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The EntropyMethod

InChapter 3 we saw that the Efron–Stein inequality served as a powerful tool for bounding
the variance of functions of several independent random variables. In many cases, how-
ever, it is reasonable to expect that, as in the case of sums of bounded random variables,
the tail probabilities decrease at an exponential speed, a phenomenon the Efron–Stein
inequality fails to capture. In Chapter 5 we have seen that logarithmic Sobolev inequal-
ities, together with Herbst’s argument, may be used to derive exponential concentration
inequalities. However, the logarithmic Sobolev inequalities presented there are only valid
for functions of either Bernoulli or Gaussian random variables and therefore the scope
of the concentration inequalities obtained is significantly more limited than that of the
Efron–Stein inequality.

The purpose of this chapter is to attempt to generalize the methodology based on log-
arithmic Sobolev inequalities that allows one to prove exponential concentration bounds
that hold for functions of arbitrary independent random variables. A way to achieve this is
by trying to mimic the procedure that worked for functions of Bernoulli and Gaussian ran-
dom variables, that is, to start with a logarithmic Sobolev inequality and then, according
to Herbst’s trick, apply it to exponential functions of the random variable of interest. Since
exact analogs of the Bernoulli and Gaussian logarithmic Sobolev inequalities do not always
exist, we need to resort to appropriate modifications. Luckily, the sub-additivity of entropy
(see Theorems 4.10 and 4.22) holds in a great generality and indeed, this inequality serves
as our starting point. Then, by bounding the right-hand side of the inequality of Theorem
4.10, we obtain an appropriatemodified logarithmic Sobolev inequalitywhich, in turn, can be
used via Herbst’s argument to derive exponential concentration inequalities.

We term the proof method described above the entropy method, and the purpose of this
chapter is to define its basis and to show some of the simplest powerful concentration
bounds one can achieve using this method. In Chapters 11, 12, 14, and 15 we elaborate
the entropy method and show various extensions.

As in Chapter 3, we investigate the concentration behavior of a real-valued random vari-
able Z = f (X1, . . . ,Xn) where X1, . . . ,Xn are independent random variables taking values
in a measurable spaceX and f : X n → R is a function.
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The main purpose of the entropy method for proving concentration inequalities is to
apply the sub-additivity of entropy (Theorems 4.10 and 4.22) for the positive random
variable Y = eλZ where λ is a real number. Recall that by the sub-additivity of entropy,

Ent(Y) ≤ E
n∑
i=1

Ent(i)(Y)

or, equivalently,

E[Y log Y] – (EY) log(EY)

≤
n∑
i=1

E
[
E(i)[Y log Y] –

(
E(i)Y

)
log
(
E(i)Y

)]
(6.1)

where E(i) denotes integration with respect to the distribution of Xi only. Then, normal-
izing by EeλZ and denoting the logarithmic moment-generating function of Z – EZ by
ψ(λ) = logEeλ(Z–EZ), the left-hand side of this inequality becomes

Ent
(
eλZ
)

EeλZ
= λψ ′(λ) – ψ(λ). (6.2)

Our strategy is based on using (6.2) the sub-additivity of entropy and then univariate calcu-
lus to derive upper bounds for the derivative of ψ(λ). By solving the obtained differential
inequality, we obtain tail bounds via Chernoff’s bounding.

To achieve this in a convenient way, we need some further bounds for the right-hand
side of the inequality above. This is the purpose of Section 6.3 in which, relying on the sub-
additivity of entropy, we prove some basic results which will serve as our starting point.
These results are reminiscent of the classical logarithmic Sobolev inequalities discussed
in Chapter 5, where it is shown that concentration inequalities follow from logarithmic
Sobolev inequalities by Herbst’s argument.Here we formalize this argument.

Proposition 6.1 (HERBST’S ARGUMENT) Let Z be an integrable random variable such that
for some v > 0, we have, for every λ > 0,

Ent
(
eλZ
)

EeλZ
≤ λ2v

2
.

Then, for every λ > 0,

logEeλ(Z–EZ) ≤ λ2v
2

.

Proof The condition of the proposition means, via (6.2), that

λψ ′(λ) – ψ(λ) ≤ λ2v
2

,
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or equivalently,

1
λ

ψ ′(λ) –
1
λ2 ψ(λ) ≤ v

2
.

SettingG(λ) = λ–1ψ(λ), we see that the differential inequality becomesG′(λ) ≤ v/2.
SinceG(λ) → 0 as λ → 0, this impliesG(λ) ≤ λv/2, and the result follows. �

First, we present in Section 6.1 two simple direct methods to bound the right-hand side
of the inequality of the sub-additivity of entropy and use Herbst’s argument to conclude.
This permits us to derive the celebrated bounded differences inequality, a simple prototypical
exponential concentration inequality for functions of bounded differences that has found
countless applications. We also present a sharper version in which the bounded differences
assumption is significantly relaxed.

In Section 6.4 we present the first and simplest application of these modified logarithmic
Sobolev inequalities. This first example is surprisingly powerful as it may be used to prove
exponential concentration in many interesting cases. We describe some applications. The
obtained inequalities reach further than the bounded differences inequality as they are able
to handle much more general functions than just those having the bounded-differences
property. A simple but useful application for convex Lipschitz functions of independent
random variables is presented in Section 6.6.

In Section 6.7 we return to the class of self-bounding functions introduced in Section 3.3
and prove an exponential concentration inequality, thus providing a significant sharpen-
ing of Corollary 3.7. The notion of self-bounding function is generalized and further
investigated in Section 6.11.

In Sections 6.8, 6.9, and 6.13 we use the entropy method to prove inequalities that may
be considered as exponential versions of the Efron–Stein inequality. Various concentration
results are shown here under different conditions with the purpose of demonstrating the
flexibility of the entropy method.

We close the chapter by proving Janson’s celebrated inequality for the lower tail probab-
ilities of random Boolean polynomials. Even though Janson’s inequality is not based on the
entropy method, its proof shows some similarities with the techniques we use throughout
the chapter.

6.1 The Bounded Differences Inequality

As a first illustration of the entropy method, we derive an exponential concentration
inequality for functions of bounded differences. Unlike the Bernoulli and Gaussian concen-
tration inequalities of Chapter 5, this inequality is distribution free: apart from independ-
ence, nothing else is required from the random variables X1, . . . ,Xn.

Recall that a function f : X n → R has the bounded differences property if for some
nonnegative constants c1, . . . , cn,
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sup
x1,...,xn ,
x′i∈X

|f (x1, . . . , xn) – f (x1, . . . , xi–1, x′i , xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n.

In Chapter 3, as a corollary of the Efron–Stein inequality, we saw that if f has the
bounded differences property, then Z = f (X1, . . . ,Xn) satisfies Var (Z) ≤ (1/4)

∑n
i=1 c

2
i

(see Corollary 3.2). The bounded differences inequality shows that such functions satisfy
a sub-Gaussian tail inequality in which the role of the variance factor is played by the
Efron–Stein upper bound of the variance v = (1/4)

∑n
i=1 c

2
i .

Theorem6.2 (BOUNDED DIFFERENCES INEQUALITY)Assume that the function f satisfies
the bounded differences assumption with constants c1, . . . , cn and denote

v =
1
4

n∑
i=1

c2i .

Let Z = f (X1, . . . ,Xn) where the Xi are independent. Then

P {Z – EZ > t} ≤ e–t
2/(2v).

Note that since the bounded differences assumption is symmetric,Z also satisfies the lower-
tail inequality

P {Z – EZ < –t} ≤ e–t
2/(2v).

The proof combines sub-additivity of entropy, Hoeffding’s lemma (Lemma 2.2) and
Herbst’s argument. The following way of looking at Hoeffding’s lemma may illuminate
the use of the sub-additivity of entropy: if Y is a random variable taking its values in
[a, b], then we know from Lemma 2.2 that ψ ′′(λ) ≤ (b – a)2/4 for every λ ∈ R, where
ψ(λ) = logEeλ(Y–EY). Hence,

λψ ′(λ) – ψ(λ) =
∫ λ

0
θψ ′′(θ)dθ ≤ (b – a)2λ2

8
,

which means that

Ent(eλY)
EeλY

≤ (b – a)2λ2

8
. (6.3)

By Proposition 6.1, this inequality implies Hoeffding’s inequality, that is, ψ(λ) ≤
(b – a)2λ2/8 for all λ. Thus, (6.3) is a way of rephrasing Hoeffding’s inequality, which is
stronger than the usual one.

Proof Recall that by the sub-additivity of entropy (6.1),

Ent(eλZ) ≤ E
n∑
i=1

Ent(i)
(
eλZ
)
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where Ent(i) denotes conditional entropy, givenX(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn). By
the bounded differences assumption, given X(i), Z is a random variable whose range is
in an interval of length at most ci, so by (6.3),

Ent(i)
(
eλZ
)

E(i)eλZ
≤ c2i λ

2

8
.

Hence, by the sub-additivity of entropy,

Ent(eλZ) ≤ E

[
n∑
i=1

(
c2i λ

2

8

)
E(i)eλZ

]
=

n∑
i=1

c2i λ
2

8
EeλZ,

or equivalently,

Ent
(
eλZ
)

EeλZ
≤ λ2v

2
.

Proposition 6.1 allows us to conclude that

ψ(λ) = logEeλ(Z–EZ) ≤ λ2v
2

.

Finally, by Markov’s inequality,

P {Z > EZ + t} ≤ eψ(λ)–λt ≤ eλ
2v/2–λt .

Choosing λ = t/v, the upper bound becomes e–t2/(2v). �

This extends Corollary 3.2 to an exponential concentration inequality. Thus, the applic-
ations of Corollary 3.2 in all examples of functions with bounded differences shown in
Section 3.2 (such as bin packing, the length of the longest common subsequence, the L1
error of the kernel density estimate, etc.) are improved in an essential way without further
work.

Next we describe another application which is the simplest example of a concentration
inequality for sums of independent vector-valued random variables.

Example 6.3 (A HOEFFDING-TYPE INEQUALITY IN HILBERT SPACE) As an illustra-
tion of the power of the bounded differences inequality, we derive a Hoeffding-type
inequality for sums of random variables taking values in a Hilbert space. In par-
ticular, let X1, . . . ,Xn be independent zero-mean random variables taking values in
a separable Hilbert space such that ‖Xi‖ ≤ ci/2 with probability one and denote
v = (1/4)

∑n
i=1 c

2
i . Then, for all t ≥

√
v,

P

{∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

}
≤ e–(t–

√
v)2/(2v).
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This follows simply by observing that, by the triangle inequality, Z =
∥∥∑n

i=1 Xi
∥∥

satisfies the bounded differences property with constants ci, and therefore

P

{∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

}
= P

{∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ – E
∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥ > t – E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
}

≤ exp

(
–

(
t – E

∥∥∑n
i=1 Xi

∥∥)2
2v

)
.

The proof is completed by observing that, by independence,

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≤
√√√√E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
2

=

√√√√ n∑
i=1

E ‖Xi‖2 ≤ √
v.

The next example illustrates a surprising application in which the bounded differences
inequality is applied in a quite unexpected context.

Example 6.4 (SPECTRAL MEASURE OF RANDOM HERMITIAN MATRICES) LetH=(Hi,j)
be an n× n random Hermitian matrix such that the vectors (Hi)1≤i≤n are independ-
ent, where Hi = (Hi,j)1≤j≤i. Let LH denote the empirical spectral measure of H (i.e.
the probability measure that gives mass r/n to an eigenvalue ofH with multiplicity r).
Given a bounded function g : R → R that has total variation

∥∥g∥∥TV ≤ 1, we are inter-
ested in the concentration of the random variable Z =

∫
gdLH . Recall that the total

variation of a function g : R → R is defined by

∥∥g∥∥TV = sup
n=1,2,...

sup
x1<···<xn

n–1∑
i=1

| f (xi+1) – f (xi)|.

Remarkably, much can be said about Z without imposing any moment assumption
on the entries of the matrix. The argument is surprisingly simple. Indeed, for every
x = (x1, . . . , xn) such that xi ∈ Ci–1 × R for all i, denote byH(x) theHermitianmatrix
given by (H(x))i,j = xi,j for 1 ≤ j ≤ i ≤ n and define the function f by

f (x) =
∫

gdLH(x).

The random variable of interest Z is just f (H1, . . . ,Hn) and it remains to establish
the bounded differences property for f to get a concentration inequality of Z around
its mean. To this end, we apply the following deterministic rank inequality for spec-
tral measures (which relies on the Cauchy interlacing theorem, see Exercises 6.2 and
6.3 below). Let A and B denote Hermitian matrices. If one denotes by FA and FB the
distribution functions related to the spectral measures LA and LB, then

‖FA – FB‖∞ ≤ rank (A – B)
n

.
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Integrating by parts (noting that FA – FB tends to 0 at –∞ and +∞), one has∣∣∣∣∫ gdLA –
∫

gdLB

∣∣∣∣ = ∣∣∣∣∫ ( FA – FB) dg
∣∣∣∣ ≤ ‖FA – FB‖∞ ,

where the last inequality comes from the fact that the absolute total mass of the Stieljes
measure dg equals

∥∥g∥∥TV ≤ 1. Combining the two inequalities above, we find that for
every x and x′,

| f (x) – f (x′)| ≤ rank(H(x) – H(x′))
n

.

Now if x′ differs from x only in the i-th coordinate, the matrix H(x) – H(x′) has
all zero entries, except maybe for one row and one column which proves that
rank (H(x) – H(x′)) ≤ 2. This shows that f satisfies the bounded differences con-
dition with ci = 2/n for all i and, therefore, the bounded differences inequality tells
us that Z is a sub-Gaussian random variable with variance factor 1/n. Consequently
P
{
|Z – EZ| ≥ t

} ≤ 2e–nt2/2 for all t > 0.

6.2 More on BoundedDifferences

Next we show a more flexible variant of the bounded differences inequality of Theorem
6.2. It relaxes the bounded differences condition in that differences need not be bounded
by “hard” constants ci but rather by quantities that are allowed to depend on x, as
long as the sum of their squares are bounded. More precisely, we say that a function
f : X n → R has the x-dependent bounded differences property if there exists a constant
v > 0 such that for all x = (x1, . . . , xn) ∈ X n there exist n functions of n – 1 variables
c1, . . . , cn : X n–1 → [0,∞), such that for 1 ≤ i ≤ n,

sup
x′i∈X
x′′i ∈X

| f (x1, . . . , xi–1, x′′i , xi+1, . . . , xn) – f (x1, . . . , xi–1, x
′
i , xi+1, . . . , xn)|

≤ ci
(
x(i)
)
,

and (1/4)
∑n

i=1 c
2
i (x

(i)) ≤ v for all x ∈ X n. Here x(i) = (x1, . . . , xi–1, xi+1, . . . , xn) stands
for the (n – 1)-vector obtained by dropping the i-th component of x.

Clearly, the Efron–Stein inequality still implies that if f has the x-dependent bounded
differences property, then Z = f (X1, . . . ,Xn) satisfies Var (Z) ≤ v. The next sub-Gaussian
tail inequality extends Theorem 6.2 to such functions.

Theorem6.5 Assume that the function f satisfies the x-dependent bounded differences property
with constant v. Let Z = f (X1, . . . ,Xn) where the Xi are independent. Then for all t > 0,

P {Z – EZ ≥ t} ≤ e–t
2/(2v).
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Proof Since the proof is a simple extension of that for bounded differences inequality, we
will only sketch it. By the x-dependent bounded differences assumption, for fixed X(i),
conditionally, Z is a random variable whose range is in an interval of length at most
ci
(
X(i)

)
so by (6.3),

Ent(i)
(
eλZ
)

E(i)eλZ
≤ c2i

(
X(i)

)
λ2

8

and by (6.1),

Ent(eλZ) ≤
n∑
i=1

E

[(
c2i
(
X(i)

)
λ2

8

)
E(i)eλZ

]
=

n∑
i=1

E

[(
c2i
(
X(i)

)
λ2

8

)
eλZ
]
.

Since (1/4)
∑n

i=1 c
2
i (x

(i)) ≤ v, this inequality implies that

Ent
(
eλZ
)

EeλZ
≤ λ2v

2

and the announced inequality follows by using Herbst’s argument as we did at the end
of the proof of Theorem 6.2. �

6.3 Modified Logarithmic Sobolev Inequalities

In this section we present a simple inequality with the purpose of bringing sub-additivity
of entropy into a more manageable form, providing a versatile tool for deriving exponen-
tial concentration inequalities. This tool will help us prove inequalities under much more
flexible conditions than bounded differences. This is achieved by further developing the
right-hand side of Eq. (6.1). The obtained inequalities are closely related to the logarithmic
Sobolev inequalities that we met in Chapter 5, but there we were restricted to functions of
Bernoulli or Gaussian random variables.

Our first modified logarithmic Sobolev inequality follows from the sub-additivity and
the variational formulation of entropy. Throughout the entire chapter, we consider inde-
pendent random variablesX1, . . . ,Xn taking values in some spaceX , a real-valued function
f : X n → R, and the random variable Z = f (X1, . . . ,Xn). As in Section 3.1, we denote
Zi = fi(X(i)) = fi(X1, . . . ,Xi–1,Xi+1, . . . ,Xn) where fi : X n–1 → R is an arbitrary function.

Theorem 6.6 (A MODIFIED LOGARITHMIC SOBOLEV INEQUALITY) Let φ(x) =
ex – x – 1. Then for all λ ∈ R,

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZφ (–λ(Z – Zi))

]
.
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Proof We bound each term on the right-hand side of the sub-additivity of entropy (6.1).
To do this, recall that by the variational formula of entropy given in Corollary 4.17, for
any nonnegative random variable Y and for any u > 0,

E[Y log Y] – (EY) log(EY) ≤ E[Y log Y – Y log u – (Y – u)].

Weuse this bound conditionally. It implies that ifYi is a positive function of the random
variables X1, . . . ,Xi–1,Xi+1, . . . ,Xn, then

E(i)[Y log Y] –
(
E(i)Y

)
log

(
E(i)Y

)
≤ E(i) [Y(log Y – log Yi) – (Y – Yi)

]
.

Applying the above inequality to the variables Y = eλZ and Yi = eλZi , one obtains

E(i)[Y log Y] –
(
E(i)Y

)
log

(
E(i)Y

)
≤ E(i) [eλZφ(–λ(Z – Zi))

]
and the proof is completed by (6.1). �

6.4 Beyond Bounded Differences

Simplicity and generality make the bounded differences inequality attractive and it has
become a universal tool as witnessed by its countless applications. However, it is possible to
improve this simple inequality in various ways, and the entropy method provides a versatile
tool. In this section we first give a simple example that is quite easy to obtain from the mod-
ified logarithmic Sobolev inequalities of the previous section yet has numerous interesting
applications. Its proof is essentially identical to that of Theorem 5.3 but thanks to the gener-
ality of Theorem 6.6, we do not need to restrict ourselves to functions of Bernoulli random
variables.

Here we consider a general real-valued function of n independent random vari-
ables Z = f (X1, . . . ,Xn) and Zi denotes an X(i)-measurable random variable defined by
Zi = infx′i f (X1, . . . , x′i , . . . ,Xn).

Theorem 6.7 Assume that Z is such that there exists a constant v > 0 such that, almost surely,

n∑
i=1

(Z – Zi)2 ≤ v.

Then for all t > 0,

P {Z – EZ > t} ≤ e–t
2/(2v).

Proof The result follows easily from the modified logarithmic Sobolev inequality proved
in the previous section. Observe that for x > 0, φ(–x) ≤ x2/2, and therefore, for all
λ > 0, Theorem 6.6 implies
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λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ E

[
eλZ

n∑
i=1

λ2

2
(Z – Zi)2

]

≤ λ2v
2

EeλZ,

where we used the assumption of the theorem. The obtained inequality has the same
form as the one we already faced in the proof of Theorem 6.2 and the proof may be
finished in an identical way. �

By replacing f by –f in the theorem above, we see that if Z is such that

n∑
i=1

(Z – Zi)2 ≤ v

with Zi = supx′i f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn), then one obtains an analogous bound for
the lower tail

P {Z < EZ – t} ≤ e–t
2/(2v).

As a consequence, if the condition

n∑
i=1

(Z – Zi)2 ≤ v

is satisfied both for Zi = infx′i f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn) and for Zi =
supx′i f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn), one has the two-sided inequality

P
{
|Z – EZ| > t

} ≤ 2e–t
2/(2v).

To understand why this inequality is a significant step forward in comparison with
Theorem 6.2, simply observe that the conditions of Theorem 6.7 do not require that f
should have bounded differences. All they require is that

sup
x1,..., xn ,

x′1,..., x′n∈X

n∑
i=1

( f (x1, . . . , xn) – f (x1, . . . , xi–1, x′i , xi+1, . . . , xn))
2 ≤ v.

The quantity v may be interpreted as an upper bound for the Efron–Stein estimate of the
variance Var (Z). Many of the inequalities proved by the entropy method in this chapter
have a similar flavor: a sub-Gaussian (or sometimes sub-gamma) tail bound where the
role of the variance factor is played by a suitable upper bound based on the Efron–Stein
inequality.
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Note, however, that if f satisfies the boundeddifferences assumption (or the x-dependent
bounded differences assumption), then Theorems 6.2 and 6.5 provide better constants
in the exponent. To illustrate why Theorem 6.7 is an essential improvement, recall the
example of the largest eigenvalue of a random symmetric matrix, as described in Example
3.14. For this example Theorem 6.5 fails to provide a meaningful inequality.

Example 6.8 (THE LARGEST EIGENVALUE OF A RANDOM SYMMETRIC MATRIX)
As in Example 3.14, we consider a random symmetric real matrix A with entries
Xi,j, 1 ≤ i ≤ j ≤ nwhere theXi,j are independent randomvariables with absolute value
bounded by 1. Let Z = λ1 denote the largest eigenvalue of A. In Section 3.14, we have
already seen that, almost surely,∑

1≤i≤j≤n

(Z – Zi,j)2 ≤ 16.

We used this estimate and the Efron–Stein inequality to conclude that Var (Z) ≤ 16.
Using Theorem 6.7, we get, without further work, the sub-Gaussian tail estimate

P {Z > EZ + t} ≤ e–t
2/32.

Clearly, the bounded differences inequality is useless here as it is impossible to handle
the individual differences Z – Z′

i,j in a meaningful way, while the sum of their squares is
bounded by 16. In Section 8.2 we return to this example, re-prove the exponential tail
inequality with a different method and derive a corresponding lower-tail inequality.

6.5 Inequalities for the Lower Tail

In the previous section we showed that the condition

n∑
i=1

(
f (X1, . . . ,Xn) – inf

x′i
f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn)

)2

≤ v

guarantees a sub-Gaussian behavior for the upper tail probabilities P{Z > EZ + t}. To
obtain an analogous bound for the lower tail probabilities P{Z < EZ – t}, however, one
needs a condition of the form

n∑
i=1

(
f (X1, . . . ,Xn) – sup

x′i
f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn)

)2

≤ v.

In many interesting cases, only one of the two quantities can be controlled easily, although
one would like to handle both upper and lower tails. This is possible under an additional
condition of bounded differences. Here we show a simple version of such a result. Note
that it is not quite a sub-Gaussian but rather a sub-Poisson bound. As we point out in sub-
sequent sections, there are some important applications in which sub-Gaussian lower tail
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bounds hold. In particular, in Section 6.11 below, we show a general sub-Gaussian lower
tail inequality under some additional conditions (see Corollary 6.24). For more discussion
and related results, we refer to Chapters 7, 9, and 15.

Theorem 6.9 Assume that X1, . . . ,Xn are independent and Z = f (X1, . . . ,Xn) is such that
there exists a constant v > 0 such that, almost surely,

n∑
i=1

(Zi – Z)2 ≤ v

where Zi = supx′i f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn). Assume also that Zi – Z ≤ 1 almost
surely for all i = 1, . . . , n. Then for all t > 0,

P {Z – EZ > t} ≤ e–vh(t/v) ≤ e–t
2/(2(v+t/3))

where h(x) = (1 + x) log(1 + x) – x for x > –1.

Proof Our starting point is, once again, the modified logarithmic Sobolev inequality of
Theorem 6.6. In order to bound the right-hand side of that inequality, we need
to bound E

[
eλZφ (–λ(Z – Zi))

]
with Zi defined above. The key observation is that

φ(x)/x2 = (ex – x – 1)/x2 is an increasing function of x and therefore, for any λ > 0,

φ (–λ(Z – Zi))
λ2(Z – Zi)2

≤ φ(λ)
λ2

where we used the fact that Zi – Z ≤ 1. Thus, by Theorem 6.6, for λ > 0, we have

d
dλ

(
1
λ
logEeλZ

)
≤ 1

λ2EeλZ

n∑
i=1

E
[
eλZφ (–λ(Z – Zi))

]
≤ φ(λ)

EeλZ
E

[
eλZ

n∑
i=1

(Z – Zi)2
]

≤ vφ(λ)

where we used the hypothesis of the theorem. The proof can now be finished as in
Theorem 6.7, by integrating the bound above. We thus obtain

Eeλ(Z–EZ) ≤ eφ(λ)v.

The upper bound is just the moment-generating function of a centered Poisson(v)
random variable and the tail bounds follow from the calculations shown in Sections
2.2 and 2.7. �
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Of course, by replacing f by –f , we get the analog result that if
n∑
i=1

(
f (X1, . . . ,Xn) – inf

x′i
f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn)

)2

≤ v

(i.e. under the same condition as in Theorem 6.7) and also

f (X1, . . . ,Xn) – inf
x′i
f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn) ≤ 1,

then for all 0 < t,

P {Z < EZ – t} ≤ e–t
2/(2(v+t/3)).

This bound explains the title of the section.

6.6 Concentration of Convex Lipschitz Functions

In Section 5.4 we proved the fundamental result that any Lipschitz function of a canonical
Gaussian vector has sub-Gaussian tails. The entropy method presented in the previous sec-
tions allows us to extend this to much more general product distributions, though we need
an extra convexity condition on the Lipschitz function. This is analogous to the relation-
ship of the “convex” Poincaré inequality of Section 3.5 to the Gaussian Poincaré inequality
presented in Section 3.7. We state the result for functions of n independent random vari-
ables taking values in [0, 1]n. However, the same proof extends easily to functions of n
independent vector-valued random variables under appropriate Lipschitz and convexity
assumptions (see Exercise 6.5).

Recall that f : [0, 1]n → R is said to be separately convex if, for every i = 1, . . . , n, it is a
convex function of i-th variable if the rest of the variables are fixed.

Theorem 6.10 Let X1, . . . ,Xn be independent random variables taking values in the
interval [0, 1] and let f : [0, 1]n → R be a separately convex function such that
| f (x) – f (y)| ≤ ‖x – y‖ for all x, y ∈ [0, 1]n. Then Z = f (X1, . . . ,Xn) satisfies, for all
t > 0,

P{Z > EZ + t} ≤ e–t
2/2.

Proof We may assume without loss of generality that the partial derivatives of f exist.
(Otherwise one may approximate f by a smooth function via a standard argu-
ment.) Theorem 6.7 suffices to bound the random variable

∑n
i=1(Z – Zi)2 where

Zi = infx′i f (X1, . . . , x′i , . . . ,Xn). However, we have already shown in the proof of
Theorem 3.17 that

n∑
i=1

(Z – Zi)2 ≤ ‖∇( f (X))‖2 ≤ 1

where at the last step we used the Lipschitz property of f . Therefore, Theorem 6.7 is
applicable with v = 1. �
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Note that a naive bound using the Lipschitz condition would only give the bound∑n
i=1

(
f (X) – f (X(i))

)2 ≤ 4n. The convexity assumption provides an immense improve-
ment over this simple bound.

Example 6.11 (THE LARGEST SINGULAR VALUE OF A RANDOM MATRIX) Consider
again Example 3.18, that is, let Z be the largest singular value of an m× nmatrix with
independent entriesXi,j (i = 1, . . . ,m, j = 1, . . . , n) taking values in [0, 1]. As we poin-
ted out, Z is a convex function of the Xi,j, which is also Lipschitz, so Theorem 6.10
implies

P{Z > EZ + t} ≤ e–t
2/2.

Here, we assumed that all entries of the matrix A are independent. This assumption
may be weakened at the price of obtaining a weaker sub-Gaussian bound. The same
argument may be used to establish concentration properties of the largest singular
value of amatrix whose columns are independent vectors, but the components of these
vectors are not necessarily independent (see Exercise 6.6).

6.7 Exponential Inequalities for Self-Bounding Functions

In this section we revisit self-bounding functions introduced in Section 3.3. Recall that
a function f : X n → R is said to have the self-bounding property if, for some functions
fi : X n–1 → R, for all x = (x1, . . . , xn) ∈ X n, and for all i = 1, . . . , n,

0 ≤ f (x) – fi
(
x(i)
)
≤ 1

and

n∑
i=1

(
f (x) – fi

(
x(i)
))

≤ f (x),

where, as usual, x(i) = (x1, . . . , xi–1, xi+1, . . . , xn). If X1, . . . ,Xn are independent random
variables taking values inX and Z = f (X1, . . . ,Xn) for a self-bounding function f , then the
Efron–Stein inequality implies Var (Z) ≤ EZ. We have seen several interesting examples of
self-bounding functions, including various configuration functions, Rademacher averages
(Section 3.3), and the combinatorial entropies introduced in Section 4.5. Here, building
on the modified logarithmic Sobolev inequality of Theorem 6.6, we obtain exponential
concentration bounds for self-bounding functions.

To state themain result of this section, recall the definition of the following two functions
that we have already seen in Bennett’s inequality and in the modified logarithmic Sobolev
inequalities above:

h(u) = (1 + u) log(1 + u) – u, u ≥ –1
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and

φ(v) = sup
u≥–1

(uv – h(u)) = ev – v – 1.

Theorem 6.12 Assume that Z satisfies the self-bounding property. Then for every λ ∈ R,

logEeλ(Z–EZ) ≤ φ(λ)EZ.

Moreover, for every t > 0,

P {Z ≥ EZ + t} ≤ exp
(
–h
(

t
EZ

)
EZ
)

and for every 0 < t ≤ EZ,

P {Z ≤ EZ – t} ≤ exp
(
–h
(
–

t
EZ

)
EZ
)
.

By recalling that h(u) ≥ u2/(2 + 2u/3) for u ≥ 0 (we have already used this in the proof
of Bernstein’s inequality; see Exercise 2.8) and observing that h(u) ≥ u2/2 for u ≤ 0, we
obtain the following immediate, perhaps more transparent, corollaries: for every t > 0,

P {Z ≥ EZ + t} ≤ exp
(
–

t2

2EZ + 2t/3

)
and for every 0 < t ≤ EZ,

P {Z ≤ EZ – t} ≤ exp
(
–

t2

2EZ

)
.

In these sub-gamma tail bounds the variance factor EZ is the Efron–Stein upper bound of
the variance Var (Z).

Proof We first invoke the modified logarithmic Sobolev inequality (Theorem 6.6).
Since the function φ is convex with φ(0) = 0, for any λ and any u ∈ [0, 1] ,
φ(–λu) ≤ uφ(–λ). Thus, since Z – Zi ∈ [0, 1], we have, for every λ,
φ(–λ (Z – Zi)) ≤ (Z – Zi)φ(–λ) and therefore, Theorem 6.6 and the condition∑n

i=1(Z – Zi) ≤ Z imply that

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ E

[
φ(–λ)eλZ

n∑
i=1

(Z – Zi)

]
≤ φ(–λ)E

[
ZeλZ

]
.
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Define, for λ ∈ R, F(λ) = Eeλ(Z–EZ). Then the inequality above becomes

[
λ – φ(–λ)

] F′(λ)
F(λ)

– log F(λ) ≤ φ(–λ)EZ,

which, writingG(λ) = log F(λ), implies(
1 – e–λ

)
G′(λ) – G(λ) ≤ φ(–λ)EZ.

For λ ≥ 0 this inequality is equivalent to(
G(λ)
eλ – 1

)′
≤ EZ ·

(
–λ

eλ – 1

)′
.

The last differential inequality is straightforward to solve and we obtain, for
λ > λ0 > 0,

G(λ) ≤ (
eλ – 1

) (G(λ0)
eλ0 – 1

+ EZ
(

λ0

eλ0 – 1
–

λ

eλ – 1

))
.

Letting λ0 tend to 0 and observing that limλ0→0 λ0/(eλ0 – 1) = 1 and that, by
l’Hospital’s rule, limλ0→0 G(λ0)/(eλ0 – 1) = E[Z – EZ] = 0, for λ ≥ 0, we get

G(λ) ≤ φ(λ)EZ.

Proceeding in a similar way for λ ≤ 0, we obtain the first inequality of the theorem.
On the right-hand side we recognize the moment-generating function of a centered

Poisson random variable with parameter EZ. The probability bounds are the cor-
responding Poisson tail inequalities and are obtained by Chernoff’s bounding, as
calculated in Section 2.2. �

Theorem 6.12 provides concentration inequalities for any function satisfying the self-
bounding property. In Sections 3.3 and 4.5 several examples of such functions are discussed.
Here we mention one more example.

Example 6.13 (MAXIMAL DEGREE IN A RANDOM GRAPH) Consider the Erdős–Rényi
G(n, p) model of a random graph. In this model a graph of n vertices is obtained if each
one of the m =

(n
2

)
possible edges is selected, independently, with probability p. The

degree of a vertex is the number of edges adjacent to that vertex. Note that the degree of
any vertex is a binomial (n – 1, p) randomvariable. LetD denote themaximal degree of
any vertex in the graph. Clearly,D is a configuration function, soTheorem6.12 applies.
See Exercise 6.14 for properties ofD.

Next we write out explicitly what the theorem implies for combinatorial entropies,
defined in Section 4.5.
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Theorem 6.14 Assume that h(x) = logb |tr(x)| is a combinatorial entropy such that for all
x ∈ X n and i ≤ n,

h(x) – h
(
x(i)
)
≤ 1.

If X = (X1, . . . ,Xn) is a vector of n independent random variables taking values inX , then
the random combinatorial entropy Z = h(X) satisfies

P {Z ≥ EZ + t} ≤ exp
(
–

t2

2EZ + 2t/3

)
,

and

P {Z ≤ EZ – t} ≤ exp
(
–

t2

2EZ

)
.

Moreover,

E logb |tr(X)| ≤ logb E|tr(X)| ≤
b – 1
log b

E logb |tr(X)|.

Note that the left-hand side of the last statement follows from Jensen’s inequality, while
the right-hand side follows by taking λ = log b in the first inequality of Theorem 6.12. One
of the examples of combinatorial entropies, defined in Section 4.5, is VC entropy. For the
random VC entropy T(X), we obtain

E log2 T(X) ≤ log2 ET(X) ≤ (log2 e)E log2 T(X).

This last statement shows that the expected VC entropy E log2 T(X) and the annealed
VC entropy log2 ET(X) are tightly connected, regardless of the class of sets A and the
distribution of the Xi’s.

The same inequality holds for the logarithm of the number of increasing subsequences
of a random permutation (see Section 4.5 for the definitions).

6.8 SymmetrizedModified Logarithmic Sobolev Inequalities

One of the most useful forms of the Efron–Stein inequality establishes an upper bound for
the variance of Z = f (X1, . . . ,Xn) in terms of the behavior of the random variables Z – Z′

i
where Z′

i = f (X1, . . . ,X′
i , . . . ,Xn) is obtained by replacing the variable Xi by an independ-

ent copy X′
i (see Theorem 3.1). The purpose of the next few sections is the search for

exponential concentration inequalities involving the differences Z – Z′
i . The following sym-

metrized modified logarithmic Sobolev inequality is at the basis of such exponential tail
inequalities.
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Theorem 6.15 (SYMMETRIZED MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES)
For all λ ∈ R,

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZφ (–λ(Z – Z′

i))
]

where φ(x) = ex – x – 1. Moreover, denoting τ(x) = x(ex – 1), for all λ ∈ R,

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZτ(–λ(Z – Z′

i)+)
]
,

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZτ(λ(Z′

i – Z)+)
]
.

Proof The first inequality is proved exactly as for Theorem 6.6, simply by noting that, like
Zi, Z′

i is also independent of Xi. To prove the second and third inequalities, write

eλZφ (–λ(Z – Z′
i)) = eλZφ (–λ(Z – Z′

i)+) + eλZφ (λ(Z′
i – Z)+) .

By symmetry, the conditional expectation of the second term, conditioned on
X1, . . . ,Xi–1,Xi+1, . . . ,Xn, may be written as

E(i) [eλZφ (λ(Z′
i – Z)+)

]
= E(i)

[
eλZ

′
iφ (λ(Z – Z′

i)+)
]

= E(i)
[
eλZe–λ(Z–Z

′
i)φ (λ(Z – Z′

i)+)
]
.

Summarizing, we have

E(i) [eλZφ (–λ(Z – Z′
i))
]

= E(i)
[(

φ (–λ(Z – Z′
i)+) + e–λ(Z–Z

′
i)φ (λ(Z – Z′

i)+)
)
eλZ
]
.

The second inequality of the theorem follows simply by noting that φ(x) + exφ(–x) =
x(ex – 1) = τ(x). The last inequality follows similarly. �

6.9 Exponential Efron–Stein Inequalities

Recall that by the Efron–Stein inequality, if X = (X1, . . . ,Xn) is a vector of independent
random variables, then the variance of Z = f (X) is bounded as

Var (Z) ≤ 1
2

n∑
i=1

E
[
(Z – Z′

i)
2
]
.
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If we denote by E′[·] = E[·|X] expectation with respect to the variables X′
1, . . . ,X

′
n only,

then by introducing the random variables

V+ =
n∑
i=1

E′ [(Z – Z′
i)
2
+
]

and

V– =
n∑
i=1

E′ [(Z – Z′
i)
2
–
]
,

the Efron–Stein inequality can be written in either one of the equivalent forms

Var (Z) ≤ EV+ and Var (Z) ≤ EV–.

The message of the next theorem is that upper bounds for the moment-generating func-
tion of the random variables V+ and V– may be translated into exponential concentration
inequalities for Z. In a sense, these may be understood as exponential versions of the
Efron–Stein inequality.

Theorem 6.16 Let Z = f (X1, . . . ,Xn) be a real-valued function of n independent random
variables. Let θ , λ > 0 be such that θλ < 1 and EeλV+/θ < ∞. Then

logEeλ(Z–EZ) ≤ λθ

1 – λθ
logEeλV

+/θ .

Next assume that Z is such that Z′
i – Z ≤ 1 for every 1 ≤ i ≤ n. Then for all λ ∈ (0, 1/2),

logEeλ(Z–EZ) ≤ 2λ
1 – 2λ

logEeλV
–
.

Proof The proof of the first statement is based on the second inequality of Theorem 6.15.
To apply this inequality, we need to establish appropriate upper bounds for the quant-
ity

∑n
i=1 E

[
eλZτ(–λ(Z – Z′

i)+)
]
appearing on the right-hand side. By noting that

τ(–x) ≤ x2 for all x ≥ 0, we see that it suffices to bound

n∑
i=1

E
[
eλZλ2(Z – Z′

i)
2
+
]
= λ2E

[
V+eλZ

]
.

In previous applications of the entropy method, our strategy was to relate E
[
V+eλZ

]
to quantities expressed as a functional of the random variable Z. Here our approach
is different: we bound the right-hand side by something that involves the moment-
generating function of Z and a functional of V+. In order to do this, we “decouple” the
random variables eλZ and V+.
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The duality formula of the entropy given in Theorem 4.13 serves as an ideal tool for
this purpose. Recall that the duality formula implies that for any random variable W
such that EeW < ∞,

E
[(
W – logEeW

)
eλZ
] ≤ Ent(eλZ),

or equivalently,

E
[
WeλZ

] ≤ E
[
eλZ
]
logE

[
eW
]
+ Ent(eλZ).

A natural choice for W is λV+ but it is advantageous to introduce a free para-
meter θ > 0 and apply the “decoupling” inequality above withW = λV+/θ . Now the
symmetrized modified logarithmic Sobolev inequality becomes

Ent(eλZ) ≤ λθ
(
E
[
eλZ
]
logE

[
eλV

+/θ ] + Ent(eλZ)
)
.

Rearranging, and writing ρ(λ) = logEeλV+ for the logarithmic moment generating
function of V+, we have

(1 – λθ) Ent(eλZ) ≤ λθρ(λ/θ)EeλZ

which, of course, is only meaningful if λθ < 1. If, as before, we let G(λ) =
logEeλ(Z–EZ), then the previous inequality becomes

λG′(λ) – G(λ) ≤ λθ

1 – λθ
ρ(λ/θ).

This differential inequality is of the form that we have already encountered and indeed,
by Lemma 6.25,

G(λ) ≤ λθ

∫ λ

0

ρ(u/θ)
u(1 – uθ)

du.

Since ρ(0) = 0, the convexity of ρ implies that ρ(u/θ)/(u(1 – uθ)) is a non-
decreasing function and therefore

G(λ) ≤ θλρ(λ/θ)
1 – λθ

,

and the first inequality of the theorem follows.
To prove the second statement of the theorem, we start with the last inequality of

Theorem 6.15 which may be written as

Ent
(
eλZ
) ≤ n∑

i=1

E

[
eλZλ2(Z′

i – Z)
2
+
eλ(Z′

i–Z)+ – 1
λ(Z′

i – Z)+

]
.
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Since (ex – 1)/x is an increasing function, the conditions Z′
i – Z ≤ 1 and λ < 1/2

imply that

Ent
(
eλZ
) ≤ λ2

n∑
i=1

E
[
eλZ(Z′

i – Z)
2
+2
(
e1/2 – 1

)] ≤ 2λ2E
[
eλZV–] .

The rest of the proof is the same as for the first inequality of the theorem. �

6.10 AModified Logarithmic Sobolev Inequality
for the Poisson Distribution

In the previous sections we derived modifications of the Gaussian logarithmic Sobolev
inequality that allowed us to prove concentration inequalities for functions of independ-
ent random variables of arbitrary distribution. For certain specific distributions, apart from
the normal distribution, sharper inequalities are available. Here we show such a “modified
logarithmic Sobolev inequality” for Poisson random variables. Recall that X has a Poisson
distribution with parameter μ > 0 if X takes nonnegative integer values and for every
k = 0, 1, . . . , P{X = k} = μke–μ/k!.

If f is a real-valued function defined on the set of nonnegative integers N, then define
the discrete derivative of f at x ∈ N by Df (x) = f (x + 1) – f (x). If one wanted to estab-
lish a “discrete” analog of the Gaussian logarithmic Sobolev inequality, one would hope
to prove that all functions f : N → R, Ent( f 2(X)) ≤ κE[|Df (X)|2] for some constant
κ . Unfortunately, such a result is not true if X is Poisson because the supremum of
Ent(( f (X))2)/E[(Df (X))2] is infinite.

However, Theorem 6.15 may be used to prove the following modified logarithmic
Sobolev inequalities for Poisson distributions, which is a refinement of the PoissonPoincaré
inequality of Exercise 3.21.

Theorem 6.17 (POISSON LOGARITHMIC SOBOLEV INEQUALITY) Let X be a Poisson
random variable and let f : N → (0,∞). Then

Ent( f (X)) ≤ (EX)E
[
Df (X)D log f (X)

]
,

and

Ent[ f (X)] ≤ (EX)E
[
|Df (X)|2

f (X)

]
.

The theoremmay be proved in a way similar to that with which we proved the Gaussian
logarithmic Sobolev inequality: first we establish an inequality for the Bernoulli distribu-
tion (see the lemma below) and then use the convergence of the binomial distribution to
Poisson. We leave the details of the proof to the reader.

Lemma 6.18 (MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES FOR BERNOULLI
DISTRIBUTIONS) For any function f : {0, 1} → (0,∞), let ∇f (x) = f (1 – x) – f (x).
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Let p ∈ (0, 1), and let X be a Bernoulli random variable with parameter p (i.e.,
P{X = 1} = 1 – P{X = 0} = p). Then

Ent( f (X)) ≤ p(1 – p)E
[∇f (X)∇ log f (X)

]
and

Ent( f (X)) ≤ p(1 – p)E
[
|∇f (X)|2

f (X)

]
.

Proof We only prove the first inequality. The proof of the second is left as an exercise. Let
X′ be an independent copy ofX. Let q = 1 – p. By the first inequality of Theorem 6.15,
taking λ = 1 and Z = log f (X),

Ent( f (X)) ≤ E
[
f (X)φ(log( f (X′)/f (X)))

]
= E

[
f (X′) – f (X) – f (X)(log( f (X′)) – log( f (X)))

]
= pq

[
–f (1)(log( f (0) – log f (1)))

]
+ pq

[
–f (0)(log( f (1) – log f (0)))

]
= pqE

[∇f (X)∇ log f (X)
]
. �

It is easy to deduce fromTheorem 6.17 that the square root of a Poisson random variable
X satisfies

logEeλ(
√
X–E

√
X) ≤ v(eλ – 1)

where v = (EX)E[1/(4X + 1)]. This represents an improvement over what can be
obtained from Theorem 6.29 below (see Exercise 6.12).

6.11 Weakly Self-Bounding Functions

Self-bounding functions, discussed in Section 6.7, appear naturally in numerous applic-
ations including configuration functions and combinatorial entropies. Theorem 6.12 is
quite satisfactory as it cannot be improved in this generality and its proof is rather simple.
However, one often faces functions that only satisfy slightly weaker conditions. A prime
example, presented in Chapter 7, is the squared “convex distance.” In order to handle this
example, as well as various other naturally emerging cases, we generalize the definition of
self-bounding functions in two different ways. This section is dedicated to inequalities for
such generalized self-bounding functions. The proofs are variants of the entropy method,
all based on themodified logarithmic Sobolev inequality of Theorem 6.6. However, the res-
ulting differential inequality for the moment-generating function is not always as easy to
solve as in Theorems 6.7 and 6.12, and most of our effort is devoted to the solution of these
differential inequalities.
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We distinguish two notions of generalized self-bounding functions. In both of the
following definitions, a and b are nonnegative constants.

A nonnegative function f : X n → [0,∞) is called weakly (a, b)-self-bounding if there
exist functions fi : X n–1 → [0,∞) such that for all x ∈ X n,

n∑
i=1

(
f (x) – fi

(
x(i)
))2 ≤ af (x) + b.

On the other hand, we say that a function f : X n → [0,∞) is strongly (a, b)-self-bounding
if there exist functions fi : X n–1 → [0,∞) such that for all i = 1, . . . , n and all x ∈ X n,

0 ≤ f (x) – fi
(
x(i)
)
≤ 1,

and

n∑
i=1

(
f (x) – fi

(
x(i)
))

≤ af (x) + b.

Clearly, a self-bounding function is strongly (1, 0)-self-bounding and every strongly (a, b)-
self-bounding function is weakly (a, b)-self-bounding. In both cases, the Efron–Stein
inequality implies Var (Z) ≤ aEZ + b. Indeed, this quantity appears as a variance factor in
the exponential bounds established below.

We present three inequalities. The simplest is an inequality for the upper tails of weakly
(a, b)-self-bounding functions.

Theorem6.19 Let X = (X1, . . . ,Xn) be a vector of independent random variables, each taking
values in ameasurable setX , let a, b ≥ 0 and let f : X n → [0,∞) be a weakly (a, b)-self-
bounding function. Let Z = f (X). If, in addition, fi(x(i)) ≤ f (x) for all i ≤ n and x ∈ X n,
then for all 0 ≤ λ ≤ 2/a,

logEeλ(Z–EZ) ≤ (aEZ + b)λ2

2(1 – aλ/2)

and for all t > 0,

P {Z ≥ EZ + t} ≤ exp
(
–

t2

2 (aEZ + b + at/2)

)
.

Proof Once again, our starting point is the modified logarithmic Sobolev inequality. Write
Zi = fi(X(i)). Themain observation is that for x ≥ 0,φ(–x) ≤ x2/2. SinceZ – Zi ≥ 0,
for λ > 0, by further bounding the right-hand side of the inequality of Theorem 6.6,
we obtain
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λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ λ2

2
E

[
eλZ

n∑
i=1

(Z – Zi)2
]

≤ λ2

2
E
[
(aZ + b)eλZ

]
where we use the assumption that f is weakly (a, b)-self-bounding. Introducing
G(λ) = logEeλ(Z–EZ), the inequality obtained above may be re-arranged to read

(
1
λ
–
a
2

)
G′(λ) –

G(λ)
λ2 ≤ v

2

where we write v = aEZ + b.
To finish the proof, simply observe that the left-hand side is just the derivative of the

function (1/λ – a/2)G(λ). Using the fact thatG(0) = G′(0) = 0, and thatG′(λ) ≥ 0
for λ > 0, integrating this differential inequality leads to

G(λ) ≤ vλ2

2(1 – aλ/2)
for all λ ∈ [0, 2/a).

This shows that Z – EZ is a sub-gamma random variable with variance factor
v = aEZ + b and scale parameter a/2. The tail bound follows from the calculations
shown is Section 2.4. �

The next theorem provides lower tail inequalities for weakly (a, b)-self-bounding
functions. This will become essential for proving the convex distance inequality in
Section 7.4.

Theorem 6.20 Let X = (X1, . . . ,Xn) be a vector of independent random variables, each tak-
ing values in a measurable set X , let a, b ≥ 0 and let f : X n → [0,∞) be a weakly
(a, b)-self-bounding function. Let Z = f (X) and define c = (3a – 1)/6. If, in addition,
f (x) – fi(x(i)) ≤ 1 for each i ≤ n and x ∈ X n, then for 0 < t ≤ EZ,

P {Z ≤ EZ – t} ≤ exp
(
–

t2

2 (aEZ + b + c–t)

)
.

Note that if a ≥ 1/3, then the left tail is sub-Gaussian with variance proxy aEZ + b, while
for a < 1/3 we will only obtain a sub-gamma tail bound.

The proof of this theorem is shown below, together with the proof of the following upper
tail inequality for strongly (a, b)-self-bounding functions.
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Theorem6.21 Let X = (X1, . . . ,Xn) be a vector of independent random variables, each taking
values in a measurable set X , let a, b ≥ 0 and let f : X n → [0,∞) be a strongly (a, b)-
self-bounding function. Let Z = f (X) and define c = (3a – 1)/6. Then for all λ ≥ 0,

logEeλ(Z–EZ) ≤ (aEZ + b)λ2

2(1 – c+λ)

and for all t > 0,

P {Z ≥ EZ + t} ≤ exp
(
–

t2

2 (aEZ + b + c+t)

)
.

In this upper tail bound we observe a similar phenomenon as in Theorem 6.20 but with
a different sign. If a ≤ 1/3, then the upper tail of a strongly (a, b)-self-bounding function is
purely sub-Gaussian.

Our starting point is once again the modified logarithmic Sobolev inequality of
Theorem 6.6.

If λ ≥ 0 and f is strongly (a, b)-self-bounding, then, using Z – Zi ≤ 1 and the fact that
for all x ∈ [0, 1], φ(–λx) ≤ xφ(–λ),

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ φ(–λ)E

[
eλZ

n∑
i=1

(Z – Zi)

]
≤ φ(–λ)E

[
(aZ + b) eλZ

]
.

For any λ ∈ R, define G(λ) = logEe(λZ–EZ). Then the previous inequality may be written
as the differential inequality[

λ – aφ(–λ)
]
G′(λ) – G(λ) ≤ vφ(–λ), (6.4)

where v = aEZ + b.
On the other hand, if λ ≤ 0 and f is weakly (a, b)-self-bounding, then since φ(x)/x2 is

nondecreasing overR+, φ(–λ(Z – Zi)) ≤ φ(–λ)(Z – Zi)2 so

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ φ(–λ)E

[
eλZ

n∑
i=1

(Z – Zi)2
]

≤ φ(–λ)E
[
(aZ + b)eλZ

]
.

This again leads to the differential inequality (6.4) but this time for λ ≤ 0.
When a = 1, this differential inequality can be solved exactly as we saw it in the proof of

Theorem 6.12, and one obtains the sub-Poissonian inequality

G(λ) ≤ vφ(λ).
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However, when a �= 1, it is not obvious what kind of bounds for G should be expected. If
a > 1, then λ – aφ(–λ) becomes negative when λ is large enough. Since both G′(λ) and
G(λ) are nonnegative when λ is nonnegative, (6.4) becomes trivial for large values of λ.
Hence, at least when a > 1, there is no hope to derive Poissonian bounds from (6.4) for
positive values of λ (i.e. for the upper tail).

The following lemma, proved in Section 6.12 below, is the key to the proof of both
Theorems 6.20 and 6.21. It shows that if f satisfies a self-bounding property, then on the
relevant interval, the logarithmic moment-generating function of Z – EZ is upper bounded
by v times a functionGγ defined by

Gγ (λ) =
λ2

2(1 – γ λ)
for every λ such that γ λ < 1

where γ ∈ R is a real-valued parameter. In the lemma below we mean c–1+ = ∞
(resp. c–1– = ∞) when c+ = 0 (resp. c– = 0).

Lemma 6.22 Let a, v > 0 and let G be a solution of the differential inequality

[λ – aφ (–λ)]H′ (λ) – H(λ) ≤ vφ (–λ) .

Define c = (a – 1/3)/2. Then, for every λ ∈ (0, c–1+ )

G(λ) ≤ vGc+(λ)

and for every λ ∈ (–θ , 0)

G(λ) ≤ vG–c– (λ)

where θ = c–1–
(
1 –

√
1 – 6c–

)
if c– > 0 and θ = a–1 whenever c– = 0.

The proof is given in the next section. Equipped with this lemma, it is now easy to obtain
Theorems 6.20 and 6.21.

Proof of Theorem 6.20. We have to check that the condition λ > –θ is harmless. Since
θ < c–1– , by continuity, for every t > 0,

sup
u∈(0,θ)

(
tu –

u2v
2 (1 – c–u)

)
= sup

u∈(0,θ]

(
tu –

u2v
2 (1 – c–u)

)
.

Note that we are only interested in values of t that are smaller than EZ ≤ v/a. Now the
supremum of

tu –
u2v

2 (1 – c–u)

as a function of u ∈ (0, c–1– ) is achieved either at ut = t/v (if c– = 0) or at
ut = c–1–

(
1 – (1 + (2tc–/v))–1/2

)
(if c– > 0).
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It is time to take into account the restriction t ≤ v/a. In the first case, when ut = t/v,
it implies that ut ≤ a–1 = θ , while in the second case, since a = (1 – 6c–) /3 it implies
that 1 + (2tc–/v) ≤ (1 – 6c–)–1 and therefore ut ≤ c–1–

(
1 –

√
1 – 6c–

)
= θ . In both

cases ut ≤ θ which means that for every t ≤ v/a

sup
u∈(0,θ]

(
tu –

u2v
2 (1 – c–u)

)
= sup

u∈(0,c–1– )

(
tu –

u2v
2 (1 – c–u)

)
and the result follows. �

Proof of Theorem 6.21. The upper-tail inequality for strongly (a, b)-self-bounding func-
tions follows from Lemma 6.22 and Markov’s inequality by routine calculations,
exactly as in the proof of Bernstein’s inequality when c+ > 0, and it is straightforward
when c+ = 0. �

Example 6.23 (THE SQUARE OF A REGULAR FUNCTION) To illustrate the use of the
results of this section, consider a function g : X n → R and assume that there exists a
constant v > 0 and that there are measurable functions gi : X n–1 → R such that for
all x ∈ X n, g(x) ≥ gi(x(i)),

n∑
i=1

(
g(x) – g

(
x(i)
))2 ≤ v.

We term such a function v-regular. If X = (X1, . . . ,Xn) ∈ X n is a vector of independ-
entX -valued random variables, then by Theorem 6.7, for all t > 0,

P
{
g(X) ≥ Eg(X) + t

} ≤ e–t
2/(2v).

Even though Theorem 6.7 provides an exponential inequality for the lower tail, it
fails to give an analogous sub-Gaussian bound for P

{
g(X) ≤ Eg(X) – t

}
. Here we

show how Theorem 6.20 may be used to derive lower-tail bounds under an additional
bounded-differences condition for the square of g.

Corollary 6.24 Let g : X n → R be a v-regular function such that for all x ∈ X n and
i = 1, . . . , n, g(x)2 – gi(x(i))2 ≤ 1. Then for all t ≥ 0,

P
{
g(X)2 ≤ E

[
g(X)2

]
– t
} ≤ exp

(
–t2

8vE
[
g(X)2

]
+ t(4v – 1/3)–

)
.

In particular, if g is nonnegative and v ≥ 1/12, then for all 0 ≤ t ≤ Eg(X),

P
{
g(X) ≤ Eg(X) – t

} ≤ e–t
2/(8v).

Proof Introduce f (x) = g(x)2 and fi(x(i)) = gi(x(i))2. Then

0 ≤ f (x) – fi(x(i)) ≤ 1.
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Moreover,

n∑
i=1

(
f (x) – fi

(
x(i)
))2

=
n∑
i=1

(
g(x) – gi

(
x(i)
))2 (

g(x) + gi
(
x(i)
))2

= 4g(x)2
n∑
i=1

(
g(x) – gi

(
x(i)
))2

≤ 4vf (x)

and therefore f is weakly (4v, 0)-self-bounding. This means that Theorem 6.20 is
applicable and this is how the first inequality is obtained.

The second inequality follows from the first by noting that

P
{
g(X) ≤ Eg(X) – t

} ≤ P
{
g(X)

√
E
[
g(X)2

] ≤ E
[
g(X)2

]
– t
√
E
[
g(X)2

]}
≤ P

{
g(X)2 ≤ E

[
g(X)2

]
– t
√
E
[
g(X)2

]}
,

and now the first inequality may be applied. �

For a more concrete class of applications, consider a nonnegative separately convex
Lipschitz function g defined on [0, 1]n. If X = (X1, . . . ,Xn) are independent random
variables taking values in [0, 1], then by Theorem 6.10,

P{g(X) – Eg(X) > t} ≤ e–t
2/2.

Now we may derive a lower-tail inequality for g, under the additional assumption that g2
takes its values in an interval of length 1. Indeed, without loss of generality we may assume
that g is differentiable on [0, 1]n because otherwise one may approximate g by a smooth
function in a standard way. Then, denoting

gi
(
x(i)
)
= inf

x′i∈X
g(x1, . . . , xi–1, x′i , xi+1, . . . , xn),

by separate convexity,

g(x) – gi
(
x(i)
)
≤
∣∣∣∣ ∂g∂xi

(x)
∣∣∣∣ .

Thus, for every x ∈ [0, 1]n,

n∑
i=1

(
g(x) – gi

(
x(i)
))2 ≤ 1.
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We return to the this problem in Section 7.5 where we will be able to drop the extra
assumptions on the range of g2.

For a concrete example, consider the �p norm ‖x‖p for some p ≥ 2. Then g(x) = ‖x‖p
is convex and Lipschitz, so we obtain that if X = (X1, . . . ,Xn) is a vector of independent
random variables taking values in an interval of length 1, then for all t > 0,

P
{
‖X‖2p ≤ E‖X‖2p – t

}
≤ e–t

2/(8E‖X‖2p)

and
P
{‖X‖p ≤ E‖X‖p – t

} ≤ e–t
2/8.

6.12 Proof of Lemma 6.22

The key to the success of the entropy method is that the differential inequalities for the
logarithmic moment-generating function of Z can be solved in many interesting cases. The
cases considered so far were all easily solvable by lucky coincidences. Here we try to extract
the essence of these circumstances and generalize them so that a large family of solvable
differential inequalities can be dealt with. The next lemma establishes some simple sufficient
conditions. Then Lemma 6.26 will allow us to use Lemma 6.25 to cope with more difficult
cases, and this will lead to the proof of Lemma 6.22.

Lemma 6.25 Let f be a nondecreasing continuously differentiable function on some interval I
containing 0 such that f (0) = 0, f ′(0) > 0 and f (x) �= 0 for every x �= 0. Let g be a con-
tinuous function on I and consider an infinitely many times differentiable function G on I
such that G(0) = G′(0) = 0 and for every λ ∈ I,

f (λ)G′(λ) – f ′(λ)G(λ) ≤ f 2(λ)g(λ).

Then, for every λ ∈ I, G(λ) ≤ f (λ)
∫ λ

0 g(x)dx.

Note the special case when f (λ) = λ, and g(λ) = L2/2 is the differential inequality
obtained, for example, in Theorems 5.3 and 6.7 and is used to obtain sub-Gaussian concen-
tration inequalities. If we choose f (λ) = eλ – 1 and g(λ) = –d(λ/eλ – 1)/dλ, we recover
the differential inequality seen in the proof of Theorem 6.12.

Proof Define ρ(λ) = G(λ)/f (λ) for every λ �= 0 and ρ(0) = 0. Using the assumptions on
G and f , we see that ρ is continuously differentiable on I with

ρ ′(λ) =
f (λ)G′(λ) – f ′(λ)G(λ)

f 2(λ)
for λ �= 0 and ρ ′(0) =

G′′(0)
2f ′(0)

.

Hence f (λ)G′ (λ) – f ′ (λ)G (λ) ≤ f 2 (λ) g (λ) implies that

ρ ′ (λ) ≤ g (λ)
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and therefore that the function�(λ) =
∫ λ

0 g(x)dx – ρ(λ) is nondecreasing on I. Since
�(0) = 0,� and f have the same sign on I, whichmeans that�(λ)f (λ) ≥ 0 for λ ∈ I
and the result follows. �

Except when a = 1, the differential inequality (6.4) cannot be solved exactly. A round-
about is provided by the following lemma that compares the solutions of a possibly difficult
differential inequality with solutions of a differential equation.

Lemma 6.26 Let I be an interval containing 0 and let ρ be continuous on I. Let a ≥ 0 and
v > 0. Let H : I → R, be an infinitely many times differentiable function satisfying

λH′(λ) – H(λ) ≤ ρ(λ) (aH′(λ) + v)

with

aH′(λ) + v > 0 for every λ ∈ I and H′(0) = H(0) = 0.

Let ρ0 : I → R be a function. Assume that G0 : I → R is infinitely many times differenti-
able such that for every λ ∈ I,

aG′
0(λ) + 1 > 0 and G′

0(0) = G0(0) = 0 and G′′
0(0) = 1.

Assume also that G0 solves the differential equation

λG′
0(λ) – G0(λ) = ρ0(λ) (aG′

0(λ) + 1) .

If ρ(λ) ≤ ρ0(λ) for every λ ∈ I, then H ≤ vG0.

Proof Let I, ρ, a, v,H,G0, ρ0 be defined as in the statement of the lemma. Combining the
assumptions onH, ρ0, ρ andG0,

λH′(λ) – H(λ) ≤ (λG′
0(λ) – G0(λ)) (aH′(λ) + v)

aG′
0(λ) + 1

for every λ ∈ I, or equivalently,

(λ + aG0(λ))H′(λ) – (1 + aG′
0(λ))H(λ) ≤ v (λG′

0(λ) – G0(λ)) .

Setting f (λ) = λ + aG0(λ) for every λ ∈ I and defining g : I → R by

g(λ) =
v (λG′

0(λ) – G0(λ))
(λ + aG0(λ))

2 if λ �= 0 and g(0) =
v
2
,

our assumptions on G0 imply that g is continuous on the whole interval I so that we
may apply Lemma 6.25. Hence, for every λ ∈ I

H(λ) ≤ f (λ)
∫ λ

0
g(x)dx = vf (λ)

∫ λ

0

(
G0(x)
f (x)

)′
dx

and the conclusion follows since limx→0 G0(x)/f (x) = 0. �
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Observe that the differential inequality in the statement of Lemma 6.22 has the same
form as the inequalities considered in Lemma 6.26 where φ replaces ρ. Note also that for
any γ ≥ 0,

2Gγ (λ) =
λ2

1 – γ λ

solves the differential inequality

λH′(λ) – H(λ) = λ2(γH′(λ) + 1). (6.5)

So by choosing γ = a and recalling that for λ ≥ 0, φ(–λ) ≤ λ2/2, it follows immediately
from Lemma 6.26, that

G(λ) ≤ λ2v
2(1 – aλ)

for λ ∈ (0, 1/a).

As G is the logarithmic moment-generating function of Z – EZ, this can be used to derive
a Bernstein-type inequality for the left tail of Z. However, the obtained constants are not
optimal, so proving that Lemma 6.22 requires some more care.

Proof of Lemma 6.22. The function 2Gγ may be the unique solution of equation (6.5)
but this is not the only equation for whichGγ is the solution. Define

ργ (λ) =
λG′

γ (λ) – Gγ (λ)
1 + aG′

γ (λ)
.

Then, on some interval I,Gγ is the solution of the differential equation

λH′(λ) – H(λ) = ργ (λ)(1 + aH′(λ)),

provided 1 + aG′
γ remains positive on I.

Thus, we have to look for the smallest γ ≥ 0 such that, on the relevant interval I
(with 0 ∈ I), we have both φ(–λ) ≤ ργ (λ) and 1 + aG′

γ (λ) > 0 for λ ∈ I.
Introduce

Dγ (λ) = (1 – γ λ)2(1 + aG′
γ (λ)) = (1 – γ λ)2 + aλ

(
1 –

γ λ

2

)
= 1 + 2(a/2 – γ )λ – γ (a/2 – γ )λ2.

Observe that ργ (λ) = λ2/(2Dγ (λ)).
For any interval I, 1 + aG′

γ (λ) > 0 for λ ∈ I holds if and only if Dγ (λ) > 0 for
λ ∈ I. Hence, if Dγ (λ) > 0 and φ(–λ) ≤ ργ (λ), then it follows from Lemma 6.26
that for every λ ∈ I, we haveG(λ) ≤ vGγ (λ).
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We first deal with intervals of the form I = [0, c–1+ ) (with c–1+ = ∞
when c+ = 0). If a ≤ 1/3, that is, c+ = 0, Dc+(λ) = 1 + aλ > 0 and ρc+(λ) ≥
λ2/(2(1 + λ/3)) ≥ φ(–λ) for λ ∈ I = [0, +∞).

If a > 1/3, then Dc+(λ) = 1 + λ/3 – c+λ2/6 satisfies 0 < 1 + λ/6 ≤ Dc+(λ) ≤
1 + λ/3 on an interval I containing [0, c–1+ ), and therefore ρc+(λ) ≥ φ(–λ) on I.

Next we deal with intervals of the form I = (–θ , 0] where θ = a–1 if c– = 0,
and θ = c–1– (1 –

√
1 – 6c–) otherwise. Recall that for any λ ∈ (–3, 0], φ(–λ) ≤

λ2/(2(1 + λ/3)).
If a ≥ 1/3, that is, c– = 0,D–c– (λ) = 1 + aλ > 0 for λ ∈ (a–1, 0],

ρ–c– (λ) =
λ2

2(1 + aλ)
≥ λ2

2(1 + λ/3)
.

For a ∈ (0, 1/3), note first that 0 < c– ≤ 1/6, and that

0 < D–c– (λ) ≤ 1 +
λ

3
+

λ2

36
≤
(
1 +

λ

6

)2

for every λ ∈ (–θ , 0]. This also entails that ρ–c– (λ) ≥ φ(–λ) for λ ∈ (–θ , 0]. �

6.13 Some Variations

Next we present a few inequalities that are based on slight variations of the entropymethod.
These versions differ in the assumptions on how V+ or V– are controlled by different func-
tions ofZ. These inequalities demonstrate the flexibility of themethod, but our aim is not to
give an exhaustive list of concentration inequalities that can be obtained this way. Themes-
sage of this section is that by simple modifications of the main argument one may exploit
many special properties of the function f .

We start with inequalities that use negative association between increasing and decreas-
ing functions of Z.

Theorem 6.27 Assume that for some nondecreasing function g : R → R,

V– ≤ g(Z).

Then for all t > 0,

P {Z < EZ – t} ≤ e–t
2/(4Eg(Z)).

Proof In order to prove lower-tail inequalities, it suffices to derive suitable upper bounds
for the moment-generating function F(λ) = EeλZ for negative values of λ. By the third
inequality of Theorem 6.15,
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λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
]

≤
n∑
i=1

E
[
eλZτ(λ(Z′

i – Z)+)
]

≤
n∑
i=1

E
[
eλZλ2(Z′

i – Z)
2
+
]

(using λ < 0 and that τ(–x) ≤ x2 for x > 0)
= λ2E

[
eλZV–]

≤ λ2E
[
eλZg(Z)

]
.

Since g(Z) is a nondecreasing and eλZ is a decreasing function of Z, Chebyshev’s
association inequality (Theorem 2.14) implies that

E
[
eλZg(Z)

] ≤ E
[
eλZ
]
E[ g(Z)].

The inequality obtained has the same form as the differential inequality we saw in the
proof of Theorem 6.2 (withEg(Z) in place of v/2) and it can be solved in an analogous
way to obtain the announced lower-tail inequality. �

Often it is more natural to boundV+ by an increasing function of Z than to bound V–. In
such situations one can still say something about lower tail probabilities of Z but we need
the additional guarantee that |Z – Z′

i| remains bounded and that the inequality only applies
in a restricted range of the values of t.

Theorem 6.28 Assume that there exists a nondecreasing function g such that V+ ≤ g(Z)
and for any value of X = (X1, . . . ,Xn) and X′

i , |Z – Z′
i| ≤ 1. Then for all K > 0, if

λ ∈ [0, 1/K), then

logEe–λ(Z–EZ) ≤ λ2 τ(K)
K2 Eg(Z).

Moreover, for all 0 < t ≤ (e – 1)Eg(Z), we have

P {Z < EZ – t} ≤ exp
(
–

t2

4(e – 1)Eg(Z)

)
.

Proof The key observation is that the function τ(x)/x2 = (ex – 1)/x is increasing if
x > 0. Choose K > 0. Thus, for λ ∈ (–1/K, 0), the second inequality of Theorem
6.15 implies that
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λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZτ(–λ(Z – Z′

i)+)
]

≤ λ2 τ(K)
K2 E

[
eλZV+]

≤ λ2 τ(K)
K2 E

[
g(Z)eλZ

]
,

where at the last step we used the assumption of the theorem.
As in the proof of Theorem 6.27, we bound E

[
g(Z)eλZ

]
by E[g(Z)]E

[
eλZ
]
. The

rest of the proof is identical to that of Theorem 6.27. Here, we took K = 1. �

Our last general result deals with a frequently faced situation. In these cases V+ may be
bounded by the product of Z and another random variableW with well-behaved moment-
generating function. The following theorem provides a way to deal with such functionals
efficiently and painlessly.

Theorem 6.29 Assume that f is nonnegative and that there exists a random variable W,
such that

V+ ≤ WZ.

Then for all θ > 0 and λ ∈ (0, 1/θ),

logEeλ(
√
Z–E

√
Z) ≤ λθ

1 – λθ
logEeλW/θ .

Note that this theorem only bounds the moment-generating function of
√
Z. However,

one may easily obtain bounds for the upper-tail probability of Z by observing that, since√
EZ ≥ E

√
Z, and by writing x =

√
EZ + t –

√
EZ, we have, for λ > 0,

P{Z > EZ + t} ≤ P
{√

Z > E
√
Z + x

}
≤ Eeλ(

√
Z–E

√
Z)e–λx

byMarkov’s inequality.

Proof Introduce Y =
√
Z and Y (i) =

√
Z(i). Then

E′
[

n∑
i=1

(Y – Y (i))2+

]
= E′

[
n∑
i=1

(√
Z –

√
Z(i)

)2
+

]

≤ E′
[

n∑
i=1

(
(Z – Z(i))+√

Z

)2]

≤ 1
Z
E′
[

n∑
i=1

(
Z – Z(i)

)2
+

]
≤ W .

Thus, applying Theorem 6.16 for Y proves the statement. �
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Example 6.30 (TRIANGLES IN A RANDOM GRAPH) Consider the Erdős–Rényi G(n, p)
model of a random graph. Recall that such a graph has n vertices and for each pair
(u, v) of vertices an edge is inserted between u and vwith probability p, independently.
We write m =

(n
2

)
, and denote the indicator variables of the m edges by X1, . . . ,Xm

(i.e. Xi = 1 if edge i = (u, v) is present in the random graph and Xi = 0 otherwise).
Three edges form a triangle if there are vertices u, v,w such that the edges are of the
form (u, v), (v,w), and (w, u). Concentration properties of the number of triangles in
a random graph have received a great deal of attention and sharp bounds have been
derived by various sophisticated methods for different ranges of the parameter p of the
randomgraph (see the bibliographical remarks at the endof the chapter). Interestingly,
the left tail is substantially easier to handle, as Janson’s inequality, presented in the next
section, offers sharp estimates. However, proving sharp inequalities for the upper tail
was much more challenging. Here we only show some sub-optimal versions that are
easy to obtain from the general results of this chapter.

LetZ = f (X1, . . . ,Xm) denote the number of triangles in a random graph. Note that

EZ =
n(n – 1)(n – 2)

6
p3 ≈ n3p3

6
and

Var (Z) =
(
n
3

)
(p3 – p6) +

(
n
4

)(
4
2

)
(p5 – p6).

To obtain exponential upper-tail inequalities, we estimate the random variable

V+ =
n∑
i=1

E′(Z – Z′
i)
2
+.

If v and u denote the extremities of edge i (1 ≤ i ≤ m), then we denote by Bi the
number of vertices w such that both edges (u,w) and (v,w) exist in the random graph.
Then

V+ =
m∑
i=1

Xi(1 – p)B2
i .

Since
∑m

i=1 XiBi = 3Z, we have

V+ ≤ (1 – p)
m∑
i=1

Xi

(
max
j=1,...,m

Bj
)
Bi

= (1 – p)
(

max
j=1,...,m

Bj
) m∑

i=1

XiBi

= 3(1 – p)
(

max
j=1,...,m

Bj
)
Z.

By bounding maxj=1,...,m Bj trivially by n, we have V+ ≤ 3(1 – p)nZ. Define fi(X(i)) as
the number of triangles when we force the i-th edge to be absent in the graph. Then
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clearly
∑n

i=1( f (X) – fi(X
(i)))2 = V+/(1 – p) and therefore, using the terminology of

Section 6.11, f is weakly (3n, 0)-self-bounding. Thus, by Theorem 6.19,

P {Z ≥ EZ + t} ≤ exp
(
–

t2

n4p3 + 3nt

)
.

It is clear that in the argument above a lot is lost by boundingW def= 3maxj=1,...,m Bj by
n. Indeed, onemay achieve a significant improvement by using Theorem 6.29. In order
to do so, we need to bound the moment-generating function ofW . This may be done
by another application of Theorem 6.19. LetW (i) denote the value ofW when edge i
is deleted from the random graph (if the graph contained that edge). ThenW (i) ≤ W
and

n∑
i=1

(
W –W (i)

)2 ≤ 18W ,

soW is weakly (18, 0)-self-bounding. Hence, by Theorem 6.19,

logEeλ(W–EW) ≤ 9λ2EW
1 – 9λ

.

Denoting Y =
√
Z, Theorem 6.29 leads to

logEeλ(Y–EY) ≤ λ

1 – λ

(
9λ2EW
1 – 9λ

+ λEW
)
≤ λ2EW

1 – 10λ
.

This is a sub-gamma bound for the moment-generating function of Y , and the compu-
tations of Sections 2.4 and 2.8 imply

P {Y > EY + t} ≤ exp
(
–

t2

4EW + 20t

)
.

Now it remains to bound the expected value ofW . Note thatW/3 is the maximum of
m =

(n
2

)
binomial random variables with parameters (n, p2). In order to obtain a quick

upper bound for EW/3, it is convenient to use the technique presented in Section
2.5 as follows: let Si with i ≤ m denote a sequence of binomially distributed random
variables with parameters n and p2. By Jensen’s inequality,

EW/3 ≤ log
(
E max

i=1,...,m
eSi
)

≤ log
(
E
[
meS1

])
= logm + log

(
EeS1

)
≤ logm + (e – 1)np2

≤ 2 log n + 2np2.
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Arguably, the most interesting values for p are those when p is at most of the order of
n–1/2 and in this case, the dominating term in the above expression is 2 log n. Hence,
we obtain the following bound for the tail of Y =

√
Z

P {Y ≥ EY + t} ≤ exp
(
–

t2

24(np2 + log n) + 20t

)
.

It is now easy to get tail bounds for the numberZ of triangles.We spare the reader from
the straightforward details (see the exercises).

6.14 Janson’s Inequality

Aswe saw in the examples of Section 6.13, inmany cases the special structure of the function
of independent random variables can be used to deduce concentration inequalities. In this
section we present another general result, a celebrated exponential lower-tail inequality for
Boolean polynomials.

More precisely, consider independent binary random variables X1, . . . ,Xn such that
P{Xi = 1} = 1 – P{Xi = 0} = pi for some p1, . . . , pn ∈ [0, 1]. To simplify notation, we
identify every binary vector α ∈ {0, 1}n with the subset of {1, . . . , n} defined by the non-
zero components of α. For example, for i ∈ {1, . . . , n}, we write i ∈ α to denote that the
i-th component of α equals 1. Then for each α ∈ {0, 1}n, we introduce the binary random
variable

Yα =
∏
i∈α

Xi.

Given a collection I of subsets of the binary hypercube {0, 1}n, we may define

Z =
∑
α∈I

Yα ,

which is a polynomial of the binary vector X = (X1, . . . ,Xn).
Boolean polynomials of this type are common in many applications of the probabilistic

method in discrete mathematics and also in the theory of random graphs, and their concen-
tration properties have been the subject of intensive study. Note that for any α,β ∈ I with
α ∩ β = ∅ (i.e. ifαiβi = 0 for all i = 1, . . . , n),EYαYβ = EYαEYβ and therefore the variance
of Z equals

Var (Z) = EZ2 – (EZ)2 =
∑

α,β∈I
EYαYβ –

∑
α,β∈I

EYαEYβ

=
∑

α,β∈I:α∩β �=∅
(EYαYβ – EYαEYβ)

≤
∑

α,β∈I:α∩β �=∅
EYαYβ

def= �.
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Thus, by Chebyshev’s inequality,

P{|Z – EZ| > t} ≤ �

t2
.

The next theorem shows the surprising fact that, at least for the lower tail, there is always an
exponential version of this inequality.

Theorem 6.31 (JANSON’S INEQUALITY) Let I denote a collection of subsets of {0, 1}n and
define Z and� as above. Then for all λ ≤ 0,

logEeλ(Z–EZ) ≤ φ

(
λ�

EZ

)
(EZ)2

�

where φ(x) = ex – x – 1. In particular, for all 0 ≤ t ≤ EZ,

P {Z ≤ EZ – t} ≤ e–t
2/(2�).

The proof of Janson’s inequality shown here shows certain similarities with the entropy
method. In particular, the proof is based on bounding the derivative of the logarithmic
moment-generating function of Z. However, sub-additivity inequalities can be avoided
because of a positive association property that can be exploited by an appropriate use of
Harris’ inequality (Theorem 2.15).

Proof Denote the logarithmic moment generating function of Z – EZ by
G(λ) = logEeλ(Z–EZ). Then the derivative ofG equals

G′(λ) =
E[ZeλZ]
EeλZ

– EZ =
∑
α∈I

E
[
YαeλZ

]
EeλZ

– EZ.

In the following, we derive an upper bound for each term E
[
YαeλZ

]
of the sum on the

right-hand side.
Fix an α ∈ I and introduce Uα =

∑
β:β∩α�=∅ Yβ and Zα =

∑
β:β∩α=∅ Yβ . Clearly,

regardless of what α is, Z = Uα + Zα . Since

E
[
YαeλZ

]
= E

[
eλZ | Yα = 1

]
EYα ,

it suffices to bound the conditional expectation. The key observation is that since
λ ≤ 0, both exp(λUα) and exp(λZα) are decreasing functions of X1, . . .Xn.
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E
[
eλZ | Yα = 1

]
= E

[
eλUα eλZα | Yα = 1

]
≥ E

[
eλUα | Yα = 1

]
E
[
eλZα | Yα = 1

]
(by Harris’ inequality)

= E
[
eλUα | Yα = 1

]
EeλZα (since Zα and Yα are independent)

≥ E
[
eλUα | Yα = 1

]
EeλZ (as Zα ≤ Z)

≥ eλE[Uα |Yα=1]EeλZ (by Jensen’s inequality).

Note that we apply Harris’ inequality above conditionally, given Yα = 1. This condi-
tion simply forces Xi = 1 for all i ∈ α, so both Uα and Zα are increasing functions of
the independent random variablesXi, i /∈ α andHarris’ inequality is used legally. Thus,
we obtain

E
[
ZeλZ

]
EZ

≥ EeλZ
∑
α∈I

EYα

EZ
eE[λUα |Yα=1]

≥ EeλZ exp

(∑
α∈I

EYα

EZ
E [λUα | Yα = 1]

)
(by Jensen’s inequality)

= EeλZ exp
(

λ
�

EZ

)
where we use the fact that

� =
∑
α∈I

E [YαUα] .

Summarizing, we have, for all λ ≤ 0,

G′(λ) ≥ EZ
(
eλ�/EZ – 1

)
.

Thus, integrating this inequality between λ and 0 and usingG(0) = 0, we find that for
λ ≤ 0,

G(λ) ≤ –EZ
∫ 0

λ

(
eu

�
EZ – 1

)
du = φ

(
λ�

EZ

)
(EZ)2

�

as desired. The second inequality follows from the simple fact that for x > 0,
φ(–x) ≤ x2/2. �

Remark 6.6 (PROBABILITY OF NON-EXISTENCE) In many applications of Janson’s
inequality, one wishes to show that in a random draw of the vector X = (X1, . . . ,Xn),
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with high probability, there exists at least one elementα ∈ I for whichYα = 1. In other
words, the goal is to show that Z > 0 with high probability. To this end, onemay write

P{Z = 0} = P {Z ≤ EZ – EZ} ≤ exp
(
–
(EZ)2

2�

)
,

which is guaranteed to be exponentially small whenever
√

� is small compared to EZ.

Example 6.32 (TRIANGLES IN A RANDOM GRAPH) A prototypical application of
Janson’s inequality is the case of the number of triangles in an Erdős–Rényi random
graph G(n, p), discussed in Example 6.30 in the previous section. If Z denotes the
number of triangles inG(n, p), then recall that

EZ =
(
n
3

)
p3 and Var (Z) =

(
n
3

)
p3(1 – p3) + 2

(
n
4

)(
4
2

)
p5(1 – p).

The value of�may also be computed in a straightforward way. One obtains

� =
(
n
3

)
p3 + 2

(
n
4

)(
4
2

)
p5

which is only slightly larger than Var (Z). For the probability that the random graph
does not contain any triangle, we may use Janson’s inequality with t = EZ:

P {Z = 0} ≤ exp

(
–

(n
3

)2p6
2
((n

3

)
p3 + 2

(n
4

)(4
2

)
p5
)) ≤ exp

(
–

(n
3

)
p2

2 (1 + 2np2)

)
.

6.15 Bibliographical Remarks

The key principles of the entropy method rely on the ideas of proving Gaussian concen-
tration inequalities based on logarithmic Sobolev inequalities. These are summarized in
Chapter 5, where we also give some of the main references. It was Michel Ledoux (1997)
who realized that these ideas may be used as an alternative route to some of Talagrand’s
exponential concentration inequalities for empirical processes and Rademacher chaos.
Ledoux’s ideas were taken further by Massart (2000a), Bousquet (2002a), Klein (2002),
Rio (2001), andKlein and Rio (2005), while the core of thematerial of this chapter is based
on Boucheron, Lugosi, andMassart (2000, 2003, 2009).

Different versions of the modified logarithmic Sobolev inequalities used in this chapter
are due to Ledoux (1997, 1999, 2001) andMassart (2000a).

The bounded differences inequality is perhaps the simplest and most widely used expo-
nential concentration inequality. The basic idea of writing a function of independent
random variables as a sum of martingale differences, and using exponential inequalit-
ies for martingales, was first used in various applications by mathematicians including
Yurinskii (1976), Maurey (1979), Milman and Schechtman (1986), and Shamir and
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Spencer (1987). The inequality was first laid down explicitly and illustrated by a wide
variety of applications in an excellent survey paper by McDiarmid (1989), and the res-
ult itself has often been referred to as McDiarmid’s inequality. Martingale methods have
served as a flexible and versatile tool for proving concentration inequalities (see the more
recent surveys ofMcDiarmid (1998), Chung andLu (2006b), andDubhashi andPanconesi
(2009)).

The exponential tail inequality for sums of independent Hilbert-space valued random
variables derived in Example 6.3 is just a simple example. There is a vast literature dealing
with tails of sums of vector-valued random variables. It is outside the scope of this book
to derive the sharpest and most general results. Here we merely try to make the point that
general concentration inequalities prove to be a versatile tool in such applications. In fact,
applications of this type motivated some of the most significant advances in the theory of
concentration inequalities. In Chapters 11, 12, and 13 we discuss many of the principal
modern tools for analyzing the tails of sums of independent vector-valued random vari-
ables and empirical processes. For some of the classical references, the interested reader is
referred to Yurinskii (1976, 1995), Ledoux and Talagrand (1991), and Pinelis (1995).

The inequality described in Exercise 6.4 was proved independently by Guntuboyina and
Leeb (2009) and Bordenave, Caputo, and Chafaï (2011).

Theorem 6.5 is due toMcDiarmid (1998) who proved it using martingale methods. The
proof presented here is due to Andreas Maurer who kindly permitted us to reproduce his
elegant work.

The exponential inequality for the largest eigenvalue of a random symmetric matrix
described in Example 6.8 was proved by Alon, Krivelevich, and Vu (2002) who used
Talagrand’s convex distance inequality. Maurer (2006) obtained a better exponent with a
more careful analysis. Alon, Krivelevich, andVu (2002) show,with a simple extension of the
argument, that for the k-th largest (or k-th smallest) eigenvalue the upper bounds become
e–t2/(16k2), though it is not clear whether the factor k–2 in the exponent is necessary.

Theorem6.9 appears inMaurer (2006). Theorem6.10was first established byTalagrand
(1996c) who also proves a corresponding lower tail inequality which is presented in Section
7.5. The proof given here is due to Ledoux (1997).

Self-bounding functions were introduced by Boucheron, Lugosi, and Massart (2000)
who prove Theorem 6.12 building on techniques developed by Massart (2000a). Various
generalizations of the self-bounding property were considered by Boucheron, Lugosi, and
Massart (2003, 2009), Boucheron et al. (2005b), Devroye (2002), Maurer (2006), and
McDiarmid and Reed (2006). In particular, McDiarmid and Reed (2006) considered what
we call strongly (a, b)-self-bounding functions and proved results that are only slightly
weaker than those presented in Section 6.11. The weak self-bounding property was first
considered by Maurer (2006), and Theorem 6.19 is due to him. Theorems 6.21 and 6.20
appear in Boucheron, Lugosi, Massart (2009).

Wenote here that the inequality linking the expected and annealed VC entropies answers,
in a positiveway, a question raised byVapnik (1995, pp. 53–54): the empirical riskminimiz-
ation procedure is non-trivially consistent and rapidly convergent if and only if the annealed
entropy rate (1/n) log2 ET(X) converges to zero. For the definitions and discussion we
refer to Vapnik (1995).
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The material of Sections 6.8, 6.9, and 6.13 is based on Boucheron, Lugosi, and Massart
(2003).

Klaassen (1985) showed that Poisson distributions satisfy the “modified Poincaré”
inequality

Var ( f (Z)) ≤ EZ× E[|Df (Z)|2]

(see Exercise 3.21).
The search for modified logarithmic Sobolev inequalities, that is, functional inequalities

which capture the tail behavior of distributions that are less concentrated than the Gaussian
distribution, was initiated by Bobkov and Ledoux (1997). Their aim was to recover some
results of Talagrand concerning concentration properties of the exponential distribution.
Bobkov and Ledoux (1997, 1998) pointed out that the Poisson distribution cannot sat-
isfy an analog of the Gaussian logarithmic Sobolev inequality. They establish the second
inequality of Theorem 6.17. The first inequality of Theorem 6.17 is due to Wu (2000).
Othermodified logarithmic Sobolev inequalities have been investigated byAné andLedoux
(2000), Chafaï (2006), Bobkov and Tetali (2006), and others.

Janson’s inequality (Theorem 6.31)was first established by Janson (1990). This inequal-
ity has since become one of the basic standard tools of the probabilistic method of discrete
mathematics and random graph theory, and many variations, refinements, and alternative
proofs are now known.We refer the reader to themonographs of Alon and Spencer (1992),
and Janson, Łuczak, and Ruciński (2000) for surveys and further references.

The number of triangles, and more generally, the number of copies of a fixed subgraph,
in a random graphG(n, p) has been a subject of intensive study. For the lower-tail probabil-
ities, Janson’s inequality, shown in Section 6.14, gives an essentially tight bound. However,
obtaining sharp bounds for the upper tail has been an important non-trivial challenge.
For such upper-tail inequalities we refer the interested reader to the papers Kim and Vu
(2000, 2004), Vu (2000, 2001), Janson and Ruciński (2004, 2002), Janson, Oleszkiewicz,
and Ruciński (2004), Bolthausen, Comets, and Dembo (2009), Döring and Eichelsbacher
(2009), Chatterjee and Dey (2010), Chatterjee (2010), DeMarco and Kahn (2010), and
Schudy and Sviridenko (2012).

The inequalities derived in Example 6.30 are not the best possible.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.16 EX ERC I S E S

6.1. Relax the condition of Theorem 6.7 in the following way. Show that if
X = (X1, . . . ,Xn) and

E

[
n∑
i=1

(Z – Z′
i)
2
+

∣∣∣X] ≤ v
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then for all t > 0,

P {Z > EZ + t} ≤ e–t
2/(2v)

and if

E

[
n∑
i=1

(Z – Z′
i)
2
–

∣∣∣X] ≤ v,

then

P {Z < EZ – t} ≤ e–t
2/(2v).

6.2. (THE CAUCHY INTERLACING THEOREM) LetA be an n× nHermitianmatrix with
eigenvalues α1 ≤ α2 ≤ · · · ≤ αn. Denote by RA the Rayleigh quotient defined, for
every x ∈ Cn \ {0}, by

RA(x) =
x∗Ax
x∗x

.

Prove the min-max formulas

αk = max
{
min

{
RA(x) : x ∈ U and x �= 0

}
: dim(U) = n – k + 1

}
and

αk = min
{
max

{
RA(x) : x ∈ U and x �= 0

}
: dim(U) = k

}
.

Let P be an orthogonal projection matrix with rank m and define the Hermitian
matrix B = PAP. Denoting by β1 ≤ β2 ≤ · · · ≤ βm the eigenvalues of B, using the
minmax formulas, show that the eigenvalues of A and B interlace, that is, for all
j ≤ m, αj ≤ βj ≤ αn–m+j. (See Bai and Silverstein (2010).)

6.3. (RANK INEQUALITY FOR SPECTRAL MEASURES) Let A and B be n× nHermitian
matrices and denote by FA and FB the distribution functions related to the spectral
measures LA and LB of A and B, respectively. Setting k = rank(A – B), prove the rank
inequality

‖FA – FB‖∞ ≤ k
n
.

Hint: show that one can always assume that

A =
[
A11 A12
A21 A22

]
and B =

[
B11 A12
A21 A22

]
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where the order of A22 is n – k× n – k. Use the Cauchy interlacing theorem
(see Exercise 6.2 above) for the pairs of Hermitian matrices A and A22 on the one
hand and B and A22 on the other hand. (See Bai and Silverstein (2010).)

6.4. Show that the convexity assumption is essential in Theorem 6.10, by considering
the following example: let n be an even positive integer and define A = {x ∈ [0, 1]n :∑n

i=1 xi ≤ n/2}. Let f (x) = infy∈A ‖x – y‖. Then clearly f is Lipschitz but not convex.
Let the components ofX = (X1, . . . ,Xn) be i.i.d. withP{Xi = 0} = P{Xi = 1} = 1/2.
Show that there exists a constant c > 0 such that P{f (X) > Mf (X) + cn1/4} ≥ 1/4
for all sufficiently large n. (This example is taken from Ledoux and Talagrand (1991,
p. 17).)

6.5. Prove the following generalization of Theorem 6.10. LetX ⊂ Rd be a convex com-
pact set with diameter B. Let X1, . . . ,Xn be independent random variables taking
values in X and assume that f : X n → R is separately convex and Lipschitz, that
is, | f (x) – f (y)| ≤ ‖x – y‖ for all x, y ∈ X n ⊂ Rdn. ThenZ = f (X1, . . . ,Xn) satisfies,
for all t > 0,

P{Z > EZ + t} ≤ e–t
2/(2B2).

6.6. Let X1, . . . ,Xn be independent vector-valued random variables taking values in a
compact convex setX ⊂ Rd with diameter B. Let A denote the d× nmatrix whose
columns are X1, . . . ,Xn and let Z denote the largest singular value of A. Show that

P{Z > EZ + t} ≤ e–t
2/(2B2).

Compare the result with Example 6.11.
6.7. Assume that Z = f (X) = f (X1, . . . ,Xn) where X1, . . . ,Xn are independent real-

valued random variables and f is a nondecreasing function of each variable. Suppose
that there exists another nondecreasing function g : Rn → R such that

n∑
i=1

(Z – Z′
i)
2
– ≤ g(X).

Show that for all t > 0,

P{Z < EZ – t} ≤ e–t
2/(4Eg(X)).

Hint: use Harris’ inequality (Theorem 2.15).
6.8. (ALMOST BOUNDED DIFFERENCES)Assume thatZ = f (X) = f (X1, . . . ,Xn)where

X1, . . . ,Xn are independent real-valued random variables. Assume there exists a
monotone set A ⊂ Rn and constants v,C > 0 such that for x = (x1, . . . , xn) ∈
A,

∑n
i=1( f (x) – infx′i f (x1, . . . , x

′
i , . . . , xn))

2 ≤ v and for all x /∈ A,
∑n

i=1( f (x) –
infx′i f (x1, . . . , x

′
i , . . . , xn))

2 ≤ C. (A monotone set is such that if x ∈ A and y ≥ x
(component-wise) then y ∈ A.) Show that for all t > 0,
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P{Z > EZ + t} ≤ exp
(

–t2

2(v + CP{X /∈ A})

)
.

Hint: use Harris’ inequality (Theorem 2.15).
6.9. (RADEMACHER CHAOS OF ORDER TWO) Let T be a finite set of n× n symmetric

matrices with zero diagonal entries. Let ε = (ε1, . . . , εn) be a vector of independent
Rademacher variables. Let

Z = max
M∈T

n∑
i=1

n∑
j=1

Mi,jεiεj

and

Y = max
M∈T

⎛⎝ n∑
i=1

⎛⎝ n∑
j=1

εjMi,j

⎞⎠2⎞⎠1/2

.

Let B = maxM∈T ‖M‖2 where ‖M‖ denotes the (operator) norm of matrixM. Prove
that

Var (Z) ≤ 8E
[
Y2]

Var (Y2) ≤ 8BE
[
Y2]

logEeλ(Y
2–EY2) ≤ λ2

(1 – 8Bλ)
8BE[Y2]

logEeλ(Z–EZ) ≤ 16λ2

2(1 – 64Bλ)
E[Y2],

where λ ≥ 0. Hint: use Theorem 6.16 twice. Show that 8Y2 upper bounds an Efron–
Stein estimate of the variance of Z. Then use the fact that Y may be represented as
the supremum of a Rademacher process, and prove that Y2 is (16B, 0)-weakly self-
bounding. Note that

E[Y2] = E

⎡⎣ sup
M∈T

n∑
i,j=1

εiεjM2
i,j

⎤⎦ .

See Talagrand (1996b), Ledoux (1997), and Boucheron, Lugosi, and Massart
(2003).

6.10. Prove Theorem 6.17. Hint: use Lemma 6.18 and the so-called ‘‘law of rare events,”
that is, the convergence of the binomial distribution to a Poisson.

6.11. (A LOGARITHMIC SOBOLEV INEQUALITY FOR THE EXPONENTIAL DISTRIBU-
TION). Assume X is exponentially distributed, that is, it has density exp(–x)for
x > 0. Prove that if f : [0,∞) → R is differentiable, then
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Ent
(
( f (X))2

) ≤ 4E
[
X( f ′(X))2

]
.

Hint: use the fact that if X1 and X2 are independent standard Gaussian random vari-
ables, (X2

1 + X2
2)/2 is exponentially distributed, and use the Gaussian logarithmic

Sobolev inequality.
6.12. (SQUARE ROOT OF A POISSON RANDOM VARIABLE) Let X be a Poisson random

variable. Prove that for 0 ≤ λ < 1/2,

logEeλ(
√
X–E

√
X) ≤ λ2

1 – 2λ
.

Show that

logEeλ(
√
X–E

√
X) ≤ vλ(eλ – 1)

where v = (EX)E[1/(4X + 1)]. UseMarkov’s inequality to show that

P
{√

X ≥ E
√
X + t

}
≤ exp

(
–
t
2
log

(
1 +

t
2v

))
.

Hint: the first inequality may be derived from Theorem 6.29. The second inequality
may be derived from Theorem 6.17.

6.13. (ENTROPIC VERSION OF THE LAW OF RARE EVENTS) Let X be a random variable
taking nonnegative integer values and define p(k) = P{X = k} for k = 0, 1, 2, . . . .
The scaled Fisher information of X is defined by

K(X) = (EX)E

[(
(X + 1)p(X + 1)

(EX)p(X)
– 1
)2
]
.

Let μ = EX. Use Theorem 6.17 to prove that the Kullback–Leibler divergence of X
and a Poisson(μ) random variable is at most K(X).

Let S be the sum of the independent integer-valued random variables X1, . . . ,Xn
with EXi = pi. Letμ =

∑n
i=1 pi. Prove that

K(S) ≤
n∑
i=1

pi
μ
K(Xi).

From this sub-additivity property, prove that the Kullback–Leibler divergence of
S and a Poisson(μ) random variable is at most (1/μ)

∑n
i=1 p

3
i /(1 – pi). (See

Kontoyiannis, Harremoës, and Johnson (2005).)
6.14. Consider the maximal degreeD of any vertex in a randomG(n, p) graph defined as in

Example 6.13. Show that for any sequence an → ∞, with probability tending to 1 as
n → ∞,
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∣∣∣∣D – np –
√
2p(1 – p)n log n

∣∣∣∣ ≤ an

√
p(1 – p)n
log n

(see Bollobás (2001, Corollary 3.14)). What do you obtain if you combine Lemma
2.4 with Theorem 6.12?

6.15. (LOWER BOUND FOR TRIANGLES) Let Z denote the number of triangles in a ran-
dom graphG(n, p) where p ≥ 1/n. Show that for every a > 0 there exists a constant
c = c(a) such that

P
{
Z > EZ + an3p3

} ≥ e–cp
2n2 log(1/p).

Hint: the lower bound is the probability that a fixed clique of size proportional to np
exists inG(n, p). (Vu (2001).)

6.16. Let Z be as in the previous exercise. Use the inequality for
√
Z shown in the text to

prove that for any K > 1, if t ≤ (K2 – 1)EZ, then

P {Z > EZ + t}

≤ exp

⎛⎜⎜⎝–
t2

(K + 1)2EZ
(
24np2 + 24 log n +

20t
(K + 1)

√
EZ

)
⎞⎟⎟⎠ .
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