xi, x) (10.127)

• Boosting:

f(x) =
M∑

m=1

βmhm(x) (10.128)

• Trees:

f(x) =
L∑
l=1

clI[x ∈ Rl] (10.129)

Update Strategies

The key difference lies in how these models are updated:

1. SMO: Updates pairs (αi, αj) while maintaining
∑

αiyi = 0

2. Dual Coordinate Ascent: Updates single αi at a time

3. Boosting: Adds new weak learners hm(x) sequentially

4. Trees: Greedily splits regions Rl to improve fit

Geometric Interpretation

Each method can be viewed as searching in different spaces:

• SVM: Moves along feasible line segments in the dual space to improve margin

• Boosting: Moves in the direction of steepest descent in function space

• Trees: Partitions feature space to minimize loss

Trade-offs

The methods balance different concerns:

• SVM Updates: Exact optimization of sub-problems, constrained movement

• Boosting: Approximate optimization, unconstrained growth

• Trees: Greedy local decisions, hierarchical structure

10.8. FROM SLACK VARIABLES TO HINGE LOSS 411

10.8 From Slack Variables to Hinge Loss

The soft-margin SVM objective:

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi s.t. yi(⟨w, xi⟩+ b) ≥ 1− ξi, ξi ≥ 0 (10.130)

can be rewritten by eliminating ξi:

min
w,b

1

2
∥w∥2 + C

n∑
i=1

max(0, 1− yi(⟨w, xi⟩+ b)) (10.131)

This reveals the hinge loss:

Lhinge(z) = max(0, 1− z) (10.132)

10.8.1 Three Major Loss Functions

For margin z = yf(x):
1. Hinge Loss (SVM):

Lhinge(z) = max(0, 1− z) (10.133)

2. Logistic Loss (Logistic Regression):

Llog(z) = log(1 + e−z) (10.134)

3. Exponential Loss (AdaBoost):

Lexp(z) = e−z (10.135)

Figure 10.7: Loss functions

412 CHAPTER 10. SUPPORT VECTOR MACHINE

10.8.2 Properties

1. Hinge Loss:

• Piecewise linear

• Zero loss for correctly classified points beyond margin

• Linear penalty for margin violations

• Not differentiable at z = 1

• Sparse solutions (many zero αi)

2. Logistic Loss:

• Smooth and differentiable everywhere

• Never exactly zero

• Can be interpreted as log-likelihood

• Probabilistic interpretation: P (Y = 1|X = x) = 1
1+e−f(x)

• Non-sparse solutions

3. Exponential Loss:

• Smooth and differentiable

• Grows exponentially for negative margins

• More sensitive to outliers

• Connection to AdaBoost’s multiplicative updates

10.8.3 Derivatives

1. Hinge Loss:

∂Lhinge

∂z
=

{
−1 if z < 1

0 if z > 1
(10.136)

2. Logistic Loss:
∂Llog

∂z
= − 1

1 + ez
(10.137)

3. Exponential Loss:
∂Lexp

∂z
= −e−z (10.138)

10.9. A UNIFIED VIEW OF MODERN LEARNING METHODS 413

10.8.4 Statistical Interpretation

1. Population Minimizers:

• Logistic Loss: f ∗(x) = log P (Y=1|X=x)
P (Y=−1|X=x)

• Exponential Loss: f ∗(x) = 1
2
log P (Y=1|X=x)

P (Y=−1|X=x)

• Hinge Loss: f ∗(x) = sign(P (Y = 1|X = x)− 1
2
)

2. Fisher Consistency: All three losses are Fisher consistent for binary classification:

sign(f ∗(x)) = sign(2P (Y = 1|X = x)− 1) (10.139)

10.8.5 Practical Considerations

1. Choice of Loss:

• Hinge: When sparsity is desired

• Logistic: When probability estimates are needed

• Exponential: When strong emphasis on hard examples is wanted

2. Robustness:

• Hinge and logistic more robust to outliers

• Exponential loss sensitive to outliers

• Hinge loss most robust to label noise

10.9 A Unified View of Modern Learning Methods

10.9.1 General Framework

All three methods can be viewed as:

f(x) =
K∑
k=1

βkhk(x) (10.140)

where:

• hk(x) are hidden layer features

• βk are output layer weights

• K is the dimension of hidden layer (possibly infinite)

414 CHAPTER 10. SUPPORT VECTOR MACHINE

Aspect XGBoost Kernel SVM MLP
Features hk(x) Tree outputs Φ(x) components σ(w⊤

k x+ bk)
Number K #trees×#leaves ∞ (implicit) User-specified
Design Learned sequentially Fixed a priori Learned in parallel
Interpretability High Low Low

Table 10.1: Comparison of hidden layer characteristics

10.9.2 Hidden Layer Characteristics

10.9.3 Feature Construction

1. XGBoost:

hk(x) =
M∑

m=1

L∑
l=1

βmlI{x ∈ Rml} (10.141)

where:

• Rml are regions defined by tree splits

• Features learned adaptively via greedy splitting

• Piecewise constant approximation

2. Kernel SVM:

hk(x) = [Φ(x)]k with K(x, z) =
∞∑
k=1

hk(x)hk(z) (10.142)

where:

• Features defined implicitly through kernel

• Fixed feature map (e.g., RBF, polynomial)

• Universal approximation capability

3. MLP:

hk(x) = σ(w⊤
k x+ bk) (10.143)

where:

• σ is activation function (e.g., ReLU)

• Features learned through backpropagation

• Compositional structure possible (deep networks)

10.9. A UNIFIED VIEW OF MODERN LEARNING METHODS 415

10.9.4 Learning Paradigms

1. XGBoost:

• Sequential feature construction

• Gradient-guided splitting

• Second-order optimization

• Additive model building

2. Kernel SVM:

• Fixed feature space

• Convex optimization

• Kernel trick avoids explicit features

• Maximum margin principle

3. MLP:

• Parallel feature learning

• End-to-end gradient descent

• Backpropagation

• Deep composition possible

10.9.5 Model Complexity Control

XGBoost: λ∥w∥2 + γ#leaves + α
∑
m,l

|βml|

Kernel SVM:
1

2
∥f∥2H =

1

2

∑
i,j

αiαjK(xi, xj)

MLP: λ
∑
l

∥Wl∥2F + dropout/batchnorm

10.9.6 Advantages and Trade-offs

1. XGBoost:

• + Interpretable features

• + Handles mixed data types

• + Natural handling of missing values

416 CHAPTER 10. SUPPORT VECTOR MACHINE

• - Limited smoothness

• - Sequential training

2. Kernel SVM:

• + Convex optimization

• + Theoretical guarantees

• + Flexible feature space

• - Scaling with dataset size

• - Limited interpretability

3. MLP:

• + End-to-end learning

• + Compositional features

• + Parallel training possible

• - Local optima

• - Requires more data

10.9.7 Practical Considerations

1. When to Use Each:

• XGBoost: Structured data, mixed types

• Kernel SVM: Small-medium datasets, complex boundaries

• MLP: Large datasets, raw features (images, text)

2. Computational Scaling:

• XGBoost: O(nd log n) per tree

• Kernel SVM: O(n2) to O(n3)

• MLP: O(ndh) per epoch (h = hidden size)

10.10. MODEL COMPLEXITY AND REGULARIZATION 417

10.10 Model Complexity and Regularization

10.10.1 Fundamental Principle: Explaining Away Noise

The core principle underlying model complexity can be understood through the lens of noise
explanation. Different complexity measures essentially quantify how well a model class can
explain pure noise:

Definition 68 (Model Complexity - Informal). The complexity of a model class is its ca-
pacity to fit random patterns that contain no true underlying structure.

This manifests differently in classification and regression:

• Classification: Noise appears as random coin flips (±1 labels)

• Regression: Noise appears as Gaussian perturbations around true values

10.10.2 Three Views of Complexity

VC Dimension

The VC dimension has a simple interpretation through noise:

Definition 69 (VC Dimension). The VC dimension h of a model class is the maximum
number of points for which the model can fit any arbitrary assignment of binary labels.

Key properties:

• Measures capacity to explain random coin flips

• For linear classifiers in Rd: VC dimension = d+ 1

• Larger h implies more capacity to memorize random noise

Rademacher Complexity

Rademacher complexity provides a more nuanced, data-dependent view:

Definition 70 (Empirical Rademacher Complexity). For a function class F and sample
S = {x1, . . . , xn}, the empirical Rademacher complexity is:

R̂n(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
(10.144)

where σi are independent random signs (±1).
Properties:

• Measures correlation between function class and random noise

• More data-dependent than VC dimension

• Provides tighter generalization bounds

• Natural extension to real-valued functions

418 CHAPTER 10. SUPPORT VECTOR MACHINE

Regression Complexity

In regression, complexity manifests through function smoothness:

• Degree-d polynomial can fit d+ 1 random points perfectly

• Function smoothness limits oscillations fitting noise

• RKHS norm controls the magnitude of coefficients

10.10.3 Controlling Complexity

Margin’s Role

The maximum margin principle provides natural complexity control:

1. Without margin: Linear classifier in Rd has VC dimension d+ 1

2. With margin γ: VC dimension becomes ≈ min(R2/γ2, d)

3. Rademacher complexity decreases proportionally to 1/γ

This shows how margin constraints reduce noise-fitting capacity:

• Larger margin means fewer random labelings can be perfectly separated

• Rademacher complexity bound tightens with margin size

• Natural connection to regularization

L2 Regularization

L2 regularization provides a more general view of complexity control:

1. Linear Case:

• ∥w∥2 small implies large margin

• Directly limits ability to fit random labels

2. Kernel Case:

∥f∥2H =
∑
i,j

αiαjK(xi, xj) (10.145)

• Controls smoothness of decision boundary

• Limits oscillations that could fit random noise

10.10. MODEL COMPLEXITY AND REGULARIZATION 419

10.10.4 Unified Understanding

All these views describe resistance to noise:

• VC dimension: Cannot memorize too many random labels

• Rademacher complexity: Cannot correlate strongly with noise

• RKHS norm: Cannot fit too many random points

10.10.5 Theoretical Guarantees

This leads to fundamental generalization bounds:

Theorem 71 (Rademacher Generalization Bound). With probability 1− δ, for all f ∈ F :

E[L(f)] ≤ L̂(f) + 2R̂n(F) +
√

ln(1/δ)

2n
(10.146)

where L̂(f) is the empirical risk.

10.10.6 Modern Perspectives

Recent developments add nuance to this understanding:

• Double Descent: Overparameterization can decrease effective complexity

• Implicit Regularization: SGD provides algorithmic complexity control

• Neural Tangent Kernel: Connects deep learning to kernel methods

10.10.7 Practical Implications

This unified view guides practical decisions:

1. Model Selection:

• Choose complexity appropriate for dataset size

• Use cross-validation to detect noise-fitting

2. Regularization Choice:

• L2 for smooth functions

• L1 for sparse solutions

• Early stopping to prevent noise memorization

3. Algorithm Design:

• Balance empirical risk and complexity

• Adapt regularization to data properties

• Monitor effective model capacity

	Linear, Piecewise Linear and Logistic Regression
	Simplest Linear Regression
	Loss Function and Optimization
	Loss Function
	Finding the Minimum
	Vector Representation
	Geometric Interpretation
	Regression Towards the Mean

	Multiple Linear Regression
	Data Representation
	Model Formulation
	Vector Notation
	Loss Function and Gradient
	Geometric Interpretation
	General Solution Methods

	Piecewise Linear Regression and Modern Interpolation Paradigm
	Piecewise Linear Model
	Overfitting and Regularization
	Neural Network Interpretation
	Implicit Regularization
	Benefits of Overparameterization
	Learning as Interpolatable Memorization
	Double Descent Phenomenon
	Benign Overfitting
	Connection to Deep Learning
	Reflection: Classical versus Interpolation Paradigms

	Logistic Regression and Classification
	Maximum Likelihood Perspective
	Logistic Regression Model
	Likelihood and Gradients

	Gradient Descent
	Generic Notation and Taylor Expansion
	Geometric Interpretation
	Basic Algorithm
	Gradient Descent with Momentum

	Multi-Layer Perceptron
	Foundation
	Architecture Development
	Advanced Topics
	Notable Features
	Applications
	Logistic Regression as Perceptron
	Notation Comparison
	Network Architecture

	One Hidden Layer
	One-dimensional Input
	Two-dimensional Input
	Maximum Likelihood Estimation
	Chain Rule Backpropagation
	Overparameterization and Learning Dynamics

	General Multi-layer Perceptron
	Backpropagation for General MLP
	Scalar Intuition
	Vector and Matrix Form
	Detailed Component-wise Verification

	Stochastic Gradient Descent
	Mini-batch Structure
	Gradient Computation
	Update Rule
	Stochasticity from Mini-batches
	The Concept of Epochs
	Single-Epoch Learning
	Practical Considerations
	Advantages of Mini-batch SGD
	Single vs Multiple Epochs

	Adam Optimizer
	Recall: Momentum
	Adaptive Learning Rates
	Geometric Intuition
	Adam Algorithm
	Geometric Benefits
	Benefits in Practice

	Parameter Initialization
	Basic Principles
	Common Initialization Methods
	Variance Analysis
	Practical Guidelines
	Impact on Training Dynamics
	Initialization and Optimization Interplay

	Multi-class Classification
	Common Examples
	Network Architecture
	From Logit Scores to Probabilities
	Loss Function Derivation
	Gradient Derivation
	Comparison: Binary vs Multi-class
	Progressive Abstraction in Hidden Layers

	Word Embedding
	Model Structure
	Interpretation of Embedding Matrix
	Forward Pass Example
	Gradient Derivation
	Implementation Note

	The Profound Idea of Embedding
	From Sparse to Dense Representation
	Thought Vectors
	Vector Operations in Neural Networks
	Properties of Embedding Space
	Learning Embeddings
	Impact on Deep Learning

	Associative Memory
	Model Structure
	Interpretation
	Associative Memory
	Gradient Derivation
	Learning Dynamics
	Linear Associative Memory
	Non-linear Associative Memory

	Embedding for Recommender Systems
	Basic Model
	Learning from Observations
	Neural Network Interpretation
	Interpretation of User Embeddings
	Mathematical Properties
	Addiction Mechanism
	Extension to Non-linear Models

	Superposition
	Beyond Individual Components
	Basis Representation
	Subspace Decomposition
	Example: Barack Obama Embedding
	Mathematical Properties
	Implications
	Neural Network Perspective

	Normalization
	RMS Normalization
	Geometric Interpretation
	Benefits for Loss Landscape
	Error Correction Properties
	Cosine Similarity
	Application in Neural Networks

	Dropout
	Basic Mechanism
	Testing Phase Adjustment
	Advantages and Intuitions
	Mathematical Analysis
	Implementation Considerations
	Fault Tolerance: RMS Norm vs Dropout Comparison

	Convolutional Neural Networks
	Neural Networks as Computer Programs
	Recall: The Neural Language
	Basic Operations in Neural Language
	Neural Networks as Computer Programs
	Programming with Vectors
	Learning as Program Writing
	Understanding Neural Programs

	Computer Vision
	Input Image Structure
	Layers and Representations
	Convolutional Layer Computation
	Dimension Considerations
	Inductive Bias in Convolution
	Subsampling in Convolutional Layers
	Fully Connected Layer Computation
	Channel and Kernel View
	1×1 Convolution

	Backpropagation in CNN
	Error Signal
	Backprop through FC Layers
	Backprop through Convolutional Layers
	Backprop through Subsampling
	Parallelization
	Implementation Structure

	Recurrent Neural Networks
	Vector Evolution over Time
	Next Word Prediction
	Forward Computation
	Meaning of Hidden States
	Backpropagation Through Time
	Gradient Vanishing

	LSTM Innovation 1: Memory Stream
	Memory Stream
	Example: ``I love machine learning''
	Superposition in Memory Stream
	Detailed Gradient Calculation
	Memory Organization

	LSTM Innovation 2: Multiplicative Gates
	Key Innovations
	Memory Update Mechanism

	Multi-layer Recurrent Networks
	Backpropagation Through Layers and Time
	Fast Generation/Inference
	Memory Streams

	Residual Stream
	Residual Stream Through Layers
	Residual Stream in MLPs: A Computational Time Perspective
	Computational Time Interpretation
	Contrast with Real Time
	Gradient Flow
	Residual Stream as Assembly Line
	Learning Simplification
	Parallel with Memory Stream
	Gradient Flow as Quality Control

	Residual Stream as Learned Iterative Algorithm
	Finite Step Iterative Algorithm
	Algorithm Without Explicit Objectives
	Learned Update Rule
	Finite-Step Design
	Advantages of Learning the Algorithm
	Neural Programs with For Loops

	Neural Programming Language
	Neural network as a computer program
	Data as the Programmer
	Role of Residual Stream
	Foundation of Digital Intelligence

	Parameter Sharing Across Streams
	Memory Stream and Residual Stream
	Rationale for the Difference
	Adding Recurrence/Residual to CNNs
	Computational Structure
	Advantages

	Vanilla RNN vs Temporal CNN
	With or Without Horizontal Recurrent Connections
	Key Differences

	State Space Models
	Basic Formulation
	Unrolled Form
	Unifying Recurrent and Convolutional Views
	Computational Advantages

	Continuous-Time State Space Model
	Memory Stream Form
	Zero-Order Hold (ZOH) Discretization

	Mamba: Selective State Space Model
	Key Innovation

	Quantum Mechanics as RNN
	Basic Structure
	Special Properties
	Squared-Softmax and Born Rule
	Norm Conservation in Quantum Measurement
	Hidden Layer as Fundamental Reality
	Interface to Classical Reality
	The Role of the Observer
	Classical Reality as Rendered Display
	Philosophical Implications

	Transformer and GPT
	Embedding, Thought Vectors and Distributed Representations
	Superposition Nature
	Information Extraction
	Properties
	Neural Operations
	Residual Stream: Building Superposition
	Assembly Line Process

	Transformer Residual Stream
	Dual Retrieval Mechanism
	Assembly Line Process
	Two Forms of Retrieval
	Complementary Nature
	Attention Mechanism
	Mixture of Experts

	Complete Transformer Architecture
	Token and Position Embeddings
	Layer Processing
	Output Generation
	Backpropagation and Parallelization

	Associative Memory
	SVD as Memory Structure
	MLP as Query Generator
	Memory Cleaning
	Memory Editing
	Low-Rank Adaptation (LoRA)
	Query-Key-Value Projection as Assocative Memory

	Reflection: A Matrix = A Thousand Rules
	Matrix as Infinite Association Rules
	Advantages over Discrete Systems
	Learnability through Backpropagation
	Compositional Learning
	Implications
	Counter Argument: The Power of Abstract Logic

	Architectural Comparison
	Bottom-up Architecture
	Context Access
	Memory Metaphor
	Inference Process
	Trade-offs

	Original Transformer for Translation
	Architecture Overview
	Three Types of Attention
	Encoder Matrix Implementation
	Decoder Masked Attention

	Transformer Family: Translation to BERT and GPT
	Architectural Heritage
	BERT (Bidirectional Encoder Representations from Transformers)
	GPT (Generative Pre-trained Transformer)
	Core Distinctions

	Original Transformer Parameters
	Core Architecture Parameters
	Key Design Choices

	GPT-3 175B Architecture
	Key Parameters
	Parameter Distribution
	Computation Flow
	Design Choices

	Scaling Laws
	Power Law Relationships
	Optimal Allocation
	Chinchilla Scaling
	Implications
	Example Scales

	Two-Stage Training
	Pre-training Stage
	Instruction Fine-tuning
	Training Process
	Benefits of Two-Stage Approach
	Example Instructions

	Data Curation Pipeline
	Pre-training Stages
	Instruction Fine-tuning
	RLHF Data
	Quality Progression
	Continuous Improvement

	Reinforcement Learning from Human Feedback
	Basic Concept
	Reward Modeling
	Bradley-Terry Model
	Policy Gradient Fine-tuning
	Comparison with Maximum Likelihood

	Proximal Policy Optimization (PPO)
	Importance Sampling Form
	Motivation for Clipping
	PPO Clipped Objective
	Implementation Benefits
	Understanding PPO

	Vision Transformer (ViT)
	Image to Sequence
	Patch Embedding
	Processing Architecture
	Comparison with CNN
	Computational Aspects
	Practical Considerations

	CLIP: Contrastive Language–Image Pretraining
	Dual Encoder Architecture
	Contrastive Loss
	Understanding Contrastive Learning
	Temperature Scaling
	Training Process
	Applications

	Diffusion Model
	Probability Preliminaries: Counting Population
	Discrete Random Variables: Population Movement Between States
	Continuous Random Variables: Population Distribution on a Line

	Noising and Denoising: A Single Step
	The Forward Noising Process
	The Backward Denoising Process
	Reversibility of the Noising Process
	Why Score Reverses Noising
	Stochastic Denoising and Deterministic Denoising

	Trajectory-Based Data Augmentation
	Motivation and Challenges
	Trajectory-Based Approach
	Learning the Generation Process
	Generation Process
	Comparison with Autoregressive Models

	Simple Gaussian Trajectory Construction: Noising and Denoising
	Forward Process Construction
	Transition Probability
	Terminal Distribution Analysis
	Derivation of the Reserve Transition Distribution
	Uniqueness of Gaussian
	Necessity of Small Noise Variance

	Score-Based Parametrization
	Single Neural Network Parametrization
	Learning the diffusion model
	Generation Process
	Alternative Loss: Predicting Clean Data
	Noise Prediction
	Generation Process with Noise Prediction
	Scaling
	UNet Parametrization of the Score Network

	Variance Reduction via Trajectory Averaging
	Multiple Trajectories Perspective
	Variance-Reduced Loss with Conditional Mean
	Deriving Alternative Loss via Conditional Mean

	Connection to Denoising Auto-Encoder and Vincent Identity
	Denoising Auto-Encoder
	Proof of Vincent Identity

	Noise Prediction Parameterization
	Loss Function
	Training Algorithm
	Sampling Algorithm

	Maximum Likelihood and Kullback-Leibler Divergence
	General Setting
	Extension to Trajectories
	Trajectory Distributions
	Learning the diffusion model
	Connection to KL Divergence
	Trajectory Distribution Factorization
	KL Divergence Decomposition
	Local KL Terms
	Final Objective

	Deterministic Sampling: t-2 Reasoning
	Continuous Time Analysis
	Forward Process
	Stochastic Differential Equation (SDE) Backward
	Deterministic Ordinary Differential Equation (ODE) Backward
	Understanding Continuous Time Through Movies

	Stochastic Noising and Deterministic Denoising
	Distribution Preservation
	Intuitive Understanding
	Langevin Dynamics for Equilibrium Sampling
	Non-equilibrium Sampling

	General Forward Process with Drift
	Forward Process Analysis
	Backward Processes

	Random Drift Process
	Process Comparison
	Accumulated Variance Analysis
	Deterministic Equivalence
	Backward Process

	Fokker-Planck Analysis
	Test Function Perspective
	SDE Analysis
	ODE Analysis
	SDE-ODE Equivalence
	Random Drift Analysis
	Extension to Multivariate Case

	Flow Matching with Straight Trajectories
	Design Principle
	Non-Markovian Trajectory Data
	Setup
	Backward Process Analysis
	Flow Matching Learning
	Connection to Noise and Score Prediction

	Variance Scheduling
	Forward Process Construction
	Deriving the Marginal Distribution
	Training and Sampling
	Forward Process SDE
	Backward Processes

	Applications of Diffusion Models
	Text-to-Image Generation
	Diffusion Transformer

	VAE and GAN
	Maximum Likelihood and KL-Divergence
	Empirical Distribution and Log-likelihood
	True Model Log-likelihood and Entropy
	KL Divergence as Log-likelihood Gap
	Information Geometric Interpretation
	Implications

	Deconvolution Network with Latent Space
	Structured Latent Representation
	Deconvolution Network Architecture
	Training
	Latent Space Interpolation
	Applications

	Latent Variable Models: From Effect to Cause
	Data Augmentation with Latent Variables
	Generative Model Structure
	Manifold Learning Perspective
	Historical Connection: Factor Analysis

	From Marginal to Joint KL Divergence
	Log-likelihood and KL Divergence
	Extension to Complete Data
	Key Decomposition
	Two Forms of ELBO
	Analysis of Gaps

	Inference Model
	From Data Augmentation to Learnable Inference
	Joint Optimization
	Evidence Lower Bound with Learnable Inference
	Interpreting Form 1 of the ELBO
	Interpreting Form 2 of the ELBO
	Mode Covering versus Mode Seeking Behavior
	Connection to EM Algorithm

	Variational Autoencoder Implementation
	Neural Network Parametrization
	The Reparametrization Trick
	Computing the ELBO
	Training Algorithm
	Practical Considerations
	Generation and Reconstruction

	Comparison with Diffusion Models
	Latent Variable Structure
	Key Distinction: Fixed vs Learned Inference
	Theoretical Guarantees
	Philosophical Perspective

	Generative Adversarial Networks
	Data Structure
	Learning the Discriminator
	Game-Theoretic Perspective
	Implementation Form
	Wasserstein GAN
	Mode Collapse

	Deep Reinforcement Learning
	Theoretical Foundations of Sequential Decision Making
	Basic Setup
	Key Functions
	Model-Based vs Model-Free Paradigms

	Fundamental Theorems in Reinforcement Learning
	Policy Gradient Theorem
	Fundamental Relationships in Value-Based RL
	Implications
	Core Algorithm Derivations
	Advanced Methods

	The Game of Go
	Game Complexity
	Formal Game Definition
	Rules and Gameplay

	Neural Network Architecture
	Policy Network
	Value Network

	Training Methodology
	Supervised Learning of Policy Network
	Reinforcement Learning of Policy Network
	Training the Value Network

	Progressive Introduction to Monte Carlo Tree Search
	From Simple Policy to Look-ahead Search
	Basic Monte Carlo Look-ahead
	Advantage of Looking Ahead
	Foundation for Full MCTS
	Q-value Update on the Whole Branch
	Policy-Guided Action Selection
	Full MCTS with Dynamic Tree Growth
	Complementary Roles of Policy and Value for Search
	Value Network and Bootstrap Principle

	From AlphaGo to AlphaGo Zero
	Original AlphaGo Architecture
	The Key Insight
	The Natural Evolution
	Birth of AlphaGo Zero
	Why This Works

	Reflections: System 1 and System 2
	System 1 and System 2 in AlphaGo Zero
	The Consciousness Parallel
	Learning as Memorization
	Primacy of Planning
	Generalization and Transfer

	Deep Q-Learning for Atari Games
	The Atari Environment
	Q-Learning Formulation
	Key Components
	Training Process
	Contrast with AlphaGo
	Practical Considerations
	Q-Learning and MCTS: Shared Principles

	Policy Gradient Methods for Atari Games
	Core Idea
	Policy Gradient Theorem
	REINFORCE Algorithm
	Variance Reduction
	Practical Implementation
	Comparison with Q-Learning

	Value-Based versus Policy-Based Methods
	Fundamental Differences
	Key Properties
	Learning Characteristics
	Implementation Aspects
	Practical Trade-offs
	Empirical Results in Atari
	Motivation for Hybrid Approaches

	Actor-Critic Methods for Atari Games
	Core Architecture
	Advantage Estimation
	Implementation for Atari
	Key Advantages for Atari
	Practical Considerations
	Comparison to Other Methods
	Proximal Policy Optimization (PPO)
	Actor-Critic Implementation in PPO

	Bootstrapping in Dense-Reward Settings
	Core Bootstrap Concept
	One-Step Bootstrap
	Multi-Step Bootstrap
	Why Bootstrap Works in Dense Rewards
	Implementation Considerations
	Success in Practice
	Dense-Reward vs MCTS Bootstrapping

	Temporal Difference Learning
	The TD Learning Principle
	Comparison with Other Methods
	TD Learning Properties
	Variants and Extensions
	Connection to Other Concepts

	On-Policy versus Off-Policy Learning
	Fundamental Definitions
	Mathematical Formulation
	Algorithm Examples
	Key Trade-offs
	Implementation Considerations
	Unified View
	Application Examples

	Dense versus Sparse Rewards
	Reward Characteristics
	Implications for Learning
	Solution Approaches
	Architectural Implications

	Model-Based vs Model-Free Approaches
	Model Definition
	Analysis by Game Type
	Algorithmic Approaches
	Hybrid Approaches
	Trade-offs Summary

	Model Predictive Control (MPC)
	Core Concept
	Mathematical Formulation
	Algorithm Structure
	Key Advantages
	Comparison to Other Methods
	Unifying View: MPC and AlphaGo Planning

	Planning versus Policy Approaches
	Fundamental Distinction
	Computational Properties
	Information Usage
	Decision Quality
	Hybrid Approaches
	Domain-Specific Considerations
	Implementation Considerations
	Future Trends

	Relationship Between Planning and Control
	Core Definitions and Distinctions
	Mathematical Formulations
	Key Distinctions
	Model Predictive Control: A Bridge
	Comparative Analysis
	Modern Integration
	Future Directions

	Policy and Value Functions in Planning and Control
	Fundamental Roles
	Integration in Planning
	Integration in Control
	Hybrid Architectures
	Learning Mechanisms
	Implementation Considerations
	Future Directions

	Online versus Offline Reinforcement Learning
	Fundamental Distinctions
	Mathematical Formulation
	Key Challenges
	Modern Algorithms
	Implementation Considerations
	Applications
	Future Directions

	Summary
	Core Components in Deep RL
	Algorithm Classification
	Key Trade-offs
	Unified Learning Framework
	Domain-Specific Insights

	Trees and Boosting
	Incremental Model Improvement: From Deep Learning to Trees
	The Principle of Incremental Learning
	Three Paradigms of Incremental Improvement
	Geometric Interpretation
	Common Mathematical Structure
	The Role of Gradients
	Looking Ahead

	Decision Trees
	A Motivating Example
	Decision Rules and Tree Structure
	The Concept of Purity
	Splitting Criterion
	From Classification to Regression

	Regression Trees
	Mathematical Framework
	Optimization Problem
	Recursive Binary Splitting
	Split Selection Algorithm
	Tree Growing Procedure
	Statistical Properties

	Least Squares Boosting
	Basic Framework
	Regularized Optimization
	Tree Construction with Regularization
	Extension to Weighted Least Squares
	Complete Algorithm
	Connection to XGBoost

	XGBoost for Logistic Regression
	The Logistic Model
	Loss Function Analysis
	Adding a New Tree
	Geometric Interpretation
	The Golf Analogy
	Connection to Error Back-propagation
	Tree Learning as Back-propagation
	Connection to Iterative Reweighted Least Squares

	Surrogate Loss Functions and Incremental Learning
	The Role of Surrogate Losses
	Gradient Descent as Surrogate Minimization
	Boosting and Surrogate Losses
	XGBoost's Second-Order Surrogate
	A Unified View Through Surrogate Functions
	Design Principles for Surrogate Functions
	Connection to Earlier Sections

	The ``Lazy'' Nature of Boosting and Implicit Regularization
	Gradient Flow and Function Space
	The Principle of Least Action
	Spectral Bias in Function Learning
	Early Stopping as Complexity Control
	Implicit Regularization Through Optimization
	Comparison with Neural Networks
	Practical Implications

	AdaBoost
	The Exponential Loss Framework
	Properties of Exponential Loss
	Forward Stagewise Additive Modeling
	Optimal Base Classifier
	Optimal Weight Coefficient
	Weight Update Rule
	The Complete Algorithm
	Comparison with XGBoost

	Random Forests
	Ensemble Framework
	Sources of Randomization
	Tree Construction
	Statistical Properties
	Variable Importance Measures
	Theoretical Results
	Comparison with Boosting Methods
	Implementation Considerations

	Support Vector Machine
	Primal Problem: Max Margin
	The Geometric Intuition
	The Separation Problem
	Connection to Standard SVM Formulation

	From Primal to Dual: MinMax = MaxMin
	The Lagrangian Formulation
	The Minimax Problem
	Equivalence of Max-Min Lagrangian to Primal Problem
	Saddle Point and Max-Min Equality
	Game Theoretic Interpretation of Max-Min Equality

	Dual Problem: Min Distance
	Initial Dual Derivation
	Geometric Interpretation via frontal points
	The Distance Interpretation
	The Minimum Distance Problem
	Projections and Separation
	Karush-Kuhn-Tucker (KKT) Conditions

	Dual Coordinate Ascent
	Dual Problem with b=0
	Coordinate-wise Optimization
	Optimal Update
	Algorithm
	Implementation Details

	The Kernel Trick
	Motivation
	Kernel Function
	Kernelized Dual Problem
	Common Kernel Functions
	Mercer's Theorem
	Kernelized Coordinate Descent
	Implementation Considerations
	Reproducing Kernel Hilbert Space
	Example: Gaussian RBF Kernel

	Soft Margin SVM
	Motivation
	Primal Problem
	Lagrangian
	KKT Conditions
	Dual Problem
	Support Vector Cases
	Bias Term Computation
	Model Selection

	Sequential Minimal Optimization (SMO)
	Problem Structure
	Two-Variable Subproblem
	Analytical Solution
	Constraint Handling
	Algorithm and Convergence
	Connection to Coordinate Methods
	Comparison of Incremental Learning Strategies

	From Slack Variables to Hinge Loss
	Three Major Loss Functions
	Properties
	Derivatives
	Statistical Interpretation
	Practical Considerations

	A Unified View of Modern Learning Methods
	General Framework
	Hidden Layer Characteristics
	Feature Construction
	Learning Paradigms
	Model Complexity Control
	Advantages and Trade-offs
	Practical Considerations

	Model Complexity and Regularization
	Fundamental Principle: Explaining Away Noise
	Three Views of Complexity
	Controlling Complexity
	Unified Understanding
	Theoretical Guarantees
	Modern Perspectives
	Practical Implications

