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Linear mixed-effects models are frequently used to analyze repeated measures data,

because they model flexibly the within-subject correlation often present in this type of

data. The most popular linear mixed-effects model for a continuous response assumes

normal distributions for the random effects and the within-subject errors, making it

sensitive to outliers. Such outliers are more problematic for mixed-effects models than

for fixed-effects models, because they may occur in the random effects, in the within-

subject errors, or in both, making them harder to be detected in practice. Motivated by

a real dataset from an orthodontic study, we propose a robust hierarchical linear mixed-

effects model in which the random effects and the within-subject errors have multivariate

t-distributions, with known or unknown degrees-of-freedom, which are allowed to vary

with groups of subjects. By using a gamma-normal hierarchical structure, our model

allows the identification and classification of both types of outliers, comparing favorably

to other multivariate t models for robust estimation in mixed-effects models previously

described in the literature, which use only the marginal distribution of the responses.

Allowing for unknown degrees-of-freedom, which are estimated from the data, our model

provides a balance between robustness and efficiency, leading to reliable results for valid

inference. We describe and compare efficient EM-type algorithms, including ECM,

ECME, and PX-EM, for maximum likelihood estimation in the robust multivariate t

model. We compare the performance of the Gaussian and the multivariate t models

under different patterns of outliers. Simulation results indicate that the multivariate

t substantially outperforms the Gaussian model when outliers are present in the data,

even in moderate amounts.
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1. INTRODUCTION

Linear mixed-effects models (Hartley and Rao, 1967) have become a popular tool for analyzing

repeated measures data which arise in many areas as diverse as agriculture, biology, economics,

and geophysics. The increasing popularity of these models is explained by the flexibility they offer

in modeling the within-subject correlation often present in repeated measures data, by the handling

of both balanced and unbalanced data, and by the availability of reliable and efficient software for

fitting them (Wolfinger, Tobias and Sall, 1991; Pinheiro and Bates, 2000). The most commonly

used linear mixed-effects model for a continuous response was proposed by Laird and Ware (1982)

and is expressed as

yi = Xiβ +Zibi + ei, i = 1, . . . ,m, (1.1)

where i is the subject index, yi is an ni-dimensional vector of observed responses, Xi and Zi are

known ni × p and ni × q design matrices corresponding to the p-dimensional fixed effects vector β

and the q-dimensional random effects vector bi respectively, and ei is an ni-dimensional vector of

within-subject errors. The bi are assumed to be independent with distribution N (0,Ψ) and the

ei are assumed to be independent with distribution N (0,Λi), independent of the bi. The q × q

covariance matrix Ψ may be unstructured or structured – e.g. diagonal (Jennrich and Schluchter,

1986). The ni ×ni covariance matrices Λi are typically assumed to depend on i only through their

dimensions, being parametrized by a fixed, generally small, set of parameters λ – e.g. an AR(1)

covariance structure (Box, Jenkins and Reinsel, 1994). The most popular estimation methods

for the parameters in model (1.1) are maximum likelihood and restricted maximum likelihood

(Lindstrom and Bates, 1988). Confidence intervals and hypothesis tests for the parameters are

generally based on asymptotic results (Miller, 1977).

Though model (1.1) offers great flexibility for modeling the within-subject correlation fre-

quently present in repeated measures data, it suffers from the same lack of robustness against out-

lying observations as other statistical models based on the Gaussian distribution. Following Barnett

and Lewis (1995), we refer to an outlier as an observation (or set of observations) which appears

to be inconsistent with the remainder of the data. An interesting feature of mixed-effects models

is that outliers may occur either at the level of the within-subject error ei, called e−outliers, or at

the level of the random effects bi, called b−outliers. In the first case, some unusual within-subject

values are observed, whereas in the second case some unusual subjects are observed. Depending on

the percentage of e-outliers and the number of observations per subject, it may not be possible to

distinguish between the two cases from the data.

A vast statistical literature exists on robust modeling methods, with some authors concentrat-

ing more on methods for outlier identification (Barnett and Lewis, 1995) and others on methods

for outlier accommodation (Huber, 1981; Hampel, Ronchetti, Rousseeuw and Stahel, 1986). We

follow here the robust statistical modeling approach described in Lange, Little and Taylor (1989)

and consider a version of model (1.1) in which the multivariate normal distributions for the bi and

2



the ei are replaced by multivariate t-distributions, with known or unknown degrees-of-freedom,

which are allowed to vary with subject. This approach can be regarded as outlier-accommodating,

though it also provides useful information for outlier identification.

A special case of the multivariate t linear mixed-effects model has been described by Welsh

and Richardson (1997), using only the marginal distribution of the response vectors, without ref-

erence to the hierarchical structure of the model. In particular, they do not derive, or discuss,

the distributions of the random effects and the error terms under the multivariate t model, which

help understanding the robustness of the model. In their description of estimation procedures, the

degrees-of-freedom are assumed fixed and computational algorithms are not addressed.

A similar approach to the multivariate t model, but restricted to the distribution of the bi, has

been considered by Wakefield, Smith, Racine-Poon and Gelfand (1994) and Racine-Poon (1992),

within a Bayesian framework. Pendergast and Broffitt (1986) also have mentioned the multivariate

t-distribution in connection with M-estimation for growth curve models. Robust estimation in

mixed-effects models with variance components only (i.e. without covariance among random effects)

using bounded influence estimators has been considered by Richardson and Welsh (1995) and

Richardson (1997).

In Section 2, we describe growth curve data in which both b- and e-outliers seem to be present.

The multivariate t version of model (1.1) is described in Section 3. In Section 4 we describe efficient

EM-type algorithms for maximum likelihood estimation in the multivariate t linear mixed-effects

model. We compare the robust maximum likelihood estimators obtained under the multivariate

t-distribution to the Gaussian maximum likelihood estimators corresponding to model (1.1) in

Section 5. Our conclusions and suggestions for further research are presented in Section 6.

2. AN EXAMPLE: ORTHODONTIC DISTANCE GROWTH IN BOYS AND GIRLS

Our data come from an orthodontic study of 16 boys and 11 girls between the ages of 8 and 14

years and were originally reported in Potthoff and Roy (1964). The response variable is the distance

(in millimeters) between the pituitary and the pterygomaxillary fissure, which was measured at 8,

10, 12, and 14 years for each boy and girl. Figure 1 presents a Trellis display (Becker, Cleveland

and Shyu, 1996) of the data, along with individual least-squares fits of the simple linear regression

model.

Figure 1 about here

Figure 1 reveals that the estimated slope for subject M13 is considerably larger than the re-

maining estimated slopes and that the responses for subject M09 are more variable around the

fitted line. Overall, the responses for the boys vary more around the least squares lines, than do

those for the girls. These features are more evident in the residuals plots by gender, displayed in

Figure 2 and in the normal plots of the individual coefficients estimates, displayed in Figure 3.

These plots suggest that two of the observations on subject M09 are e-outliers and that subject
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M13 is a b-outlier. Subject M10 is also identified in Figure 3 because he is indicated as a possible

b-outlier later in Section 5.1.

Figures 2 and 3 about here

Because both intercept and slope seem to vary with subject and the within-subject variation

is larger among boys than girls, the following linear mixed-effects model can be used to describe

the orthodontic distance growth with age.

yij = β0 + δ0Ii(F ) + (β1 + δ1Ii(F )) tj + b0i + b1itj + eij , i = 1, . . . , 27 and j = 1, . . . , 4, (2.1)

where yij denotes the orthodontic distance for the ith subject at age tj, β0 and β1 denote respectively

the intercept and the slope fixed effects for boys, δ0 and δ1 denote respectively the difference in

intercept and slope fixed effects between girls and boys, Ii(F ) denotes an indicator variable for

females, bi = (b0i, b1i) is the random effects vector for the ith subject, and eij is the within-subject

error.

In Section 5.1, we compare the maximum likelihood estimates (MLEs) under the Gaussian

version of the linear mixed-effects model (2.1) to the MLEs obtained under the multivariate t

model described in Section 3.

3. A MULTIVARIATE t LINEAR MIXED-EFFECTS MODEL

The Gaussian linear mixed-effects model (1.1) can alternatively be written as:

[
yi

bi

]
ind∼ Nni+q

([
Xiβ

0

]
,

[
ZiΨZ ′

i + Λi ZiΨ

ΨZ ′

i Ψ

])
, i = 1, . . . ,m, (3.1)

with Λi = Λi(λ) representing the within-subject variance-covariance matrix for subject i, param-

eterized by a fixed set of parameters λ. For robust estimation of β, Ψ, and λ, we proceed as in

Lange et al. (1989) and replace the multivariate normal distribution in (3.1) with the multivariate

t-distribution:
[
yi

bi

]
ind∼ tni+q

([
Xiβ

0

]

,

[
ZiΨZ

′

i + Λi ZiΨ

ΨZ ′

i Ψ

]

, νi

)

, i = 1, . . . ,m, (3.2)

where νi represents the multivariate t-distribution degrees-of-freedom (d.f.) for the ith subject. It

follows from (3.2) that the yi are independent and marginally distributed as

yi
ind∼ tni

(
Xiβ,ZiΨZ

′

i + Λi, νi

)
, (3.3)

which provides yet another characterization of the multivariate t linear mixed-effects model. If Ψ

is assumed to be diagonal, Λi = σ2I for all subjects, and νi = ν are fixed for all subjects, (3.3)

reduces to the model considered in Welsh and Richardson (1997).
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The multivariate t model (3.2) can also be expressed as the marginal distribution of
[
y′i, b

′

i

]
′

in the following hierarchical models:
[
yi

bi

]∣∣∣∣∣ τi
ind∼ Nni+q

([
Xiβ

0

]
,

1

τi

[
ZiΨZ

′

i + Λi ZiΨ

ΨZ ′

i Ψ

])
and (3.4)

τi
ind∼ Gamma

(νi

2
,
νi

2

)
, i = 1, . . . ,m,

or

yi|bi, τi
ind∼ N (Xiβ +Zibi,

1

τi
Λi), bi|τi

ind∼ N (0,
1

τi
Ψ), and (3.5)

τi
ind∼ Gamma

(νi

2
,
νi

2

)
, i = 1, . . . ,m,

where Gamma(α, β) denotes the gamma distribution with parameters α and β, defined by the

probability density function p(τ) = βατα−1 exp(−βτ)/Γ(α), τ > 0, α > 0, β > 0, with Γ(α) =∫
∞

0 tα−1 exp(−t)dt denoting the gamma function. As described in the sequel, this gamma-normal

hierarchical representation of the multivariate t model leads not only to natural EM implemen-

tations for maximum likelihood estimation of the unknown parameters, but also to diagnostic

statistics that are useful for identification and classification of outliers.

It follows from (3.4) and (3.5) that the multivariate t model can be written as

yi = X iβ +Zibi + ei, i = 1, . . . ,m

bi
ind∼ tq (0,Ψ, νi) ei

ind∼ tni
(0,Λi, νi) ,

with bi|τi independent of ei|τi, implying that bi and ei are uncorrelated, but not independent, when

νi < ∞. The multivariate t model assumes that the random effects and the within-subject errors

have multivariate t-distributions and, therefore, can accommodate both b-outliers and e-outliers.

From standard properties of the multivariate t-distribution (Johnson and Kotz, 1972), it follows

that, for νi > 2,

var (bi) =
νi

νi − 2
Ψ and var (ei) =

νi

νi − 2
Λi, i = 1, . . . ,m.

Therefore, the interpretation of Ψ and Λi is different in the Gaussian model (1.1) and in the

multivariate t model (3.2). Note, in particular, that var (bi) is allowed to change with i in the

multivariate t model, while it is independent of i in the Gaussian model. Provided νi > 1 in (3.2),

both models have E (yi) = Xiβ, so that the fixed effects have the same interpretation in terms of

linear regression: they represent the population average of the individual parameters.

In most applications, the degrees-of-freedom νi are not allowed to be different for each subject,

as this would result in a large number of parameters to be estimated. Instead, they are usually

assumed constant, νi = ν, for all i = 1, . . . ,m, or, more generally, they are allowed to vary with a

small number of pre-specified groups of subjects

νi = νg(i), i = 1, . . . ,m, (3.6)
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where g(i) ∈ {1, . . . , k} denotes the degrees-of-freedom group to which the ith subject belongs and

ν1, . . . , νl are l distinct positive scalar parameters, which can be treated as known, or unknown.

We shall focus here on the t linear mixed-effects model (3.2) with the constraints (3.6). Note that

the degrees-of-freedom group membership for the different subjects needs to be specified with the

model.

Integrating out the bi in (3.5), we can express the distribution of yi as the marginal distribution

of the following hierarchical model.

yi|τi
ind∼ N

(
Xiβ,

1

τi

(
Λi +ZiΨZ

′

i

))
and τi

ind∼ Gamma
(νg(i)

2
,
νg(i)

2

)
, i = 1, . . . ,m. (3.7)

A useful consequence of (3.7) is that

τi|yi
ind∼ Gamma

(
νg(i) + ni

2
,
νg(i) + δ2

i (β,Ψ,λ)

2

)

,

where

δ2
i (β,Ψ,λ) = (yi −Xiβ)′

(
ZiΨZ

′

i + Λi

)
−1

(yi −Xiβ). (3.8)

Note that, in particular,

E(τi|yi) =
νg(i) + ni

νg(i) + δ2
i (β,Ψ,λ)

.

4. EFFICIENT EM ALGORITHMS FOR ML ESTIMATION

In this section, we consider the maximum likelihood (ML) estimation of the parameters in the

multivariate t linear mixed-effects model (3.2). We describe three EM-type algorithms for ML

estimation with known and unknown degrees-of-freedom, based on two types of missing data struc-

tures. The first two algorithms use the hierarchical model (3.5) with both the bi and the τi treated

as missing. The third algorithm is based on the hierarchical model (3.7) which, by integrating out

the bi, has just the τi as missing data. The first two algorithms are computationally simpler, with

closed-form expressions for the estimates of β, Ψ, and λ in the maximization step, but require

additional assumptions about the structure of the Λi matrices. The second algorithm, PX-EM, is

an extension of the first algorithm, ECME, with improved convergence properties. The last algo-

rithm has a more computationally intensive maximization step and, thus, tends to be slower than

the other two algorithms, but allows more generality in the model specification and only requires

minor modifications to existing software for fitting the Gaussian linear mixed-effects model (1.1).

It should be noted that all three algorithms lead to the same MLEs (up to numerical round-off

error) under the same structure of the Λi matrices.

Letting ψ denote a minimal set of parameters to determine Ψ (e.g. the upper triangular ele-

ments of Ψ in the unstructured case), we define the population parameters vector θ =
[
β′,ψ′,λ′,ν ′

]
′
.
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Compared to the Gaussian linear mixed-effects model (1.1), the multivariate t model (3.2) allows

each subject to have its own scale τi, which is unobserved and needs to be imputed from the data.

The different individual scales result in different weights for estimating the population parameters θ.

For example, conditional on Ψ, λ, and the τi, the ML estimate of β minimizes
∑m

i=1 τiδ
2
i (β,Ψ,λ),

with δ2
i as defined as (3.8). Because E (τi | yi) decreases with δ2

i , subjects with larger residual sum

of squares δ2
i will have less weight in the determination of the ML estimates. The influence of δ2

i

on the τi scales is controlled by the individual degrees-of-freedom νg(i) – the smaller νg(i) the larger

the influence of δ2
i on τi.

4.1 The EM Algorithm

The EM algorithm (Dempster, Laird and Rubin, 1977) is a popular iterative algorithm for ML

estimation in models with incomplete data. More specifically, let yobs denote the observed data

and ymis denote the missing data. The complete data ycom = (yobs,ymis) is yobs augmented

with ymis. We denote by f(ycom|θ) the complete-data likelihood function of a parameter vector

θ ∈ Θ, by L(θ) = f(yobs|θ) the log-likelihood function and by Q(θ|θ′) the expected complete-data

log-likelihood

Q(θ|θ′) = E
{
ln [f (ycom|θ)] |yobs,θ

′
}

.

Each iteration of the EM algorithm consists of two steps, the Expectation step and the Maximization

step:

E-step: Compute Q(θ|θ(t)) as a function of θ;

M-step: Find θ(t+1) such that Q(θ(t+1)|θ(t)) = max�
∈Θ Q(θ|θ(t)).

Each iteration of the EM algorithm increases the likelihood function L(θ) and the EM algorithm

typically converges to a local or global maximum of L(θ) (Dempster et al., 1977; Wu, 1983). As

recommended in the literature, it is useful to run the EM algorithm (and all the EM-type algorithms

discussed below) several times with different starting values.

When the M-step in the EM algorithm is difficult to implement, it is often useful to replace it

with a sequence of constrained maximization (CM) steps, each of which maximizes Q(θ|θ(t)) over θ

with some function of θ held fixed. The sequence of CM-steps is such that the overall maximization

is over the full parameter space. This leads to a simple extension of the EM algorithm, called the

ECM algorithm (Meng and Rubin, 1993). A further extension of the EM algorithm is the ECME

algorithm (Liu and Rubin, 1994). This algorithm replaces each CM-step of ECM with a CM-step

that maximizes either the constrained Q function, as in ECM, or the correspondingly constrained

L function. As pointed out by Meng and van Dyk (1997), an E-step is required before a sequence

of CM-steps that maximize the constrained Q function. Liu and Rubin (1994) showed that ECME

typically shares with EM the simplicity and stability, but has a faster rate of convergence, especially

for the t-distribution with unknown degrees-of-freedom.
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4.2 EM Algorithms with bi and τi as Missing Data

First consider the hierarchical multivariate t model (3.5) with both the bi and the τi as missing

data. For simplicity, assume that

Λi = σ2
h(i)Ri, i = 1, . . . ,m, (4.1)

with h(i) ∈ {1, . . . , l} representing the variance group to which the ith subject belongs. Note that

the variance groups h(i) can be distinct from the degrees-of-freedom groups g(i) defined in (3.6).

As with the degrees-of-freedom, the variance group membership for the different subjects needs to

be specified with the model. The Ri are known matrices, usually equal to the identity. We denote

by σ2 the unique elements in
{
σ2

1, . . . , σ2
m

}
.

The within-subject covariance structure (4.1) allows for variance heterogeneity among different

groups of subjects, but does not include serial correlation structures such as in ARMA models (Box

et al., 1994).

4.2.1 ML estimation using ECME

Let y = [y′1, . . . ,y′m]′ , b =
[
b′1, . . . , b′m

]
′
, and τ = [τ1, . . . , τm] . Under the constraints (4.1), the

log-likelihood for the complete data in the multivariate t linear mixed-effects model (3.2) with

unknown degrees-of-freedom ν = (ν1, . . . , νk) is

L(β,Ψ,σ2|y, b, τ ) = L1(β,σ2|y, b, τ ) + L2(Ψ|b, τ ) + L3(ν|τ ) + constant,

where

L1(β,σ2|y, b, τ )

=
m∑

i=1

[
−ni

2
ln σ2

h(i) −
τi

2σ2
h(i)

(yi −Xiβ −Zibi)
′R−1

i (yi −Xiβ −Zibi)

]

= −
m∑

i=1

ni

2
lnσ2

h(i) −
m∑

i=1

τi

2σ2
h(i)

trace
[
R−1

i (yi −Zibi)(yi −Zibi)
′
]

+

m∑

i=1

τi

σ2
h(i)

β′X ′

iR
−1
i (yi −Zibi) −

m∑

i=1

τi

2σ2
h(i)

β′X ′

iR
−1
i Xiβ,

L2(Ψ|b, τ ) = −m

2
ln |Ψ| − 1

2
trace

(
Ψ−1

m∑

i=1

τibib
′

i

)
,

and

L3(ν|τ ) =

k∑

j=1

∑

i:g(i)=j

{νj

2

[
ln
(νj

2

)
+ ln (τi) − τi

]
− ln (τi) − ln

[
Γ
(νj

2

)]}
.

Letting

τ̂i = E(τi|θ = θ̂,y), b̂i = E(bi|θ = θ̂,y), and Ω̂i = τicov(bi|θ = θ̂,y),
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we obtain

Ω̂i = Ψ̂ − Ψ̂Z ′

i(ZiΨ̂Z
′

i + σ̂2
h(i)Ri)

−1ZiΨ̂ =

(

Ψ̂
−1

+
1

σ̂2
h(i)

Z′

iR
−1
i Zi

)
−1

, (4.2)

b̂i = Ψ̂Z′

i(ZiΨ̂Z
′

i + σ̂2
h(i)Ri)

−1(yi −X iβ̂)

=

(

Ψ̂
−1

+
1

σ̂2
h(i)

Z′

iR
−1
i Zi

)
−1

1

σ̂2
h(i)

Z ′

iR
−1
i (yi −Xiβ̂), and

τ̂i =
ν̂g(i) + ni

ν̂g(i) + δ2
i (β̂, Ψ̂, σ̂2)

.

From standard multivariate analysis results (Fang and Zhang, 1990, p. 4) we have

[
(yi −X iβ)′, b′i

]
[
ZiΨZ

′

i + σ2
h(i)Ri ZiΨ

ΨZ ′

i Ψ

]
−1 [

yi −X iβ

bi

]

= b′iΨ
−1bi +

1

σ2
h(i)

(yi −Xiβ −Zibi)
′R−1

i (yi −Xiβ −Zibi).

Replacing θ and bi with their current estimates, we obtain the following useful decomposition:

δ2
i (β̂, Ψ̂, σ̂2) = (yi −Xiβ̂)′

(
ZiΨ̂Z

′

i + σ̂2
h(i)Ri

)
−1

(yi −Xiβ̂) (4.3)

= b̂
′

iΨ̂
−1
b̂i +

1

σ̂2
h(i)

(yi −Xiβ̂ −Zib̂i)
′R−1

i (yi −Xiβ̂ −Zib̂i) = δ̂2�
i
+ δ̂2

�
i
.

Equation (4.3) provides a simple way to compute δ2
i (β̂, Ψ̂, σ̂2) as well as the weights τ̂i. It also gives

some insight on how the estimated random effects b̂i and the estimated residuals êi = yi −Xiβ̂−
Zib̂i affect the individual weights τ̂i.

Using simple algebra we get

E
[
L1(β,σ2|y, b, τ)|y, θ̂

]

= −
m∑

i=1

ni

2
ln σ2

h(i) −
m∑

i=1

1

2σ2
h(i)

trace
[
R−1

i

(
τ̂i(yi −Zib̂i)(yi −Zib̂i)

′ +ZiΩ̂iZ
′

i

)]

+

m∑

i=1

τ̂i

σ2
h(i)

β′X ′

iR
−1
i (yi −Zib̂i) −

m∑

i=1

τ̂i

2σ2
h(i)

β′X ′

iR
−1
i X iβ,

E
[
L2(Ψ|b, τ)|y, θ̂

]
= −m

2
ln |Ψ| − 1

2
trace

[
Ψ−1

m∑

i=1

(
τ̂ib̂ib̂

′

i + Ω̂i

)]
,

and

E
[
L3(ν|τ )|y, θ̂

]

=

k∑

j=1

∑

i:g(i)=j

(νj

2

{
ln
(νj

2

)
+ E

[
ln (τi) |y, θ̂

]
− τ̂i

}
− E

[
ln (τi) |y, θ̂

]
− ln

[
Γ
(νj

2

)])
.

9



We then have the following ECM algorithm:

E-step: Given θ = θ̂, compute b̂i, τ̂i, and Ω̂i for i = 1, . . . ,m, using (4.2).

CM-step 1: Fix σ2
h(i) = σ̂2

h(i) for i = 1, . . . ,m and update β̂ by maximizing E
[
L1(β, σ̂2|y, b, τ )|y, θ̂

]

over β, which leads to

β̂ =

(
m∑

i=1

τ̂i

σ̂2
h(i)

X ′

iR
−1
i Xi

)
−1 m∑

i=1

τ̂i

σ̂2
h(i)

X ′

iR
−1
i

(
yi −Zib̂i

)
.

CM-step 2: Fix β = β̂ and update σ̂2
h(i) for i = 1, . . . ,m by maximizing E

[
L1(β̂,σ2|y, b, τ )|y, θ̂

]

over σ2
h(i), which gives, for j = 1, . . . , l

σ̂2
j =

∑

i:h(i)=j

[
τ̂i(yi −Xiβ̂ −Zib̂i)

′R−1
i (yi −Xiβ̂ −Zib̂i) + trace(Ω̂iZ

′

iR
−1
i Zi)

]
/
∑

i:g(i)=j

ni.

CM-step 3: Update Ψ̂ by maximizing E
[
L2(Ψ|b, τ )|y, θ̂

]
over Ψ, that is,

Ψ̂ =
1

m

m∑

i=1

(
τ̂ib̂ib̂

′

i + Ω̂i

)
.

CM-step 4: Update ν̂ by maximizing E
[
L3(ν|τ )|y, θ̂

]
over ν, that is, for j = 1, . . . , k

ν̂j = arg max
ν

∑

i:g(i)=j

(ν

2

{
ln
(ν

2

)
+ E

[
ln (τi) |y, θ̂

]
− τ̂i

}
− ln

[
Γ
(ν

2

)])
.

Note that this requires only an one-dimensional search and can be obtained, for example,

using the Newton-Raphson method (Thisted, 1988, §4.2.2).

Because E
[
ln (τi) |y, θ̂

]
does not have a closed-form expression, the one-dimensional search

involved in the CM-step 4 of the ECM algorithm can be very slow. To circumvent this problem,

we use an ECME algorithm that has the same E and CM steps (1 through 3) for updating the

estimates of β, Ψ, and σ2 as the ECM algorithm described before, but with the CM-step 4 modified

into a CML step that maximizes the constrained likelihood over the degrees-of-freedom with β, Ψ,

and σ2 fixed at their current estimates. This constrained likelihood is computed using

yi
ind∼ tni

(
Xiβ̂,ZiΨ̂Z

′

i + σ̂2
h(i)Ri, νj

)
, for i : g(i) = j.

More specifically, we have

CML-step 4: Update each unknown νj (j = 1, . . . , l) as

ν̂j = arg max
ν

∑

i:g(i)=j

{
ln

[
Γ

(
ν + ni

2

)]
− ln

[
Γ
(ν

2

)]
+

ν

2
ln (ν) − ν + ni

2
ln
[
ν + δ2

i

(
β̂, Ψ̂, σ̂2

)]}
.

As in CM-step 4, this requires only a one-dimensional search, but all terms involved are now

written in closed form.

10



Liu and Rubin (1994) and Liu and Rubin (1995) showed that the ECME algorithm converges

dramatically faster than the ECM algorithm in both number of iterations and CPU time.

When the degrees-of-freedom are known, the CML-step 4 of the ECME algorithm can be

omitted and the known ν used in place of ν̂ in the remaining steps.

4.2.2 Accelerating EM via parameter expansion

Liu, Rubin and Wu (1998) proposed the method of Parameter Expansion (PX) to accelerate

EM-type algorithms and showed that the PX-EM algorithm shares the simplicity and stability of

ordinary EM, but has a faster rate of convergence. The intuitive idea behind PX-EM is to use

a covariance adjustment to correct the analysis of the M step, capitalizing on extra information

captured in the imputed complete data. Technically, PX-EM expands the complete-data model

f(ycom | θ) to a larger model, fx(ycom | Θ), with Θ = (θ?, α), where θ? plays the same role in

fx(ycom | Θ) that θ plays in f(ycom | θ), and α is an auxiliary parameter whose value is fixed at α0

in the original model. Formally, two conditions must be satisfied. First, the observed-data model

is preserved in the sense that, for all Θ, there is a common many-to-one reduction function R, such

that yobs | Θ ∼ f{yobs | θ = R(Θ)}. Secondly, the complete-data model is preserved at the null

value of α, α0, in the sense that, for all θ, fx{ycom | Θ = (θ?, α0)} = f(ycom | θ = θ?). These

conditions imply that if θ1 6= θ2 then Θ1 6= Θ2, and that, for all θ, there exists at least one Θ

such that yobs | Θ ∼ f{yobs | θ = R(Θ)}.
The PX-EM algorithm uses fx(ycom | Θ) to generate an EM algorithm, by iteratively maxi-

mizing the expected log-likelihood of fx(ycom | Θ). Specifically, let Θ(t) = (θ(t), α0) be the estimate

of Θ with α(t) = α0 from the tth iteration. Then, at the (t + 1)th iteration:

PX-E step: Compute Qx

(
Θ | Θ(t)

)
= E�

com
{log fx(ycom | Θ) | yobs,Θ

(t)}.

PX-M step: Find Θ(t+1) = arg maxΘ Qx(Θ | Θ(t)); then apply the reduction function R(θ) to

obtain θ(t+1) = R(Θ(t+1)).

Liu et al. (1998) implemented the PX-EM algorithm for both the multivariate t distribution

and the general linear mixed-effects models. Following Liu et al. (1998), we show how the PX-EM

algorithm can be used in the context of the multivariate t model (which includes the multivariate t

distribution and the linear mixed-effects models considered by Liu et al. (1998) as special cases) to

accelerate the ECME algorithm described in Section 4.2.1, by adjusting the M step using parameter

expansions based on the imputed weights τ̂i and the imputed random effects b̂i. This adjustment

to the current estimates of σ2
j and Ψ is related to the method of Kent, Tyler and Vardi (1994) in

terms of efficient implementation of EM for maximum likelihood estimation with the t distribution,

as shown by Meng and van Dyk (1997).

The imputed values of τi are only used in the ECME algorithm of Section 4.2.1 to update the

estimates of β, Ψ, and σ2
j . The goodness-of-fit of the model τi

ind∼ Gamma(νg(i)/2, νg(i)/2) to these

values is ignored by the ECME algorithm. We make use of this information to adjust the current

11



estimates, by expanding the parameter space to include the scale parameter γ such that

τi

γ
ind∼ Gamma

(νg(i)

2
,
νg(i)

2

)
, i = 1, ...m.

With the current estimate of γ fixed at γ0 = 1, routine algebraic operations lead to the following

CM-step for updating γ:

γ̂ =

∑m
i=1 νg(i)τ̂i∑m
i=1 νg(i)

.

Because

yi|β,Ψ,σ2, γ
ind∼ tni

(
Xiβ,

1

γ

(
ZiΨZ

′

i + σ2
h(i)Ri

)
, νg(i)

)
, i = 1, ...,m,

the application of the reduction function in the PX-EM algorithm leads to adjustments in the

estimates of Ψ and σ2, which correspond to replacing their CM-steps in the previous ECME

algorithm with

CM-step 2.X1:

σ̂2
j =

∑m
i=1 νg(i)∑m

i=1 νg(i)τ̂i

∑
i:h(i)=j

[
τ̂i(yi −Xiβ̂ −Zib̂i)

′R−1
i (yi −Xiβ̂ −Zib̂i) + trace(Ω̂iZ

′

iR
−1
i Zi)

]

∑
i:h(i)=j ni

for j = 1, ..., l.

CM-step 3.X1:

Ψ̂ =

∑m
i=1 νg(i)∑m

i=1 νg(i)τ̂i

∑m
i=1

(
τ̂ib̂ib̂

′

i + Ω̂i

)

m
.

The PX-EM algorithm can also be used to adjust the current parameter estimates by making

use of the information on the covariance matrices between yi and bi, given τi, that is, ZiΨ/τi, for

all i = 1, ...,m. To do this, we expand the parameter space to include a q × q matrix ζ in such a

way that the complete-data model for yi becomes

yi|bi, τi
ind∼N(Xiβ +Ziζbi,

σ2
h(i)

τi
Ri), i = 1, ...,m.

The covariance matrix between yi and bi given τi is then ZiζΨ/τi.

Letting the current estimate of ζ be ζ0 = Iq, the q×q identity matrix, and the other parameters

be fixed at their current estimates, a CM-step for updating ζ (together with β) is obtained as

follows.

12



CM-step 1.X1:

[
β̂

vec(ζ̂)

]
=

[
m∑

i=1

1

σ̂2
h(i)

(
τ̂iX

′

iR
−1
i X i τ̂iX

′

iR
−1
i (b̂

′

i ⊗Zi)

τ̂i(b̂i ⊗Z′

i)R
−1
i Xi (τ̂ib̂ib̂

′

i + Ω̂i) ⊗ (Z ′

iR
−1
i Zi)

)]−1 m∑

i=1

τ̂i

σ̂2
h(i)

(
X ′

i

b̂i ⊗Z ′

i

)

R−1
i yi,

where vec(ζ̂) =
(
ζ̂1,1, ..., ζ̂q,1, ..., ζ̂1,q, ..., ζ̂q,q

)
′

and ⊗ stands for the Kronecker operator.

The application of the reduction function in PX-EM replaces the current estimate of Ψ, Ψ̂, with

ζ̂Ψ̂ζ̂
′

.

Meng and van Dyk (1998) proposed an alternative method for accelerating EM for maximum

likelihood estimation of linear mixed-effects models. As shown by Gelman (1997) and Liu et al.

(1998), PX-EM converges faster than the implementation of Meng and van Dyk (1998). Note that

implementation of PX-EM requires minor modifications of the existing EM code, as indicated by

the above three CM-steps of PX-EM. In addition, both the EM and PX-EM can be implemented

easily in standard software, such as S-PLUS.

4.3 ML Estimation Integrating out the bi

The EM algorithms described in Section 4.2 provides closed form expressions for updating the

estimates of θ, but require that the within-subject covariance matrices Λi be constrained to the

form given in (4.1). A more flexible formulation, with no constraints on the Λi, can be used

when the bi are integrated out of the complete data likelihood, so that only the τi are treated as

missing data, at the expense of a more computationally intensive CM-step. We describe here an

ECME algorithm for this missing data scheme. With the augmented complete data consisting of

the observed data and missing τi (not the random effects bi), ECME versions of the two algorithms

in previous sections can be implemented to update the fixed effects, as in Laird and Ware (1982)

and Liu and Rubin (1994), and the variance components, as in Liu and Rubin (1994) and Schafer

(1998).

The log-likelihood of the complete data [y′, τ ′]′ in the multivariate t model (3.2) is

L (β,Ψ,λ|y, τ ) = L1 (β,Ψ,λ|y, τ ) + constant,

where

L1 (β,Ψ,λ|y, τ ) = −1

2

m∑

i=1

[
ni log |V i| + τi (yi −X iβ)′ V −1

i (yi −Xiβ)
]
,

with V i = Λi +ZiΨZ
′

i. Letting τ̂i be defined as in (4.2), it follows that

E
[
L1 (β,Ψ,λ|y, τ ) |y, θ̂

]
= −1

2

m∑

i=1

[
ni log |V i| + τ̂i (yi −Xiβ)′ V −1

i (yi −Xiβ)
]

and, therefore, the following ECME algorithm can be used to obtain the MLEs of θ.
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E-step: Given θ = θ̂, compute τ̂i =
(
ν̂g(i) + ni

)
/
[
ν̂g(i) + δ2

i

(
β̂, Ψ̂, λ̂

)]
, with δ2

i (β,Ψ,λ) as de-

fined in (3.8).

CM-step: For fixed τ̂ , update β̂, Ψ̂, and λ̂ by maximizing the function E
[
L1 (β,Ψ,λ|y, τ ) |y, θ̂

]

over β, Ψ, and λ.

When the degrees-of-freedom νg(i) are unknown, an additional CML-step, identical to CML-step 4

of the ECME algorithm described in Section 4.2.1, is used to estimate the νj , j = 1, . . . , k.

The CM-step in this ECME algorithm is equivalent to maximum likelihood estimation in the

Gaussian linear mixed-effects model y∗i = X∗

iβ + Zibi + ei, i = 1, . . . ,m, where y∗i =
√

τiyi and

X∗

i =
√

τiXi. Reliable and efficient implementations of Newton-Raphson algorithms for obtaining

the MLEs in the general Gaussian linear mixed-effects model (1.1) are available in commercial

products such as SAS (PROC MIXED) and S-PLUS (lme function). These programs can be used

to implement the ECME algorithm described here at low additional cost. We have used the lme

function to implement the ECME algorithm described here in S-PLUS. This implementation allows

the degrees-of-freedom to be fixed in advance, or estimated from the data.

The decomposition of δ2
i

(
β̂, Ψ̂, λ̂

)
given in (4.3) remains valid for general Λi. That is,

δ̂2
i = δ2

i (β̂, Ψ̂, λ̂) = b̂
′

iΨ̂
−1
b̂i + (yi −Xiβ̂ −Zib̂i)

′Λ̂
−1

i (yi −X iβ̂ −Zib̂i) = δ̂2�
i
+ δ̂2

�
i
,

where b̂i = E
(
bi|yi, θ̂

)
= Ψ̂Z ′

iV̂
−1

i

(
yi −Xiβ̂

)
.

4.4 Inference Based on the Maximum Likelihood Estimates

One is generally interested in using MLEs to obtain confidence intervals and test hypotheses about

the parameters. Because the distribution of the MLEs cannot be explicitly derived, approximate

inference methods must be employed. The most common method uses the asymptotic normal

approximation to the distribution of the MLEs (Miller, 1977; Lange et al., 1989). Other methods

include the bootstrap (Efron and Tibshirani, 1993) and likelihood profiling (Bates and Watts,

1988). These last two methods usually give more accurate approximations, but are computationally

intensive for the multivariate t model (3.2). This paper considers only confidence intervals and tests

based on the normal approximation, concentrating on methods for the fixed effects β.

Asymptotic confidence intervals and tests based on the MLEs can be obtained using either the

observed or the expected Fisher information matrix. For the multivariate t model, these can be

derived using the results in Appendix B of Lange et al. (1989). Let J denote the expected Fisher

information matrix for the marginal log-likelihood L of the multivariate t model and ω denote the

set of parameters excluding the fixed effects, so that θ =
(
β′,ω′

)
′
. It can be shown that

J�� = E
∂2L

∂β∂β′
=

m∑

i=1

νg(i) + ni

νg(i) + ni + 2
X ′

iV
−1
i Xi and J�� = E

∂2L

∂β∂ω′
= 0.

It follows that the expected Fisher information matrix is block diagonal and, in particular,
[
J−1

]
�� =

J−1
�� . Asymptotic confidence intervals and hypothesis tests for the fixed effects are obtained assum-
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ing that the MLE β̂ has approximately a Np

(
β,J−1

��

)
distribution. In practice, J�� is usually

unknown and has to be replaced by its MLE Ĵ�� .

4.5 Choosing Starting Values for the Parameters

As with most iterative optimization procedures, initial values for the parameters in the multivariate

t model must be provided to any of the EM-type algorithms described previously. A simple and

generally successful algorithm for deriving initial estimates for the fixed effects β and the variance-

covariance components Ψ and λ is to fit separate regression models to each subject in the sample

and to form “method of moments” estimates of the population parameters by averaging out the

individual estimates. That is, letting β̂i and λ̂i denote the individual parameter estimates obtained

by fitting a linear regression to the data of the ith subject, i = 1, . . . ,m, the initial values for the

EM-type algorithms are calculated as

β̂0 =
m∑

i=1

β̂i/m Ψ̂0 =
m∑

i=1

(
β̂i − β̂0

)(
β̂i − β̂0

)
′

/(m − 1) λ̂0 =
m∑

i=1

λ̂i/m. (4.4)

If the parameters in Λi vary according to which group h(i) ∈ {1, . . . , l} subject i belongs (e.g.,

model (4.1)), separate initial estimates are obtained averaging over the separate groups λ̂h =∑
i:h(i)=h λ̂i/mh, where mh denotes the number of subjects in group h.

If the degrees-of-freedom νg for the multivariate t distributions are assumed unknown, initial

values for them also need to be provided. It is generally enough to use a relative large initial value

for the νg, say ν̂0 = 40, which corresponds to an initial assumption of near-normality for the random

effects and within-subject errors.

The EM-type algorithms described in the previous sections tend to be robust to the choice of

starting values for the parameters but, depending on characteristics of the data and of the model

being used, convergence to local optima may occur. Therefore, it is recommended that different

starting values be used with the algorithms to assess the stability of the resulting estimates.

5. COMPARING THE GAUSSIAN AND THE MULTIVARIATE t MLEs

In this section we compare the MLEs under the Gaussian model (1.1) to the MLEs obtained under

the multivariate t model (3.2). Firstly, we compare the Gaussian MLEs and the multivariate t MLEs

for the orthodontic growth example of Section 2. The performance of the two sets of estimators

are then compared under different outlier patterns, using results of a simulation.

5.1 The Orthodontic Growth Example Revisited

The distributional assumptions for the Gaussian version of the orthodontic growth model (2.1) are:

bi
ind∼N (0,Ψ) and eij

ind∼N
(
0, σ2

h(i)

)
, with the bi independent of the eij . h(i) = Ii(F ) + 1 denotes
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the gender group for the ith subject. The corresponding MLEs are given below.





β̂0

δ̂0

β̂1

δ̂1



 =





16.34

1.03

0.78

−0.31



 , Ψ̂ =

[
3.20 −0.11

−0.11 0.02

]

,

[
σ̂2

1

σ̂2
2

]

=

[
2.63

0.45

]

. (5.1)

The corresponding approximate standard errors for the MLEs of the fixed effects, given by the

square-roots of the diagonal elements of (
∑m

i=1X
′

iV̂
−1

i Xi)
−1, are

σ̂
(
β̂0

)
= 1.111 σ̂

(
δ̂0

)
= 1.335 σ̂

(
β̂1

)
= 0.097 σ̂

(
δ̂1

)
= 0.115 .

A multivariate t version of model (2.1) is specified by the following distributional assumptions:

bi|τi
ind∼N

(
0, τ−1

i Ψ
)

eij |τi
ind∼N

(
0, τ−1

i σ2
h(i)

)
τi

ind∼ Gamma
(
νh(i)/2, νh(i)/2

)
, (5.2)

which imply that bi
ind∼ t

(
0,Ψ, νh(i)

)
, eij

ind∼ t
(
0, σ2

h(i), νh(i)

)
. Note that, in this case, the degrees-

of-freedom groups are the same as the variance groups. An alternative t model would use the same

degrees-of-freedom for boys and girls (i.e., τi
ind∼ Gamma(ν/2, ν/2) for all i). We use the more

general t model with assumptions (5.2).

As mentioned in Section 3, the parameters Ψ, σ2
1 , and σ2

2 in the Gaussian model do not

have the same interpretation as in the multivariate t model. To make the MLEs comparable,

we consider the parameters var (bi) = Ψg(i) (t) =
[
νh(i)/

(
νh(i) − 2

)]
Ψ and var (eij) = σ2

h(i) (t) =[
νh(i)/

(
νh(i) − 2

)]
σ2

h(i). The fixed effects β0, δ0, β1, δ1 have the same interpretation in both models:

they represent the population average of the individual parameters and establish the growth pat-

terns for an “average girl” and an “average boy” in the population. The MLEs for the multivariate

t model are shown below.





β̂0

δ̂0

β̂1

δ̂1



 =





16.83

0.54

0.73

−0.25



 , Ψ̂1(t) =

[
4.79 −0.16

−0.16 0.03

]

, Ψ̂2(t) =

[
3.13 −0.11

−0.11 0.02

]

[
σ̂2

1(t)

σ̂2
2(t)

]

=

[
2.43

0.45

]

,

[
ν̂1

ν̂2

]

=

[
5.78

∞

]

. (5.3)

The corresponding approximate standard errors for the MLEs of the fixed effects, given by the

square-roots of the diagonal elements of the Ĵ
−1
�� matrix defined in Section 4.4, are

σ̂
(
β̂0

)
= 0.995 σ̂

(
δ̂0

)
= 1.237 σ̂

(
β̂1

)
= 0.086 σ̂

(
δ̂1

)
= 0.106 .

These are consistently smaller than the corresponding estimated standard errors in the Gaussian

model.
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The multivariate t MLEs for the orthodontic growth model with unknown degrees-of-freedom

were obtained using the three EM algorithms described in Section 4: the ECME algorithm of

Section 4.2.1, its PX-EM version presented in Section 4.2.2, and the ECME algorithm of Section 4.3.

Stand-alone implementations of the first two algorithms, written in C, were used to obtain the

corresponding MLEs, while a modified version of the lme function in S-PLUS was used for the

third algorithm, denoted by S-PLUS-ECME. Table 1 presents the number of EM iterations and the

user time (on an SGI Challenge XL workstation running Iris 5.3) used to obtain the multivariate t

MLEs in the orthodontic growth example, for each algorithm implementation. A relative tolerance

of 10−7 for the estimates of all parameters in the model was used as the convergence criterion for

the three algorithms. Because the implementations use languages with very different characteristics

(compiled C and interpreted S-PLUS), the user times in Table 1 are not directly comparable, but

give a sense of the actual performance of the algorithms in a practical setting.

Table 1 about here

Comparing these estimates to the Gaussian MLEs in (5.1), we see that the estimates of the

incremental parameters (δ0 and δ1) fixed effects and the boys’ random effects covariance matrix

Ψ1(t) are considerable different. The multivariate t MLEs of δ0 and δ1 are respectively 50%

smaller and 20% larger than the corresponding Gaussian MLEs. The boys’ random effects variances

multivariate t MLEs are 50% larger than the Gaussian MLEs. The MLEs of the girls’ parameters

are essentially unchanged. Using

t
(
µ,σ2, ν

) ν→∞−→ N
(
µ,σ2

)
, (5.4)

it is clear that the estimated degrees-of-freedom ν̂2 indicate that a Gaussian model is adequate

for the girls’ orthodontic growth. This multivariate t-Gaussian model is used with the orthodontic

growth data for the remainder of this section. The parameter estimates are identical to (5.3). Note

that there is a single extra parameter being estimated in this model compared to the Gaussian

model (2.1), corresponding to the degrees-of-freedom ν of the boys’ t-distribution.

To better understand the differences between the MLEs under the Gaussian and the multi-

variate t models, we consider the approximate distributions of the fixed effects estimators (cor-

responding to the asymptotic distributions evaluated at the MLEs) for each model, presented in

Figure 4.

Figure 4 about here

The incremental parameters δ0 and δ1 have estimates closer to zero in the multivariate t model

and the slope for the girls β1 appears to be overestimated under the Gaussian model. The estimated

variability for the MLEs is smaller in the multivariate t fit, suggesting that the parameters are

estimated with greater precision.
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Because of (5.4), the Gaussian linear mixed-effects model (1.1) can be viewed as a particular

case of the multivariate t model (3.2). In the orthodontic growth example, the maximum log-

likelihood for the Gaussian model is −203.02 and for the multivariate t model the maximum log-

likelihood is −200.40, corresponding to likelihood ratio statistic of 5.237 (p-value of 0.022). This

indicates that the multivariate t model fits the data significantly better than the Gaussian model.

The estimated average distances δ2
i , δ2�

i
, and δ2

�
i
, defined in (4.3), provide useful diagnos-

tic statistics for identifying subjects with outlying observations. Note that, under the Gaussian

model (1.1), E (δ�
i
) = E

(
b′iΨ

−1bi

)
= q, E (δ�

i
) = E

[
(yi −Xiβ −Zibi)

′
Λ−1

i (yi −Xiβ −Zibi)
]

=

ni, and E
[
δ2
i (β,Ψ,λ)

]
= ni. Therefore, δ̂2

i /ni, δ̂2�
i
/q, and δ̂2

�
i
/ni are expected to be close to 1 under

the Gaussian model, and can be used as diagnostics statistics for identifying subjects with outliers

(under this Gaussian model). Figure 5 presents these diagnostic statistics for the boys (because of

the large value of ν̂2, the girls’ estimated weights τ̂i are all essentially equal to 1). Subjects M09 and

M13 present large values of δ̂2
i and δ̂2

�
i
, suggesting outlying observations at the within-subject level.

This is consistent with the preliminary plot of the data, included in Figure 1, which suggests that

both subjects have unusual growth patterns. The δ̂2�
i
plot gives some indication that subject M10 is

possibly a b-outlier, which cannot be concluded from Figure 3. Inspection of Figure 1 reveals that

this subject has an unusually high orthodontic distance at the time of the first measurement.

Figure 5 about here

Other multivariate t and Gaussian models can be used to describe the orthodontic growth data.

The Welsh and Richardson (1997) version of the multivariate t model replaces assumptions (5.2)

with a common number of degrees-of-freedom and a common residual variance, that is,

bi|τi
ind∼N

(
0, τ−1

i Ψ
)

eij |τi
ind∼N

(
0, τ−1

i σ2
)

τi
ind∼ Gamma (ν/2, ν/2) ,

with Ψ assumed diagonal. The maximum log-likelihood corresponding to this model is −206.41.

Because this model is a sub-model of the multivariate t determined by (5.2), they can be compared

via a likelihood ratio test. The likelihood ratio test statistic is 12.01 (p-value of 0.003) indicating

that the more general model is significantly better. A variation of the Welsh and Richardson (1997)

model is obtained by allowing a general Ψ and the within-subject variance to vary with gender

(i.e., eij |τi
ind∼N (0, τ−1

i σ2
h(i))). The maximum log-likelihood of this model, −201.24, is smaller than

the maximum log-likelihood of the multivariate t-Gaussian model, and because they have the same

number of parameters, the latter is preferred. Another model that can be considered for the

orthodontic growth data is a Gaussian model with separate distributions for boys and girls. This is

equivalent to fitting separate Gaussian models to each gender. This model uses 2 parameters more

than the multivariate t-Gaussian model to produce a smaller maximum log-likelihood, -202.56,

indicating that the multivariate t-Gaussian model should be preferred.

5.1.1 Influence of a single outlier

The robustness of the multivariate t MLEs with respect to the Gaussian MLEs can also be assessed
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through the influence of a single outlying observation (corresponding to a single e-outlier) on

the estimated parameters. To simplify, we consider only the model for the girls, which can be

represented as

yij = β0 + β1tj + b0i + b1itj + eij , i = 1, . . . , 11 j = 1, . . . , 4,

with bi
ind∼N (0,Ψ) and eij

ind∼N
(
0, σ2

)
in the Gaussian model and bi|τi

ind∼N
(
0, τ−1

i Ψ
)
,

eij |τi
ind∼ N

(
0, τ−1

i σ2
h(i)

)
, and τi

ind∼ Gamma (ν/2, ν/2) in the multivariate t model.

We consider the influence of a change of ∆ units in a single measurement on the estimated

parameters. That is, we replace a single data point yij by the contaminated value yij (∆) = yij +∆,

re-estimate the parameters, and record the relative change in the estimates
(
θ̂ (∆) − θ̂

)
/θ̂, where

θ̂ denotes the original estimate and θ̂ (∆) the estimate for the contaminated data. In this example,

we contaminated a typical value, the fourth observation (age = 14 years) on subject F01, and

varied ∆ between -20mm and 20mm by increments of 2mm. The Gaussian and the multivariate

t fits were identical for the uncontaminated data in this case. Because Ψ and σ2 have different

interpretations under the Gaussian model (1.1) and the multivariate t model (3.2), and even within

the multivariate t model for different degrees-of-freedom, we concentrate here on the estimation of

the fixed effects β, which have the same interpretation under both models and for different degrees-

of-freedom within the multivariate t model. We study the influence of the single outlier yij (∆) on

the estimation of β̂ and of its estimated covariance matrix V �� .

Figure 6 presents the percent change curves for β̂ and the upper-triangular elements of V �� for

different values of ∆.

Figure 6 about here

The influence of the single outlier is unbounded in the case of the Gaussian model, but clearly

bounded in the multivariate t model. In the Gaussian model, the outlying observation has con-

siderable more impact on the estimates of V �� (changes between -2000% and 1800%), than on the

fixed effects β̂ (changes up to ±60%). This has a direct impact on inferences drawn from the fit:

confidence intervals increase unboundedly and test statistics go to zero. In the multivariate t fit,

the influence of the single outlier for the fixed effects estimates remains bounded between -10% and

6% and for the estimates of V �� it remains between -107% and 86%.

For closer contamination values (|∆| ≤ 2), the multivariate t fit and the Gaussian fit are essen-

tially identical and therefore have the same influence curves. This occurs because the contaminated

observation is not distant enough from the typical data to be identified as an outlier, resulting in

ν̂ = ∞. Therefore, the two estimation methods will have about the same efficiency for no or close

contamination cases.

5.2 Comparing the MLEs Under Different Outlier Patterns

To compare the performance of the maximum likelihood estimators under the Gaussian model (1.1)
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and the multivariate t model (3.2), we conducted a simulation study involving different patterns of

b- and e-outliers.

The linear mixed-effects model used to simulate the data is

yi = X (β + bi) + ei, i = 1, . . . , 27, X =





1 8

1 10

1 12

1 14



 , (5.5)

with the following mixture of normals models being used to contaminate the distributions of the

bi and the ei.

bi
ind∼ (1 − p�) · N (0,Ψ) + p�f · N (0,Ψ) , (5.6)

eij
ind∼ (1 − p�) · N

(
0, σ2

)
+ p�f · N

(
0, σ2

)
, i = 1, . . . , 27, j = 1, . . . , 4,

where p� and p� denote, respectively, the expected percentage of b- and e-outliers in the data and

f denotes the contamination factor. This model is a simplified version of the orthodontic growth

model (2.1), with no gender differences. The parameters in the uncontaminated distributions are

similar to the MLEs (5.3). It follows from (5.6) that var (bi) =
[
1 +

(
f2 − 1

)
p�
]
Ψ and var (eij) =[

1 +
(
f2 − 1

)
p�

]
σ2.

All thirty-two combinations of p�, p� = 0, 0.05, 0.1, 0.25, and f = 2, 4 were used in the simu-

lation study. The f = 2 case corresponds to a close contamination pattern, while f = 4 illustrates

a more distant contamination pattern. A total of 500 Monte Carlo replications were obtained for

each (p�, p� , f) combination.

An S-PLUS implementation of the ECME algorithm of Section 4.3 was used to obtain the mul-

tivariate t MLEs at each replication. For the Gaussian MLEs, the lme function in S-PLUS (Pinheiro

and Bates, 2000) was used. To enhance the comparability of the results, the same data set was

used to obtain the multivariate t estimates and the Gaussian estimates, at each replication. The

degrees-of-freedom for the multivariate t-distribution were assumed unknown, being estimated in

the ECME algorithm.

As mentioned in Section 5.1, Ψ and σ2 have different interpretations under the Gaussian

model (1.1) and the multivariate t model (3.2) and their corresponding MLEs under the two models

cannot be directly compared. As before, we concentrate on the estimation of the fixed effects β,

which have the same interpretation under both models.

For the simulation model (5.5), under estimation method E, the approximate covariance matrix

V �� of the fixed effects estimates has the form

V �� =
[
σ̂2

E

(
X ′X

)
−1

+ Ψ̂E

]
/m.

Under the Gaussian model, σ̂2
G = σ̂2 and Ψ̂G = Ψ̂, while under the multivariate t model σ̂2

T =

m
[∑m

i=1

(
ν̂h(i) + ni

)
/
(
ν̂h(i) + ni + 2

)]
−1

σ̂2 and Ψ̂T = m
[∑m

i=1

(
ν̂h(i) + ni

)
/
(
ν̂h(i) + ni + 2

)]
−1

Ψ̂,
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with θ̂ denoting the MLE of θ under the appropriate estimation method. For the purpose of the

simulation study, robustness is determined by how close the estimated values are to the parameters

of the uncontaminated distribution. The asymptotic covariance matrix for the MLE of β based on

the uncontaminated data only is
[
σ2 (X ′X)

−1
+ Ψ

]
/m. Therefore, we define σ2 as the target value

for σ̂2
G and σ̂2

T σ2 and Ψ as the target value for Ψ̂G and Ψ̂T . These estimators can then be used to

compare the performance of the two estimation methods with respect to the variance-covariance

components Ψ and σ2.

The following parameters, with respective target values, are used in the comparison of the two

estimation methods:

β0 = 17, β1 = 0.8, Ψ11 = 4, Ψ22 = 0.0225, Ψ12 = 0, and σ2 = 1.

For the Gaussian model, the MLEs are considered and for the multivariate t model the MLEs of

the fixed effects and the modified estimators Ψ̂T and σ̂2
T of the variance-covariance components are

considered.

Let θ denote a parameter of interest, with target value θ0 6= 0, estimated by θ̂. The efficiency

of the Gaussian estimator θ̂G relative to the multivariate t estimator θ̂T is defined as the ratio of the

respective mean square errors, E
(
θ̂G − θ0

)2
/E
(
θ̂T − θ0

)2
. Expectations are taken with respect

to the simulation distribution, that is, E
(
θ̂ − θ0

)2
=
∑500

i=1

(
θ̂i − θo

)2
/500.

Figures 7 and 8 present the relative efficiency of the multivariate t estimators with respect

to the Gaussian estimators. There are substantial gains in efficiency for all parameters under the

more distant contamination patterns (f = 4) and moderate gains under the close contamination

patterns (f = 2). The efficiency gains are bigger for the variance-covariance components than for

the fixed effects. The two methods have about the same efficiency under the no-contamination case.

For the close contamination patterns (Figure 7), the efficiency increases with the percentage of b−
and e−outliers (except for the Ψ11 parameter, for which there is a slight efficiency decrease when

the percentage of e−outliers increases from 10% to 25%). In the case of distant contamination

(Figure 8, the efficiency shows a non-monotone behavior with respect to the percentage of b− and

e−outliers. This pattern suggests that the multivariate t model is more robust than the Gaussian

model especially for moderate percentages (5-10%) of outliers.

Figures 7 and 8 about here

The simulation results for the mean square error (not shown here) indicate that outliers affect

the variance-covariance components estimates more than they affect the fixed effects estimates.

The precision of the estimator of σ2 seems to be affected only by the percentage of e−outliers,

while the fixed effects and random effects variance-covariance components estimators are affected

by both types of outliers.

The MLEs of the fixed effects are nearly unbiased (relative bias ≤ 0.7%) for both estimation

methods under all contamination patterns. The bias for the variance-covariance components follows
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the same basic pattern as the mean square error: it increases with the percentage of e−outliers, is

insensitive to the percentage of b−outliers for σ2, and increases in absolute value with the percentage

of both types of outliers for the random effects variance-covariance components.

The coverage probabilities of the approximate 95% confidence intervals for the fixed effects,

not included here, are generally close to the nominal level for both estimation methods, with

the smallest coverage probability 90.4% and the largest 97%. The coverage probabilities tend to

increase with the percentage of outliers, because the fixed effects estimators remain unbiased and

the confidence intervals get larger. The average length of the 95% confidence intervals is about the

same under Gaussian and multivariate t estimation for the close contamination patterns, but 10%

to 25% larger in the Gaussian model for the more distant contamination patterns.

6. CONCLUSION

This article describes a robust version of the linear mixed-effects model of Laird and Ware (1982) in

which the Gaussian distributions for the random effects and the within-subject errors are replaced

by multivariate t-distributions. Analysis of examples and simulation results indicate that the mul-

tivariate t linear mixed-effects model substantially outperforms the Gaussian model when outliers

are present in the data, even in moderate amounts. Gains in efficiency for the multivariate t MLEs

relative to the Gaussian MLEs, under outlier contamination, are observed for all parameters, being

particularly high in the estimation of variance-covariance components, ranging from 20%–30% in

the case of close contamination (two standard deviations) to 200%–400% in the case of distant con-

tamination (four standard deviations). This has a direct impact on confidence intervals and test

statistics obtained from the fit, which determine all inferences drawn from the estimated model.

The influence function is bounded for the multivariate t model and unbounded for the Gaussian

model. The multivariate t model also provides diagnostics tools for graphically identifying subjects

with outlying observations.

We describe EM-type algorithms for efficient maximum likelihood estimation under two missing

data structures: with both the random effects and the individual weights treated as missing and

with only the individual weights treated as missing. The former leads to algorithms with closed

form expressions for both the E- and the M-step, but imposes some restrictions on the correlation

structure of the within-subject errors. The algorithm corresponding to the latter missing data

structure, which allows general correlation structures for the within subject errors, involves a more

computationally intensive M-step, but can be implemented using existing, reliable software.

Our model formulation assumes that a single weight τi is associated with both the random

effects and the within-subject error, for each subject. A more general formulation would allow

different weights for the random effects and for the within-subject errors, with possibly different

degrees-of-freedom. The main difficulty with this approach is that the marginal distribution of yi

and the conditional distributions of τi|yi become intractable and, as a result, the E-step of the

EM-type algorithms becomes a far more complex numerical problem. The EM-type algorithms

described in this paper cannot be directly extended to the more general multivariate t model.
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Because we believe that the cases in which this more general multivariate t model could perform

better than the simpler single weight model are not likely to be observed in practice, we feel that

the latter is more useful in applications, because it is considerably simpler to implement.

The robust estimation approach described in this article can also be extended to nonlinear

mixed-effects models (Lindstrom and Bates, 1990). The computations become considerably more

complex, but algorithms based on linear approximations to the marginal distribution of the yi can,

in principle, be used in conjunction with the methods described here.

ACKNOWLEDGMENTS

We would like to thank Diane Lambert, an associate editor, and two anonymous referees for their

helpful comments and suggestions. All these have helped us improve the article greatly.

REFERENCES

Barnett, V. and Lewis, T. (1995). Outliers in statistical data (Third edition), John Wiley & Sons.

Bates, D. M. and Watts, D. G. (1988). Nonlinear Regression Analysis and Its Applications, Wiley,

New York.

Becker, R. A., Cleveland, W. S. and Shyu, M.-J. (1996). The visual design and control of trellis

graphics displays, J. of Computational and Graphical Statistics 5(2): 123–156.

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994). Time Series Analysis: Forecasting and

Control, 3rd edn, Holden-Day, San Francisco.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data

via the EM algorithm (c/r: P22-37), Journal of the Royal Statistical Society, Ser. B 39: 1–22.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap, Chapman & Hall, New

York.

Fang, K. T. and Zhang, Y. Y. (1990). Generalized Multivariate Analysis, Science Press, Beijing

and Springer–Verlag, Berlin.

Gelman, A. (1997). Comment on the EM algorithm — an old folk song sung to a fast new tune,

by x. l. meng and d. van dyk, Journal of the Royal Statistical Society, Ser. B 59: 554.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics:

The Approach Based on Influence Functions, John Wiley & Sons, New York.

Hartley, H. O. and Rao, J. N. K. (1967). Maximum likelihood estimation for the mixed analysis of

variance model, Biometrika 54: 93–108.

Huber, P. J. (1981). Robust Statistics, Wiley, New York.

23



Jennrich, R. I. and Schluchter, M. D. (1986). Unbalanced repeated measures models with structural

covariance matrices, Biometrics 42(4): 805–820.

Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distribu-

tions, Wiley, New York.

Kent, J. T., Tyler, D. E. and Vardi, Y. (1994). A curious likelihood identity for the multivariate t

distribution, Comm. Statist. Simul. Comp. 23: 441–453.

Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data, Biometrics

38: 963–974.

Lange, K. L., Little, R. J. A. and Taylor, J. M. G. (1989). Robust statistical modeling using the

t-distribution, Journal of the American Statistical Association 84: 881–896.

Lindstrom, M. J. and Bates, D. M. (1988). Newton-Raphson and EM algorithms for linear mixed-

effects models for repeated-measures data, Journal of the American Statistical Association

83: 1014–1022.

Lindstrom, M. J. and Bates, D. M. (1990). Nonlinear mixed effects models for repeated measures

data, Biometrics 46: 673–687.

Liu, C. and Rubin, D. B. (1994). The ECME algorithm: A simple extension of EM and ECM with

faster monotone convergence, Biometrika 81: 633–648.

Liu, C. and Rubin, D. B. (1995). ML estimation of the multivariate t distribution with unknown

degrees of freedom, Statistica Sinica 5: 19–39.

Liu, C., Rubin, D. B. and Wu, Y. N. (1998). Parameter expansion to accelerate EM – the PX-EM

algorithm, Biometrika 85: 755–770.

Maddala, G. S. and Rao, C. R. (1997). Handbook of Statistics, Vol. 15, Elsevier Science B. V.,

Amsterdan.

Meng, X. L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: a

general framework, Biometrika 80: 267–278.

Meng, X. L. and van Dyk, D. (1997). The EM algorithm — an old folk song sung to a fast new

tune (with discussion), Journal of the Royal Statistical Society, Ser. B 59: 511–567.

Meng, X. L. and van Dyk, D. (1998). Fast EM implementations for mixed-effects models, Journal

of the Royal Statistical Society, Ser. B 60: 559–578.

Miller, J. J. (1977). Asymptotic properties of maximum likelihood estimates in the mixed model

of the analysis of variance, Ann. of Statistics 5: 746–762.

24



Pendergast, J. F. and Broffitt, J. D. (1986). Robust estimation in growth curve models, Commu-

nications in Statistics: Theory and Methods 14: 1919–1939.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-effects models in S and S-PLUS, Springer-Verlag.

Potthoff, R. F. and Roy, S. N. (1964). A generalized multivariate analysis of variance model useful

especially for growth curve problems, Biometrika 51: 313–326.

Racine-Poon, A. (1992). Saga: Samples assisted graphical analysis (disc: P401-404), Bayesian

Statistics 4. Proceedings of the Fourth Valencia International Meeting, pp. 389–401.

Richardson, A. M. (1997). Bounded influence estimation in the mixed linear model, Journal of the

American Statistical Association 92(437): 154–161.

Richardson, A. M. and Welsh, A. H. (1995). Robust estimation in the mixed linear model, Bio-

metrics 51: 1429–1439.

Schafer, J. (1998). Imputation of missing covariates under a general linear mixed model. Submitted

to Biometrics.

Thisted, R. A. (1988). Elements of Statistical Computing, Springer-Verlag, London.

Wakefield, J. C., Smith, A. F. M., Racine-Poon, A. and Gelfand, A. E. (1994). Bayesian analysis of

linear and nonlinear population models using the Gibbs sampler, Applied Statistics 43: 201–

221.

Welsh, A. H. and Richardson, A. M. (1997). Approaches to the Robust Estimation of Mixed Models,

Vol. 15 of Maddala and Rao (1997), chapter 13, pp. 343–384.

Wolfinger, R., Tobias, R. and Sall, J. (1991). Mixed models: A future direction, SUGI 16: 1380–

1388.

Wu, C. F. J. (1983). On the convergence properties of the EM algorithm, The Annals of Statistics

11: 95–103.

25



Table 1: Number of iterations and user time to obtain the multivariate t maximum likelihood

estimates in the orthodontic growth model.

Algorithm Iterations Time (sec)

ECME for missing bi and τi 268 3.01

PX-EM 134 2.51

S-PLUS-ECME for missing τi 16 78.16
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Figure 1: Orthodontic growth patterns in 16 boys(M) and 11 girls(F) between 8 and 14 years of

age. Lines represent the individual least squares fits of the simple linear regression model.
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Figure 2: Residuals versus fitted values plots by gender, corresponding to individual least squares

fits of the orthodontic growth data.
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Figure 3: Normal plots of estimated coefficients corresponding to individual least squares fits of

the orthodontic growth data.
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under Gaussian and multivariate t estimation.
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close outlier contamination patterns.
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Figure 8: Relative efficiencies of the multivariate t MLEs with respect to the Gaussian MLEs under

distant outlier contamination patterns.


