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Geschiedenis

The Weil conjectures

As of 2003, the Abel Prize has been awarded yearly to one or more mathematicians. Up

to 2014, fourteen laureates have received this prize, which has often been described as the

mathematician’s ‘Nobel prize’. In 2013 it was awarded to Pierre Deligne. This event was

celebrated by a presentation during a WONDER meeting in Delft, in December 2013. The present

note of Frans Oort aims to give a part of that presentation, in particular a contemplation on the

‘flow of mathematics’ which led to this great success: the main topic will be on the ‘pre-history’

of the Weil conjectures.

The fundamental problem in number theo-

ry is surely how to solve equations in inte-

gers. Since this question is still largely inac-

cessible, we shall content ourselves with the

problem of solving polynomial congruences

modulo p. Nick Katz in [20]

The Riemann Hypothesis (RH) has been in

the focus of mathematical research ever since

Bernhard Riemann stated this conjecture in

1859. However, this problem will not be con-

sidered here. From 1924 onward an analogue

of the RH has been studied, usually called the

characteristicp formulation. In order to avoid

any confusion we will refer to this by pRH (al-

though this is not standard). Basically, this

problem concerns solving equations over fi-

nite fields. We will see that the pRH answers

the question of counting the number of so-

lutions to polynomial equations over all finite

fields of the same characteristic at one stroke.

This will be illustrated by an easy example, to

be followed throughout the paper.

After fifty years Pierre Deligne placed the

crown on this impressive series of develop-

ments by proving the pRH in its full generality.

Below, we will discuss the history of this flow

of ideas.

Remark. Does this provide any progress for

the solution of the classical RH? The answer

is negative in the strict sense: there is no im-

plication pRH⇒RH (and also no argument the

reverse way). However, it may give us confi-

dence of being on the right track. Moreover,

tools have been developed, several techni-

cal steps have been made, and above all the

deep insight in arithmetic aspects of geom-

etry have proved to be a powerful aspect of

modern mathematics.

We discuss:

− Formulation of the (equivalent of the) RH

by Emil Artin, and results by F.K. Schmidt,

Hasse and Weil proving this conjecture

in special cases (algebraic curves and

abelian varieties defined over finite fields).

− We indicate how this motivated André Weil

to formulate his conjectures.

− In short sections we give references for re-

sults proved by Grothendieck with many

of his co-workers, and finally by Deligne,

proving the Weil conjectures.

I expect that the first four pages can be un-

derstood by a general audience; the next two

pages will convey some of the thrill of this

daring conjecture by Weil; the last two pages

give ample references about recent work on

the Weil conjectures. Excellent surveys are

[20, 26, 33, 40], also see [8].

Counting points on varieties over finite fields

This was considered by Gauss, DA 357 (Dis-

quisitiones Arithmeticae), and in his famous

‘Last Entry’ 146 in 1814 in his Tagebuch: the
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number of rational points on several elliptic

curves (in our terminology) over a prime field

Fp were computed [11–12]. Also other math-

ematicians considered such cases.

Let me take one simple example, which we

will follow throughout our journey. Try to solve

the equation

Y 2 − Y = X3 −X2, with x,y ∈ F2m .

It is clear that over F2 there are exactly four

solutions given by x = 0,1 and y = 0,1;

note that −1 = +1 ∈ F2. We can embed

the affine plane into the projective plane by

(x,y) = [x:y :1]. We know that, adding the

‘point at infinity’ [0:1:0] (the unique point at

‘infinity’ on the line X = 0) we obtain an ellip-

tic curve D ⊂ P2
K defined over K = F2 by the

homogeneous equation

Y 2Z − YZ2 = X3 −X2Z.

We write our modest result as

#(D(F2)) = 5.

How do we compute Nm := #(D(F2m )) for

all m ∈ Z>0? We will show that abstract

theory gives a complete (and easy) answer

to this question (and in fact, the same

method answers this question over any finite

field).

Explanation. A finite field is a field with a

finite number of elements. An example is the

residue class ring Z/p, where p is a prime

number (and indeed, as is easily proved, this

is a field). However Z/4 is not a field: it has

zero-divisors, the element 2 mod 4 does not

have an inverse. General theory says that for

any prime power q = pn, where p is a prime

number and n ∈ Z>0, there exists a finite

field with q elements, and this field is unique

up to isomorphism; it will be denoted by Fq,

in particular Fp = Z/p.

An elliptic curve E over a field K is a non-

singular algebraic curve E ⊂ P2
K given by a

cubic equation having at least one K-rational

point. The curve D ⊂ P2 given by the homo-

geneous equation ZY 2 − Z2Y = X3 − ZX2

(over a field in which 11 6= 0) is an example of

an elliptic curve.

Side remark: This equation considered

over F11 defines a curve on which (x =

8 mod 11, y = 6 mod 11) is the (only) sin-

gular point (a node).

First, we will follow a different line of de-

velopment in history.

Euler series and the Riemann zeta function

Euler studied in 1740 infinite series defined

as an infinite sum of positive numbers, and

later Chebyshev studied this as a function of

a real variable s:

∞
∑

n=1

1

ns
=
∏

p

1

1− p−s , s ∈ R,

wherep runs through the set of all prime num-

bers. Both sides converge for s > 1.

Riemann, who knew work by Euler and who

knew the relation of this function with the the-

ory of prime numbers, wrote in 1859 his mas-

terpiece Über die Anzahl der Primzahlen unter

einer gegebenen Grösse [31]. Riemann con-

sidered the function

ζ(s) =

∞
∑

n=1

1

ns
=
∏

p

1

1− p−s , s ∈ C,

convergent for the real part of s greater than

one, and he proved that this complex function

has an analytic continuation. He showed that

(the analytic continuation of) this function has

zeros at all negative, even, integral values of

s (the ‘trivial zeros’). Riemann then stated

his famous conjecture that for this function

(called the zeta function by Riemann) (con-

tinued across the pole at s = 1) all ‘non-trivial

zeros’ should have real part with absolute val-

ue equal to 1
2 (in this case ‘non-trivial zeros’

can be understood as zeros with imaginary

part not equal to zero). It is impressive to

read this paper by Riemann: concise, a mas-

terpiece of technical skill. This conjecture,

if true, would give a insight in the distribu-

tion of prime numbers. His idea, his conjec-

ture, now indicated by RH, has had an enor-

mous impact on mathematics, and it still has

this influence.

Remark. These series were considered by Eu-

ler, already in 1740, for positive integral values

of s. As far as I know Euler did not consider

this as a ‘function’ in s, therefore I will not

use the terminology ‘the Euler zeta-function’.

Dirichlet and Chebyshev studied such series

as a function (of a complex or a real variable).

The Dedekind and E. Artin zeta functions

At the moment we have no idea how to prove

(or disprove?) the Riemann Hypothesis for the

Riemann zeta function.

Remarkably enough, it might help to study

a generalization. Let R be an algebra of fi-

nite type over Z. This means that there is

Emil Artin (1898–1962)

an ideal I ⊂ Z[T1, . . . , Tm] such that R ∼=
Z[T1, . . . , Tm]/I. Here are some examples: Z,

Z[T ], Fp (where Fp = Z/p), Fp[T ], etc.

Lemma. LetR be an algebra of finite type over

Z. For any maximal ideal M ⊂ R the residue

class ring R/M is a finite field.

For a ring R as above we define its ‘zeta

function’ by

ζR(s) =
∏

M

1

1− #(R/M)−s
,

where this (Euler) product ranges over all max-

imal idealsM ⊂ R, and where s is a complex

variable. E.g. see [38].

Examples. 1. In case R = Z we have the clas-

sical Riemann zeta function

ζZ(s) = ζ(s) :

any maximal ideal M ⊂ R = Z is of the form

M = (p) ⊂ Z, where p is a prime number, and

ζZ(s) =
∏

M

1

1− #(R/M)−s

=
∏

p

1

1− p−s =

∞
∑

1

1

ns
.

2. For the ring of integers in a number field we

obtain what is now called the Dedekind zeta

function.

3. For a ring like R = Z[T ], or Fp[T ], we obtain

a new type of zeta function.

For these zeta functions (e.g. where Z is a

subring of R) we hope we can extend classi-
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cal properties of the Riemann zeta function:

they should extend to a meromorphic func-

tion over the complex plane and they should

satisfy a functional equation similar to that

of the classical Riemann zeta function. We

can ask for their non-trivial zeros (the ex-

tended Riemann hypothesis). See [39]. Lat-

er, these definitions and questions where

considered for L-functions (not discussed

here).

In his description of the RH as Millenni-

um Problem Bombieri writes: “Not a single

example of validity or failure of a Riemann hy-

pothesis for an L-function is known up to this

date. The Riemann hypothesis for ζ(s) does

not seem to be any easier than for Dirichlet

L-functions (except possibly for non-trivial re-

al zeros), leading to the view that its solu-

tion may require attacking much more gener-

al problems, by means of entirely new ideas.”

[48]

We seem to have made no progress for the

classical RH in this way. However, we can de-

rive some hope (or perhaps any hint?) from

studying a special case of this more general

situation:

Examples. For a given prime number p we

study rings of finite type over the finite field

Fp (the prime field of characteristic p).

4. We takeR = Fq, and obtainζR = 1/(1−qs ).
5. Emil Artin proposed in 1924 in his PhD

thesis [1] a definition of the zeta function

for an algebraic curve over a finite field

and he proposed a RH for this kind of ze-

ta function. The definition and properties

of such zeta functions were further studied

by F.K. Schmidt [34] and by H. Hasse [18–

19]. Rationality was proved by F.K. Schmidt

and Hasse proved the (analogue pRH of

the) RH for elliptic curves over a finite

field.

From now on all varieties are defined over

a finite field of characteristic p, and we study

the pRH, an analog/special case of the ex-

tended Riemann Hypothesis (below we give

formulas).

Proof of the pRH by Hasse

In 1934 Hasse proves the pRH for elliptic

curves over finite fields.

Reminder. We write RH for the classical

Riemann Hypothesis (and generalizations in

characteristic zero). In order to avoid confu-

sion we write pRH for the equivalent of the RH

about solving equations in positive character-

istic.

Here we set up notation. As base field

we choose K = Fq, where q is a power of p.

For any m ∈ Z>0 we write Km := Fqm , i.e.

K ⊂ Km is the extension of degreem (unique

up to a K-isomorphism).

Reminder. In a basic course on algebra we

learn that for every prime power q = pn there

exists, up to an isomorphism, exactly one

field K with q elements; this field we denote

by K = Fq. Note that Fp ∼= Z/p, however

for n > 1 the field Fq is not isomorphic with

Z/pn.

From now on all base fields will be in char-

acteristic p > 0.

This theory, started by Emil Artin, gives rise

to the following definition, in analogy with

the Dedekind zeta function for number fields.

Let V be a non-singular, projective variety de-

fined over K, i.e. an algebraic variety defined

as a closed set in some projective space PdK .

For a field L containingK we write V (L) for the

set of points on V with coordinates in L, the

set of points ‘rational over L’. We write

Nm = Nm(V/Fq) := #(V (Km)),

the number of points onV with coordinates in

Km := Kqm . This results in the (Hasse–Weil)

zeta function

Z(T ) = Z(V, T ) = ZV/K (T )

= exp





∞
∑

m=1

Nm
m
Tm



 .

Below we will see that this definition gener-

alizes the notion of zeta functions ζR(s) as in

the previous section from rings to varieties. In

fact, Emil Artin introduced this zeta functions

over a finite field, only for curves.

Example. Let V be just one point, rational

over K = Fq, hence Nm = 1 for every m > 0.

We see:

Z(T ) = exp





∞
∑

m=1

1

m
Tm



 =
1

1− T .

Example. Let us consider V = AdK , the affine

space of dimension d over K; this is de-

fined by: for any ring R containing K we have

AdK (R) = Rd. We see

Nm = #((Fqm )d) = qmd.

We can show:

ZV (T ) =
1

1− qdT .

Example. For V = P1
K , the projective line, we

have Nj = qj + 1 and we see that

Z(P1
K , T ) = exp





∞
∑

j=1

qj + 1

j
T j



 .

This can be rewritten as

Z(P1
K , T ) =

1

(1− T )(1− qT )
.

Surprisingly, the above examples give a ratio-

nal function in the variableT . In an analogous

way we can easily show:

Z(PnK , T ) =
1

(1− T )(1− qT ) · · · (1− qnT )

for all n ∈ Z>0 and all K = Fq. Note that Pn

can be written as disjoint union of A0, . . . ,An;

from this observation the formula follows. A

survey can be found in [25, Chapter 6].

Theorem (F.K. Schmidt, 1931). For a (non-

singular, irreducible, projective) algebraic

curve C over a finite field Fq, its zeta func-

tion Z(C,T ) is a rational function in T , having

the precise form

Z(C,T ) =
P

(1− T )(1− qT )
,

where P ∈ Z[T ] is a polynomial of degree 2g,

where g = genus(C), and

P = P (T ) =

2g
∏

i=1

(1−αiT ), αi ∈ C.

The map α 7→ q/α is a permutation of

{α1, . . . , α2g}.

F.K. Schmidt proved in [34] the Riemann–

Roch theorem for curves in positive charac-

teristic, and in the second part of that pa-

per Schmidt uses this to prove the theorem

above, in particular the rationality of the zeta

function of a complete, nonsingular curve of

genusg over Fq, with numerator a polynomial

of degree 2g.

Remark. We see that Z(C,T ) admits an ana-

lytic continuation. The substitution T = q−s

gives
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ZE (T ) = ZE (q−s ) =: ζE (s).

We see that α 7→ q/α yields s 7→ 1 − s, and

this is the (analogue of the) ‘functional equa-

tion’.

Theorem (Hasse, 1934). For an elliptic curve

E overK = Fq the algebraic integersα,β ∈ C,
defined by

Z(E/K,T ) =
(1−αT )(1− βT )

(1− T )(1− qT )

satisfy

(pRH) |α| =
√

q = |β|.

Hasse proves in [18, §11] the Riemann Hy-

pothesis for elliptic curves over a finite field,

see also [19, III, §4].

Remark. The numerator P1(T ) of Z(E/K,T )

in case of an elliptic curve E is the eigenval-

ue polynomial of the action of the Frobenius

π ∈ End(E), as Hasse remarked and used.

We will see that this insight will be general-

ized.

Explanation. As already has been noted, we

write RH for the classical Riemann Hypothesis,

and we write pRH for the special case of a gen-

eralization, studying an equivalent question

over finite fields. The property |α| =
√
q = |β|

above implies that the zeros of ζE (s) have

their real part equal to 1
2 here we see the re-

semblance with the classical RH.

We have seen that ZV (T ) encodes the se-

quence {Nm | m ∈ Z>0}. Conversely these

numbers can be retrieved via the logarithmic

derivative (f ′/f ):

TZ′(T )

Z(T )
=
∑

m>0

NmT
m.

The Hasse bound

It follows that for any elliptic curve E over Fq
we have

Nm(E/Fq) := #(E(Fqm ))

= 1− (αm + βm) + qm.

We see that such a theorem gives the number

of rational points over all finite extensions of

K, once α and β are known. This proves that

for any elliptic curve E over Fq we have the

‘Hasse bound’:

|#(E(Fq))− 1 + q| = |α + β| ≤ 2
√

q.

See below.

Remark. As an elliptic curve is a double cov-

er of the projective line (ramified in at least

one point) for an elliptic curve E over Fq we

immediately see the bound

#(E(Fq)) ≤ 2q + 1.

As 2
√
q < q + 1 for all q and 2

√
q < q for

4 < q we see the Hasse bound agrees with

this bound and in many cases it is sharper.

Elliptic curve

We return to our example D ⊂ P2
K , the elliptic

curve given by the equation

Y 2Z − YZ2 = X3 −X2Z

over the field K = F2.

As we have seen we have #(D(F2)) = 5 (an

easy computation, solving an equation mod-

ulo 2). By

#(D(F2)) = 5 = 1− (α + β) + 2,

β =
2

α
, α +

2

α
= 2,

we see

α,β = −1±
√

−1.

We conclude that for everym ∈ Z>0 we have

# (D(F2m )) = 1−
(

(−1±
√

−1)m

+ (−1±
√

−1)m
)

+ 2m.

(I find it astonishing that this theory after an

easy computation gives this complete result.)

Let us see how this works out in simple

examples. As the group D(F4) has D(F2) ∼=
Z/5 as a subgroup, and #(D(F4)) ≤ 2·4+1 = 9

we conclude #(E(F4)) = 5 (this can also be

seen by an easy computation), and indeed:

α2, β2 = ∓2
√

−1,

#(E(F4)) = 1− (α2 + β2) + 4 = 5.

Something you would not like to compute

without the preceding theory (α10, β10 = 15∓
8
√
−1):

#(D(F1024)) = 1− 30 + 1024 = 995.

I hope this convinces the reader that for any el-

liptic curve E over Fq after computing #(E(Fq))

this theory gives access to all #(E(Fqm )).

An amusing example: we see thatα4, β4 =

(2
√
−1)2 = −4; we obtain:

#(D(F16)) = 1− (−4− 4) + 16 = 25.

Here |#(D(F16))− 1− 16| = 8 = 2
√

16, a case

where the Hasse bound is reached.

However, note that any result of the type

pRH, the Riemann hypothesis in characteris-

tic p, does not give any new result for the

classical RH, for example:

ζZ(s) =
∏

p

ζFp (s) =
∏

p

1

1− p−s

(and it seems we have gained nothing in the

direction of the classical RH).

Remark. Instead of the definition given above

of ZV (T ) one can give the equivalent defini-

tion:

ZV (T ) =
∑

δ

1

1− T deg(δ)
,

where δ runs over all effective divisors of V

defined over Fq.

What is the structure behind such theo-

rems, and how can these results be general-

ized to curves of higher genus, and to vari-

eties of higher dimensions?

Gauss

In DA 358 [11] Gauss computes for certain

elliptic curve the number of rational points

over a prime field Fp; in the last entry in

his Tagebuch [12], Gauss discusses these re-

sults as a conjecture. In [30] on page 73

G.J. Rieger writes: “Diese Tatsache wurde

... übersehen und ist erst in neuere Zeit be-

merkt worden. Damit is auch die Richtighkeit

der Riemannschen Vermutung für denjenigen

Funktionenkörper nachgewiesen.” This claim

puzzles me; it is not clear how computa-

tions by Gauss imply the pRH in case you

do not know rationality, functional equation

or something like that for the zeta function

considered.

Proof of the pRH by Weil

André Weil had the insight for the correct ap-

proach to generalizations. He started to write

foundations necessary for proofs. In the pe-

riod 1946–1948 he proved the pRH for alge-

braic curves of arbitrary genus and for abelian
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varieties. His proof starts with a simple, but

fundamental observation.

For a variety V overK = Fq with q = pn the

map which sends coordinates xi of a point to

x
q
i is a morphism

FrobV/K = πV/K : V → V.

Important (and obvious) remark. Fixed points

of the map πm : V → V are exactly the Km =

Fqm -rational points:

(

V (Fq)
)(fix πm)

= V (Fqm ).

Let us compare this with the result (for an el-

liptic curve) mentioned earlier:

#(E(F2m )) = 1− (αm + βm) + 2m.

What is an ‘interpretation’ of this formula, and

how can we generalize this to arbitrary vari-

eties (defined over a finite field)?

Further explanation. For a projective algebra-

ic curve C over any field K one can define its

genus, g(C) ∈ Z≥0; for a curve over C there

is a topological definition; in algebraic geom-

etry this can be extended to curves over any

base field. A curve of genus zero is called a

rational curve; a curve of genus one with a

K-rational point is called an elliptic curve.

A projective, irreducible non-singular vari-

etyA such that this is a group variety is called

an abelian variety.

An abelian variety of dimension one is an

elliptic curve. Any curve C of genus g gives

André Weil (1906–1998)

rise to an abelian variety of dimension g,

and many properties of C can be read off

from properties of this abelian varieties. This

abelian variety is called the Jacobian of C, or

the Picard variety of C or the Albanese va-

riety of C; these notions coincide in case C

has at least one point rational over the base

field. It is not deep (although it requires some

work) that proving pRH for all curves amounts

to the same as proving pRH for all abelian va-

rieties. An abelian variety A is called simple

if there is no non-zero proper sub-abelian va-

riety 0 6= B $ A.

The terminology ‘abelian variety’ stems

from the fact that Niels Henrik Abel studied

values of path-integrals of differentials on a

Riemann surface; their values naturally lie in

the related abelian variety, once you fix the

end points of the path.

Remark. An abelian variety A over K is

a group-object, the endomorphism algebra

End(A) is a ring, and the Frobenius FrobA/K ∈
End(A). In case A is simple, this ring has

no zero divisors, is of characteristic zero, and

is finitely generated as a Z-module: its field

of fractions is a number field (a field of fi-

nite degree over Q). Hence FrobA/K is (can

be considered) as an algebraic integer. Here

we see access to (pRH) in the case of abelian

varieties, and hence in the case of algebraic

curves.

Here are a version and a corollary of results

by Weil (1948):

Theorem. For a simple abelian variety A de-

fined over K = Fq its Frobenius homomor-

phism

FrobA/K = π : A→ A

is an algebraic integer, and under every em-

beddingψ : Q(π ) → C we have

|ψ(π )| =
√

q.

An amazing result: a ‘nature given’ endo-

morphism of a difficult object in positive char-

acteristic turns out to be an algebraic integer

having easy properties. It is easy to charac-

terize and to produce such numbers (e.g. any

zero of T 2 + bT + q with b ∈ Z and b2 < 4q;

many more examples can easily be given).

Remark (details not explained nor discussed

here). Conversely, an algebraic integerπ with

properties as in the theorem determines (an

isogeny class of) an abelian variety A over

Fq such that FrobA/K = π (Honda-Tate the-

ory): abelian varieties over a finite field can

be constructed by just computing an algebra-

ic integer having easy properties.

This theorem by Weil also proves the pRH

for algebraic curves defined over a finite field.

Reminder: a proof for the pRH for algebraic

curves defined over a finite field implies the

pRH for abelian varieties over a finite field.

Weil had two proofs. One proof relies

on an analogue of a classical inequality

(Castelnuovo-Severi) for correspondences on

algebraic curves. Another proof (in this case

for abelian varieties) uses the result that the

Frobenius π = πA/K : A → A for an abelian

variety over Fq and its ‘transpose’π t (the im-

age of π under the Rosati involution) satisfy

π·π t = q. As π t equals the complex conju-

gate ofπ , under any embeddingψ into C, we

easily conclude | ψ(π ) |= √q.

In order to achieve such results Weil de-

veloped many aspects of algebraic geometry

over an arbitrary field (in this case a field of

characteristicp). Note that Pierre Deligne was

born in 1944.

Corollary (The Hasse–Weil bound). For a

non-singular, projective algebraic curve C of

genus g over K = Fq we have

|#(C(Fq))− 1− q| ≤ 2g
√

q.

Indeed, #(C(Fq)) − 1 − q = −∑iαi and

|αi| ≤ √q.

Remark. For elliptic curves, g = 1, we find

this in [19, III, p. 206].

The Weil conjectures

We will especially look into the RH for varieties

over finite fields.

Reminder. For a curve C defined over K = Fq,

the pRH is just a statement on the asymptotic

behavior of #(C(Fqm )) form →∞.

As we have seen, for a variety V over

K = Fq, with q = pn, the map which sends

coordinates xi of a point to x
q
i is a morphism

FrobV/K = πV/K : V → V

and V (Fqm ) is the set of fixed points of

FrobmV/K .

André Weil made in 1949 the following con-

jecture:

Conjecture. Let V be a non-singular, projec-

tive variety of dimension d defined over the



6 6

216 NAW 5/15 nr. 3 september 2014 The Weil conjectures Frans Oort

finite field K = Fq having q elements. Then:

1. Rationality. The zeta function is a rational

function with coefficients in Z in T := q−s :

Z(V/K,T ) =
P1 × P3 × · · · × P2d−1

P0 × P2 × · · · × P2d

with

Pj ∈ Z[T ], P0 = 1− T , P2d = 1− qdT .

2. Analog of the classical Riemann Hypothe-

sis. The polynomials P1, · · · , P2d−1 factor

over C as

(pRH) Pk(T ) =
∏

j

(1−αk,jT ),

with|αk,j| =

√

qk.

Moreover there should be a functional equa-

tion, Poincaré duality and an explanation of

the degrees of the polynomials Pk in terms of

geometry ofV : they should be (the analogues

of) the ‘Betti numbers’; if V is the reduction

mod p of a complex variety, these numbers

should be the Betti number in the complex-

topological sense. These together are called

the ‘Weil conjectures’.

We have seen this conjecture to be true

for Pd, for algebraic curves and for abelian

varieties. The conjecture above is a daring

generalization. How did Weil come to this

insight? We will see that methods of algebraic

topology have their counterpart in arithmetic

geometry.

Cohomology as predicted by Weil

− Weil used in his proofs an interpretation

and generalizations of the notion of cor-

respondences as studied in the classical

Italian algebraic geometry. Also aspects

of the theory of abelian varieties were

generalized to properties over arbitrary

fields.

− It might very well be that Weil originally

had from the beginning a deeper motiva-

tion behind his ideas.

− In 1949 Weil stated his famous conjec-

tures,

− and in the ICM in 1954 he describes why

these should be true, and what could be a

way to prove these.

His idea how to proceed is of a great beauty, of

deep insight and of daring courage. Note that

Pierre Deligne graduated from high school in

Brussels in 1962. This insight by Weil started

a new chapter in arithmetic algebraic geom-

etry, a revolution, and a whole new setup of

Solomon Lefschetz (1884–1972)

algebraic geometry with new insights and new

conjectures.

Here is that idea. We try to compute the

number of rational points on a variety V de-

fined over Fq over any finite field containing

Fq. The zeta function encodes

Nm = #(V (Fqm )) for all m > 0.

We have seen that Nm is the number of fixed

points under the operator (FrobV/K )m.

In a completely different branch of math-

ematics Lefschetz has indicated how to com-

pute the number of fixed points of an opera-

tor:

The Lefschetz fixed-point theorem (first stat-

ed in 1926). For a continuous map f : X → X
from a compact triangulable spaceX to itself,

such that f has a finite setF = X(fix f ) of fixed

points, and such that the graph of f intersects

the diagonal in X × X transversally the trace

formula computes the number of fixed points:

#(F) =
∑

k≥0

(−1)k Tr (f∗ | Hk(X,Q)) .

Let us compare this with the result for an

algebraic curve mentioned earlier:

#(C(Fqm )) = 1−
2g
∑

i=1

αmi + qm.

“Je gaat het pas zien als je het doorhebt”, as

Johan Cruijff says. I would paraphrase: “Once

you see it you understand it.”

This is the Lefschetz fixed point formula in

the following disguise:

− Show the graph of Frobenius is transversal

to the diagonal (and this is easy).

− Find some (co)homology theory (??!!) such

that the traces of (FrobV/K )m on Hk for all

k ∈ {0,1, · · · ,2·dim(V )} give the zeta-

function of V/K. We should have Hk = 0

for k < 0 and k > 2·dim(V ).

In the case of an algebraic curve this should

be:

− The trace of the Frobenius on the one-

dimensional H0 should be 1.

− The trace of (FrobC/K )m on H1 should be
∑2g
i=1α

m
i .

− The trace of the Frobenius on the one-

dimensional H2 should be q.

For an algebraic curve of genus g the degree

of P1 should be equal to 2g. For algebraic

varieties of higher dimension the polynomials

P1, . . . , P2d−1 should be given in an analogous

way. If so, we conclude (?!):

#(C(Fqm )) = Tr
(

f∗ | H0
)

− Tr
(

f∗ | H1
)

+ Tr
(

f∗ | H2
)

= 1−
2g
∑

i=1

αmi + qm

with Hk = Hk(X, ?) and f = FrobC/K .

I hope you see that earlier results by E.

Artin, Schmidt, Hasse and Weil have a natu-

ral, geometric interpretation and generaliza-

tion once you see this geometric approach,

and once you find this elusive cohomology

theory.

After this became clear, once you see it you

understand it, we “only” had to find this mys-

terious cohomology theory, and prove it has

the right properties. Then the Weil conjec-

tures would follow.

Completely independent from these ideas

Dwork (1923–1998) proved in 1960 rationality

of the zeta function of a variety over a finite

field [9]. Also Monsky/Washnitzer and Lubkin

contributed.

Alexandre Grothendieck

In 1958 Grothendieck told us he was putting

algebraic geometry on a new footing with the

main goal (for the time being) to prove the

Weil conjectures, see [13]. I remember I was

present at his presentation. I did not under-

stand his explanation, however there was one

person in the audience who was very much

‘au courant’; then I did not not know yet the

influence Serre would have on mathematics

and also upon on me. Note that Pierre Deligne

was 14 years old at that time.
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Serre made several attempts to construct

a ‘Weil cohomology’. His cohomology with

values in the Witt vectors [35], 1958, did not

bring this success.

His attempt to use ‘étale topology’ turned

out to be fruitful. In Serre [36], 1958, we find

the idea. In order to have the analogue of fiber

spaces in algebraic geometry one should in-

troduce a new notion of covering. Suppose

G → H is a homomorphism between algebra-

ic groups (e.g. dividing out an elliptic curve

E = G by a finite subgroup, H = E/N). We

see this need not be locally trivial in the Zaris-

ki topology (e.g. if G is irreducible and N is a

finite group, but N 6= 0), but the covering can

be trivialized (locally) by an étale map to a

Zariski open of H. Objects in this new notion

of ‘covering’ are maps with certain properties

onto Zariski open subsets. We see that the

search for a proof can give new insights and

constructions of radically new concepts.

This opened the way for Grothendieck to

define a new notion of topologies, and to

construct the sought-for cohomology theory.

Grothendieck on page 104 of [13] seemed to

be the first who used the term ‘Weil cohomol-

ogy’.

Grothendieck, together with Michael Artin,

Giraud, Michel Raynaud, Illusie, Deligne and

many others managed to find the earlier elu-

sive ‘Weil cohomology’. They were able to

pin down basic properties. Here we record

just some of these properties: fix the prime

number p and choose another prime number

ℓ 6= p. It turned out that the best choice for

a ring or field of constants was Zℓ, the ring
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Alexander Grothendieck

of ℓ-adic integers respectively the field Qℓ of

ℓ-adic numbers.

− For every variety V of dimension d over

a field of characteristic p and for every

choice of ℓ there exists a cohomology

theory H∗(V,Zℓ), the ‘étale cohomology’.

(As usual, obtained by derived functors in

some topology, here in the ‘étale topology’

of H0).

− For this cohomology properties like dual-

ity and more other vital ingredients were

proved.

From these Grothendieck and his co-workers

derived:

− Rationality of ZV (T ) and hence analytic

continuation of ζV (s) = ZV (q−s ).
− A Lefschetz type of fixed point formula for

the Frobenius morphism.

− Functional equation.

See [14] for a first description of these results.

Proofs were described in various volumes of

SGA. For example, see [10, 27–28, 39], [17,

Appendix C] and also see [38].

However the property pRH, the character-

istic p analogue of the Riemann hypothesis,

still escaped proofs:

− (pRH) The eigenvalues of FrobV on

Hi(V,Zℓ) have absolute value
√

qi. Here

the coefficient ring is Zℓ, the ring of ℓ-adic

integers, where ℓ is a prime number differ-

ent from p.

How to proceed? We see once the general

machinery of cohomology developed, most of

the aspects of the Weil conjectures followed

by ‘pure thought’. However the analogue

(pRH) of the Riemann Hypothesis seemed out

of reach of abstract theory.

It is wonderful to see how various mathe-

maticians did continue in different ways.

Generalization. Grothendieck came with

much more general conjectures; a survey of

these conjectures can be found in: [16, 21–

24]. These ‘standard conjectures’ on algebra-

ic cycles describe, amongst others, relations

between algebraic cycles and the Weil conjec-

tures. Once these would be proved the (pRH)

would simply follow. A fascinating idea. How-

ever most of this material seems completely

inaccessible for the time being.

Inspiration from other fields. Deligne tried

to prove the (pRH) directly (as many others

had tried). Finally he was convinced he could

prove the (pRH), Deligne wrote to Serre and

remembers: “I wrote him a letter ... I think he

got it just before he had to go to the hospi-

tal for an operation of a torn tendon. He told

me later that he went in a euphoric state be-

cause he knew now that the proof was roughly

done.” See [32, p. 19].

A wonderful description of the proof to ap-

pear later in [4] we find in [40]. We will not

— alas! — describe the beautiful proof of

Deligne here. It seems much better either to

read the original paper by Deligne, or to go

through the description of Serre [40], or the

description by Katz in [20].

Deligne knew aspects and difficulties of

this problem inside out (“I had all these tools

at my disposal”). Instead of finishing of the

general program of Grothendieck on cycles

(still a complete mystery), Deligne followed a

suggestion by Serre: “I think it was Serre who

told me about an estimate due to Rankin”; see

[29] (or came the suggestion from Langlands?,

see [20, p. 287]). This idea did put Deligne on

the right track to finish the proof. However,

as Deligne says: “It would have been much

nicer if the program had been realized”, see

[32, p. 18] (i.e. the program by Grothendieck:

the proof of the Weil conjectures via the stan-

dard conjectures).

For a description of the prehistory see [33]

(4 papers), [8, 26, 46], and references to E.

Artin, F.K. Schmidt and Hasse cited above.

For a description of the Weil conjectures, see:

[10, 26–27, 44] and [17, Appendix C]. Work

by Tate, see [41] can be seen as pre-history

of Grothendieck’s standard conjectures. For

a complete and beautiful survey of the pre-

history, and of Deligne’s proof see [20]. For a

survey of Deligne’s proof, see [40].

Pierre Deligne

Maybe the essence of mathematics of Pierre

Deligne is described in his words: “Proofs

in geometry make sense at that age because

surprising statements have not too difficult

proofs.” These words are telling us about his

interests in mathematics already at a very ear-

ly stage [32, p. 16]. I would like to see this as a

qualification for all of his mathematical work.

Throughout the years Deligne has amazed us

by his clear insight and his beautiful and clear

description of structures and proofs in math-

ematics.

We hope this note will give enough cred-

it to all mathematicians on whose shoulders

the theory was built (Euler, Riemann, Emil

Artin, Hasse, Weil, Serre, Grothendieck and

many others) on the one hand, and on the

other hand it will show the quantum leap,

the deep insight of Deligne that was vital

in this proof of the Weil conjectures (well,

a ‘surprising statement’, however not an

easy proof).
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Pierre Deligne was born in 1944 in Belgium.

Already at a young age it was clear his in-

sight and taste for deep mathematics could

enable him to do extraordinary things. In the

interview with Pierre Deligne in the Newslet-

ter of the European Mathematical Society of

September 2013 we obtain a clear picture of

this modest and friendly person, see [32].

In the period Deligne was still in elementary

school the father of a friend gave him Bour-

baki mathematics to read. His (‘excellent ele-

mentary school’) teacher did put him in con-

tact with Jacques Tits. In high school Deligne

enjoys problems in geometry (see the citation

above).

Deligne at age 16 joins a course by Jacques

Tits, who comments: “A remarkable feature

of Pierre Deligne’s thinking is that, when con-

fronted with a new problem or a new theo-

ry, he understands and, so to speak, makes

his own its basic principles at a tremendous

speed, and is immediately able to discuss the

problem or use the theory as a completely fa-

miliar object.” See http://www-history.mcs.

st-and.ac.uk/Biographies/Deligne.html I ful-

ly agree with this remarkable description. In-

deed, you have the feeling: Pierre Deligne is

“able to discuss the problem or use the theory

as a completely familiar object”.

With this ability he came under the in-

fluence of Serre (1926) and of Grothendieck

(1928) (his official PhD-advisor) in his Paris

years. Not only did he learn much from

these two towering figures in algebraic ge-

ometry, but the respect and admiration was

certainly reciprocal. In their correspon-

dence Grothendieck complains to Serre that

his ‘anciens élèves’ did not continue his

work. Serre answers that this is not sur-

prising: “You have the vision on a pro-

gramme, and they do not have that (with

the exception of Deligne, of course)”, see

[2, p. 244].

In his Paris period Deligne has an impres-

sive production, not only in diversity of prob-

lems studied, but especially in depth of un-

derstanding. Grothendieck tries to prove the

Weil conjectures, and Deligne witnessed, and

collaborated at close range. In 1973 Deligne

proves the last missing part, the Riemann hy-

pothesis (pRH), in the program of the Weil

conjectures. This is seen as his most pres-

tigious achievement. For this he receives in

1978 the Fields medal. In 1984 Deligne moved

to the Institute for Advanced Study in Prince-

ton.

Let me mention here one of his theorems:

The Ramanujan-Petersson conjecture. This

is a statement about Fourier coefficients of

an interesting modular form (no explanation

given here). Ramanujan conjectured their

absolute values should satisfy inequalities

as printed on a Belgium stamp. In 1971

Deligne proved this would follow from pRH.

Hence the proof (1974) of the aspect pRH of

Pierre Deligne on a Belgian postage stamp

the Weil conjectures implies the Ramanujan-

Petersson conjecture holds true. E.g. see [25,

6.4.1]. k

Pierre Deligne

Some of his many awards:

Abel Prize (2013)

Wolf Prize (2008)

Balzan Prize (2004)

Crafoord Prize (1988)

Fields Medal (1978)

Timeline:

1944 Born

1962 Finishes High School

1966 Finishes University (Free University

Brussels)

1968 PhD University of Paris-Sud (France)

1972 Doctorat d’État des Sciences Mathé

matiques

1968–1970, 1970–1984 IHES Bures sur

Yvette (France)

≥ 1984 IAS Princeton (USA)
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schémas, Advanced Studies in Pure Mathemat-
ics, No. 3, North-Holland, Amsterdam, and Mas-
son et Cie, Editeur, Paris, 1968, pp. 359–386.

22 S. Kleiman, Motives, in Algebraic Geometry, F.
Oort, ed., Proc. Fifth Nordic Summer School
in Math., Oslo, 1970, pp. 53–82; Appendix I,
Finiteness theorems for algebraic cycles, pp.
83–88.

23 S. Kleiman, Finiteness theorems for algebra-
ic cycles, Actes du Congrès International des
Mathématiciens (Nice, 1970), No. 1, Gauthier-
Villars, Paris, 1971, pp. 445–449.

24 S. Kleiman, The standard conjectures, Motives
(Seattle, WA, 1991), Proceedings of Symposia
in Pure Mathematics, No. 55, American Mathe-
matical Society, 1994 pp. 3–20.

25 Yu. Manin and A. Panchishkin, Introduction to
Modern Number Theory: Fundamental Prob-
lems, Ideas and Theories, Springer, 2007, 2nd
ed.

26 B. Mazur, Eigenvalues of Frobenius acting on
algebraic varieties over finite fields, Algebraic
Geometry (Humboldt State Univ., Arcata, Calif.,
1974), Proc. Sympos. Pure Math., No. 29, Amer.
Math. Soc., Providence, RI, 1975, pp. 231–261.

27 J. Milne, Etale cohomology, Princeton Math-
ematical Series, No. 33, Princeton University
Press, Princeton, NJ, 1980.

28 J. Milne, Lectures on etale cohomology, Notes
for a course taught at the University of Michigan
in 1989 and 1998. http://www.jmilne.org/math
/CourseNotes/lec.html

29 R. Rankin, Contributions to the theory of Ra-
manujan’s function τ(n) and similar arithmeti-
cal functions, Math. Proc. Cambridge Philos.
Soc. 35 (1939), 357–372.

30 G. Rieger, Die Zahlentheorie bei C.F. Gauss,
in C.F. Gauss Gedenkband anlässlich des 100
Todestages am 23. Februar 1955, Teubner, 1957,
pp. 37–77.

31 B. Riemann, Über die Anzahl der Primzahlen
unter einer gegebenen Grösse, Monatsberichte
der Berliner Akademie, November 1859, 6 pp; in
Monath. der Köl. Preuss. Akad. der Wissen. zu
Berlin aus der Jahre 1859 (1860), 671–680; al-
so in Gesammelte math. Werke und wissensch.
Nachlass 2 (1892), 145–155. http://www.clay-
math.org/millennium/Riemann Hypothesis/18
59 manuscript, http://en.wikipedia.org/wiki
On the Number of Primes Less Than a Given
Magnitude

32 M. Raussen and C. Skau, Interview with Abel
laureate Pierre Deligne, Newsletter European
Math. Soc. 89 (2013), 15–23.

33 P. Roquette, The Riemann hypothesis in char-
acteristic p, its origin and development. Part
I: The formation of the zeta-functions of Artin
and of F. K .Schmidt, in Hamburger Beiträge
zur Geschichte der Mathematik, Mitt. Math. Ges.
Hamburg, No. 21 (2002), 79-157; Part 2: The first
steps by Davenport and Hasse, No. 22 (2004)
5–74; Part 3: The elliptic case, No. 25 (2006),
103–176; Part 4: Davenport–Hasse fields, No.
32 (2012) 145–210.

34 F. K. Schmidt, Analytische Zahlentheorie in
Körpern der Charakteristik p, Math. Zeitschr. 33
(1931), 1–32 (Habilitationsschrift).

35 J-P. Serre, Sur la topologie des variétés
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