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This note explains the basics of quantum mechanics to people who are familiar with
deep learning and neural networks. The key notion of deep learning or representation
learning is embedding, such as word2vec and position embedding in transformer, as well
as matrices operating on the vectors, such as query matrix, key matrix, value matrix,
as well as embed matrix and unembed matrix for input layer and output layer. The
key-value inner product in the softmax probability is also relevant. One may consider
quantum mechanics a linear recurrent network (RNN) with a hidden layer, an embed
layer, and an unembed layer.

1 Quantum mechanics as RNN model

The RNN model is as follows:
Schrödinger hidden layer:

ht+dt = ht +Whtdt

Born unembed layer (output upon measurement):

pt(o) ∝ |⟨ht, qo⟩|2

Bohr embed layer (collapse upon measurement):

ht = qo

The Schrödinger layer tells us how the hidden vector h rotates. It is a residual form
linear RNN or state space model, and the recurrent weight matrix

W = −iH

where H is the matrix version of Hamiltonian, to be explained later. i =
√
−1. The

elements of vectors and matrices are complex numbers in general.
We require H to be symmetric (i.e., Hermitian, H = H∗, H∗ is obtained by transpos-

ing H and taking complex conjugate of each element, a+ ib → a− ib), so that

ht+dt = (I − iHdt)ht
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is a rotation, because

(I − iHdt)(I − iHdt)∗ = (I − iHdt)(I + iH∗dt)

= I +O(dt2)

i.e., (I − iHdt) is orthogonal.
We can also write the Schrödinger layer as

dht

dt
= −iHht

The Born layer is the output layer, and pt(o) is the probability that the observer
observes the state to be at value o upon measurement, and qo is the query vector (or read-
out vector, or embedding of o). You can interpret ⟨ht, qo⟩ as inner product between query
and key vectors. It is a softmax layer except that we use square instead of exponential.
Note that the elements of ht and qo are complex numbers, so | · |2 is complex square.

(qo) are orthogonal vectors for the set of values (o), and they form a linear basis. If
ht is a unit vector under the rotation driven by W = −iH, then

|ht|2 =
∑
o

|⟨ht, qo⟩|2 = 1

i.e., ∑
o

pt(o) = 1

This is why we use complex square in softmax, because the normalizing term
∑

o |⟨ht, qo⟩|2
is constant under rotation.

Upon output o, the hidden vector ht collapses to qo. This is the input layer, where
classical observation o resets the hidden embedding ht to qo.

The hidden layer is the fundamental reality, and the embed and unembed layers
provide interface with classical reality, which is a rendered display.

2 Hamiltonian of classical mechanics

The Newtonian mechanics can be rewritten in terms of Hamiltonian and Lagrangian.
They are scalars, so they are much easier to work with than forces. Also they serve as
stepping stones for generalization to quantum mechanics. The Lagrangian formulation is
more convenient for calculation with special relativity, but the Hamiltonian formulation
reveals the semantics of the mathematical language more clearly. So we shall only study
Hamiltonian.

In classical mechanics, the Hamiltonian is the energy. For a free particle moving at
velocity v,

H =
1

2
mv2 =

p2

2m
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where
p = mv

is the momentum, and 1
2
mv2 is the kinetic energy. For simplicity, we can take m = 1

from now on.
If the particle is not free, we need to add potential energy V (x), where x is position.

For a harmonic oscillator (e.g., a particle attached to a spring), V (x) = 1
2
x2, where

again we omit terms in the coefficient of x2 for simplicity. Then the Hamiltonian for the
harmonic oscillator is

H =
1

2
(p2 + x2)

With Hamiltonian, you can write the differential equation for motion. We do not need
to know the classical equation because quantum equation is more beautiful and in fact
simpler.

3 Promote scalars to matrices

First we promote position x and momentum p to symmetric (i.e., Hermitian) matrices X
and P , so that the Hamiltonian H as a function of X and P also becomes a matrix. For
instance, for the harmonic oscillator,

H =
1

2
(X2 + P 2)

Then we can use H to rotate ht in the Schrödinger layer.
In the Born layer, we can choose to measure either X or P , or any other quantities,

including H. These are called observables. Let us use O to denote an observable. O must
be symmetric (i.e., Hermitian). Then we have the eigen decomposition

O = QDQ∗

where D = diag(di) is diagonal matrix with (di) being the eigenvalues, and Q = (qi) is
orthogonal matrix, with (qi) being the eigenvectors. The vector qi can be considered an
embedding of the value di. Then in the Born layer, the probability the observer observes
O at value di is

pt(di) ∝ |⟨ht, qi⟩|2

If we want to observe energy H, if H = QDQ∗, then the probability the observer
observes H at di is according to the above probability.

Here the index i can be either discrete or continuous. For the harmonic oscillator, H
has a discrete set of eigenvalues. This is the root of quantum phenomena.

4 About matrix or operator

For a square matrix M , we can use (i, i′) to index its elements (Mi,i′), where i can be
discrete, and the number of columns or rows can be infinite. More generally, the index
can also be continuous, e.g., (x, x′).
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The matrix can be considered a verb, so that for a test vector v, which can be con-
sidered a noun, M transforms v to u = Mv.

In the case of continuous index, the element of v can be indexed by a continuous index
such as x, then v = (v(x)) can be considered a test function of x, but we’d better not
forget that v is also a vector whose x-th element is v(x). ThenM transforms v to u = Mv,
and M is an operator that changes the function v(x) to a new function u(x) = (Mv)(x),
where we can also think of Mv as a vector, whose x-th element is u(x). In fact, we can
discretize x to have equal spacing s, so that x is also a discrete index similar to i.

One example of operator is d/dx. For a test function v(x), d/dxv = u, where u is
the derivative of v, i.e., u(x) = v′(x). If we discretize x with spacing s, then u(x) =
(v(x) − v(x − s))/s, so d/dx is a matrix whose diagonal elements are 1/s, and on each
row x, the element in front of the diagonal element is −1/s. All the other elements are 0.

5 Quantization condition

In classical mechanics, the position x and the momentum p are two independent variables.
In quantum mechanics, they become matrices (or operators) X and P respectively. For
matrices, we know that XP is not equal to PX in general. The quantization condition
is a constraint imposed on them:

XP − PX = iI

where I is the identity matrix (or operator).
This is a general condition assumed in quantum physics, replacing the old condition

assumed by Bohr where the orbits of electron are quantized.
One special case is X is a diagonal matrix whose x-th diagonal element is x. Then for

a test vector v, if u = Xv, then u(x) = xv(x), i.e., X is an operator, so that Xv amounts
to multiply x to v(x). Then the eigen decomposition is

X = QDQ∗ = IXI

where the x-column of Q (or I), let us call it qx, is a one-hot vector whose x-th element
is 1. This is the Dirac delta at x, i.e.,

qx = δx

D = X is diagonal, whose x-th element is x. The one-hot vectors form a natural
orthogonal basis I, and we call it the x-basis. In that basis, we can write momentum P
as an operator

P = −i
d

dx

As we discussed before, P can be viewed as a matrix if we discrete x with spacing s.
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For a test function v,

[(XP − PX)v](x) = −i(x
d

dx
v(x)− d

dx
(xv(x)))

= −i(xv′(x)− v(x)− xv′(x))

= iv(x)

Thus XP − PX = iI, satisfying the quantization condition.
In the x-basis, the probability of observing X at x is

pt(x) = |⟨ht, δx⟩|2

where ⟨ht, δx⟩ = ht(x) is the wave function.
For the operator P , let its eigen decomposition be P = QDQ∗, where the eigenvectors

are (qp = eipx), i.e., the x-element of qp is eipx.

Pqp = −i
d

dx
eipx = peipx = pqp

so p is the eigenvalue of the eigenvector qp. The vector qp is the embedding of the
observable value p of the momentum P . Thus the particle has a wave nature.

6 Uncertainty principle and transformation theory

Suppose in general we have eigen decompositions of X and P :

X = QDQ∗

P = Q′D′Q′∗

If Q = Q′, then XP = PX. But we know XP − PX = iI. So Q and Q′ are not the
same. If the observer observes X with certainty according to the Born layer, then the
normalized hidden vector in the Schrödinger layer, h, must be equal to an eigenvector
qi in Q, so that the observer observes value di with probability 1. However, in general,
h = qi is not equal to any eigenvectors of Q′. Thus the observer cannot observe any values
of P with certainty, and the probability the observer observes P at d′j is |⟨qi, q′j⟩|2 < 1.
This is the uncertainty principle.

For an operator M , let u = Mv, where u and v are vectors. We can think of u and v
as nouns, and M as verb. If we change the basis to Q = (qi) with orthogonal vectors (qi),
then v becomes v′ = Q∗v, or v = Qv′, i.e., v becomes v′ viewed in Q. Similarly u = Qu′.
Then Qu′ = MQv′, and u′ = Q∗MQv′ = M ′v′, i.e., viewed in Q, the verb M becomes
Q∗MQ.

In Schrödinger picture, we fix the basis, and we let the state vector ht rotate. In
Heisenberg picture, we fix the state vector ht, and we let the basis rotate. The two
pictures are equivalent, as explained by Dirac’s transformation theory.
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7 Ladder operators

For the harmonic oscillator, the Hamiltonian is

H =
1

2
(X2 + P 2)

with XP − PX = iI. We can factorize H as

H =
1

2
(X + iP )(X − iP )− 1

2

=
1

2
(X − iP )(X + iP ) +

1

2

Define
a = X + iP, a∗ = X − iP

then

H =
1

2
aa∗ − 1

2
=

1

2
a∗a+

1

2

Suppose q is an eigenvector of H with eigenvalue d, so that

Hq = dq

Then

H(a∗q) = (
1

2
a∗a+

1

2
)(a∗q)

=
1

2
a∗aa∗q +

1

2
a∗q

=
1

2
a∗(2H + 1)q +

1

2
a∗q

= a∗dq + a∗q

= (d+ 1)(a∗q)

That is,
q′ = a∗q

is also an eigenvector of H with eigenvalue d+ 1.
Similarly,

q′′ = aq

is also an eigenvector of H with eigenvalue d− 1.
Thus we call (a∗) and (a) the ladder operators. (a∗) is the rising operator and (a) is

the lowering operator. They were invented by Dirac.
Because H = 1

2
(X2+P 2) is positive definite, the eigenvalues of H should be positive.

Let q0 be the eigenvector with the lowest eigenvalue. Then we must have

aq0 = 0
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Otherwise (aq0) will be an eigenvector with an even smaller eigenvalue, which is a
contradiction.

q0 represents the ground state, whose corresponding eigenvalue is 1
2
because

Hq0 = (
1

2
a∗a+

1

2
)q0 =

1

2
q0

Let
qn = (a∗)nq0

then we get all the eigenvectors for n = 0, 1, 2, . . ., and the eigenvalue of qn is (n + 1
2
).

There won’t be eigenvectors with other eigenvalues, because repeatedly applying (a) to
an eigenvector q will always end up at 0 vector, and there is only one ground eigenvector
q0 so that aq0 = 0.

The harmonic oscillator underlies most of the quantum phenomena. (a∗) can also be
considered the creation operator, and (a) the annihilation operator. q0 is the state of
nothing. q1 = a∗q0 is the state of one particle, and q2 = a∗q1 is the state of two particles,
and so on.

8 Quantum field

For classical free field, it can be written as

ϕ(x) =

∫
[a∗(k)e−ikx + a(k)eikx]dk

where a∗(k) and a(k) are conjugate complex scalars.
For quantum field, a∗(k) and a(k) become operators. a∗(k) is the creation operator

that creates a particle with momentum k, and a(k) is the annihilation operator that
annihilates a particle with momentum k. The ground state q0 represents the state of
”nothingness”. Thus the classical wave ϕ(x) can create and annihilate particles in quan-
tum theory.

9 Dirac equation

To connect to Einstein’s special relativity, for a free particle, we need to change H = p2

2

to

H =
√

c2 + p2

=
√

c2 + (p21 + p22 + p23)

i.e., p = (p1, p2, p3) in 3D space. If p2 is small relative to c2, then a first order Taylor

expansion will reduce H to the classical p2

2
.
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To move to quantum, we again change x and p to X and P with XP −PX = iI, e.g.,
P = −i( d

dx1
, d
dx2

, d
dx3

) in the x-basis. But the square root makes things too complicated.
So Dirac wants to write

H =
√

c2 + (P 2
1 + P 2

2 + P 2
3 )

= βc+ α1P1 + α2P2 + α3P3

This is clearly impossible if p’s, β and α’s are scalars. But Dirac realized that one
can make (β, α1, α2, α3) 4× 4 matrices, and then one can accomplish the above feat.

This means ht(x) has four components for each x. This leads to the Dirac equation.

10 What is ht?

ht is the universe’s bookkeeping of an observer’s knowledge or information, i.e., what the
observer knows or does not know. If the observer chooses to observe O = QDQ∗ at time
t, then the universe reveals di to the observer according to probability |⟨ht, qi⟩|2. Then
the universe changes ht to qi which is the embedding of the observed value.
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