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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flour-
ished, developed, and deepened over time within many disciplines and by means
of creative cross-fertilization with diverse areas. The intricate and fundamental
relationship between harmonic analysis and fields such as signal processing,
partial differential equations (PDEs), and image processing is reflected in our
state-of-the-art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such
as wavelet theory, Banach algebras, classical Fourier analysis, time–frequency
analysis, and fractal geometry, as well as the diverse topics that impinge on them.
For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis, but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish the scope and interaction that such a host of issues
demands.

v



vi ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time–frequency and

Numerical partial differential equations time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function”. Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, e.g., by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or
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the adaptive modeling inherent in time–frequency-scale methods such as wavelet
theory. The coherent states of mathematical physics are translated and modulated
Fourier transforms, and these are used, in conjunctionwith the uncertainty principle,
for dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor
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Preface

Recent years have seen an explosion of research activities in a fascinating area called
compressed sensing, compressive sensing, or compressive sampling. A Google
Scholar search for articles containing one of these three terms in their title returned
about 4,400 hits at the time this preface was written. The area of compressive sens-
ing, at the intersection of mathematics, electrical engineering, computer science, and
physics, takes its name from the premise that data acquisition and compression can
be performed simultaneously. This is possible because many real-world signals are
sparse, and even though they are acquired with seemingly too few measurements,
exploiting sparsity enables one to solve the resulting underdetermined systems
of linear equations. The reconstruction of sparse signals is not only feasible in
theory, but efficient algorithms also exist to perform the reconstruction in practice.
Moreover, involving randomness in the acquisition step enables one to utilize the
minimal number of measurements. These realizations, together with their potential
applications, have triggered the interest of the scientific community since around
2004. Some of the ingredients are of course much older than the advent of
compressive sensing itself, and the underlying theory builds on various branches of
mathematics. These branches include linear algebra, approximation theory, convex
analysis, optimization, probability theory (in particular, random matrices), Banach
space geometry, harmonic analysis, and graph theory. This book is a detailed
and self-contained introduction to the rich and elegant mathematical theory of
compressive sensing. It presents all the necessary background material without
assuming any special prior knowledge—just basic analysis, linear algebra, and
probability theory.

The perspective adopted here is definitely a mathematical one, only comple-
mented at the beginning with a teaser on the strong potential for applications. Our
taste partly dictated the choice of topics, which was limited by the need to keep this
volume an introduction rather than an exhaustive treatise. However, the exposition is
complete in the sense that we wanted every result to be fully proved for the material
to become accessible to graduate students in mathematics as well as to engineers,
computer scientists, and physicists. We have also made efforts to produce short and
natural proofs that are often simplified versions of the ones found in the literature.

xi
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We both, independently, went through the process of rendering the foundations of
compressive sensing understandable to students when we prepared lecture notes for
courses given at Vanderbilt University, Drexel University, the University of Bonn,
and ETH Zurich. This monograph is a further attempt to clarify the theory even
more. Lecturers wishing to prepare a course based on it will find some hints at the
end of Chap. 1.

The overall organization follows a path from simple to more complicated (so
does the organization within chapters). This results in the structure of the book
outlined below. The first chapter gives a brief introduction to the essentials of
compressive sensing, describes some motivations and applications, and provides a
detailed overview of the whole book. Chapters 2–6 treat the deterministic theory
of compressive sensing. There, we cover the notion of sparsity, introduce basic
algorithms, and analyze their performance based on various properties. Since
the major breakthroughs rely on random matrices, we present the required tools
from probability theory in Chaps. 7 and 8. Then Chaps. 9–12 deal with sparse
recovery based on random matrices and with related topics. Chapter 13 looks
into the use of lossless expanders and Chap. 14 covers recovery of random sparse
signals with deterministic matrices. Finally, Chap. 15 examines some algorithms for
�1-minimization. The book concludes with three appendices which cover basic
material from matrix analysis, convex analysis, and other miscellaneous topics.

Each chapter ends with a “Notes” section. This is the place where we provide
useful tangential comments which would otherwise disrupt the flow of the text, such
as relevant references, historical remarks, additional facts, or open questions. We
have compiled a selection of exercises for each chapter. They give the reader an
opportunity to work on the material and to establish further interesting results. For
instance, snapshots on the related theory of low-rank matrix recovery appear as
exercises throughout the book.

A variety of sparse recovery algorithms appear in this book, together with their
theoretical analysis. A practitioner may wonder which algorithm to choose for a
precise purpose. In general, all the algorithms should be relatively efficient, but
determining which one performs best and/or fastest in the specific setup is a matter
of numerical experiments. To avoid creating a bias towards any algorithm, we
decided not to present numerical comparisons for the simple reason that running
experiments in all possible setups is unfeasible. Nevertheless, some crude hints are
given in the Notes section of Chap. 3.

It was a challenge to produce a monograph on a rapidly evolving field such as
compressive sensing. Some developments in the area occurred during the writing
process and forced us to make a number of revisions and additions. We believe
that the current material represents a solid foundation for the mathematical theory
of compressive sensing and that further developments will build on it rather than
replace it. Of course, we cannot be totally confident in a prediction about a field
moving so quickly, and maybe the material will require some update in some years.

Many researchers have influenced the picture of compressive sensing we paint
in this book. We have tried to carefully cite their contributions. However, we are
bound to have forgotten some important works, and we apologize to their authors for
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that. Our vision benefited from various collaborations and discussions, in particular
with (in alphabetical order) Nir Ailon, Akram Aldroubi, Ulaş Ayaz, Sören Bartels,
Helmut Boelcskei, Petros Boufounos, Emmanuel Candès, Volkan Cevher, Albert
Cohen, Ingrid Daubechies, Ron DeVore, Sjoerd Dirksen, Yonina Eldar, Jalal Fadili,
Maryam Fazel, Hans Feichtinger, Massimo Fornasier, Rémi Gribonval, Karlheinz
Gröchenig, Jarvis Haupt, Pawel Hitczenko, Franz Hlawatsch, Max Hügel, Mark
Iwen, Maryia Kabanava, Felix Krahmer, Stefan Kunis, Gitta Kutyniok, Ming-
Jun Lai, Ignace Loris, Shahar Mendelson, Alain Pajor, Götz Pfander, Alexander
Powell, Justin Romberg, Karin Schnass, Christoph Schwab, Željka Stojanac, Jared
Tanner, Georg Tauböck, Vladimir Temlyakov, Joel Tropp, Tino Ullrich, Pierre
Vandergheynst, Roman Vershynin, Jan Vybiral, Rachel Ward, Hugo Woerdeman,
Przemysław Wojtaszczyk, and Stefan Worm. We greatly acknowledge the help
of several colleagues for proofreading and commenting parts of the manuscript.
They are (in alphabetical order) David Aschenbrücker, Ulaş Ayaz, Bubacarr Bah,
Sören Bartels, Jean-Luc Bouchot, Volkan Cevher, Christine DeMol, Sjoerd Dirksen,
Massimo Fornasier, Rémi Gribonval, Karlheinz Gröchenig, Anders Hansen, Aicke
Hinrichs, Pawel Hitczenko, Max Hügel, Mark Iwen, Maryia Kabanava, Emily King,
Felix Krahmer, Guillaume Lecué, Ignace Loris, Arian Maleki, Michael Minner,
Deanna Needell, Yaniv Plan, Alexander Powell, Omar Rivasplata, Rayan Saab,
Željka Stojanac, Thomas Strohmer, Joel Tropp, Tino Ullrich, Jan Vybiral, Rachel
Ward, and Hugo Woerdeman. We are grateful to Richard Baraniuk, Michael Lustig,
Jared Tanner, and Shreyas Vasanawala for generously supplying us with figures
for our book. We thank our host institutions for their support and the excellent
working environment they provided during the preparation of our project: Vanderbilt
University, Université Pierre et Marie Curie, and Drexel University for Simon
Foucart; the Hausdorff Center for Mathematics and the Institute for Numerical
Simulation at the University of Bonn for Holger Rauhut. Parts of the book were
written during research visits of Holger Rauhut at Université Pierre et Marie
Curie, at ETH Zurich, and at the Institute for Mathematics and Its Applications
at the University of Minnesota. Simon Foucart acknowledges the hospitality of
the Hausdorff Center for Mathematics during his many visits to Bonn. We are
grateful to the Numerical Harmonic Analysis Group (NuHAG) at the University
of Vienna for allowing us to use their online BibTeX database for managing
the references. Simon Foucart acknowledges the financial support from the NSF
(National Science Foundation) under the grant DMS-1120622 and Holger Rauhut
acknowledges the financial support from the WWTF (Wiener Wissenschafts-,
Forschungs- und Technologie-Fonds) through the project SPORTS (MA07-004) as
well as the European Research Council through the Starting Grant StG 258926.

Finally, we hope that the readers enjoy their time studying this book and that the
efforts they invest in learning compressive sensing will be worthwhile.

Philadelphia, PA, USA Simon Foucart
Bonn, Germany Holger Rauhut
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Chapter 1
An Invitation to Compressive Sensing

This first chapter introduces the standard compressive sensing problem and gives
an overview of the content of this book. Since the mathematical theory is highly
motivated by real-life problems, we also briefly describe some of the potential
applications.

1.1 What is Compressive Sensing?

In many practical problems of science and technology, one encounters the task of
inferring quantities of interest from measured information. For instance, in signal
and image processing, one would like to reconstruct a signal from measured data.
When the information acquisition process is linear, the problem reduces to solving
a linear system of equations. In mathematical terms, the observed data y ∈ Cm is
connected to the signal x ∈ CN of interest via

Ax = y. (1.1)

The matrix A∈Cm×N models the linear measurement (information) pro-
cess. Then one tries to recover the vector x∈CN by solving the above linear
system. Traditional wisdom suggests that the number m of measurements, i.e.,
the amount of measured data, must be at least as large as the signal length N
(the number of components of x). This principle is the basis for most devices
used in current technology, such as analog-to-digital conversion, medical imaging,
radar, and mobile communication. Indeed, if m < N , then classical linear algebra
indicates that the linear system (1.1) is underdetermined and that there are infinitely
many solutions (provided, of course, that there exists at least one). In other words,
without additional information, it is impossible to recover x from y in the case
m < N . This fact also relates to the Shannon sampling theorem, which states that
the sampling rate of a continuous-time signal must be twice its highest frequency in
order to ensure reconstruction.

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 1,
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2 1 An Invitation to Compressive Sensing

Fig. 1.1 Antonella, Niels, and Paulina. Top: Original Image. Bottom: Reconstruction using 1% of
the largest absolute wavelet coefficients, i.e., 99% of the coefficients are set to zero

Thus, it came as a surprise that under certain assumptions it is actually possible to
reconstruct signals when the number m of available measurements is smaller than
the signal length N . Even more surprisingly, efficient algorithms do exist for the
reconstruction. The underlying assumption which makes all this possible is sparsity.
The research area associated to this phenomenon has become known as compressive
sensing, compressed sensing, compressive sampling, or sparse recovery. This whole
book is devoted to the mathematics underlying this field.

Sparsity. A signal is called sparse if most of its components are zero. As empiri-
cally observed, many real-world signals are compressible in the sense that they are
well approximated by sparse signals—often after an appropriate change of basis.
This explains why compression techniques such as JPEG, MPEG, or MP3 work so
well in practice. For instance, JPEG relies on the sparsity of images in the discrete
cosine basis or wavelet basis and achieves compression by only storing the largest
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discrete cosine or wavelet coefficients. The other coefficients are simply set to zero.
We refer to Fig. 1.1 for an illustration of the fact that natural images are sparse in
the wavelet domain.

Let us consider again the acquisition of a signal and the resulting measured
data. With the additional knowledge that the signal is sparse or compressible, the
traditional approach of taking at least as many measurements as the signal length
seems to waste resources: At first, substantial efforts are devoted to measuring all
entries of the signal and then most coefficients are discarded in the compressed
version. Instead, one would want to acquire the compressed version of a signal
“directly” via significantly fewer measured data than the signal length—exploiting
the sparsity or compressibility of the signal. In other words, we would like to
compressively sense a compressible signal! This constitutes the basic goal of
compressive sensing.

We emphasize that the main difficulty here lies in the locations of the nonzero
entries of the vector x not being known beforehand. If they were, one would simply
reduce the matrix A to the columns indexed by this location set. The resulting
system of linear equations then becomes overdetermined and one can solve for the
nonzero entries of the signal. Not knowing the nonzero locations of the vector to
be reconstructed introduces some nonlinearity since s-sparse vectors (those having
at most s nonzero coefficients) form a nonlinear set. Indeed, adding two s-sparse
vectors gives a 2s-sparse vector in general. Thus, any successful reconstruction
method will necessarily be nonlinear.

Intuitively, the complexity or “intrinsic” information content of a compressible
signal is much smaller than its signal length (otherwise compression would not
be possible). So one may argue that the required amount of data (number of
measurements) should be proportional to this intrinsic information content rather
than the signal length. Nevertheless, it is not immediately clear how to achieve the
reconstruction in this scenario.

Looking closer at the standard compressive sensing problem consisting in the
reconstruction of a sparse vector x ∈ CN from underdetermined measurements
y = Ax ∈ Cm, m < N , one essentially identifies two questions:

• How should one design the linear measurement process? In other words, what
matrices A ∈ Cm×N are suitable?

• How can one reconstruct x from y = Ax? In other words, what are efficient
reconstruction algorithms?

These two questions are not entirely independent, as the reconstruction algorithm
needs to take A into account, but we will see that one can often separate the analysis
of the matrix A from the analysis of the algorithm.

Let us notice that the first question is by far not trivial. In fact, compressive
sensing is not fitted for arbitrary matrices A ∈ Cm×N . For instance, if A is made
of rows of the identity matrix, then y = Ax simply picks some entries of x, and
hence, it contains mostly zero entries. In particular, no information is obtained about
the nonzero entries of x not caught in y, and the reconstruction appears impossible
for such a matrix A. Therefore, compressive sensing is not only concerned with the
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Fig. 1.2 Top: 5-sparse vector of Fourier coefficients of length 64. Bottom: real part of time-domain
signal with 16 samples

recovery algorithm—the first question on the design of the measurement matrix is
equally important and delicate. We also emphasize that the matrix A should ideally
be designed for all signals x simultaneously, with a measurement process which is
nonadaptive in the sense that the type of measurements for the datum yj (i.e., the
jth row of A) does not depend on the previously observed data y1, . . . , yj−1. As it
turns out, adaptive measurements do not provide better theoretical performance in
general (at least in a sense to be made precise in Chap. 10).

Algorithms. For practical purposes, the availability of reasonably fast reconstruc-
tion algorithms is essential. This feature is arguably the one which brought so
much attention to compressive sensing. The first algorithmic approach coming to
mind is probably �0-minimization. Introducing the notation ‖x‖0 for the number of
nonzero entries of a vector x, it is natural to try to reconstruct x as a solution of the
combinatorial optimization problem
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Fig. 1.3 Top: poor reconstruction via �2-minimization. Bottom: exact reconstruction via
�1-minimization

minimize ‖z‖0 subject to Az = y.

In words, we search for the sparsest vector consistent with the measured data
y = Ax. Unfortunately, �0-minimization is NP-hard in general. Thus, it may
seem quite surprising that fast and provably effective reconstruction algorithms
do exist. A very popular and by now well-understood method is basis pursuit or
�1-minimization, which consists in finding the minimizer of the problem

minimize ‖z‖1 subject to Az = y. (1.2)

Since the �1-norm ‖ · ‖1 is a convex function, this optimization problem can
be solved with efficient methods from convex optimization. Basis pursuit can be
interpreted as the convex relaxation of �0-minimization. Alternative reconstruction
methods include greedy-type methods such as orthogonal matching pursuit, as well
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as thresholding-based methods including iterative hard thresholding. We will see
that under suitable assumptions all these methods indeed do recover sparse vectors.

Before continuing, we invite the reader to look at Figs. 1.2 and 1.3, which
illustrate the power of compressive sensing. They show an example of a signal
of length 64, which is 5-sparse in the Fourier domain. It is recovered exactly by
the method of basis pursuit (�1-minimization) from only 16 samples in the time
domain. For reference, a traditional linear method based on �2-minimization is also
displayed. It clearly fails in reconstructing the original sparse spectrum.

Random Matrices. Producing adequate measurement matrices A is a remarkably
intriguing endeavor. To date, it is an open problem to construct explicit matrices
which are provably optimal in a compressive sensing setting. Certain constructions
from sparse approximation and coding theory (e.g., equiangular tight frames) yield
fair reconstruction guarantees, but these fall considerably short of the optimal
achievable bounds. A breakthrough is achieved by resorting to random matrices—
this discovery can be viewed as the birth of compressive sensing. Simple examples
are Gaussian matrices whose entries consist of independent random variables
following a standard normal distribution and Bernoulli matrices whose entries are
independent random variables taking the values +1 and −1 with equal probability.
A key result in compressive sensing states that, with high probability on the random
draw of an m × N Gaussian or Bernoulli matrix A, all s-sparse vectors x can be
reconstructed from y = Ax using a variety of algorithms provided

m ≥ Cs ln(N/s), (1.3)

where C > 0 is a universal constant (independent of s, m, and N ). This bound is in
fact optimal.

According to (1.3), the amount m of data needed to recover s-sparse vectors
scales linearly in s, while the signal lengthN only has a mild logarithmic influence.
In particular, if the sparsity s is small compared to N , then the number m
of measurements can also be chosen small in comparison to N , so that exact
solutions of an underdetermined system of linear equations become plausible! This
fascinating discovery impacts many potential applications.

We now invite the reader to examine Fig. 1.4. It compares the performance of two
algorithms, namely, basis pursuit and hard thresholding pursuit, for the recovery of
sparse vectors x ∈ CN from the measurement vectors y = Ax ∈ Cm based on
simulations involving Gaussian random matrices A and randomly chosen s-sparse
vectors x. With a fixed sparsity s, the top plot shows the percentage of vectors x
that were successfully recovered as a function of the number m of measurements.
In particular, it indicates how largem has to be in comparison with s for the recovery
to be guaranteed. With a fixed number m of measurements, the bottom plot shows
the percentage of vectors x that were successfully recovered as a function of their
sparsity s. In particular, it indicates how small s has to be in comparison with m
for the recovery to be guaranteed. We note that the algorithm performing best is
different for these two plots. This is due to the probability distribution chosen for the
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Fig. 1.4 Top: percentage of successful recoveries for Rademacher sparse vectors. Bottom: per-
centage of successful recoveries for Gaussian sparse vectors

nonzero entries of the sparse vectors: The top plot used a Rademacher distribution
while the bottom plot used a Gaussian distribution.

The outlined recovery result extends from Gaussian random matrices to the more
practical situation encountered in sampling theory. Here, assuming that a function
of interest has a sparse expansion in a suitable orthogonal system (in trigonometric
monomials, say), it can be recovered from a small number of randomly chosen
samples (point evaluations) via �1-minimization or several other methods. This
connection to sampling theory explains the alternative name compressive sampling.

Stability. Compressive sensing features another crucial aspect, namely, its recon-
struction algorithms are stable. This means that the reconstruction error stays under
control when the vectors are not exactly sparse and when the measurements y are
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slightly inaccurate. In this situation, one may, for instance, solve the quadratically
constrained �1-minimization problem

minimize ‖z‖1 subject to ‖Az− y‖2 ≤ η. (1.4)

Without the stability requirement, the compressive sensing problem would be
swiftly resolved and would not present much interest since most practical appli-
cations involve noise and compressibility rather than sparsity.

1.2 Applications, Motivations, and Extensions

In this section, we highlight a selection of problems that reduce to or can be modeled
as the standard compressive sensing problem. We hope to thereby convince the
reader of its ubiquity. The variations presented here take different flavors: tech-
nological applications (single-pixel camera, magnetic resonance imaging, radar),
scientific motivations (sampling theory, sparse approximation, error correction,
statistics and machine learning), and theoretical extensions (low-rank recovery,
matrix completion). We do not delve into the technical details that would be
necessary for a total comprehension. Instead, we adopt an informal style and we
focus on the description of an idealized mathematical model. Pointers to references
treating the details in much more depth are given in the Notes section concluding
the chapter.

Single-Pixel Camera

Compressive sensing techniques are implemented in a device called the single-pixel
camera. The idea is to correlate in hardware a real-world image with independent
realizations of Bernoulli random vectors and to measure these correlations (inner
products) on a single pixel. It suffices to measure only a small number of such
random inner products in order to reconstruct images via sparse recovery methods.

For the purpose of this exposition, images are represented via gray values of
pixels collected in the vector z ∈ RN , where N = N1N2 and N1, N2 denote
the width and height of the image in pixels. Images are not usually sparse in the
canonical (pixel) basis, but they are often sparse after a suitable transformation, for
instance, a wavelet transform or discrete cosine transform. This means that one can
write z = Wx, where x ∈ RN is a sparse or compressible vector and W ∈ RN×N

is a unitary matrix representing the transform.
The crucial ingredient of the single-pixel camera is a microarray consisting of a

large number of small mirrors that can be turned on or off individually. The light
from the image is reflected on this microarray and a lens combines all the reflected
beams in one sensor, the single pixel of the camera; see Fig. 1.5. Depending on



1.2 Applications, Motivations, and Extensions 9

Fig. 1.5 Schematic representation of a single-pixel camera (Image courtesy of Rice University)

a small mirror being switched on or off, it contributes or not to the light intensity
measured at the sensor. In this way, one realizes in hardware the inner product 〈z,b〉
of the image z with a vector b containing ones at the locations corresponding to
switched-on mirrors and zeros elsewhere. In turn, one can also realize inner products
with vectors a containing only +1 and −1 with equal probability by defining two
auxiliary vectors b1,b2 ∈ {0, 1}N via

b1j =

{
1 if aj = 1,

0 if aj = −1,
b2j =

{
1 if aj = −1,
0 if aj = 1,

so that 〈z, a〉 = 〈z,b1〉 − 〈z,b2〉. Choosing vectors a1, . . . , am independently
at random with entries taking the values ±1 with equal probability, the measured
intensities y� = 〈z, a�〉 are inner products with independent Bernoulli vectors.
Therefore, we have y = Az for a (random) Bernoulli matrix A ∈ Rm×N whose
action on the image z has been realized in hardware. Recalling that z = Wx and
writing A′ = AW yield the system

y = A′x,

where the vector x is sparse or compressible. In this situation, the measurements
are taken sequentially, and since this process may be time-consuming, it is desirable
to use only few measurements. Thus, we have arrived at the standard compressive
sensing problem. The latter allows for the reconstruction of x from y and finally
the image is deduced as z = Wx. We will justify in Chap. 9 the validity of the
accurate reconstruction from m ≥ Cs ln(N/s) measurements for images that are
(approximately) s-sparse in some transform domain.

Although the single-pixel camera is more a proof of concept than a new trend in
camera design, it is quite conceivable that similar devices will be used for different
imaging tasks. In particular, for certain wavelengths outside the visible spectrum, it
is impossible or at least very expensive to build chips with millions of sensor pixels
on an area of only several square millimeters. In such a context, the potential of a
technology based on compressive sensing is expected to really pay off.
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Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a common technology in medical imaging
used for various tasks such as brain imaging, angiography (examination of blood
vessels), and dynamic heart imaging. In traditional approaches (essentially based on
the Shannon sampling theorem), the measurement time to produce high-resolution
images can be excessive (several minutes or hours depending on the task) in clinical
situations. For instance, heart patients cannot be expected to hold their breath for
too long a time, and children are too impatient to sit still for more than about
two minutes. In such situations, the use of compressive sensing to achieve high-
resolution images based on few samples appears promising.

MRI relies on the interaction of a strong magnetic field with the hydrogen
nuclei (protons) contained in the body’s water molecules. A static magnetic field
polarizes the spin of the protons resulting in a magnetic moment. Applying an
additional radio frequency excitation field produces a precessing magnetization
transverse to the static field. The precession frequency depends linearly on the
strength of the magnetic field. The generated electromagnetic field can be detected
by sensors. Imposing further magnetic fields with a spatially dependent strength,
the precession frequency depends on the spatial position as well. Exploiting the fact
that the transverse magnetization depends on the physical properties of the tissue
(for instance, proton density) allows one to reconstruct an image of the body from
the measured signal.

In mathematical terms, we denote the transverse magnetization at position z∈R3

byX(z) = |X(z)|e−iφ(z) where |X(z)| is the magnitude and φ(z) is the phase. The
additional possibly time-dependent magnetic field is designed to depend linearly on
the position and is therefore called gradient field. Denoting by G ∈ R3 the gradient
of this magnetic field, the precession frequency (being a function of the position
in R3) can be written as

ω(z) = κ(B + 〈G, z〉), z ∈ R
3,

where B is the strength of the static field and κ is a physical constant. With a time-
dependent gradient G : [0, T ]→ R3, the magnetization phase φ(z) = φ(z, t) is the
integral

φ(z, t) = 2πκ

∫ t
0

〈G(τ), z〉dτ,

where t = 0 corresponds to the time of the radio frequency excitation. We introduce
the function k : [0, T ]→ R

3 defined by

k(t) = κ

∫ t
0

G(τ)dτ.
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The receiver coil integrates over the whole spatial volume and measures the signal

f(t) =

∫
R3

|X(z)|e−2πi〈k(t),z〉dz = F(|X |)(k(t)),

where F(|X |)(ξ)denotes the three-dimensional Fourier transform of the magnitude
|X | of the magnetization. It is also possible to measure slices of a body, in which
case the three-dimensional Fourier transform is replaced by a two-dimensional
Fourier transform.

In conclusion, the signal measured by the MRI system is the Fourier transform
of the spatially dependent magnitude of the magnetization |X | (the image), subsam-
pled on the curve {k(t) : t ∈ [0, T ]} ⊂ R3. By repeating several radio frequency
excitations with modified parameters, one obtains samples of the Fourier transform
of |X | along several curves k1, . . . ,kL in R3. The required measurement time is
proportional to the number L of such curves, and we would like to minimize this
number L.

A natural discretization represents each volume element (or area element in case
of two-dimensional imaging of slices) by a single voxel (or pixel), so that the
magnitude of the magnetization |X | becomes a finite-dimensional vector x ∈ RN

indexed by Q := [N1] × [N2] × [N3] with N = card(Q) = N1N2N3 and
[Ni] := {1, . . . , Ni}. After discretizing the curves k1, . . . ,kL, too, the measured
data become samples of the three-dimensional discrete Fourier transform of x, i.e.,

(Fx)k =
∑
�∈Q

x�e
−2πi

∑3
j=1 kj�j/Nj , k ∈ Q.

Let K ⊂ Q with card(K) = m denote a subset of the discretized frequency space
Q, which is covered by the trajectories k1, . . . ,kL. Then the measured data vector
y corresponds to

y = RKFx = Ax,

where RK is the linear map that restricts a vector indexed by Q to its indices in K .
The measurement matrix A = RKF ∈ Cm×N is a partial Fourier matrix. In words,
the vector y collects the samples of the three-dimensional Fourier transform of the
discretized image x on the set K . Since we would like to use a small number m of
samples, we end up with an underdetermined system of equations.

In certain medical imaging applications such as angiography, it is realistic
to assume that the image x is sparse with respect to the canonical basis, so
that we immediately arrive at the standard compressive sensing problem. In the
general scenario, the discretized image x will be sparse or compressible only after
transforming into a suitable domain, using wavelets, for instance—in mathematical
terms, we have x = Wx′ for some unitary matrix W ∈ CN×N and some sparse
vector x′ ∈ CN . This leads to the model

y = A′x′,
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Fig. 1.6 Comparison of a traditional MRI reconstruction (left) and a compressive sensing recon-
struction (right). The pictures show a coronal slice through an abdomen of a 3-year-old pediatric
patient following an injection of a contrast agent. The image size was set to 320 × 256 × 160
voxels. The data were acquired using a 32-channel pediatric coil. The acquisition was accelerated
by a factor of 7.2 by random subsampling of the frequency domain. The left image is a traditional
linear reconstruction showing severe artifacts. The right image, a (wavelet-based) compressive
sensing reconstruction, exhibits diagnostic quality and significantly reduced artifacts. The subtle
features indicated with arrows show well on the compressive sensing reconstruction, while almost
disappearing in the traditional one (Image courtesy of Michael Lustig, Stanford University, and
Shreyas Vasanawala, Lucile Packard Children’s Hospital, Stanford University)

with the transformed measurement matrix A′ =AW=RKFW∈Cm×N and a
sparse or compressible vector x′ ∈CN . Again, we arrived at the standard compres-
sive sensing problem.

The challenge is to determine good sampling sets K with small size that still
ensure recovery of sparse images. The theory currently available predicts that
sampling sets K chosen uniformly at random among all possible sets of cardinality
mwork well (at least whenW is the identity matrix). Indeed, the results of Chap. 12
guarantee that an s-sparse x′ ∈ CN can be reconstructed by �1-minimization if
m ≥ Cs lnN .

Unfortunately, such random sets K are difficult to realize in practice due to
the continuity constraints of the trajectories curves k1, . . . ,kL. Therefore, good
realizable sets K are investigated empirically. One option that seems to work well
takes the trajectories as parallel lines in R3 whose intersections with a coordinate
plane are chosen uniformly at random. This gives some sort of approximation to the
case where K is “completely” random. Other choices such as perturbed spirals are
also possible.

Figure 1.6 shows a comparison of a traditional MRI reconstruction technique
with reconstruction via compressive sensing. The compressive sensing reconstruc-
tion has much better visual quality and resolves some clinically important details,
which are not visible in the traditional reconstruction at all.
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Fig. 1.7 Schematic illustration of a radar device measuring distances and velocities of objects

Radar

Compressive sensing can be applied to several radar frameworks. In the one
presented here, an antenna sends out a properly designed electromagnetic wave—
the radar pulse—which is scattered at objects in the surrounding environment, for
instance, airplanes in the sky. A receive antenna then measures an electromagnetic
signal resulting from the scattered waves. Based on the delay of the received signal,
one can determine the distance of an object, and the Doppler effect allows one to
deduce its speed with respect to the direction of view; see Fig. 1.7 for an illustration.

Let us describe a simple finite-dimensional model for this scenario. We de-
note by (Tkz)j = zj−k mod m the cyclic translation operator on C

m and by
(M�z)j = e2πi�j/mzj the modulation operator on C

m. The map transforming the
sent signal to the received signal—also called channel—can be expressed as

B =
∑

(k,�)∈[m]2

xk,�TkM�,

where the translations correspond to delay and the modulations to Doppler effect.
The vector x = (xk,�) characterizes the channel. A nonzero entry xk,� occurs if
there is a scattering object present in the surroundings with distance and speed
corresponding to the shift Tk and modulation M�. Only a limited number of
scattering objects are usually present, which translates into the sparsity of the
coefficient vector x. The task is now to determine x and thereby to obtain
information about scatterers in the surroundings by probing the channel with a
suitable known radio pulse, modeled in this finite-dimensional setup by a vector
g ∈ Cm. The received signal y is given by



14 1 An Invitation to Compressive Sensing

Fig. 1.8 Top left: original 7-sparse coefficient vector (m = 59) in the translation–modulation
(delay-Doppler) plane. Top right: reconstruction by �1-minimization using the Alltop window.
Bottom: for comparison, the reconstruction by traditional �2-minimization

y = Bg =
∑

(k,�)∈[m]2

xk,�TkM�g = Agx,

where the m2 columns of the measurement matrix Ag ∈ C
m×m2

are equal
to TkM�g, (k, �) ∈ [m]2. Recovering x ∈ C

m2

from the measured signal y
amounts to solving an underdetermined linear system. Taking the sparsity of x
into consideration, we arrive at the standard compressive sensing problem. The
associated reconstruction algorithms, including �1-minimization, apply.

It remains to find suitable radio pulse sequences g ∈ C
m ensuring that x can be

recovered from y = Bg. A popular choice of g is the so-called Alltop vector, which
is defined for prime m ≥ 5 as

g� = e2πi�
3/m, � ∈ [m].

We refer to Chap. 5 for more details and to Fig. 1.8 for a numerical example.
Although the Alltop window works well in practice, the theoretical guarantees

currently available are somewhat limited due to the fact that g is deterministic. As an
alternative consistent with the general philosophy of compressive sensing, one can
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choose g ∈ Cm at random, for instance, as a Bernoulli vector with independent±1
entries. In this case, it is known that an s-sparse vector x ∈ Cm

2

can be recovered
from y = Bx ∈ Cm provided s ≤ Cm/ lnm. More information can be found in
the Notes section of Chap. 12.

Sampling Theory

Reconstructing a continuous-time signal from a discrete set of samples is an
important task in many technological and scientific applications. Examples include
image processing, sensor technology in general, and analog-to-digital conversion
appearing, for instance, in audio entertainment systems or mobile communication
devices. Currently, most sampling techniques rely on the Shannon sampling theo-
rem, which states that a function of bandwidth B has to be sampled at the rate 2B
in order to ensure reconstruction.

In mathematical terms, the Fourier transform of a continuous-time signal

f ∈ L1(R) (meaning that
∫
R

|f(t)|dt <∞) is defined by

f̂(ξ) =

∫
R

f(t)e−2πitξdt, ξ ∈ R.

We say that f is bandlimited with bandwidth B if f̂ is supported in [−B,B]. The
Shannon sampling theorem states that such f can be reconstructed from its discrete
set of samples {f(k/(2B)), k ∈ Z} via the formula

f(t) =
∑
k∈Z

f

(
k

2B

)
sinc(2πBt− πk), (1.5)

where the sinc function is given by

sinc(t) =

⎧⎨
⎩

sin t

t
if t �= 0,

1 if t = 0.

To facilitate a comparison with compressive sensing, we also formulate the Shan-
non sampling theorem in a finite-dimensional setting. We consider trigonometric
polynomials of maximal degree M , i.e., functions of the type

f(t) =
M∑

k=−M
xke

2πikt, t ∈ [0, 1]. (1.6)
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The degree M serves as a substitute for the bandwidth B. Since the space of
trigonometric polynomials of maximal degree M has dimension N = 2M + 1,
it is expected that f can be reconstructed from N = 2M + 1 samples. Indeed,
Theorem C.1 in the appendix states that

f(t) =
1

2M + 1

2M∑
k=0

f

(
k

2M + 1

)
DM

(
t− k

2M + 1

)
, t ∈ [0, 1],

where the Dirichlet kernel DM is given by

DM (t) =

M∑
k=−M

e2πikt =

⎧⎨
⎩

sin(π(2M + 1)t)

sin(πt)
if t �= 0,

2M + 1 if t = 0.

For dimensionality reasons, it is not possible to reconstruct trigonometric polyno-
mials of maximal degree M from fewer than N = 2M + 1 samples. In practice,
however, the required degree M may be large; hence, the number of samples must
be large, too—sometimes significantly larger than realistic. So the question arises
whether the required number of samples can be reduced by exploiting additional
assumptions. Compressibility in the Fourier domain, for instance, is a reasonable
assumption in many practical scenarios. In fact, if the vector x ∈ CN of Fourier
coefficients of f in (1.6) is sparse (or compressible), then few samples do suffice for
exact (or approximate) reconstruction.

Precisely, given a set {t1, . . . , tm} ⊂ [0, 1] of m sampling points, we can write
the vector y = (f(t�))

m
�=1 as

y = Ax (1.7)

where A ∈ Cm×N is a Fourier-type matrix with entries

A�,k = e2πikt� , � = 1, . . . ,m, k = −M, . . . ,M.

The problem of recovering f from its vector y of m samples reduces to finding
the coefficient vector x. This amounts to solving the linear system (1.7), which
is underdetermined when m < N . With the sparsity assumption, we arrive at the
standard compressive sensing problem. A number of recovery algorithms, including
�1-minimization, can then be applied. A crucial question now concerns the choice
of sampling points. As indicated before, randomness helps. In fact, we will see in
Chap. 12 that choosing the sampling points t1, . . . , tm independently and uniformly
at random in [0, 1] allows one to reconstruct f with high probability from its m
samples f(t1), . . . , f(tm) provided that m ≥ Cs ln(N). Thus, few samples suffice
if s is small. An illustrating example was already displayed in Figs. 1.2 and 1.3.
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Sparse Approximation

Compressive sensing builds on the empirical observation that many types of signals
can be approximated by sparse ones. In this sense, compressive sensing can be
seen as a subfield of sparse approximation. There is a specific problem in sparse
approximation similar to the standard compressive sensing problem of recovering
a sparse vector x ∈ CN from the incomplete information y = Ax ∈ Cm with
m < N .

Suppose that a vector y ∈ Cm (usually a signal or an image in applications) is
to be represented as a linear combination of prescribed elements a1, . . . , aN ∈ Cm

such that span{a1, . . . , aN} = Cm. The system (a1, . . . , aN ) is often called a
dictionary. Note that this system may be linearly dependent (redundant) since we
allow N > m. Redundancy may be desired when linearly independence is too
restrictive. For instance, in time–frequency analysis, bases of time–frequency shifts
elements are only possible if the generator has poor time–frequency concentration—
this is the Balian–Low theorem. Unions of several bases are also of interest. In
such situations, a representation y =

∑N
j=1 xjaj is not unique. Traditionally, one

removes this drawback by considering a representation with the smallest number of
terms, i.e., a sparsest representation.

Let us now form the matrix A ∈ Cm×N with columns a1, . . . , aN . Finding the
sparsest representation of y amounts to solving

minimize ‖z‖0 subject to Az = y. (P0)

If we tolerate a representation error η, then one considers the slightly modified
optimization problem

minimize ‖z‖0 subject to ‖Az− y‖ ≤ η. (P0,η)

The problem (P0) is the same as the one encountered in the previous section.
Both optimization problems (P0) and (P0,η) are NP-hard in general, but all the
algorithmic approaches presented in this book for the standard compressive sensing
problem, including �1-minimization, may be applied in this context to overcome
the computational bottleneck. The conditions on A ensuring exact or approximate
recovery of the sparsest vector x, which will be derived in Chaps. 4, 5, and 6, remain
valid.

There are, however, some differences in philosophy compared to the compressive
sensing problem. In the latter, one is often free to design the matrix A with appropri-
ate properties, while A is usually prescribed in the context of sparse approximation.
In particular, it is not realistic to rely on randomness as in compressive sensing.
Since it is hard to verify the conditions ensuring sparse recovery in the optimal
parameter regime (m linear in s up to logarithmic factors), the theoretical guarantees
fall short of the ones encountered for random matrices. An exception to this rule
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of thumb will be covered in Chap. 14 where recovery guarantees are obtained for
randomly chosen signals.

The second difference between sparse approximation and compressive sensing
appears in the targeted error estimates. In compressive sensing, one is interested
in the error ‖x − x�‖ at the coefficient level, where x and x� are the original and
reconstructed coefficient vectors, respectively, while in sparse approximation, the
goal is to approximate a given y with a sparse expansion y� =

∑
j x

�
jaj , so one is

rather interested in ‖y− y�‖. An estimate for ‖x− x�‖ often yields an estimate for
‖y− y�‖ = ‖A(x− x�)‖, but the converse is not generally true.

Finally, we briefly describe some signal and image processing applications of
sparse approximation.

• Compression. Suppose that we have found a sparse approximation ŷ = Ax̂ of
a signal y with a sparse vector x̂. Then storing ŷ amounts to storing only the
nonzero coefficients of x̂. Since x̂ is sparse, significantly less memory is required
than for storing the entries of the original signal y.

• Denoising. Suppose that we observe a noisy version ỹ = y + e of a signal y,
where e represents a noise vector with ‖e‖ ≤ η. The task is then to remove the
noise and to recover a good approximation of the original signal y. In general, if
nothing is known about y, this problem becomes ill-posed. However, assuming
that y can be well represented by a sparse expansion, a reasonable approach
consists in taking a sparse approximation of ỹ. More precisely, we ideally choose
the solution x̂ of the �0-minimization problem (P0,η) with y replaced by the
known signal ỹ. Then we form ŷ = Ax̂ as the denoised version of y. For a
computationally tractable approach, one replaces the NP-hard problem (P0,η) by
one of the compressive sensing (sparse approximation) algorithms, for instance,
the �1-minimization variant (1.4) which takes noise into account, or the so-called
basis pursuit denoising problem

minimize λ‖z‖1 + ‖Az− y‖22.

• Data Separation. Suppose that a vector y ∈ Cm is the composition of two (or
more) components, say y = y1 + y2. Given y, we wish to extract the unknown
vectors y1,y2 ∈ Cm. This problem appears in several signal processing tasks.
For instance, astronomers would like to separate point structures (stars, galaxy
clusters) from filaments in their images. Similarly, an audio processing task
consists in separating harmonic components (pure sinusoids) from short peaks.
Without additional assumption, this separation problem is ill-posed. However,
if both components y1 and y2 have sparse representations in dictionaries
(a1, . . . , aN1) and (b1, . . . ,bN2) of different nature (for instance, sinusoids and
spikes), then the situation changes. We can then write

y =

N1∑
j=1

x1,jaj +

N2∑
j=1

x2,jbj = Ax,
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where the matrix A ∈ C
m×(N1+N2) has columns a1, . . . , aN1 ,b1, . . . ,bN2 and

the vector x = [x1,1, . . . , x1,N1 , x2,1, . . . , x2,N2 ]
� is sparse. The compressive

sensing methodology then allows one—under certain conditions—to determine
the coefficient vector x, hence to derive the two components y1 =

∑N1

j=1 x1,jaj

and y2 =
∑N2

j=1 x2,jbj .

Error Correction

In every realistic data transmission device, pieces of data are occasionally corrupted.
To overcome this unavoidable issue, one designs schemes for the correction of such
errors provided they do not occur too often.

Suppose that we have to transmit a vector z ∈ Rn. A standard strategy is to
encode it into a vector v = Bz ∈ RN of length N = n +m, where B ∈ RN×n.
Intuitively, the redundancy in B (due to N > n) should help in identifying
transmission errors. The number m reflects the amount of redundancy.

Assume that the receiver measures w = v + x ∈ RN , where x represents
transmission error. The assumption that transmission errors do not occur too often
translates into the sparsity of x, say ‖x‖0 ≤ s. For decoding, we construct a
matrix A ∈ Rm×N—called generalized checksum matrix—such that AB = 0,
i.e., all rows of A are orthogonal to all columns of B. We then form the generalized
checksum

y = Aw = A(v + x) = ABz+Ax = Ax.

We arrived at the standard compressive sensing problem with the matrix A and the
sparse error vector x. Under suitable conditions, the methodology described in this
book allows one to recover x and in turn the original transmit vector v = w − x.
Then one solves the overdetermined system v = Bz to derive the data vector z.

For concreteness of the scheme, we may choose a matrix A ∈ Rm×N as a
suitable compressive sensing matrix, for instance, a Gaussian random matrix. Then
we select the matrixB ∈ RN×n with n+m = N in such a way that its columns span
the orthogonal complement of the row space of A, thus guaranteeing that AB = 0.
With these choices, we are able to correct a number s of transmission errors as large
as Cm/ ln(N/m).

Statistics and Machine Learning

The goal of statistical regression is to predict an outcome based on certain input
data. It is common to choose the linear model

y = Ax + e,
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where A ∈ Rm×N—often called design or predictor matrix in this context—
collects the input data and y the output data and e is a random noise vector. The
vector x is a parameter that has to be estimated from the data. In a statistical
framework, the notation (n, p) is generally used instead of (m,N), but we keep the
latter for consistency. In a clinical study, e.g., the entriesAj,k in the row associated to
the jth patient may refer to blood pressure, weight, height, gene data, concentration
of certain markers, etc. The corresponding output yj would be another quantity of
interest, for instance, the probability that jth patient suffers a certain disease. Having
data for m patients, the regression task is to fit the model, i.e., to determine the
parameter vector x.

In practice, the numberN of parameters is often much larger than the numberm
of observations, so even without noise, the problem of fitting the parameter x is ill-
posed without further assumption. In many cases, however, only a small number of
parameters contribute towards the effect to be predicted, but it is a priori unknown
which of these parameters are influential. This leads to sparsity in the vector x,
and again we arrive at the standard compressive sensing problem. In statistical
terms, determining a sparse parameter vector x corresponds to selecting the relevant
explanatory variables, i.e., the support of x. One also speaks of model selection.

The methods described in this book can be applied in this context, too. Still, there
is a slight deviation from our usual setup due to the randomness of the noise vector e.
In particular, instead of the quadratically constrained �1-minimization problem
(1.4), one commonly considers the so-called LASSO (least absolute shrinkage and
selection operator)

minimize ‖Az− y‖22 subject to ‖z‖1 ≤ τ (1.8)

for an appropriate regularization parameter τ depending on the variance of the noise.
Further variants are the Dantzig selector

minimize ‖z‖1 subject to ‖A∗(Az − y)‖∞ ≤ λ, (1.9)

or the �1-regularized problem (sometimes also called LASSO or basis pursuit de-
noising in the literature)

minimize λ‖z‖1 + ‖Az− y‖22,

again for appropriate choices of λ. We will not deal with the statistical context any
further, but we simply mention that near-optimal statistical estimation properties can
be shown for both the LASSO and the Dantzig selector under conditions on A that
are similar to the ones of the following chapters.

A closely related regression problem arises in machine learning. Given random
pairs of samples (tj , yj)

m
j=1, where tj is some input parameter vector and yj is a

scalar output, one would like to predict the output y for a future input data t. The
model relating the output y to the input t is
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y = f(t) + e,

where e is random noise. The task is to learn the function f based on training
samples (tj , yj). Without further hypotheses on f , this is an impossible task.
Therefore, we assume that f has a sparse expansion in a given dictionary of
functions ψ1, . . . , ψN , i.e., that f is written as

f(t) =

N∑
�=1

x�ψ�(t),

where x is a sparse vector. Introducing the matrix A ∈ R
m×N with entries

Aj,k = ψk(tj),

we arrive at the model

y = Ax + e,

and the task is to estimate the sparse coefficient vector x. This has the same form
as the problem described above, and the same estimation procedures including the
LASSO and the Dantzig selector apply.

Low-Rank Matrix Recovery and Matrix Completion

Let us finally describe an extension of compressive sensing together with some of
its applications. Rather than recovering a sparse vector x ∈ CN , we now aim at
recovering a matrix X ∈ Cn1×n2 from incomplete information. Sparsity is replaced
by the assumption that X has low rank. Indeed, the small complexity of the set
of matrices with a given low rank compared to the set of all matrices makes the
recovery of such matrices plausible.

For a linear map A : Cn1×n2 → Cm with m < n1n2, suppose that we are given
the measurement vector

y = A(X) ∈ C
m.

The task is to reconstruct X from y. To stand a chance of success, we assume that X
has rank at most r � min{n1, n2}. The naive approach of solving the optimization
problem

minimize rank(Z) subject to A(Z) = y
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is NP-hard, but an analogy with the compressive sensing problem will help. To
illustrate this analogy, we consider the singular value decomposition of X, i.e.,

X =

n∑
�=1

σ�u�v
∗
� .

Here, n = min{n1, n2}, σ1 ≥ σ2 ≥ · · ·σn ≥ 0 are the singular values of X, and
u� ∈ Cn1 , v� ∈ Cn2 are the left and right singular vectors, respectively. We refer
to Appendix A.2 for details. The matrix X is of rank r if and only if the vector
σ = σ(X) of singular values is r-sparse, i.e., rank(X) = ‖σ(X)‖0. Having the
�1-minimization approach for compressive sensing in mind, it is natural to introduce
the so-called nuclear norm as the �1-norm of the singular values, i.e.,

‖X‖∗ = ‖σ(X)‖1 =
n∑
�=1

σ�(X).

Then we consider the nuclear norm minimization problem

minimize ‖Z‖∗ subject to A(Z) = y. (1.10)

This is a convex optimization problem which can be solved efficiently, for instance,
after reformulation as a semidefinite program.

A theory very similar to the recovery of sparse vectors can be developed, and
appropriate conditions onA ensure exact or approximate recovery via nuclear norm
minimization (and other algorithms). Again, random mapsA turn out to be optimal,
and matrices X of rank at most r can be recovered from m measurements with high
probability provided

m ≥ Crmax{n1, n2}.

This bound is optimal since the right-hand side corresponds to the number of degrees
of freedom required to describe an n1×n2 matrix of rank r. In contrast to the vector
case, there is remarkably no logarithmic factor involved.

As a popular special case, the matrix completion problem seeks to fill in missing
entries of a low-rank matrix. Thus, the measurement map A samples the entries
A(X)� = Xj,k for some indices j, k depending on �. This setup appears, for
example, in consumer taste prediction. Assume that an (online) store sells products
indexed by the rows of the matrix and consumers—indexed by the columns—are
able to rate these products. Not every consumer will rate every product, so only a
limited number of entries of this matrix are available. For purposes of individualized
advertisement, the store is interested in predicting the whole matrix of consumer
ratings. Often, if two customers both like some subset of products, then they will
also both like or dislike other subsets of products (the “types” of customers are
essentially limited). For this reason, it can be assumed that the matrix of ratings
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has (at least approximately) low rank, which is confirmed empirically. Therefore,
methods from low-rank matrix recovery, including the nuclear norm minimization
approach, apply in this setup.

Although certainly interesting, we will not treat low-rank recovery extensively
in this book. Nevertheless, due to the close analogy with sparse recovery, the main
results are covered in exercises, and the reader is invited to work through them.

1.3 Overview of the Book

Before studying the standard compressive sensing problem on a technical level, it is
beneficial to draw a road map of the basic results and solving strategies presented in
this book.

As previously revealed, the notions of sparsity and compressibility are at the
core of compressive sensing. A vector x ∈ C

N is called s-sparse if it has at most
s nonzero entries, in other words, if ‖x‖0 := card({j : xj �= 0}) is smaller than
or equal to s. The notation ‖x‖0 has become customary, even though it does not
represent a norm. In practice, one encounters vectors that are not exactly s-sparse
but compressible in the sense that they are well approximated by sparse ones. This
is quantified by the error of best s-term approximation to x given by

σs(x)p := inf
‖z‖0≤s

‖x− z‖p.

Chapter 2 introduces these notions formally, establishes relations to weak
�p-quasinorms, and shows elementary estimates for the error of best s-term
approximation, including

σs(x)2 ≤
1

s1/p−1/2
‖x‖p, p ≤ 2. (1.11)

This suggests that unit balls in the �p-quasinorm for small p ≤ 1 are good models
for compressible vectors. We further study the problem of determining the minimal
number m of measurements—namely, m = 2s—required (at least in principle)
to recover all s-sparse vectors x from y = Ax with a matrix A ∈ Cm×N .
It is remarkable that the actual length N of the vectors x does not play any role.
The basic recovery procedure associated to this first recovery guarantee is the
�0-minimization, i.e.,

minimize ‖z‖0 subject to Az = y.

We will show in Sect. 2.3 that the �0-minimization is NP-hard by relating it to
the exact cover by 3-sets problem, which is known to be NP-complete. Thus,
�0-minimization is intractable in general, hence useless for practical purposes.
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In order to circumvent the computational bottleneck of �0-minimization, we
introduce several tractable alternatives in Chap. 3. Here, rather than a detailed
analysis, we only present some intuitive justification and elementary results for
these recovery algorithms. They can be subsumed under roughly three categories:
optimization methods, greedy methods, and thresholding-based methods. The op-
timization approaches include the �1-minimization (1.2) (also called basis pursuit)
and the quadratically constrained �1-minimization (1.4) (sometimes also called basis
pursuit denoising in the literature), which takes potential measurement error into
account. These minimization problems can be solved with various methods from
convex optimization such as interior-point methods. We will also present specialized
numerical methods for �1-minimization later in Chap. 15.

Orthogonal matching pursuit is a greedy method that builds up the support set of
the reconstructed sparse vector iteratively by adding one index to the current support
set at each iteration. The selection process is greedy because the index is chosen
to minimize the residual at each iteration. Another greedy method is compressive
sampling matching pursuit (CoSaMP). At each iteration, it selects several elements
of the support set and then refines this selection.

The simple recovery procedure known as basic thresholding determines the
support set in one step by choosing the s indices maximizing the correlations
|〈x, aj〉| of the vector x with the columns of A. The reconstructed vector is obtained
after an orthogonal projection on the span of the corresponding columns. Although
this method is very fast, its performance is limited. A more powerful method is
iterative hard thresholding. Starting with x0 = 0, say, it iteratively computes

xn+1 = Hs (x
n +A∗(y −Axn)) ,

where Hs denotes the hard thresholding operator that keeps the s largest absolute
entries of a vector and sets the other entries to zero. In the absence of the operator
Hs, this is well known in the area of inverse problems as Landweber iterations.
Applying Hs ensures sparsity of xn at each iteration. We will finally present the
hard thresholding pursuit algorithm which combines iterative hard thresholding
with an orthogonal projection step.

Chapter 4 is devoted to the analysis of basis pursuit (�1-minimization). First, we
derive conditions for the exact recovery of sparse vectors. The null space property
of order s is a necessary and sufficient condition (on the matrix A) for the success
of exact recovery of all s-sparse vectors x from y = Ax via �1-minimization. It
basically requires that every vector in the null space of A is far from being sparse.
This is natural, since a nonzero vector x ∈ kerA cannot be distinguished from
the zero vector using y = Ax = 0. Next, we refine the null space property—
introducing the stable null space property and the robust null space property—to
ensure that �1-recovery is stable under sparsity defect and robust under measurement
error. We also derive conditions that ensure the �1-recovery of an individual sparse
vector. These conditions (on the vector x and the matrix A) are useful in later
chapters to establish so-called nonuniform recovery results for randomly chosen
measurement matrices. The chapter is brought to an end with two small detours.



1.3 Overview of the Book 25

The first one is a geometric interpretation of conditions for exact recovery. The
second one considers low-rank recovery and the nuclear norm minimization (1.10).
The success of the latter is shown to be equivalent to a suitable adaptation of the null
space property. Further results concerning low-rank recovery are treated in exercises
spread throughout the book.

The null space property is not easily verifiable by a direct computation. The
coherence, introduced in Chap. 5, is a much simpler concept to assess the quality of
a measurement matrix. For A ∈ Cm×N with �2-normalized columns a1, . . . , aN , it
is defined as

μ := max
j �=k

|〈aj , ak〉|.

We also introduce the �1-coherence function μ1 as a slight refinement of the
coherence. Ideally, the coherence μ of a measurement matrix should be small. A
fundamental lower bound on μ (a related bound on μ1 holds, too) is

μ ≥
√

N −m

m(N − 1)
.

For large N , the right-hand side scales like 1/
√
m. The matrices achieving this

lower bound are equiangular tight frames. We investigate conditions on m and N
for the existence of equiangular tight frames and provide an explicit example of an
m×m2 matrix (m being prime) with near-minimal coherence. Finally, based on the
coherence, we analyze several recovery algorithms, in particular �1-minimization
and orthogonal matching pursuit. For both of them, we obtain a verifiable sufficient
condition for the recovery of all s-sparse vectors x from y = Ax, namely,

(2s− 1)μ < 1.

Consequently, for a small enough sparsity, the algorithms are able to recover sparse
vectors from incomplete information. Choosing a matrix A ∈ Cm×N with near-
minimal coherence of order c/

√
m (which imposes some mild conditions on N ),

s-sparse recovery is achievable with m of order s2. In particular, s-sparse recovery
is achievable from incomplete information (m � N ) when s is small (s �

√
N ).

As already outlined, this can be significantly improved. In fact, we will see in later
chapters that the optimal order for m is s ln(N/s). But for now the lower bound
μ ≥ c/

√
m implies that the coherence-based approach relying on (2s − 1)μ < 1

necessitates

m ≥ Cs2. (1.12)

This yields a number of measurements that scale quadratically in the sparsity rather
than linearly (up to logarithmic factors). However, the coherence-based approach
has the advantage of simplicity (the analysis of various recovery algorithms is
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relatively short) and of availability of explicit (deterministic) constructions of
measurement matrices.

The concept of restricted isometric property (RIP) proves very powerful to
overcome the quadratic bottleneck (1.12). The restricted isometry constant δs of
a matrix A ∈ Cm×N is defined as the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all s-sparse x.

Informally, the matrix A is said to possess the RIP if δs is small for sufficiently
large s. The RIP requires all submatrices formed by s columns of A to be well
conditioned, since Ax = ASxS whenever x ∈ CN is supported on a set S of size
s. Here, AS ∈ Cm×s denotes the submatrix formed with columns of A indexed by
S and xS ∈ Cs denotes the restriction of x to S.

Chapter 6 starts with basic results on the restricted isometry constants. For
instance, there is the relation δ2 = μ with the coherence when the columns
of A are �2-normalized. In this sense, restricted isometry constants generalize
the coherence by considering all s-tuples rather than all pairs of columns. Other
relations include the simple (and quite pessimistic) bound δs ≤ (s−1)μ, which can
be derived directly from Gershgorin’s disk theorem.

We then turn to the analysis of the various recovery algorithms based on the
restricted isometry property of A. Typically, under conditions of the type

δκs ≤ δ∗ (1.13)

for some integer κ and some threshold δ∗< 1 (both depending only on the
algorithm), every s-sparse vector x is recoverable from y = Ax. The table below
summarizes the sufficient conditions for basis pursuit, iterative hard thresholding,
hard thresholding pursuit, orthogonal matching pursuit, and compressive sampling
matching pursuit.

BP IHT HTP OMP CoSaMP

δ2s < 0.6248 δ3s < 0.5773 δ3s < 0.5773 δ13s < 0.1666 δ4s < 0.4782

Moreover, the reconstructions are stable when sparsity is replaced by compressibil-
ity and robust when measurement error occurs. More precisely, denoting by x� the
output of the above algorithms run with y = Ax + e and ‖e‖2 ≤ η, the error
estimates

‖x− x�‖2 ≤ C
σs(x)1√

s
+Dη, (1.14)

‖x− x�‖1 ≤ Cσs(x)1 +D
√
sη, (1.15)

hold for all x ∈ CN with absolute constants C,D > 0.
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At the time of writing, finding explicit (deterministic) constructions of matrices
satisfying (1.13) in the regime wherem scales linearly in s up to logarithmic factors
is an open problem. The reason lies in the fact that usual tools (such as Gersh-
gorin’s theorem) to estimate condition numbers essentially involve the coherence
(or �1-coherence function), as in δκs ≤ (κs− 1)μ. Bounding the latter by a fixed δ∗
still faces the quadratic bottleneck (1.12).

We resolve this issue by passing to random matrices. Then a whole new set of
tools from probability theory becomes available. When the matrix A is drawn at
random, these tools enable to show that the restricted isometry property or other
conditions ensuring recovery hold with high probability providedm ≥ Cs ln(N/s).
Chapters 7 and 8 introduce all the necessary background on probability theory.

We start in Chap. 7 by recalling basic concepts such as expectation, moments,
Gaussian random variables and vectors, and Jensen’s inequality. Next, we treat the
relation between the moments of a random variable and its tails. Bounds on the
tails of sums of independent random variables will be essential later, and Cramér’s
theorem provides general estimates involving the moment generating functions of
the random variables. Hoeffding’s inequality specializes to the sum of indepen-
dent bounded mean-zero random variables. Gaussian and Rademacher/Bernoulli
variables (the latter taking the values +1 or −1 with equal probability) fall into
the larger class of subgaussian random variables, for which we also present basic
results. Finally, Bernstein inequalities refine Hoeffding’s inequality by taking into
account the variance of the random variables. Furthermore, they extend to possibly
unbounded subexponential random variables.

For many compressive sensing results with Gaussian or Bernoulli random
matrices—that is, for large parts of Chaps. 9 and 11, including bounds for the
restricted isometry constants—the relatively simple tools of Chap. 7 are already
sufficient. Several topics in compressive sensing, however, notably the analysis of
random partial Fourier matrices, build on more advanced tools from probability
theory. Chapter 8 presents the required material. For instance, we cover Rademacher
sums of the form

∑
j εjaj where the εj = ±1 are independent Rademacher

variables and the symmetrization technique leading to such sums. Khintchine in-
equalities bound the moments of Rademacher sums. The noncommutative Bernstein
inequality provides a tail bound for the operator norm of independent mean-
zero random matrices. Dudley’s inequality bounds the expected supremum over a
family of random variables by a geometric quantity of the set indexing the family.
Concentration of measure describes the high-dimensional phenomenon which sees
functions of random vectors concentrating around their means. Such a result is
presented for Lipschitz functions of Gaussian random vectors.

With the probabilistic tools at hand, we are prepared to study Gaussian,
Bernoulli, and more generally subgaussian random matrices in Chap. 9. A crucial
ingredient for the proof of the restricted isometry property is the concentration
inequality

P(|‖Ax‖22 − ‖x‖22| ≥ t‖x‖22) ≤ 2 exp(−cmt2), (1.16)
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valid for any fixed x ∈ RN and t ∈ (0, 1) with a random draw of a properly scaled
m × N subgaussian random matrix A. Using covering arguments—in particular,
exploiting bounds on covering numbers from Appendix C.2—we deduce that the
restricted isometry constants satisfy δs ≤ δ with high probability provided

m ≥ Cδ−2s ln(eN/s). (1.17)

The invariance of the concentration inequality under orthogonal transformations
implies that subgaussian random matrices are universal in the sense that they allow
for the recovery of vectors that are sparse not only in the canonical basis but also in
an arbitrary (but fixed) orthonormal basis.

In the special case of Gaussian random matrices, one can exploit refined methods
not available in the subgaussian case, such as Gordon’s lemma and concentration of
measure. We will deduce good explicit constants in the nonuniform setting where
we only target recovery of a fixed s-sparse vector using a random draw of anm×N
Gaussian matrix. For large dimensions, we roughly obtain that

m > 2s ln(N/s)

is sufficient to recover an s-sparse vector using �1-minimization; see Chap. 9 for
precise statements. This is the general rule of thumb reflecting the outcome of
empirical tests, even for nongaussian random matrices—although the proof applies
only to the Gaussian case.

We close Chap. 9 with a detour to the Johnson–Lindenstrauss lemma which
states that a finite set of points in a large dimensional space can be mapped to a
significantly lower-dimensional space while almost preserving all mutual distances
(no sparsity assumption is involved here). This is somewhat equivalent to the
concentration inequality (1.16). In this sense, the Johnson–Lindenstrauss lemma
implies the RIP. We will conversely show that if a matrix satisfies the RIP, then
randomizing the signs of its column yields a Johnson–Lindenstrauss embedding
with high probability.

In Chap. 10, we show that the number of measurements (1.3) for sparse recovery
using subgaussian random matrices is optimal. This is done by relating the standard
compressive sensing problem to Gelfand widths of �1-balls. More precisely, for a
subset K of a normed space X = (RN , ‖ · ‖) and for m < N , we introduce the
quantity

Em(K,X) := inf

{
sup
x∈K

‖x−Δ(Ax)‖, A ∈ R
m×N , Δ : Rm → R

N

}
.

It quantifies the worst-case reconstruction error over K of optimal measure-
ment/reconstruction schemes in compressive sensing. The Gelfand width of K is
defined as

dm(K,X) := inf

{
sup

x∈K∩kerA
‖x‖, A ∈ R

m×N
}
.
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If K = −K and K +K ⊂ aK for some constant a, as it is the case with a = 2 for
the unit ball of some norm, then

dm(K,X) ≤ Em(K,X) ≤ adm(K,X).

Since by (1.11) unit balls K = BNp in the N -dimensional �p-space, p ≤ 1, are good
models for compressible vectors, we are led to study their Gelfand widths. For ease
of exposition, we only cover the case p = 1. An upper bound for Em(BN1 , �

N
2 ),

and thereby for dm(BN1 , �
N
2 ), can be easily derived from the error estimate (1.14)

combined with the number of measurements that ensure the RIP for subgaussian
random matrices. This gives

dm(BN1 , �
N
2 ) ≤ Cmin

{
1,

ln(eN /m)

m

}1/2
.

We derive the matching lower bound

dm(BN1 , �
N
2 ) ≥ cmin

{
1,

ln(eN /m)

m

}1/2
,

and we deduce that the bound (1.17) is necessary to guarantee the existence of a
stable scheme for s-sparse recovery. An intermediate step in the proof of this lower
bound is of independent interest. It states that a necessary condition on the number
of measurements to guarantee that every s-sparse vector x is recoverable from
y = Ax via �1-minimization (stability is not required) is

m ≥ Cs ln(eN /s). (1.18)

The error bound (1.14) includes the term σs(x)1/
√
s, although the error is measured

in �2-norm. This raises the question of the possibility of an error bound with the term
σs(x)2 on the right-hand side. Chapter 11 investigates this question and the more
general question of the existence of pairs of measurement matrix A ∈ R

m×N and
reconstruction map Δ : Rm → R

N satisfying

‖x−Δ(Ax)‖q ≤
C

s1/p−1/q
σs(x)p for all x ∈ R

N .

This bound is referred to as mixed (�q, �p)-instance optimality and simply as
�p-instance optimality when q = p. The �1-instance optimality implies the familiar
bound m ≥ Cs ln(eN/s). However, �2-instance optimality necessarily leads to

m ≥ cN.

This regime of parameters is not interesting in compressive sensing. However, we
may ask for less, namely, that the error bound in �2 holds in a nonuniform setting,
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i.e., for fixed x with high probability on a draw of a subgaussian random matrix A.
As it turns out, with Δ1 denoting the �1-minimization map, the error bound

‖x−Δ1(Ax)‖2 ≤ Cσs(x)2

does hold with high probability under the conditionm≥Cs ln(eN /s). The analysis
necessitates the notion of �1-quotient property. It is proved for Gaussian random
matrices, and a slight variation is proved for subgaussian random matrices.

In addition, Chap. 11 investigates a question about measurement error. When it
is present, one may use the quadratically constrained �1-minimization

minimize ‖z‖1 subject to ‖Az− y‖2 ≤ η,

yet this requires an estimation of the noise level η (other algorithms do not require an
estimation of η, but they require an estimation of the sparsity level s instead). Only
then are the error bounds (1.14) and (1.15) valid under RIP. We will establish that,
somewhat unexpectedly, the equality-constrained �1-minimization (1.2) can also
be performed in the presence of measurement error using Gaussian measurement
matrices. Indeed, the �1-quotient property implies the same reconstruction bounds
(1.14) and (1.15) even without knowledge of the noise level η.

Subgaussian random matrices are of limited practical use, because specific
applications may impose a structure on the measurement matrix that totally random
matrices lack. As mentioned earlier, deterministic measurement matrices providing
provable recovery guarantees are missing from the current theory. This motivates the
study of structured random matrices. In Chap. 12, we investigate a particular class
of structured random matrices arising in sampling problems. This includes random
partial Fourier matrices.

Let (ψ1, . . . .ψN ) be a system of complex-valued functions which are orthonor-
mal with respect to some probability measure ν on a set D, i.e.,

∫
D
ψj(t)ψk(t)dν(t) = δj,k.

We call this system a bounded orthonormal system if there exists a constant K ≥ 1
(ideally independent of N ) such that

sup
1≤j≤N

sup
t∈D
|ψj(t)| ≤ K.

A particular example is the trigonometric system where ψj(t) = e2πijt for
j ∈ Γ ⊂ Z with card(Γ ) = N , in which case K = 1. We consider functions
in the span of a bounded orthonormal system, i.e.,

f(t) =

N∑
j=1

xjψj(t),
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and we assume that the coefficient vectorx∈CN is sparse. The task is to reconstruct
f (or equivalently x) from sample values at locations t1, . . . , tm, namely,

yk = f(tk) =

N∑
j=1

xjψj(tk).

Introducing the sampling matrix A ∈ C
m×N with entries

Aj,k = ψj(tk), (1.19)

the vector of samples is given by y = Ax. We are back to the standard compressive
sensing problem with a matrix A taking this particular form. Randomness enters the
picture by way of the sampling locations t1, . . . , tm which are chosen independently
at random according to the probability measure ν. This makes A a structured
random matrix. Before studying its performance, we relate this sampling setup with
discrete uncertainty principles and establish performance limitations. In the context
of the Hadamard transform, in slight contrast to (1.18), we show that now at least
m ≥ Cs lnN measurements are necessary.

Deriving recovery guarantees for the random sampling matrix A in (1.19) is
more involved than for subgaussian random matrices where all the entries are
independent. In fact, the matrix A has mN entries, but it is generated only by
m independent random variables. We proceed by increasing level of difficulty and
start by showing nonuniform sparse recovery guarantees for �1-minimization. The
number of samples allowing one to recover a fixed s-sparse coefficient vectorx with
high probability is then m ≥ CK2s lnN .

The bound for the restricted isometry constants of the random sampling matrix
A in (1.19) is a highlight of the theory of compressive sensing. It states that δs ≤ δ
with high probability provided

m ≥ CK2δ−2s ln4(N).

We close Chap. 12 by illustrating some connections to the Λ1-problem from
harmonic analysis.

A further type of measurement matrix used in compressive sensing is considered
in Chap. 13. It arises as the adjacency matrix of certain bipartite graphs called
lossless expanders. Hence, its entries take only the values 0 and 1. The existence
of lossless expanders with optimal parameters is shown via probabilistic (combi-
natorial) arguments. We then show that the m × N adjacency matrix of a lossless
expander allows for uniform recovery of all s-sparse vectors via �1-minimization
provided that

m ≥ Cs ln(N/s).

Moreover, we present two iterative reconstruction algorithms. One of them has
the remarkable feature that its runtime is sublinear in the signal length N ; more
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precisely, its execution requires O(s2 ln3N) operations. Since only the locations
and the values of s nonzero entries need to be identified, such superfast algorithms
are not implausible. In fact, sublinear algorithms are possible in other contexts, too,
but they are always designed together with the measurement matrix A.

In Chap. 14, we follow a different approach to sparse recovery guarantees by
considering a fixed (deterministic) matrix A and choosing the s-sparse vector x at
random. More precisely, we select its support set S uniformly at random among
all subsets of [N ] = {1, 2, . . . , N} with cardinality s. The signs of the nonzero
coefficients of x are chosen at random as well, but their magnitudes are kept
arbitrary. Under a very mild condition on the coherence μ of A ∈ Cm×N , namely,

μ ≤ c

lnN
, (1.20)

and under the condition

s‖A‖2→2

N
≤ c

lnN
, (1.21)

the vector x is recoverable from y = Ax via �1-minimization with high probability.
The (deterministic or random) matrices A usually used in compressive sensing and
signal processing, for instance, tight frames, obey (1.21) provided

m ≥ Cs lnN. (1.22)

Since (1.20) is also satisfied for these matrices, we again obtain sparse recovery in
the familiar parameter regime (1.22). The analysis relies on the crucial fact that a
random column submatrix of A is well conditioned under (1.20) and (1.21). We note
that this random signal model may not always reflect the type of signals encountered
in practice, so the theory for random matrices remains important. Nevertheless, the
result for random signals explains the outcome of numerical experiments where the
signals are often constructed at random.

The �1-minimization principle (basis pursuit) is one of the most powerful sparse
recovery methods—as should have become clear by now. Chapter 15 presents a
selection of efficient algorithms to perform this optimization task in practice (the
selection is nonexhaustive, and the algorithms have been chosen not only for their
efficiency but also for their simplicity and diversity). First, the homotopy method
applies to the real-valued case A ∈ Rm×N , y ∈ Rm. For a parameter λ > 0, we
consider the functional

Fλ(x) =
1

2
‖Ax− y‖22 + λ‖x‖1.

Its minimizer xλ converges to the minimizer x� of the equality-constrained
�1-minimization problem (1.2). The map λ �→ xλ turns out to be piecewise linear.
The homotopy method starts with a sufficiently large λ, for which xλ = 0, and
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traces the endpoints of the linear pieces until λ = 0+, for which xλ = x�. At each
step of the algorithm, an element is added or removed from the support set of the
current minimizer. Since one mostly adds elements to the support, this algorithm is
usually very efficient for small sparsity.

As a second method, we treat Chambolle and Pock’s primal–dual algorithm. This
algorithm applies to a large class of optimization problems including
�1-minimization. It consists of a simple iterative procedure which updates a primal,
a dual, and an auxiliary variable at each step. All of the computations are easy to
perform. We show convergence of the sequence of primal variables generated by
the algorithm to the minimizer of the given functional and outline its specific form
for three types of �1-minimization problems. In contrast to the homotopy method, it
applies also in the complex-valued case.

Finally, we discuss a method that iteratively solves weighted �2-minimization
problems. The weights are suitably updated in each iteration based on the solution of
the previous iteration. Since weighted �2-minimization can be performed efficiently
(in fact, this is a linear problem), each step of the algorithm can be computed
quickly. Although this algorithm is strongly motivated by �1-minimization, its con-
vergence to the �1-minimizer is not guaranteed. Nevertheless, under the null space
property of the matrix A (equivalent to sparse recovery via �1-minimization), we
show that the iteratively reweighted least squares algorithm recovers every s-sparse
vector from y = Ax. Recovery is stable when passing to compressible vectors.
Moreover, we give an estimate of the convergence rate in the exactly sparse case.

The book is concluded with three appendices. Appendix A covers background
material from linear algebra and matrix analysis, including vector and matrix norms,
eigenvalues and singular values, and matrix functions. Basic concepts and results
from convex analysis and convex optimization are presented in Appendix B. We also
treat matrix convexity and present a proof of Lieb’s theorem on the concavity of the
matrix function X �→ tr exp(H + lnX) on the set of positive definite matrices.
Appendix C presents miscellaneous material including covering numbers, Fourier
transforms, elementary estimates on binomial coefficients, the Gamma function and
Stirling’s formula, smoothing of Lipschitz functions via convolution, distributional
derivatives, and differential inequalities.

Notation is usually introduced when it first appears. Additionally, a collection of
symbols used in the text can be found on pp. 589. All the constants in this book are
universal unless stated otherwise. This means that they do not depend on any other
quantity. Often, the value of a constant is given explicitly or it can be deduced from
the proof.

Notes

The field of compressive sensing was initiated with the papers [94] by Candès,
Romberg, and Tao and [152] by Donoho who coined the term compressed sensing.
Even though there have been predecessors on various aspects of the field, these
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papers seem to be the first ones to combine the ideas of �1-minimization with a
random choice of measurement matrix and to realize the effectiveness of this com-
bination for solving underdetermined systems of equations. Also, they emphasized
the potential of compressive sensing for many signal processing tasks.

We now list some of the highlights from preceding works and earlier develop-
ments connected to compressive sensing. Details and references on the advances of
compressive sensing itself will be given in the Notes sections at the end of each
subsequent chapter. References [29, 84, 100, 182, 204, 411, 427] provide overview
articles on compressive sensing.

Arguably, the first contribution connected to sparse recovery was made by de
Prony [402] as far back as 1795. He developed a method for identifying the
frequencies ωj ∈ R and the amplitudes xj ∈ C in a nonharmonic trigonometric
sum of the form f(t) =

∑s
j=1 xje

2πiωjt. His method takes equidistant samples
and solves an eigenvalue problem to compute the ωj . This method is related to
Reed–Solomon decoding covered in the next chapter; see Theorem 2.15. For more
information on the Prony method, we refer to [344, 401].

The use of �1-minimization appeared in the 1965 Ph.D. thesis [332] of Logan
in the context of sparse frequency estimation, and an early theoretical work on
L1-minimization is the paper [161] by Donoho and Logan. Geophysicists observed
in the late 1970s that �1-minimization can be successfully used to compute a sparse
reflection function indicating changes between subsurface layers [441, 469]. The
use of total-variation minimization, which is closely connected to �1-minimization,
appeared in the 1990s in the work on image processing by Rudin, Osher, and Fatemi
[436]. The use of �1-minimization and related greedy methods in statistics was
greatly popularized by the work of Tibshirani [473] on the LASSO (Least Absolute
Shrinkage and Selection Operator).

The theory of sparse approximation and associated algorithms began in the 1990s
with the papers [114,342,359]. The theoretical understanding of conditions allowing
greedy methods and �1-minimization to recover the sparsest solution developed with
the work in [155, 158, 181, 215, 224, 239, 476, 479].

Compressive sensing has connections with the area of information-based com-
plexity which considers the general question of how well functions f from a class F
can be approximated from m sample values or more generally from the evaluation
of m linear or nonlinear functionals applied to f ; see [474]. The optimal recovery
error defined as the maximal reconstruction error for the best sampling and recovery
methods over all functions in the class F is closely related to the so-called Gelfand
width of F [370]; see also Chap. 10. Of particular interest in compressive sensing is
the �1-ballBN1 in RN . Famous results due to Kashin [299] and Gluskin and Garnaev
[219,227] sharply bound the Gelfand widths of BN1 from above and below; see also
Chap. 10. Although the original interest of Kashin was to estimate m-widths of
Sobolev classes, these results give precise performance bounds on how well any
method may recover (approximately) sparse vectors from linear measurements. It
is remarkable that [219, 299] already employed Bernoulli and Gaussian random
matrices in ways similar to their use in compressive sensing (see Chap. 9).
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In computer science, too, sparsity appeared before the advent of compressive
sensing through the area of sketching. Here, one is not only interested in recovering
huge data sets (such as data streams on the Internet) from vastly undersampled data,
but one requires in addition that the associated algorithms have sublinear runtime
in the signal length. There is no a priori contradiction in this desideratum because
one only needs to report locations and values of nonzero entries. Such algorithms
often use ideas from group testing [173], which dates back to World War II, when
Dorfman [171] devised an efficient method for detecting draftees with syphilis. One
usually designs the matrix and the fast algorithm simultaneously [131, 225] in this
setup. Lossless expanders as studied in Chap. 13 play a key role in some of the
constructions [41]. Quite remarkably, sublinear algorithms are also available for
sparse Fourier transforms [223, 261, 262, 287, 288, 519].

Applications of Compressive Sensing. We next provide comments and references
on the applications and motivations described in Sect. 1.2.

Single-pixel camera. The single-pixel camera was developed by Baraniuk and
coworkers [174] as an elegant proof of concept that the ideas of compressive sensing
can be implemented in hardware.

Magnetic resonance imaging. The initial paper [94] on compressive sensing was
motivated by medical imaging—although Candès et al. have in fact treated the
very similar problem of computerized tomography. The application of compressive
sensing techniques to magnetic resonance imaging (MRI) was investigated in
[255, 338, 358, 497]. Background on the theoretical foundations of MRI can be
found, for instance, in [252, 267, 512]. Applications of compressive sensing to
the related problem of nuclear magnetic resonance spectroscopy are contained in
[278, 447]. Background on the methods related to Fig. 1.6 is described in the work
of Lustig, Vasanawala and coworkers [358, 497].

Radar. The particular radar application outlined in Sect. 1.2 is described in more
detail in [268]. The same mathematical model appears also in sonar and in
the channel estimation problem of wireless communications [384, 385, 412]. The
application of compressive sensing to other radar scenarios can be found, for
instance, in [185, 189, 283, 397, 455].

Sampling theory. The classical sampling theorem (1.5) can be associated with the
names of Shannon, Nyquist, Whittaker, and Kotelnikov. Sampling theory is a broad
and well-developed area. We refer to [39,195,271,272,294] for further information
on the classical aspects. The use of sparse recovery techniques in sampling problems
appeared early in the development of the compressive sensing theory [94, 97, 408,
409, 411, 416]. In fact, the alternative name compressive sampling indicates that
compressive sensing can be viewed as a part of sampling theory—although it draws
from quite different mathematical tools than classical sampling theory itself.

Sparse approximation. The theory of compressive sensing can also be viewed as
a part of sparse approximation with roots in signal processing, harmonic analysis
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[170], and numerical analysis [122]. A general source for background on sparse
approximation and its applications are the books [179,451,472] as well as the survey
paper [73].

The principle of representing a signal by a small number of terms in a suitable
basis in order to achieve compression is realized, for instance, in the ubiquitous
compression standards JPEG, MPEG, and MP3. Wavelets [137] are known to
provide a good basis for images, and the analysis of the best (nonlinear) approxi-
mation reaches into the area of function spaces, more precisely Besov spaces [508].
Similarly, Gabor expansions [244] may compress audio signals. Since good Gabor
systems are always redundant systems (frames) and never bases, computational
tools to compute the sparsest representation of a signal are essential. It was realized
in [342, 359] that this problem is in general NP-hard. The greedy approach via
orthogonal matching pursuit was then introduced in [342] (although it had appeared
earlier in different contexts), while basis pursuit (�1-minimization) was introduced
in [114].

The use of the uncertainty principle for deducing a positive statement on the
data separation problem with respect to the Fourier and canonical bases appeared in
[163,164]. For further information on the separation problem, we refer the reader to
[92,158,160,181,238,331,482]. Background on denoising via sparse representations
can be found in [105, 150, 159, 180, 407, 450].

The analysis of conditions allowing algorithms such as �1-minimization or
orthogonal matching pursuit to recover the sparsest representation has started with
the contributions [155–158, 224, 476, 479], and these early results are the basis for
the advances in compressive sensing.

Error correction. The idealized setup of error correction and the compressive
sensing approach described in Sect. 1.2 appeared in [96, 167, 431]. For more
background on error correction, we refer to [282].

Statistics and machine learning. Sparsity has a long history in statistics and
in linear regression models in particular. The corresponding area is sometimes
referred to as high-dimensional statistics or model selection because the support
set of the coefficient vector x determines the relevant explanatory variables and
thereby selects a model. Stepwise forward regression methods are closely related
to greedy algorithms such as (orthogonal) matching pursuit. The LASSO, i.e., the
minimization problem (1.8), was introduced by Tibshirani in [473]. Candès and
Tao have introduced the Dantzig selector (1.9) in [98] and realized that methods of
compressive sensing (the restricted isometry property) are useful for the analysis of
sparse regression methods. We refer to [48] and the monograph [76] for details. For
more information on machine learning, we direct the reader to [18, 133, 134, 444].
Connections between sparsity and machine learning can be found, for instance, in
[23, 147, 513].

Low-rank matrix recovery. The extension of compressive sensing to the recovery
of low-rank matrices from incomplete information emerged with the papers [90,99,
418]. The idea of replacing the rank minimization problem by the nuclear norm
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minimization appeared in the Ph.D. thesis of Fazel [190]. The matrix completion
problem is treated in [90, 99, 417] and the more general problem of quantum state
tomography in [245, 246, 330].

Let us briefly mention further applications and relations to other fields.
In inverse problems, sparsity has also become an important concept for regu-

larization methods. Instead of Tikhonov regularization with a Hilbert space norm
[186], one uses an �1-norm regularization approach [138, 406]. In many practical
applications, this improves the recovered solutions. Ill-posed inverse problems
appear, for instance, in geophysics where �1-norm regularization was already used
in [441, 469] but without rigorous mathematical theory at that time. We refer to the
survey papers [269, 270] dealing with compressive sensing in seismic exploration.

Total-variation minimization is a classical and successful approach for image
denoising and other tasks in image processing [104, 106, 436]. Since the total
variation is the �1-norm of the gradient, the minimization problem is closely related
to basis pursuit. In fact, the motivating example for the first contribution [94]
of Candès, Romberg, and Tao to compressive sensing came from total-variation
minimization in computer tomography. The restricted isometry property can be
used to analyze image recovery via total-variation minimization [364]. The primal–
dual algorithm of Chambolle and Pock to be presented in Chap. 15 was originally
motivated by total-variation minimization as well [107].

Further applications of compressive sensing and sparsity in general include imag-
ing (tomography, ultrasound, photoacoustic imaging, hyperspectral imaging, etc.),
analog-to-digital conversion [353, 488], DNA microarray processing, astronomy
[507], and wireless communications [27, 468].

Topics not Covered in this Book. It is impossible to give a detailed account of
all the directions that have so far cropped up around compressive sensing. This
book certainly makes a selection, but we believe that we cover the most important
aspects and mathematical techniques. With this basis, the reader should be well
equipped to read the original references on further directions, generalizations, and
applications. Let us only give a brief account of additional topics together with the
relevant references. Again, no claim about completeness of the list is made.

Structured sparsity models. One often has additional a priori knowledge than just
pure sparsity in the sense that the support set of the sparse vector to be recovered
possesses a certain structure, i.e., only specific support sets are allowed. Let us
briefly describe the joint-sparsity and block-sparsity model.

Suppose that we take measurements not only of a single signal but of a collection
of signals that are somewhat coupled. Rather than assuming that each signal is
sparse (or compressible) on its own, we assume that the unknown support set is
the same for all signals in the collection. In this case, we speak of joint sparsity.
A motivating example is color images where each signal corresponds to a color
channel of the image, say red, green, and blue. Since edges usually appear at the
same location for all channels, the gradient features some joint sparsity. Instead of
the usual �1-minimization problem, one considers mixed �1/�2-norm minimization
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or greedy algorithms exploiting the joint-sparsity structure. A similar setup is
described by the block-sparsity (or group-sparsity) model, where certain indices
of the sparse vector are grouped together. Then a signal is block sparse if most
groups (blocks) of coefficients are zero. In other words, nonzero coefficients appear
in groups. Recovery algorithms may exploit this prior knowledge to improve the
recovery performance. A theory can be developed along similar lines as usual
sparsity [143, 183, 184, 203, 241, 478, 487]. The so-called model-based compressive
sensing [30] provides a further, very general structured sparsity setup.

Sublinear algorithms. This type of algorithms have been developed in computer
science for a longer time. The fact that only the locations and values of nonzero
entries of a sparse vector have to be reported enables one to design recovery
algorithms whose runtime is sublinear in the vector length. Recovery methods are
also called streaming algorithms or heavy hitters. We will only cover a toy sublinear
algorithm in Chap. 13, and we refer to [41,131,222,223,225,261,285,289] for more
information.

Connection with the geometry of random polytopes. Donoho and Tanner [154,165–
167] approached the analysis of sparse recovery via �1-minimization through
polytope geometry. In fact, the recovery of s-sparse vectors via �1-minimization
is equivalent to a geometric property—called neighborliness—of the projected
�1-ball under the action of the measurement matrix; see also Corollary 4.39. When
the measurement matrix is a Gaussian random matrix, Donoho and Tanner give
a precise analysis of so-called phase transitions that predict in which ranges of
(s,m,N) sparse recovery is successful and unsuccessful with high probability. In
particular, their analysis provides the value of the optimal constant C such that
m ≈ Cs ln(N/s) allows for s-sparse recovery via �1-minimization. We only give a
brief account of their work in the Notes of Chap. 9.

Compressive sensing and quantization. If compressive sensing is used for signal
acquisition, then a realistic sensor must quantize the measured data. This means that
only a finite number of values for the measurements y� are possible. For instance,
8 bits provide 28 = 256 values for an approximation of y� to be stored. If the
quantization is coarse, then this additional source of error cannot be ignored and
a revised theoretical analysis becomes necessary. We refer to [249, 316, 520] for
background information. We also mention the extreme case of 1-bit compressed
sensing where only the signs of the measurements are available via y = sgn(Ax)
[290, 393, 394].

Dictionary learning. Sparsity usually occurs in a specific basis or redundant
dictionary. In certain applications, it may not be immediately clear which dictionary
is suitable to sparsify the signals of interest. Dictionary learning tries to identify
a good dictionary using training signals. Algorithmic approaches include the
K-SVD algorithm [5, 429] and optimization methods [242]. Optimizing over both
the dictionary and the coefficients in the expansions results in a nonconvex program,
even when using �1-minimization. Therefore, it is notoriously hard to establish
a rigorous mathematical theory of dictionary learning despite the fact that the
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algorithms perform well in practice. Nevertheless, there are a few interesting
mathematical results available in the spirit of compressive sensing [221, 242].

Recovery of functions of many variables. Techniques from compressive sensing can
be exploited for the reconstruction of functions on a high-dimensional space from
point samples. Traditional approaches suffer the curse of dimensionality, which
predicts that the number of samples required to achieve a certain reconstruction
accuracy scales exponentially with the spatial dimension even for classes of
infinitely differentiable functions [371, 474]. It is often a reasonable assumption
in practice that the function to be reconstructed depends only on a small number
of (a priori unknown) variables. This model is investigated in [125, 149], and ideas
of compressive sensing allow one to dramatically reduce the number of required
samples. A more general model considers functions of the form f(x) = g(Ax),
where x belongs to a subset D ⊂ RN with N being large, A ∈ Rm×N with
m � N , and g is a smooth function on an m-dimensional domain. Both g and
A are unknown a priori and are to be reconstructed from suitable samples of f .
Again, under suitable assumptions on g and on A, one can build on methods from
compressive sensing to recover f from a relatively small number of samples. We
refer to [124, 206, 266] for details.

Hints for Preparing a Course. This book can be used for a course on compressive
sensing at the graduate level. Although the whole material exceeds what can be
reasonably covered in a one-semester class, properly selected topics do convert into
self-contained components. We suggest the following possibilities:

• For a comprehensive treatment of the deterministic issues, Chaps. 2–6 comple-
mented by Chap. 10 are appropriate. If a proof of the restricted isometry property
for random matrices is desired, one can add the simple arguments of Sect. 9.1,
which only rely on a few tools from Chap. 7. In a class lasting only one quarter
rather than one semester, one can remove Sect. 4.5 and mention only briefly the
stability and robustness results of Chaps. 4 and 6. One can also concentrate only
on �1-minimization and discard Chap. 3 as well as Sects. 5.3, 5.5, 6.3, and 6.4 if
the variety of algorithms is not a priority.

• On the other hand, for a course focusing on algorithmic aspects, Chaps. 2–6
as well as (parts of) Chap. 15 are appropriate, possibly replacing Chap. 5 by
Chap. 13 and including (parts of) Appendix B.

• For a course focusing on probabilistic issues, we recommend Chaps. 7–9 and
Chaps. 11, 12, and 14. This can represent a second one-semester class. However,
if this material has to be delivered as a first course, Chap. 4 (especially Sects. 4.1
and 4.4) and Chap. 6 (especially Sects. 6.1 and 6.2) need to be included.

Of course, parts of particular chapters may also be dropped depending on the desired
emphasis.

We will be happy to receive feedback on these suggestions from instructors using
this book in their class. They may also contact us to obtain typed-out solutions for
some of the exercises.



Chapter 2
Sparse Solutions of Underdetermined Systems

In this chapter, we define the notions of vector sparsity and compressibility, and
we establish some related inequalities used throughout the book. We will use basic
results on vector and matrix norms, which can be found in Appendix A. We then
investigate, in two different settings, the minimal number of linear measurements
required to recover sparse vectors. We finally prove that �0-minimization, the ideal
recovery scheme, is NP-hard in general.

2.1 Sparsity and Compressibility

We start by defining the ideal notion of sparsity. We first introduce the notations [N ]
for the set {1, 2, . . . , N} and card(S) for the cardinality of a set S. Furthermore,
we write S for the complement [N ] \ S of a set S in [N ].

Definition 2.1. The support of a vector x ∈ CN is the index set of its nonzero
entries, i.e.,

supp(x) := {j ∈ [N ] : xj �= 0}.

The vector x ∈ CN is called s-sparse if at most s of its entries are nonzero, i.e., if

‖x‖0 := card(supp(x)) ≤ s.

The customary notation ‖x‖0—the notation ‖x‖00 would in fact be more
appropriate—comes from the observation that

‖x‖pp :=
N∑
j=1

|xj |p −→
p→0

N∑
j=1

1{xj �=0} = card({j ∈ [N ] : xj �= 0}).

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 2,
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Here, we used the notations 1{xj �=0} = 1 if xj �= 0 and 1{xj �=0} = 0 if xj = 0. In
other words the quantity ‖x‖0 is the limit as p decreases to zero of the pth power of
the �p-quasinorm of x. It is abusively called the �0-norm of x, although it is neither
a norm nor a quasinorm—see Appendix A for precise definitions of these notions.
In practice, sparsity can be a strong constraint to impose, and we may prefer the
weaker concept of compressibility. For instance, we may consider vectors that are
nearly s-sparse, as measured by the error of best s-term approximation.

Definition 2.2. For p > 0, the �p-error of best s-term approximation to a vector
x ∈ CN is defined by

σs(x)p := inf
{
‖x− z‖p, z ∈ C

N is s-sparse
}
.

In the definition of σs(x)p, the infimum is achieved by an s-sparse vector z ∈ CN

whose nonzero entries equal the s largest absolute entries of x. Hence, although
such a vector z ∈ CN may not be unique, it achieves the infimum independently of
p > 0.

Informally, we may call x ∈ CN a compressible vector if the error of its best
s-term approximation decays quickly in s. According to the following proposition,
this happens in particular if x belongs to the unit �p-ball for some small p > 0,
where the unit �p-ball is defined by

BNp := {z ∈ C
N : ‖z‖p ≤ 1}.

Consequently, the nonconvex balls BNp for p < 1 serve as good models for
compressible vectors.

Proposition 2.3. For any q > p > 0 and any x ∈ C
N ,

σs(x)q ≤
1

s1/p−1/q
‖x‖p.

Before proving this proposition, it is useful to introduce the notion of nonincreasing
rearrangement.

Definition 2.4. The nonincreasing rearrangement of the vector x ∈ CN is the
vector x∗ ∈ RN for which

x∗1 ≥ x∗2 ≥ . . . ≥ x∗N ≥ 0

and there is a permutation π : [N ]→ [N ] with x∗j = |xπ(j)| for all j ∈ [N ].

Proof (of Proposition 2.3). If x∗ ∈ RN+ is the nonincreasing rearrangement of
x ∈ CN , we have
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σs(x)
q
q =

N∑
j=s+1

(x∗j )
q ≤ (x∗s)

q−p
N∑

j=s+1

(x∗j )
p ≤
(1
s

s∑
j=1

(x∗j )
p
) q−p

p
( N∑
j=s+1

(x∗j )
p
)

≤
(1
s
‖x‖pp
) q−p

p ‖x‖pp =
1

sq/p−1
‖x‖qp.

The result follows by taking the power 1/q in both sides of this inequality. ��

We strengthen the previous proposition by finding the smallest possible constant
cp,q in the inequality σs(x)q ≤ cp,qs

−1/p+1/q‖x‖p. This can be skipped on
first reading, but it is nonetheless informative because the proof technique, which
consists in solving a convex optimization problem by hand, will reappear in
Theorem 5.8 and Lemma 6.14.

Theorem 2.5. For any q > p > 0 and any x ∈ CN , the inequality

σs(x)q ≤
cp,q

s1/p−1/q
‖x‖p

holds with

cp,q :=
[(p
q

)p/q(
1− p

q

)1−p/q]1/p
≤ 1.

Let us point out that the frequent choice p = 1 and q = 2 gives

σs(x)2 ≤
1

2
√
s
‖x‖1.

Proof. Let x∗ ∈ RN+ be the nonincreasing rearrangement of x ∈ CN . Setting αj :=
(x∗j )

p, we will prove the equivalent statement

α1 ≥ α2 ≥ · · · ≥ αN ≥ 0

α1 + α2 + · · ·+ αN ≤ 1

}
=⇒ α

q/p
s+1 + α

q/p
s+2 + · · ·+ α

q/p
N ≤

cqp,q
sq/p−1

.

Thus, with r := q/p > 1, we aim at maximizing the convex function

f(α1, α2, . . . , αN ) := αrs+1 + αrs+2 + · · ·+ αrN

over the convex polygon

C := {(α1, . . . , αN ) ∈ R
N : α1 ≥ · · · ≥ αN ≥ 0 and α1 + · · ·+ αN ≤ 1}.

According to Theorem B.16, the maximum of f is attained at a vertex of C. The
vertices of C are obtained as intersections of N hyperplanes arising by turning N
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of the (N + 1) inequality constraints into equalities. Thus, we have the following
possibilities:

• If α1 = · · · = αN = 0, then f(α1, α2, . . . , αN ) = 0.
• If α1 + · · · + αN = 1 and α1 = · · · = αk > αk+1 = · · · = αN = 0 for some

1 ≤ k ≤ s, then f(α1, α2, . . . , αN ) = 0.
• If α1 + · · · + αN = 1 and α1 = · · · = αk > αk+1 = · · · = αN = 0

for some s + 1 ≤ k ≤ N , then α1 = · · · = αk = 1/k, and consequently
f(α1, α2, . . . , αN ) = (k − s)/kr.

It follows that

max
(α1,...,αN )∈C

f(α1, α2, . . . , αN ) = max
s+1≤k≤N

k − s

kr
.

Considering k as a continuous variable, we now observe that the function g(k) :=
(k − s)/kr is increasing until the critical point k∗ = (r/(r − 1))s and decreasing
thereafter. We obtain

max
(α1,...,αN )∈C

f(α1, α2, . . . , αN ) ≤ g(k∗) =
1

r

(
1− 1

r

)r−1 1

sr−1
= cqp,q

1

sq/p−1
.

This is the desired result. ��

Another possibility to define compressibility is to call a vector x ∈ CN

compressible if the number

card({j ∈ [N ] : |xj | ≥ t})

of its significant—rather than nonzero—components is small. This naturally leads
to the introduction of weak �p-spaces.

Definition 2.6. For p > 0, the weak �p space w�Np denotes the space CN equipped
with the quasinorm

‖x‖p,∞ := inf
{
M ≥ 0 : card({j ∈ [N ] : |xj | ≥ t}) ≤ Mp

tp
for all t > 0

}
.

To verify that the previous quantity indeed defines a quasinorm, we check, for any
x,y ∈ CN and any λ ∈ C, that ‖x‖ = 0 ⇒ x = 0, ‖λx‖ = |λ|‖x‖, and
‖x + y‖p,∞ ≤ 2max{1,1/p}(‖x‖p,∞ + ‖y‖p,∞

)
. The first two properties are easy,

while the third property is a consequence of the more general statement below.

Proposition 2.7. Let x1, . . . ,xk ∈ CN . Then, for p > 0,

‖x1 + · · ·+ xk‖p,∞ ≤ kmax{1,1/p}(‖x1‖p,∞ + · · ·+ ‖xk‖p,∞
)
.
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Proof. Let t > 0. If |x1j + · · ·+ xkj | ≥ t for some j ∈ [N ], then we have |xij | ≥ t/k
for some i ∈ [k]. This means that

{j ∈ [N ] : |x1j + · · ·+ xkj | ≥ t} ⊂
⋃
i∈[k]

{j ∈ [N ] : |xij | ≥ t/k} .

We derive

card({j ∈ [N ] : |x1j + · · ·+ xkj | ≥ t}) ≤
∑
i∈[k]

‖xi‖pp,∞
(t/k)p

=
kp
(
‖x1‖pp,∞ + · · ·+ ‖xk‖pp,∞

)
tp

.

According to the definition of the weak �p-quasinorm of x1 + · · ·+ xk, we obtain

‖x1 + · · ·+ xk‖p,∞ ≤ k
(
‖x1‖pp,∞ + · · ·+ ‖xk‖pp,∞

)1/p
.

Now, if p ≤ 1, comparing the �p and �1 norms in R
k gives

(
‖x1‖pp,∞ + · · ·+ ‖xk‖pp,∞

)1/p ≤ k1/p−1(‖x1‖p,∞ + · · ·+ ‖xk‖p,∞),

and if p ≥ 1, comparing the �p and �1 norms in Rk gives

(
‖x1‖pp,∞ + · · ·+ ‖xk‖pp,∞

)1/p ≤ ‖x1‖p,∞ + · · ·+ ‖xk‖p,∞ .

The result immediately follows. ��

Remark 2.8. The constant kmax{1,1/p} in Proposition 2.7 is sharp; see Exercise 2.2.

It is sometimes preferable to invoke the following alternative expression for the
weak �p-quasinorm of a vector x ∈ CN .

Proposition 2.9. For p > 0, the weak �p-quasinorm of a vector x ∈ C
N can be

expressed as

‖x‖p,∞ = max
k∈[N ]

k1/px∗k ,

where x∗ ∈ RN+ denotes the nonincreasing rearrangement of x ∈ CN .

Proof. Given x ∈ CN , in view of ‖x‖p,∞ = ‖x∗‖p,∞, we need to establish that
‖x‖ := maxk∈[N ] k

1/px∗k equals ‖x∗‖p,∞. For t > 0, we first note that either
{j ∈ [N ] : x∗j ≥ t} = [k] for some k ∈ [N ] or {j ∈ [N ] : x∗j ≥ t} = ∅. In the
former case, t ≤ x∗k ≤ ‖x‖/k1/p, and hence, card({j ∈ [N ] : x∗j ≥ t}) = k ≤
‖x‖p/tp. This inequality holds trivially in the case that {j ∈ [N ] : x∗j ≥ t} = ∅.
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According to the definition of the weak �p-quasinorm, we obtain ‖x∗‖p,∞ ≤ ‖x‖.
Let us now suppose that ‖x‖ > ‖x∗‖p,∞, so that ‖x‖ ≥ (1 + ε)‖x∗‖p,∞ for some
ε > 0. This means that k1/px∗k ≥ (1 + ε)‖x∗‖p,∞ for some k ∈ [N ]. Therefore,
the set

{j ∈ [N ] : x∗j ≥ (1 + ε)‖x∗‖p,∞/k1/p}

contains the set [k]. The definition of the weak �p-quasinorm yields

k ≤
‖x∗‖pp,∞(

(1 + ε)‖x∗‖p,∞/k1/p
)p =

k

(1 + ε)p
,

which is a contradiction. We conclude that ‖x‖ = ‖x∗‖p,∞. ��

This alternative expression of the weak �p-quasinorm provides a slightly easier
way to compare it to the �p-(quasi)norm, as follows.

Proposition 2.10. For any p > 0 and any x ∈ CN ,

‖x‖p,∞ ≤ ‖x‖p .

Proof. For k ∈ [N ], we write

‖x‖pp =
N∑
j=1

(x∗j )
p ≥

k∑
j=1

(x∗j )
p ≥ k(x∗k)

p .

Raising to the power 1/p and taking the maximum over k gives the result. ��

The alternative expression of the weak �p-quasinorm also enables us to easily
establish a variation of Proposition 2.3 where weak �p replaces �p.

Proposition 2.11. For any q > p > 0 and x ∈ CN , the inequality

σs(x)q ≤
dp,q

s1/p−1/q
‖x‖p,∞

holds with

dp,q :=
( p

q − p

)1/q
.

Proof. We may assume without loss of generality that ‖x‖p,∞ ≤ 1, so that x∗k ≤
1/k1/p for all k ∈ [N ]. We then have
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σs(x)
q
q =

N∑
k=s+1

(x∗k)
q ≤

N∑
k=s+1

1

kq/p
≤
∫ N
s

1

tq/p
dt = − 1

q/p− 1

1

tq/p−1

∣∣∣∣
t=N

t=s

≤ p

q − p

1

sq/p−1
.

Taking the power 1/q yields the desired result. ��

Proposition 2.11 shows that vectors x ∈ CN which are compressible in the sense
that ‖x‖p,∞ ≤ 1 for small p > 0 are also compressible in the sense that their errors
of best s-term approximation decay quickly with s.

We close this section with a technical result on the nonincreasing rearrangement.

Lemma 2.12. The nonincreasing rearrangement satisfies, for x, z ∈ CN ,

‖x∗ − z∗‖∞ ≤ ‖x− z‖∞ . (2.1)

Moreover, for s ∈ [N ],

|σs(x)1 − σs(z)1| ≤ ‖x− z‖1 , (2.2)

and for k > s,

(k − s)x∗k ≤ ‖x− z‖1 + σs(z)1 . (2.3)

Proof. For j ∈ [N ], the index set of j largest absolute entries of x intersects the
index set of N − j + 1 smallest absolute entries of z. Picking an index � in this
intersection, we obtain

x∗j ≤ |x�| ≤ |z�|+ ‖x− z‖∞ ≤ z∗j + ‖x− z‖∞.

Reversing the roles of x and z shows (2.1).
Next, let v ∈ CN be a best s-term approximation to z. Then

σs(x)1 ≤ ‖x− v‖1 ≤ ‖x− z‖1 + ‖z− v‖1 = ‖x− z‖1 + σs(z)1 ,

and again by symmetry this establishes (2.2). The inequality (2.3) follows from (2.2)
by noting that

(k − s)x∗k ≤
k∑

j=s+1

x∗j ≤
∑
j≥s+1

x∗j = σs(x)1 .

This completes the proof. ��
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2.2 Minimal Number of Measurements

The compressive sensing problem consists in reconstructing an s-sparse vector
x ∈ CN from

y = Ax

where A ∈ Cm×N is the so-called measurement matrix. With m < N , this system
of linear equations is underdetermined, but the sparsity assumption hopefully helps
in identifying the original vector x.

In this section, we examine the question of the minimal number of linear
measurements needed to reconstruct s-sparse vectors from these measurements,
regardless of the practicality of the reconstruction scheme. This question can in fact
take two meanings, depending on whether we require that the measurement scheme
allows for the reconstruction of all s-sparse vectors x ∈ CN simultaneously or
whether we require that, given an s-sparse vector x ∈ CN , the measurement scheme
allows for the reconstruction of this specific vector. While the second scenario seems
to be unnatural at first sight because the vector x is unknown a priori, it will become
important later when aiming at recovery guarantees when the matrix A is chosen at
random and the sparse vector x is fixed (so-called nonuniform recovery guarantees).

The minimal number m of measurements depends on the setting considered,
namely, it equals 2s in the first case and s + 1 in the second case. However, we
will see in Chap. 11 that if we also require the reconstruction scheme to be stable
(the meaning will be made precise later), then the minimal number of required
measurements additionally involves a factor of ln(N/s), so that recovery will never
be stable with only 2s measurements.

Before separating the two settings discussed above, it is worth pointing out the
equivalence of the following properties for given sparsity s, matrix A ∈ Cm×N ,
and s-sparse x ∈ CN :

(a) The vector x is the unique s-sparse solution of Az = y with y = Ax, that is,
{z ∈ CN : Az = Ax, ‖z‖0 ≤ s} = {x}.

(b) The vector x can be reconstructed as the unique solution of

minimize
z∈CN

‖z‖0 subject to Az = y. (P0)

Indeed, if an s-sparse x ∈ CN is the unique s-sparse solution of Az = y with
y = Ax, then a solution x� of (P0) is s-sparse and satisfies Ax� = y, so that
x� = x. This shows (a)⇒ (b). The implication (b)⇒ (a) is clear.

Recovery of All Sparse Vectors

Before stating the main result for this case, we observe that the uniqueness of sparse
solutions of underdetermined linear systems can be reformulated in several ways.
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For a matrix A ∈ Cm×N and a subset S ⊂ [N ], we use the notation AS to indicate
the column submatrix of A consisting of the columns indexed by S. Similarly, for
x ∈ CN we denote by xS either the subvector in CS consisting of the entries
indexed by S, that is, (xS)� = x� for � ∈ S, or the vector in CN which coincides
with x on the entries in S and is zero on the entries outside S, that is,

(xS)� =

{
x� if � ∈ S ,

0 if � /∈ S .
(2.4)

It should always be clear from the context which of the two options applies.

Theorem 2.13. Given A ∈ C
m×N , the following properties are equivalent:

(a) Every s-sparse vector x ∈ CN is the unique s-sparse solution of Az = Ax,
that is, if Ax = Az and both x and z are s-sparse, then x = z.

(b) The null space kerA does not contain any 2s-sparse vector other than the zero
vector, that is, kerA ∩ {z ∈ CN : ‖z‖0 ≤ 2s} = {0}.

(c) For every S ⊂ [N ] with card(S) ≤ 2s, the submatrix AS is injective as a map
from CS to Cm.

(d) Every set of 2s columns of A is linearly independent.

Proof. (b)⇒(a) Let x and z be s-sparse with Ax = Az. Then x − z is 2s-sparse
and A(x − z) = 0. If the kernel does not contain any 2s-sparse vector different
from the zero vector, then x = z.

(a)⇒(b) Conversely, assume that for every s-sparse vector x ∈ CN , we have
{z ∈ CN : Az = Ax, ‖z‖0 ≤ s} = {x}. Let v ∈ kerA be 2s-sparse. We can
write v = x−z for s-sparse vectors x, z with suppx∩supp z = ∅. Then Ax = Az
and by assumption x = z. Since the supports of x and z are disjoint, it follows that
x = z = 0 and v = 0.

For the equivalence of (b), (c), and (d), we observe that for a 2s-sparse vector v
with S = suppv, we have Av = ASvS . Noting that S = suppv ranges through
all possible subsets of [N ] of cardinality card(S) ≤ 2s when v ranges through all
possible 2s-sparse vectors completes the proof by basic linear algebra. ��

We observe, in particular, that if it is possible to reconstruct every s-sparse vector
x ∈ CN from the knowledge of its measurement vector y = Ax ∈ Cm, then (a)
holds and consequently so does (d). This implies rank(A) ≥ 2s. We also have
rank(A) ≤ m, because the rank is at most equal to the number of rows. Therefore,
the number of measurements needed to reconstruct every s-sparse vector always
satisfies

m ≥ 2s.

We are now going to see that m = 2s measurements suffice to reconstruct every
s-sparse vector—at least in theory.
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Theorem 2.14. For any integer N ≥ 2s, there exists a measurement matrix A ∈
Cm×N with m = 2s rows such that every s-sparse vector x ∈ CN can be recovered
from its measurement vector y = Ax ∈ Cm as a solution of (P0).

Proof. Let us fix tN > · · · > t2 > t1 > 0 and consider the matrix A ∈ Cm×N

with m = 2s defined by

A =

⎡
⎢⎢⎢⎣

1 1 · · · 1

t1 t2 · · · tN
...

... · · ·
...

t2s−1
1 t2s−1

2 · · · t2s−1
N

⎤
⎥⎥⎥⎦ . (2.5)

Let S = {j1 < · · · < j2s} be an index set of cardinality 2s. The square matrix
AS ∈ C2s×2s is (the transpose of) a Vandermonde matrix. Theorem A.24 yields

det(AS) =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1

tj1 tj2 · · · tj2s
...

... · · ·
...

t2s−1
j1

t2s−1
j2

· · · t2s−1
j2s

∣∣∣∣∣∣∣∣∣
=
∏
k<�

(tj� − tjk) > 0.

This shows that AS is invertible, in particular injective. Since the condition (c) of
Theorem 2.13 is fulfilled, every s-sparse vector x ∈ CN is the unique s-sparse
vector satisfying Az = Ax, so it can be recovered as the unique solution of (P0).

��

Many other matrices meet the condition (c) of Theorem 2.13. As an example, the
integer powers of t1, . . . , tN in the matrix of (2.5) do not need to be the consecutive
integers 0, 1, . . . , 2s − 1. Instead of the N × N Vandermonde matrix associated
with tN > · · · > t1 > 0, we can start with any matrix M ∈ RN×N that is totally
positive, i.e., that satisfies detMI,J > 0 for any sets I, J ⊂ [N ] of the same
cardinality, where MI,J represents the submatrix of M with rows indexed by I and
columns indexed by J . We then select any m = 2s rows of M, indexed by a set I ,
say, to form the matrix A. For an index S ⊂ [N ] of cardinality 2s, the matrix AS

reduces to MI,S ; hence, it is invertible. As another example, the numbers tN , . . . , t1
do not need to be positive nor real, as long as det(AS) �= 0 instead of det(AS) > 0.
In particular, with t� = e2πi(�−1)/N for � ∈ [N ], Theorem A.24 guarantees that the
(rescaled) partial Fourier matrix

A =

⎡
⎢⎢⎢⎣
1 1 1 · · · 1

1 e2πi/N e2πi2/N · · · e2πi(N−1)/N

...
...

...
...

...
1 e2πi(2s−1)/N e2πi(2s−1)2/N · · · e2πi(2s−1)(N−1)/N

⎤
⎥⎥⎥⎦
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allows for the reconstruction of every s-sparse vector x ∈ CN from y = Ax ∈ C2s.
In fact, an argument similar to the one we will use for Theorem 2.16 below shows
that the set of (2s) × N matrices such that det(AS) = 0 for some S ⊂ [N ] with
card(S) ≤ 2s has Lebesgue measure zero; hence, most (2s)×N matrices allow the
reconstruction of every s-sparse vector x ∈ CN from y = Ax ∈ C2s. In general,
the reconstruction procedure consisting of solving (P0) is not feasible in practice, as
will be shown in Sect. 2.3. However, in the case of Fourier measurements, a better
reconstruction scheme based on the Prony method can be used.

Theorem 2.15. For any N ≥ 2s, there exists a practical procedure for the
reconstruction of every 2s-sparse vector from its first m = 2s discrete Fourier
measurements.

Proof. Let x ∈ CN be an s-sparse vector, which we interpret as a function x from
{0, 1, . . . , N−1} into C supported on an index set S ⊂ {0, 1, . . . , N −1} of size s.
We suppose that this vector is observed via its first 2s discrete Fourier coefficients
x̂(0), . . . , x̂(2s− 1), where

x̂(j) :=

N−1∑
k=0

x(k)e−2πijk/N , 0 ≤ j ≤ N − 1.

We consider the trigonometric polynomial of degree s defined by

p(t) :=
1

N

∏
k∈S

(
1− e−2πik/Ne2πit/N

)
.

This polynomial vanishes exactly for t ∈ S, so we aim at finding the unknown
set S by determining p or equivalently its Fourier transform p̂. We note that, since x
vanishes on the complementary set S of S in {0, 1, . . . , N−1}, we have p(t)x(t) =
0 for all 0 ≤ t ≤ N − 1. By discrete convolution, we obtain p̂ ∗ x̂ = p̂ · x = 0, that
is to say,

(p̂ ∗ x̂)(j) :=
N−1∑
k=0

p̂(k) · x̂(j− k mod N) = 0 for all 0 ≤ j ≤ N − 1. (2.6)

We also note that, since 1
N p̂(k) is the coefficient of p(t) on the monomial e2πikt/N

and since p has degree s, we have p̂(0) = 1 and p̂(k) = 0 for all k > s. It remains
to determine the s discrete Fourier coefficients p̂(1), . . . , p̂(s). For this purpose, we
write the s equations (2.6) in the range s ≤ j ≤ 2s− 1 in the form

x̂(s) + p̂(1)x̂(s− 1) + · · · + p̂(s)x̂(0) = 0,

x̂(s+ 1) + p̂(1)x̂(s) + · · · + p̂(s)x̂(1) = 0,
...

...
. . .

...
...

x̂(2s− 1) + p̂(1)x̂(2s− 2) + · · · + p̂(s)x̂(s− 1) = 0.
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This translates into the system

⎡
⎢⎢⎢⎣
x̂(s− 1) x̂(s− 2) · · · x̂(0)

x̂(s) x̂(s− 1) · · · x̂(1)
...

...
. . .

...
x̂(2s− 2) x̂(2s− 3) · · · x̂(s− 1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
p̂(1)

p̂(2)
...

p̂(s)

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

x̂(s)

x̂(s+ 1)
...

x̂(2s− 1)

⎤
⎥⎥⎥⎦ .

Because x̂(0), . . . , x̂(2s − 1) are known, we solve for p̂(1), . . . , p̂(s). Since the
Toeplitz matrix above is not always invertible—take, e.g., x = [1, 0, . . . , 0]�, so
that x̂ = [1, 1, . . . , 1]�—we obtain a solution q̂(1), . . . , q̂(s) not guaranteed to be
p̂(1), . . . , p̂(s). Appending the values q̂(0) = 1 and q̂(k) = 0 for all k > s, the
linear system reads

(q̂ ∗ x̂)(j) = 0 for all s ≤ j ≤ 2s− 1.

Therefore, the s-sparse vector q ·x has a Fourier transform q̂ · x = q̂∗ x̂ vanishing on
a set of s consecutive indices. Writing this in matrix form and using Theorem A.24,
we derive that q ·x = 0, so that the trigonometric polynomial q vanishes on S. Since
the degree of q is at most s, the set of zeros of q coincide with the set S, which
can thus be found by solving a polynomial equation—or simply by identifying the
s smallest values of |q(j)|, 0 ≤ j ≤ N − 1. Finally, the values of x(j), j ∈ S, are
obtained by solving the overdetermined system of 2s linear equations imposed by
the knowledge of x̂(0), . . . , x̂(2s− 1). ��

Despite its appeal, the reconstruction procedure just described hides some
important drawbacks. Namely, it is not stable with respect to sparsity defects nor
is it robust with respect to measurement errors. The reader is invited to verify this
statement numerically in Exercise 2.8. In fact, we will prove in Chap. 11 that any
stable scheme for s-sparse reconstruction requires at least m ≈ c s ln(eN/s) linear
measurements, where c > 0 is a constant depending on the stability requirement.

Recovery of Individual Sparse Vectors

In the next setting, the s-sparse vector x ∈ CN is fixed before the measurement
matrix A ∈ Cm×N is chosen. The conditions for the vector x to be the unique
s-sparse vector consistent with the measurements depend on A as well as on x
itself. While this seems unnatural at first sight because x is unknown a priori, the
philosophy is that the conditions will be met for most (s + 1) × N matrices. This
setting is relevant since the measurement matrices are often chosen at random.

Theorem 2.16. For any N ≥ s+ 1, given an s-sparse vector x ∈ CN , there exists
a measurement matrix A ∈ Cm×N with m = s+1 rows such that the vector x can
be reconstructed from its measurement vector y = Ax ∈ Cm as a solution of (P0).
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Proof. Let A ∈ C
(s+1)×N be a matrix for which the s-sparse vector x cannot be

recovered from y = Ax (via �0-minimization). This means that there exists a vector
z ∈ C

N distinct from x, supported on a set S = supp(z) = {j1, . . . , js} of size
at most s (if ‖z‖0 < s, we fill up S with arbitrary elements j� ∈ [N ]), such that
Az = Ax. If supp(x) ⊂ S, then the equality

(
A(z − x)

)
[s]

= 0 shows that the
square matrix A[s],S is noninvertible; hence,

f(a1,1, . . . , a1,N , . . . , am,1, . . . , am,N ) := det(A[s],S) = 0.

If supp(x) �⊂ S, then the space V := {u ∈ CN : supp(u) ⊂ S} + Cx has
dimension s + 1, and the linear map G : V → Cs+1,v �→ Av is noninvertible,
since G(z − x) = 0. The matrix of the linear map G in the basis (ej1 , . . . , ejs ,x)
of V takes the form

Bx,S :=

⎡
⎢⎢⎣
a1,j1 · · · a1,js

∑
j∈supp(x) xja1,j

...
. . .

...
...

as+1,j1 · · · as+1,js

∑
j∈supp(x) xjas+1,j

⎤
⎥⎥⎦,

and we have

gS(a1,1, . . . , a1,N , . . . , am,1, . . . , am,N) := det(Bx,S) = 0.

This shows that the entries of the matrix A satisfy

(a1,1, . . . , a1,N , . . . , am,1, . . . , am,N ) ∈ f−1({0}) ∪
⋃

card(S)=s

g−1
S ({0}).

But since f and all gS , card(S) = s, are nonzero polynomial functions of the
variables (a1,1, . . . , a1,N , . . . , am,1, . . . , am,N), the sets f−1({0}) and g−1

S ({0}),
card(S) = s, have Lebesgue measure zero and so does their union. It remains to
choose the entries of the matrix A outside of this union of measure zero to ensure
that the vector x can be recovered from y = Ax. ��

2.3 NP-Hardness of �0-Minimization

As mentioned in Sect. 2.2, reconstructing an s-sparse vector x ∈ CN from its
measurement vector y ∈ Cm amounts to solving the �0-minimization problem

minimize
z∈CN

‖z‖0 subject to Az = y. (P0)
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Since a minimizer has sparsity at most s, the straightforward approach for finding
it consists in solving every rectangular system ASu = y, or rather every square
system A∗

SASu = A∗
Sy, for u ∈ CS where S runs through all the possible

subsets of [N ] with size s. However, since the number
(
N
s

)
of these subsets is

prohibitively large, such a straightforward approach is completely unpractical. By
way of illustration, for small problem sizes N = 1000 and s = 10, we would have
to solve

(
1000
10

)
≥
(
1000
10

)10
= 1020 linear systems of size 10 × 10. Even if each

such system could be solved in 10−10 seconds, the time required to solve (P0) with
this approach would still be 1010 seconds, i.e., more than 300 years. We are going
to show that solving (P0) in fact is intractable for any possible approach. Precisely,
for any fixed η ≥ 0, we are going to show that the more general problem

minimize
z∈CN

‖z‖0 subject to ‖Az− y‖2 ≤ η (P0,η)

is NP-hard.
We start by introducing the necessary terminology from computational com-

plexity. First, a polynomial-time algorithm is an algorithm performing its task in
a number of steps bounded by a polynomial expression in the size of the input.
Next, let us describe in a rather informal way a few classes of decision problems:

• The class P of P-problems consists of all decision problems for which there
exists a polynomial-time algorithm finding a solution.

• The class NP of NP-problems consists of all decision problems for which there
exists a polynomial-time algorithm certifying a solution. Note that the class P is
clearly contained in the class NP.

• The class NP-hard of NP-hard problems consist of all problems (not necessarily
decision problems) for which a solving algorithm could be transformed in
polynomial time into a solving algorithm for any NP-problem. Roughly speaking,
this is the class of problems at least as hard as any NP-problem. Note that the
class NP-hard is not contained in the class NP.

• The class NP-complete of NP-complete problems consist of all problems that
are both NP and NP-hard; in other words, it consists of all the NP-problems at
least as hard as any other NP-problem.

The situation can be summarized visually as in Fig. 2.1. It is a common belief that P
is strictly contained in NP, that is to say, that there are problems for which potential
solutions can be certified, but for which a solution cannot be found in polynomial
time. However, this remains a major open question to this day. There is a vast catalog
of NP-complete problems, the most famous of which being perhaps the traveling
salesman problem. The one we are going to use is exact cover by 3-sets.

Exact cover by 3-sets problem
Given a collection {Ci, i ∈ [N ]} of 3-element subsets of [m], does there exist an
exact cover (a partition) of [m], i.e., a set J ⊂ [N ] such that ∪j∈JCj = [m] and
Cj ∩ Cj′ = ∅ for all j, j′ ∈ J with j �= j′?
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�
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�

�

P

NP

NP-complete NP-hard

Fig. 2.1 Schematic representation of P, NP, NP-complete, and NP-hard problems

Taking for granted that this problem is NP-complete, we can now prove the main
result of this section.

Theorem 2.17. For any η ≥ 0, the �0-minimization problem (P0,η) for general
A ∈ Cm×N and y ∈ Cm is NP-hard.

Proof. By rescaling, we may and do assume that η < 1. According to the
previous considerations, it is enough to show that the exact cover by 3-sets problem
can be reduced in polynomial time to the �0-minimization problem. Let then
{Ci, i ∈ [N ]} be a collection of 3-element subsets of [m]. We define vectors
a1, a2, . . . , aN ∈ Cm by

(ai)j =

{
1 if j ∈ Ci,
0 if j �∈ Ci.

We then define a matrix A ∈ Cm×N and a vector y ∈ Cm by

A =

⎡
⎣a1 a2 · · · aN

⎤
⎦ , y = [1, 1, . . . , 1]�.

Since N ≤
(
m
3

)
, this construction can be done in polynomial time. If a vector

z ∈ CN obeys ‖Az − y‖2 ≤ η, then all the m components of the vector Az are
distant to 1 by at most η, so they are nonzero and ‖Az‖0 = m. But since each vector
ai has exactly 3 nonzero components, the vector Az =

∑N
j=1 zjaj has at most

3‖z‖0 nonzero components, ‖Az‖0 ≤ 3‖z‖0. Therefore, a vector z ∈ CN obeying
‖Az − y‖2 ≤ η must satisfy ‖z‖0 ≥ m/3. Let us now run the �0-minimization
problem, and let x ∈ CN denote the output. We separate two cases:



56 2 Sparse Solutions of Underdetermined Systems

1. If ‖x‖0 = m/3, then the collection {Cj, j ∈ supp(x)} forms an exact cover
of [m], for otherwise the m components of Ax =

∑N
j=1 xjaj would not all be

nonzero.
2. If ‖x‖0 > m/3, then no exact cover {Cj , j ∈ J} can exist, for otherwise the

vector z ∈ CN defined by zj = 1 if j ∈ J and zj = 0 if j �∈ J would satisfy
Az = y and ‖z‖0 = m/3, contradicting the �0-minimality of x.

This shows that solving the �0-minimization problem enables one to solve the exact
cover by 3-sets problem. ��

Theorem 2.17 seems rather pessimistic at first sight. However, it concerns the
intractability of the problem (P0) for general matrices A and vectors y. In other
words, any algorithm that is able to solve (P0) for any choice of A and any choice
of y must necessarily be intractable (unless P = NP ). In compressive sensing,
we will rather consider special choices of A and choose y = Ax for some sparse
x. We will see that a variety of tractable algorithms will then provably recover x
from y and thereby solve (P0) for such specifically designed matrices A. However,
to emphasize this point once more, such algorithms will not successfully solve the
�0-minimization problem for all possible choices of A and y due to NP-hardness.
A selection of tractable algorithms is introduced in the coming chapter.

Notes

Proposition 2.3 is an observation due to Stechkin. In the case p = 1 and q = 2, the
optimal constant c1,2 = 1/2 was obtained by Gilbert, Strauss, Tropp, and Vershynin
in [225]. Theorem 2.5 with optimal constants cp,q for all q > p > 0 is a particular
instance of a more general result, which also contains the shifting inequality of
Exercise 6.15; see [209].

The weak �p-spaces are weak Lp-spaces for purely atomic measures. The weak
Lp-spaces are also denotedLp,∞ and generalize to Lorentz spaces Lp,q [284]. Thus,
weak �p-spaces are a particular instance of more general spaces equipped with the
quasinorm

‖x‖p,q =
( N∑
k=1

kq/p−1(x∗k)
q
)1/q

.

The result of Theorem 2.16 is due to Wakin in [503]. Theorem 2.13 can be found
in the article by Cohen, Dahmen, and DeVore [123]. One can also add an equivalent
proposition expressed in terms of spark or in terms of Kruskal rank. The spark
sp(A) of a matrix A was defined by Donoho and Elad in [155] as the minimal size
of a linearly dependent set of columns of A. It is related to the Kruskal rank kr(A)
of A, defined in [313] as the maximal integer k such that any k columns of A are
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linearly independent, via sp(A) = kr(A) + 1. Thus, according to Theorem 2.13,
every s-sparse vector x ∈ CN is the unique s-sparse solution of Az = Ax if and
only if kr(A) ≥ 2s or if sp(A) > 2s.

Totally positive matrices were extensively studied by Karlin in [298]. One can
also consult the more recent book [389] by Pinkus.

The reconstruction procedure of Theorem 2.15 based on a discrete version of the
Prony method was known long before the development of compressive sensing. It is
also related to Reed–Solomon decoding [52, 232]. The general Prony method [402]
is designed for recovering a nonharmonic Fourier series of the form

f(t) =

s∑
k=1

xke
2πiωkt

from equidistant samples f(0), f(k/α), f(2k/α), . . . , f(2s/α). Here both the ωk ∈
R and the xk are unknown. First the ωk are found by solving an eigenvalue problem
for a Hankel matrix associated to the samples of f . In the second step, the xk are
found by solving a linear system of equations. The difference to the method of
Theorem 2.15 is due to the fact that the ωk are not assumed to lie on a grid anymore.
We refer to [344, 357] for more details. The Prony method has the disadvantage of
being unstable. Several approaches have been proposed to stabilize it [14,15,45,46,
401], although there seems to be a limit of how stable it can get when the number
s of terms gets larger. The recovery methods in the so-called theory of finite rate of
innovation are also related to the Prony method [55].

For an introduction to computational complexity, one can consult [19]. The
NP-hardness of the �0-minimization problem was proved by Natarajan in [359].
It was later proved by Ge, Jiang, and Ye in [220] that the �p-minimization problem
is NP-hard also for any p < 1; see Exercise 2.10.

Exercises

2.1. For 0 < p < 1, prove that the pth power of the �p-quasinorm satisfies the
triangle inequality

‖x+ y‖pp ≤ ‖x‖pp + ‖y‖pp, x,y ∈ C
N .

For 0 < p <∞, deduce the inequality

‖x1 + · · ·+xk‖p ≤ kmax{0,1/p−1}(‖x1‖p+ · · ·+ ‖xk‖p
)
, x1, . . . ,xk ∈ C

N .

2.2. Show that the constant kmax{1,1/p} in Proposition 2.7 is sharp.
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2.3. If u,v ∈ CN are disjointly supported, prove that

max(‖u‖1,∞, ‖v‖1,∞) ≤ ‖u+ v‖1,∞ ≤ ‖u‖1,∞ + ‖v‖1,∞

and show that these inequalities are sharp.

2.4. As a converse to Proposition 2.10, prove that for any p > 0 and any x ∈ CN ,

‖x‖p ≤ ln(eN)1/p‖x‖p,∞.

2.5. Given q > p > 0 and x ∈ CN , modify the proof of Proposition 2.3 to obtain

σs(x)q ≤
1

s1/p−1/q
‖x‖1−p/qp,∞ ‖x‖p/qp .

2.6. Let (Bn0 , B
n
1 , . . . , B

n
n) be the Bernstein polynomials of degree n defined by

Bni (x) :=

(
n

i

)
xi(1− x)n−i.

For 0 < x0 < x1 < · · · < xn < 1, prove that the matrix [Bni (xj)]
n
i,j=0 is totally

positive.

2.7. Prove that the product of two totally positive matrices is totally positive.

2.8. Implement the reconstruction procedure based on 2s discrete Fourier mea-
surements as described in Sect. 2.2. Test it on a few random examples. Then pass
from sparse to compressible vectors x having small σs(x)1 and test on perturbed
measurements y = Ax+ e with small ‖e‖2.

2.9. Let us assume that the vectors x ∈ RN are no longer observed via linear
measurements y = Ax ∈ Rm, but rather via measurements y = f(x), where f :
RN → Rm is a continuous map satisfying f(−x) = −f(x) for all x ∈ RN . Prove
that the minimal number of measurements needed to reconstruct every s-sparse
vector equals 2s. You may use the Borsuk–Ulam theorem:
If a continuous map F from the sphere Sn—relative to an arbitrary norm—of Rn+1

into Rn is antipodal, i.e.,

F (−x) = −F (x) for all x ∈ Sn,

then it vanishes at least once, i.e.,

F (x) = 0 for some x ∈ Sn.

2.10. NP-Hardness of �p-minimization for 0 < p < 1
Given A ∈ Cm×N and y ∈ Cm, the �p-minimization problem consists in
computing a vector x ∈ CN with minimal �p-quasinorm subject to Ax = y.
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The partition problem consists, given integers a1, . . . , an, in deciding whether there
exist two sets I, J ⊂ [n] such that I ∩ J = ∅, I ∪ J = [n], and

∑
i∈I ai =∑

j∈J aj . Assuming the NP-completeness of the partition problem, prove that the
�p-minimization problem is NP-hard. It will be helpful to introduce the matrix A
and the vector y defined by

A :=

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 · · · an −a1 −a2 · · · −an
1 0 · · · 0 1 0 · · · 0

0 1 · · · 0 0 1 · · · 0
...

. . . 0
...

. . . 0

0 · · · 0 1 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

and y = [0, 1, 1, . . . , 1]�.

2.11. NP-Hardness of rank minimization
Show that the rank-minimization problem

minimize
Z∈Cn1×n2

rank(Z) subject to A(Z) = y .

is NP-hard on the set of linear measurement maps A : Cn1×n2 → Cm and vectors
y ∈ Cm.



Chapter 3
Basic Algorithms

In this chapter, a selection of popular algorithms used in compressive sensing is
presented. The algorithms are divided into three categories: optimization methods,
greedy methods, and thresholding-based methods. Their rigorous analyses are
postponed until later, when appropriate tools such as coherence and restricted
isometry constants become available. Only intuitive justification is given for now.

3.1 Optimization Methods

An optimization problem is a problem of the type

minimize
x∈RN

F0(x) subject to Fi(x) ≤ bi, i ∈ [n],

where the function F0 : RN → R is called an objective function and the functions
F1, . . . , Fn : RN → R are called constraint functions. This general framework
also encompasses equality constraints of the type Gi(x) = ci, since the equality
Gi(x) = ci is equivalent to the inequalities Gi(x) ≤ ci and −Gi(x) ≤ −ci.
If F0, F1, . . . , Fn are all convex functions, then the problem is called a convex
optimization problem—see Appendix B.5 for more information. If F0, F1, . . . , Fn
are all linear functions, then the problem is called a linear program. Our sparse
recovery problem is in fact an optimization problem, since it translates into

minimize ‖z‖0 subject to Az = y. (P0)

This is a nonconvex problem, and we even have seen in Theorem 2.17 that it is
NP-hard in general. However, keeping in mind that ‖z‖qq approaches ‖z‖0 as q > 0
tends to zero, we can approximate (P0) by the problem

minimize ‖z‖q subject to Az = y. (Pq)

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 3,
© Springer Science+Business Media New York 2013
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For q > 1, even 1-sparse vectors are not solutions of (Pq)—see Exercise 3.1. For
0 < q < 1, (Pq) is again a nonconvex problem, which is also NP-hard in general—
see Exercise 2.10. But for the critical value q = 1, it becomes the following convex
problem (interpreted as the convex relaxation of (P0); see Sect. B.3 for the definition
of convex relaxation):

minimize ‖z‖1 subject to Az = y. (P1)

This principle is usually called �1-minimization or basis pursuit. There are several
specific algorithms to solve the optimization problem, and some of them are
presented in Chap. 15.

Basis pursuit

Input: measurement matrix A, measurement vector y.
Instruction:

x� = argmin ‖z‖1 subject to Az = y. (BP)

Output: the vector x�.

Let us complement the previous intuitive justification by the observation that
�1-minimizers are sparse, at least in the real setting. In the complex setting, this is
not necessarily true; see Exercise 3.2.

Theorem 3.1. Let A ∈ Rm×N be a measurement matrix with columns a1, . . . , aN .
Assuming the uniqueness of a minimizer x� of

minimize
z∈RN

‖z‖1 subject to Az = y,

the system {aj , j ∈ supp (x�)} is linearly independent, and in particular

‖x�‖0 = card(supp (x�)) ≤ m.

Proof. By way of contradiction, let us assume that the system {aj , j ∈ S} is linearly
dependent, where S = supp (x�). This means that there exists a nonzero vector
v ∈ RN supported on S such that Av = 0. Then, for any t �= 0,

‖x�‖1 < ‖x� + tv‖1 =
∑
j∈S
|x�j + tvj | =

∑
j∈S

sgn(x�j + tvj)(x
�
j + tvj).

If |t| is small enough, namely, |t| < minj∈S |x�j |/‖v‖∞, we have

sgn(x�j + tvj) = sgn(x�j) for all j ∈ S.

It follows that, for t �= 0 with |t| < minj∈S |x�j |/‖v‖∞,
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‖x�‖1 <
∑
j∈S

sgn(x�j)(x
�
j + tvj) =

∑
j∈S

sgn(x�j)x
�
j + t
∑
j∈S

sgn(x�j)vj

= ‖x�‖1 + t
∑
j∈S

sgn(x�j)vj .

This is a contradiction, because we can always choose a small t �= 0 such that
t
∑
j∈S sgn(x�j)vj ≤ 0. ��

In the real setting, it is also worth pointing out that (P1) can be recast as a linear
program by introducing slack variables z+, z− ∈ RN . Given z ∈ RN , these are
defined, for j ∈ [N ], by

z+j =

{
zj if zj > 0,

0 if zj ≤ 0,
z−j =

{
0 if zj > 0,

−zj if zj ≤ 0.

The problem (P1) is thus equivalent to a linear program with optimization variables
z+, z− ∈ RN , namely, to

minimize
z+,z−∈RN

N∑
j=1

(z+j + z−j ) subject to
[
A −A

] [z+
z−

]
= y,

[
z+

z−

]
≥ 0. (P′

1)

Given the solution (x+)�, (x−)� of this program, the solution of (P1) is recovered
by x� = (x+)� − (x−)�.

These considerations do not carry over to the complex setting. In this case,
we present alternative considerations that directly extend to a more general
�1-minimization taking measurement error into account, namely,

minimize ‖z‖1 subject to ‖Az− y‖2 ≤ η. (P1,η)

This variation is natural because in general the measurement vector y ∈ Cm is
not exactly equal to Ax ∈ Cm, but rather to Ax + e for some measurement error
e ∈ Cm that can be estimated in �2-norm, say, by ‖e‖2 ≤ η for some η ≥ 0.
Then, given a vector z ∈ CN , we introduce its real and imaginary parts u,v ∈
RN and a vector c ∈ RN such that cj ≥ |zj| =

√
u2j + v2j for all j ∈ [N ].

The problem (P1,η) is then equivalent to the following problem with optimization
variables c,u,v ∈ RN :

minimize
c,u,v∈RN

N∑
j=1

cj subject to

∥∥∥∥
[
Re(A) − Im(A)

Im(A) Re(A)

][
u

v

]
−
[
Re(y)

Im(y)

]∥∥∥∥
2

≤ η, (P′
1,η)

√
u21 + v21 ≤ c1,

...√
u2N + v2N ≤ cN .
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This is an instance of a second-order cone problem; see Appendix B.5 for more
details. Given its solution (c�,u�,v�), the solution to (P1,η) is given by x� = u� +
iv�. Note that the choice η = 0 yields the second-order cone formulation of (P1) in
the complex case.

The principle of solving (P1,η) is called quadratically constrained basis pursuit
(or sometimes noise-aware �1-minimization). Again, there is a choice of algorithms
to perform this task.

Quadratically constrained basis pursuit

Input: measurement matrix A, measurement vector y, noise level η.
Instruction:

x� = argmin ‖z‖1 subject to ‖Az− y‖2 ≤ η. (BPη)

Output: the vector x�.

The solution x� of

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η (3.1)

is strongly linked to the output of the basis pursuit denoising, which consists in
solving, for some parameter λ ≥ 0,

minimize
z∈CN

λ‖z‖1 + ‖Az− y‖22 . (3.2)

The solution of (3.1) is also related to the output of the LASSO, which consists in
solving, for some parameter τ ≥ 0,

minimize
z∈CN

‖Az− y‖2 subject to ‖z‖1 ≤ τ. (3.3)

Precisely, some links between the three approaches are given below.

Proposition 3.2. (a) If x is a minimizer of the basis pursuit denoising (3.2) with
λ > 0, then there exists η = ηx ≥ 0 such that x is a minimizer of the
quadratically constrained basis pursuit (3.1).

(b) If x is a unique minimizer of the quadratically constrained basis pursuit (3.1)
with η ≥ 0, then there exists τ = τx ≥ 0 such that x is a unique minimizer of
the LASSO (3.3).

(c) If x is a minimizer of the LASSO (3.3) with τ > 0, then there exists λ = λx ≥ 0
such that x is a minimizer of the basis pursuit denoising (3.2).

Proof. (a) We set η := ‖Ax−y‖2 and consider z ∈ CN such that ‖Az−y‖2 ≤ η.
Together with the fact that x is a minimizer of (3.2), this yields
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λ‖x‖1 + ‖Ax− y‖22 ≤ λ‖z‖1 + ‖Az− y‖22 ≤ λ‖z‖1 + ‖Ax− y‖22.

After simplification, we obtain ‖x‖1 ≤ ‖z‖1; hence, x is a minimizer of (3.1).
(b) We set τ := ‖x‖1 and consider z ∈ CN , z �= x, such that ‖z‖1 ≤ τ . Since x

is a unique minimizer of (3.1), this implies that z cannot satisfy the constraint
of (3.1); hence, ‖Az − y‖2 > η ≥ ‖Ax − y‖2. This shows that x is a unique
minimizer of (3.3).

(c) This part uses tools from convex analysis, and we refer to Theorem B.28 for a
proof. ��

Another type of �1-minimization problem is the Dantzig selector,

minimize
z∈CN

‖z‖1 subject to ‖A∗(Az− y)‖∞ ≤ τ . (3.4)

This is again a convex optimization problem. The intuition for the constraint is that
the residual r = Az − y should have small correlation with all columns aj of
the matrix A—indeed, ‖A∗(Az − y)‖∞ = maxj∈[N ] |〈r, aj〉|. A similar theory
developed for the �1-minimization problems (BP) and (BPη) later in the book is
valid for the Dantzig selector as well. Some aspects are covered in Exercises 4.11,
6.18, 9.11, and 15.6.

3.2 Greedy Methods

In this section, we introduce two iterative greedy algorithms commonly used in
compressive sensing. The first algorithm, called orthogonal matching pursuit, adds
one index to a target support Sn at each iteration and updates a target vector xn as
the vector supported on the target support Sn that best fits the measurements. The
algorithm is formally described as follows.

Orthogonal matching pursuit (OMP)

Input: measurement matrix A, measurement vector y.
Initialization: S0 = ∅, x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n̄:

Sn+1 = Sn ∪ {jn+1}, jn+1 := argmax
j∈[N ]

{
|(A∗(y −Axn))j |

}
, (OMP1)

xn+1 = argmin
z∈CN

{
‖y −Az‖2, supp(z) ⊂ Sn+1

}
. (OMP2)

Output: the n̄-sparse vector x� = xn̄.
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The projection step (OMP2) is the most costly part of the orthogonal matching
pursuit algorithm. It can be accelerated by using the QR-decomposition of ASn .
In fact, efficient methods exist for updating the QR-decomposition when a column
is added to the matrix. If available one may alternatively exploit fast matrix–vector
multiplications for A (like the fast Fourier transform; see Sect. C.1). We refer to
the discussion at the end of Sect. A.3 for details. In the case that fast matrix–vector
multiplication routines are available for A and A∗, they should also be used for
speed up of the computation of A∗(y −Axn).

The choice of the index jn+1 is dictated by a greedy strategy where one aims to
reduce the �2-norm of the residual y −Axn as much as possible at each iteration.
The following lemma (refined in Exercise 3.10) applied with S = Sn and v = xn

gives some insight as to why an index j maximizing |(A∗(y −Axn))j | is a good
candidate for a large decrease of the �2-norm of the residual.

Lemma 3.3. Let A ∈ Cm×N be a matrix with �2-normalized columns. Given
S ⊂ [N ], v supported on S, and j ∈ [N ], if

w := argmin
z∈CN

{
‖y −Az‖2, supp(z) ⊂ S ∪ {j}

}
,

then

‖y −Aw‖22 ≤ ‖y−Av‖22 − |(A∗(y −Av))j |2.

Proof. Since any vector of the form v + tej with t ∈ C is supported on S ∪ {j},
we have

‖y−Aw‖22 ≤ min
t∈C

‖y−A(v + tej)‖22.

Writing t = ρeiθ with ρ ≥ 0 and θ ∈ [0, 2π), we compute

‖y −A(v + tej)‖22 = ‖y −Av − tAej‖22
= ‖y −Av‖22 + |t|2‖Aej‖22 − 2Re(t̄〈y −Av,Aej〉)

= ‖y −Av‖22 + ρ2 − 2Re(ρe−iθ(A∗(y −Av))j)

≥ ‖y −Av‖22 + ρ2 − 2ρ|(A∗(y −Av))j |,

with equality for a properly chosen θ. As a quadratic polynomial in ρ, the latter
expression is minimized when ρ = |(A∗(y −Au))j |. This shows that

min
t∈C

‖y −A(v + tej)‖22 = ‖y −Av‖22 − |(A∗(y −Au))j |2,

which concludes the proof. ��
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We point out that the step (OMP2) also reads as

xn+1
Sn+1 = A†

Sn+1y,

where xn+1
Sn+1 denotes the restriction of xn+1 to its support set Sn+1 and where

A†
Sn+1 is the pseudo-inverse of ASn+1 ; see Sect. A.2 for details. This simply says

that z = xn+1
Sn+1 is a solution of A∗

Sn+1ASn+1z = A∗
Sn+1y. This fact is justified

by the following lemma, which will also be useful for other algorithms containing a
step similar to (OMP2).

Lemma 3.4. Given an index set S ⊂ [N ], if

v := argmin
z∈CN

{
‖y−Az‖2, supp(z) ⊂ S

}
,

then

(A∗(y −Av))S = 0. (3.5)

Proof. According the definition of v, the vector Av is the orthogonal projection of
y onto the space {Az, supp(z) ⊂ S}; hence, it is characterized by the orthogonality
condition

〈y −Av,Az〉 = 0 for all z ∈ C
N with supp(z) ⊂ S.

This means that 〈A∗(y −Av), z〉 = 0 for all z ∈ CN with supp(z) ⊂ S, which
holds if and only if (3.5) is satisfied. ��

A natural stopping criterion for the orthogonal matching pursuit algorithm is
Axn̄ = y. However, to account for measurement and computation errors, we use
instead ‖y − Axn̄‖2 ≤ ε or ‖A∗(y − Axn̄)‖∞ ≤ ε for some chosen tolerance
ε > 0. If there is an estimate for the sparsity s of the vector x ∈ C

N to be recovered,
another possible stopping criterion can simply be n̄ = s, since then the target vector
xn̄ is s-sparse. For instance, if A is a square orthogonal matrix, then the algorithm
with this stopping criterion successfully recovers an s-sparse vector x ∈ C

N from
y = Ax, since it can be seen that the vector xn produced at the nth iteration equals
the n-sparse vector consisting of n largest entries of x. More generally, the success
of recovery of s-sparse vectors via s iterations of the orthogonal matching pursuit
algorithm is determined by the following result.

Proposition 3.5. Given a matrix A ∈ Cm×N , every nonzero vector x ∈ CN

supported on a set S of size s is recovered from y = Ax after at most s iterations
of orthogonal matching pursuit if and only if the matrix AS is injective and

max
j∈S

|(A∗r)j | > max
�∈S

|(A∗r)�| (3.6)

for all nonzero r ∈
{
Az, supp(z) ⊂ S

}
.
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Proof. Let us assume that the orthogonal matching pursuit algorithm recovers all
vectors supported on a set S in at most s = card(S) iterations. Then, since two
vectors supported on S which have the same measurement vector must be equal, the
matrix AS is injective. Moreover, since the index chosen at the first iteration always
stays in the target support, if y = Ax for some x ∈ CN exactly supported on S,
then an index � ∈ S cannot be chosen at the first iteration, i.e., maxj∈S |(A∗y)j | >
|(A∗y)�|. Therefore, we have maxj∈S |(A∗y)j | > max�∈S |(A∗y)�| for all
nonzero y ∈

{
Az, supp(z) ⊂ S

}
. This shows the necessity of the two conditions

given in the proposition.
To prove their sufficiency, assuming that Ax1 �= y, . . . ,Axs−1 �= y (otherwise

there is nothing to do), we are going to prove that Sn is a subset of S of size n for
any 0 ≤ n ≤ s. This will imply Ss = S; hence, Axs = y by (OMP2), and finally
xs = x by the injectivity of AS . To establish our claim, given 0 ≤ n ≤ s − 1,
we first notice that Sn ⊂ S yields rn := y − Axn ∈

{
Az, supp(z) ⊂ S

}
, so

that the index jn+1 lies in S by (3.6) and Sn+1 = Sn ∪ {jn+1} ⊂ S by (OMP1).
This inductively proves that Sn is a subset of S for any 0 ≤ n ≤ s. Next, given
1 ≤ n ≤ s− 1, Lemma 3.4 implies that (A∗rn)Sn = 0. Therefore, according to its
definition in (OMP1), the index jn+1 does not lie in Sn, since this would mean that
A∗rn = 0 and in turn that rn = 0 by (3.6). This inductively proves that Sn is a set
of size n. The proof is now complete. ��

Remark 3.6. A more concise way to formulate the necessary and sufficient condi-
tions of Proposition 3.5 is the exact recovery condition, which reads

‖A†
SAS‖1→1 < 1; (3.7)

see Sect. A.1 for the definition of matrix norms. Implicitly, the existence of the
pseudo-inverse A†

S = (A∗
SAS)

−1A∗
S is equivalent to the injectivity of AS .

Moreover, (3.6) is then equivalent to

‖A∗
SASu‖∞ > ‖A∗

S
ASu‖∞ for all u ∈ C

s \ {0}.

Making the change v = A∗
SASu, this can be written as

‖v‖∞ > ‖A∗
S
AS(A

∗
SAS)

−1v‖∞ = ‖A∗
S
(A†

S)
∗v‖∞ for all v ∈ C

s \ {0}.

The latter reads ‖A∗
S
(A†

S)
∗‖∞→∞ < 1, that is to say, ‖A†

SAS‖1→1 < 1; see also
Remark A.6(a).

A weakness of the orthogonal matching pursuit algorithm is that, once an incor-
rect index has been selected in a target support Sn, it remains in all the subsequent
target supports Sn

′
for n′ ≥ n—see Sect. 6.4 where this issue is illustrated on

a detailed example. Hence, if an incorrect index has been selected, s iterations of
the orthogonal matching pursuit are not enough to recover a vector with sparsity s.
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A possible solution is to increase the number of iterations. The following algorithm,
called compressive sampling matching pursuit algorithm, proposes another strategy
when an estimation of the sparsity s is available. To describe it, it is convenient to
introduce the notations Hs(z) for the best s-term approximation to z ∈ CN and
Ls(z) for the support of the latter, i.e.,

Ls(z) := index set of s largest absolute entries of z ∈ C
N , (3.8)

Hs(z) := zLs(z). (3.9)

The nonlinear operator Hs is called hard thresholding operator of order s. Given
the vector z ∈ CN , the operator Hs keeps its s largest absolute entries and sets the
other ones to zero. Note that it may not be uniquely defined. To resolve this issue, we
choose the index set Ls(z) out of all possible candidates according to a predefined
rule, for instance, the lexicographic order.

Compressive sampling matching pursuit (CoSaMP)

Input: measurement matrix A, measurement vector y, sparsity level s.
Initialization: s-sparse vector x0, typically x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n̄:

Un+1 = supp(xn) ∪ L2s(A
∗(y −Axn)) , (CoSaMP1)

un+1 = argmin
z∈CN

{
‖y−Az‖2, supp(z) ⊂ Un+1

}
, (CoSaMP2)

xn+1 = Hs(u
n+1). (CoSaMP3)

Output: the s-sparse vector x� = xn̄.

3.3 Thresholding-Based Methods

In this section, we describe further algorithms involving the hard thresholding
operator Hs. The intuition for these algorithms, which justifies categorizing them
in a different family, relies on the approximate inversion of the action on sparse
vectors of the measurement matrix A by the action of its adjoint A∗. Thus, the basic
thresholding algorithm consists in determining the support of the s-sparse vector
x ∈ CN to be recovered from the measurement vector y = Ax ∈ Cm as the
indices of s largest absolute entries of A∗y and then in finding the vector with this
support that best fits the measurement. Formally, the algorithm reads as follows.
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Basic thresholding

Input: measurement matrix A, measurement vector y, sparsity level s.
Instruction:

S� = Ls(A
∗y), (BT1)

x� = argmin
z∈CN

{
‖y −Az‖2, supp(z) ⊂ S�

}
. (BT2)

Output: the s-sparse vector x�.

A necessary and sufficient condition resembling (3.6) can be given for the success
of s-sparse recovery using this simple algorithm.

Proposition 3.7. A vector x ∈ CN supported on a set S is recovered from y = Ax
via basic thresholding if and only if

min
j∈S

|(A∗y)j | > max
�∈S

|(A∗y)�|. (3.10)

Proof. It is clear that the vector x is recovered if and only if the index set S� defined
in (BT1) coincides with the set S, that is to say, if and only if any entry of A∗y on
S is greater than any entry of A∗y on S. This is property (3.10). ��

The more elaborate iterative hard thresholding algorithm is an iterative algorithm
to solve the rectangular system Az = y, knowing that the solution is s-sparse. We
shall solve the square system A∗Az = A∗y instead, which can be interpreted as the
fixed-point equation z = (Id−A∗A)z+A∗y. Classical iterative methods suggest
the fixed-point iteration xn+1 = (Id −A∗A)xn +A∗y. Since we target s-sparse
vectors, we only keep the s largest absolute entries of (Id − A∗A)xn + A∗y =
xn +A∗(y −Axn) at each iteration. The resulting algorithm reads as follows.

Iterative hard thresholding (IHT)

Input: measurement matrix A, measurement vector y, sparsity level s.
Initialization: s-sparse vector x0, typically x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n̄:

xn+1 = Hs(x
n +A∗(y −Axn)). (IHT)

Output: the s-sparse vector x� = xn̄.

The iterative hard thresholding algorithm does not require the computation of
any orthogonal projection. If we are willing to pay the price of the orthogonal
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projections, like in the greedy methods, it makes sense to look at the vector with
the same support as xn+1 that best fits the measurements. This leads to the hard
thresholding pursuit algorithm defined below.

Hard thresholding pursuit (HTP)

Input: measurement matrix A, measurement vector y, sparsity level s.
Initialization: s-sparse vector x0, typically x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n̄:

Sn+1 = Ls(x
n +A∗(y −Axn)), (HTP1)

xn+1 = argmin
z∈CN

{
‖y−Az‖2, supp(z) ⊂ Sn+1

}
. (HTP2)

Output: the s-sparse vector x� = xn̄.

Notes

More background on convex optimization can be found in Appendix B and in
the books [70, 369] by Boyd and Vandenberghe and by Nocedal and Wright,
respectively.

Basis pursuit was introduced by Chen, Donoho, and Saunders in [114].
The LASSO (Least Absolute Shrinkage and Selection Operator) algorithm is more
popular in the statistics literature than the quadratically constrained basis pursuit
or basis pursuit denoising algorithms. It was introduced by Tibshirani in [473].
The Dantzig selector (3.4) was introduced by Candès and Tao in [98]. Like the
LASSO, it is more popular in statistics than in signal processing.

A greedy strategy that does not involve any orthogonal projection consists in
updating xn as xn+1 = xn + tej , where t ∈ C and j ∈ [N ] are chosen to
minimize ‖y −Axn+1‖. The argument of Lemma 3.3 imposes the choice of j as a
maximizer of |(A∗(y−Axn))j | and then t = (A∗(y−Axn))j . This corresponds
to the matching pursuit algorithm, introduced in signal processing by Mallat and
Zhang in [342] and by Qian and Chen in [404] and in statistics as the projection
pursuit regression by Friedman and Stuetzle in [214]. In approximation theory, it is
known as pure greedy algorithm; see, for instance, the surveys [470, 471] and the
monograph [472] by Temlyakov. There, the orthogonal matching pursuit algorithm
is also known as orthogonal greedy algorithm. Just like matching pursuit, it was
introduced independently by several researchers in different fields, e.g., by Davis,
Mallat, and Zhang in [145], by Pati, Rezaiifar, and Krishnaprasad in [378], by Chen,
Billings, and Luo in [113], or in [277] by Högborn, where it was called CLEAN
in the context of astronomical data processing. The orthogonal matching pursuit
algorithm was analyzed in terms of sparse recovery by Tropp in [476].
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The compressive sampling matching pursuit algorithm was devised by Needell
and Tropp in [361]. It was inspired by the earlier regularized orthogonal matching
pursuit developed and analyzed by Needell and Vershynin in [362, 363].

The subspace pursuit algorithm, introduced by Dai and Milenkovic in [135], is
another algorithm in the greedy family, but it will not be examined in this book
(see [135] or [472] for its analysis). It bears some resemblance with compressive
sampling matching pursuit, except that, instead of 2s, only s indices of largest
absolute entries of the residual vector are selected and that an additional orthogonal
projection step is performed at each iteration. Its description is given below.

Subspace pursuit

Input: measurement matrix A, measurement vector y, sparsity level s.
Initialization: s-sparse vector x0, typically x0 = 0, S0 = supp(x0).
Iteration: repeat until a stopping criterion is met at n = n̄:

Un+1 = Sn ∪ Ls(A∗(y −Axn)), (SP1)

un+1 = argmin
z∈CN

{
‖y −Az‖2, supp(z) ⊂ Un+1

}
, (SP2)

Sn+1 = Ls(u
n+1), (SP3)

xn+1 = argmin
z∈CN

{
‖y −Az‖2, supp(z) ⊂ Sn+1

}
. (SP4)

Output: the s-sparse vector x� = xn̄.

The thresholding-based family also contains algorithms that do not require an
estimation of the sparsity s. In such algorithms, the hard thresholding operator
gives way to a soft thresholding operator with threshold τ > 0. This operator,
also encountered in (15.22) and (B.18), acts componentwise on a vector z ∈ C

N by
sending the entry zj to

Sτ (zj) =

{
sgn(zj)(|zj | − τ) if |zj | ≥ τ,

0 otherwise.

Another important method for sparse recovery is the message-passing algorithm
studied by Donoho, Maleki, and Montanari in [162]. The soft thresholding algo-
rithms will not be analyzed in this book (but see the Notes section of Chap. 15).

Which Algorithm Should One Choose? In principle, all the algorithms
introduced in this chapter work reasonably well in practice (with the possible excep-
tion of basic thresholding). Given a set of requirements, which algorithm should be
favored depends on the precise situation, e.g., via the specific measurement matrix
A and via the values of the parameters s,m,N .
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As a first criterion, the minimal number m of measurements for a sparsity s and
a signal length N may vary with each algorithm. Comparing the recovery rates and
identifying the best algorithm is then a matter of numerical tests. For this criterion,
the recovery performance of basic thresholding is significantly worse than the one of
other algorithms, although it is the fastest algorithms since it identifies the support
in only one step.

The speed of the algorithm is a second criterion, and it is also a matter of
numerical tests. However, we can give at least the following rough guidelines.
If the sparsity s is quite small, then orthogonal matching pursuit is extremely fast
because the speed essentially depends on the number of iterations, which typically
equals s when the algorithm succeeds. Compressive sampling matching pursuit and
hard thresholding pursuit are fast for small s, too, because each step involves the
computation of an orthogonal projection relative to AS with small S ⊂ [N ]. But if
the sparsity s is not that small compared toN , then orthogonal matching pursuit may
nonetheless require a significant time. The same applies to the homotopy method
(see Chap. 15) which builds the support of an �1-minimizer iteratively. The runtime
of iterative hard thresholding is almost not influenced by the sparsity s at all.

Basis pursuit, per se, is not an algorithm, so the runtime depends on the actual
algorithm that is used for the minimization. For Chambolle and Pock’s primal
dual algorithm (see Chap. 15), which constructs a sequence converging to an
�1-minimizer, the sparsity s has no serious influence on the speed. Hence, for
mildly large s, it can be significantly faster than orthogonal matching pursuit.
We emphasize this point to dispute the common misconception that greedy algo-
rithms are always faster than �1-minimization—this is only true for small sparsity.
The iteratively reweighted least squares method (see Chap. 15) may also be a good
alternative for mildly large sparsity.

Additionally, another important feature of an algorithm is the possibility to
exploit fast matrix–vector multiplication routines that are available for A and A∗.
In principle, any of the proposed methods can be sped up in this case, but the task
is complicated if orthogonal projection steps are involved. Fast matrix–vector mul-
tiplications are easily integrated in the iterative hard thresholding algorithm and in
Chambolle and Pock’s primal dual algorithm for �1-minimization. The acceleration
achieved in this context depends on the algorithm, and the fastest algorithm should
again be determined by numerical tests in the precise situation.

Exercises

3.1. Let q > 1 and let A be an m×N matrix with m < N . Prove that there exists
a 1-sparse vector which is not a minimizer of (Pq).

3.2. Given A =

[
1 0 −1
0 1 −1

]
, prove that the vector x = [1, ei2π/3, ei4π/3]� is the

unique minimizer of ‖z‖1 subject to Az = Ax. This shows that, in the complex
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setting, a unique �1-minimizer is not necessarily m-sparse, m being the number of
rows of the measurement matrix.

3.3. Let A ∈ Rm×N and y ∈ Rm. Assuming the uniqueness of the minimizer x� of

minimize
z∈RN

‖z‖1 subject to ‖Az− y‖ ≤ η,

where η ≥ 0 and ‖ · ‖ is an arbitrary norm on Rm, prove that x� is necessarily
m-sparse.

3.4. Given A ∈ Rm×N , suppose that every m ×m submatrix of A is invertible.
For x ∈ RN , let x� be the unique minimizer of ‖z‖1 subject to Az = Ax. Prove
that either x� = x or supp(x) �⊂ supp(x�).

3.5. For A∈Rm×N and x∈RN , prove that there is no ambiguity between z∈RN

and z ∈ CN when one says that the vectorx is the unique minimizer of ‖z‖1 subject
to Az = Ax.

3.6. Carefully check the equivalences of (P1) with (P′
1) and (P1,η) with (P′

1,η).

3.7. Given A ∈ Cm×N and τ > 0, show that the solution of

minimize
z∈CN

‖Az− y‖22 + τ‖z‖22

is given by

z� = (A∗A+ τId)−1A∗y.

3.8. Given A ∈ Cm×N , suppose that there is a unique minimizer f(y) ∈ CN of
‖z‖1 subject to ‖Az − y‖2 ≤ η whenever y belongs to some set S. Prove that the
map f is continuous on S.

3.9. Prove that any 1-sparse vector x ∈ C3 is recovered with one iteration of the
orthogonal matching pursuit algorithm for the measurement matrix

A =

[
1 −1/2 −1/2
0
√
3/2 −

√
3/2

]
.

We now add a measurement by appending the row [1 3 3] to A, thus forming the
matrix

Â =

⎡
⎣1 −1/2 −1/2
0
√
3/2 −

√
3/2

1 3 3

⎤
⎦ .

Prove that the 1-sparse vector x = [1 0 0]� cannot be recovered via the orthogonal
matching pursuit algorithm with the measurement matrix Â.
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3.10. Given a matrix A ∈ Cm×N with �2-normalized columns a1, . . . , aN and
given a vector y ∈ Cm, we consider an iterative algorithm where the index set Sn

is updated via Sn+1 = Sn ∪ {jn+1} for an unspecified index jn+1 and where the
output vector is updated via xn+1 = argmin{‖y−Az‖2, supp(z) ⊂ Sn+1}. Prove
that the �2-norm of the residual decreases according to

‖y−Axn+1‖22 = ‖y−Axn‖22 −Δn,

where the quantity Δn satisfies

Δn = ‖A(xn+1 − xn)‖22 = xn+1
jn+1(A

∗(y −Axn))jn+1

=
|(A∗(y −Axn))jn+1 |2

dist(ajn+1 , span{aj , j ∈ Sn})2

≥ |(A∗(y −Axn))jn+1 |2.

3.11. Implement the algorithms of this chapter. Choose A∈Rm×N with indepen-
dent random entries equal to 1/

√
m or −1/

√
m, each with probability 1/2. Test

the algorithms on randomly generated s-sparse signals, where first the support is
chosen at random and then the nonzero coefficients. By varying N,m, s, evaluate
the empirical success probability of recovery.



Chapter 4
Basis Pursuit

Let us recall that the intuitive approach to the compressive sensing problem of
recovering a sparse vector x ∈ CN from its measurement vector y = Ax ∈ Cm,
where m < N , consists in the �0-minimization problem

minimize
z∈CN

‖z‖0 subject to Az = y. (P0)

We have seen in Chap. 2 that this problem is unfortunately NP-hard in general.
Chapter 3 has therefore outlined several tractable strategies to solve the standard
compressive sensing problem. In the current chapter, we focus on the basis pursuit
(�1-minimization) strategy, which consists in solving the convex optimization
problem

minimize
z∈CN

‖z‖1 subject to Az = y. (P1)

We investigate conditions on the matrix A which ensure exact or approximate
reconstruction of the original sparse or compressible vector x. In Sect. 4.1, we start
with a necessary and sufficient condition for the exact reconstruction of every sparse
vector x ∈ CN as a solution of (P1) with the vector y ∈ Cm obtained as y = Ax.
This condition is called the null space property. In Sects. 4.2 and 4.3, we strengthen
this null space property to make the reconstruction via basis pursuit stable with
respect to sparsity defect and robust with respect to measurement error. In Sect. 4.4,
we discuss other types of necessary and sufficient conditions for the success of basis
pursuit to reconstruct an individual sparse vector x. Although such conditions do
not seem useful at first sight because they involve the a priori unknown vector x,
they will nevertheless be essential to establish the so-called nonuniform recovery
guarantees when the measurement matrix is random. In Sect. 4.5, we interpret
the recovery of sparse vectors via basis pursuit in terms of polytope geometry.
Section 4.6 closes the chapter with a short digression to the low-rank recovery
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problem and its approach via nuclear norm minimization. Again, a version of the
null space property is equivalent to the successful recovery of every low-rank matrix.

4.1 Null Space Property

In this section, we introduce the null space property, and we prove that it is a
necessary and sufficient condition for exact recovery of sparse vectors via basis
pursuit. The arguments are valid in the real and complex settings alike, so we first
state the results for a field K that can either be R or C. Then we establish the
equivalence of the real and complex null space properties. We recall that for a vector
v ∈ C

N and a set S ⊂ [N ], we denote by vS either the vector in C
S , which is the

restriction of v to the indices in S, or the vector in C
N which coincides with v on

the indices in S and is extended to zero outside S; see also (2.4). It should always
become clear from the context which variant of vS is meant (and sometimes both
variants lead to the same quantity, such as in expressions like ‖vS‖1).

Definition 4.1. A matrix A ∈ Km×N is said to satisfy the null space property
relative to a set S ⊂ [N ] if

‖vS‖1 < ‖vS‖1 for all v ∈ kerA \ {0}. (4.1)

It is said to satisfy the null space property of order s if it satisfies the null space
property relative to any set S ⊂ [N ] with card(S) ≤ s.

Remark 4.2. It is important to observe that, for a given v ∈ kerA \ {0}, the
condition ‖vS‖1 < ‖vS‖1 holds for any set S ⊂ [N ] with card(S) ≤ s as soon as
it holds for an index set of s largest (in modulus) entries of v.

Remark 4.3. There are two convenient reformulations of the null space property.
The first one is obtained by adding ‖vS‖1 to both sides of the inequality ‖vS‖1 <
‖vS‖1. Thus, the null space property relative to S reads

2 ‖vS‖1 < ‖v‖1 for all v ∈ kerA \ {0}. (4.2)

The second one is obtained by choosing S as an index set of s largest (in modulus)
entries of v and this time by adding ‖vS‖1 to both sides of the inequality. Thus, the
null space property of order s reads

‖v‖1 < 2 σs(v)1 for all v ∈ kerA \ {0}, (4.3)

where we recall from Definition 2.2 that, for p > 0, the �p-error of best s-term
approximation to x ∈ KN is defined by

σs(x)p = inf
‖z‖0≤s

‖x− z‖p.
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We now indicate the link between the null space property and exact recovery of
sparse vectors via basis pursuit.

Theorem 4.4. Given a matrix A ∈ Km×N , every vector x ∈ KN supported on a
set S is the unique solution of (P1) with y = Ax if and only if A satisfies the null
space property relative to S.

Proof. Given a fixed index set S, let us first assume that every vector x ∈ KN

supported on S is the unique minimizer of ‖z‖1 subject to Az = Ax. Thus, for
any v ∈ kerA \ {0}, the vector vS is the unique minimizer of ‖z‖1 subject to
Az = AvS . But we haveA(−vS) = AvS and−vS �= vS , becauseA(vS+vS) =
Av = 0 and v �= 0. We conclude that ‖vS‖1 < ‖vS‖1. This establishes the null
space property relative to S.

Conversely, let us assume that the null space property relative to S holds. Then,
given a vector x ∈ KN supported on S and a vector z ∈ KN , z �= x, satisfying
Az = Ax, we consider the vector v := x − z ∈ kerA \ {0}. In view of the null
space property, we obtain

‖x‖1 ≤ ‖x− zS‖1 + ‖zS‖1 = ‖vS‖1 + ‖zS‖1
< ‖vS‖1 + ‖zS‖1 = ‖ − zS‖1 + ‖zS‖1 = ‖z‖1.

This establishes the required minimality of ‖x‖1. ��

Letting the set S vary, we immediately obtain the following result as a conse-
quence of Theorem 4.4.

Theorem 4.5. Given a matrix A ∈ Km×N , every s-sparse vector x ∈ KN is
the unique solution of (P1) with y = Ax if and only if A satisfies the null space
property of order s.

Remark 4.6. (a) This theorem shows that for every y = Ax with s-sparse x
the �1-minimization strategy (P1) actually solves the �0-minimization problem
(P0) when the null space property of order s holds. Indeed, assume that every
s-sparse vector x is recovered via �1-minimization from y = Ax. Let z
be the minimizer of the �0-minimization problem (P0) with y = Ax then
‖z‖0 ≤ ‖x‖0 so that also z is s-sparse. But since every s-sparse vector is the
unique �1-minimizer, it follows that x = z.

(b) It is desirable for any reconstruction scheme to preserve sparse recovery if some
measurements are rescaled, reshuffled, or added. Basis pursuit actually features
such properties. Indeed, mathematically speaking, these operations consist in
replacing the original measurement matrix A by new measurement matrices Â
and Ã defined by

Â := GA, where G is some invertible m×m matrix,

Ã :=

[
A

B

]
, where B is some m′ ×N matrix.
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We observe that ker Â = kerA and ker Ã ⊂ kerA, hence the null space
property for the matrices Â and Ã remains fulfilled if it is satisfied for the
matrix A. It is not true that the null space property remains valid if we multiply
on the right by an invertible matrix—see Exercise 4.2.

We close this section by inspecting the influence of the underlying field. Unifying
the arguments by usingK for eitherR or C had the advantage of brevity, but it results
in a potential ambiguity about null space properties. Indeed, we often encounter real-
valued measurement matrices, and they can also be regarded as complex-valued
matrices. Thus, for such A ∈ R

m×N , the distinction between the real null space
kerR A and the complex null space kerC A = kerR A+ i kerR A leads, on the one
hand, to the real null space property relative to a set S, namely,

∑
j∈S
|vj | <
∑
�∈S

|v�| for all v ∈ kerR A,v �= 0, (4.4)

and, on the other hand, to the complex null space property relative to S, namely,

∑
j∈S

√
v2j + w2

j <
∑
�∈S

√
v2� + w2

� for all v,w ∈ kerR A, (v,w) �= (0,0). (4.5)

We are going to show below that the real and complex versions are in fact equivalent.
Therefore, there is no ambiguity when we say that a real measurement matrix allows
the exact recovery of all sparse vectors via basis pursuit: These vectors can be
interpreted as real or as complex vectors. This explains why we usually work in
the complex setting.

Theorem 4.7. Given a matrix A ∈ Rm×N , the real null space property (4.4)
relative to a set S is equivalent to the complex null space property (4.5) relative
to this set S.

In particular, the real null space property of order s is equivalent to the complex
null space property of order s.

Proof. We notice first that (4.4) immediately follows from (4.5) by setting w = 0.
So let us assume that (4.4) holds. We consider v,w ∈ kerR A with (v,w) �=
(0,0). If v and w are linearly dependent, then the inequality

∑
j∈S

√
v2j + w2

j <∑
�∈S
√
v2� + w2

� is clear, so we may suppose that they are linearly independent.
Then u := cos θ v + sin θw ∈ kerR A is nonzero, and (4.4) yields, for any θ ∈ R,

∑
j∈S
| cos θ vj + sin θ wj | <

∑
�∈S

| cos θ v� + sin θ w�|. (4.6)

For each k ∈ [N ], we define θk ∈ [−π, π] by the equalities

vk =
√
v2k + w2

k cos θk, wk =
√
v2k + w2

k sin θk,
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so that (4.6) reads

∑
j∈S

√
v2j + w2

j | cos(θ − θj)| <
∑
�∈S

√
v2� + w2

� | cos(θ − θ�)|.

We now integrate over θ ∈ [−π, π] to obtain

∑
j∈S

√
v2j + w2

j

∫ π
−π
| cos(θ − θj)|dθ <

∑
�∈S

√
v2� + w2

�

∫ π
−π
| cos(θ − θ�)|dθ.

For the inequality
∑

j∈S

√
v2j + w2

j <
∑

�∈S
√
v2� + w2

� , it remains to observe that

∫ π
−π
| cos(θ − θ′)|dθ

is a positive constant independent of θ′ ∈ [−π, π]—namely, 4. The proof is now
complete. ��

Remark 4.8. The equivalence of Theorem 4.7 extends to the stable and robust null
space properties introduced later in this chapter; see Exercise 4.5.

Nonconvex Minimization

Recall that the number of nonzero entries of a vector z ∈ CN is approximated by
the qth power of its �q-quasinorm,

N∑
j=1

|zj |q −→
q→0

N∑
j=1

1{zj �=0} = ‖z‖0.

This observation suggests to replace the �0-minimization problem (P0) by the
optimization problem

minimize
z∈CN

‖z‖q subject to Az = y. (Pq)

This optimization problem fails to recover even 1-sparse vectors for q > 1; see
Exercise 3.1. For 0 < q < 1, on the other hand, the optimization problem becomes
nonconvex and is even NP-hard; see Exercise 2.10. Thus, the case q = 1 might
appear as the only important one. Nonetheless, the properties of the �q-minimization
for 0 < q < 1 can prove useful on theoretical questions. Our goal here is merely
to justify the intuitive prediction that the problem (Pq) does not provide a worse
approximation of the original problem (P0) when q gets smaller. For this purpose,
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we need an analog of the null space property for 0 < q < 1. The proof of our
next result, left as Exercise 4.12, duplicates the proof of Theorem 4.4. It relies on
the fact that the qth power of the �q-quasinorm satisfies the triangle inequality; see
Exercise 2.1.

Theorem 4.9. Given a matrix A ∈ Cm×N and 0 < q ≤ 1, every s-sparse vector
x ∈ CN is the unique solution of (Pq) with y = Ax if and only if, for any set
S ⊂ [N ] with card(S) ≤ s,

‖vS‖q < ‖vS‖q for all v ∈ kerA \ {0}.

We can now prove that sparse recovery via �q-minimization implies sparse
recovery via �p-minimization whenever 0 < p < q ≤ 1.

Theorem 4.10. Given a matrix A ∈ Cm×N and 0 < p < q ≤ 1, if every s-sparse
vector x ∈ CN is the unique solution of (Pq) with y = Ax, then every s-sparse
vector x ∈ CN is also the unique solution of (Pp) with y = Ax.

Proof. According to Theorem 4.9, it is enough to prove that, if v ∈ kerA\{0} and
if S is an index set of s largest absolute entries of v, then

∑
j∈S
|vj |p <

∑
�∈S

|v�|p, (4.7)

as soon as (4.7) holds with q in place of p. Indeed, if (4.7) holds for q, then
necessarily vS �= 0 since S is an index of largest absolute entries and v �= 0.
The desired inequality (4.7) can therefore be rewritten as

∑
j∈S

1∑
�∈S

(|v�|/|vj|)p
< 1. (4.8)

Now observe that |v�|/|vj | ≤ 1 for � ∈ S and j ∈ S. This makes the left-hand side
of (4.8) a nondecreasing function of 0 < p ≤ 1. Hence, its value at p < q does not
exceed its value at q, which is less than one by hypothesis. This shows the validity
of (4.7) and concludes the proof. ��

4.2 Stability

The vectors we aim to recover via basis pursuit—or other schemes, for that matter—
are sparse only in idealized situations. In more realistic scenarios, we can only claim
that they are close to sparse vectors. In such cases, we would like to recover a
vector x ∈ CN with an error controlled by its distance to s-sparse vectors. This
property is usually referred to as the stability of the reconstruction scheme with
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respect to sparsity defect. We shall prove that the basis pursuit is stable under a
slightly strengthened version of the null space property.

Definition 4.11. A matrix A ∈ Cm×N is said to satisfy the stable null space
property with constant 0 < ρ < 1 relative to a set S ⊂ [N ] if

‖vS‖1 ≤ ρ ‖vS‖1 for all v ∈ kerA.

It is said to satisfy the stable null space property of order s with constant 0 < ρ < 1
if it satisfies the stable null space property with constant 0 < ρ < 1 relative to any
set S ⊂ [N ] with card(S) ≤ s.

The main stability result of this section reads as follows.

Theorem 4.12. Suppose that a matrix A ∈ Cm×N satisfies the stable null space
property of order s with constant 0 < ρ < 1. Then, for any x ∈ CN , a solution x�

of (P1) with y = Ax approximates the vector x with �1-error

‖x− x�‖1 ≤
2(1 + ρ)

(1− ρ)
σs(x)1. (4.9)

Remark 4.13. In contrast to Theorem 4.4 we cannot guarantee uniqueness of the �1-
minimizer anymore—although nonuniqueness is rather pathological. In any case,
even when the �1-minimizer is not unique, the theorem above states that every
solution x� of (P1) with y = Ax satisfies (4.9).

We are actually going to prove a stronger “if and only if” theorem below. The
result is a statement valid for any index set S in which the vector x� ∈ CN is
replaced by any vector z ∈ CN satisfying Az = Ax. Apart from improving
Theorem 4.12, the result also says that, under the stable null space property relative
to S, the distance between a vector x ∈ CN supported on S and a vector z ∈ CN

satisfying Az = Ax is controlled by the difference between their norms.

Theorem 4.14. The matrix A ∈ Cm×N satisfies the stable null space property with
constant 0 < ρ < 1 relative to S if and only if

‖z− x‖1 ≤
1 + ρ

1− ρ

(
‖z‖1 − ‖x‖1 + 2 ‖xS‖1

)
(4.10)

for all vectors x, z ∈ CN with Az = Ax.

The error bound (4.9) follows from Theorem 4.14 as follows: Take S to be a set
of s largest absolute coefficients of x, so that ‖xS‖1 = σs(x)1. If x� is a minimizer
of (P1), then ‖x�‖1 ≤ ‖x‖1 and Ax� = Ax. The right-hand side of inequality
(4.10) with z = x� can therefore be estimated by the right hand of (4.9).

Before turning to the proof of Theorem 4.14, we isolate the following observa-
tion, as it will also be needed later.
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Lemma 4.15. Given a set S ⊂ [N ] and vectors x, z ∈ CN ,

‖(x− z)S‖1 ≤ ‖z‖1 − ‖x‖1 + ‖(x− z)S‖1 + 2‖xS‖1.

Proof. The result simply follows from

‖x‖1 = ‖xS‖1 + ‖xS‖1 ≤ ‖xS‖1 + ‖(x− z)S‖1 + ‖zS‖1,

‖(x− z)S‖1 ≤ ‖xS‖1 + ‖zS‖1.

These two inequalities sum up to give

‖x‖1 + ‖(x− z)S‖1 ≤ 2‖xS‖1 + ‖(x− z)S‖1 + ‖z‖1.

This is the desired inequality. ��

Proof (of Theorem 4.14). Let us first assume that the matrix A satisfies (4.10) for
all vectors x, z ∈ CN with Az = Ax. Given a vector v ∈ kerA, since AvS =
A(−vS), we can apply (4.10) with x = −vS and z = vS . It yields

‖v‖1 ≤
1 + ρ

1− ρ

(
‖vS‖1 − ‖vS‖1

)
.

This can be written as

(1 − ρ)
(
‖vS‖1 + ‖vS‖1

)
≤ (1 + ρ)

(
‖vS‖1 − ‖vS‖1

)
.

After rearranging the terms, we obtain

‖vS‖1 ≤ ρ‖vS‖1,

and we recognize the stable null space property with constant 0 < ρ < 1 relative
to S.

Conversely, let us now assume that the matrix A satisfies the stable null space
property with constant 0 < ρ < 1 relative to S. For x, z ∈ CN with Az = Ax,
since v := z− x ∈ kerA, the stable null space property yields

‖vS‖1 ≤ ρ‖vS‖1. (4.11)

Moreover, Lemma 4.15 gives

‖vS‖1 ≤ ‖z‖1 − ‖x‖1 + ‖vS‖1 + 2‖xS‖1. (4.12)

Substituting (4.11) into (4.12), we obtain

‖vS‖1 ≤ ‖z‖1 − ‖x‖1 + ρ‖vS‖1 + 2‖xS‖1.
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Since ρ < 1, this can be rewritten as

‖vS‖1 ≤
1

1− ρ

(
‖z‖1 − ‖x‖1 + 2‖xS‖1

)
.

Using (4.11) once again, we derive

‖v‖1 = ‖vS‖1 + ‖vS‖1 ≤ (1 + ρ)‖vS‖1 ≤
1 + ρ

1− ρ

(
‖z‖1 − ‖x‖1 + 2‖xS‖1

)
,

which is the desired inequality. ��

Remark 4.16. Given the matrix A ∈ Cm×N , let us consider, for each index set
S ⊂ [N ] with card(S) ≤ s, the operator RS defined on kerA by RS(v) = vS .
The formulation (4.2) of the null space property says that

μ := max{‖RS‖1→1 : S ⊂ [N ], card(S) ≤ s} < 1/2.

It then follows that A satisfies the stable null space property with constant
ρ := μ/(1− μ) < 1. Thus, the stability of the basis pursuit comes for free if sparse
vectors are exactly recovered. However, the constant 2(1 + ρ)/(1− ρ) in (4.9) may
be very large if ρ is close to one.

4.3 Robustness

In realistic situations, it is also inconceivable to measure a signal x ∈ CN with
infinite precision. This means that the measurement vector y ∈ Cm is only an
approximation of the vector Ax ∈ Cm, with

‖Ax− y‖ ≤ η

for some η ≥ 0 and for some norm ‖ · ‖ on Cm—usually the �2-norm, but the
�1-norm will also be considered in Chap. 13. In this case, the reconstruction scheme
should be required to output a vector x� ∈ CN whose distance to the original
vector x ∈ CN is controlled by the measurement error η ≥ 0. This property is
usually referred to as the robustness of the reconstruction scheme with respect to
measurement error. We are going to show that if the problem (P1) is replaced by the
convex optimization problem

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖ ≤ η, (P1,η)

then the robustness of the basis pursuit algorithm is guaranteed by the following
additional strengthening of the null space property.



86 4 Basis Pursuit

Definition 4.17. The matrix A ∈ Cm×N is said to satisfy the robust null space
property (with respect to ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 relative to a set
S ⊂ [N ] if

‖vS‖1 ≤ ρ ‖vS‖1 + τ ‖Av‖ for all v ∈ C
N . (4.13)

It is said to satisfy the robust null space property of order swith constants 0 < ρ < 1
and τ > 0 if it satisfies the robust null space property with constants ρ, τ relative to
any set S ⊂ [N ] with card(S) ≤ s.

Remark 4.18. Observe that the above definition does not require that v is contained
in kerA. In fact, if v ∈ kerA, then the term ‖Av‖ in (4.13) vanishes, and we
see that the robust null space property implies the stable null space property in
Definition 4.11.

The following theorem constitutes the first main result of this section. It
incorporates the conclusion of Theorem 4.12 as the special case η = 0. The special
case of an s-sparse vector x ∈ C

N is also worth a separate look.

Theorem 4.19. Suppose that a matrix A ∈ Cm×N satisfies the robust null space
property of order s with constants 0 < ρ < 1 and τ > 0. Then, for any x ∈ CN ,
a solution x� of (P1,η) with y = Ax + e and ‖e‖ ≤ η approximates the vector x
with �1-error

‖x− x�‖1 ≤
2(1 + ρ)

(1− ρ)
σs(x)1 +

4τ

1− ρ
η.

In the spirit of Theorem 4.14, we are going to prove a stronger “if and only if”
statement valid for any index set S.

Theorem 4.20. The matrix A ∈ Cm×N satisfies the robust null space property
with constants 0 < ρ < 1 and τ > 0 relative to S if and only if

‖z− x‖1 ≤
1 + ρ

1− ρ

(
‖z‖1 − ‖x‖1 + 2 ‖xS‖1

)
+

2τ

1− ρ
‖A(z− x)‖ (4.14)

for all vectors x, z ∈ C
N .

Proof. We basically follow the same steps as in the proof of Theorem 4.14. First,
we assume that the matrix A satisfies (4.14) for all vectors x, z ∈ CN . Thus, for
v ∈ CN , taking x = −vS and z = vS yields

‖v‖1 ≤
1 + ρ

1− ρ

(
‖vS‖1 − ‖vS‖1

)
+

2τ

1− ρ
‖Av‖.

Rearranging the terms gives

(1 − ρ)
(
‖vS‖1 + ‖vS‖1

)
≤ (1 + ρ)

(
‖vS‖1 − ‖vS‖1

)
+ 2τ‖Av‖,
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that is to say

‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖.

This is the robust null space property with constants 0 < ρ < 1 and τ > 0 relative
to S.

Conversely, we assume that the matrix A satisfies the robust null space property
with constant 0 < ρ < 1 and τ > 0 relative to S. For x, z ∈ CN , setting v := z−x,
the robust null space property and Lemma 4.15 yield

‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖,

‖vS‖1 ≤ ‖z‖1 − ‖x‖1 + ‖vS‖1 + 2‖xS‖1.

Combining these two inequalities gives

‖vS‖1 ≤
1

1− ρ

(
‖z‖1 − ‖x‖1 + 2‖xS‖1 + τ‖Av‖

)
.

Using the robust null space property once again, we derive

‖v‖1 = ‖vS‖1 + ‖vS‖1 ≤ (1 + ρ)‖vS‖1 + τ‖Av‖

≤ 1 + ρ

1− ρ

(
‖z‖1 − ‖x‖1 + 2‖xS‖1

)
+

2τ

1− ρ
‖Av‖,

which is the desired inequality. ��

We now turn to the second main result of this section. It enhances the previous
robustness result by replacing the �1-error estimate by an �p-error estimate for
p ≥ 1. A final strengthening of the null space property is required. The corre-
sponding property could be defined relative to any fixed set S ⊂ [N ], but it is
not introduced as such because this will not be needed later.

Definition 4.21. Given q ≥ 1, the matrixA ∈ Cm×N is said to satisfy the �q-robust
null space property of order s (with respect to ‖ · ‖) with constants 0 < ρ < 1 and
τ > 0 if, for any set S ⊂ [N ] with card(S) ≤ s,

‖vS‖q ≤
ρ

s1−1/q
‖vS‖1 + τ ‖Av‖ for all v ∈ C

N .

In view of the inequality ‖vS‖p ≤ s1/p−1/q‖vS‖q for 1 ≤ p ≤ q, we observe
that the �q-robust null space property with constants 0 < ρ < 1 and τ > 0 implies
that, for any set S ⊂ [N ] with card(S) ≤ s,

‖vS‖p ≤
ρ

s1−1/p
‖vS‖1 + τ s1/p−1/q ‖Av‖ for all v ∈ C

N .



88 4 Basis Pursuit

Thus, for 1 ≤ p ≤ q, the �q-robust null space property implies the
�p-robust null space property with identical constants, modulo the change of norms
‖·‖ ← s1/p−1/q‖·‖. This justifies in particular that the �q-robust null space property
is a strengthening of the previous robust null space property. In Sect. 6.2, we will
establish the �2-robust null space property for measurement matrices with small
restricted isometry constants. The robustness of the quadratically constrained basis
pursuit algorithm is then deduced according to the following theorem.

Theorem 4.22. Suppose that the matrix A ∈ Cm×N satisfies the �2-robust null
space property of order s with constants 0 < ρ < 1 and τ > 0. Then, for any
x ∈ CN , a solution x� of (P1,η) with ‖ · ‖ = ‖ · ‖2, y = Ax + e, and ‖e‖2 ≤ η
approximates the vector x with �p-error

‖x− x�‖p ≤
C

s1−1/p
σs(x)1 +D s1/p−1/2 η, 1 ≤ p ≤ 2, (4.15)

for some constants C,D > 0 depending only on ρ and τ .

The estimates for the extremal values p = 1 and p = 2 are the most familiar.
They read

‖x− x�‖1 ≤ C σs(x)1 +D
√
s η,

‖x− x�‖2 ≤
C√
s
σs(x)1 +Dη. (4.16)

One should remember that the coefficient of σs(x)1 is a constant for p = 1 and
scales like 1/

√
s for p = 2, while the coefficient of η scales like

√
s for p = 1

and is a constant for p = 2. We then retrieve the correct powers of s appearing
in Theorem 4.22 for any 1 ≤ p ≤ 2 via interpolating the powers of s with linear
functions in 1/p.

Remark 4.23. Let us comment on the fact that, regardless of the �p-space in which
the error is estimated, the best s-term approximation error σs(x)1 with respect to
the �1-norm always appears on the right-hand side. One may wonder why the error
estimate in �2 does not involve σs(x)2 instead of σs(x)1/

√
s. In fact, we will see in

Theorem 11.5 that such an estimate is impossible in parameter regimes of (m,N)
that are interesting for compressive sensing. Besides, we have seen that unit �q-balls
with q < 1 provide good models for compressible vectors by virtue of Theorem 2.3
and its refinement Theorem 2.5. Indeed, if ‖x‖q ≤ 1 for q < 1, then, for p ≥ 1,

σs(x)p ≤ s1/p−1/q.

Assuming perfect measurements (that is, η = 0), the error bound (4.15) yields

‖x− x�‖p ≤
C

s1−1/p
σs(x)1 ≤ Cs1/p−1/q, 1 ≤ p ≤ 2.
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Therefore, the reconstruction error in �p obeys the same decay rate in s as the error
of best s-term approximation in �p for all p ∈ [1, 2]. From this point of view, the
term σs(x)1/s

1−1/p is not significantly worse than σs(x)p.

Remark 4.24. The �q-robust null space property may seem mysterious at first sight,
but it is necessary—save for the condition ρ < 1—to obtain estimates of the type

‖x− x�‖q ≤
C

s1−1/q
σs(x)1 +Dη, (4.17)

where x� is a minimizer of (P1,η) with y = Ax + e and ‖e‖ ≤ η. Indeed, given
v ∈ CN and S ⊂ [N ] with card(S) ≤ s, we apply (4.17) with x = v, e = −Av,
and η = ‖Av‖, so that x� = 0, to obtain

‖v‖q ≤
C

s1−1/q
‖vS‖1 +D ‖Av‖,

and in particular

‖vS‖q ≤
C

s1−1/q
‖vS‖1 +D ‖Av‖.

For the proof of Theorem 4.22, we establish the stronger result of Theorem 4.25
below. The result of Theorem 4.22 follows by choosing q = 2 and specifying z to
be x�.

Theorem 4.25. Given 1 ≤ p ≤ q, suppose that the matrix A ∈ Cm×N satisfies the
�q-robust null space property of order s with constants 0 < ρ < 1 and τ > 0. Then,
for any x, z ∈ CN ,

‖z− x‖p ≤
C

s1−1/p

(
‖z‖1 − ‖x‖1 + 2σs(x)1

)
+D s1/p−1/q ‖A(z− x)‖,

where C := (1 + ρ)2/(1− ρ) and D := (3 + ρ)τ/(1 − ρ).

Proof. Let us first remark that the �q-robust null space properties imply the �1-robust
and �p-robust null space property (p ≤ q) in the forms

‖vS‖1 ≤ ρ ‖vS‖1 + τ s1−1/q ‖Av‖, (4.18)

‖vS‖p ≤
ρ

s1−1/p
‖vS‖1 + τ s1/p−1/q ‖Av‖, (4.19)

for all v ∈ CN and all S ⊂ [N ] with card(S) ≤ s. Thus, in view of (4.18), applying
Theorem 4.20 with S chosen as an index set of s largest (in modulus) entries of x
leads to

‖z−x‖1 ≤
1 + ρ

1− ρ

(
‖z‖1−‖x‖1+2 σs(x)1

)
+

2τ

1− ρ
s1−1/q ‖A(z−x)‖. (4.20)
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Then, choosing S as an index set of s largest (in modulus) entries of z− x, we use
Theorem 2.5 to notice that

‖z− x‖p ≤ ‖(z− x)S‖p + ‖(z− x)S‖p ≤
1

s1−1/p
‖z− x‖1 + ‖(z− x)S‖p.

In view of (4.19), we derive

‖z− x‖p ≤
1

s1−1/p
‖z− x‖1 +

ρ

s1−1/p
‖(z− x)S‖1 + τ s1/p−1/q ‖A(z− x)‖

≤ 1 + ρ

s1−1/p
‖z− x‖1 + τ s1/p−1/q ‖A(z− x)‖. (4.21)

It remains to substitute (4.20) into the latter to obtain the desired result. ��

4.4 Recovery of Individual Vectors

In some cases, we deal with specific sparse vectors rather than with all vectors
supported on a given set or all vectors with a given sparsity. We then require some
recovery conditions that are finer than the null space property. This section provides
such conditions, with a subtle difference between the real and the complex settings,
due to the fact that the sign of a number z, defined as

sgn(z) :=

⎧⎪⎨
⎪⎩

z

|z| if z �= 0,

0 if z = 0,

is a discrete quantity when z is real, but it is not when z is complex. For a vector
x ∈ C

N , we denote by sgn(x) ∈ C
N the vector with components sgn(xj), j ∈ [N ].

Let us start with the complex version of a recovery condition valid for individual
sparse vectors.

Theorem 4.26. Given a matrix A ∈ Cm×N , a vector x ∈ CN with support S is
the unique minimizer of ‖z‖1 subject to Az = Ax if one of the following equivalent
conditions holds:

(a)
∣∣∣∑
j∈S

sgn(xj)vj

∣∣∣ < ‖vS‖1 for all v ∈ kerA \ {0},

(b) AS is injective, and there exists a vector h ∈ Cm such that

(A∗h)j = sgn(xj), j ∈ S, |(A∗h)�| < 1, � ∈ S.

Proof. Let us start by proving that (a) implies that x is the unique minimizer of
‖z‖1 subject to Az = Ax. For a vector z �= x such that Az = Ax, we just have to
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write, with v := x− z ∈ kerA \ {0},

‖z‖1 = ‖zS‖1 + ‖zS‖1 = ‖(x− v)S‖1 + ‖vS‖1
> |〈x− v, sgn(x)S〉|+ |〈v, sgn(x)S〉| ≥ |〈x, sgn(x)S〉| = ‖x‖1.

The implication (b)⇒ (a) is also simple. Indeed, observing that AvS = −AvS
for v ∈ kerA \ {0}, we write

∣∣∣∑
j∈S

sgn(xj)vj

∣∣∣ = |〈vS ,A∗h〉| = |〈AvS ,h〉| = |〈AvS ,h〉|

= |〈vS ,A
∗h〉| ≤ max

�∈S
|(A∗h)�| ‖vS‖1 < ‖vS‖1.

The strict inequality holds since ‖vS‖1 > 0; otherwise, the nonzero vector v ∈
kerA would be supported on S, contradicting the injectivity of AS .

The remaining implication (a) ⇒ (b) requires more work. We start by noticing
that (a) implies ‖vS‖1 > 0 for all v ∈ kerA \ {0}. It follows that the matrix AS

is injective. Indeed, assume ASvS = 0 for some vS �= 0 and complete vS to a
vector v ∈ CN by setting vS = 0. Then v is contained in kerA \ {0}, which is in
contradiction with ‖vS‖1 > 0 for all v ∈ kerA \ {0}. Next, since the continuous
function v �→ |〈v, sgn(x)S〉|/‖vS‖1 takes values less than one on the unit sphere
of kerA, which is compact, its maximum μ satisfies μ < 1. By homogeneity, we
deduce

|〈v, sgn(x)S〉| ≤ μ‖vS‖1 for all v ∈ kerA.

We then define, for μ < ν < 1, the convex set C and the affine set D by

C :=
{
z ∈ C

N : ‖zS‖1 + ν‖zS‖1 ≤ ‖x‖1
}
,

D :=
{
z ∈ C

N : Az = Ax
}
.

The intersection C ∩ D reduces to {x}. Indeed, we observe that x ∈ C ∩ D, and if
z �= x belongs to C∩D, setting v := x−z ∈ kerA\{0}, we obtain a contradiction
from

‖x‖1 ≥ ‖zS‖1 + ν‖zS‖1 = ‖(x− v)S‖1 + ν‖vS‖1
> ‖(x− v)S‖1 + μ‖vS‖1 ≥ |〈x− v, sgn(x)S〉|+ |〈v, sgn(x)S〉|

≥ |〈x, sgn(x)S〉| = ‖x‖1.

Thus, by the separation of convex sets via hyperplanes (see Theorem B.4 and
Remark B.5) there exists a vector w ∈ C

N such that

C ⊂
{
z ∈ C

N : Re 〈z,w〉 ≤ ‖x‖1
}
, (4.22)

D ⊂
{
z ∈ C

N : Re 〈z,w〉 = ‖x‖1
}
. (4.23)
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In view of (4.22), we have

‖x‖1 ≥ max
‖zS+νzS‖1≤‖x‖1

Re 〈z,w〉

= max
‖zS+νzS‖1≤‖x‖1

Re

(∑
j∈S

zjwj +
∑
j∈S

νzjwj/ν

)

= max
‖zS+νzS‖1≤‖x‖1

Re 〈zS + νzS ,wS + (1/ν)wS〉

= ‖x‖1 ‖wS + (1/ν)wS‖∞ = ‖x‖1 max {‖wS‖∞, (1/ν)‖wS‖∞} .

Setting aside the case x �= 0 (where the choice h = 0 would do), we obtain
‖wS‖∞ ≤ 1 and ‖wS‖∞ ≤ ν < 1. From (4.23), we derive Re 〈x,w〉 = ‖x‖1,
i.e., wj = sgn(xj) for all j ∈ S, and also Re 〈v,w〉 = 0 for all v ∈ kerA, i.e.,
w ∈ (kerA)⊥. Since (kerA)⊥ = ranA∗, we write w = A∗h for some h ∈ Cm.
This establishes (b). ��

Remark 4.27. (a) If a vector x ∈ C
N with support S satisfies condition (a) of

the previous theorem, then all vectors x′ ∈ C
N with support S′ ⊂ S and

sgn(x′)S′ = sgn(x)S′ are also exactly recovered via basis pursuit. Indeed, for
v ∈ kerA \ {0},

∣∣∣ ∑
j∈S′

sgn(x′j)vj

∣∣∣ =
∣∣∣∑
j∈S

sgn(xj)vj −
∑

j∈S\S′
sgn(xj)vj

∣∣∣

≤
∣∣∣∑
j∈S

sgn(xj)vj

∣∣∣+∑
j∈S\S′

|vj | < ‖vS‖1 + ‖vS\S′‖1 = ‖vS′‖1.

(b) Theorem 4.26 can be made stable under noise on the measurements and under
passing to compressible vectors; see Exercise 4.17 and also compare with
Theorem 4.33 below. However, the resulting error bounds are slightly weaker
than the ones of Theorem 4.25 under the �2-robust null space property.

The equalities (A∗h)j = sgn(xj), j ∈ S, considered in (ii) translate into
A∗
Sh = sgn(xS). This is satisfied for the choice h =

(
A†
S

)∗
sgn(xS), where the

expression A†
S := (A∗

SAS)
−1A∗

S of the Moore–Penrose pseudo-inverse of AS is
justified by its injectivity; see (A.28). Since the conditions |(A∗h)�| < 1, � ∈ S,
then read |〈a�,h〉| < 1, � ∈ S, where a1, . . . , aN are the columns of A, we can
state the following result.

Corollary 4.28. Let a1, . . . , aN be the columns of A ∈ C
m×N . For x ∈ C

N with
support S, if the matrix AS is injective and if

|〈A†
Sa�, sgn(xS)〉| < 1 for all � ∈ S, (4.24)

then the vector x is the unique solution of (P1) with y = Ax.
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Remark 4.29. In general, there is no converse to Theorem 4.26. Let us consider, for
instance,

A :=

[
1 0 −1
0 1 −1

]
, x =

⎡
⎣e

−πi/3

eπi/3

0

⎤
⎦ .

We can verify that x is the unique minimizer of ‖z‖1 subject to Az = Ax; see
Exercise 4.14. However, (a) fails. Indeed, for a vector v = [ζ, ζ, ζ] ∈ kerA \ {0},
we have |sgn(x1)v1+sgn(x2)v2| = |(eπi/3+e−πi/3)ζ| = |ζ|, while ‖v{3}‖1 = |ζ|.
In contrast, a converse to Theorem 4.26 holds in the real setting.

Theorem 4.30. Given a matrix A ∈ R
m×N , a vector x ∈ R

N with support S is
the unique minimizer of ‖z‖1 subject to Az = Ax if and only if one of the following
equivalent conditions holds:

(a)
∣∣∣∑
j∈S

sgn(xj)vj

∣∣∣ < ‖vS‖1 for all v ∈ kerA \ {0}.

(b) AS is injective, and there exists a vector h ∈ Rm such that

(A�h)j = sgn(xj), j ∈ S, |(A�h)�| < 1, � ∈ S.

Proof. The arguments given in the proof of Theorem 4.26 still hold in the real
setting; hence, it is enough to show that (a) holds as soon as x is the unique
minimizer of ‖z‖1 subject to Az = Ax. In this situation, for v ∈ kerA \ {0},
the vector z := x− v satisfies z �= x and Az = Ax, so that

‖x‖1 < ‖z‖1 = ‖zS‖1 + ‖zS‖1 = 〈z, sgn(z)S〉+ ‖zS‖1.

Taking ‖x‖1 ≥ 〈x, sgn(z)S〉 into account, we derive 〈x − z, sgn(z)S〉 < ‖zS‖1.
Hence, we have

〈v, sgn(x− v)S〉 < ‖vS‖1 for all v ∈ kerA \ {0}.

Writing the latter with v ∈ kerA \ {0} replaced by tv, t > 0, and simplifying by
t, we obtain

〈v, sgn(x− tv)S〉 < ‖vS‖1 for all v ∈ kerA \ {0} and all t > 0.

Taking t > 0 small enough so that sgn(xj−tvj) = sgn(xj)—note that it is essential
for x to be exactly supported on S—we conclude

〈v, sgn(x)S〉 < ‖vS‖1 for all v ∈ kerA \ {0},

which implies (a) by replacing v by −v if necessary. ��
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Remark 4.31. Theorem 4.30 shows that in the real setting the recovery of a given
vector via basis pursuit depends only on its sign pattern, but not on the magnitude
of its entries. Moreover, by Remark 4.27(a), if a vector x ∈ RN with support S is
exactly recovered via basis pursuit, then all vectors x′ ∈ RN with support S′ ⊂ S
and sgn(x′)S′ = sgn(x)S′ are also exactly recovered via basis pursuit.

The construction of the “dual vector” h described in property (b) of Theo-
rems 4.26 and 4.30 is not always straightforward. The following condition involving
an “inexact dual vector” is sometimes easier to verify.

Theorem 4.32. Let a1, . . . , aN be the columns of A ∈ Cm×N and let x ∈ CN

with support S. For α, β, γ, θ ≥ 0, assume that

‖(A∗
SAS)

−1‖2→2 ≤ α, max
�∈S

‖A∗
Sa�‖2 ≤ β, (4.25)

and that there exists a vector u = A∗h ∈ CN with h ∈ Cm such that

‖uS − sgn(xS)‖2 ≤ γ and ‖uS‖∞ ≤ θ. (4.26)

If θ + αβγ < 1, then x is the unique minimizer of ‖z‖1 subject to Az = Ax.

Proof. According to Theorem 4.26, it is enough to prove that

|〈v, sgn(xS)〉| < ‖vS‖1

for all v ∈ kerA\{0}. For such a v ∈ kerA\{0}, since u ∈ ranA∗ = (kerA)⊥,

|〈v, sgn(xS)〉| = |〈v, sgn(xS)− u〉| ≤ |〈vS ,uS〉|+ |〈vS , sgn(xS)− uS〉|

≤ θ‖vS‖1 + γ‖vS‖2,

where the last step uses both inequalities of (4.26). From (4.25), we derive

‖vS‖2 = ‖(A∗
SAS)

−1A∗
SASvS‖2 ≤ α‖A∗

SASvS‖2 = α‖A∗
SASvS‖2

= α
∥∥∑
�∈S

v�A
∗
Sa�
∥∥
2
≤ α
∑
�∈S

|v�|‖A∗
Sa�‖2 ≤ αβ‖vS‖1.

This implies that

|〈v, sgn(xS)〉| ≤ (θ + αβγ)‖vS‖1.

The conclusion follows from θ + αβγ < 1. ��

The next statement makes the result stable and robust with respect to sparsity
defect and measurement error. However, due to the appearance of an extra factor√
s, the error bound is not as sharp as (4.16), which was obtained under the �2-

robust null space property. Nevertheless, since it applies under weaker conditions
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on A, it proves useful in certain situations, especially when the null space property
(or the restricted isometry property to be studied in Chap. 6) is not known to hold or
harder to establish; see, for instance, Chap. 12.

Theorem 4.33. Let a1, . . . , aN be the columns of A ∈ Cm×N , let x ∈ CN with s
largest absolute entries supported on S, and let y = Ax + e with ‖e‖2 ≤ η. For
δ, β, γ, θ, τ ≥ 0 with δ < 1, assume that

‖A∗
SAS − Id‖2→2 ≤ δ, max

�∈S
‖A∗

Sa�‖2 ≤ β, (4.27)

and that there exists a vector u = A∗h ∈ C
N with h ∈ C

m such that

‖uS − sgn(xS)‖2 ≤ γ, ‖uS‖∞ ≤ θ, and ‖h‖2 ≤ τ
√
s. (4.28)

If ρ := θ+ βγ/(1− δ) < 1, then a minimizer x� of ‖z‖1 subject to ‖Az−y‖2 ≤ η
satisfies

‖x− x�‖2 ≤ C1σs(x)1 + (C2 + C3

√
s)η

for some constants C1, C2, C3 > 0 depending only on δ, β, γ, θ, τ .

Remark 4.34. The proof reveals explicit values of the constants, namely,

C1 =
2

1− ρ

(
1 +

β

1− δ

)
, C2 =

2
√
1 + δ

1− δ
μ

(
γ

1− ρ

(
1 +

β

1− δ

)
+ 1

)
,

C3 =
2τ

1− ρ

(
1 +

β

1− δ

)
.

For instance, the specific choice δ = β = γ = 1/2, θ = 1/4, and τ = 2, for which
ρ = 3/4, results in C1 ≈ 16, C2 = 10

√
6 ≈ 24.49, and C3 ≈ 32.

Proof. Observe that x is feasible for the quadratically constrained �1-minimization
problem due to the assumed �2-bound of the perturbation e. Setting v := x� − x,
the minimality of ‖x�‖1 implies

‖x‖1 ≥ ‖x�‖1 = ‖x+ v‖1 = ‖(x+ v)S‖1 + ‖(x+ v)S‖1
≥ Re〈(x+ v)S , sgn(xS)〉+ ‖vS‖1 − ‖xS‖1
= ‖xS‖1 +Re〈vS , sgn(xS)〉+ ‖vS‖1 − ‖xS‖1.

Rearranging and using the fact that ‖x‖1 = ‖xS‖1 + ‖xS‖1 yields

‖vS‖1 ≤ 2‖xS‖1 + |〈vS , sgn(xS)〉|. (4.29)
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In view of (4.28), we have

|〈vS , sgn(xS)〉| ≤ |〈vS , sgn(xS)− uS〉|+ |〈vS ,uS〉|

≤ γ‖vS‖2 + |〈v,u〉| + |〈vS ,uS〉|. (4.30)

The first inequality of (4.27) guarantees (see, for instance, Lemma A.12 and
Proposition A.15) that ‖(A∗

SAS)
−1‖2→2 ≤ 1/(1 − δ) and ‖A∗

S‖2→2 ≤
√
1 + δ.

Hence,

‖vS‖2 ≤
1

1− δ
‖A∗

SASvS‖2 ≤
1

1− δ
‖A∗

SASvS‖2 +
1

1− δ
‖A∗

SAv‖2

≤ 1

1− δ

∑
�∈S

|v�|‖A∗
Sa�‖2 +

√
1 + δ

1− δ
‖Av‖2

≤ β

1− δ
‖vS‖1 +

2
√
1 + δ

1− δ
η. (4.31)

The last step involved the inequality ‖Av‖2 ≤ 2η, which follows from the
optimization constraint as

‖Av‖2 = ‖A(x� − x)‖2 ≤ ‖Ax� − y‖2 + ‖y −Ax‖2 ≤ 2η.

The latter inequality combined with ‖h‖2 ≤ τ
√
s also gives

|〈v,u〉| = |〈v,A∗h〉| = |〈Av,h〉| ≤ ‖Av‖2‖h‖2 ≤ 2τη
√
s,

while ‖uS‖∞ ≤ θ implies |〈vS ,uS〉| ≤ θ‖vS‖1. Substituting these estimates in
(4.30) and in turn in (4.29) yields

‖vS‖1 ≤ 2‖xS‖1 +
(
θ +

βγ

1− δ

)
‖vS‖1 +

(
2γ

√
1 + δ

1− δ
+ 2τ

√
s

)
η.

Since ρ = θ + βγ/(1− δ) < 1, this can be rearranged as

‖vS‖1 ≤
2

1− ρ
‖xS‖1 +

2(μγ + τ
√
s)

1− ρ
η, (4.32)

where μ :=
√
1 + δ/(1− δ). Using (4.31) once again, we derive

‖vS‖2 ≤
2β

(1− ρ)(1− δ)
‖xS‖1 +

(
2β(μγ + τ

√
s)

(1− ρ)(1 − δ)
+ 2μ

)
η. (4.33)

Finally, combining (4.32) and (4.33), we obtain
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‖v‖2 ≤ ‖vS‖2 + ‖vS‖2 ≤ ‖vS‖1 + ‖vS‖2

≤ 2

1− ρ

(
1 +

β

1− δ

)
‖xS‖1 +

(
2(μγ + τ

√
s)

1− ρ

(
1 +

β

1− δ

)
+ 2μ

)
η.

Taking ‖xS‖1 = σs(x)1 into account, we arrive at the desired result. ��

The next characterization of exact recovery via �1-minimization involves tangent
cones to the �1-ball. For a vector x ∈ RN , we introduce the convex cone

T (x) = cone{z− x : z ∈ R
N , ‖z‖1 ≤ ‖x‖1}, (4.34)

where the notation cone represents the conic hull; see (B.4).

Theorem 4.35. For A ∈ R
m×N , a vector x ∈ R

N is the unique minimizer of ‖z‖1
subject to Az = Ax if and only if kerA ∩ T (x) = {0}.

Proof. Assume that kerA ∩ T (x) = {0}. Let x� be an �1-minimizer. We have
‖x�‖1 ≤ ‖x‖1 and Ax� = Ax, so that v := x� − x ∈ T (x) ∩ kerA = {0};
hence, x� = x. This means that x is the unique �1-minimizer. Conversely, assume
that x is the unique �1-minimizer. A vector v ∈ T (x) \ {0} can be written as
v =
∑

tj(zj − x) with tj ≥ 0 and ‖zj‖1 ≤ ‖x‖1. Note that v �= 0 implies∑
ti > 0, and we can consider t′j := tj/(

∑
ti). If v ∈ kerA, we would have

A(
∑

t′jzj) = Ax, while ‖
∑
t′jzj‖1 ≤

∑
t′j‖zj‖1 ≤ ‖x‖1. By uniqueness of an

�1-minimizer, this would imply
∑
t′jzj = x, so that v = 0, which is a contradiction.

We conclude that (T (x) \ {0}) ∩ kerA = ∅, i.e., T (x) ∩ kerA = {0}, as
desired. ��

The above theorem extends to robust recovery as follows.

Theorem 4.36. For A ∈ Rm×N , let x ∈ RN and y = Ax + e ∈ Rm with
‖e‖2 ≤ η. If

inf
v∈T (x),‖v‖2=1

‖Av‖2 ≥ τ

for some τ > 0, then a minimizer x� of ‖z‖1 subject to ‖Az− y‖2 ≤ η satisfies

‖x− x�‖2 ≤
2η

τ
. (4.35)

Proof. The inequality ‖x�‖1 ≤ ‖x‖1 yields v := (x� − x)/‖x� − x‖2 ∈ T (x)—
note that x� − x �= 0 can be safely assumed. Since ‖v‖2 = 1, the assumption
implies ‖Av‖2 ≥ τ , i.e., ‖A(x� − x)‖2 ≥ τ‖x� − x‖2. It remains to remark that

‖A(x� − x)‖2 ≤ ‖Ax� − y‖2 + ‖Ax− y‖2 ≤ 2η

in order to obtain the desired result. ��
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Remark 4.37. Theorems 4.35 and 4.36 both remain valid in the complex case by
considering the complex cone T (x) = cone{z− x : z ∈ CN , ‖z‖1 ≤ ‖x‖1}.

4.5 The Projected Cross-Polytope

In this section, we build on Theorem 4.30 to characterize geometrically the success
of basis pursuit in recovering an individual sparse vector or all sparse vectors
simultaneously. We first recall that a convex polytope P in Rn can be viewed either
as the convex hull of a finite set of points or as a bounded intersection of finitely
many half-spaces. For instance, with (e1, . . . , eN ) denoting the canonical basis of
RN , the unit ball of �N1 described as

BN1 := conv{e1,−e1, . . . , eN ,−eN} =
⋂

ε∈{−1,1}N

{
z ∈ R

N :

N∑
i=1

εizi ≤ 1
}

is a convex polytope which is sometimes called cross-polytope. Its image under
a matrix A ∈ Rm×N is also a convex polytope, since it is the convex hull of
{Ae1,−Ae1, . . . ,AeN ,−AeN}. A face of a convex polytope P in Rn is a set
of the form

F = {z ∈ P : 〈z,h〉 = c}

for some h ∈ Rn and c ∈ R, given that 〈z,h〉 ≤ c holds for all z ∈ P . Note
that c > 0 if F is a proper face of a symmetric convex polytope P , so we may
always assume c = 1 in this case. A face F of P is called a k-face if its affine hull
has dimension k. The 0-, 1-, (n− 2)-, and (n − 1)-faces are called vertices, edges,
ridges, and facets, respectively. For 0 ≤ k ≤ N − 1, it can be verified that the
k-faces of BN1 are the 2k+1

(
N
k+1

)
sets

{
z ∈ BN1 :

∑
j∈J

εjzj = 1
}
= conv{εjej, j ∈ J},

where J ⊂ [N ] has size k + 1 and ε ∈ {−1, 1}J . Thus, if a vector x ∈ RN with
‖x‖1 = 1 is exactly s-sparse, it is contained in exactly one (s − 1)-face of BN1 ,
namely,

Fx := conv{sgn(xj)ej , j ∈ supp(x)}.

We are now in a position to state the necessary and sufficient condition for the
recovery of individual vectors via basis pursuit.
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Theorem 4.38. For a matrix A ∈ Rm×N , a vector x ∈ RN with support S of
size s ≥ 1 is the unique minimizer of ‖z‖1 subject to Az = Ax if and only if the
(s − 1)-face Fx/‖x‖1

of BN1 maps to an (s − 1)-face of ABN1 not containing any
εAe�, ε = ±1, � ∈ S.

Proof. We assume without loss of generality that ‖x‖1 = 1. Before proving both
implications, we notice that if AFx is a face of ABN1 , then it is an (s − 1)-face if
and only if its affine hull Ax+ V ,

V :=
{∑
j∈S

tjsgn(xj)Aej , t ∈ R
S with

∑
j∈S

tj = 0
}
,

has dimension s − 1. This is equivalent to saying that the range of the linear map
f : t �→

∑
j∈S tjsgn(xj)Aej defined on T := {t ∈ RS :

∑
j∈S tj = 0} has

dimension s − 1. Since dim(T ) = s − 1, this is also equivalent to saying that f
is injective (in other words, that

∑
j∈S tjsgn(xj)Aej = 0 and

∑
j∈S tj = 0 can

both occur only when t = 0 or that the system {sgn(xj)Aej , j ∈ S} is affinely
independent).

Let us assume on the one hand that AFx is an (s−1)-face ofABN1 not containing
any εAe�, ε = ±1, � ∈ S. Since it is a face of ABN1 , there exists h ∈ Rm such that
if z ∈ BN1 , then

〈Az,h〉 ≤ 1 and
[
〈Az,h〉 = 1⇔ Az ∈ AFx

]
.

For j ∈ S, since sgn(xj)Aej ∈ AFx, we have

(A�h)j = 〈ej ,A�h〉 = 〈Aej ,h〉 = sgn(xj)〈sgn(xj)Aej ,h〉 = sgn(xj).

For � ∈ S, since Ae� �∈ AFx and −Ae� �∈ AFx, we have, for some ε = ±1,

|(A�h)�| = ε(A�h)� = ε〈e�,A�h〉 = 〈εAe�,h〉 < 1.

Let us now consider z ∈ RN satisfying Az = Ax and ‖z‖1 ≤ ‖x‖1 = 1. From

1 = 〈Ax,h〉 = 〈Az,h〉 = 〈z,A�h〉 =
∑
j∈S

zjsgn(xj) +
∑
�∈S

z�(A
�h)�

≤
∑
j∈S
|zj|+
∑
�∈S

|z�| = ‖z‖1 ≤ 1, (4.36)

we derive that all inequalities above are equalities, i.e., zjsgn(xj) = |zj | for all j ∈
S, z� = 0 for all � ∈ S (otherwise there is at least one strict inequality z�(A�h)� <
|z�|), and ‖z‖1 = 1. With tj := |zj| − |xj |, j ∈ S, we then obtain

∑
j∈S tj =

‖z‖1 − ‖x‖1 = 0 and
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∑
j∈S

tjsgn(xj)Aej =
∑
j∈S

zjAej −
∑
j∈S

xjAej = Az−Ax = 0.

The injectivity of f (due to the fact that ABN1 is an (s−1)-face) implies |zj| = |xj |
for all j ∈ S and in turn z = x. This proves that x is the unique minimizer of ‖z‖1
subject to Az = Ax.

On the other hand, let us assume that x is the unique minimizer of ‖z‖1 subject to
Az = Ax. By Theorem 4.30, the matrix AS is injective, and there exists h ∈ Rm

such that (A�h)j = sgn(xj) for all j ∈ S and |(A�h)�| < 1 for all � ∈ S. We
observe that, for z ∈ BN1 ,

〈Az,h〉 = 〈z,A�h〉 ≤ ‖z‖1‖A�h‖∞ ≤ 1. (4.37)

Moreover, if Az ∈ AFx, then 〈Az,h〉 = 1. Conversely, if 〈Az,h〉 = 1, equality
throughout (4.37) yields (as with (4.36)) zj = |zj|sgn(xj) for j ∈ S, z� = 0 for
� ∈ S, and ‖z‖1 = 1, i.e., z ∈ Fx and in turn Az ∈ AFx. This shows that AFx is
a face of ABN1 . Next, the injectivity of AS immediately implies the injectivity of
f , so that AFx is an (s − 1)-face. Finally, if εAe� ∈ AFx for some ε = ±1 and
� ∈ S, then ε(A�h)� = 〈εAe�,h〉 = 1, which is impossible. We have therefore
established that AFx is an (s− 1)-face of ABN1 not containing any εAe�, ε = ±1,
� ∈ S. ��

We finally use Theorem 4.38 to characterize the success of sparse recovery via
basis pursuit as a geometric property about the projected cross-polytope ABN1 . The
characterization basically says that all low-dimensional faces of BN1 remain faces
after decreasing the dimension through the action of A. This phenomenon goes
against the geometric intuition in small dimension, as some edges of the three-
dimensional cross-polytope are necessarily swallowed up when it is projected to be
drawn in two dimensions. The precise statement below involves the number fk(P )
of k-faces of a convex polytope P .

Theorem 4.39. For a matrix A ∈ R
m×N and an integer s ≥ 1, the following

properties are equivalent.

(a) Every s-sparse vector x ∈ RN is the unique minimizer of ‖z‖1 subject to
Az = Ax.

(b) fk(AB
N
1 ) = fk(B

N
1 ) whenever 0 ≤ k ≤ s− 1.

(c) fk(AB
N
1 ) = fk(B

N
1 ) for k = 0 and k = s− 1.

(d) ABN1 has 2N vertices, and every (s− 1)-face of BN1 maps to an (s− 1)-face
of ABN1 .

Proof. Before proving the chain of implications (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a),
we point out that every k-face of ABN1 can be written as AF , where F is a k-face
of BN1 . In other words, if Fk(P ) denotes the set of k-faces of a convex polytope P ,
then

Fk(ABN1 ) ⊂ AFk(BN1 ). (4.38)
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To see this, considering a k-face G of ABN1 , there exists h ∈ Rm such that if
z ∈ BN1 , then

〈Az,h〉 ≤ 1 and
[
〈Az,h〉 = 1⇔ Az ∈ G

]
.

Setting F := {z ∈ BN1 : Az ∈ G}, we see that AF = G and that if z ∈ BN1 , then

〈z,A�h〉 ≤ 1 and
[
〈z,A�h〉 = 1⇔ z ∈ F

]
,

so that F is a face ofBN1 . Thus, we can write F = conv{εjej, j ∈ J} for some J ⊂
[N ] and ε ∈ {−1, 1}J . As derived in the beginning of the proof of Theorem 4.38,
the fact that G = AF is a k-face is equivalent to the bijectivity of the map f :
t �→
∑

j∈J tjεjAej from T := {t ∈ RJ :
∑

j∈J tj = 0} onto the k-dimensional
vector space directing the affine hull of G. Hence, it follows that dim(T ) = k, i.e.,
card(J) = k + 1, so that F is indeed a k-face.

Let us now turn to the implication (a)⇒ (b). For 0 ≤ k ≤ s− 1, since every k-
face of BN1 can be written as some Fx for an exactly (k+1)-sparse vector x ∈ RN

with ‖x‖1 = 1, Theorem 4.38 implies that every k-face of BN1 maps to a k-face of
ABN1 . Thus, F �→ AF is a well-defined mapping fromFk(BN1 ) to Fk(ABN1 ), and
(4.38) says that it is surjective. Let us now assume that AF = AF ′ for two distinct
k-faces F and F ′ of BN1 . We write F = Fx and F ′ = Fx′ for some x,x′ ∈ RN

with ‖x‖1 = ‖x′‖1 = 1 and with supports S, S′ of size k + 1. If S = S′, then
sgn(xj) �= sgn(x′j) for some j ∈ S, and both sgn(xj)Aej and sgn(x′j)Aej would
belong to the k-face AF = AF ′, which is absurd since otherwise this face would
contain the zero vector as their midpoint. If S �= S′, then we pick � ∈ S′\S and ε =
±1 with εe� ∈ F ′; hence, εAe� ∈ AF ′, while � ∈ S yields εAe� �∈ AF = AF ′,
which is also absurd. This shows that the mapping F �→ AF is injective, hence
bijective fromFk(BN1 ) to Fk(ABN1 ). We conclude that the cardinality of these two
sets are identical, i.e., that fk(ABN1 ) = fk(B

N
1 ), as desired.

The implication (b) ⇒ (c) is straightforward, so we focus on (c) ⇒ (d). Since
vertices are just 0-faces, f0(ABN1 ) = f0(B

N
1 ) directly implies that ABN1 has 2N

vertices. Next, according to (4.38), for each (s − 1)-face G of ABN1 , we can find
an (s − 1)-face F of BN1 such that G = AF . Thus, G �→ F defines an injective
mapping from Fs−1(AB

N
1 ) into Fs−1(B

N
1 ). Since these two sets have the same

cardinality, we deduce that the mapping is surjective, too. This means that, for every
(s − 1)-face F of BN1 , there is an (s − 1)-face G of ABN1 with G = AF ; hence,
AF is indeed an (s− 1)-face of ABN1 . This proves (d).

Finally, let us show the implication (d)⇒ (a). In view of Remark 4.31, we only
need to prove that every exactly s-sparse vector x ∈ RN is the unique minimizer of
‖z‖1 subject to Az = Ax. Using Theorem 4.38, we need to prove that if x ∈ RN

has support S of size s, then AFx is an (s − 1)-face of ABN1 and AFx does not
contain any εAe� with ε = ±1 and � ∈ S. SinceFx is an (s−1)-face ofBN1 , the first
part of this statement follows directly from (d). For the second part of the statement,
given ε = ±1 and � ∈ S, if we had εAe� ∈ AFx = conv{sgn(xj)Aej , j ∈ S},
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then either εAe� = sgn(xj)Aej for some j ∈ S or εAe� is not a vertex of ABN1 .
In any case, this yields card(AF0(B

N
1 )) < 2N and then card(F0(AB

N
1 )) < 2N

by (4.38), which contradicts the fact that ABN1 has 2N vertices. We have now
proved (a). ��

4.6 Low-Rank Matrix Recovery

In this section, we shortly digress on the problem of recovering matrices of low rank
from incomplete linear measurements, which was already mentioned in Sect. 1.2 (p.
21). In this context, the number of nonzero singular values—the rank of a matrix—
replaces the number of nonzero entries: the sparsity of a vector.

We suppose that a matrix X ∈ Cn1×n2 of rank at most r is observed via the
measurement vector y = A(X) ∈ Cm where A is a linear map from Cn1×n2 to
Cm. As in the vector case the first approach to this problem that probably comes to
mind is to solve the rank-minimization problem

minimize
Z∈Cn1×n2

rank(Z) subject to A(X) = y.

Unfortunately, like �0-minimization this problem is NP-hard; see Exercise 2.11.
In fact, the rank of Z equals the �0-norm of the vector [σ1(Z), . . . , σn(Z)]

� of
singular values of Z. Motivated by the vector case where �1-minimization is a good
strategy, we relax the minimization of the rank to the nuclear norm minimization
problem

minimize
Z∈Cn1×n2

‖Z‖∗ subject to A(Z) = y. (4.39)

Here, the nuclear norm, defined by

‖Z‖∗ :=

n∑
j=1

σj(Z), n := min{n1, n2},

is the �1-norm of the vector of singular values of Z. We refer to (A.25) and
Appendix A.2 in general for the fact that ‖ ·‖∗ is indeed a norm. The problem (4.39)
is a convex optimization problem, and it is actually equivalent to a semidefinite
program; see Exercise 4.18.

The analysis of the nuclear norm minimization strategy (4.39) is analogous to
the vector case. In particular, the success of the strategy is equivalent to a null space
property.

Theorem 4.40. Given a linear map A from Cn1×n2 to Cm, every matrix X ∈
Cn1×n2 of rank at most r is the unique solution of (4.39) with y = A(X) if and
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only if, for all M ∈ kerA \ {0} with singular values σ1(M) ≥ · · · ≥ σn(M) ≥ 0,
n := min{n1, n2},

r∑
j=1

σj(M) <

n∑
j=r+1

σj(M). (4.40)

Proof. Let us first assume that every matrix X ∈ C
n1×n2 of rank at most r is

the unique solution of (4.39) with y = A(X). We consider the singular value
decomposition of a matrix M ∈ kerA\{0} and write M = Udiag(σ1, . . . , σn)V

∗

for σ1 ≥ · · · ≥ σn ≥ 0 and U ∈ C
n1×n1 ,V ∈ C

n2×n2 unitary. Setting M1 =
Udiag(σ1, . . . , σr, 0, . . . , 0)V

∗ and M2 = Udiag(0, . . . , 0,−σr+1, . . . ,−σn)V∗,
we have M = M1 −M2. Thus, A(M) = 0 translates into A(M1) = A(M2).
Since the rank of M1 is at most r, its nuclear norm must be smaller than the
nuclear norm of M2. This means that σ1 + · · · + σr < σr+1 + · · · + σn, as
desired.

Conversely, let us now assume that
∑r

j=1 σj(M) <
∑n

j=r+1 σj(M) for every
M ∈ kerA \ {0} with singular values σ1(M) ≥ · · · ≥ σn(M) ≥ 0. Consider a
matrix X ∈ C

n1×n2 of rank at most r and a matrix Z ∈ C
n1×n2 , Z �= X, satisfying

A(Z) = A(X). We aim at proving that ‖Z‖∗ > ‖X‖∗. Let us set M := X − Z ∈
kerA \ {0}. Lemma A.18 ensures that the singular values σj(M), σj(Z), σj(M)
satisfy

‖Z‖∗ =

n∑
j=1

σj(X−M) ≥
n∑
j=1

|σj(X) − σj(M)|.

For j ∈ [r], we have |σj(X)− σj(M)| ≥ σj(X)− σj(M), and for r+ 1 ≤ j ≤ n,
it holds |σj(X)− σj(M)| = σj(M). In view of our hypothesis, we derive

‖Z‖∗ ≥
r∑
j=1

σj(X)−
r∑
j=1

σj(M) +

n∑
j=r+1

σj(M) >

r∑
j=1

σj(X) = ‖X‖∗.

This establishes the desired inequality. ��

Like in the vector case, one can introduce stable and robust versions of the rank
null space property (4.40) and show corresponding error estimates for reconstruction
via nuclear norm minimization; see Exercises 4.19 and 4.20. Also, recovery
conditions for individual low-rank matrices can be shown, analogously to the results
for the vector case in Sect. 4.4; see Exercise 4.21.

In the remainder of the book, the low-rank recovery problem will only be treated
via exercises; see, e.g., Exercises 6.25 and 9.12. The reader is, of course, very
welcome to work through them.
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Notes

Throughout the chapter, we have insisted on sparse vectors to be unique solutions
of (P1). If we dropped the uniqueness requirement, then a necessary and sufficient
condition for every s-sparse vector to be a solution of (P1) would be a weak null
space property where the strict inequality is replaced by a weak inequality sign.

The null space property is somewhat folklore in the compressive sensing
literature. It appeared implicitly in works of Donoho and Elad [155], of Donoho
and Huo [158], and of Elad and Bruckstein [181]. Gribonval and Nielsen also
isolated the notion in [239]. The name was first used by Cohen et al. in [123],
albeit for a property slightly more general than (4.3), namely, ‖v‖1 ≤ C σs(v)1
for all v ∈ kerA, where C ≥ 1 is an unspecified constant. We have coined the
terms stable and robust null space properties for some notions that are implicit in
the literature.

The equivalence between the real and complex null space properties was
established in [211] using a different argument than the one of Theorem 4.7. The
result was generalized by Lai and Liu in [315]. The proof of Theorem 4.7 follows
their argument.

Given a measurement matrix A ∈ Km×N and a vectorx ∈ KN , one can rephrase
the optimization problem (P1) with y = Ax as the problem of best approximation
to x ∈ KN from the subspace kerA of KN in the �1-norm. Some of the results of
this chapter can be derived using known characterizations of best �1-approximation.
The book [388] by Pinkus is a good source on the subject, although it does not touch
the complex setting.

The term instance optimality is sometimes also used for what we called stability
in this chapter. Chapter 11 gives more details on this topic.

The stability and robustness of sparse reconstruction via basis pursuit, as stated
after Theorem 4.22, were established by Candès et al. in [95] under a restricted
isometry property—see Chap. 6—condition on the measurement matrix.

The fact that sparse recovery via �q-minimization implies sparse recovery via �p-
minimization whenever 0<p<q≤1 was proved by Gribonval and Nielsen in [240].

The sufficient condition (b) of Theorems 4.26 and 4.30, as well as Corol-
lary 4.28, can be found in works of Fuchs [215] and of Tropp [477]. In [94], Candès
et al. stated that condition (b) is also necessary for partial Fourier matrices. The
argument is slightly imprecise, since it would generalize to other measurement
matrices and contradict Remark 4.29, but it is correct for real matrices; see
Theorem 4.30. The discrepancy between real and complex settings disappears if
uniqueness of minimizers and strict inequalities are not required; see Exercise 4.15.

The recovery conditions of Theorems 4.35 and 4.36 appeared in more general
form in [108].

The success of sparse recovery via basis pursuit was characterized in terms of
faces of polytopes by Donoho in [151], where the condition of Corollary 4.39 was
also interpreted in terms of neighborliness of the polytope ABN1 —see
Exercise 4.16.
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Exercises

4.1. Suppose that A ∈ Cm×N satisfies the null space property of order s.
Theorems 4.5 and 2.13 guarantee that kerA does not contain any 2s-sparse vectors
other than the zero vector. Give a direct proof of this fact.

4.2. Find a 2× 3 matrix A and a nonsingular 3× 3 diagonal matrix D such that A
has the null space property of order 1 but AD does not.

4.3. Prove that there exist a matrix A and an individual vector x such that x can be
recovered from Ax via basis pursuit with a number of measurementsm < 2s.

4.4. Suppose that the null space of a real matrix A is a two-dimensional space with
basis (v,w). Prove that A has the null space property of order s if and only if

∑
j∈S
|vj | <
∑
�∈S

|v�|,
∑
j∈S
|wj | <

∑
�∈S

|w�|,
∑
j∈S
|viwj−vjwi| <

∑
�∈S

|viw�−v�wi|,

for all i ∈ [N ] and all S ⊂ [N ] with card(S) ≤ s.

4.5. Prove the equivalence between the real and complex stable null space prop-
erties with constant 0 < ρ < 1 relative to a set S. More generally, prove the
equivalence between the real and complex robust null space properties, in the
following sense: Given A ∈ R

m×N , a constant ρ > 0, a set S, and a norm on
C
m invariant by complex conjugation (i.e., ‖y‖ = ‖y‖ for all y ∈ C

m), there exists
a constant τ > 0 such that

‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖ for all v ∈ R
N

if and only if there exists a constant τ ′ > 0 such that

‖vS‖1 ≤ ρ‖vS‖1 + τ ′‖Av‖ for all v ∈ C
N .

4.6. Given A ∈ Cm×N and 0 < c < 1, prove the equivalence of the properties:

(i) ‖vS‖1 ≤ ‖vS‖1 − c ‖v‖1 for all v ∈ kerA and S ⊂ [N ] with card(S) ≤ s.
(ii) ‖x‖1 ≤ ‖z‖1−c ‖x−z‖1 for all s-sparse x ∈ CN and z ∈ CN with Az = Ax.

4.7. Given S ⊂ [N ], prove that a minimizer x� of ‖z‖1 subject to a constraint met
by x ∈ CN satisfies

∥∥(x− x�
)
S

∥∥
1
≤
∥∥(x− x�

)
S

∥∥
1
+ 2 ‖xS‖1 .

4.8. Given A ∈ Rm×N , prove that every nonnegative s-sparse vector x ∈ RN is
the unique solution of

minimize
z∈RN

‖z‖1 subject to Az = Ax and z ≥ 0
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if and only if

vS ≥ 0 =⇒
N∑
j=1

vj > 0

for all v ∈ kerA \ {0} and all S ⊂ [N ] with card(S) ≤ s.

4.9. Let A ∈ Rm×N be a matrix for which
∑N

j=1 vj = 0 whenever v ∈ kerA, and
let S ⊂ [N ] be a fixed index set. Suppose that every nonnegative vector supported on
S is uniquely recovered by �1-minimization. Prove that every nonnegative vector x
supported on S is in fact the unique vector in the set {z ∈ RN : z ≥ 0,Az = Ax}.

4.10. Given matrices A ∈ C
m×N and M ∈ C

m×m, suppose that MA satisfies the
�2-robust null space property of order s with constants 0 < ρ < 1 and τ > 0. Prove
that there exist constants C,D > 0 depending only on ρ, τ , and ‖M‖2→2 such that,
for any x ∈ C

N ,

‖x− x�‖p ≤
C

s1−1/p
σs(x)1 +D s1/p−1/2 η, 1 ≤ p ≤ 2,

where x� ∈ CN is a solution of (P1,η) with ‖·‖ = ‖·‖2, y = Ax+e, and ‖e‖2 ≤ η.

4.11. Let A ∈ Cm×N be such that, for some constants 0 < ρ < 1 and τ ≥ 0,

‖vS‖2 ≤
ρ√
s
‖vS‖1 + τ‖A∗Av‖∞ for all S ⊂ [N ] and all v ∈ C

N .

For x ∈ CN , let y = Ax + e for some e ∈ Cm with ‖A∗e‖∞ ≤ η. Let x� be a
minimizer of the Dantzig selector

minimize
z∈CN

‖z‖1 subject to ‖A∗(Az− y)‖∞ ≤ η.

Show that

‖x− x�‖2 ≤
Cσs(x)1√

s
+Dη,

for constants C,D > 0 depending only on ρ and τ .

4.12. Prove Theorem 4.9 and generalize other results from Sects. 4.1 to 4.3 when
the �1-norm is replaced by the �q-quasinorm for 0 < q < 1.

4.13. Given an integer s ≥ 1 and an exponent q ∈ (0, 1), find a measurement
matrix that allows reconstruction of s-sparse vectors via �p-minimization for p < q
but not for p > q.
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4.14. Verify the statement of Remark 4.29 that x = [e−πi/3, eπi/3, 0]� is the

unique minimizer of ‖z‖1 subject to Az = Ax, where A =

[
1 0 −1
0 1 −1

]
.

4.15. Given a matrix A ∈ Cm×N and a vector x ∈ CN with support S, prove that
x is a minimizer of ‖z‖1 subject to Az = Ax if one of the following equivalent
conditions holds:

(i)
∣∣∣∑
j∈S

sgn(xj)vj

∣∣∣ ≤ ‖vS‖1 for all v ∈ kerA.

(ii) There exists a vector h ∈ Cm such that

(A∗h)j = sgn(xj), j ∈ S, |(A∗h)�| ≤ 1, � ∈ S.

4.16. A symmetric convex polytope P is called centrally k-neighborly if any set of
k of its vertices, not containing a pair {v,−v}, spans a (k − 1)-face of P . Given a
matrix A ∈ Rm×N , prove that every s-sparse vector x ∈ RN is the unique solution
of (P1) with y = Ax if and only if the convex polytope ABN1 has 2N vertices and
is s-neighborly.

4.17. Stable and robust recovery via dual certificate
Let A ∈ Cm×N be a matrix with �2-normalized columns. Let x ∈ CN and let
S ⊂ [N ] be an index set of s largest absolute entries of x. Assume that

‖A∗
SAS − Id‖2→2 ≤ α

for some α ∈ (0, 1) and that there exists a dual certificate u = A∗h ∈ CN with
h ∈ Cm such that

uS = sgn(xS), ‖uS‖∞ ≤ β, ‖h‖2 ≤ γ
√
s,

for some constants 0 < β < 1 and γ > 0. Suppose that we are given corrupted
measurements y = Ax + e with ‖e‖2 ≤ η. Show that a solution x� ∈ CN of the
�1-minimization problem

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η

satisfies

∥∥x− x�
∥∥
2
≤ Cσs(x)1 +D

√
sη

for appropriate constants C,D > 0 depending only on α,β, and γ.

4.18. Nuclear norm minimization via semidefinite programming
Let ‖ · ‖∗ denote the nuclear norm. Given a linear map A : Cn1×n2 → Cm and
y ∈ Cm, show that the nuclear norm minimization problem
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minimize
X∈Cn1×n2

‖X‖∗ subject to A(X) = y

is equivalent to the semidefinite program

minimize
X∈Cn1×n2 ,Y∈Cn1×n1 ,Z∈Cn2×n2

trY + trZ subject to A(X) = y

and

[
Y X

X∗ Z

]
� 0.

4.19. Stable rank null space property
Let A : Cn1×n2 → Cm be a linear measurement map and let n = min{n1, n2}.
Assume that A satisfies the stable rank null space property of order r with constant
0 < ρ < 1, i.e., that for all M ∈ kerA \ {0}, the singular values of M satisfy

r∑
�=1

σ�(M) ≤ ρ

n∑
�=r+1

σ�(M).

Show that, for all X,Z ∈ Cn1×n2 with A(X) = A(Z),

‖X− Z‖∗ ≤
1 + ρ

1− ρ

(
‖Z‖∗ − ‖X‖∗ + 2

n∑
�=r+1

σ�(X)

)
. (4.41)

For X ∈ Cn1×n2 , let X� be a solution of the nuclear norm minimization problem

minimize
Z∈Cn1×n2

‖Z‖∗ subject to A(Z) = A(X).

Deduce the error estimate

‖X−X�‖∗ ≤
2(1 + ρ)

1− ρ

n∑
�=r+1

σ�(X).

Conversely, show that if (4.41) holds for all X,Z such that A(X) = A(Z), then A
satisfies the stable rank null space property of order r with constant 0 < ρ < 1.

4.20. Robust rank null space property
LetA : Cn1×n2 → Cm be a linear measurement map, let n = min{n1, n2}, and let
‖ · ‖ be some norm on Cm.

(a) We say that A satisfies the robust rank null space property of order r (with
respect to ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 if, for all M ∈ Cn1×n2 ,
the singular values of M satisfy

r∑
�=1

σ�(M) ≤ ρ

n∑
�=r+1

σ�(M) + τ‖A(M)‖.
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Show that

‖X− Z‖∗ ≤
1 + ρ

1− ρ

(
‖Z‖∗ − ‖X‖∗ + 2

n∑
�=r+1

σ�(X)

)
+

2τ

1− ρ
‖A(Z−X)‖

holds for all X,Z ∈ Cn1×n2 if and only ifA satisfies the robust rank null space
property of order r with constants ρ and τ .

(b) Assume that A satisfies the Frobenius robust rank null space property of order
r (with respect to ‖ · ‖) with constants 0 < ρ < 1 and τ > 0, i.e., that for all
M ∈ kerA \ {0},

(
r∑
�=1

σ�(M)2

)1/2
≤ ρ√

r

n∑
�=r+1

σ�(M) + τ‖A(M)‖.

For X ∈ Cn1×n2 , assume that y = A(X) + e with ‖e‖2 ≤ η for some η ≥ 0.
Let X� be a solution of the quadratically constrained nuclear norm minimization
problem

minimize
Z∈Cn1×n2

‖Z‖∗ subject to ‖A(Z)− y‖2 ≤ η.

Show that

‖X−X�‖F ≤
C√
r

n∑
�=r+1

σ�(X) +Dη

for constants C,D > 0 only depending on ρ and τ .

4.21. Low-rank matrix recovery via dual certificate
Let ‖X‖∗ denote the nuclear norm of a matrix X ∈ Cn1×n2 and 〈X,Y〉F =
tr (XY∗) the Frobenius inner product of two matrices X,Y ∈ Cn1×n2 .

(a) Show that the nuclear norm is the dual norm of the operator norm, i.e.,

‖X‖∗ = sup
Y∈Cn1×n2 ,‖Y‖2→2≤1

|〈X,Y〉F |, X ∈ C
n1×n2 .

(b) Let X,Y ∈ Cn1×n2 be such that XY∗ = 0 and X∗Y = 0. Show that

‖X‖∗ + ‖Y‖∗ = ‖X+Y‖∗.

(c) Let X ∈ Cn1×n2 be a matrix of rank r with singular value decomposition
X =
∑r
�=1 σ�u�v

∗
� , where both {u�, � ∈ [r]} and {v�, � ∈ [r]} are orthonormal

systems. Let T ⊂ Cn1×n2 be the linear space spanned by

{u�x∗
� ,x� ∈ C

n2 , � ∈ [r]} ∪ {y�v∗
� ,y� ∈ C

n1 , � ∈ [r]},
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and let T⊥ be its orthogonal complement relative to the Frobenius inner product.
Denote by PU =

∑r
�=1 u�u�

∗ ∈ Cn1×n1 the matrix of the orthogonal
projection onto the span of {u�, � ∈ [r]} and by PV ∈ Cn2×n2 the matrix of the
orthogonal projection onto the span of {v�, � ∈ [r]}. Show that the orthogonal
projections PT : Cn1×n2 → T and PT⊥ : Cn1×n2 → T⊥ are given, for
Z ∈ Cn1×n2 , by

PT (Z) = PUZ+ ZPV −PUZPV ,

PT⊥(Z) = (Id−PU )Z(Id−PV ).

(d) Given a linear map A : Cn1×n2 → Cm, show that X is the unique solution of
the nuclear norm minimization problem

minimize
Z∈Cn1×n2

‖Z‖∗ subject to A(Z) = A(X)

ifA restricted to T is injective and if there exists a dual certificate M = A∗h ∈
C
n1×n2 with h ∈ C

m satisfying

PT (M) =

r∑
�=1

u�v
∗
� and ‖PT⊥(M)‖2→2 < 1.



Chapter 5
Coherence

In compressive sensing, the analysis of recovery algorithms usually involves a
quantity that measures the suitability of the measurement matrix. The coherence
is a very simple such measure of quality. In general, the smaller the coherence,
the better the recovery algorithms perform. In Sect. 5.1, we introduce the notion of
coherence of a matrix and some of its generalizations. In Sect. 5.2, we examine how
small the coherence can be and we point out some matrices with small coherence. In
Sects. 5.3, 5.4, and 5.5, we give some sufficient conditions expressed in terms of the
coherence that guarantee the success of orthogonal matching pursuit, basis pursuit,
and thresholding algorithms.

5.1 Definitions and Basic Properties

We start with the definition of the coherence of a matrix. We stress that the columns
of the matrix are always implicitly understood to be �2-normalized.

Definition 5.1. Let A ∈ Cm×N be a matrix with �2-normalized columns
a1, . . . , aN , i.e., ‖ai‖2 = 1 for all i ∈ [N ]. The coherence μ = μ(A) of the matrix
A is defined as

μ := max
1≤i�=j≤N

|〈ai, aj〉| . (5.1)

Next we introduce the more general concept of �1-coherence function, which
incorporates the usual coherence as the particular value s = 1 of its argument.

Definition 5.2. Let A ∈ Cm×N be a matrix with �2-normalized columns
a1, . . . , aN . The �1-coherence function μ1 of the matrix A is defined for s ∈ [N−1]
by

μ1(s) := max
i∈[N ]

max
{∑
j∈S
|〈ai, aj〉| , S ⊂ [N ], card(S) = s, i �∈ S

}
.
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It is straightforward to observe that, for 1 ≤ s ≤ N − 1,

μ ≤ μ1(s) ≤ s μ, (5.2)

and more generally that, for 1 ≤ s, t ≤ N − 1 with s+ t ≤ N − 1,

max{μ1(s), μ1(t)} ≤ μ1(s+ t) ≤ μ1(s) + μ1(t). (5.3)

We remark that the coherence, and more generally the �1-coherence function,
is invariant under multiplication on the left by a unitary matrix U, for the
columns of UA are the �2-normalized vectors Ua1, . . . ,UaN and they satisfy
〈Uai,Uaj〉 = 〈ai, aj〉. Moreover, because of the Cauchy–Schwarz inequality
|〈ai, aj〉| ≤ ‖ai‖2‖aj‖2, it is clear that the coherence of a matrix is bounded above
by one, i.e.,

μ ≤ 1.

Let us consider for a moment a matrix A ∈ Cm×N with m ≥ N . We observe that
μ = 0 if and only if the columns of A form an orthonormal system. In particular,
in the case of a square matrix, we have μ = 0 if and only if A is a unitary matrix.
From now on, we concentrate on the situation occurring in compressive sensing,
i.e., we only consider matrices A ∈ Cm×N with m < N . In this case, there
are limitations on how small the coherence can be. These limitations are given in
Sect. 5.2. For the moment, we simply point out that a small coherence implies that
column submatrices of moderate size are well conditioned. Let us recall that the
notation AS denotes the matrix formed by the columns of A ∈ Cm×N indexed by
a subset S of [N ].

Theorem 5.3. Let A ∈ C
m×N be a matrix with �2-normalized columns and let

s ∈ [N ]. For all s-sparse vectors x ∈ C
N ,

(
1− μ1(s− 1)

)
‖x‖22 ≤ ‖Ax‖22 ≤

(
1 + μ1(s− 1)

)
‖x‖22,

or equivalently, for each set S ⊂ [N ] with card(S) ≤ s, the eigenvalues of the
matrix A∗

SAS lie in the interval
[
1− μ1(s − 1) , 1 + μ1(s− 1)

]
. In particular, if

μ1(s− 1) < 1, then A∗
SAS is invertible.

Proof. For a set S ⊂ [N ] with card(S) ≤ s, since the matrix A∗
SAS is positive

semidefinite, it has an orthonormal basis of eigenvectors associated with real,
positive eigenvalues. We denote the minimal eigenvalue by λmin and the maximal
eigenvalue by λmax. Then, since Ax = ASxS for any x ∈ CN supported on S, it
is easy to see that the maximum of

‖Ax‖22 = 〈ASxS ,ASxS〉 = 〈A∗
SASxS ,xS〉

over the set {x ∈ CN , suppx ⊂ S, ‖x‖2 = 1} is λmax and that its minimum
is λmin. This explains the equivalence mentioned in the theorem. Now, due to the
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normalizations ‖aj‖2 = 1 for all j ∈ [N ], the diagonal entries of A∗
SAS all equal

one. By Gershgorin’s disk theorem (see Theorem A.11), the eigenvalues of A∗
SAS

are contained in the union of the disks centered at 1 with radii

rj :=
∑

�∈S,� �=j
|(A∗

SAS)j,�| =
∑

�∈S,� �=j
|〈a�, aj〉| ≤ μ1(s− 1), j ∈ S.

Since these eigenvalues are real, they must lie in
[
1 − μ1(s− 1) , 1 + μ1(s− 1)

]
,

as announced. ��

Corollary 5.4. Given a matrix A ∈ C
m×N with �2-normalized columns and an

integer s ≥ 1, if

μ1(s) + μ1(s− 1) < 1,

then, for each set S ⊂ [N ] with card(S) ≤ 2s, the matrix A∗
SAS is invertible and

the matrix AS injective. In particular, the conclusion holds if

μ <
1

2s− 1
.

Proof. In view of (5.3), the condition μ1(s) + μ1(s − 1) < 1 implies that
μ1(2s− 1) < 1. For a set S ⊂ [N ] with card(S) ≤ 2s, according to Theorem 5.3,
the smallest eigenvalue of the matrix A∗

SAS satisfies λmin ≥ 1 − μ1(2s− 1) > 0,
which shows that A∗

SAS is invertible. To see thatAS is injective, we simply observe
that ASz = 0 yields A∗

SASz = 0, so that z = 0. This proves the first statement.
The second one simply follows from μ1(s) + μ1(s − 1) ≤ (2s − 1)μ < 1 if
μ < 1/(2s− 1). ��

5.2 Matrices with Small Coherence

In this section, we give lower bounds for the coherence and for the �1-coherence
function of a matrix A ∈ Cm×N with m < N . We also study the feasibility of
achieving these lower bounds. We then give an example of a matrix with an almost
minimal coherence. The analysis is carried out for matrices A ∈ Km×N , where
the field K can either be R or C, because the matrices achieving the lower bounds
have different features in the real and complex settings. In both cases, however, their
columns are equiangular tight frames, which are defined below.

Definition 5.5. A system of �2-normalized vectors (a1, . . . , aN ) in Km is called
equiangular if there is a constant c ≥ 0 such that

|〈ai, aj〉| = c for all i, j ∈ [N ], i �= j .
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Tight frames can be defined by several conditions, whose equivalence is left as
Exercise 5.2.

Definition 5.6. A system of vectors (a1, . . . , aN ) in Km is called a tight frame if
there exists a constant λ > 0 such that one of the following equivalent conditions
holds:

(a) ‖x‖22 = λ

N∑
j=1

|〈x, aj〉|2 for all x ∈ Km,

(b) x = λ
N∑
j=1

〈x, aj〉aj for all x ∈ Km,

(c) AA∗ =
1

λ
Idm, where A is the matrix with columns a1, . . . , aN .

Unsurprisingly, a system of �2-normalized vectors is called an equiangular tight
frame if it is both an equiangular system and a tight frame. Such systems are the
ones achieving the lower bound given below and known as the Welch bound.

Theorem 5.7. The coherence of a matrix A ∈ Km×N with �2-normalized columns
satisfies

μ ≥
√

N −m

m(N − 1)
. (5.4)

Equality holds if and only if the columns a1, . . . , aN of the matrix A form an
equiangular tight frame.

Proof. Let us introduce the Gram matrix G := A∗A ∈ KN×N of the system
(a1, . . . , aN ), which has entries

Gi,j = 〈ai, aj〉 = 〈aj , ai〉 , i, j ∈ [N ] ,

and the matrix H := AA∗ ∈ Km×m. On the one hand, since the system
(a1, . . . , aN ) is �2-normalized, we have

tr (G) =

N∑
i=1

‖ai‖22 = N. (5.5)

On the other hand, since the inner product

〈U,V〉F := tr (UV∗) =
n∑

i,j=1

Ui,jVi,j

induces the so-called Froebenius norm ‖ · ‖F on Kn×n (see (A.16)), the Cauchy–
Schwarz inequality yields
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tr (H) = 〈H, Idm〉F ≤ ‖H‖F‖Idm‖F =
√
m
√
tr (HH∗). (5.6)

Let us now observe that

tr (HH∗) = tr (AA∗AA∗) = tr (A∗AA∗A) = tr (GG∗) =
N∑

i,j=1

|〈ai, aj〉|2

=

N∑
i=1

‖ai‖22 +
N∑

i,j=1,i�=j
|〈ai, aj〉|2 = N +

N∑
i,j=1,i�=j

|〈ai, aj〉|2 . (5.7)

In view of tr (G) = tr (H), combining (5.5), (5.6), and (5.7) yields

N2 ≤ m

(
N +

N∑
i,j=1,i�=j

|〈ai, aj〉|2
)
. (5.8)

Taking into account that

|〈ai, aj〉| ≤ μ for all i, j ∈ [N ], i �= j, (5.9)

we obtain

N2 ≤ m
(
N + (N2 −N)μ2

)
,

which is a simple rearrangement of (5.4). Moreover, equality holds in (5.4) exactly
when equalities hold in (5.6) and in (5.9). Equality in (5.6) says that H = λIdm for
some—necessarily nonnegative—constant λ, i.e., that the system (a1, . . . , aN ) is a
tight frame. Equality in (5.9) says that this system is equiangular. ��

The Welch bound can be extended to the �1-coherence function for small values
of its argument.

Theorem 5.8. The �1-coherence function of a matrix A ∈ Km×N with �2-
normalized columns satisfies

μ1(s) ≥ s

√
N −m

m(N − 1)
whenever s <

√
N − 1. (5.10)

Equality holds if and only if the columns a1, . . . , aN of the matrix A form an
equiangular tight frame.

The proof is based on the following lemma.

Lemma 5.9. For k <
√
n, if the finite sequence (α1, α2, . . . , αn) satisfies

α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 and α2
1 + α2

2 + · · ·+ α2
n ≥

n

k2
,
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then

α1 + α2 + · · ·+ αk ≥ 1,

with equality if and only if α1 = α2 = · · · = αn = 1/k.

Proof. We are going to show the equivalent statement

α1 ≥ α2 ≥ · · · ≥ αn ≥ 0

α1 + α2 + · · ·+ αk ≤ 1

}
=⇒ α2

1 + α2
2 + · · ·+ α2

n ≤
n

k2
,

with equality if and only if α1 = α2 = · · · = αn = 1/k. This is the problem of
maximizing the convex function

f(α1, α2, . . . , αn) := α2
1 + α2

2 + · · ·+ α2
n

over the convex polygon

C := {(α1, . . . , αn) ∈ R
n : α1 ≥ · · · ≥ αn ≥ 0 and α1 + · · ·+ αk ≤ 1}.

Because any point in C is a convex combination of its vertices (so that the extreme
points of C are vertices) and because the function f is convex, the maximum
is attained at a vertex of C by Theorem B.16. The vertices of C are obtained
as intersections of n hyperplanes arising by turning n of the (n + 1) inequality
constraints into equalities. Thus, we have the following possibilities:

• If α1 = α2 = · · · = αn = 0, then f(α1, α2, . . . , αn) = 0.
• If α1+ · · ·+αk = 1 and α1 = · · · = α� > α�+1 = · · · = αn = 0 for 1 ≤ � ≤ k,

then α1 = · · · = α� = 1/�, and consequently f(α1, α2, . . . , αn) = 1/�.
• If α1+ · · ·+αk = 1 and α1 = · · · = α� > α�+1 = · · · = αn = 0 for k < � ≤ n,

then α1 = · · · = α� = 1/k, and consequently f(α1, α2, . . . , αn) = �/k2.

Taking k <
√
n into account, it follows that

max
(α1,...,αn)∈C

f(α1, . . . , αn) = max
{

max
1≤�≤k

1

�
, max
k<�≤n

�

k2

}
= max

{
1,

n

k2

}
=

n

k2
,

with equality only in the case � = n where α1 = α2 = · · · = αn = 1/k. ��

Proof (of Theorem 5.8). Let us recall from (5.8) that we have

N∑
i,j=1,i�=j

|〈ai, aj〉|2 ≥
N2

m
−N =

N(N −m)

m
,

which yields

max
i∈[N ]

N∑
j=1,j �=i

|〈ai, aj〉|2 ≥
1

N

N∑
i,j=1,i�=j

|〈ai, aj〉|2 ≥
N −m

m
.
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For an index i∗ ∈ [N ] achieving the latter maximum, we reorder the sequence
(|〈ai∗ , aj〉|)Nj=1,j �=i∗ as β1 ≥ β2 ≥ · · · ≥ βN−1 ≥ 0, so that

β2
1 + β2

2 + · · ·+ β2
N−1 ≥

N −m

m
.

Lemma 5.9 with n = N−1, k = s, and α� :=
(√

m(N − 1)/(N −m)/s
)
β� gives

α1 + α2 + · · ·+ αs ≥ 1. It follows that

μ1(s) ≥ β1 + β2 + · · ·+ βs ≥ s

√
N −m

m(N − 1)
,

as announced. Let us now assume that equality holds in (5.10), so that all the
previous inequalities are in fact equalities. As in the proof of Theorem 5.7, equality
in (5.8) implies that the system (a1, . . . , aN ) is a tight frame. The case of equality
in Lemma 5.9 implies that |〈ai∗ , aj〉|=

√
(N −m)/(m(N − 1)) for all j∈ [N ],

j �= i∗. Since the index i∗ can be arbitrarily chosen in [N ], the system (a1, . . . , aN )
is also equiangular. Conversely, the proof that equiangular tight frames yield
equality in (5.10) follows easily from Theorem 5.7 and (5.2). ��

In compressive sensing, we are interested not only in small coherence but also in
m×N matrices whereN is much larger thanm. This restriction makes it impossible
to meet the Welch bound. Indeed, the next theorem shows that the number of vectors
in an equiangular tight frame—or in an equiangular system, for that matter—cannot
be arbitrarily large.

Theorem 5.10. The cardinality N of an equiangular system (a1, . . . , aN ) of
�2-normalized vectors in Km satisfies

N ≤ m(m+ 1)

2
when K = R ,

N ≤ m2 when K = C .

If equality is achieved, then the system (a1, . . . , aN ) is also a tight frame.

We will use the following simple lemma twice in the proof of this theorem.

Lemma 5.11. For any z ∈ C, the n× n matrix

⎡
⎢⎢⎢⎢⎢⎣

1 z z · · · z
z 1 z · · · z
...

. . .
. . .

. . .
...

z · · · z 1 z

z · · · z z 1

⎤
⎥⎥⎥⎥⎥⎦
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admits 1 + (n − 1)z as a single eigenvalue and 1 − z as a multiple eigenvalue of
multiplicity n− 1.

Proof. Summing the columns of the matrix, we see that the vector [1, . . . , 1]� is an
eigenvector for the eigenvalue 1+(n− 1)z. Then, subtracting from the first column
each subsequent column, we also see that the (n − 1) linearly independent vectors
[1,−1, 0, . . . , 0]�, [1, 0,−1, 0, . . . , 0]�, . . ., [1, 0 . . . , 0,−1]� are eigenvectors for
the eigenvalue 1− z. The proof is now complete. ��

Proof (of Theorem 5.10). The key point is to lift our considerations from the space
Km to a subspace Sm of operators on Km. In the case K = R, Sm is the space
of symmetric operators on Rm, and in the case K = C, Sm is simply the space of
operators on Cm. (It is tempting to consider Hermitian operators, but they do not
form a linear space.) These spaces are endowed with the Frobenius inner product

〈P,Q〉F = tr (PQ∗) , P,Q ∈ Sm .

Let us introduce the orthogonal projectorsP1, . . . ,PN ∈ Sm onto the lines spanned
by a1, . . . , aN . These operators are defined, for i ∈ [N ], by

Pi(v) = 〈v, ai〉ai , v ∈ K
m .

Let us denote by c the common magnitude of the inner products 〈ai, aj〉, i �= j, and
by (e1, . . . , em) the canonical basis of Km. Using the fact that P2

i = Pi = P∗
i , we

calculate, for i, j ∈ [N ], i �= j,

〈Pi,Pi〉F = tr (PiP
∗
i ) = tr (Pi) =

m∑
k=1

〈Pi(ek), ek〉 =
m∑
k=1

〈ek,ai〉〈ai, ek〉

=

m∑
k=1

|〈ai, ek〉|2 = ‖ai‖22 = 1,

〈Pi,Pj〉F = tr (PiP
∗
j ) = tr (PiPj) =

m∑
k=1

〈PiPj(ek), ek〉 =
m∑
k=1

〈Pj(ek),Pi(ek)〉

=

m∑
k=1

〈ek,aj〉〈ek,ai〉〈aj ,ai〉 = 〈ai,aj〉
〈 m∑
k=1

〈ai, ek〉ek,aj
〉

= 〈ai,aj〉〈ai,aj〉 = |〈ai, aj〉|2 = c2.
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Thus, the Gram matrix of the system (P1, . . . ,PN ) is the N ×N matrix
⎡
⎢⎢⎢⎢⎢⎢⎣

1 c2 c2 · · · c2
c2 1 c2 · · · c2
...

. . .
. . .

. . .
...

c2 · · · c2 1 c2

c2 · · · c2 c2 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In view of 0 ≤ c2 < 1, Lemma 5.11 implies that this Gram matrix is invertible,
which means that the system (P1, . . . ,PN ) is linearly independent. But this system
lies in the space Sm, which has dimension m(m+ 1)/2 when K = R and dimension
m2 when K = C. Therefore, we obtain

N ≤ m(m+ 1)

2
when K = R,

N ≤ m2 when K = C.

Let us now assume that equality holds. Then the system (Idm,P1, . . . ,PN ) is
linearly dependent; hence, the determinant of its Gram matrix vanishes. This
translates into ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m 1 1 1 · · · 1

1 1 c2 c2 · · · c2
1 c2 1 c2 · · · c2
...

...
. . .

. . .
. . .

...
1 c2 · · · c2 1 c2

1 c2 · · · c2 c2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 .

Subtracting the first row divided by m from all the other rows and expanding with
respect to the first column, we derive the N ×N identity

∣∣∣∣∣∣∣∣∣∣∣∣

1 b b · · · b
b 1 b · · · b
...

. . .
. . .

. . .
...

b · · · b 1 b

b · · · b b 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, where b :=

mc2 − 1

m− 1
.

Since 1 − b = m(1− c2)/(m − 1) �= 0, Lemma 5.11 implies that 1 + (N − 1)b = 0,
which reads after simplification

c2 =
N −m

m(N − 1)
.

This shows that the �2-normalized system (a1, . . . ,aN ) meets the Welch bound.
Thus, according to Theorem 5.7, it is an equiangular tight frame. ��
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The upper bounds on the number of vectors in an equiangular system are sharp.
For instance, equiangular systems of 6 vectors in R3 and of 28 vectors in R7

are given in Exercise 5.5, while equiangular systems of 4 vectors in C2 and of 9
vectors in C3 are given in Exercise 5.6. In contrast with Cm, where systems of
m2 equiangular vectors in Cm seem to exist for all m, systems of m(m + 1)/2
equiangular vectors in Rm do not exist for all m, as shown below. They are known
to exist when m is equal to 2, 3, 7, and 23, but the cases of other allowed values are
not settled.

Theorem 5.12. Form ≥ 3, if there is an equiangular system ofm(m+1)/2 vectors
in Rm, then m+ 2 is necessarily the square of an odd integer.

Proof. Let (a1, . . . , aN ) be a system of N = m(m + 1)/2 equiangular
�2-normalized vectors. According to Theorem 5.10, this system is a tight frame;
hence, the matrix A with columns a1, . . . , aN satisfies AA∗ = λIdm for some
λ > 0. Since the matrix G := A∗A has the same nonzero eigenvalues as AA∗,
i.e., λ with multiplicity m, it also has zero as an eigenvalue of multiplicity N −m.
Moreover, since G is the Gram matrix of the system (a1, . . . , aN ), its diagonal
entries all equal one, while its off-diagonal entries all have the same absolute value
c. Consequently, the matrix B := (G− IdN )/c has the form

B =

⎡
⎢⎢⎢⎢⎣

0 b1,2 · · · b1,N

b2,1 0
. . .

...
...

. . .
. . . bN−1,N

bN,1 · · · bN,N−1 0

⎤
⎥⎥⎥⎥⎦ , where bi,j = ±1,

and has −1/c as an eigenvalue of multiplicity N − m. Thus, its characteristic
polynomial PB(x) :=

∑N
k=0 βk(−x)k, βN = 1, has integer coefficients βk and

vanishes at x = −1/c. Given that

c =

√
N −m

m(N − 1)
=

√
(m+ 1)/2− 1

m(m+ 1)/2− 1
=

√
m− 1

m2 +m− 2
=

1√
m+ 2

,

we have PB(−
√
m+ 2) = 0, i.e,

( ∑
0≤k≤N/2

b2k(m+ 2)k

)
+
√
m+ 2

( ∑
0≤k≤(N−1)/2

b2k+1(m+ 2)k

)
= 0.

Noticing that the two sums above, denoted by Σ1 and Σ2, are both integers, we
obtain the equality Σ2

1 = (m + 2)Σ2
2 , which shows that m + 2 is a square, since

any prime factor of m+ 2 must appear an even number of times in its prime factor
decomposition. We now need to show that n :=

√
m+ 2 is odd. Let us introduce the
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N ×N matrix JN whose entries are all equal to one. Its null space has dimension
N − 1, so it intersects the (N − m)-dimensional eigenspace of B corresponding
to the eigenvalue −1/c = −n, since N − 1 + N − m > N for m ≥ 3, i.e.,
N = m(m + 1)/2 > m + 1. Consequently, the matrix C := (B − IdN + JN )/2
admits −(n + 1)/2 as an eigenvalue. Its diagonal entries are all equal to zero,
while its off-diagonal entries are all equal to zero or one. Thus, its characteristic
polynomial PC(x) :=

∑N
k=0 γk(−x)k , γN = 1, has integer coefficients γk and

vanishes at x = −(n+1)/2. The equality PC(−(n+1)/2) = 0 can be rewritten as

(n+ 1)N = −
N−1∑
k=0

2N−kγk(n+ 1)k.

This shows that (n + 1)N is an even integer, hence so is n+ 1. This completes the
proof that n =

√
m+ 2 is an odd integer. ��

In the complex setting, it seems plausible that equiangular systems of N = m2

vectors exist for all values of m. This would yield m×m2 matrices with coherence
equal to 1/

√
m+ 1, but no construction of such systems is known at the moment.

We present below an explicitm×m2 matrix with coherence equal to 1/
√
m instead.

Let us incidentally notice that 1/
√
m is the limit of the Welch bound when N goes

to infinity.

Proposition 5.13. For each prime number m ≥ 5, there is an explicit m × m2

complex matrix with coherence μ = 1/
√
m.

Proof. Throughout the proof, we identify the set [m] with Z/mZ =: Zm. For
k, � ∈ Zm, we introduce the translation and modulation operators Tk and M�

defined, for z ∈ CZm and j ∈ Zm, by

(Tkz)j = zj−k, (M�z)j = e2πi�j/m zj .

These operators are isometries of �2(Zm). We also introduce the so-called Alltop
vector, which is the �2-normalized vector x ∈ CZm defined by

xj :=
1√
m
e2πij

3/m, j ∈ Zm.

The explicit m × m2 matrix of the proposition is the one with columns M�Tkx,
k, � ∈ Zm, i.e., the matrix

[
M1T1x · · · M1Tmx M2T1x · · · · · · MmT1x · · · MmTmx

]
.

The inner product of two different columns indexed by (k, �) and (k′, �′) is
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〈M�Tkx,M�′Tk′x〉 =
∑
j∈Zm

(M�Tkx)j(M�′Tk′x)j

=
∑
j∈Zm

e2πi�j/m xj−ke
−2πi�′j/m xj−k′

=
1

m

∑
j∈Zm

e2πi(�−�
′)j/me2πi((j−k)

3−(j−k′)3)/m.

Setting a := � − �′ and b := k − k′, so that (a, b) �= (0, 0), we make the change of
summation index h = j − k′ to obtain

∣∣〈M�Tkx,M�′Tk′x〉
∣∣ = 1

m

∣∣∣e2πiak′/m ∑
h∈Zm

e2πiah/me2πi((h−b)
3−h3)/m

∣∣∣

=
1

m

∣∣∣ ∑
h∈Zm

e2πiah/me2πi(−3bh2+3b2h−b3)/m
∣∣∣

=
1

m

∣∣∣ ∑
h∈Zm

e2πi(−3bh2+(a+3b2)h)/m
∣∣∣.

We now set c := −3b and d := a + 3b2, and we look at the previous modulus
squared. We have

∣∣〈M�Tkx,M�′Tk′x〉
∣∣2 =

1

m2

∑
h∈Zm

e2πi(ch
2+dh)/m

∑
h′∈Zm

e−2πi(ch′2+dh′)/m

=
1

m2

∑
h,h′∈Zm

e2πi(h−h
′)(c(h+h′)+d)/m

=
1

m2

∑
h′,h′′∈Zm

e2πih
′′(c(h′′+2h′)+d)/m

=
1

m2

∑
h′′∈Zm

e2πih
′′(ch′′+d)/m

( ∑
h′∈Zm

e4πich
′′h′/m
)
.

For each h′′ ∈ Zm, we observe that

∑
h′∈Zm

e4πich
′′h′/m =

{
m if 2ch′′ = 0 mod m,

0 if 2ch′′ �= 0 mod m.

Let us separate two cases:

1. c = 0 mod m:
Since c = −3b and 3 �= 0 mod m, we have b = 0; hence, d = a + 3b2 �= 0
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mod m, so that

∣∣〈M�Tkx,M�′Tk′x〉
∣∣2 =

1

m

∑
h′′∈Zm

e2πidh
′′/m = 0.

2. c �= 0 mod m:
Since 2 �= 0 mod m, the equality 2ch′′ = 0 only occurs when h′′ = 0 mod m,
so that

∣∣〈M�Tkx,M�′Tk′x〉
∣∣2 =

1

m
.

This allows to conclude that the coherence of the matrix is equal to 1/
√
m. ��

5.3 Analysis of Orthogonal Matching Pursuit

We claimed at the beginning of this chapter that the performance of sparse recovery
algorithms is enhanced by a small coherence. We justify this claim in the remaining
sections. For instance, in view of (5.3), Theorems 5.14 and 5.15 guarantee the exact
recovery of every s-sparse vector via orthogonal matching pursuit and via basis
pursuit when the measurement matrix has a coherence μ < 1/(2s − 1). We focus
on the orthogonal matching pursuit algorithm in this section.

Theorem 5.14. Let A ∈ C
m×N be a matrix with �2-normalized columns. If

μ1(s) + μ1(s− 1) < 1, (5.11)

then every s-sparse vector x ∈ CN is exactly recovered from the measurement
vector y = Ax after at most s iterations of orthogonal matching pursuit.

Proof. Let a1, . . . , aN denote the �2-normalized columns of A. According to
Proposition 3.5, we need to prove that, for any S ⊂ [N ] with card(S) = s, the
matrix AS is injective and that

max
j∈S

|〈r, aj〉| > max
�∈S

|〈r, a�〉| (5.12)

for all nonzero r ∈ {Az, supp(z) ⊂ S}. Let then r :=
∑

i∈S riai be such a vector,
and let k ∈ S be chosen so that |rk| = maxi∈S |ri| > 0. On the one hand, for � ∈ S,
we have

|〈r, a�〉| =
∣∣∣∑
i∈S

ri〈ai, a�〉
∣∣∣ ≤∑

i∈S
|ri||〈ai, a�〉| ≤ |rk|μ1(s).
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On the other hand, we have

|〈r, ak〉| =
∣∣∣∑
i∈S

ri〈ai, ak〉
∣∣∣ ≥ |rk| |〈ak, ak〉| − ∑

i∈S,i�=k
|ri| |〈ai, ak〉|

≥ |rk| − |rk|μ1(s− 1).

Thus, (5.12) is fulfilled because 1−μ1(s− 1) > μ1(s) according to (5.11). Finally,
the injectivity of AS follows from Corollary 5.4. ��

5.4 Analysis of Basis Pursuit

In this section, we show that a small coherence also guarantees the success of basis
pursuit. As a matter of fact, any condition guaranteeing the success of the recovery
of all vectors supported on a set S via card(S) iterations of orthogonal matching
pursuit also guarantees the success of the recovery of all vectors supported on S
via basis pursuit. This follows from the fact that the exact recovery condition (3.7)
implies the null space property (4.1). Indeed, given v ∈ kerA \ {0}, we have
ASvS = −ASvS , and

‖vS‖1 = ‖A†
SASvS‖1 = ‖A†

SASvS‖1 ≤ ‖A
†
SAS‖1→1‖vS‖1 < ‖vS‖1.

Thus, the following result is immediate. We nonetheless give an alternative self-
contained proof.

Theorem 5.15. Let A ∈ Cm×N be a matrix with �2-normalized columns. If

μ1(s) + μ1(s− 1) < 1, (5.13)

then every s-sparse vector x ∈ CN is exactly recovered from the measurement
vector y = Ax via basis pursuit.

Proof. According to Theorem 4.5, it is necessary and sufficient to prove that the
matrix A satisfies the null space property of order s, i.e., that

‖vS‖1 < ‖vS‖1 (5.14)

for any nonzero vector v ∈ kerA and any index set S ⊂ [N ] with card(S) = s. If
a1, . . . , aN denote the columns of A, then the condition v ∈ kerA translates into∑N
j=1 vjaj = 0. Thus, taking the inner product with a particular ai, i ∈ S, and

isolating the term in vi, we obtain
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vi = vi〈ai, ai〉 = −
N∑

j=1,j �=i
vj〈aj , ai〉 = −

∑
�∈S

v�〈a�, ai〉 −
∑

j∈S,j �=i
vj〈aj , ai〉.

It follows that

|vi| ≤
∑
�∈S

|v�| |〈a�, ai〉|+
∑

j∈S,j �=i
|vj | |〈aj , ai〉|.

Summing over all i ∈ S and interchanging the summations, we derive

‖vS‖1 =
∑
i∈S
|vi| ≤
∑
�∈S

|v�|
∑
i∈S
|〈a�, ai〉|+

∑
j∈S
|vj |
∑

i∈S,i�=j
|〈aj , ai〉|

≤
∑
�∈S

|v�|μ1(s) +
∑
j∈S
|vj |μ1(s− 1) = μ1(s) ‖vS‖1 + μ1(s− 1) ‖vS‖1 .

After rearrangement, this reads (1 − μ1(s − 1)) ‖vS‖1 ≤ μ1(s) ‖vS‖1, and (5.14)
is fulfilled because 1− μ1(s− 1) > μ1(s), which is a rewriting of (5.13). ��

Choosing a matrix A ∈ Cm×N with small coherence μ ≤ c/
√
m (for instance,

the one of Theorem 5.13), we see that the condition (2s−1)μ < 1 ensuring recovery
of s-sparse vectors via orthogonal matching pursuit as well as via �1-minimization
is satisfied once

m ≥ Cs2 . (5.15)

This gives a first estimate in terms of sparsity for the required number of measure-
ments using practical recovery algorithms and specific matrices A. This result can
sometimes be satisfying, but an estimate where the sparsity s enters quadratically
is often too pessimistic, especially for mildly large s. We will later see that a linear
scaling of m in s is possible up to logarithmic factors.

Let us point out that it is not possible to overcome the quadratic bottleneck in
(5.15) using Theorems 5.14 and 5.15. Indeed, let us assume on the contrary that
the sufficient condition μ1(s) + μ1(s − 1) < 1 holds with m ≤ (2s − 1)2/2 and
s <

√
N − 1, say. Provided N is large, say N ≥ 2m, we apply Theorem 5.8 to

derive a contradiction from

1 > μ1(s) + μ1(s− 1) ≥ (2s− 1)

√
N −m

m(N − 1)
≥
√

2(N −m)

N − 1
≥
√

N

N − 1
.

In the following chapters, we will reduce the number of required measurements
below the order s2 by introducing new tools for the analysis of sparse recovery
algorithms.
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5.5 Analysis of Thresholding Algorithms

In this final section, we show that thresholding algorithms can also be analyzed
using the coherence. For instance, under the same condition as before, even the
basic thresholding algorithm will successfully recover sparse vectors with nonzero
entries of constant magnitude.

Theorem 5.16. Let A ∈ Cm×N be a matrix with �2-normalized columns and let
x ∈ CN be a vector supported on a set S of size s. If

μ1(s) + μ1(s− 1) <
mini∈S |xi|
maxi∈S |xi|

, (5.16)

then the vector x ∈ CN is exactly recovered from the measurement vector y = Ax
via basic thresholding.

Proof. Let a1, . . . , aN denote the �2-normalized columns of A. According to
Proposition 3.7, we need to prove that, for any j ∈ S and any � ∈ S,

|〈Ax, aj〉| > |〈Ax, a�〉| . (5.17)

We observe that

|〈Ax, a�〉| = |
∑
i∈S

xi〈ai, a�〉| ≤
∑
i∈S
|xi||〈ai, a�〉| ≤ μ1(s) max

i∈S
|xi|,

|〈Ax, aj〉| = |
∑
i∈S

xi〈ai, aj〉| ≥ |xj | −
∑

i∈S,i�=j
|xi||〈ai, aj〉|

≥ min
i∈S

|xi| − μ1(s− 1) max
i∈S

|xi|.

Thus, taking (5.16) into account, we obtain

|〈Ax, aj〉| − |〈Ax, a�〉| ≥ min
i∈S

|xi| − (μ(s) + μ1(s− 1)) max
i∈S

|xi| > 0.

This shows (5.17) and concludes the proof. ��

It is possible to prove the success of sparse recovery via the iterative hard
thresholding algorithm under some coherence conditions—see Exercise 5.10. We
now turn directly to the more involved hard thresholding pursuit algorithm. Just
as for orthogonal matching pursuit, we show that s iterations are enough for the
recovery of s-sparse vectors under a condition quite similar to (5.11). In view of
(5.2), we observe that the condition in question is met when the coherence of the
measurement matrix satisfies μ < 1/(3s− 1).

Theorem 5.17. Let A ∈ Cm×N be a matrix with �2-normalized columns. If

2μ1(s) + μ1(s− 1) < 1,
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then every s-sparse vector x ∈ CN is exactly recovered from the measurement
vector y = Ax after at most s iterations of hard thresholding pursuit.

Proof. Let us consider indices j1, j2, . . . , jN such that

|xj1 | ≥ |xj2 | ≥ · · · ≥ |xjs | > |xjs+1 | = · · · = |xjN | = 0.

We are going to prove that, for 0 ≤ n ≤ s− 1, the set {j1, . . . , jn+1} is included in
Sn+1 defined by (HTP1) with y = Ax as the set of largest absolute entries of

zn+1 := xn +A∗A(x− xn) . (5.18)

This will imply that Ss = S = supp(x) and consequently that xs = x by (HTP2).
Note that it is sufficient to prove that

min
1≤k≤n+1

|zn+1
jk
| > max

�∈S
|zn+1
� | . (5.19)

We notice that, for every j ∈ [N ],

zn+1
j = xnj +

N∑
i=1

(xi − xni )〈ai, aj〉 = xj +
∑
i�=j

(xi − xni )〈ai, aj〉 .

Therefore, we have

|zn+1
j − xj | ≤

∑
i∈Sn,i�=j

|xi − xni ||〈ai, aj〉|+
∑

i∈S\Sn,i�=j
|xi||〈ai, aj〉| . (5.20)

We derive, for 1 ≤ k ≤ n+ 1 and � ∈ S, that

|zn+1
jk
| ≥ |xjk | − μ1(s)‖(x − xn)Sn‖∞ − μ1(s)‖xS\Sn‖∞ , (5.21)

|zn+1
� | ≤ μ1(s)‖(x − xn)Sn‖∞ + μ1(s)‖xS\Sn‖∞ . (5.22)

In particular, for n = 0, substituting ‖(x − xn)Sn‖∞ = 0 into (5.21) and (5.22)
gives

|z1j1 | ≥ (1− μ1(s))‖x‖∞ > μ1(s)‖x‖∞ ≥ |z1� | for all � ∈ S ,

by virtue of 2μ1(s) < 1. Therefore, the base case of the inductive hypothesis (5.19)
holds for n = 0. Let us now assume that this hypothesis holds for n− 1 with n ≥ 1.
This implies that {j1, . . . , jn} ⊂ Sn. We notice that (HTP2) with n replaced by
n− 1 gives, in view of Lemma 3.4,
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(A∗A(x − xn))Sn = 0 .

Hence, for any j ∈ Sn, the definition (5.18) of zn+1 implies that zn+1
j = xnj , and

then (5.20) yields

|xnj − xj | ≤ μ1(s− 1)‖(x− xn)Sn‖∞ + μ1(s− 1)‖xS\Sn‖∞ .

Taking the maximum over j ∈ Sn and rearranging gives

‖(x− xn)Sn‖∞ ≤
μ1(s− 1)

1− μ1(s− 1)
‖xS\Sn‖∞ .

Substituting the latter into (5.21) and (5.22), we obtain, for 1 ≤ k ≤ n + 1 and
� ∈ S,

|zn+1
jk
| ≥
(
1− μ1(s)

1− μ1(s− 1)

)
|xjn+1 | ,

|zn+1
� | ≤ μ1(s)

1− μ1(s− 1)
|xjn+1 | .

Since μ1(s)/(1 − μ1(s − 1)) < 1/2, this shows that (5.19) holds for n, too. The
proof by induction is now complete. ��

Notes

The analysis of sparse recovery algorithms could be carried out using merely
the coherence. For instance, the conclusion of Theorem 5.17 can be achieved
under the sufficient condition μ < 1/(3s − 1), as obtained by Maleki in
[340]. Similarly, the conclusion of Theorem 5.15 can be achieved under the
sufficient condition μ<1/(2s−1), as obtained earlier by Gribonval and Nielsen in
[239] and also by Donoho and Elad in [155]. This followed previous work [158] on
�1-minimization by Donoho and Huo. They considered matrices formed by the
union of two orthonormal bases and introduced the concept of mutual (in)coherence;
see Exercise 5.1.

Theorems 5.14 and 5.15 in their present form were established by Tropp in [476].
What we call �1-coherence function here is called cumulative coherence function
there. This concept also appears under the name Babel function. A straightforward
extension to any p > 0 would be the �p-coherence function of a matrix A with
�2-normalized columns a1, . . . , aN defined by

μp(s) := max
i∈[N ]

max
{(∑

j∈S
|〈ai, aj〉|p

)1/p
, S ⊆ [N ], card(S) = s, i �∈ S

}
.
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Theorem 5.8 on the Welch-type lower bound for the �1-coherence function
appeared in [443]. The m × m2 matrix with coherence equal to 1/

√
m of

Proposition 5.13 is taken from [12, 456]. One can observe that its columns are the
union of m orthonormal bases. In [250], Gurevich, Hadani, and Sochen uncovered
a matrix with p rows (p being a prime number), roughly p5 columns, and coherence
bounded above by 4/

√
p. Another number theoretic construction of p× pk matrices

(p > k being a prime number) with coherence bounded above by (k − 1)/
√
p can

be found, for instance, in [472, Chap. 5.7.4].
There is a vast literature dedicated to frames. The notion is not restricted to

the finite-dimensional setting, although this is the only one we considered. Good
starting places to learn about the subject are Christensen’s books [119] and [120].
As mentioned in the text, not everything is known about equiangular tight frames.
In particular, whether equiangular systems of m2 vectors in Cm exist for all values
of m is not known—the numerical experiments performed for m ≤ 45 by Renes,
Blume-Kohout, Scott, and Caves in [420] seem to indicate that they do. More details
on the subject of equiangular tight frames, and more generally tight frames in finite
dimension, can be found in Waldron’s book [504].

Exercises

5.1. The mutual coherence between two orthonormal bases U = (u1, . . . ,um) and
V = (v1, . . . ,vm) of Cm is defined as

μ(U,V) := max
1≤i,j≤m

|〈ui,vj〉|.

Establish the inequalities

1√
m
≤ μ(U,V) ≤ 1

and prove that they are sharp.

5.2. Prove the equivalence of the three conditions of Definition 5.6 and find the
value of the constant λ when the vectors a1, . . . , aN are �2-normalized.

5.3. Establish the alternative expressions for the �1-coherence function

μ1(s) = max
card(S)≤s+1

‖A∗
SAS − Id‖1→1 = max

card(S)≤s+1
‖A∗

SAS − Id‖∞→∞.

5.4. Prove that the m+1 vertices of a regular simplex in R
m centered at the origin

form an equiangular tight frame.
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5.5. With c := (
√
5− 1)/2, prove that the columns of the matrix

⎡
⎣ 1 0 c 1 0 −c
c 1 0 −c 1 0

0 c 1 0 −c 1

⎤
⎦

form an equiangular system of 6 vectors in R3. Prove also that the vectors obtained
by unit cyclic shifts on four vectors [1,±1, 0,±1, 0, 0, 0]� form an equiangular
system of 28 vectors in R7.

5.6. With c := eiπ/4
√
2−

√
3, prove that the columns of the matrix

[
1 c 1 −c
c 1 −c 1

]

form an equiangular system of 4 vectors in C
2. With ω := ei2π/3, prove also that

the columns of the matrix

⎡
⎣−2 1 1 −2 ω2 ω −2 ω ω2

1 −2 1 ω −2 ω2 ω2 −2 ω

1 1 −2 ω2 ω −2 ω ω2 −2

⎤
⎦

form an equiangular system of 9 vectors in C3.

5.7. Prove that the columns of the matrix considered in Proposition 5.13 form a
tight frame.

5.8. Suppose that a known vector is an s-sparse linear combination of vectors from
the canonical and Fourier bases E = (e1, . . . , em) and F = (f1, . . . , fm), defined as

ek = [0, . . . , 0, 1︸︷︷︸
indexk

, 0, . . . , 0]�, fk =
1√
m
[1, e2πik/m, . . . , e2πik(m−1)/m]�.

Prove that the unknown coefficients can be found by orthogonal matching pursuit
or basis pursuit if s < (

√
m+ 1)/2.

5.9. Given ν < 1/2, suppose that a matrix A ∈ Cm×N satisfies

μ1(s) ≤ ν.

Prove that, for any x ∈ CN and y = Ax + e with ‖e‖2 ≤ η, a minimizer x� of
‖z‖1 subject to ‖Az− y‖2 ≤ η approximates the vector x with �1-error
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‖x− x�‖1 ≤ C σs(x)1 +D sη,

for some positive constants C and D depending only on ν.

5.10. Let A ∈ Cm×N be a matrix with �2-normalized columns. Prove that, if
μ1(2s) < 1/2 (in particular if μ < 1/(4s)), then every s-sparse vector x ∈ CN

is recovered from y = Ax via iterative hard thresholding.



Chapter 6
Restricted Isometry Property

The coherence is a simple and useful measure of the quality of a measurement
matrix. However, the lower bound on the coherence in Theorem 5.7 limits the
performance analysis of recovery algorithms to rather small sparsity levels. A
finer measure of the quality of a measurement matrix is needed to overcome this
limitation. This is provided by the concept of restricted isometry property, also
known as uniform uncertainty principle. It ensures the success of the sparse recovery
algorithms presented in this book. Restricted isometry constants are introduced in
Sect. 6.1. The success of sparse recovery is then established under some conditions
on these constants for basis pursuit in Sect. 6.2, for thresholding-based algorithms
in Sect. 6.3, and for greedy algorithms in Sect. 6.4.

6.1 Definitions and Basic Properties

Unlike the coherence, which only takes pairs of columns of a matrix into account,
the restricted isometry constant of order s involves all s-tuples of columns and is
therefore more suited to assess the quality of the matrix. As with the coherence,
small restricted isometry constants are desired. Here is their formal definition.

Definition 6.1. The sth restricted isometry constant δs = δs(A) of a matrix A ∈
Cm×N is the smallest δ ≥ 0 such that

(1 − δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (6.1)

for all s-sparse vectors x ∈ CN . Equivalently, it is given by

δs = max
S⊂[N ],card(S)≤s

‖A∗
SAS − Id‖2→2. (6.2)

We say that A satisfies the restricted isometry property if δs is small for
reasonably large s—the meaning of small δs and large s will be made precise later.

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
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We make a few remarks before establishing the equivalence of these two
definitions. The first one is that the sequence of restricted isometry constants is
nondecreasing, i.e.,

δ1 ≤ δ2 ≤ · · · ≤ δs ≤ δs+1 ≤ · · · ≤ δN .

The second one is that, although δs ≥ 1 is not forbidden, the relevant situation
occurs for δs < 1. Indeed, (6.2) says that each column submatrix AS , S ⊂ [N ]
with card(S) ≤ s, has all its singular values in the interval [1 − δs, 1 + δs] and
is therefore injective when δs < 1. In fact, δ2s < 1 is more relevant, since the
inequality (6.1) yields ‖A(x − x′)‖22 > 0 for all distinct s-sparse vectors x,x′ ∈
CN ; hence, distinct s-sparse vectors have distinct measurement vectors. The third
and final remark is that, if the entries of the measurement matrix A are real, then δs
could also be defined as the smallest δ ≥ 0 such that (6.1) holds for all real s-sparse
vectors x ∈ RN . This is because the operator norms of the real symmetric matrix
A∗
SAS − Id relative �2(R) and to �2(C) are equal—both to its largest eigenvalues

in modulus—and because the two definitions of restricted isometry constants would
be equivalent in the real setting, too.

For the equivalence of (6.1) and (6.2) in the complex setting, we start by noticing
that (6.1) is equivalent to

∣∣‖ASx‖22 − ‖x‖22
∣∣ ≤ δ‖x‖22 for all S ⊂ [N ], card(S) ≤ s, and all x ∈ C

S .

We then observe that, for x ∈ C
S ,

‖ASx‖22 − ‖x‖22 = 〈ASx,ASx〉 − 〈x,x〉 = 〈(A∗
SAS − Id)x,x〉.

Since the matrix A∗
SAS − Id is Hermitian, we have

max
x∈CS\{0}

〈(A∗
SAS − Id)x,x〉
‖x‖22

= ‖A∗
SAS − Id‖2→2,

so that (6.1) is equivalent to

max
S⊂[N ],card(S)≤s

‖A∗
SAS − Id‖2→2 ≤ δ.

This proves the identity (6.2), as δs is the smallest such δ.
It is now possible to compare the restricted isometry constants of a matrix with

its coherence μ and coherence function μ1; see Definitions 5.1 and 5.2.

Proposition 6.2. If the matrix A has �2-normalized columns a1, . . . , aN , i.e.,
‖aj‖2 = 1 for all j ∈ [N ], then

δ1 = 0, δ2 = μ, δs ≤ μ1(s− 1) ≤ (s− 1)μ, s ≥ 2.
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Proof. The �2-normalization of the columns means that ‖Aej‖22 = ‖ej‖22 for all
j ∈ [N ], that is to say δ1 = 0. Next, with a1, . . . , aN denoting the columns of the
matrix A, we have

δ2 = max
1≤i�=j≤N

‖A∗
{i,j}A{i,j} − Id‖2→2, A∗

{i,j}A{i,j} =

[
1 〈aj , ai〉

〈ai, aj〉 1

]
.

The eigenvalues of the matrix A∗
{i,j}A{i,j} − Id are |〈ai, aj〉| and −|〈ai, aj〉|, so

its operator norm is |〈ai, aj〉|. Taking the maximum over 1 ≤ i �= j ≤ N yields
the equality δ2 = μ. The inequality δs ≤ μ1(s − 1) ≤ (s − 1)μ follows from
Theorem 5.3. ��

In view of the existence of m ×m2 matrices with coherence μ equal to 1/
√
m

(see Chap. 5), this already shows the existence of m ×m2 matrices with restricted
isometry constant δs < 1 for s ≤ √

m. We will establish that, given δ < 1,
there exist m × N matrices with restricted isometry constant δs ≤ δ for s ≤
cm/ ln(eN/m), where c is a constant depending only on δ; see Chap. 9. This is
essentially the largest range possible; see Chap. 10. Matrices with a small restricted
isometry constant of this optimal order are informally said to satisfy the restricted
isometry property or uniform uncertainty principle.

We now make a simple but essential observation, which motivates the related
notion of restricted orthogonality constant.

Proposition 6.3. Let u,v ∈ CN be vectors with ‖u‖0 ≤ s and ‖v‖0 ≤ t. If
supp(u) ∩ supp(v) = ∅, then

|〈Au,Av〉| ≤ δs+t‖u‖2‖v‖2. (6.3)

Proof. Let S := supp(u) ∪ supp(v), and let uS ,vS ∈ CS be the restrictions of
u,v ∈ CN to S. Since u and v have disjoint supports, we have 〈uS ,vS〉 = 0. We
derive

|〈Au,Av〉| = |〈ASuS ,ASvS〉 − 〈uS ,vS〉| = |〈(A∗
SAS − Id)uS ,vS〉|

≤ ‖(A∗
SAS − Id)uS‖2‖vS‖2 ≤ ‖A∗

SAS − Id‖2→2‖uS‖2‖vS‖2,

and the conclusion follows from (6.2), ‖uS‖2 = ‖u‖2, and ‖vS‖2 = ‖v‖2. ��

Definition 6.4. The (s, t)-restricted orthogonality constant θs,t = θs,t(A) of a
matrix A ∈ Cm×N is the smallest θ ≥ 0 such that

|〈Au,Av〉| ≤ θ ‖u‖2‖v‖2 (6.4)

for all disjointly supported s-sparse and t-sparse vectors u,v ∈ CN . Equivalently,
it is given by

θs,t = max
{∥∥A∗

TAS

∥∥
2→2

, S ∩ T = ∅, card(S) ≤ s, card(T ) ≤ t
}
. (6.5)
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The justification of the equivalence between the two definitions is left as
Exercise 6.4. We now give a comparison result between restricted isometry constants
and restricted orthogonality constants.

Proposition 6.5. Restricted isometry constants and restricted orthogonality const-
ants are related by

θs,t ≤ δs+t ≤
1

s+ t

(
s δs + t δt + 2

√
st θs,t
)
.

The special case t = s gives the inequalities

θs,s ≤ δ2s and δ2s ≤ δs + θs,s.

Proof. The first inequality is Proposition 6.3. For the second inequality, given an
(s+ t)-sparse vector x ∈ CN with ‖x‖2 = 1, we need to show that

∣∣‖Ax‖22 − ‖x‖22
∣∣ ≤ 1

s+ t

(
s δs + t δt + 2

√
st θs,t
)
.

Let u,v ∈ CN be two disjointly supported vectors such that u+ v = x, where u is
s-sparse and v is t-sparse, respectively. We have

‖Ax‖22 = 〈A(u+ v),A(u + v)〉 = ‖Au‖22 + ‖Av‖22 + 2Re〈Au,Av〉.

Taking ‖x‖22 = ‖u‖22 + ‖v‖22 into account, we derive

∣∣‖Ax‖22 − ‖x‖22
∣∣ ≤ ∣∣‖Au‖22 − ‖u‖22

∣∣+ ∣∣‖Av‖22 − ‖v‖22
∣∣+ 2
∣∣〈Au,Av〉

∣∣
≤ δs‖u‖22 + δt‖v‖22 + 2θs,t‖u‖2‖v‖2 = f

(
‖u‖22
)
,

where we have set, for α ∈ [0, 1],

f(α) := δsα+ δt(1− α) + 2θs,t
√
α(1 − α). (6.6)

It can be shown that there is an α∗ ∈ [0, 1] such that this function is nondecreasing
on [0, α∗] and then nonincreasing on [α∗, 1]—see Exercise 6.5. Depending on the
location of this α∗ with respect to s/(s+ t), the function f is either nondecreasing
on [0, s/(s+ t)] or nonincreasing on [s/(s+ t), 1]. By properly choosing the vector
u, we can always assume that ‖u‖22 is in one of these intervals. Indeed, if u is made
of s smallest absolute entries of x while v is made of t largest absolute entries of x,
then we have

‖u‖22
s

≤ ‖v‖
2
2

t
=

1− ‖u‖22
t

, so that ‖u‖22 ≤
s

s+ t
,
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and if u was made of s largest absolute entries of x, then we would likewise have
‖u‖22 ≥ s/(s+ t). This implies

∣∣‖Ax‖22 − ‖x‖22
∣∣ ≤ f
( s

s+ t

)
= δs

s

s+ t
+ δt

t

s+ t
+ 2θs,t

√
st

s+ t
.

The proof is complete. ��

We continue by proving that restricted isometry constants and restricted orthog-
onality constants of high order can be controlled by those of lower order.

Proposition 6.6. For integers r, s, t ≥ 1 with t ≥ s,

θt,r ≤
√
t

s
θs,r,

δt ≤
t− d

s
δ2s +

d

s
δs where d := gcd(s, t).

The special case t = c s gives

δcs ≤ c δ2s.

Remark 6.7. There are other relations enabling to control constants of higher order
by constants of lower order; see Exercise 6.10.

Proof. Given a t-sparse vector u ∈ C
N and an r-sparse vector v ∈ C

N that are
disjointly supported, we need to show that

|〈Au,Av〉| ≤
√
t

s
θs,r ‖u‖2 ‖v‖2, (6.7)

∣∣‖Au‖22 − ‖u‖22
∣∣ ≤ ( t− d

s
δ2s +

d

s
δs

)
‖u‖22. (6.8)

Let d be a common divisor of s and t. We introduce integers k, n such that

s = kd, t = nd.

Let T = {j1, j2, . . . , jt} denote the support of u. We consider the n subsets
S1, S2, . . . , Sn ⊂ T of size s defined by

Si = {j(i−1)d+1, j(i−1)d+2, . . . , j(i−1)d+s},

where indices are meant modulo t. In this way, each j ∈ T belongs to exactly
s/d = k sets Si, so that

u =
1

k

n∑
i=1

uSi , ‖u‖22 =
1

k

n∑
i=1

‖uSi‖22.
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We now derive (6.7) from

|〈Au,Av〉| ≤ 1

k

n∑
i=1

|〈AuSi ,Av〉| ≤ 1

k

n∑
i=1

θs,r‖uSi‖2‖v‖2

≤ θs,r

√
n

k

( n∑
i=1

‖uSi‖22
)1/2

‖v‖2 = θs,r

(n
k

)1/2
‖u‖2‖v‖2.

Inequality (6.8) follows from

∣∣‖Au‖22 − ‖u‖22
∣∣ = ∣∣〈(A∗A− Id)u,u〉

∣∣
≤ 1

k2

n∑
i=1

n∑
j=1

∣∣〈(A∗A− Id)uSi ,uSj 〉
∣∣

=
1

k2

( ∑
1≤i�=j≤n

∣∣〈(A∗
Si∪Sj

ASi∪Sj − Id)uSi ,uSj 〉
∣∣

+

n∑
i=1

∣∣〈(A∗
Si
ASi − Id)uSi ,uSi〉

∣∣)

≤ 1

k2

( ∑
1≤i�=j≤n

δ2s‖uSi‖2‖uSj‖2 +
n∑
i=1

δs‖uSi‖22
)

=
δ2s
k2

( n∑
i=1

‖uSi‖2
)2
− δ2s − δs

k2

n∑
i=1

‖uSi‖22

≤
(δ2s n

k2
− δ2s − δs

k2

) n∑
i=1

‖uSi‖22 =
(n
k
δ2s −

1

k
(δ2s − δs)

)
‖u‖22

=
( t
s
δ2s −

1

k
(δ2s − δs)

)
‖u‖22.

To make the latter as small as possible, we take k as small as possible, i.e., we
choose d as the greatest common divisor of s and t. This completes the proof. ��

Just like for the coherence, it is important to know how small the sth restricted
isometry constant of a matrix A ∈ Cm×N can be. In the case N ≥ Cm of
relevance in compressive sensing, Theorem 6.8 below states that the restricted
isometry constant must satisfy δs ≥ c

√
s/m. For s = 2, this reads μ ≥ c′/

√
m,

which is reminiscent of the Welch bound of Theorem 5.7. In fact, the proof is an
adaptation of the proof of this theorem.
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Theorem 6.8. For A ∈ Cm×N and 2 ≤ s ≤ N , one has

m ≥ c
s

δ2s
, (6.9)

provided N ≥ C m and δs ≤ δ∗, where the constants c, C, and δ∗ depend only on
each other. For instance, the choices c = 1/162, C = 30, and δ∗ = 2/3 are valid.

Proof. We first notice that the statement cannot hold for s = 1, as δ1 = 0 if all
the columns of A have �2-norm equal to 1. Let us set t := �s/2� ≥ 1, and let us
decompose the matrix A in blocks of sizem×t—except possibly the last one which
may have less columns—as

A =
[
A1 | A2 | · · · | An

]
, N ≤ nt.

From (6.2) and (6.5), we recall that, for all i, j ∈ [n], i �= j,

‖A∗
iAi − Id‖2→2 ≤ δt ≤ δs, ‖A∗

iAj‖2→2 ≤ θt,t ≤ δ2t ≤ δs,

so that the eigenvalues of A∗
iAi and the singular values of A∗

iAj satisfy

1− δs ≤ λk(A
∗
iAi) ≤ 1 + δs, σk(A

∗
iAj) ≤ δs.

Let us introduce the matrices

H := AA∗ ∈ C
m×m, G := A∗A =

[
A∗
iAj

]
1≤i,j≤n ∈ C

N×N .

On the one hand, we have the lower bound

tr(H) = tr(G) =
n∑
i=1

tr(A∗
iAi) =

n∑
i=1

t∑
k=1

λk(A
∗
iAi) ≥ n t (1− δs). (6.10)

On the other hand, writing 〈M1,M2〉F = tr(M∗
2M1) for the Frobenius inner

product of two matrices M1 and M2 (see (A.15)), we have

tr(H)2 = 〈Idm,H〉2F ≤ ‖Idm‖2F ‖H‖2F = m tr(H∗H).

Then, by cyclicity of the trace,

tr(H∗H) = tr(AA∗AA∗) = tr(A∗AA∗A) = tr(GG∗)

=

n∑
i=1

tr
( m∑
j=1

A∗
iAjA

∗
jAi

)

=
∑

1≤i�=j≤n

t∑
k=1

σk(A
∗
iAj)

2 +

n∑
i=1

t∑
k=1

λk(A
∗
iAi)

2

≤ n (n− 1) t δ2s + n t (1 + δs)
2.
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We derive the upper bound

tr(H)2 ≤ mn t
(
(n− 1) δ2s + (1 + δs)

2
)
. (6.11)

Combining the bounds (6.10) and (6.11) yields

m ≥ n t (1− δs)
2

(n− 1) δ2s + (1 + δs)2
.

If (n− 1) δ2s < (1 + δs)
2/5, we would obtain, using δs ≤ 2/3,

m >
n t (1− δs)

2

6(1 + δs)2/5
≥ 5(1− δs)

2

6(1 + δs)2
N ≥ 1

30
N,

which contradicts our assumption. We therefore have (n − 1) δ2s ≥ (1 + δs)
2/5,

which yields, using δs ≤ 2/3 again and s ≤ 3t,

m ≥ n t (1− δs)
2

6(n− 1) δ2s
≥ 1

54

t

δ2s
≥ 1

162

s

δ2s
.

This is the desired result. ��

Let us compare the previous lower bound on restricted isometry constants,
namely,

δs ≥
√
cs/m, (6.12)

with upper bounds available so far. Precisely, choosing a matrix A ∈ Cm×N with a
coherence of optimal order μ ≤ c/

√
m, Proposition 6.2 implies that

δs ≤ (s− 1)μ ≤ cs/
√
m. (6.13)

There is a significant gap between (6.12) and (6.13). In particular, (6.13) with the
quadratic scaling

m ≥ c′s2 (6.14)

allows δs to be small, while this requires under (6.12) that m ≥ c′s. However,
whether such a condition can be sufficient is unknown at this point. We will see
later in Chap. 9 that certain random matrices A ∈ Rm×N satisfy δs ≤ δ with high
probability for some δ > 0 provided

m ≥ Cδ−2s ln(eN/s). (6.15)

We will also see in Corollary 10.8 that δs ≤ δ requires m ≥ Cδs ln(eN/s).
Therefore, the lower bound m ≥ c′s is optimal up to logarithmic factors, and (6.9)
is optimal regarding the scaling Cδ = Cδ−2.
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Difficulty of Deterministic Constructions of Matrices with RIP. As just men-
tioned, random matrices will be used to obtain the restricted isometry property
δs ≤ δ (abbreviated RIP) in the optimal regime (6.15) for the number m of
measurements in terms of the sparsity s and the vector length N . To date, finding
deterministic (i.e., explicit or at least constructible in polynomial time) matrices
satisfying δs ≤ δ in this regime is a major open problem. Essentially all available
estimations of δs for deterministic matrices combine a coherence estimation and
Proposition 6.2 in one form or another (with one exception commented on in the
Notes section). This leads to bounds of the type (6.13) and in turn to the quadratic
bottleneck (6.14). Thus, the lower bound of Theorem 5.7 in principle prevents
such a proof technique to generate improved results. The intrinsic difficulty in
bounding the restricted isometry constants of explicit matrices A lies in the basic
tool for estimating the eigenvalues of A∗

SAS − Id, namely, Gershgorin’s disk
theorem (Theorem A.11). Indeed, assuming �2-normalization of the columns of A
and taking the supremum over all S ⊂ [N ] with card(S) = s leads then to the
�1-coherence function μ1(s− 1)—this is how we showed the bound δs ≤ μ1(s− 1)
of Proposition 6.2; see also Theorem 5.3. Then the lower bound for the �1-coherence
function from Theorem 5.8 tells us that the quadratic bottleneck is unavoidable when
using Gershgorin’s theorem to estimate restricted isometry constants. It seems that
not only the magnitude of the entries of the GramianA∗A but also their signs should
be taken into account in order to improve estimates for deterministic matrices, but
which tools to be used for this purpose remains unclear (a slight improvement over
the quadratic bottleneck is discussed in the Notes section). One may conjecture
that some of the matrices with coherence of optimal order, for instance, the one of
Theorem 5.13, also satisfy the restricted isometry property when m scales linearly
in s up to logarithmic factors. All the same, when passing to random matrices, a
powerful set of tools becomes available for the estimation of the restricted isometry
constants in the optimal regime.

6.2 Analysis of Basis Pursuit

In this section, we establish the success of sparse recovery via basis pursuit for
measurement matrices with small restricted isometry constants. We give two proofs
of this fact. The first proof is simple and quite natural. It shows that the condition
δ2s < 1/3 is sufficient to guarantee exact recovery of all s-sparse vectors via �1-
minimization. The second proof is more involved. It shows that the weaker condition
δ2s < 0.6246 is actually sufficient to guarantee stable and robust recovery of all
s-sparse vectors via �1-minimization. We start by presenting the simple argument
which ignores stability and robustness issues (although such issues can be treated
with only a slight extension of the argument).

Theorem 6.9. Suppose that the 2sth restricted isometry constant of the matrix
A ∈ Cm×N satisfies

δ2s <
1

3
. (6.16)
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Then every s-sparse vector x ∈ CN is the unique solution of

minimize
z∈CN

‖z‖1 subject to Az = Ax.

The following observation is recurring in our argument, so we isolate it from the
proof.

Lemma 6.10. Given q > p > 0, if u ∈ C
s and v ∈ C

t satisfy

max
i∈[s]

|ui| ≤ min
j∈[t]

|vj |, (6.17)

then

‖u‖q ≤
s1/q

t1/p
‖v‖p.

The special case p = 1, q = 2, and t = s gives

‖u‖2 ≤
1√
s
‖v‖1.

Proof. For the first statement, we only need to notice that

‖u‖q
s1/q

=

[
1

s

s∑
i=1

|ui|q
]1/q

≤ max
i∈[s]

|ui|,

‖v‖p
t1/p

=

⎡
⎣1
t

t∑
j=1

|vj |p
⎤
⎦
1/p

≥ min
j∈[t]

|vj |,

and to use (6.17). The second statement is an immediate consequence. ��

Proof (of Theorem 6.9). According to Corollary 4.5, it is enough to establish the
null space property of order s in the form

‖vS‖1 <
1

2
‖v‖1 for all v ∈ kerA \ {0} and all S ⊂ [N ] with card(S) = s.

This will follow from the stronger statement

‖vS‖2 ≤
ρ

2
√
s
‖v‖1 for all v ∈ kerA and all S ⊂ [N ] with card(S) = s,

where

ρ :=
2δ2s

1− δ2s
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satisfies ρ < 1 whenever δ2s < 1/3. Given v ∈ kerA, we notice that it is enough
to consider an index set S =: S0 of s largest absolute entries of the vector v. We
partition the complement S0 of S0 in [N ] as S0 = S1 ∪ S2 ∪ . . ., where

S1 : index set of s largest absolute entries of v in S0,

S2 : index set of s largest absolute entries of v in S0 ∪ S1,

etc. In view of v ∈ kerA, we have A(vS0) = A(−vS1 − vS2 − · · · ), so that

‖vS0‖22 ≤
1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s
〈A(vS0 ),A(−vS1) +A(−vS2) + · · · 〉

=
1

1− δ2s

∑
k≥1

〈A(vS0),A(−vSk
)〉. (6.18)

According to Proposition 6.3, we also have

〈A(vS0),A(−vSk
)〉 ≤ δ2s‖vS0‖2‖vSk

‖2. (6.19)

Substituting (6.19) into (6.18) and dividing by ‖vS0‖2 > 0, we obtain

‖vS0‖2 ≤
δ2s

1− δ2s

∑
k≥1

‖vSk
‖2 =

ρ

2

∑
k≥1

‖vSk
‖2.

For k ≥ 1, the s absolute entries of vSk
do not exceed the s absolute entries of

vSk−1
, so that Lemma 6.10 yields

‖vSk
‖2 ≤

1√
s
‖vSk−1

‖1.

We then derive

‖vS0‖2 ≤
ρ

2
√
s

∑
k≥1

‖vSk−1
‖1 ≤

ρ

2
√
s
‖v‖1.

This is the desired inequality. ��

Remark 6.11. In (6.18), the vector vS0 was interpreted as being 2s-sparse, although
it is in fact s-sparse. The better bound ‖vS0‖22 ≤ ‖A(vS0)‖22/(1 − δs) could
therefore be invoked. In (6.19), the restricted orthogonality constant θs,s could also
have been used instead of δ2s. This would yield the sufficient condition δs+2θs,s <
1 instead of (6.16).

It is instructive to refine the above proof by establishing stability and robustness.
The reader is invited to do so in Exercise 6.12. Here, stability and robustness are
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incorporated in Theorem 6.12 below, which also improves on Theorem 6.9 by
relaxing the sufficient condition (6.16).

Theorem 6.12. Suppose that the 2sth restricted isometry constant of the matrix
A ∈ Cm×N satisfies

δ2s <
4√
41
≈ 0.6246. (6.20)

Then, for any x ∈ CN and y ∈ Cm with ‖Ax− y‖2 ≤ η, a solution x� of

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η

approximates the vector x with errors

‖x− x�‖1 ≤ C σs(x)1 +D
√
s η,

‖x− x�‖2 ≤
C√
s
σs(x)1 +Dη,

where the constants C,D > 0 depend only on δ2s.

These error estimates—in fact, �p-error estimates for any 1 ≤ p ≤ 2—are
immediately deduced from Theorem 4.22 and the following result.

Theorem 6.13. If the 2sth restricted isometry constant of A ∈ C
m×N obeys

(6.20), then the matrix A satisfies the �2-robust null space property of order s with
constants 0 < ρ < 1 and τ > 0 depending only on δ2s.

The argument makes use of the following lemma, called square root lifting
inequality. It can be viewed as a counterpart of the inequality ‖a‖1 ≤

√
s‖a‖2

for a ∈ Cs.

Lemma 6.14. For a1 ≥ a2 ≥ · · · ≥ as ≥ 0,

√
a21 + · · ·+ a2s ≤

a1 + · · ·+ as√
s

+

√
s

4
(a1 − as).

Proof. We prove the equivalent statement

a1 ≥ a2 ≥ · · · ≥ as ≥ 0
a1 + a2 + · · ·+ as√

s
+

√
s

4
a1 ≤ 1

⎫⎬
⎭ =⇒

√
a21 + · · ·+ a2s +

√
s

4
as ≤ 1.

Thus, we aim at maximizing the convex function

f(a1, a2, . . . , as) :=
√
a21 + · · ·+ a2s +

√
s

4
as
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over the convex polytope

C := {(a1, . . . , as) ∈ R
s : a1 ≥ · · · ≥ as ≥ 0 and

a1 + · · ·+ as√
s

+

√
s

4
a1 ≤ 1}.

Because any point in C is a convex combination of its vertices and because the
function f is convex, the maximum is attained at a vertex of C; see Theorem B.16.
The vertices of C are obtained as intersections of s hyperplanes arising by turning
s of the (s + 1) inequality constraints into equalities. We have the following
possibilities:

• If a1 = · · · = as = 0, then f(a1, a2, . . . , as) = 0.
• If (a1+· · ·+as)/

√
s+
√
s a1/4 = 1 and a1 = · · · = ak > ak+1 = · · · = as = 0

for some 1 ≤ k ≤ s − 1, then one has a1 = · · · = ak = 4
√
s/(4k + s), and

consequently f(a1, . . . , as) = 4
√
ks/(4k + s) ≤ 1.

• If (a1 + · · · + as)/
√
s +

√
s a1/4 = 1 and a1 = · · · = as > 0, then one has

a1 = · · · = as = 4/(5
√
s), and consequently f(a1, . . . , as) = 4/5 + 1/5 = 1.

We have obtained

max
(a1,...,as)∈C

f(a1, a2, . . . , as) = 1,

which is the desired result. ��

We are now ready to establish the robust null space property stated in Theo-
rem 6.13. To simplify the initial reading of the proof, the reader may consider only
the stable null space property by specifying v ∈ kerA in the following argument.

Proof (of Theorem 6.13). We need to find constants 0 < ρ < 1 and τ > 0 such that,
for any v ∈ C

N and any S ⊂ [N ] with card(S) = s,

‖vS‖2 ≤
ρ√
s
‖vS‖1 + τ‖Av‖2. (6.21)

Given v ∈ CN , it is enough to consider an index set S =: S0 of s largest absolute
entries of v. As before, we partition the complement of S0 as S0 = S1 ∪ S2 ∪ . . .,
where

S1 : index set of s largest absolute entries of v in S0,

S2 : index set of s largest absolute entries of v in S0 ∪ S1,

etc. Since the vector vS0 is s-sparse, we can write

‖AvS0‖22 = (1 + t)‖vS0‖22 with |t| ≤ δs.

We are going to establish that, for any k ≥ 1,
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|〈AvS0 ,AvSk
〉| ≤
√
δ22s − t2 ‖vS0‖2‖vSk

‖2. (6.22)

To do so, we normalize the vectors vS0 and vSk
by setting u := vS0/‖vS0‖2 and

w := eiθvSk
/‖vSk

‖2, θ being chosen so that |〈Au,Aw〉| = Re〈Au,Aw〉. Then,
for real numbers α, β ≥ 0 to be chosen later, we write

2|〈Au,Aw〉| = 1

α+ β

[
‖A(αu+w)‖22 − ‖A(βu−w)‖22 − (α2−β2)‖Au‖22

]

≤ 1

α+ β

[
(1+δ2s)‖αu+w‖22 − (1−δ2s)‖βu−w‖22 − (α2−β2)(1 + t)‖u‖22

]

=
1

α+ β

[
(1+δ2s)(α

2 + 1)− (1−δ2s)(β2 + 1)− (α2−β2)(1 + t)
]

=
1

α+ β

[
α2(δ2s − t) + β2(δ2s + t) + 2δ2s

]
.

Making the choice α = (δ2s + t)/
√
δ22s − t2 and β = (δ2s − t)/

√
δ22s − t2, we

derive

2|〈Au,Aw〉| ≤
√
δ22s − t2

2δ2s

[
δ2s + t+ δ2s − t+ 2δ2s

]
= 2
√
δ22s − t2,

which is a reformulation of the desired inequality (6.22). Next, we observe that

‖AvS0‖22 =
〈
AvS0 ,A

(
v −
∑
k≥1

vSk

)〉
= 〈AvS0 ,Av〉 −

∑
k≥1

〈AvS0 ,AvSk
〉

≤ ‖AvS0‖2‖Av‖2 +
∑
k≥1

√
δ22s − t2‖vS0‖2‖vSk

‖2

= ‖vS0‖
(√

1 + t ‖Av‖2 +
√
δ22s − t2

∑
k≥1

‖vSk
‖2
)
. (6.23)

For each k ≥ 1, we denote by υ−k and υ+k the smallest and largest absolute entries
of v on Sk, and we use Lemma 6.14 to obtain

∑
k≥1

‖vSk
‖2 ≤
∑
k≥1

( 1√
s
‖vSk

‖1 +
√
s

4
(v+k − v−k )

)

≤ 1√
s
‖vS0

‖1 +
√
s

4
v+1 ≤

1√
s
‖vS0

‖1 +
1

4
‖vS0‖2.

Substituting the latter in the right-hand side of (6.23), while replacing ‖AvS0‖22 by
(1 + t)‖vS0‖22 in the left-hand side and dividing through by ‖vS0‖2, yields
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(1 + t)‖vS0‖2 ≤
√
1 + t ‖Av‖2 +

√
δ22s − t2√

s
‖vS0

‖1 +
√
δ22s − t2

4
‖vS0‖2

≤ (1 + t)
( 1√

1 + t
‖Av‖2 +

δ2s√
s
√
1− δ22s

‖vS0
‖1 +

δ2s

4
√
1− δ22s

‖vS0‖2
)
,

where we used the easily verified inequality
√
δ22s − t2/(1 + t) ≤ δ2s/

√
1− δ2s.

Dividing through by 1 + t, using 1/
√
1 + t ≤ 1/

√
1− δ2s, and rearranging gives

‖vS0‖2 ≤
δ2s√

1− δ22s − δ2s/4

‖vS0
‖1√
s

+

√
1 + δ2s√

1− δ22s − δ2s/4
‖Av‖2.

This takes the form of the desired inequality (6.21) as soon as

ρ :=
δ2s√

1− δ22s − δ2s/4
< 1,

i.e., 5δ2s/4 <
√

1− δ22s, or 41δ22s < 16, which reduces to Condition (6.20). ��

We close this section by highlighting some limitations of the restricted isometry
property in the context of basis pursuit. We recall from Remark 4.6 that s-sparse re-
covery via basis pursuit is preserved if some measurements are rescaled, reshuffled,
or added. However, these operations may deteriorate the restricted isometry con-
stants. Reshuffling measurements corresponds to replacing the measurement matrix
A ∈ C

m×N by PA, where P ∈ C
m×m is a permutation matrix. This operation

leaves the restricted isometry constants unchanged, since in fact δs(UA) = δs(A)
for any unitary matrix U ∈ C

m×m. Adding a measurement, however, which
corresponds to appending a row to the measurement matrix, may increase the
restricted isometry constant. Consider, for instance, a matrix A ∈ C

m×N with sth
order restricted isometry constant δs(A) < 1, and let δ > δs(A). We construct

a matrix Ã by appending the row
[
0 . . . 0

√
1 + δ
]
. With x :=

[
0 . . . 0 1

]�
, it is

easy to see that ‖Ax‖22 ≥ 1 + δ. This implies that δ1(Ã) ≥ δ and consequently
that δs(Ã) > δs(A). Likewise, rescaling the measurements, which corresponds to
replacing the measurement matrix A ∈ Cm×N by DA, where D ∈ Cm×m is a
diagonal matrix, may also increase the restricted isometry constant. This is even
the case for scalar rescaling, i.e., replacing A by dA for d ∈ C. For instance, if
A ∈ Cm×N has an sth order restricted isometry constant δs(A) < 3/5, then the sth
order restricted isometry constant of 2A satisfies δs(2A) ≥ 3 − 4δs(A) > δs(A).
In order to circumvent the issue of scalar rescaling, one can work instead with the
sth restricted isometry ratio γs = γs(A), defined as

γs :=
βs
αs
≥ 1,
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where αs and βs are the largest and smallest constants α, β ≥ 0 such that

α ‖x‖22 ≤ ‖Ax‖22 ≤ β ‖x‖22

for all s-sparse vectors x ∈ CN . Note that this does not settle the issue of general
rescaling. Consider indeed the (2s)×(2s+1) matrix A and the (2s)×(2s) diagonal
matrix Dε defined by

A =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0 −1

0 1
. . . 0 −1

...
. . .

. . . 0
...

0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎦ , Dε = diag[ε, 1/ε, 1, . . . , 1].

Since kerDεA = kerA is spanned by
[
1, 1, . . . , 1

]�
, the matrices DεA and A

both satisfy the sth order null space property, hence allow s-sparse recovery via
basis pursuit. However, the sth order restricted isometry ratio of DεA can be made
arbitrarily large, since γs(DεA) ≥ 1/ε4. Incidentally, this shows that there are
matrices allowing s-sparse recovery via basis pursuit but whose sth order restricted
isometry constant is arbitrarily close to 1—even after scalar renormalization; see
Exercise 6.2.

6.3 Analysis of Thresholding Algorithms

In this section, we establish the success of sparse recovery via iterative hard
thresholding and via hard thresholding pursuit for measurement matrices with
small restricted isometry constants. Again, we start with a simple and quite natural
proof of the success of s-sparse recovery via iterative hard thresholding under the
condition δ3s< 0.5. This is done in the ideal situation of exactly sparse vectors
acquired with perfect accuracy. We then cover the more realistic situation of
approximately sparse vectors measured with some errors. The improved result
only requires the weaker condition δ3s< 0.5773. It applies to both iterative hard
thresholding and hard thresholding pursuit, but its proof is more involved. Before
all this, we recall from Sect. 3 that the iterative hard thresholding algorithm starts
with an initial s-sparse vector x0 ∈ CN , typically x0 = 0, and produces a sequence
(xn) defined inductively by

xn+1 = Hs(x
n +A∗(y −Axn)). (IHT)

The hard thresholding operator Hs keeps the s largest absolute entries of a vector,
so that Hs(z) is a (not necessarily unique) best s-term approximation to z ∈ CN .
For small restricted isometry constants, the success of iterative hard thresholding is
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intuitively justified by the fact that A∗A behaves like the identity when its domain
and range are restricted to small support sets. Thus, if y = Ax for some sparse
x ∈ CN , the contribution to xn+1 of A∗(y −Axn) = A∗A(x − xn) is roughly
x − xn, which sums with xn to the desired x. Here is a formal statement of the
success of iterative hard thresholding.

Theorem 6.15. Suppose that the 3sth restricted isometry constant of the matrix
A ∈ Cm×N satisfies

δ3s <
1

2
. (6.24)

Then, for every s-sparse vector x ∈ CN , the sequence (xn) defined by (IHT) with
y = Ax converges to x.

The following observation is recurring in our arguments, so we isolate it from
the proof.

Lemma 6.16. Given vectors u,v ∈ CN and an index set S ⊂ [N ],

|〈u, (Id −A∗A)v〉| ≤ δt‖u‖2‖v‖2 if card(supp(u) ∪ supp(v)) ≤ t,

‖((Id−A∗A)v)S‖2 ≤ δt‖v‖2 if card(S ∪ supp(v)) ≤ t.

Proof. For the first inequality, let T := supp(u) ∪ supp(v), and let uT and vT
denote the subvectors of u and v obtained by only keeping the entries indexed by
T . We write

|〈u, (Id−A∗A)v〉| = |〈u,v〉 − 〈Au,Av〉| = |〈uT ,vT 〉 − 〈ATuT ,ATvT 〉|

= |〈uT , (Id−A∗
TAT )vT 〉| ≤ ‖uT ‖2 ‖(Id−A∗

TAT )vT ‖2
≤ ‖uT‖2 ‖Id−A∗

TAT ‖2→2‖vT ‖2 ≤ δt‖u‖2‖v‖2.

The second inequality follows from the first one by observing that

‖((Id−A∗A)v)S‖22= 〈((Id−A∗A)v)S, (Id−A∗A)v〉≤ δt‖((Id−A∗A)v)S‖2‖v‖2.

We divide through by ‖((Id−A∗A)v)S‖2 to complete the proof. ��
Proof (of Theorem 6.15). It is enough to find a constant 0 ≤ ρ < 1 such that

‖xn+1 − x‖2 ≤ ρ ‖xn − x‖2, n ≥ 0, (6.25)

since this implies by induction that

‖xn − x‖2 ≤ ρn‖x0 − x‖2 −→
n→∞

0.



150 6 Restricted Isometry Property

By definition, the s-sparse vector xn+1 is a better (or at least equally good)
approximation to

un := xn +A∗(y −Axn) = xn +A∗A(x− xn)

than the s-sparse vector x. This implies

‖un − xn+1‖22 ≤ ‖un − x‖22.

Expanding ‖un − xn+1‖22 = ‖(un − x)− (xn+1 − x)‖22 and rearranging yields

‖xn+1 − x‖22 ≤ 2Re〈un − x,xn+1 − x〉. (6.26)

We now use Lemma 6.16 to obtain

Re〈un − x,xn+1 − x〉 = Re〈(Id−A∗A)(xn − x),xn+1 − x〉

≤ δ3s‖xn − x‖2‖xn+1 − x‖2. (6.27)

If ‖xn+1 − x‖2 > 0, we derive from (6.26) and (6.27) that

‖xn+1 − x‖2 ≤ 2δ3s‖xn − x‖2,

which is obviously true if ‖xn+1 − x‖2 = 0. Thus, the desired inequality (6.25)
holds with ρ = 2δ3s < 1. ��

Remark 6.17. Sufficient conditions for the success of s-sparse recovery via basis
pursuit were previously given in terms of δ2s. Such sufficient conditions can also be
given for iterative hard thresholding. For instance, since δ3s ≤ 2δ2s + δs ≤ 3δ2s by
Proposition 6.6, it is enough to assume δ2s < 1/6 to guarantee δ3s < 1/2, hence the
success of s-sparse recovery via iterative hard thresholding. This condition may be
weakened to δ2s < 1/4 by refining the argument in the proof of Theorem 6.15—see
Exercise 6.20. It can be further weakened to δ2s < 1/3 with a slight modification of
the algorithm—see Exercise 6.21.

It is again instructive to refine the proof above for approximately sparse vectors
measured with some errors, and the reader is invited to do so in Exercise 6.19.
Theorem 6.18 below covers this case while improving on Theorem 6.15 by relaxing
the sufficient condition (6.24). As a consequence, we will obtain in Theorem 6.21
error estimates similar to the ones for basis pursuit. We underline that the arguments
are valid for both iterative hard thresholding and hard thresholding pursuit. As
a reminder, this latter algorithm starts with an initial s-sparse vector x0 ∈ CN ,
typically x0 = 0, and produces a sequence (xn) defined inductively by

Sn+1 = Ls(x
n +A∗(y −Axn)), (HTP1)

xn+1 = argmin
{
‖y −Az‖2, supp(z) ⊂ Sn+1

}
. (HTP2)
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We recall that Ls(z) denotes an index set of s largest absolute entries of a vector
z ∈ CN ; see (3.8).

Theorem 6.18. Suppose that the 3sth restricted isometry constant of the matrix
A ∈ Cm×N satisfies

δ3s <
1√
3
≈ 0.5773. (6.28)

Then, for x ∈ CN , e ∈ Cm, and S ⊂ [N ] with card(S) = s, the sequence (xn)
defined by (IHT) or by (HTP1), (HTP2) with y = Ax+ e satisfies, for any n ≥ 0,

‖xn − xS‖2 ≤ ρn‖x0 − xS‖2 + τ‖AxS + e‖2, (6.29)

where ρ =
√
3 δ3s < 1, τ ≤ 2.18/(1 − ρ) for (IHT), ρ =

√
2δ23s/(1− δ22s) < 1,

τ ≤ 5.15/(1− ρ) for (HTP1), (HTP2).

Remark 6.19. The intuitive superiority of the hard thresholding pursuit algorithm
over the iterative hard thresholding algorithm is not reflected in a weaker sufficient
condition in terms of restricted isometry constants but rather in a faster rate of
convergence justified by

√
2δ23s/(1− δ22s) <

√
3 δ3s when δ3s < 1/

√
3.

We isolate the following observation from the proof of the theorem.

Lemma 6.20. Given e ∈ Cm and S ∈ [N ] with card(S) ≤ s,

‖(A∗e)S‖2 ≤
√
1 + δs ‖e‖2.

Proof. We only need to write

‖(A∗e)S‖22 = 〈A∗e, (A∗e)S〉 = 〈e,A
(
(A∗e)S

)
〉 ≤ ‖e‖2 ‖A

(
(A∗e)S

)
‖2

≤ ‖e‖2
√
1 + δs ‖(A∗e)S‖2,

and to divide through by ‖(A∗e)S‖2. ��

Proof (of Theorem 6.18). Given x ∈ CN , e ∈ Cm, S ⊂ [N ] with card(S) = s, our
aim is to prove that, for any n ≥ 0,

‖xn+1 − xS‖2 ≤ ρ‖xn − xS‖2 + (1 − ρ)τ‖AxS + e‖2. (6.30)

The estimate (6.29) then follows by induction. For both iterative hard thresholding
and hard thresholding pursuit, the index set Sn+1 := supp(xn+1) consists of s
largest absolute entries of xn +A∗(y −Axn), so we have

‖(xn +A∗(y −Axn))S‖22 ≤ ‖(xn +A∗(y −Axn))Sn+1‖22.
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Eliminating the contribution on S ∩ Sn+1, we derive

‖(xn +A∗(y −Axn))S\Sn+1‖2 ≤ ‖(xn +A∗(y −Axn))Sn+1\S‖2.

The right-hand side may be written as

‖(xn +A∗(y −Axn))Sn+1\S‖2 = ‖(xn − xS +A∗(y −Axn))Sn+1\S‖2.

The left-hand side satisfies

‖(xn+A∗(y −Axn))S\Sn+1‖2
= ‖(xS − xn+1 + xn − xS +A∗(y −Axn))S\Sn+1‖2
≥ ‖(xS − xn+1)S\Sn+1‖2 − ‖(xn − xS +A∗(y −Axn))S\Sn+1‖2.

With SΔSn+1 = (S \ Sn+1) ∪ (Sn+1 \ S) denoting the symmetric difference of
the sets S and Sn+1, we conclude that

‖(xS − xn+1)S\Sn+1‖2 ≤ ‖(xn − xS +A∗(y −Axn))S\Sn+1‖2
+ ‖(xn − xS +A∗(y −Axn))Sn+1\S‖2

≤
√
2 ‖(xn − xS +A∗(y −Axn))SΔSn+1‖2. (6.31)

Let us first concentrate on iterative hard thresholding. In this case,

xn+1 =
(
xn +A∗(y −Axn)

)
Sn+1 .

It then follows that

‖xn+1 − xS‖22 = ‖(xn+1 − xS)Sn+1‖22 + ‖(xn+1 − xS)Sn+1‖22
= ‖(xn − xS +A∗(y −Axn))Sn+1‖22 + ‖(xn+1 − xS)S\Sn+1‖22.

Together with (6.31), we obtain

‖xn+1 − xS‖22 ≤ ‖(xn − xS +A∗(y −Axn))Sn+1‖22
+ 2 ‖(xn − xS +A∗(y −Axn))SΔSn+1‖22

≤ 3 ‖(xn − xS +A∗(y −Axn))S∪Sn+1‖22.

We now write y = Ax + e = AxS + e′ with e′ := AxS + e, and we call
upon Lemma 6.16 (noticing that card(S ∪ Sn+1 ∪ supp(xn − xS)) ≤ 3s) and
Lemma 6.20 to deduce
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‖xn+1 − xS‖2 ≤
√
3 ‖(xn − xS +A∗A(xS − xn) +A∗e′)S∪Sn+1‖2

≤
√
3
[
‖
(
(Id−A∗A)(xn − xS)

)
S∪Sn+1‖2 + ‖(A∗e′)S∪Sn+1‖2

]

≤
√
3
[
δ3s‖xn − xS‖2 +

√
1 + δ2s ‖e′‖2

]
.

This is the desired inequality (6.30) for iterative hard thresholding. We notice that
ρ =

√
3 δ3s is indeed smaller than one as soon as δ3s < 1/

√
3 and that (1− ρ)τ =√

3
√
1 + δ2s ≤

√
3 +

√
3 ≤ 2.18.

Let us now concentrate on hard thresholding pursuit. In this case,

xn+1 = argmin
{
‖y −Az‖2, supp(z) ⊂ Sn+1

}
.

As the best �2-approximation to y from the space {Az, supp(z) ⊂ Sn+1}, the
vector Axn+1 is characterized by

〈y −Axn+1,Az〉 = 0 whenever supp(z) ⊂ Sn+1,

that is to say, by 〈A∗(y −Axn+1), z〉 = 0 whenever supp(z) ⊂ Sn+1 or

(A∗(y −Axn+1))Sn+1 = 0.

Taking this and (6.31) into consideration, we write

‖xn+1 − xS‖22 = ‖(xn+1 − xS)Sn+1‖22 + ‖(xn+1 − xS)S\Sn+1‖22
≤ ‖(xn+1 − xS +A∗(y −Axn+1))Sn+1‖22
+ 2 ‖(xn − xS +A∗(y −Axn))SΔSn+1‖22

≤
[
‖
(
(Id−A∗A)(xn+1 − xS)

)
Sn+1‖2 + ‖(A∗e′)Sn+1‖2

]2
+ 2
[
‖
(
(Id−A∗A)(xn − xS)

)
SΔSn+1‖2 + ‖(A∗e′)SΔSn+1‖2

]2
.

Applying Lemma 6.16 and Lemma 6.20 yields

‖xn+1 − xS‖22 ≤
[
δ2s‖xn+1 − xS‖2 +

√
1 + δs ‖e′‖2

]2
+ 2
[
δ3s‖xn − xS‖2 +

√
1 + δ2s ‖e′‖2

]2
.

After rearrangement, this reads

2
[
δ3s‖xn − xS‖2 +

√
1 + δ2s ‖e′‖2

]2

≥ (1− δ22s)
(
‖xn+1 − xS‖2 +

√
1 + δs

1 + δ2s
‖e′‖2
)(

‖xn+1 − xS‖2 −
√
1 + δs

1− δ2s
‖e′‖2
)
.
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Since we may assume ‖xn+1 − xS‖2 ≥ √
1 + δs ‖e′‖2/(1 − δ2s) to make the latter

expression in parentheses nonnegative—otherwise (6.30) already holds for the value
of (1− ρ)τ given below—we obtain

2
[
δ3s‖xn−xS‖2+

√
1 + δ2s ‖e′‖2

]2 ≥ (1− δ22s)
(
‖xn+1−xS‖2−

√
1 + δs

1− δ2s
‖e′‖2
)2

.

From here, taking the square root and rearranging gives

‖xn+1 − xS‖2 ≤
√
2 δ3s√
1− δ22s

‖xn − xS‖2 +
( √

2√
1− δ2s

+

√
1 + δs

1− δ2s

)
‖e′‖2.

This is the desired inequality (6.30) for hard thresholding pursuit. We notice that
ρ :=

√
2 δ3s/
√

1− δ22s ≤ √
2 δ3s/
√

1− δ23s is smaller than one as soon as δ3s <

1/
√
3 and that (1− ρ)τ =

√
2/

√
1− δ2s +

√
1 + δs/(1− δ2s) ≤ 5.15. ��

Taking the limit as n → ∞ in (6.29) yields ‖x� − xS‖2 ≤ τ‖AxS + e‖2 if
x� ∈ CN is the limit of the sequence (xn) or at least one of its cluster points. Note
that the existence of this limit is not at all guaranteed by our argument, but at least the
existence of cluster points is guaranteed by the boundedness of ‖xn‖ which follows
from (6.29). In any case, we have ‖x−x�‖2 ≤ ‖xS‖2+ ‖xS−x�‖2 by the triangle
inequality, so choosing S as an index set of s largest absolute entries of x gives

‖x− x�‖2 ≤ σs(x)2 + τ‖AxS + e‖2. (6.32)

This estimate does not resemble the basis pursuit estimates of Theorem 6.12.
However, such estimates are available for thresholding algorithms, too, provided
we replace the parameter s in (IHT) and (HTP1), (HTP2) by 2s, say. The precise
statement is as follows.

Theorem 6.21. Suppose that the 6sth order restricted isometry constant of the
matrix A ∈ Cm×N satisfies δ6s < 1/

√
3. Then, for all x ∈ CN and e ∈ Cm, the

sequence (xn) defined by (IHT) or by (HTP1), (HTP2) with y = Ax + e, x0 = 0,
and s replaced by 2s satisfies, for any n ≥ 0,

‖x− xn‖1 ≤ C σs(x)1 +D
√
s ‖e‖2 + 2 ρn

√
s ‖x‖2,

‖x− xn‖2 ≤
C√
s
σs(x)1 +D ‖e‖2 + 2 ρn ‖x‖2,

where the constants C,D > 0 and 0 < ρ < 1 depend only on δ6s. In particular, if
the sequence (xn) clusters around some x� ∈ CN , then

‖x− x�‖1 ≤ C σs(x)1 +D
√
s ‖e‖2, (6.33)

‖x− x�‖2 ≤
C√
s
σs(x)1 +D ‖e‖2. (6.34)
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Remark 6.22. (a) Error estimates of the type (6.33) and (6.34) are not only valid
for cluster points x� but also for xn with n large enough when Cσs(x)1 +
D
√
s‖e‖2 > 0. Indeed, in this case, if n ≥ n0 where n0 is large enough, then

2ρn
√
s‖x‖2 ≤ Cσs(x)1 +D

√
s‖e‖2 .

Therefore, the general error estimates above imply that, for all n ≥ n0,

‖x− xn‖1 ≤ 2C σs(x)1 + 2D
√
s ‖e‖2,

‖x− xn‖2 ≤
2C√
s
σs(x)1 + 2D ‖e‖2.

(b) A major drawback when running hard thresholding algorithms is that an esti-
mation of the targeted sparsity s is needed. This estimation is not needed for the
inequality-constrained �1-minimization, but an estimation of the measurement
error η is (a priori) needed instead. We will see in Chap. 11 that running the
equality-constrained �1-minimization (P1) on corrupted measurements may in
some cases still have the benefit of stable and robust estimates (6.33) and (6.34).

The auxiliary result below plays a central role when proving statements such as
Theorem 6.21.

Lemma 6.23. Suppose A ∈ C
m×N has restricted isometry constant δs < 1. Given

κ, τ > 0, ξ ≥ 0, and e ∈ C
m, assume that two vectors x,x′ ∈ C

N satisfy ‖x′‖0 ≤
κs and

‖xT − x′‖2 ≤ τ‖AxT + e‖2 + ξ,

where T denotes an index set of 2s largest absolute entries of x. Then, for any
1 ≤ p ≤ 2,

‖x− x′‖p ≤
1 + cκ τ

s1−1/p
σs(x)1 + dκ τ s

1/p−1/2‖e‖2 + dκ s
1/p−1/2ξ, (6.35)

where the constants cκ, dκ > 0 depend only on κ.

Proof. We first use the fact that the vector xT − x′ is (2 + κ)s-sparse to write

‖x− x′‖p ≤ ‖xT ‖p + ‖xT − x′‖p ≤ ‖xT ‖p + ((2 + κ)s)1/p−1/2‖xT − x′‖2

≤ ‖xT ‖p +
√
2 + κ s1/p−1/2(τ‖AxT + e‖2 + ξ). (6.36)

Let now S ⊂ T denote an index set of s largest absolute entries of x. We observe
that, according to Proposition 2.3,

‖xT ‖p = σs(xS)p ≤
1

s1−1/p
‖xS‖1 =

1

s1−1/p
σs(x)1. (6.37)
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Let us partition the complement of T as T = S2 ∪ S3 ∪ . . ., where

S2 : index set of s largest absolute entries of x in T ,

S3 : index set of s largest absolute entries of x in T ∪ S2,

etc. In this way, we have

‖AxT + e‖2 ≤
∑
k≥2

‖AxSk
‖2 + ‖e‖2 ≤

∑
k≥2

√
1 + δs‖xSk

‖2 + ‖e‖2

≤
√
2
∑
k≥2

‖xSk
‖2 + ‖e‖2.

Using Lemma 6.10, it has become usual to derive

∑
k≥2

‖xSk
‖2 ≤

1

s1/2
‖xS‖1 =

1

s1/2
σs(x)1;

hence, we obtain

‖AxT + e‖2 ≤
√
2

s1/2
σs(x)1 + ‖e‖2. (6.38)

Substituting (6.37) and (6.38) into (6.36), we obtain the estimate (6.35) with cκ =√
4 + 2κ and dκ =

√
2 + κ. ��

Proof (of Theorem 6.21). Given x ∈ CN and e ∈ Cm, under the present
hypotheses, Theorem 6.18 implies that there exist 0 < ρ < 1 and τ > 0 depending
only on δ6s such that, for any n ≥ 0,

‖xT − xn‖2 ≤ τ‖AxT + e‖2 + ρn‖xT ‖2,

where T denotes an index set of 2s largest absolute entries of x. Then Lemma 6.23
with x′ = xn and ξ = ρn‖xT ‖2 ≤ ρn‖x‖2 implies that, for any 1 ≤ p ≤ 2,

‖x− xn‖p ≤
C

s1−1/p
σs(x)1 +D s1/p−1/2 ‖e‖2 + 2ρn s1/p−1/2 ‖x‖2,

where C,D > 0 depend only on τ , hence only on δ6s. The desired estimates are the
particular cases p = 1 and p = 2. ��

6.4 Analysis of Greedy Algorithms

In this final section, we establish the success of sparse recovery via the greedy algo-
rithms presented in Sect. 3.2, namely, orthogonal matching pursuit and compressive
sampling matching pursuit. For the orthogonal matching pursuit algorithm, we first
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remark that standard restricted isometry conditions are not enough to guarantee
the recovery of all s-sparse vectors in at most s iterations. Indeed, for a fixed
1 < η <

√
s, consider the (s + 1) × (s + 1) matrix with �2-normalized columns

defined by

A :=

⎡
⎢⎢⎢⎢⎣

η
s

Id
...
η
s

0 · · · 0
√

s−η2
s

⎤
⎥⎥⎥⎥⎦ . (6.39)

We calculate

A∗A− Id =

⎡
⎢⎢⎢⎣

η
s

0
...
η
s

η
s · · ·

η
s 0

⎤
⎥⎥⎥⎦ .

This matrix has eigenvalues−η/
√
s, η/

√
s and 0 with multiplicity s− 1. Thus,

δs+1 = ‖A∗A− Id‖2→2 =
η√
s
.

However, the s-sparse vector x = [1, . . . , 1, 0]� is not recovered from y = Ax
after s iterations, since the wrong index s+ 1 is picked at the first iteration. Indeed,

A∗(y −Ax0) = A∗Ax =

⎡
⎢⎢⎢⎣

η
s

Id
...
η
s

η
s · · ·

η
s 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
1
...
1

0

⎤
⎥⎥⎥⎦ =
⎡
⎢⎢⎢⎣
1
...
1

η

⎤
⎥⎥⎥⎦ .

There are two possibilities to bypass this issue: either perform more than s iterations
or find a way to reject the wrong indices by modifying the orthogonal matching
pursuit, which is the rationale behind compressive sampling matching pursuit. In
both cases, sparse recovery will be established under restricted isometry conditions.
In what follows, we do not separate the ideal situation of exactly sparse vectors
measured with perfect accuracy, and we directly give the more cumbersome proofs
for stable and robust s-sparse recovery under the condition δ13s < 0.1666 for
12s iterations of orthogonal matching pursuit and δ4s < 0.4782 for compressive
sampling matching pursuit. Although the argument for the compressive sampling
matching pursuit algorithm is closer to the argument used in the previous section,
we start with the orthogonal matching pursuit algorithm.
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Orthogonal Matching Pursuit

For the purpose of proving the main result, we consider the slightly more general
algorithm starting with an index set S0 and with

x0 := argmin{‖y−Az‖, supp(z) ⊂ S0}, (6.40)

and iterating the scheme

Sn+1 = Sn ∪ L1(A
∗(y −Axn)), (OMP’1)

xn+1 = argmin
{
‖y −Az‖2, supp(z) ⊂ Sn+1

}
. (OMP’2)

The usual orthogonal matching pursuit algorithm corresponds to the default choice
of S0 = ∅ and x0 = 0. The following proposition is the key.

Proposition 6.24. Given A ∈ Cm×N , let y = Ax + e for some s-sparse x ∈
CN with S = supp(x) and some e ∈ Cm. Let (xn) denote the sequence defined
by (OMP’1), (OMP’2) started at an index set S0. With s0 = card(S0) and s′ =
card(S \ S0), if δs+s0+12s′ < 1/6, then there is a constant C > 0 depending only
on δs+s0+12s′ such that

‖y −Axn̄‖2 ≤ C‖e‖2, n̄ = 12s′.

Note that if e = 0 and S0 = ∅, this proposition implies exact s-sparse recovery
via (OMP’1), (OMP’2) in 12s iterations. Indeed, we have A(x− x12s) = 0, which
implies x−x12s = 0 since ‖x−x12s‖0 ≤ 13s and δ13s < 1. Proposition 6.24 also
implies some stability and robustness results stated in a familiar form.

Theorem 6.25. Suppose that A ∈ C
m×N has restricted isometry constant

δ13s <
1

6
.

Then there is a constant C > 0 depending only on δ13s such that, for all x ∈ CN

and e ∈ Cm, the sequence (xn) defined by (OMP’1), (OMP’2) with y = Ax + e
satisfies

‖y−Ax12s‖2 ≤ C‖AxS + e‖2

for any S ⊂ [N ] with card(S) = s. Furthermore, if δ26s < 1/6, then there are
constants C,D > 0 depending only on δ26s such that, for all x ∈ C

N and e ∈ C
m,

the sequence (xn) defined by (OMP’1), (OMP’2) with y = Ax+e satisfies, for any
1 ≤ p ≤ 2,

‖x− x24s‖p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2‖e‖2.
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Proof. Given S ⊂ [N ] with card(S) = s, we can write y = AxS + e′ where
e′ := AxS + e. Applying Proposition 6.24 with S0 = ∅ then gives the desired
inequality

‖y −Ax12s‖2 ≤ C‖e′‖2 = C‖AxS + e‖2

for some constant C > 0 depending only on δ12s < 1/6. For the second inequality,
we choose T to be an index set of 2s largest absolute entries of x, so the previous
argument yields

‖y −Ax24s‖2 ≤ C′‖AxT + e‖2

for some constant C′ > 0 depending only on δ26s < 1/6. Now, in view of

‖y−Ax24s‖2 = ‖A(xT − x24s) +AxT + e‖2
≥ ‖A(xT − x24s)‖2 − ‖AxT + e‖2

≥
√
1− δ26s ‖x24s − xT ‖2 − ‖AxT + e‖2,

we derive

‖x24s − xT ‖2 ≤
C′ + 1√
1− δ26s

‖AxT + e‖2.

An application of Lemma 6.23 with ξ = 0 gives the desired result. ��

It remains to establish the crucial Proposition 6.24. It is proved with the help of
the following lemma.

Lemma 6.26. Let (xn) be the sequence defined by (OMP’1), (OMP’2) with y =
Ax + e for some s-sparse x ∈ CN and for some e ∈ Cm. Then, for n ≥ 0,
T ⊂ [N ] not included in Sn, and z ∈ CN supported on T ,

‖y−Axn+1‖22

≤ ‖y−Axn‖22−
‖A(z−xn)‖22
‖zT\Sn‖21

max{0, ‖y−Axn‖22−‖y−Az‖22}

≤ ‖y−Axn‖22−
1− δ

card(T \ Sn) max{0, ‖y−Axn‖22−‖y−Az‖22},

where δ := δcard(T∪Sn).

Proof. The second inequality follows from the first one by noticing that

‖A(xn − z)‖22 ≥ (1− δ)‖xn − z‖22 ≥ (1− δ)‖(xn − z)T\Sn‖22,

‖zT\Sn‖21 ≤ card(T \ Sn)‖zT\Sn‖22 = card(T \ Sn)‖(xn − z)T\Sn‖22.
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We now recall from Lemma 3.3 that the decrease in the squared �2-norm of the
residual is at least |(A∗(y−Axn))jn+1 |2, where jn+1 denotes the index of a largest
absolute entry of A∗(y −Axn). Thus, the first inequality follows from

|(A∗(y −Axn))jn+1 |2 ≥ ‖A(z− xn)‖22
‖zT\Sn‖21

(
‖y−Axn‖22 − ‖y−Az‖22

)
(6.41)

when ‖y − Axn‖22 ≥ ‖y − Az‖22. Let us also recall from Lemma 3.4 that
(A∗(y −Axn))Sn = 0 to observe on the one hand that

Re〈A(z − xn),y −Axn〉

= Re〈z − xn,A∗(y −Axn)〉 = Re〈z− xn, (A∗(y −Axn))Sn〉

= Re〈(z − xn)T\Sn , (A∗(y −Axn))T\Sn〉

≤ ‖(z− xn)T\Sn‖1‖A∗(y −Axn)‖∞
= ‖zT\Sn‖1|(A∗(y −Axn))jn+1 |. (6.42)

On the other hand, we have

2Re〈A(z− xn),y −Axn〉
= ‖A(z− xn)‖22 + ‖y −Axn‖22 − ‖A(z− xn)− (y −Axn)‖22
= ‖A(z− xn)‖22 +

(‖y −Axn‖22 − ‖y −Az‖22
)

≥ 2‖A(z− xn)‖2
√

‖y −Axn‖22 − ‖y −Az‖22, (6.43)

where the inequality between the arithmetic and the geometric mean was used in the
last step. Combining the squared versions of (6.42) and (6.43), we arrive at

‖A(z− xn)‖22
(
‖y−Axn‖22− ‖y−Az‖22

)
≤ ‖zT\Sn‖21 |(A∗(y−Axn))jn+1 |2.

The desired inequality (6.41) follows from here. ��

We are now ready for the proof of the main proposition.

Proof (of Proposition 6.24). The proof proceeds by induction on card(S \ S0). If it
is zero, i.e., if S ⊂ S0, then the definition of x0 implies

‖y−Ax0‖2 ≤ ‖y−Ax‖2 = ‖e‖2,

and the result holds with C = 1. Let us now assume that the result holds for all S
and S0 such that card(S \ S0) ≤ s′ − 1, s′ ≥ 1, and let us show that it holds when
card(S \ S0) = s′. We consider subsets of S \ S0 defined by T 0 = ∅ and

T � = {indices of 2�−1 largest absolute entries of xS0 } for � ≥ 1,
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to which we associate the vectors

x̃� := x
S0∪T � , � ≥ 0.

Note that the last T �, namely, T �log2(s′)�+1, is taken to be the whole set S \S0 (and
may have less than 2�−1 elements), so that x̃� = 0. For a constant μ > 0 to be
chosen later, since ‖x̃�−1‖22 ≥ μ‖x̃�‖22 = 0 for this last index, we can consider the
smallest integer 1 ≤ L ≤ �log2(s′)�+ 1 such that

‖x̃L−1‖22 ≥ μ‖x̃L‖22.

This definition implies the (possibly empty) list of inequalities

‖x̃0‖22 < μ‖x̃1‖22, . . . , ‖x̃L−2‖22 < μ‖x̃L−1‖22.

For each � ∈ [L], we apply Lemma 6.26 to the vector z = x−x̃�, which is supported
on S0∪T �. Taking into account that (S0∪T �)∪Sn ⊂ S ∪Sn and that (S0∪T �)\
Sn ⊂ (S0 ∪T �) \S0 = T �, we obtain, after subtracting ‖y−Az‖22 = ‖Ax̃�+ e‖22
from both sides,

max{0,‖y −Axn+1‖22 − ‖Ax̃� + e‖22}

≤
(
1− 1− δs+n

card(T �)

)
max{0, ‖y−Axn‖22 − ‖Ax̃� + e‖22}

≤ exp

(
− 1− δs+n

card(T �)

)
max{0, ‖y−Axn‖22 − ‖Ax̃� + e‖22}.

For any K ≥ 0 and any n, k ≥ 0 satisfying n+ k ≤ K , we derive by induction that

max{0,‖y −Axn+k‖22 − ‖Ax̃� + e‖22}

≤ exp

(
− k(1− δs+K)

card(T �)

)
max{0, ‖y−Axn‖22 − ‖Ax̃� + e‖22}.

By separating cases in the rightmost maximum, we easily deduce

‖y−Axn+k‖22 ≤ exp

(
− k(1− δs+K)

card(T �)

)
‖y −Axn‖22 + ‖Ax̃� + e‖22.

For some positive integer κ to be chosen later, applying this successively with

k1 := κ card(T 1), . . . , kL := κ card(TL), and K := k1 + · · ·+ kL,

yields, with ν := exp(κ(1− δs+K)),
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‖y −Axk1‖22 ≤
1

ν
‖y −Ax0‖22 + ‖Ax̃1 + e‖22,

‖y−Axk1+k2‖22 ≤
1

ν
‖y −Axk1‖22 + ‖Ax̃2 + e‖22,

...

‖y −Axk1+···+kL−1+kL‖22 ≤
1

ν
‖y −Axk1+···+kL−1‖22 + ‖Ax̃L + e‖22.

By combining these inequalities, we obtain

‖y−AxK‖22 ≤
‖y −Ax0‖22

νL
+
‖Ax̃1 + e‖22

νL−1
+· · ·+‖Ax̃L−1 + e‖22

ν
+‖Ax̃L+e‖22.

Taking into account that x− x̃0 is supported on S0 ∪T 0 = S0, the definition (6.40)
of x0 implies that ‖y−Ax0‖22 ≤ ‖y−A(x − x̃0)‖22 = ‖Ax̃0 + e‖22; hence

‖y−AxK‖22 ≤
L∑
�=0

‖Ax̃� + e‖22
νL−�

≤
L∑
�=0

2(‖Ax̃�‖22 + ‖e‖22)
νL−�

.

Let us remark that, for � ≤ L− 1 and also for � = L,

‖Ax̃�‖22 ≤ (1 + δs)‖x̃�‖22 ≤ (1 + δs)μ
L−1−�‖x̃L−1‖22.

As a result, we have

‖y −AxK‖22 ≤
2(1 + δs)‖x̃L−1‖22

μ

L∑
�=0

(
μ

ν

)L−�
+ 2‖e‖22

L∑
�=0

1

νL−�

≤ 2(1 + δs)‖x̃L−1‖22
μ(1− μ/ν)

+
2‖e‖22
1− ν

.

We choose μ = ν/2 so that μ(1−μ/ν) takes its maximal value ν/4. It follows that,
with α :=

√
8(1 + δs)/ν and β :=

√
2/(1− ν),

‖y −AxK‖2 ≤ α ‖x̃L−1‖2 + β ‖e‖2. (6.44)

On the other hand, with γ :=
√
1− δs+s0+K , we have

‖y −AxK‖2 = ‖A(x− xK) + e‖2 ≥ ‖A(x− xK)‖2 − ‖e‖2

≥ γ ‖x− xK‖2 − ‖e‖2 ≥ γ ‖x
SK‖2 − ‖e‖2.
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We deduce that

‖x
SK‖2 ≤

α

γ
‖x̃L−1‖2 +

β + 1

γ
‖e‖2. (6.45)

Let us now choose κ = 3, which guarantees that

α

γ
=

√
8(1 + δs)

(1− δs+s0+K) exp(κ(1− δs+K))
≤ 0.92 < 1,

since δs ≤ δs+K ≤ δs+s0+K ≤ δs+s0+12s′ < 1/6. Hereby, we have used the fact
that L ≤ �log2(s′)�+ 1 to derive

K = κ(1 + · · ·+ 2L−2 + card(TL)) < κ(2L−1 + s′) ≤ 3κs′ = 9s′.

Thus, in the case ((β + 1)/γ)‖e‖2 < (1 − α/γ)‖x̃L−1‖2, we derive from (6.45)
that

‖x
SK‖2 < ‖x̃L−1‖2, i.e., ‖(xS0)S\SK‖2 < ‖(xS0)(S\S0)\TL−1‖2.

But since TL−1 lists the 2L−2 largest absolute entries of xS0 , this yields

card(S \ SK) < card((S \ S0) \ TL−1) = s′ − 2L−2.

Note that continuing the algorithm from iteration K amounts to starting it again
with S0 replaced by SK . In view of K ≤ κ(1 + · · ·+ 2L−2 + 2L−1) < 3 · 2L, we
have

s+ card(SK) + 12 card(S \ SK) ≤ s+ s0 +K +12(s′− 2L−2) ≤ s+ s0 +12s′

and consequently card(S \ SK) < s′. Therefore, the induction hypothesis applies
to give

‖y −AxK+n‖2 ≤ C‖e‖2, for n = 12 card(S \ SK).

Thus, the number of required iterations satisfies K + n ≤ 12s′, as desired. In the
alternative case where ((β+1)/γ)‖e‖2 ≥ (1−α/γ)‖x̃L−1‖2, the situation is easier,
since (6.44) yields

‖y −AxK‖2 ≤
α(β + 1)

γ − α
‖e‖2 + β ‖e‖2 =: C‖e‖2,

where the constantC ≥ 1 depends only on δs+s0+12s′ . This shows that the induction
hypothesis holds when card(S \ S0) = s′. ��
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Compressive Sampling Matching Pursuit

As a reminder, we recall that the compressive sampling matching pursuit algorithm
(CoSaMP) starts with an initial s-sparse vector x0 ∈ CN , typically x0 = 0, and
produces a sequence (xn) defined inductively by

Un+1 = supp(xn) ∪ L2s(A
∗(y −Axn)), (CoSaMP1)

un+1 = argmin
{
‖y −Az‖2, supp(z) ⊂ Un+1

}
, (CoSaMP2)

xn+1 = Hs(u
n+1). (CoSaMP3)

Here are the main results for this algorithm.

Theorem 6.27. Suppose that the 4sth restricted isometry constant of the matrix
A ∈ Cm×N satisfies

δ4s <

√√
11/3− 1

2
≈ 0.4782. (6.46)

Then, for x ∈ CN , e ∈ Cm, and S ⊂ [N ] with card(S) = s, the sequence (xn)
defined by (CoSaMP1), (CoSaMP2), (CoSaMP3) with y = Ax+ e satisfies

‖xn − xS‖2 ≤ ρn‖x0 − xS‖2 + τ‖AxS + e‖2, (6.47)

where the constant 0 < ρ < 1 and τ > 0 depend only on δ4s.

Note that, if x is s-sparse and if e = 0, then x is recovered as the limit of the
sequence (xn). In a more general situation, there is no guarantee that the sequence
(xn) converges. But (6.47) implies at least boundedness of the sequence (‖xn‖2)
so that existence of cluster points is guaranteed. Stability and robustness results can
then be stated as follows.

Theorem 6.28. Suppose that the 8sth restricted isometry constant of the matrix
A ∈ Cm×N satisfies δ8s < 0.4782. Then, for x ∈ CN and e ∈ Cm, the sequence
(xn) defined by (CoSaMP1), (CoSaMP2), (CoSaMP3) with y = Ax + e, x0 = 0,
and s replaced by 2s satisfies, for any n ≥ 0,

‖x− xn‖1 ≤ C σs(x)1 +D
√
s ‖e‖2 + 2 ρn

√
s ‖x‖2,

‖x− xn‖2 ≤
C√
s
σs(x)1 +D ‖e‖2 + 2 ρn ‖x‖2,

where the constants C,D > 0 and 0 < ρ < 1 depend only on δ8s. In particular, if
x� ∈ CN denotes a cluster point of the sequence (xn), then
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‖x− x�‖1 ≤ C σs(x)1 +D
√
s ‖e‖2,

‖x− x�‖2 ≤
C√
s
σs(x)1 +D ‖e‖2.

Remark 6.29. Similarly to Remark 6.22(a), the error estimates are also valid if x�

is replaced by xn for n large enough, provided the right-hand side is nonzero.

Theorem 6.28 follows from Theorem 6.27 via Lemma 6.23 in the same way as
Theorem 6.21 follows from Theorem 6.18 for thresholding algorithms. We therefore
only concentrate on establishing Theorem 6.27.

Proof (of Theorem 6.27). As in the proof of Theorem 6.18, we establish that for any
n ≥ 0,

‖xn+1 − xS‖2 ≤ ρ‖xn − xS‖2 + (1− ρ)τ‖AxS + e‖2 (6.48)

with 0 < ρ < 1 and τ > 0 to be determined below. This implies the estimate (6.47)
by induction. The strategy for proving (6.48) consists in inferring a consequence of
each (CoSaMP) step: discarding AxS + e here for simplicity, (CoSaMP1) yields an
estimate for ‖

(
xS − un+1

)
Un+1‖2 in terms of ‖xn − xS‖2, (CoSaMP2) yields an

estimate for ‖(xS−un+1)Un+1‖2 in terms of ‖(xS−un+1)
Un+1‖2, and (CoSaMP3)

yields an estimate for ‖xn+1 − xS‖2 in terms of ‖(xS − un+1)Un+1‖2 and ‖(xS −
un+1)

Un+1‖2, so overall an estimate for ‖xn+1 − xS‖2 in terms of ‖xn − xS‖2 is
deduced.

We start with (CoSaMP3). Specifically, we observe that xn+1 is a better (or at
least equally good) s-term approximation to un+1 than xS∩Un+1 . Denoting Sn+1 =
supp(xn+1) and observing that Sn+1 ⊂ Un+1, we conclude that

‖(xS − xn+1)Un+1‖2 = ‖xS∩Un+1 − xn+1‖2
≤ ‖un+1 − xn+1‖2 + ‖un+1 − xS∩Un+1‖2
≤ 2‖un+1 − xS∩Un+1‖2 = 2‖(xS − un+1)Un+1‖2.

Then, using (xn+1)
Un+1 = 0 and (un+1)

Un+1 = 0, it follows that

‖xS − xn+1‖22 = ‖(xS − xn+1)
Un+1‖22 + ‖(xS − xn+1)Un+1‖22

≤ ‖(xS − un+1)Un+1‖22 + 4‖(xS − un+1)Un+1‖22. (6.49)

Now, as a consequence of (CoSaMP2), the vector Aun+1 is characterized by

〈y −Aun+1,Az〉 = 0 whenever supp(z) ⊂ Un+1.
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This is equivalent to 〈A∗(y −Aun+1), z〉 = 0 whenever supp(z) ⊂ Un+1 or to
(A∗(y−Aun+1))Un+1 = 0. Since y = AxS+e′ with e′ := AxS+e, this means

(A∗A(xS − un+1))Un+1 = −(A∗e′)Un+1 .

We make use of this fact to obtain

‖(xS − un+1)Un+1‖2 ≤ ‖
(
(Id−A∗A)(xS − un+1)

)
Un+1‖2 + ‖(A∗e′)Un+1‖2

≤ δ4s‖xS − un+1‖2 + ‖(A∗e′)Un+1‖2,

where the last inequality follows from Lemma 6.16. Note that we may assume
‖(xS − un+1)Un+1‖2 > ‖(A∗e′)Un+1‖2/(1 − δ4s), otherwise (6.50) below is
immediate. In this case, the previous inequality is equivalent, by virtue of ‖(xS −
un+1)Un+1‖2 > ‖(A∗e′)Un+1‖2, to

[
‖(xS − un+1)Un+1‖2 − ‖(A∗e′)Un+1‖2

]2
≤ δ24s‖(xS − un+1)Un+1‖22 + δ24s‖(xS − un+1)

Un+1‖22.

Using the identity a2 − b2 = (a+ b)(a− b), we derive

δ24s‖(xS − un+1)
Un+1‖22 ≥ (1 − δ24s)

×
(
‖(xS − un+1)Un+1‖2 −

1

1 + δ4s
‖(A∗e′)Un+1‖2

)

×
(
‖(xS − un+1)Un+1‖2 −

1

1− δ4s
‖(A∗e′)Un+1‖2

)
.

Bounding the middle term from below by the bottom term, we obtain

δ24s
1− δ24s

‖(xS −un+1)
Un+1‖22 ≥

(
‖(xS −un+1)Un+1‖2 − 1

1− δ4s
‖(A∗e′)Un+1‖2

)2
.

Taking the square root and rearranging gives

‖(xS − un+1)Un+1‖2 ≤
δ4s√
1− δ24s

‖(xS − un+1)
Un+1‖2

+
1

1− δ4s
‖(A∗e′)Un+1‖2. (6.50)

Next, as a consequence of (CoSaMP1), if Sn denotes the support of xn and if T n+1

denotes a set of 2s largest absolute entries of A∗(y −Axn), we have
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‖
(
A∗(y −Axn)

)
S∪Sn‖22 ≤ ‖

(
A∗(y −Axn)

)
Tn+1‖22.

Eliminating the contribution on (S ∪ Sn) ∩ T n+1, we derive

‖
(
A∗(y −Axn)

)
(S∪Sn)\Tn+1‖2 ≤ ‖

(
A∗(y −Axn)

)
Tn+1\(S∪Sn)

‖2.

The right-hand side may be written as

‖
(
A∗(y −Axn)

)
Tn+1\(S∪Sn)

‖2 = ‖
(
xn − xS +A∗(y −Axn)

)
Tn+1\(S∪Sn)

‖2.

The left-hand side satisfies

‖
(
A∗(y −Axn)

)
(S∪Sn)\Tn+1‖2 ≥ ‖

(
xS − xn

)
Tn+1‖2

− ‖
(
xn − xS +A∗(y −Axn)

)
(S∪Sn)\Tn+1‖2.

These observations imply that

‖
(
xS − xn

)
Tn+1‖2 ≤ ‖

(
xn − xS +A∗(y −Axn)

)
(S∪Sn)\Tn+1‖2

+ ‖
(
xn − xS +A∗(y −Axn)

)
Tn+1\(S∪Sn)

‖2

≤
√
2 ‖
(
xn − xS +A∗(y −Axn)

)
(S∪Sn)ΔTn+1‖2

≤
√
2 ‖
(
(Id−A∗A)(xn − xS)

)
(S∪Sn)ΔTn+1‖2

+
√
2 ‖
(
A∗e′
)
(S∪Sn)ΔTn+1‖2,

where (S ∪ Sn)ΔT n+1 denotes the symmetric difference of the sets S ∪ Sn and
T n+1 and where y = AxS+e′ has been used. Since T n+1 ⊂ Un+1 by (CoSaMP1)
and Sn ⊂ Un+1 by (CoSaMP3), the left-hand side can be bounded from below as

‖
(
xS−xn

)
Tn+1‖2 ≥ ‖

(
xS−xn

)
Un+1‖2 = ‖(xS)Un+1‖2 = ‖

(
xS−un+1

)
Un+1‖2.

Since the right-hand side can be bounded from above using Lemma 6.16, we derive
accordingly

‖
(
xS − un+1

)
Un+1‖2 ≤

√
2 δ4s ‖xn − xS‖2

+
√
2 ‖
(
A∗e′
)
(S∪Sn)ΔTn+1‖2. (6.51)

It remains to put (6.49)–(6.51) together. First combining (6.49) and (6.50), and using
the inequality a2 + (b + c)2 ≤ (

√
a2 + b2 + c)2, gives
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‖xS − xn+1‖22 ≤ ‖(xS − un+1)
Un+1‖22

+ 4
(

δ4s√
1− δ24s

‖(xS − un+1)
Un+1‖2 +

1

1− δ4s
‖(A∗e′)Un+1‖2

)2

≤
(√1 + 3δ24s

1− δ24s
‖(xS − un+1)

Un+1‖2 +
2

1− δ4s
‖(A∗e′)Un+1‖2

)2
.

Next, taking (6.51) into account we obtain

‖xS − xn+1‖2 ≤

√
2δ24s(1 + 3δ24s)

1− δ24s
‖xn − xS‖2

+

√
2(1 + 3δ24s)

1− δ24s
‖
(
A∗e′
)
(S∪Sn)ΔTn+1‖2+

2

1− δ4s
‖(A∗e′)Un+1‖2.

In view of Lemma 6.20, we conclude that the desired inequality (6.48) holds with

ρ =

√
2δ24s(1 + 3δ24s)

1− δ24s
, (1− ρ)τ =

√
2(1 + 3δ24s)

1− δ4s
+

2
√
1 + δ4s

1− δ4s
.

The constant ρ is less than 1 if and only if 6δ44s + 3δ24s − 1 < 0. This occurs
as soon as δ24s is smaller than the largest root of 6t2 + 3t − 1, i.e., as soon as
δ24s < (

√
11/3− 1)/4, which is Condition (6.46). ��

Notes

Candès and Tao introduced the concept of uniform uncertainty principle in [97],
which they refined by defining the restricted isometry constants and the restricted
orthogonality constants in [96]. In the latter, they proved the inequality δs+t ≤
max(δs, δt) + θs,t, which we slightly improved in Proposition 6.5. Some authors
define the restricted isometry constants “without squares.” For instance, Cohen et al.
considered in [123] the smallest δ ≥ 0 such that the inequality

(1 − δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2

holds for all s-sparse vectors x ∈ CN . Up to transformation of the constants, this is
essentially equivalent to our definition.

Candès and Tao showed in [96] that the condition δ2s+ δ3s < 1 guarantees exact
s-sparse recovery via �1-minimization. Candès et al. further showed in [95] that the
condition δ3s + 3δ4s < 2 guarantees stable and robust s-sparse recovery via �1-
minimization. Later, a sufficient condition for stable and robust s-sparse recovery
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involving only δ2s was obtained by Candès in [85], namely, δ2s <
√
2− 1 ≈ 0.414.

This sufficient condition was improved several times; see [16,81,82,207,212,354].
Exercises 6.13–6.16 retrace some of these improvements. A crucial tool is the
shifting inequality (see Exercise 6.15) put forward by Cai et al. in [82]. These
authors also introduced the square root lifting inequality of Lemma 6.14 in [81]. We
obtained the condition δ2s < 0.6246 of Theorem 6.12 by invoking this inequality in
the approach of [16]. On the other hand, Davies and Gribonval constructed in [144]
matrices with restricted isometry constant δ2s arbitrarily close to 1/

√
2 ≈ 0.7071

for which some s-sparse vectors are not recovered via �1-minimization. Cai and
Zhang proved in [83] that δs < 1/3 is another sufficient condition for s-sparse
recovery via �1-minimization and uncovered matrices with δs = 1/3 such that
some s-sparse vectors are not recovered via �1-minimization. We point out that other
sufficient conditions involving δk with k �= s and k �= 2s can also be found; see,
for instance, Exercises 6.14 and 6.16. As a matter of fact, Blanchard and Thompson
argue that the parameters s and 2s are not the best choices for Gaussian random
matrices; see [54]. Theorem 6.8, which appeared in [208], has to be kept in mind
when assessing such conditions.

The use of the iterative hard thresholding algorithm in the context of compressive
sensing was initiated by Blumensath and Davies in [56]. In [57], they established
stable and robust estimates under the sufficient condition δ3s < 1/

√
8. The weaker

condition δ3s < 1/2 of Theorem 6.15 appeared in [209]. The improved condition
δ3s < 1/

√
3 of Theorem 6.18 was established in the paper [208] dedicated to the

analysis of the hard thresholding pursuit algorithm. There, Theorem 6.18 was in
fact established for a family of thresholding algorithms indexed by an integer k,
with iterative hard thresholding and hard thresholding pursuit corresponding to the
cases k = 0 and k =∞, respectively. Exercise 6.21, which considers a variation of
the iterative hard thresholding algorithm where a factor μ �= 1 is introduced in front
of A∗(y−Axn), is inspired by the paper [218] by Garg and Khandekar. This factor
μ is allowed to depend on n in some algorithms, notably in the normalized iterative
hard thresholding algorithm of Blumensath and Davies [58].

The impossibility of s-sparse recovery via s iterations of orthogonal matching
pursuit under a standard restricted isometry condition was first observed in [153,
Sect. 7]; see also [409]. The example given at the beginning of Sect. 6.4 is taken from
the article [355] by Mo and Shen, who also established the result of Exercise 6.23.
The possibility of s-sparse recovery via a number of iterations of orthogonal
matching pursuit that is proportional to s was shown in [515] by Zhang, who also
proved the stability and robustness of the recovery by establishing Proposition 6.24
with n̄ = 30 card(supp(x) \ S0) under the condition δ31s < 1/3. Our proof
follows his argument, which is also valid in more general settings.

In the original article [361] of Needell and Tropp introducing the compressive
sampling matching pursuit algorithm, stability and robustness were stated under
the condition δ4s ≤ 0.1, although the arguments actually yield the condition
δ4s < 0.17157. Theorem 6.27, which gives the condition δ4s < 0.4782, appears
here for the first time. The first analysis of a greedy algorithm under the restricted
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isometry property appeared in [362, 363] for the regularized orthogonal matching
pursuit algorithm where, however, an additional logarithmic factor appeared in the
condition on the restricted isometry constant. The subspace pursuit algorithm of
Dai and Milenkovic was also proved to be stable and robust under some restricted
isometry conditions. We refer to the original paper [135] for details.

We mentioned at the end of Sect. 6.1 that most explicit (deterministic) construc-
tions of matrices with the restricted isometry property are based on the coherence,
hence the number m of measurement scales quadratically in the sparsity s as in
(6.14). The sophisticated construction by Bourgain et al. in [64] (see also [65]) is
a notable exception. The authors showed that their matrix A ∈ Cm×N has small
restricted isometry constant δs once m ≥ Cs2−ε and when s2−ε ≤ N ≤ s2+ε

for some ε > 0. While this slightly overcomes the quadratic bottleneck, which is
certainly an important contribution to the theory, the limited range of s, m, and N
is less relevant for practical purposes.

It was shown in [386] that for a given matrix A ∈ Cm×N and a sparsity level
s, computing δs is an NP-hard problem; see also [28] for an earlier result in this
direction.

Exercises

6.1. Suppose that A ∈ C
m×N has an sth order restricted isometry constant

satisfying δs < 1. Prove that, for any S ⊂ [N ] with card(S) ≤ s,

1

1 + δs
≤
∥∥(A∗

SAS)
−1
∥∥
2→2

≤ 1

1− δs
and

1√
1 + δs

≤
∥∥A†

S

∥∥
2→2

≤ 1√
1− δs

.

6.2. Given A ∈ C
m×N , let αs and βs be the largest and smallest positive constants

α and β such that

α ‖x‖22 ≤ ‖Ax‖22 ≤ β ‖x‖22

for all s-sparse vectors x ∈ CN . Find the scaling factor t > 0 for which δs(tA)
takes its minimal value, and prove that this value equals (β − α)/(β + α).

6.3. Find a matrix A ∈ R2×3 with minimal 2nd order restricted isometry constant.

6.4. Prove the equivalence of the two definitions (6.4) and (6.5) of restricted
orthogonality constants.

6.5. Verify in details that the function f defined on [0, 1] as in (6.6) is first
nondecreasing and then nonincreasing.

6.6. Given x ∈ CN and A ∈ Cm×N with sth restricted isometry constant δs, prove
that
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‖Ax‖2 ≤
√
1 + δs

(
‖x‖2 +

‖x‖1√
s

)
.

6.7. Let Ds,N = {x ∈ CN : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} be the Euclidean unit ball
restricted to the s-sparse vectors. Show that

Ds,N ⊂ conv(Ds,N ) ⊂
√
sBN1 ∩BN2 ⊂ 2 conv(Ds,N ) ,

where BNp = {x ∈ C
N : ‖x‖p ≤ 1} is the unit ball in �p and conv denotes the

convex hull; see Definition B.2.

6.8. Prove Proposition 6.3 directly from (6.1), without using (6.2) but rather with
the help of the polarization formula

Re〈x,y〉 = 1

4

(
‖x+ y‖22 − ‖x− y‖22

)
.

6.9. In the case t = ns where t is a multiple of s, improve the second inequality of
Proposition 6.6 by showing that

δns ≤ (n− 1)θs,s + δs.

6.10. Let A ∈ Cm×N be a matrix with �2-normalized columns. Given a vector
x ∈ CN supported on T with card(T ) = t > s > 1, prove that

‖Ax‖22 − ‖x‖22 =
1(
t−2
s−2

) ∑
S⊂T,card(S)=s

(
‖AxS‖22 − ‖xS‖22

)

=
1(
t−2
s−1

) ∑
S⊂T,card(S)=s

〈AxS ,AxT\S〉.

Deduce that

δt ≤
t− 1

s− 1
δs, δt ≤

t(t− 1)

2s(t− s)
θs,t−s, and in particular δ2s ≤ 2 θs,s.

Extend these inequalities by incorporating δ1 when the columns of A are not
necessarily �2-normalized.

6.11. Suppose that the columns of the matrixA ∈ Cm×N are �2-normalized. Under
the assumptionN > s2+1, derive the result of Theorem 6.8 with constants c = 1/2,
C = 2, and without restriction on δ∗. Use Theorem 5.8, Exercise 5.3, and compare
the matrix norms induced by the �2 and the �1 norms.

6.12. Let A ∈ Cm×N with δ2s < 1/3. For x ∈ CN , let y = Ax + e for some
e ∈ Cm satisfying ‖e‖2 ≤ η. Refine the proof of Theorem 6.9 in order to establish
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the stability and robustness of s-sparse recovery via quadratically constrained basis
pursuit in the form

‖x− x�‖2 ≤
C√
s
σs(x)1 +Dη,

where x� is a minimizer of ‖z‖1 subject to ‖Az− y‖2 ≤ η.

6.13. Let A ∈ Cm×N , and let S0, S1, S2, . . . denote index sets of size s ordered by
decreasing magnitude of entries of a vector v ∈ kerA. Prove that

‖vS0‖22 + ‖vS1‖22 ≤
2δ2s

1− δ2s

∑
k≥2

‖vSk
‖2 (‖vS0‖2 + ‖vS1‖2).

By interpreting this as the equation of a disk or by completing squares, deduce that

‖vS0‖2 ≤
ρ√
s
‖vS0

‖1, where ρ :=
1 +

√
2

2

δ2s
1− δ2s

.

Conclude that s-sparse recovery via basis pursuit is guaranteed if δ2s < 0.453.

6.14. For an integer k ≥ 1, suppose that A ∈ Cm×N has restricted isometry
constant δ(2k+1)s < 1 − 1/

√
2k. Prove that every s-sparse vector x ∈ CN can

be recovered from y = Ax ∈ Cm via �1-minimization. [Hint: to establish the null
space property, partition [N ] as S ∪T1∪T2∪ . . ., where S has size s and T1, T2, . . .
have size ks.]

6.15. Given a1 ≥ a2 ≥ · · · ≥ ak+� ≥ 0, prove the shifting inequality

√
a2�+1 + · · ·+ a2�+k ≤ ck,�(a1 + · · ·+ ak), where ck,� := max

( 1√
k
,

1√
4�

)
.

6.16. Suppose that s =: 4r is a multiple of 4. For a matrix A ∈ Cm×N , establish
the success of s-sparse recovery via basis pursuit if δ5r + θ5r,s < 1. Show in
particular that this holds if δ9s/4 < 0.5, δ2s < 1/(1 +

√
5/4) ≈ 0.472, or

δ5s/4 < 1/(1 +
√
10/3) ≈ 0.353.

6.17. Using the square root lifting inequality of Lemma 6.14, find a condition on
δs that guarantees the exact recovery of every s-sparse vector via basis pursuit.

6.18. Let A ∈ Cm×N with δ2s < 1/3. For x ∈ CN , let y = Ax + e for some
e ∈ Cm satisfying ‖A∗e‖∞ ≤ η. Let x� be a minimizer of the Dantzig selector

minimize
z∈CN

‖z‖1 subject to ‖A∗(Az− y)‖∞ ≤ η.
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Show that

‖x− x�‖2 ≤
Cσs(x)1√

s
+D

√
sη

for constants C,D > 0 depending only on δ2s.

6.19. Refine the proof of Theorem 6.15 in order to establish the stability and
robustness of s-sparse recovery via iterative hard thresholding when δ3s < 1/3.

6.20. Given A ∈ Cm×N , prove that every s-sparse vector x ∈ CN is exactly
recovered from y = Ax ∈ Cm via iterative hard thresholding if δ2s < 1/4. To
do so, return to the proof of Theorem 6.15, precisely to (6.27), and separate the
contributions to the inner product from the index sets of size 2s given by

(S ∪ Sn) ∩ (S ∪ Sn+1), (S ∪ Sn) \ (S ∪ Sn+1), (S ∪ Sn+1) \ (S ∪ Sn),

where S := supp(x), Sn := supp(xn), and Sn+1 := supp(xn+1).

6.21. Given A ∈ Cm×N and y = Ax ∈ Cm for some s-sparse x ∈ CN , we define
a sequence (xn) inductively, starting with an initial s-sparse vector x0 ∈ CN , by

xn+1 = Hs(x
n + μA∗(y −Axn)), n ≥ 0,

where the constant μ is to be determined later. Establish the identity

‖A(xn+1 − x)‖22 − ‖A(xn − x)‖22
= ‖A(xn+1 − xn)‖22 + 2〈xn − xn+1,A∗A(x− xn)〉.

Prove also the inequality

2μ〈xn − xn+1,A∗A(x− xn)〉

≤ ‖xn − x‖22 − 2μ‖A(xn − x)‖22 − ‖xn+1 − xn‖22.

With δ2s denoting the 2sth order restricted isometry constant of A, derive the
inequality

‖A(xn+1 − x)‖22 ≤
(
1− 1

μ(1 + δ2s)

)
‖A(xn+1 − xn)‖22

+
( 1

μ(1− δ2s)
− 1
)
‖A(xn − x)‖22.

Deduce that the sequence (xn) converges to x when 1 + δ2s < 1/μ < 2(1 − δ2s).
Conclude by justifying the choice μ = 3/4 under the condition δ2s < 1/3.
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6.22. Verify the claims made at the start of Sect. 6.4 about the matrix A defined
in (6.39).

6.23. Prove that every s-sparse vectorx ∈ CN can be recovered fromy = Ax ∈ Cm

via s iterations of orthogonal matching pursuit provided the restricted isometry
constant of A satisfies

δs+1 <
1√
s+ 1

.

6.24. Improve Proposition 6.24 in the case e = 0 by reducing the number of
required iterations and by weakening the restricted isometry condition.

6.25. Rank restricted isometry property
For a linear map A : Cn1×n2 → Cm and for r ≤ n := min{n1, n2}, the rank
restricted isometry constant δr = δr(A) is the defined as the smallest δ ≥ 0 such
that

(1 − δ)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δ)‖X‖2F

for all matrices X ∈ Cn1×n2 of rank at most r.

(a) Let X,Z ∈ Cn1×n2 with 〈X,Z〉F = tr (XZ∗) = 0 and rank(X) + rank(Z)
≤ r. Show that

|〈A(X),A(Z)〉| ≤ δr‖X‖F‖Z‖F .

(b) Assume that δ2r < 1/3. Show that A possesses the rank null space property of
order r defined by (4.40). In particular, every X ∈ C

n1×n2 of rank at most r is
the unique solution to the nuclear norm minimization problem (see Sect. 4.6)

minimize
Z∈Cn1×n2

‖Z‖∗ subject to A(Z) = A(X) .

(c) Assume that δ2r < 0.6246. Let X ∈ Cn1×n2 and y = A(X) + e with
‖e‖2 ≤ η. Let X� be the solution to the quadratically constrained nuclear norm
minimization problem

minimize
Z∈Cn1×n2

‖Z‖∗ subject to ‖A(Z)− y‖2 ≤ η .

Show that

‖X−X�‖F ≤
C√
r

n∑
�=r+1

σ�(X) +Dη

for appropriate constants C,D > 0 depending only on δ2r.



Chapter 7
Basic Tools from Probability Theory

The major breakthrough in proving recovery results in compressive sensing is
obtained using random matrices. Most parts of the remainder of this book indeed
require tools from probability theory. This and the next chapter are therefore
somewhat exceptional in the sense that they do not deal directly with compressive
sensing. Instead, we collect the necessary background material from probability
theory. In this chapter, we introduce a first set of tools that will be sufficient to
understand a large part of the theory in connection with sparse recovery and random
matrices, in particular, the material covered in Sect. 9.1 and the first part of Sect. 9.2,
Chap. 11, and Chap. 13. More advanced tools that will be used only in parts of the
remainder of the book (remaining parts of Chap. 9 as well as Chaps. 12 and 14) are
postponed to Chap. 8.

We only assume that the reader has basic knowledge of probability theory as can
be found in most introductory textbooks on the subject. We recall the most basic
facts of probability in Sect. 7.1. The relation of moments of random variables to their
tails is presented in Sect. 7.2. Then in Sect. 7.3 we study deviation inequalities for
sums of independent random variables by means of moment-generating functions.
Cramér’s theorem gives a very general estimate from which we deduce Hoeffding’s
inequality and later in Sect. 7.5 Bernstein inequality for bounded and subgaussian
random variables. We introduce the latter in Sect. 7.4.

7.1 Essentials from Probability

In this section, we recall some important facts from basic probability theory and
prove simple statements that might not be found in all basic textbooks.

Let (Ω,Σ,P) be a probability space, whereΣ denotes a σ-algebra on the sample
space Ω and P a probability measure on (Ω,Σ). The probability of an eventB ∈ Σ
is denoted by

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 7,
© Springer Science+Business Media New York 2013
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P(B) =

∫
B

dP(ω) =

∫
Ω

IB(ω)dP(ω),

where the characteristic function IB(ω) takes the value 1 if ω ∈ B and 0 otherwise.
We say that an event B occurs almost surely if P(B) = 1.

The union bound (or Bonferroni’s inequality or Boole’s inequality) states that for
a collection of events B� ∈ Σ, � ∈ [n], we have

P

(
n⋃
�=1

B�

)
≤

n∑
�=1

P(B�). (7.1)

A random variableX is a real-valued measurable function on (Ω,Σ). Recall that
X is called measurable if the preimage X−1(A) = {ω ∈ Ω : X(ω) ∈ A} belongs
to Σ for all Borel-measurable subsets A ⊂ R. Usually, every reasonable function
X will be measurable, in particular, all functions appearing in this book. In what
follows, we will usually not mention the underlying probability space (Ω,Σ,P)
when speaking about random variables. The distribution function F = FX of X is
defined as

F (t) = P(X ≤ t), t ∈ R.

A random variable X possesses a probability density function φ : R→ R+ if

P(a < X ≤ b) =

∫ b
a

φ(t)dt for all a < b ∈ R. (7.2)

In this case, φ(t) =
d

dt
F (t). The expectation or mean of a random variable will be

denoted by

EX =

∫
Ω

X(ω)dP(ω)

whenever the integral exists. If X has probability density function φ, then for a
function g : R→ R,

Eg(X) =

∫ ∞

−∞
g(t)φ(t)dt . (7.3)

The quantities EXp for integer p are called moments of X , while E|X |p, for
real-valued p > 0, are called absolute moments. (Sometimes we may omit
“absolute.”) The quantity E(X − EX)2 = EX2 − (EX)2 is called variance. For
1 ≤ p < ∞, (E|X |p)1/p defines a norm on the Lp(Ω,P)-space of all p-integrable
random variables; in particular, the triangle inequality
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(E|X + Y |p)1/p ≤ (E|X |p)1/p + (E|Y |p)1/p (7.4)

holds for all p-integrable random variables X,Y on (Ω,Σ,P).
Hölder’s inequality states that, for random variables X,Y on a common proba-

bility space and p, q ≥ 1 with 1/p+ 1/q = 1, we have

|EXY | ≤ (E|X |p)1/q (E|Y |q)1/q .

In the case p = 1, q = ∞, the last term is replaced by ess supω |Y (ω)|, i.e., the
smallest constant K such that |Y | ≤ K almost surely.

The special case p = q = 2 is the Cauchy–Schwarz inequality

|EXY | ≤
√
E|X |2E|Y |2.

Since the constant (deterministic) random variable 1 has expectation E1 = 1,
Hölder’s inequality shows that E|X |p = E[1 · |X |p] ≤ (E|X |pr )1/r for all
p > 0, r ≥ 1, and therefore, for all 0 < p ≤ q <∞,

(E|X |p)1/p ≤ (E|X |q)1/q . (7.5)

Let Xn, n ∈ N, be a sequence of random variables such that Xn converges to X
as n → ∞ in the sense that limn→∞Xn(ω) = X(ω) for almost all ω. Lebesgue’s
dominated convergence theorem states that if there exists a random variable Y with
E|Y | < ∞ such that |Xn| ≤ |Y | almost surely, then limn→∞ EXn = EX .
Lebesgue’s dominated convergence theorem has an obvious counterpart for integrals
of sequences of functions.

Fubini’s theorem on the integration of functions of two variables can be
formulated as follows. Let f : A×B → C be measurable, where (A, ν) and (B, μ)
are measurable spaces. If

∫
A×B |f(x, y)|d(ν ⊗ μ)(x, y) <∞, then

∫
A

(∫
B

f(x, y)dμ(y)

)
dν(x) =

∫
B

(∫
A

f(x, y)dν(x)

)
dμ(y).

A formulation for expectations of functions of independent random vectors is
provided below in (7.14).

Absolute moments can be computed by means of the following formula.

Proposition 7.1. The absolute moments of a random variable X can be
expressed as

E|X |p = p

∫ ∞

0

P(|X | ≥ t)tp−1dt , p > 0.

Proof. Recall that I{|X|p≥x} is the random variable that takes the value 1 on the
event |X |p ≥ x and 0 otherwise. Using Fubini’s theorem, we derive
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E|X |p =
∫
Ω

|X |pdP =

∫
Ω

∫ |X|p

0

1dxdP =

∫
Ω

∫ ∞

0

I{|X|p≥x}dxdP

=

∫ ∞

0

∫
Ω

I{|X|p≥x}dPdx =

∫ ∞

0

P(|X |p ≥ x)dx

= p

∫ ∞

0

P(|X |p ≥ tp)tp−1dt = p

∫ ∞

0

P(|X | ≥ t)tp−1dt,

where we also applied a change of variables. ��

Corollary 7.2. For a random variable X , the expectation satisfies

EX =

∫ ∞

0

P(X ≥ t)dt −
∫ ∞

0

P(X ≤ −t)dt .

Proof. We can write X = XI{X∈[0,∞)} +XI{X∈(−∞,0)}, so that

EX = EXI{X∈[0,∞)} − E(−XI{−X∈(0,∞)}).

Both XI{X∈[0,∞)} and −XI{−X∈(0,∞)} are nonnegative random variables, so that
an application of Proposition 7.1 shows the statement.

The function t �→ P(|X | ≥ t) is called the tail of X . A simple but often effective
tool to estimate the tail by expectations and moments is Markov’s inequality.

Theorem 7.3. Let X be a random variable. Then

P(|X | ≥ t) ≤ E|X |
t

for all t > 0.

Proof. Note that P(|X | ≥ t) = EI{|X|≥t} and that tI{|X|≥t} ≤ |X |. Hence,
tP(|X | ≥ t) = EtI{|X|≥t} ≤ E|X | and the proof is complete. ��

Remark 7.4. As an important consequence we note that for, p > 0,

P(|X | ≥ t) = P(|X |p ≥ tp) ≤ t−pE|X |p for all t > 0.

The special case p = 2 with X replaced by X−EX is referred to as the Chebyshev
inequality. Similarly, for θ > 0, we obtain

P(X ≥ t) = P(exp(θX) ≥ exp(θt)) ≤ exp(−θt)E exp(θX) for all t ∈ R.

The function θ �→ E exp(θX) is usually called the Laplace transform or the
moment-generating function of X .

A median of a random variable X is a number M such that

P(X ≥M) ≥ 1/2 and P(X ≤M) ≥ 1/2.



7.1 Essentials from Probability 179

The binomial distribution is the discrete probability distribution counting the
number of successes in a sequence of N independent experiments where the
probability of each individual success is p. If X has the binomial distribution, then

P(X = k) =

(
N

k

)
pk(1− p)N−k.

The expectation of X is given by EX = pN . If pN is an integer, then the median
M = M(X) coincides with the expectation:

M(X) = pN . (7.6)

A normally distributed random variable or Gaussian random variable X has
probability density function

ψ(t) =
1√
2πσ2

exp

(
− (t− μ)2

2σ2

)
. (7.7)

It has mean EX = μ and variance E(X −μ)2 = σ2. A Gaussian random variable g
with Eg = 0 and Eg2 = 1 is called a standard Gaussian random variable, a standard
normal variable, or simply a standard Gaussian. Its tail satisfies the following simple
estimates.

Proposition 7.5. Let g be a standard Gaussian random variable. Then, for all
u > 0,

P(|g| ≥ u) ≤ exp

(
−u

2

2

)
, (7.8)

P(|g| ≥ u) ≤
√

2

π

1

u
exp

(
−u

2

2

)
, (7.9)

P(|g| ≥ u) ≥
√

2

π

1

u

(
1− 1

u2

)
exp

(
−u

2

2

)
,

P(|g| ≥ u) ≥
(
1−
√

2

π
u

)
exp

(
−u

2

2

)
.

Proof. By (7.7), we have

P(|g| ≥ u) =
2√
2π

∫ ∞

u

e−t
2/2dt. (7.10)

Therefore, the stated estimates follow from Lemmas C.7 and C.8. ��

Let us compute the moment-generating function of a standard Gaussian.
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Lemma 7.6. Let g be a standard Gaussian random variable. Then, for θ ∈ R,

E exp(θg) = exp
(
θ2/2
)
, (7.11)

and more generally, for θ ∈ R and a < 1/2,

E exp(ag2 + θg) =
1√

1− 2a
exp

(
θ2

2(1− 2a)

)
.

Proof. For θ, a ∈ R, we have

E
(
exp(ag2 + θg)

)
=

1√
2π

∫ ∞

−∞
exp(ax2 + θx) exp

(
−x2/2
)
dx

Noting the identity

ax2 − x2/2 + θx = −1− 2a

2

(
x− θ

1− 2a

)2
+

θ2

2(1− 2a)

and applying a change of variable, we obtain

E exp(ag2 + θg) = exp

(
θ2

2(1− 2a)

)
1√
2π

∫ ∞

−∞
exp

(
−1− 2a

2
x2
)
dx

= exp

(
θ2

2(1− 2a)

)
1√

1− 2a
.

Hereby, we have used the fact that the probability density function (7.7) with μ = 1
and σ = 1/

√
1− 2a integrates to 1. ��

The proof of the next result should explain the terminology moment-generating
function.

Corollary 7.7. The even moments of a standard Gaussian random variable g are
given by

Eg2n =
(2n)!

2nn!
, n ∈ N.

Proof. On the one hand, by Taylor expansion, we can write the moment-generating
function as

E exp(θg) =

∞∑
j=0

θjE[gj ]

j!
=

∞∑
n=0

θ2nEg2n

(2n)!
,
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where we have used the fact that Egj = 0 for all odd j. On the other hand,
Lemma 7.6 gives

E exp(θg) = exp(θ2/2) =
∞∑
n=0

θ2n

2nn!
.

Comparing coefficients gives

Eg2n

(2n)!
=

1

2nn!
,

which is equivalent to the claim. ��

A random vector X = [X1, . . . , Xn]
� ∈ R

n is a collection of n random
variables on a common probability space (Ω,Σ,P). Its expectation is the vector
EX = [EX1, . . . ,EXn]

� ∈ R
n, while its joint distribution function is defined as

F (t1, . . . , tn) = P(X1 ≤ t1, . . . , Xn ≤ tn), t1, . . . , tn ∈ R.

Similarly to the univariate case, the random vector X has a joint probability density
if there exists a function φ : Rn → R+ such that, for any measurable domain
D ⊂ Rn,

P(X ∈ D) =

∫
D

φ(t1, . . . , tn)dt1 · · · dtn.

A complex random vector Z = X+ iY ∈ Cn is a special case of a 2n-dimensional
real random vector (X,Y) ∈ R2n.

A collection of random variables X1, . . . , Xn is (stochastically) independent if
for all t1, . . . , tn ∈ R,

P(X1 ≤ t1, . . . , Xn ≤ tn) =
n∏
�=1

P(X� ≤ t�).

For independent random variables, we have

E

[
n∏
�=1

X�

]
=

n∏
�=1

E [X�] . (7.12)

If they have a joint probability density function φ, then the latter factorizes as

φ(t1, . . . , tn) = φ1(t1)× · · · × φn(tn)

where the φ1, . . . , φn are the probability density functions of X1, . . . , Xn.
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In generalization, a collection X1 ∈ Rn1 , . . . ,Xm ∈ Rnm of random vectors are
independent if for any collection of measurable sets A� ⊂ Rn� , � ∈ [m],

P(X1 ∈ A1, . . . ,Xm ∈ Am) =

m∏
�=1

P(X� ∈ A�).

If furthermore f� : Rn� → R
N� , � ∈ [m], are measurable functions, then also the

random vectors f1(X1), . . . , fm(Xm) are independent. A collection X1, . . . ,Xm

∈ R
n of independent random vectors that all have the same distribution is called

independent identically distributed (i.i.d.).
A random vector X′ will be called an independent copy of X if X and X′ are

independent and have the same distribution.
The sum X + Y of two independent random variables X , Y having probability

density functions φX , φY has probability density function φX+Y given by the
convolution

φX+Y (t) = (φX ∗ φY )(t) =
∫ ∞

−∞
φX(u)φY (t− u)du. (7.13)

Fubini’s theorem for expectations takes the following form. Let X,Y ∈ Rn be
two independent random vectors (or simply random variables) and f : Rn × Rn→R

be a measurable function such that E|f(X,Y)| <∞. Then the functions

f1 : Rn → R, f1(x) = Ef(x,Y), f2 : Rn → R, f2(y) = Ef(X,y)

are measurable (E|f1(X)| <∞ and E|f2(Y)| <∞) and

Ef1(X) = Ef2(Y) = Ef(X,Y). (7.14)

The random variable f1(X) is also called conditional expectation or expectation
conditional on X and will sometimes be denoted by EY f(X,Y).

A random vector g ∈ Rn is called a standard Gaussian vector if its components
are independent standard normally distributed random variables. More generally, a
random vector X ∈ Rn is said to be a Gaussian vector or multivariate normally
distributed if there exists a matrix A ∈ Rn×k such that X = Ag + μ, where
g ∈ Rk is a standard Gaussian vector and μ ∈ Rn is the mean of X. The matrix
Σ = AA∗ is then the covariance matrix of X, i.e., Σ = E(X− μ)(X− μ)∗. If Σ
is nondegenerate, i.e., Σ is positive definite, then X has a joint probability density
function of the form

ψ(x) =
1

(2π)n/2
√

det(Σ)
exp

(
−1

2
〈x− μ,Σ−1(x− μ)〉

)
, x ∈ R

n.

In the degenerate case when Σ is not invertible, X does not have a density. It is
easily deduced from the density that a rotated standard Gaussian Ug, where U is
an orthogonal matrix, has the same distribution as g itself.
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If X1, . . . , Xn are independent and normally distributed random variables with
means μ1, . . . , μn and variances σ2

1 , . . . , σ
2
n, then X = [X1, . . . , Xn]

� has a
multivariate normal distribution and the sum Z =

∑n
�=1X� has the univariate

normal distribution with mean μ =
∑n

�=1 μ� and variance σ2 =
∑n
�=1 σ

2
� , as can

be calculated from (7.13).
The central limit theorem recalled below highlights the importance of the normal

distribution.

Theorem 7.8. Let (Xj)j∈N be a sequence of independent and identically dis-
tributed random variables with mean EXj = μ and variance E(Xj − μ)2 = σ2.
Then the sequence of random variables

Yn :=

∑n
j=1(Xj − μ)

σ
√
n

converges in distribution to a standard Gaussian random variable g, i.e.,
limn→∞ Ef(Yn) = Ef(g) for all bounded continuous functions f : R→ R.

The next statement is concerned with another important distribution derived from
the normal distribution.

Lemma 7.9. Let g = [g1, . . . , gn]
� be a standard Gaussian vector. Then the

random variable

Z =

n∑
�=1

g2�

has the χ2(n)-distribution whose probability density function φn is given by

φn(u) =
1

2n/2Γ (n/2)
u(n/2)−1 exp(−u/2)I(0,∞)(u), for all u ∈ R, (7.15)

where Γ is the Gamma function (see Appendix C.3).

Proof. We proceed by induction on n. The distribution function of a scalar squared
standard Gaussian g2 is given by P(g2 ≤ u) = 0 for u < 0 and P(g2 ≤ u) =
P(−

√
u ≤ g ≤

√
u) = F (

√
u) − F (−

√
u) for u ≥ 0, where F is the distribution

function of g. If ψ denotes the corresponding probability density function, it follows
that the probability density φ1 of the random variable g2 is given for u < 0 by
φ1 = 0 and for u ≥ 0 by

φ1(u) =
d

du

(
F (
√
u)− F (−

√
u)
)
=

1

2
u−1/2ψ(

√
u) +

1

2
u−1/2ψ(−

√
u)

=
1√
2π

u−1/2e−u/2.

Hence, for n = 1, (7.15) is established since Γ (1/2) =
√
π.

Now assume that the formula (7.15) has already been established for n ≥ 1.
For u ≤ 0, we have φn+1(u) = 0, and for u > 0, since by (7.13), the probability
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density function of the sum of independent random variables is the convolution of
their probability density functions, we have

φn+1(u) = (φn ∗ φ1)(u) =

∫ ∞

−∞
φn(t)φ1(u− t)dt

=
1

2n/2+1/2Γ (n/2)Γ (1/2)

∫ ∞

0

t(n/2)−1e−t/2(u− t)−1/2e−(u−t)/2I(0,∞)(u− t)dt

=
1

2(n+1)/2Γ (1/2)Γ (n/2)
e−u/2
∫ u
0

t(n/2)−1(u− t)−1/2dt

=
1

2(n+1)/2Γ (1/2)Γ (n/2)
e−u/2u(n/2)−1/2

∫ 1

0

t(n/2)−1(1− t)−1/2dt

=
1

2(n+1)/2Γ (1/2)Γ (n/2)
e−u/2u(n+1)/2−1B(n/2, 1/2)

=
1

2(n+1)/2Γ ((n+ 1)/2)
u(n+1)/2−1e−u/2,

where we used that the Beta function B satisfies

B(x, y) :=

∫ 1

0

ux−1(1− u)y−1du =
Γ (x)Γ (y)

Γ (x+ y)
, x, y > 0, (7.16)

see Exercise 7.1. Thus, we proved the formula (7.15) for n+ 1. This completes the
proof by induction. ��

Jensen’s inequality reads as follows.

Theorem 7.10. Let f : Rn → R be a convex function and let X ∈ Rn be a random
vector. Then

f(EX) ≤ Ef(X).

Proof. Let v be an element of the subdifferential ∂f(EX); see Definition B.20.
(Note that the subdifferential of a convex function is always nonempty at every
point.) By definition of ∂f , we have, for any realization of X,

f(EX) ≤ f(X) + 〈v,EX −X〉.

Taking expectations on both sides of this inequality gives the statement by noting
that E[EX−X] = 0. ��

Note that −f is convex if f is concave, so that for concave functions f , Jensen’s
inequality reads

Ef(X) ≤ f(EX). (7.17)

This concludes our outline of basic facts of probability theory.
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7.2 Moments and Tails

Moment and tail estimates of random variables are intimately related. We start with
a simple statement in this direction.

Proposition 7.11. Suppose that Z is a random variable satisfying

(E|Z|p)1/p ≤ αβ1/pp1/γ for all p ∈ [p0, p1] (7.18)

for some constants α, β, γ, p1 > p0 > 0. Then

P(|Z| ≥ e1/γαu) ≤ βe−u
γ/γ for all u ∈ [p

1/γ
0 , p

1/γ
1 ].

Proof. By Markov’s inequality (Theorem 7.3), we obtain for an arbitrary κ > 0

P(|Z| ≥ eκαu) ≤ E|Z|p
(eκαu)p

≤ β

(
αp1/γ

eκαu

)p
.

Choosing p = uγ yields P(|Z| ≥ eκαu) ≤ βe−κu
γ

and further setting κ = 1/γ
yields the claim. ��

Remark 7.12. Important special cases of Proposition 7.11 are γ = 1, 2. Indeed, if
(E|Z|p)1/p ≤ αβ1/p√p for all p ≥ 2, then

P(|Z| ≥ e1/2αu) ≤ βe−u
2/2 for all u ≥

√
2 ; (7.19)

while if (E|Z|p)1/p ≤ αβ1/pp for all p ≥ 2, then

P(|Z| ≥ eαu) ≤ βe−u for all u ≥ 2. (7.20)

If one replaces β by β′ = max{β, e2/γ}, γ = 1, 2, on the right-hand sides of (7.19)
and (7.20), then the inequalities hold for all u ≥ 0, since for u < 21/γ , they become
trivial, i.e., the right-hand sides become larger than 1.

A converse to Proposition 7.11 involving the Gamma function Γ (see Ap-
pendix C.3) also holds.

Proposition 7.13. Suppose that a random variable Z satisfies, for some γ > 0,

P(|Z| ≥ e1/γαu) ≤ βe−u
γ/γ for all u > 0.

Then, for p > 0,

E|Z|p ≤ βαp(eγ)p/γΓ

(
p

γ
+ 1

)
. (7.21)
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As a consequence, for p ≥ 1,

(E|Z|p)1/p ≤ C1α(C2,γβ)
1/pp1/γ for all p ≥ 1, (7.22)

where C1 = e1/(2e) ≈ 1.2019 and C2,γ =
√
2π/γeγ/12. In particular, one has

C2,1 ≈ 2.7245, C2,2 ≈ 2.0939.

Proof. Using Proposition 7.1 and two changes of variables, we obtain

E|Z|p = p

∫ ∞

0

P(|Z| > t)tp−1dt = pαpep/γ
∫ ∞

0

P(|Z| ≥ e1/γαu)up−1du

≤ pαpep/γ
∫ ∞

0

βe−u
γ/γup−1du = pβαpep/γ

∫ ∞

0

e−v(γv)p/γ−1dv

= βαp(eγ)p/γ
p

γ
Γ

(
p

γ

)
. (7.23)

This shows (7.21) taking into account the functional equation for the Gamma
function. Applying Stirling’s formula (C.12) yields

E|Z|p ≤ βαp(eγ)p/γ
√
2π

(
p

γ

)p/γ+1/2

e−p/γeγ/(12p)

=
√
2πβαpeγ/(12p)pp/γ+1/2γ−1/2.

Using the assumption p ≥ 1, we obtain

(E|Z|p)1/p ≤
(√

2πeγ/12
√
γ

β

)1/p
αp1/γp1/(2p).

Finally, p1/(2p) takes its maximum value for p = e, i.e., p1/(2p) ≤ e1/(2e). This
yields the statement of the proposition. ��

Next we consider the expectation E|Z| of a random variable Z satisfying a
subgaussian tail estimate (see (7.31) below) and improve on the general estimate
(7.22) for p = 1.

Proposition 7.14. Let Z be a random variable satisfying

P(|Z| ≥ αu) ≤ βe−u
2/2 for all u ≥

√
2 ln(β),

for some constants α > 0, β ≥ 2. Then

E|Z| ≤ Cβα
√
ln(4β)

with Cβ =
√
2 + 1/(4

√
2 ln(4β)) ≤

√
2 + 1/(4

√
2 ln(8)) ≈ 1.499 < 3/2.
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Proof. Let κ ≥
√
2 ln(β) be some number to be chosen later. By Proposition 7.11,

the expectation can be expressed as

E|Z| =
∫ ∞

0

P(|Z| ≥ u)du = α

∫ ∞

0

P(|Z| ≥ αu)du

≤ α

(∫ κ
0

1du+ β

∫ ∞

κ

e−u
2/2du

)
≤ α

(
κ+

β

κ
e−κ

2/2

)
.

In the second line, we used the fact that any probability is bounded by 1, and in
the last step, we applied Lemma C.7. Choosing κ =

√
2 ln(4β) completes the

proof. ��

Let us also provide a slight variation on Proposition 7.11.

Proposition 7.15. Suppose Z is a random variable satisfying

(E|Z|p)1/p ≤ β1/p(α1p+ α2
√
p+ α3) for all p ≥ p0.

Then, for u ≥ p0,

P
(
|Z| ≥ e(α1u+ α2

√
u+ α3)

)
≤ βe−u.

Proof. The proof is basically the same as the one of Proposition 7.11 and left as
Exercise 7.15. ��

Tail probabilities can also be bounded from below using moments. We start with
the classical Paley–Zygmund inequality.

Lemma 7.16. If a nonnegative random variable Z has finite second moment, then

P(Z > t) ≥ (EZ − t)2

EZ2
, 0 ≤ t ≤ EZ.

Proof. For t ≥ 0, the Cauchy–Schwarz inequality yields

EZ = E[ZI{Z>t}] + E[ZI{Z≤t}]

≤ (EZ2)1/2 E(I{Z>t})
1/2 + t = (EZ2)1/2 P(Z > t)1/2 + t.

With t ≤ EZ , this is a rearrangement of the claim. ��
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Lemma 7.17. If X1, . . . , Xn are independent mean-zero random variables with
variance σ2 and fourth moment bounded from above by μ4, then, for all a ∈ Rn,

P

(∣∣∣
n∑
�=1

a�X�

∣∣∣ > t‖a‖2
)
≥ (σ2 − t2)2

μ4
, 0 ≤ t ≤ σ.

Proof. Setting Z :=
(∑n

�=1 a�X�

)2
, independence and the mean-zero assumption

yield

EZ = E
( n∑
j=1

a�X�

)2
=

n∑
�=1

a2� EX
2
� = ‖a‖22 σ2,

EZ2 = E

( n∑
�=1

a�X�

)4
=
∑

i,j,k,�∈[n]

aiajaka�E(XiXjXkX�)

=
∑
i,j∈[n]

a2i a
2
jE(X

2
i X

2
j ), (7.24)

because if a random variableXi is not repeated in the productXiXjXkX�, then the
independence ofXi,Xj ,Xk,X� yieldsE(XiXjXkX�) = E(Xi)E(XjXkX�) = 0.
Moreover, using the Cauchy–Schwarz inequality, we have, for i, j ∈ [n],

E(X2
iX

2
j ) ≤ E(X4

i )
1/2

E(X4
j )

1/2 ≤ μ4.

We deduce that

EZ2 ≤
∑
i,j∈[n]

a2i a
2
jμ

4 = ‖a‖42 μ4. (7.25)

Substituting (7.24) and (7.25) into Lemma 7.16, we obtain, for 0 ≤ t ≤ σ,

P

(∣∣∣
n∑
�=1

a�X�

∣∣∣ > t‖a‖2
)
= P
(
Z > t2‖a‖22

)
≥
(
σ2 − t2

)2
μ4

,

which is the desired result. ��

7.3 Cramér’s Theorem and Hoeffding’s Inequality

We often encounter sums of independent mean-zero random variables. Deviation
inequalities bound the tail of such sums.
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We recall that the moment-generating function of a (real-valued) random variable
X is defined by

θ �→ E exp(θX),

for all θ ∈ R whenever the expectation on the right-hand side is well defined. Its
logarithm is the cumulant-generating function

CX(θ) = lnE exp(θX).

With the help of these definitions, we can formulate Cramér’s theorem.

Theorem 7.18. Let X1, . . . , XM be a sequence of independent (real-valued) ran-
dom variables with cumulant-generating functions CX�

, � ∈ [M ]. Then, for t > 0,

P
( M∑
�=1

X� ≥ t
)
≤ exp

(
inf
θ>0

{
−θt+

M∑
�=1

CX�
(θ)

})
.

Proof. For θ > 0, Markov’s inequality (Theorem 7.3) and independence yield

P
( M∑
�=1

X� ≥ t
)
= P
(
exp(θ

M∑
�=1

X�

)
≥ exp(θt)) ≤ e−θtE[exp(θ

M∑
�=1

X�)]

= e−θtE[
M∏
�=1

exp(θX�)] = e−θt
M∏
�=1

E[exp(θX�)]

= e−θt
M∏
�=1

exp(CX�
(θ)) = exp

(
−θt+

M∑
�=1

CX�
(θ)

)
.

Taking the infimum over θ > 0 concludes the proof. ��

Remark 7.19. The function

t �→ inf
θ>0

{
−θt+

M∑
�=1

CX�
(θ)

}

appearing in the exponential is closely connected to a convex conjugate function
appearing in convex analysis; see Sect. B.3.

We will use this theorem several times later on. Let us state Hoeffding’s
inequality for the sum of almost surely bounded random variables as a first
consequence.
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Theorem 7.20. Let X1, . . . , XM be a sequence of independent random variables
such that EX� = 0 and |X�| ≤ B� almost surely, � ∈ [M ]. Then, for all t > 0,

P

(
M∑
�=1

X� ≥ t

)
≤ exp

(
− t2

2
∑M
�=1B

2
�

)
,

and consequently,

P

(∣∣∣∣∣
M∑
�=1

X�

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2
∑M
�=1B

2
�

)
. (7.26)

Proof. In view of Cramér’s theorem, we estimate the moment-generating function
of X�. Since (except possibly for an event of measure zero) X� ∈ [−B�, B�], we
can write

X� = t(−B�) + (1 − t)B�,

where t = B�−X�

2B�
∈ [0, 1]. Since f(x) = exp(θx) is convex, we have

exp(θX�) = f(X�) = f(t(−B�)) + (1− t)B�) ≤ tf(−B�) + (1 − t)f(B�)

=
B� −X�

2B�
e−θB� +

B� +X�

2B�
eθB� . (7.27)

Taking expectation and using the fact that EX� = 0, we arrive at

E exp(θX�) ≤
1

2
(exp(−θB�) + exp(θB�)) =

1

2

( ∞∑
k=0

(−θB�)k
k!

+

∞∑
k=0

(θB�)
k

k!

)

=

∞∑
k=0

(θB�)
2k

(2k)!
≤

∞∑
k=0

(θB�)
2k

2kk!
= exp(θ2B2

� /2). (7.28)

Therefore, the cumulant-generating function of X� satisfies

CX�
(θ) ≤ B2

� θ
2/2.

It follows from Cramér’s theorem (Theorem 7.18) that

P(

M∑
�=1

X� ≥ t)≤ exp

(
inf
θ>0

{
−θt+ θ2

2

M∑
�=1

B2
�

})
.
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The optimal choice θ = t/(
∑M
�=1B

2
� ) in the above infimum yields

P(

M∑
�=1

X� ≥ t) ≤ exp

(
− t2

2
∑M
�=1B

2
�

)
.

Replacing X� by−X� gives the same bound, and an application of the union bound
(7.1) then shows (7.26). ��

A Rademacher variable (sometimes also called symmetric Bernoulli variable) is
a random variable ε that takes the values +1 and −1 with equal probability. A
Rademacher sequence ε is a vector of independent Rademacher variables (also
called a Rademacher vector). We obtain the following version of Hoeffding’s
inequality for Rademacher sums.

Corollary 7.21. Let a ∈ R
M and ε = (ε1, . . . , εM ) be a Rademacher sequence.

Then, for u > 0,

P

(
|
M∑
�=1

ε�a�| ≥ ‖a‖2u
)
≤ 2 exp(−u2/2). (7.29)

Proof. The random variable a�ε� has mean zero and is bounded in absolute value
by |a�|. Therefore, the stated inequality follows immediately from Hoeffding’s
inequality 7.20. ��

Remark 7.22. Note that specializing (7.28) to a Rademacher variable ε shows that
its moment-generating function satisfies

E exp(θε) ≤ exp(θ2/2). (7.30)

7.4 Subgaussian Random Variables

A random variable X is called subgaussian if there exist constants β, κ > 0 such
that

P(|X | ≥ t) ≤ βe−κt
2

for all t > 0. (7.31)

It is called subexponential if there exist constants β, κ > 0 such that

P(|X | ≥ t) ≤ βe−κt for all t > 0.

According to Proposition 7.5, a standard Gaussian random variable is subgaussian
with β = 1 and κ = 1/2. Furthermore, Rademacher and bounded random variables
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are subgaussian. According to Theorem 7.20, Rademacher sums are subgaussian
random variables as well.

Clearly, a random variable X is subgaussian if and only if X2 is subexponential.
Setting α = (2eκ)−1/2 and γ = 2 in Proposition 7.13 shows that the moments of a
subgaussian variable X satisfy

(E|X |p)1/p ≤ C̃κ−1/2β1/pp1/2 for all p ≥ 1 (7.32)

with C̃ = e1/(2e)C2,2/
√
2e = e1/(2e)+1/6

√
π/(2e) ≈ 1.0282, while the moments

of a subexponential variable X satisfy (setting α = (eκ)−1 and γ = 1 in
Proposition 7.13)

(E|X |p)1/p ≤ Ĉκ−1β1/pp for all p ≥ 1

with Ĉ = e1/(2e)C2,1e
−1 = e1/(2e)+1/12

√
2π ≈ 3.1193. Proposition 7.11 provides

a statement in the converse direction. Let us give an equivalent characterization of
subgaussian random variables.

Proposition 7.23. Let X be a random variable.

(a) If X is subgaussian, then there exist constants c > 0, C ≥ 1 such that
E[exp(cX2)] ≤ C.

(b) If E[exp(cX2)] ≤ C for some constants c, C > 0, thenX is subgaussian. More
precisely, we have P(|X | ≥ t) ≤ Ce−ct

2

.

Proof. (a) The moment estimate (7.21) with κ = 1/(2eα2) yields

EX2n ≤ βκ−nn!.

Expanding the exponential function into its Taylor series and using Fubini’s
theorem show that

E[exp(cX2)] = 1 +

∞∑
n=1

cnE[X2n]

n!
≤ 1 + β

∞∑
n=1

cnκ−nn!

n!
= 1 +

βcκ−1

1− cκ−1
.

provided c < κ.
(b) This statement follows from Markov’s inequality (Theorem 7.3), since

P(|X | ≥ t) = P(exp(cX2) ≥ exp(ct2)) ≤ E[exp(cX2)]e−ct
2 ≤ Ce−ct

2

.

This completes the proof. ��

Exercise 7.6 refines the statement of Proposition 7.23(a).
Let us study the Laplace transform (or moment-generating function) of a mean-

zero subgaussian random variable.
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Proposition 7.24. Let X be a random variable.

(a) If X is subgaussian with EX = 0, then there exists a constant c (depending
only on β and κ) such that

E[exp(θX)] ≤ exp(cθ2) for all θ ∈ R. (7.33)

(b) Conversely, if (7.33) holds, then EX = 0 and X is subgaussian with
parameters β = 2 and κ = 1/(4c).

Remark 7.25. Any valid constant c in (7.33) is called a subgaussian parameter of
X . Of course, one preferably chooses the minimal possible c.

Proof. For the easier part (b), we take θ, t > 0 and apply Markov’s inequality
(Theorem 7.3) to get

P(X ≥ t) = P(exp(θX) ≥ exp(θt)) ≤ E[exp(θX)]e−θt ≤ ecθ
2−θt.

The optimal choice θ = t/(2c) yields

P(X ≥ t) ≤ e−t
2/(4c).

Repeating the above computation with −X instead of X shows that

P(−X ≥ t) ≤ e−t
2/(4c),

and the union bound yields the desired estimate P(|X | ≥ t) ≤ 2e−t
2/(4c). In

order to deduce that X has mean zero, we take the expectation in the inequality
1 + θX ≤ exp(θX) to deduce, for |θ| < 1,

1 + θE(X) ≤ E[exp(θX)] ≤ exp(cθ2) ≤ 1 + (c/2)θ2 +O(θ4).

Letting θ → 0 shows that EX = 0.
Let us now turn to the converse implication (a). We note that it is enough to

consider θ ≥ 0, as the statement for θ < 0 follows from exchanging X with
−X . Expanding the exponential function into its Taylor series yields (together with
Fubini’s theorem)

E[exp(θX)] = 1 + θE(X) +
∞∑
n=2

θnEXn

n!
= 1 +

∞∑
n=2

θnE|X |n
n!

,

where we used the mean-zero assumption. First suppose that 0 ≤ θ ≤ θ0 for some
θ0 to be determined below. Then the moment estimate (7.32) and the consequence
n! ≥

√
2πnne−n of Strirling’s formula (C.13) yield
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E[exp(θX)] ≤ 1 + β

∞∑
n=2

θnC̃nκ−n/2nn/2

n!
≤ 1 +

β√
2π

∞∑
n=2

C̃nθnκ−n/2nn/2

nne−n

≤ 1 + θ2
β(C̃e)2√

2πκ

∞∑
n=0

(C̃eθ0κ
−1/2)n

= 1+ θ2
β(C̃e)2√

2πκ

1

1− C̃eθ0κ−1/2

= 1+ c1θ
2 ≤ exp(c1θ

2),

provided C̃eθ0κ−1/2 < 1. The latter is satisfied by setting

θ0 = (2C̃e)−1√κ,

which gives c1 =
√
2βκ−1((C̃e)2/

√
π).

Let us now assume that θ > θ0. We aim at proving E[exp(θX − c2θ
2)] ≤ 1.

Observe that

θX − c2θ
2 = −
(√

c2θ −
X

2
√
c2

)2
+
X2

4c2
≤ X2

4c2
.

Let c̃ > 0, C̃ ≥ 1 be the constants from Proposition 7.23(a) and choose c2 = 1/(4c̃).
Then

E[exp(θX − c2θ
2)] ≤ E[exp(c̃X2)] ≤ C̃.

Defining ρ = ln(C̃)θ−2
0 yields

E[exp(θX)] ≤ C̃ exp(c2θ
2) = C̃ exp(−ρθ2) exp((c2 + ρ)θ2)

≤ C̃ exp(−ρθ20)e(c2+ρ)θ
2

= e(c2+ρ)θ
2

.

Setting c = max{c1, c2 + ρ} completes the proof. ��

Remark 7.26. For Rademacher and standard Gaussian random variables, the con-
stant in (7.33) satisfies c = 1/2 by (7.11) and (7.30). Furthermore, for mean-zero
random variablesX with |X | ≤ K almost surely, c = K2/2 is a valid choice of the
subgaussian parameter by (7.28).

The sum of independent mean-zero subgaussian variables is again subgaussian
by the next statement.

Theorem 7.27. Let X1, . . . , XM be a sequence of independent mean-zero sub-
gaussian random variables with subgaussian parameter c in (7.33). For a ∈ RM ,
the random variable Z :=

∑M
�=1 a�X� is subgaussian, i.e.,

E exp(θZ) ≤ exp(c‖a‖22θ2), (7.34)
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and

P

(∣∣∣∣∣
M∑
�=1

a�X�

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

4c‖a‖22

)
for all t > 0. (7.35)

Proof. By independence, we have

E exp(θ

M∑
�=1

a�X�) = E

M∏
�=1

exp(θa�X�) =

M∏
�=1

E exp(θa�X�) ≤
M∏
�=1

exp(cθ2a2�)

= exp(c‖a‖22θ2).

This proves (7.34). The second inequality (7.35) follows then from Proposition
7.24(b). ��

Remark 7.28. In particular, if ε = (ε1, . . . , εM ) is a Rademacher sequence and
Z =
∑M

�=1 a�ε�, then

E exp(θZ) ≤ exp(θ2‖a‖22/2).

The expected maximum of a finite number of subgaussian random variables can
be estimated as follows.

Proposition 7.29. Let X1, . . . , XM be a sequence of (not necessarily independent)
mean-zero subgaussian random variables satisfying E[exp(θX�)] ≤ exp(c�θ

2),
� ∈ [M ]. Then, with c = max�∈[M ] c�,

E max
�∈[M ]

X� ≤
√
4c ln(M), (7.36)

E max
�∈[M ]

|X�| ≤
√
4c ln(2M). (7.37)

Proof. Since (7.36) is obvious for M = 1, we assume M ≥ 2. Let β > 0 be
a number to be chosen later. Using concavity of the logarithm in connection with
Jensen’s inequality, we obtain

βE max
�∈[M ]

X� = E ln max
�∈[M ]

exp(βX�) ≤ E ln

(
M∑
�=1

exp(βX�)

)

≤ ln(

M∑
�=1

E exp(βX�)) ≤ ln(M exp(cβ2)) = cβ2 + ln(M).

Choosing β =
√
c−1 ln(M) yields
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√
c−1 ln(M)E max

�∈[M ]
X� ≤ ln(M) + ln(M)

so that Emax�∈[M ] ≤
√
4c ln(M).

For (7.37) we write Emax�∈[M ] |X�| = Emax{X1, . . . , XM ,−X1, . . . ,−XM}
and apply (7.36). ��

The example of a sequence of standard Gaussian random variables shows that the
estimates in the previous proposition are optimal up to possibly the constants; see
Proposition 8.1(c) below.

7.5 Bernstein Inequalities

Bernstein inequality provides a useful generalization of Hoeffding’s inequality
(7.29) to sums of bounded or even unbounded independent random variables, which
also takes into account the variance or higher moments. We start with the version
below and then derive variations as consequences.

Theorem 7.30. LetX1, . . . , XM be independent mean-zero random variables such
that, for all integers n ≥ 2,

E|X�|n ≤ n!Rn−2σ2
� /2 for all � ∈ [M ] (7.38)

for some constants R > 0 and σ� > 0, � ∈ [M ]. Then, for all t > 0,

P

(∣∣∣∣∣
M∑
�=1

X�

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2/2

σ2 +Rt

)
, (7.39)

where σ2 :=
∑M
�=1 σ

2
� .

Before providing the proof, we give two consequences. The first is the Bernstein
inequality for bounded random variables.

Corollary 7.31. LetX1, . . . , XM be independent random variables with zero mean
such that |X�| ≤ K almost surely for � ∈ [M ] and some constant K > 0.
Furthermore assume E|X�|2 ≤ σ2

� for constants σ� > 0, � ∈ [M ]. Then, for all
t > 0,

P

(∣∣∣∣∣
M∑
�=1

X�

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
, (7.40)

where σ2 :=
∑M
�=1 σ

2
� .
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Proof. For n = 2, condition (7.38) is clearly satisfied. For n ≥ 3, we have
n! ≥ 3 · 2n−2 and we obtain

E|X�|n = E[|X�|n−2X2
� ] ≤ Kn−2σ2

� ≤
n!Kn−2

n!
σ2
� ≤

n!Kn−2

2 · 3n−2
σ2
� . (7.41)

In other words, condition (7.38) holds for all n ≥ 2 with constantR = K/3. Hence,
the statement follows from Theorem 7.30. ��

As a second consequence, we present the Bernstein inequality for subexponential
random variables.

Corollary 7.32. Let X1, . . . , XM be independent mean-zero subexponential ran-
dom variables, i.e., P(|X�| ≥ t) ≤ βe−κt for some constants β, κ > 0 for all t > 0,
� ∈ [M ]. Then

P

(∣∣∣∣∣
M∑
�=1

X�

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− (κt)2/2

2βM + κt

)
. (7.42)

Proof. Similarly to the proof of Proposition 7.13, we estimate, for n ∈ N, n ≥ 2,

E|X�|n = n

∫ ∞

0

P(|X�| ≥ t)tn−1dt ≤ βn

∫ ∞

0

e−κttn−1dt

= βnκ−n
∫ ∞

0

e−uun−1du = βn!κ−n = n!κ−(n−2) 2βκ
−2

2
.

Hereby, we have used that the integral in the second line equals Γ (n) = (n − 1)!.
Hence, condition (7.38) holds with R = κ−1 and σ2

� = 2βκ−2. The claim follows
therefore from Theorem 7.30. ��

Let us now turn to the proof of the Bernstein inequality in Theorem 7.30.

Proof (of Theorem 7.30). Motivated by Cramér’s theorem, we estimate the moment-
generating function of the X�. Expanding the exponential function into its Taylor
series and using Fubini’s theorem in order to interchange expectation and summa-
tion yield

E[exp(θX�)] = 1 + θE[X�] +

∞∑
n=2

θnE[Xn
� ]

n!
= 1 +

θ2σ2
�

2

∞∑
n=2

θn−2E[Xn
� ]

n!σ2
� /2

,

where we additionally used that E[X�] = 0. Defining

F�(θ) =

∞∑
n=2

θn−2E[Xn
� ]

n!σ2
�/2

,
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we obtain

E[exp(θX�)] = 1 + θ2σ2
�F�(θ)/2 ≤ exp(θ2σ2

�F�(θ)/2).

Introducing F (θ) = max�∈[M ] F�(θ) and recalling that σ2 =
∑M

�=1 σ
2
� , we obtain

from Cramér’s theorem (Theorem 7.18)

P
( M∑
�=1

X� ≥ t
)
≤ inf

θ>0
exp(θ2σ2F (θ)/2− θt) ≤ inf

0<Rθ<1
exp(θ2σ2F (θ)/2− θt).

Since E[Xn
� ] ≤ E[|X�|n], the assumption (7.38) yields

F�(θ) ≤
∞∑
n=2

θn−2E[|X�|n]
n!σ2

� /2
≤

∞∑
n=2

(Rθ)n−2 =
1

1−Rθ

providedRθ < 1. Therefore, F (θ) ≤ (1 −Rθ)−1 and

P
( M∑
�=1

X� ≥ t
)
≤ inf

0<θR<1
exp

(
θ2σ2

2(1−Rθ)
− θt

)
.

Now we choose θ = t/(σ2 + Rt), which clearly satisfies Rθ < 1. This yields

P
( M∑
�=1

X� ≥ t
)
≤ exp

(
t2σ2

2(σ2 + Rt)2
1

1− Rt
σ2+Rt

− t2

σ2 + Rt

)

= exp

(
− t2/2

σ2 + Rt

)
.

Exchanging X� with −X� yields the same estimate, and applying the union bound
completes the proof. ��

Notes

Good sources for background on basic probability theory are, for instance, the
monographs [243, 428]. The relation of tails and moments is well known (see,
e.g., [322]), although the refinement with the parameter β in (7.18) seems to have
appeared only recently [411]. Cramér proved the theorem named after him in [132].
We refer to [495] for more information on large deviation results in this spirit.
Hoeffding’s inequality (7.29) was derived in [276]. In the special case of random
variables that take only values in {0, 1}with probabilities p and 1− p, the so-called
Chernoff bounds refine the Hoeffding inequalities; see, for instance, [116, 254].
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Bernstein inequality was first proved in [43] and refined later by Bennett [40]. For
further reading on scalar deviation inequalities, the reader is referred to [349, 495].

The notion of subgaussian random variables was introduced in [297]. It may be
refined to strictly subgaussian random variables, for which the constant in (7.33)
satisfies c = E|X |2/2. Gaussian and Bernoulli random variables, as well as random
variables that are uniformly distributed on [−1, 1], are strictly subgaussian; see
Exercise 7.5. More information on subgaussian random variables can be found, for
instance, in [78, 501].

Exercises

7.1. Show the relation (7.16) of the Beta function B to the Gamma function.

7.2. Prove Proposition 7.15.

7.3. Let p > 1. Generalize Lemma 7.16 by showing that any nonnegative random
variable Z with finite pth moment satisfies

P(Z > t) ≥ (EZ − t)p/(p−1)

(EZp)1/(p−1)
, 0 ≤ t ≤ EZ.

Prove also that if X1, . . . , XM are independent mean-zero random variables with
variance σ2 and 2pth absolute moment bounded above by μ2p, then, for all a ∈ RM ,

P

(∣∣∣
M∑
�=1

a�X�

∣∣∣ > t‖a‖2
)
≥ cp

(σ2 − t2)2

μ2p/(p−1)
, 0 ≤ t ≤ σ,

for some constant cp to be determined.

7.4. Let X be a subgaussian random variable with E exp(θX) ≤ exp(cθ2) for
some constant c > 0. Show that its variance satisfies EX2 ≤ 2c. (A subgaussian
variable for which equality holds is called strictly subgaussian).

7.5. Let X be a random variable that is uniformly distributed on [−1, 1]. Show that
E|X |2 = 1/3 and that

E exp(θX) ≤ exp(θ2/6) = exp(θ2E|X |2/2),

so that X is strictly subgaussian.

7.6. Let X be a subgaussian random variable with parameter c > 0, that is,
E exp(θX) ≤ exp(cθ2) for all θ ∈ R. Show that, for t ∈ [0, 1/2],

E exp(tX2/c2) ≤ 1√
1− 2t

.



Chapter 8
Advanced Tools from Probability Theory

This chapter introduces further probabilistic tools that will be required for some of
the more advanced results in the remainder of the book.

In Sect. 8.1, we compute the expectation of the �p-norm of a standard Gaussian
vector for p = 1, 2,∞ (required in Sect. 9.3). Section 8.2 presents simple results
for Rademacher sums as well as the symmetrization method. This simple technique
turns out to be powerful in various setups and will be needed in Sect. 12.5 and
Chap. 14. Khintchine inequalities, treated in Sect. 8.3, estimate the moments of a
Rademacher sum and allow to deduce Hoeffding-type inequalities for Rademacher
sums in a different way than via moment-generating functions (required for
Sect. 12.5 and in Chap. 14). Decoupling inequalities introduced in Sect. 8.6 replace
one sequence of random variables in a double sum by an independent copy
(required for Sect. 9.5 and Chap. 14). The scalar Bernstein inequality for bounded
random variables (Corollary 7.31) will be extended in Sect. 8.5 to a powerful
deviation inequality for the operator norm of sums of random matrices (required
for Sects. 12.3, 12.4, and 14.1). Section 8.6 deals with Dudley’s inequality, which is
a crucial tool to estimate the expectation of a supremum of a subgaussian process by
an integral over covering numbers of the index set of the process (required for the
estimate of the restricted isometry constants in Sect. 12.5). Slepian’s and Gordon’s
lemmas compare expectations of functions of two Gaussian random vectors in terms
of the covariances of the two vectors. In particular, maxima as well as minima of
maxima are important choices of such functions. These are treated in Sect. 8.7 and
will be used in Sects. 9.2 and 9.4. Section 8.8 treats the concentration of measure
phenomenon which states that a Lipschitz function of a Gaussian random vector
highly concentrates around its mean (required in Sects. 9.2 and 9.4). The final
section of this chapter deals with a deviation inequality for the supremum of an
empirical process, which is sometimes called Talagrand’s concentration inequality
or Bousquet’s inequality. It will be required in Chap. 12.

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 8,
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8.1 Expectation of Norms of Gaussian Vectors

We estimate the expectation of the norms of standard Gaussian random vectors in
�1, �2, and �∞.

Proposition 8.1. Let g = (g1, . . . , gn) be a vector of (not necessarily independent)
standard Gaussian random variables. Then

(a) E‖g‖1 =

√
2

π
n.

(b) E‖g‖22 = n and

√
2

π

√
n ≤ E‖g‖2 ≤

√
n.

If the entries of g are independent, then

n√
n+ 1

≤ E‖g‖2 =
√
2
Γ ((n+ 1)/2)

Γ (n/2)
≤
√
n, (8.1)

and consequently E‖g‖2 ∼
√
n as n→∞.

(c) It holds that

Emax
�∈[n]

g� ≤
√
2 ln(n) and E‖g‖∞ ≤

√
2 ln(2n). (8.2)

If the entries of g are independent, then, for n ≥ 2,

E‖g‖∞ ≥ C
√

ln(n) (8.3)

with C ≥ 0.265.

Proof. (a) By the formula for the density of a standard Gaussian random variable,
we have

E|g�| =
1√
2π

∫ ∞

−∞
|u| exp(−u2/2)du =

√
2

π

∫ ∞

0

u exp(−u2/2)du =

√
2

π
.

By linearity of the expectation, E‖g‖1 =
∑n

�=1 E|g�| =
√
2/π n.

(b) Clearly, E‖g‖22 =
∑n
�=1 Eg

2
� = n for standard Gaussian random variables g�.

The Cauchy–Schwarz inequality for expectations (or Jensen’s inequality) yields
E‖g‖2 ≤

√
E‖g‖22 =

√
n, while the Cauchy–Schwarz inequality for the inner

product on Rn gives E‖g‖2 ≥ E
1√
n
‖g‖1 =

√
2/π

√
n.

If the entries of g are independent, then ‖g‖22 has the χ2(n) distribution with
probability density function φn(u) given by (7.15). Therefore,
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E‖g‖2 = E

(
n∑
�=1

g2�

)1/2
=

∫ ∞

0

u1/2φn(u)du

=
1

2n/2Γ (n/2)

∫ ∞

0

u1/2u(n/2)−1e−u/2du

=
2n/2+1/2

2n/2Γ (n/2)

∫ ∞

0

t(n/2)−1/2e−tdt =
√
2
Γ ((n+ 1)/2)

Γ (n/2)
,

where we used the definition of the Gamma function in (C.9). The estimate
En := E‖g‖2 ≤

√
n for Gaussian vector g of length n was already shown

above. Furthermore,

En+1En = 2
Γ (n/2 + 1)

Γ (n/2)
= n,

by the functional equation (C.11) for the Gamma function so that En =
n/En+1 ≥ n/

√
n+ 1 (compare also with Lemma C.4).

(c) The inequalities in (8.2) follow from Proposition 7.29 by noting that due
to Lemma 7.6, we have E exp(βg) = exp(β2/2) so that the subgaussian
parameter c = 1/2 for Gaussian random variables.

If the g� are independent, then by Corollary 7.2

E‖g‖∞ =

∫ ∞

0

P

(
max
�∈[n]

|g�| > u

)
du =

∫ ∞

0

(
1− P(max

�∈[n]
|g�| ≤ u)

)
du

=

∫ ∞

0

(
1−

n∏
�=1

P(|g�| ≤ u)

)
du ≥
∫ δ
0

(1− (1 − P(|g| > u))n) du

≥ δ (1− (1 − P(|g| > δ))n) .

Further,

P(|g| > δ) =

√
2

π

∫ ∞

δ

e−t
2/2dt ≥

√
2

π

∫ 2δ

δ

e−t
2/2dt ≥

√
2

π
δe−2δ2 .

Now, we choose δ =
√
lnn/2. Then, for n ≥ 2,

E‖g‖∞ ≥
√

lnn

2

(
1−
(
1−
√

lnn

π

1

n

)n)
≥
√

lnn

2

(
1− exp

(
−
√

lnn

π

))

≥ 1− exp(−
√
(ln 2)/π)√

2

√
lnn,

which establishes the claim with C = (1− exp(−
√
(ln 2)/π))/

√
2 ≥ 0.265. ��
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Next we extend part (c) of the previous proposition to the maximum squared
�2-norm of a sequence of standard Gaussian random vectors.

Proposition 8.2. Let g1, . . . ,gM ∈ Rn be a sequence of (not necessarily indepen-
dent) standard Gaussian random vectors. Then, for any κ > 0,

E max
�∈[M ]

‖g�‖22 ≤ (2 + 2κ) ln(M) + n(1 + κ) ln(1 + κ−1).

Consequently,

E max
�∈[M ]

‖g�‖22 ≤ (
√
2 ln(M) +

√
n)2.

Proof. By concavity of the logarithm and Jensen’s inequality, we have, for θ > 0,

E max
�∈[M ]

‖g�‖22 = θ−1
E ln max

�∈[M ]
exp
(
θ‖g�‖22

)
≤ θ−1 lnE max

�∈[M ]
exp
(
θ‖g�‖22

)

≤ θ−1 ln
(
ME exp(θ‖g‖22)

)
,

where g denotes a standard Gaussian random vector in Rn. In the last step we have
used that max�∈[M ] exp

(
θ‖g�‖22

)
≤
∑M
�=1 exp

(
θ‖g�‖22

)
. By the independence of

the components of g and Lemma 7.6,

E exp(θ‖g‖22
)
= E exp(θ

n∑
j=1

g2j ) = E

n∏
j=1

exp(θg2j ) =

n∏
j=1

E exp(θg2j )

= (1− 2θ)−n/2,

provided that θ < 1/2. Therefore,

E max
�∈[M ]

‖g�‖22 ≤ inf
0<θ<1/2

θ−1
(
lnM +

n

2
ln
(
(1− 2θ)−1

))
.

Substituting θ = (2 + 2κ)−1 yields the first claim. Using that ln(1 + κ−1) ≤ κ−1,
we further get

E max
�∈[M ]

‖g�‖22 ≤ 2(1 + κ) ln(M) + n(1 + κ−1). (8.4)

Making the optimal choice κ =
√
n/(2 ln(M)) gives

E max
�∈[M ]

‖g�‖22 ≤ 2 ln(M) + 2
√
2n ln(M) + n = (

√
2 ln(M) +

√
n)2.

This concludes the proof. ��
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8.2 Rademacher Sums and Symmetrization

Recall that a Rademacher variable takes the values +1 or−1, each with probability
1/2, and that a Rademacher sequence ε is a vector of independent Rademacher
variables ε�, � ∈ [M ]. In the sequel we will often consider Rademacher sums of
the form

M∑
�=1

ε�x�,

where x� are scalars, vectors, or matrices and ε� are independent Rademacher
variables.

Below we present the contraction principle for Rademacher sums and the
symmetrization principle, which allows to replace a sum of independent random
vectors by a corresponding Rademacher sum in moment estimates. Although rather
simple, this tool will prove very effective later.

Let us first present the contraction principle.

Theorem 8.3. Let x1, . . . ,xM be vectors in a (finite-dimensional) vector space
endowed with a norm ‖ · ‖ and let α1, . . . , αM be scalars satisfying |α�| ≤ 1. If
ε ∈ RM is a Rademacher sequence, then for any 1 ≤ p <∞,

E‖
M∑
�=1

α�ε�x�‖p ≤ E‖
M∑
�=1

ε�x�‖p. (8.5)

Proof. The function (α1, . . . , αM ) �→ E‖
∑M

�=1 α�ε�x�‖p is convex. Therefore, on
[−1, 1]M it attains its maximum at an extreme point, i.e., a point α = (α�)

M
�=1 such

that α� = ±1; see Theorem B.16. For such values of α�, both α�ε� and ε� have the
same distribution, so both terms in (8.5) are equal. ��

Symmetrization is a simple yet powerful technique to pass from a sum of arbi-
trary independent random variables to a Rademacher sum. A random vector X on
Cn is called symmetric, if X and −X have the same distribution. Clearly, EX = 0
for a symmetric random vectorX. The crucial observation for symmetrization is that
a symmetric random vector X and the random vector εX, where ε is a Rademacher
random variable independent of X, have the same distribution.

Lemma 8.4. Assume that ξ = (ξ�)
M
�=1 is a sequence of independent random

vectors in a finite-dimensional vector space V with norm ‖ · ‖. Let F : V → R

be a convex function. Then

EF
( M∑
�=1

(ξ� − E[ξ�])
)
≤ EF
(
2

M∑
�=1

ε�ξ�
)
, (8.6)
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where ε = (ε�)
N
�=1 is a Rademacher sequence independent of ξ. In particular, for

1 ≤ p <∞,

(
E‖

M∑
�=1

(ξ� − E[ξ�])‖p
)1/p ≤ 2

(
E‖

M∑
�=1

ε�ξ�‖p
)1/p

. (8.7)

Proof. Let ξ′ = (ξ′1, . . . , ξ
′
M ) denote an independent copy of the sequence of

random vectors (ξ1, . . . , ξM ), also independent of the Rademacher sequence ε to
be used below. An application of Jensen’s inequality yields

E := EF
( M∑
�=1

(ξ� − E[ξ′�])
)
≤ EF
( M∑
�=1

(ξ� − ξ′�)
)
.

Now observe that (ξ� − ξ′�)� is a sequence of independent symmetric random
variables; hence, it has the same distribution as (ε�(ξ� − ξ′�))�. Convexity of F
gives

E ≤ EF
( M∑
�=1

ε�(ξ� − ξ′�)
)
≤ E

(
1

2
F
(
2

M∑
�=1

ε�ξ�
)
+

1

2
F
(
2

M∑
�=1

(−ε�)ξ′�
))

= EF
(
2

M∑
�=1

ε�ξ�
)

because ε is symmetric and ξ′ has the same distribution as ξ. Inequality (8.7) follows
from choosing the convex function F (x) = ‖x‖p for p ∈ [1,∞). ��

The lemma will be very useful because there are powerful techniques for estimating
moments of Rademacher sums as we will see in the next section.

8.3 Khintchine Inequalities

The Khintchine inequalities provide estimates of the moments of Rademacher and
related sums.

Theorem 8.5. Let a ∈ CM and ε = (ε1, . . . , εM ) be a Rademacher sequence.
Then, for all n ∈ N,

E|
M∑
�=1

ε�a�|2n ≤
(2n)!

2nn!
‖a‖2n2 . (8.8)
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Proof. First assume that the a� are real valued. Expanding the expectation on the
left-hand side of (8.8) with the multinomial theorem (see Appendix C.4) yields

E := E|
M∑
�=1

ε�a�|2n

=
∑

j1+···+jM=n
ji≥0

(2n)!

(2j1)! · · · (2jM )!
|a1|2j1 · · · |aM |2jMEε2j11 · · ·Eε2jMM

=
∑

j1+···+jM=n
ji≥0

(2n)!

(2j1)! · · · (2jM )!
|a1|2j1 · · · |aM |2jM .

Hereby we used the independence of the ε� and the fact that Eεk� = 0 if k is an odd
integer. For integers satisfying j1 + · · ·+ jM = n we have

2nj1!× · · · × jM ! = 2j1j1!× · · · × 2jM jM ! ≤ (2j1)!× · · · × (2jM )!.

This implies

E ≤ (2n)!

2nn!

∑
j1+···+jM=n

ji≥0

n!

j1! · · · jn!
|a1|2j1 · · · |aM |2jM

=
(2n)!

2nn!

( M∑
j=1

|aj |2
)n

=
(2n)!

2nn!
‖a‖2n2 .

The complex case is derived by splitting into real and imaginary parts and applying
the triangle inequality as follows:

(
E|

M∑
�=1

ε�(Re(a�) + i Im(a�))|2n
)1/2n

=
(
E
[
|
M∑
�=1

ε�Re(a�)|2 + |
M∑
�=1

ε� Im(a�)|2
]n)1/2n

≤
((
E|

M∑
�=1

ε�Re(a�)|2n
)1/n

+
(
E|

M∑
�=1

ε� Im(a�)|2n
)1/n)1/2

≤
((

(2n)!

2nn!

)1/n
(‖Re(a)‖22 + ‖ Im(a)‖22)

)1/2
=

(
(2n)!

2nn!

)1/2n
‖a‖2.

This concludes the proof. ��
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Remark 8.6. (a) The constant in the Khintchine inequality can be expressed as a
double factorial

(2n)!

2nn!
= (2n− 1)!! := 1× 3× 5× 7× · · · × (2n− 1).

(b) If g = (g1, . . . , gM ) is a standard Gaussian random vector, then the sum∑M
�=1 a�g� with real a� is a Gaussian random variable with mean zero and

variance ‖a‖22. By Corollary 7.7 its moments are given by

E|
M∑
�=1

a�g�|2n =
(2n)!

2nn!
‖a‖2n2 .

In other words, if the Rademacher sequence is replaced by independent standard
normal variables, then (8.8) holds with equality. Therefore, the central limit
theorem shows that the constants in (8.8) are optimal. Moreover, it also follows
that E|
∑M
�=1 ε�a�|2n ≤ E|

∑M
�=1 g�a�|2n; compare also Exercise 8.2.

Based on Theorem 8.5, we can also estimate the general absolute pth moment of
a Rademacher sum.

Corollary 8.7. Let a ∈ CM and ε = (ε1, . . . , εM ) be a Rademacher sequence.
Then, for all p > 0,

(
E|

M∑
�=1

ε�a�|p
)1/p ≤ 23/(4p)e−1/2√p‖a‖2. (8.9)

Proof. We first assume that p ≥ 2. Stirling’s formula (C.13) for the factorial gives

(2n)!

2nn!
=

√
2π2n(2n/e)2neR2n

2n
√
2πn(n/e)neRn

≤
√
2 (2/e)nnn. (8.10)

where 1/(12n+1) ≤ Rn ≤ 1/(12n). An application of Hölder’s inequality yields,
for θ ∈ [0, 1], and an arbitrary random variable Z ,

E|Z|2n+2θ = E[|Z|(1−θ)2n|Z|θ(2n+2)] ≤ (E|Z|2n)1−θ(E|Z|2n+2)θ. (8.11)

Without loss of generality we may assume ‖a‖2 = 1. Combining the two estimates
above yields

E|
M∑
�=1

ε�a�|2n+2θ ≤ (E|
M∑
�=1

ε�a�|2n)1−θ(E|
M∑
�=1

ε�a�|2n+2)θ

≤ (
√
2(2/e)nnn)1−θ(

√
2(2/e)n+1(n+ 1)n+1)θ
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=
√
2(2/e)n+θn(1−θ)n(n+ 1)θ(n+1)

=
√
2(2/e)n+θ(n1−θ(n+ 1)θ)n+θ

(
n+ 1

n

)θ(1−θ)

≤
√
2(2/e)n+θ(n+ θ)n+θ

(
n+ 1

n

)θ(1−θ)

≤ 23/4(2/e)n+θ(n+ θ)n+θ. (8.12)

In the second line from below the inequality between the geometric and arithmetic
mean was applied. The last step used that (n + 1)/n ≤ 2 and θ(1 − θ) ≤ 1/4.
Replacing n+ θ by p/2 completes the proof of (8.9) for p ≥ 2.

For the case 0 < p ≤ 2 we observe that Hölder’s inequality gives

(E|
M∑
�=1

ε�a�|p)1/p ≤ (E|
M∑
�=1

ε�a�|2)1/2 = 1.

It is an elementary exercise to show that the function f(p) = 23/(4p)e−1/2√p takes
its minimum at the point p0 = 3(ln 2)/2 and f(p0) ≈ 1.0197 > 1. Therefore, we
have (8.9) also for p < 2. ��

We obtain the following version of Hoeffding’s inequality for complex
Rademacher sums.

Corollary 8.8. Let a ∈ CM and ε = (ε1, . . . , εM ) be a Rademacher sequence.
Then, for u > 0,

P
(
|
M∑
�=1

ε�a�| ≥ ‖a‖2u
)
≤ 2 exp(−u2/2). (8.13)

Proof. We combine (8.9) with Proposition 7.11 to obtain

P(|
M∑
�=1

ε�a�| ≥ ‖a‖2u) ≤ 23/4 exp(−u2/2), u > 0,

which is even slightly better (but less appealing) than the claimed estimate. ��

A complex random variable which is uniformly distributed on the torus T =
{z ∈ C, |z| = 1} is called a Steinhaus variable. A sequence ε = (ε1, . . . , εN)
of independent Steinhaus variables is called a Steinhaus sequence. There is also a
version of the Khintchine inequality for Steinhaus sequences.
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Theorem 8.9. Let a ∈ CM and ε = (ε1, . . . , εM ) be a Steinhaus sequence. Then,
for all n ∈ N,

E|
M∑
�=1

ε�a�|2n ≤ n!‖a‖2n2 .

Proof. We expand the moments of the Steinhaus sum using the multinomial
theorem

E|
M∑
�=1

ε�a�|2n = E

[( M∑
�=1

ε�a�
)n( M∑

�=1

ε�a�
)n]

= E

⎡
⎢⎢⎣
∑

j1+···+jM=n
j�≥0

n!

j1! · · · jM !
aj11 · · ·a

jM
M εj11 · · · ε

jM
M

×
∑

k1+···kM=n
k�≥0

n!

k1! · · · kM !
ak11 · · · akMM εk11 · · · εkMM

⎤
⎥⎥⎦

=
∑

j1+···+jM=n
k1+···+kM=n

j�,k�≥0

n!

j1! · · · jM !

n!

k1! · · · kM !
aj11 a

k1
1 · · ·a

jM
M akMM E[εj11 ε

k1
1 · · · ε

jM
M εkMM ].

Since the εj are independent and uniformly distributed on the torus we have

E[εj11 ε
k1
1 · · · ε

jM
M εkMM ] = E[εj11 ε

k1
1 ]× · · · × E[εjMM εkMM ] = δj1,k1 × · · · × δjM ,kM .

This yields

E|
M∑
�=1

ε�a�|2n =
∑

k1+···kM=n
k�≥0

(
n!

k1! · · · kM !

)2
|a1|2k1 · · · |aM |2kM

≤ n!
∑

k1+···+kM=n
k�≥0

n!

k1! · · · kM !
|a1|2k1 · · · |aM |2kM

= n!
( M∑
�=1

|a�|2
)2n

,

where the multinomial theorem was applied in the last step. ��



8.4 Decoupling 211

The above moment estimate leads to a Hoeffding-type inequality for Steinhaus
sums.

Corollary 8.10. Let a ∈ CM and ε = (ε1, . . . , εM ) be a Steinhaus sequence. For
any 0 < λ < 1,

P(|
M∑
�=1

ε�a�| ≥ u‖a‖2) ≤
1

1− λ
e−λu

2

for all u > 0. (8.14)

In particular, using the optimal choice λ = 1− u−2,

P
(
|
M∑
�=1

ε�a�| ≥ u‖a‖2
)
≤ exp(−u2 + ln(u2) + 1) for all u ≥ 1. (8.15)

Proof. Without loss of generality we assume that ‖a‖2 = 1. Markov’s inequality
gives

P
(
|
M∑
�=1

ε�a�| ≥ u
)
= P
(
exp(λ|

M∑
�=1

ε�a�|2) ≥ exp(λu2)
)

≤ E[exp(λ|
M∑
�=1

ε�a�|2)] exp(−λu2) = exp(−λu2)
∞∑
n=0

λnE|
∑M

�=1 ε�a�|2n
n!

≤ exp(−λu2)
∞∑
n=0

λn =
1

1− λ
e−λu

2

.

In the second line Fubini’s theorem and in the third line Theorem 8.9 were applied.
��

8.4 Decoupling

Decoupling is a technique that reduces stochastic dependencies in certain sums
of random variables, called chaos variables. A typical example is a sum of the
form
∑
j �=k εjεkxj,k where xj,k are some vectors and ε = (εj) is a Rademacher

sequence. Such a sum is called a homogeneous Rademacher chaos of order 2. The
term homogeneous refers to the fact that the diagonal terms in this double sum are
missing so that its expectation is zero. The following statement provides a way of
“decoupling” the sum.

Theorem 8.11. Let ξ = (ξ1, . . . , ξM ) be a sequence of independent random
variables with Eξj = 0 for all j ∈ [M ]. Let xj,k, j, k ∈ [M ], be a double sequence
of elements in a finite-dimensional vector space V . If F : V → R is a convex
function, then
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EF

⎛
⎜⎜⎝

M∑
j,k=1
j �=k

ξjξkxj,k

⎞
⎟⎟⎠ ≤ EF

⎛
⎝4

M∑
j,k=1

ξjξ
′
kxj,k

⎞
⎠ , (8.16)

where ξ′ denotes an independent copy of ξ.

Proof. Introduce a sequence δ = (δj)
M
j=1 of independent random variables δj

taking the values 0 and 1 with probability 1/2. Then, for j �= k,

Eδk(1 − δj) = 1/4. (8.17)

This gives

E := EF

⎛
⎝ M∑
j �=k

ξjξkxj,k

⎞
⎠ = EξF

⎛
⎝4

M∑
j �=k

Eδ[δj(1− δk)]ξjξkxj,k

⎞
⎠

≤ EξEδF

⎛
⎝4

M∑
j �=k

δj(1− δk)ξjξkxj,k

⎞
⎠ ,

where Jensen’s inequality was applied in the last step. Now let

σ(δ) := {j ∈ [M ] : δj = 1}.

Then, by Fubini’s theorem,

E ≤ EδEξF

⎛
⎝4 ∑

j∈σ(δ)

∑
k/∈σ(δ)

ξjξkxj,k

⎞
⎠ .

For fixed δ the sequences (ξj)j∈σ(δ) and (ξk)k/∈σ(δ) are independent; hence, we can
replace ξk, k /∈ σ(δ), by an independent copy ξ′k and obtain

E ≤ EδEξEξ′F

⎛
⎝4 ∑

j∈σ(δ)

∑
k/∈σ(δ)

ξjξ
′
kxj,k

⎞
⎠ .

This implies the existence of a δ∗ ∈ {0, 1}M , and hence, a σ = σ(δ∗) such that

E ≤ EξEξ′F

⎛
⎝4∑

j∈σ

∑
k/∈σ

ξjξ
′
kxj,k

⎞
⎠ .

Since Eξj = Eξ′j = 0, an application of Jensen’s inequality yields
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E ≤ EF

⎛
⎝4∑

j∈σ

(∑
k/∈σ

ξjξ
′
kxj,k +

∑
k∈σ

ξjE[ξ
′
k]xj,k

)
+ 4
∑
j /∈σ

E[ξj ]

M∑
k=1

ξ′kxj,k

⎞
⎠

≤ EF

⎛
⎝4

M∑
j=1

M∑
k=1

ξjξ
′
kxj,k

⎞
⎠

and the proof is complete. ��

The sum
∑

j,k ξjξ
′
kxj,k on the right-hand side of (8.16) is called a decoupled chaos.

It is important that the double sum on the left-hand side of (8.16) runs only over
indices j �= k. Moreover, since the left-hand side of (8.16) is independent of
the diagonal entries xj,j , they can be chosen arbitrarily on the right-hand side.
Sometimes it is convenient to choose them as xj,j = 0, but other choices may
simplify computations.

An important special case of the above theorem is F (x) = ‖x‖p with p ≥ 1 and
some (semi-)norm ‖ · ‖. Then (8.16) implies

(E‖
∑
j �=k

ξjξkxj,k‖p)1/p ≤ 4(E‖
∑
j,k

ξjξ
′
kxj,k‖p)1/p.

The mean-zero assumption above for the random variables ξj can be removed
after possibly adjusting constants. We will exemplify this for the following special
case involving the operator norm where, additionally, the constant can be improved.

Theorem 8.12. Let Ĥ ∈ CM×M be self-adjoint and let H be the matrix Ĥ with
the diagonal entries put to zero. Let ξj , j ∈ [M ], be a sequence of independent
random variables. Introduce the random diagonal matrix Dξ = diag[ξ1, . . . , ξM ].
If F : R+ → R is a convex nondecreasing function, then

EF (‖DξHDξ‖2→2) ≤ EF (2‖DξĤDξ′‖2→2), (8.18)

where ξ′ denotes an independent copy of ξ.

Proof. Let Hjk ∈ CM×M be the matrix with entry Ĥjk in position (j, k) and zero
elsewhere. Let δj , j ∈ [M ], be independent Bernoulli random variables taking the
values 0 and 1 both with probability 1/2. The function x �→ F (‖x‖2→2) is convex
by Proposition B.9(b) so that Jensen’s inequality and (8.17) yield

EF
(
‖DξHDξ‖2→2

)
= EF
(
‖
∑
j<k

ξjξk(Hjk +Hkj )‖2→2

)

= EξF
(
2‖Eδ

∑
j<k

[δj(1− δk) + δk(1 − δj)]ξjξk(Hjk +Hkj )‖2→2

)

≤ EξEδF
(
2‖
∑
j<k

[δj(1− δk) + δk(1 − δj)]ξjξk(Hjk +Hkj )‖2→2

)
. (8.19)
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Therefore, there exists a vector δ∗ with entries in {0, 1} such that

EF
(
‖DξHDξ‖2→2

)
≤ EF
(
2‖
∑
j<k

[δ∗j (1−δ∗k)+δ∗k(1−δ∗j )]ξjξk(Hjk+Hkj )‖2→2

)
.

Let σ = σ(δ∗) = {j ∈ [M ], δ∗j = 1}. Then

EF
(
‖DξHDξ‖2→2

)
≤ EF
(
2‖
∑

j∈σ,k∈σ
ξjξk(Hjk +Hkj )‖2→2

)
.

By rearranging the index set, we may assume that σ = {1, . . . , card(σ)} and σ =
{card(σ) + 1, . . . ,M}. Then we can write

∑
j∈σ,k∈σ

ξjξk(Hjk +Hkj ) =

(
0 B

B∗ 0

)

with B ∈ Ccard(σ)×card(σ) being the restriction of
∑
j∈σ,k∈σ ξjξkHjk to the indices

in σ × σ. Using

∥∥∥∥
(

0 B

B∗ 0

)∥∥∥∥
2→2

= ‖B‖2→2

we arrive at

EF
(
‖DξHDξ‖2→2

)
≤ EF
(
2‖
∑

j∈σ,k∈σ
ξjξkHjk‖2→2

)

= EF
(
2‖
∑

j∈σ,k∈σ
ξjξ

′
kHjk‖2→2

)
,

where ξ′ is an independent copy of ξ. Since the operator norm of a submatrix is
bounded by the operator norm of the full matrix (see Lemma A.9), we reinsert the
missing entries to obtain

EF
(
‖DξHDξ‖2→2

)
≤ EF
(
2‖
∑
j,k

ξjξ
′
kHjk‖2→2

)
= EF
(
2‖DξĤDξ′‖2→2

)
,

where we used that F is nondecreasing. This completes the argument. ��

We finish this section with an application to tail bounds for scalar Rademacher
chaos. Let ε = (ε1, . . . , εM ) be a Rademacher vector. For a self-adjoint matrix
A ∈ CM×M with zero diagonal we consider the homogeneous Rademacher chaos

X := ε∗Aε =
∑
j �=k

εjεkAjk . (8.20)
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Note that by self-adjointness,X is real valued even if A is complex valued. This fact
allows to reduce our considerations to real-valued symmetric matrices A ∈ RM×M

since X = Re(X) = ε∗ Re(A)ε. The next result states that a homogeneous
Rademacher chaos obeys a mixture of subgaussian and subexponential tail behavior,
similar to Bernstein inequalities. The subgaussian part is determined by the
Frobenius norm ‖A‖2F = tr (A∗A) (see (A.16)), while the operator norm ‖A‖2→2

controls the subexponential part.

Proposition 8.13. Let A ∈ RM×M be a symmetric matrix with zero diagonal and
let ε a Rademacher vector. Then the homogeneous Rademacher chaos X defined in
(8.20) satisfies, for t > 0,

P(|X | ≥ t) ≤ 2 exp

(
−min

{
3t2

128‖A‖2F
,

t

32‖A‖2→2

})

=

⎧⎨
⎩

2 exp
(
− 3t2

128‖A‖2
F

)
if 0 < t ≤ 4‖A‖2

F

3‖A‖2→2
,

2 exp
(
− t

32‖A‖2→2

)
if t > 4‖A‖2

F

3‖A‖2→2
.

Proof. The proof is based on an estimate of the moment-generating function of X .
For θ > 0, convexity of x �→ exp(θx) combined with the decoupling inequality
(8.16) yields

E exp(θX) = E exp(θ
∑
j �=k

εjεkAjk ) ≤ E exp(4θ
∑
j,k

εjε
′
kAjk )

= EεEε′ exp
(
4θ
∑
k

ε′k
∑
j

εjAjk

)
≤ E exp

(
8θ2
∑
k

(
∑
j

εjAjk )
2
)
. (8.21)

In the last step we have applied Theorem 7.27 conditionally on ε, using that c = 1/2
for Rademacher variables; see Remark 7.26. Observe that by symmetry of A,

∑
k

(
∑
j

εjAjk )
2 =
∑
k

∑
j

εjAjk

∑
�

ε�A�k =
∑
j,�

εjε�
∑
k

AjkAk� = ε∗A2ε.

Set B = A2. The moment-generating function of the positive semidefinite chaos
ε∗Bε can be estimated by

E exp(κε∗Bε) = E exp(κ
∑
j

Bjj + κ
∑
j �=k

εjεkBjk )

≤ exp(κtr (B))E exp
(
4κ
∑
j,k

εjε
′
kBjk

)

≤ exp(κtr (B))E exp
(
8κ2
∑
k

(
∑
j

εjBj,k)
2
)
,
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where we have again applied the decoupling inequality (8.16) together with
Theorem 7.27 conditionally on ε. Now, positive semidefiniteness of B = A∗A
allows to take the square root of B so that

∑
k

(
∑
j

εjBj,k)
2 = ε∗B2ε = (B1/2ε)∗B(B1/2ε) ≤ ‖B‖2→2ε

∗Bε.

If 8κ‖B‖2→2 < 1, then Hölder’s (or Jensen’s) inequality yields

E exp(κε∗Bε) ≤ exp(κtr (B))E exp(8κ2‖B‖2→2ε
∗Bε)

≤ exp(κtr (B)) (E exp(κε∗Bε))
8κ‖B‖2→2 .

After rearranging we deduce that

E exp(κε∗Bε) ≤ exp

(
κtr (B)

1− 8κ‖B‖2→2

)
, 0 < κ < (8‖B‖2→2)

−1. (8.22)

Setting κ = 8θ2 and plugging into (8.21) yield, for 0 < θ < (8‖A‖2→2)
−1,

E exp(θX) ≤ exp

(
8θ2tr (A2)

1− 64θ2‖A2‖2→2

)
= exp

(
8θ2‖A‖2F

1− 64θ2‖A‖22→2

)
.

Next we use Markov’s inequality to deduce, for 0 < θ ≤ (16‖A‖2→2)
−1,

P(X ≥ t) = P(exp(θX) ≥ exp(θt)) ≤ exp(−θt)E exp(θX)

≤ exp

(
−θt+ 8θ2‖A‖2F

1− 64θ2‖A‖22→2

)
≤ exp

(
−θt+ 8θ2‖A‖2F

1− 1/4

)

= exp
(
−θt+ 32θ2‖A‖2F /3

)
.

The optimal choice θ = 3t/(64‖A‖2F ) satisfies θ ≤ (16‖A‖2→2)
−1 provided that

t ≤ 4‖A‖2F/(3‖A‖2→2). In this regime, we therefore obtain

P(X ≥ t) ≤ exp

(
− 3t2

128‖A‖2F

)
.

In the other regime where t > 4‖A‖2F/(3‖A‖2→2) we set θ = (16‖A‖2→2)
−1 so

that θ < 3t/(64‖A‖2F ). Then

P(X ≥ t) ≤ exp
(
−θt+ 32θ2‖A‖2F/3

)
≤ exp (−θt+ θt/2) = exp(−θt/2)

= exp(−t/(32‖A‖2→2)).

Since X has the same distribution as −X , we get the same bounds for P(X ≤ −t),
and the union bound completes the proof. ��
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8.5 Noncommutative Bernstein Inequality

The scalar Bernstein inequalities from the previous chapter have a powerful
extension to sums of random matrices. We present one version below. Another
version is treated in Exercise 8.8. We denote by λmax(X) the maximal eigenvalue
of a self-adjoint square matrix X. Furthermore, we introduce the function

h(x) := (1 + x) ln(1 + x)− x, x ≥ 0. (8.23)

Theorem 8.14. Let X1, . . . ,XM ∈ Cd×d be independent mean-zero self-adjoint
random matrices. Assume that the largest eigenvalue of X� satisfies

λmax(X�) ≤ K almost surely for all � ∈ [M ] (8.24)

and set

σ2 :=

∥∥∥∥∥
M∑
�=1

E(X2
� )

∥∥∥∥∥
2→2

.

Then, for t > 0,

P

(
λmax

(
M∑
�=1

X�

)
≥ t

)
≤ d exp

(
− σ2

K2
h

(
Kt

σ2

))
(8.25)

≤ d exp

(
− t2/2

σ2 +Kt/3

)
. (8.26)

The inequality (8.25) is also referred to as the matrix Bennett inequality. Although
it is slightly stronger than the matrix Bernstein inequality (8.26), the latter is usually
more convenient to use. Clearly, the difference with respect to the scalar Bernstein
inequalities of the previous chapter is only the appearance of the dimensional factor
d in front of the exponential. In general, this factor cannot be avoided; see also
Exercise 8.6(e).

Since for a self-adjoint matrix ‖A‖2→2 = max{λmax(A), λmax(−A)}, we
obtain the next statement as a simple consequence.

Corollary 8.15. Let X1, . . . ,XM ∈ Cd×d be independent mean-zero self-adjoint
random matrices. Assume that

‖X�‖2→2 ≤ K almost surely for all � ∈ [M ], (8.27)
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and set

σ2 :=

∥∥∥∥∥
M∑
�=1

E(X2
� )

∥∥∥∥∥
2→2

. (8.28)

Then, for t > 0,

P

(∥∥∥∥∥
M∑
�=1

X�

∥∥∥∥∥
2→2

≥ t

)
≤ 2d exp

(
− σ2

K2
h

(
Kt

σ2

))
(8.29)

≤ 2d exp

(
− t2/2

σ2 +Kt/3

)
. (8.30)

An extension to rectangular (and not necessarily self-adjoint) matrices is developed
in Exercise 8.7.

The essential steps of the proof proceed in the same way as the ones of the scalar
Bernstein inequality, but since we are dealing with matrices, we encounter some
additional complications. We will use an extension of the Laplace transform method
(or moment-generating function method) to matrices. A crucial ingredient is Lieb’s
concavity theorem (Theorem B.31).

We start with a simple consequence of Markov’s inequality. It uses the matrix
exponential A �→ exp(A) defined in (A.45). We refer to Appendix A.5 for basic
facts on matrix functions.

Proposition 8.16. Let Y ∈ Cd×d be a self-adjoint random matrix. Then, for t ∈ R,

P(λmax(Y) ≥ t) ≤ inf
θ>0

{
e−θtEtr exp(θY)

}
. (8.31)

Proof. For any θ > 0, Markov’s inequality (Theorem 7.3) yields

P(λmax(Y) ≥ t) = P

(
eλmax(θY) ≥ eθt

)
≤ e−θtE

[
eλmax(θY)

]
. (8.32)

By the spectral mapping theorem (A.42) (or by the definition of a matrix function),
and positivity of the exponential function, we have

eλmax(θY) = λmax(e
θY) ≤

d∑
j=1

λj(e
θY) = tr eθY,

where λj(eθY) ≥ 0, j ∈ [d], are the eigenvalues of eθY (possibly with repetitions).
Combined with the previous estimate we reach

P(λmax(Y) ≥ t) ≤ e−θtEtr eθY.

Taking the infimum over all positive θ concludes the proof. ��
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The previous proposition suggests to study the expectation of the trace exponen-
tial θ �→ Etr eθY. The next result provides a useful tool for analyzing it and is a
consequence of Lieb’s Theorem B.31. We will use the matrix logarithm introduced
in Appendix A.5; see (A.50).

Proposition 8.17. Let H ∈ Cd×d be a fixed self-adjoint matrix and let Y ∈ Cd×d

be a self-adjoint random matrix. Then

Etr exp(H+Y) ≤ tr exp
(
H+ ln

(
EeY
))
. (8.33)

Proof. With the positive definite matrix X = eY we have Y = ln(X) by (A.50).
By Lieb’s Theorem B.31, the function X �→ tr exp(H+ ln(X)) is concave on the
set of positive semidefinite matrices. Jensen’s inequality (7.17) therefore gives

E tr exp(H+Y) = E tr exp(H+ ln(X)) ≤ tr exp(H+ ln(EX))

= tr exp
(
H+ ln

(
EeY
))
.

This concludes the proof. ��

The next tool extends the previous inequality to a sequence of independent
random matrices.

Proposition 8.18. Let X1, . . . ,XM ∈ Cd×d be independent, self-adjoint random
matrices. Then, for θ ∈ R,

E tr exp

(
θ

M∑
�=1

X�

)
≤ tr exp

(
M∑
�=1

lnE exp(θX�)

)
. (8.34)

Proof. Without loss of generality we may assume that θ = 1. We denote

Z� := lnE exp(X�).

Since X� are independent, we are in the position to write EX�
for the expec-

tation with respect to X� (or in other words, the expectation conditional on
X1, . . . ,X�−1,X�+1, . . . ,XM ). Using Fubini’s theorem and Proposition 8.17, we
arrive at

E tr exp

(
M∑
�=1

X�

)
= EX1 · · ·EXM tr exp

(
M−1∑
�=1

X� +XM

)

≤ EX1 · · ·EXM−1tr exp

(
M−1∑
�=1

X� + lnE exp(XM )

)
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= EX1 · · ·EXM−1tr exp

(
M−2∑
�=1

X� + ZM +XM−1

)

≤ EX1 · · ·EXM−2tr exp

(
M−2∑
�=1

X� + ZM + ZM−1

)

≤ · · · ≤ tr exp

(
M∑
�=1

Z�

)
.

The application of Proposition 8.17 at step k ∈ [M ] with the matrices

Hk =
k−1∑
�=1

X� +
M∑

�=k+1

Z�

is permitted since Hk does not depend on Xk. ��

Before giving the next intermediate result, we recall from Appendix A.5 that we
write A � B for two self-adjoint matrices A,B ∈ Cd×d if B − A is positive
semidefinite.

Let us provide a matrix version of Cramér’s theorem (Theorem 7.18).

Proposition 8.19. Let X1, . . . ,XM ∈ Cd×d be independent, self-adjoint random
matrices. Assume that there exist a function g : (0,∞) → [0,∞) and fixed self-
adjoint matrices A1, . . . ,AM such that

E exp(θXk) � exp(g(θ)Ak), for all θ > 0 and all k ∈ [M ]. (8.35)

Then, with ρ := λmax

(∑M
�=1 A�

)
,

P

(
λmax

(
M∑
�=1

X�

)
≥ t

)
≤ d inf

θ>0
e−θt+g(θ)ρ, t ∈ R.

Proof. Substituting (8.34) into (8.31) yields

P

(
λmax

(
M∑
�=1

X�

)
≥ t

)
≤ inf

θ>0

{
e−θttr exp

(
M∑
�=1

lnE exp(θX�)

)}
.

By Proposition A.34, the matrix logarithm is matrix monotone, so that (8.35) implies

lnE exp(θX�) � g(θ)A� for all θ > 0 and all k ∈ [M ].
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Since the trace exponential is monotone (see (A.48)), a combination of the above
facts yields, for each θ > 0,

P

(
λmax

(
M∑
�=1

X�

)
≥ t

)
≤ e−θttr exp

(
g(θ)

M∑
�=1

A�

)

≤ e−θtd λmax

(
exp

(
g(θ)

M∑
�=1

A�

))
= d e−θt exp

(
g(θ)λmax

(
M∑
�=1

A�

))
.

The second inequality is valid because, for a positive definite d × d matrix B,
we have trB =

∑d
j=1 λj(B) ≤ d λmax(B), where λj(B), j ∈ [d], denote the

eigenvalues of B (with possible repetitions). Taking the infimum over all positive θ
and using the definition of ρ, we arrive at the statement of the proposition. ��

Before we pass to the proof of the noncommutative Bernstein inequality, we
note the following deviation inequality for matrix-valued Rademacher sums, i.e.,
the matrix-valued analog of Hoeffding’s inequality for scalar Rademacher sums in
Corollaries 7.21 and 8.8.

Proposition 8.20. Let ε = (ε1, . . . , εM ) be a Rademacher sequence and B1, . . . ,
BM ∈ C

d×d be self-adjoint matrices. Set

σ2 := ‖
M∑
�=1

B2
�‖2→2.

Then, for t > 0,

P
(
‖
M∑
�=1

ε�B�‖2→2 ≥ t
)
≤ 2d exp

(
−t2/(2σ2)

)
. (8.36)

Proof. Proposition 8.19 requires to estimate E exp(θεB) for a Rademacher variable
ε and a self-adjoint matrix B. Similarly to the scalar case in (7.28), we obtain

E exp(θεB) =
1

2

(
exp(θB) + exp(−θB)

)
=

∞∑
k=0

(θB)2k

(2k)!

�
∞∑
k=0

(θB)2k

2kk!
= exp(θ2B2/2)

because B2 is positive semidefinite. Therefore, (8.35) holds with g(θ) = θ2/2 and
A� = B2

� . The parameter ρ in Proposition 8.19 is given by
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ρ = ‖
M∑
�=1

B2
�‖2→2 = σ2

because
∑M

�=1 B
2
� is positive semidefinite. Therefore,

P
(
‖
M∑
�=1

ε�B�‖2→2 ≥ t
)
≤ P
(
λmax(

M∑
�=1

ε�B�

)
≥ t) + P

(
λmax(−

M∑
�=1

ε�B�) ≥ t
)

≤ 2d inf
θ>0

e−θt+θ
2σ2/2 = 2d e−t

2/(2σ2).

Here, the optimal choice of θ was θ = t/σ2. ��

The case d = 1 reduces to the Hoeffding-type inequality of Corollary 8.8. The same
deviation inequality also holds for matrix-valued Gaussian sums; see Exercise 8.6.

Now we are prepared to prove the noncommutative Bernstein inequality.

Proof (of Theorem 8.14). Proposition 8.19 requires to establish (8.35) for an
appropriate function g and appropriate matrices Ak. We may assume that the bound
K on the maximal eigenvalue of X�, � ∈ [M ], satisfies K = 1. The general case
then follows from applying the result to the rescaled matrices X̃� = X�/K .

We fix θ > 0 and define the smooth function f : R→ R by

f(x) = x−2(eθx − θx− 1) for x �= 0 and f(0) = θ2/2.

Clearly, f(x) = θ2
∑∞

k=2

(θx)k−2

k!
. The derivative is given by

f ′(x) = θ2
∞∑
k=3

θk−2(k − 2)xk−3

k!
=

(θx− 2)eθx + (θx + 2)

x3
.

We claim that f ′(x) ≥ 0 for all x ∈ R, i.e., f is nondecreasing. Indeed, for x ≥ 0
this follows from the power series expansion of f ′ as all coefficients are positive. For
x ∈ (−2/θ, 0) one verifies that the absolute values θk−2(k−2)|x|k−3/k!, k ≥ 3, of
the terms in the power series of f ′ are monotonically decreasing in k and the term
for k = 3 is positive. Since the signs of the power series are alternating, f ′(x) ≥ 0
holds also in this case. For x ≤ −2/θ the nonnegativity of f ′ follows from the
explicit formula above, where both the numerator and denominator are easily seen
to be negative.

In particular, we have proven that f(x) ≤ f(1) whenever x ≤ 1. All the
eigenvalues of X� are bounded by 1, so by the definition of the extension of f
to matrices (A.42) and by the rule (A.43), it follows that

f(X�) � f(1)Id.
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The identity exp(θx) = 1 + θx+ x2f(x) and the fact that f(X) commutes with X
yield together with (A.43) that

exp(θX�) = Id+ θX� +X�f(X�)X� � Id+ θX� + f(1)X2
� .

Here we used additionally the elementary fact that A � B implies HAH∗ �
HBH∗ for any matrix H of matching dimension (Lemma A.31), together with the
self-adjointness of X�.

Taking expectations in the above semidefinite bound, and using EXk = 0, we
obtain

E exp(θX�) � Id+ f(1)EX2
� � exp(f(1)EX2

� ) = exp
(
(eθ − θ − 1)EX2

�

)
.

The second semidefinite bound follows from the general bound (A.46) for the matrix
exponential. Setting g(θ) = eθ − θ − 1, it follows from Proposition 8.19 that, for
t ∈ R,

P

(
λmax

(
M∑
�=1

X�

)
≥ t

)
≤ d inf

θ>0

{
e−θt+g(θ)σ

2
}
, (8.37)

where we have used that λmax

(∑M
�=1 EX

2
�

)
= σ2 by positive semidefiniteness

of
∑M

�=1 EX
2
� . Then both the Bennett-type inequality (8.25) and the Bernstein-type

inequality (8.26) follow from Lemma 8.21 below. ��

Lemma 8.21. Let h(x) = (1 + x) ln(1 + x)− x and g(θ) = eθ − θ− 1. Then, for
a > 0,

inf
θ>0
{−θx+ g(θ)a} = −ah(x/a), x ≥ 0,

and

h(x) ≥ x2/2

1 + x/3
for all x ≥ 0.

Proof. The function r(θ) := g(θ)a − θx attains its minimal value for θ = ln(1 +
x/a), and

r(ln(1 + x/a)) = (x/a− ln(1 + x/a))a− x ln(1 + x/a) = −ah(x/a).

For the second statement, we first note that

g(θ) = eθ − θ − 1 =

∞∑
k=2

θk

k!
=
θ2

2

∞∑
k=2

2θk−2

k!
.
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By induction, it follows that 2/k! ≤ (1/3)k−2 for all k ≥ 2. Therefore, for θ < 3,

g(θ) ≤ θ2

2

∞∑
k=0

(θ/3)k =
θ2/2

1− θ/3
.

Making the specific choice θ =
x

1 + x/3
< 3 shows that

−h(x) = inf
θ>0

(g(θ)− θx) ≤ inf
θ∈(0,3)

(
θ2/2

1− θ/3
− θx

)

≤ x2/2

(1 + x/3)2
(
1− x/3

1+x/3

) − x2

1 + x/3
= − x2/2

1 + x/3
. (8.38)

This completes the proof. ��

8.6 Dudley’s Inequality

A stochastic process is a collectionXt, t ∈ T , of random variables indexed by some
set T . We are interested in bounding the expectation of the supremum of a real-
valued stochastic process. In order to avoid measurability issues (the supremum of
an uncountable number of random variables may not be measurable), we define the
so-called lattice supremum

E sup
t∈T

Xt := sup{E sup
t∈F

Xt, F ⊂ T, F finite}. (8.39)

Note that for a countable index set T , where no measurability problems can arise,
E(supt∈T Xt) equals the right-hand side above (see Exercise 8.9), so that this
definition is consistent. Also, if t �→ Xt is almost surely continuous on T (as it
will always be the case in the situations we encounter), and T is separable, then
supt∈T Xt coincides with the supremum over a dense countable subset of T , so that
in this case the lattice supremum coincides with E(supt∈T Xt) as well.

We will always assume that the process is centered, i.e.,

EXt = 0 for all t ∈ T. (8.40)

Associated to the process Xt, t ∈ T , we define the pseudometric

d(s, t) :=
(
E|Xs −Xt|2

)1/2
, s, t ∈ T. (8.41)

We refer to Definition A.2 for the notion of a pseudometric.
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Definition 8.22. A centered stochastic process Xt, t ∈ T , is called subgaussian if

E exp(θ(Xs −Xt)) ≤ exp(θ2d(s, t)2/2), s, t ∈ T, θ > 0, (8.42)

with d being the pseudometric defined in (8.41).

Clearly, one may replace the constant 1/2 in (8.42) by a general constant c, but for
our purposes it is enough to consider c = 1/2.

Examples of subgaussian processes include Gaussian and Rademacher pro-
cesses. A process Xt is called a centered Gaussian process if for each finite
collection t1, . . . , tn ∈ T , the random vector (Xt1 , . . . , Xtn) is a mean-zero
Gaussian random vector. This implies, in particular, that Xt − Xs is a univariate
Gaussian with E(Xt − Xs) = 0 (by (8.40)) and variance E|Xs − Xt|2. It follows
from (7.11) (or Remark 7.26 and Theorem 7.27) that a Gaussian process is a
subgaussian process in the sense of Definition 8.22. A typical example of a Gaussian
process takes the form

Xt =

M∑
j=1

gjxj(t),

where g = (g1, . . . , gM ) is a standard Gaussian random vector and xj : T → R,
j ∈ [M ], are arbitrary functions.

A Rademacher process has the form

Xt =

M∑
j=1

εjxj(t), (8.43)

where ε = (ε1, . . . , εM ) is a Rademacher sequence. Clearly, such a process satisfies
(8.40). By Remark 7.26 and Theorem 7.27, it is also a subgaussian process. Observe
that

E|Xt−Xs|2 = E|
M∑
j=1

εj(xj(t)−xj(s))|2 =

M∑
j=1

(xj(t)−xj(s))2 = ‖x(t)−x(s)‖22,

where x(t) denotes the vector with components xj(t), j ∈ [M ]. Therefore, the
pseudometric associated to Xt is given by

d(s, t) =
(
E|Xt −Xs|2

)1/2
= ‖x(t)− x(s)‖2. (8.44)

It follows from Theorem 7.27 that the increments of a subgaussian process Xt

satisfy the tail estimate

P(|Xs −Xt| ≥ ud(s, t)) ≤ 2 exp(−u2/2). (8.45)
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By Proposition 7.24(b) this inequality could as well be taken for the definition of
subgaussian processes.

Dudley’s inequality below relates the stochastic quantity of the lattice supremum
(8.39) to the geometric concept of covering numbers. We recall from Sect. C.2 that
the covering numberN (T, d, ε) is defined as the smallest integer N such that there
exists a subset F of T with card(F ) = N and mins∈F d(t, s) ≤ ε for all t ∈ T . We
denote the radius of T by

Δ(T ) = sup
t∈T

√
E|Xt|2. (8.46)

Dudley’s inequality for subgaussian processes reads as follows.

Theorem 8.23. Let Xt, t ∈ T , be a centered subgaussian process with associated
pseudometric d. Then, for any t0 ∈ T ,

E sup
t∈T

Xt ≤ 4
√
2

∫ Δ(T )/2

0

√
ln(N (T, d, u))du, (8.47)

E sup
t∈T
|Xt| ≤ 4

√
2

∫ Δ(T )/2

0

√
ln(2N (T, d, u))du. (8.48)

Remark 8.24. Inequality (8.48) with constant 8
√
2 (but without the factor 2 inside

the logarithm) follows also directly from (8.47) in the case of symmetric processes;
see Exercise 8.10. It is known that these inequalities are sharp up to logarithmic
factors if (Xt)t∈T is a Gaussian process, T is a subset of a finite-dimensional space,
and d is induced by a norm; see also the Notes section.

Proof. We write Δ = Δ(T ) for convenience. Without loss of generality we may
assume that Δ < ∞ because otherwise it is straightforward to check that the right-
hand sides in (8.47) and (8.48) are infinite so that there is nothing to prove.

We set εn := 2−nΔ and Nn := N (T, d, εn). By definition of the covering
numbers, we can find subsets Tn ⊂ T of cardinality at most Nn such that for all
t ∈ T there exists s ∈ Tn such that d(t, s) ≤ εn. We write s = φn(t) for this
particular s.

Let us first bound Emaxt∈Tn Xt. To this end we observe that

max
t∈Tn

Xt = max
t∈Tn

(Xt−Xφn−1(t) +Xφn−1(t)) ≤ max
t∈Tn

(Xt−Xφn−1(t)) + max
t∈Tn−1

Xt.

Note that
√
E(Xt −Xφn−1(t))

2 ≤ εn−1 for all t ∈ Tn by definition of the

pseudometric d and εn. Therefore, Proposition 7.29 yields

Emax
t∈Tn

Xt ≤ E max
t∈Tn−1

Xt +
√
2 lnNnεn−1.
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Moreover, Emaxt∈T1 Xt ≤
√
2 lnN1Δ. By induction and since N (T, d, εn) ≤

N (T, d, u) for all u ∈ [εn+1, εn] we obtain

Emax
t∈Tn

Xt ≤
√
2 lnN1Δ+

n∑
j=2

√
2 lnNjεj−1

= 2
√
2 lnN1ε1 +

n∑
j=2

4
√
2 lnNj(εj − εj+1)

≤ 4
√
2

n∑
j=1

∫ εj
εj+1

√
lnN (T, d, u)du ≤ 4

√
2

∫ Δ/2
0

√
lnN (T, d, u)du.

By using (7.37) we similarly obtain

Emax
t∈Tn

|Xt| ≤ 4
√
2

∫ Δ/2
0

√
ln (2N (T, d, u))du.

It remains to pass from Tn to the full set T . If T is finite, then Tn = T for some large
enoughn and we are done. If T is infinite, then by definition of the lattice supremum
(8.39), we consider an arbitrary finite subset F of T . Then, for any n ∈ N, by
Proposition 7.29

E sup
t∈F

Xt ≤ E sup
t∈Tn

Xt + E sup
t∈F

(Xt −Xφn(t))

≤ 4
√
2

∫ Δ/2
0

√
ln (N (T, d, u))du+

√
2 ln(card(F ))εn.

Since this bound is valid for any n ∈ N and since εn → 0 as n tends to∞, we obtain
the claimed bound for any finite subset F of T . Taking the supremum over all finite
F establishes the claim for E supt∈T Xt. The one for E supt∈T |Xt| is deduced in
the same way. ��

The technique in the previous proof is usually referred to as chaining.

8.7 Slepian’s and Gordon’s Lemmas

Slepian’s lemma and its generalization due to Gordon compare extrema of two
families of Gaussian random variables. The basic idea is that the distribution of
a mean-zero Gaussian vector is completely determined by its covariance structure.
This suggests to compare expectations of functions of the two families by means of
comparing the covariances.

Slepian’s lemma reads as follows.
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Lemma 8.25. Let X,Y be mean-zero Gaussian random vectors on Rm. If

E|Xi −Xj |2 ≤ E|Yi − Yj |2 for all i, j ∈ [m], (8.49)

then

E max
j∈[m]

Xj ≤ E max
j∈[m]

Yj .

Remark 8.26. The L2 distances above can be written in terms of the covariances

E|Xi −Xj |2 = EX2
i − 2EXiXj + EX2

j .

Under the additional assumption that EX2
j = EY 2

j , condition (8.49) reads therefore
EXjXk ≥ EYjYk. In particular, comparison of the covariance structures of X and
Y allows to compare the expected maxima of the two Gaussian vectors as claimed
above.

Gordon’s lemma stated next compares expected minima of maxima of Gaussian
vectors. Slepian’s lemma is the special case that n = 1.

Lemma 8.27. Let Xi,j , Yi,j , i ∈ [n], j ∈ [m], be two finite families of mean-zero
Gaussian random variables. If

E|Xi,j −Xk,�|2 ≤ E|Yi,j − Yk,�|2 for all i �= k and j, � , (8.50)

E|Xi,j −Xi,�|2 ≥ E|Yi,j − Yi,�|2 for i, j, �, (8.51)

then

Emin
i∈[n]

max
j∈[m]

Xi,j ≥ Emin
i∈[n]

max
j∈[m]

Yi,j .

Remark 8.28. Both Slepian’s and Gordon’s lemmas extend to Gaussian processes
indexed by possibly infinite sets. In particular, if X = (Xt)t∈T ,Y = (Yt)t∈T
are Gaussian processes (recall that by definition this means that any restriction
XT0 = (Xt)t∈T0 to a finite subset T0 ⊂ T yields a Gaussian random vector) and if
E|Xs −Xt|2 ≤ E|Ys − Yt|2 for all s, t ∈ T , then Slepian’s lemma states that

E sup
t∈T

Xt ≤ E sup
t∈T

Yt,

where the suprema are understood in the sense of a lattice supremum (8.39).
Indeed, by the finite-dimensional version in Lemma 8.25, this relation holds for
the restriction to any finite subset T0 so that the above inequality holds.

In a similar sense, Gordon’s lemma extends to doubly indexed Gaussian
processes.
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The proof of Gordon’s lemma requires some preparation. We say that a function
F : Rm → R is of moderate growth if for each β > 0,

lim
‖x‖2→∞

F (x) exp(−β‖x‖22) = 0. (8.52)

Our first technical tool is the Gaussian integration by parts formula—-also known
as Stein’s lemma—and its generalization to higher dimensions.

Proposition 8.29. Let F : Rm → R be a differentiable function such that F and
all its first-order partial derivatives are of moderate growth.

(a) Let g be a mean-zero Gaussian random variable and m = 1. Then

E[gF (g)] = Eg2EF ′(g). (8.53)

(b) Let g = (g1, . . . , gm) and g̃ (not necessarily independent of g) be such that
(g̃,g) is a Gaussian random vector. Then

Eg̃F (g) =

m∑
j=1

E(g̃gj)E

[
∂F

∂xj
(g)

]
. (8.54)

Proof. (a) Setting τ2 = Eg2 and using integration by parts yield

EgF (g) =
1√
2πτ

∫ ∞

−∞
t exp(−t2/(2τ2))F (t)dt

=
τ2√
2πτ

∫ ∞

−∞
exp(−t2/(2τ2))F ′(t)dt = Eg2EF ′(g).

The moderate growth condition ensures that all integrals are well defined and
that exp(−t2/(2τ2))F (t)

∣∣∞
−∞ = 0.

(b) Consider the random variables g′j = gj − g̃
Egj g̃
Eg̃2 . They satisfy Eg′j g̃ = 0,

and therefore, the Gaussian random vector g′ = (g′1, . . . , g
′
m) is indepen-

dent of g̃. Using Fubini’s theorem and applying (8.53) to t �→ F (g′1 +
tE[g̃g1]/Eg̃

2, . . . , g′m + tE[g̃gm]/Eg̃2) conditionally on g′ yield

Eg̃F (g) = Eg̃F

(
g′1 + g̃

Eg̃g1
Eg̃2

, . . . , g′m + g̃
Eg̃gm
Eg̃2

)

= Eg̃2
m∑
j=1

Eg̃gj
Eg̃2

E
∂F

∂xj

(
g′1 + g̃

Eg̃g1
Eg̃2

, . . . , g′m + g̃
Eg̃gm
Eg̃2

)

=
m∑
j=1

E[g̃gj]E

[
∂F

∂xj
(g)

]
.

This completes the proof. ��



230 8 Advanced Tools from Probability Theory

We will also require the following standard result in integration theory.

Proposition 8.30. Let ψ : J × Ω → R be a function, with J ⊂ R being on open
interval. Let X be a random variable with values in Ω such that t �→ ψ(t,X)
is almost surely continuously differentiable in J . Assume that for each compact
subinterval I ⊂ J ,

E sup
t∈I
|ψ′(t,X)| <∞ . (8.55)

Then the function t �→ φ(t) = Eψ(t,X) is continuously differentiable and

φ′(t) = Eψ′(t,X). (8.56)

Proof. Let t be in the interior of J and consider a compact subinterval I ⊂ J
containing t in its interior. For h ∈ R \ {0} such that t + h ∈ I we consider the
difference quotients

φh(t) :=
φ(t+ h)− φ(t)

h
, ψh(t,X) :=

ψ(t+ h,X)− ψ(t,X)

h
.

By the mean value theorem there exists ξ ∈ [t, t + h] (or ξ ∈ [t + h, t] if h < 0)
such that ψ′(ξ,X) = ψh(t,X). Therefore, |ψh(t,X)| ≤ supt∈I |ψ′(t,X)|, and by
(8.55), ψh(t,X) has an integrable majorant. By Lebesgue’s dominated convergence
theorem, we have

lim
h→0

φh(t) = E lim
h→0

ψh(t,X) = Eψ′(t,X),

so that φ is continuously differentiable and (8.56) holds. ��

The crucial tool in the proof of Slepian’s and Gordon’s lemmas is stated next.

Proposition 8.31. Let F : Rm → R be a differentiable function such that F and all
its partial derivatives of first order are of moderate growth. Let X = (X1, . . . , Xm)
and Y = (Y1, . . . , Ym) be two independent mean-zero Gaussian vectors. For t ∈
[0, 1], we define a new random vector U(t) = (U1(t), . . . , Um(t)) with components

Ui(t) =
√
tXi +

√
1− tYi, i ∈ [m]. (8.57)

Then the function

φ(t) = EF (U(t))

has derivative
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φ′(t) =
m∑
i=1

E

[
U ′
i(t)

∂F

∂xi
(U(t))

]
. (8.58)

If, in addition, F is twice differentiable with all partial derivatives of second order
of moderate growth, then

φ′(t) =
1

2

m∑
i,j=1

(EXiXj − EYiYj)E

[
∂2F

∂xi∂xj
(U(t))

]
. (8.59)

Proof. We note that

d

dt
F (U(t)) =

m∑
i=1

U ′
i(t)

∂F

∂xi
(U(t)),

where clearly

U ′
i(t) =

d

dt
Ui(t) =

1

2
√
t
Xi −

1

2
√
1− t

Yi.

By Proposition 8.30 it therefore suffices to verify (8.55). For a compact subinterval
I = [a, b] ⊂ (0, 1), we have

E sup
t∈I
|U ′
i(t)

∂F

∂xi
(U(t))| ≤ E sup

t∈I
|U ′
i(t)| sup

t∈I
| ∂F
∂xi

(U(t))|

≤
√
E sup
t∈I
|U ′
i(t)|2
√
E sup
t∈I
| ∂F
∂xi

(U(t))|2,

where the last inequality follows from the Cauchy–Schwarz inequality. We treat
both expectations above separately. The triangle inequality gives

√
E sup
t∈I
|U ′
i(t)|2 ≤

√
E

1

4a
X2
i +

√
E

1

4(1− b)
Y 2
i <∞.

For the second expectation choose β > 0. Since ∂F
∂xi

is of moderate growth, there
exists A > 0 such that

∣∣∣∣ ∂F∂xi (x)
∣∣∣∣ ≤ A exp(β‖x‖22) for all x ∈ R

m.

Furthermore,

‖U(t)‖2 ≤
√
t‖X‖2 +

√
1− t‖Y‖2 ≤ 2max{‖X‖2, ‖Y‖2},
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and hence,

sup
t∈I

∣∣∣∣ ∂F∂xi (U(t))

∣∣∣∣ ≤ Amax{exp(4β‖X‖22), exp(4β‖Y‖22)}.

Since X and Y are mean-zero Gaussian vectors, there exist matrices Γ,Γ′ such that
X = Γg and Y = Γ′g′ where g,g′ are independent standard Gaussian vectors.
Therefore,

E sup
t∈I

∣∣∣∣ ∂F∂xi (U(t))

∣∣∣∣ ≤ AE
[
exp
(
4β‖Γ‖22→2‖g‖22 + 4β‖Γ′‖22→2‖g′‖22

)]

= A

m∏
i=1

E
[
exp(4β‖Γ‖22→2g

2
i )
] m∏
j=1

E
[
exp(4β‖Γ′‖22→2(g

′
j)

2)
]

= A(1 − 8β‖Γ‖22→2)
−m/2(1− 8β‖Γ′‖22→2)

−m/2 <∞.

The last equality follows from Lemma 7.6 with θ = 0 and a choice of β > 0 such
that 8βmax{‖Γ‖22→2, ‖Γ′‖22→2} < 1. (Recall that β > 0 can be chosen arbitrarily
and influences only the constant A). This completes the proof of (8.58).

For (8.59) we observe that EU ′
i(t)Uj(t) = 1

2 (EXiXj − EYiYj). The Gaussian
integration by parts formula (8.54) yields

E

[
U ′
i(t)

∂F

∂xi
(U(t))

]
=

1

2

m∑
j=1

(EXiXj − EYiYj)E
∂2F

∂xi∂xj
(U(t)).

This completes the proof. ��

The next result is a generalized version of Gordon’s lemma. Since we will
require it also for not necessarily differentiable functions F , we work with the
distributional derivative; see Sect. C.9. In particular, we say that a function F has
positive distributional derivatives and write ∂2F

∂xi∂xj
≥ 0 if, for all nonnegative twice

differentiable functions g with compact support,

∫
Rd

F (x)
∂2g

∂xi∂xj
(x)dx ≥ 0.

Integration by parts shows that this definition is consistent with positivity of ∂2F
∂xi∂xj

when F is twice differentiable.

Lemma 8.32. Let F : Rm → R be a Lipschitz function, i.e., |F (x) − F (y)| ≤
L‖x − y‖2 for all x,y ∈ Rm and some constant L > 0. Let X = (X1, . . . , Xm)
and Y = (Y1, . . . , Ym) be two mean-zero Gaussian vectors. Assume that (in the
distributional sense)
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(E|Xi −Xj |2 − E|Yi − Yj |2)
∂2F

∂xi∂xj
≥ 0 for all i, j ∈ [m], (8.60)

and

F (x+ te) = F (x) + ct for all x ∈ R
m (8.61)

where e = (1, 1, . . . , 1) ∈ Rm and c is some constant. Then

EF (X) ≤ EF (Y).

Proof. Observe that the Lipschitz assumption implies

|F (x)| ≤ |F (0)|+ L‖x‖2, x ∈ R
m, (8.62)

so that F is of moderate growth.
We first assume that F is twice continuously differentiable such that its deriva-

tives up to second order are of moderate growth. We note that (8.61) implies

m∑
j=1

∂2F

∂xi∂xj
(x) = 0 for all i ∈ [m],x ∈ R

m. (8.63)

(In fact, (8.63) and (8.61) are equivalent.) This observation implies that
∂2F

∂x2i
=

−
∑
j=1,j �=i

∂2F

∂xi∂xj
, and we obtain

m∑
i,j=1

(EXiXj − EYiYj)
∂2F

∂xi∂xj

= −
m∑
i=1

(EX2
i − EY 2

i )
m∑

j=1,j �=i

∂2F

∂xi∂xj
+
∑
i�=j

(EXiXj − EYiYj)
∂2F

∂xi∂xj

= −1

2

∑
i�=j

(EX2
i − EY 2

i + EX2
j − EY 2

j − 2(EXiXj − EYiYj))
∂2F

∂xi∂xj

= −1

2

m∑
i,j=1

(E|Xi −Xj|2 − E|Yi − Yj |2)
∂2F

∂xi∂xj
≤ 0

by (8.60). Therefore, the function φ of Proposition 8.31 has nonpositive derivative
and EF (X) ≤ EF (Y) (noting that we can assume without loss of generality that
the random vectors X and Y are independent).
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In the general case where F is not necessarily twice continuously differentiable,
we approximate F by twice continuously differentiable functions. To this end, we
choose a nonnegative twice continuously differentiable function ψ with support
in B(0, 1), where we denote B(y, h) = {x ∈ Rm : ‖x − y‖2 ≤ h}, such
that
∫
Rm ψ(x)dx = 1. Let ψh = h−mψ(x/h), h > 0, which also satisfies∫

Rm ψh(x)dx = 1. We introduce smoothed versions Fh of the function F via
convolution

Fh(x) = F ∗ ψh(x) =
∫
Rm

F (y)ψh(x − y)dy. (8.64)

Since
∫
Rm ψh(x)dx = 1 and suppψh ⊂ B(0, h) = {x ∈ R

m : ‖x‖2 ≤ h}, we
have

|Fh(x)− F (x)| =
∣∣ ∫

Rm

(F (y) − F (x))ψh(x− y)dy
∣∣

≤
∫
B(x,h)

|F (y) − F (x)|ψh(x− y)dy ≤
∫
B(x,h)

L‖y− x‖2ψh(x− y)dy

≤ Lh,

where we have also used the Lipschitz assumption. In particular, Fh converges
uniformly to F when h → 0. Moreover, Lebesgue’s dominated convergence
theorem allows to interchange the integral and derivatives, so that Fh is twice
continuously differentiable, and

∂Fh
∂xi

= F ∗
(
∂ψh
∂xi

)
, and

∂2Fh
∂xi∂xj

= F ∗
(

∂2ψh
∂xi∂xj

)
.

By (8.62) and since ψh has compact support and is twice continuously differen-
tiable, it is straightforward to verify from the definition of the convolution (8.64)
that the partial derivatives of Fh up to second order are of moderate growth.
Furthermore, for any nonnegative twice continuously differentiable function g on
Rm with compact support, it follows from Fubini’s theorem that

∫
Rm

Fh(x)
∂2g

∂xi∂xj
(x)dx =

∫
Rm

∫
Rm

F (y)ψh(y − x)dy
∂2g

∂xi∂xj
(x)dx

=

∫
Rm

F (y)

∫
Rm

ψh(y − x)
∂2g

∂xi∂xj
(x)dxdy

=

∫
Rm

F (y)
∂2

∂xi∂xj
(ψh ∗ g)(y)dy. (8.65)
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The last identity, i.e., the interchange of taking derivatives and convolution, is
justified again by Lebesgue’s dominated convergence theorem. Since both ψh and g
are nonnegative, the function ψh ∗ g is nonnegative as well. It follows from (8.65)
and from the assumption (8.60) on the distributional derivatives of F that (8.60)
is valid also for Fh in place of F . Also the property (8.61) extends to Fh by the
following calculation:

Fh(x+ te) =

∫
Rm

F (x+ te− y)ψh(y)dy =

∫
Rm

(F (x− y) + ct)ψh(y)dy

= Fh(x) + ct

∫
Rm

ψh(x)dx = Fh(x) + ct.

From the already proven statement for twice continuously differentiable functions
it follows that EFh(X) ≤ EFh(Y) for all h > 0. By uniform convergence of Fh to
F we have

EF (X) = lim
h→0

EFh(X) ≤ lim
h→0

EFh(Y) = EF (Y).

This completes the proof. ��

Remark 8.33. The Lipschitz assumption in the previous lemma is not essential but
simplifies the proof. The result can also be shown under other conditions on F—in
particular, as used in the proof, for twice differentiable F such that F together with
all its derivatives up to second order is of moderate growth.

Now we are prepared for the proof of Gordon’s lemma, which in turn implies
Slepian’s lemma as a special case.

Proof (of Lemma 8.27). Let

F (x) = min
i∈[n]

max
j∈[m]

xij ,

where x = (xij)i∈[n],j∈[m] is a doubly indexed vector. Then F is a Lipschitz
function (with Lipschitz constant 1). We first aim at verifying (8.60). Since this
condition involves only derivatives in two variables at a time, we can fix the other
variables for the moment, which simplifies the notational burden. Setting t = xij
and s = xk� and fixing all other variables, we realize that F takes the form

F (x) = A(t, s) := max{α(t), β(s)} if i = k,

or

F (x) = B(t, s) := min{α(t), β(s)} if i �= k,



236 8 Advanced Tools from Probability Theory

where both α and β are functions of the form

g(t) =

⎧⎨
⎩
a if t < a,

t if a ≤ t ≤ b,

b if t > b.

(8.66)

Here a ≤ b are some numbers that may possibly take the values a = −∞ and
b = +∞. We claim that the distributional derivatives of A and B are nonnegative.
To prove this, for A we note that

A(t, s) =
1

2
(α(t) + β(s) + |α(t) − β(s)|).

Therefore, a partial weak derivative of A is given by (see Sect. C.9 for the notion of
weak derivative, which coincides with the distributional derivative once it exists)

∂

∂t
A(t, s) =

1

2
(α′(t) + α′(t)sgn(α(t)− β(s))

=

{
0 if t /∈ [a, b],

1
2 + 1

2 sgn(t− β(s)) if t ∈ [a, b],
(8.67)

where α′ is a weak derivative of α (see Exercise 8.12) and a, b are the numbers
defining α (see (8.66)). The function s �→ sgn(t − β(s)) is nonincreasing in s,
and therefore, the distributional derivative ∂2

∂s∂tA is nonpositive as claimed; see also
Exercise 8.12(c).

Nonnegativity of ∂2

∂s∂tB follows similarly by writing

B(s, t) = min{α(t), β(s)} = (α(t) + β(s)− |α(t) − β(s)|)/2.

Therefore, we showed that (in the sense of distributional derivatives)

∂2F

∂xij∂xk�
≤ 0 if i = k,

∂2F

∂xij∂xk�
≥ 0 if i �= k.

It follows from assumptions (8.50), (8.51) that

(E|Xi,j −Xk,�|2 − E|Yi,j − Yk,�|2)
∂2F

∂xij∂xk�
≤ 0 for all i, j, k, �. (8.68)

Moreover, the function F satisfies F (x + te) = F (x) + t. The conditions of
Lemma 8.32 are therefore satisfied for −F , and we conclude that EF (X) ≥
EF (Y). ��
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8.8 Concentration of Measure

Concentration of measure describes the phenomenon that Lipschitz functions on
high-dimensional probability spaces concentrate well around their expectation. We
present a precise statement for Gaussian measures. The proof of our first theorem
uses the auxiliary tools developed in the previous section and is rather short, but only
gives the nonoptimal constant 4 in the probability decay; see (8.70). With a more
sophisticated technique based on the entropy of a random variable, we provide the
optimal constant 2 in Theorem 8.40 below.

Theorem 8.34. Let f : Rn → R be a Lipschitz function, i.e.,

|f(x)− f(y)| ≤ L‖x− y‖2 for all x,y ∈ R
n, (8.69)

for a constant L > 0. Let g be a standard Gaussian random vector. Then for all
t > 0

P(f(g)− E[f(g)] ≥ t) ≤ exp

(
− t2

4L2

)
, (8.70)

and consequently

P(|f(g)− E[f(g)]| ≥ t) ≤ 2 exp

(
− t2

4L2

)
. (8.71)

Proof. We first assume that f is differentiable. Let X,Y be independent copies of
g. We use the Laplace transform method which, for a parameter θ > 0, requires to
bound

ψ(θ) := E exp(θ(f(X) − E[f(Y)])).

The convexity of t �→ exp(−θt) and Jensen’s inequality yield

ψ(θ) ≤ E exp(θ(f(X) − f(Y))) = EGθ(X,Y),

where we have set Gθ(x,y) = exp(θ(f(x) − f(y))). The concatenated vector
Z = (X,Y) is a standard Gaussian vector of length 2n. Let X′ denote an
independent copy of X and let W = (X′,X′). For 0 ≤ t ≤ 1, define U(t) =√
tZ +

√
1− tW and φ(t) = EGθ(U(t)). Clearly, φ(0) = EGθ(X

′,X′) =
E exp(θ(f(X′) − f(X′))) = 1. As the next step, we use Proposition 8.31 to
compute the derivative of φ. To this end, we note that EXiXj = EX ′

iX
′
j = δij

and EXiYj = 0 for all i, j. Furthermore, it follows from the Lipschitz assumption
(8.69) that Gθ is of moderate growth; see (8.52). Therefore, (8.59) yields
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φ′(t) =
1

2

∑
i,j∈[2n]

(EZiZj − EWiWj)E

[
∂2Gθ
∂zi∂zj

(U(t))

]

= −E
n∑
i=1

∂2Gθ
∂xi∂yi

(U(t)).

The partial derivatives of Gθ are given by

∂2Gθ
∂xi∂yi

(x,y) = −θ2 ∂f
∂xi

(x)
∂f

∂yi
(y)Gθ(x,y), x,y ∈ R

n.

Since we assumed f to be differentiable it follows from the Lipschitz assumption
(8.69) that

‖∇f(x)‖22 =

n∑
i=1

∣∣∣∣ ∂f∂xi (x)
∣∣∣∣
2

≤ L2 for all x ∈ R
n,

so that the Cauchy–Schwarz inequality yields

φ′(t) = θ2E

n∑
i=1

∂f

∂xi
(X)

∂f

∂yi
(Y)Gθ(U(t))

≤ θ2E‖∇f(X)‖2‖∇f(Y)‖2Gθ(U(t)) ≤ θ2L2
EGθ(U(t)) = θ2L2φ(t).

Since φ(t) > 0, we may divide by it, and setting τ(t) := lnφ(t) shows that

τ ′(t) ≤ θ2L2.

Together with φ(0) = 1, this differential inequality implies by integration that

τ(1) ≤
∫ 1

0

θ2L2dt = θ2L2,

and consequently,

ψ(θ) ≤ φ(1) = exp(τ(1)) ≤ exp(θ2L2).

For t, θ > 0, Markov’s inequality yields

P(f(X)− Ef(X) ≥ t) ≤ ψ(θ)e−θt ≤ exp(θ2L2 − θt).

Choosing θ = t/(2L2) (thus minimizing the last term) yields the claimed inequality
(8.70).
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In the general case where f is not necessarily differentiable, for each ε > 0, we
can find a differentiable Lipschitz function g with the same Lipschitz constant L
such that |f(x)− g(x)| ≤ ε for all x ∈ Rn; see Theorem C.12. It then follows that

P(f(X)− Ef(X) ≥ t) ≤ P(g(X)− Eg(X) ≥ t− 2ε)

≤ exp(−(t− 2ε)2/(4L2)).

Since ε > 0 is arbitrary, (8.70) follows also for general, not necessarily differen-
tiable Lipschitz functions.

By replacing f with −f we obtain P(Ef(X) − f(X) ≥ t) ≤ exp(−t2/(4L2)).
Then the union bound gives (8.71). ��

In order to improve on the constant 4 in (8.70) we will use an alternative approach
based on the concept of entropy of a random variable. We introduce the convex
function

φ(x) := x ln(x), x > 0,

which is continuously extended to x = 0 by φ(0) = 0. For a nonnegative random
variable X on some probability space (Ω,Σ,P), we then define the entropy as

E (X) := E[φ(X)]− φ(EX) = E[X lnX ]− EX ln(EX). (8.72)

If the first term is infinite, then we set E (X) = ∞. By convexity of φ, it follows
from Jensen’s inequality that E (X) ≥ 0. The entropy is homogeneous, i.e., for a
scalar t > 0,

E (tX) = E[tX ln(tX)]− E[tX ] ln(tEX)

= tE[X lnX ] + tE[X ln t]− tE[X ] ln t− tE[X ] ln(E[X ]) = tE (X).

The basic idea of the entropy method for deducing a concentration inequality for
a real-valued random variable X is to derive a bound on the entropy of eθX , for
θ > 0, of the form

E (eθX) ≤ g(θ)E[eθX ] (8.73)

for some appropriate function g. Setting F (θ) := E[eθX ] such an inequality is
equivalent to

E (eθX) = θF ′(θ) − F (θ) lnF (θ) ≤ g(θ)F (θ). (8.74)

Setting further G(θ) = θ−1 lnF (θ) yields

G′(θ) ≤ θ−2g(θ).
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Noting that G(0) = limθ→0 θ
−1 lnF (θ) = F ′(0)/F (0) = E[X ], this shows by

integration that G(θ) − E[X ] ≤
∫ θ
0
t−2g(t)dt or

E[eθ(X−E[X])] ≤ exp

(
θ

∫ θ
0

t−2g(t)dt

)
, θ > 0. (8.75)

Then one uses Markov’s inequality to derive a tail bound for X − E[X ]. This way
of reasoning is usually called the Herbst argument.

Before applying this idea in our specific situation, we provide some first results
for the entropy. We start with a dual characterization.

Lemma 8.35. Let X be a nonnegative random variable satisfying E[X ] < ∞.
Then

E (X) = sup {E[XY ] : E[exp(Y )] ≤ 1} . (8.76)

Proof. We first deal with the case that X is strictly positive. By homogeneity of the
entropy we may and do assume EX = 1. The Fenchel inequality (B.10) yields, for
Y satisfying E[exp(Y )] ≤ 1,

E[XY ] ≤ E[exp(Y )] + E[X lnX ]− E[X ] ≤ E[X lnX ] = E (X).

This shows that the right-hand side in (8.76) is smaller than or equal to the left-
hand side. For the converse direction, we choose Y = lnX − ln(EX), so that
E (X) = E[XY ]. This choice satisfies

E exp(Y ) = E[X ] exp (− ln(EX)) = 1.

Therefore, the right-hand side in (8.76) majorizes E (X).
The case of a general nonnegative random variable X follows from continuity of

φ in 0 and from a simple approximation argument. ��

Remark 8.36. (a) Substituting Y = ln(Z/EZ) for a positive random variable Z in
(8.76) shows that

E (X) = sup {E[X ln(Z)]− E[X ] ln(E[Z]) : Z > 0} , (8.77)

where the supremum is taken over all positive integrable random variables Z .
(b) A simple consequence of the previous lemma is the subadditivity of the entropy,

i.e., for two nonnegative random variables X and Z , we have E (X + Z) ≤
E (X) + E (Z).

For a sequence X = (X1, . . . , Xn) we introduce, for any i ∈ [n], the notation

X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn).
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For a function f of X, we write

EXif(X) = EXi [f(X1, . . . , Xi, . . . , Xn)] := E

[
f(X)|X(i)

]
(8.78)

for the conditional expectation, which is still a function of the random vari-
ables X1, . . . , Xi−1, Xi+1, . . . , Xn. In other words, EXif(X) “integrates out” the
dependence onXi and is constant with respect toXi. Then we define the conditional
entropy of f(X) as

EXi(f(X)) := E
(
f(X)|X(i)

)
:= EXi (φ(f(X))) − φ (EXi(f(X)))

= EXi [f(X) ln f(X)]− EXi [f(X)] ln (EXi [f(X)]) .

Clearly, EXi(f(X)) is still a random variable that depends on X(i), i.e., the entropy
is taken only with respect to Xi. The tensorization inequality for the entropy reads
as follows.

Proposition 8.37. Let X = (X1, . . . , Xn) be a vector of independent random
variables and let f be a nonnegative function satisfying E[f(X)] <∞. Then

E (f(X)) ≤ E

[
n∑
i=1

EXi(f(X))

]
. (8.79)

Proof. We may assume that f is strictly positive. The general case follows from
an approximation argument exploiting the continuity of φ at 0. We introduce the
conditional expectation operator Ei defined by

E
i[f(X)] := EX1,...,Xi−1 [f(X)] = E[f(X)|Xi, . . . , Xn],

which “integrates out” the dependence on the first i − 1 random variables X1, . . . ,
Xi−1. We have E1[f(X)] = f(X) and En+1[f(X)] = E[f(X)]. A decomposition
by a telescoping sum gives

ln(f(X))− ln(E[f(X)]) =

n∑
i=1

(ln(Ei[f(X)])− ln(Ei+1[f(X)])). (8.80)

The duality formula (8.77) with Z = Ei[f(X)] > 0 yields

EXi

[
f(X)
(
ln(Ei[f(X)])− ln(EXi [E

i[f(X)]])
)]
≤ EXi (f(X)) .

Observe that by independence and Fubini’s theorem

EXi [E
i[f(X)]] = EXiEX1,...,Xi−1 [f(X)] = E

i+1[f(X)].
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Multiplying by f(X) and taking expectations on both sides of (8.80) yield

E (f(X)) = E[f(X)(ln(f(X))− ln(E[f(X)]))]

=

n∑
i=1

E
[
EXi

[
f(X)(ln(Ei[f(X)]) − ln(EXi [E

i[f(X)]]))
]]

≤
n∑
i=1

E [EXi(f(X))] .

This completes the proof. ��

The key to establishing Gaussian concentration of measure is the logarithmic
Sobolev inequality. We start with the one for Rademacher vectors.

Theorem 8.38. Let f : {−1, 1}n → R be a real-valued function and ε be an n-
dimensional Rademacher vector. Then

E
(
f2(ε)
)
≤ 1

2
E

[
n∑
i=1

(
f(ε)− f(ε̄(i))

)2]
, (8.81)

where ε̄(i) = (ε1, . . . , εi−1,−εi, εi+1, . . . , εn) is obtained from ε by flipping the ith
entry.

Proof. By the tensorization inequality (Proposition 8.37) we have

E
(
f2(ε)
)
≤ E

[
n∑
i=1

Eεi
(
f2(ε)
)]
.

Therefore, it suffices to show that, for each i ∈ [n],

Eεi(f(ε)
2) ≤ 1

2
Eεi

[(
f(ε)− f(ε̄(i))

)2]
. (8.82)

Given any realization of (ε1, . . . , εi−1, εi+1, . . . , εn), f(ε) (as well as f(ε̄(i))) can
take only two possible values denoted by a, b ∈ R. Then, by definition of the
entropy, the desired inequality (8.82) takes the form

1

2

(
a2 ln(a2) + b2 ln(b2)

)
− a2 + b2

2
ln

(
a2 + b2

2

)
≤ 1

2
(a− b)2.

In order to establish this scalar inequality, we define, for fixed b, the function
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H(a) =
1

2

(
a2 ln(a2) + b2 ln(b2)

)
− a2 + b2

2
ln

(
a2 + b2

2

)
− 1

2
(a− b)2.

The first and second derivatives of H are given by

H ′(a) = a ln

(
2a2

a2 + b2

)
− (a− b),

H ′′(a) = ln

(
2a2

a2 + b2

)
+ 1− 2a2

a2 + b2
.

We see that H(b) = 0 and H ′(b) = 0. Using lnx ≤ x − 1, we further obtain
H ′′(a) ≤ 0 for all a ∈ R so that H is concave. It follows that H(a) ≤ 0 for all
a ∈ R, which finally establishes (8.82), and thereby the claim. ��

The right-hand side of the logarithmic Sobolev inequality (8.81) for Rademacher
vectors involves a discrete version of a gradient. The Gaussian logarithmic Sobolev
inequality stated next features a true gradient.

Theorem 8.39. Let f : R
n → R be a continuously differentiable function

satisfying E
[
φ(f2(g))

]
<∞ for a standard Gaussian vector g on R

n. Then

E
(
f2(g)
)
≤ 2E
[
‖∇f(g)‖22

]
. (8.83)

Proof. We first prove the theorem for n = 1 and g being a standard normal random
variable. We start by dealing with a compactly supported f . Since f ′ is uniformly
continuous in this case, its modulus of continuity ω(f ′, δ) := sup|t−u|≤δ |f ′(t) −
f ′(u)| satisfies ω(f ′, δ)→ 0 as δ → 0.

Let ε = (ε1, . . . , εm) be a Rademacher vector and set

Sm :=
1√
m

m∑
j=1

εj.

The idea is to use Theorem 8.38 and the fact that, by the central limit theorem, Sm
converges in distribution to a standard normal random variable. An application of
(8.81) to f̃(ε) := f(Sm) yields

E
(
f2(Sm)

)
≤ 1

2
E

[
m∑
i=1

(
f̃(ε)− f̃(ε̄(i))

)2]

=
1

2
E

[
m∑
i=1

(
f(Sm)− f

(
Sm −

2εi√
m

))2]
.
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For each i ∈ [m], we notice that

∣∣∣∣f(Sm)− f

(
Sm −

2εi√
m

)∣∣∣∣ =
∣∣∣∣∣
2εi√
m
f ′(Sm) +

∫ Sm

Sm−2εi/
√
m

(
f ′(t)− f ′(Sm)

)
dt

∣∣∣∣∣
≤ 2√

m
|f ′(Sm)|+ 2√

m
ω

(
f ′,

2√
m

)
.

It follows that

m∑
i=1

(
f(Sm)− f

(
Sm −

2εi√
m

))2

≤ 4

(
f ′(Sm)2 + 2|f ′(Sm)|ω

(
f ′,

2√
m

)
+ ω

(
f ′,

2√
m

)2)
.

By the boundedness of f and f ′, the central limit theorem (Theorem 7.8) implies
that E[f ′(Sm)2] → E[f ′(g)2] and E (f2(Sm)) → E (f2(g)) as m → ∞.
Altogether, we obtain the desired inequality

E (f2(g)) ≤ 2E
[
f ′(g)2
]
.

Let us now turn to the general case where f does not necessarily have compact
support. Given a small ε > 0, the assumption that E

[
φ(f2(g))

]
< ∞ ensures the

existence of T > 0 such that for any subset I of R \ [−T, T ],

1√
2π

∫
I

∣∣φ(f(t)2)∣∣ e−t2/2dt ≤ ε and
1√
2π

∫
I

e−t
2/2dt ≤ ε.

Let us consider a continuously differentiable function h satisfying 0 ≤ h(t) ≤ 1
for all t ∈ R, as well as h(t) = 1 for all t ∈ [−T, T ] and h(t) = 0 for
all t �∈ [−T − 1, T + 1]. We set f̂ := fh, which is a continuously differentiable
function with compact support. The previous result applies to give

E (f̂2(g)) ≤ 2E[f̂ ′(g)2].

By subadditivity of the entropy (see Remark 8.36(b)), we have

E
(
f2(g)
)
= E
(
f̂2(g) + f2(g)(1− h2(g))

)
≤ E
(
f̂2(g)
)
+ E
(
f2(g)(1− h2(g))

)
.

Let us now introduce the sets I1 := {t ∈ R : |t| ≥ T, f(t)2 < e} and
I2 := {t ∈ R : |t| ≥ T, f(t)2 ≥ e}. Then
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E
[
f2(g)(1 − h2(g))

]
=

1√
2π

∫
R\[−T,T ]

f2(t)(1 − h2(t))e−t
2

dt

≤ 1√
2π

∫
I1

f2(t)e−t
2

dt+
1√
2π

∫
I2

f2(t)e−t
2

dt

≤ e√
2π

∫
I1

e−t
2/2dt+

1√
2π

∫
I2

φ(f2(t))e−t
2

dt ≤ (e + 1)ε. (8.84)

Therefore,
∣∣φ (E [f2(g)(1 − h2(g)

])∣∣ ≤ |φ((1 + e)ε)| if ε is sufficiently small.
Introducing the sets Ĩ1 := {t ∈ R : |t| ≥ T, f(t)2(1 − h2(t)) < e} and
Ĩ2 := {t ∈ R : |t| ≥ T, f(t)2(1− h2(t)) ≥ e} and denoting κ = maxt∈[0,e] |φ(t)| =
e−1, we have

∣∣E [φ(f2(g)(1− h2(g)))
]∣∣

≤ κ√
2π

∫
Ĩ1

e−t
2/2dt+

1√
2π

∫
Ĩ2

φ(f2(t)(1 − h2(t)))e−t
2/2dt

≤ κε+
1√
2π

∫
Ĩ2

φ(f2(t))e−t
2/2dt ≤ (κ+ 1)ε.

By the definition of the entropy, this gives

E
(
f2(g)(1− h2(g))

)
≤
∣∣φ (E [f2(g)(1− h2(g)

])∣∣+ ∣∣E [φ(f2(g)(1 − h2(g)))
]∣∣

≤ |φ((e + 1)ε)|+ (κ+ 1)ε.

At this point, we have obtained

E (f2(g)) ≤ 2E[f̂ ′(g)2] + (1 + κ)ε+ |φ((1 + e)ε)|.

Now, using the triangle inequality, we have

E[f̂ ′(g)2]1/2 = E[(f ′h+ fh′)(g)2]1/2 ≤ E[(f ′h)(g)2]1/2 + E[(fh′)(g)2]1/2.

We remark that E[(f ′h)(g)2] = E[f ′(g)2h(g)2] ≤ E[f ′(g)2] and that

E[(fh′)(g)2] =
1√
2π

∫ ∞

−∞
f(t)2h′(t)2e−t

2/2dt ≤ ‖h
′‖2∞√
2π

∫
I1∪I2

f(t)2e−t
2/2dt

≤ (e + 1)‖h′‖2∞ε, (8.85)

where we have used (8.84). We conclude that E[(fh′)(g)2] ≤ ‖h′‖2∞(e+ 1)ε. As a
result, we obtain E[f̂ ′(g)2]1/2 ≤ E[f ′(g)2]1/2 + ‖h′‖∞ ((e+ 1)ε)

1/2. Overall, we
have shown that
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E (f2(g)) ≤ 2
(
E[f ′(g)2]1/2 + ‖h′‖∞ ((e + 1)ε)1/2

)2
+ |φ((1+ e)ε)|+(κ+1)ε.

Since this result is valid for all sufficiently small ε > 0 and since limt→0 φ(t) =
φ(0) = 0, we conclude that

E (f2(g)) ≤ E[f ′(g)2].

This is the desired claim for n = 1.
For arbitrary n, we apply the tensorization inequality (8.79) to obtain

E (f2(g)) ≤ E

[
n∑
i=1

Egi(f
2(g))

]
≤ 2E

[
n∑
i=1

(
∂f

∂xi
(g)

)2]
= 2E
[
‖∇f(g)‖22

]
.

This completes the proof. ��

With the Gaussian logarithmic Sobolev inequality at hand, we are prepared to
show the improved version of the concentration of measure inequality for Lipschitz
functions.

Theorem 8.40. Let f : R
n → R be a Lipschitz function with constant L in

(8.69). Let g = (g1, . . . , gn) be a vector of independent standard Gaussian random
variables. Then, for all t > 0,

P(f(g)− E[f(g)] ≥ t) ≤ exp

(
− t2

2L2

)
, (8.86)

and consequently

P(|f(g)− E[f(g)]| ≥ t) ≤ 2 exp

(
− t2

2L2

)
. (8.87)

Remark 8.41. The constant 2 in (8.86) is optimal in general. This follows from the
case n = 1, f(x) = x, and the lower tail bound for a standard Gaussian random
variable in Proposition 7.5.

Proof. We may assume that f is differentiable, so that the Lipschitz condition
implies ‖∇f(x)‖2 ≤ L for all x ∈ Rn. The general case follows similarly to
the end of the proof of Theorem 8.34.

For θ > 0, applying the Gaussian logarithmic Sobolev inequality (8.83) to the
function eθf/2 yields

E (eθf(g)) ≤ 2E
[
‖∇eθf(g)/2‖22

]
=
θ2

2
E

[
eθf(g)‖∇f(g)‖22

]
≤ θ2L2

2
E

[
eθf(g)
]
,

(8.88)
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where the Lipschitz assumption was applied in the last step. (Note that the
hypothesis E

[
φ(e2θf(g))

]
< ∞ required for Theorem 8.39 holds because, again

by the Lipschitz assumption, we have e2θf(x) ≤ e2θ|f(0)|eLθ‖x‖2 for all x ∈ Rn.)
The inequality (8.88) is of the form (8.73) with g(θ) = L2θ2/2. Therefore, the
Herbst argument leads to (8.75) in the form

E[eθ(f(g)−E[f(g)])] ≤ exp

(
θ

∫ θ
0

t−2g(t)dt

)
= exp(θ2L2/2).

By Markov’s inequality, we obtain

P(f(g)− E[f(g)] ≥ t) ≤ inf
θ>0

exp(−θt)E[eθ(f(g)−E[f(g])]

≤ inf
θ>0

exp(−θt+ θ2L2/2) = exp(−t2/(2L2)),

where the infimum is realized for θ = t/L2. Replacing f by −f yields the same
bound for P(E[f(g)]− f(g) ≥ t), and the union bound finally implies (8.87). ��

We close this section with the useful special case of the Lipschitz function ‖ · ‖2,
which has constant L = 1. If g ∈ Rn is a standard Gaussian vector, then it follows
from Theorem 8.40 and Proposition 8.1 that

P(‖g‖2 ≥
√
n+ t) ≤ P(‖g‖2 ≥ E‖g‖2 + t) ≤ e−t

2/2. (8.89)

8.9 Bernstein Inequality for Suprema of Empirical Processes

In this section, we present a deviation inequality for suprema of empirical processes
above their mean, which will become very useful in Chap. 12. Let Y1, . . . , YM
be independent random vectors in C

n and let F be a countable collection of
measurable functions from C

n into R. We are interested in the random variable
Z = supF∈F

∑M
�=1 F(Y�), i.e., the supremum of an empirical process. In particular,

we study its deviation from its mean EZ .

Theorem 8.42. Let F be a countable set of functions F : Cn → R. Let Y1, . . . , YM
be independent random vectors in Cn such that EF(Y�) = 0 and F(Y�) ≤ K almost
surely for all � ∈ [M ] and for all F ∈ F for some constant K > 0. Introduce

Z = sup
F∈F

M∑
�=1

F(Y�). (8.90)
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Let σ2
� > 0 such that E

[
F(Y�)

2
]
≤ σ2

� for all F ∈ F and � ∈ [M ]. Then, for all
t > 0,

P(Z ≥ EZ + t) ≤ exp

(
− t2/2

σ2 + 2KEZ + tK/3

)
, (8.91)

where σ2 =
∑M
�=1 σ

2
� .

Remark 8.43. (a) If F consists only of a single function, then inequality (8.91)
reduces to the standard Bernstein inequality in Corollary 7.31. It is remarkable
that Theorem 8.42 reproduces the same constants in this more general setting.

(b) The deviation inequality (8.91) can be extended to a concentration inequality,
which is sometimes referred to as Talagrand’s inequality; see the Notes section.

(c) Theorem 8.42 holds without change if Z is replaced by

Z̃ = sup
F∈F

∣∣∣∣∣
M∑
�=1

F(Y�)

∣∣∣∣∣ .

Before turning to the proof of the theorem, we present the following Bernstein-
type inequality for the norm of the sum of independent mean-zero random vectors.
Its formulation uses the dual norm; see Definition A.3 and in particular (A.5).

Corollary 8.44. Let Y1, . . . ,YM be independent copies of a random vector Y on
Cn satisfying EY = 0. Assume ‖Y‖ ≤ K for some K > 0 and some norm ‖ · ‖ on
Cn. Let

Z =

∥∥∥∥∥
M∑
�=1

Y�

∥∥∥∥∥
and

σ2 = sup
x∈B∗

E|〈x,Y〉|2, (8.92)

where B∗ = {x ∈ Cn, ‖x‖∗ ≤ 1} denotes the unit ball in the dual norm ‖ · ‖∗.
Then, for t > 0,

P(Z ≥ EZ + t) ≤ exp

(
− t2/2

Mσ2 + 2KEZ + tK/3

)
. (8.93)

Proof. Introduce the random functions Fx(Y) := Re(〈x,Y〉), x ∈ B̃∗. By the
characterization (A.5) of a norm by its dual norm we have
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Z = sup
x∈B∗

Re

〈
x,

M∑
�=1

Y�

〉
= sup

x∈B∗

M∑
�=1

Re (〈x,Y�〉) = sup
x∈B∗

M∑
�=1

Fx(Y�).

Let B̃∗ be a dense countable subset of B∗. Then Z = sup
x∈B̃∗
∑M

�=1 Fx(Y�) and

sup
x∈B̃∗

EFx(Y�)
2 = sup

x∈B∗
E|〈x,Y〉|2 = σ2.

The random variables Fx(Y) := Re(〈x,Y〉), x ∈ B̃∗, satisfy EFx(Y) = 0 and
are almost surely bounded, |Fx(Y)| ≤ ‖x‖∗‖Y‖ ≤ K . The conclusion follows
therefore from Theorem 8.42. ��

We specialize to the case of the �2-norm in the next statement.

Corollary 8.45. Let Y1, . . . ,YM be independent copies of a random vector Y on
C
n satisfying EY = 0. Assume ‖Y‖2 ≤ K for some K > 0. Let

Z =

∥∥∥∥∥
M∑
�=1

Y�

∥∥∥∥∥
2

, EZ2 = ME‖Y‖22, (8.94)

and

σ2 = sup
‖x‖2≤1

E|〈x,Y〉|2.

Then, for t > 0,

P(Z ≥
√
EZ2 + t) ≤ exp

(
− t2/2

Mσ2 + 2K
√
EZ2 + tK/3

)
. (8.95)

Proof. The formula for EZ2 in (8.94) follows from independence, and since
EY� = 0,

EZ2 =

M∑
�,k=1

E〈Y�,Yk〉 =
M∑
�=1

E‖Y�‖22 = ME‖Y‖22.

By Hölder’s inequality, we have EZ ≤
√
EZ2. Therefore, the claim is a conse-

quence of Corollary 8.44. ��

The so-called weak variance σ2 in (8.92) can be estimated by

σ2 = sup
x∈B∗

E|〈x,Y〉|2 ≤ E sup
x∈B∗

|〈x,Y〉|2 = E‖Y‖2. (8.96)
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Hence, the variance term σ2 can be replaced by E‖Y‖2 in Theorem 8.42 and
Corollaries 8.44 and 8.45. Usually, however, σ2 provides better estimates than
E‖Y‖2. In any case, noting that ‖Y‖ ≤ K almost surely implies σ2 ≤ E‖Y‖2 ≤
K2 yields the next consequence of Corollary 8.44.

Corollary 8.46. Let Y1, . . . ,YM be independent copies of a random vector Y on
Cn satisfying EY = 0. Assume ‖Y‖ ≤ K for some constant K > 0 and some

norm ‖ · ‖ on Cn. Let Z =
∥∥∥∑M

�=1 Y�

∥∥∥. Then, for t > 0,

P(Z ≥ EZ + t) ≤ exp

(
− t2/2

MK2 + 2KEZ +Kt/3

)
. (8.97)

We will derive the Bernstein-type inequality for suprema of empirical processes
as a consequence of a more general deviation inequality for functions in independent
random variables. Its formulation needs some notation.

For a sequence X = (X1, . . . , Xn) of independent random variables, we recall
the notation X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn). (Note that below the Xi are
allowed to be also random vectors. Since we take functions of those, it will, however,
not be important in which set the Xi take their values, so that we will simply refer
to them as random variables.) Also, we recall the notation (8.78) of the conditional
expectation EXif(X) and the function h defined in (8.23), i.e.,

h(x) := (1 + x) ln(1 + x)− x.

Then the Bernstein-type inequality for functions of independent random variables
reads as follows.

Theorem 8.47. Let X = (X1, . . . , Xn) be a sequence of independent random
variables. Let f , gi, i ∈ [n], be measurable functions of X and fi, i ∈ [n], be
measurable functions of X(i). Assume that

gi(X) ≤ f(X)− fi(X
(i)) ≤ 1, i ∈ [n], (8.98)

and EXi [gi(X)] ≥ 0, i ∈ [n], (8.99)

as well as

n∑
i=1

(f(X)− fi(X
(i))) ≤ f(X). (8.100)

Suppose further that there exist B, σ > 0 such that

gi(X) ≤ B, i ∈ [n], and
1

n

n∑
i=1

EXi

[
gi(X)2

]
≤ σ2. (8.101)
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Set v = (1 +B)E [f(X)] + nσ2. Then, for all λ > 0,

lnE
[
eλ(f(X)−E[f(X)])

]
≤ v(eλ − λ− 1) . (8.102)

As a consequence, for t > 0,

P (f(X) ≥ E[f(X)] + t) ≤ exp

(
−vh
(
t

v

))
≤ exp

(
− t2

2v + 2t/3

)
.

(8.103)

Before we prove this theorem, we show how it implies the Bernstein-type inequality
(8.91) for suprema of empirical processes.

Proof (of Theorem 8.42). We assume that K = 1. The general case is deduced via
replacing F by F/K .

Suppose first that F is a finite set. Let Y = (Y1, . . . , YM ). We define

f(Y) := sup
F∈F

M∑
�=1

F(Y�) = Z

and, for i ∈ [M ], we set

fi(Y
(i)) := sup

F∈F

∑
� �=i

F(Y�).

Let Fi be the function in F for which the supremum is attained in the definition of
fi (recall that F is assumed to be finite). Note that Fi may depend on Y(i), but not
on Yi. Then we define

gi(Y) :=

(
M∑
�=1

Fi(Y�)

)
− fi(Y

(i)) = Fi(Yi).

Further, F0 denotes the function in F for which the supremum is attained in the
definition of f . We obtain

gi(Y) ≤ f(Y)− fi(Y
(i)) ≤

M∑
�=1

F0(Y�)−
∑
� �=i

F0(Y�) = F0(Yi) ≤ 1.

This verifies condition (8.98) and the first condition in (8.101) with B = 1.
Moreover, since Fi is independent of Yi and E[Fi(Yi)] = 0,

EYigi(Y) = EYi

[
M∑
�=1

Fi(Y�)− fi(Y
(i))

]
=
∑
� �=i

Fi(Y�)− fi(Y
(i)) = 0,
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which shows (8.99). Moreover,

(M − 1)f(Y) =
M∑
i=1

∑
� �=i

F0(Y�) ≤
M∑
i=1

fi(Y
(i)),

so that also (8.100) is satisfied. Finally,

M∑
i=1

EYi [gi(Y)2] =
M∑
i=1

EYi [Fi(Yi)
2] ≤

M∑
i=1

σ2
i ,

which shows that we can choose σ as desired. An application of Theorem 8.47 yields
(8.91) for finite F .

To conclude the proof for countably infinite F , we let Gn ⊂ F , n ∈ N, be a
sequence of finite subsets, such that Gn ⊂ Gn+1 and ∪n∈NGn = F . Introduce the
random variables

Zn := sup
F∈Gn

M∑
�=1

F(Y�)

and, for t > 0, the indicator random variables χn := I{Zn−EZn>t}. By monotone
convergence, limn→∞ EZn = EZ (note that the statement of the theorem implicitly
assumes that Z is integrable), and we have the pointwise limit

lim
n→∞

χn = χ,

where χ is the indicator random variable of the event {Z − EZ > t}. Clearly,
χn ≤ 1, so that the sequence χn has the integrable majorant 1. It follows from
Lebesgue’s dominated convergence theorem that

P(Z > EZ + t) = P(sup
n
(Zn − EZn) > t) = E

[
lim
n→∞

χn

]
= lim

n→∞
Eχn

= lim
n→∞

P

(
sup
F∈Gn

M∑
�=1

F(Y�) > E

[
sup
F∈Gn

M∑
�=1

F(Y�)

]
+ t

)

≤ exp

(
− t2/2

σ2 + 2EZ + t/3

)
,

where we have used the just established estimate for finite sets of functions in the
last inequality. ��

The proof of Theorem 8.47 uses again the concept of entropy of a random
variable as in the proof of the concentration of measure inequality for Lipschitz
functions in Sect. 8.8. We will use a variation of the Herbst argument outlined
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in (8.73) and the discussion afterwards. Setting F (θ) = E[exp(θf(X))], we will
develop a bound for the entropy E (eθf(X)) = θF ′(θ) − F (θ) lnF (θ) in terms of
F (θ) = E[eθf(X)]. This will lead to a differential inequality of the form

θF ′(θ)− F (θ) lnF (θ) ≤ γ(θ)F (θ) lnF (θ) + ρ(θ)F (θ)

for some functions γ and ρ; see (8.112) below. We will find a bound for any solution
of this differential inequality using Lemma C.13. This arguments lead then to the
statement of Theorem 8.47.

For our purposes we need some further properties of the entropy in addition to
the ones discussed in the previous section. We start with another characterization.

Lemma 8.48. Let X be a strictly positive and integrable random variable. Then

E (X) = inf
u>0

E[φ(X)− φ(u)− (X − u)φ′(u)],

where φ′(x) = ln(x) + 1.

Proof. Convexity of φ implies that, for u > 0,

φ(EX) ≥ φ(u) + φ′(u)(EX − u).

By the definition of the entropy this yields

E (X) = E[φ(X)]− φ(EX) ≤ E[φ(X)]− φ(u)− φ′(u)(EX − u)

= E[φ(X)− φ(u)− φ′(u)(X − u)]. (8.104)

Choosing u = EX yields an equality above, which proves the claim. ��

We also require the following consequence of the tensorization inequality of
Proposition 8.37.

Corollary 8.49. Let X = (X1, . . . , Xn) be a sequence of independent random
vectors. Let f be a measurable function of X and fi, i ∈ [n], be measurable
functions of X(i) (i.e., constant in Xi). Set F (θ) = E[exp(θf(X))] and let θ0 be
such that F (θ0) <∞. Then, for any θ < θ0,

θF ′(θ)− F (θ) ln(F (θ)) ≤
n∑
i=1

E

[
eθf(X)ψ

(
− θ(f(X)− fi(X

(i)))
)]
,

where ψ(x) := ex − x− 1.

Proof. Suppose g is a positive measurable function of X and gi are positive
measurable functions of X(i), i ∈ [n]. Taking the entropy conditionally with respect
to Xi in Lemma 8.48 (i.e., choosing u = gi(X

(i)) in (8.104), so that u does not
depend on Xi) yields
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EXi(g(X)) ≤ EXi

[
φ(g(X)) − φ(gi(X

(i)))− (g(X)− gi(X
(i)))φ′(gi(X

(i)))
]

= EXi

[
g(X)(ln(g(X)) − ln(gi(X

(i)))) − (g(X)− gi(X
(i)))
]
. (8.105)

We apply the above inequality to g(X) = eθf(X) and gi(X) = eθfi(X
(i)) to obtain

EXi(g(X)) = θEXi

[
f(X)eθf(X)

]
− EXi

[
eθf(X)
]
lnEXi

[
eθf(X)
]

≤ EXi

[
eθf(X)(θf(X)− θfi(X

(i)))− (eθf(X) − eθfi(X
(i)))
]

= EXi

[
eθf(X)ψ(−θ(f(X)− fi(X

(i))))
]
.

Observe that F ′(θ) = E[f(X)eθf(X)] for θ < θ0. Therefore, an application of the
tensorization inequality (8.79) shows that

θF ′(θ)− F (θ) ln(F (θ)) ≤ θE
[
f(X)eθf(X)

]
− E

[
eθf(X)
]
lnE
[
eθf(X)
]

= E (g(X)) ≤ E

[
n∑
i=1

EXi(g(X))

]

≤ E

[
n∑
i=1

EXi

[
eθf(X)ψ(−θ(f(X)− fi(X

(i))))
]]

=

n∑
i=1

E

[
eθf(X)ψ(−θ(f(X) − fi(X

(i))))
]
.

This completes the proof. ��

As another auxiliary tool we need the following decoupling inequality.

Lemma 8.50. Let Y, Z be random variables on a probability space (Ω,Σ,P) and
θ > 0 be such that eθY and eθZ are P integrable. Then

θE
[
Y eθZ
]
≤ θE
[
ZeθZ
]
− E
[
eθZ
]
lnE
[
eθZ
]
+ E
[
eθZ
]
lnE
[
eθY
]
.

Proof. Let Q be the probability measure defined via dQ = eθZ

E[eθZ ]dP with associated
expectation given by

EQ[X ] :=
E[XeθZ]

E[eθZ ]
,

where E is the expectation with respect to P. Jensen’s inequality yields
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θEQ[Y − Z] = EQ

[
ln(eθ(Y−Z))

]
≤ lnEQ

[
eθ(Y−Z)

]
.

By definition of EQ this translates into

θE[(Y − Z)eθZ ]

E[eθZ ]
≤ lnE[eθY ]− lnE[eθZ ],

which is equivalent to the claim. ��

The next statement is a consequence of Lemma 8.50 and Corollary 8.49.

Lemma 8.51. Let X = (X1, . . . , Xn) be a sequence of independent random
variables. Let f be a measurable function of X and fi, i ∈ [n], be measurable
functions of X(i). Let further g be a measurable function of X such that

n∑
i=1

(
f(X)− fi(X

(i))
)
≤ g(X) . (8.106)

Then, for all θ > 0,

n∑
i=1

E

[
eθf(X) − eθfi(X

(i))
]
≤ E

[
eθf(X)
]
lnE
[
eθg(X)
]
.

Proof. Denote F (θ) = E
[
eθf(X)
]

and G(θ) = E
[
eθg(X)
]
. We apply Corol-

lary 8.49 to f(X) and f̃i(X(i)) = fi(X
(i)) + 1

nθ lnG(θ), i ∈ [n], to obtain

θF ′(θ) − F (θ) lnF (θ)

≤
n∑
i=1

E

[
eθf(X)ψ

(
−θ(f(X)− fi(X

(i))− ln(G(θ))

nθ
)

)]

=
n∑
i=1

E

[
G(θ)1/neθfi(X

(i)) − eθf(X) + eθf(X)(θ(f(X)− fi(X
(i))))
]

− E

[
eθf(X)
]
lnG(θ)

≤ G(θ)1/n

(
n∑
i=1

E

[
eθfi(X

(i))
])
− nF (θ) + θE

[
eθf(X)

n∑
i=1

(f(X)− fi(X
(i)))

]

− F (θ) lnG(θ)

≤ G(θ)1/n

(
n∑
i=1

E

[
eθfi(X

(i))
])
− nF (θ) + θE

[
eθf(X)g(X)

]
− F (θ) lnG(θ)
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≤ G(θ)1/n

(
n∑
i=1

E

[
eθfi(X

(i))
])
− nF (θ) + θE

[
f(X)eθf(X)

]

− E

[
eθf(X)
]
lnE
[
eθf(X)
]
+ E

[
eθf(X)
]
lnE
[
eθg(X)
]
− F (θ) lnG(θ)

= G(θ)1/n

(
n∑
i=1

E

[
eθfi(X

(i))
])
− nF (θ) + θF ′(θ)− F (θ) lnF (θ).

Hereby, we used the assumption (8.106) in the fourth step and Lemma 8.50 with
Y = g(X) and Z = f(X) in the fifth step. We rewrite this as

nF (θ) ≤ G(θ)1/n
n∑
i=1

E

[
eθfi(X

(i))
]
,

which in turn is equivalent to

n∑
i=1

E

[
eθf(X) − eθfi(X

(i))
]
≤ nF (θ)(1 −G(θ)−1/n).

The inequality ex ≥ 1 + x implies then that

n(1−G(θ)−1/n) = n(1− e−
1
n lnG(θ)) ≤ lnG(θ),

so that

n∑
i=1

E

[
eθf(X) − eθfi(X

(i))
]
≤ F (θ) lnG(θ).

This completes the proof. ��

Based on this preparation, we can now prove Theorem 8.47.

Proof (of Theorem 8.47). We define α(x) := 1 − (1 + x)e−x, β(x) := ψ(−x) =
e−x − 1 + x, and for τ > 0 to be specified later,

γ(θ) :=
α(−θ)

β(−θ) + θτ
.

Step 1: We prove that, for x ≤ 1, θ, τ > 0,

β(θx) ≤ γ(θ)
(
α(θx) + θτx2e−θx

)
. (8.107)

To this end we introduce the function
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b(x) := β(θx) − γ(θ)
(
α(θx) + θτx2e−θx

)
.

Note that α(0) = β(0) = α′(0) = β′(0) = 0 so that b(0) = b′(0) = 0.
Furthermore,

β(−θ) + θτ = eθ(1 − e−θ − θe−θ + θτe−θ) = eθ(α(θ) + τθe−θ) ,

which implies that b(1) = 0. Furthermore,

b′(x) = θ
(
1− e−θx − γ(θ)(θxe−θx + 2τxe−θx − τθx2e−θx)

)
.

Therefore, limx→+∞ b′(x) = θ and limx→−∞ b′(x) = +∞. Next, observe
that we can write b′′(x) = e−θxp(x) with a second-degree polynomial p with
leading coefficient −θ3γ(θ)τ . If follows that b′′(x) = 0 has at most two
solutions. If there is no solution, then b′ is decreasing, which is a contradiction
to limx→−∞ b′(x) = +∞, b′(0) = 0 and limx→+∞ b′(x) = θ. So let x1, x2
with x1 ≤ x2 be the (possibly equal) solutions. Then b′ is decreasing in
(−∞, x1) ∪ (x2,∞) and increasing in (x1, x2). Since limx→+∞ b′(x) = θ > 0,
the equation b′(x) = 0 can have at most two solutions, one in (−∞, x1) and
one in [x1, x2). Recall that b′(0) = 0, so denote by x3 the other solution to
b′(x) = 0. If x3 ≤ 0, then b is increasing in (0,∞), which is a contradiction to
b(0) = b(1) = 0. Therefore, x3 > 0, and b is increasing in (−∞, 0), decreasing
in (0, x3), and increasing in (x3,∞). Since b(0) = b(1) = 0 this shows that
b(x) ≤ 0 for x ≤ 1, which implies the claimed inequality (8.107).

Step 2: Next we use (8.107) with x = f(X)−fi(X(i)) and that α(x)ex = β(−x)
to obtain

β(θ(f(X) − f(X(i)))eθf(X)

≤ γ(θ)
(
β(−θ(f(X) − fi(X

(i)))) + θτ(f(X) − fi(X
(i)))2
)
eθfi(X

(i))

= γ(θ)
(
eθf(X) − eθfi(X

(i))
)

+ θγ(θ)eθf(X
(i))
(
τ(f(X) − fi(X

(i)))2 − (f(X)− fi(X
(i)))
)
. (8.108)

Now we choose τ = 1/(1 +B). Note that if y ≤ x ≤ 1 and y ≤ B, then

τx2 − x ≤ τy2 − y. (8.109)

Indeed, under these conditions,

τ(x2 − y2) = τ(x + y)(x− y) ≤ τ(1 +B)(x − y) = x− y.
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Using the assumption gi(X) ≤ f(X)− fi(X
(i)) ≤ 1 and gi(X) ≤ B in (8.108)

and exploiting (8.109), we obtain

β
(
θ(f(X)− f(X(i))

)
eθf(X) ≤ γ(θ)

(
eθf(X) − eθfi(X

(i))
)

+ θγ(θ)eθfi(X
(i))
(
τg2i (X)− gi(X)

)
. (8.110)

Since fi(X(i)) does not depend on Xi, the assumption EXigi(X) ≥ 0 yields

E

[
eθfi(X

(i))gi(X)
]
= E

[
EXie

θfi(X
(i))gi(X)

]
= E

[
eθfi(X

(i))
EXigi(X)

]

≥ E

[
eθfi(X

(i))
]
≥ 0. (8.111)

Further note that (8.98) and (8.99) imply that

EXi [f(X)] ≥ EXi [fi(X
(i)) + gi(X)] ≥ fi(X

(i)),

and by Jensen’s inequality this yields

eθfi(X
(i)) ≤ eθEXi

f(X) ≤ EXi

[
eθf(X)
]
.

By taking expectations in (8.110) we therefore reach, using (8.111) in the first
step together with θγ(θ) ≥ 0 for all θ ≥ 0,

E

[
β
(
θ(f(X)− fi(X

(i))
)
eθf(X)
]

≤ γ(θ)E
[
eθf(X) − eθfi(X

(i))
]
+
θγ(θ)

1 +B
E

[
eθfi(X

(i))g2i (X)
]

= γ(θ)E
[
eθf(X) − eθfi(X

(i))
]
+
θγ(θ)

1 +B
E

[
eθfi(X

(i))
EXi

[
g2i (X)
]]

≤ γ(θ)E
[
eθf(X) − eθfi(X

(i))
]
+
θγ(θ)

1 +B
E

[
eθf(X)

EXi

[
g2i (X)
]]
.

Hereby, we used twice that E[·] = EEXi [·]. Now denoteF (θ) = E[eθf(X)]. Then
Corollary 8.49 together with (8.101) implies that

θF ′(θ)− F (θ) lnF (θ) ≤
n∑
i=1

E

[
β
(
θ(f(X)− f(X(i))

)
eθf(X)
]

≤ γ(θ)

n∑
i=1

E

[
eθf(X) − eθfi(X

(i))
]
+
θγ(θ)

1 +B
E

[
eθf(X)

n∑
i=1

EXi

[
g2i (X)
]]
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≤ γ(θ)E
[
eθf(X)
]
lnE
[
eθf(X)
]
+
θγ(θ)nσ2

1 +B
E

[
eθf(X)
]
,

= γ(θ)F (θ) lnF (θ) +
θγ(θ)nσ2

1 +B
F (θ), (8.112)

where we used in the last inequality that
∑n
i=1(f(X) − fi(X

(i))) ≤ f(X) in
combination with Lemma 8.51.

Step 3 (Modified Herbst argument): Set G(θ)=E
[
eθ(f(X)−E[f(X)])

]
=F (θ)

e−θE[f(X)]. Then

G′(θ) = e−θE[f(X)] (F ′(θ)− E[f(X)]F (θ)) ,

lnG(θ) = lnF (θ)− θE[f(X)],

and
G′(θ)

G(θ)
=
F ′(θ)

F (θ)
− E[f(X)].

Therefore, (8.112) can be rewritten as

θ
G′(θ)

G(θ)
− lnG(θ) ≤ γ(θ) (lnG(θ) + θE[f(X)]) +

nσ2θγ(θ)

1 +B
.

Introducing L(θ) = lnG(θ), the above inequality is in turn equivalent to

θL′(θ)− (1 + γ(θ))L(θ) ≤ nσ2 + (1 +B)E[f(X)]

1 +B
θγ(θ) =

v

1 +B
θγ(θ).

Recall that we have set τ = 1/(1+B) in the definition of the function γ, so that

γ(θ) =
α(−θ)

β(−θ) + θ/(1 +B)
.

We claim that L0(θ) := vβ(−θ) = v(eθ − 1 − θ) is a solution to the associated
differential equation

θL′(θ) − (1 + γ(θ))L(θ) =
v

1 +B
θγ(θ),

with the initial conditions L0(0) = L′
0(0) = 0. Indeed,

v−1 (θL′
0(θ) − (1 + γ(θ))L0(θ))

= θ(eθ − 1)− eθ + θ + 1− α(−θ)β(−θ)
β(−θ) + θ/(1 +B)
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= α(−θ)− α(−θ)(β(−θ) + θ/(1 +B))

β(−θ) + θ/(1 +B)
+

α(−θ)θ/(1 +B)

β(−θ) + θ/(1 +B)

=
θγ(θ)

1 +B
.

It follows from Lemma C.13 that L(θ) ≤ L0(θ), i.e.,

lnE[eθ(f(X)−E[f(X)])] ≤ v(eθ − 1− θ).

This completes the proof of (8.102).
Step 4: To deduce the tail inequalities in (8.103) we use Markov’s inequality

(Theorem 7.3) to obtain, for θ > 0,

P(f(X) ≥ E[f(X)] + t) = P

(
eθ(f(X)−E[f(X)]) ≥ eθt

)

≤ e−θtE[eθ(f(X)−E[f(X)])] ≤ e−θtev(e
θ−1−θ)

= ev(e
θ−1−θ)−θt. (8.113)

It follows from Lemma 8.21 that

inf
θ>0

(v(eθ − θ − 1)− θt) = −vh(x/t),

where we recall that h(t) = (1 + t) ln(1 + t) − t. Together with (8.113) this
shows the first estimate in (8.103). The second part of Lemma 8.21 implies that
vh(t/v) ≥ t2

2v+2t/3 , which yields the second inequality in (8.103). ��

Notes

Many results of this chapter also hold in infinite dimensional Banach spaces.
Introducing random vectors in general Banach spaces, however, requires additional
technicalities that we preferred to avoid here. For such details and many more results
on probability in Banach spaces we refer to the monograph [322] by Ledoux and
Talagrand and to the collection of articles in [296]. In particular, the relation between
moments and tails and an introduction to Rademacher sums and to symmetrization
are contained in [322].

The Khintchine inequalities are named after the Russian mathematician Khint-
chine (also spelled Khinchin) who was the first to show Theorem 8.5 in [301]. Our
proof essentially follows his ideas. We have only provided estimates from above
for the absolute moments of a Rademacher sum. Estimates from below have also
been investigated, and the optimal constants for both lower and upper estimates
for all p > 0 have been derived in [253]; see also [360] for simplified proofs. We
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have already noted that, for p = 2n, n ∈ N, the constant C2n = (2n)!/(2nn!)
for the upper estimate provided in Theorem 8.5 is optimal. In case of general
p ≥ 2 (which is much harder than the even integer case), the best constant is
Cp = 2

p−1
2 Γ (p/2)/Γ (3/2). This value is very close to the estimate in (8.9).

The proof of the Khintchine inequality for Steinhaus sums in Theorem 8.9
is slightly shorter than the one given in [380]. The technique for the proof of
Corollary 8.10 for Steinhaus sums was taken from [380, 481]. An overview on
(scalar) Khintchine and related inequalities can be found in [381]. An extension
of the Khintchine inequalities to sums of independent random vectors that are
uniformly distributed on spheres is provided in [305]. Using a similar technique as
in Corollary 8.10 the following Hoeffding-type inequality has been deduced in [184]
for X1, . . . ,XM ∈ Rn being independent random vectors, uniformly distributed on
the unit sphere Sn−1 = {x ∈ Rn, ‖x‖2 = 1},

P

(
‖
M∑
�=1

a�X�‖2 ≥ ‖a‖2u
)
≤ exp
(
−n
2
(u2 − log(u2)− 1)

)
for all u > 1.

The noncommutative version of Bernstein inequality was proven by Tropp
in [486] by refining an approach to the Laplace transform method for matrices
due to Ahlswede and Winter [6]; see also [373, 374]. Based on the method of
exchangeable pairs, a different approach to its proof, which does not require Lieb’s
concavity theorem (nor a similar result on matrix convexity), is presented in [339].
The more traditional approach for studying tail bounds for random matrices uses the
noncommutative Khintchine inequality, which first appeared in the work of Lust-
Piquard [336]; see also [337]. These inequalities work with the Schatten 2n-norms
‖A‖S2n = ‖σ(A)‖2n = (tr ((A∗A)n))1/(2n), n ∈ N, where σ(A) is the vector of
singular values of A, and provide bounds for matrix-valued Rademacher sums

E‖
M∑
j=1

εjBj‖2nS2n

≤ (2n)!

2nn!
max

⎧⎪⎨
⎪⎩

∥∥∥∥∥∥∥

⎛
⎝ M∑
j=1

BjB
∗
j

⎞
⎠

1/2
∥∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥∥

⎛
⎝ M∑
j=1

B∗
jBj

⎞
⎠

1/2
∥∥∥∥∥∥∥

2n

S2n

⎫⎪⎬
⎪⎭ . (8.114)

The optimal constants for these inequalities for p = 2n match the scalar case in
Theorem 8.5 and were derived by Buchholz in [74, 75]; see also [411]. Rudelson
showed a lemma now named after him in [430] (see also [374, 411]), which allows
to derive tail bounds and moment bounds for sums of random rank-one matrices.
While Rudelson’s original proof used chaining methods, it was pointed out to him
by Pisier that a simpler proof (contained in the published paper) can be obtained
via noncommutative Khintchine inequalities. The approach to random matrices
via the noncommutative Khintchine inequality has the drawback that one needs
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significant practice in order to apply them; see, for instance, [411, 500]. In contrast,
the noncommutative Bernstein inequality of Theorem 8.14 is easy to apply and
provides very good constants.

The decoupling inequality of Theorem 8.11, including its proof, is essentially
taken from [66]. The variant of Theorem 8.12 for the operator norm was shown by
Tropp in [480, 481]. Decoupling techniques can be extended to higher-order chaos
and also to sums of the form

∑
j �=k hj,k(Xj ,Xk), where Xk are independent ran-

dom vectors and hj,k are vector-valued functions. Moreover, decoupling inequalities
do not only apply for expectations and moments. Also, a probability estimate of
the form

P
(
‖
∑
j �=k

hj,k(Xj ,Xk)‖ ≥ t
)
≤ CP
(
‖
∑
j �=k

hj,k(Xj ,X
′
k)‖ ≥ t/C

)
,

can be shown, where (X′
k) is an independent copy of (Xk) and C > 1 is an

appropriate constant. We refer the interested reader to [146] for further information.
The tail bounds for Rademacher chaos (Theorem 8.13) and quadratic forms in

more general subgaussian random vectors have first been obtained by Hanson and
Wright in [260]. The proof given here follows arguments from an unpublished work
of Rauhut and Tropp. For Gaussian chaos better constants are available in [35], and
yet another proof of the tail inequality appears in [466, Sect. 2.5].

The inequality of Theorem 8.23 is named after Dudley who proved his inequality
in [175]. The proof in Sect. 8.6 follows the argument in [326]; see also [392].
Further proofs can be found in [22, 193, 194, 411, 466]. The nice exposition in
Talagrand’s book [466] leads to more powerful generic chaining inequalities, also
called majorizing measure inequalities. These use the so-called γα functional of a
metric space (T, d), which is defined as

γα(T, d) = inf sup
t∈T

∞∑
r=0

2r/αd(t, Tr), α > 0,

where the infimum is taken over all sequences Tr, r ∈ N0, of subsets of
T with cardinalities card(T0) = 1, card(Tr) ≤ 22

r

, r ≥ 1, and where
d(t, Tr) = infs∈Tr d(t, s). Given a Gaussian processes Xt, t ∈ T , with associ-
ated pseudometric d defined by (8.41), Talagrand’s majorizing measures theorem
[459, 462, 465, 466] states that

C1γ2(T, d) ≤ E sup
t∈T

Xt ≤ C2γ2(T, d),

for universal constantsC1, C2 > 0. In particular, the lower bound is remarkable. The
upper bound also holds for more general subgaussian processes. Since γ2(T, d) is
bounded by a constant times the Dudley-type integral in (8.47) (see [466]), the above
inequality implies also Dudley’s inequality (with possibly a different constant). In
general, γ2(T, d) may provide sharper bounds than Dudley’s integral. However, if
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T is a subset of RN and d is induced by a norm, then one loses at most a factor
of ln(N) when passing from the γ2(T, d) functional to Dudley’s integral. The latter
has the advantage that it is usually easier to estimate. Another type of lower bound
for Gaussian processes is Sudakov’s minoration; see, e.g., [322, 348].

Dudley’s inequality extends to moments; see, for instance, [411]. Indeed, one
also has the following inequality (using the same notation as Theorem 8.23):

(
E sup
t∈T
|Xt|p
)1/p

≤ C
√
p

∫ Δ(T )/2

0

√
ln(N (T, d, u))du.

A generalization of Dudley’s inequality [306, 322, 391] holds in the framework of
Orlicz spaces. A Young function is a positive convex functionψ that satisfies ψ(0) =
0 and limx→∞ ψ(x) =∞. The Orlicz space Lψ consists of all random variables X
for which Eψ(|X |/c) <∞ for some c > 0. The norm

‖X‖ψ = inf{c > 0,Eψ(|X |/c) ≤ 1}

turns Lψ into a Banach space [312]. Suppose that Xt, t ∈ T , is a stochastic process
indexed by a (pseudo)metric d of diameter Δ such that

‖Xs −Xt‖ψ ≤ d(s, t).

Then the generalization of Dudley’s inequality [322, Theorem 11.1] states that

E sup
s,t
|Xs −Xt| ≤ 8

∫ Δ
0

ψ−1(N (T, d, u))du ,

where ψ−1 is the inverse function of ψ. Taking ψ(x) = exp(x2) − 1 yields
Theorem 8.23 (up to the constant). Further important special cases are ψ(x) =
exp(x) − 1 (exponential tail of the increments) and ψ(x) = xp (resulting in
Lp-spaces of random variables).

A chaos process is of the form

XB =
∑
j �=k

ξjξkBj,k, B ∈ B,

where B ⊂ R
n×n is a set of square matrices and ξ = (ξ1, . . . , ξn) is a vector of

independent mean-zero subgaussian random variables of unit variance. We refer to
[307, 413] and the Notes section of Chap. 12 for their appearance in compressive
sensing. Talagrand [466] showed the bound

E sup
B∈B

|XB| ≤ C1γ2(B, ‖ · ‖F ) + C2γ1(B, ‖ · ‖2→2).
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The basis for the proof of this inequality is the tail inequality for a single chaos
XB of Theorem 8.13 and its extension to subgaussian random vectors. Due to the
appearance of the γ1 functional in the right-hand side, this bound is not sharp in
many cases; see, e.g., [466] for a discussion. In fact, for a special case of relevance
for compressive sensing, [307] provides an alternative bound, which we describe
next. For a set of matrices A ⊂ Cm×n and a vector ξ of independent mean-zero
subgaussian random variables of unit variance, we consider the random variable

Y = sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22
∣∣ .

If ξ = ε is a Rademacher vector, then Y = supA∈A

∣∣∣∑j �=k εjεk(A
∗A)j,k

∣∣∣ so that

we recover a chaos process indexed by B = {A∗A : A ∈ A}. In [307] it is shown
that (under the additional assumptionA = −A)

E sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22
∣∣ ≤ C1γ2(A, ‖ · ‖2→2)

2 + C2dF (A)γ2(A, ‖ · ‖2→2),

(8.115)

where dF (A) = supA∈A ‖A‖F is the diameter ofA in the Frobenius norm. Also a
tail bound is provided in [307].

In slightly different form, Slepian’s lemma appeared for the first time in [448];
see also Fernique’s notes [193]. Other references on Slepian’s lemma include [322,
Corollary 3.14], [348, Theorem 3.14], and [343]. Gordon’s Lemma 8.27 appeared
in [233, 234]. Stein’s lemma (Proposition 8.29), which was used in the proof of
Slepian’s and Gordon’s lemma, has important applications in statistics. For instance,
it is at the basis of Stein’s unbiased risk estimator (SURE). We refer, e.g., to [490],
for more details.

Many more details and references on the general theory of concentration of
measure such as connections to isoperimetric inequalities are provided in the
expositions by Barvinok [33], Ledoux [321], and Boucheron et al. [61]. The proof of
Theorem 8.40 based on entropy is a variant of the one found in [61, 348], while the
proof of Theorem 8.34 follows [467, Theorem 1.3.4]. The Gaussian logarithmic
Sobolev inequality is originally due to Gross [247]. The argument attributed to
Herbst (unpublished) to derive concentration inequalities from logarithmic Sobolev
inequalities appeared in [142, Theorem A.8]. A different proof of concentration of
measure for Lipschitz functions (Theorem 8.40) based on the so-called Ornstein–
Uhlenbeck semigroup can be found in [321]. By using the rotation invariance of the
Gaussian distribution, concentration of measure for the uniform distribution on the
sphere (or on the ball) can be deduced from the Gaussian case (and vice versa); see,
for instance, [33, 321, 322].

Concentration of measure inequalities are valid also for independent random
variables X1, . . . , Xn with values in [−1, 1]. However, one has to impose the
assumption that the function F : [−1, 1]n → R is convex, in addition to being
L-Lipschitz. If M is a median of F (X1, . . . , Xn), then [321, 461]

P(|F (X1, . . . , Xn)−M | ≥ t) ≤ 4 exp(−t2/(4L)2).
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The median can be replaced by the mean via general principles outlined in [321].
Deviation inequalities for suprema of empirical processes were already in-

vestigated in the 1980s by Massart and others; see, e.g., [11, 346]. Talagrand
achieved major breakthroughs in [460,463]. In particular, he showed a concentration
inequality similar to (8.91) in [463]; see also [321, Theorem 7.6]. Ledoux noticed
in [320] that deviation and concentration inequalities may be deduced using entropy.
The constants in the deviation and concentration inequalities were subsequently
improved in [68, 69, 304, 347, 421, 422]. The proof of Theorem 8.42 follows [68];
see also [69]. Concentration below the expected supremum of an empirical process
can be shown as well [69, 320, 463]. A version for not necessarily identically
distributed random vectors is presented in [304], and collections F of unbounded
functions are treated in [2, 319].

Versions of Corollary 8.46 can already be found in the monograph by Ledoux
and Talagrand [322, Theorems 6.17 and 6.19], however, with nonoptimal constants.
More general deviation and concentration inequalities for suprema of empirical
processes and other functions of independent variables are derived, for instance,
in [59, 60, 321], in particular, a version for Rademacher chaos processes is stated
in [60].

Exercises

8.1. Let X = (X1, . . . , Xn) be a vector of mean-zero Gaussian random variables
with variances σ2

� = Eg2� , � ∈ [n]. Show that

Emax
�∈[n]

X� ≤
√
2 ln(n)max

�∈[n]
σ�.

8.2. Comparison principle.
Let ε = (ε1, . . . , εM ) be a Rademacher sequence and g = (g1, . . . , gN) be a
standard Gaussian vector. Let x1, . . . ,xM be vectors in a normed space.

(a) Let ξ = (ξ1, . . . , ξM ) be a sequence of independent and symmetric real-valued
random variables with E|ξ�| <∞ for all � ∈ [M ]. Show that, for p ∈ [1,∞),

(
min
�∈[M ]

E|ξ�|
)(

E‖
M∑
�=1

ε�x�‖p
)1/p

≤
(
E‖

M∑
�=1

ξ�x�‖p
)1/p

.

Conclude that

E‖
N∑
�=1

ε�x�‖ ≤
√
π

2
E‖

N∑
�=1

g�x�‖.
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(b) Show that

E‖
M∑
�=1

g�x�‖ ≤
√
2 log(2M)E‖

M∑
�=1

ε�x�‖.

Find an example which shows that the logarithmic factor above cannot be
removed in general.

8.3. Let a ∈ CN and ε = (ε1, . . . , εN) be a Steinhaus sequence. Show a moment
estimate of the form

(
E|

N∑
�=1

ε�a�|p
)1/p

≤ αβ1/p√p‖a‖2, p ≥ 2,

in two ways: (a) by using the method of Corollary 8.7 and (b) by using Proposi-
tion 7.13. Provide small values of α and β.

8.4. Hoeffdings’s inequality for complex random variables.
Let X = (X1, . . . , XN ) be a vector of complex-valued mean-zero symmetric
random variables, i.e., X� has the same distribution as −X�. Assume that |X�| ≤ 1
almost surely for all � ∈ [M ]. Show that, for a ∈ CM and u > 0,

P
(
|
M∑
j=1

ajXj| ≥ u‖a‖2
)
≤ 2 exp(−u2/2).

Provide a version of this inequality when the symmetry assumption is removed.

8.5. Let A ∈ Cm×N be a fixed matrix.

(a) Let g be a standard Gaussian random vector. Show that, for t > 0,

P(‖Ag‖2 ≥ ‖A‖F + t‖A‖2→2) ≤ e−t
2/2.

(b) Let ε be a Rademacher vector. Show that, for t > 0,

P(‖Aε‖2 ≥ c1‖A‖F + c2t‖A‖2→2) ≤ e−t
2/2.

Provide appropriate values of the constants c1, c2 > 0.

8.6. Deviation for matrix-valued Gaussian sums.

(a) Let g be a standard Gaussian variable and let B ∈ Cd×d be a self-adjoint matrix.
Show that E exp(gθB) = exp(θ2B2/2).

(b) Let g = (g1, . . . , gM ) be a vector of independent standard Gaussian vari-
ables and B1, . . . ,BM ∈ Cd×d be self-adjoint matrices. Introduce σ2 =
‖
∑M
j=1 B

2
j‖2→2. Show that
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E exp(θ‖
M∑
j=1

gjBj‖2→2) ≤ 2d exp(θ2σ2/2) for θ > 0,

and

P
(
‖
M∑
j=1

gjBj‖2→2 ≥ t
)
≤ 2d exp

(
−t2
2σ2

)
, t > 0.

(c) For a random variable X , show that EX ≤ infθ>0 θ
−1 lnE[exp(θX)].

(d) Show that

E‖
M∑
j=1

gjBj‖2→2 ≤
√
2 ln(2d)‖

M∑
j=1

B2
j‖

1/2
2→2, (8.116)

and, for a Rademacher sequence ε = (ε1, . . . , εM ),

E‖
M∑
j=1

εjBj‖2→2 ≤
√
2 ln(2d)‖

M∑
j=1

B2
j‖

1/2
2→2. (8.117)

(e) Give an example that shows that the factor
√
ln(2d) cannot be removed from

(8.116) in general.

8.7. Deviation inequalities for sums of rectangular random matrices.

(a) The self-adjoint dilation of a matrix A ∈ Cd1×d2 is defined as

S(A) =

(
0 A

A∗ 0

)
.

Prove that S(A) ∈ C(d1+d2)×(d1+d2) is self-adjoint and ‖S(A)‖2→2 =
‖A‖2→2.

(b) Let X1, . . . ,XM be a sequence of d1 × d2 random matrices with

‖X�‖2→2 ≤ K for all � ∈ [M ],

and set

σ2 := max
{
‖
M∑
�=1

E(X�X
∗
� )‖2→2, ‖

M∑
�=1

E(X∗
�X�)‖2→2

}
. (8.118)

Show that, for t > 0,



268 8 Advanced Tools from Probability Theory

P(‖
M∑
�=1

X�‖2→2 ≥ t) ≤ 2(d1 + d2) exp

(
− t2/2

σ2 +Kt/3

)
. (8.119)

8.8. Noncommutative Bernstein inequality, subexponential version.
Let X1, . . . ,XM ∈ Cd×d be independent mean-zero self-adjoint random matrices.
Assume that

E[Xn
� ] � n!Rn−2σ2

�B
2
�/2, � ∈ [M ],

for some self-adjoint matrices B� and set

σ2 :=

∥∥∥∥∥
M∑
�=1

B2
�

∥∥∥∥∥
2→2

.

Show that, for t > 0,

P

(
λmax

(
M∑
�=1

X�

)
≥ t

)
≤ d exp

(
− t2/2

σ2 +Rt

)
.

8.9. Let T be a countable index set. Show the consistency of the definition (8.39)
of the lattice supremum in this case, i.e., show that

E(sup
t∈T

Xt) = sup{E(sup
t∈F

Xt), F ⊂ T, F finite}.

8.10. Let Xt, t ∈ T , be a symmetric random process, i.e., Xt has the same
distribution as −Xt for all t ∈ T . Show that, for an arbitrary t0 ∈ T ,

E sup
t∈T

Xt ≤ E sup
t∈T
|Xt −Xt0 | ≤ 2E sup

t∈T
Xt = E sup

s,t∈T
|Xs −Xt|.

8.11. Derive the following generalization of Dudley’s inequality: Let Xt, t ∈ T , be
a subgaussian process with associated pseudometric d, i.e.,

P(|Xs −Xt| ≥ ud(s, t)) ≤ 2e−cu
2

.

Then, for some arbitrary t0 ∈ T and p ≥ 1,

(
E sup
t∈T
|Xt −Xt0 |p

)1/p
≤ C

√
p

∫ ∞

0

√
log(N (T, d, u))du,

for some appropriate constant C > 0 depending only on c.
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8.12. Weak and distributional derivatives.
Recall the notion of weak and distributional derivatives from Sect. C.9.

(a) Show that the function f(t) = |t| has weak derivative

f ′(t) = sgn(t) =

⎧⎨
⎩
−1 if t < 0,

0 if t = 0,

1 if t > 0.

(b) Let g be a function of the form (8.66). Show that a weak derivative is given by

g′(t) = χ[a,b](t) =

{
1 if t ∈ [a, b],

0 if t /∈ [a, b].

(c) Let f be nondecreasing and differentiable except possibly at finitely many
points. Show that f has a nonnegative distributional derivative.

(d) Assume that f has a nonnegative weak derivative. Show that f is nondecreasing.



Chapter 9
Sparse Recovery with Random Matrices

It was shown in Chap. 6 that recovery of s-sparse vectors via various algorithms
including �1-minimization is guaranteed if the restricted isometry constants of the
measurement matrix satisfy δκs ≤ δ∗ for an appropriate small integer κ and
some δ∗ ∈ (0, 1). The derived condition for �1-minimization is, for instance,
δ2s < 0.6246. In Chap. 5, we have seen explicitm×m2 matrices that satisfy such a
condition once m ≥ Cs2. This bound relies on the estimate δs ≤ (s− 1)μ in terms
of the coherence μ; see also the discussion at the end of Sect. 6.1. But at this point
of the theoretical development,m×N matrices with small δs are not known to exist
when m is significantly smaller than Cs2. The purpose of this chapter is to show
their existence when m ≥ Cδs ln(N/s) using probabilistic arguments. We consider
subgaussian random matrices whose entries are drawn independently according to
a subgaussian distribution. This includes Gaussian and Rademacher variables. For
such matrices, the restricted isometry property holds with high probability in the
stated parameter regime. We refer to Theorem 9.12 for an exact statement.

We also discuss a nonuniform setting where we analyze the probability that a
fixed s-sparse vector x is recovered from y = Ax via �1-minimization using a
random draw of a subgaussian matrix A. In this setting, the proof has the advantage
of being simple and providing good constants in the estimate for the required
number m of measurements (although the term ln(N/s) is replaced by lnN in
the first instance). Then we restrict our considerations to Gaussian matrices. Using
the Slepian and Gordon lemmas as well as concentration of measure, we derive
in the nonuniform setting “roughly” (that is, for large dimensions) the sufficient
condition

m > 2s ln(N/s).

Returning to the uniform setting, we further obtain bounds for the conditioning of
Gaussian random matrices and, as a consequence, explicit bounds for the restricted
isometry constants. In the Gaussian case, we can also show the null space property
directly without invoking the restricted isometry property.

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 9,
© Springer Science+Business Media New York 2013
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Finally, we make a small detour to the Johnson–Lindenstrauss lemma, which
states that a finite set of points in a high-dimensional Euclidean space can be mapped
to a lower-dimensional space via a linear map without significantly perturbing their
mutual distances. This linear map can be chosen as the realization of a subgaussian
random matrix. This fact follows immediately from a concentration inequality
that is crucial in the proof of the restricted isometry property for subgaussian
matrices; see (9.6). For this reason, a matrix satisfying the concentration inequality
is sometimes even referred to as a Johnson–Lindenstrauss mapping, and in this
sense, the Johnson–Lindenstrauss lemma implies the restricted isometry property.
We will also show the converse statement that a matrix satisfying the restricted
isometry property provides a Johnson–Lindenstrauss mapping when the column
signs are randomized.

9.1 Restricted Isometry Property for Subgaussian Matrices

We consider a matrix A ∈ R
m×N having random variables as their entries. Such

A is called a random matrix or random matrix ensemble.

Definition 9.1. Let A be an m×N random matrix.

(a) If the entries of A are independent Rademacher variables (i.e., taking values±1
with equal probability), then A is called a Bernoulli random matrix.

(b) If the entries of A are independent standard Gaussian random variables, then
A is called a Gaussian random matrix.

(c) If the entries of A are independent mean-zero subgaussian random variables
with variance 1 and same subgaussian parameters β, κ in (7.31), i.e.,

P(|Aj,k| ≥ t) ≤ βe−κt
2

for all t > 0, j ∈ [m], k ∈ [N ], (9.1)

then A is called a subgaussian random matrix.

Clearly, Gaussian and Bernoulli random matrices are subgaussian. Also note that the
entries of a subgaussian matrix do not necessarily have to be identically distributed.
Equivalently to (9.1), we may require that

E[exp(θAj,k)] ≤ exp(cθ2) for all θ ∈ R, j ∈ [m], k ∈ [N ], (9.2)

for some constant c that is independent of j, k and N ; see Proposition 7.24. Note
that the smallest possible value of the constant is c = 1/2 due to the normalization
EA2

j,k = 1 and Exercise 7.4.
We start by stating the main result on the restricted isometry property for

subgaussian random matrices.
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Theorem 9.2. Let A be an m×N subgaussian random matrix. Then there exists a
constant C > 0 (depending only on the subgaussian parameters β, κ) such that the
restricted isometry constant of 1√

m
A satisfies δs ≤ δ with probability at least 1− ε

provided

m ≥ Cδ−2
(
s ln(eN /s) + ln(2ε−1)

)
. (9.3)

Setting ε = 2 exp(−δ2m/(2C)) yields the condition

m ≥ 2Cδ−2s ln(eN /s),

which guarantees that δs ≤ δ with probability at least 1 − 2 exp
(
− δ2m/(2C)

)
.

This is the statement often found in the literature.
The normalization 1√

m
A is natural because E‖ 1√

m
Ax‖22 = ‖x‖22 for a fixed

vector x and a subgaussian random matrix A (where by convention all entries have
variance 1). Expressed differently, the squared �2-norm of the columns of A is one
in expectation. Therefore, the restricted isometry constant δs measures the deviation
of ‖ 1√

m
Ax‖22 from its mean, uniformly over all s-sparse vectors x.

The following is an important special case of Theorem 9.2.

Corollary 9.3. Let A be an m × N Gaussian or Bernoulli random matrix. Then
there exists a universal constant C > 0 such that the restricted isometry constant of
1√
m
A satisfies δs ≤ δ with probability at least 1− ε provided

m ≥ Cδ−2
(
s ln(eN /s) + ln(2ε−1)

)
. (9.4)

For Gaussian random matrices, we will provide a slightly improved estimate with
explicit constants in Sect. 9.3.

Subgaussian matrices belong to a larger class of random matrices introduced
below. Theorem 9.2 will follow from its generalization to this larger class. We start
with some definitions.

Definition 9.4. Let Y be a random vector on RN .

(a) If E|〈Y,x〉|2 = ‖x‖22 for all x ∈ RN , then Y is called isotropic.
(b) If, for all x ∈ RN with ‖x‖2 = 1, the random variable 〈Y,x〉 is subgaussian

with subgaussian parameter c being independent of x, that is,

E[exp(θ〈Y,x〉)] ≤ exp(cθ2), for all θ ∈ R, ‖x‖2 = 1, (9.5)

then Y is called a subgaussian random vector.

Remark 9.5. Isotropic subgaussian random vectors do not necessarily have in-
dependent entries. The constant c in (9.5) should ideally be independent of N .
Lemma 9.7 provides an example where this is the case. Note that if Y is a
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randomly selected row or column of an orthogonal matrix, then Y is isotropic and
subgaussian, but c depends on N .

We consider random matrices A ∈ Rm×N of the form

A =

⎛
⎜⎝
Y�

1
...

Y�
m

⎞
⎟⎠

with independent subgaussian and isotropic rows Y1, . . . ,Ym ∈ RN . The follow-
ing result establishes the restricted isometry property for such matrices.

Theorem 9.6. Let A be an m×N random matrix with independent, isotropic, and
subgaussian rows with the same subgaussian parameter c in (9.5). If

m ≥ Cδ−2
(
s ln(eN /s) + ln(2ε−1)

)
,

then the restricted isometry constant of 1√
m
A satisfies δs ≤ δ with probability at

least 1− ε.

The proof of this theorem is given below. Theorem 9.2 follows then from a
combination with the following lemma.

Lemma 9.7. Let Y ∈ RN be a random vector with independent, mean-zero, and
subgaussian entries with variance 1 and the same subgaussian parameter c in
(7.33). Then Y is an isotropic and subgaussian random vector with the subgaussian
parameter in (9.5) equal to c.

Proof. Let x ∈ RN with ‖x‖2 = 1. Since the Y� are independent, mean-zero, and
of variance 1, we have

E|〈Y,x〉|2 =

N∑
�,�′=1

x�x�′EY�Y�′ =

N∑
�=1

x2� = ‖x‖22.

Therefore, Y is isotropic. Furthermore, according to Theorem 7.27, the random
variable Z = 〈Y,x〉 =

∑N
�=1 x�Y� is subgaussian with parameter c. Hence, Y is a

subgaussian random vector with parameters independent of N . ��

Concentration Inequality

The proof of Theorem 9.6 heavily relies on the following concentration inequality
for random matrices. The latter in turn is a consequence of Bernstein inequality
for subexponential random variables, which arise when forming the �2-norm by
summing up squares of subgaussian random variables.
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Lemma 9.8. Let A be an m ×N random matrix with independent, isotropic, and
subgaussian rows with the same subgaussian parameter c in (9.5). Then, for all
x ∈ RN and every t ∈ (0, 1),

P
( ∣∣m−1‖Ax‖22 − ‖x‖22

∣∣ ≥ t‖x‖22
)
≤ 2 exp(−c̃t2m), (9.6)

where c̃ depends only on c.

Proof. Let x ∈ RN . Without loss of generality we may assume that ‖x‖2 = 1.
Denote the rows of A by Y1, . . . ,Ym ∈ RN and consider the random variables

Z� = |〈Y�,x〉|2 − ‖x‖22, � ∈ [m].

Since Y� is isotropic we have EZ� = 0. Further, Z� is subexponential because
〈Y�,x〉 is subgaussian, that is, P(|Z�| ≥ r) ≤ β exp(−κr) for all r > 0 and some
parameters β, κ depending only on c. Observe now that

m−1‖Ax‖22 − ‖x‖22 =
1

m

m∑
�=1

(
|〈Y�,x〉|2 − ‖x‖22

)
=

1

m

m∑
�=1

Z�.

By independence of the Y�, also the Z� are independent. Therefore, it follows from
Bernstein inequality for subexponential random variables (Corollary 7.32) that

P

(
|m−1

m∑
�=1

Z�| ≥ t

)
= P

(
|
m∑
�=1

Z�| ≥ tm

)
≤ 2 exp

(
− κ2m2t2/2

2βm+ κmt

)

≤ 2 exp

(
− κ2

4β + 2κ
mt2
)
,

where we used that t ∈ (0, 1) in the last step. Hence, the claim follows with
c̃ = κ2/(4β + 2κ). ��

We note that the normalized random matrix Ã = 1√
m
A, with A satisfying the

assumptions of the previous lemma, obeys, for x ∈ RN and all t ∈ (0, 1),

P

(∣∣∣‖Ãx‖22 − ‖x‖22
∣∣∣ ≥ t‖x‖22

)
≤ 2 exp(−c̃t2m). (9.7)

This is the starting point of the proof of the restricted isometry property.

Proof of the RIP

Now we show that a random matrix satisfying the concentration inequality (9.7) also
satisfies the sth order restricted isometry property, provided that its number of rows
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scales at least like s times a logarithmic factor. We first show that a single column
submatrix of a random matrix is well conditioned under an appropriate condition on
its size.

Theorem 9.9. Suppose that an m × N random matrix A is drawn according to a
probability distribution for which the concentration inequality (9.7) holds, that is,
for t ∈ (0, 1),

P
(∣∣‖Ax‖22 − ‖x‖22

∣∣ ≥ t‖x‖22
)
≤ 2 exp

(
−c̃t2m

)
for all x ∈ R

N . (9.8)

For S ⊂ [N ] with card(S) = s and δ, ε ∈ (0, 1), if

m ≥ Cδ−2(7s+ 2 ln(2ε−1)), (9.9)

where C = 2/(3c̃), then with probability at least 1− ε

‖A∗
SAS − Id‖2→2 < δ.

Proof. According to Proposition C.3, for ρ ∈ (0, 1/2), there exists a finite subset U
of the unit ball BS = {x ∈ R

N , suppx ⊂ S, ‖x‖2 ≤ 1} which satisfies

card(U) ≤
(
1 +

2

ρ

)s
and min

u∈U
‖z− u‖2 ≤ ρ for all z ∈ BS .

The concentration inequality (9.8) gives, for t ∈ (0, 1) depending on δ and ρ to be
determined later,

P
(∣∣‖Au‖22 − ‖u‖22

∣∣ ≥ t ‖u‖22 for some u ∈ U
)

≤
∑
u∈U

P
(∣∣‖Au‖22 − ‖u‖22

∣∣ ≥ t ‖u‖22
)
≤ 2 card(U) exp

(
−c̃t2m

)

≤ 2

(
1 +

2

ρ

)s
exp
(
−c̃t2m

)
.

Let us assume now that the realization of the random matrix A yields

∣∣‖Au‖22 − ‖u‖22
∣∣ < t‖u‖22 for all u ∈ U. (9.10)

By the above, this occurs with probability exceeding

1 − 2

(
1 +

2

ρ

)s
exp
(
−c̃t2m

)
. (9.11)

For a proper choice of ρ and t, we are going to prove that (9.10) implies∣∣‖Ax‖22 − ‖x‖22
∣∣ ≤ δ for all x ∈ BS , i.e., ‖A∗

SAS − Id‖2→2 ≤ δ. With
B = A∗

SAS − Id, (9.10) means that |〈Bu,u〉| < t for all u ∈ U . Now consider
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a vector x ∈ BS and choose a vector u ∈ U satisfying ‖x − u‖2 ≤ ρ < 1/2.
We obtain

|〈Bx,x〉| = |〈Bu,u〉+ 〈B(x+ u),x− u〉| ≤ |〈Bu,u〉|+ |〈B(x+ u),x− u〉|

< t+ ‖B‖2→2 ‖x+ u‖2‖x− u‖2 ≤ t+ 2 ‖B‖2→2 ρ.

Taking the maximum over all x ∈ BS , we deduce that

‖B‖2→2 < t+ 2 ‖B‖2→2 ρ, i.e., ‖B‖2→2 ≤
t

1− 2ρ
.

We therefore choose t := (1 − 2ρ)δ, so that ‖B‖2→2 < δ. By (9.11), we conclude
that

P (‖A∗
SAS − Id‖2→2 ≥ δ) ≤ 2

(
1 +

2

ρ

)s
exp
(
−c̃(1− 2ρ)2δ2m

)
. (9.12)

It follows that ‖A∗
SAS − Id‖2→2 ≤ δ with probability at least 1− ε provided

m ≥ 1

c̃(1− 2ρ)2
δ−2
(
ln(1 + 2/ρ)s+ ln(2ε−1)

)
. (9.13)

We now choose ρ = 2/(e7/2 − 1) ≈ 0.0623 so that 1/(1 − 2ρ)2 ≤ 4/3 and
ln(1 + 2/ρ)/(1− 2ρ)2 ≤ 14/3. Thus, (9.13) is fulfilled when

m ≥ 2

3c̃
δ−2
(
7s+ 2 ln(2ε−1)

)
. (9.14)

This concludes the proof. ��

Remark 9.10. (a) The attentive reader may have noticed that the above proof
remains valid if one passes from coordinate subspaces indexed by S to
restrictions of A to arbitrary s-dimensional subspaces of RN .

(b) The statement (and proof) does not depend on the columns of A outside S.
Therefore, it follows that for an m× s subgaussian random matrix B, we have

‖ 1
m
B∗B− Id‖2→2 < δ

with probability at least 1− ε provided that (9.9) holds, or equivalently,

P(‖m−1B∗B− Id‖2→2 ≥ δ) ≤ 2 exp

(
−3c̃

4
δ2m+

7

2
s

)
. (9.15)

Let us now pass to the restricted isometry property.



278 9 Sparse Recovery with Random Matrices

Theorem 9.11. Suppose that an m × N random matrix A is drawn according to
a probability distribution for which the concentration inequality (9.7) holds, that is,
for t ∈ (0, 1),

P
(∣∣‖Ax‖22 − ‖x‖22

∣∣ ≥ t‖x‖22
)
≤ 2 exp

(
−c̃t2m

)
for all x ∈ R

N .

If, for δ, ε ∈ (0, 1),

m ≥ Cδ−2
[
s (9 + 2 ln(N/s)) + 2 ln(2ε−1)

]
,

where C = 2/(3c̃), then with probability at least 1 − ε, the restricted isometry
constant δs of A satisfies δs < δ.

Proof. We recall from (6.2) that δs = supS⊂[N ],card(S)=s ‖A∗
SAS − Id‖2→2. With

the same notation as in the proof of Theorem 9.9, using (9.12) and taking the union
bound over all

(
N
s

)
subsets S ⊂ [N ] of cardinality s yields

P(δs ≥ δ) ≤
∑

S⊂[N ],card(S)=s

P (‖A∗
SAS − Id‖2→2 ≥ δ)

≤ 2

(
N

s

)(
1 +

2

ρ

)s
exp
(
−c̃δ2(1 − 2ρ)2m

)

≤ 2

(
eN

s

)s(
1 +

2

ρ

)s
exp
(
−c̃δ2(1 − 2ρ)2m

)
,

where we have additionally applied Lemma C.5 in the last step. Making the choice
ρ = 2/(e7/2 − 1) as before yields that δs < δ with probability at least 1− ε if

m ≥ 1

c̃δ2

(
4

3
s ln(eN /s) +

14

3
s+

4

3
ln(2ε−1)

)
,

which is a reformulation of the desired condition. ��

By possibly adjusting constants, the above theorem combined with Lemma 9.8
implies Theorem 9.6, and together with Lemma 9.7, this proves Theorem 9.2 and
Corollary 9.3.

We now gather the results of this section to conclude with the main theorem about
sparse reconstruction via �1-minimization from random measurements.

Theorem 9.12. Let A be an m × N subgaussian random matrix. There exist
constants C1, C2 > 0 only depending on the subgaussian parameters β, κ such
that if, for ε ∈ (0, 1),

m ≥ C1s ln(eN /s) + C2 ln(2ε
−1),
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then with probability at least 1−ε every s-sparse vectorx is recovered from y = Ax
via �1-minimization.

Proof. The statement follows from a combination of Theorems 9.2 and 6.9 (or
alternatively, Theorem 6.12) by additionally noting that exact sparse recovery is
independent of the normalization of the matrix. ��

This result extends to stable and robust recovery.

Theorem 9.13. Let A be an m × N subgaussian random matrix. There exist
constants C1, C2 > 0 depending only on the subgaussian parameters β, κ and
universal constants D1, D2 > 0 such that if, for ε ∈ (0, 1),

m ≥ C1s ln(eN /s) + C2 ln(2ε
−1),

then the following statement holds with probability at least 1−ε uniformly for every
s-sparse vector x ∈ CN : given y = Ax+ e with ‖e‖2 ≤

√
mη for some η ≥ 0, a

solution x� of

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤
√
mη (9.16)

satisfies

‖x− x�‖2 ≤ D1
σs(x)1√

s
+D2 η,

‖x− x�‖1 ≤ D1σs(x)1 +D2

√
s η.

Proof. The optimization problem (9.16) is equivalent to

minimize
z∈CN

‖z‖1 subject to ‖ 1√
m
Az− 1√

m
y‖2 ≤ η

involving the rescaled matrix A/
√
m. A combination of Theorems 9.2 and 6.12

yields the result. ��

Remark 9.14. Setting ε = 2 exp(−m/(2C2)) shows stable and robust recov-
ery of all s-sparse vectors via �1-minimization with probability at least 1 − 2
exp(−m/(2C2)) using an m×N subgaussian random matrix for which

m ≥ 2C1s ln(eN /s).

We will see in Chap. 10 that this condition on the required number of measurement
cannot be improved.

The condition ‖e‖2 ≤
√
mη in Theorem 9.13 is natural for a vector e ∈ C

m.
For instance, it is implied by the entrywise bound |ej| ≤ η for all j ∈ [m].
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We obtain the same type of uniform recovery results for other algorithms
guaranteed to succeed under restricted isometry conditions; see Chap. 6. This
includes iterative hard thresholding, hard thresholding pursuit, orthogonal matching
pursuit, and compressive sampling matching pursuit. Moreover, such recovery
guarantees hold as well for general random matrices satisfying the concentration
inequality (9.8), such as random matrices with independent isotropic subgaussian
rows.

Universality

Often sparsity does not occur with respect to the canonical basis but rather with
respect to some other orthonormal basis. This means that the vector of interest can
be written as z = Ux with an N ×N orthogonal matrix U and an s-sparse vector
x ∈ CN . Taking measurements of z with a random matrix A can be written as

y = Az = AUx.

In order to recover z, it suffices to first recover the sparse vector x and then to form
z = Ux. Therefore, this more general problem reduces to the standard compressive
sensing problem with measurement matrix A′ = AU. Hence, we consider this
model with a randomm×N matrix A and a fixed (deterministic) orthogonal matrix
U ∈ RN×N as a new measurement matrix of interest in this context. It turns out
that the previous analysis can easily be adapted to this more general situation.

Theorem 9.15. Let U ∈ RN×N be a (fixed) orthogonal matrix. Suppose that an
m×N random matrix A is drawn according to a probability distribution for which
the concentration inequality

P
(∣∣‖Ax‖22 − ‖x‖22

∣∣ ≥ t‖x‖22
)
≤ 2 exp

(
−c̃t2m

)
(9.17)

holds for all t ∈ (0, 1) and x ∈ RN . Then, given δ, ε ∈ (0, 1), the restricted isometry
constant δs of AU satisfies δs < δ with probability at least 1− ε provided

m ≥ Cδ−2
[
s (9 + 2 ln(N/s)) + 2 ln(2ε−1)

]

with C = 2/(3c̃).

Proof. The crucial point of the proof is that the concentration inequality (9.17) holds
also with A replaced by AU. Indeed, let x ∈ RN and set x′ = Ux. The fact that
U is orthogonal yields

P
(∣∣‖AUx‖22 − ‖x‖22

∣∣ ≥ t‖x‖22
)
= P
(∣∣‖Ax′‖22 − ‖x′‖22

∣∣ ≥ t‖x′‖22
)

≤ 2 exp
(
−c̃t2m

)
.

Therefore, the statement follows from Theorem 9.11. ��



9.2 Nonuniform Recovery 281

In particular, since the orthogonal matrix U is arbitrary in the above theorem, sparse
recovery with subgaussian matrices is universal with respect to the orthonormal
basis in which signals are sparse. It even means that at the encoding stage when
measurements y = AUx are taken, the orthogonal matrix U does not need to be
known. It is only used at the decoding stage when a recovery algorithm is applied.

We emphasize, however, that universality does not mean that a single (fixed)
measurement matrix A is able to deal with sparsity in any orthonormal basis. It is
actually straightforward to see that this is impossible because once A is fixed, one
can construct an orthogonal U for which sparse recovery fails. The theorem only
states that for a fixed orthogonal U, a random choice of A will work well with high
probability.

9.2 Nonuniform Recovery

In this section, we consider the probability that a fixed sparse vector x is recovered
via �1-minimization from y = Ax using a random draw of a subgaussian matrix
A. We first discuss differences between uniform and nonuniform recovery. Then we
give a first simple estimate for subgaussian matrices with good constants followed
by an improved version for the special case of Gaussian matrices.

Uniform Versus Nonuniform Recovery

One may pursue different strategies in order to obtain rigorous recovery results.
We distinguish between uniform and nonuniform recovery guarantees. A uniform
recovery guarantee means that, with high probability on the choice of a random
matrix, all sparse signals can be recovered using the same matrix. The bounds for the
restricted isometry property that we have just derived indeed imply uniform recovery
for subgaussian random matrices. A nonuniform recovery result only states that a
fixed sparse signal can be recovered with high probability using a random draw
of the matrix. In particular, such weaker nonuniform results allow in principle the
small exceptional set of matrices for which recovery is not necessarily guaranteed to
depend on the signal, in contrast to a uniform statement. Clearly, uniform recovery
implies nonuniform recovery, but the converse is not true. In mathematical terms, a
uniform recovery guarantee provides a lower probability estimate of the form

P(∀s-sparse x, recovery of x is successful using A) ≥ 1− ε,

while nonuniform recovery gives a statement of the form

∀s-sparse x : P(recovery of x is successful using A) ≥ 1− ε,
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where in both cases the probability is over the random draw of A. Due to the
appearance of the quantifier ∀x at different places, the two types of statements are
clearly different.

For subgaussian random matrices, a nonuniform analysis enables to provide
explicit and good constants in estimates for the required number of measurements—
although the asymptotic analysis is essentially the same in both types of recovery
guarantees. The advantage of the nonuniform approach will become more apparent
later in Chap. 12, where we will see that such type of results will be easier to prove
for structured random matrices and will provide better estimates both in terms of
constants and asymptotic behavior.

Subgaussian Random Matrices

Our first nonuniform recovery results for �1-minimization concerns subgaussian
random matrices.

Theorem 9.16. Let x ∈ CN be an s-sparse vector. Let A ∈ Rm×N be a randomly
drawn subgaussian matrix with subgaussian parameter c in (9.2). If, for some
ε ∈ (0, 1),

m ≥ 4c

1− δ
s ln(2N/ε), with δ =

√
C

4c

(
7

ln(2N/ε)
+

2

s

)
(9.18)

(assuming N and s are large enough so that δ < 1), then with probability at least
1− ε the vector x is the unique minimizer of ‖z‖1 subject to Az = Ax.

The constant C = 2/(3c̃) depends only on the subgaussian parameter c through
c̃ in (9.6).

Remark 9.17. The parameter δ in (9.18) tends to zero as N and s get large so that,
roughly speaking, sparse recovery is successful provided m > 4cs ln(2N/ε). In
the Gaussian and Bernoulli case where c = 1/2, we roughly obtain the sufficient
condition

m > 2s ln(2N/ε). (9.19)

Later we will replace the factor ln(2N/ε) by ln(N/s) in the Gaussian case.

Proof (of Theorem 9.16). Set S := suppx and note that card(S) ≤ s. By Corol-
lary 4.28, it is sufficient to show that AS is injective and that

|〈(AS)
†a�, sgn(xS)〉| = |〈a�, (A†

S)
∗sgn(xS)〉| < 1 for all � ∈ S.

Therefore, the probability of failure of recovery is bounded, for any α > 0, by
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P := P

(
∃� ∈ S : |〈a�, (A†

S)
∗sgn(xS)〉| ≥ 1

)

≤ P

(
∃� ∈ S : |〈a�, (A†

S)
∗sgn(xS)〉| ≥ 1

∣∣∣‖(A†
S)

∗sgn(xS)‖2 < α
)

(9.20)

+ P(‖(A†
S)

∗sgn(xS)‖2 ≥ α). (9.21)

The term in (9.20) above is estimated using Corollary 8.8. (In the real case, we may
alternatively use Theorem 7.27.) Hereby, we additionally use the independence of
all the entries of A so that, in particular, a� and AS are independent for � /∈ S.
Conditioning on the event that ‖(A†

S)
∗sgn(xS)‖2 < α, we obtain

P

(
|〈a�, (A†

S)
∗sgn(xS)〉| ≥ 1

)
= P

⎛
⎝|

m∑
j=1

(a�)j [(A
†
S)

∗sgn(xS)]j | ≥ 1

⎞
⎠

≤ 2 exp

(
− 1

4cα2

)
.

The term in (9.20) can be estimated by 2(N − s)exp(−1/(4cα2)) due to the union
bound, which in turn is no larger than (N − s)ε/N ≤ (N − 1)ε/N when

α−2 = 4c ln(2N/ε).

For the term in (9.21), we observe that

‖(A†
S)

∗sgn(xS)‖22 ≤ σ−2
min(AS)‖sgn(xS)‖22 ≤ σ−2

min(AS) s,

where σmin denotes the smallest singular value; see (A.26). Therefore,

P(‖(A†
S)

∗sgn(xS)‖2 ≥ α) ≤ P

(
σ2
min(AS/

√
m) ≤ s

α2m

)

≤ P(σ2
min(AS/

√
m) ≤ 1− δ),

where we have used that δ ∈ (0, 1) is such that

m ≥ 4c

1− δ
s ln(2N/ε) =

s

α2(1− δ)
.

By Theorem 9.9 and Remark 9.10(b), the matrix B = AS/
√
m satisfies

P(σ2
min(B) ≤ 1− δ) ≤ P(‖B∗B− Id‖2→2 ≥ δ) ≤ 2 exp

(
−δ

2m

2C
+

7

2
s

)
.
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The constant C = 2/(3c̃) depends only on the subgaussian parameter c through c̃
in (9.6). The term in (9.21) is now bounded by ε/N provided

m ≥ Cδ−2 (7s+ 2 ln(2N/ε)) . (9.22)

We see that (9.22) is implied by (9.18) with the given choice of δ and the desired
probability of failure satisfies P ≤ (N − 1)ε/N + ε/N = ε. ��

Gaussian Random Matrices

Now we improve on the logarithmic factor in (9.18) and make recovery also robust
under measurement error. For ease of presentation, we restrict to recovery of real
vectors but note that extensions to the complex case are possible.

Theorem 9.18. Let x ∈ RN be an s-sparse vector. Let A ∈ Rm×N be a randomly
drawn Gaussian matrix. If, for some ε ∈ (0, 1),

m2

m+ 1
≥ 2s

(√
ln (eN /s) +

√
ln(ε−1)

s

)2
, (9.23)

then with probability at least 1 − ε the vector x is the unique minimizer of ‖z‖1
subject to Az = Ax.

Remark 9.19. The proof enables one to even deduce a slightly more precise (but
more complicated) condition; see Remark 9.25. Roughly speaking, for large N and
mildly large s, condition (9.23) requires

m > 2s ln (eN /s) . (9.24)

Theorem 9.18 extends to robust recovery.

Theorem 9.20. Let x ∈ R
N be an s-sparse vector. Let A ∈ R

m×N be a randomly
drawn Gaussian matrix. Assume that noisy measurements y = Ax + e are taken
with ‖e‖2 ≤ η. If, for ε ∈ (0, 1) and τ > 0,

m2

m+ 1
≥ 2s

(√
ln (eN /s) +

√
ln(ε−1)

s
+

τ√
s

)2
,

then with probability at least 1 − ε, every minimizer x� of ‖z‖1 subject to
‖Az− y‖2 ≤ η satisfies

‖x− x�‖2 ≤
2η

τ
.



9.2 Nonuniform Recovery 285

We develop the proof of these theorems in several steps. The basic ingredients
are the recovery conditions of Theorems 4.35 and 4.36 based on the tangent cone
T (x) of the �1-norm defined in (4.34).

We start our analysis with a general concentration of measure result for Gaussian
random matrices. We recall from Proposition 8.1(b) that a standard Gaussian
random vector g ∈ Rm satisfies

Em := E‖g‖2 =
√
2
Γ ((m+ 1)/2)

Γ (m/2)
(9.25)

and m/
√
m+ 1 ≤ Em ≤

√
m. For a set T ⊂ RN , we introduce its Gaussian

width by

�(T ) := E sup
x∈T
〈g,x〉, (9.26)

where g ∈ RN is a standard Gaussian random vector. The following result is known
as Gordon’s escape through the mesh theorem.

Theorem 9.21. Let A ∈ Rm×N be a Gaussian random matrix and T be a subset
of the unit sphere SN−1 = {x ∈ RN , ‖x‖2 = 1}. Then, for t > 0,

P

(
inf
x∈T

‖Ax‖2 ≤ Em − �(T )− t

)
≤ e−t

2/2.

Proof. We first aim to estimate the expectation E infx∈T ‖Ax‖2 via Gordon’s
lemma (Lemma 8.27). For x ∈ T and y ∈ Sm−1, we define the Gaussian process

Xx,y := 〈Ax,y〉 =
m∑
�=1

N∑
j=1

A�jxjy�. (9.27)

Then infx∈T ‖Ax‖2 = infx∈T maxy∈Sm−1 Xx,y. The key idea is to compareXx,y

to another Gaussian process Yx,y, namely, to

Yx,y := 〈g,x〉+ 〈h,y〉,

where g ∈ RN and h ∈ Rm are independent standard Gaussian random vectors. Let
x,x′ ∈ SN−1 and y,y′ ∈ Sm−1. One the one hand, since the A�j are independent
and of variance 1, we have

E|Xx,y −Xx′,y′ |2 = E

∣∣∣∣∣∣
m∑
�=1

N∑
j=1

A�j(xjy� − x′jy
′
�)

∣∣∣∣∣∣
2

=

m∑
�=1

N∑
j=1

(xjy� − x′jy
′
�)

2

=

m∑
�=1

N∑
j=1

(
x2jy

2
� + (x′j)

2(y′�)
2 − 2xjx

′
jy�y

′
�

)
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= ‖x‖22‖y‖22 + ‖x′‖22‖y′‖22 − 2〈x,x′〉〈y,y′〉

= 2− 2〈x,x′〉〈y,y′〉.

On the other hand, using independence and the isotropicity of the standard
multivariate Gaussian distribution (see Lemma 9.7), we have

E|Yx,y − Yx′,y′ |2 = E |〈g,x− x′〉+ 〈h,y − y′〉|2

= E|〈g,x − x′〉|2 + E|〈h,y − y′〉|2

= ‖x− x′‖22 + ‖y − y′‖22
= ‖x‖22 + ‖x′‖22 − 2〈x,x′〉+ ‖y‖22 + ‖y′‖22 − 2〈y,y′〉

= 4− 2〈x,x′〉 − 2〈y,y′〉.

We obtain

E|Yx,y − Yx′,y′ |2 − E|Xx,y −Xx′,y′ |2 = 2(1− 〈x,x′〉 − 〈y,y′〉+ 〈x,x′〉〈y,y′〉)
= 2(1− 〈x,x′〉)(1− 〈y,y′〉) ≥ 0,

where the last inequality follows from the Cauchy–Schwarz inequality and the
fact that all vectors are unit norm. Equality holds if and only if 〈x,x′〉 = 1 or
〈y,y′〉 = 1. Therefore, we have shown that

E|Xx,y −Xx′,y′ |2 ≤ E|Yx,y − Yx′,y′ |2, (9.28)

E|Xx,y −Xx,y′|2 = E|Yx,y − Yx,y′ |2. (9.29)

It follows from Gordon’s lemma (Lemma 8.27) and Remark 8.28 that

E inf
x∈T

‖Ax‖2 = E inf
x∈T

max
y∈Sm−1

Xx,y ≥ E inf
x∈T

max
y∈Sm−1

Yx,y

= E inf
x∈T

max
y∈Sm−1

{〈g,x〉+ 〈h,y〉} = E inf
x∈T

{〈g,x〉+ ‖h‖2}

= E‖h‖2 − E sup
x∈T
〈g,x〉 = Em − �(T ),

where we have once applied the symmetry of a standard Gaussian vector.
We notice that F (A) := infx∈T ‖Ax‖2 defines a Lipschitz function with respect

to the Frobenius norm (which corresponds to the �2-norm by identifying Rm×N

with RmN ). Indeed, for two matrices A,B ∈ Rm×N ,

inf
x∈T

‖Ax‖2 ≤ inf
x∈T

(‖Bx‖2 + ‖(A−B)x‖2) ≤ inf
x∈T

(‖Bx‖2 + ‖A−B‖2→2)

≤ inf
x∈T

‖Bx‖2 + ‖A−B‖F .
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Hereby, we have used that T ⊂ SN−1 and that the operator norm is bounded by
the Frobenius norm; see (A.17). Interchanging the role of A and B, we conclude
that |F (A) − F (B)| ≤ ‖A − B‖F . It follows from concentration of measure
(Theorem 8.40) that

P( inf
x∈T

‖Ax‖2 ≤ E inf
x∈T

‖Ax‖2 − t) ≤ e−t
2/2.

Substituting the estimation on the expectation E infx∈T ‖Ax‖2 derived above
concludes the proof. ��

According to Theorem 4.35, to prove that a random vector x ∈ R
N is recovered

from Ax via �1-minimization, we need to establish that kerA ∩ T (x) = {0},
where

T (x) = cone{z− x : z ∈ R
N , ‖z‖1 ≤ ‖x‖1}.

Equivalently, we need to establish that

inf
z∈T (x)∩SN−1

‖Az‖2 > 0.

To this end, Theorem 9.21 is useful if we find an upper bound for the Gaussian width
of T := T (x)∩SN−1. The next result gives such a bound involving the normal cone
of the �1-norm at x, i.e., the polar coneN (x) = T (x)◦ of T (x) (see (B.3)), namely,

N (x) =
{
z ∈ R

N : 〈z,w − x〉 ≤ 0 for all w such that ‖w‖1 ≤ ‖x‖1
}
. (9.30)

Proposition 9.22. Let g ∈ RN be a standard Gaussian random vector. Then

�(T (x) ∩ SN−1) ≤ E min
z∈N (x)

‖g− z‖2. (9.31)

Proof. It follows from (B.40) that

�(T (x) ∩ SN−1) = E max
z∈T (x),‖z‖2=1

〈g, z〉 ≤ E max
z∈T (x),‖z‖2≤1

〈g, z〉

≤ E min
z∈T (x)◦

‖g− z‖2.

By definition of the normal cone, this establishes the claim. ��

The previous result leads us to computing the normal cone of the �1-norm at a
sparse vector.

Lemma 9.23. Let x ∈ RN with supp(x) = S ⊂ [N ]. Then

N (x) =
⋃
t≥0

{
z ∈ R

N , z� = t sgn(x�) for � ∈ S, |z�| ≤ t for � ∈ S
}
. (9.32)
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Proof. If z is contained in the right-hand side of (9.32), then, for w such that
‖w‖1 ≤ ‖x‖1,

〈z,w − x〉 = 〈z,w〉 − 〈z,x〉 ≤ ‖z‖∞‖w‖1 − ‖z‖∞‖x‖1 = ‖z‖∞(‖w‖1 − ‖x‖1)
≤ 0,

hence, z ∈ N (x).
Conversely, assume that z ∈ N (x), i.e., that 〈z,w〉 ≤ 〈z,x〉 for all w with

‖w‖1 ≤ ‖x‖1. Consider a vector w with ‖w‖1 = ‖x‖1 such that sgn(wj) =
sgn(zj) whenever |zj | = ‖z‖∞ and wj = 0 otherwise. Then

‖z‖∞‖w‖1 = 〈z,w〉 ≤ 〈z,x〉 ≤ ‖z‖∞‖x‖1 = ‖z‖∞‖w‖1.

In particular, 〈z,x〉 = ‖z‖∞‖x‖1, which means that z� = sgn(x�)‖z‖∞ for all
� ∈ S. Since obviously also |z�| ≤ ‖z‖∞ for all � ∈ S, we choose t = ‖z‖∞ to see
that z is contained in right-hand side of (9.32). ��

Now we are in a position to estimate the desired Gaussian width.

Proposition 9.24. If x ∈ RN is an s-sparse vector, then

(
�(T (x) ∩ SN−1)

)2 ≤ 2s ln(eN /s). (9.33)

Proof. It follows from Proposition 9.22 and Hölder’s inequality that

(�(T (x) ∩ SN−1))2 ≤
(
E min

z∈N (x)
‖g− z‖2

)2
≤ E min

z∈N (x)
‖g− z‖22. (9.34)

Let S = supp(x) so that card(S) ≤ s. According to (9.32), we have

min
z∈N (x)

‖g− z‖22 = min
t≥0

|z�|≤t,�∈S

∑
�∈S

(g� − tsgn(x�))
2 +
∑
�∈S

(g� − z�)
2. (9.35)

A straightforward computation shows that (see also Exercise 15.2)

min
|z�|≤t

(g� − z�)
2 = St(g�)

2,

where St is the soft thresholding operator (B.18) given by

St(u) =

⎧⎨
⎩
u− t if u ≥ t,

0 if |u| ≤ t,

u+ t if u ≤ −t.

Hence, for a fixed t > 0 independent of g,
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min
z∈N (x)

‖g− z‖22 ≤ E

[∑
�∈S

(g� − tsgn(x�))
2

]
+ E

⎡
⎣∑
�∈S

St(g�)
2

⎤
⎦

≤ sE(g + t)2 +
∑
�∈S

ESt(g�)
2 = s(1 + t2) + (N − s)ESt(g)

2,

where g is a (univariate) standard Gaussian random variable. It remains to estimate
ESt(g)

2. Applying symmetry of g and St as well as a change of variables, we get

ESt(g)
2 =

2√
2π

∫ ∞

0

St(u)
2e−u

2/2du =

√
2

π

∫ ∞

t

(u− t)2e−u
2/2du

=

√
2

π

∫ ∞

0

v2e−(v+t)2/2dv = e−t
2/2

√
2

π

∫ ∞

0

v2e−v
2/2e−vtdv (9.36)

≤ e−t
2/2

√
2

π

∫ ∞

0

v2e−v
2/2dv = e−t

2/2
E[g2] = e−t

2/2.

Combining the above arguments gives

(�(T (x) ∩ SN−1))2 ≤ min
t≥0

{
s(1 + t2) + (N − s)e−t

2/2
}

≤ min
t≥0

{
s(1 + t2) +Ne−t

2/2
}
.

The choice t =
√
2 ln(N/s) shows that

(�(T (x) ∩ SN−1))2 ≤ s(1 + 2 ln(N/s)) + s = 2s ln(eN /s).

This completes the proof. ��

Let us finally complete the proofs of the nonuniform recovery results for
Gaussian random matrices.

Proof (of Theorem 9.18). Let us set t =
√
2 ln(ε−1). By Proposition 9.24 and since

Em ≥ m/
√
m+ 1 (see Proposition 8.1(b)), Condition (9.23) ensures that

Em − �(T (x) ∩ SN−1)− t ≥ 0.

It follows from Theorem 9.21 that

P

(
min

z∈T (x)∩SN−1
‖Az‖2 > 0

)

≥ P

(
min

z∈T (x)∩SN−1
‖Az‖2 > Em − �(T (x) ∩ SN−1)− t

)

≥ 1− e−t
2/2 = 1− ε. (9.37)
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This implies that T (x)∩kerA = {0}with probability at least 1−ε. An application
of Theorem 4.35 concludes the proof. ��

Proof (of Theorem 9.20). With the same notation as in the previous proof, the
assumptions of Theorem 9.20 imply

Em − �(T (x) ∩ SN−1)− τ − t ≥ 0.

As in (9.37), we conclude that

P

(
min

z∈T (x)∩SN−1
‖Az‖2 ≥ τ

)
≥ 1− ε.

The claim follows then from Theorem 4.36. ��

Remark 9.25. We can also achieve a slightly better (but more complicated) bound
for the Gaussian width in Proposition 9.24. Instead of the bound ESt(g)

2 ≤ e−t
2/2

ESt(g)
2 = e−t

2/2

√
2

π

∫ ∞

0

v2e−v
2/2e−vtdv ≤

√
2

π
e−1/2e−t

2/2

∫ ∞

0

ve−vtdv

=

√
2

πe
t−2e−t

2/2. (9.38)

Following the arguments in the proof of Proposition 9.24, the choice t =√
2 ln(N/s)− 1 =

√
2 ln(N/(

√
es)), which is valid if N >

√
es, yields

(
�(T (x) ∩ SN−1)

)2 ≤ 2s ln(N/s) +

√
1

2π

s

ln(N/(
√
es))

.

Therefore, if N >
√
es, then the recovery condition (9.23) can be refined to

m2

m+ 1
≥ 2s

(√
ln(N/s) +

1√
8π ln(N/(

√
es))

+

√
ln(ε−1)

s

)2
. (9.39)

Roughly speaking, for large N , mildly large s, and large ratio N/s, we obtain the
“asymptotic” recovery condition

m > 2s ln(N/s). (9.40)

This is the general rule of thumb for compressive sensing and reflects well empirical
tests for sparse recovery using Gaussian matrices but also different random matrices.
However, our proof of this result is restricted to the Gaussian case.

derived in the proof of Proposition 9.24, we use the elementary inequality
ve−v2/2 ≤ e−1/2 in (9.36) to obtain
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9.3 Restricted Isometry Property for Gaussian Matrices

We return to the uniform setting specialized to Gaussian matrices, for which we can
provide explicit constants in the estimate for the required number of measurements.
We first treat the restricted isometry property. In the next section, we provide a direct
proof for the null space property of Gaussian matrices resulting in very reasonable
constants.

The approach for the restricted isometry property of Gaussian random matrices
in this section (as well as the one for the null space property in the next section)
is based on concentration of measure (Theorem 8.40) and on the Slepian–Gordon
lemmas, therefore it does not generalize to subgaussian matrices.

We start with estimates for the extremal singular values of a Gaussian random
matrix.

Theorem 9.26. Let A be an m× s Gaussian matrix with m > s and let σmin and
σmax be the smallest and largest singular value of the renormalized matrix 1√

m
A.

Then, for t > 0,

P(σmax ≥ 1 +
√
s/m+ t) ≤ e−mt

2/2, (9.41)

P(σmin ≤ 1−
√
s/m− t) ≤ e−mt

2/2. (9.42)

Proof. By Proposition A.16, the extremal singular values are 1-Lipschitz func-
tions with respect to the Frobenius norm (which corresponds to the �2-norm by
identifying Rm×s with Rms ). Therefore, it follows from concentration of measure
(Theorem 8.40) that in particular the largest singular value of the non-normalized
matrix A satisfies

P(σmax(A) ≥ E[σmax(A)] + r) ≤ e−r
2/2. (9.43)

Let us estimate the expectation above using Slepian’s lemma (Lemma 8.25).
Observe that

σmax(A) = sup
x∈Ss−1

sup
y∈Sm−1

〈Ax,y〉. (9.44)

As in the proof of Theorem 9.21, we introduce two Gaussian processes by

Xx,y := 〈Ax,y〉,

Yx,y := 〈g,x〉 + 〈h,y〉, (9.45)

where g ∈ Rs,h ∈ Rm are two independent standard Gaussian random vectors. By
(9.28), for x,x′ ∈ Ss−1 and y,y′ ∈ Sm−1, we have

E|Xx,y −Xx′,y′ |2 ≤ E|Yx,y − Yx′,y′ |2. (9.46)
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Slepian’s lemma (Lemma 8.25) together with Remark 8.28 implies that

Eσmax(A) = E sup
x∈Ss−1,y∈Sm−1

Xx,y ≤ E sup
x∈Ss−1,y∈Sm−1

Yx,y

= E sup
x∈Ss−1

〈g,x〉 + E sup
y∈Sm−1

〈h,y〉 = E‖g‖2 + E‖h‖2 ≤
√
s+

√
m.

The last inequality follows from Proposition 8.1(b). Plugging this estimate into
(9.43) shows that

P(σmax(A) ≥
√
m+

√
s+ r) ≤ e−r

2/2.

Rescaling by 1√
m

shows the estimate for the largest singular value of 1√
m
A.

The smallest singular value σmin(A) = infx∈Ss−1 ‖Ax‖2 can be estimated with
the help of Theorem 9.21 (which relies on concentration of measure for Lipschitz
functions as well). The required Gaussian width of T = Ss−1 is given, for a standard
Gaussian vector g in Rs, by

�(Ss−1) = E sup
x∈Ss−1

〈g,x〉 = E‖g‖2 = Es.

By Proposition 8.1(b) and Lemma C.4, we further obtain

Em − �(Ss−1) =
√
2
Γ ((m+ 1)/2)

Γ (m/2)
−
√
2
Γ ((s+ 1)/2)

Γ (s/2)
≥
√
m−

√
s.

Applying Theorem 9.21 and rescaling concludes the proof. ��

With this tool at hand, we can easily show the restricted isometry property for
Gaussian matrices.

Theorem 9.27. Let A be an m × N Gaussian matrix with m < N . For
η, ε ∈ (0, 1), assume that

m ≥ 2η−2
(
s ln(eN /s) + ln(2ε−1)

)
. (9.47)

Then with probability at least 1 − ε the restricted isometry constant δs of 1√
m
A

satisfies

δs ≤ 2

(
1 +

1√
2 ln(eN /s)

)
η +

(
1 +

1√
2 ln(eN /s)

)2
η2. (9.48)

Remark 9.28. Note that (9.48) implies the simpler inequality δs ≤ Cη with
C = 2(1 +

√
1/2) + (1 +

√
1/2)2 ≈ 6.3284. In other words, the condition

m ≥ C̃δ−2
(
s ln(eN /s) + ln(2ε−1)

)
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with C̃ = 2C2 ≈ 80.098 implies δs ≤ δ. In most situations, i.e., when
s � N , the statement of the theorem provides better constants. For instance, if
2 ln(eN /(2s)) ≥ 8, that is, N/s ≥ 2e3 ≈ 40.171 and η = 1/5, then
δ2s ≤ 0.6147 < 0.6248 (compare with Theorem 6.12 concerning �1-minimization)
provided

m ≥ 50
(
2s ln(eN /(2s)) + ln(2ε−1)

)
.

Further, in the limit N/s→∞, we obtain δs ≤ 2η + η2. Then the choice η = 0.27
yields δ2s ≤ 0.6129 under the conditionm ≥ 27.434

(
2s ln(eN /(2s)) + ln(2ε−1)

)
in this asymptotic regime.

Proof (of Theorem 9.27). We proceed similarly to the proof of Theorem 9.11. Let
S ⊂ [N ] be of cardinality s. The submatrix AS is an m × s Gaussian matrix, and
the eigenvalues of 1

mA∗
SAS − Id are contained in [σ2

min− 1, σ2
max− 1] where σmin

and σmax are the extremal singular values of ÃS = 1√
m
AS . Theorem 9.26 implies

that with probability at least 1− 2 exp(−mη2/2)

‖Ã∗
SÃS − Id‖2→2 ≤ max

{
(1 +
√
s/m+ η)2 − 1, 1− (1− (

√
s/m+ η))2

}

= 2(
√
s/m+ η) + (

√
s/m+ η)2.

Taking the union bound over all
(
N
s

)
subsets of [N ] of cardinality s, and in view of

δs = maxS⊂[N ],card(S)=s ‖Ã∗
SÃS − Id‖2→2, we obtain

P

(
δs > 2(

√
s/m+ η) + (

√
s/m+ η)2

)
≤ 2

(
N

s

)
e−mη

2/2

≤ 2

(
eN

s

)s
e−mη

2/2.

In the second inequality, we have applied Lemma C.5. The last term is dominated by
ε due to condition (9.47), which also implies

√
s/m ≤ η√

2 ln(eN/s)
. The conclusion

of the theorem follows. ��

9.4 Null Space Property for Gaussian Matrices

Our next theorem states stable uniform recovery with Gaussian random matrices
via �1-minimization and provides good constants. It is established by showing the
stable null space property of Definition 4.11 directly rather than by relying on the
restricted isometry property.
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Theorem 9.29. Let A ∈ Rm×N be a random draw of a Gaussian matrix. Assume
that

m2

m+ 1
≥ 2s ln(eN /s)

(
1 + ρ−1 +D(s/N) +

√
ln(ε−1)

s ln(eN /s)

)2
, (9.49)

where D is a function that satisfies D(α) ≤ 0.92 for all α ∈ (0, 1] and
limα→0D(α) = 0. Then, with probability at least 1 − ε, every vector x ∈ RN

is approximated by a minimizer x� of ‖z‖1 subject to Az = Ax in the sense that

‖x− x�‖1 ≤
2(1 + ρ)

1− ρ
σs(x)1.

Remark 9.30. (a) The function D in the above theorem is given by

D(α) =
1√

2 ln(eα−1)
+

1

(8πe3)1/4 ln(eα−1)
. (9.50)

Note that the theorem is only interesting for N ≥ 2s because otherwise it is
impossible to fulfill the null space property. In this range,D satisfies the slightly
better upper bound

D(α) ≤ D(1/2) =
1√

2 ln(2e)
+

1

(8πe3)1/4 ln(2e)
≈ 0.668.

(b) Roughly speaking, for largeN , mildly large s and small ratio s/N (which is the
situation of most interest in compressive sensing), Condition (9.49) turns into

m > 2(1 + ρ−1)2s ln(eN /s).

(c) The proof proceeds by establishing the null space property of order s with
constant ρ. Letting ρ = 1 yields exact recovery of all s-sparse vectors roughly
under the condition

m > 8s ln(eN /s). (9.51)

The proof strategy is similar to Sect. 9.2. In particular, we use Gordon’s escape
through the mesh theorem (Theorem 9.21). For ρ ∈ (0, 1], we introduce the set

Tρ,s :=
{
w ∈ R

N : ‖wS‖1 ≥ ρ‖wS‖1 for some S ⊂ [N ], card(S) = s
}
.

If we show that

min{‖Aw‖2 : w ∈ Tρ,s ∩ SN−1} > 0, (9.52)
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then we can conclude that

‖vS‖1 < ρ‖vS‖1 for all v ∈ kerA \ {0} and all S ⊂ [N ] with card(S) = s,

so that the stable null space property holds. If ρ = 1, this implies exact recovery
of all s-sparse vectors by Theorem 4.4. If ρ < 1, we even have stability of the
reconstruction by Theorem 4.12. Following Theorem 9.21, we are led to study the
Gaussian widths of the set Tρ,s ∩ SN−1. As a first step, we relate this problem to
the following convex cone

Kρ,s :=

{
u ∈ R

N : u� ≥ 0 for all � ∈ [N ],

s∑
�=1

u� ≥ ρ

N∑
�=s+1

u�

}
. (9.53)

Our next result is similar to Proposition 9.22. We recall that the nonincreasing
rearrangement g∗ of a vector g has entries g∗j = |g�j | with a permutation j �→ �j
of [N ] such that g∗1 ≥ g∗2 ≥ · · · ≥ g∗N ≥ 0; see Definition 2.4. Also, recall the
definition (B.2) of the dual cone

K∗
ρ,s = {z ∈ R

N : 〈z,u〉 ≥ 0 for all u ∈ Kρ,s}.

Proposition 9.31. Let g ∈ RN be a standard Gaussian vector and g∗ its
nonincreasing rearrangement. Then

�(Tρ,s ∩ SN−1) ≤ E min
z∈K∗

ρ,s

‖g∗ + z‖2.

Proof. Consider the maximization problem maxw∈Tρ,s∩SN−1〈g,w〉 appearing in
the definition of the Gaussian widths (9.26) (since Tρ,s ∩ SN−1 is compact the
maximum is attained). By invariance of Tρ,s under permutation of the indices and
under entrywise sign changes, we have

max
w∈Tρ,s∩SN−1

〈g,w〉 = max
w∈Tρ,s∩SN−1

〈g∗,w〉 = max
u∈Kρ,s∩SN−1

〈g∗,u〉

≤ min
z∈K∗

ρ,s

‖g∗ + z‖2,

where the inequality uses (B.39). The claim follows by taking expectations. ��

The previous results motivate us to investigate the dual cone K∗
ρ,s.

Lemma 9.32. The dual cone of Kρ,s defined in (9.53) satisfies

K∗
ρ,s ⊃ Qρ,s :=

⋃
t≥0

{
z ∈ R

N : z� = t, � ∈ [s], z� ≥ −ρt, � = s+ 1, . . . , N
}
.
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Proof. Take a vector z ∈ Qρ,s. Then, for any u ∈ Kρ,s,

〈z,u〉 =
s∑
�=1

z�u� +
N∑

�=s+1

z�u� ≥ t
s∑
�=1

u� − tρ
N∑

�=s+1

u� ≥ 0. (9.54)

Therefore, z ∈ K∗
ρ,s. ��

We are now in a position to estimate the Gaussian widths of Tρ,s ∩ SN−1.

Proposition 9.33. The Gaussian width of Tρ,s ∩ SN−1 satisfies

�(Tρ,s ∩ SN−1) ≤
√
2s ln(eN /s)

(
1 + ρ−1 +D(s/N)

)
,

where D is the function in (9.50).

Proof. By Proposition 9.31, it suffices to estimate E := Eminz∈K∗
ρ,s
‖g∗ + z‖2.

Replacing K∗
ρ,s by its subset Qρ,s from Lemma 9.32 yields

E ≤ E min
z∈Qρ,s

‖g∗ + z‖2

≤ E min
t≥0

z�≥−ρt,�=s+1,...,N

√√√√ s∑
�=1

(g∗� + t)2 +

√√√√ N∑
�=s+1

(g∗� + z�)2.

Consider a fixed t ≥ 0. Then

E ≤ E

[
s∑
�=1

(g∗� + t)2

]1/2
+ E

[
min
z�≥−ρt

N∑
�=s+1

(g∗� + z�)
2

]1/2

≤ E

√√√√ s∑
�=1

(g∗� )
2 + t

√
s+ E

[
N∑

�=s+1

Sρt(g
∗
� )

2

]1/2
, (9.55)

where Sρt is the soft thresholding operator (B.18). It follows from Hölder’s
inequality, from the fact that the sum below is over the N − s smallest elements
of the sequence (Sρt(g�))�, and from (9.38) that the third term in (9.55) can be
estimated by

E

[
N∑

�=s+1

Sρt(g
∗
� )

2

]1/2
≤
[
E

N∑
�=s+1

Sρt(g�)
2

]1/2
≤

√
(N − s)

√
2

πe

e−(ρt)2/2

(ρt)2
.

It remains to estimate the first summand in (9.55). By Hölder’s inequality, Proposi-
tion 8.2, and Lemma C.5,
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E

√√√√ s∑
�=1

(g∗� )
2 = E max

S⊂[N ],card(S)=s
‖gS‖2 ≤

√
E max
S⊂[N ],card(S)=s

‖gS‖22

≤

√
2 ln

(
N

s

)
+
√
s ≤
√
2s ln(eN /s) +

√
s

=
√
2s ln(eN /s)

(
1 +

1√
2 ln(eN /s)

)
.

Altogether we have derived that

E ≤
√
2s ln(eN /s)

(
1 +

1√
2 ln(eN /s)

)
+ t
√
s+

√
(N − s)

√
2

πe

e−(ρt)2/2

(ρt)2
.

We choose t = ρ−1
√
2 ln(eN /s) to obtain

E ≤
√
2s ln(eN /s)

(
1 + ρ−1 +

1√
2 ln(eN /s)

)

+

√
(N − s)

√
2

πe

s

2eN ln(eN /s)

≤
√
2s ln(eN /s)

(
1 + ρ−1 +

1√
2 ln(eN /s)

+
1

(8πe3)1/4 ln(eN /s)

)
.

This completes the proof by the definition (9.50) of the function D. ��

In view of Theorem 4.12, the uniform recovery result of Theorem 9.29 is now an
immediate consequence of the following statement.

Corollary 9.34. Let A ∈ Rm×N be a random draw of a Gaussian matrix. Let
s < N, ρ ∈ (0, 1], ε ∈ (0, 1) such that

m2

m+ 1
≥ 2s ln(eN /s)

(
1 + ρ−1 +D(s/N) +

√
ln(ε−1)

s ln(eN /s)

)2
.

Then with probability at least 1 − ε the matrix A satisfies the stable null space
property of order s with constant ρ.

Proof. Taking into account the preceding results, the proof is a variation of the one
of Theorem 9.18; see also Exercise 9.7. ��
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9.5 Relation to Johnson–Lindenstrauss Embeddings

The Johnson–Lindenstrauss lemma is not a statement connected with sparsity per se,
but it is closely related to the concentration inequality (9.6) for subgaussian matrices
leading to the restricted isometry property. Assume that we are given a finite set
{x1, . . . ,xM} ⊂ RN of points. If N is large, then it is usually computationally
expensive to process these points. Therefore, it is of interest to project them into
a lower-dimensional space while preserving essential geometrical properties such
as mutual distances. The Johnson–Lindenstrauss lemma states that such lower-
dimensional embeddings exist. For simplicity, we state our results for the real case,
but note that it has immediate extensions to CN (for instance, simply by identifying
CN with R2N ).

Lemma 9.35. Let x1, . . . ,xM ∈ RN be an arbitrary set of points and η > 0. If
m > Cη−2 ln(M), then there exists a matrix B ∈ Rm×N such that

(1− η)‖xj − x�‖22 ≤ ‖B(xj − x�)‖22 ≤ (1 + η)‖xj − x�‖22

for all j, � ∈ [M ]. The constant C > 0 is universal.

Proof. Considering the set

E = {xj − x� : 1 ≤ j < � ≤M}

of cardinality card(E) ≤ M(M − 1)/2, it is enough to show the existence of B
such that

(1 − η)‖x‖22 ≤ ‖Bx‖22 ≤ (1 + η)‖x‖22 for all x ∈ E. (9.56)

We take B = 1√
m
A ∈ Rm×N , where A is a random draw of a subgaussian matrix.

Then (9.6) implies that, for any fixed x ∈ E and an appropriate constant c̃,

P
( ∣∣‖Bx‖22 − ‖x‖22

∣∣ ≥ η‖x‖22
)
≤ 2 exp(−c̃mη2).

By the union bound, (9.56) holds simultaneously for all x ∈ E with probability at
least

1−M2e−c̃mη
2

.

We take m ≥ c̃−1η−2 ln(M2/ε) so that M2 exp(−c̃mη2) ≤ ε. Then inequality
(9.56) holds with probability at least 1− ε, and existence of a map with the desired
property is established when ε < 1. Considering the limit ε → 1, this gives the
claim with C = 2c̃−1. ��



9.5 Relation to Johnson–Lindenstrauss Embeddings 299

This proof shows that the concentration inequality (9.6) is closely related to the
Johnson–Lindenstrauss lemma. As (9.6) implies the restricted isometry property
by Theorem 9.11, one may even say that in this sense the Johnson–Lindenstrauss
lemma implies the restricted isometry property. We show next that in some sense
also the converse holds: Given a matrix A satisfying the restricted isometry
property, randomization of the column signs ofA provides a Johnson–Lindenstrauss
embedding via (9.56). In what follows, for a vector u, the symbol Du = diag(u)
stands for the diagonal matrix with u on the diagonal.

Theorem 9.36. Let E ⊂ RN be a finite point set of cardinality card(E) =M . For
η, ε ∈ (0, 1), let A ∈ Rm×N with restricted isometry constant satisfying δ2s ≤ η/4
for some s ≥ 16 ln(4M/ε) and let ε = (ε1, . . . , εN) be a Rademacher sequence.
Then, with probability exceeding 1− ε,

(1− η)‖x‖22 ≤ ‖ADεx‖22 ≤ (1 + η)‖x‖22 for all x ∈ E.

Remark 9.37. (a) Without randomization of the column signs, the theorem is false.
Indeed, there is no assumption on the point set E. Therefore, if we choose the
points of E from the kernel of the matrix A (which is not assumed random
here), there is no chance for the lower bound to hold. Randomization of the
column signs ensures that the probability of E intersecting the kernel of ADε

is very small.
(b) There is no direct condition on the embedding dimension m in the previ-

ous theorem, but the requirement δ2s ≤ η/4 for A ∈ Rm×N imposes
an indirect condition. For “good” matrices, one expects that this requires
m ≥ Cη−2s lnα(N), say, so that the condition on s in the previous result
turns into m ≥ Cη−2 lnα(N) ln(M/ε). In comparison to the original Johnson–
Lindenstrauss lemma (Lemma 9.35), we only observe an additional factor of
lnα(N).

(c) The theorem allows one to derive Johnson–Lindenstrauss embeddings for other
types of random matrices not being subgaussian. In Chap. 12, we will indeed
deal with different types of matrices A satisfying the restricted isometry
property, for instance, random partial Fourier matrices, so that ADε will
provide a Johnson–Lindenstrauss embedding. It is currently not known how
to show the Johnson–Lindenstrauss embedding directly for such type of
matrices.

Proof. Without loss of generality, we may assume that all x ∈ E are normalized
as ‖x‖2 = 1. Consider a fixed x ∈ E. Similarly to the proof of Theorem 6.9, we
partition [N ] into blocks of size s according to the nonincreasing rearrangement
of x. More precisely, S1 ⊂ [N ] is an index set of s largest absolute entries of the
vector x, S2 ⊂ [N ] \S1 is an index set of s largest absolute entries of x in [N ] \S1,
and so on. As usual, the expression xS (and similar ones below) can mean both the
restriction of the vector x to the indices in S and the vector whose entries are set to
zero outside of S. We write
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‖ADεx‖22 = ‖ADε

∑
j≥1

xSj‖22

=
∑
j≥1

‖ADεxSj‖22 + 2〈ADεxS1 ,ADεxS1
〉+
∑
j,�≥2
j �=�

〈ADεxSj ,ADεxS�
〉. (9.57)

Since A possesses the restricted isometry property with δs ≤ η/4 and since
‖DεxSj‖2 = ‖xSj‖2, the first term in (9.57) satisfies

(1 − η/4)‖x‖22 = (1 − η/4)
∑
j≥1

‖xSj‖22 ≤
∑
j≥1

‖ADεxSj‖22 ≤ (1 + η/4)‖x‖22.

To estimate the second term in (9.57), we consider the random variable

X := 〈ADεxS1 ,ADεxS1
〉 = 〈v, εS1

〉 =
∑
�/∈S1

ε�v�,

where v ∈ RS1 is given by

v = DxS1
A∗
S1
AS1DxS1

εS1 .

Hereby, we have exploited the fact that Dεx = Dxε. Observing that v and
εS1

are stochastically independent, we aim at applying Hoeffding’s inequality
(Corollary 7.21). To this end we estimate the 2-norm of the vector v as

‖v‖2 = sup
‖z‖2≤1

〈z,v〉 = sup
‖z‖2≤1

∑
j≥2

〈zSj ,DxSj
A∗
Sj
AS1DεS1

xS1〉

≤ sup
‖z‖2≤1

∑
j≥2

‖zSj‖2‖DxSj
A∗
Sj
AS1DεS1

‖2→2‖xS1‖2

≤ sup
‖z‖2≤1

∑
j≥2

‖A∗
Sj
AS1‖2→2‖zSj‖2‖xSj‖∞‖xS1‖2,

where we have used that ‖Du‖2→2 = ‖u‖∞ and ‖ε‖∞ = 1. In view of
the construction of S1, S2, . . ., it follows from Lemma 6.10 that ‖xSj‖∞ ≤
s−1/2‖xSj−1‖2. Moreover, ‖xS1‖2 ≤ ‖x‖2 ≤ 1 and ‖A∗

Sj
AS1‖2→2 ≤ δ2s for

j ≥ 2 by Proposition 6.3. We continue our estimation with

‖v‖2 ≤
δ2s√
s

sup
‖z‖2≤1

∑
j≥2

‖zSj‖2‖xSj−1‖2

≤ δ2s√
s

sup
‖z‖2≤1

∑
j≥2

1

2

(
‖zSj‖22 + ‖xSj−1‖22

)
≤ δ2s√

s
,
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where we have used the inequality 2ab ≤ a2 + b2 and the fact that
∑

j≥2 ‖xSj‖22 ≤
‖x‖22 = 1. Applying Hoeffding’s inequality (7.29) conditionally on εS1 yields, for
any t > 0,

P(|X | ≥ t) ≤ 2 exp

(
− t2s

2δ22s

)
≤ 2 exp

(
−8 st2

η2

)
. (9.58)

Next we consider the third term in (9.57), which can be written as

Y :=
∑
j,�≥2
j �=�

〈ADεxSj ,ADεxS�
〉 =

N∑
j,�=s+1

εjε�Bj,� = ε∗Bε,

where B ∈ RN×N is a symmetric matrix with zero diagonal given entrywise by

Bj,� =

{
xja

∗
ja�x� if j, � ∈ S1 and j, � belong to different blocks Sk,

0 otherwise.

Here, the aj , j ∈ [N ], denote the columns of A as usual. We are thus led to estimate
the tail of a Rademacher chaos, which by Proposition 8.13 requires a bound on the
spectral and on the Frobenius norm of B. By symmetry of B, the spectral norm can
be estimated by

‖B‖2→2 = sup
‖z‖2≤1

〈Bz, z〉 = sup
‖z‖2≤1

∑
j,�≥2
j �=�

〈zSj ,DxSj
A∗
Sj
AS�

DxS�
zS�
〉

≤ sup
‖z‖2≤1

∑
j,�≥2
j �=�

‖zSj‖2‖zS�
‖2‖xSj‖∞‖xS�

‖∞‖A∗
Sj
AS�

‖2→2

≤ δ2s sup
‖z‖2≤1

∑
j,�≥2
j �=�

‖zSj‖2‖zS�
‖2s−1/2‖xSj−1‖2s−1/2‖xS�−1

‖2

≤ δ2s
4s

sup
‖z‖2≤1

∑
j,�≥2
j �=�

(
‖xSj−1‖22 + ‖zSj‖22

) (
‖xS�−1

‖22 + ‖zS�
‖22
)
≤ δ2s

s
.

The Frobenius norm obeys the bound

‖B‖2F =
∑
j,k≥2
j �=k

∑
i∈Sj

∑
�∈Sk

(xia
∗
i a�x�)

2 =
∑
j,k≥2
j �=k

∑
i∈Sj

x2i ‖DxSk
A∗
Sk
ai‖22

≤
∑
j,k≥2
j �=k

∑
i∈Sj

x2i ‖xSk
‖2∞‖A∗

Sk
ai‖22 ≤ δ22s

∑
j,k≥2
j �=k

‖xSj‖22s−1‖xSk
‖22 ≤

δ22s
s
.
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Hereby, we have made use of ‖A∗
Sk
ai‖2 = ‖A∗

Sk
ai‖2→2 ≤ δs+1 ≤ δ2s; see

Proposition 6.5. It follows from Proposition 8.13 that the tail of the third term in
(9.57) can be estimated, for any r > 0, by

P(|Y | ≥ r) ≤ 2 exp

(
−min

{
3 r2

128 ‖B‖2F
,

r

32 ‖B‖2→2

})

≤ 2 exp

(
−min

{
3 sr2

128 δ22s
,

sr

32 δ2s

})
.

≤ 2 exp

(
−smin

{
3 r2

8 η2
,
r

8 η

})
. (9.59)

Now, with the choice t = η/8 in (9.58) and r = η/2 in (9.59) and taking into
account (9.57), we arrive at

(1− η)‖x‖22 ≤ ‖ADεx‖22 ≤ (1 + η)‖x‖22 (9.60)

for our fixed x ∈ E with probability at least

1− 2 exp(−s/8)− 2 exp(−smin{3/32, 1/16})≥ 1− 4 exp(−s/16).

Taking the union bound over all x ∈ E shows that (9.60) holds for all x ∈ E
simultaneously with probability at least

1− 4M exp(−s/16) ≥ 1− ε

under the condition s ≥ 16 ln(4M/ε). This concludes the proof. ��

Notes

Even though the papers [299] by Kashin and [219] by Garnaev and Gluskin did not
prove the RIP, they already contained in substance the arguments needed to derive
it for Gaussian and Bernoulli matrices. Section 9.1 follows the general idea of the
paper [351] by Mendelson et al., and independently developed in [31] by Baraniuk
et al. There, however, the restricted isometry property is considered without squares
on the �2-norms. As a result, the proof given here is slightly different. Similar
techniques were also used in extensions [414], including the D-RIP [86] covered
in Exercise 9.10 and the corresponding notion of the restricted isometry property
in low-rank matrix recovery [89, 418]; see Exercise 9.12. Candès and Tao were the
first to show the restricted isometry property for Gaussian matrices in [97]. They
essentially followed the approach given in Sect. 9.3. They relied on the condition
number estimate for Gaussian random matrices of Theorem 9.26. The proof method
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of the latter, based on Slepian’s and Gordon’s lemmas as well as on concentration
of measure, follows [141].

The nonuniform recovery result of Theorem 9.16 has been shown in [21]; see
also [91] for a very similar approach. The accurate estimate of the required number
of samples in the Gaussian case (Theorem 9.18) appeared in a slightly different form
in [108], where far-reaching extensions to other situations such as low-rank matrix
recovery are also treated. The estimate of the null space property for Gaussian
random matrices (Theorem 9.29) has not appeared elsewhere in this form. Similar
ideas, however, were used in [433, 454].

The escape through the mesh theorem (Theorem 9.21) is essentially due to
Gordon [235], where it appeared with slightly worse constants. It was used first
in compressed sensing by Rudelson and Vershynin in [433]; see also [108, 454].

The Johnson–Lindenstrauss lemma appeared for the first time in [295]. A
different proof was given in [136]. Theorem 9.36 on the relation of the restricted
isometry property to the Johnson–Lindenstrauss lemma was shown by Krahmer and
Ward in [309].

Random matrices were initially introduced in the context of statistics by Wishart
and in mathematical physics by Wigner. There is a large body of literature on
the asymptotic analysis of the spectrum of random matrices when the matrix
dimension tends to infinity. A well-known result in this context states that the
empirical distribution of Wigner random matrices (Hermitian random matrices with
independent entries up to symmetries) converges to the famous semicircle law. We
refer to the monographs [13, 25] for further information on asymptotic random
matrix theory.

The methods employed in this chapter belong to the area of nonasymptotic
random matrix theory [435, 501], which considers spectral properties of random
matrices in fixed (but usually large) dimension. Rudelson and Vershynin [434]
exploited methods developed in compressive sensing (among other techniques)
and established a result on the smallest singular value of square Bernoulli random
matrices, which was an open conjecture for a long time. By distinguishing the action
of the matrix on compressible and on incompressible vectors, they were able to
achieve their breakthrough. The compressible vectors are handled in the same way
as in the proof of the restricted isometry property for rectangular random matrices
in Sect. 9.1.

Sparse recovery with Gaussian matrices via polytope geometry. Donoho and
Tanner [154,165–167] approach the analysis of sparse recovery via �1-minimization
using Gaussian random matrices through the geometric characterization of Corol-
lary 4.39. They consider an asymptotic scenario where the dimension N tends to
infinity and where m = mN and s = sN satisfy

lim
N→∞

mN

N
= δ and lim

N→∞

sN
mN

= ρ

for some δ, ρ ∈ [0, 1]. They show that there exist thresholds that separate regions
in the plane [0, 1]2 of parameters (δ, ρ), where recovery succeeds and recovery



304 9 Sparse Recovery with Random Matrices

Fig. 9.1 Strong threshold ρS = ρS(δ) (dashed curve), weak threshold ρW = ρW (δ) (solid
curve), δ = m/N , ρ = s/m

fails with probability tending to 1 as N → ∞. In other words, a phase transition
phenomenon occurs for high dimensions N . They distinguish a strong threshold
ρS = ρS(δ) and a weak threshold ρW = ρW (δ).

In our terminology, the strong threshold corresponds to uniform recovery via
�1-minimization. In the limit as N →∞, if s ≤ ρm with ρ < ρS(δ) and δ = m/N ,
then recovery of all s-sparse vectors is successful with high probability. Moreover,
if s ≥ ρm with ρ > ρS(δ), then recovery of all s-sparse vectors fails with high
probability.

The weak threshold corresponds to nonuniform recovery. (The formulation
in [154, 165–167] is slightly different than our notion of nonuniform recovery,
but for Gaussian random matrices, both notions are equivalent.) In the limit as
N → ∞, if s ≤ ρm with ρ < ρW (δ) and δ = m/N , then a fixed s-sparse vector
is recovered from y = Ax via �1-minimization with high probability using a draw
of an m×N Gaussian random matrix A. Conversely, if s ≥ ρm with ρ > ρW (δ),
then �1-minimization fails to recover a given s-sparse vector from y = Ax with
high probability.

Unfortunately, no closed forms for the functions ρW and ρS are available.
Nevertheless, Donoho and Tanner [154, 167] provide complicated implicit expres-
sions and compute these functions numerically; see Fig. 9.1. Moreover, they derive
the asymptotic behavior of ρW (δ) and ρS(δ) when δ → 0, that is, in the relevant
scenario when m is significantly smaller than N . These are
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ρS(δ) ∼
1

2e ln((
√
πδ)−1)

and ρW (δ) ∼ 1

2 ln(δ−1)
δ → 0.

As a consequence, we roughly obtain the following statements for large N :

• Uniform recovery. If

m > 2es ln(N/(
√
πm)),

then with high probability on the draw of a Gaussian random matrix, every
s-sparse vector x is recovered from y = Ax via �1-minimization. Conversely,
if m < 2es ln(N/(

√
πm)), then recovery of all s-sparse vectors fails with high

probability.
• Nonuniform recovery. If

m > 2s ln(N/m),

then a fixed s-sparse vector x is recovered from y = Ax via �1-minimization
with high probability on the draw of a Gaussian random matrix A. Conversely,
if m < 2s ln(N/m), then with high probability, �1-minimization fails to recover
a fixed s-sparse vector using a random draw of a Gaussian matrix.

The involved analysis of Donoho and Tanner builds on the characterization of
sparse recovery in Corollary 4.39. Stated in slightly different notation, s-sparse
recovery is equivalent to s-neighborliness of the projected polytope ABN1 : Every
set of s vertices of ABN1 (not containing antipodal points) spans an (s − 1)-face
of ABN1 ; see also Exercise 4.16. This property is investigated directly using works
by Affentranger and Schneider [3] and by Vershik and Sporyshev [498] on random
polytopes. Additionally, Donoho and Tanner provide thresholds for the case where it
is known a priori that the sparse vector has only nonnegative entries [165,167]. This
information can be used as an additional constraint in the �1-minimization problem
and in this case one has to analyze the projected simplex ASN , where SN is the
standard simplex, that is, the convex hull of the canonical unit vectors and the zero
vector.

It is currently not clear whether this approach can be extended to further random
matrices such as Bernoulli matrices, although the same weak threshold is observed
empirically for a variety of random matrices [168]. For illustration, an empirical
phase diagram is shown in Fig. 9.2. It is not clear either whether the polytope
approach can cover stability and robustness of reconstruction.

The fact that this analysis provides precise statements about the failure of
recovery via �1-minimization allows one to deduce that the constant 2 in our
nonuniform recovery analysis for Gaussian random matrices in Sect. 9.2 is optimal;
see (9.23). Moreover, the constant 8 appearing in our analysis of the null space
property in Theorem 9.29 (see also (9.51)) is not optimal, but at least it is not
too far from the optimal value 2e. In contrast to the polytope approach, however,
Theorem 9.29 also covers the stability of reconstruction.
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Fig. 9.2 Empirically observed weak threshold. Black corresponds to 100% empirical success
probability, white to 0% empirical success probability (Image Courtesy by Jared Tanner, University
of Oxford)

A precise phase transition analysis of the restricted isometry constants of
Gaussian random matrices has been performed in [24, 53].

Message passing algorithms [162] in connection with Gaussian random matrices
also allow for a precise asymptotic analysis.

Exercises

9.1. Coherence of a Bernoulli random matrix.
Let A = [a1|a2| · · · |aN ] be an m×N Bernoulli matrix. Let μ be the coherence of
m−1/2A, i.e., μ = m−1 maxj �=k |〈aj , ak〉|. Show that

μ ≤ 2

√
ln(N/ε)

m

with probability at least 1− ε2.

9.2. Concentration inequality for Gaussian matrices.
Let A be anm×N Gaussian random matrix. Show that, for x ∈ R

N and t ∈ (0, 1),

P
( ∣∣m−1‖Ax‖22 − ‖x‖22

∣∣ ≥ t‖x‖22
)
≤ 2 exp

(
−m(t2/4− t3/6)

)
. (9.61)

Show that this concentration inequality holds as well for a Bernoulli random matrix.
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9.3. Smallest singular value of a subgaussian matrix.
Let B be an m×s subgaussian random matrix, and let σmin be the smallest singular
value of 1√

m
B. Show that, for t ∈ (0, 1),

P

(
σmin ≤ 1− c1

√
s

m
− t

)
≤ 2 exp(−c2mt2).

Provide values for the constants c1, c2 > 0, possibly in terms of c̃ in (9.6).

9.4. Largest singular value via Dudley’s inequality.
Let A be an m × s (unnormalized) subgaussian random matrix. Use Dudley’s
inequality (Theorem 8.23) to show that

E‖A‖2→2 ≤ C(
√
m+

√
s).

9.5. Extremal singular values of complex Gaussian matrices.
For s < m, let A be an m × s random matrix with entries Ajk = gjk + ihjk
where the (gjk ) and (hjk ) are independent mean-zero Gaussian random variables of
variance 1. Show that the largest singular value σmax and the smallest singular value
σmin of the renormalized matrix 1√

2m
A satisfy

P(σmax ≥ 1 +
√
s/m+ t) ≤ e−mt

2

,

P(σmin ≤ 1−
√
s/m− t) ≤ e−mt

2

.

9.6. Let A be an m × N Gaussian random matrix. For δ ∈ (0, 1), prove that with
high probability the modified restricted isometry property stating that

(1− δ)
√
m‖x‖2 ≤ ‖Ax‖1 ≤ (1 + δ)

√
m‖x‖2 for all s-sparse x ∈ R

N

is fulfilled provided that

m ≥ c(δ) s ln(eN /s).

9.7. Verify Corollary 9.34 in detail.

9.8. Let A ∈ Rm×N be a random matrix satisfying the concentration inequality
(9.7). Given δ ∈ (0, 1), prove that with probability at least 1−N−c1 , the matrix A
satisfies the homogeneous restricted isometry property

(
1−
√
r

s
δ
)
‖x‖22 ≤ ‖Ax‖22 ≤

(
1 +

√
r

s
δ
)
‖x‖22

for all r-sparse x ∈ CN and all r ≤ s provided

m ≥ c2δ
−2s ln(N).
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9.9. Let A ∈ Rm×N be a random matrix whose columns are independent and
uniformly distributed on the sphereSm−1. Show that its restricted isometry constant
satisfies δs < δ with probability at least 1− ε provided

m ≥ Cδ−2
(
s ln(eN /s) + ln(2ε−1)

)
,

where C > 0 is an appropriate universal constant.

9.10. D-RIP
Let D ∈ RN×M (the dictionary) with M ≥ N and let A ∈ Rm×N (the measure-
ment matrix). The restricted isometry constants δs adapted to D are defined as the
smallest constants such that

(1− δs)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δs)‖z‖22

for all z ∈ RN of the form z = Dx for some s-sparse x ∈ RM .
If A is an m×N subgaussian random matrix, show that the restricted isometry

constants adapted to D of m−1/2A satisfy δs ≤ δ with probability at least 1 − ε
provided that

m ≥ Cδ−2
(
s ln(eM /s) + ln(2ε−1)

)
.

9.11. Recovery with random Gaussian noise on the measurements.

(a) Let e ∈ Rm be a random vector with independent mean-zero Gaussian entries
of variance σ2. Show that ‖e‖2 ≤ 2σ

√
m with probability at least 1− e−m/2.

(b) Let A ∈ Rm×N be a subgaussian random matrix and e be a random vector with
independent mean-zero Gaussian entries of variance σ2. For an s-sparse vector
x ∈ RN , set y = Ax+ e and assume that

m ≥ Cs ln(eN /s).

Let x� ∈ RN be a solution of

minimize
z∈RN

‖z‖1 subject to ‖Az− y‖2 ≤ 2σ
√
m.

Show that

‖x− x�‖2 ≤ C′σ (9.62)

with probability at least 1−exp(−cm). Here,C,C′, c > 0 are suitable absolute
constants.

(c) Let A ∈ R
m×N be a matrix with �2-normalized columns, i.e., ‖aj‖2 = 1 for all

j ∈ [N ]. Let e ∈ R
m be a random vector with independent mean-zero Gaussian

entries of variance σ2. Show that
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‖A∗e‖∞ ≤ 2σ
√
ln(2N)

with probability at least 1− 1/(2N).
(d) Let A ∈ Rm×N be a subgaussian random matrix and e be a random vector with

independent mean-zero Gaussian entries of variance σ2. For an s-sparse vector
x ∈ RN , set y = Ax+ e and assume that

m ≥ Cs ln(eN /s).

Let x� ∈ RN be a minimizer of the Dantzig selector

minimize
z∈RN

‖z‖1 subject to ‖A∗(Az− y)‖∞ ≤ 2σ
√
m ln(2N).

Show that

‖x− x�‖2 ≤ C′σ

√
s ln(2N)

m
(9.63)

with probability at least 1−N−1. Here, C,C′ > 0 are suitable absolute const-
ants. Hint: Exercise 6.18.

(e) Extend (d) to subgaussian random matrices A ∈ R
m×N and mean-zero

subgaussian random vectors with independent entries of variance σ2.

The subtle difference between the estimates (9.62) and (9.63) consists in the fact that
oncem ≥ Cs ln(2N), then the right-hand side of (9.63) decreases with growingm,
while (9.62) remains constant. For this reason, the Dantzig selector is often preferred
over quadratically constrained �1-minimization in a statistical context.

9.12. Rank-RIP for subgaussian measurement maps.
For a measurement map A : Rn1×n2 → Rm, the rank restricted isometry constant
δs is defined as the smallest number such that

(1 − δs)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δs)‖X‖2F for all X of rank at most s;

see also Exercise 6.25. A measurement mapA is called subgaussian if all the entries
Ajk� in the representation

A(X)j =
∑
k,�

Ajk�Xk�

are independent mean-zero subgaussian random variables with variance 1 and
the same subgaussian parameter c. Show that the restricted isometry constants of
1/
√
mA satisfy δs ≤ δ with probability at least 1− ε provided that

m ≥ Cδ
(
s(n1 + n2) + ln(2ε−1)

)
,
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and explain why this bound is optimal. As a first step show that the covering
numbers of the set Ds = {X ∈ Rn1×n2 : ‖X‖F ≤ 1, rank(X) ≤ s} satisfy

N (Ds, ‖ · ‖F , ρ) ≤ (1 + 6/ρ)(n1+n2+1)s.

Hint: Use the (reduced) singular value decomposition X = UDV∗, where
U ∈ Rn1×s and V ∈ Rn2×s have orthonormal columns and D ∈ Rs×s is diagonal.
Cover the sets of the three components U,V,D separately with respect to suitable
norms.



Chapter 10
Gelfand Widths of �1-Balls

In this chapter, we make a detour to the geometry of �N1 in order to underline the
optimality of random sensing in terms of the number of measurements. In particular,
we show that the minimal number of measurements required for stable recovery
via any method is m ≥ Cs ln(eN /s), which matches the bound for random
measurements and �1-minimization stated in Theorem 9.12. In Sect. 10.1, we
introduce several notions of widths and show that Gelfand widths are closely related
to the worst-case reconstruction error of compressive sensing methods over classes
of vectors. In Sect. 10.2, we establish upper and lower bounds for the Gelfand widths
of �1-balls. In fact, the methods developed so far turn out to be appropriate tools to
tackle this venerable problem originating from pure mathematics. We give further
instances of methods from compressive sensing being used successfully in Banach
space geometry in Sect. 10.3, where we establish lower and upper bounds of certain
Kolmogorov widths as well as Kashin’s decomposition theorem. For convenience,
we only consider real vector spaces in this chapter, but straightforward extensions
to the complex case are possible.

10.1 Definitions and Relation to Compressive Sensing

We introduce in this section several notions of widths. We start with the classical
notion of Gelfand widths.

Definition 10.1. The Gelfand m-width of a subset K of a normed space X is
defined as

dm(K,X) := inf

{
sup

x∈K∩Lm

‖x‖, Lm subspace of X with codim(Lm) ≤ m

}
.

Since a subspace Lm ofX is of codimension at mostm if and only if there exists
linear functionals λ1, . . . , λm : X → R in the dual space X∗ such that

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 10,
© Springer Science+Business Media New York 2013
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Lm = {x ∈ X : λi(x) = 0 for all i ∈ [m]} = kerA,

where A : X → Rm, x �→ [λ1(x), . . . , λm(x)]�, we also have the representation

dm(K,X) = inf

{
sup

x∈K∩kerA
‖x‖, A : X → R

m linear

}
.

We readily observe that the sequence (dm(K,X))m≥0 is nonincreasing. Its first
term is d0(K,X) = supx∈K ‖x‖. If N := dim(X) is finite, then dm(K,X) =
infA∈Rm×N supx∈K∩kerA ‖x‖ and if K contains the zero vector, then we have
dm(K,X) = 0 for all m ≥ N . If otherwise dim(X) is infinite, then we have
limm→∞ dm

(K,X) = 0 as soon as the set K is compact—see Exercise 10.2.
We now highlight the pivotal role of Gelfand widths in compressive sensing. To

do so, we show that they are comparable to quantities that measure the worst-case
reconstruction errors of optimal measurement/reconstruction schemes. We call the
first of these quantities the (nonadaptive) compressive widths.

Definition 10.2. The compressive m-width of a subset K of a normed space X is
defined as

Em(K,X) := inf

{
sup
x∈K

‖x−Δ(Ax)‖, A : X → R
m linear, Δ : Rm → X

}
.

We emphasize that the reconstruction mapΔ : Rm → X used in this definition is
kept arbitrary. No assumptions are made on tractability and even NP-hard algorithms
including �0-minimization are allowed. The measurement scheme associated to the
linear mapA is nonadaptive, in the sense that them linear functionals λ1, . . . , λm ∈
X∗ given by Ax = [λ1(x), . . . , λm(x)]� are chosen once and for all (which
is the situation usually encountered in compressive sensing). In contrast, we may
also consider the adaptive setting, where the choice of a measurement depends on
the result of previous measurements according to a specific rule. In this way, the
measurement scheme is represented by the adaptive map F : X → Rm defined by

F (x) =

⎡
⎢⎢⎢⎣

λ1(x)

λ2;λ1(x)(x)
...

λm;λ1(x),...,λm−1(x)(x)

⎤
⎥⎥⎥⎦ , (10.1)

where the functionals λ1, λ2;λ1(x), . . . , λm;λ1(x),...,λm−1(x) are all linear and
λ�;λ1(x),...,λ�−1(x) is allowed to depend on the previous evaluations λ1(x), . . . ,
λ�−1;λ1(x),...,λ�−2(x). This leads to the introduction of the adaptive compressive
widths.
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Definition 10.3. The adaptive compressive m-width of a subset K of a normed
space X is defined as

Emada(K,X)

:= inf

{
sup
x∈K

‖x−Δ(F (x))‖, F : X → R
m adaptive, Δ : Rm → X

}
. (10.2)

The intuitive expectation that adaptivity improves the performance of the
measurement/reconstruction scheme is false, at least when considering worst cases
over K . The following theorem indeed shows that, under some mild conditions, the
nonadaptive and the adaptive compressive sensing widths are equivalent and that
they are both comparable to the Gelfand widths.

Theorem 10.4. If K is a subset of a normed space X , then

Emada(K,X) ≤ Em(K,X).

If the subset K satisfies −K = K , then

dm(K,X) ≤ Emada(K,X).

If the set K further satisfies K +K ⊂ aK for some positive constant a, then

Em(K,X) ≤ a dm(K,X).

Proof. The first inequality is straightforward, because any linear measurement map
A : X → Rm can be considered adaptive.

Let us now assume that the set K satisfies −K = K . We consider an
adaptive map F : X → Rm of the form (10.1) and a reconstruction map
Δ : Rm → X . We define the linear map A : X → Rm by A(x) =
[λ1(x), λ2;0(x), . . . , λm;0,...,0(x)]

� and we set Lm := kerA. Since this is a
subspace of X satisfying codim(Lm) ≤ m, the definition of the Gelfand widths
implies

dm(K,X) ≤ sup
v∈K∩kerA

‖v‖. (10.3)

We notice that, for v ∈ kerA, we have λ1(v) = 0. Then λ2;λ1(v)(v) = λ2;0(v),
and so on until λm;λ1(v),...,λm−1(v)(v) = λm;0,...,0(v) = 0, so that F (v) = 0.
Thus, for any v ∈ K ∩ kerA, we observe that

‖v−Δ(0)‖ = ‖v −Δ(F (v))‖ ≤ sup
x∈K

‖x−Δ(F (x))‖,

and likewise, since −v ∈ K ∩ kerA, that
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‖ − v −Δ(0)‖ = ‖ − v −Δ(F (−v))‖ ≤ sup
x∈K

‖x−Δ(F (x))‖.

We derive that, for any v ∈ K ∩ kerA,

‖v‖ =
∥∥∥1
2
(v −Δ(0))− 1

2
(−v −Δ(0))

∥∥∥ ≤ 1

2
‖v −Δ(0)‖+ 1

2
‖ − v −Δ(0)‖

≤ sup
x∈K

‖x−Δ(F (x))‖. (10.4)

According to (10.3) and (10.4), we have

dm(K,X) ≤ sup
x∈K

‖x−Δ(F (x))‖.

The inequality dm(K,X) ≤ Emada(K,X) follows by taking the infimum over all
possible F and Δ.

Let us finally also assume that K +K ⊂ aK for some positive constant a. We
consider a subspace Lm of the space X with codim(Lm) ≤ m. We choose a linear
map A : X → Rm such that kerA = Lm, and we define a map Δ : Rm → X in
such a way that

Δ(y) ∈ K ∩A−1(y) for all y ∈ A(K).

With this choice, we have

Em(K,X) ≤ sup
x∈K

‖x−Δ(Ax)‖ ≤ sup
x∈K

[
sup

z∈K∩A−1(Ax)

‖x− z‖
]
.

For x ∈ K and z ∈ K ∩ A−1(Ax), we observe that the vector x − z belongs to
K + (−K) ⊂ aK and to kerA = Lm as well. Therefore, we obtain

Em(K,X) ≤ sup
u∈aK∩Lm

‖u‖ = a sup
v∈K∩Lm

‖v‖.

Taking the infimum over Lm, we conclude that Em(K,X) ≤ a dm(K,X). ��

In the context of compressive sensing, it is natural to consider sets K of
compressible vectors. As indicated by Proposition 2.3, the unit balls BNq in �Nq with
small q are good models of compressible vectors. However, in the case q < 1, the
�q-quasinorm only satisfies a quasi-triangle, which poses additional difficulties in
estimating the corresponding Gelfand widths. In order to avoid such complications,
we only treat the case q = 1 here, which nevertheless allows us to draw the
same conclusions concerning the minimal number of required measurements for
sparse recovery. Moreover, the proof methods can be extended to the quasinorm
case q < 1; see Exercise 10.10.
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In the next section, we give matching upper and lower bounds for the Gelfand
width dm(BN1 , �

N
p ) of �1-balls in �Np when 1 < p ≤ 2; see Theorems 10.9 and 10.10.

They provide the following result.

Theorem 10.5. For 1 < p ≤ 2 and m < N , there exist constants c1, c2 > 0
depending only on p such that

c1 min

{
1,

ln(eN /m)

m

}1−1/p

≤ dm(BN1 , �
N
p ) ≤ c2 min

{
1,

ln(eN /m)

m

}1−1/p

.

(10.5)

We immediately obtain corresponding estimates for the compressive widths,
where we recall that A $ B means that there exist absolute constants c1, c2 such
that c1A ≤ B ≤ c2A.

Corollary 10.6. For 1 < p ≤ 2 and m < N , the adaptive and nonadaptive
compressive widths satisfy

Emada(B
N
1 , �

N
p ) $ Em(BN1 , �

N
p ) $ min

{
1,

ln(eN /m)

m

}1−1/p

.

Proof. Since −BN1 = BN1 and BN1 +BN1 ⊂ 2BN1 , Theorem 10.4 implies

dm(BN1 , �
N
p ) ≤ Emada(B

N
1 , �

N
p ) ≤ Em(BN1 , �

N
p ) ≤ 2 dm(BN1 , �

N
p ).

Theorem 10.5 therefore concludes the proof. ��

The lower estimate is of particular significance for compressive sensing. Indeed,
under the condition

m ≥ c s ln

(
eN

s

)
, (10.6)

we have seen that there are matrices A ∈ Rm×N with small restricted isometry
constants and reconstruction maps providing the stability estimate

‖x−Δ(Ax)‖p ≤
C

s1−1/p
σs(x)1 for all x ∈ R

N .

Such reconstruction maps include, for instance, basis pursuit, iterative hard thresh-
olding, or orthogonal matching pursuit; see Chap. 6. Conversely, we can now show
that the existence of Δ and A—or Δ and an adaptive F—providing such a stability
estimate forces the number of measurements to be bounded from below as in (10.6).

Proposition 10.7. Let 1 < p ≤ 2. Suppose that there exist a matrix A ∈ Rm×N

and a map Δ : Rm → RN such that, for all x ∈ RN ,
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‖x−Δ(Ax)‖p ≤
C

s1−1/p
σs(x)1. (10.7)

Then, for some constant c1, c2 > 0 depending only on C,

m ≥ c1 s ln

(
eN

s

)
,

provided s > c2.
The same statement holds true for an adaptive map F : RN → Rm in place of a
linear map A.

Proof. It is enough to prove the statement for an adaptive map F : RN → Rm. We
notice that (10.7) implies

Emada(B
N
1 , �

N
p ) ≤ C

s1−1/p
sup

x∈BN
1

σs(x)1 ≤
C

s1−1/p
.

But, in view of Corollary 10.6, there is a constant c > 0 such that

c min

{
1,

ln(eN /m)

m

}1−1/p

≤ Emada(B
N
1 , �

N
p ).

Thus, for some constant c′ > 0,

c′ min

{
1,

ln(eN /m)

m

}
≤ 1

s
.

We derive either s ≤ 1/c′ or m ≥ c′s ln(eN /m). The hypothesis s> c2 := 1/c′

allows us to discard the first alternative. Calling upon Lemma C.6, the second
alternative gives m ≥ c1s ln(eN /s) with c1 = c′e/(1 + e). This is the desired
result. ��

The restrictions s > c2 and p > 1 will be removed in the nonadaptive setting by
Theorem 11.7 in the next chapter. Accepting that this theorem is true for now, we
can state the following result on the minimal number of measurements needed to
enforce the restricted isometry property.

Corollary 10.8. If the 2sth restricted isometry constant of A ∈ Rm×N satisfies
δ2s < 0.6246, say, then necessarily

m ≥ c s ln

(
eN

s

)

for some constant c > 0 depending only on δ2s.
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Proof. If δ2s < 0.6246 and if Δ is the �1-minimization reconstruction map, we
know from Theorem 6.12 that (10.7) with p = 2 holds for some constant C
depending only on δ2s. The conclusion follows from Proposition 10.7 if s > c2.
The case s ≤ c2 (of minor importance) is handled with Theorem 11.7. ��

10.2 Estimate for the Gelfand Widths of �1-Balls

In this section, we establish the two-sided estimate of Theorem 10.5 for the Gelfand
widths of the unit �1-balls in �Np when 1 ≤ p ≤ 2. We separate the lower and upper
estimates.

Upper Bound

With the results that we have established in previous chapters, it is quite simple
to bound the Gelfand widths from above. For instance, recovery theorems such as
Theorems 6.12, 6.21, and 6.28, applied to (subgaussian random) matrices with the
restricted isometry property, imply that

Em(BN1 , �
N
p ) ≤ C

s1−1/p
sup

x∈BN
1

σs(x)1 ≤
C

s1−1/p

when m is of the order of s ln(eN /s) (see Theorem 9.2) or, equivalently (see
Lemma C.6), if s is of the order ofm/ ln(eN /m). Then, using Theorem 10.4, we get

dm(BN1 , �
N
p ) ≤ Em(BN1 , �

N
p ) ≤ C′

{
ln(eN /m)

m

}1−1/p

.

A more rigorous and self-contained argument (not relying on any recovery theorems)
is given below. It is strongly inspired by the proof techniques developed in Chap. 6.

Theorem 10.9. There is a constant C > 0 such that, for 1 < p ≤ 2 and m < N ,

dm(BN1 , �
N
p ) ≤ C min

{
1,

ln(eN /m)

m

}1−1/p

.

Proof. Using the inequality ‖x‖p ≤ ‖x‖1, x ∈ RN , in the definition of the Gelfand
width immediately gives

dm(BN1 , �
N
p ) ≤ d0(BN1 , �

N
1 ) = 1.

As a result, if m ≤ c ln(eN /m) then
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dm(BN1 , �
N
p ) ≤ min

{
1,
c ln(eN /m)

m

}1−1/p

. (10.8)

On the other hand, if m > c ln(eN /m) with c := 144(1+ e−1), we define s ≥ 1 to
be the largest integer smaller than m/(c ln(eN /m)), so that

m

2c ln(eN /m)
≤ s <

m

c ln(eN /m)
.

Note that m > c s ln(eN /m) yields m > c′s ln(eN /s) with c′ = 144; see
Lemma C.6. Then Theorem 9.27 concerning the restricted isometry property of
Gaussian random matrices with η = 1/6 and ε = 2 exp(−m/144) guarantees the
existence of a measurement matrix A ∈ Rm×N with restricted isometry constant

δs(A) ≤ δ := 4η + 4η2 = 7/9,

since m ≥ 72(s ln(eN /s) − m/144), i.e., m ≥ 144s ln(eN /s). (Instead of
Theorem 9.27, we could alternatively use the easier Theorem 9.2 or 9.11 on the
restricted isometry property of subgaussian random matrices, which however does
not specify the constants.)

Partitioning the index set [N ] as the disjoint union S0 ∪ S1 ∪ S2 ∪ . . . of index
sets of size s in such a way that |xi| ≥ |xj | whenever i ∈ Sk−1, j ∈ Sk, and k ≥ 1,
we recall from Lemma 6.10 that ‖xSk

‖2 ≤ ‖xSk−1
‖1/
√
s for all k ≥ 1. Therefore,

for x ∈ Lm := kerA, we have

‖x‖p ≤
∑
k≥0

‖xSk
‖p ≤
∑
k≥0

s1/p−1/2 ‖xSk
‖2 ≤
∑
k≥0

s1/p−1/2

√
1− δ

‖A(xSk
)‖2

=
s1/p−1/2

√
1− δ

[
‖A(−
∑
k≥1

xSk
)‖2 +
∑
k≥1

‖A(xSk
)‖2
]

≤ s1/p−1/2

√
1− δ

[
2
∑
k≥1

‖A(xSk
)‖2
]
≤ 2

√
1 + δ

1− δ
s1/p−1/2

∑
k≥1

‖xSk
‖2

≤ 2

√
1 + δ

1− δ
s1/p−1/2

∑
k≥1

‖xSk−1
‖1/
√
s = 2

√
1 + δ

1− δ

1

s1−1/p

∑
k≥1

‖xSk−1
‖1

≤ 2

√
1 + δ

1− δ

(
2c ln(eN /m)

m

)1−1/p

‖x‖1. (10.9)

Using δ = 7/9 and 21−1/p ≤ 2, it follows that, for all x ∈ BN1 ∩ Lm,

‖x‖p ≤ 8
√
2

{
c ln(eN /m)

m

}1−1/p

.
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This shows that, if m > c ln(eN /m), then

dm(BN1 , �
N
p ) ≤ 8

√
2 min

{
1,
c ln(eN /m)

m

}1−1/p

. (10.10)

Combining (10.8) and (10.10), we conclude

dm(BN1 , �
N
p ) ≤ C min

{
1,

ln(eN /m)

m

}1−1/p

with C = 8
√
2c = 1152

√
2(1 + e−1), which is the desired upper bound. ��

Lower Bound

We now establish the lower bound for the Gelfand widths of �1-balls in �Np for
1 < p ≤ ∞. This bound matches the previous upper bound up to a multiplicative
constant. We point out that a lower bound where the minimum in (10.5) does not
appear would be invalid, since the width dm(BN1 , �

N
p ) is bounded above by one;

hence, it cannot exceed c ln(eN /m)/m for small m and large N .

Theorem 10.10. There is a constant c > 0 such that, for 1< p≤∞ and m<N ,

dm(BN1 , �
N
p ) ≥ c min

{
1,

ln(eN /m)

m

}1−1/p

.

Somewhat unexpectedly, the proof of this proposition relies on the following
estimate of the necessary number of measurements required for the exact recovery
of s-sparse vectors via �1-minimization. Of course, this important result is of
independent interest.

Theorem 10.11. Given a matrix A ∈ Rm×N , if every 2s-sparse vector x ∈ RN is
a minimizer of ‖z‖1 subject to Az = Ax, then

m ≥ c1s ln

(
N

c2s

)
,

where c1 = 1/ ln 9 and c2 = 4.

This is based on the key combinatorial lemma that follows.

Lemma 10.12. Given integers s < N , there exist

n ≥
(
N

4s

)s/2
(10.11)
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subsets S1, . . . , Sn of [N ] such that each Sj has cardinality s and

card(Si ∩ Sj) <
s

2
whenever i �= j. (10.12)

Proof. We may assume that s ≤ N/4, for otherwise it suffices to take n = 1 subset
of [N ]. Let B denote the family of subsets of [N ] having cardinality s. We draw
an element S1 ∈ B, and we collect in a family A1 all the sets S ∈ B such that
card(S1 ∩ S) ≥ s/2. We have

card(A1) =

s∑
k=�s/2�

(
s

k

)(
N − s

s− k

)
≤ 2s max

�s/2�≤k≤s

(
N − s

s− k

)
= 2s
(
N − s

�s/2�

)
,

where the last equality holds because �s/2� ≤ (N − s)/2 when s ≤ N/2. We
observe that any set S ∈ B \ A1 satisfies card(S1 ∩ S) < s/2. Next, we draw an
element S2 ∈ B \ A1, provided that the latter is nonempty. As before, we collect in
a family A2 all the sets S ∈ B \ A1 such that card(S2 ∩ S) ≥ s/2, we remark that

card(A2) ≤ 2s
(
N − s

�s/2�

)
,

and we observe that any set S ∈ B \ (A1 ∪ A2) satisfies card(S1 ∩ S) < s/2
and card(S2 ∩ S) < s/2. We repeat the procedure of selecting sets S1, . . . , Sn
until B \ (A1 ∪ · · · ∪ An) is empty. In this way, (10.12) is automatically fulfilled.
Moreover,

n ≥ card(B)
max1≤i≤n card(Ai)

≥
(
N
s

)
2s
(
N−s
�s/2�
)

=
1

2s
N(N − 1) · · · (N − s+ 1)

(N − s)(N − s− 1) · · · (N − s− �s/2�+ 1)

1

s(s− 1) · · · (�s/2�+ 1)

≥ 1

2s
N(N − 1) · · · (N − �s/2�+ 1)

s(s− 1) · · · (s− �s/2�+ 1)
≥ 1

2s

(N
s

)�s/2�
≥
(N
4s

)s/2
.

This shows that (10.11) is fulfilled, too, and concludes the proof. ��

With this lemma at hand, we can turn to the proof of the theorem.

Proof (of Theorem 10.11). Let us consider the quotient space

X := �N1 / kerA =
{
[x] := x+ kerA,x ∈ R

N
}
,

which is normed with

‖[x]‖ := inf
v∈kerA

‖x− v‖1, x ∈ R
N .
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Given a 2s-sparse vector x ∈ RN , we notice that every vector z = x − v with
v ∈ kerA satisfies Az = Ax. Thus, our assumption gives ‖[x]‖ = ‖x‖1. Let
S1, . . . , Sn be the sets introduced in Lemma 10.12, and let us define s-sparse vectors
x1, . . . ,xn ∈ RN with unit �1-norms by

xik =

{
1/s if k ∈ Si,
0 if k �∈ Si.

(10.13)

For 1 ≤ i �= j ≤ n, we have ‖[xi] − [xj ]‖ = ‖[xi − xj ]‖ = ‖xi − xj‖1, since
the vector xi − xj is 2s-sparse. We also have ‖xi − xj‖1 > 1, since |xik − xjk|
equals 1/s if k ∈ SiΔSj = (Si ∪ Sj) \ (Si ∩ Sj) and vanishes otherwise and since
card(SiΔSj) > s. We conclude that

‖[xi]− [xj ]‖ > 1 for all 1 ≤ i �= j ≤ n.

This shows that {[x1], . . . , [xn]} is a 1-separating subset of the unit sphere of X ,
which has dimension r := rank(A) ≤ m. According to Proposition C.3, this
implies that n ≤ 3r ≤ 3m. In view of (10.11), we obtain

(
N

4s

)s/2
≤ 3m.

Taking the logarithm on both sides gives the desired result. ��

We are now ready to prove the main result of this section.

Proof (of Theorem 10.10). With c′ := 2/(1 + 4 ln 9), we are going to show that

dm(BN1 , �
N
p ) ≥ μ1−1/p

22−1/p
, where μ := min

{
1,
c′ ln(eN /m)

m

}
.

The result will then follow with c = min{1, c′}1−1/p/22−1/p ≥ min{1, c′}/4.
By way of contradiction, we assume that dm(BN1 , �

N
p ) < μ1−1/p/22−1/p. This

implies the existence of a subspace Lm of RN with codim(Lm) ≤ m such that, for
all v ∈ Lm \ {0},

‖v‖p <
μ1−1/p

22−1/p
‖v‖1.

Let us consider a matrix A ∈ Rm×N such that kerA = Lm. Let us also define an
integer s ≥ 1 by s := �1/μ�, so that

1

2μ
< s ≤ 1

μ
.
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In the way, we have, for all v ∈ kerA \ {0},

‖v‖p <
1

2

(
1

2s

)1−1/p

‖v‖1.

The inequality ‖v‖1 ≤ N1−1/p‖v‖p ensures that 1 < (N/2s)1−1/p/2, hence that
2s < N . Then, for S ⊂ [N ] with card(S) ≤ 2s and for v ∈ kerA \ {0}, we have

‖vS‖1 ≤ (2s)1−1/p‖vS‖p ≤ (2s)1−1/p‖v‖p <
1

2
‖v‖1.

This is the null space property (4.2) of order 2s. Thus, according to Theorem 4.5,
every 2s-sparse vector x ∈ RN is uniquely recovered from y = Ax by
�1-minimization. Theorem 10.11 now implies that

m ≥ c1s ln
( N
c2s

)
, c1 =

1

ln 9
, c2 = 4.

Theorem 2.13 also implies that m ≥ 2(2s) = c2s. It follows that

m ≥ c1s ln
(N
m

)
= c1s ln

(eN
m

)
− c1s >

c1
2μ

ln
(eN
m

)
− c1

4
m.

After rearrangement, we deduce

m >
2c1

4 + c1

ln(eN /m)

min
{
1, c′ ln(eN /m)/m

} ≥ 2c1
4 + c1

ln(eN /m)

c′ ln(eN /m)/m
= m.

This is the desired contradiction. ��

10.3 Applications to the Geometry of Banach Spaces

Let us now highlight two applications of the previous results and their proofs in
the geometry of Banach spaces. By relating the Gelfand widths to their duals, the
Kolmogorov widths, we first obtain lower and upper bounds for the latter. Next, we
show that R2m can be split into two orthogonal subspaces on which the �1-norm
and the �2-norm are essentially equivalent. This is called a Kashin splitting.

Kolmogorov Widths

Let us start with the definition.
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Definition 10.13. The Kolmogorovm-width of a subset K of a normed space X is
defined as

dm(K,X) := inf

{
sup
x∈K

inf
z∈Xm

‖x−z‖, Xm subspace of X with dim(Xm) ≤ m

}
.

The Kolmogorov widths of �p-balls in �q are closely related to certain Gelfand
widths as shown by the following duality result.

Theorem 10.14. For 1 ≤ p, q ≤ ∞, let p∗, q∗ be such that 1/p∗ + 1/p = 1 and
1/q∗ + 1/q = 1. Then

dm(BNp , �
N
q ) = dm(BNq∗ , �

N
p∗).

The proof uses a classical observation about best approximation. Below ‖ · ‖∗
denotes the dual of some norm ‖ · ‖; see Definition A.3.

Lemma 10.15. Let Y be a finite-dimensional subspace of a normed spaceX . Given
x ∈ X \ Y and y� ∈ Y , the following properties are equivalent:

(a) y� is a best approximation to x from Y .
(b) ‖x − y�‖ = λ(x) for some linear functional λ vanishing on Y and satisfying

‖λ‖∗ ≤ 1.

Proof. Let us first assume that (b) holds. To derive (a), we observe that λ(y) = 0
for all y ∈ Y , so that

‖x− y�‖ = λ(x) = λ(x− y) ≤ ‖λ‖ ‖x− y‖ ≤ ‖x− y‖ for all y ∈ Y.

Conversely, let us assume that (a) holds. We define a linear functional λ̃ on the space
[Y ⊕ span(x)] by

λ̃(y + tx) = t ‖x− y�‖ for all y ∈ Y and t ∈ R.

Setting t = 0, it is seen that λ̃ vanishes on Y . Besides, for y ∈ Y and t �= 0, we
have

|λ̃(y + tx)| = |t| ‖x− y�‖ ≤ |t| ‖x− (−y/t)‖ = ‖y + tx‖.

This inequality—which remains valid for t = 0—implies ‖λ̃‖ ≤ 1. The linear
functional λ required in (b) is the Hahn–Banach extension of the linear functional λ̃
to the whole space X (see also Appendix C.7). ��

Proof (of Theorem 10.14). Given a subspace Xm of �Nq with dim(Xm) ≤ m and a
vector x ∈ BNp , Lemma 10.15 shows that
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inf
z∈Xm

‖x− z‖q ≤ sup
u∈BN

q∗∩X⊥
m

〈u,x〉.

Moreover, for all u ∈ BNq∗ ∩X⊥
m and any z ∈ Xm, we have

〈u,x〉 = 〈u,x− z〉 ≤ ‖u‖q∗‖x− z‖q.

We deduce the equality

inf
z∈Xm

‖x− z‖q = sup
u∈BN

q∗∩X⊥
m

〈u,x〉.

It follows that

sup
x∈BN

p

inf
z∈Xm

‖x− z‖q = sup
x∈BN

p

sup
u∈BN

q∗∩X⊥
m

〈u,x〉 = sup
u∈BN

q∗∩X⊥
m

sup
x∈BN

p

〈u,x〉

= sup
u∈BN

q∗∩X⊥
m

‖u‖p∗ .

Taking the infimum over all subspaces Xm with dim(Xm) ≤ m and noticing the
one-to-one correspondence between the subspaces X⊥

m and the subspaces Lm with
codim(Lm) ≤ m, we conclude

dm(BNp , �
N
q ) = dm(BNq∗ , �

N
p∗).

This is the desired identity. ��

Our estimate on the Gelfand widths in Theorem 10.5 immediately implies now
the following estimate of the Kolmogorov widths of �Np -balls in �N∞ for p ∈ [2,∞).

Theorem 10.16. For 2 ≤ p < ∞ and m < N , there exist constants c1, c2 > 0
depending only on p such that the Kolmogorov widths dm satisfy

c1 min

{
1,

ln(eN /m)

m

}1/p
≤ dm(BNp , �

N
∞) ≤ c2 min

{
1,

ln(eN /m)

m

}1/p
.

Kashin’s Decomposition Theorem

Specifying the upper estimate of the Gelfand width of the unit �1-ball in �N2 to the
case N = 2m, we obtain dm(B2m

1 , �2m2 ) ≤ C/
√
m, which says that there is a

subspace E of R2m of dimension m such that

‖x‖2 ≤
C√
m
‖x‖1 for all x ∈ E.



10.3 Applications to the Geometry of Banach Spaces 325

Together with ‖x‖1 ≤
√
2m ‖x‖2, which is valid for any x ∈ R2m, this means that

the norms ‖ · ‖1/
√
m and ‖ · ‖2 are comparable on E. In other words, as a subspace

of �2m1 , the m-dimensional space E is almost Euclidean. Kashin’s decomposition
theorem states even more, namely, that one can find anm-dimensional spaceE such
that both E and its orthogonal complement E⊥, as subspaces of �2m1 , are almost
Euclidean.

Theorem 10.17. There exist universal constantsα, β > 0 such that, for anym ≥ 1,
the space R2m can be split into an orthogonal sum of two m-dimensional subspaces
E and E⊥ such that

α
√
m ‖x‖2 ≤ ‖x‖1 ≤ β

√
m ‖x‖2 (10.14)

for all x ∈ E and for all x ∈ E⊥.

Proof. The second inequality in (10.14) holds with β :=
√
2 regardless of the

subspaceE of R2m considered, so we focus on the first inequality. Let G be a scaled
m × m Gaussian random matrix whose entries are independent Gaussian random
variables with mean zero and variance 1/m. We define two full-rank m × (2m)
matrices by

A :=
[
Id G

]
, B :=

[
G∗ − Id

]
,

and we consider the m-dimensional space E := kerA. In view of BA∗ = 0, we
have E⊥ = ranA∗ ⊂ kerB, and E⊥ = kerB follows from consideration of
dimensions. We are going to show that, given any t ∈ (0, 1) and any x ∈ R2m, the
matrices M = A and M = B satisfy the concentration inequality

P
(∣∣‖Mx‖22 − ‖x‖22

∣∣ ≥ t‖x‖22
)
≤ 2 exp

(
− c̃t2m

)
(10.15)

for some constant c̃ > 0. Fixing 0 < δ < 1, say δ :=
√
2/3, Theorem 9.11 with

ε = 2 exp(−c̃m/4) implies that δs(A) ≤ δ and δs(B) ≤ δ with probability at least
1− 4 exp(−c̃m/4) provided

m ≥ 2

3c̃δ2
[s(9+2 ln(2m/s))+c̃m/2], i.e., c̃m ≥ 2s(9+2 ln(2m/s)). (10.16)

The above probability is positive if also m > 8 ln(2)/c̃ and we further require
m > 1/(2γ) for a constant γ small enough to have 4γ(9 + 2 ln(2/γ)) ≤ c̃. In
this way, the integer s := �2γm� ≥ 1 satisfies γm ≤ s ≤ 2γm, and (10.16) is
therefore fulfilled. Let now x ∈ E ∪ E⊥, i.e., x ∈ kerM for M = A or M = B.
Reproducing the argument in the proof of Proposition 10.9 (see (10.9)) starting with
the partition [N ] = S0 ∪ S1 ∪ S2 ∪ · · · , we arrive at

‖x‖2 ≤ 2

√
1 + δ

1− δ

‖x‖1√
s
≤ 2(

√
2 +

√
3)

√
γm

‖x‖1.
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This is the desired inequality with
√
γ/(2(

√
2+
√
3)) taking the role ofα whenm >

m∗ := max{8 ln(2)/c̃, 1/(2γ)}. When m ≤ m∗, the desired inequality simply
follows from ‖x1‖ ≥ ‖x‖2 ≥

√
m‖x‖2/

√
m∗. The result is therefore acquired with

α := min{√γ/(2(
√
2 +

√
3)), 1/

√
m∗}. It remains to establish the concentration

inequality (10.15). In the case M = A—the case M = B being similar—we notice
that, with x = [u,v]�,

∣∣‖Ax‖22 − ‖x‖22
∣∣ = ∣∣‖u+Gv‖22 − ‖u‖22 − ‖v‖22

∣∣ = ∣∣2〈u,Gv〉+ ‖Gv‖22 − ‖v‖22
∣∣

≤ 2
∣∣〈u,Gv〉

∣∣+ ∣∣‖Gv‖22 − ‖v‖22
∣∣.

Thus, if
∣∣‖Ax‖22 − ‖x‖22

∣∣ ≥ t‖x‖22, at least one of the following two alternatives
holds:

2
∣∣〈u,Gv〉

∣∣ ≥ t

2
(‖u‖22 + ‖v‖22), or

∣∣‖Gv‖22 − ‖v‖22
∣∣ ≥ t

2
(‖u‖22 + ‖v‖22).

The first inequality implies
∣∣〈u,Gv〉

∣∣ ≥ t
2‖u‖2‖v‖2 and the second one

∣∣‖Gv‖22−
‖v‖22
∣∣ ≥ t

2‖v‖22. In terms of probability, we have

P
(∣∣‖Ax‖22 − ‖x‖22

∣∣ ≥ t‖x‖22
)

≤ P
(∣∣〈u,Gv〉

∣∣ ≥ t‖u‖2‖v‖2/2
)
+ P
(∣∣‖Gv‖22 − ‖v‖22

∣∣ ≥ t‖v‖22/2
)
.

For the first probability, we observe that 〈u,Gv〉 =
∑m

i=1 ui
∑m

j=1Gi,jvj has
the same distribution as a mean zero Gaussian random variable of variance
‖u‖22‖v‖22/m so that the standard tail estimate of Proposition 7.5 gives

P
(∣∣〈u,Gv〉

∣∣ ≥ t‖u‖2‖v‖2/2
)
= P
(∣∣g∣∣ ≥ t

√
m/2
)
≤ exp
(
− t2m/8

)
.

For the second probability, we recall from Exercise 9.2 (see also Lemma 9.8, where
the constant is not specified) that

P
(∣∣‖Gv‖22 − ‖v‖22

∣∣ ≥ t‖v‖22/2
)
≤ 2 exp

(
− (t2/16− t3/48)m

)
≤ 2 exp

(
− t2m/24

)
.

As a consequence of the previous estimates, we obtain

P
(∣∣‖Ax‖22 − ‖x‖22

∣∣ ≥ t‖x‖22
)
≤ exp
(
− t2m/8

)
+min
{
1, 2 exp

(
− t2m/24

)}
.

To complete the proof, it remains to notice that the latter is smaller than 2 exp
(−c̃t2m) for the properly chosen constant c̃ = ln(4/3)/ ln(212) ≈ 0.0346. ��
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Notes

The definition of Gelfand widths sometimes appears with codim(Lm) = m instead
of codim(Lm) ≤ m; see, for instance, Pinkus’ book [387]. This is of course
equivalent to the definition we have used.

We have coined here the terms nonadaptive and adaptive compressive widths
for the quantities Em(C,X) and Emada(C,X), but note that this is not a standard
terminology in the literature. In the compressive sensing literature, the nonadaptive
compressive width appeared (without name), along with the corresponding part of
Theorem 10.4 in [123]; see also [152, 213, 370]. The other part of Theorem 10.4
is an instance of general results from information-based complexity showing that
“adaptivity does not help”; see [371].

As outlined before Theorem 10.9, the upper bound for the Gelfand width of the
�1-ball in �Np , 1 < p ≤ 2, can be deduced from the existence of a matrix A ∈
Rm×N with the property that ‖x − Δ1(Ax)‖p ≤ C‖x‖1/s1−1/p for all x ∈ RN

where s is of the order of m/ ln(eN /m). This property is implied by the property
that ‖x − Δ1(Ax)‖p ≤ Cσs(x)1/s

1−1/p for all x ∈ RN . The two properties are
in fact equivalent (up to a change of the constant C), as observed in [300]; see also
Exercise 11.5.

The lower estimate for Gelfand widths of �1-balls given in Proposition 10.10
was obtained by Garnaev and Gluskin in [219]. Their original proof, which is
reproduced in Exercise 10.9, dealt with the dual Kolmogorov width. The proof
relying only on compressive sensing techniques presented here was proposed in
[213], where the more general case of �p-balls, 0 < p ≤ 1, was treated in a similar
way. Exercise 10.10 asks to work out this extension. The key combinatorial lemma,
namely, Lemma 10.12, follows [213, 350], but it had also been used in other areas
before; see, e.g., [77, 237, 368].

For 1 < q < p ≤ ∞, the order of the Gelfand widths of �q-balls in �Np is
known; see [333, pp. 481–482] and the references therein for the dual statement
about Kolmogorov widths. Precisely, for 1 ≤ m < N , we have

• If 1 < q < p ≤ 2,

dm(BNq , �
N
p ) $ min

{
1,
N1−1/q

m1/2

} 1/q−1/p
1/q−1/2

.

• If 1 < q ≤ 2 < p ≤ ∞,

dm(BNq , �
N
p ) $ max

{
1

N1/q−1/p
,

(
1− m

N

)1/2
min

(
1,
N1−1/q

m1/2

)}
.

• If 2 ≤ q < p ≤ ∞,
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dm(BNq , �
N
p ) $ max

{
1

N1/q−1/p
,

(
1− m

N

) 1/q−1/p
1−2/p
}
.

Theorem 10.17 was first established by Kashin in [299]. Szarek then gave a
shorter proof in [457]. The argument presented here is close to a proof given
by Schechtman in [442], which implicitly contains a few ideas now familiar in
compressive sensing.

Exercises

10.1. Determine the Gelfand widths dm(BN1 , �
N
2 ), 1 ≤ m < N , of the unit �1-ball

in the Euclidean space �N2 when N = 2 and N = 3.

10.2. For a compact subset K of an infinite-dimensional normed space K , prove
that limm→∞ dm(C,X) = 0.

10.3. Let L2(T) denote the space of square-integrable 2π-periodic functions on
R and let C1(T) be the space of continuously differentiable 2π-periodic functions
on R. Consider the subset K of L2(T) defined by

K :=
{
g ∈ C1(T) : ‖g′‖2 ≤ 1

}
.

Prove that

d0(K,L2(T)) =∞, d2n−1(K,L2(T)) = d2n(K,L2(T)) =
1

n
for n ≥ 1.

Evaluate first the quantity

sup
f∈L2(T)

inf
g∈Tn−1

‖f − g‖2,

where

Tn−1 := span{1, sin(x), cos(x), . . . , sin((n− 1)x), cos((n− 1)x)}

is the space of trigonometric polynomials of degree at most n− 1.

10.4. Prove that

dm(BXn , X) = 1, Xn an n-dimensional subspace of X, m < n. (10.17)

Prove also that

dm(BXn , X) = 1, Xn an n-dimensional subspace of X, m < n. (10.18)
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For (10.18), use the so-called theorem of deviation of subspaces (which you should
derive from the Borsuk–Ulam theorem; see Exercise 2.9):

If U and V are two finite-dimensional subspaces of a normed space X with
dim(V ) > dim(U), then there exists a nonzero vector v ∈ V to which 0 is a best
approximation from U , i.e.,

‖v‖ ≤ ‖v − u‖ for all u ∈ U.

10.5. Let K be a subset of a normed space X with 0 ∈ K . Prove that

dm(K,X) ≤ 2Emada(K,X).

10.6. Let BN1,+ be the subset of the unit ball BN1 consisting of all nonnegative
vectors, i.e.,

BN1,+ = {x ∈ BN1 : xj ≥ 0 for all j ∈ [N ]}.

Prove that

dm(BN1 , �
N
2 ) ≤ 2Em(BN1,+, �

N
2 ),

and deduce that

Em(BN1,+, �
N
2 ) $ min

{
1,

ln(eN /m)

m

}1/2
.

10.7. For 1 ≤ p < q ≤ ∞ and m < N , prove that

dm(BNp , �
N
q ) ≥ 1

(m+ 1)1/p−1/q
.

10.8. For A ∈ Rm×N and s ≥ 2, show that if every s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax, then m ≥ c s ln(eN /s) for some constant
c > 0, but that this does not hold for s = 1.

10.9. Original proof of the lower bound
This problem aims at establishing the lower bound of Proposition 10.10 by way of
the Kolmogorov width dm(BNp , �

N
∞), 1 ≤ p ≤ ∞.

(a) Given a subset C of the normed space X , for ε > 2dm(C,X) and t > 0,
prove that the maximal number of points in C ∩ tBX with mutual distance in
X exceeding ε satisfies

P(C ∩ tBX , X, ε) ≤
(
1 + 2

t+ dm(C,X)

ε− 2dm(C,X)

)m
.
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(b) For 1 ≤ k ≤ N and 0 < ε < k−1/p, prove that

P(BNp ∩ k−1/pBN∞, �N∞, ε) ≥ 2k
(
N

k

)
.

(c) Conclude that, for 1 ≤ m < N ,

dm(BNp , �
N
∞) ≥ 1

3
min

{
1,

ln(3N/m)

6m

}1/p
.

10.10. Gelfand widths of �p-balls for p < 1
This problem aims at extending the upper and lower bounds in Theorem 10.5 to the
Gelfand widths dm(BNp , �

N
q ) with 0 < p ≤ 1 and p < q ≤ 2.

(a) Let A ∈ Rm×N and 0 < p ≤ 1. Show that if every 2s-sparse vector x ∈ RN is
the unique minimizer of ‖z‖p subject to Az = Ax, then m ≥ c1ps ln(c2N/s)
for appropriate constants c1, c2 > 0.

(b) Let 0 < p ≤ 1 and p < q ≤ 2. Show that there exists constants cp,q and Cp,q
only depending on p and q such that

cp,qmin

{
1,

ln(eN /m)

m

}1/p−1/q

≤ dm(BNp , �
N
q )

≤ Cp,qmin

{
1,

ln(eN /m)

m

}1/p−1/q

.

10.11. Observe that Kashin’s decomposition theorem also applies to �2mp with 1 <

p ≤ 2 instead of �2m1 , i.e., observe that there are orthogonal subspaces E and E⊥ of
dimension m such that

αm1/p−1/2‖x‖2 ≤ ‖x‖p ≤ β m1/p−1/2‖x‖2

for all x ∈ E and all x ∈ E⊥, where α, β > 0 are absolute constants.



Chapter 11
Instance Optimality and Quotient Property

This chapter examines further fundamental limits of sparse recovery and properties
of �1-minimization. In Sect. 11.1, we introduce the concept of �p-instance optimality
for a pair of measurement matrix and reconstruction map, which requires that the
reconstruction error in �p can be compared with the best s-term approximation error
in �p. The minimal number of measurements to achieve �1-instance optimality is
determined, complementing some results from Chap. 10. It is also revealed that
�2-instance optimality is not a valid concept for the range of parameters typical
to compressive sensing. In retrospect, this explains why the term σs(x)1/

√
s

instead of σs(x)2 appears in (uniform) �2-estimates for the reconstruction error
(see, for instance, (4.16) or Theorem 6.12). Nonetheless, �1-minimization allows
for a weaker form of �2-instance optimality when the measurement matrix is a
subgaussian random matrix, as established in Sect. 11.4. The tools needed for
the analysis of this nonuniform instance optimality are developed in Sects. 11.2
and 11.3, which at the same time explore another important topic. In fact, when
the measurements are corrupted, a quadratically constrained �1-minimization may
be used (see, for instance, Theorem 6.12). However, this requires a good estimate
of the �2-norm of the measurement error. Under certain assumptions, we prove
somewhat unexpectedly that equality-constrained �1-minimization also leads to very
similar reconstruction estimates, even though knowledge of the measurement error
is not required for this approach. The key to such results is the concept of quotient
property introduced in Sect. 11.2. Stability and robustness estimates for equality-
constrained �1-minimization are provided under the quotient property. It is then
shown in Sect. 11.3 that different versions of the quotient property hold with high
probability for Gaussian matrices and for subgaussian matrices.

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 11,
© Springer Science+Business Media New York 2013
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11.1 Uniform Instance Optimality

When a measurement–reconstruction scheme is assessed for s-sparse recovery, it is
natural to compare the reconstruction error for a vector x ∈ CN to the error of best
s-term approximation

σs(x)p = inf
{
‖x− z‖p, z ∈ C

N is s-sparse
}
.

This motivates the introduction of the instance optimality concept.

Definition 11.1. Given p ≥ 1, a pair of measurement matrix A ∈ Cm×N and
reconstruction map Δ : Cm → CN is called �p-instance optimal of order s with
constant C > 0 if

‖x−Δ(Ax)‖p ≤ C σs(x)p for all x ∈ C
N .

In Theorems 6.12, 6.21, and 6.25, we have seen examples of �1-instance optimal
pairs, i.e., a matrix A with small restricted isometry constants δ2s, δ6s, or δ26s,
together with a reconstruction map Δ corresponding to basis pursuit, iterative hard
thresholding, or orthogonal matching pursuit, respectively. In fact, more general
statements have been established where the reconstruction error was measured in
�q for q ≥ 1. With the following terminology, the previous pairs (A, Δ) are mixed
(�q, �1)-instance optimal.

Definition 11.2. Given q ≥ p ≥ 1, a pair of measurement matrix A ∈ Cm×N and
reconstruction map Δ : Cm → CN is called mixed (�q, �p)-instance optimal of
order s with constant C > 0 if

‖x−Δ(Ax)‖q ≤
C

s1/p−1/q
σs(x)p for all x ∈ C

N .

Remark 11.3. The term s1/p−1/q in this definition is not only motivated by the re-
sults mentioned above. Indeed, since we are mainly interested in the reconstruction
of compressible vectors, we want to compare the reconstruction error ‖x−Δ(Ax)‖q
to the error of best approximation σs(x)q for vectors x ∈ CN belonging to balls
BNr or BNr,∞ with r < 1. By considering the nonincreasing rearrangements of such
vectors, we observe that

sup
x∈BN

r,∞

σs(x)q $
1

s1/r−1/q
$ 1

s1/p−1/q
sup

x∈BN
r,∞

σs(x)p. (11.1)

This justifies that we should compare ‖x−Δ(Ax)‖q to σs(x)p/s1/p−1/q .

Our goal is to determine conditions on the number of measurements under
which instance optimality can be achieved for some pair of measurement matrix
and reconstruction map. We start with a useful characterization for the existence of
instance optimal pairs.
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Theorem 11.4. Let q ≥ p ≥ 1 and a measurement matrix A ∈ Cm×N be given. If
there exists a reconstruction mapΔ making the pair (A, Δ) mixed (�q, �p)-instance
optimal of order s with constant C, then

‖v‖q ≤
C

s1/p−1/q
σ2s(v)p for all v ∈ kerA. (11.2)

Conversely, if (11.2) holds, then there exists a reconstruction map Δ making the
pair (A, Δ) mixed (�q, �p)-instance optimal of order s with constant 2C.

Proof. Let us first assume that (A, Δ) is a mixed (�q, �p)-instance optimal pair
of order s with constant C. Given v ∈ kerA, let S be an index set of s largest
absolute entries of v. The instance optimality implies −vS = Δ(A(−vS)). Since
A(−vS) = A(vS), we have−vS = Δ(A(vS)). We now derive (11.2) from

‖v‖q = ‖vS + vS‖q = ‖vS −Δ(A(vS))‖q

≤ C

s1/p−1/q
σs(vS)p =

C

s1/p−1/q
σ2s(v)p.

Conversely, let us assume that (11.2) holds for some measurement matrix A.
We define a reconstruction map by

Δ(y) := argmin{σs(z)p subject to Az = y}.

For x ∈ CN , applying (11.2) to v := x−Δ(Ax) ∈ kerA yields

‖x−Δ(Ax)‖q ≤
C

s1/p−1/q
σ2s(x−Δ(Ax))p

≤ C

s1/p−1/q

(
σs(x)p + σs(Δ(Ax))p

)
≤ 2C

s1/p−1/q
σs(x)p,

where we have used the triangle inequality σ2s(u+v)p ≤ σs(u)p+σs(v)p and the
definition of Δ(Ax). This proves that (A, Δ) is a mixed (�q, �p)-instance optimal
pair of order s with constant 2C. ��

We stress that in the case q = p = 1 the condition (11.2) reduces to

‖v‖1 ≤ C σ2s(v)1 for all v ∈ kerA.

This is reminiscent of the null space property of order 2s for recovery via
�1-minimization as formulated in (4.3), namely,

‖v‖1 < 2 σ2s(v)1 for all v ∈ kerA.

The link between arbitrary instance optimal pairs (A, Δ) and the pair (A, Δ1),
where Δ1 denotes the �1-minimization reconstruction map, will be further investi-
gated in Exercise 11.5.
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Theorem 11.4 enables us to prove that �2-instance optimality is not a proper
concept in compressive sensing, since �2-instance optimal pairs—even of order
s = 1—can only exist if the number m of measurements is comparable to the
dimension N . Note that this assertion will be moderated in Theorems 11.23
and 11.25, where we switch from a uniform setting to a nonuniform setting.

Theorem 11.5. If a pair of measurement matrix and reconstruction map is
�2-instance optimal of order s ≥ 1 with constant C, then

m ≥ cN (11.3)

for some constant c depending only on C.

Proof. According to Theorem 11.4, the measurement matrix A in the instance
optimal pair satisfies

‖v‖2 ≤ C σs(v)2 for all v ∈ kerA.

In particular, specifying this condition to s = 1 yields ‖v‖22 ≤ C2(‖v‖22−|vj |2) for
all v ∈ kerA and all j ∈ [N ], i.e., C2|vj |2 ≤ (C2 − 1)‖v‖22. If (e1, . . . , eN)
denotes the canonical basis of CN , this means that |〈v, ej〉| ≤ C′ ‖v‖2 for all
v ∈ kerA and all j ∈ [N ], where C′ :=

√
(C2 − 1)/C2. Thus, if P represents the

orthogonal projector onto kerA, we have

N −m ≤ dim(kerA) = tr (P) =

N∑
j=1

〈Pej , ej〉 ≤
N∑
j=1

C′ ‖Pej‖2 ≤ N C′.

This immediately implies the desired result with c = 1−
√
(C2 − 1)/C2. ��

We now turn our attention to �1-instance optimality and (�q, �1)-instance opti-
mality for q ≥ 1. As already recalled, we have established in Chap. 6 that several
reconstruction algorithms give rise to mixed (�q, �1)-instance optimal pairs (A, Δ),
provided the measurement matrix A has small restricted isometry constants.
Moreover, Theorem 9.6 guarantees that this occurs with high probability for sub-
gaussian random matrices A provided m ≥ c s ln(eN/s) for some constant c > 0.
Theorems 11.6 and 11.7 below show that a smaller number m of measurements is
impossible. Thereby, we remove the earlier restrictions of Theorem 10.7 that q > 1
and that s is larger than some constant. In the case q = 1, Gelfand width estimates
can no longer be used for the proof, but the tools developed in Chap. 10 are still
appropriate to deal with this more delicate case.

Theorem 11.6. If a pair of measurement matrix A ∈ C
m×N and reconstruction

map Δ : Cm → C
N is �1-instance optimal of order s with constant C, then

m ≥ c s ln(eN/s) (11.4)

for some constant c depending only on C.
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Proof. By Lemma 10.12, there exist n ≥ (N/4s)s/2 index sets S1, . . . , Sn of size
s satisfying card(Si ∩ Sj) < s/2 for all 1 ≤ i �= j ≤ n. We consider the s-sparse
vectors x1, . . . ,xn already defined in (10.13) by

xik =

{
1/s if k ∈ Si,
0 if k �∈ Si.

We notice that ‖xi‖1 = 1 and that ‖xi − xj‖1 > 1 for all 1 ≤ i �= j ≤ n.
Setting ρ := 1/(2(C + 1)), we claim that {A(xi + ρBN1 ), i ∈ [n]} is a disjoint
collection of subsets of A(CN ), which has dimension d ≤ m. Indeed, if there
existed indices i �= j and vectors z, z′ ∈ ρBN1 such that A(xi + z) = A(xj + z′),
then a contradiction would follow from

‖xi − xj‖1 = ‖(xi+ z−Δ(A(xi + z))
)− (xj + z′ −Δ(A(xj + z′))

)− z+ z′‖1
≤ ‖xi + z−Δ(A(xi + z))‖1 + ‖xj + z′ −Δ(A(xj + z′))‖1 + ‖z‖1 + ‖z′‖1
≤ C σs(x

i + z)1 +C σs(x
j + z′)1 + ‖z‖1 + ‖z′‖1

≤ C ‖z‖1 + C ‖z′‖1 + ‖z‖1 + ‖z′‖1 ≤ 2 (C + 1) ρ = 1.

Next, we observe that the collection {A(xi + ρBN1 ), i ∈ [n]} is contained in
(1 + ρ)A(BN1 ). Therefore, considering the volume of this collection (in the space
A(CN )), we deduce

∑
i∈[n]

vol
(
A(xi + ρBN1 )

)
≤ vol
(
(1 + ρ)A(BN1 )

)
.

Using homogeneity and translation invariance of the volume and noting the
d-dimensional complex case is equivalent to the 2d-dimensional real case, we derive

n ρ2d vol
(
A(BN1 )

)
≤ (1 + ρ)2d vol

(
A(BN1 )

)
.

This yields

(
N

4s

)s/2
≤ n ≤

(
1 +

1

ρ

)2d
= (2C + 3)2d ≤ (2C + 3)2m. (11.5)

Taking the logarithms in (11.5) on the one hand and on the other hand remarking
that the pair (A, Δ) ensures exact recovery of s-sparse vectors, we obtain

m

s
≥ ln(N/4s)

4 ln(2C + 3)
,

m

s
≥ 2.
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Combining these two inequalities leads to

(
4 ln(2C + 3) + 2

) m
s
≥ ln(N/4s) + ln(e4) = ln(e4N/4s) ≥ ln(eN/s).

This is the desired result where c = 1/(4(ln(2C + 3) + 2)). ��

With the help of Theorem 11.6, we can prove that the requirement (11.4) on
the number of measurements is also imposed by mixed (�q, �1)-instance optimality
when q > 1. This is formally stated in the following theorem.

Theorem 11.7. Given q > 1, if a pair of measurement matrix and reconstruction
map is mixed (�q, �1)-instance optimal of order s with constant C, then

m ≥ c s ln(eN/s)

for some constant c depending only on C.

The proof is a simple consequence of Theorem 11.6 and of the following
lemma, which roughly says that mixed (�q, �1)-instance optimality is preserved
when decreasing q.

Lemma 11.8. Given q ≥ q′ ≥ p ≥ 1, if a pair (A, Δ) is mixed (�q, �p)-instance
optimal of order s with constantC, then there is a reconstruction mapΔ′ making the
pair (A, Δ′) mixed (�q′ , �p)-instance optimal of order s with constantC′ depending
only on C.

Proof. Let us consider a vector v ∈ kerA. Since the pair (A, Δ) is mixed
(�q, �p)-instance optimal of order s with constant C, Theorem 11.4 yields

‖v‖q ≤
C

s1/p−1/q
σ2s(v)p.

Let S denote an index set of 3s largest entries of v in modulus. We have

‖vS‖q′ ≤ (3s)1/q
′−1/q‖vS‖q ≤ (3s)1/q

′−1/q‖v‖q

≤ (3s)1/q
′−1/q C

s1/p−1/q
σ2s(v)p =

31/q
′−1/q C

s1/p−1/q′ σ2s(v)p

≤ 3C

s1/p−1/q′ σ2s(v)p.

Moreover, we derive from Proposition 2.3 that

‖vS‖q′ ≤
1

s1/p−1/q′ σ2s(v)p.
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Thus, we obtain

‖v‖q′ ≤ ‖vS‖q′ + ‖vS‖q′ ≤
3C + 1

s1/p−1/q′ σ2s(v)p.

In view of the converse part of Theorem 11.4, the desired result holds with
C′ = 2(3C + 1). ��

In parallel with Lemma 11.8, it can be proved that mixed (�q, �p)-instance
optimality is also preserved when decreasing p instead of q; see Exercise 11.2.
This exercise also complements Theorem 11.7 by determining a lower bound on the
number of measurements to achieve mixed (�q, �p)-instance optimality with p > 1,
hence showing that it is not achievable in the regime m $ s ln(eN/m).

11.2 Robustness and Quotient Property

In addition to stability—or instance optimality in the terminology of the previous
section—the robustness of recovery algorithms under measurement error is very
important. We have seen in Chaps. 4 and 6 that quadratically constrained basis
pursuit, that is, the reconstruction map given by

Δ = Δ1,η,A(y) := argmin{‖z‖1 subject to ‖Az− y‖2 ≤ η} (11.6)

applied to the inaccurate measurements y = Ax + e with ‖e‖2 ≤ η provides a
stability estimate of the form

‖x−Δ(Ax+ e)‖2 ≤
C√
s
σs(x)1 +Dη (11.7)

under suitable hypotheses on A—for instance, if its restricted isometry constants
satisfy δ2s < 0.62; see Theorem 6.12. The drawback of this result is that running
quadratically constrained basis pursuit requires a proper guess of the level η of
measurement error, but such an estimate may not a priori be available.

In contrast, Theorems 6.21, 6.25, and 6.28 showed that other algorithms such as
iterative hard thresholding, orthogonal matching pursuit, and compressive sampling
matching pursuit do provide robustness estimates of the type

‖x−Δ(Ax+ e)‖2 ≤
C√
s
σs(x)1 +D‖e‖2, (11.8)

without the need to estimate ‖e‖2. However, these algorithms require as part of their
input an estimate of the sparsity level s, which is a priori not available either.
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Ideally, we would like to have a tractable reconstruction map Δ (together with a
measurement matrix A) that provides reconstruction estimates of the form (11.7)
without the need to specify neither the level η of measurement error nor the
sparsity s. In this context, we will investigate the use of equality-constrained �1-
minimization

Δ1(y) = Δ1,A(y) := argmin{‖z‖1 subject to Az = y}, (11.9)

with subgaussian random matrices A when flawed measurements y = Ax + e
are given. Obviously, Δ1 neither requires an estimate of ‖e‖2 (or some other
characteristics of e) nor of the sparsity level s.

In order to put our results into context, we first recall the error estimates obtained
for quadratically constrained basis pursuit Δ1,η. Let A be the realization of a
renormalizedm×N subgaussian matrix withm ≥ c s ln(eN/m) and let 1 ≤ p ≤ 2.
Then, with high probability, the robustness estimate takes the form

‖x−Δ1,η,A(Ax+ e)‖p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2η, (11.10)

valid for all x ∈ CN and e ∈ Cm with ‖e‖2 ≤ η. Thus, setting

s∗ := s∗(m,N) :=
m

ln(eN/m)
,

we derive that, for any 1 ≤ p ≤ 2, if s ≤ s∗/c, then

‖x−Δ1,η,A(Ax+ e)‖p ≤
C

s1−1/p
σs(x)1 +D′s

1/p−1/2
∗ η

holds for all x ∈ C
N and e ∈ C

m with ‖e‖2 ≤ η.
The purpose of this section and the next one is to show that such robust-

ness results can also be achieved for the equality-constrained �1-minimization
Δ1 = Δ1,A. (Note that we will omit to write the subscript A since it is always
clear from the context, for instance, when writing the pair (A, Δ1) for the pair
(A, Δ1,A).) The measurement process involves Gaussian and subgaussian matrices.
These matrices, introduced in Definition 9.1, are required to have entries with
variance 1. Here, we use renormalized measurement matrices Ã with entries of
variance 1/m, so that Ã = m−1/2A, where A is an unnormalized subgaussian
matrix. The first main result pertains to the Gaussian case.

Theorem 11.9. Let 1 ≤ p ≤ 2 and let Ã = 1√
m
A where A is an m×N Gaussian

random matrix. If

N ≥ c2m and s ≤ c3s∗ =
c3m

ln(eN/m)
,
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then with probability at least 1− 3 exp(−c1m) the �p-error estimates

‖x−Δ1(Ãx+ e)‖p ≤
C

s1−1/p
σs(x)1 +Ds

1/p−1/2
∗ ‖e‖2 (11.11)

are valid for all x ∈ CN and e ∈ Cm. The constants c1, c2, c3, C,D > 0 are
universal.

The above assumption that N ≥ c2m is not a severe restriction in compressive
sensing, where the number of measurements is typically much smaller than the
ambient dimension.

The second main result concerns the more general subgaussian matrices. In this
case, the �2-norm on the measurement error has to be slightly adjusted to

‖e‖
(√

ln(eN/m)
)
:= max

{
‖e‖2,
√
ln(eN/m)‖e‖∞

}
.

In fact, for Bernoulli matrices, the statement of the previous theorem does not hold
without this modification of the �2-norm as argued in the next section; see p. 350.

We note that in practice the modified norm ‖e‖
(√

ln(eN/m)
)

does not usually differ
much from the �2-norm. In fact, the two norms are only different for approximately
sparse vectors e. For instance, if e is a random noise vector, then this occurs with
very small probability.

Theorem 11.10. Let 1 ≤ p ≤ 2 and let Ã = 1√
m
A where A is an m × N

subgaussian matrix with symmetric entries and with subgaussian parameter c in
(9.2). There exist constants c1, c2, c3, C,D > 0 depending only on c such that if

N ≥ c2m and s ≤ c3s∗ =
c3m

ln(eN/m)
,

then with probability at least 1− 5 exp(−c1m) the �p-error estimates

‖x−Δ1(Ãx+ e)‖p ≤
C

s1−1/p
σs(x)1 +Ds

1/p−1/2
∗ ‖e‖

(√
ln(eN/m)

)
(11.12)

are valid for all x ∈ CN and e ∈ Cm.

The symmetry assumption on the entries of A is not a severe restriction and is
satisfied in particular for Bernoulli matrices.

The fundamental tool for establishing Theorems 11.9 and 11.10 is a new property
of the measurement matrix called the quotient property. In this section, we show
that the estimates (11.11) and (11.12) are implied by the quotient property, and in
the next section we establish the quotient property for random matrices.

Definition 11.11. Given q ≥ 1, a measurement matrix A ∈ Cm×N is said to
possess the �q-quotient property with constant d relative to a norm ‖ · ‖ on Cm

if, for all e ∈ Cm, there exists u ∈ CN with
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Au = e and ‖u‖q ≤ d s
1/q−1/2
∗ ‖e‖,

where s∗ = m/ ln(eN/m).

We point out that the quotient property is a natural assumption to make, since it
is implied by the robustness estimate

‖x−Δ1(Ax+ e)‖q ≤
C

s1−1/q
σs(x)1 +Ds

1/q−1/2
∗ ‖e‖. (11.13)

Indeed, setting x = 0 in (11.13) gives ‖Δ1(e)‖q ≤ Ds
1/q−1/2
∗ ‖e‖. This implies—

if q = 1, then it is equivalent to—the �q-quotient property by taking u = Δ1(e).
The �1-quotient property asserts that the image under A of the �1-ball of radius
d
√
s∗ covers the unit ball relative to ‖ · ‖. The terminology quotient property is

explained by a reformulation involving the quotient norm of the set [e] = u+kerA
of preimages of a vector e = Au ∈ Cm, namely,

‖[e]‖�q/ kerA := inf
{
‖u+ v‖q, v ∈ kerA

}
= inf
{
‖z‖q, Az = e

}
.

Thus, the �q-quotient property is equivalent to

‖[e]‖�q/ kerA ≤ ds
1/q−1/2
∗ ‖e‖ for all e ∈ C

m.

Another reformulation, used in Sect. 11.3 to establish the quotient property for
random matrices, involves the dual norm of the norm ‖ · ‖, but is not needed at
this point. The rest of this section is of deterministic nature, and Theorems 11.9
and 11.10 will become simple consequences of Theorem 11.12 below as soon as
we verify that its two hypotheses hold with high probability for random matrices.
Note that the first hypothesis—the robust null space property—is already acquired.
Incidentally, we point out that the robust null space property is also a natural
assumption to make, since it is necessary for the desired estimate (11.13), as we
can see by setting x = v ∈ CN and e = −Av ∈ Cm—see also Remark 4.24.

Theorem 11.12. If a matrix A ∈ Cm×N satisfies

• The �2-robust null space property of order c s∗ with s∗ = m/ ln(eN/m) and
constants 0 < ρ < 1 and τ > 0 relative to a norm ‖ · ‖,

• The �1-quotient property with constant d relative to the norm ‖ · ‖,

then, for any s ≤ c s∗ and for all x ∈ CN and e ∈ Cm,

‖x−Δ1(Ax + e)‖q ≤
C

s1−1/q
σs(x)1 +Ds

1/q−1/2
∗ ‖e‖, 1 ≤ q ≤ 2.

The constants C and D depend only on ρ, τ , c, and d.
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Remark 11.13. The specific value of s∗ = m/ ln(eN/m) is not very important for
the statement of this theorem. If s∗ is kept as a free parameter in the definition of
the quotient property, then the theorem remains true for an arbitrary value of s∗.
Treating s∗ as a parameter, we realize that the first requirement—the �2-robust null
space property of order cs∗—becomes easier to satisfy for smaller values of s∗,
while the second requirement—the �1-quotient property—becomes easier to satisfy
for larger values of s∗. Therefore, it is a priori not clear whether there exists a value
of s∗ for which both requirements are satisfied simultaneously. We will see that this
is indeed the case for subgaussian random matrices, for certain norms ‖ · ‖, and for
our choice s∗ = m/ ln(eN/m).

The next two lemmas account for Theorem 11.12. The first lemma asserts that
the mixed instance optimality and the simultaneous quotient property—to be defined
below—together yield the desired robustness estimates. The second lemma asserts
that the robust null space property and the �1-quotient property together yield the
simultaneous quotient property.

Definition 11.14. Given q ≥ 1, a matrix A ∈ Cm×N is said to have the
simultaneous (�q, �1)-quotient property with constants d and d′ relative to a norm
‖ · ‖ on Cm if, for all e ∈ Cm, there exists u ∈ CN with

Au = e and

{
‖u‖q ≤ d s

1/q−1/2
∗ ‖e‖,

‖u‖1 ≤ d′ s
1/2
∗ ‖e‖.

The two lemmas mentioned above read as follows.

Lemma 11.15. Given q ≥ 1, if a measurement matrix A ∈ Cm×N and a recon-
struction map Δ are such that

• (A, Δ) is mixed (�q, �1)-instance optimal of order cs∗ with constant C,
• A has the simultaneous (�q, �1)-quotient property with constants d and d′

relative to a norm ‖ · ‖,

then, for all x ∈ CN , e ∈ Cm and s ≤ cs∗,

‖x−Δ(Ax+ e)‖q ≤
C

s1−1/q
σs(x)1 +Ds

1/q−1/2
∗ ‖e‖, D :=

Cd′

c1−1/q
+ d.

Proof. For x ∈ CN and e ∈ Cm, the simultaneous (�q, �1)-quotient property
ensures the existence of u ∈ CN satisfying

Au = e and

{
‖u‖q ≤ d s

1/q−1/2
∗ ‖e‖,

‖u‖1 ≤ d′ s
1/2
∗ ‖e‖.

(11.14)
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Using the instance optimality, we then derive

‖x−Δ(Ax+ e)‖q = ‖x−Δ(A(x+u))‖q ≤ ‖x+u−Δ(A(x+u))‖q + ‖u‖q

≤ C

s1−1/q
σs(x+ u)1 + ‖u‖q

≤ C

s1−1/q
(σs(x)1 + ‖u‖1) + ‖u‖q.

Substituting the inequalities of (11.14) into the latter yields the result for s = cs∗.
The result for s ≤ cs∗ follows by monotonicity of σs(x)1/s1−1/q. ��

Lemma 11.16. Given q ≥ 1 and a norm ‖ · ‖ on Cm, if a measurement matrix
A ∈ Cm×N satisfies

• The �q-robust null space property of order c s∗ with constants ρ > 0 and τ > 0

relative to s1/q−1/2
∗ ‖ · ‖,

• The �1-quotient property with constant d relative to ‖ · ‖,

then the matrix A also satisfies the simultaneous (�q, �1)-quotient property relative
to ‖ · ‖ with constants D := (1 + ρ)d/c1−1/q + τ and D′ := d.

Proof. Let us consider a vector e ∈ Cm. By the �1-quotient property, there exists
u ∈ CN such that Au = e and ‖u‖1 ≤ ds

1/2
∗ ‖e‖. Next, we establish the estimate

‖u‖q ≤ Ds
1/q−1/2
∗ ‖e‖ for some constant D. For an index set S of c s∗ largest

absolute entries of u, we first use Proposition 2.3 to derive

‖uS‖q ≤
1

(c s∗)1−1/q
‖u‖1.

The �q-robust null space property of order c s∗ yields

‖uS‖q ≤
ρ

(c s∗)1−1/q
‖uS‖1+τs

1/q−1/2
∗ ‖Au‖≤ ρ

(c s∗)1−1/q
‖u‖1+τs1/q−1/2

∗ ‖e‖.

It follows that

‖u‖q = ‖uS + uS‖q ≤ ‖uS‖q + ‖uS‖q ≤
1 + ρ

(c s∗)1−1/q
‖u‖1 + τs

1/q−1/2
∗ ‖e‖.

The estimate ‖u‖1 ≤ ds
1/2
∗ ‖e‖ yields the desired result. ��

Now that Lemmas 11.15 and 11.16 have been established, Theorem 11.12 can be
derived with the help of results from Chap. 4.

Proof (of Theorem 11.12). We assume that A ∈ Cm×N satisfies the �2-robust null
space property of order c s∗ with constant 0 < ρ < 1 and τ > 0 relative to ‖ · ‖,
as well as the �1-quotient property with constant d relative to ‖ · ‖. Then, for any
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1 ≤ q ≤ 2, Definition 4.21 and the considerations afterwards ensure that A satisfies
the �q-robust null space property of order c s∗ with constant 0 < ρ < 1 and

τ c1/q−1/2 > 0 relative to s1/q−1/2
∗ ‖ · ‖. Lemma 11.16 now implies that A satisfies

the simultaneous (�q, �1)-quotient property with constants D = (1 + ρ)d/c1−1/q +
τ c1/q−1/2 ≤ (1 + ρ)d/min{1, c}1/2 + τ max{1, c}1/2 and D′ = d. Next, for any
1 ≤ q ≤ 2, Theorem 4.25 ensures that the pair (A, Δ1) is mixed (�q, �1)-instance
optimal of any order s ≤ c s∗ with constant C = (1 + ρ)2/(1 + ρ). Lemma 11.15
finally yields the desired estimate with constants depending on ρ, τ , c, and d. ��

11.3 Quotient Property for Random Matrices

In this section, we prove the �1-quotient property for certain random matrices. First,
we focus on Gaussian matrices, where the �1-quotient property holds relative to
the �2-norm. Second, we analyze general subgaussian random matrices, where the
�1-quotient property holds relative to a slight alteration of the �2-norm. The basis
of both arguments is a convenient reformulation of the quotient property involving
the dual norm of a norm ‖ · ‖, i.e., ‖e‖∗ = sup‖y‖=1 |〈y, e〉| for e ∈ Cm; see
Definition A.3.

Lemma 11.17. For q ≥ 1, a matrix A ∈ Cm×N has the �q-quotient property with
constant d relative to a norm ‖ · ‖ if and only if

‖e‖∗ ≤ d s
1/q−1/2
∗ ‖A∗e‖q∗ for all e ∈ C

m, (11.15)

where s∗ =
m

ln(eN/m)
and where q∗ =

q

q − 1
is the conjugate exponent of q.

Proof. Let us assume that A has the �q-quotient property. For e ∈ C
m, we have

‖e‖∗ = 〈y, e〉 for some y ∈ C
m with ‖y‖ = 1. The vector y can be written as

y = Au for some u ∈ CN with ‖u‖q ≤ ds
1/q−1/2
∗ . We deduce (11.15) from

‖e‖∗ = 〈Au, e〉 = 〈u,A∗e〉 ≤ ‖u‖q‖A∗e‖q∗ ≤ ds
1/q−1/2
∗ ‖A∗e‖q∗ .

Conversely, let us assume that (11.15) holds. We consider the case q > 1 first.
If e = 0, then the statement is trivial. Thus, we choose e ∈ Cm \ {0} and let
u ∈ CN \ {0} be a minimizer of ‖z‖q subject to Az = e. Our goal is to show that

‖u‖q ≤ ds
1/q−1/2
∗ ‖e‖. Let us fix a vector v ∈ kerA. Given τ = teiθ with t > 0

small enough to have u+ τv �= 0, we consider the vector wτ ∈ CN whose entries
are given by

wτj :=
sgn(uj + τvj) |uj + τvj |q−1

‖u+ τv‖q−1
q

, j ∈ [N ].
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We notice that 〈wτ ,u + τv〉 = ‖u + τv‖q with ‖wτ‖q∗ = 1. The vector
w := limτ→0 w

τ is well defined and independent of v, thanks to the assumption
q > 1. It satisfies 〈w,u〉 = ‖u‖q with ‖w‖q∗ = 1. The definition of u yields

Re〈wτ ,u〉 ≤ ‖u‖q ≤ ‖u+ τv‖q = Re〈wτ ,u+ τv〉,

so that Re〈wτ , eiθv〉≥ 0. Taking the limit as t tends to zero, we obtain
Re〈w, eiθv〉 ≥ 0 independently of θ; hence, 〈w,v〉 = 0. Since this is true for
all v ∈ kerA, we have w ∈ (kerA)⊥ = ranA∗. Therefore, we can write
w = A∗y for some y ∈ Cm. According to (11.15) and ‖w‖q∗ = 1, we have

‖y‖∗ ≤ ds
1/q−1/2
∗ . It follows that

‖u‖q = 〈w,u〉 = 〈A∗y,u〉 = 〈y,Au〉 = 〈y, e〉 ≤ ‖y‖∗‖e‖ ≤ ds
1/q−1/2
∗ ‖e‖.

This establishes the �q-quotient property in the case q > 1. We use an approximation
argument for the case q = 1. To this end, let us consider a sequence of numbers
qn > 1 converging to 1. For each n, in view of ‖A∗e‖∞ ≤ ‖A∗e‖q∗n , the property
(11.15) for q = 1 implies a corresponding property for q = qn when d is changed

to ds
1/q∗n∗ . Given e ∈ Cm, the preceding argument yields a sequence of vectors

un ∈ CN with Aun = e and ‖un‖qn ≤ ds
1/q∗n∗ s

1/qn−1/2
∗ ‖e‖ = ds

1/2
∗ ‖e‖. Since

the sequence (un) is bounded in the �∞-norm, it has a convergent subsequence.
Denoting by u ∈ CN its limit, we obtain Au = e and ‖u‖1 = limn→∞ ‖un‖qn ≤
ds

1/2
∗ ‖e‖. This settles the case q = 1. ��

Remark 11.18. In the case of a real matrix A, we can also consider a real version
of the quotient property, i.e., for all e ∈ Rm, there exists u ∈ RN with

Au = e and ‖u‖q ≤ d s
1/q−1/2
∗ ‖e‖.

The real and complex versions are in fact equivalent, up to a possible change of
the constant d. A real version of Lemma 11.17 also holds. Exercise 11.6 asks
for a detailed verification of these statements. When we establish the quotient
property for random matrices, we actually prove the real analog of (11.15), that is,
‖e‖∗ ≤ ds

1/q−1/2
∗ ‖A∗e‖q∗ for all e ∈ Rm.

Gaussian Random Matrices

We are now in the position to prove the �1-quotient property for Gaussian random
matrices and then to deduce Theorem 11.9 concerning robustness of equality-
constrained �1-minimization. We point out that the numerical constants in the
following theorems have not been optimized, they have simply been chosen for
convenience. Moreover, these constants rely on estimates for random matrices from
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Chap. 9 such as Theorem 9.26 that are particular to the Gaussian case. In the proofs
below, one may as well use the easier theorems for subgaussian matrices from
Sect. 9.1, which, however, do not specify constants.

Theorem 11.19. For N ≥ 2m, if A is a draw of an m × N Gaussian random
matrix, then the matrix Ã = 1√

m
A possesses the �1-quotient property with constant

D = 34 relative to the �2-norm with probability at least 1− exp(−m/100).

Proof. According to Lemma 11.17 and Remark 11.18, we need to prove that

P
(
‖e‖2 ≤ D

√
s∗‖Ã∗e‖∞ for all e ∈ R

m
)
≥ 1− exp(−m/100). (11.16)

To this end, we separate two cases: 2m ≤ N < Cm and N ≥ Cm, where
C = 1656 for reasons that will become apparent later. In the first case, by
considering the renormalized matrix B :=

√
m/NÃ∗ = A∗/

√
N ∈ R

N×m, we
notice that the existence of e ∈ Rm such that ‖e‖2 > D

√
s∗‖Ã∗e‖∞ implies

‖e‖2 > D

√
s∗N

m
‖Be‖∞ ≥ D

√
s∗
m
‖Be‖2 ≥

D√
ln(eN/m)

σmin(B)‖e‖2.

In view of N < Cm, we derive

σmin(B) <

√
ln(eC)

D
=: 1−

√
m

N
− t.

If D ≥ 6
√
ln(eC) (which holds for D = 34 and C = 1656), then the number t

satisfies

t = 1−
√
m

N
−
√
ln(eC)

D
≥ 1−
√

1

2
− 1

6
≥ 1

10
.

Calling upon Theorem 9.26, we obtain

P
(
‖e‖2 > 34

√
s∗‖Ã∗e‖∞ for some e ∈ R

m
)
≤ P

(
σmin(B) < 1−

√
m

N
− t

)

≤ exp

(
− t2N

2

)
≤ exp

(
− N

200

)
≤ exp

(
− m

100

)
.

This establishes (11.16) in the case 2m ≤ N < Cm.
The case N ≥ Cm is more delicate. Here, with D = 8, we will prove the

stronger statement

P
(
‖e‖2 > D

√
s∗|||Ã∗e||| for some e ∈ R

m
)
≤ exp
(
−m/3

)
. (11.17)
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The norm |||·||| appearing in this statement is defined by

|||z||| := 1

2h

2h∑
�=1

‖zT�
‖∞, z ∈ R

N , (11.18)

for some natural number h ≤ N/2 to be chosen below and some fixed partition
T1, . . . , T2h of [N ] with card(T�) ∈ {�N/h�, �N/h� + 1}. The straightforward
inequality

|||z||| ≤ ‖z‖∞

explains why (11.17) implies (11.16). Another key property of the norm defined in

(11.18) is that, for any z ∈ RN , there exists a subset L of [2h] of size h such that

‖zT�
‖∞ ≤ 2|||z||| for all � ∈ L.

Indeed, the inequality

|||z||| ≥ 1

2h

∑
�:‖zT�

‖∞>2|||z|||
‖zT�

‖∞ ≥
1

h
card({� : ‖zT�

‖∞ > 2|||z|||}) |||z|||

implies card({� : ‖zT�
‖∞ > 2|||z|||}) ≤ h, i.e., card({� : ‖zT�

‖∞ ≤ 2|||z|||}) ≥ h.
Therefore, for a fixed e ∈ R

m and d := D/2, we have

P
(
‖e‖2 > d

√
s∗|||Ã∗e|||

)

≤ P

(
‖(Ã∗e)T�

‖∞ <
2‖e‖2
d
√
s∗

for all � in some L ⊂ [2h], card(L) = h

)

≤
∑

L⊂[2h],card(L)=h

P

(
max
j∈T�

∣∣∣(Ã∗e)j

∣∣∣ < 2‖e‖2
d
√
s∗

for all � ∈ L
)

=
∑

L⊂[2h],card(L)=h

P

( ∣∣∣(Ã∗e)j

∣∣∣ < 2‖e‖2
d
√
s∗

for all j ∈ ∪�∈LT�
)

=
∑

L⊂[2h],card(L)=h

∏
j∈∪�∈LT�

P

( ∣∣∣(Ã∗e)j

∣∣∣ < 2‖e‖2
d
√
s∗

)
.

In the last step, we have used the independence of the (Ã∗e)j , which follows
from the independence of the columns of A. For each j ∈ ∪�∈LT�, we notice
that (Ã∗e)j =

∑m
i=1 Ai,jei/

√
m is a mean-zero Gaussian random variable with

variance ‖e‖22/m. Therefore, denoting by g a standard normal random variable, we
obtain
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P
(
‖e‖2 > d

√
s∗|||Ã∗e|||

)
≤

∑
L⊂[2h],card(L)=h

∏
j∈∪�∈LT�

P

(
|g| < 2

√
m/s∗
d

)

=
∑

L⊂[2h],card(L)=h

(
1− P

(
|g| ≥ 2

√
m/s∗
d

))card(∪�∈LT�)

≤
(
2h

h

)(
1− P

(
|g| ≥ 2

√
m/s∗
d

))N/2
. (11.19)

At this point, we bound the tail of a standard normal variable from below as

P

(
|g| ≥2
√
m/s∗
d

)
=

√
2

π

∫ ∞

2
√
m/s∗/d

exp(−t2/2)dt

≥
√

2

π

∫ 4
√
m/s∗/d

2
√
m/s∗/d

exp(−t2/2)dt ≥
√

2

π

2
√
m/s∗
d

exp

(
− 8m/s∗

d2

)

≥
√
8/π

d
exp

(
− 8

d2
ln

(
eN

m

))
=

√
8/π

d

(
m

eN

)8/d2
. (11.20)

In the third step, we have used the inequality
∫ b
a f(t)dt ≥ (b − a)f(b) for a

decreasing function f . Substituting (11.20) into (11.19) and using the inequalities(
n

k

)
≤
(en
k

)k
(see Lemma C.5) as well as 1− x ≤ exp(−x), we derive

P
(
‖e‖2 > d

√
s∗|||Ã∗e|||

)
≤ (2e)h exp

(
−
√
8/π

d

(
m

eN

)8/d2)N/2

= exp

(
ln(2e)h−

√
2/π

de8/d2
m8/d2N1−8/d2

)
. (11.21)

We now use covering arguments to deduce a probability estimate valid for all
e ∈ Rm simultaneously. According to Proposition C.3, with 0 < δ < 1 to
be chosen later, we can find a δ-covering {f1, . . . , fn} of the unit sphere of �m2
with cardinality n ≤ (1 + 2/δ)m. Let us suppose that there exists e ∈ Rm with
‖e‖2 > D

√
s∗|||Ã∗e|||. Without loss of generality, we may assume that ‖e‖2 = 1;

hence, ‖e− fi‖2 ≤ δ for some i ∈ [n]. It follows that

D
√
s∗|||Ã∗fi||| ≤ D

√
s∗|||Ã∗e|||+D

√
s∗|||Ã∗(e− fi)|||

< 1 +D

√
s∗
2h

2h∑
�=1

‖(Ã∗(e− fi))T�
‖∞
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≤ 1 +D

√
s∗
2h

2h∑
�=1

‖(Ã∗(e− fi))T�
‖2

≤ 1 +D

√
s∗
2h
‖Ã∗(e− fi)‖2. (11.22)

Applying Theorem 9.26 to the renormalized matrix B = A∗/
√
N ∈ RN×m, we

obtain

P

(
σmax(B) > 1 + 2

√
m

N

)
≤ exp

(
− m

2

)
. (11.23)

Thus, in the likely case σmax(B) ≤ 1+2
√
m/N , whence σmax(B) ≤

√
2 provided

N ≥ Cm with C ≥ 12 + 8
√
2 (which is satisfied for C = 1656), we have

‖Ã∗(e− fi)‖2 ≤ σmax(Ã
∗)‖e− fi‖2 =

√
N

m
σmax(B)‖e− fi‖2 ≤

√
2N

m
δ.

In turn, we deduce

d
√
s∗|||Ã∗fi||| =

1

2

(
D
√
s∗|||Ã∗fi|||

)
≤ 1

2

(
1 +D

√
s∗N

hm
δ
)
.

The choice δ := D−1
√
h/N together with the fact that s∗ ≤ m yields

d
√
s∗|||Ã∗fi||| ≤ ‖fi‖2.

Summarizing the previous considerations yields

P
(
‖e‖2 > D

√
s∗|||Ã∗e||| for some e ∈ R

m
)

= P

(
‖e‖2 > D

√
s∗|||Ã∗e||| for some e ∈ R

m and σmax(B) > 1 + 2

√
m

N

)

+ P

(
‖e‖2 > D

√
s∗|||Ã∗e||| for some e ∈ R

m and σmax(B) ≤ 1 + 2

√
m

N

)

≤ P

(
σmax(B) > 1 + 2

√
m

N

)
+ P
(
‖fi‖2 > d

√
s∗|||Ã∗fi||| for some i ∈ [n]

)
.

By (11.23), the first term on the right-hand side is bounded by exp(−m/2).
Moreover, a union bound over the n elements of the covering, the inequality
n ≤ (1 + 2/δ)m ≤ exp(2m/δ), and the probability estimate (11.21) applied to
a fixed fi ∈ Rm show that the second term is bounded by
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exp

(
2D

√
N

h
m+ ln(2e)h−

√
2/π

de8/d2
m8/d2N1−8/d2

)
. (11.24)

Now we choose d = 4 (corresponding to D = 8) and

h = �m2/3N1/3�

(so that h ≤ N/2 when N ≥ Cm with C = 1656) to bound the second term by

exp

(
16m2/3N1/3 + 2 ln(2e)m2/3N1/3 − 1√

8πe
m1/2N1/2

)

= exp

(
−
[

1√
8πe

− 2 ln(2e9)

(N/m)1/6

]
m1/2N1/2

)

≤ exp

(
−
[

1√
8πe

− 2 ln(2e9)

C1/6

]
m1/2N1/2

)
≤ exp

(
− m1/2N1/2

300

)
.

The choice C = 1656 accounts for the last inequality. Putting the two bounds
together, we obtain

P
(
‖e‖2 >8

√
s∗|||Ã∗e||| for some e ∈ R

m
)

≤ exp
(
− m

2

)
+ exp
(
− m1/2N1/2

300

)
≤ exp
(
− m

3

)
.

This establishes (11.17) for the case N ≥ Cm and concludes the proof. ��

Remark 11.20. The introduction of the auxiliary norm in (11.18) may seem strange
at first sight, as one would be inclined to work with the �∞-norm directly. In fact,
this would correspond (up to constants) to choosingh = 1 in the proof. The reader is
invited to verify that setting h = 1 in (11.24) does not lead to the desired conclusion.

We now prove the main robustness estimate for Gaussian random matrices.

Proof (of Theorem 11.9). Under the assumption N ≥ c2m with c2 := 2,
Theorem 11.19 guarantees that the matrix Ã has the �1-quotient property relative to
the �2-norm with probability at least 1− exp(−m/100). Moreover, the assumption
s ≤ c3s∗ with c3 := 1/1400 reads m ≥ 1400s ln(eN/m). Lemma C.6, in view
of 1400/ ln(1400e) ≥ 160 and ln(eN/s) ≥ ln(eN/(2s)), implies the inequality
m ≥ 80(2s) ln(eN/(2s)). This is equivalent to

5m

4
≥ 80(2s) ln

(eN
2s

)
+
m

4
, i.e., m ≥ 2

η2
(2s) ln

(eN
2s

)
+

2

η2
ln
(2
ε

)
,
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where η := 1/
√
32 and ε := 2 exp(−m/320). Theorem 9.27 implies that, with

probability at least 1 − 2 exp(−m/320), the restricted isometry constant of the
matrix Ã satisfies

δ2s ≤ 2

(
1 +

1√
2 ln(eN/(2s))

)
η +

(
1 +

1√
2 ln(eN/(2s))

)2
η2

≤ 2

(
1 +

1√
2 ln(1400e)

)
1√
32

+

(
1 +

1√
2 ln(1400e)

)2
1

32
≈ 0.489.

Then Theorem 6.13 ensures that the matrix Ã has the �2-robust null space property
of order s. Thus, with probability at least

1− exp(−m/100)− 2 exp(m/320) ≥ 1− 3 exp(−c1m), c1 := 1/320,

the matrix Ã satisfies both the �1-quotient property relative to the �2-norm and the
�2-robust null space property of order s ≤ c3s∗. The conclusion now follows from
Theorem 11.12. ��

Subgaussian Random Matrices

Let us now consider more general subgaussian random matrices. For the special case
of renormalized Bernoulli matrices, the �1-quotient property relative to the �2-norm,
namely,

for all e ∈ C
m, there exists u ∈ C

N with Ãu = e and ‖u‖1 ≤ d
√
s∗‖e‖2,

cannot be true. Indeed, such a matrix Ã has entries Ãi,j = ±1/
√
m, so that the

�1-quotient property applied to a unit vector ei = [0, . . . , 0, 1, 0, . . . , 0]� ∈ Cm

would give rise to a vector u ∈ CN for which

1 = (Ãu)i =

N∑
j=1

Ãi,juj ≤
‖u‖1√
m
≤ d

√
s∗‖e‖2√
m

=
d√

ln(eN/m)
,

a contradiction for large enough N .
In order to nevertheless obtain robustness estimates, the strategy consists in

eliminating the troublesome vectors ei by clipping the �2-ball around them. This
motivates the introduction of the following norm defined, for α ≥ 1, by

‖y‖(α) := max{‖y‖2, α‖y‖∞}, y ∈ C
m. (11.25)
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Then the �1-quotient property relative to this norm applied to the vectors ei =
[0, . . . , 0, 1, 0, . . . , 0]� ∈ Cm yields

1 ≤ d
√
s∗‖e‖(α)√
m

=
dα√

ln(eN/m)
.

This dictates the choice α =
√
ln(eN/m) ≥ 1 for Bernoulli matrices.

Here is the precise statement about the �1-quotient property for certain random
matrices including Bernoulli matrices as a special case.

Theorem 11.21. Let A be an m × N matrix whose entries are independent
symmetric random variables with variance 1 and fourth moment bounded by some
μ4 ≥ 1, for which the concentration inequality

P
(∣∣N−1‖A∗y‖22 − ‖y‖22

∣∣ > t‖y‖22
)
≤ 2 exp(−c̃t2N) (11.26)

holds for all y ∈ Rm and t ∈ (0, 1). Then there exist constantsC,D > 0 depending
only on μ and c̃ such that, ifN ≥ Cm, then with probability at least 1−3 exp(−m)
the matrix Ã := 1√

m
A has the �1-quotient property with constant D relative to the

norm ‖ · ‖(α), α :=
√
ln(eN/m).

The arguments follow the same lines as the Gaussian case. In particular, estimates
from below for tail probabilities involving the dual norm of ‖ · ‖(α) are needed. We
start by comparing this dual norm to a more tractable norm.

Lemma 11.22. For an integer k ≥ 1, the dual norm of ‖ ·‖(
√
k) is comparable with

the norm | · |k defined by

|y|k := max

{
k∑
�=1

‖yB�
‖2, B1, . . . , Bk form a partition of [m]

}
, (11.27)

in the sense that

√
1

k
|y|k ≤ ‖y‖(

√
k)

∗ ≤
√

2

k
|y|k, y ∈ C

m. (11.28)

Proof. We define a norm on Cm × Cm by

‖(u,v)‖ := max
{
‖u‖2,

√
k‖v‖∞

}
.

This makes the linear map T : (Cm, ‖ · ‖(
√
k))→ (Cm × Cm, ‖(·, ·)‖), z �→ (z, z)

an isometry from Cm onto X := T (Cm). Let us now fix a vector y ∈ Cm. We have

‖y‖(
√
k)

∗ = max
‖u‖(

√
k)=1

|〈u,y〉| = max
‖(u,u)‖=1

|〈T−1((u,u)),y〉| = ‖λ‖X∗ ,
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where we have defined the linear functional λ on X by λ(x) := 〈T−1(x),y〉.
The Hahn–Banach extension theorem (see Appendix C.7) ensures the existence
of a linear functional λ̃ defined on Cm × Cm such that λ̃(x) = λ(x) for all
x ∈ X and ‖λ̃‖∗ = ‖λ‖X∗ , where ‖ · ‖∗ denotes the dual norm of ‖(·, ·)‖.
There exists (y′,y′′) ∈ Cm × Cm such that this functional can be written as
λ̃(u,v) = 〈(u,v), (y′,y′′)〉 = 〈u,y′〉 + 〈v,y′′〉 for all (u,v) ∈ Cm × Cm. The
identity λ̃(T (z)) = λ(T (z)), i.e., 〈z,y′+y′′〉 = 〈z,y〉, valid for all z ∈ Cm, yields
y′ + y′′ = y. Moreover, the dual norm is given by ‖λ̃‖∗ = ‖y′‖2 + ‖y′′‖1/

√
k,

which yields ‖y‖(
√
k)

∗ = ‖y′‖2 + ‖y′′‖1/
√
k. Now, choosing optimal partitions

B′
1, . . . , B

′
k and B′′

1 , . . . , B
′′
k of [m] for the vectors y′ and y′′ (see (11.27)), we

observe that

|y′|k =

k∑
�=1

‖y′
B′

�
‖2 ≤

√
k

√√√√ k∑
�=1

‖y′
B′

�
‖22 =

√
k‖y′‖2,

|y′′|k =

k∑
�=1

‖y′′
B′′

�
‖2 ≤

k∑
�=1

‖y′′
B′′

�
‖1 = ‖y′′‖1.

It follows that

|y|k = |y′ + y′′|k ≤ |y′|k + |y′′|k ≤
√
k
(
‖y′‖2 + ‖y′′‖1/

√
k
)
=
√
k‖y‖(

√
k)

∗ .

This proves the leftmost inequality in (11.28).
For the rightmost inequality, given a fixed vector y ∈ Cm, we consider a vector

u ∈ Cm with ‖u‖(
√
k) = 1 such that ‖y‖(

√
k)

∗ = 〈u,y〉. The definition of ‖u‖(
√
k)

implies that ‖u‖2 ≤ 1 and that ‖u‖∞ ≤ 1/
√
k. Let m0 := 0 and iteratively define

m� ≥ m�−1 + 1 with m� ≤ m for � = 1, 2, . . . to be the smallest integer such that

m�∑
i=m�−1+1

|ui|2 > 1/k

as long as this is possible. Then

m�−1∑
i=m�−1+1

|ui|2 ≤
1

k
, and

m�∑
i=m�−1+1

|ui|2 ≤
2

k
.

We notice that the last mh defined in this way has index h < k. Indeed, if mk was
defined, we would obtain a contradiction from

‖u‖22 ≥
k∑
�=1

m�∑
i=m�−1+1

|ui|2 >
k∑
�=1

1

k
= 1.
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We also notice that, because mh+1 is undefined, we have

m∑
i=mh+1

|ui|2 ≤
1

k
.

We now set B� = {m�−1+1, . . . ,m� } for 1 ≤ � ≤ h, Bh+1 := {mh+1, . . . ,m},
and B� = ∅ for h+ 2 ≤ � ≤ k. In view of ‖uB�

‖2 ≤
√
2/k for all 1 ≤ � ≤ k, we

derive

‖y‖(
√
k)

∗ = 〈u,y〉 =
k∑
�=1

〈uB�
,yB�

〉 ≤
k∑
�=1

‖uB�
‖2‖yB�

‖2 ≤
√

2

k

k∑
�=1

‖yB�
‖2

≤
√

2

k
|y|k.

This proves the rightmost inequality in (11.28). ��

We are now ready to carry on with the proof of Theorem 11.21.

Proof (of Theorem 11.21). Let us suppose thatN ≥ Cm, where the constantC ≥ 1
has to meet three requirements specified below. We set

β :=

√
ln(eN/m)

ln(eC)
≥ 1.

Since β ≤ α, hence ‖e‖(β) ≤ ‖e‖(α), the �1-quotient property relative to ‖ · ‖(β)
implies the one relative to ‖ · ‖(α), so we concentrate on the �1-quotient property
relative to the norm ‖ · ‖(β). According to Lemma 11.17 and Remark 11.18, we
need to prove that

P
(
‖e‖(β)∗ ≤ D

√
s∗‖Ã∗e‖∞ for all e ∈ R

m
)
≥ 1− 3 exp

(
−m
)
.

As in the proof of the Gaussian case, we show the stronger statement

P
(
‖e‖(β)∗ ≤ D

√
s∗|||Ã∗e||| for all e ∈ R

m
)
≥ 1− 3 exp

(
−m
)

(11.29)

with D := 16
√
ln(eC). The norm |||·||| ≤ ‖ · ‖∞ is the norm defined in (11.18) with

some natural number h ≤ N/2 to be determined below. To this end, we assume that
there exists e ∈ Rm such that

‖e‖(β)∗ > D
√
s∗|||Ã∗e|||.
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Introducing the integer k := �β2� ≥ 1, for which

k ≤ β2 < 2k,

we have ‖y‖(
√
k) ≤ ‖y‖(β) for all y ∈ R

m, and in turn the dual norms satisfy

‖y‖(
√
k)

∗ ≥ ‖y‖(β)∗ for all y ∈ Rm. Assuming without loss of generality that

‖e‖(
√
k)

∗ = 1, we obtain D
√
s∗|||Ã∗e||| < 1. Moreover, for 0 < δ < 1 to be chosen

later, Lemma C.3 ensures the existence of a δ-covering {f1, . . . , fn} with respect to

‖ · ‖(
√
k)

∗ of the unit sphere of (Rm, ‖ · ‖(
√
k)

∗ ) with cardinality n ≤ (1 + 2/δ)m.

Selecting an integer i ∈ [n] such that ‖e− fi‖(
√
k)

∗ ≤ δ, it follows as in (11.22) that

D
√
s∗|||Ã∗fi||| ≤ 1 +D

√
s∗√
2h
‖Ã∗(e− fi)‖2

≤ 1 +D

√
s∗N

2hm
σmax(B)‖e− fi‖2, (11.30)

where B ∈ RN×m is the renormalized matrix B :=
√
m/N Ã∗ = A∗/

√
N . We

observe that if B1, . . . , Bk is an optimal partition for |e− fi|k, then

‖e− fi‖2 ≤
k∑
�=1

‖(e− fi)B�
‖2 = |e− fi|k ≤

√
k‖e− fi‖(

√
k)

∗ ≤
√
k δ, (11.31)

where we have used Lemma 11.22. Thus, under the assumption that σmax(B) ≤
√
2,

(11.30) and (11.31) yield

D
√
s∗|||Ã∗fi||| < 1 +D

√
ks∗
m

√
N

h
δ ≤ 1 +

D√
ln(eC)

√
N

h
δ.

Now we choose

δ :=

√
ln(eC)

D

√
h

N
(11.32)

and exploit the fact that 1 = ‖fi‖(
√
k)

∗ ≤ 2|fi|k/
√
k to obtain

D
√
s∗|||Ã∗fi||| < 2 ≤ 4|fi|k/

√
k.

Summarizing the previous considerations and setting d := D/4 gives

P
(
‖e‖(β)∗ > D

√
s∗‖Ã∗e‖∞ for some e ∈ R

m
)

≤ P
(
σmax(B) >

√
2
)
+ P
(
|fi|k > d

√
ks∗|||Ã∗fi||| for some i ∈ [n]

)
. (11.33)
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For the first term in (11.33), we call upon Theorem 9.9 to obtain

P
(
σmax(B) >

√
2
)
= P
(
σ2
max(B) > 2

)
≤ P
(
‖B∗B− Id‖2→2 > 1

)

≤ 2 exp

(
− c̃N

2

)

provided

N ≥ 2

3 c̃

(
7m+ c̃N

)
, i.e., N ≥ 14

c̃
m.

The first requirement imposed on C is therefore C ≥ 14/c̃. In this case, we have
the bound

P
(
σmax(B) >

√
2
)
≤ 2 exp

(
− 7m
)
. (11.34)

For the second term in (11.33), we begin by bounding the probability P
(
|e|k >

d
√
ks∗|||Ã∗e|||

)
for a fixed vector e ∈ Rm. As in the proof of Theorem 11.19, using

the existence of a subset L of [2h] of size h such that ‖zT�
‖∞ ≤ 2|||z||| for any

z ∈ RN and any � ∈ L, we observe that

P
(
|e|k > d

√
ks∗ |||Ã∗e|||

)

≤ P

(
‖(Ã∗e)T�

‖∞ <
2|e|k
d
√
ks∗

for all � in some L ⊂ [2h], card(L) = h

)

≤
∑

L⊂[2h],card(L)=h

P

(
max
j∈T�

|(Ã∗e)j | <
2|e|k
d
√
ks∗

for all � ∈ L
)

=
∑

L⊂[2h],card(L)=h

∏
j∈∪�∈LT�

P

(
|(Ã∗e)j | <

2|e|k
d
√
ks∗

)

=
∑

L⊂[2h],card(L)=h

∏
j∈∪�∈LT�

(
1− 2P

(
(Ã∗e)j ≥

2|e|k
d
√
ks∗

))
, (11.35)

where the independence of the random variables Ai,j was used in the third step and
their symmetry in the last step. Let now B1, . . . , Bk denote a partition of [m] such
that |e|k =

∑k
�=1 ‖eB�

‖2. For each j ∈ ∪�∈LT�, we have

P

(
(Ã∗e)j ≥

2|e|k
d
√
ks∗

)
= P

( k∑
�=1

∑
i∈B�

Ai,j√
m
ei ≥

k∑
�=1

2‖eB�
‖2

d
√
ks∗

)

≥ P

( ∑
i∈B�

Ai,jei ≥
2

d

√
m

ks∗
‖eB�

‖2 for all � ∈ [k]

)
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=
∏
�∈[k]

P

(∑
i∈B�

Ai,jei ≥
2

d

√
m

ks∗
‖eB�

‖2
)

=
∏
�∈[k]

1

2
P

(∣∣∣ ∑
i∈B�

Ai,jei

∣∣∣ ≥ 2

d

√
m

ks∗
‖eB�

‖2
)
,

where we have again used the independence and symmetry of the random variables
Ai,j in the last two steps. For each � ∈ [k], we use Lemma 7.17 to obtain

P

(∣∣∣ ∑
i∈B�

Ai,jei

∣∣∣≥ 2

d

√
m

ks∗
‖eB�

‖2
)
≥ 1

μ4

(
1− 4m

d2ks∗

)2
≥ 1

μ4

(
1− 8m

d2β2s∗

)2

=
1

μ4

(
1− 8 ln(eC)

d2

)2
=

1

4μ4
,

where we have chosen the value d = D/4 = 4
√
ln(eC) and have used the

definitions of s∗ and β. Under a second requirement on C, namely, C ≥ 64μ8/e, it
follows that

P

(
(Ã∗e)j ≥

2|e|k
d
√
ks∗

)
≥
(

1

8μ4

)k
≥
(

1

8μ4

)β2

= exp
(
− β2 ln(8μ4)

)

= exp

(
− ln

(
eN

m

)
ln(8μ4)

ln(eC)

)
≥
(
m

eN

)1/2
. (11.36)

Substituting (11.36) into (11.35) and using 1− x ≤ exp(−x), we obtain

P
(
|e|k > d

√
ks∗ |||Ã∗e|||

)
≤

∑
L⊂[2h],card(L)=h

exp

(
− 2

(
m

eN

)1/2)card(∪�∈LT�)

≤
(
2h

h

)
exp

(
− 2

(
m

eN

)1/2)N/2
≤ exp

(
ln(2e)h− 1

e1/2
m1/2N1/2

)
,

where we have also used the fact that
(
2h
h

)
≤ (2e)h by Lemma C.5. Thus, in view

of n ≤ (1 + 2/δ)m ≤ exp(2m/δ), we derive

P
(
|fi|k > d

√
ks∗|||Ã∗fi||| for some i ∈ [n]

)
≤ n P
(
|e|k > d

√
ks∗ |||Ã∗e|||

)

≤ exp

(
2

δ
m+ ln(2e)h− 1

e1/2
m1/2N1/2

)
.
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We now choose h := �m2/3N2/3� (so that h ≤ N/2 when N ≥ Cm with
C ≥ 64μ8/e). We then have h ≤ 2m2/3N2/3 and the choice (11.32) of δ together
with D = 16

√
ln(eC) implies 2/δ = 32(N/h)1/2 ≤ 32(N/m)1/3. It follows that

P
(
|fi|k > d

√
ks∗|||Ã∗fi||| for some i ∈ [n]

)

≤ exp

(
32m2/3N1/3 + 2 ln(2e)m2/3N1/3 − 1

e1/2
m1/2N1/2

)

≤ exp

(
−
[

1

e1/2
− 2 ln(2e17)

(N/m)1/6

]
m1/2N1/2

)

≤ exp

(
−
[

1

e1/2
− 2 ln(2e17)

C1/6

]
m1/2N1/2

)
.

A third requirement on C, namely C1/6 ≥ 4e1/2 ln(2e17), implies that

P
(
|fi|k > d

√
ks∗|||Ã∗fi||| for some i ∈ [n]

)

≤ exp

(
− m1/2N1/2

2e1/2

)
≤ exp

(
− 4

e
m

)
. (11.37)

In the last step, we have used that N ≥ Cm together with the second requirement
C ≥ 64μ8/e. Finally, substituting (11.37) and (11.34) into (11.33), we conclude
that

P
(
‖e‖(β)∗ > D

√
s∗‖Ã∗e‖∞ for some e ∈ R

m
)

≤ 2 exp
(
− 7m
)
+ exp
(
− 4m/e

)
≤ 3 exp

(
−m
)
.

We have proved the desired estimate (11.29). ��

We now prove the main robustness estimate for subgaussian random matrices.

Proof (of Theorem 11.10). According to the definition of subgaussian random ma-
trices and to the bound of moments in terms of tail probabilities, i.e., Definition 9.1
and Proposition 7.13, the symmetric entries of the subgaussian matrix A have
fourth moments bounded by some μ4 ≥ 1. Moreover, according to Lemma 9.8,
the concentration inequality (11.26) is satisfied. Thus, by choosing c2 properly,
Theorem 11.21 guarantees that, with probability at least 1 − 3 exp(−m), the
matrix Ã = 1√

m
A has the �1-quotient property relative to the norm ‖ · ‖(α),

α :=
√
ln(eN/m). Furthermore, according to Theorem 9.11, there is a constant

c̃ > 0 such that δ2s(Ã) < 1/3with probability at least 1−2 exp(−c̃m/15) provided

m ≥ 6

c̃

[
s
(
18 + 4 ln

(N
2s

))
+

2c̃

15
m
]
, i.e., m ≥ 60

c̃
s
(
9 + 2 ln

(N
2s

))
.
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Since 9 + 2 ln(N/2s) ≤ 9 ln(eN/s), this is implied by m ≥ (540/c̃)s ln(eN/s).
Using Lemma C.6, we observe that this condition is in turn implied by the condition
s ≤ c3s∗—which is equivalent to m ≥ (1/c3)s ln(eN/m)—provided c3 is chosen
small enough to have c3 ln(e/c3) ≤ c̃/540. Theorem 6.13 now ensures that the
matrix Ã satisfies the �2-robust null space property of order s relative to ‖ · ‖2.
Since ‖ · ‖2 ≤ ‖ · ‖(α), it also satisfies the �2-robust null space property of order s
relative to ‖ · ‖(α). Thus, with probability at least

1− 3 exp(−m)− 2 exp(−c̃m/15) ≥ 1− 5 exp(−c1m), c1 := min{1, c̃/15},

the matrix Ã satisfies both the �1-quotient property and the �2-robust null space
property of order s ≤ s∗/c3 relative to the norm ‖ · ‖(α). The conclusion now
follows from Theorem 11.12. ��

11.4 Nonuniform Instance Optimality

In Theorem 11.5, we have established that the uniform �2-instance optimality—
the property that ‖x − Δ(Ax)‖2 ≤ Cσs(x)2 for all x ∈ CN—is only possible
in the case m ≥ cN , which is essentially irrelevant for compressive sensing. In
this section, we change the point of view by fixing x ∈ CN at the start. We
are going to prove for the �1-minimization map that the nonuniform �2-instance
optimality —the property that ‖x−Δ1(Ax)‖2 ≤ Cσs(x)2 for this fixed x ∈ CN—
occurs with high probability on the draw of an m×N random matrix A, provided
m ≥ cs ln(eN/s).

We notice that such estimates hold for other algorithms as well such as iterative
hard thresholding, hard thresholding pursuit, orthogonal matching pursuit, and com-
pressive sampling matching pursuit. In fact, the proof for these algorithms is rather
simple: under suitable restricted isometry conditions specified in Theorems 6.21,
6.25, and 6.28, we have ‖x − Δ(Ax)‖2 ≤ C‖AxS‖2, where S denotes an index
set of s largest absolute entries of x. Then the desired estimate follows from the
concentration inequality (9.7) for subgaussian random matrices, which implies that
‖AxS‖2 ≤ 2‖xS‖2 = 2σs(x)2 with high probability. However, these algorithms
(except perhaps orthogonal matching pursuit) require s as an input. Advantageously,
the �1-minimization does not.

For �1-minimization, the key to proving the nonuniform �2-instance optimality
lies in the stable and robust estimates of Theorems 11.9 and 11.10. We begin with the
easier case of Gaussian matrices. Again, the result also incorporates measurement
error even though equality-constrained �1-minimization Δ1 is used rather than the
seemingly more natural quadratically constrained �1-minimization Δ1,η .
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Theorem 11.23. Let x ∈ C
N be a fixed vector and let Ã = 1√

m
A where A is a

random draw of an m×N Gaussian matrix. If

N ≥ c2m, s ≤ c3s∗ =
c3m

ln(eN/m)
,

then with probability at least 1− 5 exp(−c1m) the �2-error estimates

‖x−Δ1(Ãx+ e)‖2 ≤ Cσs(x)2 +D‖e‖2 (11.38)

are valid for all e ∈ Cm. The constants c1, c2, c3, C,D > 0 are universal.

Proof. Let S denote a set of s largest absolute entries of x. We have

‖x−Δ1(Ãx+ e)‖2 ≤ ‖xS‖2 + ‖xS −Δ1(Ãx+ e)‖2

= σs(x)2 + ‖xS −Δ1(ÃxS + e′)‖2, (11.39)

where e′ := ÃxS + e. Taking the conditions N ≥ c2m and s ≤ c3s∗ into account,
Theorem 11.9 applied to xS ∈ CN and e′ ∈ Cm yields

‖xS −Δ1(ÃxS + e′)‖2 ≤ D‖e′‖2 ≤ D‖ÃxS‖2 +D‖e‖2 (11.40)

with probability at least 1 − 3 exp(−c′1m) for some constant c′1 > 0. Next,
the concentration inequality for Gaussian random matrices (see Exercise 9.2 or
Lemma 9.8, which, however, does not specify constants) ensures that

‖ÃxS‖2 ≤ 2‖xS‖2 = 2σs(x)2 (11.41)

with probability at least 1−2 exp(−m/12). We finally derive (11.38) by combining
the inequalities (11.39), (11.40), and (11.41). The desired probability is at least
1−3 exp(−c′1m)−2 exp(−m/12) ≥ 1−5 exp(−c1m), c1 := min{c′1, 1/12}. ��

In the same spirit, a nonuniform mixed (�q, �p)-instance optimality result for
Gaussian matrices can be proved for any 1 ≤ p ≤ q ≤ 2. It is worth recalling that,
in the regimem $ s ln(eN/m), a matching result cannot be obtained in the uniform
setting; see Exercise 11.2.

Theorem 11.24. Let 1 ≤ p ≤ q ≤ 2, let x ∈ CN be a fixed vector, and let
Ã = 1√

m
A where A is a random draw of an m×N Gaussian matrix. If

N ≥ c2m, s ≤ c3s∗ =
c3m

ln(eN/m)
,

then with probability at least 1− 5 exp(−c1m) the error estimates

‖x−Δ1(Ãx+ e)‖q ≤
C

s1/p−1/q
σs(x)p +Ds

1/q−1/2
∗ ‖e‖2

are valid for all e ∈ Cm. The constants c1, c2, c3, C,D > 0 are universal.
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Proof. If c′1, c
′
2, c

′
3, C

′, D′ > 0 are the constants of Theorem 11.9, we define
c3 := c′3/3. Then, for s ≤ c3s∗, we consider an index set S of s largest absolute
entries of x, and an index set T of t := �c3s∗� ≥ s next largest absolute entries of
x. We have

‖x−Δ1(Ãx+ e)‖q ≤ ‖xS∪T ‖q + ‖xS∪T −Δ1(Ãx+ e)‖q

≤ 1

t1/p−1/q
‖xS‖p + ‖xS∪T −Δ1(ÃxS∪T + e′)‖q, (11.42)

where we have used Proposition 2.3 and have set e′ := ÃxS∪T + e in the last
inequality. Taking c2 = c′2 and noticing that s+ t ≤ c′3s∗, Theorem 11.9 applied to
xS∪T ∈ CN and e′ ∈ Cm yields

‖xS∪T −Δ1(ÃxS∪T + e′)‖q ≤ Ds
1/q−1/2
∗ ‖e′‖2

≤ Ds
1/q−1/2
∗ ‖ÃxS∪T ‖2 +Ds

1/q−1/2
∗ ‖e‖2

≤ D
t1/q−1/2

c
1/q−1/2
3

‖ÃxS∪T ‖2 +Ds
1/q−1/2
∗ ‖e‖2 (11.43)

with probability at least 1 − 3 exp(−c′1m). The concentration inequality for Gaus-
sian matrices (see Exercise 9.2 or Lemma 9.8), in conjunction with Proposition 2.3,
gives

‖ÃxS∪T ‖2 ≤ 2‖xS∪T ‖2 ≤
2

t1/p−1/2
‖xS‖p (11.44)

with probability at least 1−2 exp(−m/12). Combining (11.42)–(11.44), we deduce

‖x−Δ1(Ãx+ e)‖q ≤
1 + 2Dc

1/2−1/q
3

t1/p−1/2
‖xS‖p +Ds

1/q−1/2
∗ ‖e‖2

≤ 1 + 2Dc
−1/2
3

s1/p−1/2
σs(x)p +Ds

1/q−1/2
∗ ‖e‖2.

The desired probability is 1− 3 exp(−c′1m)− 2 exp(−m/12) ≥ 1− 5 exp(−c1m)
with c1 := min{c′1, 1/12}. ��

The previous results extend to subgaussian matrices. We do not isolate the
�2-instance optimality here, as we state the nonuniform mixed instance optimality
directly. As in Sect. 11.3, the �2-norm on the measurement error is replaced by

‖e‖
(√

ln(eN/m)
)

= max
{
‖e‖2,
√
ln(eN/m)‖e‖∞

}
. The condition on N in

(11.45) below will be satisfied in reasonable practical scenarios.
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Theorem 11.25. Let 1 ≤ p ≤ q ≤ 2, let x ∈ CN be a fixed vector, and let
Ã = 1√

m
A where A is a random draw of an m × N subgaussian matrix with

symmetric entries and with subgaussian parameter c in (9.2). There exist constants
c1, c2, c3, c4, C,D > 0 depending only on c such that if

c2m ≤ N ≤ m

e
exp(c3

√
m), s ≤ c4s∗ =

c4m

ln(eN/m)
, (11.45)

then with probability at least 1− 9 exp(−c1
√
m) the error estimates

‖x−Δ1(Ãx+ e)‖q ≤
C

s1/p−1/q
σs(x)p +Ds

1/q−1/2
∗ ‖e‖

(√
ln(eN/m)

)

are valid for all e ∈ Cm.

Proof. The argument is similar to the one used in the proof of Theorem 11.24, with
the addition of step (11.48) below. Let c′1, c

′
2, c

′
3, C

′, D′ > 0 be the constants of
Theorem 11.10, and define c4 := c′3/3. Then, for s ≤ c4s∗, we consider an index
set S of s largest absolute entries of x, and an index set T of t := �c4s∗� ≥ s next
largest absolute entries of x. We have

‖x−Δ1(Ãx+ e)‖q ≤ ‖xS∪T ‖q + ‖xS∪T −Δ1(Ãx+ e)‖q

≤ 1

t1/p−1/q
‖xS‖p + ‖xS∪T −Δ1(ÃxS∪T + e′)‖q, (11.46)

where we have applied Proposition 2.3 and have set e′ := ÃxS∪T + e. Taking
c2 = c′2 and noticing that s+ t ≤ c′3s∗, Theorem 11.10 applied to xS∪T ∈ CN and
e′ ∈ Cm yields with D = D′

‖xS∪T −Δ1(ÃxS∪T + e′)‖q ≤ Ds
1/q−1/2
∗ ‖e′‖

(√
ln(eN/m)

)

≤ Ds
1/q−1/2
∗ ‖ÃxS∪T ‖

(√
ln(eN/m)

)
+Ds

1/q−1/2
∗ ‖e‖

(√
ln(eN/m)

)

≤ D
t1/q−1/2

c
1/q−1/2
4

‖ÃxS∪T ‖
(√

ln(eN/m)
)
+Ds

1/q−1/2
∗ ‖e‖

(√
ln(eN/m)

)
(11.47)

with probability at least 1 − 5 exp(−c′1m). By the concentration inequality of
Lemma 9.8, we have

‖ÃxS∪T ‖2 ≤ 2‖xS∪T ‖2

with probability at least 1 − 2 exp(−c̃m) for a constant c̃ depending only on the
subgaussian parameter c. Moreover, for each i ∈ [m], Theorem 7.27 guarantees that
the inequality

|(ÃxS∪T )i| ≤
2√

ln(eN/m)
‖xS∪T ‖2
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holds with probability at least 1−2 exp
(
−c−1m/ ln(eN/m)

)
. By the union bound,

it follows that

‖ÃxS∪T ‖∞ ≤
2√

ln(eN/m)
‖xS∪T ‖2 (11.48)

with probability at least 1 − 2m exp
(
− c−1m/ ln(eN/m)

)
. We note that this

probability is at least 1 − 2 exp(−
√
m) when N ≤ m exp(c3

√
m)/e with

c3 := 1/(2c), since

m exp
( −m
c ln(eN/m)

)
≤m exp

( −m
cc3
√
m

)
= exp
(
ln(m)−2

√
m
)
≤ exp
(
−
√
m
)
.

We have obtained

‖ÃxS∪T ‖
(√

ln(eN/m)
)
= max{‖ÃxS∪T ‖2,

√
ln(eN/m)‖ÃxS∪T ‖∞}

≤ 2‖xS∪T‖2 ≤
2

t1/p−1/2
‖xS‖p,

with probability at least 1 − 2 exp(−c̃m) − 2 exp(−
√
m) ≥ 1 − 4 exp(−c′

√
m),

c′ := min{c̃, 1}. Combining this with (11.46) and (11.47), we deduce

‖x−Δ1(Ãx+ e)‖q ≤
1 + 2Dc

1/2−1/q
4

t1/p−1/2
‖xS‖p +Ds

1/q−1/2
∗ ‖e‖

(√
ln(eN/m)

)

≤ 1 + 2Dc
−1/2
4

s1/p−1/2
σs(x)p +Ds

1/q−1/2
∗ ‖e‖

(√
ln(eN/m)

)
.

The desired probability is at least

1− 5 exp(−c′1m)− 4 exp(−c′
√
m) ≥ 1− 9 exp(−c1

√
m)

with c1 := min{c′1, c′}. ��

Notes

The notions of instance optimality and mixed instance optimality were introduced
by Cohen et al. in [123]. Theorems 11.4 and 11.5 are taken from this article. The
other major theorem of Sect. 11.1, namely, Theorem 11.6 on the minimal number of
measurements for �1-instance optimality, is taken from [213].

The �1-quotient property was introduced in the context of compressive sensing by
Wojtaszczyk in [509]. The content of Sect. 11.2 essentially follows the ideas of this
article, except that the restricted isometry property is replaced by the weaker notion
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of robust null space property and that error estimates in �q-norm for all 1 ≤ q ≤ 2
are given. The �1-quotient property for Gaussian random matrices was proved in
[509], too, save for the extra requirement thatN ≥ cm lnξ(m) for some ξ > 0. This
issue was resolved here with the use of the norm defined in (11.18). As a matter of
fact, the �1-quotient property for Gaussian matrices had been established earlier in
a different context by Gluskin in [228], where a certain optimality of the probability
estimate was also proved.

Gaussian matrices are not the only random matrices to possess the �1-quotient
property relative to the �2-norm and in turn to provide the reconstruction estimates
of Theorem 11.9. It was established in [210] that Weibull random matrices also do.
These are (rescaled versions) of matrices whose entries are independent symmetric
random variables that satisfy, for some r ≥ 1 and some c > 0,

P(|Ai,j | ≥ t) = exp(−ctr), t ≥ 0.

For matrices satisfying the restricted isometry property, Wojtaszczyk also showed
in [510] that the estimates of Theorem 11.9 for Gaussian random matrices can be
obtained with a modified version of �1-minimization in which one artificially adds
columns to the matrix A.

The �1-quotient property relative to the norm max{‖·‖2, α‖·‖∞}was introduced
in the context of compressive sensing by DeVore, Petrova, and Wojtaszczyk in
[148], where it was established for Bernoulli random matrices. The �1-quotient
property had in fact been shown earlier in a different context by Litvak et al. in
[329]. We followed the proof of [329], because of a slight flaw in the proof in [148],
namely, that the vectors in the δ-covering depend on the random matrix; hence, the
concentration inequality cannot be applied directly to them. The key Lemma 11.22
was proved by Montgomery-Smith in [356].

The results given in Sect. 11.4 on the nonuniform �2-instance optimality appeared
(under the terminology of instance optimality in probability) in [148, 509].

Exercises

11.1. Verify in details the observation made in (11.1).

11.2. For q ≥ p ≥ p′ ≥ 1, prove that if a pair (A, Δ) is mixed (�q, �p)-instance
optimal of order s with constant C, then it is also mixed (�q, �p′)-instance optimal
of order �s/2� with constant C′ depending only on C.

Combine this observation with Theorem 11.7 to derive that mixed (�q, �p)-
instance optimal pairs (A, Δ) of order s, where A ∈ Cm×N and Δ : Cm → CN ,
can only exist if m ≥ c s ln(eN/s). For q > p > 1, improve this bound using the
estimate for the Gelfand width dm(BNp , �

N
q ) given on page 327.

11.3. Prove that if the coherence of a matrix A ∈ C
m×N with �2-normalized

columns satisfies μ(A) < 1/4, then the operator norm ‖A‖2→2 cannot be bounded
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by an absolute constant C > 0 unless m ≥ cN for some constant c > 0 depending
only on C.

11.4. Let a measurement matrix A ∈ Cm×N be given and let 0 < p < 1. Prove
that if there is a reconstruction map Δ such that ‖x − Δ(Ax)‖p ≤ Cσ2s(x)p for
all x ∈ CN , then ‖v‖p ≤ Cσ2s(v)p for all v ∈ kerA. Prove conversely that if
‖v‖p ≤ Cσ2s(v)p for all v ∈ kerA, then there is a reconstruction map Δ such that
‖x−Δ(Ax)‖p ≤ 21/pCσ2s(x)p for all x ∈ CN .

11.5. Let a measurement matrix A ∈ Cm×N be given. Suppose that, for some
integer s ≥ 1 and some constant C ≥ 1, there exists a reconstruction map
Δ : Cm → CN such that

‖x−Δ(Ax)‖2 ≤
C√
s
‖x‖1 for all x ∈ C

N .

Prove that the pair (A, Δ1) is mixed (�2, �1)-instance optimal of order t with
constant (2+ρ)/(1−ρ) provided ρ := 2C

√
t/s < 1. Deduce that the existence of a

pair (A, Δ) which is mixed (�2, �1)-instance optimal of order �9C2t� with constant
C implies that the pair (A, Δ1) is mixed (�2, �1)-instance optimal of order t with
constant 8.

11.6. Let A ∈ R
m×N and let ‖ · ‖ be a norm on C

m invariant under complex
conjugation, i.e., satisfying ‖y‖ = ‖y‖ for all y ∈ C

m. For q ≥ 1, prove that the
real and complex versions of the �q-quotient property, namely,

∀e ∈ R
m, ∃u ∈ R

N : Au = e, ‖u‖q ≤ d s
1/q−1/2
∗ ‖e‖, (11.49)

∀e ∈ C
m, ∃u ∈ C

N : Au = e, ‖u‖q ≤ d s
1/q−1/2
∗ ‖e‖, (11.50)

are equivalent, in the sense that (11.50) implies (11.49) with the same constant d
and that (11.49) implies (11.50) with the constant d replaced by 2d.

11.7. Prove Lemma 11.17 for the case q = 1 without using limiting arguments.

11.8. Prove that the dual norm of the norm ‖ · ‖(α) introduced in (11.25) can be
expressed as

‖y‖(α)∗ = inf
{
‖y′‖2 +

1

α
‖y′′‖1,y′ + y′′ = y

}
, y ∈ C

m.

11.9. Let q ≥ 1 and let ‖ · ‖ be a norm on Cm. Given a matrix A ∈ Cm×N ,
suppose that there exist D > 0 and 0 < ρ < 1 such that, for each e ∈ Cm, one can
find u ∈ CN with ‖Au − e‖ ≤ ρ‖e‖ and ‖u‖q ≤ Ds

1/q−1/2
∗ ‖e‖. Prove that the

matrix A satisfies the �q-quotient property with constant D/(1 − ρ) relative to the
norm ‖ · ‖.
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11.10. Let q ≥ 1 and let ‖ · ‖ be a norm on Cm. Suppose that a pair of
measurement matrix A ∈ Cm×N and reconstruction map Δ : Cm → CN is mixed
(�q, �1)-instance optimal of order s ≤ cs∗ and that A has the simultaneous (�q, �1)-
quotient property relative to ‖ · ‖; see Definition 11.14. Prove that there is a constant
D > 0 such that

‖x−Δ(Ax)‖q ≤ ‖xS‖q +Ds
1/q−1/2
∗ ‖AxS‖

for any x ∈ CN and any index set S ⊂ [N ] of size s.



Chapter 12
Random Sampling in Bounded Orthonormal
Systems

We have seen in the previous chapters that subgaussian random matrices provide
optimal measurement matrices for compressive sensing. While this is a very impor-
tant insight for the theory, the use of such “completely random” matrices, where
all entries are independent, is limited for practical purposes. Indeed, subgaussian
random matrices do not possess any structure. However, structure is important for
several reasons:

• Applications may impose certain structure on the measurement matrix due to
physical or other constraints. We refer the reader to Section 1.2 for some
examples.

• Structure of the measurement matrix often allows to have fast matrix–vector
multiplication algorithms for both the matrix itself and its adjoint by exploiting,
for instance, the fast Fourier transform (FFT). This is crucial for speedups in
recovery algorithms (including �1-minimization), and only in this situation can
large-scale problems be treated with compressive sensing techniques.

• For large unstructured matrices, difficulties in storing all the matrix entries arise,
while a structured matrix is usually generated by a number of parameters much
smaller than the number of matrix entries, so that it is much easier to store.

From this point of view, it is important to investigate whether certain structured ran-
dom matrices may provide recovery guarantees similar to the ones for subgaussian
random matrices. By a structured random matrix, we mean a structured matrix that
is generated by a random choice of parameters.

The important setup at the core and the origin of the field that we will study
exclusively below occurs when randomly sampling functions whose expansion
in a bounded orthonormal system (see the precise definition below) is sparse or
compressible. Special cases consist in randomly sampling sparse trigonometric
polynomials and in taking random samples from the Fourier transform of a sparse
vector. In the latter case, the associated measurement matrix is a random partial
Fourier matrix, and it has a fast matrix–vector multiplication routine using the
FFT. The analysis of the resulting random measurement matrices becomes more
involved than the analysis for subgaussian random matrices because the entries are

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 12,
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not independent anymore. In this context, nonuniform recovery results are simpler
to derive than uniform recovery results based on the restricted isometry property.
We will proceed by increasing difficulty of the proofs.

Other types of structured random matrices, including partial random circulant
matrices, are discussed briefly in the Notes section.

12.1 Bounded Orthonormal Systems

An important class of structured random matrices is connected with random
sampling in certain finite-dimensional function spaces. We require an orthonormal
basis whose elements are uniformly bounded in the L∞-norm. The most prominent
example consists of the trigonometric system. In a discrete setup, the resulting
matrix is a random partial Fourier matrix, which was the first structured random
matrix investigated in compressive sensing.

Let D ⊂ R
d be endowed with a probability measure ν. Further, let Φ =

{φ1, . . . , φN} be an orthonormal system of complex-valued functions on D, that
is, for j, k ∈ [N ],

∫
D
φj(t)φk(t)dν(t) = δj,k =

{
0 if j �= k,

1 if j = k.
(12.1)

Definition 12.1. We call Φ = {φ1, . . . , φN} a bounded orthonormal system (BOS)
with constant K if it satisfies (12.1) and if

‖φj‖∞ := sup
t∈D

|φj(t)| ≤ K for all j ∈ [N ]. (12.2)

The smallest value that the constant K can take is K = 1. Indeed,

1 =

∫
D
|φj(t)|2dν(t) ≤ sup

t∈D
|φj(t)|2

∫
D
dν(t) ≤ K2.

In the extreme case K = 1, we necessarily have |φj(t)| = 1 for ν-almost all t ∈ D
as revealed by the same chain of inequalities.

Note that some bound K can be found for most reasonable sets of functions
{φj , j ∈ [N ]}. The crucial point of the boundedness condition (12.2) is that K
should ideally be independent of N . Intuitively, such a condition excludes, for
instance, that the functions φj are very localized in small regions of D.

We consider functions of the form

f(t) =

N∑
k=1

xkφk(t), t ∈ D. (12.3)
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Let t1, . . . , tm ∈ D be some sampling points and suppose we are given the
sample values

y� = f(t�) =

N∑
k=1

xkφk(t�), � ∈ [m].

Introducing the sampling matrix A ∈ Cm×N with entries

A�,k = φk(t�), � ∈ [m], k ∈ [N ], (12.4)

the vector y = [y1, . . . , ym]� of sample values (measurements) can be written in
the form

y = Ax, (12.5)

where x = [x1, . . . , xN ]� is the vector of coefficients in (12.3).
Our task is to reconstruct the function f , or equivalently its vector x of

coefficients, from the vector of samples y. We wish to perform this task with as
few samples as possible. Without further assumptions, this is impossible if m < N .
As common in this book, we therefore introduce sparsity. A function f of the form
(12.3) is called s-sparse with respect to (φ1, . . . , φN ) if its coefficient vector x
is s-sparse. Sparse functions appear in a variety of applications; see Sect. 1.2 for
some motivating examples. The problem of recovering an s-sparse function from m
sample values reduces to the compressive sensing problem with the measurement
matrix given by the sampling matrix A in (12.4).

Since the deterministic construction of suitable matrices for compressive sensing
is to date an open problem, we now introduce randomness. We assume that the
sampling points t1, . . . , tm are selected independently at random according to
the probability measure ν. This means that P(t� ∈ B) = ν(B), � ∈ [m],
for a measurable subset B ⊂ D. We then call the associated matrix (12.4) the
random sampling matrix associated to a BOS with constant K ≥ 1. Note that this
matrix has stochastically independent rows, but the entries within each row are not
independent. Indeed, for fixed �, the entries A�,k, k ∈ [N ], all depend on the single
random sampling point t�.

Before continuing with the general theory, we present some important examples
of BOSs.

1. Trigonometric polynomials. Let D = [0, 1] and set, for k ∈ Z,

φk(t) = e2πikt.

The probability measure ν is the Lebesgue measure on [0, 1]. Then, for all
j, k ∈ Z,

∫ 1

0

φk(t)φj(t)dt = δj,k. (12.6)
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The constant in (12.2) is K = 1. For a subset Γ ⊂ Z of size N , we then consider
the trigonometric polynomials of the form

f(t) =
∑
k∈Γ

xkφk(t) =
∑
k∈Γ

xke
2πikt.

The common choice Γ = {−q,−q + 1, . . . , q − 1, q} results in trigonometric
polynomials of degree at most q (then N = 2q + 1). We emphasize, however,
that an arbitrary choice of Γ ⊂ Z of size card(Γ ) = N is possible. Introducing
sparsity on the coefficient vector x ∈ CN then leads to the notion of s-sparse
trigonometric polynomials.

The sampling points t1, . . . , tm are chosen independently and uniformly at
random from [0, 1]. The entries of the associated structured random matrix A are
given by

A�,k = e2πikt� , � ∈ [m], k ∈ Γ. (12.7)

The matrix A is a Fourier type matrix, sometimes also called nonequispaced
Fourier matrix.

This example extends to multivariate trigonometric polynomials on [0, 1]d,
d ∈ N. Indeed, the monomials φk(t) = e2πi〈k,t〉, k ∈ Zd, t ∈ [0, 1]d, form
an orthonormal system on [0, 1]d. For readers familiar with abstract harmonic
analysis we mention that this example can be further generalized to characters of
a compact commutative group. The corresponding measure is the Haar measure
of the group.

We recall that Figs. 1.2 and 1.3 in Chap. 1 show an example of exact recovery
of a 5-sparse trigonometric polynomial in dimension 64 from 16 Fourier samples
using �1-minimization.

2. Real trigonometric polynomials. Instead of the complex exponentials above, we
may also take the real functions

φ2k(t) =
√
2 cos(2πkt), k ∈ N, φ0(t) = 1,

φ2k−1(t) =
√
2 sin(2πkt), k ∈ N. (12.8)

They also form an orthonormal system on D = [0, 1] with respect to the
Lebesgue measure and the constant in (12.2) is K =

√
2. The sampling points

t1, . . . , tm are chosen again according to the uniform distribution on [0, 1].
Figure 12.1 presents a phase transition plot for recovery of sparse cosine

expansions (i.e., only the functions φ2k are considered) from random samples
via iteratively reweighted least squares, an algorithm to be studied in Sect. 15.3.
Black means 100% empirical success probability, while white means 0%
empirical success probability. Here, the vector length is chosen as N = 300.
(For more information on phase transition plots in general we refer to the Notes
section of Chap. 9.)
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Fig. 12.1 Empirical recovery rates for random sampling associated to the cosine system and
reconstruction via the iteratively reweighted least squares algorithm; horizontal axis m/N , vertical
axis s/m

3. Discrete orthonormal systems. Let U∈CN×N be a unitary matrix. The nor-
malized columns

√
Nuk ∈ CN , k ∈ [N ], form an orthonormal system with

respect to the discrete uniform measure on [N ] given by ν(B) = card(B)/N for
B ⊂ [N ], i.e.,

1

N

N∑
t=1

√
Nuk(t)

√
Nu�(t) = 〈uk,u�〉 = δk,�, k, � ∈ [N ].

Here, uk(t) :=Ut,k denotes the tth entry of the kth column of U. The bounded-
ness condition (12.2) requires that the normalized entries of U are bounded, i.e.,

√
N max

k,t∈[N ]
|Ut,k| = max

k,t∈[N ]
|
√
Nuk(t)| ≤ K. (12.9)

Choosing the points t1, . . . , tm independently and uniformly at random from
[N ] generates the random matrix A by selecting its rows independently and
uniformly at random from the rows of

√
NU, that is,

A =
√
NRTU,

where T = {t1, . . . , tm} and RT : CN → Cm denote the random subsampling
operator
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(RT z)� = zt� , � ∈ [m]. (12.10)

In this context, the compressive sensing problem corresponds to the recovery
of an s-sparse x ∈ C

N in the situation where only the entries of ỹ =
√
NUx ∈

C
N on T are observed.
Note that it may happen with nonzero probability that a row of

√
NU is

selected more than once because the probability measure is discrete in this
example. Hence, A is allowed to have repeated rows. One can avoid this effect
by passing to a different probability model where the subset {t1, . . . , tm} ⊂ [N ]
is selected uniformly at random among all subsets of [N ] of cardinality m. This
probability model requires a different analysis than the model described above.
However, the difference between the two models is very slight, and the final
recovery results are essentially the same. We refer to Sect. 12.6 for details.

4. Partial discrete Fourier transform. An important example of the setup just
described is the discrete Fourier matrix F ∈ C

N×N with entries

F�,k =
1√
N
e2πi(�−1)(k−1)/N , �, k ∈ [N ]. (12.11)

The Fourier matrix F is unitary; see Exercise 12.1. The constant in the bound-
edness condition (12.9) is clearly K = 1. The vector x̂ = Fx is called the
discrete Fourier transform of x. The considerations of the previous example
applied to this situation lead to the problem of reconstructing a sparse vector
x from m independent and uniformly distributed random entries of its discrete
Fourier transform x̂. The resulting matrix A is called random partial Fourier
matrix. This matrix can also be viewed as a special case of the nonequispaced
Fourier matrix in (12.7) with the points t� being chosen from the grid ZN/N =
{0, 1/N, 2/N, . . . , (N−1)/N} instead of the whole interval [0, 1]. Note that the
discrete Fourier matrix in (12.11) can also be extended to higher dimensions, i.e.,
to grids (ZN/N)d for d ∈ N.

A crucial point for applications is that computations can be performed
quickly using the FFT. It evaluates the Fourier transform of a vector x ∈ CN

in complexity O(N lnN); see Appendix C.1. Then a partial Fourier matrix
A = RTF also has a fast matrix–vector multiplication: Simply compute Fx
via the FFT and then omit all entries outside T . Similarly, multiplication by the
adjoint to formA∗y can be performed fast: extend the vectory with zeros outside
T and apply F∗, which can also be done via the FFT.

5. Hadamard transform. The Hadamard transform H = Hn ∈ R2n×2n can be
viewed as a Fourier transform on Zn2 = {0, 1}n. Writing out indices j, � ∈ [2n]
into a binary expansion,

j =
n∑
k=1

jk2
k−1 + 1 and � =

n∑
k=1

�k2
k−1 + 1
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with jk, �k ∈ {0, 1}, an entry Hj,� of the Hadamard matrix Hn is given by

Hj,� =
1

2n/2
(−1)

∑n
k=1 jk�k .

The Hadamard matrix is self-adjoint and orthogonal, that is, Hn = H∗
n = H−1

n .
The constant in (12.2) or (12.9) is once more K = 1. The Hadamard transform
also comes with a fast matrix–vector multiplication algorithm, which operates
in complexity O(N lnN), where N = 2n. The algorithm recursively uses the
identity

Hn =
1√
2

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
, H0 = 1,

which can be taken as an alternative definition for the Hadamard matrix. A
slightly different description of the Hadamard transform will be discussed in
Sect. 12.2.

6. Incoherent bases. Let V = [v1| . . . |vN ], W = [w1| . . . |wN ] ∈ CN×N be two
unitary matrices. Their columns form two orthonormal bases of CN . Assume
that a vector z ∈ CN is sparse with respect to V rather than with respect to the
canonical basis, that is, z = Vx for a sparse vector x. Further, assume that z is
sampled with respect to W, i.e., we obtain measurements

yk = 〈z,wtk〉, k ∈ [m],

with T := {t1, . . . , tm} ⊂ [N ]. In matrix vector form, this can be written as

y = RTW
∗z = RTW

∗Vx,

where RT is again the sampling operator (12.10). Defining the unitary matrix
U := W∗V ∈ CN×N , we return to the situation of Example 3. Condition (12.9)
now reads

√
N max

�,k∈[N ]
|〈v�,wk〉| ≤ K. (12.12)

The bases (v�) and (w�) are called incoherent if K can be chosen small.
Examples 4 and 5 fall into this setting by choosing one of the bases as the
canonical basis, say W = Id ∈ CN×N . The Fourier basis and the canonical
basis are actually maximally incoherent, since K = 1 in this case.

Further examples, namely, Haar wavelets coupled with noiselets and Legendre
polynomials, will be mentioned in the Notes section.

In the remainder of this chapter, we develop rigorous recovery results for the
described setup, that is, for the sampling matrix in (12.4) formed with randomly
chosen sampling points. We will proceed by increasing difficulty of the proofs. Let
us already summarize the main findings at this point.
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• Nonuniform recovery. A fixed s-sparse vector x can be reconstructed via
�1-minimization with high probability using a random draw of the sampling
matrix A ∈ Cm×N in (12.4) associated to a BOS with constant K ≥ 1 in (12.2)
provided that

m ≥ CK2s ln(N).

We first show two easier versions of this results (Theorems 12.11 and 12.18) in
which the nonzero coefficients of x are additionally assumed to have random
signs. We remove this randomness assumption in Theorem 12.20. We further
provide a weak stability and robustness estimate for the reconstruction in
Theorem 12.22.

• Uniform recovery. Theorem 12.31 states that the restricted isometry constants of
the rescaled random sampling matrix 1√

m
A satisfy δs ≤ δ with high probability

provided

m ≥ CK2δ−2s ln4(N).

This implies uniform, stable, and robust s-sparse recovery via �1-minimization
and the other recovery algorithms discussed in Chap. 6 with high probability
when m ≥ C′K2s ln4(N).

Before turning to the proofs of these results in Sects. 12.3–12.5, we investigate
lower bounds on the required number of samples and discuss connections with
uncertainty principle in the next section.

12.2 Uncertainty Principles and Lower Bounds

In this section, we concentrate essentially on the Fourier system of Example 4 and
on the Hadamard matrix of Example 5 in order to illustrate some basic facts and
bounds that arise in random sampling of BOSs. In particular, we provide lower
bounds on the minimal number of measurements (see (12.29)) which are slightly
stronger than the general bounds obtained in Chap. 10 using Gelfand widths.

We recall that F ∈ CN×N is the Fourier transform matrix with entries

F�,k =
1√
N
e2πi(�−1)(k−1)/N , �, k ∈ [N ].

With the stated normalization, the matrix F is unitary. For a vector x ∈ CN , its
discrete Fourier transform is denoted

x̂ = Fx.
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Uncertainty principles state that a vector cannot be simultaneously localized both
in time and frequency. In other words, it is impossible that both x and x̂ are
concentrated in a small portion of [N ]. Various versions of the uncertainty principle
make the notion of localization precise. We present a general discrete version
for incoherent bases (see Example 6 above). Let V = [v1| · · · |vN ] and W =
[w1| · · · |wN ] ∈ CN×N be two unitary matrices that are mutually incoherent, that
is,

√
N max

�,k∈[N ]
|〈v�,wk〉| ≤ K (12.13)

for some K ≥ 1. Taking the Fourier/identity matrix pair (V = F,W = Id), we
obtain the optimal constant K = 1.

Theorem 12.2. Let V and W ∈ CN×N be two mutually incoherent unitary
matrices with parameter K in (12.13). Let y ∈ CN \ {0} and x, z ∈ CN be the
representation coefficients in y = Vx = Wz. Then

‖x‖0 + ‖z‖0 ≥
2
√
N

K
. (12.14)

Proof. Since V is unitary, left multiplication of the identity Vx = Wz by V∗

yields x = V∗Wz. An entry of x satisfies

|xk| = |(V∗Wz)k| = |
∑
�

(V∗W)k,�z�| ≤
∑
�

|〈w�,vk〉||z�|

≤ max
�
|〈w�,vk〉| ‖z‖1 ≤

K√
N
‖z‖1.

Summation over k ∈ supp(x) yields

‖x‖1 ≤ ‖x‖0
K√
N
‖z‖1.

Multiplying the identity Vx = Wz from the left by W∗ similarly gives

‖z‖1 ≤ ‖z‖0
K√
N
‖x‖1.

Multiplication of both inequalities and division by ‖x‖1‖z‖1 imply the inequality
1 ≤ ‖z‖0‖x‖0K2/N or expressed differently

√
‖z‖0‖x‖0 ≥

√
N

K
.
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Using the fact that the arithmetic mean dominates the geometric mean, we obtain

‖z‖0 + ‖x‖0
2

≥
√
‖z‖0‖x‖0 ≥

√
N

K
.

This completes the proof. ��

Specializing to the Fourier/identity matrix pair, for which K = 1, we arrive at
the following result.

Corollary 12.3. Let x ∈ CN \ {0}. Then

‖x‖0 + ‖x̂‖0 ≥ 2
√
N, (12.15)

where x̂ = Fx is the discrete Fourier transform of x.

This uncertainty principle has consequences for signal separation (Exercise 12.3),
and it implies a weak result concerning recovery from undersampled measurements
(Exercise 12.4). However, our interest in the above statements is rather due to the
fact that they have companion results suggesting the use of random sets of samples.
Indeed, the bound (12.15) cannot be improved in general, as the next proposition
shows that it is sharp for so-called delta trains.

Proposition 12.4. Let N = n2 be a square. Set x ∈ CN to be the vector with
entries

x� =

{
1 if � = 1modn,

0 otherwise.
(12.16)

Then x̂ = x and ‖x̂‖0 = ‖x‖0 =
√
N .

Proof. By definition of the Fourier transform, we have, for j ∈ [n2],

x̂j =
1

n

n2∑
�=1

x�e
2πi(�−1)(j−1)/n2

=
1

n

n∑
k=1

e2πi(k−1)(j−1)/n =

{
1 if j = 1modn,

0 otherwise.

This shows that x̂ = x and that ‖x̂‖0 = ‖x‖0 = n =
√
N . ��

Delta trains illustrate why arbitrary sampling sets T ⊂ [N ] are not suitable
for sparse recovery from Fourier measurements. Suppose that N = n2 is a
square, and let x be defined as in (12.16). We consider the set of sampling points
T := [n2] \ {1, n+ 1, 2n+ 1, . . . , (n− 1)n+ 1}. Then by the previous proposi-
tion, the restriction of x̂ to T is the zero vector, that is,

y = RTFx = 0.
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Any reasonable algorithm will output x� = 0 from y = 0. In other words,
this sampling scheme cannot distinguish x from the zero vector. Observe that
s = ‖x‖0 = n, but the number of samples satisfies

m = card(T ) = n2 − n.

In conclusion, for this choice of sampling set not even m = s2 − s samples are
sufficient. This example somewhat suggests to consider random choices of sampling
sets T . Indeed, the described sampling set is very structured, and this is essentially
the reason why it allows for counterexamples. Good sampling sets instead possess
only very little additive structure, and the simplest way to construct an unstructured
set of numbers is to choose the set at random.

Next, we investigate a general lower bound on the number m of samples for
s-sparse recovery in dimension N . We have seen in Chap. 10 that for a general
stable sparse recovery problem, we have the lower bound

m ≥ Cs ln(eN/s).

We will construct an example that shows that the term ln(eN/s) has to be replaced
by lnN in the context of random sampling in BOSs. To this end, we use the
Hadamard transform H introduced in Example 5.

The Hadamard transform is related to Fourier analysis on the additive group
Zn2 = ({0, 1}n,+), where addition is understood modulo 2. We give here a slightly
different description of the Hadamard matrix than in the previous section. The
constant function χ0(t) = 1 on Z2 and the function

χ1(t) =

{
1 if t = 0,

−1 if t = 1,

are the characters onZ2, meaning that χj(t+r) = χj(t)χj(r) for all j, t, r ∈ {0, 1}.
We also observe that χj+k(t) = χj(t)χk(t) for all j, k ∈ {0, 1}. One easily checks
that the characters are orthonormal with respect to the normalized counting measure
on Z2, that is,

〈χj , χk〉 :=
1

2

∑
t∈{0,1}

χj(t)χk(t) = δj,k.

For j, t ∈ Zn2 , we define a character on Zn2 as the tensor product

χj(t) =

n∏
�=1

χj�(t�).
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Using the corresponding properties on Z2, we see that

χj(t+ r) = χj(t)χj(r) and χj+k(t) = χj(t)χk(t). (12.17)

It follows from the orthonormality of χ0 and χ1 that the functions χj are orthonor-
mal with respect to the counting measure on Zn2 , that is,

〈χj, χk〉 = 2−n
∑
t∈Z

n
2

χj(t)χk(t) = δj,k. (12.18)

The constant in the uniform bound (12.2) of these functions is K = 1. The
(unnormalized) Hadamard transform (Fourier transform on Zn2 ) of a vector x
indexed by Zn2 is then defined entrywise as

zj = (Hx)j =
∑
t∈Z

n
2

xtχj(t).

Key to our lower estimate is the fact that an arbitrary subset of Zn2 contains (the
translate of) a large subgroup of Zn2 .

Lemma 12.5. For any subset Λ of Zn2 , if N := card(Zn2 ) = 2n and if κ :=
card(Λ)/N satisfies log2(κ

−1) ≥ 10N−3/4, then there exist an element b ∈ Zn2

and a subgroup Γ of Zn2 such that

b+ Γ ⊂ Λ and card(Γ ) ≥ n

8 log2(κ
−1)

. (12.19)

Proof. We iteratively construct elements γ0,γ1, . . . ,γp ∈ Zn2 and subsets Λ0, Λ1,
. . . , Λp of Zn2 as follows: we set γ0 = 0 and Λ0 := Λ, and, for j ≥ 1, with
G(γ0, . . . ,γj−1) denoting the group generated by γ0, . . . ,γj−1, we define

γj := argmax{card((γ + Λj−1) ∩ Λj−1) : γ �∈ G(γ0, . . . ,γj−1)}, (12.20)

Λj := (γj + Λj−1) ∩ Λj−1. (12.21)

The condition γ �∈ G(γ0, . . . ,γj−1) guarantees that G(γ0, . . . ,γj) is twice
as large as G(γ0, . . . ,γj−1), so that card(G(γ0, . . . ,γj)) = 2j follows by
induction. Therefore, the construction of γ1, . . . ,γp via (12.20) is possible as long
as 2p−1 < N and in particular for p chosen as in (12.23) below. Let us now show
that property (12.21) implies, for j ≥ 1,

Λj +G(γ0, . . . ,γj) ⊂ Λj−1 +G(γ0, . . . ,γj−1). (12.22)

Indeed, for g ∈ Λj + G(γ0, . . . ,γj), we write g = λj +
∑j

�=0 δ�γ� for some
λj ∈ Λj and some δ0, . . . , δj ∈ {0, 1}. In view of Λj = (γj + Λj−1) ∩ Λj−1, we
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can always write λj = λj−1 + δjγj for some λj−1 ∈ Λj−1—if δj = 0, we use
λj ∈ Λj−1 and if δj = 1, we use λj ∈ γj + Λj−1. It follows that

g = λj−1 + δjγj +

j∑
�=0

δ�γ� = λj−1 +

j−1∑
�=0

δ�γ� ∈ Λj−1 +G(γ0, . . . ,γj−1).

This establishes (12.22). We derive that Λp + G(γ0, . . . ,γp) ⊂ Λ0 + G(γ0) = Λ
by induction. Thus, choosing Γ = G(γ0, . . . ,γp) and picking any b ∈ Λp, we
have b+ Γ ⊂ Λ. It remains to prove that the size of Γ is large and that an element
b ∈ Λp does exist. By considering p ≥ 0 such that

2p−1 <
n

8 log2(κ
−1)

≤ 2p, (12.23)

we immediately obtain the second part of (12.19). To show that card(Λp) > 0, we
use property (12.21). For j ≥ 1, the observation that the maximum is larger than the
average leads to

card(Λj) ≥
1

N − 2j−1

∑
γ∈Z

n
2 \G(γ0,...,γj−1)

card((γ + Λj−1) ∩ Λj−1)

=
1

N − 2j−1

[ ∑
γ∈Z

n
2

card((γ + Λj−1) ∩ Λj−1)

−
∑

γ∈G(γ0,...,γj−1)

card((γ + Λj−1) ∩ Λj−1)

]
.

On the one hand, we have

∑
γ∈G(γ0,...,γj−1)

card((γ + Λj−1) ∩ Λj−1) ≤
∑

γ∈G(γ0,...,γj−1)

card(Λj−1) = 2j−1 card(Λj−1).

On the other hand, with 1A denoting the characteristic function of a set A, we have

∑
γ∈Z

n
2

card((γ + Λj−1) ∩ Λj−1) =
∑
γ∈Z

n
2

∑
h∈Λj−1

1γ+Λj−1 (h)

=
∑

h∈Λj−1

∑
γ∈Z

n
2

1h−Λj−1 (γ) =
∑

h∈Λj−1

card(Λj−1) = card(Λj−1)
2.

As a result, we obtain

card(Λj) ≥
card(Λj−1)

N − 2j−1

[
card(Λj−1)− 2j−1

]
.
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By induction, this implies the estimate

card(Λj) ≥ κ2
j

N

(
1− 2j−1

N

j−1∑
�=0

κ−2�
)
. (12.24)

Indeed, this holds for j = 0, and if it holds for j − 1, then

card(Λj)

≥ κ2
j−1

N

(
1− 2j−2

N

j−2∑
�=0

κ−2�

)
κ2

j−1

N

N − 2j−1

(
1− 2j−2

N

j−2∑
�=0

κ−2� − 2j−1

κ2j−1N

)

≥ κ2
j

N

(
1− 2j−1

N

j−2∑
�=0

1

2κ2�

)(
1− 2j−1

N

(
j−2∑
�=0

1

2κ2�
+

1

κ2j−1

))

≥ κ2
j

N

(
1− 2j−1

N

j−1∑
�=0

1

κ2�

)
.

This finishes the inductive justification of (12.24). Since
∑p−1

�=0 κ
−2� ≤ pκ−2p−1

,
we derive in particular

card(Λp) ≥ κ2
p

N

(
1− 2p−1

N
pκ−2p−1

)
= κ2

p−1
(
κ2

p−1

N − 2p−1p
)
.

Using the leftmost inequality in (12.23), as well as p ≤ n and the assumption
log2(κ

−1) ≥ 10N−3/4, we obtain

card(Λp) ≥ κ2
p−1

(
κn/(8 log2(κ

−1))2n − n2

8 log2(κ
−1)

)

≥ κ2
p−1

(
2n(1−1/8) − n2 23n/4

80

)
= κ2

p−1

23n/4
(
2n/8 − n2

80

)
> 0.

The proof is now complete. ��

Remark 12.6. The condition log2(κ
−1) ≥ 10N−3/4 in the previous lemma can be

replaced by any condition of the type log2(κ
−1) ≥ cβN

−β , 0 < β < 1. This only
requires an adjustment of the constants.

The next result is analogous to Proposition 12.4.

Proposition 12.7. Given a subgroup G of Zn2 , the set

G⊥ := {λ ∈ Z
n
2 :
∑
g∈G

χλ(g) �= 0} (12.25)
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forms another subgroup of Zn2 . Furthermore, the unnormalized Hadamard trans-
form of the vector z ∈ CZ

n
2 with entries

zj =

{
1 if j ∈ G,
0 otherwise,

is given by

ẑk =

{
card(G) if k ∈ G⊥,

0 otherwise.

In particular, ‖z‖0 · ‖ẑ‖0 = card(G) · card(G⊥) = 2n. Finally, (G⊥)⊥ = G.

Proof. First, we observe that 0 ∈ G⊥ because χ0 = 1 is the constant function and
that G⊥ is trivially closed under inversion because any element of Zn2 is its own
inverse. Then, using the fact that G is a group, we obtain, for h ∈ G and λ ∈ G⊥,

∑
g∈G

χλ(g) =
∑
g∈G

χλ(h+ g) = χλ(h)
∑
g∈G

χλ(g).

In view of
∑

g∈G χλ(g) �= 0, we deduce

χλ(h) = 1 for all h ∈ G and λ ∈ G⊥. (12.26)

In particular, given λ,ρ ∈ G⊥, we derive

∑
g∈G

χλ+ρ(g) =
∑
g∈G

χλ(g)χρ(g) =
∑
g∈G

1 = card(G) �= 0,

which shows that λ + ρ ∈ G⊥. We have now established that G⊥ is a group. The
special case ρ = 0 of the previous identity reads

∑
g∈G

χλ(g) = card(G) for all λ ∈ G⊥. (12.27)

The definition of the unnormalized Hadamard transform then yields

ẑk =
∑
g∈G

χk(g) =

{
card(G) if k ∈ G⊥,

0 otherwise.

Summing (12.27) over all λ ∈ G⊥ and using the orthogonality relation (12.18), we
obtain
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card(G) · card(G⊥) =
∑

λ∈G⊥

∑
g∈G

χλ(g) =
∑
λ∈Z

n
2

∑
g∈G

χλ(g)

=
∑
g∈G

∑
λ∈Z

n
2

χg(λ) = 2n
∑
g∈G
〈χg, χ0〉 = 2n.

For the final statement, observe that χλ(h) = χh(λ) for all λ,h. The relation
(12.26) yields

∑
λ∈G⊥ χh(λ) = card(G⊥) �= 0 for h ∈ G so that G ⊂ (G⊥)⊥.

Moreover, card(G) · card(G⊥) = 2n = card(G⊥) · card((G⊥)⊥) as just shown. It
follows that (G⊥)⊥ = G. This completes the proof. ��

Now we are in the position to provide a lower bound on the number m of
measurements for recovery of s-sparse vectors in CN , N = 2n, from samples of the
Hadamard transform. The bound applies to an arbitrary (not necessarily random) set
of m samples.

Theorem 12.8. Let T be an arbitrary subset of Zn2 of sizem. Ifm satisfies cN1/4 ≤
m ≤ N/2 with N = 2n and c = 10 ln(2) ≈ 6.93, then there exists a nonzero vector
x ∈ CN whose Hadamard transform vanishes on T and whose sparsity obeys

‖x‖0 ≤
16m

log2(N)
. (12.28)

Proof. We consider the set Λ := Z
n
2 \ T . With κ := card(Λ)/N = 1 − m

N , the
concavity of the logarithm together with the assumption on m yields

log2(κ
−1) = − log2

(
1− m

N

)
⎧⎪⎨
⎪⎩
≥ m

ln(2)N
≥ 10N−3/4,

≤ 2m

N
.

Thus, Lemma 12.5 guarantees the existence of an element b ∈ Zn2 and a subgroup
Γ of Zn2 such that b+Γ ⊂ Λ and card(Γ ) ≥ n/(8 log2(κ

−1)). The vector z ∈ CZ
n
2

introduced in Proposition 12.7 with G := Γ⊥ satisfies

‖z‖0 = card(Γ⊥) =
N

card(Γ )
≤ 8 log2(κ

−1)N

n
≤ 16m

n
,

and consequently so does the vector x ∈ CZ
n
2 defined by xk = χb(k)zk. It remains

to verify that the Hadamard transform of x vanishes on T . For this purpose, we
notice that, for any j ∈ Zn2 ,

x̂j =
∑
t∈Z

n
2

xtχj(t) =
∑
t∈Z

n
2

ztχj+b(t) = ẑj+b.
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Hence, according to Proposition 12.7, we have x̂j = 0 if j+b �∈ G⊥, i.e., j /∈ b+Γ
because (G⊥)⊥ = G again by Proposition 12.7. Since this occurs when j ∈ T , the
proof is now complete. ��

The result below shows that, for random sampling in general BOSs, a factor
ln(N) must appear in the number of required measurements because it would
otherwise contradict the special case of the Hadamard system. This is in contrast
to other measurement matrices, where the logarithmic factor can be lowered to
ln(N/s); see Chaps. 9 and 10.

Corollary 12.9. Let T be an arbitrary subset of Zn2 of size m ∈ [cN1/4, N/2] with
c = 10 ln(2). The existence of a method to recover every s-sparse vector from the
samples indexed by T of its Hadamard transform requires

m ≥ C s ln(N), C =
1

8 ln(2)
≈ 0.1803. (12.29)

If only m ≤ N/2, that is, without assuming a lower bound on m, the existence of a
stable method to recover every s-sparse vector from the samples indexed by T of its
Hadamard transform requires

m ≥ Cs ln(N)

for some constant C depending on the stability requirement.

Remark 12.10. Recall that a stable recovery method (associated to the sampling
matrix A ∈ Cm×N ) is a map Δ : Cm → CN such that, for all x ∈ CN ,

‖x−Δ(Ax)‖1 ≤ Ĉσs(x)1 for some constant Ĉ > 0.

Proof. Suppose that cN1/4 ≤ m ≤ N/2 and that there exists a method to recover
every s-sparse vector from the samples indexed by T of its Hadamard transform. Let
us decompose the nonzero vector x ∈ CZ

n
2 of Theorem 12.8 as x = u− v for two

distinct vectors u,v ∈ CZ
n
2 of sparsity at most (‖x‖0 + 1)/2. Since the Hadamard

transforms of u and v are identical on T , we must have (‖x‖0 + 1)/2 > s, hence

2s ≤ ‖x‖0 ≤
16m

log2(N)
,

and (12.29) follows. In the case m ≤ cN1/4, we know from Theorem 11.6 that
if there exists a stable method to recover every s-sparse vector from the samples
indexed by T of its Hadamard transform, then there is a constant c′ such that
m ≥ c′s ln(eN/s). Moreover, Theorem 2.13 implies that m ≥ 2s so that

m ≥ c′ s ln(2eN/m) ≥ c′ s ln(2eN3/4/c) ≥ C s ln(N)

for some appropriate constant C > 0. This concludes the proof. ��
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12.3 Nonuniform Recovery: Random Sign Patterns

We start with nonuniform recovery guarantees for random sampling in bounded
orthonormal systems. In order to simplify the argument, we assume in this section
that the signs of the nonzero coefficients of the vector to be recovered are random.
Recall that the recovery condition in Theorem 4.26 depends only on the signs of x
on its support, so that the magnitudes of the entries of x do not play any role. This is
why we impose randomness only on the signs of the entries. In this way, the vector
x certainly becomes random as well. But in contrast to Chap. 14, where we focus on
recovery of random signals using deterministic matrices A, the support of x is kept
arbitrary here. With a deterministic support, the randomness in x can be considered
mild. In any case, we will remove the assumption on the randomness of the signs in
the next section at the cost of a more complicated approach.

Recall that we consider the random sampling matrix A in (12.4) associated to a
BOS with constant K ≥ 1 introduced in (12.2). The sampling points t1, . . . , tm are
chosen independently at random according to the probability measure ν.

Theorem 12.11. Let x ∈ CN be a vector supported on a set S of size s such
that sgn(xS) forms a Rademacher or Steinhaus sequence. Let A ∈ Cm×N be the
random sampling matrix associated to a BOS with constant K ≥ 1. If

m ≥ CK2s ln2(6N/ε), (12.30)

then with probability at least 1 − ε, the vector x is the unique minimizer of ‖z‖1
subject to Az = Ax. The constant C is no larger than 35.

We remark that the probability in this result is both with respect to A and with
respect to x. Theorem 12.12 and Corollary 12.14 below analyze the random matrix
A, while Proposition 12.15 exploits the randomness of sgn(xS).

The above result will be slightly improved in Theorem 12.18 below by replacing
the exponent 2 by 1 at the logarithmic factor in (12.30).

The proof of Theorem 12.11 requires some preparatory results provided next. As
a crucial tool we use the recovery condition for individual vectors of Corollary 4.28.
This leads us to investigating the conditioning of the submatrix AS associated to
the support S of the vector to be recovered. The proof of the result below is based
on the noncommutative Bernstein inequality of Theorem 8.14.

Theorem 12.12. Let A ∈ Cm×N be the random sampling matrix associated to a
BOS with constant K ≥ 1. Let S ⊂ [N ] be of size s. Then, for δ ∈ (0, 1), the
normalized matrix Ã = 1√

m
A satisfies

‖Ã∗
SÃS − Id‖2→2 ≤ δ

with probability at least

1− 2s exp

(
−3mδ2

8K2s

)
. (12.31)
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Remark 12.13. Expressed differently, ‖A∗
SAS − Id‖2→2 ≤ δ with probability at

least 1− ε provided m ≥ (8/3)K2δ−2s ln(2s/ε).

Proof. Denote by Y� = (φj(t�))j∈S ∈ Cs a column of A∗
S . By independence of

the t�, these are independent random vectors. Their �2-norm is bounded by

‖Y�‖2 =
√∑
j∈S
|φj(t�)|2 ≤ K

√
s. (12.32)

Furthermore, for j, k ∈ S,

E (Y�Y
∗
� )j,k = E

[
φj(t�)φk(t�)

]
=

∫
D
φj(t)φk(t)dν(t) = δj,k,

or, in other words, EY�Y
∗
� = Id. Observe that

Ã∗
SÃS − Id =

1

m

m∑
�=1

(Y�Y
∗
� − EY�Y

∗
� ).

The matrices X� = Y�Y
∗
� − EY�Y

∗
� ∈ Cs×s have mean zero. Moreover,

‖X�‖2→2 = max
‖x‖2=1

|〈Y�Y
∗
�x,x〉 − ‖x‖22| = |‖Y�‖22 − 1| ≤ K2s,

and since (Y�Y
∗
� )

2 = Y�(Y
∗
�Y�)Y

∗
� = ‖Y�‖22Y�Y

∗
� , we have

EX2
� = E (Y�Y

∗
�Y�Y

∗
� − 2Y�Y

∗
� + Id) = E

(
(‖Y�‖22 − 2)Y�Y

∗
�

)
+ Id

� (K2s− 2)E[Y�Y
∗
� ] + Id � K2s Id. (12.33)

The variance parameter in (8.28) can therefore be estimated by

σ2 :=

∥∥∥∥∥
m∑
�=1

E(X2
� )

∥∥∥∥∥
2→2

≤ mK2s‖Id‖2→2 = K2sm.

The noncommutative Bernstein inequality (8.30) yields, for δ ∈ (0, 1),

P

(∥∥∥Ã∗
SÃS − Id

∥∥∥
2→2

> δ
)
= P

(
‖
m∑
�=1

X�‖2→2 > δm

)

≤ 2s exp

(
− δ2m2/2

K2sm+K2sδm/3

)
≤ 2s exp

(
−3

8

δ2m

K2s

)
.

The proof is completed. ��
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A bound for the coherence of A can be deduced from Theorem 12.12, as shown
below. Coherence estimates can alternatively be shown using simpler techniques
which do not require bounds on condition numbers; see Exercise 12.6. Note that
below we do not require normalization of the columns (in contrast to Chap. 5).

Corollary 12.14. Let A ∈ Cm×N be the random sampling matrix associated to a
BOS with constant K ≥ 1. Then the coherence μ of Ã = 1√

m
A satisfies

μ ≤
√

16K2 ln(2N2/ε)

3m

with probability at least 1− ε.

Proof. We denote the columns of Ã by ãj , j ∈ [N ]. Let S = {j, k} with j �= k be
a two element set. Then the matrix Ã∗

SÃS − Id contains 〈ãj , ãk〉 as a matrix entry.
Since the absolute value of any entry of a matrix is bounded by the operator norm
(Lemma A.9), we have

|〈ãj , ãk〉| ≤ ‖Ã∗
SÃS − Id‖2→2.

By Theorem 12.12, applied with s = 2, the probability that the operator norm on
the right is not bounded by δ is at most

4 exp

(
− 3mδ2

16K2

)
.

Taking the union bound over all N(N − 1)/2 ≤ N2/2 two element sets S ⊂ [N ]
shows that

P(μ ≥ δ) ≤ 2N2 exp

(
− 3mδ2

16K2

)
.

Requiring that the right-hand side is at most ε yields the conclusion. ��

Proposition 12.15. Let x ∈ CN be a vector supported on a set S such that sgn(xS)
forms a Rademacher or Steinhaus sequence. If A ∈ Cm×N is such that AS is
injective and

‖A†
Sa�‖2 ≤ α for all � ∈ S and some α > 0, (12.34)

then, with probability at least

1− 2N exp(−α−2/2),

the vector x is the unique minimizer of ‖z‖1 subject to Az = Ax.

Note that the statement is nontrivial only if α <
(
2 ln(2N)

)−1/2
.
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Proof. In the Rademacher case, the union bound and Hoeffding’s inequality (see
Corollary 7.21 for the real case and Corollary 8.8 for the general complex case)
yield

P(max
�∈S

|〈A†
Sa�, sgn(xS)〉| ≥ 1) ≤

∑
�∈S

P

(
|〈A†

Sa�, sgn(xS)〉| ≥ ‖A
†
Sa�‖2α−1

)

≤ 2N exp(−α−2/2).

In the Steinhaus case we even obtain a better estimate from Corollary 8.10. An
application of Corollary 4.28 finishes the proof. ��

Remark 12.16. In Chap. 14 we will choose the matrix A deterministically and the
support set S at random. Proposition 12.15 remains applicable in this situation.

Next, we provide a condition ensuring that ‖A†
Sa�‖2 is small. The first condition

requires that AS is well conditioned and that the coherence of A is small. We note
again that in contrast with the definition (5.1) of the coherence, we do not require
the columns of A to be normalized here, even though this will be the case in many
examples.

Proposition 12.17. Let A ∈ Cm×N with coherence μ and let S ⊂ [N ] be of size
s. If ‖A∗

SAS − Id‖2→2 ≤ δ for some δ ∈ (0, 1), then

‖A†
Sa�‖2 ≤

√
sμ

1− δ
for all � ∈ S.

Proof. Since ‖A∗
SAS − Id‖2→2 ≤ δ < 1, the matrix AS is injective, and by

Lemma A.12,

‖(A∗
SAS)

−1‖2→2 ≤
1

1− δ
.

By definition of the operator norm

‖A†
Sa�‖2 = ‖(A∗

SAS)
−1A∗

Sa�‖2 ≤ ‖(A∗
SAS)

−1‖2→2‖A∗
Sa�‖2

≤ (1− δ)−1‖A∗
Sa�‖2.

For � ∈ S, we can further estimate

‖A∗
Sa�‖2 =

√∑
j∈S
|〈a�, aj〉|2 ≤

√
sμ.

Combining the two estimates completes the proof. ��
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In Exercise 12.5, an alternative way of bounding the term ‖A†
Sa�‖2 is provided.

Both bounds require that only one column submatrix of A, or at least only a small
number of them, is well conditioned in contrast with the restricted isometry property
which requires that all column submatrices of a certain size to be well conditioned
simultaneously. It is significantly simpler to prove well conditionedness for a single
column submatrix of a structured random matrix.

Now we are in the position to prove the nonuniform recovery result stated in
Theorem 12.11.

Proof (of Theorem 12.11). Set α =
√
su/(1−δ) for some δ, u ∈ (0, 1) to be chosen

later. Let μ be the coherence of Ã = 1√
m
A. By Propositions 12.15 and 12.17, the

probability that recovery by basis pursuit fails is bounded by

P = 2Ne−α
−2/2 + P

(
‖Ã†

Sã�‖2 ≥ α for some � ∈ [N ] \ S
)

≤ 2Ne−α
−2/2 + P(‖Ã∗

SÃS − Id‖2→2 > δ) + P(μ > u). (12.35)

Remark 12.13 yields P(‖Ã∗
SÃS − Id‖2→2 > δ) ≤ ε/3 under the condition

m ≥ 8K2

3δ2
s ln(6s/ε). (12.36)

Corollary 12.14 asserts that P(μ > u) ≤ ε/3 provided

m ≥ 16K2

3u2
ln(6N2/ε),

which (since ln(6N2/ε) ≤ 2 ln(6N/ε)) is implied by

m ≥ 32K2

3u2
ln(6N/ε). (12.37)

Set u = 2δ/
√
s. Then (12.37) implies (12.36), and α = 2δ/(1 − δ). Next we set

δ−2 = 13 ln(6N/ε). Then the first term in (12.35) is bounded by

2N exp(−α−2/2) = 2N exp

(
− (1− δ)2

8δ2

)

= 2N exp
(
−(1− (13 ln(6N/ε))−1/2)2 · 13 ln(6N/ε)/8

)

≤ 2N exp(−C ln(6N/ε)) ≤ ε/3 ,

whereC = 13(1− (13 ln(6))−1/2)2/8 ≈ 1.02 ≥ 1. Plugging the value of δ into the
definition of u, that is, u = (cs ln(6N/ε))−1/2 with c = 13/4, and then into (12.37),
we find that recovery by basis pursuit fails with probability at most ε provided
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m ≥ CK2s ln2(6N/ε)

with C = 32 · 13/(3 · 4) < 35. This completes the proof. ��

The next statement improves on the exponent 2 at the logarithmic term in (12.30).
Unlike the previous result, its proof does not use the coherence, but rather a
sophisticated way of bounding the term ‖Ã∗

S ãj‖2 using Corollary 8.45.

Theorem 12.18. Let x ∈ CN be an s-sparse vector with support S such that
its sign sequence sgn(xS) forms a Rademacher or Steinhaus sequence. Let A ∈
Cm×N be the random sampling matrix (12.4) associated to a BOS with constant
K ≥ 1. Assume that m ≥ cK2 ln2(6N/ε) for an appropriate constant c > 0 and
that

m ≥ 18K2s ln(6N/ε). (12.38)

Then with probability at least 1 − ε the vector x is the unique minimizer of ‖z‖1
subject to Az = Ax.

We start with a technical lemma.

Lemma 12.19. With the notation of Theorem 12.18, let Ã = 1√
m
A. Then, for

t > 0,

P

(
max
j∈S

‖Ã∗
S ãj‖2 ≥

√
K2s

m
+ t

)
≤ N exp

⎛
⎝− mt2

K2
√
s

1

2√
s
+ 4
√

K2s
m + 2t

3

⎞
⎠ .

Proof. Fix j ∈ S. We introduce the vectors Y� = (φk(t�))k∈S ∈ CS and Z� =(
φj(t�)φk(t�)

)
k∈S

= φj(t�)Y� ∈ CS . Then

‖Ã∗
S ãj‖2 =

1

m

∥∥∥∥∥
m∑
�=1

Z�

∥∥∥∥∥
2

.

Our aim is to apply the vector-valued Bernstein inequality of Corollary 8.45.
The Z� are independent copies of a random vector Z that satisfies EZ = 0 by
orthonormality of the φk and by the fact that j /∈ S. The norm of the vector Z can
be bounded by

‖Z‖2 = |φj(t1)|‖Y1‖2 ≤
√
sK2

due to the boundedness condition (12.2) and since card(S) ≤ s. Furthermore,

E‖Z‖22 = E[|φj(t1)|2‖Y1‖22] ≤ K2
E‖Y1‖22 = K2

∑
k∈S

E|φk(t1)|2 ≤ K2s.
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To estimate the weak variance, we observe that for z ∈ CS with ‖z‖2 ≤ 1,

E|〈z,Z〉|2 = E[|φj(t1)|2|〈z,Y1〉|2] ≤ K2
E[z∗Y1Y

∗
1z] = K2‖z‖22 ≤ K2

again by the orthonormality condition (12.1). Hence,

σ2 = sup
‖z‖2≤1

E|〈z,Z〉|2 ≤ K2.

The Bernstein inequality (8.95) yields, for t > 0,

P(‖
m∑
�=1

Z�‖2 ≥
√
msK2+t) ≤ exp

(
− t2/2

mK2 + 2
√
sK2

√
msK2 + t

√
sK2/3

)
.

Rescaling by 1/m and taking the union bound over all j ∈ S yield the claimed
probability estimate. ��

Proof (of Theorem 12.18). For reasons that will become apparent below, if s <
36 ln(6N/ε), then we enlarge S by some arbitrary elements from [N ] \ S to obtain
S+ such that S ⊂ S+ and card(S+) = �36 ln(6N/ε)�. Moreover, we extend
sgn(xS) such that sgn(xS+) forms a random Rademacher or Steinhaus sequence.
If s ≥ 36 ln(6N/ε), then if ‖x‖0 = s, we simply take S+ = S and if ‖x‖0 < s, we
again enlarge S to a set S+ ⊃ S with card(S+) = s and sgn(xS) to a Rademacher
or Steinhaus sequence sgn(xS+), so that altogether

card(S+) = s+ := max{s, �36 ln(6N/ε)�}.

By Remark 4.27(a), once we verify the condition (a) of Theorem 4.26 for S+

and sgn(xS+) (for instance, via Proposition 12.15), x is recovered exactly via �1-
minimization.

Proposition 12.15 requires us to bound the term

‖Ã†
S+

ãj‖2 ≤ ‖(Ã∗
S+

ÃS+)
−1‖2→2‖Ã∗

S+
ãj‖2, j /∈ S+,

where Ã = 1√
m
A and ã1, . . . , ãN denote its columns. Note that the injectivity of

ÃS+ (as required by Proposition 12.15) will be ensured once Ã∗
S+

ÃS+ is merely

invertible. The operator norm satisfies ‖(Ã∗
S+

ÃS+)
−1‖2→2 ≤ (1 − δ)−1 provided

‖Ã∗
S+

ÃS+ − Id‖2→2 ≤ δ, the latter being treated by Theorem 12.12. For the

remaining term, we set t = βK
√
s+/m in Lemma 12.19 to obtain
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P

(
max
j∈S+

‖Ã∗
S+

ãj‖2 ≥ (1 + β)K

√
s+
m

)

≤ N exp

(
−

β2√s+
2/
√
s+ + (4 + 2β/3)K

√
s+/m

)
. (12.39)

Setting v = (1+β)K
√

s+
m , if ‖Ã∗

S+
ÃS+ − Id‖2→2 ≤ δ and maxj∈S+

‖Ã∗
S+

ãj‖2
≤ v, then maxj∈S+

‖Ã†
S+

ãj‖2 ≤ v/(1 − δ). Therefore, by Proposition 12.15 and
Theorem 12.12, the probability that basis pursuit fails to recover x is bounded by

P(max
j∈S+

|〈Ã†
S+

ãj , sgn(xS+)〉| ≥ 1)

≤ P

(
max
j∈S+

|〈Ã†
S+

ãj , sgn(xS+)〉 ≥ 1

∣∣∣∣∣ ‖Ã∗
S+

ÃS+ − Id‖2→2 ≤ δ

and max
j∈S+

‖Ã∗
S+

ãj‖2 ≤ v

)

+ P(‖Ã∗
S+

ÃS+ − Id‖2→2 ≥ δ) + P(max
j∈S+

‖Ã∗
S+

ãj‖2 ≥ v)

≤ 2N exp

(
− (1− δ)2

2v2

)
+ 2s+ exp

(
− 3mδ2

8K2s+

)
(12.40)

+N exp

(
−

β2√s+
2/
√
s+ + (4 + 2β/3)K

√
s+/m

)
. (12.41)

Let us choose δ = β = 1/2. Then the second term in (12.40) is bounded by ε/3
provided

m ≥ 32

3
K2s+ ln(6s/ε). (12.42)

The first term in (12.40) does not exceed ε/3 provided

v−2 ≥ 2(1− δ)−2 ln(6N/ε),

which, by definition of v, is equivalent to

m ≥ 2(1 + β)2

(1− δ)2
K2s+ ln(6N/ε) = 18K2s+ ln(6N/ε). (12.43)
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Suppose that this condition holds. Since s+ ≥ 36 ln(6N/ε), the term in (12.41) is
bounded by

N exp

(
−

√
s+/4

2/
√
s+ + 13

3 K
√
s+/m

)
≤ N exp

⎛
⎝−

√
s+/4

2

6
√

ln(6N/ε)
+ 13

3
√

18 ln(6N/ε)

⎞
⎠

= N exp

(
−
√
s+ ln(6N/ε)

4(1/3 + 13/(3
√
18))

)
≤ N exp

(
−27 ln(6N/ε)

6 + 13
√
2

)

≤ ε/6,

because 27/(6 + 13
√
2) ≈ 1.1072 > 1.

Since (12.42) is implied by (12.43), we have shown that the probability of
recovery failure is at most ε/3 + ε/3 + ε/6 < ε provided that

m ≥ 18K2s+ ln(6N/ε).

This gives the desired result with c = 18 · 37 = 666. ��

12.4 Nonuniform Recovery: Deterministic Sign Patterns

As already announced, we remove in this section the assumption that the sign pattern
of the nonzero coefficients is random. This means that the coefficient vector is
completely arbitrary (but fixed). Only the sampling matrix is randomly chosen. The
main result of this section reads as follows.

Theorem 12.20. Let x ∈ CN be s-sparse and let A ∈ Cm×N be the random
sampling matrix associated to a BOS with constant K ≥ 1. If

m ≥ CK2s ln(N) ln(ε−1), (12.44)

where C > 0 is a universal constant, then x is the unique minimizer of ‖z‖1 subject
to Az = Ax with probability at least 1− ε.

Remark 12.21. The proof reveals the more precise condition

m ≥ CK2s
[
ln(4N) ln(8ε−1) + ln(4) ln(16e8sε−4)

]
.

with C = 163.48.

The previous result can be made stable under sparsity defect and robust under
noise. Note that the error bound implied by the restricted isometry property shown
in the next section is stronger, but requires slightly more samples.
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Theorem 12.22. Let x ∈ CN and let A ∈ Cm×N to be the random sampling
matrix associated to a BOS with constant K ≥ 1. For y = Ax + e with ‖e‖2 ≤
η
√
m for some η ≥ 0, let x� be a solution to

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η
√
m. (12.45)

If

m ≥ CK2s ln(N) ln(ε−1), (12.46)

then with probability at least 1− ε, the reconstruction error satisfies

‖x− x�‖2 ≤ C1σs(x)1 + C2

√
sη.

The constants C,C1, C2 > 0 are universal.

Remark 12.23. The assumption ‖e‖2 ≤ η
√
m on the noise is natural. Indeed, if

f(t) =
∑

j∈[N ] xjφj(t) is the function associated with x, then it is satisfied under
the pointwise error estimate |f(t�)− y�| ≤ η for all � ∈ [m].

In contrast to the approach of the previous section, the proof of these results relies
on the recovery condition via an inexact dual of Theorem 4.32 and its extension
to stable recovery (Theorem 4.33). As before, we introduce the rescaled matrix
Ã = 1√

m
A, where A is the sampling matrix in (12.4). The term ‖(Ã∗

SÃS)
−1‖2→2

in (4.25) will be treated with Theorem 12.12 by noticing that ‖Ã∗
SÃS − Id‖2→2 ≤

δ implies ‖(Ã∗
SÃS)

−1‖2→2 ≤ (1 − δ)−1 (Lemma A.12). The other terms in
Theorem 4.32 will be bounded based on the following lemmas together with some
estimates from the previous section. All the following results refer to the rescaled
sampling matrix Ã as just introduced.

Lemma 12.24. Let v ∈ CN with supp(v) = S, card(S) = s. Then, for t > 0,

P(‖Ã∗
S
Ãv‖∞ ≥ t‖v‖2) ≤ 4N exp

(
− m

4K2

t2

1 +
√
s/18 t

)
. (12.47)

Proof. Note that

‖Ã∗
S
Ãv‖∞ = max

k∈S
|〈ek, Ã∗Ãv〉|,

where ek denotes the kth canonical vector. Without loss of generality, we may
assume that ‖v‖2 = 1. Denote

Y� = (φj(t�))j∈[N ] ∈ C
N . (12.48)
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We fix k ∈ S and write

〈ek, Ã∗Ãv〉 = 1

m

m∑
�=1

〈ek,Y�Y
∗
�v〉 =

1

m

m∑
�=1

Z�

withZ� = 〈ek,Y�Y
∗
�v〉. We aim to apply the Bernstein inequality of Corollary7.31.

To this end, we note that theZ� are independent and satisfy EZ� = 〈ek,E[Y�Y
∗
� ]v〉

= 〈ek,v〉 = 0 since the orthonormality relation (12.1) yields E[Y�Y
∗
� ] = Id and

since k /∈ S = suppv. Next it follows from the Cauchy–Schwarz inequality that

|Z�| = |〈ek,Y�Y
∗
�v〉| = |〈ek,Y�〉〈Y�,v〉| = |〈ek,Y�〉||〈(Y�)S ,v〉|

≤ |φk(t�)|‖(Y�)S‖2‖v‖2 ≤ K2√s.

Hereby, we used the facts that |φk(t�)| ≤ K by the boundedness condition (12.2)
and that ‖(Y�)S‖2 ≤ K

√
s as in (12.32). The variance of Z� can be estimated as

E|Z�|2 = E [〈ek,Y�Y
∗
�v〉〈Y�Y

∗
�v, ek〉] = E

[
|〈ek,Y�〉|2v∗Y�Y

∗
�v
]

≤ K2v∗
E[Y�Y

∗
� ]v = K2‖v‖22 = K2.

Clearly, Re(Z�) and Im(Z�) satisfy the same bounds as Z� itself. The union bound,
the fact that |z|2 = Re(z)2 + Im(z)2 for any complex number z, and Bernstein’s
inequality (7.40) yield, for t > 0,

P(|〈ek, Ã∗Ãv〉| ≥ t)

≤ P

(∣∣∣∣∣
1

m

m∑
�=1

Re(Z�)

∣∣∣∣∣ ≥ t/
√
2

)
+ P

(∣∣∣∣∣
1

m

m∑
�=1

Im(Z�)

∣∣∣∣∣ ≥ t/
√
2

)

≤ 4 exp

(
− (mt)2/4

mK2 +K2
√
stm/(3

√
2)

)
= 4 exp

(
− m

4K2

t2

1 +
√
s/18 t

)
.

Taking the union bound over all k ∈ S completes the proof. ��

Note that in the real-valued case (that is, the functions φj as well as the vector
v are real valued), the constant 4 in the probability estimate (12.47) above can be
replaced by 2 in both instances.

Lemma 12.25. Let S ⊂ [N ] with card(S) = s and v ∈ CS with ‖v‖2 = 1. Then,
for t > 0,

P

(
‖(Ã∗

SÃS − Id)v‖2 ≥
√
K2s

m
+ t

)
≤ exp

⎛
⎝− mt2

2K2s

1

1 + 2
√

K2s
m + t/3

⎞
⎠ .
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Proof. Similar to the previous proof we introduce vectors Y� = (φj(t�))j∈S ∈ CS .
Note that

(Ã∗
SÃS − Id)v =

1

m

m∑
�=1

(Y�Y
∗
� − Id)v =

1

m

m∑
�=1

Z�

with the vectors Z� = (Y�Y
∗
� − Id)v ∈ CS . Our aim is to apply the vector-

valued Bernstein inequality of Corollary 8.45. Observe to this end that the Z� are
independent copies of a single random vector Z because the Y� are independent
copies of a random vector Y = (φj(t))j∈S , and they satisfy EZ� = EZ =
E(YY∗ − Id)v = 0. Furthermore,

E‖Z�‖22 = E‖(YY∗ − Id)v‖22 = E
[
|〈Y,v〉|2‖Y‖22

]
− 2E|〈Y,v〉|2 + 1.

Recall from (12.32) that the boundedness condition (12.2) implies that ‖Y‖2 ≤√
sK . The Cauchy–Schwarz inequality gives therefore

|〈Y,v〉| ≤
√
sK.

Furthermore,

E|〈Y,v〉|2 =
∑
j,k∈S

vjvkE[φk(t)φj(t)] = ‖v‖22 = 1

by the orthogonality condition (12.1). Hence,

E‖Z‖22 = E
[
|〈Y,v〉|2‖Y‖22

]
− 2E|〈Y,v〉|2 + 1 ≤ (sK2 − 2)E|〈Y,v〉|2 + 1

= sK2 − 1 ≤ sK2.

For the uniform bound, observe that

‖Z‖22 = ‖(YY∗ − Id)v‖22 = |〈Y,v〉|2‖Y‖22 − 2|〈Y,v〉|2 + 1

= |〈Y,v〉|2(‖Y‖22 − 2) + 1 ≤ sK2(sK2 − 2) + 1 ≤ s2K4,

so that ‖Z‖2 ≤ sK2 for all realizations of Z. Furthermore, we simply bound the
weak variance by the strong variance,

σ2 = sup
‖z‖2≤1

E|〈z,Z〉|2 ≤ E‖Z‖22 ≤ sK2.

Remark 12.26. Note that Theorem 12.12 concerning the spectral norm of
Ã∗
SÃS − Id implies a similar statement. We require the above results because the

probability estimate does not involve a factor s in front of the exponential term in
contrast to (12.31).
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Then the �2-valued Bernstein inequality (8.95) yields

P(‖
m∑
�=1

Z�‖2 ≥
√
msK2 + t) ≤ exp

(
− t2/2

msK2 + 2sK2
√
msK2 + tsK2/3

)
,

so that, with t replaced by mt, we obtain

P

(
‖(Ã∗

SÃS − Id)v‖2 ≥
√
K2s

m
+ t

)
≤ exp

⎛
⎝− mt2

2K2s

1

1 + 2
√

K2s
m + t/3

⎞
⎠ .

This completes the proof. ��

Next we provide a variant of Lemma 12.19, which is more convenient here.

Lemma 12.27. For S ⊂ [N ] with card(S) = s and 0 < t ≤ 2
√
s, we have

P

(
max
j∈S

‖Ã∗
S ãj‖2 ≥ t

)
≤ 2(s+ 1)N exp

(
− 3

10

mt2

K2s

)
. (12.49)

Proof. Fix j ∈ S. As in the proof of Lemma 12.19, we introduce the vectors

Y� = (φk(t�))k∈S ∈ CS and Z� =
(
φj(t�)φk(t�)

)
k∈S

= φj(t�)Y� ∈ CS . Then

‖Ã∗
S ãj‖2 =

1

m

∥∥∥∥∥
m∑
�=1

Z�

∥∥∥∥∥
2

.

Our goal is to apply the noncommutative Bernstein inequality of Theorem 8.14
and its extension in Exercise 8.7 by treating the Z� as matrices and noting that
the operator norm of Z� equals its �2-norm. The Z� are independent and satisfy
EZ� = 0 by orthonormality of the φk and by the fact that j /∈ S. They can be
bounded by

‖Z�‖2→2 = ‖Z�‖2 = ‖Y�‖2|φj(t�)| ≤
√
sK2,

by the boundedness condition (12.2) and since card(S) = s. Furthermore,

E[Z∗
�Z�] = E‖Z�‖22 = E[|φj(t�)|2‖Y�‖22] ≤ K2

E‖Y�‖22 = K2
∑
k∈S

E|φk(t�)|2

= K2s.

Moreover,

E[Z�Z
∗
� ] = E[|φj(t�)|2Y�Y

∗
� ] � K2

E[Y�Y
∗
� ] = K2Id.
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Therefore, the variance parameter σ2 in (8.118) satisfies

σ2 = max
{
‖
m∑
�=1

E[Z�Z
∗
� ]‖2→2, ‖

m∑
�=1

E[Z∗
�Z�]‖2→2

}
≤ K2ms.

The version of the noncommutative Bernstein inequality for rectangular random
matrices (8.119) yields

P

(
‖
m∑
�=1

Z�‖2 ≥ u

)
≤ 2(s+ 1) exp

(
− u2/2

K2ms+ u
√
sK2/3

)
.

Setting u = mt, taking the union bound over j ∈ S̄, and using that 0 < t ≤ 2
√
s

yields

P

(
max
j∈S

‖Ã∗
Sãj‖2 ≥ t

)
≤ 2N(s+ 1) exp

(
− mt2/2

K2s+ t
√
sK2/3

)

≤ 2N(s+ 1) exp

(
− 3

10

mt2

K2s

)
.

This completes the proof. ��

Before turning to the proof of Theorem 12.20, we provide a slightly weaker result
which we strengthen afterwards.

Proposition 12.28. Let x ∈ CN be s-sparse and let A ∈ Cm×N be the random
sampling matrix associated to a BOS with constant K ≥ 1. If

m ≥ cK2s
[
2 ln(4N) ln(12ε−1) + ln(s) ln(12eε−1 ln(s))

]
,

with c = 8e2(1+(1/
√
8+1/6)/e) ≈ 70.43, then x is the unique minimizer of ‖z‖1

subject to Az = Ax.

Remark 12.29. If ln(s) ln(ln s) ≤ c ln(N), then the above result already implies
Theorem 12.20.

Proof. The proof relies on the so-called golfing scheme and an application of the
recovery result in Theorem 4.32 based on an inexact dual vector. We partition the
m-independent samples into L disjoint blocks of sizes m1, . . . ,mL to be specified
later; in particular, m =

∑L
j=1mj . These blocks correspond to row submatrices

of A, which we denote by A(1) ∈ Cm1×N , . . . ,A(L) ∈ CmL×N . It will be
crucial below that these submatrices are stochastically independent. As usual, we
also introduce the rescaled matrix Ã = 1√

m
A and the support S of x.
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We set u(0) = 0 ∈ C
N and define recursively

u(n) =
1

mn
(A(n))∗A

(n)
S (sgn(xS)− u

(n−1)
S ) + u(n−1), (12.50)

for n ∈ [L]. The vector u := u(L) will serve as a candidate for the inexact dual of
Theorem 4.32. By construction of u, there exists indeed a vector h ∈ Cm such that
u = A∗h and by rescaling u = Ã∗h̃ for some h̃ ∈ Cm. For ease of notation, we
introduce w(n) = sgn(xS)− u

(n)
S . Observe that

w(n) =

(
Id− 1

mn
(A

(n)
S )∗A

(n)
S

)
w(n−1) (12.51)

and

u =
L∑
n=1

1

mn
(A(n))∗A

(n)
S w(n−1). (12.52)

We now verify the conditions of Theorem 4.32. To this end, we use the lemmas
proven above. First, we require the inequalities

‖w(n)‖2 ≤

⎛
⎝
√
K2s

mn
+ rn

⎞
⎠ ‖w(n−1)‖2, n ∈ [L], (12.53)

∥∥∥∥ 1

mn
(A

(n)

S
)∗A

(n)
S w(n−1)

∥∥∥∥
∞
≤ tn‖w(n−1)‖2, n ∈ [L], (12.54)

where the parameters rn, tn will be specified below. The probability p1(n) that
(12.53) fails to hold can be bounded using Lemma 12.25 as

p1(n) ≤ exp

⎛
⎝−mnr

2
n

2K2s

1

1 + 2
√

K2s
mn

+ rn/3

⎞
⎠ .

Due to Lemma 12.24, the probability p2(n) that (12.54) fails is bounded by

p2(n) ≤ 4N exp

(
− mn

4K2

t2n

1 +
√
s/18 tn

)
. (12.55)

Let r′n :=
√
K2s/mn + rn. Then the definition of w(n) yields

‖sgn(xS)− uS‖2 = ‖w(L)‖2 ≤ ‖sgn(xS)‖2
L∏
n=1

r′n ≤
√
s

L∏
n=1

r′n.
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Furthermore, (12.52) yields

‖uS‖∞ ≤
L∑
n=1

‖ 1

mn
(A

(n)

S
)∗A

(n)
S w(n−1)‖∞ ≤

L∑
n=1

tn‖w(n−1)‖2

≤
√
s

L∑
n=1

tn

n−1∏
j=1

r′j ,

with the understanding that
∏n−1
j=1 r

′
j = 1 if n = 1. Next we need to set the

parameters L,m1, . . . ,mL, r1, . . . , rL, t1, . . . , tL such that ‖sgn(xS) − uS‖2 ≤ γ
and ‖uS‖∞ ≤ θ for some appropriate values of θ and γ in Theorem 4.32. We
assume now that the parameters satisfy

L = �ln(s)/2�+ 2,

m1 = m2 ≥ cK2s ln(4N) ln(2ε−1), mn ≥ cK2s ln(2Lε−1), n = 3, . . . , L,

r1 = r2 =
1

2e
√
ln(4N)

, rn =
1

2e
, n = 3, . . . , L,

t1 = t2 =
1

e
√
s
, tn =

ln(4N)

e
√
s
, n = 3, . . . , L,

where c = 8e2(1 + (1/
√
8 + 1/6)/e) ≈ 70.43 and ε ∈ (0, 1/6). Then r′1 = r′2 ≤

1/(e
√
ln(4N)) and r′n ≤ e−1, n = 3, . . . , L. Thus,

‖sgn(xS)− uS‖2 ≤
√
s

L∏
n=1

r′n ≤
√
se− ln(s)/2−2 = e−2,

and

‖uS‖∞ ≤ e−1

(
1 +

1

e
√
ln(4N)

+

L−1∑
n=2

e−n

)
≤ e−1

1− e−1
=

1

e− 1
.

The probabilities p1(n) can be estimated as

p1(1), p1(2) ≤ exp

(
−m1r

2
1

2K2s

1

1 + 2
√
K2s/m1 + r1/3

)

≤ exp

(
−c ln(4N) ln(2ε−1)

8e2 ln(4N)

1

1 + 2(c ln(4N) ln(2ε−1))−1/2 + 1/(6e
√
ln(4N))

)

≤ ε/2, (12.56)
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where the definition of c was used in the last step. A similar estimation gives

p1(n) ≤ ε/(2L), n = 3, . . . , L.

This yields
∑L

n=1 p1(n) ≤ 2ε. Next, the probabilities p2(n) can be estimated as

p2(1), p2(2) ≤ 4N exp

⎛
⎝− cK2s ln(4N) ln(2ε−1)

4K
(
e2s(1 +

√
s/18/(e

√
s))
)
⎞
⎠

= 4N exp

(
− c

4e2(1 + 1/(e
√
18))

ln(4N) ln(2ε−1)

)

≤ 4N exp
(
− ln(4N)− ln(2ε−1)

)
= ε/2,

where we have used that 2ab ≥ a+ b for a, b ≥ 1. A similar estimate gives

p2(n) ≤ ε/(2L) for n ≥ 3,

so that again
∑L
n=1 p2(n) ≤ 2ε.

If the overall number m is larger than the sum of the right-hand sides of the
assumed lower bounds on the mn’s plus L (the latter accounting for the fact that the
mn are integers), then our choice of the mn’s is possible. The latter is the case if

m ≥ 2cK2s ln(4N) ln(2ε−1) + cK2�ln(s)/2�s ln(2�ln(s)/2�ε−1) + L,

which is implied by

m ≥ cK2s
[
2 ln(4N) ln(2ε−1) + ln(s) ln(2eε−1 ln(s))

]
. (12.57)

By Theorem 12.12, we have ‖Ã∗
SÃS − Id‖2→2 ≤ 1/2 with probability at least

1 − 2s exp
(
− 3m

32K2s

)
. Hence, the first part of condition (4.25) of Theorem 4.32,

‖(Ã∗
SÃS)

−1‖2→2 ≤ α = 2, holds with probability at least 1− ε provided

m ≥ 32

3
K2s ln(2sε−1). (12.58)

In the notation of Theorem 4.32, we have so far chosen parameters α = 2, γ = e−2,
and θ = (e − 1)−1. The condition θ + αβγ < 1 together with the second part of
(4.25) translates into

max
�∈S

‖Ã∗
S ã�‖2 ≤ β

with β < γ−1α−1(1− θ) = e2(e− 2)/(2(e− 1)) ≈ 1.544. Let us choose β = 3/2,
say. Lemma 12.27 together with (s+ 1) ≤ N implies that
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P

(
max
�∈S

‖Ã∗
S ã�‖2 ≥ β

)
≤ 2N2 exp

(
− 3

10

mβ2

K2s

)
.

This term is bounded by ε provided m ≥ (10/3)β−2K2s ln(2N2/ε), which is
implied by

m ≥ CK2s ln(2N/ε) (12.59)

with C = 20β−2/3 ≈ 2.96.
Altogether we have shown that the conditions of Theorem 4.32 hold with

probability at least 1− 6ε provided (12.57), (12.58), (12.59) are fulfilled. Replacing
ε by ε/6, and noting that (12.57) is stronger than (12.58) and (12.59), concludes the
proof. ��

Remark 12.30. The proof method is called golfing scheme because the vector u(n)

attains the desired inexact dual vector after a finite number of iterations, just like in
golf where the ball (ideally) approaches the hole with every stroke.

Now we modify the previous proof by a clever trick to obtain the main result of
this section.

Proof (of Theorem 12.20). We use the basic structure of the previous proof. The
strengthening is based on the idea that we can sample slightly more row blocks
A(n) of the matrix A than in the previous proof. Then we use only those for
which (12.53) and (12.54) are satisfied. The probability that these inequalities hold
only for a fraction of the samples is much higher than the probability that they
hold simultaneously for all sampled blocks. The fact that we choose slightly more
blocks will not deteriorate the overall numberm of samples—in contrast, it actually
decreases m because the size mn of each block can be made smaller.

To be more precise, we choose a number L′ > L of row submatrices to be
determined below. As in the previous proof, we set u(0) = 0 and define recursively
u(1) and u(2) (for n = 1, 2 we do not allow replacements) via (12.50). Next
we continue with the recursive definition of u(n), but always check whether the
associated vector w(n) = sgn(xS) − u

(n)
S satisfies (12.53) and (12.54). If these

conditions are not satisfied, we discard this particular n in the sense that we replace
A(n) by A(n+1) (and also all A(�) by A(�+1) for � > n). Then we redefine u(n)

and w(n) using the modified A(n). We continue in this way by always discarding
an n when (12.53) and (12.54) are not satisfied, until we arrive at n = L (below we
estimate the probability that this actually happens). Since the A(n) are independent,
the events that (12.53) and (12.54) hold for a given n ∈ [L′] are independent.

In comparison with the previous proof, we use a different definition of mn for
n ≥ 3, namely, we require

mn ≥ cK2s ln(2ρ−1),
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for some ρ∈ (0, 1) to be defined below. The remaining quantities L, m1, m2, rn,
tn are defined in the same way as before. Again the probabilities p1(1), p1(2),
p2(1), p2(2) are bounded by ε/2. We need to determine the probability that (12.53)
and (12.54) hold for at least L − 2 choices of n ∈ {3, 4, . . . , L′}. The modified
definition of mn and similar estimates as in the previous proof give p1(n) ≤ ρ/2
and p2(n) ≤ ρ/2, n ≥ 3, so that the eventBn that both (12.53) and (12.54) hold for
a given n ≥ 3 occurs with probability at least 1− ρ. The event that Bn occurs for at
least L− 2 choices of n has probability larger than the event that

L′∑
n=3

Xn ≥ L− 2,

where the Xn are independent random variables that take the value 1 with
probability 1 − ρ and the value 0 with probability ρ. Clearly, EXn = 1 − ρ
and |Xn − EXn| ≤ 1 for all n. Setting J := L′ − 2, Hoeffding’s inequality
(Theorem 7.20) shows that

P

⎛
⎝ L′∑
n=3

Xn < (1− ρ)J −
√
Jt

⎞
⎠ = P

⎛
⎝ L′∑
n=3

(Xn − EXn) < −
√
Jt

⎞
⎠ ≤ e−t

2/2.

With t = ((1 − ρ)J + 2− L)/
√
J , this gives

P

⎛
⎝ L′∑
n=3

Xn < L− 2

⎞
⎠ ≤ exp

(
− ((1− ρ)J + 2− L)2

2J

)
.

The choice

J =

⌈
2

1− ρ
(L− 2) +

2

(1− ρ)2
ln(ε̃−1)

⌉
(12.60)

implies that the event Bn occurs at least L− 2 times with probability at least 1− ε̃.
As in the previous proof, our choice for the mn’s is possible if

m ≥ 2cK2s ln(4N) ln(2ε−1) + JcK2s ln(2ρ−1) + L′.

Choosing ρ = 1/2, this condition is implied by

m ≥ 2cK2s ln(4N) ln(2ε−1) + ln(4)cK2s(2 ln(s) + 8 ln(ε̃−1) + 8). (12.61)

Note that with ε̃ = ε this condition is stronger than (12.58) and (12.59). Altogether
we showed that �1-minimization recovers the vector x with probability at least 1 −
4ε. Replacing ε by ε/4 and observing that (12.61) is implied by
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m ≥ CK2s ln(N) ln(ε−1)

with an appropriate constant C concludes the proof. ��

Let us finally establish stable recovery.

Proof (of Theorem 12.22). The proof is based on the inexact dual condition of
Theorem 4.33. We use the golfing scheme of the previous proof, and in particular,
we make the same choices of the parametersL,L′, J , mn, rn, r′n, tn and ρ as there.
We impose the additional constraint that

m

mn
≤ C′(r′n)

2 ln(4N), n = 1, . . . , L′, (12.62)

for an appropriate constant C′ > 0. This is possible by the condition on m and
by definition of the rn. Moreover, we again choose ε̃ = ε in the definition of J in
(12.60).

Let S ⊂ [N ] with card(S) = s be an index set of s largest coefficients of
x. Condition (4.27) and the first two conditions of (4.28) of Theorem 4.33 with
Ã = 1√

m
A in place of A hold with probability at least 1 − ε with appropriate

values of the constants δ, β, γ, θ. This follows from the arguments of the previous
proofs.

It remains to verify the condition ‖h‖2 ≤ τ
√
s in (4.28) for the vector h̃ ∈ C

m

used to construct u = Ã∗h̃ in the previous proof. For notational simplicity, we
assume that the first L values of n are taken for the construction of the inexact dual,
that is, u is given by (12.50). Using the rescaled matrices Ã(n) = 1√

m
A(n) gives

u =
L∑
n=1

1

mn
(A(n))∗A

(n)
S w(n−1) =

L∑
n=1

m

mn
(Ã(n))∗Ã

(n)
S w(n−1).

Hence, u = Ã∗h with h̃ = [(h(1))∗, . . . , (h(L))∗,0, . . . ,0]∗ and

h(n) =
m

mn
Ã

(n)
S w(n−1) ∈ C

mn , n = 1, . . . , L.

This yields

‖h̃‖22 =

L∑
n=1

‖h(n)‖22 =

L∑
n=1

m

mn

∥∥∥∥
√

m

mn
Ã

(n)
S w(n−1)

∥∥∥∥
2

2

=

L∑
n=1

m

mn

∥∥∥∥
√

1

mn
A

(n)
S w(n−1)

∥∥∥∥
2

2

.
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In view of the relation (12.51) for the vectors wn, we obtain, for n ≥ 1,

∥∥∥∥
√

1

mn
A

(n)
S w(n−1)

∥∥∥∥
2

2

=

〈
1

mn
(A

(n)
S )∗A

(n)
S w(n−1),w(n−1)

〉

=

〈(
1

mn
(A

(n)
S )∗A

(n)
S − Id

)
w(n−1),w(n−1)

〉
+ ‖w(n−1)‖22

=
〈
−w(n),w(n−1)

〉
+ ‖w(n−1)‖22 ≤ ‖w(n)‖2‖w(n−1)‖2 + ‖w(n−1)‖22.

Recall from (12.53) that ‖w(n)‖2 ≤ r′n‖w(n−1)‖2 ≤ ‖w(n−1)‖2 for all n (except
for an event of probability at most ε). This gives

∥∥∥∥
√

1

mn
A

(n)
S w(n−1)

∥∥∥∥
2

2

≤ 2‖w(n−1)‖22 ≤ 2‖w(0)‖22
n−1∏
j=1

(r′j)
2

= 2‖sgn(xS)‖22
n−1∏
j=1

(r′j)
2 = 2s

n−1∏
j=1

(r′j)
2.

The definition of the constants rn and the additional constraint (12.62) therefore
yield

‖h̃‖22 ≤ 2s

L∑
n=1

m

mn

n−1∏
j=1

(r′j)
2 ≤ C′s ln(4N)

L∑
n=1

(r′n)
2
n−1∏
j=1

(r′j)
2

≤ C′e−2s

L∑
n=1

n−1∏
j=2

(r′j)
2 ≤ C′′s,

where we used that
∏n
j=2(r

′
j)

2 ≤ e−2(n−1) for n ≥ 2 and the convention that∏1
j=2(r

′
j)

2 = 1. Therefore, all conditions of Theorem 4.33 are satisfied for x and

Ã with probability at least 1− ε. Noting that the optimization problem

minimize
z∈CN

‖z‖1 subject to

∥∥∥∥Ãz− 1√
m
y

∥∥∥∥
2

≤ η

is equivalent to (12.45) completes the proof. ��

12.5 Restricted Isometry Property

In this section we derive an estimate for the restricted isometry constants of the
(renormalized) random sampling matrix A in (12.4) associated to a BOS. This leads
to stable and uniform sparse recovery via �1-minimization and other algorithms. The
main result reads as follows.
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Theorem 12.31. Let A ∈ Cm×N be the random sampling matrix associated to a
BOS with constant K ≥ 1. If, for δ ∈ (0, 1),

m ≥ CK2δ−2s ln4(N), (12.63)

then with probability at least 1 − N− ln3(N) the restricted isometry constant δs of
1√
m
A satisfies δs ≤ δ. The constant C > 0 is universal.

The above theorem follows from the more precise result stated next by choosing
ε = N− ln3(N).

Theorem 12.32. Let A ∈ Cm×N be the random sampling matrix associated to a
BOS with constant K ≥ 1. For ε, η1, η2 ∈ (0, 1), if

m

ln(9m)
≥ C1η

−2
1 K2s ln2(4s) ln(8N), (12.64)

m ≥ C2η
−2
2 K2s ln(ε−1), (12.65)

then with probability at least 1 − ε the restricted isometry constant δs of 1√
m
A

satisfies δs ≤ η1 + η21 + η2. The constants may be chosen as C2 = 32/3 ≈ 10.66
and C1 = c0C

2 ≈ 5576 where c0 = 174.24 and C = 4
√
2 is the constant from

Dudley’s inequality in Theorem 8.23.

Remark 12.33. (a) The constantC1 in the previous result is large and certainly not
optimal. However, an improvement will probably be cumbersome and will not
provide more insight.

(b) Instead of (12.64), one usually prefers a condition that features only m on the
left-hand side. The conditions in (12.64) and (12.65) are in fact implied by

m ≥ CK2δ−2smax{ln2(s) ln(K2δ−2s ln(N)) ln(N), ln(ε−1)} (12.66)

for some appropriate constant C > 0, which is slightly better than (12.63).
Indeed, the monotonicity of x �→ x/ ln(x) on [0,∞) shows that (12.66) gives

m

ln(9m)
≥ CK2δ−2 s ln2(s) ln(K2δ−2s ln(N)) ln(N)

ln(9C) + ln(K2δ−2s ln(N)) + 2 ln(ln(s)) + ln(ln(N))

≥ C′K2δ−2s ln2(s) ln(N).

If s ≥ K2δ−2 ln(N) so that s is not tiny, then ln(K2δ−2s ln(N)) ≤ 2 ln(s).
Therefore, in this case the simpler condition

m ≥ C′′K2δ−2s ln3(s) ln(N)

for some appropriate constant C′′ > 0 implies δs ≤ δ with probability at least
1−N− ln3(s).
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Using the theory of Chap. 6, we obtain the following result concerning recovery
of sparse expansions with respect to a BOS from random samples.

Corollary 12.34. Suppose that

m ≥ CK2s ln4(N)

for a universal constant C > 0. Then

(a) With probability at least 1−N− ln3(N), every s-sparse vector x ∈ CN is exactly

recovered from the samples y = Ax =
(∑N

j=1 xjφj(t�)
)m
�=1

by basis pursuit.

(b) More generally, with probability at least 1 − N− ln3(N), every x ∈ CN is
approximately recovered from the inaccurate samples y = Ax + e, ‖e‖2 ≤
η
√
m, as a solution x� of

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η
√
m (12.67)

in the sense that

‖x− x�‖p ≤
C1

s1−1/p
σs(x)1 + C2s

1/p−1/2η, 1 ≤ p ≤ 2.

The constants C,C1, C2 > 0 are universal.

Proof. It suffices to combine Theorem 12.32 with Theorem 6.12 for the normalized
matrix Ã = 1√

m
A. ��

Remark 12.35. (a) The assumption ‖e‖2 ≤ η
√
m on the measurement error is

satisfied if each sample is taken with accuracy η, that is, |y� − f(t�)| ≤ η; see
Remark 12.23.

(b) Of course, the above result applies verbatim to the other algorithms for which
recovery under restricted isometry conditions has been shown in Chap. 6.
This includes iterative hard thresholding, hard thresholding pursuit, orthogonal
matching pursuit, and compressive sampling matching pursuit (CoSaMP).

Compared to the nonuniform recovery conditions of Theorems 12.18, 12.20,
and 12.22, we pay some extra logarithmic factors, but we gain uniform recovery and
we improve on the stability estimate. Compared to the condition of Theorem 9.11
concerning the restricted isometry property of subgaussian random matrices which
involves only the factor ln(eN/s), we also introduce additional logarithmic factors.

In the remainder of this section, we develop the proof of Theorem 12.32. We
first note that—unlike in the case of Gaussian (or subgaussian) random matrices—
the strategy of taking the probabilistic bound (12.31) for the condition number of a
single column submatrix and then applying the union bound over all collections of s-
element subsets of the N columns of A only leads to a poor estimate of the number
of samplesm ensuring sparse recovery; see Exercise 12.7. Indeed, the bound (12.95)
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for m scales quadratically in s, while the desired estimate (12.63) obeys a linear
scaling up to logarithmic factors. Below we pursue a different strategy that uses
Dudley’s inequality (Theorem 8.23) as a main tool.

Proof (of Theorem 12.32, first part). We use the characterization of the restricted
isometry constants in (6.2), namely,

δs = max
S⊂[N ],card(S)=s

‖Ã∗
SÃS − Id‖2→2,

where again Ã = 1√
m
A. Let us introduce the set

Ds,N := {z ∈ C
N : ‖z‖2 ≤ 1, ‖z‖0 ≤ s} =

⋃
S⊂[N ],card(S)=s

BS , (12.68)

where BS denotes the unit sphere in CS with respect to the �2-norm. The quantity

|||B|||s := sup
z∈Ds,N

|〈Bz, z〉|

defines a seminorm on CN×N and δs = |||Ã∗Ã− Id|||s.
Let X� =

(
φj(t�)
)N
j=1

∈ CN be a random column vector associated to

the sampling point t�, � ∈ [m]. Note that X∗
� is a row of A, so that A∗A =∑m

�=1 X�X
∗
� . The orthogonality relation (12.1) implies EX�X

∗
� = Id. We can

express the restricted isometry constant of Ã as

δs = |||
1

m

m∑
�=1

X�X
∗
� − Id|||s =

1

m
|||
m∑
�=1

(X�X
∗
� − EX�X

∗
� )|||s. (12.69)

Let us first consider the expectation of δs. Using symmetrization (Lemma 8.4), we
estimate

E|||
m∑
�=1

(X�X
∗
� − EX�X

∗
� )|||s ≤ 2E|||

m∑
�=1

ε�X�X
∗
� |||s, (12.70)

where ε = (ε1, . . . , εm) is a Rademacher sequence independent from the random
sampling points t�, � ∈ [m]. The following lemma, which heavily relies on Dudley’s
inequality, is key to the estimate of the expectation above.

Lemma 12.36. Let x1, . . . ,xm be vectors in C
N with ‖x�‖∞ ≤ K for all � ∈ [m].

Then, for s ≤ m,
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E|||
m∑
�=1

ε�x�x
∗
� |||s ≤ C1K

√
s ln(4s)

√
ln(8N) ln(9m)

√√√√|||
m∑
�=1

x�x∗
� |||s, (12.71)

where C1 =
√
2C0C = 8C0 ≈ 26.4. Here, C = 4

√
2 is the constant in Dudley’s

inequality and C0 = 3.3.

Proof. Observe that

E := E|||
m∑
�=1

ε�x�x
∗
� |||s = E sup

u∈Ds,N

∣∣∣∣∣
m∑
�=1

ε�|〈x�,u〉|2
∣∣∣∣∣ .

This is the supremum of the Rademacher process Xu =
∑m

�=1 ε�|〈x�,u〉|2, which
has associated pseudometric

d(u,v) =
(
E|Xu −Xv|2

)1/2
=

√√√√ m∑
�=1

(
|〈x�,u〉|2 − |〈x�,v〉|2

)2
,

see also (8.44). Then, for u,v ∈ Ds,N , the triangle inequality gives

d(u,v) =

(
m∑
�=1

(|〈x�,u〉| − |〈x�,v〉|)2 (|〈x�,u〉|+ |〈x�,v〉|)2
)1/2

≤ max
�∈[m]

||〈x�,u〉| − |〈x�,v〉|| sup
u′,v′∈Ds,N

√√√√ m∑
�=1

(|〈x�,u′〉|+ |〈x�,v′〉|)2

≤ 2R max
�∈[m]

|〈x�,u− v〉| ,

where

R = sup
u′∈Ds,N

√√√√ m∑
�=1

|〈x�,u′〉|2 =

√√√√|||
m∑
�=1

x�x∗
� |||s. (12.72)

We further introduce the auxiliary seminorm

‖u‖X := max
�∈[m]

|〈x�,u〉| , u ∈ C
N . (12.73)

We derived that the rescaled process Xu/(2R) satisfies

(
E|Xu/(2R)−Xv/(2R)|2

)1/2 ≤ ‖u− v‖X .
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It follows from Dudley’s inequality (8.48) that

E ≤ 2CR

∫ Δ(Ds,N ,‖·‖X)/2

0

√
ln(2N (Ds,N , ‖ · ‖X , t))dt, (12.74)

with C = 4
√
2 and where Δ(Ds,N , ‖ · ‖X) = supu∈Ds,N

‖u‖X . By the Cauchy–
Schwarz inequality, for u ∈ Ds,N ,

‖u‖X = max
�∈[m]

|〈x�,u〉| ≤ ‖u‖1 max
�∈[m]

‖x�‖∞ ≤ K
√
s‖u‖2 ≤ K

√
s. (12.75)

Therefore, the radius satisfies

Δ(Ds,N , ‖ · ‖X) ≤ K
√
s.

Our next task is to estimate the covering numbersN (Ds,N , ‖ · ‖X , t). We do this
in two different ways. One estimate is good for small values of t and the other one
for large values of t. For small values of t we use a volumetric argument, that is,
Proposition C.3. Note that ‖x‖X ≤ K

√
s‖x‖2 for x ∈ Ds,N by (12.75). Using

subadditivity (C.4) of the covering numbers, we obtain

N (Ds,N , ‖ · ‖X , t) ≤
∑

S⊂[N ],card(S)=s

N (BS ,K
√
s‖ · ‖2, t)

=
∑

S⊂[N ],card(S)=s

N
(
BS , ‖ · ‖2,

t

K
√
s

)
≤
(
N

s

)(
1 +

2K
√
s

t

)2s

≤
(
eN

s

)s(
1 +

2K
√
s

t

)2s
.

Hereby, we have also used the covering number estimate of Lemma C.3 (noting that
we treat the s-dimensional complex unit ball as real 2s-dimensional unit ball by
isometry) and the bound of the binomial coefficient in Lemma C.5. We arrive at

√
ln(2N (Ds,N , ‖ · ‖X , t)) ≤

√
2s

√
ln(2eN/s) + ln(1 + 2K

√
s/t)

≤
√
2s

(√
ln(2eN/s) +

√
ln(1 + 2K

√
s/t)

)
, t > 0. (12.76)

For large values of t, we introduce the norm

‖z‖∗1 :=

N∑
j=1

(|Re(zj)|+ | Im(zj)|), z ∈ C
N ,
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which is the usual �1-norm after identification of CN with R2N . Then by the
Cauchy–Schwarz inequality, we have the embedding

Ds,N ⊂
√
2sBN‖·‖∗

1
= {x ∈ C

N , ‖x‖∗1 ≤
√
2s}.

Lemma 12.37 below implies that, for 0 < t < 2K
√
s,

√
ln(2N (Ds,N , ‖ · ‖X , t)) ≤ 6K

√
2s
√
ln(9m) ln(8N)t−1. (12.77)

Next we combine inequalities (12.76) and (12.77) to estimate the Dudley integral
in (12.74). Recalling that Δ(Ds,N , ‖ · ‖X) ≤ K

√
s, we obtain, for an arbitrary

κ ∈ (0, Δ(Ds,N , ‖ · ‖X)/2),

I :=

∫ Δ(Ds,N ,‖·‖X)/2

0

√
ln(2N (Ds,N , ‖ · ‖X , t)dt

≤
√
2s

∫ κ
0

(√
ln(2eN/s) +

√
ln
(
1 + 2K

√
s/t
))

dt

+ 6K
√
2s ln(9m) ln(8N)

∫ K√
s/2

κ

t−1dt

≤
√
2s

(
κ
√
ln(2eN/s) + κ

√
ln(e(1 + 2K

√
s/κ))

+6K
√
ln(9m) ln(8N) ln(K

√
s/(2κ))

)
.

Hereby, we have applied Lemma C.9. The choice κ = K/3 yields

I ≤
√
2sK

(
1

3

√
ln(2eN/s) +

1

3

√
ln(e(1 + 6

√
s))

+6
√
ln(9m) ln(8N)

1

2
ln(9s/4)

)

≤
√
2sKC0

√
ln(9m) ln(8N) ln(4s),

where (tacitly assuming N ≥ 4,m ≥ 3—otherwise the statement is not interesting)

C0 :=
1

3
√
ln(27) ln(4)

+
1

3

√
1 +

ln(7e/2)

ln(2)

1√
ln(27) ln(40) ln(4)

+ 3 < 3.3.

Combining the above estimates with (12.74) and the definition (12.72) of R
completes the proof of Lemma 12.36 with C1 =

√
2C0C = 8C0 < 26.4. ��
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The above proof relied on the following covering number bound.

Lemma 12.37. Let U be a subset of BN‖·‖∗
1

and ‖ · ‖X be the seminorm in (12.73)

defined for vectors x� with ‖x�‖∞ ≤ K , � ∈ [m]. Then, for 0 < t <
√
2K ,

√
ln(2N (U, ‖ · ‖X , t)) ≤ 6K

√
ln(9m) ln(8N)t−1.

Proof. The idea is to approximate a fixed x ∈ U by a finite set of very sparse
vectors. In order to find a vector z from this finite set that is close to x, we use the so-
called empirical method of Maurey. To this end, we observe that B‖·‖∗

1
is the convex

hull of V := {±ej,±iej : j ∈ [N ]}, where ej denotes the jth canonical unit vector
in CN . Hence, we can write x as the convex combination x =

∑4N
j=1 λjvj with

λj ≥ 0 and
∑4N
j=1 λj = 1 and where the vj list the 4N elements of V . We define a

random vector Z that takes the value vj ∈ V with probability λj . Since
∑
j λj = 1,

this is a valid probability distribution. Note that

EZ =
4N∑
j=1

λjvj = x.

Let Z1, . . . ,ZM be independent copies of Z, whereM is a number to be determined
later. We attempt to approximate x with the M -sparse vector

z =
1

M

M∑
k=1

Zk.

We estimate the expected distance of z to x in ‖ · ‖X by first using symmetrization
(Lemma 8.4) to obtain

E‖z− x‖X = E‖ 1

M

M∑
k=1

(Zk − EZk)‖X ≤
2

M
E‖

M∑
k=1

εkZk‖X

=
2

M
E max
�∈[m]

∣∣∣∣∣
M∑
k=1

εk〈x�,Zk〉
∣∣∣∣∣ ,

where ε is a Rademacher sequence independent of (Z1, . . . ,ZM ). Now we fix
a realization of (Z1, . . . ,ZM ) and consider for the moment only expectation
and probability with respect to ε, that is, conditional on (Z1, . . . ,ZM ). Since
‖x�‖∞ ≤ K and Zk has exactly one nonzero component of magnitude 1, we have
|〈x�,Zk〉| ≤ ‖x�‖∞‖Zk‖1 ≤ K . It follows that

‖(〈x�,Zk〉)Mk=1‖2 ≤
√
MK, � ∈ [m].
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It follows from Theorem 8.8 that the random variable Y� :=
∑M
k=1 εk〈x�,Zk〉

satisfies (conditional on the Zk),

Pε(|Y�| ≥
√
MKt) ≤ 2e−t

2/2, t > 0.

Therefore, by the union bound

Pε(max
�∈[m]

|Y�| ≥
√
MKt) ≤ 2me−t

2/2.

Proposition 7.14 yields then

Eε max
�∈[m]

∣∣∣∣∣
M∑
k=1

εk〈x�,Zk〉
∣∣∣∣∣ ≤ C

√
MK
√
ln(8m).

with C = 3/2. (In the case of a real BOS one can reduce our considerations
to the real space RN . Then we may use Proposition 7.29 to obtain the slightly

better estimate Eε max�∈[m]

∣∣∣∑M
k=1 εk〈x�,Zk〉

∣∣∣ ≤ √2MK2 ln(2m).) By Fubini’s

theorem, we finally obtain

E‖z− x‖X ≤
2

M
EZEε max

�∈[m]

∣∣∣∣∣
M∑
k=1

εk〈x�,Zk〉
∣∣∣∣∣ ≤

3K√
M

√
ln(8m).

This implies that there exists a vector of the form

z =
1

M

M∑
k=1

zk, (12.78)

where each zk is one of the vectors in {±ej,±iej : j ∈ [N ]}, such that

‖z− x‖X ≤
3K√
M

√
ln(8m). (12.79)

In particular,

‖z− x‖X ≤ t/2 (12.80)

provided

3K√
M

√
ln(8m) ≤ t/2. (12.81)
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For each x ∈ U , we can therefore find a vector z of the form (12.78) such that
‖x−z‖X ≤ t/2. Each zk can take 4N values, so that z can take at most (4N)M val-
ues. The definition of the covering numbers requires that each point of the covering
belongs to U as well, but we only know that the points z are contained in BN‖·‖∗

1
. We

can correct for this by replacing each point z by a point z′ ∈ U with ‖z−z′‖X ≤ t/2
provided such a point exists. If such a point z′ does not exist, then we simply discard
z as it will not be needed for the covering of U . Then for every x ∈ U we can find a
point z′ ∈ U from the new covering such that ‖x− z′‖X ≤ ‖x− z‖X + ‖z− z′‖X
≤ t. Again the number of points z′ of the covering is bounded by (4N)M .

The choice

M =

⌊
36K2

t2
ln(9m)

⌋

satisfies (12.81). Indeed, then

M ≥ 36K2

t2
ln(9m)− 1 ≥ 36K2

t2
ln(8m) +

36K2 ln(9/8)

t2
− 1

≥ 36K2

t2
ln(8m) + 18 ln(9/8)− 1 ≥ 36K2

t2
ln(8m)

since t ≤
√
2K and 18 ln(9/8) ≈ 2.12 > 1. We deduce that the covering numbers

can be estimated by

√
ln(2N(U, ‖ · ‖X , t)) ≤

√
ln(2(4N)M ) ≤

√⌊
36K2

t2
ln(9m)

⌋
ln(8N)

≤ 6K
√
ln(9m) ln(8N)t−1.

This completes the proof of Lemma 12.37. ��

Proof (of Theorem 12.32, Second Part). We proceed in two steps.
Estimate of Expectation. Recall from (12.69) that

E := Eδs = m−1
E|||

m∑
�=1

(X�X
∗
� − Id)|||s

Set G(K, s,m,N) = K
√
s ln(4s)

√
ln(8N) ln(9m). Then Fubini’s theorem,

(12.70) and Lemma 12.36 imply that

E ≤ 2

m
EXEε|||

m∑
�=1

ε�X�X
∗
� |||s ≤

2C1G(K, s,m,N)√
m

EX

√√√√|||m−1

m∑
�=1

X�X∗
� |||s .
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Inserting the identity Id, applying the triangle inequality, and using the Cauchy–
Schwarz inequality for expectations we obtain

E ≤ 2C1
G(K, s,m,N)√

m
E

√√√√m−1|||
m∑
�=1

(X�X∗
� − Id)|||s + 1

≤ 2C1
G(K, s,m,N)√

m

√
E + 1.

Setting D := 2C1G(K, s,m,N)/
√
m, this reads E ≤ D

√
E + 1. Squaring this

inequality and completing the squares yields (E − D2/2)2 ≤ D2 +D4/4, which
gives

E ≤
√
D2 +D4/4 +D2/2 ≤ D +D2. (12.82)

If

D =
2C1K

√
2s ln(4s)

√
ln(9m) ln(8N)√

m
≤ η1 (12.83)

for some η1 ∈ (0, 1), then

E = Eδs ≤ η1 + η21 .

Probability Estimate. It remains to show that δs does not deviate much from its
expectation with high probability. To this end, we use the deviation inequality of
Theorem 8.42. By definition of the norm |||·|||s, we can write

mδs = |||
m∑
�=1

(X�X
∗
� − Id)|||s = sup

S⊂[N ],card(S)=s

‖
m∑
�=1

((X�)S(X�)
∗
S − IdS)‖2→2

= sup
(z,w)∈Qs,N

Re

〈
m∑
�=1

(X�X
∗
� − Id)z,w

〉

= sup
(z,w)∈Q∗

s,N

m∑
�=1

Re 〈(X�X
∗
� − Id)z,w〉 ,

where (X�)S denotes the vector X� restricted to the entries in S, and Qs,N =⋃
S⊂[N ],card(S)≤sQS,N with

QS,N = {(z,w) : z,w ∈ C
N , ‖z‖2 = ‖w‖2 = 1, supp z, suppw ⊂ S}.
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Further, Q∗
s,N denotes a dense countable subset of Qs,N . Introducing fz,w(X) =

Re〈(XX∗ − Id)z,w〉, we therefore have

mδs = sup
(z,w)∈Q∗

s,N

m∑
�=1

fz,w(X�).

To check the boundedness of fz,w for (z,w) ∈ QS,N with card(S) = s, we notice
that

|fz,w(X)| ≤ |〈(XX∗ − Id)z,w〉| ≤ ‖z‖2‖w‖2‖XSX
∗
S − IdS‖2→2

≤ ‖XSX
∗
S − IdS‖1→1 = max

j∈S

∑
k∈S

|φj(t)φk(t)− δj,k|

≤ sK2

by the boundedness condition (12.2). Hereby, we used that the operator norm on �2
is bounded by the one on �1 for self-adjoint matrices (Lemma A.8) as well as the
explicit expression (A.10) for ‖ · ‖1→1. For the variance term σ2

� , we estimate

E|fz,w(X�)|2 ≤ E|〈(XX∗ − Id)z,w〉|2

= Ew∗(XSX
∗
S − Id)z((XSX

∗
S − Id)z)∗w

≤ ‖w‖22E‖(XSX
∗
S − Id)z((XSX

∗
S − Id)z)∗‖2→2

= E‖(XSX
∗
S − Id)z‖22 = E‖XS‖22|〈X, z〉|2 − 2E|〈X, z〉|2 + 1,

exploiting that ‖uu∗‖2→2 = ‖u‖22; see (A.14). Observe that

‖XS‖22 =
∑
j∈S
|φj(t)|2 ≤ sK2

by the boundedness condition (12.2). Furthermore,

E|〈X, z〉|2 =
∑
j,k∈S

zjzkE[φk(t)φj(t)] = ‖z‖22 = 1

by the orthogonality condition (12.1). Hence,

E|fz,w(X�)|2 ≤ E‖XS‖22|〈X, z〉|2− 2E|〈X, z〉|2 +1 ≤ (sK2 − 2)E|〈X, z〉|2 +1

= sK2 − 1 < sK2.
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Now we are prepared to apply Theorem 8.42. Under Condition (12.83), this gives

P(δs ≥ η1 + η21 + η2) ≤ P(δs ≥ Eδs + η2)

= P(|||
m∑
�=1

(X�X
∗
� − Id)|||s ≥ E|||

m∑
�=1

(X�X
∗
� − Id)|||s + η2m)

≤ exp

(
− (η2m)2

2msK2 + 4(η1 + η21)msK
2 + 2η2msK2/3

)

= exp

(
−mη

2
2

K2s

1

2 + 4(η1 + η21) + 2η2/3

)
≤ exp

(
−c(η1)

mη22
K2s

)
,

with c(η1) = (2 + 4(η1 + η21) + 2/3)−1 ≤ (2 + 8+ 2/3)−1 = 3/32. The left-hand
term is less than ε provided

m ≥ C̃η−2
2 K2s ln(ε−1)

with C̃ = 32/3 ≈ 10.66.
Taking also (12.83) into account, we proved that δs ≤ η1 + η21 + η2 with

probability at least 1− ε provided that m satisfies the two conditions

m

ln(9m)
≥ Cη−2

1 K2s ln2(4s) ln(8N),

m ≥ C̃η−2
2 K2s ln(ε−1)

with C = 8C2
1 = 16C2

0C
2 = 16 · 32C2

0 ≈ 5576. Here, C = 4
√
2 is the

constant from Dudley’s inequality (Theorem 8.23). This finally completes the proof
of Theorem 12.32. ��

12.6 Discrete Bounded Orthonormal Systems

The three previous sections developed bounds for sparse recovery of randomly
sampled functions that have a sparse expansion in terms of a general BOS. Several
important examples mentioned in Sect. 12.1 are discrete, i.e., the functions φk are
the columns (or rows) of a unitary matrix U ∈ C

N×N , U∗U = UU∗ = Id, with
bounded entries,

√
N max

k,t∈[N ]
|Ut,k| ≤ K, (12.84)

see (12.9). Among the mentioned examples are the Fourier matrix F and the matrix
U = W∗V resulting from two incoherent orthonormal bases V,W.
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Random sampling of entries corresponds to selecting the rows of the measure-
ment matrix A uniformly at random from the rows of U. As already mentioned,
the probability model of taking the samples independently and uniformly at random
has the slight disadvantage that some rows may be selected more than once with
nonzero probability. In order to avoid this drawback, we discuss another probability
model. Let uj ∈ CN , j ∈ [N ], be the columns of U∗, i.e., u∗

j are the rows of U.

Selecting subsets uniformly at random. We choose the setΩ ⊂ [N ] indexing the
rows uniformly at random among all subsets of [N ] of size m. This means that each

subset is selected with equal probability. Since the number

(
N

m

)
of such subsets is

finite, this is a valid probability model. The matrix A consists then of the rows u∗
j ,

j ∈ Ω. It has exactly m rows in this probability model.
The matrix A is called a random partial unitary matrix. If U = F ∈ CN is the

Fourier matrix, then we call A a random partial Fourier matrix.
The difficulty in analyzing the above probability model stems from the fact that

the selections of u∗
j , j ∈ [N ], as rows of A, are not independent. We resolve

this problem by simply relating results for this probability model to the previously
derived results for the probability model where the selections of rows (as sampling
points) are done independently at random. We only state the analog of the uniform
recovery result in Corollary 12.34(a). Analogs of other statements in the previous
sections can be derived as well.

Corollary 12.38. Let U ∈ CN×N be a unitary matrix with entries bounded by
K/
√
N as in (12.84). Let A ∈ Cm×N be the submatrix of U obtained by selecting

a subset of rows uniformly at random. If

m ≥ CK2s ln4(N), (12.85)

then with probability at least 1 − N− ln3(N) every s-sparse vector x ∈ CN is the
unique minimizer of ‖z‖1 subject to Az = Ax.

Proof. Let T ′ = {t′1, . . . , t′m}, where the t′� ∈ [N ] are selected independently and
uniformly at random from [N ]. The size of T ′ is also random, since some of the t�
may coincide. Furthermore, for k ≤ m, let Tk be a subset of [N ] chosen uniformly at
random among all subsets of cardinality k. For any subset T ⊂ [N ], let F (T ) denote
the event that �1-minimization fails to recover every s-sparse x from the samples of
Ux on T , that is, from y = RTUx. It follows from Theorem 4.5 together with
Remark 4.6 that F (T̂ ) ⊂ F (T ) whenever T ⊂ T̂ . In other words, adding samples
decreases the probability of failure. In particular, P(F (Tm)) ≤ P(F (Tk)) for all
k ≤ m. Moreover, conditional on the event that card(T ′) = k for k ≤ m, T ′ has
the same distribution as Tk. We obtain
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P(F (T ′)) =
m∑
k=1

P(F (T ′)| card(T ′) = k)P(card(T ′) = k)

=
m∑
k=1

P(F (Tk))P(card(T
′) = k) ≥ P(F (Tm))

m∑
k=1

P(card(T ′) = k)

= P(F (Tm)).

So the failure probability in the model of selecting row subsets uniformly at random
is bounded by the failure probability for the model of selecting rows uniformly and
independently at random. An application of Corollary 12.34 yields the claim. ��

Another discrete probability model of interest uses Bernoulli selectors; see Exer-
cise 12.10.

12.7 Relation to the Λ1-Problem

In this section, we consider a discrete BOS as described in Example 3. Let
V ∈ CN×N be a unitary matrix and set K as in (12.9), namely,

K =
√
N max

k,t∈[N ]
|Vt,k|.

We compare the �1-norm and �2-norm of expansions in terms of subsets of this
discrete BOS. To be more concrete, one may think of the Fourier matrix V = F
with entries Fj,k = e2πijk/N /

√
N and constant K = 1.

Let Λ ⊂ [N ] and let vk, k ∈ [N ], denote the columns of V∗, i.e., the v∗
k are

the rows of V. In the Fourier case (vk)j = e2πijk/N /
√
N . The Cauchy–Schwarz

inequality implies that for all coefficient sequences (bk)k∈Λ ∈ CΛ,

1√
N
‖
∑
k∈Λ

bkvk‖1 ≤ ‖
∑
k∈Λ

bkvk‖2.

A converse of the above inequality is given by the estimate ‖ · ‖2 ≤ ‖ · ‖1. The
Λ1-problem consists of finding a large subset Λ ⊂ [N ] such that the much better
estimate

‖
∑
k∈Λ

bkvk‖2 ≤
D(N)√

N
‖
∑
k∈Λ

bkvk‖1 (12.86)

holds for all (bk)k∈Λ ∈ C
Λ with a small constant D(N), say, D(N) = C logα(N).

Such a set Λ will be called a Λ1-set. In this case, the �2-norm and the �1-norm
(scaled by the factor N−1/2) of orthogonal expansions on Λ are almost equivalent.
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Any singleton Λ = {�}, � ∈ [N ], is a Λ1-set because by orthonormality and
uniform boundedness

1 = ‖v�‖22 =

N∑
j=1

|(v�)j |2 ≤
K√
N

N∑
j=1

|(v�)j | =
K√
N
‖v�‖1,

that is, ‖v�‖1 ≥ K−1
√
N , so that, for any b� ∈ C,

‖b�v�‖2 = |b�| ≤
K√
N
‖b�v�‖1

and (12.86) holds with D(N) = K for Λ = {�}. However, singleton sets are of
limited interest, and we would like to find large sets Λ with card(Λ) ≥ cN , say.

As it turns out, the Λ1-problem is strongly related to the �2-robust null space
property (Definition 4.21) and thus to the restricted isometry property.

Proposition 12.39. Let V ∈ CN×N be a unitary matrix with rows v� ∈ CN , and
let Ω ⊂ [N ]. Assume that the matrix A = RΩV, that is, the restriction of V to
the rows indexed by Ω, satisfies the �2-robust null space property of order s with
constants ρ and τ > 0. Then the complement Ω = [N ] \ Ω is a Λ1-set in the sense
that

‖
∑
�∈Ω

b�v�‖2 ≤
1 + ρ√

s
‖
∑
�∈Ω

b�v�‖1

for all (b�)�∈Ω ∈ CΩ .

Proof. Inequality (4.21) specialized to p = q = 2 and z = u ∈ kerA and x = 0
implies

‖u‖2 ≤
1 + ρ√

s
‖u‖1 for all u ∈ kerA. (12.87)

Since A is the row submatrix of a unitary matrix, its kernel is spanned by the rows
left out in A, that is, by the ones indexed by Ω. Therefore, any u ∈ kerA takes the
form

u =
∑
�∈Ω

b�v�.

Combining these facts concludes the proof. ��

Since the restricted isometry property implies the �2-robust null space property
(Theorem 6.13), we can combine the above proposition with the estimate of the
restricted isometry constants of random sampling matrices associated to BOSs to
arrive at the following theorem on the Λ1-problem.
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Theorem 12.40. Let {v1, . . .vN} be an orthonormal basis of CN with uniformly
bounded entries, i.e., |(vj)k| ≤ K/

√
N . For c ∈ (0, 1), there exists a set Λ ⊂ [N ]

with card(Λ) ≥ cN such that

‖
∑
�∈Λ

b�v�‖2 ≤
CK ln2(N)√

N
‖
∑
�∈Λ

b�v�‖1 (12.88)

holds for all (b�)�∈Λ ∈ CΛ. The constant C depends only on c, more precisely
C = C′(1 − c)−1/2 for some universal constant C′.

A slightly better estimate in terms of the logarithmic factors is available; see the
Notes section below. However, as a consequence of Lemma 12.5, the term ln2(N)
cannot be improved to something better than

√
lnN in general; see Exercise 12.11.

Proof. Let m = �(1 − c)N�. Then Theorem 12.31 implies the existence of a set
Ω ⊂ [N ] such that the restricted isometry constant of the matrix A = 1√

m
RΩV

satisfies δ2s ≤ δ∗ := 0.5 for the choice

s = �C0
m

K2 ln4(N)
�,

where C0 is a universal constant. It follows now from Theorem 6.13 that A satisfies
the �2-robust null space property with constants ρ, τ depending only on δ∗. The
kernel of A does not depend on the scaling of A, so that (12.87) holds for RΩV
and the result of Proposition 12.39 is valid for Λ = Ω which has cardinality
card(Λ) ≥ cN . We conclude that

‖
∑
�∈Λ

b�v�‖2 ≤
1 + ρ√

s
‖
∑
�∈Λ

b�v�‖1.

Taking into account our choices of s and m, we arrive at

‖
∑
�∈Λ

b�v�‖2 ≤
1 + ρ√
C0(1− c)

K ln2(N)√
N

‖
∑
�∈Λ

b�v�‖1.

This completes the proof. ��

Notes

Background on Fourier analysis (Examples 1, 4, 5) can be found, for instance, in
[198, 236, 390, 452, 505]. The complex exponentials of Examples 1 can be general-
ized to characters of commutative groups; see, for instance, [199,437]. The sampling
matrix (12.7) arising from continuously sampling trigonometric expansions has
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an (approximate) fast matrix–vector multiplication called the nonequispaced FFT
[400]. Like the FFT (see Appendix C.1), it has complexityO(N logN).

The uncertainty principle for the discrete Fourier transform in Corollary 12.3
was shown by Donoho and Stark in [164], where they also realized that the
uncertainty principle is not always a negative statement, but it can also be used
to derive positive conclusions about signal separation and recovery; see also [158].
Later in [181], Elad and Bruckstein derived the discrete uncertainty principle for
general pairs of bases (Theorem 12.2). Kuppinger et al. extended this further to an
uncertainty principle for pairs of possibly redundant systems in [314]. An overview
on uncertainty principles in general, including the classical uncertainty principles of
Heisenberg and the one of Hardy, is provided in [200].

Lemma 12.5 concerning the existence of translates of large subgroups in arbitrary
subsets of Zn2 , then leading to the lower bound (12.29) for the number of samples
in undersampled Hadamard transforms featuring the factor ln(N), goes back to the
work of Bourgain and Talagrand on the Λ1-problem [464], but was published much
later in [248].

The nonuniform recovery result Theorem 12.11 with random sign pattern seems
to have first appeared in [411], while the improvement of Theorem 12.18 was
shown by Candès and Romberg in [93]. The idea of using random signs in order to
derive recovery bounds for �1-minimization appeared first in [481]. The nonuniform
recovery result of Theorem 12.20, in which the randomness in the signs of the
coefficient vectors is removed, was shown by Candès and Plan in [88]. The key
technique in their proof, that is, the golfing scheme, was developed by Gross in [245]
in the context of matrix completion and more general low-rank matrix recovery
problems; see also [417]. Instead of the deviation result for sums of random vectors
in �2 (Corollary 8.45) and the noncommutative Bernstein inequality (8.26), which
were used in Sect. 12.4 to derive Lemmas 12.24, 12.25, 12.27, Candès and Plan
used a slightly different version of the vector Bernstein inequality due to Gross [245,
Theorem 11], which also allows to remove the factor (s+1) in (12.49). (This factor,
however, is not important as it only enters in the term ln(2N(s+ 1)) ≤ ln(2N2) ≤
2 ln(2N).) Moreover, Candès and Plan showed stronger robustness estimates than
the one of Theorem 12.22, in which the factor

√
s can essentially be replaced by

ln(s)3/2 while still keeping the bound (12.46) on the number of required samples
(in contrast to the bound on the restricted isometry constants which involves more
logarithmic factors). To do so, they introduced weak restricted isometry constants
and estimated these. This requires additional steps compared to the proof of the
restricted isometry property in Sect. 12.5; see [88] for details.

The special case of partial random Fourier matrices (Example 4 in Sect. 12.1)
was treated already in the first contribution of Candès et al. to compressive sensing
[94]. They provided a nonuniform recovery result for deterministic sign patterns (in
the noiseless case), where the number m of samples scales as

m ≥ Cs ln(N/ε) (12.89)
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in order to achieve recovery via �1-minimization with probability at least 1−ε. This
estimate was extended to random sampling of sparse trigonometric polynomials (as
described in Example 1 in Sect. 12.1) in [408]. It is remarkable that this bound is
still slightly better with regard to the dependence in ε than the result for general
BOS, Theorem 12.20, where one encounters the term ln(N) ln(ε−1) in contrast to
ln(N/ε) = ln(N) + ln(ε−1) above. (For instance, with ε = N−γ the first term
results in γ ln2(N), while the second only yields (γ + 1) ln(N).) It is presently not
clear how to arrive at a bound of the form (12.89) for general systems. The rather
long proof of the sufficient condition (12.89) in [94, 408] heavily uses the algebraic
structure of the Fourier system and proceeds via involved combinatorial estimates.
It does not seem possible to extend this approach to general BOSs. We refer to
[283, 412] for further nonuniform recovery results whose proofs also proceed via
similar combinatorial arguments.

The restricted isometry property for partial random Fourier matrices (Example 4)
was first analyzed by Candès and Tao in [97], where they obtained the bound
m ≥ Cδs ln

5(N) ln(ε−1) for the number of required samples to achieve the
restricted isometry property of order s with probability at least 1 − ε. This
estimate was then improved by Rudelson and Vershynin in [433] to the condition
m ≥ Cδs ln

2(s) ln(s ln(N)) ln(N) ln(ε−1). A further slight improvement to
m ≥ Cδ,εs ln

3(s) ln(N) appeared in [115]. (The proofs in the papers [97,115,433]
actually apply to more general discrete orthonormal systems as described in
Example 3.) In [409,411] the analysis was generalized to possibly continuous BOSs,
and the probability estimate was improved to the one stated in Theorem 12.31 by
using Bernstein’s inequality for suprema of empirical processes (Theorem 8.42). We
followed Rudelson and Vershynin’s approach in Sect. 12.5 to estimate the expected
restricted isometry constants. With similar techniques it is also possible to directly
establish the null space property for random sampling matrices arising from BOSs.
We refer to [103] for details on this and for many other facts relating compressive
sensing, random matrices, and Banach space geometry.

The Λ1-problem was investigated in [464] by Bourgain and Talagrand, who
treated the case of general (not necessarily discrete) BOSs {φj , j ∈ [N ]}, where
orthonormality is with respect to a probability measure ν. The main result in [464]
states the existence of a subset Λ ⊂ [N ] with card(Λ) ≥ cN such that

‖
∑
�∈Λ

b�φ�‖L2(ν) ≤ CK
√
ln(N) ln(lnN)‖

∑
�∈Λ

b�φ�‖L1(ν).

(Note that the factor 1/
√
N has to be introduced in the discrete setting of

Sect. 12.7 because the usual �1 and �2-norms are not taken with respect to a
probability measure, in contrast to the spaces L2(ν) and L1(ν) above.) It follows
from Lemma 12.5 that a factor of lnN has to be present in this estimate; see
Exercise 12.11. It is conjectured, however, that the term ln lnN can be removed, but
this conjecture remains open until today. Taking this fact into account together with
the relation of the restricted isometry property with the Λ1-problem (see the proof



Notes 423

of Theorem 12.40), it seems a very hard problem to remove all but one logarithmic
factors in the estimate (12.63) for the restricted isometry property, as this would
imply a positive solution to this conjecture (at least in the discrete case). Further
results on the Λ1-problem are contained in the paper [248], which also deals with
Kashin-type decompositions for BOSs. The Λp-problem, for p > 2, was solved by
Bourgain in [62]; see also [63] for more information on this topic.

Signal Separation

Similar mathematical techniques as the ones developed in this chapter have been
used in the problem of separating a signal decomposed in two components (see
p. 18 for a general description of signal separation problems). One component is
supposed to be sparse and the other one sparse in the Fourier domain [92,164,481].
Assuming that the support set is random in at least one of the components, then one
can show that separation is possible via �1-minimization provided that the sparsity
s in both components does not exceedN/

√
lnN , where N is the signal length [92].

The proof methods are similar to the ones used for nonuniform recovery guarantees.

Fast Johnson–Lindenstrauss Mappings

Theorem 9.36 combined with Theorem 12.32, which establishes the restricted
isometry property for sampling matrices such as the random partial Fourier matrix,
provides a Johnson–Lindenstrauss embedding for the mapping ADε, where ε is a
Rademacher vector; see Exercise 12.12. In contrast to a subgaussian random matrix,
ADε comes with a fast matrix multiplication routine when A is, for instance, the
partial random Fourier matrix [7,9,309]. Hinrichs and Vybiral investigated a similar
scenario when A is a partial random circulant matrix [274,502]; see also [309,413].

Sublinear Fourier Algorithms

Even before the area of compressive sensing began to develop, algorithms that
compute sparse Fourier transforms in sublinear runtime in the signal length N
were known [223, 519]. Such algorithms are based on random sampling in the
time domain. In contrast to the setup of this chapter, however, the samples
are not independent, which allows for enough algebraic structure to enable fast
computation. Although these algorithms were initially designed for speed, one
can separate the sampling and the reconstruction process so that they apply also
in compressive sensing setups. A very appealing construction making use of the
Chinese remainder theorem was presented by Iwen in [287, 288]. He provides
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a deterministic version of the algorithm, which uses m ≥ Cs2 ln4(N) samples
and has runtime O(s2 ln4(N)), and a randomized variant, which requires m ≥
Cs ln4N samples and runs in time O(s ln4(N)). A numerical evaluation of
sublinear Fourier algorithms is reported in [289, 445]. Another sublinear Fourier
algorithm is developed in [261]. In Chap. 13, we will present a sublinear sparse
recovery algorithm in the different context of lossless expanders.

Further Examples of Bounded Orthonormal Systems

We discuss three other examples for which the theory of this chapter is applicable.
Since complete proofs go beyond the scope of this book, we only mention the basic
facts and refer to further literature for the details.

Haar wavelets and noiselets. This example is a special case of Example 6, which is
potentially useful for image processing applications. It is convenient to start with
a continuous description of Haar wavelets and noiselets [126] and then pass to
the discrete setup via sampling. The Haar scaling function on R is defined as the
characteristic function of the interval [0, 1),

φ(x) = χ[0,1)(x) =

{
1 if x ∈ [0, 1),

0 otherwise.
(12.90)

The Haar wavelet is then defined as

ψ(x) = φ(2x)− φ(2x − 1) =

⎧⎨
⎩

1 if x ∈ [0, 1/2),

−1 if x ∈ [1/2, 1),

0 otherwise.
(12.91)

Furthermore, denote

ψj,k(x) = 2j/2ψ(2jx−k), φk(x) = φ(x−k), x ∈ R, j ∈ Z, k ∈ Z. (12.92)

It is straightforward to verify [508] that, for n ∈ N, the Haar-wavelet system

Ψn := {φk, k ∈ Z} ∪ {ψj,k, k = 0, . . . , 2j − 1, j = 0, . . . , n− 1} (12.93)

forms an orthonormal basis of

Vn = {f ∈ L2[0, 1] : f is constant on [k2−n, (k + 1)2−n), k = 0, . . . , 2n − 1}.

Haar (and more advanced) wavelets are suitable to represent piecewise smooth
functions. In particular, natural images are usually sparse (or compressible) with
respect to their two-dimensional wavelet representation. Therefore, Haar wavelets
are very useful for image processing tasks.
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Now let N = 2n for some n ∈ N. Since the functions ψj,k are constant on
intervals of the form [2−nk, 2−n(k + 1)), we conclude that the vectors φ̃, ψ̃(j,k) ∈
CN , j = 0, . . . , n− 1, k = 0, . . . , 2j − 1, with entries

φ̃t = 2−n/2φ(t/N), t = 0, . . . , N − 1

ψ̃
(j,k)
t = 2−n/2ψj,k(t/N), t = 0, . . . , N − 1

form an orthonormal basis of CN . We collect these vectors as the columns of a
unitary matrix Ψ ∈ CN×N .

Next, we introduce the noiselet system on [0, 1]. Let g1 = φ = χ[0,1) be the Haar
scaling function and define recursively, for r ≥ 1, the complex-valued functions

g2r(x) = (1− i)gr(2x) + (1 + i)gr(2x− 1),

g2r+1(x) = (1 + i)gr(2x) + (1− i)gr(2x− 1).

It is shown in [126] that the functions {2−n/2gr, r = 2n, . . . , 2n+1 − 1} form an
orthonormal basis of Vn. The key property for us consists in the fact that they are
maximally incoherent with respect to the Haar basis. Indeed, Lemma 10 in [126]
states that

∣∣∣∣
∫ 1

0

gr(x)ψj,k(x)dx

∣∣∣∣ = 1 provided r ≥ 2j − 1, 0 ≤ k ≤ 2j − 1. (12.94)

For the discrete noiselet basis on CN , N = 2n, we take the vectors

g̃
(r)
t = 2−ngN+r(t/N), r = 0, . . . , N − 1, t = 0, . . . , N − 1.

Again, since the functions gN+r, r = 0, . . . , N − 1, are constant on intervals of
the form [2−nk, 2−n(k + 1)), it follows that the vectors g̃(r), r = 0, . . . , N − 1
form an orthonormal basis of CN . We collect these as columns into a unitary matrix
G ∈ CN×N . Due to (12.94), the unitary matrix U = G∗Ψ ∈ CN×N satisfies
(12.9) with K = 1. In other words, the incoherence condition (12.12) for the Haar
basis and the noiselet basis holds with the optimal constant K = 1.

Due to the their recursive definition, both the Haar-wavelet transform and the
noiselet transform, that is, the application of Ψ and G and their adjoints, come with
a fast algorithm that computes a matrix–vector multiplication inO(N log(N)) time.

As a simple signal model, images or other types of signals are sparse in the Haar-
wavelet basis. The setup of this chapter corresponds to randomly sampling such
functions with respect to noiselets. For more information on wavelets, we refer to
[122, 137, 341, 508].

Legendre polynomials and other orthogonal polynomial systems. The Legendre
polynomials Lj , j = 0, 1, 2, . . . form a system of orthonormal polynomials, where
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Lj is a polynomial of precise degree j and orthonormality is with respect to the
normalized Lebesgue measure dx/2 on [−1, 1], that is,

1

2

∫ 1

−1

Lj(x)Lk(x)dx = δj,k.

We refer to [17,117,458] for details on orthogonal polynomials and in particular on
Legendre polynomials. The supremum norm of Legendre polynomials is given by

‖Lj‖∞ = sup
t∈[−1,1]

|Lj(t)| =
√
2j + 1,

so considering the polynomials Lj, j = 0, . . . , N − 1 yields the constant K =√
2N − 1 in (12.2). Unfortunately, such a K grows with N . Plugging this value of

K , for instance, in the estimate (12.63) for the sufficient number of samples ensuring
δs ≤ δ, yields

m ≥ Cδ−2Ns ln3(s) ln(N).

This estimate is useless for compressive sensing because the number of measure-
ments is required to be larger than the signal length N .

Of course, the possibility of better estimates is not refuted, and in fact the
problem can be circumvented by a simple observation; see [416]. The crucial point
is thatL2-normalized Legendre polynomialsLj only grow with j near the endpoints
±1 of the interval [−1, 1]. Define the function

v(t) = (π/2)1/2(1− t2)1/4.

Then Theorem 7.3.3 in [458] implies that, for all j ≥ 0,

sup
t∈[−1,1]

v(t)|Lj(t)| ≤
√
3.

We define the auxiliary orthonormal function system Qj = vLj , where ortho-
normality is now with respect to the Chebyshev probability measure (arcsine
distribution)

dν(t) = π−1(1− t2)−1/2dt.

Indeed,

∫ 1

−1

Qj(t)Qk(t)dν(t) =
1

2π

∫ 1

−1

Lj(t)Lk(t)v(t)
2(1− t2)−1dt

=
1

2

∫ 1

−1

Lj(t)Lk(t)dt = δj,k.
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Therefore, the system {Qj}N−1
j=0 forms a BOS with constant K =

√
3 with respect

to the Chebyshev measure. The results derived in this chapter are hence valid for the
random sampling matrix B ∈ Rm×N having entries

B�,j = Qj(t�),

where the t� are sampled independently according to the Chebyshev measure ν.
(This causes more sample points to lie near the endpoints [−1, 1] compared to
sampling from the uniform measure.) For instance, the restricted isometry constant
δs of 1√

m
B satisfies δs ≤ δ with high probability provided m ≥ Cδ−2s ln4(N).

Multiplying with the function v can be interpreted as preconditioning of the
Legendre sampling matrix. Defining A ∈ Rm∈N and D ∈ Rm×m via

A�,j = Lj(t�), D = diag[v(t1), . . . , v(tm)],

we realize that B = DA. Since D is invertible with probability 1, the matrices A
and B have the same null space almost surely. Now if 1√

m
B satisfies the restricted

isometry property, say δ2s < 0.62, then by Theorem 6.13, it satisfies the �2-robust
null space property and, in particular, the stable null space property. The latter
depends only on the null space of B, which coincides with the one of A, so that
also A satisfies the stable null space property. By Theorem 4.12, this in turn ensures
stable sparse recovery via �1-minimization using the matrix A. Altogether, choosing
m independent random sampling points according to the Chebyshev measure ν
with m ≥ C′s ln4(N), the sampling matrix A satisfies the stable null space
property of order s with high probability, and we have stable s-sparse recovery via
�1-minimization.

Alternatively, given Legendre-type measurements y = Ax, we may multiply by
the scaled diagonal matrix to obtain transformed measurements y′ = 1√

m
Dy =

1√
m
Bx and work directly with the preconditioned matrix 1√

m
B = 1√

m
DA and the

modified y′ in any recovery algorithm. In this way, iterative hard thresholding, hard
thresholding pursuit, orthogonal matching pursuit, and CoSaMP can be used in the
setup of random sampling of sparse Legendre polynomial expansions.

It is important to note that the Legendre transform matrix A has fast matrix–
vector multiplication algorithms (see [265,292,398,399,491]) which may speed up
recovery algorithms.

Extensions to other orthogonal polynomial expansions on [−1, 1] are possible,
where orthogonality is with respect to a weight function that satisfies a mild
continuity condition. This includes, for instance, all Jacobi polynomials P (α,β)

k with
α, β ≥ −1/2 [458]. It is quite interesting that for this whole family of orthogonal
polynomials, random sampling is with respect to the Chebyshev measure ν. We
refer to [416] for details.

The idea of preconditioning can be applied also in a context where sparsity is with
respect to wavelets and random Fourier coefficients are measured. This situation
occurs in MRI applications. We refer to [310] for details.
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Spherical harmonics. Extensions of the previous example to the system of spherical
harmonics (an orthonormal system for L2(S

2), where S2 is the 2-sphere in R3;
see [17]) are given in [80]. So far, the preconditioning trick above only yields
the restricted isometry property provided m ≥ CsN1/6 ln4(N), after an earlier
bound in [415] where N1/4 appeared instead of N1/6. The result of [80] was
established in a more general context by developing involved weighted L∞ bounds
for eigenfunctions of the Laplace operator on certain manifolds including the 2-
sphere and thereby improving on estimates for associated Legendre polynomials in
[311]. The key ingredient consists of identifying the right sampling measure. We
refer to [80] for details.

An application of sparse spherical harmonic expansions for the inpainting
problem of the cosmic microwave background is contained in [1]. Fast matrix–
vector multiplication algorithms involving spherical harmonics are provided, for
instance, in [265].

Further Types of Structured Random Matrices

As mentioned in the beginning of this chapter, it is important for practical purposes
that measurement matrices possess some structure. While this chapter covered only
random sampling matrices, there are further important types of structured random
matrices. Their detailed analysis is beyond the scope of this book, but we summarize
some basic facts below.

Partial random circulant matrices. For a vector b = [b0, b1, . . . , bN−1]
� ∈ CN ,

the associated circulant matrix Φ = Φ(b) ∈ CN×N is defined entrywise by

Φk,j = bj−kmodN , k, j ∈ [N ].

The application of Φ to a vector is the discrete circular convolution,

(Φx)j = (x ∗ b̃)j =
N∑
�=1

x�b̃j−�modN ,

where b̃j = bN−j . Let Θ ⊂ [N ] be an arbitrary (deterministic) subset of cardinality
m. We define the partial circulant matrix ΦΘ = ΦΘ(b) = RΘΦ(b) ∈ Cm×N

as the submatrix of Φ consisting of the rows indexed by Θ. The application of a
partial circulant matrix corresponds to convolution with b followed by subsampling
on Θ. It is important from a computational viewpoint that circulant matrices can
be diagonalized using the discrete Fourier transform; see, e.g., [231]. Therefore,
there is a fast matrix–vector multiplication algorithm for partial circulant matrices
of complexityO(N log(N)) that uses the FFT.
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Choosing the generator b = ε to be a Rademacher sequence makes the matrix
ΦΘ = ΦΘ(ε) a structured random matrix, which is called partial random circulant
matrix. It is interesting to study recovery guarantees for �1-minimization and the
restricted isometry property of the resulting matrix.

Of particular relevance is the case N = mL with L ∈ N and Θ =
{L, 2L, . . . ,mL}. Then the application of ΦΘ(b) corresponds to convolution with
the sequence b followed by a downsampling by a factor of L. This setting was
studied numerically in [489] by Tropp et al. (using orthogonal matching pursuit).
Also of interest is the case Θ = [m] which was studied in [26, 263].

Nonuniform recovery guarantees in the spirit of Theorem 12.11 for partial
random circulant matrices in connection with �1-minimization were derived in
[410, 411]. A sufficient condition on the number of samples is m ≥ Cs log2(N/ε)
for recovery with probability at least 1 − ε. After initial nonoptimal bounds in
[26,263,413], the so far best estimate on the restricted isometry constants of ΦΘ(ε)
obtained in [307] states that δs ≤ δ with high probability provided

m ≥ Cδ−2s ln2(s) ln2(N).

The proof uses the estimate (8.115), and the analysis of the corresponding covering
numbers is based on some of the results developed in Sect. 12.5.

Time–frequency structured random matrices. Recall that the translation and modu-
lation (frequency shift) operators on Cm are defined by

(Tkg)j = hj�k and (M�g)j = e2πi�j/mgj,

where & is subtraction modulo m. The operators π(λ) = M�Tk, λ = (k, �), are
called time–frequency shifts, and the system {π(λ) : λ ∈ [m]×[m]} of all time–
frequency shifts forms a basis of the matrix space Cm×m [308,317]. Given a vector
g ∈ Cn, the system of all possible time–frequency shifts of g, that is,

{π(λ)g, λ ∈ [m]× [m]}

is called a full Gabor system with window g; see [244]. The matrix A = Ag ∈
Cm×m2

whose columns list the vectors π(λ)g, λ ∈ [m]×[m], of the Gabor system
is referred to as a Gabor synthesis matrix [119, 317, 412]. Note that Ag allows for
fast matrix–vector multiplication algorithms based on the FFT; see, for instance,
[191, 192]. Note that the matrix with coherence μ = 1/

√
m (in case m ≥ 5 is

prime) constructed in the proof of Proposition 5.13 is a Gabor synthesis matrix with
window gj =

1√
m
e2πij

3/m.
Let us now choose the vector g at random, that is,

g =
1√
m
ε,
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where ε ∈ Cm is a Steinhaus sequence. Then the matrix A = Ag becomes a
structured random matrix, and we are interested in its performance for compressive
sensing. A nonuniform recovery result for a fixed s-sparse vector (with deterministic
sign pattern) was shown in [412]. Exact recovery via �1-minimization occurs with
high probability provided

m ≥ cs ln(m).

(Note that in this setup N = m2, so that ln(N) = 2 ln(m).) After an initial
nonoptimal estimate in [385], it was proved in [307] that the restricted isometry
constants of Ag satisfy δs ≤ δ with high probability provided

m ≥ cδ−2s ln2(s) ln2(m).

Sparse recovery with time–frequency structured random matrices has potential ap-
plications for the channel identification problem [384] in wireless communications
and sonar [352, 453] as well as in radar [268]. Note that the results in [384] and
[268] were derived based on coherence estimates and an analysis for random signals
[481], similar to the one outlined in Chap. 14.

More background on time–frequency analysis can be found in Gröchenig’s
excellent book [244].

Random demodulator. In some engineering applications, hardware limitations do
not allow random sampling in time, especially when the sampling rate is very high.
In order to overcome this technological problem, one may instead multiply with
random sign flips at a very high rate, integrate the signal over some time period, and
then sample equidistantly at a relatively low sampling rate [488]. The advantage is
that all these components can be realized in hardware relatively easily. In particular,
performing a sign flip at a very high rate is much simpler to realize than sampling
at this high rate with high accuracy. In mathematical terms, the sampling matrix
modeling this sensing scenario can be described as follows. Let F ∈ C

N×N be the
N -dimensional discrete Fourier matrix, which arises here because sparsity in the
Fourier domain is assumed. Furthermore, let Dε ∈ R

N×N be a random diagonal
matrix having a Rademacher sequence ε on its diagonal, and let finally H ∈ R

m×N

model the integration process, where we assume for simplicity that m divides N .
The jth row of H has N/m ones starting in column (j − 1)N/m + 1 and is zero
elsewhere. An example for m = 3 and N = 12 is

H =

⎛
⎝1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

⎞
⎠ .

The measurement matrix A ∈ Cm×N is then the structured random matrix

A = HDεF,
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where the randomness comes from the Rademacher vector ε on the diagonal of
Dε. It has been shown in [488] that the restricted isometry constants of a suitably
rescaled version of A satisfy δs ≤ δ with high probability provided

m ≥ Cδs ln
6(N).

Therefore, the sampling mechanism described above can efficiently reconstruct
signals that are s-sparse in the Fourier domain from m measurements using various
algorithms including �1-minimization. The proof of the restricted isometry property
uses parts of the analysis developed in Sect. 12.5. We refer to [488] for details.

A construction of a structured m × N random matrix with restricted isometry
constants satisfying δs ≤ δ in the optimal parameter regime m ≥ Cδ−2s ln(N)
under the additional condition s ≤

√
N was provided in [10]. This matrix is

the repeated product of discrete Fourier transforms and random diagonal matrices
with ±1 entries on the diagonal, followed by deterministic subsampling on m
coordinates. We refer to [10] for details and to [8] for a similar earlier construction
in the context of Johnson–Lindenstrauss embeddings.

Exercises

12.1. Show that the Fourier matrix defined in (12.11) is unitary.

12.2. Let N be an even integer and let F ∈ CN×N be the Fourier matrix (12.11).
Let A ∈ CN/2×N be the matrix F where every second row has been removed, that
is, A�,k = F2�,k. Provide an example of a nonzero 2-sparse vector x ∈ CN such
that Ax = 0.

12.3. Let F be the Fourier matrix (12.11). Let x, z ∈ CN with ‖x‖0+‖z‖0 <
√
N .

Setting y = x+Fz ∈ CN , show that (x, z) is the unique solution to y = x′ +Fz′

among all x′, z′ ∈ CN with ‖x′‖0+ ‖z′‖0 <
√
N . In particular, the signal y can be

separated uniquely into the components x and Fz under such sparsity assumption.

12.4. Let T ⊂ [N ] be an arbitrary subset of cardinalitym. Show that every s-sparse
x ∈ CN with s <

√
N/2 can be recovered from the samples of its Fourier transform

on T , i.e., from y = RTFx providedm ≥ N −
√
N.

12.5. Let A ∈ Cm×N and S ⊂ [N ]. Assume that, for � ∈ [N ] \ S,

‖A∗
S∪{�}AS∪{�} − Id‖2→2 ≤ δ.

Show that ‖A†
Sa�‖2 ≤

δ

1− δ
.

12.6. Let Γ ⊂ Z with card(Γ ) = N . Consider the nonequispaced random Fourier
matrix A ∈ Cm×N from Example 1 in Sect. 12.1. Improve Corollary 12.14 for this
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case using Corollary 8.10 (with λ = 4/5) by showing that the coherence μ of the
normalized matrix Ã = 1√

m
A satisfies

μ ≤
√

5 ln(5N2/(2ε))

4m

with probability at least 1− ε.

12.7. Let A ∈ Cm×N be the random sampling matrix in (12.4) associated to a
BOS with constant K ≥ 1. Use the probabilistic estimate (12.31) and the union
bound to show that the restricted isometry constant δs of 1√

m
A satisfies δs ≤ δ

with probability at least 1− ε provided

m ≥ 8K2

3δ2
s2 (ln(eN/s) + ln(2s/ε)/s) . (12.95)

(In other words, the union bound is not enough to provide good estimates of δs,
since it does not provide linear scaling of m in s.)

12.8. Let Ã = 1√
m
A ∈ Cm×N , where A is the random sampling matrix in (12.4)

associated to a BOS with constantK ≥ 1. Let x ∈ CN be an s-sparse vector. Show
that, for t > 0,

P(|‖Ãx‖22 − ‖x‖22| ≥ t‖x‖22) ≤ 2 exp

(
− m

K2s

t2/2

1 + t/3

)
.

12.9. Maurey method.
Let V ⊂ RN be a finite set of cardinality Q and ‖ · ‖ be a norm on RN . Assume
that for every integer M ≥ 1 and for every (v1, . . . ,vM ) ∈ VM , we have
E‖
∑M
j=1 εjvj‖ ≤ A

√
L for a Rademacher vector ε = (ε1, . . . , εM ) and some

A > 0. Show that the covering numbers of the convex hull of V satisfy, for t > 0,

√
lnN (conv(V ), ‖ · ‖, t) ≤ CAt−1

√
ln(Q),

where C > 0 is an appropriate universal constant.

12.10. Bernoulli selectors.
Let U ∈ CN×N be a unitary matrix with constant K in (12.84). Let δj , j ∈ [N ], be
independent Bernoulli selectors, that is, random variables that take the value 1 with
probability m/N and 0 with probability 1 − m/N . Define the random sampling
set T = {j ∈ [N ], δj = 1}, and let A be the random submatrix of U defined by
A = RTU.

(a) In this context, the cardinality of T is random. Show that E card(T ) = m and
derive an upper bound for P(|m− card(T )| ≥ t) when t > 0.
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(b) Let S ⊂ [N ] with card(S) = s. Setting Ã =
√
N/mA =

√
N/mRTU,

verify that Ã∗Ã = N
m

∑N
j=1 δjXjX

∗
j , where (Xj)� = U�,j . Use the matrix

Bernstein inequality to derive an upper bound for P(‖Ã∗
SÃS − Id‖2→2 ≥ t)

when t > 0.

12.11. Lower bound for the Λ1-problem.
Let H ∈ C

N×N , N = 2n, be the normalized Hadamard matrix described in
Example 5 and Sect. 12.2. Denote by v1, . . . ,vN ∈ C

N the columns of H. Let
Λ ⊂ [N ] be an arbitrary subset with card(Λ) = cN for some c ∈ (0, 1). Show that
there exists a vector a ∈ C

Λ \ {0} such that

‖
∑
j∈Λ

ajvj‖2 ≥ c′
√

ln(N)

N
‖
∑
j∈Λ

ajvj‖1,

where c′ is a constant that only depends on c.
Consequently, the factor ln(N)2 in (12.88) cannot be improved to a term better than√
ln(N) in general.

12.12. Fast Johnson–Lindenstrauss mappings.
Let x1, . . . ,xM ∈ CN be an arbitrary set of points. Let A be the m × N random
sampling matrix (12.4) associated to a BOS with constant K ≥ 1 and Dε ∈ RN×N

a diagonal matrix with a Rademacher vector ε on the diagonal where ε and A are
independent. Show that if m ≥ Cη−2 ln(M) ln4(N) then with high probability the
matrix Φ = 1√

m
ADε ∈ Cm×N provides a Johnson–Lindenstrauss embedding in

the sense that

(1− η)‖xj − xk‖22 ≤ ‖Φxj −Φxk‖22 ≤ (1 + η)‖xj − xk‖22 for all j, k ∈ [M ].



Chapter 13
Lossless Expanders in Compressive Sensing

In this chapter, we introduce another type of matrices that can be used when
reconstructing sparse vectors from a limited number of measurements. They are
adjacency matrices of certain bipartite graphs called lossless expanders. These ob-
jects are defined in Sect. 13.1, where some of their useful properties are established.
In Sect. 13.2, we resort to probabilistic arguments to show that lossless expanders
do indeed exist. Then, in Sect. 13.3, we prove that using their adjacency matrices as
measurement matrices allows for a stable and robust reconstruction of sparse vectors
via �1-minimization. One of the nice features of this approach is that the robust null
space property can be proved directly in the �1-setting without resorting to auxiliary
tools such as restricted isometry properties. Section 13.4 shows the stability and
robustness of a thresholding-based algorithm. Finally, Sect. 13.5 presents a simple
sublinear-time algorithm.

13.1 Definitions and Basic Properties

Throughout this chapter, we consider bipartite graphs, i.e., graphs G = (L,R,E)
where each edge e := j i ∈ E connects a left vertex j ∈ L with a right vertex
i ∈ R. Removing vertices if necessary, we assume that every vertex is attached
to an edge. The sets L and R are identified with [N ] and [m], respectively, where
N := card(L) andm := card(R). The degree of a left vertex is the number of right
vertices it connects with. A bipartite graph is called left regular with degree d if all
left vertices have the same degree d (see Fig. 13.1). For such left d-regular bipartite
graphs, given a set J ⊂ [N ] of left vertices, the cardinality of the set

E(J) := {j i ∈ E with j ∈ J}

of all edges emanating from J is exactly

card(E(J)) = d card(J).

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 13,
© Springer Science+Business Media New York 2013
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J = {2, 4, 8}

R(J) = {1, 3, 4}

Fig. 13.1 A left regular bipartite graph with left degree two

The set

R(J) = {i ∈ R : there is a j ∈ J with j i ∈ E}

of right vertices connected to J satisfies

card(R(J)) ≤ d card(J).

Equality occurs if and only if no two edges emanating from J share a common
right vertex. In the typical situation where the number N of left vertices is much
larger than the number m of right vertices, such an equality cannot be met for large
sets J . However, we shall see that an almost-equality can be met for small sets J .
This almost-equality constitutes the expansion property, and left regular bipartite
graphs with this property are called lossless expanders. The precise definition is
given below. We stress the difference between this concept and the better-known
concept of expanders which involves classical (nonbipartite) graphs—see Notes
section.

Definition 13.1. A left regular bipartite graph with left degree d is called an
(s, d, θ)-lossless expander if it satisfies the expansion property

card(R(J)) ≥ (1 − θ) d card(J) (13.1)

for all sets J of left vertices such that card(J) ≤ s. The smallest θ ≥ 0 for which
the expansion property holds is called the sth restricted expansion constant and is
denoted by θs.
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It is readily seen that the restricted expansion constants satisfy

0 = θ1 ≤ θ2 ≤ · · · ≤ θs ≤ θs+1 ≤ · · · ≤ θN .

It is also possible to compare the constants θt of higher order in terms of the
constants θs of lower order, similarly to Proposition 6.6 for restricted isometry
constants.

Proposition 13.2. Given a left d-regular bipartite graph, for integers k, s ≥ 1,

θks ≤ (k − 1)θ2s + θs.

Proof. Let T be a set of left vertices satisfying t := card(T ) ≤ ks . We partition T
as T = S1 ∪ · · · ∪ Sk, where each S� satisfies s� := card(S�) ≤ s. We have

card(R(T )) = card

( ⋃
1≤�≤k

R(S�)

)

≥
∑

1≤�≤k
card(R(S�))−

∑
1≤�1<�2≤k

card(R(S�1) ∩R(S�2)).

In view of card(R(S�)) ≥ (1− θs)ds� and of

card(R(S�1)∩R(S�2)) = card(R(S�1)) + card(R(S�2))− cardR(S�1 ∪ S�2)

≤ ds�1 + ds�2 − (1− θ2s)d(s�1 + s�2) = θ2sd(s�1 + s�2),

we then obtain

card(R(T )) ≥
∑

1≤�≤k
(1− θs)ds� −

∑
1≤�1<�2≤k

θ2sd(s�1 + s�2)

= (1 − θs)dt−
θ2sd

2

( ∑
1≤�1,�2≤k

(s�1 + s�2)−
∑

1≤�1≤k
(s�1 + s�1)

)

= (1 − θs)dt−
θ2sd

2

( ∑
1≤�1≤k

(ks�1 + t)− 2t

)

= (1 − θs)dt−
θ2sd

2
(2kt− 2t) = (1− θs − (k − 1)θ2s)dt.

This shows that θks ≤ θs + (k − 1)θ2s, as announced. ��

We now formulate two lemmas and a corollary to be used in Sects. 13.3 and 13.4.
They all formalize the intuition that collisions at right vertices are rare in a lossless
expander.
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Lemma 13.3. Given a left d-regular bipartite graph, if disjoint sets J and K of left
vertices satisfy card(J) + card(K) ≤ s, then the set

E(K; J) := {j i ∈ E(K) with i ∈ R(J)}

is small in the sense that

card(E(K; J)) ≤ θs d s.

Proof. We partition the set E0 of edges emanating from J ∪ K into three distinct
subsets:

• The set E1 of edges emanating from J
• The set E2 of edges emanating from K and whose right vertices are not

connected to any left vertex in J
• The set E3 of edges emanating from K and whose right vertices are also

connected to left vertices in J

We need to bound the cardinality of the set E(K; J) = E3. In view of
card(E0) = d card(J ∪K) = d(card(J) + card(K)) and card(E1) = d card(J),
we have

card(E3) = card(E0)− card(E1)− card(E2) = d card(K)− card(E2). (13.2)

We now observe that each right vertex i ∈ R(K) \ R(J) gives rise to at least one
edge emanating from K whose right vertex is not connected to any left vertex in J ,
so that

card(E2) ≥ card(R(K) \R(J)) = card(R(J ∪K))− card(R(J)).

We now take

card(R(J)) ≤ d card(J)

card(R(J ∪K)) ≥ (1− θ)d card(J ∪K) = (1− θ) d (card(J) + card(K))

into account to derive the inequality

card(E2) ≥ (1− θ)d card(K)− θd card(J). (13.3)

Substituting (13.3) into (13.2), we conclude that

card(E3) ≤ θ d (card(K) + card(J)),

which is the desired result. ��
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Lemma 13.4. Let S be a set of s left vertices in a left d-regular bipartite graph.
For each i ∈ R(S), if �(i) ∈ S denotes a fixed left vertex connected to i, then

E′(S) := {j i ∈ E(S) : j �= �(i)}

is small in the sense that

card(E′(S)) ≤ θs d s.

Proof. The set E(S) of edges emanating from S is partitioned as E(S) = E′(S) ∪
E′′(S), where E′′(S) := {�(i) i, i ∈ R(S)}. Since card(E(S)) = d s and
card(E′′(S)) = card(R(S)) ≥ (1 − θs) d s, we conclude that card(E′(S)) =
card(E(S))− card(E′′(S)) ≤ θs d s. ��

Corollary 13.5. Given a left d-regular bipartite graph, if S is a set of s left vertices,
then the set

R1(S) :=
{
i ∈ R(S) : there is a unique j ∈ S with j i ∈ E

}

of right vertices connected to exactly one left vertex in S is large in the sense that

card(R1(S)) ≥ (1− 2θs) d s.

Proof. Fixing a left vertex �(i) ∈ S for each i ∈ R(S) as in Lemma 13.4, any
i ∈ R≥2(S) := R(S) \ R1(S) gives rise to at least one edge in E′(S). Thus,
card(R≥2(S)) ≤ card(E′(S)) ≤ θs ds , and we consequently have card(R1(S)) =
card(R(S))− card(R≥2(S)) ≥ (1− 2θs) d s. ��

13.2 Existence of Lossless Expanders

In this section, we prove that lossless expanders with parameters relevant to
compressive sensing do exist. As a matter of fact, we prove that most left regular
bipartite graphs are lossless expanders, i.e., that random left regular bipartite graphs
are, with high probability, lossless expanders.

Theorem 13.6. For 0 < ε < 1/2, the proportion of (s, d, θ)-lossless expanders
among all left d-regular bipartite graphs with N left vertices and m right vertices
exceeds 1− ε provided that

d =

⌈
1

θ
ln
(eN
εs

)⌉
and m ≥ cθ s ln

(eN
εs

)
,

where cθ is a constant depending only on θ.
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Proof. Since each of the left vertices j ∈ [N ] connects to a set R(j) ⊂ [m] of d
right vertices, the total number of left d-regular bipartite graphs is

(
m

d

)N
.

Among these graphs, a graph fails to be an (s, d, θ)-lossless expander if there is a
set J ⊂ [N ] with 2 ≤ j := card(J) ≤ s such that card(R(J)) < (1 − θ)dj, i.e.,

R(J) ⊂ I for some set I ⊂ [m] with card(I) = rj := �(1− θ)dj� − 1.

For fixed sets I and J , the number of left d-regular bipartite graphs satisfying the
latter is

(
rj
d

)j(
m

d

)N−j
.

Taking the union over all possible sets I and J , we see that the number of left
d-regular bipartite graphs that are not (s, d, θ)-lossless expanders is at most

s∑
j=2

(
N

j

)(
m

rj

)(
rj
d

)j(
m

d

)N−j
.

Therefore, the proportion of graphs that are not (s, d, θ)-lossless expanders among
the left d-regular bipartite graphs is at most

p :=

s∑
j=2

pj , where pj :=

(
N

j

)(
m

rj

)((rj
d

)
(
m
d

)
)j
.

Using the simple inequalities of Lemma C.5, namely,

(
n

k

)k
≤
(
n

k

)
≤
(
en

k

)k
,

we obtain, for each 2 ≤ j ≤ s,

pj ≤
(
eN

j

)j(
em

rj

)rj(( erj

d

)d
(
m
d

)d
)j

=

(
eN

j

)j
erj+dj

(
rj
m

)dj−rj
.

With the choice cθ = 2e2/θ/θ, we now observe that

m ≥ e2/θ
2

θ
ln
(eN
εs

)
s ≥ e2/θd s and rj ≤ (1− θ) d j ≤ d j.
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Taking j ≤ s into account, we derive

pj ≤
(
eN

j

)j
e(2−θ)dj

(
d j

e2/θd s

)dj−rj
≤
(
eN

j

)j
e(2−θ)dj

(
j

e2/θs

)θdj

=

(
eN

j
e−θd
(
j

s

)θd)j
≤
(
eN

j

εs

eN

(
j

s

)θd)j
=

(
ε

(
j

s

)θd−1
)j
≤ εj .

It follows that

p =

s∑
j=2

pj ≤
s∑
j=2

εj ≤
∞∑
j=2

εj =
ε2

1− ε
< ε,

which is the desired result. ��

To obtain a result where the targeted probability does not enter the number of
measurements, one can simply make a specific choice for ε, e.g., ε = s/(eN ).

Corollary 13.7. A bipartite graph with N left vertices and m right vertices drawn
at random among all left d-regular graphs where d := �2 ln(eN /s)/θ� satisfies
θs ≤ θ with probability at least

1− s

eN

provided that, for some constant c′θ depending only on θ,

m ≥ c′θ s ln
(eN
s

)
.

The constants in Theorem 13.6 and Corollary 13.7 are cθ = 2e2/θ/θ and
c′θ = 4e2/θ/θ. They become extremely large when θ is small. We are now going
to improve this dependence on θ. To this end, we change the probability model for
the selection of right vertices connected to a left vertex j ∈ [N ]. Precisely, for each
j ∈ [N ], we choose d random elements of [m] independently, allowing repetition.
The resulting graph may not be left d-regular, i.e., we may have card(R(j)) < d
for some j ∈ [N ]. However, once the expansion property (13.1) is established, it
suffices to artificially add edges to ensure that card(R(j)) = d for all j ∈ [N ],
hence to create an (s, d, θ)-lossless expander.

Theorem 13.8. There exist (s, d, θ)-lossless expanders with N left vertices and m
right vertices provided that

d =

⌈
2

θ
ln
(eN
s

)⌉
and m ≥ 3e2

θ2
s ln
(eN
s

)
.
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Proof. Under the probability model just described, we want to prove that

p := P
(
card(R(J)) < (1− θ)d card(J) for some J ⊂ [N ] with card(J) ≤ s

)

is smaller than 1. For a fixed J ⊂ [N ] with j = card(R(J)) ≤ s, we define
pj := P

(
card(R(J)) < (1− θ)dj

)
, so that the union bound yields

p ≤
s∑
j=1

(
N

j

)
pj ≤

s∑
j=1

(
eN

j

)j
pj .

We think of the right vertices connected to J as a sequence (i1, i2, . . . , idj) of
independent random elements of [m] produced one at a time. In view of possible
repetitions within (i1, i2, . . . , idj), a count of the cardinality ofR(J) gives dj minus
the cardinality of the set I of i� that have appeared earlier. Since the probability that
a fixed i� has appeared earlier is

P
(
i� ∈ {i1, . . . , i�−1}

)
≤ �− 1

m
≤ dj

m
,

we obtain, setting tj := �θdj �+ 1,

pj = P(card(I) > θdj) = P(card(I) ≥ tj)

≤
(
dj

tj

)(
dj

m

)tj
≤
(
edj

tj

)tj(dj
m

)tj
≤
(
edj

θdj

)tj(dj
m

)tj
=

(
edj

θm

)tj
.

The conditions on d and m imply that

d <
2

θ
ln
(eN
s

)
+ 1 ≤ 3

θ
ln
(eN
s

)
and m ≥ e2

θ
ds .

It now follows that

pj ≤
(
j

es

)tj
≤
(
j

es

)θdj
=

(
e−θd
(
j

s

)θd)j
≤
(

s2

e2N2

(
j

s

)θd)j
,

where the last step used d ≥ 2 ln(eN /s)/θ. Finally, we deduce that

p ≤
s∑
j=1

(
eN

j

s2

e2N2

(
j

s

)θd)j
≤

s∑
j=1

(
s

eN

(
j

s

)θd−1)j
≤

∞∑
j=1

(
1

e

)j
=

1

e− 1
.

It remains to remark that 1/(e− 1) < 1 to conclude the proof. ��

The dependence on θ being set aside, Theorem 13.8 is optimal in the sense that
the existence of a lossless expander forces the number m of right vertices to satisfy
m ≥ c s ln(eN /s) for some c > 0, as we shall see in Corollary 13.14.
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13.3 Analysis of Basis Pursuit

In this section, we prove that lossless expanders provide suitable measurement
matrices for basis pursuit. These matrices are the adjacency matrices of the bipartite
graph, defined as follows.

Definition 13.9. The adjacency matrix of a bipartite graph G = ([N ], [m], E) is
the m×N matrix A with entries

Ai,j =

⎧⎨
⎩
1 if j i ∈ E,

0 if j i �∈ E.

It is completely equivalent, and sometimes more appropriate, to think of an
(s, d, θ)-lossless expander as a matrix A populated with zeros and ones, with d
ones per column, and such that there are at least (1 − θ)dk nonzero rows in any
submatrix of A composed of k ≤ s columns. Because of their zero–one structure,
such matrices present some advantages over subgaussian random matrices; notably
they require less storage space and they allow for faster computations. They also
allow for stable and robust sparse recovery, as established below. As usual, perfect
recovery is obtained in the particular case where the vector x is exactly s-sparse and
the measurement error η equals zero.

Theorem 13.10. Suppose that A ∈ {0, 1}m×N is the adjacency matrix of a left
d-regular bipartite graph satisfying

θ2s <
1

6
.

For x ∈ C
N and e ∈ C

m with ‖e‖1 ≤ η, if y = Ax+ e, then a solution x� of

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖1 ≤ η

approximates the vector x with �1-error

‖x− x�‖1 ≤
2(1− 2θ)

(1− 6θ)
σs(x)1 +

4

(1− 6θ)d
η.

According to Theorem 4.19, this is a corollary of the following result.

Theorem 13.11. The adjacency matrix A ∈ {0, 1}m×N of a left d-regular
bipartite graph satisfies the �1-robust null space property of order s provided
θ2s < 1/6, precisely

‖vS‖1 ≤
2θ2s

1− 4θ2s
‖vS‖1 +

1

(1− 4θ2s)d
‖Av‖1 (13.4)
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for all v ∈ C
N and all S ⊂ [N ] with card(S) = s.

We isolate the following two lemmas for the proof of Theorem 13.11.

Lemma 13.12. Let A ∈ {0, 1}m×N be the adjacency matrix of a left d-regular
bipartite graph. If S and T are two disjoint subsets of [N ] and if x ∈ CN , then

‖(AxS)R(T )‖1 ≤ θs+t d (s+ t) ‖xS‖∞,

where s = card(S) and t = card(T ).

Proof. We estimate the term ‖(AxS)R(T )‖1 as

‖(AxS)R(T )‖1 =
∑

i∈R(T )

|(AxS)i| =
m∑
i=1

1{i∈R(T )}

∣∣∣∑
j∈S

Ai,jxj

∣∣∣

≤
m∑
i=1

1{i∈R(T )}
∑
j∈S

1{j i∈E}|xj |

=
∑
j∈S

m∑
i=1

1{i∈R(T ) and j i∈E}|xj | =
∑

j i∈E(S;T )

|xj |

≤ card(E(S;T )) ‖xS‖∞.

The conclusion follows from the bound on card(E(S;T )) of Lemma 13.3. ��

Lemma 13.13. Let A ∈ {0, 1}m×N be the adjacency matrix of a left d-regular
bipartite graph. Given an s-sparse vector w ∈ CN , let w′ ∈ Cm be defined by
w′
i := w�(i), i ∈ [m], where

�(i) := argmax
j∈[N ]

{|wj |, j i ∈ E}.

Then

‖Aw−w′‖1 ≤ θs d ‖w‖1.

Proof. We may and do assume that the left vertices are ordered such that

|w1| ≥ |w2| ≥ · · · ≥ |ws| ≥ |ws+1| = · · · = |wN | = 0.

In this way, the edge �(i) i can be thought of as the first edge arriving at the right
vertex i. Since the vector w ∈ CN is supported on S := [s], and since �(i) ∈ S
whenever i ∈ R(S), we have



13.3 Analysis of Basis Pursuit 445

(Aw −w′)i =
N∑
j=1

Ai,jwj − w�(i) =
∑
j∈S

1{j i∈E and j �=�(i)}wj .

Thus, we obtain

‖Aw−w′‖1 =

m∑
i=1

∣∣∣∣
∑
j∈S

1{j i∈E and j �=�(i)}wj

∣∣∣∣ ≤
m∑
i=1

∑
j∈S

1{j i∈E and j �=�(i)}|wj |

=
∑
j∈S

( m∑
i=1

1{j i∈E and j �=�(i)}

)
|wj | =

s∑
j=1

cj |wj |,

where cj :=
∑m

i=1 1{j i∈E and j �=�(i)}. For all k ∈ [s], we observe that

Ck : =

k∑
j=1

cj =

k∑
j=1

m∑
i=1

1{j i∈E and j �=�(i)} = card({j i ∈ E([k]), j �= �(i)})

≤ θs d k, (13.5)

where the last inequality was derived from Lemma 13.4. Setting C0 = 0 and
performing a summation by parts, we have

s∑
j=1

cj |wj | =
s∑
j=1

(Cj − Cj−1)|wj | =
s∑
j=1

Cj |wj | −
s∑
j=1

Cj−1|wj |

=
s∑
j=1

Cj |wj | −
s−1∑
j=0

Cj |wj+1| =
s−1∑
j=1

Cj(|wj | − |wj+1|) + Cs|ws|.

Since |wj | − |wj+1| ≥ 0, the bound (13.5) yields

s∑
j=1

cj |wj | ≤
s−1∑
j=0

θs d j(|wj | − |wj+1|) + θs d s |ws| =
s∑
j=1

θs d |wj |, (13.6)

where the last equality was derived by reversing the summation by parts process
after replacing cj by θsd. The result is proved. ��

We are now ready to prove the key result of this section.

Proof (of Theorem 13.11). Let v ∈ CN be a fixed vector, and let S0 be an index set
of s largest absolute entries of v, S1 an index set of next s largest absolute entries,
etc. It is enough to establish (13.4) for S = S0. We start by writing
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d ‖vS0‖1 = d
∑
j∈S0

|vj | =
∑

j i∈E(S0)

|vj | =
∑

i∈R(S0)

∑
j∈S0

j i∈E

|vj |

=
∑

i∈R(S0)

|v�(i)|+
∑

i∈R(S0)

∑
j∈S0\{�(i)}

j i∈E

|vj |, (13.7)

where the notation of Lemma 13.13 has been used. We now observe that, for
i ∈ R(S0),

(Av)i =
∑
j∈[N ]

Ai,jvj =
∑
j∈[N ]

j i∈E

vj =
∑
k≥0

∑
j∈Sk

j i∈E

vj = v�(i)+
∑

j∈S0\{�(i)}
j i∈E

vj+
∑
k≥1

∑
j∈Sk

j i∈E

vj .

It follows that

|v�(i)| ≤
∑

j∈S0\{�(i)}
j i∈E

|vj |+
∑
k≥1

∑
j∈Sk

j i∈E

|vj |+ |(Av)i|.

Summing over all i ∈ R(S0) and substituting into (13.7), we obtain

d ‖vS0‖1 ≤ 2
∑

i∈R(S0)

∑
j∈S0\{�(i)}

j i∈E

|vj |+
∑
k≥1

∑
i∈R(S0)

∑
j∈Sk

j i∈E

|vj |+ ‖Av‖1. (13.8)

For the first term in the right-hand side of (13.8), we apply Lemma 13.13 to
w = |vS0 | (i.e., wj = |vj | if j ∈ S0 and wj = 0 otherwise) to obtain

∑
i∈R(S0)

∑
j∈S0\{�(i)}

j i∈E

|vj | = ‖Aw −w′‖1 ≤ θs d ‖w‖1 = θs d ‖vS0‖1. (13.9)

For the second term in the right-hand side of (13.8), we apply Lemmas 13.12
and 6.10 to obtain

∑
k≥1

∑
i∈R(S0)

∑
j∈Sk

j i∈E

|vj | =
∑
k≥1

‖(A|vSk
|)R(S0)‖1 ≤

∑
k≥1

θ2s d 2s ‖vSk
‖∞

≤ 2θ2s d
∑
k≥1

‖vSk−1
‖1 ≤ 2θ2s d ‖v‖1. (13.10)

Finally, substituting (13.9) and (13.10) into (13.8), we deduce



13.4 Analysis of an Iterative Thresholding Algorithm 447

d ‖vS0‖1 ≤ 2 θs d ‖vS0‖1 + 2 θ2s d ‖v‖1 + ‖Av‖1
≤ 4 θ2s d ‖vS0‖1 + 2 θ2s d ‖vS0

‖1 + ‖Av‖1.

Rearranging the latter leads to the desired inequality (13.4). ��

To close this section, we highlight that the exact s-sparse recovery by basis
pursuit using lossless expanders provides, in retrospect, a lower bound for the
number of right vertices in a lossless expander.

Corollary 13.14. For s ≥ 2 and θ < 1/25, an (s, d, θ)-lossless expander with N
left vertices must have a number m of right vertices bounded from below by

m ≥ c1
θ
s ln
(c2θN

s

)

for some absolute constants c1, c2 > 0.

Proof. Let us consider k := �1/(25θ)� ≥ 1 and s′ := �s/2� ≥ 1. According to
Proposition 13.2, we have

θ4ks′ ≤ 4k θ2s′ ≤ 4k θ ≤ 4

25
<

1

6
.

Therefore, Theorem 13.10 implies that every 2ks′ sparse vector x ∈ RN is
recovered from y = Ax ∈ Rm via �1-minimization. Theorem 10.11 then implies
that, with c = 1/ ln 9,

m ≥ c k s′ ln
( N

4ks′

)
.

In view of 1/(50θ) ≤ k ≤ 1/(25θ) and of 2s/3 ≤ s′ ≤ s/2, we conclude that

m ≥ c

75 θ
s ln
(25θN

2s

)
,

which is the desired result with c1 = c/75 and c2 = 25/2. ��

13.4 Analysis of an Iterative Thresholding Algorithm

In this section, we prove that lossless expanders provide suitable measurement
matrices for other algorithms besides basis pursuit. First, in the real setting, we
consider a variation of the iterative hard thresholding algorithm. Precisely, starting
with an initial s-sparse vector x0 ∈ RN , typically x0 = 0, we iterate the scheme

xn+1 = Hs(x
n +M(y −Axn)). (13.11)
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The nonlinear operator M = MA is the median operator, which is defined
componentwise by

(M(z))j := median[zi, i ∈ R(j)] for z ∈ Cm and j ∈ [N ].

Here, R(j) = R({j}) denotes the set of right vertices connected to j, and the
median of the d numbers zi, i ∈ R(j), is defined to be the �d/2�th largest of these
numbers. The properties of the algorithm (13.11) are very similar to the properties
established in Sect. 6.3 for the iterative hard thresholding algorithm.

Theorem 13.15. Suppose that A ∈ {0, 1}m×N is the adjacency matrix of a left
d-regular bipartite graph satisfying

θ3s <
1

12
.

Then, for x ∈ RN , e ∈ Rm, and S ⊂ [N ] with card(S) = s, the sequence (xn)
defined by (13.11) with y = Ax+ e satisfies, for any n ≥ 0,

‖xn − xS‖1 ≤ ρn‖x0 − xS‖1 +
τ

d
‖AxS + e‖1, (13.12)

where ρ < 1 and τ depend only on θ3s. In particular, if the sequence (xn) clusters
around some x� ∈ RN , then

‖x− x�‖1 ≤ Cσs(x)1 +
D

d
‖e‖1

for some constants C,D > 0 depending only on θ3s.

The proof relies on the fact that the median operator approximately inverts the
action of A on sparse vectors. We state this as a lemma involving the slightly
more general quantile operators Qk in place of M = Q�d/2�. It is defined
componentwise by

(Qk(z))j := qk[zi, i ∈ R(j)] for z ∈ Cm and j ∈ [N ],

where the quantile qk denotes the kth largest element, i.e.,

qk[a1, . . . , ad] = aπ(k)

if π : [d] → [d] is a permutation for which aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(d). We will
use the following observations, to be established in Exercise 13.10:

|qk[a1, . . . , ad]| ≤ qk[|a1|, . . . , |ad|], if 2k ≤ d+ 1, (13.13)

qk[b1, . . . , bd] ≤
b1 + · · ·+ bd

k
if bj ≥ 0 for all j. (13.14)
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Lemma 13.16. Let A ∈ {0, 1}m×N be the adjacency matrix of a left d-regular
bipartite graph and let k be an integer satisfying 2θsd < k ≤ (d + 1)/2. If S is a
subset of [N ] with size s, then

‖
(
Qk(AxS + e)− x

)
S
‖1 ≤

2θsd

k − 2θsd
‖xS‖1 +

1

k − 2θsd
‖eR(S)‖1 (13.15)

for all x ∈ RN and all e ∈ Rm.

Proof. According to the definition of Qk and to (13.13), we have

‖
(
Qk(AxS + e)− x

)
S
‖1 =
∑
j∈S

∣∣qk[(AxS + e)i, i ∈ R(j)
]
− xj
∣∣

=
∑
j∈S

∣∣qk[(AxS)i + ei − xj , i ∈ R(j)
]∣∣

≤
∑
j∈S

qk
[
|(AxS)i − xj + ei|, i ∈ R(j)

]

=
∑
j∈S

qk

[∣∣∣ ∑
�∈S\{j}
� i∈E

x� + ei

∣∣∣, i ∈ R(j)].

We now proceed by induction on s = card(S) to show that the latter is bounded
above by the right-hand side of (13.15). If s = 1, i.e., if S = {j} for some j ∈ S so
that there is no � ∈ S \ {j}, we have the stronger estimate

qk

[∣∣∣ ∑
�∈S\{j}
� i∈E

x� + ei

∣∣∣, i ∈ R(j)] = qk[|ei|, i ∈ R(j)] ≤
1

k
‖eR(j)‖1,

where we have used (13.14). Let us now assume that the induction hypothesis holds
up to s − 1 for some s ≥ 2, and let us show that it holds for s, too. For S ⊂ [N ]
with card(S) = s and for j ∈ S, we introduce the set

R1(j, S) := R(j) \
⋃

�∈S\{j}
R(�)

of right vertices connected only to j in S. We recall from Corollary 13.5 that

∑
j∈S

card(R1(j, S)) = card(R1(S)) ≥ (1− 2θs)d s. (13.16)

Thus, there exists j∗ ∈ S such that r := card(R1(j
∗, S)) ≥ (1−2θs)d. This means

that there are at most d−r ≤ 2θsd right vertices inR(j∗)\R1(j
∗, S). By definition

of qk, there exist k distinct i1, . . . , ik ∈ R(j∗) such that, for all h ∈ [k],
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qk

[∣∣∣ ∑
�∈S\{j∗}
� i∈E

x� + ei

∣∣∣, i ∈ R(j∗)] ≤
∣∣∣ ∑
�∈S\{j∗}
� ih∈E

x� + eih

∣∣∣. (13.17)

At least k′ := k − (d− r) ≥ k− 2θsd elements among i1, . . . , ik are in R1(j
∗, S).

Averaging (13.17) over these elements ih, keeping in mind that there are no
� ∈ S \ {j∗} with � ih ∈ E in this case, we obtain

qk

[∣∣∣ ∑
�∈S\{j∗}
� i∈E

x� + ei

∣∣∣, i ∈ R(j∗)] ≤ 1

k − 2θsd
‖eR1(j∗,S)‖1. (13.18)

On the other hand, if T := S \ {j∗} and if j ∈ T , we have
∣∣∣ ∑
�∈S\{j}
� i∈E

x� + ei

∣∣∣ = ∣∣∣ ∑
�∈T\{j}
� i∈E

x� + 1{j∗ i∈E}xj∗ + ei

∣∣∣.

Applying the induction hypothesis with S replaced by T and ei replaced by e′i =
1{j∗ i∈E}xj∗ + ei gives, in view of θs−1 ≤ θs,

∑
j∈T

qk

[∣∣∣ ∑
�∈S\{j}
� i∈E

x� + ei

∣∣∣, i ∈ R(j)] ≤ 2θsd

k − 2θsd
‖xT ‖1 +

1

k − 2θsd
‖e′R(T )‖1.

(13.19)

In order to bound ‖e′R(T )‖1, we observe that

∑
i∈R(T )

1{j∗ i∈E} =
m∑
i=1

1{j∗ i∈E and j i∈E for some j∈T}

=
∑

i∈R(j∗)

1{j i∈E for some j∈T} = card(R(j∗) \R1(j
∗, S)) ≤ 2θsd,

which allows us to derive

‖e′R(T )‖1 ≤
∑

i∈R(T )

1{j∗ i∈E}|xj∗ |+ ‖eR(T )‖1 ≤ 2θsd |xj∗ |+ ‖eR(T )‖1.

Taking this bound into account in (13.19) and summing with (13.18) give

∑
j∈S

qk

[∣∣∣ ∑
�∈S\{j}
� i∈E

x� + ei

∣∣∣, i ∈ R(j)]

=
∑
j∈T

qk

[∣∣∣ ∑
�∈S\{j}
� i∈E

x� + ei

∣∣∣, i ∈ R(j)]+ qk

[∣∣∣ ∑
�∈S\{j∗}
� i∈E

x� + ei

∣∣∣, i ∈ R(j∗)]
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≤ 2θsd

k − 2θsd
‖xT ‖1 +

1

k − 2θsd

(
2θsd |xj∗ |+ ‖eR(T )‖1

)
+

1

k − 2θsd
‖eR1(j∗,S)‖1

≤ 2θsd

k − 2θsd
‖xS‖1 +

1

k − 2θsd
‖eR(S)‖1,

where the fact that R1(j
∗, S) andR(T ) are disjoint subsets of R(S) was used in the

last inequality. This concludes the inductive proof. ��

Proof (of Theorem 13.15). We are going to prove that, for any n ≥ 0,

‖xn+1 − xS‖1 ≤ ρ‖xn − xS‖1 +
(1 − ρ)τ

d
‖AxS + e‖1. (13.20)

We use the triangle inequality and the fact that xn+1 is a better s-term approximation
than xS to un+1 := (xn +M(y −Axn))Tn+1 , where T n+1 := S ∪ supp(xn) ∪
supp(xn+1), to derive that

‖xn+1 − xS‖1 ≤ ‖xn+1 − un+1‖1 + ‖xS − un+1‖1 ≤ 2‖xS − un+1‖1.

Since y = Ax+ e = AxS + e′ with e′ := AxS + e, Lemma 13.16 implies that

‖xn+1 − xS‖1 ≤ 2‖(xS − xn −M(A(xS − xn) + e′))Tn+1‖1

≤ 4θ3sd

�d/2� − 2θ3sd
‖xS − xn‖1 +

2

�d/2� − 2θ3sd
‖e′‖1

≤ 8θ3s
1− 4θ3s

‖xS − xn‖1 +
4

(1− 4θ3s)d
‖e′‖1.

This is the desired inequality (13.20) with ρ := 8θ3s/(1 − 4θ3s) < 1 and
τ := 4/(1− 12θ3s). The estimate (13.12) follows immediately by induction. Next,
if x� is a cluster point of the sequence (xn)n≥0, we deduce

‖x� − xS‖1 ≤
τ

d
‖AxS + e‖1 ≤

τ

d
‖AxS‖1 +

τ

d
‖e‖1,

where we choose S as an index set of s largest absolute entries of x. In view of the
inequality

‖Av‖1 =

m∑
i=1

∣∣∣∣
N∑
j=1

ai,jvj

∣∣∣∣ ≤
N∑
j=1

m∑
i=1

ai,j |vj | =
N∑
j=1

d|vj | = d‖v‖1

applied to v = xS , it follows that

‖x� − x‖1 ≤ ‖xS‖1 + ‖x
� − xS‖1 ≤ (1 + τ)σs(x)1 +

τ

d
‖e‖1.

This is the desired estimate with C = 1 + τ and D = τ . ��
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13.5 Analysis of a Simple Sublinear-Time Algorithm

The relative simplicity of the algorithm of Sect. 13.4 is counterbalanced by the
nonoptimality of its runtime. Indeed, the dimension N enters at least linearly when
forming xn +M(y − Axn). One aims, however, at exploiting some features of
the measurement matrix in order to devise algorithms with a smaller runtime than
linear inN , for instance, polylogarithmic inN and polynomial in s. Such algorithms
are called sublinear-time algorithms. This section illustrates that sublinear-time
algorithms are indeed possible, although the most sophisticated ones are not
presented. As a first indication of this possibility, we consider the special case of
1-sparse vectors. We introduce the bit-tester matrix B ∈ {0, 1}�×N , �:=�log2(N)�,
defined by

B =

⎡
⎢⎣
b1(1) · · · b1(N)

...
. . .

...
b�(1) · · · b�(N)

⎤
⎥⎦,

where bi(j) ∈ {0, 1} denotes the ith digit in the binary expansion of j − 1, i.e.,

j − 1 = b�(j)2
�−1 + b�−1(j)2

�−2 + · · ·+ b2(j)2 + b1(j). (13.21)

If x = ej is a canonical unit vector, then the value of j is deduced from the
measurement Bej = [b1(j), . . . , b�(j)]

� via (13.21). Moreover, if the support of
x ∈ CN is a singleton {j} and if we append a row of ones after the last row of B to
form the augmented bit-tester matrix

B′ =

⎡
⎢⎢⎢⎣
b1(1) · · · b1(N)

...
. . .

...
b�(1) · · · b�(N)

1 · · · 1

⎤
⎥⎥⎥⎦ ,

then the measurement vector B′x = xj [b1(j), . . . , b�(j), 1]
� allows one to

determine both j and xj using only a number of algebraic operations roughly
proportional to log2(N). This simple strategy can be extended from 1-sparse
vectors to s-sparse vectors with s > 1 using lossless expanders. Precisely, given
a matrix A ∈ {0, 1}m×N with d ones per columns, we first construct a matrix
A′ ∈ {0, 1}m′×N whose m′ = m(� + 1) rows are all the pointwise products of
rows of A with rows of B′, precisely

A′
(i−1)(�+1)+k,j = B′

k,jAi,j , i ∈ [m], k ∈ [�+ 1], j ∈ [N ]. (13.22)
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Next, given y ∈ Cm, we construct a sequence of vectors (xn) starting with x0 = 0
and iterating the instructions:

• For all i ∈ [m] satisfying vi := (y −A′xn)i(�+1) �= 0, compute the integer

ji := 1 +

⌊
1

vi

�∑
k=1

(y −A′xn)(i−1)(�+1)+k 2
k−1

⌋
.

• If there exist r ≥ d/2 distinct right vertices i1, · · · , ir ∈ [m] such that
(ji1 , vi1) = · · · = (jir , vir ) =: (j, v), set

xn+1
j = xnj + v.

The procedure stops when vi = 0 for all i ∈ [m], i.e., when A′xn = y. If A is
the adjacency matrix of a lossless expander and (neglecting stability and robustness
issues) if y = A′x for some exactly s-sparse x ∈ CN , then the algorithm recovers
the vector x in a finite number of iterations, as shown below. The number of
measurements approaches the optimal value c s log2(N/s) up to the logarithmic
factor log2(N).

Theorem 13.17. If m′ ≥ c s log2(N/s) log2(N), then there is a measurement
matrix A′ ∈ {0, 1}m′×N such that the procedure described above reconstructs
every s-sparse vector x ∈ C

N from y = A′x with a number of algebraic operations
at most proportional to s2 log2(N) log2(N/s) log2(s).

Proof. Let A ∈ {0, 1}m×N be the adjacency matrix of a left regular bipartite
graph satisfying θs < 1/16, and let d denotes its left degree. According to
Theorem 13.6, such a matrix exists provided m $ s log2(N/s). Let A′ ∈
{0, 1}m×N be the matrix constructed in (13.22). Its number of rows satisfies
m′ = m(�+ 1) $ s log2(N/s) log2(N). We claim that if (xn) is the sequence pro-
duced by the algorithm described above and if Sn := supp(x − xn), then we have
card(Sn+1) < card(Sn)/2, so that xn̄ = x when n̄ = �log2(s)�.

To justify this claim, we observe that elements i /∈ R(Sn) do not produce any
change from xn to xn+1, since

vi = (A′(x− xn))i(�+1) =
∑
j∈Sn

A′
i(l+1),j(x− xn)j =

∑
j∈Sn

Ai,j(x− xn)j = 0.

Next, we prove that elements i ∈ R1(S
n) = ∪j∈SnR1(j, S

n) create many
zero entries in x − xn+1. Indeed, let i ∈ R1(j

∗, Sn) for some j∗ ∈ Sn, i.e.,
the right vertex i is connected only to the left vertex j∗ in Sn. We have, for any
k ∈ [�+ 1],
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(y −A′xn)(i−1)(�+1)+k = (A′(x− xn))(i−1)(�+1)+k

=
∑
j∈Sn

A′
(i−1)(�+1)+k,j(x− xn)j =

∑
j∈Sn

Bk,jAi,j(x− xn)j

= Bk,j∗(x− xn)j∗ .

In particular, since B�+1,j∗ = 1, setting k = �+ 1 yields

(y −A′xn)i(�+1) = (x− xn)j∗ �= 0.

Furthermore, since Bk,j∗ = bk(j
∗) for k ∈ [�], we obtain

�∑
k=0

(y −A′xn)(i−1)(�+1)+k 2
k−1 =

�∑
k=0

bk(j
∗) 2k−1(x− xn)j∗

= (j∗ − 1)(x− xn)j∗ .

This means that vi = (x − xn)j∗ and that ji = j∗. Therefore, it follows that
(x − xn+1)j∗ = xj∗ − (xnj∗ + vi) = 0 provided card(R1(j

∗, Sn)) ≥ d/2. If t
denotes the number of such j∗, Corollary 13.5 implies that

(1 − 2θs)d card(S
n) ≤ card(R1(S

n)) =
∑
j∈Sn

card(R1(j, S
n))

≤ t d+ (card(Sn)− t) d/2,

which yields t ≥ (1− 4θs) card(S
n). Therefore, at least (1− 4θs) card(S

n) zeros
entries of x− xn+1 are created by elements i ∈ R1(S

n).
Finally, we take into account that elements i ∈ R(Sn) \R1(S

n) may potentially
corrupt zero entries of x − xn to nonzero entries of x − xn+1. For a corruption to
occur, we need a group of at least d/2 elements in R(Sn) \R1(S

n), which has size
at most 2θsd card(Sn); hence, the number of corruptions is at most 4θs card(Sn).
Putting everything together, we deduce the desired claim from

card(Sn+1) ≤ card(Sn)− (1− 4θs) card(S
n) + 4θs card(S

n) = 8θs card(S
n)

<
card(Sn)

2
.

It now remains to count the number of algebraic operations the procedure
requires. At each iteration, we notice that the first step requires O(m(s + �s)) =
O(sm�) operations, since the sparsity of xn ensures that each component of
A′xn can be computed in O(s) operations, and that the second step requires
O(s) operations, since the previous argument ensures that at most O(s) entries
change from xn to xn+1. Overall, the total number of algebraic operations is then
O(n̄sm�) = O(log2(s)s2 log2(N/s) log2(N)). ��
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Notes

Some authors use the terms unbalanced expander or left regular bipartite expander
instead of lossless expander. We opted for the terminology of [279]. As already
pointed out, a lossless expander is different from an expander. We present here
two equivalent definitions of the latter. They both concern an undirected graph
G = (V,E), with set of vertices V and set of edges E, which is d-regular in
the sense that the number d of edges attached to a vertex is the same for all
vertices. For 0 < μ < 1, the combinatorial property defining a μ-edge expander
is card(E(S, S)) ≥ μd card(S) for all S ⊂ V with card(S) ≤ card(V )/2, where
E(S, S) denotes the set of edges between S and its complement S. For 0 < λ < 1,
the algebraic property defining a λ-expander uses its adjacency matrix A defined
by Ai,j = 1 if there is an edge connecting i and j and Ai,j = 0 if there is none.
Note the usual identification of V to [n] with n := card(V ). Since the matrixA/d is
symmetric and stochastic, i.e., it has nonnegative entries summing to one along each
row and along each column, it has n real eigenvalues λ1 = 1, λ2, . . . , λn ordered
as |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. The graph G is then called a λ-expander if |λ2| ≤ λ
or equivalently if its spectral gap 1 − |λ2| is at least 1 − λ. The combinatorial
and algebraic definitions are equivalent, since a λ-expander is a (1 − λ)/2-edge
expander and a μ-edge expander is a (1 − μ2/2)-expander. We refer the reader to
[19, Chap. 21] for more details on the subject.

The use of probabilistic methods to prove that lossless expanders exist is
part of the folklore in theoretical computer science. For instance, the result of
Theorem 13.8 is stated in [101]. To date, there are no explicit constructions
of lossless expanders with optimal parameters, but there are deterministic (i.e.,
computable in polynomial time) constructions of (s, d, θ)-lossless expanders with
d $ (log(N) log(s)/θ)1+1/α and m $ d2s1+α for any α > 0; see [251].

The stable null space property for adjacency matrices of lossless expanders was
established by Berinde et al. in [41]. We mainly followed their arguments to prove
the robust null space property in Theorem 13.11, except that we did not call upon
the �1-restricted isometry property that they established first—see Exercise 13.5.

The algorithm (13.11) is a modification of the sparse matching pursuit algorithm
proposed by Berinde et al. in [42]. The analysis of the latter is also based on
Lemma 13.16; see Exercise 13.11. The way we proved Lemma 13.16 differs from
the original proof of [42]. There are other iterative algorithms yielding stable
and robust reconstruction using adjacency matrices of lossless expanders; see the
survey [285] by Indyk and Gilbert. For instance, the expander matching pursuit
algorithm of [286] precedes the sparse matching pursuit algorithm and runs in
linear time, while the HHS (heavy hitters on steroids) pursuit of [225] runs in
sublinear time. The sublinear-time algorithm of Theorem 13.17 is taken from [41]
and the one of Exercise 13.12 from [291], but they were not designed with stability
in mind. There are also sublinear-time algorithms for matrices other than adjacency
matrices of lossless expanders; for instance, [261,262,287] deals with partial Fourier
matrices.
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Exercises

13.1. Show that the expansion property (13.1) for card(S) = s does not necessarily
imply the expansion property for card(S) < s.

13.2. Let A ∈ {0, 1}m×N be a matrix with exactly d ones per column. With
a1, . . . , aN denoting these columns, suppose that 〈ai, aj〉 ≤ μd for all distinct
i, j ∈ [N ]. Prove that A is the adjacency matrix of a left d-regular bipartite graph
satisfying θs ≤ (s− 1)μ/2.

13.3. Prove that a left d-regular bipartite graph is an (s, d, (d − 1)/d)-lossless
expander if and only if, for any set S of left vertices with card(S) ≤ s, one can
find for each j ∈ J an edge j ij in such a way that the right vertices ij , j ∈ S,
are all distinct. You may use Hall’s theorem: For finite subsets X1, X2, . . . , Xn of
a set X , one can find distinct points x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn if and only if
card(∪k∈KXk) ≥ card(K) for all K ⊂ [n].

13.4. Let R≥k(S) be the set of right vertices connected to at least k left vertices
of a set S in a left d-regular bipartite graph. Prove that the graph is an (s, d, θ)-
lossless expander if and only if

∑
k≥2 card(R≥k(S)) ≤ θd card(S) for any set S

of at most s left vertices. Deduce that card(R≥2(S)) ≤ θd card(S) for any set S of
at most s left vertices if the graph is an (s, d, θ)-lossless expander.

13.5. Prove that the m × N adjacency matrix A of an (s, d, θ)-lossless expander
satisfies the property that

d(1− 2θ)‖z‖1 ≤ ‖Az‖1 ≤ d‖z‖1 for all s-sparse z ∈ C
N ,

which can be interpreted as a scaled restricted isometry property in �1.

13.6. For a fixed δ > 0, suppose that a measurement matrix A ∈ {0, 1}m×N

satisfies δs(γA) ≤ δ for some γ > 0. Let c and r denote the minimal number of
ones per columns of A and the maximal number of ones per row of A. Show that

c ≤ r m

N
.

Observe also that c ≥ (1 − δ)/γ2 by considering a suitable 1-sparse vector. Then,
by considering any vector in {0, 1}N with exactly s ones, deduce that

c ≤ 1 + δ

1− δ

m

s
.

Next, by considering a suitable vector in {0, 1}N with exactly t := min{r, s} ones,
observe that

t ≤ 1 + δ

γ2
≤ 1 + δ

1− δ
c.
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Separating the cases r ≥ s and r < s, conclude that

m ≥ min
{1− δ

1 + δ
N,
(1− δ

1 + δ

)2
s2
}
,

so that matrices populated with zeros and ones do not satisfy the classical restricted
isometry property in the parameter range relevant to compressive sensing.

13.7. Let A ∈ {0, 1}m×N be the adjacency matrix of a left regular bipartite
graph and let S ⊂ [N ] be a fixed index set. Suppose that every nonnegative
vector supported on S is uniquely recovered via �1-minimization using A as a
measurement matrix. Prove that every nonnegative vector x supported on S is in
fact the unique vector in the set {z ∈ RN : z ≥ 0,Az = Ax}.

13.8. Extend Theorem 13.10 to the case of a measurement error considered in
�p-norms, p ≥ 1. Precisely, given the adjacency matrix A of a left d-regular bipartite
graph such that θ2s < 1/6, for x ∈ CN and y = Ax+ e with ‖e‖p ≤ η, prove that
a solution x� of

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖p ≤ η

satisfies

‖x− x�‖1 ≤
2(1− 2θ)

(1− 6θ)
σs(x)1 +

4

(1− 6θ)d

s1−1/p

d1/p
η.

13.9. For the adjacency matrix A ∈ {0, 1}m×N of a left regular bipartite graph,
let A′ ∈ {−1, 1}m×N be the matrix obtained from A by replacing the zeros by
negative ones. Given x ∈ CN , prove that the solutions of the two problems

minimize ‖z‖1 subject to Az = Ax,

minimize ‖z‖1 subject to A′z = A′x,

are identical.

13.10. For the quantiles qk, prove the inequalities (13.13), (13.14), as well as

qk[a1, . . . , ad] ≤ qk[b1, . . . , bd] if aj ≤ bj for all j,

q2k[a1 + b1, . . . , ad + bd] ≤ qk[a1, . . . , ad] + qk[b1, . . . , bd] if aj , bj ≥ 0 for all j.

13.11. Establish an analog of Theorem 13.15 when θ4s < 1/20 for the sparse
matching pursuit algorithm consisting in the scheme

un+1 := H2s(M(y −Axn)), xn+1 := Hs(x
n + un+1).
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13.12. Let A ∈ {0, 1}m×N be the adjacency matrix of an (s, d, θ)-lossless
expander. If θ is small enough, prove that every s-sparse vector is recovered from
y = Ax in a finite number of iterations of the algorithm:

• For each i ∈ [m], compute

vi := (y −Axn)i.

• If there are i1, . . . , ir ∈ R(j) with r ≥ d/2 and vi1 = · · · = vir =: v �= 0, set

xn+1
j = xnj + v.



Chapter 14
Recovery of Random Signals using Deterministic
Matrices

In this chapter, we change the point of view and work with a deterministic
measurement matrix but treat the sparse signal to be recovered as random. In
particular, the support set of the sparse vector (and additionally the signs of the
nonzero coefficients) is chosen at random. In this scenario, the coherence of the
measurement matrix only needs to obey mild conditions, much weaker than the ones
outlined in Chap. 5 for the recovery of all s-sparse vectors. We recall that these
conditions together with the lower bound of Theorem 5.7 lead to the quadratic
bottleneck: arguments based on the coherence necessarily require a number of
measurements m ≥ Cs2. In contrast, we will see that, with high probabil-
ity, recovering a random s-sparse vector using �1-minimization is possible with
m ≥ Cs ln(N) measurements, provided the coherence satisfies μ ≤ c(lnN)−1.
The latter condition is satisfied for many deterministic constructions of measure-
ments and is indeed much milder than the optimal achievable bound μ ≤ cm−1/2.
Moreover, the coherence has the advantage of being easily evaluated for an
explicitly given matrix.

The results in this chapter are weaker than the ones of Chap. 5 in the sense
that they apply only to most signals instead of to all signals, but they show that
the deterministic bounds using coherence may be somewhat pessimistic even if no
bounds on the restricted isometry constants are available. Moreover, our analysis
reveals that conclusions from numerical experiments for the performance evaluation
of measurement matrices have to be handled with care, as testing with randomly
chosen sparse signals does not necessarily give much information about recovery
of all signals or about the restricted isometry constants of the matrix. Indeed,
our results apply also to examples of measurement matrices from Chap. 12, for
which there exist s-sparse signals that cannot be recovered from fewer than cs2

measurements; see, e.g., the discussion after Proposition 12.4. Nevertheless, most
s-sparse signals can be recovered from far fewer samples.

Recovery results for random signals are especially important in the context of
sparse approximation, where the matrix A takes the role of a redundant dictionary
and y ∈ Cm is a signal that has a sparse representation in terms of the columns of

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 14,
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A, i.e., y = Ax. In such context, one cannot design A. Since it is hard to verify
the restricted isometry property for deterministic matrices in the optimal range of
parameters, recovery conditions for random signals that overcome the limits of
their deterministic counterparts are essential. Nevertheless, such types of bounds
are also relevant in the context of compressive sensing when A takes the role of
a measurement matrix that can be designed—especially in situations where good
bounds for the restricted isometry property are not (yet) available.

In Sect. 14.1, we derive bounds on the conditioning of a random column
submatrix of a given matrix. The methods build on moment bounds, decoupling,
and matrix deviation inequalities developed in Chap. 8. In Sect. 14.2, we then
develop guarantees for �1-minimization based on Corollary 4.28 for the recovery
of individual sparse vectors.

14.1 Conditioning of Random Submatrices

Throughout this chapter, we assume that A =
[
a1| . . . |aN

]
∈ Cm×N is a

measurement matrix with �2-normalized columns (i.e., ‖aj‖2 = 1) and coherence

μ = max
k �=�

|〈ak, a�〉|.

We will use two probability models for selecting a random support set S ⊂ [N ]:

• Uniform Model. The set S is selected uniformly at random among all subsets of
[N ] of cardinality s ≤ N .

• Bernoulli Model. Choose δ = s/N , and introduce independent Bernoulli
selectors δj , j ∈ [N ], that take the value 1 with probability δ and the value 0
with probability 1− δ. Then define the random set

S = {j ∈ [N ], δj = 1}.

In this model, the cardinality of S is random but its expectation satisfies
E card(S) = s due to the choice δ = s/N . By Bernstein’s inequality (Corollary
7.31), the size of S concentrates around s as

P(| card(S)− s| ≥ t
√
s) = P(|

N∑
j=1

(δj − δ)| ≥ t
√
s) ≤ 2 exp

(
− st2/2

s+
√
st/3

)

≤ 2 exp(−3t2/8), for 0 < t ≤
√
s.

To verify that Bernstein inequality applies, note that E(δj − δ) = 0, |δj − δ| ≤ 1,
and E(δj − δ)2 = δ − δ2 ≤ δ = s/N .

The first probability model may be more intuitive because the cardinality of S is
always s, but the second probability model is easier to analyze because of the
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independence of the Bernoulli selectors δj . In any case, both probability models
are closely related as we will see below.

We are interested in the conditioning of AS , i.e., in the operator norm

‖A∗
SAS − IdS‖2→2.

We have the following probabilistic bound on this norm.

Theorem 14.1. Let A ∈ Cm×N , m ≤ N , be a matrix with �2-normalized columns
and coherence μ. Let S be a subset of [N ] selected at random according to the
uniform model with card(S) = s or to the Bernoulli model with E card(S) = s.
Assume that, for η, ε ∈ (0, 1),

μ ≤ c
η

ln(N/ε)
, (14.1)

s

N
‖A‖22→2 ≤ c

η2

ln(N/ε)
, (14.2)

for an appropriate constant c > 0. Then, with probability at least 1− ε,

‖A∗
SAS − IdS‖2→2 ≤ η.

Remark 14.2. The proof reveals the more precise estimate

P(‖A∗
SAS − IdS‖2→2 ≥ c1μu+ c2

√
s

N
‖A‖22→2u+ 2e

s

N
‖A‖22→2)

≤ c3N
4 exp(−u)

with c1 ≈ 4.8078, c2 ≈ 11.21 and c3 ≈ 70.15.

In order for Theorem 14.1 to be valuable, the quantity s
N ‖A‖22→2 should be

small. Let us briefly comment on this condition. We note that tr (A∗A) =∑N
j=1 ‖aj‖22 = N and that

tr (AA∗) ≤ mλmax(AA∗) = m‖AA∗‖2→2 = m‖A‖22→2, (14.3)

so that taking tr (A∗A) = tr (AA∗) into account gives

‖A‖22→2 ≥
N

m
. (14.4)

Equality holds if and only if equality holds in (14.3), i.e., if and only if all the
eigenvalues of AA∗ are equal to N/m. This means AA∗ = (N/m)Idm; in other
words, the columns of A form a unit norm tight frame.
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Unit norm tight frames appear frequently in the context of sparse approximation,
for instance, as union of several orthonormal bases. In the important case of unit
norm tight frames, we therefore have

s

N
‖A‖22→2 =

s

m
. (14.5)

There are also relevant examples where A does not form a tight frame but where
at least ‖A‖22→2 is close to its lower bound N/m, so that (14.2) still represents a
reasonable condition on m.

Choosing the probability ε = N−1, say, Condition (14.2) then becomes the
familiar one

m ≥ cη−2s ln(N),

while (14.1) is only a very mild condition on the coherence of A, namely, μ ≤
cη ln−1(N).

We now return to Theorem 14.1 and its proof, which we develop in several steps.
Let us start with some notation. We introduce the hollow Gram matrix

H = A∗A− Id,

which has zero diagonal because A has �2-normalized columns by assumption. Let
P = PS be the projection operator onto S, i.e., for x ∈ CN ,

(Px)� =

{
x� if � ∈ S,
0 if � /∈ S.

With this notation we observe that

‖A∗
SAS − IdS‖2→2 = ‖PHP‖2→2.

We analyze the Bernoulli model and later reduce the uniform model to the Bernoulli
model. Note that P is the random diagonal matrix

P = diag[δ1, . . . , δN ],

where the δj are independent Bernoulli selectors with Eδj = δ = s/N . We will
bound the moments of ‖PHP‖2→2. We use decoupling to overcome difficulties in
the analysis which arise from the double appearance of P. Theorem 8.12 implies
that, for p ≥ 1,

(E‖PHP‖p2→2)
1/p ≤ 2(E‖P′HP‖p2→2)

1/p,

where P′ is an independent copy of P. Then the matrix B = P′H is independent
of P. We first derive a moment estimate for ‖BP‖2→2 with general fixed B.
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Lemma 14.3. Let B ∈ CN×N and let P be a random diagonal matrix of
independent Bernoulli variables with mean δ ∈ [0, 1]. Then, for p ≥ 2,

(E‖BP‖p2→2)
1/p ≤ C(C2N)2/p

√
p(E‖BP‖p1→2)

1/p +
√
δ‖B‖2→2.

The constants satisfy C ≤ 1.0310 and C2 ≤ 4.1878.

Proof. With b1, . . . ,bN denoting the columns of B, we observe that

‖BP‖22→2 = ‖BPB∗‖2→2 = ‖
N∑
j=1

δjbjb
∗
j‖2→2,

since P = P2. Taking expectation followed by the triangle inequality and
symmetrization (Lemma 8.4) yields, for r ≥ 1,

(E‖BP‖2r2→2)
1/r ≤ (E‖

N∑
j=1

(δj − δ)bjb
∗
j‖r2→2)

1/r + δ‖
N∑
j=1

bjb
∗
j‖2→2

≤ 2(E‖
N∑
j=1

εjδjbjb
∗
j‖r2→2)

1/r + δ‖BB∗‖2→2,

where ε is a Rademacher sequence. The tail inequality for matrix Rademacher sums
(Proposition 8.20) states that, conditionally on δ,

Pε(‖
N∑
j=1

εjδjbjb
∗
j‖2→2 ≥ tσ) ≤ 2Ne−t

2/2, t > 0,

where

σ =
∥∥ N∑
j=1

(δjbjb
∗
j )

2
∥∥1/2
2→2

=
∥∥ N∑
j=1

δ2j ‖bj‖22bjb∗
j

∥∥1/2
2→2

≤ max
j∈[N ]

{δj‖bj‖2}
∥∥ N∑
j=1

δjbjb
∗
j

∥∥1/2
2→2

= ‖BP‖1→2‖BP‖2→2.

Hereby, we have applied the explicit expression (A.11) of the norm ‖ · ‖1→2. It
follows from Proposition 7.13 that, for r ≥ 1,

⎛
⎝Eε‖

N∑
j=1

εjδjbjb
∗
j‖r2→2

⎞
⎠

1/r

≤ C1(C2N)1/r
√
r‖BP‖1→2‖BP‖2→2
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with C1 = e1/(2e)e−1/2 ≈ 0.729 and C2 = 2C2,2 = 2
√
πe1/6 ≈ 4.1878. Taking

expectation also with respect to δ and applying the Cauchy–Schwarz inequality
yield

E‖
N∑
j=1

εjδjbjb
∗
j‖r2→2 ≤ C2N · Cr1rr/2(E‖BP‖2r1→2)

1/2(E‖BP‖2r2→2)
1/2.

By combining the above estimates and choosing r = p/2 we arrive at

(E‖BP‖p2→2)
2/p ≤ 2(E‖

N∑
j=1

εjδjbjb
∗
j‖r2→2)

1/r + δ‖B‖22→2

≤ 2(C2N)1/rC1

√
r(E‖BP‖2r1→2)

1/(2r)(E‖BP‖2r2→2)
1/(2r) + δ‖B‖22→2

= 2(C2N)2/pC1

√
p/2(E‖BP‖p1→2)

1/p(E‖BP‖p2→2)
1/p + δ‖B‖22→2.

Setting E := (E‖BP‖p2→2)
1/p, this inequality takes the form E2 ≤ αE + β.

Completing squares gives (E − α/2)2 ≤ α2/4 + β, so that

E ≤ α/2 +
√
α2/4 + β ≤ α+

√
β. (14.6)

We conclude that

(E‖BP‖p2→2)
1/p ≤ (C2N)2/p

√
2C1
√
p(E‖BP‖p1→2)

1/p + δ1/2‖B‖2→2.

This finishes the proof. ��

The above lemma requires a moment bound for ‖BP‖1→2. Noting that we will
later use B = P′H, we actually need to estimate ‖P′HP‖1→2 = ‖P′B̃‖1→2 with
B̃ = HP. The next lemma requires the norm

‖B‖max := max
j,k
|Bj,k|,

i.e., the �∞-norm over all matrix entries.

Lemma 14.4. Let B ∈ CN×N and let P be a random diagonal matrix of
independent Bernoulli variables with mean δ ∈ [0, 1]. Then, for p ≥ 2,

(E‖PB‖p1→2)
1/p ≤ C3(2N)2/p

√
p(E‖PB‖pmax)

1/p +
√
δ‖B‖1→2 (14.7)

with C3 = 2(2e)−1/2 ≈ 0.8578. Moreover, for u > 0,

P(‖PB‖1→2 ≥
√
2δ‖B‖1→2 + 2‖B‖maxu) ≤ 4N2e−u

2

. (14.8)
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Proof. Similarly to the previous proof, we set E = (E‖PB‖p1→2)
1/p and r = p/2.

Symmetrization (Lemma 8.4), the explicit expression for ‖ · ‖1→2, and the triangle
inequality yield

E2 =

⎛
⎝E( max

k∈[N ]

N∑
j=1

δj |Bjk |2
)r
⎞
⎠

1/r

≤ 2

⎛
⎝EδEε max

k∈[N ]

∣∣ N∑
j=1

εjδj |Bjk |2
∣∣r
⎞
⎠

1/r

+ δ‖B‖21→2. (14.9)

Estimating the maximum by a sum and using the Khintchine inequality (8.9), we
arrive at
⎛
⎝Eε max

k∈[N ]

∣∣ N∑
j=1

εjδj |Bjk |2
∣∣r
⎞
⎠

1/r

≤

⎛
⎝ N∑
k=1

Eε

⎡
⎣∣∣ N∑

j=1

εjδj |Bjk |2
∣∣r
⎤
⎦
⎞
⎠

1/r

≤ 21/re−1/2√r

⎛
⎝ N∑
k=1

( N∑
j=1

δj |Bj,k|4
)r/2
⎞
⎠

1/r

≤ 21/re−1/2
√
rN1/r max

k∈[N ]

√√√√(max
j∈[N ]

δj |Bj,k|2
) N∑
j=1

δj |Bj,k|2

≤ (2N)1/re−1/2√r‖PB‖max‖PB‖1→2.

By the Cauchy–Schwarz inequality,

EδEε max
k∈[N ]

∣∣ N∑
j=1

εjδj |Bjk |2
∣∣r≤ 2Ne−r/2rr/2

(
E‖PB‖2rmax

)1/2 (
E‖PB‖2r1→2

)1/2
.

Altogether, we have obtained

E2 ≤ 2e−1/2(2N)1/r
√
r(E‖PB‖2rmax)

1/(2r)(E‖PB‖2r1→2)
1/(2r) + δ‖B‖21→2

= 2e−1/2(2N)2/p
√
p/2(E‖PB‖pmax)

1/pE + δ‖B‖21→2.

As above, since solutions to E2 ≤ αE + β satisfy (14.6), we reach

E ≤ 2(2e)−1/2(2N)2/p
√
p(E‖PB‖pmax)

1/p + δ1/2‖B‖1→2.

Although the probability bound (14.8) with slightly worse constants can be deduced
from (14.7), it is instructive to derive it via moment-generating functions. For θ > 0,
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we obtain, by applying symmetrization (Lemma 8.4) with the convex function
F (u) = exp(θmaxk |uk|),

E exp(θ(‖PB‖21→2 − δ‖B‖21→2)) ≤ E exp

⎛
⎝2θ max

k∈[N ]

∣∣ N∑
j=1

εjδj |Bjk |2
∣∣
⎞
⎠

≤
N∑
k=1

E exp

⎛
⎝2θ∣∣

N∑
j=1

εjδj |Bjk |2
∣∣
⎞
⎠ ≤ 2NEδ exp(2θ

2‖B‖2max‖PB‖21→2),

where in the last step we have used the fact that
∑N

j=1 εj|Bj,k|2 is subgaussian by
Theorem 7.27. Assuming that 2θ‖B‖2max ≤ 1/2, Hölder’s (or Jensen’s) inequality
gives

exp(−θδ‖B‖21→2)E[exp(θ‖PB‖21→2)] ≤ 2NE[exp(θ‖PB‖21→2/2)]

≤ 2N
(
E[exp(θ‖PB‖21→2)]

)1/2
.

Rearranging this inequality results in

E
[
exp(θ(‖PB‖21→2 − 2δ‖B‖21→2))

]
≤ 4N2 for all 0 < θ ≤ 1

4‖B‖2max

.

Markov’s inequality together with the choice θ = 1/(4‖B‖2max) yields

P(‖PB‖21→2 − 2δ‖B‖21→2 ≥ t) ≤ 4N2e−θt = 4N2e−t/(4‖B‖2
max).

Taking square roots inside the probability above and substituting u=
√
t/(2‖B‖max)

imply

P(‖PB‖1→2 ≥
√
2δ‖B‖1→2 + 2‖B‖maxu) ≤ 4N2e−u

2

.

This completes the proof. ��

Proof (of Theorem 14.1). We first derive a moment estimate for ‖PHP‖2→2. Using
the decoupling inequality (8.18) (noticing that H has zero diagonal) and applying
Lemma 14.3 twice, we obtain, for p ≥ 2,

(E‖PHP‖p2→2)
1/p ≤ 2(E‖PHP′‖p2→2)

1/p

≤ 2
(
EP(C(C2N)2/p

√
pEP′‖PHP′‖p1→2 +

√
δ‖PH‖2→2)

p
)1/p

≤ 2C(C2N)2/p
√
p(E‖PHP′‖p1→2)

1/p + 2
√
δ(E‖HP‖p2→2)

1/p

≤ 2C(C2N)2/p
√
p(E‖PHP′‖p1→2)

1/p + 2
√
δ · C(C2N)2/p

√
p(E‖HP‖p1→2)

1/p

+ 2δ‖H‖22→2.
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Hereby, we have also used that ‖HP‖2→2 = ‖(HP)∗‖2→2 = ‖PH‖2→2 since H
and P are self-adjoint. Next we exploit the properties of H. Since μ = ‖H‖max, we
have ‖PHP′‖max ≤ μ for any realization of P and P′. Moreover,

‖H‖1→2 = ‖A∗A− Id‖1→2 ≤ ‖A∗A‖1→2 = max
k∈[N ]

‖A∗ak‖2 ≤ ‖A‖2→2

because the columns ak are �2-normalized. It follows that

‖HP‖1→2 ≤ ‖H‖1→2 ≤ ‖A‖2→2 (14.10)

for any realization of P. Furthermore,

‖H‖2→2 = ‖A∗A− Id‖2→2 = max{1, ‖A‖22→2 − 1} ≤ ‖A‖22→2

because ‖A‖22→2 ≥ N/m by (14.4). An application of Lemma 14.4 conditionally
on P′ leads to

(E‖PHP′‖p1→2)
1/p = (EP′EP‖PHP′‖p1→2)

1/p

≤
(
EP′
(
C3(2N)2/p

√
p(EP‖PHP′‖pmax)

1/p +
√
δ‖HP′‖1→2

)p)1/p

≤ C3(2N)2/p
√
p‖H‖max +

√
δ‖H‖1→2.

Combining the previous estimates, we arrive at

(E‖PHP‖p2→2)
1/p

≤ 2C(C2N)2/p
√
p
(
C3(2N)2/p

√
p‖H‖max +

√
δ‖H‖1→2

)

+ 2C(C2N)2/p
√
pδE‖H‖1→2 + 2δ‖H‖2→2

≤ (2C2N
2)2/p
(
C4p μ+ C5

√
pδ‖A‖2→2 + 2δ‖A‖22→2

)
.

with C4 = 2CC3 = 2e1/(2e)
√
2/e · 2(2e)−1/2 = 4e1/(2e)−1 ≈ 1.7687 and

C5 = 4C = 4e1/(2e)
√
2/e ≈ 4.1239. It follows from Proposition 7.15 that, for

u ≥ 2,

P(‖PHP‖2→2 ≥ eC4μu+ eC5

√
δ‖A‖2→2

√
u+2eδ‖A‖22→2) ≤ C6N

4 exp(−u)

with C6 = (2C2)
2 ≈ 70.15. This implies that

‖PHP‖2→2 ≤ η

with probability at least 1− ε provided

eC4μ ln(C6N
4/ε) ≤ η/6, eC5

√
δ‖A‖2→2

√
ln(C6N4/ε) ≤ 4η/5,

2eδ‖A‖22→2 ≤ η/30.
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The first two relations are equivalent to

μ ≤ η

C7 ln(C6N4/ε)
,

δ‖A‖22→2 ≤
η2

C8 ln(C6N4/ε)
, (14.11)

with C7 = 6eC4 ≈ 28.85, C8 = 25e2C2
5/16 ≈ 196.35. Then (14.11) also implies

2eδ‖A‖22→2 ≤ η/30. Noting that δ = s/N finishes the proof for the Bernoulli
model.

For the uniform model, we proceed similarly to the proof of Corollary 12.38
to bound the probability by the one for the Bernoulli model. Let PB denote the
probability in the Bernoulli model and PU,r the one in the uniform model, where S
is selected uniformly at random among all subsets of cardinality r. Then, for t > 0,

PB(‖PHP‖2→2 ≥ t)

=

N∑
r=0

PB(‖PSHPS‖2→2 ≥ t| card(S) = r)PB(card(S) = r)

≥
N∑
r=s

PB(‖PSHPS‖2→2 ≥ t| card(S) = r)PB(card(S) = r)

=

N∑
r=s

PU,r(‖PSHPS‖2→2 ≥ t)PB(card(S) = r). (14.12)

Since the norm of a submatrix does not exceed the norm of the full matrix (see
Lemma A.9), we have ‖PSHPS‖2→2 ≤ ‖PS′HPS′‖2→2 wheneverS ⊂ S′ ⊂ [N ].
This implies that

PU,r+1(‖PSHPS‖2→2 ≥ t) ≥ PU,r(‖PSHPS‖2→2 ≥ t).

Moreover, since s is an integer, it is the median of the binomial distribution (see
(7.6)), so that

N∑
r=s

PB(card(S) = r) = PB(card(S) ≥ s) ≥ 1/2.

It follows that

PB(‖PHP‖2→2 ≥ t) ≥ 1

2
PU,s(‖PSHPS‖2→2 ≥ t).

This implies the claim for the uniform model. ��
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14.2 Sparse Recovery via �1-Minimization

Based on the previous result on the conditioning of random submatrices, we derive
recovery guarantees for random sparse vectors via �1-minimization. Here, we
choose both the support of the vector and the signs of its nonzero coefficients at
random.

Theorem 14.5. Let A ∈ Cm×N , m ≤ N , be a matrix with �2-normalized columns
and coherence μ. Let S be a subset of [N ] selected at random according to the
uniform model with card(S) = s or to the Bernoulli model with E card(S) = s.
Let x ∈ CN be a vector supported on S for which sgn(xS) is a Steinhaus or
Rademacher vector independent of S. Assume that, for η, ε ∈ (0, 1),

μ ≤ c

ln(N/ε)
, (14.13)

s

N
‖A‖22→2 ≤

c

ln(N/ε)
, (14.14)

for an appropriate constant c > 0. Then, with probability at least 1 − ε, the vector
x is the unique minimizer of ‖z‖1 subject to Az = Ax.

Explicit constants can be found in the proof. We recall from (14.5) that for a unit
norm tight frame, relation (14.14) is satisfied under the familiar condition

m ≥ Cs ln(N/ε).

Only the mild condition (14.13) is imposed on the coherence.

Proof. The proof relies on the recovery result for vectors with random signs in
Proposition 12.15, which in turn builds on the recovery conditions for individual
vectors in Corollary 4.28. We are hence led to bound the term

max
�∈S

‖A†
Sa�‖2 = max

�∈S
‖(A∗

SAS)
−1A∗

Sa�‖2

for a random choice of S. If ‖A∗
SAS − IdS‖2→2 ≤ η, as analyzed in the proof of

Theorem 14.1, then ‖(A∗
SAS)

−1‖2→2 ≤ (1 − η)−1, and we obtain the bound

max
�∈S

‖A†
Sa�‖2 ≤ (1− η)−1 max

�/∈S
‖A∗

Sa�‖2.

Using H = A∗A − Id and the projection P = PS as in the previous section, we
realize that

max
�∈S

‖A∗
Sa�‖2 = ‖PH(Id−P)‖1→2 ≤ ‖PH‖1→2.
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Assuming the Bernoulli model with δ = s/N for now, Lemma 14.4 implies that

P(‖PH‖1→2 ≥
√
2δ‖H‖1→2 + 2‖H‖maxu) ≤ 4N2e−u

2

Since ‖H‖max = μ and ‖H‖1→2 ≤ ‖A‖2→2 (see (14.10)), we therefore obtain

P(‖PH‖1→2 ≥
√
2δ‖A‖2→2 + 2μu) ≤ 4N2e−u

2

. (14.15)

It follows from Proposition 12.15 that, for any α > 0, the probability of failure of
reconstruction via �1-minimization can be bounded by

P(max
�∈S

‖A†
Sa�‖ ≥ α) + 2Ne−α

−2/2

≤ 2Ne−α
−2/2 + P(‖A∗

SAS − IdS‖2→2 ≥ 3/4) + P(‖PH‖1→2 ≥ α/4),

(14.16)

where we have set η = 3/4 in the inequalities in the beginning of this proof.
Let C6 ≈ 70.15, C7 ≈ 28.85, C8 ≈ 196.35 be the constants from the proof of
Theorem 14.1; see (14.11). With α = 1/

√
2 ln(2C6N4/ε), the first term in (14.16)

is bounded by ε/C6. Assume further that

μ ≤ 3/4

C7 ln(2C6N4/ε)
, and

√
δ‖A‖2→2 ≤

3/4√
C8 ln(2C6N4/ε)

. (14.17)

Then, by Theorem 14.1,

P(‖A∗
SAS − IdS‖2→2 ≥ 3/4) ≤ ε/2.

The second inequality in (14.17) also implies

√
2δ‖A‖2→2 ≤ c1α

with c1 = 3/(2C
1/2
8 ) ≈ 0.107. Furthermore, with c2 = 0.14 and u = C9√

ln(2C6N4/ε) for C9 =
√
2c2C7/3 ≈ 1.904, we have 2μu ≤ c2α, so that

√
2δ‖A‖2→2 + 2μu ≤ (c1 + c2)α ≤ α/4.

Therefore, by (14.15), we deduce

P(‖PH‖1→2 ≥ α/4) ≤ P(‖PH‖1→2 ≥
√
2δ‖A‖2→2 + 2μu) ≤ 4N2 exp(−u2)

= 4N2 exp(−C2
9 ln(2C6N

4/ε)) ≤ 4N2 ε

2C6N4
= 2ε/C6.
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Altogether the failure probability is bounded by ε/C6 + ε/2 + 2ε/C6 ≤ ε. This
completes the proof for the Bernoulli model.

For the uniform model, we proceed similarly to the end of the proof of
Theorem 14.1 and show that

PU,s(‖PH‖1→2 ≥ t) ≤ 2PB(‖PH‖1→2 ≥ t), (14.18)

where again PU,s denotes the probability under the uniform model, for which
subsets S are selected uniformly at random among all subsets of cardinality s, while
PB denotes the probability under the Bernoulli model. With this observation, the
proof is concluded in the same way as above. ��

Theorem 14.5 explains why one can expect recovery of s-sparse signals from
m ≥ Cs log(N) measurements under coherence conditions much milder than
the ones of Chap. 5, even in situations when estimates on the restricted isometry
constants are unavailable or known to fail.

Usual numerical performance tests take the support set of the signal and the
nonzero coefficients at random, so that the results of this chapter explain the
high success rate of these experiments. However, conclusions for the recovery
of “real-world” signals from such numerical experiments should be handled with
care. Certainly, Theorem 14.5 still indicates that recovery is possible under mild
conditions, but it is often hard to argue rigorously that the support set of a “natural”
signal is random. For instance, the wavelet coefficients of a natural image follow
the edges of an image, so that the nonzero (large) coefficients are rather organized
in trees. Such tree structure is definitely not random—at least the support set does
not follow a uniform distribution. Therefore, the results of the preceding chapters
holding for all sparse signals remain very important. Moreover, currently available
stability results for random signals are weaker than the ones based on the restricted
isometry property.

Notes

Conditioning of random submatrices (subdictionaries) based on coherence was first
studied by Tropp in [481], where he derived slightly weaker estimates. Indeed, the
bounds in [481] require in addition to (14.2) that μ2s ln(s) ≤ c, which is harder to
satisfy than (14.1) (unless s is tiny, in which case the “quadratic” bounds of Chap. 5
would also be fine). Tropp refined his estimates later in [480] to the ones presented
in this chapter. Using more sophisticated decoupling techniques together with the
matrix Chernoff inequality [486], Chrétien and Darses [118] obtained slightly better
constants than the ones stated in Theorem 14.1 on the conditioning of random
submatrices. Candès and Plan applied Tropp’s result in the context of statistical
sparse estimation using the Dantzig selector, where they also allowed random noise
on the measurements [87]. Tropp’s paper [481] also contains refined results for the
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case where the matrix A is the concatenation of two orthonormal bases. Candès and
Romberg [92] treated the special case of the concatenation of the canonical and the
Fourier basis; see also [482].

Tropp’s original methods in [480, 481] use the noncommutative Khintchine
inequalities (8.114) instead of the tail inequality (8.36) for matrix-valued
Rademacher sums. The “random compression bound” of Lemma 14.3 goes back
to Rudelson and Vershynin [432]; see also [483, Proposition 12].

Analyses of sparse recovery algorithms for random choices of signals have been
carried out as well in the context of multichannel sparse recovery or multiple
measurement vectors [184, 241], where the measurement matrix A is applied to
a collection of sparse signals x(1), . . . ,x(L) ∈ CN with common support, i.e.,

[
y(1)| · · · |y(L)

]
= A
[
x(1)| · · · |x(L)

]

and supp(x(�)) = S for all � ∈ [L]. In this context a nonzero coefficient is actually

a vector xk = (x
(1)
k , . . . , x

(L)
k ) ∈ CL chosen at random (for instance, according to

a multivariate Gaussian distribution or the uniform distribution on the sphere). The
results in [184, 241] apply to multichannel variants of �1-minimization and greedy
algorithms and predict that the probability of failure decreases exponentially in L
provided that a very mild condition on the number of samples hold. The estimates
outlined in this chapter are partly used in these contributions.

The bound on the conditioning of random matrices of Theorem 14.1 is somewhat
related to the Bourgain–Tzafriri restricted invertibility theorem [66, 67]. We state a
strengthened version due to Spielman and Srivastava [449].

Theorem 14.6. Let A ∈ Cm×N with �2-normalized columns and α ∈ (0, 1) be a
prescribed parameter. There exists a subset S ⊂ [N ] with

card(S) ≥ α2N

‖A‖22→2

such that

(1 − α)2‖x‖22 ≤ ‖ASx‖22

for all x ∈ CS .

The assumptions in this theorem are weaker than the one of Theorem 14.1; in
particular, no reference to the coherence or a similar quantity is made. But the
statement is only about existence of a submatrix with controlled smallest singular
value and not about properties of most (i.e., random) submatrices. Indeed, one
cannot expect Theorem 14.1 to hold without any assumption on the coherence
because a random submatrix of a matrix which consists of a duplicated orthonormal
basis (hence, μ = 1) will contain a duplicated column with high probability, so that
the singular value will be zero. Nevertheless, well-conditioned submatrices certainly
exist in this case, such as the submatrix consisting of one copy of the orthonormal
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basis. Further information on the restricted invertibility theorem can be found, for
instance, in [102, 484, 499].

There is also a relation between Theorem 14.1 and another theorem of Bourgain
and Tzafriri [67] stated next.

Theorem 14.7. Let H ∈ CN×N with ‖H‖2→2 ≤ 1 whose entries satisfy

|Hj,k| ≤
1

ln2N
.

Let c ∈ (0, 1) and let S ⊂ [N ] of size cN be selected uniformly at random. Then
‖PSHPS‖2→2 ≤ 1/2 with probability at least 1−N−c.

In contrast to Theorem 14.1, this result does not only apply to matrices of the form
H = A∗A− Id (i.e., with zero diagonal), but it requires a condition on the size of
the matrix entries slightly stronger than (14.1).

Exercises

14.1. Let B ∈ CN×N and P be a random diagonal matrix of independent Bernoulli
variables with mean δ ∈ [0, 1]. Show that

E‖BP‖2→2 ≤
√
8 ln(2N)(E‖BP‖21→2)

1/2 +
√
δ‖B‖2→2.

Hint: Use (8.117).

14.2. Let B ∈ CN×N and P be a random diagonal matrix of independent Bernoulli
variables with mean δ ∈ [0, 1]. Show that

E‖PB‖1→2 ≤
√
8 ln(2N)(E‖PB‖2max)

1/2 +
√
δ‖B‖1→2.

14.3. Let A ∈ Cm×N , m ≤ N , be a matrix with �2-normalized columns and
coherence μ. Let S be a subset of [N ] selected at random according to the Bernoulli
model with E card(S) = s. Show that

E‖A∗
SAS − IdS‖2→2 ≤ 16 ln(2N)μ+

√
128 ln(2N)

s

N
‖A‖22→2 + 2

s

N
‖A‖22→2.

14.4. Verify (14.18) in detail.



Chapter 15
Algorithms for �1-Minimization

Throughout this book, �1-minimization plays a central role as a recovery method for
compressive sensing. So far, however, no algorithm for this minimization problem
was introduced. In Chap. 3, we mentioned that �1-minimization can be recast as a
linear program in the real case (see (P′

1)) and as a second-order cone program in
the complex case (see (P′

1,η)). In these situations, standard software is available,
which is based on interior point methods or the older simplex method for linear
programs. Despite the ease of use and the reliability of such standard software, it is
developed for general linear and second-order cone problems. Algorithms designed
specifically for �1-minimization may be faster than general purpose methods. This
chapter introduces and analyzes several of these algorithms. However, we do not
make an attempt to give a complete picture of all available algorithms. The present
choice was made for the sake of simplicity of exposition and in order to give
different flavors of possible approaches. Nevertheless, we give a brief overview on
further optimization methods in the Notes section.

The homotopy method introduced in Sect. 15.1, which is restricted to the real
case, has similarities with the orthogonal matching pursuit, but is guaranteed to
always provide an �1-minimizer. In Sect. 15.2, we present an algorithm due to
Chambolle and Pock. It applies to a whole class of optimization problems including
�1-minimization. Our third algorithm, iteratively reweighted least squares, is only a
proxy for �1-minimization, and its output may be different from the �1-minimizer.
But its formulation is motivated by �1-minimization, and in certain cases, it indeed
provides the �1-minimizer. Under the stable null space property (equivalent to
exact and approximate sparse recovery via �1-minimization), we will show error
guarantees similar to �1-minimization.

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7 15,
© Springer Science+Business Media New York 2013
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15.1 The Homotopy Method

The homotopy method computes a minimizer of the �1-minimization problem

min
x∈RN

‖x‖1 subject to Ax = y (15.1)

in the real case, that is, for A ∈ Rm×N and y ∈ Rm. Moreover, a slight variant
solves the quadratically constrained �1-minimization problem

min
x∈RN

‖x‖1 subject to ‖Ax− y‖2 ≤ η. (15.2)

For λ > 0, we consider the �1-regularized least squares functional

Fλ(x) =
1

2
‖Ax− y‖22 + λ‖x‖1, x ∈ R

N , (15.3)

and denote by xλ a minimizer of Fλ. We will see below that if λ = λ̂ is large
enough, then xλ̂ = 0. Furthermore, we essentially have limλ→0 xλ = x�, where x�

is a minimizer of (15.1). A precise statement is contained in the next result.

Proposition 15.1. Assume that Ax = y has a solution. If the minimizer x�

of (15.1) is unique, then

lim
λ→0+

xλ = x�.

More generally, the xλ are bounded and any cluster point of (xλn), where (λn) is
a positive sequence such that limn→∞ λn = 0+, is a minimizer of (15.1).

Proof. For λ > 0, let xλ be a minimizer of Fλ and x� be a minimizer of ‖z‖1
subject to Az = y. Then

1

2
‖Axλ − y‖22 + λ‖xλ‖1 = Fλ(xλ) ≤ Fλ(x

�) = λ‖x�‖1. (15.4)

This implies that

‖xλ‖1 ≤ ‖x�‖1, (15.5)

so that (xλ) is bounded and (xλn) possesses a cluster point x′. Inequality (15.4)
also implies that

1

2
‖Axλ − y‖22 ≤ λ‖x�‖1.

Letting λ → 0 shows that ‖Ax′ − y‖2 = 0, that is, Ax′ = y. Exploiting (15.5)
yields ‖x′‖1 ≤ ‖x�‖1 and, by definition of x�, this means that ‖x′‖1 = ‖x�‖1.
Therefore, also x′ minimizes ‖z‖1 subject to Az = y. If the �1-minimizer is unique,
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then x′ = x�, and this argument shows that any subsequence of (xλn) converges to
x�; hence, the whole sequence (xλn) converges to x�. ��

The basic idea of the homotopy method is to follow the solution xλ from xλ̂ = 0
to x�. As we will show below, the solution path λ �→ xλ is piecewise linear, and it
is enough to trace the endpoints of the linear pieces.

By Theorem B.21, the minimizer of (15.3) can be characterized using the
subdifferential defined in (B.11). The subdifferential of Fλ is given by

∂Fλ(x) = A∗(Ax − y) + λ∂‖x‖1,

where the subdifferential of the �1-norm is given by

∂‖x‖1 = {v ∈ R
N : v� ∈ ∂|x�|, � ∈ [N ]}.

Hereby, the subdifferential of the absolute value is given by

∂|z| =
{
{sgn(z)} if z �= 0,

[−1, 1] if z = 0.

A vector x is a minimizer of Fλ if and only if 0 ∈ ∂Fλ(x); see Theorem B.21. By
the above considerations, this is equivalent to

(A∗(Ax− y))� = −λ sgn(x�) if x� �= 0, (15.6)

|(A∗(Ax− y))�| ≤ λ if x� = 0, (15.7)

for all � ∈ [N ].
The homotopy method starts with x(0) = xλ = 0. By condition (15.7), the

corresponding λ is chosen as λ = λ(0) = ‖A∗y‖∞.
In the further steps j = 1, 2, . . ., the algorithm varies λ, computes corresponding

minimizers x(1),x(2), . . ., and maintains an active (support) set Sj . Denote by

c(j) = A∗(Ax(j−1) − y)

the current residual vector and, as usual, by V1, . . . ,VN the columns of A.

Step j = 1: Let

�(1) := argmax
�∈[N ]

|(A∗y)�| = argmax
�∈[N ]

|c(1)� |. (15.8)

One assumes here and also in the further steps that the maximum is attained at
only one index �. This is the generic situation—at least if A and y are not integer
valued, say. We will comment later on the case where the maximum is simulta-
neously attained at two or more indices � in (15.8) or in (15.9), (15.11), (15.12)
below.
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Now set S1 = {�(1)}. We introduce the vector d(1) ∈ R
N describing the

direction of the solution (homotopy) path with entries

d
(1)

�(1)
= ‖a�(1)‖−2

2 sgn((A∗y)�(1)) and d
(1)
� = 0, � �= �(1).

The first linear piece of the solution path then takes the form

x = x(γ) = x(0) + γd(1) = γd(1), γ ∈ [0, γ(1)],

with some γ(1) to be determined below. One verifies with the definition of d(1)

that (15.6) is always satisfied for x = x(γ) and λ = λ(γ) = λ(0) − γ, γ ∈ [0, λ(0)].
The next breakpoint is found by determining the maximal γ = γ(1) > 0 for
which (15.7) is still satisfied, that is,

γ(1) =
+

min
� �=�(1)

{
λ(0) + c

(1)
�

1− (A∗Ad(1))�
,

λ(0) − c
(1)
�

1 + (A∗Ad(1))�

}
, (15.9)

where the symbol
+

min indicates that the minimum is taken only over posi-
tive arguments. (There will always be at least one positive argument due to
the assumption that the maximum in (15.8) is taken at only one index.) Then
x(1) = x(γ(1)) = γ(1)d(1) is the next minimizer of Fλ for λ = λ(1) := λ(0)− γ(1).
This λ(1) satisfies λ(1) = ‖c(2)‖∞. Let �(2) be the index where the minimum
in (15.9) is attained (where we again assume that the minimum is attained only
at one index), and set S2 = {�(1), �(2)}.

Step j ≥ 2: The new direction d(j) of the homotopy path is determined by

A∗
Sj
ASjd

(j)
Sj

= −sgn(c(j)Sj
). (15.10)

This amounts to solving a linear system of equations of size |Sj | × |Sj |, where

|Sj | ≤ j. Outside the components in Sj , we set d(j)� = 0, � /∈ Sj . The next linear
piece of the path is given by

x(γ) = x(j−1) + γd(j), γ ∈ [0, γ(j)].

To verify this, we note that (15.6) for x = x(j−1) implies that sgn(c(j)Sj−1
) =

−sgn(x(j−1)
Sj−1

) and that (15.7) for x = x(j−1) implies that |c(j)� | = λ(j−1) for
an index � that has possibly been added to Sj−1 to obtain Sj ; see below. Hence,

(A∗(Ax(j−1) − y))� = λ(j−1)sgn(c
(j)
� ) for all � ∈ Sj (which clearly also holds if

an index has been removed from Sj−1 to obtain Sj ; see again below). By continuity
together with (15.7) and (15.6), this implies that necessary and sufficient conditions
for x(γ) to be on the solution path are |A∗(A(x(γ) − y))�| ≤ λ(j−1) − γ for all
� /∈ Sj and

(A∗(Ax(γ) − y))� = (λ(j−1) − γ)sgn(c
(j)
� ) for all � ∈ Sj .
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One easily verifies these equations with the definition of x(γ) and d(j). The
maximal γ such that x(γ) satisfies (15.7) is

γ
(j)
+ =

+
min
�/∈Sj

{
λ(j−1) + c

(j)
�

1− (A∗Ad(j))�
,

λ(j−1) − c
(j)
�

1 + (A∗Ad(j))�

}
. (15.11)

The maximal γ such that x(γ) obeys (15.6), that is, sgn(c(j)Sj ) = −sgn(x(γ)Sj ), is
given by

γ
(j)
− =

+
min

�∈Sj,d
(j)
� �=0

{
−x(j−1)

� /d
(j)
�

}
. (15.12)

If all arguments in the minimum are nonpositive, this means that
sgn(x

(j−1)

S(j) ) = sgn(x
(j−1)

S(j) + γd
(j)

S(j)) for all positive γ and we set γ(j)− = ∞.

The next breakpoint is given by x(j) = x(γ(j)) with γ(j) = min{γ(j)+ , γ
(j)
− }. If

γ
(j)
+ determines the minimum, then the index �

(j)
+ /∈ Sj providing the minimum

in (15.11) is added to the active set, that is, Sj+1 = Sj ∪ {�(j)+ }. If γ(j) = γ
(j)
− , then

the index �(j)− ∈ Sj at which the minimum in (15.12) is attained is removed from the

active set (because x(γ(j)− )
�
(j)
−

= 0 by definition of γ(j)− ), that is, Sj+1 = Sj \{�(j)− }.
We update λ(j) = λ(j−1) − γ(j) so that λ(j) = ‖c(j+1)‖∞.

We note that, by construction of the algorithm, the linear system (15.10) always
has a (generically unique) solution d

(j)
Sj

. It may in principle happen that d(j)
Sj

is not
unique (if the minimizer of Fλ for the corresponding λ is not unique), but then any
choice of d(j)

Sj
satisfying (15.10) is suitable.

The algorithm stops when λ(j) = ‖c(j+1)‖∞ = 0, i.e., when the residual
vanishes, and it outputs x� = x(j).

We say that the minimizer �(j) ∈ [N ] is unique at step j if it is the unique
minimizer of

γ(j) = min{γ(j)
+ , γ

(j)
− }

= min

{
+

min
�/∈Sj

{
λ(j−1) + c

(j)
�

1− (A∗Ad(j))�
,

λ(j−1) − c
(j)
�

1 + (A∗Ad(j))�

}
,

+

min
�∈Sj,d

(j)
�

�=0

{
−x

(j−1)
� /d

(j)
�

}}
.

The following result about the homotopy method holds.

Theorem 15.2. Assume that the �1-minimizer x� of (15.1) is unique. If the mini-
mizer �(j) is unique at each step, then the homotopy algorithm outputs x�.

Proof. Following the description of the algorithm above, it only remains to show
that the algorithm eventually stops. To this end, we note that the sign patterns
sgn(xλ(j) ), j = 1, 2, . . ., are pairwise different. Indeed, if sgn(xλ1) = sgn(xλ2)
for some λ1 > λ2 > 0, then it is a straightforward consequence of (15.6) and (15.7)
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that every point on the line segment connecting xλ1 and xλ2 is a minimizer xλ
for some λ ∈ [λ1, λ2]. By construction, the points xλ(j) are endpoints of such line
segments, and since the algorithm adds or removes an element of the support in each
step, the vectors sgn(xλ1) and sgn(xλ2 ) have to be different. There are only a finite
number of possible sign patterns, and hence, the algorithm eventually stops and the
final parameter is λ(n) = 0. Since xλ → x� as λ→ 0 by Proposition 15.1, the final
point xλ(n) = x0 equals x�. This completes the proof. ��

Remark 15.3. (a) The theorem still holds if Ax = y has a solution but the �1-
minimizer is not unique: The homotopy algorithm then outputs one of these
�1-minimizers.

(b) If the minimum in (15.11) or (15.12) is attained in more than one index, then
additional effort is required to compute the next index set Sj+1. Denote by
T ⊂ [N ] \ Sj the set of indices � for which the minimum γ(j) is attained
in (15.11) and (15.12) (we only have to consider both (15.11) and (15.12) if
γ
(j)
+ = γ

(j)
− ). We go through all possible subsets L ⊂ T and check whether

Sj+1 = Sj ∪ L is valid as next support set. This amounts to solving (15.10)
for the corresponding next direction d(j) of the solution path and checking
whether (15.6) and (15.7) are satisfied for the potential solution x = x(γ) =
x(j−1)+γd(j) and λ = λ(j−1)−γ for some suitable γ > 0. When such a valid
Sj+1 is found, we continue as before.

If the algorithm is stopped before the residual vanishes, say at some iteration j,
then it yields the minimizer of Fλ = Fλ(j) . In particular, obvious stopping rules
may also be used to solve the problems

min ‖x‖1 subject to ‖Ax− y‖2 ≤ η, (15.13)

min ‖Ax− y‖2 subject to ‖x‖1 ≤ τ. (15.14)

The first of these appears in (15.2), and the second is called the LASSO (least
absolute shrinkage and selection operator); see Chap. 3.

The LARS (least angle regression) algorithm is a simple modification of the
homotopy method, which only adds elements to the active set at each step. Thus,
γ
(j)
− in (15.12) is not considered. (Sometimes the homotopy method is therefore

also called modified LARS.) LARS is not guaranteed to yield the solution of (15.1)
anymore. However, it is observed empirically in sparse recovery problems that the
homotopy method merely removes elements from the active set, so that in this case
LARS and homotopy perform the same steps. If the solution of (15.1) is s-sparse and
the homotopy method never removes elements, then the solution is obtained after
precisely s steps. Furthermore, the most demanding computational part at step j is
then the solution of the j × j linear system of equations (15.10).

In conclusion, the homotopy and LARS methods are very efficient when the
solution is very sparse. For only moderately sparse solutions, the methods in the
next sections may be better suited.
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15.2 Chambolle and Pock’s Primal-Dual Algorithm

This section presents an iterative primal–dual algorithm for the numerical solution
of general optimization problems including the various �1-minimization problems
appearing in this book. We require some background on convex analysis and
optimization as covered in Appendix B.

Remark 15.4. We formulate everything below in the complex setting of CN ,
although the material in Appendix B is treated only for the real case. As noted there,
everything carries over to the complex case by identifying CN with R2N . The only
formal difference when making this identification concrete is that complex inner
products have to be replaced by real inner products Re〈·, ·〉. Reversely, everything
below holds also if CN is replaced by RN , of course.

We consider a general optimization problem of the form

min
x∈CN

F (Ax) +G(x), (15.15)

where A ∈ C
m×N and where F : Cm → (−∞,∞], G : CN → (−∞,∞] are

extended real-valued lower semicontinuous convex functions; see Definition B.13
for the notion of lower semicontinuity. (Note that the functions are allowed to take
the value ∞ so that the requirement of continuity would be too strong.) We will
explain in detail below how �1-minimization fits into this framework.

The dual problem of (15.15) is given by

max
ξ∈Cm

−F ∗(ξ)−G∗(−A∗ξ); (15.16)

see (B.49). Here F ∗ and G∗ are the convex conjugate functions of F and G
(Definition B.17).

Theorem B.30 states that strong duality holds for the pair (15.15) and (15.16)
under mild assumptions on F and G, which are always met in the special cases of
our interest. Furthermore, by Theorem B.30, the joint primal–dual optimization of
(15.15) and (15.16) is equivalent to solving the saddle-point problem

min
x∈CN

max
ξ∈Cm

Re〈Ax, ξ〉+G(x) − F ∗(ξ). (15.17)

The algorithm we describe below uses the proximal mappings (B.13) of F ∗ and G.
It will be convenient to introduce another parameter τ > 0 into these mappings by
setting, for z ∈ CN ,

PG(τ ; z) := PτG(z) = argmin
x∈CN

{
τG(x) +

1

2
‖x− z‖22

}
, (15.18)

and PF∗(τ ; z) is defined in the same way.
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The algorithm below is efficient if the proximal mappings PF∗(τ ; z) and
PG(τ ; z) are easy to evaluate. Note that by Moreau’s identity (B.16), the proximal
mapping associated with F ∗ is easy to compute once the one associated with F is.

Primal–Dual Algorithm

Input: A ∈ Cm×N , convex functions F,G.
Parameters: θ ∈ [0, 1], τ, σ > 0 such that τσ‖A‖22→2 < 1.
Initialization: x0 ∈ CN , ξ0 ∈ Cm, x̄0 = x0.
Iteration: repeat until a stopping criterion is met at n = n̄:

ξn+1 := PF∗(σ; ξn + σAx̄n), (PD1)

xn+1 := PG(τ ;x
n − τA∗ξn+1), (PD2)

x̄n+1 := xn+1 + θ(xn+1 − xn). (PD3)

Output: Approximation ξ� = ξn̄ to a solution of the dual problem (15.16),
Approximation x� = xn̄ to a solution of the primal problem (15.15).

We will analyze this algorithm for the parameter choice θ = 1. In the case where
F ∗ or G are uniformly convex, an acceleration can be achieved by varying the
parameters θ, τ, σ during the iterations; see Notes section.

A possible stopping criterion is based on the primal–dual gap (B.30), which in
our case reads

E(x, ξ) = F (Ax) +G(x) + F ∗(ξ) +G∗(−A∗ξ) ≥ 0.

For the primal–dual optimum (x∗, ξ∗), we have E(x∗, ξ∗) = 0. The condition
E(xn, ξn) ≤ η for some prescribed tolerance η > 0 can be taken as a criterion
to stop the iterations at n.

Remark 15.5. In Examples 15.7(a) and (b) below, F can take the value∞, so that
E may also be infinite during the iterations and gives only limited information
about the quality of the approximation of the iterates to the optimal solution. In
this case, one may modify the primal–dual gap so that the value∞ does not occur.
Empirically, a modified primal–dual gap still provides a good stopping criterion.

Note that fast matrix multiplication routines forA andA∗ can easily be exploited
to speed up the primal–dual algorithm.

A variant of the algorithm is obtained by interchanging the updates for ξn+1 and
xn+1 and carrying along an auxiliary variable ξ̄

n
, that is,

xn+1 = PG(τ ;x
n − τA∗ξ̄

n
),

ξn+1 = PF∗(σ; ξn + σAxn+1),

ξ̄
n+1

= ξn+1 + θ(ξn+1 − ξn).
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The algorithm can be interpreted as a fixed-point iteration.

Proposition 15.6. A point (x�, ξ�) is a fixed point of the iterations (PD1)–(PD3)
(for any choice of θ) if and only if (x�, ξ�) is a saddle point of (15.17), that is, a
primal–dual optimal point for the problems (15.15) and (15.16).

Proof. It follows from the characterization of the proximal mapping in Proposi-
tion B.23 that a fixed point (x�, ξ�) satisfies

ξ� + σAx� ∈ ξ� + σ∂F ∗(ξ�),

x� − τA∗ξ� ∈ x� + τ∂G(x�),

where ∂F ∗ and ∂G are the subdifferentials of F ∗ and G; see Definition B.20.
Equivalently,

0 ∈ −Ax� + ∂F ∗(ξ�) and 0 ∈ A∗ξ� + ∂G(x�).

By Theorem B.21, these relations are equivalent to ξ� being a maximizer of the
function ξ �→ Re〈Ax�, ξ〉+G(x�)−F ∗(ξ) and x� being a minimizer of the function
x �→ Re〈x,A∗ξ�〉 + G(x) − F ∗(ξ�). This is equivalent to (x�, ξ�) being a saddle
point of (15.17).

These arguments show as well the converse that a saddle point of (15.17) is a
fixed point of the primal–dual algorithm. ��

Before continuing with the analysis of this algorithm, let us illustrate the setup
for various �1-minimization problems.

Example 15.7. (a) The �1-minimization problem

min
x∈CN

‖x‖1 subject to Ax = y (15.19)

is equivalent to (15.15) where G(x) = ‖x‖1 and where

F (z) = χ{y}(z) =

{
0 if z = y,

∞ if z �= y,

is the characteristic function of the singleton {y}. Note that F is trivially lower
semicontinuous. By Example B.19, the convex conjugates are given by

F ∗(ξ) = Re〈y, ξ〉,

G∗(ζ) = χBN
‖·‖∞

(ζ) =

{
0 if ‖ζ‖∞ ≤ 1,

∞ otherwise.
(15.20)

Since points where the objective function takes the value−∞ can be discarded
when maximizing, we can make such a constraint explicit so that the dual
program (15.16) becomes
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max
ξ∈Cm

−Re〈y, ξ〉 subject to ‖A∗ξ‖∞ ≤ 1.

(Note that in Appendix B.5 the dual of the �1-minimization problem is derived
in a slightly different way; see (B.32) and (B.33).) The saddle-point problem
(15.17) reads

min
x∈CN

max
ξ∈Cm

Re〈Ax − y, ξ〉+ ‖x‖1. (15.21)

The proximal mapping of F is the projection onto {y}, that is, the constant map

PF (σ; ξ) = y for all ξ ∈ C
m.

By Moreau’s identity (B.16) (or by direct computation), the proximal mapping
of F ∗ is therefore

PF∗(σ; ξ) = ξ − σy.

For the proximal mapping of G(x) = ‖x‖1, we first observe by a direct
computation that the proximal mapping of the modulus function satisfies, for
z ∈ C,

P|·|(τ ; z) = argmin
x∈C

{
1

2
|x− z|2 + τ |x|

}
=

{
sgn(z)(|z| − τ) if |z| ≥ τ,

0 otherwise,

=: Sτ (z), (15.22)

where the sign function is given by sgn(z) = z/|z| for z �= 0, as usual. The
function Sτ (z) is called (complex) soft thresholding operator. (In the real case
it is computed in (B.18).) Since the optimization problem defining the proximal
mapping of ‖ · ‖1 decouples, PG(τ ; z) =: Sτ (z) is given componentwise by

PG(τ ; z)� = Sτ (z�), � ∈ [N ]. (15.23)

The primal–dual algorithm for the �1-minimization problem (15.19) reads

ξn+1 = ξn + σ(Ax̄n − y),

xn+1 = Sτ (xn − τA∗ξn+1),

x̄n+1 = xn+1 + θ(xn+1 − xn).

(b) The quadratically constrained �1-minimization problem

min
x∈CN

‖x‖1 subject to ‖Ax− y‖2 ≤ η (15.24)
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takes the form (15.15) with G(x) = ‖x‖1 and

F (z) = χB(y,η)(z) =

{
0 if ‖z− y‖2 ≤ η,

∞ otherwise.

The function F is lower semicontinuous because the set B(y, η) is closed.
Example B.19(d) shows that its convex conjugate is given by

F ∗(ξ) = sup
z:‖z−y‖2≤η

Re〈z, ξ〉 = Re〈y, ξ〉+ η‖ξ‖2.

The convex conjugate of G is given by (15.20). The dual problem to (15.24) is
therefore

max
ξ∈Cm

−Re〈y, ξ〉 − η‖ξ‖2 subject to ‖A∗ξ‖∞ ≤ 1,

while the associated saddle-point problem is given by

min
x∈CN

max
ξ∈Cm

Re〈Ax− y, ξ〉 − η‖ξ‖2 + ‖x‖1. (15.25)

The proximal mapping of F is the orthogonal projection onto the ball
B(y, η), i.e.,

PF (σ; ξ) = argmin
ζ∈Cm:‖ζ−y‖2≤η

‖ζ − ξ‖2

=

⎧⎨
⎩

ξ if ‖ξ − y‖2 ≤ η,

y +
η

‖ξ − y‖2
(ξ − y) otherwise.

By Moreau’s identity (B.16), the proximal mapping of F ∗ is given by

PF∗(σ; ξ) =

⎧⎨
⎩

0 if ‖ξ − σy‖2 ≤ ησ,(
1− ησ

‖ξ − σy‖2

)
(ξ − σy) otherwise.

After these computations, our primal–dual algorithm for (15.24) reads

ξn+1 = PF∗(σ; ξn + σAx̄n)

=

⎧⎨
⎩

0 if ‖σ−1ξn +Ax̄n − y‖2 ≤ η,(
1− ησ

‖ξn + σ(Ax̄n − y)‖2

)
(ξn + σ(Ax̄n − y)) otherwise,

xn+1 = Sτ (xn − τA∗ξn+1),

x̄n+1 = xn+1 + θ(xn+1 − xn).
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(c) Consider the �1-regularized least squares problem

min
x∈CN

‖x‖1 +
γ

2
‖Ax− y‖22, (15.26)

with some regularization parameter γ > 0. This problem is equivalent to (15.3)
after the parameter change λ = γ−1. It can be written in the form (15.15) with
G(x) = ‖x‖1 and

F (z) =
γ

2
‖z− y‖22.

The function F is continuous in this case. It follows either from a direct
computation or from Proposition B.18(d) and (e) together with Example B.19(a)
that

F ∗(ξ) = Re〈y, ξ〉+ 1

2γ
‖ξ‖22.

The dual to (15.26) is the optimization problem

max
ξ∈Cm

−Re〈y, ξ〉 − 1

2γ
‖ξ‖22 subject to ‖A∗ξ‖∞ ≤ 1,

and the associated saddle-point problem reads

min
x∈CN

max
ξ∈Cm

Re〈Ax− y, ξ〉 − 1

2γ
‖ξ‖22 + ‖x‖1.

A direct calculation gives

PF (σ; ξ) =
σγ

σγ + 1
y +

1

σγ + 1
ξ.

By Moreau’s identity (B.16),

PF∗(σ; ξ) =
γ

γ + σ
(ξ − σy) .

With these relations, our primal–dual algorithm for the numerical solution
of (15.26) is given by

ξn+1 =
γ

γ + σ
(ξn + σ(Ax̄n − y)) ,

xn+1 = Sτ (xn − τA∗ξn+1),

x̄n+1 = xn+1 + θ(xn+1 − xn).

In the above examples, x0 = x̄0 = A∗y and ξ0 = 0 are reasonable starting
points, and if A is normalized, i.e., ‖A‖2→2 = 1, then suitable parameters are
σ = τ = 1/2. (Note that we can always renormalize the functional so that
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‖A‖2→2 = 1: For instance, with τ̃ = τ‖A‖22→2, Ã = ‖A‖−1
2→2A, and

ỹ = ‖A‖−1
2→2y, we have τ‖Ax − y‖22 = τ̃‖Ãx − ỹ‖22.) Determining the best

parameters in a specific situation is a matter of experiment.
The convergence of the primal–dual algorithm is settled by the following

theorem.

Theorem 15.8. Assume that the problem (15.17) has a saddle point. Choose θ = 1
and σ, τ > 0 such that τσ‖A‖22→2 < 1. Let (xn, x̄n, ξn) be the sequence generated
by (PD1)–(PD3). Then the sequence (xn, ξn) converges to a saddle-point (x�, ξ�)
of (15.17). In particular, (xn) converges to a minimizer of (15.15).

We develop the proof in several steps. We will require the Lagrangian

L(x, ξ) := Re〈Ax, ξ〉+G(x)− F ∗(ξ).

In order to simplify notation, we introduce, for a sequence (un)n≥0 (of scalars or
vectors), the divided difference

Δτu
n :=

un − un−1

τ
, n ∈ N.

This term can be interpreted as a discrete derivative with step size τ . We also use
Δτ for related expressions such as

Δτ‖un+1‖22 =
‖un+1‖22 − ‖un‖22

τ
.

We have the following identities which closely resemble corresponding relations for
the usual (continuous) derivative.

Lemma 15.9. Let u,un ∈ CN , n ≥ 0. Then

2Re〈Δτu
n,un − u〉 = Δτ‖u− un‖22 + τ‖Δτu

n‖22. (15.27)

Moreover, if (vn)n≥0 is another sequence of vectors, then a discrete integration by
parts formula holds, namely, for M ∈ N,

τ

M∑
n=1

(
〈Δτu

n,vn〉+ 〈un−1, Δτv
n〉
)
= 〈uM ,vM 〉 − 〈u0,v0〉. (15.28)

Proof. Set ũn = un − u. Then Δτ ũ
n = Δτu

n and

2τ〈Δτu
n,un − u〉 = 2τ〈Δτ ũ

n, ũn〉 = 2〈ũn − ũn−1, ũn〉

= 〈ũn − ũn−1, ũn + ũn−1〉+ 〈ũn − ũn−1, ũn − ũn−1〉

= 〈ũn − ũn−1, ũn + ũn−1〉+ τ2‖Δτu
n‖22.
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Noting that

Re〈ũn − ũn−1, ũn + ũn−1〉 = ‖ũn‖22 − ‖ũn−1‖22 = τΔτ‖ũn‖22
completes the proof of the first statement. Next observe that

Δτ 〈un,vn〉 =
〈un,vn〉 − 〈un−1,vn−1〉

τ
= 〈Δτu

n,vn〉+ 〈un−1, Δτv
n〉.

Summing this identity over all n ∈ [M ] and using the telescoping identity
τ
∑M

n=1Δτ 〈un,vn〉 = 〈uM ,vM 〉 − 〈u0,v0〉 gives the second statement. ��

Lemma 15.10. Let (xn, x̄n, ξn)n≥0 be the sequence generated by (PD1)–(PD3),
and let x ∈ CN , ξ ∈ Cm be arbitrary. Then, for any n ≥ 1,

1

2
Δσ‖ξ − ξn‖22 +

1

2
Δτ‖x− xn‖22 +

σ

2
‖Δσξ

n‖22 +
τ

2
‖Δτx

n‖22

≤ L(x, ξn)− L(xn, ξ) + Re〈A(xn − x̄n−1), ξ − ξn〉. (15.29)

Proof. It follows from the characterization of the proximal mapping in Proposi-
tion B.23 that the iterates satisfy the relations (replacing n+ 1 by n)

ξn−1 + σAx̄n−1 ∈ ξn + σ∂F ∗(ξn),

xn−1 − τA∗ξn ∈ xn + τ∂G(xn),

where ∂F ∗ and ∂G are the subdifferentials of F ∗ andG. By the definition (B.11) of
the subdifferential (and recalling that inner products have to be replaced by Re〈·, ·〉
when passing from the real to the complex case), this implies, for all ξ ∈ Cm and
z ∈ CN ,

Re〈−ξn + ξn−1 + σAx̄n−1, ξ − ξn〉 ≤ σF ∗(ξ)− σF ∗(ξn),

Re〈−xn + xn−1 − τA∗ξn,x− xn〉 ≤ τG(x) − τG(xn),

or, with our definition of the divided difference,

Re〈Δσξ
n, ξn − ξ〉+Re〈Ax̄n−1, ξ − ξn〉 ≤ F ∗(ξ)− F ∗(ξn),

Re〈Δτx
n,xn − x〉 − Re〈A(x − xn), ξn〉 ≤ G(x) −G(xn).

Summing both inequalities and exploiting (15.27) yields

1

2
Δσ‖ξ − ξn‖22 +

1

2
Δτ‖x− xn‖22 +

σ

2
‖Δσξ

n‖22 +
τ

2
‖Δτx

n‖22

≤ F ∗(ξ)− F ∗(ξn) +G(x) −G(xn)

+ Re〈A(x− xn), ξn〉 − Re〈Ax̄n−1, ξ − ξn〉
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= (Re〈Ax, ξn〉+G(x)− F ∗(ξn))− (Re〈Axn, ξ〉+G(xn)− F ∗(ξ))

+ Re〈A(xn − x̄n−1), ξ − ξn〉.

This finishes the proof. ��

Remark 15.11. Inequality (15.29) suggests to ideally set x̄n−1 = xn. However,
this leads to an implicit scheme, where the accordingly modified equations (PD1)
and (PD2) defining the iterations become as hard to solve as the original
problem.

Lemma 15.12. Let (xn, x̄n, ξn)n≥0 be the sequence generated by (PD1)–(PD3)
with the parameter choice θ = 1, and let x ∈ CN , ξ ∈ Cm be arbitrary. Then,
for M ≥ 1,

M∑
n=1

(L(xn, ξ)− L(x, ξn)) +
1

2τ
‖x− xM‖22 +

1− στ‖A‖22→2

2σ
‖ξ − ξM‖22

+
1−

√
στ‖A‖2→2

2τ

M−1∑
n=1

‖xn − xn−1‖22 +
1−

√
στ‖A‖2→2

2σ

M∑
n=1

‖ξn − ξn−1‖22

≤ 1

2τ
‖x− x0‖22 +

1

2σ
‖ξ − ξ0‖22. (15.30)

Proof. Note that xn − x̄n−1 = xn − xn−1 − (xn−1 − xn−2) = τ2ΔτΔτx
n =:

τ2Δ2
τx

n for n ≥ 2 and that the formula extends to n = 1 when setting x−1 = x0

because by definition x̄0 = x0. Summing inequality (15.29) from n = 1 to n = M
gives

1

2σ
(‖ξ − ξM‖22 − ‖ξ − ξ0‖22) +

1

2τ
(‖x− xM‖22 − ‖x− x0‖22)

+
1

2σ

M∑
n=1

‖ξn − ξn−1‖22 +
1

2τ

M∑
n=1

‖xn − xn−1‖22

≤
M∑
n=1

(L(x, ξn)− L(xn, ξ)) + τ2
M∑
n=1

Re〈AΔ2
τx

n, ξ − ξn〉. (15.31)

Next we exploit the discrete integration by parts formula (15.28) and Δτx
0 = 0 to

reach
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τ2
M∑
n=1

Re〈AΔ2
τx

n, ξ − ξn〉

= τ2
M∑
n=1

Re〈AΔτx
n−1, Δτξ

n〉+ τ Re〈AΔτx
M , ξ − ξM 〉

= στ

M∑
n=1

Re〈AΔτx
n−1, Δσξ

n〉+ τ Re〈Δτx
M ,A∗(ξ − ξM )〉.

Since 2ab ≤ αa2 + α−1b2 for positive a, b, α, we have

στ Re〈AΔτx
n−1, Δσξ

n〉 ≤ στ‖A‖2→2‖Δτx
n−1‖2‖Δσξ

n‖2

≤ στ‖A‖2→2

2

(
α‖Δτx

n−1‖22 + α−1‖Δσξ
n‖22
)

≤ σα‖A‖2→2

2τ
‖xn−1 − xn−2‖22 +

τ‖A‖2→2

2ασ
‖ξn − ξn−1‖22.

We choose α =
√
τ/σ to obtain

στ Re〈AΔτx
n−1, Δσξ

n〉

≤
√
στ‖A‖2→2

2τ
‖xn−1 − xn−2‖22 +

√
στ‖A‖2→2

2σ
‖ξn − ξn−1‖22. (15.32)

Furthermore, we have

τ Re〈Δτx
M ,A∗(ξ − ξM )〉 ≤ τ

2

(
‖Δτx

M‖22 + ‖A‖22→2‖ξ − ξM‖22
)

=
1

2τ
‖xM − xM−1‖22 +

στ‖A‖22→2

2σ
‖ξ − ξM‖22.

Substituting these estimates into the second sum in (15.31) and using the fact that
x−1 = x0 yields

τ2
M∑
n=1

Re〈AΔ2
τx

n, ξ − ξn〉

≤
√
στ‖A‖2→2

2τ

M−1∑
n=1

‖xn − xn−1‖22 +
√
στ‖A‖2→2

2σ

M∑
n=1

‖ξn − ξn−1‖22

+
1

2τ
‖xM − xM−1‖22 +

στ‖A‖22→2

2σ
‖ξ − ξM‖22.

Together with inequality (15.31), we arrive at the claim. ��
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Corollary 15.13. Let (x�, ξ�) be a primal–dual optimum, that is, a saddle point
of (15.17). Then the iterates of the primal–dual algorithm with θ = 1 and
στ‖A‖2→2 < 1 satisfy

1

2σ
‖ξ� − ξM‖22 +

1

2τ
‖x� − xM‖22 ≤ C

(
1

2σ
‖ξ� − ξ0‖22 +

1

2τ
‖x� − x0‖22

)
,

where C = (1 − στ‖A‖22→2)
−1. In particular, the iterates (xn, ξn) are bounded.

Proof. For a saddle-point (x�, ξ�), the summands L(xn, ξ�) − L(x�, ξn) are all
nonnegative, so that every term on the left-hand side of (15.30) is nonnegative. We
obtain in particular

1

2τ
‖x�−xM‖22+

1− στ‖A‖22→2

2σ
‖ξ�− ξM‖22 ≤

1

2τ
‖x�−x0‖22+

1

2σ
‖ξ�− ξ0‖22.

This yields the claim. ��

We are now in a position to complete the convergence proof for the primal–dual
algorithm.

Proof (of Theorem 15.8). We first note that the boundedness of the sequence
(xn, ξn) established in Corollary 15.13 implies the existence of a convergent subse-
quence, say (xnk , ξnk)→ (x◦, ξ◦) as k →∞. Choosing (x, ξ) to be a saddle-point
(x�, ξ�) in (15.30) makes all terms nonnegative, and we derive in particular that

1−
√
στ‖A‖2→2

2σ

M−1∑
n=1

‖xn − xn−1‖22 ≤
1

2τ
‖x− x0‖22 +

1

2σ
‖ξ − ξ0‖22.

Since the right-hand side is independent of M , and since
√
στ‖A‖2→2 < 1, we

deduce that ‖xn − xn−1‖2 → 0 as n → ∞. Similarly, ‖ξn − ξn−1‖2 → 0.
In particular, the subsequence (xnk−1, ξnk−1) converges to (x◦, ξ◦), too. It follows
that (x◦, ξ◦) is a fixed point of the primal–dual algorithm, so that by Proposi-
tion 15.6, it is a primal–dual optimal point (or saddle point).

We choose (x, ξ) = (x◦, ξ◦) in (15.29), so that L(xn, ξ◦)− L(x◦, ξn) ≥ 0. We
now proceed similarly to the proof of Lemma 15.12. Summing (15.29) from n = nk
to n = M > nk results in

1

2σ
(‖ξ◦ − ξM‖22 − ‖ξ◦ − ξnk‖22) +

1

2τ
(‖x◦ − xM‖22 − ‖x◦ − xnk‖22)

+
1

2σ

M∑
n=nk

‖ξn − ξn−1‖22 +
1

2τ

M∑
n=nk

‖xn − xn−1‖22

≤τ2
M∑

n=nk

Re〈AΔ2
τx

n, ξ◦ − ξn〉. (15.33)
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Discrete integration by parts (15.28) yields

τ2
M∑

n=nk

Re〈AΔ2
τx

n, ξ◦ − ξn〉

= στ

M∑
n=nk

Re〈AΔτx
n−1, Δσξ

n〉+ τ Re〈AΔτx
M , ξ◦ − ξM 〉

− τ Re〈AΔτx
nk−1, ξ◦ − ξnk〉.

Inequality (15.32) therefore implies

1

2σ
‖ξ◦ − ξM‖22 +

1

2τ
‖x◦ − xM‖22 +

1−
√
στ‖A‖2→2

2σ

M∑
n=nk

‖ξn − ξn−1‖22

+
1−

√
στ‖A‖2→2

2τ

M−1∑
n=nk

‖xn − xn−1‖22

+
1

2τ

(
‖xM − xM−1‖22 −

√
στ‖A‖2→2‖xnk−1 − xnk−2‖22

)

− Re〈A(xM − xM−1), ξ◦ − ξM 〉+Re〈A(xnk−1 − xnk−2), ξ◦ − ξnk〉

≤ 1

2σ
‖ξ◦ − ξnk‖22 +

1

2τ
‖x◦ − xnk‖22.

In view of limn→∞ ‖xn − xn−1‖2 = limn→∞ ‖ξn − ξn−1‖2 = 0 and of
limk→∞ ‖x◦ − xnk‖2 = limk→∞ ‖ξ◦ − ξnk‖2 = 0, it finally follows that
limM→∞ ‖x◦ − xM‖2 = limM→∞ ‖ξ◦ − ξM‖2 = 0. We have established the
claim. ��

15.3 Iteratively Reweighted Least Squares

We now turn to an iterative algorithm that serves as a proxy for �1-minimization.
It does not always compute an �1-minimizer, but provides similar error estimates
under the null space property.

The starting point is the trivial observation that |t| = |t|2/|t| for t �= 0. Therefore,
an �1-minimization can be recast as a weighted �2-minimization in the following
sense: For A ∈ C

m×N with m ≤ N , if x� is a minimizer of

min
x∈CN

‖x‖1 subject to Ax = y (15.34)
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and if x�j �= 0 for all j ∈ [N ], then x� is also a minimizer of the weighted �2-problem

min
x∈CN

N∑
j=1

|xj |2|x�j |−1 subject to Ax = y.

This reformulation is advantageous because minimizing the smooth quadratic
function |t|2 is an easier task than minimizing the nonsmooth function |t|. However,
as obvious drawbacks, we neither know x� a priori (this is the vector we would like
to compute!) nor can we expect that x�j �= 0 for all j ∈ [N ], since one targets sparse
solutions. In fact, by Theorem 3.1, the �1-minimizer is always m-sparse in the real
case provided it is unique.

Nevertheless, the above observation motivates us to iteratively solve weighted
�1-minimization problems, where the weight in the current iterate is computed from
the solution of the weighted least squares problem of the previous iterate.

Key to the formulation and analysis of the algorithm is the functional

J (x,w, ε) =
1

2

[ N∑
j=1

|xj |2wj +
N∑
j=1

(ε2wj + w−1
j )

]
, (15.35)

where x ∈ CN , ε ≥ 0, and w ∈ RN is a positive weight vector, i.e., wj > 0
for all j ∈ [N ]. The formulation of the algorithm below uses the nonincreasing
rearrangement (xn)∗ ∈ RN of the iterate xn ∈ CN ; see Definition 2.4.

Iteratively reweighted least squares (IRLS)

Input: A ∈ Cm×N , y ∈ Cm.
Parameter: γ > 0, s ∈ [N ].
Initialization: w0 = [1, 1, . . . , 1]� ∈ RN , ε0 = 1.
Iteration: repeat until εn = 0 or a stopping criterion is met at n = n̄:

xn+1 := argmin
z∈CN

J (z,wn, εn) subject to Az = y, (IRLS1)

εn+1 := min{εn, γ (xn+1)∗s+1}, (IRLS2)

wn+1 := argmin
w>0

J (xn+1,w, εn+1). (IRLS3)

Output: A solution x� = xn̄ of Ax = y, approximating the sparsest one.

Since wn and εn are fixed in the minimization problem (IRLS1), the second
sum in the definition (15.35) of J is constant, so that xn+1 is the minimizer of the
weighted least squares problem

min
z∈CN

‖z‖2,wn subject to Az = y,
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where ‖z‖2,wn =
(∑N

j=1 |zj |2wnj
)1/2

. By (A.35), the minimizer xn+1 is given

explicitly by the formula xn+1 = D
−1/2
wn (AD

−1/2
wn )†y, where (AD

−1/2
wn )† denotes

the Moore–Penrose pseudo-inverse of AD
−1/2
wn (see Definition A.19) and where

Dwn = diag [wn1 , . . . , w
n
N ] is the diagonal matrix determined by the weight wn. If

A has full rank (which is usually the case in the setting of compressive sensing),
then (A.36) yields

xn+1 = D−1
wnA∗(AD−1

wnA∗)−1y,

where D−1
wn = diag [1/wn1 , . . . , 1/w

n
N ]. In particular, we can write

xn+1 = D−1
wnA∗v where AD−1

wnA∗v = y, (15.36)

so that computing xn+1 involves solving the above linear system for the vector v.
We refer to Appendix A.3 for more information on least squares and weighted least
squares problems.

Remark 15.14. If A provides a fast matrix multiplication algorithm as in situations
described in Chap. 12, then it is not advisable to solve the linear system of
equations in (15.36) by a direct method such as Gaussian elimination because it
does not exploit fast forward transforms. Instead, one preferably works with iterative
methods such as conjugate gradients, which use only forward applications of A and
A∗ in order to approximately solve for xn+1. However, determining the accuracy
required in each step to ensure overall convergence is a subtle problem; see also the
Notes section.

The minimization in (IRLS3) can be performed explicitly, namely,

wn+1
j =

1√
|xn+1
j |2 + ε2n+1

, j ∈ [N ]. (15.37)

This formula also illustrates the role of εn. While for the naive approach above,
the suggested weight wn+1

j = |xn+1
j |−1 may grow unboundedly when xn+1

j

approaches zero, the introduction of εn+1 regularizes wn+1—in particular, we have
‖wn+1‖∞ ≤ ε−1

n+1. Nevertheless, during the iterations we aim at approaching the
�1-minimizer, which requires εn to decrease with n. The choice (IRLS2) indeed
ensures that εn does not grow. When xn tends to an s-sparse vector, then εn
tends to zero. In particular, the parameter s of the algorithm controls the desired
sparsity.

We point out that other update rules for εn+1 or for the weight wn+1 are possible;
see also the Notes section.

The formulation of the main convergence result for the algorithm requires to
introduce, for ε > 0, the auxiliary functional
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Fε(x) :=

N∑
j=1

√
|xj |2 + ε2 (15.38)

and the optimization problem

min
z∈CN

Fε(z) subject to Az = y. (15.39)

We denote by x(ε) its minimizer, which is unique by strict convexity of Fε.
The recovery theorem for iteratively reweighted least squares below is based

on the stable null space property (Definition 4.11) and closely resembles the
corresponding statements for �1-minimization. Recall that it was shown in Sect. 9.4
that Gaussian random matrices satisfy the null space property with high probability
under appropriate conditions. Moreover, the stable null space property is a con-
sequence of the restricted isometry property (Theorem 6.13), so that the various
random matrices considered in this book also satisfy the stable null space property
under appropriate conditions.

Theorem 15.15. Assume that A ∈ Cm×N satisfies the stable null space property
of order s with constant ρ < 1. For x ∈ CN and y = Ax ∈ Cm, the sequence (xn)
generated by the IRLS algorithm with parameters γ and s has a limit x� ∈ CN .
Moreover:

(a) If limn→∞ εn = 0, then x� is an s-sparse �1-minimizer of (15.34) and

‖x− x�‖1 ≤
2(1 + ρ)

1− ρ
σs(x)1, (15.40)

so that exact recovery occurs if x is s-sparse.
(b) If ε := limn→∞ εn > 0, then x� is a minimizer of (15.39) and

‖x− x�‖1 ≤
3 + ρ

(1− ρ)− (1 + ρ)Nγ/(s+ 1− s̃)
σs̃(x)1 (15.41)

whenever s̃ < s + 1 − (1 + ρ)Nγ/(1 − ρ). For instance, if ρ < 1/3 and
γ = 1/(2N), then

‖x− x�‖1 ≤
2(3 + ρ)

1− 3ρ
σs(x)1.

(c) With ρ < 1/3 and γ = 1/(2N), if x is s-sparse, then necessarily x� = x and
limn→∞ εn = 0.

Remark 15.16. Other versions of part (c) with different values of γ and ρ are valid
when making the stronger assumption that x is s̃-sparse with s̃ < s + 1 − (1 + ρ)
Nγ/(1− ρ).
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We develop the proof of this theorem in several steps. We start with some
properties of the iterates.

Lemma 15.17. Let xn and wn be the iterates of the IRLS algorithm. Then, for
n ≥ 1,

J (xn,wn, εn) =

N∑
j=1

√
|xnj |2 + ε2n = Fεn(x

n) (15.42)

and

J (xn,wn, εn) ≤ J (xn,wn−1, εn) ≤ J (xn,wn−1, εn−1) (15.43)

≤ J (xn−1,wn−1, εn−1). (15.44)

Moreover, the sequence (xn) is bounded, namely,

‖xn‖1 ≤ J (x1,w0, ε0) =: B, n ≥ 1, (15.45)

and the weights wn are bounded from below, namely,

wnj ≥ B−1, j ∈ [N ], n ≥ 1. (15.46)

Proof. The relation (15.42) is derived from (15.35) and (15.37) by an easy
calculation.

The first inequality in (15.43) follows from the minimization property defining
wn, the second from εn ≤ εn−1, and the inequality (15.44) is a consequence of the
minimization property defining xn.

It now follows from (15.42) that

‖xn‖1 ≤
N∑
j=1

√
|xnj |2 + ε2n = J (xn,wn, εn) ≤ J (x1,w0, ε0) = B,

where the last inequality uses (15.43). This establishes (15.45). Finally,

(wnj )
−1 =
√
|xnj |2 + ε2n ≤ J (xn,wn, εn) ≤ B, j ∈ [N ],

yields (15.46). ��

Note that (15.44) says that each iteration decreases the value of the functionalJ .
As the next step, we establish that the difference of successive iterates converges to
zero.

Lemma 15.18. The iterates of the IRLS algorithm satisfy

∞∑
n=1

‖xn+1 − xn‖22 ≤ 2B2,

where B is the constant in (15.45). Consequently, limn→∞(xn+1 − xn) = 0.
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Proof. The monotonicity property in (15.43) implies

2
(
J (xn,wn, εn)− J (xn+1,wn+1, εn+1)

)
≥ 2
(
J (xn,wn, εn)− J (xn+1,wn, εn)

)

=

N∑
j=1

(|xnj |2 − |xn+1
j |2)wnj = Re〈xn + xn+1,xn − xn+1〉wn ,

where we have used the weighted inner product 〈x, z〉w =
∑N

j=1 xjzjwj . By their
definitions in (IRLS1), both xn and xn+1 satisfy Axn = y = Axn+1, so that
xn − xn+1 ∈ kerA. The characterization (A.37) of the minimizer of a weighted
least squares problem implies that Re〈xn+1,xn − xn+1〉wn = 0. Therefore, from
the above inequality,

2
(
J (xn,wn, εn)− J (xn+1,wn+1, εn+1)

)
≥ Re〈xn − xn+1,xn − xn+1〉wn = ‖xn − xn+1‖22,wn

=

N∑
j=1

wnj |xnj − xn+1
j |2 ≥ B−1‖xn − xn+1‖22,

where we have used (15.46) in the last step. Summing these inequalities over n
shows that

∞∑
n=1

‖xn − xn+1‖22 ≤ 2B

∞∑
n=1

(
J (xn,wn, εn)− J (xn+1,wn+1, εn+1)

)

≤ 2BJ (x1,w1, ε1) ≤ 2B2,

by Lemma 15.17. ��

We now characterize the minimizerx(ε) of Fε; see (15.38) and (15.39). We recall
that x(ε) is unique by strict convexity of Fε.

Lemma 15.19. Given ε > 0, the minimizer x(ε) of Fε is characterized by

Re〈x(ε),v〉wz,ε = 0 for all v ∈ kerA,

where (wz,ε)j = (|zj |2 + ε2)−1/2.

Proof. First assume that z = x(ε) is the minimizer of (15.39). For an arbitrary
v ∈ kerA, consider the differentiable function

G(t) = Fε(z + tv)− Fε(z), t ∈ R.
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By the minimizing property and the fact that A(z+ tv) = y for all t ∈ R, we have
G(t) ≥ G(0) = 0 for all t ∈ R, so that G′(0) = 0. By a direct calculation,

G′(0) =
N∑
j=1

Re(zjvj)√
|zj |2 + ε2

= Re〈z,v〉wz,ε ,

and consequently Re〈z,v〉wz,ε = 0 for all v ∈ kerA.
Conversely, assume that z satisfies Az = y and Re〈z,v〉wz,ε = 0 for all

v ∈ kerA. By convexity of the function f(u) :=
√
|u|2 + ε2, u ∈ C, and

Proposition B.11(a), we have for any u, u0 ∈ C,

√
|u|2 + ε2 ≥

√
|u0|2 + ε2 +

Re(u0(u − u0))√
|u0|2 + ε2

.

Therefore, for any v ∈ kerA, we have

Fε(z+ v) ≥ Fε(z) +
N∑
j=1

Re(zjvj)√
|zj |2 + ε2

= Fε(z) + Re〈z,v〉wz,ε = Fε(z).

Since v ∈ kerA is arbitrary, it follows that z is a minimizer of (15.39). ��

Now we are in a position to prove Theorem 15.15 on the convergence of the
iteratively reweighted least squares algorithm.

Proof (of Theorem 15.15). We first note that the sequence (εn) always converges
since it is nonincreasing and bounded from below. We denote by ε its limit.

(a) Case ε = 0: First assume that εn0 = 0 for some n0 ≥ 1. Then the algorithm
stops and we can set xn = xn0 for n ≥ n0, so that limn→∞ xn = xn0 = x�. By
definition of εn0 , the nonincreasing rearrangement of the current iterate satisfies
(xn0)∗s+1 = 0, so that x� = xn0 is s-sparse. The null space property of order
s guarantees that x� is the unique �1-minimizer of (15.34). In addition, if x is
s-sparse, then x is also the unique �1-minimizer, so that x = x�. For a general
x ∈ CN , not necessarily s-sparse, it follows from Theorem 4.12 that

‖x− x�‖1 ≤
2(1 + ρ)

1− ρ
σs(x)1.

Now assume that εn > 0 for all n ≥ 1. Since limn→∞ εn = 0, there exists
an increasing sequence of indices (nj) such that εnj < εnj−1 for all j ≥ 1. By
definition (IRLS2) of εn, this implies that the nonincreasing rearrangement of
xnj satisfies

(xnj )∗s+1 < γ−1εnj−1, j ≥ 1.
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Since (15.45) shows that the sequence (xn) is bounded, there exists a subse-
quence (nj�) of (nj) such that (xnj� ) converges to some x� satisfyingAx� = y.
It follows from the Lipschitz property (2.1) of the nonincreasing rearrangement
that also (xnj� )∗ converges to (x�)∗, so that

(x�)∗s+1 = lim
�→∞

(xnj� )∗s+1 ≤ lim
�→∞

γ−1εnj�
= 0.

This shows that x� is s-sparse. As above the null space property of order s
guarantees that x� is the unique �1-minimizer. We still need to prove that the
whole sequence (xn) converges to x�. Since xnj� → x� and εnj�

→ 0 as
�→∞, the identity (15.42) implies that

lim
�→∞

J (xnj� ,wnj� , εnj�
) = ‖x�‖1.

It follows from the monotonicity properties in (15.43) and (15.44) that
limn→∞ J (xn,wn, εn) = ‖x�‖1. From (15.42), we deduce that

J (xn,wn, εn)−Nεn ≤ ‖xn‖1 ≤ J (xn,wn, εn),

so that limn→∞ ‖xn‖1 = ‖x�‖1. By the stable null space property and
Theorem 4.14, we finally obtain

‖xn − x�‖1 ≤
1 + ρ

1− ρ

(
‖xn‖1 − ‖x�‖1

)
.

Since the right-hand side converges to zero, this shows that xn → x�. The error
estimate (15.40) follows from Theorem 4.12 as above.

(b) Case ε > 0: We first show that xn → x(ε), where x(ε) is the minimizer
of (15.39). By Lemma 15.17 the sequence (xn) is bounded, so that it has
cluster points. Let (xn�) be a convergent subsequence with limit x�. We claim
that x� = x(ε), which by uniqueness of x(ε) implies that every convergent
subsequence converges to x�, therefore the whole sequence (xn) converges to
x� as n→∞.

From wnj = (|xnj |2 + ε2)−1/2 ≤ ε−1, we obtain

lim
�→∞

wn�
j = (|x�j |2 + ε2)−1/2 = (wx�,ε)j =: w�j , j ∈ [N ],

where we have used the same notation as in Lemma 15.19. Lemma 15.18
ensures that also xn�+1 converges to x�. By the characterization (A.37) of
xn�+1 as the minimizer of (IRLS1), we have, for every v ∈ kerA,

Re〈x�,v〉w� = lim
�→∞

Re〈xn�+1,v〉wn� = 0.
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The characterization in Lemma 15.19 implies that x� = x(ε).
Now we show the error estimate (15.41). For our x ∈ C

N with Ax = y, the
minimizing property of x(ε) yields

‖x(ε)‖1≤Fε(x(ε))≤Fε(x)=
N∑
j=1

√
|xj |2 + ε2 ≤ Nε+

N∑
j=1

|xj |=Nε+ ‖x‖1.

It follows from the stable null space property of order s̃ ≤ s and Theorem 4.14
that

‖x(ε) − x‖1 ≤
1 + ρ

1− ρ

(
‖x(ε)‖1 − ‖x‖1 + 2σs̃(x)1

)
≤ 1 + ρ

1− ρ

(
Nε+ 2σs̃(x)1

)
.

(15.47)

We have, by (IRLS2),

ε ≤ γ(x(ε))∗s+1

and, according to (2.3),

(s+ 1− s̃)(xε)∗s+1 ≤ ‖x(ε) − x‖1 + σs̃(x)1.

Hence, we deduce that

ε ≤ γ

s+ 1− s̃

(
‖x(ε) − x‖1 + σs̃(x)1

)
.

We substitute this inequality into (15.47) to obtain

‖x(ε) − x‖1 ≤
1 + ρ

1− ρ

(
Nγ

s+ 1− s̃
‖x(ε) − x‖1 +

(
Nγ

s+ 1− s̃
+ 2

)
σs̃(x)1

)
.

Rearranging and using the assumption that (1 + ρ)Nγ/(s + 1 − s̃) < 1 − ρ
yields

(
(1− ρ)− (1 + ρ)Nγ

s+ 1− s̃

)
‖x(ε) − x‖1 ≤ (1 + ρ)

(
Nγ

s+ 1− s̃
+ 2

)
σs̃(x)1

≤ ((1− ρ) + 2(1 + ρ))σs̃(x)1 = (3 + ρ)σs̃(x)1.

This is the desired result. The conclusion for ρ < 1/3 and γ = 1/(2N) is then
immediate.

(c) For ρ < 1/3 and γ = 1/(2N), we observe that x� = x by (15.41), so
that also x� is s-sparse. But this implies that (x�)∗s+1 = 0 and therefore
ε = limn→∞ εn = 0 by definition (IRLS2) of εn. ��
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We conclude this section with an estimate on the rate of convergence of
the iteratively reweighted least squares algorithm. The estimated rate starts only
when the iterates are close enough to the limit. Nothing is said about the initial
phase, although experience reveals that the initial phase does not take overly long.
The estimate for the exactly sparse case below shows linear convergence in the
�1-norm.

Theorem 15.20. Assume that A ∈ Cm×N satisfies the stable null space property
of order s with constant ρ < 1/3. Let κ ∈ (0, 1) be such that

μ :=
3ρ(1 + ρ)

2(1− κ)
< 1.

For an s-sparse x ∈ CN and for y = Ax ∈ Cm, the sequence (xn) produced by
the IRLS algorithm with parameters γ = 1/(2N) and s converges to x.

If n0 ≥ 1 is such that

‖x− xn0‖1 ≤ R := κ min
j∈supp(x)

|xj |,

then, for all n ≥ n0, we have

‖x− xn+1‖1 ≤ μ‖x− xn‖1, (15.48)

hence, ‖xn − x‖1 ≤ μn−n0‖xn0 − x‖1 for all n ≥ n0.

Proof. First notice that xn → x as n → ∞ by Theorem 15.15(c). Let us
denote vn = xn − x ∈ kerA. By the minimizing property (IRLS1) of xn+1 and
the characterization of the minimizer in (A.37), we have

0 = Re〈xn+1,vn+1〉wn = Re〈x+ vn+1,vn+1〉wn .

Denoting S = supp(x) and rearranging terms gives

N∑
j=1

|vn+1
j |2wnj = −Re

⎛
⎝∑
j∈S

xjv
n+1
j wnj

⎞
⎠ = −Re

⎛
⎝∑
j∈S

xj√
|xnj |2 + ε2n

vn+1
j

⎞
⎠ .

(15.49)

Now let n ≥ n0, so that En := ‖x− xn‖1 ≤ R. Then, for j ∈ S,

|vnj | ≤ ‖vn‖1 = En ≤ κ|xj |,

so that
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|xj |√
|xnj |2 + ε2n

≤ |xj ||xnj |
=

|xj |
|xj + vnj |

≤ 1

1− κ
. (15.50)

By combining (15.49) and (15.50) with the stable null space property, we reach

N∑
j=1

|vn+1
j |2wnj ≤

1

1− κ
‖vn+1

S ‖1 ≤
ρ

1− κ
‖vn+1

S
‖1.

The Cauchy–Schwarz inequality yields

‖vn+1

S
‖21 ≤

⎛
⎝∑
j∈S

|vn+1
j |2wnj

⎞
⎠
⎛
⎝∑
j∈S

√
|xnj |2 + ε2n

⎞
⎠

≤

⎛
⎝ N∑
j=1

|vn+1
j |2wnj

⎞
⎠ (‖vn‖1 +Nεn)

≤ ρ

1− κ
‖vn+1

S
‖1(‖vn‖1 +Nεn). (15.51)

This implies that

‖vn+1

S
‖1 ≤

ρ

1− κ
(‖vn‖1 +Nεn).

Furthermore, by definition of εn and due to (2.1), we have

εn ≤ γ(xn)∗s+1 =
1

2N

(
(xn)∗s+1 − (x)∗s+1

)
≤ 1

2N
‖xn − x‖∞ ≤ 1

2N
‖vn‖1.

Thus,

‖vn+1

S
‖1 ≤

3ρ

2(1− κ)
‖vn‖1,

and finally, using the stable null space property, we arrive at

‖vn+1‖1 ≤ (1 + ρ)‖vn+1

S
‖1 ≤

3ρ(1 + ρ)

2(1− κ)
‖vn‖1,

as announced. ��

Remark 15.21. The precise update rule (IRLS2) for εn is not essential for the
analysis. When ‖x− xn0‖1 ≤ R, the inequality ‖x− xn+1‖1 ≤ μ0(‖x− xn‖1 +
Nεn) with μ0 = ρ(1 + ρ)/(1 − κ) is still valid. The rule (IRLS2) only guarantees
that ‖x− xn0‖1 ≤ R is indeed satisfied for some n0 by Theorem 15.15.
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Notes

As outlined in Chap. 3, the basic �1-minimization problem (BP) is equivalent to
the linear optimization problem (P′

1) in the real case and to the second-order cone
problem (P′

1,η) (with η = 0) in the complex case. For such problems, general
purpose optimization algorithms apply, including the well-known simplex method
[369] and the more recent interior point methods [70, 369].

The homotopy method—or modified LARS—was introduced and analyzed in
[169, 177, 376, 377]. Theorem 15.2 was shown in [177]. A Mathematica imple-
mentation is described in [335]. It is also able to deal with the weighted case
minx∈RN

∑
� |x�|w� subject to Ax = y with nonnegative weights w� ≥ 0 (the

case w� = 0 needs special treatment).
The adaptive inverse scale space method [79] is another fast �1-minimization al-

gorithm, which resembles the homotopy method. It builds up the support iteratively.
At each step, however, one solves a least squares problem with a nonnegativity
constraint instead of a system of linear equations. Like the homotopy method, the
inverse scale space method seems to apply only for the real-valued case.

The primal–dual algorithm of Sect. 15.2 was first introduced for a special case in
[396]. In full generality, it was presented and analyzed by Chambolle and Pock
in [107]. They showed that the algorithm converges with the rate O(1/n); see
Exercise 15.7 for details. For the case where either F ∗ or G is strongly convex
with known strong convexity constant γ in (B.6), a modification of the algorithm
where θ, τ, σ are varying throughout the iterations is introduced in [107]. This
variant has an improved convergence rate O(1/n2). On the other hand, it was
proved by Nesterov [367] that the convergence rate O(1/n) cannot be improved
for general convex functions F,G, so that in this sense the rate of Theorem 15.8
is optimal. Also note that for the basis pursuit problems in Examples 15.7(a) and
(b), the strong convexity assumptions fail and only the described basic primal–dual
algorithm applies. But for Example (15.7)(c) the modified algorithm does apply. A
preconditioned version of the primal–dual algorithm is described in [395]. It may be
faster than the original method for certain problems and has the additional advantage
that the parameters σ and τ are set automatically.

The proof technique involving the discrete derivative (see Lemma 15.9) was
introduced by Bartels in [32]. The main motivations of Chambolle and Pock for
their algorithm were total variation and related minimization problems appearing
in imaging applications [107]. The parameter choice θ = 0 in (PD3) yields the
Arrow–Hurwicz method [20, 518]. Chambolle and Pock’s algorithm is also related
to Douglas–Rachford splitting methods [328]; see below and [107] for more details
on this relation. In [264], it is shown that the primal–dual algorithm, modified with
a correction step, converges also for values of θ in [−1, 1] for suitable choices of σ
and τ . Further primal–dual algorithms for �1-minimization based on the so-called
Bregman iterations, including the inexact Uzawa algorithm, are discussed in [517,
Sect. 5]; see also [516].
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The iteratively reweighted least squares algorithm of Sect. 15.3 was introduced
and analyzed in [139]. The result on the convergence rate of Theorem 15.20 can
be extended to approximately sparse vectors; see [139, Theorem 6.4]. Moreover,
it is shown in [139] that a variant of the algorithm where the update rule for
the weight is motivated by �p-minimization with p < 1 converges superlinearly
in a neighborhood of the limit (provided it converges at all). Approximating
�p-minimizers via iteratively reweighted least squares has also been proposed earlier
by Chartrand and coauthors; see the empirical analyses in [109–111].

In order to speed up the intermediate least squares steps—in particular, when a
fast matrix–vector multiplication is available—one may use the conjugate gradient
method in [303] for computing an approximate least squares solution. Denoting
τn = ‖xn − x̂n‖2wn with xn being the computed iterate and x̂n the true weighted
�2-minimizer, it is shown in [511] that a sufficient condition on the accuracy τn to
ensure overall convergence is

τn ≤
a2nε

2
n

‖xn−1‖2wn(‖xn−1‖∞ + εn−1)2

for a positive sequence (an) satisfying
∑∞

n=1 an <∞.
A variant of iteratively reweighted least squares for low-rank matrix recovery is

contained in [205]. Translating the corresponding algorithm back to the vector case,
this paper considers a slightly different update rule for the weight, namely,

wn+1
j = min{|xn+1

j |−1, ε−1
n }.

Convergence results can also be shown for this variant; see [205] for precise
statements. Versions of iteratively reweighted least squares methods appeared also
earlier in [121, 318, 375].

Further Algorithms for �1-Minimization. In order to broaden the picture on
algorithms for �1-minimization (and more general optimization problems), let us
briefly describe several other approaches. More information can be found, for
instance, in [70, 128, 369], [451, Chap. 7].

Probing the Pareto curve. The so-called SPGL1 method [493] solves the
�1-minimization problem

min
x
‖x‖1 subject to ‖Ax− y‖2 ≤ σ (15.52)

for a given value of σ ≥ 0 (so that σ = 0 also covers the equality-constrained
�1-minimization problem). Both the real case x ∈ RN and the complex case
x ∈ CN can be treated by this method. It proceeds by solving a sequence of
instances of the LASSO problem

min
x
‖Ax− y‖2 subject to ‖x‖1 ≤ τ (15.53)
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for varying values of the parameter τ (recall Proposition 3.2 on the relation of the
problems (15.52) and (15.53)). Denoting by xτ the optimal solution of (15.53) and
by rτ = y −Axτ the corresponding residual, the function

φ(τ) = ‖rτ‖2

gives the optimal value of (15.53) for τ ≥ 0. It provides a parametrization of the
so-called Pareto curve, which defines the optimal tradeoff between the residual term
‖Ax− y‖2 and ‖x‖1. We now search for a solution τσ of

φ(τ) = σ

via Newton’s method. The corresponding minimizer xτσ of (15.53) for τ = τσ
yields a minimizer of (15.52). It is shown in [493] that the functionφ is differentiable
on (0, τ0), where τ0 is the minimal value of τ such that φ(τ) = 0 (assuming that A
has full rank). Its derivative satisfies φ′(τ) = −λτ , where λτ is the solution of the
dual problem of (15.53). With this information, Newton’s method τk+1 = τk+Δτk
with Δτk := (σ − φ(τk))/φ

′(τk) can be invoked.
The intermediate LASSO problem (15.53) for τ = τk is solved via the spectral

projected gradient (SPG) method [49]. This iterative method starts with an initial
point x0 and in each step updates the current iterate xn by selecting an appropriate
point xn+1 on the projected gradient path α �→ Pτ (x

n − α∇f(xn)), where
∇f(x) = A∗(Ax − y) is the gradient of f(x) = 1

2‖Ax − y‖22 (which is a
multiple of the squared objective function) and where Pτ (x) is the orthogonal
projection onto the scaled �1-unit ball, i.e.,

Pτ (x) = argmin{‖z− x‖2 : ‖z‖1 ≤ τ}.

This orthogonal projection can be computed efficiently; see [493] or [140] for de-
tails. Note also the relation to the proximal mapping of the �∞-norm (Exercise 15.4).
The rule for selecting the update xn+1 on the projected gradient path described in
[49,493] ensures that xn converges to a minimizer of (15.53). A similar method for
computing the solution of (15.53) is contained in [140].

For more details on the SPGL1 method, the reader should consult [493].

Forward–backward splitting methods. Consider a general optimization problem
of the form

min
x
F (x) +G(x) (15.54)

for a differentiable convex function F : CN → R and a lower semicontinuous
convex function G : CN → (−∞,∞] satisfying F (x) + G(x) → ∞ as ‖x‖2 →
∞. Then a minimizer of (15.54) exists. We assume that the gradient ∇F of F is
L-Lipschitz, i.e.,

‖∇F (x)−∇F (y)‖2 ≤ L‖x− y‖2 for all x,y ∈ C
N .
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By Theorem B.21, a vector x is a minimizer of (15.54) if and only if 0 ∈ ∇F (x) +
∂G(x). For any τ > 0, this is equivalent to

x− τ∇F (x) ∈ x+ τ∂G(x).

By Proposition B.23, a minimizer of (15.54) therefore satisfies the fixed-point
equation

x = PG(τ ;x − τ∇F (x)),

where PG(τ ; ·) = PτG denotes the proximal mapping associated with G. Motivated
by this relation, the basic forward–backward splitting method starts with some point
x0 and performs the iteration

xn+1 = PG(τ ;x
n − τ∇F (xn)). (15.55)

The computation of zn = x − τ∇F (xn) is called a gradient or forward step. By
Proposition B.23, the iterate xn+1 = PG(τ ; z

n) satisfies

xn+1 − zn

τ
∈ ∂G(xn+1),

so that this step can be viewed as an implicit subgradient step, also called backward
step. (The iteration scheme (15.55) is referred to as splitting method because the
objective function H(x) = F (x) + G(x) is split into its components F and G
in order to define the algorithm.) We remark that, on the one hand, if G = 0,
then (15.55) reduces to the gradient methodxn+1 = xn−τF (xn) [44]. On the other
hand, the choice F = 0 yields the proximal point algorithm xn+1 = PG(τ,x

n) for
minimizing a nondifferentiable function [128,324,345,423]. The forward–backward
algorithm (15.55) can be interpreted as a combination of these two schemes.

It is shown in [129] that the sequence (xn) generated by (15.55) converges to
a minimizer of (15.54) if τ < 2/L. A modified version of (15.55) uses varying
parameters τn and introduces additional relaxation parameters λn, resulting in the
scheme

xn+1 = xn + λn(PG(τn;x
n − τn∇F (xn))− xn).

If λn ∈ [ε, 1] and τn ∈ [ε/2, 2/L− ε] for some ε ∈ (0,min{1, 1/L}), then again
(xn) converges to a minimizer of (15.54); see [129]. For another variant of the
forward–backward splitting, we refer to [128, Algorithm 10.5] and [34].

In general, the forward–backward method (15.55) may be slow, although linear
convergence rates can be shown under additional assumptions; see [71, 112] and
references in [128]. Following ideas of Nesterov [366], Beck and Teboulle [36, 37]
introduced the following accelerated proximal gradient method which starts with
some x0 = z0 and a parameter t0 = 1 and performs the iterations
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xn+1 = PG(L
−1; zn − L−1∇F (zn)), (15.56)

tn+1 =
1 +
√
4t2n + 1

2
, λn = 1 +

tn − 1

tn+1
, (15.57)

zn+1 = xn + λn(x
n+1 − xn). (15.58)

This algorithm achieves convergence rate O(1/n2), which is optimal in gen-
eral [365].

The �1-regularized least squares problem (basis pursuit denoising)

min
x

1

2
‖Ax− y‖22 + λ‖x‖1 (15.59)

is of the form (15.54) with the particular functions F (x) = 1
2‖Ax − y‖22 and

G(x) = λ‖x‖1. The gradient of F is given by∇F (x) = A∗(Ax−y) and satisfies
‖∇F (x) − ∇F (z)‖2 = ‖A∗A(x − z)‖2 ≤ ‖A‖22→2‖x − z‖2, so that ∇F is
Lipschitz continuous with constant L ≤ ‖A‖22→2. The proximal mapping for G
is the soft thresholding operator Sλ in (15.23). Therefore, the forward–backward
algorithm (15.55) for (15.59) reads

xn+1 = Sτλ(xn + τA∗(y −Axn)). (15.60)

This scheme is also called iterative shrinkage-thresholding algorithm (ISTA) or sim-
ply iterative soft thresholding. It was introduced and analyzed in [138,196]; see also
[202, 203]. Convergence is guaranteed if τ < 2/‖A‖22→2 [129, 138]. Without the
soft thresholding operator Sλ, (15.60) reduces to the so-called Landweber iteration
(see e.g. [186]) and therefore (15.60) is sometimes also called thresholded Landwe-
ber iteration. The specialization of the accelerated scheme (15.56)–(15.58) to the
�1-minimization problem (15.59) is called fast iterative shrinkage-thresholding
algorithm (FISTA) [36].

The fixed-point continuation (FPC) algorithm introduced in [257] (see also [229]
for a version adapted to low-rank matrix recovery) solves (15.59) by the forward–
backward iteration (15.55), where the parameter τ is changed in a suitable way
throughout the iterations.

Generalizations of the backward–forward algorithm to the minimization of
functions H(x) = F (x) +

∑n
j=1Gj(x), where F is convex and differentiable and

the Gj are convex but not necessarily differentiable, are contained in [405]. Taking
F = 0, these algorithms include the Douglas–Rachford splitting method discussed
below.

We remark that (PD1) of Chambolle and Pock’s primal dual algorithm may be
viewed as a forward–backward step on the dual variable and (PD2) as a forward–
backward step on the primal variable.

Douglas–Rachford splitting. The forward–backward splitting method requires
F to be differentiable, therefore it is not applicable to constrained
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�1-minimization problems. Douglas–Rachford splitting methods provide an alter-
native for solving the minimization problem (15.54), where both convex functions
F,G : CN → (−∞,∞] are not necessarily differentiable. If x is a minimizer of
(15.54), then x = PF (τ ; z) for some z satisfying

PF (τ ; z) = PG(τ ; 2PF (τ ; z) − z);

see Exercise 15.8. This motivates the Douglas–Rachford algorithm which starts with
some z0 and, for n ≥ 0, performs the iterations

xn = PF (τ ; z
n),

zn+1 = PG(τ ; 2x
n − zn) + zn − xn.

The convergence of the sequence (xn) to a minimizer of (15.54) has been estab-
lished in [127]. The method was originally introduced by Douglas and Rachford in
[172] for the solution of linear operator equations; see also [328].

The equality-constrained �1-minimization problem

min ‖x‖1 subject to Ax = y (15.61)

takes the form (15.54) with G(x) = ‖x‖1 and F = χFA,y , the character-
istic function of the affine set FA,y = {x : Ax = y}. We have already
seen that the proximal mapping of G is given by the soft thresholding operator
PG(τ ;x) = Sτ (x). The proximal mapping of F is given by

PF (τ ;x) = argmin {‖z− x‖2 : Az = y} = x+A†(y −Ax),

where A† is the Moore–Penrose pseudo-inverse of A. With this information,
the Douglas–Rachford algorithm for (15.61) can be implemented. In general,
the application of A† involves the solution of a linear system, which may be
computationally expensive (the conjugate gradient method can be applied for
speed up). However, in the important special case where AA∗ = λId, we have
A† = A∗(AA∗)−1 = λ−1A∗, so that the computation of PF (τ ;x) greatly
simplifies and the iterations of the Douglas–Rachford algorithm become efficient.
The case AA∗ = λId occurs, for instance, for random partial Fourier matrices; see
Example 4 in Sect. 12.1 and more generally the situation of Example 6 in Sect. 12.1.

In [446], it is shown that the alternating split Bregman algorithm introduced in
[230] is equivalent to a Douglas–Rachford algorithm. We refer to [127,128,451] for
more information on Douglas–Rachford splittings.

Alternating Direction Method of Multipliers (ADMM). For convex lower semi-
continuous functions F : CN → (−∞,∞], G : Ck → (−∞,∞], and a matrix
B ∈ Ck×N , we consider the optimization problem
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min
x

F (x) +G(Bx), (15.62)

which is equivalent to

min
x,y

F (x) +G(y) subject to y = Bx.

Its so-called augmented Lagrangian of index τ > 0 is given by

Lτ (x,y, ξ) = F (x) +G(y) +
1

τ
Re〈ξ,Bx− y〉+ 1

2τ
‖Bx− y‖22.

A step of the ADMM minimizes Lτ over x, then over y, and finally applies a
proximal (backward) step over the dual variable (Lagrange multiplier) ξ. We assume
that B∗B is invertible and introduce the modified proximal mapping

PB
F (τ ;y) = argmin

z∈CN

{
τF (z) +

1

2
‖Bz− y‖22

}
.

Formally, for a fixed parameter τ > 0, the ADMM algorithm starts with vectors
u0, z0 ∈ Ck and, for n ≥ 0, performs the iterations

xn = PB
F (τ ;un − zn),

vn = Bxn,

un+1 = PG(τ ;v
n + zn),

zn+1 = zn + vn − un+1.

For the convergence of the sequence (xn) to a minimizer of (15.62), we refer to
[217, 226]. A connection to Douglas–Rachford splittings was observed in [216].

Let us consider the special case of basis pursuit denoising

min
x∈CN

1

2
‖Ax− y‖22 + λ‖x‖1,

which is (15.62) for F (x) = ‖Ax − y‖22/2, G(x) = λ‖x‖1, and B = Id, that is,
k = N . Then the ADMM algorithm reads

xn = (A∗A+ τ−1Id)−1(A∗y + τ−1(un − zn)),

un+1 = Sτλ(xn + zn),

zn+1 = zn + xn − un+1. (15.63)

For further information about ADMM, we refer to [4, 128, 188].
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Interior point methods. Consider a constrained convex optimization problem of
the form

min
x∈RN

F (x) subject to Ax = y, (15.64)

and Fj(x) ≤ 0, j ∈ [M ], (15.65)

where F, F1, . . . , FM : RN → R are convex functions, A ∈ Rm×N , and
y ∈ Rm. As discussed in Chap. 3, the basis pursuit problem is equivalent to a
problem of this form in the real setting. (The principle discussed below can be
adapted to conic optimization problems, so that the complex case, quadratically
constrained �1-minimization, and nuclear norm minimization are also covered.)
Denoting by χ{Fj≤0} the characteristic function of the set {x : Fj(x) ≤ 0}, the
optimization problem (15.65) is equivalent to

min
x∈RN

F (x) +

n∑
j=1

χ{Fj≤0}(x) subject to Ax = y.

The idea of a basic interior point method, called the log-barrier method, is to replace,
for a parameter t > 0, the characteristic function χ{Fj≤0}(x), by the convex
function −t−1 ln(−Fj(x)), which is twice differentiable on {x : Fj(x) < 0}
provided Fj is. This yields the equality-constrained optimization problem

min
x∈RN

F (x)− t−1
n∑
j=1

ln(−Fj(x)) subject to Ax = y.

The log-barrier method consists in solving a sequence of these equality-constrained
minimization problems for increasing values of t via Newton’s method. In the limit
t → ∞, the corresponding iterates converge to a solution of (15.65) under suitable
hypotheses. We refer to [70, Chap. 11] for details.

Primal–dual versions of interior point methods have also been developed; see
e.g. [70, 369]. In [302], an interior point method specialized to �1-minimization is
described.

Further information on numerical methods for sparse recovery can be found in
[201]. Other optimization methods specialized to �1-minimization are described in
[38, 197, 256, 323]. Many implementations and toolboxes are available freely on
the Internet. Numerical comparisons of several algorithms/implementations can be
found, for instance, in [334, 405].
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Exercises

15.1. Apply the homotopy method by hand to the �1-minimization problem
minx∈RN ‖x‖1 subject to Ax = y with A and y given by

(a)

A = Id, y = [12,−3, 6, 8, 3]�,

(b)

A =

⎡
⎣−3 4 4

−5 1 4

5 1 −4

⎤
⎦ , y =

⎡
⎣2417
−7

⎤
⎦ .

15.2. Verify formula (B.18) for the soft thresholding operator. Show that

Sτ (y)
2 = min

|x|≤τ
(x − y)2.

15.3. Show that the minimizer x� of Fλ in (15.3) satisfies

x� = Sλ(x� +A∗(y −Ax�)).

15.4. Let ‖ · ‖ be some norm and let ‖ · ‖∗ denote its dual norm. Show that the
proximal mapping satisfies

P‖·‖(τ ;x) = x− PτB‖·‖∗ (x),

where PτB‖·‖∗ (x) := argmin
z∈τB‖·‖∗

‖x−z‖2 is the orthogonal projection onto the scaled

dual unit ball τB‖·‖∗ = {z : ‖z‖∗ ≤ τ}; see (B.14).

15.5. Let ‖ · ‖∗ be the nuclear norm (A.25).

(a) For a matrix X ∈ Cn1×n2 whose singular value decomposition has the form
X = Udiag[σ1, . . . , σn]V

∗, n = min{n1, n2}, show that the proximal
mapping for the nuclear norm satisfies

P‖·‖∗(τ ;X) = Udiag [Sτ (σ1), . . . ,Sτ (σn)]V∗,

where Sτ is the soft thresholding operator.
(b) For a linear map A : Cn1×n2 → Cm and y ∈ Cm, formulate Chambolle and

Pock’s primal–dual algorithm for the nuclear norm minimization problems

min
Z∈Cn1×n2

‖Z‖∗ subject to A(Z) = y
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and, for η > 0,

min
Z∈Cn1×n2

‖Z‖∗ subject to ‖A(Z)− y‖2F ≤ η.

15.6. Formulate Chambolle and Pock’s primal–dual algorithm for the solution of
the Dantzig selector

min
x∈CN

‖x‖1 subject to ‖A∗(Ax− y)‖∞ ≤ τ,

where A ∈ Cm×N , y ∈ Cm, and τ ≥ 0.

15.7. Consider the optimization problem (15.15), where A ∈ Cm×N and where
F : Cm → (−∞,∞], G : CN → (−∞,∞] are extended real-valued lower
semicontinuous convex functions.

(a) For subsets B1 ⊂ CN and B2 ⊂ Cm, let

GB1,B2(x, ξ) := sup
ξ′∈B2

L(x, ξ′)− inf
x′∈B1

L(x′, ξ) (15.66)

be the so-called partial primal–dual gap. Show that if B1 × B2 contains
a primal–dual optimal point (x̂, ξ̂), that is, a saddle point of (15.17), then
GB1,B2(x, ξ) ≥ 0 for all (x, ξ) ∈ CN × Cm and G(x, ξ) = 0 if and only
if (x, ξ) is a saddle point of GB1,B2 . (Therefore, GB1,B2(x, ξ) can be taken as a
measure of the distance of the pair (x, ξ) to the primal–dual optimizer.)

(b) For the sequence (xn, x̄n, ξn)n≥0 generated by Chambolle and Pock’s primal–
dual algorithm (PD1)–(PD3), define xM := M−1

∑M
n=1 x

n and ξM :=

M−1
∑M
n=1 ξ

n. If B1 ⊂ CN and B2 ⊂ Cm are bounded sets, show that

GB1,B2(xM , ξM ) ≤ D(B1, B2)

M
, (15.67)

whereD(B1, B2) := (2τ)−1 supx∈B1
‖x−x0‖22+(2σ)−1 supξ∈B2

‖ξ−ξ0‖22.
(Therefore, we say that Chambolle and Pock’s algorithm converges at the rate
O(M−1).)

15.8. Let F,G : CN → (−∞,∞] be convex lower semicontinuous functions.
Suppose that the optimization problem

min
x∈CN

F (x) +G(x)

possesses a minimizer x�. For an arbitrary parameter τ > 0, show that
x� = PF (τ ; z) for some vector z satisfying

PF (τ ; z) = PG(τ ; 2PF (τ ; z) − z),

where PF and PG are the proximal mappings associated to F and G.
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15.9. Implement some of the algorithms of this chapter. Choose A ∈ Rm×N as
a Gaussian random matrix or A ∈ Cm×N as a partial random Fourier matrix. In
the latter case, exploit the fast Fourier transform. Test the algorithm on randomly
generated s-sparse signals, where first the support is chosen at random and then the
nonzero coefficients. By varyingm, s,N , evaluate the empirical success probability
of recovery. Compare the runtime of the algorithms for small and medium sparsity s.



Appendix A
Matrix Analysis

This appendix collects useful background from linear algebra and matrix analysis,
such as vector and matrix norms, singular value decompositions, Gershgorin’s disk
theorem, and matrix functions. Much more material can be found in various books
on the subject including [47, 51, 231, 273, 280, 281, 475].

A.1 Vector and Matrix Norms

We work with real or complex vector spaces X , usually X = Rn or X = Cn. We
usually write the vectors in Cn in boldface, x, while their entries are denoted xj ,
j ∈ [n], where [n] := {1, . . . , n}. The canonical unit vectors in Rn are denoted by
e1, . . . , en. They have entries

(e�)j = δ�,j =

{
1 if j = �,

0 otherwise.

Definition A.1. A nonnegative function ‖ · ‖ : X → [0,∞) is called a norm if

(a) ‖x‖ = 0 if and only if x = 0 (definiteness).
(b) ‖λx‖ = |λ|‖x‖ for all scalars λ and all vectors x ∈ X (homogeneity).
(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all vectors x,y ∈ X (triangle inequality).

If only (b) and (c) hold, so that ‖x‖ = 0 does not necessarily imply x = 0, then ‖ ·‖
is called a seminorm.

If (a) and (b) hold, but (c) is replaced by the weaker quasitriangle inequality

‖x+ y‖ ≤ C(‖x‖+ ‖y‖)

for some constant C ≥ 1, then ‖ · ‖ is called a quasinorm. The smallest constant C
is called its quasinorm constant.

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7,
© Springer Science+Business Media New York 2013
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A space X endowed with a norm ‖ · ‖ is called a normed space.

Definition A.2. Let X be a set. A function d : X × X → [0,∞) is called a
metric if

(a) d(x, y) = 0 if and only if x = y.
(b) d(x, y) = d(y, x) for all x, y ∈ X .
(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

If only (b) and (c) hold, then d is called a pseudometric.

The set X endowed with a metric d is called a metric space. A norm ‖ · ‖ on X
induces a metric on X by

d(x,y) = ‖x− y‖.

A seminorm induces a pseudometric in the same way.
The �p-norm (or simply p-norm) on Rn or Cn is defined for 1 ≤ p <∞ as

‖x‖p :=
( n∑
j=1

|xj |p
)1/p

, (A.1)

and for p =∞ as

‖x‖∞ := max
j∈[n]

|xj |.

For 0 < p < 1, the expression (A.1) only defines a quasinorm with quasinorm
constant C = 21/p−1. This is derived from the p-triangle inequality

‖x+ y‖pp ≤ ‖x‖pp + ‖y‖pp.

Therefore, the �p-quasinorm induces a metric via d(x,y) = ‖x−y‖pp for 0 < p < 1.
We define a ball of radius t ≥ 0 around a point x in a metric space (X, d) by

B(x, t) = Bd(x, t) = {z ∈ X : d(x, z) ≤ t}.

If the metric is induced by a norm ‖ · ‖ on a vector space, then we also write

B‖·‖(x, t) = {z ∈ X : ‖x− z‖ ≤ t}. (A.2)

If x = 0 and t = 1, then B = B‖·‖ = B‖·‖(0, 1) is called unit ball.
The canonical inner product on Cn is defined by

〈x,y〉 =
n∑
j=1

xjyj , x,y ∈ C
n.
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On Rn, it is given by 〈x,y〉 =
∑n
j=1 xjyj , x,y ∈ Rn. The �2-norm is related to

the canonical inner product by

‖x‖2 =
√
〈x,x〉.

The Cauchy–Schwarz inequality states that

|〈x,y〉| ≤ ‖x‖2‖y‖2 for all x,y ∈ C
n.

More generally, for p, q ∈ [1,∞] such that 1/p+1/q = 1 (with the convention that
1/∞ = 0 and 1/0 =∞), Hölder’s inequality states that

|〈x,y〉| ≤ ‖x‖p‖y‖q for all x,y ∈ C
n.

Given 0 < p < q ≤ ∞, applying the latter with x, y, p, and q replaced by
[|x1|p, . . . , |xn|p]�, [1, . . . , 1]�, q/p, and q/(q−p) gives ‖x‖pp ≤ ‖x‖pqn(q−p)/p, i.e.,

‖x‖p ≤ n1/p−1/q‖x‖q. (A.3)

We point out the important special cases

‖x‖1 ≤
√
n‖x‖2 and ‖x‖2 ≤

√
n‖x‖∞.

If x has at most s nonzero entries, that is, ‖x‖0 = card({� : x� �= 0}) ≤ s, then the
above inequalities become ‖x‖p ≤ s1/p−1/q‖x‖q, and in particular,

‖x‖1 ≤
√
s‖x‖2 ≤ s‖x‖∞.

For 0 < p < q ≤ ∞, we also have the reverse inequalities

‖x‖q ≤ ‖x‖p, (A.4)

and in particular, ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1. Indeed, the bound ‖x‖∞ ≤ ‖x‖p is
obvious, and for p < q <∞,

‖x‖qq =
n∑
j=1

|xj |q =
n∑
j=1

|xj |q−p|xj |p ≤ ‖x‖q−p∞

n∑
j=1

|xj |p ≤ ‖x‖q−pp ‖x‖pp = ‖x‖qp.

Both bounds (A.3) and (A.4) are sharp in general. Indeed, equality holds in (A.3)
for vectors with constant absolute entries, while equality holds in (A.4) for scalar
multiples of a canonical unit vector.

Definition A.3. Let ‖ · ‖ be a norm on Rn or Cn. Its dual norm ‖ · ‖∗ is defined by

‖x‖∗ := sup
‖y‖≤1

|〈y,x〉|.
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In the real case, the dual norm may equivalently be defined via

‖x‖∗ = sup
y∈Rn,‖y‖≤1

〈y,x〉,

while in the complex case

‖x‖∗ = sup
y∈Cn,‖y‖≤1

Re 〈y,x〉.

The dual of the dual norm ‖ · ‖∗ is the norm ‖ · ‖ itself. In particular, we have

‖x‖ = sup
‖y‖∗≤1

|〈x,y〉| = sup
‖y‖∗≤1

Re 〈x,y〉. (A.5)

The dual of ‖ · ‖p is ‖ · ‖q with 1/p+ 1/q = 1. In particular, ‖ · ‖2 is self-dual, i.e.,

‖x‖2 = sup
‖y‖2≤1

|〈y,x〉|, (A.6)

while ‖ · ‖∞ is the dual norm of ‖ · ‖1 and vice versa.
Given a subspace W of a vector space X , the quotient space X/W consists of

the residue classes

[x] := x+W = {x+w,w ∈W}, x ∈ X.

The quotient map is the surjective linear map x �→ [x] = x + W ∈ X/W . The
quotient norm on X/W is defined by

‖[x]‖X/W := inf{‖v‖,v ∈ [x] = x+W}, [x] ∈ X/W.

Let us now turn to norms of matrices (or more generally, linear mappings be-
tween normed spaces). The entries ofA ∈ Cm×n are denotedAj,k, j ∈ [m], k ∈ [n].
The columns of A are denoted ak, so that A = [a1| · · · |an]. The transpose of
A ∈ Cm×n is the matrix A� ∈ Cn×m with entries (A�)k,j = Aj,k. A matrix
B ∈ Cn×n is called symmetric if B� = B. The adjoint (or Hermitian transpose)
of A ∈ Cm×n is the matrix A∗ ∈ Cn×m with entries (A∗)k,j = Aj,k. For x ∈ Cn

and y ∈ Cm, we have 〈Ax,y〉 = 〈x,A∗y〉. A matrix B ∈ Cn×n is called self-
adjoint (or Hermitian) if B∗ = B. The identity matrix on Cn is denoted Id or Idn.
A matrix U ∈ Cn×n is called unitary if U∗U = UU∗ = Id. A self-adjoint matrix
B ∈ Cn×n possesses an eigenvalue decomposition of the form B = U∗DU, where
U is a unitary matrix U ∈ Cn×n and D = diag[λ1, . . . , λn] is a diagonal matrix
containing the real eigenvalues λ1, . . . , λn of B.

Definition A.4. Let A : X → Y be a linear map between two normed spaces
(X, ‖ · ‖) and (Y, |||·|||). The operator norm of A is defined as



A.1 Vector and Matrix Norms 519

‖A‖ := sup
‖x‖≤1

|||Ax||| = sup
‖x‖=1

|||Ax|||. (A.7)

In particular, for a matrix A ∈ C
m×n and 1 ≤ p, q ≤ ∞, we define the matrix norm

(or operator norm) between �p and �q as

‖A‖p→q := sup
‖x‖p≤1

‖Ax‖q = sup
‖x‖p=1

‖Ax‖q. (A.8)

For A : X → Y and x ∈ X , the definition implies that |||Ax||| ≤ ‖A‖‖x‖. It is
an easy consequence of the definition that the norm of the product of two matrices
A ∈ Cm×n and B ∈ Cn×k satisfies

‖AB‖p→r ≤ ‖A‖q→r‖B‖p→q, 1 ≤ p, q, r ≤ ∞. (A.9)

We summarize formulas for the matrix norms ‖A‖p→q for some special choices
of p and q. The lemma below also refers to the singular values of a matrix, which
will be covered in the next section.

Lemma A.5. Let A ∈ Cm×n.

(a) We have

‖A‖2→2 =
√
λmax(A∗A) = σmax(A),

where λmax(A
∗A) is the largest eigenvalue of A∗A and σmax(A) the largest

singular value of A.
In particular, if B ∈ C

n×n is self-adjoint, then ‖B‖2→2 = maxj∈[n] |λj(B)|,
where the λj(B) denote the eigenvalues of B.

(b) For 1 ≤ p ≤ ∞, we have ‖A‖1→p = maxk∈[n] ‖ak‖p. In particular,

‖A‖1→1 = max
k∈[n]

m∑
j=1

|Aj,k|, (A.10)

‖A‖1→2 = max
k∈[n]

‖ak‖2. (A.11)

(c) We have

‖A‖∞→∞ = max
j∈[m]

n∑
k=1

|Aj,k|.

Proof. (a) Since A∗A ∈ Cn×n is self-adjoint, it can be diagonalized as
A∗A = U∗DU with a unitary U and a diagonal D containing the eigenvalues
λ� of A∗A on the diagonal. For x ∈ Cn with ‖x‖2 = 1,

‖Ax‖22 = 〈Ax,Ax〉 = 〈A∗Ax,x〉 = 〈U∗DUx,x〉 = 〈DUx,Ux〉.
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Since U is unitary, we have ‖Ux‖22 = 〈Ux,Ux〉 = 〈x,U∗Ux〉 = ‖x‖22 = 1.
Moreover, for an arbitrary vector z ∈ Cn,

〈Dz, z〉 =
n∑
j=1

λj |zj |2 ≤ max
j∈[n]

λj

n∑
j=1

|zj |2 = λmax(A
∗A)‖z‖22.

Combining these facts establishes the inequality ‖A‖2→2 ≤
√
λmax(A∗A).

Now choose x to be an eigenvector corresponding to the largest eigenvalue of
A∗A, that is, A∗Ax = λmax(A

∗A)x. Then

‖Ax‖22=〈Ax,Ax〉=〈A∗Ax,x〉=λmax(A
∗A)〈x,x〉 = λmax(A

∗A)‖x‖22.

This proves the reverse inequality ‖A‖2→2 ≥
√
λmax(A∗A). It is shown in

Sect. A.2 that σmax(A) =
√
λmax(A∗A), see (A.18). If B is self-adjoint, then

its singular values satisfy {σj(B), j ∈ [n]} = {|λj(B)|, j ∈ [n]}, so that
‖B‖2→2 = maxj∈[n] |λj(B)| as claimed.

(b) For x ∈ Cn with ‖x‖1 = 1, the triangle inequality gives

‖Ax‖p = ‖
n∑
j=1

xjak‖p ≤
n∑
k=1

|xk|‖ak‖p ≤ ‖x‖1 max
k∈[n]

‖ak‖p. (A.12)

This shows that ‖A‖1→p ≤ maxk∈[n] ‖ak‖p. For the reverse inequality, we
choose the canonical unit vector x = ek0 with k0 being the index that realizes
the previous maximum. Then ‖Ax‖p = ‖ak0‖p = maxk∈[n] ‖ak‖p. This
establishes the statement (b).

(c) For x ∈ C
n with ‖x‖∞ = 1, we have

‖Ax‖∞ = max
j∈[m]

|
n∑
k=1

Aj,kxk| ≤ max
j∈[m]

n∑
k=1

|Aj,k||xk| ≤ ‖x‖∞ max
j∈[m]

n∑
k=1

|Aj,k|.

To see that this inequality is sharp in general, we choose an index j ∈ [m] that
realizes the maximum in the previous expression and set xk = sgn(Aj,k) = Aj,k
/|Aj,k| if Aj,k �= 0 and xk = 0 if Aj,k = 0. Then ‖x‖∞ = 1 (unless A = 0, in
which case the statement is trivial), and

(Ax)j =

n∑
k=1

Aj,kxk =

n∑
k=1

|Aj,k| = max
j∈[m]

n∑
k=1

|Aj,k|.

Together with the inequality established above, this shows the claim. ��
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Remark A.6. (a) The general identity

‖A‖p→q = ‖A∗‖q′→p′

where 1/p + 1/p′ = 1 = 1/q + 1/q′ shows that (c) (and more general
statements) can be deduced from (b).

(b) Computing the operator norms ‖A‖∞→1, ‖A‖2→1, and ‖A‖∞→2 is an
NP-hard problem; see [426]. (Although the case ‖A‖∞→2 = ‖A‖2→1 is
not treated explicitly in [426], it follows from similar considerations as for
‖A‖∞→1.)

Lemma A.7. For A ∈ Cm×n,

‖A‖2→2 = sup
‖y‖2≤1

sup
‖x‖2≤1

|〈Ax,y〉| = sup
‖y‖2≤1

sup
‖x‖2≤1

Re 〈Ax,y〉. (A.13)

If B ∈ Cn×n is self-adjoint, then

‖B‖2→2 = sup
‖x‖2≤1

|〈Bx,x〉|.

Proof. The first statement follows from (A.8) with p = q = 2 and (A.6). For the
second statement, let B = U∗DU be the eigenvalue decomposition of B with a
unitary matrix U and a diagonal matrix D with the eigenvalues λj of B on the
diagonal. Then

sup
‖x‖2≤1

|〈Bx,x〉| = sup
‖x‖2≤1

|〈U∗DUx,x〉| = sup
‖x‖2≤1

|〈DUx,Ux〉|

= sup
‖x‖2≤1

|〈Dx,x〉| = sup
‖x‖2≤1

|
n∑
j=1

λj |xj |2| = max
j∈[n]

|λj |

= ‖B‖2→2,

where the last step used the second part of Lemma A.5(a). For the identity
sup‖x‖2≤1 |

∑n
j=1 λj |xj |2| = maxj∈[n] |λj | above, we observe on the one hand

|
n∑
j=1

λj |xj |2| ≤ max
j∈[n]

|λj |
n∑
j=1

|xj |2 ≤ max
j∈[n]

|λj |.

One the other hand, if x = ej0 is the canonical unit vector corresponding to the
index j0 where |λj | is maximal, we have |

∑n
j=1 λj |xj |2| = |λj0 | = maxj∈[n] |λj |.

This point completes the proof. ��

Specializing the above identity to the rank-one matrix B = uu∗ yields, for any
vector u ∈ Cn,
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‖uu∗‖2→2 = sup
‖x‖2≤1

|〈uu∗x,x〉| = sup
‖x‖2≤1

|〈u∗x,u∗x〉|

= sup
‖x‖2≤1

|〈x,u〉|2 = ‖u‖22, (A.14)

where we also applied (A.6).
The next statement is known as Schur test.

Lemma A.8. For A ∈ Cm×n,

‖A‖2→2 ≤
√
‖A‖1→1‖A‖∞→∞.

In particular, for a self-adjoint matrix B ∈ Cn×n,

‖B‖2→2 ≤ ‖B‖1→1.

Proof. The statement follows immediately from the Riesz–Thorin interpolation
theorem. For readers not familiar with interpolation theory, we give a more
elementary proof. By the Cauchy–Schwarz inequality, the jth entry of Ax satisfies

|(Ax)j | ≤
n∑
k=1

|xk||Aj,k| ≤
( n∑
k=1

|xk|2|Aj,k|
)1/2( n∑

�=1

|Aj,�|
)1/2

.

Squaring and summing this inequality yields

‖Ax‖22 =

m∑
j=1

|(Ax)j |2 ≤
m∑
j=1

( n∑
k=1

|xk|2|Aj,k|
)( n∑

�=1

|Aj,�|
)

≤ max
j∈[n]

n∑
�=1

|Aj,�|
m∑
j=1

n∑
k=1

|xk|2|Aj,k|

≤ max
j∈[n]

n∑
�=1

|Aj,�| max
k∈[m]

m∑
j=1

|Aj,k|
n∑
k=1

|xk|2

= ‖A‖∞→∞‖A‖1→1‖x‖22.

This establishes the first claim. If B is self-adjoint, then ‖B‖1→1 = ‖B‖∞→∞ by
Lemma A.5(b)–(c) or Remark A.6(a). This implies the second claim. ��

We note that the above inequality may be crude for some important matrices
encountered in this book. For a general matrix, however, it cannot be improved.

Lemma A.9. The operator norm ‖ · ‖2→2 of a submatrix is bounded by one of the
whole matrix. More precisely, if A ∈ Cm×n has the form
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A =

[
A(1) A(2)

A(3) A(4)

]

for matrices A(�), then ‖A(�)‖2→2 ≤ ‖A‖2→2 for � = 1, 2, 3, 4. In particular, any
entry of A satisfies |Aj,k| ≤ ‖A‖2→2.

Proof. We give the proof for A(1). The other cases are analogous. Let A(1) be of
size m1 × n1. Then for x(1) ∈ Cn1 , we have

‖A(1)x(1)‖22 ≤ ‖A(1)x(1)‖22+ ‖A(3)x(1)‖22 =

∥∥∥∥
(
A(1)

A(3)

)
x(1)

∥∥∥∥
2

2

=

∥∥∥∥A
(
x(1)

0

)∥∥∥∥
2

2

.

The set T1 of vectors

(
x(1)

0

)
∈ Cn with ‖x(1)‖2 ≤ 1 is contained in the set

T := {x ∈ C
n, ‖x‖2 ≤ 1}. Therefore, the supremum over x(1) ∈ T1 above is

bounded by supx∈T ‖Ax‖22 = ‖A‖22→2. This concludes the proof. ��

Remark A.10. The same result and proof hold for the operator norms ‖ · ‖p→q with
1 ≤ p, q ≤ ∞.

Gershgorin’s disk theorem stated next provides information about the locations
of the eigenvalues of a square matrix.

Theorem A.11. Let λ be an eigenvalue of a square matrix A ∈ Cn×n. There exists
an index j ∈ [n] such that

|λ−Aj,j | ≤
∑

�∈[n]\{j}
|Aj,�|.

Proof. Let u ∈ Cn \ {0} be an eigenvector associated with λ, and let j ∈ [n]
such that |uj| is maximal, i.e., |uj| = ‖u‖∞. Then

∑
�∈[n]Aj,�u� = λuj , and a

rearrangement gives
∑

�∈[n]\{j}Aj,�u� = λuj − Aj,juj . The triangle inequality
yields

|λ−Aj,j ||uj | ≤
∑

�∈[n]\{j}
|Aj,�||u�| ≤ ‖u‖∞

∑
�∈[n]\{j}

|Aj,�| = |uj|
∑

�∈[n]\{j}
|Aj,�|.

Dividing by |uj| > 0 yields the desired statement. ��

More information on Gershgorin’s theorem and its variations can be found, for
instance, in the monograph [496].

The trace of a square matrix B ∈ Cn×n is the sum of its diagonal elements, i.e.,

tr (B) =

n∑
j=1

Bjj .
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The trace is cyclic, i.e., tr (AB) = tr (BA) for all A ∈ Cm×n and B ∈ Cn×m. It
induces an inner product defined on Cm×n by

〈A,B〉F := tr (AB∗). (A.15)

The Frobenius norm of a matrix A ∈ Cm×n is then

‖A‖F :=
√
tr (AA∗) =

√
tr (A∗A) =

⎛
⎝ ∑
j∈[m],k∈[n]

|Aj,k|2
⎞
⎠

1/2

. (A.16)

After identifying matrices on Cm×n with vectors in Cmn, the Frobenius norm can
be interpreted as an �2-norm on Cmn.

The operator norm on �2 is bounded by the Frobenius norm, i.e.,

‖A‖2→2 ≤ ‖A‖F . (A.17)

Indeed, for x ∈ Cn, the Cauchy–Schwarz inequality yields

‖Ax‖22 =

m∑
j=1

( n∑
k=1

Aj,kxj
)2 ≤

m∑
j=1

( n∑
k=1

|xj |2
)( n∑

�=1

|Aj,�|2
)
= ‖A‖2F ‖x‖22.

Next we state a bound for the operator norm of the inverse of a square matrix.

Lemma A.12. Suppose that B ∈ Cn×n satisfies

‖B− Id‖2→2 ≤ η

for some η ∈ [0, 1). Then B is invertible and ‖B−1‖2→2 ≤ (1− η)−1.

Proof. We first note that, with H = Id − B, the Neumann series
∑∞
k=0 H

k

converges. Indeed, by the triangle inequality and the fact that ‖Hk‖2→2 ≤ ‖H‖k2→2

derived from (A.9), we have

‖
∞∑
k=0

Hk‖2→2 ≤
∞∑
k=0

‖H‖k2→2 ≤
∞∑
k=0

ηk =
1

1− η
.

Now we observe that

(Id−H)

∞∑
k=0

Hk =

∞∑
k=0

Hk −
∞∑
k=1

Hk = Id
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by convergence of the Neumann series, and similarly
∑∞

k=0 H
k(Id − H) = Id.

Therefore, the matrix Id−H = B is invertible and

B−1 = (Id−H)−1 =

∞∑
k=0

Hk.

This establishes the claim. ��

A.2 The Singular Value Decomposition

While the concept of eigenvalues and eigenvectors applies only to square matrices,
every (possibly rectangular) matrix possesses a singular value decomposition.

Proposition A.13. For A ∈ Cm×n, there exist unitary matrices U ∈ Cm×m,
V ∈ Cn×n, and uniquely defined nonnegative numbers σ1 ≥ σ2 ≥ · · · ≥
σmin{m,n} ≥ 0, called singular values of A, such that

A = UΣV∗, Σ = diag[σ1, . . . , σmin{m,n}] ∈ R
m×n.

Remark A.14. Writing U = [u1| · · · |um] and V = [v1| · · · |vn], the vectors u� are
called left singular vectors, while the v� are called right singular vectors.

Proof. Let v1 ∈ Cn be a vector with ‖v1‖2 = 1 that realizes the maximum in the
definition (A.8) of the operator norm ‖A‖2→2, and set

σ1 = ‖Av1‖2 = ‖Av1‖2.

By compactness of the sphere Sn−1 = {x ∈ Cn, ‖x‖2 = 1}, such a vector v1

always exists. If σ1 = 0, then A = 0, and we set σ� = 0 for all � ∈ [min{m,n}],
and U,V are arbitrary unitary matrices. Therefore, we assume σ1 > 0 and set

u1 = σ−1
1 Av1.

We can extend u1,v1 to orthonormal bases in order to form unitary matrices
U1 = [u1|Ũ1], V1 = [v1|Ṽ1]. Since Ũ∗

1Av1 = σ1Ũ
∗
1u1 = 0, the matrix

A1 = U∗
1AV1 takes the form

A1 =

[
σ1 b∗

0 B

]
,

where b∗ = u∗
1AṼ1 and B = Ũ∗

1AṼ1 ∈ C(m−1)×(n−1). It follows from

‖A1‖2→2

√
σ2
1 + ‖b‖22 ≥

∥∥∥∥A1

(
σ1
b

)∥∥∥∥
2

=

∥∥∥∥
(
σ2
1 + ‖b‖22
Bb

)∥∥∥∥
2

≥ σ2
1 + ‖b‖22
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that ‖A1‖2→2 ≥
√
σ2
1 + ‖b‖22. But since U1,V1 are unitary, we have ‖A1‖2→2 =

‖A‖2→2 = σ1, and therefore, b = 0. In conclusion,

A1 = U∗
1AV1 =

(
σ1 0

0 B

)
.

With the same arguments, we can further decompose B ∈ C(m−1)×(n−1), and by
induction we arrive at the stated singular value decomposition. ��

The previous proposition reveals that the largest and smallest singular values satisfy

σmax(A) = σ1(A) = ‖A‖2→2 = max
‖x‖2=1

‖Ax‖2 ,

σmin(A) = σmin{m,n}(A) = min
‖x‖2=1

‖Ax‖2.

If A has rank r, then its r largest singular values σ1 ≥ · · · ≥ σr are positive,
while σr+1 = σr+2 = · · · = 0. Sometimes it is more convenient to work with
the reduced singular value decomposition. For A of rank r with (full) singular
value decomposition A = UΣV∗, we consider Σ̃ = diag[σ1, . . . , σr] ∈ R

r×r

and the submatrices Ũ = [u1| · · · |ur] ∈ C
m×r, Ṽ = [v1| · · · |vr] ∈ C

n×r of
U = [u1| · · · |um], V = [v1| · · · |vn]. We have

A = ŨΣ̃Ṽ∗ =
r∑
j=1

σjujv
∗
j .

Given A ∈ C
m×n with reduced singular value decomposition A = ŨΣ̃Ṽ∗, we

observe that

A∗A = ṼΣ̃Ũ∗ŨΣ̃Ṽ∗ = ṼΣ̃
2
Ṽ∗,

AA∗ = ŨΣ̃Ṽ∗ṼΣ̃Ũ∗ = ŨΣ̃
2
Ũ∗.

Thus, we obtain the (reduced) eigenvalue decompositions of A∗A and AA∗. In
particular, the singular values σj = σj(A) satisfy

σj(A) =
√
λj(A∗A) =

√
λj(AA∗), j ∈ [min{m,n}], (A.18)

where λ1(A
∗A) ≥ λ2(A

∗A) ≥ · · · are the eigenvalues of A∗A arranged in
nonincreasing order. Moreover, the left and right singular vectors listed in U,V
can be obtained from the eigenvalue decomposition of the positive semidefinite
matrices A∗A and AA∗. (One can also prove the existence of the singular value
decomposition via the eigenvalue decompositions of A∗A and AA∗.)

For the purpose of this book, the following observation is very useful.
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Proposition A.15. Let A ∈ Cm×n, m ≥ n. If

‖A∗A− Id‖2→2 ≤ δ (A.19)

for some δ ∈ [0, 1], then the largest and smallest singular values of A satisfy

σmax(A) ≤
√
1 + δ, σmin(A) ≥

√
1− δ. (A.20)

Conversely, if both inequalities in (A.20) hold, then (A.19) follows.

Proof. By (A.18) the eigenvalues λj(A∗A) of A∗A are the squared singular values
σ2
j (A) of A, j ∈ [n]. Thus, the eigenvalues of A∗A− Id are given by σ2

j (A)− 1,
j ∈ [n], and Lemma A.5(a) yields

max{σ2
max(A)− 1, 1− σ2

min(A)} = ‖A∗A− Id‖2→2.

This establishes the claim. ��

The largest and smallest singular values are 1-Lipschitz functions with respect to
the operator norm and the Frobenius norm.

Proposition A.16. The smallest and largest singular values σmin and σmax satisfy,
for all matrices A,B of equal dimensions,

|σmax(A)− σmax(B)| ≤ ‖A−B‖2→2 ≤ ‖A−B‖F , (A.21)

|σmin(A)− σmin(B)| ≤ ‖A−B‖2→2 ≤ ‖A−B‖F . (A.22)

Proof. By the identification of the largest singular value with the operator norm, we
have

|σmax(A)− σmax(B)| = |‖A‖2→2 − ‖B‖2→2| ≤ ‖A−B‖2→2.

The inequality for the smallest singular is deduced as follows:

σmin(A) = inf
‖x‖2=1

‖Ax‖2 ≤ inf
‖x‖2=1

(‖Bx‖2 + ‖(A−B)x‖2)

≤ inf
‖x‖2=1

(‖Bx‖2 + ‖A−B‖2→2) = σmin(B) + ‖A−B‖2→2.

Therefore, we have σmin(A) − σmin(B) ≤ ‖A − B‖2→2, and (A.22) follows by
symmetry. The estimates by the Frobenius norm in (A.21) and (A.22) follow from
the domination (A.17) of the operator norm by the Frobenius norm. ��

The singular values σ1(A) ≥ · · · ≥ σmin{m,n}(A) ≥ 0 of a matrix A ∈ Cm×n

obey the useful variational characterization
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σk(A) = max
M⊂C

n

dimM=k

min
x∈M

‖x‖2=1

‖Ax‖2.

This follows from a characterization of the eigenvalues λ1(A) ≥ · · · ≥ λn(A)
of a self-adjoint matrix A ∈ Cn×n often referred to as Courant–Fischer minimax
theorem or simply minimax principle, namely

λk(A) = max
M⊂C

n

dimM=k

min
x∈M

‖x‖2=1

〈Ax,x〉. (A.23)

With (u1, . . . ,un) denoting an orthonormal basis of eigenvectors for the eigen-
values λ1(A) ≥ · · · ≥ λn(A), the fact that λk(A) is not larger than the
right-hand side of (A.23) follows by taking M = span(u1, . . . ,uk), so that, if
x =
∑k

j=1 cjuj ∈ M has unit norm, then

〈Ax,x〉 =
k∑
j=1

λj(A)c2j ≥ λk(A)

k∑
j=1

c2j = λk(A)‖x‖22 = λk(A).

For the fact that λk(A) is not smaller than the right-hand side of (A.23), given a
k-dimensional subspace M of Cn, we choose a unit-normed vector
x ∈ M∩ span(uk, . . . ,un), so that, with x =

∑k
j=1 cjuj ,

〈Ax,x〉 =
n∑
j=k

λj(A)c2j ≤ λk(A)

n∑
j=k

c2j = λk(A)‖x‖22 = λk(A).

The characterization (A.23) generalizes to Wielandt’s minimax principle for sums
of eigenvalues. The latter states that, for any 1 ≤ i1 < · · · < ik ≤ n,

k∑
j=1

λij (A) = max
M1⊂···⊂Mk⊂C

n

dimMj=ij

min
(x1,...,xk) orthonormal

xj∈Mj

k∑
j=1

〈Axj ,xj〉.

We refer to [47] for a proof. Next we state Lidskii’s inequality (which reduces to
the so-called Weyl’s inequality in the case k = 1). It can be proved using Wielandt’s
minimax principle, but we prefer to give a direct proof below.

Proposition A.17. Let A,B ∈ Cn×n be two self-adjoint matrices, and let
(λj(A))j∈[n], (λj(B))j∈[n], (λj(A + B))j∈[n] denote the eigenvalues of A, B,
and A+B arranged in nonincreasing order. For any 1 ≤ i1 < · · · < ik ≤ n,

k∑
j=1

λij (A+B) ≤
k∑
j=1

λij (A) +

k∑
i=1

λi(B). (A.24)
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Proof. Since the prospective inequality (A.24) is invariant under the change
B↔ B− c Id, we may and do assume that λk+1(B) = 0. Then, from the unitarily
diagonalized form of B, namely,

B = Udiag
[
λ1(B), . . . , λk(B), λk+1(B), . . . , λn(B)

]
U∗,

we define the positive semidefinite matrix B+ ∈ Cn×n as

B+ := Udiag
[
λ1(B), . . . , λk(B), 0, . . . , 0

]
U∗.

We notice that A + B � A + B+ and A � A + B+. Hence, the minimax
characterization (A.23) implies that, for all i ∈ [n],

λi(A+B) ≤ λi(A+B+) and λi(A) ≤ λi(A+B+).

It follows that

k∑
j=1

(
λij (A+B)− λij (A)

)
≤

k∑
j=1

(
λij (A+B+)− λij (A)

)

≤
n∑
i=1

(
λi(A+B+)− λi(A)) = tr (A+B+)− tr (A) = tr (B+)=

k∑
i=1

λi(B).

This is the desired inequality. ��

As a consequence of Proposition A.17, we establish the following lemma.

Lemma A.18. If the matrices X ∈ Cm×n and Y ∈ Cm×n have the singular
values σ1(X) ≥ · · · ≥ σ�(X) ≥ 0 and σ1(Y) ≥ · · · ≥ σ�(Y) ≥ 0, where
� := min{m,n}, then, for any k ∈ [�],

k∑
j=1

|σj(X)− σj(Y)| ≤
k∑
j=1

σj(X−Y).

Proof. The self-adjoint dilations S(X), S(Y) ∈ C(m+n)×(m+n) defined by

S(X) =

[
0 X

X∗ 0

]
and S(Y) =

[
0 Y

Y∗ 0

]

have eigenvalues

σ1(X) ≥ · · · ≥ σ�(X) ≥ 0 = · · · = 0 ≥ −σ�(X) ≥ · · · ≥ −σ1(X),

σ1(Y) ≥ · · · ≥ σ�(Y) ≥ 0 = · · · = 0 ≥ −σ�(Y) ≥ · · · ≥ −σ1(Y).
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Therefore, given k ∈ [�], there exists a subset Ik of [m+ n] with size k such that

k∑
j=1

|σj(X)− σj(Y)| =
∑
j∈Ik

(
λj(S(X)) − λj(S(Y))

)
.

Using (A.24) with A = S(Y), B = S(X−Y), and A+B = S(X) yields

k∑
j=1

|σj(X)− σj(Y)| ≤
k∑
j=1

λj(S(X−Y)) =
k∑
j=1

σj(X−Y).

The proof is complete. ��

Lemma A.18 implies in particular the triangle inequality

�∑
j=1

σj(A+B) ≤
�∑

j=1

σj(A) +

�∑
j=1

σj(B), A,B ∈ C
m×n,

where � = min{m,n}. Moreover, it is easy to verify that
∑�

j=1 σj(A) = 0 if and

only if A = 0 and that
∑�

j=1 σj(λA) = |λ|
∑�

j=1 σj(A). These three properties
show that the expression

‖A‖∗ :=

min{m,n}∑
j=1

σj(A), A ∈ C
m×n, (A.25)

defines a norm on Cm×n, called the nuclear norm. It is also referred to as the
Schatten 1-norm, in view of the fact that, for all 1 ≤ p ≤ ∞, the expression

‖A‖Sp :=

[min{m,n}∑
j=1

σj(A)p
]1/p

, A ∈ C
m×n,

defines a norm on Cm×n, called the Schatten p-norm. We note that it reduces to the
Frobenius norm for p = 2 and to the operator norm for p =∞.

Next we introduce the Moore–Penrose pseudo-inverse, which generalizes the
usual inverse of a square matrix, but exists for any (possibly rectangular) matrix.

Definition A.19. Let A ∈ C
m×n of rank r with reduced singular value decompo-

sition

A = ŨΣ̃Ṽ∗ =

r∑
j=1

σj(A)ujv
∗
j .
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Then its Moore–Penrose pseudo-inverse A† ∈ Cn×m is defined as

A† = ṼΣ̃
−1

Ũ∗ =

r∑
j=1

σ−1
j (A)vju

∗
j .

Note that the singular values satisfy σj(A) > 0 for all j ∈ [r], r = rank(A), so
that A† is well defined. If A is an invertible square matrix, then one easily verifies
that A† = A−1. It follows immediately from the definition that A† has the same
rank r as A and that

σmax(A
†) = ‖A†‖2→2 = σ−1

r (A).

In particular, if A has full rank, then

‖A†‖2→2 = σ−1
min(A). (A.26)

If A∗A ∈ Cn×n is invertible (implying m ≥ n), then

A† = (A∗A)−1A∗. (A.27)

Indeed,

(A∗A)−1A∗ = (ṼΣ̃
2
Ṽ∗)−1ṼΣ̃Ũ∗ = ṼΣ̃

−2
Ṽ∗ṼΣ̃Ũ∗ = ṼΣ̃

−1
Ũ∗ = A†.

Similarly, if AA∗ ∈ Cm×m is invertible (implying n ≥ m), then

A† = A∗(AA∗)−1. (A.28)

The Moore–Penrose pseudo-inverse is closely connected to least squares problems
considered next.

A.3 Least Squares Problems

Let us first connect least squares problems with the Moore–Penrose pseudo-inverse
introduced above.

Proposition A.20. Let A ∈ C
m×n and y ∈ C

m. DefineM ⊂ C
n to be the set of

minimizers of x �→ ‖Ax− y‖2. The optimization problem

minimize
x∈M

‖x‖2 (A.29)

has the unique solution x� = A†y.
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Proof. The (full) singular value decomposition of A can be written A = UΣV∗

with

Σ =

[
Σ̃ 0

0 0

]
∈ R

m×n,

where Σ̃ ∈ Rr×r, r = rank(A), is the diagonal matrix containing the nonzero
singular values σ1(A), . . . , σr(A) on its diagonal. We introduce the vectors

z =

(
z1
z2

)
= V∗x, z1 ∈ C

r,

b =

(
b1

b2

)
= U∗y, b1 ∈ C

r.

Since the �2-norm is invariant under orthogonal transformations, we have

‖Ax− y‖2 = ‖U∗(Ax− y)‖2 = ‖ΣV∗x− b‖2 =

∥∥∥∥
(
Σ̃z1 − b1

−b2

)∥∥∥∥
2

.

This �2-norm is minimized for z1 = Σ̃
−1

b1 and arbitrary z2. Fixing z1, we notice
that ‖x‖22 = ‖V∗x‖22 = ‖z‖22 = ‖z1‖22 + ‖z2‖22 is minimized for z2 = 0.
Altogether, the minimizer x� of (A.29) is given by

x = V

(
z1
0

)
= V

[
Σ̃

−1
0

0 0

]
U∗y = A†y

by definition of the Moore–Penrose pseudo-inverse. ��

Let us highlight two special cases.

Corollary A.21. Let A ∈ Cm×n, m ≥ n, be of full rank n, and let y ∈ Cm. Then
the least squares problem

minimize
x∈Cn

‖Ax− y‖2 (A.30)

has the unique solution x� = A†y.

This follows from Proposition A.20 because a minimizer x� of ‖Ax − y‖2 is
unique: Indeed, Ax� is the orthogonal projection of y onto the range of A, and
this completely determines x� because A has full rank. Notice then that AA† is
the orthogonal projection onto the range of A. Since A is assumed to have full rank
andm ≥ n, the matrix A∗A is invertible, so that (A.27) yields A† = (A∗A)−1A∗.
Therefore, x� = A†y is equivalent to the normal equation

A∗Ax� = A∗y. (A.31)
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Corollary A.22. Let A ∈ Cm×n, n ≥ m, be of full rank m, and let y ∈ Cm. Then
the least squares problem

minimize
x∈Cn

‖x‖2 subject to Ax = y (A.32)

has the unique solution x� = A†y.

Since A is of full rank m ≤ n, (A.28) yields A† = A∗(AA∗)−1. Therefore, the
minimizer x� of (A.32) satisfies the normal equation of the second kind

x� = A∗b, where AA∗b = y. (A.33)

We can also treat the weighted �2-minimization problem

minimize
z∈Cn

‖z‖2,w =

( n∑
j=1

|zj |2wj
)1/2

subject to Az = y, (A.34)

where w is a sequence of weights wj > 0. Introducing the diagonal matrix

Dw = diag[w1, . . . , wn] ∈ Rn×n and making the substitution x = D
1/2
w z, the

minimizer z� of (A.34) is deduced from the minimizer x� of

minimize
x∈Cn

‖x‖2 subject to AD−1/2
w x = y

via

z� = D−1/2
w x� = D−1/2

w (AD−1/2
w )†y. (A.35)

In particular, if n ≥ m and A has full rank, then

z� = D−1
w A∗(AD−1

w A∗)−1y. (A.36)

Instead of (A.35), the following characterization in terms of the inner product
〈x,x′〉w =

∑n
j=1 xjx

′
jwj can be useful.

Proposition A.23. A vector z� ∈ Cn is a minimizer of (A.34) if and only if
Az� = y and

Re 〈z�,v〉w = 0 for all v ∈ kerA. (A.37)

Proof. Given z� with Az� = y, a vector z ∈ Cn is feasible for (A.34) if and only if
it can be written as z = x+ tv with t ∈ R and v ∈ kerA. Observe that

‖x+ tv‖22,w = ‖x‖22,w + t2‖v‖22,w + 2tRe 〈x,v〉w. (A.38)
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Therefore, if Re 〈x,v〉w = 0, then t = 0 is the minimizer of t �→ ‖x + tv‖2,w,
and in turn z� is a minimizer of (A.34). Conversely, if z� is a minimizer of (A.34),
then t = 0 is a minimizer of t �→ ‖x + tv‖2,w for all v ∈ kerA. However, if
Re 〈x,v〉w �= 0, then (A.38) with a nonzero t sufficiently small and of opposite
sign to Re 〈x,v〉w reads ‖x+ tv‖2,w < ‖x‖2, which is a contradiction. ��

Although (A.31) and (A.33) suggest to solve the normal equations via a method
such as Gauss elimination in order to obtain the solution of least squares problems,
the use of specialized methods presents some numerical advantages. An overview of
various approaches can be found in [51]. We briefly mention the prominent method
of solving least squares problems via the QR decomposition.

For any matrix A ∈ Cm×n with m ≥ n, there exists a unitary matrix
Q ∈ Cm×m and an upper triangular matrix R ∈ Cn×n with nonnegative diagonal
entries such that

A = Q

(
R

0

)
.

We refer to [51] for the existence (see [51, Theorem 1.3.1]) and for methods to
compute this QR decomposition. Now consider the least squares problem (A.30).
Since Q is unitary, we have

‖Ax− y‖2 = ‖Q∗Ax−Q∗y‖2 =

∥∥∥∥
(
R

0

)
x−Q∗y

∥∥∥∥
2

.

Partitioning b =

(
b1

b2

)
= Q∗y with b1 ∈ Cn, this is minimized by solving

the triangular system Rx = b1 with a simple backward elimination. (If R has
some zeros on the diagonal, a slight variation of this procedure can be applied via
partitioning of R.)

The orthogonal matching pursuit algorithm involves successive optimization
problems of the type (A.30) where a new column is added to A at each step. In
such a situation, it is beneficial to work with the QR decomposition of A, as it is
numerically cheap to update the QR decomposition when a new column is added;
see [51, Sect. 3.2.4] for details.

The least squares problem (A.32) may also be solved using the QR decomposi-
tion of A∗; see [51, Theorem 1.3.3] for details.

If fast matrix–vector multiplication algorithms are available for A and A∗ (for
instance, via the fast Fourier transform or if A is sparse), then iterative algorithms
for least squares problems are fast alternatives to QR decompositions. Conjugate
gradients [51, 231] and especially the variant in [303] belong to this class of
algorithms.
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A.4 Vandermonde Matrices

The Vandermonde matrix associated with x0, x1, . . . , xn ∈ C is defined as

V := V(x0, x1, . . . , xn) :=

⎡
⎢⎢⎢⎣
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
... · · ·

...
1 xn x

2
n · · · xnn

⎤
⎥⎥⎥⎦ . (A.39)

Theorem A.24. The determinant of the Vandermonde matrix (A.39) equals

detV =
∏

0≤k<�≤n
(x� − xk).

Proof. The proof can be done by induction on n ≥ 1. For n = 1, the result is clear.
For n ≥ 2, we remark that detV(x0, x1, . . . , xn) is a polynomial in xn, has degree
at most n, and vanishes at x0, . . . , xn−1. Therefore,

detV(x0, x1, . . . , xn) = c
∏

0≤k<n
(xn − xk) (A.40)

for some constant c depending on x1, . . . , xn−1. We notice that the constant c is the
coefficient of xnn in detV(x0, x1, . . . , xn). By expanding the determinant of the ma-
trix V(x0, x1, . . . , xn) along its last row, we observe that
c = detV(x0, x1, . . . , xn−1). Using the induction hypothesis to substitute the value
of c in (A.40) concludes the proof. ��

We now establish a more involved result on the total positivity of Vandermonde
matrices.

Theorem A.25. If xn > · · ·x1 > x0 > 0, then the Vandermonde matrix (A.39) is
totally positive, i.e., for any sets I, J ⊂ [n+ 1] of equal size,

detVI,J > 0,

where VI,J is the submatrix of V with rows and columns indexed by I and J .

We start with the following lemma, known as Descartes’ rule of signs.

Lemma A.26. For a polynomial p(x) = anx
n + · · ·+ a1x+ a0 �= 0, the number

Z(p) of positive zeros of p and the number S(a) := card({i ∈ [n] : ai−1ai < 0})
of sign changes of a = (a0, a1, . . . , an) satisfy

Z(p) ≤ S(a).
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Proof. We proceed by induction on n ≥ 1. For n = 1, the desired result is clear.
Let us now assume that the result holds up to an integer n − 1, n ≥ 2. We want to
establish that, given p(x) = anx

n+ · · ·+a1x+a0 �= 0, we have Z(p) ≤ S(a). We
suppose that a0 �= 0; otherwise, the result is clear from the induction hypothesis.
Changing p in−p if necessary, we may assume a0 > 0, and we consider the smallest
positive integer k such that ak �= 0—the result is clear of no such k exists. We
separate two cases.

1. a0 > 0 and ak < 0.
The result follows from Rolle’s theorem and the induction hypothesis via

Z(p) ≤ Z(p′) + 1 ≤ S(a1, . . . , an) + 1 = S(a0, a1, . . . , an).

2. a0 > 0 and ak > 0.
Let t denote the smallest positive zero of p—again the result is clear if no such t
exists. Let us assume that p′ does not vanish on (0, t). Since p′(0) = kak > 0,
we derive that p′(x) > 0 for all x ∈ (0, t). If follows that a0 = p(0) < p(t) = 0,
which is absurd. Therefore, there must be a zero of p′ in (0, t). Taking into
account the zeros of p′ guaranteed by Rolle’s theorem, the result follows from
the induction hypothesis via

Z(p) ≤ Z(p′) ≤ S(a1, . . . , an) = S(a0, a1, . . . , an).

This concludes the inductive proof. ��

Proof (of Theorem A.25). We will prove by induction on k ∈ [n] that

det

⎡
⎢⎢⎢⎣
xj1i1 x

j2
i1
· · · xjki1

xj1i2 x
j2
i2
· · · xjki2

...
...

. . .
...

xj1ik x
j2
ik
· · · xjkik

⎤
⎥⎥⎥⎦ > 0

for all 0 < x0 < x1 < · · · < xn and for all 0 ≤ i1 < i2 < · · · < ik ≤ n and
0 ≤ j1 < j2 < · · · < jk ≤ n. For k = 1, this is nothing else than the positivity of
the xi’s. Let us now suppose that the result holds up to an integer k− 1, 2 ≤ k ≤ n,
and assume that

det

⎡
⎢⎢⎢⎣
xj1i1 x

j2
i1
· · · xjki1

xj1i2 x
j2
i2
· · · xjki2

...
...

. . .
...

xj1ik x
j2
ik
· · · xjkik

⎤
⎥⎥⎥⎦ ≤ 0 (A.41)

for some 0 < x0 < x1 < · · · < xn and for some 0 ≤ i1 < i2 < · · · < ik ≤ n and
0 ≤ j1 < j2 < · · · < jk ≤ n. We introduce the polynomial p defined by
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p(x) := det

⎡
⎢⎢⎢⎣
xj1i1 x

j2
i1
· · · xjki1

xj1i2 x
j2
i2
· · · xjki2

...
...

. . .
...

xj1 xj2 · · · xjk

⎤
⎥⎥⎥⎦ .

Expanding with respect to the last row and invoking Descartes’ rule of signs, we
observe that Z(p) ≤ k − 1. Since the polynomial p vanishes at the positive points
xi1 , . . . , xik−1

, it cannot vanish elsewhere. The assumption (A.41) then implies that
p(x) < 0 for all x > xik−1

. But this contradicts the induction hypothesis, because

lim
x→+∞

p(x)

xjk
= det

⎡
⎢⎢⎢⎢⎣

xj1i1 xj2i1 · · · xjk−1

i1

xj1i2 xj2i2 · · · xjk−1

i2
...

...
. . .

...
xj1ik−1

xj2ik−1
· · · xjk−1

ik−1

⎤
⎥⎥⎥⎥⎦ > 0.

Thus, we have shown that the desired result holds for the integer k, and this
concludes the inductive proof. ��

A.5 Matrix Functions

In this section, we consider functions of self-adjoint matrices and some of their basic
properties. We recall that a matrix A ∈ Cn×n is called self-adjoint if A = A∗. It is
called positive semidefinite if additionally 〈Ax,x〉 ≥ 0 for all x ∈ Cn and positive
definite if 〈Ax,x〉 > 0 for all x �= 0. For two self-adjoint matrices A,B ∈ Cn×n,
we write A � B or B � A if B−A is positive semidefinite and A ≺ B or B ) A
if B−A is positive definite.

A self-adjoint matrix A possesses an eigenvalue decomposition of the form

A = UDU∗,

where U ∈ Cn×n is a unitary matrix and D = diag[λ1, . . . , λn] is a diagonal
matrix with the eigenvalues of A (repeated according to their multiplicities) on the
diagonal. For a function f : I → R with I ⊂ R containing the eigenvalues of A,
we define the self-adjoint matrix f(A) ∈ Cn×n via the spectral mapping

f(A) = Uf(D)U∗, f(D) = diag [f(λ1), . . . , f(λn)] . (A.42)

This definition does not depend on the particular eigenvalue decomposition. It is
easy to verify that for polynomials f , the definition coincides with the natural one.
For instance, if f(t) = t2, then, because U is unitary,
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f(A) = UD2U∗ = UDU∗UDU∗ = A2.

Note that, if f(x) ≤ g(x), respectively f(x) < g(x), for all x ∈ [a, b], then

f(A) � g(A), respectively f(A) ≺ g(A), (A.43)

for all A with eigenvalues contained in [a, b]. It is a simple consequence of the
definition that for a block-diagonal matrix with self-adjoint blocks A1, . . . ,AL on
the diagonal,

f

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

A1 0 · · · 0

0 A2
. . .

...
...

. . .
. . . 0

0 · · · 0 AL

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

f(A1) 0 · · · 0

0 f(A2)
. . .

...
...

. . .
. . . 0

0 · · · 0 f(AL)

⎤
⎥⎥⎥⎥⎦ . (A.44)

Moreover, if A commutes with B, i.e., AB = BA, then also f(A) commutes with
B, i.e., f(A)B = Bf(A).

The matrix exponential function of a self-adjoint matrix A may be defined by
applying (A.42) with the function f(x) = ex, or equivalently via the power series

eA := exp(A) := Id+

∞∑
k=1

1

k!
Ak. (A.45)

(The power series definition actually applies to any square, not necessarily self-
adjoint, matrix.) The matrix exponential of a self-adjoint matrix is always positive
definite by (A.43). Moreover, it follows from 1 + x ≤ ex for all x ∈ R and from
(A.43) again that, for any self-adjoint matrix A,

Id+A � exp(A). (A.46)

Lemma A.27. If A and B commute, i.e., AB = BA, then

exp(A+B) = exp(A) exp(B).

Proof. If A and B commute, then

1

k!
(A+B)k =

1

k!

k∑
j=0

(
k

j

)
AjBk−j =

k∑
j=0

Aj

j!

Bk−j

(k − j)!
.

Therefore,
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exp(A+B) =
∞∑

k=0

k∑
j=0

Aj

j!

Bk−j

(k − j)!
=

∞∑
j=0

∞∑
k=j

Aj

j!

Bk−j

(k − j)!
=

∞∑
j=0

1

j!
Aj

∞∑
�=0

1

�!
B�

= exp(A) exp(B).

This yields the claim. ��

This lemma fails in the general case where A and B do not commute.

Corollary A.28. For any square matrix A, the matrix exponential exp(A) is
invertible and

exp(A)−1 = exp(−A).

Proof. Since A and −A commute, the previous lemma yields

exp(A) exp(−A) = exp(A−A) = exp(0) = Id,

and similarly exp(−A) exp(A) = Id. ��

Of special interest is the trace exponential

tr exp : A �→ tr exp(A). (A.47)

The trace exponential is monotone with respect to the semidefinite order. Indeed,
for self-adjoint matrices A,B, we have

tr expA ≤ tr expB whenever A � B. (A.48)

This fact follows from the more general statement below.

Proposition A.29. Let f : R → R be a nondecreasing function, and let A,B be
self-adjoint matrices. Then A � B implies

tr f(A) ≤ tr f(B).

Proof. The minimax principle in (A.23) and the assumption A � B imply that the
eigenvalues λ1(A) ≥ λ2(A) ≥ · · · and λ1(B) ≥ λ2(B) ≥ · · · of A and B satisfy

λk(A) = max
M⊂C

n

dimM=k

min
x∈M

‖x‖2=1

〈Ax,x〉 ≤ max
M⊂C

n

dimM=k

min
x∈M

‖x‖2=1

〈Bx,x〉 = λk(B).

Since f is nondecreasing, it follows that

tr f(A) =

n∑
k=1

f(λk(A)) ≤
n∑
k=1

f(λk(B)) = tr f(B).

This completes the proof. ��
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Next we show that certain inequalities for scalar functions extend to traces of
matrix-valued functions; see [382] for more details.

Theorem A.30. Given f�, g� : [a, b]→ R and c� ∈ R for � ∈ [M ], if

M∑
�=1

c�f�(x)g�(y) ≥ 0 for all x, y ∈ [a, b],

then, for all self-adjoint matrices A,B with eigenvalues in [a, b],

tr

(
M∑
�=1

c�f�(A)g�(B)

)
≥ 0.

Proof. Let A =
∑n

j=1 λjuju
∗
j and B =

∑n
k=1 ηkvkv

∗
k be the eigenvalue

decompositions of A and B. Then

tr

(
M∑
�=1

c�f�(A)g�(B)

)
= tr

⎛
⎝ M∑
�=1

c�

n∑
j,k=1

f�(λj)g�(ηk)uju
∗
jvkv

∗
k

⎞
⎠

=

n∑
j,k=1

M∑
�=1

c�f�(λj)g�(ηk)tr (uju
∗
jvkv

∗
k) =

n∑
j,k=1

M∑
�=1

c�f�(λj)g�(ηk)|〈uj ,vk〉|2 ≥ 0.

Hereby, we have used the cyclicity of the trace in the second-to-last step. ��

A function f is called matrix monotone (or operator monotone) if A � B implies

f(A) � f(B). (A.49)

Somewhat surprisingly, not every nondecreasing function f : R → R extends to a
matrix monotone function via (A.42). A simple example is provided by f(t) = t2.

In order to study matrix monotonicity for some specific functions below, we first
make an easy observation.

Lemma A.31. If A � B, thenY∗AY � Y∗BY for all matrices Y with appropri-
ate dimensions. In addition, if Y is invertible and A ≺ B, then Y∗AY ≺ Y∗BY.

Proof. For every vector x, we have

〈Y∗AYx,x〉 = 〈AYx,Yx〉 ≤ 〈BYx,Yx〉 = 〈Y∗BYx,x〉,

which shows the first part. The second part follows with minor changes. ��

Next, we establish the matrix monotonicity of the negative inverse map.
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Proposition A.32. The matrix function f(A) = −A−1 is matrix monotone on the
set of positive definite matrices.

Proof. Given 0 ≺ A � B, the matrixB−1/2 exists (and may be defined via (A.42)).
According to Lemma A.31,

B−1/2AB−1/2 � B−1/2BB−1/2 = Id.

The matrix C = B−1/2AB−1/2 has an eigenvalue decomposition C = UDU∗

with a unitary matrix U and a diagonal matrix D. By Lemma A.31, the above
relation implies 0 ≺ D � Id. It follows that Id � D−1. Then Lemma A.31
yields

Id � UD−1U∗ = C−1 = (B−1/2AB−1/2)−1 = B1/2A−1B1/2.

Applying Lemma A.31 again shows that B−1 = B−1/2IdB−1/2 � A−1. ��

The matrix logarithm can be defined for positive definite matrices via the spectral
mapping formula (A.42) with f(x) = ln(x). It is the inverse of the matrix
exponential, i.e.,

exp(ln(A)) = A. (A.50)

Remark A.33. The definition of the matrix logarithm can be extended to invertible,
not necessarily self-adjoint, matrices, just like the matrix exponential extends to all
square matrices via the power series expansion (A.45). Similarly to the extension
of the logarithm to the complex numbers, one encounters the nonuniqueness of
the logarithm defined via (A.50). One usually chooses the principal branch, thus
restricting the domain to matrices with eigenvalues outside of the negative real line.

Unlike the matrix exponential, the matrix logarithm is matrix monotone.

Proposition A.34. Let A,B be positive definite matrices. Then

ln(A) � ln(B) whenever A � B.

Proof. We first observe that the (scalar) logarithm satisfies

ln(x) =

∫ ∞

0

(
1

t+ 1
− 1

t+ x

)
dt, x > 0. (A.51)

Indeed, a simple integral transformation shows that, for R > 0,

∫ R
0

(
1

t+ 1
− 1

t+ x

)
dt= ln

(
t+ 1

t+ x

)∣∣∣∣
R

0

= ln

(
R+ 1

R+ x

)
−ln
(
1

x

)
−→
R→∞

ln(x).
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It now follows from Proposition A.32 that, for t ≥ 0, the matrix function

gt(A) :=
1

t+ 1
Id− (tId+A)−1

is matrix monotone on the set of positive definite matrices. By (A.51) and by the
definition of the matrix logarithm via (A.42), we derive that, for a positive definite
matrix A,

ln(A) =

∫ ∞

0

gt(A)dt.

Therefore, the matrix logarithm is matrix monotone, since integrals preserve the
semidefinite ordering. ��

The square-root function A �→ A1/2 and all the power functions A �→ Ap with
0 < p ≤ 1 are also matrix monotone on the set of positive semidefinite matrices;
see [47] or [379] for a simple proof.

We continue the discussion on matrix function in Sect. B.6, where we treat
convexity issues.



Appendix B
Convex Analysis

This appendix provides an overview of convex analysis and convex optimization.
Much more information can be found in various books on the subject such as [70,
178, 275, 293, 424, 425].

For the purpose of this exposition on convexity, we work with real vector spaces
RN and treat sets in and functions on CN by identifying CN with R2N . In order to
reverse this identification in some of the statements and definitions below, one needs
to replace the inner product 〈x, z〉 by Re〈x, z〉 for x, z ∈ CN .

B.1 Convex Sets

Let us start with some basic definitions.

Definition B.1. A subset K ⊂ RN is called convex, if for all x, z ∈ K , the line
segment connecting x and z is entirely contained in K , that is,

tx+ (1− t)z ∈ K for all t ∈ [0, 1].

It is straightforward to verify that a set K ∈ RN is convex if and only if, for all
x1, . . . ,xn ∈ K and t1, . . . , tn ≥ 0 such that

∑n
j=1 tj = 1, the convex combination∑n

j=1 tjxj is also contained in K .

Definition B.2. The convex hull conv(T ) of a set T ⊂ RN is the smallest convex
set containing T .

It is well known [424, Theorem 2.3] that the convex hull of T consists of the finite
convex combinations of T , i.e.,

conv(T ) =

{ n∑
j=1

tjxj : n ≥ 1, t1, . . . , tn ≥ 0,

n∑
j=1

tj = 1,x1, . . . ,xn ∈ T
}
.

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7,
© Springer Science+Business Media New York 2013
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Simple examples of convex sets include subspaces, affine spaces, half spaces,
polygons, or norm balls B(x, t); see (A.2). The intersection of convex sets is again
a convex set.

Definition B.3. A set K ⊂ RN is called a cone if, for all x ∈ K and all t ≥ 0, tx
also belongs to K . In addition, if K is convex, then K is called a convex cone.

Obviously, the zero vector is contained in every cone. A set K is a convex cone if,
for all x, z ∈ K and t, s ≥ 0, sx+ tz also belongs to K .

Simple examples of convex cones include subspaces, half spaces, the positive
orthant RN+ = {x ∈ RN : xi ≥ 0 for all i ∈ [N ]}, or the set of positive semidefinite
matrices in RN×N . Another important example of a convex cone is the second-
order cone

⎧⎨
⎩x ∈ R

N+1 :

√√√√ N∑
j=1

x2j ≤ xN+1

⎫⎬
⎭ . (B.1)

For a cone K ⊂ RN , its dual cone K∗ is defined via

K∗ :=
{
z ∈ R

N : 〈x, z〉 ≥ 0 for all x ∈ K
}
. (B.2)

As the intersection of half spaces, K∗ is closed and convex, and it is straightforward
to verify that K∗ is again a cone. If K is a closed nonempty cone, then K∗∗ = K .
Moreover, if H,K ⊂ RN are cones such that H ⊂ K , then K∗ ⊂ H∗. As an
example, the dual cone of the positive orthant RN+ is RN+ itself—in other words, RN+
is self-dual. Note that the dual cone is closely related to the polar cone, which is
defined by

K◦ :=
{
z ∈ R

N : 〈x, z〉 ≤ 0 for all x ∈ K
}
= −K∗. (B.3)

The conic hull cone(T ) of a set T ⊂ RN is the smallest convex cone
containing T . It can be described as

cone(T ) =

{ n∑
j=1

tjxj : n ≥ 1, t1, . . . , tn ≥ 0,x1, . . . ,xn ∈ T
}
. (B.4)

Convex sets can be separated by hyperplanes as stated next.

Theorem B.4. Let K1,K2 ⊂ RN be convex sets whose interiors have empty
intersection. Then there exist a vector w ∈ RN and a scalar λ such that

K1 ⊂ {x ∈ R
N : 〈x,w〉 ≤ λ},

K2 ⊂ {x ∈ R
N : 〈x,w〉 ≥ λ}.
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Remark B.5. The theorem applies in particular whenK1∩K2 = ∅ or whenK1,K2

intersect in only one point, i.e.,K1∩K2 = {x0}. In the latter case, one chooses λ =
〈x0,w〉. If K2 is a subset of a hyperplane, then one can choose w and λ such that
K2 ⊂ {x ∈ RN : 〈x,w〉 = λ}.

Next we consider the notion of extreme points.

Definition B.6. Let K ⊂ RN be a convex set. A point x ∈ K is called an extreme
point of K if x = ty + (1− t)z for y, z ∈ K and t ∈ (0, 1) implies x = y = z.

Compact convex sets can be described via their extreme points as stated next
(see, for instance, [424, Corollary 18.5.1] or [275, Theorem 2.3.4]).

Theorem B.7. A compact convex set is the convex hull of its extreme points.

If K is a polygon, then its extreme points are the zero-dimensional faces of K ,
and the above statement is rather intuitive.

B.2 Convex Functions

We work with extended-valued functions F : RN → (−∞,∞] = R ∪ {∞}.
Sometimes we also consider an additional extension of the values to−∞. Addition,
multiplication, and inequalities in (−∞,∞] are understood in the “natural” sense—
for instance, x +∞ = ∞ for all x ∈ R, λ · ∞ = ∞ for λ > 0, x < ∞ for all
x ∈ R. The domain of an extended-valued function F is defined as

dom(F ) = {x ∈ R
N , F (x) �=∞}.

A function with dom(F ) �= ∅ is called proper. A function F : K → R on a subset
K ⊂ RN can be converted to an extended-valued function by setting F (x) = ∞
for x /∈ K . Then dom(F ) = K , and we call this extension the canonical one.

Definition B.8. An extended-valued function F : RN → (−∞,∞] is called
convex if, for all x, z ∈ RN and t ∈ [0, 1],

F (tx+ (1− t)z) ≤ tF (x) + (1− t)F (z). (B.5)

F is called strictly convex if, for all x �= z and all t ∈ (0, 1),

F (tx+ (1− t)z) < tF (x) + (1− t)F (z).

F is called strongly convex with parameter γ > 0 if, for all x, z ∈ RN and t ∈ [0, 1],

F (tx+ (1− t)z) ≤ tF (x) + (1− t)F (z) − γ

2
t(1− t)‖x− z‖22. (B.6)
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A function F : RN → [−∞,∞) is called (strictly, strongly) concave if −F is
(strictly, strongly) convex.

Obviously, a strongly convex function is strictly convex.
The domain of a convex function is convex, and a function F : K → R

N on a
convex subset K ⊂ R

N is called convex if its canonical extension to R
N is convex

(or alternatively if x, z in the definition (B.5) are assumed to be in K). A function
F is convex if and only if its epigraph

epi(F ) = {(x, r) : x ∈ R
N , r ≥ F (x)} ⊂ R

N × R

is a convex set.
Convexity can also be characterized using general convex combinations: A

function F : RN → (−∞,∞] is convex if and only if for all x1, . . . ,xn ∈ RN

and t1, . . . , tn ≥ 0 such that
∑n
j=1 tj = 1,

F
( n∑
j=1

tjxj
)
≤

n∑
j=1

tjF (xj).

Let us summarize some results on the composition of convex functions.

Proposition B.9. (a) Let F,G be convex functions on RN . For α, β ≥ 0, the
function αF + βG is convex.

(b) Let F : R → R be convex and nondecreasing and G : RN → R be convex.
Then the function H(x) = F (G(x)) is convex.

Proof. Verifying (a) is straightforward. For (b), given x,y ∈ RN and t ∈ [0, 1], we
have

H(tx+ (1− t)y) = F (G(tx + (1− t)y)) ≤ F (tG(x) + (1− t)G(y))

≤ tF (G(x)) + (1 − t)F (G(y)) = tH(x) + (1− t)H(y),

where we have used convexity of G and monotonicity of F in the first inequality
and convexity of F in the second inequality. ��

Let us give some classical examples of convex functions.

Example B.10. (a) For p ≥ 1, the function F (x) = |x|p, x ∈ R, is convex.
(b) Every norm ‖ · ‖ on RN is a convex function. This follows from the triangle

inequality and homogeneity.
(c) The �p-norms ‖ · ‖p are strictly convex for 1 < p <∞, but they are not strictly

convex for p = 1 or p =∞.
(d) For a nondecreasing convex function F : R → (−∞,∞] and a norm ‖ · ‖

on RN , the function H(x) = F (‖x‖) is convex. This follows from (a) and
Proposition B.9(b). In particular, the function x �→ ‖x‖p is convex provided
that p ≥ 1.
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(e) For a positive semidefinite matrix A ∈ RN×N , the function F (x) = x∗Ax is
convex. If A is positive definite, then F is strongly convex.

(f) For a convex set K , the characteristic function

χK(x) =

{
0 if x ∈ K,
∞ if x /∈ K (B.7)

is convex.

For differentiable functions, the following characterizations of convexity holds.

Proposition B.11. Let F : RN → R be a differentiable function.

(a) F is convex if and only if, for all x,y ∈ RN ,

F (x) ≥ F (y) + 〈∇F (y),x − y〉,

where ∇F (y) :=
[
∂F
∂y1

(y), . . . , ∂F∂yN (y)
]�

is the gradient of F at y.

(b) F is strongly convex with parameter γ > 0 if and only if, for all x,y ∈ RN ,

F (x) ≥ F (y) + 〈∇F (y),x − y〉 + γ

2
‖x− y‖22.

(c) If F is twice differentiable, then it is convex if and only if, for all x ∈ RN ,

∇2F (x) � 0,

where ∇2F (x) :=
[

∂2F
∂xi∂xj

(x)
]N
i,j=1

is the Hessian of F at x.

We continue with a discussion about continuity properties.

Proposition B.12. A convex function F : RN → R is continuous on RN .

The treatment of extended-valued functions requires the notion of lower semi-
continuity (which is a particularly useful notion in infinite-dimensional Hilbert
spaces, where, for instance, the norm ‖·‖ is not continuous but lower semicontinuous
with respect to the weak topology; see, for instance, [178]).

Definition B.13. A function F : RN → (−∞,∞] is called lower semicontinuous
if, for every x ∈ RN and every sequence (xj)j≥1 ⊂ R converging to x,

lim inf
j→∞

F (xj) ≥ F (x).

A continuous function F : RN → R is lower semicontinuous. A nontrivial example
of lower semicontinuity is provided by the characteristic function χK of a proper
subset K ⊂ R

N defined in (B.7). Indeed, χK is not continuous, but it is lower
semicontinuous if and only if K is closed.
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A function is lower semicontinuous if and only if its epigraph is closed.
Convex functions have nice properties related to minimization. A (global)

minimizer of a function F : RN → (−∞,∞] is a point x ∈ RN satisfying
F (x) ≤ F (y) for all y ∈ RN . A local minimizer of F is a point x ∈ RN such
that there exists ε > 0 with F (x) ≤ F (y) for all y ∈ RN satisfying ‖x− y‖2 ≤ ε.
(The Euclidean norm ‖ · ‖2 can be replaced by any norm ‖ · ‖ in this definition.)

Proposition B.14. Let F : RN → (−∞,∞] be a convex function.

(a) A local minimizer of F is a global minimizer.
(b) The set of minimizers of F is convex.
(c) If F is strictly convex, then the minimizer of F is unique.

Proof. (a) Let x be a local minimizer and z ∈ RN be arbitrary. Let ε > 0 be the pa-
rameter appearing in the definition of a local minimizer. There exists t ∈ (0, 1)
such that y := tx+(1− t)z satisfies ‖x−y‖2 ≤ ε. Then F (x) ≤ F (y) and by
convexity F (y) = F (tx+ (1 − t)z) ≤ tF (x) + (1− t)F (z). It follows that
(1 − t)F (x) ≤ (1 − t)F (z); hence, F (x) ≤ F (z) because 1 − t > 0. Since z
was arbitrary, this shows that x is a global minimizer.

(b) Let x,y ∈ RN be two minimizers, i.e., F (x) = F (y) = infz F (z). Then, for
t ∈ [0, 1],

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y) = inf
z
F (z),

so that tx+ (1− t)y is a minimizer as well.
(c) Suppose that x �= y are both minimizers of F . Then, for t ∈ (0, 1),

F (tx+ (1− t)y) < tF (x) + (1− t)F (y) = inf
z
F (z),

which is a contradiction. ��

The fact that local minimizers of convex functions are automatically global minimiz-
ers essentially explains the availability of efficient methods for convex optimization
problems.

We say that a function f(x,y) of two arguments x ∈ Rn,y ∈ Rm is jointly
convex if it is convex as a function of the variable z = (x,y). Partial minimization
of a jointly convex function in one variable gives rise to a new convex function as
stated next.

Theorem B.15. Let f : Rn × R
m → (−∞,∞] be a jointly convex function. Then

g(x) := inf
y∈Rm

f(x,y), if well defined, is a convex function of x ∈ R
n.

Proof. For simplicity, we assume that the infimum is always attained. The general
case has to be treated with an ε-argument.

Given x1,x2 ∈ Rn, there exist y1,y2 ∈ Rm such that
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g(x1) = f(x1,y1) = min
y∈Rm

f(x1,y), g(x2) = f(x2,y2) = min
y∈Rm

f(x2,y).

For t ∈ [0, 1], the joint convexity implies that

g(tx1 + (1− t)x2) ≤ f(tx1 + (1− t)x2, ty1 + (1− t)y2)

≤ tf(x1,y1) + (1− t)f(x2,y2) = tg(x1) + (1 − t)g(x2).

This point finishes the argument. ��

The previous theorem shows as well that partial maximization of a jointly concave
function gives rise to a concave function.

Next we consider the maximum of a convex function over a convex set.

Theorem B.16. Let K ⊂ R
N be a compact convex set and let F : K → R be a

convex function. Then F attains its maximum at an extreme point of K .

Proof. Let x ∈ K such that F (x) ≥ F (z) for all z ∈ K . By Theorem B.7, the set
K is the convex hull of its extreme points, so we can write x =

∑m
j=1 tjxj for some

integer m ≥ 1, t1, . . . , tm > 0 with
∑m

j=1 tj = 1, and extreme points x1, . . . ,xm
of K . By convexity,

F (x) = F
( m∑
j=1

tjxj
)
≤

m∑
j=1

tjF (xj) ≤
m∑
j=1

tjF (x) = F (x)

because F (xj) ≤ F (x) by definition of x. Thus, all inequalities hold with equality,
which is only possible if F (xj) = F (x) for all j ∈ [m]. Therefore, the maximum
of F is attained at an extreme point of K . ��

B.3 The Convex Conjugate

The convex conjugate is a very useful concept in convex analysis and optimization.

Definition B.17. Given a function F : RN → (−∞,∞], the convex conjugate (or
Fenchel dual) function of F is the function F ∗ : RN → (−∞,∞] defined by

F ∗(y) := sup
x∈RN

{〈x,y〉 − F (x)}.

The convex conjugate F ∗ is always a convex function, no matter whether the
function F is convex or not. The definition of F ∗ immediately gives the Fenchel
(or Young, or Fenchel–Young) inequality

〈x,y〉 ≤ F (x) + F ∗(y) for all x,y ∈ R
N . (B.8)
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Let us summarize some properties of convex conjugate functions.

Proposition B.18. Let F : RN → (−∞,∞].

(a) The convex conjugate F ∗ is lower semicontinuous.
(b) The biconjugate F ∗∗ is the largest lower semicontinuous convex function

satisfying F ∗∗(x) ≤ F (x) for all x ∈ RN . In particular, if F is convex and
lower semicontinuous, then F ∗∗ = F .

(c) For τ �= 0, if Fτ (x) := F (τx), then (Fτ )
∗(y) = F ∗(y/τ).

(d) For τ > 0, (τF )∗(y) = τF ∗(y/τ).
(e) For z ∈ RN , if F (z) := F (x− z), then (F (z))∗(y) = 〈z,y〉 + F ∗(y).

Proof. For (a) and (b), we refer to [424, Corollary 12.1.1 and Theorem 12.2].
For (d), a substitution gives

(τF )∗(y) = sup
x∈RN

{〈x,y〉 − τF (x)} = τ sup
x∈RN

{〈x,y/τ〉 − F (x)} = τF ∗(y/τ).

The statements (c) and (e) are obtained from simple calculations. ��

The biconjugate F ∗∗ is sometimes called the convex relaxation of F because of (b).
Let us compute the convex conjugate for some examples.

Example B.19. (a) Let F (x) = 1
2‖x‖22, x ∈ RN . Then F ∗(y) = 1

2‖y‖22 = F (y),
y ∈ RN . Indeed, since

〈x,y〉 ≤ 1

2
‖x‖22 +

1

2
‖y‖22, (B.9)

we have

F ∗(y) = sup
x∈RN

{〈x,y〉 − F (x)} ≤ 1

2
‖y‖22.

For the converse inequality, we just set x = y in the definition of the convex
conjugate to obtain

F ∗(y) ≥ ‖y‖22 −
1

2
‖y‖22 =

1

2
‖y‖22.

This is the only example of a function F on RN satisfying F ∗ = F .
(b) Let F (x) = exp(x), x ∈ R. The function x �→ xy− exp(x) takes its maximum

at x = ln y if y > 0, so that

F ∗(y) = sup
x∈R

{xy − ex} =

⎧⎨
⎩
y ln y − y if y > 0,

0 if y = 0,

∞ if y < 0.
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The Fenchel inequality for this particular pair reads

xy ≤ ex + y ln(y)− y for all x ∈ R, y > 0. (B.10)

(c) Let F (x) = ‖x‖ for some norm on RN and let ‖ · ‖∗ be its dual norm; see
Definition A.3. Then the convex conjugate of F is the characteristic function of
the dual norm ball, that is,

F ∗(y) = χB‖·‖∗ (y) =

{
0 if ‖y‖∗ ≤ 1,

∞ otherwise.

Indeed, by the definition of the dual norm, we have 〈x,y〉 ≤ ‖x‖‖y‖∗. It
follows that

F ∗(y) = sup
x∈RN

{〈x,y〉 − ‖x‖} ≤ sup
x∈RN

{(‖y‖∗ − 1)‖x‖},

so that F ∗(y) ≤ 0 if ‖y‖∗ ≤ 1. The choice x = 0 shows that F ∗(y) = 0 in
this case. If ‖y‖∗ > 1, then there exists x such that 〈x,y〉 > ‖x‖. Replacing x
by λx and letting λ→∞ show that F ∗(y) =∞ in this case.

(d) Let F = χK be the characteristic function of a convex set K; see (B.7). Its
convex conjugate is given by

F ∗(y) = sup
x∈K

〈x,y〉.

B.4 The Subdifferential

The subdifferential generalizes the gradient to nondifferentiable functions.

Definition B.20. The subdifferential of a convex function F : RN → (−∞,∞] at
a point x ∈ RN is defined by

∂F (x) = {v ∈ R
N : F (z) ≥ F (x) + 〈v, z − x〉 for all z ∈ R

N}. (B.11)

The elements of ∂F (x) are called subgradients of F at x.

The subdifferential ∂F (x) of a convex function F : RN → R is always nonempty.
If F is differentiable at x, then ∂F (x) contains only the gradient, i.e.,

∂F (x) = {∇F (x)},

see Proposition B.11(a) for one direction. A simple example of a function with a
nontrivial subdifferential is the absolute value function F (x) = |x|, for which
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∂F (x) =

{
{sgn(x)} if x �= 0,

[−1, 1] if x = 0,

where sgn(x) = +1 for x > 0 and sgn(x) = −1 for x < 0 as usual.
The subdifferential allows a simple characterization of minimizers of convex

functions.

Theorem B.21. A vector x is a minimum of a convex function F if and only if
0 ∈ ∂F (x).

Proof. This is obvious from the definition of the subdifferential. ��

Convex conjugates and subdifferentials are related in the following way.

Theorem B.22. Let F : RN → (−∞,∞] be a convex function and let x,y ∈ RN .
The following conditions are equivalent:

(a) y ∈ ∂F (x).
(b) F (x) + F ∗(y) = 〈x,y〉.

Additionally, if F is lower semicontinuous, then (a) and (b) are equivalent to

(c) x ∈ ∂F ∗(y).

Proof. By definition of the subgradient, condition (a) reads

〈x,y〉 − F (x) ≥ 〈z,y〉 − F (z) for all z ∈ R
N . (B.12)

Therefore, the function z �→ 〈z,y〉 − F (z) attains its maximum at x. By
definition of the convex conjugate, this implies that F ∗(y) = 〈x,y〉 − F (x), i.e.,
F ∗(y) + F (x) = 〈x,y〉. This shows that (a) implies (b). Conversely, condition (b)
implies by the Fenchel inequality and the definition of the convex conjugate that the
function z �→ 〈z,y〉 − F (z) attains its maximum in x, which is nothing else than
(B.12). It follows from the definition of the subdifferential that y ∈ ∂F (x).

Now if F is lower semicontinuous, then F ∗∗ = F by Proposition B.18(b) so that
(b) is equivalent to F ∗∗(x) + F ∗(y) = 〈x,y〉. Using the equivalence of (a) and (b)
with F replaced by F ∗ concludes the proof. ��

As a consequence, if F is a convex lower semicontinuous function, then ∂F is the
inverse of ∂F ∗ in the sense that x ∈ ∂F ∗(y) if and only if y ∈ ∂F (x).

Next we consider the so-called proximal mapping (also known as proximation,
resolvent operator, or proximity operator). Let F : RN → (−∞,∞] be a convex
function. Then, for z ∈ RN , the function

x �→ F (x) +
1

2
‖x− z‖22
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is strictly convex due to the strict convexity of x �→ ‖x‖22. By Proposition B.14(c),
its minimizer is unique. The mapping

PF (z) := argmin
x∈RN

F (x) +
1

2
‖x− z‖22 (B.13)

is called the proximal mapping associated with F . In the special case whereF = χK
is the characteristic function of a convex set K defined in (B.7), then PK := PχK is
the orthogonal projection onto K , that is,

PK(z) = argmin
x∈K

‖x− z‖2. (B.14)

IfK is a subspace of RN , then this is the usual orthogonal projection ontoK , which
in particular is a linear map.

The proximal mapping can be expressed via subdifferentials as shown in the next
statement.

Proposition B.23. Let F : RN → (−∞,∞] be a convex function. Then
x = PF (z) if and only if z ∈ x+ ∂F (x).

Proof. By Theorem B.21, we have x = PF (z) if and only if

0 ∈ ∂
(1
2
‖ · −z‖22 + F

)
(x).

The function x �→ 1
2‖x − z‖22 is differentiable with gradient ∇

(
1
2‖ · −z‖22

)
(x) =

x− z, so that the above condition reads 0 ∈ x− z+ ∂F (x), which is equivalent to
z ∈ x+ ∂F (x). ��

The previous proposition justifies the writing

PF = (Id+ ∂F )−1.

Moreau’s identity stated next relates the proximal mappings of F and F ∗.

Theorem B.24. Let F : RN → (−∞,∞] be a lower semicontinuous convex
function. Then, for all z ∈ RN ,

PF (z) + PF∗(z) = z.

Proof. Let x := PF (z), and set y := z − x. By Proposition B.23, we have
z ∈ x+ ∂F (x), i.e., y = z − x ∈ ∂F (x). Since F is lower semicontinuous,
it follows from Theorem B.22 that x ∈ ∂F ∗(y), i.e., z ∈ y + ∂F ∗(y). By
Proposition B.23 again, we have y = PF∗(z). In particular, we have shown that
PF (z) + PF∗(z) = x+ y = z by definition of y. ��
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If PF is easy to compute, then the previous result shows that PF∗(z) = z− PF (z)
is also easy to compute. It is useful to note that applying Moreau’s identity to the
function τF for some τ > 0 shows that

PτF (z) + τPτ−1F∗(z/τ) = z. (B.15)

Indeed, we have PτF (z) + P(τF )∗(z) = z, so it remains to show that P(τF )∗(z) =
τPτ−1F (z/τ). This follows from Proposition B.18(d), since

P(τF )∗(z) = argmin
x∈RN

{1
2
‖x− z‖22 + (τF )∗(x)

}

= argmin
x∈RN

{1
2
‖x− z‖22 + τF ∗(x/τ)

}

= argmin
x∈RN

{
τ2
(1
2
‖x/τ − z/τ‖22 + τ−1F ∗(x/τ)

)}
= τPτ−1F∗(z/τ).

Since F is a lower semicontinuous convex function, we have F ∗∗ = F , so applying
(B.15) to F ∗ in place of F gives

PτF∗(z) + τPτ−1F (z/τ) = z. (B.16)

Theorem B.25. For a convex function F : RN → (−∞,∞], the proximal mapping
PF is nonexpansive, i.e.,

‖PF (z) − PF (z
′)‖2 ≤ ‖z− z′‖2 for all z, z′ ∈ R

N .

Proof. Set x = PF (z) and x′ = PF (z
′). By Proposition B.23, we have

z ∈ x+ ∂F (x), so that y := z − x ∈ ∂F (x). Theorem B.22 shows that
F (x) + F ∗(y) = 〈x,y〉. Similarly, we can find y′ such that z′ = x′ + y′ and
F (x′) + F ∗(y′) = 〈x′,y′〉. It follows that

‖z− z′‖22 = ‖x− x′‖22 + ‖y− y′‖22 + 2〈x− x′,y − y′〉. (B.17)

Note that, by the Fenchel inequality (B.8), we have

〈x′,y〉 ≤ F (x′) + F ∗(y) and 〈x,y′〉 ≤ F (x) + F ∗(y′).

Therefore,

〈x− x′,y − y′〉 = 〈x,y〉 + 〈x′,y′〉 − 〈x′,y〉 − 〈x,y′〉

= F (x) + F ∗(y) + F (x′) + F ∗(y′)− 〈x′,y〉 − 〈x,y′〉 ≥ 0.

Together with (B.17), this shows that ‖x− x′‖22 ≤ ‖z− z′‖22. ��
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Let us conclude with an important example of a proximal mapping.
Let F (x) = |x|, x ∈ R, be the absolute value function. A straightforward
computation shows that, for τ > 0,

PτF (y) = argmin
x∈R

{1
2
(x− y)2 + τ |x|

}
=

⎧⎨
⎩
y − τ if y ≥ τ,

0 if |y| ≤ τ,

y + τ if y ≤ −τ,

=: Sτ (y). (B.18)

The function Sτ is called soft thresholding or shrinkage operator. More generally,
if F (x) = ‖x‖1 is the �1-norm on R

N , then the minimization problem defining the
proximal operator decouples and PτF (y) is given entrywise for y ∈ R

N by

PτF (y)� = Sτ (y�), � ∈ [N ]. (B.19)

B.5 Convex Optimization Problems

An optimization problem takes the form

min
x∈RN

F0(x) subject to Ax = y, (B.20)

and Fj(x) ≤ bj , j ∈ [M ], (B.21)

where the function F0 : R
N → (−∞,∞] is called objective function, the

functions F1, . . . , FM : R
N → (−∞,∞] are called constraint functions, and

A ∈ R
m×N ,y ∈ R

m provide the equality constraint. A point x ∈ R
N satisfying

the constraints is called feasible and (B.20) is called feasible if there exists a
feasible point. A feasible point x� for which the minimum is attained, that is,
F0(x

�) ≤ F0(x) for all feasible x is called a minimizer or optimal point, and F0(x
�)

is the optimal value.
We note that the equality constraint may be removed and represented by inequal-

ity constraints of the form Fj(x) ≤ yj and −Fj(x) ≤ −yj with Fj(x) := 〈Aj ,x〉
where Aj ∈ R

N is the jth row of A.
The set of feasible points described by the constraints is given by

K = {x ∈ R
N : Ax = y, Fj(x) ≤ bj, j ∈ [M ]}. (B.22)

Two optimization problems are said to be equivalent if, given the solution of one
problem, the solution of the other problem can be “easily” computed. For the
purpose of this exposition, we settle for this vague definition of equivalence which
will hopefully be clear in concrete situations.
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The optimization problem (B.20) is equivalent to the problem of minimizing F0

over K , i.e.,

min
x∈K

F0(x). (B.23)

Recalling that the characteristic function of K is

χK(x) =

{
0 if x ∈ K,
∞ if x /∈ K,

the optimization problem becomes as well equivalent to the unconstrained optimiza-
tion problem

min
x∈RN

F0(x) + χK(x).

A convex optimization problem (or convex program) is a problem of the form (B.20),
in which the objective function F0 and the constraint functions Fj are convex. In
this case, the set of feasible points K defined in (B.22) is convex. The convex
optimization problem is equivalent to the unconstrained optimization problem of
minimizing the convex function

F (x) = F0(x) + χK(x).

Due to this equivalence, we may freely switch between constrained and un-
constrained optimization problems. Clearly, the statements of Proposition B.14
carry over to constrained optimization problems. We only note that, for con-
strained optimization problems, the function F0 is usually taken to be finite, i.e.,
dom(F0) = RN .

In a linear optimization problem (or linear program), the objective function F0

and all the constraint functions F1, . . . , FM are linear. This is a special case of a
convex optimization problem.

The Lagrange function of an optimization problem of the form (B.20) is defined
for x ∈ RN , ξ ∈ Rm,ν ∈ RM with ν� ≥ 0 for all � ∈ [M ], by

L(x, ξ,ν) := F0(x) + 〈ξ,Ax− y〉 +
M∑
�=1

ν�(F�(x)− b�). (B.24)

For an optimization problem without inequality constraints, we just set

L(x, ξ) := F0(x) + 〈ξ,Ax− y〉. (B.25)

The variables ξ and ν are called Lagrange multipliers. For ease of notation, we write
ν � 0 if ν� ≥ 0 for all � ∈ [M ]. The Lagrange dual function is defined by
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H(ξ,ν) := inf
x∈RN

L(x, ξ,ν), ξ ∈ R
m,ν ∈ R

M ,ν � 0.

If x �→ L(x, ξ,ν) is unbounded from below, then we set H(ξ,ν) = −∞. Again, if
there are no inequality constraints, then

H(ξ) := inf
x∈RN

L(x, ξ) = inf
x∈RN

{
F0(x) + 〈ξ,Ax− y〉

}
, ξ ∈ R

m.

The dual function is always concave (even if the original problem (B.20) is not
convex) because it is the pointwise infimum of a family of affine functions. The
dual function provides a bound on the optimal value of F0(x

�) for the minimization
problem (B.20), namely,

H(ξ,ν) ≤ F0(x
�) for all ξ ∈ R

m,ν ∈ R
M ,ν � 0. (B.26)

Indeed, if x is a feasible point for (B.20), then Ax− y = 0 and F�(x)− b� ≤ 0 for
all � ∈ [M ], so that, for all ξ ∈ Rm and ν � 0,

〈ξ,Ax− y〉+
M∑
�=1

ν�(F�(x)− b�) ≤ 0.

Therefore,

L(x, ξ,ν) = F0(x) + 〈ξ,Ax− y〉+
M∑
�=1

ν�(F�(x) − b�) ≤ F0(x).

Using H(ξ,ν) ≤ L(x, ξ,ν) and taking the infimum over all feasible x ∈ RN in
the right-hand side yields (B.26). We would like this lower bound to be as tight as
possible. This motivates us to consider the optimization problem

max
ξ∈Rm,ν∈RM

H(ξ,ν) subject to ν � 0. (B.27)

This optimization problem is called the dual problem to (B.20), which in this
context is sometimes called the primal problem. Since H is concave, this problem
is equivalent to the convex optimization problem of minimizing the convex function
−H subject to the positivity constraint ν � 0. A pair (ξ,ν) with ξ ∈ Rm and
ν ∈ RM such that ν � 0 is called dual feasible. A (feasible) maximizer (ξ�,ν�)
of (B.27) is referred to as dual optimal or optimal Lagrange multipliers. If x� is
optimal for the primal problem (B.20), then the triple (x�, ξ�,ν�) is called primal–
dual optimal. Inequality (B.26) shows that we always have

H(ξ�,ν�) ≤ F (x�). (B.28)
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This inequality is called weak duality. For most (but not all) convex optimization
problems, strong duality holds, meaning that

H(ξ�,ν�) = F (x�). (B.29)

Slater’s constraint qualification, stated in a simplified form below, provides a
condition ensuring strong duality.

Theorem B.26. Assume that F0, F1, . . . , FM are convex functions with
dom (F0) = RN . If there exists x ∈ RN such that Ax = y and F�(x) < b�
for all � ∈ [M ], then strong duality holds for the optimization problem (B.20).

In the absence of inequality constraints, strong duality holds if there exists x ∈
RN with Ax = y, i.e., if (B.20) is feasible.

Proof. See, for instance, [70, Sect. 5.3.2] or [293, Satz 8.1.7]. ��

Given a primal–dual feasible point (x, ξ,ν), that is, x ∈ RN is feasible for
(B.20) and ξ ∈ Rm, ν ∈ RM with ν � 0, the primal–dual gap

E(x, ξ,ν) = F (x) −H(ξ,ν) (B.30)

can be used to quantify how close x is to the minimizer x� of the primal prob-
lem (B.20) and how close (ξ,ν) is to the maximizer of the dual problem (B.27). If
(x�, ξ�,ν�) is primal–dual optimal and strong duality holds, thenE(x�, ξ�,ν�) = 0.
The primal dual gap is often taken as a stopping criterion in iterative optimization
methods.

For illustration, let us compute the dual problem of the �1-minimization problem

min
x∈RN

‖x‖1 subject to Ax = y. (B.31)

The Lagrange function for this problem takes the form

L(x, ξ) = ‖x‖1 + 〈ξ,Ax− y〉.

The Lagrange dual function is

H(ξ) = inf
x∈RN

{‖x‖1 + 〈A∗ξ,x〉 − 〈ξ,y〉}.

If ‖A∗ξ‖∞ > 1, then there exists x ∈ RN such that 〈A∗ξ,x〉 < −‖x‖1. Replacing
x by λx and letting λ → ∞ show that H(ξ) = −∞ in this case. If ‖A∗ξ‖∞ ≤ 1,
then ‖x‖1 + 〈A∗ξ,x〉 ≥ 0. The choice x = 0 therefore yields the infimum, and
H(ξ) = −〈ξ,y〉. In conclusion,

H(ξ) =

{
−〈ξ,y〉 if ‖A∗ξ‖∞ ≤ 1,

−∞ otherwise.
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Clearly, it is enough to maximize over the points ξ for which H(ξ) > −∞. Making
this constraint explicit, the dual program to (B.31) is given by

min
ξ∈Rm

− 〈ξ,y〉 subject to ‖A∗ξ‖∞ ≤ 1. (B.32)

By Theorem B.26, strong duality holds for this pair of primal and dual optimization
problems provided the primal problem (B.31) is feasible.

Remark B.27. In the complex case where A ∈ Cm×N and y ∈ Cm, the inner
product has to be replaced by the real inner product Re〈x,y〉 as noted in the
beginning of this chapter. Following the derivation above, we see that the dual
program of (B.31), where the minimum now ranges over x ∈ CN , is given by

max
ξ∈Cm

− Re〈ξ,y〉 subject to ‖A∗ξ‖∞ ≤ 1. (B.33)

A conic optimization problem is of the form

min
x∈RN

F0(x) subject to x ∈ K, (B.34)

and F�(x) ≤ b�, � ∈ [M ],

where K is a convex cone and the F� are convex functions. If K is a second-order
cone, see (B.1) (possibly in a subset of variables, or the intersection of second-
order cones in different variables), then the above problem is called a second-order
cone problem. If K is the cone of positive semidefinite matrices, then the above
optimization problem is called a semidefinite program.

Conic programs have their duality theory, too. The Lagrange function of a conic
program of the form (B.34) is defined, for x ∈ RN , ξ ∈ K∗, and ν ∈ RM with
ν� ≥ 0 for all � ∈ [M ], by

L(x, ξ,ν) := F0(x)− 〈x, ξ〉+
M∑
�=1

ν�(F�(x) − b�),

where K∗ is the dual cone of K defined in (B.2). (If there are no inequality
constraints, then the last term above is omitted, of course.) The Lagrange dual
function is then defined as

H(ξ,ν) := min
x∈RN

L(x, ξ,ν), ξ ∈ K∗,ν ∈ R
M ,ν � 0.

Similarly to (B.26), the minimizer x� of (B.26) satisfies the lower bound

H(ξ,ν) ≤ F0(x
�), for all ξ ∈ K∗,ν ∈ R

M ,ν � 0. (B.35)
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Indeed, if x ∈ K and F�(x) ≤ b� for all � ∈ [M ], then 〈x, ξ〉 ≥ 0 for all ξ ∈ K∗

by definition (B.2) of the dual cone, and with ν � 0,

−〈x, ξ〉+
M∑
�=1

ν�(F�(x) − b�) ≤ 0.

Therefore,

L(x, ξ,ν) = F0(x)− 〈x, ξ〉+
M∑
�=1

ν�(F�(x)− b�) ≤ F0(x).

This point establishes (B.35). The dual program of (B.34) is then defined as

max
ξ∈Rm,ν∈RM

H(ξ,ν) subject to ξ ∈ K∗ and ν � 0. (B.36)

Denoting by (ξ�,ν�) a dual optimum, that is, a maximizer of the program (B.36),
and by x� a minimizer of the primal program (B.34), the triple (x�, ξ�,ν�) is called
a primal–dual optimum. The above arguments establish the weak duality

H(ξ�,ν�) ≤ F0(x
�). (B.37)

If this is an equality, then we say that strong duality holds. Similar conditions to
Slater’s constraint qualification (Theorem B.26) ensure strong duality for conic
programs—for instance, if there exists a point in the interior of K such that all
inequality constraints hold strictly; see, e.g., [70, Sect. 5.9].

Let us illustrate duality for conic programs with an example relevant to Sect. 9.2.
For a convex cone K and a vector g ∈ RN , we consider the optimization problem

min
x∈RN

〈x,g〉 subject to x ∈ K and ‖x‖22 ≤ 1.

Its Lagrange function is given by

L(x, ξ, ν) = 〈x,g〉 − 〈ξ,x〉+ ν(‖x‖22 − 1), ξ ∈ K∗, ν ≥ 0.

The minimum with respect to x of the Lagrange function is attained at
x = (2ν)−1(ξ − g). By substituting this value into L, the Lagrange dual function
turns out to be

H(ξ, ν) = − 1

4ν
‖g− ξ‖22 − ν.

This leads to the dual program

max
ξ,ν

(
− ν − 1

4ν
‖g− ξ‖22

)
subject to ξ ∈ K∗ and ν ≥ 0.
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Solving this optimization program with respect to ν gives ν = 1
2‖g − ξ‖2, so we

arrive at the dual program

max
ξ
− ‖g− ξ‖2 subject to ξ ∈ K∗. (B.38)

Note that the maximizer is the orthogonal projection of g onto the dual cone K∗,
which always exists since K∗ is convex and closed. Weak duality for this case reads
max
ξ∈K∗

−‖g− ξ‖2 ≤ min
x∈K,‖x‖2≤1

〈g,x〉, or

max
x∈K,‖x‖2≤1

〈−g,x〉 ≤ min
ξ∈K∗

‖g− ξ‖2. (B.39)

In fact, strong duality—that is, equality above—often holds, for instance, if K
has nonempty interior. Note that the inequality (B.39) for −g instead of g can be
rewritten in terms of the polar cone K◦ = −K∗ introduced in (B.3) as

max
x∈K,‖x‖2≤1

〈g,x〉 ≤ min
ξ∈K◦

‖g− ξ‖2. (B.40)

Lagrange duality has a saddle-point interpretation. For ease of exposition, we
consider (B.20) without inequality constraints, but extensions that include inequality
constraints or conic programs are derived in the same way.

Let (x�, ξ�) be a primal–dual optimal point. Recalling the definition of the
Lagrange function L, we have

sup
ξ∈Rm

L(x, ξ) = sup
ξ∈Rm

F0(x) + 〈ξ,Ax− y〉

=

{
F0(x) if Ax = y,

∞ otherwise.
(B.41)

In other words, the above supremum is infinite if x is not feasible. A (feasible)
minimizer x� of the primal problem (B.20) therefore satisfies

F0(x
�) = inf

x∈RN
sup
ξ∈Rm

L(x, ξ).

On the other hand, a dual optimal vector ξ� satisfies

H(ξ�) = sup
ξ∈Rm

inf
x∈RN

L(x, ξ)

by definition of the Lagrange dual function. Thus, weak duality implies

sup
ξ∈Rm

inf
x∈RN

L(x, ξ) ≤ inf
x∈RN

sup
ξ∈Rm

L(x, ξ)
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(which can be derived directly), while strong inequality reads

sup
ξ∈Rm

inf
x∈RN

L(x, ξ) = inf
x∈RN

sup
ξ∈Rm

L(x, ξ).

In other words, the order of minimization and maximization can be interchanged
in the case of strong duality. This property is called the strong max–min property
or saddle-point property. Indeed, in this case, a primal–dual optimal (x�, ξ�) is a
saddle point of the Lagrange function, that is,

L(x�, ξ) ≤ L(x�, ξ�) ≤ L(x, ξ�) for all x ∈ R
N , ξ ∈ R

m. (B.42)

Jointly optimizing the primal and dual problem is therefore equivalent to finding a
saddle point of the Lagrange function provided that strong duality holds.

Based on these findings, we establish below a theorem relating some convex
optimization problems relevant to this book. The theorem also holds in the complex
setting by interpreting CN as R2N .

Theorem B.28. Let ‖ · ‖ be a norm on Rm and |||·||| be a norm on RN . For
A ∈ Rm×N , y ∈ Rm, and τ > 0, consider the optimization problem

min
x∈RN

‖Ax− y‖ subject to |||x||| ≤ τ. (B.43)

If x� is a minimizer of (B.43), then there exists a parameter λ ≥ 0 such that x� is
also a minimizer of the optimization problem

min
x∈RN

λ|||x||| + ‖Ax− y‖2. (B.44)

Conversely, for λ ≥ 0, if x� is a minimizer of (B.44), then there exists τ ≥ 0 such
that x� is a minimizer of (B.43).

Proof. The optimization problem (B.43) is equivalent to

min
x∈RN

‖Ax− y‖2 subject to |||x||| ≤ τ.

The Lagrange function of this minimization problem is given by

L(x, ξ) = ‖Ax− y‖2 + ξ(|||x||| − τ).

Since for τ > 0, there exist vectors x with |||x||| < τ , so that Theorem B.26 implies
strong duality for (B.43). Therefore, there exists a dual optimal ξ� ≥ 0. The saddle-
point property (B.42) implies that L(x�, ξ�) ≤ L(x, ξ�) for all x ∈ R

N . Therefore,
x� is also a minimizer of x �→ L(x, ξ�). Since the constant term −ξ�τ does not
affect the minimizer, the conclusion follows with λ = ξ�.
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For the converse statement, one can proceed directly as in the proof of Proposi-
tion 3.2(a). ��

Remark B.29. (a) The same type of statement and proof is valid for the pair of
optimization problems (B.44) and

min
x∈RN

|||x||| subject to ‖Ax− y‖ ≤ η (B.45)

under a strict feasibility assumption for (B.45).
(b) The parameter transformations between τ , λ, η depend on the minimizers

and can only be performed after solving the optimization problems. Thus,
the theoretical equivalence of the problems (B.43)–(B.45) is too implicit for
practical purposes.

For the remainder of this section, we consider a convex optimization problem of
the form

min
x∈RN

F (Ax) +G(x), (B.46)

where A ∈ R
m×N and where F : Rm → (−∞,∞], G : RN → (−∞,∞] are

convex functions. All the relevant optimization problems appearing in this book
belong to this class; see Sect. 15.2. For instance, the choice G(x) = ‖x‖1 and
F = χ{y}, the characteristic function (B.7) of the singleton {y}, leads to the
�1-minimization problem (B.31).

The substitution z = Ax yields the equivalent problem

min
x∈RN ,z∈Rm

F (z) +G(x) subject to Ax− z = 0. (B.47)

The Lagrange dual function to this problem is given by

H(ξ) = inf
x,z
{F (z) +G(x) + 〈A∗ξ,x〉 − 〈ξ, z〉}

= − sup
z∈Rm

{〈ξ, z〉 − F (z)} − sup
x∈RN

{〈x,−A∗ξ〉 −G(x)}

= −F ∗(ξ)−G∗(−A∗ξ), (B.48)

where F ∗ and G∗ are the convex conjugate functions of F and G, respectively.
Therefore, the dual problem of (B.46) is

max
ξ∈Rm

(
− F ∗(ξ)−G∗(−A∗ξ)

)
. (B.49)

Since the minimal values of (B.46) and (B.47) coincide, we refer to (B.49) also
as the dual problem of (B.46)—although strictly speaking (B.49) is not the dual
to (B.46) in the sense described above. (Indeed, an unconstrained optimization
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problem does not introduce dual variables in the Lagrange function. In general,
equivalent problems may have nonequivalent duals.)

The following theorem states strong duality of the problems (B.46) and (B.49).

Theorem B.30. Let A ∈ Rm×N and F : Rm → (−∞,∞], G : RN → (−∞,∞]
be proper convex functions with either dom(F ) = Rm or dom(G) = RN and such
that there exists x ∈ RN such that Ax ∈ dom(F ). Assume that the optima in (B.46)
and (B.49) are attained. Then strong duality holds in the form

min
x∈RN

(
F (Ax) +G(x)

)
= max

ξ∈Rm

(
− F ∗(ξ)−G∗(−A∗ξ)

)
.

Furthermore, a primal–dual optimum (x�, ξ�) is a solution to the saddle-point
problem

min
x∈RN

max
ξ∈Rm

〈Ax, ξ〉+G(x) − F ∗(ξ), (B.50)

where F ∗ is the convex conjugate of F .

Proof. The first statement follows from the Fenchel duality theorem; see, e.g.,
[424, Theorem 31.1]. Strong duality implies the saddle-point property (B.42) of the
Lagrange function. By (B.48), the value of the Lagrange function at the primal–dual
optimal point is the optimal value of the min–max problem, i.e.,

min
x,z∈RN

max
ξ∈Rm

F (z) +G(x) + 〈A∗ξ,x〉 − 〈ξ, z〉

= min
x∈RN

max
ξ∈Rm

−
(
min
z∈Rm

〈ξ, z〉 − F (z)
)
+ 〈A∗ξ,x〉+G(x)

= min
x∈RN

max
ξ∈Rm

〈Ax, ξ〉+G(x) − F ∗(ξ)

by definition of the convex conjugate function. The interchange of the minimum
and maximum above is justified by the fact that if ((x�, z�), ξ�) is a saddle point of
L((x, z), ξ), then (x�, ξ�) is a saddle point of H(x, ξ) = minz L((x, z), ξ). ��

The condition dom(F ) = Rm or dom(G) = RN above may be relaxed; see, e.g.,
[424, Theorem 31.1].

B.6 Matrix Convexity

This section uses the notion of matrix functions introduced in Sect. A.5, in particular
the matrix exponential and the matrix logarithm. The main goal is to show the
following concavity theorem due to Lieb [325], which is a key ingredient in the
proof of the noncommutative Bernstein inequality in Sect. 8.5.
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Theorem B.31. For H is a self-adjoint matrix, the function

X �→ tr exp(H+ ln(X))

is concave on the set of positive definite matrices.

While the original proof [325] and its variants [187, 439, 440] rely on complex
analysis, we proceed as in [485]; see also [50]. This requires us to introduce some
background from matrix convexity and some concepts from quantum information
theory.

Given a function f : I → R defined on an interval I ⊂ R, we recall that f
is extended to self-adjoint matrices A with eigenvalues contained in I by (A.42).
Similarly to the definition (A.49) of operator monotonicity, we say that f is matrix
convex (or operator convex) if, for all integers n ≥ 1, all self-adjoint matrices
A,B ∈ Cn×n with eigenvalues in I , and all t ∈ [0, 1],

f(tA+ (1− t)B) � tf(A) + (1− t)f(B). (B.51)

Equivalently, f is matrix convex if, for all n ≥ 1 and all x ∈ Cn, the scalar-
valued function A �→ 〈f(A)x,x〉 is convex on the set of self-adjoint matrices in
Cn×n with eigenvalues in I . Like matrix monotonicity, matrix convexity is a much
stronger property than the usual scalar convexity.

We start with a simple characterization in terms of orthogonal projections, i.e.,
of self-adjoint matrices P that satisfy P2 = P. Here and in the following, when
matrix dimensions are not specified, they are arbitrary, but the matrices are assumed
to have matching dimensions so that matrix multiplication is well defined.

Theorem B.32. Let I ⊂ R be an interval containing 0 and let f : I → R. Then f is
matrix convex and f(0) ≤ 0 if and only if f(PAP) � Pf(A)P for all orthogonal
projections P and all self-adjoint matrices A with eigenvalues in I .

Proof. We prove matrix convexity based on the given condition, since only this di-
rection is needed later. A proof of the converse direction and of further equivalences
can be found in [47, Theorem V.2.3] or [258, Theorem 2.1].

Let A,B be self-adjoint matrices with eigenvalues in I and let t ∈ [0, 1]. Define
T,P,Vt to be the block matrices

T =

[
A 0

0 B

]
, P =

[
Id 0

0 0

]
, Vt =

[ √
t Id −

√
1− t Id√

1− t Id
√
t Id

]
.

The matrix Vt is unitary and the matrix P is an orthogonal projection. We observe
that

PV∗
tTVtP =

[
tA+ (1 − t)B 0

0 0

]
.
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Therefore, by (A.44) and by the hypothesis, we have

[
f(tA+ (1− t)B) 0

0 f(0)

]
= f(PV∗

tTVtP) � Pf(V∗
tTVt)P

= PV∗
t f(T)VtP =

[
tf(A) + (1− t)f(B) 0

0 0

]
.

The first equality in the second line is valid since Vt is unitary. This shows that f is
matrix convex and that f(0) ≤ 0. ��

Theorem B.33. Let f be a continuous function on [0,∞). Then f is matrix convex
and f(0) ≤ 0 if and only if the function g(t) = f(t)/t is matrix monotone on
(0,∞).

Proof. We prove that f is matrix convex with f(0) ≤ 0 if g is matrix monotone,
since only this direction is needed later. For the converse direction, we refer to [47,
Theorem V.2.9] or [258, Theorem 2.4].

First, we note that the (scalar) monotonicity of f(t)/t on (0,∞) implies that
f(t)/t ≤ f(1)/1, i.e., f(t) ≤ tf(1), for all 0 < t ≤ 1. Letting t → 0 shows that
f(0) ≤ 0.

Let now A be an arbitrary self-adjoint matrix with eigenvalues in (0,∞) and
P be an arbitrary orthogonal projection (of the same dimension as A). According
to Theorem B.32, to prove that f is matrix convex, we need to show that
f(PAP) � Pf(A)P. For ε > 0, the fact that P + εId � (1 + ε)Id implies
that A1/2(P + εId)A1/2 � (1 + ε)A by Lemma A.31. The matrix monotonicity
of g then yields

f(A1/2(P+ εId)A1/2)A−1/2(P+ εId)−1A−1/2 � f((1+ ε)A)(1 + ε)−1A−1.

Multiplying on the left by (P+ εId)A1/2 and on the right by A1/2(P+ εId) and
using Lemma A.31, we arrive at

(P+ εId)A1/2f(A1/2(P+ εId)A1/2)A−1/2

� (P+ εId)A1/2f((1 + ε)A)(1 + ε)−1A−1/2(P+ εId).

By continuity of f , letting ε→ 0 gives

PA1/2f(A1/2PA1/2)A−1/2 � PA1/2f(A)A−1/2P. (B.52)

The right-hand side of (B.52) equals Pf(A)P because A1/2 and f(A) commute.
Thus, it remains to show that the left-hand side of (B.52) equals f(PAP). Such an
identity holds for monomials h(t) = tn, since
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PA1/2h(A1/2PA1/2)A−1/2

= PA1/2(A1/2PA1/2)(A1/2PA1/2) · · · (A1/2PA1/2)A−1/2

= PAPA · · ·PAP = (PAP)(PAP) · · · (PAP) = h(PAP).

By linearity, the identity PA1/2h(A1/2PA1/2)A−1/2 = h(PAP) holds for
all polynomials h. We now consider an interpolating polynomial h satisfying
h(λ) = f(λ) for all λ in the set of eigenvalues of A1/2PA1/2—which equals
the set of eigenvalues of PAP since A1/2PA1/2 = (A1/2P)(PA1/2) and
PAP = (PA1/2)(A1/2P). This yields h(A1/2PA1/2) = f(A1/2PA1/2) and
h(PAP) = f(PAP) by the definition (A.42) of matrix functions. It follows
that PA1/2f(A1/2PA1/2)A−1/2 = f(PAP), as desired. By continuity of f ,
the relation f(PAP) � Pf(A)P extends to all self-adjoint matrices A with
eigenvalues in [0,∞). The claim follows therefore from Theorem B.32. ��

We are particularly interested in the following special case.

Corollary B.34. The continuous function defined by φ(x) = x ln(x) for x > 0 and
by φ(0) = 0 is matrix convex on [0,∞).

Proof. Combine Proposition A.34 with Theorem B.33.

Next we state the affine version of the Hansen–Pedersen–Jensen inequality.

Theorem B.35. Let f be a matrix convex function on some interval I ⊂ R and let
X1, . . . ,Xn ∈ Cd×d be square matrices such that

∑n
j=1 X

∗
jXj = Id. Then, for all

self-adjoint matrices A1, . . . ,An ∈ Cd×d with eigenvalues in I ,

f

⎛
⎝ n∑
j=1

X∗
jAjXj

⎞
⎠ �

n∑
j=1

X∗
jf(Aj)Xj . (B.53)

There is a converse to this theorem, in the sense that if (B.53) holds for arbitrary
choices of Aj and Xj , then f is matrix convex; see [259, Theorem 2.1]. The proof
requires the following auxiliary lemma.

Lemma B.36. Let Bj,� ∈ Cm×m, j, � ∈ [n], be a double sequence of square
matrices, and let B be the block matrix B = (Bj,�) ∈ Cmn×mn. With ω = e2πi/n,
let E ∈ Cmn×mn be the unitary block-diagonal matrix E = diag[ωId, . . . , ωnId].
Then

1

n

n∑
k=1

E−kBEk = diag[B1,1,B2,2, . . . ,Bn,n].

Proof. A direct computation shows that

(E−kBEk)j,� = ωk(�−j)Bj,�.
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The formula for geometric sums implies, for j, � ∈ [n],

n∑
k=1

ωk(�−j) =
n∑
k=1

e2πi(�−j)k/n =

{
n if � = j,

0 otherwise.

The claim follows directly. ��

Proof (of Theorem B.35). Define the block matrices

X =

⎡
⎢⎢⎢⎣
X1

X2

...
Xn

⎤
⎥⎥⎥⎦ ∈ R

nd×d and U =

[
Id−XX∗ X

−X∗ 0

]
∈ R

(n+1)d×(n+1)d.

We observe that X∗X = Id and in turn that

UU∗ =

[
(Id−XX∗)2 +XX∗ −(Id−XX∗)X

−X∗(Id−XX∗) X∗X

]
= Id.

Similarly, we compute U∗U = Id. Therefore, U is a unitary matrix (called the
unitary dilation of X). We partition U into d × d blocks (Uj,�)j,�∈[n+1]. Note that
Uk,n+1 = Xk for k ∈ [n] and that Un+1,n+1 = 0. Furthermore, let A be the
block-diagonal matrix A = diag[A1,A2, . . . ,An,0]. Using Lemma B.36 with n
replaced by n+ 1 together with the matrix convexity of f , we obtain

f

⎛
⎝ n∑
j=1

X∗
jAjXj

⎞
⎠ = f ((U∗AU)n+1,n+1)

= f

⎛
⎝
(

1

n+ 1

n+1∑
k=1

E−kU∗AUEk

)

n+1,n+1

⎞
⎠

=

(
f

(
1

n+ 1

n+1∑
k=1

E−kU∗AUEk

))

n+1,n+1

�
(

1

n+ 1

n+1∑
k=1

f
(
E−kU∗AUEk

))

n+1,n+1

.
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The third equality is due to the fact that the matrix in the argument of f in the second
line is block-diagonal by Lemma B.36. Since E and U are unitary, the definition of
f on self-adjoint matrices implies that the last term equals

(
1

n+ 1

n+1∑
k=1

E−kU∗f (A)UEk

)

n+1,n+1

= (U∗f(A)U)n+1,n+1

=

n∑
j=1

X∗
jf(Aj)Xj .

This completes the proof. ��

Our next tool is the perspective. In the scalar case, for a convex function f defined
on some convex set K ⊂ Rn, it is given by g(x, t) = tf(x/t) whenever t > 0 and
x/t ∈ K . It is straightforward to verify that g is jointly convex in (x, t), i.e., that
g is a convex function in the variable y = (x, t). As an important example, the
perspective of the convex function f(x) = x lnx, x ≥ 0, is the jointly convex
function

g(x, t) = x lnx− x ln t, (B.54)

which is known as relative entropy.
Now for a matrix convex function f : (0,∞) → R, we define its perspective on

positive definite matrices A,B via

g(A,B) = B1/2f(B−1/2AB−1/2)B1/2. (B.55)

By the next theorem of Effros [176], it is jointly matrix convex in (A,B).

Theorem B.37. For a matrix convex function f : (0,∞) → R, the perspective g
defined by (B.55) is jointly matrix convex in the sense that, for all positive definite
A1,A2,B1,B2 of matching dimension and all t ∈ [0, 1],

g(tA1 + (1− t)A2, tB1 + (1 − t)B2) � tg(A1,B1) + (1− t)g(A2,B2).

Proof. Let A := tA1 + (1 − t)A2 and B := tB1 + (1 − t)B2. The matrices
X1 := (tB1)

1/2B−1/2 and X2 := ((1− t)B2)
1/2B−1/2 satisfy

X∗
1X1 +X∗

2X2 = tB−1/2B1B
−1/2 + (1− t)B−1/2B2B

−1/2 = Id.

Theorem B.35 together with Lemma A.31 then implies that
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g(A,B) = B1/2f
(
B−1/2AB−1/2

)
B1/2

= B1/2f
(
X∗

1B
−1/2
1 A1B

−1/2
1 X1 +X∗

2B
−1/2
2 A2B

−1/2
2 X2

)
B1/2

� B1/2
(
X∗

1f(B
−1/2
1 A1B

−1/2
1 )X1 +X∗

2f(B
−1/2
2 A2B

−1/2
2 )X2

)
B1/2

= tB
1/2
1 f(B

−1/2
1 A1B

−1/2
1 )B

1/2
1 +(1− t)B1/2

2 f(B
−1/2
2 A2B

−1/2
2 )B

1/2
2

= tg(A1,B1) + (1− t)g(A2,B2).

This concludes the proof. ��

Next we introduce a concept from quantum information theory [372, 383].

Definition B.38. For two positive definite matrices A and B, the quantum relative
entropy is defined as

D(A,B) := tr (A lnA−A lnB− (A−B)).

If A and B are scalars, then the above definition reduces to the scalar relative
entropy (B.54) (up to the term A−B).

The quantum relative entropy is nonnegative, a fact that is also known as Klein’s
inequality.

Theorem B.39. If A and B are positive definite matrices, then

D(A,B) ≥ 0.

Proof. The scalar function φ(x) = x ln x, x > 0, is convex (and even matrix convex
by Corollary B.34). It follows from Proposition B.11 that

x lnx = φ(x) ≥ φ(y)+φ′(y)(x−y) = y ln y+(1+lny)(x−y) = x ln y+(x−y),

so that x lnx− x ln y− (x− y) ≥ 0. Theorem A.30 shows that D(A,B) ≥ 0. ��

As a consequence, we obtain a variational formula for the trace.

Corollary B.40. If B is a positive definite matrix, then

trB = max
A�0

tr (A lnB−A lnA+A).

Proof. By definition of the quantum relative entropy and Theorem B.39,

trB ≥ tr (A lnB−A lnA+A).

Choosing A = B yields equality above and establishes the claim. ��
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Generalizing the matrix convexity of the standard relative entropy (B.54) (or
Kullback–Leibler divergence), the quantum relative entropy is also jointly matrix
convex. This fact goes back to Lindblad [327]; see also [403,492]. Our proof based
on the perspective was proposed by Effros in [176].

Theorem B.41. The quantum relative entropy D is jointly convex on pairs of
positive definite matrices.

Proof. Let A,B ∈ Cn×n be positive definite matrices. To these matrices, we
associate operators acting on the space Cn×n endowed with the Frobenius inner
product 〈A,B〉F = tr (AB∗); see (A.15). Precisely, we set

LAX := AX and RBX := XB, X ∈ C
n×n.

By associativity of matrix multiplication, the operators LA and RB commute, and
by positivity of A and B, they are positive operators. Indeed, 〈LA(X),X〉F =
tr (AXX∗) = ‖A1/2X‖2F > 0 for all nonzero X ∈ Cn×n. The function
φ(x) = x lnx, x > 0, is operator convex by Corollary B.34, and its perspective
g is given by

g(LA,RB) = RBφ(R
−1
B LA) = RB(R

−1
B LA) ln(R−1

B LA)

= LA(lnLA − lnRB),

where these steps hold because LA and RB commute. By joint matrix convexity of
the perspective (Theorem B.37), the scalar-valued function

h(A,B) := 〈g(LA,RB)(Id), Id〉F

is jointly convex in (A,B). Furthermore, f(LA)(Id) = f(A) and f(RB)(Id) =
f(B) for any function f . Indeed, these relations are easily verified for monomials
f(t) = tn, then for polynomials, and finally for any f by interpolation. Therefore,
the function h takes the form

h(A,B) = 〈g(LA,RB)(Id), Id〉F = tr (g(LA,RB)(Id))

= tr (LA(lnLA − lnRB)(Id)) = tr (A(lnA− lnB)).

We conclude that

D(A,B) = h(A,B)− tr (A−B)

is jointly convex in (A,B). ��

We are finally in the position to prove Lieb’s concavity theorem.
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Proof (of Theorem B.31). Setting B = exp(H+ lnX) in Corollary B.40 yields

tr exp(H+ lnX) = max
A�0

tr (A(H+ lnX)−A lnA+A)

= max
A�0

[tr (AH) + trX−D(A,X)] .

For each self-adjoint matrix H, Theorem B.41 guarantees that the term in square
brackets is a jointly concave function of the self-adjoint matrices X and A.
According to Theorem B.15, partial maximization of a jointly concave function
gives rise to a concave function; hence, X �→ tr exp(H + lnX) is concave on the
set of positive definite matrices. ��



Appendix C
Miscellanea

C.1 Fourier Analysis

This section recalls some simple facts from Fourier analysis. We cover the finite-
dimensional analog of the Shannon sampling theorem mentioned in Sect. 1.2 as well
as basic facts on the Fourier matrix and the fast Fourier transform (FFT). More
background on Fourier and harmonic analysis can be found in various books on the
subject including [39, 198, 236, 271, 272, 390, 400, 452, 505].

Finite-Dimensional Sampling Theorem

We consider trigonometric polynomials of degree at most M , that is, functions of
the form

f(t) =

M∑
k=−M

cke
2πikt, t ∈ [0, 1]. (C.1)

The numbers ck are called Fourier coefficients. They are given in terms of f by

ck =

∫ 1

0

f(t)e−2πiktdt.

The Dirichlet kernel is defined as

DM (t) :=

M∑
k=−M

e2πikt =

⎧⎨
⎩

sin(π(2M + 1)t)

sin(πt)
if t �= 0,

2M + 1 if t = 0.

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4948-7,
© Springer Science+Business Media New York 2013
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The expression for t �= 0 is derived from the geometric sum identity followed by
a simplification. The finite-dimensional version of the Shannon sampling theorem
reads as follows.

Theorem C.1. Let f be a trigonometric polynomial of degree at most M . Then, for
all t ∈ [0, 1],

f(t) =
1

2M + 1

2M∑
j=0

f

(
j

2M + 1

)
DM

(
t− j

2M + 1

)
. (C.2)

Proof. Let f(t) =
∑M

k=−M cke
2πikt. We evaluate the expression on the right-hand

side of (C.2) multiplied by 2M + 1 as

2M∑
j=0

f

(
j

2M + 1

)
DM

(
t− j

2M + 1

)

=
2M∑
j=0

M∑
k=−M

cke
2πikj/(2M+1)

M∑
�=−M

e2πi�(t−j/(2M+1))

=

M∑
k=−M

ck

M∑
�=−M

2M∑
j=0

e2πi(k−�)j/(2M+1)e2πi�t.

The identity
∑2M

j=0 e
2πi(k−�)j/(2M+1) = (2M + 1)δk,� completes the proof. ��

The Fast Fourier Transform

The Fourier matrix F ∈ CN×N has entries

Fj,k =
1√
N
e2πi(j−1)(k−1)/N , j, k ∈ [N ]. (C.3)

The application of F to a vector x ∈ CN is called the Fourier transform of x and
denoted by

x̂ = Fx.

Intuitively, the coefficient x̂j reflects the frequency content of x corresponding to the
monomials j �→ e2πi(j−1)(k−1)/N . The Fourier transform arises, for instance, when
evaluating a trigonometric polynomial of the form (C.1) at the points j/(2M + 1),
j = −M, . . . ,M .
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The Fourier matrix is unitary, i.e., F∗F = Id, so that F−1 = F∗; see (12.1).
This reflects the fact that its columns form an orthonormal basis of CN .

A naive implementation of the Fourier transform requiresO(N2) operations. The
fast Fourier transform (FFT) is an algorithm that evaluates the Fourier transform
much quicker, namely, in O(N lnN) operations. This is what makes the FFT one
of the most widely used algorithms. Many devices of modern technology would not
work without it.

Let us give the main idea of the FFT algorithm. Assume that N is even. Then the
Fourier transform of x ∈ CN has entries

x̂j =
1√
N

N∑
k=1

xke
2πi(j−1)(k−1)/N

=
1√
N

⎛
⎝N/2∑
�=1

x2�e
2πi(j−1)(2�−1)/N +

N/2∑
�=1

x2�−1e
2πi(j−1)(2�−2)/N

⎞
⎠

=
1√
N

⎛
⎝e2πi(j−1)/N

N/2∑
�=1

x2�e
2πi(j−1)(�−1)/(N/2)

+

N/2∑
�=1

x2�−1e
2πi(j−1)(�−1)/(N/2)

⎞
⎠ .

We have basically reduced the evaluation of x̂ ∈ CN to the evaluation of two Fourier
transforms in dimension N/2, namely, to the ones of (x2�)

N/2
�=1 and of (x2�−1)

N/2
�=1 .

If N = 2n, then in this way we can recursively reduce the evaluation of the Fourier
transform to the ones of half dimension until we reach the dimension 2. This requires
n recursion steps and altogether O(n2n) = O(N logN) algebraic operations. The
resulting algorithm, named after Cooley and Tukey [130], is often simply called the
fast Fourier transform. For other composite numbersN = pq similar reduction steps
can be made. We refer to [494, 506] for details.

C.2 Covering Numbers

Let T be a subset of a metric space (X, d). For t > 0, the covering number
N (T, d, t) is defined as the smallest integer N such that T can be covered with
balls B(x�, t) = {x ∈ X, d(x,x�) ≤ t}, x� ∈ T , � ∈ [N ], i.e.,

T ⊂
N⋃
�=1

B(x�, t).
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The set of points {x1, . . . ,xN } is called a t-covering. (Note that some authors only
require x� ∈ X , so the points are not necessarily elements of T .)

The packing number P(T, d, t) is defined, for t > 0, as the maximal integer P
such that there are points x� ∈ T , � ∈ [P ], which are t-separated, i.e., d(x�,xk) > t
for all k, � ∈ [P ], k �= �.

If X = Rn is a normed vector space and the metric d is induced by the norm via
d(u,v) = ‖u− v‖, we also writeN (T, ‖ · ‖, t) and P(T, ‖ · ‖, t).

Let us first state some elementary properties of the covering numbers. The
packing numbers satisfy precisely the same properties. For arbitrary sets S, T ⊂ X ,

N (S ∪ T, d, t) ≤ N (S, d, t) +N (T, d, t). (C.4)

For any α > 0,

N (T, αd, t) = N (T, d, t/α). (C.5)

If X = Rn and d is induced by a norm ‖ · ‖, then furthermore

N (αT, d, t) = N (T, d, t/α). (C.6)

Moreover, if d′ is another metric on X that satisfies d′(x,y) ≤ d(x,y) for all
x,y ∈ T , then

N (T, d′, t) ≤ N (T, d, t). (C.7)

The following simple relations between covering and packing numbers hold.

Lemma C.2. Let T be a subset of a metric space (X, d) and let t > 0. Then

P(T, d, 2t) ≤ N (T, d, t) ≤ P(T, d, t).

Proof. Let {x1, . . . ,xP} be a 2t-separated set and {x′
1, . . . ,x

′
N } be a t-covering.

Then we can assign to each point xj a point x′
� with d(x′

�,xj) ≤ t. This assignment
is unique since the pointsxj are 2t-separated. Indeed, the assumption that two points
xj ,xk, j �= k, can be assigned the same point x′

� would lead to a contradiction by
the triangle inequality d(xj ,xk) ≤ d(xj ,x

′
�) + d(x′

�,xk) ≤ 2t. It follows that
P ≤ N .

Now let {x1, . . . ,xN } be a maximal t-packing. Then it is also a t-covering.
Indeed, if there were a point x not covered by a ball B(x�, t), � ∈ [N ], then
d(x,x�) > t for all � ∈ [N ]. This means that we could add x to the t-packing.
But this would be a contradiction to the maximality. ��

The following proposition estimates in particular the packing number of a ball or
a sphere in a finite-dimensional normed space.
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Proposition C.3. Let ‖ · ‖ be some norm on Rn and let U be a subset of the unit
ball B = {x ∈ Rn, ‖x‖ ≤ 1}. Then the packing and covering numbers satisfy, for
t > 0,

N (U, ‖ · ‖, t) ≤ P(U, ‖ · ‖, t) ≤
(
1 +

2

t

)n
. (C.8)

Proof. Lemma C.2 shows the first inequality. Let now {x1, . . . ,xP} ⊂ U be
a maximal t-packing of U . Then the balls B(x�, t/2) do not intersect and they
are contained in the ball (1 + t/2)B. By comparing volumes (that is, Lebesgue
measures) of the involved balls, we obtain

vol

( P⋃
�=1

B(x�, t/2)

)
= P vol ((t/2)B) ≤ vol ((1 + t/2)B) .

On R
n the volume satisfies the homogeneity relation vol (tB) = tn vol (B); hence,

P (t/2)n vol (B) ≤ (1 + t/2)n vol (B), i.e., P ≤ (1 + 2/t)n. ��

C.3 The Gamma Function and Stirling’s Formula

The Gamma function is defined for x > 0 via

Γ (x) =

∫ ∞

0

tx−1e−tdt . (C.9)

It interpolates the factorial function in the sense that, for positive integers n,

Γ (n) = (n− 1)! . (C.10)

In fact, it follows from integration by parts that the Gamma function satisfies the
functional equation

Γ (x+ 1) = xΓ (x) , x > 0 . (C.11)

Its value at the point 1/2 is given by Γ (1/2) =
√
π.

Stirling’s formula states that, for x > 0,

Γ (x) =
√
2πxx−1/2e−x exp

(
θ(x)

12x

)
(C.12)
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with 0 ≤ θ(x) ≤ 1. Using (C.10) and applying the formula (C.12) show that the
factorial n! = nΓ (n) satisfies

n! =
√
2πnnne−neRn , (C.13)

with 0 ≤ Rn ≤ 1/(12n).

We also need a technical result about the quantity
√
2
Γ ((m+ 1)/2)

Γ (m/2)
, which

asymptotically behaves like
√
m as m→∞.

Lemma C.4. For integers m ≥ s ≥ 1,

√
2
Γ ((m+ 1)/2)

Γ (m/2)
−
√
2
Γ ((s+ 1)/2)

Γ (s/2)
≥
√
m−

√
s.

Proof. It is sufficient to show that, for any m ≥ 1,

αm+1 − αm ≥
√
m+ 1−

√
m, where αm :=

√
2
Γ ((m+ 1)/2)

Γ (m/2)
.

It follows from Γ ((m+ 2)/2) = (m/2)Γ (m/2) that αm+1αm = m. Thus,
multiplying the prospective inequality αm+1 − αm ≥

√
m+ 1 −

√
m by αm and

rearranging the terms, we need to prove that

α2
m +
(√

m+ 1−
√
m
)
αm −m ≤ 0.

In other words, we need to prove that αm does not exceed the positive root of the
quadratic polynomial z2 +

(√
m+ 1−

√
m
)
z −m, i.e., that

αm ≤ βm :=
−
(√

m+ 1−
√
m
)
+

√(√
m+ 1−

√
m
)2

+ 4m

2
.

The first step consists in bounding αm from above. To this end, we use Gauss’
hypergeometric theorem; see, e.g., [17]. It states that if Re(c− a− b) > 0, then

Γ (c)Γ (c− a− b)

Γ (c− a)Γ (c− b)
= 2F1(a, b; c; 1).

Here, 2F1 denotes Gauss’ hypergeometric function

2F1(a, b; c; z) :=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,
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where (d)n is the Pochhammer symbol defined by (d)0 = 1 and (d)n := d(d +
1) · · · (d + n − 1) for n ≥ 1. Therefore, choosing a = −1/2, b = −1/2, and
c = (m− 1)/2, we derive

α2
m = 2

Γ ((m+ 1)/2)
2

Γ (m/2)2
= (m− 1)

Γ ((m+ 1)/2)Γ ((m− 1)/2)

Γ (m/2)2

= (m− 1)

∞∑
n=0

[(−1/2)(1/2) · · · (−1/2 + n− 1)]2

((m− 1)/2)((m+ 1)/2) · · · ((m+ 2n− 3)/2)

1

n!

= m− 1

2
+

1

8

1

m+ 1
+

∞∑
n=3

2n−2[(1/2) · · · (n− 3/2)]2

n!(m+ 1)(m+ 3) · · · (m+ 2n− 3)
.

We observe that the quantity γm := (m + 1)(α2
m − m + 1/2 − 1/(8(m + 1)))

decreases with m. Thus, for an integer m0 to be chosen later,

α2
m ≤ m− 1

2
+

1

8

1

m+ 1
+

γm0

m+ 1
, m ≥ m0. (C.14)

The next step consists in bounding βm from below. We start by writing

βm ≥
−
(√

m+ 1−
√
m
)
+
√
4m

2
=

3
√
m−

√
m+ 1

2
=: δm.

Then we look for an expansion of δ2m = (10m+ 1− 6
√
m(m+ 1))/4. We have

√
m(m+ 1) = (m+ 1)

√
1− 1

m+ 1

= (m+ 1)

(
1 +

∞∑
n=1

(1/2)(−1/2) · · · (1/2− n+ 1)

n!

(
−1

m+ 1

)n)

= m+
1

2
− 1

8

1

m+ 1
− 1

2

∞∑
n=3

(1/2) · · · (n− 3/2)

n!

(
1

m+ 1

)n−1

.

It now follows that

β2
m ≥ δ2m = m− 1

2
+

3

16

1

m+ 1
+

3

4

∞∑
n=3

(1/2) · · · (n− 3/2)

n!

(
1

m+ 1

)n−1

≥ m− 1

2
+

3

16

1

m+ 1
. (C.15)
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Subtracting (C.14) from (C.15), we obtain

β2
m − α2

m ≥
1

16

1

m+ 1
− γm0

m+ 1
, m ≥ m0.

We choose m0 to be the smallest integer such that γm0 ≤ 1/16, i.e., m0 = 3, so
that β2

m ≥ α2
m for all m ≥ 3. The numerical verification that β2

m ≥ α2
m for m = 1

and m = 2 is straightforward. This concludes the proof. ��

C.4 The Multinomial Theorem

The multinomial theorem is concerned with the expansion of a power of a sum. It
states that, for an integer n ≥ 1,

( m∑
�=1

x�

)n
=

∑
k1+k2+...+km=n

n!

k1!k2! · · · km!

m∏
j=1

x
kj
j .

The sum is taken over all possible m-tuples of nonnegative integers k1, . . . , km that
sum up to n. This formula can be proved with the binomial theorem and induction
on n.

C.5 Some Elementary Estimates

Lemma C.5. For integers n ≥ k > 0,

(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

Proof. For the upper bound, we use

ek =

∞∑
�=0

k�

�!
≥ kk

k!

to derive the inequality

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
≤ nk

k!
=
kk

k!

nk

kk
≤ ek

nk

kk
.
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As for the lower bound, we write

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1 =

k∏
�=1

n− k + �

�
≥
(n
k

)k
,

having used that (n− k + �)/� = (n− k)/�+ 1 decreases with � ≥ 1. ��

Lemma C.6. Let N,m, s ≥ 1 with N ≥ s be given integers and let c, d > 0 be
prescribed constants.

(a) If m ≥ cs ln(dN/s) and m ≥ s, then m ≥ cs ln(dN/m).
(b) If m ≥ c′s ln(c′N/m) with c′ = c(1 + d/e), then m ≥ cs ln(dN/s).
(c) If m ≥ cs ln(dN/m), then m ≥ c′′s ln(dN/s) with c′′ = ec/(e + c) or better

c′′ = c/ ln(c) provided c, d ≥ e.

Proof. The statement (a) simply follows from m ≥ s. For (b) and (c), let us assume
that m ≥ γs ln(δN/m) for some γ, δ > 0. For any δ′ > 0, we then have

m ≥ γs ln
(δ′N

s

)
+ γs ln

( δs
δ′m

)
= γs ln

(δ′N
s

)
+
γδ′

δ
m

δs

δ′m
ln
( δs
δ′m

)
.

We notice that the function f(x) := x ln(x) is decreasing on (0, 1/e) and increasing
on (1/e,+∞), with a minimum value of −1/e, to derive

m ≥ γs ln
(δ′N

s

)
− γδ′

eδ
m, i.e.,

(
1 +

γδ′

eδ

)
m ≥ γs ln

(δ′N
s

)
.

The statement (b) is obtained by taking (among other possible choices) γ = δ =
c(1 + d/e) and δ′ = d, while the first part of (c) is obtained by taking γ = c
and δ = δ′ = d. The second part of (c), where c, d ≥ e, follows from s/m ≤
1/(c ln(dN/s)) ≤ 1/c; hence, f(s/m) ≥ f(1/c) = − ln(c)/c. The same choice of
γ, δ, δ′ yields

m ≥ cs ln
(dN
s

)
− ln(c)m, i.e., (1 + ln(c))m ≥ cs ln

(dN
s

)
,

which is a rewriting of the desired conclusion. ��

C.6 Estimates of Some Integrals

Next we provide some useful estimates of certain integrals. The first two lemmas
are related to the estimation of the tail of a Gaussian random variable from above
and below.
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Lemma C.7. For u > 0,

∫ ∞

u

e−t
2/2dt ≤ min

{√
π

2
,
1

u

}
exp(−u2/2).

Proof. A change of variables yields

∫ ∞

u

e−t
2/2dt =

∫ ∞

0

e−(t+u)2/2dt = e−u
2/2

∫ ∞

0

e−tue−t
2/2dt. (C.16)

On the one hand, using the fact that e−tu ≤ 1 for t, u ≥ 0, we have

∫ ∞

u

e−t
2/2dt ≤ e−u

2/2

∫ ∞

0

e−t
2/2dt =

√
π

2
e−u

2/2.

On the other hand, the fact that e−t
2/2 ≤ 1 yields

∫ ∞

u

e−t
2/2dt ≤ e−u

2/2

∫ ∞

0

e−tudt =
1

u
e−u

2/2. (C.17)

This shows the desired estimate. ��

Lemma C.8. For u > 0,

∫ ∞

u

e−t
2/2dt ≥ max

{
1

u
− 1

u3
,

√
π

2
− u

}
exp(−u2/2).

Proof. We use (C.16) together with e−t
2/2 ≥ 1− t2/2 to obtain

∫ ∞

u

e−t
2/2dt ≥ e−u

2/2

∫ ∞

0

(
1− t2

2

)
e−tudt = e−u

2/2

(
1

u
− 1

u3

)
.

Using instead e−tu ≥ 1− tu in (C.16) yields

∫ ∞

u

e−t
2/2dt ≥ e−u

2/2

∫ ∞

0

e−t
2/2(1− ut)dt = e−u

2/2

(√
π

2
− u

)
.

This completes the proof. ��

Lemma C.9. For α > 0,

∫ α
0

√
ln(1 + t−1)dt ≤ α

√
ln(e(1 + α−1)). (C.18)
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Proof. First apply the Cauchy–Schwarz inequality to obtain

∫ α
0

√
ln(1 + t−1)dt ≤

√∫ α
0

1dt

∫ α
0

ln(1 + t−1)dt.

A change of variables and integration by parts yield

∫ α
0

ln(1 + t−1)dt =

∫ ∞

α−1

u−2 ln(1 + u)du

= −u−1 ln(1 + u)
∣∣∞
α−1 +

∫ ∞

α−1

u−1 1

1 + u
du ≤ α ln(1 + α−1) +

∫ ∞

α−1

1

u2
du

= α ln(1 + α−1) + α.

Combining the above estimates concludes the proof. ��

C.7 Hahn–Banach Theorems

The Hahn–Banach theorems are fundamental results about vector spaces. Although
they are only used in a finite-dimensional setting in this book, they remain true
in infinite dimensions. Their proof can be found in most textbooks on functional
analysis, e.g., [72, 419, 438, 514]. The Hahn–Banach extension theorem, stated
below, is often used when ‖ · ‖ is a norm.

Theorem C.10. Let X be a vector space equipped with a seminorm ‖ · ‖ and
let Y be a subspace of X . If λ is a linear functional defined on Y such that
|λ(y)| ≤ ‖y‖ for all y ∈ Y , then there exists a linear functional λ̃ defined on X
such that λ̃(y) = λ(y) for all y ∈ Y and |λ̃(x)| ≤ ‖x‖ for all x ∈ X .

As for the Hahn–Banach separation theorem, it reads as follows.

Theorem C.11. If C and D are two disjoint nonempty convex subsets of a normed
space X and if C is open, then there exist a continuous linear functional λ defined
on X and a real number t such that

Re(λ(x)) < t for all x ∈ C and Re(λ(x)) ≥ t for all x ∈ D.

C.8 Smoothing Lipschitz Functions

The proof of the concentration of measure results (Theorems 8.34 and 8.40) requires
to approximate a Lipschitz function by a smooth Lipschitz function. The following
result establishes this rigorously.
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Theorem C.12. Let f : Rn → R be a Lipschitz function with constant L = 1 in
(8.69). For ε > 0 and x ∈ Rn, denote by Bε(x) = {y ∈ Rn : ‖y − x‖2 ≤ ε} the
ball of radius ε around x and by |Bε(x)| its volume. Define g : Rn → R by

g(x) =
1

|Bε(x)|

∫
Bε(x)

f(y)dy.

Then the function g is differentiable and ‖∇g(x)‖2 ≤ 1 for all x ∈ Rn (so that g is
Lipschitz with constant L = 1). Furthermore,

|f(x)− g(x)| ≤ εn

n+ 1
≤ ε for all x ∈ R

n.

Proof. We start with the case n = 1. Then g is defined via

g(x) =
1

2ε

∫ x+ε
x−ε

f(y)dy.

Therefore,

g′(x) =
f(x+ ε)− f(x− ε)

2ε
,

and since f is 1-Lipschitz, it follows that |g′(x)| ≤ 1. Moreover,

|f(x)− g(x)| =
∣∣∣∣ 12ε
∫ x+ε
x−ε

(f(x)− f(y))dy

∣∣∣∣ ≤ 1

2ε

∫ x+ε
x−ε

|f(x)− f(y)|dy

≤ 1

2ε

∫ x+ε
x−ε

|x− y|dy =
1

ε

∫ ε
0

tdt =
ε2

2ε
=
ε

2
.

Assume now n > 1. We choose a unit vector u ∈ Rn and some x ∈ Rn and show
that the function ψ(t) = g(x + tu) is differentiable with |ψ′(t)| ≤ 1, which is
equivalent to |〈∇g(x),v〉| ≤ 1. As u and x are arbitrary, this will establish that g
is differentiable with ‖∇g(x)‖2 ≤ 1 for all x ∈ Rn. Without loss of generality, we
assume that x = 0 and that u = (0, . . . , 0, 1). Then the orthogonal complement
u⊥ can be identified with Rn−1. Let Dε = {(z, 0) : z ∈ Rn−1, ‖z‖2 ≤ ε}. For
any (z, 0) ∈ Dε, the intersection of the line through (z, 0) in the direction of u
with Bε(0) is an interval with endpoints of the form (z,−a(z)) and (z, a(z)) with
a(z) > 0. It follows that

|Bε(0)| = 2

∫
Dε

a(z)dz. (C.19)



C.9 Weak and Distributional Derivatives 585

Now we estimate the derivative of ψ. For τ ∈ R, we have

ψ(τ) = g(τu) =
1

|Bε(τu)|

∫
Bε(τu)

f(y)dy =
1

|Bε(0)|

∫
Dε

∫ a(z)+τ
−a(z)+τ

f(z, t)dtdz,

hence,

ψ′(0) =
1

|Bε(0)|

∫
Dε

(f(z, a(z)) − f(z,−a(z)))dz.

Since f is 1-Lipschitz, we have |f(z, a(z)) − f(z,−a(z))| ≤ 2a(z), so by (C.19)

|ψ′(0)| = |〈∇g(x),v〉| ≤ 1.

The approximation property follows similarly to the case n = 1, namely,

|f(x) − g(x)| ≤ 1

|Bε(x)|

∫
Bε(x)

|f(x)− f(z)|dz ≤ 1

|Bε(x)|

∫
Bε(x)

‖x− z‖2dz

=
1

|Bε(0)|

∫
Bε(0)

‖z‖2dz =
|Sn−1|
|Bε(0)|

∫ ε
0

rndr =
ε|Sn−1|

(n+ 1)|B1(0)|
, (C.20)

where |Sn−1| is the surface area of the sphere Sn−1 = {x ∈ Rn, ‖x‖2 = 1}.
Hereby, we used the fact that the volume in Rn satisfies |Bε(0)| = εn|B1(0)|.
Denoting by sn(r) the surface area of the sphere of radius r in Rn and by vn(r) the
volume of the corresponding ball, we have the relation

vn(r) =

∫ r
0

sn(ρ)dρ. (C.21)

Since vn(r) = |B1(0)|rn, differentiating (C.21) shows that sn(r) = n|B1(0)|rn−1,
so that |Sn−1| = sn(1) = n|B1(0)|. Substituting this into (C.20) completes the
proof. ��

C.9 Weak and Distributional Derivatives

The concept of weak derivative generalizes the classical derivative. Given a
measurable function f : R → R, we say that v : R → R is a weak derivative
of f if, for all infinitely differentiable functions φ : R→ R with compact support,

∫ ∞

−∞
f(x)φ′(x)dx = −

∫ ∞

−∞
v(x)φ(x)dx. (C.22)
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In this case, we write v = f ′ = d
dxf . If f is continuously differentiable according

to the classical definition, then it follows from integration by parts that the classical
derivative f ′ is a weak derivative. If v andw are weak derivatives of f , then they are
equal almost everywhere, and in this sense the weak derivative is unique. If a weak
derivative exists, then we say that f is weakly differentiable.

If the function f is defined only on a compact subinterval [a, b] ⊂ R, then the
integrals in (C.22) are only defined on [a, b] and the functions φ are assumed to
vanish on the boundary, i.e., φ(a) = φ(b) = 0.

This concept extends to the multivariate case and to higher derivatives in an
obvious way. For a function f : Rn → R, and a multi-index α = (α1, . . . , αn),
αj ∈ N0, we set |α| =

∑
j αj and Dαf = ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n
f . Then v : Rn → R is a

weak derivative of order α if
∫
Rd

f(x)Dαφ(x)dx = (−1)|α|
∫
Rd

v(x)φ(x)dx

for all infinitely differentiable functions φ : Rn → R with compact support. We
write v = Dαf in this case.

The concept of weak derivative can be further generalized to distributional
derivatives. We denote by D the space of all infinitely differentiable functions
with compact support. A distribution is a functional on D, i.e., a linear map-
ping from D into the scalars. A function f on Rn which is bounded on every
compact subset of Rn (or at least locally integrable) induces a distribution via
f(φ) =

∫
Rn f(x)φ(x)dx for φ ∈ D. The distributional derivative of a distribution

f is defined via

∂

∂xj
f(φ) = −f

(
∂

∂xj
φ

)
, φ ∈ D.

The distributional derivative always exists. If f can be identified with a function,
then it is the functional

∂

∂xj
f(φ) = −

∫
Rn

f(x)
∂

∂xj
φ(x)dx.

If f possesses a weak derivative, then the distributional derivative can be identified
with it by (C.22). If f is even differentiable, then both distributional and weak
derivative can be identified with the classical derivative.

We say that a distribution f is nonnegative if f(φ) ≥ 0 for all nonnegative
functions φ ∈ D. In this sense, also nonnegativity of distributional derivatives is
understood. For instance, we write ∂f

∂xj
≥ 0 for a function f if, for all nonnegative

φ ∈ D,

∫
Rn

f(x)
∂

∂xj
φ(x)dx ≥ 0.
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C.10 Differential Inequalities

The following lemma bounds the solution of a differential inequality by the solution
of a corresponding differential equation.

Lemma C.13. Let f, g, h : [0,∞)→ R be continuous functions with g(x) ≥ 0 and
f(x) > 0 for all x ∈ [0,∞). Assume that L0 : [0,∞)→ R is such that

f(x)L′
0(x)− g(x)L0(x) = h(x), x ∈ [0,∞), (C.23)

while L satisfies the differential inequality

f(x)L′(x) − g(x)L(x) ≤ h(x), x ∈ [0,∞). (C.24)

If L(0) ≤ L0(0), then L(x) ≤ L0(x) for all x ∈ [0,∞).

Proof. We need to prove that �(x) := L(x)−L0(x) ≤ 0 for all x ∈ [0,∞), knowing
that the function � satisfies �(0) ≤ 0 and

f(x)�′(x) − g(x)�(x) ≤ 0, (C.25)

which follows by subtracting (C.23) from (C.24). Let us introduce

k(x) := �(x) exp

(
−
∫ x
0

g(t)

f(t)
dt

)
.

We calculate, for x ∈ [0,∞),

k′(x) =

(
�′(x) − g(x)

f(x)
�(x)

)
exp

(
−
∫ x
0

g(t)

f(t)
dt

)
≤ 0.

This shows that k is nonincreasing on [0,∞). As a result, for all x ∈ [0,∞), we
have k(x) ≤ k(0) ≤ 0; hence, �(x) ≤ 0. ��





List of Symbols

s Usually the number of nonzero entries of a vector to be recovered
m Usually the number of linear measurements
N Usually the number of entries of a vector to be recovered
[N ] The set of the natural numbers not exceeding N , i.e., {1, 2, . . . , N}
S Usually a subset of [N ]
card(S) The cardinality of a set S
S The complement of a set S, usually S = [N ] \ S
N The set of natural numbers, i.e., {1, 2, . . .}
N0 The set of natural numbers including 0, i.e., {0, 1, 2, . . .}
Z The set of integers, i.e., {. . . ,−2,−1, 0, 1, 2, . . .}
Q The set of rational numbers
R The set of real numbers
R+ The subset of R consisting of the nonnegative real numbers
C The set of complex numbers
K The field R or C
RN The N -dimensional real vector space
CN The N -dimensional complex vector space
CS The space of vectors indexed by the set S, isomorphic to Ccard(S)

�Np The space CN equipped with the �p-(quasi)norm
BNp The unit ball of the (quasi)normed space �Np
(e1, . . . , en) The canonical basis of KN

x Usually the vector in CN to be reconstructed
x� Usually the vector outputted by a reconstruction algorithm
x∗ The nonincreasing rearrangement of a vector x
supp(x) The support of a vector x
xS Either the vector in CN equal to x on S and to zero on S or the

vector in CS which is the restriction of x to the entries
indexed by S

Ls(x) An index set of s largest absolute entries of a vector x
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Hs(x) The hard thresholding operator applied to a vector x, i.e.,
Hs(x) = xLs(x)

σs(x)p The error of best s-term approximation to a vector x
Re(z), Im(z) The real and imaginary parts of a complex number z
Re(x), Im(x) The real and imaginary part of a vector x defined componentwise
sgn(z) The sign of a complex number z
sgn(x) The sign of a vector x defined componentwise
e Usually the vector of measurement errors
y Usually the measurement vector, i.e., y = Ax+ e
Id The identity matrix
F The Fourier matrix
H The Hadamard matrix
J The matrix with all entries equal to one
A A matrix, usually the measurement matrix
A� The transpose of a matrix A, i.e., (A�)jk = Ajk
A∗ The adjoint of a matrix A, i.e., (A∗)jk = Ajk
A† The Moore–Penrose pseudo-inverse of the matrix A
AI,J The submatrix of a matrix A with rows indexed by I and columns

indexed by J
AS The submatrix of a matrix A with columns indexed by S
aj The jth column of a matrix A
kerA The null space of the matrix A, i.e., {x : Ax = 0}
Δ Usually a reconstruction map from Cm to CN

Δ1 The reconstruction map associated with equality-constrained
�1-minimization

Δ1,η The reconstruction map associated with quadratically constrained
�1-minimization

‖x‖p The �p-(quasi)norm of a vector x
‖x‖p,∞ The weak �p-quasinorm of a vector x
‖x‖0 The number of nonzero entries of a vector x
〈u,v〉 The inner product between two vectors u and v
‖A‖p→q The operator norm of a matrix A from �p to �q
‖A‖2→2 The operator norm (largest singular value) of a matrix A on �2
‖A‖F The Frobenius norm of a matrix A
μ The coherence of a matrix
μ1 The �1-coherence function of a matrix
δs The sth restricted isometry constant of a matrix
θs The sth restricted expansion constant of a left regular bipartite graph
η Usually an upper bound on the measurement error, i.e., ‖e‖2 ≤ η
ε Usually a small probability
E(X) The expectation of a random variable X
P(B) The probability of an event B
g A standard Gaussian random variable
g A standard Gaussian random vector
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�(T ) The Gaussian width of a subset T of RN

Em(K,X) The compressive m-width of a subset K of a normed space X
dm(K,X) The Gelfand m-width of a subset K of a normed space X
dm(K,X) The Kolmogorovm-width of a subset K of a normed space X
N (T, d, t) The covering number of a set T by balls of radius t relative to the

metric d
conv(T ) The convex hull of a set T
cone(T ) The conic hull of a set T
K∗ The dual cone of a cone K ⊂ RN

K◦ The polar cone of a cone K ⊂ RN

F ∗ The convex conjugate of a function F
∂F (x) The subdifferential of a function F at a point x
PF (τ ;x) The proximal mapping associated to a convex function F
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76. P. Bühlmann, S. van de Geer, Statistics for High-dimensional Data. Springer Series in
Statistics (Springer, Berlin, 2011) (Cited on p. 36.)

77. H. Buhrman, P. Miltersen, J. Radhakrishnan, S. Venkatesh, Are bitvectors optimal? In
Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing STOC
’00: , pp. 449–458, ACM, New York, NY, USA, 2000 (Cited on p. 327.)

78. V. Buldygin, Y. Kozachenko, in Metric Characterization of Random Variables and Random
Processes, Translations of Mathematical Monographs, vol. 188 (American Mathematical
Society, Providence, RI, 2000) (Cited on p. 199.)

79. M. Burger, M. Moeller, M. Benning, S. Osher, An adaptive inverse scale space method for
compressed sensing. Math. Comp. 82(281), 269–299 (2013) (Cited on p. 503.)

80. N. Burq, S. Dyatlov, R. Ward, M. Zworski, Weighted eigenfunction estimates with appli-
cations to compressed sensing. SIAM J. Math. Anal. 44(5), 3481–3501 (2012) (Cited on
p. 428.)

81. T. Cai, L. Wang, G. Xu, New bounds for restricted isometry constants. IEEE Trans. Inform.
Theor. 56(9), 4388–4394 (2010) (Cited on p. 169.)

82. T. Cai, L. Wang, G. Xu, Shifting inequality and recovery of sparse vectors. IEEE Trans. Signal
Process. 58(3), 1300–1308 (2010) (Cited on p. 169.)

83. T. Cai, A. Zhang, Sharp RIP bound for sparse signal and low-rank matrix recovery, Appl.
Comput. Harmon. Anal. 35(1), 74–93, (2013) (Cited on p. 169.)

84. E.J. Candès, Compressive sampling. In Proceedings of the International Congress of Mathe-
maticians, Madrid, Spain, 2006 (Cited on p. 34.)

85. E.J. Candès, The restricted isometry property and its implications for compressed sensing. C.
R. Math. Acad. Sci. Paris 346, 589–592 (2008) (Cited on p. 169.)

86. E.J. Candès, Y.C. Eldar, D. Needell, P. Randall, Compressed sensing with coherent and
redundant dictionaries. Appl. Comput. Harmon. Anal. 31(1), 59–73 (2011) (Cited on p. 302.)

87. E.J. Candès, Y. Plan, Near-ideal model selection by �1 minimization. Ann. Stat. 37(5A),
2145–2177 (2009) (Cited on p. 471.)

88. E.J. Candès, Y. Plan, A probabilistic and RIPless theory of compressed sensing. IEEE Trans.
Inform. Theor. 57(11), 7235–7254 (2011) (Cited on p. 421.)

89. E.J. Candès, Y. Plan, Tight oracle bounds for low-rank matrix recovery from a minimal
number of random measurements. IEEE Trans. Inform. Theor. 57(4), 2342–2359 (2011)
(Cited on p. 302.)



References 597

90. E.J. Candès, B. Recht, Exact matrix completion via convex optimization. Found. Comput.
Math. 9, 717–772 (2009) (Cited on pp. 36, 37.)

91. E. J. Candès, B. Recht Simple bounds for recovering low-complexity models. Math. Program.
Springer-Verlag, 1–13 (2012) (Cited on p. 303.)

92. E.J. Candès, J. Romberg, Quantitative robust uncertainty principles and optimally sparse
decompositions. Found. Comput. Math. 6(2), 227–254 (2006) (Cited on pp. 36, 423, 472.)

93. E.J. Candès, J. Romberg, Sparsity and incoherence in compressive sampling. Inverse Probl.
23(3), 969–985 (2007) (Cited on p. 421.)

94. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inform. Theor. 52(2), 489–509
(2006) (Cited on pp. 33, 35, 37, 104, 421, 422.)

95. E.J. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate
measurements. Comm. Pure Appl. Math. 59(8), 1207–1223 (2006) (Cited on pp. 104, 168.)

96. E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inform. Theor. 51(12),
4203–4215 (2005) (Cited on pp. 36, 168.)

97. E.J. Candès, T. Tao, Near optimal signal recovery from random projections: universal
encoding strategies? IEEE Trans. Inform. Theor. 52(12), 5406–5425 (2006) (Cited on pp. 35,
168, 302, 422.)

98. E.J. Candès, T. Tao, The Dantzig selector: statistical estimation when p is much larger than n.
Ann. Stat. 35(6), 2313–2351, (2007) (Cited on pp. 36, 71.)

99. E.J. Candès, T. Tao, The power of convex relaxation: near-optimal matrix completion. IEEE
Trans. Inform. Theor. 56(5), 2053–2080 (2010) (Cited on pp. 36, 37.)

100. E.J. Candès, M. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag.
25(2), 21–30 (2008) (Cited on p. 34.)

101. M. Capalbo, O. Reingold, S. Vadhan, A. Wigderson, Randomness conductors and constant-
degree lossless expanders. In Proceedings of the Thirty-Fourth Annual ACM Symposium on
Theory of Computing (electronic) (ACM, New York, 2002), pp. 659–668 (Cited on p. 455.)

102. P. Casazza, J. Tremain, Revisiting the Bourgain-Tzafriri restricted invertibility theorem. Oper.
Matrices 3(1), 97–110 (2009) (Cited on p. 473.)
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and ΣΔ quantization of compressed sensing measurements. Found. Comput. Math. 13(1),
1–36, Springer-Verlag (2013) (Cited on p. 38.)

250. S. Gurevich, R. Hadani, N. Sochen, On some deterministic dictionaries supporting sparsity.
J. Fourier Anal. Appl. 14, 859–876 (2008) (Cited on p. 129.)



604 References

251. V. Guruswani, C. Umans, S. Vadhan, Unbalanced expanders and randomness extractors from
Parvaresh-Vardy codes. In IEEE Conference on Computational Complexity, pp. 237–246,
2007 (Cited on p. 455.)

252. M. Haacke, R. Brown, M. Thompson, R. Venkatesan, Magnetic Resonance Imaging: Physical
Principles and Sequence Design (Wiley-Liss, New York, 1999) (Cited on p. 35.)

253. U. Haagerup, The best constants in the Khintchine inequality. Studia Math. 70(3), 231–283
(1982), 1981 (Cited on p. 260.)

254. T. Hagerup, C. Rüb, A guided tour of Chernoff bounds. Inform. Process. Lett. 33(6), 305–308
(1990) (Cited on p. 198.)

255. J. Haldar, D. Hernando, Z. Liang, Compressed-sensing MRI with random encoding. IEEE
Trans. Med. Imag. 30(4), 893–903 (2011) (Cited on p. 35.)

256. E. Hale, W. Yin, Y. Zhang, Fixed-point continuation for �1-minimization: methodology and
convergence. SIAM J. Optim. 19(3), 1107–1130 (2008) (Cited on p. 510.)

257. E. Hale, W. Yin, Y. Zhang, Fixed-point continuation applied to compressed sensing:
implementation and numerical experiments. J. Comput. Math. 28(2), 170–194 (2010) (Cited
on p. 507.)

258. F. Hansen, G. Pedersen, Jensen’s inequality for operators and Löwner’s theorem. Math. Ann.
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306. N. Kôno, Sample path properties of stochastic processes. J. Math. Kyoto Univ. 20(2),
295–313 (1980) (Cited on p. 263.)

307. F. Krahmer, S. Mendelson, H. Rauhut, Suprema of chaos processes and the restricted isometry
property. Comm. Pure Appl. Math. (to appear) (Cited on pp. 263, 264, 429, 430.)

308. F. Krahmer, G.E. Pfander, P. Rashkov, Uncertainty principles for time–frequency representa-
tions on finite abelian groups. Appl. Comput. Harmon. Anal. 25(2), 209–225 (2008) (Cited
on p. 429.)

309. F. Krahmer, R. Ward, New and improved Johnson-Lindenstrauss embeddings via the
Restricted Isometry Property. SIAM J. Math. Anal. 43(3), 1269–1281 (2011) (Cited on
pp. 303, 423.)

310. F. Krahmer, R. Ward, Beyond incoherence: stable and robust sampling strategies for
compressive imaging. Preprint (2012) (Cited on p. 427.)

311. I. Krasikov, On the Erdelyi-Magnus-Nevai conjecture for Jacobi polynomials. Constr.
Approx. 28(2), 113–125 (2008) (Cited on p. 428.)

312. M.A. Krasnosel’skij, Y.B. Rutitskij, Convex Functions and Orlicz Spaces. (P. Noordhoff Ltd.,
Groningen, The Netherlands, 1961), p. 249 (Cited on p. 263.)

313. J. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with applica-
tion to arithmetic complexity and statistics. Lin. Algebra Appl. 18(2), 95–138 (1977) (Cited
on p. 56.)

314. P. Kuppinger, G. Durisi, H. Bölcskei, Uncertainty relations and sparse signal recovery for
pairs of general signal sets. IEEE Trans. Inform. Theor. 58(1), 263–277 (2012) (Cited on
p. 421.)

315. M.-J. Lai, L.Y. Liu, The null space property for sparse recovery from multiple measurement
vectors. Appl. Comput. Harmon. Anal. 30, 402–406 (2011) (Cited on p. 104.)

316. J. Laska, P. Boufounos, M. Davenport, R. Baraniuk, Democracy in action: quantization,
saturation, and compressive sensing. Appl. Comput. Harmon. Anal. 31(3), 429–443 (2011)
(Cited on p. 38.)

317. J. Lawrence, G.E. Pfander, D. Walnut, Linear independence of Gabor systems in finite
dimensional vector spaces. J. Fourier Anal. Appl. 11(6), 715–726 (2005) (Cited on p. 429.)

318. C. Lawson, Contributions to the Theory of Linear Least Maximum Approximation. PhD thesis,
University of California, Los Angeles, 1961 (Cited on p. 504.)

319. J. Lederer, S. van de Geer, The Bernstein-Orlicz norm and deviation inequalities. Preprint
(2011) (Cited on p. 265.)

320. M. Ledoux, On Talagrand’s deviation inequalities for product measures. ESAIM Probab. Stat.
1, 63–87 (1996) (Cited on p. 265.)

321. M. Ledoux, The Concentration of Measure Phenomenon. AMS, 2001. (Cited on pp. 264,
265.)

322. M. Ledoux, M. Talagrand, Probability in Banach Spaces (Springer, Berlin, Heidelberg,
NewYork, 1991) (Cited on pp. 198, 260, 263, 264, 265.)

323. J. Lee, Y. Sun, M. Saunders, Proximal Newton-type methods for convex optimization.
Preprint (2012) (Cited on p. 510.)



References 607

324. B. Lemaire, The proximal algorithm. In New Methods in Optimization and Their Industrial
Uses (Pau/Paris, 1987), Internationale Schriftenreihe Numerischen Mathematik, vol. 87
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336. F. Lust-Piquard, Inégalités de Khintchine dans Cp (1 < p < ∞). C. R. Math. Acad. Sci. Paris
303, 289–292 (1986) (Cited on p. 261.)

337. F. Lust-Piquard, G. Pisier, Noncommutative Khintchine and Paley inequalities. Ark. Mat.
29(2), 241–260 (1991) (Cited on p. 261.)

338. M. Lustig, D.L. Donoho, J. Pauly, Sparse MRI: The application of compressed sensing for
rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007) (Cited on p. 35.)

339. L. Mackey, M. Jordan, R. Chen, B. Farrell, J. Tropp, Matrix concentration inequalities via the
method of exchangeable pairs. Preprint (2012) (Cited on p. 261.)

340. A. Maleki, Coherence analysis of iterative thresholding algorithms. In Proc. of 47th Annual
Allerton Conference on Communication, Control, and Computing, pp. 236–243, 2009 (Cited
on p. 128.)

341. S. Mallat, A Wavelet Tour of Signal Processing. Middleton Academic Press, San Diego, 1998
(Cited on p. 425.)

342. S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal
Process. 41(12), 3397–3415 (1993) (Cited on pp. 34, 36, 71.)

343. M. Marcus, L. Shepp, Sample behavior of Gaussian processes. In Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley,
Calif., 1970/1971), Vol. II: Probability Theory, pp. 423–441. University of California Press,
Berkeley, 1972 (Cited on p. 264.)

344. S. Marple, Digital Spectral Analysis with Applications (Prentice-Hall, Englewood Cliffs,
1987) (Cited on pp. 34, 57.)

345. B. Martinet, Régularisation d’inéquations variationnelles par approximations successives.
Rev. Française Informat. Recherche Opérationnelle 4(Ser. R-3), 154–158 (1970) (Cited on
p. 506.)

346. P. Massart, Rates of convergence in the central limit theorem for empirical processes. Ann.
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dergheynst, G. Weiss, and Y. Wiaux: Four Short Courses on Harmonic Analysis
(ISBN 978-0-8176-4890-9)

O. Christensen: Functions, Spaces, and Expansions (ISBN 978-0-8176-4979-1)

J. Barral and S. Seuret: Recent Developments in Fractals and Related Fields (ISBN
978-0-8176-4887-9)

O. Calin, D.-C. Chang, and K. Furutani, and C. Iwasaki: Heat Kernels for Elliptic
and Sub-elliptic Operators (ISBN 978-0-8176-4994-4)

C. Heil: A Basis Theory Primer (ISBN 978-0-8176-4686-8)

J.R. Klauder: A Modern Approach to Functional Integration (ISBN 978-0-8176-
4790-2)

J. Cohen and A.I. Zayed: Wavelets and Multiscale Analysis (ISBN 978-0-8176-
8094-7)

D. Joyner and J.-L. Kim: Selected Unsolved Problems in Coding Theory (ISBN
978-0-8176-8255-2)

G.S. Chirikjian: Stochastic Models, Information Theory, and Lie Groups, Volume 2
(ISBN 978-0-8176-4943-2)

J.A. Hogan and J.D. Lakey: Duration and Bandwidth Limiting (ISBN 978-0-8176-
8306-1)

G. Kutyniok and D. Labate: Shearlets (ISBN 978-0-8176-8315-3)

P.G. Casazza and G. Kutyniok: Finite Frames (ISBN 978-0-8176-8372-6)



620 Applied and Numerical Harmonic Analysis (63 Volumes)

V. Michel: Lectures on Constructive Approximation (ISBN 978-0-8176-8402-0)

D. Mitrea, I. Mitrea, M. Mitrea, and S. Monniaux: Groupoid Metrization Theory
(ISBN 978-0-8176-8396-2)

T.D. Andrews, R. Balan, J.J. Benedetto, W. Czaja, and K.A. Okoudjou: Excursions
in Harmonic Analysis, Volume 1 (ISBN 978-0-8176-8375-7)

T.D. Andrews, R. Balan, J.J. Benedetto, W. Czaja, and K.A. Okoudjou: Excursions
in Harmonic Analysis, Volume 2 (ISBN 978-0-8176-8378-8)

D.V. Cruz-Uribe and A. Fiorenza: Variable Lebesgue Spaces (ISBN 978-3-0348-
0547-6)

W. Freeden and M. Gutting: Special Functions of Mathematical (Geo-)Physics
(ISBN 978-3-0348-0562-9)
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Khintchine inequality, 206

for Steinhaus sequences, 210
scalar, 208

Klein’s inequality, 570
Kolmogorov width, 323
Kruskal rank, 56
Kullback–Leibler divergence, 571

L
Lagrange dual, 556
Lagrange function, 556, 559
Lagrange multipliers, 556
Landweber iteration, 507
Laplace transform, 178
LARS, 480
LASSO, 20, 64, 71
least angle regression, 480
Lebesgue’s dominated convergence theorem,

177
left regular bipartite graph, 435
Legendre polynomials, 425
Lidskii’s inequality, 528

Lieb’s concavity theorem, 564
linear optimization problem, 556
linear program, 61, 556
Lipschitz function, 237, 583
local minimizer, 548
log-barrier method, 510
logarithmic Sobolev inequality, 242, 243
lossless expander, 436
lower semicontinuous, 547

M
magnetic resonance imaging, 10
Markov’s inequality, 178, 185
matching pursuit, 71
matrix completion, 22
matrix convex, 565
matrix exponential, 538
matrix logarithm, 541
matrix monotone, 540
matrix norm, 519
Maurey’s method, 411
measurable function, 176
median, 178
median operator, 448
metric, 516
metric space, 516
minimax principle, 528
model selection, 20
moderate growth, 229
modifed LARS, 480
modulation operator, 121
moment, 176, 185
moment generating function, 178, 189
Moore–Penrose pseudo-inverse, 92, 531
Moreau’s identity, 553
MRI, 10
mutual coherence, 129

N
neighborly, 104

centrally, 107
Neumann series, 524
noiselets, 424
nonadaptive, 312
noncommutative Bernstein inequality, 217
nonequispaced Fourier matrix, 370
nonincreasing rearrangement, 42
nonuniform instance optimality, 358
nonuniform recovery, 281
norm, 515
normal distribution, 179, 182
normed space, 516
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nuclear norm, 22, 102, 530
nuclear norm minimization, 107, 174, 511
null space property, 78

�q-robust, 87
robust, 86
stable, 83

O
objective function, 61, 555
operator convex, 565
operator monotone, 540
operator norm, 518, 519
optimization problem, 61, 555
Orlicz space, 263
orthogonal matching pursuit, 65, 123, 158
orthogonal polynomials, 425

P
packing number, 576
Paley–Zygmund inequality, 187
Pareto curve, 504
partial Fourier matrix, 50, 372
partial primal-dual gap, 512
partial random circulant matrices, 428
partial random Toeplitz matrices, 428
partition problem, 59
perspective, 569
phase transition, 304
Pochhammer symbol, 579
polar cone, 544
polarization formula, 171
positive definite, 537
positive semidefinite, 537
primal dual gap, 558
primal problem, 557
probability density function, 176
Prony method, 51
proper function, 545
proximal gradient method, 506
proximal mapping, 552, 553
proximal point algorithm, 506
proximation, 552
proximity operator, 552, 553
pseudometric, 516

Q
quadratically constrained basis pursuit, 64
quadratically constrained nuclear norm

minimization, 109
quantile operator, 448
quantization, 38

quasinorm, 515
quasinorm constant, 515
quasitriangle inequality, 515
quotient map, 518
quotient norm, 340, 518
quotient property, 339, 362

simultaneous, 341
quotient space, 518

R
radar, 13
Rademacher chaos, 211, 214
Rademacher process, 225
Rademacher random variable, 205
Rademacher sequence, 191, 205
Rademacher sum, 205
Rademacher variable, 191
Rademacher vector, 191
random Gabor systems, 429
random matrix, 272
random partial Fourier matrix, 372
random partial unitary matrix, 417
random polytope, 38
random sampling, 368
random signals, 459
random submatrix, 460, 461
random support set, 459
random variable, 176
random vector, 181

complex, 181
rank restricted isometry constant, 174
rank restricted isometry property, 174, 309
reduced singular value decomposition, 526
regularized orthogonal matching pursuit, 72
resolvent operator, 552, 553
restricted expansion constant, 436
restricted isometry constant, 133, 168
restricted isometry property, 133, 135
restricted isometry ratio, 147
restricted orthogonality constant, 135, 168
robust null space property, 86
robust rank null space property, 108
robustness, 85

S
saddle point, 562
saddle-point property, 562
sampling, 15
sampling matrix, 369
Schatten norm, 530
second-order cone problem, 64, 559
self-adjoint dilation, 267, 529
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self-adjoint matrix, 518, 537
semidefinite program, 108, 559
seminorm, 515
Shannon sampling theorem, 1, 15
shifting inequality, 56, 169, 172
shrinkage operator, 555
sign, 90
simultaneous quotient property, 341
single-pixel camera, 8
singular value, 525
singular vector, 525
Slater’s constraint qualification, 558
Slepian lemma, 227
soft thresholding, 555
soft thresholding operator, 72
spark, 56
sparse, 41
sparse approximation, 17
sparse function, 369
sparse matching pursuit, 457
sparse trigonometric polynomials, 370
sparsity, 2, 41
spectral gap, 455
SPGL1 method, 504
spherical harmonics, 428
square root lifting, 144
stability, 82
stable null space property, 83
stable rank null space property, 108
standard Gaussian, 179
standard Gaussian vector, 182
standard normal, 179
Stein’s lemma, 229
Steinhaus

random variable, 209
sequence, 209

Stirling’s formula, 577
stochastic independence, 181
stochastic matrix, 455
stochastic process, 224
strictly concave, 546
strictly convex, 545
strictly subgaussian random variable, 199
strong duality, 558
strongly convex, 545
structured sparsity model, 37
subdifferential, 551
subexponential random variable, 191
subgaussian parameter, 193
subgaussian random matrix, 272
subgaussian random variable, 191
subgaussian random vector, 273
subgradient, 551
sublinear algorithm, 38, 423

sublinear-time algorithm, 452
subspace pursuit, 72
summation by parts, 445
support, 41
symmetric matrix, 518
symmetric random variable, 205
symmetric random vector, 205
symmetrization, 205

T
tail, 178, 185
tensorization inequality, 241
theorem of deviation of subspaces, 329
thresholded Landweber iteration, 507
tight frame, 114
time-frequency structured random matrices,

429
totally positive, 50, 535
trace, 523
trace exponential, 539
translation operator, 121
trigonometric polynomials, 369

U
uniform model, 460
uniform recovery, 281
uniform uncertainty principle, 133, 135, 168
union bound, 176
unit ball, 516
unitary dilation, 568
unitary matrix, 371, 518
Uzawa algorithm, 503

V
Vandermonde matrix, 50, 535
variance, 176
vector-valued Bernstein inequality, 248, 249

W
weak derivative, 269, 585
weak duality, 558
weak variance, 249
Weibull random matrices, 363
Welch bound, 114
Weyl’s inequality, 528
width

Gelfand, 311
Kolmogorov, 323

Wielandt’s minimax principle, 528

Y
Young inequality, 549
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