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1 Classical mechanics

1.1 Lagrangian

Suppose there are n particles whose positions and velocities are x(1) = (x;(¢),i=1,...,n) and v(t) = (vi(t),i =
1,...,n), with v;(t) = dx;(t) /dt. Sometimes, for notional simplicity, we may simply write x(¢) as x, and v(r)
as v.

The Lagrangian is

1 n
L(x,v,t) = El;miviz—V(x), (1)
which is the difference between the kinetic energy and the potential energy. It can be more general.

1.2 Action

The action from O to T is
T
S = / L(x,v)dt, 2)
0

which is a function (or functional) of the path x(¢),z € [0,T].

1.3 Least action

Nature controls the path x(¢) by minimizing the action, i.e., nature does barely enough for the kinetic energy
to overcome the potential energy.

In general, we only require the path x(¢) to be a stationary point of the action S, i.e., a minimum, a
maximum, or a saddle point. But usually it should be a minimum.

1.4 Discretization

A valuable method to understand the continuous process is to always discretize the time into intervals of At,
very much like making a movie where the time between every two consecutive frames is Af.
In discrete time, we write S as

S=Y L(x(t),v(t)) A, 3)
0
where
_ x(t+Ar) —x(1)
v(t) = A 4)
Then for a fixed ¢, the part of S that depends on x(¢) is

L(x(t),v(t))Ar + L(x(t — Ar),v(t — At) ) At, 5)

where
v(r—Ar) = M (6)

At



1.5 Euler-Lagrange

Thus
IS (1) b) @)
220 =LY (x(¢),v(t)) At — L' (x(2),v(t)) + L' (x(t — At),v(t — Ar)) = 0,
which leads to the Euler-Lagrange equation
oL _aar
dx dtov’

The above derivation of the Euler-Lagrange is unconventional, but is the most direct.
Note: for f(x,y), we write f(1) (x,y) = d f(x,y)/dx, and f® (x,y) = 3 f(x,y)/dy.

1.6 Hamiltonian

Define the momentum

_dL
P=3
Usually p = mv.
Define the Hamiltonian H (x, p) to be
H=pv—L.

H is usually the total energy, i.e., the sum of the kinetic energy and the potential energy.
We will derive the Hamiltonian equation in the next subsection:

dp  0H
ot ox’
dx oH
ot dp’

1.7 Lagrange multiplier and Hamiltonian

In discretize time.

S=Y L(x(t),v(r))At,

0

where the constraint is
x(t+Ar) = x(t) +v(r)At.
To minimize S under the constraint, we can use Lagrange multiplier, to get

T
§= ;{L(X(t),V(f))Af+7L(t)[X(t+At) —x(1) —v(r)Ar]}.

At the minimum, we should have

(N

(®)

©)

(10)

1D
(12)

13)

(14)

5)

(16)



First,

= L® (x(1),v(t))At — A (t)Ar = 0. (17)

Thus
At) = L (x(t),v(t)). (18)

Compare to the above subsection, A is the momentum p.
Define the Hamiltonian

H(x(1),A(t)) = A(t)v(z) — L(x(2),v(7)). (19)
Then
S= il(t)(x(t—i—At) —x(t)) — H(x(t),A())At. (20)
Thus,
aS 0H Ox
O )} b

PN JoH dA

Thus we get the Hamiltonian equation with A = p.

2  Quantum mechanics

2.1 Hamiltonian and rotation of belief vector

Let b(x) be the belief vector. In quantum mechanics, b(x) is a complex number for each x. An observer
makes a measurement, the probability density (or mass) function of observing x is p(x) = |b(x)|? for each x,
i.e., the sum of squares of the real and imaginary parts of b(x).

For simplicity, let us first assume x can only take a finite number of values (e.g., the spin of the electron).
Then b = (b(x), Vx) forms a finite dimensional vector. b keeps rotating over time, i.e., b;(x) keeps changing
over time, but the total squared length |b;|> = ¥, |b;(x)|? remains the same. We can normalize |b;|* to 1, so
that ¥, p; (x) = |b;(x)|*> = 1. Thus p,(x) is always a legitimate probability distribution.

The change of b, is driven by the Hamiltonian H, according to the Schrodinger equation:

ob,
ih— = Hb
l at 2]
where £ is the Planck constant. In other words,
biin = (I —iHAt /h)b, =~ exp(—iHAt /h),

where we use ¥ = 1 +x+ O(x?) for small x, and for matrix M, ™ = 1 +M +M?/2+M?/3! + ... Because
of i, e~ = cosx — isinx is a rotation in the complex domain, and similarly exp(—iHAt/h) is a rotation
matrix, so that the squared length of b, is preserved. In fact, b, = exp(—iHt/h)by.



Now let us assume that x is continuous, e.g., 1-dimensional, such as the position of the electron. Then
by = (bs(x),Vx) is an infinite dimensional vector, in fact, the dimension is not even countable since x is
continuous, and H is an infinite dimensional matrix, or more precisely an operator. But we still have the
Schrodinger equation
db,(x)

ot

where b, (x) is now a wave function, and H is an operator on this function.

How do we get H? The recipe is as follows. Just take the classical Hamiltonian, H(x, p), which is a
function of position x and momentum p, and change p to the operator p = ihd /dx (so that p? is changed
to p> = —h?>d?/dx*). This is inspired by de Broglie’s hypothesis that any matter is also a wave whose
wavelength is inverse proportional to p.

ih

= Hb,(x),

2.2 Discreteness of Hamiltonian eigenvalues

Where does the name “quantum” come from? It turns out the operator (matrix) H has a discrete list of eigen
values, i.e., H = QAQT, where A = diag(A;, A, ...) is a diagonal matrix of eigen values, Q = (¢1,42,...)
collects the eigen vectors. A; are the discrete energy levels. Because of the discreteness of A;, we say that the
energy is quantized. This assumption was originally made by Planck (as well as Einstein, Bohr) in an ad hoc
manner to account for certain experimental results. But in the above formulation, it is a natural consequence.

Why do we take p = ihd/dx? We can think of p as an infinite matrix (with uncountable entries). Its
eigen vectors are v, = exp(—ipx/h), so that pv, = ihd exp(—ipx/h)/dx = pexp(—ipx/h) = pv,. Thus p is
the eigen value of p.

As to the position x, its operator version £ is actually a diagonal matrix whose diagonal elements are
different values of x, so that the eigen vectors of £ are J,, i.e., the Dirac one-hot vector for x, and the eigen
values are x.

Now we have three sets of basis, position basis (0, Vx), momentum basis (v,,Vp), and energy basis
(gi,Yi). For a belief vector b;, we can expand it in the three sets of basis,

by = /xbz(x)5x = /pCt(P)Vp = Zal‘iqi'
1

Thus the probability (density) we find the electron at position x is |b,(x)|?, the probability (density) we find
the electron with momentum p is |¢;(p)|?, and the probability we find the electron at energy level i is |a;;|?.

For the uncertainty principle, it can be prove that for any b;, the variance of the probability distribution
|b;(x)|? and the variance of the probability distribution |c;(p)|* satisfy the constraint that their product must
be bigger than a certain constant.

Now you can see that any quantity, be it position, momentum, or energy, is a matrix (or operator), whose
eigen values are the possible values of that quantity, and whose eigen vectors form a basis. The belief vector
can be expanded in this basis, and the squares of the coordinates become probabilities.

2.3 Lagrangian and Feynman path integral

Suppose at time ¢ = 0, the system is in xy. Then the probability amplitude that the system is in x at time 7',

i.e., br(x),is
/ exp <iS (x: ))> D(x(1)), 23)




where x(¢) is the path over [0, T'] with x(0) = xp and x(T') = x. Intuitively, the above is

Y exp (iS(p;th)> , (24)

path

which is the sum over all possible paths, i.e., sum over histories.

The least action principle can be derived from the above path integral. If S’ (path) = 0 at a particular path,
then S is locally constant around this path, then the sum of ¢/5/" around this path is the sum of a constant
complex number. If §'(path) # 0 at a particular path, then S is locally linear around this path, then the sum
of "/ around this path is the sum of complex numbers of very different phases if 4 is small, and they cancel
each other. So in the end, only the stationary paths survive.

If we change it to 7, then the above path integral becomes the normalizing constant or partition function
Z for a statistical mechanical system. This is how MCMC is used for computing the path integral in QM.

Quantum mechanics is simpler than classical mechanics because it is linear. The mathematical language
is simply vector matrix multiplication. For instance, in quantum field theory, the creation and annihilation
operators act on vectors that correspond to different numbers of particles, so that the creation and annihila-
tion of particles can be expressed by vector matrix multiplication.

3 Statistical mechanics

Consider a system (x,v) = (x;,v;,i = 1,...,n) evolves over time. According to the classical mechanics,
we get a deterministic video (x(7),v(¢),7 € [0,T]). Suppose T is large, and we randomly sample a frame
t ~ Unif[0,T]. Then (x(¢),v(r)) follows a probability distribution p(x,v). Marginally, x(¢) ~ p(x). This
is the conceptual basis of statistical mechanics. For large system, the statistical properties of x(¢) tend to
have little fluctuations, i.e., Var[¢(x(¢))] tends to be small for a summary ¢. Thus when we measure @, it
is close to E[¢(x(¢))]. The closeness of ¢(x(z)) to its expectation is often characterized by concentration
inequality or large deviation result, e.g., Pr(|¢ (x(¢)) — E[¢ (x())]| > €) < c1 exp(—nc2€?), where ¢; and ¢,
are constants.

In the above, the video is deterministic, and the randomness comes from the random sampling of ¢. This
is very different from quantum mechanics, where the randomness is intrinsic.

In Boltzmann’s formation, E[¢(x(¢))] is considered time average, which is what we did. In Gibbs’
thinking, E[¢(x(¢))] is considered ensemble average, i.e., one can imagine an ensemble (or population)
of systems evolve in parallel, and we average the ensemble. Regardless, one needs concentration of the
probability (i.e., fluctuations diminish) to explain the success of statistical mechanics.

For Hamiltonian Monte Carlo (or hybrid Monte Carlo), we assume p(x,v) = p(x)g(v) o< exp(—H (x,v)),
where ¢ is Gaussian. Given the current x, we randomly sample v from ¢g(v). Then we let the system evolve
according to Hamiltonian equation based on H (x,v). This is like randomly pick a short video segment.

4 Optimal control

The optimal control for deterministic system, in particular, the Pontryagin’s principle, follows the treatment
of classical mechanics.

Here we continue to use the notation in mechanics following the Russian school, so that state and action
are denoted by (x,u). In reinforcement learning, we use (s,a).



4.1 Deterministic dynamics

The optimal control problem has a dynamics
x=F(x,u), (25)
where the Newtonian notation x = dx/dt, u(t) is the control variable. In discrete time, it means
x(t+At) —x(t) = F(x(t),u(t))At. (26)

We want to find u(t),z € [0,T], to minimize the cost

T
S = o (x(T)) + / 1(x,u)d. @7
0
where ¢ (x) is the cost of the final state and /(x, u) is the loss rate. In discrete time,
T
S=¢(x(T))+ Y 1(x(t),u(r))Ar. (28)

0

We can plug in x(t + At) = x(t) + F (x(¢),u(t))At, so that S is a function of u(z),7 € [0,T]. We can minimize
S by gradient descent over u(t),t € [0,T], where the gradient can be computed by back-propagation through
time.

4.2 Lagrange multiplier and Pontryagin

Instead of back-propagation through time after plugging in x(¢t + Ar) = x(t) + F (x(t),u(t))At, we can also
treat it as a constraint, and use Lagrange multiplier.

T

§= ¢(X(T))+;{Z(X(t),u(f))m+/1(f)[X(f+Af)—X(t)—F(X(f)vu(f))At]}‘ (29)
Define the Hamiltonian
H(x(1),u(r), A (1)) = A () F (x(2),u(t)) = (x(1),u(?)), (30)
then
§= ¢(X(T))+i{7t(f)[X(t+Af) —x(1)] = H (x(2), u(t), A(2))Ar} . (3D

35 IH  Ix
O ] (32)
35 oH  aa

The first equation is just the dynamics. We can run it forward to get x(¢). The second equation enables us to
update

At)=A(t+Ar) — aaIZAt, (34



backward, starting from

A(T) = ¢'(x(T)). 35)

With x(¢) and A(¢), we can then minimize S with respect to u(t). This is an unconstrained minimization, so
that we only need to maximize each H (x(¢),u(t), A(r)) with respect to u(t) separately, without the need for
back-propagation through time.

The above is the Pontryagin maximum principle. One can see that the above optimal control method
follows the classical mechanics closely. The classical mechanics can be considered as nature controls the
trajectory, where the control variable is v(7).

4.3 Dynamic programming and Bellman

The dynamic programming approach is based on the value function v(x,), with

v(x,T) = ¢(x), (36)

and
v(x,t) = max[l(x,u)Ar +v(x(r+At),t + Ar) 37)
= max[/(x,u) At +v(x+ F(x,u)At,t + Atr). (38)

u

The above is the Bellman equation for value iteration. Directly applying the above equation to continuous
x can be inconvenient because we need to memorize v(x,#) for all x, and if x is high dimensional, there is
what Bellman called “curse of dimensionality.”

Bellman is more convenient for finite discrete state space. It underlies reinforcement learning and in
particular Q-learning.

4.4 Hamilton-Jacobi-Bellman

Applying Taylor expansion to Bellman,

v(x,t) = max[—I(x,u)At +v(x+F(x,u)At,t + At) (39)
= muax[—l(x, u)At +v(x,t + At) + vy (x, 1 + Ar)F (x,u)At]. (40)

Thus
*V;()C,l‘) :maX{il(xa M)+VX(X,I)F(X,M)], (41)

where v, and v, are derivatives of v(x,#) with respect to x and ¢ respectively.
Compared to Pontryagin, A (z) = v,(x,1), and the right hand side of the above equation is the Hamiltonian
H(x,u,vy), ie.,

—v; = H(x,vy,1). (42)

Again the above equation follows the Hamiton-Jacobi equation of classical mechanics. This equation was
used by Schrodinger to justify his wave equation by making analogy to optics, where there are both wave
and particle treatments.

The LQR (linear quadratic regulation) can be derived from HJB.



4.5 Stochastic dynamics

For stochastic dynamics, we need to use expectation with respect to the random transition. Then we get into
the Markov decision process. In continuous time, the dynamics can also be modeled by adding Brownian
motion to dynamics, so that

x(t4 A1) = x(t) + F (x(t),u(t)) At + o (x(¢),u(t))VArs,, (43)

where & ~ N(0,/) independently over ¢, and o(x,u) accounts for diffusion. Optimal control in this situation
can be made parallel to Kalman filter.



