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Preface

When I tried to learn quantum field theory, it was a frustrating
experience. When I read the standard textbooks, I felt as if I had
hired a climbing coach to show me how to get to the top of Mt.
Everest and right after the start he would take my hand, say:
"Watch this!", and then make a huge jump upwards. From one
moment to the next I was 100 meters above the ground but had
no idea how I got there.

There were no retrospective explanations either, just more and
more jumps upwards accompanied by "encouraging" statements
that everything is "obvious" or "easy". It was puzzling and frus-
trating.

Most physicists will tell you that it has to be this way. That
this is the only way to understand. I’m convinced that this is
nonsense.

Using our Mt. Everest analogy, who do you think will learn
more effectively:

B Someone who has watched a world-class climber make in-
credible moves for a few hours and afterwards tries to do
them himself,

B or someone who has a coach who takes him through the
motions step by step?

I’m not saying that the first approach doesn’t work. It’s obvi-
ously extremely popular and currently the standard approach in



8

universities all around the world. But my goal with this book is
to provide an alternative that takes an approach which is closer
to the second scenario.

In fact, I eventually discovered a textbook that convinced me
that a step-by-step approach may not only be possible but can
be also enjoyable and effective. The book is called Student
Friendly Quantum Field Theory by Robert D. Klauber. It’s a
fantastic book and remains to this day my favorite textbook.

Klauber’s book motivated me to write student-friendly text-
books on all kinds of topics ranging from classical mechan-
ics1 to gauge theory2. But it also discouraged me from writ-1 Jakob Schwichtenberg. No-

Nonsense Classical Mechanics : a
student-friendly introduction. No-
Nonsense Books, Karlsruhe, Ger-
many, 2019b. ISBN 9781096195382

2 Jakob Schwichtenberg. Physics
from Finance. No-Nonsense Books,
Karlsruhe, Germany, 2019c. ISBN
978-1795882415

ing a quantum field theory textbook. Instead, I recommended
Klauber’s book at every possible occasion to everyone who
would listen. I still do.

So why did I eventually write a quantum field theory textbook
nevertheless?

I learned a lot about quantum field theory in the past few years
and slowly but steadily realized that I would explain most con-
cepts completely different than Klauber does in his book. Not
necessarily better, but different.3 Therefore, I figured that it

3 It’s, in fact, impossible to say in
general terms which explanation is
the best since the effectiveness of an
explanation always depends on the
reader’s interests and background.

won’t hurt anyone if there is a second student-friendly intro-
duction to quantum field theory on the market. The readers can
still decide which book they prefer and since the books are quite
different, it’s possible to read both without getting bored. Every
author is able to provide a unique perspective and for any topic
you need multiple perspectives to grasp the whole picture.

With that said, let me explain in a bit more detail what makes
this book different.

B First, it wasn’t written by a professor. As a result, this book
is by no means an authoritative reference. Instead, this book
is written like a casual conversation with a more experienced
student who shares with you everything he wishes he had
known earlier. I’m convinced that someone who has just
recently learned the topic can explain it much better than
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someone who learned it decades ago. Many textbooks are
hard to understand, not because the subject is difficult, but
because the author can’t remember what it’s like to be a
beginner4. 4 This is known as the "Curse of

Knowledge."

B Second, this book is unique in that it contains lots of idiosyn-
cratic hand-drawn illustrations. Usually, textbooks include
very few pictures since drawing them is either a lot of work
or expensive. However, drawing figures is only a lot of work
if you are a perfectionist. The images in this book are not as
pretty as the pictures in a typical textbook since I firmly be-
lieve that lots of imperfect illustrations are much better than
a few perfect ones. The goal of this book, after all, is to help
you understand quantum field theory and not to win prizes
for my pretty illustrations.

B Finally, my only goal with this book was to write the most
student-friendly quantum field theory textbook and not, for
example, to build my reputation. Too many books are unnec-
essarily complicated because if a book is hard to understand
it makes the author appear smarter.5 To give a concrete ex- 5 To quote C. Lanczos: "Many of

the scientific treatises of today
are formulated in a half-mystical
language, as though to impress
the reader with the uncomfortable
feeling that he is in the permanent
presence of a superman."

ample, nothing in this book is assumed to be "obvious" or
"easy to see". Moreover, calculations are done step-by-step
and are annotated to help you understand faster.

However, this book is certainly not a good fit for everyone. In
particular, a necessary byproduct of the slower step-by-step ap-
proach is that we won’t get as far as most other books. Instead
of talking about dozens of advanced topics, we will only discuss
the fundamental ideas at the heart of quantum field theory in
detail. Secondly, by reading this book you will not become a
skillful practitioner. The main focus is on understanding the
basic concepts and not on how to calculate cross sections.6 Of 6 I’m not a fan of books that try

to achieve various things at once
since it means that they won’t do
any of them particularly well. In
particular, I think it’s annoying
when important ideas are "left for
the reader as an exercise".

course, you can learn about advanced concepts and how to cal-
culate cross sections by consulting other textbooks after reading
this book. I’m convinced that this book will provide you with a
solid foundation for such further studies.
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Without any further ado, let’s dive in. I hope you enjoy reading
this book as much as I have enjoyed writing it.

Karlsruhe, December 2019 Jakob Schwichtenberg

PS: If you find an error, I would appreciate a short email to
errors@jakobschwichtenberg.com.

PPS: You can discuss the content of the book with other readers,
ask questions and find bonus material at:
www.nononsensebooks.com/qft/bonus.
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Before we discuss any details, we need to talk about three
things. First, a crucial question:

Why should you care about quantum field the-
ory?

Quantum field theory is the best theory of elementary particles
and their interactions that we have. Using quite a small set of
input parameters, quantum field theory allows us to make an
extremely large number of wide ranging predictions.

Most importantly, all predictions made using it so far have
proved to be correct. In fact, the predictions made using quan-
tum field theory have resulted in some of the most spectac-
ular agreements with experiment imaginable. Famously, the
quantum field theoretical prediction and measurements of the
electron anomalous magnetic dipole moment are in agreement
within ten parts in a billion (10�8).

But quantum field theory is not only amazing because it allows
us to describe lots of phenomena, but also because it allows us to
actually understand them. A few examples:

B Quantum field theory allows us to understand the common
origin and properties of three of the four known fundamental
forces. Electrogmagnetic interactions, strong interactions
and weak interactions can all be understood and described
perfectly within the framework of quantum field theory.7 7 The fourth known fundamental

force, gravity, is described by Ein-
stein’s theory of general relativity.
Currently, there exists no entirely
satisfactory model that incorporates
gravity into the framework of quan-
tum field theory. This is known as
the problem of quantum gravity.

B Quantum field theory also offers an intriguing perspective on
the origin of the masses of elementary particles. According
to our present understanding, all known massive elemen-
tary particles are inherently massless and only acquire the
property that we call mass dynamically through the Higgs
mechanism.
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B Quantum field theory explains why all electrons that we’ve
observed so far have exactly the same properties.8Quantum8 In fact, this is true for all elemen-

tary particles. field theory allows us to understand why different, yet indis-
tinguishable, copies of elementary particles exist.

Motivated by these phenomenal results, some physicists like
David Tong, just to name one example, go even as far to declare
that "quantum field theory is literally the language in which the laws
of Nature are written."

I’m personally not that optimistic that we’ve already found the
ultimate framework to describe nature for reasons that are dis-
cussed in Chapter 18. But what is unquestionable is that quan-
tum field theory represents the present frontier in theoretical
physics. It’s the "ultimate" theory that we currently know about
and thus, anyone who wants to explore new territory needs a
solid understanding of it.

And even though quantum field theory represents the cumula-
tive result of the works of thousands of physicist over hundreds
of years, it is beautiful and simple at it’s core. This is astonish-
ing if you think about it. There is no reason why nature should
behave according to a small set of simple rules that can be de-
rived from a few basic principles. It’s this fact which makes
many physicists optimistic that we’ve indeed revealed some-
thing deep about nature.

In addition, it’s also worth mentioning that there are also more
pragmatic reasons to learn about quantum field theory. It’s an
extremely versatile tool and can also be used to describe, for
example, condensed matter systems or financial markets. Fa-
mously, we can use quantum field theory to explain unexpected
phenomena such as the fractional quantum Hall effect, or super-
conductivity.

With all of this in mind, I’m confident to declare that you won’t
regret any minute you spend learning about quantum field
theory. At the very least, your perspective on how nature works
will be permanently changed.
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Preliminaries

Almost everybody will tell you that you need a solid grasp of

B the Lagrangian formalism,

B special relativity,

B and quantum mechanics

to properly understand quantum field. This is certainly not
completely wrong. If you know the fundamentals of these three
topics you will find it much easier to understand the main ideas
of quantum field theory.

On the other hand, however, it’s certainly not impossible to get
some understanding of what quantum field theory is all about
without having studied the Lagrangian formalism, special rela-
tivity and quantum mechanics in detail. Moreover, I’m not a fan
of just-in-case learning and find a just-in-time approach much
more effective (especially for self-learners).9 So if your main 9 I’m not saying that just-in-case

learning is wrong. There is no
wrong approach. Different methods
work for different people and
ultimately you need to figure
out for yourself what works best
for you. If you’re unsure, my
suggestion would be that you
give the more direct, dive-right-in
approach a go. If it doesn’t work
out, you can still revert to a more
traditional approach.

goal is to understand quantum field theory, I don’t think it’s
very smart to spend years preparing for this goal by learning
other topics. How can you know in advance which aspects of
other topics are really relevant for your goals? Moreover, it’s
really hard to stay motivated if your real goal always seems
incredibly far away.

Instead, it’s far more effective to dive right in. Once you actually
start learning quantum field theory, you will quickly notice
which aspects of other topics are really relevant. You can then
close gaps in your knowledge on a case-by-case basis as you
move along. If you follow such an aggressive learning approach,
you will not only know what exactly you should learn more
about, but you will also be extremely motivated to do so.

Motivated by this general philosophy, I try to keep all my books
as self-contained as possible. For the book you’re reading right
now this means that we will discuss just enough special relativ-
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ity, quantum mechanics and of the general ideas behind the La-
grangian formalism to understand what is going on in quantum
field theory. Moreover, I will freely refer you to other resources
such that you can always catch up on the details whenever you
feel like a deeper discussion is necessary.

The third thing we need to talk about is the meaning of a few
special symbols which we will use in the following chapters.

Notation

B Three horizontal lines ⌘ indicate that we are dealing with a
definition.

B The symbol !
= means "has to be", i.e., indicates that we are

dealing with a condition.

B The most important equations, statements and results are
highlighted like this:

∂L
∂q

� d
dt

✓
∂L
∂q̇

◆
= 0 (1)

B ∂ f (x,y,z,t)
∂t denotes the derivative with respect to t.

B A dot above a function denotes the derivative with respect to
time q̇(t) ⌘ dq(t)

dt and q̈(t) ⌘ d2q(t)
dt2 .

B We sometimes use the shorthand notation ∂i ⌘ ∂
∂i for the

partial derivative where i 2 {x, y, z} and ∂µ for µ 2 {t, x, y, z}.

B Greek indices like µ, n or s, are always summed from 0 to 3:

xµyµ =
3

Â
µ=0

xµyµ.
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B In contrast, Roman indices like i, j, k are always summed from
1 to 3:

xixi ⌘
3

Â
i=1

xixi.

B dij denotes the Kronecker delta, which is defined as follows:

dij =

8
<

:
1 if i = j

0 if i 6= j

B eijk denotes the three-dimensional Levi-Civita symbol:

eijk =

8
>><

>>:

1 if (i, j, k) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
0 if i = j or j = k or k = i

�1 if (i, j, k) = {(1, 3, 2), (3, 2, 1), (2, 1, 3)}

B To avoid that the layout breaks, column vectors are often
written as a transposed row vector. For example

~v = (0, 1, 0)T =

0

B@
0
1
0

1

CA

B † denotes the Hermitian conjugate which is a composition
of complex conjugation and transposition: A† = AT?. For
ordinary functions, the transposition makes no difference and
hence we have f † = f ?.

B An expression of the form A ⌧ B means that A is much
smaller than B. Similarly B � A means that B is much larger
than A.

B The notation 02⇥2 is used for the (2 ⇥ 2) matrix that only
contains zeroes. Moreover, , 12⇥2 denotes the (2 ⇥ 2) unit
matrix.

Although not notational issues, but nevertheless important, the
following two comments on the word usage in this book:

B By coordinate transformation I always mean rotations, boosts,
translations or mirroring transformations. There are lots of
additional coordinate transformations (diffeomorphisms) that
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are important in other contexts which aren’t discussed in this
book.

B The word fundamental in this book means "fundamental as
far as we know". Quantum field theory is not necessarily the
end of the story, but it’s still useful to speak of fundamental
fields and elementary particles.

That’s it. We are ready to dive in (after a short look at the table
of contents).
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1

Bird’s-Eye View of Quantum
Field Theory

Quantum field theory is, at its heart, quite simple. However,
specific applications can be extremely complicated and confus-
ing. For this reason it’s easy to lose the forest for the trees. To
prevent this, we start this book with a quick overview. After-
wards, we will talk about the various concepts in more detail
and gradually refine our understanding until we are ready for
applications.

So don’t worry if not everything is immediately clear in this
chapter. Our goal is solely to get an overview and each idea
mentioned here will be discussed later in more detail.

The most basic objects in quantum field theory are fields. A
field is a mathematical object that assigns a value (or a more
complicated object) to every point in space at every moment in
time.
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In quantum field theory, we describe nature by imagining that
there are various fields stacked upon each other at each space-
time point.

Moreover, we interpret specific field excitations as elementary
particles. For example, an elementary excitation of the electron
field is what we call an electron.

The most important kinds of fields in modern physics are scalar
fields, spinor fields and vector fields. A scalar field assigns a
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scalar to each spacetime point, a spinor field a spinor and a
vector field a vector. For each kind of a field there is a different
equation of motion that tells us how it evolves in time. For
example, the Klein-Gordon equation1 1 To unclutter the notation we use x

as a short-hand notation for xµ.

(∂µ∂µ + m2)f(x) = 0 , (1.1)

is the equation of motion for scalar fields. Its general solution
reads2 2 Here we use the short-hand

notation kµxµ = kx.

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�ikx + a†(~k)eikx

⌘
. (1.2)

In quantum field theory, fields are no longer ordinary functions
but operators. This is encoded in the canonical commutation
relation

[f(t,~x), p(t,~y)] = id(~x �~y) , (1.3)

where p ⌘ ∂L
∂(∂0f) is the conjugate momentum density. If we

plug the general solution of the Klein-Gordon equation into the
canonical commutation relation, we find

[a(~k), a†(~k0)] = (2p)3d(~k �~k0) ,

[a(~k), a(~k0)] = 0 , [a†(~k), a†(~k0)] = 0 . (1.4)

This tells us that a†(~k0) is a creation operator, while a(~k) is
an annihilation operator. We say that when a†(~k) acts on the
ground state of the field |0i, the result is a state that describes a
single particle with momentum~k:

a†(~k) |0i ⌘ |1~ki . (1.5)

Analogously, we can describe field configurations that contain
multiple particles. For example,

a†(~q)a†(~k) |0i ⌘ |1~k, 1~qi (1.6)

is a state that describes two particles, one with momentum
~k and one with momentum ~q. Moreover, it follows from the
commutation relations that when a(~k) acts on a state, a particle
with momentum~k is annihilated

a(~k) |1~k, 1~qi = |1~qi . (1.7)
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Similarly, we can interpret the coefficients that appear in the
general solution of the Dirac equation which describes spinor
fields and in the general solution of the Proca equation which
describes gauge fields.33 There are important but subtle

differences in how we interpret
scalar fields, spinor fields and
gauge fields in a quantum context.
We will discuss them in detail in
Part I.

One of the most important aspects of quantum field theory is
that it allows us to describe scattering processes. In particular,
we find the probability amplitude that a specific initial con-
figuration |ii (for example, two electrons) evolves into a final
configuration h f | (for example, two electrons with different
momenta) by evaluating

A(i ! f ) = h f |Ŝ|ii y

= h f |ii � i h f |
Z •

�•
dt1Hi(t1)|ii

� 1
2!

h f |T
✓Z •

�•
dt1Hi(t1)

◆✓Z •

�•
dt2Hi(t2)

◆
|ii � . . .

y

definitions

= A(0) + A(1) + A(2) + . . . , (1.8)

where Hi denotes the interaction Hamiltonian. This is known
as the Dyson series. Probability amplitudes can not usually be
calculated in closed form and a perturbative approach is nec-
essary. We evaluate each term in the Dyson series individually
for each given scattering process and include as many terms as
necessary to match the experimental accuracy. Moreover, the
zeroth term is only important if no change happens.

As an example, let’s consider how two particles that we call
pions, p0, which are associated with a single scalar field f inter-
act.
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The dominant contribution to the Dyson series reads

A(1) ⌘ �i hp0
k3

, p0
k4
|i
Z •

�•
dt1Hi(t1)|p0

k1
, p0

k2
i

y

=
�l

24

Z •

�•
d4x hp0

k3
, p0

k4
|f4(x)|p0

k1
, p0

k2
i . (1.9)

We then use that we can understand a field as an integral over
creation and annihilation operators

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�i(kx) + a†(~k)ei(kx)

⌘

y

definitions
= f�(x) + f+(x) , (1.10)

where f� is an integral over annihilation operators, while f+ is
an integral over creation operators.

If we plug this into the formula for the probability amplitude
(Eq. 1.9) we find many, many terms. For simplicity, let’s con-
sider just one of them: f+f+f�f�. The corresponding contribu-
tion to the Dyson series reads

�l

24

Z •

�•
d4x hp0

k3
, p0

k4
|f+(x)f+(x)f�(x)f�(x)|p0

k1
, p0

k2
i . (1.11)

The factor f�(x)f�(x) acts on the initial state |p0
k1

, p0
k2
i first.

The result is the ground state |0i multiplied by some numerical
factors:

f�(x)f�(x) |p0
k1

, p0
k2
i = numerical factor ⇥ |0i . (1.12)
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Afterwards, f+(x)f+(x) acts on the ground state |0i. This
yields a superposition of two-particle states with different mo-
menta:

f+(x)f+(x) |0i = numerical factor ⇥
Z

d3k d3q |p0
q , p0

ki . (1.13)

Since we are interested in a specific final state, we then act with
hp0

k3
, p0

k4
| on this superposition which projects out the numerical

factor that we are really interested in;

Z
d3k d3q hp0

k3
, p0

k4
|p0

q , p0
ki = numerical factor ⇥

Z
d3k d3qd(k � k3)d(q � k4) y

= different numerical factor. (1.14)

The final step is to integrate over the volume of the system that
we are considering to take into account that the interaction can
happen, in principle, everywhere.44 This is necessary because we

consider initial and final state with
exactly known momenta. In a
quantum context this implies that
the corresponding particles are
delocalized completely in space.
(This is a result of the Heisenberg
uncertainty relation.) Hence, we
must take all possible interaction
points into account.

In summary, we can describe this contribution to the total prob-
ability amplitude as follows. Two particles with momenta k1
and k2 enter the system. They interact at a location x at which
they annihilate. But at the same moment in time and at the
same location two new particles emerge with possibly different
momenta k3, k4. This is illustrated in the following figure, which
is known as a Feynman diagram.

Additional terms in the Dyson series describe different ways in
which the two particles can interact with each other. The total
probability amplitude is the sum over all the contributions from
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processes that start with two particles with momenta k1, k2 and
end with two particles with momenta k3, k4. An example of a
higher order contribution is shown in the following figure.

This was, of course, just a quick glimpse at what lays ahead of
us. In the following chapters we will discuss all of the concepts
introduced here (and many others) multiple times from various
perspectives.

We will start by talking about fields in an entirely classical con-
text. This will allow us to develop some understanding of how
fields behave when they are alone and how they interact. After-
wards, we will discuss how we can interpret fields in a quantum
context. The third step is to discuss applications of quantum
field theory with a special focus on scattering processes. In
the final part of the book, we will then discuss various slightly
more advanced ideas like symmetry breaking, the path integral
formulation, and non-perturbative phenomena.
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Part 0
Foundations

"He who can go to the fountain does not go to the water-jar."

Leonardo da Vinci

PS: You can discuss the content of Part 0 with other readers and give feedback at
www.nononsensebooks.com/qft/bonus.

www.nononsensebooks.com/qft/bonus




bird’s-eye view of quantum field theory 33

In any physical theory, there are various actors and there are
rules that describe how they behave. In addition, there is a stage
on which all the drama unfolds.

Our main goal in this first part of the book is to become fa-
miliar with the actors, the rules and the stage that are most
relevant for quantum field theory. To simplify the discussion,
we will discuss them in this part of the book entirely in a classi-
cal context. However, we will see in the next part that almost all
lessons that we learn in a classical context remain relevant for
quantum field theory.

My hope is that a separation into "what?", "how?", and "why?"
will help you to understand the internal structure of quantum
field theory and its underlying assumptions as clearly as pos-
sible. Most importantly, I hope that you’ll be able to recognize
that neither the actors, nor the rules or the underlying assump-
tions are particularly difficult to grasp. All the confusing stuff
typically only appears when we try to describe the various ac-
tors in specific situations. A useful analogy is chess. The game
itself is simple, but specific matches and situations within a
match can be incredibly complicated to analyze. Analogously,
quantum field theory is simple but certain applications of it can
be extremely difficult.

With that said, let’s discuss our plan in this part of the book in a
bit more detail.

The first thing we need to talk about is the stage on which
quantum field theory takes place. The total stage consists of
a "floor" that we call Minkowski spacetime plus abstract field
spaces that are attached to spacetime.



34 no-nonsense quantum field theory

To understand the general structure of this stage, we start by
talking about Einstein’s theory of special relativity. Afterwards,
we talk about the main actors who dance on the stage that we
call Minkowski spacetime. In a field theory, as the name already
suggests, the main actors are fields. So the first questions that
we need to answer are:

B What is a field?

B What types of fields exist?

B Which mathematical objects can we use to describes these
different kinds of fields?

B In which mathematical arena do fields operate?

Then we’ll talk about the most basic rules that describe how the
different kinds of fields behave when left alone. Speaking a bit
more technically, we will talk about the equations that describe
free fields.55 The adjective "free" in this context

always means "non-interacting".

Once we’ve understood the equations that describe free fields,
it’s only a small step to understand how fields interact with
each other. Thus, this is what we will talk about afterwards.

Maybe the chess analogy helps again. First of all, there are rules
that describe what you can do with a certain playing figure.
These rules determine, for example, how fast this figure can
move around. In chess, for example, a pawn can only move
forward one field at a time. In addition, there are rules that
describe how the various figures can interact with others. These
rules are, of course, closely connected to all other rules and
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must be compatible with them. For example, a pawn can only
destroy another playing figure if it is standing on a diagonal
field immediately in front of them.

The following diagrams summarize our plan up to this point:

Which stage?

✏✏

special relativity // Minkowski Spacetime

Scalar Fields

uu

Which actors?

✏✏

//

22

,,

Spinor Fields

uu

Vector Fields

vv

Klein-Gordon Equation

Which Rules for Free Fields?

✏✏

Lagrangian formalism //

Lagrangian formalism

22

Lagrangian formalism
,,

Dirac Equation

Maxwell Equation

Which Rules for Interacting Fields

spinor fields$vector fields

**

spinor fields$scalar fields
--

Gauge Interactions

Yukawa Interactions

Once we’ve discussed all of this, we are ready to move on to
Part II of the book. In this second part, we discuss in more
detail how Feynman diagram can be used to describe real-world
systems. But now, let’s start by talking about fields in quite
general terms.





2

Spacetime

Historically, physicists didn’t pay much attention to the stage on
which physical processes happen. Space and time were simply
featureless background structures.1 1 If you’re already familiar with

the basics of special relativity,
four-vectors, the Minkowski metric
and Lorentz transformations in
particular, feel free to skip this
chapter.

This changed when Einstein figured out that the structure of
space and time is highly non-trivial if we look close enough.2

2 In fact, Einstein discovered not
only that the structure of space
and time is non-trivial but also
that spacetime itself is a physical
actor that changes dynamically.
The correct theory that describes
spacetime as a dynamical actor
is Einstein’s theory of general
relativity.

But before we can discuss how this came about, we need to cast
Einstein’s idea into a mathematical form and then take a step
back and talk about a few essential ideas. Here’s our plan in
this chapter:

B We will start by discussing spacetime in general terms.

B Then we will discuss how Einstein’s discovery that the struc-
ture of spacetime is nontrivial can be described in mathemati-
cal terms.

B Afterwards, we will derive that there is an upper speed limit
for all physical processes, which is a direct consequence of
the nontrivial spacetime structure.

B Once we have understood what it means that there is non-
trivial spacetime structure, we can start discussing how
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Einstein discovered it. Our journey will start with the ex-
perimental fact that all (inertial) observers always measure
exactly the same value for the speed of light.

B This curious fact leads to many surprising consequences like,
for example, that observers that move relative to each other
do not agree on the time interval between two events.

B In addition, the constancy of the speed of light implies that
the structure of spacetime is nontrivial. This is what Einstein
discovered.

B We will then finish this chapter by recasting everything we
learned in mathematical terms. In particular, we will talk
about the Minkowksi metric, four-vectors and Lorentz trans-
formations.

Let’s get started.

2.1 The Arena of Physics

We usually still think of the space that we live in as a relatively
boring arena. To describe the location of an object, we introduce
a coordinate system. Each location is then described by three
numbers (x, y, z).
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Since we need, in general, three such numbers we say that
space is three-dimensional. And as you can easily check with
a ruler, the distance Ds between any two objects in this three-
dimensional space can be calculated using the Pythagorean
theorem3 3 From another perspective, we can

say that we calculate the length of
the vector

~v =

0

@
Dx
Dy
Dz

1

A

which points from one point to
another:

|~v|2 = ~v ·~v
= Dx2 + Dy2 + Dz2 .

Ds2 = Dx2 + Dy2 + Dz2 . (2.1)

Since we can calculate distances like this, we say that the space
we live in is Euclidean.4

4 Maybe you wonder why we care
about such a trivial fact and even
introduce a special name? We will
see in a moment that the above
relation is not always true, i.e. there
can be non-Euclidean spaces.

Now, in physics we are not only interested in knowing where
something happens but also when. After all, one of our main
goals in physics is to describe how objects move around. This
requires that we take time into account.

Therefore, to properly describe an object in physics, we actually
need four numbers (t, x, y, z). The time coordinate t tells us the
time at which the object is located at (x, y, z). This means we
add a fourth axis to our coordinate system. In other words, we
now not only use a spatial coordinate system, but a spacetime
coordinate system.

While (x, y, z) describes the location of an object in space, we
say that (t, x, y, z) describes the location of an event in space-
time. An event is, for example, the arrival of an object at a spe-
cific location. Since we need four numbers to describe an event,
we say that spacetime is four-dimensional.
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Hopefully you are not too bored or confused by these lines of
thought because things are about to get really interesting.

Above, we defined the spatial distance between two objects
(Eq. 2.1). Now that we’ve added time to our coordinate system,
we can ask: what’s the distance between two events in space-
time? Naively, we might write down

Ds2 = Dt2 + Dx2 + Dy2 + Dz2 (2.2)

but this doesn’t make any sense. The differences in the spa-
tial components (Dx, Dy, Dz) are measured in meters, while Dt
is measured in seconds. Therefore, we are comparing apples
with oranges in Eq. 2.2. To fix this problem we introduce a new
constant c which has units of meters per second:55 We will talk about the meaning of

this constant in a moment.

Ds2 = c2Dt2 + Dx2 + Dy2 + Dz2 . (2.3)

Now, the first term in the sum on the right-hand side has units�meters
second

�2 seconds2 = meters2 as it should be.

One of the big discoveries in physics was that this formula is not
the relevant one. This is what Einstein figured out.

Instead, the correct expression for the (squared) distance be-
tween events is66 We will discuss below how Ein-

stein figured this out.

Ds2 = c2Dt2 � Dx2 � Dy2 � Dz2 . (2.4)
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In words, this means there is a relative minus sign between the
(squared) spatial distance Dx2 + Dy2 + Dz2 and the (squared)
temporal distance Dt2.7 While this formula may look extremely 7 We will talk about the physical

meaning of the minus sign in
Eq. 2.4 in a moment.

strange, from a mathematical perspective, it simply tells us that
the local structure of spacetime is not what we would’ve naively
expected. In technical terms, we say that the local structure of
spacetime is not Euclidean (Eq. 2.3) but Minkowskian (Eq. 2.4).
What makes Minkowski space different from Euclidean space
is the way we define distances in it. Mathematically, we de-
note the four-dimensional Euclidean space as R4 and the four-
dimensional Minkwoski space as R1,3.8 8 We are talking about a Minkowski

space and a Euclidean space be-
cause there are different Minkwoski
spaces and different Euclidean
spaces. For example, we can
equally consider a two-dimensional
Minkowski space R1,1 or a three-
dimensional Minkowski space R1,2.
These mathematical constructs with
only one or two spatial dimensions
are useful in certain applications or
in toy models.

2.2 Maximum Speed

The minus sign not only encodes an important fact about the
local structure of spacetime, it also has extremely important
physical implications.

To understand this, let’s consider two events that we call A
and B which are spatially separated by 3 meters. Moreover, we
assume that B is caused by A. For example, we can imagine
that event A is the emission of a light pulse and event B is the
detection at a location that is 3 meters away.

How soon after A can B happen? In other words, what’s the
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minimum temporal distance Dt between the two events?

We can answer this question by looking at Eq. 2.4. The (squared)
spatial distance between the two events Dx2 + Dy2 + Dz2 =

(3 meters)2 is fixed. Therefore

Ds2 = c2Dt2 � Dx2 � Dy2 � Dz2

= c2Dt2 � (3 meters)2 . (2.5)

If Dt2 is too small Ds2 becomes negative. This would imply
that Ds is imaginary (i2 = �1). We therefore propose that the
minimum allowed value of Dt is precisely the value for which
Ds2 is zero:

Ds2
min = 0 . (2.6)

This means that there is a non-zero minimum time period, Dt2
min,

between two events which happen at two different locations.
From a slightly different perspective we can therefore say that
there is a maximum speed at which a signal or object can travel
from one point to another.

Using Eq. 2.4 we can learn something important about this
maximum speed. A signal which travels at the maximum speed
between the two events needs the minimum time interval Dtmin

to travel the distance
p

Dx2 + Dy2 + Dz2. Above, we argued that
the minimum time interval Dtmin corresponds to Dsmin = 0.
Putting this into Eq. 2.4 yields

Ds2
min = c2Dt2

min � Dx2 � Dy2 � Dz2

y

Eq. 2.6
0 = c2Dt2

min � Dx2 � Dy2 � Dz2

y

rearranging

c2 =
Dx2 + Dy2 + Dz2

Dt2
min

. (2.7)

This is interesting because

v ⌘
p

Dx2 + Dy2 + Dz2

Dt
(2.8)

is exactly the speed at which a signal travels the distancep
Dx2 + Dy2 + Dz2.9 Therefore, Eq. 2.7 tells us that a signal or9 Speed is always defined as a

spatial distance divided by the time
interval Dt needed to travel the
distance.
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object which needs the minimum amount of time Dtmin travels
at speed c.

The constant c, which we introduced to get the same units for
all terms in Eq. 2.4, encodes the maximum speed at which any-
thing can travel in spacetime. In some sense, this fact is hard-
coded into the structure of spacetime, as indicated by the minus
sign in Eq. 2.4.

The constant c is commonly called the speed of light because,
well, light travels at this maximum speed.10 10 Take note that c is a general

constant which often appears in
contexts which have nothing to
do with light. The name "speed
of light" is only used for historic
reasons. In general, c is an up-
per speed limit for everything in
physics and all massless particles
travel at speed c.

2.3 The Speed of Light

From experiments we know that while c is incredibly large, it’s
not infinite. The experimental value of c is

2.9979 ⇥ 108 meters
second

.

The fact that there is a maximum speed which is valid for any-
one and anything is one of the most astonishing consequences
of Einstein’s theory of special relativity.

You might be wondering how Einstein figured out that the
structure of spacetime is nontrivial and can be described by
Eq. 2.4.

The first experimental hint that paved the way for what is now
known as Einstein’s theory of special relativity was the discov-
ery by Michelson and Morley that the speed of light has exactly
the same value for all inertial observers.11

11 The notion of an "inertial ob-
server" describes someone who is
not accelerating. If someone accel-
erates it means that a force acts on
him and this force necessarily plays
a role in how he sees a given exper-
iment. Thus we cannot expect that
the same physical laws still apply.
In contrast, inertial observers move
with a constant velocity relative to
each other and for them the same
physical laws apply.

This is a truly mind-boggling discovery. The speed of all objects
that we know from our everyday experiences depends on how
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we move relative to it. For example, imagine that an observer
standing at a train station measures that a train moves at 50 km

h :

A second observer who runs at 15 km
h parallel to the same train,

measures that the train moves at 35 km
h .

Curiously, this does not happen for electromagnetic waves
(i.e. light). Electromagnetic waves always travel at speed c =

2.9979 ⇥ 108 m/s, no matter how you move.1212 A caveat: the speed of light only
has this value in free space and not
if our wave moves in matter. The
speed of electromagnetic waves in
matter is lower.

Before we can discuss why a constant speed of light for all
(inertial) observers implies that Eq. 2.4 is the correct formula to
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describe the distance between events, we need to talk about a
more direct consequence.13 13 Reminder: Eq. 2.4 reads

Ds2 = c2Dt2 � Dx2 � Dy2 � Dz2 .

2.4 Time Dilation

Imagine that a person, let’s call him Tom, sends a light pulse
straight up where it is reflected by a mirror and eventually
arrives at the point from where it originated:

We record three important events:

B A : the light pulse leaves the starting point

B B : the light pulse is reflected by the mirror

B C : the light pulse returns to the starting point.

The time-interval between the two events A and C is14 14 Reminder: for a constant speed
v we have v = Ds

Dt , where Ds is the
distance and Dt the time interval.
Therefore, we have Dt = Ds

v .Dt = tC � tA =
2L
c

, (2.9)

where L denotes the distance between the person and the mir-
ror.
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So far, nothing interesting has happened. But this changes as
soon as we consider how a second person, let’s call her Sarah,
observes exactly the same situation.

We imagine that Sarah moves with some constant speed u rela-
tive to Tom. For simplicity, we assume that the origins of their
coordinate systems coincide when the light pulse is sent off
(tA). Moreover, we assume that Tom and Sarah both stand at the
origin of their coordinate systems.

A first crucial observation is that the starting and end points of
the light pulse have different coordinates for Sarah:

Mathematically, we have

x0A = 0 6= x0C = uDt0 ! Dx0 = uDt0, (2.10)

where we use primed coordinates for Sarah’s coordinate system.
This means that for Sarah the light has moved in the x-direction.
In contrast, for Tom

xA = xC ! Dx = 0. (2.11)

What’s the time interval that Sarah measures between the event
A and the event C?1515 It will become clear in a moment,

why this is an interesting question.

As usual the time interval Dt0 = t0C � t0A can be calculated as the
distance l traveled by the light pulse divided by its speed c.

Dt0 =
l
c

(2.12)
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For Sarah, the distance l is no longer simply L, but we can cal-
culate it by using the Pythagorean theorem16 16 See the two triangles in the figure

above.

l = 2

s✓
1
2

uDt0
◆2

+ L2. (2.13)

We can therefore calculate the time interval measured by Sarah
as follows:

l = 2

s✓
1
2

uDt0
◆2

+ L2 this is Eq. 2.13

y

Eq. 2.12

cDt0 = 2

s✓
1
2

uDt0
◆2

+ L2
y

squaring

c2Dt02 = 4

 ✓
1
2

uDt0
◆2

+ L2

!
y

rearranging
c2Dt02

4
�
✓

1
2

uDt0
◆2

= L2

y
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We can see here that for u 6= 0, we have Dt0 6= Dt. In words, this
means that two observers moving relative to each other do not
agree on the time interval between the two events A and C!

This phenomenon is usually called time-dilation since for
u 6= 0, we have Dt0 > Dt, which means that a time interval
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appears longer for a moving observer. Clocks tick differently for
different observers and they count a different number of ticks
between two events.

Analogously, it’s possible to derive that different observers do
not necessarily agree on the length of objects. This is known as
length contraction and is another famous consequence of the
constant speed of light.

With this in mind, we can finally understand why there is a
minus sign between the spatial coordinates and the time coordi-
nate in the formula that describes the distance between events
(Eq. 2.4).

2.5 Proper Time

In the previous section, we calculated the time intervals between
two events for two observers, Tom and Sarah, who move rela-
tive to each other. For the following calculations, it’s convenient
to rewrite the time interval measured by Sarah as follows

cDt0 = 2

s✓
1
2

uDt0
◆2

+ L2 this is the second line in Eq. 2.14

y

Dx0 = uDt0, Eq. 2.10

= 2

s✓
1
2

Dx0
◆2

+ L2

) Dt0 =
2
r⇣

1
2 Dx0

⌘2
+ L2

c
(2.15)

Using these results, let’s calculate the total distance between the
two events (denoted A and C above) for both observers.

To start with, we use the "wrong" formula that would corre-
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spond to a trivial spacetime structure (Eq. 2.3):

Ds2 = c2Dt2 + Dx2 + Dy2 + Dz2 . (2.16)

For our two observers introduced in the previous section, this
formula yields17

17 We use here that neither Tom nor
Sarah move in the y- or z-direction
and therefore Dy = Dz = 0 and
Dy0 = Dz0 = 0.

Tom: Ds2 = c2Dt2 + Dx2 + Dy2 + Dz2

y
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(Eq. 2.9), Dx = Dy = Dz = 0 (Eq. 2.11)
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= Dx02 + 4L2 + Dx02 . (2.17)

By looking at this result you can maybe already anticipate what
happens when we use the alternative formula (Eq. 2.4):

Ds2 = c2Dt2 � Dx2 � Dy2 � Dz2 . (2.18)

Let’s calculate it explicitly:

Tom: Ds2 = c2Dt2 � Dx2 � Dy2 � Dz2

y
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We learn here that if we use the alternative formula with a
relative minus sign between the spatial coordinates and the time
coordinate, we find the same total spacetime distance for Sarah
and Tom. This means that if we use Eq. 2.4 instead of Eq. 2.3,
we find that the total distance between events is the same for
different observers. That’s why Eq. 2.4 is the correct formula in
a universe (like ours) with a constant speed of light.

You’re probably still not convinced. Sure it would be nice to
have the same total distance for all observers, but is it really
mandatory?

To answer this question, we need to understand the physical
meaning of the total distance between two events. In short, the
total distance between two events describes (up to a constant)
the time interval that an observer who travels with the object in
question would measure. Just imagine a person with a watch on
top of the object you want to describe.1818 A real person would, of course,

influence the object. But here we are
talking about an imaginary observer
who has no effect on the object.

To understand the connection between the total distance and the
time interval measured by this special observer take note that
for him, the object always appears at rest. Mathematically, this
means

Dx = Dy = Dz = 0 . (2.20)
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If we plug this into either Eq. 2.3 or Eq. 2.4, we find

Ds2 = c2Dt2 ± Dx2 ± Dy2 ± Dz2

y

Eq. 2.20
= c2Dt2 ± 0 ± 0 ± 0 y

= c2Dt2 . (2.21)

Therefore, the total distance Ds2 is equal to the (squared) time
interval measured by an observer for whom the object appears
at rest (times the constant c2). Since this time interval is quite
special, it is conventional to denote it by a special symbol t and
call it proper time.

The key idea is that while different observers do not necessarily
agree on the values of time intervals, they will agree if they use
exactly the same frame of reference. In our example above, for
example, Tom would measure the same interval as Sarah if he
starts moving with the same velocity as Sarah. Similarly, Sarah
measures the same time interval as Tom if she doesn’t move.
The history of an observer doesn’t matter.19 If they are in the 19 In technical terms, we say that

there is no path dependence that
somehow influences what different
observers measure. From a purely
mathematical point of view this
could be the case, but as far as we
know it isn’t in our universe.

same frame of reference (move with the same velocity), they
will measure the same time interval.

Therefore, Sarah, Tom and all other possible observers will
agree on the time interval that someone measures for whom the
object in question is at rest. This follows because all observers
could simply also start moving with the object in question and
measure the time interval themselves.

So yes, it really is mandatory that all observers agree on the
total distance between two events and therefore, the correct
formula is Eq. 2.4.20

20 Reminder: we saw above that
different observers agree on the
value of Ds only if there is a relative
minus sign between the time inter-
val Dt2 and the spatial distances
Dx2 etc.

2.6 The Minkowski Metric and Four-Vectors

Before we move on, it makes sense to refine our notation a
little bit. In particular, not every object moves with a constant
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velocity and thus it is not immediately clear how we can define
the proper time for these objects. This can be achieved by noting
that during a short enough time interval, every object appears
to be moving with a constant velocity. Mathematically, this
means that if we switch from our finite intervals Dt, Dx etc. to
infinitesimal intervals dt, dx etc., our equations will be correct.

The correct (infinitesimal, squared) total distance reads

ds2 = (cdt)2 � dx2 � dy2 � dz2 (2.22)

and is commonly called the spacetime interval.

If we want to calculate the total distance between two events, we
need to sum over the contributions during all infinitesimal time
intervals. Mathematically, this means that we need to integrate
over ds2:

Ds =
Z

ds . (2.23)

Analogously, we define the proper time t by using infinitesimal
intervals:

ds2 = c2dt2 .

Next, let’s discuss how we can understand the spacetime inter-
val in Eq. 2.22 in more mathematical terms.

In general, the mathematical tool which allows us to calculate
the distance between two points in a given space is called the
metric. In general, a metric encodes important information
about the structure of the space.

For example, the mathematical relations to calculate the dis-
tance between two points A and B on a Euclidean plane and
between two points C and D on a sphere are different. In the
first case, the distance is given by the familiar Pythagorean for-
mula, irrespective of the actual distance between the points,
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while in the second case, this formula is only (approximately)
valid for points which are close to each other on the surface of
the sphere. It is the metric that encodes how distance between
points can be calculated in a given space.

The best way to understand what a metric is, is to consider
explicit examples. We can calculate the distance between two
points

A =

0

BBB@

x0

x1
x2

x3

1

CCCA
, B =

0

BBB@

x̃0

x̃1
x̃2

x̃3

1

CCCA
(2.24)

by calculating the length of the vector

~v ⌘

0

BBB@

Dx0

Dx1
Dx2

Dx3

1

CCCA
=

0

BBB@

x̃0 � x0

x̃1 � x1
x̃2 � x2

x̃3 � x3

1

CCCA
(2.25)

which connects them. In a four-dimensional Euclidean space,
we find21 21 Technically, we are calculating the

scalar product of the vector with
itself.d(A, B) = ~v ·~v = Dx2

0 + Dx2
1 + Dx2

2 + Dx2
3 . (2.26)

But in Minkowski space, we find

d(A, B) = ~v ·~v = Dx2
0 � Dx2

1 � Dx2
2 � Dx2

3 . (2.27)

We describe this fact by saying that a Euclidean space and a
Minkowski space have a different metric g and write the scalar
product as ~vT g~v.
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For

gE =

0

BBB@
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0 1 0 0
0 0 1 0
0 0 0 1

1

CCCA
(2.28)

we find the correct scalar product of a Euclidean space

~vT gE~v =
⇣

Dx0 Dx1 Dx2 Dx3
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BBB@
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1

CCCA

0
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1

CCCA

= Dx2
0 + Dx2

1 + Dx2
2 + Dx2

3 . (2.29)

And for

gM =

0

BBB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCCA
(2.30)

we find the correct scalar product of Minkowski space22

22 This is equivalent to Eq. 2.4. The
only difference is that now we use a
different vector and don’t interpret
the zeroth component as time.

~vT gM~v =
⇣
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1

CCCA
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CCCA

= Dx2
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1 � Dx2
2 � Dx2

3 . (2.31)

We call gE the Euclidean metric and gM the Minkowski met-
ric. However, it is conventional to use the symbol h for the
Minkowski metric and thus we will use this notation in the
following.

In index notation, we write the scalar product in Minkowski
space as:

(Ds)2 = vµhµnvn

=
⇣

Dx0 Dx1 Dx2 Dx3

⌘

0

BBB@
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1

CCCA

0
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CCCA

= Dx2
0 � Dx2

1 � Dx2
2 � Dx2

3 . (2.32)
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Take note that we have denoted the zeroth component by x0

here. In physics, by convention we typically choose to interpret
the zeroth component as the time component.23 But since time 23 This is a completely arbitrary

choice and we could equally use the
second or fourth component as the
time coordinate.

and space intervals are measured using different units, we then
need to introduce an additional constant that makes sure that
all components have the same units.24 We stumbled already

24 In natural units, we have by
definition c = 1 and there is no
longer any such obvious distinction
between the time component and
all other components.

upon this issue at the beginning of this chapter and concluded
in Eq. 2.4 that the correct solution is to introduce a constant
c with units meters per second. By comparing Eq. 2.4 with
Eq. 2.32 we can conclude that Dx0 = ct.25 This implies that our

25 For your convenience, Eq. 2.4
reads

Ds2 = c2Dt2 � Dx2 � Dy2 � Dz2 .

four-vectors necessarily include the constant c in their zeroth
component:

xµ =

0

BBB@

ct
x
y
z

1

CCCA
. (2.33)

The constant c here is essential because, as we’ve seen in Sec-
tion 2.4, time and space components possibly get mixed if we
change the coordinate system.26 Since t is measured in seconds, 26 Reminder: in Section 2.4 we

discovered that for a moving
observer a little bit of space can
look like a little bit of time and
vice versa. These phenomena are
known as time dilation and space
contraction.

we multiply it by the only fundamental velocity that we have:
c. The result ct has units meters

second seconds = meters which is the
same as for the other components.

In addition, take note that it’s conventional (but somewhat un-
fortunate) to denote four-vectors simply by a subscript Greek
letter.27 This can be confusing at times because exactly the same 27 Reminder: by convention Greek

indices run from 0 to 3.symbol, xµ, is used for the vector and its components. In con-
trast, the usual three-component vectors that denote the location
of an object in space (not spacetime) are conventionally denoted
by a little arrow on top of them, ~v. Moreover, the components of
such a three-vector are denoted by the same symbol without the
arrow but with a subscript Roman letter, vi.

It is conventional to introduce superscript indices to avoid writ-
ing the Minkowski metric all the time:

xµ ⌘ hµnxn (2.34)
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or equally
yn ⌘ hnµyµ =|{z}

the Minkowski metric is symmetric hµn=hnµ

hµnyµ . (2.35)

This allows us to write the scalar product as follows:

x · y ⌘ xµhµnyn = xµyµ = xnyn. (2.36)

The bottom line is that whenever you see a superscript Greek
index in physics, you should remember that this is usually a
short-hand notation for the Minkowski metric.2828 There are also superscript Roman

indices, and we will talk about their
meaning in Section 3.4.1.

Another somewhat subtle aspect of the Minkowski notation is
how we define the four-vector derivative ∂µ = ∂

∂xµ . As usual, we
want that all the components of this vector have the same units.
But ∂t and ∂x have different units. We can understand this as
follows.

Since ∂t basically means "a little bit of t", the expression ∂
∂t has

units 1/s. Similarly, ∂x means "a little bit of x" and therefore ∂
∂x

has units 1/m.

We can achieve that ∂
∂t and ∂

∂x have the same units, by mul-
tiplying the former by 1/c.29 Moreover, it is conventional to29 This is exactly the same trick that

we used for a position four-vector
in Eq. 2.33.

introduce an additional minus sign for the spatial component.30

30 This is useful because it allows
us to calculate the dimensions
of spacetime using the general
formula ∂µxµ = 4.

The four-vector gradient ∂µ then reads

∂µ =
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The divergence of a four-vector, ∂µ Aµ, therefore reads

∂µ Aµ =
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Similarly, the square of the gradient of an ordinary function
reads

∂µf∂µf =
⇣

∂f
c∂t � ∂f
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2.7 The Relativistic Energy-Momentum Re-
lation

We have seen in Section 2.4 that time and space get mixed in
special relativity. This observation motivates us to introduce
four-vectors that combine spatial coordinates and the time co-
ordinate into a single object (Eq. 2.33). A quite similar interplay
also happens between different quantities. For example, we can
imagine that one observer sees a moving object while a second
observer who moves relative to the first observer, sees the ob-
ject at rest. Therefore, the first observer will describe the object
using a non-zero momentum, while for the second observer the
object’s momentum is zero.

A smart idea in special relativity is that we can keep track of
the descriptions of different observers, by inventing a momen-
tum four-vector pµ. If we do this and want to find out how a
different observer sees the system, we simply need to trans-
form the momentum four-vectors pµ in addition to the location
four-vectors xµ.31 31 We will discuss transformations

of four-vectors in more detail in the
following section.

The only question we then need to answer is: how does a mo-
mentum four-vector pµ actually look like? The usual momen-
tum vector ~p = (p1, p2, p3)T has only three components, so
what’s the fourth component of pµ?
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We can answer this question by doing some dimensional anal-
ysis. First of all, we note that the length of a four-vector, which
can be calculated as the scalar product of the four-vector with
itself (pµ pµ), is an important quantity that remains unchanged
if we switch between observers.32 Therefore, we introduce a

32 We saw this in Section 2.5 and
also will discuss this fact in more
explicit terms in the following
section.

special symbol for the length of our momentum four-vector:

X ⌘ pµ pµ

y

Eq. 2.36
= pµhµn pn y

matrix notation
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⇣

p0 p1 p2 p3

⌘
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BBB@
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y

= p0 p0 � p1 p1 � p2 p2 � p3 p3 y

p1 p1 + p2 p2 + p3 p3 ⌘ ~p · ~p
= p0 p0 � ~p · ~p . (2.40)

We know that momentum is measured in kg·m
s .33 Therefore,33 This follows from the standard

formula p = mv where m is
measured in kilograms, and v in
meters per second.

the constant on the left-hand side is measured in kg2m2

s2 . All
the terms in an equation must have the same units because
otherwise we are comparing apples to oranges. Therefore, the
zeroth component of the momentum four-vector p0 must have
units kg·m

s , too.

With this in mind, let’s take a step back and think about which
puzzle pieces possibly play a role here. We already learned
above that the speed of light c plays an important role in special
relativity. In particular, we saw that we need c to combine space
and time coordinates into a single four-vector (Eq. 2.33).34 The34 For your convenience: Eq. 2.33

reads

xµ =

0
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ct
x
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z
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CCA .

constant c describes a velocity and is therefore measured in
meters per second. Moreover, a quantity that is always closely
connected to the momentum of an object is its mass. Since a
mass is measured in kilograms, we can combine the constant c
and the mass of the object m to get a term that has exactly the
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units that allows it to play a role in our formula:

units of: (mc)2 =
⇣

kg
m
s

⌘2
=

kg2m2

s2 . (2.41)

Another closely related quantity with almost exactly the right
units is the energy of the object. Energy is measured in35 kg·m2

s2 . 35 Recall the formula for the classical
kinetic energy T = 1

2 mv2, where m
is measured in kilograms and v in
meters per second.

Therefore, if we divide the energy by c and then square the
resulting expression, we find another quantity with exactly the
right units:
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✓
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kg2m2

s2 . (2.42)

The final key idea that allows us to identify which of the quan-
tities we just constructed goes where in Eq. 2.40 is that mass
is an intrinsic property of objects and therefore is equal for all
observers. This implies that the constant m2c2 belongs on the
left-hand side in Eq. 2.40, i.e. X = m2c2. Therefore, we put the
remaining puzzle piece on the right-hand side, i.e p0 = E/c,
and then find

X ⌘ p0 p0 � ~p · ~p this is Eq. 2.40y

X = m2c2 and p0 = E/c

m2c2 =
E2

c2 � ~p · ~p . (2.43)

This formula is famously known as the relativistic energy-
momentum relation.36

36 The "derivation" presented here
is, of course, by no means rigorous
and there are better but also more
complicated ways to derive the
relativistic energy-momentum
relation. A particularly nice way to
see why energy and momentum go
together in a four-vector starts with
the observation that momentum is
the generator of spatial translations
while energy is the generator of
temporal translations. Thus, just
as space and time get unified in
a four-vector, the corresponding
generators need to be unified too.

Another thing that we can learn from our dimensional analysis
is that the momentum four-vector reads:
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It is quite instructive to analyze the relationship between this
relativistic relation and the more familiar non-relativistic rela-
tion E = 1

2 mv2 = p2

2m .37 We can understand this relationship by 37 Using p = mv, we find E = p2

2m =
(mv)2

2m = mv2

2 which is the usual
kinetic energy formula.
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rewriting the relativistic relation as follows:

m2c2 =
E2

c2 � ~p · ~p this is Eq. 2.43y

rearranging
E2

c2 = m2c2 + ~p · ~p y
⇥c2
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y p
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~p · ~p
m2c2 . (2.45)

If we now assume that we consider an object that moves at a
speed that is far slower than the speed of light, v ⌧ c, we can
use the usual formula ~p · ~p = m2v2 and a Taylor expansion to
approximate the square root:

E = mc2
r

1 +
~p · ~p
m2c2 y

~p · ~p = m2v2

= mc2

r
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y p
1 + x2 ⇡ 1 +

x2

2
for x ⌧ 1

⇡ mc2
✓

1 +
m2v2

2m2c2

◆

y

= mc2 +
1
2

mv2 . (2.46)

We can therefore conclude that in the non-relativistic limit
v ⌧ c we find almost exactly the non-relativistic energy mo-
mentum relation E = 1

2 mv2. The only difference is an additional
constant term mc2 which, however, makes no difference in a
classical context since it represents a constant energy offset. The
calculation in Eq. 2.46 is an important cross-check that hopefully
will give you some confidence in the validity of the relativistic
formula (Eq. 2.43).

An important consequence of the relativistic energy-momentum
relation is that a massless particle (m = 0) can never be at rest
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(~p = 0). This follows if we consider the relativistic energy-
momentum relation (Eq. 2.43) for m = 0:

E2

c2 = mc2 + ~p · ~p y

m = 0
= ~p · ~p . (2.47)

This implies that either there is no particle at all, E = 0, or we
have a particle, E 6= 0, and therefore ~p 6= 0. In contrast, for a
particle of mass m, we can have E 6= 0 and ~p = 0 at the same
time:

E2

c2 = mc2 + ~p · ~p y
~p = 0

= mc2 . (2.48)

There is one final aspect of special relativity that we should
discuss before we finally dive into field theory.
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2.8 Lorentz and Poincaré Transformations

Since the structure of spacetime is nontrivial, we need to be
careful when we want to switch coordinate systems. If we do
it wrong, we might violate the fundamental postulate of spe-
cial relativity that the speed of light is constant for all inertial
observers. Somehow this fact needs to be reflected in the formu-
las that describe transformations between different coordinate
systems. In particular, the formulas that describe a switch to a
coordinate system that moves with a constant velocity relative
to the original coordinate system, somehow need to include the
fact that the speed of any object can not be faster than c.

The correct formulas can be derived using the idea that allowed
transformations need to respect the laws of special relativity
and hence must leave the spacetime interval ds2 unchanged.
Discussing this in detail, however, would lead us too far astray,
so let me simply give you the correct formulas.38 There are38 You can find a detailed derivation,

for example, in my book

Jakob Schwichtenberg. Physics
from Symmetry. Springer, Cham,
Switzerland, 2018b. ISBN 978-
3319666303

three kinds of allowed transformations: rotations, boosts and
translations.

B A rotation is a switch to a new coordinate system that is
oriented differently with respect to the original coordinate
system.

B A boost is a switch to a coordinate system that is moving
with a different constant velocity with respect to the original
coordinate system.

B A translation is a switch to a shifted coordinate system. Since
we are dealing with spacetime coordinate systems, we can
consider temporal shifts t ! t + a or spatial shifts x ! x + b.

We call boosts, rotations and all transformations that are possi-
ble by combining them, Lorentz transformations. Moreover, we
call boosts, rotations, translations and all transformations that
are possible by combining them Poincaré transformations. In
particular, this means that Lorentz transformations are a subset
of Poincaré transformations.
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Rotations only affect the spatial components of a four vector
(1, 2, 3 but not 0) and can be described by the three basis matri-
ces

R(vx)
µn (q) =

0

BBB@

1 0 0 0
0 1 0 0
0 0 cos(q) � sin(q)
0 0 sin(q) cos(q)

1

CCCA
,

R(vy)
µn (q) =

0

BBB@

1 0 0 0
0 cos(q) 0 sin(q)
0 0 1 0
0 � sin(q) 0 cos(q)

1

CCCA
,

R(vz)
µn (q) =

0

BBB@

1 0 0 0
0 cos(q) sin(q) 0
0 sin(q) cos(q) 0
0 0 0 1

1

CCCA
, (2.49)

where R(vx)
µn describes a rotation around the x-axis, R(vy)

µn de-

scribes a rotation around the y-axis, R(vz)
µn describes a rotation

around the z-axis, and q is the angle of rotation.39 These three 39 The small superscript v indicates
that these matrices act on vectors.
This will become important later
when we learn that there are
additional kinds of objects that are
affected differently by rotations.
Thus, we need different rotation
matrices to rotate them properly.

matrices are sufficient since any rotation can be thought of as a
combination of rotations around the three coordinate axes.

As an example, let’s rotate the prototypical four-vector xµ,
which describes a specific point in spacetime:

xµ ! x0µ = Rvx
µn(q)xn

y

Eq. 2.49, Eq. 2.33

=

0

BBB@

1 0 0 0
0 1 0 0
0 0 cos(q) � sin(q)
0 0 sin(q) cos(q)

1

CCCA

0

BBB@

ct
x
y
z

1

CCCA

y

=

0

BBB@

ct
x

cos(q)y � sin(q)z
sin(q)y + cos(q)z

1

CCCA
. (2.50)

We can see here that the temporal component, ct, and the x-
component indeed remain unaffected, while the y-component
and the z-coordinate get mixed appropriately.40

40 As mentioned above, the temporal
component ct is never affected
by rotations, only by boosts and
shifts to a different point in time.
Moreover, we consider a rotation
around the x-axis and therefore, the
x-component remains unaffected.
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Next, let’s talk about boosts. We can describe boosts using
(4 ⇥ 4) matrices that act on four-vectors. The main difference
to the rotation matrices is that a boost also affects the time com-
ponent.41 There are three basis boost matrices since we can41 We’ve discovered in Section 2.4

that observers that move relative to
each other (i.e. who are related by a
boost transformation) do not agree
on the time interval between two
events. This phenomenon is known
as time dilation and implies that
a boost must affect the temporal
components.

boost in the x-direction, y-direction or z-direction:

B(vx)
µn (v) =

0

BBB@

g(v) �g(v)b(v) 0 0
�g(v)b(v) g(v) 0 0

0 0 1 0
0 0 0 1

1

CCCA
,

B(vy)
µn (v) =

0

BBB@

g(v) 0 �g(v)b(v) 0
0 1 0 0

�g(v)b(v) 0 g(v) 0
0 0 0 1

1

CCCA
,

B(vz)
µn (v) =

0

BBB@

g(v) 0 0 �g(v)b(v)
0 1 0 0
0 0 1 0

�g(v)b(v) 0 0 g(v)

1

CCCA
, (2.51)

where

b(v) ⌘ v
c

,

g(v) ⌘ 1q
1 � v2

c2

=
1p

1 � b2(v)
(2.52)

and v denotes the boost velocity.

As an example, let’s boost the four-vector

Dxµ =

0

BBB@

cDt
0
0
0

1

CCCA
Eq. 2.9
=

0

BBB@

c 2L
c

0
0
0

1

CCCA
=

0

BBB@

2L
0
0
0

1

CCCA
(2.53)

that describes the time-interval our observer Tom measures
in the thought experiment discussed in Section 2.4. We are
interested in a switch into a coordinate system that moves with
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velocity u in the x-direction:

Dxµ ! Dx0µ = Bvx
µn(u)Dxn

y

Eq. 2.51, Eq. 2.530

BBB@

cDt0

Dx0

Dy0

Dz0

1

CCCA
=

0

BBB@

g(u) �g(u)b(u) 0 0
�g(u)b(u) g(u) 0 0

0 0 1 0
0 0 0 1

1

CCCA

0

BBB@

cDt
0
0
0

1

CCCA

y

=

0

BBB@

g(u)cDt
�g(u)b(u)cDt

0
0

1

CCCA

y

Eq. 2.52

=

0

BBBBBBB@

1r
1� u2

c2

cDt

� 1r
1� u2

c2

u
c cDt

0
0

1

CCCCCCCA

. (2.54)

By comparing the left-hand side with the right-hand side, we
can conclude

Dt0 =
1q

1 � u2

c2

Dt . (2.55)

This is exactly the same result (Eq. 2.15) that we calculated for
our second observer, Sarah, in Section 2.4. So while we do not
prove with any generality that the matrices given in Eq. 2.51 are
the right ones, this cross check will hopefully give you some
confidence in their validity.

With the explicit transformation matrices at hand, we can
test if the scalar product given in Eq. 2.36 indeed remains un-
changed.42 For example, under a rotation

42 The defining property of a scalar
is that it’s unchanged by transfor-
mations. This explains the name
scalar product. We will discuss
scalars in more detail below.

Aµ ! A0
µ = R(vx)

µs As (2.56)

we find
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A0
µ A0µ Eq. 2.34

= A0
µhµn An y

y
Eq. 3.22

= R(vx)
µs AshµnR(vx)

nr Ar

y

Eq. 2.49, Eq. 2.30

= As

0

BB@

1 0 0 0
0 1 0 0
0 0 cos(q) � sin(q)
0 0 sin(q) cos(q)

1

CCA

µs

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA

µn 0

BB@

1 0 0 0
0 1 0 0
0 0 cos(q) � sin(q)
0 0 sin(q) cos(q)

1

CCA

nr

Ar

y

transposing

= As

0

BB@

1 0 0 0
0 1 0 0
0 0 cos(q) sin(q)
0 0 � sin(q) cos(q)

1

CCA

sµ

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA

µn 0

BB@

1 0 0 0
0 1 0 0
0 0 cos(q) � sin(q)
0 0 sin(q) cos(q)

1

CCA

nr

Ar

y

matrix product

= As

0

BB@

1 0 0 0
0 1 0 0
0 0 cos(q) sin(q)
0 0 � sin(q) cos(q)

1

CCA

sµ

0

BB@

1 0 0 0
0 �1 0 0
0 0 � cos(q) sin(q)
0 0 � sin(q) � cos(q)

1

CCA

µ

r

Ar

y

matrix product

= As

0

BB@

1 0 0 0
0 �1 0 0
0 0 � cos2(q)� sin2(q) cos(q) sin(q)� sin(q)cos(q)
0 0 sin(q) cos(q)� cos(q) sin(q) � sin2(q)� cos2(q)

1

CCA

sr

Ar

y

c2(x) + s2(x) = 1

= As

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA

sr

Ar

y

Eq. 2.30
= Ashsr Ar

(2.57)

So the scalar product is indeed left unchanged by a rotation
around the x-axis. Analogously, it can be checked that the scalar
product is unchanged by other rotations and boosts. Take note
that here we used that the indices of the left transformation ma-
trix must be swapped to get the proper matrix product between
the three matrices. For a matrix, this means that it gets trans-
posed. We can also understand this by noting that the vector
to the left in a scalar product always needs to be transposed.
Therefore, the corresponding rotation matrix also appears trans-
posed.4343 ~A0T = (R~A)T = ~AT RT
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2.9 Summary

In the previous sections, we’ve talked about lots of important
ideas that are all directly related to special relativity. Let’s recap
the main lessons to make sure the bigger picture is clear.

The experimental fact at the heart of special relativity is that
all (inertial) observers measure exactly the same value for the
speed of light. This is surprising because the speed of objects
in everyday life depends upon how we are moving relative to
them.

In mathematical terms, this fact can be incorporated by using
vectors in Minkowski space to describe events instead of vectors
in Euclidean space. In particular, this means that the correct
formula to calculate the total spacetime distance between two
events reads (Eq. 2.22)

ds2 = (cdt)2 � dx2 � dy2 � dz2 . (2.58)

We discovered that this formula is the right one because if the
speed of light is constant, two observers only agree on the
proper time interval between two events if there is a relative
minus sign between dt and the spatial components (dx, dy, dz).
Proper time describes the time measured by an observer who
sees the object in question at rest.

One important consequence of the non-trivial spacetime struc-
ture is that observers who move relative to each other measure
different time intervals between two events. In physical terms,
this means that time appears delayed for a moving observer.
Another important consequence is that there is an upper speed
limit (c) for all physical processes.

We describe events in Minkowski spacetime using four-vectors.
The tool that allows us to calculate the spacetime interval
between two events (described by two four-vectors) is the
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Minkowski metric h (Eq. 2.30):

h =

0

BBB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCCA
. (2.59)

Two four-vectors with the Minkowski metric in between them
yields the scalar product in Minkowski space: xµhµnyn . We
call transformations that leave this scalar product unchanged
(and hence respect the laws of special relativity) Lorentz trans-
formations. In physical terms, Lorentz transformations allow
us to switch between allowed coordinate systems and include
rotations and boosts.4444 As mentioned above, another

allowed kind of transformation
are translations. We will discuss
translations in Chapter 4.3.

Now that we have set the stage, it’s time to introduce the main
actors.



3

Fields

When it comes to fundamental physics, the most important
types of fields are scalar fields, spinor fields and vector fields.1 1 It might be helpful to look again

at the diagram on page 35 to
understand how the concepts
discussed in this chapter fit into the
bigger picture.

In this chapter, we will discuss these mathematical objects one
after another. We start with the simplest type of field: scalar
fields. In short:

A scalar field S is a mathematical object that

eats a spacetime point xµ and spits out a number, S(xµ).

Since we get a specific number for each spacetime point, the
following picture emerges.2

2 Take note that although spacetime
is four-dimensional, we will draw
it as a two-dimensional object in all
of the pictures drawn below. This is
useful because it allows us to draw
fields as things that live "above" this
two-dimensional structure. Since
spacetime, as the name suggests,
already contains all of space and
time, fields do not really live above
it, at least not in any spatial sense.
It’s just that this is a helpful way
to visualize the interplay between
spacetime and fields.
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Moreover, if we assume that spacetime is continuous (which is a
standard assumption), our field will also be continuous.

Similarly:33 Recall from the discussion in
the previous section that Vµ is the
somewhat confusing standard
way to denote a four-vector. The
four-vector notation is somewhat
confusing because we use the
same symbol for the whole vector
and its components. In contrast,
a three-vector (a vector with three
components) is denoted by a little
arrow, ~v and its components by
using a Roman index vi .

A vector field Vµ is a mathematical object that

eats a spacetime point xµ and spits out a vector, Vµ(xµ).

Again, we get a vector for each spacetime point:
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Moreover, for our continuous spacetime we get, in principle,
infinitely many arrows and therefore any attempt to draw this
situation would certainly only be more confusing than helpful.

From a mathematical point of view, scalar fields and vector
fields are not that special. We can, completely analogously,
construct all kinds of fields. For our purposes, a field is a math-
ematical object F that eats a spacetime point and spits out a
specific kind of mathematical object F(xµ). For example, we can
equally introduce a matrix field M which eats a spacetime point
xµ and spits out a matrix M(xµ).4 In fact, we can introduce a 4 Take note that we could also

introduce fields that eat spacetime
points and spit out two-component
vectors, three-component vectors or
even twenty-one-component vectors
instead of the four-component
vectors we talked about so far. From
a mathematical point of view this
would be perfectly reasonable and
in fact, three-component vector
fields are exactly what we need to
describe the electric and magnetic
fields. But in this book, whenever
we talk about a vector field, we
mean an object that spits out four-
vectors.

field for any kind of mathematical object you can imagine. A
field is then simply the machine that is responsible for gluing
one copy of this mathematical object to each spacetime point.
As long as we stick to mathematics, we are always free to in-
troduce any kind of object we want. It’s only when we turn to
physics that some of the concepts turn out to be more useful
than others for our pursuit to describe Nature.

Luckily, the fields that we need to describe Nature at fundamen-
tal scales are not terribly complicated. Scalar fields and vector
fields are already two of the three main actors that we need in
quantum field. The third kind is known as spinor fields and the
main idea is exactly the same again:

A spinor field y is a mathematical object that

eats a spacetime point xµ and spits out a spinor, y(xµ).
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Spinors are, unlike vectors and scalars, unintuitive objects so we
will discuss them in detail below. But for the moment, it’s only
important to keep in mind that the general idea behind spinor
fields is exactly the same as for all other fields. Some kind of
mathematical object (a spinor in this case) is attached to each
spacetime point through a machine that we call a field (a spinor
field here). The only missing puzzle piece is that we need to
understand what a spinor is.

But before we explore this exciting topic, I want to quickly
finish our general discussion of fields by talking about a few
concrete examples.

3.1 Scalar Fields

As an example of a scalar field, let’s consider

S(xµ) = xµxµ = x2
0 � x2

1 � x2
2 � x2

3 . (3.1)

The defining feature of a scalar field is that we get an ordinary
number if we plug in a spacetime location. We can check this
here explicitly. For example, for xµ = (2, 1, 1, 1)T we find5

5 Reminder: the superscript "T"
denotes transposition and means

xµ = (2, 1, 1, 1)T =

0

BB@

2
1
1
1

1

CCA .

Moreover, take note that to unclut-
ter the notation I’m suppressing all
units in the following formulas.

S
�
(2, 1, 1, 1)T� = 22 � 12 � 12 � 12 = 4 � 1 � 1 � 1 = 1 , (3.2)

which is a number and not, for example, a vector or a matrix.
The same is true for any spacetime point which, of course, isn’t
too surprising since xµxµ is the scalar product in Minkowski
spacetime.6

6 The scalar product in Minkowski
spacetime was discussed in the
previous chapter.

Nevertheless, let’s check it for one more spacetime point. For
xµ = (3.1, 2, 0.12, 0)T , we find7

7 I included this second exam-
ple to emphasize that there is
no reason why our spacetime
coordinate should only take on
integer values (as it was the case for
xµ = (2, 1, 1, 1)T). The only reason
why I often use integers in explicit
examples is that it unclutters our
calculations.
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S
�
(3.1, 2, 0.12, 0)T� = 3.12 � 22 � 0.122 � 02

= 9.61 � 4 � 0.0144 � 0 = 5.5956 , (3.3)

which is an ordinary number.

The name scalar field indicates that this kind of object only spits
out boring numbers. Scalar, in this context, is another name for
an ordinary number.8 8 A better definition is that a scalar

is an object that remains unchanged
by coordinate transformations
like, e.g. rotations. In contrast,
the components of a vector, in
general, are changed if we rotate
our coordinate system while a
scalar remains as it is. We will
discuss this in more detail below.

We call the number a scalar field assigns to each location its
field strength. The scalar field defined in Eq. 3.1, for exam-
ple, has a large field strength (S

�
(3.1, 2, 0.12, 0)T� = 5.5956) at

xµ = (3.1, 2, 0.12, 0)T and a comparatively small field strength
(S
�
(2, 1, 1, 1)T� = 1) at xµ = (2, 1, 1, 1)T . We say, the field is

strong at xµ = (3.1, 2, 0.12, 0)T and weak at xµ = (2, 1, 1, 1)T .

A scalar field is the proper mathematical tool to describe, for
example, temperature. The value of the temperature field at
each point is simply the temperature there.

Another example of a scalar field is your cell phone’s signal
strength. At each point on the earth’s surface (or really, any-
where in the universe) and at each moment in time your cell
phone’s signal strength has a particular value. This value is an
ordinary number, and therefore, we are dealing with a scalar
field.9 9 As an aside: the only known

fundamental scalar field is the Higgs
field.
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3.2 Vector Fields

The simplest example of a vector field we can come up with is

Vµ(xµ) = xµ . (3.4)

In words, this means that this vector field eats a spacetime point
xµ and then simply spits it out again without any modification.
So for example, if we plug in xµ = (2, 1, 1, 1)T , we find

Vµ
�
(2, 1, 1, 1)T� =

0

BBB@

2
1
1
1

1

CCCA
. (3.5)

This is indeed a four-vector and thus we’re really dealing with a
vector field.

To make things slightly more interesting, let’s have a look at the
vector field

Vµ(xµ) = 2xµ + yµ , (3.6)

where yµ = (1, 0, 0, 0)T . This vector field modifies the four-
vector xµ that we put into it at least a little bit. Let’s try this for
an explicit spacetime point. For xµ = (2, 1, 1, 1)T we find

Vµ = 2

0

BBB@

2
1
1
1

1

CCCA
+

0

BBB@

1
0
0
0

1

CCCA
=

0

BBB@

4
2
2
2

1

CCCA
+

0

BBB@

1
0
0
0

1

CCCA
=

0

BBB@

5
2
2
2

1

CCCA
(3.7)

Four-vector fields aren’t particularly easy to imagine, just like
four-dimensional spacetime itself. Thus it may be helpful to
understand vector fields in general by thinking about three-
component vector fields instead.

For example, a three-component vector field is the proper math-
ematical tool to describe the flow of air. The field strength
(vector length) at each point represents the velocity of the air
molecules. Moreover, the direction in which the vector points at
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each location encodes in which direction the air molecules flow.
Similarly, we need a three-component vector field, ~E, to describe
the electric field. In this case, the vectors this field assigns to
each location tell us in which direction a test charge is pushed
and how much it’s pushed.10 10 In classical electrodynamics, the

force that acts on a test charge q
which is located at ~x at time t, is
directly proportional to the electric
field at this point

~F = q~E(t,~x).

The field strength determines the
magnitude of the force and the field
orientation determines the direction
of the force.

Similarly, we can imagine that a four-vector field pushes a test
object in a particular direction in spacetime. This is quite hard
to imagine. What does it really mean that an object is pushed in
a temporal direction? Just as with the mixing of time and space
that happens through boost transformations, four-vector fields
and their actions need some time getting used to.

In the following section, we will discuss in a bit more detail
how we typically interpret four-vector fields.

3.2.1 Polarization

A scalar field describes, for example, how energy is distributed
in space and time in the form of a non-zero field strength.
While a vector field is also characterized by a field strength,
it possesses additional internal structure. This is what it means
physically that a scalar field assigns a simple number to each
space-time point, while a vector field assigns a vector. In the
simplest case, you can imagine that a scalar field is only able
to add or remove energy from another object, but a vector field
is additionally able to change the direction or internal state of
another object.11 For example, a vector field (like the one that

11 In some sense, a scalar field can
also change the direction of objects.
Mathematically, we describe this by
using the gradient of a scalar field,
which is a vector field. This gradi-
ent vector field is not fundamental
since its structure follows directly
from the structure of the underlying
scalar field. So fundamentally, it’s
the scalar field that is responsible
for directional changes. But math-
ematically we describe them using
the corresponding gradient vector
field.



76 no-nonsense quantum field theory

we use to describe air) is able to stop a ball from rotating.

It is convenient to separate the spacetime structure and the
internal structure of a vector field by writing1212 Take note that we assume here

that the internal structure is every-
where the same. This is, of course,
rarely the case. We will learn later
that analogous to how there are ba-
sis vectors, there are basis solutions
(plane wave solutions) to our equa-
tion of motion for vector fields. Any
solution can be understood in terms
of these basis solutions. Moreover,
these basis solutions are charac-
terized by an internal structure
that is indeed completely frozen in
space and time. Thus, to unclutter
the notation, we will assume here
implicitly that we are dealing with
such a basis solution. In addition,
to unclutter the notation we ignore
that both factors here depend, in
general, on the four-momentum pµ

of the corresponding wave excita-
tion. In particular, the spacetime
structure of a basis solution reads,
in general f (xµ, pµ) = eipµ xµ

.

Aµ(xµ) = eµ

internal structure

⇥ f (xµ)

spacetime structure

. (3.8)

The function f (xµ) contains information about the field strength
at different locations, while the four-vector eµ encodes the in-
ternal structure. It is conventional in this context to use four-
vectors that fulfill the normalization condition13

13 We will check later that if this
condition is fulfilled, the vector eµ

in the expansion of Aµ(xµ) indeed
contributes nothing to the total field
strength.

eµeµ = �1 . (3.9)

In principle, there are infinitely many possible internal struc-
tures of a vector field at each spacetime point. It is, however,
extremely convenient to describe these infinitely many possi-
bilities by using a few basic building blocks. This is possible
because we can write any four-vector eµ as a linear combination
of four basis vectors. A simple basis vector choice is14

14 Take note that any four linearly-
independent vectors can be used
as basis vectors. However, our
choice here is one of the simplest
ones. Moreover, don’t let yourself
get confused by the fact that e0

µ
contains the imaginary unit i. We
will learn later that for physical
fields e0

µ plays no role.

e0
µ ⌘

0

BBB@

i
0
0
0

1

CCCA
, e1

µ ⌘

0

BBB@

0
1
0
0

1

CCCA
, e2

µ ⌘

0

BBB@

0
0
1
0

1

CCCA
, e3

µ ⌘

0

BBB@

0
0
0
1

1

CCCA
.

(3.10)

We can check that these vectors fulfill the normalization condi-
tion (Eq. 3.9). For example,

e0
µ(e

0)µ =
⇣

i 0 0 0
⌘

0

BBB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCCA

0

BBB@

i
0
0
0

1

CCCA

y

= i2 = �1X (3.11)
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Analogously, we find

e2
µ(e

2)µ =
⇣

0 0 1 0
⌘

0

BBB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCCA

0

BBB@

0
0
1
0

1

CCCA

y

= �1 X (3.12)

With a basis at hand, we can write any vector aµ as

aµ = a0e0
µ + a1e1

µ + a2e2
µ + a3e3

µ y
Eq. 3.10

= a0

0

BBB@

i
0
0
0

1

CCCA
+ a1

0

BBB@

0
1
0
0

1

CCCA
+ a2

0

BBB@

0
0
1
0

1

CCCA
+ a3

0

BBB@

0
0
0
1

1

CCCA

y

=

0

BBB@

ia0

a1

a2

a3

1

CCCA
, (3.13)

where aµ are coefficients that encode how much the vector
spreads out in the four basis directions.

Analogous to how it doesn’t matter which basis vectors we use
for our coordinate system, it doesn’t matter which basis vectors
we use to describe the internal structure of vector fields. How-
ever, since we are always free to choose a convenient coordinate
system, it often makes sense to align the basis vectors ei

µ (for
i = {0, 1, 2, 3}) and the coordinate axes, as we do it in Eq. 3.10.
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As mentioned above, somewhat naively we can imagine that
the internal structure encodes in which spacetime direction an
object gets pushed by our vector field. It is conventional to de-
scribe the internal structure of a vector field by using the word
polarization. In particular, the vectors eµ that encode the inter-
nal structure in Eq. 3.8 are commonly known as polarization
vectors. The basis vectors in Eq. 3.10 describe configurations in
which the field is linearly polarized in the direction of one of
the coordinate axis. By using appropriate linear combinations of
them, it is also possible to write down four-vectors that describe
any possible polarization.1515 One important but quite com-

plicated example are circularly
polarized field configurations. The
polarization vectors that describe
circularly polarized field config-
urations are complex. A detailed
discussion of these more advanced
topics would lead us too far astray
here.

To understand a little better what it really means to say that a
field is polarized, let’s imagine a wave-like field excitation that
travels along the x3-axis.16 This property of the field excitation

16 We will discover later that field
excitation typically behave like
waves.

is encoded by the second factor, f (xµ), in Eq. 3.8. 17 Moreover,

17 For your convenience: Eq. 3.8
reads

Aµ(xµ) µ eµ ⇥ f (xµ) .

If we are dealing with a wave-
like structure that moves in the
z-direction, the second factor here
reads

f (xµ) = eipµ xµ
,

where pµ = (Ep,~p)T is the four-
momentum (Eq. 2.44) associated
with the field excitation, and
~p = (0, 0, p) is the three-momentum
of a wave that travels in the z-
direction.

let’s assume that the internal structure can be described by e1
µ.

The situation then looks as follows:

We can see here that while the field excitation travels in the x3-
direction, it oscillates in the x1-direction. This is what we mean
when we say that a field is linearly polarized.

An important but quite subtle point is that not all polarizations
that we can write down mathematically, describe situations that
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we can observe in real world experiments. In general, only field
configurations that are solutions of the equations of motion for
the system at hand are physical configurations, i.e. something
that we can observe in the real world. In other words, an equa-
tion of motion not only tells us how a given field configuration
evolves in time, but also which configurations are physically
realizable.

This is especially important because in fundamental physics
we are not that interested in general vector fields. Instead, we
usually only consider models that involve gauge fields which
are a special kind of vector fields.

A defining feature of a massive gauge field is that there are only
three linearly-independent internal structures.18 For example, 18 For a massive vector field a

mass parameter m plays a role
in the equations of motion. In a
quantum context this implies that
the elementary particle associated
with the field is massive (e.g. the
W-boson). For a massless vector
field, there is no mass parameter
in the equation of motion and
the corresponding elementary
particle (e.g. the photon or gluon) is
massless.

for a field excitation at rest (~p = 0), we can describe them using
the basis vectors
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In other words, for a field excitation at rest configurations of the
form

Aµ µ e0
µ =

0
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i
0
0
0

1

CCCA
(3.15)

are not physical.

For a massless gauge field, there are only two linearly-independent
internal structures. For a field excitation that moves in the x3-
direction, we can describe them by using the basis polarization
vectors19 19 We discussed in Section 2.7 that

all field excitations of a massless
vector field (massless particles) can
never be at rest. Therefore, one of
the simplest situations that we can
consider is an excitation that moves
in the x3-direction.
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, e2
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1
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. (3.16)
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In words, this means that an excitation of a massless vector
field can never be polarized in the direction of its movement.2020 In technical terms we say that

massless gauge fields cannot
have a longitudinal polarization.
Only transverse polarizations (i.e.
polarizations perpendicular to the
direction of motion) are allowed.

Here’s a somewhat naive but nevertheless helpful way to re-
member this curious fact of Nature. A field polarization in the
x3-direction implies that the field oscillates back and forth in
the x3-direction. But excitations of massless vector fields al-
ways travel at speed c. Therefore, if there were an excitation of a
massless vector field that moves in the x3-direction and is polar-
ized in the z-direction, parts of the field would have a velocity
faster than c. But this is in conflict with the fact that the speed
of light is an upper speed limit for everything in physics.

3.3 Scalars, Vectors, Tensors, and Spinors

A useful way to think about scalars, vectors and tensors is in
terms of how they react to transformations of our coordinate
system.

B A scalar remains completely unchanged.

B A vector transforms exactly like a position vector~r. For ex-
ample, if we rotate our coordinate system using a rotation
matrix R, i.e. ~r ! R~r, any vector ~v gets rotated analogous to
how~r gets rotated: ~v ! R~v.

The second statement may seem strange or even trivial. How-
ever, this definition is actually useful since, in principle, we can
write any three quantities below each other between two big
brackets. For example, we could write the pressure P, tempera-
ture T and entropy E of a gas between two big brackets

0

B@
P
T
E

1

CA .

But even if we group these quantities together like this, the
resulting object is not a vector since it doesn’t transform like a
position vector.
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These kinds of thoughts are especially important in the context
of special relativity. In special relativity our main focus are
events in spacetime, which we can describe using four-vectors
xµ = (ct, x1, x2, x3)T .21 21 Reminder: the speed of light c

appears here and in other four-
vectors since all components of a
vector must have the same units
since otherwise we can’t mix them.
Since t has units [s], we multiply it
by the only fundamental velocity
that we have: c. The result ct has
units [ m

s s]=[m] which is the same
as the other components.

An event is characterized by a location (x1, x2, x3) and a point in
time t. It makes sense to define four-vectors in special relativity
since t and (x1, x2, x3) are mixed through transformations of
our coordinate system ("boosts"). As discussed in the previous
chapter, this means that two observers that are boosted relative
to each other, do not agree on the time that has elapsed between
two events. The mixing is analogous to how (x1, x2, x3) are
mixed through rotations but is a bit harder to grasp since time
and space coordinates are mixed. Nevertheless, the mixing im-
plies that we should write time and space coordinates together
as a vector.

Once we’ve understood this, the next crucial task in any theory
that respects the rules of special relativity is to find quanti-
ties that transform together like the prototypical four-vector
xµ = (ct, x1, x2, x3)T . A famous example is the four-momentum
vector pµ = (E/c, p1, p2, p3), where ~p = (p1, p2, p3) is the
ordinary, three-dimensional momentum vector, E the energy
and c, as always, denotes the speed of light. Energy and mo-
mentum get mixed in exactly the same way as space and time
coordinates. Another example is the electromagnetic potential
Aµ = (f/c, A1, A2, A3), where f denotes the electric potential
and ~A = (A1, A2, A3) the magnetic vector potential.

The electromagnetic potential is a perfect example to under-
stand why four-vectors are useful, so let’s go on a short tangent
here.22 22 If you’re not yet familiar with

electrodynamics, feel free to skip
this tangent. Our return to the main
story is marked by a horizontal line.

The introduction of the electromagnetic potential Aµ is moti-
vated by the observation that two observers do not necessarily
agree whether or not there is a non-zero magnetic field present
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in a system or not.23 Whenever there is an electric charge in a23 Strictly speaking, there is just
one magnetic field and one electric
field which are present everywhere.
However, their field strengths are
in many regions zero or so tiny
that we can treat it as zero. Nev-
ertheless, especially in the context
of classical electrodynamics, it is
often convenient to act as if each
object creates its own electric field
and then add these contributions to
find the total electric field. A more
mature view, however, is that each
charge leaves a specific imprint on
the one electric field that is present
everywhere. The overall structure
of this electric field is the result
of the contributions from all the
individual charges.

system, the electric field is non-zero. Moreover, whenever there
is a moving charge, the magnetic field is non-zero. The crux
is now that two observers do not necessarily agree whether a
given charge is moving or not.

Just imagine that there is one observer, let’s call her Sarah, who
sees a charge at rest and a second observer, let’s call him Tom,
who moves relative to Sarah. Tom sees a moving charge.

Therefore, Tom will declare that the resulting magnetic field is
non-zero. In contrast, Sarah will not include a magnetic field
since she sees the charge at rest.

The trick that allows us to develop a consistent description
that is valid for all observers is to allow that the electric and
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magnetic field components get mixed through coordinate trans-
formations. In other words, just as for temporal and spatial
coordinates, we combine the magnetic and electric field into a
single object. The appropriate object that does the job is known
as the electromagnetic field tensor Fµn.24 Moreover, an even 24

Fµn =

0
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F30 F31 F32 F33

1
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=
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E1/c 0 �B3 B2
E2/c B3 0 �B1
E3/c �B2 B1 0

1

CCA

more convenient description is possible if we introduce the four-
vector Aµ which combines the electric and magnetic potentials
into a single object. The relationship between the electromag-
netic field tensor Fµn and the electromagnetic potential Aµ is25

25 You can find a more detailed
discussion of the interplay between
the electric field, magnetic field,
electromagnetic field tensor and
the electromagnetic potential in my
book:

Jakob Schwichtenberg. No-
Nonsense Electrodynamics. No-
Nonsense Books, Karlsruhe, Ger-
many, 2018a. ISBN 978-1790842117

Fµn = ∂µ An � ∂n Aµ . (3.17)

The connection between the field-strength tensor Fµn, the four-
vector field Aµ, the electric field ~E and the magnetic field ~B is
summarized in the following diagram:

electromagnetic potential Aµ

Fµn⌘∂µ An�∂n Aµ

✏✏

Ei⌘�∂i A0�∂0 Ai

��

Bi⌘eijk∂j Ak

✓✓

electromagnetic field tensor Fµn

Ei⌘F0i

ww

Bi⌘� 1
2 eijk Fjk

''

electric field ~E magnetic field ~B

Now back to our main story.

The message to take away so far is:

Mathematical objects like a scalar or four-vector are defined

by their behavior under coordinate transformations.
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A scalar doesn’t change at all, while a four-vector transforms
exactly like the prototypical four-vector xµ = (ct, x1, x2, x3)T .
Completely analogously, we can introduce additional objects
that are also defined by their transformation behavior.2626 For example, the defining prop-

erty of a (rank 2) tensor is that it
transforms like two four-vectors at
once. Let’s denote the transforma-
tion of a four-vector vµ by

vµ ! Rµnvµ.

A (rank 2) tensor then transforms
under this transformation as

Fµn ! RµsRrnFsr .

This is exactly how the composition
vµwn of two arbitrary four-vectors
transforms. (Take note that this
is not the scalar product since
the indices are different. The
scalar product vµwµ yields, as the
name suggests, a scalar which
doesn’t change under coordinate
transformations.

This is exactly how spinors, arguably the most mysterious ob-
jects in modern physics, enter the game. A spinor is a mathe-
matical object that transforms non-trivially under coordinate
transformations but not like a vector. Of course, as mentioned
above, as long as we stick to mathematics we are always free to
introduce new objects with incredibly weird or incredibly sim-
ple transformation rules. But spinors are different since they are
absolutely essential for our description of Nature at fundamen-
tal scales. For example, we need spinors to describe electrons or
quarks. Thus, they are not just some mathematical gimmick and
it makes sense to learn about their somewhat strange transfor-
mation behavior.

Before we talk about spinors, it makes sense to recap how
scalars and vectors transform.

A scalar remains unchanged by coordinate transformations.
Another way to express this is by saying that all coordinate
transformations look to a scalar like multiplication by the num-
ber 1, which leaves all objects unchanged. Thus under a rotation
around the x-axis a scalar f transforms as2727 The superscript s denotes "scalar"

and the superscript x indicates that
we rotate around the x-axis. The
notation here may look somewhat
awkward. I included an explicit
notation for the trivial transforma-
tions R(sx), B(sz) because this helps
to keep in mind that there is really
a transformation going on. It’s
just that this transformation looks
trivial when it acts on a scalar. But
if other objects, like a vector, live in
the same system, they are indeed
affected by the transformation. This
is discussed in more detail below.

f ! R(sx)f , (3.18)

where
R(sx) = 1 . (3.19)

Analogously, under a boost along the z-axis, a scalar transforms
as

f ! B(sz)f , (3.20)

where again
B(sz) = 1 . (3.21)

In contrast, a vector sees coordinate transformations as (4 ⇥ 4)
matrices. For example, the four-vector xµ transforms under a
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rotation around the x-axis as

xµ ! R(vx)
µn xn , (3.22)

where28 28 This is the ordinary (3 ⇥ 3) matrix
that describes a rotation around
the x axis supplemented by an
additional row on top since time
coordinates are not affected by
rotations. (We have only zeroes
and a single 1 in the second row
because a rotation around the x-axis
leaves the x-coordinate of a vector
unchanged.)

R(vx)
µn (q) =

0

BBB@

1 0 0 0
0 1 0 0
0 0 cos(q) � sin(q)
0 0 sin(q) cos(q)

1

CCCA
. (3.23)

Moreover, under a boost along the z-axis a four-vector trans-
forms as

xµ ! B(vz)
µn xn , (3.24)

where (Eq. 2.51)

B(vz)
µn (v) =

0

BBB@

g(v) 0 0 �g(v)b(v)
0 1 0 0
0 0 1 0

�g(v)b(v) 0 0 g(v)

1

CCCA
. (3.25)

With this in mind, we are ready to talk about spinors. Spinors
live somewhere in between a scalar and a vector.29

29 One thing that can be extremely
confusing is that mathematicians
use the word vector quite differ-
ently. For them, any element of a
vector space is a vector. The defin-
ing characteristic of elements of a
vector space is that they follow the
same rules (axioms) as the little ar-
rows that we use to illustrate three-
component vectors. You can find a
complete list of all axioms that de-
fine a vector space, for example, at
Wikipedia (https://en.wikipedia.
org/wiki/Vector_space). Thus to
them, spinors are a special kind of
vector since spinors can be added
and multiplied by real numbers
just as the arrows you know from
highschool. In other words, mathe-
maticians call spinors vectors since
they live in a vector space. (The
vector space spinors live in is called
C2. The elements of C2 are complex
column vectors with two entries.)
By vector, however, we mean (un-
less otherwise stated) a four-vector
that transforms under coordinate
transformations exactly like xµ.

A fundamental spinor, often called a Weyl spinor, has two-
components. This implies that all fundamental spinors see
coordinate transformations as (2 ⇥ 2) matrices. Formulated dif-
ferently, when we want to calculate how a spinor looks like after
a rotation or boost, we can no longer use the (4 ⇥ 4) matrices
that work so nicely for four-vectors. Instead, we need (2 ⇥ 2)
matrices.

One small but important detail is that there are two kinds of
fundamental spinor. Both are two-component objects but behave
slightly different under coordinate transformations.

The first kind is known as left-chiral spinors c and transforms,
for example, under rotations around the x-axis as30

30 For now, the names left-chiral
and right-chiral are just names that
we use to label certain objects that
transform similarly but differently
under Lorentz transformations.
We will later fill these names with
physical content.

https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Vector_space
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ca ! R(cx)
ab cb , (3.26)

where3131 An noteworthy detail here is
that the correct (2 ⇥ 2) matrix that
describes how a left-chiral spinor
transforms under rotations contains
complex entries.

R(cx)
ab (q) =

 
cos( q

2 ) i sin( q
2 )

i sin( q
2 ) cos( q

2 )

!
. (3.27)

Moreover, under a boost along the z-axis, a left-chiral spinor
transforms as

ca ! B(cz)
ab cb , (3.28)

where

B(cz)
ab (f) =

 
e

f
2 0

0 e�
f
2

!
, (3.29)

and f denotes the rapidity of the boost which is directly related
to the velocity3232 Rapidity is a parameter that is

used quite often in special relativity.
The strange definition of f given
here often helps to simplify calcula-
tions. Moreover, the boost matrices
for vectors can also be rewritten in
terms of the rapidity:

B(vy)
µn (f) =
0

BB@
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where

cosh(f) = g(v)
sinh(f) = g(v)b(v) .

tanh(f) = b(v) =
v
c y

f = artanh
⇣v

c

⌘
. (3.30)

Similarly, a right-chiral spinor x transforms under rotations
around the x-axis as

xa ! R(xx)
ab xb , (3.31)

where

R(xx)
ab (q) =

 
cos( q

2 ) i sin( q
2 )

i sin( q
2 ) cos( q

2 )

!
. (3.32)

This is exactly the same matrix as in Eq. 3.27. Moreover, under a
boost along the z-axis, a right-chiral spinor transforms as

xa ! B(xz)
ab xb , (3.33)

where

B(xz)
ab (f) =

 
e�

f
2 0

0 e
f
2

!
. (3.34)

In general, left-chiral spinors and right-chiral spinors transform
equally under rotations but slightly differently under boosts.
The only difference in the transformation rules for boosts are
the swapped position of minus signs.
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There is also a third kind of spinor which, however, is not some-
thing fundamentally new but simply a combination of the two
kinds of spinors that we introduced above. A Dirac spinor is
a left-chiral and right-chiral spinor written below each other
between two big brackets:

Y =

 
c

x

!
. (3.35)

It is extremely convenient to introduce Dirac spinors for ex-
actly the same reasons that we introduced four-vectors. We
introduced four-vectors because time and space coordinates are
mixed under coordinate transformations. Similarly, we intro-
duce Dirac spinors because left-chiral and right-chiral coordi-
nates are mixed under coordinate transformations. However,
the analogy is not exactly one-to-one. For four-vectors the mix-
ing between space and time coordinates happens under boost.
In contrast, the mixing of left-chiral and right-chiral spinors
happens when we mirror a system.

In general, transformations that mirror coordinate axes are
known as parity transformations.33 Mathematically, we have34 33 Take note that parity transfor-

mations are a completely new type
of transformation. In particular, a
parity transformation cannot be
rewritten in terms of rotations.

34 The transformation t ! �t is
known as time reversal.

~x
parity�! �~x . (3.36)

Using this new terminology we can say that left-chiral and
right-chiral spinors are mixed under parity transformations.35 35 Mixed is not really the right word

here since a parity transformation
is a discrete transformation. We
will discuss below in more explicit
terms what is really meant here.
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We can understand this by recalling that left-chiral spinors
and right-chiral spinors transform equally under rotations but
slightly differently under boosts. Moreover, if we mirror our
coordinate axes, a boost in the positive z-direction becomes a
boost in the negative z-direction. The key observation is that if
we consider the transformation law for a right-chiral spinor in a
mirrored coordinate system, we find exactly the transformation
law of a left-chiral spinor.

Let’s make this more concrete. The transformation laws for left-
chiral and right-chiral spinors under boosts (Eq. 3.29, Eq. 3.34)
are related by a flip of the sign of the boost parameter f. Math-
ematically, a boost of a right-chiral spinor along the positive
z-direction is described by (Eq. 3.34)

B(xz)
ab (f) =

 
e�

f
2 0

0 e
f
2

!
, (3.37)

while the same boost in a mirrored coordinate system reads

B(xz)
ab (�f) =

 
e�

�f
2 0

0 e
�f
2

!

y

=

 
e

f
2 0

0 e�
f
2

!
= B(cz)

ab (f) (3.38)

where in both cases f is a positive number that describes how
much we boost our coordinate system. The key observation is
that Eq. 3.38 is exactly the matrix that describes the boost of a
left-chiral spinor in the z-direction. In other words, before the
parity transformation the transformation behavior of a right-
chiral spinor under a boost in the z-direction is described by
Eq. 3.34. But after the parity transformation, the transformation
is described by Eq. 3.38.

Therefore, analogously to how we always need to consider
space and time coordinates simultaneously to develop a de-
scription that remains valid for all inertial observers no matter
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how they are boosted relative to each other, we always need to
consider left-chiral and right-chiral spinors at the same time if
we want a description that remains valid under parity transfor-
mations. This is why we introduce Dirac spinors.

In particular, a Dirac spinor under a parity transformation
transforms as

Y =

 
c

x

!
! Y0 =

 
x

c

!
. (3.39)

To understand why, let’s consider the transformation behav-
ior of a Dirac spinor explicitly. Since a Dirac spinor consists of
a left-chiral and right-chiral spinor below each other, we can
construct the correct transformation matrix by combining the
transformation matrices for left-chiral and right-chiral spinors.
For example, under a boost in z-direction, a Dirac spinor trans-
forms as

Y !
 

B(cz)(f) 0
0 B(xz)(f)

!
Y

y

Y =
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◆
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!
 

B(cz)(f) 0
0 B(xz)(f)

! 
c

x

!
(3.40)

=

 
B(cz)(f)c

B(xz)(f)x

!
. (3.41)

We can see here that if we combine the transformation matrices
for right-chiral and left-chiral spinors into one big matrix, we
indeed get the correct transformation behaviors:

c ! B(cz)(f)c =̂ Eq. 3.28

x ! B(xz)(f)x =̂ Eq. 3.33 . (3.42)

The question we want to answer is: how does a Dirac spinor
transform under parity transformations? We discovered in
Eq. 3.38 that B(xz)(f) ! B(xz)(�f) = B(cz)(f) under parity
transformations. Analogously, we have B(cz)(f) ! B(cz)(�f) =

B(xz)(f). Therefore, the transformation law of a Dirac spinor
under a boost along the z-axis (Eq. 3.40) becomes

Y !
 

B(xz)(f) 0
0 B(cz)(f)

!
Y0 . (3.43)
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Since the positions of B(cz)(f) and B(xz)(f) are swapped if we
mirror our coordinate axis, we need to swap the positions x

and c too. This is exactly the transformation behavior given in
Eq. 3.39.3636 This is not some deep revelation.

Instead, we are simply setting
up our formalism such that it
remains consistent under parity
transformations.

There is one final thing I want to emphasize before we move on:
Dirac spinors are not four-vectors even though they both have
four components. Four-vectors and Dirac spinors are both de-
fined by their transformation behavior and the way they trans-
form, for example, under a boost along the z-axis are completely
different.

The transformation law for a four-vector is given in Eq. 3.25,
while the transformation law for a Dirac spinor is given in
Eq. 3.40 and reads in more explicit terms37

37 For your convenience: Eq. 3.25
reads
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Spinors and vectors are completely different kinds of objects.
Another way to see this is by considering a rotation by 360� =

2p around some arbitrary axis. A vector, of course, remains
completely unchanged by such a full rotation. We can check
this explicitly by using, for example, Eq. 3.23 which describes a
rotation around the x-axis:
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R(vx)
µn (2p) =
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This is indeed the identity matrix and therefore a vector re-
mains, as expected, completely unchanged by full rotations of
the coordinate system.

Next, let’s consider the transformation behavior of a spinor
under a rotation by 360� = 2p. The transformation of a left-
chiral spinor under a rotation around the x-axis is described by
Eq. 3.27. For q = 2p, we find:

R(cx)
ab (2p) =

 
cos( 2p

2 ) i sin( 2p
2 )

i sin( 2p
2 ) cos( 2p

2 )

!

y

cos(p) = �1, sin(p) = 0

=

 
�1 0
0 �1

!
. (3.46)

This is not the identity matrix! In words, this means that a
spinor is not unchanged by a full rotation. Instead, it picks
up a minus sign. We therefore only get the identity matrix if
we rotate our system by 720� = 4p. This means we need to
rotate a spinor twice by 360� to get it back to its initial configu-
ration. This strange behavior under full rotations is one of the
most famous properties of spinors and demonstrates clearly that
spinors are quite different from ordinary vectors.

One way to think about this curious fact is to imagine that
a particle (or field excitation) that is described by a spinor is
somehow connected to its surroundings. The connection to its
surroundings is flipped after a rotation by 360� and only returns
to its original configuration after a rotation by 720�.38

38 There are, of course, no threads
that connect particles to their
surroundings. Instead, particles
that are described by spinors are
connected to their surroundings
through gauge fields. And, in fact,
its only through the interactions
with gauge fields that we can
detect that a spinor indeed picks
up a minus sign after a rotation
by 360� (for example, in a neutron
interferometer).
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What we’ve discussed in this section was probably a lot to swal-
low if you’ve never heard of spinors before. So maybe you find
it comforting that no one finds spinors particularly intuitive.
Even Michael Atiyah, winner of the Fields Medal and one of
the most influential mathematical physicists of the past century
declared that "no one fully understands spinors. Their algebra is
formally understood, but their geometrical significance is mysterious.
In some sense they describe the ’square root’ of geometry and, just as
understanding the concept of

p
�1 took centuries, the same might be

true of spinors".

So let’s recap the main lessons before we move on.

The mathematical objects that we use to describe physical sys-
tems can be characterized by how they transform if we modify
our coordinate system. A scalar always remains completely
unchanged, while a vector changes in exactly the same way
as the arrows that we use to describe the location of objects in
classical mechanics. A third kind of mathematical object that is
essential to describe Nature are spinors. A spinor transforms
non-trivially if we modify our coordinate system but follows
different transformation rules than a vector. Moreover, there are
two kinds of fundamental spinors known as left-chiral spinors
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and right-chiral spinors.39 Both are two-component objects 39 Reminder: The fundamental
two-component spinors are usually
called Weyl spinors.

and transform equally under rotations but slightly differently
under boosts. In addition, if we mirror our coordinate axis, a
left-chiral spinor becomes a right-chiral spinor and vice versa.
This observation motivates us to introduce a new kind of object
known as a Dirac spinor which combines one left-chiral and
one right-chiral spinor into a single object. Dirac spinors are ex-
tremely convenient if we want to make sure that our description
remains valid no matter how we mirror our coordinate axis.40 40 Another reason why Dirac

spinors are extremely useful, is
that we always need to use a left-
chiral spinor and a right-chiral
spinor to describe a physical par-
ticle like an electron. Even if we
manage to prepare a particle such
that it can be described solely by a
left-chiral spinor, this description
only remains valid for a brief mo-
ment. All known particles that we
describe using spinors constantly
jump back and forth between a state
that we can only describe using a
left-chiral spinor and a state that
we can only describe using a right-
chiral spinor. This is illustrated
in the picture below in which an
electron e interacts with the Higgs
field, H. As a result, the electron
oscillates between a right-chiral and
a left-chiral state. We will discuss
this in more detail later.

Since a Dirac spinor consists of two two-component objects, it
has four components. Nevertheless, it transforms completely
differently than a four-vector.

The most important loose ends that we will pick up in a mo-
ment are:

B The meaning of the adjective "chiral" which stems from a
physical property of particles known as chirality.

B The meaning of the word "spinor" which stems from a physi-
cal property of particles known as spin.

Once we’ve discussed these concepts, we can pick up arguably
the most interesting loose end: the meaning of spinor com-
ponents. For a vector, we can easily imagine that, for exam-
ple, vµ = (0, 0, 0, 1) represents an arrow that points in the z-
direction. In a physical context, as discussed for the electric field
above, this could mean that a test charge gets pushed in the z-
direction by the field which is described at the location of the
test charge by such a vector.41 A fundamental spinor, however,

41 Recall that a vector field is de-
scribed by a vector "above" each
location. However, only the arrow
"above" the location of the test
charge is relevant for its description.

has only two components and therefore there is no such direct
connection to spacetime directions. Moreover, even though a
Dirac spinor has four components, there is no direct connection
between its components and spacetime directions.

These are some of the deepest ideas in modern physics. But
before we discuss all of this in detail, let’s finish our discussion
of fields by talking really quickly about spinor fields.
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3.4 Spinor Fields

Completely analogously to how we introduced scalar and vector
fields, we can introduce spinor fields. As mentioned already in
the introduction:

A spinor field y is a mathematical object that

eats a spacetime point xµ and spits out a spinor, y(xµ).

Formulated differently, a spinor field assigns a spinor to each
spacetime point. Since there are different kinds of spinors, there
are also different kinds of spinor fields.

A left-chiral Weyl spinor field yL is a mathematical object

that eats a spacetime point xµ and spits out a left-chiral

Weyl spinor, yL(xµ).

Analogously:

A right-chiral Weyl spinor field yR is a mathematical object

that eats a spacetime point xµ and spits out a right-chiral

Weyl spinor, yR(xµ).

Moreover:4242 Take note that we use the symbol
Y for Dirac spinors and y for our
(two-component) spinor field here.

A Dirac spinor field Y is a mathematical object

that eats a spacetime point xµ and spits out a

Dirac spinor, Y(xµ).

Let’s consider a concrete example:

yL(xµ) = cxµxµ , (3.47)
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where

c =

 
1
0

!
(3.48)

is a constant, left-chiral spinor. Since xµxµ denotes the scalar
product, the formula in Eq. 3.48 indeed yields a spinor for each
spacetime point. For example, for xµ = (2, 1, 1, 1)T we find

yL
�
(2, 1, 1, 1)T� = c(22 � 12 � 12 � 12) this is Eq. 3.47 for xµ = (2, 1, 1, 1)T

y

= c y

Eq. 3.48

=

 
1
0

!
(3.49)

Similarly, we can consider an explicit Dirac spinor field which
assigns a Dirac spinor to each spacetime point. For example,

Y(xµ) =

 
c

x

!
xµxµ , (3.50)

where

c =

 
1
0

!
(3.51)

is a left-chiral Weyl spinor and

x =

 
0
1

!
(3.52)

is a right-chiral Weyl spinor. If we plug in the spacetime point
xµ = (2, 1, 1, 1)T into Eq. 3.50, we find

Y(xµ) =

 
c

x

!
(22 � 12 � 12 � 12)

y

=

 
c

x

!

y

Eq. 3.51 and Eq. 3.52

=

0

BBB@

1
0
0
1

1

CCCA
. (3.53)
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One thing that may confuse you if you look at the results in
Eq. 3.53 in isolation is that there is no way to tell that this is a
Dirac spinor and not a four-vector. Context matters a lot. Of
course, in principle you can apply the transformation rules
for four-vectors to Dirac spinors. The transformation rules are
(4⇥ 4) matrices and Dirac spinors look like four-vectors so there
is nothing that will look fishy at first glance. But if you do this,
you will produce results that no longer match what we observe
in experiments. We always need to make sure that every object
is transformed using the right transformation rules. Otherwise
our description becomes nonsensical.4343 In the following two sections,

we’ll discuss several ideas that
help us to understand spinors a bit
better. If you’re already familiar
with spinors, spin and chirality, feel
free to skip ahead to Section 3.5.

3.4.1 Spinor Formalism

An extremely convenient method to prevent errors is to intro-
duce so-called spinor indices. Just as we denote four-vectors
using subscript or superscript Greek indices (e.g. xµ), we use
subscript or superscript Roman indices (that typically start at
the beginning of the alphabet) for spinors (e.g. ca).44 This helps44 In contrast, Roman indices like

i,j,k etc. are conventionally used for
three-component vectors.

to make sure that we always use the correct transformation
rules. We say spinor indices transform differently than vector
indices. This simply means that the transformation matrix that
acts on a spinor needs to have spinor indices, while the transfor-
mation matrix that acts on vectors needs to have vector indices:

xµ ! Lµnxn

ca ! Labcb , (3.54)

where for a boost in the z-direction, Lµn is given by Eq. 3.25 and
Lab by Eq. 3.29.45 Moreover, since left-chiral spinors and right-45 For your convenience: Eq. 3.25

reads

LBz
µn =

0

BB@

cosh(f) 0 0 i sinh(f)
0 1 0 0
0 0 1 0

i sinh(f) 0 0 cosh(f)

1

CCA

and Eq. 3.29 reads

B(cz)
ab =

 
e

f
2 0

0 e�
f
2

!
.

chiral spinors transform differently, we introduce dotted indices
for right-chiral spinors (e.g. x ȧ).

Now you probably wonder why we introduce superscript in-
dices for spinors. The reason is exactly the same as for vectors.
It’s just a shorthand notation. For vectors a superscript index
means that there is an implicit Minkowski metric:46

46 This was discussed in Chapter 2.
xµ ⌘ hµnxn . (3.55)
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Analogously, for spinors a superscript index means that there is
an implicit spinor metric:

ca = eabcb (3.56)

where47 47 The symbol eab is conventional
because the spinor metric is exactly
the two-dimensional Levi-Civita
symbol.

eab =

 
0 1
�1 0

!
. (3.57)

To understand why the spinor metric shows up quite often in
our calculation, recall why we introduced a short-hand nota-
tion for the Minkowski metric. The Minkowski metric shows
up in the scalar product of vectors. Formulated differently, the
Minkowski metric is exactly the tool that we need to combine
two vectors and get something that remains unchanged by coor-
dinate transformations (a scalar). We typically want expressions
in physics that remain valid no matter which coordinate system
we use. Thus it makes sense to introduce a short-hand notation
for the Minkowski metric.

The role of the spinor metric is completely analogous. It allows
us to combine two spinors in such a way that the result is un-
changed by coordinate transformation. This can be shown in
general but for now, let’s just look at a concrete example. The
claim is that

caca ⌘ caeabcb (3.58)

remains unchanged by transformations of the coordinate sys-
tem. In particular, this means that after every coordinate trans-
formation, we can write our expression caeabcb (possibly after
some algebraic calculations) again as caeabcb.

As a concrete example, we will consider a boost in the z-direction
once more. Using the explicit transformation rules for a left-
chiral spinor (Eq. 3.29), we find48

48 An important subtlety is that the
object on the left of a scalar product
always needs to be transposed. This
transposition, however, is usually
not written explicitly if we use
index notation. The scalar product
of two (three-component) vectors,
for example, should be written

~v · ~w = ~vT~w = vT
i vj .

The transposition turns a column
vector into a row vector and there-
fore, we need it here since only
rows multiplied by columns yield
a scalar and not a matrix. Analo-
gously, we need to transpose the
spinor to the left in a spinor scalar
product. For the spinor itself this
is not important when we switch
to index notation. But if we trans-
form the spinor using a matrix, the
transposition has an effect since
it means that the matrix needs to
be transposed and, in addition,
that the spinor and the matrix
switch places. (In general, we have
(~vM)T = MT~vT . The same is true
for spinors.)
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caeabcb !c0
aeabc0

b y

=
⇣

cc(B(cz)
ac )T

⌘
eab
⇣

B(cz)
bd cd

⌘

y

Eq. 3.29

= cc

 
e

f
2 0

0 e�
f
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e

f
2 0

0 e�
f
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bd

cd
y

transposition

= cc

 
e

f
2 0

0 e�
f
2

!
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f
2 0
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f
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!
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cd
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Eq. 3.57

= cc
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f
2 0

0 e�
f
2

!

ca

✓
0 1
�1 0
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f
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!
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cd
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matrix product

= cc

 
e

f
2 0
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f
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0 e
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2

�e
f
2 0

!
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cd

y

matrix product

= cc

✓
0 1
�1 0

◆cd
cd

y

= ccecdcd y

renaming indices
= caeabcb X

(3.59)

In words this means that thanks to the spinor metric eab, the
two transformation matrices cancel exactly. This happens for
every rotation or boost matrix and also for right-chiral spinors.
Therefore, as promised above, the spinor metric is the tool that
we need to get expressions that remain unchanged.

An important point is that if we multiply a left-chiral spinor by
a right-chiral spinor, we only get something Lorentz invariant
if we complex conjugate one of the spinors.49 To understand49 We say an object is invariant

if it is unchanged by a specific
transformation.

why, recall that a left-chiral spinor transforms under rotations as
(Eq. 3.26)

c ! c0 =

 
cos( q

2 ) i sin( q
2 )

i sin( q
2 ) cos( q

2 )

!
c , (3.60)

while a right-chiral spinor transforms as (Eq. 3.31)

x ! x 0 =

 
cos( q

2 ) i sin( q
2 )

i sin( q
2 ) cos( q

2 )

!
x . (3.61)
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Thus, only if we complex conjugate one of the spinors their
transformation behavior cancel exactly:50 50 Try to do the same calculation

without complex conjugation if
you’re not convinced.

x†c ! (x 0)†c0

y

Eq. 3.60. Eq. 3.61

=

  
cos( q

2 ) i sin( q
2 )

i sin( q
2 ) cos( q

2 )

!
x

!†   
cos( q

2 ) i sin( q
2 )

i sin( q
2 ) cos( q

2 )

!
c

!

y

(AB)† = B† A†

= x†

 
cos( q

2 ) i sin( q
2 )

i sin( q
2 ) cos( q

2 )

!†  
cos( q

2 ) i sin( q
2 )

i sin( q
2 ) cos( q

2 )

!
c

y

= x†

 
cos( q

2 ) �i sin( q
2 )

�i sin( q
2 ) cos( q

2 )

! 
cos( q

2 ) i sin( q
2 )

i sin( q
2 ) cos( q

2 )

!
c

y

matrix product

= x†

 
cos2( q

2 ) + sin2( q
2 ) i cos( q

2 ) sin( q
2 )� cos( q

2 ) sin( q
2 )

�i sin( q
2 ) cos( q

2 ) + cos( q
2 ) sin( q

2 ) cos2( q
2 ) + sin2( q

2 )

!
c

y

cos2 x + sin2 x = 1

= x†

 
1 0
0 1

!
c

y

= x†c X

This motivates us to define that complex conjugation turns a
dotted index into an undotted index and vice versa51 51 We will see in a moment why this

notation makes sense. Moreover,
don’t worry, you don’t have to
remember all these rules about
spinor indices. At the few instances
where we need them, I will always
recite them explicitly.

(ca)
† = cȧ

(x ȧ)† = xa . (3.62)

With this notation, we find for the scalar product of a right-
chiral spinor with a left-chiral spinor:52

52 As before, we must transpose
the left object in a scalar product
because only this way we get a
product of the form row times
column.

scalar product of x and c = x†c y

index notation
= (x ȧ)†ca y

(x ȧ)† = xa

= xaca y

xa = xbeba Eq. 3.56
= xbebaca . (3.63)

This is exactly the index structure for which we already checked
in Eq. 3.59 that it yields something invariant. Thus the defini-
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tions in Eq. 3.62 are exactly what we need to keep our notation
consistent.

The distinction between spinors and four-vectors is not only
important when we want to switch coordinate systems but also
when we want to interpret our results. As mentioned above
already, the way we think about the components of spinors is
quite different from how we think about the components of
four-vectors. This is what we will talk about next.

3.4.2 Spin

So far, we’ve treated spinors as some abstract mathematical
objects that are defined by how they behaves under transforma-
tions. Now it’s time to fill them with physical content.

To understand how we can interpret the components of a
spinor, we need to talk about one of the most important in-
ternal properties of elementary particles known as spin.53 And53 Spin, mass and electric charge

are not only internal properties of
particles but of fields too. But it’s
much easier to discuss these notions
as something that is attached
to particles and since we will
discover later that particles are field
excitation, everything said here
remains valid for fields.

before we discuss spin, it may be helpful to recall how we think
about other intrinsic properties like the mass and electric charge
of a particle.

For example, we call light particles (me = 9.109 ⇥ 10�31 kg)
with electric charge 1.602 ⇥ 10�19 C, electrons. These labels
define what an electron is. In contrast, we call heavier parti-
cles (mµ = 1.88 ⇥ 10�28 kg ) with exactly the same electric
charge muons. And we call particles that carry 2/3 of the elec-
tric charge of an electron plus an additional kind of charge
known as color charge, up quarks.
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But particles cannot only carry different charges and a certain
mass. They can also spin as they move around.

The concept that allows us to describe how objects circle around
is angular momentum. While elementary particles can, of
course, also revolve around each other, here we are mainly in-
terested in the internal angular momentum that also exists in the
absence of other objects in the system.54 The internal angular 54 The quantity that describes the

rotation of objects with respect
to each other is known as orbital
angular momentum.

momentum of elementary particles is simply known as spin.

Analogously to how different particles carry different electric
charges, they can also carry different spins.

B We call a particle without spin, a spin-0 particle. The only
known fundamental spin-0 particle is the Higgs particle.

B We call a particle that "only spins a little", a spin-1/2 particle.
This name is motivated by the fact that the smallest possible,
non-zero value of the internal angular momentum of elemen-
tary particles is S = 1

2 h̄, where h̄ = 1.055 ⇥ 10�34 J · s denotes
the reduced Planck constant. Famous examples of spin-1/2
particles are electrons, quarks, and muons.

B We call a particle that "spins a bit more", a spin-1 particle
since its internal angular momentum reads S = 1h̄. Famous
examples are the photon and gluons.

An important fact about spin is that it cannot be changed. The
spin of an elementary particle is a fundamental unchangeable
property of it just like its mass or electric charge.
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All known elementary particles carry either a spin of 0, 1/2, or
1. Said differently, this means that spin is quantized.55 This is55 In this context, quantized means

that only integer multiples of a
certain quantity (here 1

2 h̄) are
possible. Another example of
a quantized quantity is electric
charge. For electric charge, the
fundamental quantum is 1

3 e, where
e denotes the electric charge of an
electron. All known elementary
particles carry an integer multiple
of this fundamental quantum of
charge.

rather surprising since for the angular momentum of macro-
scopic objects there is no such restriction. Therefore, it is not
surprising that historically, the quantization of spin was only
discovered experimentally.

Spin is one of the most important concepts in modern physics
because it’s the spin of a particle that determines which role it
plays in Nature:

B Since there is only one known spin-0 particle, we can’t yet
derive some general rule. The role of the one spin-0 particle
that we know of is quite special. It is responsible for the
masses of all elementary particles. Formulated differently,
without this spin-0 particle (or formulated more precisely,
without the underlying field) all elementary particles would
be massless.

B Spin-1/2 particles are responsible for matter. In particular,
atoms consist of spin-1/2 particles (electrons, quarks).

B Spin-1 particles are responsible for the elementary forces. For
example, the photon is responsible for all electromagnetic
interactions and gluons for all chromodynamic interactions.

Moreover, the spin of a particle also determines which mathe-
matical tool we need to describe it:

B We describe spin-0 particles using scalars.

B We describe spin-1/2 particles using spinors.

B We describe spin-1 particles using vectors.

Before we move on, let’s take a brief break and talk about two
pressing questions that you may have at this point.
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First of all, of course, we do not really believe that elemen-
tary particles are little balls that carry backpacks around. As
mentioned in the introduction above, according to our modern
understanding, elementary particles are excitations of fields.
But even in this more mature view of Nature at fundamental
scales, there is no good way to understand what it really is that
makes a particle more massive than another or why certain par-
ticles carry electric charge while others don’t. The situation is
quite similar for spin. It may be really tempting to think about
elementary particles as little spinning balls, but such a picture
quickly leads to paradoxical results.56

56 Historically, many physicists
took the spinning ball idea quite
seriously. The idea was attractive
because in classical electrody-
namics, the field energy of a point
particle that carries electric charge
would be infinite. Therefore, a
group of prominent physicists
assumed that, for example, the
electron is a little sphere of charge
and tried to understand its mass as
a result of the electrostatic energy
of the concentrated negative charge.
(You can find a nice discussion
of this picture and its problems
in Vol. 2 of the Feynman lectures,
http://www.feynmanlectures.
caltech.edu/II_28.html.) In
their calculations, they derived
an electron radius of around
re ⇠ e2/(mec2) ⇠ 10�13 cm. If
we now imagine that a sphere with
radius re spins in such a way that
its angular momentum is S = h̄/2,
we find that points on the surface
of the sphere rotate with a velocity
of around v ⇠ h̄c/e2 ⇠ 137c � c.
This violates the fundamental as-
sumptions of special relativity and
therefore the naive spinning sphere
picture was dismissed.

Nowadays, most physicists simply
accept that spin is some magical
property that we cannot really
understand in intuitive terms from
our macroscopic perspectives.
There are, however, two noteworthy
exceptions which are discussed
in [Ohanian, 1986] and [Hestenes,
1990]. In [Ohanian, 1986] a picture
is proposed in which spin can
be understood as a circulating
flow of energy in the underlying
field, while in [Hestenes, 1990]
spin is discussed as a result of
the permanent zigzag movement
("Zitterbewegung") of particles.

Moreover, you might find that all this talk about internal prop-
erties is rather arbitrary. Sure, we can imagine that elementary
particles also spin around. But why don’t they also, let’s say,
jump a little and thus possess a label that describes how much
they jump around? It turns out that there is a beautiful and sys-
tematic way to derive which internal properties are relevant for
our description of elementary particles.57

57 To spoil the surprise: each funda-
mental label like spin, mass, electric
charge or color charge is directly
related (via Noether’s theorem) to a
fundamental symmetry of Nature.
We discuss Noether’s theorem in
Chapter 4.3.

What happens when we measure the spin of a particle? Let’s
say we are dealing with a spin-1/2 particle. I’ve already men-
tioned that the spin of a particle cannot be changed. For a spin-
1/2 particle, it’s always 1/2h̄. This may not be too surprising
since it simply means that there is nothing that stops or accel-
erates the spin of elementary particles. But when it comes to
actual measurements, there is one additional property of spin
that is truly crazy.

http://www.feynmanlectures.caltech.edu/II_28.html
http://www.feynmanlectures.caltech.edu/II_28.html
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When we typically describe rotations, there are two important
properties that we need to take into account:

B Around which axis the object rotates and

B how fast it rotates.

Therefore, if we measure the angular momentum of an object
around some arbitrarily chosen axis, we measure only one part
of the total angular momentum vector. Only if the choose the
object’s rotation axis as our measurement axis, we measure the
total length of the angular momentum vector.

But for spin the situation is different. The fundamental quan-
tum of spin is 1/2h̄ and therefore, there is simply no value
closer to zero that we could measure. No matter which axis we
choose, there are always only two possible outcomes:

B Spin-up, which means Saxis = 1/2h̄, or

B spin-down, which means Saxis = �1/2h̄.

In geometrical terms this means that the spin of a spin-1/2
particle is always either aligned to the axis of measurement or
anti-aligned. There is nothing in-between.
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And this experimental fact suggests how we can interpret the
components of our fundamental two-component spinors. Since
we are always free to choose our coordinate system however
we want, it is conventional to choose it in such a way that the
measurement axis is directly aligned with the z-axis of the co-
ordinate system.58 If this choice is made, we can interpret our 58 This is just a choice and any other

choice would be equally valid but
would require a more complicated
description. We will talk about this
later in more detail.

spinor components as follows:

B A spinor of the form

 
1
0

!
describes a particle in a spin-up

state (with respect to the z-axis). This means, if we prepare a

particle such that it is described by the spinor

 
1
0

!
, we will

measure the value 1/2h̄ for its spin along the z-axis.

B A spinor of the form

 
0
1

!
describes a particle in a spin-down

state (with respect to the z-axis). Therefore, if we prepare a

particle such that we can describe it by the spinor

 
0
1

!
, we

will measure the value �1/2h̄ for its spin along the z-axis.

Moreover, any spinor with a more complicated structure can be
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rewritten as a linear combination of these basis spinors:
 

a
b

!
= a

 
1
0

!
+ b

 
0
1

!
. (3.64)

In physical terms, the coefficients a and b are directly related to
the probabilities to measure a spin-up or spin-down configura-
tion respectively.5959 You can find a more detailed

discussion of spin measurements
in

Jakob Schwichtenberg. No-
Nonsense Quantum Mechanics. No-
Nonsense Books, Karlsruhe, Ger-
many, 2018c. ISBN 978-1719838719

Next, let’s talk about chirality.60
60 Reminder: spin and chirality are
the two loose ends we wanted to
talk about in order to understand
why we use notions like left-chiral
spinor and right-chiral spinor. 3.4.3 Chirality

The defining property of a chiral object is that it looks different
from its mirror image. The prototypical example of a chiral
object is a human hand. The general structure of your right
hand is qualitatively different from the structure of your left
hand even if you ignore all details.

In particular, it’s impossible to transform them into each other
by a rotation. If you observe your right hand in a mirror, how-
ever, it will look exactly like your left hand (again, that is, if
we ignore the fine details). In physics we say that the structure
of your left hand and your right hand are related by a parity
transformation.

A somewhat surprising fact about Nature is that some elemen-
tary particles are chiral objects too. We have already discussed
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in the previous sections that there are two kinds of spinors: left-
chiral spinors and right-chiral spinors. Both are mathematical
objects with a somewhat unusual transformation behavior un-
der coordinate transformations.61 Moreover, their names are 61 Recall that both, left-chiral and

right-chiral spinors, pick up a
minus sign when we rotate them
by 360� and thus only return to
the original configuration after a
rotation by 720�.

motivated by the observation that a left-chiral spinor becomes a
right-chiral spinor under a parity transformation and vice versa.

In principle, we can write down all of our equations in such a
way that the particles which are described by left-chiral spinors
and the particles that are described by right-chiral spinors are
indistinguishable. If these equations would describe Nature
accurately, we probably wouldn’t be talking much about left-
chiral spinors vs. right-chiral spinors. Nature, however, clearly
distinguishes between left-chiral and right-chiral particles. The
experimental discovery of this curious fact of Nature was one of
the biggest surprises in modern physics. In technical terms, we
say that parity symmetry is broken which is an elaborate way
of saying that Nature treats left-chiral particles and right-chiral
particles differently.

You are probably wondering in what sense left-chiral particles
are different from right-chiral particles. For our hands we can
analyze quite easily what makes them chiral objects simply
by looking at them. For example, the position of our thumbs
plays a crucial role. One property that makes left-chiral particles
different from right-chiral particles is that only left-chiral parti-
cles carry an additional type of charge known as isospin. Only
particles that carry isospin take part in weak interactions, analo-
gous to how only particles that carry electric charge take part in
electromagnetic interactions. Thus formulated differently, only
left-chiral particles take part in weak interactions.

No one knows why this is the case. The curious connection be-
tween chirality and weak interactions is one of the longstanding
puzzles in modern physics and it shows that it is important to
keep left-chiral and right-chiral spinors separate.

After this quite long detour, let’s return to field theory because
there is one extremely important aspect that we haven’t yet
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talked about.

3.5 Field Dynamics

So far, we talked about fields as mathematical machines that
attach a specific object to each spacetime point. Although it is
somewhat against the spirit of special relativity, it is sometimes
tremendously useful to split space and time.

In spacetime, nothing moves. Spacetime is frozen since it in-
cludes time as one of the axes. As humans, however, we are
used to thinking about the behavior of objects in space and
time. We typically say that an object moves from some location
A at time t0 to another location B at time t1. Only by splitting
space and time like this can we use the language that we are all
familiar with.6262 We don’t split space and time in

any mathematical sense, only in our
language.

So let’s do this and discuss how fields behave as time passes.
In general, at one point in time, a field assigns a specific object
to a point in space and at some later point it time, it possibly
assigns a different object to the same point in space. Formulated
differently, fields can change as time passes on.
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The key question is then of course how and why this happens.
We will discuss the equations that allow us to predict the behav-
ior of fields in the next chapter. But already here we can discuss
one extremely useful (and surprisingly accurate) model that
allows us to think about field dynamics in quite intuitive terms.

The main idea is to think about a scalar field as a spring mat-
tress. For our purposes here, a mattress consists of lots of
springs with a mass attached at the end of each spring.

The fundamental building block of a (mathematical) mattress (a
spring plus a ball at the end) is known in physics as a harmonic
oscillator.
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For simplicity, we assume that all of the springs can only bob up
and down and never bend or twist. We can describe each such
harmonic oscillator using a single number which describes the
ball’s position with respect to its equilibrium position.

In other words, to describe such a mattress we need exactly one
number for each location at each moment in time. This aspect
of a mattress is therefore completely analogous to a scalar field.
The main difference is that a mattress only assigns a number to
certain location while a scalar field assigns a number to every
location.

A mattress therefore represents a discrete version of a scalar
field. The transition from discrete to continuous is possible by
adding more and more springs to the mattress model.
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Our mattress model only becomes really interesting once we
introduce connections between the individual harmonic oscilla-
tors. Without this coupling, each harmonic oscillator can move
up and down without any effect on its neighbors and thus, we
would be simply dealing with lots of independent harmonic
oscillators. So let’s imagine that there is a little elastic band
between neighboring harmonic oscillators:

If we now move one of the balls away from its equilibrium po-
sition, the situation is far more interesting since this change will
affect all neighboring balls too. We can imagine, for example,
that the disturbance starts moving through the mattress like a
wave that is produced when we throw a stone into a pond. And
in fact, this is exactly what happens for a scalar field.
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In a physical context, we say that the field is excited if we put
energy into it. The excitation will then move through the system
in a predictable way. Predicting how a particular excitation
moves is one of the main goals in field theory.

3.6 Waves

The structures that emerge when we excite a field (put energy
into it) are wave-like. In particular, we will reveal below that the
equations of motion that describe the behavior of the various
kinds of fields are all wave equations. This is not too surprising
if we think about a field as a spring mattress. When we pull one
of the springs up, this disturbance will spread out through a
mattress somewhat similar to what happens when we throw a
stone into a pond. Therefore, it makes sense to talk about waves
in somewhat general terms before we discuss the nuances of
field theory.

We know that we are dealing with wave phenomena whenever
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we encounter an equation of the form

(∂2
t � c2∂2

x) j = 0 , (3.65)

which is known as the (one-dimensional) wave equation. Here,
c denotes a constant and we will understand its meaning in a
moment.63 63 A constant necessarily appears

in an equation that involves spatial
derivatives like ∂x and a time
derivative ∂t since ∂x = ∂

∂x has units
1/m, while ∂t = ∂

∂t has units 1/s.
Therefore the constant c has units
m
s which implies that it’s a velocity.

Solutions of the wave equation are typically of the form64

64 We will demonstrate this below.

j(x, t) = ei(wt�kx) , (3.66)

where w describes the angular frequency, k = 2p
l the wave

number (or spatial frequency), and l denotes the wavelength.65

65 You can find a detailed discussion
of these notions in Appendix C.

Moreover, functions of the form

j(x, t) = cos(wt � kx) (3.67)

or
j(x, t) = sin(wt � kx) (3.68)

work equally well. This follows from Euler’s famous formula

eix = cos(x) + i sin(x) . (3.69)

So in some sense, by using ei(wt�kx) we can treat the sine and
cosine solutions at the same time.66 Moreover, working with 66 In particular, we can carry out

all of our calculations with eix

and in the end consider the real
and imaginary parts separately to
recover what we would have found
using the cosine or sine functions
respectively.

ei(wt�kx) is often far more convenient.

Solutions of the form given in Eq. 3.66 (and Eq. 3.67, Eq. 3.68)
describe plane waves. A plane wave is a structure that spreads
out all over space with exactly the same amplitude.

There are infinitely many plane waves that are characterized by
different values of w and k.
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Therefore, it is conventional to label plane waves using w and k:

jw,k(x, t) = cos(wt � kx)

or: j(x, t, w, k) = cos(wt � kx) . (3.70)

Plane waves are the basic building blocks of all wave structures
as we will see below. But first, let’s verify that plane waves
indeed solve the wave equation.

If we plug Eq. 3.66 into the wave equation (Eq. 3.65), we find

0 = ∂2
t j � c2∂2

x j this is Eq. 3.65y

Eq. 3.66
= ∂2

t ei(wt�kx) � c2∂2
xei(wt�kx)

y

∂tei(wt�kx) = iwei(wt�kx)

= i2w2ei(wt�kx) � i2c2k2ei(wt�kx)

y

⇠⇠⇠⇠ei(wt�kx), i2 = �1
= �w2 + c2k2 . (3.71)

Therefore, a function of the form given in Eq. 3.66 indeed solves
the wave equation as long as

w2 = c2k2 . (3.72)

This formula is known as a dispersion relation.67 In general, a67 We will talk about the meaning of
the word "dispersion" in a moment. dispersion relation is a formula that describes how the angular

frequency w and the wave number k are related.68
68 There are also different dispersion
relations that we will discuss below.
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By using the angular and spatial frequency of a wave, we can
calculate its (phase) velocity 69 69 This is explained in Ap-

pendix C.1. See, in particular,
Eq. C.10.v =

w

k
. (3.73)

If we plug the dispersion relation (Eq. 3.72) into this formula,
we find

v =
w

k y

Eq. 3.72

=
ck
k y

⇤k
= c . (3.74)

This tells us that the constant c that appears in the wave equa-
tion (Eq. 3.65) describes the velocity of the waves that are de-
scribed by it.

There is another kind of wave equation that is extremely impor-
tant in modern field theory:70 70 We will discuss fundamental

systems that are described by a
wave equation with dispersion in
Chapter 5.(∂2

t � c2∂2
x + m2) j = 0 , (3.75)

This equation is commonly called the wave equation with dis-
persion. The only difference to the wave equation that we dis-
cussed above is an additional term m2 j.

If we plug our general ansatz (Eq. 3.66) into the wave equation
with dispersion (Eq. 3.75), we find

0 = ∂2
t j � c2∂2

x j + m2 j this is Eq. 3.65y

Eq. 3.66
= ∂2

t ei(wt�kx) � c2∂2
xei(wt�kx) + m2ei(wt�kx)

y

∂tei(wt�kx) = iwei(wt�kx)

= i2w2ei(wt�kx) � i2c2k2ei(wt�kx) + m2ei(wt�kx)

y

⇠⇠⇠⇠ei(wt�kx), i2 = �1
= �w2 + c2k2 + m2 . (3.76)

Thus again, we find that our ansatz indeed solves the equation,
but now the dispersion relation reads

w2 = c2k2 + m2 . (3.77)
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This implies that the velocity of waves described by our new
wave equation (Eq. 3.75) is no longer simply c. Instead, by using
the general formula for the (phase) velocity of a wave (Eq. 3.73),
we find

v =
w

k y

Eq. 3.77

=

p
c2k2 + m2

k
. (3.78)

This little difference has extremely important physical impli-
cations. We discovered above that all waves described by the
ordinary wave equation (Eq. 3.65) travel at speed c. In contrast,
we discovered in Eq. 3.78 that waves which are described by the
wave equation with dispersion (Eq. 3.75) travel at different ve-
locities. The velocity of each wave depends on its wave number
k.

This is important because functions of the form j = ei(wt�kx)

(or equivalently cos(wt � kx), sin(wt � kx)) do not describe
something that we can really observe in Nature. As mentioned
above, these functions describe plane waves. However, in the
real world we can never create something that oscillates per-
fectly with equal amplitude everywhere. A much more realistic
wave form is a wave packet. The plane waves that we’ve dis-
cussed so far are the basic building blocks that wave packets
consist of.7171 We will discuss this in detail

below.

The velocity of plane waves has direct implications for the be-
havior of wave packets. To cut a long story short:

B If we are dealing with a system that is described by the or-
dinary wave equation, all plane waves travel with exactly
the same velocity c. Therefore, a wave packet that consists of
these plane waves will keep its form as time passes.
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B In contrast, if we are dealing with a system that is described
by the wave equation with an additional m2 term, all plane
waves travel with different velocities. As a result, the form of
a wave packet that consists of these plane waves will change
and the wave packet disperses.

3.6.1 Wave Packets

To understand how wave packets are related to plane waves,
take note that we can construct further solutions by using linear
combinations of plane wave solutions. To understand why,
let’s assume we have two solutions of the wave equation with
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dispersion, j1(xµ)j2(xµ), which implies that

(∂2
t � c2∂2

x + m2)j1 = 0

(∂2
t � c2∂2

x + m2)j2 = 0 . (3.79)

If we now consider a superposition of these two solutions:

jsup = j1 + j2 , (3.80)

we find that it also solves the wave equation:

0 !
= (∂2

t � c2∂2
x + m2)jsup y

Eq. 3.80
= (∂2

t � c2∂2
x + m2)(j1 + j2) y

rearranging
= (∂2

t � c2∂2
x + m2)j1 + (∂2

t � c2∂2
x + m2)j2 y

Eq. 3.79
= 0 + 0 X (3.81)

Mathematically, this works because the wave equation is linear
in the field j which means that no terms of the form j2 or j3

appear in it.7272 We can check this by performing
the same steps for an equation
which includes a j2 term.

This observation allows us to understand that plane waves
are the fundamental building blocks of all waves. By using a
linear combination of plane waves it’s possible to construct any
waveform you can imagine:

jwaveform = Â
i

j
plane wave
i

= Â
i

ai cos(kµ
i xµ) (3.82)

where ai denotes coefficients that determine how much each
individual plane wave contributes to the total wave form and
kµ

i denotes different wave vectors that, however, all fulfill the
dispersion relation kµkµ = m2.

If we add plane waves, we end up with a wave packet because
waves with different wavelength (and therefore different wave
numbers) only interfere constructively within a finite region.
If we consider a superposition of lots of waves, the positive
and negative slopes of the different waves average out almost
everywhere. As a result, a wave packet is localized within a
finite region.
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From a slightly different perspective, we can understand this
by looking at a given wave packet in wave number space. This
representation of a wave packet tells us directly which plane
waves contribute how much to the total wave packet:

To get a wave packet that is localized within a small region,
the plane waves that the packet consists of must be carefully
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arranged such that they overlap constructively. If we add plane
waves randomly, their amplitudes will most likely average out.

With this in mind, we can understand why a wave packet does
not change its shape if all of the plane waves it consists of have
the same velocity, while a wave packet consisting of plane waves
that travel with different velocities will disperse.

If all plane waves travel with the same velocity and we arrange
them such that they interfere constructively within a small re-
gion, they will continue to do so as time passes on. The only
thing that changes is the location at which this constructive in-
terference happens. In contrast, if the plane waves travel with
different velocities, the careful arrangement we used to con-
struct the wave packet will necessarily be destroyed. If we wait
long enough, the different plane waves will interfere destruc-
tively (almost) everywhere. Formulated differently, the various
pieces that the wave packet consists of will drift out of phase
as time passes and the packet will disperse. This is why wave
packets in a system described by a wave equation with a disper-
sion term will vanish after a while.

In a modern field theoretical context, a dispersion term is com-
monly known as a mass term.73 If we imagine for a moment

73 Take note that although we
will talk about a mass term here,
strictly speaking m is not a mass
parameter. This follows directly
from a dimensional analysis. More
carefully, the additional term here
reads M2c4

h̄ , where c is a constant
with the units of a velocity and
h̄ (another constant with units
m2 ·kg

s ). In this case, the parameter
M indeed has the correct units
to describe a mass. However, to
unclutter the notation, we ignore
this subtlety in the following
discussion.

that a wave packet represents a particle, it follows that if there is
no dispersion term the particle can travel, in principle, infinitely
far. This is the defining characteristic of a massless particle like,
for example, a photon. In contrast, if there is a dispersion term,
the particle can usually only travel a finite distance.74 In a parti-

74 There are important exceptions to
this rule. For example, an electron
is stable even though it is massive.
This is a result of electric charge
conservation. The electron is the
lightest particle carrying charge e
and thus there is no particle it could
decay into without violating electric
charge conservation.

cle context, we say that massive particles decay with time.
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In the context of quantum field theory, we say that the mass
parameter m of a field determines its correlation length h ⇠
1
m . Roughly speaking, the correlation length h encodes how
far a field can typically spread its influence or similarly, how
large ordered structures within the field are. Therefore, this
interpretation is completely in line with what we just discussed.
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3.7 Field Spaces

There is one final aspects of fields that we need to talk about
before we can discuss the framework that allows us to describe
how fields evolve in time.

While it is often quite helpful to think about a field as some-
thing like a mattress, it is always important to keep in mind that
the fields we are talking about in this book do not really oscil-
late up and down, at least not in a spatial sense. Instead, field
oscillations happen in a somewhat abstract field space.

Abstract spaces are one of the most successful ideas in modern
physics. For example, the temperature within a room is a scalar
field T(~x). Each location within the room ~x is mapped using
a thermometer to a real number that we call the temperature.
Mathematically, temperatures live on the real line R which
we call, in this context, temperature space. Even though it’s
mathematically also a real line, temperature space does not
correspond to one of the spatial dimension (Rx, Ry, Rz). Instead,
it’s a surplus structure that we introduce to describe our system.

Similarly, we imagine that the numbers a fundamental scalar
field spits out for each location live in an abstract field space
too. In mathematical terms, a scalar field is a map

R1,3 ! R : xµ ! f(xµ) . (3.83)

The space R in which field values live is not a part of spacetime
(R1,3). The field values live in an abstract space "on top" of
spacetime. Formulated differently, the field is defined over
spacetime, but the value (or amplitude) of the field is along a
new axis.

A field is an object that glues this abstract space and spacetime
together. An important point is that there is a copy of the basic
field space (here R) above each spacetime point. The total field
space is all these individual basic field spaces taken together.



fields 123

While a field is a map from spacetime to the corresponding
field space, we often represent it through its values in field
space. In the figure above, these values are indicated by the gray
structure that lives in field space.75 It is often convenient to omit 75 This is analogous to how we can

represent a three-vector by using
three numbers as soon as we’ve
picked a coordinate system.

the coordinate systems and we can then draw pictures like the
following.

In summary, instead of thinking of a field as an abstract map it
is often helpful to treat it as a bed sheet-like structure that lives
on top of spacetime.

Another important observation is that there is a different field
space for each field. For example, temperatures and the Higgs
field occupy different field spaces even though both are mathe-
matical scalar fields.
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Therefore it is important to keep in mind that the waves we will
talk about in the following sections also live in these abstract
field spaces and not in physical space. This is in contrast to wa-
ter waves or the waves that we can observe on a mattress which
certainly live in our physical space. For example, the ampli-
tude of a water wave describes its height above the equilibrium
sea level, while the amplitude of a fundamental field like the
Higgs field, is non-spatial and thus describes its "height" in the
corresponding field space.
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3.8 Local Coordinate Systems

In the previous section we discussed that we can think of a
field as the object that glues the corresponding field space to
spacetime. Moreover, we learned that there is a copy of the basic
field space (e.g. R) above each spacetime point. The total field
space consists of these individual basic field spaces.

The mantra we will focus on in this section is that Nature
doesn’t care about how we describe her. While this is a tru-
ism, we will see in a moment that there is a lot to be learned
from it.

For our field space construction, it implies that it doesn’t matter
which coordinate system we use to describe it. Let’s focus on a
scalar field. The corresponding basic field space is simply the
set of all real numbers which when taken together yield the
real line R. Our mantra tells us that nothing should depend
on where we put the origin of our coordinate system that we
use to describe the field values. If we move the origin of our
coordinate system, the field values are shifted. For example, we
can imagine that for one choice of coordinate system we find

f(aµ) = 8.19 , f(bµ) = 1.21 , f(cµ) = 3.56 , . . . . (3.84)

We then move the origin of the coordinate system, which im-
plies f ! f0 = f + 5. After the shift, we find

f0(aµ) = 13.19 , f0(bµ) = 6.21 , f0(cµ) = 8.56 , . . . . (3.85)

It shouldn’t make any difference whether we use f or f0 to
describe a given system since they describe the same field in
different coordinate systems.76

76 If this seems strange to you, it
may be helpful to think about the
most famous scalar field, the electric
potential. The only thing that mat-
ters in electrodynamics are potential
differences. Therefore, we can al-
ways shift the electric potential
without changing anything.
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While you may not be impressed by our discussion in this sec-
tion so far, I promise that things are about to get really interest-
ing.

If it is indeed true that Nature doesn’t care about how we de-
scribe her, it should also be possible to shift the coordinate sys-
tem that we use for individual basic field spaces. In the example
above, we shifted the origins of the coordinate systems for all
copies of the basic field space R by exactly the same amount. In
technical terms, we call this a global shift.

But local shifts should be equally allowed.
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This is indeed the case. It’s just a matter of mathematical inge-
nuity. In particular, all we need before we can use arbitrarily
chosen local coordinate systems is some sort of bookkeeper that
keeps track of how the coordinate systems at different locations
are related. Among mathematicians, these bookkeepers are
known as connections.

To understand how connections work, we will assume for a
moment that spacetime is discrete and two-dimensional. This
will make it much easier to visualize what is going on. In this
case, we need at each spacetime point ~n two bookkeepers A~n,i
(i 2 {1, 2}) which tells us how the coordinate system of the
field space at this point is related to its neighbors in the two
basis directions. We define that A~n,1 encodes how much the
origin of the coordinate system at ~n is shifted relative to the
origin of the coordinate system at ~n +~e1, where ~e1 is a basis
vector. Analogously, A~n,2 encodes the relative shift between the
coordinates systems at ~n and ~n +~e2.

Let’s assume that we have some field value f(~n) at one location
~n and want to compare it to the field value f(~n +~e1) at the
neighboring location ~n +~e1. The correct way to compare them
is:

d1(~n) = f(~n)� f(~n +~e1)� A~n,1 . (3.86)

If we would compare the field values f(~n) and f(~n +~e1) di-
rectly without A~n,1, we couldn’t be sure whether or not the
difference we find is simply the result of a differently chosen
coordinate system. The additional term �A~n,1 subtracts the part
of the total difference that only results from a different choice of
coordinate system. If we use exactly the same coordinate system
at ~n and ~n +~e1 we have A~n,1 = 0.
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Analogously, we can compare the field value at ~n with the field
value at ~n +~e2:

d2(~n) = f(~n)� f(~n +~e2)� A~n,2 . (3.87)

In summary,

di(~n) = f(~n)� f(~n +~ei)� A~n,i . (3.88)

From a slightly different perspective, we can therefore say that
a bookkeeper A~n,i allows us to "transport" a given field value
to a neighboring location such that we can compare the field
values in the same coordinate system. For example, f(~n)� A~n,1
yields the field value that we would get if f(~n) would live in the
same coordinate system as f(~n +~e1). This is why A~n,i is usually
called a connection.

With this in mind, let’s return to our usual continuous space-
time. In mathematical terms, we can switch from a discrete
description to a continuous description by taking the continuum
limit.

In this limit, Eq. 3.88 becomes7777 This follows because f(~n)� f(~n +
~ei) yields the difference quotient in
the continuum limit. Di(~x) = ∂if � Ai(~x), (3.89)

where ∂i denotes the partial derivative in the ~ei direction. More-
over, if we then switch from two dimensions to four dimensions,
we find

Dµ(xµ) = ∂µf � Aµ(xµ) . (3.90)

Connections are essential because we need to compare the field
values at neighboring points whenever we calculate derivatives.
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This follows from the definition of a derivative in terms of a
difference quotient:

∂x f (x) ⌘ lim
e!0

( f (x + e)� f (x))
e

. (3.91)

Therefore, what Eq. 3.90 is really telling us is that if we want the
freedom to choose arbitrary local coordinate systems, we need
to use the covariant derivative

Dµ(xµ) = ∂µf � Aµ(xµ) (3.92)

instead of the usual derivative ∂µ. This is necessary because
the usual derivative ∂µ compares the field values directly with-
out taking into account that differences can occur as a result of
differently chosen local coordinate systems. If we use ∂µ our
formulas only remain valid as long as we use the same conven-
tions for the local coordinate systems everywhere.

In summary, while a field f glues the corresponding field space
to spacetime, a connection Aµ glues the individual copies of the
basic field space together.

This may not seem like a big deal. Of course, it’s nice to write
our equations in a way that remains valid no matter how we
choose our coordinate system. But is it real worth all the addi-
tional complications it brings with it?

In short, yes. In the following section we will discuss why.

3.9 Gauge Fields

A first key idea is that bookkeepers can be "imperfect". To un-
derstand what this means, let’s go back again to our discrete
two-dimensional description.
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We start with one specific field value f(~n) at a given location ~n.
We can then use the connection A~n,1 to transport the field value
into the coordinate system of the field space at the neighboring
point ~n +~e1:

f~n+~e1(~n) ⌘ f(~n)� A~n,1 . (3.93)

Moreover, we can use A~n,1 to translate a field value at ~n+~e1 into
the coordinate system at ~n:

f~n(~n +~e1) ⌘ f(~n +~e1) + A~n,1 . (3.94)

We can again use A~n,1 and only need to use a different sign,
because this bookkeeper encodes the difference in the defini-
tions of the two coordinate systems which is, of course, equal
irrespective of if we look at it from the "right" or the "left".

This implies that if we move a field value back and forth, we
find the value we started with again:

f(~n) ! f(~n)� A~n,1 ! (f(~n)� A~n,1) + A~n,1 = f(~n) (3.95)

This is not surprising since there is only one bookkeeper A~n,1
involved.

The situation gets more interesting if we transport a field value
f(~n) in a loop that involves different bookkeepers. For example,
let’s consider the following loop:
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As we move along the loop, the field value f(~n) changes as
follows:

f(~n) ! f(~n)� A~n,1

! (f(~n)� A~n,1)� A~n+~e1,2

!
⇣
(f(~n)� A~n,1)� A~n+~e1,2

⌘
+ A~n+~e2,1

!
 ⇣

(f(~n)� A~n,1)� A~n+~e1,2

⌘
+ A~n+~e2,1

!
+ A~n,2 ⌘ f̃(~n) .

(3.96)

We can rearrange the terms here as follows:

f̃(~n) ⌘ f(~n)� A~n+~e1,2 + A~n,2 + A~n+~e2,1 � A~n,1 y

= f̃(~n)�
⇣
(A~n+~e1,2 � A~n,2)� (A~n+~e2,1 � A~n,1)

⌘
. (3.97)

If the exchange rates are perfect, we have

f̃(~n) = f(~n) . (3.98)

By looking at Eq. 3.97, we can conclude that this implies

F12(~n) ⌘ (A~n+~e1,2 � A~n,2)� (A~n+~e2,1 � A~n,1) = 0 . (3.99)

However, if there is some imperfection in the exchange rates,
it’s possible that we end up with a different field value after the
loop (f̃(~n) 6= f(~n)). This implies F12(~n) 6= 0.
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Therefore, the quantity F12(~n) is a measure of the imperfection.
Moreover, analogously we can define the quantities
F12(~n), F11(~n), F21(~n), F22(~n) which correspond to different loops.
Thus we define in more general terms

Fij(~n) ⌘ (A~n+~ei ,j � A~n,j)� (A~n+~ej ,i � A~n,i) . (3.100)

But take note that F11(~n) and F22(~n) are necessarily zero since
they involve the same exchange rates twice in opposite direc-
tions:

F11(~n) ⌘ (A~n+~e1,1 � A~n,1)� (A~n+~e1,1 � A~n,1) y

⇠⇠⇠A~n+~e1,1,��A~n,1

= 0 . (3.101)

Moreover, we have F12(~n) = �F21(~n). In words, this follows
because F21(~n) encodes the difference in the field value if we
move around the loop discussed above in the opposite direction.
Hence, if we move counterclockwise (F12(~n) > 0) and end up
with a larger field value, we will get a smaller field value if we
move in the same loop clockwise. Since the involved exchange
rates are the same, the total change in the field value is equal
and only the sign is different.

If we switch again to a continuous spacetime, the corresponding
quantities read7878 This follows because A~n+~ei ,j � A~n,j

becomes the partial derivative of the
j-component in the ~ei direction in
the continuum limit. Analogously,
A~n+~ej ,i � A~n,i becomes the partial
derivative of the i-component in the
~ej direction.

Fij(~x) ⌘ ∂i Aj(~x)� ∂j Ai(~x) . (3.102)

Moreover, in a four-dimensional continuous spacetime, we have

Fµn(xµ) ⌘ ∂µ An(xµ)� ∂n Aµ(xµ) . (3.103)

You might rightfully wonder how in the world there can be an
imperfection in the bookkeepers. Doesn’t this simply mean that
there is something wrong with our description?
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There is a mathematical and a physical answer to this question.
In both cases the conclusion is that it’s perfectly reasonable to
consider scenarios in which Fµn(xµ) 6= 0.

Let’s start with a mathematical answer. Geometrically, the quan-
tities Fµn(xµ) are a measure of the curvature of the space under
consideration. The canonical example is a vector that is trans-
ported along a loop on a sphere. We can imagine that we walk
along such a loop while holding the vector in our hands. At
each step we make sure that the vector’s orientation relative to
us stays as it is.79 But if we compare the orientation of the vec- 79 In mathematical terms, this means

that we parallel transport the vector.tor at the end of the loop with its orientation at the beginning,
we find that it’s different. This is how we can find out if we are
moving around on a curved surface.

In field theory, we are talking, for example, about the curvature
of the field space of a scalar field. Instead of the orientation
of a vector, it’s the field value itself that is different after the
loop. From a slightly different perspective, we can say that
Fµn(xµ) 6= 0 describes the fact that the individual basic field
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spaces are non-trivially glued together.

So mathematically it can make sense to consider scenarios in
which Fµn(xµ) 6= 0. However, as usual, mathematics alone can-
not tell us whether or not Nature makes use of this possibility.

Thus, let’s talk about a physical reason to consider curved field
spaces.

In modern physics, the connections Aµ are not just mathemati-
cal bookkeepers but physical actors that we call gauge fields.

To understand how this comes about recall how we started. In
the previous section, we treated the connections Aµ as purely
mathematical tools that allow us to use arbitrary local coordi-
nate systems. In this case, they have no influence on anything.

Then we considered the possibility that Fµn(xµ) 6= 0. If this is
the case, the behavior of the scalar field f is directly affected.
We can imagine that the connections provide a background
structure in front of which all the action happens. If Fµn(xµ) 6= 0
this background is non-trivial and thus the dynamics of the
system in question are affected.

Thirdly, we can promote a connection Aµ to a fully-fledged
physical actor by allowing that it evolves dynamically. In practi-
cal terms this means that we write down an equation of motion
that describes how the connections Aµ evolve in time. At this
stage we can study connections Aµ as completely independent
objects. For example, we can start with some given configura-
tion, i.e. values of Aµ at all locations xµ, and then study how it
involves in time.

This three-step promotion is summarized in the following dia-
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gram:
mathematical bookkeeper

Fµn(xµ) 6=0

✏✏

non-trivial background structure

equation of motion

✏✏

gauge field

Let’s make this a bit more concrete. It turns out that field spaces
are automatically curved through the presence of non-zero field
values.80 Moreover, the behavior of a scalar field is directly

80 This is described by the famous
inhomogeneous Maxwell equation

∂µ Fµn = Jn(f) ,

where Jn(f) depends on the field
strength of the scalar field f. We
will discuss the inhomogeneous
Maxwel equation, the current Jn(f)
and its implications in detail in
Section 6.4.

influenced by the structure of the corresponding field space.81

81 This is described by the inhomo-
geneous Klein-Gordon equation

(DµDµ + m2)f = 0 ,

where Dµ is the covariant derivative

Dµ = ∂µ � ieAµ .

We will discuss this further in
Section 6.4.

Scalar Field f

inhom. Maxwell equation
""

Curved Field Space Fµn

inhom. Klein-Gordon equation

``

Completely analogously, we have for a spinor field82 82 Take note that in this case the
inhomogeneous Maxwell equation
reads

∂µFµn = Jn(Y) ,

where the inhomogeneity on the
right-hand side now depends on the
spinor field Y.Spinor Field Y

inhom. Maxwell equation
""

Curved Field Space Fµn

inhom. Dirac equation

``

This interplay is the key idea at the heart of modern physics.

Lastly, take note that gauge fields are vector fields. We can see
this, for example, because the connection Aµ carries a spacetime
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index µ. A connection keeps track of how the coordinate sys-
tems in a field space change if we move around in spacetime.
For example, A3(xµ) encodes information about how the coor-
dinate system in field space changes if we move from xµ in the
z-direction. Hence, Aµ necessarily contains information about
directions in spacetime and is thus a vector field.

However, as should be clear from the discussion in the previous
two sections, gauge fields are a very special kind of vector field.
We will discuss the differences between a general vector field
and a gauge field in Section 5.2.4 in more detail.

So far, we’ve only talked about the main actors in quantum field
theory. Next, we will make them dance.



4

The Lagrangian Formalism

In the next chapter, we will talk about the equations that de-
scribe how the various kinds of fields behave. We will start with
those equations that describe the behavior of free fields when
left alone. Afterwards, we will discuss how we can take the fact
that different fields often influence each other into account.

But before we talk about equations, we will talk about one
mathematical object, called the action, that is even more fun-
damental.1 We will discuss the main ideas in the context of 1 At this point, you might want to

have a second look at the roadmap
on page 35 to understand how the
concepts discussed in this chapter
fit into the bigger picture.

particle theory since this makes it easier to build some intu-
ition. Afterwards, we will talk about the things that we need to
modify if we want to use the same ideas in field theory.

Three key ideas at the heart of modern physics are2 2 You can find a much more detailed
discussion of the Lagrangian
formalism and all related notions in
my book:

Jakob Schwichtenberg. No-
Nonsense Classical Mechanics : a
student-friendly introduction. No-
Nonsense Books, Karlsruhe, Ger-
many, 2019b. ISBN 9781096195382

1. The dynamics within a physical system can be described by
using a mathematical object called the action functional. (For
different systems there are different action functionals.)

2. We can derive the action functional for a given system using
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a small number of general principles.

3. The correct path (in configuration space) that describes how
a system evolves between two points in time is an extremum
of the action. By using this idea, we can derive the correct
equations of motion.

Let’s unpack these statements.

The action functional is, as the name suggests, not a function. A
function eats a number x and spits out another number f (x):

In contrast, a functional eats a function f (x) and spits out a
number F[ f (x)]:

A functional is the appropriate tool here because we want a
mathematical object that tells us how a physical system evolves
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in time. In somewhat abstract terms, we can imagine that each
possible configuration our system can be in represents a point
in a mathematical space that we call configuration space.3 A 3 In a particle theory, a point in

configuration space corresponds to
a specific location for each particle.
The object that we use to describe
a point in configuration space
consists of all the location vectors
stacked together: ~q = (~a,~b,~c, . . .)T ,
where~a points to the location of the
first object,~b points to the location
of the second object and so on.
In particular, this implies that for
N objects moving freely in our
system, configuration space is 3N-
dimensional. However, to unclutter
the notation we will usually denote
a path in configuration space
simply by q(t). We will discuss
below how this construction needs
to be modified for a field theory.

path in configuration space corresponds to a specific sequence
of configurations.

Our task is to figure out the correct path in configuration space
that accurately describes how our system evolves in time. Since
a path in configuration space is necessarily a function of t, the
mathematical tool we are looking for is a functional.

The key idea then is that there is a specific functional that sin-
gles out the correct path because it assigns either a minimum or
maximum value to it.4

4 In some situations, saddle points
of the action also play an important
role. This is analogous to how, if we
search for the extrema of a function
by searching for points for which
the first derivative vanishes, we
sometimes also find a saddle point.

In other words, just as a function can have a minimum, a func-
tional can have a minimum too. The only difference is that a
function has a minimum at a particular location x, while a func-
tional spits out its minimum value for a specific function f (x)
(or path in this context).

Therefore, if we are successful in writing down such a func-
tional, our only task left is to use a few tricks to find the path
that yields the minimum (or maximum) value when put into the
functional. Formulated differently, we then only need to per-
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form the mathematical steps required to find the extremum of
the functional.

Now, how can we write down the correct functional for a given
system?

The functional we are looking for is the integral over a function
L, called the Lagrangian:

S[q(t)] =
Z

dt L
�
q(t), q̇(t), t

�
. (4.1)

The action functional S[q(t)] assigns a number to each path q(t):

In contrast, the Lagrangian L(q(t), q̇(t), t) is a function and
therefore yields a number at any moment in time. Since an
integral is basically just a finely-grained sum, Eq. 4.1 means that
we collect all the numbers the Lagrangian yields between two
given moments in time and this yields the total action of the
path in question:
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So our real task is to write down the correct Lagrangian for a
given system since the action is simply the integral over the
Lagrangian.

The idea that allows us to write down the correct Lagrangian
for a given system is that the dynamics of the system is gov-
erned by symmetry principles. A symmetry, in general, is a
transformation that leaves a system unchanged. For example,
if a system is unchanged by rotations, we say it’s rotationally
symmetric. We will discuss this in more detail in Chapter 17.2.
In this first part of the book we will simply assume that some-
one hands us the correct Lagrangians. This will allow us to
become somewhat familiar with the main ideas before we dive
into more detailed matters like the origin of Lagrangians.5 5 If we consider a concrete system,

we can certainly guess the correct
Lagrangian by brute force if we
compare the corresponding pre-
dictions with what we observe in
experiments. But a certainly much
more beautiful approach is to derive
Lagrangians using symmetries and
similar guiding principles.

The final puzzle piece we need to talk about is how a La-
grangian is connected to the equation that describes a given
system.

4.1 The Euler-Lagrange Equation

As soon as someone hands you a Lagrangian, you can immedi-
ately calculate the corresponding equation of motion by plug-
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ging the Lagrangian into the Euler-Lagrange equation:

∂L
∂q

� d
dt

✓
∂L
∂q̇

◆
= 0 (4.2)

We can derive the Euler-Lagrange equation by using the idea
that the correct path is a minimum of the action.6 Before we can6 For convenience, here and in the

following discussion, we will re-
strict ourselves to minima although
exactly the same arguments apply
for maxima and saddle points.

understand this derivation, we need to take a step back and talk
about a smart idea that allows us to calculate the minima of a
functional.7

7 The following two sections are
an excerpt from my book No-
Nonsense Classical Mechanics. So
if you’ve already read this book (or
any other book that explains the
main ideas behind the derivation of
the Euler-Lagrange equation), feel
free to jump directly to Section 4.2.

4.1.1 Intermezzo: Variational Calculus

For an ordinary function f (x), we can find the minimum by
calculating the zeroes of its derivative:

d f (x)
dx

!
= 0 . (4.3)

For example, for f (x) = 3x2 + x, we calculate d f (x)
dx = 6x + 1 and

then find

6x + 1 !
= 0 (condition in Eq. 4.3)

) x =
�1
6

. (4.4)

And indeed, a minimum of our function f (x) is located at x =
�1
6 .
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This method works because the derivative tells us something
about the slope of f (x) and the slope at a minimum is necessar-
ily zero.

Now the bad news is that this simple method does not work
for functionals like the action S[q(t)]. Instead, we need a new
method to calculate the minimum of a functional.

To understand this alternative method, we need to take a step
back and answer the question: what exactly characterizes a
minimum?

Let’s imagine that we have a function which describes the
height of some terrain and want to find out where exactly the
terrain height is a minimum.

The key observation is that if we stand at the minimum and
look around, we will notice that it’s going upward in all direc-
tions. This is necessarily the case because otherwise the point
we are standing at wouldn’t be a minimum otherwise.
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This means that a minimum is characterized by its neighbor-
hood. If all neighboring points lie higher, the point in question
is a minimum.8

8 Take note that this criterion only
tells us that we are dealing with
a local minimum. There can be
much deeper minima in some other
region.

Let’s use this idea to once more find the minimum of the func-
tion f (x) = 3x2 + x that we have already considered above.9

9 We do this to demonstrate how
the method works. In the following
section, we will use it to derive the
minimum of the action functional.

We now pick one specific location x = a and start investigating
its neighborhood a ! a + e, where e is an infinitesimally small
(positive or negative) number. In general, we call e a variation.

Putting this into the function yields

f (a + e) = 3(a + e)2 + (a + e)

= 3(a2 + 2ae + e2) + a + e. (4.5)
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If the location a is a minimum, we can’t get lower by going in
any direction e. Mathematically, this implies:10 10 First order terms are all terms

containing e but not e2, e3, etc.

All terms first order in e must vanish.

Otherwise, for a negative e the function value f (a + e) would
be smaller than f (a) and therefore, a wouldn’t be a minimum.
To understand this, take note that if e is an infinitesimally small
number, we have |e2| ⌧ |e|. This is true for any small number,
e.g., 0.12 = 0.01 ⌧ 0.1. Therefore, the negative shift due to a
negative e cannot be compensated by quadratic or even higher
order terms in e.

If we collect all terms linear in e and demand that they vanish,

3 · 2ae + e
!
= 0 y

cancel e

6a + 1 !
= 0,

we find that
a =

�1
6

. (4.6)

This specific location has exactly the property we are looking
for (in its neighborhood all first order variations in its neighbor-
hood vanish and, therefore, it goes upwards in all directions)
and we can conclude that we’ve found a minimum.

Of course, the result here is exactly equal to what we calculated
using the standard method (Eq. 4.4). Thus, what we’ve discov-
ered for ordinary functions is just another way of reaching the
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same conclusion. However, the variational method of finding
minima can also be applied to functionals like the action S[q(t)],
not just functions. Take note that for functionals, our goal isn’t
to find a location like a which is the minimum of a function
but is instead to find a function q(t) which is the minimum of
a functional. And this is what we will talk about in the next
section.

But first, let’s summarize the main lessons learned in this sec-
tion.

B Minima are characterized by their neighborhood. If we are
dealing with a minimum, it has to go upward everywhere in
its neighborhood.

B Mathematically, this means that we can find minima by mak-
ing a specific choice x = a and then varying it a ! a + e. If a
is a minimum, all first order variations e must vanish.

B Through this condition, we can find locations a which are
minima.

4.1.2 Deriving the Euler-Lagrange Equation

We learned above that the main idea of the Lagrangian for-
malism is that the path of least action in configuration space
correctly describes how a given system evolves. Moreover, the
action functional1111 The Lagrangian is in general

a function of the path q(t) and
its velocity q̇ but not of higher
derivatives like q̈, i.e., it does not
depend on the acceleration.

S[q(t)] ⌘
Z t f

ti
dtL
⇣

q(t), q̇(t)
⌘

(4.7)

is a mathematical object which assigns a number to each possi-
ble path q(t) between two fixed configurations (qi(ti), q f (t f )).1212 As before, we write q(t) instead of

qA(t), etc., to unclutter the notation.
In other words, we use q(t) and
q̇(t) as a convenient notation for a
path and the velocity in the possibly
high-dimensional configuration
space.

Therefore, our task is to find a method which allows us to cal-
culate the path qm(t) for which the action functional is a mini-
mum. This path qm(t) correctly describes the evolution of our
system. Luckily, we can derive a method which allows us to
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find qm(t) for any system by repeating everything that we did
in the previous section.

Again, we start with a concrete choice q(t) and consider small
variations around this specific path

q(t) ! q(t) + e(t) , (4.8)

where e is again an infinitesimally small variation.

Moreover, since the Lagrangian not only depends on q(t) but
also on the velocity q̇(t), we need to consider velocity variations,
too:

q̇(t) ! q̇(t) + ė(t) . (4.9)

We consider variations between two fixed configurations (qi(ti),
q f (t f )). Therefore, the variation e has to vanish at ti and t f :

0 = e(ti) = e(t f ) . (4.10)

Analogously to what we did in the previous section, we use
these variations explicitly

S =
Z t f

ti
dtL
⇣

q(t) + e(t), q̇(t) + ė(t)
⌘

. (4.11)

The key idea is again that our specific path q(t) is a minimum
of the action if all terms that are first order in e vanish. This
yields a condition which allows us to identify the correct path
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q(t) that is a minimum of the action analogously to how in the
previous section we were able to find the location for which a
given function is a minimum.

We could do this for each possible Lagrangian L individually.
But since this is quite cumbersome, it makes sense to try to
move forward with a general Lagrangian. We can do this by
using the Taylor expansion1313 The Taylor expansion tells us

that the value of a function at a
neighboring point is given approxi-
mately by the value of the function
at the original point plus the rate
of change times the distance we are
going. For a function which only
depends on one variable f = f (x),
this means that its value at the
point x + e is approximately

f (x + e) ⇡ f (x) + e
∂ f
∂x

.

If we are dealing with a function
which depends on multiple vari-
ables g = g(x, y), we need to take
the rate of change in all directions
into account as we move from our
original point to the new point

g(x + e, y + ẽ) ⇡ g(x, y) + e
∂g
∂x

+ ẽ
∂g
∂y

.

Moreover, take note that to unclut-
ter the notation, we do not write the
arguments of a = a(t), e = e = e(t),
etc., explicitly.

L(q + e, q̇ + ė) = L(q, q̇) + e
∂L
∂q

+ ė
∂L
∂q̇

+ . . . , (4.12)

where the dots indicate higher order terms in the expansion.
Putting this Taylor expansion of the Lagrangian into the action
(Eq. 4.11) yields

S =
Z t f

ti
dtL
⇣

q(t) + e(t), q̇(t) + ė(t)
⌘

y

Taylor expansion

=
Z t f

ti
dt
⇣

L(q, q̇) + e
∂L
∂q

+ ė
∂L
∂q̇

+ . . .
⌘

.

All additional terms in the Taylor expansion are proportional to
e2, ė2 or even higher powers. Therefore, we already have every-
thing we need to use our idea that minima are characterized by
vanishing first order variations.

So again, we collect all terms first order in the variations and
demand that they vanish:

Z t f

ti
dt


e
∂L
∂q

+ ė
∂L
∂q̇

�
!
= 0. (4.13)

The path q(t) for which this is true is a minimum of the action.

The key idea is that we can rewrite this condition by using a
few mathematical tricks and derive a specific condition for the
function q(t) this way.14 This condition is the equation of mo-14 In particular, we can get rid of the

nasty integral. tion which allows us to predict how systems evolve in general.

So, first of all, we integrate the second term on the right-hand
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side by parts
Z t f

ti
dt ė

∂L
∂q̇

=
Z t f

ti
dt
✓

d
dt

e

◆
∂L
∂q̇

= e
∂L
∂q̇

����
t2

t1

�
Z t f

ti
dt e

d
dt

✓
∂L
∂q̇

◆
. (4.14)

Since the variation e(t) vanishes for t = ti and t = t f (Eq. 4.10),
the first term on the right-hand side in Eq. 4.14 vanishes:

e
∂L
∂q̇

����
t f

ti

= 0 . (4.15)

Therefore, we can write Eq. 4.13 as
Z t f

ti
dt


e
∂L
∂q

+ ė
∂L
∂q̇

�
!
= 0

y
Eq. 4.14 and Eq. 4.15Z t f

ti
dt


e
∂L
∂q

� e
d
dt

✓
∂L
∂q̇

◆�
!
= 0

y

factoring out eZ t f

ti
dt e


∂L
∂q

� d
dt

✓
∂L
∂q̇

◆�
!
= 0 . (4.16)

Now we’re almost finished. We only need to recall that, if q(t)
is indeed the path of least action that we are looking for, the
condition must be correct for any possible variation e = e(t).
But this can only be correct if, in the last line of Eq. 4.16, the
expression between the two big square brackets vanishes:

∂L
∂q

� d
dt

✓
∂L
∂q̇

◆
!
= 0 (4.17)

This is the famous Euler-Lagrange equation that I have already
mentioned at the beginning of this section. We can use it for
any given Lagrangian L to derive the corresponding equation of
motion.15 Solutions of this equation of motion correctly describe 15 We will discuss below how this

works concretely.how a system evolves.

Before we discuss how we can use all of the ideas that we’ve
just discussed in field theory, it makes sense to pause for a mo-
ment and think about the meaning of the Euler-Lagrange equa-
tion within the more intuitive framework of classical mechanics.
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4.1.3 The Meaning of the Euler-Lagrange Equation

In classical mechanics, the Lagrangian is always of the form

L = T � V , (4.18)

where T denotes the kinetic energy and V the potential energy.

As soon as someone hands us this Lagrangian, we can calculate
the corresponding equation of motion using the Euler-Lagrange
equation. Let’s consider a concrete example.

The easiest example is, of course, a system which consists of
just one object with no external potential V = 0. For such a free
object, the Lagrangian reads

L = T � V = T =
1
2

mq̇2. (4.19)

The Euler-Lagrange equation (Eq. 4.2) then tells us

∂L
∂q

� d
dt

✓
∂L
∂q̇

◆
= 0

y

L =
1
2

mq̇2

∂( 1
2 mq̇2)

∂q
� d

dt

 
∂( 1

2 mq̇2)

∂q̇

!
= 0

y ∂( 1
2 mq̇2)

∂q
= 0

� d
dt

 
∂( 1

2 mq̇2)

∂q̇

!
= 0

y  
∂( 1

2 mq̇2)

∂q̇

!
= mq̇

� d
dt

(mq̇) = 0

y d
dt

q̇ = q̈ and assuming m = const.
mq̈ = 0 .

This is exactly the equation of motion for a free object that we
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also get by using Newton’s second law

d
dt

p = F y

F = 0 for a free object
d
dt

p = 0 y

p = mq̇ is the momentum for a single object
d
dt

(mq̇) = 0

y d
dt

q̇ = q̈ and assuming m = const.
mq̈ = 0 .

This little calculation is not only an important consistency
check. It also allows us to understand the Euler-Lagrange equa-
tion a little better. In particular, we’ve seen that the first term
∂L
∂q yields zero if there is no potential because the kinetic energy
only depends on q̇ and not on q. Therefore, this term describes
the forces F in the system because it is only non-zero if there are
forces. In particular, for a general potential V = V(q), this first
term yields

∂L
∂q

=
∂
⇣

T(q̇)� V(q)
⌘

∂q
= �∂V(q)

∂q
⌘ F . (4.20)

Moreover, we’ve seen that the second term d
dt

⇣
∂L
∂q̇

⌘
yields the

time derivative of the momentum d
dt p ⌘ d

dt mq̇ for a single object.
This motivates us to propose that the term between the brackets
describes, in general, the momentum:16 16 Take note that this quantity is not

always the usual momentum. We
will talk about this subtlety below.

p ⌘ ∂L
∂q̇

. (4.21)

With this in mind, we can rewrite the Euler-Lagrange equation
as follows:

∂L
∂q

� d
dt

✓
∂L
∂q̇

◆
= 0

y

rearranging

) d
dt

✓
∂L
∂q̇

◆
=

∂L
∂q y

Eq. 4.20 and Eq. 4.21

) d
dt

p = F. (4.22)
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This is exactly Newton’s second law! We can therefore conclude
that the whole Lagrangian machinery indeed yields the correct
equation of motion.

Now that we have some rough understanding of how the La-
grangian formalism works, let’s move on to field theory.
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4.2 The Lagrangian Formalism in Field The-
ory

In a "particle" theory like classical mechanics, we describe the
dynamics within a system by using the locations of the var-
ious particles or objects. In a field theory, however, the main
actors are fields which exist everywhere in space at the same
time.17 This implies that we are interested in field configura-

17 Recall that a field assigns a num-
ber, vector, spinor, or other math-
ematical object to every point in
spacetime. Hence, even if the field
strength is zero in most regions, we
technically still say that a field per-
meates all of space. In other words,
a field is not a localized thing like
a ball but spreads out everywhere.
Field excitations, however, can be
localized.tions instead of locations. A field configuration is a snapshot

of the field at a specific moment in time. At some locations, the
field strength will be zero, while at others it will be non-zero.
As time passes, the field strength at other locations becomes
non-zero and thus we are dealing with a different configura-
tion. Similarly, for a vector field the direction and length of the
vectors possibly change as time passes on

Therefore, in field theory, a point in configuration space repre-
sents a specific configuration for all fields that are present in the
system.18 Moreover, as time passes on, the field configurations

18 Technically, all fields are always
present everywhere. However, in
experiments we can shield tiny
parts of the universe sufficiently
such that we can focus just on one
or a few fields.

change and we can again describe this evolution using a path in
configuration space.

These observations imply that in field theory, the Lagrangian is
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no longer a function of the locations and velocities of all the
objects, but a function of the field configurations and their
derivatives, L = L(f, ∂µf).19 An important difference is that19 We use a short-hand notation f

for all of the field configurations.
If there are multiple fields that
are relevant for our system, we
have f = (f1, f2, A1

µ . . .), where
f1 denotes the configuration of
the first scalar field, f2 denotes the
configuration of the second scalar
field, A1

µ denotes the configuration
of the first vector field, and so on.
Moreover, take note that ∂µ is a
short-hand notation for ∂

∂xµ .

in a particle theory we describe the locations at different mo-
ments in time ~q = ~q(t). But in field theory, we describe field
configurations at spacetime points f = f(xµ). In other words,
in field theory we can put time and space on an equal footing
because we no longer care about locations at specific moments
in time. Since we can do this, we should do it.20 That’s why the

20 On the one hand, this seems
reasonable if we recall what we
learned about special relativity.
(Space and time are mixed for
different observers etc.) On the
other hand, the success of this
approach should be sufficient
motivation. You can, of course, try
to only include time derivatives
but won’t get very far if you want
to compare your equations with
experimental results.

Lagrangian not only depends on the time derivative of the field
configuration ∂0f = ∂tf = ∂f

∂t but also on the spatial derivatives
∂1f ⌘ ∂f

∂x , ∂2f ⌘ ∂f
∂y , ∂3f ⌘ ∂f

∂z . It is conventional to denote the
Lagrangian’s dependence on the time derivatives and spatial
derivatives simply by ∂µf.

It is also conventional to introduce the Lagrangian density

L =
Z

d3x L(f, ∂µf) (4.23)

because this helps us, in the spirit of special relativity, to put
time and space on an equal footing:

S =
Z

dtL =
Z

d4xL(f, ∂µf) (4.24)

In this formula, time is no longer treated differently and this
makes it particularly easy to find expressions that follow the
rules of special relativity.

If we then follow exactly the same steps that we discussed in
the previous sections for a particle theory, we can derive the
Euler-Lagrange equation for field theories:

∂L
∂f

� ∂µ

✓
∂L

∂(∂µf)

◆
= 0 . (4.25)

Once we have this equation, we can proceed exactly as in a
particle theory. First, we derive a Lagrangian or take it from
someone else and then plug it into the Euler-Lagrange equation
to find the correct equations of motion for the system. In the
following chapter, we will discuss several examples.
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But first, we have to discuss one of the deepest results in mod-
ern physics that can be derived by using the Lagrangian formal-
ism.

4.3 Noether’s Theorem

In short, Noether’s theorem tells us:21 21 You can find a detailed discus-
sion, for example, in:

Jakob Schwichtenberg. No-
Nonsense Classical Mechanics : a
student-friendly introduction. No-
Nonsense Books, Karlsruhe, Ger-
many, 2019b. ISBN 9781096195382

The existence of a (continuous) symmetry implies that

there is a conserved quantity.

The most famous examples are:

B If the system does not change under rotations, we know im-
mediately that angular momentum is conserved. In other
words, if we can rotate our system without changing any-
thing, then angular momentum is conserved.

B If the system does not change under spatial translations
x ! x + e, we know immediately that momentum is con-
served. This means that if we change the position of the
whole system and nothing changes, then momentum is con-
served.

B If the system does not change under temporal translations
t ! t + e, we know immediately that energy is conserved.
Formulated differently, if the system behaved yesterday ex-
actly as it does today, energy is conserved.

Broadly, there are two kinds of transformation: spacetime trans-
formations and internal transformations. A spacetime transfor-
mation is, for example, a rotation or a translation to a different
spacetime point. An internal transformation is a modification of
the field itself which is unrelated to any spacetime transforma-
tion. If the system is invariant under a spacetime transforma-
tion, we say it has a spacetime symmetry. If it is unchanged by
an internal transformation, we say it has an internal symmetry.
Noether’s theorem allows us to derive conserved quantities for
both kinds of symmetries.
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For spacetime symmetries, the corresponding conserved quanti-
ties are:

invariance under
rotations

Noether’s theorem
✏✏

invariance under
spatial translations

Noether’s theorem
✏✏

invariance under
temporal translations

Noether’s theorem
✏✏

angular momentum
is conserved

(linear) momentum
is conserved

energy
is conserved

For internal transformations, we find:

invariance under
field shifts

Noether’s theorem
✏✏

invariance under
phase rotations

Noether’s theorem
✏✏

conjugate momentum
is conserved

(electric) charge
is conserved

Let’s start by discussing the consequences of the more familiar
spacetime transformations.
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4.3.1 Spacetime Symmetries

We are dealing with a spacetime symmetry if the Lagrangian
density L

⇣
(f(xµ), ∂µf(xµ), xµ

⌘
remains unchanged by a trans-

formation:

xµ ! x0µ . (4.26)

Mathematically, this means

dL = L
⇣
(f(xµ), ∂µf(xµ), xµ

⌘
� L

⇣
(f0(x0µ), ∂µf0(x0µ), x0µ

⌘
= 0.
(4.27)

Take note that we take into account here that, in general, a field
f can also be directly affected by a spacetime transformation:22 22 We will discuss this in more

explicit terms below.

f(xµ) ! f0(x0µ) . (4.28)

If we want to explore the consequences of our symmetry con-
dition (Eq. 4.27), we need to recall how we can rewrite the total
change of a function that depends on other functions. If we
assume that our transformation is infinitesimal:

xµ ! x0µ = xµ + dxµ

f ! f0 = f + df

(∂µf) ! (∂µf)0 = (∂µf) + d(∂µf) (4.29)

we can use a Taylor expansion to rewrite the transformed La-
grangian:23

23 This is analogous to the usual
formula for the total derivative of a
function

d f (g(x), h(x), ...) =
∂ f
∂g

dg +
∂ f
∂h

dh + ... +
∂ f
∂x

dx.

The total change of f is given by
the change rates (derivatives) times
the change in the corresponding
quantities itself. Maybe it helps to
compare this to the total change
of a function f (x, y, z) if we mod-
ify x,y, and z, which is given by
∂ f
∂x dx + ∂ f

∂y dy + ∂ f
∂z dz. Since we

are considering an infinitesimal
transformation this "first order
approximation" is exact.

L
⇣
(f0(x0µ), ∂µf0(x0µ), x0µ

⌘
= L

⇣
(f(xµ), ∂µf(xµ), xµ

⌘

+
∂L
∂f

df +
∂L

∂(∂µf)
d(∂µf) +

∂L
∂xµ

dxµ .

(4.30)

If we plug this into Eq. 4.27, we find
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dL = L
⇣
(f(xµ), ∂µf(xµ), xµ

⌘
� L

⇣
(f0(x0µ), ∂µf0(x0µ), x0µ

⌘

y
Eq. 4.30

= L
⇣
(f(xµ), ∂µf(xµ), xµ

⌘
�
 
L
⇣
(f(xµ), ∂µf(xµ), xµ

⌘

+
∂L
∂f

df +
∂L

∂(∂µf)
d(∂µf) +

∂L
∂xµ

dxµ

!

y

�L

= �∂L
∂f

df � ∂L
∂(∂µf)

d(∂µf)� ∂L
∂xµ

dxµ . (4.31)

In words, this formula tells us that the total change of L is given
by the rates of change if we vary one of the functions (f, ∂µf) or
xµ itself multiplied by the total distance we move in the corre-
sponding "directions".

We can simplify this formula by using the Euler-Lagrange equa-
tion and the product rule:24

24 Reminder: the Euler-Lagrange
equation for a field f reads
(Eq. 4.25)

∂L
∂f

= ∂µ

✓
∂L

∂(∂µf)

◆
.

dL = �∂L
∂f

df � ∂L
∂(∂µf)

d(∂µf)� ∂L
∂xµ

dxµ

y

EL equation, Eq. 4.25

= �
⇣

∂µ

✓
∂L

∂(∂µf)

◆⌘
df � ∂L

∂(∂µf)
d(∂µf)� ∂L

∂xµ
dxµ

y

d(∂µf) = (∂µdf)

= �
⇣

∂µ

✓
∂L

∂(∂µf)

◆⌘
df � ∂L

∂(∂µf)
(∂µdf)� ∂L

∂xµ
dxµ

y

product rule

= �∂µ

✓
∂L

∂(∂µf)
df

◆
� ∂L

∂xµ
dxµ . (4.32)

If we now assume that the transformation we are dealing with
(Eq. 4.29) is a symmetry, we have dL = 0. We will see below
that this allows us to conclude that there must be a correspond-
ing conserved quantity.
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Let’s start with the simplest possible spacetime transformation:
a translation

xµ ! x0µ = xµ + aµ

f ! f0 = f + df = f � ∂f

∂xn
an , (4.33)

where aµ is a constant four-vector and we used that we need
to take the rate of change of our scalar field ∂f

∂xn
if we move the

system. If we plug this into Eq. 4.32 and assume that the system
in question is unchanged by translations, we find

dL = �∂µ

✓
∂L

∂(∂µf)
df

◆
� ∂L

∂xµ
dxµ

y
dL = 0 (symmetry), Eq. 4.33

0 = ∂µ

✓
∂L

∂(∂µf)
∂f

∂xn
an

◆
� ∂L

∂xµ
aµ

y ∂L
∂xµ

⌘ ∂µL,
∂f

∂xn
⌘ ∂nf

= ∂µ

✓
∂L

∂(∂µf)
∂nf an

◆
� ∂µL aµ

y

d
µ
n ∂µ = ∂n, ∂µLaµ ⌘ ∂nLan, ∂nfan ⌘ ∂nfan

= ∂µ

✓
∂L

∂(∂µf)
∂nf � d

µ
nL
◆

an . (4.34)

We can therefore conclude that the quantity

Tµ
n ⌘ ∂L

∂(∂µf)
∂nf � d

µ
nL (4.35)

fulfills a continuity equation

∂µTµ
n = 0 . (4.36)

The newly defined quantity Tµ
n is called the energy-momentum

tensor. Take note that here we have four continuity equations,
one for each component n = 0, 1, 2, 3. We find four continuity
equations because we can consider translations in four indepen-
dent spacetime directions.

What we’ve discovered here is interesting because a continuity
equation (without a source term) always implies that something
is conserved. For example, for n = 0 we find 25

25 We integrated over an arbitrary
but large volume V. Then we use
the divergence theorem

Z

V
d3x r~v =

Z

dV
d2~x ~v

which allows us to turn a volume
integral into a surface integral.
Here, dV denotes the surface of the
volume V. (A very illuminating
proof of the divergence theorem
can be found at http://www.
feynmanlectures.caltech.edu/II_

03.html.) This is useful because it
allows us to use that field values
die off if we move sufficiently far
away. (A surface integral is like a
sum over the quantities’ values on
the surface.)

http://www.feynmanlectures.caltech.edu/II_03.html
http://www.feynmanlectures.caltech.edu/II_03.html
http://www.feynmanlectures.caltech.edu/II_03.html
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0 = ∂µTµ
0 y

sum convention
= ∂0T0

0 � ∂iTi
0 y

rearranging
∂0T0

0 = ∂iTi
0 y

vector notation and ∂0 = ∂t

∂tT0
0 = r~J y Z

V
d3xZ

V
d3x ∂tT0

0 =
Z

V
d3x r~J y

divergence theoremZ

V
d3x ∂tT0

0 =
Z

dV
d2~x ~J y

field vanish at infinityZ

V
d3x ∂tT0

0 = 0 y

V is constant

∂t

Z

V
d3x T0

0 = 0 . (4.37)

We can therefore conclude that the quantity2626 A quantity is conserved if it
doesn’t change in time. In mathe-
matical terms this means ∂tQ = 0. E ⌘

Z

V
d3x T0

0 (4.38)

is conserved. The conserved quantity we found here is called
the energy of the field. Analogously, we can derive for n = i 2
{1, 2, 3} that the components of the momentum vector

Pi ⌘
Z

V
d3x T0

i (4.39)

are conserved.

By looking at the explicit transformation law we started with
(Eq. 4.33)27, we can see that for n = 0 we consider a temporal27 For your convenience: Eq. 4.33

reads

xn ! x0n = xn + an

translation
x0 ! x00 = x0 + a0 , (4.40)

while for n = i we consider a spatial translation.

xi ! x0i = xi + ai . (4.41)

Therefore, we can conclude that if the system in question is
unchanged by temporal translations, energy is conserved. Simi-
larly, if the system is unchanged by spatial translations, momen-
tum is conserved. Analogously, we can derive that if the system
is unchanged by rotations, angular momentum is conserved.
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In summary:28

28 This overview diagram appeared
already on page 156, but is shown
here again for convenience.

invariance under
rotations

Noether’s theorem
✏✏

invariance under
spatial translations

Noether’s theorem
✏✏

invariance under
temporal translations

Noether’s theorem
✏✏

angular momentum
is conserved

(linear) momentum
is conserved

energy
is conserved

Next, let’s talk about internal transformations.

4.3.2 Internal Symmetries

The possibility of internal symmetries is a novel feature of field
theories. For example, we discussed already in Section 3.9 that a
shift

f ! f0 = f � Df (4.42)

makes no difference to what we can observe in experiments and
is therefore indeed a symmetry. To investigate the consequences
of this symmetry, we again introduce the quantity

dL = L(f, ∂µf)� L
⇣

f + Df, ∂µ(f + Df)
⌘

. (4.43)

If the transformation in Eq. 4.42 is indeed a symmetry, we have
dL = 0. For simplicity, we assume that Df in Eq. 4.42 is in-
finitesimal, which implies (Df)2 = (Df)3 = . . . = 0. We
can then rewrite Eq. 4.43 by using the Taylor expansion of the
second term on the right-hand side:

dL = L(f, ∂µf)� L
⇣

f + Df, ∂µ(f + Df)
⌘

y

symmetry: dL = 0

0 = L(f, ∂µf)� L
⇣

f + Df, ∂µ(f + Df)
⌘

y

Taylor expansion

= L(f, ∂µf)�
✓
L(f, ∂µf) +

∂L(f, ∂µf)

∂f
Df +

∂L(f, ∂µf)

∂(∂µf)
∂µDf + . . .

◆

y

Df2 = 0, Df3 = 0, . . .

= L(f, ∂µf)�
✓
L(f, ∂µf) +

∂L(f, ∂µf)

∂f
Df +

∂L(f, ∂µf)

∂(∂µf)
∂µDf

◆

y

⇠⇠⇠⇠L(f, ∂µf)

= �
∂L(f, ∂µf)

∂f
Df �

∂L(f, ∂µf)

∂(∂µf)
∂µDf . (4.44)
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We can simplify this formula by using the Euler-Lagrange equa-
tion and the product rule:29

29 Reminder: the Euler-Lagrange
equation for a field f reads
(Eq. 4.25)

∂L
∂f

= ∂µ

✓
∂L

∂(∂µf)

◆
.

0 = �∂L
∂f

Df � ∂L
∂(∂µf)

∂µDf

y

EL equation (Eq. 4.25)

= �∂µ

✓
∂L

∂(∂µf)

◆
Df � ∂L

∂(∂µf)
∂µDf

y
product rule (∂x f )g + f (∂x g) = (∂x f g)

= ∂µ

✓
∂L

∂(∂µf)
Df

◆
y

definition
⌘ ∂µ Jµ (4.45)

We have discovered here that if a Lagrangian density L is in-
variant under a transformation of the form given in Eq. 4.42, we
know immediately that the Noether current

Jµ ⌘ ∂L
∂(∂µf)

Df , (4.46)

fulfills the continuity equation

∂µ Jµ = 0 . (4.47)

This is Noether’s theorem for internal symmetries in field theo-
ries.

Moreover, by following exactly the same steps as in Eq. 4.37, we
can derive that the quantity

Q ⌘
Z

V
d3x J0 (4.48)

is conserved.

An important example is the global shift of a scalar field by a
small complex number ie:30

30 Global means that we shift the
field value everywhere by the
same number. We talked about the
global and local transformations
in Section 3.9. The imaginary unit
i is included here only because it
simplifies the further discussion
and has no deeper meaning. We
could easily get rid of it by defining
e0 ⌘ ie. Moreover, take note that
for vector fields and spinor fields
there are also more complicated
transformations. For example, we
can consider transformations that
mix components.
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f ! f0 = f � ie . (4.49)

By using Eq. 4.46 and Eq. 4.48, we can immediately conclude
that the corresponding conserved quantity reads:

Q ⌘
Z

V
d3x J0 this is Eq. 4.48,y

Eq. 4.46 with µ = 0 and DF = ie

=
Z

V
d3x

∂L
∂(∂0f)

(ie) . (4.50)

Since in this case ie is an arbitrary infinitesimal constant, we can
define the conserved quantity without it:

Q̃ ⌘ Q
ie y

∂t

∂tQ̃ = ∂t
Q
ie y

∂tQ = 0
= 0 . (4.51)

The integrand appearing in this simplified conserved quantity31

31 We have Q̃ ⌘ Q
ie =

R
V d3x ∂L

∂(∂0f) ⌘
R

V d3xp.

p =
∂L

∂(∂0f)
(4.52)

is known as the conjugate momentum density. Even though
this quantity is somewhat abstract, we will see in later chap-
ters that it is essential for our understanding of quantum field
theory.32

32 Take note that this is not the usual
momentum density associated with
a field, which is given by

p =
∂L

∂(∂0f)
∂f

∂xi

and is the Noether charge asso-
ciated with spatial translations
f(x) ! f(x0) = f(x + e). In con-
trast, we considered here a shift of
the field. Moreover, an important
example is the electric field ~E which
is the conjugate momentum density
associated with the electromagnetic
field.

There is a second incredibly important internal symmetry.
Nothing changes if we multiply a spinor field y by a phase
factor33

33 Roughly this follows because
everything we can measure in
experiments is real and thus there
is necessarily some freedom if we
describe things by using complex
objects. This follows if we look
at the Lagrangian that we use to
describe spinor fields, which we
will discuss in the next chapter.
Since the Lagrangian is unchanged
by this transformation, it is indeed a
symmetry.

y ! y0 = e�ijy y

y† ! y0† = eijy† . (4.53)
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Similarly, the multiplication of a complex scalar field f by a
phase factor is a symmetry too:

f ! f0 = e�ijf y
f† ! f0† = eijf† . (4.54)

If we restrict ourselves to infinitesimal phase shifts, we can
write this as3434 The defining property of an

infinitesimal quantity is that it’s
so tiny that e2 = 0 and therefore
e3 = 0 etc. f ! f0 = e�ief y

ex = 1 + x +
x2

2
+ . . .

=
⇣

1 � ie + . . .
⌘

f y

e2 = 0, e3 = 0 etc.
= f � ief

f† ! f0† = f† + ief† e is real . (4.55)

Take note that this is a different transformation compared to
what we considered before.35 If we compare this transformation35 Reminder: we previously consid-

ered shifts of the form (Eq. 4.49)

f ! f0 = f � ie .
law to the general formula (Eq. 4.42) we can conclude:36

36 For your convenience: Eq. 4.42
reads

f ! f0 = f � Df (4.56)

Df = �ief , Df† = +ief† . (4.57)

We can plug this into our general formula for the Noether cur-
rent (Eq. 4.46)

Jµ
1 ⌘ ∂L

∂(∂µf)
Df

y

Eq. 4.57

= � ∂L
∂(∂µf)

ief

Jµ
2 ⌘ ∂L

∂(∂µf†)
Df†

y

Eq. 4.57

=
∂L

∂(∂µf†)
ief†

Jµ ⌘ Jµ
1 + Jµ

2 , (4.58)

where the total Noether current Jµ is the sum of the contribu-
tions from f and f†. The fact that the total Noether current
is given by this sum follows if we repeat the steps that we
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performed in Eq. 4.44 and Eq. 4.45 for a Lagrangian that de-
pends on a complex field. This is demonstrated explicitly in
Appendix A.2.

If we now use Eq. 4.48, we can conclude that the corresponding
conserved quantity reads

Q ⌘
Z

V
d3x J0 this is Eq. 4.48

y

Eq. 4.58

=
Z

V
d3x (J0

1 + J0
2 ) y

Eq. 4.58

=
Z

V
d3x

✓
� ∂L

∂(∂0f)
ief +

∂L
∂(∂0f†)

ief†
◆

. (4.59)

By redefining Q in order to get rid of the factor e, we find

Q̃ = i
Z

V
d3x

✓
∂L

∂(∂0f†)
f† � ∂L

∂(∂0f)
f

◆
. (4.60)

This quantity is important, for instance, because if we multiply
it by the charge q each particle associated with the field carries,

Q̃q = iq
Z

V
d3x

✓
∂L

∂(∂0f†)
f† � ∂L

∂(∂0f)
f

◆
, (4.61)

we get the total electric charge carried by the field.37 In other 37 The conserved quantity in
Eq. 4.60 is usually called the "par-
ticle number" where we count
particles as +1 and antiparticles as
�1. We will discuss antiparticles in
detail in Section 8.6.

words, the conservation of electric charge follows from the fact
that multiplying our fields by a phase factor (Eq. 4.53, Eq. 4.54)
is a symmetry of Nature.

In summary:38 38 This overview diagram appeared
already on page 156, but is shown
here again for convenience.invariance under

field shifts

Noether’s theorem
✏✏

invariance under
phase rotations

Noether’s theorem
✏✏

conjugate momentum
is conserved

(electric) charge
is conserved
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The Behavior of Free Fields

To unclutter the notation, from here on we will only work with natural
units. This means that we set h̄ = 1, c = 1.

In this chapter, we will discuss four of the most important equa-
tions of motion in modern physics:1 1 It once more probably makes

sense to revisit the roadmap on
page 35 to understand how this
chapter fits into the bigger picture.
Moreover, note that we can use all
of them either in a field theoretic
or in a particle theoretic context.
Formulated differently, we can use
each of them to describe particles
or to describe fields. Although this
is a book on quantum field theory,
we will sometimes use a particle
perspective to discuss certain
aspects. In quantum field theory
this is a perfectly valid approach
since we can always replace the
word particle with particle-like field
excitation.

B The Klein-Gordon equation which describes how free scalar
fields evolve in time,

B the Dirac equation which describes how free spinor fields
evolve in time,

B the Proca equation which describes how free massive gauge
fields evolve in time, and

B the Maxwell equation which describes how free massless
gauge fields evolve in time.

The following diagram summarizes the role of the four equa-
tions that we will discuss in this chapter:
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Spin 0

described by
✏✏

Spin 1/2

described by
✏✏

Spin 1, Mass 6= 0

described by
✏✏

Spin 1, Mass = 0

described by
✏✏

Scalar

in field theory
✏✏

Spinor

in field theory
✏✏

Vector

in field theory
✏✏

Vector

in field theory
✏✏

Scalar Fields

dynamics described by
✏✏

Spinor Fields

dynamics described by
✏✏

Massive Gauge Fields

dynamics described by
✏✏

Massless Gauge Fields

dynamics described by
✏✏

Klein-Gordon Eq. Dirac-Eq. Proca Eq. m!0 // Maxwell Eq.

We will assume that someone hands us these equations (or the
corresponding Lagrangian) and then discuss their meaning and
solutions.

There are, of course, lots of other equations we could write
down and discuss. But we will focus on the four equations
listed above because they are essential for our description of
Nature at fundamental scales. This aspect is especially impor-
tant when it comes to vector fields. The two equations for vector
fields (Proca, Maxwell) that we will discuss are certainly not
the easiest or most general equations for vector fields that we
can write down.2 However, the Proca equation and Maxwell

2 In fact, the equation of motion of
a general vector field is simply the
Klein-Gordon equation for each
component of the vector field.

equation are what we need to describe a certain type of vector
field known as gauge fields. This is important for us because all
known fundamental vector fields are gauge fields.

For all equations we will make an ansatz of the form3

3 Reminder: For gauge fields,
the internal structure is typically
described in terms of polarizations.
In contrast, the internal structure
of scalar fields is trivial. In other
words, a scalar field has no internal
structure and is solely characterized
by a field strength at each spacetime
point.

internal structure ⇥ spacetime structure . (5.1)

In words this means that we assume that internal and spacetime
degrees of freedom decouple. While there can be solutions that
we cannot describe with this ansatz, for our purposes in this
book it is completely sufficient.4

4 As an aside: a famous example
of a solution in which internal and
spacetime degrees of freedom are
coupled is the famous "hedgehog"
solution that describes magnetic ’t
Hooft-Polyakov monopoles.
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Interestingly, the spacetime part is governed by an ordinary
wave equation for every type of field discussed in this book.
This implies that all we need to describe the spacetime structure
of scalar fields, spinor fields and gauge fields are plane waves.
Thus the only true novel information contained in the Dirac,
Proca and Maxwell equations compared to the Klein-Gordon
equation is what they tell us about the behavior of the internal
degrees of freedom.

In short:

B The Dirac equation tells us that left-chiral and right-chiral
configurations constantly oscillate into each other.

B The Proca equation tells us that a massive gauge field has
only three linearly-independent polarizations.

B The Maxwell equation tells us that a massless gauge field has
only two linearly-independent polarizations.

With these ideas in mind, let’s discuss the four equations one-
by-one.
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5.1 Free Scalar fields and the Klein Gordon
Equation

Let’s assume that we want to describe a single scalar field f and
that someone hands us the Lagrangian density

L =
1
2
(∂µf∂µf � m2f2) . (5.2)

It is conventional to call the first term here the kinetic term and
the second term the mass term.

Using the Euler-Lagrange equation (Eq. 4.25), we can immedi-
ately derive the corresponding equation of motion

0 =
∂L
∂f

� ∂µ

✓
∂L

∂(∂µf)

◆

y

Eq. 5.2

=
∂

∂f

✓
1
2
(∂µf∂µf � m2f2)

◆
� ∂µ

✓
∂

∂(∂µf)

✓
1
2
(∂µf∂µf � m2f2)

◆◆

y

∂xx2 = 2x
= �m2f � ∂µ (∂

µf) . (5.3)

The resulting equation

(∂µ∂µ + m2)f = 0 (5.4)

is the famous Klein-Gordon equation that encodes the behavior
of a free scalar field.

Simply looking at the Klein-Gordon equation (Eq. 5.4) and
the Klein-Gordon Lagrangian (Eq. 5.2) is probably not very
enlightening.5 So let’s try to understand what they’re telling us.5 Take note that the Klein-Gordon

equation is a four-dimensional
version of the wave equation that
we discussed in Section 3.6.
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5.1.1 The Meaning of the Klein-Gordon Equation

I’ve already mentioned in Section 3.5 that we can understand
a scalar field as being like a mattress. In this section, we will
make this idea a bit more concrete and develop a better under-
standing of the Klein-Gordon equation this way.

In our context, a mattress consists of lots of coupled harmonic
oscillators. Each oscillator only bounces up and down. We
describe an isolated harmonic oscillator in classical mechanics
using the Lagrangian

LHO = T � V =
1
2

Mq̇2 � 1
2

kq2 , (5.5)

where q = q(t) denotes the position of the end of the spring
above or below the equilibrium position, M is the mass of the
object attached to the spring, k is a constant that characterizes
the spring and q̇ = dq

dt . The first term T = 1
2 Mq̇2 describes the

kinetic energy of the oscillator, while V = 1
2 kq2 describes the

amount of energy stored in the form of potential energy.

If there are two uncoupled equal harmonic oscillators, we can
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use the Lagrangian

L2HO = T � V =
1
2

Mq̇2
1 +

1
2

Mq̇2
2 �

1
2

kq2
1 �

1
2

kq2
2 y

=
1
2

M
2

Â
i=1

q̇2
i �

1
2

k
2

Â
i=1

q2
i , (5.6)

where q1 describes the location of the first oscillator and q2 de-
scribes the location of the second oscillator. We assume for sim-
plicity that both oscillators have the same mass M and consist of
a spring with equal spring constant k.

Analogously, for three uncoupled equal harmonic oscillators, we
can use

L3HO = T � V =
1
2

Mq̇2
1 +

1
2

Mq̇2
2 +

1
2

Mq̇2
3 �

1
2

kq2
1 �

1
2

kq2
2 �

1
2

kq2
3 y

=
1
2

M
3

Â
i=1

q̇2
i �

1
2

k
3

Â
i=1

q2
i . (5.7)

We can see here that if there are lots of oscillators, the sum
notation becomes extremely convenient.

The situation becomes more interesting once we consider cou-
pled oscillators:

In this case, the individual oscillators influence each other when
they bounce up and down and therefore, more complex phe-
nomena can emerge. In mathematical terms, we take the cou-
pling into account by writing down an additional potential
energy term.
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The potential energy stored in the rubber band between neigh-
boring oscillators depends on its total length. If both oscillators
are in their equilibrium position, the length of the band is l and
the potential energy stored in it is zero.6 6 Strictly speaking this is a defini-

tion since we can always redefine
potential energies by adding a con-
stant. This is possible because only
differences in potential energy are
important for the dynamics within
a system and not the absolute value
of the potential energy.) Neverthe-
less it is extremely convenient to
choose this constant in such a way
that the potential energy is zero
when a system is in its equilibrium
position.

If one of the oscillators leaves its equilibrium position, the band
between them gets longer.

To calculate the potential energy stored in the spring, we need
to determine by how much it has extended.7 We can determine 7 This is easier for the two springs

because the oscillators only move
up and down and, therefore,
the potential energy is directly
given by V1(q1) = � 1

2 kq2
1 and

V1(q2) = � 1
2 kq2

2.

the total length of the band in this configuration of the system
by looking at the following figure.
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The Pythagorean theorem yields

l̃2 = l2 + q2
1 y p

l̃ =
q

l2 + q2
1 y

=

vuutl2

 
1 +

q2
1

l2

!
y

= l

s

1 +
q2

1
l2 . (5.8)

If we assume that the excitation q1 is much smaller than the
distance between the oscillators, l, we can approximate the
expression on the right-hand side using the Taylor series88 For q1 ⌧ l, we have q1

l ⌧ 1.

l̃ = l

s

1 +
q2

1
l2

y p
1 + x2 ⇡ 1 +

x2

2
for x << 1

⇡ l

 
1 +

q2
1

2l2

!

y

= l +
q2

1
2l

. (5.9)

If we compare this length of the rubber band to its length in the
equilibrium configuration, l, we find that it became longer. We
can calculate its total change in length as follows:

Dl = l̃ � l y

Eq. 5.9

⇡ l +
q2

1
2l

� l y

⇤l

=
q2

1
2l

. (5.10)

For the sake of argument, let’s assume that we can describe the
energy stored in the rubber band by using the formula99 We could consider different

mechanical models consisting
of oscillators and rubber bands.
However, we focus here on a
specific model that is described by
the Klein-Gordon equation in the
continuum limit.

V12(q1, q2) =
1
2

KDl

y

Eq. 5.10

⇡ 1
2

K
q2

1
2l

, (5.11)
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where K is a constant that characterizes the rubber band.

Analogously, we can analyze a configuration in which both
oscillators are not in their equilibrium position.

For this configuration, the Pythagorean theorem yields

l̃2 = l2 + (q1 � q2)
2 . (5.12)

If we then follow exactly the same steps as before and assume
again that the excitation of both oscillators is much smaller than
the distance between the springs (q1 � q2)2 ⌧ l2, we find

V12(q1, q2) ⇡
1
2

K
(q1 � q2)2

2l y

=
1
2

K
2l
(q1 � q2)

2 . (5.13)

With this formula at hand, we want to write down the La-
grangian that describes this system.

The kinetic energy of the oscillators and the potential energy
stored in the two springs is unaffected by the fact that they’re
now coupled. Therefore, we can write the Lagrangian for our
system consisting of two coupled equal harmonic oscillators by
adding these terms together

L2CHO = T1 + T2 � V1 � V2 � V12 y

Eq. 5.13, Eq. 5.6

=
1
2

M
2

Â
i=1

q̇2
i �

1
2

k
2

Â
i=1

q2
i �

1
2

K
2l
(q1 � q2)

2 . (5.14)
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As before, we can generalize this formula for 3 or, to be more
general, N oscillators. For N oscillators it is conventional to use
the notation

LNCHO =
1
2

M
N

Â
i=1

q̇2
i �

1
2

k
N

Â
i=1

q2
i �

1
2

K
2l Â

ij
(qi � qj)

2 . (5.15)

where the sum Âij only goes over neighboring oscillators like
i = 1, j = 2 or i = 2, j = 3.

The key idea that allows us to make the transition from a bunch
of coupled oscillators to a scalar field is that we imagine that
we add more and more oscillators in between every two oscil-
lators. In mathematical terms, this means that we shrink the
distance between each pair of oscillators l further and further
and ultimately, take the continuum limit l ! 0.

In the continuum limit we have an oscillator at every point in
space. Therefore, we no longer need additional labels (i, j) for
our oscillators but can simply use a continuous position variable
x to identify each oscillator. Moreover, it is conventional to use
the Greek letter j to denote the excitation of each oscillator in
the continuum case:10

10 Here we consider only a one-
dimensional chain of coupled
oscillators and therefore only need
a variable x. In the two-dimensional
case, we would use ~x = (x, y)T) to
label the oscillators in our oscillator
lattice. Moreover, take note that in
the following we are glossing over
several somewhat subtle aspects of
the continuum limit. For example,
a sum becomes not just an integral
but

R dx
l , since otherwise the

dimensions wouldn’t be equal and
l is the only fundamental length
scale we have in the description.
We absorb this factor l into the
definition of the continuum variable
j.
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qi(t) ! j(x, t) . (5.16)

What happens to the various terms in the Lagrangian in the
continuum limit?

The kinetic energy term in Eq. 5.15 becomes

1
2

M
N

Â
i=1

q̇2
i (t) !

1
2

M
Z

dx j̇2(x, t) (5.17)

because in the continuum limit, we need to replace the sum over
the discrete label i by an integral over the continuous variable
x. Analogously, the second term in Eq. 5.15 that describes the
potential energy stored in the springs at each location, becomes

1
2

k
N

Â
i=1

q2
i ! 1

2
k
Z

dx j2(x, t) (5.18)

The continuum limit of the third term in Eq. 5.15 is a bit more
subtle and it is clever to rewrite it as follows before we consider
the limit11 11 We will see in a moment why this

is clever.
1
2

K
2l Â

ij
(qi � qj)

2 =
1
2

Kl
2 Â

ij

(qi � qj)
2

l2 . (5.19)

If we now take the continuum limit, we find:

lim
l!0

1
2

Kl
2 Â

ij

(qi � qj)
2

l2 =
1
2

r
Z

dx
✓

∂j(x, t)
∂x

◆2
(5.20)

because lim
l!0

(qi�qj)
l is exactly the definition of the difference

quotient and therefore equal to ∂j(x,t)
∂x . In addition, the sum

over the discrete indices once more needs to be replaced by
an integral over the continuous variable x. Moreover, r is a
new constant that characterizes the interaction between our
oscillators in the continuum limit. Take note that as we consider
smaller and smaller distances between the oscillators (l ! 0),
we need to make our spring constant K larger and larger in
order to get any noticeable effects from the coupling. Therefore,
we take the continuum limit (l ! 0) in such a way that Kl

2 does
not go to zero but becomes equal to a constant.12 Putting the

12 We could, of course, also consider
a system with a fixed value of the
spring constant K. But for such
a system, there simply wouldn’t
be any interactions between the
oscillations left in the continuum
limit.
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three puzzle pieces (Eq. 5.17, Eq. 5.18, Eq. 5.20) together, we find
that the Lagrangian for our system of coupled oscillators in the
continuum limit reads

LNCHO =
Z

dx

 
1
2

Mj̇2(x, t)� 1
2

kj2(x, t)� 1
2

r

✓
∂j(x, t)

∂x

◆2
!

(5.21)

Now compare this to the Klein-Gordon Lagrangian density
given at the beginning of this section (Eq. 5.2).13 An obvious13 For your convenience: Eq. 5.2

reads

L =
1
2
(∂µf∂µf � M2f2) .

difference is that the Lagrangian density we derived here is
not written in Minkowski notation. In particular, in Eq. 5.2 the
derivatives only appear in the expression ∂µ j∂µ j which reads
in more explicit terms (Eq. 2.39):

∂µ j∂µ j =

✓
∂j

c∂t

◆2
�
✓

∂j

∂x

◆2
�
✓

∂j

∂y

◆2
�
✓

∂j

∂z

◆2
. (5.22)

Motivated by this observation, we introduce an additional factor
c2 in Eq. 5.21:

LNCHO =
Z

dx

 
1
2

Mc2
✓

∂j

c∂t

◆2
� 1

2
kj2 � 1

2
r

✓
∂j

∂x

◆2
!

. (5.23)

The constant factors Mc2 and r have exactly the same units.
Moreover, we have not specified the actual value of r. I have
only mentioned that it must be some constant that Kl

2 ap-
proaches in the limit l ! 0. In the spirit of special relativity,
time and space should be put on an equal footing and therefore,
we will now simply assume that we are dealing with a system
for which r = Mc2.14 Our Lagrangian density then reads:

14 As always, you’re free to consider
different systems. But the scalar
fields that we typically investigate
in field theory are not just some
arbitrary set of harmonic oscillators
coupled together, but a very special
kind. We have already seen this
above because we needed to assume
a very special potential energy
for the rubber band between the
oscillators. If we assume a different
kind of coupling between the
springs, we will end up with a
different kind of system in the
continuum which will not be equal
to a scalar field as we usually
encounter it in field theory.

LNCHO =
Z

dx

 
1
2

Mc2
✓

∂j

c∂t

◆2
� 1

2
kj2 � 1

2
r

✓
∂j

∂x

◆2
!

y

r ! Mc2

=
Z

dx

 
1
2

Mc2
✓

∂j

c∂t

◆2
� 1

2
kj2 � 1

2
Mc2

✓
∂j

∂x

◆2
!

y

Eq. 5.22

=
Z

dx
✓

1
2

Mc2∂µ j∂µ j � 1
2

kj2
◆

. (5.24)
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In this case, the index µ in ∂µ only runs from 0 to 1. But if we
consider a two-dimensional lattice of coupled oscillators, we
find exactly the same formulas with µ running from 0 to 2.
Moreover, if we consider a three-dimensional oscillator network,
µ runs from 0 to 3.

As a final step to bring Eq. 5.24 in the form given at the begin-
ning of this section (Eq. 5.2), we rescale the field variable

j ! f =
p

Mc2 j . (5.25)

This transformation has no deeper meaning, but is simply a
clever trick to clean up the Lagrangian a little bit:

LNCHO =
Z

dx
✓

1
2

Mc2∂µ j∂µ j � 1
2

kj2
◆

this is Eq. 5.24

y

Eq. 5.25

=
Z

dx

 
1
2

Mc2∂µ
fp
Mc2

∂µ fp
Mc2

� 1
2

k
✓

fp
Mc2

◆2
!

y

=
Z

dx
✓

1
2

∂µf∂µf � 1
2

k
Mc2 f2

◆

y

m2 ⌘ k
Mc2 (definition)

=
Z

dx
✓

1
2

∂µf∂µf � 1
2

m2f2
◆

. (5.26)

This is exactly the Klein-Gordon Lagrangian (Eq. 5.2).

Let’s recap what we’ve discovered in this section. We started by
discussing a chain of coupled harmonic oscillators. Neighboring
oscillators influence each other through a rubber band although
each of the oscillators is only allowed to bounce up and down.
We then investigated what happens if we add more and more
oscillators to the chain and therefore shrink the distance l be-
tween neighboring oscillators. In the continuum limit (l ! 0),
we have an oscillator at each point in space. Taking this limit is
non-trivial because as the distance between the oscillators gets
smaller it’s not immediately clear what happens to the rubber
band between them. But we discovered that if we make certain
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assumptions about the behavior of our chain in the continuum
limit, we end up with a Lagrangian that is directly analogous to
the Klein-Gordon Lagrangian.

We’ve therefore discovered that thinking about a scalar field
as some kind of mattress is not just a nice picture, but also
mathematically not too wrong. As long as we make certain
assumptions about the coupling between the oscillators, we
indeed end up with the correct Lagrangian for a scalar field in
the continuum limit.

This implies that if we want to understand the dynamics of a
scalar field, it may be a good idea to start by thinking about the
dynamics of a chain of coupled oscillators. For example, we
can imagine that if we move one of the oscillators up and then
release it, some kind of wave will move through our chain.

We will discover in the following section that the Klein-Gordon
Lagrangian indeed has wave-like solutions.

Many physicists will tell you that you shouldn’t think of a scalar
field as a network of coupled harmonic oscillators. However, as
far as I know, there is no better way to visualize a scalar field.
The alternative that is commonly proposed is to discard the
need for a picture and use scalar fields as abstract bookkeeping
devices. This is, of course, a perfectly valid approach. If you
don’t draw a picture, you certainly draw nothing wrong.

But we will see later that in the context of quantum field theory,
the oscillator picture will prove to be quite helpful again. Thus,
I’m convinced that as long as we don’t imagine that there are
really point masses that oscillate in physical space and instead,
imagine that the oscillation happens in an abstract field space,
the oscillator picture is more useful than confusing.1515 We discuss the field space idea in

Section 3.7.
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5.1.2 The Meaning of the Klein-Gordon Lagrangian

With our coupled-oscillator-picture in mind, it makes sense to
take a second look at the Klein-Gordon Lagrangian (Eq. 5.2):

L =
Z

d3x L =
Z

d3x
1
2
(∂µf∂µf � m2f2)

y

summation convention

=
Z

d3x
1
2
(∂0f∂0f � ∂if∂if � m2f2) . (5.27)

Using the oscillator picture, we can interpret the three terms in
this Lagrangian as follows:

B The first term T ⌘ ∂0f∂0f describes the kinetic energies of
the oscillators (Eq. 5.17):

1
2

M
N

Â
i=1

q̇2
i (t) !

1
2

M
Z

dx j̇2(x, t) ⌘ 1
2

M
Z

dx ∂0 j(x, t)∂0 j(x, t)

(5.28)

B The second term Vr ⌘ ∂if∂if describes the potential energy
stored in the rubber bands that connect neighboring springs
(Eq. 5.20):

lim
l!0

1
2

Kl
2 Â

ij

(qi � qj)
2

l2 =
1
2

r
Z

dx
✓

∂j(x, t)
∂x

◆2

⌘ 1
2

r
Z

dx ∂x j(x, t)∂x j(x, t) . (5.29)

B The third term Vs ⌘ m2f2 describes the potential energy
stored in the spring at each location (Eq. 5.18):

1
2

k
N

Â
i=1

q2
i ! 1

2
k
Z

dx j2(x, t) . (5.30)

Therefore, even though the Klein-Gordon Lagrangian looks
completely different from what we are used to from classical
mechanics, we can now understand that it in fact has the usual
form:

L =
Z

d3x
1
2
(∂0f∂0f � ∂if∂if � m2f2)

y

⌘ T � V = T � (Vr + Vs) = T � Vr � Vs . (5.31)
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A second aspect of the Klein-Gordon Lagrangian that we can
now discuss is the meaning of the parameter m. In our oscillator
picture, the parameter m is directly related to the harmonic
restoring force of the spring at each point. Therefore, if we set
m = 0 we assume that there is no such restoring force and thus
no spring at each point. In other words, if we plug m = 0 into
our Lagrangian, we are dealing with a system of mass points
that are connected to their neighbors, while for m 6= 0 we
describe a system of connected mass points that are pulled back
to their equilibrium position through a harmonic force.

In the continuum limit our (one-dimensional) system of coupled
mass points becomes a string. For m = 0 this string can wiggle
freely, while for m 6= 0 there is a restoring force at each point.
But take note that for m = 0 the mass points at each location are
eventually also pulled down as a result of their connection to
their neighbors (string tension).

In intuitive terms, we can imagine that a field with a large mass
parameter m is analogous to a hard mattress, while a field with
a small mass parameter m is analogous to a soft mattress. This
follows because from the oscillator chain perspective, the pa-
rameter m is proportional to the stiffness k of the spring at each
location. Moreover, we will learn later that in quantum field
theory, the parameter m encodes, in some sense, a lower energy
threshold. If too little energy is available, there will be no no-
ticeable excitation in the field. In other words, for fields with a
large mass parameter m it’s much harder to cause any notice-
able field excitation, while a field with small m can be excited
quite easily. If there is not enough energy available to excite a
field with large m, the energy will go into fields with a small
mass parameter. Using our mattress picture once again, we can
imagine that we need much more energy to cause any notice-
able disturbance of a hard mattress, while it is easy to disturb a
soft mattress.

In addition, recall that I mentioned already in Section 3.6 that
for m = 0 all plane waves have the same phase velocity. This
implies that wave packets keep their shape as time passes on.
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But for m 6= 0, the phase velocity depends on the wavelength
and thus wave packets eventually dissolve. By using our rope
vs. rope attached to springs picture, we can understand how
this comes about.

Let’s start by considering an ordinary rope without springs. We
can imagine that this rope consists of individual mass points
which are connected to their neighbors by small strings. A
key observation is that for short wavelengths, the small strings
between neighboring mass points will be strongly distorted.
This implies that a given mass point moves quickly up and
down.

In contrast, for a wave with long wavelength, the small strings
between neighbors are almost not distorted. Hence, in this
case the individual mass points will move quite slowly up and
down. At the same time, for small wavelengths the wave repeats
faster in space. This is the definition of a small wavelength.

To understand the implications for the phase velocity, let’s focus
on one specific point on the wave, say a maximum. The phase
velocity tells us how far this point travels Dx during a time
interval Dt. While the mass points oscillate much quicker if
the wavelength is small, they don’t get very far during each
oscillation. In contrast, the mass points in a wave with long
wavelength oscillate slowly up and down but travel extremely
far during each full up-down-up cycle.

This implies that even though each individual mass point moves
only slowly up and down if the wavelength is large, the total
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distance Dx that our maximum travels during the time interval
Dt will be exactly the same as for a wave with small wavelength.
Hence, the phase velocity will be exactly the same.

In summary:

B small l ! small period t ! phase velocity v = l
t ,

B large l0 ! large period t0 ! phase velocity v = l0
t0 .

Next, let’s try to understand how the situation changes if we
consider a string that is attached to springs. This system is dif-
ferent because the speed at which each mass point oscillates
up and down is now determined by the springs and the small
strings that connect it to its neighbors. Which of the two influ-
ences will dominate depends on the wave length. Therefore, the
phase velocity depends on the wavelength.
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To understand this in more explicit terms, take note that for
small wavelengths, l1 ⌧ 1

m , the oscillation is primarily driven
by the strings between neighboring mass points since they are
strongly distorted.16 Mathematically this follows if we calculate 16 As usual, notions like large and

small have no absolute meaning. If
we talk about small wavelengths
we must say in relation to what
it is small. Here, we can imagine
that a characteristic wavelength of
our system consisting of a string
attached to springs is encoded by
1
m . This follows if we look at the
dispersion relation in which the
wave number k = 2p

l "competes"
with m.

the (2p)2

l2
1

⌘ k2
1 � m2 limit of the dispersion relation (Eq. 3.77):

w1 =
q

k2
1 + m2

y

k2
1 � m2

⇡ k1 . (5.32)

The relation w1 = k1 is exactly what we have for a rope without
springs (Eq. 3.72).

For large wavelengths, l2 � 1
m , each of the small strings be-

tween neighbors is only a little bit distorted. Hence, the oscilla-
tion is primarily driven by the springs. Since the spring stiffness
is proportional to m, we can see this mathematically by noting
that for (2p)2

l2
2

⌘ k2
2 ⌧ m2 we have

w =
q

k2
2 + m2

y

w =
q

k2
2 + m2 ⇡ m

⇡ m . (5.33)

By using the definition of the phase velocity (Eq. C.10), we can
therefore conclude 17 17 Take note that the phase velocity

for short wavelength is 1 here
because we work in natural units
where c = 1. In other units, we find
v1 = c.
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v1 =
w1
k1

⇡ k1
k1

= 1

v2 =
w2
k2

⇡ m
k2

) v1 6= v2 . (5.34)

We can conclude that the phase velocity indeed depends on the
wavelength for a rope attached to springs.

The subtle difference in the behavior of a system with and with-
out a dispersion parameter m, has many important implications
for modern physics. In particular, we will see in Chapter 6 that
the parameter m determines how far a field can spread its influ-
ence. For example, for large values of m, the influence of a field
disturbance dies off quickly. In some sense this follows from
the fact that for large values of m a wave packet will dissolve
quickly, while for m = 0 it doesn’t dissolve at all. Moreover, as
mentioned already in Section 3.6, in quantum field theory this
implies that heavy particles (=excitations in a field with large
m-parameter) usually decay more quickly than lighter ones
(=excitations in a field with smaller m-parameter).

A third aspect that is worth discussing are possible modifica-
tions of the Klein-Gordon Lagrangian. A Lagrangian represents
mathematically a model for a specific system. Therefore, we
need different Lagrangians for different systems. We encoun-
tered one interesting modification of the Klein-Gordon La-
grangian above already. If there is no restoring force that pulls
the field at each location back to its equilibrium position, we
use a Lagrangian without a mass term (m = 0). As discussed
above, it makes a big difference whether or not a mass term is
necessary.

But, of course, we can not only remove terms from a Lagrangian
but also add new terms.
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For example, we can imagine that the restoring force that pulls
our mass points back to the equilibrium originates in a more
complicated potential than simply V = kx2. As a concrete
example, we can consider the potential V = kx2 � l

4! x4, where
4! = 4 · 3 · 2 · 1 = 24. In physical terms, we can imagine that this
means that we are dealing with a chain of coupled pendulums
instead of coupled oscillators.

The pendulum potential reads

V(q) = mgl(1 � cos(f)) (5.35)

If we then assume that the pendulum only swings a little, we
can Taylor expand this formula:

V(q) = mgl(1 � cos(f))

y
cos(x) = 1 � x2

2
+

x4

4!
+ . . .

⇡ mgl
⇣

1 �
✓

1 � f2

2
+

f4

4!

◆⌘
y

�1

= mgl
f2

2
� mgl

f4

4!
. (5.36)

In words, this means that our original formula (V = kx2) is
only a first order approximation for a pendulum. To describe a
pendulum more accurately, we need to take higher order terms
like x4

4! into account.

If we assume that our potential reads V = kx2 � l
4! x4 and then

carry out the same analysis as in the previous section, we find
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in the continuum limit1818 This is Eq. 5.26 with an additional
f4 term.

LNP =
Z

dx
✓

1
2

∂µf∂µf � 1
2

µf2 +
l

4!
f4
◆

. (5.37)

There are two extremely important lessons to be learned here.

Firstly, take note that, as usual in a sensible Taylor expansion,
higher order terms are less important than the first term. If we
ignore all higher order terms and only work with V = kx2, we
are already getting quite accurate results for most situations. If
we care a bit more about details, we can include the next term
in the expansion V = kx2 � l

4! x4 and so on. In particular, as
long as the system only oscillates a little bit, the approximation
V ⇡ kx2 yields great results. At higher energies, higher order
terms like l

4! f
4 become increasingly important.

The situation in modern field theory is quite analogous. To start
with, we work with the simplest nontrivial Lagrangians for our
fields (Eq. 5.2). However, it is now commonly believed that this
is just a first approximation and that there are infinitely many
higher-order terms (f4, f6, . . .) that play a role. The reason why
our simple Lagrangians work so well is that these higher-order
terms yield contributions that are too small to be measurable
with present day technologies. We say that the best models
we currently have are only effective models that need to be
modified at higher energies.1919 We will discuss this idea in more

mathematical terms in Chapter 17

You might wonder why we don’t use the full potential
V(q) = mgl(1 � cos(q)). One reason is that the formulas we
find with this full potential are far too difficult to tell us any-
thing meaningful. A second and more important reason is
that when it comes to fundamental physics, we might not
know the correct formula for the potential. No one knows
if a scalar field is really analogous to a network of coupled
pendulums or if something far more complicated is going on.
Therefore, the best we can do is to start with some power series
V = a + bx + cx2 + dx3 + ex4 + . . . and then use experimental
input to determine the parameters a, b, c, d, e, . . .. Since lots of
potentials can be described quite accurately in a first approxi-
mation using the harmonic oscillator potential V = kx2, it’s not



the behavior of free fields 189

too surprising that fundamental scalar fields behave, in a first
approximation, like a bunch of coupled oscillators.20 20 You might wonder why the

constant term a or the linear term
bx do not play a dominant role.
The reason is that a constant term
a and a linear term bx have no
influence on the dynamics and
can therefore be neglected. This
follows if we plug the Lagrangian
L = T � V = 1

2 mẋ2 � a � bx � x2

into the Euler-Lagrange equation
(Eq. 4.2):

∂L
∂q

=
d
dt

✓
∂L
∂q̇

◆

�b � cx = mẍ .

We can simply shift our coordinate
system x ! x̃ = x + b

c . The
acceleration remains unaffected by

this shift: ẍ = d2x
dt2 =

d2(x̃� b
c )

dt2 = d2 x̃
dt2

Therefore, the equation of motion in
the shifted coordinate system reads

�b � cx = mẍ

! �b � c(x̃ � b
c
) = m ¨̃x

�b � cx̃ + b = m ¨̃x
�cx̃ = m ¨̃x .

This is exactly the equation of
motion that we find without the
constant term a and linear term bx.
In physical terms, the constant term
bx represents a constant force that
shifts the equilibrium position of
our oscillator. As we’ve seen above,
a shift of the equilibrium position
has no effect on the dynamics of the
system since it can be compensated
by a shift of the coordinate system.

Another thing worth mentioning is that the Lagrangian in
Eq. 5.37 plays an incredibly important role in modern physics.
We will discuss later in Chapter 14, we can use it to implement
the spontaneous mass creation mechanism which is responsible
for the masses of all known elementary particles.

Next, to understand in mathematical terms how a scalar field
evolves in time, let’s talk about solutions of the Klein-Gordon
equation.

5.1.3 Solutions of the Klein-Gordon Equation

The Klein-Gordon equation is the three-dimensional version of
the wave equation with dispersion term that we discussed in
Section 3.6. Nevertheless, it makes sense to discuss its solutions
here since there are a few new aspects.

Let’s start by looking at the Klein-Gordon equation ( Eq. 5.4),
which I recite here for convenience

(∂µ∂µ + m2)f = 0 . (5.38)

In words, the equation tells us that we need a function f = f(xµ)

that yields the constant m2 times the same function and a minus
sign when differentiated twice. The most famous functions that
yield minus itself when differentiated twice are sin(x), cos(x)
and eix.21 By recalling what we discussed in Section 3.6, we can 21 Take note that ex doesn’t work

since we don’t get a minus sign
here. Moreover, ∂2

x cos(ax) =
∂x(�a sin(ax)) = �a2 cos(ax)
since ∂x cos(ax) = �a sin(ax) and
∂x sin(ax) = a cos(ax)

immediately write down solutions of the Klein-Gordon equa-
tion. For example,

f(xµ) = cos(kµxµ) (5.39)
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solves the Klein-Gordon equation, as long as the wave-vector kµ

fulfills the dispersion relation

kµkµ = m2 . (5.40)

The wave four-vector kµ combines the frequency w and the
usual wave vector~k into a single object2222 Take note that we work here in

natural units. In SI-units, the wave
vector reads

kµ =

✓ w
c
~k

◆
.

kµ =

 
w
~k

!
. (5.41)

Introducing this object makes sense in a relativistic object be-
cause w denotes the angular frequency and~k the spatial fe-
quencies. Therefore, analogously to how space and time get
combined in a single four-vector xµ, we combine here the an-
gular frequency (angle per second) and the spatial frequencies
(angle per meter) into a single four-vector kµ.

We can check explicitly that the function in Eq. 3.67 solves the
Klein-Gordon equation:

0 = (∂µ∂µ + m2)f this is the KG equation (Eq. 5.4)y

Eq. 3.67
= (∂µ∂µ + m2) cos(kµxµ) y

∂2
x cos(ax) = �a2 cos(ax)

= (�kµkµ + m2) cos(kµxµ) y

kµkµ = m2 (Eq. 5.40)
= (�m2 + m2) cos(kµxµ) y

= 0 X (5.42)

As discussed in Section 3.6, solutions of the form given in
Eq. 3.67 are known as plane wave solutions since they spread
out all over space with exactly the same amplitude.

Completely analogously, we can check that functions of the
form f(xµ) = sin(kµxµ) are also solutions of the Klein-Gordon
equation. Moreover, since only the length m of the wave vector
kµ is important in the calculation above, we can conclude that
there are lots of different solutions which involve different wave
vectors ki

µ. We can put any four-vector kµ that fulfills the disper-
sion relation kµkµ = m2 into a cosine or sine function and get a
solution of the Klein-Gordon equation.
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In addition, as for the wave equation, we can construct wave
packets by using linear combinations of plane waves.

Next, let’s talk about the third function eix which possibly plays
a role as a solution of the Klein-Gordon equation. Using Euler’s
famous formula

eix = cos(x) + i sin(x) (5.43)

we can understand that the general structure of a solution
which involves eix is not too different from what we have just
discussed.

Moreover, we can check explicitly that

f(x) = e�i(kµxµ) (5.44)

is a solution of the Klein-Gordon equation:

0 = (∂µ∂µ + m2)f this is the KG equation (Eq. 5.4)y

Eq. 5.44

= (∂µ∂µ + m2)e�i(kµxµ)

y

= (�kµkµ + m2)e�i(kµxµ)

y

kµkµ = m2 (Eq. 5.40)

= (�m2 + m2)e�i(kµxµ)

y

= 0 X (5.45)

Analogously, we can check that f(x) = ei(kµxµ) also solves the
Klein-Gordon equation.

A new aspect of these solutions compared to the solutions dis-
cussed previously (Eq. 3.67) is that here we are dealing with a
complex function.

In words, this means that the Klein-Gordon equation is not only
solved by real scalar fields but also by complex scalar fields. As
usual, mathematics alone cannot tell us what kind of solution
we should use. We always need experiments to tell us whether
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we need real solutions or complex solutions to describe a given
system.

Since it is often much easier to work with complex functions
and to stay as general as possible, we will turn our focus to such
complex solutions.23 Mathematically, a real scalar field is a map23 The only known fundamental

scalar field, the Higgs field, is
indeed complex. R1,3 ! R (5.46)

while a complex scalar field is a map

R1,3 ! C . (5.47)

Formulated differently, while a real scalar field eats a spacetime
point and spits out a real number, a complex scalar field eats a
spacetime point and spits out a complex number.

5.1.4 General Solution of the Klein-Gordon Equation

We can construct new solutions by using linear combinations
of known solutions. The most general solution of the Klein-
Gordon equation reads2424 This is a continuous version of

Eq. 3.82. In Eq. 3.82, we sum over a
few specific wave vectors kµ

i , while
here we sum over all wave vectors. f(x) =

Z dk4

(2p)4 (a(kµ)e�i(kµxµ) + b(kµ)ei(kµxµ)) , (5.48)

where (2p)4 is a conventional normalization factor and a(kµ),
b(kµ) are coefficients that describe how much each individual
plane wave contributes to the total wave form. Since we sum
over all possible wave vectors kµ, we are dealing with functions
of kµ instead of a discrete set of coefficients.
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Take note that for a real scalar field only a small modification is
necessary. The defining condition of a real scalar field is f† =

f.25 This implies that the corresponding expansion reads 25 Reminder: † denotes Hermitian
conjugation: A† = AT?. For a
scalar field, transposition makes no
difference and therefore we have
f† = f?. Nevertheless, we use †
here to get a uniform notation for
all kinds of fields.

f(x) =
Z dk4

(2p)4 (a(kµ)e�i(kµxµ) + a†(kµ)ei(kµxµ)) (5.49)

since it now automatically fulfills the condition f† = f:

f†(x) =
✓Z dk4

(2p)4 (a(kµ)e�i(kµxµ) + a†(kµ)ei(kµxµ))

◆†
y

(e�i(kµ xµ))† = ei(kµ xµ), (a†)† = a

=
Z dk4

(2p)4 (a†(kµ)ei(kµxµ) + a(kµ)e�i(kµxµ))

= f(x) X (5.50)

The notation in Eq. 5.49 is quite sloppy because we do not re-
ally sum over all possible plane wave solutions. Instead, we
only include those that fulfill the dispersion relation kµkµ = m2

(Eq. 5.40).26 If we only want to include positive frequency solu- 26 We will derive later that in
quantum field theory the zeroth
component of the wave vector kµ

is directly related to the energy,
k0 ⇠ E.

tions and use the short-hand notation kx ⌘ kµxµ, we can write
the general solution of the Klein-Gordon equation as

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�ikx + a†(~k)eikx

⌘
. (5.51)

This is demonstrated explicitly in Appendix A.3.27 Take note 27 The discussion in Appendix A.3 is
quite technical and you can skip it
on a first reading.

that in Eq. 5.51 new rescaled coefficients a(~k), a†(~k) instead of
a(k), a†(k) appear in the expansion wich are defined as

a(~k) ⌘ a(k)p
2wk

a†(~k) ⌘ a†(k)p
2wk

. (5.52)

It is conventional to work with the rescaled coefficients a(~k),
a†(~k) since this simplifies many calculations in later chapters.
The notation here is rather subtle and it probably would be
better to use, for example, ã(k) instead of a(~k). But the notation
in Eq. 5.52 is the standard one thus we will also use it in the
following.28

28 It’s often very tempting to in-
troduce an improved notation.
However, any change in notation
makes it much harder for readers
to compare statements made in
different books and are therefore
often more harmful than helpful.
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Similarly, we can write the expansion for a complex scalar field
as

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�ikx + b(~k)eikx

⌘
. (5.53)
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5.2 Free Spinor Fields and the Dirac Equa-
tion

As we did in the previous section, let’s assume that someone
hands us the Lagrangian density

LDirac = Ȳ(igµ∂µ � m)Y , (5.54)

where Y is a Dirac spinor (Eq. 3.35), Ȳ is a "conjugated" Dirac
spinor:29 29 The "dagger" † denotes Hermitian

conjugation which means complex
conjugation (?) plus transposition
(T).

Ȳ ⌘ (Y)†g0 = (Y?)Tg0 (5.55)

and30

30 Strictly speaking, this is only
one possible representation of the
gamma matrices known as the
chiral basis. We will discuss an
alternative representation and how
it is related to the chiral basis in
Section 5.2.3.

g0 =

0

BBB@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

CCCA
g1 =

0

BBB@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

CCCA

g2 =

0

BBB@

0 0 �i 0
0 0 0 i
i 0 0 0
0 �i 0 0

1

CCCA
g3 =

0

BBB@

0 0 1 0
0 0 0 �1
�1 0 0 0
0 1 0 0

1

CCCA
. (5.56)

Again it is conventional to call the first term in Eq. 5.54 the
kinetic term and the second term the mass term.

The conjugated Dirac spinor Ȳ appears in the Lagrangian be-
cause the proper Dirac spinor scalar product reads ȲY.31 To 31 We need a scalar product in the

Lagrangian because the Lagrangian
itself is a scalar and is thus only
allowed to contain scalar terms.

see this, we note that the matrix g0 contains two (2 ⇥ 2) unit
matrices:

g0 =

 
0 12⇥2

12⇥2 0

!
. (5.57)

In addition, we recall that a Dirac spinor consists of two Weyl
spinors (Eq. 3.35) and we can therefore rewrite the product ȲY
as follows32 32 Reminder: Eq. 3.35 reads

Y =

✓
c
x

◆
.
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ȲY = Y†g0Y y

Eq. 3.35, Eq. 5.57

=

 
c

x

!†  
0 12⇥2

12⇥2 0

! 
c

x

!

y
matrix product

=
⇣

c† x†
⌘ x

c

!
y

= c†x + x†c . (5.58)

Both terms here are proper scalar products of a right-chiral
Weyl spinor and a left-chiral Weyl spinor (Eq. 3.63). We can
therefore conclude that the proper scalar product of a Dirac
spinor with itself can indeed be written as ȲY.

The gamma matrices gµ show up everywhere when we do cal-
culations with spinor fields since they provide an essential link
between spinors and vectors. Such a link is essential because a
spacetime derivative ∂µ carries a vector index µ, while spinors
carry spinor indices.33 The "four vector" with gamma matrices33 We discussed spinor indices in

Section 3.4.1. as its entries

gµ ⌘

0

BBB@

g0

g1
g2

g3

1

CCCA
(5.59)

carries a vector index µ and spinor indices. This follows since
each gamma matrix acts on spinors and thus carries (like any
matrix) two spinor indices.34 As shown in the Dirac Lagrangian

34 The index µ labels different
gamma matrices. Moreover, there
are two spinor indices because
the result, if we act with a gamma
matrix on a spinor, hi , is another
spinor: g

ij
1 hj = hi .

(Eq. 5.54), the gamma matrices allow us to write down a term
in the Lagrangian that involves a spacetime derivative ∂µ and
spinors.3535 The gamma matrices allow us to

construct a term that is invariant
under Poincaré transformations. In
physical terms this implies that the
term respects the laws of special
relativity. This line of thought
is spelled out in more detail in
Chapter 17.

There are important relations between gamma matrices that are
useful in many calculations.36 The most famous relation

36 The gamma matrices are also
sometimes called Dirac matrices.

{gµ, gn} ⌘ gµgn + gngµ = 2hµn14⇥4 (5.60)

is known as the Clifford algebra. The object on the left-hand
side is known as the anticommutator of two gamma matrices,
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hµn on the right-hand side is the Minkowski metric (Eq. 2.30)
and 14⇥4 is the (4 ⇥ 4) identity matrix. We can check the va-
lidity of this formula by using the explicit form of the gamma
matrices (Eq. 5.56). For example, for µ = n = 0, we find

g0g0 + g0g0 = 2h0014⇥4 y

h00 = 1, see Eq. 2.30
2g0g0 = 2 14⇥4 y

�2
g0g0 = 14⇥4 y

Eq. 5.560

BBB@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

CCCA

0

BBB@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

CCCA
= 14⇥4

y

matrix product0

BBB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCCA
= 14⇥4 X (5.61)

Before we can derive the equation of motion that follows from
the Dirac Lagrangian, we need to talk about an important sub-
tlety. We discovered in the previous section that there can be
complex scalar fields. Similarly, there can be complex spinor
fields and that’s why a "conjugated" Dirac spinor Ȳ appears in
the Lagrangian. All spinor fields that have been discovered so
far are complex fields and thus we will assume here from the
start that our spinor field Y is complex.

For a complex field, it is conventional to treat Ȳ and Y as inde-
pendent variables. This is motivated by the observation that we
can split a complex field, analogous to a complex number, into a
real and an imaginary part:37 37 A complex number z, can always

be written as

z = a + ib,

where a is called the real part and b
the imaginary part. Both a and b are
real numbers.

Y = Yr + iYi , (5.62)

where Yr and Yi are real spinor fields. Therefore, by using a
complex spinor field we effectively consider two spinor fields at
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once. But instead of plugging Eq. 5.62 into the Lagrangian and
then consider Yr and Yi as independent fields, it is conventional
to work with Y and Ȳ.

If we plug the Lagrangian density given in Eq. 5.54 into the
Euler-Lagrange equation for Ȳ (Eq. 4.25), we find38

38 It is equally possible to consider
the Euler-Lagrange equation

∂L
∂Y

� ∂µ

✓
∂L

∂(∂µY)

◆
= 0 .

This yields the equation of mo-
tion for the field Ȳ. But since the
derivation and interpretation of
the resulting equation is a bit more
subtle, we consider here only the
equation of motion for Y.

0 =
∂L
∂Ȳ

� ∂µ

✓
∂L

∂(∂µȲ)

◆
this is Eq. 4.25

y

Eq. 5.54

=
∂
⇣

Ȳ(igµ∂µ � m)Y
⌘

∂Ȳ
� ∂µ

0

B@
∂
⇣

Ȳ(igµ∂µ � m)Y
⌘

∂(∂µȲ)

1

CA

y ∂Ȳ
∂Ȳ

= 1
= i∂µgµY � mY

(5.63)

The resulting equation

i∂µgµY � mY = 0 (5.64)

is the famous Dirac equation.
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5.2.1 The Meaning of the Dirac Equation

One aspect of the dynamics of a spinor field is not too dissim-
ilar from the dynamics of a scalar field. As for a scalar field,
we have a field strength at each location that oscillates in a har-
monic oscillator-like manner. We will see below that there can
again be wave-like structures in the values of the field strength
that move through space.

Additionally, however, a spinor field has a rich internal struc-
ture. Lacking any deeper understanding, we describe this in-
ternal structure somewhat abstractly using the concepts of spin
and chirality. We will see that the Dirac equation not only tells
us how field strength values vary in time, but also which spinor
structures are permitted in Nature.

We discussed in Section 3.2.1 that it is often helpful to separate
the internal structure and the spacetime structure of a vector
field. Exactly the same idea can be applied to spinor fields.
Analogous to what we did for vector fields (Eq. 3.8), we will
write spinor fields as

Y(xµ) = y

internal structure

⇥ f (xµ)

spacetime structure

. (5.65)

This is useful because the spacetime structure is completely
analogous to what we’ve already discovered for scalar fields. In
the following section, we will derive that the spacetime struc-
ture of solutions of the Dirac equation are again plane waves:

f (xµ) = e�ikµxµ
= e�i(k0x0�kixi) = e�i(wt�~k·~k) . (5.66)

Therefore, the only new thing about the Dirac equation is what
it tells us about permitted spinor structures.

In Section 3.4.2, we already started to talk about how we can
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interpret spinor components. Now that we have the Dirac equa-
tion, we can continue this discussion. But first, let’s recall the
main ideas:

B A Dirac spinor Y consists of two Weyl spinors c, x:

Y =

 
c

x

!
. (5.67)

B We call c a left-chiral spinor and x a right-chiral spinor.

B Each Weyl spinor is a two-component object:

c =

 
c1
c2

!
, x =

 
x1
x2

!
. (5.68)

B The structure of a Weyl spinor determines the spin structure
of the corresponding field or particle:3939 Spin up and spin down refers

here and in the following to spin
orientations in the z-direction.

spin up:

 
1
0

!
, spin down:

 
0
1

!
(5.69)

In summary, there are four different basis field configurations:

left-chiral, spin up:

0

BBB@

c1
0
0
0

1

CCCA
, left-chiral, spin down:

0

BBB@

0
c2

0
0

1

CCCA
,

right-chiral, spin up:

0

BBB@

0
0
x1
0

1

CCCA
, right-chiral, spin down:

0

BBB@

0
0
0
x2

1

CCCA
.

(5.70)

Moreover, there are superpositions which are described by
linear combinations of these basis spinors.

In the following section, we will derive that solutions of the
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Dirac equation are of the form

yi =

 
ui
ui

!
(5.71)

where40 u1 =

 
1
0

!
e�imt and u2 =

 
0
1

!
e�imt. Moreover, 40 This is really a basis choice. The

only requirement is that the two ui
are linearly independent.another kind of solution is of the form

ỹi =

 
�vi
vi

!
, (5.72)

where v1 =

 
1
0

!
e+imt and v2 =

 
0
1

!
e+imt.

To understand what these solutions and therefore the Dirac
equation are telling us, let’s assume that our field starts in a
purely left-chiral configuration at one specific location with spin
up:

e"L =

0

BBB@

1
0
0
0

1

CCCA
. (5.73)

Since this is not a solution of the Dirac equation, we need to
rewrite it in terms of solutions to determine its time evolution:

e"L =

0

BBB@

1
0
0
0

1

CCCA

y

=
1
2

0

BBB@

0

BBB@

1
0
1
0

1

CCCA
�

0

BBB@

�1
0
1
0

1

CCCA

1

CCCA

y

Eq. 5.71, Eq. 5.72
= Y1(t = 0)� Ỹ1(t = 0) (5.74)

Writing e"L like this is useful, because we know exactly how Y1
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and Ỹ1 evolve in time:

Y(t) = Y1(t)� Ỹ1(t) y

Eq. 5.71, Eq. 5.72

=
1
2

0

BBB@

0

BBB@

1
0
1
0

1

CCCA
e�imt �

0

BBB@

�1
0
1
0

1

CCCA
eimt

1

CCCA
(5.75)

For t = 0 this yields exactly the purely left-chiral spin up field
eY(0) = e"L (see Eq. 5.74). With this formula at hand, we find,
for example, that at t = p

2m :

Y
⇣ p

2m

⌘
=

1
2

0

BBB@

0

BBB@

1
0
1
0

1

CCCA
e�i p

2 �

0

BBB@

�1
0
1
0

1

CCCA
ei p

2

1

CCCA

y

e�i p
2 = �i, ei p

2 = i

=
i
2

0

BBB@

0

BBB@

�1
0
�1
0

1

CCCA
�

0

BBB@

�1
0
1
0

1

CCCA

1

CCCA

y

= �i

0

BBB@

0
0
1
0

1

CCCA
. (5.76)

The spinor that we find here

e"R ⌘

0

BBB@

0
0
1
0

1

CCCA
(5.77)

describes a right-chiral field with spin up.

Therefore, as promised above, the Dirac equation describes how
left-chiral and right-chiral configurations oscillate into each
other.

It may be helpful to rephrase everything we just learned into a
more familiar language.
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For clarity, let’s assume that the field strength is only non-zero
at one specific location ~xs. We can imagine that there is a lump
of energy localized at this location. At t = 0, the field assigns
the spinor e"L (Eq. 5.73) to this location. For reasons that we
will discuss later in more detail, we call this lump of energy a
left-chiral electron with spin up.

The question we investigated above was: what happens to such
a specific field configuration as time passes on? Using the Dirac
equation, we discovered that after a while the field configu-
ration at ~xs is described by the spinor e"R (Eq. 5.77). When we
considered the problem in the rest frame, the lump of energy
doesn’t move and hence the field strength everywhere else re-
mains zero. Nevertheless, the internal structure of our lump of
energy changes. It starts in a purely left-chiral configuration
and ends up in a purely right-chiral configuration. Moreover, at
different points in time, we will find a configuration that we can
describe as a mixture of left-chiral and right-chiral.

The rate at which a left-chiral configuration oscillates into a
right-chiral configuration and vice versa is determined by the
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parameter m. In physical terms, we interpret the parameter
m as the mass of the lumps of energies (particles) associated
with the given field. If we only know the Dirac equation, this
may seem quite mysterious. But luckily, there is a beautiful
modern perspective that allows us to understand what is going
on here on a much deeper level. We’ll learn in Chapter 14 that
we can understand the mass parameter m as a result of the
interaction between a scalar field and spinor fields.41 Moreover,41 We call this a spontaneous mass

creation mechanism, which is
closely connected to the phe-
nomenon known as spontaneous
symmetry breaking.

we will reinterpret the mass parameter m associated with a
spinor field as the coupling strength y between the scalar field
and the spinor field times a constant parameter v that describes
an important property of the scalar field: m = yv.42 With this

42 Technically, y is a Yukawa cou-
pling and v the vacuum expectation
value of the scalar field.

in mind, we can imagine that a given spinor field constantly
interacts with the scalar field. Each time an interaction takes
place, the chirality of our spinor field configuration flips.

The coupling strength y of a given spinor field determines how
often an interaction takes place. For fields with a larger mass
parameter m, we also have a bigger coupling strength y. This
implies that for fields with a larger m, a change from purely
left-chiral to purely right-chiral happens much more quickly.

Therefore, from this perspective it’s no longer completely mys-
terious why the mass parameter m determines how quickly
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left-chiral and right-chiral configurations oscillate into each
other.

From a slightly more technical perspective, we can say that
chirality flips all the time because states with fixed chirality
(Eq. 5.70) are not solutions of the Dirac equation. Solutions of
the Dirac equation describe how spinor fields evolve in time.
Therefore, when we observe a spinor field in Nature we see a
configuration that corresponds to a solution of the Dirac equa-
tion. We call configurations that can be described by solutions
of the Dirac equation physical configurations. For example, a
physical electron field is neither purely left-chiral or purely
right-chiral but a mixture that can be described by a linear com-
bination like the one in Eq. 5.75.

Next, let’s discuss how we can derive these solutions of the
Dirac equation.

5.2.2 Solutions of the Dirac Equation

I mentioned already above that the basic building blocks that
describe the spacetime structure of solutions of the Dirac equa-
tion are plane waves. To show this, we start by noting that in
the Dirac equation (Eq. 5.64) the Dirac operator D̂ ⌘ i∂µgµ � m
acts on the spinor Y and the result has to be zero:

0 = i∂µgµY � mY this is Eq. 5.64y

D̂ ⌘ i∂µgµ � m
= D̂Y . (5.78)

This is just a fancy way to think about the Dirac equation. This
way of thinking is useful for our purposes because we can now
consider what happens when we apply the complex conjugated
Dirac operator D̂? ⌘ �i∂µgµ � m to D̂Y.43 43 We will see in a moment why this

is interesting.
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On the left-hand side of the Dirac equation, we will still have a
zero and therefore find

0 = D̂Y this is Eq. 5.78y

⇥D̂?

D̂?0 = D̂?D̂Y y

D̂0 = 0
0 = D̂?D̂Y . (5.79)

If we now calculate D̂?D̂ explicitly, we discover something re-
markable:

D̂?D̂ = (�i∂µgµ � m)(i∂ngn � m) y

= �i2∂µgµ∂ngn � im∂ngn + i∂µgµm + m2

y

�im∂ngn + i∂µgµm = 0
= ∂µgµ∂ngn + m2

y 1
2
+

1
2
= 1

=
1
2
�
∂µ∂ngµgn + ∂µ∂ngµgn�+ m2

y

gngµ � gngµ = 0

=
1
2
�
∂µ∂ngµgn + ∂µ∂ngµgn�+ m2

+
1
2
�
∂µ∂ngngµ � ∂µ∂ngngµ�

y

rearranging

=
1
2
�
∂µ∂ngµgn + ∂µ∂ngngµ�+ m2

+
1
2
�
∂µ∂ngµgn � ∂µ∂ngngµ�

y

{gµ, gn} ⌘ gµgn + gngµ

=
1
2

∂µ∂n{gµ, gn}+ m2

+
1
2
�
∂µ∂ngµgn � ∂µ∂ngngµ�

y

[gµ, gn] ⌘ gµgn � gngµ

=
1
2

∂µ∂n{gµ, gn}+ m2 +
1
2

∂µ∂n[g
µ, gn] y

∂µ∂n[g
µ, gn] = 0, see below

=
1
2

∂µ∂n{gµ, gn}+ m2

y

{gµ, gn} = 2hµn, Eq. 5.60
= ∂µhµn∂n + m2

y

Eq. 2.36
= ∂µ∂µ + m2 , (5.80)
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where we used that ∂µ∂n[gµ, gn] = 0 which follows because ∂µ∂n

is symmetric under the exchange of the indices µ $ n, while
the commutator [gµ, gn] is antisymmetric.44 We can check this 44 This is an important general

result. Every time we have a sum
over something symmetric in its
indices multiplied by something
antisymmetric in the same indices,
the result is zero:

Â
ij

aijbij = 0

if aij = �aji and bij = bji holds for
all i, j. We can see this by writing

Â
ij

aijbij =
1
2

⇣
Â
ij

aijbij + Â
ij

aijbij

⌘

We are free to rename our indices
i ! j and j ! i, which we use in
the second term

! Â
ij

aijbij =
1
2

⇣
Â
ij

aijbij + Â
ij

ajibji

⌘

Then we use the symmetry of bij
and antisymmetry of aij, to switch
the indices in the second term,
which yields

! Â
ij

aijbij =
1
2

⇣
Â
ij

aijbij + Â
ij

aji|{z}
=�aij

bji|{z}
=bij

⌘

=
1
2

⇣
Â
ij

aijbij � Â
ij

aijbij

⌘
= 0

explicitly as follows;

∂µ∂n[g
µ, gn] ⌘ ∂µ∂n (g

µgn � gngµ) y

= ∂µ∂ngµgn � ∂µ∂ngngµ

y

renaming indices
= ∂µ∂ngµgn � ∂n∂µgµgn

y

∂n∂µ = ∂µ∂n

= ∂µ∂ngµgn � ∂µ∂ngµgn

y

⇠⇠⇠⇠∂µ∂ngµgn

= 0 X (5.81)

If we plug Eq. 5.80 into Eq. 5.79, we can conclude that any so-
lution of the Dirac equation must fulfill the Klein-Gordon equa-
tion.45

45 To be more precise: each com-
ponent of the Dirac spinor Y must
fulfill the Klein-Gordon equation.
The converse statement is not true.
Solutions of the Klein-Gordon
equation are not automatically so-
lutions of the Dirac equation since
the Klein-Gordon equation is not a
spinor equation.

Therefore, the basic building blocks of the spacetime part of our
solution will again be plane wave solutions (Eq. 5.44):

f (xµ) = e�ikµxµ
, (5.82)

where the wave vector kµ fulfills the dispersion relation (see
Eq. 5.40)

kµkµ = m2 . (5.83)

Motivated by this fact, we make the ansatz

Y = ye�ikµxµ
(5.84)

and plug it into the Dirac equation (Eq. 5.64)

0 = i∂µgµY � mY this is Eq. 5.64y

Eq. 5.84
= i∂µgµye�ikµxµ � mye�ikµxµ

y

∂µe�ikµ xµ
= �ikµe�ikµ xµ

= �i2kµgµye�ikµxµ � mye�ikµxµ

y

⇠⇠⇠e�ikµ xµ
, i2 = �1

= kµgµy � my . (5.85)

While the spacetime part of the Dirac equation doesn’t tell
us anything new, this remaining equation is something truly
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novel. It tells us which spinor structures are permitted. As
usual, we are always free to write down any spinors we like.
But the Dirac equation tells us which spinor structures we can
really observe in Nature. So by using the ansatz in Eq. 5.84, we
have successfully isolated the information the Dirac equation
contains about spinor structures that we can observe in Nature.

So next, let’s try to understand what the Dirac equation tells us
about permitted spinor structures. Since the physical content is
the same in all frames of reference, we choose a frame in which
our description becomes especially simple. In the rest frame
(~k = 0), the wave four-vector is given by (Eq. 2.44)

kµ =

 
w
~k

!
=

 
w
~0

!
. (5.86)

Moreover, we can use the dispersion relation (Eq. 5.83) to deter-
mine w:

m2 = kµkµ

y

= k2
0 � k2

1 � k2
2 � k2

3 y

rest frame: kµ = (w,~0)T

= w2 . (5.87)

Therefore, in the rest frame Eq. 5.85 becomes

0 = kµgµy � my y

Eq. 5.86
= wg0y � my y

Eq. 5.87
= mg0y � my y

⇢m
= g0y � y . (5.88)

Moreover, the spacetime structure part of the solution (Eq. 5.82)
also simplifies to

f (xµ) = eikµxµ

y

Eq. 5.86, Eq. 5.87
= eimt . (5.89)
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To analyze the spinor structure further, we make the ansatz

y =

 
c

x

!
, (5.90)

plug it into Eq. 5.88 and use the explicit form of g0 (Eq. 5.56)46 46 12⇥2 denotes the (2 ⇥ 2) unit
matrix and 02⇥2 the (2 ⇥ 2) zero
matrix.0 = g0y � y this is Eq. 5.88y

Eq. 5.56, Eq. 5.90

=

 
02⇥2 12⇥2

12⇥2 02⇥2

! 
c

x

!
�
 

c

x

!

y

matrix product

=

 
x

c

!
�
 

c

x

!
. (5.91)

We learn here that a constant spinor of the form given in Eq. 5.90
fulfills the condition in Eq. 5.88 as long as x = c.

Therefore, if we now recall that the two-component spinors
inside a Dirac spinor describe the spin structure, we can imme-
diately write down two linearly-independent solutions of the
Dirac equation:

Y1 =

0

BBB@

1
0
1
0

1

CCCA
e�imt Eq. 5.84, Eq. 5.91 with x = c =

✓
1
0

◆

Y2 =

0

BBB@

0
1
0
1

1

CCCA
e�imt Eq. 5.84, Eq. 5.91 with x = c =

✓
0
1

◆
(5.92)

Completely analogously, we can start with the ansatz47 47 The only difference is a different
sign in the exponent.

Y(xµ) = yeimt , (5.93)

and then find

0 =

 
�x

�c

!
�
 

c

x

!
. (5.94)

This implies that there are two further solutions of the Dirac
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equation:

Y3 =

0

BBB@

1
0
�1
0

1

CCCA
eimt Eq. 5.93, Eq. 5.94 with x = �c =

✓
1
0

◆

Y4 =

0

BBB@

0
1
0
�1

1

CCCA
eimt Eq. 5.93, Eq. 5.94 with x = �c =

✓
0
1

◆
.

(5.95)

Solutions of the Dirac equation are important because they
describe how physical particles and fields behave as time passes
on. Before we discuss, as we did for the Klein-Gordon equation,
a general solution of the Dirac equation, we will talk about
a smart trick that allows us to simplify the spinor structure
associated with physical particles.
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5.2.3 The Mass Basis

First of all, take note that the gamma matrices, gµ, only appear
in combination with the Dirac spinor Y in the Lagrangian. This
makes it possible that we introduce terms of the form 1 =

N�1N between them and then absorb the invertible matrix N
that appears here into new definitions of Y and gµ:

∂µȳgµy = ∂µȳ N�1N| {z }
=1

gµ N�1N| {z }
=1

y
y

= ∂µ ȳN�1
| {z }
⌘ȳ0

NgµN�1
| {z }

⌘g0
µ

Ny
|{z}
⌘y0

= ∂µȳ0g0
µy0. (5.96)

This is a change of basis. The basis we used so far is called
the chiral basis or Weyl basis. Depending on which matrix
N we use, we can switch to quite different bases in which the
gamma matrices look completely different and in which the
components of a Dirac spinor have a quite different meaning.48 48 Reminder: in the chiral basis the

gamma matrices read (Eq. 5.56):

g0 =

0

BB@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

CCA ,

g1 =

0

BB@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

CCA

g2 =

0

BB@

0 0 �i 0
0 0 0 i
i 0 0 0
0 �i 0 0

1

CCA

g3 =

0

BB@

0 0 1 0
0 0 0 �1
�1 0 0 0
0 1 0 0

1

CCA .

A particularly useful basis is the mass basis or Dirac basis. The
change from the chiral basis to the mass basis is described by
the matrix:

N =
1
2

0

BBB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCCA
. (5.97)

The primary motivation behind a switch to the mass basis is to
diagonalize the matrix g0 that appears in the mass term of the
Lagrangian:

ȲmY = Y?g0mY . (5.98)

If we use that NN = 1
2 14⇥4 and therefore N�1 = 2N, we can

check that N indeed diagonalizes g0:
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gmass
0

Eq. 5.96
⌘ Ngchiral

0 N�1

y

Eq. 5.97, Eq. 5.56

=
2
2

0

BBB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCCA

0

BBB@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

CCCA

0

BBB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCCA

y

matrix product

=

0

BBB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

CCCA
. (5.99)

For this reason we say that the mass term ȲmY is diagonal in
the mass basis, which explains its name. This is really just a
useful mathematical trick that allows us to simplify some calcu-
lations. For some purposes the chiral basis is more useful, while
for others the mass basis is better suited. This is analogous to
how we sometimes use Cartesian coordinates and sometimes
use spherical coordinates.

Using the explicit form of the matrix N (Eq. 5.97), we can calcu-
late what the remaining g-matrices look like in the mass basis:

gmass
1 =

0

BBB@

0 0 0 1
0 0 1 0
0 �1 0 0
�1 0 0 0

1

CCCA
, gmass

2 =

0

BBB@

0 0 0 �i
0 0 i 0
0 i 0 0
�i 0 0 0

1

CCCA

gmass
3 =

0

BBB@

0 0 1 0
0 0 0 �1
�1 0 0 0
0 1 0 0

1

CCCA
. (5.100)

In addition, we must remember that all Dirac spinors are af-
fected by such a basis change too (see Eq. 5.96):

Ymass = NYchiral . (5.101)

For example, the solution Y1 that we derived in the previous
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section reads in the mass basis:

Ymass
1 ⌘ NYchiral

1 y

Eq. 5.97, Eq. 5.92

=
1
2

0

BBB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCCA

0

BBB@

1
0
1
0

1

CCCA
e�imt

y

=

0

BBB@

1
0
0
0

1

CCCA
e�imt . (5.102)

Analogously, we can calculate that the remaining three solutions
(Y2, Y3, Y3) read in the mass basis:

Ymass
2 =

0

BBB@

0
1
0
0

1

CCCA
e�imt Ymass

3 =

0

BBB@

0
0
1
0

1

CCCA
eimt Ymass

4 =

0

BBB@

0
0
0
1

1

CCCA
eimt .

(5.103)

Take note that, as in the previous section, these solutions are
only valid in the rest frame. However, we can derive the slightly
more complicated solutions in a general frame which I list here
only for completeness:49 49 These solutions can be derived by

boosting the rest frame solutions.
Ymass

1 = u1e�ikµxµ
, Ymass

2 = u2e�ikµxµ

Ymass
3 = v1eikµxµ

, Ymass
4 = v2eikµxµ

, (5.104)

where u1, u2, v1, v2 are basis spinors

u1 = n

0

BBB@

1
0
k3

w+m
k1+ik2
w+m

1

CCCA
, u2 = n

0

BBB@

0
1

k1�ik2
w+m
�k3

w+m

1

CCCA

v1 = n

0

BBB@

k3
w+m

k1+ik2
w+m

1
0

1

CCCA
, v2 = n

0

BBB@

k1�ik2
w+m
�k3

w+m
0
1

1

CCCA
(5.105)

and n ⌘
q

w+m
2m is a normalization factor.
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5.2.4 General Solution of the Dirac Equation

Finally, let’s talk about the general solution of the Dirac equa-
tion. Since the Dirac equation is a linear equation, we can con-
struct new solutions by using linear combinations of known
solutions. Therefore, analogously to how we wrote the general
solution of the Therefore, analogous to what we did for the
Klein-Gordon equation in Section 5.1.4, we can write the general
solution of the Dirac equation as:

Y =
2

Â
r=1

Z d3k
(2p)3p2wk

⇣
cr(~k)ur(k)e�ikµxµ

+ dr(~k)vr(k)e+ikµxµ
⌘

⌘ Y+ + Y� . (5.106)

The main difference to the general solution of the Klein-Gordon
equation is that here we not only integrate over all possible
momenta, but also sum over all possible spin configurations.

5.3 Free Gauge Fields and the Proca/Maxwell equations

Analogous to what we did in the previous sections, let’s assume
that someone hands us the Lagrangian density50

50 The equivalence of the two
forms of the Lagrangian density
given here is demonstrated in
Appendix A.1.

LProca = �1
2

FµnFµn + m2 Aµ Aµ

y

= �1
2
(∂µ An∂µ An � ∂µ An∂n Aµ) + m2 Aµ Aµ , (5.107)

where Fµn ⌘ ∂µ An � ∂n Aµ is the field strength tensor discussed
in Section 3.9. The first two terms are typically called kinetic
terms, while the third term is known as the mass term. As
usual, we can calculate the corresponding equation of motion
by putting this Lagrangian density in to the Euler-Lagrange
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equation (Eq. 4.25):

∂L
∂Ar

= ∂s

✓
∂L

∂(∂s Ar)

◆
. (5.108)

However, evaluating the expression on the right-hand side is a
subtle business. For example, let’s consider the term51

51 Don’t worry if not all of the steps
here are immediately clear. The
formalism of special relativity takes
some time getting used to.

∂s

✓
∂

∂(∂s Ar)
(∂µ An∂µ An)

◆

y
product rule

= ∂s

✓
(∂µ An)

∂(∂µ An)
∂(∂s Ar)

+ (∂µ An)
∂(∂µ An)

∂(∂s Ar)

◆
y

An = hnl Al (Eq. 2.34)

= ∂s

✓
(∂µ An)h

µkhnl ∂(∂k Al)
∂(∂s Ar)

+ (∂µ An)
∂(∂µ An)

∂(∂s Ar)

◆

y

= ∂s

⇣
(∂µ An)h

µkhnlds
k d

r
l + (∂µ An)ds

µd
r
n

⌘

y

= ∂s (∂
s Ar + ∂s Ar) y

= 2∂s∂s Ar . (5.109)

Similarly, we find for the second term in the Lagrangian density
(Eq. 5.107):

∂s

✓
∂

∂(∂s Ar)
(∂µ An∂n Aµ)

◆
= 2∂r(∂s As) . (5.110)

The only term that is relevant for the left-hand side of the Euler-
Lagrange equation is the mass term m2 Aµ Aµ and we can calcu-
late52 52 The other terms in the Lagrangian

density yield no contribution to the
left-hand side of the Euler-Lagrange
since ∂

∂Ar
∂s Ar = 0, analogous to

how ∂
∂x ẋ = 0.

∂
�
m2 Aµ Aµ

�

∂Ar
= 2Arm2 (5.111)

since ∂
∂x x2 = 2x but ∂

∂x y2 = 0.53 If we now combine these puzzle
53 This implies that

∂(Aµ Aµ)
∂Ar

yields
zero except for µ = r. This is why
we get Ar in Eq. 5.111.

pieces, we find

∂L
∂Ar

= ∂s

✓
∂L

∂(∂s Ar)

◆
this is Eq. 5.108

y

Eq. 5.111, Eq. 5.109, Eq. 5.110
2m2 Ar = �2∂s(∂

s Ar � ∂r As) . (5.112)
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The resulting equation

m2 Ar = �∂s(∂
s Ar � ∂r As)

⌘ �∂sFsr (5.113)

is known as the Proca equation and is the equation that we
need to describe massive gauge fields. If we want to describe a
massless gauge field, like the electromagnetic field, we use the
same equation without a mass term:

0 = ∂s(∂
s Ar � ∂r As)

⌘ ∂sFsr . (5.114)

This is the inhomogeneous Maxwell equation in the absence of
any external sources.

5.3.1 Meaning of the Proca and Maxwell Equations

It is certainly possible to construct some mechanical model
consisting of springs and rubber bands for which the corre-
sponding Lagrangian yields the Proca or Maxwell Lagrangian in
the continuum limit. However, such a model would necessarily
be quite complicated and involve many ad-hoc assumptions
that are hard to justify. Another way to approach the Maxwell
equations is by looking at their macroscopic manifestations.
But there are already many great books that discuss Maxwell’s
equations in the context of classical electrodynamics.5454 For example,

Daniel Fleisch. A student’s guide
to Maxwell’s equations. Cambridge
University Press, Cambridge,
UK New York, 2008. ISBN 978-
0521701471

For our purposes, the most important observation is that we are
not using the much simpler Lagrangian

L = ∂µ An∂µ An .

This Lagrangian describes an ordinary vector field, while the
Proca and Maxwell Lagrangians describe gauge fields.55 An55 Reminder: in some sense, gauge

fields are the bookkeepers for all
other fields. We discussed their role
in Section 3.9.

ordinary vector field is like four scalar fields at once, while a
gauge field has novel features that we will discuss below.



the behavior of free fields 217

It again makes sense to separate our field into a spacetime and
internal part:56 56 Reminder: only the basic building

blocks of all possible solutions look
like this. By using linear combi-
nations of these building blocks,
we can construct any physically
permitted gauge field structure. In
particular, we can construct config-
urations that do not have the same
vector structure everywhere.

Aµ(xµ) = eµ

internal structure

⇥ f (xµ)

spacetime structure

. (5.115)

As discussed in Section 3.2.1, eµ contains all information about
the vector structure of the field, while f (xµ) describes how the
field strength varies in space.

In short, the two key facts encoded in the Proca equation
(Eq. 5.113) are:57 57 We will derive this in Sec-

tion 5.3.2.

B The spacetime structure of massive gauge fields can be de-
scribed by plane waves f (xµ) = eikµxµ

, where the wave vector
kµ fulfills the dispersion relation kµkµ = m2.

B A massive gauge field has only three linearly independent po-
larizations. Two of them are orthogonal to the direction of
motion58, while the third one points in the direction of mo- 58 For a wave that travels in the z-

direction (~k = (0, 0, 1)T)), one valid
basis choice is

e1
µ ⌘

0

BB@

0
1
0
0

1

CCA , e2
µ ⌘

0

BB@

0
0
1
0

1

CCA .

tion and in the temporal direction59. We say that a massive

59

eL
µ =

0

BB@

pz
m
0
E
m
0

1

CCA .

gauge field excitation can either have a transverse polariza-
tion or a longitudinal polarization.

Similarly, the Maxwell equation (Eq. 5.114) tells us:60

60 We will derive this in Section 5.3.3

B The spacetime structure of massless gauge fields can be de-
scribed by plane waves f (xµ) = eikµxµ

, where the wave vector
kµ fulfills the dispersion relation kµkµ = 0.

B A massless gauge field has only two linearly independent
polarizations. For a specific field excitation that moves in the
z-direction, both are orthogonal to the direction of motion.61

61

e1
µ ⌘

0

BB@

0
1
0
0

1

CCA , e2
µ ⌘

0

BB@

0
0
1
0

1

CCA .

We say that a massless gauge field excitation can only have
transverse polarizations.

Let’s discuss how this comes about.
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5.3.2 Solutions of the Proca Equation

To develop some understanding of the structure of solutions
of the Proca equation (Eq. 5.113), we start by taking the four-
divergence on both sides:

m2 Ar = �∂sFsr
y

∂r

∂rm2 Ar = �∂r∂sFsr

y

m = const., ∂r∂s Fsr = 0
m2∂r Ar = 0 y

⇢⇢m2

∂r Ar = 0 y

∂0 A0 � ∂i Ai = 0 y

∂t A0 �r~A = 0 . (5.116)

This is known as the Lorenz condition. We used here that Fsr

is antisymmetric: Fsr = �Frs but ∂r∂s is symmetric: ∂r∂s =

+∂s∂r. Since we sum over r and s, we find6262 The fact that the sum over an
antisymmetric times a symmetric
object is always zero was already
discussed in Section 5.2.2.

∂r∂sFsr =
1
2

⇣
∂r∂sFsr + ∂r∂sFsr

⌘

y

Fsr = �Frs (see Eq. 3.103)

=
1
2

⇣
∂r∂sFsr � ∂r∂sFrs

⌘

y

renaming indices

=
1
2

⇣
∂r∂sFsr � ∂s∂rFsr

⌘

y

∂s∂r = ∂r∂s

=
1
2

⇣
∂r∂sFsr � ∂r∂sFsr

⌘

y

= 0 . (5.117)

To understand the Lorenz condition, we can imagine that the
arrows that the vector field ~A assigns to each location represent
the flux of a hypothetical substance. The divergence of a vector
field r~A at a specific point xµ tells us the total amount of flux
entering or leaving the point.
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Therefore, the Lorenz condition tells us that the time-evolution
of the zeroth component of Aµ is completely determined by this
influx or outflux. This implies that A0 is not an independent
dynamical variable. As soon as we know ~A, we can use the
Lorenz condition to determine A0.

What we’ve therefore discovered here is that a massive gauge
field has only three independent internal degrees of freedom.
Thus once again, we have an equation of motion that tells us
which internal structures of a given field are physical. In par-
ticular, there is always a close connection between A0 and the
remaining components, which is somewhat analogous to how
there is always a close connection between the upper two and
lower two components of a physical Dirac spinor.

In addition, we can use the Lorenz condition to simplify the
Proca equation (Eq. 5.113):

�m2 Ar = ∂s(∂
s Ar � ∂r As) this is Eq. 5.113y

∂sigma∂r = ∂r∂s

= ∂s∂s Ar � ∂r∂s As

y

∂s As = 0, Eq. 5.116
= ∂s∂s Ar . (5.118)

What this resulting equation tells us is that each component of
our four-vector field Ar must fulfill the Klein-Gordon equation
(Eq. 5.4).63 For example, for the r = 1 component, we have 63 For your convenience: the Klein-

Gordon equation (Eq. 5.4) reads

(∂µ∂µ + m2)f = 0�m2 Ar = ∂s∂s Ar this is Eq. 5.118y

r = 1
�m2 A1 = ∂s∂s A1

y

rearranging
0 = (∂s∂s + m2)A1 . (5.119)
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This is completely analogous to what we discovered for Dirac
spinors using the Dirac equation. Therefore, we can conclude
again that the spacetime structure of gauge fields can be de-
scribed by plane waves. Let’s make this a bit more concrete.

In Section 3.2.1, we already discussed that it makes sense to
decompose gauge fields as (Eq. 3.8)

Aµ(xµ) = eµ

internal structure

⇥ f (xµ)

spacetime structure

. (5.120)

If we put this ansatz into Eq. 5.118, we find

�m2 Ar = ∂s∂s Ar this is Eq. 5.118y

Eq. 5.120

�m2
⇣

er f (xµ)
⌘
= ∂s∂s

⇣
er f (xµ)

⌘

y

er 6= er(xµ)

er

⇣
� m2 f (xµ)

⌘
= er

⇣
∂s∂s f (xµ)

⌘
. (5.121)

This equation holds for any four-vector er and therefore, we can
write it without it:

�m2 f (xµ) = ∂s∂s f (xµ) . (5.122)

This is exactly the Klein-Gordon equation (Eq. 5.4) and therefore
we can conclude that the basic building blocks of the spacetime
part of our solutions are plane waves:

f (xµ) = eikµxµ
. (5.123)

If we plug the plane wave ansatz (Eq. 5.123) into Eq. 5.122, we
find

�m2 f (xµ) = ∂s∂s f (xµ) y

Eq. 5.123
�m2eikµxµ

= ∂s∂seikµxµ

y

∂seikµ xµ
= ikseikµ xµ

since ∂sxµ = d
µ
s

�m2eikµxµ
= i2kskseikµxµ

y

���eikµ xµ
, i2 = �1

m2 = ksks . (5.124)
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This is the dispersion relation for a massive gauge field. Here
we learn that plane waves indeed solve Eq. 5.122 as long as the
wave four-vector kµ fulfills the dispersion relation (Eq. 5.124).

In addition, we learn here that the only information the Proca
equation contains about the vector structure of our field Aµ

(i.e. how different components are related) is contained in the
Lorenz condition (Eq. 5.116). We can separate what the Proca
equation tells us about the vector structure by putting our
ansatz (Eq. 5.120) together with the explicit expression for a
plane wave (Eq. 5.123) into the Lorenz condition:

0 = ∂r Ar this is Eq. 5.116y

Eq. 5.120

0 = ∂r

⇣
er f (xµ)

⌘

y

Eq. 5.123

0 = ∂r

⇣
ereikµxµ

⌘

y
∂seikµ xµ

= ikseikµ xµ
since ∂sxµ = d

µ
s

0 = ierkreikµxµ

y

⇠⇠⇠ieikµ xµ

0 = erkr y

0 = e0k0 � e1k1 � e2k2 � e3k3 , (5.125)

where eµ denotes the component of a four-vector that describes
the vector structure of our basis solution and kµ denotes the
wave vector components. For concreteness, let’s assume that we
are dealing with a field excitation that travels in the z-direction.
This means in mathematical terms that the wave three-vector
reads~k = (0, 0, kz)T . Using the dispersion relation (Eq. 5.124),
we can calculate the corresponding wave four-vector:

m2 = kµkµ this is the dispersion relation (Eq. 5.124)y

= k2
0 �~k ·~k y

~k = (0, 0, kz)
T

= k2
0 � k2

z y

rearranging
k2

0 = m2 + k2
z y

k0 = w (angular frequency) and therefore k0 > 0

k0 =
q

m2 + k2
z . (5.126)
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Therefore, the wave four-vector for an excitation of a massive
gauge field that moves in the z-direction reads

kµ = (
q

m2 + k2
z, 0, 0, kz)

T . (5.127)

If we plug this explicit wave four-vector into the Lorenz condi-
tion (Eq. 5.125), we find

0 = e0k0 � e1k1 � e2k2 � e3k3 this is Eq. 5.125y

Eq. 5.127

= e0

q
m2 + k2

z � e10 � e20 � e3kz y

= e0

q
m2 + k2

z � e3kz . (5.128)

This implies that for a field excitation that travels in the z-
direction, the x-component and y-component of our four-vector
eµ are not restricted, while there is necessarily a close connec-
tion between the zeroth component, k0, and the third compo-
nent, k3. In physical terms, this means that there are in total
three linearly independent polarization structures of a massive
vector field.64 It is convenient to choose specific basic build-64 We discussed polarization in

Section 3.2.1. ing blocks to describe all possible polarizations. Since there are
no restrictions on polarizations in the x-direction and in the
y-direction, we can work with
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0
1
0
0

1

CCCA
, e2
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0
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. (5.129)

The remaining two naive building blocks65, however, are not65

e0
µ ⌘

0

BB@

i
0
0
0
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CCA , e3
µ ⌘

0

BB@

0
0
0
1

1

CCA

suitable for a massive, physical vector field since they do not
fulfill the condition in Eq. 5.128. Instead, a suitable third lin-
early independent polarization basis vector is

eL
µ =

0

BBBB@

kz
m
0
0p

m2+k2
z

m

1

CCCCA
, (5.130)

where 1
m is a normalization factor, which we can see as fol-

lows:6666 Thanks to the Minkowski metric
(Eq. 2.30), the other two polariza-
tion basis vectors also fulfill the
normalization condition eµeµ = �1.
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eL
µeLµ =

k2
z

m2 � (
p

m2 + k2
z)

2

m2 y

=
k2

z
m2 � (m2 + k2

z)
m2 y

=
�m2

m2 = �1 X (5.131)

Let’s check explicitly that the vector given in Eq. 5.130 indeed
fulfills the Lorenz condition (Eq. 5.128):

0 = e0

q
m2 + k2

z � e3kz this is Eq. 5.128y

Eq. 5.130

=
kz
m

q
m2 + k2

z �
p

m2 + k2
z

m
kz y

⇠⇠⇠⇠⇠kz
m

q
m2 + k2

z

= 0 X (5.132)

If the vector structure of a field Aµ can be described by eL
µ, we

say that the field is longitudinally polarized. The two remaining
polarization vectors (Eq. 5.129) describe transverse polarizations.

Take note that for a massive gauge field at rest, we have~k = (0, 0, 0)T .
If we repeat the calculation in Eq. 5.126 for this wave three-
vector, we find

m2 = kµkµ this is the dispersion relation (Eq. 5.124)y

= k2
0 �~k ·~k y

~k = (0, 0, 0)T

= k2
0 . (5.133)

This implies that the wave four-vector reads kµ = (m, 0, 0, 0)T . If
we plug this into the Lorenz condition (Eq. 5.125), we find

0 = e0k0 � e1k1 � e2k2 � e3k3 this is Eq. 5.125y

kµ = (m, 0, 0, 0)T

= e0m � e10 � e20 � e30 y

= e0m. (5.134)
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Therefore in this case e0 = 0 and we can use

e3
µ ⌘

0

BBB@

0
0
0
1

1

CCCA
(5.135)

as our third polarization vector.6767 The other two polarization vectors
(Eq. 5.129) can still be used since
there is still no restriction on them.

To summarize, we have learned that the Proca equation contains
two crucial pieces of information. Firstly, the spacetime struc-
ture of vector fields is described by plane waves. Secondly, there
are only three physical polarizations of a massive vector field.

In the next section, we will see that the analysis of the Maxwell
equation (Eq. 5.114), which describes massless gauge fields,
works quite similarly but is slightly more complicated.



the behavior of free fields 225

5.3.3 Solutions of the Maxwell Equation

First of all, take note that if we try to follow the same steps that
allowed us to understand the meaning of the Proca equation, we
will not get very far. If we calculate the four-divergence of the
Maxwell equation, we find

0 = �∂sFsr

y

∂r

0 = �∂r∂sFsr

y

∂r∂s Fsr = 0 (Eq. 5.117)
0 = 0 . (5.136)

While this is a true statement, it doesn’t tell us anything new.
In contrast, when we calculated the four-divergence of the
Proca equation, we discovered the Lorenz condition ∂µ Aµ = 0
(Eq. 5.116).

Therefore, the discussion of the physical content of the Maxwell
equation is a bit more subtle. The key observation is that all
transformations of a massless gauge field Aµ that is described
by the Maxwell equation:

Aµ(xµ) ! A0
µ(xµ) = Aµ(xµ) + ∂µh(xµ) , (5.137)

where h(xµ) is an ordinary function, leave everything we can
observe unchanged. This is known as gauge symmetry.68 In 68 Gauge symmetry is commonly

discussed in the context of classical
electrodynamics. You can find a
short summary in Appendix D.

words, it means that we can always add the gradient of any
(well-behaved) function ∂µh(xµ) to our field Aµ without chang-
ing anything.

We can see that the dynamics of a gauge field Aµ is invariant
under gauge transformations (Eq. 5.137) because the corre-
sponding Lagrangian remains unchanged:
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LMaxwell = �1
2

⇣
∂µ An∂µ An � ∂µ An∂n Aµ

⌘
Eq. 5.107 with m = 0

! L0
Maxwell = �1

2

⇣
∂µ A0n∂µ A0

n � ∂µ A0n∂n A0
µ

⌘
y

Eq. 5.137

= �1
2

⇣
∂µ(An + ∂nh)∂µ(An + ∂nh)� ∂µ(An + ∂nh)∂n(Aµ + ∂µh)

⌘

y

= �1
2

⇣
∂µ An∂µ An + ∂µ∂nh∂µ An + ∂µ An∂µ∂nh + ∂µ∂nh∂µ∂nh

� ∂µ An∂n Aµ � ∂µ∂nh∂n Aµ � ∂µ An∂n∂µh � ∂µ∂nh∂n∂µh
⌘

y

∂µ∂n = ∂n∂µ

= �1
2

⇣
∂µ An∂µ An + ∂µ∂nh∂µ An + ∂µ An∂µ∂nh + ∂µ∂nh∂µ∂nh

� ∂µ An∂n Aµ � ∂µ∂nh∂n Aµ � ∂µ An∂µ∂nh � ∂µ∂nh∂µ∂nh
⌘

y

⇠⇠⇠⇠⇠∂µ∂nh∂µ∂nh

= �1
2

⇣
∂µ An∂µ An � ∂µ An∂n Aµ

⌘
= LMaxwell X (5.138)

Take note that this only works if there is no mass term. To see
this, we calculate how a mass term changes under a gauge
transformation:

m2 Aµ Aµ !m2 A0
µ A0µ

y

Eq. 5.137

= m2
⇣
(Aµ + ∂µh)(Aµ + ∂µh)

⌘

y

= m2
⇣

Aµ Aµ + ∂µhAµ + Aµ∂µh + ∂µh∂µh
⌘

y

6= m2 Aµ Aµ . (5.139)

Therefore, gauge symmetry is a special feature of massless gauge
fields.

In summary, the defining feature of a massless gauge field is
that there are lots of different configurations that describe ex-
actly the same physical situation. If we’ve found (by solving
Maxwell’s equation (Eq. 5.114)) some field configuration Aµ(xµ)
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that describes the situation at hand perfectly, we can immedi-
ately write down further configurations

A0
µ(xµ) = Aµ(xµ) + ∂µh(xµ) (5.140)

that describe the situation equally well. For any function h(xµ)

we get a different configuration A0
µ. Since the Lagrangian is

completely unaffected by gauge transformations (Eq. 5.137),
each configuration that differs from the original one by the
gradient of a function h(xµ) describes the same situation. In the
rest of this section, we will discuss the physical implications of
this curious fact.69 69 As mentioned above, we will

talk about the origin and meaning
of gauge symmetry in the next
chapter because this discussion
requires some understanding of
how different fields interact with
each other. In this section, we only
explore the immediate implications.

In the previous section, we discovered the Lorenz condition
∂µ Aµ = 0 (Eq. 5.125) and used it to simplify the Proca equation.
Moreover, we’ve learned above that for a massless gauge field
the Lorenz condition is no longer mandatory (Eq. 5.136).

However, we can use the freedom to transform our gauge field
Aµ to make sure that we’re only working with configurations
for which ∂µ Aµ = 0. Formulated differently, we can use the
gauge symmetry to impose the Lorenz condition.

Here’s how and why this works. As discussed above, all gauge
field configurations that are related by a gauge transformation
describe the same situation. Thus we can imagine that there
are equivalence classes related to each physical situation. The
members within an equivalence class are connected by a gauge
transformation. Each Aµ from a given equivalence class de-
scribes the situation perfectly well. But to describe the situation
one member from each equivalence class is already sufficient.
Thus, we can always pick the member for which our description
becomes particularly simple.
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This is analogous to how we can always choose a coordinate
system such that our description becomes simpler. For example,
for a rotationally symmetric system it usually makes sense to
use spherical coordinates instead of Cartesian coordinates.

Motivated by our discussion in the previous section, we can
thus try to pick a member from each equivalence class that
fulfills the Lorenz condition. The configuration Aµ we start with
will, in general, not fulfill the Lorenz condition (∂µ Aµ 6= 0).
However, we can then use a gauge transformation (Eq. 5.137) to
find another member from the same equivalence class

A0
µ = Aµ(xµ) + ∂µh(xµ) (5.141)

that fulfills it:

0 !
= ∂µ A0µ

y

Eq. 5.141
= ∂µ(Aµ + ∂µh) y

= ∂µ Aµ + ∂µ∂µh y

�∂µ Aµ = ∂µ∂µh . (5.142)

Since Aµ is a known configuration that we start with, this is an
equation that we need to solve for h(xµ). If we find a solution
hs(xµ), we can immediately write down a gauge field configura-
tion:

Ãµ(xµ) = Aµ(xµ) + ∂µhs(xµ) (5.143)
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that describes the situation at hand perfectly and, additionally,
fulfills the Lorenz condition ∂µ Ãµ = 0.

Now here’s the cool thing. In practice, we don’t have to actually
solve Eq. 5.142. All we need to know is that it is mathematically
possible to find a gauge function hs(xµ) that allows us to calcu-
late gauge field configurations that fulfill the Lorenz condition.
Using this knowledge, we can simply choose to work only with
configurations that fulfill the Lorenz condition:70 70 This is really analogous to how

we can choose one specific coor-
dinate system for the system we
want to describe. However, here
we choose a coordinate system that
allows us to label gauge field con-
figurations instead of a coordinate
system that allows us to label space-
time points. Take note, however,
that there is still some gauge free-
dom even after we choose to work
with configurations that fulfill the
Lorenz condition. This is discussed
in Appendix D.1.

∂µ Aµ = 0 . (5.144)

While for a massive gauge field this was a mandatory require-
ment, for a massless gauge field the Lorenz condition is merely
a convenient gauge choice. We say that by choosing to only
work with configurations that fulfill the Lorenz condition, we
choose to work in the Lorenz gauge. Analogously, we can also
make different gauge choices. For example, it is also possible to
only work with configurations that fulfill the condition A0 = 0
or A3 = 0. These choices are known as the temporal gauge and
axial gauge respectively. But for now, let’s stick to the Lorenz
gauge.71 71 Just as it doesn’t matter for the

actual physics that we want to
describe which coordinate system
we pick, it doesn’t matter which
gauge we choose. Thus, we will
discuss the physical implications of
the Maxwell equation by using one
specific gauge choice. The physical
conclusions we derive this way are
valid for all gauge choices.

If we choose to work in the Lorenz gauge, the Maxwell equation
simplifies to

0 = ∂s(∂
s Ar � ∂r As) this is Eq. 5.114y

∂s∂r = ∂r∂s

= ∂s∂s Ar � ∂r∂s As

y

∂µ Aµ = 0 (Eq. 5.144)
= ∂s∂s Ar . (5.145)

We learn here that each component Ar has to fulfill the Klein-
Gordon equation without a mass term. This implies that we can
describe the spatial part of solutions of the Maxwell equation
using plane waves for which the wave vectors kµ fulfill the
dispersion relation:72 72 For the Proca equation we found

that each component Ar has to
fulfill the Klein-Gordon equation
with mass term. Therefore, the
corresponding solutions were plane
waves with dispersion relation
kµkµ = m2 (Eq. 5.40).

kµkµ = 0 . (5.146)

Let’s show this in more explicit terms by using once more the
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ansatz

Aµ(xµ) = eµ

internal structure

⇥ f (xµ)

spacetime structure

. (5.147)

that decouples the internal degrees of freedom from the space-
time degrees of freedom. Moreover, since Eq. 5.145 tells us
that each component of a massless gauge field has to fulfill the
Klein-Gordon equation, we know that the spacetime part of our
solutions can be described by plane waves

f (xµ) = eikµxµ
. (5.148)

Plugging the ansatz with a plane wave spacetime structure into
the Maxwell equation in the Lorenz gauge (Eq. 5.145) yields

0 = ∂s∂s Ar this is Eq. 5.145y

ansatz Eq. 5.147, Eq. 5.148

= ∂s∂s
⇣

ereikµxµ
⌘

y

er 6= er(xµ), ∂seikµ xµ
= ikseikµ xµ

= i2ksksereikµxµ
. (5.149)

Therefore, our ansatz indeed solves the Maxwell equation as
long as the dispersion relation (Eq. 5.146) is fulfilled.

Next, let’s talk about the internal degrees of freedom of a mass-
less gauge field.

For concreteness, we assume that we are dealing with a field
excitation that moves in the z-direction. In mathematical terms,
this implies that the wave three-vector~k = (0, 0, kz)T . Using the
dispersion relation, we can calculate the corresponding wave
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four-vector:

0 = kµkµ this is the dispersion relation (Eq. 5.146)y

= k2
0 �~k ·~k y

~k = (0, 0, kz)
T

= k2
0 � k2

z y

rearranging
k2

0 = k2
z y

k0 = w (angular frequency) and therefore k0 > 0
k0 = kz (5.150)

Therefore, the wave four-vector for an excitation of a massless
gauge field that moves in the z-direction reads kµ = (kz, 0, 0, kz)T .
Let’s plug this explicit wave four-vector into the Lorenz condi-
tion:

0 = e0k0 � e1k1 � e2k2 � e3k3 this is the Lorenz condition (Eq. 5.125)y

kµ = (kz, 0, 0, kz)
T

= e0kz � e10 � e20 � e3kz y
= e0kz � e3kz . (5.151)

We can conclude that transverse polarizations (Eq. 5.129) are
again permitted since there are no restrictions on e1 and e2.73 73 Reminder: transverse polariza-

tions are described by (Eq. 5.129)

e1
µ ⌘

0

BB@

0
1
0
0

1

CCA , e2
µ ⌘

0

BB@

0
0
1
0

1

CCA .

Moreover, recall that the relation that we discovered in the pre-
vious section for a massive gauge field (Eq. 5.128) told us that
longitudinal polarizations (Eq. 5.130) are equally possible.74

74 Reminder: a longitudinal polar-
ization of a massive gauge field
is described by the four-vector
(Eq. 5.130):

eL
µ =

0

BBB@

kz
m
0p

m2+k2
z

m
0

1

CCCA
,

What about longitudinal polarizations of a massless gauge
field? The relation in Eq. 5.151 seems to suggest that an analo-
gous construction might be possible.

In particular, the condition in Eq. 5.151 is fulfilled by a third
linearly-independent four-vector:

eL
µ =

0

BBB@

1
0
1
0

1

CCCA
(5.152)

as we can check:

0 = e0kz � e3kz this is Eq. 5.151y

e0 = 1, e3 = 1 (Eq. 5.152)
= 1kz � 1kz = 0 X (5.153)
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However, all field configurations that are proportional to eL
µ

live in the same equivalence class as the trivial configuration
Aµ = 0.75 To see this, we start with a field configuration of the

75 Take note that this follows not
just for an excitation that moves in
the z-direction but in general. No
matter how we choose kµ, the third
linearly-independent polarization
vector for a massless gauge field
is always proportional to kµ. And
this implies that all configurations
that are proportional to it are gauge
transformations of Aµ = 0.

form
AL

µ = eL
µeikµxµ

(5.154)

and use a gauge transformation with gauge function h = i
kz

eikµxµ
:

AL
µ !AL

µ + ∂µh

y

Eq. 5.154 and h =
i

kz
eikµ xµ

= eL
µeikµxµ

+ ∂µ
i

kz
eikµxµ

y

∂µeikµ xµ
= ikµeikµ xµ

= eL
µeikµxµ

+
i2

kz
kµeikµxµ

y

Eq. 5.152, kµ = (kz, 0, 0, kz)
T

=

0

BBB@

1
0
1
0

1

CCCA
eikµxµ � 1

kz

0

BBB@

kz

0
kz

0

1

CCCA
eikµxµ

y

�kz,

=

0

BBB@

1
0
1
0

1

CCCA
eikµxµ �

0

BBB@

1
0
1
0

1

CCCA
eikµxµ

=

0

BBB@

0
0
0
0

1

CCCA
X (5.155)

This works for any configuration that is proportional to eL
µ and

therefore, for a massless gauge field all possible configurations
with longitudinal polarization are physically equivalent to the
trivial configuration Aµ = 0. This, in turn, implies that all non-
trivial excitations are transversally polarized.7676 Another argument against longi-

tudinally polarized massless gauge
fields is that the corresponding
polarization vector eL

µ (Eq. 5.130) is
not normalizable since:

eL
µ(e

L)µ = 12 � 12 = 0 .

We can therefore conclude that a massless gauge field has only
two physical polarizations (Eq. 5.129). This is in contrast to a
completely general four-vector field which has four possible
polarizations. The fact that we can choose to work with config-
urations that fulfill the Lorenz condition (∂µ Aµ = 0, Eq. 5.144)
implies that there are only three linearly-independent configura-
tions. Moreover, we have just learned that only two of them are
realizable in physically nontrivial field configurations.
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Finally, let’s write down solutions of the Maxwell and Proca
equation in more general terms.

5.3.4 General Solution of the Proca and Maxwell equa-
tion

Since the Maxwell equation (Eq. 5.114) and the Proca equation
(Eq. 5.113) are both linear in Aµ we can construct new solutions
by using linear combinations of known solutions. To be as gen-
eral as possible we write down a "sum" over all possible plane
waves and all possible polarizations. In addition, as discussed
in Section 5.1.4, we restrict ourselves to a sum over physically
permitted configurations and only consider real gauge fields
here:77 77 Analogous to what we discussed

in Section 5.1.4, our restriction to
real fields implies that the coeffi-
cients ar

k , ar†
k in front of the e�ikµ xµ

and eikµ xµ
terms are related by

complex conjugation.

Aµ(x) =
N

Â
r=0

Z d3 p
(2p)3

1p
2k0

⇣
er

µar(~k)e�ikµxµ
+ er

µar†(~k)eikµxµ
⌘

,

(5.156)
where N denotes the number of polarizations and the index r
labels different polarization basis vectors.78 78 Take note that Eq. 5.156 repre-

sents the Fourier decomposition of
a general wave excitation in terms
of plane waves.

Dancing alone gets boring after a while. So let’s see how we can
pair fields up and make them dance together.
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Interacting Classical Fields

There are three important types of interactions in fundamental
physics:1 1 As in the previous chapters, it

might make sense to have another
look at the roadmap on 35 to
understand the context of this final
chapter of the first part of this book.

B self-interactions,

B Yukawa interactions, which describe how scalar fields interact
with spinor fields, and

B gauge interactions, which describe how gauge fields interact
with spinor fields and scalar fields.2 2 Reminder: a gauge field is a

special type of vector field that is
either described by the Maxwell
equation or by the Proca equation
depending on whether it’s massless
or massive.

This is summarized by the following diagram:3

3 Take note that self interactions
only take place for a special type of
gauge field known as non-abelian
gauge fields. For the most famous
gauge field, the electromagnetic
field, no self-interactions are pos-
sible. The mathematical reason for
this is that the corresponding gauge
group (U(1)) is abelian which im-
plies that there is no self-interaction
term in the Lagrangian.

Gauge Field

selfinteractions
⌥⌥

hh

gauge interactions
((

66

gauge interactions
vv

Spinor Field oo Yukawa interactions // Scalar Field

self interactions

YY

In this chapter, we will discuss these different kinds of inter-
actions in a purely classical context.4 In the second part of the

4 The discussion in this chapter is
inspired by a paper titled "Solving
Classical Field Equations" by Robert
C. Helling.

book, we will discuss them again but in a quantum context.
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6.1 Green’s Functions

Before we talk about the various kinds of interactions, I want
to tell you about an extremely useful mathematical idea that
we need all the time when we want describe how fields interact
with each other.

To illustrate the method, we will restrict ourselves to scalar
fields and the Klein-Gordon equation.5 When the scalar field5 Reminder: the Klein-Gordon

equation (Eq. 5.4) reads

(∂µ∂µ + m2)f = 0
in question interacts with other fields or with itself, there are
additional terms in the Lagrangian, V(f), that describe these
interactions:

L =
1
2
(∂µf∂µf � m2f2) + V(f) , (6.1)

If we put this modified Lagrangian into the Euler-Lagrange
equation (Eq. 4.25), we find a slightly modified Klein-Gordon
equation:6

6 Here we use that conventional
interaction terms only involve the
field f but not its derivatives ∂µf.

0 =
∂L
∂f

� ∂µ

✓
∂L

∂(∂µf)

◆

y

Eq. 5.2

=
∂

∂f

✓
1
2
(∂µf∂µf � m2f2) + V(f)

◆

� ∂µ

✓
∂

∂(∂µf)

✓
1
2
(∂µf∂µf � m2f2) + V(f)

◆◆

y

∂xx2 = 2x

= �m2f +
∂V(f)

∂f
� ∂µ (∂

µf)

y

V0(f) ⌘ ∂V(f)
∂f

(definition)

V0(f) =
⇣

∂µ∂µ � m2
⌘

f . (6.2)

In general, for different interaction terms V1(f), V2(f), . . . we
will find different solutions f1, f2, . . .. A key observation is that
if f1 is a solution of the equation involving V0

1:

V0
1 =

⇣
∂µ∂µ + m2

⌘
f1 (6.3)
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and f2 is a solution for the equation involving V0
2

V0
2 =

⇣
∂µ∂µ + m2

⌘
f2 , (6.4)

we know immediately that f12 = f1 + f2 is a solution for the
equation with V0

1 + V0
2 on the right-hand side:

V0
1 + V0

2 =
⇣

∂µ∂µ + m2
⌘

f12 y

f12 = f1 + f2

V0
1 + V0

2 =
⇣

∂µ∂µ + m2
⌘
(f1 + f2) y

V0
1 + V0

2 =
⇣

∂µ∂µ + m2
⌘

f1 +
⇣

∂µ∂µ + m2
⌘

f2 y
Eq. 6.3, Eq. 6.4

V0
1 + V0

2 = V0
1 + V0

2 X (6.5)

Therefore, it might be possible to find basic building blocks
that all solutions consist of. This is possible if we can somehow
decompose all functions that appear on the right-hand side in
Eq. 6.2 in terms of "fundamental" functions:

V0(f) = Â
i

civi(f) , (6.6)

where ci are numbers that encode how much each elementary
function vi(f) contributes to the sum. If such a decomposition
is possible and we can solve the equations with these elemen-
tary functions on the left-hand side:

vi =
⇣

∂µ∂µ + m2
⌘

fi , (6.7)

we can write any solution in the form

f = Â
i

cifi . (6.8)

6.1.1 Delta Decomposition

One possible decomposition is in terms of Dirac delta distribu-
tions:

V0
⇣

f(xµ)
⌘
=
Z

d4yV0
⇣

f(yµ)
⌘

d(xµ � yµ) . (6.9)

In this decomposition d(xµ � yµ) represents our "fundamental
functions", analogous to vi in Eq. 6.6. Take note that instead of a
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discrete index i, here we use a continuous parameter yµ to label
these basic building blocks. We get a different delta distribution
for each yµ. This implies that we need to use an integral instead

of a sum and that we get a function V0
⇣

f(yµ)
⌘

instead of a
discrete set of coefficients ci.

Although any mathematician will frown at the following com-
ment, here’s an intuitive way to think about this formula. The
delta distribution d(xµ � yµ) represents, in some sense, an in-
finitely narrow peak that is localized at yµ. Moreover, we can
imagine that any function can be decomposed in terms of sharp
peaks.

In mathematical terms this means that we multiply d(xµ � yµ)

by the required height of the peak at yµ, V0
⇣

f(yµ)
⌘

, and then
sum over all possible locations yµ to get the total function

V0
⇣

f(xµ)
⌘

. In this sense, we can imagine that the delta distribu-
tions d(xµ � yµ) at different locations yµ represent the "atoms"
or basic building blocks of all functions.

With this in mind, let’s recall why we are interested in a decom-
position of V0

⇣
f(xµ)

⌘
. The main idea discussed above is that if

we want to construct general solutions fg using basis solutions
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fs, we first need to solve the equation in question with the basis
building blocks d(xµ � yµ) on the left-hand side:7 7 This is analogous to Eq. 6.7. In

particular, take note that these
special solutions fs are labeled by
an "index" yµ analogously to how
the special solutions fi in Eq. 6.7
are labeled by an index i.

d(xµ � yµ) =
⇣

∂µ∂µ + m2
⌘

fs(xµ, yµ) , (6.10)

As soon as we’ve found the solutions fs(xµ, yµ), we know im-
mediately that the solution of the equation

V0(fg) =
⇣

∂µ∂µ + m2
⌘

fg , (6.11)

where V0 can now be any interaction term, is given by8 8 We can compare this to Eq. 6.8,
which I recite here for convenience:

f = Â
i

cifi .fg(xµ) =
Z

d4y V0
⇣

fg(yµ)
⌘

fs(xµ, yµ) . (6.12)

The argument of the "coefficient function" V0
⇣

fg(yµ)
⌘

has to
be the same as the argument of the interaction term on the left-
hand side. This follows from the decomposition in Eq. 6.9 and
because the coefficients in Eq. 6.6 and Eq. 6.8 have to be exactly
equal. An even better argument, of course, is that this expres-
sion is only a solution if V0

⇣
fg(yµ)

⌘
appears in the integral in-

stead of, say, V0
⇣

fs(yµ)
⌘

. This can be confusing at first because
the solution we are looking for, fg(xµ), appears on both sides
here and thus it is not immediately clear how we can evaluate
the right-hand side if we don’t know fg(xµ) yet.

We can check explicitly that Eq. 6.12 solves Eq. 6.11:

V0
⇣

fg(xµ)
⌘
=
⇣

∂µ∂µ + m2
⌘

fg(xµ) y

Eq. 6.12

=
⇣

∂µ∂µ + m2
⌘ Z

dyµ V0
⇣

fg(yµ)
⌘

fs(xµ, yµ)

y

∂µV0
⇣

f(yµ)
⌘
= V0

⇣
f(yµ)

⌘
∂µ

=
Z

d4y V0
⇣

fg(yµ)
⌘ ⇣

∂µ∂µ + m2
⌘

fs(xµ, yµ) y

Eq. 6.10

=
Z

d4y V0
⇣

fg(yµ)
⌘

d(xµ � yµ)

y Z
dy f (y)d(x � y) = f (x)

= V0
⇣

fg(xµ)
⌘

X (6.13)

Before we can discuss in the following section using a concrete
example why the solution in Eq. 6.12 is useful although fg(xµ)

appears on the right-hand side too, we need to talk about the
special solutions fs(xµ, yµ) in a bit more detail.
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6.1.2 Green’s Function of the Klein-Gordon Equation

To determine the special solutions fs(xµ, yµ) we need to solve
Eq. 6.10. As you probably know, solving equations is an art.
Therefore, we will not focus on mathematical details and in-
stead imagine that an experienced mathematician hands us the
correct solution:

fs(xµ, yµ) =
Z d4k

(2p)4
e�ikµ(xµ�yµ)

�kµkµ + m2 (6.14)

This is known as the Green’s function of the Klein-Gordon
equation. First of all, let’s check if Eq. 6.14 indeed solves Eq. 6.10:

d(xµ � yµ) =
⇣

∂µ∂µ + m2
⌘

fs this is Eq. 6.10

y

Eq. 6.14

=
⇣

∂µ∂µ + m2
⌘ Z d4k

(2p)4
e�ikµ(xµ�yµ)

�kµkµ + m2

y

∂µ ⌘ ∂

∂xµ

=
Z d4k

(2p)4

⇣
∂µ∂µ + m2

⌘ e�ikµ(xµ�yµ)

�kµkµ + m2 y

∂2
xe�ikx = �k2e�ikx

=
Z d4k

(2p)4

⇣
�kµkµ + m2

⌘ e�ikµ(xµ�yµ)

�kµkµ + m2 y

⇠⇠⇠⇠⇠⇠⇣
�kµkµ + m2

⌘

=
Z d4k

(2p)4 e�ikµ(xµ�yµ)

y

= d(xµ � yµ) X (6.15)

In the final step we used that
R d4k

(2p)4 e�ikµ(xµ�yµ) is an integral
representation of the delta distribution d(xµ � yµ). This can be
understood as follows. The delta distribution d(xµ � yµ) rep-
resents an infinitely thin wave packet. We’ve already learned
that wave packets consist of plane waves, e�ikµ(xµ�yµ). Thus, the
formula here tells us that to create a delta wave packet, we need
contributions from all possible plane waves with equal mag-
nitude. In general, the thinner a wave packet, the more plane
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waves must contribute. The delta wave packet is an extreme
case since it is infinitely thin and thus a superposition of all pos-
sible plane waves is necessary to describe it. We can understand
this by looking again at wave packets in wave number space:

Let’s try to understand what our special solutions fs(xµ, yµ)

describe in physical terms.9 The defining property of the special 9 Plural, because technically yµ

labels different special solutions.solutions is that they solve the equation (Eq. 6.10)

d(xµ � yµ) =
⇣

∂µ∂µ + m2
⌘

fs(xµ, yµ) . (6.16)

This equation describes a scalar field that is almost free. The
only thing that disturbs it is a sharp peek at yµ. This is what the
delta distribution d(xµ � yµ) on the left-hand side describes.

The fundamental solution fs(xµ, yµ) therefore encodes how the
field value of a scalar field at xµ is affected by a disturbance that
is sharply localized at yµ.
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This is extremely useful because we can decompose any dis-
turbance in terms of sharp peaks (Eq. 6.9).10 Using the special10 Reminder: Eq. 6.9 reads

V0
⇣

f(xµ)
⌘
=

Z
d4yV0

⇣
f(yµ)

⌘
d(xµ � yµ) .

solutions fs(xµ, yµ) we can then immediately calculate how
each isolated disturbance affects the field at xµ.

If we then sum over yµ, we find the contributions from all possi-
ble isolated disturbances and this yields the final disturbed field
value at xµ (Eq. 6.12):

fg(xµ) =
Z

d4y V0
⇣

fg(yµ)
⌘

fs(xµ, yµ) , (6.17)

where V0
⇣

fg(yµ)
⌘

describes the amplitude of the disturbance at
yµ.

Next, we try to understand the impact of a single completely
localized disturbance in more explicit terms. For simplicity, we



interacting classical fields 243

assume that the disturbance is time-independent and restrict
ourselves to one spatial dimension. This means, we are now
interested in the solutions to the equation11 11 This equation has the same

structure as Eq. 6.10 and we use
it here to understand the general
features of its solutions. We use the
notation x0 instead of y to make
clear that we mean another location
on the x axis.

d(x � x0) =
⇣
�∂2

x + m2
⌘

fs(x, x0) . (6.18)

The solutions reads12

12 This is completely analogous to
the four-dimensional solution in
Eq. 6.14. Moreover, you can verify
that this is indeed a solution by
plugging it into Eq. 6.18.

fs(x, x0) =
Z dk

2p

e�ik(x�x0)

�k2 + m2 . (6.19)

To understand the physical content of this solution, we need to
solve the integral. This, however, is only possible with lots of
mathematical machinery and thus we will simply assume that
someone hands us the solution:

fs(x, x0) =
e�mr

4pr
, (6.20)

where r ⌘ |x � x0| =
p
(x � x0)2. This function is sometimes

called a Yukawa potential.

As discussed above, a fundamental solution fs(x, x0) encodes
the impact of an isolated disturbance localized at x0 on the field
value at x. We can see here, that the impact is quite large if x is
close to the location of the disturbance, x0, and small if x is far
away from x0.
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In addition, we can see that the parameter m determines how
quickly the impact of a disturbance dies off. For small values of
m, the disturbance affects field values significantly even if they
are far away. In the extreme case where m = 0, the impact of the
disturbance is noticeable across large distances. In contrast, the
function in Eq. 6.20 dies off almost immediately for large values
of m.

In summary, we learn that m encodes how far the "signal" that
there is a disturbance at some location can travel.

With this in mind, we can understand the general solution in
Eq. 6.12, which I recite here for convenience,

fg(xµ) =
Z

d4y V0
⇣

fg(yµ)
⌘

fs(xµ, yµ) . (6.21)

from a slightly different perspective. In words, it tells us that
we modulate the disturbance V0

⇣
fg(yµ)

⌘
at a specific location

yµ by a damping factor fs(xµ, yµ). This damping factor takes
into account that the impact of a disturbance gets smaller if it
is far away from the location xµ we evaluate the field at. The
total disturbed solution fg(xµ) is the "sum" (integral) over these
modulated disturbances.

In the following section, we will discuss in more explicit terms
how the special solutions fs(xµ, yµ) help us to describe how
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fields interact. But first, let’s recap what we’ve learned so far in
a bit more general terms.

6.1.3 Summary

A common situation in physics is that we are dealing with a
homogeneous equation

D f (x) = 0 (6.22)

where D is some derivative operator like, for example, D ⌘ ∂2
x

or D ⌘ ∂2
x + m2. In field theory, homogeneous equations de-

scribe free fields. Moreover, we often want to calculate the solu-
tions of the corresponding inhomogeneous equation

D fg(x) = h(x) . (6.23)

In field theory, inhomogeneous equations describe how fields
behave when they interact with other fields or with themselves.
The idea that we talked about in this section is that we can
construct solutions to this inhomogeneous equation, no mat-
ter which term appears on the right-hand side, by using the
solutions fs(x, y) to the special inhomogeneous equation

D fs(x, y) = d(x � y) . (6.24)

In general, the solutions to an inhomogeneous equation with a
delta distribution on the right-hand side are known as Green’s
functions.13 13 Mathematicians sometimes call

Green’s functions "fundamental
solutions".

With the Green’s functions for a specific equation at hand, we
can immediately write down the solution for the inhomoge-
neous equation (Eq. 6.23) with any specific inhomogeneity h(x)
on the right-hand side:

fg(x) =
Z

dy h(y) fs(x, y) . (6.25)

In the following section, we use the ideas discussed above to
describe field interactions.
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6.2 Self-Interactions

In Section 5.1.2, we discussed the possibility if adding higher-
order terms to the Klein-Gordon Lagrangian. We introduced the
Lagrangian density (Eq. 5.37):1414 Reminder: the original Klein-

Gordon Lagrangian density
(Eq. 5.2) reads:

L =
1
2
(∂µf∂µf � m2f2) .

Note that if we consider self-
interactions it is conventional to
call the parameter in front of the
quadratic term µ2 instead of m2.

L =
1
2

∂µf∂µf � 1
2

µ2f2 +
1
4!

lf4 . (6.26)

It is conventional to call the additional f4 term a self-interaction
term. In this section, we will understand why.

Before we can use what we’ve learned in the previous section,
we have to compare the Lagrangian density in Eq. 6.26 with
the more general density we discussed in the previous section
(Eq. 6.1).15 This comparison tells us that here V(f) = 1

4! lf4.15 For your convenience: Eq. 6.1
reads

Lint =
1
2
(∂µf∂µf � m2f2) + V(f)

Therefore, the modified Klein-Gordon equation for a system
described by the Lagrangian in Eq. 6.26 reads

⇣
∂µ∂µ + µ2

⌘
f =

∂V(f)
∂f

this is Eq. 6.2

y

V(f) =
1
4!

lf4

=
∂( 1

4! lf4)

∂f y ∂

∂x
x4 = 4x3

=
4
4!

lf3

y 4
4!

=
4

4 · 3 · 2 · 1
=

1
3!

=
1
3!

lf3 ⌘ V0(f) . (6.27)

With this result at hand, we can use the formulas that we’ve
discussed in the previous section.

In particular, we can use Eq. 6.12 to immediately write down a
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solution to this modified Klein-Gordon equation:

f(xµ) =
Z

d4y V0
⇣

f(yµ)
⌘

fs(xµ, yµ) this is Eq. 6.12

y

V0(f) ⌘ 1
3!

lf3 (Eq. 6.27)

=
Z

d4y
1
3!

lf3(yµ)fs(xµ, yµ) , (6.28)

where fs(xµ, yµ) is the Green’s function of the Klein-Gordon
equation (Eq. 6.14).16 16 Reminder: Eq. 6.14 reads

fs(xµ, yµ) =
Z d4k

(2p)4
e�ikµ(xµ�yµ)

�kµkµ + m2A problematic aspect of this solution is that f(xµ), the function
that we want to determine, appears on the right-hand side too.
Thus we need another smart idea to make use of it.

Let’s try a perturbation ansatz for f:

f(xµ) = Â
n

lnfn(xµ) = l0f0(xµ) + l1f1(xµ) + l2f2(xµ) + . . .

y

l0 = 1
= f0(xµ) + lf1(xµ) + l2f2(xµ) + . . . ,

(6.29)

where l is the coupling parameter that also appears in the in-
teraction term V(f) = 1

4! lf4. This ansatz is motivated by the
observation that the parameter l encodes the impact of the ad-
ditional term (the "perturbation") in the equation of motion.
In particular, for l = 0 there is no additional term. Moreover,
the solution of the modified Klein-Gordon equation will cer-
tainly depend on l. What we do in Eq. 6.29 is to expand the
quite complicated solution of the modified Klein-Gordon equa-
tion around the known free solution f0. If we can ignore the
interaction term, we work with f0. If we want to include the
interaction term but don’t care much about details, we addition-
ally include lf1. If we care more about details, we additionally
include lf2.17 17 This, of course, only works if

l is a small parameter (l < 1).
Otherwise, higher order terms in
the contribution are more important
than lower order terms and the
ansatz becomes useless.
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To understand how this works, we plug the perturbation ansatz
into the modified Klein-Gordon equation (Eq. 6.27):1818 We use here that (a + b)3 =

a3 + 3a2b + 3ab2 + b3

⇣
∂µ∂µ + µ2

⌘
f =

1
3!

lf3

y

Eq. 6.29⇣
∂µ∂µ + µ2

⌘ ⇣
f0 + lf1 + . . .

⌘
=

1
3!

l
⇣

f0 + lf1 + . . .
⌘3

y

⇣
∂µ∂µ + µ2

⌘ ⇣
f0 + lf1 + . . .

⌘
=

1
3!

l
⇣

f3
0 + 3lf2

0f1 + 3l2f0f2
1 + l3f3

1 + . . .
⌘

y

⇣
∂µ∂µ + µ2

⌘ ⇣
f0 + lf1 + . . .

⌘
=

1
3!

lf3
0 +

1
2

l2f2
0f1 +

1
2

l3f0f2
1 +

1
3!

l4f3
1 + . . .

⌘
. (6.30)

This is useful because the terms involving different powers of l

must be equal and thus we find

⇣
∂µ∂µ + µ2

⌘
f0 = 0 all terms without l

⇣
∂µ∂µ + µ2

⌘
f1 =

1
3!

f3
0 all terms µ l1

⇣
∂µ∂µ + µ2

⌘
f2 =

1
2

f2
0f1 all terms µ l2

... (6.31)

This suggests that we can determine the terms in the perturba-
tive expansion (Eq. 6.29) iteratively. Once we know f0, we can
determine f1. Once we know f1, we can determine f2 and so
on. Moreover, the equation for f0 is simply the Klein-Gordon
equation. Thus f0 is given by the free solution that we dis-
cussed in Section 5.1.3.

To determine the higher order terms iteratively, we plug the
ansatz into Eq. 6.28:
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f(xµ) =
Z

d4y
1
3!

lf3(yµ)fs(xµ, yµ)
y

Eq. 6.29

f0 + lf1 + l2f2 + . . . =
Z

d4y
1
3!

l
⇣

f0 + l1f1 + . . .
⌘3

fs

y

=
Z

d4y
1
3!

⇣
lf3

0 + 3l2f2
0f1 + 3l3f0f2

1 + l4f3
1 + . . .

⌘
fs ,

(6.32)

where we again sorted the terms on the right-hand side by
powers in l. By comparing the left-hand side with the right-
hand side we can conclude

f1 =
1
3!

Z
d4y f3

0fs

f2 =
3
3!

Z
d4y f2

0f1fs =
1
2!

Z
d4y f2

0f1fs

... (6.33)

Thus, as promised, we can determine all terms in the perturba-
tion series (Eq. 6.29) iteratively.

Let’s try to understand a bit more systematically what we’ve
discovered here. Our goal is to determine the "shape" of the
scalar field f by calculating its field value f(xµ) at all possible
locations xµ. At lowest order, we use the unperturbed solution,
f ⇡ f0.

Higher order terms in our expansion (Eq. 6.29) describe that
this solution is modified f ⇡ f0 + lf1 + lf2 as a result of the
interaction term.

For example, the first correction term reads (Eq. 6.33)19 19 For clarity, I’ve again included the
arguments of the various fields.

f1(xµ) =
1
3!

Z
d4y f3

0(yµ)fs(xµ, yµ) . (6.34)

One way interpret this first non-trivial modification of the free
solution is shown in the following illustration.
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In words, we can describe it as follows. The free field solu-
tion f0 depends on how we prepare the system. For example,
we can imagine that we only excite the scalar field within a
small region. Mathematically, this means that f0 is a small wave
packet. The factor f3

0(yµ) in the integrand then describes the
contributions coming from this wave packet interacting with
itself at yµ. The second factor in the integrand, fs(xµ, yµ), de-
scribes how the contributions coming from these points in the
wave packet influence the field values at xµ.

Since a field spreads out all over space, we need to sum over all
possible locations yµ from which a contribution is possible.

The second term reads (Eq. 6.33)

f2(xµ) =
1
2

Z
d4y f2

0(yµ)f1(yµ)fs(xµ, yµ)

y

Eq. 6.34

=
1
2

Z
d4y f2

0(yµ)

 
1
3!

Z
d4y0 f3

0(y
0
µ)fs(yµ, y0µ)

!
fs(xµ, yµ)

y

rearranging

=
1

12

Z
d4y

Z
d4y0 f2

0(yµ)f
3
0(y

0
µ)fs(yµ, y0µ)fs(xµ, yµ) . (6.35)

We can interpret this term analogously to the first correction
term. The factor f3

0(y
0
µ) describes the contributions from the

field values of the wave packet interacting three times with
itself at y0µ. Similarly, the factor f2

0(yµ) describes the contri-
butions from the wave packet interacting twice with itself at
yµ. In addition, we take into account how the field structure
at yµ is affected by the field interaction at y0µ. This is described
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by fs(yµ, y0µ). As before, since our field spreads out over all of
spacetime, we integrate over all possible locations y0µ for which
a contribution is possible.

Lastly, we take into account how the modified field values at
yµ affect the field configuration at xµ. This is what fs(xµ, yµ)

describes. And again, we need to integrate over yµ to take con-
tributions from all possible spacetime points into account.

You might not find these interpretations of the different terms
in our perturbation series very enlightening. But the message
to take away is simply that we can again decompose our now
quite complicated field structure in terms of plane waves. The
different terms in the perturbation series (Eq. 6.29) take more
and more and more ways into account how different plane wave
structures can affect each other.
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This is why we call a term like l
4! f

4 in the Lagrangian an inter-
action term. Or, to be a bit more precise, since there is only one
field we call l

4! f
4 a self -interaction term.

Next, let’s finally talk about how different fields interact with
each other.
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6.3 Yukawa Interactions

If we want to take into account fields other than scalar fields, we
need to include additional terms in the Lagrangian. For exam-
ple, if we want to consider one scalar field and one spinor field,
we simply add the two corresponding Lagrangian densities:

Lscalar+spinor = Lfree scalar + Lfree spinor y
Eq. 5.2, Eq. 5.54

=
1
2
(∂f)2 �

m2
f

2
f2 + iȳgµ∂µy � m2

yȳy , (6.36)

where mf is the mass parameter associated with the scalar field
f and my is the mass parameter associated with the spinor field
y. This Lagrangian describes two completely independent free
fields and, therefore, we can learn nothing new here. In the real
world, however, scalar fields interact with spinor fields, and this
is where things become interesting. Mathematically, this implies
that we need to include at least one additional term in the La-
grangian which describes this interaction. The simplest term we
can come up with that couples a spinor field to a scalar field is
ȳyf since a product of the form ȳy describe the scalar product
of two spinors.20 Therefore, the total Lagrangian density now

20 The Lagrangian is mathematically
a scalar. Therefore, all terms we
can write down in the Lagrangian
must be scalar too. This implies, for
example, that a term of the form
yf is not allowed since we need
to multiply a spinor y by another
spinor, ȳ ⌘ y†g0, to get a scalar.

reads

Lscalar+spinor+interaction = Lfree scalar + Lfree spinor + LYukawa y

Eq. 5.2, Eq. 5.54

=
1
2
(∂f)2 �

m2
f

2
f2 + iȳgµ∂µy � m2

yȳy + gȳyf ,

(6.37)

where the interaction term ȳyf is called a Yukawa term and
the parameter g encodes how strongly y and f are coupled.
Moreover, we say ȳyf describes Yukawa interactions.

If we now want to explore the implications of this additional
term, we can use all the technology introduced in the previous
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sections. On the one hand, we can use the Green’s function of
the Klein-Gordon equation (Eq. 6.14) to investigate how the in-
teraction term affects the scalar field f. On the other hand, we
can use the Green’s function of the Dirac equation to under-
stand how the interaction affects the spinor field y.

Since we haven’t talked about the Green’s function of the Dirac
equation yet, let’s start by discussing the implications for the
scalar field.
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6.3.1 Scalar Field in the Presence of Yukawa Interac-
tions

The interaction term we are now interested in reads V(f) = gȳyf.
Therefore, the modified Klein-Gordon equation now reads:21 21 We find this equation of motion

by plugging the Lagrangian in
Eq. 6.37 into the Euler-Lagrange
equation (Eq. 4.25). However, all the
terms that only involve the spinor
field y, yield no additional terms
and thus we can simply plug V into
Eq. 6.2.

⇣
∂µ∂µ + m2

⌘
f =

∂V
∂f

this is Eq. 6.2

y

V(f) = gȳyf

=
∂(gȳyf)

∂f y
= gȳy . (6.38)

Moreover, we can again use Eq. 6.12 to (formally) write down
the solution to this modified Klein-Gordon equation:

f(xµ) =
Z

d4y V0
⇣

f(yµ)
⌘

fs(xµ, yµ) this is Eq. 6.12

y

V0(f) ⌘ ∂V
∂f

= gȳy (Eq. 6.38)

=
Z

d4y gȳy fs(xµ, yµ) , (6.39)

where fs(xµ, yµ) is the Green’s function of the Klein-Gordon
equation (Eq. 6.14).22 22 Reminder: Eq. 6.14 reads

fs(xµ, yµ) =
Z d4k

(2p)4
e�ikµ(xµ�yµ)

�kµkµ + m2As in Section 6.2, the next step is to make the ansatz (Eq. 6.29)

f(xµ) = f0(xµ) + gf1(xµ) + g2f2(xµ) + . . .

y(xµ) = y0(xµ) + gy1(xµ) + g2y2(xµ) + . . . , (6.40)

where f0(xµ) is a solution of the free Klein-Gordon equation
and the remaining terms (f1, f2, . . .) describe how it is modified
through interactions. Analogously, y0(xµ) is a solution to the
free Dirac equation and (y1, y2, . . .) describe corrections that
we will discuss in the following sections in more detail. We can
determine the correction terms f1, f2, . . . iteratively
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f =
Z

d4y gȳy fs this is Eq. 6.39

y
Eq. 6.29

f0 + gf1 + g2f2 + . . . =
Z

d4y g
⇣

ȳ0 + gȳ1 + . . .
⌘⇣

y0 + gy1 + . . .
⌘

fs

y

=
Z

d4y g
⇣

ȳ0y0 + gȳ1y0 + gȳ0y1 + g2ȳ1y1 + . . .
⌘

fs

y

=
Z

d4y
⇣

gȳ0y0 + g2ȳ1y0 + g2ȳ0y1 + g3ȳ1y1 + . . .
⌘

fs (6.41)

Comparing coefficients, we find

f1(xµ) =
Z

d4y ȳ0(yµ)y0(yµ)fs(xµ, yµ) all terms µ g

f2(xµ) =
Z

d4y
⇣

ȳ1(yµ)y0(yµ) + ȳ0(yµ)y1(yµ)
⌘

fs(xµ, yµ) all terms µ g2

... (6.42)

We can now interpret the first correction term f1 that appears as
a result of the Yukawa term analogously to how we interpreted
the self-interaction corrections.

The factor ȳ0y0 describes the product of the free spinor wave
packets. We evaluate the value of this product at the location yµ

and the damping factor fs(xµ, yµ) tells us how it affects the field
value of f at the location xµ.
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Moreover, we integrate over all possible locations yµ to take
the impact of the field structure of y0 and ȳ0 everywhere into
account.

Before we can interpret the second correction term, we need to
talk about the correction y1 to the free spinor field solution y0.

6.3.2 Green’s Function of the Dirac Equation

If we want to understand how interaction terms affect spinor
fields, we need to solve the modified Dirac equation. We can
derive a modified Dirac equation by considering the Dirac La-
grangian density (Eq. 5.54) plus an interaction term:

L = ȳ(igµ∂µ � m)y + V(y, ȳ) . (6.43)

We assume here that the interaction term depends on y, ȳ but
not on their derivatives. If we plug this Lagrangian density into
the Euler-Lagrange equation (Eq. 4.25), we find23

23 The steps here are analogous
to what we did in Eq. 5.63. In
particular, recall that we treat ȳ and
y as independent fields.

∂L
∂Ȳ

= ∂µ

✓
∂L

∂(∂µȲ)

◆

y

Eq. 6.43

∂
⇣

ȳ(igµ∂µ � m)y + V(y, ȳ)
⌘

∂Ȳ
= ∂µ

0

B@
∂
⇣

ȳ(igµ∂µ � m)y + V(y, ȳ)
⌘

∂(∂µȲ)

1

CA

y

(igµ∂µ � m)y +
∂V(y, ȳ)

∂ȳ
= 0

y ∂V(y, ȳ)
∂ȳ

⌘ V0(y, ȳ)

(igµ∂µ � m)y = �V0(y, ȳ) . (6.44)

This is the modified Dirac equation that we need to solve if we
want to take interactions into account.

Analogous to what we did in Section 6.1.2 for the modified
Klein-Gordon equation, the key idea is to look for fundamental
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solutions ys. The defining property of these fundamental solu-
tions is that they solve the modified Dirac equation with a delta
distribution on the right-hand side. However, there is a subtlety.
The Dirac equation is an equation that determines the behavior
of a spinor y. Therefore, the interaction term on the right-hand
side of the equation, �V0(y, ȳ), will be a spinor too. This is
necessarily the case because otherwise we would be comparing
apples to oranges. In more mathematical terms, we can say that
both sides of the modified Dirac equation carry a spinor index
a:

(igµ∂µ � m)ya = �V0a(y, ȳ) , (6.45)

The index reminds us that we are dealing with four-component
objects. Therefore, the decomposition of the interaction V0a(y, ȳ)

now reads2424 This formula is analogous to
Eq. 6.12.

ya
g(xµ) =

Z
d4y y

ab
s (xµ, yµ)V0b

⇣
y(yµ), ȳ(yµ))

⌘
, (6.46)

where y
ab
s (xµ, yµ) is now a matrix that encodes how each com-

ponent of the spinorial object V0b
⇣

y(yµ), ȳ(yµ)) affects the
components of the Dirac spinor ya

g(xµ). In other words, in-
stead of a single basis solution we now need a basis solution
for each spinor component. The object we are now looking for,
y

ab
s (xµ, yµ), contains the basis solutions for all four components.

Thus the defining equation reads

(igµ∂µ � m)asy
sb
s = �d(xµ � yµ)d

ab , (6.47)

where dab is the (4 ⇥ 4) unit matrix.25 In words, this means that25 Recall that gµ denotes (4 ⇥ 4)
matrices (Eq. 5.56). Moreover, there
is an implicit unit matrix behind
m. This is why (igµ∂µ � m) carries
spinor indices. In addition, it has
one spinor index in common with
ys since we are dealing with a
matrix product.

we perturb each spinor component with a delta peak.

We will again simply assume that someone hands us the correct
solution ys to the Dirac equation with the delta distribution on
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the right-hand side:

y
ab
s (xµ, yµ) =

Z d4k
(2p)4 e�ikn(xn�yn)

(�krgr + m)ab

�klkl + m2 .

(6.48)

This is the fundamental solution or Green’s function of the
Dirac equation. In physical terms, this Green’s function repre-
sents again a damping factor that encodes how the impact of a
completely localized perturbation becomes smaller as we move
farther away from it.

Let’s check that it indeed solves Eq. 6.47:

�d(xµ � yµ)d
ab = (igµ∂µ � m)asy

sb
s this is Eq. 6.47y

Eq. 6.48

= (igµ∂µ � m)as
Z d4k

(2p)4 e�ikn(xn�yn)
(�krgr + m)sb

�klkl + m2

y

∂µ ⌘ ∂

∂xµ

=
Z d4k

(2p)4 (igµ∂µ � m)ase�ikn(xn�yn)
(�krgr + m)sb

�klkl + m2 y

∂xeikx = ikeikx

=
Z d4k

(2p)4 (igµ(ikµ)� m)ase�ikn(xn�yn)
(�krgr + m)sb

�klkl + m2 y

i2 = �1

=
Z d4k

(2p)4 e�ikn(xn�yn)
(�gµkµ � m)as(�krgr + m)sb

�klkl + m2

(6.49)

The final puzzle piece here is that we need to evaluate the prod-
uct:26

26 r and µ are dummy indices
that we can rename freely and
xµyµ = xµyµ = yµxµ. Therefore,
mkrgr = mgµkµ
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(�gµkµ � m)as(�krgr + m)sb

= (gµ)askµkr(g
r)sb + mdaskr(g

r)sb � (gµ)askµmdsb � mdasmdsb

y (gµ)asdsb = (gµ)ab,
dasdsb = dab

= (gµ)askµkr(g
r)sb + mkr(g

r)ab � (gµ)abkµm � m2dab
y

⇠⇠⇠⇠
(gµ)abkµm

= kµkr(g
µ)as(gr)sb � m2dab

y

kµkrgµgr = kµkµ (Eq. 5.80)
= (kµkµ � m2)dab . (6.50)

If we plug this back into Eq. 6.49, we find

�d(xµ � yµ)d
ab =

Z d4k
(2p)4 e�ikn(xn�yn)

(�gµkµ � m)as(�krgr + m)sb

�ksks + m2 this is Eq. 6.49

y

Eq. 6.50

=
Z d4k

(2p)4 e�ikn(xn�yn)
(kµkµ � m2)dab

�ksks + m2 y

⇠⇠⇠⇠kµkµ � m2

= �
Z d4k

(2p)4 e�ikn(xn�yn)dab

y Z d4k
(2p)4 e�ikn(xn�yn)

⌘ d(xµ � yµ)

= �d(xµ � yµ)d
ab X (6.51)

Now that we have some confidence in the validity of the fun-
damental solution in Eq. 6.48, we can evaluate the impact of
Yukawa interactions on a spinor field.

6.3.3 Spinor Field in the Presence of Yukawa Interac-
tions

To unclutter the notation, we will suppress all spinor indices in this
section. Just keep in mind that ys is a matrix.
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We start by making a perturbative ansatz (Eq. 6.40)

f(xµ) = f0(xµ) + gf1(xµ) + g2f2(xµ) + . . .

y(xµ) = y0(xµ) + gy1(xµ) + g2y2(xµ) + . . . , (6.52)

where, as before, f0(xµ) is a solution of the free Klein-Gordon
equation and y0(xµ) is a solution of the free Dirac equation.27 If 27 For y0(xµ) this follows when we

plug the ansatz into the modified
Dirac equation (Eq. 6.44). For
f0(xµ) we saw this explicitly in
Eq. 6.30 and Eq. 6.31.

we plug this into our general formula (Eq. 6.46) and use that we
consider a Yukawa interaction term (Eq. 6.37),

V = gȳyf

∂V
∂ȳ

=
∂(gȳyf)

∂ȳ
= gyf ⌘ V0(f, f̄) , (6.53)

we find

yg =
Z

d4y ysV0
⇣

y, ȳ)
⌘

y

Eq. 6.53

yg =
Z

d4y ys gyf

y

Eq. 6.52

y0 + gy1 + g2y2 . . . =
Z

d4y ys g
⇣
(y0 + gy1 + . . .)(f0 + gf1 + . . .)

⌘

y

=
Z

d4y ys g
⇣

y0f0 + gy1f0 + y0gf1 + g2y1f1 + . . .
⌘

y

=
Z

d4y ys

⇣
gy0f0 + g2y1f0 + g2y0f1 + g3y1f1 + . . .

⌘
.

(6.54)

Comparing coefficients yields

y1(xµ) =
Z

d4y ys(xµ, yµ) y0(yµ)f0(yµ) all terms µ g

y2(xµ) =
Z

d4y ys(xµ, yµ)
⇣

y1(yµ)f0(yµ) + y0(yµ)f1(yµ)
⌘

all terms µ g2

... (6.55)

We can interpret these correction terms as being analogous to
the correction terms in the previous section. The first correction
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term y1(xµ) takes into account how the scalar wave packet
f0(yµ) and spinor wave packet y0(yµ) overlap. To that end, we
calculate the product y0f0, evaluate it at yµ and then use the
Green’s function ys(xµ, yµ) to find out how it affects the spinor
field at xµ. As usual, we take contributions from all possible
locations into account by integrating over yµ.

To interpret the second correction term, we rewrite it using the
explicit form of y1 and f1:28

28 We have here three different
integrals and therefore three inde-
pendent integration variables yµ, y0µ,
y00µ .

y2(xµ) =
Z

d4y ys(xµ, yµ)
⇣

y1(yµ)f0(yµ) + y0(yµ)f1(yµ)
⌘

y

Eq. 6.42, Eq. 6.55

=
Z

d4y ys(xµ, yµ)

 ⇣ Z
d4y0 y0(y0µ)f0(y0µ)ys(yµ, y0µ)

⌘
f0(yµ)

+ y0(yµ)
⇣ Z

d4y00 ȳ0(y00µ)y0(y00µ)fs(yµ, y00µ)
⌘!

(6.56)

Instead of using lots of words, let me simply refer you to the
following two illustrations.2929 Analogously, you can now also

interpret the second correction term
f2 in Eq. 6.42 using the solution in
Eq. 6.55.
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So far, we’ve discussed how a scalar field interacts with itself
and how scalar and spinor fields interact with each other. Next,
we will discuss how gauge fields enter the picture.
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6.4 Gauge Interactions

For simplicity, we will restrict our discussion in this chapter to mass-
less gauge fields.

For most practical purposes it’s completely sufficient to only
know the following recipe:3030 We discussed in Section 3.9 that

gauge fields are bookkeepers that
keep track of local conventions.
Moreover, when we calculate a
derivative we necessarily compare
a function’s values at two different
locations. This follows from the
definition of a derivative in terms
of a difference quotient. Therefore,
we need to include the bookkeeper
Aµ to make sure the difference in
the function’s values is not only a
result of differently chosen local
coordinate systems. In mathemat-
ical terms, this implies that we
need to replace the derivative ∂µ by
the covariant derivative ∂µ � ieAµ

(Eq. 3.92).

1. Take the Lagrangian that describes a free scalar field (Eq. 5.2)
or alternatively, the Lagrangian that describes a free spinor
field (Eq. 5.54).

2. Replace the derivative ∂µ by the covariant derivative31

31 In short, we do this to make sure
that our equations remain valid no
matter which coordinate system
we use for the field space above
each spacetime point. The gauge
field Aµ is a bookkeeper that makes
sure that our description stays
consistent. In the third step, we
then promote the bookkeeper to an
independent physical field. This is
the hallmark of a gauge theory.

Dµ = ∂µ � ieAµ , (6.57)

where e is a parameter that describes the coupling strength.

3. Add the Lagrangian that describes a free gauge field LMaxwell
(Eq. 5.107 with m = 0).

The resulting Lagrangian describes perfectly how a gauge field
interacts with other fields.

As an example, let’s consider the interactions between a sin-
gle spinor field y and a gauge field Aµ. Following the recipe
outlined above, we start by writing down the free Lagrangian
density for the spinor fields (Eq. 5.54):

LDirac = ȳ(igµ∂µ � m)y . (6.58)

We then replace the derivative ∂µ with the covariant derivative
Dµ:

LDirac+gauge interaction = ȳ(igµDµ � m)y y

Eq. 6.57

= ȳ
⇣

igµ(∂µ � ieAµ)� m
⌘

y

y

= ȳ
⇣

igµ∂µ + egµ Aµ � m
⌘

y . (6.59)
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Lastly, we add the free gauge field Lagrangian (Eq. 5.107 with
m = 0):

LDirac+gauge interaction+Maxwell = ȳ
⇣

igµ∂µ + egµ Aµ � m
⌘

y

� 1
2
(∂µ An∂µ An � ∂µ An∂n Aµ) .

(6.60)

This is one of the most famous and most successful Lagrangians
in all of physics. It describes correctly how the electromagnetic
field Aµ interacts with a spinor field y like, for example, the
electron field.

Completely analogously, we can write down the Lagrangian
that describes how a gauge field interacts with a scalar field

LKlein-Gordon+gauge interaction+Maxwell =
1
2
(DµfDµf � m2f2)

� 1
2
(∂µ An∂µ An � ∂µ An∂n Aµ) .

(6.61)

Equipped with these Lagrangians, we can proceed exactly as in
the previous sections. By plugging the Lagrangian in Eq. 6.60
into the Euler-Lagrange equation for Aµ, we find the modified
Maxwell equation:32 32 The steps here are analogous to

what we did at the beginning of
Section 5.1. The only additional
term that contributes to the equa-
tion of motion is the interaction
term V(Aµ) = eȳgµ Aµy since

∂y
∂Aµ

= 0.

∂µ(∂
µ An � ∂n Aµ) = eȳgny ⌘ Jn . (6.62)

This is the Maxwell equation in the presence of an external
source Jn ⌘ V0n ⌘ ∂V

∂An
.33

33 It’s conventional in this context
to use the symbol J instead of
V0, which is what we used in the
previous section for self-interactions
and Yukawa interactions.

Similarly, if we plug Eq. 6.60 into the Euler-Lagrange equation
for ȳ, we find the equation that describes how a spinor field
behaves in the presence of a gauge field Aµ:34

34 The steps here are analogous
to what we did in Eq. 6.44. The
only difference is that we are now
dealing with a different interaction
term eȳgµ Aµy.

(igµ∂µ � m)y = �egµ Aµy ⌘ V0 . (6.63)

The only missing puzzle piece that we need before we can start
our perturbative analysis once again is the Green’s function of
the Maxwell equation.
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6.4.1 Green’s Function of the Maxwell Equation

The Green’s function of the Maxwell equation is defined as the
solution to the equation

∂s(∂
s Arl

s � ∂r Asl
s ) = d(xµ � yµ)h

rl . (6.64)

In words, this means that we need to find a solution to the
modified Maxwell equation (Eq. 6.62) in the presence of a
"delta"-source. As for the Dirac equation, the Green’s function
here, Arl

s , is a matrix. This follows because the Maxwell equa-
tion is an equation that encodes the behavior of a four-vector
field. Thus, we need a Green’s function for each component
of this four-vector field. On the right-hand side we have the
Minkowski metric hrl since this is the appropriate "unit matrix"
in Minkowski space.

Once we’ve found the matrix that contains these Green’s func-
tions, we can write the general solution of the modified Maxwell
equation as

An(xµ) =
Z

d4y Anz
s (xµ, yµ)Jz

⇣
y(yµ), ȳ(yµ)

⌘
. (6.65)

We will see below that Anz
s (xµ, yµ) µ hnz , which is exactly

what we need to properly raise the index of Jz such that we
have the same index on the left-hand and right-hand side of
the equation: hnz Jz = Jn (Eq. 2.34). This is another way to
understand why we included the Minkowski metric on the
right-hand side in Eq. 6.64. If instead we would search for a
solution to Eq. 6.64 with hrl replaced by the unit matrix drl,
we would find Ãnz

s (xµ, yµ) µ dnz . But this object is not what we
need in the expansion in Eq. 6.65.

As in the previous sections, we will assume that someone hands
us the correct Green’s functions

Anz
s (xµ, yµ) =

Z d4k
(2p)4

e�ikµ(xµ�yµ)

�kµkµ hnz . (6.66)

Let’s verify that it indeed solves the defining equation (Eq. 6.64).
For simplicity, we will restrict ourselves to configurations that
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fulfill the Lorenz condition (Eq. 5.144) ∂µ Aµ = 0. This is pos-
sible without loss of generality thanks to the gauge freedom in
Aµ.35. The modified Maxwell equation (Eq. 6.62) in the Lorenz 35 This was discussed in Sec-

tion 5.3.3.gauge reads

Jn = ∂µ(∂
µ An � ∂n Aµ) y

∂µ Aµ = 0
= ∂µ∂µ An . (6.67)

Therefore, the defining equation for the matrix Anz
s (Eq. 6.64)

simplifies to
∂s(∂

s Arl
s ) = d(xµ � yµ)h

rl . (6.68)

With this simplified formula at hand, let’s verify that the pro-
posed matrix in Eq. 6.66 indeed solves it:

d(xµ � yµ)h
rl = ∂s∂s Arl

s y

Eq. 6.66

= ∂s∂s
Z d4k

(2p)4
e�ikµ(xµ�yµ)

�kµkµ hrl

y

∂s∂s ⌘ ∂

∂xµ

∂

∂xµ

=
Z d4k

(2p)4 ∂s∂s e�ikµ(xµ�yµ)

�kµkµ hrl

y

∂2
xeikx = �k2eikx

= �
Z d4k

(2p)4 ksks e�ikµ(xµ�yµ)

�kµkµ hrl

y

⇠⇠⇠�ksks

=
Z d4k

(2p)4 e�ikµ(xµ�yµ)hrl

y Z d4k
(2p)4 e�ikµ(xµ�yµ) ⌘ d(xµ � yµ)

= d(xµ � yµ)h
rl X (6.69)

Next, we want to understand the physical meaning of Eq. 6.66.
We can use it, for example, to evaluate how a gauge field is
affected by a static and completely localized source:36 36 These assumptions are analogous

to what we discussed in Sec-
tion 6.1.2 for the Green’s function of
the Klein-Gordon equation.

Jµ(xµ) =

0

BBB@

qd(~x �~a)
0
0
0

1

CCCA
. (6.70)

The delta distribution d(~x �~a) indicates that our source q is
localized at ~x =~a.
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If we plug this into the general solution of the modified Maxwell
equation (Eq. 6.65), we find

An(xµ) =
Z

d4y Anz
s Jz(yµ) y

J1 = J2 = J3 = 0 (Eq. 6.70)

=
Z

d4y An0
s J0(yµ) y

J0 = q (Eq. 6.70)

=
Z

d4y An0
s qd(~y �~a) . (6.71)

By looking at the explicit form of As (Eq. 6.66), we can see that
all components An0

s vanish except for n = 0. This follows be-
cause Aµn

s µ hµn and hµn = 0 except for µ = h.37 Therefore,37 Reminder: the Minkowski metric
reads (Eq. 2.30):

hµn =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA .

we can focus on the 00-component, A00
s , which describes how a

source affects the zeroth component of the four-vector field Aµ.
Moreover, for simplicity, we will restrict ourselves to one spatial
dimension:

A00
s (x, x0) =

Z dk
2p

e�ik(x�x0)

�k2 h00 this is Eq. 6.66 in 1D with nz = 00y

h00 = 1 (Eq. 2.30)

=
Z dk

2p

e�ik(x�x0)

�k2 . (6.72)

This is exactly the Green’s function of the Klein-Gordon equa-
tion (Eq. 6.19) with m set to zero!38

38 Reminder: Eq. 6.19 reads

fs(x, x0) =
Z dk

2p

e�ik(x�x0)

�k2 + m2 .

Moreover, take note that if we
start with the Proca Lagrangian
(Eq. 5.107) instead of with the
Maxwell Lagrangian, we find
exactly the Green’s function of the
Klein-Gordon equation here.

Therefore, if we carry out the integration, we analogously find

A00
s (x, x0) =

1
4pr

this is Eq. 6.20 with m = 0 (6.73)

where r ⌘ |x � x0| =
p
(x � x0)2. This is the Coulomb potential

of a point charge q which is located at a.3939 It is instructive to compare the
Coulomb potential to the Yukawa
potential (Eq. 6.20):

fs(x, x0) =
e�mr

4pr
.

The Yukawa potential becomes
the Coulomb potential in the limit
m ! 0. For non-zero values of
m, the damping in the Yukawa
potential is much stronger than in
the Coulomb potential as a result of
the additional exponential factor.

Analogous to what we did in the previous sections, we could
now make a perturbative ansatz for the gauge field Aµ and then
evaluate in more explicit terms how it interacts with a spinor
field or a scalar field. However, there isn’t really anything new
to be learned here. The main lesson is again that we can under-
stand the structure of a gauge field in the presence of a scalar or
spinor field in terms of overlapping free solutions that happen
at specific isolated locations. To determine the overall structure



interacting classical fields 269

of the gauge field we can then integrate over all possible loca-
tions. Since we’ve discussed the main ideas twice already in the
context of spinor fields and scalar fields, we will not discuss any
further details here.

We’ve now reached the point beyond which we can no longer
ignore that Nature at fundamental scales behaves quite differ-
ently from what we are used to from our everyday experiences.
Therefore, we move on to next part of the book in which we dis-
cuss the modifications that are necessary if we want to describe
fields in a quantum context.
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7

Quantum Mechanics

Our main goal in this part of the book is to discuss quantum
fields. However, we will start by talking about quantum me-
chanics because it makes sense to discuss the main features
of quantum theories in this simpler context first. Of course,
a full discussion of quantum mechanics requires more than a
few pages. Thus we will focus solely on those aspects that are
relevant for quantum field theory.1 Most paragraphs in the 1 If you’re already familiar with

quantum mechanics, feel free to
skip this chapter. Moreover, if you
know nothing about quantum
mechanics yet, it probably makes
sense if you pick up a dedicated
quantum mechanics textbook after
finishing this book.

following sections are excerpts from my book "No-Nonsense
Quantum Mechanics"2.

2 Jakob Schwichtenberg. No-
Nonsense Quantum Mechanics. No-
Nonsense Books, Karlsruhe, Ger-
many, 2018c. ISBN 978-1719838719

7.1 The Quantum Formalism

In the standard formulation of quantum mechanics, we intro-
duce an abstract object |Yi that describes the system in ques-
tion.3 In addition, we introduced quantum operators that we 3 In mathematical terms, |Yi is a

vector in a Hilbert space.can use to extract information about the system. For example,
if we want to know the momentum of a system, we use the
momentum operator p̂:

p̂ |Y1i = p1 |Y1i . (7.1)
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However, we often do not get such a simple answer. Instead,
if we measure the momentum of equally prepared systems,
we could possibly end up with different results. Each possible
result occurs with a certain probability. In our quantum frame-
work, we describe such a situation using a linear combination
such as

|Yi = a |Y1i+ b |Y2i+ . . . , (7.2)

where |Y1i is a state with momentum p1, |Y2i is the state with
momentum p2. The coefficients a and b are directly related
to the probability of measuring p1 and p2, respectively. For
example, |a|2 is the probability of measuring the value p1.

We can understand Eq. 7.2 as the expansion of a general state
|Yi in terms of states with definite momenta. These states with
definite momenta are commonly called momentum eigenstates.

The expansion is analogous to how we can expand an arbitrary
vector in terms of basis vectors,

~ex =

0

B@
1
0
0

1

CA , ~ey =

0

B@
0
1
0

1

CA , ~ez =

0

B@
0
0
1

1

CA . (7.3)

For example,

~v =

0

B@
1
3
5

1

CA = 1~ex + 3~ey + 5~ez = 1

0

B@
1
0
0

1

CA+ 3

0

B@
0
1
0

1

CA+ 5

0

B@
0
0
1

1

CA . (7.4)

An important task in quantum mechanics is to calculate the
expectation value for a given observable and system.4 The basic4 If you’re unfamiliar with expec-

tation values, you can find a short
discussion in Appendix F.1.

idea is that we "sandwich" the corresponding operator between
a ket |Yi and a bra hY|:

hY| ⌘ |Yi† = (|Yi?)T . (7.5)

For example, the momentum expectation value reads

hY| p̂ |Yi .
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A bra together with a ket denotes the scalar product between
two abstract vectors. This is analogous to h~v1|~v2i ⌘ ~v1 · ~v2.
Here we have h~v1| ⌘ ~vT

1 ("row times column"). But in quantum
mechanics we deal with complex vectors and therefore have
hY|1 ⌘ |Y1i† = |Y1i⇤T . In addition, we can calculate the
probability of measuring one specific value. All we have to do is
multiply the ket which describes our system by the bra which
describes the system in a state with this particular value. For
example, the probability of measuring p1 is | hY1|Yi |2 .

This procedure is analogous to how we can determine how
much a given vector spreads out, say, in the z-direction. All we
have to do is multiply the vector by the z-basis vector ~ez:

~ez ·~v = ~eT
z~v =

⇣
0 0 1

⌘
0

B@
1
3
5

1

CA = 5 .

We can make the analogy even more explicit by using the nota-
tion from Eq. (7.4):

~ez ·~v = ~ez ·
�
1~ex + 3~ey + 5~ez

�

y

= 1~ez ·~ex + 3~ez ·~ey + 5~ez ·~ez y

~ez ·~ex = 0, ~ez ·~ez = 1
= 1 ⇥ 0 + 3 ⇥ 0 + 5 ⇥ 1 = 5 . (7.6)

Two additional ingredients that we need in our quantum frame-
work is an explicit form of the quantum operators like p̂ and an
equation that describes how states evolve in time. This is what
we will talk about next.

One puzzle piece that allows us to understand quantum oper-
ators a little better is Noether’s theorem which we discussed
already in Section 4.3.5 5 There are, in fact, two famous

theorems by Emmy Noether that
are relevant in this context. The one
I’m talking about is her first one
that deals with global symmetries.
Her second one is about local
symmetries.

The second piece we need is how symmetries are described
mathematically.
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You are probably wondering what all this has to do with quan-
tum mechanics. As we will see in the next section, actually, a
lot! The mathematical ideas in the next section are exactly what
we need to find the explicit form of quantum operators. Most
importantly, this explicit form allows us to derive the famous
canonical commutation relation, and the Schrödinger equation.

7.1.1 Group Theory

The role and description of symmetries in physics is a huge
topic.6 So there is no way we can cover all the details. However,6 In fact, I’ve written a whole book

on exactly this topic:

Jakob Schwichtenberg. Physics
from Symmetry. Springer, Cham,
Switzerland, 2018b. ISBN 978-
3319666303

I will try to emphasize the basic ideas that are necessary to
understand quantum mechanics.

First of all: what is a symmetry?

Imagine a friend stands in front of you and holds an object in
her hands. Then you close your eyes and she performs a trans-
formation of the object (e.g. a rotation). Then you open your
eyes again. If you can’t tell if your friend changed anything at
all, the transformation she performed is a symmetry of the ob-
ject. For example, if she holds a perfectly round, single-colored
ball in her hands, any rotation is a symmetry of the ball. In con-
trast, if she holds a box in her hand, only very specific rotations
are symmetries of the box. Doing nothing is always a symmetry.

The bottom line is:

A symmetry is a transformation that

leaves the object in question unchanged.

The part of mathematics which deals with symmetries is called
group theory. A group is a set of transformations which fulfill
special rules plus an operation that tells us how to combine the
transformations. The rules are known as group axioms and we
can motivate them by investigating an intuitive symmetry like
rotational symmetry. We will not discuss details like this since
we don’t need them for what follows.
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Also, we only need one special part of group theory, namely
the part that deals with continuous symmetries. An example of
a continuous symmetry is the one I just mentioned: rotations
of a ball. Rotations are continuous because we can label them
with a continuous parameter: the angle of rotation. In contrast,
there are also discrete symmetries. The most famous examples
are mirror symmetries.

There is one property that makes continuous symmetries espe-
cially nice to deal with: they have elements which are arbitrarily
close to the identity transformation.7 7 The identity transformation is

the transformation that changes
nothing at all. For example, for ro-
tations, the identity transformation
is a rotation by 0�.

For example, think about the symmetries of a circle. Any ro-
tation about the origin is a symmetry of a circle. Therefore, a
rotation extremely close to the identity transformation, say a
rotation by 0.000001�, is a symmetry of the circle.

In contrast, an arbitrary group has, in general, no element close
to the identity.

For example, think about the symmetries of a square. The set
of transformations that leaves a square invariant comprises four
rotations: a rotation by 0�, 90�, 180� and 270�, plus some mirror
symmetries. But a rotation by 0.000001� is not a symmetry.

Mathematically, we write an element g close to the identity I as:

g(e) = I + eG , (7.7)

where e is a really, really small number and G is an object,
called a generator, that we will talk about in a moment. In the
smallest possible case, such transformations are called infinites-
imal transformations.

Such small transformations barely change anything. However, if
we repeat an infinitesimal transformation many times, we end
up with a finite transformation.

Let’s return to our discussion about rotations. Many small ro-
tations in one direction are equivalent to one big rotation in the
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same direction.

Mathematically, we can write the idea of repeating a small
transformation many times as follows

h(q) = (I + eG)(I + eG)(I + eG)... = (I + eG)k, (7.8)

where k denotes how often we repeat the small transformation.

If q denotes some finite transformation parameter, e.q., 50� or
so, and N is some huge number that makes sure we are close to
the identity, we can write Eq. (7.7) as

g(q) = I +
q

N
G . (7.9)

The transformations we want to consider are the smallest pos-
sible, which means N must be the biggest possible number,
i.e., N ! •. To get a finite transformation from such an in-
finitesimal transformation, one has to repeat the infinitesimal
transformation infinitely often. Mathematically we can write
this as

h(q) = lim
N!•

⇣
I +

q

N
G
⌘N

, (7.10)

which is in the limit N ! • the exponential function

h(q) = lim
N!•

⇣
I +

q

N
G
⌘N

= eqG . (7.11)

The bottom line is that the object G generates the finite transfor-
mation h. This is why we call objects like these generators.

What do these generators explicitly look like?

Let’s consider a function f (x, t) and assume that our goal is to
generate a spatial translation such that T f (x, t) = f (x + a, t).
The generator

Gxtrans = ∂x (7.12)

does the job:88 Here ∂x is a shorthand notation for
the derivative ∂

∂x .
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eaGxtrans f (x, t) = (1 + aGxtrans +
a2

2
Gxtrans

2 + . . .) f (x, t)

y

Eq. 7.12

= (1 + a∂x +
a2

2
∂x

2 + . . .) f (x, t)

y

Taylor expansion
= f (x + a, t) (7.13)

Here we used the series expansion of ex = Â•
n=0

xn

n! . In the last
step, we used that in the second to last line we have exactly
the Taylor expansion of f (x + a, t). Alternatively, consider an
infinitesimal translation: a ! e with e ⌧ 1. We then have

eeGxtrans f (x, t) = (1 + eGxtrans +
e2

2
Gxtrans

2 + . . .) f (x, t) y

Eq. 7.12, e2 ⇡ 0, e3 ⇡ 0 etc. for e ⌧ 1
⇡ (1 + e∂x) f (x, t) y

= f (x, t) + e∂x f (x, t) = f (x + e, t) . (7.14)

Here ∂x f (x, t) is the rate of change of f (x, t) in the x-direction.
If we multiply this rate of change by the distance e that we
move in the x-direction, we end up with the total change
of f (x, t) if we move by e in the x-direction. Thus, f (x, t) +
e∂x f (x, t) really is the value of f at the location x + e.

The bottom line is: Gxtrans = ∂x generates spatial translations.

Completely analogously, Gttrans = ∂t generates temporal transla-
tions:

f (x, t) != eaGttrans f (x, t) = f (x, t + a) .

What we have learned here is that generators are the crucial
mathematical ingredient that we need to describe continuous
symmetries. We can describe any continuous symmetry by
acting on the function in question with the corresponding gen-
erator many, many times.

So we can summarize:

The core of each continuous symmetry

is the corresponding generator.
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This idea is already everything we need to determine what the
most important quantum operators look like.

7.1.2 Quantum Operators

We now put the puzzle pieces together. The pieces we have so
far are:

B We are looking for quantum operators. When we act with,
for example, the momentum operator on the ket |Y1i that
describes our system, we want to get p̂ |Y1i = p1 |Y1i.

B Noether’s theorem tells us that there is a deep connection
between symmetries and the most important physical quanti-
ties: momentum, energy, etc.

B Group theory tells us that the essential objects which are
responsible for these symmetries are the corresponding gen-
erators.

The crucial idea is to take Noether’s theorem seriously. Instead
of saying that we get a conserved quantity if there is a sym-
metry, we say the operator responsible for the symmetry (the
generator) also describes the conserved quantity (the quantum
operator).

In slogan form:

quantum operator $ generator of symmetry (7.15)

This may seem like quite a stretch, but we will see that this idea
works incredibly well in the next section.

Now, let’s make the above statement explicit.

Momentum is connected to symmetry under spatial transla-
tions. Therefore, we make the identification9

9 Note that there is an additional
imaginary unit i. This is just a con-
vention that physicists like to use.
The translation of a function then
works like this: eieGtrans f (x, t). So
all we have done is to introduce
two additional imaginary units that
cancel since i2 = �1. The reason
why physicists like to introduce the
imaginary unit i is that we want
to interpret the eigenvalues of our
quantum operators as something
that we can measure in experi-
ments. Without the additional i the
eigenvalues would be imaginary.
Hence, we introduce an additional
i to make them real. However, this
is really just a convenient way to
make the framework easier to use.
In addition, we have an additional
minus sign for the momentum
operator. This is motivated by the
Minkowski metric of special rel-
ativity. However, it is clear that
we could also absorb it into the
parameter e.
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momentum p̂i $ generator of spatial translations (�ih̄∂i)

(7.16)
Analogously, energy is connected to symmetry under temporal
translations. Therefore

energy Ê $ generator of temporal translations (ih̄∂t)

(7.17)
Take note that we have introduced a new fundamental constant:
h̄. This constant is known as the Planck constant10 and encodes 10 To be precise h̄ is the reduced

Planck constant (speak: "h-bar")
defined by h

2p where h is the real
Planck constant.

the magnitude of quantum effects. We can understand the need
for a new constant by observing that momentum has dimen-
sions [p] = kg · m/s. However, ∂i has the unit11 [∂i] = 1/m.

11 Recall ∂x = ∂
∂x . The symbol

∂x, in some sense, simply means
a tiny amount of x and therefore
has the same unit as x. Therefore,
∂x µ 1/∂x has the unit 1/m.

Similarly, ∂t has the unit [∂t] = 1/s, while energy has the unit
[E] = kg · m2/s2. Therefore, we need something to get the
same units on the right-hand and left-hand side of the equa-
tions. Using the units of energy, momentum and the differential
operators we can conclude that [h̄] = kg · m2/s since12 12 Reminder: square brackets

around a quantity mean that we
are talking about the units of the
quantity.

[p] = kg · m
s

!
= [�ih̄∂i] = kg · m2

s
1
m

= kg · m
s

X

[E] = kg · m2

s2
!
= [ih̄∂t] = kg · m2

s
1
s
= kg · m2

s2 X

The Planck constant is one of the most important fundamental
constants and we need to extract its value from experiments:
h̄ ⇡ 1.055 · 10�34 kg · m2/s . Since there is no symmetry con-
nected to the conservation of position, the position operator
stays as is13 x̂. In addition, using the definition of angular mo- 13 This may seem confusing at first.

But all this operator does if we
act with it on a function f (x) is to
multiply it by x, i.e., x̂ f (x) = x f (x)
since x really is the location we
evaluate f (x) at.

mentum (~L = ~x ⇥ ~p), we can, in principle, write down the
angular momentum operator by simply replacing ~p with the
corresponding quantum operator p̂.

Now, equipped with the ideas discussed in this section, we
are able to derive one of the most important equations in all of
physics.
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7.1.3 The Canonical Commutation Relation

A crucial new feature of quantum mechanics compared to clas-
sical mechanics is an inherent uncertainty. This uncertainty
comes about since the momentum changes every time we mea-
sure position and the position changes every time we measure
momentum. Mathematically, this statement means that it makes
a difference whether we first measure the momentum or first
measure the location: x̂ p̂ |Yi 6= p̂x̂ |Yi. We can also write this
statement as

�
x̂ p̂ � p̂x̂

�
|Yi 6= 0. The shorthand notation for this

expression is
[x̂, p̂] ⌘ x̂ p̂ � p̂x̂ . (7.18)

We call this the commutator of x̂ and p̂.

To get an intuitive understanding for what it means for oper-
ators to have a non-zero commutator, compare the situation
where you first put on your socks and then your shoes with
the situation where you first put on your shoes and then your
socks. The outcome is clearly different — the ordering of the
operations "putting shoes on" and "putting socks on" therefore
matters. In technical terms, we say these two operations do not
commute. In contrast, it makes no difference if you put on your
left sock first and then your right sock or your right sock first
and then your left sock. These two operations do commute.

Now, using the explicit quantum operator p̂i = �ih̄∂i (Eq. (7.16)),
we can actually derive that [ p̂i, x̂j] 6= 0:

[ p̂i, x̂j] |Yi = ( p̂i x̂j � x̂j p̂i) |Yi y

Eq. 7.16
= (�ih̄∂i x̂j + x̂jih̄∂i) |Yi y

product rule
= �(ih̄∂i x̂j) |Yi �⇠⇠⇠⇠⇠⇠x̂j(ih̄∂i |Yi) +⇠⇠⇠⇠⇠x̂jih̄∂i |Yi
= �ih̄dij |Yi (7.19)

In the last step we used that, for example, ∂yx = 0 but ∂yy =

1.14 We didn’t assume anything about |Yi, so the equation is14 The Kronecker delta dij is, by
definition, zero for i 6= j and one for
i = j.
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valid for any |Yi. Therefore, we can write the equation without
it, which makes the equation a bit shorter. However, we always
have to remember that there is an implicit ket in such equations
and we are only too lazy to write it all the time. In conclusion:

[ p̂i, x̂j] = �ih̄dij (7.20)

This little equation is known as the canonical commutation re-
lation. As the name already indicates this equation is extremely
important. In fact, many textbooks and lectures use it as a start-
ing point for quantum mechanics.15 15 Formulated differently, many

textbooks use this equation as the
fundamental postulate of quantum
mechanics. For example, using this
equation, we can derive what the
momentum operator looks like etc.

As mentioned above, a second crucial ingredient that we need
in our framework is something that allows us to determine
how a given state evolves in time. In the following section, we
will discuss an equation that allows us to describe the time-
evolution of quantum systems.

7.1.4 The Schrödinger Equation

Mathematically, what we need is an equation of this form:

∂t |Yi = . . .

Here, ∂t |Yi is the rate of change of |Yi if we move with respect
to t. In other words, ∂t |Yi describes how |Yi changes as time
passes — exactly what we need! On the right-hand side, we
need something that contains specific details about the system
in question. Thus, the right-hand side will be different for each
system. Then, as soon as we have such an equation, we have to
solve it to understand how |Yi depends on t.

Luckily, we don’t have to guess. All we have to do is take a sec-
ond look at what we derived in the previous section. The main
actor here, ∂t, is almost exactly the quantum energy operator
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ih̄∂t (Eq. 7.17), only without the imaginary unit and Planck’s
constant. Therefore, we know that we have the energy on the
right-hand side of the equation:

ih̄∂t |Yi = E |Yi .

Is there anything else we know about energy?

In classical mechanics, the total energy is given as the sum of
kinetic energy and potential energy:

E = T + V ⌘ kinetic energy + potential energy. (7.21)

The usual formula for the kinetic energy is

T =
1
2

mv2 =
p2

2m
(7.22)

since p = mv. We can turn this equation into a quantum equa-
tion by replacing the classical momentum, p, with the quantum
momentum operator, p̂i = �ih̄∂i, which we derived above.16

16 The index i is necessary because,
in general, we are dealing with
systems that can change in three
spatial dimensions. The index
takes on the values i = {x, y, z} or
equivalently i = {1, 2, 3}.

The potential energy usually only depends on the position:
V = V(x). Therefore, we can turn it into a quantum operator by
letting x ! x̂.1717 If there is more than one dimen-

sion, we have x̂i .

Returning to our equation,

ih̄∂t |Yi = E |Yi,

we can use the usual formula E = T + V and replace the classi-
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cal variables with the corresponding quantum operators:

ih̄∂t |Yi = E |Yi y

Eq. 7.21
= (T + V) |Yi y

Eq. 7.22

=

✓
p2

2m
+ V(x)

◆
|Yi

y

introducing operators

) ih̄∂t |Yi =
 

p̂2

2m
+ V(x̂)

!
|Yi

y

Eq. 7.16

=

✓
(�ih̄∂i)

2

2m
+ V(x̂)

◆
|Yi

y
i2 = �1

=

 
�

h̄2∂2
i

2m
+ V(x̂)

!
|Yi . (7.23)

The resulting equation,

ih̄∂t |Yi = �
h̄2∂2

i
2m

|Yi+ V(x̂) |Yi , (7.24)

is the famous Schrödinger equation. Our main job in quantum
mechanics is usually to solve it for a given potential V(x) and
specific boundary conditions.

Note that for historical reasons, the energy operator on the
right-hand side of the Schrödinger equation is known as the
Hamiltonian operator,

Ĥ ⌘
 
�

h̄2∂2
i

2m
+ V(x̂)

!
. (7.25)

Therefore, in terms of the Hamiltonian operator, the Schrödinger
equation reads

ih̄∂t |Yi = Ĥ |Yi . (7.26)

This general form of the Schrödinger equation is also valid in
quantum field theory. The only difference is that we need to
replace Ĥ appropriately. We will discuss this in detail in the
next chapter.
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7.1.5 Time Evolution

A convenient alternative way to describe the time-evolution of
quantum systems is with the so-called time evolution operator
U(t). We define this operator through the following formula

|Y(x, t)i = U(t) |Y(x, 0)i . (7.27)

In words, this means that if we act with this operator on some
ket |Y(x, 0)i, the resulting ket describes the system at time
t: |Y(x, t)i. This operator is not merely an abstract thing.
We can write it down explicitly by putting Eq. (7.27) into our
Schrödinger equation:

ih̄∂t|Y(x, t)i = H|Y(x, t)i y

Eq. 7.27
ih̄∂tU(t) |Y(x, 0)i = HU(t) |Y(x, 0)i (7.28)

This equation holds for any |Y(x, 0)i and we can therefore write
it without it:

ih̄∂tU(t) = HU(t) y

ih̄
∂tU(t)
U(t)

= H . (7.29)

This is a differential equation for U(t) and the general solution
is

U(t) = e�
i
h̄
R t

0 dt0H(t0) (7.30)

since

ih̄
∂tU(t)
U(t)

= H

y

Eq. 7.30

ih̄
∂te�

i
h̄
R t

0 dt0H(t0)

e�
i
h̄
R t

0 dt0H(t0)
= H

y

∂xeikx = ikeikx

ih̄
✓
� i

h̄
∂t

Z t

0
dt0H(t0)

◆
⇠⇠⇠⇠⇠⇠
e�

i
h̄
R t

0 dt0H(t0)

⇠⇠⇠⇠⇠⇠
e�

i
h̄
R t

0 dt0H(t0)
= H

y

∂t

Z t

0
dt0H(t0) = H

H = H X (7.31)
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So the time-evolution operator is simply a convenient way to
write the information encoded in the Schrödinger equation a
bit differently. We will see in the next chapter that the time-
evolution operator plays an extremely important role in quan-
tum field theory.

7.1.6 Quantum Waves

An important aspect of quantum mechanics is that, in general,
different operators have different states with definite measure-
ment values (eigenstates).18 This means that we can expand a 18 Take note that for operators which

commute

ÂB̂ � B̂Â = 0

there is a common set of eigen-
states.

general state vector in terms of different eigenstates:

|Yi = Â
i

bi |õii = b1 |õ1i+ b2 |õ2i+ . . . , (7.32)

where |õii are the eigenstates corresponding to a different oper-
ator ˆ̃O.

The key idea is that if we are interested in, for example, the
momentum of the system, we expand our general state vector
in terms of momentum eigenstates. If we are instead interested
in the energy of the system, then we would expand the state
vector in terms of energy eigenstates, and so on. The numbers ai
and bi that we get by expanding a general state vector directly
tell us the probability to measure a given result. Formulated
differently, expanding a general state vector in this manner
yields coefficients (ai or bi) which are directly related to the
probability of measuring a given value.

The set of possible outcomes is not necessarily discrete. In the
case of a continuous set of possible outcomes, we must replace
the sum in Eq. 7.32 with an integral:19 19 In some sense, an integral is

simply a sum over a continuous set
of values.|Yi =

Z
do a(o) |oi . (7.33)

Take note that our discrete coefficients ai are replaced by a func-
tion a(o). However, the basic idea is still the same. For each
possible measurement outcome o, we get a specific probabil-
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ity amplitude a(o). The probability of measuring the value o is
|a(o)|2.

The function y(x) that we get by expanding a state vector in
terms of position eigenstates

|Yi =
Z

dx y(x) |xi (7.34)

is usually called the wave function.

Analogously to how we can describe a given vector ~v using the
specific coefficients for some given basis, we can use y(x) to
describe the system.2020 In principle, a vector is a little

arrow sitting somewhere in space.
Only by using a specific coordinate
system and therefore specific
basis vectors like ~ex , ~ey, ~ez can we
describe the vector using concrete
numbers ~v = (3, 2, 3)T . Take
note that for a different choice of
coordinate system or a different set
of basis vectors (e.g., spherical basis
vectors), we get different numbers.

The magical tools which help us switch between bases are
called projection operators. These projection operators aren’t
unique to quantum mechanics. Projection operators also exist
for ordinary vectors. In the previous section, we used the most
common basis vectors ~ex,~ey,~ez (Eq. (7.3)). However, an equally
good (orthogonal and normalized) choice for the basis vectors
is:2121 The factors 1p

2
are normalization

constants that make sure that our
vectors have length 1.

~e1 =
1p
2

0

B@
1
1
0

1

CA , ~e2 =
1p
2

0

B@
1
�1
0

1

CA , ~e3 =

0

B@
0
0
1

1

CA . (7.35)

How can we calculate what our vector ~v = (1, 3, 5)T looks like in
this basis?

We already discussed how we can determine how much a given
vector spreads out in any given direction. For example, to find
out how much ~v spreads out in the z-direction, we multiplied it
by ~ez (Eq. (7.6)). Here, Eq. (7.35) defines new axes relative to the
old ones. Therefore, to find out how much ~v spreads out in the
direction defined by ~e1, we calculate the scalar product of the
two vectors.

~̃e1 ·~v =
1p
2

⇣
1, 1, 0

⌘
0

B@
1
3
5

1

CA =
4p
2

.
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Analogously, we can calculate how much ~v spreads out in the
other two new directions:

~̃e2 ·~v =
1p
2

0

B@
1
�1
0

1

CA

T 0

B@
1
3
5

1

CA =
�2p

2
.

~̃e3 ·~v =

0

B@
0
0
1

1

CA

T 0

B@
1
3
5

1

CA = 5 .

This tells us that, in the new basis (Eq. (7.35)), our vector ~v reads
as:

~v =
4p
2
~e1 �

2p
2
~e2 + 5~e3=̂

0

B@

4p
2

�2p
2

5

1

CA

new basis

.

The general method to rewrite a vector in a new basis is there-
fore:

1. Calculate the scalar product of the vector with each new basis
vector.

2. Multiply each result with the corresponding basis vector.

3. The vector in the new basis is the sum of all of terms calcu-
lated in the second step.

So mathematically, we have

~vnew basis = Â
i
(~ei) (~ei ·~v)| {z }

a number

. (7.36)

To convince you that this formula is really correct, let’s again
consider our example from above:

~vnew basis = Â
i
(~ei)(~ei ·~v)

= (~e1)(~e1 ·~v) + (~e2)(~e2 ·~v) + (~e3)(~e3 ·~v)

= ~e1
4p
2
+~e2

�2p
2
+ 5~e3 X (7.37)

We use exactly the same method in quantum mechanics. We
have the ket in the momentum basis,

|Yi = a |Y1i+ b |Y2i , (7.38)
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and want to calculate how it looks like in the position basis:

|Yi = c |x1i+ d |x2i . (7.39)

In other words, we want to calculate the coefficients c and d.
For simplicity, we assume that only two locations, x1 and x2, are
possible. In addition, we use a more suggestive notation: |x1i
is the configuration of the system where we will definitely find
our particle at location x1, similar to how |Y1i corresponds to
the configuration with momentum p1.

Using the algorithm we just discussed, we calculate

|Yi = Â
i
|xii hxi|Yi

y

= |x1i hx1|Yi+ |x2i hx2|Yi y

⌘ c |x1i+ d |x2i ,

where the probability amplitudes in the position basis are

c = hx1|Yi
d = hx2|Yi .

In general, there is a continuum of possible locations and not
just a discrete set. Luckily, we can take this into account by
simply replacing this sum with an integral:22:22 An integral is, in some sense, the

continuum limit of a sum. If we
make the steps in a sum smaller
and smaller, we end up with an
integral.

y

⌘
Z

dxY(x) |xi , (7.40)

where Y(x) ⌘ hx|Yi. This function Y(x) is analogous to the
coefficients we have discussed previously (i.e., a, b, c, and d).
But we now have one coefficient for each location x.2323 Take note that |Yi and therefore

also Y(x) both depend on the time
t. Here we suppress this depen-
dence to unclutter the notation. We
will revisit this time dependence
later on. Keep in mind, however,
that wavefunctions generally de-
pend not only on position, but also
on time.

Take note that we can read of Eq. 7.40 that
Z

dx |xi hx| = 1 . (7.41)

This means that we can insert a unit operator in the form ofR
dx |xi hx| anywhere in our formulas and this way get expres-

sions in terms of the position basis. In the jargon of quantum
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mechanics, it is conventional to say that we insert a complete
basis this way.

Often it will be easier to choose a specific basis before we solve
the Schrödinger equation. For example, we can use the posi-
tion basis and therefore the wave functions that we introduced
above. To unclutter the notation, we will restrict ourselves to
one spatial dimension. We are then left with

ih̄∂t |Yi = � h̄2∂2
x

2m
|Yi

y

Eq. 7.40

ih̄∂t

Z
dxy(x, t) |xi = � h̄2∂2

x
2m

Z
dxy(x, t) |xi

y

ih̄∂ty(x, t) = � h̄2∂2
x

2m
y(x, t) . (7.42)

One solution to this equation is

y(x, t) = e�i(Et�px)/h̄ (7.43)

as we can check

ih̄∂ty(x, t) = � h̄2∂2
x

2m
y(x, t)

y

Eq. 5.44

ih̄∂te�i(Et�px)/h̄ = � h̄2∂2
x

2m
e�i(Et�px)/h̄

y

Ee�i(Et�px)/h̄ =
p2

2m
e�i(Et�px)/h̄

y

p2

2m
e�i(Et�px)/h̄ =

p2

2m
e�i(Et�px)/h̄ X , (7.44)

where in the last step we used the fact that E is the numerical
value for the total energy of a free particle: E = p2

2m .
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7.1.7 de Broglie Relations

By comparing our usual formula for a plane wave (Eq. 5.44)

f(x) = e�i(kµxµ) = e�i(k0x0�~k·~x) (7.45)

with the solution of the Schrödinger equation introduced in the
previous section (Eq. 7.43)

y(x, t) = e�i(Et�~p·~x)/h̄ (7.46)

we can conclude

E = h̄w

~p = h̄~k . (7.47)

These are known as the de Broglie relations. In words, they tell
us that in a quantum context the angular frequency w is directly
related to the energy E, and the wave vector~k is directly related
to the momentum ~p.

7.1.8 The Stationary Schrödinger Equation

For systems in which the potential does not depend on time, we
can split the Schrödinger equation into two simpler equations
and solve them separately. This trick is known as separation of
the variables and works as follows.

First, we split our wave function into two parts:

Y(x, t) ⌘ T(t)y(x) . (7.48)

The first part T(t) describes how the wave function changes
over time, while the second part y(x) describes how the wave
function depends on the location. We now put this ansatz into
the Schrödinger equation:2424 Reminder: For a particle in a

potential V(x), the Schrödinger
equation reads

ih̄
∂Y
∂t

= � h̄2

2m
∂2Y
∂x2 + V(x)Y.

The operator H is the energy
operator and it is directly related to
the classical energy = kinetic energy
plus potential energy.

ih̄∂tY(x, t) = HY(x, t) y

Eq. 7.48
ih̄∂tT(t)y(x) = HT(t)y(x) y

ih̄
∂tT(t)
T(t)

=
Hy(x)
y(x)

.
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In the last step we used that H only contains the spatial deriva-
tive ∂2

x and T(t) only depends on t and not on x. In addition,
we used that the left-hand side only contains the derivative ∂t

while y(x) only depends on x.

Now what we are left with on the left-hand side is something
that only depends on t, and on the right-hand side something
that only depends on x. Still, both sides must be equal. This
is only possible if both sides are constant. If, for example, the
left-hand side is not constant, this would mean that we could
change its value by varying t. Since the right-hand side does
not depend on t at all, there is then no way that both sides are
equal. Both sides of the equation are thus constant and equal to
the energy, E. We are then left with two equations as promised:

ih̄
∂tT(t)
T(t)

⌘ E ⌘ Hy(x)
y(x)

) ih̄
∂tT(t)
T(t)

⌘ E and
Hy(x)
y(x)

⌘ E .

Written a bit differently,

ih̄∂tT(t) = ET(t) (7.49)

Hy(x) = Ey(x) . (7.50)

The first equation is easy to solve and does not depend on the
specific problem at all. All information about the features of
the system is encoded in H. So the first lesson is that, as long
as V (and therefore also H) does not depend on t,25 the explicit 25 Remember that this was the cru-

cial restriction that I’ve mentioned
at the beginning. The whole trick
we used only works if H does not
depend on t. Otherwise, the ansatz
Y(x, t) ⌘ T(t)y(x) does not help us.

time-dependence of the wave function is given by

T(t) = e�
iEt
h̄ . (7.51)
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This equation can be derived as follows:

ih̄∂tT(t) = ET(t) this is Eq. 7.49y

Eq. 7.51

ih̄∂te�
iEt
h̄ = Ee�

iEt
h̄ y

ih̄
✓
�iE

h̄

◆
e�

iEt
h̄ = Ee�

iEt
h̄

y

Ee�
iEt
h̄ = Ee�

iEt
h̄ X

The second lesson is that all specific information about the
system is encoded in the solutions of the second equation which
only depends on x:2626 Take note that this equation

is really of the same type as the
equations we considered all the
time (an eigenvalue equation). The
energy operator H acts on Y and
what we get back is the energy E.

Hy = Ey (7.52)

This equation is known as the stationary Schrödinger equation
or time-independent Schrödinger equation. After we have
solved it for a specific problem (i.e., a specific H), all that is left
to do is to remember that the full solution reads

Y(x, t) = y(x)T(t) = y(x)e�
iEt
h̄ . (7.53)

A solution of the stationary Schrödinger equation y(x) is
known as a stationary solution or a stationary state.

We already discussed that we can understand a field in many
aspects analogous to a mattress. The basic building blocks a
mattress consists of are harmonic oscillators. Therefore, if we
want to promote our classical fields to quantum fields, we need
to start by promoting our oscillators to quantum oscillators.
This is what we will discuss in the next section.

7.2 The Quantum Harmonic Oscillator

While it is possible to describe the quantum harmonic oscillator
in terms of wave functions, there is a much smarter method.
Although this method seems quite abstract at first, it turns
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out to be invaluable. In particular, we will see in the following
chapter that we can apply all the lessons we learn here directly
to quantum fields.

The potential of the harmonic oscillator reads (Eq. 5.5)

V(x) =
1
2

kx2 , (7.54)

where k is the spring constant which characterizes the stiffness
of the spring. Alternatively, we write the potential often as

V(x) =
1
2

mw2x2 , (7.55)

where w =
p

k/m denotes the classical oscillation frequency
and m the mass at the end of the spring.

The stationary Schrödinger equation (Eq. (7.52)) reads

Hy = Ey = � h̄2

2m
∂2y

∂x2 + V(x)y

y

Eq. 7.55

= �h̄2 ∂2
x

2m
y +

1
2

mw2x2y (7.56)

We define the following two operators and then use them in-
stead of x̂ and p̂27 27 Take note that a† is the Hermitian

adjoint of a, where † ⌘ ⇤T, i.e.,
conjugation plus transposition.

a ⌘
r

mw

2h̄
x + i

1p
2mwh̄

p (7.57)

a† ⌘
r

mw

2h̄
x � i

1p
2mwh̄

p. (7.58)

We will understand the physical meaning of these operators in a
moment.

We can also invert these equations, which yields

Eq. 7.57 + Eq. 7.58 ) a + a† = 2
r

mw

2h̄
x

y

x =

r
h̄

2mw
(a + a†) (7.59)
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and

Eq. 7.57 - Eq. 7.58 ) a � a† = 2i
1p

2mwh̄
p

y 1
i
=

�i2

i
)� i

p = �i
r

h̄mw

2
(a � a†). (7.60)

In addition, by using the canonical commutation relation
[x, p] = ih̄ we can calculate the commutator of a and a†:2828 It will become clear in a moment

why this is useful.

[a, a†] = aa† � a†a y

Eq. 7.57

=

✓r
mw

2h̄
x + i

1p
2mwh̄

p
◆✓r

mw

2h̄
x � i

1p
2mwh̄

p
◆

y

�
✓r

mw

2h̄
x � i

1p
2mwh̄

p
◆✓r

mw

2
x + i

1p
2mwh̄

p
◆

y

=
⇢

⇢
⇢⇢mw

2h̄
x2 � i

2h̄
xp +

i
2h̄

px +
�����1
2mwh̄

p2 �
⇢
⇢

⇢⇢mw

2h̄
x2 � i

2h̄
xp +

i
2h̄

px �
�����1
2mwh̄

p2

y

=
i
h̄
(px � xp) =

i
h̄
[p, x] = � i

h̄
[x, p] = � i

h̄
ih̄

= 1 (7.61)

We can use these equations to rewrite the Schrödinger equation
for the harmonic oscillator (Eq. (7.56)) in terms of a and a†

Ey =
p2

2m
y +

mw2

2
x2y

y

Eq. 7.59, Eq. 7.60

=
1

2m

 
i
r

h̄mw

2
(a† � a)

!2

y +
mw2

2

 r
h̄

2mw
(a + a†)

!2

y

y

=
h̄w

4

⇣
⇠⇠⇠�a†a† + a†a + aa† �⇢⇢aa

⌘
y +

h̄w

4

⇣
⇢⇢aa + a†a + aa† +���a†a†

⌘
y

y

=
h̄w

2

⇣
a†a + aa†

⌘
y (7.62)
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We can then use the commutator relation in Eq. (7.61) to sim-
plify the expression on the right-hand side as follows:

Ey =
h̄w

2

⇣
a†a + aa†

⌘
y y

�a†a + a†a = 0

=
h̄w

2
(a†a + aa† � a†a + a†a)y y

=
h̄w

2
(2a†a + [a, a†])y y

[a, a†] = 1, Eq. 7.61

=
h̄w

2

⇣
2a†a + 1

⌘
y y

= h̄w

✓
a†a +

1
2

◆
y .

What we have on the right-hand side is the quantum energy
operator. As already mentioned, we usually call this operator
the Hamiltonian and denote it by H:

H ⌘ h̄w

✓
a†a +

1
2

◆
. (7.63)

Acting with this operator on a state that describes our system
tells us the energy of the system29: 29 At least it does when the system

is in an energy eigenstate.

H |E1i = E1 |E1i . (7.64)

Now we want to understand these new operators a and a†. The
most important thing for us is what a and a† do when they act
on the ket that describes our system. To get a feeling for this,
let’s calculate the energy of such a new state30. 30 Acting with a on our state |E1i

yields a new state. What we do now
is to check if the operators change
the energy. All this will make a lot
more sense in a moment.

Before we can do this, we need one more thing: the commutator
[H, a] as we will see in a second. Using Eq. (7.61) and Eq. (7.63),
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we find

[H, a] = Ha � aH y

Eq. 7.63

=

✓
h̄w

✓
a†a +

1
2

◆◆
a

� a
✓

h̄w

✓
a†a +

1
2

◆◆
y

= h̄w

✓
a†aa +

⇤
⇤⇤a
2
� aa†a �

⇤
⇤⇤a
2

◆

y

= h̄w
⇣

a†a � aa†
⌘

a y

= h̄w[a†, a]a y

[a, a†] = �[a†, a]
= �h̄w[a, a†]a y

Eq. (7.61)
= �h̄wa .

(7.65)

Completely analogously, we can calculate

[H, a†] = h̄wa† . (7.66)

With this information at hand, we are finally ready to calculate
the energy of our new state a |E1i:

Ĥ (a |E1i) = (Ĥa � aĤ + aĤ) |E1i �aĤ + aĤ = 0y

Ĥa � aĤ ⌘ [Ĥ, a]
= aĤ |E1i+ [Ĥ, a] |E1i y

Eq. 7.64
= aE1 |E1i+ [Ĥ, a] y

Eq. 7.65

=
⇣

aE1�h̄wa
⌘
|E1i y

=
⇣

E1 � h̄w
⌘⇣

a |E1i
⌘

. (7.67)

Analogously for a† we find

Ĥa† |E1i = (E1 + h̄w)a† |E1i . (7.68)

What do we learn here?
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By looking at Eq. (7.67) we see that a |E1i can be interpreted as a
new state with energy E � h̄wk!

Let’s make this more concrete. We define

|E0i ⌘ a |E1i (7.69)

with

Ĥ|E0i = Ĥ(a |E1i) using Eq. 7.69y

Eq. 7.67
= (E1 � h̄w) |E0i . (7.70)

Analogously, by looking at Eq. (7.68) we see that a† |E1i can be
interpreted as a new state with energy E + h̄wk.

We have
|E2i ⌘ a† |E1i

with
Ĥ |E2i = (E1 + h̄w) |E2i (using Eq. 7.68).

This is why a and a† are known as ladder operators. They allow
us to move between the energy eigenstates. Using a†, we can
jump to the next eigenstate above. Using a, we can jump to the
next eigenstate below it.

The non-trivial part of the Hamiltonian operator (Eq. (7.63)) is

N ⌘ a†a . (7.71)

With this definition, we can rewrite the Hamiltonian in the
form:

H = h̄ w

✓
N +

1
2

◆
. (7.72)

So the operator N tells us in which energy eigenstate we cur-
rently are:

N |ni = n |ni , (7.73)

where we use n to label the n-th energy eigenstate with energy
En. It is conventional to use the notation |1i , |2i , . . . , |ni for
these states. The operators a and a† let us move between them
in discrete jumps.

Let’s summarize what we have learned here:
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B There is a state with the lowest possible energy E0 = h̄w
2 . This

is the ground state energy of the Harmonic oscillator. Inter-
estingly it is non-zero, so there is always some fluctuation.3131 This leads to a curious result in

quantum field theory. As already
mentioned above, in some sense, a
quantum field is a set of infinitely
many harmonic oscillators. Now
we just learned that the ground
state energy of a single harmonic
oscillator is non-zero, E0 = h̄w

2 . The
ground state energy of a system
consisting of two harmonic oscilla-
tors is therefore h̄w, and the ground
state energy of a system consisting
of infinitely many harmonic oscilla-
tors is infinity. In other words, the
ground state energy of a quantum
field is infinitely large. However,
we can only measure energy dif-
ferences and since every field has
an infinite ground state energy, we
usually simply ignore this strange
feature of quantum fields.

B All other energy eigenstates can be generated by acting with
the raising operator a† on this state with the lowest energy
multiple times. Each time we use a†, we generate a new state
with an energy that is higher than the previous one by h̄w.

B The energy spectrum is therefore discrete. The distance be-
tween the energy states is h̄w.

With this in mind, we’re finally ready to talk about quantum
fields.



8

Quantum Fields

In this chapter, we will finally start talking about quantum fields.
A quantum field is a field with an astonishing additional prop-
erty which can be described using a so-called canonical commu-
tation relation. The canonical commutation relation for a field
tells us that its fundamental excitations have exactly the prop-
erties that we typically associate with particles. In this sense,
particles are also important players in quantum field theory but
they are not fundamental. They merely represent a very specific
way in which a quantum field can be excited.

As for classical fields, the easiest thing we can study is how
quantum fields behave when left alone. Luckily, the equations
that describe free classical fields are useful for quantum fields
too.1 We will therefore discuss in this chapter the meaning of

1 Take note that only the equation
(Maxwell’s equation) for one partic-
ular type of field (massless gauge
fields) is really used in a classical
context and a quantum context.
While the remaining equations
can, in principle, also be used in
classical models, there is nothing
in the real world that could be
described with them. Thus their
usage in the context of classical
field theory is merely an academic
exercise (although an interesting
one). One reason is that the only
known fundamental scalar field (the
Higgs field) is massive and thus
does not operate on macroscopic
scales. (Technically, the non-zero
mass corresponds to a finite corre-
lation length. More intuitively, we
can imagine that the excitations of a
massive field decay before they can
make a difference on macroscopic
scales.) Moreover, the fundamental
excitations of all spinor fields can
never occupy the same state and
thus cannot reinforce one another to
produce a macroscopic field. (This
is known as the Pauli exclusion
principle and we’ll discuss it in
more detail below.) In addition, all
known spinor fields are massive.
For all fields except for lightest ones
(electron, up-quark, down-quark)
this means again that the corre-
sponding field excitations decay
quickly. Finally, all gauge fields
except for the electromagnetic field
also cannot operate at macroscopic
scales. For the gauge field responsi-
ble for weak interactions, the reason
is again that it’s a massive field. For
the strong interaction field, the rea-
son is called "confinement" which is
a quite subtle concept and still not
fully understood. To summarize,
there are no classical macroscopic
fields except for the electromagnetic
field.

the solutions of these equations of motion in a quantum context
and how they allow us to describe particles. One of the most
important tools in this context are propagators. In general,
a propagator encodes how a given field varies in space and
time. Arguably the most important propagator, the Feynman
propagator, will play an essential role in our description how
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quantum fields interact with each other.

Classical Field

Canonical Commuation Relations

✏✏

Quantum Field

✏✏

//

Particles as
Field Excitations

Particle States

✏✏

Retarded Propagator

Propagators

55

//

))

Advanced Propagator

Feynman Propagator

The discussions for different kinds of fields are quite similar but
there are important differences that we need to talk about:

B For complex scalar fields there are two kinds of particles as-
sociated with them that are typically interpreted as particles
and antiparticles.

B For spinor fields, there are fundamental anticommutation
relations instead of commutation relations. In physical terms
these imply that there can never be two spinor particles in
exactly the same state.

B For gauge fields, we must be careful since not all four compo-
nents are independent, physical degrees of freedom. Since a
massive gauge field has only three possible physical polariza-
tions, we promote only three of its components to quantum
degrees of freedom. Moreover, to take into account that a
massless gauge field has only two possible polarizations, we
must use "transverse" commutation relations.
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This is summarized in the following diagram:

Real Scalar Field

✏✏

// Canonical Commutation Relations

Complex Scalar Field

✏✏

//

Canonical Commutation Relations
for Particles and Antiparticles

Spinor Field

✏✏

//

Canonical Anticommutation Relations
for Particles and Antiparticles

Massive Gauge Field

✏✏

//

Canonical Commutation Relations
for Spatial Field Components

Massless Gauge Field //

Canonical Commutation Relations
for Transverse Field Components
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8.1 Quantum Fields vs. Classical Fields

Roughly speaking, while a classical field behaves like a network
of coupled harmonic oscillators, a quantum field behaves like a
network of coupled quantum oscillators. We discovered in the
previous chapter that for a quantum oscillator only a discrete
set of oscillation modes is possible. Moreover, the ground state
energy is non-zero. One way to interpret this is by saying that
a quantum oscillator is never really at rest. We can apply these
lessons directly to a network of quantum oscillators.

First of all, there is a minimum amount of energy that we need
to put into the network before we can see any excitation above
the ground state at all. In other words, we must put in enough
energy to push at least one of the oscillators into a higher oscil-
lation mode.

Secondly, the quantized spectrum of a quantum oscillator im-
plies that only a discrete set of excitations is possible for the
network. There is not just a discrete jump from the ground state
to the first excited state but also from the first to the second ex-
cited state, from the second to the third excited state and so on.
We have a ladder of allowed energy values for each oscillator in
the network.
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Thirdly, since we consider a network of oscillators, a given quan-
tized excitation can move through the network. The adjective
"quantized" is important here. For a network of classical oscil-
lators we can imagine that if we excite one of the oscillators,
this disturbance will move through the system like ripples in a
pond.

For a network of quantum oscillators, however, only a quantized
spectrum of energy values are possible and thus the dynamics
will not be so smooth.
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The most important observation here is that the excitations of a
network of quantum oscillators have all the properties that we
typically associate with particles. When we kick a quantum field
at one specific location, we excite one of the oscillators. From
a particle perspective, we say that we’ve created a particle at
this location. If we put more energy into the same location, we
create more particles of the same type. Depending on how we
create these particles, they start to move around afterwards. But
since there is an energy gap between the ground state and the
first excited state, we will always find discrete chunks even after
they’ve moved to different locations.22 Take note that there is still an

aspect of field excitations that
dissolves. This has to do with
our probabilistic interpretation of
quantum theories. The function that
describes how likely it is to find a
given particle at a specific location
might diffuse over space as time
passes. However, no matter where
we find the particle, it will always
appear as a discrete undissolved
chunk of energy.

Another important aspect is that our quantum oscillators are
not only coupled to their neighbors in the network but also to
members of different networks (i.e. different fields). Therefore, a
given excitation can spread from one network to another. Each
network has a characteristic energy gap between allowed states.
Therefore, one fundamental excitation in a network with a large
energy gap is able to cause many fundamental excitations in
other networks with lower energy gaps. From a particle per-
spective, we interpret this by saying that a heavy particle can
decay into lighter particles.
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In summary, in quantum field theory particles are localized de-
viations from the ground state. An interesting aspect of this way
of thinking about particles is that it explains why all particles
of a given type look exactly the same. For example, all electrons
we have ever observed have had exactly the same properties
(mass, charge, spin). From a field perspective this is no longer
mysterious because each electron simply represents a funda-
mental excitation of the underlying electron field.

Next, let’s discuss how we can describe these ideas mathemati-
cally.

8.2 The Canonical Commutation Relations

In the previous chapter I’ve mentioned that we can motivate
the explicit form of quantum operators like p̂x = ih̄∂x by in-
voking Noether’s theorem. This idea will again be our guiding
principle.

In Section 7.1.1, we discussed how we can describe each con-
tinuous transformation by using a generator G. A generator G
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is the non-trivial part of infinitesimal transformation operators
(Eq. 7.7)

g(e) = I + eG , (8.1)

where g(e) describes an infinitesimal transformation and I the
identity transformation that changes nothing. The generator
which is responsible for an infinitesimal field shift (Eq. 4.42)

f ! f0 = f � ie (8.2)

is G = �i ∂
∂f , because

f0 = g(e)f y

Eq. 7.7
= (I + eG)f y

G = �i
∂

∂f

= (I � ie
∂

∂f
)f

y ∂f

∂f
= 1

= f � ie X (8.3)

With this in mind, it’s time to recall our mantra (Eq. 7.15)

quantum operator $ generator of symmetry

We discussed in the previous section that the conserved quan-
tity associated with field shifts is called the conjugate momen-
tum density p. Therefore, we now propose

conjugate momentum density p $ generator field shifts � i
∂

∂f

(8.4)

This identification allows us to derive the following commutator



quantum fields 309

relation:

[f(t,~x), p(t,~y)] |yi y

Eq. 8.4

=


f(t,~x),�i

∂

∂f(t,~y)

�
|yi

y

[A, B] ⌘ AB � BA

= f(t,~x)
✓
�i

∂

∂f(t,~y)

◆
|yi �

✓
�i

∂

∂f(t,~y)

◆
f(t,~x) |yi

y

product rule

= f(t,~x)
✓
�i

∂

∂f(t,~y)

◆
|yi �

✓
�i

∂

∂f(t,~y)
f(t,~x)

◆
|yi � f(t,~x)

✓
�i

∂

∂f(t,~y)
|yi
◆

y

⇠⇠⇠⇠⇠⇠⇠⇠⇠
f(xµ)

✓
�i

∂

∂f(t,~y)

◆
|yi

= �
✓
�i

∂

∂f(t,~y)
f(t,~x)

◆
|yi

y ∂ f (~x)
∂ f (~y)

= d(~x �~y)

= id(~x �~y) |yi . (8.5)

This calculation is analogous to what we did in Section 7.1.3.
In particular, we included a ket |yi to remind us that operators
need to act on something. Moreover, we used ∂ f (~x)

∂ f (~y) = d(~x �~y)

which is analogous to ∂xi
∂xj

= dij. Since Eq. 8.5 is valid for any ket
|yi, we can write it without it:

[f(t,~x), p(t,~y)] = id(~x �~y) (8.6)

Moreover, we can conclude that

[f(t,~x), f(t,~y)] = 0

[p(t,~x), p(t,~y)] = 0 (8.7)

since partial derivatives commute ∂x∂y = ∂y∂x. These are the
canonical commutation relations for a scalar field in quantum
field theory.

8.3 Field Operators

The most important message encoded in the canonical commu-
tation relation (Eq. 8.6) is that in quantum field theory, fields
and the conjugate momentum density are operators. This is
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analogous to how in quantum mechanics the classical location
and momentum become operators.

Let’s try to use the canonical commutation relation to under-
stand the meaning of field operators. For simplicity, we focus on
a scalar field f(xµ). We start by recalling some facts about scalar
fields that we’ve already discussed in previous chapters. The
Lagrangian density for a free scalar field reads (Eq. 5.2)

L =
1
2
(∂µf∂µf � m2f2) . (8.8)

The corresponding equation of motion is the Klein-Gordon
equation (Eq. 5.4)

(∂µ∂µ + m2)f = 0 . (8.9)

A general solution of the Klein-Gordon equation reads (Eq. 5.51)

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�i(kx) + a†(~k)ei(kx)

⌘
. (8.10)

Moreover, we can use the Lagrangian density (Eq. 5.2) to calcu-
late the corresponding conjugate momentum density (Eq. 4.52):

p =
∂L

∂(∂0f) y

Eq. 5.2

=
∂
⇣

1
2 (∂µf∂µf � m2f2)

⌘

∂(∂0f) y

sum convention

=
∂
⇣

1
2 (∂0f∂0f � ∂if∂if � m2f2)

⌘

∂(∂0f) y

∂xx2 = 2x
= ∂0f . (8.11)
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Using our explicit solution (Eq. 5.51), we therefore find

p = ∂0f y

Eq. 5.51

= ∂0

⇣ Z
dk3 1

(2p)3p2wk

⇣
a(~k)e�i(kx) + a†(~k)ei(kx)

⌘ ⌘

y
=
Z

dk3 1
(2p)3p2wk

⇣
a(~k)∂0e�i(kx) + a†(~k)∂0ei(kx)

⌘
y

kx ⌘ k0x0 � kixi , ∂0eik0x0 = ik0eik0x0

=
Z

dk3 1
(2p)3p2wk

⇣
a(~k)(�ik0)e�i(kx) + a†(~k)(ik0)ei(kx)

⌘

y

k0 ⌘ wk

=
Z

dk3 (�i)
(2p)3p2wk

⇣
a(~k)wke�i(kx) � a†(~k)wkei(kx)

⌘

y wkp
wk

=
p

wk

=
Z

dk3 (�i)
p

wk

(2p)3
p

2

⇣
a(~k)e�i(kx) � a†(~k)ei(kx)

⌘
. (8.12)

The key question is now: which part of the conjugate momen-
tum density (Eq. 8.12 ) and the field itself (Eq. 8.10) is responsi-
ble for the non-trivial commutation relation (Eq. 8.6)

[f(t,~x), p(t,~y)] = id(~x �~y) ? (8.13)

The correct answer is that we can take the non-trivial commuta-
tion relation into account by assuming that the coefficients a(~k)
and a†(~k) fulfill the commutation relations3 3 You can find a verification of this

statement in Appendix A.4.

[a(~k), a†(~k0)] = (2p)3d(~k �~k0)

[a(~k), a(~k0)] = 0 , [a†(~k), a†(~k0)] = 0 . (8.14)

This implies that the expansion coefficients a(~k) and a†(~k) in
quantum field theory are operators.

The logical next question is therefore: what are the operators
a(~k), a†(~k) doing when they act on a ket that represents our
system? We will see below that a(~k), a†(~k) are ladder opera-
tors analogous to those that we introduced in our discussion of
the quantum harmonic oscillator.4 By looking at the field ex- 4 We discussed the quantum har-

monic oscillator in Section 7.2.
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pansion in Eq. 8.10 we can then conclude, as promised above,
that a quantum field can be understood as a network of quan-
tum oscillators. In physical terms, we say that a†(~k) creates a
particle when it acts on a ket, while a(~k) annihilates a particle.
Therefore, in the context of quantum field theory a†(~k), a(~k) are
known as creation and annihilation operators.

Let’s see how this comes about.
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8.3.1 Creation and Annihilation Operators

To understand the meaning of the operators a(~k), a†(~k) it is
instructive to focus on an aspect of fields we have at least some
intuitive understanding of: their energy. But before we can
discuss how thinking about the energy stored in a field allows
us to understand the operators a(~k), a†(~k), we need to go on
a short tangent. This is necessary because there are several
somewhat subtle aspects of the formulas that we find for the
field energy in a quantum theory.

First of all, the energy of a field is the Noether charge that fol-
lows from invariance under temporal translations t ! t + e and
reads (Eq. 4.38):

E ⌘
Z

V
d3x T0

0 . (8.15)

In quantum field theory, this expression also becomes an opera-
tor which we call the Hamiltonian:

H ⌘
Z

d3x T0
0 y

Eq. 4.35

=
Z

d3x
∂L

∂(∂0f)
∂0f � L

y

L =
1
2
(∂µf∂µf � m2f2) (Eq. 5.2)

=
Z

d3x
✓
(∂0f)2 � 1

2
(∂µf∂µf � m2f2)

◆

y

∂µ∂µ = ∂0∂0 � ∂i∂i

=
1
2

Z
d3x

⇣
(∂0f)2 + (∂if)

2 + m2f2
⌘

y

∂0f ⌘ p (Eq. 8.11)

=
1
2

Z
d3x

⇣
p2 + (∂if)

2 + m2f2
⌘

. (8.16)

The integrand 1
2
�
p2 + (∂if)

2 + m2f2� describes the energy
density of a scalar field. By using the explicit formulas for the
conjugate momentum density (Eq. 8.12 ) and the field itself
(Eq. 5.51), the energy can be written as5 5 Note how similar this formula

is to the formula we derived for
the energy of a harmonic oscillator
(Eq. 7.62):

H =
h̄w

2

⇣
a†a + aa†

⌘
.

H =
1
2

Z
dk3 wk

(2p)3

⇣
a†(~k)a(~k) + a(~k)a†(~k)

⌘
. (8.17)
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This is demonstrated in Appendix A.5. We can then use the
commutator relation (Eq. 8.14),

(2p)3d(~k �~k0) = [a(k), a†(k0)] y

[A, B] ⌘ AB � BA
= a(~k)a†(~k0)� a†(~k0)a(~k) y

(2p)3d(~k �~k0) + a†(~k0)a(~k) = a(~k)a†(~k0) , (8.18)

to simplify Eq. 8.17:

H =
1
2

Z
dk3 wk

(2p)3

⇣
a†(~k)a(~k) + a(~k)a†(~k)

⌘

y

Eq. 8.18

=
1
2

Z
dk3 wk

(2p)3

⇣
a†(~k)a(~k) + (2p)3d(~k �~k) + a†(~k)a(~k)

⌘

y

=
1
2

Z
dk3 wk

(2p)3

⇣
2a†(~k)a(~k) + (2p)3d(~0)

⌘

y

=
Z

dk3 wk
(2p)3 a†(~k)a(~k) +

1
2

Z

V
dk3wkd(~0) . (8.19)

This result is problematic. The second term on the right-hand
side yields infinity since d(~0) describes an infinitely high spike
and we integrate over infinitely many such spikes here.

We can understand this strange result by recalling that the
ground state energy of a harmonic oscillator in quantum me-
chanics is non-zero E0 = h̄w

2 .6 Intuitively this means that a6 We discovered this in Section 7.2.

quantum oscillator can never be completely at rest and always
oscillates a little bit. If we imagine a field as a network of oscil-
lators, we can therefore conclude that the ground state energy of
a field is non-zero too. Moreover, since we imagine that there is
an oscillator attached to each spacetime point, our field consists
of infinitely many oscillators.7 From this perspective it’s not too7 If we assume that spacetime is

continuous, there are infinitely
many points between any two given
points. Since we attach an oscillator
to each point, there are infinitely
many oscillators in our network.

surprising that we find a field energy that is formally infinitely
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large. But this is not a problem as long as we are only interested
in excitations above the ground state. In fact, in physics we are
usually only interested in energy differences. Each field config-
uration is characterized by its energy above the formally infinite
ground state energy.

For example, we can imagine that one field configuration is
characterized by the energy

E1 = e1 +
1
2

Z
dk3wkd(~0) , (8.20)

while a second field configuration is characterized by

E2 = e2 +
1
2

Z
dk3wkd(~0) . (8.21)

Formally, both field energies are infinite. But the information we
are usually interested in is how far the field is excited above the
ground state. This is described by e1, e2.

A pragmatic solution is therefore to simply ignore the infinite
contribution from the ground state and focus on the contri-
bution to the total energy that characterizes non-trivial field
configurations:

H ⌘
Z

dk3 wk
(2p)3 a†(~k)a(~k) . (8.22)

The operator

H ⌘ wka†(~k)a(~k) . (8.23)

is commonly called the Hamiltonian density.

This approach works quite well for most applications in which
we can ignore the non-trivial ground state structure of quantum
fields. The ground state of quantum fields is an exciting topic in
its own right and we will revisit the issue in Chapter 14.

With this formula at hand, we can finally figure out the mean-
ing of the operators a†(~k), a(~k). A key ingredient is the commu-
tator:8 8 We will see in a moment why

knowing this commutator is really
useful if we want to understand the
meaning of a†(k).



316 no-nonsense quantum field theory

[H, a†(~k0)] y

Eq. 8.22

=

" Z
dk3 1

(2p)3 wka†(~k)a(~k)

!
, a†(~k0)

#

y
[A, B] ⌘ AB � BA

=
Z

dk3 1
(2p)3 wk

⇣
a†(~k)a(k)a†(~k0)� a†(~k0)a†(~k)a~(k)

⌘
y

[a†(~k), a†(~k0) = 0 (Eq. 8.14)]

=
Z

dk3 1
(2p)3 wk

⇣
a†(~k)a(~k)a†(~k0)� a†(~k)a†(~k0)a(~k)

⌘

y

AB � BA ⌘ [A, B]

=
Z

dk3 1
(2p)3 wka†(k)[a(~k), a†(~k0)]

y

Eq. 8.14

=
Z

dk3wka†(~k)d3(k � k0)

y Z
dx0 f (x0)d(x � x0) = f (x)

= wk0 a†(~k0) . (8.24)

Analogously, we can compute

[H, a(~k0)] = �w~k0 a(
~k0) (8.25)

In the quantum framework, we act with operators on abstract
objects |yi that describe the system in question. For example,
if we act with the energy operator H on a system that we pre-
pared in an energy eigenstate, we find

H |yEi = E |yEi , (8.26)

where E denotes the energy of the system. What we want to
understand is what happens when we act with a field operator
or, equivalently, with a(k), a†(~k) on a ket |yi.

To that end, we check if a(~k) changes the energy of a given
system:9

9 The steps here are completely
analogous to what we did in
Eq. 7.67 to understand the meaning
of the harmonic oscillator ladder
operators.



quantum fields 317

H
⇣

a(~k0) |yEi
⌘
= (Ha(~k0)� a(~k0)H + a(~k0)H) |yEi �a(~k0)H + a(~k0)H = 0y

Ha � aH ⌘ [H, a]
= a(~k0)H |yEi+ [H, a(~k0)] |yEi y

Eq. 8.26
= a(~k0)E |yEi+ [H, a(~k0)] |yEi y

Eq. 8.25

=
⇣

a(~k0)E�wk0 a(~k0)
⌘
|yEi y

=
⇣

E � wk0
⌘⇣

a(~k0) |yEi
⌘

. (8.27)

In words, this means that the operator a~k0 lowers the energy of
the system by wk0 . Analogously, we can compute

H
⇣

a†(~k0) |yEi
⌘
=
⇣

E + wk0
⌘⇣

a(~k0) |yEi
⌘

. (8.28)

Therefore, we can conclude that a†(~k0) raises the energy of the
system by wk0 .

Formulated differently,
⇣

a†(~k0) |yEi
⌘

describes a new config-

uration of the system with energy E + wk0 , while
⇣

a(~k0) |yEi
⌘

describes a new configuration with energy E � wk0 .

In an analogous way to the case of the harmonic oscillation dis-
cussed in Section 7.2, we can act with the operators a(~k0) and
a†(~k0) repeatedly on a given ket and move up and down the
energy ladder in this way. To understand all of this a bit better,
let’s assume that we are dealing with a completely empty sys-
tem which is described by |0i. In field theory, this corresponds
to a ground state configuration of the field. If we act on |0i with
a†(~k), we get a configuration with an energy that lies wk above
the ground state energy:

a†(~k) |0i ⌘ |1~ki with H |1~ki = (E0 + wk) |1~ki , (8.29)

where E0 denotes the ground state energy which, as discussed
above, is set to zero. If we now act with a†(~k) on the ket we
created this way, we find a new configuration with an even
larger energy:

a†(~k) |1~ki ⌘ |2~ki with H |2~ki = (E0 + 2wk) |2~ki . (8.30)
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Moreover, if we act on the configuration we created this way
with an operator a†(~k0) that is labeled by a different wave vector
~k0, we find

a†(~k0) |2~ki ⌘ |2~k1~k0 i with H |2~k1~k0 i = (E0 + 2wk +wk0) |2~k1~k0 i .

We say that a†(~k) creates a particle with momentum~k.10 The10 Reminder: in quantum mechanics
the wave number~k and the mo-
mentum ~p are directly related. We
discussed this in Section 7.1.7.

energy of a particle created this way is wk =
p

m2 +~k2, which
is the relativistic energy-momentum relation (Eq. 2.43), E =p

m2 + ~p2, in disguise. Similarly, we say that a(~k) annihilates
a particle of momentum~k. We call a†(~k) a creation operator
and a(~k) an annihilation operator. An important property
of the annihilation operator is that if it acts on a completely
empty system |0i we find zero because there is nothing left the
operator could annihilate

a(~k) |0i = 0 . (8.31)

This is the defining property of the ground state |0i.

It’s entirely normal to be a bit confused at this point. In par-
ticular, it’s natural to wonder: what about energy and charge
conservation? How can we create a particle in an empty system
without violating these fundamental conservation laws? Even
Richard Feynman was confused about this as he recalled in his
Nobel lecture:

"I remember that when someone had started to teach me about
creation and annihilation operators, that this operator creates an
electron, I said, "how do you create an electron? It disagrees with
the conservation of charge", and in that way, I blocked my mind
from learning a very practical scheme of calculation."

We will see later that creation and annihilation operators act in
quantum field theory in a way that makes sure that the funda-
mental conservation laws are respected. The operators a†(k) and
a(k) appear under an integral that represents a physical field
configuration. Moreover, they necessarily act on a ket |yi which
describes the system that we prepared in a particular way. Em-
bedded in this context, there is nothing strange about the way
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creation and annihilation operators act. It’s only if we look at
them in isolation that they seem a bit strange.

By using this new interpretation of a†(~k) and a(~k) it is instruc-
tive to take a second look at the Hamiltonian operator (Eq. 8.22):

H ⌘
Z

V
dk3 wk

(2p)3 a†(~k)a(~k) . (8.32)

The result if this operator acts on a ket like |2~k1~k0 i should be
(ignoring a possibly non-zero ground state energy E0)

H |2~k1~k0 i = (2wk + wk0) |2~k1~k0 i . (8.33)

This suggests that N(~k) ⌘ a†(~k)a(~k) is a number operator that is
able to extract the number of particles with momentum k from a
given ket.11 For example 11 Similarly, we defined the number

operator for the harmonic oscillator
in Eq. 7.71.N(~k) |2~k1~k0 i = 2 |2~k1~k0 i (8.34)

and
N(~k0) |2~k1~k0 i = 1 |2~k1~k0 i . (8.35)

In general
N(~k) |n~kn~k0 , . . .i = n~k |n~kn~k0 . . .i . (8.36)

The Hamiltonian operator in terms of the number operator
reads

H =
Z

V
dk3 wk

(2p)3 N(~k) . (8.37)

We can understand the meaning of this formula as follows. The
number operator N(~k) extracts the number of particles with
momentum~k from the ket the Hamiltonian operator acts on.
Then we multiply the resulting number with the corresponding
energy associated with each such particle wk. In addition, we
integrate over all possible momenta, which makes sure that we
extract all particles from the given ket. This way, we can sum
over the energies of all of the individual particles and find the
total energy of the system.
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We’ve discovered that when we act with the creation operator
a†(~k) on the ground state ket |0i, we get a ket that describes a
single particle with energy wk =

p
m2 +~k2:

|1~ki ⌘ a†(~k) |0i . (8.38)

The notation already suggests that |1~ki describes a particle with
momentum~k. As usual in the quantum framework, we can
check this by using the momentum operator P̂i. Momentum is
the Noether charge associated with invariance under spatial
translations xi ! xi + ei and reads (Eq. 4.39):

P̂i ⌘
Z

V
d3x T0

i y

Eq. 4.35

=
Z

V
d3x

⇣ ∂L
∂(∂0f)

∂if � di
0L
⌘

y

L = . . . (Eq. 5.2), di
0 = 0

=
Z

V
d3x

∂
⇣

1
2 (∂µf∂µf � m2f2)

⌘

∂(∂0f)
∂if y

∂xx2 = 2x

=
Z

V
d3x ∂0f∂if y

Eq. 8.11

=
Z

V
d3x p∂if . (8.39)

By using the explicit expansions of the conjugate momentum
density p (Eq. 8.12) and f (Eq. 5.51), we can rewrite this in
terms of the operators a(~k) and a†(~k):

P̂i =
Z

V

d3k
(2p)3 kia†(~k)a(~k) . (8.40)

This is demonstrated in Appendix A.6. If we act with this mo-
mentum operator on our particle state |1~ki, we find
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P̂i |1~ki = P̂i

⇣
a†(~k) |0i

⌘

y

Eq. 8.40

=
⇣ Z

V

d3k0

(2p)3 kia†(~k0)a(~k0)
⌘⇣

a†(~k) |0i
⌘

y

Eq. 8.14

=
Z

V

d3k0

(2p)3 kia†(~k0)
⇣

a†(~k)a(~k0) + (2p)3d(~k �~k0)
⌘
|0i

y
a(~k0) |0i = 0 (Eq. 8.31)

=
Z

V

d3k0

(2p)3 kia†(~k0)(2p)3d(~k �~k0) |0i

y

Z
dx0 f (x0)d(x � x0)

= f (x)
= kia†(~k) |0i y

a†(~k) |0i ⌘ |1~ki
= ki |1~ki X (8.41)

This tells us that |1~ki is indeed a momentum eigenstate with
momentum~k.

In summary, we discovered that if we act with a creation opera-
tor a†(~k) on the ground state ket |0i, the result is an energy and
momentum eigenstate:

|1~ki ⌘ a†(~k) |0i
with H |1~ki = wk |1~ki (this is Eq. 8.29) ,

P̂i |1~ki = ki |1~ki (this is Eq. 8.41) ,

and a(~k) |0i = 0 (this is Eq. 8.31) . (8.42)

It is conventional to say that |1~ki describes a particle with mo-
mentum~k and energy wk. In the following section, we will dis-
cuss why and how this statement must be refined for real-world
particles.
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8.4 Particle States

We can define that the ground state |0i is normalized

h0|0i = 1 . (8.43)

But what about all of the other kets that we get by acting with a
ladder operator a†(~k) on this ground state?

By using the commutation relation in Eq. 8.14 and the fact that
|1~ki ⌘ a†(~k) |0i implies12 h1~k| = h0| a(~k), we can calculate

12 This follows because hy| ⌘ |yi†

and therefore h1~k | ⌘ (|1~ki)
† =

(a†(~k) |0i)† = h0| a(~k).

h1~k|1~k0 i = h0|a(~k)a†(~k0)|0i y

�a†(~k0)a(~k) + a†(~k0)a(~k) = 0

= h0|
⇣

a(~k)a†(~k0)� a†(~k0)a(~k) + a†(~k0)a(~k)
⌘
|0i y

a(~k) |0i = 0 (Eq. 8.31)
= h0|[a(~k), a†(~k0)]|0i y

Eq. 8.14

= h0|
⇣
(2p)3d(~k �~k0)

⌘
|0i y

=
⇣
(2p)3d(~k �~k0)

⌘
h0|0i y

h0|0i = 1 (Eq. 8.43)
= (2p)3d(~k �~k0) . (8.44)

In words, this means that the kets describing particles with
different momenta are orthogonal since d(~k �~k0) yields zero
except for~k =~k0.

In addition, recall that we introduced a(~k), a†(~k) in Eq. 5.52 as
rescaled versions of the original coefficients:

a(k) ⌘
p

2wka(~k)

a†(k) ⌘
p

2wka†(~k) . (8.45)

We can define
a†(k) |0i ⌘ |1ki . (8.46)

These states are related to the particle states we worked with so
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far by

|1ki ⌘ a†(k) |0i y

Eq. 8.45
=
p

2wka†(~k) |0i y

|1~ki ⌘ a†(~k) |0i
=
p

2wk |1~ki . (8.47)

This implies that states like |1ki are normalized as follows

h1k|1k0 i
Eq. 8.47
= 2

p
wk

p
wk0 h1~k|1~k0 i y

Eq. 8.44
= 2

p
wk

p
wk0(2p)3d(~k �~k0) y

d(~k �~k0) = 0 for k 6= k0

= 2wk(2p)3d(~k �~k0) . (8.48)

What we just discovered is interesting because we learn that
we cannot observe the states described by |1ki or |1~ki in the
real world. In quantum theories, we always use a probabilistic
interpretation. The probability to find a system in the state y2

if we prepare it in the state y1 reads in the quantum framework
P(y1 ! y2) = | hy2|y1i |2. This probabilistic interpretation only
makes sense if the probability to find the system in the state y1
if we prepare it (at the same moment in time) in the state y1 is
100%:

P(y1 ! y1) = | hy1|y1i |2 = 1 . (8.49)

In mathematical terms this implies that we need normalized
states in order to get sensible probabilities. But we just discov-
ered that

h1k|1ki = 2wk(2p)3d(~k �~k) = 2wk(2p)3d(~0) . (8.50)

Since d(~0) represents formally an infinitely large peak, there is
no way how we can normalize a state like |1ki (and analogously
|1~ki).

The physical reason for this strange fact is that |1~ki describes
a particle with perfectly known momentum |~ki. In quantum
theories, however, this implies that we have no information
about the particle’s location due to the uncertainty relation.13 13 We will discuss the uncertainty

relation in more detail in Sec-
tion 8.4.2.

Therefore this is not a realistic setup. How can we talk about a
particle if we have absolutely no idea where it is located? Let’s
try to understand this difficulty a bit better.
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8.4.1 Plane Waves

We discussed in Section 7.1.6 that it is often illuminating to
expand a given abstract ket |yi in terms of basis vectors. Mathe-
matically this is possible by inserting a complete basis:

|yi =
Z

dx0 |x0i hx0|yi y

y(x0) ⌘ hx0|yi

=
Z

dx0y(x0) |x0i , (8.51)

where we used that
R

dx |xi hx| = 1 (Eq. 7.41). Moreover, we can
project out the amplitude for one specific location x, as usual, by
using the corresponding bra hx|:

hx|yi = hx|
⇣ Z

dx0y(x0) |x0i
⌘

y

we integrate over x0 not x

=
Z

dx0y(x0) hx|x0i y

hx|x0i = d(x � x0)

=
Z

dx0y(x0)d(x � x0)

y Z
dx0 f (x0)d(x � x0) = f (x)

= y(x) . (8.52)

Thus it would be nice if we could somehow understand our
newly defined states |1~ki similarly in terms of a concrete basis.

To that end, we do something that is long overdue: we discuss
what happens when a field f (and not just one of the coeffi-
cients a†(~k)) acts on the ground state |0i. First of all, we intro-
duce the notation

|1~xi ⌘ f(~x) |0i . (8.53)

It is quite tempting to say that |1~xi describes a particle that
is localized at ~x. One motivation for this point of view is the
formal similarity between the operator (Eq. 5.51 with t = 0)14

14 For simplicity, we evaluate our
field in this section at one specific
moment in time. We will discuss
the time evolution of fields in the
next chapter.

f(~x) =
Z

dk3 1
(2p)3p2wk

⇣
e�i(~k·~x)a(~k) + ei(~k·~x)a†(~k)

⌘
(8.54)

and the position operator of a quantum mechanical harmonic
oscillator (Eq. 7.59)

x =

r
h̄

2mw
(a + a†) . (8.55)
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Moreover, we will see below that we can use the basis vectors
|1~xi defined in Eq. 8.53 quite analogously to how we use |xi in
Eq. 8.52.

However, there are still quite a few poorly understood technical
issues with such an interpretation. Most importantly, the state
that we label in quantum field theory by |1~xi is definitely not
the same state that we label by |~xi in quantum mechanics.15

15 Most standard textbooks tell their
readers that f(~x) |0i represents
a particle at ~x. This is certainly a
perfectly valid attitude if you’re
just starting out. But if you’re a bit
further in your studies it’s worth
going down the rabbit hole and
reading about the problems we
encounter if we try to interpret
|1~xi ⌘ f(~x) |0i this way. Technically,
the quantum-mechanical |~xi is "d"-
localized, while |1~xi is only almost
localized at a point. We will see this
more explicitly in Section 8.5. For
an extensive discussion see

T. Padmanabhan. Obtaining
the Non-relativistic Quantum
Mechanics from Quantum Field
Theory: Issues, Folklores and Facts.
Eur. Phys. J., C78(7):563, 2018. doi:
10.1140/epjc/s10052-018-6039-y

Nevertheless, let’s try to understand the state defined in Eq. 8.53
by using the explicit field expansion (Eq. 5.51)

|1~xi ⌘ f(~x) |0i y

Eq. 5.51

=
⇣ Z

dk3 1
(2p)3p2wk

⇣
e�i(~k·~x)a(~k) + ei(~k·~x)a†(~k)

⌘ ⌘
|0i

y

a(~k) |0i = 0 (Eq. 8.31)

=
Z

dk3 1
(2p)3p2wk

ei(~k·~x)a†(~k) |0i

y

|1~ki ⌘ a†(~k) |0i (Eq. 8.38)

=
Z

dk3 1
(2p)3p2wk

ei(~k·~x) |1~ki . (8.56)

Here, we act with the ladder operator a†(~k) on our empty state
ket |0i. This way we create a field excitation with momentum
~k. However, we integrate over all possible momenta~k and thus
create a superposition of field excitations of all possible mo-
menta.

Schematically, we have

|1~xi ⇠ Â
i

ei(~ki ·~x)a†(~ki) |0i

y

= ei(~k1·~x)a†(~k1) |0i+ ei(~k2·~x)a†(~k2) |0i+ . . . y

a†(~k1) |0i ⌘ |1~ki (Eq. 8.29)

= ei(~k1·~x) |1~k1
i+ ei(~k2·~x) |1~k2

i+ . . . . (8.57)

Each field excitation in this superposition is weighted by a plane
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wave factor e�i(~ki ·~x).1616 Take note that this does not mean
that |1~xi consists of infinitely many
field excitations. Instead, we learn
that different field configurations
with definite momenta are in
principle possible if we prepare a
field in the state |1~xi.

Therefore, we learn here that the state described by |1~xi is a
superposition of all possible field excitations with well-defined
momentum values. This means that for the state described by
|1~xi it’s possible to measure, in principle any momentum value.
This is exactly what we would expect for a particle that is per-
fectly localized in space, as a result of the quantum mechanical
uncertainty relation.1717 Roughly, the (Heisenberg) uncer-

tainty relation tells us that the more
a particle is localized in space, the
less localized it is in momentum
space and vice versa.

But before we talk about uncertainty in more detail, let’s finish
our discussion of the definite momentum states |1~ki. In par-
ticular, as suggested at the beginning of this section, we want
to understand them better by expanding them in terms of a
concrete basis.

Motivated by the result in Eq. 8.52, we multiply |1~ki by h1~x| in
order to determine the position representation of the abstract
ket |1~ki:

18

18 Reminder: in quantum mechanics,
we have (Eq. 8.52)

hx|yi = y(x) ,

where y(x) is the position represen-
tation of the abstract ket |yi.

h1~x|1~ki
Eq. 8.38
= h1~x|

⇣
a†(~k) |0i

⌘

y

Eq. 8.56 and hy| ⌘ |yi†

=
⇣ Z

dk03
1

(2p)3p2wk0
ei(~k0 ·~x)a†(~k0) |0i

⌘†⇣
a†(~k) |0i

⌘

y

hy| Ô ⌘ (Ô† |yi)†

=
⇣ Z

dk03
1

(2p)3p2wk0
e�i(~k0 ·~x) h0| a(~k0)

⌘⇣
a†(~k) |0i

⌘

y

Eq. 8.14

=
Z

dk03
1

(2p)3p2wk0
e�i(~k0 ·~x) h0|

⇣
a†(~k)a(~k0) + (2p)3d(~k0 �~k)

⌘
|0i

y

a(~k0) |0i = 0 (Eq. 8.31)

=
Z

dk03
1p

2wk0
e�i(~k0 ·~x)d(~k0 �~k) h0|0i

y Z
dx0 f (x0)d(x � x0) = f (x)

=
1p
2wk

e�i(~k·~x) . (8.58)

This is almost exactly the wave function that describes a particle
with momentum~k in quantum mechanics (Eq. 5.44):

yk(~x) ⌘ h~x|~ki = e�i~k·~x . (8.59)
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The only difference is the normalization factor 1
2wk

. We can get
rid of this factor by using the rescaled momentum eigenstates
that we already introduced in Eq. 8.45:

|1ki ⌘
p

2wk |1~ki =
p

2wka†(~k) |0i . (8.60)

If we repeat the calculation in Eq. 8.58 with this modified state,
we find

h1~x|1ki = e�i~k·~x . (8.61)

In any case, what we’ve discovered here lends further support
to the idea that |1~xi ⌘ f(~x) |0i is at least somewhat analogous
to the position eigenstates |~xi that we use in quantum mechan-
ics.

As a final comment, note that we can understand why it’s some-
times more convenient to work with a(k), a†(k), |1ki instead
of a(~k), a†(~k), |1~ki. In the latter case, we have a simpler inner
product of momentum eigenstates (Eq. 8.44)

h1~k|1~k0 i = (2p)3d(~k �~k0) , (8.62)

compared to (Eq. 8.48)

h1k|1k0 i = 2wk(2p)3d(~k �~k0) . (8.63)

However, if we use a(k), a†(k), |1ki we find proper plane waves
(Eq. 8.61)

h1~x|1ki = e�i~k·~x (8.64)

which we can compare with (Eq. 8.58)

h1~x|1~ki =
1p
2wk

e�i(~k·~x) . (8.65)

Ultimately, it’s just a matter of taste which of the two conven-
tions we use as long as we keep everything consistent.

8.4.2 The Uncertainty Relation

Now let’s revisit the topic of uncertainty. On the one hand,
we’ve discovered that the ket |1~xi which describes an (almost)
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localized field excitation can be thought of as a superposition of
infinitely many states with well-defined momenta (Eq. 8.56). In
physical terms, this means that while we can be quite certain to
find the field excitation at ~x, we have no idea what its momen-
tum is. Formulated differently, the field excitation is completely
delocalized in momentum space. On the other hand, we discov-
ered that a momentum eigenstate |1~ki can be represented as a
plane wave (Eq. 8.58). A plane wave spreads out all over space
with equal amplitude. Thus, for a particle described by a plane
wave, there is no way to answer the question: where exactly is
the particle located?

This interplay between states with well-defined momentum and
states with well-defined position is a key feature of quantum
theories.

To understand why, let’s consider a rope. We can generate a
wave in a long rope by shaking it rhythmically up and down:

If someone were to ask us where the wave is, we wouldn’t have
a good answer since the wave is spread out. But if we are asked:
"What’s the wavelength of the wave?", we could easily answer
this question and state: "It’s around 6cm."

We can also generate a different kind of wave in a rope by jerk-
ing it only once.
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This way, we get a narrow bump that travels down the line. For
this kind of wave, we can easily answer the question: "Where
precisely is the wave?". But we have a hard time answering
the question: "What’s the wavelength of this wave?", since the
wave isn’t periodic and it’s completely unclear how (or if) we
can assign a wavelength to it. Analogously, we can generate
any kind of wave in between these two edge cases and there is
always a trade-off. The more precisely the position of the wave
is localized, the more ambiguous the wavelength becomes, and
vice versa. To make this idea more precise, recall that we can
think of a localized wave as a superposition of dozens of other
waves with well-defined wave-lengths19. 19 Such waves with well-defined

waves lengths are known as plane
waves. The expansion of a general
bump in terms of such plane waves
is exactly the idea behind the
Fourier transform. The uncertainty
we end up with this way is a
general feature of waves and known
as the bandwidth theorem.

If we add lots of waves with different wavelengths, they will
average out almost everywhere. But we can arrange the waves
such that, in a small region, they don’t cancel each other out.
This is true for all waves. Since in quantum theories, we de-
scribe particles as field excitations, it also applies here. In quan-
tum theories, the wavelength is directly related to its momen-
tum (Eq. 7.1.7)

l =
h
p

(8.66)

The larger the momentum p, the smaller the wavelength l of
the wave that describes the particle. Therefore, a spread in
wavelength corresponds to a spread in momentum. What this
means in physical terms is exactly what we talked about above:
We can’t know the location and momentum of particles with
arbitrary precision:



330 no-nonsense quantum field theory

The uncertainty relation that we arrive at tells us:

The more precisely we determine the location of

a particle, the less precisely we are able to

determine its momentum and vice versa.

8.4.3 Dealing with Non-Normalizable States

Above, we have learned that in the position basis the states with
perfectly known momentum are represented by plane waves
h1~x|1~ki = ei~k·~x.20 As mentioned in the previous section, a prob-20 To unclutter the notation, we use

the rescaled momentum vectors
introduced in Eq. 8.60.

lematic aspect of plane waves that already pops up in quantum
mechanics is that they fill the entire space with equal amplitude.
This implies that plane wave states are not normalizable.

h1~k|1~ki =
Z •

�•
d3x h1~k|1~xih1~x|1~ki y

Eq. 8.61

=
Z •

�•
d3x e�i~k·~xei~k·~x

y

=
Z •

�•
d3x 1 = • . (8.67)

This nonsensical result shouldn’t be too surprising. Whenever
we talk about particles in the real-world we have at least some
idea where they are localized in space. Thus plane wave states
aren’t something that we can observe in Nature. In the follow-
ing section, we will discuss more realistic particle states. How-
ever, plane waves are extremely convenient from a mathematical
point of view and therefore it makes sense to discuss how we
can use them despite their problems.

One way out of this difficulty is to restrict ourselves to systems
with finite volume V.21 In this case, we find21 If we consider dynamical fields,

we need to introduce a finite
spacetime volume. This means that
we imagine that our system lives in
a finite box of volume V and that
everything happens during a finite
time span T. The corresponding
spacetime volume reads VT.

h1k|1ki =
Z

V
d3x h1k|1~xih1~x|1ki

y

=
Z

V
d3x 1 = V . (8.68)
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Since V is some possibly large but finite number, we can nor-
malize our plane wave states. The idea to only consider finite
volumes is, of course, quite reasonable. In real-world experi-
ments we always isolate a tiny subsystem from the rest of the
universe and then try to predict what is going on within the
isolated box. In addition, the actual volume of the box doesn’t
matter since it drops out from all of our predictions. For exam-
ple, if we want to calculate the probability of finding the system
in the state f after preparing it in the state i, we can work with
non-normalized states as long as we restrict ourselves to ratios
of probabilities

P(i ! f ) =
| h| f |U|ii |2
h f | f i hi|ii , (8.69)

where U is an operator that describes how |ii changes in time.
The factor h f | f i hi|ii in the denominator makes sure that all
dependencies on possible norms and thus on the spacetime
volume V drop out from our predictions.

If we recall the integral representation of d(~k):

d(~k) =
Z d3x

(2p)3 e�i~k·~x , (8.70)

we can use exactly the same steps as in Eq. 8.67 to derive a
relation that is used quite often in quantum field theory:

d(~0) =
Z •

�•

d3x
(2p)3 e�i~0·~k

y

= lim
V!•

Z

V

d3x
(2p)3 1

y

=
1

(2p)3 lim
V!•

Z

V y

=
1

(2p)3 lim
V!•

V . (8.71)

This is often used to replace occurrences of (2p)3d(~0) by V. If
we do this everywhere, the volume V drops out and we can
eventually take the limit limV!• without problems.
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The trick we just discussed is, in fact, standard practice in quan-
tum field theory. The whole procedure can be summarized as
follows:

1. We work with non-normalizable states like |1~ki and infinite
spacetime volumes because this simplifies many calculations.

2. Once most of the work is done, we make sure that we don’t
predict nonsensical things like a probability ⇠ •. Since a
cancellation •

• is not a sensible mathematical thing to do,
we temporarily introduce a finite spacetime volume V which
allows us to cancel all occurrences of V.

3. Finally, we can go back to an infinite spacetime volume
(V ! •) if we want because V no longer plays a role in
our formulas.

This may sound quite awkward and cumbersome, but you
will quickly get used to it. Once we discuss explicit examples,
you will see that this procedure is actually simpler than the
alternatives.

In the next section, we will discuss an alternative way to handle
non-normalizable states which is mathematically a bit more
cumbersome but physically quite illuminating.

8.4.4 Wave Packets

When we observe and describe particles in the real world, we
have at least some idea where they are located and know their
momenta fairly well but not exactly. In the quantum frame-
work, we describe such a situation by using a superposition of
possible states

|1isup = Â
i

ci |~kii = c1 |~k1i+ c2 |~k2i+ . . . (8.72)
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where ci is the probability amplitude for the momentum vector
~ki. In words, this formula indicates that several values for the
momentum of the particle are possible. Realistically, we usually
only know that the momentum lies within some range around
some central value~k. Therefore, we replace the sum by an inte-
gral and end up with

|1~ki
range =

Z d3k0

(2p)3 f (~k,~k0) |1~k0 i , (8.73)

where f (~k,~k0) is a smearing function that describes how certain
we are about different possible momenta. The most famous
example is a Gaussian smearing function

f Gauss(~k,~k0) ⌘ Ne�
(~k�~k0)2

2s2 , (8.74)

where N is a normalization constant. The ket in Eq. 8.73 repre-
sents a wave packet that encodes that we are somewhat certain
to find our particle with momentum~k. The uncertainty is en-
coded in the width of the wave packet s. We can check that
|1~ki

range is indeed properly normalized

range h1~k|1~ki
range

y

Eq. 8.73

=
⇣ Z d3k0

(2p)3 f (~k,~k0) h1~k0 |
⌘⇣ Z d3k00

(2p)3 f (~k,~k00) |1~k00 i
⌘

y

=
Z d3k0

(2p)3

Z d3k00

(2p)3 f (~k,~k0) f (~k,~k00) h1~k0 |1~k00 i y

Eq. 8.44

=
Z d3k0

(2p)3

Z d3k00

(2p)3 f (~k,~k0) f (~k,~k00)
⇣
(2p)3d(~k0 �~k)

⌘

y Z
dx0 f (x0)d(x � x0) = f (x),���(2p)3

=
Z d3k0

(2p)3 f (~k,~k0) f (~k,~k0)

y

Eq. 8.74

=
Z d3k0

(2p)3 N2e�
(~k�~k0)2

s2

y Z •

�•
dxe�x2

=
p

p

=
N2p3/2s3

(2p)3 . (8.75)
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Therefore, we find

range h1~k|1~ki
range = 1 (8.76)

if N2 = p3/223

s3 . The exact value of this normalization is not that
important for us. Far more important is that |1~ki

range can indeed
be normalized as opposed to the more idealized states |1~ki.

In summary, we use a ket of the form given in Eq. 8.73 when-
ever we are somewhat uncertain about the particle’s momen-
tum. In the real world, this is always the case. There are, how-
ever, as discussed in the previous section, tricks that are often
used to avoid working with wave packets.

In the following section, we will talk about some of the most
powerful tools in quantum field theory.

8.5 Propagators

We have discovered in the previous section that it’s quite tempt-
ing to say that the ket (Eq. 8.53)

|1~xi ⌘ f(~x) |0i (8.77)

describes a particle located at ~x. In this section, we will see why
this is not quite right. In quantum mechanics, we can define a
position eigenstate |~xi which describes a particle located at ~x. A
defining property of this ket is that for all position eigenstates
evaluated at equal times, we have

h~x0|~xi = d(~x0 �~x) . (8.78)

In words this formula encodes that the particle is localized ex-
actly at ~x since the probability amplitude to find it anywhere
else is zero.22 Therefore, to check if the field configuration de-

22 This formula is only valid for
a fixed moment in time. More
explicitly we can write ht,~x0|t,~xi =
d(~x0 �~x). In contrast, ht0,~x0|t,~xi for
t0 6= t is not necessarily zero for
~x0 6= ~x since the particle can travel
from ~x0 to ~x during the interval
Dt = t0 � t. For t0 = t, the time
interval is zero and thus there
is no way our particle can travel
anywhere as a result of the speed
limit imposed by special relativity.

scribed by |1~xi is localized, we need to evaluate h1~x0 |1~xi. This is
possible by using the explicit definition of |1~xi in Eq. 8.56:
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D(t,~x0, t,~x) y

definition
⌘ h1~x0 |1~xi y

=
⇣

f(~x0) |0i
⌘†⇣

f(~x) |0i
⌘
y

Eq. 8.56

=
⇣ Z

dk03
1

(2p)3p2wk0
ei(~k0 ·~x0) |1~k0 i

⌘†⇣ Z
dk3 1

(2p)3p2wk
ei(~k·~x) |1~ki

⌘

y

|yi† = hy|

=
⇣ Z

dk03
1

(2p)3p2wk0
e�i(~k0 ·~x0) h1~k0 |

⌘⇣ Z
dk3 1

(2p)3p2wk
ei(~k·~x) |1~ki

⌘

y

sorting

=
Z

dk03
Z

dk3 1
(2p)6p2wk0

p
2wk

e�i(~k0 ·~x0)ei(~k·~x) h1~k0 |1~ki y

Eq. 8.44

=
Z

dk03
Z

dk3 1
(2p)6p2wk0

p
2wk

e�i(~k0 ·~x0)ei(~k·~x)�(2p)3d(~k �~k0)
�

y Z
dx0 f (x0)d(x � x0) = f (x)

=
Z dk3

(2p)32wk
e�i(~k·~x0)ei(~k·~x)

y

=
Z dk3

(2p)32wk
e�i~k·(~x0�~x) , (8.79)

where, as usual, wk ⌘
p
~k2 + m2. The most important observa-

tion in Eq. 8.79 is that it is not exactly an integral representation
of the delta distribution, which reads

d(~x �~x0) =
Z dk3

(2p)3 e�i~k·(~x0�~x) . (8.80)

The difference between Eq. 8.79 and Eq. 8.80 is the factor 2wk
in the denominator. This detail is important because it tells us
that h1~x0 |1~xi is not equal to a delta distribution. Therefore, we
can conclude that the field excitation described by |1~xi is not
localized at a single point.

This becomes even more obvious if we believe our colleagues
from the math department who tell us that in the limit of large
distances r � 1 the complicated integral here behaves like e�mr.
Moreover, they tell us that there is a singularity for r ! 0.23

23 To see that the integral diverges
for r ! 0, we observe that r ! 0
implies ~x ! ~x0 and thus the integral
reduces to

Z dk3

(2p)32wk
e�i~k·(~x�~x)

=
Z dk3

(2p)32wk
.

This integral diverges for the same
reasons the integral

R •
�• dx 1p

x2+m2

diverges since wk ⌘
p
~k2 + m2.

While this may seem problematic,
take note that the same comments
as for the result (Eq. 8.44) h1~k |1~k0 i =
(2p)3d(~k �~k0) apply. We get
diverging probability amplitudes
because we consider unrealistic
states that we cannot observe in the
real world.
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Thus even though there is a peak at r = 0, we only find an
exponentially decaying amplitude if we move away from r = 0
and not a completely vanishing amplitude.

We can also see this more visually by evaluating the integral
numerically.24 The result of such a numerical integration is24 Note that the integral in Eq. 8.79

can be solved analytically

h1~x0 |1~xi =
m

4p2r
K1(mr), (8.81)

where r ⌘ |~x � ~x0| and K1 denotes
the so-called modified Bessel
function. Since the Bessel function
cannot be expressed in terms
of elementary functions this is
probably not very illuminating.

schematically shown in the following figure:

In physical terms this implies that there is a non-zero proba-
bility to find a non-zero field excitation at other locations ~x0,
as long as they are sufficiently close to ~x. For a real delta peak,
the probability is exactly zero except for ~x0 = ~x. In summary, a
particle-like field excitation is not completely localized in quan-
tum field theory.

8.5.1 Dynamical Propagators

In the previous section, we’ve talked about the probability am-
plitude of finding the particle at location x0 at the same moment
in time that it was prepared at the location x. For the sake of
clarity, from here on we will say that |1~xi describes a particle ~x.
By using the particle language, we say that h1~x0 |1~xi is the prob-
ability amplitude to find the particle that we prepared at the
location ~x at the same moment in time at the location ~x0.

The situation gets even more interesting if we consider the prob-
ability amplitudes for transitions between different moments in
time. Completely analogous to what we did in Eq. 8.79, we can
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calculate that this more general probability amplitude reads

D(t0,~x0, t,~x) ⌘ h1t0 ,~x0 |1t,~xi =
Z dk3

(2p)32wk
e

i
⇣

wk ·(t0�t)�~k·(~x0�~x)
⌘

=
Z dk3

(2p)32wk
eikµ(x0µ�xµ) . (8.82)

This is the probability amplitude to find a particle that we pre-
pared at ~x at t, at the position ~x0 at t0. We call D(t0,~x0, t,~x) the
propagator.25 For equal times t = t0 this is exactly the am- 25 We will discuss several special

propagators below. This is the basic
building block of all propagators.

plitude that we found in Eq. 8.79. In words, the amplitude in
Eq. 8.79 contains information about the static structure of our
field, while the amplitude in Eq. 8.82 also contains information
about how a field changes dynamically.

Instead of studying the general amplitude in Eq. 8.82 it makes
sense to isolate the dynamical behavior by keeping the location
we consider fixed. In other words, analogous to how we consid-
ered the equal times (t = t0) special case in the previous section,
we now consider the equal positions (~x = ~x0) special case of
Eq. 8.82. By using Eq. 8.82 we can immediately write down the
amplitude of finding the particle at a possibly different moment
in time at the same location:

D(t0,~x, t,~x) ⌘ h1t0 ,~x|1t,~xi y

Eq. 8.82 with ~x = ~x0

=
Z dk3

(2p)32wk
e

i
⇣

wk ·(t0�t)�~k·(~x�~x)
⌘

y

~x �~x = 0

=
Z dk3

(2p)32wk
eiwk ·(t0�t)

y

wk ⌘
q
~k2 + m2

=
Z dk3

(2p)32
p
~k2 + m2

ei
p
~k2+m2·(t0�t) (8.83)

This amplitude is very different from the static amplitude
(Eq. 8.79) that we considered in the previous section.26 This 26 For your convenience: Eq. 8.79

reads

h1t,~x0 |1t,~xi =
Z dk3

(2p)32wk
e�i~k·(~x0�~x) .

becomes especially obvious if we ask our friends from the math
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department once more who tell us that for long time spans
T ⌘ |t0 � t| � 1, the integral in Eq. 8.83 behaves like eimT .
In contrast, the static amplitude (Eq. 8.79) behaves in the long
range limit r � 1 like e�mr. The imaginary unit in the expo-
nent makes all the difference. While e�mr is a rapidly vanishing
function, e�imT oscillates up and down forever.

This makes perfect sense from a physical point of view. The fact
that the static amplitude (Eq. 8.79) vanishes rapidly tells us that
elementary field excitations are quite localized (but not com-
pletely). In contrast, the fact that the dynamical equal position
amplitude oscillates indefinitely means that its quite likely to
find an elementary field excitation at a different moment in time
at the same location.

We are almost ready to talk about the general amplitude (Eq. 8.82)
which encodes information about the likelihood that a particle
moves from one location ~x at t to a different location ~x0 at a dif-
ferent moment in time t0. But first, we need to talk about one
subtlety.

8.5.2 Advanced and Retarded Propagators

In the previous section, I’ve tried to be careful and only talked
about different moments in time and never about earlier or later
moments in time. In this section, we will try to introduce no-
tions like "earlier" and "later" into our formalism.

From a mathematical point of view, we can consider the ampli-
tude D(t0,~x0, t,~x) ⌘ h1t0 ,~x0 |1t,~xi (Eq. 8.82) for t0 > t, for t = t0 and
for t0 < t without problems. But let’s try to put into words what
the amplitude describes in these cases:

B For t0 > t, the amplitude D(t0,~x0, t,~x) tells us how likely it is
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that we find the particle at ~x0 at some later point in time t0 if
we prepare it at ~x at time t.

B For t0 = t, the amplitude D(t0,~x0, t,~x) tells us how likely it is
that we find the particle at ~x0 if we prepare it at ~x at the same
moment in time t.

B For t0 < t, the amplitude D(t0,~x0, t,~x) tells us how likely it
is that the particle was at ~x0 at some earlier point in time t0 if
it is at ~x at time t. This case can be quite confusing because
here we consider a "final state" which is located at an earlier
moment in time.

If we want to use the amplitude h1t0 ,~x|1t,~xi to predict how a
given field configuration evolves in time, we need to make sure
that t0 > t. In contrast, for t0 < t we can use the amplitude
h1t0 ,~x|1t,~xi to find out where a given field configuration came
from.

Mathematically, we can describe this by using the so-called
Heaviside step function Q(x) which is zero for x < 0 and equal
to one for x > 0.27 This can be summarized by writing 27 In case it is needed, it is conven-

tional to define that Q(0) = 1
2 .

q =

8
<

:
0, x < 0,

1, x > 0.
(8.84)

Or graphically

With this new tool at hand, we can make sure that t0 > t by
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writing

DR(t0,~x0, t,~x) ⌘ Q(t0 � t)D(t0,~x0, t,~x) , (8.85)

which is called the retarded propagator. This amplitude is zero
for t0 < t since in this case t0 � t < 0 and therefore Q(t0 � t) = 0.
Thus we can write it equivalently as

DR(t0,~x0, t,~x) =

8
<

:
D(t0,~x0, t,~x) t0 > t

0 t0 < t
. (8.86)

In summary, by multiplying the general propagator D(t0,~x0, t,~x)
(Eq. 8.82) by the Heaviside function Q(t0 � t) we can make
sure that we only consider final states which live in spacetime
at a future point in time. Formulated differently, the retarded
propagator allows us to understand how a field configuration
influences the field configuration in the future.28

28 Take note that different books
call different objects the retarded
propagator. One object that is often
called the retarded propagator is

D̃R(t0,~x0, t,~x) ⌘

Q(t0 � t)
⇣

D(t0,~x0, t,~x)� D(t,~x, t0,~x0)
⌘

The reason for this definition is that
this object is a (retarded) Green’s
function of the Klein-Gordon
equation, while the object I called
the retarded propagator is not a
Green’s function. We will discuss
this more explicitly below in the
context of the Feynman propagator
which plays a more important role
in quantum field theory than the
retarded propagator. A closely
related way of motivating this more
complicated retarded propagator
is by recalling that we observed
that the elementary equal-time
propagator D(t,~x, t,~x0)

⌘
behaves

in the long distance limit r =p
(~x �~x0)2 � 1 like e�mr . This

is somewhat problematic because
it implies that distant points can
influence each other even though
no time passes which is against
the spirit of special relativity.
But if we consider the difference
D(t,~x0, t,~x) � D(t,~x, t,~x0) we get
an object that vanishes in the long
distance limit since the two factors
of e�mr cancel. In words this implies
that the amplitude for a particle to
go from ~x to ~x0 cancels exactly with
the amplitude for a particle to go
from ~x0 to ~x. Thus, we get an object
this way that is no longer at odds
with the laws of special relativity.
For this reason the object defined
above is often also called the causal
propagator.

Analogously, we can define the advanced propagator29

29 The comments made in the
sidenote above about alternative
objects that are called the retarded
propagator also apply for the
advanced propagator.

DA(t0,~x0, t,~x) ⌘ Q(t � t0)D(t0,~x0, t,~x) . (8.87)

The only difference to the retarded propagator is that we
switched the place of t and t0 in the argument of the Heavi-
side function. Therefore, this amplitude is only non-zero for
t0 < t. We can write it equivalently as

DR(t0,~x0, t,~x) =

8
<

:
0 t0 > t

D(t0,~x0, t,~x) t0 < t
. (8.88)

We can use the advanced propagator to understand how a given
field configuration was influenced by field configurations in the
past.
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8.5.3 The Feynman Propagator

There is another propagator that we should talk about since it
will become incredibly important in subsequent chapters. We
will discover that if we want to calculate the probabilities of dif-
ferent scattering processes, we regularly encounter expressions
of the form30 30 We will derive in Section 9.3 why

the time ordering operator enters
our description.

Z
d4x

Z
d4x0 h0|Tf(t,~x)f(t0,~x0)|0i , (8.89)

where T is the time ordering operator that is defined as follows:

Tf(t,~x)f(t0,~x0) =

8
<

:
f(t,~x)f(t0,~x0) for t > t0

f(t0,~x0)f(t,~x) for t < t0
. (8.90)

This motivates us to consider the time-ordered propagator

DF(t0,~x0, t,~x) ⌘ h0|Tf(t,~x)f(t0,~x0)|0i , (8.91)

which is commonly called the Feynman propagator.

To understand the Feynman propagator a bit better, take note
that we can write down time-ordered products in more explicit
terms by using the Heaviside function (Eq. 8.84):

Tf(t,~x)f(t0,~x0) = Q(t� t0)f(t,~x)f(t0,~x0)+Q(t0 � t)f(t0,~x0)f(t,~x) .
(8.92)

This is correct because Q(t � t0) is only non-zero for t > t0 and
therefore t0 describes an earlier moment in time. Similarly the
Heaviside function that appears in the second term Q(t0 � t)
is only non-zero for t < t0 and therefore f(t0,~x0)f(t,~x) only
contributes something if t is indeed an earlier moment in time.

Therefore, we can write the Feynman propagator as

DF(t0,~x0, t,~x) ⌘ Q(t0 � t)D(t0,~x0, t,~x) + Q(t � t0)D(t,~x, t0,~x0) .

(8.93)
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where D(t0,~x0, t,~x) ⌘ h0|f(t0,~x0)f(t,~x)|0i = h1t0 ,~x0 |1t,~xi
(Eq. 8.82).

In words, the Feynman propagator is the probability amplitude
that for t0 > t a field excitation moves from ~x to ~x0 and that
for t > t0 an excitation moves from ~x0 to ~x. If we look at the
Feynman propagator in isolation it’s quite hard to understand
why we should care about this particular amplitude. However,
as mentioned above, we care about the Feynman propagator
because it appears in formulas that we use to calculate the prob-
abilities of different scattering processes. Thus it is important to
keep in mind that the role of the Feynman propagator is quite
different from the role played by the retarded propagator dis-
cussed in the previous section. We use the retarded propagator
to calculate the probability of finding a particle at a specific lo-
cation at a later point in time. In contrast, the role played by
the Feynman propagator is analogous to the role played by the
Green’s functions discussed in Chapter 6.3131 In fact, the Feynman propagator

is a Green’s function as we will
discuss below.

A Green’s function is a damping factor that allows us to calcu-
late how the field value at a specific location is influenced by the
field values elsewhere. The impact of non-zero field values gets
smaller if we move further away from the location in question.
How exactly the impact gets smaller depends on the field at
hand and is described in mathematically precise terms by the
corresponding Green’s function.

The prototypical situation that we consider in quantum field
theory is two particles scattering off of each other. In our frame-
work, particles are field excitations and the Feynman propaga-
tor is, like the classical Green’s functions, a damping factor that
tells us exactly how the particles influence each other.
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Let’s say particle A is located at ~x0 at time t0, at ~x1 at time t1
and at ~x2 at time t2, where t0 < t1 < t2. Moreover, we imagine
that a second particle B flies by and is at ~y0 at time t0, at ~y1 at
time t1 and at ~y2 at time t2.

Since in quantum theories we always make probabilistic pre-
dictions, we need to take all possible ways the two particles can
interact with each other into account if we want to describe the
scattering process properly. This means that we need to take
into account how the non-zero field value at ~y0,~y1,~y2 at differ-
ent times influences the field values at ~x0,~x1,~x2.32 32 For the sake of argument, we

say that a particle corresponds to a
non-zero field value.

To start with, let’s consider particle A at a fixed moment in time
t1. How is it influenced by the second particle B? A first idea
could be that we only need to know that the second particle
B is at t1 at ~y1 and then use an appropriate damping factor to
calculate how this influences particle A. But this isn’t correct. To
understand why, let’s imagine that the two particles represent
quite localized spikes in the field that cause little ripples in
the field all the time. It’s through these ripples that particles
influence each other.33 But we know from special relativity that 33 This is just an illustrative picture

and please don’t take it too seri-
ously. In addition, take note that it
is conventional to talk about these
ripples by using the notion of vir-
tual particles. We will discuss this
in more detail below.

there is an upper speed limit and thus these ripples need time
to travel from the location of particle B to the location of particle
A. Moreover, since particle B sends out these ripples all the
time, all of its past positions potentially play a role.
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Mathematically, this means we need to integrate over t in order
to take all the ways particle B influences particle A into account.
If we say for concreteness that ~x0, t0 describe the spacetime point
of particle A and ~x, t describe the spacetime point of particle
B. The first term in the Feynman propagator (Eq. 8.93) Q(t0 �
t)D(t0,~x0, t,~x) describes how ripples move from past locations
of particle B to the present location of particle A. The Heaviside
function makes sure that we only include past locations.

In contrast, the second term in the Feynman propagator (Eq. 8.93)
Q(t � t0)D(t,~x, t0,~x0) yields the probability amplitude that a
field excitation that starts at the location of A hits exactly the
future position of B. This may seem extremely puzzling at first
but can be understood as follows.

First of all, take note that a particle is not only affected when a
ripple hits it but also when it sends out a ripple. This is some-
what analogous to how the trajectory of a boat changes if it is
hit by a ball, but also when we throw a ball whilst we are stand-
ing on the boat.

A key idea in our quantum framework is that while we can
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imagine that each particle sends out ripples all the time, only
those ripples that hit other particles have an impact on the parti-
cle that sent them.

Think of the ripples as probes that each particle sends out all
the time. This continuous process of sending out probes has
no immediate effect on the particle. If, however, one of the
probes hits another particle, the particle that sent the probe is
affected too. This makes sense if we think, for example, about
conservation of momentum. If one of the probes hits another
particle, its momentum gets changed and hence, if momentum
is conserved, the particle that sent the probe must provide the
required momentum and thus is also affected.34 34 As usual in quantum theory

it’s best to not take all of this
too literally. There are no probes
that are sent out continuously.
This follows because they have
absolutely no effect unless they
hit another particle. We will see in
the next chapter in mathematical
terms how these "virtual particles"
(probes) enter the stage.

This is where the second term in the Feynman propagator
comes into play. As mentioned above, this second term is the
probability amplitude that a field excitation that starts at the lo-
cation of particle A hits exactly the future position of particle B.
Thus, this is precisely what we need to calculate (in probabilistic
terms) which probe will hit particle B and thus affects the state
of particle A.

The total effect on a particle is therefore determined by two
factors:
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B How it is hit by the probes that are sent out by other par-
ticles. We can calculate this contribution by using the first
factor in the Feynman propagator that encodes the probabil-
ity amplitude that a probe moves from a location in the past
to the present location of the particle.

B How the probes it sends out itself hit other particles. This
contribution requires that we calculate how the probes move
to different locations in the future. The second term in the
Feynman propagator encodes the probability amplitude for
this to happen.

For completeness, let me mention another way to think about
the Feynman propagator which is more standard but also
more puzzling. In this interpretation (known as the Feynman-
Stückelberg interpretation), we imagine that particle A is af-
fected by "virtual particles" (ripples) that were sent out by parti-
cle B in the past and by virtual antiparticles that are sent out by
particle B in the future. In other words, in this interpretation we
imagine that particle A is only affected when it is hit by virtual
particles that are sent out by particle B. However, some of these
probes move backwards in time. They start from a future posi-
tion of B at some future point in time and then hit exactly the
location of particle A in the present.
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We will talk about antiparticles in more detail in Section 8.6.

The Feynman propagator DF(yµ, xµ) has an illuminating prop-
erty. It’s a Green function of the Klein-Gordon equation:35 35 To unclutter the notation we

define here xµ ⌘ (t,~x) and yµ ⌘
(t0,~x0). Reminder: the defining
property of a Green’s function is
that it yields the delta distribution
if we plug it into the corresponding
equation. In intuitive terms, a
Green’s function encodes the fields
response to a delta-shaped source.
We discussed this in Section 6.1.2.

⇣
∂µ∂µ + m2

⌘
DF(yµ, xµ) = id(xµ � yµ) , (8.94)

where the factor i is a convention that we could equally absorb
into our definition of DF(yµ, xµ). This is why the Feynman
propagator plays such an important role in our description of
how quantum fields interact with each other.

We already learned in Chapter 6 that Green’s functions are
exactly what we need to describe how fields behave in the pres-
ence of interactions. We will see in the next chapter that this is
again true in quantum field theory. An important observation is
that it’s the time-ordering that makes the Feynman propagator a
Green’s function. One hint of why this is true is the fact that the
derivative of the Heaviside function is the delta distribution

dQ(x)
dx

= d(x) . (8.95)

Intuitively this follows because the slope of Q(x) is only non-
zero at x = 0 where it is infinitely steep since the jump from 0 to
1 is discontinuous. We explicitly check in Appendix A.7 that the
Feynman propagator is a Green’s function.

In contrast, the elementary propagator (Eq. 8.82)36 36 Take note that what I call the
elementary propagator here is
usually known as the Wightman
function or two-point correlation
function.

D(t0,~x0, t,~x) ⌘ h0|f(t,~x)f(t0,~x0)|0i = h1t0 ,~x0 |1t,~xi (8.96)

is not a Green’s function. This follows immediately if we plug
it into the Klein-Gordon equation, as shown in Appendix A.7.
Instead, we find that the elementary propagator is a solution
of the free Klein-Gordon equation.37 In other words, if we plug 37 Mathematically, D(t0,~x0, t,~x) is

the kernel of the Klein-Gordon
equation. In many cases the Green’s
function of an equation can be
understood as the product of the
kernel times a Heaviside function.

D(t0,~x0, t,~x) into the Klein-Gordon equation, we find zero and
not a delta distribution:

⇣
∂µ∂µ + m2

⌘
D(yµ, xµ) = 0 . (8.97)
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This is why the more complicated looking Feynman propagator
plays a more important role than the elementary propagator
for interacting quantum fields — even though, of course, the
elementary propagator is an essential building block of the
Feynman propagator.

A somewhat confusing aspect of the Feynman propagator is
that it has many faces. We have already encountered two of
them (Eq. 8.91, Eq. 8.93).38 The most popular way to write the38 For your convenience: Eq. 8.91

reads

DF(yµ, xµ) ⌘ h0|Tf(t,~x)f(yµ)|0i

and Eq. 8.93 reads

DF(yµ, xµ) ⌘ Q(t0 � t)D(yµ, xµ)

+ Q(t � t0)D(xµ, yµ).

Take note that, as before, we use
the notation xµ ⌘ (t,~x) and
yµ ⌘ (t0,~x0).

Feynman propagator, however, looks like this:

DF(yµ, xµ) =
Z d4k

(2p)4
i e�ikµ(xµ�yµ)

kµkµ � m2 + ie
. (8.98)

We will not discuss the steps that allow us to bring Eq. 8.93
into the form given in Eq. 8.98 since this requires a lot of math-
ematical machinery that we don’t really need for our modest
purposes in this book.39 However, we can understand the fi-

39 An important hint is the integral
representation of the Heaviside
function:

Q(t � t0) = i
Z •

�•

dz
2p

eiz(t�t0)

z + ie
.

You can find an understand-
able discussion at http:
//www.quantumfieldtheory.info/
Derivation_of_the_Propagator.
pdf

nal form of the propagator given here because we’ve discussed
above that the Feynman propagator is a Green’s function of the
Klein-Gordon equation (Eq. 8.94) and the formula given here is
almost exactly the Klein-Gordon Green’s function (Eq. 6.14) that
we discussed in Section 6.1.2. 40 The only significant difference

40 Reminder: Eq. 6.14 reads

fs(xµ, yµ) =
Z d4k

(2p)4
e�ikµ(xµ�yµ)

�kµkµ + m2 .

Moreover take note that the con-
ventional form of the Feynman
propagator given here yields
�id(xµ � yµ) if we plug it into the
Klein-Gordon equation, while the
Green’s function in Eq. 6.14 yields
d(xµ � yµ). The additional factor �i
is really just a convention with no
deeper meaning.

is the term ie in the denominator which encodes time-ordering
in an extremely sophisticated mathematical way.

Since we talked about quite a few similar but still different
notions in the previous section, it makes sense to quickly recap
what we’ve learned about propagators.

http://www.quantumfieldtheory.info/Derivation_of_the_Propagator.pdf
http://www.quantumfieldtheory.info/Derivation_of_the_Propagator.pdf
http://www.quantumfieldtheory.info/Derivation_of_the_Propagator.pdf
http://www.quantumfieldtheory.info/Derivation_of_the_Propagator.pdf
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8.5.4 Summary

The basic building block of all of the propagators that we dis-
cussed in this section is the elementary propagator D(t0,~x0, t,~x)
(Eq. 8.82). This propagator is the probability amplitude for an
elementary field excitation to move from ~x at time t to ~x0 at time
t0. We considered two special cases to get a better understand-
ing of it. Firstly, we discussed the static propagator D(t,~x0, t,~x)
(Eq. 8.79), which is the elementary propagator for equal time
(t = t0) but possibly different locations (~x 6= ~x0).41 The static 41 Alternative names for what I call

the static propagator are equal-
times propagator or spacelike
propagator.

propagator is the probability amplitude that we find an elemen-
tary field excitation that we prepared at ~x at the same moment
in time at another location ~x0. Surprisingly, this amplitude is
non-zero for ~x 6= ~x0. But this doesn’t mean that a particle can
move around even though no time passes which would imply
a velocity above the speed limit imposed by special relativity.
Instead, this result suggests that it’s impossible to localize a
field excitation in quantum field theory beyond a certain limit.42 42 A popular explanation is that this

is a result of the non-trivial vacuum
structure of quantum fields (think:
boiling sea) which we will discuss
in more detail in Chapter 14.

Moreover, we discussed that D(t,~x0, t,~x) vanishes like e�mr for
large distances r ⌘ |~x �~x0| � 1.

The second special case that we considered was for a fixed
position (~x = ~x0) at different times (t 6= t0). The probability am-
plitude to find a field excitation at a later moment in time at the
same position is given by the dynamical propagator D(t0,~x, t,~x)
(Eq. 8.83).43 In this case, we found that in the long timespan 43 An alternative name for this

propagator is a timelike propagator.limit T ⌘ |t � t0| � 1 the amplitude oscillates like ⇠ e�imT .
We then moved on and talked about other propagators that we
can construct by using the elementary propagator. An impor-
tant example is the retarded propagator DR(t0,~x0, t,~x) (Eq. 8.85)
which describes the probability amplitude that a field excitation
moves from ~x at time t to ~x0 at time t0 and is only non-zero for
t0 > t. Thus, the retarded propagator allows us to calculate how
a field excitation evolves in the future. A second example is the
advanced propagator DA(t0,~x0, t,~x) (Eq. 8.87)) which is only
non-zero for t0 < t and thus allows us to understand the past of
a given field configuration.
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The final propagator we talked about is the Feynman propaga-
tor DF(t0,~x0, t,~x) (Eq. 8.91). We construct it by time-ordering the
elementary propagator.44 The Feynman propagator is primar-44 Just for completeness, take note

that there is also an anti-time
ordered propagator which is
commonly known as the Dyson
propagator.

ily important in scattering processes as we will see in the next
chapter. A strong hint for this role of the Feynman propagator
is that it’s, unlike the elementary propagator, a Green’s func-
tion of the Klein-Gordon equation.45 Although we postponed a

45 We learned in Chapter 6 that
Green’s functions are essential
tools when we want to describe
how fields interact with each other
or with themselves. Moreover,
take note that it’s really the time
ordering which turns the Feynman
propagator into a Green’s function.
This is demonstrated explicitly in
Appendix A.7.

proper discussion of scattering processes to the next chapter, we
already developed some rough understanding of what the Feyn-
man propagator describes. First of all, the Feynman propagator
consists of two parts. The first one is the probability amplitude
that a field excitation starts at a specific location in the past and
ends up exactly at the location that we are interested in. The
second part is the probability amplitude that a field excitation
starts at the location that we are interested in and then moves
exactly to a specific location in the future. These two proba-
bility amplitudes are important if we want to understand how
different particles interact with each other. The first part of the
Feynman propagator encodes how a particle is affected by the
virtual particles that are sent out by a second particles. The
second part encodes how the particle is affected by the virtual
particles that it sends out itself which hit exactly the second
particle in the future. All of this is summarized in the following
diagram:

D(t,~x0, t,~x)
(static propagator, Eq. 8.79)

⇠ e�mr for r ⌘ |~x �~x0| � 1

D(t0,~x0, t,~x)
(elementary propagator, Eq. 8.82)

solution of KG equation

t0=too ~x0=~x //

time ordering

''

t0>t

✏✏

t>t0

xx

D(t0,~x, t,~x)
(dynamical propagator, Eq. 8.83)

⇠ e�imT for T ⌘ |t � t0| � 1

DR(t0,~x0, t,~x)
(retarded propagator, Eq. 8.85)

DA(t0,~x0, t,~x)
(advanced propagator, Eq. 8.87)

DF(t0,~x0, t,~x)
(Feynman propagator, Eq. 8.87)

Green’s function of KG equation
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8.6 Complex Scalar Fields

So far, we’ve only talked about real (scalar) fields. In the real
world, however, complex fields are just as (if not more) im-
portant as real fields. While many of the things that we just
discussed also apply to complex fields, there is one major differ-
ence with incredibly important consequences. This is what this
section is about.

First of all, recall that a general complex solution of the Klein-
Gordon equation can be written as (Eq. 5.53)

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�ikx + b(~k)eikx

⌘
. (8.99)

The only difference to the real solution (Eq. 5.51) we discussed
so far is that the coefficients in front of eikx and e�ikx are in-
dependent of each other.46 For reasons that will become clear 46 For your convenience: Eq. 5.51

reads

f(x) =
Z

dk3 1
(2p)3p2wk

⇥
⇣

a(~k)e�ikx + a†(~k)eikx
⌘

.

Moreover, we checked in Eq. 5.50
that for b = a† our field is indeed
real (f? = f).

in a moment, we adopt the usual convention and denote the
coefficient in front of eikx by b†(~k):

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�ikx + b†(~k)eikx

⌘
. (8.100)

The corresponding expansion of the conjugated field f† reads

f†(x) =
Z

dk3 1
(2p)3p2wk

⇣
a†(~k)eikx + b(~k)e�ikx

⌘
. (8.101)

since (b†)† = b and (eix)† = e�ix. Equipped with these ex-
pansions of a complex scalar field and its conjugate, we can
repeat the same steps that allowed us to understand real-valued
quantum scalar fields.

First of all, by using that the Lagrangian for a complex scalar
field reads

L = ∂µf†∂µf � m2f†f , (8.102)
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we can calculate the corresponding conjugate momentum den-
sity (Eq. 4.52):

p =
∂L

∂(∂0f) y
Eq. 8.102

=
∂
⇣

∂µf†∂µf � m2f†f
⌘

∂(∂0f) y

sum convention

=
∂
⇣

∂0f†∂0f � ∂†
i f∂if � m2f†f

⌘

∂(∂0f) y

∂xx2 = 2x
= ∂0f† . (8.103)

Analogously, we find that

p† =
∂L

∂(∂0f†) y

= ∂0f . (8.104)

By using these results and the canonical commutation relations
(Eq. 8.6)4747 As before, we treat f and f†

as independent fields. Thus fol-
lowing the same arguments as in
Section 8.2 we can derive these two
commutation relations.

[f(xµ), p(yµ)] = id(xµ � yµ)

[f†(xµ), p†(yµ)] = id(xµ � yµ) , (8.105)

we find for the coefficients a, a†, b, b† that appear in the expan-
sion of f and f†:4848 Compare the commutation

relations given here with those for a
real scalar field (Eq. 8.14):

[a(~k), a†(~k0)] = (2p)3d(~k �~k0)

[a(~k), a(~k0)] = 0 , [a†(~k), a†(~k0)] = 0 .

[a(~k), a†(~k0)] = (2p)3d(~k �~k0) , [b(~k), b†(~k0)] = (2p)3d(~k �~k0) ,

[a(~k), a(~k0)] = 0 , [a†(~k), a†(~k0)] = 0 , [a(~k), b(~k0)] = 0 ,

[b(~k), b(~k0)] = 0 , [b†(~k), b†(~k0)] = 0 , [a†(~k), b†(~k0)] = 0

[a(~k), b†(~k0)] = 0 . (8.106)

This may look quite frightening but we just get the commuta-
tion relations that we are already familiar with twice. Thus we
can again interpret a, a†, b, b† as creation and annihilation op-
erators. In physical terms, what we’ve just discovered is that
there are two types of particles associated with a complex scalar
field. The first kind is created by a†(~k) and destroyed by a(~k),
while the second one is created by b†(~k) and destroyed by b(~k).
Since both kinds of particles are related to the same field they
are closely related to each other.
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8.6.1 Antiparticles

In particular, the particle states (c.f. Eq. 8.42)

|1~ki ⌘ a†(~k) |0i

|1̃~ki ⌘ b†(~k) |0i (8.107)

are extremely similar. Both describe a single particle with mo-

mentum~k, mass m, and energy wk =

q
~k2 + m2. For the energy

this follows because the Hamiltonian for a complex scalar field
reads 49 49 Compare this to the Hamiltonian

for a real scalar field (Eq. 8.32)

Ĥ ⌘
Z

V
dk3 wk

(2p)3 a†(~k)a(~k) .
Ĥ ⌘

Z

V
dk3 wk

(2p)3

⇣
a†(~k)a(~k) + b†(~k)b(~k)

⌘
, (8.108)

which we can calculate by using the general definition (Eq. 8.22).
This implies that the total energy is given by the number of a-
particles, as counted by Na ⌘ a†(~k)a(~k) (Eq. 7.71) plus the
number of b-particles, as counted by the number operator
Nb ⌘ b†(~k)b(~k), times wk. Thus each b-particle, just as each
a-particle, contributes wk to the total energy.50 50 In addition, the momenta of

the two states can be calculated
completely analogously to how we
did it in Eq. 8.41.There is, however, in general a difference between a-particles

and b-particles. This difference becomes only apparent if we
consider another label associated with certain fields: electric
charge. We discovered in Section 4.3.2 that electric charge is the
conserved quantity that follows via Noether’s theorem from the
invariance under phase shifts.51 Moreover, we calculated that 51 Reminder: a phase shift is a trans-

formation of the form (Eq. 4.54)

f ! eijf y

f† ! e�ijf† .

the total electric charge carried by a complex scalar field is given
by (Eq. 4.61)

Q̃q = iq
Z

d3x
✓

∂L
∂(∂0f†)

f† � ∂L
∂(∂0f)

f

◆
, (8.109)

where q is the electric charge parameter associated with the
fields. If we plug the Lagrangian (Eq. 8.102) and the explicit
expansions of f and f† (Eq. 8.100, Eq. 8.101) into this formula,
we can calculate that

Q̃q = q
Z dk3

(2p)3

⇣
a†(~k)a(~k)� b†(~k)b(~k)

⌘
. (8.110)

This is demonstrated in Appendix A.8. In words, this result tells
us that each a-particle contributes a factor q to the total charge,
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while each b-particle contributes a factor of �q. In other words,
a-particles and b-particles carry opposite electric charges.

We call the particles that are created by b†(~k) the antiparticles
of the particles created by a†(~k). For example, if f describes a
pion field, the particles created by a†(~k) are pions with electric
charge q while the particles created by b†(~k) are anti-pions with
electric charge �q.5252 This is just a convention. We

could equally call the field excita-
tion with charge �e the pion and
the field excitation with charge e the
anti-pion.

The main point to take away is that there are two kinds of
particle-like field excitations associated with a complex scalar
field. We call them particles and antiparticles. One defining
difference between them is that they carry opposite electric
charges.5353 This is not only true for electric

charge but also for all other "gauge"
charges like isospin or color charge.

An important special case are fields that don’t carry any charge
that could allow a distinction between particles and antipar-
ticles. We then say that the associated particles are their own
antiparticles. Mathematically, we describe this by defining that
a†(~k) = b†(~k) (and equivalently a(~k) = b(~k)), which implies that
the particles created by these operators are equal. If we plug
this into the field expansion (Eq. 8.100), we find

f(x) =
Z dk3

(2p)3p2wk

⇣
a(~k)e�ikx + b†(~k)eikx

⌘
this is Eq. 8.100

y

a†(~k) = b†(~k)

=
Z dk3

(2p)3p2wk

⇣
a(~k)e�ikx + a†(~k)eikx

⌘
. (8.111)

This is exactly the field expansion of a real scalar field that we
discussed in the previous sections. From this perspective, we
say that the particle-like field excitations associated with a real
scalar field are their own antiparticles.

While, in principle, particles described by a complex scalar field
can be treated analogously to the real case, there is a subtlety
that we need to talk about.
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8.6.2 Complex Scalar Field Propagators

The elementary propagator of a real scalar field reads (Eq. 8.82)

D(t0,~x0, t,~x) ⌘ h1t0 ,~x0 |1t,~xi = h0|f(t0,~x0)f(t,~x)|0i . (8.112)

Thus it seems natural that we try to use the same formula for
the elementary propagator of a complex scalar field. It turns
out, however, that h0|f(t0,~x0)f(t,~x)|0i is not a particularly in-
teresting quantity for a complex scalar field. To understand
why, we recall the general expansion of a complex scalar field
(Eq. 8.100)

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�ikx + b†(~k)eikx

⌘

y

definition
⌘ f�

a + f+
b . (8.113)

The first term consist of particle annihilation operators while the
second term consists of antiparticle-creation operators.

This implies that

f�
a |0i = 0 since a |0i = 0 (Eq. 8.31) (8.114)

Moreover,

0 = (b |0i)†

y

hy| = |yi†

= h0| b† (8.115)

and therefore

h0| f+
b = 0 . (8.116)

Using these results, we can calculate

h0|f(t0,~x0)f(t,~x)|0i = h0|
⇣

f�
a (t0,~x0) + f+

b (t0,~x0)
⌘⇣

f�
a (t,~x) + f+

b (t,~x)
⌘
|0i

y

= h0|f�
a (t0,~x0)f�

a (t,~x)|0i+ h0|f+
b (t0,~x0)f�

a (t,~x)|0i
+ h0|f�

a (t0,~x0)f+
b (t,~x)|0i+ h0|f+

b (t0,~x0)f+
b (t,~x)|0i y

Eq. 8.114, Eq. 8.116
= h0|f�

a (t0,~x0)f+
b (t,~x)|0i y

= 0 . (8.117)
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To get to the final line, we used that f+
b (t,~x) creates an antipar-

ticle state and thus if we act with f�
a (t0,~x0) on the resulting ket,

we try to annihilate something which isn’t there (a particle) and
thus get zero.5454 Alternatively, we can use that

[a, b†] = 0 (Eq. 8.106) and therefore

h0|f�
a (t0,~x0)f+

b (t,~x)|0i
= h0|f+

b (t,~x)f�
a (t0,~x0)|0i

= 0

since |f�
a (t0,~x0)|0i = 0.

Only terms of the form h0|f�
a (t0,~x0)f+

a (t,~x)|0i and
h0|f�

b (t0,~x0)f+
b (t,~x)|0i would be non-zero, where f+

a , f+
b con-

sist of creation operators while f�
b , f�

a consist of annihilation
operators. We have just seen that these non-zero terms are not
contained in h0|f(t0,~x0)f(t,~x)|0i. For a real scalar field, the sit-
uation is different. The expansion of a real scalar field contains
the creation and annihilation operator for only one type of par-
ticle at a time. Thus, we necessarily find the non-trivial term
h0|f�

a (t0,~x0)f+
a (t,~x)|0i in h0|f(t0,~x0)f(t,~x)|0i.

For a complex scalar field, we can construct a non-trivial ele-
mentary propagator by using the conjugated field (Eq. 8.101)

f†(x) =
Z

dk3 1
(2p)3p2wk

⇣
a†(~k)eikx + b(~k)e�ikx

⌘

y

definition
⌘ f+

a + f�
b . (8.118)

For example, let’s have a look at

h0|f†(t0,~x0)f(t,~x)|0i = h0|
⇣

f+
a (t0,~x0) + f�

b (t0,~x0)
⌘⇣

f�
a (t,~x) + f+

b (t,~x)
⌘
|0i y

= h0|f+
a (t0,~x0)f�

a (t,~x)|0i+ h0|f�
b (t0,~x0)f�

a (t,~x)|0i
+ h0|f+

a (t0,~x0)f+
b (t,~x)|0i+ h0|f�

b (t0,~x0)f+
b (t,~x)|0i y

a |0i = 0
= h0|f�

b (t0,~x0)f+
b (t,~x)|0i 6= 0 . (8.119)

In words, h0|f†(t0,~x0)f(t,~x)|0i is the probability amplitude that
we prepare an antiparticle at ~x at time t and find it at ~x0 at time
t0.

Similarly, we can consider

h0|f(t0,~x0)f†(t,~x)|0i = h0|f�
a (t0,~x0)f+

a (t,~x)|0i 6= 0 , (8.120)
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which is the probability amplitude to find a particle at ~x0 at t0

that we prepared at ~x at time t.

Last but not least, we can consider the Feynman propagator for
a complex scalar field, which reads

DF ⌘ h0|Tf(t0,~x0)f†(t,~x)|0i , (8.121)

where T is again the time-ordering operator (Eq. 8.90).

So far we’ve only talked about scalar fields. However, gauge
fields and spinor fields play an equally important role and thus
we will discuss them in a quantum context next.
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8.7 Quantized Spinor Fields

Most of the things that we discussed in the previous sections for
quantized scalar fields also apply to spinor fields. This is neces-
sarily the case because the spacetime structure of spinor fields
can also be described in terms of plane waves. In particular, the
general solution of the Dirac equation reads (Eq. 5.106)

Y =
2

Â
r=1

Z d3k
(2p)3p2wk

⇣
cr(~k)ur(k)e�ikµxµ

+ dr(~k)vr(k)e+ikµxµ
⌘

(8.122)

which is extremely similar to the solution of the Klein-Gordon
equation that we used in the previous sections. The main differ-
ence is the occurrence of basis spinors ur(k), vr(k). But before
we discuss the implications of this difference, we rename, for
exactly the same reasons as in the previous section, the operator
in front of eikµxµ

to d†
r (~k):5555 We do this because now d†

r (~k) de-
scribes the creation of antiparticles
while c†

r (~k) describes the creation
of particles. We could, of course,
continue to work with dr(~k) in the
expansion, but then need to live
with the fact that for antiparticles
it’s dr(~k) and not d†

r (~k) that acts as a
creation operator. Since this is quite
confusing, we work with d†

r (~k) in
the expansion.

Y =
2

Â
s=1

Z d3k
(2p)3p2wk

⇣
cr(~k)ur(k)e�ikµxµ

+ d†
r (~k)vr(k)e+ikµxµ

⌘

(8.123)

We will learn below that we can again interpret the coefficients
that appear in this expansion (cr(~k), d†

r (~k)) as annihilation and
creation operators.

However, we start our discussion of spinor fields by talking
about a somewhat subtle but incredibly important property of
them that sets them apart from all other fields.

First of all, recall that a Dirac spinor consists of two Weyl
spinors (Eq. 3.35):

Y =

 
c

x

!
. (8.124)

Moreover, the scalar product of two Weyl spinors reads (Eq. 3.63):

xc ⌘ xaeabcb , (8.125)
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where eab is the spinor metric (Eq. 3.57)

eab =

 
0 1
�1 0

!
. (8.126)

The scalar product of two Dirac spinors reads (Eq. 5.58)

ȲY ⌘ Y†g0Y . (8.127)

All of this is important, if we want to think about how the
canonical commutation relations (Eq. 8.6,Eq. 8.7) apply to spinor
fields. In particular, Eq. 8.7 seems to suggest that spinor fields
commute

0 ?
= [c(t,~x), c(t,~y)] y

[A, B] ⌘ AB � BA
= c(t,~x)c(t,~y)� c(t,~y)c(t,~x) y

c(t,~x)c(t,~y) = c(t,~y)c(t,~x) . (8.128)

On the other hand, if we use the explicit form of the spinor
product and swap the position of the two spinors to learn some-
thing about their commutation behavior, we find

c(t,~x)c(t,~y) ?
= ca(t,~x)eabcb(t,~y) this is Eq. 8.125y

position swap
= cb(t,~y)eabca(t,~x) y

eab = �eba

= �cb(t,~y)ebaca(t,~x) y

= �c(t,~y)c(t,~x) , (8.129)

where we used that the spinor metric is antisymmetric eT = �e.56 56 Swapping the indices corresponds
to transposing a matrix: MT

ab = Mba.
We need to swap the indices in
order for them to match up and
yield a proper product in index
notation.

We can reconcile these two seemingly conflicting equations
by proposing that the components of spinor fields pick up an
additional minus sign if we swap their positions:57

57 Below, we will talk about a more
physical reason why this should be
the case.cb(t,~y)ca(t,~x) = �ca(t,~x)cb(t,~y) . (8.130)
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If we now repeat the calculation in Eq. 8.129, we find

c(t,~x)c(t,~y) ⌘ ca(t,~x)eabcb(t,~y) this is Eq. 8.125y

position swap, Eq. 8.130
= �cb(t,~y)eabca(t,~x) y

eab = �eba

= cb(t,~y)ebaca(t,~x) y

= c(t,~y)c(t,~x) . (8.131)

The anti-commutation relation (Eq. 8.130)

ca(t,~x)cb(t,~y) + cb(t,~y)ca(t,~x) = 0 y

definition
{ca(t,~x), cb(t,~y)} = 0 (8.132)

has wide-ranging consequences for the particles that are de-
scribed by spinor fields. Moreover, analogously we can derive
that

{pa(t,~x), cb(t,~y)} = id(~x �~y)dab

{pa(t,~x), pb(t,~y)} = 0 , (8.133)

where p denotes the conjugate momentum density (Eq. 4.52)

p =
∂L

∂(∂0c)
. (8.134)

Since a Dirac spinor consists of Weyl spinors, we can imme-
diately write down the anticommutation relations for Dirac
spinors

{pa(t,~x), Yb(t,~y)} = id(~x �~y)dab

{pa(t,~x), pb(t,~y)} = 0

{Ya(t,~x), Yb(t,~y)} = 0 , (8.135)

where

p =
∂L

∂(∂0Y)
. (8.136)



quantum fields 361

Equipped with these anticommutation relations, we can discuss
the implications for the coefficients cr(~k), d†

r (~k) that appear in
the general solution of the Dirac equation (Eq. 8.123). We start
by calculating the conjugate momentum density for a spinor
field (Eq. 4.52)

p =
∂L

∂(∂0Y) y

Eq. 5.54

=
∂
⇣

Ȳ(igµ∂µ � m)Y
⌘

∂(∂0Y) y

= iȲg0

y

Ȳ ⌘ Y†g0 (Eq. 5.55)
= iY†g0g0

y
g0g0 = 1

= iY† . (8.137)

Therefore, the first anticommutation relation in Eq. 8.135 reads
in more explicit terms

{pa(t,~x), Yb(t,~y)} = id(~x �~y)dab y

Eq. 8.137
{iY†

a , Yb(t,~y)} = id(~x �~y)dab y

⇤i
{Y†

a , Yb(t,~y)} = d(~x �~y)dab . (8.138)

Moreover, by using the field expansion in Eq. 8.123 we calculate
that Y† can be written as

Y =
2

Â
s=1

Z d3k
(2p)3p2wk

⇣
cr(~k)ur(k)eikµxµ

+ d†
r (~k)vr(k)e�ikµxµ

⌘
this is Eq. 8.123

y

†

Y† =

 
2

Â
s=1

Z d3k
(2p)3p2wk

⇣
cr(~k)ur(k)eikµxµ

+ d†
r (~k)vr(k)e�ikµxµ

⌘!†

y

(d†)† = d, (eix)† = e�ix

=
2

Â
s=1

Z d3k
(2p)3p2wk

⇣
c†

r (~k)u
†
r (k)e

�ikµxµ
+ dr(~k)v†

r (k)e
ikµxµ

⌘
.

(8.139)

The next step is that we conclude analogous to what we did for
scalar fields in Section 8.6 that the anticommutation relations in
Eq. 8.135 imply for the coefficients c, c†, d, d†:58 58 It is instructive to compare these

relations to the canonical commu-
tation relations for a complex scalar
field (Eq. 8.106).
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{c(~k), c†(~k0)} = (2p)3d(~k �~k0) , {d(~k), d†(~k0)} = (2p)3d(~k �~k0) ,

{c(~k), c(~k0)} = 0 , {c†(~k), c†(~k0)} = 0 , {c(~k), d(~k0)} = 0 ,

{d(~k), d(~k0)} = 0 , {c†(~k), d†(~k0)} = 0 , {d†(~k), d†(~k0)} = 0

{d(~k), d†(~k0)} = 0 , (8.140)

where, as before, {A, B} = AB + BA denotes the anticommuta-
tor.5959 The proof is completely anal-

ogous to the one discussed in
Appendix A.4.

Before we can talk about the meaning of the operators c, c†, d, d†,
we need to talk about the spinor Hamiltonian.

8.7.1 Spinor Hamiltonian

The spinor Hamiltonian can be calculated by using the general
definition as the Noether charge following from invariance
under temporal translations t ! t + e (Eq. 4.38):

H ⌘
Z

V
d3x T0

0 y

Eq. 4.35

=
Z

V
d3x

∂L
∂(∂0y)

∂0y � L (8.141)

and reads in terms of the coefficients6060 Compare this to the Hamiltonian
for a real scalar field (Eq. 8.17) and
the Hamiltonian for a complex
scalar field (Eq. 8.108)

H ⌘
Z

V
dk3 wk

(2p)3

⇣
a†(~k)a(~k) + b†(~k)b(~k)

⌘
.

Moreover, note that (as for scalar
fields) we simply ignore here a
potentially infinite contribution
to the total energy coming from
the non-zero ground state energy
of each harmonic oscillator. In
addition, there is an implicit sum
over the index r.

H ⌘
Z

V
dk3 wk

(2p)3

⇣
c†

r (~k)cr(~k) + d†
r (~k)dr(~k)

⌘
. (8.142)

An interesting aspect of this Hamiltonian is that if we try to use
commutation relations instead of the anticommutation relations
in Eq. 8.140 in its derivation, we find

Ĥwrong ⌘
Z

V
dk3 wk

(2p)3

⇣
c†

r (~k)cr(~k)� d†
r (~k)dr(~k)

⌘
. (8.143)
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In physical terms, this would imply that antiparticles contribute
negatively to the total energy. Luckily, this is not the case be-
cause otherwise energy wouldn’t be bounded from below.
Formulated differently, if we use (wrongly) commutation re-
lations instead of anticommutation relations, we find a formula
for the total energy that can be arbitrarily negative. This is bad
because there wouldn’t be any stable states if this were correct
as every state could decay into lower energy states forever. In
particular, there wouldn’t be any stable matter in the universe
because each particle it consists of could decay into more and
more antiparticles to lower the energy further.

This lends further support to the idea that spinor fields anti-
commute (Eq. 8.130).

Now that we have the Hamiltonian, we can start to investigate
the meaning of the operators cr, c†

r , dr, d†
r

8.7.2 Spinor Particles

As in the Section 8.3.1, the first key ingredient is the commu-
tator of the Hamiltonian with the operators c†

r , d†
r . The result is

exactly the same as for scalar particles (Eq. 8.24)

[Ĥ, c†
r (~k)] = wkc†

r (~k)

[Ĥ, d†
r (~k)] = wkd†

r (~k) . (8.144)

Therefore, we can conclude that c†
r , d†

r are creation operators. We
say that c†

r creates particles, while d†
r creates the corresponding

antiparticles associated with the same spinor field.61 61 This is analogous to what we
discovered in Section 8.6 for a
complex scalar field.

It follows from the commutation relations (c.f. Eq. 8.25)

[Ĥ, cr(~k)] = �wkcr(~k)

[Ĥ, dr(~k)] = �wkdr(~k) (8.145)
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that cr, dr are annihilation operators.

Therefore, we define the ground state through its property (c.f.
Eq. 8.31)

cr(~k) |0i = 0

dr(~k) |0i = 0 . (8.146)

We then denote the one-particle state by

|1~ki ⌘ c†
r (~k) |0i (8.147)

and the one-antiparticle state by

|1̄~ki ⌘ d†
r (~k) |0i . (8.148)

So far, everything seems completely analogous to what we’ve
already discussed for scalar fields. However, the fact that spino-
rial creation and annihilation operators obey an anticommu-
tation relation instead of a commutation relations leads to an
important feature of spinor field components.

The key observation is that if we evalulate the anticommutation
relation {c†(~k), c†(~k0)} = 0 (Eq. 8.140) for equal momenta~k =~k0,
we find

0 = {c†(~k), c†(~k)} y

{A, B} ⌘ AB + BA
= c†(~k)c†(~k) + c†(~k)c†(~k) y

c + c = 2c
= 2c†(~k)c†(~k) y

�2
= c†(~k)c†(~k) . (8.149)

This implies, that if we act twice with the same creation opera-
tor on the ground state we find zero

c†
r (~k)c

†
r (~k) |0i = 0 (8.150)

instead of a two-particle state.
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This is famously known as the Pauli exclusion principle. In
words, it means

There can never be two spinorial particles in exactly the same state.

This is not just some crude feature of our formalism but an
established experimental fact.

However, take note that we can create two particle states as long
as the momenta are different

c†
r (~k)c

†
r (~k

0) |0i ⌘ |1~k1~k0 i 6= 0 . (8.151)

We can also create particle-antiparticle states with equal mo-
menta

d†
r (~k)c

†
r (~k) |0i ⌘ |1̄~k1~k0 i 6= 0 . (8.152)

Now that we’ve established a notation for spinorial particles, we
can investigate how they move around.

8.7.3 Spinor Propagator

Analogous to what we discussed in Section 8.5 for scalar fields,
we can talk about the spinor propagator. Since our spinor field
Y is complex, we know that the naive elementary propaga-
tor h0|Y(yµ)|Y(xµ)|0i vanishes.62 Instead, analogous to what 62 Exactly the same arguments as in

Eq. 8.117 apply.we discovered in Section 8.6.2 for a complex scalar field, the
correct non-vanishing elementary propagators are of the form
h0|Ȳ(yµ)Y(xµ)|0i and h0|Y(yµ)Ȳ(xµ)|0i. If we plug in the ex-
plicit field expansions, we find

h0|Y(yµ)Ȳ(xµ)|0i =
Z d3k

(2p)32wk
(kµgµ + m)e�ik(x�y)

h0|Ȳ(yµ)Y(xµ)|0i =
Z d3k

(2p)32wk
(kµgµ � m)eik(x�y) . (8.153)
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We can then define the spinorial Feynman propagator6363 This definition is analogous to
the definition of the Feynman
propagator for a complex scalar
field in Eq. 8.121.

DF(yµ, xµ) ⌘ h0|TY(yµ)Ȳ(xµ)|0i , (8.154)

where T denotes the time-ordering operator (Eq. 8.90). This
propagator is known as the fermion propagator since the par-
ticles associated with spinor fields are usually called fermions.

Since we know already that there is a close connection between
Feynman propagators and Green’s functions, it’s hopefully
somewhat plausible that the fermion propagator can be rewrit-
ten as6464 We noted already in Section 8.5

that the Feynman propagator for
scalar fields is a Green’s function
of the Klein-Gordon equation and
can be written like the Green’s
function we considered previously.
The calculation for the fermion
propagator works analogously.

DF(yµ, xµ) = i
Z d4k

(2p)4 e�ikµ(xµ�yµ)
(krgr + m)

klkl � m2 + ie
. (8.155)

which is, except for the "time-ordering term" +ie and a conven-
tional overall factor of factor i, exactly the Green’s function for
the Dirac equation (Eq. 6.48) that we discussed in Section 6.3.2.

So far, we have talked about quantized (real and complex) scalar
fields and spinor fields. The final puzzle piece that we will talk
about before we consider scattering processes are quantized
gauge fields.
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8.8 Quantized Gauge Fields

For ordinary vector fields, we could proceed exactly as for scalar
fields. In modern physics, however, we are primarily interested
in a special kind of vector field known as gauge fields. We’ve
learned already in Section 3.9 that the defining property of
gauge fields is that they don’t have four independent polariza-
tion states. For massive gauge fields there are only three, while
for massless gauge fields there are two.

The main difficulty in talking about quantized gauge fields is
describing this fact consistently in the quantum framework.

For massive gauge fields, the procedure is relatively straight-
forward. But for massless gauge fields, the whole issue is subtle
due to gauge symmetry.65 Thus we will start by talking about 65 Reminder: we talked about gauge

symmetry in Section 5.3.3. The
main observation was that we have
the freedom to redefine our gauge
field as follows (Eq. 5.137):

Aµ(xµ)

! A0
µ(xµ) = Aµ(xµ) + ∂µh(xµ) ,

(8.156)

where h(xµ) is an ordinary func-
tion.

massive fields.

8.8.1 Quantized Massive Gauge Fields

We learned in Section 5.3.2 that it follows directly from the
Lorenz condition (Eq. 5.116) that there are only three indepen-
dent polarization states.66 To understand why this is potentially 66 Reminder: the Lorenz condition

is a direct consequence of the Proca
equation and reads ∂µ Aµ = 0.

problematic in our quantum framework, we start by looking at
the Lagrangian for massive gauge fields (Eq. 5.107)

LProca = �1
2

FµnFµn + m2 Aµ Aµ , (8.157)

where Fµn = (∂µ An � ∂n Aµ) (Eq. 3.103) is the field strength
tensor. We observe that

F00 = (∂0 A0 � ∂0 A0) = 0 . (8.158)

This implies that there is no ∂0 A0 term in the Lagrangian.
Therefore, the corresponding conjugate momentum density
(Eq. 4.52) vanishes:

p0 =
∂L

∂(∂0 A0)
= 0 . (8.159)



368 no-nonsense quantum field theory

Thus, we run into a problem if we try to write down commuta-
tion relations for the massive gauge field Aµ (Eq. 8.6)

[Aµ(t,~x), pµ(t,~y)] = id(~x �~y) , (8.160)

where

pµ =
∂L

∂(∂0 Aµ)
. (8.161)

If we evaluate this formula for µ = 0 and use that p0 vanishes,
we find

[A0(t,~x), p0(t,~y)] = id(~x �~y) y

p0 = 0 (Eq. 8.159)
[A0(t,~x), 0] = id(~x �~y) y

[A, 0] = A0 � 0A = 0
0 = id(~x �~y) . (8.162)

This is a contradiction.

The source of the problem is that we wrote down the commu-
tation relations (Eq. 8.160) without thinking first. The result
p0 = 0 tells us something important. It occurs because there is
no ∂0 A0 term in the Lagrangian. Since ∂0 ⌘ ∂t, there is no ki-
netic term for the field A0. This suggests that A0 is not a proper
dynamical variable. Therefore, we shouldn’t be surprised that
we run into a problem when we try to promote it to a quantum
field.

We have, in fact, discovered this already in Section 5.3.2. We
calculated that in the rest frame (~k = (0, 0, 0)T), the Lorenz
condition implies e0 = 0 (Eq. 5.134). Since eµ encodes the
complete internal structure of our field (Eq. 5.115), this means
that in the rest frame a massive vector field has no temporal
polarization component, A0 = 0.67 While in other frames A0 6=67 Reminder: in Eq. 5.115 we made

the ansatz

Aµ(xµ) =

eµ|{z}
internal structure

⇥ f (xµ)| {z }
spacetime structure

.

0 it’s still not an independent variable. On the one hand, this
follows immediately because physics must be the same in all
frames of reference. Therefore, a boost to a different frame
cannot promote A0 from a vanishing quantity to an important
dynamical player. Instead, the fact that A0 6= 0 in general frames
of reference is an artifact that occurs because a little bit of the
other field components is shifted to A0. On the other hand, we
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checked this explicitly for a field excitation that moves in the z-
direction (~k = (0, 0, kz)T). In this case we found that the Lorenz
condition implies e0

p
m2 + k2

z = e3kz (Eq. 5.128). Therefore, A0

can be calculated immediately once A3 and kz are known.

The resolution of the "paradox" that we’ve stumbled upon above
(Eq. 8.162) is therefore that we use

[Ai(t,~x), p j(t,~y)] = id(~x �~y)dij (8.163)

instead of Eq. 8.160. This is exactly a three-dimensional ver-
sion of the scalar commutation relation (Eq. 8.14). We can then
proceed exactly as before.

In particular, we can use the general expansion (Eq. 5.156)

Aµ(x) =
3

Â
r=1

Z d3 p
(2p)3

1p
2k0

⇣
er

µar(~k)e�ikµxµ
+ er

µar†(~k)eikµxµ
⌘

,

(8.164)
to discover that the coefficients ar(~k), ar†(~k) are creation and
annihilation operators. Moreover, it’s again possible to define
corresponding particle states and to write down various kinds
of propagator like the Feynman propagator

Dnz
F (x, y) = h0|TAµ(x)An(y)|0i y

cumbersome calculation

= i
Z d4k

(2p)4 e�ikµ(xµ�yµ)
hnz � knkz

krkr

kµkµ � m2 � ie
. (8.165)

This is again a Green’s function of the corresponding equation
of motion, which in this case is the Proca equation. In addition,
take note that this is quite similar to the Green’s function of
the Maxwell equation, except for the usual mass term �m2

and the time-ordering term �ie. The only surprising difference
is the factor (hµn � kµkn)

krkr in the numerator. This factor shows
up because when we calculate a product like Aµ(x)An(y), we
encounter sums over products of polarization vectors. These can
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be rewritten by using the so-called completeness relation

3

Â
r=1

er
µer

n = �
✓

hµn � kµkn

krkr

◆
. (8.166)

By using the explicit polarization vectors that we derived in
Section 5.3.2, we can verify explicitly that this relation is correct.
For example, for µ = n = 0, we find

3

Â
r=1

er
0er

0 = e1
0e1

0 + e2
0e2

0 + e3
0e3

0

y

Eq. 5.130, Eq. 5.129

= 0 + 0 +
✓

kz
m

◆2
, (8.167)

which we compare with

�
✓

h00 � k0k0

krkr

◆
= �

✓
1 � k0k0

krkr

◆

y

krkr = m2 (Eq. 5.124)

= �
✓

1 � k0k0

m2

◆

y

Eq. 5.126

= �
✓

1 � m2 + k2
z

m2

◆

y m2

m2 = 1

= �
✓

m2

m2 � m2 + k2
z

m2

◆

y

=
k2

z
m2 X (8.168)

Of course, the completeness relation can not only be verified
on a case by case basis but also in general terms. But since the
proof is quite formal and not very illuminating, we will not
discuss it here.

There is, however, a nice way to understand Eq. 8.166. The first
puzzle piece is that the Lorenz condition implies (Eq. 5.125)

erkr = 0 . (8.169)

Geometrically this means that all allowed polarization vectors
are orthogonal to the wave four-vector kr, completely analo-
gously to how ~v · ~w = 0 implies that ~v and ~w are orthogonal.68

68 Geometrically, the scalar product
~v · ~w is the projection of ~v onto ~w.
In other words, ~v · ~w tells us how
much ~v spreads out in the direction
in which ~w points. For example,
by using ~w ·~ex we can calculate
how much ~w spreads out in the
x-direction. Thus if ~v · ~w = 0 the
projection is zero which means that
the two vectors are orthogonal.



quantum fields 371

The second puzzle piece is that the sum that we defined in
Eq. 8.166 is a projection operator

Pµn ⌘
3

Â
r=1

er
µer

n

y

Eq. 8.166

= �
✓

hµn � kµkn

krkr

◆
. (8.170)

We already talked about projection operators in Section 7.1.6.
In particular, we observed that we can rewrite any vector in
terms of a new basis by using the projection operator P = Âi~ei~ei
(Eq. 7.36):69: 69 Take note that there is no scalar

product of the two basis vectors.
Instead, the right basis vector
acts via the scalar product on any
vector ~v we throw at the projection
operator.

~vnew basis = P~v = Â
i
(~ei)(~ei ·~v) . (8.171)

In index notation, this projection operator reads

Pab = Â
i

ea
i eb

i , (8.172)

where i labels different basis vectors and a and b their com-
ponents. If Pab acts on a vector component vb, we get the a-th
component in the new basis. Therefore, the sum on the left-
hand side in Eq. 8.166 is simply a four-dimensional version of
this projection operator.

Formulated more precisely, we can now understand that Pµn

is a projection operator that projects any given vector onto the
subspace spanned by the polarization vectors. Since the po-
larization vectors are all orthogonal to the wave four-vector kµ

(Eq. 8.169), we know that this subspace is given by all vectors
orthogonal to kµ. This implies that the projection operator Pµn

allows us to "remove" from any four-vector vµ all components
that are parallel to kµ. In other words, if we act with Pµn on a
four-vector, the result is a four-vector that is orthogonal to kµ.

Now that we know that the operator Pµn, defined as the sum
Â3

r=1 er
µer

n (Eq. 8.170), should have this property, we can check
that the expression given on the right-hand side in Eq. 8.166 has
the desired effect. To that end, we act with the expression given
on the right-hand side in Eq. 8.166 on an arbitrary four vector vn



372 no-nonsense quantum field theory

and then check if the result is really orthogonal to kµ:

Pµnvn =
⇣
�
✓

hµn � kµkn

krkr

◆⌘
vn

y
hµnvn ⌘ vµ

= �
✓

vµ � kµknvn

krkr

◆
y

definition
⌘ vµ

? . (8.173)

If vµ
?kµ = 0 the two four-vectors are orthogonal and we can

conclude that the projection operator Pµn works as expected.
Thus we calculate

0 !
= vµ

?kµ y

Eq. 8.173

=
⇣
�
✓

vµ � kµknvn

krkr

◆⌘
kµ

y

= �
✓

vµkµ �
kµkµknvn

krkr

◆

y

◆k2

= �
�
vµkµ � knvn

�

y

knvn = vµkµ

= � (0) X (8.174)

This lends further support that the formula given in Eq. 8.166 is
indeed correct.

What we’ve just discussed may seem like a huge detour. In the
next section, however, we will see that projection operators of
the kind that we just discussed play an incredibly important
role for massless gauge fields.70

70 Take note that there are many
problematic technical aspects of
massive gauge fields that we didn’t
talk about. In short, a quantum
theory of massive gauge fields is
not renormalizable. This means
that certain infinities cannot be
removed and thus it’s hard to make
sense of such a model. However,
it makes perfect sense to consider
massive gauge fields in the context
of the Higgs mechanism. Moreover,
take note that the propagator of a
massive gauge fields blows up as
m ! 0 due to the 1

krkr = 1
m2 term in

the numerator. This implies that the
transition from massive to massless
gauge fields is quite subtle. 8.8.2 Quantized Massless Gauge Fields

In the previous section we learned that we run into a problem
if we try to introduce quantized massive gauge fields in exactly
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the same way that allowed us to introduce quantized scalar
fields. The main difficulty is that we need to take into account
that for massive gauge fields there are three independent polar-
izations. We run into exactly the same kind of problem when
we want to talk about quantized massless gauge fields. We
discovered in Section 5.3.3 that for massless gauge fields there
are only two independent polarizations. Therefore, our main
task will be to figure out a way to take this into account in our
quantum framework.

For massless gauge fields the procedure is a bit more subtle
than in the massive case. To understand why, recall that we
discussed in Section 5.3.3 that our model of massless gauge
fields is invariant under gauge transformations (Eq. 5.137)

Aµ(xµ) ! A0
µ(xµ) = Aµ(xµ) + ∂µh(xµ) , (8.175)

where h(xµ) is an ordinary function. Depending on the context,
we can use this gauge freedom to accomplish different things.
For example, in Section 5.3.3 we used it to restrict ourselves to
gauge fields that fulfill the Lorenz condition ∂µ Aµ = 0 (see
Eq. 5.142), just as in the massive case. We say that in this case,
we work in the Lorenz gauge.

While it is also possible to talk about quantized massless gauge
fields in the Lorenz gauge, the discussion is much simpler if we
use the gauge freedom a bit differently. A first hint is that in the
Lagrangian for massless gauge fields

LMaxwell = �1
2

FµnFµn , (8.176)

there is, just as in the massive case, no term ∂0 A0.71 This im- 71 This follows again since

F00 = (∂0 A0 � ∂0 A0) = 0 .plies that the corresponding conjugate momentum p0 = ∂L
∂(∂0 A0)

vanishes and we can conclude again that A0 is not an indepen-
dent dynamical parameter. Thus it would be great if we could
use our gauge freedom to get rid of A0 altogether. This is, in
fact, possible. For any gauge field configuration it’s possible to
find a gauge function h(xµ) such that A0 = 0. This is known as
the temporal gauge.72 This is already a great first step because 72 The argument that this is possible

is exactly the same one that justified
the use of the Lorenz gauge in
Eq. 5.142.

this way we effectively eliminate one degree of freedom from
the gauge field. Only one more to go.
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Luckily, our gauge freedom is not completely exhausted by
fixing A0. It’s additionally possible to restrict ourselves to gauge
fields that fulfill ∂i Ai = 0 which is a three-dimensional version
of the Lorenz condition. The restriction ∂i Ai = 0 is known as
the Coulomb condition and if we restrict ourselves to gauge
fields that simultaneously fulfill

A0 = 0 , ∂i Ai = 0 , (8.177)

we say that we work in the radiation gauge.7373 Take note that the radiation
gauge is more restrictive than the
Lorenz gauge and really removes
all gauge freedom while the Lorenz
gauge leaves some residual gauge
freedom. In particular, field con-
figurations that fulfill the radiation
gauge condition automatically fulfill
the Lorenz condition ∂µ Aµ = 0
since ∂µ Aµ = ∂0 A0 � ∂i Ai =
∂00 � ∂i Ai = 0.

If we plug our usual ansatz (Eq. 5.115)74

74 Take note that since A0 = 0 we
only use this ansatz for the spatial
components.

Ai(xµ) = eieikµxµ
(8.178)

into the temporal condition, we find

0 = A0 y

Eq. 8.178
= e0eikµxµ

y

���eikµ xµ

= e0 (8.179)

Therefore, all allowed polarization vectors have a vanishing
zeroth component. In words, this implies that massless gauge
fields can’t have a temporal polarization.

If we plug the ansatz into the Coulomb condition, we find

0 = ∂i Ai y

Eq. 8.178
= ∂ieieikµxµ

y

∂xeikx = ikeikx

= ikieieikµxµ

y

⇠⇠⇠ieikµ xµ

= kiei . (8.180)

For a field excitation that moves in the z-direction (~k = (0, 0, kz)t),
this implies

0 = kiei y

~k = (0, 0, kz)
t

= kze3 y

�kz

= e3 . (8.181)
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We can therefore conclude again that massless gauge fields
cannot be polarized in the direction in which they are traveling.
In other words, massless gauge fields can only be transversally
polarized but not longitudinally. Since there is no restriction
on e1 and e2 and we have e0 = 0 as a result of A0 = 0, we can
conclude that for a field excitation that moves in the z-direction,
all allowed polarizations can be described by using the basis
vectors (Eq. 5.129)

e1
µ ⌘

0

BBB@

0
1
0
0

1

CCCA
, e2

µ ⌘

0

BBB@

0
0
1
0

1

CCCA
. (8.182)

Now that we understand what we want to achieve, we can dis-
cuss how we consistently take this into account in the quantum
theory.

The condition A0 = 0 implies that we don’t write down a
canonical commutation relation for A0. The commutation re-
lations for the remaining components Ai is a bit more tricky.
Above, we’ve discovered that for a field excitation that moves in
the z-direction, we have A3 = 0. This seems to suggest that it’s
sufficient to only write down canonical commutation relations
for A1 and A2.

However, if our field excitation moves in another direction, say,
the x-direction, we have A1 = 0. Therefore, the commutation
relations we wrote down for the previous case are no longer
valid.

We need some tool that allows us to write down for all possible
cases that only transverse polarizations become genuine quan-
tum degrees of freedom. Luckily, we already know exactly the
right kind of tool: projection operators.

In the previous section we discussed that we can use the opera-
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tor (Eq. 8.170)

Pµn ⌘ �
✓

hµn � kµkn

krkr

◆
(8.183)

to turn any vector vµ into a vector v?µ ⌘ Pµnvn that is orthogonal
to kµ:7575 We checked this explicitly in

Eq. 8.173 and Eq. 8.174. v?µ kµ = Pµnvnkµ = 0 . (8.184)

Now we need a projection operator Pij that removes from any
given three-vector Ai all components that are parallel to ki. This
would allow us to write down a generally valid formula for the
physical degrees of freedom contained in Ai that we can then
promote to quantum fields. Formulated differently, we want an
operator Pij such that A?

i ki = 0 where A?
i ⌘ Pij Aj . As soon as

we have this operator, we can use it to isolate the two physical
transverse components among the remaining three components
of the gauge field Ai.

The projection operator that we are looking for is completely
analogous to the one that we discussed above:

Pij ⌘
✓

dij �
kikj

klkl

◆
, (8.185)

where dij (the Kronecker delta) is the spatial part of the Minkowski
metric hµn (modulo a minus sign). We can check explicitly that
this operator has the desired effect:

0 !
= A?

i ki y

A?
i ⌘ Pij Aj

= Pij Ajki y

Eq. 8.185

=

✓
dij �

kikj

klkl

◆
Ajki y

=

✓
Ajkj �

kikikj Aj

klkl

◆

y

◆k2

=
�

Ajkj � kj Aj
�
= 0 X (8.186)

The newly defined object

A?
i = Pij Aj =

✓
dij �

kikj

klkl

◆
Aj (8.187)
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contains all of the physical degrees of freedom of the massless
gauge field. Therefore, we only introduce canonical commuta-
tion relations for A?

i .

We can calculate the commutation relations by recalling our
mantra (Eq. 7.15)

quantum operator $ generator of symmetry.

In particular, we identify the conjugate momentum density with
the corresponding generator pi = �i ∂

∂Ai
. If we now repeat the

calculation in Eq. 8.5 for the physical field A?
i , we find

[A?
i (t,~x), pj(t,~y)] |Yi y

Eq. 8.4

=

"
A?

i (t,~x),�i
∂

∂Aj(t,~y)

#
|Yi

y

[A, B] ⌘ AB � BA

= A?
i (t,~x)

 
�i

∂

∂Aj(t,~y)

!
|Yi �

 
�i

∂

∂Aj(t,~y)

!
A?

i (t,~x) |Yi

y

product rule

= A?
i (t,~x)

 
�i

∂

∂Aj(t,~y)

!
|Yi �

 
�i

∂

∂Aj(t,~y)
A?

i (t,~x)

!
|Yi

� A?
i (t,~x)

 
�i

∂

∂Aj(t,~y)
|Yi
!

y

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠
A?

i (xµ)

 
�i

∂

∂Aj(t,~y)

!
|Yi

= �
 
�i

∂

∂Aj(t,~y)
A?

i (t,~x)

!
|Yi

y

Eq. 8.187

= i
∂

∂Aj(t,~y)

⇣✓
dij �

kikj

klkl

◆
Aj(t,~x)

⌘

y ∂Aj(t,~y)
∂Aj(t,~y)

= d(~x �~y)

= i
✓

dij �
kikj

klkl

◆
d(~x �~y)

y

definition
= d?ij (~x �~y) . (8.188)



378 no-nonsense quantum field theory

The object that we defined in the final step, d?(~x �~y), is com-
monly known as the transverse delta. Moreover, the formula
that we derived here

[A?
i (t,~x), pj(t,~y)] = d?ij (~x �~y) (8.189)

is the canonical commutation relation for massless gauge fields
in the Coulomb gauge.

With this relation at hand, we can proceed exactly as in the
previous sections. We can use the general expansion of our
massless gauge field (Eq. 5.156)

A?
i (x) =

2

Â
r=1

Z d3 p
(2p)3

1p
2k0

⇣
er

µar(~k)e�ikµxµ
+ er

µar†(~k)eikµxµ
⌘

,

(8.190)
to introduce the operators ar(~k), ar†(~k). By using Eq. 8.189 we
can then derive that the operators fulfill the usual commutation
relations7676 In this derivation we need the

three-dimensional version of the
completeness relation that we
discussed above (Eq. 8.166)

2

Â
r=1

er
i er

j = �
✓

dij � kikj

klkl

◆
. (8.191)

[ar(~k), as†(~k0)] = (2p)3drsd(~k �~k0) ,

[ar(~k), as(~k0)] = 0 , [ar†~k), as†(~k0)] = 0 . (8.192)

This means that ar(~k), ar†(~k) are creation and annihilation op-
erators and we can again introduce a ground state and particle
states:

ar(~k) |0i = 0

ar†(~k) |0i ⌘ |1r
~k
i . (8.193)

Last but not least, we can once more introduce propagators and
in particular, the Feynman propagator

D?
ij ⌘ h0|TAi(x)Aj(y)|0i y

cumbersome calculation

=
Z d4k

(2p)4
i

k2 + ie

✓
dij �

kikj

klkl

◆
e�ik(y�x) . (8.194)

With all the tools introduced in this chapter in line, we are
ready to discuss how we can use quantum field theory to pre-
dict things that we observe in experiments.
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Interacting Quantum Fields

So far, we’ve only talked about free quantum fields. In this sec-
tion, we start discussing how they interact with each other and
with themselves. However, we will only introduce the most im-
portant concepts that are commonly used to describe interacting
quantum fields and discuss further details in the next part of
the book. In other words, in this chapter we lay the groundwork
for practical applications of quantum field theory. In particular,
we will discuss:

B How we can calculate the probability that one given initial
field configuration evolves into a specific final configuration.

B How these calculations can be simplified by using the inter-
acting picture which allows us, in particular, to reuse every-
thing we learned about free fields in the context of interacting
fields.

B Moreover, we introduce the Dyson series which allows us
to calculate transition amplitudes using a perturbative ap-
proach.

B Last but not least we have to discuss how the ground state
energy changes in the presence of interactions and how we
can get sensible results nevertheless.
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9.1 Transition Amplitudes and Time Evolu-
tion

There are two puzzle pieces when it comes to time evolution.
Firstly, we’ve already discussed the equations of motion that
describe how free fields evolve classically. For example, the
time evolution of scalar fields is described by the Klein-Gordon
equation. Secondly, we discussed that the time evolution of state
vectors |yi is described by the Schrödinger equation.

As we will see in a moment, this is all we need to know to un-
derstand how quantum fields evolve in time.

Let’s start by formulating what we want to achieve in mathe-
matical terms. The first ingredient is a ket |i(0)i that describes
the initial configuration of the system at some initial moment in
time t = 0. For example, we can prepare our system in a way
such that it contains one particle with momentum k and another
particle with momentum k0. We denote the corresponding ket
by |1k, 1k0 i. Our next task is to figure out how this ket evolves in
time. We discussed already in Section 7.1.4 that the time evolu-
tion of kets is described by the Schrödinger equation (Eq. 7.26)

ih̄∂t |i(t)i = H |i(t)i , (9.1)

where H denotes the Hamiltonian operator.11 In (somewhat abstract) words this
equation encodes the fact that the
Hamiltonian H is the generator
of temporal translations. This
can be understood because the
Hamiltonian is (for most systems)
the energy operator and energy is
the Noether charge associated with
temporal translations.

Moreover, we discovered in Section 7.1.5 that it’s equally pos-
sible to describe the time evolution by using a time evolution
operator (Eq. 7.27)2

2 We use two arguments for the time
evolution operator to indicate that
it takes us from ti = 0 to t f = t.
These points in time are completely
arbitrary and below we start at a
different time (ti = �•).

|Y(x, t)i = U(0, t) |Y(x, 0)i . (9.2)

In general, the time evolution operator reads (Eq. 7.30)3

3 Reminder: we derived this by
plugging the ansatz in Eq. 7.27 into
the Schrödinger equation (Eq. 7.26).

U(0, t) = e�
i
h̄
R t

0 dt0H(t0) . (9.3)

Therefore, we have

|i(t)i = U(0, t) |i(0)i , (9.4)
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where |i(t)i describes the system at a later moment in time t.

A hallmark of quantum theories is that there is an intrinsic
uncertainty that we seemingly can’t get rid of. This implies that
we are only able to make probabilistic predictions. As discussed
in Section 7.1 this is possible in the quantum framework by
acting with a bra h f (t)| that describes a specific outcome on the
ket that describes the system:4 4 Reminder: this is analogous to

how we can determine how much a
given vector spreads out, say, in the
z-direction by multiplying it by the
basis vector ~ez:

~ez ·~v = ~eT
z~v =

�
0 0 1

�
0

@
1
3
5

1

A = 5 .

P(i ! f , t) = | h f (t)|i(t)i |2 , (9.5)

where P(i ! f , t) denotes the probability for finding the system
in the state described by | f i. By acting with the bra h f | ⌘ | f i†

on our ket |i(t)i we project out the probability amplitude we are
looking for. The absolute square of this probability amplitude
yields the corresponding probability.

This step is necessary because even if we prepare our system
in a specific configuration, after a while there will usually be
a non-zero probability amplitude for various different final
configurations. Schematically

|i(t)i = c1 | f1(t)i+ c2 | f2(t)i+ c3 | f3(t)i+ . . . , (9.6)

where f1, f2, . . . describe different possible final configurations
and c1, c2, . . . are the corresponding probability amplitudes. By
calculating

h f1(t)|i(t)i = h f1(t)|
⇣

c1 | f1(t)i+ c2 | f2(t)i+ c3 | f3(t)i+ . . .
⌘

y

= c1 h f1(t)| f1(t)i+ c2 h f1(t)| f2(t)i+ c3 h f1(t)| f3(t)i+ . . . y

h f1(t)| f1(t)i = 1, h f1(t)| f2(t)i = 0
= c1 , (9.7)

we project out exactly the probability amplitude c1 that we are
looking for.

In summary, we want to evaluate expressions of the form

P(i ! f , t) = | h f (t)|i(t)i |2 (9.8)
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by using the time evolution operator U(0, t) = e�
i
h̄
R t

0 dt0H(t0)

The object h f (t)|e� i
h̄
R t

0 dt0H(t0)|i(0)i is known as a transition
amplitude.

At this point you might be wondering: where exactly do quan-
tum fields enter the stage here? The answer is: in the Hamilto-
nian H which depends on the fields. For example, we calculated
in Eq. 8.16 that the Hamiltonian operator for a free scalar field
reads

H =
1
2

Z

V
d3x

⇣
p2 + (∂if)

2 + m2f2
⌘

. (9.9)

One of the main tasks in quantum field theory is to calculate
the transition amplitude for different initial and final configura-
tions. In the following section, we will talk about a smart trick
that is extremely helpful in these calculations.

9.2 The Interaction Picture

What we measure in experiments is not described by a ket
|yi, but by the product of a ket with a bra with possibly some
operator Ô in between55 This is the standard formula for

an expectation value in quantum
theories that we discussed on
page 274.

A(t) = h f (t)| Ô |i(t)i . (9.10)

So far we’ve only talked about the Schrödinger equation which
describes how state vectors evolve in time, while there is no
equation of motion for the operator Ô. This is a perfectly valid
approach known as the Schrödinger picture. However, by using
the observation that we are usually only interestered in expres-
sions of the form given in Eq. 9.10 we can construct different
"pictures". While this is merely a neat trick in ordinary quantum
mechanics, it is absolutely essential in quantum field theory. In
particular, in quantum field theory the fields are the operators
that we are interested in and therefore it would be nice if we
could somehow take their time evolution into account.
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To see how this is possible we rewrite Eq. 9.10 by using the
time-evolution operator (Eq. 9.3):6 6 Reminder: h f | = | f i† and there-

fore h f (t)| = h f (0)|U†(t)

A = h f (0)|U†(0, t)ÔU(0, t) |i(0)i . (9.11)

Now we can define that the time evolution of the operator Ô is
described by

Ô(t) ⌘ U†(0, t)ÔU(0, t) . (9.12)

In words this means that we absorb all the time dependence
into a new definition of the operator. This is interesting because
in this case there is no time dependence left for the states which
therefore stay as they are:

h f (0)|U†(0, t)ÔU(0, t) |i(0)i = h f (0)| Ô(t) |i(0)i . (9.13)

This is known as the Heisenberg picture.

There is a third picture which is a mix of the Heisenberg picture
and the Schrödinger picture. The idea is that we split the time
evolution operator U into two parts

U(t) ⌘ Uf(0, t)Ui(0, t) y

e�
i
h̄
R t

0 dt0H(t0) ⌘ e�
i
h̄
R t

0 dt0Hf(t0)e�
i
h̄
R t

0 dt0Hi(t0) , (9.14)

which is possible if we split the Hamiltonian into two parts

H(t) = Hf(t) + Hi(t). (9.15)

This splitting is motivated by the observation that the Hamil-
tonians we are usually interested in consist of a free part and
an interaction part. The free Hamiltonian Hf(t) describes the
system if all interactions are ignored, while Hi(t) contains all
interaction terms.7 7 We discussed interaction terms in

Chapter 6.

We then let Ui(t) act on our state vectors and Uf(t) on the oper-
ators
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A = h f (0)|U†(0, t)ÔU(0, t) |i(0)i y

Eq. 9.14, (AB)† = B† A†

= h f (0)|U†
i (0, t)U†

f (0, t)ÔUf(0, t)Ui(0, t) |i(0)i y

definitions
⌘ h fi(t)| Ôi(t) |ii(t)i , (9.16)

where

Ôi(t) ⌘ U†
f (0, t)ÔUf(0, t)

|ii(t)i ⌘ Ui(0, t) |i(0)i
h fi(t)| ⌘ h f (0)|U†

i (0, t) (9.17)

denote the bra, ket, and operator in the interaction picture.
In words, this means that in the interaction picture the time
evolution of our operators is as if they were free, while the time
evolution of states is governed entirely by the interaction terms.

This is useful because as long as we stick to the interaction pic-
ture, we can use everything we learned about the time evolution
of free fields. For example, we can use that the time evolution of
free scalar fields is governed by the Klein-Gordon equation.

With this in mind, let’s go back to the problem that we really
want to solve.

9.3 The Dyson Series

The prototypical setup that we want to describe in quantum
field theory is a scattering process. We shoot particles onto each
other and then want to predict which particles are produced
this way. We start by preparing our system in a specific way
at an initial time ti and we want to predict what the system
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looks like at a later moment in time t f .8 In our framework, we 8 The subscripts "i" and "f" denote
initial and final respectively.describe the system’s state at ti by |i(ti)i and a possible outcome

at t f by h f (t f )|. Therefore, when we want to describe scattering
processes we calculate amplitudes of the form

A(i ! f ) ⌘ h f (t f )|i(ti)i (9.18)

In the interaction picture, these amplitudes read

A(i ! f ) = h f (t f )|Ui(ti, t f )|i(ti)i y

Eq. 9.14

= h f (t f )|e
� i

h̄
R t f

ti
dt0Hi(t0)|i(ti)i , (9.19)

where all fields that appear in the interaction Hamiltonian Hi
evolve in time as if they were free.

It is convenient to consider the time evolution between ti = �•
and t f = •. On the one hand this simplifies many calculations.
On the other hand, this choice is motivated by the observation
that we are usually not interested in what is going on during
a scattering process but only in the final outcome since this is
what we can observe in our detectors. So we start at ti = �•
before scattering has happened and consider the final outcome
at t f = • which symbolically represents a moment in time at
which all scattering is over.

In addition, it is conventional in this context to use the symbol Ŝ
for the time evolution operator. Therefore, we now consider9 9 This is Eq. 9.19 with ti = �• and

t f = •.
A(i ! f ) = h f (•)|e�

i
h̄
R •
�• dt0Hi(t0)|i(�•)i y

|ii ⌘ |i(�•)i, h f | ⌘ | f (•)i
= h f |e�

i
h̄
R •
�• dt0Hi(t0)|ii y

Ŝ ⌘ e�
i
h̄
R •
�• dt0Hi(t0)

= h f |Ŝ|ii . (9.20)
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Schematically, the scattering operator Ŝ transforms a given
initial state into a sum of possible final states that are weighted
by the corresponding probability amplitudes. For example, let’s
assume that we start with two electrons

|ii = |ek1 , ek2i , (9.21)

where k1, k2 denote their momenta. If we act on this initial state
with Ŝ, we find something of the form

Ŝ |ii = Seq1 ,eq2
|eq1 , eq2i+ Seq3 ,eq4

|eq3 , eq4i+ . . .

+ Sµp1 ,µp2
|µp1 , µp2i+ Sµp3 ,µq4

|µp3 , µp4i+ . . . , (9.22)

where q1, q2, . . . , p1, p2 denote different possible momenta and
|µp1 , µp2i denotes a state consisting of two muons.10 Moreover,10 A muon is a heavy cousin of

an electron. This means that all
properties of the muon are exactly
the same as for an electron, except
for its mass.

Seq1 ,eq2
, Sµp1 ,µp2

etc. are the probability amplitudes for different
possible outcomes which we can isolate by multiplying Ŝ |ii by
a bra like heq1 , eq2 |.

The difficulty in Eq. 9.20 is that the Hamiltonian and there-
fore our field operators appear in the exponential function.
Thus while we already understand what a single field operator
does, it’s not immediately clear how the exponential function
of such field operators acts on a ket. To make sense of such an
expression, we need to recall that we can write the exponential



interacting quantum fields 387

function in terms of a series

ex =
•

Â
i=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ . . . (9.23)

Therefore, the scatter operator Ŝ reads

Ŝ ⌘ e�
i
h̄
R •
�• dt0Hi(t0)

y

Eq. 9.23

= 1 � i
h̄

Z •

�•
dt1Hi(t1)

� 1
h̄22!

✓Z •

�•
dt1Hi(t1)

◆✓Z •

�•
dt2Hi(t2)

◆
� . . . . (9.24)

9.3.1 Time-Ordering

There is, however, once more a subtlety. So far, we have writ-
ten the time-evolution operator as being completely analo-
gous to the one we use in quantum mechanics as U(�•, •) ⌘
e�i

R •
�• dt0H(t0). But this formula is no longer correct in quantum

field theory.11 Instead, we must use 11 In fact, it’s not always correct in
quantum mechanics too. We will
understand in a minute why.

Ũ(�•, •) ⌘ Te�i
R •
�• dt0H(t0) , (9.25)

where T denotes the time-ordering operator (Eq. 8.90). To un-
derstand why, recall that we discovered in Section 7.1.5 that the
time-evolution operator fulfills the equation (Eq. 7.29)

i∂tU(t) = HU(t) . (9.26)

The time-evolution operator in the interaction picture, which
describes the time-evolution of states, fulfills analogously12 12 The derivation of this equation

is analogous to what we did in
Section 7.1.5.i∂tUi(t) = HiUi(t) . (9.27)

At first glance, it seems as if Ui(t) ⌘ e�i
R t

0 dt0Hi(t0) solves this
equation. This, however, is not necessarily the case. We only
notice this if we evaluate the equation carefully. Let’s focus on
the left-hand side first:
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i∂tUi(t) = i∂te�i
R t

0 dt0Hi(t0)

y

ex = . . . (Eq. 9.23)

= i∂t

 
1 � i

Z t

0
dt1Hi(t1)

� 1
2!

✓Z t

0
dt1Hi(t1)

◆✓Z t

0
dt2Hi(t2)

◆
� . . .

!
y

∂x

Z x

a
f (t)dt = f (x)

= �i2Hi(t)� i∂t

 
1
2!

✓Z t

0
dt1Hi(t1)

◆✓Z t

0
dt2Hi(t2)

◆!
� . . .

y

product rule

= Hi(t)�
i

2!

 ✓
∂t

Z t

0
dt1Hi(t1)

◆✓Z t

0
dt2Hi(t2)

◆

+

✓Z t

0
dt1Hi(t1)

◆✓
∂t

Z t

0
dt2Hi(t2)

◆!
� . . .

y

∂x

Z x

a
f (t)dt = f (x)

= Hi(t)�
i

2!

 
Hi(t)

✓Z t

0
dt2Hi(t2)

◆
+

✓Z t

0
dt1Hi(t1)

◆
Hi(t)

!
� . . .

y

= Hi(t)�
i

2!

 
Hi(t)

✓Z t

0
dt1Hi(t1)

◆
+

✓Z t

0
dt1Hi(t1)

◆
Hi(t)

!
� . . . . (9.28)

To get to the last line, we used that we can rename integration
variables ("dummy variables") freely. Now compare this to what
we have on the right-hand side of Eq. 9.27

Hi(t)Ui(t) = Hi(t)e�i
R t

0 dt0Hi(t0)

y

Eq. 9.23

= Hi(t)
⇣

1 � i
Z t

0
dt1Hi(t1) + . . .

⌘

y

= Hi(t)� iHi(t)
Z t

0
dt1Hi(t1)� . . . . (9.29)

The first term on both right-hand sides of Eq. 9.28 and Eq. 9.29,
Hi(t), coincides perfectly. But already the second term is prob-
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lematic. On the right hand side of Eq. 9.29, we get just one term
with Hi(t) on the left-hand side of the integral

R t
0 dt1Hi(t1).

While in Eq. 9.28 we also have this term, there is an additional
term in which Hi(t) sits on the "wrong" side of the integral.13 13 Take note that even if we include

higher order terms in Eq. 9.29,
there is no comparable term. For
example, the next highest order
yields something of the form
Hi(t)(

R t
0 dt1 Hi(t1))(

R t
0 dt2 Hi(t2))

which is certainly not equal to⇣ R t
0 dt1 Hi(t1)

⌘
Hi(t).

Therefore, the left-hand and right-hand side are only equal if
we can can move Hi(t) past the integral such that this term also
becomes Hi(t)

⇣ R t
0 dt1Hi(t1)

⌘
. This, however, is only possible if

the Hamiltonian operator evaluated at different moments (here
t and t1) commutes with itself. Formulated differently, only if
[Hi(t), Hi(t0)] = 0, we have

Hi(t)
⇣ Z t

0
dt1Hi(t1)

⌘
=
⇣ Z t

0
dt1Hi(t1)

⌘
Hi(t) . (9.30)

This, in turn, implies that only in this case, the left-hand side
(Eq. 9.28) and the right-hand side (Eq. 9.29) are actually equal.
What can we say about [Hi(t), Hi(t0)] in quantum field theory?

We already know that the Hamiltonian contains several prod-
ucts of the fields in question, which themselves are operators.14 14 Reminder: in Eq. 8.16 we found

that the Hamiltonian for a free
scalar field reads

H =
1
2

Z

V
d3x

⇣
p2 + (∂if)

2 + m2f2
⌘

.

Moreover, we discovered in Section 8.5.1 that

D(t0,~x, t,~x) ⌘ h1t0 ,~x|1t,~xi y

⌘ h0|f(t0,~x)f(t,~x)|0i y

Eq. 8.83

=
Z dk3

(2p)32
p
~k2 + m2

ei
p
~k2+m2·(t0�t) . (9.31)

This implies

h0|[f(t0,~x), f(t,~x)]|0i = h0|f(t0,~x)f(t,~x)|0i � h0|f(t,~x)f(t0,~x)|0i y

Eq. 9.31

=
Z dk3

(2p)32
p
~k2 + m2

ei
p
~k2+m2·(t0�t)

�
Z dk3

(2p)32
p
~k2 + m2

ei
p
~k2+m2·(t�t0)

y

6= 0 . (9.32)

We can therefore conclude that

[f(t0,~x), f(t,~x)] 6= 0 . (9.33)
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In words, this means that field operators at different moments
in time do not commute. Since the Hamiltonian consists of
fields, there is no reason why it should commute with itself at
different instants of time:

[Hi(t), Hi(t0)] 6= 0 . (9.34)

Therefore,

Hi(t)
⇣ Z t

0
dt1Hi(t1)

⌘
6=
⇣ Z t

0
dt1Hi(t1)

⌘
Hi(t) (9.35)

and we conclude that the right-hand side (Eq. 9.29) and left-
hand side (c.f. Eq. 9.28) in Eq. 9.27 are not equal if we use
Ui(t) ⌘ e�i

R t
0 dt0Hi(t0). In other words, Ui(t) ⌘ e�i

R t
0 dt0Hi(t0) is

not the correct time-evolution operator if the Hamiltonian at
different instants in time does not commute with itself.

As already suggested at the beginning of this section, the prob-
lem can be solved by using the time-ordering operator T. To
understand why this works, we write down explicitly what
time-ordering implies for the problematic second term

T
⇣ Z t

0
dt1 Hi(t1)

Z t

0
dt2Hi(t2)

⌘

y Z c

a
=
Z b

a
+
Z c

b

= T
⇣ Z t

0
dt1

Z t1

0
dt2Hi(t1)Hi(t2) +

Z t

0
dt1

Z t

t1
dt2 Hi(t1)Hi(t2)

⌘

y

time ordering

=
Z t

0
dt1

Z t1

0
dt2

t1 > t2

Hi(t1)Hi(t2) +
Z t

0
dt1

Z t

t1
dt2

t2 > t1

Hi(t2)Hi(t1) . (9.36)

We can combine theses two terms into a single term by noting
that t2 > t1 is equivalent to t1 < t2 and therefore, we have
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Z t

0
dt1

Z t

t1
dt2

t2 > t1

Hi(t2)Hi(t1) =
Z t

0
dt2

Z t2

0
dt1

t1 < t2

Hi(t2)Hi(t1)

y

renaming integration variables

=
Z t

0
dt1

Z t1

0
dt2 Hi(t1)Hi(t2) .

(9.37)

By plugging Eq. 9.37 into Eq. 9.36 we find

T
⇣ Z t

0
dt1 Hi(t1)

Z t

0
dt2Hi(t2)

⌘
= 2

Z t

0
dt1

Z t1

0
dt2 Hi(t1)Hi(t2) .

(9.38)

Therefore, if we plug Ũi(t) ⌘ Te�i
R t

0 dt0Hi(t0) into the left-hand
side of our defining equation (Eq. 9.27), we find
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i∂tŨi(t) = i∂tTe�i
R t

0 dt0Hi(t0)

y

ex = . . . (Eq. 9.23)

= i∂tT

 
1 � i

Z t

0
dt1Hi(t1)

� 1
2!

✓Z t

0
dt1Hi(t1)

◆✓Z t

0
dt2Hi(t2)

◆
� . . .

!
y

∂x

Z x

a
f (t)dt = f (x)

= �i2Hi(t)� i∂tT

 
1
2!

✓Z t

0
dt1Hi(t1)

◆✓Z t

0
dt2Hi(t2)

◆!
� . . .

y

Eq. 9.38

= Hi(t)�
i

2!
∂t

 
2
Z t

0
dt1 Hi(t1)

Z t1

0
dt2 Hi(t2)

does not depend on t

!
� . . .

y

∂x

Z x

a
f (t)dt = f (x)

= Hi(t)� iHi(t)
Z t

0
dt2 Hi(t2)� . . . , (9.39)

To get to the final line, we used ∂t
R t

0 f (t1)dt1 = f (t) with
f (t1) ⌘ Hi(t1)

R t1
0 dt2 Hi(t2) since the upper limit of the second

integral also depends on t1. Thus after we take the derivative
this upper limit becomes t. Moreover, we don’t need to use the
product rule since t only appears in the first integral.

We need to compare this to what we find when we plug Ũi(t) ⌘
Te�i

R t
0 dt0Hi(t0) into the right-hand side of our defining equation

(Eq. 9.27):

Hi(t)Ũ(t) = HiTe�i
R t

0 dt0Hi(t0)

y

Eq. 9.23

= Hi(t)T
⇣

1 � i
Z t

0
dt1Hi(t1)� . . .

⌘

y

= Hi(t)� iHi(t)
Z t

0
dt1Hi(t1)� . . . . (9.40)
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Since the final lines in Eq. 9.39 and Eq. 9.40 are exactly equal,
we can conclude that the correct time evolution operator indeed
reads

Ũi(t) ⌘ Te�i
R t

0 dt0Hi(t0) . (9.41)

This implies that the correct scattering operator Ŝ (Eq. 9.24)
reads

Ŝ ⌘ Te�i
R •
�• dt0Hi(t0)

y

Eq. 9.23

= T

 
1 � i

Z •

�•
dt1Hi(t1)

� 1
2!

✓Z •

�•
dt1Hi(t1)

◆✓Z •

�•
dt2Hi(t2)

◆
� . . .

!
. (9.42)

We can therefore write the probability amplitudes that we are
usually interested in as

A(i ! f )
Eq. 9.20
= h f |Ŝ|ii y

Eq. 9.42

= h f |ii � i h f |
Z •

�•
dt1Hi(t1)|ii

� 1
2!

h f |T
✓Z •

�•
dt1Hi(t1)

◆✓Z •

�•
dt2Hi(t2)

◆
|ii � . . .

y

definitions

= A(0) + A(1) + A(2) + . . . . (9.43)

This is known as the Dyson series. It is useful because it allows
us to evaluate the action of Ŝ on the given initial state |ii by
considering the individual terms in Eq. 9.43 one after another.
Moreover, the interaction terms that appear in Hi always involve
a coupling constant g which, in many cases, is smaller than one.
This implies that higher order terms will contribute less and
less to the total probability amplitude.15 Thus we can calculate 15 For 0 < g < 1 we have g > g2 >

g3 > . . .. For example, for g = 0.1,
we have g2 = 0.01 and g3 = 0.001
etc.

approximately correct probability amplitudes by focusing on the
first few terms in this series.
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A final aspect that we need to take into account as soon as we
talk about interacting quantum fields, is that the ground state
gets modified. This is important because we interpret every
particle state as an excitation above the ground state |1ki ⌘
a†(k) |0i (Eq. 8.46). In the following section we will see how we
can make this interpretation work for interacting models.

9.4 Ground State Energy in the Presence of
Interactions

We discussed in Section 8.3.1 that the energy of the ground state
|0i is formally infinite in quantum field theory (Eq. 8.19). Before
we discuss how the situation changes if we take interactions
into account, let’s recap what we’ve learned about this issue so
far. We discovered that if we plug our general field expansion
(Eq. 5.51)

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)ei(kx) + a†(~k)e�i(kx)

⌘
(9.44)

into the general definition (Eq. 8.16):

H =
Z

V
d3x

 
∂L

∂(∂0f)
∂0f � L

!
(9.45)

we find (Eq. 8.17)

H =
1
2

Z

V
dk3 wk

(2p)3

⇣
a†(~k)a(~k) + a(~k)a†(~k)

⌘
. (9.46)

This implies that the expected ground state energy is infinitely
large:

h0|H|0i ⇠ • . (9.47)
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We can see this because

h0|a(~k)a†(~k)|0i =
⇣

a†(~k) |0i
⌘†⇣

a†(~k) |0i
⌘

y

Eq. 8.46

=
⇣
|1~ki

†
⇣
|1~ki

⌘

y

hy| ⌘ |yi†

= h1~k|1~ki y

Eq. 8.44
= (2p)3d(~k �~k) = (2p)3d(0) ⇠ • . (9.48)

Alternatively, we can also use the commutation relations (Eq. 8.14)

[a(k), a†(k0)] = (2p)3d(~k �~k0) (9.49)

to rewrite the Hamiltonian as follows (Eq. 8.19)

H =
1
2

Z

V
dk3 wk

(2p)3

⇣
2a†(~k)a(~k) + [a(~k), a†(~k0)]

⌘

y

=
Z

V
dk3 wk

(2p)3 a†(~k)a(~k) +
1
2

Z

V
dk3wkd(~0) . (9.50)

The first term depends on the configuration of the system in
question and yields zero if we apply it to the ground state since
a(k) |0i = 0 (Eq. 8.31).

In contrast, the second term yields exactly the same number (in-
finity) for any state, even for the ground state. Thus we argued
that this is a constant energy offset that we can ignore since
what usually matters for us are energy differences. A constant
energy offset — even it is infinitely large — makes no differ-
ence.

This settled the issue for the free Hamiltonian. However, as
soon as we take interactions into account, we need to revisit the
issue.

If we take interactions into account, the Hamiltonian contains
new terms (Eq. 9.15):

H = Hf + Hi, (9.51)
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where Hf is the Hamiltonian that we use if we ignore all inter-
actions and Hi contains all interaction terms. One example that
we already encountered is1616 We discussed the f4-term in

Section 6.2. To derive the Hamilto-
nian, we can again use the general
definition (Eq. 8.16):

H =
Z

V
d3x

 
∂L

∂(∂0f)
∂0f � L

!
.

If we plug the f4-Lagrangian
(Eq. 6.26)

L =
1
2

∂µf∂µf � 1
2

µ2f2 +
1
4!

lf4 ,

into this formula, we find the
free Hamiltonian plus a new l

4! f4

term which we call the interaction
Hamiltonian.

Hi =
l

4!
f4 . (9.52)

If we now plug the general field expansion (Eq. 5.51) into this
formula in order to understand the interaction Hamiltonian
in terms of creation and annihilation operators, we find new
infinitely large contributions to the ground state energy.

To see this, we introduce the notation

f(x) =
Z

dq3
1

1
(2p)3p2wq1

⇣
a(~q1)e�i(q1x) + a†(~q1)ei(q1x)

⌘

y

⌘ f1� + f1+ ,

(9.53)

where f1� is an integral over annihilation operators and f1+
an integral over creation operators. The interesting part of the
interaction Hamiltonian then reads

f4 Eq. 9.53
= (f1� + f1+)(f2� + f2+)(f3� + f3+)(f4� + f4+) y

= f1+f2+f3�f4� + f1�f2�f3+f4+ + f1�f2+f3�f4+

+ f1�f2+f3+f4� + f1+f2�f3�f4+ + f1+f2�f3+f4� + . . .
(9.54)

where the dots indicate terms that we ignore for the moment.1717 We will see in Chapter 10 that
we can ignore these additional
terms because they contain an
uneven number of creation and
annihilation operator terms and
therefore necessarily yield zero
when we sandwich them between
h0| and |0i.

While the first term in this sum yields zero if we apply it to the
ground state since f� |0i = 0, the second term, for example,
doesn’t.

However, analogous to what we did for the free Hamiltonian,
we can bring the remaining five terms into exactly the same
form as the first term by using the commutation relations
(Eq. 8.14). The price we have to pay for this are a "few" addi-
tional commutators.

For example, for the second term the calculation works as fol-
lows1818 Feel free to jump directly to the

final line.
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f1�f2�f3+f4+ = f1�
⇣

f3+f2� + [f2�, f3+]
⌘

f4+ y

= f1�f3+f2�f4+ + [f2�, f3+]f1�f4+ y

= f1�f3+

⇣
f4+f2� + [f2�, f4+]

⌘

+ [f2�, f3+]
⇣

f4+f1� + [f1�, f4+]
⌘

y
= f1�f3+f4+f2� + f1�f3+[f2�, f4+]

+ [f2�, f3+]f4+f1� + [f2�, f3+][f1�, f4+] y

=
⇣

f3+f1� + [f1�, f3+]
⌘

f4+f2�

+
⇣

f3+f1� + [f1�, f3+]
⌘
[f2�, f4+]

+ [f2�, f3+]f4+f1� + [f2�, f3+][f1�, f4+] y

= f3+f1�f4+f2� + [f1�, f3+]f4+f2�

+ [f2�, f4+]f3+f1� + [f1�, f3+][f2�, f4+]

+ [f2�, f3+]f4+f1� + [f2�, f3+][f1�, f4+] y

= f3+

⇣
f4+f1� + [f1�, f4+]

⌘
f2�

+ [f1�, f3+]f4+f2� + [f2�, f4+]f3+f1�

+ [f1�, f3+][f2�, f4+] + [f2�, f3+]f4+f1�

+ [f2�, f3+][f1�, f4+] y

= f3+f4+f1�f2� + [f1�, f4+]f3+f2�

+ [f1�, f3+]f4+f2� + [f2�, f4+]f3+f1�

+ [f1�, f3+][f2�, f4+] + [f2�, f3+]f4+f1�

+ [f2�, f3+][f1�, f4+] . (9.55)

The first term here has exactly the same structure as the first
term in Eq. 9.54, (f1+f2+f3�f4�), and yields zero if we apply it
to the ground state |0i.

All the remaining terms formally yield infinitely large contribu-
tions to the energy of any state. This follows because the field
f is evaluated in the product f4 = f4(x) four times at exactly
the same spacetime point x. Therefore, when we evaluate the
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commutators in Eq. 9.55, we find

[f1�(x), f2+(x)] = f1�(x)f2+(x)� f2+(x)f1�(x) y

Eq. 9.53

=
⇣ Z

dq3
1

1
(2p)3p2wq1

a(~q1)e�i(q1x)
⌘⇣ Z

dq3
2

1
(2p)3p2wq2

a†(~q2)ei(q2x)
⌘

�
⇣ Z

dq3
2

1
(2p)3p2wq2

a†(~q2)ei(q2x)
⌘⇣ Z

dq3
1

1
(2p)3p2wq1

a(~q1)e�i(q1x)
⌘

y

=
Z dq3

1dq3
2

(2p)6p4wq1 wq2

a(~q1)a†(~q2)e�i(q1�q2)x

�
Z dq3

1dq3
2

(2p)6p4wq1 wq2

a†(~q2)a(~q1)e�i(q1�q2)x

y

=
Z dq3

1dq3
2

(2p)6p4wq1 wq2

[a(~q1), a†(~q2)]e�i(q1�q2)x

y

Eq. 8.14

=
Z dq3

1dq3
2

(2p)6p4wq1 wq2

⇣
(2p)3d(~q1 �~q2

⌘
e�i(q1�q2)x

y

=
Z dq3

1
(2p)3p4wq1 wq1

e�i(q1�q1)x

y

e0 = 1

=
Z dq3

1
(2p)32wq1

. (9.56)

This integral yields infinity if we integrate it from �• to •

since wq1 =
q
~q2

1 + m2 and1919 We assume once more that a
trustworthy colleague from the
math department confirms that the
integral diverges, i.e. yields infinity.

Z •

�•

1p
x2 + m2

= log
⇣p

x2 + m2 + x
⌘�����

•

�•

⇠ • . (9.57)

Therefore, all terms in Eq. 9.55 that involve a [f�(x), f+(x)]
commutator yield an infinitely large contribution to the energy
of any state. How can we handle this problem?

Infinitely large contributions to the energy levels of all states are
a general problem that occurs in different ways for all kinds of
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interactions. Thus it makes sense to develop a general strategy
that allows us to separate the terms that we are really interested
in (e.g. in the free case a†a and f1+f2+f3�f4� ⇠ a†a†aa in
the f4 case) from the ones that represent constant, infinitely
large energy shifts. A strategy that works well in many cases is
normal ordering. We say that an operator product is normal-
ordered if all annihilation operators are located to the very
right. A few examples

: aa† : ⌘ a†a

: a†aa† : ⌘ a†a†a

: aa†aa† : ⌘ a†a†aa

: aaa†a : ⌘ a†aaa , (9.58)

where the colons denote normal ordering.

The general idea is that a given Hamiltonian in normal order
contains all the terms that we are really interested in. For exam-
ple

: Hf :
8.17
= :

1
2

Z

V
dk3 wk

(2p)3

⇣
a†(~k)a(~k) + a(~k)a†(~k)

⌘
:

y

=
1
2

Z

V
dk3 wk

(2p)3

⇣
: a†(~k)a(~k) : + : a(~k)a†(~k) :

⌘

y

=
1
2

Z

V
dk3 wk

(2p)3

⇣
a†(~k)a(~k) + a†(~k)a(~k)

⌘

y

=
Z

V
dk3 wk

(2p)3 a†(~k)a(~k) , (9.59)

which is exactly the Hamiltonian that we already identified in
Eq. 8.22 as the relevant one.

Similarly, we find for the relevant part of the f4 interaction
Hamiltonian
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: f4 :
9.54
= : f1+f2+f3�f4� : + : f1�f2�f3+f4+ : + : f1�f2+f3�f4+ :

+ : f1�f2+f3+f4� : + : f1+f2�f3�f4+ : + : f1+f2�f3+f4� :

+ . . . y

= f1+f2+f3�f4� + f3+f4+f1�f2� + f2+f4+f1�f3�

+ f2+f3+f1�f4� + f1+f4+f2�f3� + f1+f3+f2�f4� + . . . y

= 6f1+f2+f3�f4� + . . . . (9.60)

To get to the final line, we used that the indices 1, 2, 3, 4 only
label different integration variables (Eq. 9.53) that we can al-
ways rename freely. Moreover, we used that f� is defined as an
integral over annihilation operators while f+ is defined as an
integral over creation operators. Therefore : f�f+ : = f+f�.

One observation that lends further support to the idea that
normal ordering our Hamiltonian may be the way to go, is that
a normal-ordered Hamiltonian yields zero if we sandwich it
between h0| and |0i:

h0| : H : |0i = 0 . (9.61)

This follows because H is a sum over products of creation and
annihilation operators and in normal order, we either have
an annihilation operator to the very right and thus can use
a |0i = 0, or encounter terms that do not contain any annihila-
tion operators but can then use

h0| a† = 0 , (9.62)

which is true since (|0i a†)† = a |0i = 0. In words, Eq. 9.61 tells
us that the expected energy value for a system in the ground
state is zero. This is exactly what we want to be able to interpret
particles as finite energy excitation above the vanishing ground
state energy.
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In summary, whenever it is possible we should use normal-
ordered Hamiltonians to avoid infinitely large terms. This will
become especially important in the next section, since our prob-
ability amplitudes depend directly on the Hamiltonian. There-
fore, if our Hamiltonian contains infinitely large terms, we will
also find infinitely large contributions to our probability ampli-
tudes. This doesn’t make much sense and thus we will use : H :
instead of H.

Now it’s time to see how all this works in practice. In the fol-
lowing chapters, we will talk about some of the most important
applications of quantum field theory.
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Part II
Essential Applications

"You can’t cross the sea merely by standing and staring at the water."

Rabindranath Tagore

PS: You can discuss the content of Part II with other readers and give feedback at
www.nononsensebooks.com/qft/bonus.

www.nononsensebooks.com/qft/bonus
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One of the core ideas in modern physics is that we can dive
deeper into Nature’s secrets by smashing particles onto each
other. If we accelerate our particles sufficiently before the col-
lision, they "break" and we can get a glimpse of what lies be-
hind.1 Thus, in some sense, we can say that particle colliders are 1 Of course, particles don’t really

break because we understand them
as excitations of quantum fields.
Therefore, what this really means
is that if the energy of the colliding
particles is sufficiently high, we
can excite additional quantum
fields. And theses new excitations
show up as new particles in our
detectors. Since it costs energy to
excite quantum fields, it’s possible
that the original quantum field
excitations (the colliding particles)
vanish.

the most powerful microscopes of our time.

For this reason, applications of quantum field theory are often
focused around tools to describe scattering processes. Here, we
start with a given set of particles which we prepare in a collider
experiment, for example, two electrons. Then our task is to cal-
culate the probability for a given end result after the collision.
For example, two electrons with a different momentum or two
different particles like two muons. The main tool which allows
us to calculate these probabilities is the time-evolution opera-
tor. We evolve our initial state in time and then project out the
probability amplitude for the final state in question.

While this may sound simple, in practice it isn’t. In fact, we
can’t calculate the probabilities exactly but have to use a pertur-
bative approach. As we’ve seen in the previous part, we rewrite
our time-evolution operator in terms of a series expansion and
then evaluate the terms individually. To evaluate a given term,
we often use the fact that if two operators A, B do not com-
mute [A, B] 6= 0, we can still switch their position as long as we
include an additional term:2 2 We will discuss in detail below

why switching the position of
operators is an important step. The
key idea is that we try to move
annihilation operators to the right,
where they annihilate the ground
state a |0i = 0 (Eq. 8.31). This
implies that only the terms that we
get when we switch the operators
around (the commutator terms)
yield something non-zero.

[A, B] = AB � BA y

AB = BA + [A, B] .

Usually, the terms that we encounter contain not just two but
many operators. Hence, we must use this trick multiple times
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and get lots of commutator terms as a result. While it is pos-
sible to do this manually, it’s much smarter to simplify the
calculation by using specific tools that we will discuss in the
subsequent chapter.

To understand how all of this works, let’s consider an example.
We will gloss over many important details here in order to build
some intuition for what is going on. Afterwards, we will refine
our understanding and improve the workflow step by step.



10

Scattering - a First Look

We imagine that we have isolated a small part of the universe
in such a way that we can focus on a single scalar field f.
Moreover, we assume that we can describe the field and its
self-interactions by using the Lagrangian density (Eq. 6.26)3 3 In comparison with Eq. 6.26 there

is an additional minus sign in
front of the f4 term. This is purely
conventional since the minus sign
can be absorbed into a redefinition
of the parameter l.

L =
1
2

∂µf∂µf � 1
2

m2f2 � 1
4!

lf4 , (10.1)

that we discussed already in Section 6.2. The corresponding
Hamiltonian reads

H =
Z

d3x
✓

1
2
(∂0f)2 +

1
2
(∂if)

2 +
1
2

m2f2 +
1
4!

lf4
◆

y

definitions
⌘ Hf + Hi , (10.2)

which can be derived by following exactly the same steps as in
Eq. 8.16.

In this case,

Hf ⌘
1
2

Z
d3x

⇣
(∂0f)2 + (∂if)

2 + m2f2
⌘

(10.3)

is the Hamiltonian that we would use if there were no interac-
tions (Eq. 8.16), and

Hi ⌘
Z

d3x
✓

1
4!

lf4
◆

(10.4)
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is the interaction Hamiltonian. For the following discussion to
make sense, we assume that l is a small parameter. In physical
terms this implies that the field only interacts weakly with itself.

We call the particles associated with the field f pions, p0. A
typical situation is that we prepare two pions and assume that
their momenta (~k1,~k2) are well known. We then bring them
sufficiently close together and want to describe how they scatter
off each other.

Since we consider a single scalar field with only one possible
type of elementary excitation (that we call pions), we only ex-
pect to see pions (possibly with different momenta) after the
scattering processes.

In mathematical terms, we start by preparing |p0
k1

, p0
k2
i and

want to calculate, for example, the probability amplitude for
finding two pions with different momenta (~k3,~k4) after the scat-
tering process:

A(p0
k1

, p0
k2

! p0
k3

, p0
k4
) = hp0

k3
, p0

k4
|Ŝ|p0

k1
, p0

k2
i . (10.5)

Plugging in the series expansion for the scattering operator Ŝ
(Eq. 9.42) yields

A(p0
k1

, p0
k2

! p0
k3

, p0
k4
) y

Eq. 10.5
= hp0

k3
, p0

k4
|Ŝ|p0

k1
, p0

k2
i y

Eq. 9.24

= hp0
k3

, p0
k4
|T
⇣

1 � i
Z •

�•
dt1Hi(t1)� . . .

⌘
|p0

k1
, p0

k2
i

y

= hp0
k3

, p0
k4
|p0

k1
, p0

k2
i � i hp0

k3
, p0

k4
|
Z •

�•
dt1Hi(t1)|p0

k1
, p0

k2
i � . . .

y

definition

⌘ A(0) + A(1) + . . . . (10.6)

Take note that the time ordering operator T makes no difference
for the first two terms.
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10.1 Zeroth-Order Approximation

If we assume that the momenta of the two pions are completely
unchanged by the scattering process~k1,~k2 = ~k3,~k4, the first
term, A(0), is non-vanishing and we find4

4 This is only a first order ap-
proximation for the probability
amplitude since we ignore all
higher order terms. Thus we use
the symbol ⇡.

A(p0
k1

, p0
k2

! p0
k1

, p0
k2
) ⇡ A0

y

Eq. 10.6
= hp0

k1
, p0

k2
|p0

k1
, p0

k2
i y

|y1, y2i ⌘ |y1i |y2i
=
⇣
hp0

k2
| hp0

k1
|
⌘⇣

|p0
k1
i |p0

k2
i
⌘

y

= hp0
k2
|p0

k2
i hp0

k1
|p0

k1
i y

Eq. 8.48

=
⇣

2wk1(2p)3d(~k1 �~k1)
⌘⇣

2wk2(2p)3d(~k2 �~k2)
⌘

y

= 4wk1 wk2

⇣
(2p)3d(~0)

⌘2
. (10.7)

This result doesn’t make much sense. But this is not surprising
since we started with the unrealistic assumption that the mo-
menta of the two pions that we start with are exactly known.
We discussed this issue already in Section 8.4.3. One solution
is to assume that the system we consider is confined to a finite
volume V.

If this is the case, states with exactly known momentum (plane
wave states) are, in principle, normalizable and instead of
(2p)3d(~0) we get V (Eq. 8.68, Eq. 8.71). As discussed in Sec-
tion 8.4.3 it is conventional to rewrite all formulas in such a way
that the volume V drops out. For example, in this case we could
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write the probability for the transition p0
k1

, p0
k2

! p0
k1

, p0
k2

as

P(p0
k1

, p0
k2

! p0
k1

, p0
k2
) y

Eq. 8.69

=
|A(p0

k1
, p0

k2
! p0

k1
, p0

k2
)|2

hp0
k1

, p0
k2
|p0

k1
, p0

k2
i hp0

k1
, p0

k2
|p0

k1
, p0

k2
i y

Eq. 10.5

=
| hp0

k1
, p0

k2
|p0

k1
, p0

k2
i |2

hp0
k1

, p0
k2
|p0

k1
, p0

k2
i hp0

k1
, p0

k2
|p0

k1
, p0

k2
i y

Eq. 10.7

=

⇣
V
⌘2

⇣
V
⌘2

y

= 1 . (10.8)

This is really just a trick that allows us to avoid working with
wave packets. A second possibility is to use the more realistic
smeared initial and final states (Eq. 8.76) that we introduced in
Section 8.4.4. In this case, we find

A(p0
k1

, p0
k2

! p0
k1

, p0
k2
) ⇡

⇣ rhp0
k2
| rhp0

k1
|
⌘⇣

|p0
k1
ir |p0

k2
ir ⌘

y

=
rhp0

k2
| rhp0

k1
|p0

k1
ir |p0

k2
ir

y

=
rhp0

k2
|p0

k2
ir rhp0

k1
|p0

k1
ir

y

= 1 , (10.9)

where we used that rhp0
k1
|p0

k1
ir is a number and we can move

numbers around freely. If we allow that the momenta of the
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particles in the final state can be different, we find

A(p0
k1

, p0
k2

! p0
k3

, p0
k4
) y

⇡ A0

y

Eq. 10.6
= hp0

k3
, p0

k4
|p0

k1
, p0

k2
i y

|y1, y2i ⌘ |y1i |y2i
=
⇣
hp0

k4
| hp0

k3
|
⌘⇣

|p0
k1
i |p0

k2
i
⌘
y

= hp0
k4
|p0

k2
i hp0

k3
|p0

k1
i y

Eq. 8.48

=
⇣

2
p

wk1 wk3(2p)3d(~k1 �~k3)
⌘⇣

2
p

wk2 wk4(2p)3d(~k2 �~k4)
⌘

.

(10.10)

This is only non-zero for~k1 = ~k3 and~k2 = ~k4, which is the case
we considered above.

The zeroth order term we considered in this section describes
the scattering of two particles if all interactions are turned off.
With all interactions turned off, there is a 100% probability
that the two particles have at the end of the scattering process
exactly the same momenta as at the beginning. The probability
for any other state (two particles with different momenta etc.)
is zero. This is true for the zeroth order term in any scattering
process and therefore it is conventional to isolate the trivial part
of the scattering operator by defining

Ŝ ⌘ 1 + iT̂ , (10.11)

where T̂ is known as the transfer operator.
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10.2 First-Order Approximation

It is instructive to evaluate the first nontrivial term in Eq. 10.6
explicitly since there are many new aspects

A(1) ⌘ �i hp0
k1

, p0
k2
|
Z •

�•
dt1Hi(t1)|p0

k1
, p0

k2
i

y

Eq. 10.4

= �i hp0
k1

, p0
k2
|
Z •

�•
dt1

⇣ Z

V
d3x

✓
1
4!

lf4
◆⌘

|p0
k1

, p0
k2
i

y

=
�il
4!

Z •

�•
d4x hp0

k1
, p0

k2
|f4|p0

k1
, p0

k2
i . (10.12)

To evaluate hp0
k1

, p0
k2
|f4|p0

k1
, p0

k2
i, we need to recall that our

general field expansion reads (Eq. 5.51)

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�i(kx) + a†(~k)ei(kx)

⌘

y

⌘ f� + f+ , (10.13)

where f� is an integral over annihilation operators, while f+ is
an integral over creation operators. The factor f4 therefore reads

f4 Eq. 10.13
= (f� + f+)(f� + f+)(f� + f+)(f� + f+) . (10.14)

Before we discuss more subtle aspects of this expression, take
note that most of the terms yield zero if we sandwich them be-
tween hp0

k1
, p0

k2
| and |p0

k1
, p0

k2
i. For example, let’s consider the

term f4
�. This terms contains a product of four annihilation

operators a4. Two of them are sufficient to annihilate the two
particles contained in a2 |p0

k1
, p0

k2
i ⇠ |0i. Afterwards, we are

left with the ground state and two additional annihilation op-
erators. When they act on the ground state, we necessarily find
zero: a |0i = 0 (Eq. 8.31). Similarly, a term of the form f4

+ will
yield zero since it contains a product of four creation operators
a†4. When they act on our initial state |p0

k1
, p0

k2
i, the create four

further particles. If we then act with the bra hp0
k1

, p0
k2
|, which
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describes a final state consisting of just two particles, on the
resulting state we find zero. Analogous arguments apply to all
terms that do not contain an equal number of creation and an-
nihilation terms. Only terms of the form f+f+f�f� ⇠ a†a†aa
have a chance of yielding something non-zero since they contain
products of an equal number of creation and annihilation opera-
tors.5 The annihilation operators act on |p0

k1
, p0

k2
i, which leaves 5 Take note that this is only the case

because we consider an equal num-
ber of particles in the initial and
final state. If we would consider,
for example, a transition from two
to three particles we would need a
term of the form f+f+f+f�f� to
get something non-zero.

us with the ground state |0i (times some numerical factors). The
remaining two operators a†a† then act on this ground state and
create two new particles. Thus, we possibly find something non-
zero if we then act on this final ket with the two particle final
state hp0

k1
, p0

k2
|. If we want to evaluate the product in Eq. 10.14,

we need to recall that operators, in general, do not commute:
(Eq. 8.14)

[a(~k), a†(~k0)] = (2p)3d(~k �~k0)

[a(~k), a(~k0)] = 0 , [a†(~k), a†(~k0)] = 0 . (10.15)

As in Section 9.4, we must use different integration parameters,
q1, q2, q3, q4, when we expand the four field factors that appear
in f4 and thus introduce the notation

f(x) =
Z

dq3
1

1
(2p)3p2wq1

⇣
a(~q1)e�i(q1x) + a†(~q1)ei(q1x)

⌘

y

definitions
⌘ f1� + f1+ . (10.16)

Using this more careful notation, we write our product again as

f4 Eq. 10.16
= (f1� + f1+)(f2� + f2+)(f3� + f3+)(f4� + f4+) y

= f1+f2+f3�f4� + f1�f2�f3+f4+ + f1�f2+f3�f4+

+ f1�f2+f3+f4� + f1+f2�f3�f4+ + f1+f2�f3+f4� + . . .
(10.17)

where the dots indicate all terms with an uneven number of cre-
ation and annihilation terms like, for example, f1�f2�f3�f4�.
Let’s focus on the first term here for a moment. The expression
we want to evaluate reads

hp0
k1

, p0
k2
|f1+f2+f3�f4�|p0

k1
, p0

k2
i . (10.18)

To that end, we need the definition of our initial state6 6 The ordering of the opera-
tors here is not important since
[a†(~k), a†(~k0)] = 0 (Eq. 8.14).
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|p0
k1

, p0
k2
i = a†(k1)a†(k2) |0i y

Eq. 8.47

=
q

2wk1 a†(~k1)
q

2wk2 a†(~k2) |0i . (10.19)

Analogously, our final state is defined as77 Reminder: hy| = |yi†

hp0
k1

, p0
k2
| = h0|

q
2wk1 a(~k1)

q
2wk2 a(~k2) . (10.20)

A smart idea is now that we use the commutation relations in
Eq. 8.14 to move the annihilation operators to the right side.
Once this is done, they act on the ground state and thus yield
zero (a |0i = 0, Eq. 8.31). What we are then left with, is the
contribution to the amplitude that we are looking for. This
surely sounds a bit strange at first, but will make a lot of sense
as soon as we go through the motions:8

8 Be warned that the following
calculation is quite cumbersome.
But it is worth the effort since it is
instructive to see everything spelled
out in explicit terms at least once.

hp0
k1

, p0
k2
|f1+f2+f3�f4�|p0

k1
, p0

k2
i

y Eq. 10.19,
Eq. 10.20

=
⇣
h0|
q

2wk1 a(~k1)
q

2wk2 a(~k2)
⌘

f1+f2+f3�f4�

⇥
⇣q

2w~k1
a†(~k1)

q
2w~k2

a†(~k2) |0i
⌘

y

= 4wk1 wk2 h0| a(~k1)a(~k2)f1+f2+f3�f4�a†(~k1)a†(~k2) |0i y

Eq. 9.53

= 4wk1 wk2 h0| a(~k1)a(~k2)
⇣ Z

dq3
1

1
(2p)3p2wq1

a†(~q1)ei(q1x)
⌘

⇥
⇣ Z

dq3
2

1
(2p)3p2wq2

a†(~q2)ei(q2x)
⌘⇣ Z

dq3
3

1
(2p)3p2wq3

a(~q3)e�i(q3x)
⌘

⇥
⇣ Z

dq3
4

1
(2p)3p2wq4

a(~q4)e�i(q4x)
⌘

a†(~k1)a†(~k2) |0i

y

= 4wk1 wk2

Z dq3
1

(2p)3p2wq1

Z dq3
2

(2p)3p2wq2

Z dq3
3

(2p)3p2wq3

Z dq3
4

(2p)3p2wq4

⇥ h0| a(~k1)a(~k2)a†(~q1)a†(~q2)a(~q3)a(~q4)a†(~k1)a†(~k2) |0i ei(q1+q2�q3�q4)x . (10.21)

We now use the commutation relations (Eq. 8.14) to move the
annihilation operators to the right side. We have, for example,

[a(~q4), a†(~k1)]
Eq. 8.14
= (2p)3d(~k1 �~q4) y

a(~q4)a†(~k1) = a†(~k1)a(~q4) + (2p)3d(~k1 �~q4) . (10.22)
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This yields

h0| a(~k1)a(~k2)a†(~q1)a†(~q2)a(~q3)a(~q4)a†(~k1)a†(~k2) |0i y

Eq. 10.22
= h0| a(~k1)a(~k2)a†(~q1)a†(~q2)a(~q3)

⇣
a†(~k1)a(~q4) + (2p)3d(~k1 �~q4)

⌘
a†(~k2) |0i y

= h0| a(~k1)a(~k2)a†(~q1)a†(~q2)a(~q3)a†(~k1)a(~q4)a†(~k2) |0i

+ (2p)3d(~k1 �~q4) h0| a(~k1)a(~k2)a†(~q1)a†(~q2)a(~q3)a†(~k2) |0i y

= h0| a(~k1)a(~k2)a†(~q1)a†(~q2)a(~q3)a†(~k1)
⇣

a†(~k2)a(~q4) + (2p)3d(~k2 �~q4)
⌘
|0i

+ (2p)3d(~k1 �~q4) h0| a(~k1)a(~k2)a†(~q1)a†(~q2)
⇣

a†(~k2)a(~q3) + (2p)3d(~k2 �~q3)
⌘
|0i

y

a |0i = 0
= (2p)3d(~k2 �~q4) h0| a(~k1)a(~k2)a†(~q1)a†(~q2)a(~q3)a†(~k1) |0i

+ (2p)6d(~k1 �~q4)d(~k2 �~q3) h0| a(~k1)a(~k2)a†(~q1)a†(~q2) |0i y

= (2p)6d(~k2 �~q4)d(~k1 �~q3) h0| a(~k1)a(~k2)a†(~q1)a†(~q2) |0i

+ (2p)6d(~k1 �~q4)d(~k2 �~q3) h0| a(~k1)a(~k2)a†(~q1)a†(~q2) |0i y

= (2p)6d(~k2 �~q4)d(~k1 �~q3) h0| a(~k1)
⇣

a†(~q1)a(~k2) + (2p)3d(~k2 �~q1)
⌘

a†(~q2) |0i

+ (2p)6d(~k1 �~q4)d(~k2 �~q3) h0| a(~k1)
⇣

a†(~q1)a(~k2) + (2p)3d(~k2 �~q1)
⌘

a†(~q2) |0i y

= (2p)6d(~k2 �~q4)d(~k1 �~q3) h0| a(~k1)a†(~q1)a(~k2)a†(~q2) |0i

+ (2p)9d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q1) h0| a(~k1)a†(~q2) |0i

+ (2p)6d(~k1 �~q4)d(~k2 �~q3) h0| a(~k1)a†(~q1)a(~k2)a†(~q2) |0i

+ (2p)9d(~k1 �~q4)d(~k2 �~q1)d(~k2 �~q3) h0| a(~k1)a†(~q2) |0i y

= (2p)6d(~k2 �~q4)d(~k1 �~q3) h0| a(~k1)a†(~q1)
⇣

a†(~q2)a(~k2) + (2p)3d(~k2 �~q2)
⌘
|0i

+ (2p)9d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q1) h0|
⇣

a†(~q2)a(~k1) + (2p)3d(~k1 �~q2)
⌘
|0i

+ (2p)6d(~k1 �~q4)d(~k2 �~q3) h0| a(~k1)a†(~q1)
⇣

a†(~q2)a(~k2) + (2p)3d(~k2 �~q2)
⌘
|0i

+ (2p)9d(~k1 �~q4)d(~k2 �~q1)d(~k2 �~q3) h0|
⇣

a†(~q2)a(~k1) + (2p)3d(~k1 �~q2)
⌘
|0i

y

a |0i = 0
= (2p)9d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q2) h0| a(~k1)a†(~q1) |0i

+ (2p)12d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q1)d(~k1 �~q2) h0|0i

+ (2p)9d(~k1 �~q4)d(~k2 �~q3)d(~k2 �~q2) h0| a(~k1)a†(~q1) |0i

+ (2p)12d(~k1 �~q4)d(~k2 �~q1)d(~k1 �~q2)d(~k2 �~q3) h0|0i y

= (2p)12d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q2)d(~k1 �~q1) h0|0i

+ (2p)12d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q1)d(~k1 �~q2) h0|0i

+ (2p)12d(~k1 �~q4)d(~k2 �~q3)d(~k2 �~q2)d(~k1 �~q1) h0|0i

+ (2p)12d(~k1 �~q4)d(~k2 �~q1)d(~k1 �~q2)d(~k2 �~q3) h0|0i . (10.23)

If we now use that h0|0i = 1 (Eq. 8.43), we are ultimately left
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with

(2p)12d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q2)d(~k1 �~q1)

+ (2p)12d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q1)d(~k1 �~q2))

+ (2p)12d(~k1 �~q4)d(~k2 �~q3)d(~k2 �~q2)d(~k1 �~q1)

+ (2p)12d(~k1 �~q4)d(~k2 �~q1)d(~k1 �~q2)d(~k2 �~q3) (10.24)

If we plug this into Eq. 10.21, we find

hp0
k1

, p0
k2
|f1+f2+f3�f4�|p0

k1
, p0

k2
i y

Eq. 10.21

= 4wk1 wk2

Z dq3
1

(2p)3p2wq1

Z dq3
2

(2p)3p2wq2

Z dq3
3

(2p)3p2wq3

Z dq3
4

(2p)3p2wq4

⇥ h0| a(~k1)a(~k2)a†(~q1)a†(~q2)a(~q3)a(~q4)a†(~k1)a†(~k2) |0i ei(q1+q2�q3�q4)x

y

Eq. 10.24

= 4wk1 wk2

Z dq3
1

(2p)3p2wq1

Z dq3
2

(2p)3p2wq2

Z dq3
3

(2p)3p2wq3

Z dq3
4

(2p)3p2wq4

⇥
 
(2p)12d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q2)d(~k1 �~q1)

+ (2p)12d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q1)d(~k1 �~q2))

+ (2p)12d(~k1 �~q4)d(~k2 �~q3)d(~k2 �~q2)d(~k1 �~q1)

+ (2p)12d(~k1 �~q4)d(~k2 �~q1)d(~k1 �~q2)d(~k2 �~q3)

!
ei(q1+q2�q3�q4)x . (10.25)

Let’s focus on the first term

4wk1 wk2

Z dq3
1

(2p)3p2wq1

Z dq3
2

(2p)3p2wq2

Z dq3
3

(2p)3p2wq3

Z dq3
4

(2p)3p2wq4

⇥
⇣
(2p)12d(~k2 �~q4)d(~k1 �~q3)d(~k2 �~q2)d(~k1 �~q1)

⌘
ei(q1+q2�q3�q4)x

y

Z
dx0 f (x0)d(x � x0)

= f (x)

= 4wk1 wk2

1p
2wk1

p
2wk2

p
2wk1

p
2wk2

ei(k1+k2�k2�k1)x

y

= 1 . (10.26)
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The result for the remaining three terms is exactly the same.
Therefore, we can conclude that

hp0
k1

, p0
k2
|f1+f2+f3�f4�|p0

k1
, p0

k2
i = 4 . (10.27)

For the remaining five contributing terms in Eq. 10.17 (f1�f2�f3+f4+,
f1�f2+f3�f4+ etc.), we need to recall from Section 9.4 that we
should work with normal-ordered Hamiltonians to avoid prob-
lems that stem from infinitely large contributions to the energy
levels of all states. In particular, we discovered for the relevant
terms in our f4 model (Eq. 9.60)

: f4 :
9.54
= : f1+f2+f3�f4� : + : f1�f2�f3+f4+ : + : f1�f2+f3�f4+ :

+ : f1�f2+f3+f4� : + : f1+f2�f3�f4+ : + : f1+f2�f3+f4� : + . . . y

= 6f1+f2+f3�f4� + . . . . (10.28)

This implies that if we work with : Hi : instead of Hi in the
Dyson series, we encounter six times the term that we already
evaluated instead of six different terms.

Formulated differently, if we work with Hi in the Dyson se-
ries, we encounter six different terms that potentially contribute
something to the probability amplitude (Eq. 10.17 ). All of them
can be brought into the same form as the term that we evalu-
ated above (f1+f2+f3�f4�) by using the commutation relations
(Eq. 8.14). The price we have to pay for this is additional terms
that involve commutators of the form [f1�(x), f2+(x)]. But we
discovered already in Eq. 9.56 that this yields infinitely large
contributions. This is certainly not something that we want
in our probability amplitudes, just as we don’t want infinitely
large contributions to all energy levels. Thus we should really
work with normal-ordered Hamiltonians whenever it is possible
to avoid such problems.

We can therefore conclude that if we use the normal-ordered
interaction Hamiltonian in the Dyson series, the total result
reads
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A(1) ⌘ �i hp0
k1

, p0
k2
|
Z •

�•
dt1 : Hi(t1) : |p0

k1
, p0

k2
i

y

Eq. 10.12

=
�il
24

Z •

�•
d4x hp0

k1
, p0

k2
| : f4 : |p0

k1
, p0

k2
i

y
6⇥ Eq. 10.27, Eq. 10.28

=
�il
24

(6 · 4)
Z •

�•
d4x

y Z •

�•
d4x = V

= �ilV .

(10.29)

The factor
R •
�• d4x is formally infinite, which is again an artifact

of our non-normalizable states. We therefore only integrate over
a finite spacetime volume V which eventually drops out from
our predictions.

This was an extremely long-winded road to an almost triv-
ial result. However, I think it’s important to see at least once
that everything works even without any reference to theorems
and sophisticated arguments (although, admittedly, it’s a bit
cumbersome). We will talk about a helpful theorem and more
sophisticated arguments in the following chapter.

Let’s finish this section with a few short comments on what
we’ve just learned:

B By looking at Eq. 10.29, we can understand why it’s conven-
tional to define the interaction term lf4

4! with a numerical
factor 1

4! as we did it above. A factor of 4! is exactly what we
need to cancel the combinatorial 4! factor that arises in our
calculations. This factor 1

4! in the definition of the Hamilto-
nian and Lagrangian is purely conventional since we could
easily get rid of it by redefining the coupling constant l̃ ⌘ l

4! .
However, especially at higher orders in perturbation theory,
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it’s often helpful to use a clever numerical factor to avoid
working with unnecessarily large factors.

B Interestingly, our result in Eq. 10.29 is constant and only de-
pends on the coupling constant. In particular, there is no
dependence on the angle at which the outgoing particles
emerge. This implies that the scattering process happens in
all directions with equal probability. This is not too surpris-
ing since we are considering scalar particles which have no
internal structure (spin) that could help to single out specific
directions.

B If we consider the closely related case in which we again get
two particles but allow different momenta (k3, k4 6= k1, k2) at
the end of the scattering process, the result is quite similar.
The only difference is that in Eq. 10.26 we find instead of
ei(k1+k2�k2�k1)x = e0 = 1 a factor ei(k1+k2�k3�k4)x. If we then
carry out the spacetime integration in Eq. 10.29 this yields
a delta distribution d(k1 + k2 � k3 � k4) which encodes the
conservation of momentum. To get real-world predictions,
we then typically integrate over some momentum region
for the final states. We will discuss this aspect of scattering
processes in more detail below.

B We integrate over all possible locations within the system.
This is necessary since we are dealing with plane waves in
the initial and final state. This implies that the corresponding
particles are delocalized in space. Therefore, we must take
possible scattering processes at each possible point within the
system into account.
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Amplitude Technology

The calculations in the previous chapter were quite cumber-
some. Moreover, if we want to include higher order corrections
in the Dyson series (Eq. 9.43) or describe how different fields
interact with each other the calculations are even more cumber-
some. Thus it makes sense to formalize our general strategy.

The main difficulty we’ve encountered so far is that even if
we use a normal-ordered Hamiltonian, we need to switch lots
of operators around. A typical contribution to the probability
amplitude reads schematically

A ⇡ h f | : Hi : |ii = h0|aa . . . : Hi : . . . a†a†|0i . (11.1)

To evaluate it, we normal order the operator product between
h0| and |0i. This is non-trivial because in the expressions we
start with only the Hamiltonian is normal-ordered. In partic-
ular, all annihilation operators that show up in our definition
of the final state must be moved to the very right.1 If we use 1 Reminder: hy| = |yi† and there-

fore |yi ⇠ a† . . . a† |0i implies
hy| ⇠ (a† . . . a† |0i)† = h0| a . . . a.
This is why annihilation operators
show up in the definition of the
final state.

the commutator relations (Eq. 8.14) to reorder the operators, we
eventually find a normal-ordered term plus dozens of terms
that involve commutators:
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A ⇡ h f | : Hi : |ii y
= h0|aa . . . : Hi : . . . a†a†|0i y

AB = BA + [AB]
= h0| : aa . . . Hi . . . a†a† : |0i+ h0|[a, a†] . . . [a, a†]|0i+ . . . . (11.2)

We’ve learned in the previous section that the reordering is
quite cumbersome if we do it by brute force.

Therefore, we will discuss in this chapter a tool that allows us to
simplify these kinds of calculations. The tool is known as Wick’s
theorem and allows us to understand the problem of switching
operators around as a pure combinatorics problem which we
can then solve systematically.

Additionally, we will learn that the combinatorics problem can
be simplified by using Feynman diagrams. Instead of thinking
about abstract combinatorics, we only have to draw all Feynman
diagrams that contribute to a given order in the perturbation se-
ries. Each Feynman diagram represents a specific "contraction"
term that appears if we apply Wick’s theorem. The only remain-
ing task is then to evaluate all basic contractions that can appear
in our formulas. As a final improvement, we will discover that
the basic contractions can be translated into so-called Feyn-
man rules. These rules allow us to deduce directly from a given
Feynman diagram the corresponding factors in the perturbation
series.

term in perturbation series

brute force

✏✏

Wick’s theorem // contractions

basic contractions

tt

result Feynman diagrams
✏✏

OO

Feynman rulesoo

With this plan in mind, let’s dive in.
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11.1 Contractions

We discovered in the previous chapter that it’s a smart strategy
to move all terms that contain annihilation operators to very
right. Let’s recap how and why this works. We again use the
notation that we introduced in Eq. 10.13

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�i(kx) + a†(~k)ei(kx)

⌘

y

= f� + f+ , (11.3)

where f� is an integral over annihilation operators, while f+ is
an integral over creation operators. Whenever we encounter a
product of the form f(x)f(y), we can bring it into the desired
form at the price of introducing commutators2

2 Take note that in the previous
section, we considered the special
case of a point-like interaction
⇠ f(x)f(x)f(x)f(x) for which the
fields in the product are evaluated
at exactly the same spacetime point
x. In general, we can also encounter
products of fields evaluated at
different spacetime points. Thus we
consider the more general case here.

f(x)f(y) =
⇣

f�(x) + f+(x)
⌘⇣

f�(y) + f+(y)
⌘

y

= f�(x)f�(y) + f+(x)f�(y) + f�(x)f+(y) + f+(x)f+(y) y ⇣
f+f�f+f�

⌘
|0i = 0

⌘ f�(x)f�(y) + f+(x)f�(y) + [f�(x), f+(y)]

+ f+(y)f�(x) + f+(x)f+(y) y

definition
⌘: f(x)f(y) : +[f�(x), f+(y)] . (11.4)

We say that we bring f(x)f(y) into normal order which we
again denote by3

3 We discussed normal ordering
already in the context of infinitely
large contributions to the ground
state energy in Section 9.4.

: f(x)f(y) : ⌘ all annihilation operators in f(x)f(y) moved to the right .
(11.5)

In words, Eq. 11.4 therefore tells us that the price we have to
pay for normal ordering f(x)f(y) is the commutator [f�(x), f+(y)].

Normal ordering is useful because in our calculation of scatter-
ing amplitudes, we typically encounter products like f(x)f(y)
sandwiched between the ground state h0|f(x)f(y)|0i and thus
all terms except for the commutator term [f�, f+] vanish. This
follows because a |0i = 0 (Eq. 8.31) which automatically implies
that

h0| a† = 0 (11.6)
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since (|0i a†)† = a |0i = 0. That’s the whole point of normal
ordering. Normal-ordered terms yield zero if we sandwich
them between h0| and |0i:

h0| : f(x)f(y) : |0i = 0 . (11.7)

By using the explicit formula for the normal-ordered product in
Eq. 11.4, we can check this explicitly

h0| : f(x)f(y) : |0i y

Eq. 11.4

= h0|
⇣

f�(x)f�(y) + f+(x)f�(y)

+ f+(y)f�(x) + f+(x)f+(y)
⌘
|0i y

= h0|f�(x)f�(y)|0i

= 0 since a |0i = 0

+ h0|f+(x)f�(y)|0i

= 0 since a |0i = 0

+ h0|f+(y)f�(x)|0i

= 0 since a |0i = 0

+ h0|f+(x)f+(y)|0i

= 0 since h0| a† = 0 y

= 0 . (11.8)

By using Eq. 11.4 and Eq. 11.8, we can conclude

h0|f(x)f(y)|0i Eq. 11.4
= h0| : f(x)f(y) : +[f�(x), f+(y)]|0i y

= h0| : f(x)f(y) : |0i+ h0|[f�(x), f+(y)]|0i y

= h0|[f�(x), f+(y)]|0i . (11.9)

Moreover, if we use the definitions of f�(x), f+(y) in Eq. 11.3,
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we can calculate this commutator explicitly

[f�(x), f+(y)] = f�(x)f+(y)� f+(y)f�(x) y

Eq. 11.3

=
⇣ Z

dk3 1
(2p)3p2wk

a(~k)e�i(kx)
⌘⇣ Z

dq3 1
(2p)3p2wq

a†(~q)ei(qy)
⌘

�
⇣ Z

dq3 1
(2p)3p2wq

a†(~q)ei(qy)
⌘⇣ Z

dk3 1
(2p)3p2wk

a(~k)e�i(kx)
⌘

y

=
Z Z dk3

(2p)3p2wq

dq3

(2p)3p2wk
e�i(kx)ei(qy)[a(~k), a†(~q)]

y

Eq. 8.14

=
Z Z dk3

(2p)3p2wq

dq3

(2p)3p2wk
e�i(kx)ei(qy)

⇣
(2p)3d(~k �~q)

⌘

y

=
Z dk3

(2p)3p2wk
p

2wk
e�i(kx)ei(ky)

y

=
Z dk3

(2p)32wk
e�ik(x�y) . (11.10)

This is exactly the elementary propagator that we already en-
countered in Eq. 8.83. This makes perfect sense if we recall that
we defined the elementary propagator as D(x, y) ⌘ h0|f(x)f(y)|0i
and now plug Eq. 11.10 back into Eq. 11.8:

D(x, y) ⌘ h0|f(x)f(y)|0i y

Eq. 11.9
= [f�(x), f+(y)] y

Eq. 11.10

=
Z dk3

(2p)32wk
e�ik(x�y) . (11.11)

The point of all of this is that the general strategy we just dis-
cussed always works and not just for simple products of the
form f(x)f(y). We normal order the fields and the price that we
have to pay for this are commutators. One of the main tasks in
quantum field theory is to formalize this process to make sure
that we don’t have to repeat dozens of steps each time and are
still able to figure out the correct commutators.

Before we discuss a general algorithm to accomplish this, we
need to discuss a small detail that we ignored in the calculations
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above. Usually in quantum field theory we don’t encounter
products of the form f(x)f(y) but instead, time-ordered prod-
ucts Tf(x)f(y).4 Recall that (Eq. 8.90)4 Recall that we derived in Sec-

tion 9.3.1 that the time ordering
operator necessarily appears in the
Dyson series (Eq. 9.43). Tf(x)f(y) =

8
<

:
f(x)f(y) for x0 > y0

f(y)f(x) for y0 > x0
(11.12)

The result we calculated above (Eq. 11.11) is valid for x0 > y0,
while for y0 > x0 we find analogously

D(x, y) ⌘ h0|f(y)f(x)|0i = [f�(y), f+(x)] . (11.13)

If we sandwich Tf(x)f(y) between h0| and |0i, we get exactly
the definition of the Feynman propagator (Eq. 8.93) which we
again can write a bit differently5

5 I already warned you above that
the Feynman propagator has many,
many faces.

DF(x, y) ⌘ h0|Tf(x)f(y)|0i y

explicit time ordering
= q(x0 � y0) h0|f(x)f(y)|0i+ q(y0 � x0) h0|f(y)f(x)|0i y

Eq. 11.11, Eq. 11.13
= q(x0 � y0) h0|[f�(x), f+(y)]|0i+ q(y0 � x0) h0|[f�(y), f+(x)]|0i y

= q(x0 � y0)[f�(x), f+(y)] h0|0i+ q(y0 � x0)[f�(y), f+(x)] h0|0i y

h0|0i = 1 (Eq. 8.43)
= q(x0 � y0)[f�(x), f+(y)] + q(y0 � x0)[f�(y), f+(x)] . (11.14)

This motivates the following new notation

f(x)f(y) ⌘

8
<

:
[f�(x), f+(y)] for x0 > y0

[f�(y), f+(x)] for y0 > x0
. (11.15)

We call f(x)f(y) the contraction of the two fields.

Take note that Eq. 11.14 tells us that

f(x)f(y) = DF(x, y) . (11.16)

Thus it may seem as if we’ve introduced just another way to
write the Feynman propagator. However, we will see in a mo-
ment that thinking in terms of contractions will help us to keep
track of cumbersome calculations.
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In summary, by using all the new notations introduced so far
we can write

Tf(x)f(y) =: f(x)f(y) : +f(x)f(y) . (11.17)

In words this formula tells us that we can rewrite a time-
ordered product of two fields as a normal-ordered product
plus their contraction. As discussed above, a formula like this is
useful because normal-ordered terms yield zero if we sandwich
them between h0| and |0i (Eq. 11.7):

h0|Tf(x)f(y)|0i Eq. 11.17
= h0| : f(x)f(y) : +f(x)f(y)|0i y

= h0| : f(x)f(y) : |0i+ h0|f(x)f(y)|0i y

Eq. 11.7

= h0|f(x)f(y)|0i (11.18)

Thus all that’s left is the contraction which, as we’ve just seen,
we can understand in this case as the Feynman propagator.

As a final remark take note that, in more general terms, we can
also say that the contraction of two fields is defined as all the
terms that are left over when we compare the fields in normal
ordering versus time ordering

f(x)f(y) = Tf(x)f(y)� : f(x)f(y) : . (11.19)

This implies that the contraction of two operators is equal to
what we find when we sandwich their time-ordered product
between h0| and |0i:

h0|f(x)f(y)|0i = h0|Tf(x)f(y)|0i � h0| : f(x)f(y) : |0i y

Eq. 11.7

f(x)f(y) h0|0i = h0|Tf(x)f(y)|0i y

(Eq. 8.43)

f(x)f(y) = h0|Tf(x)f(y)|0i . (11.20)

In the next section, we will see why contractions are extremely
useful if we want to consider more complicated time-ordered
products.6 6 More complicated time-ordered

products routinely appear in calcu-
lations of scattering amplitudes. We
will discuss this explicitly below.
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11.2 Wick’s Theorem

The usefulness of the notion "contraction" primarily stems from
the general result:

TÂ1 . . . Ân =: Â1 . . . Ân : + : all possible contractions : ,

(11.21)
This is known as Wick’s theorem. In words, it tells us that
the difference between a time-ordered product and a normal-
ordered product of a given number of operators is given by a
sum over all possible contractions of the operators. Formulated
differently, if we switch from time-ordering to normal-ordering,
the price we have to pay is additional terms that we can un-
derstand as the sum over all possible contractions of the fields
that appear in the product. Moreover, all fields that appear in
the contraction terms that are not themselves contracted, are
normal-ordered too.

For a time-ordered product of quantum fields, Wick’s theorem
tells us

Tf(x1) . . . f(xn) =: f(x1) . . . f(xn) : + : all possible contractions : ,
(11.22)

where x1, . . . xn denote different spacetime points.

Since for two fields f(x1)f(x2) there is just one possible con-

traction f(x1)f(x2), we have encountered one instance of Wick’s
theorem already in the previous section (Eq. 11.17)

Tf(x)f(y) =: f(x)f(y) : +f(x)f(y) . (11.23)

Moreover, for example, for a product of three fields at different
spacetime points (x1, x2, x3), Wick’s theorem tells us that

Tf(x1)f(x2)f(x3) =: f(x1)f(x2)f(x3) : +f(x1)f(x2)f(x3)

+ f(x1)f(x2)f(x3) + f(x1)f(x2)f(x3)

(11.24)
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Since there is always only one field which isn’t contracted, there
is no need to normal order anything in the contraction terms.

In contrast, for a product of four fields we have
Tf(x1)f(x2)f(x3)f(x4) y
=: f(x1)f(x2)f(x3)f(x4) : + :

 
f(x1)f(x2)f(x3)f(x4)

+ f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4)

+ f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4)

+ f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4)

!
: .

(11.25)

We can see here that there are many terms which contain two
fields that are not contracted. Thus it is important to include the
colons to indicate that they are normal-ordered. For example,

:

 
f(x1)f(x2)f(x3)f(x4)

!
: = f(x1)f(x2) : f(x3)f(x4) :

y

Eq. 11.16
= DF(x1, x2) : f(x3)f(x4) : ,

(11.26)

where we used that the contraction of two fields yields the
Feynman propagator (Eq. 11.16).

This is especially important if we recall that we usually consider
time-ordered products that are sandwiched between h0| and
|0i. If we then recall that the Feynman propagator is a complex
function and thus has no effect on h0| and |0i, we can pull it
in front of the brakets and are then only left with the normal-
ordered terms:

h0| : f(x1)f(x2)f(x3)f(x4) : |0i y

Eq. 11.26
= h0|DF(x1, x2) : f(x3)f(x4) : |0i y

= DF(x1, x2) h0| : f(x3)f(x4) : |0i y

h0| : f(x3)f(x4) : |0i = 0 (Eq. 11.7)
= 0 . (11.27)

This means that only terms in which all fields are contracted



430 no-nonsense quantum field theory

contribute something to probability amplitudes. For example,
by using Eq. 11.25, we find

h0|Tf(x1)f(x2)f(x3)f(x4)|0i y

Eq. 11.25
= h0| : f(x1)f(x2)f(x3)f(x4) : |0i

+ h0| :

 
f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4)

+ f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4)

+ f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4) + f(x1)f(x2)f(x3)f(x4)

!
: |0i

y

Eq. 11.7

= h0|f(x1)f(x2)f(x3)f(x4)|0i+ h0|f(x1)f(x2)f(x3)f(x4)|0i+ h0|f(x1)f(x2)f(x3)f(x4)|0i y

Eq. 11.26
= DF(x1, x2)DF(x3, x4) h0|0i+ DF(x1, x3)DF(x2, x4) h0|0i+ DF(x1, x4)DF(x2, x3) h0|0i y

Eq. 8.43
= DF(x1, x2)DF(x3, x4) + DF(x1, x3)DF(x2, x4) + DF(x1, x4)DF(x2, x3)

(11.28)

To get a bit more confidence in the validity of Wick’s theorem
beyond the two field case (Eq. 11.17), we check the three field
case Tf(x1)f(x2)f(x3) (Eq. 11.24) explicitly in Appendix B.1.
The proof for arbitrary field products works analogously and
the general formula can be proven by induction.77 You can find a rigorous proof in

Luca Guido Molinari. Notes
on Wick’s theorem in many-body
theory, 2017

11.3 Important Contractions

So far, we’ve only talked about one very special kind of contrac-
tion which we identified as the Feynman propagator (Eq. 11.16)

f(x)f(y) = DF(x, y) . (11.29)

Before we can really make use of Wick’s theorem, we need to
talk about other kinds of contractions. To understand why, take
note that in our formulas for scattering amplitudes we don’t get
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expression of the form

h0|Tf(x1) . . . f(xn)|0i (11.30)

but rather something like

h f |Tf(x1) . . . f(xn)|ii , (11.31)

where h f | denotes a specific final state, for example, hp0
k3

, p0
k4
|

and |ii denotes the initial state, for example, |p0
k1

, p0
k2
i. These

states are defined in terms of creation and annihilation opera-
tors that act on the ground state (Eq. 10.19)

|p0
k1

, p0
k2
i ⌘

q
2wk1 a†(~k1)

q
2wk2 a†(~k2) |0i (11.32)

and (Eq. 10.20)

hp0
k1

, p0
k2
| ⌘ h0|

q
2wk1 a(~k1)

q
2wk2 a(~k2) . (11.33)

Thus even though we get nicely normal-ordered terms by ap-
plying Wick’s theorem to the field operators (f(x1) . . . f(xn)),
there is a lot of work left to be done since we still need to move
these creation and annihilation operators around to get a fully
normal-ordered expression.

Schematically, we have

h f |Tf(x1) . . . f(xn)|ii ⇠ h0|a(~k3)a(~k4)
⇣

Tf(x1) . . . f(xn)
⌘

a†(~k1)a†(~k2)|0i .
(11.34)

A key observation is that the creation and annihilation operators
in these products automatically appear at the position at which
the time-ordering operator T would put them. The operators
that create the final state act at the final time t = • and thus
are already at the correct position to the very left. Similarly the
operators that are part of our definition of the initial state act at
time t = �• and thus are correctly located at the very right.
This means that we can write

h0|a(~k3)a(~k4)
⇣

Tf(x1) . . . f(xn)
⌘

a†(k1)a†(k2)|0i

= h0|Ta†(~k3)a†(~k4)f(x1) . . . f(xn)a†(~k1)a†(~k2)|0i .

This is useful because we can now use Wick’s theorem to sim-
plify this time-ordered product. Wick’s theorem also applies to
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the creation and annihilation operators because the only part of
our fields that makes them non-commutative are exactly these
creation and annihilation operators. Thus, when we commute
a creation operator and a field, we also get commutators that
we can denote as contractions.8 In other words, Wick’s theorem8 We saw this explicitly in Sec-

tion 10. works for operators in general. Wick’s theorem is basically only
a combinatorial tool that allows us to keep track of all the com-
mutations we need to perform to bring a given time-ordered
product into normal order.

This, however, implies that we need to investigate the meaning
of a contraction between creation and annihilation operators

(e.g., a(~k4)a†(~k2)) and the meaning of a contraction between a

field and a creation or annihilation operator (e.g., f(x1)a†(~k1)).

To calculate a contraction like f(x)a†(~k) we use the general
formula (Eq. 11.20)

f(x)a†(~k) = h0|Tf(x)a†(~k)|0i . (11.35)

As mentioned above, factors like f(x)a†(~k) are already time-
ordered in our formulas since a†(~k) creates the initial state at
the earliest possible time that we consider. Moreover, we need
the general field expansion (Eq. 10.13)9 and the canonical com-

9 Reminder: Eq. 10.13 reads

f(x) =
Z

dq3 1
(2p)3p2wq

⇣
a(~q)e�i(qx)

+ a†(~q)ei(qx)
⌘

.

mutation relations (Eq. 8.14)10. By using these results, we find

10 Reminder: Eq. 8.14 reads

[a(~k), a†(~k0)] = (2p)3d(~k �~k0)

[a(~k), a(~k0)] = 0 , [a†(~k), a†(~k0)] = 0 .
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f(x)a†(~k) = h0|Tf(x)a†(~k)|0i y

already time-ordered
= h0|f(x)a†(~k)|0i y

Eq. 10.13

= h0|
 Z dq3

(2p)3p2wq

⇣
a(~q)e�i(qx) + a†(~q)ei(qx)

⌘!
a†(~k)|0i

y

=
Z dq3

(2p)3p2wq
e�i(qx) h0|a(~q)a†(~k)|0i

+
Z dq3

(2p)3p2wq
ei(qx) h0|a†(~q)a†(~k)|0i

y

h0| a† = 0 (Eq. 11.6)

=
Z dq3

(2p)3p2wq
e�i(qx) h0|a(~q)a†(~k)|0i

y

=
Z dq3

(2p)3p2wq
e�i(qx) h0|

⇣
a†(~k)a(~q) + [a(~q), a†(~k)]

⌘
|0i

y

a |0i = 0 (Eq. 8.31), Eq. 8.14

=
Z dq3

(2p)3p2wq
e�i(qx) h0|(2p)3d(~q �~k)|0i

y

h0|0i = 1 (Eq. 8.43)

=
Z dq3
p

2wq
e�i(qx)d(~q �~k)

y

=
1p
2wk

e�i(kx) . (11.36)

In words, this represents an incoming wave. By using the defini-
tion of an initial state

|1ki ⌘
p

2wka†(~k) |0i (11.37)

we can also define the contraction of a field with a ket

f(x)|1~ki = f(x)
⇣p

2wka†(~k) |0i
⌘

y

Eq. 11.36

=
1p
2wk

e�i(kx)p2wk |0i

y

���p
2wk

= e�i(kx) |0i (11.38)

Analogously, we can calculate

a(~k)f(x) =
1p
2wk

ei(kx) (11.39)
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and

h1k|f(x) = h0| ei(kx) , (11.40)

which represents an outgoing wave.

Another puzzle piece is the contraction of an annihilation op-
erator with a creation operator. To calculate this, we use once
more the general formula (Eq. 11.20) and then bring the right-
hand side into normal order:

a(~q)a†(~k) 11.20
= h0|Ta(~q)a†(~k)|0i y

already time-ordered
= h0|a(~q)a†(~k)|0i y

AB = BA + [A, B]
= h0|a†(~k)a(~q) + [a(~q), a†(~k)]|0i y

a(~q) |0i = 0 (Eq. 8.31)
= h0|[a(~q), a†(~k)]|0i y

Eq. 8.14
= h0|(2p)3d(~q �~k)|0i y

= (2p)3d(~q �~k) h0|0i y

h0|0i = 1 (Eq. 8.43)
= (2p)3d(~q �~k) . (11.41)

This implies that when we contract a particle in an initial state
with a particle in the final state, we find

h1q| . . . |1ki
Eq. 10.19

=
q

2wq
p

2wkh0|a(~q) . . . a†(~k)|0i

y

Eq. 11.41

=
q

2wq
p

2wkh0|(2p)3d(~q �~k)|0i

y

Eq. 8.43

=
q

2wq
p

2wk(2p)3d(~q �~k) . (11.42)

In addition, we need to consider the contraction of an annihila-
tion operator with an annihilation operator and the contraction
of a creation operator with a creation operator:

a(~q)a(~k) 11.20
= h0|Ta(~q)a(~k)|0i y

already time-ordered
= h0|a(~q)a(~k)|0i y

a(~k) |0i = 0
= 0 . (11.43)
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This implies

h1q, 1k| = 0 . (11.44)

Analogously, we find

a†(q)a†(k) = 0 . (11.45)

This implies

|1q, 1ki = 0 . (11.46)

A final puzzle piece that we need to talk about is the contrac-
tion of a field with itself at exactly the same spacetime point,

f(x)f(x). Such contractions appear if we evaluate, for example,
f4 = f4(x) interactions. By using Eq. 11.16:

f(x)f(y) = DF(x, y) , (11.47)

we can immediately conclude that

f(x)f(x) = DF(x, x) y

Eq. 8.93
= Q(x � x)D(x, x) + Q(x � x)D(x, x) y

Q(0) ⌘ 1
2

= D(x, x) y

Eq. 8.82

=
Z dk3

(2p)32wk
e�ik(x�x)

y

e0 = 1

=
Z dk3

(2p)32wk
. (11.48)

This is exactly the divergent integral that we already encoun-
tered in Eq. 9.56 in the context of infinitely large contributions
to the Hamiltonian operator. Therefore, we can conclude that
our restriction to normal-ordered Hamiltonians implies for
Wick’s theorem that we do not allow contractions of a field with
itself at the same spacetime point. We can also understand why
by noting that Eq. 11.15

f(x)f(x) ⌘

8
<

:
[f�(x), f+(x)] for x0 > y0

[f�(x), f+(x)] for y0 > x0
, (11.49)
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which are exactly the commutator terms that we encounter if we
don’t work with a normal-ordered Hamiltonian.1111 We discussed this in the text

below Eq. 10.28.

In summary

f(x)f(y) = DF(x, y) (Eq. 11.16)

f(x)|1ki = e�i(kx) |0i (Eq. 11.38)

h1k|f(x) = h0| ei(kx) (Eq. 11.40)

h1q| . . . |1ki =
q

2wq
p

2wk(2p)3d(~q �~k) (Eq. 11.42)

|1q, 1ki = 0 (Eq. 11.46)

h1q, 1k| = 0 (Eq. 11.44) (11.50)
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11.4 Scattering - a Second Look

Equipped with Wick’s theorem and the formulas in Eq. 11.50
it is instructive to take a second look at the scattering process
p0

k1
, p0

k2
! p0

k3
, p0

k4
for a single scalar field f with interaction

term ⇠ f4 that we considered in Section 10.

Recall that we want to evaluate (Eq. 10.6)

A(p0
k1

, p0
k2

! p0
k3

, p0
k4
) y

Eq. 10.5
= hp0

k3
, p0

k4
|Ŝ|p0

k1
, p0

k2
i y

Eq. 9.42

= hp0
k3

, p0
k4
|T
⇣

1 � i
Z •

�•
dt1 : Hi(t1) : � . . .

⌘
|p0

k1
, p0

k2
i

y

= T hp0
k3

, p0
k4
|p0

k1
, p0

k2
i � iT hp0

k3
, p0

k4
|
Z •

�•
dt1 : Hi(t1) : |p0

k1
, p0

k2
i � . . .

y

definition

⌘ A(0) + A(1) + . . . . (11.51)

11.4.1 Zeroth-Order Approximation

Again, let’s start by focusing on the first term in the expan-
sion:12

12 We neglect all terms in which not
of all of the operators are contracted
since we know already (Eq. 11.27)
that these yield zero.

A(0) ⌘ T hp0
k3

, p0
k4
|p0

k1
, p0

k2
i y

Wick’s theorem

=: hp0
k3

, p0
k4
|p0

k1
, p0

k2
i : + hp0

k3
, p0

k4
|p0

k1
, p0

k2
i

+ hp0
k3

, p0
k4
|p0

k1
, p0

k2
i+ hp0

k3
, p0

k4
|p0

k1
, p0

k2
i y

Eq. 11.7, Eq. 11.46

= hp0
k3

, p0
k4
|p0

k1
, p0

k2
i+ hp0

k3
, p0

k4
|p0

k1
, p0

k2
i y

=
⇣q

2wk3

q
2wk1(2p)3d(~k3 �~k1)

⌘⇣q
2wk4

q
2wk2(2p)3d(~k4 �~k2)

⌘

+
⇣q

2wk3

q
2wk2(2p)3d(~k3 �~k2)

⌘⇣q
2wk4

q
2wk1(2p)3d(~k4 �~k1)

⌘

(11.52)
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For the case that the final two particle have exactly the same
momenta as the initial two states (~k3,~k4 =~k1,~k2) this reduces to

A(0) = 2wk12wk2(2p)6d(~k1 �~k1)d(~k2 �~k2) y

= 4wk1 wk2

⇣
(2p)3d(~0)

⌘2
. (11.53)

This is exactly the same result that we found in Section 10.1
(Eq. 10.7). Admittedly, this calculation was not really simpler
than the naive approach in Section 10.1. The real power of the
more sophisticated approach only becomes apparent once we
consider higher order terms. Thus, let’s evaluate the first order
term A(1) next.

For simplicity, we focus in the following sections on the case
that the final two particle have exactly the same momenta as the
initial two states (~k3,~k4 =~k1,~k2).

11.4.2 First Order Approximation

The next term in our expansion of the probability amplitude
then reads (Eq. 10.12)

A(1) ⌘ �il
4!

Z •

�•
d4xT hp0

k1
, p0

k2
| : f4 : |p0

k1
, p0

k2
i . (11.54)

We want to evaluate the time-ordered product that appears here
by applying Wick’s theorem. But first, let’s make some general
observations.

As before, we can neglect all terms in which some opera-
tors remain uncontracted since we know that they yield zero
(Eq. 11.27). Moreover, as before, we know that all contractions
of two particles in the initial state yield zero (Eq. 11.46). Simi-
larly, a contraction of the two particles in the final state yields
zero (Eq. 11.44). Therefore, all terms that contain such a contrac-
tion can be neglected.

But of course there are many contractions that do not vanish.
Luckily many of them yield exactly the same factors which
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makes our calculation much simpler. Since the four fields in the
product f4 = f(x)f(x)f(x)f(x) are evaluated at exactly the
same spacetime point x, each contraction of the initial or final
state with one of the four fields yields exactly the same term.
For example

hp0
k1

, p0
k2
|ffff|p0

k1
, p0

k2
i = hp0

k1
, p0

k2
|ffff|p0

k1
, p0

k2
i (11.55)

Thus we only need to evaluate one of these terms

hp0
k1

, p0
k2
|ffff|p0

k1
, p0

k2
i y

Eq. 11.50

=
⇣
h0| eik1xeik2x

⌘⇣
e�ik1xe�ik2x |0i

⌘

y
e0 = 1

= h0|0i y

h0|0i = 1 (Eq. 8.43)
= 1 . (11.56)

To count how many such terms there are, we start with the
particle p0

k1
in the final state, which we can connect to four

different fields. For the second particle in the final state p0
k2

there are then three uncontracted fields that it can still contract
with. For the particle in the initial state p0

k1
, there remain two

possible contractions. The contraction of p0
k2

in the initial state
is then completely fixed by the previous contractions. Thus, in
total, there are 4! = 4 · 3 · 2 · 1 = 24 contractions of this type.

All other terms in which all of the operators are contracted
involve contractions of the four fields contained in f4 with each
other. For example

hp0
k1

, p0
k2
|ffff|p0

k1
, p0

k2
i , hp0

k1
, p0

k2
|ffff|p0

k1
, p0

k2
i

hp0
k1

, p0
k2
|ffff|p0

k1
, p0

k2
i , hp0

k1
, p0

k2
|ffff|p0

k1
, p0

k2
i (11.57)

Or

hp0
k1

, p0
k2
|ffff|p0

k1
, p0

k2
i , hp0

k1
, p0

k2
|ffff|p0

k1
, p0

k2
i . (11.58)
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However, we’ve discussed already in Section 11.3 that if we
work with normal-ordered Hamiltonians these kind of contrac-
tions do not occur since they represent precisely the commu-
tators that are necessary to bring the Hamiltonian into normal
order.13 In other words, the 24 contractions that we discussed13 Take note that only the Hamil-

tonian is normal-ordered from the
start and we will need to normal
order the complete expression in-
cluding the initial and final state by
using Wick’s theorem.

above describe already all physically relevant contributions to
the probability amplitude.

Therefore, we can conclude

T hp0
k1

, p0
k2
|f4|p0

k1
, p0

k2
i y

Wick’s theorem

=: hp0
k1

, p0
k2
|f4|p0

k1
, p0

k2
i : + hp0

k1
, p0

k2
|ffff|p0

k1
, p0

k2
i

+ hp0
k1

, p0
k2
|ffff|p0

k1
, p0

k2
i+ . . . y

24⇥ Eq. 11.56
=: hp0

k1
, p0

k2
|f4|p0

k1
, p0

k2
i : +24 y

Eq. 11.7
= 24 . (11.59)

If we plug this back into Eq. 11.54, we find

A(1) ⌘ �il
4!

Z
d4xT hp0

k1
, p0

k2
|f4|p0

k1
, p0

k2
i

y

Eq. 11.59

=
�il
24

Z
d4x
⇣

24
⌘

y

= �il
Z

d4x

y

finite spacetime volume
= �ilV . (11.60)

This is exactly the same result that we already calculated in
Eq. 10.29.
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The calculation in this section demonstrates how useful Wick’s
theorem can be once we’ve organized all relevant puzzle pieces.
Instead of juggling dozens of commutators around, we just have
to do a bit of combinatorics. But it gets even better. The combi-
natorics part of the calculation can be tremendously simplified
by representing each possible term diagrammatically. We will
discuss how this works in the next section.

11.5 Feynman Diagrams

A powerful tool to make sense of long winded quantum field
theory calculations are Feynman diagrams. For a given initial
and final state, each Feynman diagram represents one term in
the corresponding Dyson series.

The elements that Feynman diagrams consists of (external lines,
internal lines, and vertices) are directly related to the different
kinds of contractions that we discussed in Section 11.3:

B The contraction of a field with a particle in the initial state,

f(x)|1ki, yields an incoming external line that starts at some
external outside location and ends at x.

B The contraction of a field with a particle in the final state,

h1k|f(x), yields an outgoing external line that starts at x and
ends at some unspecific external location.
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B The contraction of a field with itself, f(x)f(y), represents an
internal line that goes from x to y.

B Moreover, we call each point at which different lines meet a
vertex and denote it by a dot.

By using these rules, we can immediately translate the terms
that we encountered in the previous sections into Feynman
diagrams. In general, an n-th order term in the Dyson series
corresponds to a Feynman diagram with n vertices.

For example, in our zeroth order approximation of the probabil-
ity amplitude for the process p0

k1
, p0

k2
! p0

k1
, p0

k2
, we found that

(Eq. 11.52)

A(0) = hp0
k1

, p0
k2
|p0

k1
, p0

k2
i+ hp0

k1
, p0

k2
|p0

k1
, p0

k2
i . (11.61)

In diagrammatic form, the first term looks like this

while the second term looks like this
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Similarly, we can draw Feynman diagrams that represent the
various terms that contribute to our first order correction A(1).
In Section 11.4.2, we discovered that there is really only one
relevant type of contraction (Eq. 11.59)

hp0
k1

, p0
k2
|ffff|p0

k1
, p0

k2
i . (11.62)

In diagrammatic form, we represent this contraction as follows

A diagram like this is known as a tree-level diagram.14 14 More generally, a tree-level
diagram is a diagram without
loops. We discuss loops below.

Even though we’ve discarded terms that involve contractions

f(x)f(x) as mere artifacts, it is instructive to translate them
into Feynman diagrams.15 One example that we encountered 15 Reminder: we discarded all terms

that contain a contraction of a field
with itself at the same spacetime
point, because they represent
commutators that only occur if
we use a Hamiltonian that isn’t
normal-ordered.

in Section 11.4.2 when we tried to calculate A(1) was the term
(Eq. 11.57)

hp0
k1

, p0
k2
|ffff|p0

k1
, p0

k2
i . (11.63)

In diagrammatic form this term contains a loop that closes at
exactly the same location it starts at.
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This is known as a self-loop diagram. In fact, all diagrams that
correspond to a term, which contains a contraction of the form

f(x)f(x), contain a self-loop. Thus we can say that when we
normal order the Hamiltonian, we remove all self-loop dia-
grams from the perturbation series.16 From a slightly different16 We saw in Section 11.4.2 that this

is necessary because they yield
an infinitely large contribution
to the probability amplitude and
probabilities larger than 1 = 100%
do not make sense.

perspective, we can say that self-loop diagrams represent the
infinitely large contributions to the ground state energy that we
wish to ignore.

If we evaluate higher order terms in the Dyson series, we en-
counter more complicated diagrams which, however, all consist
of the basic ingredients that we introduced above. The second
order correction A(2), for example, reads (Eq. 9.43)

A(2) = � 1
2!

T h f |
✓Z •

�•
dt1Hi(t1)

◆✓Z •

�•
dt2Hi(t2)

◆
|ii

y

= � 1
2!

T h f |
✓Z •

�•
dx4

1
l

4!
f(x1)

4
◆✓Z •

�•
dx4

2
l

4!
f(x2)

4
◆
|ii

y

= � 1
2!

⇣ l

4!

⌘2 Z •

�•
dx4

1 dx4
2 T h f |f(x1)

4f(x2)
4|ii . (11.64)

If we use Wick’s theorem to rewrite the time-ordered product

T h f |f(x1)4f(x2)4|ii, we encounter contractions f(x1)f(x2). As
mentioned above, we represent these kinds of contractions in
our Feynman diagrams by internal lines that start at x1 and end
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at x2. This implies that the diagrams that correspond to these
second order corrections involve loops and look as follows:

On the one hand, Feynman diagrams are useful because they
allow us to develop some visual understanding of the various
terms in our perturbation series and to drape words around
them. For example:

B By looking at the diagrams that contribute to our zeroth-
order probability amplitude A(0), we imagine that the two
particles leave the system without any interaction going on.

B If we include the first order correction A(1), we take into
account that exactly one interaction happens between the two
particles.
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B Some of the self-loop diagrams represent situations in which
a particle emits and then absorbs a virtual particle.

B Other self-loop diagrams represent situations in which the
particles enter and leave the system without any interaction.
At the same time, a vacuum-to-vacuum loop (a "vacuum
bubble") that is completely separated from the scattering
process happens. A popular way to describe these vacuum
loops is by saying that a virtual particle pair pops shortly into
existence before they annihilate each other again.

B At higher order in perturbation theory there are new self-
loop diagrams that represent, for example, a situation in
which two vacuum bubbles pop in and out of existence.

B Moreover, we can describe the loop diagrams that appear at
higher orders in perturbation theory, by saying that the two
particles interact, create a virtual particle pair as a result of
their interaction, which then annihilates again and produces
this way the two particles that leave the system.

This use case is analogous to how we used diagrams to un-
derstand the terms that appear in our classical perturbation
series.1717 We discussed a diagrammatic

interpretation of terms that appear
in our perturbation series that
describes interacting classical fields
in Chapter 6.
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On the other hand, the real reason why Feynman diagrams are
used everywhere in modern particle physics is that they allow
us to write down the correct terms that appear in our perturba-
tion series without referring to the complicated Dyson series at
all. In other words, usually we start by drawing Feynman dia-
grams and use them to deduce the correct terms that appear in
perturbation series. As soon as we know how to draw the cor-
rect diagrams, we can use the rules given above to write down
the corresponding perturbation series terms. But it gets even
better. Since we’ve already evaluated all of the relevant contrac-
tions (Eq. 11.50), we can immediately write down the correct
factor for each Feynman diagram element:18 18 Take note that in addition, we

need to integrate over all possible
locations x at which the interaction
can happen. We saw this explicitly
in Section 10 and Section 11.4.2,
but we can also understand it in
more intuitive terms. As mentioned
before, in our initial and final state
we use particles with exactly
known momenta. According
to the uncertainty relation, this
implies that we have no information
about their location. Thus, in
principle the interaction can happen
anywhere in the system. In a
quantum context we take this into
account by summing/integrating
the probability amplitude that the
interaction happens at a specific
location x over all allowed values of
x.

B Each incoming external line corresponds to a factor of e�ipx

(Eq. 11.38).

B Each outgoing external line corresponds to a factor of eipx

(Eq. 11.40).

B Each internal line corresponds to a factor of DF(x, y) (Eq. 11.16).

B Each vertex corresponds to a factor of �il. (Take note that
there is no factor 1

4! because of the 4! ways the four particles
that meet at a f4-vertex can pair up with the four field fac-
tors f(x)f(x)f(x)f(x). We discussed this in the text below
Eq. 11.56.)

B Each line that enters and leaves the system without any
interaction, contributes a factor

p
2wq

p
2wk(2p)3d(~q �~k)

(Eq. 11.42).

These are known as the Feynman rules for the f4 model.19 19 Different models require different
Feynman rules. We will discuss this
in more detail below.

In most cases there is a natural hierarchy among Feynman
diagrams: the more vertices, the less important (at least if
0 < l < 1. In particular

B No vertex $ no factor �il $ most important term in per-
turbation series (but only relevant if no momentum transfer
happens).

B One vertex $ one factor �il $ first order correction in
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perturbation series.

B Two vertices $ two factors �il $ second order correction in
perturbation series.

...

For a given number of initial and final particles, we then draw
all possible diagrams that involve a specific number of vertices.
These diagrams represent all possible terms that contribute to
the probability amplitude at the desired level of accuracy.

In summary:

term in perturbation series

what we did so far
��

Feynman diagram

new approach

UU

In the following section, we will see how this works by using
the p0

k1
, p0

k2
! p0

k1
, p0

k2
example that we discussed two times

already.

11.6 Scattering - a Third Look

Let’s forget for a moment everything we know already about
the probability amplitude for the process p0

k1
, p0

k2
! p0

k1
, p0

k2
.

In our new approach, we want to start by drawing Feynman
diagrams.

11.6.1 Zeroth order Approximation

At zeroth order in perturbation theory, there are exactly two
diagrams that we can draw.
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In the first case, the first particle enters with momentum k1 and
leaves with momentum k1. Similarly, the momentum of the
second particle remains unchanged, k2 ! k2. In the second case,
the momentum of the first particle changes from k1 ! k2 while
the momentum of the second particle changes from k2 ! k1.
This may seem odd because no interaction happens. However,
we are dealing with a quantum theory and the two particles
that enter and leave the system are indistinguishable except
for their momenta. Hence, there is no way for us to tell if it’s
the first particle that leaves with momentum k1 or if it’s the
second particle. Therefore, we need to take both possibilities
into account.20 This is analogous to how we are unable to tell 20 This is, of course, just one way

to drape words around the fact
that we need both diagrams to
get all terms that appear in the
perturbation series.

which path a particle takes in a double slit experiment and thus
need to take paths through both slits into account.

By using the Feynman rules and assuming k1 6= k2, we find

A(0) = first Feynman diagram + second Feynman diagram y

=
⇣
(line k1 ! k1)⇥ (line k2 ! k2)

⌘
+
⇣
(line k1 ! k2)⇥ (line k2 ! k1)

⌘

y

Feynman rules

=
⇣q

2wk1

q
2wk1(2p)3d(~k1 �~k1)

⌘⇣q
2wk2

q
2wk2(2p)3d(~k2 �~k2)

⌘

+
⇣q

2wk1

q
2wk2(2p)3d(~k1 �~k2)

⌘⇣q
2wk2

q
2wk1(2p)3d(~k2 �~k1)

⌘

y

= 4wk1 wk2

⇣
(2p)3d(~0)

⌘2
. (11.65)

This is exactly the same result that we calculated in Eq. 10.7 and
Eq. 11.53.
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11.6.2 First order Approximation

If we allow exactly one interaction vertex, there is one possible
diagram (at least, if we ignore self-loop diagrams):2121 Take note that switching k1 $ k2

for the incoming or outgoing
particles doesn’t lead to a new
diagram.

By using the Feynman rules, we find immediately

A(1) = Feynman diagram y

= incoming k1 line ⇥ incoming k2 line ⇥ vertex

⇥ outgoing k1 line ⇥ outgoing k2 line y

Feynman rules

=
Z

d4x eik1xeik2x(�il)e�ik1xe�ik2x

y

e0 = 1

= �il
Z

d4x y

finite V
= �ilV . (11.66)

This is the result that we already found in Eq. 10.29 and Eq. 11.60.
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11.6.3 Second-Order Approximation

Let’s risk a quick glance beyond the first order approxima-
tion. Instead of a complete discussion, we draw just one viable
diagram with two vertices because this already reveals an im-
portant feature of higher order corrections.

Using the Feynman rules, we can write down the corresponding
contribution to the probability amplitude

(�il)2
Z

d4x1d4x2 e�ik1x1 e�ik2x1 DF(x1, x2)DF(x1, x2)eik3x2 eik4x2

y

Eq. 8.98

= �l2
Z
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⇣ Z d4q

(2p)4
i e�iq(x2�x1)

q2 � m2 + ie

⌘⇣ Z d4 p
(2p)4

i e�ip(x2�x1)

p2 � m2 + ie

⌘
eik3x2 eik4x2

y

= l2
Z

d4x1d4x2
d4q

(2p)4
d4 p
(2p)4 e�i(k1+k2�p�q)x1 ei(k3+k4�p�q)x2

1
q2 � m2 + ie

1
p2 � m2 + ie y

= l2
Z d4q

(2p)4
d4 p
(2p)4 (2p)4d(k1 + k2 � p � q)(2p)4d(k3 + k4 � p � q)

1
q2 � m2 + ie

1
p2 � m2 + ie y

= l2
Z

d4q d(k3 + k4 � (k1 + k2 � q)� q)
1

q2 � m2 + ie
1

(k1 + k2 � q)2 � m2 + ie y

= l2
Z

d4q
1

q2 � m2 + ie
1

(k1 + k2 � q)2 � m2 + ie
d(k3 + k4 � k1 � k2) . (11.67)

A key observation here is that the integral is non-trivial because
q doesn’t appear in the delta distribution. The delta distribution



452 no-nonsense quantum field theory

d(k3 + k4 � k1 � k2) encodes momentum conservation: the total
four-momentum of the two incoming particles must be equal to
the total four-momentum of the two outgoing particles. Thus
we still need to integrate over the "loop momentum" q, which is
not restricted by the external momenta. This means, q can take
on any value irrespective of what the momenta of the incoming
and outgoing particles are.

A problematic aspect of the unconstrained loop momentum is
that it can take on arbitrarily high values, even q ! •. For-
mally, the integration limits are, in fact, (�•, •). Setting the
question if infinitely large momentum values make sense aside,
this fact is problematic because it implies that the integral in
Eq. 11.67 blows up. Roughly this follows, because2222 Take note that ln(•) = •

and ln(�•) = •. Moreover,R 1
x = ln(x).

Z •

0
d4q

1
q4 ⇠ ln(|q|)

���
•

0
⇠ • , (11.68)

which implies that
R •
�•

d4q
(2p)4

1
q4 ⇠ •.

If we take this result seriously, we must conclude that the
second-order contribution to the probability amplitude is in-
finitely large. A probability of larger than 100% = 1 doesn’t
make sense and it therefore seems as if our approach breaks
down at this point. There are, however, ways to deal with this
issue.

One possibility is to introduce a finite upper limit L, which
encodes the maximum momentum value that is possible. The
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general idea here is somewhat analogous to how we got rid of
infinities that we encountered previously by introducing a fi-
nite spacetime volume V. 23 The exact magnitude of V turned 23 We discussed the need for a finite

spacetime volume in Section 8.4.3.out to be unimportant because it drops out from our predic-
tions. Analogously, the maximum momentum limit drops out
if we handle our expressions properly. To understand how this
works, take note that for a finite upper limit the integral in
Eq. 11.67 yields24 24 As before, we will simply assume

that a trustworthy mathematician
hands us this correct integration
result.l2

Z L

�L
d4q

1
q2 � m2 + ie

1
(k1 + k2 � q)2 � m2 + ie y

= �il2C ln
✓
(k1 + k2)2

L2

◆
y

ln
a
b
= ln a � ln b

= �il2C

 
ln
⇣
(k1 + k2)

2 � ln(L2)
⌘!

y

definition

= �il2C

 
ln(s)� ln(L2)

!
(11.69)

where C is a constant factor that isn’t important for us here and
s ⌘ (k1 + k2)2 encodes the energy scale at which the scattering
process happens. If we shoot the two particles with high en-
ergies onto each other, s is large, while for small energies, s is
small. This contribution to the scattering amplitude therefore
depends primarily on s and we denote it by

A(2)(s) = �il2C

 
ln(s)� ln(L2)

!
d(k3 + k4 � k1 � k2) + . . . ,

(11.70)
where the dots indicate possible additional contributions from
different diagrams. The total scattering amplitude for k1, k2 6=
k3, k4 then reads25

25 This definition may look some-
what awkward but we’re basically
just getting rid of all the irrelevant
things.

Ã(s) ⌘ �V � A(s)
iV

=
1

iV

⇣
�V � (A(0)(s) + A(1)(s) + A(2)(s) + . . .)

⌘

y

Eq. 11.65, Eq. 11.66, Eq. 11.70

= i � i � l � l2C
⇣

ln(s)� ln(L2)
⌘
+ . . .

y

ln
a
b
= ln a � ln b

= �l � l2C ln
⇣ s

L2

⌘
+ . . . (11.71)

where we divide by V to avoid working with factors of d(~0).
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While the second contribution to the scattering amplitude is
now no longer infinitely large, it’s still problematic because
it depends on the cutoff L. Luckily, as it was the case for the
finite spacetime volume V, we can make predictions that are
independent of L. To understand how this works, take note that
if we compare the scattering amplitude at two different scales
s1, s2, the unknown factor L drops out

Ã(s1)� Ã(s2) =

 
� l � l2C

⇣
ln(s1)� ln(L2)

⌘!

�
 
� l � l2C

⇣
ln(s2)� ln(L2)

⌘!

y

= �l2C
⇣

ln(s2)� ln(s1)
⌘

y

= �l2C ln
✓

s2
s1

◆
. (11.72)

This is encouraging. But what about the probability amplitude
at a given scale s? Isn’t |Ã(s)|2 observable and should therefore
be finite even for L ! •?

To resolve this issue, we need to rethink the role of the coupling
constant l. In words, it encodes how strongly the scalar field
interacts with itself. To measure a coupling constant in an ex-
periment, we rely on scattering processes like the one that we
are considering here. Moreover, we saw in the previous section
that the parameter l that appears in the Lagrangian describes
the first order approximation perfectly. In experiments, however,
we never measure first order approximations but always the full
probability amplitude which includes all terms in the perturba-
tion series. This implies, that scattering processes don’t tell us
something about l but rather about the renormalized coupling

lR(s) ⌘ �Ã(s) = l + l2C ln
⇣ s

L2

⌘
+ . . . . (11.73)

It’s this quantity which describes how different excitations of
the scalar field interact with each other, while l is only a first
order approximation. We can therefore start by measuring the
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scattering probability at a specific but arbitrary scale s0:

lR ⌘ �Ã(s0) = l + l2C ln
⇣ s0

L2

⌘
+ . . . . (11.74)

The left-hand side is fixed by what we measure in the experi-
ment. Since what we measure in experiments are finite num-
bers, the right-hand side of this equation has to be finite too,
even if we send the cutoff to infinity, L ! •.

To understand why this is useful, let’s invert Eq. 11.74 by mak-
ing the ansatz26 26 We will see in a moment why a

formula of this form will help us to
get rid of the scale L altogether.l = lR + al2

R + . . . . (11.75)

If we plug this ansatz into Eq. 11.74, we find

lR = l + l2C ln
⇣ s0

L2

⌘
+ . . .

y

Eq. 11.75

=
⇣

lR + al2
R + . . .

⌘
+
⇣

lR + al2
R + . . .

⌘2
C ln

⇣ s0
L2

⌘
+ . . .

y

= lR + al2
R + l2

RC ln
⇣ s0

L2

⌘
+ . . . , (11.76)

where we neglected all higher order terms. By comparing the
left-hand side with the right-hand side, we can conclude that

a = �C ln
⇣ s0

L2

⌘

y

� ln
⇣ a

b

⌘
= ln

✓
b
a

◆

= C ln
✓

L2

s0

◆
. (11.77)

Therefore,

l
11.75
= lR + al2

R + . . . y

Eq. 11.77

= lR + C ln
✓

L2

s0

◆
l2

R + . . . . (11.78)

With this formula and a measured value of lR at hand, we can
predict the scattering probability at any scale s without having
to refer to the cutoff L:
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Ã(s)
11.71
= �l � l2C ln

⇣ s
L2

⌘
+ . . . y

Eq. 11.78

= �
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ln(ab) = ln(a) + ln(b)
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L2
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◆
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R + . . .
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= �lR � C ln
✓

s
s0

◆
l2

R + . . . . (11.79)

Let’s drape words around what we’ve just done. We started
by calculating the second order correction for the probability
amplitude A(p0

k1
, p0

k2
! p0

k3
, p0

k4
). We noticed that the correc-

tion is formally infinitely large. Since this doesn’t make any
sense, we introduced a cutoff L and simply declared that no
momentum larger than L is possible. This step is known as reg-
ularization.27 As a result, the contribution of the second order27 An obvious question is: does

such a cutoff really exist? Presently,
nobody knows the answer to this
question. However, take note that
since energy scales are inversely
related to length scales in quantum
theories, an upper energy limit
implies a lower length scale limit.
In other words, the existence of a
cutoff L would imply that there
is a minimum length scale. This,
in turn, implies that spacetime is
not continuous but discrete. If the
minimum length scale is sufficiently
small there is no way to tell using
present day technologies if it exists.

term we considered is no longer infinite, but now depends on
L. This is problematic because we have no idea what value we
should plug in for L, if such a cutoff really exists at all. We then
discovered that the dependence on L is an artifact that occurs if
we try to write down a probability amplitude that depends on
the parameter l.

This is a bad idea because l, which appears in the Lagrangian,
is not directly measurable. Instead, experimental outcomes only
depend on the renormalized coupling lR(s). We can see this be-
cause in an experiment we always measure the (absolute value
squared of the) total probability amplitude which includes all
order corrections A = A(0) + A(1) + A(2) + . . .. The Lagrangian
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parameter l, however, only describes the coupling between two
excitations of the scalar field at first order A(1) ⇠ l. In contrast,
the renormalized coupling lR(s) is an experimentally measured
value and thus takes all order corrections into account.28 28 We will discuss this in more

systematic terms in the next section.

We then proceeded by using the experimental value of lR(s)
at one fixed but otherwise arbitrary reference scale s0: lR ⌘
lR(s0). In particular, we discovered that if we rewrite the proba-
bility amplitude as a series in lR instead of l, there is no longer
any dependence on the cutoff L (Eq. 11.79). Thus, if we focus
on the coupling constant that we can actually measure (lR) in-
stead of on the formal l parameter, the cutoff scale becomes
irrelevant and we can even take the limit L ! •.

For completeness, take note that there are two additional dia-
grams that contribute to the second order correction.

Using our Feynman rules and then following exactly the same
steps as in Eq. 11.69, it’s possible to derive that the correspond-
ing contributions read

2. Feynman diagram $ �l2C

 
ln(t)� ln(L2)

!

3. Feynman diagram $ �l2C

 
ln(u)� ln(L2)

!
, (11.80)

where t ⌘ (k1 � k3)2 and u ⌘ (k1 � k4)2. These results are analo-



458 no-nonsense quantum field theory

gous to our result for the first Feynman diagram (Eq. 11.69):

1. Feynman diagram $ �l2C

 
ln(s)� ln(L2)

!
, (11.81)

where s ⌘ (k1 + k2)2. Since the general structure of the for-
mulas is so similar, we can regularize and renormalize them
analogously.

As a final comment, take note that by focusing on specific final
momenta k3 and k4 it’s possible to consider only processes for
which t ⌘ (k1 � k3)2 = 0 and u ⌘ (k1 � k4)2 = 0, while
s ⌘ (k1 + k2)2 6= 0. This is known as probing the s-channel since
for these specific processes only the diagram that we discussed
above contributes something non-zero.

Let’s summarize what we’ve learned in this chapter.
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11.7 Summary

We started by noting that it usually makes sense to normal
order any given product that we encounter. A product of op-
erators in quantum field theory is normal-ordered when all
annihilation operators are moved as far as possible to the right
(Eq. 11.5):

: f(x)f(y) : ⌘ all annihilation operators in f(x)f(y) moved to the right

⌘ normal-ordered f(x)f(y) . (11.82)

We are interested in normal-ordered products, since they yield
zero if we sandwich them between h0| and |0i (Eq. 11.7)

h0| : f(x)f(y) : |0i = 0 . (11.83)

Moreover, the operator products that we are typically interested
in appear sandwiched between h0| and |0i because the proba-
bility amplitudes that we are interested in are defined as hi|Ŝ| f i
and we define particle states as excitations above the ground
state |1ki ⌘ a†(k) |0i.

If we start with an operator product in arbitrary order, we can
normal order it by using commutation relations (Eq. 8.14). This
implies that if we want to switch from an arbitrarily ordered
product to a normal-ordered product, we find additional terms
that contain commutators. These terms do not vanish if we
sandwich them between h0| and |0i since a commutator yields
a complex function and can therefore be pulled out from the
braket. For example

h0|[f�(x), f+(y)]|0i = [f�(x), f+(y)] h0|0i = [f�(x), f+(y)] .
(11.84)

Thus, in general, we find

f(x1) . . . f(xn) =: f(x1) . . . f(xn) : + commutator terms (11.85)
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and

h0|f(x1) . . . f(xn)|0i = h0| : f(x1) . . . f(xn) : |0i
+ h0| commutator terms |0i y Eq. 11.83,

Eq. 11.84
= 0 + commutator terms y

= commutator terms . (11.86)

In words, this means that all relevant information is contained
in the commutator terms. We then noted that the products we
encounter are typically not in arbitrary order, but time-ordered.
This follows because the scattering operator Ŝ involves the time
ordering operator T (Eq. 9.42). We discovered that the commu-
tator terms that we encounter when we bring a time-ordered
product to normal order, are exactly equal to the Feynman
propagator Df (x, y). This motivated us to define the contraction
of two fields as

f(x)f(y) ⌘

8
<

:
[f�(x), f+(y)] for x0 > y0

[f�(y), f+(x)] for y0 > x0
, (11.87)

where (Eq. 11.16)

f(x)f(y) = DF(x, y) . (11.88)

For a time-ordered product of just two fields we therefore write
(Eq. 11.17)

Tf(x)f(y) =: f(x)f(y) : +f(x)f(y) , (11.89)

where now only the contraction term on the right-hand side is
non-vanishing if we sandwich the product between h0| and |0i
(Eq. 11.18)

h0|Tf(x)f(y)|0i = f(x)f(y) . (11.90)

This, in turn, implies that if we want to calculate the contrac-
tion of two fields, we simply have to evaluate their time-ordered
product (Eq. 11.20). Afterwards, we discussed that exactly the
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same general ideas hold true for more complicated time-ordered
products. No matter how many operators are contained in the
product, we can always bring it into normal order by using the
commutation relations. In addition, the commutators that ap-
pear when we rearrange a time-ordered product are precisely
the contractions we defined above. This general idea is formal-
ized by Wick’s theorem (Eq. 11.21)

TÂ1 . . . Ân =: Â1 . . . Ân : + : all possible contractions : .

The theorem is useful because if we sandwich the product be-
tween h0| and |0i, it’s only the contraction terms that survive. In
other words, as long we’re interested in probability amplitudes,
the contraction terms contain all relevant information. Thus,
Wick’s theorem reduces the problem of calculating probability
amplitudes (time-ordered products sandwiched between h0| and
|0i) to a combinatorics problem (writing down all contractions).
We then studied all elementary contractions that we typically
encounter in our calculations (Eq. 11.50):

f(x)f(y) = DF(x, y) (Eq. 11.16)

f(x)|1ki = e�i(kx) |0i (Eq. 11.38)

h1k|f(x) = h0| ei(kx) (Eq. 11.40)

h1q| . . . |1ki =
q

2wq
p

2wk(2p)3d(~q �~k) (Eq. 11.42)

|1q, 1ki = 0 (Eq. 11.46)

h1q, 1k| = 0 (Eq. 11.44)

Equipped with these general rules, we can immediately evaluate
the terms that we encounter after we’ve applied Wick’s theorem.

The final aspect that we talked about was a method to stream-
line the whole procedure and make it more intuitive. The key
idea is that we can represent each type of contraction that we
typically encounter by a graphical element. For example, the
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contraction f(x)|1ki is represented by an incoming line and
is interpreted as an incoming particle. Taken together, these
graphical elements yield a Feynman diagram that represents
one specific term in the perturbation series.

A powerful idea is to turn the whole procedure on its head.
Instead of translating terms in the perturbation series into Feyn-
man diagrams, we start by drawing Feynman diagrams and
use them to deduce the corresponding terms that appear in the
perturbation series. For the f4 model that we discussed several
times in this chapter, the Feynman rules that allow us to do this
are29

29 Take note that the Feynman
rules depend on the model at
hand. In the following chapter, we
will encounter different kinds of
Feynman rules. Moreover, don’t
worry if you’re still a bit unsure
how to draw Feynman diagrams
and how to translate them. It
takes quite a bit of practice to get
this right and the only goal in
this chapter was to develop some
elementary understanding of the
main ideas, and not to turn you into
a skillful practitioner.

B Each incoming external line corresponds to a factor of e�ipx

(Eq. 11.38).

B Each outgoing external line corresponds to a factor of eipx

(Eq. 11.40).

B Each internal line corresponds to a factor of DF(x, y) (Eq. 11.16).

B Each vertex corresponds to a factor of �il. (Take note that
there is no factor 1

4! because of the 4! ways the four particles
that meat at a f4-vertex can pair up with the four field factors
f(x)f(x)f(x)f(x).)3030 We discussed this in the text

below Eq. 11.56.

B Each line that enters and leaves the system without any
interaction, contributes a factor

p
2wq

p
2wk(2p)3d(~q �~k)

(Eq. 11.42).
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All of this is summarized in the following diagram:

Scattering Amplitude
A = h f |Ŝ|ii

✏✏

Dyson Series
A = A(0) + A(1) + . . .

✏✏

Feynman Diagrams

Feynman rules

rr

OO

✏✏Individual Term
e.g. A(1)

contains
✏✏

ContractionsEq. 11.50oo

Time-Ordered Products
e.g. A(1) ⇠ h0|Taaf4a†a†|0i

Wick’s Theorem //
Normal-Ordered Product + Contractions

e.g. h0|Taaf4a†a†|0i = h0| : aaf4a†a† : |0i+ contractions

h0|:A1...An :|0i=0 (Eq. 11.7)

OO

Lastly, we talked about a problem that occurs when we try to
evaluate higher order corrections. If we evaluate the expressions
naively, we find that higher order corrections that correspond
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to Feynman diagrams involving loops are infinitely large. The
solution to this problem is a two-step process known as reg-
ularization and renormalization. Regularization means that
we introduce an upper momentum cutoff L. This renders the
contribution finite. In a second step, we then argued that our
predictions are independent of L if we focus on the renormal-
ized coupling lR that can be measured in experiments, instead
of on the "bare" coupling l that appears in the Lagrangian and
is therefore only a feature of our formalism.



12

Elementary Models

In the previous chapter, we already got a first glimpse at how
applications of quantum field theory work in practice. So far,
we’ve only discussed one specific scattering process (p0

k3
, p0

k4
!

p0
k1

, p0
k2

) in one specific model Hi ⇠ f4. Luckily, we can use
exactly the same procedure to calculate probability amplitudes
for all kinds of processes in different models too.1 1 There are, of course, important dif-

ferences if we consider alternative
models. These primarily originate
because if we consider a model that
not only contains a scalar field, the
probability amplitudes automat-
ically contain more complicated
objects like spinors or vectors. We
will encounter some examples in
the sections below.

But since there are, in principle, infinitely many models and
processes that we can consider it’s simply impossible to discuss
applications of quantum field theory exhaustively. Therefore,
we will focus in this chapter on just two additional types of
models:

B An elementary Yukawa model that describes the interactions
between a real scalar field and a complex scalar field.2 2 The Yukawa interaction between

a real scalar field and a spinor field
is extremely similar. However, to
avoid complications that arise as
soon as we consider spinors, we
consider here a complex scalar field
to illustrate the main features of
Yukawa interactions. At the end of
the section, we will discuss shortly
which parts of our formula need to
be modified if we consider spinor
fields.

B An elementary gauge model that describes the interactions
between a spinor field and a gauge field.

These elementary models can be used to make real world pre-
dictions and are the basic building blocks of the standard model
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of physics. The full standard model is, however, a bit more com-
plicated as many types of interactions must be considered at
the same time. In addition, there are slightly more complicated
gauge interactions that allow transitions between different types
of particles (e.g, electrons $ neutrinos) which is not possible
in the simple models that we consider here. Nevertheless, the
following discussion of two elementary models should give you
a solid foundation in case you want to dive deeper and study
more sophisticated applications of quantum field theory.

Let’s start with a useful general observation.

Usually, we define a model by writing down a Lagrangian. Each
Lagrangian consists of interaction terms and terms that describe
how the fields behave in the absence of interactions:

L = Lfree + Linteractions . (12.1)

In most cases, the interaction terms do not contain derivatives.
Thus, if we look at the general definition of the Hamiltonian
(Eq. 8.16)

H ⌘
Z

d3x T0
0 y

Eq. 4.35

=
Z

d3x
✓

∂L
∂(∂0f)

∂0f � L
◆

, (12.2)

we can conclude that the interaction Hamiltonian is in these
cases given by

Hinteractions = �Linteractions . (12.3)
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12.1 Yukawa Interactions

The Lagrangian that describes how a real scalar field f interacts
with a complex scalar field y reads3

3 This Lagrangian is analogous to
the one we discussed in Section 6.3.
The only difference is that we
consider here a complex scalar
field instead of a spinor field to
simplify the discussion. This makes
it much easier to see the forest for
the trees because as long as we only
consider scalar fields, we don’t need
to evaluate spinor products and
spinor sums.

L = Lfree real scalar + Lfree complex scalar + LYukawa y

Eq. 5.2, Eq. 8.102

=
1
2
(∂µf)2 �

m2
f

2
f2 + i∂µȳ∂µy � m2

yȳy � gȳyf . (12.4)

The most interesting part of this Lagrangian when we want to
talk about scattering processes is the interaction term
LYukawa ⌘ �gȳyf. The corresponding interaction Hamiltonian
reads

HYukawa
12.3
= �LYukawa y

= g
Z

d3xȳyf . (12.5)

The remaining terms in the Lagrangian tell us that we can use
the free field expansions of the real scalar field f and the com-
plex field y that we discussed in Chapter 8:

f(x) =
Z dk3

(2p)3p2wk

⇣
a(~k)ei(kx) + a†(~k)e�i(kx)

⌘
(Eq. 5.51)

y =
Z d3k

(2p)3p2w̃k

⇣
c(~k)eikµxµ

+ d†(~k)e�ikµxµ
⌘

(Eq. 8.100)

ȳ ⌘ y† =
Z d3k

(2p)3p2w̃k

⇣
c†(~k)e�ikµxµ

+ d(~k)eikµxµ
⌘

(Eq. 8.101) ,

(12.6)

where wk ⌘
q
~k2 + m2

f and w̃k ⌘
q
~k2 + m2

y.

As before, we say that a†(~k) creates a pion of momentum~k,
while a(~k) annihilates a pion of momentum~k. We denote pions
again by p0. Moreover, for illustrative purposes we say that
c†(~k) creates a kaon, while c(~k) annihilates a kaon. As discussed
in Section 8.6, this implies that d†(~k) creates an anti-kaon, while
d(~k) annihilates an anti-kaon. We denote kaons by K+ and anti-
kaons by K�,
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Let’s calculate the probability amplitude for the process K+
k1

, K+
k2

!
K+

k3
, K+

k4
:

A(K+
k1

, K+
k2

! K+
k3

, K+
k4
) = hK+

k3
, K+

k4
|Ŝ|K+

k1
, K+

k2
i . (12.7)

We evaluate this amplitude by using the series expansion of the
scattering operator Ŝ (Eq. 9.42)4

4 This is completely analogous
to what we did in Eq. 10.6. The
only difference is that we’re now
dealing with a different interaction
Hamiltonian Hi . In the previous
chapter, we considered (Eq. 10.4)

Hi ⌘
Z

d3x
✓

1
4!

lf4
◆

while now we have (Eq. 12.5)

Hi = g
Z

d3xȳyf .

A(K+
k1

, K+
k2

! K+
k3

, K+
k4
) y

Eq. 10.5
= hK+

k3
, K+

k4
|Ŝ|K+

k1
, K+

k2
i y

Eq. 9.42

= hK+
k3

, K+
k4
|T
⇣

1 � i
Z •

�•
dt1 : Hi(t1) : + . . .

⌘
|K+

k1
, K+

k2
i

y

= T hK+
k3

, K+
k4
|K+

k1
, K+

k2
i � iT hK+

k3
, K+

k4
|
Z •

�•
dt1 : Hi(t1) : |K+

k1
, K+

k2
i

� T
2!

hK+
k3

, K+
k4
|
Z •

�•
dt1 : Hi(t1) :

Z •

�•
dt2 : Hi(t2) : |K+

k1
, K+

k2
i . . .

y

definition

⌘ A(0) + A(1) + A(2) + . . . . (12.8)

We want to evaluate this amplitude term-by-term. This is possi-
ble again by using Wick’s theorem. Once we’ve applied Wick’s
theorem our formula contains all kinds of contractions. Thus
it makes sense to calculate all possible elementary contractions
that can occur first.

12.1.1 Important Contractions

As in Section 11.3, we can calculate all possible contractions that
can appear in our Yukawa model by using the general formula
(Eq. 11.20)

f(x)a†(k) = h0|Tf(x)a†(k)|0i . (12.9)

The results are completely analogous to what we found in Sec-
tion 11.3 and the only non-vanishing contractions are5

5 To understand why some con-
tractions vanish, take note that a
contraction is what is left over when
we bring a time-ordered product
into normal order. But if we con-
sider a time-ordered product of
two operators that commute, e.g.
[f, y] or [c, y] = 0, there is nothing
left over and thus the contraction
vanishes.
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f(x)f(y) = DF(x, y)

y(x)y†(y) = D̃F(x, y)

f(x)|p0
ki = e�i(kx) |0i

y(x)|K+
k i = e�i(kx) |0i

y†(x)|K�
k i = e�i(kx) |0i

hp0
k |f(x) = h0| ei(kx)

hK+
k |y

†(x) = h0| ei(kx)

hK�
k |y(x) = h0| ei(kx)

hp0
q| . . . |p0

ki =
q

2wq
p

2wk(2p)3d(~q �~k)

hK+
q | . . . |K+

k i =
q

2w̃q
p

2w̃k(2p)3d(~q �~k)

hK�
q | . . . |K�

k i =
q

2w̃q
p

2w̃k(2p)3d(~q �~k)

(12.10)

where DF is the Feynman propagator for a real scalar field and
D̃F denotes the Feynman propagator for a complex scalar field
(Eq. 8.121).

With these contractions at hand, we can evaluate the different
terms in the perturbation series for the probability amplitude
immediately.
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12.1.2 Zeroth-Order Approximation

For the zeroth-order approximation of our probability ampli-
tude (Eq. 12.8)

A(0) = T hK+
k3

, K+
k4
|K+

k1
, K+

k2
i , (12.11)

there are only two non-vanishing contractions. Therefore,
Wick’s theorem tells us that66 This calculation is completely anal-

ogous to what we did in Eq. 11.52.

A(0) ⌘ T hK+
k3

, K+
k4
|K+

k1
, K+

k2
i y

Wick’s theorem

=: hK+
k3

, K+
k4
|K+

k1
, K+

k2
i : + hK+

k3
, K+

k4
|K+

k1
, K+

k2
i

+ hK+
k3

, K+
k4
|K+

k1
, K+

k2
i+ hK+

k3
, K+

k4
|K+

k1
, K+

k2
i

y Eq. 11.7,
Eq. 11.46

= hK+
k3

, K+
k4
|K+

k1
, K+

k2
i+ hK+

k3
, K+

k4
|K+

k1
, K+

k2
i y

=
⇣q

2wk3

q
2wk1(2p)3d(~k3 �~k1)

⌘⇣q
2wk4

q
2wk2(2p)3d(~k4 �~k2)

⌘

+
⇣q

2wk3

q
2wk2(2p)3d(~k3 �~k2)

⌘⇣q
2wk4

q
2wk1(2p)3d(~k4 �~k1)

⌘
(12.12)

For the case that the final two particle have exactly the same
momenta as the initial two states (k3, k4 = k1, k2) this reduces to

A(0) = 2wk12wk2(2p)6d(~k1 �~k1)d(~k2 �~k2) y

= 4wk1 wk2

⇣
(2p)3d(~0)

⌘2
. (12.13)

Thus at zeroth order, the result in our Yukawa model is exactly
the same as in the f4 model we considered in the previous
chapter. In diagrammatic form, the term here corresponds again
to two lines that enter and leave the system without interaction
with each other.

If we consider higher order terms, however, there are notable
differences.
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12.1.3 First-Order Approximation

The first order correction to our probability amplitude reads
(Eq. 12.8)

A(1) = �i hK+
k3

, K+
k4
|
Z

dt1T : Hi(t1) : |K+
k1

, K+
k2
i

y

Eq. 12.5

= �i hK+
k3

, K+
k4
|
Z

dt1T :
⇣

g
Z

d3xȳyf
⌘

: |K+
k1

, K+
k2
i

y

= �ig hK+
k3

, K+
k4
|
Z

d4x T : ȳyf : |K+
k1

, K+
k2
i . (12.14)

Before we apply Wick’s theorem, we recall that whenever at
least one field is left uncontracted, the term yields zero when
we sandwich it between h0| and |0i. This is necessarily the case
because all remaining factors that are contracted can be pulled
in front of the braket and we can then apply the normal-ordered
remaining operators to the ground state (either to h0| or |0i),
which yields zero. Since there are an uneven number of fields
(three) in the Yukawa interaction Hamiltonian and an even
number of particles in the initial and final state (four in total),
it’s impossible to contract all operators at the same time. At
least one operator always remains uncontracted. Thus we can
immediately conclude that A(1) = 0. We can interpret this result
as follows. The interaction operator ȳyf connects three lines.
Therefore, we can’t build a diagram with two incoming and two
outgoing lines using just one interaction vertex.

The situation is less trivial if we consider the next term in the
Dyson series.
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12.1.4 Second-Order Approximation

The second order correction to the probability amplitude reads
(Eq. 12.8)

A(2) = T hK+
k3

, K+
k4
|
Z •

�•
dt1 : Hi(t1) :

Z •

�•
dt2 : Hi(t2) : |K+

k1
, K+

k2
i

y

Eq. 12.5

= T hK+
k3

, K+
k4
|
 Z •

�•
dt1 :

⇣
g
Z

d3x1ȳ(x1)y(x1)f(x1)
⌘

:

⇥
Z •

�•
dt2 :

⇣
g
Z

d3x2ȳ(x2)y(x2)f(x2)
⌘

:

!
|K+

k1
, K+

k2
i

y

=
g2

2

Z
d4x1d4x2 T hK+

k3
, K+

k4
| : ȳ(x1)y(x1)f(x1) :

⇥ : ȳ(x2)y(x2)f(x2) : |K+
k1

, K+
k2
i (12.15)

If we now apply Wick’s theorem to this term, we find that it’s
possible to find terms in which all operators are contracted at
the same time. For example,

hK+
k3

, K+
k4
|y(x1)y(x1)f(x1)y(x2)y(x2)f(x2)|K+

k1
, K+

k2
i (12.16)

This term is non-vanishing since:

B All operators are contracted.

B The particles in the final state contract with ȳ. (A contrac-
tion of a particle in the final state with y or f vanishes. This
follows because the operator that generates a particle in the
final state is c(~k) and y is an integral over c(~k) operators
(Eq. 12.6). Since [c, c] = 0, this implies that the correspond-
ing contraction vanishes. In contrast, y† contains c† and
[c, c†] 6= 0 (Eq. 8.106). Therefore, a contraction of a particle in
the final state with y† is non-zero. In addition, take note that
the situation is different if we consider anti-kaons in the final
state. )
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B The particles in the initial state contract with y.

Moreover, we take the term into account because there is no
contraction of a field with itself at the same spacetime point (no

self-loop). The only contraction of a field with itself f(x1)f(x2)

involves two different spacetime points.

As a Feynman diagram, the term in Eq. 12.16 looks like this:

By looking at this diagram we can understand why there is a
non-vanishing second order contribution. A second order term
involves two vertices and since each vertex in the Yukawa model
connects three lines, it’s possible to construct a diagram with
two incoming and two outgoing lines.

If we now use the explicit formulas for the transaction that are
listed in Section 12.1.1, we find

hK+
k3

, K+
k4
|y(x1)y(x1)f(x1)y(x2)y(x2)f(x2)|K+

k1
, K+

k2
i y

Eq. 12.10
= h0| ei(k3x1) h0| ei(k4x2)DF(x1, x2)e�i(k1x1) |0i e�i(k2x2) |0i y

h0|0i = 1
= ei(k3x1)ei(k4x2)DF(x1, x2)e�i(k1x1)e�i(k2x2)

y

= ei(k3�k1)x1ei(k4�k2)x2 DF(x1, x2) . (12.17)

This implies that this term contributes to our second order
correction A(2) (Eq. 12.15) a factor of
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g2
Z

d4x1d4x2 ei(k3�k1)x1ei(k4�k2)x2 DF(x1, x2) + . . . y

Eq. 8.98

= g2
Z

d4x1d4x2

 
ei(k3�k1)x1ei(k4�k2)x2

Z d4q
(2p)4

i e�iq(x2�x1)

q2 � m2
f + ie

!

y
= ig2

Z
d4x1d4x2

d4q
(2p)4

 
ei(k3�k1+q)x1ei(k4�k2�q)x2

1
q2 � m2

f + ie

!
y Z d4k

(2p)4 e�ikµ(xµ�yµ)

= d(xµ � yµ)

= ig2
Z d4q

(2p)4

⇣
d(k3 � k1 + q)d(k4 � k2 � q)

1
q2 � m2

f + ie

⌘

y Z
dx0 f (x0)d(x � x0) = f (x)

= ig2d(k3 � k1 + (+k4 � k2))
1

(�k4 + k2)2 � m2
f + ie y

t ⌘ (k4 � k2)
2

= ig2d(k3 + k4 � k1 � k2)
1

t � m2
f + ie

. (12.18)

Take note that t ⌘ (k4 � k2)2 is equal to (k3 � k1)2 as a result
of the delta distribution and describes the momentum transfer
between the two particles.7 Moreover, the delta distribution7 The quantity we called here t is a

so-called Mandelstam variable and
often appears in amplitudes.

encodes momentum conservation.

There is one additional non-vanishing contraction:

hK+
k3

, K+
k4
|y(x1)y(x1)f(x1)y(x2)y(x2)f(x2)|K+

k1
, K+

k2
i (12.19)

This term is non-vanishing for exactly the same reasons listed
above. In fact, the only difference is that in this process the
particle that starts with momentum k1 carries momentum k4
at the end of the process whilst the particle with momentum
k2 carries the momentum k3 at the end of the process. In short:
k1 ! k4, k2 ! k3. This follows because here K+

k1
is contracted

with y(x1) and K+
k4

is contracted to y(x1). This implies that the
transition k1 ! k4 happens at x1. In contrast, the transition from
K+

k2
to K+

k3
happens at x2 since the corresponding operators are

connected to the fields evaluated at x2.88 In the previous term (Eq. 12.16),
we had k1 ! k3, k2 ! k4 since,
for example, K+

k1
and K+

k3
are both

contracted to fields evaluated at x1.
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The corresponding Feynman diagram looks like this

Moreover, we can again use the explicit formulas listed in Sec-
tion 12.1.1, to rewrite the contraction as

hK+
k3

, K+
k4
|y(x1)y(x1)f(x1)y(x2)y(x2)f(x2)|K+

k1
, K+

k2
i y

Eq. 12.10

= ei(k3�k2)x2ei(k4�k1)x1 DF(x1, x2) (12.20)

By following the same steps as in Eq. 12.18, we can calculate
that this contraction contributes to our second order correction
A(2) (Eq. 12.15) a factor of

ig2d(k3 + k4 � k1 � k2)
1

u � m2
f + ie

, (12.21)

where u ⌘ (k4 � k1)2 = (k3 � k2)2.

Thus, we can conclude
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A(2) 12.15
= g2

Z
d4x1d4x2 T hK+

k3
, K+

k4
| : ȳ(x1)y(x1)f(x1) :

⇥ : ȳ(x2)y(x2)f(x2) : |K+
k1

, K+
k2
i y

=
g2

2

Z
d4x1d4x2

 
hK+

k3
, K+

k4
|y(x1)y(x1)f(x1)y(x2)y(x2)f(x2)|K+

k1
, K+

k2
i

+ hK+
k3

, K+
k4
|y(x1)y(x1)f(x1)y(x2)y(x2)f(x2)|K+

k1
, K+

k2
i
!

y Eq. 12.17,
Eq. 12.20

=
g2

2

Z
d4x1d4x2

 
ei(k3�k1)x1ei(k4�k2)x2 DF(x1, x2) + ei(k3�k2)x2ei(k4�k1)x1 DF(x1, x2)

!

y Eq. 12.18,
Eq. 12.21

= i
g2

2
d(k3 + k4 � k1 � k2)

1
t � m2

f + ie
� i

g2

2
d(k3 + k4 � k1 � k2)

1
u � m2

f + ie
(12.22)

12.1.5 The Non-Relativistic Limit

To understand the amplitude that we calculated in the previous
section a bit better, let’s assume that our particles move quite
slowly (~p2 ⌧ m2). This is known as the non-relativistic limit. In
this limit, we can write the four-momentum of each particle as

pµ =

 
p0
~p

!
=

 
E
~p

!
2.43
=

 
m
q

1 + ~p2

m2

~p

!

y p
1 + x ⇡ 1 for x ⌧ 1

⇡
 

m
~p

!
. (12.23)

Moreover, let’s assume that the momenta of the two particles
change during the process. This implies that the zeroth-order
term (Eq. 12.12) yields zero and the first term in the perturba-
tion series that contributes to the amplitude is the second-order
term A(2) (Eq. 12.22). We focus on the first term in Eq. 12.22 for
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a moment:

A(2) = ig2d(k3 + k4 � k1 � k2)
1

t � m2
f + ie

+ . . . . (12.24)

In the non-relativistic limit, the quantity t ⌘ (k4 � k2)2 simplifies
to

t ⌘ (k4 � k2)
2 12.23

=

  
my
~k4

!
�
 

my
~k2

!!2

=

  
0

~k4 �~k2

!!2

y
Minkowski metric

= �(~k4 �~k2)
2 ⌘ �D~k2 . (12.25)

Therefore, if we ignore the delta distribution, which only en-
codes the conservation of momentum and becomes important
when we integrate over a specific momentum range for the fi-
nal particles, and the factor +ie which is not important in this
context, we find that the amplitude reads

A(K+
k1

, K+
k2

! K+
k3

, K+
k4
) ⇡ A(2)

y

=
ig2

t � m2
f

+ . . .

y

Eq. 12.25

=
ig2

�D~k2 � m2
f

+ . . . . (12.26)

We learn here that the scattering amplitude is damped by a
factor Ṽ(D~k) ⌘ �g2

D~k2+m2 .9 This is exactly the Fourier transform of

9 The imaginary unit vanishes as
soon as we calculate the absolute
value, which is necessary to calcu-
late the corresponding probability.
Moreover, the dots indicate the
contribution from the second con-
traction which, however, is similar.

V(~r) = � g2

4p|~r| e
�mf |~r| , (12.27)

which is the Yukawa potential (Eq. 6.20) that we discussed in
Section 6.1.2. This is shown in Appendix B.3.

12.1.6 Further Comments

In the previous sections, we’ve discussed one out of many pos-
sible scattering processes. For example, instead of K+

k1
, K+

k2
!

K+
k3

, K+
k4

, we can consider K+
k1

, K�
k2

! K+
k3

, K�
k4

or K�
k1

, K�
k2

!
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K�
k3

, K�
k4

and, of course, also pion scattering. Moreover, we can
again define Feynman rules as a map between terms in the per-
turbation series and Feynman diagrams.

B Each incoming external line corresponds to a factor of e�ipx.

B Each outgoing external line corresponds to a factor of eipx.

B Each internal pion line corresponds to a factor of DF(x, y).

B Each internal kaon line corresponds to a factor of D̃F(x, y).

B Each vertex corresponds to a factor of �ig.

B Each line that enters and leaves the system without any
interaction, contributes a factor

p
2wq

p
2wk(2p)3d(~q �~k)

(Eq. 11.42).

Using these building blocks we can create all Feynman dia-
grams with a given number of vertices and then translate them,
using the Feynman rules, into the corresponding expressions
that appear in the perturbation series.

At the beginning of this section, I’ve mentioned that we con-
sider a simplified version of the "original" Yukawa model. In
the "real" Yukawa model, we describe the interaction of a spinor
field with a scalar field. The general features, however, are ex-
actly the same. The only difference is that each incoming and
outgoing spinor particle brings with it a spinor that we need to
take into account. This is necessarily the case, because if we re-
place the complex scalar field y with a spinor field Y, we must
use the expansions (Eq. 8.123)

Y =
2

Â
s=1

Z d3k
(2p)3p2wk

⇣
cr(~k)ur(k)e�ikµxµ

+ d†
r (~k)vr(k)eikµxµ

⌘

Ȳ
5.55
⌘ Y†g0 =

2

Â
s=1

Z d3k
(2p)3p2wk

⇣
c†

r (~k)ūr(k)eikµxµ
+ dr(~k)v̄r(k)e�ikµxµ

⌘

(12.28)
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for the fields that appear in the interaction Hamiltonian

Hinteractions = g
Z

d3xȲYf . (12.29)

This implies that the Feynman rules become10 10 There are a few subtleties we are
glossing over here. For example,
there are in some cases factors of
�1 which occur because spinors
anticommute.

B Every incoming external spinor particle with momentum p
and spin s corresponds to a factor of ur(p)e�ipx. For example,
s = 1 corresponds to a particle with spin up.

B Every outgoing external spinor particle with momentum p
and spin s corresponds to a factor of ūr(p)eipx.

B Every incoming external anti-spinor particle with momentum
p and spin s corresponds to a factor of v̄r(p)e�ipx.

B Every outgoing external anti-spinor particle with momentum
p and spin s corresponds to a factor of vr(p)eipx.

B Every internal spinor line corresponds to a factor of DF(x, y),
which we defined in Eq. 8.155.

For the sake of argument, let’s call the spinor particle we con-
sider here an electron. If we then consider an (electron + elec-
tron) ! (electron + electron) scattering process, the result is al-
most exactly the same as in the (kaon + kaon) ! (kaon + kaon)
case that we considered above. If there is a non-zero momen-
tum transfer, the first order term vanishes. Moreover, the first
order correction yields zero because there are again three fields
in the interaction Hamiltonian but four external particles. Thus
it’s impossible to contract all operators at the same time. The
first non-vanishing contribution is therefore given by the second
order term A(2), which reads analogous to what we found in
Eq. 12.2211 11 To unclutter the notation, I’ve left

the factor +ie out.

A(2) = ig2d(k3 + k4 � k1 � k2)ūr(k3)us(k1)
1

t � m2
f

ūr0(k4)us0(k2)

+ ig2d(k3 + k4 � k1 � k2)ūr0(k4)us(k1)
1

u � m2
f

ūr(k3)us0(k2) ,

(12.30)

where r, r0, s, s0 label the spin configuration of the two incoming
and outgoing particles. The corresponding Feynman diagrams
are
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At this point, you’ve probably already noticed that the general
story is always the same. Thus, let’s quickly discuss just one
additional model.
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12.2 Gauge Interactions

In Section 6.4, we’ve already discussed the Lagrangian den-
sity that describes how a spinor field interacts with a massless
gauge field (Eq. 6.60):

L = Ȳ
⇣

igµ∂µ � m
⌘

Y � 1
4

FµnFµn + eȲgµ AµY

y

definitions
⌘ Lf + Li . (12.31)

The free part of the Lagrangian density, L f , tells us that we can
use the usual field expansions (Eq. 8.123, Eq. 5.156)

Y =
2

Â
s=1

Z d3k
(2p)3p2wk

⇣
cr(~k)ur(k)e�ikµxµ

+ d†
r (~k)vr(k)eikµxµ

⌘

Ȳ
5.55
⌘ Y†g0 =

2

Â
s=1

Z d3k
(2p)3p2wk

⇣
c†

r (~k)ūr(k)eikµxµ
+ dr(~k)v̄r(k)e�ikµxµ

⌘

Aµ(x) =
3

Â
r=1

Z d3 p
(2p)3

1p
2k0

⇣
er

µar(~k)e�ikµxµ
+ er

µar†(~k)eikµxµ
⌘

.

(12.32)

The interaction term, Li, tells us that the interaction Hamilto-
nian reads

Hi
12.3
= �Li y

Eq. 12.31

= �e
Z

d3xȲgµ AµY . (12.33)

Instead of going through the usual steps, let’s just consider di-
rectly the Feynman rules for this model which are completely
analogous to the rules that we discussed in the previous sec-
tions.

B Every incoming external spinor particle with momentum p
and spin s corresponds to a factor of ur(p)e�ipx.
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B Every outgoing external spinor particle with momentum p
and spin s corresponds to a factor of ūr(p)e�ipx.

B Every incoming external anti-spinor particle with momentum
p and spin s corresponds to a factor of v̄r(p)eipx.

B Every outgoing external anti-spinor particle with momentum
p and spin s corresponds to a factor of vr(p)eipx.

B Every incoming vector particle with momentum p and polar-
ization r corresponds to a factor of er

µ(p)e�ipx.

B Every outgoing vector particle with momentum p and polar-
ization r corresponds to a factor of er?

µ (p)eipx.

B Every internal vector line corresponds to a factor of D?
ij ,

which we defined in Eq. 8.194.

B Every internal spinor line corresponds to a factor of DF(x, y),
which we defined in Eq. 8.155.

B Every vertex corresponds to a factor of �iegi.

With these building blocks at hand, we can start drawing dia-
grams. For example, we can consider an (electron + positron)
! (electron + positron) process, which we denote by e�k1

, e+k2
!

e�k3
, e+k4

. This is known as Bhabha scattering.12 One of the sim-12 In contrast, e�k1
, e�k2

! e�k3
, e�k4

is
known as Møller scattering. plest diagrams we can draw for this process includes two ver-

tices and looks like this:

Using the Feynman rules, we can immediately write down the
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corresponding contribution to the probability amplitude:

A(e�k1
, e+k2

! e�k3
, e+k4

) ⇡
Z

d4x1d4x2 e�ik2x1 v̄s0(k2)
⇣
� iegi

⌘
us(k1)e�ik1x1

⇥ D?
ij (x1, x2)ūr0(k3)eik3x2

⇣
� iegj

⌘
vs(k4)eik4x2

+ . . . . (12.34)

12.2.1 The Non-Relativistic Limit

To evaluate this contribution further, let’s introduce the notation

ai ⌘ v̄s0(k2)g
ius(k1)

bj ⌘ ūr0(k3)g
jvs(k4) . (12.35)

These two factors describe the incoming spinor current and
outgoing spinor current respectively. They depend on how
we prepare the electron and positron at the beginning of the
scattering experiment and which kind of final configuration
we try to detect. Let’s say we are working in the mass basis
and that we start with an electron and positron in a spin-up
configuration.13 The spin-up electron and the spin-up positron 13 We discussed the mass basis in

Section 5.2.3.are described by the spinors (Eq. 5.105)

u1 =

r
w + m

2m

0

BBB@

1
0
k3

w+m
k1+ik2
w+m

1

CCCA

v1 =

r
w + m

2m

0

BBB@

k3
w+m

k1+ik2
w+m

1
0

1

CCCA
. (12.36)

Moreover, to simplify our calculation we assume that we are
dealing with particles with very small momenta~k2 ⌧ m2,
which implies that w ⇡ m (see Eq. 12.23) and ki

m ⇡ 0. In this
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non-relativistic limit, the spinors simplify to
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These formulas allow us to calculate each component of the
incoming current ai. For example, for i = 3, we find

a3 ⌘ v̄s0(k2)g
3us(k1) y

Ȳ ⌘ Y†g0 (Eq. 5.55)
= vs0†(k2)g

0g3us(k1) y Eq. 12.37, Eq. 5.99,
Eq. 5.100

=
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Similarly, we find that a1 = 0, a2 = 0.

Further, let’s say that we are interested in the probability ampli-
tude to detect at the end of the scattering process again a spin-
up electron and a spin-up positron. This implies that we can use
exactly the same basis spinors to calculate the outgoing current
bi and thus can calculate analogously that b1 = 0, b2 = 0, b3 = 1.
Thus in summary

~a = (0, 0, 1)T , ~b = (0, 0, 1)T . (12.39)

With these results at hand, we can evaluate the complete contri-
bution to the probability amplitude:
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where s2 ⌘ (k1 + k2)2 = (k3 + k4)2,~s ⌘ ~k1 +~k2 and s3 ⌘
(k1 + k2)3. The delta distribution encodes, as usual, momentum
conservation: the total four-momentum of the two incoming
particles must be equal to the total four-momentum of the two
outgoing particles. Moreover, if we assume that the two par-
ticles have no momentum component in the z-direction (e.g.,
move in the x-direction and �x-direction), we have s3 = 0.14 14 The z-axis is singled out because

we assumed that we deal with
particles whose spin is aligned
up with respect to the z-axis. We
did this by using the spinors in
Eq. 12.36. For spin up and spin
down configurations with respect
to different axes, different spinors
must be used.

The quantity s ⌘ (k1 + k2)2 reads in more explicit terms
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The total contribution to the probability amplitude is therefore
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approximately

A(e�k1
, e+k2

! e�k3
, e+k4

) ⇠ � ie2

4m2
e
+ . . . . (12.42)

12.2.2 Further Examples

There are many subtle aspects of gauge interactions that we
haven’t discussed. In fact, there are whole books dedicated
to discussions of how gauge fields interact with other fields
and it’s impossible to summarize them on just a few pages. So
if you want to learn more about gauge interactions, you are
encouraged to pick up one of these dedicated books. You can
find several reading recommendations in Chapter 19.

The general ideas, however, are always the same. We start with
a Lagrangian, deduce the Feynman rules and then calculate
probability amplitudes by drawing diagrams for specific pro-
cesses. The following figure shows a few famous examples of
scattering processes that involve electrons, positrons and the
photon field.
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Scattered Comments

Applications of quantum field theory is a vast field and we’ve
barely scratched the surface. So let’s finish this part with vari-
ous comments that should give you some orientation for your
further studies.

Here’s what we will discuss in the following section:

B People commonly use the concept of virtual particles to de-
scribe Feynman diagrams. We will discuss a few examples
that demonstrate how this language can be useful.

B So far, we’ve only talked about the simplest terms in the per-
turbation series and the simplest kind of scattering processes.
Thus it makes sense to discuss shortly what changes if we
consider more complicated terms or processes.

B We will shortly go over a few conventions that are commonly
used to describe scattering processes.

B We will revisit the topic of regularization and discuss its
importance and meaning in more detail.

B Another topic that we’ve only briefly touched upon so far are
renormalized couplings. Since this is an incredibly important
topic, we will discuss their interpretation and implications.
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With this rough plan in mind, let’s dive right in.

13.1 Virtual Particles

It is certainly not mandatory that we use words to describe
Feynman diagrams. But words can help to make sense of them,
just as Feynman diagrams help us to make sense of the pertur-
bation series.

Let’s consider again, for example, the diagram that represents
a contribution to the second order correction to the scattering
amplitude A(K+

k1
, K+

k2
! K+

k3
, K+

k4
).

The corresponding term reads (Eq. 12.22)

A(2) = g2
Z

d4x1d4x2 ei(k3�k1)x1 DF(x1, x2)ei(k4�k2)x2 . (13.1)

The external "legs" of the diagrams represent factors that de-
scribe the incoming and outgoing particles. The internal line
represents the Feynman propagator DF(x1, x2).

We know already that Feynman propagators are Green’s func-
tions. Moreover, we know that Green’s functions represent
damping functions that encode how physical effects get weaker
as we move farther away from a source (e.g. a particle). This
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alone is sufficient to interpret the Feynman diagram and the
corresponding term in the perturbation series, analogously to
how we interpreted the diagrams that we drew for a classical
theory.

The incoming two particles are field excitations which influence
each other. Each particle is described by a specific structure in
the field. The trick that we exploit in perturbation theory is that
we act as if the two particles were free and take modifications
which occur as a result of the interaction as small corrections
into account. In the first correction to the completely free ap-
proximation, we take into account how the non-zero field values
that correspond to the second particle affect the field structure
that describes the first particle and vice versa. Moreover, the
Feynman propagator is the damping factor that tells us how
strongly the non-zero field values at two specific locations x1, x2

affect each other depending on their distance.

A somewhat subtle aspect is that we are dealing with initial
and final states with exactly known momenta. This implies
that the particles are described by plane waves which are com-
pletely delocalized within the system. That’s why we need to
integrate over x1 and x2. In other words, both particles are de-
scribed by field structures that spread out all over the system.
Thus to investigate how they influence each other, we need to
take the field values at all possible locations into account and
damp them accordingly. In the context of quantum field theory,
however, it is conventional to describe the diagram as follows.
The two particles enter the system. They then interact by ex-
changing a virtual f particle and leave the system again. In
this story, the virtual f particle is described by the propagator.
This is an essential point. Virtual particles are not particles in
the usual sense. They are just a convenient way to drape words
around the Feynman propagator.1 Real particles correspond to 1 Now may be a good point to

reread the meaning of the Feyn-
man propagator discussed in
Section 8.5.3.

very different mathematical objects (plane waves in this con-
text). Moreover, it is important to take note that this story is
only complete if we say that the two particles exchange a virtual
particle at each possible location x1, x2 of the two particles, since
we integrate over x1 and x2.
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The story gets even more interesting once we consider higher
order corrections. For example, let’s consider the diagram that
corresponds to a second order correction:

A popular interpretation of this kind of loop diagram is that
the two particles that enter the system annihilate each other
and create a virtual pair of f particles. This pair of virtual f

particles annihilates quickly afterwards and produce a new
particle pair.

An important feature of this virtual f particle pair is that
it doesn’t play by the usual rules. We know that the four-
momentum of a real particle fulfills the relation (Eq. 5.40)

m2 = k2 = w2
0 � k2

1 � k2
2 � k2

3 . (13.2)

In this context this relation is also known as the mass-shell
condition. This name is motivated by the observation that the
formula

R2 = x2
0 � x2

1 � x2
2 � x2

3 (13.3)

is the condition that points which lie on a sphere of radius
R in Minkowski space must fulfill.2 But in the integral that2 In a four-dimensional Euclidean

space, the correpsonding relation
reads

R2 = x2
0 + x2

1 + x2
2 + x2

3 , .

describes the loop, we integrate over all possible momentum
values without any restriction.3 It is conventional to say that vir-

3 We noticed this Section 11.6.3.

tual particles can be off-shell, while real particles are necessarily
on-shell. This is jargon for the observation that real particles
fulfill Eq. 13.2, while virtual particles not necessarily do.

The question of how seriously we should take these kind of pic-
tures remains a hotly debated topic and you’re encouraged to
read about the arguments on both sides. In any case, however,
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it is important to keep in mind that, first and foremost, stories
involving virtual particles are useful mnemonics that allow us
to put some meaning on the perturbation series. A Feynman
diagram is just a convenient way to represent a term in the per-
turbation and is not a picture of the physical process.4 4 It’s often tempting and sometimes

even illuminating to treat Feynman
diagrams as actual pictures of the
process. We will encounter a few
instances where this is the case
below.

13.2 Loops and Legs

As you’ve probably noticed by now, quantum field theory is
really an infinite playground. There are infinitely many scatter-
ing processes that we can consider and for each process there
are infinitely many terms in the perturbation series that we can
evaluate. Whether it makes sense to consider these processes or
terms is, of course, a different question.

To get some understanding of the phenomena that occur in a
given model, it is often sufficient to consider 2 ! 2 scattering
processes and the first non-vanishing term in the perturbation
series. However, there are hundreds of professional physicists
all around the world who spend all of their time evaluating
more complicated processes and higher order terms in the
perturbation series. For many higher order corrections, these
calculations are month-long projects and can only be done in
team efforts using dedicated software tools. One reason is that
there are hundreds and sometimes even thousands of Feynman
diagrams that contribute to higher order corrections. The gener-
ation of all Feynman diagrams that contribute to a given order
in perturbation theory can be automated and nowadays there
are many tools available. So the more important reason that
higher order corrections are hard to evaluate is that they involve
complicated integrals that are hard to solve, even numerically.
Thus in addition to dedicated computer clusters, clever new
methods must be developed to bring the expressions into a
more manageable form.
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The level of difficulty scales directly with the number of legs
(external particles) and number of loops.

For many processes, two-loop corrections are the maximum that
have been evaluated fully so far. However, partial results also
exist for certain models and processes up to the five-loop level.
Calculating multi-loop amplitudes is really an art in itself and
requires a specialized set of tools. As far as I know, the only
way to learn how to carry out the calculations is to join one
of the research groups. But there are also dedicated textbooks
that you can read to get at least some understanding of the
general methods. One popular book is, for example, "Evaluating
Feynman Integrals", by Vladimir A. A. Smirnov.

13.3 Scattering Conventions

There are many conventions and simplifications that are com-
monly used to describe scattering processes in quantum field
theory. For example, it makes sense to factor out further factors
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that we encounter in every scattering amplitude. We’ve learned
in the previous chapters that amplitudes always contain a delta
distribution d(p1 + p2 + . . . � pn) that encodes momentum con-
servation and a factor (2p)4. Therefore, it is conventional to
define

T̂ ⌘ (2p)4d(Â p)M̂ , (13.4)

where Â p denotes a sum over the momenta of all initial parti-
cles minus a sum over the momenta of all final particles.

In addition, you should be aware that experimentalists usu-
ally don’t talk about scattering probabilities or amplitudes but
instead about cross sections. A cross section is directly propor-
tional to the probability that a given process happens and the
general concept stems from a time when particles were thought
to be hard balls. There are many further conventions which
are commonly used in the definition of cross sections and you
are encouraged to pick up a dedicated particle physics book
to learn more about them. My favorite is "Introduction to Ele-
mentary Particles" by David J. Griffiths. Another great choice is
the "Introduction to Elementary Particle Physics" by Alessandro
Bettini.

13.4 Regularization

In Section 11.6.3, we’ve briefly talked about regularization. We
discovered that higher order corrections can yield an infinitely
large contribution if we evaluate the integrals that we encounter
naively. The reason for this divergence is that we integrate over
all possible momentum values, all the way up to •. This moti-
vated us to introduce a cutoff L. If we integrate from �L to L
instead of from �• to •, we find finite contributions instead of
diverging ones. Moreover, we learned that the actual value of L
is not important since the cutoff drops out from quantities that
we can measure in experiments. This implies that at the end of
the calculation we can even take the limit L ! • without en-
countering problems. Since this whole procedure surely seems a
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bit mysterious at first glance, it makes sense to discuss how the
same procedure works in a more familiar setup.55 The following discussion is based

on

Fredrick Olness and Randall
Scalise. Regularization, Renormal-
ization, and Dimensional Analysis:
Dimensional Regularization meets
Freshman E&M. Am. J. Phys., 79:
306, 2011. doi: 10.1119/1.3535586 Let’s say we want to calculate the electric potential that occurs

in the vicinity of an infinitely long wire. We choose a coordinate
system such that the wire points in the y-direction. Moreover,
for simplicity we consider only two spatial dimensions (x, y)
since this is sufficient to understand the main features of the
system. We denote the constant charge density on the wire by

l =
dQ
dy

. (13.5)

In words this means that there is DQ = lDy Coulombs of
charge on each Dy-long piece of the wire. We know that a point
charge q generates the potential

V =
q
r

, (13.6)

where r ⌘
p

x2 + y2 denotes the distance from the point charge.
This implies that each infinitesimal charge dQ on the wire gen-
erates a potential

dV =
dQ
r y

Eq. 13.5

=
ldy

r
. (13.7)

The wire as a whole therefore generates a potential

V(x) =
Z

dV y

Eq. 13.7

=
Z •

�•

ldy
r y

r ⌘
q

x2 + y2

= l
Z •

�•

dyp
x2 + y2

, (13.8)

where we integrate over the total length of the wire from �• to
•. Since for y � x
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B
p

x2 + y2 ⇡ y, and additionally, we have

B
R

dy 1
y = ln(y),

B ln(•) = •, and

B ln(�•) = •,

the integral diverges

V(x) = l
Z •

�•

dyp
x2 + y2

= • . (13.9)

This result is not necessarily problematic because the electric
potential is not observable. Instead, it’s only a tool that we use
to calculate observable quantities like, for example, the work
done if we move a charge e in the vicinity of the wire from x1 to
x2:6 6 Another example of an observable

quantity that we derive from the
potential V is the electric field
~E = rV.W(x2, x1) = q

⇣
V(x2)� V(x1)

⌘
. (13.10)

At first glance, however, it now seems as if the work done is
always zero since Eq. 13.9 tells us that V(x2) = • and V(x1) =

•. This is clearly a wrong result. Energy is always necessary to
move a charge in the vicinity of a charged wire, no matter how
long it is.

The error we are making here is that infinity has some curious
properties like • + c = •. This would imply that • � • = c,
depending on how the two infinitely large numbers that appear
in this formula are defined. This implies that the work formula
can yield a correct non-zero result even though V(x2) = •
and V(x1) = •. The key question then is, of course, what
number do we find in Eq. 13.10 if we subtract two infinitely
large numbers?

This is a well-defined question that we can answer by regulariz-
ing the troublesome integral. We assume for a moment that our
wire has a finite length 2L. The formula for the electric potential
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then yields

V(x) = l
Z L

�L

dyp
x2 + y2

y

Z
dy

1p
x2 + y2

= ln
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x2 + y2 + y
◆

= l ln

"
+L +

p
L2 + x2

�L +
p

L2 + x2

#
. (13.11)

This is a finite result, but yields infinity in the limit L ! •.
However, if we plug the regularized potential into the work
formula, we find that the result is finite even in the limit L ! •

W(x2, x1)
�!
L!•

ql ln

"
x2

1
x2

2

#
. (13.12)

This is demonstrated in Appendix B.2.7 Thus by introducing7 Similarly, it can be shown that the
electric field is finite:

E(x) =
�∂V(x)

∂x
=

l

x
Lp

L2 + x2

�!
L!•

l

x
.

a cutoff L, we are indeed able to extract finite results for ob-
servable quantities. In other words, by regularizing infinitely
large quantities we can answer questions like "• � • =?" in a
mathematically meaningful way.

Let’s compare the steps that we used to make sense of the in-
finitely large wire with those discussed in Section 11.6.3. In both
cases, we encountered an infinitely large number that occurs
because we consider idealizations. We assumed that the wire is
infinitely long although, of course, no infinitely long wire exists
in nature. An infinitely long wire is a useful idealization that
allows us to ignore boundary effects that occur for finite length
wires.8 In other words, saying that we consider an infinitely

8 We encountered boundary effects
when we introduced a finite length
2L. All terms in the work formula
that depend on L are a result of the
finite length. For a long wire these
effects become tiny but are still non-
vanishing. Only in the limit L ! •
these terms vanish completely and
this is why it often makes sense to
consider such idealizations.

long wire is analogous to saying that we consider a wire that is
so long that boundary effects do not matter.

Similarly, we assume that infinitely large momenta are possible
when we allow that the limits of the Feynman propagator in-
tegral are �• and •. As for an infinitely large wire, a particle
with infinitely large momentum doesn’t exist in nature. But this
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doesn’t matter because we only use k ! • as a useful idealiza-
tion. Of course, we have to be careful whenever we are dealing
with infinitely large numbers. If we take the limit k ! • too
soon, we get nonsensical answers. Nevertheless, it’s usually
worth the extra effort to treat infinities that occur in our calcu-
lations carefully because, as for the wire, it allows us to avoid
boundary effects.

Maybe you’re wondering what the boundary effects are in this
context. The short answer is that if there is a finite physical
cutoff L, there are new terms in the Lagrangian that are propor-
tional to inverse powers of L. For example, for a complex scalar
field, we have9 9 This is discussed in a bit more

detail in Chapter 17.

L = i∂µy†∂µy � m2
yy†y +

g2

L2 y†yy†y + . . . . (13.13)

These terms describe the boundary effects that occur if there is a
finite physical cutoff, analogous to how terms that depend on L
describe boundary effects that occur for a finite length wire.

In fact, many physicists believe that there is a physical cutoff
L that encodes the energy scale at which the Standard Model
of particle physics becomes invalid.10 But since no one knows 10 There are various reasons why

this should be the case like, for
example, dark matter, neutrino
masses or the baryon-antibaryon
asymmetry.

for certain which value we should plug in for L, and we don’t
want to include additional terms in the Lagrangian that only
become relevant at scales close to L anyway, we often work
with L ! •.11

11 Popular contenders for physical
cutoff scales are the Planck scale
mP ⇡ 1018 GeV and the so-called
unification scale mu ⇡ 1016 GeV.
Moreover, take note that there
are research groups that add all
kinds of higher order terms to the
Standard Model Lagrangian and
then try to find hints for effects
caused by these terms in collider
data.

In summary, the main issue is that we encounter diverging
integrals like

Z •

0

dx
x + a

= [ln(x + a)]•0 = • . (13.14)

We can regularize them by introducing a cutoff L:

Z L

0

dx
x + a

= ln
(L + a)

a
. (13.15)
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While this quantity is finite, it still diverges in the limit L ! •.
However, we can take a look at

Z L

0

dx
x + a

�
Z L

0

dx
x + b

�!
L!•

ln
b
a

(13.16)

which is finite in the limit L ! •, although

Z L

0

dx
x + a

�!
L!•

•
Z L

0

dx
x + b

�!
L!•

• . (13.17)

As a final comment on this topic, take note that there are vari-
ous ways to regularize an infinitely large quantity. An extremely
popular alternative to the cutoff regularization discussed above
is dimensional regularization. The main idea is that integrals
which diverge in four-dimensions become finite in a different
number of dimensions. Thus the integral is solved in 4 + e

dimensions which renders the result finite. This is a viable pro-
cedure as long as we take the limit e ! 0 at the end of the
procedure. But this is really just a mathematical convenient
trick, since the results are always the same no matter which
regularization method we use.1212 You can find an illuminating

discussion of dimensional regular-
ization in

Fredrick Olness and Randall
Scalise. Regularization, Renormal-
ization, and Dimensional Analysis:
Dimensional Regularization meets
Freshman E&M. Am. J. Phys., 79:
306, 2011. doi: 10.1119/1.3535586

13.5 The Renormalization Group

A second important feature of quantum field theory that we
stumbled upon in Section 11.6.3 is that the parameters that
appear in the Lagrangian are not necessarily directly related to
experimentally measurable coupling strengths. In particular,
we argued that the Lagrangian parameter l only describes
the coupling between particles in a first order approximation,
while experimental results always correspond to the complete
amplitude and not just isolated approximation terms. Motivated
by this observation we introduced the renormalized coupling
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(Eq. 11.74)

lR(s0) ⌘ Ã(s0) = l + l2C ln
⇣ s0

L2

⌘
+ . . . , (13.18)

which can be extracted directly from the experimental scattering
results at a specific scale s0. With this definition, we can say that
the two particle scattering process at the scale s0 has amplitude
�ilR(s0) since, by definition, lR(s0) includes already all order
corrections. In this sense, lR(s0) is the physical coupling that
we measure in experiments.

We then discovered that if we rewrite our amplitude in terms of
lR all dependence on the cutoff scale L drops out (Eq. 11.79)

Ã0(s) = �lR(s0)� C ln
✓

s
s0

◆
l2

R(s0) + . . . . (13.19)

Let’s try to understand a bit better what is going on here.
We’ve argued that it doesn’t matter which reference scale s0

we choose. But what exactly happens if we choose a different
scale s1? The corresponding renormalized coupling reads

lR(s1) ⌘ Ã(s1) = l + l2C ln
⇣ s1

L2

⌘
+ . . . . (13.20)

Moreover, the amplitude in terms of lR(s1) reads

Ã1(s) = �lR(s1)� C ln
✓

s
s1

◆
l2

R(s1) + . . . . (13.21)

This suggests that

Ã1(s)� Ã0(s) =
⇣
� lR(s1)� C ln

✓
s
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◆
l2

R(s1) + . . .
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✓
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s0
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R(s0) + . . .
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0 = �lR(s1)� C ln
✓

s
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R(s1)

+ lR(s0) + C ln
✓

s
s0

◆
l2

R(s0) + . . .
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lR(s1) = lR(s0) + C ln
✓

s
s0

◆
l2

R(s0)� C ln
✓

s
s1

◆
l2

R(s1) + . . .

(13.22)
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Take note that lR(s1) still appears on both sides of the equation.
However, we can solve the equation iteratively for lR(s1):

lR(s1) = lR(s0) + C ln
✓

s
s0

◆
l2

R(s0)� C ln
✓

s
s1

◆
l2

R(s1) + . . .

y

Eq. 13.22

= lR(s0) + C ln
✓

s
s0

◆
l2

R(s0)

� C ln
✓

s
s1

◆ 
� lR(s0) + C ln

✓
s
s0

◆
l2

R(s0)

� C ln
✓

s
s1

◆
l2

R(s1) + . . .

!2

+ . . .

y

= lR(s0) + C ln
✓

s
s0

◆
l2

R(s0)� C ln
✓

s
s1

◆
l2

R(s0) + . . .

y ln a � ln b
= ln

a
b

= lR(s0) + C ln

 
s
s0

 
s1
s

!!
l2

R(s0) + . . .

y

⇤s
= lR(s0) + C ln

✓
s1
s0

◆
l2

R(s0) + . . . , (13.23)

where we neglected all higher order terms µ l3
R which, how-

ever, can be rewritten similarly. Thus we can conclude that in a
first order approximation, the equation

lR(s1) ⇡ lR(s0) + C ln
✓

s1
s0

◆
l2

R(s0) (13.24)

describes how the renormalized coupling is modified if we
change the scale from s0 to s1. This is an important result be-
cause it implies that the renormalized coupling depends on the
energy scale at which we probe it. We say that couplings run
with the energy scale and therefore are not constant. Formu-
lated differently, the numerical value of the parameter that en-
codes how two particles interact depends on their momenta.1313 Reminder s = (k1 + k2)2 encodes

roughly the energy scale at which
the two particles interact.

There is a beautiful way to understand how this comes about.
But first, let’s discuss how we can bring Eq. 13.24 into a more
conventional form. If we take the derivative with respect to s1,
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we find

d
ds1

lR(s1) ⇡
d

ds1

 
lR(s0) + C ln

✓
s1
s0

◆
l2

R(s0)

!

y

=
d

ds1
lR(s0) + C

 
d

ds1
ln
✓

s1
s0

◆!
l2

R(s0)

y d
dx

ln
⇣ x

a

⌘
=

1
x

= C

 
1
s1

!
l2

R(s0)
y

Eq. 13.23

=
C
s1

 
lR(s1) + C ln

✓
s0
s1

◆
l2

R(s0) + . . .

!2

y

=
C
s1

l2
R(s1) + . . .

y

⇥s1

s1
d

ds1
lR(s1) ⇡ Cl2

R(s1) . (13.25)

where we again ignored higher order terms. This differential
equation tells us how the coupling lR changes with the scale s1.
It’s conventional to call the scale in this context µ and thus we
write

µ
d

dµ
lR(µ) ⇡ Cl2

R(µ) . (13.26)

This is known as the one-loop renormalization group equation
of the f4 model. This name is motivated by the observation
that Eq. 13.26 allows us to calculate how the model behaves at a
different scale µ given its behavior at some reference scale µ0.14 14 As usual, an initial value is

necessary to get a unique solution
of a differential equation.

The switch from µ0 to µ is a scaling transformation

µ = aµ0 , (13.27)

where a is a real number. An important property of scaling
transformations is that the combined action of two scaling trans-
formations is again a scaling transformation:

µ0 ! µ1 = S1(µ0) = a1µ0

µ1 ! µ2 = S2(µ1) = a2µ1 y

= a2(a1µ0) ⌘ ãµ0 = S̃(µ0) . (13.28)
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In words, this means that the outcome of the scaling transfor-
mations from µ0 to µ1 to µ2 is equivalent to a single scaling
transformation µ0 to µ2. In mathematical terms

S1 � S2 = S̃ , (13.29)

where � denotes the operator that allows us to connect trans-
formations (here ordinary multiplication). This property of a
set of transformations — called closure — is one of the hall-
marks of a group. A group is a set of transformations that fulfill
a special set of conditions (axioms) and closure is one of them.
Analogously, it can be checked that scaling transformations ful-
fill the remaining group axioms and this motivates the name
renormalization group equation.

13.5.1 The Meaning of the Renormalization Group Equation

To understand the running of the coupling l(µ) a bit better,
let’s put some numbers into Eq. 13.24:1515 Equivalently, we could solve

Eq. 13.26 with a specific initial value
lR(µ0) at a reference scale µ0. C =

3
16p2

s0 = 10 GeV

l(s0) = 0.3 . (13.30)

In this model, the change of lR as we move to higher energy
scales s1 looks schematically like this:

In words, this means that the physical coupling lR(s1) gets
stronger at higher scales s1. But it does so very slowly. By look-
ing at Eq. 13.24, we can see that its growth is logarithmic. For
example, at a scale s1 = 10000 GeV it has only increased to
lR(10000 GeV ) ⇡ 0.312. Here’s one way to understand how
this comes about.
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Recall that we want to describe how two particles that we in-
terpret as field excitations of the scalar field f interact with
each other. For concreteness, we call these particles pions. In
the lowest order approximation, the pions meet at a point and
then scatter off again. If we take higher order corrections into
account, we notice that the interaction between the two parti-
cles is far more complicated. For example, the two incoming
particles can annihilate each other, produce a virtual pion pair
which then annihilate and produce the final outgoing pion pair.
Higher order corrections correspond to even more complicated
ways in which the two particles can interact while they are in
the system.

We have introduced the renormalized coupling lR(s0) at some
reference scale s0 in such a way that interactions can be de-
scribed completely by the simple diagram with just one interac-
tion vertex.

But if we move to another energy scale s1, we must take cor-
rection terms into account which correspond to the more com-
plicated diagrams given above. In our perturbation series with
expansion parameter lR(s0), these corrections only yield zero
for s1 = s0 since ln(1) = 0 (see Eq. 13.24).16 Moreover, higher 16 For your convenience, Eq. 13.24

reads

lR(s1) ⇡ lR(s0)+C ln
✓

s1
s0

◆
l2

R(s0) .

order corrections become more and more important as we move
to higher energy scales since for s1 = 2s0, we have

ln
✓

s1
s0

◆
= ln

✓
2s0
s0

◆
= ln (2) ⇡ 0.7 , (13.31)
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while s1 = 10s0, we have

ln
✓

s1
s0

◆
= ln

✓
10s0

s0

◆
= ln (10) ⇡ 2.3 . (13.32)

We can therefore imagine that by investigating processes at
higher energy scales s1, we start to probe the more complicated
ways in which the interaction can happen. At s0, the interaction
is described completely by the almost trivial Feynman diagram.
At some slightly higher scale, e.g, s1 = 2s0, Feynman diagrams
with two interaction vertices become noticeable, while at even
higher scales , e.g, s1 = 10s0, more and more complicated
diagrams start to contribute significant corrections.

A popular way to drape words around this observation is by
saying that if we shoot particles into each other at higher en-
ergies, we probe the detailed substructure of the interaction.
This, in turn, allows us to understand why lR(s1) gets larger at
higher energy scales, s1.

The diagrams that describe the first correction to the one-vertex
interaction, involves one virtual pion pair. Higher order terms
involve two or even more virtual pion pairs. Moreover, we
imagine that each virtual pion carries the charge lR(s0). Thus
at low energies, there are just the two incoming and outgoing
particles.
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At higher energies, however, we start to see a cloud of virtual
pions, each of which carries charge lR(s0).

Thus the net charge involved in the process, lR(s1), is larger
than lR(s0). As we move to higher energies, we start to see
more and more virtual pion pairs and thus the net charge
lR(s1) grows. This is known as anti-screening of the charge
l.

What we’ve discussed in this section is not a special feature of
a scalar field with f4-self interaction term. Similar calculations
lead to exactly the same conclusions in different models. In
particular, running couplings are a general feature of quantum
field models. But how exactly a given coupling changes with
the scale at which we probe it, depends on the model at hand.
Some coupling parameters get stronger as we move to higher
energy scales, while others get weaker. A famous example is
the electric charge e which is the coupling parameter that en-
codes how the electron field interacts with the electromagnetic
field. Since the electron field is a complex spinor field, there are
not just electrons but also anti-electrons known as positrons.
Thus, when we probe the interaction of two electrons at high
energies (again, relative to some reference scale), the effects of
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virtual electron-positron pairs become noticeable. Through the
presence of the incoming electrons, the virtual electron-positron
pairs are polarized, analogous to what happens in a dielectric
medium.

This leads to a screening of the charge. At higher energies, the
effect of more and more virtual electron-positron pairs becomes
noticeable and there is a more pronounced screening effect. This
suggests that the electric charge gets weaker at higher energy
scales, which is indeed observed in experiments.

Let’s finish this section with a quick glance beyond. An exciting
implication of the fact that charges run differently is that they
can meet at a common point. In particular, the couplings associ-
ated with the three gauge forces (weak, strong, electromagnetic)
meet approximately at around MGUT ⇡ 1015 GeV.17

17 In the 1980s, when grand unifica-
tion was first proposed the gauge
couplings were not measured very
precisely and it seemed plausible
that the three couplings meet at
a common point. Nowadays, the
couplings are measured much more
precisely and it is well known that
there is a significant mismatch at all
scales. This, however, can be inter-
preted as a hint for new particles
between the electroweak and the
unification scale. You can find a
recent discussion in

Jakob Schwichtenberg. Gauge
Coupling Unification without
Supersymmetry. Eur. Phys.
J., C79(4):351, 2019a. doi:
10.1140/epjc/s10052-019-6878-1
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This has motivated the idea that the three gauge forces have a
common origin. One popular framework to realize this idea is
known as grand unification.

Now that we’ve developed some understanding of how we can
use quantum field theory in practice, it’s time to discuss several
more advanced aspects.
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Part III
Get an Understanding of Quantum
Field Theory You Can Be Proud Of

"Is the purpose of theoretical physics to be no more than a cataloging of all
the things that can happen when particles interact with each other and

separate? Or is it to be an understanding at a deeper level in which there
are things that are not directly observable (as the underlying quantized

fields are) but in terms of which we shall have a more fundamental
understanding?"

Julian Schwinger

PS: You can discuss the content of Part III with other readers and give feedback at
www.nononsensebooks.com/qft/bonus.

www.nononsensebooks.com/qft/bonus




In this final part of the book we will talk about several aspects
of quantum field theory that go beyond the perturbative treat-
ment of individual models discussed in the previous part:

B We will start with a discussion of symmetry breaking. In
particular, we will see why spontaneous symmetry breaking
leads to spontaneous mass generation.

B Afterwards, we will talk about the path integral formulation.
We will discuss the main idea in the context of quantum
mechanics and only afterwards discuss quickly the path
integral formulation of quantum field theory.

B The path integral formulation is important because it allows
us to describe phenomena that we miss in a perturbative
treatment. As an explicit example of such non-perturbative
phenomena we will discuss instantons which can be un-
derstood as a tunneling process from one ground state to
another.

B Lastly, we will talk shortly about the origin of the Lagrangians
that we used in the previous chapters.





14

The Living Vacuum

"Philosophers are people who know less and less about more and more
until they know nothing about everything. Scientists are people who
know more and more about less and less until they know everything
about nothing." - Konrad Lorenz

"In classical mechanics three objects are already too difficult, in quan-
tum mechanics two, in quantum field theory zero." - Unknown

"No point is more central than this, that empty space is not empty. It
is the seat of the most rich and surprising physics." - John Wheeler

"Anatoly Larkin, posed a challenge to two outstanding undergraduate
teenage theorists, Sacha Polyakov and Sasha Migdal: ’In field theory
the vacuum is like a substance; what happens there?’" - from The
Infinity Puzzle by Frank Close

One of the most interesting aspects of quantum field theory is
the ground state of different quantum fields. Naively, we would
imagine that the ground state of a field looks like a perfectly
calm sea:
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This is, in fact, true for classical fields which we can understand
as networks of coupled classical oscillators. In contrast, for a
network of quantum oscillators it is suggestive to imagine the
configuration with the lowest amount of energy as something
more similar to boiling water:

There is simply no way to make it any smoother since the
ground state energy of each oscillator in the network is non-
zero. Moreover, the standard deviation of observables like the
position Dx and momentum Dp are always non-zero for a quan-
tum oscillator. This is necessarily the case because otherwise the
uncertainty relation DxDp � h̄

2 would be violated. In words,
this means that if we measure the location of a quantum oscilla-
tor in its ground state we don’t always find it at its equilibrium
position. Instead, sometimes we will find it a bit above and
sometimes a bit below it.

We already stumbled upon this curious property of the ground
state of quantum fields when we discovered that the energy of
the ground state is infinitely large.1 There are many, sometimes1 We calculated this in Eq. 8.19.
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heated, discussions about how seriously we should take this
result and what role is played by virtual particles. For example,
it’s very tempting to draw a connection between the vacuum
bubble diagrams that we discarded by normal ordering our
Hamiltonians and ground state fluctuations.2 These vacuum 2 We discussed the need for normal-

ordered Hamiltonians in Section 9.4
and discovered in Chapter 11 that
the contractions that we remove
this way correspond to self-loop
diagrams.

bubble diagrams are usually described by stories along the
lines of "particle-antiparticle pairs constantly pop in and out
of existence". This language is problematic because even if we
don’t discard vacuum bubble diagrams altogether, internal
lines in Feynman diagrams always correspond to Feynman
propagators which is not what we use to describe particles.

Instead, Feynman propagators are damping factors that tell us
how a non-zero field value affects the non-zero field value at a
different location, while incoming and outgoing "real" particles
are described by plane wave-like functions.

In addition, we only encounter an infinitely large energy be-
cause we start with the classical theory and then quantize it. But
quantum theories are more fundamental than classical theories.
Thus it makes more sense to start with a quantum theory that
matches our observation and then dequantize it appropriately.
In contrast, the quantization of a classical theory is necessarily
plagued by ambiguities. To understand why, take note that the
process of zooming out (quantum ! classical) is usually pos-
sible without problems. But zooming in (classical ! quantum)
is often not possible in a unique way using theoretical methods
alone.3 3 Experiments can help to decide

which fundamental model is
the right one. But zooming in
purely using mathematics leads to
ambiguities.

There are many new details at a more fundamental level that
are washed out when we zoom out. Thus there are usually
many fundamental models that lead to the same less-fundamental
model when we zoom out. The difference between these funda-
mental models are details that are washed out when we zoom
out. This implies that the process of zooming in is not possible
without ambiguities. In principle, we can end up with any of
the more fundamental models that lead to the less-fundamental
model after zooming out.
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To make this a bit more concrete, recall how we ended up with
the conclusion that the ground state energy in quantum field
theory is infinitely large. We started with the classical Hamil-
tonian and the classical field expansion. We then promoted the
coefficients a(k), a†(k) in the field expansion to operators by im-
posing the canonical commutation relations. Then we plugged
the quantized field expansion into the formula for the Hamil-
tonian and, using the canonical commutation relations, found
that

H =
Z

V
dk3 wk

(2p)3 a†(~k)a(~k) +
1
2

Z

V
dk3wkd(~0) . (14.1)

But what if we rewrite the Hamiltonian first and then quantize
it? We can plug the classical field expansion into the formula
for the Hamiltonian and since in this context a(k), a†(k) are just
ordinary functions that commute, we find

H =
Z

V
dk3 wk

(2p)3 a†(~k)a(~k) . (14.2)

If we now quantize the field, there is no infinitely large term in
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the Hamiltonian. In summary

classical field expansion plug into //

impose commutation relations
✏✏

Hamiltonian

rewrite
✏✏

quantized field expansion

plug into
✏✏

no infinitely large term

impose commutation relations
✏✏

quantized Hamiltonian
OO

✏✏

quantized Hamiltonian
OO

✏✏

infinitely large
ground state energy

finite
ground state energy

Which route is the right one? Or equivalently, which Hamilto-
nian describes energy in the quantum theory correction? There
is simply no way to answer these questions using purely the-
oretical arguments and thus it makes sense to work with the
more convenient one until experiments tell us otherwise.4 4 It is often argued that the experi-

mentally confirmed Casimir effect
demonstrates that the vacuum en-
ergy density is non-zero. The idea is
to calculate the energy between and
outside of two plates. Since they
are not equal, there must be a force
F = � dE

dr that acts on the plates,
which is known as Casimir force.
This explanation is controversial
because the Casimir force can also
be understood as a van der Waals
force. In particular, by saying that
the electric field vanishes on the
plates is analogous to saying that
electronic fluctuations on the planes
become synchronized. This is ex-
actly how we describe the origin
of the van der Waals force which
has nothing to do with "vacuum
fluctuations" or "vacuum pressure".
For discussions see, for example,

Kimball A. Milton. The Casimir
effect: Recent controversies and
progress. J. Phys., A37:R209, 2004.
doi: 10.1088/0305-4470/37/38/R01;
R. L. Jaffe. The Casimir effect
and the quantum vacuum. Phys.
Rev., D72:021301, 2005. doi:
10.1103/PhysRevD.72.021301; and
H. Nikolic. Proof that Casimir force
does not originate from vacuum en-
ergy. Phys. Lett., B761:197–202, 2016.
doi: 10.1016/j.physletb.2016.08.036

But luckily, there is also a lot of interesting physics associated
with the ground state of quantum fields that is a lot less contro-
versial.

One of the most important phenomena associated with the
ground state of quantum fields is spontaneous symmetry break-
ing. Before we discuss spontaneous symmetry breaking, we
should talk about symmetry breaking in more general terms
first.

14.1 Symmetry Breaking

Speaking colloquially, a symmetry gets broken when an object
becomes stiff. For example, let’s consider a gas of molecules
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which is certainly not stiff. A result of the non-stiffness is that a
gas is rotational symmetric and translational symmetric.

The situation changes if we cool the gas. At some point it will
become fluid and eventually it will freeze and become solid.
After each step the molecule system becomes more stiff. As a
result, the system is no longer symmetric under all transforma-
tions.

For example, we can only rotate an ice crystal by very special
angles like, say, 120 degrees or 240 degrees without inducing
notable changes. In contrast, a gas can be rotated arbitrarily and
always looks the same.

Here’s one way of looking at the situation. Imagine that you
want to perform an experiment with a substance that is located
in a box. Before you perform the experiment, you hand the box
to a friend who possibly rotates the substance within the box. If
the substance in question is ice, the orientation of it inside the
box can make a big difference. Therefore, you will immediately
notice whether or not your friend rotated the substance. But if
the substance in question is a gas, there isn’t even a way to talk
about it’s orientation and hence it doesn’t matter. In this sense,
a block of ice has less symmetry than a gas.
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The two rules of thumb to take away are:

B Objects are less symmetric if they are stiff.

B Objects become more stiff when we cool them.

If we combine these two observations, we can conclude that it’s
quite reasonable to expect that it is possible for symmetries to
be broken when we cool a system. Moreover, if we increase the
temperature within a system we typically expect that symme-
tries are restored.

high temperature

✏✏

oo // non-stiff system

symmetry breaking

ww

lower temperature oo // stiff system

symmetry restoration

77

In the following section, we will discuss exactly the same ideas
in the context of fields.

14.2 Explicit Symmetry Breaking

The Lagrangian that describes a free scalar field reads (Eq. 5.2)

L =
1
2
(∂µf∂µf � m2f2) . (14.3)

An interesting observation is that if there is no mass term (m =

0), the Lagrangian is unchanged by field shifts

f ! f0 = f + e , (14.4)
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where e is a constant. We can check this explicitly:

L =
1
2

∂µf0∂µf0

y
Eq. 14.4

=
1
2

∂µ

⇣
f + e

⌘
∂µ
⇣

f + e
⌘

y

∂µe = 0

=
1
2

∂µf∂µf X (14.5)

In contrast, the mass term is changed by a field shift

m2f02 = m2
⇣

f + e
⌘2

= m2
⇣

f2 + 2ef + e2
⌘
6= m2f2 . (14.6)

Thus we can summarize:

B If there is no mass term (m = 0) a field shift is a symmetry.

B If there is a mass term (m 6= 0) a field shift is not a symmetry.

This suggests that the mass parameter m describes the stiffness
of the field. If we recall from Section 5.1.1 that we can under-
stand a scalar field as a coupled network of oscillators, this
interpretation makes perfect sense. In particular, we derived
that the mass parameter m is directly related to the spring con-
stant k associated with each oscillator (m ⌘ k

Mc2 , Eq. 5.26).5 For5 In the formula m ⌘ k
Mc2 , the

constant M describes the mass of
the object attached at the end of the
spring.

m = 0, we therefore have k = 0 which implies that the springs
have zero stiffness. In other words, if m = 0 we are dealing with
a network of coupled mass points. In the continuum limit, this
network behaves like a rope (at least if we restrict ourselves to
one spatial dimension).

In contrast, for m 6= 0, we are dealing with a network of mass
points which are attached to springs. In the continuum limit,
this becomes a rope attached to springs
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With these pictures in mind, we can understand why a scalar
field is less symmetric if m 6= 0.

B If m = 0 we can raise or lower the rope as a whole (Eq. 14.4)

f ! f0 = f + e (14.7)

without changing anything.

B If m 6= 0, this is no longer possible. The springs keep track
of the position of the rope and we must stretch them to move
the rope.

In summary, the mass parameter m encodes the stiffness of a
field. Moreover, if m 6= 0 the field shift symmetry (Eq. 14.4) is
broken.

So far, we’ve tuned the parameter m by hand. But we can also
imagine that the parameter m changes dynamically analogous
to how a gas becomes more stiff if we cool it.

14.3 Spontaneous Symmetry Breaking

Let’s consider once more a self-interacting scalar field which we
describe by the Lagrangian (Eq. 6.26)6 6 We discussed this Lagrangian in

Section 6.2. However, for reasons
that will become clear in a minute
we call the parameter in front of f2

now µ2 instead of m2.

L =
1
2

∂µf∂µf � 1
2

µ2f2 � 1
4!

lf4 . (14.8)
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The corresponding Hamiltonian reads (Eq. 10.2)

H =
Z

d3x
✓

1
2

∂µf∂µf +
1
2

µ2f2 +
1
4!

lf4
◆

. (14.9)

In this formula, the first term encodes the kinetic energy while
the second term encodes the potential energy:

V(f) ⌘ 1
2

µ2f2 +
1
4!

lf4 . (14.10)

If we assume that potential parameters (µ2, l) are positive, the
potential looks like this

The minimum of the potential is at f = 0. While the model is
not invariant under field shifts (Eq. 14.4), it is unchanged by the
transformation

f ! f0 = �f . (14.11)

In other words, this is a symmetry of the model.

The situation changes dramatically if we replace µ2 ! �µ2. The
Lagrangian in this case reads

L =
1
2

∂µf∂µf +
1
2

µ2f2 � 1
4!

lf4 . (14.12)

This implies that we are dealing with the potential

V(f) ⌘ �1
2

µ2f2 +
1
4!

lf4 , (14.13)

which looks like this
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We can see that the minimum of the potential is no longer at
f = 0. To calculate the new minima, we look at the zeroes of the
derivative of the potential7 7 This is the standard method to cal-

culate the maxima and minima of a
function. The derivative describes
the slope of the function and the
defining feature of a maximum or
minimum is that the slope is zero.

0 !
=

dV(f)
df y

Eq. 14.13

=
d

df

⇣
� 1

2
µ2f2 +

1
4!

lf4
⌘

y 4
4!

=
1
3!

= �µ2f +
1
3!

lf3

y

= f
⇣
� µ2 +

1
3!

lf2
⌘

. (14.14)

By looking at the figure above, we can see that while for f = 0
we also find dV(f)

df = 0, this field value now corresponds to
a maximum of the potential. The two minima correspond to
the field values for which the expression between the brackets
vanishes:

0 !
= �µ2 +

1
3!

lf2

y

3! = 3 · 2 · 1 = 6
6
l

µ2 !
= f2

y p

±
r

6µ2

l
!
= f . (14.15)

As shown in the figure above, there are two minima in this
scenario. This result is important because we want to describe
particles and we understand particles as field excitations above
the ground state configuration. The ground state configuration
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is, by definition, the configuration with minimum energy. In
the previous scenario with +µ2 in the potential there was no
subtlety since the potential minimum corresponds to f = 0. As
before, we can interpret the parameter µ as the mass associated
with the field.

However, in the scenario with �µ2 in the potential we must be
more careful. The minimum of the potential now corresponds to

either f =
q

6µ2

l or f = �
q

6µ2

l . This makes it difficult to think
of particles as small excitations.

Moreover, formally the switch µ2 ! �µ2 implies that we are
dealing with a field with an imaginary mass parameter:

µ ! iµ $ µ2 ! �µ2 . (14.16)

These observations suggest that we are looking at the model in
the wrong way. But it’s not too hard to remedy the situation.

For concreteness, let’s assume that the field ends up in the min-

imum at f =
q

6µ2

l . We then define a new field by shifting the
original field

f̃ = f �
r

6µ2

l
. (14.17)

This is a smart idea because the relevant minimum of the po-
tential corresponds to f̃ = 0. Moreover, we can check that the
redefined field f̃ has a real mass parameter. To that end, we
rearrange the terms in Eq. 14.17

f = f̃ +

r
6µ2

l
(14.18)
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and plug this into the Lagrangian (Eq. 14.12)

L =
1
2

∂µf∂µf +
1
2

µ2f2 � 1
4!

lf4

y

Eq. 14.18

=
1
2

∂µ

⇣
f̃ +

r
6µ2

l

⌘
∂µ
⇣

f̃ +

r
6µ2

l

⌘
+

1
2

µ2
⇣

f̃ +

r
6µ2

l

⌘2

� 1
4!

l
⇣

f̃ +

r
6µ2

l

⌘4
y

∂µ

r
6µ2

l
= 0

=
1
2

∂µf̃∂µf̃ +
1
2

µ2

 
f̃2 +

6µ2

l
+ 2f̃

r
6µ2

l

!

� 1
4!

l

 
f̃4 + 4f̃3

r
6µ2

l
+ 6f̃2 6µ2

l
+ 4f̃

r
6µ2

l

3

+
⇣6µ2

l

⌘2
!

y

=
1
2

∂µf̃∂µf̃ +
1
2

µ2f̃2 +
3µ4

l
+ µ2f̃

r
6µ2

l

� 1
4!

lf̃4 � 1
3!

lf̃3

r
6µ2

l
� 36

4!
µ2f̃2 � 1

3!
lf̃

r
6µ2

l

3

� 36
4!

µ4

l y 36
4!

=
3
2

=
1
2

∂µf̃∂µf̃ � µ2f̃2 +
3µ4

2l
� 1

4!
lf̃4 � 1

3!
lf̃3

r
6µ2

l
. (14.19)

We can see that the parameter in front of the f̃2 term appears
here with a minus sign which is the usual case and implies a
real mass. Thus we conclude that if the mass term appears with
a positive sign in the Lagrangian (= negative sign in potential),
we should switch to a description in terms of the shifted field f̃

(Eq. 14.17).8 This has many important implications. But before 8 Reminder: the relationship be-
tween the interaction Hamiltonian
and the interaction Lagrangian is
(Eq. 12.3)

Hinteractions = �Linteractions .

Thus a negative sign in the interac-
tion Lagrangian becomes a positive
sign in the interaction Hamiltoni-
an/potential.

we discuss them, let’s try to paint a bigger picture of what is
going on here.

According to the generally accepted big bang scenario, there
was a time when the universe was extremely hot. As the uni-
verse expanded in the billions of years after the big bang, it
gradually became cooler. This, in turn, suggests that funda-
mental systems like quantum fields became more stiff as the
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universe cooled down and gradually became less symmetric. If
we imagine that the parameter µ2 changes as the universe cools
down, we can describe this idea in mathematical terms by using
what we’ve just discussed.

In the early universe, the scalar field f is properly described by
a Lagrangian with a negative factor in front of the f2 term:

L =
1
2

∂µf∂µf � 1
2

µ2f2 � 1
4!

lf4 . (14.20)

Then as the universe cools down, the factor µ2 changes and
eventually becomes negative.

This transformation is best described through the change of the
potential (Eq. 14.10)

V(f) ⌘ 1
2

µ2f2 +
1
4!

lf4 . (14.21)

The shape of the potential for different signs of the µ2 term is
shown in the following figure:

We can see that as long as there is a positive sign, there is just
one minimum which corresponds to f = 0. For µ2 < 0, however,
the shape of the potential is completely different and there are
two different minima. What happens to the field f if we assume
that it was in its ground state (f = 0) in the early universe?
Since the shape of the potential changes, the field will try to
settle in one of the new minima. The previous minimum at
f = 0 is no longer a minimum if there is a minus in front of µ2
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and the field spontaneously undergoes a phase transition into
one of the new minimum energy configurations. In other words,
we imagine that the field is pushed through the cooling process
(as parametrized by the change of the µ2 term) into one of the
two new minima, analogous to how a marble rolls down if we
put it on top of a sombrero.

Moreover, we imagine that particles are always field excitations
above the ground state.

This explains why it’s a good idea to use a description in terms
of the shifted field f̃ after the phase transition.

An important observation is that as soon as the field leaves the
previous ground state configuration (f = 0), the symmetry
(Eq. 14.11)

f ! f0 = �f (14.22)

is broken by the new ground state configuration. The previous
ground state was unchanged by this transformation because

fmin ⌘ 0 = �0 ⌘ �fmin . (14.23)
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But if the field settles in the minimum energy configuration

fmin =
q

6µ2

l , we have fmin =
q

6µ2

l ! �
q

6µ2

l 6=
q

6µ2

l . Since
the field ends up in one of the two minima, there is necessarily
an element of the theory (the ground state) that does not respect
the symmetry. We say, the symmetry is spontaneously broken.99 Take note that the Lagrangian

written in terms of f̃ (Eq. 14.19) is
not invariant under the transforma-
tion f̃ ! �f̃. However, it is still
invariant under the original sym-
metry of the Lagrangian f ! �f,
which implies for the shifted field
f̃ ! �f �

p
6lµ2. It is conven-

tional to say that the symmetry is
only hidden in the Lagrangian but
broken by the ground state. This is
a defining feature of spontaneous
symmetry breaking. A symmetry
is explicitly broken if there is a
term in the Lagrangian that isn’t
unchanged by the transformation.

Before we move on, let me emphasize the difference between
spontaneous symmetry breaking and explicit symmetry break-
ing. One of the famous examples of spontaneous symmetry
breaking is the bending of a rod. If we put no pressure on the
rod, the system has a perfect rotational symmetry. However, if
we apply a force in the longitudinal direction on the rod, it will
bend and the symmetry is spontaneously broken.

The key point here is that the rod and the force that we apply
are both rotationally symmetric. Nevertheless, the system settles
spontaneously in a new non-rotationally symmetric state.

We can, of course, also bend the rod by applying a force in
the horizontal direction. In this case, the symmetry is broken
explicitly by the non-symmetric force.



the living vacuum 529

In the previous section, we’ve discussed that the stiffness of a
field is encoded by the mass parameter and that the stiffness of
a system is related to its symmetries. Moreover, we’ve seen in
this section that changes in the stiffness parameter µ are directly
related to the process of spontaneous symmetry breaking. In the
following section, we will see that the situation becomes even
more interesting if we consider how the phase transition of the
scalar field f affects other fields it interacts with.

14.4 Spontaneous Mass Generation

Let’s consider once more the interaction between a real scalar
field f and a complex scalar field y. The Yukawa term in the
Lagrangian that describes this interaction reads10 10 We discussed Yukawa interactions

in Section 6.3 and Section 12.1.

LYukawa = �gȳyf . (14.24)

We learned above that if the scalar field f undergoes a phase
transition, we should use the shifted field (Eq. 14.17)

f̃ = f �
r

6µ2

l
. (14.25)
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The Yukawa term reads in terms of the shifted field

LYukawa = �gȳyf y
Eq. 14.18

= �gȳy
⇣

f̃ +

r
6µ2

l

⌘
y

= �gȳyf̃ � g

r
6µ2

l
ȳy . (14.26)

On the one hand, this implies that the interaction between y

and f̃ is described by the same coupling parameter g. On the
other hand, we can see that there is an additional term which
has exactly the structure as a mass term of the field y. There-
fore, we conclude that if the field y is massless before the phase
transition, it will be massive afterwards. Its mass

my ⌘ g

r
6µ2

l
(14.27)

is directly related to its coupling strength g to the real field f.
This implies that the mass my is caused by interactions between
f and y. Therefore, we have here a dynamical model of how
fields become massive. Analogous to how we say that a symme-
try gets spontaneously broken, we say that we’re dealing with a
spontaneously generated mass, my.

It is again instructive to rephrase what we’ve discovered here
in big picture terms. First of all, we imagine that in the early
universe y was massless. Then as the universe cooled down,
the field f undergoes a phase transition. A byproduct of this
phase transition is that the field y becomes massive. Moreover,
we can imagine that there are other fields yi that also interact
with f. To describe each of them appropriately after the phase
transition of f, we need to include a mass term for them in the
Lagrangian. Each mass parameter that is generated through the
phase transition can be written as

myi ⌘ gi

r
6µ2

l
, (14.28)
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where gi encodes the coupling strength between yi and f. This
implies that the stronger a field yi interacts with f, the bigger
its mass will be after the phase transition.

Next, we want to understand better what a spontaneously gen-
erated mass really is. In the previous sections, we’ve treated
the field f entirely as classical and luckily, roughly the same
conclusions apply to quantum field theory. An important hint
is that the expectation values of quantum operators behave like
classical variables.11 In our context here, we write12 11 In quantum mechanics this is

known as the Ehrenfest theorem.

12 The following paragraph
shouldn’t be taken too seriously
and is primarily a heuristic story,
not a rigorous discussion. There are
many subtleties that we are glossing
over here. In particular, the vacuum
expectation value is usually defined
with respect to the interacting vac-
uum state |Wi which, in general, is
different from the free vacuum state
|0i.

h0|f|0i = fc0 . (14.29)

The expression h0|f|0i is commonly called the vacuum expec-
tation value of f. In words, Eq. 14.29 tells us that fc0 describes
the field values that we expect on average if the field is in its
ground state, |0i.13 Moreover, this formula implies that our

13 Recall that hy|Ô|yi denotes the
expectation value of the operator Ô
if we prepare the system in the state
|yi. Here, we prepare the field in its
ground state, |0i and the field f is
the operator that we consider.

(classical) conclusions from the previous sections apply in the
quantum theory to the vacuum expectation value, h0|f|0i, of the
field f.

Before the phase transition we found that the minimum of the
potential is at f = 0 and thus we have

h0|f|0i = 0 . (14.30)

After the phase transition, the minimum is at f = ±
q

6µ2

l and
we can conclude14 14 Formally, this can be derived

by considering the classical limit
(h̄ ! 0) of the path integral

h0|f|0i =

= lim
h̄!0

Z
Dfe

i
h̄
R

d4xL[f]f

= fmin .

We discuss the path integral in the
next chapter.

h0|f|0i = ±
r

6µ2

l
. (14.31)

The existence of two minima implies that there are two different
ground states of the field f:

h0+|f|0+i =
r

6µ2

l

h0�|f|0�i = �
r

6µ2

l
. (14.32)
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Moreover, by looking at Eq. 14.31 we can conclude that, on
average, we expect to find a non-zero field value if the field is
in its ground state. One way to interpret this result is by saying
that after the phase transition, the vacuum is filled with "f̃-
substance". Before the phase transition we found h0|f|0i = 0
and thus we can imagine that vacuum was, on average, empty.
After the phase transition, we are dealing with the shifted field
f̃ and we found h0|f̃|0i 6= 0. This implies that the vacuum is no
longer empty but filled with f̃ excitations.

We can use this to understand why other fields acquire a mass
through the phase transition. Before the phase transition,
h0|f|0i = 0 implies that a given field excitation (particle) can
travel through space without being affected by f.

However, after the phase transition, each excitation of a field
that interacts with f̃ is constantly affected by it since h0|f̃|0i 6=
0.

The constant interaction with the "f̃-substance" causes the par-
ticles to slow down, which we describe effectively through a
non-zero mass.15 Some particles have little problem moving in15 Massless particles always travel

with velocity c, while massive
particles travel with a velocity
v < c. This fact is closely related
to our observations in Section 3.6
that all plane waves in a field
without dispersion travel at the
same velocity c.

the "f̃-substance" since they couple only weakly to f̃. There-
fore, we say that they have a small mass. Other particles interact
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strongly with the "f̃-substance" and therefore, effectively, have
a large mass. Moreover, there are also particles that are not af-
fected by the "f̃-substance" since they don’t interact with f̃ (e.g.,
photons g). These particles remain massless.

In this chapter, I’ve only sketched some of the key ideas behind
symmetry breaking in quantum field theory. In particular, in
addition to explicit and spontaneous symmetry breaking, there
is anomalous symmetry breaking. This term is used to describe
the phenomenon that a symmetry of the Lagrangian (a sym-
metry of the classical model) does not survive the quantization
procedure. Moreover, we’ve only discussed the spontaneous
breaking of the discrete symmetry f ! �f (Eq. 14.11). Far
more important in modern physics is the spontaneous breaking
of continuous symmetries.16 An interesting side-effect of the 16 A continuous symmetry is a

set of transformations that can be
parametrized by a continuous pa-
rameter which leaves the model in
question unchanged. A prototypical
example are rotations which can
be parameterized by a continuous
rotation angle. Another impor-
tant example is the phase shift
symmetry (Eq. 4.53)

y ! y0 = e�ijy

that we discussed in Section 4.3.2.

spontaneous breaking of a continuous symmetry is the emer-
gence of massless particles, known as Goldstone bosons. This
connection is formalized by the so-called Goldstone theorem.
Moreover, there is a famous loophole in Goldstone’s theorem
that is known as the Higgs mechanism. In the Higgs mecha-
nism the spontaneous breaking of global symmetry happens in
the presence of long-ranged interactions. In this case, there are
no Goldstone bosons and the long-ranged interaction becomes
short-ranged. From a particle perspective this happens because
the gauge bosons that are responsible for the interaction become
massive.





15

The Path Integral Formula-
tion

An important feature of all fundamental theories of physics is
that there is more than one formulation of them. For example,
for classical mechanics there is the Newtonian formulation, the
Lagrangian formulation and the Hamiltonian formulation. The
status of alternative formulations of quantum field theory is not
quite as clear as for the other theories. But one well-established
alternative to the canonical formulation we have considered so
far is known as the path integral formulation. The path integral
formulation is in many regards a lot more complicated than the
canonical formulation. In particular, it’s extremely hard to eval-
uate the path integral for a given system explicitly and many
sophisticated ideas are necessary to make progress. Neverthe-
less, it makes sense to understand at least the main idea behind
the path integral formulation because it offers an alternative
perspective that is invaluable in many applications.1 In the fol- 1 We will discuss a concrete example

in the next chapter.lowing section, we discuss how the path integral formulation
works in quantum mechanics. Afterwards we take a short look
at the path integral in quantum field theory.
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15.1 The Path Integral in Quantum Mechanics

We start with a thought experiment that illustrates the general
idea.22 The following thought experiment

is due to Anthony Zee and appears
in his brilliant book titled Quantum
Field Theory in a Nutshell. Moreover,
this section is an excerpt from my
book

Jakob Schwichtenberg. No-
Nonsense Quantum Mechanics. No-
Nonsense Books, Karlsruhe, Ger-
many, 2018c. ISBN 978-1719838719

Our starting point is once more the double slit experiment. In
the standard wave function formulation, we have a probability
amplitude y1(B) that our particle travels from A through slit 1
and then ends up at the location B on our screen. Analogously,
we have an amplitude y2(B) that it travels through slit 2 and we
then detect it at the location B. The total probability is then the
sum of the amplitudes squared33 Take note that this is not the same

as |y1(B)|2 + |y2(B)|2. The impor-
tant difference is the interference
term y1(B)y2(B) which is responsi-
ble for the interference pattern.

PAB = |yAB| = |y1(B) + y2(B)|2 . (15.1)

Now, here’s a clever series of thoughts which starts with the
question: What happens if we drill another slit into our wall?

Well, in this case we simply have

PAB = |yAB| = |y1(B) + y2(B) + y3(B)|2 . (15.2)

The next clever question is: What happens if we add another
wall with holes in it behind the first one?
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Again, we need to include all of the possible ways that the
particle can get from A to B. For example, we now have an
amplitude for the path from slit 1 in the first wall to the slit 10

in the second wall, another amplitude for the path from slit 1 in
the first wall to slit 20 in the second wall and so on.

The crazy thing is what happens when we take this game to the
extreme: We add more and more walls and drill more and more
holes into them. At some point there will be no walls left since
we drilled so many holes into them. However, our discussion
from above suggests how we have to calculate the probability
that the particle starts at A and ends up at B: we have to add
the amplitudes for all possible paths to get from A to B. This is
true even though there are no longer any walls since we drilled
so many holes into them. The final lesson is therefore that in
empty space without any physical walls, we have to consider
the probabilities of the particle taking all possible paths from
one point to another instead of just one path. This is the basic
idea behind the path integral formulation of quantum mechan-
ics.

We will translate exactly this idea into a mathematical form and
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then see how the name path integral comes about.

What we are interested in is the probability that a particle that
starts at a point A ends up after some time T at another point B.
Using the standard quantum framework, we can immediately
write down the corresponding probability amplitude44 We discussed the quantum frame-

work in Chapter 7.

hB|Y(A, T)i . (15.3)

Using the time evolution operator (Eq. (7.27)) we can write this
as55 We use the shorthand notation

|y(q)i ⌘ |qi and, for simplicity
assume that the Hamiltonian is
time-independent, which is the case
for a free particle. Otherwise, we
have to write the integral all the

time: U(t) = e�
i
h̄
R t

0 dt0H(t0). Also, we
neglect the factor h̄ to unclutter the
notation.

hB|Y(A, T)i = hB|U(T)|Ai
= hB|e�iHT |Ai .

The thought experiment from above suggests how we can cal-
culate this: We slice the spatial region between A and B and the
time-interval [0, T] into many many pieces. Then, to calculate
the probability that the particle moves from A to B, we have to
sum over the amplitudes for all possible paths between A and
B.

For example, let’s consider one specific path where the particle
travels from A via some intermediate point q1 to B.
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The corresponding probability amplitude is

hB|e�iH(T�t1)|q1i hq1|e�iHt1 |Ai ,

where t1 is the time the particle needs to travel from A to the
intermediate point q1.

However, according to our thought experiment, it is not enough
to consider one specific path. Instead, we must add the ampli-
tudes for all possible paths. This means that we need to take
into account the probability amplitudes that after t1 seconds the
particle is at any possible locations q

And mathematically this means that

Â
q1

hB|e�iH(T�t1)|q1i hq1|e�iHt1 |Ai . (15.4)

In general, there is not just a discrete set of possible locations
after t1 seconds but instead a continuum. Therefore, we have to
replace the sum with an integral

Eq. (15.4) !
Z

dq1 hB|e�iH(T�t1)|q1i hq1|e�iHt1 |Ai . (15.5)
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So far we’ve only taken the probability amplitudes into account
that the particle is at some specific point in time t1 at all possi-
ble locations. However, to consider all possible paths we have
to do the same thing for all points in time between 0 and T. For
this purpose, we slice the interval [0, T] into N equally sized
pieces: d = T/N. The time evolution operator between two
points in time is then U(d) = e�iHd and we have to sum after
each time evolution step over all possible locations:

Mathematically, we have completely analogous to Eq. (15.5) for
the amplitude yA!B that we want to calculate

yA!B =
Z

dq1 · · · dqN�1 hB| e�iHd |qN�1i hqN�1| e�iHd |qN�2i · · ·

· · · hq1| e�iHd |Ai . (15.6)

Our task is therefore to calculate the products of the form

hqj+1| e�iHd |qji ⌘ Kqj+1,qj .

We expand the exponential function in a series since d is tiny66 Once more we use the series
expansion ex = Â•

n=0
xn
n! .

Kqj+1,qj = hqj+1|
✓

1 � iHd � 1
2

H2d2 + · · ·
◆
|qji

y

= hqj+1| qji � id hqj+1| H |qji+ . . . . (15.7)
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The further evaluation of the propagator is quite complicated
and needs many tricks that look extremely fishy at first glance.
So don’t worry if some steps are not perfectly clear since, as
often happens, you simply need to get used to them.7 If you’re 7 The following quote by John von

Neumann seems quite fitting here:
"Young man, in mathematics you
don’t understand things. You just
get used to them."

not in the mood for a long calculation, it also makes sense to
jump directly to the final result in Eq. (15.13).

With this said, let’s continue. The first term in the sum is a delta
distribution since our eigenstates are orthogonal

hqj+1| qji = d(qj+1 � qj) =
Z dpj

2p
eipj(qj+1�qj) . (15.8)

In the last step we rewrote the delta distribution in terms of its
explicit integral representation8.

8 This can be motivated as follows:
recall that we construct a wave
packet as a linear combination of
plane waves. The delta distribution
is, in a sense, an extreme wave
packet which is infinitely thin but
at the same time infinitely high.
To construct such a wave packet
using plane waves we have to use
every plane wave that exists. This is
basically what we wrote down here.
For more on this, see Appendix E.Next, we evaluate the second term in Eq. (15.7). The crucial idea

is to recall the explicit form of H µ p̂2/2m + V̂(x). To get rid of
the operator p̂, we need to switch to the momentum basis9 9 This is analogous to how we

switched from an abstract |Yi
to the explicit position basis in
Section 7.1.6.

�id hqj+1| H |qji = �id hqj+1|
 

p̂2

2m
+ V(q̂)

!
|qji

y

= �id hqj+1|
 

p̂2

2m
+ V(q̂)

!Z dpj

2p
|pji hpj|

| {z }
=1

qji

y

= �id
Z dpj

2p

 
pj

2

2m
+ V(qj+1)

!
hqj+1| pji hpj| qji

y

hpj| qji = e�ipjqj

= �id
Z dpj

2p

 
pj

2

2m
+ V(qj+1)

!
eipj(qj+1�qj),

(15.9)

where we again used the orthogonality of the basis states and
the explicit integral representation of the delta distribution.

So in summary, our propagator (Eq. 15.7) reads
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Kqj+1,qj = hqj+1| qji � id hqj+1| H |qji+ . . . y
Eq. 15.8

=
Z dpj

2p
eipj(qj+1�qj) � id hqj+1| H |qji+ . . .

y

Eq. 15.9

=
Z dpj

2p
eipj(qj+1�qj)

y

� id
Z dpj

2p

 
pj

2

2m
+ V(qj+1)

!
eipj(qj+1�qj) + . . .

y

=
Z dpj

2p
eipj(qj+1�qj)

 
1 � id

 
pj

2

2m
+ V(qj+1)

!
+ . . .

!

| {z } y

=
Z dpj

2p
eipj(qj+1�qj)exp

 
�id

 
pj

2

2m
+ V(qj+1)

!!

y

=
Z dpj

2p
eipj(qj+1�qj)exp

�
�idH(pj, qj+1)

�
(15.10)

With this at hand, we are finally ready to go back to Eq. (15.6)
and evaluate the amplitude yA!B. In total, we get N times such
a propagator Kqj+1,qj .

yA!B =
Z N�1

’
j=1

dqjKqj+1,qj

y

Eq. 15.10

=
Z N�1

’
j=1

dqj

Z dpj

2p
exp

 
id

N�1

Â
j=0

✓
pj
(qj+1 � qj)

d
� H(pj, q̄j)

◆!
. (15.11)

Now, in the limit N ! • our interval d becomes infinitesimal.
Therefore, in this limit the term (qj+1�qj)

d becomes the velocity
q̇.10 So the term in the exponent reads pq̇ � H. If we then ex-10 This is the definition of the

derivative as the difference quo-
tient.

ecute the integration over dp and recall that the Lagrangian L
is exactly the Legendre transform of the Hamiltonian, we can
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rewrite the amplitude as

yA!B =
⇣ m

2pid

⌘N/2 Z N�1

’
j=1

dqj exp

 
id

N�1

Â
j=0

�
L(qj)

�
!

. (15.12)

It is conventional to then write the amplitude in the following
more compact form11 11 We have included the so-far

neglected h̄ again in this final
formula.

yA!B =
Z

Dq(t)eiS[q(t)]/h̄ (15.13)

where S[q(t)] is the action that we always use in the Lagrangian
formalism and Dq(t) is the so-called path integral measure.

In words, this equation tells us that in quantum mechanics
we can calculate the probability amplitude that a particle goes
from A to B by summing over all possible paths between A
and B and weight each path by the corresponding action. This is in
stark contrast to what we do in classical mechanics. In classical
mechanics, we also calculate the path an object takes between
two fixed points A and B by considering all paths and using the
action. But in classical mechanics, there is only one correct path:
the path with minimal action12.

12 This is the whole point of the
Lagrangian formalism. For each
path between two points, we can
calculate the corresponding action.
Since Nature is lazy, she always
takes the path with minimal action.
The paths with minimal action
correspond to solutions of the
Euler-Lagrange equations, which
are therefore our equations of
motion. (In some cases the action
is not minimal and a more correct
statement would be to talk about
paths with stationary action.)

Now, in quantum mechanics we act as if the particle takes all
possible paths and the classical path with minimal action is
therefore only one path out of many.

Take note that the path integral formulation not only works
for the probabilities of a particle which travels between two
points. Instead, we can use the same method to calculate the
probability that a system in a given configuration evolves into
another configuration at a later point in time. In this case, we
are talking about paths in configuration space.

The explicit evaluation of the path integral (Eq. 15.13) for con-
crete systems is notoriously difficult. For almost any system,
clever approximation schemes are needed to get any informa-
tion out of it. For this reason, we will not talk about any details
here.
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Instead, we will discuss a helpful visual way to understand
the path integral which was popularized mainly by Richard
Feynman. The main idea is that the action is just a number for
any given path. Some paths require a lot of action (i.e., S[q(t)]
is large for these paths between A and B) while others require
only a little action. The action appears as the argument of the
complex exponential function: eiS[q(t)].

In general, since the action S[q(t)] is an ordinary number this is
a complex number with absolute value 1. In the complex plane,
these numbers lie on the unit circle13.13 Once more we can understand

this using Euler’s formula

z = eif

= cos(f) + i sin(f)

= Re(z) + iIm(z)

.

The contribution of each path to the total path integral is there-
fore simply a unit complex number. The total path integral is a
sum over infinitely many unit complex numbers.

Therefore, it is useful to imagine that there is a little stopwatch
attached to the particle as it travels a given path. At the begin-
ning of each path the dial points directly to the right14. In the14 On a real clock it would point to

the 3. complex plane this corresponds to z = 1 = ei0. Now, the clocks
move as the particle travels. At the end of each path, the dial
points to one specific number on the clock.

For example, for one path the situation may look like this:
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While for another path we have

To calculate the path integral, we have to add the little arrows
for each path like we would add vectors. The total value of the
path integral is then the resulting arrow.
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The black arrow here is what we get if we connect the starting
point of the first gray arrow with the final point of the third
gray arrow.

Since the resulting arrows do not necessarily all point in the
same direction, the resulting arrow can be quite small. Here, we
have three paths but to get the final result we have to include
all possible paths, not just three. The final result depends on the
points A and B. For some final point B most of the arrows can-
cel each other. The resulting arrow is tiny. In physical terms this
means that the probability to find the particle at this location is
tiny. For a different final point, lots of arrows point in the same
direction and the resulting arrow is large. This means that it is
quite probable that we find the particle at this location at the
end of our time interval.

15.1.1 The Classical Path

What we have learned above is that the probability of a given
final position depends crucially on the relative positions of the
final arrows. If the arrows point mostly in the same direction,
we get a long final arrow. In such a situation we say that we
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have constructive interference. If the final arrows point wildly
in different directions, they mostly average out and we end up
with a short total arrow. This is known as destructive interfer-
ence.

This observation allows us to understand why the path of least
action is so important in classical mechanics.

In our quantum context, the classical path is just one path out
of many. But we can understand why the classical path is so
important in classical mechanics by exploring the contributions
of neighboring paths. For concreteness, let’s consider two neigh-
boring paths q(t) and q0(t) where the second path is a variation
of the first one q0(t) = q(t) + h(t), and where h(t) denotes a
small variation.

The first path contributes eiS[q(t)]/h̄ while the second path con-
tributes eiS0 [q0(t)]/h̄. We can expand the action of the second path
around the first one

S[q0] = S[q + h] = S[q] +
Z

dt h(t)
dS[q]
dq(t)

+ O(h2).

Now, if q(t) is the path with minimal action qcl(t), the first
order variation vanishes15 15 Reminder: the minimum of the

action functional is characterized by
a vanishing first order variation. We
discussed this in Section 4.1.1.
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S[q0] = S[qcl + h] = S[qcl ] +
Z

dt h(t)
dS[q]
dq(t)

| {z }
=0 for q(t)=qcl(t)

+O(h2)

= S[qcl ] + O(h2) .

The physical implication for our path integral is that paths in
the neighborhood of the path with minimal action qcl(t) yield
arrows that point in approximately the same direction since
S[q0] ⇡ S[qcl ]. In other words, paths around the classical path
interfere constructively.

This is why the classical path is important. In contrast, for an
arbitrary path far away from the classical path, the resulting
arrows of neighboring paths vary wildly, and we get destructive
interference.

This effect becomes even more dominant if we consider systems
in which the action of each path is much larger than Planck’s
constant S[q(t)] � h̄.16 Since the probability amplitude associ-16 This is the case for macroscopic

objects which we describe in classi-
cal mechanics.

ated with each path is

Y = eiS[q(t)]/h̄ , (15.14)

we can see that for S[q(t)] � h̄ even tiny differences in the
action of neighboring paths lead to vastly different probabil-
ity amplitudes.17 And paths with vastly different probability17 In some sense, by dividing the

term in the exponent by a, in com-
parison, tiny number h̄ differences
become especially significant. (Di-
viding by a tiny number is equal to
multiplying by a huge number.)

amplitudes interfere destructively.
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Therefore, for systems for which S[q(t)] � h̄, the only paths
which interfere constructively are those surrounding the clas-
sical paths of least action. The limit S[q(t)] � h̄ is known as
the classical limit because for macroscopic objects, the energies
involved are much higher than for elementary particles and
therefore lead to much larger values for the action functional
S[q(t)].

15.2 The Path Integral in Quantum Field The-
ory

Completely analogously to how we are able to describe quan-
tum mechanical systems using path integrals, we can also de-
scribe quantum fields using path integrals. In quantum field
theory we primarily want to describe how fields evolve in time.
Thus the most basic question we can ask is: given a field in
a specific configuration f0(~x) at t0 what does it look like at a
later point in time t? In the quantum framework, we answer
questions like this by calculating probability amplitudes like

hf(~x), t|f0(~x), t0i , (15.15)

where ft(~x) is a specific final configuration. In the path integral
formulation of quantum field theory, we calculate the amplitude
by evaluating a path integral

hf(~x, t)|f(~x, 0)i =
Z f(t,~x)=ft(~x)

f(0,~x)=f0(~x)
Df(t,~x) e

i
h S[f(t,~x)] .

(15.16)

This formula is completely analogous to the path integral for-
mula that we derived for quantum mechanics in Eq. 15.13.18 In 18 For your convenience: Eq. 15.13

reads

yA!B =
Z

Dq(t)eiS[q(t)]/h̄

words it tells us that to find the probability amplitude that a
specific initial field configuration f0(~x) evolves into a specific
final configuration ft(~x), we have to consider all sequences of
field configurations that connect the two.
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This is analogous to how we have to consider all paths that are
possible between a fixed initial position A and a fixed final po-
sition B for a single particle in quantum mechanics. Moreover,
we still consider paths but not in physical space but in configu-
ration space.19 Each point in configuration space corresponds to19 You can find a discussion of

configuration space and how it
relates to other mathematical arenas
like path space and Hilbert space
in

Jakob Schwichtenberg. No-
Nonsense Classical Mechanics : a
student-friendly introduction. No-
Nonsense Books, Karlsruhe, Ger-
many, 2019b. ISBN 9781096195382

a specific configuration the field can be in.

In Eq. 15.16, we integrate over all possible paths in configura-
tion space that connect the configuration space points f0(~x) and
ft(~x).
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Moreover, as was the case in quantum mechanics, each possible
path contributes a phase factor to the total path integral.

The path integral in quantum field theory is extremely diffi-
cult to evaluate. We can find much quicker answers to most
questions by using the canonical formulation of quantum field
theory that we considered so far in this book. However, one
reason why the path integral is nevertheless useful is that it
allows us to understand phenomena that cannot be described
in the perturbative canonical approach. We will discuss these
"non-perturbative" phenomena in the next chapter.





16

Non-Perturbative Phenom-
ena

So far, we’ve calculated amplitudes by using a perturbative
approach. Schematically, we have

O = Â
n

cnln , (16.1)

where g is a coupling constant. We’ve discovered that some of
the terms that show up in this series are infinitely large if we
evaluate them naively. Moreover, we’ve learned that we can
solve this problem through regularization and renormalization
of the model. Interestingly, the story of infinities in quantum
field theory does not end here. Even if we handle all terms
appropriately such that each of them yields a finite contribution,
the series as a whole diverges

•

Â
n

cnln ⇠ • . (16.2)

In particular, the series only converges up to order n ⇠ 1
l . For

example, if l = 0.2, terms beyond the fifth term (n = 1
0.2 = 5) in

the series give increasingly large contributions.
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In mathematical terms, a series with this kind of behavior is
known as an asymptotic series. The argument for why the per-
turbation series in quantum field theory is an asymptotic series
is subtle and would lead us too far astray here.1 Far more in-1 You can find a discussion at

www.jakobschwichtenberg.com/
divergence-perturbation-series-qft.

teresting for us is the physical reason why we find yet another
infinity in quantum field theory.

As usual, the occurrence of an infinitely large result indicates
that we’re doing something wrong. The problem in this case is
that the perturbative approach is unable to describe all physical
phenomena that can occur in quantum field theory. In par-
ticular, there are interesting field configurations that require
a different approach. While we often get away with ignoring
these configurations, we ultimately have to pay the price for this
negligence in the form of yet another divergence.

One way to see that we are missing something in the perturba-
tive approach is by calculating the Taylor series expansion of the
function e�

1
l around l = 0. The general formula yields

www.jakobschwichtenberg.com/divergence-perturbation-series-qft
www.jakobschwichtenberg.com/divergence-perturbation-series-qft


non-perturbative phenomena 555
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1
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l4 l2
���
l=0 y

e�1/0 = e�• = 0
= 0 + 0 + 0 + . . . (16.3)

Here we used that e�
1
l goes much faster to zero as the contri-

bution from the polynomial in the denominator grows in the
limit l ! 0.2 This implies that the Taylor series method fails for 2 This can also be shown in rigorous

terms, but as usual we assume
that a trustworthy mathematician
confirms that each term in this
Taylor series expansion yields zero.

functions of the form e�
1
l . If we trust the series expansion, we

say that the function contributes nothing for small values of l.
But this is wrong since if we consider the function directly, we
find that it’s clearly non-zero for every l 6= 0.

This observation is important because each sequence of field
configurations in the path integral contributes a factor e

i
h S[f(t,~x)],

where S[f(t,~x)] denotes the action.3 Therefore, if there are 3 Reminder: the path integral
(Eq. 15.16) reads

hf(~x,t )|f(~x, 0)i

=
Z f(t,~x)=ft (~x)

f(0,~x)=f0(~x)
Df(t,~x) e

i
h S[f(t,~x)] .

sequences of field configurations that contribute something
proportional to 1

l to the action, their contribution is completely
lost if we use a perturbative approach.

In general, we call phenomena that contribute a factor to the
action with a vanishing Taylor expansion (e.g. ⇠ � 1

l or ⇠ 1
l2 )

non-perturbative phenomena. The question now is, of course,
are there really non-perturbative phenomena? And if yes, how
can we interpret them?
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16.1 Instantons

In quantum theories, factors of the form ⇠ e�
1
l are usually

associated with tunneling phenomena. The easiest way to un-
derstand this is by considering a concrete example. Therefore,
let’s take another look at a self-interacting scalar field. To sim-
plify the following discussion we now write the Lagrangian
density a bit differently:

L =
1
2

∂µf∂µf � l

4
(v2 � f2)2

y

=
1
2

∂µf∂µf � l

4

⇣
v4 + f4 � 2v2f2

⌘

y

=
1
2

∂µf∂µf � l

4
v4 � l

4
f4 +

l

2
v2f2 . (16.4)

This is almost exactly the f4-Lagrangian that we’ve already
discussed several times. The only differences are that we are
using slightly different symbols for the parameters and that
there is an additional constant term � l

4 v4. However, constant
terms in the Lagrangian do not change the physics described
by it and therefore, the model described by this Lagrangian is
equivalent to the physics described by the f4 Lagrangian we
considered previously (Eq. 6.26):

L =
1
2

∂µf∂µf � 1
2

µ2f2 +
1
4!

l̃f4 .

By comparing this Lagrangian with the one in Eq. 16.4, we see
that µ2 ⌘ �lv2. This implies v2 = � µ2

l . Moreover, we have

�l

4
=

l̃

4! y 4
4!

=
1
3!

l = � l̃

3!
(16.5)

and therefore v2 = 6µ2

l̃
. This explains why we introduce v in

Eq. 16.4 since fmin = ±v = ±
q

6µ2

l̃
are exactly the minima of

the potential that we found in Eq. 14.15.
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As usual, we call the first term in Eq. 16.4 the kinetic term and
the remaining terms the potential

V(f) ⌘ l

4
(v2 � f2)2 . (16.6)

This potential has its minima at f = ±v.

We’ve discussed in Chapter 14 that (classically) the scalar field’s
ground state corresponds to the these two minimum potential
energy configurations. Therefore, let’s assume that the scalar
field is in the ground state f(~x) = �v everywhere at t = �•.

An interesting question is if it might be possible that the field
undergoes a sequence of field configurations such that it is in
the second ground state f(~x) = +v everywhere at t = +•.
In other words, is it possible that the field tunnels through the
potential barrier that separates the two minima? This is in fact
possible and exactly the kind of process that we miss if we use a
perturbative approach.

The standard method for analyzing these kinds of problems is
based on the observation that tunneling processes correspond
to classical paths in configuration space if we use an imaginary
time variable. This surely seems like a wild idea, so let’s discuss
the individual puzzle pieces involved here:
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B The first ingredient in our analysis is that we perform a Wick
rotation t ! �it. While this transformation might look quite
suspicious, the motivation behind it from a physical point of
view is that it flips the potential upside down.

To understand why, consider the classical action

S[x]t2
t1
=
Z t2

t1

"
m
2

✓
dx
dt

◆2
� V(x)

#
dt.

If we perform a Wick rotation, we find

S[x] =
Z "m

2

✓
dx
dt

◆2
� V(x)

#
dt

y

t ! �it

=
Z "m

2

✓
dx

�idt

◆2
� V(x)

#
(�idt)

y

i2 = �1

= i
Z "m

2

✓
dx
dt

◆2
+ V(x)

#
(dt)

y

SE[x] ⌘ �iS[x]

SE[x] =
Z "m

2

✓
dx
dt

◆2
+ V(x)

#
dt , (16.7)

where we call SE the Euclidean action.4 We can see that4 This name is motivated by the
observation that a Wick rotation
implies for the spacetime distance
between two events (Eq. 2.4):

Ds2 = c2Dt2 � Dx2 � Dy2 � Dz2

= c2(iDt)2 � Dx2 � Dy2 � Dz2

= �c2Dt2 � Dx2 � Dy2 � Dz2

Ds̃2 = c2Dt2 + Dx2 + Dy2 + Dz2 .

In words, this means that a Wick
rotation turns Minkowski space into
Euclidean space.

switching to an imaginary time variable has the effect of
flipping the potential.

B As soon as the potential is flipped, there is a classical path in
configuration space that connects the two points which were
the minima of the potential before the Wick rotation:
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This suggests that we can find the sequence of field configu-
rations that connects the two minima by solving the classical
equation of motion that follows from the Wick rotated action.

With these ideas in mind, let’s return to our self-interacting
scalar field. After the Wick rotation, we are dealing with the
Lagrangian density (Eq. 16.4 with V ! �V)

L =
1
2

∂µf∂µf + V(f) , (16.8)

where V(f) is defined in Eq. 16.6.5 As usual, we calculate the 5 For your convenience: Eq. 16.6
reads V(f) ⌘ l

4 (v
2 � f2)2

equation of motion by plugging the Lagrangian density into the
Euler-Lagrange equation (Eq. 4.25):

∂L
∂f

= ∂µ

✓
∂L

∂(∂µf)

◆

y

Eq. 16.8

∂
⇣

1
2 ∂µf∂µf + V(f)

⌘

∂f
= ∂µ

0

B@
∂
⇣

1
2 ∂µf∂µf + V(f)

⌘

∂(∂µf)

1

CA

y

∂V(f)
∂f

= ∂µ∂µf (16.9)

For simplicity, we assume that f has the same constant value
everywhere. This implies that ∂if = 0 and therefore ∂µ∂µf =
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∂2
0f. The equation of motion for this special case therefore reads

∂V(f)
∂f

= ∂2
0f . (16.10)

Instead of solving the second order equation in Eq. 16.10, it is
sufficient to solve the first order equation

2V(f) = (∂0f)2 . (16.11)

This follows because each solution of Eq. 16.11 is automatically
a solution of Eq. 16.10 since

2V(f) = (∂0f)2

y d
dt

2
dV(f)

dt
=

d
dt

(∂0f)2

y

chain rule

2
∂V(f)

∂f
∂0f = 2∂2

0f∂0f

y

��2∂0f
∂V(f)

∂f
= ∂2

0f . (16.12)

If we plug the explicit form of the potential into Eq. 16.11, we
find

2V(f) = (∂0f)2

y

Eq. 16.6

2
⇣l

4
(v2 � f2)2

⌘
= (∂0f)2

y p
r

l

2
(v2 � f2) = ∂0f . (16.13)
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To solve this equation, we separate the variables
r

l

2
(v2 � f2) =

df

dt y

r
l

2
dt =

df

(v2 � f2) y Z

r
l

2

Z
dt =

Z df

(v2 � f2) y

r
l

2
t =

tanh�1( f
v )

v y

tanh
⇣

v
r

l

2
t
⌘
=

f

v y

v tanh
⇣

v
r

l

2
t
⌘
= f . (16.14)

This solution describes a sequence of field configurations that
starts at t = �• with f(�•) = �v and ends at t = • with
f(�•) = v:

f(�•) = v tanh
⇣

v
r

l

2
(�•)

⌘

y

tanh(�•) = �1
= �v X

f(•) = v tanh
⇣

v
r

l

2
(•)

⌘

y

tanh(•) = 1
= v X (16.15)

Thus we can conclude that tunneling processes from one ground
state to the other can happen. We call the sequence of field
configurations described by Eq. 16.14 an instanton solution or
simply an instanton.

This name is motivated by the observation that the energy as-
sociated with the solution is localized in time but not in space.
During a short period in time, the energy becomes non-zero
as the field undergoes a transition from �v to v. At t = �•
and t = • the energy of the field is zero since it is in its
ground state. Moreover, since the transition happens every-
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where equally, we are dealing with a lump of energy that is
localized in time but not in space.66 Take note that in an instanton pro-

cess the field tunnels through the
potential barrier that separates dif-
ferent ground states. Nevertheless,
the field energy becomes non-zero
during the process which can be
calculated by considering the field
energy explicitly. If a field carries
sufficient energy it can also move
across the potential barrier instead
of right through it. Such ground
state to ground state transitions are
known as sphaleron processes.

For the solution given in Eq. 16.14 the instanton is localized
around t = 0. However, this is not necessarily always the case.
This follows because there can be a non-zero integration con-
stant in the third line of Eq. 16.14. This constant determines the
location of the instanton in time, i.e. when exactly the transition
from �v to v happens.

As a final step, let’s check that this is indeed a non-perturbative
phenomenon. To that end, we calculate the contribution of the
sequence of field configurations described by Eq. 16.14 to the
total action. Since we assume that f has the same constant value
everywhere, the spatial part of the action integral will simply
yield the total spatial volume of our system, W.7 The only non-7 We use here the symbol W for the

spatial volume to avoid confusion
with the potential V(f).
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trivial part is therefore the dt integration

SE[f] =
Z

d4x L y

Eq. 16.8

=
Z

d4x
⇣1

2
∂µf∂µf + V(f)

⌘

y
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2
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We can see here that the contribution to the action is in fact
proportional to 1

l . This, in turn, implies that the correspond-
ing contribution to the path integral is ⇠ e

1
l and is therefore

invisible if we use a perturbative approach. In other words,
the transition from �v to v is indeed a non-perturbative phe-
nomenon.

In summary, we’ve learned in this chapter that there are phe-
nomena that we cannot describe using the methods discussed
in Part II. These phenomena are non-perturbative since their
contribution is invisible in a perturbative approach. This follows
because the Taylor series method fails for functions of the form

⇠ e
1
g . Moreover, we’ve discussed an explicit example of a non-

perturbative phenomenon: the tunnelling of a scalar field from
one ground state configuration to another. While the contribu-
tions of such phenomena to observables are often quite small,
they are still an essential part of quantum field theory.88 A famous example that

demonstrates why non-perturbative
phenomena are important
is the strong CP problem.
You can find a discussion at
http://jakobschwichtenberg.com/
demystifying-the-qcd-vacuum-part-1/

http://jakobschwichtenberg.com/demystifying-the-qcd-vacuum-part-1/
http://jakobschwichtenberg.com/demystifying-the-qcd-vacuum-part-1/
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Effective Field Models and
the Origin of Simplicity

The Lagrangians that we use to describe elementary fields are
astonishingly simple. For example, the Lagrangian for a single
scalar field reads (Eq. 5.2)

L =
1
2
(∂µf∂µf � m2f2) . (17.1)

In principle, there are infinitely many additional terms that we
could add to it:

L̃ =
1
2
(∂µf∂µf � m2f2) + af3 + bf4 + cf5 + df6 + . . . . (17.2)

But for some reason, the simplest non-trivial terms for each type
of field are already sufficient.

Nowadays, most theoretical physicists are convinced that at
higher energy scales (= smaller length scales) the correct La-
grangian contains lots of additional terms.1 However, these 1 When two particles collide at

higher energies, they sometimes
create heavier particles. As men-
tioned before, in this sense, colliders
are essentially large microscopes
which allow us to look deeper. The
higher the energy of the colliding
particles, the deeper we can look.

higher-order terms become less and less important as we zoom
out. Therefore, no matter how complicated and ugly the La-
grangian is at high energy scales, at the low energy scales that
we can probe using present-day technology, we are left with
simple Lagrangians.2

2 The following figure should not be
understood as a subtle promotion
of string theory.
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So the reason that simple and beautiful Lagrangians work so
well is not that Nature prefers simplicity for some magical
reason, but instead, that if we look at something from a distance
it usually appears simpler.

To make this a bit more concrete, we consider a complex scalar
field y that interacts with a real scalar field f which has an
incredibly large mass parameter mf compared to my. As in
Section 12.1, the Lagrangian density reads3

3 For simplicity, we again use the
notation y† = ȳ.

L = ∂µȳ∂µy � m2
yȳy � gȳyf +

1
2
(∂µf)2 �

m2
f

2
f2 . (17.3)

The key idea is that as long as we consider processes at energy
scales far below mf, we can safely ignore the effects of the real
scalar field because there is simply not enough energy in the
system to disturb it.4 To use this idea mathematically, we calcu-

4 Recall that roughly, the mass
parameter associated with a field
describes a minimum energy
threshold that is necessary to excite
a given field.

late the equation of motion for the heavy field f.

As usual, we do this by plugging the Lagrangian density into
the Euler-Lagrange equation (Eq. 4.25):5

5 The following discussion is very
sketchy. Everything stated here can
be shown in much more rigorous
terms and the study of effective
field models is a beautiful and
important subfield in itself. Some
great resources are listed below.
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0 =
∂L
∂f

� ∂µ

✓
∂L

∂(∂µf)

◆

y

Eq. 17.3
= �m2

ff � gȳy � ∂µ∂µf y

�gȳy = (m2
f + ∂µ∂µ)f . (17.4)

This equation is formally solved by

f = �g
1

m2
f + ∂µ∂µ

ȳy (17.5)

as we can check

�gȳy = (m2
f + ∂µ∂µ)f y

Eq. 17.5

= (m2
f + ∂µ∂µ)

 
�g

1
m2

f + ∂µ∂µ
ȳy

!
y

⇠⇠⇠⇠⇠(m2
f + ∂µ∂µ)

= �gȳy X (17.6)

For small energies, the kinetic term (∂µ∂µ) is much smaller
than the mass term (m2

f) of this expression and we can use the
formula

1
a + b

=
1

a(1 + b
a )

=
1
a

1
1 + b

a
⇡ 1

a

⇣
1 � b

a
+

✓
b
a

◆2
+ . . .

⌘
, (17.7)

which is valid for a � b. For our formal solution this implies

f = �g
1

m2
f + ∂µ∂µ

ȳy

y

⇡ �g

 
1

m2
f

� 1
m2

f

∂µ∂µ

m2
f

+ . . .

!
ȳy

y

= �g

 
1

m2
f

�
∂µ∂µ

m4
f

+ . . .

!
ȳy . (17.8)

We can use this formula to remove the field f from the La-
grangian (Eq. 17.3):

Leff = ∂µȳ∂µy � m2
yȳy � gȳy

 
�g

 
1

m2
f

�
∂µ∂µ

m4
f

+ . . .

!
ȳy

!
+ . . .

(17.9)
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where the dots denote the mass term and kinetic term of the f

field that we no longer care about. What we are left with here,
is an effective Lagrangian density that only depends on the
light field y. The only remaining trace of the heavy field f are
additional terms which, however, are suppressed by inverse
powers of mf. In particular, in the limit mf ! •, we end up
with the much simpler Lagrangian

Leff = ∂µȳ∂µy � m2
yȳy . (17.10)

We say that the Lagrangian in Eq. 17.10 describes an effective
model that remains valid as long as we consider processes at
scales far below mf. If we consider processes at scales close to
mf we must include at least some of the additional terms given
in Eq. 17.9. In other words, mf is a physical cutoff scale for
the effective model above which it must be replaced by a more
complete description that involves the additional field f.

17.1 Dimensional Analysis

In the discussion above we assumed that new physical effects
that occur above the cutoff scale can be described by additional
heavy particles. Moreover, we assumed that it’s again suffi-
cient to only include the simplest non-trivial terms to describe
these heavy particles. But it’s also plausible that the physics
above some cutoff scale is much weirder. Maybe our framework
is simply no longer feasible above the cutoff scale. For exam-
ple, we can imagine that infinitely many (possibly much more
complicated) higher-order terms in the Lagrangian would be
necessary to incorporate all the effects.

An interesting observation is that even if this is the case, we can
understand why the simple Lagrangians that we use at low en-
ergies work so well. This follows from dimensional arguments.
In the following, we discuss how this comes about.

The action is defined as the spacetime integral over the La-
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grangian density

S =
Z

d4x L . (17.11)

What can we say about the units of the action? In the path in-
tegral formulation, the action appears as the argument of the
exponential function ⇠ eiS. The argument of the exponential
function has to be dimensionless. This follows from the defini-
tion of the exponential function in terms of a series:

eiS = 1 + iS +
(iS)2

2
+ . . . . (17.12)

The first term in this series has no dimension. Therefore all
other terms must be dimensionless too since otherwise we
would be adding apples to oranges. Therefore, we can conclude
that (in natural units) the action is dimensionless.6

6 In non-natural units, we have
factors of the form ⇠ eiS/h̄. This
implies that S has the same units as
the Planck constant h̄.

By looking at Eq. 17.11, we can then conclude that the La-
grangian density has units L�4, where L is the unit we measure
lengths in (e.g. meters). In natural units, lengths are measured
in inverse powers of energy:7

7 The notation [quantity] is used to
denote the units of the quantity.

In natural units we have by
definition c = h̄ = 1. To derive the
units of a quantity in natural units,
we start by observing that

[c] =
[length]
[time]

⌘ [L]
[T]

implies

[L] = [T].

Moreover, the (reduced) Planck
constant h̄ has units

[h̄] =
[M][L]2

[T]

which, using [L] = [T] , yields

[h̄] = [M][L] .

Since by definition h̄ = 1 this
implies

[L] =
1

[M]
.

The final step is to use the energy
momentum relation E2 = ~p2 + m2c4

(Eq. 2.43) to deduce

[E] = [M] = [~p] .

Therefore, lengths are measured in
inverse powers of energy

[L] =
1
[E]

.

[xµ] = E�1 . (17.13)

Since dx means "a little bit of x", it also has units E�1 and d4x
has units E�4. Therefore,

[L] = E4 (17.14)

such that [S] = 1:

[S] =
Z
[d4x] [L] = E�4E4 = 1 X (17.15)

This allows us to deduce the dimensions of a field. For example,
let’s have a look at the Lagrangian for a free scalar field (Eq. 5.2)

L =
1
2
(∂µf∂µf � m2f2) . (17.16)

The derivative operator ∂µ = ∂
∂xµ has the same units as 1

xµ since
∂xµ also means "a little bit of xµ" :

[∂µ] =
∂

[∂xµ]
17.13
=

1
E�1 = E. (17.17)
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This allows us to deduce the dimension of f:

[L] = ([∂µ][f][∂
µ][f] + . . . y

Eq. 17.14, Eq. 17.17
E4 = E[f][f]E y
E2 = [f][f] y
E = [f] . (17.18)

This also makes sense if we look at the second term in the La-
grangian, m2f2, and use that the dimension of a mass parameter
m in natural units is E.8 The result in Eq. 17.18 is extremely use-8 As mentioned above, this follows

from the relativistic energy mo-
mentum relation E2 = ~p2 + m2c4

(Eq. 2.43) which, in natural units
(c = h̄ = 1), yields

[E] = [M] = [~p] .

ful. For example, let’s imagine that we want to add higher order
terms to the Lagrangian density:9

9 Take note that by using the same
arguments we can deduce that the
constant l in front of a f4 term is
dimensionless and a constant in
front of a f3 term has units E.

L =
1
2
(∂µf∂µf � m2f2) + c1f5 + c2f6 + c3f7 + . . . (17.19)

Since all terms must have the same dimensions, we can immedi-
ately conclude that the constants c1, c2, c2, must be measured in
inverse powers of E:

[L] = . . . + [c1][f]
5 + [c2][f]

6 + [c3][f]
7 + . . . y Eq. 17.14,

Eq. 17.18
E4 = . . . + [c1]E5 + [c2]E6 + [c3]E7 + . . . . (17.20)

We can conclude:

[c1] = E�1

[c2] = E�2

[c3] = E�3 . (17.21)

That’s how far we can get using dimensional analysis alone. But
if we additionally use some physical understanding, we can go
further. What we learn in Eq. 17.21 is that there must be at least
one additional constant with dimension E that is responsible
for the dimensions of the coefficients. This constant must be
somehow related to these higher order terms and it is thus very
tempting to identify it with a cutoff scale L. The cutoff scale L
encodes the boundary above which new physical phenomena
can no longer be ignored and from which these higher order
terms originate.10 We therefore write

10 We learned above that if there is
a cuttoff scale (which in this case
is denoted by mf), we find that
effects from "higher scale physics"
are suppressed by inverse powers of

mf

at lower scales (Eq. 17.9).
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c1 =
l1
L

c2 =
l2
L2

c3 =
l3
L3 , (17.22)

where l1, l2, l3 are dimensionless. The Lagrangian then reads

L =
1
2
(∂µf∂µf � m2f2) + c1f5 + c2f6 + c3f7 + . . .

y
Eq. 17.22

=
1
2
(∂µf∂µf � m2f2) +

l1
L

f5 +
l2
L2 f6 +

l3
L3 f7 + . . . (17.23)

We can see here that higher order terms are suppressed by
inverse powers of the cutoff scale L. If we assume that L is
some large number, we can understand why at low energies
only the simplest terms in the Lagrangian play a role.

In summary, using dimensional analysis we discovered that
higher order terms are necessarily related to at least one new
energy scale. The discussion in the previous section motivated
us to interpret the new energy scale as a cutoff scale. Thus,
higher order terms are strongly suppressed and we can under-
stand why simple Lagrangians work so well.

A downside of what we’ve just discovered is that the implica-
tions of high-scale physics are extremely hidden at lower energy
scales. The effects of all higher order terms that could hint to-
wards particular new phenomena are strongly suppressed by
inverse powers of the cutoff scale. Thus, on the one hand it’s
certainly great that high energy phenomena decouple from phe-
nomena at lower energies because this allows us to describe
Nature in relatively simple terms. But on the other hand, it im-
plies that we must come up with much more powerful methods
to accelerate particles before we can hope to see first glimpses of
phenomena that happen beyond the cutoff scale.

For example, a popular contender for a physical cutoff scale
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is the Planck scale mP ⇠ 1018 GeV. In contrast, the most pow-
erful collider that we presently have, the LHC, is only able to
probe processes up to ⇠ 104 GeV. Moreover, using present-day
technology, a collider that could probe particle collisions at
⇠ 1018 GeV would need to span the entire solar system. To end
this discussion on a positive note, take note that the authors of
[Chen and Noble, 1997] argue that this is "not an inconceivable
task for an advanced technological society."

17.2 The Origin of "Fundamental" Lagrangians

In Chapter 5, we assumed that someone hands us the Klein-
Gordon Lagrangian, the Dirac Lagrangian and the Proca La-
grangian and then talked about the corresponding equations of
motion and their solutions. By using what we’ve learned in the
previous section, we can understand a bit better how we end up
with these Lagrangians.

In general, writing down a Lagrangian description of a physical
model is a two step process:

B First of all, we need to clarify which mathematical objects we
should use.

B Afterwards, we need to answer the question: Which terms
involving these objects do we write into the Lagrangian?

The most powerful tools that we can use to answer these ques-
tions are symmetries. For example, we know that our models
should respect the laws of special relativity. Jean-Marc Levy-
Leblond once summarized this nicely as follows11:11 Jean-Marc Levy-Leblond. One

more derivation of the Lorentz
transformation. American Journal of
Physics, 44(3):271–277, 1976. doi:
10.1119/1.10490

"We believe that special relativity at the present time stands as a
universal theory describing the structure of a common space-time
arena in which all fundamental processes take place. All the laws of
physics are constrained by special relativity acting as a sort of ’super
law’."
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We’ve discussed in Section 2.8 that this implies that our funda-
mental models should be unchanged by Poincaré transforma-
tions (rotations, boosts and translations). Thus the first step is
to identify objects with well-defined transformation behavior
under Poincaré transformations.

This is possible through a branch of mathematics known as
group theory. A cornerstone of group theory is representation
theory which allows us to deduce which kinds of objects a given
set of symmetries can act on. Applying representation theory to
the Poincaré group allows us to derive that the simplest objects
Poincaré transformations can act on are: scalars, spinors and
four-vectors.12 This is the answer to the first problem outlined 12 You can learn more about how

this works in detail in my book

Jakob Schwichtenberg. Physics
from Symmetry. Springer, Cham,
Switzerland, 2018b. ISBN 978-
3319666303

above.

The second step is that we need to determine which terms in-
volving scalars, spinors and vectors we can write into a La-
grangian. Again, the most important restriction is that our
model should respect the laws of special relativity. For the La-
grangian this implies that we are only allowed to write down
terms that are invariant under Poincaré transformations. If the
Lagrangian is unchanged by a given set of transformations, the
model described by it respects the corresponding symmetries.

However, there are still infinitely many terms that fulfill this
requirement. This is where what we learned in the previous sec-
tion becomes important. Usually, we only include the simplest
possible, nontrivial terms in the Lagrangian. In summary:

Which mathematical objects?

representation theory of the Poincarè group
✏✏

Which terms in the Lagrangian?

terms must be invariant under Poincarè transformations
and only the simplest terms contribute at low energies

✏✏

Scalars, Spinors, Vectors, . . .

,,

LKlein-Gordon,LDirac,LProca

To understand a bit better how this works, let’s consider a single
real scalar field f. A scalar field is left unchanged by all trans-
formations and thus we can write down all kinds of terms into
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the Lagrangian:

L(f, ḟ, t) = af + bf2 + cf3 + . . . (17.24)

What about derivatives? A term like ∂µf is certainly not invari-
ant.1313 Whenever an object remains

unchanged by a transformation, we
say it’s invariant. The derivative
operator ∂

∂xµ
, just as xµ itself, is

changed by rotations.

For example, under a rotation it becomes (Eq. 3.22)

∂µf ! R(vx)
µn ∂nf . (17.25)

A term that remains unchanged, however, is the scalar product
of such a term with itself ∂µf∂µf.14 Therefore, we can also14 We checked this explicitly in

Eq. 2.57. In contrast, a term like
∂µf∂nf would not be invariant.

include additional terms that include derivatives of the scalar
field into the Lagrangian:

L(f, ḟ, t) = af + bf2 + cf3 + d∂µf∂µf + e(∂µf∂µf)2 + . . .
(17.26)

This may not seem particularly helpful. While we were able
to exclude a few terms from the Lagrangian, there are still in-
finitely many that are allowed. So symmetries are not enough
and we need a second guiding principle. However, as we’ve
discussed in the previous section, higher order terms are sup-
pressed by inverse powers of an energy scale and can therefore
usually be neglected if we only want to describe Nature at low
energy scales.

The final question we therefore need to answer is: which terms
are the simplest non-trivial terms? The simplest term af has no
influence on the dynamics since it only yields a constant if we
plug it into the Euler-Lagrange equation:

∂L
∂f

� ∂µ

✓
∂L

∂(∂µf)

◆

y

L = af

=
∂(af)

∂f
� ∂µ

✓
∂(af)

∂(∂µf)

◆

y ∂(f)
∂f

= 1,
∂f

∂(∂µf)
= 0

= a (17.27)
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A constant has no real effect in the equations of motions and
therefore, the term af can be neglected from the Lagrangian.
The terms quadratic in f and its derivative ∂µf, however, have
something more exciting to offer. So let’s assume that our La-
grangian density reads

L = bf2 + d∂µf∂µf , (17.28)

and that we can ignore all higher order terms. If we plug this
Lagrangian into the Euler-Lagrange equation, we find

0 =
∂L
∂f

� ∂µ

✓
∂L

∂(∂µf)

◆
y

Eq. 17.28

=
∂(bf2 + d∂µf∂µf)

∂f
� ∂µ

 
∂(bf2 + d∂µf∂µf)

∂(∂µf)

!

y

= 2bf � d∂µf∂µf . (17.29)

A final important observation is that we are always free to mul-
tiply the Lagrangian by a constant L ! const. ⇥ L since such
a constant cancels in the equation of motion.15 This implies 15 This can be seen because we have

a zero on the right-hand side of the
Euler-Lagrange equation. Therefore,
if we plug const. ⇥ L into it, we can
cancel const. immediately.

that only one of the two constants in the Lagrangian is really
necessary. If we then give the remaining constant its conven-
tional name m2 and introduce a conventional factor of 1/2, the
Lagrangian reads

L =
1
2
(∂µf∂µf � m2f2) . (17.30)

The corresponding equation of motion becomes

0 =
∂L
∂f

� ∂µ

✓
∂L

∂(∂µf)

◆

y

Eq. 17.30

0 =
∂

∂f

✓
1
2
(∂µf∂µf � m2f2)

◆
� ∂µ

✓
∂

∂(∂µF)

✓
1
2
(∂µf∂µf � m2f2)

◆◆

y

0 = (∂µ∂µ + m2)f . (17.31)

This is the Klein-Gordon equation in its conventional form.
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Similarly, we can also derive the Dirac equation. All we have
to do is to identify the simplest possible non-trivial terms that
respect our fundamental symmetries.16 The Proca Lagrangian,16 As mentioned before, this story is

discussed in detail in

Jakob Schwichtenberg. Physics
from Symmetry. Springer, Cham,
Switzerland, 2018b. ISBN 978-
3319666303

however, is a bit more subtle since we are not interested in
ordinary vector fields but in gauge fields.17

17 One hint of why it contains the
term Fµn Fµn is our discovery in Sec-
tion 3.9 that it’s the field strength
tensor Fµn which encodes imper-
fections in the "exchange" rates
between different local coordinate
systems. You can find a more ex-
tensive discussion of gauge models
in

Jakob Schwichtenberg. Physics
from Finance. No-Nonsense Books,
Karlsruhe, Germany, 2019c. ISBN
978-1795882415
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Outlook

An often recounted piece of physics history is that Lord Kelvin
declared around 1900 that1 1 There is actually no evidence that

Lord Kelvin ever said or wrote
this. Instead, it is now believed
that the quote is misattributed to
Lord Kelvin and is a paraphrase of
Nobel laureate Albert A. Michelson
who stated in 1884: "..."it seems
probable that most of the grand
underlying principles have been
firmly established ... An eminent
physicist remarked that the future
truths of physical science are to
be looked for in the sixth place of
decimals." Either way, these quotes
are often used to summarize the
general attitude at that time.

"There is nothing new to be discovered in physics now. All that
remains is more and more precise measurement."

What followed shortly afterwards were the revolutionary dis-
coveries of special relativity, quantum mechanics, and general
relativity.

Even though this story is well-known, the general attitude of
most physicist nowadays is not too different. The only differ-
ence is that Newton’s theory of mechanics has been replaced
by quantum field theory as the supposedly ultimate and final
theory of nature. The details that still need to be worked out are
a few smaller puzzles like the strong CP puzzle or the dark mat-
ter puzzle. The standard strategy to tackle these puzzles is to
add one or several new fields to the standard model of particle
physics. However, it shouldn’t be surprising that with suffi-
cient ingenuity it’s possible to tackle almost any puzzle within a
given framework.
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A useful analogy is the epicycle model of the solar system. The
idea is that if we add enough epicycles to the geocentric model
of the solar system, we can explain many of the planetary mo-
tion puzzles that we can observe. But this doesn’t mean that
planets move in epicycles. Ultimately, the epicycle model has
been replaced by a much simpler model with the sun at the
center and no epicycles are necessary. Of course, I can’t predict
the future but maybe quantum fields will turn out to be the
epicycles of our time.

Quantum field theory is a beautiful and extremely flexible
framework. However, it also has severe limitations. The most
famous example is that no generally accepted theory of quan-
tum gravity exists. Moreover, there are still problems in putting
various aspects of quantum field theory on a mathematically
precise basis.22 One example is a rigorous defini-

tion of the path integral. Another
example is Haag’s theorem which
roughly states that the interaction
picture of quantum field theory
cannot be consistently defined. For
a readable discussion of Haag’s
theorem see

John Earman and Doreen Fraser.
Haag’s theorem and its implications
for the foundations of quantum
field theory, December 2005. URL
http://philsci-archive.pitt.
edu/2673/

Moreover, one of the most important lessons in physics is that
different frameworks are necessary to describe nature at differ-
ent scales:

B At galactic scales (lmilky way ⇠ 1020 m), we need general
relativity.

B At everyday scales (⇠ 1 m) , classical mechanics works per-
fectly.

B At atomic scales (la ⇡ 10�10 m), we need quantum mechan-
ics.

B At present-day collider scales (lLHC ⇠ 10�19 m), quantum
field theory is a suitable framework.

Thus it seems reasonable to assume that to describe nature at
even smaller scales, for example, around the Planck scale (lP ⇠
10�35 m), we need to invent at least one additional framework.
In particular, take note that between everyday scales and atomic
length scales there are "just" 10 orders of magnitude and we
need completely different frameworks to describe what happens
at these scales (classical mechanics and quantum mechanics).
In contrast, between the Planck scale and the scales that we

http://philsci-archive.pitt.edu/2673/
http://philsci-archive.pitt.edu/2673/
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can presently probe in colliders there are roughly 16 orders of
magnitude. Thus I would say it’s quite optimistic to assume that
quantum field theory remains the best suited framework across
these 16 orders of magnitude.

In other words, in my humble opinion, it’s quite unlikely that
we have already discovered the ultimate framework to describe
nature at fundamental scales. But please don’t ask me which
framework will eventually supersede quantum field theory.
Unfortunately, details get lost when we zoom out and thus the
inner workings of nature at the Planck scale are hidden from us.
This is demonstrated by the fact that there are infinitely many
models that yield the standard model of particle physics in the
low energy limit.3 Thus it’s impossible to deduce from low 3 This follows from the observations

discussed in Chapter 17.energy data alone what is really going on at smaller scales.

To quote Howard Georgi:4 4 http://www.people.fas.harvard.
edu/~hgeorgi/weak.pdf

"Local field theory is a useful idealization. The only way we
know to describe the quantum mechanical interactions of a finite
number of types of particles in ordinary space-time is in a local
quantum field theory characterized by a local Lagrangian density,
with the interactions described by products of fields at the same
space-time point. We strongly suspect that this picture is only
approximate. It would be astonishing if our naive picture of
the space-time continuum, or quantum mechanics, or anything
else that the human mind can imagine, continued to make sense
down to arbitrarily small distances."

Of course, we can try to guess which framework will supersede
quantum field theory. While there are several contenders (string
theory, Xiao-Gang Wen’s qubit theory, "pointless" frameworks
like twistor theory, the noncommutative geometry framework,
. . .), there is currently no experimental evidence that one of
them is the correct one. In fact, I don’t think that the odds are
very high that someone will guess the correct next framework
without new experimental data. But it’s certainly not impossi-
ble as demonstrated by Einstein and his discovery of general
relativity.

http://www.people.fas.harvard.edu/~hgeorgi/weak.pdf
http://www.people.fas.harvard.edu/~hgeorgi/weak.pdf
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In summary, quantum field theory is the best provisional de-
scription of nature at scales that we can currently probe. At
some point in the future, new experimental data will probably
force us to adopt a new framework. But until this happens, it
certainly makes sense to focus on quantum field theory. There
are still many aspects of nature that we can explore using quan-
tum field theory and there remains much to be learned about
the framework itself. At the same time, it’s important to avoid
"to be trapped by the formalism and to become a ’slave’ to the formal-
ism" as Xiao-Gang Wen puts it5. To make truly revolutionary5 Xiao-Gang Wen. Quantum field

theory of many-body systems : from the
origin of sound to an origin of light and
electrons. Oxford University Press,
Oxford New York, 2004. ISBN
9780199227259

advances, we must allow for the possibility that quantum field
theory is not the ultimately theory of nature.

I personally think there is still much to come. Future devel-
opments will be extremely interesting and I hope you will
continue to follow the story and maybe contribute something
yourself.



19

Further Reading Recommen-
dations

There are many amazing books on quantum field theory. Be-
sides the usual textbooks that discuss the general ideas, there
are lots of books that focus on special topics. But let’s start with
a few comments on books you can read to get alternative per-
spectives on the topics discussed in this book.

Textbooks written in the same spirit as this book are

B Student Friendly Quantum Field Theory by Klauber,

B Quantum Field Theory for the Gifted Amateur by Lancaster
and Blundell.

These books should be your first choices if you want to get a
second opinion on the topics discussed in this book.

More advanced but still readable textbooks are

B Quantum Field Theory and the Standard Model by Schwartz,
which is a new and extremely authoritative reference that
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is often my first choice if I want get a second opinion on a
topic.

B Quantum Field Theory by Srednicki is very well-organized
and useful as a reference.

Additionally, there are various lecture notes that are freely avail-
able online and can also be quite helpful. Two noteworthy ex-
amples are

B David Tong’s lecture notes1, and1 http://www.damtp.cam.ac.uk/
user/tong/qft.html

B Sidney Coleman’s lecture notes2.2 https://arxiv.org/abs/1110.
5013

Further textbooks that are often mentioned but are far less
student-friendly are An Introduction To Quantum Field The-
ory by Peskin and Schröder and The Quantum Theory of Fields
by Steven Weinberg. The book by Peskin and Schröder primar-
ily focuses on how to carry out calculations, while Weinberg
focuses on the "Whys" behind quantum field theory.

Great places to start learning about the path integral formula-
tion of quantum field theory are

B Quantum Field Theory in a Nutshell by Zee. However, take
note that it’s quite difficult to understand most of Zee’s argu-
ments unless you have already a solid grasp on what quan-
tum field theory is all about.

B Quantum Field Theory by Ryder.

Regarding non-perturbative phenomena, my favorite books are

http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
https://arxiv.org/abs/1110.5013
https://arxiv.org/abs/1110.5013
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B Solitons and Instantons by Rajaraman,

B Topological Solitons by Manton and Sutcliff,

B Classical Solutions in Quantum Field Theory: Solitons and
Instantons by Weinberg,

B Classical Theory of Gauge Fields by Rubakov.

To learn more about effective field models, try

B Effective Field Theory by Georgi3, 3 http://www.people.fas.harvard.
edu/~hgeorgi/review.pdf

B Section 9 in Grossman’s Lectures on Flavor Physics4 4 https://www.physics.uci.
edu/~tanedo/files/notes/
FlavorNotes.pdf

Last but not least, there are great books to learn more about the
history of quantum field theory. My favorites are

B The Infinity Puzzle by Frank Close,

B QED and the Men Who Made It by Silvan Schweber.

http://www.people.fas.harvard.edu/~hgeorgi/review.pdf
http://www.people.fas.harvard.edu/~hgeorgi/review.pdf
%20https://www.physics.uci.edu/~tanedo/files/notes/FlavorNotes.pdf
%20https://www.physics.uci.edu/~tanedo/files/notes/FlavorNotes.pdf
%20https://www.physics.uci.edu/~tanedo/files/notes/FlavorNotes.pdf




One Last Thing

It’s impossible to overstate how important reviews are for an
author. Most book sales, at least for books without a marketing
budget, come from people who find books through the recom-
mendations on Amazon. Your review helps Amazon figure out
what types of people would like my book and makes sure it’s
shown in the recommended products.

I’d never ask anyone to rate my book higher than they think it
deserves, but if you like my book, please take the time to write
a short review and rate it on Amazon. This is the biggest thing
you can do to support me as a writer.

Each review has an impact on how many people will read my
book and, of course, I’m always happy to learn about what
people think about my writing.

PS: If you write a review, I would appreciate a short email with
a link to it or a screenshot to Jakobschwich@gmail.com. This
helps me to take note of new reviews. And, of course, feel free
to add any comments or feedback that you don’t want to share
publicly.
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A

Cumbersome Calculations
from Part 0 and Part I

A.1 Rewriting the Proca Lagrangian

L =
1
4

FµnFµn y

Eq. 3.103

=
1
4
(∂µ An � ∂n Aµ)(∂µ An � ∂n Aµ) y

=
1
4
(∂µ An∂µ An � ∂µ An∂n Aµ y

� ∂n Aµ∂µ An + ∂n Aµ∂n Aµ) y

renaming dummy indices

=
1
4
(∂µ An∂µ An � ∂µ An∂n Aµ y

� ∂µ An∂n Aµ + ∂µ An∂µ An) y

=
1
4
(2∂µ An∂µ An � 2∂µ An∂n Aµ) y

=
1
2
(∂µ An∂µ An � ∂µ An∂n Aµ) X (A.1)
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A.2 Noether Current for a Complex Field

In this appendix, we want to show that if the Lagrangian den-
sity depends on a complex field f, the Noether current is given
by the sum

Jµ ⌘ Jµ
1 + Jµ

2 , (A.2)

where

Jµ
1 ⌘ ∂L

∂(∂µf)
Df

Jµ
2 ⌘ ∂L

∂(∂µf†)
Df† (A.3)

are the currents that would follow if we consider f and f† in
isolation. The steps here are completely analogous to what we
did in Eq. 4.44 and Eq. 4.45. The only difference is that we now
have to consider the variations of f and of f†. We treat the field
f and f† as independent fields and thus must consider the
variations of them separately. This is really just a shortcut to
consider two scalar fields at once. Instead of f and f† we could
treat the real and imaginary parts as independent fields.

We start again by using the symmetry condition.

0 = L(f, ∂µf, f†, ∂µf†)� L
⇣

f + Df, ∂µ(f + Df), f† + Df†, ∂µ(f
† + Df†)

⌘

y

Taylor expansion

= L�
⇣
L+

∂L
∂f

Df +
∂L

∂(∂µf)
D∂µf +

∂L
∂f† Df† +

∂L
∂(∂µf†)

D∂µf†
⌘

y

D∂µf = ∂µDf

= � ∂L
∂f

Df � ∂L
∂(∂µf)

∂µDf � ∂L
∂f† Df† � ∂L

∂(∂µf†)
∂µDf† . (A.4)

We can simplify this formula by using the Euler-Lagrange
equation and the product rule:1

1 Reminder: the Euler-Lagrange
equation for a field f reads
(Eq. 4.25)

∂L
∂f

= ∂µ

✓
∂L

∂(∂µf)

◆
.

Analogously the Euler-Lagrange
equation for the field f† reads

∂L
∂f† = ∂µ

✓
∂L

∂(∂µf†)

◆
.

0 = � ∂L
∂f

Df � ∂L
∂(∂µf)

∂µDf � ∂L
∂f† Df† � ∂L

∂(∂µf†)
∂µDf†

y

EL equation (Eq. 4.25)

= �∂µ

✓
∂L

∂(∂µf)

◆
Df � ∂L

∂(∂µf)
∂µDf � ∂µ

✓
∂L

∂(∂µf†)

◆
Df† � ∂L

∂(∂µf†)
∂µDf†

y

(∂x f )g + f (∂x g) = (∂x f g)

= ∂µ

✓
∂L

∂(∂µf)
Df

◆
+ ∂µ

✓
∂L

∂(∂µf†)
Df†

◆

y

definition
⌘ ∂µ Jµ ⌘ ∂µ Jµ

1 + ∂µ Jµ
2 . (A.5)
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We can therefore see that the total Noether current is given by
the sum of the two contributions coming from the variation of f

and f†.

A.3 Rewriting the General Solution of the
Klein-Gordon Equation

First of all it is conventional to use the short-hand notation
kx ⌘ kµxµ. Our general solution in Eq. 5.49 then reads

f(x) =
Z dk4

(2p)4

⇣
a(k)e�i(kx) + a†(k)ei(kx)

⌘
. (A.6)

Secondly, take note that the notation in Eq. A.6 is still quite
sloppy. A general solution of the Klein-Gordon equation doesn’t
include an integral over all wave vectors kµ. Instead, only
four-vectors are permitted that fulfill the dispersion relation
(Eq. 5.40)

kµkµ = m2 , (A.7)

where m is the mass parameter that appears in the Klein-
Gordon equation. In field theory, Eq. A.7 is known as the
mass-shell condition. We can understand why by noting that
Eq. A.7 is exactly the defining condition of a sphere of radius m
in Minkowski space.22 In Euclidean space, a sphere is

defined by the condition x2 +
y2 + z2 = R2. Here, we have the
condition k2

0 � k2
1 � k2

2 � k2
3 = m2. A mathematical tool that allows us to incorporate the condition

in Eq. A.6 is Dirac’s delta distribution d(k2 � m2):3
3 If you’re unfamiliar with the
delta distribution, have a look at
Appendix E. f(x)physical =

Z dk4

(2p)4 2pd(k2 � m2)
⇣

a(k)e�i(kx) + a†(k)ei(kx)
⌘

.

(A.8)
The delta distribution makes sure that only wave vectors kµ that
fulfill the condition in Eq. A.6 make a non-zero contribution to
the total wave form f(x)physical.

Another physical constraint is that only positive energy solu-
tions are physical.4 We will learn later that in quantum field

4 From a purely mathematical point
of view, negative energy solutions
are solutions of the Klein-Gordon
equation too. They are just not
useful to describe the physical
systems that we observe in nature.
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theory there is a close connection between frequency and en-
ergy: k0 = w = E

h̄ . For our wave four-vector components this
implies that we have the condition k0 > 0. The mathematical
tool that allows us to include this condition in our formula for
the general solution is the Heaviside function. The Heaviside
function is defined as follows:

Q(x) =

8
<

:
1 if x � 0

0 if x < 0
(A.9)

Therefore, we can include the positive energy condition by
introducing Q(k0) into the expression for the general solution:

f(x)physical =
Z 1

(2p)3 dk4d(k2 �m2)Q(k0)
⇣

a(k)e�i(kx) + a†(k)ei(kx)
⌘

(A.10)
This expression looks quite ugly and therefore it makes sense to
massage it a bit using a few mathematical tricks. In particular,
we rewrite the factor dk4d(k2 � m2)Q(k0) as follows:

dk4d(k2 � m2)Q(k0) ⌘ dk4d(kµkµ � m2)Q(k0) y

kµkµ = k2
0 �~k2

= dk4d(k2
0 �~k2 � m2)Q(k0) y

w2
k ⌘~k2 + m2 (definition)

= dk4d(k2
0 � w2

k )Q(k0) y

(a � b)(a + b) = a2 � b2

= dk4d
⇣
(k0 � wk)(k0 + wk)

⌘
Q(k0)

y

d
�

f (x)
�
= Â

i

d(x � ai)��� d f
dx (ai)

���
with f (ai) = 0

= dk4 1
2k0

�
d(k0 � wk) + d(k0 + wk)

�
Q(k0)

y

(k0 + wk) 6= 0 for k0 > 0

= dk4 1
2k0

d(k0 � wk)

y

dk4 = dk3dk0

= dk3dk0
1

2k0
d(k0 � wk)

y Z

Z
dk4d(k2 � m2)Q(k0) =

Z
dk3dk0

1
2k0

d(k0 � wk)

y Z
dx d(x � a) f (x) = f (a)

=
Z

dk3 1
2wk

. (A.11)

Using this formula, we arrive at the following expression for a
general solution of the Klein-Gordon equation:
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f(x)physical =
Z dk4

(2p)3 d(k2 � m2)Q(k0)
⇣

a(k)e�i(kx) + a†(k)ei(kx)
⌘

this is Eq. A.10

y
Eq. A.11

=
Z dk3

(2p)3
1

2wk

⇣
a(k)e�i(kx) + a†(k)ei(kx)

⌘
. (A.12)

In addition, it is conventional to absorb a factor of 1/
p

2wk into
the definitions of a(k) and a†(k):55 This step has no deeper meaning

but leads to easier formulas in the
following chapters.

a(~k) ⌘ a(k)p
2wk

a†(~k) ⌘ a†(k)p
2wk

. (A.13)

Our general solution then reads

f(x)physical =
Z dk3

(2p)3
1

2wk

⇣
a(k)e�i(kx) + a†(k)ei(kx)

⌘

y p
2wk

p
2wk = 2wk

=
Z dk3

(2p)3
1p

2wk
p

2wk

⇣
a(k)e�i(kx) + a†(k)ei(kx)

⌘

y

=
Z dk3

(2p)3
1p
2wk

✓
a(k)p
2wk

e�i(kx) +
a†(k)p

2wk
ei(kx)

◆

y

Eq. A.13

=
Z dk3

(2p)3
1p
2wk

⇣
a(~k)e�i(kx) + a†(~k)ei(kx)

⌘
. (A.14)

Thus we end up with

f(x) =
Z

dk3 1
(2p)3p2wk

⇣
a(~k)e�i(kx) + a†(~k)ei(kx)

⌘
. (A.15)
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A.4 Verifying the a(k), a†(k) commutation re-
lations

In this appendix, we verify that if the coefficients a(k), a†(k)
fulfill the commutation relation in Eq. 8.14, the canonical com-
mutation relations (Eq. 8.6) are automatically fulfilled:

id(~x �~y) = [f(t,~x), p(t,~y)] this is Eq. 8.6y

[A, B] ⌘ AB � BA
= f(t,~x)p(t,~y)� p(t,~y)f(t,~x) y

Eq. 5.51 , Eq. 8.12

=

 Z
dk3 1

(2p)3p2wk

⇣
ake�i(wk t�~k·~x) + a†

k ei(wk t�~k·~x)
⌘!

⇥
 Z

dk03
�i

p
wk

(2p)3
p

2

⇣
ak0e

�i(wk0 t�~k0 ·~y) � a†
k0e

i((wk0 t�~k0 ·~y))
⌘!

�
 Z

dk03
�i

p
wk

(2p)3
p

2

⇣
ak0e

�i(wk0 t�~k0 ·~y) � a†
k0e

i(wk0 t�~k0 ·~y)
⌘!

⇥
 Z

dk3 1
(2p)3p2wk

⇣
ake�i(wk t�~k·~x) + a†

k e(wk t�~k·~x)
⌘!

y

=
Z

dk3dk03
⇣ �i
(2p)62

akak0e
�i(wk+wk0 )tei(~k·~x+~k0 ·~y)

⌘

�
Z

dk3dk03
⇣ �i
(2p)62

aka†
k0e

�i(wk�wk0 )tei(~k·~x�~k0 ·~y)
⌘

+
Z

dk3dk03
⇣ �i
(2p)62

a†
k ak0e

i(wk�wk0 )tei(�~k·~x+~k0 ·~y)
⌘

�
Z

dk3dk03
⇣ �i
(2p)62

a†
k a†

k0e
i(wk+wk0 )te�i(~k·~x+~k0 ·~y)

⌘

�
 Z

dk3dk03
⇣ �i
(2p)62

ak0 ake�i(wk0+wk)tei(~k0 ·~y+~k·~x)
⌘

+
Z

dk3dk03
⇣ �i
(2p)62

ak0 a†
k e�i(wk0 �wk)tei(~k0 ·~y�~k·~x)

⌘

�
Z

dk3dk03
⇣ �i
(2p)62

a†
k0 akei(wk0 �wk)tei(�~k0 ·~y+~k·~x)

⌘

�
Z

dk3dk03
⇣ �i
(2p)62

a†
k0 a

†
k ei(wk0+wk)te�i(~k0 ·~y+~k·~x)

⌘!

y

AB � BA ⌘ [A, B] (see next page)
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=
Z

dk3dk03
⇣ �i
(2p)62

[ak , ak0 ]e
�i(wk+wk0 )tei(~k·~x+~k0 ·~y)

⌘

�
Z

dk3dk03
⇣ �i
(2p)62

[ak , a†
k0 ]e

�i(wk�wk0 )tei(~k·~x�~k0 ·~y)
⌘

+
Z

dk3dk03
⇣ �i
(2p)62

[a†
k , ak0 ]e

i(wk�wk0 )tei(�~k·~x+~k0 ·~y)
⌘

�
Z

dk3dk03
⇣ �i
(2p)62

[a†
k , a†

k0 ]e
i(wk+wk0 )te�i(~k·~x+~k0 ·~y)

⌘

y

=
Z

dk3dk03
⇣ �i
(2p)62

⇣
0
⌘

e�i(wk+wk0 )tei(~k·~x+~k0 ·~y)
⌘

�
Z

dk3dk03
⇣ �i
(2p)62

⇣
(2p)3d(~k �~k0)

⌘
e�i(wk�wk0 )tei(~k·~x�~k0 ·~y)

⌘

+
Z

dk3dk03
⇣ �i
(2p)62

⇣
� (2p)3d(~k �~k0)

⌘
ei(wk�wk0 )tei(�~k·~x+~k0 ·~y)

⌘

�
Z

dk3dk03
⇣ �i
(2p)62

⇣
0
⌘

ei(wk+wk0 )te�i(~k·~x+~k0 ·~y)
⌘

y

= �
Z

dk3
⇣ �i
(2p)32

e�i(wk�wk)tei(~k·~x�~k·~y)
⌘
�
Z

dk3
⇣ �i
(2p)32

ei(wk�wk)tei(�~k·~x+~k·~y)
⌘

y

e0 = 1

=
Z

dk3
⇣ i
(2p)32

ei(~k·~x�~k·~y)
⌘
+
Z

dk3
⇣ i
(2p)32

ei(�~k·~x+~k·~y)
⌘

y

=
i
2

d(~x �~y) +
i
2

d(~y �~x)

y

= id(~x �~y) X (A.16)
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A.5 Rewriting the Scalar Field Energy

In this appendix we want to demonstrate that the energy stored
in a scalar field (Eq. 8.16)

H =
1
2

Z
d3x

⇣
p2 + (∂if)

2 + m2f2
⌘

(A.17)

can be rewritten as (Eq. 8.17)

H =
1
2

Z
dk3 1

(2p)3 wk

⇣
a†(~k)a(~k) + a(~k)a†(~k)

⌘
. (A.18)

To that end, we plug the explicit formulas for the conjugate mo-
mentum density p (Eq. 8.12) and the scalar field f (Eq. 5.51)
into Eq. A.17. To unclutter the discussion, we look at the three
terms in Eq. A.17 in isolation and combine the results after-
wards.

1
2

Z
d3xp2

y

Eq. 8.12

=
1
2

Z
d3x

 Z
dk3 �i

p
wk

(2p)3
p

2

⇣
a(~k)e�i(kx) � a†(~k)ei(kx)

⌘!2

y

i2 = �1

=
1
4

Z
d3x

�dk3dq3

(2p)6
p

wk
p

wq

⇣
a(~k)e�i(kx) � a†(~k)ei(kx)

⌘ ⇣
a(~q)e�i(qx) � a†(~q)ei(qx)

⌘

y

=
1
4

Z
d3x

�dk3dq3

(2p)6
p

wk
p

wq

 
a(~k)e�i(kx)a(~q)e�i(qx) � a†(~k)ei(kx)a(~q)e�i(qx)

� a(~k)e�i(kx)a†(~q)ei(qx) + a†(~k)ei(kx)a†(~q)ei(qx)

!

y

see next page
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=
1
4

Z
d3x

�dk3dq3

(2p)6
p

wk
p

wq

 
a(~k)a(~q)e�ix(k+q) � a†(~k)a(~q)eix(k�q)

� a(~k)a†(~q)e�ix(k�q) + a†(~k)a†(~q)eix(k+q)

!

y Z
d3x

=
1
4

Z �dk3dq3

(2p)3
p

wk
p

wq

 
a(~k)a(~q)d(k + q)e�ix0(wk+wq) � a†(~k)a(~q)d(k � q)eix0(wk�wq)

� a(~k)a†(~q)d(k � q)e�ix0(wk�wq) + a†(~k)a†(~q)d(k + q)eix0(wk+wq)

!

y Z
d3q

=
1
4

Z �dk3

(2p)3
p

wk
p

wk

 
a(~k)a(�~k)e�ix0(wk+wk) � a†(~k)a(~k)eix0(wk�wk)

� a(~k)a†(~k)e�ix0(wk�wk) + a†(~k)a†(�~k)eix0(wk+wk)

!

y

e0 = 1

=
1
4

Z �dk3

(2p)3 wk

 
a(~k)a(�~k)e�i2x0wk � a†(~k)a(~k)

� a(~k)a†(~k) + a†(~k)a†(�~k)ei2x0wk

!
(A.19)

Analogously, we find

Z
d3x(∂if)

2

y

Eq. 5.51

=
Z dk3

(2p)3

~k2

4wk

 
a(~k)a(�~k)e�i2x0wk + a†(~k)a(~k)

+ a(~k)a†(~k) + a†(~k)a†(�~k)ei2x0wk

!
(A.20)

and

Z
d3xm2f2

y

Eq. 5.51

=
Z dk3

(2p)3
m2

4wk

 
a(~k)a(�~k)e�i2x0wk + a†(~k)a(~k)

+ a(~k)a†(~k) + a†(~k)a†(�~k)ei2x0wk

!
. (A.21)
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If we put these puzzle pieces together, we find

H =
1
2

Z
d3x

⇣
p2 + (∂if)

2 + m2f2
⌘

y Eq. A.19, Eq. A.20,
Eq. A.21

=
1
4

Z �dk3

(2p)3 wk

 
a(~k)a(�~k)e�i2x0wk � a†(~k)a(~k)

� a(~k)a†(~k) + a†(~k)a†(�~k)ei2x0wk

!

+
Z dk3

(2p)3

~k2

4wk

 
a(~k)a(�~k)e�i2x0wk + a†(~k)a(~k)

+ a(~k)a†(~k) + a†(~k)a†(�~k)ei2x0wk

!

+
Z dk3

(2p)3
m2

4wk

 
a(~k)a(�~k)e�i2x0wk + a†(~k)a(~k)

+ a(~k)a†(~k) + a†(~k)a†(�~k)ei2x0wk

!

y

=
Z dk3

(2p)3
1

4wk

⇣
w2

k +~k2 + m2
⌘⇣

a†(~k)a(~k) + a(~k)a†(~k)
⌘

+
Z dk3

(2p)3
1

4wk

⇣
� w2

k +~k2 + m2
⌘⇣

a(~k)a(�~k)e�i2x0wk + a†(~k)a†(�~k)ei2x0wk
⌘

y ~k2 + m2 = w2
k

=
Z dk3

(2p)3
1

4wk

⇣
2w2

k

⌘⇣
a†(~k)a(~k) + a(~k)a†(~k)

⌘

y

=
Z dk3

(2p)3
wk
2

⇣
a†(~k)a(~k) + a(~k)a†(~k)

⌘
(A.22)

This is exactly Eq. A.18.

A.6 Rewriting the Scalar Field Momentum

In this appendix we want to check that the formula which we
derived for the scalar field momentum (Eq. 8.39)

P̂i =
Z

d3x p∂if (A.23)

can be rewritten as (Eq. 8.40)

P̂i =
Z d3k

(2p)3 kia†(~k)a(~k) (A.24)
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if we use the explicit expansions of the conjugate momentum
density p (Eq. 8.12) and f (Eq. 5.51):

P̂i =
Z

d3x p∂if

y Eq. 8.12,
Eq. 5.51

=
Z

d3x

 Z
dk3 �i

p
wk

(2p)3
p

2

⇣
a(~k)e�i(kx) � a†(~k)ei(kx)

⌘!

⇥ ∂i

 Z
dq3 1

(2p)3p2wq

⇣
a(~q)e�iqx + a†(~q)eikq

⌘!

y

=
Z

d3x

 Z
dk3 �i

p
wk

(2p)3
p

2

⇣
a(~k)e�i(kx) � a†(~k)ei(kx)

⌘!

⇥
 Z

dq3 1
(2p)3p2wq

⇣
a(~q)(�iqi)e�iqx + a†(~q)(iqi)eikq

⌘!

y

=
1
2

Z
d3x

dk3dq3

(2p)6 qi

⇣
a(~k)e�i(kx) � a†(~k)ei(kx)

⌘ ⇣
�a(~q)e�iqx + a†(~q)eikq

⌘

y

=
1
2

Z
d3x

dk3dq3

(2p)6 qi

 
� a(~k)e�i(kx)a(~q)e�iqx + a†(~k)ei(kx)a(~q)e�iqx

+ a(~k)e�i(kx)a†(~q)eikq � a†(~k)ei(kx)a†(~q)eikq

!

y

=
1
2

Z
d3x

dk3dq3

(2p)6 qi

 
� a(~k)a(~q)e�ix(k+q) + a†(~k)a(~q)eix(k�q)

+ a(~k)a†(~q)e�ix(k�q) � a†(~k)a†(~q)eix(k+q)

!

y Z
d3x

=
1
2

Z dk3dq3

(2p)3 qi

 
� a(~k)a(~q)d(k + q)e�ix0(wk+wq) + a†(~k)a(~q)d(k � q)eix0(wk�wq)

+ a(~k)a†(~q)d(k � q)e�ix0(wk�wq) � a†(~k)a†(~q)d(k + q)eix0(wk+wq)

!

y Z
d3q

=
1
2

Z dk3

(2p)3 qi

 
� a(~k)a(�~k)e�ix0(wk+wk) + a†(~k)a(~k)eix0(wk�wk)

+ a(~k)a†(~k)e�ix0(wk�wk) � a†(~k)a†(�~k)eix0(wk+wk)

!

y

e0 = 1

=
1
2

Z dk3

(2p)3 ki

 
� a(~k)a(�~k)e�i2x0wk + a†(~k)a(~k) + a(~k)a†(~k)� a†(~k)a†(�~k)ei2x0wk

!
(A.25)
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To simplify this expression, we note that kia(~k)a(�~k) and
kia†(~k)a†(�~k) are antisymmetric with respect to ki ! �ki.
Therefore, the integral over kia(~k)a(�~k) and kia†(~k)a†(�~k) van-
ishes since we have a symmetric integration interval. If we use
this in Eq. A.25, we find

P̂i =
1
2

Z dk3

(2p)3 ki

 
a†(~k)a(~k) + a(~k)a†(~k)

!

y

AB = BA + [A, B]

=
1
2

Z dk3

(2p)3 ki

 
2a†(~k)a(~k) + [a(~k), a†(~k)]

!

y
Eq. 8.14

=
Z dk3

(2p)3 kia†(~k)a(~k) +
1
2

Z
dk3~kd(0) . (A.26)

The first term is exactly what we wanted to derive (Eq. 8.40).
The second term is an infinite constant contribution that we
choose to ignore, analogous to what we did for the energy.

A.7 Demonstration that the Feynman Prop-
agator is a Green’s Function

In this appendix we want to check if the Feynman propagator
(Eq. 8.93)

DF(t0,~x0, t,~x) ⌘ Q(t0 � t)D(t0,~x0, t,~x) + Q(t � t0)D(t,~x, t0,~x0)
(A.27)

is indeed a Green’s function of the Klein-Gordon equation.
This is true if we find a delta distribution when we plug the
Feynman propagator into the Klein-Gordon equation since this
is the defining condition of a Green’s function (Eq. 8.94):

⇣
∂µ∂µ + m2

⌘
DF(yµ, xµ) = id(xµ � yµ) . (A.28)

We need several puzzle pieces in the following calculation:

B The derivative of the Heaviside function Q(x) (Eq. A.9) is
exactly the delta distribution

dQ(x)
dx

= d(x) . (A.29)
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Intuitively this follows because the slope of Q(x) is only
non-zero at x = 0 where it is infinity since the jump is discon-
tinuous.

B The "fundamental" propagator D(t0,~x0, t,~x) (Eq. 8.82) is a
solution of the free Klein-Gordon equation. We can check this
explicitly

0 =
⇣

∂µ∂µ + m2
⌘

D(yµ, xµ) y

Eq. 8.82

=
⇣

∂µ∂µ + m2
⌘ ⇣ Z dk3

(2p)32wk
eikµ(yµ�xµ)

⌘

y

∂2
xeikx = �k2eikx

=
Z dk3

(2p)32wk

⇣
�kµkµ + m2

⌘
eikµ(yµ�xµ)

y

kµkµ = m2 (Eq. 5.40)

=
Z dk3

(2p)32wk

⇣
�m2 + m2

⌘
eikµ(yµ�xµ)

y

�m2 + m2 = 0
= 0 X (A.30)

B The product rule for double derivatives reads

d2

dx2 f g =
d

dx

✓
d

dx
f g
◆

y

=
d

dx
�

f 0g + f g0
�

y

product rule

=
d

dx
f 0g +

d
dx

f g0

y

product rule
= f 00g + f 0g0 + f 0g0 + f g00 y

= f 00g + 2 f 0g0 + f g00, (A.31)

where f 0 ⌘ d f
dx and f 00 ⌘ d2 f

dx2 .

B Distributions like d(x) are always only defined under an
integral. This becomes important when we want to evaluate
the expression dd(x)

dx f (x), where we assume that f (x) vanishes
at infinity.6

6 In mathematical terms, we assume
that f (x) has compact support. This
means f (x) is only non-zero within
a finite region.

From a physical point of view, this
can be motivated by saying that
physical fields have to vanish at
infinity. This requirement follows
from the observation that an in-
finitely large amount of energy
would be necessary to create a field
excitation that spreads all the way
to infinity.

If we introduce the necessary integral and then integrate by
parts, we find
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Z •

�•
dx

dd(x)
dx

f (x) = d(x) f (x)
���
•

�•
�
Z •

�•
dx d(x)

d f (x)
dx y

f (•) = f (�•) = 0

= �
Z •

�•
dx d(x)

d f (x)
dx

. (A.32)

If we then go back to our usual sloppy physics notation, we
can write

dd(x)
dx

f (x) = �d(x)
d f (x)

dx
. (A.33)

B The relation in Eq. A.33 is important when we want to cal-
culate the second derivative of the Heaviside function which
appears if we put the Feynman propagator into the Klein-
Gordon equation.

If we assume again that we are dealing with a function f (x)
that vanishes at infinity, we can calculate:

⇣ d2

dx2 Q(x)
⌘

f (x)
Eq. A.29
=

⇣ d
dx

d(x)
⌘

f (x)

y

Eq. A.33

= �d(x)
d f (x)

dx
. (A.34)

B To unclutter the notation, we introduce the following short-
hand notations:

Dyx ⌘ D(yµ, xµ)

Dxy ⌘ D(xµ, yµ)

Qt0t ⌘ Q(t0 � t)

Qtt0 ⌘ Q(t � t0) . (A.35)

With these puzzle pieces in place, we are ready to check if the
Feynman propagator is indeed a Green’s function.



604 no-nonsense quantum field theory

id(xµ � yµ)
!
=
⇣

∂µ∂µ + m2
⌘

DF(yµ, xµ) this is Eq. 8.94y

= ∂µ∂µDF(yµ, xµ) + m2DF(yµ, xµ) y

∂µ∂µ = ∂2
0 � ∂2

i

= (∂2
0 � ∂2

i )DF(yµ, xµ) + m2DF(yµ, xµ) y

Eq. 8.93, Eq. A.35

= (∂2
0 � ∂2

i )
⇣

Qt0tDyx + Qtt0Dxy
⌘
+ m2DF(yµ, xµ) y

∂iQt0 t = 0
= ∂2

0Qt0tDyx � Qt0t∂2
i Dyx + ∂2

0Qtt0Dxy � Qtt0∂2
i Dxy + m2DF(yµ, xµ) y

Eq. A.31

=
⇣

∂2
0Qt0t

⌘
Dyx + Qt0t

⇣
∂2

0Dyx
⌘
+ 2
⇣

∂0Qt0t
⌘⇣

∂0Dyx
⌘

+
⇣

∂2
0Qtt0

⌘
Dxy + Qtt0

⇣
∂2

0Dxy
⌘
+ 2
⇣

∂0Qtt0
⌘⇣

∂0Dxy
⌘

� Qt0t∂2
i Dyx � Qtt0∂2

i Dxy + m2DF(yµ, xµ) y

∂µ∂µ = ∂2
0 � ∂2

i

=
⇣

∂2
0Qt0t

⌘
Dyx + Qt0t

⇣
∂µ∂µDyx

⌘
+ 2
⇣

∂0Qt0t
⌘⇣

∂0Dyx
⌘

+
⇣

∂2
0Qtt0

⌘
Dxy + Qtt0

⇣
∂µ∂µDxy

⌘
+ 2
⇣

∂0Qtt0
⌘⇣

∂0Dxy
⌘

+ m2DF(yµ, xµ) y

Eq. A.30

=
⇣

∂2
0Qt0t

⌘
Dyx + Qt0t

⇣
� m2Dyx

⌘
+ 2
⇣

∂0Qt0t
⌘⇣

∂0Dyx
⌘

+
⇣

∂2
0Qtt0

⌘
Dxy + Qtt0

⇣
� m2Dxy

⌘
+ 2
⇣

∂0Qtt0
⌘⇣

∂0Dxy
⌘

+ m2DF(yµ, xµ) y

Eq. 8.93

=
⇣

∂2
0Qt0t

⌘
Dyx + 2

⇣
∂0Qt0t

⌘⇣
∂0Dyx

⌘

+
⇣

∂2
0Qtt0

⌘
Dxy + 2

⇣
∂0Qtt0

⌘⇣
∂0Dxy

⌘

+ m2DF(yµ, xµ)� m2DF(yµ, xµ) y

m2 � m2 = 0

=
⇣

∂2
0Qt0t

⌘
Dyx + 2

⇣
∂0Qt0t

⌘⇣
∂0Dyx

⌘

+
⇣

∂2
0Qtt0

⌘
Dxy + 2

⇣
∂0Qtt0

⌘⇣
∂0Dxy

⌘
. (A.36)

We can simplify this further by using the facts about the deriva-
tives of the Heaviside functions that we discussed above:
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⇣
∂2

0Qt0t
⌘

Dyx + 2
⇣

∂0Qt0t
⌘⇣

∂0Dyx
⌘

this is Eq. A.36

+
⇣

∂2
0Qtt0

⌘
Dxy + 2

⇣
∂0Qtt0

⌘⇣
∂0Dxy

⌘

y

Eq. A.29

=
⇣

∂2
0Qt0t

⌘
Dyx + 2

⇣
d(t0 � t)

⌘⇣
∂0Dyx

⌘

+
⇣

∂2
0Qtt0

⌘
Dxy + 2

⇣
d(t � t0)

⌘⇣
∂0Dxy

⌘

y

Eq. A.34

= �
⇣

d(t0 � t)
⌘

∂0Dyx + 2
⇣

d(t0 � t)
⌘⇣

∂0Dyx
⌘

�
⇣

d(t � t0)
⌘

∂0Dxy + 2
⇣

d(t � t0)
⌘⇣

∂0Dxy
⌘

y
2 � 1 = 1

= d(t0 � t)∂0Dyx + d(t � t0)∂0Dxy

y

Eq. 8.82

= d(t0 � t)∂0

⇣ Z dk3

(2p)32wk
eikµ(yµ�xµ)

⌘

+ d(t � t0)∂0

⇣ Z dk3

(2p)32wk
eikµ(xµ�yµ)

⌘

y

∂teiwt = iweiwt, k0 = wk

= d(t0 � t)
Z dk3

(2p)32wk
iwkeikµ(yµ�xµ)

+ d(t � t0)
Z dk3

(2p)32wk
iwkeikµ(xµ�yµ)

y

⇢⇢wk

= d(t0 � t)
Z dk3 i

(2p)32
eikµ(yµ�xµ)

+ d(t � t0)
Z dk3 i

(2p)32
eikµ(xµ�yµ)

y

d(t0 � t) $ t = t0

= d(t0 � t)
Z dk3 i

(2p)32
ei~k·(~y�~x)

+ d(t � t0)
Z dk3 i

(2p)32
ei~k·(~x�~y)

y

d(~y �~x) ⌘
Z dk3

(2p)3 ei~k·(~y�~x) (Eq. 8.80)

= d(t0 � t)
i
2

d(~y �~x) + d(t � t0)
i
2

d(~x �~y) y

d(t0 � t) = d(t � t0), d(~y �~x) = d(~x �~y)

= d(t0 � t)
i
2

d(~y �~x) + d(t � t0)
i
2

d(~x �~y)

y 1
2
+

1
2
= 1

= id(t0 � t)d(~x �~y) y

= id(xµ � yµ) X (A.37)



606 no-nonsense quantum field theory

A.8 Total Charge in Terms of Creation and
Annihilation Operators

In this appendix, we want to demonstrate that the electric
charge (Eq. 4.61)

Q̃q = iq
Z

d3x
✓

∂L
∂(∂0f†)

f† � ∂L
∂(∂0f)

f

◆
. (A.38)

can be written as

Q̃q = q
Z dk3

(2p)3

⇣
a†(k)a(k)� b†(k)b(k)

⌘
. (A.39)

if we use the Lagrangian (Eq. 8.102) and the explicit expansions
of f and f†.

First of all, we calculate

∂L
∂(∂0f) y

Eq. 8.102

=
∂
⇣⇣

∂µf†∂µf � m2f†f
⌘⌘

∂(∂0f) y

= ∂0f† ⌘ p (A.40)

and

∂L
∂(∂†

0f) y

Eq. 8.102

=
∂
⇣⇣

∂µf†∂µf � m2f†f
⌘⌘

∂(∂†
0f) y

= ∂0f ⌘ p† , (A.41)

where p is the conjugate momentum density (Eq. 8.104). The
charge operator therefore reads

Q̃q = iq
Z

d3x
⇣

p†f† � pf
⌘

. (A.42)
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Moreover, the conjugate momentum density reads in more
explicit terms

p† ⌘ ∂0f y

Eq. 8.100

= ∂0

⇣ Z
dk3 1

(2p)3p2wk

⇣
a(~k)e�ikx + b†(~k)eikx

⌘ ⌘

y
=
Z

dk3 1
(2p)3p2wk

⇣
a(~k)(�ik0)e�ikx + b†(~k)(ik0)eikx

⌘
y

k0 ⌘ wk

=
Z

dk3 i
p

wk

(2p)3
p

2

⇣
�a(~k)e�ikx + b†(~k)eikx

⌘
. (A.43)

This implies

p ⌘ ∂0f†

y

=
Z

dk3 i
p

wk

(2p)3
p

2

⇣
a†(~k)eikx � b(~k)e�ikx

⌘
. (A.44)

Let’s focus on the last term in Eq. A.42:

Z
d3x pf

y

=
Z

d3x

 Z
dk3 i

p
wk

(2p)3
p

2

⇣
a†(~k)eikx � b(~k)e�ikx

⌘!

⇥
 Z

dq3 1
(2p)3p2wq

⇣
a(~q)e�iqx + b†(~q)eiqx

⌘!

y

=
Z

d3x
idk3dq3

(2p)6

p
wk

2pwq

 ⇣
a†(~k)eikx � b(~k)e�ikx

⌘ ⇣
a(~q)e�iqx + b†(~q)eiqx

⌘!

y

=
Z

d3x
idk3dq3

(2p)6

p
wk

2pwq

⇣
a†(~k)a(~q)eix(k�q) � b(~k)a(~q)e�ix(k+q)

+ a†(~k)b†(~q)eix(k+q) � b(~k)b†(~q)e�ix(k�q)
⌘

y

(see next page)
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=
Z idk3dq3

(2p)3

p
wk

2pwq)

⇣
a†(~k)a(~q)eix0(wk�wq)d(~k �~q)� b(~k)a(~q)e�ix0(wk+wq)d(~k +~q)

+ a†(~k)b†(~q)eix0(wk+wq)d(~k +~q)� b(~k)b†(~q)e�ix0(wk�wq)d(~k �~q)
⌘

y

=
Z idk3

(2p)3

p
wk

2
p

wk

⇣
a†(~k)a(~k)e�ix0(wk�wk) � b(~k)a(�~k)eix0(wk+wk)

+ a†(~k)b†(�~k)eix0(wk+wk) � b(~k)b†(~k)e�ix0(wk�wk)
⌘

y

=
Z idk3

(2p)3
1
2

⇣
a†(~k)a(~k)� b(~k)a(�~k)e�i2x0wk + a†(~k)b†(�~k)ei2x0wk � b(~k)b†(~k)

⌘
(A.45)

Analogously, we find

Z
d3x p†f†

y

=
Z

d3x

 Z
dk3 i

p
wk

(2p)3
p

2

⇣
�a(~k)e�ikx + b†(~k)eikx

⌘!

⇥
 Z

dq3 1
(2p)3p2wq

⇣
a†(~q)eiqx + b(~q)e�iqx

⌘!

y

=
Z idk3

(2p)3
1
2

⇣
� a(~k)a†(~k) + b†(~k)a†(�~k)ei2x0wk

� a(~k)b(�~k)e�i2x0wk + b†(~k)b(~k)
⌘

. (A.46)

Therefore we can rewrite Eq. A.42 as
Q̃q = iq

Z
d3x

⇣
p†f† � pf

⌘

y

= iq

 Z idk3

(2p)3
1
2

⇣
� a(~k)a†(~k) + b†(~k)a†(�~k)ei2x0wk

� a(~k)b(�~k)e�i2x0wk + b†(~k)b(~k)
⌘

�
Z idk3

(2p)3
1
2

⇣
a†(~k)a(~k)� b(~k)a(�~k)e�i2x0wk

+ a†(~k)b†(�~k)ei2x0wk � b(~k)b†(~k)
⌘!

y

see below
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= q

 Z dk3

(2p)3
1
2

⇣
a†(~k)a(~k) + a(~k)a†(~k)

� b†(~k)b(~k)� b(~k)b†(~k)
⌘

y

AB = BA + [A, B]

= q

 Z dk3

(2p)3
1
2

⇣
2a†(~k)a(~k) + [a(~k), a†(~k)]

� 2b†(~k)b(~k)� [b(~k), b†(~k)]
⌘

y

= q

 Z dk3

(2p)3
1
2

⇣
2a†(~k)a(~k)� 2b†(~k)b(~k)

+ [a(~k), a†(~k)] + [b(~k), b†(~k)]
⌘

. (A.47)

The first two terms here are exactly what we wanted to derive.
The remaining two terms yield an infinitely large constant offset
that we already encountered for other Noether charges like
momentum or energy. Thus if we ignore these constant terms,
we find

Q̃q = q
Z dk3

(2p)3

⇣
a†(k)a(k)� b†(k)b(k)

⌘
. (A.48)

Take note that we used in the calculation above that
Z dk3

(2p)3 b†(~k)a†(�~k)ei2x0wk �
Z dk3

(2p)3 a†(~k)b†(�~k)ei2x0wk

y

~k ! �~k

=
Z dk3

(2p)3 b†(~k)a†(�~k)ei2x0wk �
Z dk3

(2p)3 a†(�~k)b†(~k)ei2x0wk

y

[a†, b†] = 0

=
Z dk3

(2p)3 b†(~k)a†(�~k)ei2x0wk �
Z dk3

(2p)3 b†(~k)a†(�~k)ei2x0wk

y

= 0 . (A.49)

Moreover, by the same argument b(~k)a(�~k)e�i2x0wk and a(~k)b(�~k)e�i2x0wk

cancel.





B

Cumbersome Calculations
from Part II and Part III

B.1 Validating Wick’s Theorem For Three Field
Products

To build some confidence in the validity of Wick’s theorem, we
want to bring f(x)f(y)f(z) into normal order by hand and then
compare the result to what we get by applying Wick’s theorem
(Eq. 11.24). First of all, take note that, without losing generality,
we can assume that x0 > y0 > z0. This is possible because in
quantum field theory, we always integrate over our spacetime
variables. Therefore, we could write the time ordered product
by using theta functions. However, since we integrate over our
spacetime variables, we can then relabel these spacetime vari-
ables such that we are only left with one time ordered term.
Formulated differently, the terms with different time ordering
(y0 > x0 > z0, etc) yield exactly the same result. Thus it is suf-
ficient to consider consider the case x0 > y0 > z0. To simplify
the calculation, we introduce the notation f(x) ⌘ fx, f(y) ⌘ fy,
f(z) ⌘ fz. We then find
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Tfxfyfz = fxTfyfz y
Eq. 11.17

= fx

⇣
: fyfz : +fyfz

⌘
y

= fx : fyfz : +fxfyfz . (B.1)

In the first line we used that y0 > z0 which implies Tfyfz =

fyfz. The second term in the final line is already one of the
terms that we expect from applying Wick’s theorem (Eq. 11.24).
Thus let’s focus on the first term, which we still need to bring
into normal order. This is possible by using the explicit field
splitting in terms of creation and annihilation terms (Eq. 10.13):1

1 Reminder: in Eq. 10.13 we defined
f ⌘ f� + f+, where f� is an
integral over annihilation operators
and f+ is an integral over creation
operators.

fx : fyfz : = fx :
⇣
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see next page
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= [f�
x , f+

y ](f�
z + f+

z ) + [f�
x , f+

z ](f�
y + f+

y )

+ f�
x f�

y f�
z + f+

z f�
x f�

y + f+
y f�

x f�
z

+ f+
y f+

z f�
x + f+

x f�
y f�

z + f+
x f+

z f�
y

+ f+
x f+

y f�
z + f+

x f+
y f+

z y

= [f�
x , f+

y ]fz + [f�
x , f+

z ]fy+ : fxfyfz : y

Eq. 11.15

= f(x)f(y)fz + f(x)f(z)fy+ : fxfyfz : . (B.2)

If we plug this back into Eq. B.1, we find

Tfxfyfz = fx : fyfz : +fxfyfz y

Eq. B.2

= f(x)f(y)fz + f(x)f(z)fy+ : fxfyfz : +fxfyfz .
(B.3)

This is exactly what we get if we use Wick’s theorem (Eq. 11.24).
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B.2 Work in the Vicinity of an Infinitely Long Wire

In this appendix, we want to show that if we plug the regular-
ized potential (Eq. 13.11)

V(x) = l
Z L

�L

dyp
x2 + y2

y
Z

dy
1p

x2 + y2

= ln
✓q

x2 + y2 + y
◆

= l ln

"
+L +

p
L2 + x2

�L +
p

L2 + x2

#
. (B.4)

into the work formula (Eq. 13.10)

W(x2, x1) = q
⇣

V(x2)� V(x1)
⌘

(B.5)

we get a finite result, even in the limit L ! •. Thus we start by
plugging the regularized potential into the work formula:
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. (B.6)

To understand why this is finite in the limit L ! •, take note
that in the limit L ! •, we have L2 � x2

1 and L2 � x2
1.

Therefore, we can use the approximation
p

1 + e ⇡ 1 + e
2 , which
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is valid for e ⌧ 1. In our case, x2
1

L2 ⌧ 1 and x2
2

L2 ⌧ 1 and we
therefore find
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⇣
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In the limit L ! •, we have x2
2

2L2 ! 0 and x2
1

2L2 ! 0 and the work
formula therefore reads

W(x2, x1) ⇡ ql ln

"
2
2

 
x2

1
x2

2

!#
= ql ln

"
x2

1
x2

2

#
, (B.8)

which is indeed finite.
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B.3 Fourier Transform of the Yukawa Poten-
tial

In this appendix, we want to show that22 We stumbled upon this factor in
Eq. 12.26.

Ṽ(~k) ⌘ �g2

~k2 + m2
f

(B.9)

is the Fourier transform of the Yukawa potential (Eq. 6.20)

V(~x) =
g2

4p|~x| e
�mf |~x| . (B.10)

To see this, we use that the Fourier transform f̃ (k) of a function
f (x) is defined as

f̃ (k) ⌘
Z

dx e�ixk f (x) . (B.11)

For the Yukawa potential, this formula yields

Ṽ(~k) =
Z

d3x e�i~x·~kV(~x) y

Eq. B.10

=
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⌘
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y

|x| ⌘ r

=
g2

4p

Z
dr dq df r sin(q) e�i|~k|r cos(q)e�mfr

y Z
df

=
g2

4p
2p
Z

dr dq r sin(q) e�i|~k|r cos(q)e�mfr

y Z
dq (see next page)
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Z
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���
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. (B.12)

This is exactly Eq. B.9.





C

Wave Properties

In this appendix, we talk about the various quantities (~k, w,±,~E0, d)
which appear in solutions of the wave equation

f (x) = A cos(kx ± wt + d) . (C.1)

B We typically call the argument j ⌘ (kx ± wt) of our periodic
function cos j the phase of the wave. A phase of zero j = 0
means we are at the top of our waveform since cos(0) = 1 If
the phase is j = p, we are at the bottom since cos(p) = �1.

One full wave cycle starts at j = 0 and goes on until j = 2p.
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A periodic wave repeats itself after 2p since cos(j + 2p) =

cos(j).11 Take note that it is conventional
in theoretical physics to measure
angles in multiplies of p, e.g.
180� $ p and for a full circle
360� $ 2p. B If we are dealing, with a three-dimensional system, our solu-

tion reads

f (x) = A cos(~k ·~x ± wt + d) . (C.2)

The vector~k is usually called the wave vector. The direction
of~k tells us in which direction the wave is traveling.

The length of the wave vector |~k| describes how many oscilla-
tions there are per meter. To understand this, imagine that we
could stop the time, i.e. keep t fixed and then move through
space. As we move along the axis defined by~k we count how
many full wave shapes we encounter per meter. This number
is the wave number. One full oscillation is over as soon as the
phase of the wave has increased by 2p. Hence, we can say
a bit more precisely that |~k| measures how many 2p cycles
there are per meter.2 For this reason, |~k| is known as spatial2 Formulated differently, |~k| tells us

how much the phase changes as we
move one meter along the wave at
one fixed point in time.

angular frequency or wave number.3

3 This is in contrast to the temporal
angular frequency w, which tells us
how many oscillations there are per
second.

For example, if we move 2 meters and observe that the phase
changes by 20p, we know that the wave number is 10p radi-
ans per meter.4

4 20p/2 m = 10p/ m The wave number is directly related to the wavelength l:

l =
2p

|~k|
. (C.3)

The wavelength is defined as the spatial distance that we
need to move until the phase of the wave has changed by
2p:55 Formulated differently, the wave-

length is the distance between
adjacent identical parts of the wave.
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B The constant w is known as temporal angular frequency or
simply angular frequency. The angular frequency describes
how many oscillations there are per second. To understand
it, imagine that we are at one fixed point in space and time
moves on. We now observe how the wave moves up and
down at this one particular point. We count how often it
undergoes a full oscillation, i.e. from maximum to maximum.

The result is the angular frequency of the wave. Formulated
differently, w tells us how much the phase changes during
one second. For example, if we observe the wave for two
seconds and the phase changes by 20p, i.e. we observe 10 full
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wave cycles, we know the angular frequency is 10p radians
per second.

The angular frequency is directly related to the period t and
ordinary frequency f of the wave

w =
2p

t
= 2p f . (C.4)

The period t is the time the wave needs for one full oscilla-
tion.

The factor A in front of the oscillating function encodes the
peak magnitude of the oscillation:

B The sign between the two terms in the cosine function deter-
mines whether our wave moves up or down on the axis de-
fined by~k. For example, a solution of the form ~E = ~E(x � ct)
describes a wave which moves to the right on our x-axis,
while a solution of the form ~E = ~E(x + ct) describes a
wave which moves to the left. This interpretation comes
about since if we focus on a fixed point in our wave shape
~E(x � ct) and t increases, x also has to increase in order to
keep ~E(x � ct) at the same value. In other words, this means
that if we focus on a specific point in our wave shape, at a
later point in time (a larger t), we will find it at a larger x.

Analogously, a solution of the form E = E(z � ct) describes a
wave that moves up on our z-axis.
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B The absolute phase d encodes the phase of the wave at~r = 0
and t = 0.

This quantity isn’t measurable since it depends on how we
choose our coordinate system. However, it is still important
if we consider superposition of waves. If we add two waves,
their relative absolute phase crucially determines if the am-
plitude of the resulting wave is larger

in which case we speak of constructive interference or
smaller

in which case we speak of destructive interference.

Now that we have a rudimentary understanding of the basic
quantities associated with waves, we can talk about the most
important of the more advanced properties.
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C.1 Advanced properties

B An extremely important question that we haven’t answered
so far is: how fast are waves traveling?
Let’s focus on a specific point on our wave. In particular, to
determine the velocity of the wave, we follow the movement
of a point.

To simplify the discussion, we restrict ourselves to a wave
that moves in one-dimension. With this in mind, we can
calculate the velocity by using a basic solution

~E = ~A cos
⇣

kx � wt
⌘
= ~E0 cos

⇣
k(x � w

k
t)
⌘

. (C.5)

We assume that the specific point in our waveform ~Espec we
are interested in is at t = t1 at x = x1:

~Espec = ~A cos
⇣

k(x1 �
w

k
t1)
⌘

. (C.6)

At a later point in time t = t2, we will find our specific point
~Espec at some new location x = x2:

~Espec = ~A cos
⇣

k(x2 �
w

k
t2)
⌘

. (C.7)

This means that in the interval Dt = t2 � t1 our specific point
has traveled the distance Dx = x2 � x1. Therefore, our point
travels with velocity

v =
Dx
Dt

=
x2 � x1
t2 � t1

. (C.8)

Since we are considering the same specific point ~Espec in
Eq. C.6 and Eq. C.7, we can conclude

x2 �
w

k
t2 = x1 �

w

k
t1 y

w

k
=

x2 � x1
t2 � t1

. (C.9)
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By comparing Eq. C.8 with Eq. C.9, we can conclude

v =
w

k
. (C.10)

In words, the velocity of each point in our wave form is given
by the ratio of the angular frequency w and the wave number
k.
We can also understand this from a different perspective. A
velocity has units of meters per second. The only combina-
tion of our basic wave quantities discussed in the previous
section with units meter per second is6 6 To be a bit more precise: the

velocity we talk about here is
the phase velocity. This name is
used to make clear that it’s also
possible to associate a different
kind of velocity, called group
velocity, to wave packets. The
group velocity is the speed at which
the envelope moves forward, while
the phase velocity is the speed of
the individual plane waves inside
the packet. The group velocity and
phase velocity are not always the
same.

v =
l

t
(C.11)

since the wavelength l is measured in meters and the period
in seconds. In words, this equation tells us that a wave travels
one wavelength l per period t. We can rewrite the velocity
of the wave v in terms of the angular frequency w and wave
number k ⌘ |~k| as follows

v =
l

t
=

2p/k
2p/w

=
w

k
. (C.12)

This is exactly the equation, we already derived above (Eq. C.10).





D

Gauge Symmetry in Classi-
cal Electrodynamics

Interpreting the actual meaning of a massless gauge field
Aµ(xµ) is a delicate and subtle business. There are various ways
to understand why. In this section, however, we will restrict our-
selves to just one explanation which nicely illustrates the most
important ideas.

The first key fact is that we can’t observe gauge fields directly.
This is something that is well-known from classical electro-
dynamics although the terminology used is a bit different. In
electrodynamics we call Aµ the electromagnetic four-potential:

Aµ =

 
f
c
~A

!
=

0

BBB@

f
c

A1
A2

A3

1

CCCA
, (D.1)

where f is the electric potential and ~A the magnetic potential.
Neither the electric potential f nor the magnetic potential ~A are
directly observable.1 Instead, what is measurable is the electric

1 Here’s an alternative perspective:
Only potential differences are mea-
surable. But potential differences
remain unchanged by shifts of the
potential

f(xµ) ! f(xµ) + A
Df = f(aµ)� f(bµ)

! Df0 =
⇣

f(aµ) + A
⌘
�
⇣

f(bµ) + A
⌘

= f(aµ)� f(bµ)

= Df , (D.2)

where aµ and bµ denote two differ-
ent spacetime points and we shifted
the electric potential by a constant
amount A.

field ~E and the magnetic field ~B. These three-vector fields are
related to Aµ (in natural units with c = 1) by2

2 It is often more convenient to write
equations in index notation. In
index notation, the cross product
~A ⇥ ~B reads eijk Ai Bj, where eijk is
the Levi-Civita symbol. In vector
notation, these formulas read

~E = �rA0 � ∂t ~A
~B = r⇥ ~A .
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Ei = �∂i A0 � ∂0 Ai

Bi = eijk∂j Ak . (D.3)

If we combine these puzzle pieces, we discover that there are
many different four-potentials Aµ that lead to exactly the same
electric and magnetic field configurations and thus describe
exactly the same physical situation. In particular, we can shift
the potentials by a constant amount

A0 ! A0
0 = A0 + h

Ai ! A0
i = Ai + xi (D.4)

without altering the electric field and the magnetic field. Let’s
check this explicitly:

Ei = �∂i A0 � ∂0 Ai ! E0
i = �∂i A0

0 � ∂0 A0
i y

Eq. D.4
= �∂i(A0 + h)� ∂0(Ai + xi) y

= �∂i A0 � ∂ih � ∂0 Ai � ∂0xi y

∂ih = ∂0xi = 0
= �∂i A0 � ∂0 Ai y

Eq. D.3
= Ei X (D.5)

where we used that xi and h are constants. Analogously, we
find

Bi = eijk∂j Ak ! B0
i = eijk∂j A0

k y

Eq. D.4
= eijk∂j(Ak + xk) y

= eijk∂j Ak + eijk∂jxk y

∂jxk = 0
= eijk∂j Ak y

Eq. D.3
= Bi X (D.6)

Motivated by this discovery, we can try to find even more com-
plicated transformations of the four potential Aµ that leave the
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electric and magnetic field unchanged. If we look at the for-
mulas for a while, we can discover that we can not only add
constants to the potentials but also derivatives of an arbitrary
scalar function h(xµ). In particular, the electric and magnetic
field strengths remain completely unaltered by the transforma-
tions3 3 Take note that we only have this

freedom for massless vector fields.
For a massive vector field, only
transformations of the from Eq. D.4
are permitted. The electromagnetic
field, however, is a massless vector
field since the corresponding
particles (photons) are massless.
Therefore, we have this freedom in
classical electrodynamics. We will
discuss this later in more detail.

A0(xµ) ! A0(xµ) + ∂0h(xµ)

Ai(xµ) ! Ai(xµ)� ∂ih(xµ) . (D.7)

Again, we can check this explicitly:

Ei = �∂i A0 � ∂0 Ai ! Ẽi = �∂i(A0 + ∂0h)� ∂0(Ai � ∂ih)

= �∂i A0 � ∂i∂0h � ∂0 Ai + ∂0∂ih

= �∂i A0 ����∂0∂ih � ∂0 Ai +���∂0∂ih

= �∂i A0 � ∂0 Ai

= Ei X (D.8)

and

Bi = eijk∂j Ak ! B̃i = eijk∂j(Ak + ∂kh)

= eijk∂j Ak + eijk∂j∂kh
| {z }

=0

= eijk∂j Ak

= Bi X (D.9)

where we used that eijk is antisymmetric but ∂j∂k is symmetric
under the switching of the indices j $ k.4 4 As mentioned above, every time

we have a sum over something
symmetric in its indices multiplied
by something antisymmetric in the
same indices, the result is zero:

Â
ij

aijbij = 0

if aij = �aji and bij = bji holds for
all i, j.

The fact that everything we can measure remains completely
unchanged by the transformations in Eq. D.7 is known as gauge
freedom.5

5 As mentioned above, a symmetry
always refers to a set of transfor-
mations which leaves our system
unchanged.

D.1 Partial Gauge Fixing

By choosing to work with configurations that fulfill the Lorenz
condition we have not exhausted our gauge freedom completely.
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There are, in fact, still infinitely many members in each equiva-
lence class that describe the situation at hand and that fulfill the
Lorenz condition. Here’s why.

Let’s assume that we’ve found one configuration Aµ that de-
scribes the situation (i.e. solves the Maxwell equation) and
fulfills the Lorenz condition. We can now write down infinitely
many new configurations A0

µ that fulfill these two criteria:

A0
µ(xµ) = Aµ(xµ) + ∂µh̃(xµ) , (D.10)

where h̃(xµ) is no longer completely arbitrary but has to fulfill
the condition66 Mathematicians call a function

f (x, y, z, . . .) that fulfills the condi-
tion

∂2
i f (x) = ∂2

x f (x) + ∂2
y f (x) + . . . = 0

a harmonic function. Moreover, the
condition ∂µ∂µ h̃ = 0 is sometimes
called the d’Alembert condition.
Since there are infinitely many
functions h̃ that fulfill this condi-
tion, there are infinitely many field
configurations that fulfill the Lorenz
condition and solve the Maxwell
equation for a specific system.

∂µ∂µh̃ = 0 . (D.11)

Let’s check this explicitly:

∂µ A0µ Eq. D.10
= ∂µ(Aµ + ∂µh̃) y

= ∂µ Aµ + ∂µ∂µh̃ y

∂µ∂µ h̃ = 0 (Eq. D.11)
= ∂µ Aµ

y

initial Aµ fulfills the Lorenz condition
= 0 . (D.12)

We can see here, as promised above, that as long as we restrict
ourselves to gauge functions h̃(xµ) that fulfill the condition
∂µ∂µh̃ = 0 we can still write down lots of physically equivalent
gauge field configurations A0

µ(xµ) that also fulfill the Lorenz
condition.77 The configurations describe the

same physical situations because
Aµ and A0

µ are related by a gauge
transformation. In particular, take
note that the transformation in
Eq. D.10 is a gauge transformation
(Eq. 5.137) , although a special one
since the gauge function has to
fulfill an additional condition.

In technical terms, we say that the Lorenz condition only par-
tially fixes the gauge and that there is still residual gauge free-
dom.
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Delta Distribution

The delta distribution was invented as a tool that allows us to
describe point sources. For example, in electrodynamics, an
electron is a point source of the electromagnetic field. Usually,
in electrodynamics, we describe the locations of charges using a
quantity called charge density r(~x). A charge density encodes
the amount of charge per unit volume. Hence, if we integrate
it over some volume, we get the total charge contained in the
volume

total charge inside V =
Z

V
r(~x)dV . (E.1)

Now, how can we describe that there is only a single charge
at one particular location? In other words: what’s the charge
density for a single point charge? We write the charge density
of a point charge as

rp(~x) = qd(~x �~x0) , (E.2)

where q is the charge of the point charge, ~x0 its location and
d(~x � ~x0) the delta distribution. The defining property of the
delta distribution is that any integral over a volume V1 which
contains the location of the point charge, yields exactly q:

total charge inside V1 =
Z

V1
rp(~x)dV =

Z

V1
qd(~x �~x0)dV = q

(E.3)
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but an integral over a different volume V2 which does not con-
tain the point ~x0 yields exactly zero:

total charge inside V2 =
Z

V2
rp(~x)dV =

Z

V2
qd(~x �~x0)dV = 0 .

(E.4)

This means that the d(~x � ~x0) yields zero for all ~x, except for
~x = ~x0.

A good way to understand the delta distribution1 (also known1 The delta distribution is not really
a function in the strict mathematical
sense and therefore a new word
was invented: distributions.

as the Dirac delta) is to recall a simpler but analogous math-
ematical object: the Kronecker delta dij, which is defined as
follows:

dij =

8
<

:
1 if i = j

0 if i 6= j
(E.5)

In matrix form, the Kronecker delta is simply the unit matrix2.2 For example, in two-dimensions

1(2⇥2) =

✓
1 0
0 1

◆
. (E.6)

The Kronecker delta dij is useful because it allows us to pick one
specific term of any sum. For example, let’s consider the sum

3

Â
i=1

aibj = a1bj + a2bj + a3bj (E.7)

and let’s say we want to extract only the second term. We can
do this by multiplying the sum by the Kronecker delta d2i:

3

Â
i=1

d2iaibj = d21|{z}
=0

a1bj + d22|{z}
=1

a2bj + d23|{z}
=0

a3bj = a2bj. (E.8)

In general, we have

3

Â
i=1

dikaibj = akbj. (E.9)
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The delta distribution d(x � y) is a generalization of this idea
for integrals instead of sums.3 This means that we can use the 3 To unclutter the notation, we

restrict ourselves to one-dimension.delta distribution to extract specific terms from any given inte-
gral:4 4 Take note that this implies the

statement made above for f (x) = q:
Z

dxqd(x � y) = q .

Z
dx f (x)d(x � y) = f (y). (E.10)

In words, this means that the delta distribution allows us to
extract exactly one term - the term x = y - from the infinitely
many terms which we sum over as indicated by the integral
sign. For example,

Z
dx f (x)d(x � 2) = f (2) .

Now, one example where the Kronecker delta appears is

∂xi
∂xj

= dij . (E.11)

The derivative of ∂xx = 1, whereas ∂xy = 0 and ∂xz = 0.

Completely analogously, the delta distribution appears as fol-
lows:

∂ f (xi)
∂ f (xj)

= d(xi � xj). (E.12)

The delta distribution is also often introduced by the following
definition:

d(x � y) =

(
• if x = y,
0 if x 6= y

, (E.13)

which is somewhat analogous to the definition of the Kronecker
delta in Eq. E.5. Moreover, when we use a constant function in
Eq. E.10, for example, f (x) = 1, we get the following remarkable
equation: Z

dx1d(x � y) = 1. (E.14)

The thing is that Eq. E.10 tells us that if we have the delta dis-
tribution d(x � y) together with a function under an integral,
the result is the value of the function at y = x. Here, we have a
constant function and its value at y = x is simply 1.
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In words, these properties mean that the delta distribution is
infinitely thin (only non-zero at y = x) and also an infinitely
high function that yields exactly one if we integrate it over all
space.

E.1 Integral Representation of the Delta Distribution

In this appendix we want to derive the integral representation
of the delta distribution

d(x � y) =
1

2p

Z •

�•
ei(x�y)t dt . (E.15)

The two puzzle pieces that we need are the formula for the
Fourier transform of a function f (t)

F(x) =
Z

f (t)e�ixtdt (E.16)

and the formula for the inverse Fourier transform

f (t) =
1

2p

Z
F(x)eixtdx . (E.17)

By combining these two formulas, we find

F(y) =
Z •

�•
f (t)e�iytdt this is Eq. E.16

y

Eq. E.17

=
Z •

�•

1
2p

Z •

�•
F(x)eixtdx e�iyt dt

y

rearranging

=
1

2p

Z •

�•
F(x)dx

Z •

�•
eixt e�iyt dt

y

eae�b = ea�b

=
1

2p

Z •

�•
F(x)dx

Z •

�•
ei(x�y)t dt . (E.18)

The defining property of the delta distribution is

F(y) =
Z •

�•
F(x)d(x � y)dx . (E.19)

If we compare this formula with Eq. E.18, we can read off

d(x � y) =
1

2p

Z •

�•
ei(x�y)t dt , (E.20)

which is exactly what we set out to prove.
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Statistics

F.1 Mean

One of the simplest but at the same time most important statis-
tical tools is the so-called mean. Alternative names for the mean
are: expected value, expectation value or simply the average.

The mean of a quantity is the average value we obtain when we
repeat a given experiment many times. We use it whenever we
are forced to make probabilistic predictions.1 1 Think: flipping a coin, or tossing a

die.

For example, imagine the following situation: A friend offers to
play a game. She flips a coin. If it lands on tails, she pays you
$1.5. But if it lands on heads, you have to pay her $1. By cal-
culating the expectation value for the outcome, you can decide
whether or not you should play this game.

B The probability that a coin lands on heads is p1 = 50%. In
this case, the outcome for you is: x1 = �$1

B Equally, the probability that a coin lands on tails is p2 = 50%.
In this case the outcome for you is: x2 = +$1.5
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The mean is defined as the sum over each outcome times the
probability of the outcome

mean = Â
i

xiPi = x1P1 + x2P2

= �$1 ⇥ 50% + $1.5 ⇥ 50% = $0.25 . (F.1)

So, if you play this game many times, you will make a profit.
On average, you make $0.25 per game. For example, let’s say
you play the game only twice: you win the first time and lose
the second time. For the win in the first game, you get $1.5. For
the loss in the second game, you lose $1. In total, you therefore
win $0.5 in two games. This equals $0.25 per game.

Of course, the system here is so simple that we could have
guessed this without calculating anything. But for more compli-
cated systems the situation quickly becomes messy.

To summarize: the mean is the average of the outcomes if we
play the game many, many times. A common mathematical
notation for the mean of a quantity x looks like this: hxi.
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