Generative Models Ying Nian Wi

Background

Energy-base model

Latent variable mode

Cooperative learning

Other models

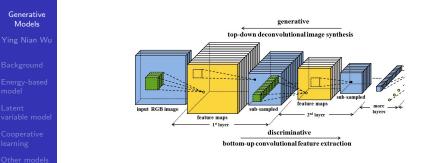
Cooperative Learning of Energy-based Model and Latent Variable Model via MCMC Teaching

Ying Nian Wu

Department of Statistics University of California, Los Angeles

NCSU, Feb 16, 2018

A Tale of Two Nets



Bottom-up ConvNet energy ≙ signal signal (a) Descriptor Net Energy-based Model

Top-down ConvNet latent variables (b) Generator Net Latent Variable Model

Plan

Generative Models

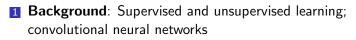
Background

Energy-base model

Latent variable mode

Cooperative learning

Other models



Energy-based Model: Descriptor network (Xie*, Lu*, Zhu, Wu, ICML, 2016)

3 Latent Variable Model: Generator network (Han*, Lu*, Zhu, Wu, AAAI, 2017)

 Cooperative Learning: CoopNets (Xie, Lu, Gao, Wu, AAAI, 2018)

Modes of learning

Generative Models Ying Nian Wu

Background

- Energy-base model
- Latent variable mode
- Cooperative learning
- Other models

- Supervised learning: classification and regression
- Reinforcement learning: policy and value networks
- Unsupervised learning:
 - Generative models and density estimation
 - Latent variable models, factor analysis
 - Energy-based models, exponential family models
 - Embedding and auto-encoding

Deep learning

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

Convolutional neural network (ConvNet or CNN)

- Recurrent neural network (RNN)
- Models with multi-layer latent variables

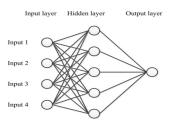
Supervised learning

Background

Energy-based model

Latent variable mode

Cooperative learning



obs	input	hidden	output
1	X_1^\top	$h_1^{ op}$	y_1
2	X_2^{\top}	$h_2^ op$	y_2
	_	_	
n	X_n^{\top}	$h_n^ op$	y_n

Supervised learning

Background

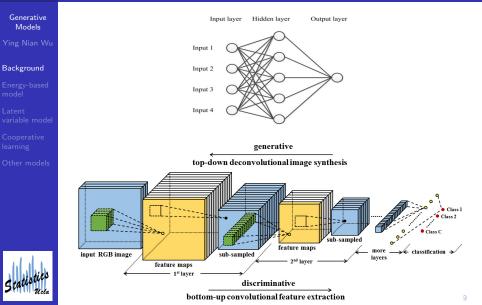
Energy-base model

Latent variable mode

Cooperative learning

output :	Y_i
	\uparrow
hidden :	h_i
	\uparrow
input:	X_i

ConvNet



Filtering

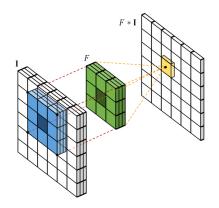
Generative Models Ying Nian W

Background

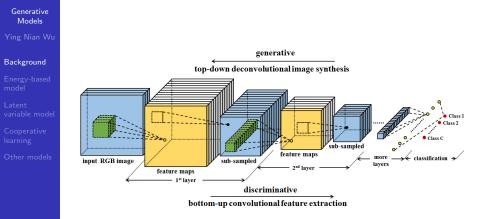
Energy-based model

Latent variable mode

Cooperative learning



ConvNet



[Le Cun et al. 1998; Krizhevsky et al. 2012]

Element-wise non-linearity

Background

Energy-base model

Latent variable mode

Cooperative learning

Other models

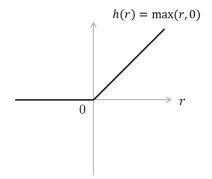
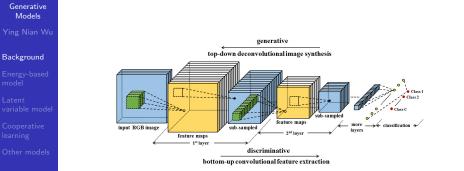


Figure: Rectified Linear Unit (ReLU).

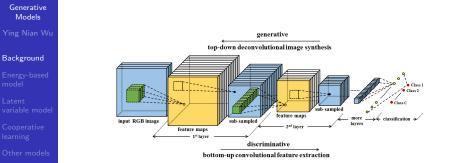
ConvNet



L-layer network

$$X \to h^{(1)} \to \dots h^{(l-1)} \to h^{(l)} \to \dots \to h^{(L)} \to \hat{Y},$$

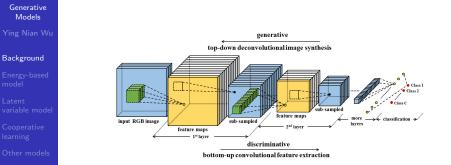
ConvNet



$$h^{(l)} = f_l(W_l h^{(l-1)} + b_l),$$

where l = 1, ..., L, $h^{(0)} = X$, $h^{(L+1)} = \hat{Y}$, and $\theta = (W_l, b_l, l = 1, ..., L + 1)$. f_l is element-wise non-linearity

Back-propagation



$$\partial h^{(l)} / \partial h^{(l-1)} = f'_l (W_l h^{(l-1)} + b_l) W_l$$

End-to-end training

ConvNet

Generative Models Ying Nian WL

$\mathsf{Background}$

Energy-based model

Latent variable mode

Cooperative learning

Other models

$$h^{(l)} = f_l(W_l h^{(l-1)} + b_l),$$

Encompasses the following:

Generalized linear model (GLM), e.g., logistic regression

- Linear spline: $\sum_k \beta_k \max(0, x b_k)$
- CART/MARS: recursive partitioning, hinge functions

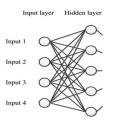
Unsupervised learning

Background

Energy-based model

Latent variable mode

Cooperative learning



obs	input	hidden	output
1	X_1^{\top}	$h_1^{ op}$?
2	X_2^{\top}	$h_2^{ op}$?
	_	-	
n	$X_n^{ op}$	$h_n^ op$?

Recall supervised learning

Background

Energy-base model

Latent variable mode

Cooperative learning

output :	Y_i
	\uparrow
hidden :	h_i
	\uparrow
input:	X_i

Unsupervised learning

Generative Models Ying Nian Wu

Background

Energy-based model

Latent variable model

Cooperative learning

Other models

Energy-based model

energy :	$f(X_i;\theta)$
	\uparrow
features :	h_i
	\uparrow
input :	X_i

Latent variable model

$$\begin{array}{rcl} \text{prior}: & p(h) \\ & \downarrow \\ \text{hidden}: & h_i \\ & \downarrow \\ \text{input}: & X_i \end{array}$$

Unsupervised learning

Generative Models Ying Nian Wi

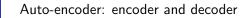
Background

Energy-based model

Latent variable model

Cooperative learning

Other models



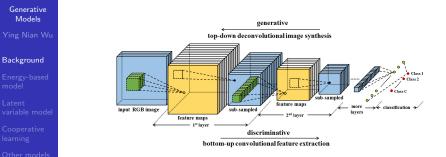
 $\begin{array}{cc} \text{code}: & h_i \\ & \uparrow \downarrow \\ \text{input}: & X_i \end{array}$

Embedding: relative relationship

 $\begin{array}{c} \leftarrow h_i \rightarrow \\ | \\ \leftarrow X_i \rightarrow \end{array}$

Multi-dimensional scaling Local linear embedding [Roweis and Saul 2000]

ConvNet



Bottom-up ConvNetTop-down ConvNetenergyhidden variables h \uparrow \Downarrow signal Xsignal X(a) $f(X; \theta)$ (b) $X = g(h; \alpha)$

Energy-based model: descriptor net

Generative Models

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

$$X \to h^{(1)} \to \dots \to h^{(L)} \to f(X;\theta)$$
$$p(X;\theta) = \frac{1}{Z(\theta)} \exp\left[f(X;\theta)\right] p_0(X).$$

 $p_0(\boldsymbol{X})$ is the reference distribution such as Gaussian white noise

$$p_0(X) = \frac{1}{(2\pi s^2)^{D/2}} \exp\left[-\frac{\|X\|^2}{2s^2}\right]$$

Can be derived from discriminative ConvNet Energy function:

$$\mathcal{E}(X;\theta) = \|X\|^2 / 2s^2 - f(X;\theta)$$

Relationship with discriminative net

Generative Models

Ying Nian Wi

. . .

Energy-based model

Latent variable mode

Cooperative learning

$$X \to h^{(1)} \to \dots \to h^{(L)} \to f(X; \theta_k)$$

$$p(X;\theta_k) = \frac{1}{Z(\theta_k)} \exp\left[f(X;\theta_k)\right] p_0(X).$$

$$\Pr(k|X) = \frac{\exp(f(X;\theta_k) + b_k)}{\sum_{k=0}^{K} \exp(f(X;\theta_k) + b_k)},$$
(1)

Maximum likelihood

Generative Models Ying Nian Wi

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

$$X_i \sim P_{\text{data}}, i = 1, ..., n.$$

$$p(X;\theta) = \frac{1}{Z(\theta)} \exp \left[-\mathcal{E}(X;\theta)\right]$$

Log-likelihood:

$$L_p(\theta) = \frac{1}{n} \sum_{i=1}^n \log p(X_i; \theta)$$

minimize $KL(P_{data}|p_{\theta})$ Maximum likelihood learning:

$$-L'_{p}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \mathcal{E}(X_{i};\theta) - \mathcal{E}_{\theta} \left[\frac{\partial}{\partial \theta} \mathcal{E}(X;\theta) \right]$$

Energy-based model: descriptor net

Generative Models Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

Langevin revision:

$$X_{\tau+1} = X_{\tau} - \frac{\delta^2}{2} \frac{\partial}{\partial X} \mathcal{E}(X_{\tau}; \theta) + \mathcal{N}(0, \delta^2 I_D)$$

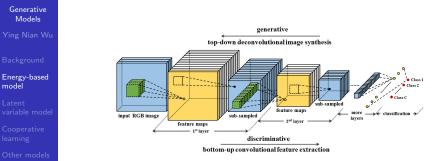
Density shifting:

$$-L'_{p}(\theta) \approx \frac{\partial}{\partial \theta} \left[\frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(X_{i};\theta) - \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} \mathcal{E}(\tilde{X}_{i};\theta) \right]$$

Adversarial interpretation:

$$V = \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(X_i; \theta) - \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} \mathcal{E}(\tilde{X}_i; \theta)$$

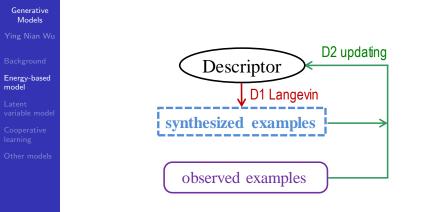
Back-propagation



 $\partial f(X;\theta)/\partial \theta$ for updating θ $\partial f(X;\theta)/\partial X$ for sampling XThe two derivatives share the same chain rule:

$$\partial h^{(l)} / \partial h^{(l-1)} = f'_l (W_l h^{(l-1)} + b_l) W_l$$

Analysis by synthesis



D1: Dreaming

D2: Make the dreaming more realistic

Texture

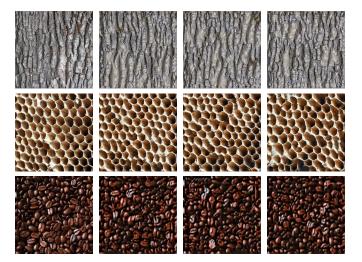
Generative Models

Background

Energy-based model

Latent variable mode

Cooperative learning



Texture

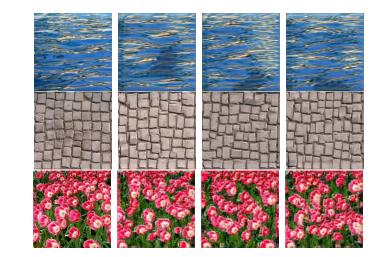
Generative Models

Background

Energy-based model

Latent variable mode

Cooperative learning



Object

Generative Models

Ying Nian Wu

Background

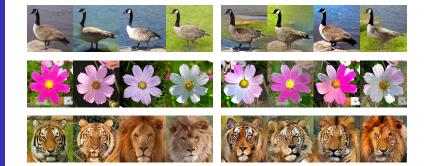
Energy-based model

Latent variable model

Cooperative learning

Other models

[Lu et al. 2016]



Multi-grid

Background

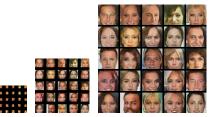
Energy-based model

Latent variable mode

Cooperative learning

Other models

[Gao, Lu, Zhou, Zhu, Wu, 2018]



Forest road

Volcano

o He

Hotel room Building facade

Multi-grid

Generative Models

Ting Mail Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

	Real images	DCGAN	Multi-grid
Inception score	11.237	6.581	6.565

Multi-grid

Generative Models Ying Nian Wi

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

Statistics Hela Figure: Learning the multi-grid models from the LSUN bedroom dataset. Left: random samples of training examples. Right: synthesized examples generated by the learned models.

Learning features

Generative Models

Background

Energy-based model

Latent variable mode

Cooperative learning

Learning features

Generative Models

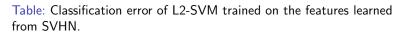
Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning



Test error rate with $\#$ of labeled images	1,000	2,000	4,000
Persistent CD	45.74	39.47	34.18
One-step CD	44.38	35.87	30.45
Wasserstein GAN	43.15	38.00	32.56
Deep directed generative models		34.26	27.44
DCGAN	38.59	32.51	29.37
Single-grid CD	36.69	30.87	25.60
Multi-grid CD	30.23	26.54	22.83

Learning features

Generative Models

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

Table: Classification error of CNN classifier trained on the features of three grids learned from SVHN.

Test error rate with $\#$ of labeled images		2,000	4,000
DGN		-	-
Virtual adversarial	24.63	-	-
Auxiliary deep generative model	22.86	-	-
Supervised CNN with the same structure		22.26	15.24
Multi-grid CD + CNN classifier	19.73	15.86	12.71

Learning prior

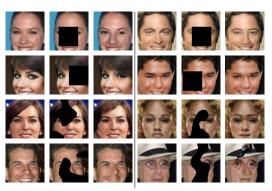
Generative Models

Background

Energy-based model

Latent variable mode

Cooperative learning



Learning prior

Generative Models

Background

Energy-based model

Latent variable mode

Cooperative learning

	Mask	PCD	CD1	SCD	CE	MCD
Error	Mask	0.056	0.081	0.066	0.045	0.042
	Doodle	0.055	0.078	0.055	0.050	0.045
	Pepper	0.069	0.084	0.054	0.060	0.036
PSNR	Mask	12.81	12.66	15.97	17.37	16.42
	Doodle	12.92	12.68	14.79	15.40	16.98
	Pepper	14.93	15.00	15.36	17.04	19.34

Linear latent variable models

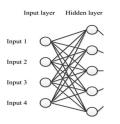
Background

Energy-based model

Latent variable model

Cooperative learning

Other models



Top-down from hidden variables (factors, sources, causes, code) $X_i = Wh_i + \epsilon_i, i = 1, ..., n.$

- Loading/connection weights: $x_{ij} = \sum_{k=1}^{d} w_{jk} h_{ik}$
- Basis vectors: $X_i = \sum_{k=1}^d W_k h_{ik}$.
- Matrix factorization: $(X_1, ..., X_n) = W(h_1, ..., h_n)$
- Distributed representation, embedding, disentangle

Factor analysis

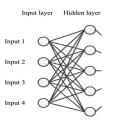
0

Background

Energy-based model

Latent variable model

Cooperative learning



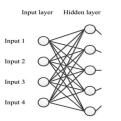
$$\begin{array}{l} h_i \sim \mathrm{N}(0, I_d) \\ X_i = Wh_i + \epsilon_i, \ \epsilon_i \sim \mathrm{N}(0, \sigma^2 I_p) \\ d < p, \ i = 1, ..., n. \\ \text{decathlon } p = 10, \ h_i = (\text{strength, speed, endurance}), \ d = 3 \\ \text{Dimension reduction, principal component analysis} \\ \text{Disentangle, independent causes} \\ \text{Generalizing } h_i \sim p(h) \end{array}$$

Generative

Make it deep

Cooperative learning

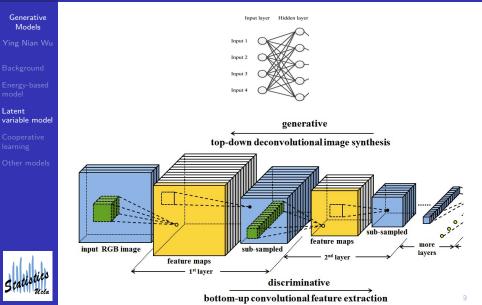
Other models



Factor analysis

 $\begin{array}{l} h_i \sim \mathrm{N}(0, I_d) \\ X_i = W h_i + \epsilon_i, \ \epsilon_i \sim \mathrm{N}(0, \sigma^2 I_p) \\ \text{(1) Generalize } h_i \sim p(h) \text{: ICA, SCA, NMF, RBM, DAE } \dots \\ \text{(2) Generalize to non-linear mapping: } X_i = g(h_i; W) \end{array}$

Make it deep



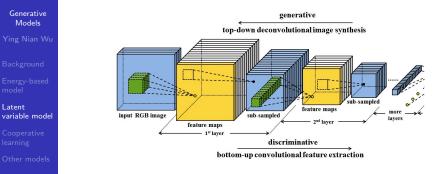
Generator with known factors

Generative Models Ying Nian Wi

Latent variable model [Dosovitskiy et al., 2016]

 $(h_i, X_i): X_i = g(h_i; \alpha)$ supervised $h \to h^{(L)} \to \ldots \to h^{(1)} \to X$

Latent variable model: generator network



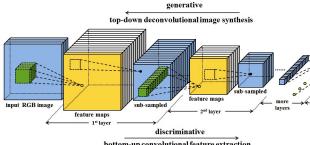
[Goodfellow et al. 2014; Kingma and Welling 2013]

$$h \sim \mathcal{N}(0, I_d)$$
$$X = g(h; \alpha) + \epsilon$$
$$h^{(l-1)} = g_l(W_l h^{(l)} + b_l)$$
$$h^{(L+1)} = h; \ X = h^{(0)}$$

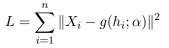
Alternating back-propagation

Generative [Han et al. 2017] Models

Latent variable model

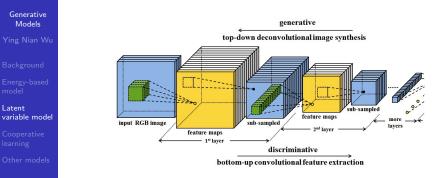


bottom-up convolutional feature extraction



Inference: $h_i \leftarrow h_i + \gamma \partial L_i / \partial h_i$ Learning: $\alpha \leftarrow \alpha + \gamma \partial L / \partial \alpha$

Alternating back-propagation



$$\begin{split} h^{(l-1)} &= g_l(W_l h^{(l)} + b_l), \\ h^{(L)} &= h; \ X = h^{(0)} = g(h; W) \\ \partial g(h; \alpha) / \partial \alpha; \partial g(h; \alpha) / \partial h \\ \partial h^{(l-1)} / \partial h^{(l)} \text{ shared computation} \end{split}$$

Alternating back-propagation

Generative Models Ying Nian Wu

Background

Energy-base model

Latent variable model

Cooperative learning

Other models

Joint distribution:

$$\log p(h, X; \alpha) = \log [p(h)p(X|h; \alpha)] = -\frac{1}{2\sigma^2} ||X - g(h; \alpha)||^2 - \frac{1}{2} ||h||^2 + \text{const.}$$

Inference: $h \sim p(h|X;\alpha)$ via Langevin dynamics

$$h_{\tau+1} = h_{\tau} + \frac{\delta^2}{2} \frac{\partial}{\partial h} \log p(h_{\tau} \mid X, \alpha_t) + \mathcal{N}(0, \delta^2 I_d)$$

Learning with $\{(h_i, X_i), i = 1, ..., n\}$

1

$$\alpha_{t+1} = \alpha_t + \gamma_t \frac{\partial}{\partial \alpha} \sum_{i=1}^n \|X_i - g(h_i; \alpha_t)\|^2$$

Generator network

Generative Models

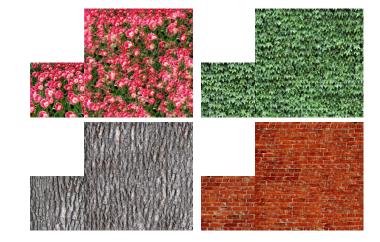
Background

Energy-based model

Latent variable model

Cooperative learning

Other models



[Han et al. 2017]

Generator network

Generative Models

Ying Nian Wu

Background

Energy-base model

Latent variable model

Cooperative learning

 $h = (h_1, h_2)$

Generator network

Generative Models

Ying Nian Wi

Background

Energy-based model

Latent variable model

Cooperative learning

Other models

d=100

Incomplete data

Background

Energy-base model

Latent variable model

Cooperative learning

Other models

experiment	P.5	P.7	P.9	M20	M30
error	.0571	.0662	.0771	.0773	.1035

[Han et al. 2017]

Non-linear dimension reduction

Generative Models Ying Nian Wu

Background

Energy-based model

Latent variable model

Cooperative learning

Other models

Reconstruction error on testing examples

experiment	d = 20	d = 60	d = 100	d = 200
ABP	.0810	.0617	.0549	.0523
PCA	.1038	.0820	.0722	.0621

Shared representation

Generative Models

Background

Energy-based model

Latent variable model

Cooperative learning

Other models

Figure: Face rotation results on testing images. First column: face image under standard pose (0°) . Second to fifth column: each pair shows the rotated face by our method (left) and the ground truth target (right).

[Xie et al. 2017]

Generative Models

Cooperative learning

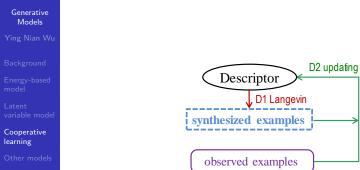
latent variables energy ≙ signal (a) Descriptor Net (teacher) (b) Generator Net (student) Student writes initial draft Teacher revises

Student learns from revision Teacher learns from outside review

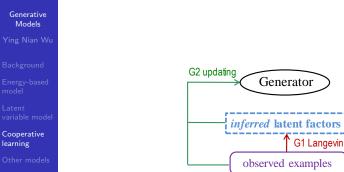
Bottom-up ConvNet

Top-down ConvNet

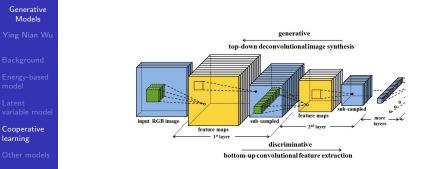
signal



D1 needs to dream hard, but generator is a better dreamer D2 learns without thinking



G1 needs to think hard, but descriptor does not need to think G2 learns only if latent factors known



Generator \rightarrow initial draft; Descriptor \rightarrow revised draft Generator reconstructs the revised, knowing latent factors Descriptor shifts from revised towards observed Generator shifts from initial towards revised Jump-starting each other's Langevin

Generative Models

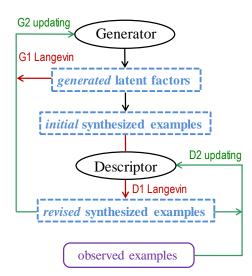
Ying Nian Wu

Background

Energy-base model

Latent variable mode

Cooperative learning



Generative Models

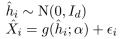
Ying Nian Wu

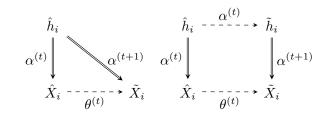
Background

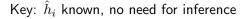
Energy-based model

Latent variable mode

Cooperative learning



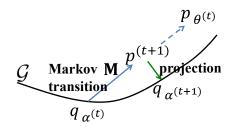




MCMC teaching

Cooperative learning

Other models



$$\operatorname{KL}(p^{(t+1)}|p_{\theta^{(t)}}) \le \operatorname{KL}(q_{\alpha^{(t)}}|p_{\theta^{(t)}})$$

Descriptor:

$$\min_{\theta} [\mathrm{KL}(P_{\mathrm{data}} \| p_{\theta}) - \mathrm{KL}(M_{\theta} q_{\alpha} \| p_{\theta})],$$

Generator:

$$\min_{\alpha} \operatorname{KL}(M_{\theta} q_{\alpha_t} \| q_{\alpha}).$$

MCMC teaching

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

 $\begin{array}{cccc} \text{MCMC}: & P^{(t)} & \xrightarrow{\text{Markov transition}} & P^{(t+1)} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$

Texture

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable model

Cooperative learning

Object

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Scene

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

Figure: Images generated by CoopNets learned from 10 Imagenet scene categories. The training set consists of 1100 images randomly sampled from each category.

Interpolation

Ying Nian Wu

Background

Energy-base model

Latent variable mode

Cooperative learning

Synthesis quality

Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

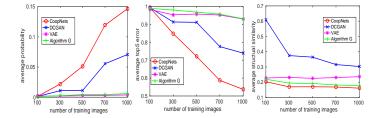


Figure: Left: Average softmax class probability on single Imagenet category versus the number of training images. Middle: Top 5 classification error. Below: Average pairwise structural similarity.

Synthesis quality

Generative Models

Background

Energy-base model

Latent variable mode

Cooperative learning

Other models

Table: Inception scores of different methods on learning from 10 Imagenet scene categories. n is the number of training images randomly sampled from each category.

	n = 50	n = 100	<i>n</i> = 300	n = 500	<i>n</i> = 700	<i>n</i> = 900	n = 1100
CoopNets	2.66±.13	3.04±.13	$3.41 \pm .13$	3.48±.08	$3.59 {\pm} .11$	3.65±.07	3.79±.15
DCGAN	$2.26 \pm .16$	$2.50 \pm .15$	$3.16 \pm .15$	3.05±.12	3.13±.09	$3.34 {\pm} .05$	3.47±.06
EBGAN	$2.23 \pm .17$	$2.40 {\pm}.14$	2.62±.08	2.46±.09	2.65±.04	$2.64 {\pm}.04$	2.75±.08
W-GAN	$1.80 {\pm}.09$	$2.19 {\pm} .12$	2.34±.06	2.62±.08	$2.86 {\pm}.10$	2.88±.07	3.14±.06
VAE	$1.62 \pm .09$	$1.63 {\pm}.06$	$1.65 {\pm}.05$	$1.73 {\pm}.04$	$1.67 {\pm}.03$	$1.72 {\pm}.02$	1.73±.02
InfoGAN	2.21±.04	$1.73 {\pm}.01$	$2.15 \pm .03$	$2.42 {\pm}.05$	2.47±.05	2.29±.03	2.08±.04
Method of	$2.44 \pm .27$	$2.38 {\pm}.13$	2.42±.09	$2.94 {\pm}.11$	3.02±.06	3.08±.08	$3.15 {\pm}.06$
Algorithm G	$1.72 {\pm}.07$	$1.94 {\pm}.09$	2.32±.09	2.40±.06	$2.45 {\pm}.05$	$2.54 {\pm}.05$	$2.61 {\pm} .06$
Persistent CD	$1.30{\pm}.08$	$1.94 {\pm}.03$	$1.80 {\pm}.02$	$1.53 {\pm}.02$	$1.45 {\pm}.04$	$1.35 {\pm}.02$	$1.51 {\pm}.02$

Pattern completion

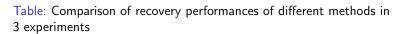
Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning



	task	CoopNets	DCGAN	$MRF\ell_1$	$MRF\ell_2$	inter1	inter2	inter3	inter4	inter5
error	M30	0.115	0.211	0.132	0.134	0.120	0.120	0.265	0.120	0.120
	M40	0.124	0.212	0.148	0.149	0.135	0.135	0.314	0.135	0.135
	M50	0.136	0.214	0.178	0.179	0.170	0.166	0.353	0.164	0.164
PSNR	M30	16.893	12.116	15.739	15.692	16.203	16.635	9.524	16.665	16.648
	M40	16.098	11.984	14.834	14.785	15.065	15.644	8.178	15.698	15.688
	M50	15.105	11.890	13.313	13.309	13.220	14.009	7.327	14.164	14.161

Pattern completion

Ying Nian Wu

Background

Energy-base model

Latent variable mode

Cooperative learning



Pattern completion

ring ivian vvu

Background

Energy-based model

Latent variable mode

Cooperative learning

Scene synthesis

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Generative Models

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

Conclusion

Generative Models		
Ying		W

Background

Energy-based model

Latent variable model

Cooperative learning

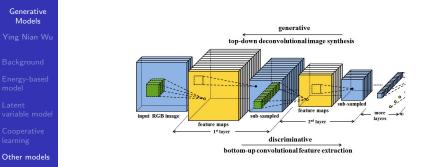
Other models

Linear + minimal non-linearity

Learn representation and computation (inferencer, sampler) Blackbox: CNN, quantum mechanics, ...

Interpretable And-Or graphs (Zhu, Mumford 2007)

Helmholtz machine



[Dayan et al. 1995; Neal 1990] Sigmoid network: $h^{(l)}$ binary and stochastic $h \sim \text{Bernoulli}(p)$ $h^{(l-1)} = \text{Bernoulli}(\text{sigmoid}(W_l h^{(l)} + b_l))$ $h^{(L)} = h; X = h^{(0)}$ Trained by wake-sleep

Deep Boltzmann machine

Generative Models Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

[Salakhutdinov, Hinton 2009] Latent energy-based model, undirected $p(X, h; W) = \frac{1}{Z} \exp \left[\sum_{l} h^{(l-1)\top} W_{l} h^{(l)}\right]$ $X = h^{(0)}$

Multiple layers of binary latent variables, explicit conditionals Deep belief network: RBM + sigmoid [Hinton et al. 2006]

Generative Adversarial Net (GAN)

Generative Models

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

[Goodfellow et al. 2014; Radford et al. 2015] Discriminator (D) and Generator (G) play the following two-player minimax game with value function V(G, D):

$$\min_{G} \max_{D} V(D,G)$$
$$V = \mathcal{E}_{X \sim P_{\text{data}}}[\log D(X)] + \mathcal{E}_{h \sim p(h)}[\log(1 - D(G(h))]$$

GAN and variations

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

Figure: Top Row: left: DCGAN, right: infoGAN (pose). Bottom Row: left: vector arithmetic, right: domain transfer (DTN)

Introspective generative modeling

Generative Models

Background

Energy-base model

Latent variable mode

Cooperative learning

Other models

[Tu, 2007; Lazarow et al., 2017]: progressively learning by repeated discriminations

$$p(X|y=+) = \frac{p(y=+|X)}{p(y=-|X)}p(X|y=-)$$

 $y \in \{+,-\}$: the target vs generated

Generative Models

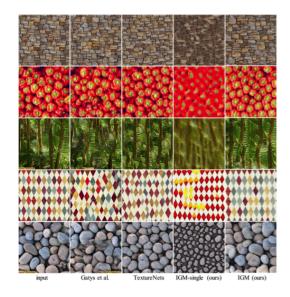
Background

Energy-based model

Latent variable mode

Cooperative learning

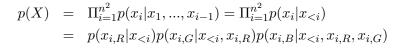
Other models

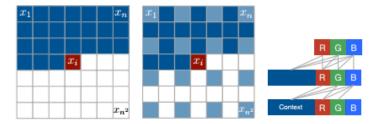


Auto-regressive models

Generative Models

- Ying Nian VVu
- Background
- Energy-based model
- Latent variable mode
- Cooperative learning
- Other models





Context

Multi-scale context

[Oord et al., 2016]

Pixel RNN

- Ying Nian Wu
- Background
- Energy-based model
- Latent variable mode
- Cooperative learning
- Other models

Figure: pixelRNN

Generalizing ICA

Generative Models

- Background
- Energy-base model
- Latent variable mode
- Cooperative learning
- Other models

$$h_{ik} \sim p_k$$
 heavy-tailed, independently, $k = 1, ..., d$
 $X_i = Wh_i, h_i = AX_i, p(X) = p(h)|\det(A)|$
 $d = p$
Generalize to $X_i = g(h_i; W)$, and $h_i = g^{-1}(X_i; W)$
Use auto-regressive structure

)

Real NVP

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable mode

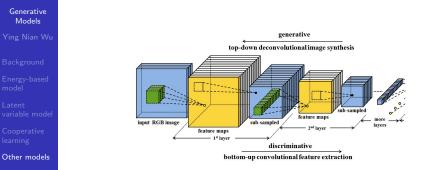
Cooperative learning

Other models

Figure: sphere interpolation (real NVP)

[Dinh et al. 2017]

Activation maximization



[Nguyen et al. 2016] Given a pre-trained G(h), optimize h:

$$\hat{h} = \arg \max_{h} (\Phi_h(G(h)) - \lambda ||h||)$$

Plug and play

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable mode

Cooperative learning

Other models

[Nguyen et al., 2017] Sample h from an implicit p(h) learned by denoising autoencoder (DAE)

Figure: PPGN

Diffusion model

Generative Models

Ying Nian Wu

Background

Energy-based model

Latent variable model

Cooperative learning

Other models

[Sohl-Dickstein et al. 2015] Forward trajectory:

$$q(x^{(0...T)}) = q(x^{(0)})\Pi_{t=1}^{T}q(x^{(t)}|x^{(t-1)})$$

Backward trajectory:

$$p(x^{(0...T)}) = p(x^{(T)})\Pi_{t=1}^{T} p(x^{(t-1)}|x^{(t)})$$

Where $p(x^{(T)})$ is the target distribution. Both $p(x^{(t-1)}|x^{(t)})$ and $q(x^{(t)}|x^{(t-1)})$ is time-invariant diffusion process. Model is trained by minimize KL(q|p)

Diffusion model

Ying Nian Wu

Background

Energy-base model

Latent variable mode

Cooperative learning

Other models

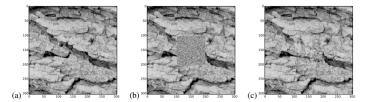


Figure: Diffusion model

