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1 Ptolemy’s epicycle, modern physics, and machine learning

1.1 Epicycle model

(a) (b)

Figure 1: Epicycle model for planet orbit, with Earth at the center. (a) One epicycle. (b) Two epicycles.

In the ancient time, the most interesting data are the trajectories of celestial bodies, i.e., their positions
over time. The study of such data was as fashionable as modern machine learning and artificial intelligence.
Ptolemy was perhaps the first machine learner (without using any machine) in history. His epicycle model
is perhaps the first machine learning model in history.

The goal of the epicycle model is to model the motion of celestial bodies. The data consist of positions
of a planet, such as Mars, over time. The model puts the Earth at the center (i.e., geocentric). The simplest
model assumes that the planet moves with a uniform speed on a circle around the Earth, similar to the Moon.
This model does not fit the observed data well. We can add an epicycle, so that the center of the epicycle
moves on a circle around the Earth, but the planet moves on the epicycle. See Figure 8(a). If this is still not
enough, we can add one more epicycle, and so on, until we have a good fit to the observed data. See Figure
8(b).

To be specific, let (x(t),y(t)) be the position of a planet on a plane at time t, with Earth being the origin
(0,0). Suppose we observe (xi,yi) at times ti, i = 1, ...,n. We may consider (ti) as the input, and (xi,yi) as
the output. We want to learn a model that can predict the position of the planet at a future time. Of course
we also hope to understand the physics of planetary motion.

The simplest model is a circular trajectory,

x(t) = r cos(ωt), y(t) = r sin(ωt),

where r is the radius and ω is the angular speed. We can also write the model using complex numbers. Let
z(t) = x(t)+ iy(t) and zi = xi + iyi. Then the model becomes

z(t) = reiωt .

Ptolemy found out that a single circle did not fit the data well enough. He then assumed that the planet is
moving around a center in a circular motion, and this center itself is moving around the Earth in a circular
motion. This is an epicycle model that can be written as

z(t) = r1eiω1t + r2eiω2t ,
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where r1eiω1t is the original circle, and r2eiω2t is the circle on top of the original circle. See Figure 8(a). If
two circles are not enough, we can add the third circle. In general, we may consider a model

z(t) =
d

∑
k=1

rkeiωkt ,

where d (for dimensionality or degrees of freedom) is the number of circles. It defines the complexity of the
model. See Figure 8(b).

This was a stroke of genius. It was a precursor to Fourier analysis. With enough circles, we can fit any
trajectory. The above model is by all means a good model, as good as any model we can find in machine
learning literature. It is flexible enough to fit all the trajectories. It has a clear geometric meaning.

If we add one circle at a time as was done by Ptolemy, we are actually doing boosting, which is an
important learning method based on function expansion. The idea of adding cycles on top of cycles also
agrees with the philosophy of neuron networks that add perceptrons on top of perceptrons.

1.2 Newtonian mechanics

(a) (b)

Figure 2: Solar system. (a) Planets. (b) Elliptical orbits of planets and dwarf planets.

Ptolemy’s epicycle model turned out to be more general than necessary. Kepler found out that if we put
the Sun at the center (i.e., heliocentric), the trajectories of planets relative to the Sun are ellipses. See Figure
2. Newton provided an explanation while inventing Newtonian mechanics and calculus.

According to Newton, gravity is an attractive force between two massive bodies,

F = G
m1m2

r2 ,

where m1 and m2 are the masses of the two bodies, r is the distance between the centers of the two masses,
and G is a constant. Newton also assumed that

F = ma,

where a is the acceleration. Then Newton was able to show that the trajectories of the planets are ellipses.
The model fits the data extremely well.

But what is gravitation? What is force? What is mass? Newton himself did not believe gravitation
should act at a distance. Newton’s model is just a mathematical model that can fit the observed data, i.e., the
observed positions of planets over time. The constant G and the masses of the Sun and the planets are just

6



parameters and variables of this mathematical model, and these parameters and variables can be learned or
inferred from the observed data. The force F is just an intermediate variable. They do not need to be “real”.
As long as the model fits the past data and predicts the future data, then it is a good model.

Compared to Ptolemy’s epicycle model, Newton’s model is simpler with a smaller number of parameters
and variables, and it fits the observed data better. It is just a better model. But that does not mean Newton’s
model is more real. It is as much a mathematical hallucination as Ptolemy’s model is. Compared to Newton’s
model, Ptolemy’s model is actually a better machine learning model, because it is more general. If the
universe is more complex than Newton’s model, Ptolemy’s model may still be able to fit the data.

1.3 Einstein’s general relativity

(a) (b)

Figure 3: General relativity. (a) Space-time trajectory of a falling body. (b) General relativity explains Mercury’s
motion better than Newton’s gravitation.

Einstein had the profound insight that gravity is a geometric property of space-time. If we plot the
position of a falling apple over time as in Figure 3(a), the trajectory is a curve. But actually it is a “straight
line”. It appears curved only because the space-time is curved by the mass of the Earth, and the geodesic
(i.e., shortest path or “straight line”) in the curved space-time is curved (the curvature is actually not very
big, because the time axis is ct, where c is the speed of light). In general, the essence of Einstein’s general
relativity was summarized by Wheeler as “mass tells the space-time how to curve, and space-time tells the
mass how to move”. Einstein’s field equation is

Rµν −
1
2

Rgµν = (8πG)Tµν , (1)

where the left-hand side is about the curvature of space-time, and the right-hand side is energy-momentum
that depends on mass. Einstein’s model explains the motion of Mercury better than Newton’s model, as
shown in Figure 3(b).

As profound and powerful as Einstein’s general relativity is, it is still a mathematical model for the
observed data. The curvature of space-time is still a mathematical construct which is used to explain the
observed data.

1.4 Quantum mechanics

So far we have been emphasizing the fact that the models are mathematical constructs for explaining the
observed data, e.g., observed positions of the planets over time. The parameters and variables in the models
do not need to be “real”. This point of view is even more pronounced in quantum mechanics.
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(a) (b) (c)

Figure 4: Quantum mechanics. (a) Vector representation. (b) Vector rotation. (c) Schrodinger cat.

Consider a quantum bit (qubit) that can be 0 or 1. Before we observe or measure it, its state can
be represented by a vector, which is a superposition of two orthogonal basis vectors. One basis vector
represents 0, which is denoted by |0⟩ using Dirac’s notation. The other basis vector represents 1, which
is denoted by |1⟩. The two vectors |0⟩ and |1⟩ form an orthonormal basis, and the state can be written as
v = α|0⟩+ β |1⟩, where α and β are coefficients that are complex numbers. See Figure 4 (a). This also
applies to the Schrödinger’s cat, where |0⟩ represents dead, and |1⟩ represents alive. See Figure 4(c).

According to quantum mechanics, the vector rotates over time. When we measure the quantum bit
using a certain equipment, we either observe 0 or observe 1. The probability of observing 0 is |α|2, and the
probability of observing 1 is |β |2. For the unit vector v that rotates in the space spanned by |0⟩ and |1⟩, its
length is always 1, i.e., ∥v∥2 = |α|2 + |β |2 = 1. That fits perfectly with the fact that the probabilities sum to
1.

The vector representation is similar to the vector representation in deep learning. It does not exist in
“reality”. It exists in the mind of the observer, and it is used to predict the probability of the outcome to
be observed by the observer. That is, there must be an observer, and the observer makes an observation.
Quantum mechanics, in particular, the vector, enables the observer to predict the observed value before
making the observation. This vector, similar to the vector representation in deep learning, is a “thought
vector”.

But exactly what happens before we make the observation, quantum mechanics or at least Copenhagen
interpretation says that this is an irrelevant question. Quantum mechanics is only used to predict the prob-
ability distribution of the outcome to be observed by the observer. It does not describe reality beyond the
observed data. This is in agreement with the goal of machine learning.

We can generalize the above scheme to continuous outcome. For instance, in the double slit experiment,
we shot electrons through two slits, and the electrons are detected on the 2D screen, which is how we observe
the final positions of the electrons. See Figure 5(a). The observed outcome is the continuous position x. We
can write the vector representation informally as v =

∫
x ψ(x)|x⟩, where ψ(x) is the coefficient of the vector

|x⟩ that represents position x. The (infinite) set of |x⟩ form an orthogonal basis in a (infinite dimensional)
Hilbert space (which generalizes finite dimensional Euclidean space). The vector v rotates according to the
Schrodinger equation:

ih
∂

∂ t
ψt(x) = Ĥψt(x), (2)

where h is the Planck constant, and Ĥ is a differential operator that involves ∂/∂x and ∂ 2/∂x2 (Ĥ can be
obtained from classical mechanics by changing the momentum p into an operator −ih∂/∂x, and changing
p2 into h2∂ 2/∂x2). When we make measurement of an electron’s position using the screen, the probability
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(a) (b)

Figure 5: Double slit experiment. (a) Shooting electrons through two slits, and the electors are detected by the screen.
(b) A single electron seems to go through two slits like water wave.

density that we observe position x is p(x) = |ψ(x)|2.
The function ψ(x) plays the role of the coefficients α and β in the discrete case of quantum bit. ψ(x) is

a continuous function that behaves like a wave. That is, a single electron can pass through the two slits like
water wave, and the waves from the two slits interfere with each other like water waves.

However, the vector v again is a thought vector, and the wave function ψ(x) is not a real wave. It exists
only in the mind of the observer, before she observes x. After she observes x, the wave function ψ(x)
collapses into a point mass at x. This collapse is also in the mind of the observer. It is the collapse of
uncertainty after observing x. This is the Copenhagen interpretation.

Schrodinger and Einstein never accepted the Copenhagen interpretation. After 100 years, people are
still arguing about what actually happened in reality before the screen detects the position of the electron.
The point is that reality is not knowable beyond observed data. A model only explains the training data and
predicts the testing data.

1.5 Neural networks

(a) (b) (c)

Figure 6: ReLU network as piecewise linear function. (a) Two layer network. (b) and (c) Piecewise linear.

Neural networks can be considered epi-perceptron model, where we add perceptrons on top of percep-
trons. ResNet is to add residual block on top of residual blocks. Transformer is to add self-attention block
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on top of self-attention blocks. For a network with ReLU rectification, the function is piecewise linear with
a large number of linear pieces. See Figure 6. It can approximate any non-linear function and can interpolate
data even when the input and the output are high dimensional.

The mathematical language of neural network is based on the perceptron model u = σ(Wv+b), where
v is the input vector, W is the weight matrix, b is bias vector, u is the output vector, and σ() is a given non-
linear rectification function applied element-wise or coordinate-wise. Such a simple non-linearity creates
bending of the flat linear surface. W and b can be learned from the data. We can compose the perceptrons
very much like we add up epicycles. Due to the bending created by the coordinate-wise rectification, the
resulting function is extremely expressive.

Each vector in the neural network model can be interpreted as activities of a group of neurons, and is
a thought vector. A vector can be transformed to other vectors. A vector itself can undergo transformation
over time, as in recurrent neural network. The transformation can be a composition of perceptrons. While a
vector represents a “noun”, the transformation of the vector represents a “verb”. A vector can be computed
from the input by an encoder, which is again can be a composition of perceptrons. A vector can be used
to predict the outcome by a decoder. A vector can also be used to reconstruct the input by a decoder. A
decoder can also be a composition of perceptrons. For image, a vector may be placed at a position in
the image domain, representing the content of the image around this position, as in convolutional neural
network. Sometimes a vector is also called embedding, e.g., we embed a word into a semantic space. In
general, we should treat a vector as a whole that encodes some information, whereas the individual elements
of the vector may not carry clear meaning. To query certain information contained in a vector, we may use
a decoder to decode the information.

We can use the above mathematical language to construct a dynamic model:

vt+1 = F(vt ,at), (3)

ot = G(vt), (4)

where vt is the thought vector at time t, ot is the observation at time t, and at is the action at time t. Both
the transformation F and the decoder G can be parametrized by neural networks. We can insert noises into
F and G to account for randomness. This model encompasses both Newtonian mechanics and quantum
mechanics. In Newtonian mechanics, vt consists of position and momentum. at is acceleration caused by
control force. F(,at) is a linear mapping of vt . ot is the observed position. In quantum mechanics, vt

represents state at time t, F(,at) is also a linear mapping or matrix representing at . The probability density
of observing ot = o is |⟨o|vt⟩|2 as discussed above, i.e., the square of the coefficient of the vector vt on the
basis vector that representing o. While vt in Newtonian mechanics is low dimensional and has concrete
meaning, vt in quantum mechanics is infinite dimensional and is highly abstract.

If we think about the brain, ot is the sensory data at time t, such as external data collected by our eyes,
ears, touch, etc, as well as internal sensory data including pleasure and pain. at is the action that we can
control (e.g., how we move around). vt is an internal representation, i.e., the activities of neurons that form
a thought vector. F(,a) represents action a. Due to coordinate-wise non-linear rectification, F(,a) is highly
non-linear and more expressive than the linear matrix representation in quantum physics. We plan our
actions based on such a model (together with the model for reward, which can be absorbed into observation
ot).

Again, v, F(,a) and G are mental constructs. They do not need to be real at all, but they encode important
information and knowledge about the world. Imagine you live in the Matrix, only ot and at are real. As long
as the Matrix feeds you with reasonable ot , you will feel you are living in a real world. The Matrix may
use non-Euclidean geometry with highly curved space-time and may use a very strange physics (e.g., the
gravity is much weaker, and you can go through a wall) to generate ot , but your brain will have no problem
learning the dynamic model and learn to act. The model in your brain may have much more parameters and
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variables than the model of the Matrix, but as long as you train your model with enough training examples,
your model should be okay.

While the above discussion focuses on approximation capacity of neural networks and the representa-
tional expressiveness of vectors and transformations, the approximation capacity of neural networks also
enable them to amortize iterative computations. For instance, given the input, the output may be obtained
by an optimization algorithm or by solving a partial differential equation (PDE). The computation is ac-
complished by an iterative algorithm. But we can learn a neural network that directly maps the input to the
output. This is the so-called learned computation, which can be used for both modeling and inference.

1.6 What is the point?

The difference between models in physics and models in machine learning is not that the former are more
real or provide understanding, while the latter are just curve fitting and only for prediction. They are all about
fitting the observed data. The difference is that models in physics have a smaller number of parameters and
variables, and they fit the observed data extremely well. But this is because the data in physics happen to be
very simple.

In science, we prefer simple models. As von Neumann said, “Give me three parameters I can fit an
elephant, give me four, I can wiggle its trunk.” In fact, “adding an epicycle” is synonymous to bad science.
In machine learning, we also prefer simple models. But the data in machine learning are often more complex
than the data in physics (positions of planets or electrons). It is usually impossible to find simple models
to fit the observed data. In that case, we have to adopt models like epicycles. However, even with such
models, we still prefer simple models, except that the notion of simplicity is not about counting the number
of parameters. A more general notion of simplicity or complexity is to measure how much the model absorbs
noises or random coincidences. We may have a model with a lot of parameters, but with explicit or implicit
regularization, the model may still be very simple in that it does not overfit the training data.

2 Gauss paradigm

At the time of Euler, Laplace and Gauss, the most interesting data were about motions of celestial bodies.
The analysis of such data can be considered the origin of machine learning. In fact, today in machine
learning, people are still following the paradigm set up by Gauss.

2.1 Euler’s model

(a) (b)

Figure 7: The motion of Jupiter around the Sun is influenced by Saturn.
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Euler studied the orbit of Jupiter around the Sun. The motion of Jupiter is influenced by Saturn. By
Taylor expansion or perturbation analysis, Euler obtained the following equation:

ϕ = η−23525′′ sinq+168′′ sin2q32′′ sin2w−257′′ sin(w−q)−243′′ sin(2w− p)+m′′− x′′ sinq+ y′′ sin2q

−z′′ sin(w− p)−u(α +360v+ p)cos(w− p)+Nu′′−11405k′′ cosq+(1/600)k′′ cos2q, (5)

where (ϕ,η ,q,w, p,N,v) are observed and vary from observation to observation, and (x,y,m,z,α,k,n,u) are
unknown parameters. Euler had 75 observations, and by treating uα as γ he had 7 unknown parameters. In
other words, he had 75 equations (subject to observational noises) and 7 unknowns.

Let us translate the above equation into more familiar notation in modern statistics. Let

yi = ϕi, β =


β1
β2
...

βp

=


x
y
...
u

, and xi =


xi1
xi2
...

xip

=


sinqi

sin2qi
...

sin(w− p)

 . (6)

Then the equation can be written as

yi = x⊤i β = xi1β1 + xi2β2 + · · ·+ xipβp for i = 1, · · · ,n = 75. (7)

The following are some observations: (1) yi is linear in β , but it can be non-linear in the original variables
(q,w, p,N,u). (2) The model is known to be correct a priori. While (1) is common in linear models, (2) is
rare in machine learning.

Euler did not go very far in solving the above problem.

2.2 Laplace’s estimating equation

Laplace proposed the method of combination of equations (for a similar dataset), e.g., we combine the 75
equations into 7 equations, so that we can solve for the 7 unknowns. Specifically we solve β from the
following estimating equations:

n

∑
i=1

wikyi =
n

∑
i=1

wik

p

∑
j=1

xi jβ j, k = 1, ..., p, (8)

where (wi j) is a set of pre-designed weights. Laplace designed a special set of weights. But he did not give
a general principle on how to design the weights.

2.3 Gauss paradigm

Gauss became a celebrity at a young age by accurately predicting the position of the dwarf planet Ceres
based on a small number of past observations. He used the least squares method to estimate the unknown
parameters that describe the orbit of Ceres.

For linear regression model described above, the least squares method estimates β by minimizing the
loss function

L (β ) =
n

∑
i=1

(
yi−

p

∑
i=1

xi jβ j

)2

. (9)
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(a) (b)

Figure 8: Ceres is a dwarf planet. It requires 7 parameters to describe the orbit of Ceres.

The above loss function can be minimized in closed form by solving the linear equation L′(β ) = 0. This
leads to the following estimating equation:

∂

∂βk
L (β ) =−2

n

∑
i=1

xik

(
yi−

p

∑
i=1

xi jβ j

)
= 0, k = 1, ..., p. (10)

This estimating equation corresponds to Laplace’s estimating equation with wik = xik.
Gauss did three things that set the paradigm for statistics and machine learning.
(1) Gauss started with a loss function. In machine learning, most of the methods start from loss functions.
(2) Gauss motivated the loss function by a probabilistic formulation. He assumed that

yi =
p

∑
j=1

xi jβ j + εi, εi ∼ N(0,σ2), (11)

independently for i = 1, ...,n. Assuming a prior distribution p(β ), the posterior distribution is

p(β |(xi,yi), i = 1, ...,n) ∝ p(β )
n

∏
i=1

p(yi | xi,β ) (12)

∝ exp

− 1
2σ2

n

∑
i=1

(
yi−

n

∑
j=1

xi jβ j

)2

+ log p(β )

 . (13)

Assuming a uniform p(β ), then maximizing p(β |(xi,yi), i = 1, ...,n) is equivalent to minimizing the loss
function L (β ). ∏

n
i=1 p(yi | xi,β ) is called likelihood. The least squares estimate is also the maximum

likelihood estimate.
(3) Gauss analyzed the property of the least squares estimator β̂LS, which is a function of (xi,yi), i =

1, ...,n). He used Frequentist thinking, even though the loss function is motivated by Bayesian thinking.
Specifically, we assume (xi,yi) ∼ p(x,y) independently, where p(x,y) is the joint distribution so that the
conditional distribution p(y|x) is such that yi ∼ N(x⊤i βtrue,σ

2), where βtrue is the true value of β . If we
believe Newtonian mechanics, then such a βtrue does exist. In Frequentist thinking, we assume βtrue is fixed
but unknown (whereas in Bayesian thinking, we treat β as a random variable). The Frequentist thinking is
based on hypothetic repeated sampling, i.e., suppose 100 astronomers collected their own data (xi,yi), i =
1, ...,n)∼ p(x,y) independently, and each calculates his or her β̂LS based on least squares, then we have 100
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estimated β̂LS. We can show that β̂LS fluctuates around βtrue, i.e., E(β̂LS) = βtrue. That is, β̂LS is unbiased.
The magnitude of fluctuation, i.e., Var(β̂LS) can also be calculated.

As to Laplace estimator based on estimating equation, we can also show that it is unbiased. We can
calculate its variance too. Gauss proved that the variance of Laplace estimator is minimized at wik = xik,
i.e., the least squares estimator achieves the minimal variance among all possible Laplace estimators. This
result is called the Gauss-Markov theorem, which claims that the least squares estimator is the best linear
unbiased estimator (BLUE).

We may summarize Gauss paradigm as follows.
(1) A probabilisitic model of the data.
(2) Loss function based on posterior or likelihood.
(3) Analysis within the probabilisitic framework.
It is fair to say that modern statistics and machine learning did not go much beyond Gauss paradigm.

2.4 Linear regression

We now give a more systematic treatment of linear regression and least squares. The following tables
illustrate the data frame and the notation of linear regression.

(a) (b)

Figure 9: Geometry of linear regression. (a) Each point is (xi,yi). The regression plane is y = x⊤β . (b) The vectors
of (X j, j = 1, ..., p) and Y . Least squares estimation means projection of Y onto the space spanned by (X j, j = 1, ..., p).

input output
1 x11,x12, ...,x1p y1
2 x21,x22, ...,x2p y2
...
n xn1,xn2, ...,xnp yn

For the first table, we can write the model as yi = ∑
p
j=1 β jxi j + εi, and εi ∼ N(0,σ2) independently.

input output
1 x⊤1 y1
2 x⊤2 y2
...
n x⊤n yn
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For the second table, xi = (xi1, ...,xip)
⊤, and we can write the model as yi = x⊤i β + εi, where β =

(β1, ...,βp)
⊤. The geometry is illustrated by Figure 9(a), where each point is (xi,yi), and the regression

plane is y = x⊤β .

input output
X = (X1,X2, ...,Xp) Y

For the third table, X j = (x1 j, ...,xn j)
⊤, Y = (y1, ...,yn)

⊤, and we can write the model as Y = ∑
p
j=1 X jβ j +

ε , or Y = Xβ + ε , where ε = (ε1, ...,εn)
⊤, and ε ∼ N(0,σ2In). The geometry is illustrated by Figure 9(b),

where we project Y onto the subspace spanned by (X j, j = 1, ..., p).

2.5 Background: derivatives in matrix form

Suppose Y = (yi)m×1, and X = (x j)n×1. Suppose Y = h(X). We can define

∂Y
∂X⊤

=

(
∂yi

∂x j

)
m×n

. (14)

To understand the notation, we can treat ∂Y =(∂yi, i= 1, ...,m)⊤ as a column vector, and 1/∂X =(1/∂x j, j =
1, ...,m)⊤ as another column vector. Now we have two vectors of operations, instead of numbers. The prod-
uct of the elements of the two vectors is understood as composition of the two operators, i.e., ∂yi(1/∂x j) =
∂yi/∂x j. Then ∂Y/∂X⊤ is a squared matrix according to the matrix multiplication rule.

If Y = AX , then yi = ∑k aikxk. Thus ∂yi/∂x j = ai j. So ∂Y/∂X⊤ = A.
If Y = X⊤SX , where S is symmetric, then ∂Y/∂X = 2SX .
If S = I, Y = |X |2, ∂Y/∂X = 2X .
The chain rule in matrix form is as follows. If Y = h(X) and X = g(Z), then

∂yi

∂ z j
= ∑

k

∂yi

∂xk

∂xk

∂ z j
. (15)

Thus

∂Y
∂Z⊤

=
∂Y

∂X⊤
∂X

∂Z⊤
. (16)

2.6 Least squares estimator

For general (X ,Y ),

L (β ) = |Y −Xβ |2. (17)

Let e = Y −Xβ , then L (β ) = |e|2. Applying the chain rule,

∂L

∂β⊤
=

∂L

∂e⊤
∂e

∂β⊤
=−2e⊤X , (18)

hence

L ′(β ) =
∂L

∂β
=−2X⊤(Y −Xβ ). (19)

Setting L ′(β ) = 0, we get the least squares estimator

β̂ = (X⊤X)−1X⊤Y. (20)
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We can also derive the above with the more pedestrian approach by writing out the subscripts, as we did
above:

∂

∂βk
L (β ) =−2

n

∑
i=1

xik

(
yi−

p

∑
i=1

xi jβ j

)
= ⟨Xk,e⟩= X⊤k e = 0, k = 1, ..., p, (21)

which leads to X⊤e = X⊤(Y −Xβ ) = 0.

2.7 Hat matrix and Cauchy-Schwartz inequality

Geometrically, Ŷ = X β̂ is the projection of Y onto the subspace spanned by X = (X1, ...,Xp), so that e =

Y −Xβ is perpendicular to X j at β̂ , i.e., ⟨e,X j⟩ = X⊤j e = 0 for j = 1, ..., p, i.e., X⊤(Y −Xβ ) = 0, which
leads to the least squares β̂ . The projection is

Ŷ = X β̂ = X(X⊤X)−1X⊤Y = HY, (22)

where the hat matrix H = X(X⊤X)−1X⊤ is the projection operation. It is easy to show that H = H⊤ and
H2 = H.

The Cauchy-Schwartz inequality is |Y |2 ≥ |Ŷ |2, i.e.,

Y⊤Y ≥ Ŷ⊤Ŷ = Y⊤HY. (23)

2.8 Background: expectation and variance in matrix form

Consider a random matrix X . Suppose X is m×n, and the elements of X are xi j, i = 1, ...,m and j = 1, ...,n.
Usually we write X = (xi j)m×n or simply X = (xi j). We define E(X) = (E(xi j)), i.e., taking expectations
element-wise. Let A be a constant matrix of appropriate dimension, then E(AX) = AE(X). Let B be another
constant matrix of appropriate dimension, then E(XB) = E(X)B.

The above result can be easily understood if we have iid copies X1, ...,Xn, so that ∑
n
i=1 xi/n→ E(X), and

∑
n
i=1 Axi/n→ E(AX), but also ∑

n
i=1 Axi/n = A∑

n
i=1 xi/n→ AE(X). Thus E(AX) = AE(X).

Let X be a random vector. Let µX = E(X). We define

Var(X) = E[(X−µX)(X−µX)
⊤]. (24)

Then the (i, j)-th element of Var(X) is Cov(xi,x j). The diagonal elements are Var(xi).
Let A be a constant matrix of appropriate dimension, then

Var(AX) = AVar(X)A⊤. (25)

This is because

Var(AX) = E[(AX−E(AX))(AX−E(AX))⊤] (26)

= E[(AX−AµX)(AX−AµX)
⊤] (27)

= E[A(X−µX)(X−µX)
⊤A⊤] (28)

= AE[(X−µX)(X−µX)
⊤]A⊤ (29)

= AVar(X)A⊤. (30)

Note that A does not need to be a square matrix. A can even be a vector, such as a⊤, then Var(a⊤X) =
a⊤Var(X)a, which is a quadratic form. Var(X) is non-negative definite.
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2.9 Gauss-Markov theorem

Gauss justified the least squares estimator by proving that among all the linear unbiased estimators, including
Laplace’s estimating equation, the least squares estimator has the minimal variance.

In Gauss’ analysis, he adopted the frequentist framework, by assuming Y = Xβtrue + ε , with E(ε) = 0
and Var(ε) = σ2In. We assume X is fixed. For least squares estimate β̂LS,

β̂LS = (X⊤X)−1X⊤Y = (X⊤X)−1X⊤(Xβtrue + ε) = βtrue +X−1
ε, (31)

therefore

E[β̂LS] = E[βtrue +X−1
ε] = βtrue +X−1E[ε] = βtrue, (32)

and

Var(β̂LS) = Var(βtrue +X−1
ε) = Var(X−1

ε) (33)

= X−1Var(ε)X−⊤ = σ
2(X⊤X)−1. (34)

For a general linear estimator β̂ = AY , where A may depend on X . If E(β̂ ) = βtrue, then

E[β̂ ] = AXβtrue = βtrue⇒ AX = Ip. (35)

Further,

Var(β̂ ) = Var(AY ) = AVar(ε)A⊤ = σ
2AA⊤. (36)

According to Cauchy-Schwartz inequality,

Var(β̂ ) = σ
2AA⊤ ≥ σ

2AHA⊤ = σ
2AX(X⊤X)−1X⊤A⊤ = σ

2(X⊤X)−1 = Var(β̂LS), (37)

or more carefully, for any new testing input x,

Var(x⊤β̂ ) = σ
2x⊤AA⊤x≥ Var(x⊤β̂LS) = σ

2x⊤(X⊤X)−1x, (38)

i.e., the least squares estimate gives us the most accurate prediction. This proves the Gauss-Markov theorem,
i.e., the least squares method is the best linear unbiased estimator (BLUE).

2.10 Continuing Gauss paradigm

Gauss assumed that the prior p(β ) is a uniform distribution (within a big finite range). We can also assume
p(β )∼ N(0,τ2Ip), where Ip is the p-dimensional identity matrix. This leads to the ridge regression, which
maximizes the posterior p(β |(xi,yi), i = 1, ...,n), or equivalently, minimizes the penalized least squares

n

∑
i=1

(
yi−

p

∑
i=1

xi jβ j

)2

+λ

p

∑
j=1

β
2
j .

The penalty term leads to regularization of estimation, which is important for generalization. It is particularly
important if we have a lot of variables, such as p > n. The ridge regression leads to kernel machine.

We may also perform a full Bayesian analysis, i.e., making multiple guesses of β by sampling from the
posterior p(β |(xi,yi), i = 1, ...,n), and when we make prediction, use each of the multiple guesses to predict,
and average over the multiple predictions. This leads to the Gaussian process treatment.
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For some problems, it may be appropriate to assume that β is sparse, i.e., only a small number of
components of β are non-zero. We can use a prior distribution such as a mixture of a point mass at 0 and a
normal distribution with a big variance. We can also use the sparsity inducing ℓ1 regularization to minimize

n

∑
i=1

(
yi−

p

∑
i=1

xi jβ j

)2

+λ

p

∑
j=1
|β j|.

This is the Lasso (Least Absolute Shrinkage and Selection Operator) estimator.

2.11 Bayesian, Frequentist, variational

We can write (xi,yi)∼ pθ (xi,yi) for i = 1, ...,n. In supervised learning, we let pθ (x,y) = pθ (y|x)p(x), where
we learn pθ (y|x) and we leave p(x) alone. In unsupervised learning, we do not observe y, and we model
pθ (x) instead.

In the following, we focus on supervised learning. In Bayesian framework, we treat θ as a random
variable. We assume its marginal distribution to be p(θ). It is called the prior distribution. The learning is
based on posterior distribution

p(θ | (xi,yi), i = 1, ...,n) ∝ p(θ)
n

∏
i=1

p(yi | xi,θ), (*)

where we write pθ (y|x) as p(y|x,θ) to emphasize that θ is a random variable to be conditioned upon (we
will derive the above proportionality that the end of this section). ∏

n
i=1 p(yi | xi,θ) is called likelihood.

l(θ |(xi,yi), i = 1, ...,n) = ∑
n
i=1 log p(yi | xi,θ) is called the log-likelihood.

If we estimate θ by maximizing p(θ | (xi,yi), i = 1, ...,n) over θ , we get the so-called Maximum A
Posteriori (MAP) estimate.

log p(θ | (xi,yi), i = 1, ...,n) = l(θ |(xi,yi), i = 1, ...,n)+ log p(θ).

If p(θ) is uniform within a range, MAP becomes maximum likelihood estimate (MLE). For non-uniform
p(θ), MAP is penalized or regularized likelihood.

MAP only captures the maximum or mode of the posterior distribution but misses the uncertainty in
the posterior distribution. To capture the uncertainty, we may draw multiple samples θm ∼ p(θ | (xi,yi), i =
1, ...,n) for m = 1, ...,M. This can be accomplished by Monte Carlo, such as Markov chain Monte Carlo
(MCMC). These θm are the multiple guesses of θ .

The posterior p(θ | (xi,yi), i = 1, ...,n) is often not tractable in the sense that we cannot calculate the
normalizing constant of p(θ)∏

n
i=1 p(yi | xi,θ) to make it a probability distribution. In variational inference,

we find a simpler distribution qφ (θ) to approximate p(θ | (xi,yi), i = 1, ...,n), where φ is the variational
parameter that we choose to minimize the divergence from qφ (θ) to p(θ | (xi,yi), i = 1, ...,n).

For a testing example (x0,y0), if we know θ , we can predict y0 based on p(y0 | x0,θ), where θ can be
MAP or MLE. But it is better to take into account the uncertainty in θ by averaging over multiple guesses,
i.e.,

p(y0 | x0,(xi,yi), i = 1, ...,n) =
∫

p(y0 | x0,θ)p(θ | (xi,yi), i = 1, ...,n)

= Ep(θ |(xi,yi),i=1,...,n)[p(y0 | x0,θ)]≈
1
M

M

∑
m=1

p(y0 | x0,θm).

This avoids overfitting, or as the slogan goes: Bayesian does not overfit. For some models such as Gaussian
process, p(y0 | x0,(xi,yi), i = 1, ...,n) can be obtained directly without explicitly integrating out θ .
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The Frequentist thinking treats (xi,yi)∼ pdata(x,y), where pdata is an unknown distribution that generates
the data. If the model is correct, then there is a true value θtrue, so that pdata(x,y) = ptrue(x,y). We can then
study the property of MLE, MAP, or Bayesian prediction within this frequentist framework.

In Gauss paradigm, he used Bayesian to motivate the least squares method, and he justified the least
squares method within the Frequentist framework.

More on Learning Based on Posterior Distribution

This section provides derivation details on the conclusion that ”learning is based on posterior distribution”,
i.e.,

p(θ | (xi,yi), i = 1, ...,n) ∝ p(θ)
n

∏
i=1

p(yi | xi,θ), (39)

According to Bayes’ theorem, we can write p(θ | (xi,yi), i = 1, ...,n) as

p(θ | (xi,yi), i = 1, ...,n) =
p((xi,yi), i = 1, ...,n | θ)p(θ)

p((xi,yi), i = 1, ...,n)

where we treat the denominator, p((xi,yi), i = 1, ...,n), as a constant. Therefore, we obtain

p(θ | (xi,yi), i = 1, ...,n) ∝ p((xi,yi), i = 1, ...,n | θ)p(θ)

where

p((xi,yi), i = 1, ...,n | θ) =
n

∏
i=1

p(xi,yi | θ).

For i = 1, ...,n, we have

p(xi,yi | θ) =
p(yi∩ xi∩θ)

p(θ)

=

p(yi∩xi∩θ)
p(xi∩θ)

p(θ)
p(xi∩θ)

= p(yi | xi,θ)p(xi | θ)

Here we assume xi and θ are independent, i.e. p(xi | θ) = p(xi). Now we obtain

p(xi,yi | θ) = p(yi | xi,θ)p(xi)

p((xi,yi), i = 1, ...,n | θ) =
n

∏
i=1

p(yi | xi,θ)p(xi)

We again treat ∏
n
i=1 p(xi) as a constant, and therefore we obtain

p(θ | (xi,yi), i = 1, ...,n) ∝ p(θ)
n

∏
i=1

p(yi | xi,θ), (*)
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2.12 Logistic regression

We can generalize Gauss’ treatment of linear regression to logistic regression and classification.
Consider a dataset with n training examples, where x⊤i = (xi1, · · · ,xip) consists of p predictors and

yi ∈ {0,1} is the outcome or class label.
We assume [yi|xi,β ]∼ Bernoulli(pi), i.e., Pr(yi = 1|xi,β ) = pi, and we assume

logit(pi) = log
pi

1− pi
= si = x⊤i β .

Then
pi = sigmoid(si) =

esi

1+ esi
=

1
1+ e−si

,

where the sigmoid function is the inverse of the logit function.

2.13 Classification and perceptron

For logistic regression, we want to learn β either for the purpose of explanation or understanding, or for the
purpose of classification or prediction. In the context of classification, we usually let yi ∈ {+1,−1} instead
of yi ∈ {1,0}. Those xi with yi = +1 are called positive examples, and those xi with yi = −1 are called
negative examples.

We may call β a classifier. si = x⊤i β = ⟨xi,β ⟩ is the projection of xi on the vector β , so the vector β is
the direction that reveals the difference between positive xi and negative xi. Thus β should be aligned with
positive xi and negatively aligned with negative xi, i.e., β should point from the negative examples to the
positive examples.

According to the previous subsection,

Pr(yi =+1|xi,β ) =
1

1+ exp(−si)
.

Figure 10: A neuron takes inputs, and generates outputs.

A deterministic version of the logistic regression is the perceptron model

yi = sign(si),

where sign(s) = +1 if s≥ 0, and sign(s) =−1 if s < 0.
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Figure 11: A perceptron is a simple model of a neuron. It computes a weighted sum of the inputs (plus a bias), and
outputs the sign of the weighted sum.

The perceptron model is inspired by neuroscience. See Figure 10. It can be considered an over-simplified
model of a neuron, which takes input xi, and emits output yi. See Figure 11.

The perceptron model can be generalized to neural networks, support vector machines, as well as ad-
aboost, which are three major tools for classification.

Notationally, in machine learning literature, the perceptron is often written as

yi = sign

(
p

∑
j=1

w jxi j +b

)
= sign(x⊤i w+b),

where w = (w j, j = 1, ..., p)⊤ are the connection weights and b is the bias term. (w,b) corresponds to β .

2.14 Loss functions

In order to learn β (or (w,b)) from the training data {(xi,yi), i = 1, ...,n}, we can minimize the loss function

L (β ) =
n

∑
i=1

L(yi,si),

where L(yi,si) is the loss for each training example (xi,yi). We need to define L(yi,si).

Loss function for least squares regression

For linear regression, we usually use the least squares loss,

L(yi,si) = (yi− si)
2 .

Loss function for robust linear regression

We may also use the mean absolute value loss,

L(yi,si) = |yi− si| ,

which penalizes large differences between yi and si = x⊤i β to a less degree than the least squares loss, thus
the estimated β is less affected by the outliers.
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Loss function for logistic regression with 0/1 responses

For logistic regression, we usually maximize the likelihood function, which is

Likelihood(β ) =
n

∏
i=1

Pr(yi|xi,β ).

That is, we want to find β to maximize the probability of the observed (yi, i = 1, ...,n) given (xi, i = 1, ...,n).
The maximum likelihood estimate gives the most plausible explanation to the observed data.

For yi ∈ {0,1},

Pr(yi = 1|xi,β ) = sigmoid(si) =
exp(si)

1+ exp(si)
,

Pr(yi = 0|xi,β ) = 1−Pr(yi = 1|xi,β ) =
1

1+ exp(si)
,

We can combine the above two equations by

Pr(yi|xi,β ) =
exp(yisi)

1+ exp(si)
.

The log-likelihood is

LogLikelihood(β ) =
n

∑
i=1

logPr(yi|xi,β ) =
n

∑
i=1

[yisi− log(1+ exp(si))] .

We can define the loss function as the negative log-likelihood

L(yi,si) =− [yisi + log(1+ exp(si))] .

Loss function for logistic regression with ± responses

If yi ∈ {+1,−1}, we have

Pr(yi =+1|xi,β ) =
1

1+ exp(−si)
,

and
Pr(yi =−1|xi,β ) =

1
1+ exp(si)

.

Combining them, we have

p(yi|xi,β ) =
1

1+ exp(−yisi)
.

The log-likelihood is
n

∑
i=1

logPr(yi|xi,β ) =−
n

∑
i=1

log(1+ exp(−yisi)) .

We define the loss function as the negative log-likelihood. Thus

L(yi,si) = log [1+ exp(−yisi)] .

This loss is called the logistic loss.
The least squares loss for linear regression can also be derived from the log-likelihood if we assume the

errors follow a normal distribution.
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Figure 12: Loss functions for classification. The horizontal axis is mi = yix⊤i β . The vertical axis is L(yi,x⊤i β ). The
exponential loss and the hinge loss can be considered approximations to the logistic loss. These loss functions penalize
negative mi. The more negative mi is, the bigger the loss. The loss functions also penalize small positive mi, e.g., those
mi < 1. Such loss functions encourage correct and confident classifications.

Loss functions for classification

The following summarizes several possible choices for the loss function L(yi,si) for classification. See
Figure 12.

Logistic loss = log(1+ exp(−yisi)) ,

Exponential loss = exp(−yisi) ,

Hinge loss = max(0,1− yisi) ,

Zero-one loss = 1(yisi > 0)

Both the exponential and hinge losses can be considered approximations to the logistic loss. The logistic
loss is used by logistic regression. The exponential loss is used by adaboost. The hinge loss is used by
support vector machines. The zero-one loss is to count the number of mistakes. It is not differentiable and
is not used for training.

All the above loss functions are based on mi = yisi. We call mi the margin for example (yi,xi). We want
yi and si = x⊤i β to be of the same sign for correct classification. If yi = +1, we want si = x⊤i β to be very
positive. If yi =−1, we want si = x⊤i β to be very negative. We want the margin mi to be as large as possible
for confident classification.

2.15 Regularization

If we have many parameters, i.e., β is a high dimensional vector, we need to regularize β and use the
following objective function,

L (β ) =
n

∑
i=1

L(yi,si)+λρ(β ),

where ρ(β ) is a regularization function and λ is a regularization constant to be carefully selected or tuned.
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Popular choices of ρ(β ) include: (1) ℓ2 regularization, where ρ(β ) = ∥β∥2
ℓ2

, which is the sum of squares
of the components of β , giving us the ridge regression; and (2) ℓ1 regularization, where ρ(β ) = ∥β∥ℓ1 , which
is the sum of the absolute values of the components of β . This gives us the Lasso. Both regularization
functions are convex. While ℓ2 induces shrinkage, ℓ1 induces variable selection. Usually we do not penalize
the intercept or bias. In machine learning literature, we often write β in terms of (w,b), and we only
regularize w, because b only tells us the overall location of {yi}, and it does not tell us anything about the
relationship between yi and xi.

2.16 Gradient descent: learning from errors

With the loss function L (β ) defined, we can estimate β by minimizing L (β ). We can use the first order
method such as gradient descent. We can also use the second order method such as Newton-Raphson (if we
can afford it).

The gradient descent algorithm updates β by

βt+1 = βt −ηL ′(βt),

where η is the step size or learning rate. It may change over time. L ′(β ) is the gradient or derivative of
L (β ), which gives us the steepest direction for descent, and

L ′(β ) =
n

∑
i=1

∂

∂β
Li(yi,si)+λρ

′(β ).

For least squares loss,
∂

∂β
Li(yi,si) =−2(yi− si)xi =−2eixi,

where
ei = yi− si

is the error made by the current β .
For logistic regression with yi ∈ {0,1},

∂

∂β
Li(yi,si) = −yixi +

exp(si)

1+ exp(si)
xi

= −(yi− pi)xi =−eixi,

where
ei = yi− pi

is the error made by the current β . If yi = 0, pi should be close to 0. If yi = 1, pi should be close to 1.
Otherwise there will be an error which causes the change in β . The gradient descent algorithm learns from
the errors, by incorporating eixi into β , allowing β memorize those xi on which it had made mistakes. In the
classification setting, we want β to be a vector that points from negative examples to the positive examples,
and the gradient descent algorithm achieves that.

2.17 Newton-Raphson

A more efficient method is to update β using Newton-Raphson algorithm. Suppose we want to solve h(x) =
0. At xt , we take the first order Taylor expansion

h(x) .
= h(xt)+h′(xt)(x− xt).
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Figure 13: Newton-Raphson

Each iteration, we find the root of the linear surrogate function, which is the above first order Taylor expan-
sion,

xt+1 = xt −
h(xt)

h′(xt)
.

Figure 14: Gradient descent.

Suppose we want to find the mode of f (x), we can solve f ′(x) = 0. Using Newton-Raphson, we have

xt+1 = xt −
f ′(xt)

f ′′(xt)
.

Each iteration maximizes a quadratic approximation to the original function at xt ,

f (x) .
= f (xt)+ f ′(xt)(x− xt)+

1
2

f ′′(xt)(x− xt)
2.

f ′′(xt) is the curvature of f at xt . If the curvature is big, the step size should be small. If the curvature is
small, the step size can be made larger.

If the variable is a vector x = (x1,x2, · · · ,xn)
⊤, let

f ′(x) =
(

∂ f
∂xi

)
n×1

f ′′(x) =
(

∂ f
∂xi∂x j

)
n×n

,

f ′′(xt) is called the Hessian matrix, we have

xt+1 = xt − f ′′(xt)
−1 f ′(xt).
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f ′′(xt) tells us the local shape of f around xt . f ′′(xt)
−1 f ′(xt) gives us better direction than f ′(xt) as shown

in the above figure. The Newton-Raphson is a second order algorithm.

2.18 Iterated reweighed least squares

For maximum likelihood estimate of β in logistic regression, let l(β ) be the log-likelihood,

l(β ) = LogLikelihood(β ) =
n

∑
i=1

logPr(yi|xi,β ) =
n

∑
i=1

[yisi− log(1+ exp(si))] .

To find the maximum of l(β ), we first calculate the gradient

l′(β ) =
n

∑
i=1

[
yixi−

ex⊤i β

1+ ex⊤i β
xi

]
=

n

∑
i=1

(yi− pi)xi.

The second derivative of the log likelihood function is

l′′(β ) =−
n

∑
i=1

pi(1− pi)xix⊤i .

We can update β by
β
(t+1) = β

(t)+ l′′(β (t))−1l′(β (t)).

Let wi = pi(1− pi), we can rewrite the update equation as

β
(t+1) = β

(t)+

[
n

∑
i=1

pi(1− pi)xix⊤i

]−1

(yi− pi)xi

=

(
n

∑
i=1

wixix⊤i

)−1[ n

∑
i=1

wixix⊤i β
(t)+(yi− pi)xi

]

=

(
n

∑
i=1

wixix⊤i

)−1[ n

∑
i=1

wixi

(
x⊤i β

(t)+
yi− pi

wi

)]
.

Let
ŷi = x⊤i β

(t)+
yi− pi

wi
,

let x̃i = xi
√

wi, ỹi = ŷi
√

wi, we can rewrite the equation above as follows:

β
(t+1) =

(
n

∑
i=1

wixix⊤i

)−1( n

∑
i=1

wixiŷi

)

=

(
n

∑
i=1

x̃ix̃i
⊤

)−1( n

∑
i=1

x̃iỹi

)
.

The flow is
β (t)→ ηi = x⊤i β (t)→ pi = σ(ηi)→ wi = pi(1− pi)→ ŷi = ηi +

yi− pi

wi
→ x̃i = xi

√
wi, ỹi = ŷi

√
wi→

β (t+1).
XGboost can be considered a variation of iterated reweighed least squares.
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2.19 Three modes of learning

Supervised learning

The table below displays the dataset for supervised learning. hi = (hik,k = 1, ...,d)⊤ is the d-dimensional

input features output
1 x⊤1 h⊤1 y1
2 x⊤2 h⊤2 y2
...
n x⊤n h⊤n yn

vector of features or hidden variables. yi follows a linear model on hi. Euler’s model can be written in
this form, where xi are the raw input variables (ϕ,η ,q,w, p,N,v), and h(xi) are derived from perturbation
analysis based on Newtonian mechanism, such as (sinqi,sin2qi, ...,sin(w− p)).

The supervised learning can be represented by the diagram below,

output : yi

↑
features : hi

↑
input : xi

where the vector of features hi is computed from xi via hi = h(xi).
Encoder and decoder: In the above diagram, the transformation xi → hi is called an encoder, and the

transformation hi→ yi is called a decoder.
Both classification and regression are about supervised learning because for each input xi, an output yi is

provided as supervision. In regression, yi is continuous. In classification, yi is categorical. We can represent
yi by a one-hot vector, i.e., if yi denotes the k-th category, then yi is a vector where the k-th element is 1 and
all the other elements are 0.

Unsupervised learning

In unsupervised learning, the dataset is as below, where yi are not provided as supervision.

input hidden output
1 x⊤1 h⊤1 ?
2 x⊤2 h⊤2 ?
...
n x⊤n h⊤n ?

In a generative model, the vector hi is not a vector of features extracted from the signal xi. hi is a vector
of hidden variables that is used to generate xi, as illustrated by the following diagram:

hidden : hi

↓
input : xi

The components of the d-dimensional hi are variably called factors, sources, components or causes. The
prototype example is factor analysis or principal component analysis.
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Auto-encoder: hi is also called a code in the auto-encoder illustrated by the following diagram:

code : hi

↑↓
input : xi

The direction from hi to xi is called the decoder, and the direction from xi to hi is called the encoder.
Distributed representation and disentanglement: hi = (hik,k = 1, ...,d) is called a distributed represen-

tation of xi. Usually the components of hi, (hik,k = 1, ...,d), are assumed to be independent, and (hik) are
said to disentangle the variations in xi.

Embedding: hi can also be considered the coordinates of xi, if we embed xi in a low-dimensional space,
as illustrated by the following diagram:

← hi→
|

← xi→

In the training data, we find a hi for each xi, so that {hi, i = 1, ...,n} preserve the relative relations between
{xi, i = 1, ...,n}. The prototype example of embedding is multi-dimensional scaling, where we want to
preserve the Euclidean distances between the examples.

Reinforcement learning

Reinforcement learning is similar to supervised learning except that the guidance is in the form of reward.
Here xi is the state. yi can be the action taken at this state. yi can also be the value of this state, where value
is defined as the accumulated reward.

3 Stein Estimator

3.1 Bias and variance tradeoff

While Gauss showed that β̂LS has minimal variance among all the linear unbiased estimators, one may ask
whether a biased estimator may be even better than the least squares estimator. For an estimator β̂ , let
µ = E(β̂ ). The mean squares error can be decomposed into bias and variance terms,

E∥β̂ −βtrue∥2 = E∥(β̂ −µ)+(µ−βtrue)∥2

= E∥β̂ −µ∥2 +∥µ−βtrue∥2 = variance+bias2.

The figure below illustrates the bias and variance tradeoff. It is possible to introduce some bias so as to
reduce the variance.

3.2 Shrinkage estimator

Stein shocked the world of statistics in 1960s by showing that as long as p > 2, you can always do better
than least squares estimator. While Gauss-Markov theorem states that least squares method is the best linear
unbiased estimator, Stein’s estimator is neither linear nor unbiased.

For simplicity, let us assume that X⊤X = Ip, i.e., (X j, j = 1, ..., p) form an orthonormal basis. Then

β̂LS = X⊤(Xβtrue + ε) = βtrue +X⊤ε = βtrue +δ ,
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Figure 15: Bias and variance tradeoff.

where δ = X⊤ε is the model fitting to the noise ε . Suppose ε ∼ N(0,σ2In), then δ ∼ N(0,σ2Ip), because
Var(δ ) = X⊤Var(ε)X = σ2Ip. Thus β̂LS ∼ N(βtrue,σ

2Ip).
Stein’s estimator is defined as

β̂Stein =

(
1− (p−2)σ2

∥β̂LS∥2

)
β̂LS.

Stein proved that for p > 2

E∥β̂Stein−βtrue∥2 ≤ E∥β̂LS−βtrue∥2.

Stein’s estimator is based on the observation that ∥β̂LS∥2 = ∥βtrue∥2 + pσ2. That is, the vector β̂LS is
longer than the vector βtrue. Thus we may want to shrink β̂LS to bring it closer to βtrue. Stein’s estimator is
an example of shrinkage estimator.

3.3 Stein lemma

For z∼ N
(
µ,σ2

)
, E [(z−µ)g(z)] = σ2E [g′(z)].

proof Integral by parts,

E [(z−µ)g(z)] =
∫
(z−µ)g(z)

1√
2πσ2

e
−(z−µ)2

2σ2 dz

= −σ
2g(z)

1√
2πσ2

e
−(z−µ)2

2σ2

∣∣∣∞
−∞

+σ
2
∫

g′(z)
1√

2πσ2
e
−(z−µ)2

2σ2

= σ
2E
[
g′(z)

]
.

3.4 Proof of Stein’s result

For simplicity, we denote β̂LS by X , and denote βtrue by θ , so that X ∼ N(θ ,σ2Ip).

E∥X−θ∥2 = E

[
p

∑
i=1

(Xi−θi)
2

]
= pσ

2.

29



E

∣∣∣∣∣
∣∣∣∣∣
(

1− (p−2)σ2

∥X∥2

)
X−θ

∣∣∣∣∣
∣∣∣∣∣
2
 = E

∣∣∣∣∣
∣∣∣∣∣(X−θ)− (p−2)σ2

∥X∥2 X

∣∣∣∣∣
∣∣∣∣∣
2


= E∥X−θ∥2 +E
[
(p−2)2σ4

∥X∥2

]
−2E

[
⟨X−θ ,

(p−2)σ2

∥X∥2 X⟩
]
= (∗).

E
[
⟨X−θ , (p−2)σ2

∥X∥2 X⟩
]

can be simplified as follows

E

[
p

∑
i=1

(Xi−θi)
(p−2)σ2

∥X∥2 Xi

]
= E

[
p

∑
i=1

(Xi−θi)
(p−2)σ2

X2
i +∑

p
j ̸=i X2

j
Xi

]
.

Letting

(p−2)σ2

X2
i +∑

p
j ̸=i X2

j
Xi = g(xi), (40)

we can use Stein’s lemma. Hence

E

[
p

∑
i=1

(Xi−θi)
(p−2)σ2

X2
i +∑

p
j ̸=i X2

j
Xi

]
= σ

2
p

∑
i=1

E

[(
(p−2)σ2

X2
i +∑

p
j ̸=i X2

j
Xi

)′]

= σ
2

p

∑
i=1

E
[
(p−2)σ2

∥X∥2 − (p−2)σ22X2
i

∥X∥2

]
= σ

2E
[

p(p−2)σ2

∥X∥2 − 2(p−2)σ2

∥X∥2

]
= E

[
(p−2)2σ4

∥X∥2

]
.

Therefore,

(∗) = E
[
∥X−θ∥2 +

(p−2)2σ4

∥X∥2 −2
(p−2)2σ4

∥X∥2

]
= E

[
∥X−θ∥2− (p−2)2σ4

∥X∥2

]
≤ E

[
∥X−θ∥2]= pσ

2.

3.5 Stein estimator as empirical Bayes

X ∼ N(θ ,σ2Ip) can be written as X = (xi, i = 1, ..., p)⊤, and xi ∼ N(θi,σ
2). We can adopt a Bayesian

treatment, by assuming a prior distribution θi ∼ N(0,τ2). Marginally, if we integrate out θi, we have xi ∼
N(0,σ2 + τ2), and the posterior distribution of each θi is

p(θi | X)∼ N
(

xi
1/σ2

1/σ2 +1/τ2 ,
1

1/σ2 +1/τ2

)
,

and

E(θi | X) = xi

(
1− σ2

σ2 + τ2

)
.

Since xi ∼ N(0,σ2 + τ2), we have

E(1/∥X∥2) = 1/[(σ2 + τ
2)(p−2)].
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Thus we can estimate 1/(σ2 + τ2) by (p−2)/∥X∥2. This leads to Stein’s estimator.
Gaussian process is a generalization of this idea. The estimation of the hyper-parameters in Gaussian

process is similar to the estimation of τ2. It is called empirical Bayes because τ2 or 1/(σ2+τ2) is estimated
from empirical data. A full Bayesian treatment would put a prior on τ2.

4 Model Complexity and Overfitting

4.1 Regression

4.1.1 Model bias

In Gauss’ analysis, he assumed the model is true, or the Newtonian mechanics is true. According to George
Box: “All models are wrong, but some are useful.” Thus it is better to assume that the model is wrong or
biased.

Suppose Y = g+ε , where g is the vector of ground truth, e.g., the true positions of a planet over time, ε is
the noise vector. For simplicity, let us also assume that X⊤X = Ip, i.e., (X j, j = 1, ..., p) form an orthonormal
basis. Then

β̂ = X⊤(g+ ε) = X⊤g+X⊤ε = β
∗+δ ,

where β ∗ = X⊤g is the “best” value of β , i.e., the best the model can do to fit the ground truth, and δ = X⊤ε

is the model fitting to the noise ε . β̂ j = β ∗j +δ j, for j = 1, ..., p.
Let ĝ = Xβ ∗, then ĝ is the projection of g onto the subspace spanned by X . We call |g− ĝ|2 the model

bias.
Let ε̂ = Xδ , then ε̂ is the projection of ε onto the space X .
Suppose ε ∼ N(0,σ2In), then δ ∼ N(0,σ2Ip), because Var(δ ) = X⊤Var(ε)X = σ2Ip, and ∥Xδ∥2 =

δ⊤X⊤Xδ = ∥δ∥2 = pσ2.

4.1.2 Training and testing errors, overfitting

The training error is

E|Y − Ŷ |2 = |g− ĝ|2 +E|ε− ε̂|2

= |g− ĝ|2 +E|ε|2−E|ε̂|2

= |g− ĝ|2 +(n− p)σ2.

Suppose X is fixed, and the test data is Ỹ = g+ ε̃ , where ε̃ is independent of ε . Then the testing error is

E|Ỹ − Ŷ |2 = |g− ĝ|2 +E|ε̃− ε̂|2

= |g− ĝ|2 +E|ε̃|2 +E|ε̂|2

= |g− ĝ|2 +(n+ p)σ2.

The error of β ∗ is |g− ĝ|2.
Thus overfitting is defined as the testing error minus the training error, which is 2pσ2.
We may also interpret overfitting as the error of β̂ minus the error of β ∗, which is pσ2. On the training

data, the learned β̂ does even better than the ground truth β ∗. However, on the testing data, the former does
worse than the latter.

When we increase the model complexity p, the training error will keep decreasing. The testing error
will decrease and then start to increase, that is, the testing error has a U-shape. See Figure 16.
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Figure 16: Training and testing errors over model complexity.

Figure 17: Overfitting due to learning from noise. Training error is E|ε − ε̂|2 = (n− p)σ2, and testing error is
E|ε̃− ε̂|2 = (n+ p)σ2.

4.1.3 Learning from noise

If g = 0, then the model learns from noise, and it becomes clear how the model overfits. See Figure 17.
The training error is E|ε− ε̂|2, and the testing error is E|ε̃− ε̂|2. While ε̂ is the projection of ε onto X ,

it is not the projection of ε̃ onto X .

4.1.4 Effective degrees of freedom

Consider a general estimator β̂ such as the ridge estimator. The training error is

E|Y −X β̂ |2 = E|g+ ε−X β̂ |2.

The testing error is
E|Ỹ −X β̂ |2 = E|g+ ε̃−X β̂ |2.

The overfitting = testing error - training error is

2E⟨ε,X β̂ ⟩,

which is how much β̂ absorbs the noise ε .
Recall for the least squares β̂ overfitting is 2pσ2. We can define the effective degrees of freedom of β̂

to be

p̂ =
E⟨ε,X β̂ ⟩

σ2 .

With stronger regularization, e.g., bigger λ in the ridge regression, we have smaller p̂ and less overfitting.
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For a general estimator, the testing error can be decomposed into model bias, estimation bias, estimation
variance, and noise,

E|Ỹ −X β̂ |2 = |g− ĝ|2 + |E(β̂ )−β
∗|2 +E|β̂ −E(β̂ )|2 +nσ

2.

As we increase model complexity, the model bias decreases, the estimation bias decreases, but the variance
increases.

4.2 Classification

4.2.1 Error and score

Suppose the classifier is ŷ = f (x) ∈ {−1,+1}. The classification error is 1( f (x) ̸= y), and the classification
score is f (x)y. Clearly score = 1 - 2 × error. We shall analyze the training score and testing score. Note that
here we treat f (x) as the binary-valued function, unless in other parts of the note.

4.2.2 Coin flipping

We shall first study the model fitting of “coin flippings,” i.e., we assume y = ε ∼ Bernoulli(1/2), i.e.,
Pr(ε = 1) = Pr(ε =−1) = 1/2.

A property of coin flipping is that for any Bernoulli random variable Z ∼ Bernoulli(p) ∈ {+1,−1} that
is independent of ε , we have εZ ∼ Bernoulli(1/2).

4.2.3 Learning from coin flipping and Rademacher complexity

For any classifier f (x), the testing score is E[ε f (x)] = 0.
Suppose our dataset is (xi,yi), i = 1, ...,n where yi = εi ∼ Bernoulli(1/2) that follows a coin flipping

process. For a classifier f (x), the training score is 1
n ∑

n
i=1yi f (xi). However, in the training stage, we can

select f ∈ F , which is the class of all possible classifiers. For instance, if f (x) = sign(x⊤β ) is a linear
classifier, then F = { f (x) = sign(x⊤β ),∀β}. Then the training score of the optimal classifier is

R = E

[
max
f∈F

1
n

n

∑
i=1

εi f (xi)

]
.

The above is the Rademacher complexity of the class F . It is similar to the effective degrees of freedom in
regression.

4.2.4 Growth number and VC-dimension

Let N = |{( f (x1), ..., f (xn)),∀ f ∈F}| be the number of all possible predicted sequences ( f (x1), ..., f (xn))
if we vary f in F . Clearly N ≤ 2n. N is called the growth number. The growth number plays a role in the
union bound of the training error, i.e.,

Pr

(
max
f∈F

1
n

n

∑
i=1

εi f (xi)> t

)
≤ N Pr

(
1
n

n

∑
i=1

εi > t

)
≤ N exp(−2nt2).

The union bound is that P(A∪B)≤ P(A)+P(B). Consider taking an exam N times and suppose each time
the probability of passing the exam is p. If you take the maximal score, then you increase your chance
of passing the exam. But this chance is still bounded by N p. The exponential term above is due to the
concentration inequality.
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Recall N ≤ 2n. The VC-dimension is the largest n, so that N = 2n, i.e., the number of coin flippings that
can be perfectly explained by selecting f from F . Recall in the linear regression model, the dimension p is
the number of noises we can perfect explain by our model f (x) = x⊤β . Letting p be the VC-dimension of
the class F , one can prove that

N ≤
(

en
p

)p

,

i.e., the dimension of the space {( f (x1), ..., f (xn)),∀ f ∈F} is p.
The Rademacher complexity R is bounded by the growth number N. R is your maximal score if you

take the exam N times.

R≤
√

2logN
n

.

4.2.5 Symmetrization

In general (x,y) ∼ p(x,y), where [y|x] ∼ p(y|x), and y does not follow Bernoulli(1/2). In the regression
setting, g or |g− ĝ|2 gets cancelled in comparing the training error and testing error, so that what matters is
the noise vector ε . This is also the case with classification, due to the following symmetrization trick.

Suppose the training data is (xi,yi)∼ p(x,y), i = 1, ...,n. For any f , consider

1
n

n

∑
i=1

εiyi f (xi) =
1
n

[
∑

i:εi=+1
yi f (xi)− ∑

i:εi=−1
yi f (xi)

]
,

which can be interpreted as cross-validation version of overfitting, i.e., randomly assign half of the training
data as “training”, and the other half as “testing”. However, εiyi ∼ Bernoulli(1/2), thus the cross-validation
overfitting has the same distribution as 1

n ∑
n
i=1εi f (xi), which is about learning from noise.

During testing, suppose that we have (x̃i, ỹi)∼ p(x,y), i = 1, ...,n. For classifier f (x), the testing score is
1
n ∑

n
i=1ỹi f (x̃i). The bound of overfitting can be calculated by

E

[
1
n

n

∑
i=1

yi f (xi)−
1
n

n

∑
i=1

ỹi f (x̃i)

]
≤ E

[
max
f∈F

(
1
n

n

∑
i=1

yi f (xi)−
1
n

n

∑
i=1

ỹi f (x̃i)

)]

= E

[
max
f∈F

(
1
n

n

∑
i=1

(yi f (xi)− ỹi f (x̃i))εi

)]
, εi ∼ Bernoulli(1/2)

≤ E

[
max
f∈F

1
n

n

∑
i=1

yiεi f (xi)+max
f∈F

1
n

n

∑
i=1

(−ỹi)εi f (x̃i)

]
= 2R.

That is, the overfitting is bounded by 2R.

5 Kernel Regression

In kernel machines, f (x) = h(x)⊤β , and h(x) is a high-dimensional or infinite dimensional vector. It is
implicit. We only need to know K(x,x′) = ⟨h(x),h(x′)⟩. K(x,x′) is the kernel.

For the beginner, it is best to stick to the form h(x)⊤β . Gradually, one can think more in terms of
reproducing kernels.
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5.1 Ridge regression

In order to reduce the model bias, we want the number of parameters to be large. However, this will cause
overfitting if we continue to use the least squares estimator. We may reduce overfitting by using a biased
estimator such as ridge regression.

The ridge regression minimizes

L (β ) = |Y −Xβ |2 +λ |β |2,

for λ ≥ 0. Similar to the derivation in least square estimator, we have

L ′(β ) =−2X⊤(Y −Xβ )+2λβ

L ′′(β ) = 2(X⊤X +λ I)

Setting
L ′(β ) =−2X⊤(Y −Xβ )+2λβ = 0,

we have
β̂ = (X⊤X +λ Ip)

−1X⊤Y.

5.2 Linear spline

In the one-dimensional case, the linear spline model is of the form

f (x) = β0 +
d

∑
k=1

βk(x−αk)+,

where (x−αk)+ = max(0,x−αk), αk,k = 1, ....,d are the knots, and βk is the change of slope at knot αk.
We can learn the model from the training data (xi,yi), i = 1, ...,n by ridge regression which minimizes

L (β ) =
n

∑
i=1

[
yi−β0−

d

∑
k=1

βk(xi−αk)+

]2

+λ

d

∑
k=1

β
2
k ,

where ∑
d
k=1 β 2

k measures the smoothness of f (x).
Let xik = (xi−αk)+, xi0 = 1. The objective function is

L (β ) = |Y −Xβ |2 +β
⊤Dβ ,

where X is the n× (p+ 1) matrix, D is (p+ 1)× (p+ 1) diagonal matrix, with Dkk = λ , except D11 = 0
because we do not penalize β0. Then

β̂ = (X⊤X +D)−1X⊤Y.

We may choose (αk) to be equally spaced within the range of x, usually taken to be [0,1]. If we use a large
number of knots, and if λ is small, then the spline tends to interpolate the observations and overfit the noise.
On the other hand, if λ is too big, the model may be close to a horizontal line and may fail to capture the
signal.

Modern neural networks can be considered a multivariate generalization of the linear spline. Let x be a
p-dimensional input. A two layer rectified neural network is of the following form

f (x) = β0 +
d

∑
k=1

βkhk,

hk = max

(
0,αk0 +

p

∑
j=1

αk jx j

)
.
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The model can be considered a multivariate linear spline. We can learn both α = (αk j, j = 0,1, ..., p,k =
1, ...,d) and β = (βk,k = 0,1, ...,d) from training data {(xi,yi), i = 1, ...,n}. We will study this model later.

5.3 Representer theorem

We can replace x by h(x), where h(x) = (hk(x),k = 1, ...,d) and the dimension d can be infinite. Then the
model becomes

f (x) =
d

∑
k=1

βkhk(x) = h(x)⊤β ,

where h(x) = (hk(x),k = 1, ...,d)⊤ is the hidden vector.
For a loss function

n

∑
i=1

L(yi,h(xi)
⊤

β )+
1
2

λ |β |2.

The estimator that minimizes the loss function should be in the form of

β̂ =
n

∑
i=1

cih(xi).

That is, β̂ lies in the sub-space spanned by (h(xi), i = 1, ...,n). This is the representer theorem.
We can prove it by contradiction. Suppose the minimizer of the loss function β̃ does not lie in the

sub-space spanned by (h(xi), i = 1, ...,n). Then we can write

β̃ = β̂ +∆,

where
⟨∆,h(xi)⟩= 0,∀i.

Then
h(xi)

⊤
β̃ = h(xi)

⊤(β̂ +∆) = h(xi)
⊤

β̂ .

But
|β̃ |2 = |β̂ |2 + |∆|2.

Thus β̃ has bigger loss than β̂ , unless ∆ = 0. This proves the representer theorem.

5.4 Kernel regression

For the penalized least squares loss,

L(β ) =
n

∑
i=1

(
yi−h(xi)

⊤
β

)2
+λ |β |2,

applying the representer theorem by plugging in β = ∑
n
j=1 c jh(x j), we have

L =
n

∑
i=1

(
yi−h(xi)

⊤
β

)2
+λ |β |2

=
n

∑
i=1

(
yi−h(xi)

⊤
n

∑
j=1

c jh(x j)

)2

+λ

∣∣∣∣∣ n

∑
i=1

cih(xi)

∣∣∣∣∣
2

=
n

∑
i=1

(
yi−

n

∑
j=1

c jK(xi,x j)

)2

+λ ∑
i, j

cic jK(xi,x j)

= |Y −Kc|2 +λc⊤Kc.
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Taking derivative with respect to c, and setting it to zero,

−K(Y −Kc)+λKc = 0,

then
c = (K+λ In)

−1Y = (ci, i = 1, ...,n)⊤

and

f̂ (x) =
n

∑
i=1

ciK(xi,x).

5.5 Reproducing kernel Hilbert space

Suppose we have two functions defined on the same set of features, f (x) = h(x)⊤β , g(x) = h(x)⊤γ . We can
define the inner product

⟨ f ,g⟩H = ⟨β ,γ⟩.

The norm then becomes
| f |2H = ⟨ f , f ⟩H = ⟨β ,β ⟩= |β |2,

and H consists of all the functions with finite norm.
The inner product defines a Hilbert space, which is a generalization of Euclidean space, where the

notions such as orthogonality and orthogonal decomposition still hold.
The key property is the reproducing property:

⟨ f ,K(x′, ·)⟩H = ⟨h(x)⊤β , h(x)⊤h(x′)⟩H
= h(x′)⊤β = f (x′).

5.6 Kernel version of representer theorem

We can define the loss function as
n

∑
i=1

L(yi, f (xi))+
λ

2
| f |2H .

This becomes non-parametric regression.
The minimizer of the loss function must be of the following form

f̂ (x) =
n

∑
i=1

ciK(x,xi).

We proved this in the last subsection. Now we give a more direct proof. Suppose the minimizer does not lie
in the subspace spanned by (k(·,xi), i = 1, ...,n), then we can write it as

f̃ (x) =
n

∑
i=1

ciK(x,xi)+∆(x),

with
⟨∆(x),K(xi,x)⟩H = 0.

Then on the observed xi,

f̃ (xi) = ⟨ f̃ (x),K(x,xi)⟩H
= ⟨ f̂ (x)+∆(x),K(x,xi)⟩H
= f̂ (xi)+0 = f̂ (xi).
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In the above, we used the reproducing property ⟨ f̂ (x),K(x,xi)⟩ = f̂ (xi). The two estimator have the same
values on the observed data and therefore share the same value for the loss term ∑

n
i=1 L(yi, f (xi)). However,

| f̃ |2H = | f̂ +∆|2H
= | f̂ |2H + |∆|2H
≥ | f̂ |2H .

Therefore, adding any ∆(x) will increase our loss function and thus the best estimator should be ∑
n
i=1 ciK(x,xi).

With a reproducing kernel K and the associated norm, we can avoid dealing with h(x) and β explicitly.

5.7 Mercer theorem

For a kernel K(x,x′), we may consider it an infinite matrix with continuous index (x,x′). If it is positive
definite, we will have the spectral decomposition

K(x,x′) =
∞

∑
k=1

λkqk(x)qk(x′).

Then we can let
hk(x) = qk(x)λ

1/2
k ; h(x) = (hk(x),k = 1, ...,∞)⊤.

The point of Mercer theorem is that as long as the kernel K is positive definite, then there always exists
the feature function h. But we do not need to know h explicitly.

A commonly used positive definite kernel is the Gaussian kernel or radial basis function

K(x,x′) = exp(−γ|x− x′|2).

It should not be confused with the Gaussian distribution. The corresponding hk(x) are the Fourier basis,
such as those in the Ptolemy epicycle model.

5.8 Nearest neighbors interpolation

The kernel model computes the score by

s = h(x)⊤β =
n

∑
i=1

ciK(xi,x),

where h(x) and β are implicit but useful for theoretical understanding, while ci and K are explicit and are
used in computing. The model is an interpolation of the observed examples. For each x, we can find nearby
xi, and then average their yi values. The kernel model essentially does this in an optimal way. In this sense,
the model does not provide much understanding of the data.

6 Gaussian Process

The Bayesian interpretation of linear regression assumes a prior distribution on the coefficient vector β .
With f (x) = h(x)⊤β , f (x) becomes a random function or a stochastic process over the domain of x. With a
Gaussian prior distribution for β , f (x) becomes a Gaussian process.

Similar to the kernel version of representer theorem, we can work with the kernel K(x,x′) = ⟨h(x),h(x′)⟩
directly, where K(x,x′) takes the form of covariance matrix. We do not need to deal with h(x) and β

explicitly, although they help us understand the model.
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6.1 Background: multivariate normal

Joint distribution

We start from Z = (z1, ...,zn)
⊤, where zi ∼ N(0,1) independently. Then E(Z) = 0, and Var(Z) = I. We

denote Z ∼ N(0, I). The density of Z is

fZ(Z) =
1

(2π)n/2 exp

[
−1

2 ∑
i

z2
i

]

=
1

(2π)n/2 exp
[
−1

2
Z⊤Z

]
.

Let X = µ +Σ1/2Z, then Z = Σ−1/2(X−µ), which is a matrix version of standardization. Then

fY (Y ) =
1

(2π)n/2 exp
[
−1

2
(X−µ)⊤Σ

−1(X−µ)

]
/|Σ1/2|

=
1

(2π)n/2|Σ|1/2 exp
[
−1

2
(X−µ)⊤Σ

−1(X−µ)

]
.

Moreover, because X = µ +Σ1/2Z, we have E(X) = µ and Var(X) = Σ. We denote X ∼ N(µ,Σ).
In general, if X ∼N(µ,Σ), and Y = AX , then Y ∼N(Aµ,AΣA⊤). A does not need to be a square matrix.

Conditional distribution

Assuming E(X) = 0 (otherwise we can always let X ← X−E(X)). Let us partition X into (X1,X2).(
X1
X2

)
∼ N

((
0
0

)
,

(
Σ11 Σ12
Σ21 Σ22

))
.

Let ε = X2−AX1. We choose A to make Cov(ε,X1) = 0,

Cov(ε,X1) = Cov(X2−AX1,X1)

= Cov(X2,X1)−ACov(X1,X1)

= Σ21−AΣ11 = 0,

so A = Σ21Σ
−1
11 , and X2 = AX1 +ε . This can be considered a regression of X2 on X1. The residual variance is

Var(ε) = Cov(ε,ε)

= Cov(X2−AX1,ε)

= Cov(X2,ε)

= Cov(X2,X2−AX1)

= Cov(X2,X2)−Cov(X2,AX1)

= Σ22−Σ21Σ
−1
11 Σ12.

Thus (
X1
ε

)
=

(
I1 0
−A I2

)(
X1
X2

)
∼ N

((
0
0

)
,

(
Σ11 0
0 Σ22−Σ21Σ

−1
11 Σ12

))
.

So the marginal distribution
X1 ∼ N(0,Σ11),
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the mean and the variance of the conditional distribution P(X2|X1) are

E(X2|X1) = AE(X1)+E(ε)
= Σ21Σ

−1
11 X1,

Var(X2|X1) = E((X2−E(X2|X1))
2|X1)

= E(ε2|X1)

= E(ε2)−E(ε)2

= Var(ε),

thereby the conditional distribution

[X2|X1]∼ N(Σ21Σ
−1
11 X1,Σ22−Σ21Σ

−1
11 Σ12),

which is a multivariate linear regression. The geometric intuition is least squares projection.

6.2 Bayesian interpretation of ridge regression

Suppose Y =Xβ +ε , where β ∼N(0,τ2Ip), ε ∼N(0,σ2In), and ε is independent of β . The joint distribution
is [

Y
β

]
∼ N

([
0
0

]
,

[
τ2XX⊤+σ2In τ2X

τ2X⊤ τ2Ip

])
.

The posterior of β is

[β |Y,X ] = N(τ2X⊤(τ2XX⊤+σ
2In)

−1Y,τ2Ip− τ
2X⊤(τ2XX⊤+σ

2In)
−1

τ
2X)

The posterior mean is the same as the ridge regression. In fact, we can write

p(β |Y,X) ∝ p(β )p(Y |X ,β )

∝ exp
(
− 1

2τ2 |β |
2
)

exp
(
− 1

2σ2 |Y −Xβ |2
)

= exp
(
−1

2

[
1

σ2 |Y −Xβ |2 + 1
τ2 |β |

2
])

,

which clearly shares the form of ridge regression.
It is tempting to apply the kernel trick by promoting x to h(x), and replacing ⟨x,x′⟩ by ⟨h(x),h(x′)⟩ =

K(x,x′). But there is a more direct way where we do not need to deal with h(x) and β explicitly, and there
is no need to explicitly integrating out β .

6.3 Kernel as covariance

Assuming f (x) = h(x)⊤β , and β ∼ N(0,τ2Id), f (x) is a stochastic process in the domain of x, and for any
pair of points (x,x′) in the domain,

Cov( f (x), f (x′)) = Cov(h(x)⊤β ,h(x′)⊤β )

= E[h(x)⊤ββ
⊤h(x′)]

= τ
2h(x)⊤h(x′) = K(x,x′).

Thus the kernel becomes the covariance matrix.
We may use Gaussian kernel, but it has nothing to do with the word “Gaussian” in the Gaussian pro-

cess, which comes from the fact that for any (x1, ...,xn), ( f (x1), ..., f (xn)) follows a multivariate Gaussian
distribution since β follows a Gaussian prior distribution.
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6.4 Prediction by conditioning

For the training data, we can write:

Y =


y1
y2
...
yn

=


f (x1)
f (x2)
...

f (xn)

+ ε,

where ε ∼ N(0,σ2In).
Marginally, we have

Y ∼ N(0,K+σ
2In),

where Ki j = K(xi,x j) is an n× n matrix. For a testing example x0, we have E[ f (x0)] = 0, Var[ f (x0)] =
K(x0,x0), and Cov(Y, f (x0)) = K(X ,x0), which is an n×1 vector, whose i-th element is K(xi,x0). The joint
distribution is [

Y
f (x0)

]
= N

([
0
0

]
,

[
K+σ2In K(X ,x0)
K(x0,X) K(x0,x0)

]
(n+1)×(n+1)

)
.

The prediction of f (x0) is then based on

[ f (x0)|Y,X ]∼ N(K(x0,X)⊤(K+σ
2In)

−1Y,K(x0,x0)−K(x0,X)(K+σ
2In)

−1K(x0,X)⊤),

where the posterior mean
f̂ (x0) = K(x0,X)⊤(K+σ

2In)
−1Y,

which is the same as kernel regression.

6.5 Posterior interval

In addition to finding the point estimate as in kernel regression, we also obtain the uncertainty of the estimate
with

V = K(x0,x0)−K(x0,X)(K+σ
2In)

−1K(x0,X)⊤.

We can construct a (1−α) posterior interval

f̂ (x0)± zα/2V 1/2.

6.6 Marginal likelihood for hyper-parameter

The marginal distribution of Y ∼ N(0,Kγ +σ2In), where K = (Ki j = K(xi,x j)). There are several hyper-
parameters we need to choose for GP. To name a few, we have τ2 in the kernel function K(x,x′)= τ2h(x)⊤h(x′),
σ2 in P(Y ) and γ , which is the parameter of the Gaussian kernel K(x,x′) = τ2 exp(−γ|x− x′|2).

The marginal likelihood of these hyper-parameters is

L(τ2,σ2,γ) =
1

(2π)n/2|Στ2,σ2,γ |1/2 exp
(
−1

2
Y⊤Σ

−1
τ2,σ2,γ

Y
)
,

where Στ2,σ2,γ = Kτ2,γ +σ2In.
The log-marginal-likelihood for determining τ2, σ2 and γ is then

l(τ2,σ2,γ) =−1
2

Y⊤Σ
−1
τ2,σ2,γ

Y − 1
2

log |Στ2,σ2,γ |.

It is simpler than cross-validation for choosing τ2, σ2 and γ .
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7 Kernel SVM

We now study kernel classification, which parallels the kernel regression. Again we begin with the linear
classifier and apply the kernel trick, where we use the hinge function as the loss function. Then we explain
the original idea of support vector machine as the max margin classifier. Both the hinge and margin for-
mulations involve rewriting the primal problem as min-max, and then changing it to the max-min problem
which is the dual problem.

7.1 Max margin

Consider the perceptron yi = sign(x⊤i β ), which separates the positive examples and negative examples by
projecting the data on vector β , or by a hyperplane that is perpendicular to β . If the positive examples and
negative examples are separable, there can be many separating hyperplanes. We want to choose the one with
the maximum margin in order to guard against the random fluctuations in the unseen testing examples.

Figure 18: Max margin. We want to separate the positive examples and negative examples by a hyperplane that has
the maximum margin.

The idea of support vector machines (SVM) is to find the β so that,
(1) for positive examples yi =+, x⊤i β ≥ 1 and,
(2) for negative examples yi =−, x⊤i β ≤−1.
Here we use +1 and -1, because we can always scale β .
The decision boundary is decided by the training examples that lie on the margin. Those are the support

vectors. Let u be a unit vector that has the same direction as β , u =
β

|β |
. Suppose xi is an example on the

margin (i.e., support vector), the projection of xi on u is

⟨xi,u⟩= ⟨xi,
β

|β |
⟩= ⟨β ,xi⟩

|β |
=
±1
|β |

.

So the margin is 1/|β |. In order to maximize the margin, we should minimize |β | or |β |2. Hence, the SVM
can be formulated as an optimization problem as follows:

minimize
1
2
|β |2,

subject to yix⊤i β ≥ 1,∀i.

Recall x⊤i β is the score, and yix⊤i β is the individual margin of observation i. This is the primal form of
SVM.
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7.2 Primal dual

Primal as min-max

We first translate the constrained form of the primal into an unconstrained form with Lagrangian

L(β ,α) =
1
2
|β |2 +

n

∑
i=1

αi

(
1− yix⊤i β

)
,

where αi ≥ 0, and α = (αi, i = 1, ...,n). This rewrite results in

min
β

max
α≥0

L(β ,α).

Note that in this unconstrained form, the constraints are automatically satisfied. Otherwise, for the optimal
β , if there exists an i such that 1− yix⊤i β > 0, then we can let αi → ∞ in maximization, which will push
L(β ,α)→ ∞. Apparently, such a β cannot be a minimizer. This contradiction proves the statement that
constraints are automatically satisfied.

Dual as max-min

The dual problem is maxα minβ L(β ,α). This is analytically more friendly, since for fixed α and minβ L,
we have

L(β ,α) =
1
2
|β |2 +

n

∑
i=1

αi−

〈
β ,

n

∑
i=1

αiyixi

〉

=
1
2

∣∣∣∣∣β − n

∑
i=1

αiyixi

∣∣∣∣∣
2

− 1
2

∣∣∣∣∣ n

∑
i=1

αiyixi

∣∣∣∣∣
2

+
n

∑
i=1

αi,

with the representer

β̂ =
n

∑
i=1

αiyixi.

That is, β is along the direction from the negative support vectors to the positive support vectors. Substitute
β̂ back, we have

q(α) =
n

∑
i=1

αi−
1
2

∣∣∣∣∣ n

∑
i=1

αiyixi

∣∣∣∣∣
2

=
n

∑
i=1

αi−
1
2 ∑

i, j
αiα jyiy j⟨xi,x j⟩.

q(α) can be maximized by dual coordinate ascent.
The complementary slackness is such that

αi

(
1− yix⊤i β

)
= 0

for i = 1, ...,n. If yix⊤i β > 1, so that xi is well classified, then αi = 0. If αi > 0, then yix⊤i β = 1, i.e., xi is on
the boundary and is a support vector. The learned β = ∑

n
i=1 αiyixi is decided by the support vectors i whose

αi > 0.
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7.3 Dual coordinate ascent

The dual problem can be solved by stochastic coordinate descent. At each time step t, we randomly pick an
index i and compute the optimal one-variable update:

δ
∗ = argmax

δ :0≤αi+δ≤C
q(α +δei),

where ei is the one-hot vector where the i-th element is 1.

q(α +δei) =
1
2
(α +δei)

⊤Q(α +δei)− (α +δei)
⊤1

=
Qii

2
δ

2 +α
⊤Qiδ −δ ,

where Qi is the i-th column of Q, and Qii is the i-th diagonal element of Q. By differentiating the above with
respect to δ and setting it to be zero, we have

δ =
1−α⊤Qi

Qii
.

However, we require 0≤ αi +δ ≤C, so the optimal solution is

δ
∗ = max

(
−αi,min

(
C−αi,

1−α⊤Qi

Qii

))
.

7.4 Max margin = min distance

The primal form of SVM is max margin, and the dual form of SVM is min distance.

Figure 19: max margin = min distance. In order to find the max marginal separating hyperplane, we can find the
minimum distance between the convex hulls of positive and negative examples. The separating hyperplane is in the
middle of the minimum distance.

Consider the convex hulls of the positive and negative examples. The margin between the two sets is
defined by the minimum distance between two. Let X+ = ∑i∈+ cixi and X− = ∑i∈− cixi (ci ≥ 0,∑i∈+ ci =
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1,∑i∈− ci = 1) be two points in the positive and negative convex hulls. The margin is min |X+−X−|2 .

|X+−X−|2 =

∣∣∣∣∣∑i∈+cixi−∑
i∈−

cixi

∣∣∣∣∣
2

=

∣∣∣∣∣∑i
yicixi

∣∣∣∣∣
2

= ∑
i, j

ci,c jyiy j⟨xi,x j⟩,

subject to ci ≥ 0, ∑
i∈+

ci = 1, ∑
i∈−

ci = 1.

This problem is essentially the same as the dual problem. After we solve for ci, the non-zeros ci’s are support
vectors, i.e., examples on the boundary.

7.5 Kernel trick

We can play the kernel trick. For each xi, we transform it to a high dimensional (or infinite dimensional)
feature vector h(xi), and we use h(xi) instead of xi for classification. Then we need to replace ⟨xi,x j⟩ by
⟨h(xi),h(x j)⟩. The kernel trick is such that we do not need to specify h() explicitly. We only need to define
the kernel function

K(xi,x j) = ⟨h(xi),h(x j)⟩.

One commonly used kernel function is the Gaussian kernel,

K(x,x′) = exp
(
−γ|x− x′|2

)
which measures the similarity between x and x′. With such a kernel, we can continue to minimize q(α).
After finding the optimal α , we have

β =
n

∑
i=1

αiyih(xi).

For a testing data x, we classify it by

ŷ = sign(h(x)⊤β )

= sign

(
n

∑
i=1

αiyi⟨h(xi),h(x)⟩

)

= sign

(
n

∑
i=1

αiyiK(xi,x)

)
.

In the above classifier, αi are non-zero only for the support vectors. The classifier compares the testing
example x with the support vectors, which serve as exemplars. If x is more similar to the positive exemplars,
we will classify x to be positive. Otherwise we classify x to be negative.

7.6 Support vectors and nearest neighbors template matching

For those examples with αi > 0, they are called the support vectors, and they determine the classifier, which
can be interpreted as a sophisticated version of nearest neighbor template matching. Again we only need to
know the kernel function without knowing the feature function h.
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7.7 Non-separable case and slack variables

The primal form of SVM for the non-separable case is

minmize
1
2
|β |2 +C

n

∑
i=1

ξi,

subject to yix⊤i β ≥ 1−ξi, and ξi ≥ 0, ∀i,

where ξi are slack variables to accommodate the non-separable examples. We want the number of non-zero
ξi to be as small as possible, i.e., we penalize ∑i ξi.

The dual problem in this case is similar to the separable case. We only need to replace the constraint αi≥
0 by the box constraint αi ∈ [0,C],∀i. Specifically, we first translate the contrained primal to unconstrained
form, with Lagrangian

L(β ,α,µ) =
1
2
|β |2 +C

n

∑
i=1

ξi +
n

∑
i=1

αi

(
1−ξi− yix⊤i β

)
+

n

∑
i=1

µi(1−ξi),

where αi ≥ 0, and α = (αi, i = 1, ...,n), µi ≥ 0, and µ = (µi, i = 1, ...,n).
Then we have the primal dual transformation:

min
β ,ξi

max
αi≥0,µi≥0,∀i

L(β ,α,µ)→ max
αi≥0,µi≥0,∀i

min
β ,ξi

L(β ,α,µ).

That is, we have a dual form

max
αi≥0,µi≥0,∀i

min
β ,ξi

L(β ,α,µ) =
1
2
|β |2 +

n

∑
i=1

αi

(
1− yix⊤i β

)
+

n

∑
i=1

(C−µi−αi)ξi.

It is easy to see that the term 1
2 |β |

2 +∑
n
i=1 αi

(
1− yix⊤i β

)
is the same as the one in the separable case. For

the extra term ∑
n
i=1(C−µi−αi)ξi, it has to be zero to reach the equilibrium. Thus we have

0≤ αi =C−µi ≤C.

That is, for the non-separable case, we solve the same dual form as the separable case with on extra constraint
αi ∈ [0,C]∀i.

7.8 Bias and sequential minimal optimization (SMO)

With a bias term, SVM solves the optimization problem,

min
(w,b)

n

∑
i=1

max
αi∈[0,C]

αi(1− yi(w⊤xi +b))+
1
2
|w|2,

which is equivalent to

max
αi∈[0,C]

min
(w,b)

1
2

∣∣∣∣∣w− n

∑
i=1

yiαixi

∣∣∣∣∣
2

+
n

∑
i=1

αi +
n

∑
i=1

yiαib−
1
2

∣∣∣∣∣ n

∑
i=1

αiyixi

∣∣∣∣∣
2

.

The constraint ∑
n
i=1 yiαi = 0 must be satisfied. Otherwise if ∑

n
i=1 yiαi > 0, then we can let b→−∞, and if

∑
n
i=1 yiαi < 0, then b→ ∞, so that we will not have minimum. Thus our task is reduced to solving the dual

problem,

max
αi∈[0,C]

n

∑
i=1

αi−
1
2

α
⊤Qα,

subject to ∑
n
i=1 yiαi = 0. Instead of coordinate ascent, we need to update αi in pairs to make sure the

constraint is satisfied. This is usually implemented by sequential minimal optimization (SMO).
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7.9 Primal form with hinge loss

In order to make ξi as small as possible, if yix⊤i β ≥ 1, we can take ξi = 0. Otherwise, we can let ξi =
1− yix⊤i β . Combine the two conditions, the optimal ξi is

ξi = max(0,1− yix⊤i β ).

Then the primal problem becomes an unconstrained minimization of the loss function

1
2
|β |2 +C max(0,1− yix⊤i β ),

or let C = 1/λ , the minimization becomes

max(0,1− yix⊤i β )+
λ

2
|β |2.

This is similar to ridge regression with ℓ2 regularization. In general, we can use loss function

n

∑
i=1

L(yix⊤i β )+
λ

2
|β |2,

where L() can be hinge loss or logistic loss.

7.10 Hinge loss and linear SVM

For classification where yi ∈ {+1,−1}, we can classify yi by the perceptron model:

ŷi = sign(x⊤i β ).

To estimate β , we can modify the loss function of ridge regression L (β ) = |Y −Xβ |2 +λ |β |2 to

L (β ) =
n

∑
i=1

max(0,1− yix⊤i β )+
λ

2
|β |2.

This is the objective function of linear SVM.

7.11 Re-representing hinge loss

For the hinge loss max(0,1−m), it is non-linear in m, we can represent it as

max(0,1−m) = max
α∈[0,1]

α(1−m),

which is linear in m.

7.12 Primal min-max to dual max-min

The optimization problem becomes

β̂ ←min
β

n

∑
i=1

max
αi∈[0,1]

αi(1− yix⊤i β )+
λ

2
|β |2.
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We can change minmax to maxmin, so that we change the primal problem into the dual problem.

β̂ ← max
αi∈[0,1]∀i

min
β

n

∑
i=1

αi(1− yix⊤i β )+
1
2
|β |2

For convenience, let C = 1/λ :

β̂ ← max
αi∈[0,1]∀i

min
β

n

∑
i=1

αi(1− yix⊤i β )+
1

2C
|β |2

which is equivalent to

β̂ ← max
αi∈[0,1]∀i

min
β

C

[
n

∑
i=1

αi(1− yix⊤i β )+
1

2C
|β |2

]

Let αi←Cαi, and now we obtain

β̂ ← max
αi∈[0,C]∀i

min
β

n

∑
i=1

αi(1− yix⊤i β )+
1
2
|β |2

= max
αi∈[0,C]∀i

min
β

1
2

∣∣∣∣∣β − n

∑
i=1

αiyixi

∣∣∣∣∣
2

− 1
2

∣∣∣∣∣ n

∑
i=1

αiyixi

∣∣∣∣∣
2

+
n

∑
i=1

αi

 .
The minimization gives us the representer

β̂ =
n

∑
i=1

αiyixi.

The dual problem is maxαi∈[0,C],∀i q(α),

q(α) =

 n

∑
i=1

αi−
1
2

∣∣∣∣∣ n

∑
i=1

αiyixi

∣∣∣∣∣
2
=

1
2

α
⊤Qα−α

⊤1,

where 1 is a vector of 1’s.

7.13 Kernelize

For kernel SVM, we a assume feature vector h(x), and classify yi by

ŷi = sign(h(xi)
⊤

β ).

The loss function is

L (β ) =
n

∑
i=1

max(0,1− yih(xi)
⊤

β )+
λ

2
|β |2.

The representer is

β̂ =
n

∑
i=1

αiyih(xi).
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The dual problem is maxαi∈[0,C],∀i q(α),

q(α) =
n

∑
i=1

αi−
1
2

n

∑
i, j=1

αiα jyiy j⟨h(xi),h(x j)⟩

=
n

∑
i=1

αi−
1
2

n

∑
i, j=1

αiα jyiy jK(xi,x j).

Again the problem can be solved by dual coordinate ascent.
After solving αi, we get β̂ from the representer, and the estimated function is

f̂ (x) = h(x)⊤β̂

=
n

∑
i=1

αiyi⟨h(xi),h(x)⟩

=
n

∑
i=1

αiyiK(xi,x).
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8 Lasso Regression

8.1 ℓ1 regularization

The Lasso regression estimates β by

β̂λ = argmin
β

[
1
2
∥Y −Xβ∥2

ℓ2
+λ∥β∥ℓ1

]
,

where ∥β∥ℓ1 = ∑
p
j=1 |β j|. Lasso stands for “least absolute shrinkage and selection operator.” There is no

closed form solution for general p.
We do have closed form solution for p = 1, where X is an n×1 vector,

β̂λ =


(⟨Y,X⟩−λ )/∥X∥2

ℓ2
, if ⟨Y,X⟩> λ ;

(⟨Y,X⟩+λ )/∥X∥2
ℓ2
, if ⟨Y,X⟩<−λ ;

0 if |⟨Y,X⟩|< λ .

We can write it as
β̂λ = sign(β̂ )max(0, |β̂ |−λ/∥X∥2

ℓ2
),

where β̂ = ⟨Y,X⟩/∥X∥2
ℓ2

is the least squares estimator. The above transformation from β̂ to β̂λ is called soft
thresholding.

Compare Lasso with ridge regression in one-dimensional situation, the latter being β̂λ = ⟨Y,X⟩/(∥X∥2
ℓ2
+

λ ), the behavior of Lasso is richer, including both shrinkage (by subtracting λ ) and selection (via threshold-
ing at λ ).

The reason for the fact that β̂ can be zero is that the left and right derivatives of |β | at 0 are not the
same, so that the function ∥Y −Xβ∥2

ℓ2
/2+λ∥β∥ℓ1 may have a negative left derivative and a positive right

derivative at 0, so that 0 can be the minimum. For |β |1+δ with δ > 0, its derivative at 0 is 0, so that β̂ cannot
be zero in general. For |β |1−δ , there is a sharp turn at 0, but it is not convex anymore. |β | or piecewise linear
function in general is the only choice that has a sharp turn at 0 but is still barely convex.

Thus the Lasso regression prefers sparse β , i.e., only a small number of components of β are non-zero.

8.2 Primal form of Lasso

The primal form of Lasso is min∥Y −Xβ∥2
ℓ2
/2 subject to ∥β∥ℓ1 ≤ t. The lagrangian is

L(β ,λ ) =
1
2
∥Y −Xβ∥2

ℓ2
+λ (∥β∥ℓ1− t)

=
1
2
∥Y −Xβ∥2

ℓ2
+λ∥β∥ℓ1−λ t

Minimizing 1
2∥Y −Xβ∥2

ℓ2
+λ∥β∥ℓ1−λ t over β is equivalent to minimizing 1

2∥Y −Xβ∥2
ℓ2
+λ∥β∥ℓ1

Therefore, the dual form of Lasso is min∥Y −Xβ∥2
ℓ2
/2+λ∥β∥ℓ1 . The two forms are equivalent with

a one-to-one correspondence between t and λ . If β̂λ is the solution to the dual form, then it must be the
solution to the primal form with t = ∥β̂λ∥ℓ1 . The reason is that if a different β̂ is the solution to the primal
form, then β̂ is a better solution to the dual form than β̂λ , which results in contradiction.

The primal form also reveals the sparsity inducing property of ℓ1 regularization in that the ℓ1 ball has
low-dimensional corners, edges, and faces, but is still barely convex.

The above is the well known figure of Lasso. Take the left plot for example. The blue region is ∥β∥ℓ1 ≤ t.
The red curves is the contour plot, where each red elliptical circle consists of those β that have the same
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Figure 20: Lasso in primal form.

value of ∥Y −Xβ∥2
ℓ2

. The circle on the outside has bigger ∥Y −Xβ∥2
ℓ2

than the circle inside. The solution
to the problem of min∥Y −Xβ∥2

ℓ2
subject to ∥β∥ℓ1 ≤ t is where the red circle touches the blue region. Any

other points in the blue region will be outside the outer red circle and thus have bigger values of ∥Y −Xβ∥2
ℓ2

.
The reason that the ℓ1 regularization induces sparsity is that it is likely for the red circle to touch the blue
region at a corner, which is a sparse solution. If we use ℓ2 regularization, as is the case with the plot on the
right, then the solution is not sparse in general.

8.3 Coordinate descent for Lasso solution path

Recall that our Lasso dual form is

min
β

L(β ) = min
β

1
2
∥Y −Xβ∥2

ℓ2
+λ∥β∥ℓ1

For multi-dimensional X =(X j, j = 1, ..., p), we can use the coordinate descent algorithm to compute β̂λ .The
algorithm updates one component at a time.

Given the current values of β = (β j, j = 1, ..., p), for j = 1, ..., p, we treat the loss function L(β ) as
L(β j), where we fix βk where k ̸= j. Let R = Y −∑

p
j=1 X jβ j and R j = Y −∑k ̸= j Xkβk.

We then update β j such that ∂L
∂β j

= 0, from which we can derive β j = sign(β̂ j)max(0, |β̂ j|−λ/∥X∥2
ℓ2
),

where β̂ j = ⟨R j,X j⟩/∥X j∥2
ℓ2

is the least square estimator obtained from coordinate descent.
We can find the solution path of Lasso by starting from a big λ so that all of the estimated β j are

zeros. Then we gradually reduce λ . For each λ , we cycle through j = 1, ..., p for coordinate descent until
convergence, and then we lower λ . This gives us β̂ (λ ) for the whole range of λ . The whole process is
a forward selection process, which sequentially selects new variables and occasionally removes selected
variables.

8.4 Least angle regression

Let R = Y −∑
p
j=1 X jβ j and R j = Y −∑k ̸= j Xkβk. Then, R = R j −X jβ j. In the above coordinate descent

algorithm, at any given λ and each β j, we want to minimize L(β j). If β is the Lasso solution, we have

∂L
∂β j

=−R⊤X j +λ s = 0 where s =


1, if β j > 0,
−1, if β j < 0,
(−1,1) if β j = 0.

then

⟨R,X j⟩=


λ , if β j > 0,
−λ , if β j < 0,
sλ if β j = 0.
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where |s|< 1. Thus in the above process, for all of those selected X j, the algorithm maintains that ⟨R,X j⟩ to
be λ or−λ , for all selected X j. If we interpret |⟨R,X j⟩| in terms of the angle between R and X j, then we may
call the above process the equal angle regression or the least angle regression (LARS). In fact, the solution
path is piecewise linear, and the LARS computes the linear pieces analytically instead of gradually reducing
λ as in coordinate descent.

8.5 Stagewise regression or epsilon-boosting

The stagewise regression iterates the following steps. Given the current R = Y −∑
p
j=1 X jβ j, find j with the

maximal |⟨R,X j⟩|. Then update β j ← β j + ε⟨R,X j⟩ for a small ε . This is similar to the matching pursuit
but is much less greedy. Such an update will change R and reduce |⟨R,X j⟩|, until another X j catches up. So
overall, the algorithm ensures that all of the selected X j to have the same |⟨R,X j⟩|, which is the case with
the algorithm in the above two sections. The stagewise regression is also called ε-boosting.

We can also view the stagewise regression from the perspective of the primal form of the Lasso problem:
minimize ∥Y −Xβ∥2

ℓ2
subject to ∥β∥ℓ1 ≤ t. If we relax the constraint by increasing t to t +∆t, then we want

to update β j with the maximal |⟨R,X j⟩| in order to maximally reducing ∥Y −Xβ∥2
ℓ2

.

9 Boosting

In trees and boosting machines, f (x) = h(x)⊤β = ∑
d
m=1 hm(x)βm, where hm(x) are base functions or base

learners. In trees, hm(x) are indicator functions of rectangle regions. In boosting machines, hm(x) are
themselves shallow trees. We learn hm(x) by greedy search or forward selection.

9.1 Classification and regression trees (CART)

Figure 21: Decision tree. Left: an example of a decision tree that classifies a person as male or female based on
height and weight. Right: the process of learning CART is to recursively partitioning each rectangle region into two
sub-regions. Each partitioning should increases the purity of the yi within each region.

Figure 21 illustrates the basic idea of classification and regression tree (CART). The figure on the left
shows a simple example of a decision tree, to decide whether a person is male or female based on the height
and weight of the person. The classification and regression tree is to learn such a decision rule from the
data. The figure on the right illustrates the process of learning, by recursively partitioning the data space.
Specifically, for the whole data set, we go through all the variables, j = 1, ..., p, and for each variable, we go
though all the observed values (xi j, i = 1, ...,n). For each t = xi j, we consider dividing the data space into
two parts based on whether x j ≥ t or x j < t. We choose the best j and t according to a certain criterion. Thus
we split the whole dataset into two subsets. For each subset of data, we repeat what we did for the whole
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dataset. In this way, we obtain a recursive binary partition of the data space, which corresponds to a binary
decision tree. We can design a criterion to determine when to stop this process.

First, what is the criterion to choose j and t for binary division? We want to divide the whole region into
two regions, so that examples within the same region tend to share the same responses. In other words, the
examples within each region display strong purity.

Formally, the process of recursive partitioning eventually divides the whole region into M sub-regions
Rm,m = 1, ...,M. For a generic example (x,y), we model

f (x) =
M

∑
m=1

cm1(x ∈ Rm),

where 1() is an indicator function, which is 1 if x ∈ Rm, and 0 otherwise. This is a piecewise constant
function. Suppose yi is continuous, and we want to predict y by f (x). We estimate f (x) by minimizing the
least squares loss function

L =
n

∑
i=1

(yi− f (xi))
2.

Consider the first step that partitions the whole region into two sub-regions R1 and R2. Let ĉ1 be the average
of yi with xi ∈ R1, and let ĉ2 be the average of yi with xi ∈ R2. Then the loss function is

L = ∑
xi∈R1

(yi− ĉ1)
2 + ∑

xi∈R2

(yi− ĉ2)
2,

which may be considered a measure of purity in the case of regression. We want to find j and t to minimize
the above L . We can repeat this procedure recursively.

To be more concrete, suppose we would like to choose the m-th region Rm = {x|x j ≤ t} with cutoff
position x j and cutoff value t ∈ [mini xi j,maxi xi j], we opt to find j and t to minimize the risk below

x j, t = argmin
x j,t

n

∑
i=1

(ri− cm1(x ∈ Rm))
2 ,

where

ri = yi−
m−1

∑
m′=1

cm′1(x ∈ Rm′) ,

cm =
∑

n
i=1 ri1(xi ∈ Rm)

∑
n
i=1 1(xi ∈ Rm)

,

are the estimation (mean as the best estimator) of cm and the i-th residual of the previous model with m−1
regions respectively.

As to when to stop, we may consider penalizing the complexity of the tree, e.g., we use the following
regularized loss function

L =
n

∑
i=1

(yi− f (xi))
2 +λM,

where λ > 0 is the cost for adding one region. Then we can stop the partitioning process if the reduction in
the loss cannot cover the cost of adding a region.

We may also include some regularization on the partitions. We can further introduce weights for each
datapoint in the training set. Then the objective becomes

L =
n

∑
i=1

wi (yi− f (xi))
2 + γ

M

∑
m=1
|cm|2 +λM,
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and the criterion for selecting partitioning parameters j and t also changes accordingly

x j, t = argmin
x j,t

n

∑
i=1

wi (ri− cm1(x ∈ Rm))
2 + γ|cm|2 +λM,

where ri is identical to the case without data weights. The estimation to cm can still be obtained by taking
derivative of L , which turns out to be

cm =
∑

n
i=1 wiri1(xi ∈ Rm)

γ +∑
n
i=1 wi1(xi ∈ Rm)

.

The stop condition is still based on whether L decreases or not.
Finally, we consider the binary classification problem. We can simply replace the least square loss in

the regression problem with logistic regression loss, then we can directly apply such a tree growing method
to it.

For a more generic classification setting, suppose there are K categories, ideally, we hope that within
each region, all the examples belong to the same category. More realistically, let p̂k be the proportion of these
examples that belong to category k. Let k̂ be the category that has the most examples, i.e., k̂ = argmaxk p̂k.
We may define the purity in terms of p̂k̂ = maxk p̂k. If we stop splitting this region, we will classify the
examples in this region to category k̂. There are other definitions of purity, such as Gini index, which is

G = ∑
k

p̂k(1− p̂k).

9.2 Random forest

Figure 22: Random forest. We creates new datasets by resampling the original training dataset with replacement. For
each new dataset, we learn a tree.

The idea of random forest is simpler than Adaboost. For the dataset {(xi,yi), i = 1, ...,n}, we create a
new dataset by randomly sampling the examples with replacement. For this new dataset, we grow a tree. See
Figure 22. For each split, instead of going over all the p variables j, we randomly sample

√
p variables, and

let j run through this subset of variables to decide on which variable we split. We then repeat this procedure
a large number of times to grow a large number of trees, i.e., a forest. In the testing stage, for each input x,
each tree produces a predicted y. We then take the average of the predicted values in the case of regression,
or take the majority vote by the trees in the case of classification. See Figure 23.
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Figure 23: Random forest. The prediction by a random forest is an average of the predictions by the trees in the forest
in the case of regression, and is the majority vote in the case of classification.

9.3 Adaboost

Committee of weak classifiers

Figure 24: Adaboost. Each iteration adds a new classifier to the committee, and the final committee is a linear
combination of the selected classifiers. Each new classifier is trained on reweighed dataset, where those examples that
are not classified correctly by the current committee receive bigger weights, which are illustrated by bigger sizes of the
+ and - signs. The voting weight or coefficient of each added classifier is based on its performance on the reweighed
dataset.

Adaboost is a committee machine or ensemble machine for classification, which consists of a number
of weak classifiers hk(xi) ∈ {+,−}, k = 1, ...,d. The final classification is a perceptron based on the weak
classifiers,

yi = sign

(
d

∑
k=1

βkhk(xi)

)
,

where βk can be interpreted as the weight of vote of classifier k.
You may compare the above committee machine to the two-layer neural net we studied before, where

hk(xi) plays the role of hik.

Adding one classifier at a time

In Adaboost, the based learners are weak classifiers. As illustrated by Figure 24, we want to learn a com-
mittee to separate the positive examples and negative examples, where the weak classifiers are based on
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thresholding either x1 or x2. Each iteration adds a new weak classifier, and then assigns bigger weights to
the examples that are not classified well by the current committee. Then in the next iteration, we learn a
new classifier on the reweighed dataset that focuses on mistakes. Whenever a new classifier is added, it
is assigned a voting weight in the committee. The final classifier is a weighted sum of the selected weak
classifiers. The Adaboost algorithm is another example of learning from errors.

Even if the classifiers {hk} may be weak, it is still possible to boost them into a strong classifier.
When training an Adaboost classifier, we sequentially add members to the committee.
Suppose the current committee has m−1 classifiers,

Fm−1(xi) =
m−1

∑
k=1

βkhk(xi),

and we want to add a new member hm() to boost the current classifier to

Fm(xi) = Fm−1(xi)+βmhm(xi).

We need to select the new classifier hm() and assign its weight βm.

Exponential loss

The exponential loss is an upper bound of the training error, because

1(yi ̸= sign( fi))≤ exp(−yi f (xi)).

We use this loss to guide the selection of the next weak classifier,

L (hm,βm) =
n

∑
i=1

exp [−yi (Fm−1(xi)+βmhm(xi))]

∝

n

∑
i=1

Di exp [−βmyihm(xi)] ,

where
Di ∝ exp [−(yiFm−1(xi))] ,

and we usually normalize Di so that ∑
n
i=1 Di = 1. {Di} is a distribution over the training examples {(xi,yi}. If

(xi,yi) is well classified by the current Fm−1(), then yiFm−1(xi) is large, and Di is small. Thus the distribution
{Di} focuses on those examples that are not classified well, i.e., it focuses on the errors or mistakes, so that
the training algorithm can learn from them.

yihm(xi) can only be +1 or−1. If yihm(xi) = 1, then hm(xi) = yi, meaning that hm() classifies xi correctly.
Otherwise if yihm(xi) =−1, then hm() makes an error on xi. Therefore

L (hm,βm) = ∑
i:hm(xi)=yi

Die−β + ∑
i:hm(xi )̸=yi

Dieβ = (1− ε)e−β + εeβ ,

where ε = ∑i:hm(xi )̸=yi Di is the error of hm() on the reweighed or refocused dataset.
Recall that for positive a and b, a+b ≥ 2

√
ab, because a+b−

√
ab = (

√
a−
√

b)2 ≥ 0, with equality
achieved when a = b, thus for a fixed hm(),

(1− ε)e−β + εeβ ≥ 2ε(1− ε),

with the equality achieved by
(1− ε)e−β = εeβ ,
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so that
β =

1
2

log
1− ε

ε
.

Therefore we want to choose hm() to minimize ε(1−ε). Since ε ≤ 1/2 (otherwise we can always flip hm()),
ε(1− ε) is an increasing function over ε ∈ [0,1/2]. Thus we only need to choose hm() to minimize the
training error ε .

9.4 Gradient boosting

Figure 25: Gradient boosting. Each iteration learns a tree from the errors of the current model. The final
model is a linear combination of the learned trees.

Figure 26: Gradient boosting for regression in one dimensional situation. Each tree is a piecewise constant function.

We want to learn a function

f (x) =
d

∑
k=1

hk(x)

for the purpose of regression or classification, where hk(x) are base functions that are not necessarily classi-
fiers, i.e., hk(x) may return continuous values.

Let Fm−1(x) = ∑
m−1
k=1 hk(x) be the current function. We want to add a base function hm(x) so that

Fm(x) = Fm−1(x)+hm(x).

For regression, the least squares loss is

L =
n

∑
i=1

[yi− (Fm−1(xi)+hm(xi))]
2 =

n

∑
i=1

(ri−hm(xi))
2,
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Figure 27: Gradient boosting for classification in two dimensional situation. Each tree is a piecewise constant
function.

where
ri = yi−Fm−1(xi)

is the residual error for observation i. We can then treat {(xi,ri), i = 1, ...,n} as our new dataset, and learn a
regression tree hm(x) from this new dataset.

For a general loss function, e.g., the mean absolution deviation,

L =
n

∑
i=1
|yi− (Fm−1(xi)+hm(xi))|,

which penalizes large deviations less than the least squares loss and is thus more robust to outliers, we may
learn a new tree hm(x) by minimizing |ri− hm(xi)|. However we need to rewrite the code for learning the
tree. It is better to continue to use the code for least squares regression tree.

Let
si = Fm−1(xi)+hm(xi),

for i = 1, ...,n, and let ŝi = Fm−1(xi) be the prediction by Fm−1. Let the loss function be L = ∑
n
i=1 L(yi,si).

In the case of mean absolute deviation, L (yi,si) = |yi− si|. Let

ri =−
∂L(yi,si)

∂ si

∣∣
ŝi
,

Then r = (ri, i = 1, ...,n)⊤ is the direction to change f = ( fi, i = 1, ...,) for the steepest descent of L . ri

becomes the residual error in the least squares regression. In general, ri means the lack of fitness for example
i because if ri is close to 0, there is no need to change si to fit the data. Otherwise we need to make big
change in fi to fit the data.

We can fit a tree to approximate r by minimizing

n

∑
i=1

(ri−hm(xi))
2

using the code of least squares regression tree.
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9.5 Extreme gradient boosting (XGB) as iterated reweighed least squares

A more principled implementation of gradient boosting is to expand L(yi,si) by the second order Taylor
expansion,

L(yi,si)≈ L(yi, ŝi)+L′(yi, ŝi)hm(xi)+
1
2

L′′(yi, ŝi)hm(xi)
2,

where L′(y,s) = ∂

∂ s L(y,s), and L′′(y,s) = ∂ 2

∂ s2 L(y,s). Let ri = L′(yi, ŝi) and wi = L′′(yi, ŝi), then we can write

L(yi,si) =
wi

2

[
hm(xi)

2−2
ri

wi
hm(xi)

]
+ const

=
wi

2

[
ri

wi
−hm(xi)

]2

+ const

=
wi

2
[ỹi−hm(xi)]

2 + const.

Thus we can learn hm by weighted least squares, with working response ỹi = ri/wi, and working weight wi.
Compared to the original gradient boosting, we take into account the curvature wi. The bigger the curvature
it, the more important the observation is. We divide ri by wi because if the curvature is big, then a small step
step will cause big decrease.This is similar to the Newton-Raphson algorithm for fitting generalized linear
models such as logistic regression.
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10 Neural Networks

In neural networks, we still have f (x) = h(x)⊤β , but h(x) is not designed in terms of kernels and trees,
instead h(x) is itself expressed as linear models of features at lower layers. Thus a neural network is a
linear model on top of linear models, with coordinate-wise non-linear transformation such as the sigmoid in
logistic regression. If the non-linear transformation is the so-called rectified linear unit, f (x) is a piecewise
linear function, where the pieces are recursively partitioned, similar to trees.

10.1 Two layer perceptron

Figure 28: The positive examples and negative examples cannot be separated by a hyperplane in the original space.
We can transform each xi into a feature hi, so that the examples can be separated by a hyperplane in the feature space.

obs input hidden output
1 X⊤1 h⊤1 y1
2 X⊤2 h⊤2 y2
...
n X⊤n h⊤n yn

Figure 29: A two layer feedforward neural network. The output follows a logistic regression on the hidden vector.
Each component of the hidden vector in turn follows a logistic regression on the input vector.

A perceptron seeks to separate the positive examples and negative examples by projecting them onto a
vector β , or in other words, separating them using a hyperplane that is perpendicular to β . If the data are
not linearly separable, a perceptron cannot work. We may need to transform the original variables into some
other feature space so that the examples can be linearly separated. See Figure 28. One way to solve this
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problem is to generalize the perceptron into multi-layer perceptron. This structure is also called feedforward
neural network. See Figure 29.

The neural network is logistic regression on top of logistic regressions. yi ∈ {0,1} follows a logistic
regression on hi = (hik,k = 1, ...,d)⊤, and each hik follows a logistic regression on xi = (xi j, j = 1, ..., p)⊤,

yi ∼ Bernoulli(pi),

pi = sigmoid(h⊤i β ) = sigmoid

(
d

∑
k=1

βkhik

)
,

hik = sigmoid(x⊤i αk) = sigmoid

(
p

∑
j=1

αk jxi j

)
.

Rectified linear unit (ReLU)

Figure 30: The left is the sigmoid function, and the right is the ReLU function. The sigmoid function saturates at the
two ends, causing the gradient to vanish. The ReLU does not saturate for big positive input.

In modern neural nets, the non-linearity is often achieved through rectified linear units (ReLU) max(0,a).
See Figure 30.

yi ∼ Bernoulli(pi),

pi = sigmoid(h⊤i β ) = sigmoid

(
d

∑
k=1

βkhik

)
,

hik = max(x⊤i αk,0) = max

(
p

∑
j=1

αk jxi j,0

)
.

Figure 31: Spline is a continuous piecewise linear function, where at each knot, the spline makes a turn by changing
the slope. The neural net can be viewed a high dimensional spline with exponentially many linear pieces.

Recall the linear spline model f (xi) = β0+∑
p
j=1 β j max(0,xi−a j), see Figure 31, where a j are the knots

where the spline makes a turn, i.e., a change of slope by β j. The neural net with ReLU can be viewed as a
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high-dimensional spline or piecewise linear mapping. If there are many layers in the neural net, the number
of linear pieces is exponential in the number of layers. It can approximate highly non-linear mapping by
patching up the large number of linear pieces.

Back-propagation

When the non-linear rectification is sigmoid, the log-likelihood is

L (β ,α) =
n

∑
i=1

{
yi

d

∑
k=1

βkhik− log

[
1+ exp

(
d

∑
k=1

βkhik

)]}
.

This time we use L (β ,α) to denote the log-likelihood function, which is to be maximized.
The gradient is

∂L

∂β
=

n

∑
i=1

(yi− pi)hi,

∂L

∂αk
=

∂L

∂hk

∂hk

∂αk
=

n

∑
i=1

(yi− pi)βkhik(1−hik)xi

∂L /∂αk is calculated by the chain rule. Again the gradient descent learning algorithm learns from the
mistake or error yi− pi. The chain rule back-propagates the error to assign the blame to β and α in order for
β and α to update. If the current network makes a mistake on the i-th example, β will change to be more
aligned with hi, while each αk also changes to be more aligned with xi. The amount of change depends on
βk as well as hik(1− hik), which measures how big a role played by x⊤αk in predicting yi. If x⊤αk plays a
big role, then αk should receive much blame and change.

For ReLU max(0,a), we should replace hik(1− hik) in the back-propagation by 1(hik > 0), which is a
binary detector. The sigmoid function saturates at the two ends, where the derivatives are close to zero. This
can cause the vanishing gradient problem in back-propagation, so that the network cannot learn from the
error. The ReLU function does not saturate for big positive input, which indicates the existence of a certain
patten. This help avoids the vanishing gradient problem.

10.2 Implicit regularization by gradient descent

For simplicity, let us assume x is one-dimensional. hk = max(0,akx+ bk), and s = f (x) = ∑
d
k=1 βkhk. As

discussed above, f (x) is a linear spline.
Suppose we initialize at (ak,bk)∼ p0(a,b) independently for k = 1, ...,d and freeze them, and we only

learn βk by gradient descent, starting from β
(0)
k = 0. For training examples {xi,yi, i = 1, ...,n}, the loss

function is

L (β ) =
1
n

n

∑
i=1

(yi−h(xi)
⊤

β )2.

If d ≤ n, there is a single minimum, and gradient descent converges to this minimum.
When d > n, the model is over-parametrized, i.e., the number of parameters is greater than the number

of training examples. Then there are infinitely many β that gives L(β ) = 0. Gradient descent will converge
to one such β .

Gradient descent is

∆β ∝
1
n

n

∑
i=1

(yi−h(xi)
⊤

β )h(xi).
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It will converge to a β̂ =∑i cih(xi) that satisfies yi = h(xi)
⊤β̂ for all i. Suppose there is another β̃ that satisfies

yi = h(xi)
⊤β̃ for all i. Let β̃ = β̂ +∆, then ∆⊥ h(xi) for all i, i.e., ∆⊥ β̂ . Thus ∥β̃∥2 = ∥β̂∥2 +∥∆∥2. Thus

gradient descent will converge to β̂ with minimal ℓ2 norm. This is implicit regularization, and it underlies
the double descent behavior as illustrated by Figure 32. When p≤ n, there is only one minimum of L (β ),
and there is no regularization, thus the overfitting becomes severe as p approaches n. But as p > n, there
are infinitely many β with L (β ) = 0, and gradient descent provides implicit regularization, so that testing
error starts to decreases again.

Figure 32: Double descent. Left: testing error for classical statistical model. Right: testing error for modern over-
parametrized neural network.

10.3 Connection to kernel machine

Suppose we freeze (ak,bk), and only learn β by gradient descent, then it is equivalent to the kernel machine

K(x,x′) = ⟨h(x),h(x′)⟩=
d

∑
k=1

hk(x)hk(x′) =
1
d

d

∑
k=1

h̃k(x)h̃k(x′),

where h̃k =
√

dhk. Assuming (
√

dak,
√

dbk) ∼ p̃0(a,b), where p̃0 is independent of d, then for large d, by
law of large number,

K(x,x′)→ E p̃0(a,b)[h̃k(x)h̃k(x′)].

So this model is equivalent to kernel regression. Even if we free (ak,bk) and learn them together with βk, the
learning dynamics is still similar to kernel machine, where, by first-order Taylor expansion, h(x) = ∂

∂θ
fθ (x),

i.e., the first derivative evaluated at the initialization θ0. The kernel is called neural tangent kernel.

10.4 Connection to Gaussian process

We can adopt a Bayesian framework, by assuming a prior distribution (ak,bk,βk) ∼ p(a,b)p(β ) indepen-
dently. Then

f (x) =
d

∑
k=1

βkhk(x) =
1√
d

d

∑
k=1

β̃khk(x),

where β̃k =
√

dβk. Assuming β̃ ∼ p̃(β ) independently, where p̃(β ) is independent of d, and assuming
E(β̂ ) = 0, then according to the central limit theorem, as d→ ∞,

( f (xi), i = 1, ...,n)⊤ ∼ N(0,K),

where Ki j =K(xi,x j), and K(x,x′)=E( f (x) f (x′)) is the kernel. Thus the model is equivalent to the Gaussian
process.
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10.5 Multi-layer network

Figure 33: Multi-layer perceptron (two hidden layers here) or feedforward neural network. There is an input layer (or
an input vector), an output layer, and multiple hidden layers (or hidden vectors). Each layer is a linear transformation
of the layer beneath, followed by an element-wise non-linear transformation.

See Figure 33 for an illustration of multi-layer perceptron or a feedforward neural network. It consists
an input layer, an output layer, and multiple hidden layers in between. Each layer can be represented by a
vector, which is obtained by multiplying the layer below it by a weight matrix, plus a bias vector, and then
transforming each element of the resulting vector by sigmoid or ReLU etc.

More formally, the network has the following recursive structure:

hl = fl(sl),

sl = Wlhl−1 +bl,

for l = 1, ...,L, where l denotes the layer, with h0 = X , which is the input vector, and hL is used to predict Y ,
which is the output, based on a log-likelihood function L(Y,hL). Here hL corresponds to X⊤β in the previous
section. Wl and bl are the weight matrix and bias vector respectively. fl is an element-wise transformation,
i.e., each component of hl is obtained by a non-linear transformation of the corresponding component of sl ,
such that hlk = fl(slk) for each k.

10.6 Multi-layer back-propagation

We may write the forward pass as

x → h1 → ... → hl−1 → hl ...→ L.
↑ ↑ ↑

W1 ... Wl−1 Wl

The back-propagation pass is

x ← h1 ← ... ← hl−1 ← hl ...← L.
↓ ↓ ↓

W1 ... Wl−1 Wl

This is a process of assigning blame. If the loss function L finds something wrong, he will blame hL and
WL+1. This layer is usually the soft-max layer. hL will then blame hL−1 and WL, and so on. This process
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follows the chain rule:

∂L
∂h⊤l−1

=
d

∑
k=1

∂L
∂hl,k

∂hl,k

∂ sl,k

∂ sl,k

∂h⊤l−1

=
d

∑
k=1

∂L
∂hl,k

f ′l (sl,k)Wl,k

=
∂L

∂h⊤l
f ′l Wl,

where Wl,k is the k-th row of Wl , and f ′l = diag( f ′l (sl,k),k = 1, ...,d).

∂L
∂Wl,k

=
∂L

∂hl,k

∂hl,k

∂ sl,k

∂ sl,k

∂Wl,k

=
∂L

∂hl,k
f ′l (sl,k)h⊤l−1,

thus,
∂L
∂Wl

= f ′l
∂L
∂hl

h⊤l−1.

Similarly,
∂L
∂bl

= f ′l
∂L
∂hl

.

10.7 Stochastic gradient descent (SGD)

Mini-batch

Let the training data be (xi,yi), i = 1, ...,n. Let Li(θ) = L(yi,xi;θ) be the loss caused by (xi,yi). For
regression, L(yi,xi;θ) = (yi− f (xi))

2, where f (xi) is parametrized by a neural network with parameters θ .
For classification, L(yi,xi;θ) =− log p(yi|xi) where p(yi|xi) is modeled by a neural network with parameters
θ , with a softmax layer at the top. Let L (θ) = 1

n ∑
n
i=1 Li(θ) be the overall loss averaged over the whole

training dataset. The gradient descent is

θt+1 = θt −ηL ′(θt),

where η is the step size or learning rate, and L ′(θ) is the gradient.
The above gradient descent may be time consuming because we need to compute L ′(θ) = 1

n ∑
n
i=1 L′i(θ)

by summing over all the examples. If the number of examples is large, the computation can be time con-
suming. We may use the following stochastic gradient descent algorithm. At each step, we randomly select
i from {1,2, ...,n}. Then we update θ by

θt+1 = θt −ηtL′i(θt),

where ηt is the step size or learning rate, and L′i(θt) is the gradient only for the i-th example. Because i is
randomly selected, the above algorithm is called the stochastic gradient descent algorithm.

Instead of randomly selecting a single example, we may randomly select a mini-batch, and replace L′i(θt)
by the average of this mini-batch.

In order for the algorithm to converge to a local minimum, we need the following conditions. (1)
∑

∞
t=1 ηt = ∞. (2) ∑

∞
t=1 η2

t < ∞. The first condition ensures that the algorithm can go the distance toward the
minimum. The second condition ensures that the algorithm will not run away from the local minimum once
it arrives. One simple example is ηt = c/t for a constant c. In practice, we need more sophisticated schemes
for choosing ηt . For instance, reducing ηt after a certain number of steps, or reducing ηt if the training error
stops decreasing.
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Momentum, Adagrad, RMSprop, Adam

Figure 34: Momentum. The left figure illustrates the original gradient descent algorithm. The black arrow is the gra-
dient direction, and the red arrow is the preferred direction. The right figure illustrates the gradient descent algorithm
with momentum, which is along the red arrow.

The gradient descent algorithm goes downhills in the steepest direction in each step. However, the
steepest direction may not be the best direction, as illustrated by Figure 34. In the left figure, the black
arrows are the gradient direction. The red arrows are the preferred direction, which is the direction of
momentum. It is better to move along the direction of the momentum, as illustrated by the right figure. We
want to accumulate the momentum, and let it guide the descent. The following is the stochastic gradient
descent with momentum:

vt = γvt−1 +ηtgt ,

θt = θt−1− vt .

where gt is the average gradient computed from the current mini-batch, and vt is the momentum or velocity.
γ is usually set at .9, for accumulating the momentum, and θ is updated based on the momentum.

Adagrad modifies the gradient descent algorithm in another direction. The magnitudes of the compo-
nents of gt may be very uneven, and we need to be adaptive to that. The Adagrad let

Gt = Gt−1 +g2
t ,

θt+1 = θt −ηt
gt√

Gt + ε
,

where ε is a small number to avoid dividing by 0. In the above formula, g2
t and gt/

√
Gt + ε denote

component-wise square and division.
In Adagrad, Gt is the sum over all the time steps. It is better to sum over the recent time steps. Adadelta

and RMSprop use the following scheme:

Gt = βGt−1 +(1−β )g2
t ,

where β can be set at .9. It can be shown that

Gt = (1−β )(β t−1g2
1 +β

t−2g2
2 + ...+βg2

t−1 +g2
t ),

which is a sum over time with decaying weights.
The Adam optimizer combines the idea of RMSprop and the idea of momentum.

vt = γvt−1 +(1− γ)gt ,

Gt = βGt−1 +(1−β )g2
t ,

vt ← vt/(1− γ),Gt ← Gt/(1−β ),

θt+1 = θt −ηt
vt√

Gt + ε
.
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10.8 Convolutional neural networks (CNN, ConvNet)

Convolution, kernels, filters

Figure 35: Local weighted summation. Here the filter or kernel is 3× 3. It slides over the whole input image or
feature map. At each pixel, we compute the weighted sum of the 3×3 patch of the input image, where the weights are
given by the filter or kernel. This gives us an output image or filtered image or feature map.

Figure 36: Convolution. The input may consist of multiple channels, illustrated by a rectangle box. Each input feature
map is a slice of the box. The local weighted summation in convolution is also over the channels. If the spatial range
of the filter is 3×3 and the input has 3 channels, then the filter or kernel is 3×3×3 box. The spatial range can also be
1×1, then the filter involves weighted summation of the 3 channels at the same pixel. For the input image, there are
3 channels corresponding to 3 colors: red, green, black. For the hidden layers, each layer may consist of hundreds of
channels. Each channel is obtained by a filter. For instance, in the figure on the right, the red feature map is obtained
by the red filter, and the green feature map is obtained by the green filter.

In the neural network, hl = fl(Wlhl−1 +bl), the linear transformation sl =Wlhl−1 +bl that maps hl−1 to
sl can be highly structured. One important structure is the convolutional neural network, where Wl and bl
have a convolutional structure.

Specifically, a convolutional layer hl is organized into a number of feature maps. Each feature map, also
called a channel, is obtained by a filter or a kernel operating on hl−1, which is also organized into a number
of feature maps. Each filter is a local weighted summation, plus a bias term, followed by a non-linear
transformation.

Figure 35 explains the local weighted summation. We convolve an input feature map with a 3×3 filter
to obtain an output feature map. The value of each pixel of the output feature map is obtained by a weighted
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summation of pixel values of the 3× 3 patch of the input feature map around this pixel. We apply the
summation around each pixel, using the same weights, to obtain the output feature map.

Figure 37: Convolutional neural network (CNN or ConvNet). The input image has 3 channels (R, G, B). Each
subsequent layer consists of multiple channels, and is illustrated by a box. Sub-sampling is performed after some
layers, so that the the box at the higher layers is smaller than the box at the lower layer in the spatial extent. Meanwhile,
the box at the higher layer may have more channels than the box at the lower layer, illustrated by the fact that the box
at the higher layer is longer than the box at the lower layer. A fully connected layer consists of 1×1 feature maps, and
is illustrated by a horizontal line.

If there are multiple input feature maps, i.e., multiple input channels, the weighted summation is also
over the multiple feature maps. We can apply different filters to the same set of input feature maps. Then
we will get different output feature maps. Each output feature map corresponds to one filter. See Figure 36
for illustration.

After the weighted summation, we may also add a bias and apply a non-linear transformation such as
sigmoid or ReLU. The filter becomes non-linear.

After obtaining the feature maps in hl , we may perform max-pooling, e.g., for each feature map, at each
pixel, we replace the value of this pixel by the maximum of the 3×3 patch around this pixel. We may also
do average pooling, i.e., at each pixel, we replace the value of this pixel by the average of the 3× 3 patch
around this pixel.

The mapping from hl to hl−1 may also involve sub-sampling to reduce the size of feature maps. For
instance, after obtaining a feature map by a filter, we can partition the feature map into 2× 2 blocks, and
within each block, we only keep the upper left pixel. This will reduce the width and height of the feature
map by half. hl−1 may have more channels than hl , because each element of hl covers a bigger spatial extent
than each element of hl−1, and there are more patterns of bigger spatial extent.

The output feature map may also be 1×1, whose value is a weighted sum of all the elements in hl−1. hl
may consists of a number of such 1×1 maps. It is called the fully connected layer because each element of
hl is connected to all the elements in hl−1.

A convolutional network consists of multiple layers of convolutional and fully connected layers, with
max pooling and sub-sampling between the layers. See Figure 37. The network can be learned by back-
propagation.

Alex net, VGG net, inception net

The Alex net is the neural network that achieved the initial breakthrough on object recognition for the
ImageNet dataset. It goes through several convolutional layers, followed by fully connected layers. It has 5
convolutional layers and 2 fully connected layers, plus a softmax output layer.

The VGG net is an improvement on the Alex net. There are two versions, VGG16 and VGG19, which
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consist of 16 hidden layers and 19 hidden layers respectively. The VGG19 has 144 million parameters. The
filters of the VGG nets are all 3×3. Like Alex net, it has two fully connected layers, plus a softmax output
layer.

The inception net took its name from the movie “Inception,” which has a line “we need to go deeper.”
The network makes extensive use of 1× 1 filters, i.e., for each feature map in hl , each pixel value is a
weighted summation of the pixel values of all the feature maps in hl−1 at the same pixel, plus a bias and
a non-linear transformation. The 1× 1 filters serve to fuse the channels in hl−1 at each pixel. The feature
maps at each layer of the inception net are obtained by filters of sizes 1×1, 3×3 and 5×5, as well as max
pooling.

Object detection, semantic segmentation, deformable CNN

CNN is commonly used for computer vision. Two prominent tasks are object detection and semantic seg-
mentation. Object detection is to impose bounding boxes on the objects in the image and output the object
categories. Semantic segmentation is to segment the image into different regions, with each region corre-
sponding to an object whose category is labeled.

In object detection, we can use CNN to predict the possible bounding boxes and the shifts of the bound-
ing boxes.

In deformable CNN, we can use CNN to predict the deformations of the grids that support the convolu-
tional kernels.

10.9 Batch normalization

Figure 38: Batch normalization. Suppose we have a batch of 3 examples. For each element of each layer, we compute
the mean µ and standard deviation σ by pooling over the 3 examples. We then normalize the element for each example,
followed by a linear transformation to be learned from the data. In back-propagation, we need to treat µ and σ as a
layer and compute the derivatives of µ and σ with respect to the whole batch. It is as if the whole batch becomes a
single example because µ and σ are computed from this whole batch.

When training the neural net by back-propagation, the distribution of hl keeps changing because the
parameters keep changing. This may cause a problem in training. We can stabilize the distribution by batch
normalization. That is, between hl−1 and hl , we can add a batch normalization layer. For simplicity, let x
be the input to the batch normalization layer, and let y be the output of the batch normalization layer. For
instance, x is hl−1, and y becomes the normalized version of hl−1 to be fed into the layer for computing hl .

With slight abuse of notation, we let x be an element of hl−1, and we apply the batch normalization for
each element of hl−1. Suppose we have a batch of n training examples, so that we have {xi, i = 1, ...,n}. The
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batch normalization layer is defined as follows:

µ =
1
n

n

∑
i=1

xi;

σ
2 =

1
n

n

∑
i=1

(xi−µ)2;

x̂i =
xi−µ

σ
;

yi = β + γ x̂i.

This way, we stablize the distribution of each element of hl−1 during the training process. See Figure 38 for
an illustration.

Note that in the batch normalization layer, there are parameters β and γ to be learned. More importantly,
µ and σ2 are functions of the whole batch. When we do chain rule calculations for back-propagation, we
need to compute the derivatives of µ and σ2 with respect to all the (xi, i = 1, ...,n). It is as if the whole batch
becomes a single training example.

10.10 Residual net

Figure 39: Residual net. The figure on the left is the original version of a residual block. The figure on the right is
the revised version, which is in the form of xl+1 = xl +F(xl), where F consists of two rounds of weighted sum, batch
normalization, and ReLU.

A residual block in the residual net is as follows. Let xl be the input to the residual block. Let xl+1 be the
output of the residual block. Let F(xl) be the transformation of xl that consists of two rounds of weighted
summation, batch normalization, and ReLU. We let

xl+1 = xl +F(xl),

as illustrated by the right plot of Figure 40. F(xl) models the residual of the mapping from xl to xl+1, on top
of the identity mapping. The following are some rationales for such a residual block.

(1) If we model xl+1 = F(xl), mathematically F(xl) parametrized by a set of weights may be the same
as xl +F(xl) parametrized by a different set of weights, computationally it can be more difficult for gradient
descent to learn the former than the latter. It can be much easier for stochastic gradient descent to find a
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Figure 40: Visualizing loss function. Left: regular network. Right: residual net.

good F(xl) in the residual form than in the original form. Specifically, the loss function with residual net
parametrization is much smoother.

(2) The mapping xl+1 = xl +F(xl) may model an iteration of an iterative algorithm or dynamic pro-
cess, where l actually denotes the time step t instead of the real layer l. The mapping models the iterative
refinement of the same layer over time.

(3) With multiple residual blocks, we implicitly have an ensemble of networks. For instance, consider a
simple network y = w2w1x, where all the symbols are scalers. If we adopt a residual form y = (1+w2)(1+
w1)x, we can expand it as y = x+w1x+w2x+w2w1x. Thus the residual form is an ensemble of 4 networks.
We may also think of the residual form as an expansion, like the Taylor expansion.

10.11 Recurrent neural networks (RNN), LSTM, GRU

Vanilla RNN

Figure 41: Recurrent neural network. The latent vector summarizes all the information about the past.

Figure 41 shows the vanilla version of the recurrent neural network, which can be written as

ht = f (W (ht−1,xt)

yt = f (Wht),

where we use W as a generic notation for weight matrices, and f as a generic notation for element-wise
non-linear transformations. They are different at each occurrence. (ht−1,xt) is the concatenated vector. We
omit the bias, which can be absorbed into the weight matrix if we add 1 to the vector.

In the case of prediction, yt = xt+1. There are different forms of inputs and outputs for different appli-
cations of RNN, as illustrated by Figure 42.
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Figure 42: Different forms of inputs and outputs in RNN.

Long short term memory (LSTM)

Figure 43: Long short term memory. There is a memory vector, and three gates, forget, input, and output.

The training of RNN is again based on back-propagation, except that we need to back-propagate over
time. There is a vanishing (or exploding) gradient problem. The LSTM was designed to overcome this
problem by introducing memory cells.

Figure 43 illustrates the architecture of LSTM, which can be written as

( ft , it ,ot ,∆ct) = f (W (ht−1,xt)),

ct = ct−1 ft +∆ct it ,

ht = ot f (ct),

yt = f (Wht).

The gates are like if-then statements in a computer program. They are made continuous by sigmoid f so
that they are differentiable. The residual net is a special case of LSTM.

Gated recurrent units (GRU)

The gated recurrent unit is a simplification of LSTM, by merging ct and ht :

(zt ,rt) = f (W (ht−1,xt)),

h̃t = f (W (xt ,rtht−1)),

ht = (1− zt)ht−1 + zt h̃t ,

yt = f (Wht).

zt is a gate to decide whether to renew or not, and rt is a gate to decide whether to remember or not.
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10.12 Encoder-decoder, thought vector

Figure 44: An RNN for sequence generation.

Figure 44 shows an RNN for sequence generation, where xt is the current letter, and yt is the next letter.
Each letter can be represented by a one-hot vector. The RNN maps the one-hot vector into a hidden vector,
and the hidden vector is used to generate the next letter by softmax probabilities. We can think of xt → ht

as the encoder, and ht → yt as the decoder. Because ht also depends on ht−1, the ht is a thought vector that
encodes all the relevant information of the past. That is, we have the following scheme: input → thought
vector→ output.

Translation

Figure 45: Machine translation. The encoding RNN encodes the input sentence into a thought vector, and the
decoding RNN decodes the thought vector into an output sentence.

Figure 45 shows the RNN for machine translation. This time, each word is represented by a one-hot
vector. We encode the input sentence into a thought vector by an encoding RNN. The thought vector is fed
into a decoding RNN to generate the output sentence.
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Image captioning

Image captioning can be considered a special case of machine translation, where the encoding RNN is
replaced by a CNN (e.g., VGG). We can take a certain layer of CNN as the thought vector to be fed into the
decoding RNN to generate the caption.

VQA

The visual question and answering can also be considered a special case of machine translation, where we
have an encoder for images and an encoder for questions. We then concatenate the thought vectors of the
image and question, and use the concatenated thought vector to generate the answer.

10.13 Memory and attention, query and key

For text based QA, e.g., answering questions based on wikipedia, we can encode the sentences in wikipedia
into thought vectors. These vectors serve as memory. For an input question, we can encode it into a thought
vector. By matching the thought vector of the question to the thought vectors of the memory, we can decide
which sentence we want to pay attention to, using a softmax probability distribution over the sentences. The
weighted sum of the thought vectors of the sentences weighted by the attention probabilities then becomes
a combined thought vector, which, together with the thought vector of the question, is decoded into the
answer.

Specifically, let mi, i = 1, ...,N be the vectors in the memory. Let Q be the question or query. We can let
(keyi,valuei) =Wmi. Then we can let

A =
N

∑
i=1

attentioni× valuei,

where

attentioni =
exp(⟨Q,keyi⟩)

∑
N
i′=1 exp(⟨Q,keyi′⟩)

.

We can then let A emit the answer by soft-max classification.

10.14 Word2vec for semantic embedding

Word embedding is at the foundation of modern Natural language processing (NLP). We embed the words
into an Euclidean space. Suppose there are K words in the dictionary. We can represent each word x as a
K-dimensional one-hot vector. Suppose we want to embed the words in the d-dimensional space. We can
let h =Wx, so that the k-th column of W , i.e., wk, is the embedding of word k, whose x is a one-hot vector
with k-th element being 1. This is a linear encoding. We can decode it by a linear soft-max classifier, i.e.,
p(x|h) ∝ exp(⟨x,W̃h⟩), where W̃ is the decoding matrix, and W̃h is the K-dimension score vector. We may
train this model to predict the words within the context of each word. For instance the probability that word
j is within the context of word i is

Qi j =
exp(⟨wi, w̃ j⟩)

∑k exp(⟨wi, w̃k⟩
.

The GloVe (Global Vector) is similar to word2vec, where logQi j = ⟨wi, w̃ j⟩+ bi + b̃ j, where bi and b̃ j are
bias terms. This is similar to matrix factorization in recommender system.

It is likely that we use both vector and symbolic representations. In a certain context and for a short term
task, the number of words or symbols can be made very small, so that it may be convenient to use symbols
for reasoning. For the long term accumulation of knowledge, the dictionary can be very large, and the vector
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representation may be useful to properly represent the semantics of the words. This is like the particle/wave
duality in quantum physics, where the one-hot representation is on the side of particle, and the dense vector
embedding is on the side of wave.

10.15 Self-attention, Transformer, GPT, BERT

For a sentence that consists of words x1, ...,xM, we can embed the words as h1, ...,hM, and process them
using LSTM or its multi-layer bi-directional versions. A more efficient and flexible sequence is to update
the vectors by self-attention mechanism. Specifically, we can let (query,key,value)m = Whm. Then we
update hm by hm← hm +∆hm, so that

∆hm =
M

∑
k=1

attentionm→k× valuek,

where

attentionm→k =
exp(⟨querym,keyk⟩

∑
M
k′=1 exp(⟨querym,keyk′⟩)

.

which involves soft-max attention based on the matching between query and key. We can also use
multiple heads, so that each head has its own system of query, key and value, and then add up multiple
heads. The above update can be iterated for multiple steps. Such a system was called Transformer, which
was trained for machine translation with an encoder and a decoder, both involving self-attention mechanism.
Later the decoder part is adopted by GPT (generative pre-training), and the encoder part is adopted by
BERT (bi-directional encoder representations from transformers). BERT is trained by self-supervision task
of filling in masked words in the sentences.

11 Representation Learning with Deep Nets

Similar to supervised learning such as kernel machines, boosting machines, and neural networks, which are
based on f (x) = h(x)⊤β , in representation learning, we represent the input x by a representation h. However,
without an output y to predict, we want the hidden vector h to capture key patterns and structures in x, and
we want h to be simple, such as being of low dimension, being sparse, or having independent components,
or being error resistant. We may think of h as an encoding of x, and we want to be able to decode x from the
code h. We may also think of h as an embedding of x in an Euclidean space, and we want h to mirror the
relationship between x, e.g., the relation between (h,h′) mirrors the relation between (x,x′), especially for
nearby x and x′.

11.1 Three lessons of deep learning

The following are three lessons offered by deep learning.
(1) Multi-layer function approximator.
(2) Vector representation. The vector can be interpreted as a code, a thought vector, or an embedding.
(3) Learned computation. The inference or sampling algorithm can be approximated by a deep network.
While (1) is most important and enables (2) and (3), (2) can be quite important in itself, and does not

have to involve deep network. The representation does not need to be a vector. It can be a matrix or more
structured object. (3) may be considered learning from the results of on-line computation, i.e., learning from
internal data produced by on-line computation. It is like muscle memory.

75



11.2 Unsupervised learning

In unsupervised learning, the dataset is as below where yi are not provided as supervision. In a generative

input hidden output
1 x⊤1 h⊤1 ?
2 x⊤2 h⊤2 ?
...
n x⊤n h⊤n ?

model, the vector hi is not a vector of features extracted from the signal xi. hi is a vector of hidden variables
that is used to generate xi, as illustrated by the following diagram:

hidden : hi

↓
input : xi

The components of the d-dimensional hi are variably called factors, sources, components or causes.

11.3 Thought vector, auto-encoding, embedding, disentangling

Auto-encoder: hi is also called a code in the auto-encoder illustrated by the following diagram:

code : hi

↑↓
input : xi

The direction from hi to xi is called the decoder, and the direction from xi to hi is called the encoder.
Distributed representation and disentanglement: hi = (hik,k = 1, ...,d) is called a distributed represen-

tation of xi. Usually the components of hi, (hik,k = 1, ...,d), are assumed to be independent, and (hik) are
said to disentangle the variations in xi.

Embedding: hi can also be considered the coordinates of xi, if we embed xi in a low-dimensional space,
as illustrated by the following diagram:

← hi→
|

← xi→

In the training data, we find a hi for each xi, so that {hi, i = 1, ...,n} preserve the relative relations between
{xi, i = 1, ...,n}. The prototype example of embedding is multi-dimensional scaling, where we want to
preserve the Euclidean distances between the examples.

11.4 Kullback-Leibler divergence

The Kullback-Leibler divergence from p to q is defined as

KL(p|q) = Ep[− logq(x)]−Ep[− log p(x)] = Ep[log(p(x)/q(x)].

According to Jensen inequality, for the concave function log(x),

E[log(x)]≤ log(E(x)),
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so

Ep[log(q(x)/p(x))]≤ logEp[q(x)/p(x)] = log
∫
[
q(x)
p(x)

p(x)]dx = log1 = 0.

Thus KL(p|q)≥ 0.
The KL-divergence is not a metric or distance in that it does not satisfy the triangle inequality.
For conditional distribution, KL involves expectation with respect to the random variable being condi-

tioned on:

KL(p(y|x)|q(y|x)) = Ep(x,y)

[
log

p(y|x)
q(y|x)

]
= Ep(x)Ep(y|x)

[
log

p(y|x)
q(y|x)

]
.

Let p(x) and q(x) be the marginal distributions, then

KL(p(x,y)|q(x,y)) = Ep

[
log

p(x,y)
q(x,y)

]
= Ep

[
log

p(x)p(y|x)
q(x)q(y|x)

]
= Ep

[
log

p(x)
q(x)

]
+Ep

[
log

p(y|x)
q(y|x)

]
= KL(p(x)|q(x))+KL(p(y|x)|q(y|x)).

Two sources of KL-divergence are: (1) Large deviation, where the KL-divergence plays the role of the
exponential rate of probability. (2) Coding theory, where the KL-divergence measures the coding redun-
dancy.

KL divergence is adopted in information theory for redundancy measurement, in probabilistic theory for
rate of probability measurement. And in statistics, it is used for maximum likelihood estimation.

MLE vs KL divergence

Suppose we observe training examples xi ∼ pdata(x) independently for i = 1, ...,n. For big n, we have
1
n ∑

n
i=1 f (xi)

.
= Epdata [ f (x)]. Consider a model pθ (x). We can learn θ by maximizing the log-likelihood

L(θ) = 1
n ∑

n
i=1 log pθ (xi). As n→ ∞, L(θ) = 1

n ∑
n
i=1 log pθ (xi)→ Epdata [log pθ (x)]. Since KL(pdata|pθ ) =

Epdata [log pdata(x)]−Epdata [log pθ (x)], θ̂ = argmaxθ L(θ) = argminθ KL(pdata|pθ ). The maximum likelihood
estimate can be seen as the most plausible explanation of the data.

Inclusive and exclusion KL

For MLE, we minimize KL(pdata|pθ ), which is expectation with respect to pdata. pθ seeks to cover all the
modes of pdata. This will cause the mode inclusion behavior and the over-dispersion of the learned pθ .

Sometimes we want pθ to approximate a given target distribution, ptarget, which we only need to know
up to a normalizing constant. We can minimize KL(pθ |ptarget), which is expectation with respect to pθ .
This is variational approximation. Thus pθ can ignore some minor modes and only focus on major modes.
This will cause the mode exclusion or mode collapsing behavior. Figure 46 illustrates the basic idea.
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Figure 46: Left: minθ KL(pdata|pθ ) vs Right: minθ KL(pθ |ptarget). The dotted line is pθ .

11.5 Decoder

Let h be the latent variables. We can decode it into an image x = gθ (h), where gθ is a neural network with
parameters θ . This is in the reverse direction from neural network for unsupervised learning, which maps x
to h. We call the neural network from x to h a bottom-up encoder network, and the network from h to x the
top-down decoder network. While the bottom-up network may be a convolutional network, the top-down
network is sometimes called the deconvolutional network.

Figure 47: A top-down decoder network, where h consists of class (one-hot), view and transform parameters of chair.

Figure 47 shows the architecture of a decoder network, which is trained on chair images, where h consists
of class, which is a one-hot vector, view and transform parameters, and x is the image of the corresponding
chair. We can learn the decoder by minimizing |x−gθ (h)|2 if we have training data {hi,xi}. After training
the decoder network, we can interpolate the h vectors of two different chairs, and generate the interpolated
chair by the learned decoder. You can see that the learned network has amazing interpolative ability.

For image processing, such as style transfer, we can again use an encoder and decoder scheme. We can
encode the input image into a thought vector. We can also encode the style as another vector. We can then
concatenate the two vectors, and feed it into a decoder, to generate the output image.

11.6 Generative adversarial networks (GAN)

We can learn the decoder model in unsupervised manner, by treating h as a latent vector. We can also assume
a simple known prior distribution on h, h ∼ p(h). Then the decoder defines a generative model. We call
such a model a generator model, which is a non-linear generalization of the factor analysis model.
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Figure 48: Interpolating the one-hot vectors of two types of chairs.

The model can be learned by generative adversarial networks (GAN), where we pair the generator model
G with a discriminator model D, where for an image x, D(x) is the probability that x is a true image instead
of a generated image.

Figure 49: Generative adversarial networks (GAN) consists of a generator and a discriminator.

We can train the pair of (G,D) by an adversarial, zero-sum game. Specifically, let G(h) = gθ (h) be a
generator. Let

V (D,G) = E¶[logD(X)]+Eh∼p(h)[log(1−D(G(h))],

where E¶ can be approximated by averaging over the observed examples, and Eh can be approximated by
Monte Carlo average over the faked examples generated by the model.

Thus, we learn D and G by minG maxDV (D,G). V (D,G) is the log-likelihood for D, i.e., the log-
probability of the real and faked examples. However, V (D,G) is not a very convincing objective for G. In
practice, the training of G is usually modified into maximizing Eh∼p(h)[logD(G(h))] to avoid the vanishing
gradient problem.

For a given θ , let pθ be the distribution of gθ (h) with h ∼ p(h). Assuming a perfect discriminator
according to the Bayes rule D(x)= ¶(x)/(¶(x)+ pθ (x)) (assuming equal numbers of real and fake examples).
Then θ minimizes Jensen-Shannon

JSD(¶|pθ ) = KL(pθ |pmix)+KL(¶|pmix),

where pmix = (¶+ pθ )/2. As a result, GAN has mode collapsing behavior.

11.7 Variational auto-encoder (VAE) as alternating projection

The generator model is a decoder. We can pair it with an encoder.
The decoder model is h ∼ p(h) ∼ N(0, Id), and [x|h] ∼ pθ (x|h) ∼ N(gθ (h),σ2I). It defines a joint

distribution pθ (h,x) = p(h)pθ (x|h).
The encoder model is [h|x] ∼ qφ (h|x) ∼ N(µφ (x),Vφ (x)), where V is a diagonal matrix. Together with

¶(x), we have a joint distribution qφ (h,x) = ¶(x)qφ (h|x).
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Figure 50: VAE: The decoder is a top-down latent variable model. The encoder approximates the posterior distribu-
tion of latent vector given observed image.

We learn both the decoder θ and encoder φ by

min
θ ,φ

KL(qφ (h,x)|pθ (h,x)).

The expectation with respect to qφ (h|x) can be based on the re-parametrization

h = µφ (x)+V 1/2
φ

z, z∼ N(0, Id),

so that the expectation is with respect to z.

Figure 51: VAE as alternating projection.

Let Q = {qφ (h,x),∀φ} and let P = {pθ (h,x),∀θ}. The VAE problem is to minp∈P,q∈Q KL(p|q). Starting
from p0, the VAE iterates the following two steps:

(1) qt+1 = argminq∈Q KL(q|pt).
(2) pt+1 = argminp∈P KL(qt+1|p).
This is alternating projection. The minimization can also be replaced by gradient descent.
The wake-sleep algorithm is the same as VAE in Step (2). However, in Step (1), it is qt+1 = argminq∈Q KL(pt |q),

where we generate dream data from pt , and learn qφ (h|X) from the dream data.

Maximum likelihood vs variational, bias and regularization

The VAE objective function

KL(qφ (h,x)|pθ (h,x)) = KL(¶(x)|pθ (x))+KL(qφ (h|x)|pθ (h|x)).

The first term KL(¶(x)|pθ (x)) is the objective function of the maximum likelihood. The VAE divergence is
an upper bound of the MLE divergence, which is computationally intractable because pθ (x) =

∫
pθ (h,x)dh
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is an intractable integral. The VAE objective function is tractable as long as the encoder or the inference
model qφ (h|x) is in closed form.

The accuracy of VAE relative to MLE is determined by the second divergence, which governs the learn-
ing of the inference model, i.e., given θ ,

φ̂VAE = argmin
φ

KL(qφ (h|x)|pθ (h|x)).

Since qφ is on the left side of KL-divergence, i.e., the exclusive KL, it tends to chase the major mode of pθ

while ignoring the minor modes.
While qφ (h|x) seeks to get closer to pθ (h|x) in learning φ , in the learning of θ , the model pθ (h,x) tends

to bias itself from MLE so that pθ (h|x) becomes closer to qφ (h|x). This bias is actually beneficial to the
inference model qφ , and the bias induced by qφ also provides some regularization of the model.

Variational inference vs maximum a posteriori (MAP)

The maximum a posteriori (MAP) estimate of h is

ĥMAP = argmax
h

log pθ (h|x).

q
φ̂
(h|x) is close to the point mass at ĥMAP because of the aforementioned mode chasing behavior. The

difference is that q
φ̂
(h|x) is a probability distribution that account for the uncertainty of pθ (h|x). In fact, the

variational divergence is

KL(qφ (h|x)|pθ (h|x)) =−H(qφ (h|x))−Eqφ (h|x)[log pθ (h|x)],

where
H(qφ (h|x)) =−Eqφ (h|x)[logqφ (h|x)]

is the entropy of qφ (h|x). The variational approximation is to maximize the posterior Eqφ (h|x)[log pθ (h|x)]
like MAP, but it also seeks to maximize the entropy H(qφ (h|x)). For variational inference, H(qφ (h|x))
should be in closed form.

In learning θ , we should not use ĥMAP to infer h because it does not account for uncertainty. ĥMAP
amounts to overfitting. It explains away too much of x so that there is not much left for θ to explain. As
a result, we cannot learn θ accurately, and the learned θ cannot generate realistic x because it can generate
realistic x only for those preferred h that are similar to ĥMAP.

Local vs global variational

There is a slight ambiguity in KL(q(h|x)|p(h|x)). We can interpret it as the KL-divergence with x fixed, or
with x averaged out by ¶. In the previous subsection, it is the former. In VAE, it is the latter.

In VAE, E¶ is approximated by averaging over the training data (xi, i = 1, ...,n), so that φ is estimated
by

min
φ

1
n

n

∑
i=1

KL(qφ (hi|xi)|pθ (hi|xi)).

Here φ is shared by all (xi, i = 1, ...,n), and it is the global variational parameter. For each xi, qφ (hi|xi) ∼
N(µφ (xi),Vφ (xi)).

We may also estimate (µi,Vi) for each xi by

min
µi,Vi

KL(qµi,Vi(hi|xi)|pθ (hi|xi)),
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where qµi,Vi(hi|xi)∼ N(µi,Vi). (µi,Vi) is called the local variational parameter.
For the local variational parameter, we need an iterative inference algorithm to compute it for each xi.

This can be time consuming. For the global parameter, we learn an inference network to map xi directly
to (µi,Vi). This amounts to distilling the inference algorithm to the inference network, i.e., the inference
network or the inference model is the learned computation.

Traditional variational methods employ local parameters, while VAE uses global parameters by taking
advantage of the flexibility of neural nets.

11.8 VAE and EM

In the EM algorithm, we assume qφ (h|x) to be infinitely flexible. In the alternating projection of VAE,
(1) qt+1 = argminq∈Q KL(q|pt), so that qt+1(h|x) = pθt (h|x).
(2) pt+1 = argminp∈P KL(qt+1|p), i.e.,

θt+1 = argmin
θ

KL(¶pθt (h|x)|pθ (h,x))

= argmax
θ

E¶Epθt (h|x)[log pθ (h,x)].

The EM algorithm requires that pθ (h|x) is in closed form, which means pθ (x) should be in closed form.
q is the distribution of data. ¶ is the distribution of observed data x, and qφ (h|x) is the multiple imputation

of the missing data h. qφ (h,x) is the distribution of the complete data (h,x).
p is the distribution of the model. p(h)pθ (x|h) = pθ (h,x) is the complete-data model, and pθ (x) =∫

pθ (h,x)dh is the observed data model.

11.9 Flow-based model

Similar to generator model, in the flow-based model, we have h∼N(0, ID), and x = Tθ (h). The difference is
that h has the same dimensionality as x, which is D, and Tθ is a one-to-one differentiable transform. Suppose
Tθ maps a small region ∆h around h to a small region ∆x around x. Then

q(h)|∆h|= p(x)|∆x|,

where q(h) is the density of h, and p(x) is the density of x. |∆h| is the volume of the small region ∆h, and
∆x is the volume of the small region ∆x. To understand this point, you can imagine q(h) as a cloud of points
in the space of h, and p(x) is the cloud of points in the space of x. Then the points in ∆h are mapped to the
points in ∆x, and the number of points in ∆h is the same as the number of points in ∆x.

|∆x|/|∆h|= |det(T ′θ (h))|,

where Tθ (h) = dx/dh⊤ is the D×D Jacobian matrix, and |det(T ′)| is the absolute value of the determinant
of Jacobian. Locally T is a linear transformation, and T ′ is the matrix of this linear transformation. For any
matrix A, it maps the cube [0,1]D to a parallelogram formed by the column vectors of A. The volume of
this parallelogram is the determinant of A. Thus the density p(x) can be obtained in closed form. This is
different from the generator model, where the marginal density involves integrating out h.

We can design T to consists of a sequence (or a flow) of simple transformations that are invertible
and whose Jacobians can be easily computed. For instance, consider a transformation x → y. We can
let x = (x1,x2), where x1 is d1-dimensional, and x2 is d2 = D− d1 dimensional. We can let y1 = x1, and
y2 = µ(x1) + σ(x1)x2, where µ(x1) is a d2 dimensional vector and σ(x1) is a d2 dimensional diagonal
matrix.

The flow-based model can be used as a generative model. It can also be used as an inference model.
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12 Representation Learning without Deep Nets

12.1 Factor analysis and generalizations

The generator model in GAN and VAE can be traced back to the factor analysis model.

The model

The model is as follows:

xi =Whi + εi,

for i = 1, ...,n, where W is a p×d dimensional matrix (p is the dimensionality of xi and d is the dimension-
ality of hi), and εi is a p-dimensional residual vector. The following are the interpretations of W :

(1) Loading matrix: Let W = (w jk)p×d . xi j ≈ ∑
d
k=1 w jkhik, i.e., each component of xi, xi j, is a linear

combination of the latent factors. w jk is the loading weight of factor k on variable j.
(2) Basis vectors: Let W = (Wk,k = 1, ...,d), where Wk is the k-th column of W . xi ≈ ∑

d
k=1 hikWk, i.e., xi

is a linear superposition of the basis vectors (Wk), where hik are the coefficients.
(3) Matrix factorization: (x1, ...,xn)≈W (h1, ...,hn), where the p×n matrix (x1, ...,xn) is factorized into

the p×d matrix W and the d×n matrix (h1, ...,hn).
In factor analysis, we have hi ∼N(0, Id), xi =Whi +εi, εi ∼N(0,σ2Ip), and εi is independent of hi. The

dimensionality of hi, which is d, is smaller than the dimensionality of xi, which is p. The factor analysis
is very similar to the principal component analysis (PCA), which is a popular tool for dimension reduction.
The difference is that in factor analysis, the column vectors of W do not need to be orthogonal to each other.

The factor analysis model originated from psychology, where xi consists of the test scores of student i on
p subjects. hi consists of the verbal intelligence and the analytical intelligence of student i (d = 2). Another
example is the decathlon competition, where xi consists of the scores of athlete i on p = 10 sports, and hi

consists of athlete i’s speed, strength and endurance (d = 3).

Generalizing prior assumption: ICA, sparse coding, NMF, recommender, K-means

In independent component analysis, we assume p = d, and hk ∼ pk, which is a heavy tailed distribution. It
is also called blind source separation, where hk are the sources mixed by W .

In sparse coding, we assume d > p > d0, where d0 is the number of hk that are non-zero. W = (Wk,k =
1, ...,d) forms a dictionary, and the sparse h selects the most meaningful words from this dictionary.

In non-negative matrix factorization, we assume hk ≥ 0, to emphasize the fact that the parts should add
positively.

In a recommender system, (x1, ...,xn) ≈W (h1, ...,hn), where xi j is user i’s rating of movie j, and xi j =
⟨w j,hi⟩, where w j is the j-row of W . We can interpret hi as user i’s desires in various aspects, and w j as
movie j’s desirabilities in the corresponding aspects. xi are incomplete, but we can complete xi by learning
hi and w j from the observed data, so that we can recommend user i the movies that may receive high ratings
from him or her.

If hi is a one-hot vector, then xi =Whi + εi means that xi =Wk + εi, where k is the element of hi that is
1, and Wk is the k-th column of W . This is the K-means model.

The sparse vector lies in between one-hot vector and dense vector.

Generalizing linear transformation to non-linear transformation

The factor analysis model is x =Wh+ ε (here we drop the subscript i for convenience). We can generalize
it to x = gθ (h)+ ε , where gθ can be parametrized by a deep network. This is the decoder model or the
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generator model in GAN and VAE.

12.2 K-means as one-hot vector representation

Let (xi, i = 1, ...,n) be the observed data. The K-means method partition the data into K different clusters.
Each cluster has a mean µk, k = 1, ...,K. The K means algorithm iterates the following two steps:

(1) Assignment. We assign each xi to a cluster k by minimizing |xi−µk|2 over k.
(2) Update. For each cluster k, we compute µk as the mean of the examples xi that belong to cluster k.
K-means can be considered a special case of encoding, where for each xi, the corresponding hi is one

hot, i.e., only one component of hi is 1, and the other components are all 0.
Word2vec is the opposite of K-means, where we encode one-hot vector (word) to a dense vector.

12.3 Spectral embedding and clustering

The spectral embedding and clustering method starts from an adjacency matrix

Ai j = exp
(
− 1

2σ2 |xi− x j|2
)
,

which measures the similarity between i and j. A is an n×n matrix with elements (Ai j), where we assume
Aii = 0 on the diagonal. Ai j does not care about distant relationship because it is practically zero if xi is far
away from x j.

The spectral embedding is to find hi for each xi, by minimizing

∑
i̸= j

Ai j|hi−h j|2 = 2trace(H⊤(D−A)H),

where Di = ∑ j Ai j, and D is the diagonal matrix whose i-th diagonal element is Di. H⊤ = (hi, i = 1, ...,n).
trace is the sum of the diagonal elements. H can be obtained by the smallest d eigen vectors of D−A, where
d is the dimensionality of hi.

The basic idea is that the embedding (hi) should capture the nearby relations, while ignoring distant
relations. If Ai j is big, we want hi to be close to h j.

The spectral clustering method is similar to spectral embedding. It computes the Laplacian

L = D−1/2AD−1/2,

and finds H⊤ = (hi, i = 1, ...,n) as the largest d eigen vectors of L. Then perform K-means on (hi, i =
1, ...,n). Such clustering pays more attention to nearby relations, while ignoring distant relations, because
the definition of A. Li j = Ai j/

√
DiD j, where we normalize the adjacency by D, i.e., a close friendship to a

popular person with a lot of good friends is not really as close as it appears to be.

12.4 Multi-dimensional scaling as mirroring

The earliest embedding method is multi-dimensional scaling, which seeks to preserve the Euclidean distance
by

min
{hi}

∑
i j
(|xi− x j|− |hi−h j|)2.

Later embedding methods focus more on preserving the adjacencies of nearby points, i.e., the embedding
lets friends stay close, but is not concerned with relations between strangers.
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12.5 t-Stochastic neighborhood embedding (tSNE) as energy-based model

tSNE seeks to mirror the friendship relationships. For each example i, we view other examples from its
perspective, and define

p j|i = exp
(
− 1

2σ2
i
|xi− x j|2

)
/∑

k ̸=i
exp
(
− 1

2σ2
i
|xi− xk|2

)
.

We may choose σi so that it distinguishes {x j, j ̸= i} in terms of their relationships to xi.
For (hi, i = 1, ...,n) in the embedded space, we mirror (xi, i = 1, ...,n) by defining

q j|i = exp
(
− 1

2σ2
i
|hi−h j|2

)
/∑

k ̸=i
exp
(
− 1

2σ2
i
|hi−hk|2

)
.

Both p and q are conditional distributions of j given i, i.e., if i feels lonely and wants to call someone,
then j comes to his or her mind with probability p j|i or q j|i.

We may optimize the embedding by

min
{hi}

KL(p|q) = min
{hi}

∑
i j
(log p j|i− logq j|i).

In tSNE, we replace the normal density in q j|i by the t distribution or the Cauchy distribution, so that hi

can be more spread out. We also symmetrize p j|i by defining pi j = (p j|i + pi| j)/2n, and we define

qi j = (1+ |hi−h j|2)−1/∑
k ̸=l

(1+ |hk−h j|2)−1.

We then find h = {hi} by minimizing

L(h) = KL(p|q) = ∑
i j

pi j(log pi j− logqi j).

Now p and q are joint distributions of (i, j), i.e., if we want to sample a pair of friends, we get (i, j) with
probability pi j or qi j.

L(h) is actually the negative log-likelihood, and h is the parameter. p serves as the data distribution, and
q is the model distribution. q is actually an energy-based model of the form

qθ (x) =
1

Z(θ)
exp[ fθ (x)],

where θ = h, and x = (i, j), and
fθ (x) =− log(1+ |hi−h j|2),

It can be shown that

− ∂

∂θ
KL(p|qθ ) = Ep

[
∂

∂θ
fθ (x)

]
−Eq

[
∂

∂θ
fθ (x)

]
.

For tSNE,
∂ f
∂hi

=−2(1+ |hi−h j|2)−1(hi−h j).

The gradient is
∂L
∂hi

= 4∑
j ̸=i
(pi j−qi j)(1+ |hi−h j|2)−1(hi−h j).

The factor 4 is due to the symmetry between (i, j) and ( j, i). We can obtain (hi) by gradient descent.
The basic idea is that (pi j) captures the nearby relations among (xi), and (qi j) captures the nearby

relations among (hi), while allowing (hi) to be scattered out according to the heavy-tailed t distribution. We
want to find (hi) so that Q approaches P.
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12.6 Local linear embedding (LLE)

LLE seeks to mirror the local linear relationship.
First, for each i, we find its neighbors j, and we denote j ∼ i.
Then for each i, we extract the local linear relationship by minimizing

min
(wi j)

∣∣∣∣∣xi−∑
j∼i

wi jx j

∣∣∣∣∣
2

.

We impose the constraint ∑ j wi j = 1, so that the learned wi j is invariant with the shift xi ← xi + c for a
constant c.

Then we find {hi} by minimizing

min
(hi)

∑
i

∣∣∣∣∣hi−∑
j∼i

wi jh j

∣∣∣∣∣
2

,

which can be minimized by eigen computation.
Unlike tSNE, where the mirroring is in explicitly defined friendship relationship, in LLE, the mirroring

is in the form of minimization.

12.7 Topic model and latent Dirichelet allocation (LDA)

The topic model is used to analyze documents, e.g., news reports or medical papers, to identify the topics
and their key words. Each report may contain multiple topics, and each topic generates a distribution of
words. Suppose there are K topics. For a document, let ρ = (ρk,k = 1, ...,K) be the probability distribution
of topics. Even though K may be large, only a small number of topics have big probabilities. Suppose fk(x)
be the distribution of word x in each topic. Even though the number of words is large, only a small number
of words have big probabilities. Then the overall distribution

f (x) = ∑
k

ρk fk(x),

which can be written in the matrix factorization form.
In latent Dirichlet allocation, we assume that ρ follows a Dirichelet distribution. Given ρ , the topic

follows a multinomial distribution. Given the topic k, the words follow a multinomial distribution according
to fk. We assume that the words are unordered in the document, i.e., each document is a bag of words. The
model can be written as ρ → h→ x, where h is the one-hot hidden vector for topic, and x is the one-hot
vector for word. There are two layers of latent vectors that generate each word in each document, namely ρ

at the document level, and h at the word level.
The model can be learned by local variational method, with variational inference models q(h) and q(ρ),

by minimizing KL(q(h)q(ρ)|p(h,ρ|x), where we assume the inference distributions q(h) and q(ρ) to be
independent. This leads to the mean field method where we update the variational parameters for q(h) and
q(ρ) alternatively. It is similar to the Gibbs sampler for sampling p(h,ρ|x) by alternating the sampling of
p(h|ρ,x) and p(ρ|h,x). The sampling in MCMC is replaced by optimizing the variational parameters. For
each word x, q(h) tells us the topic. For each document, q(ρ) tells us the distribution of the topics.

13 Reinforcement Learning

The reinforcement learning lies between supervised learning and unsupervised learning. In supervised learn-
ing, the representation h(x) is used to predict y. In unsupervised learning, the representation h is used to
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encode and mirror x. In reinforcement learning, the representation h is used to predict the action or value.
In imitation learning, the action is observed, so the learning is supervised. In reinforcement learning, the
action is not observed, and the training signal is in the form of cumulated reward or value.

13.1 Alpha Go

Figure 52: Policy network and value network. The input is a 19× 19 image. The policy network is a classification
network. The value network is a regression network.

Alpha Go is a good starting point to learn reinforcement learning. Let s be the current state, which is a
19×19 image. Let a be the action, i.e., where to place the stone. There are 19×19 choices (although some
are forbidden by the rule). We want to decide the action a.

Game tree and minimax solution

Starting from the initial state, i.e., an empty board, the black and white players alternatively place black
and white stones on the board. This generates a game tree, whose breadth and depth are both big. We can
find minimax solution by back-propagation from the leaf nodes, so that each player chooses the moves that
maximizes its final result, i.e., a win in this case.

For Go, it is impractical to go through the whole game tree. We may use Monte Carlo tree search
(MCTS) to go over the promising moves. But pure MCTS is still quite challenging to implement. We use
policy network to reduce the breadth of the tree search, and the value network to reduce the depth of tree
search.

Supervised learning or behavior cloning

We can learn a policy network pσ (a|s), with parameter σ (stands for supervised) from the data {(s,a)}
collected from human players. See Figure 52 for an illustration of the policy network. This is a classification
problem and is a supervised learning problem. It is also called behavior cloning. The learning rule is

∆σ ∝
∂

∂σ
log pσ (a|s),

which maximizes the log-likelihood log pσ (a|s) over σ .
We can also learn a simpler roll out network to be used in Monte Carlo tree search.
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Reinforcement learning by policy gradient

After learning pσ (a|s), we can learn another policy network pρ(a|s) by reinforcement learning. Starting
from ρ = σ , we let pρ play against pσ , until the end. Let z ∈ {+1,−1} be whether ρ wins the game. We
update ρ by

∆ρ ∝
∂

∂ρ
log pρ(a|s)z.

The above updating rule is called policy gradient. It is similar to the above maximum likelihood updating
rule, except for the following two aspects: (1) the derivative of the log-likelihood is weighted by the reward
z. (2) the action a is generated by the current policy instead of human expert.

The above updating rule maximizes Eρ [z]. It is called REINFORCE algorithm. We will justify this
algorithm later on.

Value network

After learning pρ(a|s), we can let ρ play with itself from a random starting state s, until we reach the end
and get z. We then update the value network vθ (s) by

∆θ ∝
∂

∂θ
[z− vθ (s)]2.

See Figure 52 for an illustration of the value network.
The learned v can also be used as a baseline for policy gradient

∆ρ ∝
∂

∂ρ
log pρ(a|s)[z− vθ (s)],

where vθ (s) serves to reduce the variance of the gradient. Here vθ is the critic, and pρ is the actor.

Monte Carlo tree search

Figure 53: Monte Carlo tree search grows a tree by repeating the following four steps: selection, expansion, evalua-
tion, and backup.

After learning the policy networks pσ , pρ , and value network vθ , we can use either the policy network or
the value network to play the game. But this will not work well. Instead we use them to help us look ahead
and plan the next action using Monte Carlo tree search (MCTS). Specifically, we wan to estimate Q(s,a),
the value of action a at state s.

Treating the current state as the root, MCTS grows a tree by repeating the following four steps: selection,
expansion, evaluation, and backup. For each node s of the tree, and each action a from this node, we record
the number of visits N(s,a) and the action value Q(s,a). During each pass of MCTS, starting from the root
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state, we go down the tree until we get to a leaf node. At each non-leaf node s, we choose an action a that
balances Q(s,a) and N(s,a). We want to choose a with a high Q(s,a) for exploitation, meanwhile we also
want to choose a with low N(s,a) for exploration. When we come to a leaf node, we expand the tree using
all the possible moves from this node. Then we choose an expanded node, and use a roll out policy to play
the game until the end. Finally we backup the roll out result. For all the branches (s,a) we go through in
this pass of MCTS, we increase the visit count N(s,a) by 1, and increase or decrease the total value of (s,a)
by 1 according to the roll out result. Q(s,a) is then updated as the current total value divided by the current
visit count. MCTS is expected to converge to the minimax solution to the game.

The policy network can help guide the selection step. For each node s, we select the action according
to Q(s,a)+Cpσ (a|s)/

√
N(s,a) where the constant C balances the exploration and exploitation. We use the

supervised pσ instead of reinforcement learning pρ , because pσ is more diverse.
The value network can help avoid the reliance on roll out. For an expanded node s, instead of rolling

out to the end, and then backup, we can simply backup vθ (s) by adding the total value of a traveled branch
(s,a) the value vθ (s). The Alpha Go uses a linear combination of roll out result from s and vθ (s). Since s
is closer to the end of the game than the root node, the value vθ (s) can be a more precise estimate than the
value at the root node.

After many passes of MCTS, at the current root node s, we choose a with the maximal Q(s,a). We can
also choose a with the maximum N(s,a).

The MCTS is a planning process. Its purpose is to select the next move a from the current root node s.
After we make the move a in real game play, we can then discard the tree. When we need to choose the next
move in real game play, we start to grow another tree.

13.2 Alpha Go Zero

Figure 54: Alpha Go Zero. In self-play, we use MCTS to plan each move, where MCTS is guided by policy and
value networks. After the game is over, the game result is used to train the policy and value networks.

In Alpha Go, after learning the policy and value networks, we will not update it, and they are used for
MCTS for playing the game. This is a big waste, because when we use MCTS to play the game, the results
of the game play should be used to further update the policy and value networks. In fact, the policy and
value networks can be learned solely from the games where the moves are planned by MCTS.

In Alpha Go Zero, the learning of pσ , pρ and vθ before MCTS is discarded. Instead, p and v are learned
from the results of the self-play, and p and v in turn guides the MCTS in planning each move of the self-play.
Specifically, we iterate the following two steps:

(1) Given p and v, play a game where each move is planned by MCTS. Specifically, at each state s of the
game, we grow a tree in order to evaluate N(s,a) and Q(s,a) (in fact, N(s,a) and Q(s,a) are computed for
all the nodes in the tree). We let π(a|s) ∝ N(s,a)1/τ , where τ is the temperature parameter. We the discard
the tree and use π(a|s) to select the move a to play the game. We play the game until the end.
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(2) We use π(a|s) to train the policy p(a|s). We use the end result z ∈ {+1,−1} to train the value
network v(s) for all the states of the game.

In Alpha Go Zero, the policy and value networks share the same body, which consists of many residual
blocks. Each network has a head. Such a design makes sense because the two networks are consistent with
each other.

In Alpha Go and Zero, the policy network is like impulse or habit, and the value network is like gut
feeling. They are like emotions. The Monte Carlo tree search is to think through and plan. The reason we
have consciousness is that we need to know our emotions (as well as perceptions, i.e., what we see and hear)
in order to plan our actions.

13.3 Atari by Q learning

Figure 55: Atari. The action value network Qθ (s,a).

Atari is a video game. It is different from Go in the following two aspects. (1) In Atari we have
immediate rewards in terms of points earned at each step, while in Go the reward is delayed to the end. (2)
In Atari, a player does not know the dynamics or the detailed rules that drive the game, although the player
can play out the game to observe the change of the state and the reward earned, while in Go, a player knows
the rule of game.

We can learn to play Atari by Q learning, by learning the Q function Qθ (s,a) by playing out the game.
Q(s,a) is the cumulative reward to go, i.e., the total increase of score if we take action a at the current state
s, and then play out the game to the best of our ability. Suppose the cumulative reward to go is R. Then we
can update θ by

∆θ ∝− ∂

∂θ
(R−Qθ (s,a))2..

In order to obtain R, we need to play out the game by taking the best action at each step. However, this will
be time consuming. After taking the action a, we get the immediate reward r, and get to the next state s′.
Then we estimate R by r+ γ max′a Qθ (s′,a′), where maxa′ Qθ (s′,a′) is the cumulative reward to go at state s′

if we do our best. γ is the discount factor, usually taken to be close to 1. Then we can use the estimated R to
update θ .

The above method of predicting R is referred to as a bootstrap method, where we use the current model
Qθ (s,a) to help predict R. The difference between the predicted R and Qθ (s,a) is called temporal difference
error.

At each s, how do we take the action a? The greedy policy is to take a that maximize Qθ (s,a). Usually
we use the ε-greedy policy, where with ε probability, we take a random action, and with probability 1− ε ,
we take the greedy action.

Q-learning is a model free method, where we do not need to know the dynamics st+1 = f (st ,at) and the
reward function rt = r(st ,at), i.e., we do not know f () and r(), but at state st , we can try the action at to
observe st+1 and rt .
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13.4 Markov decision process (MDP)

Model

The model has two parts.
Part 1: The dynamic model is p(st+1|st ,at). In the deterministic case, st+1 = f (st ,at).
Part 2: The reward model is p(rt |st ,at ,st+1). In the deterministic case, rt = r(st ,at ,st+1), as well as

r̃(sT ) if there is a terminating state.
The dynamics model and the reward model are Markovian, in that we do not need to know the past

history before (st ,at).
The trajectory is τ = ((st ,at), t = 0, ...).
The return is

R(τ) =
T−1

∑
t=0

r(st ,at ,st+1)+ r̃(sT ).

For infinite horizon (i.e., no terminal state),

R =
∞

∑
t=0

γ
tr(st ,at ,st+1),

where γ is the discount factor. It is introduced so that R is finite. It also makes practical sense because we
are more certain about near future and want to collect rewards sooner.

Policy and value

A policy is π(at |st). Again it is Markovian. For deterministic policy, at = π(st).
Together with dynamics, the distribution of a trajectory τ is

p(τ) =
T−1

∏
t=0

π(at |st)p(st+1|st ,at).

Define the return to go at time t to be

Rt(τ) =
∞

∑
k=0

γ
krt+k,

where rt = r(st ,at ,st+1).
The state value is

vπ(s) = Ep(τ)[Rt | st = s],

The state-action value (or quality) is

Qπ(s,a) = Ep(τ)[Rt | st = s,at = a].

Usually we write Ep(τ) = Eπ because the distribution of trajectory depends on π , with the dynamics
fixed.

The optimal value is
v∗(s) = max

π
vπ(s).

Q∗(s,a) = max
π

Qπ(s,a).

A policy π∗ is optimal if vπ∗(s)≥ vπ(s) for all π and all s.
For MDP, one can always find a deterministic policy to be optimal.
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13.5 Model-based planning: play out in imagination

We can learn the dynamic model p(st+1|st ,at) and the reward model p(rt |st ,at ,st+1), and plan the optimal
sequence of actions (at , t = 0, ...,T − 1) to maximize the total reward. This is model-based planning or
optimal control. It is usually solved by dynamic programming. The value and policy are involved in the
calculation of dynamic programming. The Monte Carlo tree search is model-based planning.

In the computation of model-based planning, we may generate trajectories in our mind by imagining
playing out a sequence of actions. For instance, the Monte Carlo tree search is computed in the mind, not in
real play. After Monte Carlo tree search, we only play the first move in the real game.

13.6 Model-free learning: play out in real life

In model-free learning, we do not learn the dynamic and the reward models. Instead we take actions at at st

in real life, and observe st+1 and collect rt .
In value-based learning such as Q-learning, we estimate Q(s,a), and then use greedy policy that maxi-

mize Q(s,a) in testing.
In policy-based learning such as policy gradient, we roll out the trajectory and update the policy.
Model-based learning requires a small amount of data to learn the dynamic and reward models. Planning

does not require more data. The policy and value are computed from simulated data in the mind.
Model-free learning requires more data to estimate the value or policy from real life experience. We

need to repeatedly play out the actions in real life and observe the trajectories and rewards.

13.7 Temporal difference bootstrap

To reduce the data requirement in model-free learning, we do not need to play out the actions until the end.
In order to obtain the total return of the whole trajectory, we may play out for a few steps, and then stop
early, and use the current value function to estimate the rest of the return. The value function is expected to
be more accurate as we are closer to the end. This is the temporal difference bootstrap estimate. This is a bit
like imaginary playing out in model-based method, i.e., at the early stop, we ask ourselves: if we continue
to play until the end, what would be the return?

13.8 Q learning

The Q-learning is model-free value-based learning using the bootstrap idea. Let Qθ (s,a) be the value net-
work. Let s′ be the state observed after playing a at state s. Let R be the return if we play out as best as we
can. Then we can update θ by

∆θ ∝
∂

∂θ
[R−Qθ (s,a)]2.

We use the bootstrap method to get
R = r+ γ max

a′
Qθ (s′,a′).

At s, how should we choose a? Usually we use ε-greedy policy, i.e., with probability 1− ε , we take
a = argmaxa Qθ (s,a), and with probability ε , we take random action. This is the off-policy approach, i.e.,
in the learning stage, we do not take the greedy policy according to Q, because we need to explore other
actions. After learning, we can switch to the greedy policy in testing.

Q-learning is essentially dynamic programming, except that r is observed in real play, i.e., it is empirical
version of dynamic programming.
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13.9 REINFORCE, MLE, re-parametrization

For a policy network πθ (a|s), if we play out this policy in real life, we can obtain a trajectory τ , and the
distribution of τ is

pθ (τ) = ∏
t

π(at |st)p(st+1|st ,at).

The return is R(τ) = ∑t γ trt , where rt = r(st ,at ,st+1).
We want to find θ to maximize Ep(τ)[R(τ)].

REINFORCE

The gradient is

∂

∂θ
Epθ (τ)[R(τ)] =

∫
R(τ)

∂

∂θ
pθ (τ)dτ

=
∫ [

R(τ)
∂

∂θ
log pθ (τ)

]
pθ (τ)dτ

= Epθ (τ)

[
R(τ)

∂

∂θ
log pθ (τ)

]
.

The stochastic gradient (or empirical gradient) is to sample τ by playing out the policy πθ , and update θ by

∆θ ∝ R(τ)
∂

∂θ
log pθ (τ).

This is the REINFORCE algorithm.

REINFOCE vs maximum likelihood

If we observe an expert who plays out his policy to generate a trajectory, we can learn θ by maximum
likelihood, and the stochastic gradient is

∆θ ∝
∂

∂θ
log pθ (τ).

The differences between REINFORCE and maximum likelihood are as follows.
(1) In REINFORCE, τ is generated by the self policy. In MLE, τ is generated by the expert.
(2) In REINFORCE, there is R(τ) in the gradient. In MLE, there is no R(τ) term.
If we set R(τ) = c, a constant, then

Epθ (τ)

[
c

∂

∂θ
log pθ (τ)

]
=

∂

∂θ
Epθ (τ)[c] = 0.

This means one cannot learn from himself.

REINFORCE vs re-parametrization

In VAE, the inference model qφ (h|x) is like a policy, where x is the state, and h is the action. We want
to maximize Eqφ (h|x)[R(h)] for a function R(h). We can use REINFORCE algorithm to optimize φ . In
the parametrization trick, we write h = µφ (x) +Vφ (x)1/2e, where e ∼ N(0, Id), so that Eqφ (h|x)[R(h)] =

Ee[R(µφ (x)+V 1/2
φ

e)], which can be maximized by gradient ascent.
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Mapping the situation to reinforcement learning, if we can reparametrize the policy pθ (τ) by τ = πθ (e),
where e∼ p(e) independent of θ , and π is now a deterministic function, then we can maximize Ee[R(πθ (e)],
whose gradient is Ee

[
∂

∂θ
R(πθ (e))

]
. This is the same as the REINFORCE gradient Epθ (τ)

[
R(τ) ∂

∂θ
log pθ (τ)

]
.

However, Vare

[
∂

∂θ
R(πθ (e))

]
can be much smaller than Varpθ (τ)

[
R(τ) ∂

∂θ
log pθ (τ)

]
. In the former, we di-

rectly improve each sampled trajectory τ = πθ (e). In the latter, however, we improve the probability of those
sampled trajectories that have large R. For instance, suppose you want to learn how to shoot the basket ball.
In the reparametrization method, you try to improve each attempt by aiming carefully. In REINFORCE, you
randomly shoot the ball blindly, hoping that you may get lucky occasionally, and then you learn from these
lucky attempts. As a result, you need to try a lot of times.

13.10 Policy gradient: actor and critic

Independent of dynamics

The gradient is

∂

∂θ
Epθ (τ)[R(τ)] = Epθ (τ)

[
R(τ)

∂

∂θ
log pθ (τ)

]
= Epθ (τ)

[(
∞

∑
t=0

rt

)
∂

∂θ
log

(
∞

∏
t=0

πθ (at |st)p(st+1 | st ,at)

)]

= Eθ

[(
∞

∑
t=0

rt

)(
∞

∑
t=0

∂

∂θ
logπθ (at |st)

)]

= Eθ

[
∞

∑
t=0

(
∂

∂θ
logπθ (at |st)

∞

∑
t ′=0

rt ′

)]
,

where we ignore the discount factor for simplicity.

Independent of past

∂

∂θ
Eθ [R] = Eθ

[
∞

∑
t=0

(
∂

∂θ
logπθ (at |st)

∞

∑
t ′=0

rt ′

)]

=
∞

∑
t=0

Eθ

[(
∂

∂θ
logπθ (at |st)

(
t−1

∑
t ′=0

rt ′+
∞

∑
t ′=t

rt ′

))]

=
∞

∑
t=0

Eθ

[
∂

∂θ
logπθ (at |st)(Rt +C)

]
where C =

t−1

∑
t ′=0

rt ′

=
∞

∑
t=0

Eθ

[
∂

∂θ
logπθ (at |st)Rt

]
+∑

at

πθ (at |st)

[
∂

∂θ
logπθ (at |st)C

]

=
∞

∑
t=0

Eθ

[
∂

∂θ
logπθ (at |st)Rt

]
+

∂

∂θ

[
C∑

at

πθ (at |st)

]

=
∞

∑
t=0

Eθ

[
∂

∂θ
logπθ (at |st)Rt

]
+

∂

∂θ
C

=
∞

∑
t=0

Eθ

[
∂

∂θ
logπθ (at |st)Rt

]
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where

Rt =
∞

∑
t ′=t

rt ′

is the reward to go after action at , whereas ∑
t−1
t ′=0 rt ′ is constant relative to at , because at can only cause

change in the future, but it cannot change the past. Therefore we can remove it as a baseline.

Advantage

∂

∂θ
Eθ [R] =

∞

∑
t=0

Eθ

[
∂

∂θ
logπθ (at |st)(Rt −V (st))

]

for any baseline V (st), which cannot be changed by at . Here we take

V (st) =V π(st) = E[Rt | st ],

which is the value of st , averaged over all possible actions at ∼ π(a|st).

At = Rt −V (st)

is called the advantage of taking action at relative to other possible actions at st . Subtracting V (st) as a
baseline helps reduce the variance of the gradient. Again consider learning a policy to shoot the basket ball.
If you are very close to the basket and you hit the basket, it is not a big deal. But if you are beyond the
three-pointer arc and you hit the basket, you should learn from such attempts.

When computing the gradient, we fix π at the current policy.
We can learn θ by stochastic gradient

∆θ ∝

∞

∑
t=0

[
∂

∂θ
logπθ (at |st)(Rt −Vα(st))

]
where we run the policy πθ to the end. We also need to learn a value network Vα(s) to approximate V π(s).
The above update pushes the policy to favor the above average actions.

The policy πθ (a|s) is called an actor. The value Vα(s) is called a critic.

Temporal difference

We may also estimate Rt based on

V π(st) = E[Rt ] = E

[
n

∑
k=0

rt+k +V π(st+n+1)

]
.

Thus we can estimate Rt without running the policy to the very end, and we estimate Rt by

R̂t =
n

∑
k=0

rt+k +Vα(st+n+1),

which consists of two parts:
(1) Monte Carlo unrolling in real life: run the policy πθ for n steps to accumulate ∑

n
k=0 rt+k.

(2) Bootstrapping in imagination: prediction the rest of the accumulated reward by the current value
network Vα(st+n+1).
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This is a temporal difference scheme.
Thus we can use gradient descent

∆θ ∝

∞

∑
t=0

[
∂

∂θ
logπθ (at |st)

(
n

∑
k=0

rt+n +Vα(st+n+1)−Vα(st)

)]
.

Meanwhile we can update α by

∆α ∝

[
n

∑
k=0

rt+n +Vα(st+n+1)−Vα(st)

]
∂V
∂α

,

which seeks to approach the fixed point

V π(st) = E

[
n

∑
k=0

rt+k +V π(st+n+1)

]
by gradient descent on

[R̂t −Vα(st)]
2.

The above is not a real loss function because the target R̂t = ∑
n
k=0 rt+k +Vα(st+n+1) is based on the policy

network Vα itself, and this bootstrapped target keeps changing. Without Monte Carlo, it becomes a self-
fulfilling prophecy, and there is nothing for the value network to learn.

Q learning is similar to the learning of the value network Vα(s).

13.11 Partially observed MDP (POMDP)

Instead of directly observing s, we may observe o ∼ ρ(o|s), which is the observation model. Together
with the dynamics, it becomes a hidden Markov model or state space model. We can update the belief
bt = p(st | o≤t) by Bayes rule. In POMDP, we treat the belief as the state. Then it can still be formulated as
a MDP.

13.12 Multi-agent reinforcement learning

The Alpha Go is a two agent RL. In multi-agent RL, we need to define policy and value for each player.
In the cooperative setting, the players have a joint value function to maximize. In the competitive setting,
the players play zero-sum or non-zero sum game. In real life, the situation can be both cooperative and
competitive.

13.13 Inverse reinforcement learning (IRL)

In inverse reinforcement learning, an expert demonstrates (st ,at). We can learn a policy πθ (a|s) by super-
vised learning from the demonstrations by maximum likelihood. This is called behavior cloning. We can
also learn a reward or value function rθ (s,a) from demonstrations. This is called inverse reinforcement
learning. The value function turns to be more generalizable than the policy.

13.14 Energy-based model

An energy-based model is of the following form

pθ (x) =
1

Z(θ)
exp( fθ (x)),

96



where Z(θ) =
∫

exp( fθ (x)) is the normalizing constant. This model originated from statistical mechanics,
where − fθ (x) is called the energy function of x.

Suppose we observe xi ∼ pdata(x) independently for i = 1, ...,n. The log-likelihood is

l(θ) =
1
n

n

∑
i=1

log pθ (xi),

whose gradient is

l′(θ) =
1
n

n

∑
i=1

∂

∂θ
fθ (xi)−Eθ

[
∂

∂θ
fθ (x)

]
→ Epdata

[
∂

∂θ
fθ (x)

]
−Eθ

[
∂

∂θ
fθ (x)

]
,

and Eθt can be approximated by Monte Carlo samples from pθt (x).
IRL is a good context to introduce the energy-based model, where x is the action (we make the state

implicit for simplicity), and fθ (x) is the reward or value of action x.
The generator model or the flow model can be considered the policy model or actor, which can generates

the samples directly, whereas the energy-based model can be considered a critic or evaluator. Sampling
from energy-based model usually requires iterative Markov chain Monte Carlo (MCMC). It is also related
to optimal control or planning, where fθ (x) is an objective function.

Suppose we have a policy model πα(x) such as a flow model, we can train it together with the energy-
based model pθ by adversarial contrastive divergence

min
θ

max
α

[KL(pdata|pθ )−KL(πα |pθ )],

where πα is the actor and pθ is the critic.

14 Background: Convex Optimization and Duality

SVM brought convex optimization to machine learning. We will give a systematic treatment to this topic.
The easiest starting point is to write the primal problem as a min-max problem, and then change it to the
dual max-min problem, which is often easier to solve. We also give other geometric interpretations.

14.1 von Neumann minimax theorem

von Neumann’s game theory

There are two players, X and Y. Assume the loss function is F(x,y) from X’s perspective, where x is X’s
action and y is Y’s action. From Y’s perspective, his or her loss function is −F(x,y). This is a zero sum
game.

For each action x of X, the worse case scenario is maxy F(x,y). X wants to minimize the loss of the
worse case, i.e., minx maxy F(x,y). Similarly, Y wants to maxy minx F(x,y). The solution to the game exists
if

min
x

max
y

F(x,y) = max
y

min
x

F(x,y).

Convex-concave function and saddle point

F(x,y) is a convex-concave function if F(x,y) is convex in x given any fixed y, and F(x,y) is concave in y
given any fixed x. For example, F(x,y) = x2− y2 is such a convex-concave function. For convex-concave
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Figure 56: Saddle point of convex-concave function

Figure 57: The functions F(x,yi) live on different slices of yi. We project them onto the same plane. Left: min-max
≥ max-min. Right: For convex-concave F , max-min ≥ min-max.

F(x,y), the solution to the above min-max and max-min problem exists, and is the saddle point. If (x⋆,y⋆)
is the saddle point of F(x,y), then F(x,y⋆)≥ F(x⋆,y⋆)≥ F(x⋆,y). See Figure 56.

The existence of the solution can be understood as follows. For F(x,y), we can consider a discrete set
of y, i.e., {y1, ...,yn}. We can then plot the curves F(x,yi) for i = 1, ...,n. Each F(x,yi) is a function of x.
Then maxi F(x,yi) is the upper envelop of these functions. minx maxi F(x,yi) is the minimum of this upper
envelop. Now consider minx F(x,yi), it is the minimum of the curve F(x,yi). All the n minima are below the
upper envelop. maxi minx F(x,yi) is the maximum of these n minima, and is also below the upper envelop.
Thus minx mini F(x,yi)≥maxi minx F(x,yi).

Now we show that the converse is also true for convex-concave function. Consider F(x,y1) and F(x,y2).
Suppose we let y move on the line segment from y1 to y2. Suppose y= λy1+(1−λ )y2 for λ ∈ [0,1]. Because
F(x,y) is concave in y, we have

F(x,y)≥ λF(x,y1)+(1−λ )F(x,y2)≥ min
i∈{1,2}

F(x,yi),

where mini∈{1,2}F(x,yi) is the lower envelop. Let m(y) = minx F(x,y) be the minimum of F(x,y) for each
y. As y moves from y1 to y2, the minimum must be above the lower envelop. Since F(x,y) is convex for
each y, thus at a certain point y0, we must have m(y0) to be above minx maxi∈{1,2}F(x,yi), which is on the
lower envelop. Thus we have minx mini F(x,yi)≥maxi minx F(x,yi).

Thus we have min-max = max-min.

14.2 Constrained optimization and Lagrange multipliers

Rewrite constrained optimization as min-max

The primal problem is
minimize f (x), subject to g(x)≤ 0.

We can form the Lagrangian
L(x,λ ) = f (x)+λg(x), λ ≥ 0.
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The primal problem then becomes
min

x
max
λ≥0

L(x,λ ).

Even though we remove the constraint g(x) ≤ 0 in the above min-max problem, the constraint is auto-
matically satisfied. This is because for all x such that g(x)> 0, we can let λ →∞, so that L(x,λ )→∞. Thus
the solution to the min-max problem must satisfy the constraint g(x)≤ 0.

Complementary slackness

If (x,λ ) is the solution to the above min-max problem, then we must have

λg(x) = 0.

This is because λg(x)≤ 0, since g(x)≤ 0 and λ ≥ 0.
If g(x) < 0 strictly, then λ = 0. If λ > 0, then we must have g(x) = 0. This is the complementary

slackness, which is part of the KKT condition.

Dual problem

The dual problem is minλ≥0 minx L(x,λ ).
Let

q(λ ) = min
x

L(x,λ ).

Then the dual problem becomes maxλ≥0 q(λ ). After we find the optimal λ⋆, we can then go back to get the
optimal x⋆ by retrieving the solution to the above minx problem.

The dual problem can be simpler than the primal problem if the dimensionality of λ is much smaller
than the dimensionality of x. The Lagrange multiplier λ may also have a meaningful interpretation.

Dual is concave

Figure 58: For each λ , q(λ ) is the minimum of all the lines { f (x)+λg(x),∀x}, thus the function q(λ ) lower envelops
these lines, and is a concave function. The dual problem is to maximize q(λ ) over λ ≥ 0.

.

q(λ ) is a concave function. For any fixed x, L(x,λ ) is a linear function of λ with slope g(x) and intercept
f (x). For all x, we have a set of lines. For each λ , we take the minimum of all the lines. This gives us the
lower envelop illustrated in Figure 58. The lower envelop is concave whether f (x) and g(x) are convex or
not.

Two important dualities in statistics and machine learning are: (1) The duality between maximum en-
tropy and maximum likelihood in exponential family model. (2) The duality between maximum margin
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and minimal distance in support vector machine (SVM). In addition to the general geometric interpretations
provided here, each specific duality has its own special geometric interpretation.

Strong and weak duality

Figure 59: q(λ ) lower bounds f (x). In the left plot, q(λ ) kisses f (x) at (x⋆,λ⋆), and there is strong duality. In the
right plot, there is a duality gap between q(λ ) and f (x), and there is weak duality.

The function
q(λ ) = min

x
L(x,λ )≤ min

x:g(x)≤0
L(x,λ )≤ f (x),

for λ ≥ 0, thus q(λ ) lower bounds f (x), and q(λ⋆) ≤ f (x⋆). If q(λ⋆) = f (x⋆), i.e., q(λ ) kisses f (x), we
have strong duality. If q(λ⋆)< f (x⋆), there is a duality gap and we have weak duality.

Contour plot

Figure 60: In the left plot, the minimum of f (x) is within the constrained region g(x)≤ 0. Thus λ⋆ = 0 and g(x⋆)< 0.
In the right plot, the minimum of f (x) is outside the constrained region, and a contour of f (x) touches the contour
g(x) = 0 at x⋆. The two contours are co-tangent at x⋆, and the gradients of f (x) and g(x) at x⋆ are of opposite directions,
so that f ′(x⋆) = λg′(x⋆) for a λ > 0.

The situation is illustrated by Figure 60. In the left plot, the minimum of f (x) is within the constraint
g(x)< 0. Thus g(x⋆)< 0 and λ⋆= 0. In the right plot, the minimum of f (x) is outside the constraint g(x)≥ 0.
Thus the constrained minimum is achieved when the contour (level set) of f (x) touches the contour g(x) = 0
at x⋆, where the two contours are co-tangent, and the gradients of f (x) and g(x) at x⋆ are of the opposite
directions. Thus f ′(x⋆) = −λg′(x⋆) for some λ > 0, and the derivative of f (x)+λg(x) is equal to 0 at x⋆,
which minimizes f (x)+λg(x).
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Range plot

Figure 61: Left: the shaded region is S = {u = g(x), t = f (x)}. The constrained minimum is the lowest point of the
left half of the region with u ≤ 0. For each λ ≥ 0, the minimum q(λ ) of f (x)+λg(x) = t +λu is the intercept of
the supporting line of S with non-positive slope −λ . The maximum of q(λ ) is the highest intercept among all the
supporting lines of S. In the left plot, the minimum is attained for u < 0, and λ⋆ = 0. In the right plot, the minimum
is attained at u = 0, and λ⋆ < 0. Right: The maximum of the dual problem d⋆ is less than the minimum of the primal
problem f ⋆, so we have weak duality.

The situation can also be illustrated by Figure 64. Let (u = g(x), t = f (x)) be a point in the space of
(u, t). The range of (u, t) is illustrated by the shaded region S = {u = g(x), t = f (x),∀x}. The minimum of
t = f (x) is taken on the half of the shaded area to the left of the vertical axis, i.e., u = g(x)≤ 0. For each λ ,
the minimum of f (x)+λg(x), which is q(λ ), is the intercept c of the line t =−λu+c with a negative slope
−λ and the line supports the whole shaded region. We want to find λ ≥ 0 that achieves the highest intercept,
which is q(λ⋆). If the shaded area of (t,u) is concave, the highest intercept q(λ⋆) equals f (x⋆), and we have
the strong duality. If u⋆ = g(x⋆)< 0, the line is horizontal, and we have λ⋆ = 0. If u⋆ = g(x⋆) = 0, we have
λ⋆ > 0, and the line is tangent to the shaded region at u = g(x) = 0. If the shaded area is not concave, we
have weak duality, as illustrated by the right panel of Figure 64.

Equality constraint

The equality constraint can be similarly treated. Suppose we want to minimize f (x) subject to g(x) = 0. The
Lagrangian is L(x,λ ) = f (x)+λg(x), where λ can be any real number.

If we want to minimize f (x) subject to g0(x) = 0 and g1(x) ≤ 0. The Lagrangian is L(x,λ0,λ1) =
f (x)+λ0g0(x)+λ1g1(x), with λ1 ≥ 0.

14.3 Legendre-Fenchel convex conjugate

In constrained optimization, we can rewrite the problem into a min-max problem using the Lagrangian. We
can also rewrite an unconstrained minimization problem as a min-max problem, like what we did for the
hinge loss.

min-max = max-min again

Suppose the primal problem is
min

x
[ f (x)+ρ(x)],

e.g., ρ(x) = |x|2/2, and f (x) is the loss function such as the hinge loss. We can write

f (x) = max
λ

[λx− f ∗(λ )].
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Then the primal problem becomes

min
x

max
λ

[λx− f ∗(λ )+ρ(x)].

Its dual problem is
max

λ

min
x
[λx+ρ(x)− f ∗(λ )].

Let
q(λ ) = min

x
[λx+ρ(x)− f ∗(λ )],

which is particularly simple if ρ(x) = |x|2/2 and, in such a case, the dual problem is to maximize q(λ ).

Supporting lines and upper envelop

Figure 62: The lower support lines and the upper envelop.

f ∗ is the Legendre-Fenchel transform or the convex conjugate of f . For each λ , λx− f ∗(λ ) is the lower
supporting line of f (x) with slope λ . As a result, f (x) is the upper envelop of all the lower supporting lines.

Specifically, for a function f (x), let

f ∗(λ ) = max
x

[λx− f (x)].

Geometrically, f ∗(λ ) is the maxima gap between λx and f (x), i.e., if we drop the line λx by f ∗(λ ), so that
it becomes λx− f ∗(λ ), then this line is a supporting line of the function f (x). Stated differently, this line is
below f (x), but touches f (x) at x⋆ that maximizes λx− f (x).

We can represent f (x) as the envelop of its lower supporting lines, i.e.,

f (x) = max
λ

[λx− f ∗ (λ )].

For convex f , f ∗∗ = f . Otherwise, f ∗∗ is the lower convex envelop of f .
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Figure 63: Point line duality. A point in one plane corresponds to a line in another plane, and vice versa.

Point-line duality

The same form of calculating lower support line and upper envelop hints at a symmetry or duality. It is the
point-line duality. Specifically, for a point (λ ,b) in one plane, there is a line y = λx−b in the plane (x,y).
Conversely for a point (x,y), there is a line b = λx− y in the plane (λ ,b). Two points forming a line means
two lines meet at a point. For a convex function y = f (x), any point above y = f (x) corresponds to a line
below b = f ∗(λ ). Similarly, for any point (λ ,b) above the curve b = f ∗(λ ), there is a line below y = f (x).

Complementary regions

Figure 64: Complementary regions within the rectangle [0,x]× [0,λ ]. f (x) is the area of the region below λ = g(x),
and f ∗(λ ) is the area of the region above λ = g(x).

Another interpretation is based on complementary regions. Consider the curve λ = g(x) within the
rectangle [0,x]× [0,λ ]. Let f (x) =

∫ x
0 g(x)dx be the area below g(x) up to x. Let f ∗(λ ) =

∫
λ

0 g−1(λ )dλ

be the area above g(x) up to λ . The total area of the rectangle is λx. Then f (x) = maxλ [λx− f ∗(λ )] and
f ∗(λ ) = maxx[λx− f (x)].
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15 Background: Maximum Likelihood

The theory of maximum likelihood is an extension of the theory of Gauss on the optimality of least squares.

15.1 REINFORCE

The REINFORCE algorithm is based on the following identity

∂

∂θ
Eθ [h(x)] =

∂

∂θ

∫
h(x)pθ (x)dx

=
∫

h(x)
∂

∂θ
pθ (x)dx

=
∫ [

h(x)
∂

∂θ
log pθ (x)

]
pθ (x)dx

= Eθ

[
h(x)

∂

∂θ
log pθ (x)

]
.

h(x) is the cumulated reward. x is the action. The above gradient is similar to maximum likelihood, but the
gradient of the log-likelihood is weighted by the reward h(x).

15.2 Expectation of score is zero

In the above, let h(X) = 1 or constant. Then

∂

∂θ
Eθ [1] = 0 = Eθ

[
∂

∂θ
logθ (x)

]
.

Or more directly,

∂

∂θ

∫
pθ (x)dx = 0 =

∫ [
∂

∂θ
log pθ (x)

]
pθ (x)dx = Eθ

[
∂

∂θ
log pθ (x)

]
.

∂

∂θ
log pθ (x) is called score function.

Two interpretations

-θ

θtrue

6

average slope is 0 average slope is 0

log pθ (X)

-θ

θtrue

6

log pθ (X)

Interpretation 1: In the above figure, x ∼ pθtrue(x) for a fixed θtrue. Since x is random, log pθ (x) is a
random function of θ . The derivative of this random function at θtrue can be positive, negative or zero. On
average, the derivative is zero.
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Interpretation 2: If x ∼ pθtrue(x) for a fixed θtrue. Suppose we want to learn θ by maximizing the log-
likelihood log pθ (x) over θ . Suppose we are already at θtrue, then the gradient at θtrue should be zero on
average, i.e., the stochastic gradient algorithm should just stay around θtrue without a clear drift.

Although we compare REINFORCE with maximum likelihood, we need to be careful that the action x
is generated from the current policy pθ (x). The action x is not observed from an expert or a demonstrator.
Therefore, there is nothing for the model to learn from the x generated by itself, i.e.,

Eθ

[
∂

∂θ
logθ (x)

]
= 0,

according to the interpretation 2 above. The reason that REINFORCE works is because of the reward h(x),
which tells which action x is relatively better. Here h() serves to compare different x, i.e., h() is meaningful
only in terms of relative comparison.

15.3 Estimating equation

The log-likelihood

l(θ) =
1
n

n

∑
i=1

log pθ (xi)

measures the plausibility of θ in explaining (xi, i = 1, ...,n). To find the maximum likelihood estimate, we
can maximize l(θ) by solving l′(θ) = 0, i.e., we solve the estimating equation

1
n

n

∑
i=1

∂

∂θ
log pθ (xi) = 0.

Let θ̂ be the solution. θ̂ is random because x is random.
This equation is true on average, e.g.,

Eθ

[
∂

∂θ
log pθ (x)

]
= 0,∀θ ,

or with more clear notation,

Eθtrue

[
∂

∂θ
log pθ (x)

∣∣
θtrue

]
= 0,∀θtrue.

Thus θ̂ fluctuates around θtrue, and θ̂ → θtrue as n→ ∞, because according to the law of large number, the
estimating equation converges to

Eθtrue

[
∂

∂θ
log pθ (x)

]
= 0,

whose solution is θtrue no matter what θtrue is. This is called consistency of θ̂ .
In general, suppose we have a function hθ (x) so that

Eθ [hθ (x)] = 0,∀θ ,

then we can estimate θ by solving the estimating equation

1
n

n

∑
i=1

hθ (xi) = 0.
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15.4 Unbiased estimator

The requirement that Eθtrue [hθtrue(x)] = 0 is to ensure that there is no bias.

-�

6

?θtrue

Eθtrue [hθtrue(X)]< 0

θ̂ θ̂θ̂ θ̂ θ̂ θ -�

6

?θtrue

Eθtrue [hθtrue(X)]> 0

θ̂ θ̂θ̂ θ̂ θ̂ θ

bias direction for θ̂ ⇒⇐ bias direction for θ̂

6
direction of shift in intercept

?

Let xi ∼ pθtrue(x) for i = 1, ...,n. The dataset (xi, i = 1, ...,n) is random, thus 1
n ∑

n
i=1hθ (xi), illustrated as

a line, is also random. 1
n ∑

n
i=1hθtrue(xi) is the intercept. If the intercept does not fluctuate around zero, the

estimated θ̂ will not fluctuate around θtrue. Thus we should have Eθtrue [hθtrue(x)] = 0 for any θtrue. Such h()
leads to the unbiased estimator.

15.5 Variance of estimator

The variance of the estimator depends on the variance of intercept as well as the magnitude of the slope of
hθtrue(x).

-�

6

?θtrue

-�

6

?θtrue

same slope
smaller Var(intercept)

-

1
n ∑

n
i=1hθ (Xi)

1
n ∑

n
i=1hθ (Xi)

θ̂ θ̂θ̂ θ̂ θ̂ θ̂ θ̂θ̂ θ̂ θ̂

Var(θ̂) Var(θ̂)≥

θθ

If we keep the slope fixed, then the smaller the variance of the intercept, the smaller the variance of the
estimator.

106



-�

6

?θtrue

-�

6

?θtrue

steeper slope
same Var(intercept)

-

1
n ∑

n
i=1hθ (Xi)

1
n ∑

n
i=1hθ (Xi)

θ̂ θ̂ θ̂ θ̂θ̂ θ̂ θ̂θ̂ θ̂ θ̂

Var(θ̂) Var(θ̂)≥

θθ

If we keep the variance of the intercept fixed, then the bigger the slope, the smaller the variance of the
estimator.

15.6 Asymptotic distribution

More formally, the above explanation is based on the first order Talyor around θtrue,

1
n

n

∑
i=1

hθtrue(xi)+
1
n

n

∑
i=1

∂

∂θ
hθ (xi)

∣∣
θtrue

(θ −θtrue) = 0,

Thus
√

n(θ̂ −θtrue) =−
1√
n ∑

n
i=1 hθtrue(xi)

1
n ∑

n
i=1

∂

∂θ
hθ (xi)

∣∣
θtrue

.

One may think of it as a Newton-Raphson step from θtrue.
According to the central limit theorem,

1√
n

n

∑
i=1

hθtrue(xi)∼ N(0,Varθtrue [hθtrue(x)]).

According to the law of large number,

1
n

n

∑
i=1

∂

∂θ
hθ (xi)

∣∣
θtrue
→ Eθtrue

[
∂

∂θ
hθ (x)

∣∣
θtrue

]
.

Thus,

√
n(θ̂ −θtrue) = N

0,
Varθtrue [hθtrue(x)]

Eθtrue

[
∂

∂θ
hθ (x)

∣∣
θtrue

]2

 .

The variance of θ̂ is determined by the variance of the intercept and the magnitude of the slope.

15.7 Optimality of MLE

For the best unbiased estimator, we need to minimize the variance of the estimator. Since

Eθ [hθ (x)] =
∫

hθ (x)pθ (x)dx = 0, ∀θ ,
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∂

∂θ
Eθ [hθ (x)] =

∂

∂θ

∫
hθ (x)pθ (x)dx = 0,

∂

∂θ

∫
hθ (x)pθ (x)dx =

∫
∂

∂θ
hθ (x)pθ (x)dx+

∫ [
hθ (x)

∂

∂θ
log pθ (x)

]
pθ (x)dx

= Eθ

[
∂

∂θ
hθ (x)

]
+Eθ

[
hθ (x)

∂

∂θ
log pθ (x)

]
= Eθ

[
∂

∂θ
hθ (x)

]
+Covθ

[
hθ (x),

∂

∂θ
log pθ (x)

]
= 0

Thus

Eθ

[
∂

∂θ
hθ (x)

]
=−Covθ

[
hθ (x),

∂

∂θ
log pθ (x)

]

Eθ

[
∂

∂θ
hθ (x)

]2

= Covθ

[
hθ (x),

∂

∂θ
log pθ (x)

]2

≤ Varθ [hθ (x)]Varθ

[
∂

∂θ
log pθ (x)

]
.

Varθ [hθ (x)]

Eθ

[
∂

∂θ
hθ (x)

]2 ≥
(

Varθ

[
∂

∂θ
log pθ (x)

])−1

.

Varθtrue(θ̂)≥
1
n

(
Varθtrue

[
∂

∂θ
log pθ (x)

∣∣
θtrue

])−1

.

The minimum is achieved by

hθ (x) ∝
∂

∂θ
log pθ (x),

which leads to the maximum likelihood estimating equation.

15.8 Fisher information

Eθ

[
∂

∂θ
hθ (x)

]
=−Covθ

[
hθ (x),

∂

∂θ
log pθ (x)

]

If hθ (x) ∝
∂

∂θ
log pθ (x), then

−Eθ

[
∂ 2

∂θ 2 log pθ (x)
]

= Covθ

[
log pθ (x),

∂

∂θ
log pθ (x)

]
= Varθ

[
∂

∂θ
log pθ (x)

]
= I(θ),

which is the Fisher information. Thus for MLE,
√

n(θ̂ −θtrue) = N
(
0, I(θtrue)

−1) .
The bigger the Fisher information, the smaller the variance.
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θtrue
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θtrue

6

log pθ (X)

Fisher information measures the curvature of the log-likelihood as well as the variance of the slope of
the log-likelihood. Both the curvature and variance measure the change of the slope around θtrue.

-θ

θ̂MLE
θ̂

small curvature large curvature

l(θ)

l(θ)

-

θ̂MLE
θ̂

not plausible

~

still plausible

~

θ

The log-likelihood l(θ) = 1
n ∑

n
i=1 log pθ (xi) measures the plausibility of θ in explaining (xi, i = 1, ...,n).

If l(θ) is of high curvature, then a small deviation from MLE will make θ not plausible. Thus the dataset
gives us strong information about θ . If l(θ) is of low curvature, the dataset does not tell us much information
about θ .

15.9 Information geometry

A family of distributions {pθ} forms a manifold. What is a natural metric? How do we measure the distance
locally, i.e., between pθ and pθ+∆θ ? A natural choice is Kullback-Leibler. Using the second order Talyor,
we have

KL(pθ |pθ+∆θ ) = Eθ [log pθ (x)− log pθ+∆θ (x)]

= Eθ

[
log pθ (x)− (log pθ (X)+ ⟨ ∂

∂θ
log pθ (x),∆θ⟩+ 1

2
∆θ
⊤ ∂ 2

∂θ 2 log pθ (x)∆θ +o(|∆θ |2))
]

=
1
2

∆θ
⊤I(θ)∆θ

where the Fisher information I(θ) serves as the metric. Recall any symmetric matrix is a diagonal matrix
from a rotated viewpoint Q which consists of eigen vectors. Viewed from this perspective, when computing
the distance, we scale the components of ∆θ in this viewpoint differently. Therefore, a circle around θ in
the KL distance is an ellipse in the Euclidean distance.

The KL divergence is invariant to re-parametrization. If we change θ to γ = f (θ) by a one-to-one
mapping f , we will not change the KL-divergence.
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15.10 Natural gradient

The gradient is the steepest ascent we can achieve if we move a fixed small distance. Measured in Euclidean
distance,

log pθ+∆θ (x) = log pθ (x)+ ⟨∆θ ,
∂

∂θ
log pθ (x)⟩+o(|∆θ |)

≤ log pθ (x)+ |∆θ |
∣∣ ∂

∂θ
log pθ (x)

∣∣,
with equality achieved by ∆θ ∝

∂

∂θ
log pθ (x), which is the steepest direction for fixed |∆θ |. If we measure

the squared distance ∆θ by ∆θ⊤I(θ)∆θ , i.e., by |I(θ)1/2∆|2, then

log pθ+∆θ (x) = log pθ (x)+ ⟨∆θ ,
∂

∂θ
log pθ (x)⟩

= log pθ (x)+ ⟨I(θ)1/2
∆θ , I(θ)−1/2 ∂

∂θ
log pθ (x)⟩

≤ log pθ (x)+ |I(θ)1/2
∆θ |
∣∣I(θ)−1/2 ∂

∂θ
log pθ (x)

∣∣,
with the equality achieved by I(θ)1/2∆θ ∝ I(θ)−1/2 ∂

∂θ
log pθ (x), thus

∆θ ∝ I(θ)−1 ∂

∂θ
log pθ (x)

which is the steepest direction for fixed KL(pθ |pθ+∆θ ) = |I(θ)1/2∆|2. I(θ)−1 ∂

∂θ
log pθ (x) is the natural

gradient, which is invariant under re-parametrization.

16 Background: Second Order Taylor Expansion

16.1 Vector Form Second Order Taylor Expansion

Suppose f : Rd×1→ R and x ∈ Rd×1, then

y = f (x) = f (x1,x2, . . . ,xd)

and

f ′(x) =
(

∂ f
∂xi

)⊤
i=1,...,d

f ′′(x) =
(

∂ 2 f
∂xi∂x j

)
i=1,...,d, j=1,...,d

where f ′(x) ∈ Rd×1 and f ′′(x) ∈ Rd×d .

We consider the second order Taylor expansion of f (x) = f (x0 + tu) at x0, where u is a d × 1 vector,
and we can understand u as a unit length vector: suppose x = x0 +∆x, let t = |∆x|, then u = ∆x

|∆x| . Let
F : R→ R with F(t) = f (x), the second order Taylor expansion can be written as

F(t) = F(0)+F ′(0)t +
1
2

F ′′(0)t2 +o(t2).
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Next, we derive the vector form second order Taylor expansion. First, we rewrite F ′(t) and F ′′(t) as function
of x by the chain rule:

F ′(t) =
∂

∂ t
f (x0 + tu) =

d

∑
i=1

∂ f (x)
∂xi

∂xi

∂ t
= ⟨ f ′(x),u⟩

since f (x) depends on t via xi and xi = uit + x0i for i = 1 . . .d. Then,

F ′′(t) =
∂

∂ t
F ′(t)

=
∂

∂ t

d

∑
i=1

∂ f (x)
∂xi

∂xi

∂ t

=
∂

∂ t

d

∑
i=1

∂ f (x)
∂xi

ui

=
d

∑
i=1

∂

∂ t
∂ f (x)

∂xi
ui

=
d

∑
i=1

d

∑
j=1

∂ 2 f (x)
∂xi∂x j

∂x j

∂ t
ui

=
d

∑
i=1

d

∑
j=1

∂ f (x)
∂xi∂x j

u jui

= u⊤ f ′′(x)u

In fact, we can derive the formula compactly using the vector notation:

F ′(t) =
∂ f
∂x⊤

∂x
∂ t

= ⟨ f ′(x),u⟩= u⊤ f ′(x)

and

F ′′(t) =
∂ 2 f
∂ t2 = u⊤

∂

∂ t
f ′(x) = u⊤

∂ f ′(x)
∂x⊤

∂x
∂ t

= u⊤ f ′′(x)u

However, this derivation involves multi-variable calculus and the first way of the derivation is easier to un-
derstand.

Now we get the vector form second order Taylor expansion:

f (x) = F(t)

= F(0)+F ′(0)t +
1
2

F ′′(0)t2 +o(t2)

= f (x0)+ ⟨ f ′(x),u⟩t +
1
2

u⊤ f ′′(x0)ut2 +o(t2)

= f (x0)+ ⟨ f ′(x0),∆x⟩+ 1
2

∆x⊤ f ′′(x0)∆x+o(|∆x|2)

16.2 Geometric Understanding of Second Order Taylor Expansion

Let g = f ′(x0) and H = f ′′(x0) be the Hessian matrix. We first investigate the geometric understanding of
the first order term:
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Note that ⟨g,∆x⟩ = |g||∆x|cosθ , where θ denotes the angle between g and ∆x. Then when ∆x ∝ g, the
magnitude of ⟨g,∆x⟩= |g||∆x| is largest; while the magnitude of ⟨g,∆x⟩= 0 is smallest when ∆x⊥ g. This
explains why we update in the direction of the first derivative in gradient descent.

Then we consider the geometric understanding of the second order term:

By diagonalizing the hessian matrix H, we get H = QΛQ⊤, where Λ = diag(λi)i=1,...,d is a diagonal matrix,
and Q = (qi)i=1,...,d and ⟨qi,q j⟩= 1 if i = j; ⟨qi,q j⟩= 0 otherwise. Let ∆z = Q⊤∆x, we get

∆x⊤H∆x = ∆x⊤QΛQ⊤∆x = ∆z⊤Λ∆z =
d

∑
i=1

λi∆z2
i

For fixed value of the second order term, i.e. when ∑
d
i=1 λi∆z2 = ∆x⊤H∆x =C for constant C, we can rewrite

the equation as ∑
d
i=1

∆z2

1/λi
=C. For H that is semi-positive definite, ∑

d
i=1 λi∆z2

i ≥ 0, which means λi ≥ 0 ∀i.
In this case, ∑

d
i=1

∆z2

1/λi
=C is an ellipsis with axis zi for i ∈ {1, . . . ,d}. Also note that large λi corresponds to

the short axis, or the minor axis of the ellipsis in the 2D case. This will make more sense when we relate it
to the Newton-Raphson algorithm. When some λi < 0, the second order term would characterize a saddle
point, with the direction of ∆zi to be concave for λi < 0 and convex for λi > 0.

It’s also worth mentioning that the projection of ∆x to the subspace spanned by {qi : i ∈ {1, . . . ,d}} is
called analysis, while the reverse to be synthesis.

16.3 Relation to the Newton-Raphson Algorithm

Assume H > 0 and g ̸= 0. We consider the second order Taylor expansion of f (x) around x0.

Let ∆ = z− z0 = Q⊤(x− x0). Note that Q is orthonormal, so QQ⊤ = I; then we have

f (x)≈ f (x0)+ ⟨ f ′(x0),x− x0⟩+
1
2
(x− x0)

⊤ f ′′(x0)(x− x0)

= f (x0)+ ⟨ f ′(x0),QQ⊤(x− x0)⟩+
1
2
(x− x0)

⊤QΛQ⊤(x− x0)

= f (x0)+ ⟨ f ′(x0),Q(z− z0)⟩+
1
2
(z− z0)

⊤
Λ(z− z0)

= f (x0)+ ⟨Q⊤ f ′(x0),(z− z0)⟩+
1
2
(z− z0)

⊤
Λ(z− z0)

= f (x0)+
d

∑
i=1

(Q⊤ f ′(x0))i∆i +
1
2

d

∑
i=1

λi∆
2
i

=
1
2

d

∑
i=1

λi(∆i +(Q⊤ f ′(x0))i/λi)
2 + f (x0)−

d

∑
i=1

(Q⊤ f ′(x0)i/λi)
2

Since H > 0, f (x) is convex at the neighborhood of x0, and so it reaches the local minimum at the center of
the ellipsis (the first term above is of the form ∑λiα

2
i , which characterizes an ellipsis with axes to be αi’s).

Therefore, at the local minimum, we have ∆i +(Q⊤ f ′(x0))i/λi = 0 for all i. Pack the equations together,
∆+Λ−1Q⊤ f ′(x0) = 0, or ΛQ⊤(x− x0) +Q⊤ f ′(x0) = 0. Therefore, we get QΛQ⊤(x− x0) + f ′(x0) = 0
(QQ⊤ = I), or f ′′(x0)(x− x0)+ f ′(x0) = 0, so

x1 = x0− f ′′(x0)
−1 f ′(x0),
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where x1 is the minimum of the second order Taylor expansion. Note that this is of the same form with the
Newton-Raphson algorithm’s update.

From the update rule above, the geometric understanding of the first and second order terms of the Tay-
lor expansion makes sense. We update x in the direction of f ′(x), and adjust the step size according to the
curvature f ′′(x). For the steep direction with large curvature, we want to adjust our step size to be smaller
to prevent overshoot; for the direction with small curvature, where the function changes gradually, we want
to adjust the step size to be larger.

16.4 Second Order Taylor Expansion as the Surrogate Function

In some optimization problem, optimizing the original problem would be very hard. In these scenarios, we
might want to use the second order Taylor expansion to construct a surrogate function to approximate the
local optimal point.

For example, in the gradient descent algorithm, we minimize the surrogate function

s(x) = f (x0)+ ⟨ f ′(x0),x− x0⟩+
1

2η
|x− x0|2

to obtain x1. We know that s(x) = f (x0)+⟨ f ′(x0),x−x0⟩+ 1
2η
|x−x0|2 = 1

2η
|x−(x0−η f ′(x0))|2+constant,

so x should be updated to x = x0−η f ′(x0) in the gradient descent iteration.

Note that comparing with Newton-Raphson algorithm, we fix the step size here since the hessian matrix
H is computationally expensive. In fact, in some variants of the gradient descent, the momentum can be
understood to be an approximation of the curvature.

In the boosting algorithms, we also use the second order Taylor expansion as a surrogate. The surrogate
function can be rearranged to be a weighted least square loss, which is familiar to us and relatively easier to
optimize.
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