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This note is to explain the basics of quantum mechanics to people who are familiar with deep 
learning and neural networks, such as transformer. The key notion of deep learning or 
representation learning is embedding, such as word2vec and position embedding in transformer, 
as well as matrices operating on the vectors, such as query matrix, key matrix, and value matrix. 
The key-value inner product in the softmax probability is also relevant. One may consider 
quantum mechanics a recurrent network (RNN) with a hidden layer and an output layer.  
 
1. Quantum mechanics as RNN model  
 
The RNN model is as follows:  
 
Schrodinger hidden layer:  
 
h_t+dt = h_t + W h_t dt,  
 
Born output layer:  
 
p_t(o) \propto |<h_t, q_o>|^2.  
 
The Schrodinger layer tells us how the hidden vector h rotates. It is a residual form linear RNN 
or open-gate linear LSTM, and the recurrent weight matrix  
 
W = -i H,  
 
where H is the matrix version of Hamiltonian, to be explained later. i = sqrt(-1). The elements of 
vectors and matrices are complex numbers in general.  
 
We require H to be symmetric (i.e., Hermitian, H = H*, H* is obtained by transposing H and 
taking complex conjugate of each element, a + i b à a – i b), so that  
 
h_t+dt = (I – i H dt) h_t  
 
is a rotation, because 
 
(I – i H dt) (I – i H dt)* = (I – i H dt)  (I + i H* dt) = I + O(dt^2),  
 
i.e., (I – i H dt) is orthogonal.  
 
We can also write the Schrodinger layer as  
 



d h_t/dt = - i H h_t.  
 
The Born layer is the output layer, and p_t(o) is the probability that the observer observes the 
state to be at value o, and q_o is the query vector (or read-out vector, or embedding of o). You 
can interpret <h_t, q_o> as inner product between query and key vectors. It is a softmax layer 
except that we use square instead of exponential. Note that the elements of h_t and q_o are 
complex numbers, so |   |^2 is complex square.  
 
(q_o) are orthogonal vectors for the set of values (o), and they form a linear basis. If h_t is a unit 
vector under the rotation driven by W = - i H,  then  
 
|h_t|^2 = sum_o |<h_t, q_o>|^2 = 1,  
 
i.e.,  
 
sum_o p_t(o) = 1.  
 
This is why we use complex square in softmax, because the normalizing term sum_o |<h_t, 
q_o>|^2 is constant under rotation.  
 
2. Hamiltonian of classical mechanics 
 
The Newtonian mechanics can be rewritten in terms of Hamiltonian and Lagrangian. They are 
scalars, so they are much easier to work with than forces. Also they serve as stepping stones for 
generalization to quantum mechanics. The Lagrangian formulation is more convenient for 
calculation with special relativity, but the Hamiltonian formulation reveals the semantics of the 
mathematical language more clearly. So we shall only study Hamiltonian.  
 
In classical mechanics, the Hamiltonian is the energy. For a free particle moving at velocity v,  
 
H = ½ mv^2 = p^2/2m,  
 
where  
 
p = mv  
 
is the momentum, and ½ mv^2 is the kinetic energy. For simplicity, we can take m = 1 from now 
on.  
 
If the particle is not free, we need to add potential energy V(x), where x is position. For a 
harmonic oscillator (e.g., a particle attached to a spring), V(x) = ½ x^2, where again we omit 
terms in the coefficient of x^2 for simplicity. Then the Hamiltonian for the harmonic oscillator is  
  
H = ½ (p^2 + x^2).  
 



With Hamiltonian, you can write the differential equation for motion. We do not need to know 
the classical equation because quantum equation is more beautiful and in fact simpler.  
 
3. Promote scalars to matrices    
 
First we promote position x and momentum p to symmetric (i.e., Hermitian) matrices X and P, so 
that the Hamiltonian H as a function of X and P also becomes a matrix. For instance, for the 
harmonic oscillator,  
 
H = ½ (X^2 + P^2).  
 
Then we can use H to rotate h_t in the Schrodinger layer.  
 
In the Born layer, we can choose to measure either X or P, or any other quantities, including H. 
These are called observables. Let us use O to denote an observable. O must be symmetric (i.e., 
Hermitian). Then we have the eigen decomposition  
 
O = Q D Q*,  
 
where D = diag(d_i) is diagonal matrix with (d_i) being the eigenvalues, and Q = (q_i) is 
orthogonal matrix, with (q_i) being the eigenvectors. The vector q_i can be considered an 
embedding of the value d_i. Then in the Born layer, the probability the observer observes O at 
value d_i is  
 
p_t(d_i) \propto |<h_t, q_i>|^2.  
 
If we want to observe energy H, if H = Q D Q*, then the probability the observer observes H at 
d_i is according to the above probability.  
 
Here the index i can be either discrete or continuous. For the harmonic oscillator, H has a 
discrete set of eigenvalues. This is the root of quantum phenomena.  
 
4. About matrix or operator 
 
For a square matrix M, we can use (i, i’) to index its elements (M_{i, i’}), where i can be 
discrete, and the number of columns or rows can be infinite. More generally, the index can also 
be continuous, e.g., (x, x’).  
 
The matrix can be considered a verb, so that for a test vector v, which can be considered a noun, 
M transforms v to u = M v.  
 
In the case of continuous index, the element of v can be indexed by a continuous index such as x, 
then v = (v(x)) can be considered a test function of x, but we’d better not forget that v is also a 
vector whose x-th element is v(x). Then M transforms v to u = M v, and M is an operator that 
changes the function v(x) to a new function u(x) = (M v)(x), where we can also think of M v as a 



vector, whose x-th element is u(x). In fact, we can discretize x to have equal spacing s, so that x 
is also a discrete index similar to i.  
 
One example of operator is d/dx. For a test function v(x), d/dx v = u, where u is the derivative of 
v, i.e., u(x) = v’(x). If we discretize x with spacing s, then u(x) = (v(x)-v(x-s))/s, so d/dx is a 
matrix whose diagonal elements are 1/s, and on each row x, the element in front of the diagonal 
element is -1/s. All the other elements are 0.  
 
5. Quantization condition 
 
In classical mechanics, the position x and the momentum p are two independent variables. In 
quantum mechanics, they become matrices (or operators) X and P respectively. For matrices, we 
know that XP is not equal to PX in general. The quantization condition is a constraint imposed 
on them:  
 
XP – PX = i I,  
 
where I is the identity matrix (or operator).  
 
This is a general condition assumed in quantum physics, replacing the old condition assumed by 
Bohr where the orbits of electron are quantized.  
 
One special case is X is a diagonal matrix whose x-th diagonal element is x. Then for a test 
vector v, if u = X v, then u(x) = x v(x), i.e., X is an operator, so that X v amounts to multiply x to 
v(x). Then the eigen decomposition is  
 
X = Q D Q* = I X I 
 
where the x-column of Q (or I), let us call it q_x, is a one-hot vector whose x-th element is 1. 
This is the Dirac delta at x, i.e.,  
 
q_x = delta_x.  
 
D = X is diagonal, whose x-th element is x. The one-hot vectors form a natural orthogonal basis 
I, and we call it the x-basis. In that basis, we can write momentum P as an operator  
 
P = -i d/dx.  
 
As we discussed before, P can be viewed as a matrix if we discrete x with spacing s.  
 
For a test function v,  
 
[(XP – PX) v](x) = - i (x d/dx v(x) – d/dx (x v(x)))  
                         = - i (x v’(x) – v(x) - x v’(x)) 
                         =  i v(x).  
 



Thus XP – PX = i I, satisfying the quantization condition.  
 
In the x-basis, the probability of observing X at x is  
 
p_t(x) = |<h_t, delta_x>|^2,  
 
where <h_t, delta_x> = h_t(x) is the wave function.  
 
For the operator P, let its eigen decomposition be P = Q D Q*, where the eigenvectors are (q_p = 
exp(i p x)), i.e., the x-element of q_p is exp(i p x).  
 
P q_p = - i d/dx exp(i p x) = p exp(i p x) = p q_p,  
 
so p is the eigenvalue of the eigenvector q_p. The vector q_p is the embedding of the observable 
value p of the momentum P. Thus the particle has a wave nature.  
 
5. Uncertainty principle and transformation theory 
 
Suppose in general we have eigen decompositions of X and P:   
 
X = Q D Q*,  
P = Q’ D’ Q’*.  
 
If Q = Q’, then XP = PX. But we know XP – PX = i I. So Q and Q’ are not the same. If the 
observer observes X with certainty according to the Born layer, then the normalized hidden 
vector in the Schrodinger layer, h, must be equal to an eigenvector q_i in Q, so that the observer 
observes value d_i with probability 1. However, in general, h = q_i is not equal to any 
eigenvectors of Q’. Thus the observer cannot observe any values of P with certainty, and the 
probability the observer observes P at d’_j is |<q_i, q’_j>|^2 < 1. This is the uncertainty 
principle.  
 
For an operator M, let u = M v, where u and v are vectors. We can think of u and v as nouns, and 
M as verb. If we change the basis to Q = (q_i) with orthogonal vectors (q_i), then v becomes v’ = 
Q* v, or v = Q v’, i.e., v becomes v’ viewed in Q. Similarly u = Q u’. Then Q u’ = M Q v’, and 
u’ = Q* M Q v’ = M’ v’, i.e., viewed in Q, the verb M becomes Q* M Q.  
 
In Schrodinger picture, we fix the basis, and we let the state vector h_t rotate. In Heisenberg 
picture, we fix the state vector h_t, and we let the basis rotate. The two pictures are equivalent, as 
explained by Dirac’s transformation theory.  
 
6. Ladder operators  
 
For the harmonic oscillator, the Hamiltonian is  
 
H = ½ (X^2 + P^2),  
 



with XP – PX = i I. We can factorize H as  
 
H = ½ (X + i P) (X – i P) – ½  

= ½ (X – i P) (X + i P) + ½ .  
 
Define  
 
a = X + i P,  a* = X - i P,  
 
then  
 
H = ½ a a* – ½ = ½ a* a + ½ .  
 
Suppose q is an eigenvector of H with eigenvalue d, so that  
 
H q = d q. 
 
Then  
 
H (a* q) = (½ a* a + ½) (a* q)  
                  = ½ a* a a* q + ½ a* q 
                  = ½ a*(2H + 1) q + ½ a* q  
                  = a* d q + a* q  
                  = (d + 1) (a* q).  
 
That is,  
 
q’ = a* q  
 
is also an eigenvector of H with eigenvalue d+1.  
 
Similarly,  
 
q” = a q 
 
is also an eigenvector of H with eigenvalue d-1.  
 
Thus we call (a*) and (a) the ladder operators. (a*) is the rising operator and (a) is the lowering 
operator. They are invented by Dirac.  
 
Because H = ½ (X^2 + P^2) is positive definite, the eigenvalues of H should be positive. Let q_0 
be the eigenvector with the lowest eigenvalue. Then we must have  
 
a q_0 = 0.  
 



Otherwise (a q_0) will be an eigenvector with an even smaller eigenvalue, which is a 
contradiction.  
 
q_0 represents the ground state, whose corresponding eigenvalue is ½ because  
 
H q_0 = (½ a* a + ½) q_0 = ½ q_0.  
 
Let 
 
q_n = a*^n q_0,  
 
then we get all the eigenvectors for n = 0, 1, 2, …, and the eigenvalue of q_n is (n+1/2). There 
won’t be eigenvectors with other eigenvalues, because repeatedly applying (a) to an eigenvector 
q will always end up at 0 vector, and there is only one ground eigenvector q_0 so that a q_0 = 0.  
 
The harmonic oscillator underlies most of the quantum phenomena. (a*) can also be considered 
the creation operator, and (a) the annihilation operator. q_0 is the state of nothing. q_1 = a* q_0 
is the state of one particle, and q_2 = a* q_1 is the state of two particles, and so on.  
 
7. Quantum field  
 
For classical free field, it can be written as  
 
phi(x) = int [a*(k) e^{-ikx}+ a(k) e^{ikx}] dk,  
 
where a*(k) and a(k) are conjugate complex scalars.  
 
For quantum field, a*(k) and a(k) become operators. a*(k) is the creation operator that creates a 
particle with momentum k, and a(k) is the annihilation operator that annihilates a particle with 
momentum k. The ground state q_0 represents the state of “nothingness”. Thus the classical 
wave phi(x) can create and annihilate particles in quantum theory.  
 
8. Dirac equation 
 
To connect to Einstein's special relativity, for a free particle, we need to change H = p^2/2 to  
 
H = sqrt(c^2 + p^2)  
    = sqrt(c^2 + (p1^2 + p2^2 + p3^2)),  
 
i.e., p = (p1, p2, p3) in 3D space. If p^2 is small relative to c^2, then a first order Taylor 
expansion will reduce H to the classical p^2/2. 
 
To move to quantum, we again change x and p to X and P with XP – PX = i I, e.g., P = -i (d/dx1, 
d/dx2, d/dx3) in the x-basis. But the sqrt makes things too complicated. So Dirac wants to write  
 
H = sqrt(c^2 + (P1^2+P2^2+P3^2)) 



    = beta c + alpha1 P1 + alpha2 P2 + alpha3 P3.  
 
This is clearly impossible if p’s, beta and alpha’s are scalars. But Dirac realized that one can 
make (beta, alpha1, alpha2, alpha3) 4x4 matrices, and then one can accomplish the above feat.  
 
This means h_t(x) has four components for each x. This leads to the Dirac equation.  
 
9. What is h_t?  
 
h_t is the universe’s bookkeeping of an observer’s knowledge or information, i.e., what the 
observer knows or does not know. If the observer chooses to observe O = Q D Q* at time t, then 
the universe reveals d_i to the observer according to probability |<h_t, q_i>|^2. Then the universe 
changes h_t to q_i which is the embedding of the observed value.  
 
 
 
 


