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Overview:

This project develops a unified framework for incorporating explicit latent abstractions into modern artificial
intelligence systems. While current deep learning approaches have achieved remarkable success through
memorization and interpolation, they often lack explicit abstraction capabilities that are crucial for human-
like generalization and reasoning. Drawing inspiration from how scientific theories use latent concepts (like
force and mass in physics) to enable understanding and generalization, we propose to enhance Al systems
with learned abstract representations that guide generation and optimization. Our framework introduces
different manifestations of latent abstraction - ’designs” for optimization problems, “’plans” for sequential
decision making, “thoughts” for language generation, and “worlds” for video modeling. These abstractions
serve as information bottlenecks that capture essential structure while enabling more efficient learning and
better generalization. The research program spans four aims that develop this idea across different domains,
from molecular design to video generation, creating a comprehensive approach to abstraction-enhanced
artificial intelligence. The key innovation lies in treating these abstractions as instance-specific parameters
that can be rapidly optimized during inference, similar to how biological systems combine fast episodic
learning with slower semantic learning. This approach bridges modern deep learning with classical ideas
about symbolic reasoning while maintaining the powerful function approximation capabilities of neural
networks.

Intellectual Merit:

The proposed research advances artificial intelligence through several key contributions: (1) Development of
a novel framework that unifies different forms of latent abstraction across multiple domains, from molecular
design to video generation; (2) Development of algorithms and code for learning and inferring abstract
representations that guide generation and optimization; (3) Providing insights into the relationship between
memorization-based learning and abstraction-based learning and planning; (4) Demonstration of improved
data efficiency and generalization through the use of explicit abstractions; (5) Creation of bridges between
modern deep learning methods and classical ideas about symbolic reasoning and planning. The project
introduces mathematically rigorous approaches to learning and using abstractions while maintaining the
powerful function approximation capabilities of current methods.

Broader Impacts:

This project has significant potential impacts across multiple domains. The research will advance scientific
discovery through better molecular and material design methods, improve robotics and automation through
enhanced planning and control capabilities, enable more structured and logical natural language processing,
and advance computer vision through physically-consistent video generation. The project will contribute
substantially to workforce development through the training of graduate students and creation of new course
materials on abstraction-based Al. A particular focus will be placed on providing research opportunities
for underrepresented groups in STEM, including women and minorities, through targeted mentorship and
inclusion in research projects. The educational impact extends beyond graduate education to include un-
dergraduate research opportunities and the development of new curriculum materials that make advanced
Al concepts accessible to a broader audience. The research will be disseminated through open-source soft-
ware, publications, and educational materials, ensuring broad access to the developed methods and insights.
Through collaborations with experimental laboratories and industry partners, the project ensures that theo-
retical advances translate into practical applications that benefit society. The combination of methodolog-
ical innovation, educational development, and practical application creates a comprehensive program that
advances both the field of artificial intelligence and its broader societal impact.
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1 Introduction

The past decade has witnessed unprecedented success in artificial intelligence, driven by the remark-
able capabilities of deep learning systems. At the heart of this revolution lies a powerful paradigm: over-
parametrized networks that excel at memorization and interpolation. Large language models like GPT [6]
have demonstrated extraordinary abilities in text generation through pure autoregressive prediction. Simi-
larly, diffusion models [87, 33, 12] have revolutionized image and video generation, producing increasingly
realistic outputs. However, these systems often require massive datasets and computation, struggle with
systematic generalization, and lack explicit mechanisms for abstraction and reasoning.

This technological parallel recalls a profound transition in scientific history. In ancient astronomy,
Ptolemy’s system of epicycles achieved remarkable predictive accuracy through increasingly complex com-
binations of circular motions. While effective for prediction, it lacked the profound conceptual under-
standing that Newton later provided through abstract concepts like force (F) and mass (m), crystallized in
equations like F' = ma. Newton’s theory, built on latent abstractions, offered not just prediction but deeper
understanding and greater generalization. We propose that modern Al systems can benefit from a similar
transformation through explicit latent abstractions.

Our framework introduces four manifestations of latent abstraction, each supported by strong prelim-
inary results: (1) Latent “designs” for optimization problems like molecular design, where abstract repre-
sentations capture chemical and functional properties while improving optimization efficiency; (2) Latent
“plans” for sequential decision making, enabling more coherent long-term behavior in robotics through ex-
plicit planning; (3) Latent “thoughts” for language generation, providing mechanisms for more structured
and logical text generation with enhanced consistency; (4) Latent “worlds” for video modeling, capturing
physical dynamics and scene structure for better prediction and generation. These abstractions serve as
information bottlenecks that capture essential structure while enabling more efficient learning and better
generalization.

Our research program spans four aims that develop this unified framework across different domains,
from molecular design to video generation. The key innovation lies in treating these abstractions as instance-
specific parameters that can be rapidly optimized during inference, similar to how biological systems com-
bine fast episodic learning with slower semantic learning [61]. This approach bridges modern deep learning
with classical ideas about symbolic reasoning while maintaining the powerful function approximation capa-
bilities of neural networks. Through comprehensive methodological development and empirical validation,
we aim to establish a new paradigm for Al systems that combine the flexibility of deep learning with the
power of explicit abstraction.

Computational Resources and Technical Expertise. The PI maintains a well-equipped research lab-
oratory with significant computational resources, including 25 NVIDIA A6000 GPUs for large-scale ma-
chine learning experiments. Through strategic collaboration with Dr. Jianwen Xie at Lambda, the team
has access to 20 NVIDIA H100 GPUs, with potential for additional resources as needed. The lab’s techni-
cal capabilities are further strengthened by Ph.D. students with expertise in GPU optimization and CUDA
programming, including Degian Kong and Andrew Lizarraga.

1.1 Intellectual Merit

The proposed research advances the methodological foundations and practical capabilities of artificial
intelligence in several key ways: (1) Introduces a novel framework unifying different forms of latent abstrac-
tions across multiple domains. (2) Develops algorithms and code for learning and inference with abstract
representations. (3) Provides insights into the relationship between memorization-based and abstraction-
based learning. (4) Demonstrates practical benefits in terms of data efficiency, generalization, and inter-
pretability. (5) Creates bridges between modern deep learning and classical ideas about symbolic reasoning
and planning.



This work has the potential to significantly impact how we approach artificial intelligence, moving
beyond pure prediction toward systems that combine the power of deep learning with explicit abstraction.

2 Latent Abstraction Framework

We propose a unified framework for learning and inference with latent abstractions that captures funda-
mental processes in both biological and artificial intelligence.

2.1 Notation and Problem Setup

Letz = (x(1, ... x, ... x(T)) denote an observed sequence, where x(*) represents an element at time step
t, and T is the sequence length which may vary across different sequences. Let z € R¢ denote the latent
abstraction, which can take the form of a continuous vector or multiple vectors (sometimes referred to as
“tokens” even when they are not quantized). When relevant, let y € R denote a scalar value associated with
the sequence x, such as objective function value or cumulative reward, or y € {0, 1} denote binary value for
task completion, answer correctness, constraint satisfaction, or human preference.

2.2 Forms of Latent Abstraction

The latent abstraction z takes on different interpretations depending on the domain, revealing funda-
mental commonalities across various forms of intelligence:

Abstract “Design”. In molecular and biological design, & naturally takes a sequential form. A molecule,
though structurally a graph, can be encoded as a sequence through representations like SMILES [96] or
SELFIES [51] notation. A protein is inherently sequential, represented as a chain of amino acids. Here, z
serves as an abstract “design” that captures essential structural and functional properties. The value y repre-
sents chemical or biological properties of interest, such as binding affinity, drug-likeness, protein stability,
or enzyme activity. y can also be binary for constraint satisfaction. In multi-objective scenarios, y can be
extended to a weighted combination of multiple property values, allowing for the optimization of complex
design criteria while maintaining chemical and biological validity.

Abstract “Plan”. In reinforcement learning, where x is a sequence of actions, z functions as an abstract
“plan” that guides behavior. This plan encodes high-level strategies and intentions, similar to how biological
organisms formulate and execute complex action sequences. The value y represents the cumulative reward
obtained from executing the action sequence, providing a measure of the plan’s effectiveness in achieving
desired goals. This reward signal shapes the learning of effective planning strategies through experience. y
can also be binary for task completion or game winning or losing.

Abstract “World”. For video sequences where & consists of consecutive frames, possibly accompanied
by self-motion actions in navigation or manipulation tasks, z represents an abstract “world” or “map”.
This internal model captures the environment’s structure and dynamics, enabling prediction and planning.
The value y in this context can represent task completion (e.g., reaching a target location in navigation,
successfully manipulating an object) or other measures of task success. Like cognitive maps in biological
systems [93], this abstract representation helps in understanding spatial relationships and predicting future
states.

Abstract “Thought”. When « is a sequence of words or tokens, z serves as an abstract “thought” that
captures the underlying semantic content and structure. This parallels how biological intelligence might
maintain abstract mental representations that guide language production and comprehension. In this set-
ting, y can represent various measures of success: human preference scores for generated text, accuracy in
reaching correct answers for question-answering tasks, or task completion metrics for instruction following.
These values guide the model toward generating coherent, meaningful, and task-appropriate language.

2.3 Nature of Latent Abstraction

Latent Variables and Random Effect Parameters. The concepts of latent variables and random effect
parameters, while arising from different modeling traditions [24], are fundamentally unified in their role



as instance-specific abstractions. Both serve the same essential purpose: they provide instance-specific
parameters that enable adaptation to individual examples while sharing statistical strength across the dataset.
This unity is particularly evident in our framework, where the latent abstraction z can be viewed either
as latent variables encoding abstract properties or as random effect parameters capturing instance-specific
structure.

Distinction from State Vector. The latent abstraction z in our framework warrants careful distinction
from other forms of latent representations in sequential modeling. Unlike hidden state vectors s; in state
space models or recurrent neural networks, z represents a global abstraction of the entire sequence . Our
framework can be naturally extended to incorporate both levels of abstraction, where z first generates a
sequence of hidden states (s;,t = 1,...,T), which then generate the observations x*) conditioned on both s,
and z.

Non-Sequential Data. While our initial formulation focuses on sequential data due to its widespread
applicability and inherent temporal structure, the framework extends naturally to non-sequential data such
as images and graphs.

2.4 Generative Model Formulation

We formulate our framework as a structured probabilistic model that captures the relationship between
latent abstractions, observed sequences, and objective values.

Prior Model. Let py(z) denote the prior distribution of the latent abstraction z with parameter «. This
prior can be realized in several ways. A particularly convenient formulation is through a transport model:

z:UOC(ZO)7 ZONf/V(OaI)a (1)

where Uy (+) is a learnable transformation. This transformation can be parametrized by a U-Net architec-
ture [82] or, notably, by a transformer encoder [94]. In the latter case, our model becomes a repurposing
of the original transformer architecture for translation [94], where the encoder maps Gaussian noise to-
kens z to abstract tokens z that guide sequence generation. Alternative formulations include energy-based
models [54] or diffusion models [33] for the prior.
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Figure 1: The architecture follows the original transformer encoder-decoder for translation, where the encoder serves
as the prior for latent abstract token, and the decoder serves as the generator. Inference of latent tokens can be
accomplished by inferrring noise tokens.

Abstraction-Controlled Generation. The key component of our model is a z-controlled autoregressive
generator pg(x|z) with parameter 8. Unlike standard autoregressive models that only condition on previous
elements [78], our model incorporates the global abstraction z at each generation step:

~

pp(a|z) = [ pp(x"]z,2<"), )

t=1

where (<!} denotes previous tokens before x®. We are particularly interested in models with a finite
context window of size k: pg(x|z) =1, pp (x)|z,2£0=*1=1)) where ~%'~1) denotes the k previous
elements. This finite context forces z to serve as a global information carrier, integrating information across
temporal segments that would otherwise be disconnected due to the limited context window.



For discrete elements x(*), we implement pp(x|z) using a transformer decoder where z cross-attends

to the decoder layers. For image frames x\*), we can either employ diffusion models [12] or first quantize

image patches using a VQ-GAN tokenizer [15] to maintain the discrete sequence modeling framework.
Value Prediction. When modeling sequences with associated value y, we introduce a prediction model

py(y|z) with parameter ¥, typically parametrized as a non-linear regression using a multi-layer perceptron:

py(|z) = A (fy(2),07), 3)

where f,(-) is the prediction network and o is either fixed or learned. If y € {0,1}, then p,(y|z) can be
modeled by logistic regression.

Information Bottleneck. A crucial assumption in our model is that given z, the sequence x and value
y are conditionally independent. This positions z as an information bottleneck [91], making it an objective-
aware or value-aware abstraction. The joint distribution is thus: pe(x,y) = [ pg(x|2)py(y|2)pa(z)dz,
where 6 = (a, B, 7) denotes all model parameters.

2.5 Learning and Inference

We present three approaches for learning and inference in our framework, each offering different trade-
offs between computational efficiency and modeling flexibility.

Maximum Likelihood Learning with Langevin Sampling. In this approach, we directly maximize
the log-likelihood L(0) = 1 ¥ log pg(x;,y;). With the transport model prior z = Uy (29), we can write

T n
the joint distribution as:

po(@.y) = [ pp(elz = Ua(20))py(312 = Ua(z0) po(z0)dz0 @)
where po(z9) = 47(0,I). The learning gradient is:

Velogpe(x,y) = E,p 2|z [Velog pp(x|Ua(z0)) + Velog py(y|Ua(20))]- S)

The posterior distribution pg(zo|x,y) is sampled using Langevin dynamics:
25 = 20 45V, log pe (202, y) + V25 €, (6)

where 7 indexes the time step, s is the step size, and €* ~ .47(0, I'). The gradient term expands as:

T
V.o log pe (2o @,y) = —20+ Va, Y log pp () |x<), Uq (20)) + V2, 1og py(y|Ua(20) ). )

t=1

Classical Variational Learning. In this approach, we introduce a variational posterior g(zo|x,y) =
N (u,diag(a?)) with local parameters (u, %) specific to each (z,y) pair [43]. We maximize the evidence
lower bound (ELBO) [35]:

g(e’uvaz) = Eq(z0|m,y) [lnglg (m|UOl(Z0)) +10gp7(y|UOt(z0))] - KL(C](Z()|£C,y)Hp0(Z())). (®)

Variational Auto-encoder with Amortized Inference. As a baseline, we consider the VAE approach [46]
that introduces an inference network g (20|, y) with global parameters ¢ to amortize the iterative inference
computation in classical variational learning.

Comparison. Our empirical studies suggest that both maximum likelihood learning with Langevin
dynamics and classical variational learning can be more effective than the VAE approach, which requires
learning a potentially very big network for the inference model.Inference in both MCMC-based and classi-
cal variational approaches can be made efficient with finite-step algorithms with warm start from previous
learning iteration.



3 Aim 1: Latent “Design” for Optimization

3.1 Problem Formulation

Let .2 denote a large structured input space. In combinatorial optimization problems, 2" is typically
discrete with cardinality that grows exponentially with problem size. For instance, in molecular design, 2~
represents the space of valid molecules, where even modest-sized molecules with up to 40 atoms can yield a
space of over 10%° possible combinations. Each & € 2" can be represented as a sequence = = (x(l), ...,x(T)),
such as SMILES [96] or SELFIES [51] notation for molecules.

The goal is to find * € 2" that maximizes an objective function F : 2" — R [5]: * = argmaxyc 9 F ().
In black-box optimization, F () is unknown but can be evaluated through queries to an oracle function. The
oracle returns a value y = F(x) for any input x. In molecular design, oracle functions include computa-
tional chemistry tools like RDKit [53] for calculating drug-likeness (QED) [3] and synthetic accessibility
(SA) [14], AutoDock-GPU [83] for protein binding affinity, wet-lab measurements through surface plasmon
resonance (SPR) [75], or trained surrogate models that predict properties [26].

Starting from an initial training dataset 2 = (z;,y;);_, of input-output pairs, where y; = F (x;), we aim to
find optimal =*. In offline optimization, we must rely solely on the initial dataset without additional oracle
queries [16]. Online optimization allows continued interaction with the oracle to evaluate new candidates,
enabling iterative improvement through active learning [84]. For online optimization, the initial dataset &
can use randomly generated (x;). This proposal focuses on online optimization where we can continue to
query the oracle function.

Traditional approaches to black-box optimization often rely on Bayesian optimization with Gaussian
processes as surrogate models [79, 86]. However, Gaussian processes scale poorly to high-dimensional
structured inputs like molecules. Recent work has shown that generative models can effectively learn the
distribution of high-performing inputs p(x|y) [41, 104], enabling more efficient optimization in large com-
binatorial spaces [110].

3.2 Proposed Framework on Learning and Distribution Shifting

We can pretrain the model pg(x,y, z) with transport prior z = Uy (20), 20 ~ -4 (0,I) using the initial
dataset &. After training, optimization can be accomplished through conditional generation: sampling
20 ~ po(zoly) = po(20)py(y|z = Un(20)) using Langevin dynamics, followed by generating « ~ pg(x|z =
Ua(20)). The 62 parameter in py(y|z) = A (fy(z),0?) controls exploration (for big 6%) and exploitation
(for small ).

Naively setting y to a high target value leads to unreliable extrapolation beyond the training distribution.
We propose a gradual shifting scheme that iteratively moves the learned distribution toward regions of higher
objective values. The algorithm maintains a replay buffer B’ of size K, initialized by selecting the top-K
molecules from the training dataset & based on their objective values. At iteration #, for each example
(z,y) in B, we shift its objective value by § = y+ A, where A is a small step size. For each shifted target
¥, we generate M new molecules by sampling latent vectors using the posterior pg(zo|f), then generating
molecules from pg(x|z = Uq(20)). Each generated molecule is evaluated by the oracle to obtain its true
value y = F ().

Let G' denote the set of generated molecules and their oracle values. The new buffer is formed by
selecting the top-K molecules based on objective values: B'*! = TopK(B' UG"). The model parameters
are then updated through maximum likelihood training on B’*!. This process continues until convergence
or until the oracle query budget is exhausted.

The gradual shifting ensures reliable extrapolation by maintaining the model’s support near observed
data while progressively moving toward regions of higher objective values. The replay buffer serves both
as a mechanism for sample-efficient learning and as a way to prevent catastrophic forgetting of previously
discovered high-performing molecules.

Computational Efficiency. For both posterior sampling and model learning, we adopt finite-step
Langevin dynamics with warm start from previous learning or shifting iteration. Our empirical studies



show that as few as 2-3 Langevin steps per iteration can be sufficient when combined with warm start.

3.3 Preliminary Results on Molecule Design

Our preliminary work, reported in our NeurIPS 2024 paper [47], demonstrates the effectiveness of la-
tent abstraction for molecule design through a comprehensive evaluation framework encompassing both
multi-objective optimization and targeted drug design. In multi-objective optimization, we simultaneously
optimize binding affinity (Kp), drug-likeness (QED), and synthetic accessibility (SA) across three protein
targets: ESR1, ACAA1, and PHGDH [83]. The binding affinity is expressed as the dissociation constant
Kp(nM), where lower values indicate stronger binding, computed using AutoDock-GPU as a proxy for
experimental measurements. As shown in Table 1, our method achieves superior binding affinity while
maintaining favorable drug-like properties across all targets.

Table 1: Multi-objective optimization results. Top 2 performance, measured by Kp(nM), QED and SA, are reported
for each method. Baseline methods include LIMO [13] and SGDS [48]. Best results are marked in bold, and the
second best results are underlined.

ESRI ACAAI1 PHGDH
Kpl QEDT SA||Kpl! QEDT SA|| Kpl QEDT SA|

LIMO 1°" 4.6 0.43 4.8 28 0.57 55 [29.15 033 473
LIMO 2"> 2.8 0.64 4.9 31 0.44 49 14298 020 532
SGDS 1°" 0.36 044 399 | 455 0.56 4.07 | 4.47 0.54 3.37
SGDS 2** 1.28 044 386 | 5.67 0.60 4.58 | 5.39 0.42 4.02

LPT 1°" 0.04 058 3.46 | 018 0.50 4.85 | 0.02 0.50 311
LPT 2*° 0.05 046 324 | 0.21 0.61 4.18 | 0.03 0.43  3.22
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Figure 2: Left: Structure-constrained optimization starting from an indole backbone (C1). Left column shows our
model’s ability to reproduce expert-designed compounds C2 and C3, while right column shows novel compounds with
improved binding affinity. Right: Binding poses visualized in PHGDH’s NAD binding site, showing how our generated
molecules (left: multi-objective optimization, right: structure-constrained optimization) maintain key protein-ligand
interactions.

We further demonstrate our method’s capabilities through a detailed case study on Phosphoglycerate
dehydrogenase (PHGDH), an enzyme pivotal in L-serine synthesis that has emerged as a promising thera-
peutic target in cancer treatment [64]. PHGDH is particularly relevant as its overexpression has been linked
to breast cancer progression and poor patient outcomes [77]. For PHGDH inhibitor design, we employ
structure-constrained optimization starting from an indole backbone scaffold, which has been previously
validated through experimental studies [95].

As shown in Figure 1(left), our method successfully reproduces the progression of human expert designs
(compounds C1 — C2 — C3) while also discovering novel variants with improved predicted binding affinity.
Figure 1(right) visualizes how our generated molecules maintain key interactions with the NAD binding site
while achieving stronger predicted binding. These results demonstrate our approach’s ability to effectively
navigate the chemical space around a given scaffold while maintaining chemical and structural validity.



3.4 Proposed Project 1.1: Optimization of PHGDH Inhibitors

We propose to continue our work on designing PHGDH inhibitors through an established collaboration
with Prof. Sheng Zhong’s laboratory at UCSD (co-authors in our NeurIPS 2024 paper on molecule design
[47]). While our preliminary work demonstrates strong computational results, the ultimate validation of
our approach requires experimental verification of the generated molecules. The Zhong lab has extensive
experience in PHGDH biochemistry and cancer metabolism [80], making them ideal collaborators for this
project.

The project has three main components. First, we will expand our structure-constrained optimization
to incorporate more sophisticated chemical constraints derived from known PHGDH inhibitors [63] and
medicinal chemistry principles [40]. Specifically, we will develop a pharmacophore-guided generation ap-
proach to ensure that our generated molecules maintain key binding features while exploring novel chemical
space.

Second, we will validate our approach through experimental testing in the Zhong lab. Selected molecules
will be synthesized and tested for: (1) binding affinity through surface plasmon resonance (SPR) measure-
ments [75], (2) inhibition of PHGDH enzymatic activity through biochemical assays [68], and (3) efficacy in
cancer cell lines known to be dependent on PHGDH activity [77]. The experimental results will be used to
refine our computational model in an iterative manner, creating a tight feedback loop between computational
design and experimental validation.

3.5 Proposed Project 1.2: Dual Space Optimization and Search

For the objective function F(x), either given or learned from training data, our latent abstraction frame-
work offers a unique advantage by enabling gradient-based search in continuous latent space z. Given a tar-
get value y, we can efficiently sample 2o ~ pg(2o|y) using Langevin dynamics guided by V. log p,(y|z =
Ua(20)). This avoids the need for ad hoc discrete search heuristics in the original space 2 . The learned
generative model pg(x|z) can then produce novel solutions that interpolate and extrapolate from training
examples.

We propose to combine this latent space approach with direct search in data space 2. One ex-
ample of data space search is through MCMC sampling of the Gibbs/Boltzmann distribution: p(x) =
i exp(F(x)/T), where T is a temperature parameter, controlling exploration and Zr is the normalizing
constant. We shall also explore other search heuristics such as A* [32] and its variants [36].

We plan to evaluate this dual space approach on two optimization problems that are very appealing to
the PI: (1) Protein design, where & represents amino acid sequences optimized for specific functions such as
enzyme catalysis [39] and antibody-antigen binding [60]. In fact, finding the latent abstraction z for protein
sequence is itself can be useful for understanding the protein and for predicting its folding. (2) Search
problems in automated theorem proving, where x represents proof steps in formal mathematics [76, 29].
These domains feature exponentially large discrete search spaces with complex structure and constraints,
making them ideal testbeds for our approach.

The key insight is that latent space sampling provides global search capabilities by operating in a con-
tinuous, learned abstraction space that captures essential problem structure, while data space search enables
precise local refinement by directly optimizing the objective function. This complementarity suggests that
combining both strategies may lead to more effective optimization algorithms that balance exploration and
exploitation in complex combinatorial spaces.

4 Aim 2: Latent ‘“Plan” for Reinforcement Learning and Robotics

4.1 Problem Formulation

Modern reinforcement learning has achieved remarkable success through the use of step-wise rewards
and value function estimation [89]. However, designing effective reward functions requires significant do-
main expertise and often fails to capture true task objectives. This becomes particularly challenging in
real-world robotics applications where natural tasks rarely provide immediate feedback.



Table 2: Evaluation results of offline OpenAl Gym MuJoCo tasks. We provide results for data specification with
step-wise reward (left) and final return (right). Bold highlighting indicates top scores. LPT outperforms all final-
return baselines and most step-wise-reward baselines.

Step-wise Reward Final Return

Dataset CQL DT QDT CQL DT QDT LPT(Ours) LPT-EI(Ours)
halfcheetah-medium 44.4 421 423 | 1.0 424 424 43.13£038 43.53+0.08
halfcheetah-medium-replay 46.2 34.1 356 | 7.8 33.0 32.8 39.644+0.83 40.66+0.12
hopper-medium 58.0 60.3 66.5 | 233 573 507 5852+1.92 63.83+£1.47
hopper-medium-replay 486 6377 52.1 | 777 50.8 387 8229+1.26 89.93+0.61
walker2d-medium 792 733 67.1 | 00 699 637 77.85+3.18 81.154+0.33
walker2d-medium-replay 267 602 582 | 32 516 296 7231+1.92 75.68+0.34
kitchen-mixed 51.0 223 - - 17.2 - 61.9+1.22 64.7+0.51
kitchen-partial 49.8 204 - - 10.5 - 61.24+1.75 65.3+0.62

Dataset LPT-generated Dataset LPT-generated

AR

(b) Maze2d-Large

(a) Maze2d-Medium

Figure 3: (a) Maze2D-medium environment (b) Maze2D-large environment. Left panels show example trajectories
from the training set and right panels show LPT generations. Yellow stars represent the goal states.

We propose to fundamentally rethink reinforcement learning through the lens of latent abstractions.
Instead of relying on hand-crafted step-wise rewards, we focus on learning from trajectory-return pairs
(t,y), where 7 = (x(1), ... x{T)) represents a trajectory of states and actions, and y represents the total return
or task success metric. This formulation naturally aligns with how humans specify goals and evaluate
success in real-world tasks.

The key innovation is introducing a latent plan z that serves as an abstract representation connecting
trajectory generation to final outcomes. This plan should exhibit three essential properties: (1) signifi-
cance - prioritizing more important returns, (2) persistence - maintaining consistency even when outcomes
are determined in hindsight, and (3) contingency - adapting to environmental changes during execution.
We formulate this mathematically as a structured probabilistic model: pg(7,y,2) = pa(2)pp(T|2)py(y|2),
where pg(z) is a learnable prior over latent plans, pg(7|2) generates trajectories conditioned on the plan,
and py(y|z) predicts expected returns. This formulation positions planning as inference in latent space:
given a desired return, the agent infers a latent plan through posterior sampling, then uses this plan to guide
trajectory generation.

4.2 Preliminary Results

In our NeurIPS 2024 paper on latent plan transformer [5S0], we have evaluated our latent plan approach
on offline reinforcement learning tasks [55] (i.e., learning from a fixed training dataset without additional
environment interaction) across a comprehensive suite of environments: OpenAl Gym-Mujoco [92] for
continuous control, Franka Kitchen [27] for robotic manipulation, Maze2D [17] for navigation, and Con-
nect Four [85] for contingent planning. The data specification of trajectory-return pairs, without step-wise
rewards, distinguishes our study from most existing work in reinforcement learning.

On the Gym-Mujoco continuous control benchmarks (Table 2), our method matches or exceeds the
performance of methods that rely on dense reward signals [18], even without access to step-wise rewards.
This demonstrates effective credit assignment over long action sequences.



Table 3: Evaluation results on Connect Four. Bold highlighting indicates top scores.
Dataset CQL DT ESPER LPT
Connect Four 0.61£0.05 0.8+0.07 0.99+£0.03 0.99+£0.01

The ability to compose partial solutions, termed trajectory “stitching”, is demonstrated in the Maze2D
experiments (Figure 3). Despite training data containing mainly suboptimal trajectories, our method can
generate successful goal-reaching behaviors by effectively combining trajectory segments.

Finally, to evaluate robustness to environmental stochasticity, we tested our approach on Connect Four
where an agent must adapt to adversarial opponent moves. As shown in Table 3, our method achieves near-
perfect performance (0.99 £ 0.01), significantly outperforming traditional approaches and matching the
state-of-the-art ESPER method [2]. It demonstrates that the latent plan representation effectively captures
strategic understanding while maintaining adaptability to opponent actions.

4.3 Proposed Project 2.1: Online Learning through Gradual Distribution Shifting

The first project explores how latent plan inference can guide online exploration and adaptation. While
our preliminary work demonstrates strong performance in offline settings, the ability to interact with the en-
vironment opens new possibilities for continual improvement. We propose to adapt the gradual distribution
shifting strategy from molecular optimization to the online reinforcement learning setting.

The key idea is to maintain a replay buffer B’ of size K, initialized with the top-performing trajectories
from offline training data 2. Ateach iteration ¢, for each trajectory-return pair (7,y) in B, we shift the target
return by y = y+ A, where A is a small step size. For each shifted target, we generate new trajectories by
sampling latent plans zo ~ pg(zo|9) using Langevin dynamics, executing these plans in the environment to
collect actual trajectories and returns, and adding successful trajectories to a generated set G'. The buffer is
updated by selecting the top-K trajectories from the union: B'*! = TopK (B’ UG"). The model parameters
are then updated through maximum likelihood training on B'*!,

This process iteratively shifts the distribution toward higher-return regions while maintaining reliable
generation through the replay buffer mechanism. Our preliminary online learning experiments show promise
on the D4RL benchmarks [17]. On the Walker2d environment, this approach improves performance from
72.31 to 78.99, and on Hopper from 82.29 to 89.93, demonstrating effective distribution shift.

4.4 Proposed Project 2.2: Adaptive Re-planning through Sequential Latent Updates

The second project explores how latent plans can be continuously refined during execution, inspired
by both model predictive control in engineering and adaptive planning in biological systems. Rather than
inferring a complete, precise plan before execution, we propose to start with a rough plan that is iteratively
refined as the agent interacts with the environment.

At each time step ¢, given the current state s, and executed trajectory prefix 7y, = (s1,ay,...,5;), we
update the latent plan z using a small number of Langevin steps. Crucially, we only need a few steps (k = 2
or 3) at each time step, as the plan only needs incremental refinement based on new information. This
approach offers several advantages: (1) computational efficiency through incremental updates rather than
complete re-planning, (2) robustness to modeling errors and environmental uncertainty through continuous
adaptation, and (3) biological plausibility as it mirrors how animals refine their plans during execution.
Current Progress: Through an ongoing collaboration with Prof. Denis Hong’s Robotics and Mechanisms
Laboratory (RoMeLa) at UCLA Electrical Engineering, we have obtained promising preliminary results for
box-catching tasks using our latent plan framework in their custom-designed robotic simulation environ-
ment, which minimizes the sim-to-real gap. Our method achieves real-time replanning and outperforms
diffusion model baselines.



5 Aim 3: Latent “Thought” for Language Generation
5.1 Problem Formulation

Letx = (x(l), ...,x(T)) be a sequence of ground tokens and z be the latent abstract tokens that guide gen-
eration. Modern language models have achieved remarkable success through pure autoregressive prediction
p(x|x(<D) [6], but this approach has three key limitations: (1) lack of explicit abstraction mechanisms
analogous to human thought, making models less data efficient than human learners, (2) inability to perform
significant computation or inference at test time, instead relying solely on knowledge baked into parameters
during training, and (3) difficulty in maintaining long-term coherence and logical consistency across long
sequences.

We propose to address these limitations through a structured probabilistic model pg (, z) = pa(2)pp(x|2),
where p(z) is implemented by mapping Gaussian noise zo ~ .4 (0, I') through a transformer encoder [94],
and pg(x|z) is a transformer decoder where z cross-attends to guide generation.

The learning process employs classical variational Bayes [4] with dual learning rates: fast optimization
of local variational parameters (u, o>) specific to each sequence using approximately 20 steps of Adam [45],
and slow optimization of global parameters 6 = (a, ) shared across all sequences. This mirrors the distinc-
tion between rapid episodic learning and gradual semantic learning in human cognition [52], while avoiding
the need for a separate inference network as in VAEs [46].

5.2 Preliminary Results

We evaluated our approach on OpenWebText [25], a large-scale text corpus created by scraping and
filtering Reddit submissions. OpenWebText contains approximately 8 million documents spanning diverse
topics and writing styles, making it an excellent testbed for general language modeling capabilities [78].
Our experiments used a S00M parameter model to analyze both training efficiency and zero-shot general-
ization [6].

Table 5: Evaluation results of 0-shot PPL, compared to

Table 4: Evaluation results of Gen PPL. Diffusion and AR baselines.

Model 13B B 3B 100B Task Ours 28B) SEDD MDLM AR

Ours 14583 9307 87.17 P"ljB. 37.70 100.09 95.26 82.05

AR 11223 9715 112.66 10255 Wikitext 14.65 34.28 32.83 25.75
Lambada 16.78 49.86 47.52 51.28
Lmlb 20.18 68.20 67.01 51.25

Our first set of experiments focused on analyzing the scaling behavior of Generative Perplexity (Gen
PPL) [90] with training data size. The results, shown in Table 6, demonstrate the effectiveness of our latent
abstraction approach compared to standard autoregressive (AR) models [94]. At 28B tokens of training
data, our model achieves a Gen PPL of 87.17, significantly outperforming the AR baseline’s 112.66. While
the AR baseline’s performance fluctuates (112.23 at 13B tokens, improving to 97.15 at 22B tokens, but
degrading to 112.66 at 28B tokens) [44], our model shows steady improvement (145.83, 98.07, and 87.17
for 13B, 22B, and 28B tokens respectively). This consistent scaling behavior suggests that our explicit
abstraction mechanism enables more stable learning from additional data.

To evaluate generalization capabilities, we conducted zero-shot evaluations [78] on four standard bench-
marks, comparing against recent diffusion-based models (SEDD [56], MDLM [108]) and autoregressive
baselines. As shown in Table 7, our model achieves superior performance across all tasks: (1) Penn Tree-
bank (PTB) [59], a carefully annotated corpus of English text, (2) WikiText [62], derived from high-quality
Wikipedia articles, (3) LAMBADA [73], testing long-range dependencies and coherence, and (4) Lm1b [9],
based on news articles. Our model’s strong performance on LAMBADA (16.78 versus baselines > 47) is
particularly noteworthy, suggesting that the latent abstractions effectively capture long-range dependencies
and semantic relationships.
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5.3 Proposed Project 3.1: Understanding Multi-layer Latent Abstractions

Our current work uses different latent tokens to attend to different layers of the transformer decoder,
hypothesizing that this structure might naturally induce a hierarchy of abstractions. We propose to system-
atically investigate this hypothesis through rigorous analysis and experimental studies.

The research will proceed along three directions. First, we will analyze the attention patterns between
latent tokens and decoder layers to understand the emergent division of labor. Preliminary observations
suggest that lower-layer-attending tokens focus on local syntactic patterns, while higher-layer tokens capture
broader semantic and structural relationships. However, a deeper understanding of this specialization is
needed.

Second, we will develop methods to explicitly encourage hierarchical organization in the latent space.
Building on cognitive theories of language processing, we propose that tokens attending to different decoder
layers should capture distinct aspects: (1) low-level tokens encode lexical and syntactic information, (2)
mid-level tokens represent semantic relationships and discourse structure, and (3) high-level tokens maintain
global coherence and stylistic consistency. This can be achieved through carefully designed architectural
constraints and training objectives.

Third, we will investigate the relationship between latent abstractions and human-interpretable linguistic
concepts. By analyzing how different latent tokens influence generation across varying linguistic contexts,
we can map the learned abstractions to established frameworks in linguistics and cognitive science. This
includes studying how latent tokens guide phenomena like syntactic agreement, semantic roles, discourse
coherence, and pragmatic inference.

5.4 Proposed Project 3.2: Dual Continuous-Symbolic Abstractions

We propose to extend our framework by augmenting the continuous latent tokens z with symbolic
tokens s = (s(l) , ...,s(’")) drawn from a small vocabulary. While z captures rich continuous representations,
s enables explicit symbolic reasoning through a sequence of m discrete steps analogous to logical deduction.

The generative process follows a two-stage structure: p(s|z(?))p(z|z(!), s). In the first stage, z(©) gen-
erates a sequence of symbolic tokens s representing abstract logical steps. For example, s might capture
reasoning patterns like “person 1 performs action A on object B, which causes person 2 to respond with
action C.” The second stage uses z(!) to instantiate these abstract patterns with specific details, such as map-
ping “person 1” to “Tom Hanks” or “action A” to “offers assistance.” z = (z<0) , z(l)), where z(? represents
logical and reasoning patterns and P represents concrete details for grounding.

For computational efficiency, we propose to first train a short-circuited model p(x|z) using our estab-
lished variational framework. This allows us to infer z efficiently through continuous optimization. With
the initially inferred z, we can then update both s and z from the posterior p(s, z|x) in the full model where
s can be updated by discrete search. This approach combines efficient global exploration of continuous
optimization with the interpretability and accurate local search of symbolic reasoning, similar to Proposed
Project 1.2.

This hybrid architecture offers several advantages: (1) The symbolic sequence s provides an inter-
pretable trace of the model’s reasoning process, (2) The vocabulary constraint on s encourages the learning
of generalizable rules and patterns, (3) The continuous latent space z maintains the flexibility to handle nu-
anced variations and details not captured by the symbolic vocabulary. The research will focus on developing
effective architectures for integrating continuous and symbolic representations, designing appropriate sym-
bolic vocabularies, and evaluating the model’s ability to learn and apply logical rules in language generation.

Success in this project would bridge the gap between neural and symbolic approaches to language pro-
cessing, potentially leading to models that combine the flexibility of deep learning with the interpretability
and generalization capabilities of symbolic systems.

Finally we can incorporate y for correctness in question and answer or for human preference.
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6 Aim 4: Latent “World” for Video Generation

6.1 Problem Formulation

The evolution of vision in biological systems marks one of the most significant developments in the his-
tory of life, contributing to the Cambrian explosion by enabling complex navigation and manipulation [74].
This suggests that understanding visual perception through the lens of navigation and action may be funda-
mental to advancing artificial intelligence.

Letz = (x(1),...,x(T)) denote a video sequence of frames, and 7 = (7!, ..., 7(7)) represent the sequence
of self-motion actions (e.g., camera movements or robotic controls). The key innovation of our approach
is to introduce latent tokens z that encode an abstract “world model” - capturing both the 3D structure of
the environment and potential trajectories through it. When conditioning specifically on self-motion 7, the
model pg(x|z,T) encourages z to focus purely on encoding environmental structure, as motion information
is provided explicitly.

This formulation fundamentally reframes video understanding as a navigation problem. Rather than
treating each frame as an independent image to be processed, our model learns to extract abstract represen-
tations that support prediction of how the environment will appear from different viewpoints. This mirrors
the primary evolutionary role of vision in biological systems - enabling organisms to navigate through and
interact with their environment. The abstract tokens z serve as a learned cognitive map [93], analogous to
neural representations in the hippocampus that encode spatial structure and support planning [67].

We can further factorize the generative process as pg(x,T|2) = pa(T|2)pg(x|2,T), Where py(T|2)
generates plausible trajectories through the encoded environment [28] and pg(x|z,7) renders the corre-
sponding visual observations. This decomposition enables both prediction of future frames given a planned
trajectory and inference of environmental structure from observed sequences. The framework provides a
unified approach to video modeling that emphasizes the fundamental relationship between vision, spatial
understanding, and action.

This framework’s use of explicit latent abstractions is particularly natural for video modeling because
visual sequences are inherently highly redundant and compressible.

6.2 Preliminary Results

We evaluated our approach on DMLab-40k [1], a dataset of procedurally generated 3D maze envi-
ronments created using the DeepMind Lab simulator [42]. The dataset consists of 40,000 videos, each
containing 300 frames at 64 x 64 resolution, showing an agent navigating through randomly generated 7 x
7 mazes with diverse floor and wall textures. The navigation paths are generated by selecting random target
points in the maze and following the shortest route to reach them, providing a rich test bed for evaluating
both environmental understanding and motion prediction.

Our model demonstrates strong capabilities in two key scenarios: action-conditioned prediction and
unconditional generation. In action-conditioned prediction, where self-motion sequences 7 are provided,
the latent tokens z effectively capture the underlying maze structure, enabling accurate prediction of visual
observations from novel viewpoints. The model maintains consistency in structural elements like walls and
corridors while preserving textural details across long sequences of predicted frames.

For unconditional generation, where the model must generate both plausible trajectories and correspond-
ing visual observations, we observe that the learned latent representations encode not only environmental
structure but also typical patterns of agent movement through maze environments. The model generates
coherent sequences that respect physical constraints of the environment, such as not passing through walls
and maintaining consistent spatial relationships between different maze segments.

Qualitative analysis reveals that different components of the latent tokens z specialize in representing
distinct aspects of the environment: some encode persistent structural features like maze layout, while others
capture variable elements like surface textures. This emergent specialization suggests that the model learns
to decompose the scene into stable geometric structure and appearance variations, aligning with our goal of
learning compressed abstract representations of the physical world.
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6.3 Proposed Project 4.1: Scaling to Real-World Video Understanding

We propose to extend our latent world model framework from synthetic maze environments to real-world
videos.

For videos with known camera motion 7 (e.g., from robot platforms or stabilized handheld devices),
we can directly apply our conditional model p(x|z, 7). The research will focus on developing architectures
that allow z to capture hierarchical scene representations: from low-level geometry and appearance to high-
level scene organization and object relationships. This structured representation should enable novel view
synthesis and prediction of how scenes will appear from new viewpoints.

For videos without explicit motion information, we will explore two approaches. First, we can treat T as
a latent variable to be inferred alongside z, using our classical variational framework with fast inference of
both scene structure and camera motion. Second, we can work directly with the unconditional model p(x|z),
where z must encode both environmental structure and typical patterns of motion through the scene. This
latter approach may better capture how biological systems learn world models without access to explicit
motion signals.

We will evaluate these approaches on several real-world video datasets: (1) indoor navigation sequences
from the Gibson environment [97], which provides ground truth camera poses and photorealistic scans
of over 1,400 real spaces for validation, (2) ego-centric videos from the EPIC-KITCHENS dataset [11],
featuring complex manipulation activities and object interactions in dynamic kitchen environments, and (3)
in-the-wild videos from the Kinetics-700 dataset [7], testing the model’s ability to handle unconstrained
real-world scenes with diverse activities and environments. We can incorporate y for reaching the goal or
completing the task.

The goal is to develop models that can form robust abstract representations of real environments, en-
abling both prediction and reasoning about spatial structure.

6.4 Proposed Project 4.2: Diffusion Models with Random Effect Parameters

We propose to explore an alternative formulation of latent abstractions using the parameters of Low-
Rank Adaptation (LoRA) [38] as random effect parameters [23], which correspond to our z. While our
primary framework treats latent variables z as explicit tokens, this project investigates how model parameters
themselves can serve as instance-specific abstractions in diffusion models [87, 33, 88].

e N\
/A

P
(a) Slow Learning - World Model

Move to the Right

~ B

(]

t=0~10s
Go forward
Change to the Left Lane

t=10~20s
Go left

t=20~30s
Go right

t=30~40s
Back off

(c) Memory-Augmented Video Planning

Move both cubes to the green area.
Subsequently, return them to their original positions.

Figure 4: SLOWFAST-VGEN, a random effect text video generation system that mimics the complementary learning
system in human brains. The slow learning phase (a) learns a model that simulates general dynamics across a diverse
set of scenarios. The fast learning phase (b) stores episodic memory for consistent long video generation, e.g., generat-
ing the same scene for “Loc1” after traveling across different locations. Slow-fast learning also facilitates long-horizon
planning tasks (c) that require the efficient storage of long-term episodic memories.

The key idea is to augment a diffusion model’s parameters 6 with LoRA parameters in the form of low
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rank matrices B and A that are inferred for each example or sequence. The diffusion process maintains its
standard form, but the parameters 6 + BA now include both global parameters 6 shared across all examples
and local parameters B and A specific to each instance. Inference of B and A follows our established dual-
rate optimization: fast learning of LoORA parameters for each example using around 20 steps of Adam [45],
and slow learning of global parameters across the dataset.

In our ICLR 2025 submission [37] (which has received high ratings from reviewers), we have obtained
preliminary results for text to video generation, where the text input is in the form of description of actions.
Fast learning of LoORA parameters enables generation of long videos. Figure 4 shows some generated video
frames.

Success in this project would not only advance our understanding of parameter-based abstractions but
also provide practical benefits in terms of more efficient and adaptable generative models. The research will
focus on developing effective architectures for parameter inference [81], studying the relationship between
LoRA rank and abstraction quality, and evaluating the approach on video generation tasks where temporal
coherence is crucial [34].

7 Timeline and Milestones

Some of the preliminary results have been published in our recent NeurIPS 2024 papers [47, 50]. The
proposed projects represent new directions beyond what we have published and submitted. The following
table outlines timeline of our plan.

Table 6: Development stages of proposed projects.

Projects | Year 1(2025-26) | Year2(2026-27) | Year 3 (2027-28)
Project 1.1 | Initial synthesis Cell-based assays Lead optimization
Project 1.2 | Theory development | Search algorithms Final validation
Project 2.1 | Simulation studies Physical platform Dynamic tasks
Project 2.2 | Algorithm design Integration Refinement
Project 3.1 | Architecture design | Implementation Evaluation
Project 3.2 | Initial experiments Refinement Integration
Project 4.1 | Dataset preparation Model development | Real-world testing
Project 4.2 | Theory development | Implementation Validation

8 Broader impacts

8.1 Workforce Development and Diversity

Ph.D. Student Training and Placement. The PI maintains an active research group of 10 Ph.D. stu-
dents at UCLA, with strong representation from underrepresented groups including two Hispanic students
(Andrew Lizarraga and Edouardo Honig) and three female students (Lucy Zhao, Yasi Zhang and Andrea
Kang). These students are engaged in cutting-edge research in machine learning and will contribute to the
proposed research directions. The PI’s mentoring has led to successful academic and industry placements:
two recent graduates (Tian Han and Spencer Frei) secured tenure-track faculty positions, while other grad-
uates have joined leading Al research teams - two at Google Deepmind (Ruiqi Gao and Sirui Xie, with
Gao being female), two at Salesforce Research (Bo Pang, Erik Nijkamp), and two at Amazon Research
(Tianyang Zhao, Yaxuan Zhu), where they work on large language models and advanced Al systems.

Master’s Student Education and Research. The PI has demonstrated a strong commitment to Mas-
ter’s education, having mentored over 30 Master’s students since 2019, including students from underrep-
resented groups such as Henry Burton (African American). Through UCLA Statistics Department’s Applied
Master’s program, established in 2016, the PI has guided more than 70 Applied Master’s students since
2018. Notably, over one-third of these Master’s students are female, with several from minority back-
grounds. The PI actively integrates Master’s students into research projects and will continue this practice
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in the proposed research.

Undergraduate Research Mentoring. The PI currently supervises 6 UCLA undergraduate students
(Eric Jiang, Kelsey Shan, Aditya Bharath, Richard Cao, Yuer Tang, Akshat Tirumalai) on graduate-level
research projects. These students engage in sophisticated machine learning research, and several will par-
ticipate in the proposed research initiatives.

K-12 Outreach and Education. The PI is actively involved in introducing artificial intelligence to pre-
college students. In May 2024, he delivered an educational talk at Orange County School of the Arts in
Santa Ana, introducing high school students to modern Al concepts and applications. The PI also provided
individual research mentorship to high school student Advaith Appajodo on large language models during
May-June 2024, demonstrating commitment to early STEM education.

Curriculum Innovation. The PI has developed a comprehensive machine learning curriculum at UCLA
spanning undergraduate to graduate levels, creating three distinct courses tailored to different student popu-
lations. Most recently, he completed a comprehensive 400+ page textbook supporting two machine learning
courses (STATS 231 for Ph.D. and Master’s programs and STATS 413 for Applied Master’s program) taught
in Fall 2024, ensuring high-quality educational resources for future generations of students.

8.2 Community Engagement

The PI actively shapes the direction of machine learning research through extensive service to the aca-
demic community. He serves as area chair for premier conferences including AAAI (2019, 2020, 2024),
CVPR 2019, NeurIPS (2021-2024), and ICML (2023-2025). His editorial roles include associate editor
positions at Transactions on Machine Learning Research (TMLR), Journal of the American Statistical As-
sociation (JASA), and Journal of Computational and Graphical Statistics (JCGS). The PI contributed as
a panelist for the highly attended tutorial on latent diffusion models at NeurIPS 2023, and co-organized a
workshop on synthetic data at UCLA in March 2023. Since 2020, he has served as an Amazon scholar at
Amazon Research, bridging academic research with industry applications.

9 Results from prior NSF support

PI Wu: Generative Modeling with Short Run Computing, DMS 2015577, 07/01/2020-06/30/2024,
$200,000. Intellectual merit: This project focuses on developing generative models and the associated
learning and inference algorithms based on short-run Markov chain Monte Carlo (MCMC) sampling. The
project has produced more than 30 papers published in the top conferences, such as NeurIPS [69, 22, 106,
109, 57, 107], ICML [70, 71, 105, 102], ICLR [20, 65, 58], CVPR [72, 111, 101, 19, 30, 10], AAAI [21],
ECCV [66], AISTAT [8], UAI [49], and journals such as PAMI and Neural Computation etc. [99, 100, 103,
98, 31]. Broader impacts: The NSF support helps Wu design and teach 3 courses on machine learning,
and helps the PI supervise numerous Ph.D., Master’s, and Applied Master’s students. The NSF support also
helps the PI to continue professional activities, e.g., serving as an area chair for NeurIPS 2021-2024, ICML
2023-2025.

15



References

[1] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Kiittler,
Andrew Lefrancq, Simon Green, Victor Victoria, Mohamed Sadik, et al. DeepMind Lab. arXiv
preprint arXiv:1612.03801, 2016.

[2] Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and Ani-
mesh Garg. Model-based offline planning. International Conference on Learning Representations,
2020.

[3] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2):90-98, 2012.

[4] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859-877, 2017.

[5] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv
preprint arXiv:1012.2599, 2010.

[6] Tom Brown et al. Language models are few-shot learners. Advances in Neural Information Process-
ing Systems, 33, 2020.

[7] Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman. A short note on the Kinetics-700
human action dataset. In arXiv preprint arXiv:1907.06987, 2019.

[8] Cristian I Challu, Peihong Jiang, Ying Nian Wu, and Laurent Callot. Deep generative model with
hierarchical latent factors for time series anomaly detection. In International Conference on Artificial
Intelligence and Statistics, pages 1643-1654. PMLR, 2022.

[9] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

[10] Jiali Cui, Ying Nian Wu, and Tian Han. Learning hierarchical features with joint latent space energy-
based prior. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
2218-2227, 2023.

[11] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric
vision: The EPIC-KITCHENS dataset. In Proceedings of the European Conference on Computer
Vision, pages 720-736, 2018.

[12] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34, 2021.

[13] Peter Eckmann, Kunyang Sun, Bo Zhao, Mudong Feng, Michael K Gilson, and Rose Yu. Limo:
Latent inceptionism for targeted molecule generation. arXiv preprint arXiv:2206.09010, 2022.

[14] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of Cheminformat-
ics, 1(1):1-11, 2009.

[15] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12873-12883, 2021.



[16] Guoyi Fu, Abdelhadi Mohammed, and Xin Wang. Towards efficient multi-objective optimization:
Multi-objective lower bounds and reduced equivalent bi-objective problems. 2016 IEEE Congress on
Evolutionary Computation, pages 4651-4658, 2016.

[17] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[18] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. International Conference on Machine Learning, pages 20522062, 2019.

[19] Ruiqi Gao, Erik Nijkamp, Diederik P Kingma, Zhen Xu, Andrew M Dai, and Ying Nian Wu. Flow
contrastive estimation of energy-based models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7518-7528, 2020.

[20] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-based
models by diffusion recovery likelihood. In International Conference on Learning Representations,
2020.

[21] Ruiqi Gao, Jianwen Xie, Siyuan Huang, Ren Yufan, Song-Chun Zhu, and Ying Nian Wu. Learning v1
simple cells with vector representations of local contents and matrix representations of local motions.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

[22] Ruiqi Gao, Jianwen Xie, Xue-Xin Wei, Song-Chun Zhu, and Ying Nian Wu. On path integration
of grid cells: group representation and isotropic scaling. In Neural Information Processing Systems,
2021.

[23] Andrew Gelman. Multilevel (hierarchical) modeling: what it can and cannot do, volume 48. 2006.

[24] Andrew Gelman, Hal S Stern, John B Carlin, David B Dunson, Aki Vehtari, and Donald B Rubin.
Bayesian data analysis. Chapman and Hall/CRC, 2013.

[25] Aaron Gokaslan and Vanya Cohen. OpenWebText corpus, 2019.

[26] Rafael Goémez-Bombarelli et al. Automatic chemical design using a data-driven continuous represen-
tation of molecules. ACS Central Science, 4(2):268-276, 2018.

[27] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. Conference on Robot
Learning, pages 1025-1037, 2019.

[28] Danijar Hafner et al. Learning latent dynamics for planning from pixels. International Conference
on Machine Learning, 2019.

[29] Jesse Michael Han, Stanislas Polu, Jerry Wu, Mislav Balunovic, Kunhao Zheng, and Nate Kushman.
Proof artifact co-training for theorem proving with language models. In International Conference on
Learning Representations, 2022.

[30] Tian Han, Erik Nijkamp, Linqi Zhou, Bo Pang, Song-Chun Zhu, and Ying Nian Wu. Joint training of
variational auto-encoder and latent energy-based model. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7978-7987, 2020.

[31] Tian Han, Xianglei Xing, Jiawen Wu, and Ying Nian Wu. Replicating neuroscience observations on
ml/mf and am face patches by deep generative model. Neural computation, 31(12):2348-2367, 2019.

[32] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107, 1968.



[33] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33, 2020.

[34] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:1-13, 2022.

[35] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 14(1):1303-1347, 2013.

[36] Martin Holzer, Frank Schulz, Dorothea Wagner, and Thomas Willhalm. Engineering multilevel over-
lay graphs for shortest-path queries. ACM Journal of Experimental Algorithmics, 13:2-5, 2009.

[37] Yining Hong, Beide Liu, Maxine Wu, Yuanhao Zhai, Kai-Wei Chang, Lingjie Li, Kevin Lin, Chung-
Ching Lin, Jianfeng Wang, Zhengyuan Yang, et al. Slowfast-vgen: Slow-fast learning for action-
driven long video generation. arXiv preprint arXiv:2410.23277, 2024.

[38] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[39] Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design.
Nature, 537(7620):320-327, 2016.

[40] Jason P Hughes, Stephen Rees, S Barry Kalindjian, and Karen L Philpott. Principles of early drug
discovery. British Journal of Pharmacology, 162(6):1239-1249, 2011.

[41] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molec-
ular graph generation. International Conference on Machine Learning, pages 2323-2332, 2018.

[42] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The Malmo platform for artificial
intelligence experimentation. International Joint Conference on Artificial Intelligence, pages 4246—
4247, 2016.

[43] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.

[44] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361, 2020.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[46] Diederik P Kingma and Max Welling.  Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[47] Degian Kong, Yuhao Huang, Jianwen Xie, Edouardo Honig, Ming Xu, Shuanghong Xue, Pei Lin,
Sanping Zhou, Sheng Zhong, Nanning Zheng, and Ying Nian Wu. Molecule design by latent prompt
transformer. In Advances in Neural Information Processing Systems, 2024.

[48] Degian Kong, Bo Pang, Tian Han, and Ying Nian Wu. Molecule design by latent space energy-based
modeling and gradual distribution shifting. In Conference on Uncertainty in Artificial Intelligence
(UAI), volume 216, pages 1109-1120, 2023.

[49] Degian Kong, Bo Pang, Tian Han, and Ying Nian Wu. Molecule design by latent space energy-based
modeling and gradual distribution shifting. In Uncertainty in Artificial Intelligence, pages 1109-1120.
PMLR, 2023.



[50] Degian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao Huang,
Sirui Xie, and Ying Nian Wu. Latent plan transformer for trajectory abstraction: Planning as latent
space inference. In Advances in Neural Information Processing Systems, 2024.

[51] Mario Krenn, Florian Hése, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
referencing embedded strings (selfies): A 100% robust molecular string representation. Machine
Learning: Science and Technology, 1(4):045024, 2020.

[52] Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do intelli-
gent agents need? complementary learning systems theory updated. Trends in cognitive sciences,
20(7):512-534, 2016.

[53] Greg Landrum et al. RDKit: Open-source cheminformatics. URL http://www.rdkit.org, 2006.

[54] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

[55] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[56] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B Hashimoto. Diffusion-
LM improves controllable text generation. Advances in Neural Information Processing Systems,
35:1-13, 2022.

[57] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models.
arXiv preprint arXiv:2304.09842, 2023.

[58] Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured mathematical
reasoning. arXiv preprint arXiv:2209.14610, 2022.

[59] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of English: The Penn Treebank. Computational linguistics, 19(2):313-330, 1993.

[60] Claire Marks, Tianqi Shi, and Charlotte M Deane. Protein design by deep network hallucination.
Nature Machine Intelligence, 4(5):462-470, 2022.

[61] James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complemen-
tary learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological Review, 102(3):419, 1995.

[62] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[63] Edouard Mullarky, Natasha C Lucki, Reza Beheshti Zavareh, Justin L Anglin, Ana P Gomes, Bran-
don N Nicolay, Jenny C Y Wong, Stefan Christen, Hidenori Takahashi, Param Priya Singh, et al.
Targeting PHGDH in cancer: challenges and opportunities. Molecular Cell, 76(6):845-857, 2019.

[64] Edouard Mullarky, Katherine R Mattaini, Matthew G Vander Heiden, Lewis C Cantley, and Jason W
Locasale. PHGDH amplification and altered glucose metabolism in human melanoma. Pigment Cell
& Melanoma Research, 29(4):441-447, 2016.

[65] Erik Nijkamp, Ruiqi Gao, Pavel Sountsov, Srinivas Vasudevan, Bo Pang, Song-Chun Zhu, and
Ying Nian Wu. Mcmc should mix: Learning energy-based model with neural transport latent space
mcmec. In International Conference on Learning Representations, 2021.



[66] Erik Nijkamp, Bo Pang, Tian Han, Linqgi Zhou, Song-Chun Zhu, and Ying Nian Wu. Learning multi-
layer latent variable model via variational optimization of short run memc for approximate inference.
In European Conference on Computer Vision, pages 361-378. Springer, 2020.

[67] John O’Keefe and Lynn Nadel. The hippocampus as a cognitive map. Oxford: Clarendon Press,
1978.

[68] Michael E Pacold, Kyle R Brimacombe, Sze Ham Chan, Jason M Rohde, Caroline A Lewis, Lot-
teke JYM Swier, Richard Possemato, Walter W Chen, Lucas B Sullivan, Brian P Fiske, et al. A
PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nature Chemical
Biology, 12(6):452-458, 2016.

[69] Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-
based prior model. Advances in Neural Information Processing Systems, 33, 2020.

[70] Bo Pang and Ying Nian Wu. Latent space energy-based model of symbol-vector coupling for text
generation and classification. In International Conference on Machine Learning, pages 8359-8370.
PMLR, 2021.

[71] Bo Pang and Ying Nian Wu. Latent space energy-based model of symbol-vector coupling for text
generation and classification. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 8359-8370. PMLR, 18-24 Jul 2021.

[72] Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Trajectory prediction with latent belief energy-
based model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 11814-11824, June 2021.

[73] Denis Paperno, German Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA dataset: Word
prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

[74] Andrew Parker. In the blink of an eye: how vision sparked the big bang of evolution. Basic Books,
2003.

[75] Stefania Perspicace, Arne C Rufer, Ralf Thoma, Sebastian Krapp, et al. Surface plasmon resonance-
based screening procedure for identification of small molecules interacting with hepatitis C virus
RNA. FEBS open bio, 3:444-455, 2013.

[76] Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Richard
Sutton. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344, 2022.

[77] Richard Possemato, Kevin M Marks, Yoav D Shaul, Michael E Pacold, Dohoon Kim, Kivang Birsoy,
Shalini Sethumadhavan, Hee-Kwon Woo, Hyun G Jang, Abhishek K Jha, et al. Functional genomics
reveal that the serine synthesis pathway is essential in breast cancer. Nature, 476(7360):346-350,
2011.

[78] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

[79] Carl Edward Rasmussen. Gaussian processes in machine learning. MIT press, 2003.

[80] Michelle A Reid, Andrew E Allen, Shuang Liu, Marco V Liberti, Pengtao Liu, Xiaojing Liu, Zheng
Dai, Xiang Gao, Qiu Wang, Yang Liu, et al. Development of a novel series of 3-PHGDH inhibitors.
Bioorganic & Medicinal Chemistry, 26(11):2965-2972, 2018.



[81] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10684-10695, 2022.

[82] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015,
pages 234-241, 2015.

[83] David Santos-Martins, Jerome Eberhardt, Giulia Bianco, Leonardo Solis-Vasquez, Forli Ambrosio,
Andreas Koch, and Stefano Forli. Accelerating AutoDock4 with GPUs and gradient-based local
search. Journal of Chemical Information and Modeling, 61(8):3852-3866, 2021.

[84] Burr Settles. Active learning literature survey. University of Wisconsin-Madison Department of
Computer Sciences, 2009.

[85] David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):1140-
1144, 2018.

[86] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in Neural Information Processing Systems, 25:2951-2959, 2012.

[87] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. International Conference on Machine Learning,
pages 2256-2265, 2015.

[88] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. International
Conference on Learning Representations, 2020.

[89] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 2
edition, 2018.

[90] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. LaMDA: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

[91] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

[92] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033, 2012.

[93] Edward C Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189, 1948.

[94] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30:5998-6008, 2017.

[95] Qiu Wang, Marco V Liberti, Pengtao Liu, Xianrui Deng, Yang Liu, Jason W Locasale, and Luhua
Lai. Structural basis for the inhibition of human 3-PHGDH by EBI-9007856. Chemical Science,
10(9):2725-2731, 2019.

[96] David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31-36,
1988.



[97] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson env:
Real-world perception for embodied agents. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9068-9079, 2018.

[98] Jianwen Xie, Ruiqi Gao, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Representation learning:
A statistical perspective. Annual Review of Statistics and Its Application, 7:303-335, 2020.

[99] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, and Ying Nian Wu. Cooperative training
of fast thinking initializer and slow thinking solver for conditional learning. /EEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.

[100] Xianglei Xing, Ruigi Gao, Tian Han, Song-Chun Zhu, and Ying Nian Wu. Deformable generator
networks: unsupervised disentanglement of appearance and geometry. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

[101] Xianglei Xing, Tianfu Wu, Song-Chun Zhu, and Ying Nian Wu. Inducing hierarchical compositional
model by sparsifying generator network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14296-14305, 2020.

[102] Yan Xu, Deqgian Kong, Dehong Xu, Ziwei Ji, Bo Pang, Pascale Fung, and Ying Nian Wu. Diverse and
faithful knowledge-grounded dialogue generation via sequential posterior inference. arXiv preprint
arXiv:2306.01153, 2023.

[103] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based
continuous inverse optimal control. IEEE Transactions on Neural Networks and Learning Systems,
2022.

[104] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. Advances in Neural Information Processing
Systems, 31:6410-6421, 2018.

[105] Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia, Bo Pang, Ruiqi Gao, Yixin Zhu, Song-Chun Zhu,
and Ying Nian Wu. Latent diffusion energy-based model for interpretable text modeling. arXiv
preprint arXiv:2206.05895, 2022.

[106] Peiyu Yu, Sirui Xie, Xiaojian Ma, Yixin Zhu, Ying Nian Wu, and Song-Chun Zhu. Unsupervised
foreground extraction via deep region competition. Advances in Neural Information Processing Sys-
tems, 34:14264-14279, 2021.

[107] Peiyu Yu, Yaxuan Zhu, Sirui Xie, Xiaojian Shawn Ma, Ruiqi Gao, Song-Chun Zhu, and Ying Nian
Wu. Learning energy-based prior model with diffusion-amortized mcmc. Advances in Neural Infor-
mation Processing Systems, 36:42717-42747, 2023.

[108] Zheng Yu, Xiang Zhang, Yichao Zhu, and Boxing Chen. Diffusion models for non-autoregressive
text generation. arXiv preprint arXiv:2212.09749, 2022.

[109] Wenhao Zhang, Ying Nian Wu, and Si Wu. Translation-equivariant representation in recurrent net-
works with a continuous manifold of attractors. Advances in Neural Information Processing Systems,
35:15770-15783, 2022.

[110] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of molecules
via deep reinforcement learning. Scientific Reports, 9(1):1-10, 2019.

[111] Yaxuan Zhu, Ruigi Gao, Siyuan Huang, Song-Chun Zhu, and Ying Nian Wu. Learning neural repre-
sentation of camera pose with matrix representation of pose shift via view synthesis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9959-9968, 2021.



