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First, let me state a simplified version of the Monstrous moonshine conjecture. The conjecture 

states that the numbers 196,883 and 196,884 that appear at two seemingly totally different places 

of mathematics are so close for a rational reason. It says that it isn’t just a coincidence. 

What are the two places? First, consider the Monster group. It is some group (set) of operations 

(the “group” means that there is a rule how to compose i.e. “multiply” two operations) analogous 

to the rotations of a cube or dodecahedron that keep the shape unchanged. Except that the 

monster group has almost 1054 elements. 

 

In the classification of all possible finite groups, the monster group is the largest “exceptional 

case” among the 26 or 27 exceptional groups known as “sporadic groups”. All other groups are 

organized in infinite families that generalize some “groups of operations” that an undergraduate 

student could understand after some “mild” generalization of what he learned in the linear 

algebra course. But the sporadic groups are harder, exceptions, and the monster group has the 

largest number of elements. 

You may represent the sporadic group as a finite set of some “rotations” on an N-dimensional 

space, in analogy with the group of symmetries of the dodecahedron. The smallest faithful space 

on which the monster group may be defined as a “space of some selected rotations” is 196,883-

dimensional. We say that the smallest non-trivial (the 1-dimensional “never-changing” 

representation is forbidden here) is 196,883-dimensional. 

So this number 196,883 appears in the theory of finite groups, some generalization of the science 

about the symmetries of Platonic solids, operations you may do with Rubik’s cube, and similar 

considerations.  

 
 

Now, where does 196,884 appear? Consider the space of all possible shapes of 2-dimensional 

tori or, equivalently, shapes of lattices in a 2-dimensional plane. A lattice is something 

generalizing ℤ2, the grid of points whose both coordinates are integer-valued. Except that you 

may take the lattice to be the set 

 

{𝑧=𝑚+𝑛𝜏, 𝑚,𝑛∈ℤ} 

 



Two examples of a two-dimensional lattice are seen above. So the shape of the grid is 

parameterized by the complex number 𝜏∈ℂ. Its imaginary part is variable and says that the 

spacing of the grid may be different in the vertical and horizontal direction: the ratio matters for 

the shape. Moreover, the real part of 𝜏 may make the grid slanted. For each grid, one may define 

a 2-torus by an identification, but I don’t need to talk about it. 

 

One may see that the values 𝜏 and −1/𝜏 are equivalent because they just correspond to the 

exchange of the two basis vectors. Also, changing 𝜏 to 𝜏+1 keeps the lattice unchanged. So the 

space of inequivalent lattices isn’t the whole 𝜏-plane but just a region of the plane, the 

“fundamental domain”. I don’t even need to tell you that the two operations generate a 

group 𝑆𝐿(2,ℤ) known as the modular group. 

 

Because of the 𝜏→𝜏+1 identification, you may take the real part of 𝜏 to be 

between −1/2−1/2 and +1/2+1/2. And because of the 𝜏→−1/𝜏 identification, you may take |𝜏|>1. 

So the fundamental domain is a semi-infinite strip with a round boundary. 

 

 
 

The two pictures of the fundamental (shaded) region above only differ by the choice which 

boundary belongs to it. Not a big deal, I needed a minute to spot the difference. 

OK, the left and right boundary are identified, and the circular boundary is identified in a “mirror 

way”, too. The points at 𝜏→𝑖∞ are conformally really just one point. So the topology of the 

fundamental region is equivalent to a two-sphere. For this reason, there must exist a holomorphic 

function that maps this 𝜏 from the fundamental region to a whole complex plane – which is also 

equivalent to a two-sphere, once you add the single point anywhere at infinity to complete the 

“stereographic projection” of the sphere. 

 

The function (mapping the fundamental domain to the whole complex plane) is unique up to 

some undetermined added 𝑆𝐿(2,ℂ) transformations (the Möbius 

transformation 𝑧→𝑧′=(𝑎𝑧+𝑏)/(𝑐𝑧+𝑑) mapping the plane onto the same plane, with four complex 

parameters) but one may pick one of the most natural choices for the map and it is given by the j-



invariant, a specific function 𝑗(𝜏). Interestingly enough, the function may be expanded 

for 𝜏→𝑖∞ and the expansion starts as 

 

exp(−2𝜋𝑖𝜏) + 196,884 exp(+2𝜋𝑖𝜏) +… 

 

The following terms are proportional to exp(4𝜋𝑖𝜏) and higher powers of exp(2𝜋𝑖𝜏) ≡ 𝑞, and their 

coefficients are increasing integers. But you see that the first nontrivial integer is 196,884, very 

close to the dimension of the minimum representation of the monster group. 

 

We found almost the same two large integers in two very different branches of mathematics: 

large sporadic finite groups (group theory) and some modular functions describing conformal 

maps in the complex plane (theory of complex functions). 

Is it a coincidence that these two numbers differ by one? Or is there a deeper explanation that 

unifies both situations? The answer is, of course, that there exists a deeper explanation. 

You may define a mathematical – but we may say physical – system whose symmetry is the 

monster group; but whose partition function in the physics sense is the 𝑗-function. What is the 

physical system? It’s the two-dimensional world sheet “conformal” theory describing the 

propagation of a string – the same string as used in realistic string theory – moving on the most 

beautiful 24-dimensional torus. 

 

What is the torus? It is a 24-dimensional space whose 24 coordinates are periodically identified, 

so basically only the 24 fractional parts of the coordinates matter. But the lattice we must use is 

the Leech lattice. It is the most beautiful 24-dimensional lattice. One of the reasons is that when 

balls of the right radius are placed at all the lattice sites, they demonstrably define the “densest 

packing” in 24 dimensions. In 8 dimensions, the analogous lattice with the densest packing is 

the 𝐸8 lattice (also a proven result). 

 

The Leech lattice is a lattice – a stretched and tilted version of ℤ24, much like the two-

dimensional lattices discussed above – which is unique if you impose the following conditions: 

the squared length of all the lattice sites is an even integer, the lattice is self-dual, so the lattice of 

all points that have an integer inner products with all the elements of the Leech lattice is the 

Leech lattice itself, and it has no lattice sites whose squared length is +2 – this minimum possible 

value “after zero” is accidentally banned. (If you dropped the last condition, and considered all 

the even self-dual lattices, there would be 24 distinct lattices in 24 dimensions – the Leech lattice 

would be one of them.) 

 

This lattice by itself has some nice discrete symmetry analogous to the symmetries of the 

Platonic solids above. The group of automorphisms of the Leech lattice is known as the Conway 

group Co0 – a smaller of the 26 or 27 sporadic groups (Co1 is just a quotient of Co0 by its 2-

element center, and Co2 is another subgroup of Co0). But if you allow strings to propagate on 

the torus obtained by the identification using this lattice, you will find out that the strings have a 

bigger symmetry group – an extension of the Conway group which happens to be the monster 

group itself. 



So the string theory for strings propagating on the 24-dimensional “Leech torus” demonstrably 

has the monster group as its symmetry group. So all excited energy levels of the string must form 

representations of the monster group. If you count the states at the first excited level, you will see 

one singlet and one copy of the minimum 196,883-dimensional nontrivial representation of the 

monster group. In total, there are 196,884 states at the first excited level. This clarifies why the 

string theory compactification is linked to the “group theoretical” appearance of the number. 

On the other hand, the partition sum of this string theory may be shown to be the simple 𝑗-
function. In the expansion of the partition sum, string theory guarantees that the coefficients are 

related to the number of states at various excited energy levels of the vibrating string. While 

more complicated “modular” functions could appear as the partition sum of the particular string 

theory, one may show that due to the special properties of the Leech lattice, a partition sum that 

is as simple as the 𝑗-function is the right one. So this establishes the connection of the string 

theory with the expansion of the 𝑗-function in calculus. 

 

In total, the string theory is connected to both sides – the group-theoretical and the complex-

plane-based “version” of the number 196,883 or 196,884. That means that the version of string 

theory connects these two numbers with one another, too. 

There exist various other versions of string theory, e.g. those using the K3 surfaces, that similarly 

explain various “cousins” of the monstrous moonshine, e.g. the Umbral moonshine. Also, all the 

other terms in the expansion of the 𝑗-function have coefficients that are dimensions of other 

simple enough representations (the direct sums of several irreps: the monster group has 194 

distinct irreps – as you might know, it means that it has 194 conjugacy classes, too). 

 

Borcherds has used all the mathematical features of the string theory above and completed a 

rigorous proof, while avoiding much of the (motivating and heuristic) physicists’ jargon that was 

mostly used above. So he would talk about the vertex operator algebra (VOA) and not string 

theory, and so on, but the beef is the same. 

 


