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Uniform distribution of isolated system 
 
Consider an isolated big system X (e.g., the universe) whose energy E(X) is fixed at E. X 
evolves deterministically within the state space  
 
Omega(E) = {X: E(X) = E}.  
 
Assume that with enough time, X will visit every state in Omega(E) with equal frequency, an 
assumption called ergodicity, then at a random time, X follows a uniform distribution over 
Omega(E).  
 
Gibbs distribution of a subsystem 
 
Now consider a small subsystem x (e.g., a molecule), which is part of X, and let Y be the rest of 
X, i.e., X = (x, Y), and  
 
E(X) = E(x) + E(Y) = E.  
 
Then under the uniform distribution of X, the distribution of x is  
 
p(x) = 1/Z(T) exp(- E(x)/T),  
 
where T is the temperature. This is the origin of the Gibbs distribution, or Boltzmann 
distribution, or energy-based model.  
 
The reason is as follows. For a given value x of the small subsystem, let y be the rest of the large 
system X, then  
 
E(Y) = E(X) - E(x) = E - E(x).  
 
Among all the states in Omega(E) = {X: E(X) = E}, the number of states where the subsystem is 
x is the same as the number of states in Omega1(E-E(x)) = {Y: E(Y) = E - E(x)}. Then  
 
p(x) = |Omega1(E-E(x))| / |Omega(E)|.  
 
Thus  
 
log p(x) = log |Omega1(E-E(x))| + const1  
              = - beta E(x) + const2 
 
using the first-order Taylor expansion, where  



 
beta = d/dE log |Omega1(E)| 
 
is the derivative term in the first-order Taylor expansion.  
 
We call beta = 1/T. Then  
 
log p(x) = - E(x)/T + const2,  
 
and  
 
p(x) = 1/Z(T) exp(- E(x)/T).  
 
We can interpret p(x) to be the distribution of a system exchanging heat with a big environment 
at temperature T, i.e., a heat bath.  
 
Micro-canonical ensemble and canonical ensemble 
 
Omega(E) = {X: E(X) = E} or the uniform distribution over Omega(E) is called micro-canonical 
ensemble, and p(x) is called canonical ensemble. Under p(x), the energy E(x) fluctuates, because 
x exchanges heat with its environment y. But if x is large enough with a large number of degrees 
of freedom, the average energy per degree of freedom converges to a constant due to law of large 
number or concentration of measure, and p(x) behaves like a micro-canonical ensemble.  
 
Heat and entropy 
 
For micro-canonical ensemble (or a large canonical ensemble),  
 
S = log |Omega(E)|  
 
is called entropy.  
 
Since  
 
beta = 1/T = dS / dE, or dS = beta dE,  
 
the change of energy causes the change of entropy. The change of energy is in the form of heat. 
So if we inject heat into the system, its entropy will increase. If the system releases heat, its 
entropy will decrease.  
 
Free energy 
 
Suppose we want to extract the energy of a system x for work. Let us assume x is large enough 
so that we can approximate it by a micro-canonical ensemble. We hope to extract all the energy 
E(x) = e, to make it to zero. However, at E(x) = 0, the ensemble becomes {x: E(x) = 0}, and the 
entropy is also reduced to a minimum S0. For the system x and its environment y, the total 



entropy should not decrease. Thus if the system reduces its entropy, the environment must 
increase its entropy. That is, the system must release heat to the environment. It is like you are 
tidying up your living room to make it organized, and in doing so, you reduce the entropy of 
your living room. However, you generate heat to the environment to increase the entropy of the 
environment.  
 
At a fixed temperature, the change of entropy S - S0 is thus transferred to its environment in the 
form of heat T (S-S0). Therefore, we can only extract work  
 
e - T(S-S0).  
 
Since S0 is a constant, we can define e - TS as free energy.  
 
When extracting work, it involves the change of volume V of the piston of the steam engine 
under a certain pressure p. Thermodynamics is mainly to study how to convert heat to work. In 
this process, we have to consider the change of entropy, i.e., the count of configurations in the 
ensemble.  
 
Free energy = - T log Z 
 
For canonical ensemble p(x), its energy E(x) = energy(x) fluctuates, so we define free energy as 
the expectation of energy – T entropy, i.e.,  
 
E_p[energy(x)] – T entropy(p) = E_p[energy(x) + T log p(x)]  
                                                  = E_p[energy(x) + T ((-energy(x)/T) - log Z)]   
                                                  = - T log Z.  
 
Variational approximation 
 
For a normalizing flow model q(x),  
 
KL(q|p) = E_q[log q] – E_q[-energy(x)/T – log Z] 
              = - entropy(q) + E_q[energy(x)/T] + log Z.  
 
Thus  
 
-T log Z = - T entropy(q) + E_q[energy(x)] – KL(q|p).  
 
So the free energy is upper-bounded by  
 
F(q) = E_p[energy(x)] – T entropy(q).  
 
We can minimize F(q) to obtain q.  
 
 
Reinforcement learning 



 
A related problem arises in reinforcement learning, where we want to find policy q(x) (x now 
becomes action, and we make state implicit):  
 
F(q) = E_q[cost(x)] + lambda KL(q|p0),  
 
where p0 is a base policy.  
 
The optimal q is  
 
p(x) = 1/Z exp(- beta cost(x)) p0(x),  
 
with beta = 1/lambda, because  
 
KL(q|p) = E_q[log q + beta cost(x) – log p0 + log Z]  
              = KL(q|p0) + beta E_q[cost(x)] + log Z 
              = F(q)/lambda + log Z, 
 
which is minimized at q = p.  
 


