


Riemann’s Zeta Function 



Pure and Applied Mathematics 
A Series of Monographs and Textbooks 

Editors Samuel Eilenberg and Hyman Bars 

Columbia University, New York 

RECENT TITLES 

JAMES W. VICK. Homology Theory : An Introduction to Algebraic Topology 
E. R. KOLCHIN. Differential Algebra and Algebraic Groups 
GERALD J. JANUSZ. Algebraic Number Fields 
A. S. B. HOLLAND. Introduction to the Theory of Entire Functions 
WAYNE ROBERTS AND DALE VARBERG. convex Functions 
A. M. OSTROWSKI. Solution of Equations in Euclidean and Banach Spaces, Third Edition 
of Solution of Equations and Systems of Equations 
H. M. EDWARDS. Riemann’s Zeta Function 
SAMUEL EILENBERG. Automata, Languages, and Machines : Volume A. In preparation: 
Volume B 
MORRIS HIRSCH AND STEPHEN SMALE. Differential Equations, Dynamical Systems, and 
Linear Algebra 
WILHELM MACNUS. Noneuclidean Tesselations and Their Groups 
FRANCOIS TREVES. Basic Linear Partial Differential Equations 
WILLIAM M. BOOTHBY. An Introduction to Differentiable Manifolds and Riemannian 
Geometry 
BRAYTON GRAY. Homotopy Theory : An Introduction to Algebraic Topology 
ROBERT A. ADAMS. Sobolev Spaces 
JOHN J. BENEDETTO. Spectral Synthesis 
D. V. ‘NIDDER. The Heat Equation 
IRVING EZRA SEGAL. Mathematical Cosmology and Extragalactic Astronomy 
J. DIEUDONNB. Treatise on Analysis : Volume 11, enlarged and corrected printing ; 
Volume I V  
WERNER GREUB, STEPHEN HALPERIN, AND RAY VANSTONE. Connections, Curvature, and 
Cohomology : Volume 111, Cohomology of Principal Bundles and Homogeneous Spaces 
I. MARTIN ISAACS. Character Theory of Finite Groups 

In preparation 
JAMES R. BROWN. Ergodic Theory and Topological Dynamics 
CLIFFORD A. TRUESDELL. A First Course in Rational Continuum Mechanics : Volume 1, 
General Concepts 
K. D. STROYAN AND W. A. J. LUXEMBURG. Introduction to the Theory of Infinitesimals 
MELVYN BERGER. Nonlinearity and Functional Analysis : Lectures on Nonlinear Problems 
in Mathematical Analysis 
B. M. PUTTASWAMAIAH A N D  JOHN D. DIXON. Modular Representations of Finite 
Groups 



Riemann’s Zetu Function 

H. M. Edwards 
New York University 

New York, New York 

@ 1974 

ACADEMIC PRESS New York San Francisco London 
A Subsidiary of Harcoiirt Brace Jo,~anovicli, Piiblishers 



COPYRIGHT 
ALL RIGHTS RESERVED. 
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR 
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC 
OR MECHANICAL, INCLUDING PHOTOCOPY. RECORDING, OR ANY 
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT 
PERMISSION IN WRITING FROM THE PUBLISHER. 

1974, BY Harold M. Edwards 

ACADEMIC PRESS, INC. 
111 Fifth Avenue, New York, New York 10003 

United Kingdom Edition published by 
ACADEMIC PRESS, INC. (LONDON) LTD. 
24/28 Oval Road. London NW1 

Library of Congress Cataloging in Publication Data 

AMSWOS) 1970 Subject Classifications: 10-02,lO-03, 
10H05,lOHlS 

Edwards, Harold M 
Riemann’s zeta function. 
(Pure and applied mathematics; a series of monographs 

1.  Numbers, Theory of. 2. Functions, Zeta. 
and textbooks) 

I.  Title. 11. Series. 
QA3P8 [QA241] 510’.8s [512’.73] 73-794 
ISBN 0-12-232750-0 

PRINTED IN THE UNlTEn STATE3 OF AMERICA 

8 0 8 1 8 2  9 8 7 6 5 4 3  



Contents 

PREFACE 
ACKNOWLEDGMENTS 

Chapter 1 Riemann’s Paper 
1.1  
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
1.10 
1.11 
1.12 
1.13 
1.14 
1.15 
1.16 
1.17 
1.18 
1.19 

The Historical Context of the Paper 
The Euler Product Formula 
The Factorial Function 
The Function ((s) 
Values of {(s) 
First Proof of the Functional muation 
Second Proof of the Functional Equation 
The Function [(s) 
The Roots p of [ 
The Product Representation of t ( s )  
The Connection between {(s) and Primes 
Fourier Inversion 
Method for Deriving the Formula for J ( x )  
The Principal Term of J ( x )  
The Term Involving the Roots p 

The Remaining Terms 
The Formula for r ( x )  
The Density d l  
Questions Unresolved by Riemann 

Chapter 2 The Product Formula for [ 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 

Introduction 
Jensen’s Theorem 
A Simple Estimate of I€(s) 1 
The Resulting Estimate of the Roots p 
Convergence of the Product 
Rate of Growth of the Quotient 
Rate of Growth of Even Entire Functions 
The Product Formula for 5 

ix 
xiii 

1 
6 
7 
9 

11  
12 
15 
16 
18 
20 
22 
23 
25 
26 
29 
31 
33 
36 
31 

39 
40 
41 
42 
42 
43 
45 
46 

V 



vi Contents 

Chapter 3 Riemann’s Main Formula 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 

Introduction 
Derivation of von Mangoldt’s Formula for $(n) 
The Basic Integral Formula 
The Density of the Roots 
Proof of von Mangoldt’s Formula for $ ( x )  
Riemann’s Main Formula 
Von Mangoldt’s Proof of Riemann’s Main Formula 
Numerical Evaluation of the Constant 

Chapter 4 The Prime Number Theorem 
4.1 Introduction 
4.2 
4.3 Proof That $ ( x )  x 
4.4 

Hadamard‘s Proof That Re p < 1 for All p 

Proof of the Prime Number Theorem 

Chapter 5 De la Vall6e Poussin’s Theorem 
5.1 Introduction 
5.2 
5.3 
5.4 Other Formulas for ~ ( x )  
5.5 
5.6 

An Improvement of Re p < 1 
De la Vallte Poussin’s Estimate of the Error 

Error Estimates and the Riemann Hypothesis 
A Postscript to de la Vallte Poussin’s Proof 

Chapter 6 Numerical Analysis of the Roots by Euler-Maclaurin 
Summation 

6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 

Introduction 
Euler-Maclaurin Summation 
Evaluation of II by Euler-Maclaurin Summation. Stirling’s Series 
Evaluation of 3 by Euler-Maclaurin Summation 
Techniques for Locating Roots on the Line 
Techniques for Computing the Number of Roots in a Given Range 
Backlund’s Estimate of N ( T )  
Alternative Evaluation of ( ’ ( O ) / S ( O )  

Chapter 7 The Riemann-Siege1 Formula 
7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.8 
7.9 

Introduction 
Basic Derivation of the Formula 
Estimation of the Integral away from the Saddle Point 
First Approximation to the Main Integral 
Higher Order Approximations 
Sample Computations 
Error Estimates 
Speculations on the Genesis of the Riemann Hypothesis 
The Riemann-Siege1 Integral Formula 

48 
50 
54 
56 
58 
61 
62 
66 

68 
70 
72 
76 

78 
79 
81 
84 
88 
91 

96 
98 

106 
114 
119 
127 
132 
134 

136 
137 
141 
145 
148 
155 
162 
164 
166 



Contents vii 

Chapter 8 Large-Scale Computations 
8.1 Introduction 
8.2 Turing’s Method 
8.3 Lehmer’s Phenomenon 
8.4 Computations of Rosser, Yohe, and Schoenfeld 

171 
172 
175 
179 

Chapter 9 The Growth of Zeta as t + co and the Location of Its Zeros 
9.1 
9.2 
9.3 
9.4 
9.5 
9.6 
9.7 
9.8 

Introduction 
Lindelof‘s Estimates and His Hypothesis 
The Three Circles Theorem 
Backlund’s Reformulation of the Lindelof Hypothesis 
The Average Value of S ( t )  Is Zero 
The Bohr-Landau Theorem 
The Average of (((s)/* 
Further Results. Landau’s Notation 0, 0 

Chapter 
10.1 
10.2 
10.3 
10.4 
10.5 
10.6 
10.7 
10.8 
10.9 
10.10 

10 Fourier Analysis 
Invariant Operators on R+ and Their Transforms 
Adjoints and Their Transforms 
A Self-Adjoint Operator with Transform [(s) 
The Functional Equation 
2 ~ ( s )  /s(s - 1) as a Transform 
Fourier Inversion 
Parseval’s Equation 
The Values of r ( - r z )  
Mobius Inversion 
Ramanujan’s Formula 

Chapter 11 Zeros on the Line 
1 1.1 Hardy’s Theorem 
11.2 
11.3 
11.4 Proof of a Lemma 

There Are at Least KT Zeros on the Line 
There Are at Least KT log T Zeros on the Line 

Chapter 
12.1 
12.2 
12.3 
12.4 
12.5 
12.6 
12.7 
12.8 

12 Miscellany 
The Riemann Hypothesis and the Growth of M ( x )  
The Riemann Hypothesis and Farey Series 
Denjoy’s Probabilistic Interpretation of the Riemann Hypothesis 
An Interesting False Conjecture 
Transforms with Zeros on the Line 
Alternative Proof of the Integral Formula 
Tauberian Theorems 
Chebyshev’s Identity 

182 
183 
187 
188 
190 
193 
195 
199 

203 
205 
206 
209 
212 
213 
215 
216 
217 
218 

226 
229 
237 
246 

260 
263 
268 
269 
269 
273 
27 8 
28 1 



... 
Vlll Contents 

12.9 Selberg's Inequality 
12.10 
12.11 

Elementary Proof of the Prime Number Theorem 
Other Zeta Functions. Weil's Theorem 

APPENDIX On the Number of Primes Less Than a Given Magnitude 
(By Bernhard Riemann) 

REFERENCES 
INDEX 

284 
288 
298 

299 

306 
311 



Preface 

My primary objective in this book is to make a point, not about analytic 
number theory, but about the way in which mathematics is and ought to be 
studied. Briefly put, I have tried to say to students of mathematics that 
they should read the classics and beware of secondary sources. 

This is a point which Eric Temple Bell makes repeatedly in his 
biographies of great mathematicians in Men of Mathematics. In case after 
case, Bell points out that the men of whom he writes learned their mathe- 
matics not by studying in school or by reading textbooks, but by going 
straight to the sources and reading the best works of the masters who 
preceded them. It is a point which in most fields of scholarship at most 
times in history would have gone without saying. 

No mathematical work is more clearly a classic than Riemann’s memoir 
Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse, published 
in 1859. Much of the work of many of the great mathematicians since 
Riemann-men like Hadamard, von Mangoldt, de la VallCe Poussin, 
Landau, Hardy, Littlewood, Siegel, Polya, Jensen, Lindelof, Bohr, Selberg, 
Artin, Hecke, to name just a few of the most important-has stemmed 
directly from the ideas contained in this eight-page paper. According to 
legend, the person who acquired the copy of Riemann’s collected works 
from the library of Adolph Hurwitz after Hurwitz’s death found that the 
book would automatically fall open to the page on which the Riemann 
hypothesis was stated. 

Yet it is safe to say both that the dictum “read the classics’’ is not much 
heard among contemporary mathematicians and that few students read 
Ueber die Anzahl . . . today. On the contrary, the mathematics of previ- 
ous generations is generally considered to be unrigorous and nai’ve, stated 
in obscure terms which can be vastly simplified by modem terminology, 
and full of false starts and misstatements which a student would be best 

ix 



X Preface 

advised to avoid. Riemann in particular is avoided because of his reputa- 
tion for lack of rigor (his “Dirichlet principle” is remembered more for 
the fact that Weierstrass pointed out that its proof was inadequate than it 
is for the fact that it was after all correct and that with it Riemann revolu- 
tionized the study of Abelian functions), because of his difficult style, and 
because of a general impression that the valuable parts of his work have 
all been gleaned and incorporated into subsequent more rigorous and more 
readable works. 

These objections are all valid. When Riemann makes an assertion, it 
may be something which the reader can verify himself, it may be something 
which Riemann has proved or intends to prove, it may be something which 
was not proved rigorously until years later, it may be something which is 
still unproved, and, alas, it may be something which is not true unless the 
hypotheses are strengthened. This is especially distressing for a modern 
reader who is trained to digest each statement before going on to the next. 
Moreover, Riemann’s style is extremely difficult. His tragically brief life 
was too occupied with mathematical creativity for him to devote himself 
to elegant exposition or to the polished presentation of all of his results. 
His writing is extremely condensed and Ueber die anzahl . . . in par- 
ticular is simply a resumi! of very extensive researches which he never 
found the time to expound upon at greater length; it is the only work he 
ever published on number theory, although Siegel found much valuable 
new material on number theory in Riemann’s private papers. Finally, it 
is certainly true that most of Riemann’s best ideas have been incorporated 
in later, more readable works. 

Nonetheless, it is just as true that one should read the classics in this 
case as in any other. No secondary source can duplicate Riemann’s insight. 
Riemann was so far ahead of his time that it was 30 years before anyone 
else began really to grasp his ideas-much less to have their own ideas of 
comparable value. In fact, Riemann was so far ahead of his time that the 
results which Siegel found in the private papers were a major contribution 
to the field when they were published in 1932, seventy years after Riemann 
discovered them. Any simplification, paraphrasing, or reworking of 
Riemann’s ideas runs a grave risk of missing an important idea, of obscur- 
ing a point of view which was a source of Riemann’s insight, or of intro- 
ducing new technicalities or side issues which are not of real concern. 
There is no mathematician since Riemann whom I would trust to revise 
his work. 

The perceptive reader will of course have noted the paradox here of a 
secondary source denouncing secondary sources. I might seem to be saying, 
“DO not read this book.” But he will also have seen the answer to the 
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paradox. What I am saying is: Read the classics, not just Riemann, but all 
the major contributions to analytic number theory that I discuss in this 
book. The purpose of a secondary source is to make the primary sources 
accessible to you. If you can read and understand the primary sources with- 
out reading this book, more power to you. If you read this book without 
reading the primary sources you are like a man who carries a sack lunch 
to a banquet. 
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Chapter 1 

Riemann’s Paper 

1.1 THE HISTORICAL CONTEXT OF THE PAPER 

This book is a study of Bernhard Riemann’s epoch-making 8-page paper 
“On the Number of Primes Less Than a Given Magnitude,”t and of the sub- 
sequent developments in the theory which this paper inaugurated. This first 
chapter is an examination and an amplification of the paper itself, and the 
remaining 11 chapters are devoted to some of the work which has been done 
since 1859 on the questions which Riemann left unanswered. 

The theory of which Riemann’s paper is a part had its beginnings in 
Euler’s theorem, proved in 1737, that the sum of the reciprocals of the prime 
numbers 

is a divergent series. This theorem goes beyond Euclid’s ancient theorem that 
there are infinitely many primes [E2] and shows that the primes are rather dense 
in the set of all integers-denser than the squares, for example, in that the sum 
of the reciprocals of the square numbers converges. 

Euler in fact goes beyond the mere statement of the divergence of (1) to 
say that since 1 + 3 + 3 + a + - . . diverges like the logarithm and since the 
series (1) diverges like3 the logarithm of 1 + 3 + 3 + . . , the series (1) 

tThe German title is Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse. 

$This is true by dint of the Euler product formula which gives c ( l / n )  = n(1 - p-1)-1 
( l / n )  = -c log (1 - p- l )  = x(p-1 + +p-2 + 3p-3 + 

An English translation of the paper is given in the Appendix. 

(see Section 1.2); hence log 
.) = ( I /p)  + convergent. 

1 
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must diverge like the log of the log, which Euler writes [E4] as 
1 1 1 1 1  

(2) T + 7 + 7 + 7 + n+ * - = log(log 

It is not clear exactly what Euler understood this equation to mean-if indeed 
he understood it as anything other than a mnemonic-but an obvious in- 
terpretation of it would be 

c UP log(l0gx) ( x  - m>, 
P<X 

(2‘) 
where the left side denotes the sum of l / p  over all primes p less than x and 
where the sign N means that the relative error is arbitrarily small for x suffi- 
ciently large or, what is the same, that the ratio of the two sides approaches 
one as x -+ 00. Now 

so (2’) says that the integral of I/w relative to the measure &/log w diverges 
in the same way as the integral of l/w relative to the point measure which 
assigns weight 1 to primes and weight 0 to all other points. In this sense (2’) 
can be regarded as saying that the density of primes is roughly l/log v. How- 
ever, there is no evidence that Euler thought about the density of primes, and 
his methods were not adequate to prove the formulation (2’) of his statement 
(2). 

Gauss states? in a letter [G2] written in 1849 that he had observed as early 
as 1792 or 1793 that the density of prime numbers appears on the average to 
be l/log x and he says that each new tabulation of primes which was published 
in the ensuing years had tended to confirm his belief in the accuracy of this 
approximation. However, he does not mention Euler’s formula (2) and he 
gives no analytical basis for the approximation, which he presents solely as 
an empirical observation. He gives, in particular, Table I. 

TABLE P 

X Count of primes < x Difference 

500,000 41,556 41,606.4 50.4 
ww000 78,501 78,627.5 126.5 
1,500,000 114,112 1 14,263.1 151.1 
2,000,000 148,883 149,054.8 171.8 
2,500,000 183,016 183,245.0 229.0 
3,000,000 216,745 216,970.6 225.6 

@From Gauss [G2]. 

?For some corroboration of Gauss’s claim see his collected works [G3]. 
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Gauss does not say exactly what he means by the symbol I(dn/log n), 
but the data given in Table 11, taken from D.N. Lehmer [L9], would indicate 
that he means n to be a continuous variable integrated from 2 to x ,  that is, 
j: (dtllog t). Note that Lehmer’s count? of primes, which can safely be as- 
sumed to be accurate, differs from Gauss’s information and that the differ- 
ence is in favor of Gauss’s estimate for the larger values of x.  

TABLE IIO 

X Count of primes < x s: & Difference 
~ ~~~~~ ~ ~~ 

500,000 41,538 41,606 68 
1 ,000,000 78,498 78,628 130 
1,500,000 114,155 114,263 108 
2,000,000 148,933 149,055 122 
2,500,000 183,072 183,245 173 
3,000,000 21 6,816 216,971 155 

OData from Lehmer [L9]. 

Around 1800 Legendre published in his Theorie des Nombres [Lll] an 
empirical formula for the number of primes less than a given value which 
amounted more or less to the same statement, namely, that the density of 
primes is I/log x. Although Legendre made some slight attempt to prove his 
formula, his argument amounts to nothing more than the statement that if 
the density of primes is assumed to have the form 

l/(A,x“‘ + A2xm* + - .) 
where m, > m2 > . . . ~ then m, cannot be positive [because then the sum (1) 
would converge]; hence m, must be “infinitely small” and the density must be 
of the form 

1/(A log x + B). 
He then determines A and B empirically. Legendre’s formula was well known 
in the mathematical world and was mentioned prominently by Abel [A2], 
Dirichlet [D3], and Chebyshev [C2] during the period 1800-1850. 

The first significant results beyond Euler’s were obtained by Chebyshev 
around 1850. Chebyshev proved that the relative error in the approxima- 
tion 

(3) dt 
2 logt x(x> N J - 7  

tLehmer insists on counting 1 as a prime. To conform to common usage his countshave 
therefore been reduced by one in Table 11. 
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where n(x) denotes the number of primes less than x, is less than 11 % for 
all sufficiently large x ;  that is, he provedt that 

for all sufficiently large x.  He proved, moreover, that no approximation of 
Legendre’s form 

W ( X )  N x/(A log x + B) 
can be better than the approximation (3) and that if the ratio of n(x) to 

(&/log t) approaches a limit as.x --, 00, then this limit must be 1. It is 
clear that Chebyshev was attempting to prove that the relative error in the 
approximation (3) approaches zero as x --f 00, but it was not until almost 50 
years later that this theorem, which is known as the “prime number theorem,” 
was proved. Although Chebyshev’s work was published in France well be- 
fore Riemann’s paper, Riemann does not refer to Chebyshev in his paper. 
He does refer to Dirichlet, however, and Dirichlet, who was acquainted with 
Chebyshev (see Chebyshev’s report on his trip to Western Europe [C5, Vol. 
5,  p. 245 and pp. 254-2551) would probably have made Riemann aware of 
Chebyshev’s work. Riemann’s unpublished papers do contain several of 
Chebyshev’s formulas, indicating that he had studied Chebyshev’s work, 
and contain at least one direct reference to Chebyshev (see Fig. 1). 

The real contribution of Riemann’s 1859 paper lay not in its results but 
in its methods. The principal result was a formula$ for n(x) as the sum of an 
infinite series in which (&/log t )  is by far the largest term. However, Rie- 
mann’s proof of this formula was inadequate; in particular, it is by no means 
clear from Riemann’s arguments that the infinite series for n(x) even converges, 
much less that its largest term sx (&/log t )  dominates it for large x. On the 
other hand, Riemann’s methods, which included the study of the function 
((s) as a function of a complex variable, the study of the complex zeros of 
((s), Fourier inversion, Mobius inversion, and the representation of functions 
such as n(x) by “explicit formulas” such as his infinite series, all have had 
important parts in the subsequent development of the theory. 

For the first 30 years after Riemann’s paper was published, there was 

2 

2 

TChebyshev did not state his result in this form. This form can be obtained from his 
estimate of the number of primes between 1 and L (see Chebyshev [C3, Section 61) by fixing I, 
letting L -+ 00, and using st (log t)-1 dt N L/log L. 

$See Section 1.17. Note that Li(x) = (dtllog t )  4- const. 
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Fig. 1. A scrap sheet used to hold some other loose sheets in Riemann’s papers. The 
note seems to prove that Riemann was aware of Chebyshev’s work and intended to send him 
an offprint of his own paper. In all likelihood Riemann was practicing his penmanship in 
forming Roman, rather than German, letters to write a dedication to Chebyshev. (Re- 
produced with the permission of the Niederskhsische Staats- und Universitatsbibliothek, 
Handschriftenabteilung, Gottingen.) 
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virtually no progresst in the field. It was as if it took the mathematical world 
that much time to digest Riemann’s ideas. Then, in aspace of less than 10 
years, Hadamard, von Mangoldt, and de la Vallee Poussin succeeded in prov- 
ing both Riemann’s main formula for a(x) and the prime number theorem 
(3), as well as a number of other related theorems. In all these proofs Rie- 
mann’s ideas were crucial. Since that time there has been no shortage of new 
problems and no shortage of progress in analytic number theory, and much 
of this progress has been inspired by Riemann’s ideas. 

Finally, no discussion of the historical context of Riemann’s paper would 
be complete without a mention of the Riemann hypothesis. In the course of 
the paper, Riemann says that he considers it “very likely” that the complex 
zeros of ((s) all have real part equal to 3, but that he has been unable to prove 
that this is true. This statement, that the zeros have real part t, is now known 
as the “Riemann hypothesis.” The experience of Riemann’s successors with 
the Riemann hypothesis has been the same as Riemann’s-they also consider 
its truth “very likely” and they also have been unable to prove it. Hilbert 
included the problem of proving the Riemann hypothesis in his list [H9] of 
the most important unsolved problems which confronted mathematics in 
1900, and the attempt to solve this problem has occupied the best efforts of 
many of the best mathematicians of the twentieth century. It is now unques- 
tionably the most celebrated problem in mathematics and it continues to at- 
tract the attention of the best mathematicians, not only because it has gone 
unsolved for so long but also because it appears tantalizingly vulnerable and 
because its solution would probably bring to light new techniques of far- 
reaching importance. 

1.2 THE EULER PRODUCT FORMULA 

Riemann takes as his starting point the formula 

of Euler. Here n ranges over all positive integers (n = 1,2, 3, . . .) and p 
ranges over all primes ( p  = 2, 3,  5,7, 11, . . .). This formula, which is now 
known as the “Euler product formula,” results from expanding each of the 

fA major exception to this statement was Mertens’s theorem [MS] of 1874 stating that (2’) 
is true in the strong sense that the difference of the two sides approaches a limit as x -+ 00, 

namely, Euler’s constant plus 2 [log (1 - p-1) + p-11. Another perhaps more natural 

statement of Mertens’s theorem is 
lim log x n (1 - p-1) = e-7, 

P 

x-rn p < x  

where y is Euler’s constant. See, for example, Hardy and Wright [H7]. 
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factors on the right 
= I +  -+++++... 1’ 1 1 

(1 -+) P” W Y  (P’Y 

and observing that their product is therefore a sum of terms of the form 
1 

wherep,, . . . , p ,  are distinct primes and n,, n2, . . . , n, are natural numbers, 
and then using the fundamental theorem of arithmetic (every integer can be 
written in essentially only one way as a product of primes) to conclude that 
this sum is simply C(l/n)”. Euler used this formula principally as a formal 
identity and principally for integer values of s (see, for example, Euler [ES]). 

Dirichlet also based his work? in this field on the Euler product formula. 
Since Dirichlet was one of Riemann’s teachers and since Riemann refers to 
Dirichlet’s work in the first paragraph of his paper, it seems certain that 
Riemann’s use of the Euler product formula was influenced by Dirichlet. 
Dirichlet, unlike Euler, used the formula (1) with s as a real variable and, also 
unlike Euler, he proved$ rigorously that (1) is true for all real s > 1. 

Riemann, as one of the founders of the theory of functions of a complex 
variable, would naturally be expected to consider s as a complex variable. It 
is easy to show that both sides of the Euler product formula converge for 
complex s in the halfplane Re s > 1, but Riemann goes much further and 
shows that even though both sides of (1) diverge for other values of s, the 
function they define is meaningful for all values of s except for a pole at s = 
1. This extension of the range of s requires a few facts about the factorial 
function which will be covered in the next section. 

(p;‘p2‘ . . . fly, 

1.3 THE FACTORIAL FUNCTION 

Euler extended the factorial function n! = n(n - l)(n - 2)  - - . 3.2-  1 
from the natural numbers n to all real numbers greater than -1 by observ- 
ing that7 
(1) .!=I e-xx”dx ( n = 1 , 2 , 3 ,  ...) 

tDirichlet’s major contribution to the theory was his proof that if rn is relatively prime 
ton, then the congruencep = m (mod n) has infinitely many prime solutionsp. He was also 
interested in questions concerning the density of the distribution of primes, but he did not 
have significant success with these questions. 

JDirichlet [D3]. Since the termsp-* are all positive, there is nothing subtle or difficult 
about this proof-it is essentially a reordering of absolutely convergent series-but it has the 
important effect of transforming (1) from a formal identity true for various values of s to 
an analytical formula true for all real s > 1. 

(log l/yp dy (see 
Euler [E3D. 

ca 

YHowever Euler wrote the integral in terms of y = e-x as n! = I: 
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(integration by parts) and by observing that the integral on the right converges 
for noninteger values of n, provided only that n > - 1. Gauss [Gl J introduced 
the notation? 

(2) n(s) = e-xxx dx (s > - 1) 

for Euler's integral on the right side of (1). Thus n(s) is defined for all real 
numbers s greater than - 1, in fact for all complex numbers s in the halfplane 
Re s > - 1, and n(s) = s! whenever s is a natural number. There is another 
representation of n(s) which was'also known? to Euler, namely, 

(3) (N + I>". 1*2. . .N n(s) = lim 
- ( s +  1 X s + 2 ) * . . ( s + N )  

This formula is valid for all s for which (2) defines n(s), that is, for all s in 
the halfplane Re s > -1. On the other hand, it is not difficult to show [use 
formula (4) below] that the limit (3) exists for all values of s, real or complex, 
provided only that the denominator is not zero, that is, provided only that s 
is not a negative integer. In short, formula (3) extends the definition of .II(s) 
to all values of s other than s = - 1 ,  -2, -3, . . , . 

In addition to the fact that the two definitions (2) and (3) of n(s) coincide 
for real s > - 1, the following facts will be used without proof 

(4) 

(5 )  n(s) = sn(s - l), 

(7) 

For the proofs of these facts the reader is referred to any book which deals 
with factorial function or the 'T-function," for example, Edwards [El, pp. 
421-4251. Identity (4) is a simple reformulation of formula (3). Using it one 
can prove that n(s) is an analytic function of the complex variable s which 
has simple poles at s = -1, -2, -3, . . . . It has no zeros. Identity ( 5 )  is 

tunfortunately, Legendre subsequently introduced the notation T(s) for II(s - 1). 
Legendre's reasons for considering (n - l)! instead of n! are obscure (perhaps he felt it was 
more natural to have the first pole occur at s = 0 rather than at s = - 1) but, whatever the 
reason, this notation prevailed in France and, by the end of the nineteenth century, in the 
rest of the world as well. Gauss's original notation appears to me to be much more natural 
and Riemann's use of it gives me a welcome opportunity to reintroduce it. 

#See Euler [E3, ES]. 
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called the “functional equation of the factorial function”; together with 
n(0) = 1 [from (4)] it gives n(n) = n! immediately. Identity (6)  is essentially 
the product formula for the sine; when s = 4 it combines with ( 5 )  to give the 
important value lT(-&) = n’/2. Identity (7) is known as the Legendre relation. 
It is the case n = 2 of a more general identity 

which will not be needed. 

1.4 THE FUNCTION c(s) 

It is interesting to note that Riemann does not speak of the “analytic 
continuation” of the function C beyond the halfplane Re s > 1, but 
speaks rather of finding a formula for it which “remains valid for all s.” This 
indicates that he viewed the problem in terms more analogous to the extension 
of the factorial function by formula (3) of the preceding section than to a 
piece-by-piece extension of the function in the manner that analytic continua- 
tion is customarily taught today. The view of analytic continuation in terms 
of chains of disks and power series convergent in each disk descends from 
Weierstrass and is quite antithetical to Riemann’s basic philosophy that 
analytic functions should be dealt with globally, not locally in terms of 
power series. 

Riemann derives his formula for C n-s which “remains valid for all s” as 
follows. Substitution of nx for x in Euler’s integral for n(s - 1) gives 

J- e - n x X s - l  dx = n(s - 1) 
0 ns 

( s  > 0, n = 1,2, 3 ,  . . .). Riemann sums this over n and uses Z;=, r-”  = 
(r - l ) - I  to obtain? 

(s > 1). Convergence of the improper integral on the left and the validity of 

?This formula, with s = 2n, occurs in a paper [All of Abel which was included in the 
1839 edition of Abel‘s collected works. It seems very likely that Riemann would have been 
aware of this. A very similar formula 

is the point of departure of Chebyshev’s 1848 paper [C2]. 
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the interchange of summation and integration are not difficult to establish. 
Next he considers the contour integral 

+Or (-x)” dx 5,- -7’ 
The limits of integration are intended to indicate a path of integration which 
begins at + 00, moves to the left down the positive real axis, circles the origin 
once in the positive (counterclockwise) direction, and returns up the positive 
real axis to +m. The definition of (-x)” is (-x)” = exp[s log ( -x) ] ,  where 
the definition of log(-x) conforms to the usual definition of log z for z not 
on the negative real axis as the branch which is real for positive real z ;  thus 
(-x)” is not defined on the positive real axis and, strictly speaking, the path 
of integration must be taken to be slightly above the real axis as it descends 
from + 00 to 0 and slightly below the real axis as it goes from 0 back to + 00. 

When this integral is written in the form 

the middle term is 2ni times the average value of (-x)”(ex- l ) - l  on the circle 
1x1 = 6 [because on this circle i do = (dxlx)]. Thus the middle term ap- 
proaches zero as 6 - 0 provided s > 1 [because x(ex - l ) - l  is nonsingular 
near x = 01. The other two terms can then be combined to give 

exp[s(log x - in)] dx 
+..ex - 1 x 6-0 +- (ex - I ) x  

j+- (-x)” .dx = lim 

I +- exp[s(log x + in)] d x  
+ 5 6  (ex - l ) x  

which combines with the previous formula (1) to give 

or, finally, when both sides are multiplied by n(-s)s/2ais and identity (6) of 
the preceding section is used, 

n(-s) +“( -x)”  d x -  1 c 7. -5 -.-- 
2ni + - e x  - 1 x ,,=I n 

In other words, if C(s) is defined by the formula? 

(3) 

?This formula is misstated by the editors of Riemann’s works in the notes; they put 
the factor x on the wrong side of their equation. 
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then, for real values of s greater than one, C(s) is equal to Dirichlet's function 
1 a s )  = 2 7. 

n = 1  n (4) 

However, formula (3) for C(s) "remains valid for all s." In fact, since the 
integral in (3) clearly converges for all values of s, real or complex (because 
ex grows much faster than x8 as x -+ m), and since the function it defines is 
complex analytic (because convergence is uniform on compact domains), 
the function C(s) of (3) is defined and analytic at all points with the possible 
exception of the points s = 1,2,3, . . . , where n(-s) has poles. Now at s = 
2, 3,4, . . . , formula (4) shows that C(s) has no pole [hence the integral in (3) 
must have a zero which cancels the pole of lT(-s) at these points, a fact which 
also follows immediately from Cauchy's theorem], and at s = 1 formula (4) 
shows that lim C(s) = 00 as s 4 1, hence that C(s) has a simple [because the 
pole of n( -s) is simple] pole at s = 1. Thus formula (3) dejines a function [(s) 
which is analytic at all points of the complex s-plane except for a simple pole at 
s = 1. This function coincides with C n-s for real values of s > 1 and in 
fact, by analytic continuation, throughout the halfplane Re s > 1. 

The function C(s) is known as the Riemann zeta function. 

1.5 VALUES OF c(s) 

The function x(ex -I)-' is analytic near x = 0; therefore it can be ex- 
panded as a power series 

valid near zero [in fact valid in the disk 1 x I < 2n which extends to the nearest 
singularities x = f 2 n i  of x(e* - l ) - I ] .  The coefficients B,, of this expansion 
are by definition the Bernoul1inumbers;the first few are easily determined to be 

B, = 1, B1 = -3, 
Bz = &, B3 = 0, 
B4 = -&r, 
B6 = &, 
BB = -+is, 

B5 = 0, 
B7 = 0, 
B9 = 0. 

The odd Bernoulli numbers B2,,+l are all zerot after the first, and the even 
Bernoulli numbers Bzn can be determined successively, but there is no simple 

?This can be proved directly by noting that (-f)(e-r - 1)-1 + ( - t / 2 )  = (-fer + 
t - t)( l  - ef)-1 - (t /2) = t(er - 1)-1 + (t/2), that is, t(er - 1)-1 + (t/2) is an even func- 
tion. For alternative proofs see the note of Section 1.6 and formula (10) of Section 6.2. 
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computational formula for them. (See Euler [E6] for a list of the values of 

When s = -n (n = 0, 1,2, . . .), this expansion (1) can be used in the 
(-1P-l Btn UP to B30.) 

defining equation of [(s) to obtain 

Riemann does not give this formula for C(-n), but he does state the particular 
consequence C(-2) = [(-4) = ( ( -6 )  = . . . = 0. He was surely aware, 
however, not only of the valuest 

[(O) = -1/2, [(-I) = -1/12, [(-3) = 1/120, 
etc., which it implies, but also of the values 

and, in general, 
C(2) = n2/6, C(4) = n4/90, . . . , 

( 2 n ) y -  1)”+1B2” 
C(2n) = 2 - (2n) ! 

which had been found by Euler [E6]. There is no easy way to deduce this 
famous formula of Euler’s from Riemann’s integral formula for [(s) [(3) of 
Section 1.41 and it may well have been this problem of deriving (2) anew which 
led Riemann to the discovery$ of the functional equation of the zeta function 
which is the subject of the next section. 

1.6 FIRST PROOF OF THE FUNCTIONAL EQUATION 

For negative real values of s, Riemann evaluates the integral 

?The editors of Riemann’s collected works give the erroneous value c(0) = 4. 
$Actually the functional equation occurs in Euler’s works [E7] in a slightly different 

form, and it is entirely possible that Riemann found it there. (See also Hardy [H5, pp. 
23-26].) In any case, Euler had nothing but an empirical (!)proof of the functional equation 
and Riemann, in a reversal of his usual role, gave the first rigorous proof of a statement 
which had been made, but not adequately proved, by someone else. 
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as follows. Let D denote the domain in the s-plane which consists of all 
points other than those which lie within E of the positive real axis or within 
E of one of the singularities x = f2nin  of the integrand of (I). Let dD be the 
boundary of D oriented in the usual way. Then, ignoring for the moment the 
fact that D is not compact, Cauchy's theorem gives 

Now one component of this integral is the integral (1) with the orientation 
reversed, whereas the others are integrals over the circles I x f 2nin I = E 
oriented clockwise. Thus when the circles are oriented in the usual counter- 
clockwise sense, (2) becomes 

The integrals over the circles can be evaluated by setting x = 2nin + y for 
IyJ = E to find 

W-3) (-2nin - y)" dy 
2ni Sly,=, eznin+y - 1 2nin + y 

- - -n(-s)(-2nin)"-' 

by the Cauchy integral formula. Summing over all integers n other than 
n = 0 and using (3) then gives 

[(s) = 2 11(-s)[(-2nin>.-l + (2nin)"-11 
n =  I 

m 

= l l ( - ~ ) ( 2 n > . - ~ [ i ~ - ~  + (-i>"-'] C n"-'. 
n= 1 

Finally, using the simplification 

1 - eslos(-I) j 3 - 1  + (-i>"-l = -[eslo9i I 
i 

i 
- _ -  1 tesni/z - .-sni/2 ] = 2 sinT, Sn 

one obtains the desired formula 

(4) [(s) = rI(-s)(2x)"-' 2 sin(sn/2)C(1 - s). 
This relationship between [(s) and C(l - s) is known as the functional equu- 
tion of the zeta function. 

In order to prove rigorously that (4) holds for s < 0, it suffices to modify 
the above argument by letting D, be the intersection of D with the disk 1s I 2 
(2n + l)n and letting n + 00; then the integral (2) splits into two parts, one 
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being an integral over the circle 1s I = (2n + 1)a with the points within E of 
the positive real axis deleted, and the other being an integral whose limit as 
n -+ 00 is the left side of (3). The first of these two parts approaches zero be- 
cause the length of the path of integration is less than 2n(2n + l)n, because 
the factor (ex - l)-l is bounded on the circle I s I = (2n + l)n, and because 
the modulus of (-x)./x on this circle is 1 x [s-' I [(2n + l)z]-'+l for s I -8 
< 0. Thus the second part, which by Cauchy's theorem is the negative of the 
first part, also approaches zero, which implies (3) and hence (4). 

This completes the proof of the functional equation (4) in the case s < 0. 
However, both sides of (4) are analytic functions of s, so this suffices to prove 
(4) for all values of s [except for s = 0, 1,2, . . . , where? one or more of 
the terms of (4) have poles]. 

For s = 1 - 2n the functional equation plus the identity 

4(-(2n - 1)) = (-l>z.-1Bz, 
2n 

of the previous section gives 

(-- I l z n - 1  Bzn = n(2n - 1 )(27r)-zn2(- 1 ~ ~ ( 2 n )  2n 
and hence Euler's famous formula for Con) [(2) of Section 1.51. 

(7) of Section 1.31 to rewrite the functional equation (4) in the form 
Riemann uses two of the basic identities of the factorial function [(6) and 

and hence in the form 

In words, then, the function on the left side of (5)  is unchanged by the substitu- 
tion s = 1 - s. 

Riemann appears to consider this symmetrical statement (5) as the natural 
statement of the functional equation, because he givest an alternative proof 

?When s = 2n + 1, the fact that &) has no pole at 2n + 1 implies, since ll has a pole 
at -2n - 1 and sin(sn/2) has no zero at 2n + 1, that C( -2n) = 0 and hence, by the formula 
for ((-2n) of the preceding section, that the odd Bernoulli numbers B3, Bs, B,, . . . are all 
zero. 

$Since the second proof renders the first proof wholly unnecessary, one may ask why 
Riemann included the first proof at all. Perhaps the first proof shows the argument by which 
he originally discovered the functional equation or perhaps it exhibits some propertieswhich 
were important in his understanding of C. 
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which exhibits this symmetry in a more satisfactory way. This second proof 
is given in the next section. 

1.7 SECOND PROOF OF THE FUNCTIONAL EQUATION 

Riemann first observes that the change of variable x = n2nx in Euler's 
integral for n ( s / 2  - 1) gives 

Thus summation over n gives 
m 

(1) 

where? ~ ( x )  = x;= exp(-n2nx). The symmetrical form of the functional 
equation is the statement that the function (1) is unchanged by the substitu- 
tion s = 1 - s. To prove directly that the integral on the right side of ( 1 )  is 
unchanged by this substitution Riemann uses the functional equation of the 
thetafunction in a form taken from Jacobi,S namely, in the form 

n($ - l)n-"/'C(s) = j W ( X ) X " I 2  - dx ( R e s >  l), 
0 X 

[Since ~ ( x )  approaches zero very rapidly as x - 00, this shows in particular 
that ~ ( x )  is like $ ( x - ' / ~  - 1) for x near zero and hence that the integral on the 
right side of (1) is convergent for s > 1. Once this has been established, the 
validity of (1) for s > 1 can be proved by an elementary argument using 
absolute convergence to justify the interchange of summation and integra- 
tion.] Using (2), Riemann reformulates the integral on the right side of (1) as 

?This function y(x) has nothing whatsoever to do with the function ~ ( x )  which appears 
in Chapter 3. 

2Riemann refers to Section 65 of Jacobi's treatise "Fundmenta Nova Theoriae Func- 
tionum Ellipticarum." Although the needed formula is not given explicitly there, Jacobi in 
another place [Jl] shows how the needed formula follows from formula (6) of Section 65. 
Jacobi attributes the formula to Poisson. For a proof of the formula see Section 10.4. 
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Now 1- x-" (dx/x) = l /a for a > 0 so the second integral is 
1 -'I=- 1 " 2 (s - 1112 s/2 s(s - 1) 

for s > 1. Thus for s > 1 the formula 

(3) 

holds. But, because ~ ( x )  decreases more rapidly than any power of x as 
x -, 00, the integral in this formula converges for all? s. Since both sides are 
analytic, the same equation holds for all s. Because the right side is obviously 
unchanged by the substitution s = 1 - s, this proves the functional equation 
of the zeta function. 

1.8 THE FUNCTION &) 

The function n((s/2) - l ) ~ - " / ~  C(s), which occurs in the symmetrical form 
of the functional equation, has poles at s = 0 and s = 1. [This follows im- 
mediately from (3) of the preceding section.] Riemann multiplies it by 
s(s - 1)/2 and defined 

(1) t ( s )  = rI(s/2)(s - l)a-"/2 C(s). 

Then t ( s )  is an entire function-that is, an analytic function of s which is 
defined for all values of s-and the functional equation of the zeta function 
is equivalent to t(s) = t ( l  - s). 

Riemann next derives the following representation of t(s). Equation (3) 
of the preceding section gives 

1 dx +2 s, r'(")[Jz + (1 - s)/2 
s(l - s) xs/2 x ( l  - s v 2  

?Note that this gives, therefore, another formula for f(s) which is "valid for all s" other 
than s = 0, 1 ; that is, it gives an alternative proof of the fact that C(s) can be analytically 
continued. 

$Actually Riemann uses the letter C to denote the function which it is now customary to 
denote by 6, namely, the function E(t)  = t(f + it), where C is defined as above. I follow 
Landau, and almost all subsequent writers, in rejecting Riemann's change of variable 
s = f. + it in formula (1) as being confusing. In fact, there is reason to believe that Riemann 
himself was confused by it [see remarks concerning ((0) in Section 1.161. 
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= “i- 1 3- T Y ( ’ ) [ S  s(l - s) 2 + i-41 2 

1 
= 7 + y(1) - y’( l ) [ -2  - 21 

+Jm 1 dx [ X ~ / ~ ~ ’ ( X ) ]  ( 2 ~ ( “ - ” ’ ~  + 2x-”j2) dx. 

Now differentiation of 
2y(x) + 1 = x-’”[2y(l /x)  + I] 

3 + w(1)  + 4!” = 0, 

easily gives 

and using this puts the formula in the final form 

or, as Riemann writes it, 

If cosh[& - 3) log x]  is expanded in the usual power series cosh y = i(.Y + 
e-’) = C y2”/(2n)!, formula (2) shows that 

Riemann states that this series representation of &) as an even function of 
s - + ‘‘converges very rapidly,” but he gives no explicit estimates and he does 
not say what role this series plays in the assertions which he makes next. 

The two paragraphs which follow the formula (2) for &) are the most 
difficult portion of Riemann’s paper. Their goal is essentially to prove that 
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c(s) can be expanded as an infinite product 

where p rangest over the roots of the equation &(p) = 0. Now any polynomial 
p(s) can be expanded as a finite product p(s) = p(0) TI, [ 1 - (s/p)], where p 
ranges over the roots of the equation p ( p )  = 0 [except that the product for- 
mula for p(s) is slightly different if p(0) = 01; hence the product formula (4) 
states that &(s) is like a polynomial of inznite degree. (Similarly, Euler thought 
of sin x as a “polynomial of infinite degree” when he conjectured, and finally 
proved, the formula sinnx = nx JJ;p=l [l - ( ~ / n ) ~ ] ] . )  On the other hand, the 
statement that the series (3) converges “very rapidly” is also a statement that 
t(s) is like a polynomial of infinite degree-a finite number of terms gives a 
very good approximation in any finite part of the plane. Thus there is some 
relationship between the series (3) and the product formula (4)-in fact it is 
precisely the rapid decrease of the coefficients a, which Hadamard (in 1893) 
proved was necessary and sufficient for the validity of the product formula- 
but the steps of the argument by which Riemann went from the one to the 
other are obscure, to say the very least. 

The next section contains a discussion of the distribution of the roots p 
oft@) = 0, and the following section returns to the discussion of the product 
formula for t(s). 

1.9 THE ROOTS p OF 6 

In order to prove the convergence of the product t(s) = c(O)n, [l - 
(sip)], Riemann needed, of course, to investigate the distribution of the roots 
p of &(p) = 0. He begins by observing that the Euler product formula 

g(s) = JJ (1 - p-”-1 (Res > 1) 
P 

shows immediately that [(s) has no zeros in the halfplane Re s > 1 (because 
a convergent infinite product can be zero only if one of its factors is zero). 
Since &s) = II(s/2)(s - l)~-~’/”[(s) and since the factors other than [(s) 
have only the simple zero at s = 1, it follows that none of the roots p of &@) = 
0 lie in the halfplane Re s > 1. Since 1 - p is a root if and only if p is, this 
implies that none of the roots lie in the halfplane Re s < 0 either, and hence 
that all the roots p of C(p) = 0 lie in the strip 0 5 Re p 2 1. 

He then goes on to say that the number of roots p whose imaginary parts 

tHere, and in the many formulas in the remainder of the book which involve sums or 
products over the roots p ,  it is understood that multiple roots-if there are any-are to be 
counted with multiplicities. 
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lie between 0 and T is approximately 
T T T  -log- - - 2R 2R 2R 

and that the relative? error in this approximation is of the order of magnitude 
1/T. His “proof” of this is simply to say that the number of roots in this re- 
gion is equal to the integral of c’(s) ds/2ni&) around the boundary of the rec- 
tangle {O I Re s I 1, 0 I Im s I T }  and that this integral is equal to (1) 
with a relative error T-I. Unfortunately he gives no hint whatsoever of the 
method he used to estimate the integral. He himself was a master at evaluating 
and estimating definite integrals (see, for example, Section 1.14 or 7.4) and it 
is quite possible that he assumed that his readers would be able to carry out 
their own estimation of this integral, but if so he was wrong; it was not until 
1905 that von Mangoldt succeeded in proving that Riemann’s estimate was 
correct (see Section 6.7). 

Riemann’s next statement is even more baffling. He states that the number 
of roots on the line Re s = f is also “about” (1). He does not make precise 
the sense in which this approximation is true, but it is generally assumed that 
he meant that the relative error in the approximation of the number of zeros 
of r(i + it) for 0 I t I T by (1) approaches zero as T--+ 00. He gives 
no indication of a proof at all, and no one since Riemann has been able to 
prove (or disprove) this statement. It was proved in 1914 that <(J + it) has 
infinitely many real roots (Hardy [H3]), in 1921 that the number of real 
roots between 0 and T is at least KT for some positive constant K and all 
sufficiently large T (Hardy and Littlewood [H6]), in 1942 that this number is 
in fact at least KT log T for some positive K and all large T (Selberg, [Sl]), 
and in 1914 that the number of complex roots t of r(J + it) = 0 in the range 
(0 I Re 1 I T, --E I Im t I r }  is equal, for any E > 0, to (1) with a relative 
error which approaches zero as T - 00 (Bohr and Landau, [B8]). However, 
these partial results are still far from Riemann’s statement. We can only guess 
what lay behind this statement (see Siege1 [S4 p. 671, Titchmarsh [TS, pp. 213- 
2141, or Section 7.8 of this book), but we do know that it led Riemann to con- 
jecture an even stronger statement, namely, that all the roots lie on Re s = $. 

This is of course the famous “Riemann hypothesis.” He says he considers 
it “very likely” that the roots all do lie on Re s = 4, but says that he was not 
able to prove it (which would seem to imply, incidentally, that he did feel he 
had rigorous proofs of the preceding two statements). Since it is not necessary 
for his main goal, which is the proof of his formula for the number of primes 
less than a given magnitude, he simply leaves the matter there-where it has 
remained ever since-and goes on to the product formula for r(s). 

TTitchmarsh, in an unfortunate lapse which he did not catch in the 21 years between the 
publication of his two books on the zeta function, failed to realize that Riemann meant the 
relative error and believed that Riemann had made a mistake at this point. See Titchmarsh 
[T8, p. 2131. 
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1.10 THE PRODUCT REPRESENTATION OF c(s) 

A recurrent theme in Riemann’s work is the globai characterization of 
analytic functions by their singuiarities.? Since the function log {(s) has loga- 
rithmic singularities at the roots p of &) and no other singularities, it has the 
same singularities as the formal sum 

Thus if this sum converges and if the function it defines is in some sense as 
well behaved near 00 as log t(s) is, then it should follow that the sum (1) 
differs from log &) by at most an additive constant; setting s = 0 gives the 
value log c(0) for this constant, and hence exponentiation gives 

as desired. This is essentially the proof of the product formula (2) which 
Riemann sketches. 

There are two problems associated with the sum (1). The first is the deter- 
mination of the imaginary parts of the logarithms it contains. Riemann passes 
over this point without comment and, indeed, it is not a very serious problem. 
For any fixed s the ambiguity in the imaginary part of log[l - (s/p)] disap- 
pears for large p ;  hence the sum (1) is defined except for a (finite) multiple of 
2ai which drops out when one exponentiates (2). Furthermore, one can ignore 
the imaginary parts altogether; the real parts of the terms of (1) are unambig- 
uously defined and their sum is a harmonic function which differs from Re 
log r(s)  by a harmonic function without singularities, and if this difference 
function can be shown to be constant, it will follow that its harmonic con- 
jugate is constant also. 

The second problem associated with the sum (1) is its convergence. It is 
in fact a conditionally convergent sum, and the order of the series must be 
specified in order for the sum to be well determined. Roughly speaking the 
natural order for the terms would be the order of increasing I p 1, or perhaps 
of increasing I p - + 1, but specifically it suffices merely to stipulate that each 

?See, for example, the Inauguraldissertation, especially article 20 ( Werke, pp. 37-39) or 
part 3 of the introduction to the article “Theorie der Abel’schen Functionen,” which is 
entitled “Determination of a function of a complex variable by boundary values and 
singularities [Rl].” See also Riemann’s introduction to Paper XI of the collected works, 
where he writes “. , . our method, which is based on the determination of functions by means 
of their singularities (Umtetigkeiten und Unendlichwerden) . . . [Rl].” Finally, see Ahlfors 
[A3], the section at the end entitled “Riemann’s point of view.” 
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term be paired with its “twin” p tj 1 - p, 

(3) 

because this sum converges absolutely. The proof of the absolute convergence 
of (3) is roughly as follows. 

To prove the absolute convergence of 

it suffices to prove the absolute convergence of 

(In other words, to prove the absolute convergence of a product n ( 1  + aJ, 
it suffices to prove the absolute convergence of the sum c ap) But the estimate 
of the distribution of the roots p given in the preceding section indicates that 
their density is roughly 

Hence 

or, in short, the terms are like T-2 and their density is like log T so their sum 
converges. As will be seen in Chapter 2, the only serious difficulty in making 
this into a rigorous proof of the absolute convergence of (3) is the proof that 
the vertical density of the roots p is in some sense a constant times log(T/2n). 
Riemann merely states this fact without proof. 

Riemann then goes on to say that the function defined by (3) grows only 
as fast as s log s for large s; hence, because it differs from log r(s) by an even 
function of s - f [and because log r(s) also grows like s log s for large s], this 
difference must be constant because it can contain no terms in (s - i)2, 
(s - 4)4, . . . . It will be shown in Chapter 2 that the steps in this argument 
can all be filled in more or less as Riemann indicates, but it must be admitted 
that Riemann’s sketch is so abbreviated as to make it virtually useless in 
constructing a proof of (2). 

The first proof of the product representation (2) of r(s) was published by 
Hadamard [HI] in 1893. 
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1.11 THE CONNECTION BETWEEN <(s) AND PRIMES 

The essence of the relationship between C(s) and prime numbers is the 
Euler product formula 

in which the product on the right is over all prime numbersp. Taking the log 
of both sides and using the series log(1 - x) = -x - ax2 - 3x3 - - - 
puts this in the form 

log [(s) = C [C (l/n)p-"'] 
P S  

(Re s > 1). 

Since the double series on the right is absolutely convergent for Re s > 1, the 
order of summation is unimportant and the sum can be written simply 

(2) 

It will be convenient in what follows to write this sum as a Stieltjes integral 

(3) 

where J(x) ist the function which begins at 0 for x = 0 and increases by a 
jump of 1 at primes p, by a jump of 4- at prime squares p 2 ,  by a jump of 3 at 
prime cubes, etc. As is usual in the theory of Stieltjes integrals, the value of 
J(x) at each jump is defined to be halfway between its new value and its old 
value. Thus J(x) is zero for 0 I x < 2, is 3 for x = 2, is 1 for 2 < x < 3, is 
14- for x = 3, is 2 for 3 < x < 4, is 24- for x = 4, is 26 for 4 < x < 5, is 3 
for x = 5,  is 34 for 5 < x < 7, etc. A formula for J(x) is 

log C(s) = C C (l/n)p-"" (Re s > 1). 

log C(s) = j, x - ~  dJ(x )  (Re s > 1) 

Riemann did not, of course, have the vocabulary of Stieltjes integration 
available to him, and he stated (3) in the slightly different form 

(4) log ((s) = s I w J ( x ) x - s - l  dx 

which can be obtained from (3) by integration by parts. [As x 10, clearly 
x-"J(x) = 0 because J(x) = 0 for x < 2. On the other hand, J(x) < x for 
all x, so x-"J(x) 4 0 as x ----* 00 for Re s > I .] The integral in (4) can be con- 

TRiemann denotes this functionf(x), and most other writers denote it II(x). Since f ( x )  
now is commonly used to denote a generic function and since ll(x)in this bookdenotes the 
factorial function, I have taken the liberty of introducing a new notation J(x)  for this 
function. 

(Re s > 1) 
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sidered to be an ordinary Riemann integral and the formula itself can be 
derived without using Stieltjes integration by setting 

m 

p-”’ = s x-~- ’  dx (Re s > 1) 
P“ 

in (2), which is Riemann’s derivation of (4). 

product formula (1) which is the basic idea connecting c(s) and primes. 
Formulas (2)-(4) should all be thought of as minor variations of the Euler 

1.12 FOURIER INVERSION 

Riemann was a master of Fourier analysis and his work in developing 
this theory must certainly be counted among his greatest contributions to 
mathematics. It is not surprising, therefore, that he immediately applies 
Fourier inversion to the formula 

to conclude 

= ~ ~ J ( X ) X - ’ - ~  dx (Re s > 1) 
S 

ds 
2ni a - i m  S 

1 a + i m  
J(x) = - log l(s)x. - (a > 1). 

Then using an alternative formula for log ((s), he obtains an alternative for- 
mula for J(x) which is the main result of the paper. 

[The improper integral in (2) is only conditionally convergent and an 
“order of summation” must be specified. Here it is understood that the in- 
tegral in (2) means the limit as T - 00 of the integral over the vertical line 
segment from a - iT to a + iT. More generally, conditionally convergent 
integrals and series are very common in Fourier analysis, and it is always 
understood that such integrals and series are summed in their ‘‘natural order”; 
for example, 

N 
means lim C cneinx, 

means lim jT f( y ) e i Y *  dy, 

N-m n=-N 
5 c,,eLx 

n=-m 

Jm f( y)e‘YX dy 
- m  T-m -T 

etc. This is analogous to the convention that discontinuous functions such 
as J(x) assume the middle value J(x) = f[J(x - E )  + J(x + E ) ]  at any jump 
x, that divergent integrals such as Li(x) (see Section 1.14 below) are taken to 
mean the Cauchy principal value, and that the product TI [l - (s/p)] is or- 
dered in such a way as to pair p with 1 - p, or, later on, ordered by I Im p I.] 
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In deriving (2) from (1) Riemann makes use of “Fourier’s theorem,” by 
which he meanst the Fourier inversion formula 

(3) 

Otherwise stated, “Fourier’s theorem” is the statement that in order to write 
a given function $(x) as a superposition of exponentials 

$(x)  = Jm a(p)eipx dp, 

it is necessary and sufficient (under suitable conditions) that the “coefficients” 
@(p) of the expansion be defined by 

-m 

This statement of Fourier’s theorem brings out the analogy with Fourier 
series 

m 

f ( x )  = C a,eInx a, = - J2z f(l)e-‘”l  d l ,  2n 0 -m 

and in fact theorem (3) for Fourier integrals follows formally from a passage 
to the limit in the theorem for Fourier series. 

To derive (2) from (l), let s = a + ip, where a is a constant a > 1 and p 
is a real variable, let l = log x,  and let $(x) = 2 ~ J ( e ” ) e - ~ ~ .  Then (1) becomes 

and when this function is taken to be @(p), Fourier’s theorem gives 

from which (2) follows immediately. 
Riemann completely ignores the question of the applicability of Fourier’s 

theorem to the function J(e“)e-“” and states simply that (2) holds in “com- 
plete generality.” However, J(ex)e-ox is a very well-behaved function-it has 
simple well-behaved jumps, it is identically zero for x < 0, and it goes to zero 

tSee Riemann [R2, p. 861. 
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faster than e-(a-llx as x -+ w-and the very simplest theorems? on Fourier 
integrals suffice to prove rigorously Riemann’s statement that (2) holds in 
complete generality. 

1.13 METHOD FOR DERIVING THE FORMULA FOR J(x) 

The two formulas for &), namely, 

combine to give 

log&) = log<(s> - 1ogn - + s log a - log(s - 1) (3 2 

= log t(0) + c log( 1 - ;) - log n(+) 
P 

S + - log n - log(s - 1). 2 

Riemann’s formula for J(x),  which is the main result of his paper, is obtained 
essentially by substituting this formula for log c(s) in the formula 

of the preceding section and integrating termwise. However, because a direct 
substitution leads to divergent integrals [the term (s/2) log a, for example, 
leads to an integral which is a constant times (i)-’ I xs ds = e“ I e‘“ lo* * du 
which oscillates and does not converge even conditionally], Riemann first 
integrates by parts to obtain . 
before substituting the above expression for log C(s). The validity of the in- 
tegration by parts by which (1) is obtained depends merely on showing that 

tSee, for example, Taylor [T2]. The particular form of Fourier inversion that Riemann 
uses here-which is essentially Fourier analysis on the multiplicative group of positive reals 
rather than on the additive group of all real numbers-is often called Mellin inversion. 
Riemann’s work precedes that of Mellin by 40 years. 
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which follows easily from the inequality 

(3) 5 C C (1 /n)p-.. = log ( ( a )  = const 

because this shows that the numerator in (2) is bounded while the denomina- 
tor goes to infinity. 

The substitution of 

log ((s) = log t(0) + c log( 1 - ;) - log .(a) 
P 

+Slogs-log(s- 1) 2 
into (1) expresses J(x) as a sum of five terms (the integral of a finite sum is 
always the sum of the integrals provided the latter converge) and the deri- 
vation of Riemann’s formula for J(x)  depends now on the evaluation of these 
five definite integrals. 

It should be noted that for any fixed s there is some ambiguity in the 
definition of log[l - (s/p)] for those roots p which are not large relative to s. 
In order to remove this ambiguity in Re s > 1 let log[l - (s/p)] be defined 
to be log@ - p )  - log(-p); this is meaningful because nonet of the p’s 
are real and greater than or equal to 0. In this way log[ 1 - (s/p)] is unambig- 
uously defined throughout Re s > 1 and, in particular, on the path of in- 
tegration Re s = a > 1. 

1.14 THE PRINCIPAL TERM OF J(x) 

It will be seen below that the principal term in the formula for J(x)  is the 
term corresponding to the term -log(s - 1) of the expansion of log ( (8) .  
This term is 

ZZK 1 Sn-ioo E[ d log(s s - l)]x’ds 1 (a > 1). 

Riemann shows that for x > 1 the value of this definite integral is the loga- 
rithmic integral 

?See Section 2.3, or observe that theseries 1 - 2-8 + 3-5 - 4-s + 5-s - . . - converges 
to a positive number for s > 0 and that this number is 

{(S) - 2.2-S(1 + 2-J + 3-8 + * * *) = (1 - 2l-’){(S). 
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that is, it is the Cauchy principal value of the divergent integral r(dt/log t). 
His argument is as follows: 

Fix x 1 and consider the function of B defined by 

so that the desired number is F(1). The definition of I;@) can be extended to 
all real or complex numbers other than real numbers B 5 0 by taking a > 
Re j.3 and defining log[(s/B) - 11 to be log@ - B) - log 8, where, as usual, 
log z is defined for all z other than real z 5 0 by the condition that it be real 
for real z > 0. The integral F(B) converges absolutely because 

is integrable while xs oscillates on the line of integration. Because 

differentiation under the integral sign and integration by parts give 

This last integral can be evaluated by applying Fourier inversion to the for- 
mula 

to obtain 

from which it follows that 

provided a > Re p. Since x > 1 by assumption, this gives F'(B) = xfl/B. 
Now let C +  denote the contour in the complex t-plane which consists of 

the line segment from 0 to 1 - e (where e is a small positive number), followed 
by the semicircle in the upper halfplane Im t 2 0 from 1 - e to 1 + c, fol- 
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lowed by the line segment from 1 + 6 to x, and let 
t E -  1 

G(B) = i--dt. 
c+ ogt 

Then 
t E  

G’(B) = dt = lo = F’(B). 
C+ 

Now G(B) is defined and analytic for Re 8 > 0 (if Re B < 0, then the integral 
which defines G diverges at t = 0) as is F @ ) ;  hence they differ by a constant 
(which might depend on x) throughout Re B > 0. Riemann states that this 
constant can be evaluated by holding Re /3 fixed and letting Im B - +m 
in both F(B) and G(B), but he does not carry out this evaluation. 

To evaluate the limit of G(B), set ~3 = n + iz, where c is fixed and 
z + 00. The’change of variable t = eu, u = log t puts G(B) in the form 

eS‘ ib + loax e,9u 

ib-m u ib+loax U 
- d u +  r x  -du,  

where the path of integration has been altered slightly using Cauchy’s theo- 
rem. The changes of variable u = is + v in the first integral and u = log x + 
iw in the second put this in the form 

6 e-7w a i w  
dw . e 

logx + iw G(B) = d6ue-d7 

Both integrals in this expression approach zero as z -+ 00, the first because 
e-d7 -+ 0 and the second because e-rw -+ 0 except at w = 0. Thus the limit 
ofG(B) as z -, 00 is zero. (Note, however, that this argument would not be 
valid if C+ were changed to follow the lower semicircle because then e+ 
would be replaced by ear and e-7w would be replaced by erw.) 

To evaluate the limit of F(B) let 

where a > Re /3 and where log[l - (s /B) ]  is defined for all complex numbers 
B other than real numbers B 2 0 to be log@ - B) - log(-/3). The difference 
H(B) - F(B) is defined for all complex numbers B other than the real axis, 
and in the upper halfplane Im B > 0 it is equal to 

- 1 1 a+im d in - - - I -[-I.. ds 2nilogx a-i-ds s 
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by the case p = 0 of (2).  Thus F@) = H(B) + in throughout the upper 
halfplane, and it will suffice to evaluate the limit of H(B) as z - 00 (/3 = CT + 
iz). Now 1 - (s//3) --t 1 ; hence its log goes to  zero and it appears plausible 
therefore that H(B) also goes to zero. This can be proved by carrying out the 
differentiation 

multiplying by xs &}2ni, and integrating from a - ioo to a + ioo (in the usual 
sense, namely, the limit as T - 00 of the integral from a - iT to a + i n .  
Because of the s2 in the denominator of the first integral, it is not difficolt to 
show, using the Lebesgue bounded convergence theorem (see Edwards [El]), 
that the limit of this integral as z -+ 00 is the integral of the limit, namely, 
zero. The remaining two integrals can be evaluated using (2) to  find they are 
xa/B - x0/B = (9 - l)/B. Since the numerator is bounded and I /3 I -, 00, 
this approaches zero; hence H(B) approaches zero and F(B) therefore ap- 
proaches in. Hence F(B) = G(j9) + in in the halfplane Re B > 0. Thus the 
desired number F(1) is 

where the second integral is over the semicircle in the upper halfplane; as 
6.1 0, the quotient ( t  - l)/log t approaches 1 along this semicircle, and 
hence the integral approaches JiT: dt/(t - 1) = -in. Thus the limit as E J 0 
of the above formula is 

F(1) = Li(x) 
as was to be shown. 

1.15 THE TERM INVOLVING THE ROOTS p 

Consider next the term in the formula for J(x) arising from the term 
C log[l - (s/p)] in the formula for log C(s), namely, 

If the operation of summation over p can be interchanged with the differen- 
tiation and the integration, then this is equal to -ZH(p),  where H@) is 
defined as in the preceding section. Now it was shown that H(p) = G(p) for 
p in the first quadrant (Rep > 0, Im p > 0) and in exactly the same way it can 
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be shown that for p in the fourth quadrant (Re p > 0, Im p < 0) the value of 
H ( p )  is equal to the integral G(p) except that the integral must be over the 
contour C- which goes over the lower semicircle from 1 - 6 to 1 + E rather 
than over the upper semicircle as C+ did. Thus, pairing terms of the sum over 
p in the usual way, the integral (1) would be 

if it could be evaluated termwise. Now if /3 is real and positive, then the 
change of variable u = tB, which implies log t = log u/B, dtlt = du/u/3, gives 

where the second integral is over a path which passes above the singularity 
at u = 1 .  Since the integral on the left converges throughout the halfplane 
Re B > 0, this formula gives the analytic continuation of Li(x1) to this half- 
plane (when x is, as always, a fixed number x > 1).  In the same way 

ts- 1 - dt = Li(xB) + i z ,  Je- log t 

and (2) becomes 

- C [Li(xp) + Li(xl-p)]. 
Imp>O 

(3) 

Thus, if termwise evaluation is valid, the desired integral (1) is equal to (3). 
Riemann states that termwise evaluation is valid and that (3) is indeed 

the desired value (1) but that the series (3) is only conditionally convergent- 
even though the terms p, 1 - p are paired-and that it must be summed in 
the order of increasing? Im p. He concedes that the validity of this termwise 
evaluation of (1) requires “a more exact discussion of the function 5,” but 
says that this is “easy” and passes on to the next point. 

One other small remark about the sum (3) is necessary. The computations 
above assume Re p > 0, but it has not been shown that this is true for all 
roots p. Although Hadamard later proved that there are no roots p on the 
line Re p = 0 (see Section 4.2), Riemann has not excluded this possibility 
and he is therefore not justified in ignoring the point as he does. 

fIt is interesting to note that Riemann writes p = + + ia and says first that the sum (3) 
is over all positive values of a in order of size before then adding parentheticilly that it  is 
over all a’s with Re(a) > 0 in order of size. Thus he admits, albeit parenthetically, the 
possibility that the Riemann hypothesis is false. 
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1.16 THE REMAINING TERMS 

One of the three remaining terms in the formula for J(x), namely, the 
term arising from (s/2) log x ,  drops out when it is divided by s and differen- 
tiated with respect to s. The term arising from the constant log ((0) is ---s 1 1 a+Lw -(-)x'ds d log((0) 

2wi log x a-i- ds 
1 a+im 

=-J 2ni a-im s 
'*)x" ds = log ((0) 

using (2) of Section 1.14 in the case j3 = 0. Now ((0) = lI(0)x-o(O - 1#(0) 
= -C(O) = 3 so log ((0) = -log 2 is the numerical value of this term. 

Riemann writes log &(O) instead of -log 2, but since he uses < to denote a different 
function-namely, the function &(f- + it) of t-his &(O) denotes &(&) # + and thus his 
formula is in error. It is hard to guess what the source of this trivial error might be, 
other than to say that it arises from some confusion between the product formula 

e o  = &<O) II [1 - WPI1 
P 

in the form it is given above and the product formula 

= &<O, 11 (&a) II (1 - 2) 
t 

= e<o> 11 (1 - &) II (1 - z) 

in the form given by Riemann, and a concomitant confusion of the integral 

which he evaluates, with the integral 

which differs from it by a constant. Whatever the source of the error, Riemann makes 
the same error in the letter quoted by the editors in the notes which follow the paper in 
the collected works, and his unpublished papers [Rla] include a computation of 
log &(+) to several decimal places, so it was definitely not a typographical error as the 
editors of the collected works suppose. The error was noticed by Genocchi [G4] during 
Riemann's lifetime. 
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This leaves only one term 

to be evaluated. Now by formula (4) of Section 1.3 

logn($) = 2 [-log(l + &) + +(l + 31. 
n= 1 

Using this formula in (1) and assuming that termwise integration is valid 
puts (1) in the form 

where H is as in Section 1.14. The previous formulas for H(B) apply only in 
the halfplane Re /9 > 0. To obtain a formula for H in Re /3 < 0 set - t S - 1  

x ogt E(B) = -J rdt. 

Then E(B) converges for Re B < 0 and satisfies 

so E(B) differs from H(B) by a constant throughout Re J3 < 0. Since both E 
and H approach zero as -, - 00, the constant is zero and E = H. Thus (1) 
becomes 

m t-2"- 1 " 1  dt s, t(t2 - 1) log t 2 J - dt = -(xt-2") dt = 
n = l  x log t x t log t 

provided termwise integration is valid. The proof that termwise integration 
is valid, which Riemann (tacitly) leaves to the reader, can be given as follows. 

Note first that the series 

I d 1% n(s/2)] = - 2 2 (lodl + (s/2n>l -[ ds s n= 1 S 

converges uniformly in any disk J s I  K. [For large n the series expansion 
log(1 + x )  = x - &x2 + 3x3  - - . can be used, and the summand on the 
right contains only terms in n-2 ,  n -3 ,  . . . .] This justifies the termwise differ- 
entiation and also justifies termwise integration over any finite interval 

To estimate the nth term of the sum on the right set 21 = (s - a)/2n, b = a/2n, 
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c = T/2n, so s = 2n(v + b) and the nth term is minus 

1 1 1  + + b, X2nu+02n dv 2ni log x -iC 2n dv 2n(v + b) 

Integration by parts puts this in the form 

- ---.- 1 xo 1 d log(' + + b)  X2nu 1 t::,, 27ri 2n log x 2n log x (bu[ v + b 

Now b is a real number 0 I b I a, the function 
d log(1 3. v + b) 1 log(1 + + b) 
z[ v + b  1 = (v + b)(v + b + 1) - (v + bI2 

is bounded on the imaginary axis, and its derivative is absolutely integrable 
over (-iw, iw), from which it follows that the modulus of the nth term of 
the series on the right side of (2) is at most a constant times n-2 for all T. Thus 
the series converges uniformly in T and one can pass to the limit T - 00 

termwise, as was to be shown. 
This completes the evaluation of the terms in the formula for J(x). Com- 

bining them gives the final result 
J(x) = Li(x) - C [Li(xp) + Li(xl-p)] 

Imp> 0 
(3) 

dt + log t(0) + I, t ( t 2  - 1) log t 
which is Riemann's formula [except that, as noted above, log &O) equals 
log (4) and not log t(4) as in Riemann's notation it should]. This analytic 
formula for J(x) is the principal result of the paper. 

1.17 THE FORMULA FOR z(x) 

Of course Riemann's goal was to obtain a formula not for J(x)  but for 
the function n(x), that is, for the number of primes less than any given mag- 
nitude x. Since the number of prime squares less than x is obviously equal 
to the number of primes less than x1l2, that is, equal to n ( ~ ~ / ~ ) ,  and since in 
the same way the number of prime nth powers p" less than xis n(xl"'), it fol- 
lows that J and a are related by the formula 

' 
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The series in this formula is finite for any given x because xl/" < 2 for n suffi- 
ciently large, which implies n(xl/") = 0. Riemann inverts this relationship 
by means of the Mobius inversion formula? (see Section 10.9) to obtain 

n(x) = J(x) - TJ(x'/z) 1 - TJ(x1/3) 1 - +(x1/5) 1 

where p(n) is 0 if n is divisible by a prime square, 1 if n is a product of an even 
number of distinct primes, and -1 if n is a product of an odd number of 
distinct primes. The series (2) is a finite series for any fixed x and when com- 
bined with the analytical formula for J(x) 

(3) 

it gives an analytical formula for n(x) as desired. 
The formula for n(x) which results from substituting (3) in the (finite) 

series (2) consists of three kinds of terms, namely, those which do not grow 
as x grows [arising from the last two terms of (3)], those which grow as x 
grows but which oscillate in sign [the terms arising from Li(xp) which Rie- 
mann calls "periodic"], and those which grow steadily as x grows [the terms 
arising from Li(x)]. If all but the last type are ignored, the terms in the for- 
mula for n(x) are just 

Li(x). - &Li(x1/2) - +L~(x'/~) - +L~(X'/~) 

Now empirically this is found to be a good approximation to n(x). In fact, 
the first term alone is essentially Gauss's approximation 

+ &Li(x1I6) - 3 Li(x1I7) + . . -. 

[Li(2) = 1.04. . .] and the first two terms indicate that 
n(x) N Li(x) - f Li(x1l2) 

?Very simply this inversion is effected by performing successively for each prime 
p = 2,3,5,7,11, . . . the operation of replacing the functions f(x) on each side of the 
equation with the functions f ( x )  - (l/p)f(xl/#). This gives successively 

J(x) - +J(X'/Z) = n(x) + 3n(x1/3) + fn(x'/5) + * .  *, 

J(x)  - +J(x'/2) - + J ( X ' / 3 )  + iJ(x'/6) = n(x) + fR(X'/5) + +x(x 1/7) + ..., 
etc., where at each step the sum on the left consists of those terms of the right side of (2) for 
which the factors of n contain only the primes already covered and the s u m  on the right 
consists of those terms of the right side of (1) for which the factors of n contain none of the 
primes already covered. Once p is sufficiently large, the latter are all zero except for n(x). 
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which gives, for example, 

~ ( 1 0 ~ )  N 78,628 - 4.178 = 78,539 

which is better than Gauss's approximation and which becomes still better 
if the third term is used. The extent to which Riemann's suggested approxi- 
mation 

(4) 

is better than zf&) N Li(x) is stunningly illustrated by one of Lehmer's tables 
[L9], an extract of which is given in Table 111. 

TABLE III@ 

X 

~ 

Riemann's error Gauss's error 

1,000,OOo 30 130 
2,000,ooo -9 122 
3,000,000 0 155 
4,000,000 33 206 
5,000,000 -64 125 
6,000,000 24 228 
7 , ~ , 0 0 0  - 38 179 
8,cwOOo -6 223 
9,000,OOO - 53 187 

1o,OoO,000 88 339 

@From Lehmer [L9]. 

Of course Riemann did not have such extensive empirical data at his disposal, 
but he seems well aware of the fact that (4) is a better approximation, as well 
as a more natural approximation, to ~ ( x ) .  

Riemann was also well aware, however, of the defects of the approxima- 
tion (4) and of his analysis of it. Although he has succeeded in giving an 
exact analytical formula for the error 

N A n )  a(x) - C - Li(x'/") = C C Li(xp/") + lesser terms 
n = l  n n = l  p 

(where Nis large enough that x ' / ( ~ +  l )  < 2) he has no estimate at all of the size 
of these "periodic" terms C C Li(xp/"). Actually, the empirical fact that 
they are as small as Lehmer found them to be is somewhat surprising in 
view of the fact that the series C [Li(xp) + Li(xl-p)] is only conditionally 
convergent-hence the smallness of its sum for any x depends on wholesale 
cancellation of signs among the terms-and in view of the fact that the in- 
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dividual terms Li(xp) grow in magnitude like 1 xp/log xp I = xRep /I P I log x (see 
Section 5.5) so that many of them grow at least as fast as x1I2/log x - 
2 Li(x1I2) > Li(x1I3) and would therefore be expected to be as significant for 
large x as the term -4 Li(x1/2) and more significant than any of the follow- 
ing terms of (4). On these subjects Riemann restricts himself to the statement 
that it would be interesting in later counts of primes to study the effect of 
the particular “periodic” terms on their distribution. 

In short, although formulas (2) and (3) combine to give an analytical 
formula for n(x), the validity of the new approximation (4) to n(x) to which 
it leads is based, like that of the old approximation n(x) N Li(x), solely on 
empirical evidence. 

1.18 THE DENSITY dJ 

A simple formulation of the main result 

can be obtained by differentiating to find 

(2) 

where a ranges over all values such that p = + + ia-in other words a = 
-i(p - i), where p ranges over the roots-so that 

[The Riemann hypothesis is that the a’s are all real. In writing formula (2) in 
this form Riemann is clearly thinking of the a’s as being real since otherwise 
the natural form would be xp-’ + 9 - l  = 26- ’  cos(y log x), where p = /I + 

By the definition of J, the measure dJ is dx times the density of primes 
plus 4 the density of prime squares, plus + the density of prime cubes plus, 
etc. Thus I/log x should be considered to be an approximation not to the 
density of primes as Gauss suggested but rather to CW, that is, to the density 
of primes plus 4 the density of prime squares, plus, etc. 

Given two large numbers a < b the approximation obtained by taking 
a finite number of the a’s 

xp-1 + x-p = x-qx‘a  + x--Ia] = 2x-’12 cos(a log x). 

iY.1 

(3) 
dt cos(a log t) dt 

0 t”2 log t 
should be a fairly good approximation because the omitted term [dx/x(xz - 1) 
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log x is entirely negligible and because the integrals involving the large 
a’s oscillate very rapidly for large x and therefore should make very small 
contributions. In fact, the basic formula (1) implies immediately that the 
error in (3) approaches the negligible omitted term as more and more of the 
a’s are included in the sum. 

It is in the sense of investigating the number of a’s which are significant 
in (3) that Riemann meant to investigate empirically the influence of the 
“periodic” terms on the distribution of primes. So far as I know, no such 
investigation has ever been carried out. 

1.19 QuESTIONS UNRESOLVED BY RIEMANN 

Riemann himself, in a letter quoted in the notes which follow this paper 
in his collected works, singles out two statements of the paper as not having 
been fully proved as yet, namely, the statement that the equation C($ + ia) = 
0 has approximately (T/21c) log(T/2n) real roots a in the range 0 < a < T 
and the statement that the integral of Section 1.15 can be evaluated termwise. 
He expresses no doubt about the truth of these statements, however, and 
says that they follow from a new representation of the function C which he 
has not yet simplified sufficiently to publish. Nonetheless, as was stated in 
Section 1.9, the first of these two statements-at least if it is understood to 
mean that the relative error in the approximation approaches zero as T - 
m-has never been proved. The second was proved by von Mangoldt in 
1895, but by a method completely different from that suggested by Riemann, 
namely by proving first that Riemann’s formula for J(x) is valid and by con- 
cluding from this that the termwise value of the integral in Section 1.15 must 
be correct. 

Riemann evidently believed that he had given a proof of the product 
formula for {(s), but, at least from the reading of the paper given above, one 
cannot consider his proof to be complete, and, in particular, one must ques- 
tion Riemann’s estimate of the number of roots p in the range {0 I Im p I 
T} on which this proof is based. It was not until 1893 that Hadamard proved 
the product formula, and not until 1905 that von Mangoldt proved the es- 
timate of the number of roots in {O < Im p 5 T}. 

Next, the original question of the validity of the approximation w(x) N 
Ji(dt/logt) remained entirely unresolved by Riemann’s paper. It can be shown 
that the relative error of this approximation approaches zero as x + 00 if 
and only if the same is true of the relative error in Riemann’s approximation 
J(x) N Li(x), so the original question is equivalent to the question of whether 
C Li(xp)/Li(x) - 0, but this unfortunately does not bring the problem any 
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nearer to a solution. It was not until 1896 t3at Hadamard and, independently, 
de la Vallde Poussin proved the prime number theorem to the effect that the 
relative error in n(x) - 

Finally, the paper raised a question much greater than any question it 
answered, the question of the truth or falsity of the Riemann hypothesis. 

The remainder of this book is devoted to the subsequent history of these 
six questions. In summary, they are as follows: 

(&/log t )  does approach zero as x -+ 00. 

(a) Is Riemann’s estimate of the number of roots p on the line segment 

(b) Is termwise evaluation of the integral of Section 1.15 valid? (Yes, 

(c) Is the product formula for &(s) valid? (Yes, Hadamard, 1893.) 
(d) Is Riemann’s estimate of the number of roots p in the strip (0 I Im 

(e) Is the prime number theorem true? [Yes, Hadamard and de la 

(f) Is the Riemann hypothesis true? (Unknown.) 

from 4 to 3 + iT correct as T - 03 ? (Unknown.) 

von Mangoldt, 1895.) 

p 

VallCe Poussin (independently), 1896.1 

T) correct? (Yes, von Mangoldt, 1905.) 



Chapter 2 

The Producr Formula for 5 

2.1 INTRODUCTION 

In 1893 Hadamard published a paper [Hl] in which he studied entire 
functions (functions of a complex variable which are defined and analytic at 
all points of the complex plane) and their representations as infinite products. 
One consequence of the general theory which he developed in this paper is 
the fact that the product formula 

is valid; here c is the entire function defined in Section 1.8, p ranges over all 
roots p of c@) = 0, and the infinite product is understood to be taken in an 
order which pairs each root p with the corresponding root 1 - p.  Hada- 
mard’s proof of the product formula for c was called by von Mangoldt [M 11 
“the first real progress in the field in 34 years,” that is, the first since Rie- 
mann’s paper. 

This chapter is devoted to the proof of the product formula (1). Since only 
the specific function c is of interest here, Hadamard’s methods for general 
entire functions can, of course, be considerably specialized and simplifiedt 
for this case, and in the end the proof which results is closer to the one out- 
lined by Riemann than to Hadamard’s proof. The first step of the proof is to 
make an estimate of the distribution of the roots p .  This estimate, which is 
that the number of roots p in the disk 1 p - 3 I < R is less than a constant 
times R log R as R -+ 00, is based on Jensen’s theorem and is much less 
exact than Riemann’s estimate that the number of roots in the strip (0 < Im 

t A  major simplification is the use of Jensen’s theorem, which was not known at the time 
Hadamard was writing. 
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p < T} is (T/27r) log(T/2a) - (T/2n) with a relative error which is ofthe order 
of magnitude of T - l .  It is exact enough, however, to prove the convergence 
of the product (1). Once it has been shown that this product converges, the 
rest of the proof can be carried out more or less as Riemann suggests. 

2.2 JENSEN'S THEOREM 

Theorem Letf(z) be a function which is defined and analytic throughout 
a disk (1 zJ I R}. Suppose thatf(z) has no zeros on the bounding circle 1 z I = 
R and that inside the disk it has the zeros zl, z2, . . . , z,  (where a zero of 
order k is included k times in the list). Suppose, finally, thatf(0) # 0. Then 

=-I 2n log I f(Re'e) I do. 
2n 0 

Prooft Iff(z) has no zeros inside the disk, then the equation is merely 

that is, the equation is the statement that the value of log 1 f ( z )  I at the center 
of the disk is equal to its average value on the bounding circle. This can be 
proved either by observing that log I f ( z )  I is the real part of the analytic 
function log f ( r )  and is therefore a harmonic function, or by taking the real 
part of the Cauchy integral formula 

where logf(z) is defined in the disk to be 

Applying this formula (2) to the function 
R2 - Z,z . R2 - Z2z . . . R2 - Znr 

R(z - z,) '('I = '(') R(z - z l )  R(z - z2)  

because F(z) is analytic and has no zeros in the disk. But this is the formula 

?See Ahlfors [A3]. This method of proof of Jensen's threorem is to be found in Back- 
lund's 1918 paper on the Lindelof hypothesis [B3] (see Section 9.4). 
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of Jensen's theorem (1) because 

and because by a basic formula in the theory of conformal mapping 
R2 - Fjz when I z l = R .  I R(z - z,) I = 

(To prove this formula multiply the numerator by f / R .  This does not change 
the modulus if I z I = R and it makes the numerator into the complex con- 
jugate of the denominator.) This completes the proof of Jensen's theorem (1). 

2.3 A SIMPLE ESTIMATE OF 

Theorem For all sufficiently large values of R the estimate I c(s) I I RR 

Proof It was shown in Section 1.8 that c(s) can be expanded as a power 
holds throughout the disk I s - 4 I I R. 

series in (s - 3): 

where 
c(s) = a0 + a2(s - + * * . + - f ) 2 n  + * * * y 

The fact that the coefficients a. are positive follows immediately from 

because this shows that the integrand in the integral for a2. is positive for 
x 2 1. Thus the largest value of f(s) on the disk 1 s - f I 5 R occurs at the 
point s = 3 + R, and to prove the theorem it suffices to show that ((4 + R) 

RR for all sufficiently large R. Now 
t(s) = lT(s/2)z-"'2(s - l)@) 

and C(s) decreases to 1 as s + + 00) so if R is given and if Nis chosen so that 
-3; + R I 2 N  < t + R + 2, it follows that 

<(+ + R) 5 c(2N) = ( N ! ) z - ~ ( ~ N  - l)C(ZN) 
- < "z-O(2N)~(2) 
= const NN+l 
- < const ($R + 2)(R/2)+3 < RR 

for all sufficiently large R, which completes the proof of the theorem. 
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2.4 THE RESULTING ESTIMATE OF THE ROOTS p 

Theorem Let n(R) denote the number of roots p of &@) = 0 which lie 
inside or on the circle I s - 3 I = R (counted with multiplicities). Then n(R) I 
2R log R for all sufficiently large R.  

Proof Jensen's theorem applied to &(s) on the disk I s - 3 I I 2R gives 

The terms of the sum over p are all positive and the terms corresponding to 
roots p inside the circle I p - + I I R are all at least log 2; hence, 

n(R) log 2 I 2R log 2R - log &(A) 
n(R) - 2 R log R + 2R - log eci> 

log 2 log 2 
< 2R log R 

for all sufficiently large R, as was to be shown. If there are roots p on the cir- 
cle 1s - 3 1 = 2R, so that Jensen's theorem is not applicable, one can apply 
the above to the circle with radius R + E and let 6 - 0. 

2.5 CONVERGENCE OF THE PRODUCT 

As was noted in Section 1.10, in order to prove the convergence of the 

for all s, it suffices to prove the convergence of the sum C I p(1 - p) 1-l. 

Since all but a finite number of roots p satisfy the inequality 
1 1 1 < I N  - P)I = I @  - +I2 - tl IP - + I 2 '  

it suffices therefore to prove the convergence of the sum C Ip - 
here the sum can be considered either as a sum over roots p in the upper 
halfplane Im p > 0 or as a sum over all roots since the first of these is merely 
twice the second. The convergence of the product (1) is therefore a conse- 
quence of the case E = 1 of the following theorem. 

Theorem For any given E > 0 the series 
1 = IP - ?lI'+f 

converges, where p ranges over all roots p of r ( p )  = 0. 
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[Note that this theorem would follow immediately from Riemann's ob- 
servation that the vertical density of the roots p is a constant times (log 7') 
dT and from the fact that I" T-'-'(log T )  dT converges. This is Riemann's 
first step in his "proof" of the product formula for C.] 

Proof Let the roots p be numbered pl ,  pz, p , ,  . . . in order of increasing 
Ip  - $1. Furthermore, let R 1 ,  R,, R,,  . . . be the sequence of positive real 
numbers defined implicitly by the equation 3R, log R, = n. Then by the 
theorem of the preceding section there are at most 2n/3 roots p inside the 
circle I s - 3; I = R,; hence the nth root is not in this circle, that is, 1 p ,  - 3; I > 
R,. Thus , 

1 (3  log R,)I+" =cpZ) '  n'lZ 

Now log n = log R, + log 3 + log log R, > log R,  . Hence (3 log RJ' +' < 9 
(log n)' < nCl2 for all sufficiently large n and 

as was to be shown. 

2.6 RATE OF GROWTH OF THE QUOTIENT 

Riemann states that log {(s) - C log [l - (s/p)] grows no faster than 
s log s, from which he concludes, since it is an even function, that it must be 
a constant. In this section the weaker result that the growth of its real part is 
no faster than 1s will be proved. This still permits one to conclude, as will 
be shown in the next section, that it is constant. 

Theorem Let E > 0 be given. Then 

for all sufficiently large I S  - 3; 1. 

a sum of two functions 
Proof Let R be given and let the function being estimated be written as 
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where 

These logarithms are defined only up to multiples of 2zi, but their real parts 
are well defined except at the points s = p for I p - f I > 2R (at which points 
U, is --oo and V, is +m). It will suffice to show that for large R both uR(s) 
and v&) are at most R1+' on I s - f I = R since then, when 6 is decreased 
slightly to c', it follows that uR(s) + vR(s) I 2R1+" I I s  - & I 1 + f  on I s  - 
41 = R for all R large enough that uR < R1+", v, < R1+", and 2 S R'"'. 

First consider uR(s). On the circle 1s - 3 I = 4R the factors in the denom- 
inator are all at least 1 ; therefore 

uR(s) < Re log 6(s) = log 1 t(s> 1 
< log [(4R)4R] = 4R log 4R < R1+' 

on the circle 1s - f I = 4R, for large R (large enough that 4 log 4R < R). 
Now u, is a harmonic function on the disk 1 s - 3 I < 4R except at the points 
s = p in the range 2R < 1 s - f 1 < 4R. But near these singular points s = p 
the value of U, is near -00, so the maximum value of the harmonic function 
U, on the disk 1s - $ 1  I 4R must occur on the outer boundary 1s - +I = 4R. 
Thus the maximum of uR on the disk, and in particular on the circle 1s - f 1 = 
R, is at most R1+' as was to be shown. 

Now consider vR(s). For complex x in the disk I x 1 < 3 the inequality 
1 dt - 

1 - x  0 1 - t  Re log - = -Re log(1 - x )  = Re 

holds. Thus for 1s - +I = R the inequality - 
1 vR(s) = Re log 
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holds. Now the sum in this expression converges by the theorem of Section 
2.5, and it decreases to zero as R increases. Thus v&) < R1+' on 1s - 5 I = R 
for all sufficiently large R as was to be shown. This completes the proof. 

2.7 RATE OF GROWTH OF EVEN ENTIRE FUNCTIONS 

Theorem Let f(s) be an analytic function, defined in the entire s-plane, 
which is even in the sense that f(-s) =_ f(s) and which grows more slowly 
than Is I2  in the sense: that for every E > 0 there is an R such that Re f(s) < 
E 1 s l2 at all points s satisfying I s  I 2 R. Then f must be constant. 

Proof The subtle point of the theorem is that only the upward growth of 
the realpart off is limited. The main step in the proof is the following lemma, 
which shows that this implies that the growth of the modulus off  is also 
limited. 

Lemma Let f(s) be an analytic function on the disk {Is I 5 I}, let f(0) = 
0, and let M be the maximum value of Re f(s) on the bounding circle 1 s I = r 
(and hence on the entire disk). Then for rl < r the modulus off on the smaller 
disk {I s I 5 r l }  is bounded by 

If(4 I I 2r,M/(r - r1) (I s I I r1)- 
Proof of the Lemma Consider the function 

= f(s)/@M - m1. 
If u(s) and v(s) denote the real and imaginary parts, respectively, off ,  then 
I2M - u(s) I 2 M 2 u(s) on the circle I s I = r ;  so the modulus of $ on this 
circle is at most 

which implies that I $(s) I 
be expressed in terms of 4(s) as 

r-I throughout the disk {Is I 5 I). But f(s) can 

which shows that for I s 1 = rl the modulus of f(s) is at most 
If(s)I 5 2~tfr]r-~/(I - r Ir - l )  = 2Mr1/(r - rl). 

Hence the same inequality holds throughout the disk {I s I I r l )  as was to be 
shown. 

Now to prove the theorem let f(s) = C;p,o a,sn be the power series ex- 
pansion of a function f(s) satisfying the conditions of the theorem. Note first 
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that it can be assumed without loss of generality that a, = 0 because f(s) 
satisfies the growth condition of the theorem if and dnly if f(s) - f(0) does 
and becausef(s) is constant if and only iff@) - f(0) is. Now Cauchy's integral 
formula for the coefficients is 

where D is any domain containing the origin. Let E ,  R be as in the statement 
of the theorem and let D be the disk {Is I i R ] .  Then the above formula gives 

The right side is the average value of a function whose value is by the lemma 
at most 

2n 2(eR2)(4R) 2"+le - - 0  - 
R" R - ( i R )  R"-' 

If n 2 2, this is at most 2 " + l ~ ,  and since E is arbitrary, a, must be zero for 
n 2 2. Thus f(s) = a,s. However a, must be zero by the evenness condition 
f(s) = f(-s). Therefore f(s) = 0 which is constant, as was to be shown. 

2.8 THE PRODUCT FORMULA FOR 4 

The function F(s) = &)/IT, [l - (s - i ) / ( p  - i)] is analytic in the entire 
s-plane and is an even function of s - 4. Moreover, it has no zeros, so its 
logarithm is well defined up to an additive constant 2nni (n an integer) by 
the formula log F(s) = Ji F'(z) dz/F(z) + log F(O), where log F(0) is deter- 
mined to within an additive constant 2nni. The results of the preceding two 
sections then combine to give log F(s) = const, and therefore upon exponen- 
tiation 

where c is a constant. Dividing this by the particular value 

t(0) = c II (1 - 3) 
P - %  

gives 
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The factors on the right are linear functions of s which are 0 when s = p and 
1 when s = 0; hence they are 1 - (s/p) and the formula is the desired formula 

where, as always, it is understood that the factors p and 1 - p are paired.? 

?The same argument proves the validity of the product formula for the sine 
m 

sin ;Rs = ;Rs IT (1 - $) 
n= 1 

mentioned in Section 1.3. The only other unproved statement in Section 1.3 which is not 
elementary is the equivalence of the two definitions (2) and (3) of lI(s). 



Chapter 3 

Riemann’s Main Formula 

3.1 INTRODUCTION 

Soon after Hadamard proved the product formula for &), von Man- 
goldt [Ml] proved Riemann’s main formula 

(1) J(x) = Li(x) - C Li(xp) - log 2 
P 

( x  > 1). dt 
+ I, t ( t 2  - 1) log t 

Von Mangoldt also recast this formula in a simpler form which has virtually 
replaced Riemann’s original statement (1) in the subsequent development of 
the theory. This simpler form of (1) can be derived as follows. 

The essence of Riemann’s derivation of (1) is the inversion of the relation- 
ship 
(2) log g(s) = J, x-J  dJ(x) 

for J(x) in terms of log ((s) and then the use of 

(3) 

to express log c(s) in terms of elementary functions and in terms of the roots 
p .  Now the function log ((s) has logarithmic singularities at all the roots p ,  
and as a function of a complex variable it is very awkward outside the half- 
plane Re s > 1. On the other hand, its derivative c’(s)/C(s) is analytic in the 
entire plane except for poles at the roots p, the pole 1, and the zeros -2n. 
This might well lead one to begin not with formula (2) but with its derivative 

(4) F‘o = -I== x-“(log x) dJ(x). 
C(s) 

48 
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The measure (logx)dl(x) is a point measure which assigns the weight 
log(p").(l/n) to prime powers pn and the weight 0 to all other points. Thus it 
can be written as a Stieltjes measure dy(x), where y(x) is the step function 
which begins at 0 and has a jump of log (pn).(l/n) = logp at each prime 
powerp". In other words 

except when xis a prime power; at the jumps x = pn the value of y is defined, 
as usual, to be halfway between the new and old values y(x) = &(x - E )  + 
v/(x + €)I. This function y(x) had already been considered by Chebyshev,t 
who named it y(x) and who proved2 among other things that the prime num- 
ber theorem is essentially the same as the statement that v/(x) N x with a 
relative error which approaches zero as x - 00. In terms of y(x) formula (4) 
becomes 

In other words, if J is replaced by v /  in the original formula (2), then the awk- 
ward function log ((s) is replaced by the more tractable function -C'(s)/C(s). 

Now the argument by which Riemann went frbm formula (2) to the for- 
mula (1) for J(x) can be applied equally well to go from formula ( 5 )  to a new 
formula for ~ ( x ) .  The explicit computations of this argument are given in the 
next section. However, even without the explicit computations, one can guess 
the formula for v/(x) as follows. The simplest formulation of Riemann's 
result is his formula (see Section 1.18) 

dJ= -- 1 -- xp-1 )dx  (x > 1) (log x q log x x(x2 - 1) logx 
which gives 

dv/ = (log x) dJ 

and leads to the guess 
XP X-2n 

v/(x) = x - C - + C 2n + const 
P P  n 

(x > 1). 

This is von Mangoldt's reformulation of (1) referred to in the first paragraph. 
[The value of the constant is given in Section 3.2. It is assumed in von Man- 
goldt's formula (6), as it is in Riemann's formula (l), that the terms of the 
sum over p are taken in the order of increasing I Im p I; these sums converge 

?This work of Chebyshev [C3] in 1850 preceded Riemann's paper. 
$Actually Chebyshev does not state this result explicitly, but it follows trivially from the 

techniques he introduces for deducing estimates of L from estimates of w .  
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only conditionally-even when the terms p, 1 - p are paired-so their order 
is essential.] 

The main part of this chapter is devoted to von Mangoldt's proof of the 
formula (6) for ~ ( x ) .  In Section 3.2 the formula is derived from the termwise 
evaluation of certain definite integrals, and in the following three sections the 
validity of these termwise evaluations is rigorously proved. Von Mangoldt's 
proof of Riemann's original formula (1) is outlined in the next two sections, 
and the last section deals with the numerical evaluation of the constant c'(O)/ 
cN9. 

3.2 DERIVATION OF VON MANGOLDT'S FORMULA FOR ~ ( x )  

The technique of Section 1.12 applied to the formula -c'(s)/c(s) = 

J(x)xr-l dx puts 
Ca 

s 

~ ( x )  in the form of a definite integral 
v(x)x-"-' dx instead of to the formula log[@) = s 

0 

Von Mangoldt's method of proving the formula for ~ ( x )  is to evaluate this 
definite integral in two different ways, one of which gives the value ~ ( x )  and 
the other x - C (x'/p) + C (x2"/2n) + const. (Neither of these evaluations 
uses Fourier's theorem, so the use of Fourier's theorem in Section 1.12 can 
be regarded as purely heuristic.) 

The first method of evaluating the definite integral (1) is as follows. Begin- 
ning with the formula? 

let A(n) denote the weight assigned to the integer n by the measure dy-that 
is, A(n) is zero unless n is a prime power, in which case A(n) is the log of the 
prime of which n is a power-so that the integral (2) can be written as a sum 

Substitute this formula in (1) and assume termwise integration is valid. This 
gives the value 

tThis formula is essentially the Euler product formula (see the concluding remarks of 
Section 1.11). In fact, logarithmic differentiation of ((s) = n(1 -p -~ ) - l  gives (3) im- 
mediately. 
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for (I). Now formula (2) of Section 1.14 (with /3 = 0) shows that the integral 
corresponding to n in this sum is 1 if x/n > 1 and 0 if x / n  < 1 ; hence the sum 
is just 

c M) = Y(X) 
n<x 

as was to be shown. 
To justify this sequence of steps leading to the value ~ ( x )  for the definite 

integral (I), note first that the series (3) converges uniformly in any halfplane 
Re s 2 K > 1 [by comparison with the convergent series C (log n ) ? ~ - ~ ] .  
This proves both that the termwise differentiation of -logc(s) = log 
(1 - p- ” )  is valid (a series can be differentiated termwise if the result is uni- 
formly convergent) and that the integral over anyfinite path can be computed 
termwise : 

when a > 1. Now ifit can be shown that the limit as h --+ 00 of the sum on 
the right is equal to the sum of the limits, then the fact that the integral (1) has 
the value y(x) will follow immediately from the formula 

0 if O < y < l  
if y = l  (a  > 0).  

ds i 1 if y > l  

1 a+i-  - J  y=-= 1 
2ni a-im s ( 5 )  

This formula, which was deduced from Fourier’s theorem in Section 1.14, 
will be proved directly in the next section. To summarize, then, the proof that 
the definite integral (1) is equal to ~ ( x )  depends on the proof that the limit 
as h -+ 00 ofthe sum in (4) is the sum of the limits, and on the proof of the 
integral formula (5 ) .  

The second method of evaluating the integral (1) is as follows. Differen- 
tiate logarithmically the formula 

to find 
-1ogn - --logn+- 1 1 “(s) 
ds (;) 2 s-1+l(S> 

- .(-f). 
- ? 1 - (S /P> 

Using the expression of n(x) as an infinite product [(4) of Section 1.31, and 
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differentiating termwise then gives 

With s = 0 this gives 

+ 2 [-& + +log(l + -91 - +ogn, 1 
n= 1 

so subtraction gives 

and finally 

Substitute this formula in the definite integral (I)  and assume that termwise 
integration is valid. This gives the value 

for (1). Now the change of variable t = s - 8 in the previous integral for- 
mula (5 )  gives 

provided x > 1 and a > Re 8. (The middle equation here, in which the limits 
of integration are switched from a - 8 f im to Re(a - 8) f iw, is not 
trivial because these two integrals when written as limits as h + 00 are differ- 
ent. However, the difference between them is two integrals of x' dt/t over 
intervals of the form [a f ib, a & i(b + c)],  where c is fixed and b .- 00; 

thus the difference is less than a constant times c/b - 0.) Thus the value of 
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(1) reduces, when x > 1, to 

as desired. 
To justify this sequence of steps leading'to the value x - C(xp/p) + 

Z(~-~" /2n)  - ('(O)/C(O) of the definite integral (I), note first that both of the 
infinite series in (6) converge uniformly in any disk 1s I I K. (The series in n 
converges uniformly because 

I(s + 2n)-' - + log(1 + n-')l 
= I(s + 2n)-' - (2n)-' + (2n)-' 

I Is(s + 2n)-'(2n)-' I + I fnW2 - 
I K(2r~)-~ + n-2 < const/n2 

- Sn-1 - 3.-2 + +n-3 - . . . ) I  
+ - - - I 

for all sufficiently large n, and the series in p converges uniformly because 
when the terms p and 1 - p are paired 

I(s - PI-' + [s - (1 - p>l-'l =I[(. - +) - (P  - ;)]-I + [(s - +) + (P - +>]-'l 
2 ( ~  - '1 < const p - - = 

- +)2 - 6 - 3 ) 2  - I I ; I 2  
for all sufficiently large p once K is fixed and because C I p - 3 converges 
by the theorem of Section 2.5.) This proves that the termwise differentiation 
by which (6) was obtained is valid. Then it follows by an elementary theorem 
[C (a, + b,,) = C a, + C b,, when C a,,, C b, both converge] that (7) is 
valid-xcept at the zeros and poles 1, p, -2n of (-and that the series it 
contains both converge uniformly in Is1 I K. Thus it can be integrated 
termwise overjnife intervals and the integral (1) is therefore equal to 

= x - lim c - 
h-- 2ni f + l h  a-ih P(s x"ds - p) 

[where use is made of the fact that the limit of a finite sum is the sum of the 
limits and the first and last terms are evaluated using (8) and (5)] .  Now f the  
limits of these two sums are equal to  the sums of the limits, then the rest of 
the argument is elementary and the value x - c (xp/p) + c ( ~ - ~ " / 2 n )  - 
C'(O)/C(O) for (1) will be proved. Thus, in addition to the basic formula (5), 
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the rigorous proof that the definite integral (1) has this value depends on the 
validity of the termwise evaluation of the two limits in (9). 

Thus von Mangoldt's formula 

depends on the validity of the integral formula (5 )  and of the three inter- 
changes of limb-- with infinite sums in (4) and (9). The following three 
sections are devoted to proving that all are indeed valid. The numerical value 
of the constant c (O) /C(O)  = log 2 a  is found in Section 3.8. 

3.3 THE BASIC INTEGRAL FORMULA 

This section is devoted to the evaluation of 
1 o+ihXxds 

lim-j - (x  > 0, a > 0). h-.-2wi " - i h  s 

Since the arguments of Section 3.2 deal with infinite sums of such limits, it 
will be necessary to find, in addition to the limit (l), the rate at which this 
limit is approached. For the case 0 < x < 1 this is accomplished by the 
estimate 

which can be proved as follows. Because a > 0, the function x*/s has no 
singularity in the rectangle { a  I Re s I K, --h < Im s 5 h), where K is 
a large constant. Hence by Cauchy's theorem the integral of x* &/s around 
the boundary of this rectangle is zero, which gives 

1 O+i"xsds ---J 1 K+ihx.s - ds 
211.i j0+ s - 2ni "+ih  s 

1 K+ihxsds -. 1 K - f h ~ s d s  
+ 2ni j o - [ b  s + % J K - i h  s 

The last integral has modulus at most (2n)-'(xK/K)(2h). Each of the other two 
integrals on the right has modulus at most 

which then gives 

When 0 < x < 1, the limit of X-K as K + 00 is zero and (2) follows. Thus, in 
particular, the limit (1) is zero when 0 < x < 1. 
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In the case x = 1 no estimate of the rate of approach to the limit will be 
needed and it suffices to note that (1) is 

1 _ -  1 du = lim - Jh" - - 
h 4 - k  -h/a 1 + u2 2 

using the well-knownt formula Jym (1 + u2)-' du = n. Thus for x = 1 the 
limit (1) is 3. 

For x > 1 the estimate analogous to (2) is obtained by considering the 
integral of xs dsl(2ni.s) around the boundary of a rectangle of the form ( - K  < 
Re s _< a, -h Im s < h}. Since x' is analytic in this rectangle and s = 0 
lies inside the rectangle, the Cauchy integral formula states that this integral 
is xo = 1, hence 

1 a + i h X s d S  1 - K + i h X b d S  

2ni j a - i h  7 + 2wi j a + i h  7 

Letting K + 00 then gives 

(3) 

which is the desired estimate. In particular, the limit (1) is 1 when x > 1. 

formula, namely, von Mangoldt's estimate 
One other estimate of integrals is used in the proof of von Mangoldt's 

( x > 1 ,  a > 0 ,  d > c 2 0 ) ,  

where K is a constant which may be taken to be (4 + n)/(2nfl). To prove 
this formula, note that integration by parts 

gives 
o+id xs ds Xa+id xa+Ic 

l J a + i c T l ~ l ( a  + i d ) l o g x ( + ( ( a + i r ) l o g x I  

Y 

?See Edwards [El, p. 651. 
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Since Ix”l= 1 andla+id12la+icI>(a+c)/l/Z,thefirsttwoterms 
are each less then 2/z P / ( a  + c) log x and the integral in the third term is 
less than 

<-.- 
- a + c  2 

Thus 
X“ 

which is the desired result. 

3.4 THE DENSITY OF THE ROOTS 

This section is devoted to the proof of the following theorem: 

Theorem The vertical density of the roots p of c(p) = 0 is less than 2 
log Tfor large T. More specifically, there is an H such that for T 2 H the 
number of roots p with imaginary parts in the range T I  Im p I T + 1 is 
less than 2 log T. 

Proof Von Mangoldt’s proof of this fact is based on Hadamard’s proof 
of the product formula and on a strong version of Stirling’s formula which 
was published by Stieltjes in 1889. 

Hadamard‘s theorem that the series C I p - 4 converges implies (see 
Sect. 3.2) that the termwise integration of the series c’(s)/c(s) = C (s - p)-’ 
is valid over any finite segment. Hence, in particular, 

for any T. Now for any fixed p the imaginary part of the integral on the right 

is equal (because dz/z = d log r + i do) to the angle subtended by the seg- 
ment [2 + iT, 2 + i(T + I)] at the point p. Thus it is always positive- 
because the roots p are to the left of Re s = 2-and if p lies in the range T < 
Im p I T + 1, then it is at least the angle subtended by the segment [2 + iT, 
2 + i(T + l)] at the point iT, which is Arctan f. Thus if n denotes the number 
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of roots p in T < Im p 2 T + 1, it follows that 

Thus an upper bound on n will result from an upper bound on the integral 
on the right. 

On the other hand, the integral of e(s) ds/((s) over the interval from 2 + 
iT to 2 + i(T + 1) is, by the fundamental theorem of calculus, equal to the 
amount by which the function 

changes between these two points. It is in the estimation of log ll(s/2) that 
von Mangoldt uses Stieltjes' version of Stirling's formula. Specifically, he 
uses the fact that the modulus of the error in the approximation 

log ((s) = log rI(S/2) - (42) log n+ log (s - 1) + log C(s) 

log n(z) - (2 + 4) log z - z + 4 log 2n 
is at most (6 I z 
and proof of Stieltjes' result see Section 6.3.) Thus 

for z in the halfplane Re z 2 0. (For a complete statement 

log<(s)- ( ~ + T ) l o g s - ( ~ + T ) l o g 2 - - + + l o g 2 a  1 1 s 1  
2 

S - - log n + log(s - 1) + log ((s) 2 
S S 

% = s + l  -logs - - log2n - - 2 2 2 
+ log (s - 1) + log C(s) + const 

with an error of at most (6 Isl)-'. As was noted in Section 1.13, formula (3), 
the modulus of log C(s) is at most log C(2) on the line Re s = 2, so neglecting 
this term introduces an error of at most log C(2) = log (n2/6) < 1. Thus the 
change in log ((s) between 2 + i(T + 1) and 2 + iT is approximately 

+ i(T + 
2 log[2 + i(T + l)] - + jT log(2 + in 

= i log[2 + i(T + l)] + y l o g ( 1  + &) 
+ const + log I + ~ ( 1 + i T  

and the error has modulus at most 2(6T)-' + 2. Neglecting terms which are 
bounded for large T puts this estimate in the form 

i 3 + i T  i i 
2 2 + i T  2 log(iT) + - - - N - log T. 
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Thus the error in the approximation 

remains bounded in modulus as T .-+ m-say by K-hence (1) gives 
n.Arctan 4 < 3 log T 4- K, 

n < f log + < 2 log T 
- a18 

for all sufficiently large T, as was to be shown. 

3.5 PROOF OF VON MANGOLDT'S FORMULA FOR ~ ( r )  

The derivation of von Mangoldt's formula 

which was given in Section 3.2 depended on the integral formula which was 
proved in Section 3.3 and on three termwise integrations. This section is 
devoted to proving that these termwise integrations are valid. In all three 
cases, the series converge uniformly on any finite segment [a - ih, a + ih] 
(a > l), so the integral can be computed termwise on finite segments and the 
problem is to show that the limit of their sum as h .-+ 00 is equal to the sum 
of their limits. 

Consider first the limit 

lim h-m n= 2 1 A(n)&. r + I h  a-fh ($)'$a 

The limit of a finite sum is the sum of the limits; hence one can disregard the 
finite number of terms in which n I x and consider only the terms n > x. 
For these, the estimate (1) of Section 3.3 gives 

1 I const-. nah 
Hence their sum over n > x is at most a constant times h-l and therefore 
approaches zero as h -, 00. This shows that the limit (2) can be evaluated 
termwise. 

Consider next the limit 

(3) 
a+ ih  y + 2 n  ds 

(x > 1). 
h-.w 

X - 2 n  

2n 2ni I a-ih - s -I- 2n 



3.5 Proof of von Mangoldt’s Formula for ~ ( x )  59 

The limit of the nth term of this series is ~ - ~ “ / 2 n  by (3)  of Section 3.3; hence 
the sum of the limits converges. Now by (4) of Section 3.3 the nth term is at 
most 

0 + 2 n + i h  

const <- n2 - 

for all h. Thus the series (3) converges uniformly in h and one can pass to the 
limit h - 03 termwise, as was to be shown. [Given E > 0, choose N large 
enough that the sum (3) differs by at most E from the sum of the first N terms 
for all h. By enlarging Nif necessary, one can also assume that the sum of the 
limits ~ - ~ “ / 2 n  differs by at most E from the sum of the first N of them. Now 
choose H large enough that each of the first N terms of (3) differs by at most 
E / N  from its limit when h 2 H. Then the sum (3) differs by at most 3~ from 
the sum of the limits provided only that h 2 H.  Since E is arbitrary this proves 
the desired result.] 

Consider finally the limit 

(4) ds. 

This limit has now been shown to exist because it has been shown that the 
limit (9) of Section 3.2 exists [and is equal to ~ ( x ) ]  and it has been shown that 
the limit of the sum over n in (9) also exists. It has also been shown that the 
individual terms of (4) approach limits xp/p as h --+ 00, but it has not been 
shown that the sum of these limits converges; in fact, the proof that C xp/p 
converges when summed in the order of increasing I Im p I is the major dif- 
ficulty in the proof of von Mangoldt’s formula. Broadly speaking, von Man- 
goldt overcomes this difficulty by approaching the limit (4) “diagonally,” 
that is, by considering the limit 

( 5 )  

as an intermediate step between the limit (4) which is known to exist and the 
sum of the limits 

X’ lim - 
h-rn I Imp S h  p 

which is to be shown to exist and be equal to (4). 
Specifically, consider for each h the differences 

(7) 
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and 

(8) 

It will be shown that both these differences approach zero as h -+ 00. Then, 
since the limit (4) exists, it follows first that the “diagonal” limit ( 5 )  exists 
and is equal to it [because (7) goes to zero] and hence that the limit (6) exists 
and is equal to it [because (8) goes to zero hence (6) equals (5)] as desired. 

Consider first the estimate of (7). Let p = /3 + i y  denote a typical root. 
Then by (4) of Section 3.3 the modulus of (7) is at most 

y - 8  

a - p + y - h ) l o g x  

where c = a - 1 > 0 so that c a - /3 for all roots p. Now if the roots y 
beyond h are grouped in intervals h < y < h + 1, h + 1 < y < h + 2, 
h + 2 < y I h + 3, . . . , then (assuming h is large enough that the estimate 
of Section 3.4 applies beyond h) the interval h + j < y I h + j + 1 contains 
at most 2 log (h + j )  of the y’s and the modulus of (7) is at most a constant 
times 

and it remains only to show that this sum approaches zero as h -+ -. One 
can do this by choosing h large enough that log (h + j )  < (h + j ) l l Z  for all 
j 2 0; then the summand is at most one over (h + j)l14(c + j)II4-(c + j ) ,  
so the sum is at most a constant times h-’I4 - 0 as was to be shown. 

Consider now the estimate of (8). The fact that the terms correspond- 
ing to p and p give equal contributions and the estimates (3) and (4) of 
Section 3.3 show that the modulus of (8) is at most 
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where c = a - 1 > 0 as before. Thus it suffices to prove that these two sums 
over y approach zero as h + 00. Let H be a large integer such that the esti- 
mate of Section 3.4 applies beyond H a n d  let the roots be grouped in inter- 
vals H < y < H +  1 , H +  l < y < H + 2 ,  . . . .  Then t h e i n t e r v a l H f j  
5 y 5 H + j + 1 contains at most 2 log (H + j )  of the y’s and 

The first sum has a fixed finite number of terms and therefore clearly has the 
limit zero as h -+ 00. The second sum is at most 

which approaches zero as h --+ 00. A similar estimate shows that 
1 c 

H l y s h  y(c + h - 7) 
approaches zero as h + 00 and completes the proof that (6) equals (4). 

Thus the limits (2), (3), and (4) can be evaluated termwise-provided the 
sum of the limits of (4) is defined in the sense of (6)-and the derivation of 
Section 3.2 proves von Mangoldt’s formula (1). 

3.6 RIEMANN’S MAIN FORMULA 

There are at least two reasons why Riemann’s formula for J(x) [Section 
3.1, formula (I)] is generally neglected today. First, it contains essentially the 
same informetion as von Mangoldt’s formula for ~ ( x )  but is less “natural” 
than this formula in the sense that it is harder t o  prove and harder t o  gener- 
alize. Secondly, Riemann’s reason for establishing the formula in the first 
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place-to show an explicit analytic connection between the arithmetic func- 
tion a(x)  and the empirically derived approximation Li(x)-was rendered 
superfluous by Chebyshev’s observation that the prime number theorem 
a(x) N Li(x) can be deduced from the more natural theorem y(x) N x. Thus, 
in all respects, the formula for ~ ( x )  is preferable to that for J(x). 

Nonetheless, it is the formula for J(x) that was statedt by Riemann and 
for this reason, if for no other, it is of great interest to know whether or not 
the formula is valid. Von Mangoldt proved that it is. Von Mangoldt did not, 
however, follow Riemann’s method of proving the formula for J(x); once 
the product formula for ((s) was established by Hadamard, the only real 
difficulty which remained in Riemann’s derivation of the formula for J(x) 
was the proof that the termwise integration of the sum over p (Section 1.15) is 
valid, but von Mangoldt does not justify this termwise integration directly 
and proves the formula forJ(x) by a quite different method. It may be that he 
did this simply as a matter of convenience or it may be that he was in fact 
unable to derive estimates which would justify the termwise integration of 
Section 1.15 directly. In any event, Landau [L2] in 1908 proved in a more 
or less direct manner that termwise integration is valid. 

3.7 VON MANGOLDTS 
PROOF OF RIEMANN‘S MAIN FORMULA 

For r > 0 consider the definite integral 

When the formula -C’(s + r)/C(s + r )  = C A(n)n-”-‘ is substituted in this 
equation and integration is carried out termwise, one obtains the value 
En,, A(n)n-‘ where, as usual, at any point x = p“ where the value jumps, it 
is defined to split the difference. Von Mangoldt denotes this function by 
~ ( x ,  r). An equivalent definition of ~ ( x ,  r )  is 

On the other hand, the derivation of the formula 

?Landau [L3] began a tradition of referring to this and other statements of Riemann as 
“conjectures,” which gives the very mistaken impression that Riemann had some doubts 
about them. The only conjecture which Riemann makes in the paper is that Re p = .). 
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of Section 3.2 is easily modified to give the more general formula 
- C'(s + r) = - S S 

C(S + r) (r - l)(s + r - 1) + F (r - p)(s + r - p )  
S C'W 

+ F (r + 2n)(s + r + 2n) - c(.) 
which is valid for r > 0 except at r = 1. When this expression is substituted 
in (1) and the integration is carried out termwise, the result is 

(3) G - F F r  + F 2 ~ r  -c(r>' 
The estimates of Section 3.5 can be modified to show that for fixed r > 0, 
x > 1, r f 1 the termwise integrations are valid and hence that 

C ' m  X l - r  XP-' X - 2 n - r  

C'(r) 
1 - r  , , p - r  n 2 n + r  C(r) 
X 1 - r  xp-r X - 2 n - r  

/ : x - r d Y ( x ) = - - c -  + C - - - .  
The first and last terms on the right have poles at r = 1 which cancel each 
other, so the entire right side defines a continuous function of r as can be 
seen by rewriting it in the form 

(4) 

and noting that near any value of r these series converge uniformly in r and 
hence define continuous functions of r. Thus the formula is valid for r = 1 as 
well. 

Now integrate both sides dr from r = 0 to r = 00. On the left one obtains 

I: x 1  - - &(x) = dJ(x) = J(x). 
- so logx 

(Or, less elegantly, 

/- C A(n)n-' dr = C !!@ = J(x) 
0 n<x log n 

with the usual adjustment if x is a prime power.) The sum over n on the right 
can be integrated termwise by the Lebesgue dominated convergence theorem 
because it is dominated by x-' En x - ~ " .  The result is 

dt . 
x t(t2 - 1) log t 
m 
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The first sum over p does not involve r and can therefore be integrated term- 
wise. The second sum over p can be integrated termwise by the Lebesgue 
dominated convergence theorem because it is dominated by rxl-r  C I p 
The result of these two termwise integrations is 

as will now be shown. [Here, as in (4), the sum over p is to be taken in the 
order of increasing I Im p I.] 

The formula needed above is 

( 5 )  
m xp-r 

5 0  p y r  dr = Li(xp) 'F ia, 

where x > 1, Re p > 0, and? where the sign of ia  is opposite to that of Im 
p .  This can be proved by setting t = ( p  - r )  log x, dt = -(log x) dr to put 
the integral in the form 

e' dt O xP-'(log x) dr = flo*x -. 
- j w  ( p  - r)  log x p l 0 8 x - m l o 8 x  t 

Since the integrand vanishes very rapidly near -00, the lower limit of inte- 
gration can be taken as - 0 0 ;  hence 

where the path of integration passes above the singularity at t = 0 if Im p > 0, 
below if Im p < 0. Now, if it is stipulated that the path of integration in 
the integral 

B 108 X & dt I-, t 
must enter the halfplane Re t > 0 by crossing the positive imaginary axis, 
then this integral defines an analytic function of B in Re /3 > 0 which for 
real /3 is equal to 

(see Section 1.15). Hence the same is true by analytic continuation for all 

tThus, as with Riemann, the possibility Re p = 0 is not included. The extension of the 
formula to cover this case is trivial, but, as Hadamard showed (see Section 4.2), none of 
the p's lies on the imaginary axis. 
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j3 in Re j3 > 0, and 

65 

- xr-r 
o p - r  I - dr = Li(xp) - in 

for Im p > 0 follows. The case Im p < 0 is analogous and (5 )  is proved. 
It remains only to show that the remaining pair of terms in (4) when in- 

tegrated dr from 0 to 03 give the remaining terms in Riemann’s formula, that 
is, to show that 

dr = Li(x) + logc(0). 

This can be proved as follows. 
The two terms can be integrated separately 

provided the path from 0 to 03 is perturbed slightly to avoid the singularity 
at r = I ,  say by passing slightly above it. The first integral is then the limiting 
case p = 1 - i c  of formula ( 5 )  and is therefore Li(x) + in.  The second in- 
tegral can be evaluated by integrating 

from 0 to K passing above r = 1 to  obtain 

log c ( K )  - log c(0) = log n - + log(K - I )  - in (2  
dr = log <(O) - iz + log ((a. 

- J:m 
The limit as K-- ,  00 is thus log e(0) - in and the desired formula follows. 

Riemann’s main formula 
In summary, then, when (4) is integrated dr from 0 to 00, the result is 

J(x) = Li(x) - C Li(xp) 
P 

dt + log<<O) (x > 1) + I, t ( t 2  - I )  log t 

which is thereby proved. 
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3.8 NUMERICAL EVALUATION OF THE CONSTANT 

Von Mangoldt found that the numerical value of the constant in the 
formula for y(x) is 
(1) C'(O)/C(O) = log 2s. 
The series Z(~-~"/2n) can also be summed using the series expansion 

log [l/(l - x)] = x + *xz + 3x3 + + * * 

to put the formula for ~ ( x )  in the form 
xp 1 y(x) = x - c- + - l o g ( L )  - log2s (x > I), 

P P  2 xz -1  

where the sum over p is in the order of increasing I Im p 1. 

function 
The value (1) of the constant can be obtained as fol1ows.t Consider the 

C W  - 1 +- (-x>" .&, I --- n(-s) 2ni +-ex - 1 x 
where the path of integration is as in Section 1.4. It will first be shown that 
the derivative of this function is zero at s = 1, that is, it will be shown that 

(3) 

Let the path of integration be written as a sum of three parts as in Section 
1.4 so that this integral becomes 

1 (-x)(log x - is) dx - ZIS- ex-1 X 

1 (--x)(log E + i0 - in) - dx 
+ 2rci SIX,=, ex - 1 X 

where x = ~ e " ) + ~ )  in the last integral. Since x(ex - I ) - l  is 1 at x = 0, the 
middle integral is (-log E )  by the Cauchy integial formula and the last in- 
tegral approaches zero as € LO. 

?For an alternative proof see Section 6.8. 
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The first integral can be evaluated directly 

= log€ + log(1 - + + . . .). 
Thus the log 6's cancel and the limit as E L O  of the remaining terms is zero, 
which proves (3). Now by the functional equation the function (2) can also be 
written in the form 

C(s)/n(-s) = (2n>"-'C(l - s)2 sin(m/2). 
Since its derivative is zero at s = 1, its logarithmic derivative 

must also be zero at s = 1, which gives (1). 
Since the logarithmic derivative of &s) is on the one hand 

and on the other hand 

ds 

the sum of the series C ( l / p )  is the value of 

at s = 0. Now logarithmic differentiation of the product formula for n ( x )  
[(4) of Section 1.31 gives 

1 - - log n + log(n + 111 n'(s) 
m = z [ - s + n  

1 1  1 n'(o) - lim [I + + + a - a + - log(n + I)]. n(0) n-m 

The number on the right side of this equation is by definition Euler's constant, 
and is traditionally denoted y. Thus 

1 1  1 c - = - y  + -log n + 1 - log 2n. 
P P  2 2 (4) 

This formula was known to Riemann, who used it in his computations of 
the roots p (see Section 7.6 below). From this it is clear that the formula (1) 
was also known to Riemann. 



Chapter 4 

The Prime Number Theorem 

4.1 INTRODUCTION 

The prime number theorem is the statement that the relative error in the 
approximation ~ ( x )  N Li(x) approaches zero as x - 00. Following the work 
of Chebyshev it was well known that the prime number theorem could be 
deduced from.the theorem that the relative error in the approximation ~ ( x )  N x 
approaches zero as x -+ 00. But von Mangoldt’s formula for ~ ( x )  shows 
that ~ ( x )  N x has this property if and only if 

-C (xp/p)  + C (x-Zn/2n) + const 
lim = o  n 

X-- X 

or, what is the same, if and only if 

x P -  1 
limC--=O. 
x-00 p P 

If the limit of this sum could be taken termwise, then it would suffice to prove 
that xp-’ --* 0 for all p or, what is the same, that Re p < 1 for all p. Since 
Re p I 1 for all p (by the Euler product formula-see Section 1.9), this 
amounts to proving that there are no roots p on the line Re s = 1. Thus, 
given von Mangoldt’s 1894 formula for ~ ( x ) ,  the proof of the prime number 
theorem can be reduced to proving that there are no roots p on the line Re 
s = 1 and to proving that the above limit can be evaluated termwise. 

Both Hadamard [H2] and de la Vallte Poussin ml]  succeeded in 1896 in 
iilling in these remaining steps in the proof of the prime number theorem. 
They both circumvented proving that the limit (1) can be evaluated termwise 

68 
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and instead they each derived a variation of von Mangoldt’s formula, namely, 

in de la VallCe Poussin’s casei and 

(3) 

-- C’(O) log x + const ( x  > I )  ((0) 

in Hadamard’s case. Either of these formulas is quite easy to prove using von 
Mangoldt’s methods-easier$ in fact than von Mangoldt’s formula for y(x)- 
and if it is known that Re p < 1 for all roots p, then either of them can be 
used to conclude by straightforward estimates that ~ ( x )  - x .  Thus, although 
it certainly required insight to see that a formula such as (2)  or (3) could be 
used, the substantial step beyond von Mangoldt’s work which was required 
for the proof of the prime number theorem was the proof that there are no 
roots p on the line Re s = 1. 

Hadamard’s proof that there are no roots p on Re s = 1 is given in Sec- 
tion 4.2. De la VallCe Poussin admitted that Hadamard’s proof was the sim- 
pler of the two, and although simpler proofs have since been found (see 
Section 5.2), Hadamard’s is perhaps still the most straightforward and natural 
proof of this fact. Section 4.3 is devoted to a proof that ~ ( x )  N x .  This proof 
follows the same general line of argument as was followed by both Hada- 
mard and de la VallCe Poussin, but it is somewhat simpler in that it is based on 
the formula 

rather than on the analogous, but somewhat more complicated, formulas (2) 
or (3). Finally, Section 4.4 gives the very simple deduction of n(x)  N Li(x) 
from ~ ( x )  N x .  

?For the value of the constant, which is -1 - y ,  see footnote t, p. 94. 
$At the time, de la Vallee Poussin was under the mistaken impression that von Man- 

goldt’s proof was fallacious, so of course he gave his own proof. Hadamard too preferred to 
avoid making appeal to von Mangoldt’s more difficult estimates and produced his own 
proof. 



70 The Prime Number Theorem 

4.2 HADAMARDS PROOF THAT Re p < 1 FOR ALL p 

The representation 

(1) log&) = j, x-' dJ(x) 

1 1 1 1 1  = C - ; + T C - + j C - + . * '  P p Z S  P PSS 
P P  

is valid throughout the halfplane Re s > 1. The presence of zeros p of ( (8 )  
on the line Re s = 1 would imply the presence of points s = cr + it slightly 
to the right of Re s = 1 where Re log ((s) was near -m. The series in (1) 
has the property that the sum of the terms after the first is bounded by the 
number 

1 1 1 1 1 1  B = T C T + 7 C T + - C - +  4 P P4 
P P  P P  

for the entire halfplane Re s 2 1 including Re s = 1 ; hence 

can approach -m as cr 4 1 only if the first term approaches - 00. In short, if 
1 + it were a zero p of C(s), then it would follow that 

for this value oft. The objective is to show that this is impossible. 
Now the fact that 

lim [Re logC(a) + log(a - I)] = 0, 
"l  1 

+ bounded + log(cr - l)] = 0, 

which means that for a slightly larger than one 

(3) 
1 - N -log(a - 1) 

P P" 
On the other hand, the derivation of (2) is easily strengthened to give 

lim [ C cos(t log p, + bounded - Re log(a - l)] = 0, 
" 1 1  P P" 

(4) 
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If this were true then, because of (3), one would expect that the number 
cos(t logp) would have to be nearly - 1 for the overwhelming majority of 
primes p. This would imply a surprising regularity in the distribution of the 
numbers logp, namely, that most of them lie near the points of the arithmetic 
progression (2n + 1)t-ln for this particular t. However, such a regularity 
cannot exist because it would imply that cos(2t logp) was nearly + 1 for the 
overwhelming majority of primes p, hence 

Re log,C(a + 2it) N +co 

which would imply the existence of a pole of g(s) at s = 1 + 2it. Since C(s) 
has no poles other than s = 1, this line of argument might be expected to 
yield a proof of the impossibility of (4) as desired. The actual proof requires 
little more than a quantitative description of the "overwhelming majority" 
of the primesp for which t logp N (2n + I)n would have to be true. 

Assume that 1 + it is a zero of C(s). Then C(s)/(s - 1 - it) would be 
analytic near s = 1 + it so the real part of its log would be bounded above, 
say by K; hence with s = a + it 

+ - - - Re log(a - 1) < K, 

( 5 )  c cos(t l0gp) < log(a - 1) + K + B 
P P" 

for all a > 1 near 1. This is a quantitative version of (4); the objective is to 
show that no t has this property. 

Let 6 be a small positive number (for the sake of definiteness, 6 = n/S 
will work in the following proof) and let the terms of the sum on the left side 
of ( 5 )  be divided into those terms corresponding to primes p for which there 
is an n such that 
(6) I(2n + 1)n - t l ogp l<  6 
and those terms for which p does not satisfy this condition. In the terms of 
the second group cos(t logp) = cos(n - a) = -cos a where 6 5 I a 1 < n, 
hence cos(t logp) -cos 6 for these terms and (5 )  implies 

-S' - (COS 6)S" < log(0 - 1) + K + B 
where S' denotes the sum of p-" over all primes p which satisfy (6) and S" 
denotes the sum of p-" over all primes p which do not. Now (3) says that 
S' + S" N --log(a - l), and the derivation of (3) shows easily that there is 
a K' such that S' + S" < -log(a - 1) + K' for all a > 1 near 1. Thus (5 )  
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implies 
-S - (COS 8)s'' < -S - S" + K' + K + B, 

(1 - cos 8)s" < const 
for all u > 1 near 1 .  Since S' + S" becomes infinite as u J 1, this shows that 
(5 )  implies 

S" S' lim - - 0, 
a11 s + S" - 

lim - - 1 
a i l  s + S" - (7) 

which is a specific sense in which the "overwhelming majority" of primes must 
satisfy (6) if ( 5 )  is true. 

However, since 1 + 2it is not a pole of C(s), the real part of log((s) is 
bounded above near s = 1 + 2it, say by K", hence 

When the terms in this sum are split into those terms for which p satisfies (6) 
and those terms for which p does not, the terms in the first group have cos 
(2t logp) = cos(2a), where I a I < 26; hence cos(2t log p) > cos 26 > 0, so 
(8) implies 

S' cos 26 - S" < K" + B, 
S' const > cos2s- - ~ Z q T  s + S" S' + S" S" 

which contradicts (7). Thus ( 5 )  is impossible and the proof is complete. 

4.3 PROOF THAT W(X) - x 

Since von Mangoldt's formula 

(Yo)  ( x  > 1) V W  = X - c - + c 2n - - 
XP X - 2 n  

P C(0) 

is obtained by evaluating the definite integral 

'J""[-#]X'ds ( x  > 1, a > 1) 2ni o-im S 

in two different ways, it is natural to expect that the antiderivative of von 
Mangoldt's formula, namely, 

XP+ 1 X-2n+l 
X2 

2 p(p + 1) - = 242n - 1) J: V(t )  dt = - - C 
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could be obtained by evaluating the antiderivative of this definite integral, 
namely, 

in two different ways. 

C A(n)n-". If termwise integration of this expansion is valid, then (1) is 
The first way of evaluating (1) is to use the expansion -C'(s)/c(s) = 

The partial fractions expansion 

(3) 1 1 1 
--s s + l  

= {;-n if n l x ,  

if n 2 x, 

so that if termwise integration is valid, then (1) is equal tot 

C A(n)(x - n) = j x  (x - t )  dy(t) = fJ y(t) dt. 
n l x  

The proof that termwise integration is valid, and hence that (1) is equal to 
I: y(t)  dt, is easily accomplished by writing the integrand of (1) in the form 

to express (1) as the difference of two integrals of infinite sums over n, and by 
then observing that von Mangoldt's method shows immediately that each of 
these two integrals can be evaluated termwise. 

The second way of evaluating (1) is to use the expansion 

of Section 3.2, (7). When this is used in conjunction with (3) in expressing the 
integrand of (l), the term l/s divides evenly, but the term I/(s + 1) does not. 

?Note that the case x = n presents no difficulties because then x - n = 0. This occurs 
because the antiderivative of a function with jump discontinuities has no jump discontinu- 
ities. 
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To simplify the resulting expression note that 
C ' G )  -1 CY-1) - s -- 

-l  1 + F [2n(s + 2n) - 24-1 + 2n) 
S 

C'(4 - s + 1 S + 1  -- 
C(s> 2(s - 1) ? (Y + l)(s - PI 

+ T (2n - l)(s + 2n) 
S + l  -- CY-1) 

C(-1) 
so that the integrand in (1) is equal to 

xs+ 1 xs+ 1 

? p(s  - p )  + T 2 4 s  + 2n) 
C'(0) X S + '  X'+' xs+ 1 

C(0) s 

C(-l) s + 1 

2(s - 1) + ? (P + I)@ - P) 
xs+ 1 +--. C'(-l) x"1 

- T (2n - l)(s + 2n) 
Von Mangoldt's estimates (Section 3.5) with only slight modifications show 
that both of the sums over p and both of the sums over n can be integrated 
termwise. This gives for (1) the value 

X2 

which by the above is also equal to 
the formula? 

X2 

v(t) dt. This completes the proof of 

r'(o)x I "(-1) 
2 p p ( p  + 1) - T 242n - 1) C(0) ((-1) 

X P + l  X-2n+ 1 
-- v(r) dr = - - C 

which holds for all x > 1. 

?This is a special case (u = 0, v = - 1) of the formula 
yu J', t-.dy(t) - yv J', t -vdy(t )  = -[p- c'(u) - y.-] c'(4 + - 

C(u) C(v) (u - l)(v - 1) 
- Y P  (u - 

- (u - v, 
(u - p x v  - p )  

(u + 2nxv + 2n) 
y-2" 

(Y > 1) 

which de la VaUe Poussin proved in 1896 by using the above method in conjunction with 
elementary arguments-not those of von Mangoldt-to justify the termwise integrations. 
However, he used the w e  u = 1, v = 0, which gives (2) of Section 4.1, in his proof of the 
prime number theorem. Note that the constant in formula (4) of Section4.1 has been shown 
to be c'(-l)/C(-l). 
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( 5 )  

Using this formula for y(t)  dt it is quite easy to show that 

where, as usual, the symbol - means that the relative error in the approxima- 
tion approaches zero as x - 00. One need only note that 1; y(t) dt - (x2/2) 
divided by x2/2 is, by the formula, equal to 2ZxP-'/p@ + 1) plus terms which 
go to zero as x --f 00. Since Zp-'(p + l)-' converges absolutely and since 
I x p - '  I < 1 (because Re p _< l), it follows that the series ZxP-'/p(p + 1) 
converges uniformly in x and hence that the limit as x - 03 can be evaluated 
termwise; since each term goes to zero (because Re p < l), it follows that 
this limit is zero and hence that the relative error in (5 )  approaches zero as 
X - +  03. 

To deduce y(x) - x, let 6 > 0 be given and let X be such that 

for all x 2 X. Then for y > x 2 X it follows that 

is at least 
Y2 X 2  y2 - x2 X 2  

2 -  2 
(1 - €)T - (1 + €)- - (1 - €)- - 2€-2- 

and at most 
Y 2  X 2  (1 + €)- 2 - (1 - €)- 2 = (1 + €)M 2 + 2&. 2 

On the other hand, is an increasing function, so (6) is at least 
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Given any /3 > 1, E > 0, these inequalities are satisfied for all sufficiently 
large x, y. Now the quantity on the right side of the first inequality can be 
made less than any number greater than 1 by first choosing /3 > 1 near 
enough to 1 that the first term is very near 1 and by then choosing 6 so small 
that the second term is still small; this shows that +)/x is less than any 
number greater than 1 for x sufficiently large. Similarly the second inequality 
can be used to show that wQ/y is greater than any number less than 1 for y 
sufficiently large. This completes the proof that ~ ( x )  N x.  

4.4 PROOF OF THE PRIME NUMBER THEOREM 

Once the estimate ~ ( x )  - x has been proved, the prime number theorem 
a(x)  N Li(x) is easily deduced. The technique used below is essentially the 
technique used by Chebyshev in 1850 [C3] to deduce his estimate of x(x) 
from his estimate of ~ ( x ) .  

Let O(x) denotet the sum of the logarithms of all the primes p less than x ,  
with the usual understanding that if x itself is a prime, then O(x) = @(x + E )  + O(x - E ) ] .  Then the relationship of 0 and y is analogous to the rela- 
tionship of II and J, and in analogy to the formula (1) of Section 1.17 relating 
II and J there is the formula 

v ( x )  = e(x) + e ( X q  + e ( x 1 / 3 )  + e ( ~ 1 4 )  + . . . 
relating O and v. The series on the left has the property that each term is 
larger than the following term and that all terms O(x1ln) in which xl/" < 2 
are zero. Thus there are at most log x/log 2 nonzero terms and 

e(x) < v ( x )  < e(x)  + e(X112) log xliog 2 

~ ( x )  - e ( X q  log x/iog 2 < e(x) < V(x). 

which gives 

(1) 
The inequality on the right together with ~ ( x )  N x shows that O(x)/xl+f --* 0 
as x - m. Hence O(x1I2) log x / x  = [ O ( ~ ~ / ~ ) / ( x ~ ~ ~ ) ~ + ~ ] [ l o g  X / ( X ~ / ~ ) ~ - ~ ]  goes to 
zero as x ---f 00 and O(x) N x follows from (1) and ~ ( x )  - x. 

Now let > 0 be given and let X be such that (1 - E)X < O(x) 
(1 + r)x whenever x 2 X. Then for y > x 2 X it follows that 

IThis notation, introduced by Chebyshev, is now standard. 
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is at most 

and is at least 
X - 2 ~ -  + (1 - ~))[Li(y) - Li(x)]. log x 

Thus for fixed x it follows that lr(y)/Li(y) is at most 
n(x) - 2~x(log x)-I - (1 + E )  Li(x) < 

+ 2E - LKY) I + € +  

for all sufficiently large y and similarly that it is at least 1 - 2~ for all suffi- 
ciently large y. Since E was arbitrary, this proves the prime number theorem 
Lib) N n Q .  
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De la Vallbe Poussin’s Theorem 

5.1 INTRODUCTION 

After it was proved that the relative error in the approximation n(x) N 

Li(x) approaches zero as x approaches infinity, the next step was an estimate 
of the rate at which it approaches zero. De la VallQ Poussin [V2] proved in 
1899 that there is a c > 0 such that the relative error approaches zero at least 
as fast as exp[-(c log x ) ~ / ~ ]  does; that is, 

for all sufficiently large x .  The next two sections are devoted to the proof of 
this fact. Section 5.4 contains an application of this theorem to the question 
of comparing Li(x) to other possible approximations; it is shown, in essence, 
that Dirichlet, Gauss, Chebyshev, and Riemann were correct in preferring 
Li(x) to another approximation suggested earlier by Legendre. The next 
section, 5.5, shows that de la VallCe Poussin’s theorem can be improved con- 
siderably if the Riemann hypothesis is true and that in fact the Riemann 
hypothesis is equivalent to the statement that the relative error in n(x) - Li(x) 
goes to zero faster than x - ( ’ / ~ ) + ~  as x + 00 (for all 6 > 0). Finally, the last 
section is devoted to the very simple proof of von Mangoldt’s theorem that 
Euler’s formula C p(n)/n = 0 [p(n) is the Mobius function] is true in the 
strong sense that the series C p(n)/n is convergent to the sum zero; this proof 
makes very effective use of de la VallCe Poussin’s theorem that the relative 
error in the prime number theorem approaches zero at least as fast as 
exp[-(c log x)~’~] .  

78 
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5.2 AN IMPROVEMENT OF Rep < 1 

De la VallCe Poussin’s estimate of the error in the prime number theorem 
is based on a strengthened version of the theorem that the roots p = B + i y  
satisfy /3 < 1, namely, the theorem that there exist constantst c > 0, K > 1, 
such that 

for all roots p = /3 + i y  in the range y > K. Since log y > log K > 0, the 
inequality (1) is stronger than p < 1, but the amount by which it is stronger 
decreases as y increases and (1) does not preclude the possibility that there 
are roots p arbitrarily near to the line Re s = 1 ; although (1) has been im- 
proved upon somewhat since 1899, no one has yet been able to prove that 
Re p has any upper bound less than 1. 

De la VallCe Poussin’s proof of (1) makes use of a technique by which 
Mertens [M6] simplified the proof that Re p < 1. This technique is based on 
the elementary inequality 

4 2 2(1 - cos el, 
4(i + cos e) 2 2(1 - cos2 e) = 1 - cos 28, 

3 + 4c0s e + cos 28 2 0, 
which holds for all 8. Combining this with the formula$ -(‘(s)/((s) = 
Jy x - ~  dv(x)  for Re s > 1 gives 

x-q3 + 4 cos(t log x )  + cos(2t log x)] @(x)  2 0. 

Hence 

for all a > 1 and for all real t. 
This inequality can be used to prove /3 < 1 as follows. Assume there is a 

real value of t such that ((1 + i t)  = 0 and let f(s) be the function [((s)]’ 
.[c(s + it)I4 “((s + 2it)l. Then the first factor of f ( s )  has a pole of order 3 at 

tSpecificalIy, de la Vallk Poussin proved that j9 < 1 - c(log y - log n)-1 for y 2 705, 
where c = 0.034 and n = 47.8. This requires, of course, much more careful estimates than 
those given here. 

SMertens uses log ((s) = x-8 dJ(x) instead. 
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s = 1, the second has a zero of order at least 4, and the third has no pole; 
hencef(s) has a zero of order at least 1 at s = 1, sayf(s) = (s - lpg(s), where 
n 2 1 and where g(s) has no zero and no pole at s = 1. Then the logarithmic 
derivative of g approaches a limit as s -, 1, so the logarithmic derivative of 
f(s) differs from n(s - l)-’ by a bounded amount as s 3 1. Thus the loga- 
rithmic derivative of f(s) has large positive real part when s = a is real and 
greater than 1. But (2) shows that this is impossible and hence that no t satis- 
fies C(1 + it) = 0. 

De la Vallte Poussin used the inequality (2) to prove (1) by using the for- 
mula 

[see (6) of Section 3.21 to estimate the terms of (2). Specifically, this formula 
and the formula II‘(x)/II(x) N log x of Section 6.3 show that for 1 I a I 2 
and for t large, the real part of C’(s)/C(s) is approximately 

pecause (s - l)-I  is small] and in particular that one can choose K > 1 
such that 

1 
2 - logt +-log72 Re C’(a + 1 

~ ( a  + it) 2 Re a + it - p 

holds throughout the region 1 < a 5 2, t 2 K. The terms of the sum over 
p are positive (because a 2 1 > Re p), so the same inequality holds a 
fortiori if some or all terms of the sum over p are omitted. Now (a - l)C(a) 
is nonsingular at a = 1, so the logarithmic derivative of ((a) differs from 
-(a - l ) - I  by a bounded amount and (2) gives 

- 4 log t - log(2t) + const 3 0 2 - -  a - 1 + a + it - p 

when all but one term of the sums over p are omitted. Thus for all roots p 
and1 < a < 2 , t 2 K  

where C > 0 is independent of a, t, and p. If p = B + i y ,  where y 2 K, 
then one can set t = y to find 

1 + Clog y 2 - 
4 a - - 1  a - B  
3 1  -- 
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for all a in the range 1 < a I 2. Thus 

+ clogy]-l (a - /3 = (a - 1) - (B - l), 
L a -  1) 

3 

p < 1 - & . -  1 
3 + 4 y  Clogy' 

where y = (a - 1)C log y. Thus y can have any value between 0 and C log y 
2 Clog K. Since y - 4y2 > 0 for small values of y, one need only fix a small 
positive value of y such that y < C log K, y - 4y2 > 0 in order to draw the 
desired conclusion (1) for all roots p = /3 + i y  which satisfy y 2 K. 

5.3 DE LA VALLfiE POUSSINS ESTIMATE OF THE ERROR 

Since the main step in the proof of the prime number theorem is to use 
the estimate /I < 1 to prove that C xP-l/p@ + 1) approaches zero as x - 
00, it is natural to try to use the improved estimate /3 < 1 - c(1ogy)-' 
(for y 2 K) of the last section to prove an improved estimate of 
C xP-'/p(p + 1). De la Vallde Poussin accomplished this by the following 
very simple argument. Note first that 

The first term on the right is the sum of a finite number of terms each of which 
is a constant times a negative power of x (namely, xf l - I ) ;  hence there are 
positive constants C, E such that this term is less than Cx-' for all x > 1. If 
6 is any positive constant, then 2 C y - ' - '  converges by the theorem of 
Section 2.5; so the second term on the right is less than a constant times the 
maximum value of xfl-l /yl-& if this expression does have a maximum value 
for y 2 K. But 

xB- 1 x-c/( '08 Y )  -<- 
yl-* - 

and the logarithmic derivative of the quantity on the right with respect to 
y (considered for the moment as a continuous variable) is 

which is positive, negative, or zero according to whether c log x is greater 
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than, less than, or equal to (1 - 6)(log Y)~. Thus if x is large enough that 
c log x > (1 - @(log Q2 and if 1 - 6 > 0, then there is a maximum for 
y 2 K at the point where c log x = (1 - 6)(log Y ) ~ .  At this point 

-- clogx - (1 - 6) logy = [c(l - 6) log x p ;  
1% Y 

hence 
x1-l - <- Y1-6 - y1-6 - exp{[c(l - 6) log x I 1 9  

X - ~ / ( ' O ~ Y )  < exp(-[c(l - 6) log ~ 1 ~ 1 2 )  - - exp(-2[c(l - 6) log xI1/2). 

Set 6 = 
give 

and let C ,  denote 2 C Y-'-~. Then the above estimates combine to 

x p - l  I < cx-8 + C ,  exp[-(c log x)1/21 
l%P+ 1) 

for all sufficiently large x.  Finally, since rf goes to zero much faster than 
exp[-(c log x ) ~ / ~ ] ,  since the constants C, C ,  can be absorbed by decreasing c 
slightly, and since 2 C xp-,/p@ + 1) is the relative error in the approxima- 
tion w(t)  dt N 912  except for terms which are like x-l as x - 00 [see (4) 
of Section 4.11 this proves that there is a constant c > 0 such that the relative 
error in the approximation 1: w(t) dt N x2/2 is less than exp[-(c log x)ll2] 
for all suficiently large x. 

Now, by essentially the same arguments which were used to deduce the 
prime number theorem ~ ( x )  N Li(x) from 1: I(?) dr N x2/2, one can deduce 
an estimate of the relative error in the prime number theorem from the above 
estimate of the relative error in 

The first step is to derive an estimate of the relative error in ~ ( x )  N x .  
Let e(x) = exp[-(c log x)~'~], where c is as above so that 

w(t) dt - x2/2. 

for all sufficiently large x.  Then, as before, IyO V(t) dt - 1; y ( t )  dt for y > x 
is on the one hand at most 

y2 - x2 

and at least 

and on the other hand is at most 

and at least 
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X2 

Y - - x  
Y ( X )  - x I + &(X)- + + &(X)-, 2 

Y - - x  Y + X  X2 Y(Y) - Y 2 -2 - &(dT - &(X)---. Y - - x  
In the first inequality set y = (1 + [C(X)]”~)X to obtain 

y(x) - I - + &(X)[l + T&(x) ]  1 + [&(X) ] ’ /2  
X 2 

- < const [E(x)]’/~, 
and in the second inequality set x = (1 - [ ~ ( y ) ] ’ / ~ ) y  to obtain 

= -2 exp{-[c logy + c log[l - ( ~ ( y ) ) ’ / ~ ] ] ~ / ~  + $(c logy)’/2} 
2 -2 exp[-(c log y)lI2[(l - - f]}. 

Thus there is a constant c, > 0 such that the relative error in the approximation 
y(x) N x is less than exp[-(c, log x)’/~]]o~ all suficiently large x. 

The next step is to consider the approximation e(x) N x. But since, as 
before, 

and since 0(x1I2) log x - x1/2 log x grows much more slowly than 
x exp[-(c, log x)II2], it follows immediately that the relative error in this 
approximation is also less than exp[-(c, log x)’I2] for all sufficiently large x. 

The final step is to consider the approximation H(X)  N Li(x). Here the 
formula 

~ ( ~ 1 -  e(x*/2)(iog X)/iog 2 < e(x) < ~ ( ~ 1  

shows that if y > x are in the range where the relative error in O(x) N x is 
less than E(X)  = exp[-(c, log x)’/~], then n(y) is at most 
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Let x be fixed, let y be larger than x2, and let the final integral be divided into 
an integral from x to and an integral from y112 to y. Then 

< const + Li(y) 

and similarly 

Since the quantity in square brackets is less than & ( Y ’ / ~ )  for all sufficiently 
large y, it will suffice to prove that y/log y divided by Li(y) is bounded as y - 
00 in order to prove that the relative error in n(y) N Li(y) is less than & ( Y I / ~ )  

for y sufficiently large. It will be shown in the next section that Li(y) N 

y/log y, and this will complete the proof that there is a constant c1 > 0 
such that the relative error in the approximation w(y) N Li(y) is less than 
exp[-(c, for all suficiently large values of y. This is de la Vall&e 
Poussin’s estimatet of the error in the prime number theorem. 

5.4 OTHER FORMULAS FOR R(X) 

The approximate formula for n(x) which appears in Legendre’s Theorie 
des Nombres [L4] is 

where A is a constant whose value Legendre gives as 1.08366, apparently on 
empirical grounds. Legendre does not specify the sense in which the approx- 
imation (1) is to be understood, but if it is interpreted in the usual sense of 
“the relative error approaches zero as x -+ 00,” then the value of A is irrele- 
vant because 

x N  X 
logx - A  lOgx - B 

tDe la Vallde Poussin wrote the estimate in the form (el log y)l/2 exp[-(cl log y)I/Z] 
and gave the explicit value 0.032 of el. He did not, however, give any explicit estimate of 
how large y must be in order for this estimate of the relative error in x(y)  - Li(y) to be 
valid. 
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for any two numbers A, B (because the ratio is log x - A over log x - B, 
which approaches 1) and hence if (1) is true for one value of A, it must be 
true for all values of A (because “ N” is transitive). Therefore if Legendre’s 
value A = 1.08366 has any significance, it must lie in some other interpreta- 
tion of the approximation (1). 

The prime number theorem n(x) N Li(x) shows that (1) is true if and only 
if Li(x) N x/(log x - A) for some-and hence all-values of A. But by 
integration by parts 

Li(x) = + J, logt dt 
X 2 dt = Li(2) + - - - logx log2 + I, (log, 

dt X Li(x) - - - log x 
and it suffices to show that the integral on the right divided by x/log x ap- 
proaches zero as x - 00 in order to conclude that (1) is true with A = 0. 
[Intuitively this is the obvious statement that the average value of (log t ) -2 
for 2 I t I x is much less than (log x)-’.] This is easily accomplished by 
dividing the interval of integration at x ’ / ~  to find 

-J logx ---I dt logx x”* dt logx dt 
x 2 (log t ) 2  - x 2 (log + x J,n (log 

log x . x1’2 - 2 log x x - x1’2 I -  x (log 2)2 + x * (log x1/2)2 

-0. log x 
(log 2)2x”2 + logx 

Thus the prime number theorem implies (1) but it implies no particular value 
of A. 

Chebyshev [C2] was able to show that if any value of A is any better than 
any other, then this value must be A = 1. The special property of the value 
A = 1 which is needed is the fact that the approximation 

is best when A = 1. To see this, note that 

(3) 

X A A 
log x - A log x log x 

X Ax +- log x - A log x (log x), ’ N- 
X 

where N means that the error is much smaller than the last term Ax(1og x ) - ~  
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in the sense that their ratio approaches zero as x - 00, while 
dt 

2- 
Li(x) = X + const + J log x 

X 2 dt + const+ - - - 
(log x)2 

- 
(log 2)2 + s, (log- -- 

log x 
Hence 

X X Li(x) N - +--, (4) logx (logx)2 
where the error is much smaller than the last term because 

(log x), dt (log x), x112 - 2 (log x ) ~  x - x112 <-- x I, - x (log 213 + x (log , 1 9 3  .+ 0. 
The combination of (3) and (4) shows that the error in (2) divided by 
x(1og x)-, is A - 1 plus a quantity which approaches zero as x -+ 00. This 
gives a precise sense in which A = 1 is the best value of A in (2). Chebyshev 
was able to prove enough about the approximation n(x) N Li(x) to prove 
that if A has a best value in (l), then that value must also be A = 1. 

However, even the prime number theorem is not enough to prove that 
A = 1 is best in (1). To prove this, one would have to show that the approxi- 
mation n(x) N Li(x), like the approximations (3) and (4), has the property 
that its error grows much less rapidly than x(1og x)-~,  and the prime number 
theorem says only that it grows much less rapidly than Li(x), which in turn 
grows like x(1og x)-’ by (2). Thus a stronger estimate of the error in n(x) N 

Li(x) is needed. 
Now since exp[(clog~)”~]  grows more rapidly than any power of 

(c log x)”~, it follows from de la VallCe Poussin’s estimate of the error in 
A(X) N Li(x) that 

and hence that the error in (1) divided by x(1og x ) - ~  is A - 1 plus a quantity 
which approaches zero as x - +  co. Thus de la VallCe Poussin’s estimate 
proves that the value A = 1 in (1) is better than any other value. 

More generally, successive integration by parts shows that (4) can be 
generalized to 

X X X Li(x) N - + - + 2- log x (log X)Z (log x)’ 
x + ... + (n - l)! - x ,  

+ 6m (1% x)” 
where the error (for any fixed n) grows much less rapidly than the last term 
x(1og x)-“ as x 4 00. De la Vallee Poussin’s estimate shows that the error in 
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n(x) N Li(x) also grows less rapidly than x(1og x)-” and hence proves that 
the approximation 

( 5 )  
X + (n - 1)!- 

log x (log x)2 (log x>. 
X X n(x>w-+-+ - * .  

is valid in the sense that (for any fixed n) the error in the approximation divid- 
ed by the last term on the right approaches zero as x -+ 00. The case n = 1 
is essentially the prime number theorem and the case n = 2 is essentially the 
theorem that A = 1 is best in (1). 

Thus de la VallCe Poussin’s estimate of the error proves that the approxi- 
mation a(x) N Li(x) is better than the approximation ( 5 )  for any value of n. 
This is the principal consequence which de la VallCe Poussin himself drew 
from his estimate of the error. 

Formula (5 )  is an example of an asymptotic expansion, which is an expansion such as 
a(x) = (n - I)! x(log x)-* in which the error resulting from taking a finite number 
of terms is of a lower order of magnitude than the last term used. Another more 
familiar example of an asymptotic expansion is the Taylor series of an infinitely 
differentiable function f ( x )  = 2 f(n)(a)(x - u)”/n!. The fact that this is an asymp- 
totic expansion-that is, the fact that the error resulting from using just n terms 
decreases more rapidly than (x  - a)” as x 4 a-is Taylor’s theorem. This in no way 
implies, of course, that for fixed x # u the error approaches zero as n -+ 00. For any 
fixed x formula (5 )  for n(x) becomes worthless as n -+ 00 because (n - l)! grows 
much faster than (log x)”. Another example of an asymptotic expansion is Stirling’s 
series (3) of Section 6.3. Although pure mathematicians shun asymptotic expansions 
which do not converge as n -+ 00, mathematicians who engage in computation are 
well aware that asymptotic expansions (for example, Stirling’s series) are often more 
practical than convergent expansions [for example, the product formula (3) of Section 
1.3 for HI. 

Recall that Riemann’s approximate formula for n(x) was 

where N > log x/log 2, and that on empirical grounds this formula appeared 
to be much better than n(x) N Li(x). The second term in this formula is 

Poussin’s estimate shows that the error in n(x) N Li(x) is less than Li(x) 
-exp[-(~logx)~/~] N x(logx)-l exp[--(clog~)]~/~ so that -$Li(x1’2) divided 
by the error estimate is about - X - I / ~  exp[+(c log X)I/~] = -exp[-$ log x + (clog x ) ~ / ~ ]  -+ 0. Thus de la Vallde Poussin’s estimate is not strong 
enough to prove that even the second term of (6) has any validity, much less 
the remaining terms. It was, in fact, proved by Littlewood [L13] that Rie- 
mann’s formula (6) is not better as x 00 than the simpler formula n(x) N 

Li(x). In other words, Littlewood proved that in the long run as x -+ 00 the 

-3Li(xl/2) -Jx1/2(log xI/2)-1 = - x 1/2 (logx)-’, whereas de la ValMe 
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"periodic" terms Li(xp) in the formula for n(x) (see Section 1.17) are as sig- 
nificant as the monotone increasing term -*Li(x*/2) and a fortiori as signifi- 
cant as the following terms Li(x1l3), Li(x114), . . . of (6). 

5.5 ERROR ESTIMATES AND THE RIEMA" HYPOTHESIS 

In view of the strong relationship between de la Vallte Poussin's estimate 
of the error in the prime number theorem and his estimate j? < 1 - c(1og y)-'  
of B = Rep, it is not surprising that the Riemann hypothesis R e p  = f 
should imply much stronger estimates of the error. The best such estimate 
that has been found up to now is the estimate proved by von Koch [Kl] in 
1901, namely, that if the Riemann hypothesis is true then the relative errors 
in ~ ( x )  N x and a(x) N Li(x) are both less than a constant times (log X ) ~ X - ' / ~  
for all sufficiently large x. This estimate implies that the relative errors are 
eventually less than x - ( ' / ~ ) + ~  for all 6 > 0, whereas de la Vallte Poussin's 
estimate exp[-(c log x)*/~]  fails to show that they are less than x-' for any 
€ > 0. 

If the Riemann hypothesis is true, then the magnitude of the relative error 
in the approximation Is ~ ( t )  dt N Jx2 is less than 

< const x- 1/2 

for all sufficiently large x. However, the previous method of deducing from 
this an estimate of the relative error in ~ ( x )  N x involves taking a square root 
and hence yields only the estimate x-II4 and not von Koch's estimate 
x-'/2(logx)2. Therefore some other method of estimating the error in 
~ ( x )  N x is necessary. The following method is due to Holmgren [HIO]. In 
the estimate (see Section 4.3) 

(x + 1)P+' - xp+' + bounded 1 
1 + const (x + I)#+' - xp+' 

I X + C I  P(P + 1)  

let the terms corresponding to roots p = f + iy (assuming the Riemann 
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hypothesis) for which I y I I x be estimated using 

and let those corresponding to roots for which I y I > x be estimated using 

Let H be as in the theorem of Section 3.4 so that the number of roots p = 
3 + i y  in the interval t 5 y 5 t + 1 is less than 2 log t for t 2 H. Then the 
above estimates give (when x > H) 

log t dt w t  + const x3/2 jw - - < x + const x1/2 + const x1/2 
H f  x t 2  

dt 

I x + const x112 + const x1/2(log x ) ~  + const x312 - 
5 x + const x1/2(log x ) ~ .  

The same technique applied to the estimate 

v(4 2 fx v(t)dt = 1; - (x - 1)2 ’)’+’ + bounded1 
x -  I 

gives 
x1/2 1/2 2x 312 y ( x ) > x -  c - - 2  c L - 2 c -  

l y l < H  171 H<Y<x y X>Y Y 2  

2 x - const x1l2 - const x112 

2 x - const x1/2(log x ) ~  

which completes the proof that the relative error in ~ ( x )  - x is less than a 
constant times (log x)~x-I /~ (assuming the Riemann hypothesis). Since 

v(x) - e(x1/2)iog xpog 2 g tqX) 5 v(x) 
and since O(x1/2) log x - x112 log x is much smaller than x1/2(log x ) ~ ,  the 
same is true of O(x) - x. Now 
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for any constant c > 1 ; hence if [ O(t) - t I < Kt1l2(log t)2 for t 2 c, then 
x > c implies 

Kx1/2(log x ) ~  Kdt I n(x) - Li(x) I I log + j + const 

which proves, since Li(x) - (x/log x )  as x -+ 00, that the relative error in 
n(x) - Li(x) is eventually less than a constant times (log x)2x-1/2 if the Rie- 
mann hypothesis is true, as was to be shown. 

On the other hand, if the Riemann hypothesis is false, then there is a root 
p with Rep > 4 and hence (see below) a "periodic" term in Riemann's formula 
for Z(X) which grows more rapidly in magnitude than x1I2, so it is reasonable 
to assume that the error in the prime number theorem n(x) - Li(x) would 
not in that case grow less rapidly than 

The rate of growth of Li(xp) for p in the first quadrant Re p > 0, Im p > 0 is easily 
estimated using the formula Li(xp) = Ic (log t)-ltp--l dt + i R  of Section 1.15 and 
integration by parts as in Section 5.4 to find 

=-+J XP -++in tp- 1 dt 
p log x c p(l0g t ) 2  

+ const. XP x t p - 1  dt 

The first term, which has modulus XRCP I pl-I(log x)-l, dominates as x + 00 because 

~ ( 1 / 2 ) R e p  4XRC P 

- Re p(1og 2)2 + Re p(1og x)2 

has modulus much less than a constant times xRe p(1og x)-'. 

Theorem The Riemann hypothesis is equivalent to the statement that 
for every E > 0 the relative error in the prime number theorem n(x) - Li(x) 
is less than x-(1/2)+r for all sufficiently large x. [If they are true, then the rel- 
ative error in the prime number theorem is in fact less than a constant times 

Proof It remains only to show that if the relative error in n(x) - Li(x) 
is less than ~ - ( l / ~ ) + ~ ,  then the Riemann hypothesis must be true. Assume 
therefore that for every E > 0 the relative error in n(x) - Li(x) is eventually 

x-112 (log x)"] 
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less than x-(l j2)+€. Since Li(x) N (xllog x), this implies that the absolute error 
is eventually less than x(ll2)+€, say for x 2 c. Then since 

O(x) - x = log t d[a(t)  - Li(t)] + const I: 
= (log x)[n(x) - Li(x)] - dt) - Li(t) dt + const, 

C t 
it follows that 

1 e(x) - x I I (log X)x(1/2)+~ + Jx t - ( l / z ) + c  dt + const 5 x(1/2)+2c 
C 

for all sufficiently large x.  Since 

this implies immediately that I ~ ( x )  - x I I x ( ~ / ~ ) + ~ ~  for all sufficiently large 
x.  But the formulas 

which hold for Re s > 1, combine to give 
m d 

ds 
- - log[@ - ~)C(S)] = 1 + s J X - " - ' [ ~ ( X )  - X ]  dx 

for Re s > 1. If I ~ ( x )  - x I < x(l/2)+2€ for all large x, then the integral on the 
right converges throughout the halfplane Re s > f + 26. By analytic con- 
tinuation the right side (which is analytic by differentiation under the integral 
sign) must be equal to the left side throughout the halfplane Re s > 3 + 2 ~ ,  
which shows that C(s) could have no zeros in this halfplane. Thus if the rel- 
ative error in ~ ( x )  N Li(x) is less than x - ( ~ / ~ ) + €  for all E > 0, the Riemann 
hypothesis must be true. 

5.6 A POSTSCRIPT TO DE LA VULBE POUSSIN'S PROOF 

The Euler product formula for c(s) implies that for Re s > I 

where, as in the Mobius inversion formula, p(n) is 0 if n is divisible by a 
square, - 1 if n is a product of an odd number of distinct prime factors, and 



92 De la VaEe Poussin's Theorem 

+ 1 if n is a product of an even number of distinct prime factors [p(l) = 11. 
Since C(s) has a pole at s = 1, [&)I-' has a zero at s = 1 ; so if (1) were valid 
for s = 1, it would say 

(2) 0 = 1 - 4 - 3  -4 + & -3 + & - g7 - + gz + * - - - .. 
This equation was stated by Euler [E5], but Euler quite often dealt with diver- 
gent series and his statement of this equation should not necessarily be under- 
stood to imply convergence of the series on the right but only summability. 
At any rate Euler did not give any proof that the series (2) was convergent, 
and the first proof of this fact was given by von Mangoldt [M2] in 1897. Von 
Mangoldt's proof is rather difficult and a much simpler proof of the formula 
(2), together with an estimate of the rate of convergence, was given by de la 
VallCe Poussin in 1899 in connection with his proof of the improved error 
estimate exp[-(c log x)"~] in the prime number theorem. 

Specifically, de la VaMe Poussin proved that there is a constant K such 
that 

(3) 

for all sufficiently large x. As x -, 00 this of course implies (2). De la VallCe 
Poussin's proof is based on two observations concerning the function P(x)  
defined by 

namely, the observation that P(x)  is related to the series (2) by the formula 

(4) 

and the observation that an estimate of P(x)  can be derived from the estimate 
of ~ ( x )  obtained in Section 5.3. 

Consider first the proof of (4). The essence of this identity is the identity 

which, since -['(s)/((s) = C A(n)n-. and [C(s)]-' = c p(n)n-" for Re s > 1, 
gives 

for Re s > 1.  It is natural to suppose that since these series have the same sum 
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for all s they must be identical, and hence for all x 

which for s = 1 gives 

(7) 

Now for every fixed k I n < x the sum on the left is over all integersj such 
that j k  < x,  that is, it is over all integers j < x/k ,  hence 

from which (4) follows. The one step of the argument which requires further 
justification is the truncation (6) of the series (5). This is essentially a question 
of recovering the coefficients of a series C Ann-s from a knowledge of its 
sum, which can be done by a technique similar to that used in Section 3.2 to 
recover A(n) from -C'(s)/c(s) = C A(n)n-". Specifically, one can go directly 
from (5) to the desired equation (7) by using the identity 

= X . C - ,  An 
n i x  n 

where the termwise integration in the last step is justified, by the same argu- 
ment as before, whenever the A, are such that C (I A, l/n)n-(a-l) < 00, which 
is certainly the case for both series in (5) for large a. This completes the proof 

Consider now the estimation of P(x).  The desired estimate is easily found 
of (4). 

heuristically by using 

to find 
dy/(x) = (1 - C XP- '  - C x - ~ " - ' )  dx 

d q x )  1 x-l dv(X) = (x-'  - C XP-' - c x - ~ " - ~ )  dx, 
X P -  1 

q x > =  logx - c- + const, 
P - 1  

which indicates that P(x)  N log x + const with an error which goes to zero 
faster than 

< exp[-(c log x ) ~ / ~ ]  + exp[-(c log x)l'2]. 
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In order to prove this it suffices to write 

= + I* t-Zy(t) dt 
X 1 

- w(x) - t-1 dt + Ix t - lw(f)-  ' d t  + 1 
+ I 1  1 t 

- 
X 

= l o g x + y ( x ) - x +  r t - l w ( ' ) - ' d t +  1. 
X 1 t 

The integral in the last expression converges as x -+ 00 because if x increases 
to x', it increases for large x by less than 

x' 1 c logx' 
t - I  exp[-(c log t ) l l2 ]  dt = - 5 exp(--u1/2) du 

x c c1ogx 

Thus the above formula can be rewritten 

(8) P(X> = log x + c + tt(x), 

where C is the constantt 1 + 
less than 

r 2 [ y ( t )  - t ]  dt and where the error q(x) is 

2 (1 + f) exp[-(c log x)1/21+ -(c log x>1/2 exp[-(cyog x)1/21 

for all x large enough that [&) - t ] / t  exp[-(c log t)112] for t 2 x.  Thus 
it is possible to choose K' > 0, c > 0 such that the error q(x) is less than 

C 

?The constant c is in fact the negative of Euler's constant (see Section 3.8). To derive 
this fact, note first that Cis 1 + lims+l t - ' -s[[w(t)  - r] dt and then integrate by parts to 
find that it is the limit as s --+ 1 of -s-~([~'(s)/~(s)] + 1 - s + (s - l)-1) which is the 
limit as s -+ 1 of -(d/ds) log [(s - l)C(s)J. But the functional equation gives (s - l)C(s) = 
-II(l - s)(2x)r-lC(l - s)2 sin (742). Using the fact that the logarithmic derivative of 
C at 0 is log 2r while that of n is - y  (see Section 3.8), the result C = --y then follows. 
Since the left side of formula (2) of Section 4.1 is P(x) - x-'[w(x) = log x + C - 1 + - . . , 
this implies that the constant on the right is - y  - 1. The same fact can also be derived 
by setting = 0 in the formula of the note of Section 4.3 and letting u -+ 1. Yet another 
proof that C = y is given in Section 12.10. 
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K' exp[-(c log x)l/'] for all x 2 0, Then (4) and (8) combine to give 

C (l/n)K' exp[-(c log (x/n))'/'] 

logx + c 7 

n<x 

and the desired inequality (3) will follow if it can be shown that 

c 
n<x n exp[ - (c log c) "'1 

remains bounded as x - 00. Now the logarithmic derivative of the summand 
with respect to n (considered for the moment as a continuous variable) is 

-+-+(clog:)-l/'F. (-5) =+[-I ++(clogx)-l/'] 

which is negative until 
c/2 = [c log (x/n)]'/', log (x/n) = c/4, n = xe-c/4, 

after which it is positive. Let N be the last integer before the sign change. Then 

< exp[-(c log x)l/'] + 

< 1 + J:fexp[-(c1ogT ) "'1 dt 

+ Ji+l f exp[ -6 log $) "'1 dt + 1 

< 1 + 
and it suffices to show that this integral remains bounded as x -.+ 00. But 
u = x/t  gives 

I: exp[ - (c log 5) '''1 dt = I: d exp[ - (c log u)l/'] du 

and it was shown above that this integral converges as x -.+ 00, so the proof 
of (3), and hence of (2), is complete. 



Chapter 6 

Numerical Analysis of the Roots by 
Euler-Maclaurin Summation 

6.1 INTRODUCTION 

The first substantial numerical information on the roots p was given by 
Gram [G5], who in 1903 published a list of 15 roots on the line Re s = 3. 
Gram computed the first 10 of these roots to about 6 decimal places and the 
remaining 5 to about 1 place. Specifically, the values he gave were p = 3 + iu, 
where 

a, = 14.134725, as = 37.586 176, al l  = 52.8, 
a, = 21.022 040, a, = 40.918 720, a l z  = 56.4, 
a3 = 25.010 856, us = 43.327 073, uI3 = 59.4, 
u., = 30.424 878, u9 = 48.005 150, a14 = 61.0, 
a5 = 32.935 057, a,, = 65.0. u,,, = 49.773 832, 

Subsequent calculations have confirmed that these values are correct except, 
as Gram stated, for slight errors in the last place given. (For the correct 
values to 6 places see Haselgrove’s tables [H8].) Gram was also able to prove 
that this list includes all of the roots p in the range 0 5 Im s I 50 and thus 
to prove that the Riemann hypothesis is true in this range. 

The basis of Gram’s calculations was the straightforward method of 
Euler-Maclaurin summation to evaluate both the function and the factorial 
function ll, and consequently to evaluate c(s) = ll(+s)~-”’~(s - l)c(s). It is 
interesting from the point of view of the psychology of mathematical dis- 
covery to note that Gram had initially attempted more original and more 
complicated techniques but had met with very limited success. It was several 
years before he tried using the classical method of Euler-Maclaurin summa- 
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tion, and when he did he was surprised at the ease with which he was able 
to compute the numbers he had been searching for for so, long. 

Euler-Maclaurin summation is a technique for the numerical evaluation 
of sums which was developed in the early part of the eighteenth century. The 
original impetus came from Bernoulli’s success in generalizing Ck, n = 
N(N + 1)/2 to find an analogous formula for Cf=’=l nk which involved the 
“Bernoulli numbers.” Forms of the technique were used by Stirling and De 
Moivre as early as 1730, but the definitive statement of the method together 
with a proof of sorts did not come until around 1740 when it was published 
by Euler and, independently (see Cantor [Cl]), by Maclaurin. Euler in his 
well-known calculus book [E6] included examples of the use of Euler-Mac- 
laurin summation to compute c(s) for s = 2, 3, . . . , 15, 16 and to compute 
n(s) for large s (Stirling’s series), so Gram’s computations are direct descen- 
dants of Euler’s. 

Gram’s work was carriedfarther by Backlund [B3, B4] around 1912-1915. 
Backlund’s major contribution was a method of computing, for certainvalues 
of T, the number of roots in the range 0 I Im s I T. This method enabled 
him to show that the Riemann hypothesis was true up to the level T = 200, 
that is, to prove that all of the roots in the range 0 < Im s I 200 lie on the 
line Re s = 4. It also enabled him to prove that Riemann’s estimate [see (d) 
of Section 1.191 of the number of roots in 0 < Im s < T for large T was 
correct, a fact which von Mangoldt had already proved in 1905 by a method 
which was more complicated. Backlund’s proof of this fact is included in 
this chapter, even though it does not contribute to the numerical analysis 
of the roots, because it is a natural outgrowth of techniques which Backlund 
developed for the numerical analysis of the roots. 

Some ten years later the Riemann hypothesis was verified up to the level 
T = 300 by Hutchinson [Hll], who contributed some improvements of 
Gram’s and Backlund’s methods. As far as the distribution of the roots on the 
line Re s = f is concerned, Hutchinson showed that it is usually true in the 
range 0 5 Im s 5 300 that there is exactly one root between two consecutive 
Gram points (see Section 6.5)-in other words the set of roots and the set of 
Gram points usually separate each other-but that there are two slight ex- 
ceptions to this rule in this range, the first near Im s = 282.5 and the second 
near Im s = 295.5. 

Broadly speaking, the computations of Gram, Backlund, and Hutchinson 
contributed substantially to the plausibility of the Riemann hypothesis, but 
they gave no insight into the question of why it might be true or into the 
question of why Riemann might have been led to make such a hypothe- 
sis. 
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6.2 EULER-MACLAURIN SUMMATION 

Consider the problem of finding the numerical value of the sum S defined 
by 

s =  + (+J2 + + - . .  + (m) 1 2  a 

As a first approximation to S one might note that if half the first term and 
half the last term are omitted from S, then the sum which remains is an ap- 
proximation to ji:o x - ~  dx; specifically, the trapezoidal rule 

in the case xo = 10, x1 = 11, . . . , x, = lOO,f(x) = xe2 gives 

Jloo 10 5 x ,., L[(L)2 2 10 + (A)2]. 1 

+ + - 1 + * * - + "(q2 2 99 + (&j)2]4. 

Hence 

100 

+ 0.005 + 0.00005 = 0.09505. 

Euler-Maclaurin summation is a method of computing the error in this ap- 
proximation and in the analogous approximation 

for other sums. 
The first step is to develop a closed formula for the error. Let [x] denote, 

as usual, the largest integer less than or equal to x. Then the function [XI is a 
step function which has jumps of one at integers, so the Stieltjes measure 
4x1) assigns the weight one to integers and is zero elsewhere. Hence 

.. 

+ f ( N  - 1) + +f(N) ,  
where the usual convention of counting half the weight at an end point is 
followed. Thus to make the approximation (2) correct, the right side should 
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be increased by 

It is more natural to describe the measure d([x] - x )  as d([x] - x + $) be- 
cause the function [ X I  - x + $ is positive half the time and negative half the 
time, and because it is zero when x is an integer (by the usual convention that 
at discontinuities the value is the average of the left-hand limit and the right- 
hand limit). Integration by parts then expresses the error in the form 

N 

M 
= J ( X  - [ X I  - *)f'(x) dx. 

Having arrived at this formula by sketchy arguments based on Stieltjes in- 
tegration, one can easily justify it using ordinary Riemann integration to fiad 

which proves the desired formula 

(3) 

for continuously differentiable functions f on [M, N ] .  
In the case of the sum S i n  (1) this formula shows that its value is 0.09505 

plus 

(4) (100 ( x  - [ X I  - a)(-2) dx.  
10 x3 

The integrand in this integral is positive from 10 to 104, negative from 1% 
to 11, positive from 1 1  to 1 If, etc. Since x - ~  decreases, the integral can thus 
be written as an alternating series of terms which decrease in absolute value, 
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so its value is positive but less than 
(x - [XI - 4)(-2) 1'2 1 - 2t 

dx = I, (10 + t)' dt I 1 0  x3 
1 112 

< - I 
Thus S lies between 0.09505 and 0.09530, which gives its value to three places. 

This much is quite elementary. The real substance of Euler-Maclaurin 
summation is repeated integration by parts of the last term of (3) which puts 
this term in a form that can in many cases be evaluated numerically with 
great accuracy. This integration by parts requires the use of Bernoulli poly- 
nomials. The nth Bernoulli polynomial is by definition the unique polynomial 
of degree n with the property that 

(5) I B,(t) dt = x". 

Thus, for example, B3(x) = ax3 + bx2 + cx + d is determined by the equa- 
tion 

(1 - 2t) dt = 0.00025. 
- 103 

x +  1 

X 

x +  1 
x3 = I (at3 + bt2 + ct + d )  dt 

X 

(x + 1)4 - x4 (x + 1)' - x3 (X + - x2 
2 + b  3 + c  4 = a  

from which one finds successively a = 1, b = -3/2, c = 1/2, d = 0. It is 
easy to see that this process always yields a polynomial B,(x) satisfying (5) 
and, since a polynomialp(x) which satisfies p(t) dt = 0 must be identical- 
ly zero, this suffices to prove that condition (5) defines a unique polynomial 
B,(x). Differentiation of (5) gives 
(6) B,(x + 1) - B,(x) = nx"-', 

X + l  1 
x n  

-B,,'(r)dt = xn-l, 

which shows that B,'(x)/n satisfies the definition of B,- l(x) and hence that 
(7) B,'(x) = nB,-,(x). 
Thus, starting with B3(x), which was computed above, one has immediately 

B3(X) = x3 - +x2 + *x, 
B,(x) = x - 3, 

B,(x) = x2 - x + 4, 
B,(x) = 1. 



6.2 Euler-Maclaurin Summation 101 

These polynomials can be used to integrate the last term of (3) by parts to 
put it in the form 

N-1 1 

n = M  n = M  0 
= j: (r - +)f’(n + t )  dt = C j Bl( t ) f ’ (n  + t )  dt 

= N-l C [+)f’(n B ( + t )  1: - -z 1 I1 Bz( t ) f ” (n  + t )  dt] 
n = M  

The long sum telescopes because (6) with n = 2, x = 0 gives Bz(l) = B,(O). 
Thus if B2(x) is used to denote the periodic function B2(x - [x]),  the last 
term of (3) can be written in the form 

B’(O)f’(x) I N  - IN ~ z ( x ) f ’ ’ ( x )  dx. 
2 M 2 M  

The second term in this formula can be integrated by parts by exactly the 
same sequence of steps to put the last term of (3)  in the form 

y ) f ’ ( x )  I N  - !#f”(x) I N  + j: B3(x)f”’(x) dx, 
M M 

where, of course, B3(x)  denotes the periodic function B3(x - [x]).  
Applying this formula to the evaluation of the integral (4) gives 

1 -2 100  100  1 
h - I - 0 + 2.3 B,(x)f”’(x) dx 2 x 3  10 10 

(-2)(-3)(-4) l o o  B ~ ( x )  dx 
2.3 I,, xs 

- 999 J t o o  B3(x )  dx .  
6 -  lo6 l o  x s  

The first term is 1.665 x and the second term is much smaller, as can 
be seen by an alternating series technique similar to the one used to estimate 
(4). Note first that B3(x) is a polynomial of degree three which is zero at x = 
0 and x = 3 [by direct evaluation] and at x = 1 [because (6) shows that 
B,(l)  = Bn(0) for n 2 21. This accounts for all its zeros and proves that 
B3(x)  = x(x - +)(x - 1). Thus it is positive for 0 < x < & and negative for 
3 < x < 1 .  These positive and negative “bumps” are symmetrical because 
B3(1 - x)  = (1 - x)(l  - x - #(I - x - 1) = -B3(x),  so the graph of &(x)  
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is a wave consisting of positive bumps on (n, n + 4) and symmetrically nega- 
tive bumps on (n + f, n + 1). Since x - ~  decrtases, this shows immediately that 

Now 
4 112 B,(x) dx = - B3(t) dt 105 

- -- 6.25 x 10-7. 
- 105.16- 

Thus 

S = 0.09505 + 1.665 x - 4 J l o 0  Bw 
10 x 5  

lies in the range 
0.095215875 I S I0.0952165 

which gives S to six places. 

form 
The integration by parts can of course be carried farther to put (3) in the 

+ (- l ) k + l h  J: B,(x)f'"'(x) dx. 

If k is odd, then j k ( x )  is an oscillating function similar to d , ( x )  and the in- 
tegral in this formula can be estimated, provided f'")(x) is monotone, by an 
alternating series technique like the one used above. To prove that B22,+1(x) 
has this oscillating character, note that the identities 

x+ 1 --* -x+ l  

x 1 - X  --* 
J B,(1 - t )  dt = -J B,(u) du = J Bn(u) du 

x+ 1 

= (-x)" = (-ly Bn(t) dt 
x 

and 
x + ' 1 / 2 )  x +  1 

x 2% 
I Bn(2t) dt = 3 JZx+' Bn(u) du = 4(2x>" = J Bn(t) dt 

X+'1/2) 
= 2"-l J [B,(t) + B,(t + 9 1  dt 
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imply 

(9) 

Thus Bz,+i(1 - X )  = -BzV+i(x), &,+I(# = 0, &”+1(0) = 2 2 v [ B ~ v + ~ ( 0 )  + 
(10) 

Bn(l - x )  = (-1YBn(x), 
Bn(2x) = P-’[Bn(x) + Bn(x + $)I* 

01, B2v+1(0) = 0 ;  that is, 

Now there are no zeros of B,,+ l(x) between 0 and f because such a zero would 
imply two zeros of the derivative (2v + l)Bzv(x) between 0 and f, which would 
in turn imply a zero of (2v + 1 ) 2 ~ B , , - ~ ( x )  and hence a zero of B 2 u - 1 ( ~ ) ;  re- 
peating this process one would ultimately arrive at the conclusion that B3(x) 
had a zero between 0 and 3, which it does not; hence neither does B2Y+1(~ ) .  
Thus B z V + l ( ~ )  has one sign on (0, &)i_by B,,+l(l - x )  = -BZvcl(x) it has the 
opposite sign on (4, 1 ) .  Therefore Bz,+l(x) oscillates as was to be shown. 

This also shows, in passing, that many of the terms of (8) are zero, namely, 
the terms containing B,,+ l(0). To apply formula (8) ,  one must of course find 
the values of the constants B2,(O). This is accomplished by proving that the 
constants BZy(0) coincide with the Bernoulli numbers BZY defined in Section 1.5. 
To see this, apply formula (8) in the casef(x) = e-hx, M = 0, N = 00 to find 

B,”+l(O) = B,”+l(4) = 0 (v = 192, * * 4. 

+ (-l)k+l(-h)k& Jm Bk(x)e-hx dx, 

This formula is valid for small positive h, and, provided k is odd, the absolute 
value of the last term is at most (hk+l/k!)  I Ji” Bk(f)  dt I const hk+’. Thus 
the polynomial 
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has the property that p(h)/hk+' is bounded as h J. 0, which proves p(h) = 0, 
B,(O) = (- l)"B, for n I k. Since k was arbitrary and since only event values 
of n are at issue, this proves the theorem. 

Putting these facts together gives the Euler-Maclaurin summation formula 

where the B, are the Bernoulli numbers, wheref(x) is any function which has 
2v + 1 continuous derivatives on [N, MI, and where R,, is given by either 
of the formulas 

- 1  Iszy = - I j 2 Y ( ~ ) f ' 2 v ) ( ~ )  dx 
(b ) !  M 

or 
IN ~2,,+1(x)f '2Y+1)(~) dx 

R2v  = (2v + I)!  M 

in which &(x) = Bk(x - [x]). [The two forms of R2" are obtained by setting 
k = 2v and k = 2v + 1, respectively, in (8).] 

Continuing with the example of the sum S in (l), the next few terms are 
8 4  . (-4X-3M-2) 1 105 - 1 - 33333 

10" 
- 
4! X5 

- - -3.3333 x 10-7 

lo9 - - (-3.33 . . .) x 10-11 B8 (-1)8! Illo - -~ - 
8! x9 

which gives the approximation 0.095 216 169 017 6 to the value of S. The 

0.095 05 
O.OO0 166 5 -0. 33 3 
O.OO0 000 002 380 9 
0.095 216 502 380 9 

-0.OOO 000 333 33 

-o.)oo )oo 333 363 3 

-0.OOO OOO 333 363 3 
s N 0.095 216 169 017 6 

Computation of the approximation to s. 

tFor odd values of n this gives an alternative proof that B3, Bs,  B7 , .  . . are all zero. 
See Section 1.6. 
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magnitude of the error in this approximation is 

= lo-" I Blo(+) - 

= lo-" I Blo(+) + Blo(0) - 2BlO(O) I 
= lo-" 12-9B,0(0) - 2B10(0)I 
2 2B10*10-11. 

Rather than use this error estimate directly, however, it is more effective to 
note that it says that the magnitude of the error cannot be more than about 
twice the size of thejrst term omitted, and that the same estimate would apply 
no matter where the series was truncated. Since the terms are still getting 
smaller-B,, = 5/66, B12 = -691/2730 so the next two are about 8 in the 
thirteenth place and 3 in the fourteenth place-this implies that the error is 
of the order of magnitude of thejrst  term omitted because when this term is 
included, the error is reduced to an amount much smaller than this term 
(namely, to an amount comparable to the next term). Thus one can be con- 
fident that the error in the above approximation to S is less than one in the 
twelfth place, that is, S = 0.095 216 169 018 f 1. 

It is a general rule of thumb in applying the Euler-Maclaurin summation 
formula that as long as the terms are decreasing rapidly in size, the bulk of the 
error is in thejrs t  term omitted. In order to give a rigorous proof of this 
fact in specific cases it is not necessary to estimate I R,, I in any refined way but 
merely to give a crude estimate showing that it is of an order of magnitude 
comparable to the first term omitted at most. Then the error has absolute 
value at most 

M 
Bz ( 2 " - 1 )  I N  + R2v+2 I I I first term omitted I + I R2Y+2 I I Rz.  I = I %f 

and I Rzv+z I is comparable to the second term omitted, hence much smaller 
than the first term omitted. 

However, it must be observed that the terms do not continue to decrease 
indefinitely [except for very special functions f such as f ( x )  = e-hx for small 
h] and that in fact they ultimately grow without bound. To see this, it suffices 
to combine Euler's formula 

((2v) = (2a)2'(-1y+'B,,/2-(2v)! 
[see (2) of Section 1.51 with the trivial observation that c(2v) = 1 + 2-2v + 
3-2v + - - - is only slightly larger than one for v large; hence 

BZY N f 2 * ( 2 ~ ) ! ( 2 ~ ) - ~ ' ,  
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and in the example the term containing BZv is roughly f 2 .  (2~)!(21c)-~'. 
which decreases quite rapidly at first but which ultimately grows 

without bound. This shows that there is a limit to the degree of accuracy with 
which one can evaluate S by extending the above process, and that this limit 
is roughly determined by the minimum value of II(x)(20n)-"4 for x 2 0. If 
for any reason greater accuracy is required, then the first few terms can be 
summed separately, say + I 1-2 + 12-2 + 13-2 + 14-2, and the remain- 
ing sum evaluated by Euler-Maclaurin summation, which is now much more 
accurate because the denominators 102'+1 are replaced by 152u+1. [This ob- 
servation is of crucial importance in the evaluation of C(s) by Euler-Maclaurin 
summation in Section 6.4. After all, the sum S is essentially C(2) except that 
the first nine terms and all terms past the hundredth are missing.] 

In summary, the Euler-Maclaurin summation formula says that 

In many examples the terms of the series on the right are at first rapidly de- 
creasing in size and the bulk of the error in the approximation is accounted 
for by the first term omitted. In any case the error is precisely equal to 

and when fc2"+ l )  is monotone this leads to a simple estimate of I RzU I using 
the fact that &+ (x) alternates in sign. 

6.3 EVALUATION OF II BY EULER-MACLAURIN SUMMATION. 
STIRLING'S SERIES 

To evaluate II(s), it of course suffices to evaluate log II(s). Now if s is a 
positive integer, say s = N, then log n(N) = x? log n which, by Euler- 
Maclaurin summation (with v = 0), is 

IN logxdx  + T[log 1 1 + IogN] + I Bl(x) -. dx 
I X  

The first integral can be evaluated using I log xdx = x logx  - x. The 
second integral approaches a limit as N + 00 (by the alternating series test), 
so it can be written in the form 

J-- " 8,(x) dx - -- j l (x )  dx Bl(x) - dx 
1 x  I, x I N  x 
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in which the first term is constant and the second term approaches zero as 
N -, 00. This gives 

1 b , ( x )  dx 
N X  (1) logn(N) = (N + T )  logN - N + A - J 

where A is the constant 
B,(x)  dx A = l + J  -- 1 x  

Except for the fact that the constant A must still be evaluated,'this gives a 
simple approximate formula for logn(N), and it is natural to ask whether 
there is a similar formula for log n(s) for other values of s. 

As it stands, formula (1) cannot possibly be valid for all real numbers N 
because the derivative of its right side with respect to N is discontinuous at 
all integers [because b , ( x )  is discontinuous]. However, if (1) is rewritten in 
the form 

J- &(t) d t ,  logrI(s> = ( s  + - logs - s + A - 1) 0 t + s  
then both sides are well-behaved functions of s for all positive real numbers 
and, since equality holds whenever s is an integer, it is reasonable to expect 
that equality will hold for all real s > 0. The fact that it does hold follows 
quite easily from the application of Euler-Maclaurin summation (with v = 
0) to the definition of II(s). Explicitly, from the definition 

of n(s) [see (3) of Section 1.31 it follows that 

log n(s) = lim s log(N + 1) + c log n - c log(s + n) ]  
N N 

N-== ( n= 1 .= 1 

1 1 B,(x) dx 
2 1 s + x  - (s + 1) - - log@ + 1)  - log(s + N )  - J 
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= (s + +) log(s + 1) + J i x  

+ lim (s log(N + 1) + (N + a) log N 
N-m 

- (. + N + +) lads + N)} 

“ m x > d x  s. = (s + +) log(s + 1) + A - 1 - j - - 
1 s + x  

This differs from the right side of (2) by 

= (s + +) h ( y )  s + l  - 1 + jo I t - * &  s+t 

= ( ~ + t ) l o g ( ~ ) - 1  s +  1 + J l t + : T : - 4 d t  

s + l  

= o  
which shows that (2) is indeed true for all positive real numbers s. 

1 

Formula (2) can be combined with the Legendre relation 

( :> rI(2s) = -p22=rI(s)rI s - - 

[see (7) of Section 1.31 to  givet the value of the constant A. To this end let (2) 
be rewritten in the form 

n(s) = ~~+(1/2)e-~e”r (s ) ,  
where 

tAn alternative method of proving A = 3 log 2 x ,  not relying on the Legendre relation, 
is given later in this section. 
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Then r(s) -+ 1 as s -+ 00, and the Legendre relation says 
(2s)2S+(1/2)e-2S A e r(2s) 

As s ---* 00 the left side approaches 21/2e1/2e-1/2n1/2*1 = (2 n)1'2, so A = 
f log 2n. Thus (2) says 

logrI(s)= l o g s - s + - l o g 2 n - ~  1 B, (x )  dx 
2 0 s + x  

or, if the last term is integrated by parts a number of times, 

log n(s) = 'S + - log s - s + - 1 log 2n f - B2 
(3) ( 2 2 2s 

B4 B2. + R2", +-+ . . *  + 2v(2v - l)s2'-' 
where 

&"+l(X> dx &(x)dx m 

R = -  
2v I, 2v(s + x)2" = - I, (2v + l)(s + X ) 2 V + l .  

This formula, which is known as Stirling's series?, is very effective for finding 
the approximate numerical value of log II(s). 

For example, consider the case s = 10. Then 

The terms are still decreasing rapidly and the "rule of thumb" of the pre- 
vious section would lead one to believe that if the B l ,  term is the first one 

?It is named for James Stirling, who published it [S7] in 1730. The integral formula 
for the remainder Rzv was published by Stieltjes [SS] in 1889 and does not seem to have 
been known, or at least used, earlier than that. 
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omitted, then the error will not be much larger than 9 x 10-l3, so the answer 
will be correct to 12 places. Now in fact 

8, ,(x) dx B,,(x) dx 

2.691 
12.11.1011-2730y 

so l R l o  I is very much smaller than the B1, term, and hence I R,, I N 9 X 
as expected. Thus log n(l0) N 15.10441 25730 7470 is accurate to 12 
places. 

(10.5) log 10 = 
-10 = 

+flog 1T = +a log 2 = 
B, term = 
B, term = 
B ,  term = 
B. term = 

24.17714 34764 3748 

+0.57236 49429 2470 
+0.34657 35902 7997 
+0.00833 33333 3333 

+0.00000 00079 3651 

-10. 

-0.00000 27777 7777 

-0.00000 00000 5952 
log n(l0) N 15.10441 25730 7470 

Computation of the approximation to log lT(l0). 

Of course, if s > 10, then the terms of Stirling's series decrease even faster 
at first and it is even easier to compute log n(s) with 10- or 12-place accuracy. 
In fact, Stirling's series is so effective a means of computation that one tends 
to forget that the series does not converge and that there is a limit to the ac- 
curacy with which log n(s) can be computed using it. Nonetheless, the terms 
of Stirling's series do ultimately grow without bound as v --+ 00, and one 
cannot expect to reduce the error in the approximation to less than the size 
of the smallest term of the series. If it is desired to compute logn(s) with 
greater accuracy than is possible with Stirling's series, then the formula 

log n(s) = log n(s + N) - log@ + 1) 
- log@ + 2) - - * * - log@ + N) 

can be used. Given E > 0 there is an N such that Stirling's series can be used 
to compute logn(s + N) with an error of less than c; since the other loga- 
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rithms can then be computed by elementary means, this makes possible the 
evaluation of logn(s) with any prescribed degree of accuracy. In the nu- 
merical analysis of the roots p it will not be necessary to use this technique, 
however, because Stirling's series itself gives the needed values with sufficient 
accuracy. 

Once log n(s) is found, n(s) can of course be found simply by exponen- 
tiating. Note that if log n(s) is found to 12 decimal places, then n(s) is known 
to within a factor of exp(f10-12) N 1 f 10-l2; so it is the relative error 
which is small, that is, the error divided by the value is less than 10-l2. Since 
n(s) is very large for large s, it is well to keep in mind in evaluating n(s) 
using Stirling's series that a small relative error may still mean a large absolute 
error. However, in the numerical analysis of the roots p only log n(s)-and 
in fact only Im log n(s)-will need to be evaluated, so these considerations 
will not be necessary. 

What will be necessary in the numerical analysis of the roots p is the use 
of Stirling's series for complex values of s. Let the "slit plane" be the set of 
all complex numbers other than the negative reals and zero. Then all terms of 
Stirling's series (3) are defined throughout the slit plane and are analytic 
functions of s. (This is obvious for all terms except the integral for R,. How- 
ever, as will be shown below, this integral too is convergent for all s in the 
slit plane.) Since (3) is true for positive real s, the theory of analytic continua- 
tion implies that it is true throughout the slit plane-in Riemann's terminol- 
ogy formula (3) for log n(s) remains valid throughout the slit plane. How- 
ever, the alternating series method of estimating I Rzv I cannot be used when s 
is not real, so some other method of estimating I R2" I is needed if Stirling's 
series is to be used to compute log n(s) for complex s. The following estimate 
was given by Stieltjes [S5]: 

The objective is to show that the error at any stage is comparable in 
magnitude to  the first term omitted. To this end, let the B2" term be the first 
term omitted and consider the resulting error 

- 
L - d X )  dx . - 

R 2 v - 2  = -I, (2v - l)(s + X)2"--' 

The function B2. - E2,(x) is an antiderivative of -2v&--(x)  which is zero 
at x = 0 ;  hence by integration by parts 

[This integration by parts can be justified, even in the case v = 1 where 
B2"-, (x )  is discontinuous, by writing the integral for R2Y-2 as a sum over n of 
- 
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Riemann integrals, as in the previous section.] Thus 

Now B2” - BIY(x) is zero at x = 0 and has only one extremum in the interval 
0 < x < 1, namely, at x = 3 where its derivative -2vB2,-,(x) is zero. This 
implies that B2” - B2,,(x) never changes sign. Since B2,.(x) has zeros-namely, 
at the extrema of B2”+]-the sign of B2” - B2,,(x) is always the same as the 
sign of B2”, which by Euler’s formula for C(2v) [(2) of Section 1.51 is (- l)”+I. 
Therefore the numerator of the above integral can be rewritten 

IB2, - B2dx)I = (-1)”+1[B2v - &v(~)I. 
On the other hand, it is a simple calculus problem to show that I s + x I (I s I + 
x)-’ for s = rde in the slit plane (-R < B < R) assumes its minimum value 
for x 2 0 at x = 1s 1 where it is cos(B/2). Thus 

and 

By the alternating series method, the second integral is easily seen to have 
the same sign as (-l)y+l~zy+l(x) on (0 < x < 41. Since this function starts 
at x = 0 with the value zero and the derivative (-1)”+’(2v + 1)B2” > 0, this 
sign is + and the inequality becomes stronger if the last term is deleted 

B2v I (w)2v 1 (2v)(2v - l)s2”-1 
1 I R 2 u - 2  I 

which is the desired inequality. In words, fthe BZY term is thejirst term omit- 
ted in Stirling’s series, then the magnitude of the error is at most c0s-~’(B/2) 
times the magnitude of the first term omitted. 

In the special case v = 1, Re s 2 0, cos(B/2) 2 0 1 2 ,  this gives the es- 
timate used in Section 3.4, namely, that the magnitude of the error in the 
approximation log ll(s/2) - (s + 4) log s - s + 3 log 2x is at most (6 I s I)-’ 
in the halfplane Re s 2 0. More generally, it shows that if s is a real number 
s > 0, the magnitude of the error is at most the magnitude of the first term 
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omitted (each new term overshoots the mark and the true value lies between 
any two consecutive partial sums of Stirling's series) and if s is any complex 
number in the slit plane, then the magnitude of the error is comparable to  the 
magnitude of the first term omitted unless s is quite near the negative real 
axis. This implies that, unless s is near the negative real axis, one is reasonably 
safe in using the rule of thumb that when the terms are rapidly decreasing in 
magnitude, the first term omitted accounts for the bulk of the error (because 
when it is included, the error is reduced to the next lower order of magnitude). 

The constant A in Stirling's formula can be evaluated quite easily by ap- 
plying Stirling's formula on the imaginary axis and combining the result 
with the estimate of Re log ll on the imaginary axis which follows from 

sin ns = ns/ll(s)II(-s) 
[see (6) of Section 1.31. Since II is real on the real axis, the reflection principle 
implies n(i) = n(s), and with s = it, the above gives 

nit - 2nt 
sm nit ezr - e-x" I n(it) l 2  = - - 

2 log I n ( i t )  I = log 2n + log t - log enr - log( 1 - e-2zt), 
1 1 nt 1 Re log n ( i t )  = - log 2n + - log t - - - - log(1 - e-2zr). 2 2 2 2  

On the other hand by Stirling's formula (2) 

Re log n ( i t )  = Re log it - it + A - I 
o u + i t  

uB,(u) du. = -1ogt 1 - t-  n + A - jo u2 + t 2  7 2 2 
hence 

2nd the desired result A = f log 2n follows by taking the limit as t A 00. 

The derivative of Stirling's series is the series 

where 

This gives a precise form of the estimate lI'(s)/Tl[(s) N logs which was 
used in de la Vallbe Poussin's proof in Section 5.2. Specifically, to prove that 
there is a K > 0 such that 
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in the region 1 
estimate Rot to find 

0 I 2, t 2 K as was claimed in Section 5.2, it suffices to 

1 

For s in the halfplane Re s 2 0 and for I s I sufficiently large, this gives 
1 - Relogs I-, I Is1 

II'[(a + it)/21< log n[(o + it)/2] -- Re 

from which the desired inequality follows. 

6.4 EVALUATION OF BY EULER-MACLAURIN SUMMATION 

Euler-Maclaurin summation applied directly to the series c(s) = C: n-" 
(Re s 2 1) does not give a workable method of evaluating ((s) because the 
remainders are not at all small. [This is the case N = 1 of formula (1) below.] 
However, if Euler-Maclaurin is applied instead to the series C;=N n-", it gives 
a quite workable means of approximating numerically the sum of this series 
and hence, since the terms Cfz,' n-" can be summed directly, a workable 
means of evaluating c(s). Explicitly, if Re s > 1, then 

N -  1 m 

n=1  N N 
c(s) - C n-s = j x-* dx + fN-* + j m  Bl(x)(-s)x-"l dx, 

+ R2", 
where 

If N is at all large, say N is about the same size as I s 1, then the terms of the 
series (1) decrease quite rapidly at first and it is natural to expect that the re- 
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mainder R2" will be quite small. The same method by which Stieltjes estimated 
the remainder in Stirling's series can be applied to estimate the remainder 
R2" above. It gives 

where o = Re s. In words, if the BZY term is the first term omitted, then the 
magnitude of the remainder in the series (1) is at most 1s + 2v - 1 I (a + 
2v - I)-l times the magnitude of thefirst term omitted. This estimate is due 
to Backlund [B2]. In particular, if s is real, the remainder is less than the first 
term omitted, every term overshoots, and the actual value always lies between 
two consecutive partial sums of the series (1). 

Although formula (1) is derived from the formula c(s) = En-" which is 
valid only for Re s > 1, it obviously "remains valid," in Riemann's terminol- 
ogy, as long as the integral for R2" converges, which is true throughout the 
halfplane Re(s + 2v + 1) > 1. Since v is arbitrary, this gives an alternate 
proof of the fact that [(s) can be continued analytically throughout the s- 
plane with just one simple pole at s = 1 and no other singularities. 

For some idea of how formula (1) works in actual practice, consider the 
case s = 2. A good way to proceed is to compute the first several numbers in 
the sequence s(s + 1) - - - (s + 2v - 2)B2,/(2v) ! and to see how large N must 
be in order to make the terms of the series (1) decrease rapidly in size. Now 

1 5 - 2  = - - 0.16666.. . , 2 6 -  
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1.OOOOOO00 
0.250 OOO 00 
0.111 111 11 
0.062 500 00 
0.200 000 00 
0.020 OOO 00 
0.001 333 33 

-0.OOO 010 66 
1.644 933 78 

Computation of approximation to c(2). 

With N = 5 the last term is divided by 5' > 70,000 so it is less than about 3 
in the seventh place. Thus the approximation f(2) N 1.644 933 78 is correct 
to six decimal places. For s = 3 the terms decrease even more rapidly and 
with N only equal to 4 the B,  term is just 

so it does not affect the sixth decimal place and the approximationt C(3) N 

1.460 354 96 is correct to six decimal places. 

1-m = 1 .ooo OOO 00 
2-112 = 0.707 106 78 
3-112 = 0.577 350 27 

4'/'(4 - 1)-l = -4.000 OOO 00 
$4-'12 = 0.250 000 00 

B2 term = 0.005 208 33 
B, term = -0.000 020 34 

C($) - -1.460 354 96 
Computation of approximation to ((4). 

Consider finally a case in which s is not real, the case s = 4 + 18i. Since 
I s I is considerably larger in this case than in the two previous ones, it is clear 
that it will be necessary to use a much larger value of N in order to achieve 
comparable accuracy. On the other hand, the numbers 2-", 3-", . . . are quite 
a bit more difficult to compute when s is complex (since 1 2 - ~  = r ~ - ' / ~ e - " ~  log " 
= r~-~/~[cos(I 8 log n) - i sin(l8 log n)] each one involves computing a square 
root, a logarithm, and two trigonometric functions), so this involves a great 
deal of computation. Rather than carry through all this computation, it will 

?The square roots (0.5)1'2, (0.333.. .) ' I2 can be computed very easily using the usual 
iteration xn+1 = f(x.  + Ax;') for 
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be more illustrative of the technique to settle for less accuracy and to use 
a smaller value of N. Since 4-" = (2-32 and 6-" = 2-".3-", the three values 
2-", 3-", and 5-" are the only values of n-" which need to be computed in 
order to use (1) with N = 6. For this reason, the value N = 6 will be used 
in the computation below. 

The first step is to estimate the size of the BZY terms in order to determine 
the degree of accuracy with which the calculations should be carried out. 
The B2 term has modulus about 4.1B21.18-6-3/2 = (2 .2 .JF) - '  - 0.1, 
the B, term modulus about 18-18-18/24-30-67/2 = 3 / 8 - 1 O f i  N 3/196 - 
0.015, and the B ,  term modulus about 18-18-18. 18.20/6!.42-611/2 = 
(23.14.J-6)-1 - 1/270 N 0.0037. The modulus of the B, term is about 
0.0037 times 

so it is about 9 in the fourth place. Then the modulus of the B , ,  term is about 
0.0009 times 

N 5 ' ~ 2 ~ ( 4 ~  + 92) - 
- 0.27, 

100.97 
1 1  * 1 0 . 9 ~ 6 ~  1,000-36 

so it is less than 3 in the fourth place. Thus, by Backlund's estimate of the re- 
mainder, if the B 1 ,  term isthe first one omitted, the error is less than 1s + 9 I 
(f + 9)-1.3.10-4 - 11 + 2il.3.10-" < 7.10-, so the answer is correct to 
three decimal places at least. The terms are now decreasing fairly slowly; 
two more terms would be required to obtain one more place, so it is reason- 
able to quit with the B8 term. [If more than three-place accuracy were re- 
quired, the easiest way to achieve it would probably be to compute 7-", after 
which 8-" = 2-".4-", 9-" = (3-s)2, lo-" = 2-"-5-" are easy and one can use 
N = 10 in (l).] Therefore the calculations will be carried but to five places 
with the intention of retaining three places in the final answer. 

To compute 2-" (s = f + 18i) with five-place accuracy, one must have 
accurate values of log 2 and K, say log 2 = 0.693 147 18 and K = 3.141 592 
65. Then 18 log 2 = 41c - 8, where 8 is 0.08972 to  five places. The power 
series for cos 8 and sin 8 then give cos 8 = 0.99598, sin 8 = 0.08960 which, 
combined with the value 2-'j2 = 0.707 1 1  found above, gives 2-s = (0.704 
27) + (0.063 36)i. Similarly, using accurate values of log 3 and n, one can 
find 18 log 3 = 6n + ( 4 3 )  - 8 where 8 = 0.12174 to  five places, from which 

= 0.34726 - 0.46124i 
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can be computed. Finally, 18 log 5 = 972 + (a/4) - 8, where 8 = 0.08985 
so that 

1 5-" = - - & - L) (cos 8 + i sin 8) = -0.34333 + 0.286573. 
P 2/2 

Using these values one can then compute 4-" = 0.49199 + 0.089243 and 6-6 
= 0.27379 - 0.302841' with (almost) five-place accuracy. Now 

!!2~.6-"-1 = (- 1 + +i)6-. = 0.07761 + 0.066343, 
2 

1456i + 5728&i. 6-s - - 
720 * 63 

= 0.01372 + 0.007251. 

The B,  term is the B4 term times 

144i = 0.20387 - 0.095243 B6(; + 18i)($ + 18i) - 308$ - 
1512 

- B4 -6 * 5 62 

so it is 0.00349 + 0.00017i. Similarly the B,, term is the B6 term times 

which gives 0.00072 - 0.00053i as the value of the Be term. Adding these 
values up then gives c(i + 18i) N 2.329 22 - 0.188 65i as the value of c($ + 
18i) to three decimal places. 

1-s = 1.Ooo 00 
2-s = +0.704 27 + 0.063 36i 
3-" = +0.347 26 - 0.461 24i 
4- = +0.491 99 + 0.089 24i 
5-6 = -0.343 33 + 0.286 57i 

+0.136 89 - 0.151 42i 
B2 term = +0.077 61 + 0.066 34i 
B4 term = +0.013 72 + 0.007 25i 
B6 term = +0.003 49 + 0.0oO 17i 
B8 term = +O.OOO 72 - 0.OOO 53i 

2.329 22 - 0.188 65i 

6 l -"(~  - 1)-1 = -0.103 40 - 0.088 3% 
$6-s = 

C(f f 1%) - 
Computation of approximation to C($ + 18i). 
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6.5 TECHNIQUES FOR LOCATING ROOTS ON THE LINE 

The roots p are by definition the zeros of the function C(s) = n(~/2)w-~/~ 
(s - l)c(s). For any given s, the value of C(s) can be computed to any pre- 
scribed degree of accuracy by combining the techniques of the preceding two 
sections. Since {(s) is real valued on the line Re s = 3, it can be shown to have 
zeros on the line by showing that it changes sign. This, in a nutshell, is the 
method by which roots p on the line Re s = 3 will be located in this section. 

Consider, then, the problem of determining the sign of C($ + it).  If this 
function of t is rewritten in the form 

eRe log I I [ ( s / 2 ) - 1 l w - 1 / 4  . - t 2  - 
2 

Im log n[(s/Z)- l l x - i t / 2  c(+ + it)] 
(where s = 3 + it), then the determination of its sign can be simplified by 
the observation that the factor in the first set of brackets is a negative real 
number; hence that the sign of C(+ + it) is opposite to  the sign of the factor 
in the second set of brackets. The standard notation for this second factor is 
Z(t),  that is, 

Z( t )  = ei8(')C(i + it) 
where S(t) is defined by 

t $ ( t ) = I m l o g n  --- --logw. (i: :) 2 
If $(t) and Z(t)  are so defined, then the sign of {(i + it) is opposite to the signt 
of Z(t). Thus, to determine the sign of c($ + it) it suffices to compute S(t), 
[(i + i t)  by the methods of the preceding two sections and to combine them 
to find Z(t) .  

The computation of 8(t) can be simplified as follows: 

S(t) = 1 m p g  n ($ + +) - log(+ + $>1 - + log n 

1 1 + 
?In particular, Z(t )  is real when, of course, t is real. 
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t 
2 

-- 
+ 

= log[(+)2 ( 1  + &)]’” - +[$ - Arctan (:/;)I-+ - - 
-g t3 + 3(-+)(+)2  

6 t ( l  + &) - 3 6 0 ( 3 3 ( 1  + &) 1 ; logn 3 + * * -  -- - 

n 1 -  t t  -- log - + - log 1 + - - - + - Arctan - 2  2 4 
- 3  

( biz) 8 4 
-1 t 

- 2- + -[(’) 1 - -(-)3 1 1  + . . .] 8 4 2t 3 2t 
t 1  1 --+ 1 ...I- 1 3 [ 1  - @ +  3 ...I 
2 6t 4t2 45t 

This gives finally 

t t t n l  7 + .. 8(t) =-log- - - - - + - + - 
2 2n 2 8 48t 5760t3 (1) 

Since the terms decrease very rapidly for t at all large and since the error is 
comparable to the first term omitted, it is clear that the error in the approxi- 
mation 

t t t n l  8( t )  N 7 log - - - - - + - (2)  2n 2 8 48t 

is very slight. Specifically, the error involved in the above use of Stirling’s 
series is less than 

+ . - 9  1 64 
63 
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and the errors resulting from truncating the alternating series are less than 
the first term omitted, which gives a total error of less than 

-.‘(L) t 3 1  +-. - -  1 1 2  1 1 1 
4 3 4t2 4 5 I ( 2t )5 + &) + 45t3 * < 7’ 

so the total error in the approximation (2) is comfortably less than 

5760t3 
7 2 

The second term in this estimate is very crude and could be much improved 
by using more terms of Stirling’s series, finding further terms of the series (I), 
and estimating the error in terms of t-’ or t -9  to show that the first term 
7/5760t3 contains the bulk of the error when t is at all large. However, this 
form of the estimate is quite adequate for the numerical analysis of the roots 
P, 

Thus to find the sign of C(3 + 1%) one can simply compute 

8(18) N 9log- 9 - 9 --+- II 
1 

II 8 48.18 
= 9.472452 - 9 - 0.392699 + 0.001158 
= 0.08091 1 

and combine it with the value of c(& + I S i )  computed in the previous section 
to find that 

Z(18) = e0.0809i(2.329 - 0.189i) = 2.337 + 0.OOOi 

is positive and that t(J + 18i) is therefore negative. Since &&) is positive (e 
is positive on the entire real axis), it follows that there is at least one root p 
on the line segment from 3 to 4 + 1%. By computing further values of 2 one 
could obtain more detailed information on the sign of c(& + it) and therefore 
more precise information on the location of roots p on Re s = 3. However, 
the evaluation of 2 requires both an evaluation of C and an evaluation of 8, 
and in order to locate roots p on Re s = 3, it suffices to evaluate just C-and 
in fact just Im <-provided one analyzes the result with a certain amount of 
ingenuity. Consider, for example, in Table IV the values of C($ + it) computed 
with two-place accuracy at intervals of 0.2 from t = 0 to t = 50. 

Although these values were taken from Haselgrove’s tables [HS], it would 
not be too lengthy to compute them from scratch using Euler-Maclaurin, 
particularly in view of the fact that there are economies of scale in computing 
many values of nfr (n = 2, 3,4, . . .) which is the major operation in the 
Euler-Maclaurin evaluation of c. Now examination of this table leads to a 
few very elementary but very useful observations. 

In the first place, the real part of c has a strong tendency to be positive. 
There are brief intervals, 1 1  in all, where Re c is negative, but apart from the 
first one, which is clearly atypical, the longest of them is from 47.2 to 48.0 



TABLE IVa 

t t 
~ 

CC1 + i t )  

0.0 
0.2 
0.4 
0.6 
0.8 

1 .o 
1.2 
1.4 
1.6 
1.8 

2.0 
2.2 
2.4 
2.6 
2.8 

3.0 
3.2 
3.4 
3.6 
3.8 

4.0 
4.2 
4.4 
4.6 
4.8 

5.0 
5.2 
5.4 
5.6 
5.8 

6.0 
6.2 
6.4 
6.6 
6.8 

7.0 
7.2 
7.4 
7.6 
7.8 

8.0 
8.2 
8.4 
8.6 
8.8 

-1.46 
-1.18 - 0.67i 
-0.68 - 0.94i 
-0.28 - 0.94i 
-0.02 - 0.84i 

+0.14 - 0.72i 
+0.25 - 0.62i 

+0.37 - 0.44i 
+0.41 - 0.37i 

$0.44 - 0.31i 

$0.48 - 0.21i 
+0.50 - 0.16i 

+0.32 - 0.52i 

+0.46 - 0.26i 

+0.52 - 0.12i 

+0.53 - 0.08i 
+0.55 - 0.04i 
+0.56 - 0.01i 
+0.58 + 0.03i 
+0.59 + 0.06i 

+0.61 + 0.Wi 
+0.62 + 0.12i 
f0.64 + 0.15i 
$0.66 + 0.18i 
+0.68 + 0.21i 

+0.70 + 0.23i 
$0.73 + 0.26i 
+0.75 + 0.28; 
+0.78 + 0.30i 
+0.81 + 0.32i 

+0.84 + 0.34i 
+0.87 + 0.36i 
+0.91 + 0.37i 
+0.94 + 0.38i 
$0.98 + 0.39i 

4-1.02 + 0.40i 
+1.06 + 0.40i 
+1.11 + 0.40i 
+1.15 + 0.39i 
+1.20 + 0.38i 

+1.24 + 0.36i 
t1.29 + 0.34i 
+1.33 + 0.31i 
+1.37 + 0.28i 
+1.41 + 0.24i 

9.0 
9.2 
9.4 
9.6 
9.8 

10.0 
10.2 
10.4 
10.6 
10.8 

11.0 
11.2 
11.4 
11.6 
11.8 

12.0 
12.2 
12.4 
12.6 
12.8 

13.0 
13.2 
13.4 
13.6 
13.8 

14.0 
14.2 
14.4 
14.6 
14.8 

15.0 
15.2 
15.4 
15.6 
15.8 

16.0 
16.2 
16.4 
16.6 
16.8 

17.0 
17.2 
17.4 
17.6 
17.8 

+1.45 + 0.19i 
+1.48 + 0.14i 
+1.51 + 0.08i 
+1.53 + 0.02i + 1.54 - 0.04i 

+1.54 - 0.12i 
t1.54 - 0.19i 
t1.53 - 0.26i 
+1.50 - 0.34i + 1.47 - 0.42i 

+ 1.42 - 0.49i 
+1.36 - 0.56i 
+1.29 - 0.62i 
+1.21 - 0.67i 
+1.12 - 0.71i 

+1.02 - 0.75i 
+0.91 - 0.76i 
+0.79 - 0.76i 

+0.56 - 0.71i 
+0.68 - 0.75i 

+0.44 - 0.66i 
+0.33 - 0.58i 
+0.23 - 0.49i 
+0.15 - 0.38i 
+0.07 - 0.25 

+0.02 - 0.1oi 
-0.01 + 0.0% 
-0.01 + 0.212. 
+0.01 + 0.38i 
+0.07 + 0.55i 

+0.15 + 0.70i 
+0.26 + 0.85i 
+0.39 + 0.98i 
+0.56 + 1.09i 
$0.74 + 1.17; 

+0.94 + 1.222' 
+1.15 + 1.23i 
+1.36 + 1.20i 
+1.57 + 1.14i 
+1.77 + 1.04i 

+1.95 + 0.9Oi 
+2.10 + 0.72i 
+2.22 + 0.52i 
+2.30 + 0.29i 
+2.34 + 0.06i 

~~ 

18.0 
18.2 
18.4 
18.6 
18.8 

19.0 
19.2 
19.4 
19.6 
19.8 

20.0 
20.2 
20.4 
20.6 
20.8 

21.0 
21.2 
21.4 
21.6 
21.8 

22.0 
22.2 
22.4 
22.6 
22.8 

23.0 
23.2 
23.4 
23.6 
23.8 

24.0 
24.2 
24.4 
24.6 
24.8 

25.0 
25.2 
25.4 
25.6 
25.8 

26.0 
26.2 
26.4 
26.6 
26.8 

+2.33 - 0.19i 
+2.27 --0.43i 

+2.02 - 0.86i 
+2.17 - 0.66i 

t1.84 - 1.03i 

+1.62 - 1.16i 
+1.38 - 1.24i 
+1.13 - 1.28i 
+0.88 - 1.26i 
+0.65 - 1.18i 

+0.43 - 1.06i 
+0.25 - 0.90i 
+0.11 - 0.70i 
+0.02 - 0.48i 
-0.02 - 0.25i 

-0.01 - 0.02i 
+0.06 + 0.19i 
+0.18 + 0.38i 
t0.34 + 0.52i 
+0.52 + 0.62i 

+0.72 + 0.67i 
t0.92 + 0.66i 
+1.11 + 0.60i 
+1.26 + 0.49i 
+1.38 + 0.34i 

+1.45 + 0.16i 
+1.46 - 0.03i 
+1.41 - 0.21i 
+1.30 - 0.38i 
-t1.14 - 0.50i 

+0.95 - 0.58~' 
$0.73 - 0.6Oi 
+0.51 - 0.55i 
+0.30 - 0.43i 
+0.13 - 0.25i 

f0.00 - 0.01i 
-0.05 + 0.26i 
-0.04 + 0.55i 
+0.06 + 0.8% 
+0.25 + 1.lli 

+0.50 + 1.34i 
+0.82 + 1.49i 
+1.17 + 1.56i 
f1.55 + 1.54i 
+1.92 + 1.42i 

OValues from Haselgrove [H8]. 
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t 

27.0 
27.2 
27.4 
27.6 
27.8 

28.0 
28.2 
28.4 
28.6 
28.8 

29.0 
29.2 
29.4 
29.6 
29.8 

- 

30.0 
30.2 
30.4 
30.6 
30.8 

31.0 
31.2 
31.4 
31.6 
31.8 

32.0 
32.2 
32.4 
32.6 
32.8 

33.0 
33.2 
33.4 
33.6 
33.8 

34.0 
34.2 
34.4 
34.6 
34.8 

t 

+2.25 + 1.21i 
+2.53 + 0.91i 
+2.73 + 0.55i 
+2.83 + 0.1% 
+2.83 - 0.27i 

+2.72 - 0.68i 
+2.52 - 1.0% 
+2.23 - 1.3% 
+1.87 - 1.57i 
+1.48 - 1.69i 

+1.09 - 1.70i 
+0.71 - 1.61i 
+0.38 - 1.43i 
+0.13 - 1.18i 
-0.04 - 0.89i 

-0.12 - 0.58i 
-0.11 - 0.29i 
-0.02 - 0.03i 
+0.14 + 0.17i 
+0.33 + 0.30i 

+0.52 + 0.34i 
+0.70 + 0.31i 
+0.84 + 0.22i 
+0.92 + 0.09i 
+0.92 - 0.06i 

+0.84 - 0.20i 
+0.71 - 0.29i 
+0.52 - 0.32i 
+0.31 - 0.27i 
SO.11 - 0.14i 

-0.05 + 0.08i 
-0.13 + 0.36i 
-0.13 + 0.69i 
-0.02 + 1.03i 
+0.20 + 1.3% 

+0.52 + 1.60i 
$0.92 + 1.75 
+1.37 + 1.79i 
+1.83 + 1.69i 
+2.25 + 1.46i 

~ 

35.0 
35.2 
35.4 
35.6 
35.8 

36.0 
36.2 
36.4 
36.6 
36.8 

37.0 
37.2 
37.4 
37.6 
37.8 

38.0 
38.2 
38.4 
38.6 
38.8 

39.0 
39.2 
39.4 
39.6 
39.8 

40.0 
40.2 
40.4 
40.6 
40.8 

41.0 
41.2 
41.4 
41.6 
41.8 

42.0 
42.2 
42.4 
42.6 
42.8 

((4 + it) 

+2.60 + 1.lli 
+2.84 + 0.67i 
+2.94 + 0.17i 
+2.89 - 0.33i 
+2.70 - 0.80i 

+2.38 - 1.19i 

+1.50 - 1.59i 
+1.03 - 1.57i 
+0.60 - 1.40i 

+0.26 - 1.12i 
+0.04 - 0.76i 
-0.05 - 0.36i 
+0.01 + 0.03i 
+0.19 + 0.36i 

+0.46 + 0.59i 
+0.80 + 0.71i 
+1.14 + 0.69i 
+1.44 + 0.55i 
+1.67 + 0.31i 

+1.79 f 0.OOi 
+1.78 - 0.33i 
+1.66 - 0.64i 
+1.43 - 0.88i 
+1.12 - 1.02i 

+0.79 - 1.04i 
+0.48 - 0.9% 
+0.22 - 0.7% 
+0.05 - 0.48i 
-0.02 - 0.18i 

t0.03 + 0.12i 
+0.18 + 0.36i 
+0.40 + 0.51i 
+0.64 + 0.57i 
+0.87 + 0.52i 

+1.04 + 0.37i 
+1.12 + 0.18i 
+1.08 - 0.04i 
+0.95 - 0.22i 
+0.72 - 0.32i 

+1.97 - 1.46i 

t 

43.0 
43.2 
43.4 
43.6 
43.8 

44.0 
44.2 
44.4 
44.6 
44.8 

45.0 
45.2 
45.4 
45.6 
45.8 

46.0 
46.2 
46.4 
46.6 
46.8 

47.0 
47.2 
47.4 
47.6 
47.8 

48.0 
48.2 
48.4 
48.6 
48.8 

49.0 
49.2 
49.4 
49.6 
49.8 

50.0 

C(4 + it) 
+0.44 - 0.31i 
+0.16 - 0.16i 
-0.07 + 0.lli 

-0.18 + 0.94i 

+0.01 + 1.40i 
3.0.37 + 1.80i 
+0.87 + 2.08i 
+1.47 + 2.19i 
+2.11 + 2.10i 

+2.71 + 1.80i 
+3.21 + 1.31i 
+3.54 + 0.69i 
+3.66 - 0.03i 
$3.56 - 0.74i 

-0.20 + 0.50i 

3 - 3 2  - 1.39i 

+2.14 - 2.221' 
4-1.49 - 2.331 
+0.86 - 2.24i 

+0.33 - 1.97i 
-0.06 - 1.57i 
-0.27 - 1.lli 
-0.31 - 0.66i 
-0.21 - 0.28i 

-0.01 - 0.01i 
+0.24 + 0.14i 
+0.47 + 0.15 
+0.64 + 0.07i 
+0.71 - 0.06i 

+0.67 - 0.20i 
+0.53 - 0.29i 
f0.34 - 0.29i 
+0.14 - 0.18i 
-0.02 + 0.03i 

-0.08 + 0.33i 

+2.75 - 1.9Oi 

~ ~~ 

"Values from Haselgrove [H8]. 
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124 Euler-Maclaurin Summation 

and the value of Re C does not go much below -0.3 anywhere in the range 

The sign of the imaginary part of C, on the other hand, oscillates fairly 
regularly between plus and minus. In fact, these oscillations are smooth 
enough and the passages through the value zero pronounced enough that one 
can be fairly certain that Im c(f + it) has exactly 21 zeros in the range 0 < 
t 5 50, one in each of the 21 intervals where the table shows a sign change in 
Im c (between 3.4 and 3.6, between 9.6 and 9.8, etc.). Since ((4 + it) = 0 if 
and only if Re c(+ + it) = 0 and Im c(& + i t )  = 0, the problem of finding all 
roots p on the line segment from & to 4 + 50i is reduced to the problem of 
determining which, if any, of these 21 zeros of Im c are also zeros of Re c. Now 
11 of them, namely, the first, second, fourth, sixth, eighth, . . . , eighteenth, 
and twentieth lie between points where Re C is strongly positive and clearly 
do not merit serious consideration as possible zeros. Judging from Table IVY 
however, it appears quite possible that any of the remaining 10-namely, 
the third, fifth, seventh, etc.-might be zeros of Re C. Now when Z(t), 8(t) are 
defined as above, they are real-valued functions of the real variable t and 

1 5 t 5 50. 

c(J + it) = e-la(t)Z(t) 
= Z(t) cos 8(t) - iZ(t) sin 8(r). 

Hence, Im c($ + it) = -Z(t)  sin 8(t) and a change of sign of Im c implies a 
change of sign of either Z( t )  or sin 8(t). But even very rough calculations of 
8(t) on the 10 intervals in question suffice to show that on these intervals 8(t) 
is nowhere near a multiple of n; therefore sin 8(t) definitely does not change 
sign; therefore Z(t) definitely does change sign; therefore there is definitely 
a zero of 2 in the interval and a root p on the corresponding interval of Re 

This proves the existence of 10 roots p on the line segment from J to 4 + 
50i and locates them between 3 + i14.0 and & + i14.2, between & + i21.0 
and 3 + i21.2, etc. To locate them more exactly, it suffices to estimate their 
position by linear interpolation (regulafalsi) and calculate Im c more precisely. 
For example, linear interpolation suggests, since Im c goes from -0.10 to 
+0.05 as t goes from 14.0 to 14.2, that the zero lies two thirds of the way 
through the interval at 14.1333, and it is at this point that the value of Im c 
should be computed more exactly. This is precisely the method by which 
Gram computed the 15 roots given in Section 6.1. 

The above calculations prove conclusively the existence of at least 10 roots 
p on the line segment from 3 to 3 + 50i, and they strongly indicate-but do 
not prove-that there are no others on this line segment, but they give no in- 
formation at all about possible roots not on the line Re s = 3 in the range 
0 Im s 50. However, Gram did prove, as will be explained in the next 
section, that the 10 roots he had found are the only roots in the range 0 < 
Im s 5 50, and therefore that the Riemann hypothesis is true in this range. 

s = 3. 
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Consider now the problem of locating more roots beyond t = 50. Since the 
computation of 5(& + it) becomes increasingly long as t increases, it is desir- 
able to use as few evaluations of <(& + it) as possible. Now in the range 10 
- < t I 50 the zeros of Im < follow a very simple pattern, namely, in this range 
the zeros of Im C = Z sin 8 are alternately zeros of Z and zeros of sin 8. Gram 
showed that it is not unlikely that this pattern persists, at least for a while, 
past t = 50 and he also showed that the zeros of sin 8 are quite easy to find. 
These two observations simplify considerably the search for further zeros. 

Gram gave the following reasons for believing that the alternation of 
zeros of Z with zeros of sin 8 will persist beyond t = 50. In the first place, 
this phenomenon is closely related to the fact that Re C has a strong tenden- 
cy to be positive. To see this relation note first that the approximation 

d 
ds - log n(s) - log s 

[see (4) of Section 6.31 shows that the derivative of 8(t)  is 

from which it can easily be shown that 8'(t) > 0 for t 2 10. Thus 9. is an in- 
creasing function of t, between consecutive zeros of sin 8 there is exactly one 
zero of cos 8, and cos 8 changes sign. Therefore if Re C = Z cos 8 is positive 
at two consecutive zeros of sin $-which is likely in view of the preponder- 
ance of positive values of Re 5-it follows that Z changes sign and hence 
that there is at least one zero of Z between these two consecutive zeros of sin 
8. Since the first failure, if there is one, in the pattern of alternation would 
naturally be expected to be a pair of consecutive zeros of sin 8 between which 
there would be either 2 or 0 zeros of 2, the first failure, if there is one, should 
be indicated by a zero of sin 8, where Re 5 is negative instead of positive. The 
zeros of sin 8 are called Grampoints, and the conclusion is that the persistence 
of the pattern of alternation of zeros of 2 with Gram points is closely related 
to the persistence of the positivity of Re < at Gram points. But Gram argued 
that the predominance of positive values of Re 5 is due to the fact that the 
Euler-Maclaurin formula for C(& + it) begins with a + 1 in the real part and 
to the fact that, as long as it is not necessary to use too large a value of N, 
it will be unusual for the smaller? terms which follow to combine to over- 

?The negative values of Re ( which occur for small values of t result, as is seen immedi- 
ately from the computation of ((4) in the preceding section, from the fact that the term 
N ~ - J / ( s  - 1) then has a large negative real part. This term becomes small as t increases. 
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whelm this advantage on the plus side. As Gram puts it, equilibrium between 
plus and minus values of Re C will be achievedt only very slowly as t increases. 
Thus the positivity of Re C at Grampoints, and consequently the alternation of 
Gram points withzeros ofZ, is likely topersist for some distancebeyond t = 50. 

To locate the Gram points computationally is quite easy. In the first 
place, 11 of them can be read off from Table IV, namely, the 11 sign changes 
of Im C which are not roots p. Since these points are the points where 8(t) is 
a multiple of a, since 8(t) is increasing for t 2 10 (at least), and since the 
Gram point near 18 must surely be the solution of S(t) = 0 [because 8(18) = 
0.081, it is clear that the last 10 of these 11 Gram points are solutions of the 
equation 

&t) = nn 
for n = -1, 0, 1, 2, 3, 4, 5 ,  6, 7, 8. [The first one, near 3.4, is also a solution 
for n = -1, as can be seen quite easily by setting t = 3.4 in (2).] Thus the 
first Gram point beyond the range of Table IV is a solution of 8(t) = 9n. 
Since 8(t) = 8n occurs near t = 48.7 and since 8‘(t) N flog (t/2n) N f log 8 = 
3 log 2 = 1.0 in this region, a(t) = 9n should occur near 48.7 + n N 51.8. 
Now (2) gives a(51.8) = 28.344, whereas 9n = 28.274; thus 8 is too large 
by 0.070 at 51.8. In the course of computing a(51.8) one finds that the deriva- 
tive a’(t) N f log (t/2n) is about 1.05. Therefore t should be decreased to 
about 51.8 - (0.070/1.05) = 51.8 - 0.0666 N 51.734. This value is correct 
to three places as can be checked by substituting it into (2) and observing that 
the result is 9n to three places. In this way any Gram point can be found with 
any desired degree of accuracy with relatively little computation. 

In summary, if the nth Gram point g,, is defined to be the unique real 
number satisfying 8(g,,) = nn, g,, 2 10 (n = 0, 1,2, . . .), then g,, can be com- 
puted and the above arguments give some reason to believe that Re C($ + 
ig,,) will be positive for n well beyond the limit n = 8 of Table IV. As long 
as this remains true it follows that there is at least one root p on the line seg- 
ment from f + ig,,-, to 3; + ig,, and, in all likelihood, exactly one root. 

This program of Gram’s was followed by Hutchinson [H 1 13 who computed 
all the values g,, up to g , , ,  = 300.468 and determined the sign of Re C(+ + 
ig,,) for each of them. He found that there were two exceptionst to the rule 

tGram states: “Si cela est juste, on peut infkrer que 1’6quilibre ne s’ktablira que peu 
peu, de sorte que la meme rBgle sur la repartition des a [the roots on the line] par rapport 
aux y [the Gram points] se maintiendra aussi pour les a suivantes les plus rapprochks de 
als.” Actually Gram was wrong in believing that equilibrium would be achieved at all 
because as Titchmarsh proved [T4], the average value of c(t + ig,,) is 2. See the concluding 
remarks of Section 11 . l .  

$According to Haselgrove [H8] this should not have been a surprise since he says that 
Bohr and Landau proved in 1913 that there are infinitely many exceptions. However, this 
seems to be an error on Haselgrove’s part. Titchmarsh [T5] proved the existence of infinitely 
many exceptions in 1935 and he, with his extensive knowledge of the literature, believed this 
to be a new result. 
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Re <(+ + ig,,) > 0, namely, n = 126 and n = 134. He found, moreover, that 
these exceptions are slight in the sense that the corresponding values of Re 
are only slightly less than zero and that if the points are shifted only a little 
bit-gl26 from 282.455 up to 282.6 and g 1 3 4  from 295.584down to295.4-then 
the sign of Re < becomes positive. It is easily checked that these two shifts do 
not change the sign of cos B(g,,) and therefore by the same argument as be- 
fore [namely, cos B(g,,) alternates in sign, Z(g,,) cos O(gJ is always positive, 
and therefore Z(gn) alternates in sign] it follows that there is at least one root 
p on the line segmentfrom & + ign- to f + ig. (n = 1 ,  2, . . . , 137) when g 1 2 6  

and g134 are shifted as above. This locates at least 138 roots p (there is one be- 
tween & and & + igo); and it is at least plausible that each of these segments 
contains only one so that there are only 138 in all. By methods explained in 
the next section, Hutchinson was in fact able to show that there are exactly 138 
roots p in the range 0 < Im s < g,,,, counted with multiplicities, which 
proves then that all roots p in the range 0 2 Im s I 300 lie on the line 
Re s = f and all of them are simpIe zeros of e. 

Hutchinson called the tendency of the zeros of 2 to alternate with the 
Gram points g, Gram’s law. Since Gram stated only that this pattern would 
persist beyond n = 8 and seemed to doubt that it would persist indefinitely, 
this is a rather poor choice of terminology in that a “law” is usually some- 
thing which is true without exception. Hutchinson knew that Gram’s “law” 
was not a ‘‘law’’ in this sense when he proposed the name, and therefore he 
clearly did not use the word in the way it is usually used in mathematics today. 
Nonetheless the term “Gram’s law” has won acceptance in the literature and 
it will be used in what follows. In the range covered by present-day calcula- 
tions, extending up to the three-and-a-half-millionth Gram point, the ex- 
ceptions to Gram’s law are surprisingly slight (see Chapter 8). 

6.6 TECHNIQUES FOR COMPUTING THE NUMBER OF ROOTS 
IN A GIVEN RANGE 

Gram in the course of earlier work with c(4 + i t)  had succeeded in com- 
puting the Taylor series coefficients of its logarithm with great accuracy. 
Since 

this gives the numerical values of 
Riemann, namely, p = 4 + ia is the generic root of 
Now a-2” decreases very rapidly as a increases, so the series 

where a has the meaning given it by 
(see Section 1.18). 

is dom- 
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inated by its first few terms. By comparing X : a - ' O  with the sum extended 
over 15 roots he had already located on the line, Gram was able to show that 
there are no other roots in the range 0 5 Im s < 50. However, this method 
rapidly becomes unworkable as the number of roots considered increases, 
so to extend the computations beyond 10 or 15 roots a new method was re- 
quired. Such a method was found by Backlund [Bl] around 1912. 

Backlund's method is based on Riemann's observation that if N(T)  de- 
notes the number of roots p in the range 0 < Im s < T, thent 

where R is a rectangle of the form { --E < Re s 1 + E ,  0 < Im s < T) ,  
where dR is the boundary of R oriented in the usual counterclockwise direc- 
tion, where it is assumed that T is such that there are no roots p on the line 
Im s = T, and where N(T) counts the roots with multiplicities. By symmetry 
and the fact that is real on the real axis, this can be rewritten as 

1 
2a 

N(T)  = - 21m 

where C is the portion of dR from 1 + E to f + iT. Using the definition 
C(s) = n-WI($s - I)& - 1)C(s) and the fact that the logarithmic deriva- 
tive. of a product is the sum of the logarithmic derivatives puts this in the 
form 

The first two terms, being integrals of derivatives, can be evaluated using the 
fundamental theorem of calculus; the first is x-'Q(T) because it is IL-' times 
the imaginary part of loga-"/21T(& - 1) at s = t + iT when this log is 
defined to be real on the positive real axis, and the second is 1 because it is 

when log s(s - 1) is taken to be real for s > 1 .  Thus 
a-I times the imaginary part of the log of (4 + iT)(& + iT - 1) = -T2 - t 

1 1 N ( T )  = , S ( T )  + 1 + - Im ds 
c C(s) * 

Backlund observed that i f  it can be shown that Re C is never zero on C, then 
this formula su#ces to determine N(T) as the integer nearest to x-'I?(T) + 1 ; 
this follows simply from noting that if Re c is never 0 on C, then the curve 
C(C) never leaves the right halfplane so that logc is defined all along c ( C )  

?This follows from the "argument principle" of complex analysis or, more directly, from 
termwise integration of the uniformly convergent (see Section 3.2) series C'(s)/C(s) = 
Z(s - p)-1 using the Cauchy integral fromula. 
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and gives an antiderivative of ['/( on C whose imaginary part lies between 
- ~ / 2  and n/2, which by the fundamental theorem shows that the last term 
above has absolute value less than 3. 

Backlund was able to prove by this method that N(200) = 79. By methods 
similar to Gram's he was also able to locate 79 changes of sign of Z( t )  on 0 < 
t < 200 and thus to prove that all roots p in the range 0 < Im s < 200 are 
on the line Re s = f and all are simple zeros of c. This extended Gram's re- 
sult from 50 to 200. In 1925 Hutchinson [Hll] extended the same result to 
300; that is, he proved that all roots p in the range 0 < Im s < 300 are simple 
zeros on Re s = 3. It was explained in the previous section how Hutchinson 
was able to prove that has at least 138 zeros on the line Re s = 3 in the range 
0 < I m s  < g , , ,  = 300.468 so that, in view of the above observations and 
in view of the fact that ?z-'$(g137) + 1 = 137 + 1 = 138, the proof of Hutch- 
inson's theorem is reduced to proving that Re ( is never zero on the broken 
line segment from 13 to 1$ + ig137 to 4 + ig137 (which is the curve C when 
E = 4, T = g137). This Hutchinson did as follows. 

In the first place, it is easily shown that Re ( is not zero anywhere on the 
line Re s = 13. One need only observe that for Re s = (T > 1 

I Im 1% ((4 I I I 1% ((4 I = 1 j, x-s  dJ(x) 1 
1, x - O  dJ(x)  = log ((a) 

and that the value of ((li), which can be found by Euler-Maclaurin sum- 
mation, is less than ex'2. Hence Im log ((s) on Re s = l f  lies between -n/2 
and x/2, and [(s) cannot lie on the imaginary axis. Thus it remains to prove 
only that Re ( is never zero on the line segment from 4 + i g13 ,  to 14 + ig, , , .  
Hutchinson's method of doing this is simply to examine the real parts of the 
individual terms of the expansion 

Nl-" 1 -  N- 1 

(;(s) = n-' + - + T N  - s Jm B1(x)x-'-' dx 
n= 1 s - 1  N 

(1) 

where s = B + i g I 3 ,  (f 5 (T 

sum consists of 50 terms, say h,(a), namely, 
lf) and N = 51. The real part of the first 

h,(a) = n-O COS(~,,~ log n) (3 I (T I 13, n = 1,2, . . . , 50). 
For fixed n the sign of h,(a) is the same for all values of (T, and the objective 
is to prove that the positive terms dominate the negative terms throughout 
the interval 4 < (T I 14 with enough left over to dominate the remaining 
terms as well. Hutchinson found that 21 of the terms h,(a) are negative, 
namely, those withn = 3,4, 6, 8, 11 ,  13, 15, 16, 17, 20, 21, 27, 28, 30, 32, 34, 
36,37,40,41,42. Now the larger n is, the more rapidly the absolute value 
of h,(a) decreases as (T increases, so any negative terms dominated by the 
first two positive terms h l ,  h, at (T = f will remain dominated by them for 
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o > 3. Simple computation shows that they dominate the first four negative 
terms, that is, 

[h l ($ )  + h2(4)1 + Ih3(@ + h4($) + h 6 ( 3 )  + h 8 ( 9 1  > O; 
so the same is true for o > 4. The next negative term is h l l ,  and there are 
four more positive terms hS,  h7, hg, h l0  which precede it. These four suffice 
to dominate the next seven negative terms, that is, 
[&(a) + h7@) + h9(U) + hlO(41 + [hll(o) + h13(o) + hl!3(o) f h 1 6 ( 0 )  + h17(o) -k h 2 0 ( c )  + h21(o)1 > 
for o 2 f. This is proved as before, by proving theinequality computationally 
for u = 3 and observing that the positive terms, having lower indices, de- 
crease in absolute value more slowly than the negative terms. The next nega- 
tive term is h2,, which is preceded by nine more positive terms. These nine 
suffice to dominate all the remaining 10 negative terms, which leaves 14 posi- 
tive terms with which to dominate the real parts of the remaining three terms 
of formula (1) for f;(s). The first of these three terms is (s  - l)-IN1--*, the real 
part of which is 

1 u - 1 - iT . exp(-iT log N )  
Nu- 1 

- - (0-  l)cos(TlogN)- Tsin(TlogN), 
[(a - 1)2 + T2]N“-‘ 

where N = 51, T = g137, and 3 
absolute value of this term is at most 

Q 5 13. Thus, for u in this range, the 

4 I cos(T log N )  I + T Isin(T log N )  I 
T2N-l N-“ 

from which it is easily shown that the next positive term hzg is more than 
enough to dominate it, that is, 

Nl-S 
hZg(a) + Re- > O  s - 1  

for 3 I o I 13. The next term &NbS of (1) has a positive real part when N = 
51,  s = u + ig137, so only the last term of (1) remains and there are still 13 
positive terms with which to dominate it. Integration by parts in the usual 
manner puts the last term of (1) in the form 

+ &s(s + 1 )  * - ( s  + 2v - 2)N-J-2”+1 + R, (2v)! 
where, by Backlund’s estimate of the remainder (Section 6.4), 
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In the case under consideration s N a + 300i, 3 I a I If, and N = 51. 
Hutchinson sets 2v = 50 and notes that 1s + k I/N < 6 for k = 0, 1,2, . . . ,51 
so that the modulus of the last term of (1) is less than 

Now the first few values of I B2" I.62v-1/(2v)! are 

67 - 81 !%!67 = - - -, 4 . 6 3 = - -  63 3 
24-30 - %' 8!  8!30 350 

IB I 
4! 

and the ratio of two successive values is, by Euler's formula for C(2k) [(2) of 
Section 1.51, equal to 

As k -+ 00 this ratio approaches 62/4n2 = (3/n)2. The first few ratios 315, 
6/7,9/10 are less than 62/4n2 and increase as k increases, aphenomenon which 
persists for all k as can be seen from the fact that 

log c(2k + 2) - 2 log C(2k) + log C(2k - 2) 
[ ~ - 2 k - 2  - 2x-2k + ~ - 2 k + 2 ]  dJ(x) 

= I, 
= I, x - y x - 2  - 2 + x ) dJ(x) 

= I, x-ak(x-1 - x 1 2 dJ(x) 2 0 ,  

log C(2k + 2) - log g(2k) 2 log ((2k) - log C(2k - 2), 

Thus the ratios are all less than ( 3 / ~ ) ~ ,  which gives the bound 

for the modulus of the last term of (1). When the geometric series is summed 
and the resulting number is estimated for a = f, it is found to be decidedly 
less than 1.4. On the other hand, Hutchinson found that the remaining 13 
positive terms have the sum 1.492 when a = f. Thus, since 51-" decreases as 
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u increases more rapidly than any of the 13 positive terms do, it follows that 
these 13 positive terms dominate the last term of (1) on f _< o I 14, and the 
proof that Rec > 0 on the line segment from f + ig137 to If + ig137 is 
complete. 

Hutchinson states that by using the same methods he was also able to 
show that Re C does not vanish on the line segment from f + ig268 to 13 + 
ig268. This implies of course that N(g268) = n-18(g268) + 1 = 269 so, since 
g26, = 499.1575, it constitutes one half of a proof that all roots p in the range 
0 < Im s < (500 - e) are simple zeros on the line Re s = 3, that is, it con- 
stitutes one half of an extension of the previous result from 300 to just below 
500. However, Hutchinson was apparently unable to complete the proof by 
locating another 269 - 138 = 131 changes of sign in ((4 + it) for 300 < t < 
500. The evaluation of [(f + it)  by Euler-Maclaurin summation is very lengthy 
for t in  this range, and the project of performing enough such evaluations to 
locate the required 13 1 sign changes was more than Hutchinson was willing, 
or perhaps able, to undertake. It is just as well that he did not undertake it 
because only a few years later a much shorter method of evaluating ((f + it), 
and hence of finding the required 131 sign changes, was discovered. This 
method, which uses the Riemann-Siege1 formula, is the subject of the next 
chapter. 

6.7 BACKLUND'S ESTIMATE OF N(T) 

As in the preceding section, let N(T) denote the number of roots p in the 
range 0 < I m s  < T. Then Riemann's estimate of N(T) [see (d) of Section 
1.191 is the statement that the relative error in the approximation 

T T T  N(T) N - log- - - 2n 2n 2n 
is less than a constant times T-' as T -+ 03. Since the right side is greater 
than a constant times Tlog T as T -t 03, this statement will follow if it can 
be shown that the absolute error in (1) is less than a constant times log T. 
But the formulas 

T T T n  1 7 
2 2n 2 8 +48T+5760T3+"' O ( T )  =-log- - - - - 

of Sections 6.6 and 6.5, respectively, combine to give 

1 N(T) - [-log- T T  -&] = [--4- 1 -+ 1 . * *  
8 48nT 
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which shows that the magnitude of the absolute error in (1) is less than 

for large T. Here C denotes the broken line segment from 14 to 13 + iT to 
f + iT, and it is assumed that c(s) is not zero on C, which is the same as to 
say that T is not a discontinuity of the step function N(T). Now it suffices 
to prove Riemann’s estimate (1) for such T, and for such T the integral in (2) 
can be evaluated by the fundamental theorem 

when the log on the left is defined by analytic continuation along C. The 
generalization of the statement that this integral lies between - 4 2  and 4 2  
if Re [ has no zeros on C is the statement that if Re c has n zeros on C, then 
the integral lies between -(n + 3). and (n + f).. Thus the error in (1) has 
absolute value less than 

1 + n + J ,  

and in order to prove Riemann’s estimate (I) ,  it suffices to prove that there is 
a constant K such that the number n of zeros of Re [ on the line segment from 
f + iT to 13 + iT is at most K log T for all suficiently large T. Backlund 
was able to prove this theorem by a simple application of Jensen’s theorem 
and was thereby able to give a much simpler proof [Bl] of Riemann’s estimate 
(1) than von Mangoldt’s original proof [M3]. His proof is as follows. 

Let f ( z )  = *[r(z + 2 + iT) + C(z + 2 - iT)]. Since c(Z) = [(s>, the 
function f is identical with Re [ (z  + 2 + iT) for real z, so the number n in 
question is equal to the number of zeros of f ( z )  on the interval -13 < z 5 
-3 of the real axis. Now consider Jensen’s formula 

(3) 

(see Section 2.2). Sincef(z) is analytic in the entire z-plane except for poles at 
z + 2 f iT = 1 ,  that is, poles at z = - 1 f iT, Jensen’s formula applies 
whenever R I T. Consider the case R = 2 - E where E is chosen so that f 
has no zeros on the circle I z I = R. The second sum on the left side of Jensen’s 
formula (3) is a sum of positive terms and the terms corresponding to the n 
zeros in question are all at least log I(2 - €)/I* I = log 3(4 - 2 ~ ) ;  hence 

log I f ( 0 )  I + n log +(4 - 2 ~ )  5 log M 
where M is the maximum value of 1 f ( z )  I on I z I = 2 - c. As E 4 0, this gives 

as an upper bound for n where M is an upper bound for I f  (z) I on I z I = 2. 
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Now 
- 11 = 2 - (n2/6) > i, so this gives 

If(O)l= IRec(2 + iT)I 2 1 - 2-2 - 3-2 - 4-2 - = 1 - [CO) 

- log 4M const log M + const, 1 
n510g4-10g3 

and to prove the theorem, it suffices to show that log M grows no faster than 
a constant times log T. Now 

M = rna~IJf(2e'~ + 2 + iT) + K(2e" + 2 - iT)I 

so it suffices to estimate the growth of I ~ ( s )  I in the strip 0 I Re s I 4. But 
Backlund's estimate of the remainder R in 

max 1 c(2efB + 2 + iT) 1, 

C(S) = l / ( ~  - 1) + + R 
gives (see Section 6.4) 

Hence for s = 2e" + 2 + iT, 

const T2 
for large T and the theorem follows. 

estimate 
By refining this estimate carefully, Backlund was able to obtain the specific 

< 0.137 log T + 0.443 log log T + 4.350 
for all T 2 2. (See Backlund [B3].) 

6.8 ALTERNATIVE EVALUATION OF ~ ( O ) / ~ ( O )  

Euler-Maclaurin summation can be used to prove the formula c'(O)/C(O) 
= log 21c of Section 3.8 as follows: 
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at first for Re s > 1 but then by analytic continuation for Re s > 0. For s = 
1 the right side is 

1 log N + - - bl(x)x-2 dx 1 1  
2N N 

1 +T + T  + * . *  +=- 
which approaches Euler’s constant y (see Section 3.8) as N -, 00. Thus the 
Taylor series expansion of (s - l)c(s) around s = 1 begins (s - l)c(s) = 1 + y(s - 1) + - - - and y is the logarithmic derivative of (s - l)c(s) at s = 1. 
But the functional equation in the form (4) of Section 1.6 gives 

(s - l)c(s) = -n ( l  - s)(27r)”-’2 sin(sn/2)c(l - s) 
so logarithmic differentiation of both sides at s = 1 gives 

5’(0) = y + log 2n - - 
C(0) 

and the result follows. 



Chapter 7 

The Riemann-Siege1 Formula 

7.1 INTRODUCTION 

In 1932 Carl Ludwig Siegel published an account [S4] of the work relating 
to the zeta function and analytic number theory found in Riemann’s private 
papers in the archives of the University Library at Gottingen [Rla]. This was 
an event of very great importance in the history of the study of the zeta func- 
tion not only because the work contained new and important information, but 
also because it revealed the profundity and technical virtuosity of Riemann’s 
researches. Anyone who has read Siegel’s paper is unlikely to assert, as Hardy 
did in 1915 [H3a], that Riemann “could not prove” the statements he made 
about the zeta function, or to call them, as Landau [L3] did in 1908, “conjec- 
tures.” Whereas the eight-page resume Ueber die Anzahl. . . , the only work 
which Riemann published on this subject, could possibly be interpreted as a 
series of remarkable heuristic insights, Siegel’s paper shows clearly that there 
lay behind it an extensive analysis which may have lacked detailed error 
estimates but which surely did not lack extremely powerful methods and 
which in all likelihood was based on a very sure grasp of the magnitudes of 
error terms even when they were not explicitly estimated. 

The difficulty of Siegel’s undertaking could scarcely be exaggerated. 
Several first-rate mathematicians before him had tried to decipher Riemann’s 
disconnected jottings, but all had been discouraged either by the complete 
lack of any explanation of the formulas, or by the apparent chaos in their 
arrangement, or by the analytical skill needed to understand them. One 
wonders whether anyone else would ever have unearthed this treasure if 
Siegel had not. It is indeed fortunate that Siegel’s concept of scholarship 
derived from the older tradition of respect for the past rather than the con- 
temporary style of novelty. 

136 
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There are two topics covered in the paper, the one an asymptotic formula 
for the computation of Z(t) and the other a new representation of ((s) in 
terms of definite integrals. This chapter is devoted mainly to the asymptotic 
formula for Z(t), which is known as the Riemann-Siege1 formula. The majori- 
ty of the chapter, Sections 7.2-7.5, consists of the derivation of this formula. 
Some computations using the formula are given in Section 7.6, error estimates 
are discussed in Section 7.7, and the relation of the formula to the Riemann 
hypothesis is discussed in Section 7.8. Finally, in Section 7.9, the new repre- 
sentation of c(s) is derived. 

7.2 BASIC DERIVATION OF THE FORMULA 

Recall Riemann’s formula for c(s) which “remains valid for all s,” namely, 
the formula 

where the limits of integration indicate a contour which begins at +my 
descends the real axis, circles the singularity at the origin once in the positive 
direction, and returns up the positive real axis to + 00 [see (3) of Section 1.41 
and where (-x>” = exp[s log(-x)] is defined in the usual way for - x  not 
on the negative real axis. There are two ways that finite sums can be split off 
from (l), the first being to use 

e - N x  -- - 
ex - 1 n=N+1 

in place of (ex - l)-l = C e-nx in the derivation of (1) to find 
N rI(-s) I+, e-Nx(-x)r ._ dx 

n= 1 2ni +- ex - 1 x C(s) = C n-# + - 
and the second being to change the contour of integration to a curve C,  
which circles the poles f 2 n i M ,  f 2 n i ( M  - l), . . . , f 2 n i  as well as the 
singularity 0 of the integrand (say C ,  is the path which descends the real 
axis from + 00 to (2M + l)n, circles the boundary of the disk I s I I (2M + 
l)w once in the positive direction, and returns to + m) and, using the residue 
theorem, to find 

as in the derivation of the functional equation of c in Section 1.6. The first 
proof of the functional equation (see Section 1.6) amounts simply to showing 
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that if Re s > 1, then the integral in (2) approaches zero as N - 00 (because 
it is C;+] n-.) whereas if Re s < 0, then the integral in (3) approaches zero 
as M--+ 03 (by the estimate of Section 1.6). For s in the critical strip 0 < 
Re s < 1, however, neither the integral in (2) nor the integral in (3) can be 
neglected. 

The techniques by which (2) and (3) were derived can easily be combined 
to give 

rI(-s) ( -x)Se-Nx.  
+ 211i SC, ex - 1 x 

which can be put in a more symmetrical form by multiplying by fs(s - 1) 
n(fs - l)n-'/2 and using the identities of the factorial function needed for 
the derivation of the symmetrical form of the functional equation [see ( 5 )  of 
Section 1.61 to find 

( 5 )  

(-s)rI(l - s/2)n-('-5)/2 ( - x ) ' c N x  .- dx 
x + (2ny-12 sin(ns/2).2ni SC, ex - 1 

for all N, M,  s. The case of greatest interest is the case s = 4 + it where t is 
real. Then, in view of the symmetry between s and 1 - s, it is natural to set 
N = M. If f ( t )  denotes (-3 + it)rI((f + i t) /2)n-(1/2+ir)/2,  the formula then 
becomes 

N N .= 1 n= 1 

e(+ + .> = f ( t )  c n - ( 1 / 2 ) - i r  + f ( - t )  c n - ( l / z ) + i r  

-( -x) - (  1 / 2 ) + i f e - N x  d x .  
ex - 1 

Now by definition Z(t )  satisfies C(& + it) = r(t)Z(t), where (see Section 6.5) 

= (+)(. - 1 ) ~ - ( 1 / 4 )  e - 1 8 ( r ) n - ( l / 2 ) i r  

= f(t)e-@(r), 
f ( t )  = r(t)eis(I) 
(s = 3 + it), so a factor r( t )  = r(-t) can be canceled from all terms above. 
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Using 8 ( - t )  = -8( t )  and the simplification 2i sin(ns/2) = e-fnr/2(dns - 1) = 

the form 
e-fx/4etn/2 (d d 2  e -tn - 1) = -e- lx/4P/2(l  - ie-") then puts the formula in 

N 

n= 1 
Z(t)  = c n- u2 - 2  cos[8(t) - t log n] 

e-14(r)e-rn/2 I (-x)-(l /z)+ft  e - N x  dx 
+ (2n)1/2(21cyre-fn/4(1 - ie-") cN ex - 1 

for all real t .  Although the series on the right diverges as N +  00, the terms 
do decrease in size, which gives some reason to believe that if N is suitably 
chosen, the approximation 

N 

n= 1 
Z( t )  - 2 c n-%os[8(t) - t log n] 

might have some merit. The study of this approximation is of course equiva- 
lent to the study of the remainder term 

(6)  (21~)'/~(2n)''e-'"/~(l - ie-tz) cN ex - 1 
The Riemann-Siege1 formula is? a technique for the approximate numerical 
evaluation of this integral and hence of Z(t )  and t(J + it).  

The essence of Riemann's technique for evaluating the integral (6) is a 
standard technique for the approximate evaluation of definite integrals 
known as the saddle point method or the method of steepest descent (see,$ 
for example, Jeffreys and Jeffreys [J2]). Consider the modulus of the integrand 

(7) ex - 1 
As long as the contour of integration stays well away from the zeros of the 
denominator x = 0, f 2 n i ,  f4a i ,  . . . , this modulus is at most a constant 
times the modulus of the numerator, so in looking for places where the mo- 
dulus of the integrand is large, it suffices to consider places where the modulus 
of the numerator is large. Now this modulus is e*("), where 

$(x) = Re{(-+ + it) log(-x) - Nx). 

?The assumption Re s = .) is made only for the sake of convenience; the entire analysis 
of (6) applies, with only slight modifications, to the last term of (4). Siegel carries through 
this analysis and makes the assumption Re s = .) only as the last step. The assumption 
N = M is a natural concomitant of the assumption Re s = +, but if, for example, Re s > 3, 
then s is nearer the range where the series with N converges, and it would presumably be 
better to take N > M. Siegel indicates the method for dealing with the case N # M, but 
he does not carry it through. 

$Jeffreys and Jeffreys attribute the method to Debye, although Debye himself acknowl- 
edges (see [Dl]) that the method occurs in a posthumously published fragment of Riemann 
[Rl, pp. 4054061. Be that as it may, the widespread use of the method in the theory of 
Bessel functions and in theoretical physics dates from Debye's rediscovery of it in 1910. 

e-f4(t) e -m/2 I (-x)-(l/Z)+fIe-NX dx 

( - X ) - ( l / 2 ) + i t e - N x  
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Since Q is a harmonic function, it has no local maxima or minima, but it 
does have a saddle point at the unique point where the derivative of (-4 + 
i t)  log(-x) - Nx is zero, namely, at the point (-+ + it)/N. Let a denote 
this point. In the vicinity of a the function Q can be written in the form 

I + ( - + + i t )  log(i + a - ~a - N ( X  - a) x - a >  
= const + Re{ ( -T 1 + i t )  

- N(x - a)] 

= const + Re -- -- + it - ( ;( : *)("aa>a 
1 1  3 

+ T ( - T + i t )  - - - - ]  
1 
2 = const - -Re 

+ terms in ( x  - a)3, ( x  - a)4, . . . . 
If x passes through a along the line Im log(x - a) = + Im log(-+ + i t )  
where (x - a)2/(-$ + i t)  is real and positive, then Q has a local maximum 
at a and, consequently, the modulus of the integrand (7) has a local maximum 
at a. (On the other hand, if x passes through a along the line perpendicular 
to this one, then Q has a local minimum at a;  thus the method is to cross the 
saddle point at a along the line of steepest descent, which gives the method 
its name.) Thus, if it can be arranged that the path of integration passes 
through a in this way and never enters regions away from a where the in- 
tegrand is large, then the integral will have been concentrated into a small 
part of the total path of integration and this short integral will be approxi- 
mable by local methods. 

Now if t is large, then the saddle point a = (-4 + i t ) /N lies near the 
positive imaginary axis, whatever value of N is chosen. But the path of in- 
tegration C, (recall M = N )  crosses the positive imaginary axis between 
2nNi and 2w(N + I)i, so in order for C, to pass near the saddle point it is 
necessary to have (-4 + i t ) /N - 2nNi or N 2  - (-& f it)/2ni - t/2n. 
This motivates the choice of N as the integer part of ( t / 2 7 ~ ) l / ~ ,  that is, N = 
[ ( t / 2 ~ ) l / ~ ]  is the largest integer less than (t/2n)lI2. Then the saddle point a lies 
near it(t/2n) i ( 2 ~ t ) ' / ~ ,  which is between 2nNi and 2n(N + 1)i as de- 
sired. Since Im log(-$ + it) w n/2, the path of integration should pass 
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through the saddle point along a line of slope-approximately 1 and, because 
of the configuration of C,, it should go from upper right to lower left. 

Let a denote the approximate saddle point a = i ( 2 ~ t ) l / ~  and let L denote 
the line of slope 1 through a directed from upper right to lower left. Then, in 
summary, the saddle point method suggests that the integral (6) is approxi- 
mately equal to the integral.of the same function over a segment of L containing 
a,  and this latter integral can be approximated by local methods using the fact 
that the modulus of the integrand has a saddle point near a. 

7.3 ESTIMATION OF THE INTEGRAL 
AWAY FROM THE SADDLE POINT 

Let t > 0 be given, let a = i(2nt)'l2, and let L be the line of slope 1 
through a directed from upper right to lower left. The objective of this section 
is to show that if L, is a suitable segment of L, then the remainder term (6) 
of Section 7.2 is accurately estimated by the approximation 

( 1 )  (2n)l/2(2n)"e-"/4(1 - ie-ln) =, ex - 1 
e-i9(r) e -tn/2 I (_X)-(l/Z)+ire-Nx dx 

where, as in Section 7.2, N i s  the integer part of (t/2n)'lZ and C, is a contour 
which begins at +m, circles the poles f2niN,  f 2 n i ( N  - l), . . . , f 2 n i ,  
and the singularity 0 once in the positive direction and returns to +oo. 
[The value o f t  must be assumed to be such that ( t / 2 ~ ) ' / ~  is not an integer so 
that a is not a pole of the integrand.] More precisely, the objective is to show 
that the error in the approximation (1) is very small for t at all large and ap- 
proaches zero as t - 00. 

Approximations to the right side of (1) will be given in the following sec- 
tion, 7.4. These approximations will be derived using termwise integration of 
a power series in ( x  - a)  whose radius of convergence is I a I and for this rea- 
son it will be advantageous to take L l  to lie well within this radius of conver- 
gence, say the portion of L which lies within 3 I a I of a. Thus Ll  will be the 
directed line segment from a + &F4 1 a 1 to a -&W4 1 a 1, where a = i ( 2 ~ t ) ' / ~ .  

With this choice of L,,  the path of integration C, can be taken to be 
Lo + L 1  + Lz + L 3 ,  where Lo is the (infinite) portion of L which lies above 
and to the right of Ll ,  where L, is the vertical line segment from the lower 
left end of L, to the line {Im x = -(2N + l ) ~ } ,  and where L3 is the (infinite) 
portion of {Im x = -(2N + 1)n) to the right of the lower end of L,. If Re x 
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is very large, then the very small term e-Nx dominates the integrand and it is 
easily seen that this is a valid choice of C, even though Lo and L, do not 
approach infinity along the positive real axis. With these definitions, then, 
the approximation ( 1 )  to be proved becomes 

e- i9( f )e - t z /2  

(2) (2n)1/2(2n)ir~-in/4(1 - je-1") 

These three approximations will be considered in turn. 
The casej = 0 of (2) :  The modulus of the numerator of the integrand is, 

as before, e#("), where $(x) = Re{(-+ + it) log(-x) - Nx}. The presence 
of a saddle point of $ near a, where L nearly passes over a maximum of $, 
suggests that $ increases as x descends Lo toward its terminal point and that 
eo'") has its maximum on Lo at this terminal point. This is easily confirmed 
by differentiating 4 = Re[(-$ + it) log(-a - kdx/4)  - N(a + kd"/4)] with 
respect to k for k real and greater than or equal to 4 I a I to find 

= --Re((a 1 + ke'"/4)-1,5?"/4] 
2 

With u = k I a 1-l 2 + this can be written in the form 

The middle term is at most a positive constant times - ( t / 2 7 ~ ) ~ / ~ ,  hence d$/dk 
is negative on all of Lo whenever f is at all large, as was to be shown. Thus 
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the modulus of the numerator is at most 

expRe{(-++it)log(--o - - - I U I ~ ' ~ / ~  1 
2 

- [(&)]I2 - l]+)L/LJ 

because 
1 1 1 1 1 -- 

Arc tan (21 /Z+1) -57+2f l+1  2 0 < - -  11 

and because it can be assumed that 2nt > 1. Thus the integral to be estimated 
has modulus at most 

- e-t/l 1 1 _-. 
n l / 2  (1 - e - tx  - exp[-~(at)l/2])' 

The second term differs negligibly from 1 when t is at all large and the integral 
(2) in the casej = 0 is comfortably less than e-'/". 

The cusej = 2 of(2): On L2 the real part of x is constant, say --b, where 
b = -Re(a - 3dnl4 l a / )  = 4.31/2.(2nt)1/2 = $ ( ~ t ) ' / ~ .  The denominator 
of the integrand on L2 then has modulus at least 1 - which is greater 
than 3; for t at all large. The numerator of the integrand has modulus at 
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most 
I ( - x ) - ( l / 2 ) + i t e - N x  I 

1 /z I (maxIxI-1/2){maxexp[-f Im log(-x)]]exp[(L) 27c - b ] .  

The maximum value of I x occurs at the point where L2 crosses the real 
axis, at which point it is b-lI2. The maximum value of exp[-f Im log(-x)] 
occurs at the minimum value of Im log(-x) at the initial point of L,, where 

Im log(-x) = Im log 

1. 1 2 0 - 1  exp[-t Im log(-x)] = etnJ2 exp - t  Arctan 

Finally, ( f / 2 ~ ) ~ / ~ b  = t / 2 f l ,  so the modulus of the numerator is at most 
b-l/zem/ze-k' where k = Arctan(l/2,/T - 1) - (1/2fl). By direct 
numerical evaluation it is found that k < Q so the integrand has modulus at 
most 2b-1/2efn/2e-t/a on L,. Since the length of the path of integration L, 
is less than 2 I a I = 2(27ct)'J2 = 4 n b ,  this shows that (2) is at most 

where the constant k is about 8 2 / 2 ( & ~ ~ / ~ ) ~ / ~ ( 2 7 c ) - ~ / ~  < 5. Thus for f 2 100 
the modulus of (2) in this case is much less than in the casej = 0. 

The casej = 3 of(2):  On L3 the imaginary part of x is identically equal to 
-(2N + I)n, hence the denominator of the integrand is -eRcx - 1 which 
has modulus at least 1. The least value of I x I on L3 is (2N+ 1)z so (-x)-II2 
has modulus less than (2N+ l)-1'27c-1'2 on Ls.  The least value of Im log(-x) 
on L3 is greater than Im log(1 + i )  = n/4 so (-x)" has modulus at most 
e-"14. Thus (2) has modulus at most 

for f > 272. Thus this term is entirely negligible compared to e-'/" when f is 
large. 

In summary, the above very crude estimates suffice to show that the error 
in the approximation (1) is considerably less than e-'/" for t 2 100. 
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7.4 FIRST APPROXIMATION TO THE MAIN INTEGRAL 

The estimates of the preceding section show that, with an absolute error 
which is very small and which decreases very rapidly as t increases, the re- 
mainder term R in the formula 

Z(t)  = 2 n-'l2 cos[9(t) - 
n'<(r I n )  

t log n] + R 
is approximately equal to a definite integral 

(1) R N (2n)1/2(2n)'fe-'n/4(1 - ie-*f) 5,, ex - 1 
where N is the integer part of (t/2n)'12 and where L1 is a line segment in the 
complex x-plane which has slope 1, length (2nt)'l2, and midpoint on the 
imaginary axis at i(2nt)'l2. [It is assumed that (t/2n)'lZ is not an integer so 
the integrand is not singular on L1 .]  The objective of this section is to develop 
a first approximation to the value of this definite integral. 

The argument which led to the above integral, namely, the technique of 
ignoring the denominator ex - 1 and applying the saddle point method to 
the numerator, suggests that the path of integration should pass through the 
saddle point a = (-4 + i t) /N and the numerator shouv be expanded in 
powers of (x  - a). This has two disadvantages, the first being that a depends 
on the discrete variable N and the second being that a has a small real part 
which complicates the computations. Instead set a = i ( 2 ~ t ) ' / ~  = 2 n i ( t / 2 ~ ) ~ / ~  
and expand the numerator in terms of (x  - a). This gives 

( - x ) - ( l / 2 ) + f f  - N x  d 
x, 

e-f9(r)  e -f7I/2 

exp{(-f + it) log(-a) + (-3 + it) 
x log[l + (x - a)/a] - Na - N(x - a)} 

- - ( - a ) - ( l / I ) + f f e - N u  

* x exp([(-$ + it)a-' - w ( x  - a )  
- (-4 + i t) . t(x - a)Ia-Z + - - .}. 

Now the coefficient of (x  - a) in the exponential is approximately 
i t / i ( 2 ~ t ) ' / ~  - N = (t/2n)'/I - N = p ,  where p is the fractional part of 
(t/2n)"2. The coefficient of (x - a)I is approximately -it.$/(-2nt) = 
i/4n. The coefficients of (x  - a)3, (x  - a)4, . . . are approximately f ( l /n) ( i t ) /  
[i(2nt)1/z]l" = const t(-"+')/' and are therefore small for large t .  Thus it is 
natural to write the numerator of the integrand in the form 

dx - a )  ( -a ) -  ( 1 / 2 ) + i r e . - N u e P ( x - ~ ) ~ ( x - u ) ' / 4 n  

because then g(x - a)  is the exponential of the power series 

x - a )  a 
.(x -' a)z 1 

-1  4n - P(X - a )  - N(X - a)  + ( -T + it) log( 1 + - 
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whose coefficients are all small when t is large; the expansion g(x - a) = 
C."=, b,(x - a)" has radius of convergence I a [ because x = 0 is the only 
singularity of the function it defines, its constant term b, is 1 , and its remain- 
ing coefficients b l ,  b2, . . . are small for large t. Thus the integral in (1) be- 
comes 

I' ex - 1 (2) (2n)1/2(2n)"e-'X/4(1 - ie-w) L, 

The factor exp[i(x - a)2/4n] is real on L (where, as before, L is the line of 
which L,  is a segment), has a maximum of 1 at x = a, and decreases rapidly 
as x moves away from a (for example, at the ends of L1 it is exp(i[f&W4 
( 2 ~ t ) ~ / ~ ] ~ / 4 8 ]  = e-'/8 which is very small for large t), so this integral is highly 
concentrated near x = a where the b, term dominates. Thus the integral 
above is approximately 

(3) I, ex  - 1 
Riemann was able to evaluate this deJinite integral in closed form, and hence, 
since the factors in front of the integral can be evaluated numerically, he was 
able to find a numerical approximation to the value of R in (1 ) .  

Before evaluating the integral (3) it is advantageous to simplify the ex- 
pression (2) by taking the change of variable x = u + 2niN, x - a = u + 
2niN - 2 n i ( t / 2 ~ ) ' / ~  = u - 2nip, where p is the fractional part of ( t / 2 7 ~ ) ~ / ~ .  
Then (2) takes the form 

e-is(r)  -rn/2(- a ) - ( 1 / 2 )  tIre-Na el(x-n)*/4ne~(x-o) ;=, b,(x - a)" dx .  e 

e i ( x - n ) ' / 4 n e ~ ( x - 4  dx 

e-18(r) (e i d 2  ) I: [- i(2nt)l/2]- ( 1 / 2 )  + l f e - N 2 n l ( N + ~ )  

(2n)(1/2)+fr IX 2 -1/2 1 - ie-m) ( e ' )  ( 
e I ~ u - 2 " I ~ ) ' / 4 n e ~ ( u - Z n l P )  C b,(u - 2nip)" du 

e' - 1 

efu'/**e2pu C b.(u - 2nip)" du 
x I,, eu - 1 

where rl is the line of slope 1 and length ( 2 ~ t ) l / ~ ,  whose midpoint is 2n@, 
directed from upper right to lower left. Set 

explW2) log(t/W - (t/2) - - w13. 1 - ie-'" u =  

Then, by the formula for 8(t) [(I) of Section 6.51, U i s  very near 1 for t large 
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and, since (N + P ) ~  = t/2n and (- 1)"' = (- l)", (2) takes the form 

Riemann proved that 

where r is a line of slope 1, directed from upper right to lower left, which 
crosses the imaginary axis between 0 and 2ni. This shows that to a first ap- 
proximaticm the remainder R in (1) is 

-114 cos 2n(p2 - p - &) 
R N (-l)"-'(-.&) cos 2np 

which can, of course, be evaluated when t is given (recall that Nis the integer 
part of (t/2n)'12 and p the fractional part-the apparent singularities at p = 
4,a  are discussed below) so that (1) can be used to give afirstapproximation 
to Z(t).  This is the first term of the Riemann-Siege1 formula, the later terms 
of which will be developed in the next section. The remainder of this section 
is devoted to the proof of Riemann's formula (5).  

Let Y(p) denote the left side of (5).  Since exp(iu2/4n) approaches zero 
very rapidly as I u I --* 00 in either direction along r, this integral converges 
for all p and defines an entiret function of the complex variable p .  Let D 
denote the domain of the u-plane bounded by r and the line parallel to r 
which crosses the imaginary axis at the point which lies 2ni below the point 
where r crosses the imaginary axis. Then by the Cauchy integral formula 

1 e W / 4 n e 2 ~ r  du = value at 0 of eiu"4ne2pu- U = 1, e " - 1  

while on the other hand this integral over dD is 
1 efua/4ne2~u du ei(u-2ni)'/4ne2 p(u-  2ni) d,, 

1 =Jr e" - i  -LJ  2ni r eu-2nf - 

4) - - e-in/8 e I n i ~ * t p ( ~ )  + e-4nipe- in/8e2ni(pt  1 / 2 ) ' y I ( p  + 

so that equating the two expressions for the integral over dD gives a relation 
between Y ( p )  and Y ( p  + i), namely, 
(7) ( P  3.4) ein/8 e -2nfp' = 'y( p )  + e - 4 x i ~ e 2 n i ~ e f d 2 ~  

= Y ( p )  + ie-znfpY(p + +). 

tThus the zeros of the denominator cos 2xp in (5) must be canceled by zeros in the 
numerator, and, indeed, if p is of the form (odd/4), then p2 - g5 is of the form (multiple 
of 8)/16 so p2 - p - & is also (odd/4) and the numerator is zero. 
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A second relationship between Y ( p )  and Y ( p  + 3) can be found by noting 
that when the integrals they contain are subtracted, the denominator e" - 1 
cancels to give 

( P  + 3) e - i n / 8 e 2 n i p ~ ~ ( p )  - e - f n / 8 e 2 n i ( p +  1 / 2 ) * y I  

where K is a constant independent ofp;  hence 

(8) Y ( p )  - e z K i P . i . \ Y ( p  + 4) = dn/8e2niJ".K. 

Withp = 4 the two expressions (7) and (8) for Y(4) + Y($) give 
e in/8  - 2 n i l 1 6  = in18 2 n i / 1 6 K  K = e - n i / 4  e e e  9 

If this is used in (8) and if Y ( p  + 4) is eliminated between (7) and (8), one finds 
e 2 " i ' y ( p )  + e - 2 n i P y ( p )  = e2niPein/8e-2niP' + e-2nipe-in/8e2nip' 

which gives the desired expression ( 5 )  of Y ( p )  as a quotient of cosines. 
In summary, it has been shown that the remainder R has approximately 

the value (6). To deduce this approximation from the previous approximation 
(l), the series C b,(x - a). in (2) was truncated after the first term b, = 1, 
the factor U was replaced by 1 , and the domain of integration of the resulting 
integral was extended to be the entire line of which it is a segment. 

7.5 HIGHER ORDER APPROXIMATIONS 

The only source of substantial error in the approximations of the preced- 
ing section is the truncation of the series C b,(x - a)" = 1 + . - e at the first 
term. In this section Riemann's method for obtaining higher order approxi- 
mations using the higher order terms of this series will be described. 

The computation of the individual coefficients b, is not difficult. Recall 
that C b,(x - a)" is by definition the exponential of the series 

(1) -[i(x - a)'/4a] - ( p  + N)(x - U )  

+ (--$ + it) logU + (x - a)/al,  

where a = i ( 2 ~ f ) ' / ~ ,  p + N = ( f / 2 2 ~ ) ~ / ~ ,  0 p < 1, N an integer. Let w 
= ( 2 7 ~ / f ) ' / ~ .  Then w is small for t large and the coefficients of the series (1) 
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can be expressed in terms of o as 

( :  ) [ 2ni " I  i 
4n 

--(x - a)2 - o-I(x - a)  + -- + 2 n i ~ - ~  log 1 + -(x - a)  

Thus the coefficients of (x - a), (x - are monomials of degree 1,2, 
respectively, in a, and the coefficients of the higher terms (x - a). are bino- 
mials in o whose terms are of degree n - 2 and n. Since C b,(x - a), is the 
exponential of this series it follows immediately that b, is apolynomial in 
o of degree at most n in which all terms have degree at least equal to the integer 
part of(n/3). [For example, to find b,, one could compute the coefficient of 
(x - a)I4 in the first 14 powers of the above series, divide by the appropriate 
factorial, and add. Many of the terms in the coefficient of (x - a)I4 would 
have degree 14 in o; the terms of smallest degree would be those in which 
the first degree term in front of (x - a)' is used the maximum number of 
times, which in the case n = 14 will give terms of degree 6 in front of (x - a)' 
(x - a)'(x - a)'@ - a)3(x - = (x - u)I4.] The easiest way to compute 
the b, explicitly is to make use of the fact that the derivative of the series (1) 
is 

- 2nio-'(x- a)+(x- a)2-2nio-'[2nio-' + (x-a)]+2ni( -&+2ni0-~) - 2ni[(2nio-' + (x - a)] 
(x - - ni 

2ni[(x - a )  + 2ni0-~1' 
- - 

Thus the logarithmic derivative of C b,(x - a). is simply 
(C bn(x - a).>' = (x - - ni 

bn(x - a). 2ni[(x - a)  3- 2nio-']' 
Hence 

(2) 2ni[(x - a )  + 2nio-'][C nb,(x - a).-'] 
= [(x - - nil[C b,(x - a).] 

from which it is easy to derive a recursion relation among the b's which makes 
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their computation possible. This computation is a bit long, however, and it 
will not be needed in what follows. 

If the series C b,(x - a)" is truncated at the Kth term rather than at the 
0th term, then the argument of the preceding section leads to the higher order 
approximation 

(3) (2n)1/2(2z)ite-'n/4( 1 - ie-") rl ex - 1 
e-i4(r)e-rx/2 1 (-x)-(l/2)+ite-N~ dx 

where 

(u - 2nip)" du. I eiu'/4n 2pu 
= ein/8 e - 2 n i P ' 1  

2ni r e" - 1 

Here N, p depend on t as before and r is the line of slope 1 through 2nip 
oriented from upper right to lower left. The numbers c, can be computed by 
expanding (u - 2nip)" and integrating termwise using the formula 

dk dk ein/8 eiu'/4ne2pu 
-[e2*fi+~(p)l= - [- 1 
dPk dpk 2ni r eu - 1 du] 

ein/8 eiu'/4n 2pu 
- ( 2 ~ ) ~ d u .  - E I ~  e u - 1  

In this way the c, can be expressed as finite linear combinations of exp(2zip2) 
YCk)(p) (k = 0, 1, . . . , n) whose coefficients are polynomials inp is the 
kth derivative of Y). The easiest way to compute the c, is to make use of the 
relationship 

y ( p  + ,,) = e i n / 8 e - 2 n i ( ~ + ~ ) z L  du 
eiu'/4n 2pu e2ni~tyl(p + ,,) = e i n / 8 e - 2 n i p a L  J e e 2 ~ ( u - 2 n i ~ )  du 

2ni r e' - 1 

(4) 

and to equate powers of y. The explicit expressions of the c, which this rela- 
tionship yields will not be needed in what follows. All that will be needed is 
the fact that c, can be expressed as a linear combination of Y(p), Y'(p), . . . , 
Y(")(p) with coefficients which are independent of t. 

In order to use the higher order approximation (3), it is necessary to be 
able to evaluate b,co + blcl + . - - + b,c, for given t and K. Riemann de- 
vised the following method of accomplishing this without going through the 
computation of the b, and c,. Note that since the b, are polynomials in a, 
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one can also regard b,c, + blcl 4- - - - + b,c, as a polynomial in o and 
arrange it according to powers of o. It is natural to do this for two reasons: 
first because o is small for t large, so the importance of a term depends on 
the power of o it contains; second because any given power of o no longer 
occurs in b,,,, b,,,, . . . once Kis sufficiently large, and hence the coefficient 
of any power of o is independent of K for K sufficiently large. Riemann's 
method is a method for finding the coefficient of ok in boco + blcl + . - - + bKcK for large K. By the above observation about the form of the c,, it is 
clear that this coefficient can be expressed as a linear combination of Y(p) ,  
Y ' (p) ,  . . . , Y(")(p) with coefficients independent oft. 

Let the implicit relation (4) satisfied by the c, be multiplied by 
Ce0 n! b,(2y)-". The right side becomes a power series in y in which a finite 
number of terms contain negative powers of y and in which, by the choice of 
the multiplier, the constant term (term in yo)  is boc, + blcl + - - - + b,c,. 
The left side becomes a product of three power series in y which, by the 
commutativity and associativity of multiplication of formal power series, is 
equal to C Y(m'(p)ym/m! times 

K 

n=O 
G(y) = exp 2niy2 C n!bn(2y)-". 

If the coefficients of the nonpositive powers of y in G(y)  can be computed, 
then it will be a simple matter to find the constant term of its product with 
C Y'"'(p)y"/m! and hence the desired expression boco + - - - + b,c,. The 
essence of the argument below is to use the recurrence relation satisfied by the 
b, to find a recurrence relation satisfied by the coefficients of G which makes 
it possible to compute the terms of G with nonpositive powers of y. More 
specifically, let the b, be written as polynomials in o and let the terms of G 
be rearranged in the order of powers of o 

in which each A ,  is a power series in y with a finite number of terms contain- 
ing negative powers and in which the sum is actually finite because the largest 
power of o in b,, b,, . . . , b, is oK. The A,  depend on K, but if a particular 
positive integer v is chosen and if K is large enough that b,, , , b,,, , . . . con- 
tain no terms in coo, ol, . . . , 1 , then A,, A , ,  . . . , A,-,  are independent 
of K. The objective is to find the terms with nonpositive powers of y in A,, 
A , ,  . . . , A , - 1 .  Computations will be carried out mod ov so that G can be 
taken as 

G(y)  = e2nry' 2 n!bn(2y)-" (mod 0') 
n=O 

and the main step of the argument is to find a recurrence relation satisfied 
(mod 0") by G which makes it possible to compute the A,. 
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Of course the desired relation must be deduced from the relation (2) 
satisfied by the b,, which can be stated 
(5) 2ninb, - 4n20-'(n + = bnU2 - nib, 
for n = 0, 1,2,3,  . . . (provided b- 1, b-2 are defined to be zero). The first step 
is to state these relations among the b, as a differential equation satisfied 
by the formal power series 

F(y) = 2 n!bn(2y)-,. 
n=o 

If the nth equation (5) is multiplied by n!(2y)-"-', then the first term on the 
left becomes the general term of the series -niDF (where D denotes formal 
differentiation with respect to y ) ,  the second term on the left becomes the 
general term of -4n20-'F, the first term on the right becomes the general 
term of tD2(2y)- 'F = +D2y-'F, and the second term on the right becomes 
the general term of -(ni/2y)F. More precisely 

m 

niDF = -2ni C n! nb, (2~)-~- ' ,  
0 

m 

4n20-lF = 4n20-' + 4n20-' C q!(n  + 1)b.+l(2y)-n-1, 
0 

m 

-$niy-'F = --ni C n! bn(2y)-"-', 
0 

so the relation (5) for n = 0, 1,2, . . . is equivalent to the differential equation 
niDF + 4n20-'F + +D2y-'F - &niy-'F = 4n20-' 

for F. Then integration by parts gives a differential equation satisfied by 
G(y) = exp(2niy2)F(y) (mod 0") as follows. 

4n2w-1e2~i~* = [niDF + 4n20-'F + +D2y-'F - $niy-1fle2xiy' 
= niDG - niF(De2niya) + 4n20-'G + QD2y-lG 

= niDG + 4n2yG + 4n20-'C + iD2y- 'G 
-&( y - 1F)(D2e2niy') - *( Dy- IF)( De2niy') - k-niy- G 

-9(y-lF)(-16nZ Y e  2 2niY' + 4nie2"fY') 
- ~ ( - Y - ~ F  + ~ - ' D F ) ( 4 n i y e ~ ~ * ~ ' )  - &aiy-'G 

-4-niy-lG + niy-'G - xiDG + niF(De2niY') 
- iniy-lG 

= niDG + 4n2yG + 4n2w-1G + +D2y-'G + 2n2yG 

= 6n2yG + 4n20-'G + &D2y-'G - 4a2yG 
and finally 

e2niy' = G + &oyG + &mr2D2y-'G 
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mod a". Since G = C A,of (mod o"), this gives 

e2x 'y*  = c A,U' + c (+A, + . , + P D ~ ~ - , A  O J + ~ ;  
f I I> 

so the terms in o, 02, 03, . . . cancel on the left, which implies 
A, = -$yAj-1 - &n-2D2y-1A,-1 ( j  = 1,2,3,. . . ). 

Since A. = exp(2niy2), this relation makes it possible to compute A ,  , A 2 ,  
A ,  , . . . in turn. Only the nonpositive powers of y in A, are of interest, and to 
determine the coefficient of y" in A, it is only necessary to know the coeffi- 
cients of y"+, and y"-' in A,- l .  Thus to determine all nonpositive terms in 
A 4 ,  it is only necessary to begin with all terms through yI2 in A,  after which 
one easily computes 

5 1 i y2  niy4 n2y6 
A 2 --- - 27n4y6 + 251czy2 + mn + F  + 24.3 - 23.32) 

52*7*11 7.11 5i 19 A4 = 213n8y12 ~ + 2- + 212.3nSy6 + 
i 11-13 + 210.3n3y2 + m' 

Multiplying by C Y("'(p)y"/m! and taking the constant term of the result 
then gives as the coefficients of coo, o', 02, 03, o4 in boco + - - - + b,c, the 
expressions 

WP)Y 

respectively, provided, of course, that K 2 12. 
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Since the actual remainder R = Z(t) - 2 xy cos[a(t) - t log n] is a real 
number the imaginary terms in the above foimulas must have no significance. 
In fact if the factor 

exp z - log - - - - - - ~ ( t ) ] }  t n  ([i ( ln)  2 8 
7 i  = exp __ - - + . . .] [ 4kt 5760t3 

1 
- - 1 - - a 2  i - ~ 1 #.&4+ ... 

96n 962n2.2 
is taken into account, then the imaginary terms in front of o2 and o3 cancel 
and the coefficient of o4 becomes 

l 1  y " 8 ' ( P )  + 1 
2 m y " 1 2 ' ( p )  + 217.32.5n6 

which not only eliminates the imaginary terms but also simplifies the coeffi- 
cient of Y ( p ) .  

In summary, the remainder R in the formula 

Z(t) = 2 C n-lI2 cos[a(t) - t log n] + R 
n'<(r / ln)  

is approximately 
- 1/4 

R N (-l)N-l(&) 

where N is the integer part of (t/2n)1t2y p the fractionalpart, and 
cos 2n(p2 - p - A), co = Y ( p )  = cos 2np 
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This? is the formula which Siegel found in Riemann’s unpublished papers 
(see Fig. 2). The next section is devoted to some numerical applications of 
the formula and the following section to an analysis of the error. 

7.6 SAMPLE COMPUTATIONS 

To get some idea of the accuracy of the Riemann-Siege1 formula, con- 
sider the computation of Z(18), the value of which was found with three- 
place accuracy in Section 6.5. If t = 18, then (t/2n)’l2 = 1.692 569, so in 
this case N = 1, p = 0.692 569. The sum approximating Z(18) consists of 
the single term 2 cos 8(18) = 2 cos(0.080 91 1) = 1.993 457. The denomi- 
nator of Y(p) is cos(2n x 0.692 569) = cos(n + 3n + 2n x 0.025 902) = 
( J T / 2 )  sin(0.162 747) - f cos(0.162 747) = -0.353 070 and the numera- 
tor is cos 2n(p2 - p - A) = cos (-0.275 417 x 2n) = -sin(O.l59 700) 
- - -0.159 022; SO 

Z(18) N 2 cos 8(18) + (-1)1-1(18/2n)-1/4Y(0.692 569) 
-0.159 022 = 1.993 457 + (0.768 647) -o.353 o,o 

= 1.993 457 + 0.346 197 = 2.339 654 
is the first approximation to Z(18). Comparing this with the value 2.337 
obtained in Section 6.5 shows that the Riemann-Siege1 formula gives better 
than two-place accuracy even for this relatively small value of t and even 
when only the first approximation is used! 

To use the higher order approximations, one must have some means of 
evaluating the more complicated functions C1, C2, Cf, . . . of Section 7.5. 
The simplest method of doing this is to compute the Taylor series coefficients 
of Y(p), from which the Taylor series coefficients of the derivatives of Y and 
hence of the C’s are easily computed. Since 0 < p < 1, it is natural to ex- 

tHowever, Siegel changed the coefficient of T ( p )  in C4 from Riemann’s value 
11.13(21132~2)-1 to (27n2)-1 ason thepreceding page. Theaboveexpressionof theformula 
differs somewhat from both Riemann’s expression of it and Siegel’s (which differ from each 
other). Riemann expresses the series Bfa-J, where a = i(2zt)1/2 as 
before (a in Riemann’s notation) and where, consequently, Bj = (2xi)jCj. Siegel expresses 
the series Alt-j/2, where, consequently, Al = CA2n)l/2. Moreover, 
Siegel expresses the Aj  in terms of derivatives of the function 

C , d  as a series 

Cjwj as a series 

rather than in terms of derivatives of Y. His formulas can be deduced from those above 
using Y ( n )  = (2x)JzF(n). 
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pand these functions in powers of p - 4. Since Y(4 + a) = cos[2na2 + 
(3n/8)]/cos 2na, the expansion of Y in powers of a = p - f is a quotient of 
known even power series and, as such, is an even power series whose coeffi- 
cients can be explicitly computed. Then C, = Y ,  C,, C,, . . . will be even power 
series and C1, C3, C,, . . . odd power series whose coefficients are easily found. 
Haselgrove [H8] gives a table of coefficients of C,, C1, C,, C3, C,  in powers 
of (1 - 2p) which is reproduced as Table V. Using these coefficients with 
the above value of p and therefore with 1 - 2p = -0.385 138, one finds easily 

0.000 323 from which 2cos 8+(t/2n)-1/4[C,+(t/2n)-1'2Cl+ - . - +(t/2n)-2C4] 
is 2.336 796 N Z(18). Since the C4 term is a 3 in the fifth place, one might 
hope for four-place accuracy and indeed this answer is extremely close to 
Haselgrove's six-place value Z(18) = 2.336 800. Thus the error estimates of 
Section 7.3 are much too generous and Riemann was in fact in possession 
of the means to compute C(+ + it) with amazing accuracy. 

Using the Riemann-Siege1 formula it is quite easy to locate the first few 
roots of c(f + it) by computation. The main term 2 cos 8(t) is zero near 
t = 14.5 where 8(t) is near -n/2, as a simple computation using formula (2) 
of Section 6.5 for 8(t) shows. For t = 14.5 simple estimates give t/2n N 2.30, 
(t/2n)l/, N 1.5, N =  1, p N 3. Since "(4) = -cos(5n/8) N 0.38 and 
(t/2n)-l14 N (2/3)*12 N 0.8, the first correction term ( t / 2 ~ ) - ~ / ~ Y ( p )  is about 
(0.8)(0.38) N 0.30; so to move toward a zero of 2, the value of t should be 
reduced to where the main term 2 cos 8(t) is -0.30. The derivative of this 
term is -28'(t) sin 8(t) N -2.4 log(t/2n).(-l) N 0.83, so t should be re- 
duced from 14.5 to about 14.5 - [(0.30)/(0.83)] = 14.14. Thus there might 
well be a root between 14.1 and 14.2. Now Z(14.1) and Z(14.2) can be com- 
puted by exactly the same method as was used for Z(18) above. The results 
are shown in Table VI. The size of the C, term suggests an accuracy of about 
four places, and this is more than confirmed by Haselgrove's tables, which 
give Z(14.1) = -0.027 463, Z(14.2) = +0.052 045. Thus there is definitely 
a root in the interval and linear interpolation would place it at 14.1 + h, 
where h/0.1 = (0.027 466)/(0.027 466 + 0.052 042) N 0.345 so the root is 
at about 14.1345. Further computations with t in this range show that the 

C, = 0.450 401, Cl= -0.009 207, C, r= 0.004 996, C3 = -0.000 316, C4 = 

Fig. 2 This is the sheet on which the Riemann-Siege1 formula appears in Riemann's 
unpublished papers in the Gottingen University Library. (Here it is somewhat reduced in 
size.) The enlargement shows the final terms of the formula, which include the coefficient 
that Siege1 simplified. The lack of coherent organization and of any explanation are typical 
of these papers, which include, along with the unexplained formulas, various random 
jottings such as the Chebyshev note on p. 5 and a computation of 0 to 38 decimal 
places. (Reproduced with the permission of the Niedersachsische Staats- und Univer- 
sitatsbibliothek, Handschriftenabteilung, Gottingen.) 



TABLE V 
TABLE OF COEFFICIENTS" 

s 

0 

2 

4 
6 
8 

10 

I2 

14 
16 
18 

20 
22 

24 
26 
28 

30 
33 
34 
36 
38 

40 
& 

s 

0 

2 

4 
6 
8 

I0 

12 

14 
16 
I8 

W 
22 

24 
26 
28 

30 
31 
34 
36 

Co, a 

+0.38268 34323 65089 77173 
+ -43724 04680 77520 44936 
+ '13237 65754 80343 52333 
- 1360502604767418865 
- 1356762197010358088 

- 16237253 2314446528 
+ 29 70535 37333 79691 
+ 7 94330 08795 21469 + 4655 61246 14504 

14327 25 163 0955 I 

I035 48471 12314 + 123 57927 08384 

33914 14393 - 1632663392 

378 5 I094 + 93 27423 + 5 22184 
33506 

3412 

+ 58 + 15 

- 
- 

+ 17 88108 38577 - 

- 

- 
- 

Sum=A 

CI, a 

0'0 

+05188542830293 
+ 30 94658 38807 
- 1 I33 59410 78229 
+ 223 30457 41958 + 5196637408862 

+ 34 39914 40762 
- 59 10648 42747 
- 102299725479 

+ 5927665493 

- 1642 38384 

+ 2 08883 92217 

- 1516 11998 
- 59 07803 + 2091151 
+ 178157 
- r6164 
- 2380 
+ 54 + 20 

Sum = 81961 

s 

S C1.a 

I +002682 51026 28375 35 
3 - I378 47734 26351 85 
5 - 3849 12504 82235 08 
7 - 987 10662 99062 08 
9 331 07597 60858 40 

11 4- 146 47808 57795 42 

15 
17 
19 + 9641 32245 62 
21 + I833 47337 22 

44 67087 57 
27 09635 Q9 

23 

77852 89 
25 
27 
29 + 23437 63 

+ 1583 02 31 

I 4  58 
33 
35 
37 + 29 
39 + 9 

13 + 1320794062488 
- 5 92274 87018 47 

59802 42585 37 - 

- 
- 
- 

I21 20 - 
- 

Sum = &rB - f A  

C3.r s c4, s 

+ 133 97160 907 o +046 48338 9 
-374 42151 364 2 - 100 56607 4 

+226 54660 765 6 + 102 83086 I 

- 9548499998 8 - 76578609 
- 6010038459 10 - 20365286 

+ 686573 345 14 + 3 26021 5 
- 5985366 16 - 2557905 
- 33316599 18 - 410746 

- 2191 929 ZQ + 11781 2 + 789089 aa + 24456 + 94147 24 - 239 2 
9570  26 - 75 0 

I 876 A + 1 3  

+ 45 30 + 14 + 22 

0'00 000 

+I33 03178 920 4 + 2404485 6 

+ IOi2885828 I2 + 23212290 

- 
- 

@From Haselgrove [Ha]. 
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Main term 1.993 457 
CO term 0.346 199 

C2 term 0.001 341 

C4 term O.OO0 030 
Z(18) 2.336 796 

Computation of the approximation to Z(18). 

C1 term -0.004 181 

C3 term -0.OO0 050 

value of 2 given by the Riemann-Siege1 formula with terms through C4 
changes sign between 14.134 727 and 14.134 729. Thus the Riemann-Siege1 
formula permits the computation of the first root f + ia, a = 14.134 725 . . . 
(see Section 6.1) with at least five-place accuracy. If the C, and C, terms were 
used, it is possible that even greater accuracy might be achieved. Riemann 
computed this root, finding its value to be 14.1386; the error in his value re- 
sults, as the above shows, not from the inherent inaccuracy of the Riemann- 
Siege1 formula, but merely from the fact that he must have carried out only 
rough computations. 

Riemann also took some steps toward proving that this root 14.1. . . is 
thefirst root. By (4) of Section 3.8 

logn - log 2. 
Imp>O 

TABLE V I  

t 14.1 14.2 

W) - 1.742 722 
P 0.498 027 
1 - 2p 0.003 946 
(t/272)- 112 0.667 545 
(t/2n)- '14 0.817 034 

-1.702 141 
0.503 330 

0.665 190 
0.815 591 

-0.006 660 

Main term 
Co term 
C, term 
C2 term 
C3 term 
C4 term 

-0.342 160 
0.312 671 
O.Oo0 058 
0.001 889 
o.oO0 001 
O.OO0 075 

-0.261 934 
0.312 129 

-0.0oO 097 
0.001 872 

-0.oO0 002 
O.OO0 074 

Z(t) -0.027 466 +0.052 042 
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Hencet 

C 
Im p>O 

[l/p(l - /I)] = 0.02309.. . . (1) 

Now the root p = + i14.1. . . already found accounts for about 0.005 of 
the sum of the right. If there were a root in the upper halfplane with smaller 
imaginary part than this one, then there would have to be two such roots, 
either because it would not be on the line Re s = 3, in which case there would 
be a symmetrical root on the opposite side of the line, or because it would be 
on the line, in which case Z(t )  would have to change sign a second time in 
order to be negative at 14.1 and at 0. Thus such a root would have to satisfy 

l/y2 < i(0.018) = 0.009, y > 10. 

Using the Riemann-Siege1 formula it is not difficult to see that such a root on 
the line is very improbable and therefore that the root just found is probably 
the first root on the line. If all 10 of the roots in the range 0 < Im p < 50 
are located, they account for about 0.0136 of the total in (1) and therefore 
suffice to prove that the above root is indeed the root in the upper halfplane 
with the least imaginary part. 

The next root on the line would be expected in the vicinity of the next 
zero of cos t?(t), which occurs when 8(t) - n/2, t - 20.7. Assuming that the 
Riemann-Siege1 formula is accurate, it is easy to prove that Z(t )  does indeed 
change from + back to - near this point and to locate the root 21.022. . . 
quite accurately. Of greater interest, however, is the next root, which occurs 
near 8(t) N 3n/2, t - 25.5, because in this vicinity N increases from 1 to 2 
and the approximation to Z(t)  passes through an apparent discontinuity. 
However, the discontinuity is illusory because if (t/22~)'/~ = 2 - E ,  then N = 
1, p is nearly 1, and theref0re(-l)~-'(t/2n)-~/~\Y(p) is 2-1/2cos(n/8). On the 
other hand, if ( t / 2 ~ ) ' / ~  = 2 + E, then the main sum contains a second term, 
namely 2 ~ 2 - l ~ ~  cos[$(t) - t log 21, and (-l)N-1(t/2n)-1/4Y(p) changes sign 
to become -2-'12 cos(n/8). But log 2 - 10g(t/2n)'/~ = 3 log(t/2n) so 

t t n l t  log - - - - - + - - - log - $(t) - t log 2 - 
(;n) 2 8 48t 2 (in) 

cos[$(t) - t log 21 - cos(n/8), 

tThe numerical value of Euler's constant y can be found by using logarithmic differ- 
entiation of n(s) = sn(s - 1) to find y = -lT'(O)/lT(O) = 1 f + + + + - .  . + (l/n) - 
II'(n)/n(n) and by then using formula (4) of Section 6.3. As Siege1 reports, Riemann wrote 
down the above constant to 20 decimal places 0.02309 57089 66121 03381. Thus, although 
Riemann did not prove that the series (4) of Section 1.10 converges, he did compute its sum 
to 20 decimal places. (I have not checked the accuracy of his answer.) 
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and the two new terms add up to 2-'12 cos(n/8) which is the old term. Thus 
to a first approximation the Riemann-Siege1 formula is continuous at t = 
22.2n and, more generally, at all points t = k22n, where N changes. To a 
second approximation the C2 term changes sign [the C1 term does not change 
sign because C ,  is an odd function of (1 - 2p) and the two sign changes 
cancel] from fk-l12k-2C2(0) to Fk-'/2k-2C2(0), whereas the new term of 
the sum is f2k-'l2 cos[-(n/8) 4- (l/k296n)] which consists of the term 
already accounted for plus f2k-'l2 sin(n/8) sin(l/k296n) N f2k-1/2k-2 
sin(n/8)/96n; hence there is no discontinuity at this level of approximation 
provided C2(0) = sin(n/8)/96, which is in fact the case as can be shown by 
straightforward evaluation of C,(O). 

Although there is no serious discontinuity near t = 22.2n N 25.133, it is 
still quite conceivable that the Riemann-Siege1 formula would not be as 
accurate in this region as it proved to be in the examples above. To find a 
root of 2 corresponding to the root t N 25.5 of cos 8(t)  = 0, one would 
observe first that the terms after 2 cos 8(t) are about 2-lI2 cos(n/8) N 0.65 
in this range of t, as was just seen; hence t should be changed to make 2 cos 
8(t) N -0.65. Since the derivative of 2 cos 8( t )  is about -2.4 log(t/2n) 
sin 8(t) N log(t/2n) N 1.4, this suggests t = 25.5 - (0.65)/(1.4) - 25.0. 
Now for t = 25, Nis 1 andp is 0.994 71 1 4, so 1 - 2p is -0.989 422 8. Care- 
ful computations for t = 25 (which are impeded by the fact that p is nearly 1 
and that the series for C, consequently converge slowly) give Z(25) N 

-0.014 873 455 which agrees with Haselgrove's six-place value -0.014 872 
except in the last place. Thus even here, in the neighborhood of an apparent 
discontinuity, the Riemann-Siege1 formula is astonishingly accurate and 
there is no conclusive empirical evidence of any inherent error in the formula, 
much less an inherent error of the order of magnitude allowed by the crude 
error estimates above. 

The next approximation to the root near t = 25 would be obtained by 
increasing t enough to increase 2 cos 8(t) by 0.0149. The derivative at t = 25 
is about -1og(25/2n) sin[(3n/2) - 0.34)] = cos(0.34) log(25/2n) N (0.94) 
x (1.38) - 1.30, so t should be increased by (0.0149)/(1.30) N 0.01 1 to about 

main term -0.670 310 810 
Co term 0.645 191 368 
C1 term 0.010 01 1 009 
C, term 0.OOO 216 855 
C,  term 0.OOO 017 159 
C, term 0.m m 964 
~ ( 2 5 )  -0.014 873 455 

Computation of the approximation to Z(25). 
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25.01 1. The actual root is, of course, at 25.01085. . . . Riemann also computed 
this root, but the value 25.31 which he obtained is very far off-so far off, in 
fact, that it must surely indicate a computational error because even the 
rough calculation at the beginning of the preceding paragraph yielded the 
better value 25.0. I have not been able to follow the details of Riemann’s 
computation, but I have followed enough of it to see that after starting with 
t = 4 - 2a he goes to the larger value (4.030. . .) - 2a, which means he has gone 
in the wrong direction. This error should have revealed itself when he com- 
puted the new value of 2, but presumably the error in the first computation, 
whatever it was, was repeated in the subsequent computations. 

Although the above computations of Z(t)  [from which c(& + it) can be 
computed immediately] are considerably shorter than the corresponding 
computations using Euler-Maclaurin summation would be, the real superi- 
ority of the Riemann-Siege1 formula is for larger values of t, both because 
the number of terms it requires increases slowly and because the inherent 
error decreases. For example, to compute Z(lOO0) using the Riemann-Siege1 
formula requires the evaluation of [ ( t / 2 ~ ) l / ~ ]  = 12 terms in the main sum. The 
inherent error is, judging by the above calculations, much smaller than the 
C4 term which is of the order of magnitude of (t/2a)-g/4(0.001) - 12-9/2 
x < 2 x To achieve comparable accuracy with the Euler-Mac- 
laurin formula would require hundreds of terms as opposed to just 12, and 
would require so much arithmetic that computations would have to be carried 
out with great accuracy to counteract the accumulation of roundoff error. 

7.7 ERROR ESTIMATES 

The computational examples of the preceding section suggest that the 
usual rule of thumb for asymptotic series (see Section 6.2) applies to the 
Riemann-Siege1 formula; that is, as long as the terms are decreasing rapidly 
the bulk of the error is in thejirst term omitted. Moreover, the first four re- 
mainder terms are rapidly decreasing in size even when t is only 14, and the 
C, term is already less than when t is in this range and is very much 
smaller for larger t .  This suggests that even though the Riemann-Siege1 
formula has an inherent error, this error is extremely small and the formula 
in fact makes possible the computation of Z(t)  with an accuracy of several 
decimal places. 

Unfortunately none of the estimates of the error in the Riemann-Siege1 
formula come anywhere near to justifying these conjectures about its accu- 
racy. At the present time the only published error estimate seems to be 
Titchmarsh’s [T5], which shows that if t > 125 - 2a - 786 and ifthe C ,  term is 
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thejirst term omitted, then the error is less than (3/2)(t/2n)-’/* in magnitude. 
(Actually the estimates of Titchmarsh [T5] are a good deal more complicated 
and cover a wider range oft. The simplified version given here is taken from 
Titchmarsh‘s book [TS, p. 3311.) In proving the existence of zeros of Z(t),  
and hence of roots p on Re s = 4, the principal requirement is to be able to 
determine the sign of Z(t )  with certainty, and in most cases it has been pos- 
sible to do this by finding values of t where Z(t )  is far enough from zero that 
its sign is rigorously determined by Titchmarsh‘s estimate of the error. How- 
ever, cases do arise in which Z(t )  changes sign but remains very small in 
absolute value (Lehmer’s phenomenon-see Section 8.3) and in these cases 
the presence of zeros of Z cannot be rigorously established without a stronger 
error estimate and, in particular, without one which uses more than one term 
of the Riemann-Siege1 formula. 

Rosser, Yohe, and Shoenfeld [R3] have announced that ifthe C ,  term is 
the first term omitted, then the error is less than (2.SS)(t/22~)-”* provided 
t > 2000.22~ - 12,567. Their proof of this result has not yet appeared. They 
have also established rigorous estimates of the error in their procedures for 
computing the Co, C1, and C, terms and in this way have been able to de- 
termine with certainty the sign of Z(t )  in the range covered by their calcula- 
tions (see Section 8.4). In fact, they report that in five million evaluations of 
Z ( t )  they found only four values of t where I Z(t)  I was so small that their 
program was unable to determine its sign with certainty. 

Siege1 himself proved that all terms of the Riemann-Siege1 formula are 
sign$cant in the sense that for every j there exist constants to,  K such that if 
the CJ term is the first term omitted, then the error is less than K ( t / 2 2 ~ ) - ‘ ~ J + ~ ) / ~  
provided t > to .  Thus Titchmarsh’s estimate gives specific values for K, to 
in the case j = 1, and the estimate of Rosser et al. does the same f o r j  = 3. 
Siegel’s theorem can also be stated in the form: The Riemann-Siege1 formula 
is an asymptotic expansion of Z( t )  in the sense of “asymptotic” defined in 
Section 5.4 provided the “order of magnitude” of the C,- term is interpretedt 
as meaning (t /2n)-‘2J-1)/4.  The actual values of to  which Siegel‘s proof pro- 
vides for various values o f j  are extremely large and are of no use in actual 
computation. 

Since the location of the roots p has been reliably carried out by several 
computer programs up to the level where the estimate of Rosser et al. applies, 
and since it would seem that this estimate is sufficient for locating the roots 
beyond this level (it is conceivable, however, that there might be occurrences 
of Lehmer’s phenomenon so extreme that the C, term is needed to determine 

?The hitch here is that the CJ- 1 term for some values oft might be zero. However, it is 
of the order of magnitude of (t /2n)-@J- 014 in the sense that it is always less than aconstant 
times this amount but not always less than a constant times any higher power of t -1 .  
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the sign of Z), the known estimates appear to be sufficient for the location of 
the roots p. Nonetheless, it would be of interest to have an estimate which 
comes closer to the “rule of thumb” estimate which seems justified by the 
computations, even for t N 15. Also of interest would be an answer to the 
question raised by Siegel as to whether the Riemann-Siege1 formula converges 
for fixed t as more and more terms are used. Presumably it does not-by 
the analogy with Stirling’s formula-but this has never been proved. 

7.8 SPECULATIONS ON THE GENESIS 
OF THE RIEMANN HYPOTHESIS 

We can never know what led Riemann to say it was “probable” that the 
roots p all lie on the line Re s = 4, and the contents of this chapter show very 
clearly how foolhardy it would be to try to say what mathematical ideas may 
have lain behind this statement. Nonetheless it is natural to try to guess what 
might have led him to it, and I believe that the Riemann-Siege1 formula gives 
some grounds for a plausible guess. 

Even today, more than a hundred years later, one cannot really give any 
solid reasons for saying that the truth of the Riemann hypothesis is “prob- 
able.” The theorem of Bohr and Landau (Section 9.6) stating that for any 
6 > 0 all but an injinitesimalproportion of the roots p lie within 6 of Re s = 3 
is the only positive result which lends real credence to the hypothesis. Also 
the verification of the hypothesis for the first three and a half million roots 
above the real axis (Section 8.4) perhaps makes it more “probable.” However, 
any real reason, any plausibility argument or heuristic basis for the statement, 
seems entirely lacking. Siegel states quite positively that the Riemann papers 
containt no steps toward a proof of the Riemann hypothesis, and therefore 
one is safe in assuming that they do not contain any plausibility arguments 
for the Riemann hypothesis either. Thus the question remains: Why did 
Riemann think it was “probable”? 

My guess is simply that Riemann used the method followed in Section 7.6 
to locate roots and that he observed that normally-as long as t is not so 
large that the Riemann-Siege1 formula contains too many terms and as long 
as the terms do not exhibit too much reinforcement-this method allows one 
to go from a zero of the first term 2 cos 8 ( t )  to a nearby zero of Z(t).  This 
heuristic argument implies there are “about” as many zeros of Z(t) as there 
are of 2 cos 8(t) ,  that is, about r 1 8 ( t )  zeros. But Riemann already knew (we 
do not know how) that this was the approximate formula for the total num- 

?Of course there is no indication that these one hundred or so pages contain all of 
Riemann’s studies of the zeta function, and they almost certainly do not. 
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ber of roots, on the line or off. Would it not be natural to  explain this ap- 
proximate equality by the hypothesis that, for some reason which might 
become clear on further investigation, the roots are all on the line? And 
would it not be natural to express this hypothesis in exactly the words which 
Riemann uses ? 

This guess, if it is correct, has two important consequences. In the first 
place it implies that when Riemann says that the number of roots on the line 
is “about” equal to  the total number of roots, he does not imply asymptotic 
equality, as has often been assumed, but simply that when t is not too large 
and the terms do not reinforce too much, there is a one-to-one correspon- 
dence between zeros of Z( t )  and zeros of cos 8(t) .  To go from a zero f of 
cos 8 ( t )  to  one of Z(t>, one would evaluate the terms of the Riemann-Siege1 
formula at f. Since the terms other than the first are individually small, since 
they would normally cancel each other to some extent, and since they change 
more slowly than the first term, it would seem likely that in most cases one 
could move to a point near f where the first term 2 cos 8( t )  had a value equal 
to  the negative of the value of the remaining terms at f and that the value of 
the remaining terms would not change too much in the process. If so, then 
the value of Z at the new point is small and can be made still smaller by suc- 
cessive approximations based on the assumption that for a small change in 
t the bulk of the change in Z ( t )  occurs in the first term, hence converging to 
a root of 2. The method can certainly fail. To see how completely it can fail, 
it suffices to consider an extreme failure of Gram’s law, for example the failure 
between g,,,, and g6709 in Lehmer’s graph (Fig. 3, Section 8.3). If f is the 
zero of cos 8( t )  in this interval, then Z ( f )  is about -2, perhaps even less; so 
it is not possible to increase the first term 2 cos 8(t) enough to  make up for 
the deficit in the other terms. If one increases 2 cos 8(t) the full amount by 
moving to g,,,, where it is +2, the total value o f 2  is still negative, approxi- 
mately -4. To reach the zero of Z corresponding to f, one must move even 
further to the left and hence one must decrease 2 cos 8( t )  in the hope that the 
other terms will increase and increase enough to  make up for the decrease in 
2 cos 8(t) and the remaining deficit of -4. Thus one must abandon the pro- 
posed method entirely and hope that the desired zero is there anyway. Viewed 
in this way, the heuristic argument which I impute to Riemann is virtually 
identical with Gram’s law but with the very important difference that its 
rationale is based on the Riemann-Siege1 formula rather than the Euler- 
Maclaurin formula, so that, unlike Gram’s rationale, it is not at all absurd to  
expect the main term to dominate the sign of the series for t into the hundreds 
or even the thousands because the formula for Z ( t )  has only ten or twenty 
terms in this range, not hundreds of terms. It seems entirely possible that 
Riemann would have been able to  judge that the failures in this range would 
be relatively rare, as  has now been verified by computation, and to conclude 
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that the number of zeros of Z(t )  between 0 and T for T in this medium range 
is about n-’B(T), that is, about? (T/2n) log(T/2n) - (T/2n). In support of 
this interpretation of Riemann’s use of the word “about” (etwas) in this place, 
one might observe that he prefaces it with the phrase “one finds in fact” 
(meaning computationally?) and that, unlike his use of “about” in the pre- 
vious sentence, he gives no estimate of the error in the approximation. 

The second consequence of my guess is that it implies that Riemann based 
his hypothesis on no insights about the function which are not available to 
us today (now that we have the Riemann-Siege1 formula) and that, on the 
contrary, had he known some of the facts which have since been discovered, 
he might well have been led to reconsider. After all, he had just discovered 
the extension of the zeta function to the entire complex plane, the functional 
equation, and an effective numerical technique for locating many roots on the 
line, so it would be perfectly natural for him to be looking for regularities 
and perfectly natural for him to expect that an observed regularity of this 
sort would hold and would yield to the power of his function-theoretic con- 
cepts and techniques. However, it did not yield, and Riemann lived for several 
years after he made the hypothesis. Moreover, the discoveries of Lehmer’s 
phenomenon (Section 8.3) and of the fact that Z(t)  is unbounded (Section 9.2) 
completely vitiate any argument based on the Riemann-Siege1 formula and 
suggest that, unless some basic cause is operating which has eluded mathe- 
maticians for 110 years, occasional roots p off the line are altogether possible. 
In short, although Riemann’s insight was stupendous it was not supernatural, 
and what seemed “probable” to him in 1859 might seem less so today. 

7.9 THE RIEMANN-SIEGEL INTEGRAL FORMULA 

In 1926 Bessel-Hagen found (according to Siegel [S4]) in the Riemann 
papers a new representation of the zeta function in terms of definite integrals. 
Naturally Siegel included an exposition of this formula in his 1932 account 
of the portions of Riemann’s Nachlass relating to analytic number theory. 
As stated by Siegel, the formula is essentially 

-- 2w - F(s) + F(1 - S) 
s(s - 1 )  

where F is defined by the formula 

+Of course, if the roots are all on the line, which Riemann thought was the probable 
explanation of the near equality of the two estimates, then the same estimate applies for all T 
and the slight ambiguity in the range of T does no harm. 
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in which the symbol 0/1 means that the path of integration is a line of slope 
-1 crossing the real axis between 0 and 1 and directed from upper left to 
lower right, and in which x - ~  is defined on the slit plane (excluding 0 and 
negative real numbers) in the usual way by taking logx to be real on the 
positive real axis and setting x - ~  = e-rlo*x. Because exp(--inx2) approaches 
zero very rapidly as 1 x I + 00 along any line of the form O / l  and because 
the integrand is nonsingular on the slit plane except for simple poles at the 
positive integers, it is easily seen that F(s) is an analytic function of s defined 
for all s except possibly for s = 0, -2, -4, . . . , where the factor in front 
has simple poles. [Formula (I), once it is proved, implies that F(s) is analytic 
at -2, -4, . . . and has a simple pole at 0.1 

Siege1 deduces formula (1) from an alternative form of the identity 
ein/8 -2nip;L e i u ' / 4 n e 2 p u  du - - cos 2n(p2 - p - &) I cos 2np e 2ni r eu - 1 

[formula (5 )  of Section 7.41. The change of variable u = 2niw puts the path 
of integration r in the form 0/1 but with the orientation reversed, and puts 
the identity itself in the form 

which withp = f(v + f) can be simplified using 2p = v + f, 4p2- 4p - 4 
= (v + $)2 - 2(v + 4) - 4 = v 2  - v - 1 to be 

einv' - i d 2  + einveid2 e - _ -  ei"vei"/2 + e-i"ve-in/2 

and finally 

(3) 
e-inw' 2nivw einv* 1 e d w  - 

1 - e-2niv 
- f,,, einw - e-inw - einu - e-inv 

which is the alternative form of (2). Let s be a negative real number, multiply 
both sides of this equation by v-= dv, and integrate along the ray from v = 0 
to v = 00 i l l 2 .  The double integral on the left converges absolutely, so the 
order of integration can be interchanged. Since by elementary manipulation 
of definite integrals 
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(for w on 0 \ I), it follows that the left side becomes 

The second term on the right becomest 

= ((1 - $) J-iIr* W-seZxiw dw 
0 

- - ((1 - s)ie-ins/2(2n)r-lIs-l~(- 81, 

by the same calculation. The first term on the right can be expressed in terms 
of the definite integral 

(where 0 /' 1 denotes the complex conjugate of a path 0 1) because for 
negative real s the path 0 /' 1 can be moved over to the line of slope 1 through 
the ,origin so that (4) can be expressed as 

10 

elnu'U-sdu + Jrni ' i l  einu2 u - s  du 
einu - e-inu - m i l / :  einu - e - lnu  

0 &(-u)t ( - u ) - s  d(-u) mi'/* &nu* u - s  du 
e-inu - e'n" =I 

= I, elnu - p u  

+ J, einu - e-inu 

-f'/' etnu'[u--r - (-*)-"I du 

because log(--) = log u - in for u on the ray Im log u = 4 4 ,  and hence 
(-u)-" = u-8e-d(-i"). Thus (3) becomes 

tJustification of the interchange of summation and integration is not altogether elemen- 
tary. One method is to observe that limN+, j;i"' (eZniNv/e-Zniv - l ) ~ - ~  dv = 0 by the 
Riemann-Lebesgue lemma. 
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Now 
(1 - ei"s)ie-iKs/2(2n)'-1n(-s) = 2[sin (sn/2)](2n)"-'Il(-s) 

is the factor which appears in the functional of C [formula (4) of Section 1.61, 
and therefore, as in Section 1.6, it can be written as 

Therefore, when the above formula i s  multiplied first by (1 - eins) and then 

because by definition 

The left side of this equation is F(1 - s) and the first term on the right is 
- F(S) ; hence 
- 

and the desired formula (1) is proved by substituting 1 - s for s. 

functional equation c(s) = c(l - S) because it shows that 
The Riemann-Siege1 formula puts in evidence the fact that c satisfies the 

~- 
~- 2e(s) - F(s) + F(l - S) = F(l - S) + F(s) 
s(s - 1) 

= complex conjugate of 2c(1 - S> - Y(1 - S). 
(1 - S)(-S) - s(s - 1) 

On the other hand, is real on the real axis by (9, and therefore, by the 
reflection principle, r(s> = ((S). The Riemann-Siege1 integral formula there- 
fore gives a new proof of the functional equation e(s) = Q l  - s). This proof 
differs from Riemann's first proof in that it uses s and 1 - s more symmetri- 
cally, and it differs from his second proof in that it does not depend on the 
identity 1 + 2y/(x) = ~ - " ~ [ 1  + 2y/(x-l)] from the theory of theta functions. 

Since the theta function identity 1 + 2y/(x) = ~ - ' / ~ [ 1  + 2y/(x-l)] can be 
deduced from c(s) = c( 1 - s) fairly easily (by Fourier inversion-see Chap- 
ter lo), the proof of this section gives an alternative proof of the theta func- 
tion identity based on the evaluation of the definite integral (2). More 
generally, Siege1 states that Riemann in his unpublished lectures derived the 
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transformation theory of theta functions from a study of the integral 

of which the special case z = - 1 was considered above. 



Chapter 8 

f urge-Scale Computations 

8.1 INTRODUCTION 

The discovery of the Riemann-Siege1 formula made it quite feasible to 
extend the program begun by Gram and Hutchinson (see Chapter 6) well 
beyond the Gram point g , 3 ,  reached by Hutchinson in 1925. Since the Gram 
points g,, are easily computed, this extension is simply a matter of using the 
Riemann-Siege1 formula to evaluate Z(g,,) and of finding points g,,’ near 
g,, for which (- l)”Z(g,,‘) > 0 in those presumably rare cases when Gram’s 
lawt Re c($ + ig,,) = Z(g,) cos O(g,,) = (- l)”Z(g,,) > 0 fails. In this way it 
should be possible, unless the failures of Gram’s law become too frequent, to 
locate many more roots p on the line Re s = 3. Such computations were 
carried out by Titchmarsh and Comrie [T5, T6] in 1935-1936 extending up to 
the Gram point g 1 0 4 0  and thus locating 1041 roots on the line. Moreover, by 
a suitable generalization of the techniques of Backlund and Hutchinson using 
the Riemann-Siege1 formula (in a more general form which is applicable for 
Re s # $) in place of the Euler-Maclaurin formula, Titchmarsh and Comrie 
were able to show that N(glod0) = 1041 and to conclude therefore that the 
roots p in the range (0 I Im s 5 g104,) are all simple zeros on the line 
Res  = 3. 

No doubt this program of computation would have been carried further 
if World War I1 had not intervened. By the time the war was over, the com- 
puter revolution was well under way and automatic electronic digital com- 

?Strictly speaking the statement (-l)”Z(g,,) > 0 should perhaps be called the weak 
Gram’s law, since, as defined by Hutchinson, “Gram’s law” is the stronger statement that 
there are precisely n + 1 zeros of Z(t) between 0 and g,,. This distinction is not very im- 
portant and is ignored in what follows. 

171 
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puters were rapidly being developed. These new tools made it feasible to 
extend the computations to cover tens of thousands and even hundreds of 
thousands of Gram points, but, apparently because computer technology was 
changing so rapidly that no single computer remained in operation long 
enough for such a low-priority project to be programmed and run on it 
before a new computer requiring a new program would replace it, it was not 
until 1955-1956 that the computations were carried significantly past the 
level reached by Titchmarsh and Comrie 20 years before. 

These computations, carried out by D.H. Lehmer [L7, L8], showed that 
for the first 25,000 Gram points g,, the exceptions to Gram’s law (- l)”Z(g,,) 
> 0 are not great and all roots p in the range (0 I Im s I g,,oo,)  are simple 
zeros on the line Re s = f. Lehmer had at his disposal, in addition to the 
Riemann-Siege1 formula and the new electronic computers, a new method 
introduced by Turing [T9] in 1953 for determining the number of roots in a 
given range. Turing’s method is much easier to apply in practice than is the 
method of Backlund (see Section 6.6) which it supplants. Turing’s method is 
described in the next section. 

Although Lehmer’s computations confirmed the Riemann hypothesis as 
far as they went, they disclosed certain irregularities in the behavior of Z(t)  
which made it seem altogether possible that further computations might 
actually produce a counterexample to the Riemann hypothesis (see Section 
8.3). Further computations were carried out-by Lehman [L5] to the two 
hundred and fifty thousandth zero and by Rosser et al. [R3] to the three and 
a half millionth zero--without, however, producing a counterexample and 
in fact proving that all roots p in the range (0 I Im s I g3500000)  are simple 
zeros on the line Re s = f (see Section 8.4). 

8.2 TURING’S METHOD 

As before, let N(T)  denote the number of roots p in the range (0 < Im s 
- < T} (counted with multiplicities). Recall that Backlund’s method of evaluat- 
ing N(T)  is to prove if possible that Re c(o + iT) is never zero for 3 I r~ 
I 13, from which it follows that N(T)  is the integer nearest a-’O(T) + 1 
(see Section 6.6). The disadvantage of this method is that it requires the 
evaluation of ((s) at points not on the line Re s = 3. By contrast, Turing’s 
method not only does not require the evaluation of [(s) at points not on 
Re s = 4, but in fact it requires only the information which is naturally 
acquired in looking for changes of sign in Z(t) ,  namely, a list of those Gram 
points g, for which Gram’s law (-l)”Z(g,) > 0 fails and a determination of 
how far each of them must be moved in order to give Z the desired sign (- 1)”. 
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More precisely, assume that for all integers n in a certain range numbers 
h, have been found such that (-I)”Z(g, + h,) > 0, such that the sequence 
. . . , g,-,  + h,- ,, g,, + h,, g,+, + h,,,, . . . is strictly increasing, and such 
that h, is small and is zero whenever possible. Such a list of numbers h, would 
naturally be generated in using Gram’s law to locate changes of sign of Z .  
Turing showed that i f h ,  = 0 and if the values of h, for n near m are not too 
large, then N(g,) must have the value predicted by Gram’s law, namely, N(g,) 
= m + l .  

Turing’s method is based on the following theorem of Littlewood (see 
Section 9.5). Let S(T) denote? the error in the approximation N(T)  N n-IB(T) + 1, that is, let S(T) = N(T)  - n-’B(T) - 1. Von Mangoldt proved (see 
Section 6.7) that the absolute value of S(T) grows no faster than a constant 
times log Tas  T --+ 00. Littlewood in 1924 proved a different kind of estimate 
of S(T), namely, that S(t) dt grows no faster than a constant times log T 
as T --+ 00. Although this does not imply von Mangoldt’s result- it is pos- 
sible for S(t) to have arbitrarily large absolute values without its integral nec- 
essarily being large-Littlewood’s theorem is in a sense much stronger in that 
it shows that on the average S(T) approaches zero,S 1imT-- 1/T S(t)  dt 
= 0, whereas von Mangoldt’s result only shows that S(T)  does not become 
large too fast. 

Now suppose that h, = 0 and that the h, for n near m are small. Then 
S(g,) must be an integer because S(g,) = N(g,) - m - 1 and this integer 
must be even because the parity of the number of roots on the line segment 
from 3 to 3 + ig, (counted with multiplicities) is determined by the sign of 
Z(g,) which is (-l), by assumption, and because the roots of the line 
Re s = 3, if any, occur in pairs. Thus to prove S(g,) = 0 it suffices to prove 
S(g,) < 2 and S(g,) > -2. Assume first that S(g,) 2 2. If h,+l = 0, then 
(- l)m+lZ(g,,  1 )  > 0, so there must be a zero of Z between g, and g,, 1 ,  and 
N must increase by at least one as t goes from g, to g,, ; on the other hand 
r l B ( r )  $- 1 increases by exactly one as t goes from g,  to g,,, ,  so S(g,,,) 
2 2 and S(t)  never falls below one for g,  < t < g,+l .  If h,, , < 0, then it is 
true a fortiori that S(g,, 2 2 and that S(t)  never falls below one for g,  I t 
- < g, , , ,  whereas if h,+, is a small positive number, then t must pass g,,, 
and go to g,, , + h,, , in order to bring S(t)  back up to a value near two and 
in the process S(t) falls only slightly below one. If hm+2 and the succeeding 
h’s are zero or are small this argument can be continued to show that 
S(g, + h,,) is nearly two for n = m + 1 ,  m + 2, m + 3, . . . and that S(t) 

?The formula N ( T )  = n-lB(T) + 1 + n-1 Im Jc [5‘(s)/<(s)] ds of Section 6.6 shows 
that S(T) can also be defined as n-1 Im log ((4 + iT) when log < is defined by analytic 
continuation from the positive real axis as in Section 6.6. 

2In particular, Littlewood’s theorem shows that the constant 1 in the definition of S(T) 
has significance. 
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falls only slightly below one to the right of gm . Since by Littlewood's theorem 
this can not continue indefinitely [because then the average value of S(t)  
would not approach zero] either some of the values hm+l,  hm+2, hm+3,  . . . 
must be large and positive or the original assumption S(gm) 2 2 must bc 
false. Turing's idea was to prove a quantitative version of Littlewood's 
theorem in order to obtain a quantitative description of the sizes of the h, 
implied by S(g,) 2 2; then to prove S(gm) 5 0 it suffices to show that the 
h, are in fact less than this amount. 

Specifically, Turing showed that Littlewood's proof (see Section 9.5) can 
be made to yield the inequality 

(1) I f: S(t)  dt I 1 2 . 3 0  + 0.128 log(&) 

for all tz > t l  > 168n. This can be used to derive a relationship between 
S(gm) and the sizes of hm+l ,  hm+3, . . . as follows. Assume as before that 
h, = 0 and let L(t) denote the step function which is zero at gm and which has 
jumps of one at gm+l + hm+l ,  g,+z + . . . . Then since 2 changes sign 
between successive points g, + h,, the number of roots N must go up by at 
least one and N(t) 2 N(gm) + L(t) for t 2 g,. On the other hand let Ll( t )  
denote the step function which is zero at g,  and which has jumps of one at 
g m + l ,  gm+z,  . . . . Then Ll(t) increases by one when n-I8(t) increases by one, 
from which it follows that n-V( t )  + 1 5 n-V(g,)  + 1 + Ll(t) + 1 for 
t 2 gm and hence S(t) 2 S(g,) + L(t) - Ll(t) - 1. Now L(t) - Ll( t )  is 
normally zero, but if h, is positive, then Ll(t) jumps before L(t) does and 
L(t) - Ll( t )  is -1 on the interval from g, to g, + h,. Similarly if h, < 0, 
then L(t) - Ll( t )  is + 1  on the interval from g, + h, to g,. Assume for the 
sake of convenience that hm+k = 0. Then 

m+k-  1 

j = m + l  
Jgm*'S(t) dt + C hj 

S(gJ - 1 i 
gm+k - gm 

m + k - 1  

j = m + I  . 2.30 + 0.128 log(gm+k/h) + c hj 

gm+k - gm (2) S k m )  S 1 + 
Since kn = 8(gm+J - 8(gm) = J:rt 8'(t) dt is approximately (gm+k - g,). 
f log(gm/2n) (see Section 6.5), the second term on the right is about 

--[2.30 1 log 2kn 2n + 0.128(log 5)' + <c hj) 1% 51. 
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As k increases, this term rapidly becomes less than one unless C h, is rather 
large and positive. In actual fact,,in the range of the calculations of Rosser 
et al. (in which g,  is comfortably less than two million so log(gm/27c) is com- 
fortably less than 14), it was always possible to prove in this way that S(g,) 
< 2 for all values of m such that h, = 0, and for this purpose it was never 
necessary to use any value of k larger than 15 (see Section 8.4). In this way it 
was proved that N(g,) 5 m + 1 for Gram points g, in the vicinity of m = 
3,500,000. Since h's had been found all the way up to this level, no lower 
bound of N was necessary and it followed that all m + 1 of these roots are 
simple zeros on Re s = 4. 

In the same way one can obtain a lower bound for S(g,), namely, 
k- 1 

J = 1  
2.30 + 0.128 10g(gm/27t) - C h,-j 

gm - gm-k S(gm) 2 - 1  - 

where m, k are such that h, = 0, hm-k = 0. Using a bound similar to this one, 
Rosser et al. were able to prove that N(g,) = m + 1 for certain Gram points 
g, in the vicinity of m = 13,400,000 and then to prove that 41,000 consecutive 
roots in this range are all simple zeros on the line Re s = f. 

8.3 LEHMERS PHENOMENON 

Lehmer's 1955-1956 computations followed Hutchinson's scheme of 
determining the sign of Z(g,) for the Gram points g, and, in the cases where 
(-l)"Z(g,) > 0 fails to hold, of finding small numbers h, such that 
(-1)"Z(g, + h,) > 0 holds. As long as this is possible it shows that there 
are at least m + 1 zeros of Z( t )  (not counting multiplicities) in the range 0 < 
t < g,  and, using Turing's method, it should be possible to show that there 
are no more than m + 1 roots p in the range (0 5 Im s 5 g,} (counting 
multiplicities) and hence that all roots p in this range are simple zeros on 
the line Re s = 3. 

The first step in carrying out this scheme is naturally to write a program 
for computing Z(t)  economically and not necessarily very accurately, with 
a view simply to determining the sign of Z(t) for a given t. Lehmer's program 
computed the main sum in the Riemann-Siege1 formula with an accuracy of 
several decimal places and computed the C, term very roughly. If the absolute 
value of the resulting estimate of Z(t)  was safely larger than Titchmarsh's 
estimate $ ( t / 2 ~ ) - ~ / ~  of the errof in the Riemann-Siege1 formula, then its sign 
was considered to be the sign of Z(t).  Lehmer then began running through 
the list of Gram points (previously computed by a method similar to the 
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method outlined in Section 6.5) and in those few cases? where Z(g,) could not 
be shown to have the sign (- l)", found small h, for which Z(g, + hn) could. 
No difficulty was encountered until the Gram point g,,,, was reached, but 
here, despite the fact that the Riemann-Siege1 formula is very accurate for 
such large t, the values of Z were too small to find an h, although there was 
a range in which the sign of Z(g + h) was not conclusively determined. 
More exact computations$ did show that Z has the required number of sign 
changes in this region, but the appearance of this phenomenon of a region 
in which 2 just barely changes sign was of very great interest. 

If there were apoint at which the graph of Z(t)  came near to 2 = 0 but did 
nor actually cross it-that is, if Z had a small positive local minimum or a 
small negative local maximum-then the Riemann hypothesis would be con- 
tradicted. This theorem can be proved as follows. It will suffice to show that 
the Riemann hypothesis implies Z'/Z is monotone because this, in turn, 
implies that Z'/Z has at most one zero between successive zeros of 2 and 
therefore that 2' has at most one zero between successive zeros of 2. Now 
((4 + it) = -f(t)Z(t), where 

f ( t )  = lII[(s/2) - l ]"l ' - ' '4$(?2 + $) 
(see Section 6.5). Thus 

Logarithmic differentiation of the product formula for t; (justified in Chapter 
3) puts the first term on the right in the form 

-i 1 -i c 1 =c-=c-, ( i + i t ) - p  0I i t - i a  a - t  

where, as before, p = 4 + ia runs over all roots p. Thus the derivative of the 
first term on the right is C (a - t ) -2  and, if the Riemann hypothesis is true, 
this derivative is not only positive (because all terms are positive) but also 
very large [because by von Mangoldt's estimate of N(t) the a's must be quite 
dense] between successive zeros of 2. The second term on the right can be 
rewritten 

tThere were about 360 such cases altogether in the first 5000 Gram points, and about 

$Lehmer used the Euler-Maclaurin formula for these in order to have a rigorous error 
100 such in each succeeding loo0 up to 25,000. 

estimate. 
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The second term in this formula does decrease as t increases, but its decrease 
is obviously insignificant compared to the increase of the term already con- 
sidered. The derivative of the first term can be estimated using Stirling’s 
series 

The first two terms give 

which is positive and of the order of magnitude of t -2  for large t .  The other 
terms of Stirling’s series are insignificant in comparison with this one, and 
it follows that the first term in the formula forf’lf increases with t .  Therefore 
-Z’/Z is an increasing function of t (for t at all large) and the theorem is 
proved. This shows that the place near g,,,, where 2 just barely crosses the 
axis is “almost” a counterexample to the Riemann hypothesis. 

Pursuing the calculations on up to g25,000, Lehmer found more of these 
“near counterexamples’’ to the Riemann hypothesis. One of these on which 
he gives very complete information occurs for g,,,, (see Fig. 3t). There are 
three zeros between g6,04 and g6,05, and to achieve the correct sign for 
Z(g, + hn) in these cases, a positive value of and a negative value of 
h,5705 are necessary. Then (- l)”Z(g,) > 0 for n = 6706,6707, but to obtain 
the correct sign for Z(g, + h,) when n = 6708, h, must be negative and must 
be chosen so that g, + h, lies in the very short range of the “near counter- 
example” where the graph of Z just barely crosses over to positive values 
between g6707 and g,,,,. This range where Z is positive has length 0.0377 
(difference of t values of the two zeros), and the largest value of 2 which 

tone question which naturally presents itself when one examines the diagram is the 
question of the size of Z(t). Will it always remain this small? A proof that IZ(t)l = 
I C(1 + it) I is in fact unbounded as t -+ 00 is outlined in Section 9.2. The Lindelof hypothesis 
is that IZ(t) I grows more slowly than any positive power of t-that is, for every e > 0 it is 
true that Z(t)/tf -+ 0 as t -+ m-but this has never been proved or disproved. 
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Fig. 3 The scale on the vertical axis is the value of Z(t). The scale on the horizontal 
axis shows the location of the Gram points g6703, etc. (From D. H. Lehmer, On the 
roots of the Riemann zeta-function. Actu Muthemuticu 95,291-298,1956, with the permis- 
sion of the author). 

occurs in it is only about 0.00397, so the choice of h,,,, is a delicate task 
requiring quite accurate values of 2. Note that this “near counterexample” 
is followed by a very strong oscillation of 2 as the terms go from a high 
degree of cancellation to a high degree of reinforcement. The degree of irregu- 
larity of Z shown by this graph of Lehmer, and especially the low maximum 
value between g6707 and g 6 7 0 8 ,  must give pause to even the most convinced 
believer in the Riemann hypothesis. 

The extremum of lowest absolute value in the range of the first 25,000 
Gram points is reported by Lehmer to be the value +0.002 at t = 17143. 
803905. Here the Riemann-Siege1 formula gives Z ( t )  - 0.002 153 336. This 
low local maximum occurs between the two most nearly coincident zeros 
of 2 found by Lehmer, namely, the zeros att t = 17143.786 536 and t = 
17143.821 844. To see how very close this low maximum comes to being 
a counterexample to the Riemann hypothesis, note that it completely de- 

tThe values given by Lehmer [L8] are incorrect. The values above are taken from 
Haselgrove’s tables [H8]. 
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main sum 0.073 478 610 
CO term -0.071 297 360 
C1 term -0.OOO 027 686 
C2 term -0.OOO 000 227 
C3 term +o.OOO 000 001 

Z(17143.803905) +0.002 153 336. 

Computation of the approximation to Z(17143.803905). 

stroys the rationale of Gram’s law, according to which Z(g,) should have 
a tendency to have the sign (-1)” because the first term of the Riemann- 
Siegel formula is 2.(--1)” and because the terms decrease in absolute value. 
In the example above, whether because the terms of the main sum tend to 
be zero or whether because there is large-scale cancellation of terms, the 
entire main sum amounts to only 0.073 ; this is of the same order of magnitude 
as the Co term which, as was seen in Section 7.6, is of the same order of magni- 
tude as the last terms of the main sum. In short, the determination of the 
sign of Z(t) can be a very delicate matter involving even the smallest terms in 
the main sum of the Riemann-Siege1 formula, and although on the average 
one can expect the sign to be determined by the largest terms, there is no 
obvious reason why the exceptions to this statement could not include a 
counterexample to the Riemann hypothesis. 

Subsequent calculations have so far fulfilled Lehmer’s prediction that 
this phenomenon would recur infinitely often. For example, Rosser et al. 
found a pair of zeros in the vicinity of the 13,400,000th zero which were 
separated by just 4.4 x (whereas the distance between successive Gram 
points in this region is about 0.07 = 700 x and between which 121 
is less than 7.1 X It would be interesting to have a graph, such as 
Lehmer’s above, of the behavior of 2 in this region. 

8.4 COMPUTATIONS OF ROSSER, YOHE, AND SCHOENFELD 

At the Mathematics Research Center in Madison, Wisconsin, there are 
three reels of magnetic tape containing three and a half million triples of 
numbers (G,, Z,, en) such that G,, > G,, (- 1)”Z. > 0, I Z ,  I > en > 0, and 
such that, according to a rigorous analysis of the error in the Riemann- 
Siegel forrnula,t the value of Z(G,) differs from 2, by less than en. These tapes, 
unless they contain an error1 prove the existence of three and a half million 

?In the computations the CB term was the first term omitted. 
$This is a proviso which applies, after all, to any “proof” (see Lakatos [Ll]). 
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roots p on the line Re s = 3 and locate them between 3 + iG,, and 3 + iG,,, . 
Moreover, by applying Turing’s method to the last 15 or so of the C, (= g,, + h, in the notation of Section 8.2) these data prove that there are only three 
and a half million roots with imaginary parts in this range (counting mul- 
tiplicities), hence that for each n there is precisely one root p in the range 
{G,, < Im s I G,,,} and it is a simple zero on the line Re s = 3. There is a 
fourth reel of tape which proves in similar fashion that 41,600 consecutive 
roots p beginning with the 13,400,000th are simple zeros on the line. 

In the course of the computations of which these tapes are the record, 
Rosser, Yohe, and Schoenfeld discovered the following interesting pheno- 
menon. Let a Gram point be called “good” if (-l)”Z(g,) > 0 and “bad” 
otherwise. Rosser et al. called the interval between two consecutive good 
Gram points a “Gram block”-that is, a Gram block is an interval (g,, I t 
I & + k h  where gn, gn+k are good Gram points but g,+, , i~ , ,+~,  . . . , &+k- are 
bad-and they found somewhat to their surprise that in the range of their 
computations every Gram block contains the expected number of roots. Let 
this be called “Rosser’s rule.” This phenomenon, as long as it continues, is of 
obvious usefulness in locating roots. However, Rosser et al. express a belief 
that it will not continue forever and this belief can be provedt to be correct 
as follows. 

To be specific, let Rosser’s rule be the statement that in any Gram block 
{g,, I t 5 &+k] there are at least k changes of sign of Z. This implies, since 
x-’S(t)  + 1 increases by exactly k on the block, that S(g,,+,) 2 S(g.). There- 
fore, by induction it implies S(g,) 2 0 for all good Gram points g,,. On the 
other hand, if g,, gm+ are both bad, then 2 changes sign on (gm I t < g,+l),  
from which S(g,+,) 2 S(g,). Thus after a good Gram point the value of S 
could drop by one at the next Gram point (assuming it is bad), but thereafter 
it could drop no further until a good Gram point were reached, at which 
time it would have to return at least to its former value by Rosser’s rule. 
Thus, in particular, Rosser’s rule implies S(g,) 2 -1 for all Gram points 
g,,. Now this implies that the Riemann hypothesis is true because, if it were 
false, then there would be an increase of 2 in N(T) not counted in the above 
estimates (which counted only sign changes of Z, hence roots on the line) 
which together with the above estimates gives S(g,,) 2 1 for all Gram points 
g, past the supposed counterexample to the Riemann hypothesis and hence 
S(t)  2 0 beyond this point. This pretty clearly contradicts Littlewood’s 
theorem that the average of S is zero and a rigorous proof is not hard to give. 
However, the actual estimates can be avoided by the method given below. 
For the moment assume it has been shown that Rosser’s rule implies there 

tThis proof is in essence the one given by Titchmarsh [T5] to prove that Gram’s law 
Re C(J + ig,,) > 0 fails infinitely often. 
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are no counterexamples to the Riemann hypothesis. Then by a 1913 theorem 
of Bohr and Landau (see Section 9.8) it follows that S( t )  is neither bounded 
above nor bounded below. In particular S(t)  2 -2 is false and this contra- 
diction proves that Rosser’s rule cannot hold. 

More generally this argument can be used to show that there are infinitely 
many exceptions to Rosser’s rule, that is, infinitely many Gram blocks with 
fewer than the expected number of sign changes. One need only observe that 
otherwise the argument above shows that once one is past all exceptions to 
Rosser’s rule, the value of S(g,,) and hence of S(t)  is bounded below. Then 
there are at  most finitely many exceptions to the Riemann hypothesis, since 
otherwise S(t)  would eventually be large and positive, contradicting Little- 
wood’s theorem. However, as Titchmarsh observes, the theorem of Bohr and 
Landau remains true if there are only finitely many exceptions to the Riemann 
hypothesis and it implies that S( t )  cannot then be bounded below. (Thus the 
proof above that Rosser’s rule implies no exceptions to the Riemann hypothe- 
sis can be omitted.) This contradiction proves that there must be infinitely 
many exceptions to Rosser’s rule. 

From the fact that not a single exception to Rosser’s rule has yet been 
found it is tempting to conclude that the computations have not yet reached 
the real irregularities of Z(t).  But actually Rosser’s rule is not in any way a 
measure of the “regularity” of Z(t).  On the contrary, it measures only the 
success of a rather crude attempt to  predict the oscillations in sign of Z(t)  
[and hence of <(& + it)], an attempt which in fact has proved far more suc- 
cessful than in all likelihood Gram imagined it would be when he first pro- 
posed it. 

Note added in second printing: This fact, that Rosser’s rule fails infinitely often, was 
proved by R. Sherman Lehman (On the distribution of zeros of the Riemann zeta function, 
Proc. Lon. Math. SOC. ( 3 )  XX (1970) 303-320). In this same paper Lehman points out errors 
in Turing’s proof of the main estimate (1) of Section 8.2. However, he replaces Turing’s 
proof with his own proof of a slightly stronger inequality. 



Chapter 9 

The Growth of Zeta as  t - 00 and 
the Location of I ts  Zeros 

9.1 INTRODUCTION 

The problem of locating the roots p of C, and consequently the problem 
of estimating the error in the prime number theorem, is closely related to 
the problem of estimating the growth of C in the critical strip {O < Re s < 1) 
as Im s - 00. Evidence of the relation between these two problems can be 
seen in Section 4.2 where the main step in the proof of the prime number 
theorem depended on estimates of Re log ((a + it) = log I ((a + it) I for a 
near 1 and for all t, in Section 5.2 where the main step in de la Vallde Poussin’s 
estimate of the error in the prime number theorem depended on estimates of 
C’(o + it)/C(a + it) for large r ,  and in Section 6.7 where Backlund’s proof of 
Riemann’s estimate of N ( T )  depended on estimates of the growth of I t(s) I 
in the strip 0 < Re s I 4. 

A major landmark in the study of in the critical strip is Lindelof’s 1908 
paper [Ll 11 in which he not only proved some estimates which were far stron- 
ger than those that had been established previously and introduced new 
techniques and theorems basic to subsequent studies, but in which he also 
enunciated the famous “Lindelof hypothesis.” This paper is the subject of 
Section 9.2. In Section 9.3 a brief but important note [L12] written by Little- 
wood in 1912 is discussed; this note is important because it introduced the use 
of the three circles theorem and showed that the Riemann hypothesis implies 
the Lindelof hypothesis. In 1918 Backlund proved a more exact result to the 
effect that the Lindelof hypothesis implies and is implied by a certain state- 
ment about the location of the roots p which is much weaker than the Rie- 
mann hypothesis; this result is proved in Section 9.4. The following section, 
9.5, is devoted to Littlewood’s theorem, mentioned in Section 8.2, that 

182 
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S(t) dt grows no faster than a constant times log T as T -+ 03 [where S(T) 
is the error in the approximation N(T) N n-l8(t) + 1 or, what was seen in 
Section 6.7 to be the same, is A-’ Tm log c(i + iT)]. The difficult step in this 
proof is the estimation of Re log [(s) for s in the critical strip with large imagi- 
nary part. In Section 9.6 the theorem of Bohr and Landau is proved which 
states (see Section 1.9) that the relative error in the approximation “the 
number of roots p with imaginary parts between 0 and T which lie within 6 
of Re s = i is, for every 6 > 0, approximately equal to the total number of 
roots p with imaginary parts in this range” approaches zero as T --+ 03 for 
fixed 6. Here the estimate of I [(s) I which is needed is an estimate of the average 
value of I [(s) l2 on lines Re s = const. These averages are evaluated in Section 
9.7. Finally, Section 9.8 is devoted to the enunciation, without proof, of 
various other theorems of this sort on the growth of [ in the critical strip and 
the location of the roots p. 

9.2 LINDELOFS ESTIMATES AND HIS HYPOTHESIS 

The estimate I[(a + it) I = 1 Zn-“-”I I En-“ = [(a) shows that for 
a > 1 the modulus of C(a + it) is bounded as t -+ 03. On the other hand, it 
is not difficult to show? that [(a) is the least upper bound of I [(a + it) I as 
t -+ 00 because values of t can be chosen to make n-“-” = n-“[cos(t log n) 
-i sin(t log n)] nearly equal to n-“ for as many values of n as desired so that 
for any E > 0 arbitrarily large t can be chosen to make I c(a + i t )  I > ((a) 
- E .  Since [(a) -+ 00 as a 1 1, this shows that I ((s) I is not bounded on the 
quarterplane (Re s > 1 ,  Im s > 11. As for the line (Re s = 11, Mellin [M4] 
showed in 1900 that on it the growth of I [(s) I is no more rapid than the growth 
of log t as t -+ 03, an estimate which Lindelof proves very simply by using 
Euler-Maclaurin summation to write 

N-l N I - J  
l ( s )  = c n-s + - + + N - s  - dx, 

n- 1 s - 1  N 

1 1 1  
+N--l +T+2N 

which with N equal to the greatest integer less than or equal to t gives easily 
I C(l + it) I < log t + const as desired, This makes it reasonable to expect 

?See, for example, Titchmarsh [T3, pp. 6-71. 



184 Growth of Zeta and Location of Zeros 

that although I C(s) I is unbounded on {Re s 2 l), its growth is less rapid than 
log t. This is an immediate consequence of the following important generali- 
zation of the maximum modulus theorem to a particular type of noncompact 
domain. 

Lindeliif’s Theorem Let f ( s )  be defined and analytic in a halfstrip D 
= {s: a1 < Re s I a2, Im s 2 to  > 0). If the modulus off is less than or 
equal to M on the boundary dD of D and if there is a constant A such that 
I f(a + it) I t-A is bounded on D, then the modulus off is less than or equal to 
M throughout D. 

Proof Consider the function log I f ( s )  I which is a real-valued harmonic 
function defined throughout D except for singularities at the zeros off(s) 
where it approaches - 00. The additional growth condition on f states that 
log If(a + it) I < A log t + const on D for A sufficiently large. This implies 
that for any E > 0 the harmonic function log I f ( s )  I - ct is less than any given 
constant on the line segment {Im s = T, a1 < Re s < a,) provided T is 
large enough to make ET much larger than A log T. In particular, for T 
sufficiently large logIf(s)I - Et is less than log M on the boundary of the 
rectangle {al I Re s I a,, to I Im s I T); hence the same inequality holds 
throughout the rectangle and therefore throughout the half-strip, and it 
follows that J f ( s )  J I e f M  throughout the half-strip. Since E was arbitrary, 
this implies Lindelof’s theorem. 

Corollary 1 I ((a + it)l /log t is bounded for a 2 1 , t 2 2. 

Proof Since I C(a + it) I is bounded for a 2 1 + 6 by I C(a + it) I I C(a) 
< C(l + S), it suffices to consider the half-strip (1 I Re s I 1 + S, 
Im s 2 21. Within this half-strip logs differs by a bounded amount from 
log t. Moreover, ]((a + it) I I const t2  in the half-strip, as was proved in 
Section 6.7 using Euler-Maclaurin summation. Combining these observa- 
tions with Mellin’s estimate of IC(1 + i t )]  shows that Lindelof’s theorem 
applies to C(s)/log s on the half-strip and the corollary follows. 

Corollary 2 I C(s) I is not bounded on any line Re s = a for a I 1. 

Proof If it were bounded, then Lindelof’s theorem would show that 
IC(s)l was bounded on a half-strip which included {I I a I 2 ,  t 2 1)’ con- 
trary to the fact that I C(s) [ is unbounded on (a > 1, t 2 I ]. 

Thus the general pattern is for the values of I C(s) I on Re s = a to be 
greater as a decreases, at least in the range considered above. In the range 
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Re s 5 0 the functional equation combined with Stirling's formula can be 
used to estimate the growth of I C(s) I as Im s - 00 as follows: 

log I c(-a + it)l = Re log c(-a + it) 

- -1ogn -a + logItl+ loglC(-a + it11 2 
t n  3 . T +-logt ) 2 

N CT(l0g- t - 1 - logn - - 
2 2 
- - ~ 0 g 2 + ~ l o g 2 n +  1 1 logIC(-a+it)l 

2 
-a t tn 3 1 
2 2ne 4 2 2 N -log - - - + -log t + - log72 

+ log I C(-a + it) I 
where the error in the approximation approaches zero as $ - 00 for fixed cr. 
Thus 

0 = logIc(-a + it)] - logIt(1 - -a + it)l 

- log15(1 - -a + it)l 
and finally 

where the error in the approximation approaches zero as t - 00 for fixed 6. 
Thus for Re s = 0 the modulus of ((s) is less than a constant times ?' I2  log t 
and on any line Re s = -a < 0 it is less than a constant times t('/*)-". Moreover, 
the last estimate is a least upper bound. This gives a satisfactory description 
of the growth of I ('(s) I on lines Re s = -a I 0 and shows that this growth 
becomes more rapid as -a decreases. 

For lines Re s = -a inside the critical strip 0 < -a < 1 the above estimates 
do not apply. However, Lindelof observed that an upper bound for the growth 
of I C(s) I on such lines can be obtained by linear interpolation of the esti- 
mates for -a = 0 and -a = 1. More precisely, he observed that there is a con- 
stant K such that 1 C(-a + it) I < Kt(1/z)-(1/2)u log t throughout the half-strip 
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(0 < Re s < 1, Im t 2 1). (The exponent 3; - &r is the affine function which 
is 4 for a = 0 and 0 for a = 1 .) This is a consequence of the following general 
theorem. 

Modified Lindelof’s Theorem Let f(s) be defined and analytic in a half- 
strip D = (s: a1 < Re s < a2, Im s 2 t o  > 01. If p, q are such that the 
modulus off is less than a constant times t P  on Re s = a, and less than a 
constant times t g  on Re s = a2 and if there is a constant A such that I f  (a + 
it) It-” is bounded on D, then there is a constant K such that I f  (a + it) I 
- < K P )  throughout D, where k(a) = [(q - p)/(a2 - al)](a - a,) + p is 
the affine function which is p at a1 and q at a2. 

Proof Apply the previous argument using the harmonic function 
log I f  (s) I - k(a)t - ~t instead of log I f  (s) I - E t .  

Lindelof denotest by p(a) the least upper bound of the numbers A such 
that I c(a + it) It-” is bounded as t 00. Otherwise stated, p(a) is charac- 
terized by the condition that I C(a + it) I divided by tfi(‘)+r is bounded as 
t -, 00 if E > 0 but unbounded if E < 0. The above estimates show that 
p(a) = 0 for a 2 1 and that p(a) = 3 - a for a 50. Formula (1) shows 
that p(a) satisfies the functional equation p(a) = p(1 - a) + 4 - a. The 
modified Lindelof‘s theorem shows that p(a) <& - &a for 0 < a  < 1 
and, more generally, it shows that p(a) is convex downward in the sense that 
any segment of the graph of p lies below the line joining its endpoints. This 
implies that p(a)  2 0 for a < 1 and that if p(ao) = 0 for some a. < 1, then 
necessarily p(a) = 0 for go < a < 1. 

The so-called$ LindeZoif hypothesis is that p(a) is the simplest8 function 
which has all the above properties, namely, the function which is zero for 
0 2 4 and 3 - 0 for a 4. By the convexity of p the Lindelof hypothesis 
is equivalent to the hypothesis that p(3) = 0. It is shown in Section 9.4 that 
the Lindelof hypothesis implies and is implied by a condition on the location 
of the roots p which is weaker than the Riemann hypothesis, so the Lindelof 
hypothesis is, in Titchmarsh‘s phrase, less drastic than the Riemann hypo- 
thesis. Nonetheless, its proof appears to be no easier and it has never been 
proved or disproved. 

?This p is not, of course, related in any way to the Mobius function p(n) defined in 

$Actually Lindelof conjectured that I C(s) I is bounded on Re s = u for u > 4, a conjec- 

$Another possibility is p(u) = f - fu on 0 < u < 1. However, it is known (see 

Section 5.6. 

ture which was showri above to be false. 

Section 9.8) that p ( f )  < 4, so this possibility is excluded. 
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9.3 THE THREE CIRCLES THEOREM 

In 1912 Littlewoodintroduced a new techniqueinto the study of thegrowth 
of C when he published in a brief note [L12] some new estimates obtained 
using the theorem now known as the “three circles” theorem. Littlewood 
attributes the theorem to no one, saying it was discovered independently by 
several authors, but Bohr and Landau [B71 say the theorem was first published 
by Hadamard in 1896 (although Hadamard published no proof) and it is 
now commonly known as “Hadamard’s three circles theorem.” In any case, 
the theorem consists of the following simple observations. 

Letf(s) be defined and analytic on an annulus D = {rl 5 I s - so I 5 r,). 
Given an upper bound M3 for the modulus off on the outer circle 1s - so I 
= r3 and an upper bound M1 for the modulus offon the inner circle 1s - so I 
= r l  the problem is to find an upper bound M2 for the modulus off on a 
concentric circle 1 s - so I = r2 inside the annulus. The method is to consider 
the harmonic function log If(s) I on the annulus D and to compare it to a 
harmonic function which is identically log M I  on the inner circle and iden- 
tically log M ,  on the outer circle. Such a function is easily found by applying 
linear interpolation and the fact that a log Is - so 1 + b is a two-parameter 
family of harmonic functions constant on circles 1s - so I = const (note the 
analogy with the modified Lindelof theorem in the preceding section). This 
leads to consideration of the harmonic function 

(log M 3  - log M , )  log 1 s - so I + log M 1  log r3 - log M ,  log r, . 
log r3 - log r l  H(s) = 

Since H(s) 2 log If(s) I on dD and since both are harmonic [except that log 
I f ( s )  I may have singularities at zeros off where it is - 001, the same inequal- 
ity holds throughout D, which for 1s - so I = r2 gives 

(log M 3  - log M , )  log r2 + log M 1  log r3 - log M3 log r ,  
log r3 - log r l  

2 log Mz 
which simplifies to 

log M ,  log T‘c + log M 3  log T’ 2 log M2 log 3 
r2 r1 rl 

or 

which is the desired estimate. Otherwise stated, M z  I M1’M3fl, where a + /? 
== 1 and a: /? = log (r3/r2): log (rz/rl), in which form Mz appears as a sort 
of mean value between M I  and M ,  . 

Mloe ( r d r d M l o g  ( r d r d  > Mlog ( r s / r d  
- 2  



188 Growth of Zeta and Location of Zeros 

As a simple application of this theorem, Littlewood proved that if the 
Riemann hypothesis is true, then for every 6 > 0 and 6 > 0 the function I log 
C(a + i t)  I is less than a constant times (log t)2-2a+f on the half-trip {f + 6 
< a < 1, t 2 21, where log C(s) is defined for Re s > 3 by virtue of the 
Riemann hypothesis. Since a > 3 implies 2 - 2a + 6 < 1 for E sufficiently 
small, this shows that the Riemann hypothesis implies log I C(a + it) I = Re 
log C(a + it) I I log t(a + it) J I Klog t(1og t)-e, where 0 > 0; hence for 
any 6’ > 0 it follows that log I C(a + it) I 5 E‘ log t for all sufficiently large 
t ;  hence I &) I < tf’ on Re s = a > 4 as t - =-in short, the Riemann 
hypothesis implies the Lindeloy hypothesis. Since this is the consequence of 
Littlewood’s theorem which is of principal’! interest in this chapter and since 
it is subsumed in Backlund’s proof (which took its inspiration from Little- 
wood) in the next section, the details of Littlewood’s application of the three 
circles theorem will not be given here. 

9.4 BACKLU”S REFORMULATION 
OF THE LINDELOF HYPOTHESIS 

Backlund [B4] proved in 191 8 that theLindeloyhypothesis is equivalent to the 
statement that for every a > 3 the number of roots in the rectangle { T I  Im s 
I T + 1, a I Re s I 1) grows less rapidly than log T as T - m-more 
precisely, it is equivalent to the statement that for every 6 > 0 there is a To 
such that the number of such zeros is less than 6 log T whenever T 2 To. 
It follows from this that the Riemann hypothesis implies the Lindelof hypo- 
thesis because if the Riemann hypothesis is true, then there are never any 
zeros in the rectangle in question. 

The implication in one direction is quite an easy consequence of Jensen’s 
theorem. Consider a circle which passes through the points a + iT and a + 
i(T + 1) and which lies in Re s > 3;. Let a. + i(T + 3;) = so be the center of 
this circle and let p be its radius. Finally, let r be the radius of the slightly 
larger circle concentric with this one and tangent to the line {Re s = i}. Then 
by Jensen’s theorem log 1 C(so) 1 + C log (r/l sj  - so I) I M where M is the 
maximum of log I c(s) I on the larger circle and the sum on the left is over the 
zeros sI of c(s) in the larger circle. If this sum is restricted to the zeros which 
lie in the rectangle {T 2 Im s I T + 1,a 5 Re s I I], then it contains n 
terms, where n is the integer to be estimated, and each of them is at least 
log (r/p) ; hence 

n.log (rip) I M - 1% I C(S0) I. 
?The consequence which Littlewood was principally interested in, however, was that the 

Riemann hypothesis implies convergence throughout the halfplane Re s > 3 of the 
Dirichlet series [C(s)]-l = p(n)n-s of Section 5.6. For a proof of this see Section 12.1. 
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Now log (r/p) is a positive number independent of T andt 
1 -log I C(so) I = log - = log I C p(n)n-"a I I &o) I I 

< log C = log ((ao) 
n 

for all t .  If the Lindelof hypothesis is true, then for every E > 0 there is a K 
such that IC(o + it) I < Kr' fo r t  I o I oo + r; hence M I  log[K(T+ $ + $1 
= E log (T+ 3 + r )  + log K <  26 log Tfor Tsufficiently large; hence n log ( r /p )  
< 3~ log T for T sufficiently large. Since E > 0 is arbitrary, this shows that 
the Lindelof hypothesis implies n grows more slowly than log T. 

Backlund's proof of the converse uses the actual function which is used in 
the proof of Jensen's t.heorem in Section 2.2. Let a. > 1 be fixed, let so = no + iT, where, as before, Twill go to infinity, let o be fixed in the range f < o 
< 1, let C be the circle with center so tangent to the line Re s = o so that the 
radius R of C is no - 6, let sly s2, . . . , sn be the zeros of C (counted with 
multiplicities) inside C, and let 

(It will be assumed that C has no zeros on C, a condition which excludes at 
most a discrete set of T's.) The s, are contained in a finite number of rectangles 
of the form {T' I Im s _< T' + 1 , o I Re s I I>, and the number of these 
rectangles is independent of T; hence what is to be shown is that if for each 
o the number n of these zeros grows more slowly than log T, then the Lindelof 
hypothesis must be true. 

The first step is to consider I log F(s) I on a circle C1 concentric with Clying 
entirely in the halfplane Re s > 1, say the circle with center so tangent to the 
line Re s = 1 + A, where 0 < A < oo - 1. Let a&) denote the vth factor 
in the product in (1) and consider loga,(s). Since a, is a fractional linear 
transformation which carries s, to 00 and C to the unit circle, it carries C ,  to 
a circle which lies outside the unit circle and does not encompass it. Since this 
circle contains in its interior the point a,(s,) = R/(s,, - s,) which lies on the 
same ray from the origin as So - I, and which therefore lies in the halfplane 
Re a,(so) > 0, log a&) can be defined inside and on C1 by the condition 
I Im log &,(so) 1 < fz. This gives a meaning to log F(s), namely, log F(s) = 
log C(s) + C:=l log a,($, throughout the interior of C ,  and hence, by analy- 
tic continuation, throughout the interior of C where Fis analytic and nonzero. 
Now I Im log a,($) I < 3n/2 on C ,  because a circle which does not contain the 
origin cannot intersect both halves of the imaginary axis. On the other hand, 
Re log a$) = log I a&) I is positive on C,  but less than log [(R2 + RR,)/RA], 
where R ,  is the radius of C,. Thus there is a bound b 2 I log a,@) I for s on 

?Note that go must be greater than one. 
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C ,  which is valid for all v and all T. Since I log F(s) I I I log C(s) I + nb and 
since I log [(s) 1 is bounded on C,  independently of T [namely, by log [(I + 
A)], this shows that the given assumption on n implies that for every E > 0 there 
is a To such that I log F(s) I < E log Ton C ,  whenever T > To. 

Consider next log I F(s) I = Re log F(s) = log 1 C(s) I + C:= log I a,($ I 
on C. Since a, is chosen in such a way that I a,@) I = 1 on C (see Section 2.2), 
this is log I C(s) I which, since 1 C(s) I I const t2 ,  is less than a constant times 
log T as T -+ 00. On the other hand, log I F(so) I is bounded below because 

Re log [F(s)/F(s,)] is zero at the center of C and less than a constant times 
log T on C. Now by the lemma of Section 2.7 this implies that the modulus 
of log[F(s)/F(s,)] is less than a constant times logT on a smaller circle. 
Specifically this lemma shows that on the circle C, concentric with C but 
slightly smaller, say with radius R3 = R - q, where q > 0 is small, the mod- 
ulus of log [F(s)/F(so)] is at most 2R3(R - R3)-I times the maximum of 
Re log [F(s)/F(s,)] on C. Thus there is a constant K such that I log F(s) I < 
K log T on C, for all sufficiently large T. 

Finally let Cz be a circle concentric with C,  but slightly smaller still, say 
with radius R2 = R ,  - q = R - 2q, and consider the modulus of log F(s) on 
C2 . By the three circles thearem this modulus is at most (E log T)"(K log T)B 
= PKfl log T, where a and J3 are positive numbers independent of T which 
satisfy a + J3 = 1. Since E is arbitrarily small, so is ~ " K f l ,  and it follows 
that for any given 6 > 0 there is a To such that I log F(s)l < 6 log T inside 
and on C2 whenever T 2 To. Since log I F(s) I I I log F(s) I, this gives I F(s) I 
< T* and consequently, since I a&) I > 1 on C, , I [(s) 1 < T6 inside and on 
C2; hence I C(s) I < T* throughout the strip a. - R2 I Re s I a. + R ,  once 
T is sufficiently large. Since a. - Rz = a + 211 is arbitrarily near f and since 
6 is arbitrarily small, the Lindelof hypothesis follows. 

log I C(so> I 2 --log Ua0> and log I a,(so> I = log @ / I  s, - so I) 2 0; hence 

9.5 THE AVERAGE VALUE OF S(i) IS ZERO 

This section is devoted to the proof of Littlewood's theorem, mentioned 
S(t) dt grows no more rapidly than log t2 as tz  - 00. in Section 8.2, that 

The essential step is to show that I:: S(t)  dt can be rewritten in the form 

7c-l logIg(a + i t , )  I da.  -I,, 
To prove this consider the rectangle D = (s: 4 I Re s I K, t i  5 Im s I t z ] ,  
where Kis a large constant. The function log g(s) is well defined on the portion 
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of D which lies to the right of Re s = 1 and the function S(t) is 7c-' log [(s) 
on the line Re s = 3 when log ((s) i s  analytically continued along lines Im s 
= const which contain no zeros of ((s). Let D, denote the domain obtained 
by deleting from D all points whose imaginary parts lie within r of the imagi- 
nary part of a zero of [(s). Then D, is a union of a finite number of rectangles 
and it contains no zeros of ((s), so n-' log((s) is well defined throughout 
D, by analytic continuation and its imaginary part at points of do, of the 
form 2 + it is S(t). Now by Cauchy's theorem 

I,, n-' log [(s) ds = 0. 

Taking the real part of this equation gives 

r1 Re log [(s) da = IC-' Im log [(s) dt. 
I d , ,  d D ,  

The integral on the left involves only the horizontal boundaries of D, . These 
consist of the top boundary Im s = t 2 ,  the bottom boundary Im s = tl , and 
the interior boundaries Im s = t f E, where t is the imaginary part of a zero 
of [(s). Now the integral over a pair of interior boundaries can be written 

II-' Re log ((a + it + ir) da 
K 

s:, 
x-' Re log [(a + it - ir) da 

- I 1 , Z  

Since log I ((a + it + ie)/[(a + it - i ~ )  I approaches log 1 = 0 uniformly as 
E .1 0, the integrals over the interior boundaries cancel as 6.1 0. The integral 
on the right involves only the vertical boundaries of D,. These consist of the 
two line segments {i + it: t l  I t I t 2 }  and {K + it: t i  I t I t 2 ]  with 
intervals of length 2r deleted. Since deleting intervals of length 26 from the 
domain of a convergentt integral and letting 10 does not change the value 
of the integral, and since S(t) is Riemann integrable on {tl I t I t 2 )  (it is 
continuous except for a finite number of jump discontinuities), the integral 
on the right approaches - x-' Im log [[(K + it)] dt as r 4 0 
and the equation 

S(t)  dt + 
K 

72-1 logI((a + i t , )Ida - J 7 2 - 1  logI((a + &)Ida 
1/2 

= -r S(t) dt + r n-' Im log [ ( K  + it) dt 
L 1 

tIm log C is continuous on dD except for a finite number of jump discontinuities; hence 
it is Riemann integrable. 
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results. Thus to prove (1) it remains only to show that Im log ( (K + it) dt 
approaches zero and J;/2 Re log ((a + it) do converges as K -+ 03. Since 
both the real and the imaginary part of a function are less in absolute value 
than its modulus, both of these statements follow from estimates of llog 
C(K + it) I I log C(K) for large K. If, for given K, u is defined to be u = 2-x + 3-K + 4-x + . - a ,  then 0 < U S  2-x + tWK dt 5 3 ~ 2 - ~  for K 2  2, 
and log ( ( K )  = log (1 + u) < u I 3 ~ 2 - ~ ,  from which the desired conclusions 
follow immediately. 

S(t) dt is equivalent to the statement 
that I JYl2 log I ((a + it) I do I grows no faster than log t as t .--f 03. Since the 
estimate above gives I 3 -2-" da, which is inde- 
pendent of t ,  it will suffice to show that I If,, log I ((a + it) I do I grows no 
faster than log 1. The main step in the proof of this fact is an estimate of 
I log C(s) I similar to Backlund's estimate in the preceding section. 

Let C be the circle of radius R = 2 + 6 (6 > 0) with center at so = 2 + 
it ( t  large and variable), and let 

Thus Littlewood's estimate of 

log I C(a + it) I da I _< 

where sl, sz, . . . , s,, are the zeros of ( inside C. As before it will be assumed 
that there are no zeros on C, a condition which excludes only a discrete set of 
values of t  and does not affect the validity of the conclusion of the argument. 
Then, as in the preceding section, log F(s) can be defined throughout the disk 
bounded by C, and at points s of C it satisfies Re log [F(s)/F(s,)] = log I C(s) I 
- log I [(so) I - C:= log I R/(so - SJ I < log I C(s) I + log C(2) which is less than 
a constant times log t (see Section 6.7). Therefore by the lemma of Section 2.7 
on the slightly smaller circle C, of radius R,  = 2 about so, the modulus of 
log [F(s)/F(so)], and hence of log F(s), is less than a constant times log r .  Now 

I' I Re log F ( a  + it) I da 
1/2 

where, as before, a, denotes the vth factor in definition (2) of F(s). Now 
I Re log F(a + i t)  I < I log F(a + i t)  I has been shown to be less than a constant 
times log t ;  hence the first term on the right is less than a constant times 
log t.  The second term on the right is a sum of n terms where, by von Man- 
goldt's theorem on the density of the roots (Section 3.4), n is less than a con- 
stant times log ?; so to prove the theorem, it will suffice to show that the terms 
of this sum I Ifl2 Re log a,(o + i t )  da  I have an upper bound independent of 
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v and t .  Since the numerator of a, is bounded away from 0 and 00 on the 
domain of integration, the log of its modulus is also; so this amounts essen- 
tially to finding a bound for If,, log la + it - s, I da.  Now 4 2 la + it 
- s, I 2 la - a,], where a, = Re s,; so the integral in question is at most 
3 log 4 and at least If,, log I a - a, I da. Although the integrand in this 
last integral is unbounded at a = a”, the integral is convergent as an improper 
integral (or as a Lebesgue integral) and is easily shown to be bounded. This 
completes the proof that for every t ,  > 0 there is a K > 0 and a To’> t ,  
such that I I:: S(t)  dt I < K log tz whenever tz  2 To. 

9.6 THE BOHR-LANDAU THEOREM 

In 1914 Bohr and Landau [B8] proved a different sort of relationship 
between the growth of and the location of its zeros. Roughly what they 
proved was that the fact that the average value of I C(s) l2 on lines Re s = a is 
bounded for a > 3, uniformly for a 2 3 + 6, implies that most of the roots 
p lie in the range Re s < 4 + 6 for any 6 > 0. [Actually Bohr and Landau de- 
duced their conclusions about the roots p not from properties of 5 but from 
properties of the related function 1 - 2-” + 3-” - 4-” + -- - = (1 + 2-* + 
3-” + - - .) - 2(2-” + 4-” + 6-” + - - .) = (1 - 2’-”)C(s3, for which the 
needed facts about averages on lines Re s = a are easier to prove.] Specifical- 
ly, it will be shown in the next section that for every a. > 3 there exist K, To 
such that (T - I)-, IT IC(a + it) l 2  dt < K whenever a 20, and T 2 T o .  
This section is devoted to Bohr and Landau’s method of concluding from this 
that for every 6 > 0 there is a K‘ such that the number of roots p in the range 
(Re s 2 3 + 6,0 < Im s I T }  is less than K’Tfor all T. Since the total num- 
ber N ( T )  of roots in the range {O I Im s I T )  is about (T/2n) log (T/2n) 
(see Section 6.7), this proves that the number of these roots to the right of the 
line Re s = 3 + 6 divided by their total number approaches zero as T + 00. 

In short, for any 6 > 0 all but an injnitesimal proportion of the roots p lie 
within 6 of the line Re s = 3. In the sense that this is a statement about all but 
an infinitesimal proportion of the roots (one is tempted to say “almost all,” 
but to avoid the misinterpretation that this might mean “all but a finite num- 
ber,” Littlewood’s phrase “infinitesimal proportion” is better) it is to this day 
the strongest theorem on the location of the roots which substantiates the 
Riemann hypothesis. 

Bohr and Landau’s method of estimating the number of roots p to the 
right of Re s = f + 6 given the above fact about the average of I C ( S ) ~ ~  on 
Re s = 0 > f is as follows. Let 6 > 0 be given, let C be a circle through 
f + 6 + it and 3 + 6 + i(t + 1) which lies in the halfplane Re s < 3, and 
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let C+ be a circle concentric with C, slightly larger than C but still contained 
in the halfplane Re s > 3. As in the proofs of this type given above, the choice 
of C, C+, which is different for different values of t ,  is to differ merely by a 
vertical translation. Let r denote the radius of C, R the' radius of C+, so = go + i(t + 3) their common center, and n the number of zeros of c in the rec- 
tangle (3 + 6 I Re s I 1, t I Im s I t + 1). Since this rectangle is con- 
tained in C, Jensen's theorem gives 

2 log I c(s0) I + 2n log 5 & Sy log I [(so + Reie) l 2  do. 

Without loss of generality it can be assumed that 1 - 2-u0 - 3-" - . - 
> 0 (increase c0 if necessary) so that there is an A with [ c(so) I 2 A > 0 for 
all t .  The fact that the geometric mean of a function is less than or equal to 
its arithmetic mean gives 

-!- S Z n  log [ C(so + Reie) l 2  do I log[& j2' I C(so + Reie) l2 do] .  
2a 0 

Hence 
Az(?)" 5 & Jzn IC(so + Reie)I2 do. 

0 

Moreover, the analogous inequality holds when R is replaced by any radius 
p between (r + R)/2 and R. Multiplying this inequality by p dp and integrat- 
ing then gives 

1 A2r-'" la pZn+ * dp I SS [ ((so + pe") l2 p dp do. 
( r + R ) / 2  

The right side is a constant times the integral of I [(s) l 2  over the annulus 
{(r + R)/2 < 1s - so I < R )  which is less than the integral of I C(s) l2 over the 
entire disk bounded by C+. The left side is greater than 

that is, greater than a constant times n. Hence n is less than a constant times 
the integral of I ((s) l2 over the disk bounded by C+, the constant depending 
on A,  r, R and hence on 6 but not on t .  Ignoring the range of t for which C+ 
includes the singularity s = 1 of C and adding the inequality just obtained 
over all integer values of t  above this range and below T + 1 shows (since the 
overlapping C+'s include any given point at most 2R times) that the total 
number of zeros with imaginary parts less than a given integer is less than a 
constant plus a constant times an integral of I c(s) l 2  over a strip of the form 
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(a, - R 5 Re s < a, + R, 1 5 Im s < T + R) which, by the property of 
the averages of I c(s) l 2  to be proved in the next section, is less than a constant 
times T, as was to be shown. 

Of course the actual constant obtained by this method of estimation is 
absurdly large, particularly in view of the fact that according to the Riemann 
hypothesis it should be zero. Another technique for proving the same estimate 
with a much smaller constant was given by Littlewood in 1924 [L14]. 

9.7 THE AVERAGE OF I&(s)12 

For a > 1 it is easy to prove that the average (T - l)-l I; I C(a + it) l2 dt 
of c(s) l2 on Re s = a approaches C(2a) as T -+ 00 and that the approach to 
the limit is uniform for a 2 a, 2 1 .  First of all, since a # 1 and since 
I c(a + it) I = IC(a - it) 1, the average can be written in the more natural form 
1imT+- (1/2T) ITT I c(a + it) l2 dt. Then using 

I r (a+ i t )12=c(a+ i tX (a - i t )=  CC, , .  m"+" 

and noting that this double series is uniformly convergent (it is dominated by 
C C n-"m-"), so it can be integrated termwise, gives 

1 1 
m n  

l T  1 I I T  lim - 
T-.- 2T -T T+- n nu m"2T -T n Ic(o + it) I2 dt = lim C C - . - - I (2y dt. 

If m = n, the coefficient of n-"m-" = is identically 1, whereas if n # M, 
it is 2 sin [T log (n/m)]/2T log (n/m). Since (sin h)/h is bounded, the limit of 
the sums is the sum of the limits which is just C n-2" = c(2a) and this is true 
uniformly in a, provided a is bounded away from 1. 

Since C(2a) makes sense all the way to a = 3, it is natural to ask whether 
it is not still true that the average of 1 c(s) l 2  on Re s = a is C(2a) for a > 4. 
The method of proof will of course have to be drastically modified because 
C n-" no longer converges when a I 1, but the theorem is still true. This 
theorem appears in Landau's 1908 Handbuch [L3], but the central idea of the 
proof which follows is from Hardy and Littlewood [H6]. 

The proof for a > 1 and the form of the theorem strongly suggest that 
the divergent series C n-"-" will play a role in the proof. If, as in the estima- 
tion of c(l + it) in Section 9.2, one uses just the terms of this series in which 
n < t, then the remainder R(a, t )  in c(a + it) = n-'-'r + R(a, t )  must 
be estimated. Now the Euler-Maclaurin formula for c(a + it) gives 

R(a, t )  = c(a + it) - C n-"-" 
n<r 
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where s = B + it and where N is any integer larger than t. If N is the first 
integer larger than t, then the first three terms on the right have modulus less 
than a constant times t-" as t - 00. Backlund's method of. estimating the 
remaining term shows easily that it is less than a constant times t l -u,  but this 
method ignores the cancellations in the integral due to the rapid oscillation of 
x" for large t and the following more refined estimate shows that the fourth 
term, like the first three, is less than a constant times t-" so that the same is 
true of R(B, t) itself. 

B,(x)x-"-' dx by observ- 
ing that the Fourier series of b l ( x ) ,  namely, B,(x) = -C;=, (sin 2nnx)/nn 
is boundedly convergent? so that the termwise integration 

Hardy and Littlewood estimate the integral 

jm b,(x)x-"-l  dx = - 1 jm (sin 27tnx)x-"-' dx 
N n = l  iln N 

is justified by the Lebesgue dominated convergence theorem.1 Now 

-!- (sin 2nnx)x-"-' dx 
nn N 

?Let SN(X) denote the sum of the first N terms. Then for 0 < x < f the difference 
&(x)  - SN(X) can be written in the form 

N 

n = l  
x - 4 + z (nn)-1 sin 2nnx 

- - Jx  sin (2N + l)ntdt - 1 
o sin nt 2 
x sin (2N + 1)nt dt + f: (At - z) 1 sin (2N + 1)nt dt - 7 1 

= I 0  nt 
= f J r N + I ) n x  sin u 1 - du + sf f ( t )  sin (2N + 1)nt dt - 

where f ( t )  = (sin nt)-l - (x t ) -1  = (nr - sin nt)/nt sin nt is analytic for It I < 1 and 
therefore bounded for J t J 5 f, say by K. Then since 1; sin u/u du is bounded (its maximum 
occurs at h = n), it follows that &(x)  - SN(x) has modulus less than ndl 1; u-l sin u du + $K + $ for 0 < x $ and for all N .  Since SN(0) = 0, SN(-x)  = -SAX), the same 
bound holds for -3 5 x 5 + and, since &(a) is bounded, this implies the desired result. 

$See, for example, Edwards [El, p. 4371. 
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where w(x) = 2nnx - t log x and ~ ( x )  = 2nnx + t log x. Since 

is positive on {N 5 x < m), x can be considered as a function of w and the 
first integral above can be expressed in terms of w 

The real and imaginary parts of this integral are of the form F(w) sin w dw 
and I2 F(w) cos w dw, respectively, where F is a monotone decreasing posi- 
tive function. Therefore they can be estimated using the following elementary 
lemma. 

Lemma If F(x) is positive and monotone nonincreasing on { A  .< x I B), 
then F(x) sin x dx is at most 2F(A) in absolute value. The same estimate 
applies to F(x) cos x dx. 

Proof Let A' be an even multiple of n less than A and let B' be an odd 
multiple of n greater than B, say 2pn = A' I A < B I B' < 2vn + n. 
Extend F to {A' I x 5 B') by defining it to be constantly F(A) between A' 
and A and constantly F(B) between B and B'. Then 

B' 

A' A' 
F(x) sin x dx = F(A) I A  sin x dx + I B  F(x) sin x dx 

+ F(B) sB, sin x dx 

= F(A)(-cos A + 1) + I B  F(x) sin x dx 

2 S B  F(x) sin x dx. 
+ F(B)(l + cos B) 

A 
On the other hand, 

B, 2 p n + 2 n  

A' 
F(x) sin x dx = F ( x )  sin x dx + 1' F(x)  sin x dx + . . * 

a p n + n  
2vn+n 

2"rr + I F(x)  sin x dx 
Zpn+n 2 p + 2 n  

2 P  2/m+n 
5 F(2pcn) s sin x dx + F(2pn + 2n) I sin x dx 

2 p + 3 n  

2 ~ + 2 n  
+ F(2pn + 2n) 

+ F(2vn) s 
sin x dx + . - a  

2 w + n  

2vn 
apn+n 

2 P  

sin x dx 

= F(2pn) sin x dx = 2F(A) 
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which proves If F(x) sin x dx I 2F(A). The proof of the lemma is now easily 
completed by using analogous arguments to find a lower estimate of If F(x) 
sin x dx and upper and lower estimates of J: F(x) cos x dx. 

Applying the lemma to the integrals above (the real and imaginary parts 
of the integral involving w as well as the integral involving w) shows easily 
that I (nz)-l (sin 2nnx)x-"-' dxl is less than a constant times n-2 N-"-'. 
Summing these estimates over n shows that I I; Bl(x)x-s-l dxl is less than a 
constant times N-"-' N t-"-l . Since Is1 N t ,  this completes the proof that 
Rig, t )  is less than a constant times t-" as t - 00, and shows, moreover, that 
the estimate is uniform in Q. 

With this estimate of R(n, t )  the evaluation of the average of I C(a + it) l 2  
is not too difficult. In the first place the average value of I n-"-" l2 is 

This first term is (T - n)/(T - l)n-2" which is essentially the Cesaro 
sum of the convergent series C n-2u = c(20) and which therefore approaches 
( ( 2 ~ )  as T -+ 00. Since C n-2u converges uniformly for n 2 no, it is elemen- 
tary to show that this limit is approached uniformly in G. Thus it is to be 
shown that the other terms in the average of I c(n + it) I z  approach zero 
uniformly in Q. Each of the two remaining terms above has modulus at most 

This sum is monotone decreasing as n increases, so in order to show that it is 
uniformly small for n 2 Q,, > 4 when T is large, it suffices to show that it is 
small for any fixed value of n > 3 which, for convenience, can be assumed to 
be less than 1. Now the above sum can be split into two parts: 

which with r = n - m, log (n/m) = -log [l - (r/n)] > r/n in the second 
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part shows it is less than 

which, because a > 3, approaches zero as T -, 00. Finally (T - l ) - I  

X lr I ((a + it) l 2  dt differs from (T - l ) - I  n-"-" l 2  dt by an amount 
whose modulus is at most 

1 

by the Schwarz inequality. Since the average value of I R(a, t) l 2  approaches 
zero as T -  00, this approaches 2-[((2a)]1'2-fl+ 0 = 0 as T - 00 and 
the proof is complete. Specifically what has been shown is that given oo > 3 
and given c > 0, there is a To such that 

whenever a 2 go, T >  T o .  This of course implies the statement needed for 
the Bohr-Landau theorem, namely, that (T - l)-l I c(o + it) l 2  dt is uni- 
formly bounded for 0 2 no > t ,  T 2 T o .  

9.8 FURTHER RESULTS. LANDAU'S NOTATION 0, 0 

This section is devoted to the statements, without proof, of various refine- 
ments and extensions of the theorems proved above. For fuller accounts, 
with proofs and references to the primary sources, see either of the books 
[T3] or [T8] of Titchmarsh, which were the source of much of the material of 
this chapter. 
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In describing these theorems it will be useful to introduce the following 
notation of Landau [L3, p.611: The notation “f(x) = O(g(x)) as x + 00” 

means that there is a constant K and a value xo of x such that I f  (x )  [ < Kg(x) 
whenever x 2 x,, . In words, “the modulus off grows no faster than a con- 
stant times g as x -+ 00.” Here f may be complex valued, but g is real and 
positive. The notation ‘‘f(x) = o(g(x)) as x -+ 00” means that for every 
E > 0 there is a value xo of x such that I f(x) I < eg(x) whenever x 2 xo. In 
words, “the modulus off grows more slowly than g as x - 00.” There are 
various obvious extensions of this notation such as “f(x) = O(g(x)) as x -+ 

0,” which means there exist K, xo such that I f ( x )  I < Kg(x) whenever 0 < I x I 
< xo or “f(x) = F(x) + O(g(x)) as x --+ 00,” which means “f(x) - F(x) 
= O(g(x)) as x -+ 00,” etc., which will also be used. In this notation the 
prime number theorem can be stated R(X)  = Li(x) + o(Li(x)) = Li(x) + &/log x), de la VallCe Poussin’s estimate of the error can be written “n(x) 
= Li(x) + o(x exp[-(c log x ) ~ / ~ ] )  for some c > 0,” and the Lindelof hypo- 
thesis can be written “[($ + it) = o(tf) for every E > 0,” etc. 

It was proved in Section 9.2 that C(1 + it) = O(1ogt). Weyl [W4] in 1921 
proved that, in fact, C(l + it) = O(1og t/log log t) and thus, in particular, 
C(1 + it) = o(log t). Weyl’s proof was based on a new method of evaluating 
the “exponential sums” Cosnsb n-l - - Cusns6 exp [ - (1 + it) log n] which 
occur in the Euler-Maclaurin formula for C(1 + it). Weyl’s method was im- 
proved upon by Vinogradoff who proved ((1 + it) = O([log t log log 
These investigations of C(l + it) led to improvements in de la VallCe 
Poussin’s estimate (Section 5.2) of the amount by which the real part B of a 
root p = /l + iy must be less than one. Littlewood in 1922 proved that B < 1 
- (Klog log y/log y )  and Vinogradov and Korolov in 1958 proved that 
/3 < 1 - K(1og t)-“ for any a > 3. This was improved slightly by Richert 
(see notes to Walfisz’ book [Wl]) who proved /l < 1 - K(logt)-2/3 
(log log t ) - l 1 3 .  Each of these improvements gives a corresponding improve- 
ment of de la Vallk Poussin’s estimate of the error in the prime number 
theorem; for example, Richert’s estimate above gives n(x) = Li(x) + O(x exp 
[-c(1og ~ ) ~ l y l o g  10gx)-~/~]) for some c > 0 (see Walfisz [Wl]). As is proba- 
bly clear from the mere statement of the results, the methods used in proving 
these facts are very demanding. Nonetheless, the improvement over de la 
Vallk Poussin’s result is very slight in comparison with the estimate n(x) 
= Li(x) + O ( X ’ / ~  log x) which would follow from the Riemann hypothesis 
(see Section 5.5). 

It was also proved in Section 9.2 that ((3 + it) = O(t114 log t). Actually 
the Riemann-Siege1 formula (with error estimate) shows that 

IC(4 + i t )  I = IZ(t)l = 12 C n - 1 / 2  cos[$(t) - t log n] I + O(t-l14) 
Znn’cr 
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Hardy and Littlewood applied Weyl’s method to the estimation of the ex- 
ponential sum which is the main term of the Riemann-Siege1 formula? to 
prove that this estimate can be improved to [(* + it) = O(t1/6(log t )3 /2) .  
This has been improved to c(3 + it) = o(t1l6) and slightly beyond, for ex- 
ample, to c(* + it) = O(t19/116). Note that this implies p(*) < * which, by 
the convexity of Lindelof‘s function p, implies improvements on the bound 
p(o) I 3  - 

Since the average value of I c(s) l 2  ,on Re s = Q is C(2a) for Q > 3 and since 
C(2a) --t 00 as Q J$, it is to be expected that the average value of I c(s) l2 on 
Re s = $ is infinite. Hardy and Littlewood proved not only that this is true 
but that 

throughout {O < Q < I]. 

2T LJTTlc(t+ - 
it)12dt N logT 

in the sense that the relative error approaches zero as T 4 00. Similar results 
hold for the average values of I c(s) l4 on Re s = Q. For Q > 3 this average 
is [C(20)]~/c(40) and for Q = 3 

LIT 2T -T )c(&+it)14dt N-  2x2 (log T)4. 

The averages of I c(s) I z k  for integers k > 2 are much more difficult and very 
little is known about them. 

If the Lindelof hypothesis is true, then of course many of the estimates can 
be improved. For example, CramBr showed that the Lindelof hypothesis 
implies S(t) = o(log t). This in turn implies that the number of roots p with 
imaginary parts between T and T + 1 -is approximately (1/2n) log T and that 
the relative error in this approximation approaches zero as T - 00. Little- 
wood showed that the Lindelof hypothesis implies that S(t) dt = o(1og T). 
As for averages of I c(s) I z k ,  Hardy and Littlewood showed that the Lindelof 
hypothesis is equivalent to the statement that for all positive integers k 

If the Riemann hypothesis is true, then c(l + it) = O(1og log t) and 
c(3 + it) = O(exp(c log t/log log t)) for some c. (Note that the last estimate 
implies the Lindelof hypothesis.) If the Riemann hypothesis is true, then the 
estimates of S(t) can be strengthened to S(t) = O(1og t/log log r )  and S(t) dt 
= O(1og T/log log T). On the other hand, the Riemann hypothesis also 
implies a lower bound on the rate of growth of S(t). Namely, it was shown by 
Bohr and Landau that if the Riemann hypothesis is true, then for every E > 0 
the inequalities S(t) < (log t)“/2’-f and S(t) < -(log t)(1/2)-f have arbitrarily 

?This occurred before the publication of the Riemann-Siege1 formula. Hardy and 
Littlewood derived the main term of this formula independently as a special case of their 
“approximate functional equation.” 
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large solutions t so that, in particular, S(t) is not bounded either above or 
below. It is not known whether S(t) is in fact unbounded.* This theorem of 
Bohr-Landau does not assume the full Riemann hypothesis but only that 
the number of roots off the line isfinite, in which form it is the basic tool in 
Titchmarsh's proof that there must be infinitely many exceptions to Gram's 
law and in the proof of Section 8.4 that there must be infihitely many excep- 
tions to Rosser's rule. 

Since the proof of this theorem is not readily accessible in the literature and since it 
plays such an important part in Section 8.4, it seems worthwhile to include a proof 
here. The following proof of the weaker theorem that ifthere are only afinite number of 
exceptions f o  the Riemunn hypothesis, then S(t) cannot be bounded below is taken from a 
1911 paper of Landau [L3a]. It uses the 1910 theorem of Bohr [B6a] which states that 
((s) is unbounded on {Re s > 1, Im s 2 1). 

Suppose there is a q  such that there are no exceptions to the Riemann hypothesis in 
the halfplane {Im s 2 q }  and suppose that S(t) is bounded below. Then a contradiction 
to the known fact that ( ( 8 )  is unbounded on {Re s > 1, Im s 2 1) can be derived as 
follows. Consider Im log ((s) on the half-strip D = (3 5 Re s 5 1 + 6, Im s>q]. Since 
S(t) = r1 Im log ((4 + it) at all points where ((f. + it) # 0, the assumption on S(t) 
implies that Im log ((3 + it) is bounded below on the left side of D except at the points 
where it is not defined. Let DO be the domain obtained from D by deleting very small 
semicircular neighborhoods of the roots p on its boundary. Since ((s) = (s - ppg(s), 
Im log ((s) = n Im log (s - p )  + Im log g(s)  where Im log g(s) is continuous and 
bounded in a neighborhood of p ,  and since Im log (s - p) along any semicircle in 
{Re s 2 &} assumes its smallest value on Re s = where S(t) is bounded below, DO 
can be determined in such a way that Im log ((s) is bounded below on the left side of 
DO,  the bound being independent of the size of the deleted semicircles. On the bottom 
side Im s = q of DO,  Im log ((s) is continuous and therefore bounded. On the right 
side Re s = 1 + 6 of D o ,  the inequality Im log ((s) 5 I log ((s) I 5 log ((1 + a) shows 
that Im log ((s) is bounded below. Finally, the estimates of Section 6.7 show that 
Im log ((a .f it) 5 const log M 5 const log t for large t when f. 5 u 5 1 + 6 
(3 + it not a root p). Thus there is a constant K such that Im log ((s) 2 -K  for all s 
on the boundary of D o ,  and for any c > 0 the inequality Im log ((s) + ct 2 - K 
holds for all s = u + it on the boundary of the domain {s E DO: Im s 5 Q) for all 
sufficiently large Q. Since Im log ((s) + ct is harmonic on this domain, it follows that 
Im log ((s) + cf 2 -K  throughout D O .  Since c was arbitrary, Im log ((s) 2 -K  
throughout D O .  Since the deleted circles were arbitrary, Im log ((s) 2 -K  in the 
interior of D. Consider now the smaller strip D 1  = {s: (1/2) + (6/2) 5 Re s I 1 + 
(6/2), Im s 2 q + 1). The lemma of Section 2.7 for deducing a bound on I f 1  from a 
one-sided bound on its real or imaginary part then implies that log ((s) is bounded on 
D1. But then I c(s) = eRcloeC(r) would be bounded on D1, which it is not. This 
contradiction proves the theorem. 

* Note added in second printing: This statement is an error. Selberg proved that S(t) 
is unbounded (Contributions to the theory of the Riemann zeta-function, Arch. for Math. 
og Naturu., B, 48 (1946), no. 5) .  



Chapter 10 

Fourier Analysis 

10.1 INVARIANT OPERATORS ON R+ 
AND THEIR TRANSFORMS 

One of the basic ideas in Riemann’s original paper is, as Chapter 1 shows, 
the idea of Fourier analysis. This chapter is devoted to the formulation of a 
more modern approach to Fourier analysis which I believe sheds some light 
on the meaning of the zeta function and on its relation to the distribution of 
primes. 

The approach to Fourier analysis I have in mind is that in which the fun- 
damental object of study is the algebra of invariant operators on the func- 
tions on a group. The group in this instance is the multiplicative group of 
positive real numbers, which will be denoted R+. Consider the vector space 
V of all complex-valued functions on R+ and consider linear operators V - 
V. The simplest such operators are the translation operators, which are 
defined as follows. For each positive real number u the translation operator 
T,, is the operator which carries a function f in V to the function whose value 
at x is the value off at ux, in symbols 

TI&: f(4 fW, 
where f ( x )  is a generic element of V and where the “barred arrow” H is used 
to denote the effect of the operator in question on a generic element of its 
domain. Translation operators V--* V are defined for all of V. However, 
many of the most interesting operators are defined only on subspaces of 
V-for example, only for smooth functions or functions which vanish at 03- 
and the term “operator” should not be taken to imply that the domain is 
necessarily all of V. 

203 
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An operator V - Vis said to be invariant if it commutes with all transla- 
tion operators. More precisely, a linear operator L: V-+ V is said to be 
invariant if its domain is invariant under the action of the translation opera- 
tors T, and if T,Lf = LT, f for all u E R+ and all f in the domain of L. The 
simplest examples of invariant operators are the translation operators them- 
selves, which are invariant by virtue of the fact that the group R+ is commuta- 
tive. Then superpositions of translation operators are also invariant, for 
example, the summation operator f(x) - C."= f (nx) or integral operatorsf(x) 
H ~ ~ f ( u x ) F ( u )  du. (The exact domain of definition of these operators will 
not be important in what follows since functions will merely be assumed to 
satisfy whatever conditions are needed. For the summation operator the 
domain might be taken to be the set of functions f E V which satisfy 
limX+- xl+€ If ( x )  I = 0 for some e > 0. For an integral operator in which 
F(u) is continuous and I F(u) I is bounded, the domain might be taken to be 
those continuous functions f E V which satisfy 1imx+- x ' + ~  If ( x )  I = 0 and 
limx-,, If ( x ) l =  0 for some e > 0, etc.) A different sort of invariant 
operator is the differential operator lim,,+l (T,, - TI)/@ - 1) which carries 

f ( x )  to xf'(x) provided f is differentiable. 
For any complex number s the one-dimensional subspace of V generated 

by the functiont f ( x )  = x-' has the property of being invariant under all 
invariant operators; otherwise stated, an invariant operator carries f ( x )  = 

to a multiple of itself. This can be proved as follows. For fixed u, T, 
multiplies f by u-*. Hence, since L is linear, LT, f is u-= timesLf. On the other 
hand, LT, f = T,Lf, so T, multiplies Lf by u-* for every u. But this means 
Lf(u) = (T,Lf)(l) = u-"(Lf)(l), so Lf is (Lf)(l) timesfas was to be shown. 
For example, the summation operator f(x) H C T f ( n x )  carries f(x) = 
to C(s)f (provided Re s > l), the integral operator f(x) H j;f(ux)F(u) du 
carries it to j: u-"F(u) du times f (provided F and s are such that this integral 
converges-that is, f is in the domain of the operator), and the differential 
operator f ( x )  H xf'(x) carries it to (-s) times f. The fundamental idea of 
Fourier analysis is to analyze invariant operators-literally to take them 
apart-and to study them in terms of their actions on these one-dimensional 
invariant subspaces. 

The transform of an invariant operator is the function whose domain is 
the set of complex numbers s such that the function f(x) = x-' lies in the 
domain of the operator and whose value for such an s is the factor by which 
the operator multiplies f ( x )  = r*. Thus the entire function s H u-' is the 
transform of the translation operator T,, the zeta function s H [(s) for Re 

?The reason for taking x-s as the basic function rather than xs or xis is to put the equa- 
tions in the most familiar form and, in particular, to make Re s = + the line of symmetry 
in the functional equation. 
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s > 1 is the transform of the summation operator f ( x )  ++ x;= f(nx),  and 
the function s H -s is the transform of the differential operator f ( x )  H 

xf '(x).  The basic formula log [(s) = J I  x-" dJ(x) for Re s > 1 of Riemann's 
paper [(3) of Section 1.1 I] is the statement that log [(s) for Re s > 1 is the 
transform of the invariant operator f (x) H J y  f (ux) dJ(u). Similarly, the for- 
mula -c'(s)/[(s) = x-" dyl(x) which was the starting point of the deriva- 
tion of von Mangoldt's formula for yl(x) (see Section 3.1) is the statement 
that --['(s)/[(s) is the transform of f ( x )  H Jyf(ux)  dyl(u). The technique by 
which Riemann derived his formula for J(x) and von Mangoldt his formula 
for ~ ( x )  is a technique of inversion, of going from the transform to the opera- 
tor, which might well be called Fourier synthesis-putting the operator back 
together again when its effect on the invariant subspaces is known. 

10.2 ADJOINTS AND THEIR TRANSFORMS 

In order to define the adjoint of an invariant operator (on the vector space 
V of complex-valued functions on the multiplicative group R+ of positive 
real numbers), it is necessary to define an inner product on the vector space 
V. The natural definition would be (f, g> = J y  f (x)g(x)  dp(x),  where dp 
is the invariant measure on the group R+, namely, d,u(x) = dlog x = x-l dx. 
However, the functional equation t(s) = t(l - s) involves an inner product 
on V which is natural with respect to the additive structure of R+ rather than 
the multiplicative structure, namely, the inner product 

< f  Y g> = j, f (x>g(x> dx. 

This inner product is defined on a rather small subset of V-for example, the 
inner product of f l ( x )  = x-" and f z ( x )  = x-"' is undefined for any pair of 
complex numbers sl , sz-but it suffices for the definition of a formal adjoint 
L* of an operator L as an operator such that <Lf, g> = <S, L*g)  whenever 
both sides are defined. Again, touchy points regarding the domains of defini- 
tion of L and L* can be avoided by restricting consideration to particular 
cases. 

For example, the adjoint of the translation operator T,, is easily found by 
a change of variable in the integral 

to be the operator g(x) H u-'g(u-lx), that is, the operator u-'T,,-,. Since the 
adjoint of a sum is the sum of the adjoints, this implies the adjoint of the sum- 
mation operator f ( x )  H C."=,f(nx) is the operator f ( x )  H x;=, n-'f(n-lx) 
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and the adjoint of the integral operator f ( x )  I+ Iyf(ux)F(u) du is 

The adjoint of the differential operator f ( x )  H xf'(x) is found by integration 
by parts, 

to be the operator g(x) H -d[xg(x)]/dx. 
Now in terms of transforms this operation is, from the above examples, 

clearly related to the substitution s H 1 - s since they show that an operator 
whose transform is u-# has an adjoint whose transform is u - " - ~ ) ,  that an 
operator whose transform is ((s) (Re s > 1) has an adjoint whose transform 
is ( ( 1  - s) (Re s < 0), that an operator whose transform is u-"F(u)du 
has adjoint whose transform is I; u-"-"'F(u) du, and that an operator whose 
transform is -s has an adjoint whose transform is - ( 1  - s). The general 
rule is that an operator whose transform is $(s) has an adjoint whose trans- 
form is $(l - i). This can be thought of as "conjugate transpose," where 
the "transpose" operation is $(s) H $( 1 - i). If $ is analytic and real on the 
real axis, then by the reflection principle $(i) = $3, so in this case $(l  - S) 
can be written simply $(1 - s). 

In this way the functional equation r (s )  = C(1 - s) seems to be saying 
that some operator is self-adjoint. A specific sense in which this is true is 
described in the following section. 

- 

10.3 A SELF-ADJOINT OPERATOR WITH TRANSFORM g(~) 

Riemann's second proof of the functional equation (see Section 1.7) de- 
pends on the functional equation 1 + 2y(x)  = ~ - ' / ~ [ 1  + 2y(x-')]  from the 
theory of theta functions. With x = uz and G(u) = 1 + 2y(u2) = x:- 
exp(--nn2u2), this equation takes the simple form G(u) = u-'G(u-'), which 
implies, by Section 10.2, that the invariant operator 

is formally self-adjoint. This operator has no transform at all; that is, the 
integral 
(2) I, u-"G(u) du 

does not converge for any s. However, as will be shown in this section, it can 
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be modified in such a way as to be made convergent, and when this is done 
the formal self-adjointness of this operator is in essence equivalent to the 
functional equation of the zeta function. 

The integral (2) would converge at 00 if the constant term of G(u) = 1 + 
2 C."l exp(-m2x2) were absent. The constant term can be eliminated by 
differentiating G or, better, by applying the invariant operator G(u) H 

uG'(u). By the definition of "adjoint" this is formally the same as applying 
the adjoint f ( u )  H - d[uf(u)]/du to the first factor in the integrand of (2), 
which multiplies the first factor by s - 1. To preserve self-adjointness, it is 
natural then to apply G(u) +-+ -d[uG(u)]/du to the second factor or f ( u )  H 

uf'(u) to the first, which multiplies the first factor by -s. Thus, formally, 
ca 

(3) , , ~ - ~ [ ( - - u ~ -  du d d ) l  du G(u) du = 0 [ ( - u g ~ ) u - ~ ] G ( u ) d u  
0 

= s(1 - s) 5 u-"G(u) du. 

The right side is s(l - s) times the (formal) transform of a real self-adjoint 
operator and therefore is in some sense invariant under the substitution 
s .+ 1 - s. However, the left side is in fact a well-defined analytic function 
of s for all s. To see this, let 

so that the integral in question is -l; u-"H(u) du. Then 

1 
goes to zero faster than any power of u as u+ 00, and the integral -J; 
u-"(u) du therefore converges at 00. On the other hand, applying (d/du)u2 
(d/du) to both sides of the functional equation G(u) = (I/u)G(l/u) gives two 
expressions, 

2uG'(u) + u2G"(u) = 

for H(u) and hence gives H(u) = (l/u)H(l/u); that is, H satisfies the same 
functional equation as G. This implies that H(u) goes to zero faster than any 
power of u as u L O  and hence that the integral - u-"H(u) du converges at 
0. Therefore the left side of (3) is an entire function of s which, because of (3), 
would be expected to be invariant under s -+ 1 - s. That this is the case 
follows immediately from H(x) = x-'H(x-I) which gives -s- u-"H(u) du = so uI-.H(u) d log u 

ca 
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Since, as will now be shown, 
tional equation c(s) = c(l - s). 

U - ~ H ( U )  du = 2c(l - s), this proves the func- 

Let s be a negative real number. Then 
1- u-"H(u) du = 1 u-" (-u2 d d  -G(u)) du 

0 o du dU 

-u2 -[G(u) d - I] du du du 1 
(because G(u) - 1 and all its derivatives vanish more rapidly than any 
power of u as u - 00 and because, therefore, G(u) - u-l = u-'[G(u-I) - 11 
and all its derivatives vanish more rapidly than any power of u as u 4 0, 
which implies that u2 d[G(u) - I]/du = u2 d[G(u) - u-']/du + u2 d[u-' - 1]/ 
du is bounded as u 4 0) 

" d  
o du = s J  u*-' -[G(U) - 11 d~ 

[because G(u) - 1 vanishes more rapidly than any power of u as u .- 00, 

while G(u) - 1 = G(u) - u-I + u-' - 1 grows no more rapidly than uV1 
as u 01 

" 
= S(S - 1) u-"[G(u) - 11 du 

ca m 

= s(s - 1) J u-"2 C e-nn'u' du 
0 n= 1 

(the interchange being valid by absolute convergence) 

Therefore, by analytic continuation, the same equation holds for all s. Note 
that (3) then states that formally 
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that is, the function 2&)/s(s - 1) is formally the transform of the operator 
(l), but, since this operator has no transform, some "convergence factor" 
such as the replacement of G by H is necessary. For a different method of 
giving meaning to the idea that 2t(s)/s(s - 1) is the transform of the self- 
adjoint operator f ( x )  H 

In summary, the functional equation &) = c(l - s) can be deduced 
from the functional equation G(u) = u-'G(u-') as follows. First show that 
the function H(u) = (d/du)u2(d/du)G(u) satisfies the same functional equation 
as G does, that is, H(u) = u-'H(u-'): This is immediate from (4). Then show 
that u-*H(u) du converges for all s, and that for negative real s it is 2<(l - 
s). This shows that <(l - s) is an entire function and, because H(u) = u-l 

H(u-'), that it is invariant under s -+ 1 - s. 

f(ux)G(u) du, see Section 10.5. 

10.4 THE FUNCTIONAL EQUATION 

It was shown in the preceding section that the functional equation t ( s )  = 
<(l - s) can be deduced simply and naturally from the fact that the function 
G(u) = c:, exp(-nn2u2) satisfies the functional equation G(u) = u-'G(u-') 
or, what is the same, from the fact that the operator f ( x )  H 1; f(ux)G(u) du 
is formally self-adjoint in the sense of Section 10.2. Thus in order to un- 
derstand the functional equation of t, it is natural to study the functional 
equation of G. 

The functional equation of G results immediately from two formulas- 
the Poisson summation formula and the formula 

Consider Poisson summation first. 

line be defined by 
Let the Fourier transform of a complex-valued function f ( x )  on the real 

~ ( u )  = Jca f(x)eZ+u dx, 

a definition which differs from the usual definition by a factor of 2n in the 
exponential. Then the Poisson summation formula states that under suitable 
conditions on f (involving its smoothness and its vanishing at m), the sum 
of the Fourier transform is the sum of the function; that is, 

-ca 

This fact follows very easily from the theory of Fourier series when one con- 
siders the "periodified" function F(x) = C."=-caf(x + n) (assumingfvanishes 
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rapidly enough at infinity for this sum to converge for all x between 0 and 1). 
This function I; is periodic with period 1 and therefore (again under suitable 
assumptions about f) by the theory of Fourier series can be expanded as a 
series EZm agZniXn in which the coefficients are given by 

a, = l: F(x)e-2ninx dx = 1' g f ( x  + m)e-2ninx dx 
0 m = - m  

Therefore, setting x = 0 in F(x) = C a,e2ninx gives the Poisson summation 
formula (2). Since the above operations are all valid in the case of the func- 
tion f(x) = exp(-wx2u-2) for any positive u, this together with (1) gives 

as was to be shown. 

formula 
Finally, consider the proof of (1). In the special case u = 0 this is the 

(3) J -m 

which is one of the basic formulas of calculus, being essentially equivalent 
to the formula ll(-$) = w " ~ ,  to the fact that the constant in Stirling's 
formula is $ log 2z (see Section 6.3), or to Wallis' product for w. It can be 
proved simply by 

which, since the integral must be positive, proves (3). But then the change of 
variable x = y - iu and Cauchy's theorem gives 

which is the desired formula (1). 
This completes the proof that G(u) = u-IG(u-'). The structure of this 

proof can be interpreted in the following way. Let W be a complex vector 
space with inner product and let M be a lineak transformation of W. A linear 
transformation A: W 3 W is said to be self-reciprocal relative to M if A*M 
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= A, where A* denotes the adjoint of A. I f A  and B are both self-reciprocal 
relative to M and i f A  and B commute, then A*B is self-adjoint because A*B = 
(A*M)*B = M*AB = M*BA = (B*M)*A = B*A = (A*B)*. This is rough- 
ly the situation in the above proof, with W equal to the vector space of com- 
plex-valued functions on the entire real line R, with the inner product equal 
to (f, g )  = Jmmf(x)s) dx, with M equal to the operator f(x) H JoO_f(ux) 
eZniu du resembling Fourier transform, with A equal to the summation opera- 
tor f(x) ++ C;=-mf(nx), and with B equal to the operatorf(x) ++ JZmf(ux) 
exp(--nu2) du. Then A and B are formally self-reciprocal relative to M and 
A*B is the operator f(x) H JZ_f(ux)G(u) du; so the above theorem states 
that J:,f(ux)G(u) du is self-adjoint. If Vis identified with the subspace of W 
consisting of even functions (doubling the inner product on V), this implies 
G(u) = u-’G(u-’) as desired. Of course this is only roughly true and certain 
problems about domains of definition have to be ignored; however, since a 
rigorous proof of G(u) = u-’G(u-’) has already been given and since the only 
issue here is to understand the structure of the theorem, these problems will 
be passed over. 

Consider first the statement that A is self-reciprocal relative to M, that is, 
A*M = A .  Now A is invariant relative to the multiplicative structure of R 
[it is a superposition of multiplicative “translation ”operators f(x) ++ f(nx)]; 
hence, formally, so is A* invariant [this is the part of the proof which is only 
formally correct because the adjoint of the “translation” f(x) ~ f ( 0 x )  is not 
defined because it involves division by 01. Now an important characteristic 
of invariant operators is that if they are applied tof(ux) considered as a func- 
tion of x for fixed u, the result is the same as if they are applied tof(ux) con- 
sidered as a function of u for fixed x because both of these are equal to the 
operator applied tof(y) as a function of y evaluated at y = ux; this follows 
from Llf(ux)] (as a function of x) = (LoTu)f = T,Lf(by invariance) =(Lf) 
(ux). Therefore, to apply A* to 

(Mf)(x) = Jm f(ux)ezZiu du 

is the same as to apply A* tof(ux) in this integral considered as a function of 
u for fixed x. But by the definition of A* (because A is real), this is the same 
as to apply A to the second factor eZniu of the integrand. Thus 

(A*Mf)(x)  = 2 Jm f(ux)eZninu du. 

But with F(u) =f(ux) the Poisson summation formula shows that this is 
(formally) equal to 

-m 

n=-m -w 

m m 9 Jm F(u)ezninu du = C f ( n )  = C F(n) = 2 f(nx) 
n=--00 - w  -m -m -_ 
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Hence A*M = A as was to be shown. Similarly B*M is formally equal to the 
result of applying B to the second factor of Mf; that is, 

= Jm f(ux)e-xu' du = (Bf)(x)  
-m 

by ( 1 ) ;  hence B*M = B. Finally, by the same argument, A*B is formally 
equal to the result of applying A to the second factor in the integral Bf; that 
is, 

m 

(A*Bf)(x) = 2 Jm f(ux)e-xn'u' du = f(ux)G(u) du 
n=-m -m -m 

as was to be shown. 

10.5 ~ ~ ( s ) / s ( s  - 1) AS A TRANSFORM 

The statement that 2c(s)/s(s - 1) is formally the transform of f ( x )  H 

J:f(ux)G(u) du can be given substance as follows. A continuous analog of 
Euler's ludicrous formula 

C x " = ( l  + x + x 2 +  * * * ) + ( x - ' + x - 2 +  * a * )  

-m 

- 0  1 1 -- 
1 - x + X - - l -  

- 

is 
Jm x-" dx = I' x-" dx + Jm x-* dx 

- 0. 1 1 
1 - s  I - s  

- 

This is of course nonsense because the values of s for which the above inte- 
grals converge are mutually exclusive-the first integral being convergent 
for Re s < 1 and the second being convergent for Re s > 1-but it does sug- 
gest that the formal transform of f ( x )  H J;f(ux)  dx is zero and hence that 
the formal transform o f f ( x )  H J:f(ux)[G(u) - 11 du ought to be y(s)/s(s - 
1). However, since this operator actually has a transform for Res < 0, 
this suggests the correct formula 

J, u-"[G(u) - 11 du = - y(s) (Re s < 0) 
s(s - 1) 

which was proved in Section 10.3. Setting u = v-l in this formula gives 

w ' - ~ ~ ( v )  - dw = ~ 2e(s) (Re s < 0) 1 s(s - 1) 
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and, hence, 

(Re s > 1) 
J O  

[using t(s) = t ( l  - s)]. This too can be interpreted as saying that 2t(s)/ 
s(s - 1) is formally the transform of f ( x )  H J;f(ux)G(u) du because the for- 
mal transform off(x) - I;f(ux)u-' du is zero by (1). Now since 

is convergent for s in the critical strip {O < Re s < 11, the same considera- 
tions lead one to expect that the value of this integral in the strip where it 
converges will also be 2t(s)/(s - 1). That this is actually the case can be 
proved by considering the function 

which is defined and analytic throughout the halfplane {Re s < 1) except for 
the pole at s = 0. Since this function agrees with 

s, u-"[G(u) - 11 du 

u-"[G(u) - 1 - - du 

on {Re s < 0) 

and with 
on (0 < Re s < 1) 

U ' I  
it follows that these two functions are analytic continuations of one another. 
Thus 

u-"[G(u) - 11 du (Re s < 0), 

u- fG(u)  - 1 - - du 
s(s - 1 )  ' I  (0 < Re s < l), 

U 

(1 < Re s), 

are all three literally true in the stipulated ranges of s and all three say that 
formally 2r(s)/(s - 1) is the transform off(x) H J;f(ux)G(u) du. 

10.6 FOURIER INVERSION 

The problem of Fourier inversion or Fourier synthesis is the problem of 
finding an invariant operator when its transform-that is, its effect on the 
one-dimensional invariant subspaces-is known. Riemann's technique of 
accomplishing this by changes of variable in Fourier's theorem (see Section 
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1.12) gives more generally 

provided $ and/or @ satisfy suitable conditions. That is, under suitable con- 
ditions, an operator with the given transform @(s) can be found by defining 

and taking the operator to be f ( x )  H Jtf(ux)$(u) d log u. In actual practice 
this formula is perhaps best understood as a heuristic one because the prob- 
lems of proving convergence and of proving the applicability of Fourier’s 
theorem are substantial. 

In this context the proof of von Mangoldt’s formula for w in Chapter 3 
can be described as follows. If $(u) is defined to be 0 for u < 1 and 1 for u > 
1, then @(s) is l/s for Re s > 0 and the basic integral formula of Section 3.3 
is the statement that the inversion formula (1) is valid in this case provided 
a > 0. This result can be generalized by changing $ to 

0 for u < y, 

1 for u > y, 

which changes @(s) to y-#/s. Then the inversion formula (1) is still valid. On 
the other hand @(s) can be changed from l/s to l/(s - a) which changes $ to 

dz -- 

which, when a > a, gives $(u) = u‘ for u > 1 and zero for u < 1, and the 
inversion (1) is valid provided a > Re a. (If a is real, this is immediate. If a 
is not real, then the final estimate of Section 3.3 must be applied to the evalua- 
tion of the conditionally convergent integral from a - ioo - a to a + ioo - 
a in order to show it is the same as the integral from a - Re a - ioo to a - 
Re a + ico.) Now 

so when @(u) = ~ ( u ) ,  the transform @(s) is --(’(s)/s((s). But this function 
can be written in two different ways as superpositions of functions with known 
inverse transforms, namely, as 
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and as 

where c = c ' ( O ) / c ( O )  [see (7) of Section 3.21. Hence termwise application of 
the inversion (1) gives a $(u) which, on the one hand, is equal to 

2 A(nM.(u) = W Y  
n= 1  

where $.(u) is the function which is 1 for u < n and 0 for u > n, and, on the 
other hand, is equal to 

for u > 1 and 0 for u < 1. The proof of von Mangoldt's formula is simply 
the proof that these termwise inversions are valid. 

10.7 PARSEVAL'S EQUATION 

One of the basic theorems of Fourier analysis is Parseval's theorem, which 
states that under suitable conditions Fourier transform is a unitary trans- 
formation; that is, iff is the Fourier transform off 

f ( u )  = Ja f(x)e2zf"" dx, 
-a 

then 

This statement of the theorem deals of course with Fourier transforms rel- 
ative to the additive structure of the real numbers, but it can easily be trans- 
lated into a theorem concerning Fourier transforms on the multiplicative 
group R' as follows. 

If @(s) is the transform of the invariant operator f ( x )  H Iif(ux)$(u) du, 
that is, if 

@(s) = J, u-"$(u) du, 

O(u + it) = Ja U - ~ - ' ~ $ ( U )  du 

then 

= 5, e - r r l o g u  u I - u  $ ( ~ ) d l o g u  
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so (1) with f(x) = e(l-a)x$(e") and consequently with f ( u )  = @(a - 2niu) 
gives 

Jm -m I @(a - 2nix) l2 dx = 1- -m e2(1-a)x I $(ex> l2 dx7 

and in particular 

This theorem is used in Chapter 11 in the study of zeros of &s) on the line 
Re s = 4. For a proof of the theorem in the needed cases see Bochner [B5] or 
Titchmarsh [T7]. 

10.8 THE VALUES OF c(-n) 

The zeta function can be evaluated at negative integers as follows. Con- 
sider the operator whose transform is (1 - s)c(s), namely, the composition 
of f(x) H d[xf(x)]/dx with the operator f(x) H C."l f(nx). Since (1 - s)c(s) 
is an entire function, this operator is defined, at least formally, for all func- 
tions of the formf(x) = x-~ .  Consider the effect of this operator onf(x) = 
e-". This can be found in two different ways as follows. 

On the one handf(x) = C."=o (- l)"x"/n!, so if the operator whose trans- 
form is (1 - s x ( s )  is applied termwise to this series, one finds the function 

as the resulting function because the operator multiplies x-(-") by [l - (-n)] 
c(-n). On the other hand the summation operator carries f(x) = e-x to 

e-x + e - 2 x  + e-3x + . . . = - 7  1 
ex - 1 

and its composition withf(x) H d[xf(x)]/dx carries it to 

by the definition of the Bernoulli numbers [see (1) of Section 1.51. Thus, 
equating the coefficients of x" in the two expressions, one finds 

+ 1U-n)  = & + 1 7  

U-n) = (-l)"[Bn+l/(n + 111 
which agrees with the value found in Section 1.5. 

(n = 0, 1,2, . . . ) 
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However, it must be admitted that this argument is very far from being a 
rigorous proof. For one thing, the series expansion of x(ex - in terms of 
Bernoulli numbers is valid only for I x I < 27z. Actually the evaluation of ((-n) 
using Riemann's integral as in Section 1.5 can be regarded as a method of 
making mathematical sense out of the above nonsense. 

10.9 MOBIUS INVERSION 

The Mobius inversion formula is simply the inverse transform of the 
Euler product formula 

in that it states that the summation operator f(x) H Cf(nx) with transform 
c(s) can be inverted by composing it with the operatorsf(x) H ~ ( x )  -f(px) 
with transform 1 - p-", wherep ranges over all primes. If Cf(nx) converges 
absolutely (and in particular iffis zero for all sufficiently large x), this follows 
easily from the fact that after a finite number of steps the above operations 
reduce Cf(nx) to Cf(kx), where k ranges over all integers not divisible by 
any of the primes that have been used; since this means that the first k past 
k = 1 is very large, it implies that Cf(kx) approachesf(x) as more and more 
primes are used (see note, Section 1.17). 

The inverse transform of the expanded product 

states that the composition of the operators f(x) H ~ ( x )  -f(px) over all 
primes p can also be written in the form f(x) H x;= p(n)f(nx). [Here p(n) 
is zero unless n is a product of distinct prime factors, is 1 if n is a product of 
an even number of distinct prime factors, and is -1 if n is a product of an 
odd number of distinct prime factors.] This too is very easily proved in the 
case where Cf(nx) is absolutely convergent. Thus the Mobius inversion for- 
mula can be written in the form 

&> = 2 f ( n x >  - f ( x >  = 2 P(n>dnx> 
n= 1 n= 1 

provided Cf(nx) and x g(nx) both converge absolutely. Yet another state- 
ment of it is 

under suitable conditions onf. For example, if C Cf(mnx) converges ab- 
solutely, then the double series can be rearranged, 
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and the inversion formula is equivalent to the identity 
1 if N = l ,  

otherwise, 
which can be proved by applying Mobius inversion in the form (1) to the 
functionf(x) which is 1 for x I 1 and 0 forf(x) > 1, and then setting x = 1, 
x = 3, x = 3, etc. In Chapter 12 the slightly different statement 

of Mobius inversion will be needed. 

10.10 RAMANUJAN'S FORMULA 

Hardy, in his book [H4] on Ramanujan, states that Ramanujan "was es- 
pecially fond and made continual use" of the formula 

J, x.-l[$(O) - x$(l) + x2$(2) - * 
a -1 dx = -$(-s). sin as 

In the discussion that follows it will be convenient to recast this in the equiva- 
lent form 

= W-sM(s> 
in which s has been replaced by 1 - s, $(s) by $(s + l)/rI(s), and n(sin as)- 
by rI(-s)n(s - 1) [see (6) of Section 1.31. In this form Ramanujan's for- 
mula can be deduced from 

(2) x-"e-"dx = lT(-s) 

by observing that application of an operator with transform $(s) to the first 
factor x-. of the integrand on the one hand multiplies the integral by $(s) 
but on the other hand is the same as application of an operator with trans- 
form $(l - S) (the conjugate of the adjoint) to the second factor; since e-x = 
C."o (-1>.x"/n! and since an operator with transform $(I - S) multiplies 
x" = x-'+ by $(l - (-n)) = $(n + l), this gives formula (1). 

This heuristic argument is of course not a proof, but it does show how the 
formula can be proved for certain functions $(s). For example, if $(s) = 
for a > 0, then the integral on the left side of (1) is simply x-se-x/oa-l dx = 

(ay)-8ee-Y dy = $(s)lT(-s) as was to be shown. Note that the integral is 
convergent only for Re s < 1 and that the right side of (1) gives an analytic 
continuation of the value of the integral past the pole at s = 1. 

ca 

0 
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As a second example consider the binomial coefficient function $(s) = 
(-;) for a fixed integer n 2 0. This is the transform of the operatorf(x) H 

x"/n! d".f(x)/dx" and the right side of (1) can be expressed as an integral 
l/n! [x" d"x-"/dx"]e-" dx for Re s < 1. Integration by parts is valid for Re 
s < 1 and puts this integral in the form (-l)"/n! I; x-' (d"[x"e-"]/dx") dx. 
Since by simple termwise operations on power series 

(-1)" d" - -[x"e-"] 
n! dx" 

(-1)" d" 2 (- l )m~m+" =-- 
n! dX"m=o m! 

n 
this puts the integral in the desired form and shows that Ramanujan's for- 
mula (1) is valid for this $. Note that the integral again converges only for Re 
s < 1 and that the right side of (1) gives the analytic continuation of the value 
of the integral past the pole at s = 1. Since it is linear in 4, Ramanujan's 
formula is true in the same sense for any linear combination of the polyno- 
mials $(s) = (;;) and hence for any polynomial $(s). 

As a third example consider the case $(s) = n(s - 1). In this case the 
series in the integral is C."=o $(n + I)(-x)"/n! = C."=o (-x)" = (1 + x)-', 
so the integral is x-'(l + x)-I dx, which is convergent for 0 < Re s < 1. 
Ramanujan's formula says that the value of this integral should be ll(-s) 
n(s - l), a fact which is easily proved by applying the operator f(x) H 

I;f(ux)e-" du with transform n(-s) to the second factor of the integrand 
in ll(-s) = I; x-'e-x dx and evaluating the result in two ways to find 

and 

= n(s - 1)rq-s) 
which proves the desired equation. 
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Ramanujan's formula fails in the case of the function $(s) = sin ns be- 
cause in this case the integral is identically zero, but rI(-s)$(s) is not. How- 
ever, if the formula is regarded as a method of extending a given function 
$(1), $(2), #(3), . . . defined at positive integers to an analytic function $(s) 
defined for all s (or as many s as possible), then the formula works very well, 
extending the function 0 = $(1) = $(2) = $(3) = . - - to the function $(s) = 
0 rather than to the more complicated function $(s) = sin ws. 

Now if $(s) is an analytic function, then rI(-s)$(s) has poles at positive 
integers s = n, and the residues of these poles are 

lim(s - n)n(-s)q5(s) = lim(s - n) n(n - M S )  
8-n 8-n (n - s)(n - 1 - s) . . - (1 - s) 

and, conversely, if F(s) is a function with simple poles of residue (- l)'"$(n)/ 
(n - l)!] at positive integers n, then F(s)/rI(-s) = $(s) defines a function 
with values $(n) at positive integers. Thus Ramanujan's formula can be re- 
garded as the statement that the analytic function defined by 

has an analytic continuation [if $(1) f 0, this integral does not converge for 
Re s > 11 with poles at s = 1,2, 3, . . . with residues -$(l), $(2), -$(3)/ 
2!, . . . . In this way Ramanujan's formula becomes-provided the series 
C;=, $(n + l)(-x)"/n! has a sum which is O(X-") for some positive a as 
x -+ 00-a special case of the following theorem. 

Theorem Let O(x) be a continuous function on the positive real axis 
which satisfies @(x) = O(X-") for some a > 0 as x -+ 00 and which has an 
asymptotic expansion @(x) -, C;==o a,xn as x J 0. Then the analytic function 
F(s) defined in the strip (1 - a < Re s < 1) by the integral F(s) = I; x - ~  
@(x) dx has an analytic continuation to the entire halfplane {I - a < Re s) 
with no singularities other than simple poles at positive integers n, and the 
residue of the pole at n is -un- 1. 

Proof The integral 

F,(s) = Imx-s[@(x) - a, - u,x  - . - - a , - , ~ " - ~ ]  dx 

is convergent at 00 if Re s > n and convergent at 0 if Re s < n + 1 (because 
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the integrand is like x-=a,xn as x - 0), so it defines an analytic function Fn(s) 
in the strip (n < Re s < n + 13.  In the strip (n - 1 < Re s < n + 11 the 
function 

j 1  x-"[@(x) - a, - * * - a,- ,xn-l]  dx + % n - s  

+ 5, x-"[@(x) - a,, - - - - an-2xn-2] dx 

is defined and analytic, except for a simple pole with residue -a,,- , at s = n, 
and agrees with Fn- ,(s) and F,,(s) in their respective strips of definition. Thus 
the functions Fn(s) are all analytic continuations of each other and in the 
same way F,(s) is an analytic continuation of F(s). Since the analytic function 
they all define has the stated properties, this proves the theorem. [If @ is 
analytic on a neighborhood of the positive real axis and analytic at 0, then 
the theorem can also be proved quite easily using Riemann's method of 
Section 1.4 of considering the integral JtI (-x)-"@(x) dx.] 

Applying a trivial modification of this theorem to Abel's formula 

(Re s < 0) 

[(l) of Section 1.41 shows that since 

the function n(-s)C(l - s) has an analytic continuation to the entire com- 
plex plane with simple poles at 0, 1, 2, . . . having residues -1, f, -B2/2, 
0, -B4/4!, . . . , -Bn/n!, . . . . Thus C(l - s) has an analytic continuation 
which has a simple pole with residue - 1 at s = 0 but which is analytic at all 
positive integers n and has the value 

-_ B, . -- (n - I)! n -  1 Bn n! (-1>" - ( - I>  y 

at n. Thus the theorem very easily gives the analytic continuation of c and 
its values at 0, - 1 ,  -2, . . . . 

Consider now the application of Ramanujan's formula to guess the values 
of 6 on the basis of the values 

2" ( n =  1,2, ...) (2n)'"(- 1)"+'B 
2(2n) ! = 

found by Euler [(2) of Section 1.51. Setting $(s) = C(2s) in Ramanujan's 
formula leads to a series which cannot be summed in any obvious way, but 
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setting $(s) = n(s - l)c(2s) leads to the series 

= --'c 1 ( 2 n ~ ~ / ~ ) ~ B , , ,  
2xrn=2 m!  

(because B ,  = BS = - - = 0) which has the sum 

Thus Ramanujan's formula would give 

(4) 

= n(-s)n(s - lM(2s) 
if it were true in this case. The theorem proved above shows that this formula 
gives the correct values of c(2n) (n = 1 ,  2, 3 ,  . . .) but does not show that it 
gives the correct value of c(s) for other values of s. However, the integral on 
the left can be rewritten 

= (2n)Z" j- 0 y-2.(,._r 1 - - Y ++Y 

which shows-by the principle of Section 10.5-that it has the analytic con- 
tinuation 

(5) 

and therefore, by Abel's formula (3), that it is (2n)2sll(-2s)~(1 - 2s). The 
method of Section 10.5 and of the proof of the theorem above can be used to 
prove very easily that (5) is indeed an analytic continuation of the integral 
in (4) and therefore to prove that Ramanujan's formula in the case (4) is equiva- 
lent to 

which is the functional equation of the zeta function [see (4) of Section 1.61. 
Thus Ramanujan's formula does hold in this case even though the theorem 
above does not suffice to prove it. 

As a final example, consider the case $(s) = n(s)C(l - s). In this case 
the series is C."o (n + l)!C(-n)(-l)"x"/n! = C;=o Bn+lxn and Ramanujan's 
formula takes the form 

(6) Jm x-~(-$ + B2x + B,x3 + - . .) dx = lI(-s)n(s)C(l - s). 

(2n)2"lI(-2s)C(l - 2s) = n(-s)n(s - l)C(2s) 

0 
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This formula is meaningless as it stands because the power series is divergent 
for all x # 0. However, it is an asymptotic expansion for small x of a function 
which can be identified and the integral can be made meaningful as follows. 
By Stirling’s formula 

1 
2 logII(x) (x + +) logx - x + -1og21c 

+2+--“+ B B ... 
2x 4.3x3 

1 B B B  n’(x> N logx + - - 2 - 4 - 6 - . . . , 
Wx) 2x 2x2 4x4 6x6 

On the other hand the change of variable y = x-l in the integral of (6) puts 
it in the form 

so (6) suggests the equation 

which by integration by parts [the function n’(y>/n(y) - logy is asymptotic 
to (2y)-’ as y .+ 03 and asymptotic to -logy as y --f 0, so the integral is 
convergent for 0 < Re s < I] is equivalent to 

or, with s -, 1 - s, equivalent to 

(7) 

a formula which is in fact true for all s in the strip (0 < Re s < 13 where the 
integral converges; see Titchmarsh [T8, formula (2.9.2)]. 

A stronger version of Ramanujan’s formula (1) than the one embodied 
in the theorem above can be proved using Fourier inversion. Since this in- 
volves the behavior of &) on lines Re s = const in the complex plane, it 
necessarily involves considering q5 as a function of a complex variable and 
therefore, as Hardy observes, it lay outside the range of Ramanujan’s ideas 
and techniques in a very essential way. For example, Fourier inversion can 
be used to prove the following theorem. 
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Theorem Let F(s) be analytic in a halfplane {Re s > 1 - a] (for a > 0) 
except for simple poles at s = 1,2,3,  . . . with residues -a,, -a , ,  -az, . . . , 
respectively. Suppose, moreover, that the growth of F(s) in the complex plane 
satisfies suitable conditions and in particular that F(s) - 0 very rapidly as 
Im s - f 00 along lines Re s = const. Then F(s) in the strip (1 - a < Re 
s < 1) can be represented in the form F(s) = x-"@(x) dx, where @(x) is 
analytic for x > 0, where @(x) = O(x-"+') as x + 00 (for every E > 0), and 
where @(x) N z;=, a,xn is an asymptotic expansion of @(x) as x 40. If, 
moreover, F(s) does not grow too rapidly as Re s --+ 00, then @(x) is analytic 
at 0 and, consequently, has z UJ" as its power series expansion near 0. 

Proof The idea of the proof is simply the Fourier inversion formula 

[in (1) of Section 10.6 set 4(u) = u@(u) and set @(s) = F(s)]. Let c lie between 
1 - a and 1, and let the formula on the right define @. The assumption that 
F(s) - 0 rapidly as s --+ c f i m  guarantees that @(x) is then defined and 
analytic for all x in the slit plane and that @(x) is independent of the choice 
of c. Fourier inversion shows that F(s) has the desired representation, and it 
remains only to show that @(x) has the stated properties as x - 00 and as 
x 10. Since @(x) is a superposition of functions xS-l (Re s = c) all of which 
are O(xC-l+') as x --+ 00, the same is true-by passage to the limit under the 
integral sign-of @(x). Since c is any number greater than 1 - a, this gives 
@(x) = O(x-"+') as x .-+ 00. The integral of (1/2ni)F(s)x"-' ds over the boun- 
dary of the strip {c I Re s I n + 3) is on the one hand the sum of the resi- 
dues in the strip-which is --a, - a l x  - . - - ~,-,x"-~-and is on the 
other hand 1/2ni F(s)x"-l ds - @(x). This shows that @(x) - a, - 
a l x  - - - - - an- lx"-l is a superposition of functions which are O(X"-"/~') as 
x -+ 0, hence by passage to the limit under the integral sign that @(x) - 
u, + a l x  + azxz  + - - is an asymptotic expansion. To prove that it actually 
converges to @(x) for small x,  it suffices to prove that limn+- J ~ ~ ~ ~ ~ T ~ ~  F(s) 
e" log ds is zero; since es log - 0 very rapidly for small x, this will be true 
if the decrease of F(s) for Im s - f 00 is uniform as Re s - 00 and if I F(s) I 
does not grow rapidly as Re s - 00. 

In the case F(s) = n/sin ns the elementary estimate F(c + it) I const 
e-xlrl as t - 00 (uniform in c) shows that the theorem applies and gives 
n/sin ns = x-"(l + x)-' dx = ll 
(-s)ll(s - 1) (see above), that is, the theorem gives the product formula for 
the sine (6) of Section 1.3. In the case F(s) = lI(-s)ll(s - l)c(2s) = 
(n/sin ns)c(2s), the fact that c(2s) is bounded for Re s > # shows that 
the theorem applies to give formula (4) and hence the functional equation of 

x-"[l - x + xz - x 3  + - . - I  dx = 
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the zeta function [given the formula for the values of C(2), C(4), c(6), . . .I. 
Formula (7) does not quite come under the theorem as stated because (n/sin ws)  
[(s) has a double pole at s = 1. However, the same methods can be applied 
to prove that 

so (7) is equivalent to the elementary formula -n'(x)/II(x) = y -+ C.", 
c(n + l)(-x)"; this formula can be proved by taking the logarithmic deriva- 
tive of Euler's formula (4) of Section 1.3 and using (x + n)-l = n-l C;=o 
(- x/n)'". 



Chapter 1 1  

Zeros on the L’ne 

11.1 HARDY’S THEOREM 

In 1914 Hardy [H3] proved that there are infinitely many roots p of ((s) 
= 0 on the line Re s = 4. Except for the numerical work of Gram and Back- 
lund, this was the first concrete result concerning zeros on the line. As was 
stated in Section 1.9, Hardy and Littlewood [H6] later proved-in 1921- 
that the number of roots on the line segment from 4 to f 4- iT is at least KT 
for some positive constant K and all sufficiently large T, and still later-in 
1942-Selberg [Sl] proved that the number of such roots is at least KTlog T 
for some positive constant K and all sufficiently large T. This chapter is 
devoted to the proofs of these three theorems. Note that each of them super- 
sedes the preceding one so that logically it would suffice to prove just 
Selberg’s estimate. However, each of the three proofs is essentially an elabo- 
ration of the preceding one, so it is natural-both logically and historically- 
to prove all three. The proofs given here follow those of Titchmarsh’s book 
[T8]. Although the basic ideas of these proofs are essentially the same as in 
the originals, Titchmarsh has simplified and clarified them considerably. 

The idea of the proof of Hardy’s theorem is to apply Fourier inversion 
(see Section 10.6) to one of the expressions of as a transform (see Section 
10.5), say 

1 -- 2r(s) - 1- u-.[Ccu) - 1 - TI du (0 < Re s < I), 
s(s - 1) 0 

to find a formula such as 

The applicability of Fourier inversion in this case follows from the most basic 

226 
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theorems of the theory of Fourier integrals-see, for example, Taylor p 2 ] .  
With a = 3 the right side of this equation is an integral involving the function 
<(+ + it) to be studied and the left side is a function about which a great deal 
was known in the nineteenth century. (It is essentially the function y which 
occurs in Riemann's second proof of the functional equation-see Section 
1.7.) The idea of Hardy's proof is to use information about the function on 
the left to draw conclusions about the integrand on the right. 

The function G(x) = 22 exp(--nn2x2) is defined whenever Re x2 > 1 ,  
which means that it is defined not only for positive real x as in (1) but also for 
complex values of x in the wedge {-ale < Im log x < n/4). In this wedge 
it is of course an analytic function of the complex variable x .  However, it 
very definitely has singularities on the boundary of the wedge, and in fact 
these singularities of ( 1 )  for complex x are what Hardy's proof uses. Speci- 
fically, G(x) and all its derivatives approach zero as x approaches ill2 (= e'"'). 
This fact about G, which originally was discovered in connection with the 
theory of &functions, can easily be proved as follows: 

m m G(x) = 2 e-nn*x* = 2 e-nn*fe-nnl (xy- f )  = 2 (- 1)ne-nn'(x'-0 
-m -ca -m 

- - -G((x2 - i)"') + 2G(2(x2 - i)'"). 

The functional equation G(x) = x-'G(x-') then gives 

Since e-"" approaches zero as u J 0 more rapidly than any power of u does, 
this shows that G(x) and all its derivatives approach zero as x approaches 
ill2 from within the wedge C-44 < Im log x < -n/4}, say along the circle 

Consider now the integral on the right side of (1) for complex values of x .  
It will converge provided &a + it) goes to zero rapidly enough as t - f 00. 
Now I e(s) I = I I I ( s / ~ ) ~ - " / ~ ( s  - l)C(s) I for s = a + it is easily estimated; 
I C(s) I grows less rapidly than a constant times t2  as t -+ f 00 (see Section 6.7), 
1s - 1 I grows like I t 1, I r S l 2  I is constant, and I l l (s /2)  I grows like eB where 

1x1 = 1. 

a + it + 1) log(%) + . . .] 
=Re{( 2 
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where the omitted terms remain bounded as t .--, f m. Thus I e(a + it)  I is 
less than a power of I t I times e-ltlx'4 as t ----, 00. Since the factor xS-' = 
xa- l  it - x - const e"'oa * grows like exp (f] t ] I  Im log x I )  as t --+ =t 00, this 
shows that the decrease of &) overwhelms the increase of xS-l in the integral 
(1) provided I Im log x I < n/4 and hence that the integral (1) converges 
throughout the wedge { - 4 4  < Im log x < 44) .  By analytic continuation, 
then, formula (1) remains valid throughout this wedge. 

Formula (1) takes a simpler form if the operator x(d2/dx2)x is applied to 
both sides to give 

1 a+f- 

H(x) = - J 213s)~"~ ds (0 < a < 1) .  2ni 
Clearly H(x)  = x(d2/dx2)x G(x) has, like G, the property that it and all its 
derivatives approach zero as x illz. Moreover, the above estimates of 
the integrand justify termwise integration to give, when a = f, 

H(x) = - 1 -  I c(- 1 + it)x-1/2xit dt, 
n -m 2 

m 

= C c,(i log x)", 
0 

where 
c,=-  J l(+ + it)t"dt. 

nn! -- 
The integrals c,  are zero for odd n by the symmetry of c. If Hardy's theorem 
were false, that is, if there were only a finite number of zeros of c(f + it), 
then l(f + it) would have the same sign for all large t and one would expect- 
because of the high weight it places on large values of t-that c2, would have 
this same sign for all sufficiently large n. This can be proved simply by observ- 
ing that if t($ + it) is positive for t 2 T,  then 

H(2n)nc2. = 2 Jm <(I + it)t2" dt 

2 2 JTt2 t(f + it)t2" dt 

2 2 - :]c(i + it)J T2"dt  I J  
2 const (T + 1)2n - const (T)2" 
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is positive for all sufficiently large n and similarly that if <($ + it) is negative 
for t 2 T, then cZn is negative for all sufficiently large n. Thus if the above 
formula for ~l/~H(x) is differentiated sufficiently many times with respect to 
i log x, then the right side becomes an even power series in which all terms 
have the same sign. Thus if x - PZ upward along the circle I X I  = 1, it 
follows that i log x J -744 through real values and the value of this even 
power series cannot approach zero. On the other hand it must approach 
zero because to differentiate with respect to i log x is the same as to apply 
ix(d/dx), and doing this any number of times carries x1I2H(x) to a function 
which approaches zero as x - illz. This contradiction proves Hardy’s 
theorem. 

Another proof of Hardy’s theorem which is worthy of mention is that of 
Titchmarsh [T4]. Titchmarsh showed that in using the Riemann-Siege1 for- 
mula? at Gram points g, on average only the first term 

Z(gJ = 2 cos B(gJ + * * - = (-1y.2 + - - - 
counts. More specifically, he proved that 

l N  l N  
N-, N n = l  

lim - C Z(gzn) = 2, lim - C Z(gzn+l) = -2. 
N-- N n = l  

This of course proves that Z must change sign infinitely often and hence 
proves Hardy’s theorem. It also proves that on the average Gram’s law is 
true in the strong sense that 

l N  lim- C Re C(+ + ign) = 2 
N-.- N 

since C(4 + ig.) = Re C($ + ign) = (- l)”Z(gn). 

11.2 THERE ARE AT LEASTKT ZEROS ON THE LINE 

The proof of the fact that there are positive constants K, To such that the 
number of roots p on the line segment from 3 to 3 + iT is at least KTwhen- 
ever T 2  To begins, as did the proof of the preceding section, with the 
formula 

(valid for s in the so-called critical strip 0 < Re s < 1). The proof of the 
preceding section depended on the fact that the integral 

?However, as with the Hardy-Littlewood estimates of c(+ + it) described in Section 9.8, 
this work preceded publication of the Riemam-Siege1 formula and was based instead on 
the so-called approximate functional equation. 
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approaches zero very rapidly as x approaches i1l2 from below along the circle 
I x I = 1. The present proof depends on a Zocal study of this integral, that is, 
on a study of the integral over finite intervals of the line Re s = J. Let s de- 
note the midpoint of the interval under consideration, let 2k denote its length, 
and let 

Then I x , k ( S )  can be rewritten in the form 

= s,* w-"CG((xw) - 1 - - dw dv 2ni s - ik  xw ' I  
xw 'I 1 s + f k  

= - s s, w - f G ( x w )  - 1 - - dw 2ni s-ik 

G(xw) - 1 - - dw xw  ' I  
[where use is made of the fact that G(u) - 1 approaches zero very rapidly as 
u goes to infinity along any ray u = xw in the wedge -(n/4) I Im log x I 
(n/4), w = real]. This expresses I x , k ( S )  as the transform of an operator and 
shows, by virtue of Parseval's theorem (Section 10.7), that 

The idea of the proof is to use this formula with explicit estimates of the func- 
tion G to find an upper bound for J I ZI2  ds and to show that for suitable 
choices of x,  k it is much smaller than it could be if c(& + it) did not change 
sign frequently. 

The first step, therefore, is to derive an upper estimate of I ZI2  ds. Note 
first that the symmetries of G and x-l  = 2 imply that the integral on the right 
side of (2) is equal to twice the integral from 1 to 00. [The factor sin (k log w)/ 
log w is unchanged under w --f w - l .  The factor G(xw) - 1 - (xw)-' becomes 

( 2 ~ ) - ~ ]  under w -+ w-l, so the square of its modulus is multiplied by w2. 
Since dw becomes -dw/w2, it follows that the integral from 0 to 1 becomes 
the integral from 1 to m.] Now 

sinky < k for 0s y < n/k, 
l T l - { y - l  for n / k < y < m ;  

G ( l / 2 ~ )  - 1 - 2~ = 2w[(2w)-'G(1/2w) - (2~) - l  - 13 = 2 w [ G ( 2 ~ )  - 1 - 
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so this implies that 

The two integrals on the right can be estimated using the explicit formula 
for G(u) - 1. The first integral will be considered first, after which the second 
integral is easily estimated by the same techniques. 

The parallelogram law 21AI2 + 21BI2 = ] A  + BI2 + IA - BIZ 2 
I A + BI2 shows that the first integral on the right side of (3) is at most 

The second integral here is simply 4k27r2[1 - e-nrk], so it is of the order of 
magnitude of k2 and it will suffice to estimate the first integral. Since G(u) - 1 
= 2 Z;= exp(--nn2u2), this integral can be written in the form 

Let x = dnI4e-Id so that x2 = sin 26 + i cos 26 and this integral becomes 

(4)  

The double sum converges absolutely and can therefore be rearranged as 
three sums, one in which m > n, one in which m = n, and one in which 
m < n. The integral of the terms with m = n is easily estimated by using 

2 e-n(2n*)w* sin 26 = z(G[w(2 1 
n= 1 

sin 26)1/2] - 1). 

Since u[G(u) - 11 is bounded both as u - 00 and as u -+ 0, there is a con- 
stant K such that G(u) - 1 < Ku-' for all positive u and the terms of (4) 
with m = n contribute at most 

41/2Kk2 log(ex/k) 
-n2(sin 26)'12 dw= 

which for small values of 6 is less than a constant times k6-1/2. 
It will now be shown that the remaining terms m # n of (4) are much 

smaller than k6-lI2. The terms with m > n are the complex conjugates of 
those with m < n, so it will suffice to estimate the latter. Termwise integra- 
tion is easily justified so the quantity to be estimated is equal to the sum over 
all (m, n) with rn < n of 

e-n(nx+m')w* sin 26 - fn(nz-m')w* cos 26 dw e 
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The real part of this integral is 

where f ( w )  = exp[-n(n2 + m2)w2 sin 261 and V(w) = n(n2 - m2)w2 cos 26. 
Now cos 26 is positive for small 6, so V(w) is a monotone increasing function 
of w, and this integral can be written in terms of the variable V as 

where f and V' are functions of V by composition with the inverse function 
V +  w. Since f is decreasing and V' is increasing, the lemma of Section 9.7 
says that this integral is at most 

32k2 e-n(n*++m') sin 26 - . 2 f ( l ) = -  16k2 
n2 V ( 1 )  n2 2n(n2 - m2)cos26 

A similar estimate applies to the imaginary part and hence to the modulus of 
the integral (5) .  It follows that for small 6 the total modulus of the terms to 
be estimated is at most a constant times 

k2e-n(n'+m') sin 26 

n = 1  (n2 - m2) (n + m)(n - m) 
1 c -. 

m i n  n - m n =  1 

Now Ern<" l/(n - m) = Ern<. l / m  is less than a constant times log n, so the 
quantity to be estimated is less than a constant times 

m k2 c e-nnz ain 26&, 

"=l  n 
The function exp(--nua sin 26)(log u)/u is decreasing for u > e, so this sum 
is at most k2 times 

e-n4 sin 26 log 2 e-z9 sin 26 

log u d log u log 3 + J m  e-nu' sin 26 

3 2 3 
+ 

sin 2d)'W 5 const + J: ' e-nur sin 26 log u d log u 

d log v V 

(sin 2d)-'/z 1 < const + T(log u ) ~  

+ I, exp-"@ d log v + const 

I const + cons tkg  2)' sin 26 + const ( log - sml26) . 
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Given any E > 0 this is much less than for all sufficiently small 6. 
Putting all these estimates together then shows that there is a constant K1 such 
that for every E > 0 thefirst integral on the right side of (3) has modulus less 
than Ek26-lI2 $. K,k6-1/2 for all suficiently small positive 6. 

Analogous arguments prove that the same estimate applies to the second 
integral on the right side of (3). Briefly, 

- 2 -  IenIk (log w ) - ~  I & 1' dw I s(log 2 e*/k)-2 w - ~  dw 
z2 

I const k2  I Ek26-1/2. 
When I G(xw) - 1 l2 is written as a double sum over n and m, the total of the 
terms with m = n is at most a constant times 

m 

- - J e d k  (log ~)-~[G(w(2 sin 2 ~ 5 ) ~ ~ ~ )  - 11 dw 

a 

(log w)-~ d log w K 
I (2 Sin  26)Il2 .fez/k 

- (log eZlk)-l I const k6-'I2 
- (2 sin 26)'/2 

for all sufficiently small 6. Finally, the terms with m f n are at most a con- 
stant times 

e-n(n*+rn*) sin 26 
I const 5 c 

n= 1 m<n (log e*/k)2(n2 - m2) 
which by the same sequence of estimates as before is less than rk26-1/2 for all 
sufficiently small 6. 

In what follows it will be convenient to consider x = e-'n/4dd rather than 
x = &Z/4e-i6 (because then the significant values of the integral occur for 
positive values of t-see below). Since this replaces Ix ,k(S)  by its complex 
conjugate, the same estimates apply and what has been proved is that if 
Ix ,k(S)  is defined as in (1) with x = e-in/4e'6, then there is a constant K' such 
that given E > 0 the inequality 

holds for all suficiently small positive values of 6 (k  > 0 being arbitrary). 
Later in the proof this estimate will be used in combination with the 

Schwarz inequality to obtain an estimate of the integral of I Zl. First, however, 
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some estimates will be made of the value of I Zl implied by the assumption that 
c($ + it) does not change sign in its domain of integration. Since 

(where x = e-id4ei6), the integral J(t) = Jx,k( t )  defined by 

has the property that [ J ( t ) [  2 lZ($ + i t ) ]  for all t and IJ(t)l = I Z($ + i t ) [  
whenever the interval of integration of Z($ + it) contains no roots p. The 
basic idea of the proof is to show that in a suitable sense J(t)  is much larger 
than Z($ + it) on the average. Thus estimates ofJ(t) from below are required. 

It was shown in the preceding section that I n(s/2) I for s = 3 + it is eB 
where B = 9 log I t I - 1 t J 4 4  + - - - the omitted terms remaining bounded 
as [ t I + 00. Combining this with the formula c(s) = I I ( ~ / 2 ) n - ~ / ~ ( s  - l)c(s) 
and obvious estimates of I n-s/2 I and [ s - 1 I gives 

for u 2 1. Therefore, for large t ,  

and to estimate J(t)  from below it will suffice to estimate J I c 1 from below. 
This can be done using a technique very similar to the technique of Section 
9.7, which is also due to Hardy-Littlewood. 

It was shown in Section 9.7 that 

c($ + j ~ )  = C n - ( 1 / 2 ) - i u  + R W ,  
n<u 

where R(w) is less than a constant times v-'l2 as w -+ 00. Thus for t - k 
v l t f k  

[(f + jv) = C n-(1'2)-lv + w4 + R(v), 
n<r 

where E(v) is plus or minus the sum of n-1/2-ru over all integers n between w 
and t. Since E(w) consists of at most k + 1 terms each of modulus at most 
n-II2 < (t  - k)-1'2y this shows that for t - k I w I t + k 

I -C($ + iw) + C n-(1/2)-iu I 5 (k  + l)(t - k)-ll2 + const v - ' / ~  
- < ( k  + const)(t - k)-l12. 

n<r 
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Assume k 2 1, so the right side can be written as a constant times 
k(t - k)-II2. Then 

2 f t k  [Re C n-(1/2)-iu - const k(t - k) -1 /2 ]  dw 
f - k  n<t 

t+k  

2<;n<f f - k  
= 2k + C Re I’ n-(1/2)-iudv 

- 2k(const k)(t - k)-Il2 

- const k2(t - k)-Il2 

- const k2(t - k)-1/2. 
If t is much larger than k, the last term is insignificant compared to the first. 
Now although the middle term is not necessarily small, it is on the average 
smaller than the first term, so that on the average the first term 2k is a lower 
bound. Specifically, over any interval A < t B with B > A 2 1, the in- 
tegral 

can be estimated as follows. The terms with m = n contribute just (B - A) 
times a partial sum of the series C n-’(log n)+. Since this series is convergent, 
its partial sums are bounded and this is at most a constant times (B - A). 
Each of the termst with m # n is of the form 

1 (fr dt, n1/2m1/2 log n log m b 

where b = max(A, m, n); so regardless of the value of b its modulus is at most 
2 

n1/2m1/2 log n log m I log(m/n) I 
and the total of the remaining terms has modulus at most 

As in Section 9.7 divide this sum into two parts according to whether m < 
?The s u m  is finite, so termwise integration is valid. 
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i n  or m 2 in. The total of the terms with m < in is at most 
1 --(E 4 ' ' nl/2ml/2 log n log m log 2 - log 2 2<n<B nl'z log n 

< L(S: u-II2 du)' 4 const B. log 2 
To estimate the total of the terms with m 2 in, set r = n - m so that 
log(n/m) = -log[l - (r/n)] > r/n and the total is less than 

1 4 E  c 
3 G < B  n/~<:m<n nl/z(n - r) ' l2 log n log(n/2)(r/n) 

1 c 1 = 4  c 
3<n<B log n log(n/2) 1<r<n/2 r[l - (r/n)]l/z 

which, since the terms of the sum are bounded, is less than a constant times 
B too. This proves that 

12dt < K2B 

for some positive constant K2. Thus by the Schwarz inequality 

(B - A)ll2(K2B)lI2 K;I2B, 
so the average order of magnitude of the middle term is bounded and, there- 
fore, when k is sufficiently large, the first term 2k is on the average dominant. 

Now let v be the number of zeros of <(& + it) in the interval (0 I t I 
B + k]. Let the entire real axis be divided into intervals of length k and for 
each of the v zeros strike out the interval which contains it and the two inter- 
vals which adjoin this one. Let S be the subset of {A < t < B) consisting of 
points which do not lie in the stricken intervals. Then the total length of the 
intervals of S is at least B - A - 3vk since a length of at most 3k was stricken 
for each zero. On the other hand I Z(+ + it) I = J(t) for all t in S (there is no 
zero between t - k and t + k) so s I Z(& + it) I dr = s J(t)  dt 2 const (B + k)- ll4 

S S 

2 const (B + k)-1/4e-(B+k)6 I - const k2(t  - k)-ll2 dt 1 
2 const (B + k)- 1/4e-(B+k)6 

x [2k(B - A - 3vk) - const B - const k2B1/2]. 
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To simplify this, let (B 
given 6, k and let B - 
(Note that B > A 2 1 
comes 

+ k)6 = 1, which can be regarded as a choice of B 
A = which can be regarded as a choice of A .  
for k 2 1 and 6 small.) Then the above estimate be- 

2 const 6lJ4[2k(46- - 3vk) - const 6- - const k26-1/2]  
- - K,k6-3’4 - K2k2v61/4 - K 6 - 3 / 4  - K k26-114, 

where K l  , K 2 ,  K 3 ,  K4 are positive constants. Note that the third term will be 
insignificant compared to the first if k is large enough and the fourth term 
will be insignificant compared to  the first if 6 is small enough. On the other 
hand 

The coefficient of 6-lk-l  on the right can be made positive by choosing 6 
sufficiently small and k sufficiently large. Therefore with this fixed value of k 
it has been shown that for all sufficiently small 6 the number v of roots p on 
the line segment from f to + i6-’ is at least K66-l - K,6-lJ2 with K6 > 0. 
Since the S - l J 2  term is insignificant for small 6 this proves the theorem. 

11.3 THERE ARE AT LEAST KTlog T ZEROS ON THE LINE 

The basic structure of Selberg’s proof is the same as that of the Hardy- 
Littlewood proof in the preceding section, but the proof begins not with the 
transform equation 

(0 < R e s  < 1) 
m 

but with a transform equation in which the left side is 2e(s)[s(s - l)]-l$(s) 
-$*(s) with $*(s) = $(I - f) the “adjoint” of $(s) and with $(s) specially 
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chosen. In essence $(s) is chosen to be an approximation to C(s)-It2. Loosely 
speaking, this has the effect of approximately canceling the zeros of &) and 
smoothing it out in such a way that the estimates of 111 can be sharpened. 
(See Selberg's 1946 paper [S2] for a discussion of the motivation for the choice 

Specifically $(s) is defined as follows. The function C(s)-ll2 can for 
Re s > 1 be written as the transform of an operator of the form f ( x )  H 

C;P= a, f (nx) .  For this it suffices to write 

of 4.1 

If this product is expanded, there is exactly one term in v - ~  for every positive 
integer v and its coefficient is given explicitly by 

where v = py'p? - - - p p  is the prime factorization of v. Let a, denote the 
coefficient (2). Then 

so the series C converges for Re s > 1. Moreover the absolute conver- 
gence of the product for t ( ~ ) - ~ / ~  shows that t ( ~ ) - ~ / ~  = C a,p-" for Re s > 1. 
However, because t(s) has a simple pole at s = 1, this function C ( S ) - ~ / ~  has a 
singularity at s = 1 and cannot be continued in any simple way over to the 
critical line Re s = 4. Selberg deals with this by using a sort of convergence 
factor, by introducing a large parameter X and setting 

Since 8, N a, for small values of n, the function $(s) is in some sense an 
approximation to C(s)-I/z, at least in the halfplane Re s > 1. On the other 
hand, the series defining 4 is finite so $(s) is defined and analytic for all s. 

With this definition of $(s) set 

where $*(s) = $(1 - 3) = $(l - s). Then I depends on three parameters, 
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k (half the length of the interval of integration), X [the large parameter mea- 
suring, roughly, the degree of approximation of t $ ( ~ )  to ( ( s ) - ~ / ~ ] ,  and x (a 
complex number on the unit circle I x I = 1 near i-lI2 but above it, say x = 
i-1/2eib, where S is small and positive). The idea of the proof is to show that, 
when these parameters are suitably chosen, the modulus of Z(+ + it) is on the 
average much less than 

Since the modulus of I(f + it) is equal to J( t )  unless c(& + iv) changes sign 
in the interval {t  - k 5 v < t + k}, this will show that on the average it is 
to be expected that C($ + iv) does change sign and therefore that there is 
very often a root in the interval. 

As before, the first step in the estimation of I Z I  is to write Z(s) as the trans- 
form of an operator and to apply the Parseval formula. First write y(s) 
.[s(s - l)]-'t$(s)t$*(s) as the transform of an operator by composing the 
operator with transform (1) with the operators 

with transforms t$(s), $*(s), respectively, to find 

(The sums are actually finite, so there is no problem with termwise integra- 
tion.) Put xu in place of u. Then the path of integration becomes the ray 
through x-l, but the rapid vanishing of G(xu) - 1 as u 3 00 on the real axis 
and the consequent (by the functional equation of G) rapid vanishing of 
G(xu) - (xu)-I as u LO makes it valid to replace this path of integration by 
the real axis. Since G(u) - 1 = 2 c."=l exp(-xnzu2) and since 

m m  

p=1 c v = l  c y = (2 p = l  &)(2 p v = l  B") = $(l)t$(O), 

this puts the formula in the form 

where 

Then integration ds from s - ik to s + ik on both sides gives 
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so by the Parseval formula 

The left side of this equation is to be estimated by estimating the right side 
using the explicit formula for Y. Rather than estimating the right side directly, 
however, Selberg bases his estimates of it on an estimate of the integral 

instead. This estimate, which is proved in Section 11.4 below, is the following. 

Lemma There exist constants K and 6, such that 

holds for all 6 in the range 0 < 6 2 6, (where 6 enters the definition of W 
because x = e-m/4ei6) provided the other parameters satisfy the restrictions 
0 < 0 I 3, 1 2 z 5 6-l/fs, and 1 < X 6-1 /15  (where Xenters the defini- 
tion of W because the p’s depend on X). 

This lemma will be used not only in estimating I I ZI2 but also in estimat- 
ing IJ 1 2 .  Consider first the estimation of I ZI2. As in the previous case the 
symmetry of the integrand implies that the right side of (4) can be replaced 
by twice the integral from one to infinity. If this interval of integration is 
subdivided at the point h (in the previous argument h was en/k) and the usual 
inequality for x-’ sin x is used, then 

Assume h >_ e. (Later h will go to infinity.) The second and fourth terms 
combined are at most 
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which, since 
(log X)2x2[k2 + (log /z)-~]. Therefore 

< 1 and j?, = 0 for j 2 X,  is at most a constant times 

The lemma can be used to estimate the two integrals on the right. Let K, 6, 
be as in the lemma, let 0 < 8 < 3, 1 I h I 6-*/15, and let 1 X_C ~ 5 - 1 1 ~ ~ .  
Then the first integral above is at most 

$ I: u W e  I "(xu) I 2  du 

4k2 

- 4k2 
x2 1: 4z:e s" W(z, 8) dz - --,myz, e) + - 

I 7 ~ 2  w e  log x + ~2 I, , v 2 e z e  log x dz 4k2 K 4k26 Kze-' 

- - 4k2K (L + log h ) .  n261/2iogx e 
If 8 = f and h is very large, the second term dominates and the integral is at 
most a constant times k2S-1/2(log X)-'(log h). To estimate the second inte- 
gral, use the identity 1: eu-0 dB - 1 1 1 - 

2u'/2 log u u'/2(log u)2 + 
(integration by parts) and h 2 e to find 

5 jm (log u ) - ~  I "(xu) I 2  du 
x 2  h 

4 1/2 

4 Kd8  6 K 
2 1, 6ll2he log X + 2 61/2&h1/2  log X 

lt2 61/2 log X (m - h1l2 iog h )  -I- lt2b1/2h1/2 lo g x  * 

I J OW@, 0) d8 + -$ I Y ( x u )  I 2  du 

- 4 K  1 12K -- 

If h is large, the dominant term is the first one, which is less than a constant 
times 6-1/2(log X)-l(log h)-I. Thus with the above restrictions on the pa- 
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rameters plus the condition that h be sufficiently large 

Choose X as large as possible, namely, X = 8-1/15 .  Then the third term is 
still less than Klk2X3 < K 1 k26-'l5 which is insignificant compared to the 
first term (when 8 is small and h large) and in the same way the fourth term is 
insignificant compared to the second. If the first two terms are to have the 
same order of magnitude, then k2(log h)2 must have the order of magnitude 1 ; 
this motivates setting h = @ I k  as in the previous proof. Since h is to become 
large, this implies k --, 0. Loosely speaking, the major shortcoming of the 
proof of Section 11.2 was the fact that in it k did not go to zero; this meant 
that the subdivision of the interval {A 5 t 5 B )  never became very fine. 
Thus k --+ 0 is a major aspect of Selberg's proof. On the other hand-as is 
not surprising-it is essential that k ---+ 0 very, very slowly. For this reason 
set k = (a log where a is a very small positive constant to be deter- 
mined later. Finally, for notational convenience set T = 6- l. Then the para- 
meters have been reduced to two, namely, T(1arge) and a (small) and the 
others have been related to these two by 
(6) 6 = T-1, x = e-*n/4e'/T X = T1/15, k = (a log T)-1, 
and by h = en/& for the parameter h, which does not appear in the final result. 
What has been proved (except, of course, for the proof of the lemma) is that 
when the parameters of Z are chosen in this way, then for every a > 0 the 
inequality 

holds for all sufficiently large T. 
Consider now the estimation of the average value of J(t). Let 

so that J( t )  = JSE F(v) dv. It is natural to begin by estimating the average 
magnitude of the positive function F(v). It was shown in the precedingsection 
that 

so F(v) 2 const v-'j4 I[($ + iv) I I $(& + iv) 12e-ud and it will suffice to find a 
lower bound on the average magnitude of ((4 + iv)[$($ + iv)I2. This can be 
done by considering the integral of ((s)$(s)~ around the boundary of a rec- 
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tangle {f < Re s 2, A < Im s 5 B) where B > A 2 1 as follows. The whole 
integral around the boundary is zero by Cauchy's theorem. By the definition 
of Lindelof's pfunction, by p($) <a, and by Lindelof's theorem (see Sec- 
tion 9.2) I ~ ( Q  + its1 is less than a constant times t114+' for all Q + it in the 
half-strip {a 5 Q 2, t 2 11. On the other hand It$(s)l in this half-strip is 
I C P,,n-"-" 1 I C I fin I n-" I CnsX n-'I2, which by Euler-Maclaurin is about 
Jf u - ' / ~  du < 2 X 1 f 2  and which is therefore less than a constant times X 1 l 2 .  
Therefore the integral of C(S)$(~)~  over the side Im s = A of the rectangle has 
modulus at most a constant times A114+'Xand the integral over the side Im s 
= B modulus at most the same constant times B1/4+'X. On the side Re s = 2 
of the rectangle, the integrand can be written in the form 

where I a, I is less than the coefficient of t r S  in the expansion of C(S)~ (multi- 
plication of absolutely convergent series); so 

2+iB ds sztiB C ( S ) $ ( S ) ~  ds = i(B - A)  + 5 a, - 9  

2 + i A  n=2 2 + i ~  ns 

and the integral over this side differs from i(B - A) by at most 

Therefore the integral over the side Re s = 3 differs from i(B - A)  by a 
quantity whose modulus is at most 

const + const Ail4+' + const B114+' 
which shows that 

I 1: ((i + iv)$(+ + iv)2 dv 1 2 B - A - const B114+'. 

Therefore 

I' F(v) dv 2 const B-1/4e-Ba sB I C(f + iv) I I $(& + iv) l2 dv 

1 j: C($ + iv)$($ + iW dv I 2 const B-1/4e-Bs 

2 const B-1/4e-Bs(B - A)  - const B', 
B r+k 8 - k  v+k 

A r-k A+k v-k  
s B J ( t )  dt = s F(v) dv dt 2 1 F(v) dt dv 

= 2kF(v) dv 

2 const 2kB-'/4e-B6(B - A - 2k) - const 2kB'. 
A+ k 

As before, define A and B by (B  + k)6 = 1, B - A = &&I. In other words, 
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set 
(7) B = T - k, A = i T -  k.  
Then since k -, 0, it follows easily from the above that 

K6 T3l4 J(t)  dt 2 const 2kT3I4 = - a log T 
for all sufficiently large T when a is fixed and the other parameters are deter- 
mined as in (6) and (7). This estimate is less exact than the corresponding 
estimate in Section 11.2 because that estimate gave a lower bound for 
Is J(t) dt where S is a subset of the interval {A I t I B). However, this 
estimate can be made to serve a similar purpose by combining it with the 
following estimate of J?- J(t)2 dt. 

Parseval's equation applied to the transform equation (3) gives 

When the formula for F(v) and the familiar symmetry of the integral on the 
right are used, this becomes 

< 4 Jw I "(xu) I 2  du + 4 J $(1)$(0) I2 1, u-2 du. 

The second integral on the right is 4 I $(1)$(0) I 2  which is less than a constant 
times P(1og X ) 2  which is less than The first integral on the right is 
W(l,O), but since the lemma does not apply when 8 = 0, an estimate of 
W(1,O) has yet to be made. Now 

5 e215KT112 + Jm I'Y(XU)~~ du 
T' 

by the lemma, so it will suffice to show that tY(xu)  l 2  du is less than T112 
in order to find an upper estimate of F 2  dv. Expand I "(xu) l 2  as a sextuple 
sum 
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For fixed m, n the sum over p, v, K, A consists of at most X4 terms the largest 
of which has modulus at most exp[-nm2X-2u2 Re x 2  -wn2X-2u2 Re xz] 
= exp[-w(m2 + n2)X-2u2 sin 261, so I "(xu) I z  is at most X4 times the double 
sum of this exponential over all m, n. But this is less than 

so its integral du from T 2  to 00 is at most a constant times (X2/6)T-2  = 
X 2 / T I  T - l 3 / l S .  Thus Jrm F ( V ) ~  dv is less than a constant times from 
which it follows that 

J m  J(t)2 dt = I:m [ s'+k F(v) dv]' dt 
-m 1-k 

< (I"" 1 dv)  ( F ( v ) ~  dv) dt 

= 2k s:, f + k  F ( V ) ~  dv dt 

-m t-k t -  k 

t - k  

= 2k 

= 4k2 Im F ( v ) ~  dv 

r+* F ( V ) ~  dt dv 
v-k  

-m 

K7T1I2 
a2(log T)Z'  < const k2T1I2 = 

Now let v be the number of zeros of c(+ + it)  in the interval (0 4 t 4 
B + k). Let the entire real axis be divided into intervals of length k, and for 
each of the v zeros strike out the interval which contains it and the two inter- 
vals which adjoin this one. Let S be the subset of ( A  < t < B) consisting of 
points which do not lie in stricken intervals and let be the subset of ( A  < t 
< B} consisting of those which do. Then the total length of the intervals of 

is at most 3uk and I Z(+ + i t )  I = J(t)  on S so 

1 I Z(& + it) I dt = J(t)  dt = JBJ( t )  dt - J(t)  dt 
S S A S 

>6- T3/4 (IS l 2  dt)l/'(S J( t )2  dt)'/l 
- a log T S 

>6- K T3l4 ( 3 1 ~ k ) ~ / ~ [ 1 ~  J(t)2 dt]Ii2 
- a log T -m 
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On the other hand 

T1/4 
a1/2 log T I const T 

For fixed a sufficiently small the right side is a positive constant times T1l2; 
hence 

3vk 2 KgT, v 2 9 = - K{aTlog T, 
3k 

and Selberg’s theorem is proved. 

11.4 PROOF OF A LEMMA 

The core of Selberg’s proof-and the only part of the proof which makes 
use of the special choice of the function $(s)-is the estimate of the integral 
W(z, 8) stated in the lemma of the preceding section. This section is devoted 
to the proof of this estimate. 

Recall the following definitions from Section 11.3. There 6 is a small 
positive number; x = e-1x/4ei6; X is a large positive number; a. is the coef- 
ficient of n-$ in the Dirichlet series expansion of c(s)-l/z ; fin is zero for n 2 X 
and (log X ) - l  log (X/n)a, if n I X, Y ( u )  is defined by 

y@) = 2 2 2 e-nn’r’”./”l&&. 

n = l / 1 = 1  v = l  v ’  
and W(z, 0) is defined by 

W(z,  8) = Jw u - ~  I Y(xu)  J2 du, 

z, 8 being positive real numbers. The lemma to be proved states that there 
exist positive constants K, 6, such that W(z, 9) < K(S1/2eze log X)- l  when- 
ever the parameters lie in the ranges 

z 

o<6(60,  0 < 9 < ; ,  1 I X l 6 - 1 / ’ S y  1 <z<6- ’ / ’ 5 .  
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Substitution of the definition of Y into the definition of W gives an ex- 
pression of Was the integral of a sextuple sum of terms of the form 

Let Z, denote the integral of the sum of the terms in which the imaginary part 
of the exponential is zero, that is, those terms in which (mull)  = (ndv), and 
let Z, denote the integral of the sum of the remaining terms. The difficult 
part of the proof is the estimation of El, after which it is comparatively easy 
to show that Z2 is much smaller than the estimate which is obtained for C,. 

For each fixed quadruple (u, l ,  p, v) there is an infinite sequence of terms 
of C,, namely, the terms corresponding to (m, n) where m/n = ( A ~ / K v ) .  Let 
a/b be the expression of ( lp /uv )  in lowest terms; then the pairs (m, n) are 
(a, b), (2a, 2b), (3a, 3b), . . . and therefore 

where a depends on (u, 1, p, v) as above. This expression can be made more 
symmetrical by defining q to be the greatest common divisor of l ,u  and KY 
(the factor canceled when Lplrcv is reduced to lowest terms) so that a = Ap/q, 
b = w / q ,  and the above becomes 

The sum over ulpv is finite because 8, is zero f o r j  2 X. Therefore this sum 
can be taken out from under the integral sign, and Z becomes a finite sum of 
terms of the form 

const jm UP C e-"'""' du 
m 

z r = l  

where q = ~ , u q - ~ ( 2 n  sin 26)ll2. Such a term can be estimated as follows: 
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The sum in the integrand can be estimated by Euler-Maclaurin summation 

- J,Bl(v)(e - 1)ve-z dv. 

Let N be the smallest integer greater than y/zq.  Then subtracting Ne-I from 
both sides gives 

Since 8 - 1 c 0, this differs from 
1 +($) - + + J, ~, (v) (e  - i l v e - 2  dv 

by at most 

(0 - 1)j- B1(v)tP2 dv I 
N 

N 

+ I 8 - 1 I I7 I u - 3 I (N + u)e-2 du 

f(U)*-' + - 1 1  . -NB-z 
2 zrt 2 2  

Substitution of this estimate into the original integral shows that 

(1) 
differs from 

m m I, UP 2 e-nsraVa du 

1 m 1 
(2) t f - 1  si [+($) - + + 5, b,(v)(0 - dv y-ee-y' dy 

by at most 
2 ~ - 1 ( z q ) 1 - e  Jw ye- iy -ee -Yz  dy 

19 

= 2z1-8 j1 y - l e - ~ r  dy + 221-8 

ZV 

I const z ~ - ~  I log zq I + const zl-@. 
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If the integral (2) is extended to the interval {0 I y < m}, it becomes 

+ J, B,(v)(e - 1 ) ~ e - z  dv 1 1 "  m 

q-1z-eJ- J e+ dy + +-I( - 

- n A(@tp-l, 

+ e o  
X (I, ~ - ' e - ~ '  dy)  

1/2 

2qeze e 
where A(@ is a bounded function of (0 St9 < 41, and this differs from the 
original integral (2) by at most 

q-lz-BL jz' e-Y* dy + +-I ( -B 1 1  + e o  + s, B,(v)(O - dv 

X (1: y-ee-Y' dy)  
zi-e I" 1 -e - + qe-l const - y-e  dy < const - 

because A(@ is bounded. Therefore the original integral (1) differs from 
e e o  e 

A(@ &/2 - + -$-' 
2qeze e 

by at most 

Finally, using this estimate of (1) in Z1 shows that Z1 differs from 
const z1 -e I log zq I + const zl-e/le. 

B K B l S P B Y  

(3) 4 K g V  h 
72 1/24 + -(2n A(@ sin 26)'@-1)/2 

x [2Kp(2n sin 2 p e z e  e 
by at most a constant times 

(4) 
KlP" 

In the nonzero terms K ,  1, p, v are all at most X, so Kp/q lies between X-2 
and X2. On the other hand sin 26 is of the order of magnitude of 6; so, since 
X and z are at most 6-l/l5, the logarithm in the error estimate (4) is at most 
a constant times log(1/6) in absolute value, and therefore grows rather slowly 
as 6 - 0. Specifically 

3 ( 2 n  sin 26)1/2 2 $5-!(2n)1/261/2 - > const ~ 1 5 ~ 2  > - 9  6 

%(2n sin 26)1/2 2 ( 2 ~ ) ~ / ~ ( 2 6 ) l / ~  2 const 6-1/561/2 1, 
4 

4 

6-1/15X2 

log 6 < log %(2n sin 26)1/2 I 0, 
4 
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for all sufficiently small 6. Since 

this shows that the error estimate (4) is at most a constant times 

for all sufficiently small 6. Since this is smaller than the desired estimate 
K(61%ze log X)-l for small 6, it can be neglected and the desired estimate of 
Z, is equivalent to the statement that the approximating quantity (3) is less 
than a constant times (6WP log X)-l  for all sufficiently small 6. 

Consider now the approximating quantity (3). With the new notation 

(where for a given quadruple K, A, p, u the integer q is defined to be the great- 
est common divisor of KU and Ap), this quantity can be written 

(3') 

Since A(@ is bounded and since sin 26 is essentially equal to 26, in order to 
estimate this quantity it will suffice to estimate the quadruple sum &'(a). This 
will be done by first reducing the estimation of S(a) to the estimation of a 
double sum, by then reducing this to the estimation of a single sum, and by 
finally estimating the single sum. 

The first step in the estimation of S(a) makes use of a generalization of 
Euler's famous identity 

n = I;  Qh> 
m n  

(5 )  

where Q is the Euler $-function. For present purposest the most convenient 
definition of Q is 

In order to prove that the function $ so defined has property (S), let Q(x) 

tIt is easily shown that d(n) is equal to the number of integers between 0 and n relatively 
prime to n, and this property is the usual definition of 4. 
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= 

values of x .  Then the definition of $ is tantamount to 
n and let @(x) = $(n) with the usual adjustment for integral 

[at any integer x = n both sides jump by $(n) = cmlw p(m)n/m] which by 
Mobius inversion is equivalent to 

which implies the desired conclusion (5 )  [because at x = n the left side jumps 
by n and the right side by cmlw $(m)]. In exactly the same way it follows that 
the function $.(n) defined by 

$.(n) 1 n'+" rn = n'+" q (1 - -) 1 
m n m'+" R W  PI+" 

satisfies 
7 $a(m>- 
n i w  

nl+' = 

This identity and the fact that q is the greatest common divisor of KV and rZp 
imply that S(a) can be rewritten in the form 

where for given p the inner sum is over all pairs of positive integers K, v such 
that p divides K V .  Since $u- l (p)  is easy to estimate, this reduces the estimation 
of S(a) to the estimation of a double sum. 

Now let p be given. For each pair K ,  v with p I uv let d denote the smallest 
factor of K such that K/d is relatively prime to p ,  and let d ,  denote the smallest 
factor of v such that v/dl is relatively prime to p. In other words, let d and d l ,  
respectively, be the product of all prime factors of K and v, respectively, which 
divide p. Set K' = u/d, v' = v /d l .  Since p I m implies p 1 ddl and since, given 
d, d l ,  the range of K', v' is all integers relatively prime to p, 

where d, d ,  range over positive integers all of whose prime factors divide p, 
and K', v' range over positive integers none of whose prime factors divide p. 
Now since d, K' are relatively prime, formula (2) of Section 11.3 for a, gives 
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add = a & , ;  hence 

where p is given, d and d ,  range over positive integers whose prime factors all 
divide p, and X' and v' range over positive integers relatively prime to p. 

The single sum 

where K' ranges over positive integers relatively prime to p, can be estimated 
as follows. For c > 1 

virtually by the definition of aK?. This is not applicable in the range {J I Q 

I 1) which is under consideration (a = 1 - 0 or Q = I), but it shows that 
in terms of Fourier analysis the problem of estimating (8) can be restated: 
Let the operator whose transform is C(S>-'/~ npIp (1 - p-b)-1'2 in Re s > 1, 
namely, 

be modified to 
f ( x ) -  c aK,f(X'x>, 

d 

(for a large parameter Y) so as to be finite and hence to have a transform 
defined throughout the s-plane. Estimate the value of the transform of the 
modified operator at points of the line segment {t I c I 1, t = 0) of the 
s-plane. This can be done as follows. 

Integration by parts in the basic formula of Section 3.3 gives 

Thus termwise integration gives, for any series 2 b,, 

1 r+lm 

[ 3 2ni a-im n = l  s n l Y  
YJ -j: ds = C b, 
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provided a is such that C b,,n-"-" converges absolutely. This formula ex- 
presses the transform of the modified operator in terms of the transform of 
the unmodified one and in the case at hand shows that 

for any a such that a + Q > 1, that is, any a such that a > 1 - Q. If Q f 1, 
then the singularity of the integrand at s = 1 - Q is not serious and the line 
of integration can be moved over to a = 1 - Q. To prove a precise statement 
to this effect, it is necessary to have an estimate of I [(s I in the half- 
plane Re s 2 1 - Q or, what is the same, an estimate of I [(s) 1-l in the half- 
plane Re s 2 1. A simple estimate of this sort is 

for some positive constant A. This estimate is proved below. Using it, it is 
easy to prove that the integral (9) converges for a = 1 - Q, that the equation 
still holds, and that the value of the left side is therefore at most 

A 
f 3 / 2  

d log t I,t2 + (1 - Q)2 

A 

in absolute value when Q < 1. If n = 1, then the line of integration cannot 
be moved over to a = 1 - Q because of the factor s2 in the denominator of 
the integrand. Instead, take as the path of integration the line from -im 
to -iB, the semicircle in Re s 2 0 from -iB to +iB, and the line from iB 
to im, where B is a constant to be determined later. Using Cauchy's theorem 
and the estimate (lo), it is easily seen that formula (9) holds with this new 
path of integration in place of the line Re s = a.  Along the semicircle dz/z 
= i do, and the integral along this portion has modulus at most 

1 1 -1 /2 x do 
- ( ~ t B ) l / ~  (1 - -) YE s-. 
2n P P  P 



254 Zeros on the Line 

[using the assumption Y > 1 which is justified by the fact that the quantity 
(8) to be estimated is zero if Y I I] which is less than a constant times 

The integral over the portion of the path of integration along the imaginary 
axis has modulus at most 

These two estimates are of the same order of magnitude when B log Y is of 
the order of magnitude of 1.  Therefore assume Y > 1 and set B = (log Y)-I. 

It follows that when Q = 1 the quantity (9) in question is at most a constant 
times (log Y)lI2 nPlp (1 + p-l)lI2. This estimate extends from Q = 1 to 
1 - i(log Y)-l I Q I 1 if the path of integration is taken to be the line 
Re s = 1 - Q with a detour around the right side of the circle I s I = (log Y)-l 
where it intercepts the line. The result is again that the quantity (9) to be 
estimated has modulus at most a constant times (log Y)ll2 H p I p  (1  + p-1)1'2. 
But for 3 I Q I 1 - &(log Y)-l the previous estimate shows it has modulus 
at most a constant times fl,,, (1 + p-1)1/2Y1-u (log Y)lI2. Therefore in any 
case (even Y 5 1) there is a constant K' such that 

This completes the estimate of the single sum except for the proof of the 
needed estimate (10) of IC(s>l-'. Since this estimate implies C(l + i t )  f 0, 
its proof cannot be expected to be entirely elementary. The trigonometric 
inequality 3 + 4 cos 8 + cos 28 2 0 of Section 5.2 combined with the for- 
mula log ((s) = x-' d ~ ( $  of Section 1.11 gives 

Re{3 log C(a) + 4 log ((a + it) + log C(Q + 2it)) 

= Jm x-" Re(3 + 4x-" + rZir) dJ(x)  2 0, 

4 log I C(g + it) I 2 -3 log IC(Q) 1 - log I C(g + 2it) I 
I + i t )  I 2 I ~ ( 0 )  1-314 I ((0 + 2it) 1-1'4, 

for all Q > 1. Since (s - 1)C(s) is bounded on the interval 1 _< s 2 and 
since IC(o + 2it) I is less than a constant times log (2t) for Q 2 1,2t 2 1 
(see Section 9.2), this shows that there is a positive constant K such that 

I [(o + i t )  I 2 K(Q - 1)3/4(l~g t)-'14 
for all t 2 1, 1 < Q I 2. This will be used to find a lower estimate of 
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]C(1 + it)] by combining it with the fundamental theorem of calculus 
((a + it) - C(l + it) = c'(u + it) du and the following estimate of r ( s )  
by Euler-Maclaurin summation : 

logn 
ns -('(s) = c - 

N - l  log n logu du + 1 log N 
= n= C T + J N  1 u6 2 N" 

holds at first for Re s > 1 but then by analytic continuation holds for the 
entire halfplane Re s > 0 where the integral on the right converges. With 
s = a + it, N = [t] this gives 

for a 2 1 ; hence I c'(a + i t )  I is less than a constant times (log t )2 for t 2 2, 
which gives 

lC(1 + it112 IC(a + i0l- I C ' b  + it)ldu 

for 1 < a < 2, t 2 2. These two terms are of the same order of magnitude 
when (a - l)1/4(10g t )9/4 is of the order of magnitude of 1, so choose ts by 
(a - 1) = c(log t)-' to find 

I c( 1 + it) I 2 (Klc3I4 - K2c)(10g t)-7 

which gives IC(1 + it)] 2 K,(log t)-' when c is sufficiently small. There- 
fore lC(l + i t ) - l t - l  I < &'(log ~ ) ~ t - 1  < K4 for t > 2, so the function 
[C(s)(s - 1)I-l is bounded on the line segment {Re s = 1, Im s > 2). Since 
it is also bounded on the rectangle (1 5 Re s <_ 2, I Im s [ < 23 and on the 
halfplane Re s 2 2, it follows from Lindelof's theorem (Section 9.2) that it 
is bounded on the strip (1 < Re s 2); hence it is bounded on the half- 
plane Re s > 1 and the estimate (10) follows. 
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The estimate (11) of the single sum can be used to find that the double 
sum (7) is at most 

x K' 2 (1 + $)1'2(log $)I" 

which, since [log(X/d) 10g(X/d,)]'/~ log X ,  is at most a constant times 

where p and X are given and where d, d, range over integers all of whose 
prime factors divide p .  Let D represent numbers all of whose prime factors 
divide p .  Then 

and for any fixed D the terms of the sum corresponding to D are at most 

where dd, = p D  ranges over all possible factorizations of p D .  Now since 

the terms of the expansion of (1 - P - " ) - ' / ~  as a Dirichlet series, which are 
all positive, dominate in absolute value the corresponding terms of the 
expansion of (1 -p-")'/2. Consequently the terms of the expansion of a, (1 - p-")-1/2 = C(s>'/2 dominate in absolute value the corresponding 
terms of the expansion of f l p  (1 - P - ' ) ' / ~  = ( ( s ) - ~ ' ~ .  Since these latter terms 
have absolute value I a, l/ns, squaring both sides shows that &=, I a, I I ak I is 
less than the coefficient of n-" in [C(S)'/~]~ = C(s) which is one. Therefore (12) 
is at most 

p-1 C D-1 = p-1 
(1+$) D 

and the double sum (7) to be estimated is at most a constant times 
- q ( 1  1 +p) l 2  1 
1% X 9 P P 
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Therefore the quadruple sum.S(a) has, by (6), modulus at most a constant 
times 

because p > X 2  and p I KV imply /3K/3y = 0. Now I 4"- ] ( p )  I = p" nPlp (1 -p-") 
< p" and l-JJlp[l  + (l/p)I4 is less than a constant times npIp ( 1  + p-'l2)). 
[To prove the latter fact, it suffices to note that (1 + x)" < 1 + x1I2 for all 
sufficiently small x, so the quotient (1 + ~ - l ) ~ / ( l  + p-Il2) is less than one 
for all but a finite number of primes p.] Therefore I S(a) I is at most a con- 
stant times 

x 2 - 2 "  = p"- 'F  n - 1 / 2  

x 2 - 2 "  1 r2 g ( 1  + p) I (log - x)2 p5X' n P  

x2-2" ca C n - 3 / 2  C m - l  I -  (log x>2 n = l  m5X' 

which is at most a constant times X2-2"(log X)-l. Finally, this estimate of 
S(a) shows that (3') has modulus at most a constant times 

Since (sin 26)"12 is less than a constant times P I 2 ,  while X2e - < 6-ze/15, and 
ze < 6-e/15, the second term is less than or equal to a constant times the first. 
Therefore (3) and hence Z1 are less than a constant times (6llz6Ze log X)-l  for 
6 sufficiently small. This completes the estimate of Z 1 .  

It remains to show that Z, is insignificant compared to (61/288 log X ) - l .  
Now Z2 is the integral of a sum of terms of the form 

B K B  B B 4 0  iV' " exp(-Pu2 - iQu2), 

where 
p =  "(!+ 2 2  + y) sin26 > 0, 

Q = z ( F - -  m 2 K 2  n 2 q  V 2  cos 26 # 0. 

Every term with Q > 0 is the complex conjugate of a term with Q < 0, so 
when the finite sum over uApv is taken outside the integral sign, Z2 is twice 
the real part of 
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where P, Q are defined in terms of the sextuple u, 1, p, v, m, n as above. The 
sum over m, n can be integrated termwise because it is dominated by the 
integral of c e+ so I Z2 I is at most a constant times 

C I JI u - ~ e - P ~ ' - ' Q u '  du . 
Klpvmn, Q>O I 

A typical term of this sextuple sum can be estimated by writing 

ul-Oe-Pu'-iQu' d log u 
ca 

e-PulQe-lU(v/Q)( 1-8)/2 f d log 
= SQzS 

- - Q(0-1)/24 e-pV/P(cos v - i sin v)v-(8+1)/2 dv. 

By the lemma of Section 9.7 the real and imaginary parts of this integral have 
absolute value at most 

Q-le-Pz'z-l-8 - Q(0- 1)/2e-P~'(Qz2)-(8+ 1)/2 = < Q-le-Pz-l-e 
so Z2 has modulus at most a constant times 

For fixed u, 1, p, v, m the sum over n is at most z-l-e times 

e-nm'X-' sin 26 

(n cos.26)(rnu/1) , , < , ~ , l , ,  Y G 'Ip)-' 

1 .  
12ve-nm'X-'sin 26 

I c mun cos 26 n<mKv/lp muv - n1p 
The sum here is a sum of reciprocal positive integers spaced at intervals of 
p1; the largest term of the sum is at most one and the other terms can be 
estimated using the inequality 

to find that the above sum is at most 
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This is independent of K, A, b, v so summation over these variables mul- 
tiplies the estimate by X4 at most and the sextuple sum (13) is at most 

x7 5 e-xm'X-'sin 26 (& + 1odzx2)) . 
Zl+% cos 26 In= I 

For m 2 e the function m-l[l + log(mX2)] is less than 2m-1 log (mXz) and 
this function decreases, so this is at most 

x7 [ $ e-xm'X-'ain2d(& lo g (mX2) ) 
z'+% cos 26 m= I 

U 

The first term in brackets is at most 3[1 + log(3X2)] I const + const log X 
I const log(1/6). If the integral in brackets is split at the point where the 
exponent is -R, that is, where? u = X(sin 26)-II2, it is seen to be at most 2 
times 

+ 1: e-""' log v d log v. 

Since X3(sin 26)-lI2 
[log(1/6)I2 as 6.1 0. Therefore Z2 is less than a constant times 

6-3/15 6-1/2 I & I ,  this is less than a constant times 

Since this quantity multiplied by 61/20ze log X is at most 3z-16-7/1563/2 
[10g(1/6)]~(1/15)[10g(1/6)] and because this quantity approaches zero as 
6 J 0, this completes the proof of the lemma. 

Note added in secondprinting: The theorems of this chapter have now been superseded 
by Levinson's theorem that a thirdof the zeros lie on the line, that is,(NT) > +(T/27r)log(T/2?r) 
for all sufficiently large T. See his article " More than one third of zeros of Riemann's zeta- 
function are on u = )," Advances in Mathematics, 13 (1974) pp. 383436. 

tNote that this point lies to the right of I( = 3 when 6 is sufficiently small. 



Chapter 12 

miscellany 

12.1 THE'RIEMANN HYPOTHESIS AND 
THE GROWTH OF M(x) 

Let dM be the Stieltjes measure such that the formula 

[(l) of Section 5.61 takes the form 

x-' dM(x) (Re s > 1). 1 

Then M(x) = dM is a step function which is zero at x = 0, which is con- 
stant except at positive integers, and which has a jump of p(n) at n. As usual, 
the value of M at a jump is by definition &[M(n - 8) + M(n + &)I = C;I! 
p( j )  + fp(n) .  Integration by parts gives for Re s > 1 

d[x-"M(x)] - J'* M(x) d(x-8) flo= I, 

because the obvious inequality I M(x) I 5 x implies that x-" M(x) --t 0 as 
x + 00 and that M ( X ) X - ~ - ~  dx converges, both provided Re s > 1. Now 
if M(x) grows less rapidly than x" for some a > 0, then this integral for l/C(s) 
converges for all s in the halfplane {Re(a - s) < 0) = (Re s > a), and there- 
fore, by analytic continuation, the function l/C(s) is analytic in this halfplane. 
Since 1/C(s) has poles on the line Re s = 3, this shows that M(x) does not 

260 



12.1 Riemann Hypothesis and Growth of M(x) 26 1 

grow less rapidly than x" for any a < 3. Moreover, it shows that in order to 
prove the Riemann hypothesis, it would sufice to prove that M(x)  grows less 
rapidly than x( ' /~)+# for all& > 0. Littlewood in his 1912 note [L12] onthe three 
circles theorem proved that this sufficient condition for the Riemann hypo- 
thesis is also necessary; that is, he proved the following theorem. 

Theorem The Riemann hypothesis is equivalent to the statement that 
for every e > 0 the function M(X)X- ( ' /~ ) -~  approaches zero as x --* 00. 

Proof It was shown above that the second statement implies the Riemann 
hypothesis. Assume now that the Riemann hypothesis is true. Then Back- 
lund's proof in Section 9.4 shows [using the Riemann hypothesis to conclude 
that F(s) = ((s)] that for every e > 0, 6 > 0, and no > 1 there is a To such 
that I log ((a + i t)  I < S log t whenever t 2 To and 4 + E I Q I o0. Since 
I log [(s) I is bounded on the halfplane (Re s 2 o0), this implies that on the 
quarterplane {s = Q + it: Q = 3 + E, t 2 To) there is a constant K such 
that I I/(@) I Kt6. This is the essential step of the proof. Littlewood omits 
the remainder of the proof, stating merely that it follows from known theo- 
rems. One way of completing the proof is as follows. 

The estimates (2) and (3) of Section 3.3 show that the error in the approx- 
imation 

for x not an integer is at most 

1 

The first sum in brackets is at most 
1 1 

n<x/2  c n2 log(x/n) + x/zZtx n2 log{l+ ~ ( x  - n)/n]) 

assuming, of course, that x is not an integer. Since log(1 + y )  2 $ y  for 0 5 
y I 1 this is at mostt 

4 1 
x 0<1<x/2 J 

I- C(2) 4 .- +- c 7. 

log 2 + x x - [XI 

?As usual, [x]  denotes the largest integer less than x.  
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This shows that it is bounded for large x provided x - [XI is not too small, 
say, for example, if x is a half integer (half an odd integer). The second sum 
in brackets can be estimated in a similar way to arrive at the conclusion that 
for half-integer values of x the error in the approximation 

M(x) - - 
is less than a constant times x2/T as x + 00. But by Cauchy's theorem (and 
the Riemann hypothesis) the integral on the right is equal to 

The estimate I l/C(s) I 5 Kt8 shows that the first integral and the third integral 
are each less than a constant times x2.KT6-l while the middle integral is at 
most 

Setting T = x2 then shows that M(x) is less than a constant times x ( ' / ~ ) + ~ + ~ ~  
for all large half integers x. Since M(x) changes by at most f 1 between half 
integers, the same is true for all values of x and, since e > 0 and 6 > 0 were 
arbitrary, it follows that the Riemann hypothesis implies M(x) grows less 
rapidly than x ~ / ~ + ~  for all e > 0 as desired. 

Corollary If the Riemann hypothesis is true, then the series (1) converges 

Proof 

throughout the halfplane {Re s > +] to the function l/c(s). 

The theorem shows that if the Riemann hypothesis is true and if Re s > i, 
then the limit of this expression as x --f 00 exists and is equal to s M(u) 
u-'-l du. This limit is l/c(s) for Re s > 1 and hence by analytic continuation 
for Re s > 4 as well. 

Stieltjes wrote to Hermite in 1885 that he had succeeded in proving the 
even stronger statement that M(x) = O(x1/2)-that is, M(x)/x1I2 remains 
bounded as x --+ co-and he observed that this implies the Riemann hypothe- 
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sis. This letter [ S 6 ]  from Stieltjes to Hermite is what lies behind Hadamard’s 
startling statement in his paper [H2] that he is publishing his proof that the 
zeta function has no zeros on the line (Re s = 1) only because Stieltjes’ proof 
that it has no zeros in the halfplane (Re s > 4) has not yet been published and 
is probably much more difficult! 

In retrospect it seems very unlikely that Stieltjes had actually proved the 
Riemann hypothesis. Although in his time this was quite new territory- 
Stieltjes was among the first to penetrate the mysteries of Riemann’s paper- 
enough work has now been done on the Riemann hypothesis to justify 
extreme skepticism about any supposed proof, and one must be very skeptical 
indeed in view of the fact that Stieltjes himself was unable in later years to 
reconstruct his proof. All he says about it is that it was very difficult, that it 
was based on arithmetic arguments concerning p(n), and that he put it aside 
hoping to find a simpler proof of the Riemann hypothesis based on the 
theory of the zeta function rather than on arithmetic. Moreover, even assum- 
ing the Riemann hypothesis, Stieltjes’ stronger claim M(x) = O(X’/~) has never 
been proved. All in all, except to remember that a first-rate mathematician 
once believed that the most fruitful approach to the Riemann hypothesis was 
through a study of the growth of M(x) as x -, 00, the incident is probably 
best forgotten. 

12.2 THE RIEMANN HYPOTHESIS AND FAREY SERIES 

It was shown in the preceding section that the Riemann hypothesis is 
equivalent to the arithmetic statement “M(x) = O ( X ( ’ / ~ ) + ~ )  for all e > 0.” 
Similarly, it was shown in Section 5.5 that the Riemann hypothesis is equiva- 
lent to the arithmetic statement ‘ ‘~(x)  - x = O(X(”~)+*) for all e > 0.” A 
third arithmetic statement equivalent to the Riemann hypothesiswas found by 
Franel and Landau [Fl] in the 1920s. Theirs deals with Farey series. 

For a given real number x > 1 consider the rational numbers which, 
when expressed in lowest terms, have the denominators less than x .  (For the 
sake of convenience assume x is not an integer.) The Farey series? corre- 
sponding to x is a complete set of representatives modulo 1 of these rational 
numbers, namely, the positive rationals less than or equal to 1 which can be 
expressed with denominators less than x.  For example, for x = 74 the Farey 
series is 

+,&,++,++ *, ++, +Q,$,+ &+*, 4, 1. 

?On the history of the name see Hardy and Wright [H7]. Note that the Farey series is 
not a series at all but a finite sequence. 



264 Miscellany 

A fascinating property of this sequence-and in fact the property which first 
attracted attention to it-is that ifp/q,  r/s are successive terms of the sequence, 
then qr - ps = 1. This property will not, however, play a role here. Let A(x) 
denote the number of terms in the Farey series corresponding to x, for ex- 
ample, 474)  = 18. Since the A(x) terms of the Farey series are unequally 
spaced through the interval from 0 to 1,  they will in general differ from the 
the equally spaced points l /A(x),  2 / 4 4 ,  . . . , A(x)/A(x) = 1.  For v = 1,2, 
. . . , A(x) let 6, denote the amount by which the vth term of the Farey series 
differs from v/A(x); for example, when x = 7$, 6, = (2/7) - (5/18) = 1/126. 
The theorem of Franel and Landau is that the Riemann hypothesis is equivalent 
to the statement that I a1 + 16, I + * - - + I 1 = o(x(1/2)+*)for all e > 0 as 

The connection between Farey series and the zeta function, so surprising 
at first, can be deduced from the following formula. Let f be a real-valued 
function defined on the interval [0, 11-or, perhaps better, let f be a periodic 
real-valued function of a real variable with period one-and let r l ,  r2, . . . , 
rA(%) = 1 denote the terms of the Farey series corresponding to x. Thent 

x‘m. 

Thus the rather irregular operation of summingfover the Farey series can be 
expressed more regularly using the function M and a double sum. Note that 
the right side of (1) is defined for all x and that it gives a natural extension of 
the left side to integer values x = n, namely, the mean of the value for n + e 
and the value for n - e or, what is the same, the sum off over all positive 
rationals less than or equal to 1 with denominators less than or equal to n, 
counting those with denominator exactly n with weight 4. 

Formula (1) can be proved as follows. Let D(x) be the function 

1 for x > 1, 
D(x) = 3 for x = 1, I 0 for x < 1. 

Then the definition of M gives M(x) = C p(n)D(x/n). But by Mobius in- 
version this is equivalent to D(x) = C M(x/n). Now for any fraction in 
lowest terms p/q (0 < p 5 q, p and q relatively prime integers) the termfblq) 
=f(2p/2q) =f(3p/3q) = - - . occurs on the right side of (1) with the coefficient 
M(x/q) + M(x/2q) + M(x/3q) + - - - = D(x/q) which is one if q < x and 
zero if q > x, which is its coefficient on the left side of (1). This completes 
the proof of (1). 

?Note that the s u m  on the right is finite because all terms with k > x are zero. 
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Now formula (1) applied to f ( u )  = eZdU gives 

But since Cf= I e2nrJlk is a sum of k complex numbers equally spaced around 
the unit circle, it is zero unless k = 1 in which case it is 1. Thus the right side 
is simply M(x). Hence, with A(x) abbreviated to A, 

A A 

v=  I Y =  1 

M(x) = C e2Jrv  = C e2dC(r/A)+d,1 

A 

v= 1 
= 2 C lsin nSvI 4 2n C ISvl 

which proves one half of the Franel-Landau theorem, namely, the half 
which states that C ISv I = o(x ( ' /~ )+*)  implies the Riemann hypothesis. 

The key step in the proof of the converse half is to apply formula (1) to 
the functiont B,(u) = u - [u] + 4 of Section 6.2. The technique used in 
Section 6.2 to prove B,(2u) = 2"-l[B,(u) + B,(u + a)] gives immediately the 
identity 

B,,(ku) = k"-I[8.(.) + B,(u + i) + - - - + B.(u + ?)I- 
The same identity applies to @,, because by the periodicity of j,, it suffices to 
consider the case 0 u < Ilk, in which all the values of B,, in the identity 
coincide with those of B,. Thus 

(2) 

and 

&(u + +) + B,(U + z) 2 + * * + B,(u + 1) = B,(ku) 

Let G denote this function. The two expressions for G lead to two different 
ways of evaluating the definite integral 

Z = [G(u)I2 du 

tFor the sake of neatness one should stipulate &(O) = 0 so that the value at the jump is 
the middle value. This is not necessary here. 
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and these lead to the proof of the remaining half of the Franel-Landau 
theorem. 

Consider first the evaluation of I using G(u) = Cy"'I bl(u + r,). This 
equation shows that G jumps downward by 1 at each Farey fraction and in- 
creases like Au between Farey fractions. Moreover, since the r, other than 
r, = 1 are symmetrically distributed aroundi, xt:: bl(r,) = 0, so the right- 
hand limit G(O+) = limu,, G(u) = limvl0 j ( u  + 1) is -4. Thus between r, 
and rv+l the value of G is given by the formula G(u) = -3 + Au - v .  
Hence 

Z = $ r  ( - T + A u - v + l ) ' d u  1 
v = l  ry-l 

provided that ro is defined to be 0. Since Ar, = A[rv - (v /A)  + (v/A)J = 
A6, + v ,  this gives 

(using AS, - 3 = -3 = AS, - 4) 
= - 1 ' 4  C [2.3(AdJ2 * 

3A , = I  

1 A 

"= 1 
= A  C 6,' + j=j 

as an exact formula for Z in terms of the 6,. 

the sum is finite, this gives immediately 
Now consider the evaluation of Zusing G(u) = x;= dl(ku)M(x/k).  Since 

B,(au)Bl(bu)du. 
n = l  b = l  

The coefficients Z,, = J: 8,(au)B,(bu) du of this double series can be evalua- 
ted explicitly as follows. If b = 1, then it is 

a-1 dv = a - ' 2  J 1  Bl(k + t )B l ( t  + $) dt 
k=O 0 

1 -  

[by the periodicity of Bl and by (2)3 

= a-1 J: (t - +)' dt = (12u)-1. 
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If b is relatively prime to a, then the same sequence of steps shows, since 
(bk/a) mod 1 for k = 0, 1, . . . , a - 1 gives each fractionjla exactly once, that 

1 -  
Zob = a-l B , ( t )b ,  (a  5) dt 

Finally, if c = (a, b) is the greatest common divisor of a and by then a = ca 
and b = cB, where a and j? are relatively prime and 

Thus the final formula is 

where c = (a, b) is the greatest common divisor of a and b. 
Now if the Riemann hypothesis is true, then for every E > 0 there is a C 

such that M(x) < C X ( ~ / ~ ) + ~  for all x. Hence the Riemann hypothesis implies 

(replacing a sum over relatively prime a, j3 with a sum over all a, 8) which 
shows that Z is less than a constant times x ~ + ~ ~  for all E > 0. The other ex- 
pression for I shows then that for every E > 0 the Riemann hypothesis im- 
plies 

A JV2 < Kxl+", 
"= 1 

where K is a constant depending on E.  But then by the Schwarz inequality 

as was to be shown. 
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12.3 DENJOY’S PROBABILISTIC INTERPRETATION OF THE 
RIEMANN HYPOTHESIS 

One of the things which makes the Riemann hypothesis so difficult is the 
fact that there is no plausibility argument, no hint of a reason, however un- 
rigorous, why it shouid be true. This fact gives some importance to Denjoy’s 
probabilistic interpretation of the Riemann hypothesis which, though it is 
quite absurd when considered carefully, gives a fleeting glimmer of plausibil- 
ity to the Riemann hypothesis. 

Suppose an unbiased coin is flipped a large number of times, say N times. 
By the de Moivre-Laplace limit theorem the probability that the number of 
heads deviates by less than KN112 from the expected number of 4N is nearly 
equal to J - ( 2 K , / n ) l , a  exp(--nx2) dx in the sense that the limit of these proba- 
bilities as N -, 00 is equal to this integral. Thus if the total number of heads 
is subtracted from the total number of tails, the probability that the resulting 
number is less than 2KN1lZ in absolute value is nearly equal to 2JfK”x)1” 
exp(--nx2) dx, and therefore the probability that it is less than N(1 /2 )+a  for 
some fixed e > 0 is nearly 2 J ~ ( z z ) ” ’  exp(-zx2) dx. The fact that this ap- 
proaches 1 as N 4 00 can be regarded as saying that with probability one 
the number of heads minus the number of tails grows less rapidly than N(1/2)+8.  

Consider now a very large square-free integer n, that is, a very large in- 
teger n with p(n) # 0. Then p(n) = f 1. It is perhaps plausible to say that 
p(n) is plus or minus one “with equal probability” because n will normally 
have a large number of factors (the .density of primes I/log x approaches 
zero) and there seems to be no reason why either an even or an odd number 
of factors would be more likely. Moreover, by the same principle it is perhaps 
plausible to say that successive evaluations of p(n) = f 1 are “independent” 
since knowing the value of p(n) for one n would not seem to give any? in- 
formation about its values for other values of n. But then the evaluation of 
M(x) would be like flipping a coin once for each square-free integer less than 
x and subtracting the number of heads from the number of tails. It was shown 
above that for any given e > 0 the outcome of this experiment for a large1 
number of flips is, with probability nearly one, less than the number of flips 
raised to the power 4 + e and a fortiori less than d1l2)+’. Thus these probabi- 

?An exception to this statement is that for any primep, p(pn) is either -p(n) or zero. 
However, this principle can only be applied once for any p because p(p2n) = 0 and this 
“information” really says little more than that p is determined by a formula and is not, in 
fact, a random phenomenon. 

$The number of flips goes to infinity as x ---f 09 because, among other reasons, there 
are infinitely many primes, hence a fortiori infinitely many square-free integers (products 
of distinct primes). 

( z K a / d ’ / a  
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listic assumptions about the values of p(n) lead to the conclusion, ludicrous 
as it seems, that M(x) = O(X(’ /~)+~) with probability one and hence that the 
Riemann hypothesis is true with probability one ! 

12.4 AN INTERESTING FALSE CONJECTURE 

Riemann says in his memoir on n(x) that “the known approximation 
n(x) N Li(x) is correct only up to terms of the order x1l2 and gives a value 
which is slightly too large.” It appears from the context that he means that 
the average value of a(x) is less than Li(x) because he ignores the “periodic” 
terms Li(xp) in the formula for J(x), but in the tables in Sections 1.1 and 1.17 
it will be noticed that even the actual value of n(x) is markedly less than Li(x) 
in all cases considered. This makes it natural to ask whether it is indeed true 
that n(x) < Li(x). This conjecture is supported by all the numerical evidence 
and by Riemann’s observation that the next largest term in the formula for 
n(x) is the negative term -f Li(x1I2). Nonetheless it has been shown by 
Littlewood [L13] that this conjecture is false and that there exist numbers x 
for which n(x) > Li(x). In fact Littlewood showed that it is false to such an 
extent that for very e > 0 there exist values of x such that n(x) > Li(x) + 
x ( 1 / 2 ) - ~  

This example shows the danger of basing conjectures on numerical evi- 
dence, even such seemingly overwhelming evidence as Lehmer’s computa- 
tions of n(x) up to ten million. As a matter of fact (see Lehman [L6]) no actual 
value of x is known for which n(x) > Li(x), although Littlewood’s proof can 
be used to produce a very large X with the property that some x less than X 
has this property, which reduces the problem of finding such an x to a finite 
problem. More importantly, though, this example shows the danger of as- 
suming that relatively small oscillatory terms can be neglected on the assump- 
tion that they probably will not reinforce each other enough to overwhelm a 
larger principal term. In the light of these observations, the evidence for the 
Riemann hypothesis provided by the computations of Rosser et al. and by 
the empirical verification of Gram’s law loses all its force. 

12.5 TRANSFORMS WITH ZEROS ON THE LINE 

The problem of the Riemann hypothesis motivated a great deal of study 
of the circumstances under which an invariant operator on R+ has a transform 
with zeros on Re s = f, that is, under which an integral of the form 
1; x-“F(x) dx has all of its zeros on Re s = 4. 
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A very general theorem on this subject was proved by Polya [PI] in 1918. 
Stated in the terminology of Chapter 10, Polya's theorem is that a real sey- 
adjoint operator of the form f ( x )  H J",J(ux)F(u) du [where F(u) is real and 
satisfies u-~F(u-~) =I;(#)] which has the property thati U ' / ~ F ( U )  is nondecreas- 
ing on the interval [I, a] has the property that the zeros of its transform all lie 
on the line Re s = 3. 

Simple and elegant though this theorem is, it gives little promise of lead- 
ing to a proof of the Riemann hypothesis because the function H(x) which 
occurs in the formula 213s) = u-"H(u) du very definitely does not have the 
property that U ' / ~ H ( U )  is nondecreasing and, in fact, as obviously must be the 
case if a positive function H(u) is to have a transform u-"H(u) du defined 
for all s, the decrease of H(u) for large u is very strong. 

In 1927 Polya published [P2] a very different sort of theorem on the same 
general subject. This theorem states that if q5 is a polynomial which has all 
its roots on the imaginary axis, or i f$ is an entire function which can be written 
in a suitable way as a limit of such polynomials, then if u-" F(u) du has all 
its zeros on Re s = a, so does u-"F(u)$(log u) du. Here the conditions on F 
can be quite weak; it will suffice to consider the case F(u) = o(exp(-l log u 12+6)) 
in which, in particular, F(u) goes to zero much more rapidly than any power 
of u as u ---f 0 or u + 00. Polya also proved that, conversely, if q5 is an entire 
function of genus 0 or 1 which preserves in this way the property of a trans- 
form's having zeros on the line Re s = f , then I$ must be a polynomial with 
purely imaginary roots or a limit of such polynomials. 

The idea of the proof of this theorem is roughly as follows. I f P ( t )  is a 
polynomial with distinct real roots, then so is rP(t) - P'(t)  for any real num- 
ber r ;  if r = 0, this follows from the fact that there is a zero of P'(t) between 
any two consecutive zeros of P(t)  [thus accounting for all the zeros of P'(t)], 
and if r # 0, it follows from the fact that rP(t) - P'(t) changes sign on each 
of the intervals (two of them half infinite) into which the real line is divided 
by the zeros of P'(t) [thus accounting for all the zeros of rP(t) - P'(t)]. The 
change of variable s = 3 + it then shows that if P(s) is a polynomial with 
distinct roots all of which lie on Re s = f, then the same is true of -irP(s) 
- P'(s) for any real r. In other words, the operator -d/ds - ir preserves the 
property of a polynomial's having distinct roots all of which lie on Re s = f. 
Thus if uF(u)-" du has all its roots on Re s = f, and if it is a nice entire 
function which can be written in a suitable way as a limit of polynomials, 

?The unnatural-seeming factor u1/2 can be eliminated by _renormalizing so that 
I; x-sF(x) dx is written I; x ( ~ I ~ ) - ~ J x ~ ' ~ F ( x ) ]  dlog x = I; x-zF(x) dlog x. Then the 
self-adjointness condition is simply F(x) = P(x-l) ,  Polya's condition is that P be non- 
decreasing on [l, a], and the conclusion of the theorem is that the zeros lie on Im z = 0. 
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then it is reasonable to expect that 
m 

-ir I u-"F(u) du - -$ I, u-'F(u) du 

= I, u-# (log u - ir)F(u) du 

has the same property. Iterating this statement then gives Polya's theorem for 
any polynomial 4 with imaginary roots and hence, on passage to the limit, 
for any suitable limit of such polynomials. For the actual proof see Polya 
WI. 

u-" 
F(u) du with zeros on the line Re s = 4, it is necessary to begin with such an 
integral. From the theory of Bessel functions it was known that u-%-1/2 

exp(--nu2 - -nu-2) du is such an integral. Polya proved this directly, without 
reference to the theory of Bessel functions, as follows. For fixed s let 

In order to apply Polya's theorem to obtain integrals of the form 

w(a) = s, u-Ju- 1/2 e --OY*-OY-' d u. 

This can be regarded as a deformation of the given integral w(n) to 0 = w(m). 
It satisfies a second-order linear differential equation, as can be seen by ap- 
plying (a d/da)2 to find 

I, p - 1 / 2  [( # g du)2 e-ou'-ou-' ] du = 4(a $)2w(u) - 16a2w(a). 

Integration by parts on the left then gives, since the adjoint of u d/du is 
-(d/du)u which carries u-J-(1/2) to (s - $)u-'-(lI2), 

[(s - $)->" + 16a2]w(a) = 4 u - W ( U )  ( : )2  

which is the desired differential equation satisfied by w(u). Let W(u) = 
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u d/du w(a). Then 
d 

u ;s;;[WKj] = * [ (s  - f ) 2  + 16u2]w(u)O(u) + W R .  

Divide by u and integrate both sides from a to 03 to find 

1 " 1  
4 x u  

- Im W(a)fi(a) = -2xy I - I w l 2  du, 

where s - 3 = x + iy. If w(a) = 0, then, because the integral cannot be 
zero, either x or y must be zero. But if y = 0, then u-' is positive real; hence 
w(a) # 0 directly from its definition. Thus w(a) = 0 implies x = 0, Re s = 
4, as was to be shown. 

du has its zeros on the line 
Re s = 4 whenever $ is as above. Although there seems to be no way to use 
this fact to prove the Riemann hypothesis, Polya used it to prove that a 
certain "approximation" to C(s) does have its zeros on the line Re s = 4. In 
the formula 

Thus u-"$(log u)zr112 exp (-nu2 - 

the term with n = 1 predominates for u large. This term is 

1, u-"(4a2u4 - 6nu2)e-""' du. 

If this is replaced by 

2t**(s)  = I, u-"[4a2(u4 + 24-7 - 6a(u2 + ~ - ~ ) ] e - ~ " ' - ~ ~ - '  du, 

the approximation is still good for large u, and since the integral is now the 
transform of a self-adjoint operator, the approximation must also be good 
for u near 0. Thus t** is in some sense "like" <. However, C** does have its 
zeros on the line Re s = 3, a fact which follows from the above theorems once 
it is shown that $ defined by 

$(log U )  = 4n2(u9I2 + u - ~ ' ~ )  - ~ x ( u " ~  + u - ~ ' ~ ) ,  

that is, 
$(z) = 8a2 C O S ~ ( ~ Z / ~ )  - 12a C O S ~ ( ~ Z / ~ )  

can be written as a suitable limit of polynomials with imaginary zeros. By 
making appeal to the theory of entire functions, the proof of this statement 
can be reduced to the statement that $ itself has all its zeros on the imaginary 
axis. This can be done as follows. 
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Consider the function P(y)  = 8n2y9 + 8n2y-9 - 12nys - 1 2 ~ y - ~ .  This 
function has precisely 18 nonzero roots in the complex y-plane, and, since 
$(z) = P(e'/">, in order to prove that the zeros of $ are all pure imaginary 
it will suffice to prove that these 18 roots all lie on the circle I y I = 1. Now on 
the unit circle 1 = y-l, so P(y) = 2 Re{QCy)} where QCy) = 8n2y9 - 12nys. 
Since 8n2 > 12n, all 9 roots of Q lie inside the unit circle. Therefore the in- 
tegral of the logarithmic derivative of Q around the unit circle is 18ni, that 
is, Q(y) = reie, where 8 increases by 18n as y goes once around the unit 
circle. But since PCy) = Re Q(y) = r cos 8, this implies P(y )  has 18 zeros on 
the circle I y I = 1 and accounts for all the zeros of P .  

12.6 ALTERNATIVE PROOF OF THE I N T E W  FORMULA 

An interesting alternative proof of the RiemannlSiegel integral formula 

y(s> = F(s) + F(1 - i),' 
s(s - 1) 

(see Section 7.9) was given by Kuzmin [K3] in 1934. Kuzmin's proof is al- 
together different from the proof given in Section 7.9, and it shows an interest- 
ing connection between formula (1)-which can be regarded as Riemann's 
third proof of the functional equation of C-and Riemann's second proof of 
the functional equation (see Section 1.7). What follows is a simplified proof 
of (1) based on Kuzmin's. It depends on the functional equation G(x) = (l/x) 
G(l/x) (see Section 10.4) but not on the definite integral formula ( 5 )  of 
Section 7.4 which is the basis of Riemann's proof of (1). 

Let G(x) = x;=-m exp (-nn2x2) as before. Then the formula 

(3) 
m 

-- 2t(s) uS--'[G(u) - 13 du (Re s > l), s(s - 1) - so 
which is easily proved by using absolute convergence to justify interchange of 
summation and integration, 

= n-'/2II(; - l)((s) 
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is essentially the formula (1) of Section 1.7 on which Riemann bases his 
second proof of the functional equation. He breaks the integral at u = 1 
and obtains what amounts to 

m 

= 5, v-"[;G(+) - $1 dv + I u"-'[G(u) - 11 du 

I = (v-' + vS-')[G(4)) - 13  dv + jm v - f  1 - -1 V dv 
1 

1 1 = j, ( v - ~  + vS-l)[G(v) - 11 dv + - - - s - 1  s 

at first for Re s > 1 but then by analytic continuation for all s. If the integral 
(3) is broken at u = b instead of u = 1, the same sequence of steps gives 

m - 2 w  = v-.[+G(;) - 4 ] d v  + uS-l[G(u) - 1]du 
s(s - 1) 

m bx-1 bs 
= J b - l  v-"G(v) - 11 dv + - - - s - 1  s 

+ u"-'[G(u) - 11 du. 

Let F&) be the function which is defined by 

Fb(s) = u"-'G(U) du 

for Re s < 0 and therefore by 
b" m 

u"-'[G(u) - 11 d~ - - 
Fb(s) = sb S 

for all s # 0. Then the above formula is simply 

(4) 

and Riemann's second proof of the functional equation is simply the case 
b = b-' = 1 of this formula. But Fb(s) is defined not only for positive real b 
but for all values of b in the wedge {I Im log b I < 4 4 )  where G is defined; 
for example, the integral from b to 00 in the definition of Fb(s) can be taken 
to be the integral over the half-line {b  + t: t positive real] parallel to the real 
axis. The complex conjugate of F&) is F6(.i), so formula (4) has the same form 
as (1) whenever b-l = 6; that is, 

-- 2e(s) - Fb(s) + Fb(1 - 5) (I b ]  = 1) ( 5 )  s(s - 1) 
whenever b lies on the unit circle between ( - i ) l l 2  and i l l z .  Kuzmin proves the 
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Riemann-Siege1 formula (1) by proving it is the limiting case of this formula 
( 5 )  as b -+ ( - i )* l2;  that is, 

lim F b ( s )  = F(s) (s f 0)  
b-(-i)119 

when b approaches (-i)Ij2 along the unit circle. This clearly suffices to prove 

Kuzmin had alreadyt studied formula ( 5 )  in 1930, prior to the publica- 
tion of the Riemann-Siege1 formula, and he had already shown that the limit- 
ing case could be written in the form 

(1). 

for s # 0. These manipulations will be justified below. If Re s < 0, then the 
final formula can be written more simply as 

On the other hand, F(s) can also be written as a sum over all integers by using 
the elementary1 formula 

?It is interesting to note that this work [K2] of Kuzmin’s, which preceded the publication 
of the Riemann-Siege1 formula, was motivated by the wish to be able to compute ((3 + it) 
for large t, as was Riemann’s. With this and with the Hardy-Littlewood approximate 
functional equation, one has the feeling that after 70 years other mathematicians were getting 
up to where Riemann had been. However, it still seems rather doubtful that the Riemann- 
Siege1 asymptotic formula would have been found to this day had it not been found by 
Riemann. 

$One way to prove this formula is to expand f ( t )  = eznfxr  as a Fourier series on the 

interval (-4 5 t < 4) to find f ( t )  = 

an = 

u,,etninr, where 

(- l)n(&x - e - f n x )  
2ni(x - n) 

-03 

from which, with t = 0, 

as desired; this holds for real nonintegral x and hence for all nonintegral x by analytic 
continuation. Another way to prove it is to note that the two sides have the same poles and 
to then use a method like that of Chapter 2. 
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in the definition of F(s) to find 

provided termwise integration is valid. Thus in order to deduce the Riemann- 
Siege1 formula from his 1930 formula, Kuzmin had only to justify the term- 
wise integration (8) and to prove 

for Re s < 0, since this proves lim F&) = F(s) for Re s < 0 and hence by 
analytic continuation for all s. 

Consider the function 
-I== e a x 2 X l - s  dx s x2 - n2 

for Re s < 0. This integral converges not only for positive real a but for all a 
in the halfplane Re a > 0. If the line of integration is tilted slightly away from 
the imaginary axis and toward the line of slope - 1 through the origin, then 
the halfplane of convergence of the integral is rotated slightly and comes to 
include the negative imaginary a-axis. Thus the function (10) can be continued 
analytically to have a value at a = -in. But then the line of integration can 
be moved to 0 \ 1 without changing the value of the integral when a = -in. 
In other words, the integral 

I,,, e-,":'y;dx 

can be evaluated byjinding the analytic continuation of the function (10) to the 
negative imaginary a-axis and setting a = in (s being fixed with Re s < 0). 
But a formula for the function (10) which "remains valid for a in the slit 
plane" can be found simply by the manipulations 

e-av'(-iv)-s d log v = s  o 1 + w2n2  
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at first for a real and positive (say) but then by analytic continuation for all 
a in the slit plane. Thus with a = -in 

m 

- e-Kll'U' du - J(-,)l,2 
for Re s < 0 as was to  be shown. (The only complications for Re s 2 0 
occur in the terms with n = 0.) 

This reduces the proof of the Riemann-Siege1 formula (1) to Kuzmin's 
formula (7) and the termwise integration (8). The termwise integration (8) is 
easily justified by noting that for any x on the path of integration 0 \ 1 the 
point x /n  lies between 0 \ 1 and the line of slope 1 through the origin (n # 
0). Hence x2/nz is bounded away from 1, say I (x/n)2 - 1 I 2 K, and therefore 
I x 2  - n2 1-l < K - ' w 2 ,  from which it follows that the integrand converges 
uniformly and can therefore be integrated termwise on finite intervals. To- 
ward the ends of the line of integration, the integrand is dominated by a 
constant times exp (-n I x 12) I x l lTS  and can therefore be integrated termwise 
by the Lebesgue dominated convergence theorem. Similarly elementary argu- 
ments suffice to  prove that the termwise integration 

Fb(s) = nsm I, us-le-nn'u' du (Re s < 0) 

is valid for all b inside the wedge {Im log b < 72/41 where G is defined, and it 
suffices to  prove that the limit as b --+ ( - i ) l I 2  can be taken termwise. But 
integration by parts 

shows that if Re s < 0 and if b is inside or on the wedge and outside or on 
the unit circle, then 
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and therefore the series for F,(s) converges uniformly (for fixed s) for b in 
this region. Therefore the limit as b -, (-i)i’2 can be taken termwise and the 
proof is complete. 

12.7 TAUBERIAN THEOREMS 

Perhaps the simplest formulation of the idea of the prime number theorem 
is the approximation dy(x) N dx. Since dy(x) = (log x )  dJ(x) (see Section 
3. l), this is equivalent to Riemann’s approximation &(x) - &/log x (see 
Section 1.18). The theory of Tauberian theorems gives a natural interpreta- 
tion of the approximate formula dy(x) - dx and shows a direct heuristic 
connection between it and the simple pole of ((s) at s = 1. 

Of course the statement dy(x)  N dx makes no sense at all except as a 
statement about the average density of the point measure dy(x). The theory 
of Tauberian theorems deals precisely with the notion of “average” and its 
various interpretations. Let the Abel average of a sequence sl, sz, s3, . . . be 
defined to be 

lim s ir  + s2r2 + s3r3 + - - - = 
r t i  r + r2 + r3 + 

when this limit exists (and when, in particular, the infinite series in the nu- 
merator is convergent for all r < 1). In other words, the Abel average is 
found by taking the weighted average of the sequence {s,}, counting the nth 
term with weight rn, and then letting r 7 1. Since for fixed r the weights r” 
approach zero rather rapidly as n + 00, the sum C SJ“ will converge unless 
the s, grow rapidly in absolute value; on the other hand, for fixed n the weight 
r” of the nth term approaches 1 as r 7 1, and so for any fixed N the terms be- 
yond the Nth eventually far outweigh the terms up to the Nth once r is near 
enough to 1. Abel’s theoremt states that if the sequence (s,} converges to a 
limit L, then the Abel average exists and is equal to L. Tauber’s theorem [Tl] 
states that if (s,,} is slowly changing in the sense that I s,+ - s, I = o(l/n), then 
the converse is true. More precisely, Tauber’s theorem says that if for every 
E > 0 there is an N such that I s,+ - s, I < e/n whenever n 2 Nand if the 
limit (1) exists [it is easily shown that the condition on (s,) implies that the 

tAbel’s theorem is, however, more frequently stated for the series a1 = si , uz = 
sz - s1 , a3 = s3 - sz, . . . , a, = Sn - sn-1, . . . of which the 3, are the partial sums (see, 
for example, [El]). If the series converges, the s, are bounded, so z snrn converges for r < 1 
and by multiplication of power series (x s .r)( l  - r)  = s1r + (s2 - s&2 3. -. = 
2 a.m. Thus the statement (1) is identical to lim, t C anr* = L, which is the statement that 
the series z a,, is Abel summable. The usual method of proof of Abel’s theorem is to put it 
in the form (1) by partial summation. 
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numerator of (1) converges for r < 11, then in fact the sequence must be 
convergent to L. 

Both Abel’s theorem and Tauber’s theorem are “Tauberian theorems” in 
the modern sense, provided that the statement 

lim s, = L 

is thought of as one possible interpretation of the statement that the “average” 
of (s,} is L. Then Abel’s theorem states that if (s,} has the average L in the 
sense of (2), it has the average L in the sense of (l), and Tauber’s theorem 
states that if it has the average L in the sense of (1) andif I s,+ - s, I = o(l/n), 
then it has the average L in the sense of (2). In general, a “Tauberian theorem” 
is a theorem like these which permits a conclusion about one kind of average, 
given information about another kind of average. 

An important step forward in the theory of Tauberian theorems, and 
perhaps the real beginning of the theory as such, was Littlewood’s discovery 
in 1910 that the condition in Tauber’s theorem can be very significantly 
weakened to [ s,+ - s, 1 = O(l/n). At about the same time Hardy proved the 
analog of Tauber’s theorem-with Littlewood’s modification-for the “aver- 
age” defined by 

n-m 
(2) 

lim s1 + s2 + s3 + 
N-m 1 + 1 + 1 + + 1 

’ * + sN = L. (3) 

That is, Hardy showed that if (s,) has the average L in the sense of (3) and if 
there is a K such that I s,+ - s, I < K/n for all n, then (s,} has the average L 
in the sense of (2). An average in the sense of (3) is called a Cesaro average. 
In 1914 Hardy and Littlewood [H4] in collaboration proved that for positive 
sequences an Abel average implies a Cesaro average; that is, if s, 2 0 and 
if (l), then (3). 

Now let d$(x) be the point measure which is s, at n and zero elsewhere. 
Then the three types of average (l), (2), and (3) can be restated in terms of 
d m  as 

where d([x]) is the point measure which is 1 at integers and zero elsewhere 

lim jA+ d+(x) = L 
A-m A 

(2‘) 

[if A is an integer A = n, this integral is by definition a(., + s,+J] and 

(3’) 

The second type of average will not be needed in what follows, and the first 
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and third can be rewritten somewhat more simply as 

respectively [because r x  d([x]) - r x  dx and It d([x]) N Jt dx]. It is nat- 
ural to take these two statements as the definition of what it means to say 
that d$(x) N L dx as an Abel average or a Cesaro average, respectively. 

With this terminology the prime number theorem ~ ( x )  - x is equivalent 
to the statement that dyl(x) N dx as a Cesaro average. Now since dyl(x) 2 0, 
the Hardy-Littlewood theorem cited above implies that in order to prove the 
prime number theorem, it would suffice to prove that dyl(x) N dx as an Abel 
average. Hardy and Littlewood were able to prove &(x) N dx as an Abel 
average more simply than it is possible to prove the prime number theorem 
directly and thereby were able to give a simpler proof of the prime number 
theorem or, more exactly, a proof of the prime number theorem in which a 
significant amount of the work is done by a Tauberian theorem. However, 
it is natural to hope to give a proof in which all of the work is done by a 
Tauberian theorem because there is a sense of “average” in which it is trivial 
to prove dyl(x) N dx, namely, the sense of 

(4) 

Since I;” x-’ dx = (s - l)-l, this amounts to saying limJi l(s - l)[-c(s)/ 
[‘(s)] = 1,  which can be proved by taking the logarithmic derivative of the 
analytic function (s - l)C(s), multiplying by (s - l), and letting s -, 1 .  In 
short, to say that dyl(x) - dx in the sense of (4) amounts to saying that 
-c’(s)/C(s) has a pole like (s - l)-l at s = 1 or, what is the same, that C(s) 
has a simple pole at s = 1. Thus the study of the prime number theorem sug- 
gests that one study conditions on measures d$(x) under which one can as- 
sert that d$(x) - dx in the sense of 

(4‘) 

implies d4(x) N dx in the sense of 

(3“) 

The attempt to prove the prime number theorem in this way stimulated a 
great deal of study of Tauberian theorems in the 1920s and early 1930s, cul- 
minating in Wiener’s general Tauberian theorem p 3 ] .  Although Wiener’s 
theory was immensely successful in revealing the true nature of Tauberian 
theorems, its conclusions with respect to the prime number theorem were 
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largely negative in that it showed that to justify the implication (4‘) = (3”), it 
is essential to study the Fourier transform x - ~  d$(x) on the line Re s = 1 
and hence that this approach to the prime number theorem leads to essential- 
ly the same ideas and techniques as those used by Hadamard and de la Val- 
16e Poussin of Fourier inversion of -[‘(s)/[(s) and use of [(l + i t )  # 0. 
However, the general theory did give a concise theorem concerning the im- 
plication (4‘) = (3”). 

Ikehara’s Theorem If the measure d$(x) is positive, then the implica- 
tion (4‘) - (3“) is valid provided the function 

has, in addition to the property that g(s) is defined for s > 1 and lim, , , g(s) 
exists, the property that the function [g(s) - g(l)]/(s - 1) has a continuous 
extension from the open halfplane Re s > 1 (where it is necessarily defined 
and analytic) to the closed halfplane Re s 2 1. [Here g(1) is written for lim, 
g(4.1 

Ikehara’s original proof [Ill of this theorem was a deduction from Wie- 
ner’s general Tauberian theorem, but Bochner [B6] and others have given di- 
rect proofs independent of the general theory. Since in the case d&x) = d y ( x )  
the function g(s) is (s - l)[-C’(s)/C(s)] which is analytic in the entire plane 
except for poles at the zeros of [(s), the proof of the prime number theorem 
amounts to the proof that C(l + i t )  # 0 and to the proof that Ikehara’s 
theorem is true in the particular case d$(x) = dy(x) .  

12.8 CHEBYSHEV’S IDENTITY 

Chebyshev’s work on the distribution of primes consists of just two papers 
which occupy a total of only about 40 pages in his collected works (available 
in French [C4] as well as Russian [CS]). These two papers are very clearly 
written and are well worth reading. 

(dxllog x).  It 
is based on an analysis of the function C(s) - (s - l)-l for real s as s 1 1, in 
the course of which Chebyshev succeeds in proving that if there is a best 
value for A in the approximation 

The first of them is a study of the approximation n(x) N 

that value is A = 1 and that, more generally, no other approximation to n(x) 
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of the same form as 

1- Li(x)l 
X X 2x n ! x  

+ (log x)”+’ 
a ( x ) - - + - + - - - +  * . .  log x (log x ) ,  (log x)’ 

can be a better approximation than this one (see Section 5.4). Thus the basic 
idea of the paper involves the relationship between the approximation a(x)  - 
Li(x) and the pole of the zeta function, a relationship which was much more 
thoroughly exploited by Riemann and de Vallke Poussin and which was well 
incorporated into the mainstream of the study of the prime number theorem. 

The second paper, on the other hand, is based on a very different idea, 
one which was until rather recently relegated to the status of a curiosity, 
showing what sorts of results can be obtained by “elementary” methods, 
that is, by methods which do not use the theory of Fourier analysis or func- 
tions of a complex variable. In the late 194Os, however, Selberg and Erdos 
showed that this idea of Chebyshev’s can be taken further and that from it 
one can deduce the prime number theorem itself by entirely “elementary” 
arguments which do not appeal to Fourier analysis or functions of a complex 
variable (see Section 12.10). Consequently, there has been a great renewal of 
interest in it. Briefly, the idea is as follows. 

Let T be the step function which for positive nonintegral values of x is 
C.<x log n and which for integral values of x is, as usual, the middle value 
T(n) = J[T(n + e) + T(n - e)]. The value of T(x) for x not an integer can 
also be described as the logarithm of [x] factorial where [x]  is the integer part 
of x, that is, T(x) = logn([x]) (x  not an integer). The identity on which 
Chebyshev’s proof is based is 

(1) T(x) = y(x) + y(x/2) + y(x/3) + y(x/4) + - - * * 

This formula can be proved as follows. 
Since w(x/n) is a step function which jumps only when x is a multiple of 

n, both sides of (1) are step functions which jump only at integer values of x .  
Since, moreover, both sides are 0 at x = 0 and both assume the middle value 
at jumps, in order to prove they are equal, it suffices to prove that their jumps 
are equal at each integer. But at x = n the left side jumps by log n and the 
right side jumps by C A(d) where d runs over all divisors of n and where 
A(d) is defined as in Section 3.2. Now if n = pfy;’ - . spft’ is the prime fac- 
torization of n, then obviously the divisors of n include precisely a, powers of 
p1 (namely, p i ,  p12,p13, . . . , p:’), a2 powers of p 2 ,  etc., and no other prime 
powers. Hence C A(d) = a, logp, + a, logp, + - - - + ak logpk = log n, 
which proves (1). 

In terms of Fourier analysis Chebyshev’s identityt is the inverse transform 

tCredit for the discovery of the identity is shared by de Polignac and Chebyshev (see 
Landau [L3]), but Chebyshev made better use of it. 
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of the identity 
-CW = [ - C ’ ( S > / C ( S > l C ( ~ )  

because the left side -C’(s) = C (log n)n-. is the transform of the operator 
f ( x )  H f ( u x )  dT(u), whereas the right side is the transform of the com- 
position of the operators f ( x )  H I; f(ux) dy(u)  and f ( x )  H C; f (nx) ,  
which can be written f ( x )  H En f ( v x )  d[C y(v/n)]. 
This suggests dT(u) = d [ C  y(u/n)] and hence (1). It is not difficult to make 
this into a proof of (l), but the elementary proof above, which is essentially 
the one given by Chebyshev, is to be preferred. 

f(nux) dy(u)  = 

Now Mobius inversion applied to Chebyshev’s identity (1) gives 

On the other hand, a good approximation to T(x) can be obtained using 
Stirling’s formula (Euler-Maclaurin summation of log n), and hence this 
formula should give some information about y(x), perhaps even the prime 
number theorem y(x) - x. The difficulty is of course the irregularity of the 
coefficients ~ ( n )  which prevents any straightforward analysis of formula (2). 
Chebyshev circumvents this difficulty by replacing the right side of (2) by 

(3) T(x)  - T($) - T($)  - ‘(2) + T(&) 

and observing that when (1) is substituted in this expression the resulting 
series in y 

has the remarkable property that it alternates. (More specifically, the series 
in y is C A,y(x/n), where A, depends only on the congruence class of n 
mod 30 and where, by explicit computation 

A, = 1, O,O, O,O, -1 ,  1, O,O, -1, 1, -1 ,  1, 0, -1, 
0, 1, -1, 1, - l , O ,  0, 1 ,  - l , O ,  o,o, 0, 1, -1 

for n = 1,2,3, . . . , 30, respectively. Chebyshev does not say how he dis- 
covered this particular fact.) Thus (3) is less than y(x) but greater than 
y(x)  - y(x/6), and this, together with Stirling’s formula for T(x), gives 
Chebyshev his estimates of y(x). 

Specifically, the weak form T(x)  = x log x - x + O(1og x) of Stirling’s 
formula gives easily 

T(x) - T(+)  - T($)  - T($) + T($) = AX 4- O(l0gx) 
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where A is the constant A = f log 2 + 3 log 3 + -f log 5 - & log 30 = 
0.921 . . . . Thus 

~ ( x )  > Ax + O(log x) ,  y(x) - I($) < Ax + O(log x). 

If the second inequality is iterated 

Y(%) - Y ( 5 )  < A% + O(logx), 

only log x/log 6 steps are required to reach y(x/6") = 0. Adding these then 
gives 

I(X) < Ax( 1 + a + & + * * * + $) + O((1Og XI') 1 

6 < + O((l0g x)') 

and shows that in the limit as x -, 00, the quotient y(x) /x  lies between A = 
0.921. . . and 6A/5 = 1.105. . . . In particular ~ ( x )  = O(x), a fact which will 
be needed in the following sections. 

12.9 SELBERG'S INEQUALITY 

Chebyshev's formula C +/n) = T(x) taken together with Stirling's 
formula T(x) = ( x  + 3) log x - x + 0(1) lends credence to the prime num- 
ber theorem ~ ( x )  - x because if y(x/n)  is replaced by x/n, then the sum 
C y(x/n)  is replaced by x C n-' - x log x - T(x). More specifically, choose 
as an approximation to ~ ( x )  a function of the form 

0, x I a, 
= { x - a, x 2 a, 

where a is a positive constant. Then for large x 

n= g g ( + ) =  1 x/n2a c [ ( + ) - a ] = .  
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Now by Euler-Maclaurin summation [in its simplest version (3) of Section 
6.21 

1 
= logy + Y + o(+ 

where the constant y is by definition (see Section 3.8) Euler’s constant. This 
gives 

= x log x + ( y  - log a)x - x + O(1) 

and shows, therefore, that if a is chosen to  be a = ey, then 

2 g(X) = x log x - x + O(1) = T(x) + O(l0g x) = 2 y($)  + O(l0g x). 
n= 1 n= 1 

Thus setting 

Chebyshev’s identity and Stirling’s formula give r(x) = O(1og x). On the 
other hand, by Mobius inversion y(x) - g(x) = C p(n)r(x/n), so the prime 
number theorem is the statement that C p(n)r(x/n) = o(x). This leads to  the 
question of whether estimates of the growth of C p(n)r(x/n) can be deduced 
from estimates of the growth of r(x). 

It is very difficult to obtain sharp estimates of the growth of C p(n)r(x/n) 
because the real reason for its slow growth involves cancellation between 
terms, so that the distribution of the signs p(n) = f 1 and the rate of change 
of r are crucial. As was shown in the preceding section, Chebyshev dealt with 
this difficulty by replacing the actual Mobius inverse C p(n)r(x/n) by an ap- 
proximate Mobius inverse r(x) - r(x/2) - r(x/3) - r(x/5) + r(x/30). The 
first step in the elementary proof of the prime number theorem is to replace 
C p(n)r(x/n) by the approximate Mobius inverse suggested by Selberg’s 
proof in Section 11.3, namely, to replace it by the expression 
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(Note that r(x/n) = 0 for n 2 x so the weights [I - (log n/log x)] are positive 
in the nonzero terms.) This leads to an estimate of ~ ( x )  known as Selberg’s 
inequality which, as will be shown in the next section, is a major step toward 
the prime number theorem. 

The first step in the derivation of Selberg’s inequality is to note that the 
expression (1) grows less rapidly than x as x -+ 00 and that in fact it is O(x/ 
log x). This follows easily from r(y) < K log y ( y  2 1, K a constant indepen- 
dent of y) because this shows that the absolute value of (1) is at most 

This sum can be estimated using Euler-Maclaurin summation, but the result 
is only that it is O(x/log x), a result which can be obtained much more easily 
by using log y < K’y’ (y 2 1, K‘ a constant depending on E )  to find 

C (log $)a  < K‘ C 
n<x .<X 

= K’x2’ n<x C n-2a < K‘x2@[1 + I: U - ~ ~ ~ U ]  

X-28+ 1 < K’x”( 1 + -2E + ) < K”x 

which gives the desired result that (1) is O(x/log x). 
The second step in the derivation of Selberg’s inequality is to give a precise 

sense to the idea that the operation (1) is an “approximate Mobius inversion.” 
One can in fact give an explicit expression for 

when F is a function of the form F(x) = C;= f(x/n) with f a function which 
is identically zero near zero. This explicit expression can be derived as fol- 
lows. The sum (2) is equal to 

1 
- log x I= ,  9 f (&) 

Now by ordinary Mobius inversion the first of these two sums is simply (log 
x)-l (log x) f (x) = f ( x ) ,  so the second sum gives the amount by which (2) is 
only an “approximate” Mobius inverse. Note that it is (log x)-’ times a corn- 
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position of the operators f ( x )  H x;= (log m)f(x/m) and f ( x )  H C;,, p(n) 
f ( x / n ) ,  or, what is the same, a composition of f ( x )  H f ( x / u )  dT(u) and 
f ( x )  H f ( x / u )  dM(u). Since these operators have transforms -C'(-s) and 
l/c(-s), respectively, their composition has the transform -c'(-s)/C(-s) 
which is the transform of f ( x )  H f (x /u )  dyl(u). This leads to the conjecture 
that the second sum above is (log x)-I  f ( x / u )  dy(u), a conjecture which 
is easily verified (without appeal to Fourier analysis) by using Chebyshev's 
identity and Mobius inversion to write, for x not an integer, 

so that 

(3) 

Thus the final formula is 

where f is a function which is identically zero near zero and where F(x )  = 

Applying this formula in the case F = r and using the fact that (1) is 
c;= 1 f(xlm>. 

O(x/log x )  gives 

(4) 

= O(x/log x )  

which, in essence, is Selberg's inequality. To obtain the inequality in the form 
stated by Selberg [S3], it is necessary first to estimate the integral 

= x log x + O(x) + 4-s: dy($)] = x log x + O(x) 

using Chebyshev's theorem ~ ( x )  = O(x). (This calculation assumes that x 
is not an integer-so that the discontinuities of B,(v) never coincide with 
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those of y(x/v)-and it assumes that x is not an integral multiple of a-so 
that v = a is not a discontinuity of ~ ( x / v ) .  This excludes only a discrete set 
of values of x, and since g(x/u) d ~ ( u )  is an increasing function of x, the 
final estimate is obviously valid for these values of x as well.) This shows that 
Selberg’s inequality (4) can also be written in the form 

= x log x + O(l0g x) + x log x + O(x) 
and hence finally 

?@I log x + J- Y($) dy(u) = 2x log x + O(x). 

This is almost Selberg’s statement of it except that Selberg [S3] deals with 8 
rather than w (see Section 4.4 for the definition of 8) and his inequality is 

e(x) log x + J- e($) de(u) = 2x log x + ~ ( x ) .  

[Note that the integral is simply the finite sum C,<x 8(x/p) logp.] The proof 
of the inequality in this form is somewhat longer than the proof of ( 5 )  and will 
not be needed in what follows. 

12.10 ELEMENTARY PROOF OF THE PRIME 
NUMBER THEOREM 

The deduction of the prime number theorem from Selberg’s inequality, 
although it is “elementary” in the technical sense that it does not use Fourier 
analysis or complex variables, is by no means simple or straightforward. 
Selberg’s original proof depended on a weakened version of the prime number 
theorem which Erdos had previously proved by elementary methods, but 
Selberg never published this proof in full, preferring to give a complete proof 
ab initio and also preferring to eliminate the appeal to the notion of “lim sup” 
which the original proof contained. Since 1949 many variations, extensions, 
and refinements of the elementary proof have been given, but none of them 
seems very straightforward or natural, nor does any of them give much in- 
sight into the theorem. 

The proof which follows is a combination of Wirsing’s proof [W5] and the 
proof given by Levinson in his expository paper [LlO]. Following Wirsing, 
it is based on the consideration of approximations not to ~ ( x )  but to the 
function Ji u-l dy(u). This function has the advantage that its discontinuities 
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are small for large x [A(n)/n 5 (log n)/n < el whereas the discontinuities of 
v ( x )  are large. As in Section 5.6, this function u-’ dyl(u) will be denoted 
P(x). It was shown in Section 5.6-but not by elementary methods-that 
P(x) = log x - y + q(x), where y is Euler’s constant and where the remain- 
der q(x) goes to zero faster than (log x)-* for any n: This and the form of the 
approximation g to v in the preceding section suggest as an approximation 
to P(x) 

{log ;, - y, x 2 ey, G(x) = 
x ey. 

As in Section 5.6, let q(x) = P(x) - G(x) be the error in this approximation. 
In order to prove the prime number theorem it will suffice to prove that q(x) 
-+ 0 as x --* 00 because then 

u d log u + I” d[uq(u)] - j x  ~ ( u )  du 
= s: 0 

L 
= x - ey + xq(x) - j” q(u) du 

= x + x -c + q(x) - average o f q  on [o,x] 

= x + o(x). 

0 

I 
Thus the goal is to prove by elementary methods that q(x) + 0. 

Note first that q is bounded. This follows easily from the estimate 
J;g(x/u) dyl(u) = x log x + O(x) at the end of the preceding section which 
gives 

= log x + O(1) = G(x) + O(l), 

where, as before, a = e7. Thus q(x) = O(1) as was to be shown. 
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Chebyshev’s identity c W(x/n) = T(x) = Cncx log n ( x  f integer) im- 
plies an -analogous identity for P which can be derived as follows: 

n 

= Ix”dT(u)  = x C -, log n 
o u  n 

The form of this identity suggests that one consider c(l/n)q(x/n). This gives 
the following estimate analogous to the estimate r(x) = O(log x)  of the last 
section: 

1 log n log n =(logx-7) c -- c --cy. 
n<x/a n n<x/a n n<x 

Now by Euler-Maclaurin summation 
1 logN - 1 - logudu 5 %-! n = J:ku U du + -[- 2 N  + 01 + 1, Bl(u) 

u2 

&(u>(l - 1% u) du 
U 2  

- dl(u)(l - log u> du ; log 
N U 2  2N 

= -2(log 1 N)Z + const + o(+? 
and this together with l/n = log x + y + O(l/x) gives 

c +(%) = log (x - y)[log $ + y + 0 ( 3 ]  - +(log $)z 

(lo: “1 1 - const - o(=)> - -(log x>2 - const - o - xla 2 
1 

= (log x - y )  log x + 0 - - -(log x - r ) Z  [ (31 2 

(lo: ”> 1 
2 - -(log x ) ~  + const + 0 - 

= const + o ( ~ )  log x - 
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Let s(x) denote this function C (l/n)q(x/n). Then Mobius inversion gives 
q(x) = C [p(n)/n]s(x/n), and the sort of approximate Mobius inversion of 
the preceding section [see in particular formula (3)] gives 

= - ~ C p ( n ) [ l o g m n + l o g m  1 X -q - 
x log x ]A (A) 

q($) dY(4 -- - I (log x)xq(x) + - J" 2- 1 
x log x x logx  0 u 

Using the estimate s(x) = const + O[(log x)/x], it is possible to show that this 
function of x is O(l/log x). In fact, since 

(see the estimate of C [log (x/n)12 in the preceding section), the proof of this 
reduces immediately to the proof that 

This can be accomplished as follows. 
Let D(x) again represent the function which is 1 for x > 1, 4 for x = 1, 

and 0 for x < 1. Then C D(x/n) is simply the greatest integer function (x 
not an integer) and Mobius inversion gives 

which for large x is 

so that division by x gives Cn<x p(n)/n = O(1). Then Mobius inversion of 
the estimate 
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D(x) = ll<X C '+[1.g(-$) + y + 0(2)]9 

1 = C 'a log $ + yO(1) + O(l), 

1 J- 9($) m u )  = o(=)* 1 

n<x n 
from which (1) follows. 

q(x) + (2) 

This is the analog of Selberg's inequality [in the form (4) of Section 12.91 for 
the error in the approximation P - G instead of the error in the approxima- 
tion y/  N g. The objective is to use it to prove that q(x) --+ 0 as x -+ 00. 

The first step in the proof is to iterate Selberg's inequality, which in the 
present case can be carried out as follows: 

In summary, then, it has been shown that 

0 

j, q($) dP(u) = -q(x) 1% x + O(1), 

j, J- 0 q($) dP(u) dP(v) = J, j, (5) dP(4 dP(4 

= - j, q(:) log(:) dP(v) 

+ f+' O(1) dP(v) 

- - - 1% x J, q($) dP(v) 

+ J, v($)  1% v W v )  + O(P(X)) 

+ J, q($) 1% tJ dP(v) + W x ) )  

X + 8  - 
X + 8  

ca 

= -log x[-q(x) log x + O(l)] 

= tl(x)(log XIZ  + J, 4($) 1% v 
+ O(l0g XI. 

The double integral on the left is in fact a finite sum, so it can be rearranged 
and written as Itq(x/w) dN(w) where N(w) = IrP(w/u)  dP(u). Thus 

J- q($)  dN(w) - J, q($)  log v dP(v) = q(x)(log X)Z  + O(l0g x). 

Since N and P are both increasing functions, taking absolute values gives 

(3) (log XI2 I tl(x) I 5 J, I tt ($) I M W )  
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Now dP(w) = w-l  dyl(w) is roughly like w-’ dw = d log w, from which 
it follows that dN(w) and log w dP(w) are both roughly log w d log w ;  so the 
right side is roughly 2 1; I q(x/w)  I log w d log w. More precisely, 

J:, [dN(w) + log w dP(w)l 

= N ( x )  + JX log w dP(w) 

= {G(x))’ + O(1) + O(Iog x - y + q(x)  - log $ + y - q($-))  

= (G(X)}’ + O(1) 

for all x > a.  Moreover, the measures dN(w), log w dP(w), and d(G(w)’} are 
all identically zero for x I 1, so integration by parts shows that the right 
side of (3) differs from 21; I q(x/w)  I G(w) dG(w) by at most O(1og x )  plus 

I O( JI dG(v) + dP(v)) = 0(2G(x)  + ~ ( x ) )  = O(1og x). 

On the other hand 21; I q(x/w) I G(w) dG(w) can be rewritten in the form 

= 25:1’1’Iq(v)Idlogvdlogu; 
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so (3) can be rewritten as 

Now the integral 

can be regarded as the result of applying to I q(v) I two averaging processes 
one after the other, the first being the average f(x) H (log x)-I JTf(w) d log v 
and the second being the average f(x) H [log ( x / u ) ] - ~  J:"f(u) d((1og u)". In 
particular, since I q I is bounded the integral (5 )  is bounded; so multiplication 
of (4) by (log x ) - ~  = [log (x/u)]-~[~ + O(l/log x)] gives finally 

(6 )  
This inequality is the keystone of the proof. It states that I q 1 is dominated, 
in the limit as x -+ 00, by an average of an average of I q 1. Since averaging 
normally reduces functions unless they are constant, this indicates that I q(x) I 
must be nearly constant in the limit as x 4 00. Since q(x) changes rather 
gradually, this indicates that q(x) must also be nearly constant in the limit as 
x --+ 00, that is, 1imx4- q(x) exists. However, because of the analogy with 
Chebyshev's elementary proof that [ ~ ( x )  - Li(x)]/Li(x) can have no limit 
other than zero, one would expect to be able to prove by elementary means 
that limX.+- ~ ( x ) ,  given that it exists, must be zero and thus to complete the 
proof. 

The actual proof will require two more estimates, an estimate of the rate 
of change of q and an estimate which proves that q can approach no limit 
other than zero. 

(7) 
for x > y > 0. Since P increases, q(x) - q(y)  = [G(x) - G(y)] - [P(x) - 
P(y) ]  < G(x) - G(y)  = d log u = log (x/y), and the upper 
estimate q(x) - q(y)  I log (x/y) is trivial. Since q is bounded, the lower es- 
timate q(x) - q(y)  2 -log (x/y) holds trivially whenever log (x/y) is suffici- 
ently large, say whenever log (x/y) 2 K. Thus it suffices to find a lower 
estimate q(x )  - q ( y )  2 -log (x /y )  - O(l/log x) under the additional as- 

Wirsing gives the estimate 

I tl(x) - V(Y> I 5 1% @/Y) + O(l/log x) 

dG(u) I 
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sumption log (x /y )  I K. This can be done by using Selberg's inequality to 
find 

1 s (x)  - s(v> = =[qW log x - V ( Y )  1% Y - tl(Y) 1% $1 
m 

2 &[-So 1 v(;) dP(4 + O(1) 

+ j, s($) 
= &-J: (43 - 4:)) d 4  - o(i&) 
2-- l J  

+ 0(1)] - O(tt(Y)) 

(10; x )  

o(&) 

x x  log - dP(u) - 0 - logx 0 y 
[log(x/v)l[G(x) + t l ( X ) l  - 

log x 
- -  - 

o(i&) ( 3 logx 
- - -log- X - log- -7 + s (x)  - 

Y 

(10; x )  
X O(1) 
Y log x 2 -log- - K -  - 0 - 

X 
- o(i&)- - --log- - 

Y 
This completes the proof of (7). 

The estimate C (l/n)q(x/n) = const + O[(log x)/x] is a good indication 
that q cannot approach any limit other than zero. A formulation of this es- 
timate which is more convenient for present purposes is (l/u)q(x/u) du = 
O(1), or what is the same, 

( 8 )  J,: q(v) d log v = O(1). 

This shows that the average value of q on [l, x] relative to the invariant 
measure d log v approaches zero; hence, because q changes slowly, q must 
be arbitrarily near zero infinitely often. The estimate (8) can be proved as 
follows : 

y q(v) d log v = 1- 's (G) du 

= 4: &) - &) + J, &) du 

= O(1) - -+) - J, d[+V($)] 

1 u  

" 1  " 1  " 1  

1 

= 0(1) + Jq j l ( u ) q ( F ) 2  x du - ,"$dq($) 
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= O(1) + O(?) = O(1). 

The prime number theorem can now be deduced from the following theorem. 

Theorem Let B be an upper bound for Iq(x)l and let M be an upper 
bound for I JT q(u) d log u I. Without loss of generality assume M > B2. Then 
if /3 > 0 is any number less than or equal to B with the property that I q(x) I I 
/3 for all sufficiently large x,  the number 

has the same property. 
Proof Let /3 be given and let xo  be such that I q(x) I I /3 for x 2 x,. 

Divide the interval [x,, w) into subintervals on which q changes by less than 
38. Specifically, define 1 by log 1 = %/3 and set xi = A’x,. Then xi I y < 
x I x,+ implies by (7) that I q(x) - q(y) I < log x - logy + O(l/log x )  I 
log xi+l - log x,  + O(l/log x), I log 1 + O(l/log x,). By increasing xo  if 
necessary this gives I q(x) - q(y) I < $8 as desired. 

Call I q I “small” on the interval [x,, x,+ if its value at either or both ends 
is less than 3;/3 and otherwise call it “large” on the interval. Since q cannot 
change sign on an interval where I q I is large, the average of I q I can be estima- 
ted using (8). In fact, if I q I is large on all intervals between x, and x , + ~ ,  then 
the average of I q I is at most 

/3‘ = /3 - (B3/400M) 

1 
k logA 

- - - 1 jxJi‘ q(w) d log v 1 
= 6 I jxJ+’ q(v) d log v - 5:’ q(v) d log v I -- I :? 

This can be made strictly less than /3 by making k large; for example, (8M/ 
k/3) %/3 when k 2 48M/5B2. On the other hand, if I q I is small on at least 
one of the intervals between x, and then the average of I q I is at most 
k-l[(k - 1)/3 + +fl = /3 - (/3/6k) because I q I < /3 throughout, and be- 
cause among the k intervals of equal weight log(x,+I/x,) = log A there is at 
least one on which lql < %/3 throughout. Thus the average is strictly less 
than /Y in either case. Fix k as the smallest integer satisfying k 2 48M/5/Y2. 
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Then k < (48M + 5/32)/582 I (48M + 5B2)/5B2 I 53M/5B2, 6k < 1OOM/ 
P2, B/6k > B3/100M, and finally 

so the average of I q I on [x,, x j+J  (always with respect to the measure d log x )  
is either less than this amount or less than @. But since B2 < B2 < M gives 
/32/100M < 1/100 < &, this shows that 

B - (B/W < B - (8'1100M); 

for all j = 0, 1,2, . . . when k is defined as above. 
I q(w) I d log w for large u. Let the 

interval [I, u] be divided into three parts, the interval [l, x,], the interval 
[x,,  x,], and the interval [x,, u], where n is the largest integer such that 
xnk < u, with k as before. In the whole interval [l, u] these three intervals 
count with weights log x,/log u, nk log A/log u, and log (u/xnk)/log u < log 
(xnk+k/xnk)/log u < k log A/log u, respectively. Thus the first and last intervals 
count with weights which approach zero as u -+ 00, and the averages on these 
intervals are constant on the first one and at most /3 on the last one. On the 
middle interval the average is at most B - (B'/lOOM). Therefore as u -+ 00, 

the average on the entire interval [1, u] can be only slightly greater than B - 

Consider now the average (log 

(B3/100M), say 

for all sufficiently large u. But then the average of this amount over 1 < u < 
(x/a) relative to the measure 2 log u dlog u for large x can be only slightly 
greater than B - (B2/200M). Thus the inequality (6) implies the desired con- 
clusion. 

Corollary q(x) ----f 0 as x --, 00. 

Proof Start with /3 = B and apply the theorem repeatedly. This gives a 
decreasing sequence Po > B, > B2 > - - of positive numbers such that for 
each Bn the inequality I q(x) I Bn holds for all sufficiently large x .  Since 
Bn -+ 0 as n + 00, this proves the corollary. 

This completes the elementary proof of the prime number theorem. It is 
natural to ask whether the stronger theorem q(x) = O(log-" x )  can also be 
proved by elementary methods. This was accomplished in the 1960s by both 
Wirsing [W5] and Bombieri [B9]. Thus the prime number theorem with the 
error estimate 

can be proved by "elementary" methods. 
v ( x )  = x + O(x/log" x )  
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12.11 OTHER ZETA FUNCTIONS. WEIL’S THEOREM 

In concentrating exclusively on the study of the zeta function and its re- 
lation to the prime number theorem, this book ignores one of the most 
fruitful areas of development of Riemann’s work, namely, number theory. 
The use of functions like the zeta function in number theory was a major 
feature of the work of Dirichlet-both in his L-series and in his formula for 
the class number of a quadratic number field-many years before Riemann’s 
paper appeared, and the use of such functions has been a prominent theme in 
number theory ever since. Riemann’s contributions in this area were pri- 
marily function-theoretic, not number-theoretic, and consisted of focusing 
attention on the functions as functions of a complex variable, on the possibi- 
lity of their satisfying a functional equation under SH 1 - s, and on the 
importance of the location of their complex zeros. A few of the most impor- 
tant names in the subsequent study of these number-theoretic functions are 
those of Dedekind, Hilbert, Hecke, Artin, Weil, and Tate. 

Ignorance prevents me from entering into a discussion of these functions 
and what is known about them. However, it seems that they provide some of 
the best reasons for believing that the Riemann hypothesis is t r u e f o r  be- 
lieving, in other words, that there is a profound and as yet uncomprehended 
number-theoretic phenomenon, one facet of which is that the roots p all 
lie on Re s = 3. In particular, there is a “zeta function” associated in a natural 
number-theoretic way to any function field over a finite field, and Weil w2] 
has shown that the analog of the Riemann hypothesis is true for such “zeta 
functions.” 
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On the Number of Primes Less Than a Given Magnitude 

by BERNHARD RIEMANNi 

I believe I can best express my gratitude for the honor which the Academy 
has bestowed on me in naming me as one of its correspondents by immedi- 
ately availing myself of the privilege this entails to communicate an investiga- 
tion of the frequency of prime numbers, a subject which because of the 
interest shown in it by Gauss and Dirichlet over many years seems not wholly 
unworthy of such a communication. 

In this investigation I take as my starting point the observation of Euler 
that the product 

- P" 
where p ranges over all prime numbers and n over all whole numbers. The 
function of a complex variable s which these two expressions define when 
they converge I denote by &). They converge only when the real part of s is 
greater than 1 ; however, it is easy to find an expression of the function which 
always is valid. By applying the equation 

n(s - 0, m I e-nxXs-1 dX = 
0 ns 

one finds first 

If one considers the integral 

iTranslated from Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse [Rl, 
p. 1451 by H. M. Edwards. 
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from + ~0 to + 00 in the positive sense around the boundary of a domain 
which contains the value 0 but no other singularity of the integrand in its 
interior, then it is easily seen to be equal to 

provided that in the many-valued function (-x).-l = e(r-l)loe(-x) the loga- 
rithm of -xis determined in such a way that it is real for negative values of x .  
Thus 

(-x).-' dx  s e x - I  2 sin ICS n(s - 1) C(s) = i 

when the integral is defined as above. 
This equation gives the value of the function &) for all complex s and 

shows that it is single-valued and finite for all values of s other than 1, and 
also that it vanishes when s is a negative even integer. 

When the real part of s is negative, the integral can be taken, instead of in 
the positive sense around the boundary of the given domain, in the negative 
sense around the complement of this domain because in that case (when 
Re s < 0) the integral over values with infinitely large modulus is infinitely 
small. But inside this complementary domain the only singularities of the 
integrand are at the integer multiples of 2ni, and the integral is therefore equal 
to the sum of the integrals taken around these singularities in the negative 
sense. Since the integral around the value n27ri is (-n2rci)"-'(-21~i), this gives 

2 sin I I S  n(s - 1) c(s) = (2~)" C ns-'[(-i)"-' + P - l ] ,  

and therefore a relation between c(s) and c(l - s) which, by making use of 
known properties of the function ll, can also be formulated as the statement 
that 

n -- G 
remains unchanged when s is replaced by 1 - s. 

This property of the function motivated me to consider the integral 
n((s/2) - 1) instead of the integral n(s - 1) in the general term of C n-*, 
which leads to a very convenient expression of the function C(s). In fact 

so when one sets 
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or, because 

2y(x) + 1 = ~ - 1 / Z p y r ( $ )  + 11 (Jacobi, Fund., p. 184), 

that 

- -- + jw v ( x ) ( x ( s / 2 ) - l  + X - ( l + r ) / 2 )  dx.  
s(s - 1) I 

I now set s = 4 + ti and 

so that 
m 

{ ( t )  = 3 - (tt + 4) v/(x)x-~/~ cos($t log x) dx 

or also 

This function is finite for all finite values o f t  and can be developed as a 
power series in tt which converges very rapidly. Now since for values of s 
with real part greater than 1, log C(s) = -C log (1 - p-") is finite and since 
the same is true of the other factors of {( t ) ,  the function { ( t )  can vanish only 
when the imaginary part of t  lies between J i  and -$i. The number of roots of 
<(t) = 0 whose real parts lie between 0 and T is about 

T T T  log - - - 2n 2n 2n 
- -- 

because the integral J' d log { ( t )  taken in the positive sense around the domain 
consisting of all values whose imaginary parts lie between 3i and -4i and 
whose real parts lie between 0 and Tis (up to a fraction of the order of magni- 
tude of 1/T) equal to [Tlog (T/2n) - T]i and is, on the other hand, equal to 
the number of roots of c(t) = 0 in the domain multiplied by 2ni. One finds in 
fact about this many real roots within these bounds and it is very likely that 
all of the roots are real. One would of course like to have a rigorous proof of 
this, but I have put aside the search for such a proof after some fleeting vain 
attempts because it is not necessary for the immediate objective of my in- 
vestigation. 

If one denotes by a the roots of the equation <(a) = 0, then one can ex- 
press log c( t )  as 

c log( 1 - :) + log <(O> 
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because, since the density of roots of size t grows only like log (t/2n) as t 
grows, this expression converges and for infinite t is only infinite like t log t; 
thus it differs from log c(t)  by a function of tt which is continuous and finite 
for finite t and which, when divided by tt, is infinitely small for infinite t. This 
difference is therefore a constant, the value of which can be determined by 
setting t = 0. 

With these preparatory facts, the number of primes less than x can now be 
determined. 

Let F(x), when x is not exactly equal to a prime, be equal to this number, 
but when x is a prime let it be greater by f so that for an x where F(x)  jumps 

F(x + 0) + F(x - 0). 
2 F(x) = 

If one sets 
m ca 

p-' = s 1 x-"-l dx, p-2" = s 5 x-"-l dx, . . . 
P P' 

in the formula 
log C(s) = -c log(1 - p-') = c p-" + 3 c p-2" + 3 c p-3' + * * ., 

one finds 
log c(s) - oDf(x)x-8- 1 dx -4, S 

when one denotes 
F(x) + +F(X1 /2 )  + +F(x'/3) + - * - 

bYf(X). 
This equation is valid for every complex value a + bi of s provided a > 1. 

But when in such circumstances 

g(s) = Jm h(x)x-# d log x 

is valid, the function h can be expressed in terms of g by means of Fourier's 
theorem. The equation splits when h is real and when g(a + bi) = gl(b) + ig2(b) into the two equations 

g1(b) = Jm h(x)x-" cos(b log x) d log x, 

ig2(b) = -i Jm h(x)x-" sin@ log x) d log x. 

When both equations are multiplied by [cos(b log y )  + i sin@ logy)] db 
and integrated from - 00 to + 00, one finds in both cases that the right side is 
nh(y)y-= so that when they are added and multiplied by iy" 
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where the integration is to be carried out in such a way that the real part of s 
remains c0nstant.t 

The integral represents, for a value of y where the function h(y) has a 
jump, the middle value between the two values of h on either side of the jump. 
The functionfwas defined in such a way that it too has this property, so one 
has in full generality 

For log C one can now substitute the expression 

(3 S - log n - log@ - 1) - 1ogn - 2 

+ c log[ 1 + (s 7 - $1'1 + log t(0) 

found above; the integrals of the individual terms of this expression will not 
converge, however, when they are taken to infinity, so it is advantageous to 
reformulate the equation as 

d -  1% C W  
x X  ds S f ( x )  = -- - 

by integration by parts. 
Since 

for m = 00 and therefore, 

d- 1 log n(%) d L  log( 1 + &) - S = g  S 7 

ds 1 ds 

all of the terms in the expression forf(x) except for the term 
1 1 1 o+-l -. - - log c(O)x-' ds = log c(0) 

2 Z l  log x 0 - 4  ss 
take the form 

But 

?This argument is not quite correct. See the relevant note in Riemann's collected works 
[Rl] (translator's note). 
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and, when the real part of s is greater than the real part of 8, 

or 

= xB- '  dx 

depending on whethert the real part of B is negative or positive. Thus 

x xB- l  - 
- j, dx + const 

in the first case and 
- x xB-1 
- I, dx + const 

in the second case. 
In the first case the constant of integration can be determined by taking 

p to be negative and infinite. In the second case the integral from 0 to x takes 
on two values which differ by 2ni depending on whether the path of integra- 
tion is in the upper halfplane or in the lower halfplane; if the path of integra- 
tion is in the upper halfplane, the integral will be infinitely small when the 
coefficient of i in p is infinite and positive, and if the path is in the lower 
halfplane, the integral will be infinitely small when the coefficient of i in 
p is infinite and negative. This shows how to determine the values of 
log[l - (s/p)] on the left side in such a way that the constants of integration 
drop out. 

By setting these values in the expression forf(x) one finds 
f(x) = Li(x) - C [Li(x(1/2)+at) + L~(X(~/~)-"')] 

a 

where$ the sum COI is over all positive roots (or all roots with positive real 
parts) of the equation e(a) = 0, ordered according to their size. It is possible, 
by means of a more exact discussion of the function t, easily to show that 
with this ordering of the roots the sum of the series 

C [Li(x(1/2)+ai) + L i ( ~ ( l / ~ ) - ~ ~ ) ]  log x 
a 

?Note that this excludes the possibility Re /3 = 0 and therefore does not apply to roots, 

$Concerning the erroneous value of log <(O) in this formula, see Chapter 1 (translator's 
if any, on the imaginary axis (translator's note). 

note). 
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is the same as the limiting value of 

as b grows without bound; by a different ordering, however, it can approach 
any arbitrary real value. 

Fromf(x) one can find F(x) by inverting 
f(x) = c ; F ( X l / " )  1 

F(x) = c (-l)",f(x'/"), 1 
to find 

where m ranges over all positive integers which are not divisible by any square 
other than 1 and where p denotes the number of prime factors of m. 

If is restricted to a finite number of terms, then the derivative of the 
expression for f(x) or, except for a part which decreases very rapidly as x 
increases, 

cos(0s log x)x-'/2 -- 
logx 2c a logx 

gives an approximate expression for the density of primes + half the density 
of prime squares ++ the density of prime cubes, etc., of magnitude x. 

Thus the known approximation F(x) = Li(x) is correct only to an order 
of magnitude of x'l2 and gives a value which is somewhat too large, because 
the nonperiodict terms in the expression of F(x) are, except for quantities 
which remain bounded as x increases, 

Li(x) - 3 Li(x1l2) - 3 Li(x1l3) - + Li(x1l5) 
+ 4 Li(x1l6) - 3 Li(x*/') + . . 

In fact the comparison of Li(x) with the number of primes less than x 
which was undertaken by Gauss and Goldschmidt and which was pursued 
up to x = three million shows that the number of primes is already less than 
Li(x) in the first hundred thousand and that the difference, with minor fluc- 
tuations, increases gradually as x increases. The thickening and thinning of 
primes which is represented by the periodic terms in the formula has also been 
observed in the counts of primes, without, however, any possibility of estab- 
lishing a law for it having been noticed. It would be interesting in a future 
count to examine the influence of individual periodic terms in the formula for 
the density of primes. More regular than the behavior of F(x) is the behavior 
of f(x) which already in the first hundred is on average very nearly equal to 
Li(4 + log W). 

?Strictly speaking, the terms Li(x(1/2)+ai) are not periodic but merely oscillatory 
(translator's note). 
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