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Abstract

Concentration inequalities have been the subject of exciting developments during the last two decades,
and they have been intensively studied and used as a powerful tool in various areas. These include convex
geometry, functional analysis, statistical physics, statistics, pure and applied probability theory (e.g.,
concentration of measure phenomena in random graphs, random matrices and percolation), information
theory, learning theory, dynamical systems and randomized algorithms.

This tutorial article is focused on some of the key modern mathematical tools that are used for
the derivation of concentration inequalities, on their links to information theory, and on their various
applications to communications and coding.

The first part of this article introduces some classical concentration inequalities for martingales, and
it also derives some recent refinements of these inequalities. The power and versatility of the martingale
approach is exemplified in the context of binary hypothesis testing, codes defined on graphs and iterative
decoding algorithms, and some other aspects that are related to wireless communications and coding.

The second part of this article introduces the entropy method for deriving concentration inequalities
for functions of many independent random variables, and it also exhibits its multiple connections to
information theory. The basic ingredients of the entropy method are discussed first in conjunction with
the closely related topic of logarithmic Sobolev inequalities, which are typical of the so-called functional
approach to studying concentration of measure phenomena. The discussion on logarithmic Sobolev
inequalities is complemented by a related viewpoint based on probability in metric spaces. This viewpoint
centers around the so-called transportation-cost inequalities, whose roots are in information theory. Some
representative results on concentration for dependent random variables are briefly summarized, with
emphasis on their connections to the entropy method. Finally, the tutorial addresses several applications
of the entropy method and related information-theoretic tools to problems in communications and coding.
These include strong converses for several source and channel coding problems, empirical distributions
of good channel codes with non-vanishing error probability, and an information-theoretic converse for
concentration of measure.



Contents

1 Introduction 5

1.1 A reader’s guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Concentration Inequalities via the Martingale Approach and their Applications in
Information Theory, Communications and Coding 9

2.1 Discrete-time martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Sub/ super martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Basic concentration inequalities via the martingale approach . . . . . . . . . . . . . . . . . 11

2.2.1 The Azuma-Hoeffding inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 McDiarmid’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Hoeffding’s inequality, and its improved version (the Kearns-Saul inequality) . . . 17

2.3 Refined versions of the Azuma-Hoeffding inequality . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 A refinement of the Azuma-Hoeffding inequality for discrete-time martingales with
bounded jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Geometric interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Improving the refined version of the Azuma-Hoeffding inequality for subclasses of
discrete-time martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Concentration inequalities for small deviations . . . . . . . . . . . . . . . . . . . . 30

2.3.5 Inequalities for sub and super martingales . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Freedman’s inequality and a refined version . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Relations of the refined inequalities to some classical results in probability theory . . . . . 36

2.5.1 Link between the martingale central limit theorem (CLT) and Proposition 1 . . . . 36

2.5.2 Relation between the law of the iterated logarithm (LIL) and Theorem 5 . . . . . 38

2.5.3 Relation of Theorem 5 with the moderate deviations principle . . . . . . . . . . . . 40

2.5.4 Relation of the concentration inequalities for martingales to discrete-time Markov
chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Applications in information theory and related topics . . . . . . . . . . . . . . . . . . . . . 41

2.6.1 Binary hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.2 Minimum distance of binary linear block codes . . . . . . . . . . . . . . . . . . . . 49

2.6.3 Concentration of the cardinality of the fundamental system of cycles for LDPC
code ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.4 Concentration Theorems for LDPC Code Ensembles over ISI channels . . . . . . . 52

2.6.5 On the concentration of the conditional entropy for LDPC code ensembles . . . . . 57

2.6.6 Expansion of random regular bipartite graphs . . . . . . . . . . . . . . . . . . . . . 62

2.6.7 Concentration of the crest-factor for OFDM signals . . . . . . . . . . . . . . . . . . 63

2.6.8 Random coding theorems via martingale inequalities . . . . . . . . . . . . . . . . . 67

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.A Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3



4 CONTENTS

2.B Analysis related to the moderate deviations principle in Section 2.5.3 . . . . . . . . . . . . 78
2.C Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.D Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.E Proof of the properties in (2.198) for OFDM signals . . . . . . . . . . . . . . . . . . . . . 82

3 The Entropy Method, Log-Sobolev and Transportation-Cost Inequalities: Links and
Applications in Information Theory 84
3.1 The main ingredients of the entropy method . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.1.1 The Chernoff bounding trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.1.2 The Herbst argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.1.3 Tensorization of the (relative) entropy . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.1.4 Preview: logarithmic Sobolev inequalities . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 The Gaussian logarithmic Sobolev inequality (LSI) . . . . . . . . . . . . . . . . . . . . . . 91
3.2.1 An information-theoretic proof of Gross’s log-Sobolev inequality . . . . . . . . . . 93
3.2.2 From Gaussian log-Sobolev inequality to Gaussian concentration inequalities . . . 97
3.2.3 Hypercontractivity, Gaussian log-Sobolev inequality, and Rényi divergence . . . . . 99
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Chapter 1

Introduction

Inequalities providing upper bounds on probabilities of the type P(|X − x| ≥ t) (or P(X − x ≥ t) for a
random variable (RV) X, where x denotes the expectation or median of X, have been among the main
tools of probability theory. These inequalities are known as concentration inequalities, and they have
been the subject of interesting developments during the last two decades. Very roughly speaking, the
concentration of measure phenomenon can be stated in the following simple way: “A random variable
that depends in a smooth way on many independent random variables (but not too much on any of
them) is essentially constant” [1]. The exact meaning of such a statement clearly needs to be clarified
rigorously, but it will often mean that such a random variable X concentrates around x in a way that
the probability of the event {|X − x| > t} decays exponentially in t (for t ≥ 0). Detailed treatments of
concentration of measure, including historical accounts, can be found, e.g., in [2], [3], [4], [5] and [6].

In recent years, concentration inequalities have been intensively studied and used as a powerful tool
in various areas such as convex geometry, functional analysis, statistical physics, dynamical systems, pure
and applied probability (random matrices, Markov processes, random graphs, percolation), information
theory and statistics, learning theory and randomized algorithms. Several techniques have been developed
so far to prove concentration of measure phenomena. These include:

• The martingale approach (see, e.g., [5], [7], [8], [9, Chapter 7], [10] and [11]) with its various information-
theoretic aspects (see, e.g., [12]). This methodology is covered in Chapter 2, which focuses on concen-
tration inequalities for discrete-time martingales with bounded jumps, and on some of their potential
applications in information theory, coding and communications.

• The entropy method and logarithmic Sobolev inequalities (see, e.g., [2, Chapter 5], [3] and references
therein), and their information-theoretic aspects. This methodology and its remarkable information-
theoretic links will be considered in Chapter 3.

• Transportation-cost inequalities that originated from information theory (see, e.g., [2, Chapter 6], [13],
and references therein). This methodology and its information-theoretic aspects will be considered in
Chapter 3, with a discussion of the relation between transportation-cost inequalities to the entropy
method and logarithmic Sobolev inequalities.

• Talagrand’s inequalities for product measures (see, e.g., [1], [5, Chapter 4], [6] and [14, Chapter 6])
and their information-theoretic applications (see, e.g., [15] and [16]). We do not discuss Talagrand’s
inequalities in detail.

• Stein’s method is used to prove concentration inequalities, a.k.a. concentration inequalities with ex-
changeable pairs (see, e.g., [17], [18], [19] and [20]). This relatively recent framework is not addressed in
this work.

• Concentration inequalities that follow from rigorous methods in statistical physics (see, e.g., [21, 22, 23,
24]). These methods are not addresses either in this work.
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6 CHAPTER 1. INTRODUCTION

We now give a synopsis of some of the main ideas underlying the martingale approach (Chapter 2)
and the entropy method (Chapter 3). Let f : R

n → R be a function that is characterized by bounded
differences whenever the n-dimensional vectors differ in only one coordinate. A common method for
proving concentration of such a function of n independent RVs, around the expected value E[f ], is called
McDiarmid’s inequality or the ’independent bounded-differences inequality’ (see [5, Theorem 3.1]). This
inequality was proved (with some possible extensions) via the martingale approach (see [5, Section 3.5]).
Although the proof of this inequality has some similarity to the proof of the Azuma-Hoeffding inequality,
the former inequality is stated under a condition which provides an improvement by a factor of 4 in the
exponent. Some of its nice applications to algorithmic discrete mathematics were exemplified in, e.g., [5,
Section 3].

The Azuma-Hoeffding inequality is by now a well-known methodology that has been often used to
prove concentration phenomena for discrete-time martingales whose jumps are bounded almost surely.
It is due to Hoeffding [8] who proved this inequality for a sum of independent and bounded random
variables, and Azuma [7] later extended it to bounded-difference martingales. It is noted that the Azuma-
Hoeffding inequality for a bounded martingale-difference sequence was extended to centering sequences
with bounded differences [25]; this extension provides sharper concentration results for, e.g., sequences
that are related to sampling without replacement.

The use of the Azuma-Hoeffding inequality was introduced to the computer science literature in [26]
in order to prove concentration, around the expected value, of the chromatic number for random graphs.
The chromatic number of a graph is defined to be the minimal number of colors that is required to color all
the vertices of this graph so that no two vertices which are connected by an edge have the same color, and
the ensemble for which concentration was demonstrated in [26] was the ensemble of random graphs with n
vertices such that any ordered pair of vertices in the graph is connected by an edge with a fixed probability
p for some p ∈ (0, 1). It is noted that the concentration result in [26] was established without knowing
the expected value over this ensemble. The migration of this bounding inequality into coding theory,
especially for exploring some concentration phenomena that are related to the analysis of codes defined
on graphs and iterative message-passing decoding algorithms, was initiated in [27], [28] and [29]. During
the last decade, the Azuma-Hoeffding inequality has been extensively used for proving concentration of
measures in coding theory (see, e.g., [12] and references therein). In general, all these concentration
inequalities serve to justify theoretically the ensemble approach of codes defined on graphs. However,
much stronger concentration phenomena are observed in practice. The Azuma-Hoeffding inequality was
also recently used in [30] for the analysis of probability estimation in the rare-events regime where it was
assumed that an observed string is drawn i.i.d. from an unknown distribution, but the alphabet size and
the source distribution both scale with the block length (so the empirical distribution does not converge to
the true distribution as the block length tends to infinity). In [31], [32] and [33], the martingale approach
was used to derive achievable rates and random coding error exponents for linear and non-linear additive
white Gaussian noise channels (with or without memory).

However, as pointed out by Talagrand [1], “for all its qualities, the martingale method has a great
drawback: it does not seem to yield results of optimal order in several key situations. In particular, it
seems unable to obtain even a weak version of concentration of measure phenomenon in Gaussian space.”
In Chapter 3 of this tutorial, we focus on another set of techniques, fundamentally rooted in information
theory, that provide very strong concentration inequalities. These techniques, commonly referred to as
the entropy method, have originated in the work of Michel Ledoux [34], who found an alternative route
to a class of concentration inequalities for product measures originally derived by Talagrand [6] using
an ingenious inductive technique. Specifically, Ledoux noticed that the well-known Chernoff bounding
trick, which is discussed in detail in Section 3.1 and which expresses the deviation probability of the form
P(|X − x̄| > t) (for an arbitrary t > 0) in terms of the moment-generating function (MGF) E[exp(λX)],
can be combined with the so-called logarithmic Sobolev inequalities, which can be used to control the
MGF in terms of the relative entropy.

Perhaps the best-known log-Sobolev inequality, first explicitly referred to as such by Leonard Gross
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[35], pertains to the standard Gaussian distribution in Euclidean space R
n, and bounds the relative

entropy D(P‖Gn) between an arbitrary probability distribution P on R
n and the standard Gaussian

measure Gn by an “energy-like” quantity related to the squared norm of the gradient of the density of P
w.r.t. Gn (here, it can be assumed without loss of generality that P is absolutely continuous w.r.t. Gn,
for otherwise both sides of the log-Sobolev inequality are equal to +∞). Using a clever analytic argument
which he attributed to an unpublished note by Ira Herbst, Gross has used his log-Sobolev inequality to
show that the logarithmic MGF Λ(λ) = ln E[exp(λU)] of U = f(Xn), where Xn ∼ Gn and f : R

n → R is
any sufficiently smooth function with ‖∇f‖ ≤ 1, can be bounded as Λ(λ) ≤ λ2/2. This bound then yields
the optimal Gaussian concentration inequality P (|f(Xn) − E[f(Xn)]| > t) ≤ 2 exp

(
−t2/2

)
for Xn ∼ Gn.

(It should be pointed out that the Gaussian log-Sobolev inequality has a curious history, and seems to
have been discovered independently in various equivalent forms by several people, e.g., by Stam [36] in
the context of information theory, and by Federbush [37] in the context of mathematical quantum field
theory. Through the work of Stam [36], the Gaussian log-Sobolev inequality has been linked to several
other information-theoretic notions, such as concavity of entropy power [38, 39, 40].)

In a nutshell, the entropy method takes this idea and applies it beyond the Gaussian case. In abstract
terms, log-Sobolev inequalities are functional inequalities that relate the relative entropy between an
arbitrary distribution Q w.r.t. the distribution P of interest to some “energy functional” of the density
f = dQ/dP . If one is interested in studying concentration properties of some function U = f(Z) with
Z ∼ P , the core of the entropy method consists in applying an appropriate log-Sobolev inequality to the
tilted distributions P (λf) with dP (λf)/dP ∝ exp(λf). Provided the function f is well-behaved in the sense
of having bounded “energy,” one uses the “Herbst argument” to pass from the log-Sobolev inequality to
the bound ln E[exp(λU)] ≤ cλ2/(2C), where c > 0 depends only on the distribution P , while C > 0 is
determined by the energy content of f . While there is no universal technique for deriving log-Sobolev
inequalities, there are nevertheless some underlying principles that can be exploited for that purpose. We
discuss some of these principles in Chapter 3. More information on log-Sobolev inequalities can be found
in several excellent monographs and lecture notes [2, 4, 41, 42, 43], as well as in [44, 45, 46, 47, 48] and
references therein.

Around the same time as Ledoux first introduced the entropy method in [34], Katalin Marton has
shown in a breakthrough paper [49] that to prove concentration bounds one can bypass functional in-
equalities and work directly on the level of probability measures. More specifically, Marton has shown
that Gaussian concentration bounds can be deduced from so-called transportation-cost inequalities. These
inequalities, discussed in detail in Section 3.4, relate information-theoretic quantities, such as the rela-
tive entropy, to a certain class of distances between probability measures on the metric space where the
random variables of interest are defined. These so-called Wasserstein distances have been the subject
of intense research activity that touches upon probability theory, functional analysis, dynamical systems
and partial differential equations, statistical physics, and differential geometry. A great deal of informa-
tion on this field of optimal transportation can be found in two books by Cédric Villani — [50] offers a
concise and fairly elementary introduction, while a more recent monograph [51] is a lot more detailed and
encyclopedic. Multiple connections between optimal transportation, concentration of measure, and infor-
mation theory are also explored in [13, 52, 53, 54, 55, 56, 57]. (We also note that Wasserstein distances
have been used in information theory in the context of lossy source coding [58, 59].)

The first explicit invocation of concentration inequalities in an information-theoretic context appears
in the work of Ahlswede et al. [60, 61]. These authors have shown that a certain delicate probabilistic
inequality, which they have referred to as the “blowing up lemma,” and which we now (thanks to the
contributions by Marton [49, 62]) recognize as a Gaussian concentration bound in Hamming space, can
be used to derive strong converses for a wide variety of information-theoretic problems, including some
multiterminal scenarios. The importance of sharp concentration inequalities for characterizing funda-
mental limits of coding schemes in information theory is evident from the recent flurry of activity on
finite-blocklength analysis of source and channel codes [63, 64]. Thus, it is timely to revisit the use of
concentration-of-measure ideas in information theory from a more modern perspective. We hope that
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our treatment, which above all aims to distill the core information-theoretic ideas underlying the study
of concentration of measure, will be helpful to information theorists and researchers in related fields.

1.1 A reader’s guide

Chapter 2 on the martingale approach is structured as follows: Section 2.1 presents briefly discrete-time
(sub/ super) martingales, Section 2.2 presents some basic inequalities that are widely used for proving
concentration inequalities via the martingale approach. Section 2.3 derives some refined versions of the
Azuma-Hoeffding inequality, and it considers interconnections between these concentration inequalities.
Section 2.4 introduces Freedman’s inequality with a refined version of this inequality, and these inequalities
are specialized to get concentration inequalities for sums of independent and bounded random variables.
Section 2.5 considers some connections between the concentration inequalities that are introduced in
Section 2.3 to the method of types, a central limit theorem for martingales, the law of iterated logarithm,
the moderate deviations principle for i.i.d. real-valued random variables, and some previously-reported
concentration inequalities for discrete-parameter martingales with bounded jumps. Section 2.6 forms the
second part of this work, applying the concentration inequalities from Section 2.3 to information theory
and some related topics. Chapter 2 is summarized briefly in Section 2.7.

There have been so far very nice surveys on concentration inequalities via the martingale approach
that include [5], [9, Chapter 11], [10, Chapter 2] and [11]. The main focus of Chapter 2 is on the
presentation of some old and new concentration inequalities that are based on the martingale approach,
with an emphasis on some of their potential applications in information and communication-theoretic
aspects. This makes the presentation in this chapter different from these aforementioned surveys.

Chapter 3 on the entropy method is structured as follows: Section 3.1 introduces the main ingredients
of the entropy method and sets up the major themes that reappears throughout the chapter. Section 3.2
focuses on the logarithmic Sobolev inequality for Gaussian measures, as well as on its numerous links
to information-theoretic ideas. The general scheme of logarithmic Sobolev inequalities is introduced in
Section 3.3, and then applied to a variety of continuous and discrete examples, including an alternative
derivation of McDiarmid’s inequality that does not rely on martingale methods and recovers the correct
constant in the exponent. Thus, Sections 3.2 and 3.3 present an approach to deriving concentration
bounds based on functional inequalities. In Section 3.4, concentration is examined through the lens of
geometry in probability spaces equipped with a metric. This viewpoint centers around intrinsic properties
of probability measures, and has received a great deal of attention since the pioneering work of Marton
[62, 49] on transportation-cost inequalities. Although the focus in Chapter 3 is mainly on concentration
for product measures, Section 3.5 contains a brief summary of a few results on concentration for functions
of dependent random variables, and discusses the connection between these results and the information-
theoretic machinery that has been the subject of the chapter. Several applications of concentration to
problems in information theory are surveyed in Section 3.6.



Chapter 2

Concentration Inequalities via the
Martingale Approach and their
Applications in Information Theory,
Communications and Coding

This chapter introduces some concentration inequalities for discrete-time martingales with bounded in-
crements, and it exemplifies some of their potential applications in information theory and related topics.
The first part of this chapter introduces some concentration inequalities for martingales that include the
Azuma-Hoeffding, Bennett, Freedman and McDiarmid inequalities. These inequalities are also special-
ized for sums of independent and bounded random variables that include the inequalities by Bernstein,
Bennett, Hoeffding, and Kearns & Saul. An improvement of the martingale inequalities for some sub-
classes of martingales (e.g., the conditionally symmetric martingales) is discussed in detail, and some new
refined inequalities are derived. The first part of this chapter also considers a geometric interpretation
of some of these inequalities, providing an insight on the inter-connections between them. The second
part of this chapter exemplifies the potential applications of the considered martingale inequalities in the
context of information theory and related topics. The considered applications include binary hypothesis
testing, concentration for codes defined on graphs, concentration for OFDM signals, and a use of some
martingale inequalities for the derivation of achievable rates under ML decoding and lower bounds on
the error exponents for random coding over some linear or non-linear communication channels.

2.1 Discrete-time martingales

2.1.1 Martingales

This subsection provides a brief review of martingales to set definitions and notation. We will not need for
this chapter any result about martingales beyond the definition and the few basic properties mentioned
in the following.

Definition 1. [Discrete-time martingales] Let (Ω,F ,P) be a probability space, and let n ∈ N. A sequence
{Xi,Fi}n

i=0, where the Xi’s are random variables and the Fi’s are σ-algebras, is a martingale if the
following conditions are satisfied:

1. F0 ⊆ F1 ⊆ . . . ⊆ Fn is a sequence of sub σ-algebras of F (the sequence {Fi}n
i=0 is called a filtration);

usually, F0 = {∅,Ω} and Fn = F .

9



10 CHAPTER 2. THE MARTINGALE APPROACH AND APPLICATIONS

2. Xi ∈ L
1(Ω,Fi,P) for every i ∈ {0, . . . , n}; this means that each Xi is defined on the same sample space

Ω, it is Fi-measurable, and E[|Xi|] =
∫
Ω |Xi(ω)|P(dω) <∞.

3. For all i ∈ {1, . . . , n}, the equality Xi−1 = E[Xi|Fi−1] holds almost surely (a.s.).

Remark 1. Since {Fi}n
i=0 forms a filtration, then it follows from the tower principle for conditional

expectations that (a.s.)
Xj = E[Xi|Fj ], ∀ i > j.

Also for every i ∈ N, E[Xi] = E
[
E[Xi|Fi−1]

]
= E[Xi−1], so the expectation of a martingale sequence is

fixed.

Remark 2. One can generate martingale sequences by the following procedure: Given a RV X ∈
L

1(Ω,F ,P) and an arbitrary filtration of sub σ-algebras {Fi}n
i=0, let

Xi = E[X|Fi], ∀ i ∈ {0, 1, . . . n}.

Then, the sequence X0,X1, . . . ,Xn forms a martingale (w.r.t. the above filtration) since

1. The RV Xi = E[X|Fi] is Fi-measurable, and also E[|Xi|] ≤ E[|X|] <∞.

2. By construction {Fi}n
i=0 is a filtration.

3. For every i ∈ {1, . . . , n}

E[Xi|Fi−1] = E
[
E[X|Fi]|Fi−1

]

= E[X|Fi−1] (sinceFi−1 ⊆ Fi)

= Xi−1 a.s.

Remark 3. In continuation to Remark 2, the setting where F0 = {∅,Ω} and Fn = F gives that
X0,X1, . . . ,Xn is a martingale sequence with

X0 = E[X|F0] = E[X], Xn = E[X|Fn] = X a.s..

In this case, one gets a martingale sequence where the first element is the expected value of X, and
the last element is X itself (a.s.). This has the following interpretation: at the beginning, one doesn’t
know anything about X, so it is initially estimated by its expected value. At each step, more and more
information about the random variable X is revealed until its value is known almost surely.

Example 1. Let {Uk}n
k=1 be independent random variables on a joint probability space (Ω,F ,P), and

assume that E[Uk] = 0 and E[|Uk|] <∞ for every k. Let us define

Xk =
k∑

j=1

Uj , ∀ k ∈ {1, . . . , n}

with X0 = 0. Define the natural filtration where F0 = {∅,Ω}, and

Fk = σ(X1, . . . ,Xk)

= σ(U1, . . . , Uk), ∀ k ∈ {1, . . . , n}.

Note that Fk = σ(X1, . . . ,Xk) denotes the minimal σ-algebra that includes all the sets of the form{
ω ∈ Ω : (X1(ω) ≤ α1, . . . ,Xk(ω) ≤ αk)

}
where αj ∈ R ∪ {−∞,+∞} for j ∈ {1, . . . , k}. It is easy to

verify that {Xk,Fk}n
k=0 is a martingale sequence; this simply implies that all the concentration inequalities

that apply to discrete-time martingales (like those introduced in this chapter) can be particularized to
concentration inequalities for sums of independent random variables.
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2.1.2 Sub/ super martingales

Sub and super martingales require the first two conditions in Definition 1, and the equality in the third
condition of Definition 1 is relaxed to one of the following inequalities:

• E[Xi|Fi−1] ≥ Xi−1 holds a.s. for sub-martingales.

• E[Xi|Fi−1] ≤ Xi−1 holds a.s. for super-martingales.

Clearly, every random process that is both a sub and super-martingale is a martingale, and vise versa.
Furthermore, {Xi,Fi} is a sub-martingale if and only if {−Xi,Fi} is a super-martingale. The following
properties are direct consequences of Jensen’s inequality for conditional expectations:

• If {Xi,Fi} is a martingale, h is a convex (concave) function and E
[
|h(Xi)|

]
< ∞, then {h(Xi),Fi} is a

sub (super) martingale.

• If {Xi,Fi} is a super-martingale, h is monotonic increasing and concave, and E
[
|h(Xi)|

]
< ∞, then

{h(Xi),Fi} is a super-martingale. Similarly, if {Xi,Fi} is a sub-martingale, h is monotonic increasing
and convex, and E

[
|h(Xi)|

]
<∞, then {h(Xi),Fi} is a sub-martingale.

Example 2. if {Xi,Fi} is a martingale, then {|Xi|,Fi} is a sub-martingale. Furthermore, if Xi ∈
L

2(Ω,Fi,P) then also {X2
i ,Fi} is a sub-martingale. Finally, if {Xi,Fi} is a non-negative sub-martingale

and Xi ∈ L
2(Ω,Fi,P) then also {X2

i ,Fi} is a sub-martingale.

2.2 Basic concentration inequalities via the martingale approach

In the following section, some basic inequalities that are widely used for proving concentration inequalities
are presented, whose derivation relies on the martingale approach. Their proofs convey the main concepts
of the martingale approach for proving concentration. Their presentation also motivates some further
refinements that are considered in the continuation of this chapter.

2.2.1 The Azuma-Hoeffding inequality

The Azuma-Hoeffding inequality1 is a useful concentration inequality for bounded-difference martingales.
It was proved in [8] for independent bounded random variables, followed by a discussion on sums of
dependent random variables; this inequality was later derived in [7] for the more general setting of
bounded-difference martingales. In the following, this inequality is introduced.

Theorem 1. [Azuma-Hoeffding inequality] Let {Xk,Fk}n
k=0 be a discrete-parameter real-valued

martingale sequence. Suppose that, for every k ∈ {1, . . . , n}, the condition |Xk −Xk−1| ≤ dk holds a.s.
for a real-valued sequence {dk}n

k=1 of non-negative numbers. Then, for every α > 0,

P(|Xn −X0| ≥ α) ≤ 2 exp

(
− α2

2
∑n

k=1 d
2
k

)
. (2.1)

The proof of the Azuma-Hoeffding inequality serves also to present the basic principles on which the
martingale approach for proving concentration results is based. Therefore, we present in the following
the proof of this inequality.

1The Azuma-Hoeffding inequality is also known as Azuma’s inequality. Since it is referred numerous times in this chapter,
it will be named Azuma’s inequality for the sake of brevity.
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Proof. For an arbitrary α > 0,

P(|Xn −X0| ≥ α) = P(Xn −X0 ≥ α) + P(Xn −X0 ≤ −α). (2.2)

Let ξi , Xi −Xi−1 for i = 1, . . . , n designate the jumps of the martingale sequence. Then, it follows by
assumption that |ξk| ≤ dk and E[ξk | Fk−1] = 0 a.s. for every k ∈ {1, . . . , n}.

From Chernoff’s inequality,

P(Xn −X0 ≥ α)

= P

(
n∑

i=1

ξi ≥ α

)

≤ e−αt
E

[
exp

(
t

n∑

i=1

ξi

)]
, ∀ t ≥ 0. (2.3)

Furthermore,

E

[
exp

(
t

n∑

k=1

ξk

)]

= E

[
E

[
exp

(
t

n∑

k=1

ξk

)
| Fn−1

]]

= E

[
exp

(
t

n−1∑

k=1

ξk

)
E
[
exp(tξn) | Fn−1

]
]

(2.4)

where the last equality holds since Y , exp
(
t
∑n−1

k=1 ξk
)

is Fn−1-measurable; this holds due to fact that

ξk , Xk −Xk−1 is Fk-measurable for every k ∈ N, and Fk ⊆ Fn−1 for 0 ≤ k ≤ n− 1 since {Fk}n
k=0 is a

filtration. Hence, the RV
∑n−1

k=1 ξk and Y are both Fn−1-measurable, and E[XY |Fn−1] = Y E[X|Fn−1].
Due to the convexity of the exponential function, and since |ξk| ≤ dk, then the straight line connecting

the end points of the exponential function is below this function over the interval [−dk, dk]. Hence, for
every k (note that E[ξk | Fk−1] = 0),

E
[
etξk | Fk−1

]

≤ E

[(dk + ξk)e
tdk + (dk − ξk)e

−tdk

2dk
| Fk−1

]

=
1

2

(
etdk + e−tdk

)

= cosh(tdk). (2.5)

Since, for every integer m ≥ 0,

(2m)! ≥ (2m)(2m − 2) . . . 2 = 2mm!

then, due to the power series expansions of the hyperbolic cosine and exponential functions,

cosh(tdk) =
∞∑

m=0

(tdk)
2m

(2m)!
≤

∞∑

m=0

(tdk)2m

2mm!
= e

t2 d2
k

2

which therefore implies that

E
[
etξk | Fk−1

]
≤ e

t2 d2
k

2 .
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Consequently, by repeatedly using the recursion in (2.4), it follows that

E

[
exp

(
t

n∑

k=1

ξk

)]
≤

n∏

k=1

exp

(
t2 d2

k

2

)
= exp

(
t2

2

n∑

k=1

d2
k

)

which then gives (see (2.3)) that

P(Xn −X0 ≥ α) ≤ exp

(
−αt+

t2

2

n∑

k=1

d2
k

)
, ∀ t ≥ 0.

An optimization over the free parameter t ≥ 0 gives that t = α
(∑n

k=1 d
2
k

)−1
, and

P(Xn −X0 ≥ α) ≤ exp

(
− α2

2
∑n

k=1 d
2
k

)
. (2.6)

Since, by assumption, {Xk,Fk} is a martingale with bounded jumps, so is {−Xk,Fk} (with the same
bounds on its jumps). This implies that the same bound is also valid for the probability P(Xn−X0 ≤ −α)
and together with (2.2) it completes the proof of Theorem 1.

The proof of this inequality will be revisited later in this chapter for the derivation of some refined
versions, whose use and advantage will be also exemplified.

Remark 4. In [5, Theorem 3.13], Azuma’s inequality is stated as follows: Let {Yk,Fk}n
k=0 be a martingale-

difference sequence with Y0 = 0 (i.e., Yk is Fk-measurable, E[|Yk|] < ∞ and E[Yk|Fk−1] = 0 a.s. for
every k ∈ {1, . . . , n}). Assume that, for every k, there exist some numbers ak, bk ∈ R such that a.s.
ak ≤ Yk ≤ bk. Then, for every r ≥ 0,

P

(∣∣∣∣
n∑

k=1

Yk

∣∣∣∣ ≥ r

)
≤ 2 exp

(
− 2r2∑n

k=1(bk − ak)2

)
. (2.7)

As a consequence of this inequality, consider a discrete-parameter real-valued martingale sequence {Xk,Fk}n
k=0

where ak ≤ Xk − Xk−1 ≤ bk a.s. for every k. Let Yk , Xk − Xk−1 for every k ∈ {1, . . . , n}, so since
{Yk,Fk}n

k=0 is a martingale-difference sequence and
∑n

k=1 Yk = Xn −X0, then

P (|Xn −X0| ≥ r) ≤ 2 exp

(
− 2r2∑n

k=1(bk − ak)2

)
, ∀ r > 0. (2.8)

Example 3. Let {Yi}∞i=0 be i.i.d. binary random variables which get the values ±d, for some constant

d > 0, with equal probability. Let Xk =
∑k

i=0 Yi for k ∈ {0, 1, . . . , }, and define the natural filtration
F0 ⊆ F1 ⊆ F2 . . . where

Fk = σ(Y0, . . . , Yk) , ∀ k ∈ {0, 1, . . . , }
is the σ-algebra that is generated by the random variables Y0, . . . , Yk. Note that {Xk,Fk}∞k=0 is a martin-
gale sequence, and (a.s.) |Xk −Xk−1| = |Yk| = d, ∀ k ∈ N. It therefore follows from Azuma’s inequality
that

P(|Xn −X0| ≥ α
√
n) ≤ 2 exp

(
− α2

2d2

)
. (2.9)

for every α ≥ 0 and n ∈ N. From the central limit theorem (CLT), since the RVs {Yi}∞i=0 are i.i.d.
with zero mean and variance d2, then 1√

n
(Xn −X0) = 1√

n

∑n
k=1 Yk converges in distribution to N (0, d2).

Therefore, for every α ≥ 0,

lim
n→∞

P(|Xn −X0| ≥ α
√
n) = 2Q

(α
d

)
(2.10)
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where

Q(x) ,
1√
2π

∫ ∞

x
exp
(
− t

2

2

)
dt, ∀x ∈ R (2.11)

is the probability that a zero-mean and unit-variance Gaussian RV is larger than x. Since the following
exponential upper and lower bounds on the Q-function hold

1√
2π

x

1 + x2
· e−x2

2 < Q(x) <
1√
2π x

· e−x2

2 , ∀x > 0 (2.12)

then it follows from (2.10) that the exponent on the right-hand side of (2.9) is the exact exponent in this
example.

Example 4. In continuation to Example 3, let γ ∈ (0, 1], and let us generalize this example by considering
the case where the i.i.d. binary RVs {Yi}∞i=0 have the probability law

P(Yi = +d) =
γ

1 + γ
, P(Yi = −γd) =

1

1 + γ
.

Hence, it follows that the i.i.d. RVs {Yi} have zero mean and variance σ2 = γd2 as in Example 3. Let
{Xk,Fk}∞k=0 be defined similarly to Example 3, so that it forms a martingale sequence. Based on the
CLT, 1√

n
(Xn −X0) = 1√

n

∑n
k=1 Yk converges weakly to N (0, γd2), so for every α ≥ 0

lim
n→∞

P(|Xn −X0| ≥ α
√
n) = 2Q

(
α√
γ d

)
. (2.13)

From the exponential upper and lower bounds of the Q-function in (2.12), the right-hand side of (2.13)

scales exponentially like e
− α2

2γd2 . Hence, the exponent in this example is improved by a factor 1
γ as

compared Azuma’s inequality (that is the same as in Example 3 since |Xk −Xk−1| ≤ d for every k ∈ N).
This indicates on the possible refinement of Azuma’s inequality by introducing an additional constraint
on the second moment. This route was studied extensively in the probability literature, and it is the
focus of Section 2.3.

2.2.2 McDiarmid’s inequality

The following useful inequality is due to McDiarmid ([25, Theorem 3.1] or [65]), and its original derivation
uses the martingale approach for its derivation. We will relate, in the following, the derivation of this
inequality to the derivation of the Azuma-Hoeffding inequality (see the preceding subsection).

Theorem 2. [McDiarmid’s inequality] Let {Xi} be independent real-valued random variables (not
necessarily i.i.d.), and assume that Xi : Ωi → R for every i. Let {X̂i}n

i=1 be independent copies of
{Xi}n

i=1, respectively, and suppose that, for every k ∈ {1, . . . , n},
∣∣g(X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn) − g(X1, . . . ,Xk−1, X̂k,Xk+1, . . . ,Xn)

∣∣ ≤ dk (2.14)

holds a.s. (note that a stronger condition would be to require that the variation of g w.r.t. the k-th
coordinate of x ∈ R

n is upper bounded by dk, i.e.,

sup |g(x) − g(x′)| ≤ dk

for every x, x′ ∈ R
n that differ only in their k-th coordinate.) Then, for every α ≥ 0,

P(
∣∣g(X1, . . . ,Xn) − E

[
g(X1, . . . ,Xn)

]∣∣ ≥ α) ≤ 2 exp

(
− 2α2

∑n
k=1 d

2
k

)
. (2.15)
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Remark 5. One can use the Azuma-Hoeffding inequality for a derivation of a concentration inequality in
the considered setting. However, the following proof provides in this setting an improvement by a factor
of 4 in the exponent of the bound.

Proof. For k ∈ {1, . . . , n}, let Fk = σ(X1, . . . ,Xk) be the σ-algebra that is generated by X1, . . . ,Xk with
F0 = {∅,Ω}. Define

ξk , E
[
g(X1, . . . ,Xn) | Fk

]
− E

[
g(X1, . . . ,Xn) | Fk−1

]
, ∀ k ∈ {1, . . . , n}. (2.16)

Note that F0 ⊆ F1 . . . ⊆ Fn is a filtration, and

E
[
g(X1, . . . ,Xn) | F0

]
= E

[
g(X1, . . . ,Xn)

]

E
[
g(X1, . . . ,Xn) | Fn

]
= g(X1, . . . ,Xn). (2.17)

Hence, it follows from the last three equalities that

g(X1, . . . ,Xn) − E
[
g(X1, . . . ,Xn)

]
=

n∑

k=1

ξk.

In the following, we need a lemma:

Lemma 1. For every k ∈ {1, . . . , n}, the following properties hold a.s.:

1. E[ξk | Fk−1] = 0, so {ξk,Fk} is a martingale-difference and ξk is Fk-measurable.

2. |ξk| ≤ dk

3. ξk ∈ [ak, ak + dk] where ak is some non-positive Fk−1-measurable random variable.

Proof. The random variable ξk is Fk-measurable since Fk−1 ⊆ Fk, and ξk is a difference of two functions
where one is Fk-measurable and the other is Fk−1-measurable. Furthermore, it is easy to verify that
E[ξk | Fk−1] = 0. This verifies the first item. the second item follows from the first and third items. To
prove the third item, let

ξk = E
[
g(X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn) | Fk] − E

[
g(X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn) | Fk−1]

ξ̂k = E
[
g(X1, . . . ,Xk−1, X̂k,Xk+1, . . . ,Xn) | F̂k] − E

[
g(X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn) | Fk−1]

where {X̂i}n
i=1 is an independent copy of {Xi}n

i=1, and we define

F̂k = σ(X1, . . . ,Xk−1, X̂k).

Due to the independence of Xk and X̂k, and since they are also independent of the other RVs then a.s.

|ξk − ξ̂k|
= |E

[
g(X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn) | Fk] − E

[
g(X1, . . . ,Xk−1, X̂k,Xk+1, . . . ,Xn) | F̂k]|

= |E
[
g(X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn) − g(X1, . . . ,Xk−1, X̂k,Xk+1, . . . ,Xn) |σ(X1, . . . ,Xk−1,Xk, X̂k)]|

≤ E
[
|g(X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn) − g(X1, . . . ,Xk−1, X̂k,Xk+1, . . . ,Xn)| |σ(X1, . . . ,Xk−1,Xk, X̂k)]

≤ dk. (2.18)

Therefore, |ξk − ξ̂k| ≤ dk holds a.s. for every pair of independent copies Xk and X̂k, which are also inde-
pendent of the other random variables. This implies that ξk is a.s. supported on an interval [ak, ak+dk] for
some function ak = ak(X1, . . . ,Xk−1) that is Fk−1-measurable (since Xk and X̂k are independent copies,
and ξk − ξ̂k is a difference of g(X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn) and g(X1, . . . ,Xk−1, X̂k,Xk+1, . . . ,Xn),



16 CHAPTER 2. THE MARTINGALE APPROACH AND APPLICATIONS

then this is in essence saying that if a set S ⊆ R has the property that the distance between any of its
two points is not larger than some d > 0, then the set should be included in an interval whose length is
d). Since also E[ξk | Fk−1] = 0 then a.s. the Fk−1-measurable function ak is non-positive. It is noted that
the third item of the lemma is what makes it different from the proof in the Azuma-Hoeffding inequality
(which, in that case, it implies that ξk ∈ [−dk, dk] where the length of the interval is twice larger (i.e.,
2dk).)

Let bk , ak + dk. Since E[ξk | Fk−1] = 0 and ξk ∈ [ak, bk] with ak ≤ 0 and bk are Fk−1-measurable,
then

Var(ξk | Fk−1) ≤ −akbk , σ2
k.

Applying the convexity of the exponential function gives (similarly to the derivation of the Azuma-
Hoeffding inequality, but this time w.r.t. the interval [ak, bk] whose length is dk) implies that for every
k ∈ {1, . . . , n}

E[etξk | Fk−1]

≤ E

[
(ξk − ak)e

tbk + (ξk + bk)e
tak

dk

∣∣∣Fk−1

]

=
bke

tak − ake
tbk

dk
.

Let pk , −ak

dk
∈ [0, 1], then

E[etξk | Fk−1]

≤ pke
tbk + (1 − pk)e

tak

= etak
(
1 − pk + pke

tdk
)

= efk(t) (2.19)

where

fk(t) , tak + ln
(
1 − pk + pke

tdk
)
, ∀ t ∈ R. (2.20)

Since fk(0) = f ′k(0) = 0 and the geometric mean is less than or equal to the arithmetic mean then, for
every t,

f ′′k (t) =
d2

kpk(1 − pk)e
tdk

(1 − pk + pketdk)2
≤ d2

k

4

which implies by Taylor’s theorem that

fk(t) ≤
t2d2

k

8
(2.21)

so, from (2.19),

E[etξk | Fk−1] ≤ e
t2d2

k
8 .

Similarly to the proof of the Azuma-Hoeffding inequality, by repeatedly using the recursion in (2.4), the
last inequality implies that

E

[
exp

(
t

n∑

k=1

ξk

)]
≤ exp

(
t2

8

n∑

k=1

d2
k

)
(2.22)
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which then gives from (2.3) that, for every t ≥ 0,

P(g(X1, . . . ,Xn) − E[g(X1, . . . ,Xn)] ≥ α)

= P

(
n∑

k=1

ξk ≥ α

)

≤ exp

(
−αt+

t2

8

n∑

k=1

d2
k

)
. (2.23)

An optimization over the free parameter t ≥ 0 gives that t = 4α
(∑n

k=1 d
2
k

)−1
, so

P(g(X1, . . . ,Xn) − E[g(X1, . . . ,Xn)] ≥ α) ≤ exp

(
− 2α2

∑n
k=1 d

2
k

)
. (2.24)

By replacing g with −g, it follows that this bound is also valid for the probability

P
(
g(X1, . . . ,Xn) − E[g(X1, . . . ,Xn)] ≤ α

)

which therefore gives the bound in (2.15). This completes the proof of Theorem 2.

2.2.3 Hoeffding’s inequality, and its improved version (the Kearns-Saul inequality)

In the following, we derive a concentration inequality for sums of independent and bounded random
variables as a consequence of McDiarmid’s inequality. This inequality is due to Hoeffding (see [8, Theo-
rem 2]). An improved version of Hoeffding’s inequality, due to Kearns and Saul [66], is also introduced
in the following.

Theorem 3 (Hoeffding). Let {Uk}n
k=1 be a sequence of independent and bounded random variables such

that, for every k ∈ {1, . . . , n}, Uk ∈ [ak, bk] holds a.s. for some constants ak, bk ∈ R. Let µn ,
∑n

k=1 E[Uk].
Then,

P

(∣∣∣∣∣

n∑

k=1

Uk − µn

∣∣∣∣∣ ≥ α
√
n

)
≤ 2 exp

(
− 2α2 n∑n

k=1(bk − ak)2

)
, ∀α ≥ 0. (2.25)

Proof. Let g(x) ,
∑n

k=1 xk for every x ∈ R
n. Furthermore, let X1,X

′
1, . . . ,Xn,X

′
n be independent

random variables such that Xk and X ′
k are independent copies of Uk for every k ∈ {1, . . . , n}. By

assumption, it follows that for every k
∣∣g(X1, . . . ,Xk−1,Xk,Xk+1, . . . ,Xn) − g(X1, . . . ,Xk−1,X

′
k,Xk+1, . . . ,Xn)

∣∣ = |Xk −X ′
k| ≤ bk − ak

holds a.s., where the last inequality is due to the fact that Xk and X ′
k are both distributed like Uk, so

they are a.s. in the interval ak, bk]. It therefore follows from McDiarmid’s inequality that

P
(
|g(X1, . . . ,Xn) − E[g(X1, . . . ,Xn)]| ≥ α

√
n
)
≤ 2 exp

(
− 2α2n∑n

k=1(bk − ak)2

)
, ∀α ≥ 0.

Since

E[g(X1, . . . ,Xn)] =
n∑

k=1

E[Xk] =
n∑

k=1

E[Uk] = µn

and also (X1, . . . ,Xn) have the same distribution as of (U1, . . . , Un) (note that the entries of each of these
vectors are independent, and Xk is distributed like Uk), then

P
(
|g(U1, . . . , Un) − µn| ≥ α

√
n
)
≤ 2 exp

(
− 2α2n∑n

k=1(bk − ak)2

)
, ∀α ≥ 0

which is equivalent to (2.25).
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An improved version of Hoeffding’s inequality, due to Kearns and Saul [66] is introduced in the
following. It is noted that a certain gap in the original proof of the improved inequality in [66] was recently
solved in [67] by some tedious calculus. A shorter information-theoretic proof of the same basic inequality
that is required for the derivation of the improved concentration result follows from transportation-cost
inequalities, as will be shown in the next chapter (see Section V-C of the next chapter). So, we only state
the basic inequality, and use it to derive the improved version of Hoeffding’s inequality.

To this end, let ξk , Uk − E[Uk] for every k ∈ {1, . . . , n}, so
∑n

k=1 Uk − µn =
∑n

k=1 ξk with E[ξk] = 0
and ξk ∈ [ak − E[Uk], bk − E[Uk] ]. Following the argument that is used to derive inequality (2.19) gives

E
[
exp(tξk)

]
≤ (1 − pk) exp

(
t(ak − E[Uk])

)
+ pk exp

(
t(bk − E[Uk])

)

, exp
(
fk(t)

)
(2.26)

where pk ∈ [0, 1] is defined by

pk ,
E[Uk] − ak

bk − ak
, ∀ k ∈ {1, . . . , n}. (2.27)

The derivation of McDiarmid’s inequality (see (2.21)) gives that for all t ∈ R

fk(t) ≤
t2(bk − ak)

2

8
. (2.28)

The improvement of this bound (see [67, Theorem 4]) gives that for all t ∈ R

fk(t) ≤





(1−2pk)(bk−ak)2t2

4 ln
(

1−pk
pk

) if pk 6= 1
2

(bk−ak)2t2

8 if pk = 1
2 .

(2.29)

Note that since

lim
p→ 1

2

1 − 2p

ln
(1−p

p

) =
1

2

so the upper bound in (2.29) is continuous in pk, and it also improves the bound on fk(t) in (2.28)
unless pk = 1

2 (where both bounds coincide in this case). From (2.29), we have fk(t) ≤ ckt
2, for every

k ∈ {1, . . . , n} and t ∈ R, where

ck ,





(1−2pk)(bk−ak)2

4 ln
(

1−pk
pk

) if pk 6= 1
2

(bk−ak)2

8 if pk = 1
2 .

(2.30)

Hence, Chernoff’s inequality and the similarity of the two one-sided tail bounds give

P

(∣∣∣∣∣

n∑

k=1

Uk − µn

∣∣∣∣∣ ≥ α
√
n

)
≤ 2 exp(−α√nt)

n∏

k=1

E[exp(tξk)]

≤ 2 exp(−αt√n) · exp

(
n∑

k=1

ckt
2

)
, ∀ t ≥ 0. (2.31)

Finally, an optimization over the non-negative free parameter t leads to the following improved version
of Hoeffding’s inequality in [66] (with the recent follow-up in [67]).
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Theorem 4 (Kearns-Saul inequality). Let {Uk}n
k=1 be a sequence of independent and bounded random

variables such that, for every k ∈ {1, . . . , n}, Uk ∈ [ak, bk] holds a.s. for some constants ak, bk ∈ R. Let
µn ,

∑n
k=1 E[Uk]. Then,

P

(∣∣∣∣∣

n∑

k=1

Uk − µn

∣∣∣∣∣ ≥ α
√
n

)
≤ 2 exp

(
− α2 n

4
∑n

k=1 ck

)
, ∀α ≥ 0. (2.32)

where {ck}n
k=1 is introduced in (2.30) with the pk’s that are given in (2.27). Moreover, the exponential

bound (2.32) improves Hoeffding’s inequality, unless pk = 1
2 for every k ∈ {1, . . . , n}.

The reader is referred to another recent refinement of Hoeffding’s inequality in [68], followed by some
numerical comparisons.

2.3 Refined versions of the Azuma-Hoeffding inequality

Example 4 in the preceding section serves to motivate a derivation of an improved concentration inequality
with an additional constraint on the conditional variance of a martingale sequence. In the following,
assume that |Xk − Xk−1| ≤ d holds a.s. for every k (note that d does not depend on k, so it is a
global bound on the jumps of the martingale). A new condition is added for the derivation of the next
concentration inequality, where it is assumed that

Var(Xk | Fk−1) = E
[
(Xk −Xk−1)

2 | Fk−1

]
≤ γd2

for some constant γ ∈ (0, 1].

2.3.1 A refinement of the Azuma-Hoeffding inequality for discrete-time martingales
with bounded jumps

The following theorem appears in [65] (see also [69, Corollary 2.4.7]).

Theorem 5. Let {Xk,Fk}n
k=0 be a discrete-parameter real-valued martingale. Assume that, for some

constants d, σ > 0, the following two requirements are satisfied a.s.

|Xk −Xk−1| ≤ d,

Var(Xk|Fk−1) = E
[
(Xk −Xk−1)

2 | Fk−1

]
≤ σ2

for every k ∈ {1, . . . , n}. Then, for every α ≥ 0,

P(|Xn −X0| ≥ αn) ≤ 2 exp

(
−nD

(
δ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

))
(2.33)

where

γ ,
σ2

d2
, δ ,

α

d
(2.34)

and

D(p||q) , p ln
(p
q

)
+ (1 − p) ln

(1 − p

1 − q

)
, ∀ p, q ∈ [0, 1] (2.35)

is the divergence between the two probability distributions (p, 1 − p) and (q, 1 − q). If δ > 1, then the
probability on the left-hand side of (2.33) is equal to zero.



20 CHAPTER 2. THE MARTINGALE APPROACH AND APPLICATIONS

Proof. The proof of this bound starts similarly to the proof of the Azuma-Hoeffding inequality, up to (2.4).
The new ingredient in this proof is Bennett’s inequality which replaces the argument of the convexity of
the exponential function in the proof of the Azuma-Hoeffding inequality. We introduce in the following
a lemma (see, e.g., [69, Lemma 2.4.1]) that is required for the proof of Theorem 5.

Lemma 2 (Bennett). Let X be a real-valued random variable with x = E(X) and E[(X − x)2] ≤ σ2 for
some σ > 0. Furthermore, suppose that X ≤ b a.s. for some b ∈ R. Then, for every λ ≥ 0,

E
[
eλX

]
≤
eλx

[
(b− x)2e−

λσ2

b−x + σ2eλ(b−x)

]

(b− x)2 + σ2
. (2.36)

Proof. The lemma is trivial if λ = 0, so it is proved in the following for λ > 0. Let Y , λ(X − x) for
λ > 0. Then, by assumption, Y ≤ λ(b − x) , bY a.s. and Var(Y ) ≤ λ2σ2 , σ2

Y . It is therefore required
to show that if E[Y ] = 0, Y ≤ bY , and Var(Y ) ≤ σ2

Y , then

E[eY ] ≤
(

b2Y
b2Y + σ2

Y

)
e
−σ2

Y
bY +

(
σ2

Y

b2Y + σ2
Y

)
ebY . (2.37)

Let Y0 be a random variable that gets the two possible values −σ2
Y

bY
and bY , where

P

(
Y0 = −σ

2
Y

bY

)
=

b2Y
b2Y + σ2

Y

, P(Y0 = bY ) =
σ2

Y

b2Y + σ2
Y

(2.38)

so inequality (2.37) is equivalent to showing that

E[eY ] ≤ E[eY0]. (2.39)

To that end, let φ be the unique parabola where the function

f(y) , φ(y) − ey, ∀ y ∈ R

is zero at y = bY , and f(y) = f ′(y) = 0 at y = −σ2
Y

bY
. Since φ′′ is constant then f ′′(y) = 0 at exactly one

value of y, call it y0. Furthermore, since f(−σ2
Y

bY
) = f(bY ) (both are equal to zero) then f ′(y) = 0 for

some y1 ∈
(
−σ2

Y

bY
, bY
)
. By the same argument, applied to f ′ on

[
−σ2

Y

bY
, y1

]
, it follows that y0 ∈

(
−σ2

Y

bY
, y1

)
.

The function f is convex on (−∞, y0] (since, on this interval, f ′′(y) = φ′′(y) − ey > φ′′(y) − ey0 =

φ′′(y0) − ey0 = f ′′(y0) = 0), and its minimal value on this interval is at y = −σ2
Y

bY
(since at this point, f ′

is zero). Furthermore, f is concave on [y0,∞) and it gets its maximal value on this interval at y = y1. It
implies that f ≥ 0 on the interval (−∞, bY ], so E[f(Y )] ≥ 0 for any random variable Y such that Y ≤ bY
a.s., which therefore gives that

E[eY ] ≤ E[φ(Y )]

with equality if P(Y ∈ {−σ2
Y

bY
, bY }) = 1. Since f ′′(y) ≥ 0 for y < y0 then φ′′(y) − ey = f ′′(y) ≥ 0, so

φ′′(0) = φ′′(y) > 0 (recall that φ′′ is constant since φ is a parabola). Hence, for any random variable Y
of zero mean, E[f(Y )] which only depends on E[Y 2] is a non-decreasing function of E[Y 2]. The random

variable Y0 that takes values in {−σ2
Y

bY
, bY } and whose distribution is given in (2.38) is of zero mean and

variance E[Y 2
0 ] = σ2

Y , so
E[φ(Y )] ≤ E[φ(Y0)].

Note also that
E[φ(Y0)] = E[eY0 ]
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since f(y) = 0 (i.e., φ(y) = ey) if y = −σ2
Y

bY
or bY , and Y0 only takes these two values. Combining the last

two inequalities with the last equality gives inequality (2.39), which therefore completes the proof of the
lemma.

Applying Bennett’s inequality in Lemma 2 for the conditional law of ξk given the σ-algebra Fk−1,
since E[ξk|Fk−1] = 0, Var[ξk|Fk−1] ≤ σ2 and ξk ≤ d a.s. for k ∈ N, then a.s.

E [exp(tξk) | Fk−1] ≤
σ2 exp(td) + d2 exp

(
− tσ2

d

)

d2 + σ2
. (2.40)

Hence, it follows from (2.4) and (2.40) that, for every t ≥ 0,

E

[
exp

(
t

n∑

k=1

ξk

)]
≤



σ2 exp(td) + d2 exp

(
− tσ2

d

)

d2 + σ2


E

[
exp

(
t

n−1∑

k=1

ξk

)]

and, by induction, it follows that for every t ≥ 0

E

[
exp

(
t

n∑

k=1

ξk

)]
≤



σ2 exp(td) + d2 exp

(
− tσ2

d

)

d2 + σ2




n

.

From the definition of γ in (2.34), this inequality is rewritten as

E

[
exp

(
t

n∑

k=1

ξk

)]
≤
(
γ exp(td) + exp(−γtd)

1 + γ

)n

, ∀ t ≥ 0. (2.41)

Let x , td (so x ≥ 0). Combining Chernoff’s inequality with (2.41) gives that, for every α ≥ 0 (where
from the definition of δ in (2.34), αt = δx),

P(Xn −X0 ≥ αn)

≤ exp(−αnt) E

[
exp

(
t

n∑

k=1

ξk

)]

≤
(
γ exp

(
(1 − δ)x

)
+ exp

(
−(γ + δ)x

)

1 + γ

)n

, ∀x ≥ 0. (2.42)

Consider first the case where δ = 1 (i.e., α = d), then (2.42) is particularized to

P(Xn −X0 ≥ dn) ≤
(
γ + exp

(
−(γ + 1)x

)

1 + γ

)n

, ∀x ≥ 0

and the tightest bound within this form is obtained in the limit where x → ∞. This provides the
inequality

P(Xn −X0 ≥ dn) ≤
(

γ

1 + γ

)n

. (2.43)

Otherwise, if δ ∈ [0, 1), the minimization of the base of the exponent on the right-hand side of (2.42)
w.r.t. the free non-negative parameter x yields that the optimized value is

x =

(
1

1 + γ

)
ln

(
γ + δ

γ(1 − δ)

)
(2.44)
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and its substitution into the right-hand side of (2.42) gives that, for every α ≥ 0,

P(Xn −X0 ≥ αn)

≤
[(

γ + δ

γ

)− γ+δ
1+γ

(1 − δ)−
1−δ
1+γ

]n

= exp

{
−n
[(

γ + δ

1 + γ

)
ln

(
γ + δ

γ

)
+

(
1 − δ

1 + γ

)
ln(1 − δ)

]}

= exp

(
−nD

(
δ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

))
(2.45)

and the exponent is equal to +∞ if δ > 1 (i.e., if α > d). Applying inequality (2.45) to the martingale
{−Xk,Fk}∞k=0 gives the same upper bound to the other tail-probability P(Xn − X0 ≤ −αn). The
probability of the union of the two disjoint events {Xn − X0 ≥ αn} and {Xn − X0 ≤ −αn}, that is
equal to the sum of their probabilities, therefore satisfies the upper bound in (2.33). This completes the
proof of Theorem 5.

Example 5. Let d > 0 and ε ∈ (0, 1
2 ] be some constants. Consider a discrete-time real-valued martingale

{Xk,Fk}∞k=0 where a.s. X0 = 0, and for every m ∈ N

P(Xm −Xm−1 = d | Fm−1) = ε ,

P

(
Xm −Xm−1 = − εd

1 − ε

∣∣∣Fm−1

)
= 1 − ε .

This indeed implies that a.s. for every m ∈ N

E[Xm −Xm−1 | Fm−1] = εd+

(
− εd

1 − ε

)
(1 − ε) = 0

and since Xm−1 is Fm−1-measurable then a.s.

E[Xm | Fm−1] = Xm−1.

Since ε ∈ (0, 1
2 ] then a.s.

|Xm −Xm−1| ≤ max

{
d,

εd

1 − ε

}
= d.

From Azuma’s inequality, for every x ≥ 0,

P(Xk ≥ kx) ≤ exp

(
−kx

2

2d2

)
(2.46)

independently of the value of ε (note that X0 = 0 a.s.). The concentration inequality in Theorem 5
enables one to get a better bound: Since a.s., for every m ∈ N,

E
[
(Xm −Xm−1)

2 | Fm−1

]
= d2ε+

(
− εd

1 − ε

)2
(1 − ε) =

d2ε

1 − ε

then from (2.34)

γ =
ε

1 − ε
, δ =

x

d

and from (2.45), for every x ≥ 0,

P(Xk ≥ kx) ≤ exp

(
−kD

(x(1 − ε)

d
+ ε || ε

))
. (2.47)
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Consider the case where ε → 0. Then, for arbitrary x > 0 and k ∈ N, Azuma’s inequality in (2.46)
provides an upper bound that is strictly positive independently of ε, whereas the one-sided concentration
inequality of Theorem 5 implies a bound in (2.47) that tends to zero. This exemplifies the improvement
that is obtained by Theorem 5 in comparison to Azuma’s inequality.

Remark 6. As was noted, e.g., in [5, Section 2], all the concentration inequalities for martingales whose
derivation is based on Chernoff’s bound can be strengthened to refer to maxima. The reason is that
{Xk −X0,Fk}∞k=0 is a martingale, and h(x) = exp(tx) is a convex function on R for every t ≥ 0. Recall
that a composition of a convex function with a martingale gives a sub-martingale w.r.t. the same filtration
(see Section 2.1.2), so it implies that

{
exp(t(Xk−X0)),Fk

}∞
k=0

is a sub-martingale for every t ≥ 0. Hence,
by applying Doob’s maximal inequality for sub-martingales, it follows that for every α ≥ 0

P

(
max

1≤k≤n
Xk −X0 ≥ αn

)

= P

(
max

1≤k≤n
exp (t(Xk −X0)) ≥ exp(αnt)

)
∀ t ≥ 0

≤ exp(−αnt) E

[
exp
(
t(Xn −X0)

)]

= exp(−αnt) E

[
exp

(
t

n∑

k=1

ξk

)]

which coincides with the proof of Theorem 5 with the starting point in (2.3). This concept applies to all
the concentration inequalities derived in this chapter.

Corollary 1. Let {Xk,Fk}n
k=0 be a discrete-parameter real-valued martingale, and assume that |Xk −

Xk−1| ≤ d holds a.s. for some constant d > 0 and for every k ∈ {1, . . . , n}. Then, for every α ≥ 0,

P(|Xn −X0| ≥ αn) ≤ 2 exp (−nf(δ)) (2.48)

where

f(δ) =

{
ln(2)

[
1 − h2

(
1−δ
2

)]
, 0 ≤ δ ≤ 1

+∞, δ > 1
(2.49)

and h2(x) , −x log2(x)− (1−x) log2(1−x) for 0 ≤ x ≤ 1 denotes the binary entropy function on base 2.

Proof. By substituting γ = 1 in Theorem 5 (i.e., since there is no constraint on the conditional variance,
then one can take σ2 = d2), the corresponding exponent in (2.33) is equal to

D

(
1 + δ

2

∣∣∣
∣∣∣
1

2

)
= f(δ)

since D(p||12) = ln 2[1 − h2(p)] for every p ∈ [0, 1].

Remark 7. Corollary 1, which is a special case of Theorem 5 when γ = 1, forms a tightened version of the
Azuma-Hoeffding inequality when dk = d. This can be verified by showing that f(δ) > δ2

2 for every δ > 0,
which is a direct consequence of Pinsker’s inequality. Figure 2.1 compares these two exponents, which
nearly coincide for δ ≤ 0.4. Furthermore, the improvement in the exponent of the bound in Theorem 5 is
shown in this figure as the value of γ ∈ (0, 1) is reduced; this makes sense, since the additional constraint
on the conditional variance in this theorem has a growing effect when the value of γ is decreased.
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Figure 2.1: Plot of the lower bounds on the exponents from Azuma’s inequality and the improved bounds
in Theorem 5 and Corollary 1 (where f is defined in (2.49)). The pointed line refers to the exponent in
Corollary 1, and the three solid lines for γ = 1

8 ,
1
4 and 1

2 refer to the exponents in Theorem 5.

2.3.2 Geometric interpretation

A common ingredient in proving Azuma’s inequality, and Theorem 5 is a derivation of an upper bound
on the conditional expectation E

[
etξk | Fk−1

]
for t ≥ 0 where E

[
ξk | Fk−1

]
= 0, Var

[
ξk|Fk−1

]
≤ σ2, and

|ξk| ≤ d a.s. for some σ, d > 0 and for every k ∈ N. The derivation of Azuma’s inequality and Corollary 1
is based on the line segment that connects the curve of the exponent y(x) = etx at the endpoints of the
interval [−d, d]; due to the convexity of y, this chord is above the curve of the exponential function y over
the interval [−d, d]. The derivation of Theorem 5 is based on Bennett’s inequality which is applied to
the conditional expectation above. The proof of Bennett’s inequality (see Lemma 2) is shortly reviewed,
while adopting the notation for the continuation of this discussion. Let X be a random variable with zero
mean and variance E[X2] = σ2, and assume that X ≤ d a.s. for some d > 0. Let γ , σ2

d2 . The geometric
viewpoint of Bennett’s inequality is based on the derivation of an upper bound on the exponential function
y over the interval (−∞, d]; this upper bound on y is a parabola that intersects y at the right endpoint
(d, etd) and is tangent to the curve of y at the point (−γd, e−tγd). As is verified in the proof of Lemma 2,
it leads to the inequality y(x) ≤ φ(x) for every x ∈ (−∞, d] where φ is the parabola that satisfies the
conditions

φ(d) = y(d) = etd, φ(−γd) = y(−γd) = e−tγd, φ′(−γd) = y′(−γd) = te−tγd.

Calculation shows that this parabola admits the form

φ(x) =
(x+ γd)etd + (d− x)e−tγd

(1 + γ)d
+
α[γd2 + (1 − γ)d x− x2]

(1 + γ)2d2

where α ,
[
(1 + γ)td+ 1

]
e−tγd − etd. Since E[X] = 0, E[X2] = γd2 and X ≤ d (a.s.), then

E
[
etX
]
≤ E

[
φ(X)

]

=
γetd + e−γtd

1 + γ

=
E[X2]etd + d2e−

tE[X2]
d

d2 + E[X2]
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which provides a geometric viewpoint to Bennett’s inequality. Note that under the above assumption, the
bound is achieved with equality when X is a RV that gets the two values +d and −γd with probabilities

γ
1+γ and 1

1+γ , respectively. This bound also holds when E[X2] ≤ σ2 since the right-hand side of the

inequality is a monotonic non-decreasing function of E[X2] (as it was verified in the proof Lemma 2).
Applying Bennett’s inequality to the conditional law of ξk given Fk−1 gives (2.40) (with γ in (2.34)).

2.3.3 Improving the refined version of the Azuma-Hoeffding inequality for subclasses
of discrete-time martingales

This following subsection derives an exponential deviation inequality that improves the bound in Theo-
rem 5 for conditionally-symmetric discrete-time martingales with bounded increments. This subsection
further assumes conditional symmetry of these martingales, as it is defined in the following:

Definition 2. Let {Xk,Fk}k∈N0, where N0 , N∪{0}, be a discrete-time and real-valued martingale, and
let ξk , Xk −Xk−1 for every k ∈ N designate the jumps of the martingale. Then {Xk,Fk}k∈N0 is called
a conditionally symmetric martingale if, conditioned on Fk−1, the random variable ξk is symmetrically
distributed around zero.

Our goal in this subsection is to demonstrate how the assumption of the conditional symmetry im-
proves the existing the deviation inequality in Section 2.3.1 for discrete-time real-valued martingales with
bounded increments. The exponent of the new bound is also compared to the exponent of the bound in
Theorem 5 without the conditional symmetry assumption. Earlier results, serving as motivation to the
discussion in this subsection, appear in [70, Section 4] and [71, Section 6]. The new exponential bounds
can be also extended to conditionally symmetric sub or supermartingales, where the construction of these
objects is exemplified later in this subsection. Additional results addressing weak-type inequalities, max-
imal inequalities and ratio inequalities for conditionally symmetric martingales were derived in [72], [73]
and [74].

Before we present the new deviation inequality for conditionally symmetric martingales, this discussion
is motivated by introducing some constructions of such martingales.

Construction of Discrete-Time, Real-Valued and Conditionally Symmetric Sub/ Super-
martingales

Before proving the tightened inequalities for discrete-time conditionally symmetric sub/ supermartingales,
it is in place to exemplify the construction of these objects.

Example 6. Let (Ω,F ,P) be a probability space, and let {Uk}k∈N ⊆ L1(Ω,F ,P) be a sequence of
independent random variables with zero mean. Let {Fk}k≥0 be the natural filtration of sub σ-algebras of
F , where F0 = {∅,Ω} and Fk = σ(U1, . . . , Uk) for k ≥ 1. Furthermore, for k ∈ N, let Ak ∈ L∞(Ω,Fk−1,P)
be an Fk−1-measurable random variable with a finite essential supremum. Define a new sequence of
random variables in L1(Ω,F ,P) where

Xn =
n∑

k=1

AkUk, ∀n ∈ N

and X0 = 0. Then, {Xn,Fn}n∈N0 is a martingale. Lets assume that the random variables {Uk}k∈N are
symmetrically distributed around zero. Note that Xn = Xn−1 +AnUn where An is Fn−1-measurable and
Un is independent of the σ-algebra Fn−1 (due to the independence of the random variables U1, . . . , Un). It
therefore follows that for every n ∈ N, given Fn−1, the random variable Xn is symmetrically distributed
around its conditional expectation Xn−1. Hence, the martingale {Xn,Fn}n∈N0 is conditionally symmetric.



26 CHAPTER 2. THE MARTINGALE APPROACH AND APPLICATIONS

Example 7. In continuation to Example 6, let {Xn,Fn}n∈N0 be a martingale, and define Y0 = 0 and

Yn =
n∑

k=1

Ak(Xk −Xk−1), ∀n ∈ N.

The sequence {Yn,Fn}n∈N0 is a martingale. If {Xn,Fn}n∈N0 is a conditionally symmetric martingale
then also the martingale {Yn,Fn}n∈N0 is conditionally symmetric (since Yn = Yn−1 + An(Xn − Xn−1),
and by assumption An is Fn−1-measurable).

Example 8. In continuation to Example 6, let {Uk}k∈N be independent random variables with a sym-
metric distribution around their expected value, and also assume that E(Uk) ≤ 0 for every k ∈ N.
Furthermore, let Ak ∈ L∞(Ω,Fk−1,P), and assume that a.s. Ak ≥ 0 for every k ∈ N. Let {Xn,Fn}n∈N0

be a martingale as defined in Example 6. Note that Xn = Xn−1 + AnUn where An is non-negative and
Fn−1-measurable, and Un is independent of Fn−1 and symmetrically distributed around its average. This
implies that {Xn,Fn}n∈N0 is a conditionally symmetric supermartingale.

Example 9. In continuation to Examples 7 and 8, let {Xn,Fn}n∈N0 be a conditionally symmetric
supermartingale. Define {Yn}n∈N0 as in Example 7 where Ak is non-negative a.s. and Fk−1-measurable
for every k ∈ N. Then {Yn,Fn}n∈N0 is a conditionally symmetric supermartingale.

Example 10. Consider a standard Brownian motion (Wt)t≥0. Define, for some T > 0, the discrete-time
process

Xn = WnT , Fn = σ({Wt}0≤t≤nT ), ∀n ∈ N0.

The increments of (Wt)t≥0 over time intervals [tk−1, tk] are statistically independent if these intervals do
not overlap (except of their endpoints), and they are Gaussian distributed with a zero mean and variance
tk − tk−1. The random variable ξn , Xn − Xn−1 is therefore statistically independent of Fn−1, and it
is Gaussian distributed with a zero mean and variance T . The martingale {Xn,Fn}n∈N0 is therefore
conditionally symmetric.

After motivating this discussion with some explicit constructions of discrete-time conditionally sym-
metric martingales, we introduce a new deviation inequality for this sub-class of martingales, and then
show how its derivation follows from the martingale approach that was used earlier for the derivation of
Theorem 5. The new deviation inequality for the considered sub-class of discrete-time martingales with
bounded increments gets the following form:

Theorem 6. Let {Xk,Fk}k∈N0 be a discrete-time real-valued and conditionally symmetric martingale.
Assume that, for some fixed numbers d, σ > 0, the following two requirements are satisfied a.s.

|Xk −Xk−1| ≤ d, Var(Xk|Fk−1) = E
[
(Xk −Xk−1)

2 | Fk−1

]
≤ σ2 (2.50)

for every k ∈ N. Then, for every α ≥ 0 and n ∈ N,

P

(
max

1≤k≤n
|Xk −X0| ≥ αn

)
≤ 2 exp

(
−nE(γ, δ)

)
(2.51)

where γ and δ are introduced in (2.34), and for γ ∈ (0, 1] and δ ∈ [0, 1)

E(γ, δ) , δx− ln
(
1 + γ

[
cosh(x) − 1

])
(2.52)

x , ln

(
δ(1 − γ) +

√
δ2(1 − γ)2 + γ2(1 − δ2)

γ(1 − δ)

)
. (2.53)
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If δ > 1, then the probability on the left-hand side of (2.51) is zero (so E(γ, δ) , +∞), and E(γ, 1) =
ln
(

2
γ

)
. Furthermore, the exponent E(γ, δ) is asymptotically optimal in the sense that there exists a

conditionally symmetric martingale, satisfying the conditions in (2.50) a.s., that attains this exponent in
the limit where n→ ∞.

Remark 8. From the above conditions, without any loss of generality, σ2 ≤ d2 and therefore γ ∈ (0, 1].
This implies that Theorem 6 characterizes the exponent E(γ, δ) for all values of γ and δ.

Corollary 2. Let {Uk}∞k=1 ∈ L2(Ω,F ,P) be i.i.d. and bounded random variables with a symmetric
distribution around their mean value. Assume that |U1 − E[U1]| ≤ d a.s. for some d > 0, and Var(U1) ≤
γd2 for some γ ∈ [0, 1]. Let {Sn} designate the sequence of partial sums, i.e., Sn ,

∑n
k=1 Uk for every

n ∈ N. Then, for every α ≥ 0,

P

(
max

1≤k≤n

∣∣Sk − kE(U1)
∣∣ ≥ αn

)
≤ 2 exp

(
−nE(γ, δ)

)
, ∀n ∈ N (2.54)

where δ , α
d , and E(γ, δ) is introduced in (2.52) and (2.53).

Remark 9. Theorem 6 should be compared to Theorem 5 (see [65, Theorem 6.1] or [69, Corollary 2.4.7]),
which does not require the conditional symmetry property. The two exponents in Theorems 6 and 5 are
both discontinuous at δ = 1. This is consistent with the assumption of the bounded jumps that implies
that P(|Xn −X0| ≥ ndδ) is equal to zero if δ > 1.

If δ → 1− then, from (2.52) and (2.53), for every γ ∈ (0, 1],

lim
δ→1−

E(γ, δ) = lim
x→∞

[
x− ln

(
1 + γ(cosh(x) − 1)

)]
= ln

(
2

γ

)
. (2.55)

On the other hand, the right limit at δ = 1 is infinity since E(γ, δ) = +∞ for every δ > 1. The same
discontinuity also exists for the exponent in Theorem 5 where the right limit at δ = 1 is infinity, and the
left limit is equal to

lim
δ→1−

D

(
δ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

)
= ln

(
1 +

1

γ

)
(2.56)

where the last equality follows from (2.35). A comparison of the limits in (2.55) and (2.56) is consistent
with the improvement that is obtained in Theorem 6 as compared to Theorem 5 due to the additional
assumption of the conditional symmetry that is relevant if γ ∈ (0, 1). It can be verified that the two
exponents coincide if γ = 1 (which is equivalent to removing the constraint on the conditional variance),
and their common value is equal to f(δ) as is defined in (2.49).

We prove in the following the new deviation inequality in Theorem 6. In order to prove Theorem 6
for a discrete-time, real-valued and conditionally symmetric martingale with bounded jumps, we deviate
from the proof of Theorem 5. This is done by a replacement of Bennett’s inequality for the conditional
expectation in (2.40) with a tightened bound under the conditional symmetry assumption. To this end,
we need a lemma to proceed.

Lemma 3. Let X be a real-valued RV with a symmetric distribution around zero, a support [−d, d],
and assume that E[X2] = Var(X) ≤ γd2 for some d > 0 and γ ∈ [0, 1]. Let h be a real-valued convex
function, and assume that h(d2) ≥ h(0). Then

E[h(X2)] ≤ (1 − γ)h(0) + γh(d2) (2.57)

where equality holds for the symmetric distribution

P(X = d) = P(X = −d) =
γ

2
, P(X = 0) = 1 − γ. (2.58)
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Proof. Since h is convex and supp(X) = [−d, d], then a.s. h(X2) ≤ h(0) +
(

X
d

)2 (
h(d2) − h(0)

)
. Taking

expectations on both sides gives (2.57), which holds with equality for the symmetric distribution in
(2.58).

Corollary 3. If X is a random variable that satisfies the three requirements in Lemma 3 then, for every
λ ∈ R,

E
[
exp(λX)

]
≤ 1 + γ

[
cosh(λd) − 1

]
(2.59)

and (2.59) holds with equality for the symmetric distribution in Lemma 3, independently of the value of
λ.

Proof. For every λ ∈ R, due to the symmetric distribution of X, E
[
exp(λX)

]
= E

[
cosh(λX)

]
. The claim

now follows from Lemma 3 since, for every x ∈ R, cosh(λx) = h(x2) where h(x) ,
∑∞

n=0
λ2n|x|n
(2n)! is a

convex function (h is convex since it is a linear combination, with non-negative coefficients, of convex
functions), and h(d2) = cosh(λd) ≥ 1 = h(0).

We continue with the proof of Theorem 6. Under the assumption of this theorem, for every k ∈ N,
the random variable ξk , Xk − Xk−1 satisfies a.s. E[ξk | Fk−1] = 0 and E[(ξk)

2 | Fk−1] ≤ σ2. Applying
Corollary 3 for the conditional law of ξk given Fk−1, it follows that for every k ∈ N and t ∈ R

E [exp(tξk) | Fk−1] ≤ 1 + γ
[
cosh(td) − 1

]
(2.60)

holds a.s., and therefore it follows from (2.4) and (2.60) that for every t ∈ R

E

[
exp

(
t

n∑

k=1

ξk

)]
≤
(
1 + γ

[
cosh(td) − 1

])n
. (2.61)

By applying the maximal inequality for submartingales, then for every α ≥ 0 and n ∈ N

P

(
max

1≤k≤n
(Xk −X0) ≥ αn

)

= P

(
max

1≤k≤n
exp (t(Xk −X0)) ≥ exp(αnt)

)
∀ t ≥ 0

≤ exp(−αnt) E

[
exp
(
t(Xn −X0)

)]

= exp(−αnt) E

[
exp

(
t

n∑

k=1

ξk

)]
(2.62)

Therefore, from (2.62), for every t ≥ 0,

P

(
max

1≤k≤n
(Xk −X0) ≥ αn

)
≤ exp(−αnt)

(
1 + γ

[
cosh(td) − 1

])n
. (2.63)

From (2.34) and a replacement of td with x, then for an arbitrary α ≥ 0 and n ∈ N

P

(
max

1≤k≤n
(Xk −X0) ≥ αn

)
≤ inf

x≥0

{
exp

(
−n
[
δx− ln

(
1 + γ

[
cosh(x) − 1

])])}
. (2.64)

Applying (2.64) to the martingale {−Xk,Fk}k∈N0 gives the same bound on P(min1≤k≤n(Xk−X0) ≤ −αn)
for an arbitrary α ≥ 0. The union bound implies that

P

(
max

1≤k≤n
|Xk −X0| ≥ αn

)
≤ P

(
max

1≤k≤n
(Xk −X0) ≥ αn

)
+ P

(
min

1≤k≤n
(Xk −X0) ≤ −αn

)
. (2.65)
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This doubles the bound on the right-hand side of (2.64), thus proving the exponential bound in Theorem 6.

Proof for the asymptotic optimality of the exponents in Theorems 6 and 5: In the following, we show
that under the conditions of Theorem 6, the exponent E(γ, δ) in (2.52) and (2.53) is asymptotically
optimal. To show this, let d > 0 and γ ∈ (0, 1], and let U1, U2, . . . be i.i.d. random variables whose
probability distribution is given by

P(Ui = d) = P(Ui = −d) =
γ

2
, P(Ui = 0) = 1 − γ, ∀ i ∈ N. (2.66)

Consider the particular case of the conditionally symmetric martingale {Xn,Fn}n∈N0 in Example 6 (see
Section 2.3.3) where Xn ,

∑n
i=1 Ui for n ∈ N, and X0 , 0. It follows that |Xn − Xn−1| ≤ d and

Var(Xn|Fn−1) = γd2 a.s. for every n ∈ N. From Cramér’s theorem in R, for every α ≥ E[U1] = 0,

lim
n→∞

1

n
ln P(Xn −X0 ≥ αn)

= lim
n→∞

1

n
ln P

(
1

n

n∑

i=1

Ui ≥ α

)

= −I(α) (2.67)

where the rate function is given by

I(α) = sup
t≥0

{tα− ln E[exp(tU1)]} (2.68)

(see, e.g., [69, Theorem 2.2.3] and [69, Lemma 2.2.5(b)] for the restriction of the supermum to the interval
[0,∞)). From (2.66) and (2.68), for every α ≥ 0,

I(α) = sup
t≥0

{
tα− ln

(
1 + γ[cosh(td) − 1]

)}

but it is equivalent to the optimized exponent on the right-hand side of (2.63), giving the exponent of
the bound in Theorem 6. Hence, I(α) = E(γ, δ) in (2.52) and (2.53). This proves that the exponent of
the bound in Theorem 6 is indeed asymptotically optimal in the sense that there exists a discrete-time,
real-valued and conditionally symmetric martingale, satisfying the conditions in (2.50) a.s., that attains
this exponent in the limit where n → ∞. The proof for the asymptotic optimality of the exponent in
Theorem 5 (see the right-hand side of (2.33)) is similar to the proof for Theorem 6, except that the i.i.d.
random variables U1, U2, . . . are now distributed as follows:

P(Ui = d) =
γ

1 + γ
, P(Ui = −γd) =

1

1 + γ
, ∀ i ∈ N

and, as before, the martingale {Xn,Fn}n∈N0 is defined by Xn =
∑n

i=1 Ui and Fn = σ(U1, . . . , Un) for
every n ∈ N with X0 = 0 and F0 = {∅,Ω} (in this case, it is not a conditionally symmetric martingale
unless γ = 1).

Theorem 6 provides an improvement over the bound in Theorem 5 for conditionally symmetric mar-
tingales with bounded jumps. The bounds in Theorems 5 and 6 depend on the conditional variance of the
martingale, but they do not take into consideration conditional moments of higher orders. The following
bound generalizes the bound in Theorem 6, but it does not admit in general a closed-form expression.

Theorem 7. Let {Xk,Fk}k∈N0 be a discrete-time and real-valued conditionally symmetric martingale.
Let m ∈ N be an even number, and assume that the following conditions hold a.s. for every k ∈ N

|Xk −Xk−1| ≤ d, E
[
(Xk −Xk−1)

l | Fk−1

]
≤ µl, ∀ l ∈ {2, 4, . . . ,m}
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for some d > 0 and non-negative numbers {µ2, µ4, . . . , µm}. Then, for every α ≥ 0 and n ∈ N,

P

(
max

1≤k≤n
|Xk −X0| ≥ αn

)
≤ 2



min

x≥0
e−δx


1 +

m
2
−1∑

l=1

γ2l x
2l

(2l)!
+ γm

(
cosh(x) − 1

)
)






n

(2.69)

where
δ ,

α

d
, γ2l ,

µ2l

d2l
, ∀ l ∈

{
1, . . . ,

m

2

}
. (2.70)

Proof. The starting point of the proof of Theorem 7 relies on (2.62) and (2.4). For every k ∈ N and t ∈ R,
since E

[
ξ2l−1
k | Fk−1

]
= 0 for every l ∈ N (due to the conditionally symmetry property of the martingale),

E
[
exp(tξk)|Fk−1

]

= 1 +

m
2
−1∑

l=1

t2l
E
[
ξ2l
k | Fk−1

]

(2l)!
+

∞∑

l= m
2

t2l
E
[
ξ2l
k | Fk−1

]

(2l)!

= 1 +

m
2
−1∑

l=1

(td)2l
E
[( ξk

d

)2l | Fk−1

]

(2l)!
+

∞∑

l= m
2

(td)2l
E
[( ξk

d

)2l | Fk−1

]

(2l)!

≤ 1 +

m
2
−1∑

l=1

(td)2l γ2l

(2l)!
+

∞∑

l= m
2

(td)2l γm

(2l)!

= 1 +

m
2
−1∑

l=1

(td)2l
(
γ2l − γm

)

(2l)!
+ γm

(
cosh(td) − 1

)
(2.71)

where the inequality above holds since | ξk

d | ≤ 1 a.s., so that 0 ≤ . . . ≤ γm ≤ . . . ≤ γ4 ≤ γ2 ≤ 1, and the

last equality in (2.71) holds since cosh(x) =
∑∞

n=0
x2n

(2n)! for every x ∈ R. Therefore, from (2.4),

E

[
exp

(
t

n∑

k=1

ξk

)]
≤


1 +

m
2
−1∑

l=1

(td)2l
(
γ2l − γm

)

(2l)!
+ γm

[
cosh(td) − 1

]



n

(2.72)

for an arbitrary t ∈ R. The inequality then follows from (2.62). This completes the proof of Theorem 7.

2.3.4 Concentration inequalities for small deviations

In the following, we consider the probability of the events {|Xn − X0| ≥ α
√
n} for an arbitrary α ≥ 0.

These events correspond to small deviations. This is in contrast to events of the form {|Xn −X0| ≥ αn},
whose probabilities were analyzed earlier in this section, referring to large deviations.

Proposition 1. Let {Xk,Fk} be a discrete-parameter real-valued martingale. Then, Theorem 5 implies
that for every α ≥ 0

P(|Xn −X0| ≥ α
√
n) ≤ 2 exp

(
− δ2

2γ

)(
1 +O

(
n−

1
2
))
. (2.73)

Proof. See Appendix 2.A.

Remark 10. From Proposition 1, the upper bound on P(|Xn − X0| ≥ α
√
n) (for an arbitrary α ≥ 0)

improves the exponent of Azuma’s inequality by a factor of 1
γ .
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2.3.5 Inequalities for sub and super martingales

Upper bounds on the probability P(Xn−X0 ≥ r) for r ≥ 0, earlier derived in this section for martingales,
can be adapted to super-martingales (similarly to, e.g., [10, Chapter 2] or [11, Section 2.7]). Alternatively,
replacing {Xk,Fk}n

k=0 with {−Xk,Fk}n
k=0 provides upper bounds on the probability P(Xn −X0 ≤ −r)

for sub-martingales. For example, the adaptation of Theorem 5 to sub and super martingales gives the
following inequality:

Corollary 4. Let {Xk,Fk}∞k=0 be a discrete-parameter real-valued super-martingale. Assume that, for
some constants d, σ > 0, the following two requirements are satisfied a.s.

Xk − E[Xk | Fk−1] ≤ d,

Var(Xk|Fk−1) , E

[(
Xk − E[Xk | Fk−1]

)2 | Fk−1

]
≤ σ2

for every k ∈ {1, . . . , n}. Then, for every α ≥ 0,

P(Xn −X0 ≥ αn) ≤ exp

(
−nD

(
δ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

))
(2.74)

where γ and δ are defined as in (2.34), and the divergence D(p||q) is introduced in (2.35). Alternatively,
if {Xk,Fk}∞k=0 is a sub-martingale, the same upper bound in (2.74) holds for the probability P(Xn−X0 ≤
−αn). If δ > 1, then these two probabilities are equal to zero.

Proof. The proof of this corollary is similar to the proof of Theorem 5. The only difference is that for a
super-martingale, due to its basic property in Section 2.1.2,

Xn −X0 =
n∑

k=1

(Xk −Xk−1) ≤
n∑

k=1

ξk

a.s., where ξk , Xk − E[Xk | Fk−1] is Fk-measurable. Hence P((Xn − X0 ≥ αn) ≤ P
(∑n

k=1 ξk ≥ αn
)

where a.s. ξk ≤ d, E[ξk | Fk−1] = 0, and Var(ξk | Fk−1) ≤ σ2. The continuation of the proof coincides
with the proof of Theorem 5 (starting from (2.3)). The other inequality for sub-martingales holds due to
the fact that if {Xk,Fk} is a sub-martingale then {−Xk,Fk} is a super-martingale.

2.4 Freedman’s inequality and a refined version

We consider in the following a different type of exponential inequalities for discrete-time martingales
with bounded jumps, which is a classical inequality that dates back to Freedman [75]. Freedman’s
inequality is refined in the following to conditionally symmetric martingales with bounded jumps (see
[76]). Furthermore, these two inequalities are specialized to two concentration inequalities for sums of
independent and bounded random variables.

Theorem 8. Let {Xn,Fn}n∈N0 be a discrete-time real-valued and conditionally symmetric martingale.
Assume that there exists a fixed number d > 0 such that ξk , Xk −Xk−1 ≤ d a.s. for every k ∈ N. Let

Qn ,

n∑

k=1

E[ξ2k | Fk−1] (2.75)

with Q0 , 0, be the predictable quadratic variation of the martingale up to time n. Then, for every
z, r > 0,

P

(
max

1≤k≤n
(Xk −X0) ≥ z, Qn ≤ r for some n ∈ N

)
≤ exp

(
−z

2

2r
· C
(
zd

r

))
(2.76)
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where

C(u) ,
2[u sinh−1(u) −

√
1 + u2 + 1]

u2
, ∀u > 0. (2.77)

Theorem 8 should be compared to Freedman’s inequality in [75, Theorem 1.6] (see also [69, Exer-
cise 2.4.21(b)]) that was stated without the requirement for the conditional symmetry of the martingale.
It provides the following result:

Theorem 9. Let {Xn,Fn}n∈N0 be a discrete-time real-valued martingale. Assume that there exists a
fixed number d > 0 such that ξk , Xk −Xk−1 ≤ d a.s. for every k ∈ N. Then, for every z, r > 0,

P

(
max

1≤k≤n
(Xk −X0) ≥ z, Qn ≤ r for some n ∈ N

)
≤ exp

(
−z

2

2r
· B
(
zd

r

))
(2.78)

where

B(u) ,
2[(1 + u) ln(1 + u) − u]

u2
, ∀u > 0. (2.79)

The proof of [75, Theorem 1.6] is modified in the following by using Bennett’s inequality for the
derivation of the original bound in Theorem 9 (without the conditional symmetry requirement). Fur-
thermore, this modified proof serves to derive the improved bound in Theorem 8 under the conditional
symmetry assumption of the martingale sequence.

We provide in the following a combined proof of Theorems 8 and 9.

Proof. The proof of Theorem 8 relies on the proof of Freedman’s inequality in Theorem 9, where the
latter dates back to Freedman’s paper (see [75, Theorem 1.6], and also [69, Exercise 2.4.21(b)]). The
original proof of Theorem 9 (see [75, Section 3]) is modified in a way that facilitates to realize how the
bound can be improved for conditionally symmetric martingales with bounded jumps. This improvement
is obtained via the refinement in (2.60) of Bennett’s inequality for conditionally symmetric distributions.
Furthermore, the following revisited proof of Theorem 9 simplifies the derivation of the new and improved
bound in Theorem 8 for the considered subclass of martingales.

Without any loss of generality, lets assume that d = 1 (otherwise, {Xk} and z are divided by d, and
{Qk} and r are divided by d2; this normalization extends the bound to the case of an arbitrary d > 0).
Let Sn , Xn −X0 for every n ∈ N0, then {Sn,Fn}n∈N0 is a martingale with S0 = 0. The proof starts by
introducing two lemmas.

Lemma 4. Under the assumptions of Theorem 9, let

Un , exp(λSn − θQn), ∀n ∈ {0, 1, . . .} (2.80)

where λ ≥ 0 and θ ≥ eλ − λ− 1 are arbitrary constants. Then, {Un,Fn}n∈N0 is a supermartingale.

Proof. Un in (2.80) is Fn-measurable (since Qn in (2.75) is Fn−1-measurable, where Fn−1 ⊆ Fn, and Sn

is Fn-measurable), Qn and Un are non-negative random variables, and Sn =
∑n

k=1 ξk ≤ n a.s. (since
ξk ≤ 1 and S0 = 0). It therefore follows that 0 ≤ Un ≤ eλn a.s. for λ, θ ≥ 0, so Un ∈ L1(Ω,Fn,P). It is
required to show that E[Un|Fn−1] ≤ Un−1 holds a.s. for every n ∈ N, under the above assumptions on
the parameters λ and θ in (2.80).

E[Un|Fn−1]

(a)
= exp(−θQn) exp(λSn−1) E

[
exp(λξn) | Fn−1

]

(b)
= exp(λSn−1) exp

(
−θ(Qn−1 + E[ξ2n|Fn−1])

)
E
[
exp(λξn) | Fn−1

]

(c)
= Un−1

(
E
[
exp(λξn) | Fn−1

]

exp(θE[ξ2n | Fn−1])

)
(2.81)
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where (a) follows from (2.80) and because Qn and Sn−1 are Fn−1-measurable and Sn = Sn−1 + ξn, (b)
follows from (2.75), and (c) follows from (2.80).

A modification of the original proof of Lemma 4 (see [75, Section 3]) is suggested in the following, which
then enables to improve the bound in Theorem 9 for real-valued, discrete-time, conditionally symmetric
martingales with bounded jumps. This leads to the improved bound in Theorem 8 for the considered
subclass of martingales.

Since by assumption ξn ≤ 1 and E[ξn | Fn−1] = 0 a.s., then applying Bennett’s inequality in (2.40) to
the conditional expectation of eλξn given Fn−1 (recall that λ ≥ 0) gives

E
[
exp
(
λξn
)
| Fn−1

]
≤ exp

(
−λE[ξ2n | Fn−1]

)
+ E[ξ2n | Fn−1] exp(λ)

1 + E
[
ξ2n | Fn−1

]

which therefore implies from (2.81) and the last inequality that

E[Un|Fn−1] ≤ Un−1

(
exp

(
−(λ+ θ) E[ξ2n | Fn−1]

)

1 + E
[
ξ2n | Fn−1

] +
E[ξ2n | Fn−1] exp

(
λ− θE[ξ2n | Fn−1]

)

1 + E[ξ2n | Fn−1]

)
. (2.82)

In order to prove that E[Un|Fn−1] ≤ Un−1 a.s., it is sufficient to prove that the second term on the
right-hand side of (2.82) is a.s. less than or equal to 1. To this end, lets find the condition on λ, θ ≥ 0
such that for every α ≥ 0

(
1

1 + α

)
exp
(
−α(λ+ θ)

)
+

(
α

1 + α

)
exp(λ− αθ) ≤ 1 (2.83)

which then assures that the second term on the right-hand side of (2.82) is less than or equal to 1 a.s. as
required.

Lemma 5. If λ ≥ 0 and θ ≥ exp(λ) − λ− 1 then the condition in (2.83) is satisfied for every α ≥ 0.

Proof. This claim follows by calculus, showing that the function

g(α) = (1 + α) exp(αθ) − α exp(λ) − exp(−αλ), ∀α ≥ 0

is non-negative on R+ if λ ≥ 0 and θ ≥ exp(λ) − λ− 1.

From (2.82) and Lemma 5, it follows that {Un,Fn}n∈N0 is a supermartingale if λ ≥ 0 and θ ≥
exp(λ) − λ− 1. This completes the proof of Lemma 4.

At this point, we start to discuss in parallel the derivation of the tightened bound in Theorem 8 for
conditionally symmetric martingales. As before, it is assumed without any loss of generality that d = 1.

Lemma 6. Under the additional assumption of the conditional symmetry in Theorem 8, then {Un,Fn}n∈N0

in (2.80) is a supermartingale if λ ≥ 0 and θ ≥ cosh(λ) − 1 are arbitrary constants.

Proof. By assumption ξn = Sn − Sn−1 ≤ 1 a.s., and ξn is conditionally symmetric around zero, given
Fn−1, for every n ∈ N. By applying Corollary 3 to the conditional expectation of exp(λξn) given Fn−1,
for every λ ≥ 0,

E
[
exp(λξn) | Fn−1

]
≤ 1 + E[ξ2n | Fn−1]

(
cosh(λ) − 1

)
. (2.84)

Hence, combining (2.81) and (2.84) gives

E[Un|Fn−1] ≤ Un−1

(
1 + E[ξ2n | Fn−1]

(
cosh(λ) − 1

)

exp
(
θE[ξ2n|Fn−1]

)
)
. (2.85)
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Let λ ≥ 0. Since E[ξ2n | Fn−1] ≥ 0 a.s. then in order to ensure that {Un,Fn}n∈N0 forms a supermartingale,
it is sufficient (based on (2.85)) that the following condition holds:

1 + α
(
cosh(λ) − 1

)

exp(θα)
≤ 1, ∀α ≥ 0. (2.86)

Calculus shows that, for λ ≥ 0, the condition in (2.86) is satisfied if and only if

θ ≥ cosh(λ) − 1 , θmin(λ). (2.87)

From (2.85), {Un,Fn}n∈N0 is a supermartingale if λ ≥ 0 and θ ≥ θmin(λ). This proves Lemma 6.

Hence, due to the assumption of the conditional symmetry of the martingale in Theorem 8, the set
of parameters for which {Un,Fn} is a supermartingale was extended. This follows from a comparison of
Lemma 4 and 6 where indeed exp(λ) − 1 − λ ≥ θmin(λ) ≥ 0 for every λ ≥ 0.

Let z, r > 0, λ ≥ 0 and either θ ≥ cosh(λ) − 1 or θ ≥ exp(λ) − λ − 1 with or without assuming the
conditional symmetry property, respectively (see Lemma 4 and 6). In the following, we rely on Doob’s
sampling theorem. To this end, let M ∈ N, and define two stopping times adapted to {Fn}. The first
stopping time is α = 0, and the second stopping time β is the minimal value of n ∈ {0, . . . ,M} (if any)
such that Sn ≥ z and Qn ≤ r (note that Sn is Fn-measurable and Qn is Fn−1-measurable, so the event
{β ≤ n} is Fn-measurable); if such a value of n does not exist, let β , M . Hence α ≤ β are two bounded
stopping times. From Lemma 4 or 6, {Un,Fn}n∈N0 is a supermartingale for the corresponding set of
parameters λ and θ, and from Doob’s sampling theorem

E[Uβ] ≤ E[U0] = 1 (2.88)

(S0 = Q0 = 0, so from (2.80), U0 = 1 a.s.). Hence, it implies the following chain of inequalities:

P(∃n ≤M : Sn ≥ z,Qn ≤ r)

(a)
= P(Sβ ≥ z,Qβ ≤ r)

(b)

≤ P(λSβ − θQβ ≥ λz − θr)

(c)

≤ E[exp(λSβ − θQβ)]

exp(λz − θr)

(d)
=

E[Uβ]

exp(λz − θr)

(e)

≤ exp
(
−(λz − θr)

)
(2.89)

where equality (a) follows from the definition of the stopping time β ∈ {0, . . . ,M}, (b) holds since λ, θ ≥ 0,
(c) follows from Chernoff’s bound, (d) follows from the definition in (2.80), and finally (e) follows from
(2.88). Since (2.89) holds for every M ∈ N, then from the continuity theorem for non-decreasing events
and (2.89)

P(∃n ∈ N : Sn ≥ z,Qn ≤ r)

= lim
M→∞

P(∃n ≤M : Sn ≥ z,Qn ≤ r)

≤ exp
(
−(λz − θr)

)
. (2.90)

The choice of the non-negative parameter θ as the minimal value for which (2.90) is valid provides the
tightest bound within this form. Hence, without assuming the conditional symmetry property for the
martingale {Xn,Fn}, let (see Lemma 4) θ = exp(λ) − λ− 1. This gives that for every z, r > 0,

P(∃n ∈ N : Sn ≥ z,Qn ≤ r) ≤ exp
(
−
[
λz −

(
exp(λ) − λ− 1

)
r
])
, ∀λ ≥ 0.



2.4. FREEDMAN’S INEQUALITY AND A REFINED VERSION 35

The minimization w.r.t. λ gives that λ = ln
(
1 + z

r

)
, and its substitution in the bound yields that

P(∃n ∈ N : Sn ≥ z,Qn ≤ r) ≤ exp

(
−z

2

2r
· B
(z
r

))
(2.91)

where the function B is introduced in (2.79).
Furthermore, under the assumption that the martingale {Xn,Fn}n∈N0 is conditionally symmetric, let

θ = θmin(λ) (see Lemma 6) for obtaining the tightest bound in (2.90) for a fixed λ ≥ 0. This gives the
inequality

P(∃n ∈ N : Sn ≥ z,Qn ≤ r) ≤ exp
(
−
[
λz − r θmin(λ)

])
, ∀λ ≥ 0.

The optimized λ is equal to λ = sinh−1
(

z
r

)
. Its substitution in (2.87) gives that θmin(λ) =

√
1 + z2

r2 − 1,

and

P(∃n ∈ N : Sn ≥ z,Qn ≤ r) ≤ exp

(
−z

2

2r
· C
(z
r

))
(2.92)

where the function C is introduced in (2.77).
Finally, the proof of Theorems 8 and 9 is completed by showing that the following equality holds:

A , {∃n ∈ N : Sn ≥ z,Qn ≤ r}
= {∃n ∈ N : max

1≤k≤n
Sk ≥ z,Qn ≤ r} , B. (2.93)

Clearly A ⊆ B, so one needs to show that B ⊆ A. To this end, assume that event B is satisfied.
Then, there exists some n ∈ N and k ∈ {1, . . . , n} such that Sk ≥ z and Qn ≤ r. Since the predictable
quadratic variation process {Qn}n∈N0 in (2.75) is monotonic non-decreasing, then it implies that Sk ≥ z
and Qk ≤ r; therefore, event A is also satisfied and B ⊆ A. The combination of (2.92) and (2.93)
completes the proof of Theorem 8, and respectively the combination of (2.91) and (2.93) completes the
proof of Theorem 9.

Freedman’s inequality can be easily specialized to a concentration inequality for a sum of centered
(zero-mean) independent and bounded random variables (see Example 1). This specialization reduces
to a concentration inequality of Bennett (see [77]), which can be loosened to get Bernstein’s inequality
(as is explained below). Furthermore, the refined inequality in Theorem 8 for conditionally symmetric
martingales with bounded jumps can be specialized (again, via Example 1) to an improved concentration
inequality for a sum of i.i.d. and bounded random variables that are symmetrically distributed around
zero. This leads to the following result:

Corollary 5. Let {Ui}n
i=1 be i.i.d. and bounded random variables such that E[U1] = 0, E[U2

1 ] = σ2, and
|U1| ≤ d a.s. for some constant d > 0. Then, the following inequality holds:

P

(∣∣∣∣∣

n∑

i=1

Ui

∣∣∣∣∣ ≥ α

)
≤ 2 exp

(
−nσ

2

d2
· φ1

(
αd

nσ2

))
, ∀α > 0 (2.94)

where φ1(x) , (1 + x) ln(1 + x) − x for every x > 0. Furthermore, if the i.i.d. and bounded random
variables {Ui}n

i=1 have a symmetric distribution around zero, then the bound in (2.94) can be improved
to

P

(∣∣∣∣∣

n∑

i=1

Ui

∣∣∣∣∣ ≥ α

)
≤ 2 exp

(
−nσ

2

d2
· φ2

(
αd

nσ2

))
, ∀α > 0 (2.95)

where φ2(x) , x sinh−1(x) −
√

1 + x2 + 1 for every x > 0.
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Proof. Inequality (2.94) follows from Freedman’s inequality in Theorem 9, and inequality (2.95) follows
from the refinement of Freedman’s inequality for conditionally symmetric martingales in Theorem 8.
These two theorems are applied here to the martingale sequence {Xk,Fk}n

k=0 where Xk =
∑n

i=1 Ui and
Fk = σ(U1, . . . , Uk) for every k ∈ {1, . . . , n}, and X0 = 0, F0 = {∅,Ω}. The corresponding predictable
quadratic variation of the martingale up to time n for this special case of a sum of i.i.d. random variables
is Qn =

∑n
i=1 E[U2

i ] = nσ2. The result now follows by taking z = nσ2 in inequalities (2.76) and (2.78)
(with the related functions that are introduced in (2.79) and (2.77), respectively). Note that the same
bound holds for the two one-sided tail inequalities, giving the factor 2 on the right-hand sides of (2.94)
and (2.95).

Remark 11. Bennett’s concentration inequality in (2.94) can be loosened to obtain Bernstein’s inequality.
To this end, the following lower bound on φ1 is used:

φ1(x) ≥
x2

2 + 2x
3

, ∀x > 0.

This gives the inequality

P

(∣∣∣∣∣

n∑

i=1

Ui

∣∣∣∣∣ ≥ α

)
≤ 2 exp

(
− α2

2nσ2 + 2αd
3

)
, ∀α > 0.

2.5 Relations of the refined inequalities to some classical results in

probability theory

2.5.1 Link between the martingale central limit theorem (CLT) and Proposition 1

In this subsection, we discuss the relation between the martingale CLT and the concentration inequalities
for discrete-parameter martingales in Proposition 1.

Let (Ω,F ,P) be a probability space. Given a filtration {Fk}, then {Yk,Fk}∞k=0 is said to be a
martingale-difference sequence if, for every k,

1. Yk is Fk-measurable,

2. E[|Yk|] <∞,

3. E
[
Yk | Fk−1

]
= 0.

Let

Sn =
n∑

k=1

Yk, ∀n ∈ N

and S0 = 0, then {Sk,Fk}∞k=0 is a martingale. Assume that the sequence of RVs {Yk} is bounded, i.e.,
there exists a constant d such that |Yk| ≤ d a.s., and furthermore, assume that the limit

σ2 , lim
n→∞

1

n

n∑

k=1

E
[
Y 2

k | Fk−1

]

exists in probability and is positive. The martingale CLT asserts that, under the above conditions, Sn√
n

converges in distribution (i.e., weakly converges) to the Gaussian distribution N (0, σ2). It is denoted
by Sn√

n
⇒ N (0, σ2). We note that there exist more general versions of this statement (see, e.g., [78,

pp. 475–478]).
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Let {Xk,Fk}∞k=0 be a discrete-parameter real-valued martingale with bounded jumps, and assume
that there exists a constant d so that a.s. for every k ∈ N

|Xk −Xk−1| ≤ d, ∀ k ∈ N.

Define, for every k ∈ N,

Yk , Xk −Xk−1

and Y0 , 0, so {Yk,Fk}∞k=0 is a martingale-difference sequence, and |Yk| ≤ d a.s. for every k ∈ N ∪ {0}.
Furthermore, for every n ∈ N,

Sn ,

n∑

k=1

Yk = Xn −X0.

Under the assumptions in Theorem 5 and its subsequences, for every k ∈ N, one gets a.s. that

E[Y 2
k | Fk−1] = E[(Xk −Xk−1)

2 | Fk−1] ≤ σ2.

Lets assume that this inequality holds a.s. with equality. It follows from the martingale CLT that

Xn −X0√
n

⇒ N (0, σ2)

and therefore, for every α ≥ 0,

lim
n→∞

P(|Xn −X0| ≥ α
√
n) = 2Q

(α
σ

)

where the Q function is introduced in (2.11).

Based on the notation in (2.34), the equality α
σ = δ√

γ holds, and

lim
n→∞

P(|Xn −X0| ≥ α
√
n) = 2Q

(
δ√
γ

)
. (2.96)

Since, for every x ≥ 0,

Q(x) ≤ 1

2
exp

(
−x

2

2

)

then it follows that for every α ≥ 0

lim
n→∞

P(|Xn −X0| ≥ α
√
n) ≤ exp

(
− δ2

2γ

)
.

This inequality coincides with the asymptotic result of the inequalities in Proposition 1 (see (2.73) in the
limit where n→ ∞), except for the additional factor of 2. Note also that the proof of the concentration
inequalities in Proposition 1 (see Appendix 2.A) provides inequalities that are informative for finite n,
and not only in the asymptotic case where n tends to infinity. Furthermore, due to the exponential
upper and lower bounds of the Q-function in (2.12), then it follows from (2.96) that the exponent in the

concentration inequality (2.73) (i.e., δ2

2γ ) cannot be improved under the above assumptions (unless some
more information is available).
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2.5.2 Relation between the law of the iterated logarithm (LIL) and Theorem 5

In this subsection, we discuss the relation between the law of the iterated logarithm (LIL) and Theorem 5.

According to the law of the iterated logarithm (see, e.g., [78, Theorem 9.5]) if {Xk}∞k=1 are i.i.d.
real-valued RVs with zero mean and unit variance, and Sn ,

∑n
i=1Xi for every n ∈ N, then

lim sup
n→∞

Sn√
2n ln lnn

= 1 a.s. (2.97)

and

lim inf
n→∞

Sn√
2n ln lnn

= −1 a.s. (2.98)

Eqs. (2.97) and (2.98) assert, respectively, that for every ε > 0, along almost any realization,

Sn > (1 − ε)
√

2n ln lnn

and

Sn < −(1 − ε)
√

2n ln lnn

are satisfied infinitely often (i.o.). On the other hand, Eqs. (2.97) and (2.98) imply that along almost any
realization, each of the two inequalities

Sn > (1 + ε)
√

2n ln lnn

and

Sn < −(1 + ε)
√

2n ln lnn

is satisfied for a finite number of values of n.

Let {Xk}∞k=1 be i.i.d. real-valued RVs, defined over the probability space (Ω,F ,P), with E[X1] = 0
and E[X2

1 ] = 1.

Let us define the natural filtration where F0 = {∅,Ω}, and Fk = σ(X1, . . . ,Xk) is the σ-algebra that
is generated by the RVs X1, . . . ,Xk for every k ∈ N. Let S0 = 0 and Sn be defined as above for every
n ∈ N. It is straightforward to verify by Definition 1 that {Sn,Fn}∞n=0 is a martingale.

In order to apply Theorem 5 to the considered case, let us assume that the RVs {Xk}∞k=1 are uniformly
bounded, i.e., it is assumed that there exists a constant c such that |Xk| ≤ c a.s. for every k ∈ N. Since
E[X2

1 ] = 1 then c ≥ 1. This assumption implies that the martingale {Sn,Fn}∞n=0 has bounded jumps,
and for every n ∈ N

|Sn − Sn−1| ≤ c a.s.

Moreover, due to the independence of the RVs {Xk}∞k=1, then

Var(Sn | Fn−1) = E(X2
n | Fn−1) = E(X2

n) = 1 a.s..

From Theorem 5, it follows that for every α ≥ 0

P

(
Sn ≥ α

√
2n ln lnn

)
≤ exp

(
−nD

(δn + γ

1 + γ

∣∣∣
∣∣∣
γ

1 + γ

))
(2.99)

where

δn ,
α

c

√
2 ln lnn

n
, γ ,

1

c2
. (2.100)
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Straightforward calculation shows that

nD
(δn + γ

1 + γ

∣∣∣
∣∣∣
γ

1 + γ

)

=
nγ

1 + γ

[(
1 +

δn
γ

)
ln
(
1 +

δn
γ

)
+

1

γ
(1 − δn) ln(1 − δn)

]

(a)
=

nγ

1 + γ

[
δ2n
2

( 1

γ2
+

1

γ

)
+
δ3n
6

( 1

γ
− 1

γ3

)
+ . . .

]

=
nδ2n
2γ

− nδ3n(1 − γ)

6γ2
+ . . .

(b)
= α2 ln lnn

[
1 − α(c2 − 1)

6c

√
ln lnn

n
+ . . .

]
(2.101)

where equality (a) follows from the power series expansion

(1 + u) ln(1 + u) = u+

∞∑

k=2

(−u)k
k(k − 1)

, −1 < u ≤ 1

and equality (b) follows from (2.100). A substitution of (2.101) into (2.99) gives that, for every α ≥ 0,

P

(
Sn ≥ α

√
2n ln lnn

)
≤
(
lnn

)−α2

[
1+O

(√
ln ln n

n

)]

(2.102)

and the same bound also applies to P
(
Sn ≤ −α

√
2n ln lnn

)
for α ≥ 0. This provides complementary

information to the limits in (2.97) and (2.98) that are provided by the LIL. From Remark 6, which follows
from Doob’s maximal inequality for sub-martingales, the inequality in (2.102) can be strengthened to

P

(
max

1≤k≤n
Sk ≥ α

√
2n ln lnn

)
≤
(
lnn

)−α2

[
1+O

(√
ln ln n

n

)]

. (2.103)

It is shown in the following that (2.103) and the first Borel-Cantelli lemma can serve to prove one part
of (2.97). Using this approach, it is shown that if α > 1, then the probability that Sn > α

√
2n ln lnn i.o.

is zero. To this end, let θ > 1 be set arbitrarily, and define

An =
⋃

k: θn−1≤k≤θn

{
Sk ≥ α

√
2k ln ln k

}

for every n ∈ N. Hence, the union of these sets is

A ,
⋃

n∈N

An =
⋃

k∈N

{
Sk ≥ α

√
2k ln ln k

}

The following inequalities hold (since θ > 1):

P(An) ≤ P

(
max

θn−1≤k≤θn
Sk ≥ α

√
2θn−1 ln ln(θn−1)

)

= P

(
max

θn−1≤k≤θn
Sk ≥ α√

θ

√
2θn ln ln(θn−1)

)

≤ P

(
max

1≤k≤θn
Sk ≥ α√

θ

√
2θn ln ln(θn−1)

)

≤ (n ln θ)−
α2

θ

(
1+βn) (2.104)
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where the last inequality follows from (2.103) with βn → 0 as n→ ∞. Since

∞∑

n=1

n−
α2

θ <∞, ∀α >
√
θ

then it follows from the first Borel-Cantelli lemma that P(A i.o.) = 0 for all α >
√
θ. But the event A

does not depend on θ, and θ > 1 can be made arbitrarily close to 1. This asserts that P(A i.o.) = 0 for
every α > 1, or equivalently

lim sup
n→∞

Sn√
2n ln lnn

≤ 1 a.s.

Similarly, by replacing {Xi} with {−Xi}, it follows that

lim inf
n→∞

Sn√
2n ln lnn

≥ −1 a.s.

Theorem 5 therefore gives inequality (2.103), and it implies one side in each of the two equalities for the
LIL in (2.97) and (2.98).

2.5.3 Relation of Theorem 5 with the moderate deviations principle

According to the moderate deviations theorem (see, e.g., [69, Theorem 3.7.1]) in R, let {Xi}n
i=1 be a

sequence of real-valued i.i.d. RVs such that ΛX(λ) = E[eλXi ] < ∞ in some neighborhood of zero, and
also assume that E[Xi] = 0 and σ2 = Var(Xi) > 0. Let {an}∞n=1 be a non-negative sequence such that
an → 0 and nan → ∞ as n→ ∞, and let

Zn ,

√
an

n

n∑

i=1

Xi, ∀n ∈ N. (2.105)

Then, for every measurable set Γ ⊆ R,

− 1

2σ2
inf

x∈Γ0
x2

≤ lim inf
n→∞

an ln P(Zn ∈ Γ)

≤ lim sup
n→∞

an ln P(Zn ∈ Γ)

≤ − 1

2σ2
inf
x∈Γ

x2 (2.106)

where Γ0 and Γ designate, respectively, the interior and closure sets of Γ.
Let η ∈ (1

2 , 1) be an arbitrary fixed number, and let {an}∞n=1 be the non-negative sequence

an = n1−2η, ∀n ∈ N

so that an → 0 and nan → ∞ as n → ∞. Let α ∈ R
+, and Γ , (−∞,−α] ∪ [α,∞). Note that, from

(2.105),

P

(∣∣∣
n∑

i=1

Xi

∣∣∣ ≥ αnη

)
= P(Zn ∈ Γ)

so from the moderate deviations principle (MDP), for every α ≥ 0,

lim
n→∞

n1−2η ln P

(∣∣∣
n∑

i=1

Xi

∣∣∣ ≥ αnη

)
= − α2

2σ2
. (2.107)
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It is demonstrated in Appendix 2.B that, in contrast to Azuma’s inequality, Theorem 5 provides an upper
bound on the probability

P

(∣∣∣
n∑

i=1

Xi

∣∣∣ ≥ αnη

)
, ∀n ∈ N, α ≥ 0

which coincides with the asymptotic limit in (2.107). The analysis in Appendix 2.B provides another
interesting link between Theorem 5 and a classical result in probability theory, which also emphasizes
the significance of the refinements of Azuma’s inequality.

2.5.4 Relation of the concentration inequalities for martingales to discrete-time
Markov chains

A striking well-known relation between discrete-time Markov chains and martingales is the following
(see, e.g., [79, p. 473]): Let {Xn}n∈N0 (N0 , N ∪ {0}) be a discrete-time Markov chain taking values in
a countable state space S with transition matrix P, and let the function ψ : S → S be harmonic (i.e.,∑

j∈S pi,jψ(j) = ψ(i), ∀ i ∈ S), and assume that E[|ψ(Xn)|] < ∞ for every n. Then, {Yn,Fn}n∈N0 is a

martingale where Yn , ψ(Xn) and {Fn}n∈N0 is the natural filtration. This relation, which follows directly
from the Markov property, enables to apply the concentration inequalities in Section 2.3 for harmonic
functions of Markov chains when the function ψ is bounded (so that the jumps of the martingale sequence
are uniformly bounded).

Exponential deviation bounds for an important class of Markov chains, called Doeblin chains (they are
characterized by an exponentially fast convergence to the equilibrium, uniformly in the initial condition)
were derived in [80]. These bounds were also shown to be essentially identical to the Hoeffding inequality
in the special case of i.i.d. RVs (see [80, Remark 1]).

2.6 Applications in information theory and related topics

2.6.1 Binary hypothesis testing

Binary hypothesis testing for finite alphabet models was analyzed via the method of types, e.g., in [81,
Chapter 11] and [82]. It is assumed that the data sequence is of a fixed length (n), and one wishes to
make the optimal decision based on the received sequence and the Neyman-Pearson ratio test.

Let the RVs X1,X2.... be i.i.d. ∼ Q, and consider two hypotheses:

• H1 : Q = P1.

• H2 : Q = P2.

For the simplicity of the analysis, let us assume that the RVs are discrete, and take their values on a
finite alphabet X where P1(x), P2(x) > 0 for every x ∈ X .

In the following, let

L(X1, . . . ,Xn) , ln
Pn

1 (X1, . . . ,Xn)

Pn
2 (X1, . . . ,Xn)

=

n∑

i=1

ln
P1(Xi)

P2(Xi)

designate the log-likelihood ratio. By the strong law of large numbers (SLLN), if hypothesis H1 is true,
then a.s.

lim
n→∞

L(X1, . . . ,Xn)

n
= D(P1||P2) (2.108)

and otherwise, if hypothesis H2 is true, then a.s.

lim
n→∞

L(X1, . . . ,Xn)

n
= −D(P2||P1) (2.109)
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where the above assumptions on the probability mass functions P1 and P2 imply that the relative en-
tropies, D(P1||P2) and D(P2||P1), are both finite. Consider the case where for some fixed constants
λ, λ ∈ R that satisfy

−D(P2||P1) < λ ≤ λ < D(P1||P2)

one decides on hypothesis H1 if

L(X1, . . . ,Xn) > nλ

and on hypothesis H2 if

L(X1, . . . ,Xn) < nλ.

Note that if λ = λ , λ then a decision on the two hypotheses is based on comparing the normalized
log-likelihood ratio (w.r.t. n) to a single threshold (λ), and deciding on hypothesis H1 or H2 if it is,
respectively, above or below λ. If λ < λ then one decides on H1 or H2 if the normalized log-likelihood
ratio is, respectively, above the upper threshold λ or below the lower threshold λ. Otherwise, if the
normalized log-likelihood ratio is between the upper and lower thresholds, then an erasure is declared
and no decision is taken in this case.

Let

α(1)
n , Pn

1

(
L(X1, . . . ,Xn) ≤ nλ

)
(2.110)

α(2)
n , Pn

1

(
L(X1, . . . ,Xn) ≤ nλ

)
(2.111)

and

β(1)
n , Pn

2

(
L(X1, . . . ,Xn) ≥ nλ

)
(2.112)

β(2)
n , Pn

2

(
L(X1, . . . ,Xn) ≥ nλ

)
(2.113)

then α
(1)
n and β

(1)
n are the probabilities of either making an error or declaring an erasure under, respec-

tively, hypotheses H1 and H2; similarly, α
(2)
n and β

(2)
n are the probabilities of making an error under

hypotheses H1 and H2, respectively.

Let π1, π2 ∈ (0, 1) denote the a-priori probabilities of the hypotheses H1 and H2, respectively, so

P (1)
e,n = π1α

(1)
n + π2β

(1)
n (2.114)

is the probability of having either an error or an erasure, and

P (2)
e,n = π1α

(2)
n + π2β

(2)
n (2.115)

is the probability of error.

Exact Exponents

When we let n tend to infinity, the exact exponents of α
(j)
n and β

(j)
n (j = 1, 2) are derived via Cramér’s

theorem. The resulting exponents form a straightforward generalization of, e.g., [69, Theorem 3.4.3] and
[83, Theorem 6.4] that addresses the case where the decision is made based on a single threshold of the
log-likelihood ratio. In this particular case where λ = λ , λ, the option of erasures does not exist, and

P
(1)
e,n = P

(2)
e,n , Pe,n is the error probability.

In the considered general case with erasures, let

λ1 , −λ, λ2 , −λ
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then Cramér’s theorem on R yields that the exact exponents of α
(1)
n , α

(2)
n , β

(1)
n and β

(2)
n are given by

lim
n→∞

− lnα
(1)
n

n
= I(λ1) (2.116)

lim
n→∞

− lnα
(2)
n

n
= I(λ2) (2.117)

lim
n→∞

− lnβ
(1)
n

n
= I(λ2) − λ2 (2.118)

lim
n→∞

− lnβ
(2)
n

n
= I(λ1) − λ1 (2.119)

where the rate function I is given by

I(r) , sup
t∈R

(
tr −H(t)

)
(2.120)

and

H(t) = ln

(
∑

x∈X
P1(x)

1−tP2(x)
t

)
, ∀ t ∈ R. (2.121)

The rate function I is convex, lower semi-continuous (l.s.c.) and non-negative (see, e.g., [69] and [83]).
Note that

H(t) = (t− 1)Dt(P2||P1)

where Dt(P ||Q) designates Réyni’s information divergence of order t [84, Eq. (3.3)], and I in (2.120) is
the Fenchel-Legendre transform of H (see, e.g., [69, Definition 2.2.2]).

From (2.114)– (2.119), the exact exponents of P
(1)
e,n and P

(2)
e,n are equal to

lim
n→∞

− lnP
(1)
e,n

n
= min

{
I(λ1), I(λ2) − λ2

}
(2.122)

and

lim
n→∞

− lnP
(2)
e,n

n
= min

{
I(λ2), I(λ1) − λ1

}
. (2.123)

For the case where the decision is based on a single threshold for the log-likelihood ratio (i.e., λ1 =

λ2 , λ), then P
(1)
e,n = P

(2)
e,n , Pe,n, and its error exponent is equal to

lim
n→∞

− lnPe,n

n
= min

{
I(λ), I(λ) − λ

}
(2.124)

which coincides with the error exponent in [69, Theorem 3.4.3] (or [83, Theorem 6.4]). The optimal
threshold for obtaining the best error exponent of the error probability Pe,n is equal to zero (i.e., λ = 0);
in this case, the exact error exponent is equal to

I(0) = − min
0≤t≤1

ln

(
∑

x∈X
P1(x)

1−tP2(x)
t

)

, C(P1, P2) (2.125)

which is the Chernoff information of the probability measures P1 and P2 (see [81, Eq. (11.239)]), and
it is symmetric (i.e., C(P1, P2) = C(P2, P1)). Note that, from (2.120), I(0) = supt∈R

(
−H(t)

)
=

− inft∈R

(
H(t)

)
; the minimization in (2.125) over the interval [0, 1] (instead of taking the infimum of

H over R) is due to the fact that H(0) = H(1) = 0 and the function H in (2.121) is convex, so it is
enough to restrict the infimum of H to the closed interval [0, 1] for which it turns to be a minimum.
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Lower Bound on the Exponents via Theorem 5

In the following, the tightness of Theorem 5 is examined by using it for the derivation of lower bounds on
the error exponent and the exponent of the event of having either an error or an erasure. These results
will be compared in the next subsection to the exact exponents from the previous subsection.

We first derive a lower bound on the exponent of α
(1)
n . Under hypothesis H1, let us construct the

martingale sequence {Uk,Fk}n
k=0 where F0 ⊆ F1 ⊆ . . .Fn is the filtration

F0 = {∅,Ω}, Fk = σ(X1, . . . ,Xk), ∀ k ∈ {1, . . . , n}

and
Uk = EP n

1

[
L(X1, . . . ,Xn) | Fk

]
. (2.126)

For every k ∈ {0, . . . , n}

Uk = EP n
1

[
n∑

i=1

ln
P1(Xi)

P2(Xi)

∣∣∣ Fk

]

=

k∑

i=1

ln
P1(Xi)

P2(Xi)
+

n∑

i=k+1

EP n
1

[
ln
P1(Xi)

P2(Xi)

]

=
k∑

i=1

ln
P1(Xi)

P2(Xi)
+ (n− k)D(P1||P2).

In particular

U0 = nD(P1||P2), (2.127)

Un =
n∑

i=1

ln
P1(Xi)

P2(Xi)
= L(X1, . . . ,Xn) (2.128)

and, for every k ∈ {1, . . . , n},

Uk − Uk−1 = ln
P1(Xk)

P2(Xk)
−D(P1||P2). (2.129)

Let

d1 , max
x∈X

∣∣∣∣ln
P1(x)

P2(x)
−D(P1||P2)

∣∣∣∣ (2.130)

so d1 <∞ since by assumption the alphabet set X is finite, and P1(x), P2(x) > 0 for every x ∈ X . From
(2.129) and (2.130)

|Uk − Uk−1| ≤ d1

holds a.s. for every k ∈ {1, . . . , n}, and due to the statistical independence of the RVs in the sequence
{Xi}

EP n
1

[
(Uk − Uk−1)

2 | Fk−1

]

= EP1

[(
ln
P1(Xk)

P2(Xk)
−D(P1||P2)

)2
]

=
∑

x∈X

{
P1(x)

(
ln
P1(x)

P2(x)
−D(P1||P2)

)2
}

, σ2
1 . (2.131)
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Let

ε1,1 = D(P1||P2) − λ, ε2,1 = D(P2||P1) + λ (2.132)

ε1,2 = D(P1||P2) − λ, ε2,2 = D(P2||P1) + λ (2.133)

The probability of making an erroneous decision on hypothesis H2 or declaring an erasure under the

hypothesis H1 is equal to α
(1)
n , and from Theorem 5

α(1)
n , Pn

1

(
L(X1, . . . ,Xn) ≤ nλ

)

(a)
= Pn

1 (Un − U0 ≤ −ε1,1 n) (2.134)

(b)

≤ exp

(
−nD

(δ1,1 + γ1

1 + γ1

∣∣∣
∣∣∣

γ1

1 + γ1

))
(2.135)

where equality (a) follows from (2.127), (2.128) and (2.132), and inequality (b) follows from Theorem 5
with

γ1 ,
σ2

1

d2
1

, δ1,1 ,
ε1,1

d1
. (2.136)

Note that if ε1,1 > d1 then it follows from (2.129) and (2.130) that α
(1)
n is zero; in this case δ1,1 > 1,

so the divergence in (2.135) is infinity and the upper bound is also equal to zero. Hence, it is assumed
without loss of generality that δ1,1 ∈ [0, 1].

Similarly to (2.126), under hypothesis H2, let us define the martingale sequence {Uk,Fk}n
k=0 with the

same filtration and
Uk = EP n

2

[
L(X1, . . . ,Xn) | Fk

]
, ∀ k ∈ {0, . . . , n}. (2.137)

For every k ∈ {0, . . . , n}

Uk =

k∑

i=1

ln
P1(Xi)

P2(Xi)
− (n− k)D(P2||P1)

and in particular
U0 = −nD(P2||P1), Un = L(X1, . . . ,Xn). (2.138)

For every k ∈ {1, . . . , n},
Uk − Uk−1 = ln

P1(Xk)

P2(Xk)
+D(P2||P1). (2.139)

Let

d2 , max
x∈X

∣∣∣∣ln
P2(x)

P1(x)
−D(P2||P1)

∣∣∣∣ (2.140)

then, the jumps of the latter martingale sequence are uniformly bounded by d2 and, similarly to (2.131),
for every k ∈ {1, . . . , n}

EP n
2

[
(Uk − Uk−1)

2 | Fk−1

]

=
∑

x∈X

{
P2(x)

(
ln
P2(x)

P1(x)
−D(P2||P1)

)2
}

, σ2
2 . (2.141)

Hence, it follows from Theorem 5 that

β(1)
n , Pn

2

(
L(X1, . . . ,Xn) ≥ nλ

)

= Pn
2 (Un − U0 ≥ ε2,1 n) (2.142)

≤ exp

(
−nD

(δ2,1 + γ2

1 + γ2

∣∣∣
∣∣∣

γ2

1 + γ2

))
(2.143)
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where the equality in (2.142) holds due to (2.138) and (2.132), and (2.143) follows from Theorem 5 with

γ2 ,
σ2

2

d2
2

, δ2,1 ,
ε2,1

d2
(2.144)

and d2, σ2 are introduced, respectively, in (2.140) and (2.141).

From (2.114), (2.135) and (2.143), the exponent of the probability of either having an error or an
erasure is lower bounded by

lim
n→∞

− lnP
(1)
e,n

n
≥ min

i=1,2
D
(δi,1 + γi

1 + γi

∣∣∣
∣∣∣

γi

1 + γi

)
. (2.145)

Similarly to the above analysis, one gets from (2.115) and (2.133) that the error exponent is lower bounded
by

lim
n→∞

− lnP
(2)
e,n

n
≥ min

i=1,2
D
(δi,2 + γi

1 + γi

∣∣∣
∣∣∣
γi

1 + γi

)
(2.146)

where

δ1,2 ,
ε1,2

d1
, δ2,2 ,

ε2,2

d2
. (2.147)

For the case of a single threshold (i.e., λ = λ , λ) then (2.145) and (2.146) coincide, and one obtains
that the error exponent satisfies

lim
n→∞

− lnPe,n

n
≥ min

i=1,2
D
(δi + γi

1 + γi

∣∣∣
∣∣∣
γi

1 + γi

)
(2.148)

where δi is the common value of δi,1 and δi,2 (for i = 1, 2). In this special case, the zero threshold is
optimal (see, e.g., [69, p. 93]), which then yields that (2.148) is satisfied with

δ1 =
D(P1||P2)

d1
, δ2 =

D(P2||P1)

d2
(2.149)

with d1 and d2 from (2.130) and (2.140), respectively. The right-hand side of (2.148) forms a lower bound
on Chernoff information which is the exact error exponent for this special case.

Comparison of the Lower Bounds on the Exponents with those that Follow from Azuma’s
Inequality

The lower bounds on the error exponent and the exponent of the probability of having either errors or
erasures, that were derived in the previous subsection via Theorem 5, are compared in the following to
the loosened lower bounds on these exponents that follow from Azuma’s inequality.

We first obtain upper bounds on α
(1)
n , α

(2)
n , β

(1)
n and β

(2)
n via Azuma’s inequality, and then use them

to derive lower bounds on the exponents of P
(1)
e,n and P

(2)
e,n .

From (2.129), (2.130), (2.134), (2.136), and Azuma’s inequality

α(1)
n ≤ exp

(
−
δ21,1n

2

)
(2.150)

and, similarly, from (2.139), (2.140), (2.142), (2.144), and Azuma’s inequality

β(1)
n ≤ exp

(
−
δ22,1n

2

)
. (2.151)
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From (2.111), (2.113), (2.133), (2.147) and Azuma’s inequality

α(2)
n ≤ exp

(
−
δ21,2n

2

)
(2.152)

β(2)
n ≤ exp

(
−
δ22,2n

2

)
. (2.153)

Therefore, it follows from (2.114), (2.115) and (2.150)–(2.153) that the resulting lower bounds on the

exponents of P
(1)
e,n and P

(2)
e,n are

lim
n→∞

− lnP
(j)
e,n

n
≥ min

i=1,2

δ2i,j
2
, j = 1, 2 (2.154)

as compared to (2.145) and (2.146) which give, for j = 1, 2,

lim
n→∞

− lnP
(j)
e,n

n
≥ min

i=1,2
D
(δi,j + γi

1 + γi

∣∣∣
∣∣∣

γi

1 + γi

)
. (2.155)

For the specific case of a zero threshold, the lower bound on the error exponent which follows from
Azuma’s inequality is given by

lim
n→∞

− lnP
(j)
e,n

n
≥ min

i=1,2

δ2i
2

(2.156)

with the values of δ1 and δ2 in (2.149).
The lower bounds on the exponents in (2.154) and (2.155) are compared in the following. Note that

the lower bounds in (2.154) are loosened as compared to those in (2.155) since they follow, respectively,
from Azuma’s inequality and its improvement in Theorem 5.

The divergence in the exponent of (2.155) is equal to

D
(δi,j + γi

1 + γi

∣∣∣
∣∣∣
γi

1 + γi

)

=

(
δi,j + γi

1 + γi

)
ln

(
1 +

δi,j
γi

)
+

(
1 − δi,j
1 + γi

)
ln(1 − δi,j)

=
γi

1 + γi

[(
1 +

δi,j
γi

)
ln
(
1 +

δi,j
γi

)
+

(1 − δi,j) ln(1 − δi,j)

γi

]
.

(2.157)

Lemma 7.

(1 + u) ln(1 + u) ≥
{
u+ u2

2 , u ∈ [−1, 0]

u+ u2

2 − u3

6 , u ≥ 0
(2.158)

where at u = −1, the left-hand side is defined to be zero (it is the limit of this function when u → −1
from above).

Proof. The proof relies on some elementary calculus.

Since δi,j ∈ [0, 1], then (2.157) and Lemma 7 imply that

D
(δi,j + γi

1 + γi

∣∣∣
∣∣∣
γi

1 + γi

)
≥
δ2i,j
2γi

−
δ3i,j

6γ2
i (1 + γi)

. (2.159)

Hence, by comparing (2.154) with the combination of (2.155) and (2.159), then it follows that (up to a
second-order approximation) the lower bounds on the exponents that were derived via Theorem 5 are

improved by at least a factor of
(
max γi

)−1
as compared to those that follow from Azuma’s inequality.
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Example 11. Consider two probability measures P1 and P2 where

P1(0) = P2(1) = 0.4, P1(1) = P2(0) = 0.6,

and the case of a single threshold of the log-likelihood ratio that is set to zero (i.e., λ = 0). The exact
error exponent in this case is Chernoff information that is equal to

C(P1, P2) = 2.04 · 10−2.

The improved lower bound on the error exponent in (2.148) and (2.149) is equal to 1.77 · 10−2, whereas
the loosened lower bound in (2.156) is equal to 1.39 · 10−2. In this case γ1 = 2

3 and γ2 = 7
9 , so the

improvement in the lower bound on the error exponent is indeed by a factor of approximately

(
max

i
γi

)−1

=
9

7
.

Note that, from (2.135), (2.143) and (2.150)–(2.153), these are lower bounds on the error exponents for
any finite block length n, and not only asymptotically in the limit where n → ∞. The operational
meaning of this example is that the improved lower bound on the error exponent assures that a fixed
error probability can be obtained based on a sequence of i.i.d. RVs whose length is reduced by 22.2% as
compared to the loosened bound which follows from Azuma’s inequality.

Comparison of the Exact and Lower Bounds on the Error Exponents, Followed by a Relation
to Fisher Information

In the following, we compare the exact and lower bounds on the error exponents. Consider the case
where there is a single threshold on the log-likelihood ratio (i.e., referring to the case where the erasure
option is not provided) that is set to zero. The exact error exponent in this case is given by the Chernoff
information (see (2.125)), and it will be compared to the two lower bounds on the error exponents that
were derived in the previous two subsections.

Let {Pθ}θ∈Θ, denote an indexed family of probability mass functions where Θ denotes the parameter
set. Assume that Pθ is differentiable in the parameter θ. Then, the Fisher information is defined as

J(θ) , Eθ

[
∂

∂θ
lnPθ(x)

]2

(2.160)

where the expectation is w.r.t. the probability mass function Pθ. The divergence and Fisher information
are two related information measures, satisfying the equality

lim
θ′→θ

D(Pθ||Pθ′)

(θ − θ′)2
=
J(θ)

2
(2.161)

(note that if it was a relative entropy to base 2 then the right-hand side of (2.161) would have been

divided by ln 2, and be equal to J(θ)
ln 4 as in [81, Eq. (12.364)]).

Proposition 2. Under the above assumptions,

• The Chernoff information and Fisher information are related information measures that satisfy the equal-
ity

lim
θ′→θ

C(Pθ, Pθ′)

(θ − θ′)2
=
J(θ)

8
. (2.162)
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• Let

EL(Pθ, Pθ′) , min
i=1,2

D
(δi + γi

1 + γi

∣∣∣
∣∣∣

γi

1 + γi

)
(2.163)

be the lower bound on the error exponent in (2.148) which corresponds to P1 , Pθ and P2 , Pθ′ , then
also

lim
θ′→θ

EL(Pθ, Pθ′)

(θ − θ′)2
=
J(θ)

8
. (2.164)

• Let

ẼL(Pθ, Pθ′) , min
i=1,2

δ2i
2

(2.165)

be the loosened lower bound on the error exponent in (2.156) which refers to P1 , Pθ and P2 , Pθ′ .
Then,

lim
θ′→θ

ẼL(Pθ, Pθ′)

(θ − θ′)2
=
a(θ)J(θ)

8
(2.166)

for some deterministic function a bounded in [0, 1], and there exists an indexed family of probability mass
functions for which a(θ) can be made arbitrarily close to zero for any fixed value of θ ∈ Θ.

Proof. See Appendix 2.C.

Proposition 2 shows that, in the considered setting, the refined lower bound on the error exponent
provides the correct behavior of the error exponent for a binary hypothesis testing when the relative
entropy between the pair of probability mass functions that characterize the two hypotheses tends to
zero. This stays in contrast to the loosened error exponent, which follows from Azuma’s inequality,
whose scaling may differ significantly from the correct exponent (for a concrete example, see the last part
of the proof in Appendix 2.C).

Example 12. Consider the index family of of probability mass functions defined over the binary alphabet
X = {0, 1}:

Pθ(0) = 1 − θ, Pθ(1) = θ, ∀ θ ∈ (0, 1).

From (2.160), the Fisher information is equal to

J(θ) =
1

θ
+

1

1 − θ

and, at the point θ = 0.5, J(θ) = 4. Let θ1 = 0.51 and θ2 = 0.49, so from (2.162) and (2.164)

C(Pθ1 , Pθ2), EL(Pθ1 , Pθ2) ≈
J(θ)(θ1 − θ2)

2

8
= 2.00 · 10−4.

Indeed, the exact values of C(Pθ1 , Pθ2) and EL(Pθ1 , Pθ2) are 2.000 · 10−4 and 1.997 · 10−4, respectively.

2.6.2 Minimum distance of binary linear block codes

Consider the ensemble of binary linear block codes of length n and rate R. The average value of the
normalized minimum distance is equal to

E[dmin(C)]

n
= h−1

2 (1 −R)

where h−1
2 designates the inverse of the binary entropy function to the base 2, and the expectation is

with respect to the ensemble where the codes are chosen uniformly at random (see [85]).
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Let H designate an n(1 − R) × n parity-check matrix of a linear block code C from this ensemble.
The minimum distance of the code is equal to the minimal number of columns in H that are linearly
dependent. Note that the minimum distance is a property of the code, and it does not depend on the
choice of the particular parity-check matrix which represents the code.

Let us construct a martingale sequence X0, . . . ,Xn where Xi (for i = 0, 1, . . . , n) is a RV that denotes
the minimal number of linearly dependent columns of a parity-check matrix that is chosen uniformly
at random from the ensemble, given that we already revealed its first i columns. Based on Remarks 2
and 3, this sequence forms indeed a martingale sequence where the associated filtration of the σ-algebras
F0 ⊆ F1 ⊆ . . . ⊆ Fn is defined so that Fi (for i = 0, 1, . . . , n) is the σ-algebra that is generated by all the
sub-sets of n(1 − R) × n binary parity-check matrices whose first i columns are fixed. This martingale
sequence satisfies |Xi−Xi−1| ≤ 1 for i = 1, . . . , n (since if we reveal a new column of H, then the minimal
number of linearly dependent columns can change by at most 1). Note that the RV X0 is the expected
minimum Hamming distance of the ensemble, and Xn is the minimum distance of a particular code from
the ensemble (since once we revealed all the n columns of H, then the code is known exactly). Hence, by
Azuma’s inequality

P(|dmin(C) − E[dmin(C)]| ≥ α
√
n) ≤ 2 exp

(
−α

2

2

)
, ∀α > 0.

This leads to the following theorem:

Theorem 10. [The minimum distance of binary linear block codes] Let C be chosen uniformly
at random from the ensemble of binary linear block codes of length n and rate R. Then for every α > 0,

with probability at least 1 − 2 exp
(
−α2

2

)
, the minimum distance of C is in the interval

[nh−1
2 (1 −R) − α

√
n, n h−1

2 (1 −R) + α
√
n]

and it therefore concentrates around its expected value.

Note, however, that some well-known capacity-approaching families of binary linear block codes pos-
sess a minimum Hamming distance which grows sub-linearly with the block length n. For example, the
class of parallel concatenated convolutional (turbo) codes was proved to have a minimum distance which
grows at most like the logarithm of the interleaver length [86].

2.6.3 Concentration of the cardinality of the fundamental system of cycles for LDPC
code ensembles

Low-density parity-check (LDPC) codes are linear block codes that are represented by sparse parity-check
matrices [87]. A sparse parity-check matrix enables to represent the corresponding linear block code by a
sparse bipartite graph, and to use this graphical representation for implementing low-complexity iterative
message-passing decoding. The low-complexity decoding algorithms used for LDPC codes and some of
their variants are remarkable in that they achieve rates close to the Shannon capacity limit for properly
designed code ensembles (see, e.g., [12]). As a result of their remarkable performance under practical
decoding algorithms, these coding techniques have revolutionized the field of channel coding and they
have been incorporated in various digital communication standards during the last decade.

In the following, we consider ensembles of binary LDPC codes. The codes are represented by bipartite
graphs where the variable nodes are located on the left side of the graph, and the parity-check nodes are
on the right. The parity-check equations that define the linear code are represented by edges connecting
each check node with the variable nodes that are involved in the corresponding parity-check equation.
The bipartite graphs representing these codes are sparse in the sense that the number of edges in the
graph scales linearly with the block length n of the code. Following standard notation, let λi and ρi

denote the fraction of edges attached, respectively, to variable and parity-check nodes of degree i. The
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LDPC code ensemble is denoted by LDPC(n, λ, ρ) where n is the block length of the codes, and the pair
λ(x) ,

∑
i λix

i−1 and ρ(x) ,
∑

i ρix
i−1 represents, respectively, the left and right degree distributions of

the ensemble from the edge perspective. For a short summary of preliminary material on binary LDPC
code ensembles see, e.g., [88, Section II-A].

It is well known that linear block codes which can be represented by cycle-free bipartite (Tanner)
graphs have poor performance even under ML decoding [89]. The bipartite graphs of capacity-approaching
LDPC codes should therefore have cycles. For analyzing this issue, we focused on the notion of ”the car-
dinality of the fundamental system of cycles of bipartite graphs”. For the required preliminary material,
the reader is referred to [88, Section II-E]. In [88], we address the following question:

Question: Consider an LDPC ensemble whose transmission takes place over a memoryless binary-input
output symmetric channel, and refer to the bipartite graphs which represent codes from this ensemble
where every code is chosen uniformly at random from the ensemble. How does the average cardinality
of the fundamental system of cycles of these bipartite graphs scale as a function of the achievable gap to
capacity ?

In light of this question, an information-theoretic lower bound on the average cardinality of the
fundamental system of cycles was derived in [88, Corollary 1]. This bound was expressed in terms of
the achievable gap to capacity (even under ML decoding) when the communication takes place over a
memoryless binary-input output-symmetric channel. More explicitly, it was shown that if ε designates
the gap in rate to capacity, then the number of fundamental cycles should grow at least like log 1

ε . Hence,
this lower bound remains unbounded as the gap to capacity tends to zero. Consistently with the study
in [89] on cycle-free codes, the lower bound on the cardinality of the fundamental system of cycles in [88,
Corollary 1] shows quantitatively the necessity of cycles in bipartite graphs which represent good LDPC
code ensembles. As a continuation to this work, we present in the following a large-deviations analysis
with respect to the cardinality of the fundamental system of cycles for LDPC code ensembles.

Let the triple (n, λ, ρ) represent an LDPC code ensemble, and let G be a bipartite graph that cor-
responds to a code from this ensemble. Then, the cardinality of the fundamental system of cycles of G,
denoted by β(G), is equal to

β(G) = |E(G)| − |V (G)| + c(G)

where E(G), V (G) and c(G) denote the edges, vertices and components of G, respectively, and |A| denotes
the number of elements of a (finite) set A. Note that for such a bipartite graph G, there are n variable
nodes and m = n(1 − Rd) parity-check nodes, so there are in total |V (G)| = n(2 − Rd) nodes. Let aR

designate the average right degree (i.e., the average degree of the parity-check nodes), then the number
of edges in G is given by |E(G)| = maR. Therefore, for a code from the (n, λ, ρ) LDPC code ensemble,
the cardinality of the fundamental system of cycles satisfies the equality

β(G) = n
[
(1 −Rd)aR − (2 −Rd)

]
+ c(G) (2.167)

where

Rd = 1 −
∫ 1
0 ρ(x) dx
∫ 1
0 λ(x) dx

, aR =
1

∫ 1
0 ρ(x) dx

denote, respectively, the design rate and average right degree of the ensemble.
Let

E , |E(G)| = n(1 −Rd)aR (2.168)

denote the number of edges of an arbitrary bipartite graph G from the ensemble (where we refer inter-
changeably to codes and to the bipartite graphs that represent these codes from the considered ensemble).
Let us arbitrarily assign numbers 1, . . . , E to the E edges of G. Based on Remarks 2 and 3, lets construct
a martingale sequence X0, . . . ,XE where Xi (for i = 0, 1, . . . , E) is a RV that denotes the conditional
expected number of components of a bipartite graph G, chosen uniformly at random from the ensem-
ble, given that the first i edges of the graph G are revealed. Note that the corresponding filtration
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F0 ⊆ F1 ⊆ . . . ⊆ FE in this case is defined so that Fi is the σ-algebra that is generated by all the sets of
bipartite graphs from the considered ensemble whose first i edges are fixed. For this martingale sequence

X0 = ELDPC(n,λ,ρ)[β(G)], XE = β(G)

and (a.s.) |Xk−Xk−1| ≤ 1 for k = 1, . . . , E (since by revealing a new edge of G, the number of components
in this graph can change by at most 1). By Corollary 1, it follows that for every α ≥ 0

P
(
|c(G) − ELDPC(n,λ,ρ)[c(G)]| ≥ αE

)
≤ 2e−f(α)E

⇒ P
(
|β(G) − ELDPC(n,λ,ρ)[β(G)]| ≥ αE

)
≤ 2e−f(α)E (2.169)

where the last transition follows from (2.167), and the function f was defined in (2.49). Hence, for α > 1,
this probability is zero (since f(α) = +∞ for α > 1). Note that, from (2.167), ELDPC(n,λ,ρ)[β(G)] scales
linearly with n. The combination of Eqs. (2.49), (2.168), (2.169) gives the following statement:

Theorem 11. [Concentration result for the cardinality of the fundamental system of cycles]
Let LDPC(n, λ, ρ) be the LDPC code ensemble that is characterized by a block length n, and a pair of
degree distributions (from the edge perspective) of λ and ρ. Let G be a bipartite graph chosen uniformly
at random from this ensemble. Then, for every α ≥ 0, the cardinality of the fundamental system of cycles
of G, denoted by β(G), satisfies the following inequality:

P
(
|β(G) − ELDPC(n,λ,ρ)[β(G)]| ≥ αn

)
≤ 2 · 2−[1−h2( 1−η

2 )]n

where h2 designates the binary entropy function to the base 2, η , α
(1−Rd) aR

, and Rd and aR designate,
respectively, the design rate and average right degree of the ensemble. Consequently, if η > 1, this
probability is zero.

Remark 12. The loosened version of Theorem 11, which follows from Azuma’s inequality, gets the form

P
(
|β(G) − ELDPC(n,λ,ρ)[β(G)]| ≥ αn

)
≤ 2e−

η2n
2

for every α ≥ 0, and η as defined in Theorem 11. Note, however, that the exponential decay of the two
bounds is similar for values of α close to zero (see the exponents in Azuma’s inequality and Corollary 1
in Figure 2.1).

Remark 13. For various capacity-achieving sequences of LDPC code ensembles on the binary erasure
channel, the average right degree scales like log 1

ε where ε denotes the fractional gap to capacity under
belief-propagation decoding (i.e., Rd = (1 − ε)C) [27]. Therefore, for small values of α, the exponential

decay rate in the inequality of Theorem 11 scales like
(
log 1

ε

)−2
. This large-deviations result complements

the result in [88, Corollary 1] which provides a lower bound on the average cardinality of the fundamental
system of cycles that scales like log 1

ε .

Remark 14. Consider small deviations from the expected value that scale like
√
n. Note that Corollary 1

is a special case of Theorem 5 when γ = 1 (i.e., when only an upper bound on the jumps of the martingale
sequence is available, but there is no non-trivial upper bound on the conditional variance). Hence, it
follows from Proposition 1 that Corollary 1 does not provide in this case any improvement in the exponent
of the concentration inequality (as compared to Azuma’s inequality) when small deviations are considered.

2.6.4 Concentration Theorems for LDPC Code Ensembles over ISI channels

Concentration analysis on the number of erroneous variable-to-check messages for random ensembles of
LDPC codes was introduced in [28] and [90] for memoryless channels. It was shown that the performance
of an individual code from the ensemble concentrates around the expected (average) value over this
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Figure 2.2: Message flow neighborhood of depth 1. In this figure (I,W, dv = L, dc = R) = (1, 1, 2, 3)

ensemble when the length of the block length of the code grows and that this average behavior converges to
the behavior of the cycle-free case. These results were later generalized in [91] for the case of intersymbol-
interference (ISI) channels. The proofs of [91, Theorems 1 and 2], which refer to regular LDPC code
ensembles, are revisited in the following in order to derive an explicit expression for the exponential
rate of the concentration inequality. It is then shown that particularizing the expression for memoryless
channels provides a tightened concentration inequality as compared to [28] and [90]. The presentation in
this subsection is based on a recent work by Ronen Eshel [92].

The ISI Channel and its message-passing decoding

In the following, we briefly describe the ISI channel and the graph used for its message-passing decoding.
For a detailed description, the reader is referred to [91]. Consider a binary discrete-time ISI channel with
a finite memory length, denoted by I . The channel output Yj at time instant j is given by

Yj =

I∑

i=0

hiXj−i +Nj, ∀ j ∈ Z

where {Xj} is the binary input sequence (Xj ∈ {+1,−1}), {hi}I
i=0 refers to the input response of the ISI

channel, and {Nj} ∼ N(0, σ2) is a sequence of i.i.d. Gaussian random variables with zero mean. It is
assumed that an information block of length k is encoded by using a regular (n, dv, dc) LDPC code, and
the resulting n coded bits are converted to the channel input sequence before its transmission over the
channel. For decoding, we consider the windowed version of the sum-product algorithm when applied
to ISI channels (for specific details about this decoding algorithm, the reader is referred to [91] and
[93]; in general, it is an iterative message-passing decoding algorithm). The variable-to-check and check-
to-variable messages are computed as in the sum-product algorithm for the memoryless case with the
difference that a variable node’s message from the channel is not only a function of the channel output
that corresponds to the considered symbol but also a function of 2W neighboring channel outputs and
2W neighboring variables nodes as illustrated in Fig. 2.2.

Concentration

It is proved in this sub-section that for a large n, a neighborhood of depth ` of a variable-to-check node
message is tree-like with high probability. Using the Azuma-Hoeffding inequality and the later result,
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it is shown that for most graphs and channel realizations, if s is the transmitted codeword, then the
probability of a variable-to-check message being erroneous after ` rounds of message-passing decoding is
highly concentrated around its expected value. This expected value is shown to converge to the value of
p(`)(s) which corresponds to the cycle-free case.

In the following theorems, we consider an ISI channel and windowed message-passing decoding al-
gorithm, when the code graph is chosen uniformly at random from the ensemble of the graphs with

variable and check node degree dv and dc, respectively. Let N (`)
~e denote the neighborhood of depth ` of

an edge ~e = (v, c) between a variable-to-check node. Let N
(`)
c , N

(`)
v and N

(`)
e denote, respectively, the

total number of check nodes, variable nodes and code related edges in this neighborhood. Similarly, let

N
(`)
Y denote the number of variable-to-check node messages in the directed neighborhood of depth ` of a

received symbol of the channel.

Theorem 12. [Probability of a neighborhood of depth ` of a variable-to-check node message

to be tree-like for channels with ISI] Let P
(`)

t
≡ Pr

{
N (`)

~e not a tree
}

denote the probability that

the sub-graph N (`)
~e is not a tree (i.e., it does not contain cycles). Then, there exists a positive constant

γ , γ(dv, dc, `) that does not depend on the block-length n such that P
(`)

t
≤ γ

n . More explicitly, one can

choose γ(dv, dc, `) ,
(
N

(`)
v

)2
+
(

dc
dv

·N (`)
c

)2
.

Proof. This proof forms a straightforward generalization of the proof in [28] (for binary-input output-
symmetric memoryless channels) to binary-input ISI channels. A detailed proof is available in [92].

The following concentration inequalities follow from Theorem 12 and the Azuma-Hoeffding inequality:

Theorem 13. [Concentration of the number of erroneous variable-to-check messages for
channels with ISI] Let s be the transmitted codeword. Let Z(`)(s) be the number of erroneous variable-
to-check messages after ` rounds of the windowed message-passing decoding algorithm when the code
graph is chosen uniformly at random from the ensemble of the graphs with variable and check node
degrees dv and dc, respectively. Let p(`)(s) be the expected fraction of incorrect messages passed through
an edge with a tree-like directed neighborhood of depth `. Then, there exist some positive constants β
and γ that do not depend on the block-length n such that

[Concentration around expectation] For any ε > 0

P

(∣∣∣∣∣
Z(`)(s)

ndv

− E[Z(`)(s)]

ndv

∣∣∣∣∣ > ε/2

)
≤ 2e−βε2n. (2.170)

[Convergence of expectation to the cycle-free case] For any ε > 0 and n > 2γ
ε , we have a.s.

∣∣∣∣∣
E[Z(`)(s)]

ndv

− p(`)(s)

∣∣∣∣∣ ≤ ε/2. (2.171)

[Concentration around the cycle-free case] For any ε > 0 and n > 2γ
ε

P

(∣∣∣∣∣
Z(`)(s)

ndv

− p(`)(s)

∣∣∣∣∣ > ε

)
≤ 2e−βε2n. (2.172)

More explicitly, it holds for

β , β(dv, dc, `) =
d2
v

8
(
4dv(N

(`)
e )2 + (N

(`)
Y )2

) ,
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and

γ , γ(dv, dc, `) =
(
N (`)

v

)2
+
(dc

dv
·N (`)

c

)2
.

Proof. From the triangle inequality, we have

P

(∣∣∣∣∣
Z(`)(s)

ndv
− p(`)(s)

∣∣∣∣∣ > ε

)

≤ P

(∣∣∣∣∣
Z(`)(s)

ndv
− E[Z(`)(s)]

ndv

∣∣∣∣∣ > ε/2

)
+ P

(∣∣∣∣∣
E[Z(`)(s)]

ndv
− p(`)(s)

∣∣∣∣∣ > ε/2

)
. (2.173)

If inequality (2.171) holds a.s., then P

(∣∣∣Z
(`)(s)
ndv

− p(`)(s)
∣∣∣ > ε/2

)
= 0; therefore, using (2.173), we deduce

that (2.172) follows from (2.170) and (2.171) for any ε > 0 and n > 2γ
ε . We start by proving (2.170). For

an arbitrary sequence s, the random variable Z(`)(s) denotes the number of incorrect variable-to-check
node messages among all ndv variable-to-check node messages passed in the `th iteration for a particular
graph G and decoder-input Y . Let us form a martingale by first exposing the ndv edges of the graph
one by one, and then exposing the n received symbols Yi one by one. Let a denote the sequence of
the ndv variable-to-check node edges of the graph, followed by the sequence of the n received symbols
at the channel output. For i = 0, ...n(dv + 1), let the RV Z̃i , E[Z(`)(s)|a1, ...ai] be defined as the
conditional expectation of Z(`)(s) given the first i elements of the sequence a. Note that it forms a
martingale sequence (see Remark 2) where Z̃0 = E[Z(`)(s)] and Z̃n(dv+1) = Z(`)(s). Hence, getting an

upper bound on the sequence of differences |Z̃i+1 − Z̃i| enables to apply the Azuma-Hoeffding inequality
to prove concentration around the expected value Z̃0. To this end, lets consider the effect of exposing
an edge of the graph. Consider two graphs G and G̃ whose edges are identical except for an exchange of
an endpoint of two edges. A variable-to-check message is affected by this change if at least one of these
edges is included in its directed neighborhood of depth `.

Consider a neighborhood of depth ` of a variable-to-check node message. Since at each level, the
graph expands by a factor α ≡ (dv − 1 + 2Wdv)(dc − 1) then there are, in total

N (`)
e = 1 + dc(dv − 1 + 2Wdv)

`−1∑

i=0

αi

edges related to the code structure (variable-to-check node edges or vice versa) in the neighborhood N ~e
` .

By symmetry, the two edges can affect at most 2N
(`)
e neighborhoods (alternatively, we could directly

sum the number of variable-to-check node edges in a neighborhood of a variable-to-check node edge and
in a neighborhood of a check-to-variable node edge). The change in the number of incorrect variable-
to-check node messages is bounded by the extreme case where each change in the neighborhood of a
message introduces an error. In a similar manner, when we reveal a received output symbol, the variable-
to-check node messages whose directed neighborhood include that channel input can be affected. We
consider a neighborhood of depth ` of a received output symbol. By counting, it can be shown that this
neighborhood includes

N
(`)
Y = (2W + 1) dv

`−1∑

i=0

αi

variable-to-check node edges. Therefore, a change of a received output symbol can affect up to N
(`)
Y

variable-to-check node messages. We conclude that |Z̃i+1 − Z̃i| ≤ 2N
(`)
e for the first ndv exposures, and

|Z̃i+1 − Z̃i| ≤ N
(`)
Y for the last n exposures. By applying the Azuma-Hoeffding inequality, it follows that

P

(∣∣∣∣∣
Z(`)(s)

ndv
− E[Z(`)(s)]

ndv

∣∣∣∣∣ >
ε

2

)
≤ 2 exp


− (ndvε/2)

2

2
(
ndv(2N

(`)
e )

2
+ n(N

(`)
Y )

2)
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and a comparison of this concentration inequality to (2.170) gives that

1

β
=

8
(
4dv(N

(`)
e )2 + (N

(`)
Y )2

)

d2
v

. (2.174)

Next, proving inequality (2.171) relies on concepts from [28] and [91]. Let E[Z
(`)
i (s)] (i ∈ {1, . . . , ndv})

be the expected number of incorrect messages passed along edge −→ei after ` rounds, where the average is
w.r.t. all realizations of graphs and all output symbols from the channel. Then, by the symmetry in the
graph construction and by the linearity of the expectation, it follows that

E[Z(`)(s)] =
∑

i∈[ndv]

E[Z
(`)
i (s)] = ndvE[Z

(`)
1 (s)]. (2.175)

From Bayes rule

E[Z
(`)
1 (s)] = E[Z

(`)
1 (s) |N (`)

~e is a tree]P
(`)
t + E[Z

(`)
1 (s) |N (`)

~e not a tree]P
(`)

t

As shown in Theorem 12, P
(`)

t
≤ γ

n where γ is a positive constant independent of n. Furthermore, we

have E[Z
(`)
1 (s) |neighborhood is tree] = p(`)(s), so

E[Z
(`)
1 (s)] ≤ (1 − P

(`)

t
)p(`)(s) + P

(`)

t
≤ p(`)(s) + P

(`)

t

E[Z
(`)
1 (s)] ≥ (1 − P

(`)

t
)p(`)(s) ≥ p(`)(s) − P

(`)

t
. (2.176)

Using (2.175), (2.176) and P
(`)

t
≤ γ

n gives that

∣∣∣∣∣
E[Z(`)(s)]

ndv
− p(`)(s)

∣∣∣∣∣ ≤ P
(`)

t
≤ γ

n
.

Hence, if n > 2γ
ε , then (2.171) holds.

The concentration result proved above is a generalization of the results given in [28] for a binary-
input output-symmetric memoryless channel. One can degenerate the expression of 1

β in (2.174) to the

memoryless case by setting W = 0 and I = 0. Since we exact expressions for N
(`)
e and N

(`)
Y are used

in the above proof, one can expect a tighter bound as compared to the earlier result 1
βold

= 544d2`−1
v d2`

c

given in [28]. For example for (dv, dc, `) = (3, 4, 10), one gets an improvement by a factor of about
1 million. However, even with this improved expression, the required size of n according to our proof
can be absurdly large. This is because the proof is very pessimistic in the sense that it assumes that any
change in an edge or the decoder’s input introduces an error in every message it affects. This is especially
pessimistic if a large ` is considered, since as ` is increased, each message is a function of many edges and
received output symbols from the channel (since the neighborhood grows with `).

The same phenomena of concentration of measures that are proved above for regular LDPC code
ensembles can be extended to irregular LDPC code ensembles. In the special case of memoryless binary-
input output-symmetric channels, the following theorem was proved by Richardson and Urbanke in [12,
pp. 487–490], based on the Azuma-Hoeffding inequality (we use here the same notation for LDPC code
ensembles as in the preceding subsection).

Theorem 14. [Concentration of the bit error probability around the ensemble average] Let
C, a code chosen uniformly at random from the ensemble LDPC(n, λ, ρ), be used for transmission over
a memoryless binary-input output-symmetric (MBIOS) channel characterized by its L-density aMBIOS.
Assume that the decoder performs l iterations of message-passing decoding, and let Pb(C, aMBIOS, l)
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denote the resulting bit error probability. Then, for every δ > 0, there exists an α > 0 where α =
α(λ, ρ, δ, l) (independent of the block length n) such that

P
(
|Pb(C, aMBIOS, l) − ELDPC(n,λ,ρ)[Pb(C, aMBIOS, l)]| ≥ δ

)
≤ exp(−αn).

This theorem asserts that all except an exponentially (in the block length) small fraction of codes
behave within an arbitrary small δ from the ensemble average (where δ is a positive number that can be
chosen arbitrarily small). Therefore, assuming a sufficiently large block length, the ensemble average is
a good indicator for the performance of individual codes, and it is therefore reasonable to focus on the
design and analysis of capacity-approaching ensembles (via the density evolution technique). This forms
a central result in the theory of codes defined on graphs and iterative decoding algorithms.

2.6.5 On the concentration of the conditional entropy for LDPC code ensembles

A large deviations analysis of the conditional entropy for random ensembles of LDPC codes was introduced
in [94, Theorem 4] and [24, Theorem 1]. The following theorem is proved in [94, Appendix I], based on
the Azuma-Hoeffding inequality, and it is rephrased in the following to consider small deviations of order√
n (instead of large deviations of order n):

Theorem 15. [Concentration of the conditional entropy] Let C be chosen uniformly at random from
the ensemble LDPC(n, λ, ρ). Assume that the transmission of the code C takes place over a memoryless
binary-input output-symmetric (MBIOS) channel. Let H(X|Y) designate the conditional entropy of the
transmitted codeword X given the received sequence Y from the channel. Then, for any ξ > 0,

P
(∣∣H(X|Y) − ELDPC(n,λ,ρ)[H(X|Y)]

∣∣ ≥ ξ
√
n
)
≤ 2 exp(−Bξ2)

where B , 1
2(dmax

c +1)2(1−Rd)
, dmax

c is the maximal check-node degree, and Rd is the design rate of the

ensemble.

The conditional entropy scales linearly with n, and this inequality considers deviations from the
average which also scale linearly with n.

In the following, we revisit the proof of Theorem 15 in [94, Appendix I] in order to derive a tightened
version of this bound. Based on this proof, let G be a bipartite graph which represents a code chosen
uniformly at random from the ensemble LDPC(n, λ, ρ). Define the RV

Z = HG(X|Y)

which forms the conditional entropy when the transmission takes place over an MBIOS channel whose
transition probability is given by PY|X(y|x) =

∏n
i=1 pY |X(yi|xi) where pY |X(y|1) = pY |X(−y|0). Fix an

arbitrary order for the m = n(1 − Rd) parity-check nodes where Rd forms the design rate of the LDPC
code ensemble. Let {Ft}t∈{0,1,...,m} form a filtration of σ-algebras F0 ⊆ F1 ⊆ . . . ⊆ Fm where Ft (for
t = 0, 1, . . . ,m) is the σ-algebra that is generated by all the sub-sets of m× n parity-check matrices that
are characterized by the pair of degree distributions (λ, ρ) and whose first t parity-check equations are
fixed (for t = 0 nothing is fixed, and therefore F0 = {∅,Ω} where ∅ denotes the empty set, and Ω is the
whole sample space of m × n binary parity-check matrices that are characterized by the pair of degree
distributions (λ, ρ)). Accordingly, based on Remarks 2 and 3, let us define the following martingale
sequence

Zt = E[Z|Ft] t ∈ {0, 1, . . . ,m} .
By construction, Z0 = E[HG(X|Y)] is the expected value of the conditional entropy for the LDPC code
ensemble, and Zm is the RV that is equal (a.s.) to the conditional entropy of the particular code from
the ensemble (see Remark 3). Similarly to [94, Appendix I], we obtain upper bounds on the differences
|Zt+1 − Zt| and then rely on Azuma’s inequality in Theorem 1.
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Without loss of generality, the parity-checks are ordered in [94, Appendix I] by increasing degree. Let
r = (r1, r2, . . .) be the set of parity-check degrees in ascending order, and Γi be the fraction of parity-
check nodes of degree i. Hence, the first m1 = n(1 − Rd)Γr1 parity-check nodes are of degree r1, the
successive m2 = n(1−Rd)Γr2 parity-check nodes are of degree r2, and so on. The (t+ 1)th parity-check
will therefore have a well defined degree, to be denoted by r. From the proof in [94, Appendix I]

|Zt+1 − Zt| ≤ (r + 1)HG(X̃ |Y) (2.177)

where HG(X̃ |Y) is a RV which designates the conditional entropy of a parity-bit X̃ = Xi1 ⊕ . . .⊕Xir (i.e.,
X̃ is equal to the modulo-2 sum of some r bits in the codeword X) given the received sequence Y at the
channel output. The proof in [94, Appendix I] was then completed by upper bounding the parity-check
degree r by the maximal parity-check degree dmax

c , and also by upper bounding the conditional entropy
of the parity-bit X̃ by 1. This gives

|Zt+1 − Zt| ≤ dmax
c + 1 t = 0, 1, . . . ,m− 1. (2.178)

which then proves Theorem 15 from Azuma’s inequality. Note that the di’s in Theorem 1 are equal to
dmax
c +1, and n in Theorem 1 is replaced with the length m = n(1−Rd) of the martingale sequence {Zt}

(that is equal to the number of the parity-check nodes in the graph).
In the continuation, we deviate from the proof in [94, Appendix I] in two respects:

• The first difference is related to the upper bound on the conditional entropy HG(X̃ |Y) in (2.177) where X̃
is the modulo-2 sum of some r bits of the transmitted codeword X given the channel output Y. Instead
of taking the most trivial upper bound that is equal to 1, as was done in [94, Appendix I], a simple upper
bound on the conditional entropy is derived; this bound depends on the parity-check degree r and the
channel capacity C (see Proposition 3).

• The second difference is minor, but it proves to be helpful for tightening the concentration inequality
for LDPC code ensembles that are not right-regular (i.e., the case where the degrees of the parity-check
nodes are not fixed to a certain value). Instead of upper bounding the term r+ 1 on the right-hand side
of (2.177) with dmax

c +1, it is suggested to leave it as is since Azuma’s inequality applies to the case where
the bounded differences of the martingale sequence are not fixed (see Theorem 1), and since the number
of the parity-check nodes of degree r is equal to n(1 −Rd)Γr. The effect of this simple modification will
be shown in Example 14.

The following upper bound is related to the first item above:

Proposition 3. Let G be a bipartite graph which corresponds to a binary linear block code whose
transmission takes place over an MBIOS channel. Let X and Y designate the transmitted codeword and
received sequence at the channel output. Let X̃ = Xi1 ⊕ . . . ⊕Xir be a parity-bit of some r code bits of
X. Then, the conditional entropy of X̃ given Y satisfies

HG(X̃ |Y) ≤ h2

(
1 − C

r
2

2

)
. (2.179)

Further, for a binary symmetric channel (BSC) or a binary erasure channel (BEC), this bound can be
improved to

h2

(
1 −

[
1 − 2h−1

2 (1 − C)
]r

2

)
(2.180)

and
1 − Cr (2.181)

respectively, where h−1
2 in (2.180) designates the inverse of the binary entropy function on base 2.
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Note that if the MBIOS channel is perfect (i.e., its capacity is C = 1 bit per channel use) then (2.179)
holds with equality (where both sides of (2.179) are zero), whereas the trivial upper bound is 1.

Proof. Since conditioning reduces the entropy, we haveH(X̃
∣∣Y) ≤ H(X̃

∣∣Yi1, . . . , Yir). Note that Yi1 , . . . , Yir

are the corresponding channel outputs to the channel inputs Xi1 , . . . Xir , where these r bits are used to
calculate the parity-bit X̃. Hence, by combining the last inequality with [88, Eq. (17) and Appendix I],
it follows that

H(X̃
∣∣Y) ≤ 1 − 1

2 ln 2

∞∑

p=1

(gp)
r

p(2p − 1)
(2.182)

where (see [88, Eq. (19)])

gp ,

∫ ∞

0
a(l)(1 + e−l) tanh2p

(
l

2

)
dl, ∀ p ∈ N (2.183)

and a(·) denotes the symmetric pdf of the log-likelihood ratio at the output of the MBIOS channel, given
that the channel input is equal to zero. From [88, Lemmas 4 and 5], it follows that

gp ≥ Cp, ∀ p ∈ N.

Substituting this inequality in (2.182) gives that

H(X̃
∣∣Y) ≤ 1 − 1

2 ln 2

∞∑

p=1

Cpr

p(2p− 1)

= h2

(
1 − C

r
2

2

)
(2.184)

where the last equality follows from the power series expansion of the binary entropy function:

h2(x) = 1 − 1

2 ln 2

∞∑

p=1

(1 − 2x)2p

p(2p − 1)
, 0 ≤ x ≤ 1. (2.185)

This proves the result in (2.179).
The tightened bound on the conditional entropy for the BSC is obtained from (2.182) and the equality

gp =
(
1 − 2h−1

2 (1 − C)
)2p
, ∀ p ∈ N

which holds for the BSC (see [88, Eq. (97)]). This replaces C on the right-hand side of (2.184) with(
1 − 2h−1

2 (1 − C)
)2

, thus leading to the tightened bound in (2.180).
The tightened result for the BEC follows from (2.182) where, from (2.183),

gp = C, ∀ p ∈ N

(see [88, Appendix II]). Substituting gp into the right-hand side of (2.182) gives (2.180) (note that∑∞
p=1

1
p(2p−1) = 2 ln 2). This completes the proof of Proposition 3.

From Proposition 3 and (2.177)

|Zt+1 − Zt| ≤ (r + 1)h2

(
1 − C

r
2

2

)
(2.186)

with the corresponding two improvements for the BSC and BEC (where the second term on the right-
hand side of (2.186) is replaced by (2.180) and (2.181), respectively). This improves the loosened bound
of (dmax

c +1) in [94, Appendix I]. From (2.186) and Theorem 1, we obtain the following tightened version
of the concentration inequality in Theorem 15.
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Theorem 16. [A tightened concentration inequality for the conditional entropy] Let C be
chosen uniformly at random from the ensemble LDPC(n, λ, ρ). Assume that the transmission of the
code C takes place over a memoryless binary-input output-symmetric (MBIOS) channel. Let H(X|Y)
designate the conditional entropy of the transmitted codeword X given the received sequence Y at the
channel output. Then, for every ξ > 0,

P
(∣∣H(X|Y) − ELDPC(n,λ,ρ)[H(X|Y)]

∣∣ ≥ ξ
√
n
)
≤ 2 exp(−Bξ2) (2.187)

where

B ,
1

2(1 −Rd)
∑dmax

c
i=1

{
(i+ 1)2 Γi

[
h2

(
1−C

i
2

2

)]2
} (2.188)

and dmax
c is the maximal check-node degree, Rd is the design rate of the ensemble, and C is the channel

capacity (in bits per channel use). Furthermore, for a binary symmetric channel (BSC) or a binary erasure
channel (BEC), the parameter B on the right-hand side of (2.187) can be improved (i.e., increased),
respectively, to

B ,
1

2(1 −Rd)
∑dmax

c
i=1

{
(i+ 1)2 Γi

[
h2

(
1−[1−2h−1

2 (1−C)]i

2

)]2
}

and

B ,
1

2(1 −Rd)
∑dmax

c
i=1 {(i+ 1)2 Γi (1 − Ci)2}

. (2.189)

Remark 15. From (2.188), Theorem 16 indeed yields a stronger concentration inequality than Theo-
rem 15.

Remark 16. In the limit where C → 1 bit per channel use, it follows from (2.188) that if dmax
c < ∞

then B → ∞. This is in contrast to the value of B in Theorem 15 which does not depend on the
channel capacity and is finite. Note that B should be indeed infinity for a perfect channel, and therefore
Theorem 16 is tight in this case.

In the case where dmax
c is not finite, we prove the following:

Lemma 8. If dmax
c = ∞ and ρ′(1) <∞ then B → ∞ in the limit where C → 1.

Proof. See Appendix 2.D.

This is in contrast to the value of B in Theorem 15 which vanishes when dmax
c = ∞, and therefore

Theorem 15 is not informative in this case (see Example 14).

Example 13. [Comparison of Theorems 15 and 16 for right-regular LDPC code ensembles] In the fol-
lowing, we exemplify the improvement in the tightness of Theorem 16 for right-regular LDPC code
ensembles. Consider the case where the communications takes place over a binary-input additive white
Gaussian noise channel (BIAWGNC) or a BEC. Let us consider the (2, 20) regular LDPC code ensemble
whose design rate is equal to 0.900 bits per channel use. For a BEC, the threshold of the channel bit
erasure probability under belief-propagation (BP) decoding is given by

pBP = inf
x∈(0,1]

x

1 − (1 − x)19
= 0.0531

which corresponds to a channel capacity of C = 0.9469 bits per channel use. For the BIAWGNC, the
threshold under BP decoding is equal to σBP = 0.4156590. From [12, Example 4.38] which expresses the
capacity of the BIAWGNC in terms of the standard deviation σ of the Gaussian noise, the minimum
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capacity of a BIAWGNC over which it is possible to communicate with vanishing bit error probability
under BP decoding is C = 0.9685 bits per channel use. Accordingly, let us assume that for reliable
communications on both channels, the capacity of the BEC and BIAWGNC is set to 0.98 bits per
channel use.

Since the considered code ensembles is right-regular (i.e., the parity-check degree is fixed to dc = 20),
then B in Theorem 16 is improved by a factor of

1
[
h2

(
1−C

dc
2

2

)]2 = 5.134.

This implies that the inequality in Theorem 16 is satisfied with a block length that is 5.134 times shorter
than the block length which corresponds to Theorem 15. For the BEC, the result is improved by a factor
of

1
(
1 − Cdc

)2 = 9.051

due to the tightened value of B in (2.189) as compared to Theorem 15.

Example 14. [Comparison of Theorems 15 and 16 for a heavy-tail Poisson distribution (Tornado codes)]
In the following, we compare Theorems 15 and 16 for Tornado LDPC code ensembles. This capacity-
achieving sequence for the BEC refers to the heavy-tail Poisson distribution, and it was introduced in
[27, Section IV], [95] (see also [12, Problem 3.20]). We rely in the following on the analysis in [88,
Appendix VI].

Suppose that we wish to design Tornado code ensembles that achieve a fraction 1− ε of the capacity
of a BEC under iterative message-passing decoding (where ε can be set arbitrarily small). Let p designate
the bit erasure probability of the channel. The parity-check degree is Poisson distributed, and therefore
the maximal degree of the parity-check nodes is infinity. Hence, B = 0 according to Theorem 15, and
this theorem therefore is useless for the considered code ensemble. On the other hand, from Theorem 16

∑

i

(i+ 1)2Γi

[
h2

(
1 − C

i
2

2

)]2

(a)

≤
∑

i

(i+ 1)2Γi

(b)
=

∑
i ρi(i+ 2)
∫ 1
0 ρ(x) dx

+ 1

(c)
= (ρ′(1) + 3)davg

c + 1

(d)
=

(
λ′(0)ρ′(1)

λ2
+ 3

)
davg
c + 1

(e)

≤
(

1

pλ2
+ 3

)
davg
c + 1

(f)
= O

(
log2

(1
ε

))

where inequality (a) holds since the binary entropy function on base 2 is bounded between zero and one,
equality (b) holds since

Γi =
ρi

i∫ 1
0 ρ(x) dx
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where Γi and ρi denote the fraction of parity-check nodes and the fraction of edges that are connected
to parity-check nodes of degree i respectively (and also since

∑
i Γi = 1), equality (c) holds since

davg
c =

1
∫ 1
0 ρ(x) dx

where davg
c denotes the average parity-check node degree, equality (d) holds since λ′(0) = λ2, inequality (e)

is due to the stability condition for the BEC (where pλ′(0)ρ′(1) < 1 is a necessary condition for reliable
communication on the BEC under BP decoding), and finally equality (f) follows from the analysis in [88,
Appendix VI] (an upper bound on λ2 is derived in [88, Eq. (120)], and the average parity-check node
degree scales like log 1

ε ). Hence, from the above chain of inequalities and (2.188), it follows that for a
small gap to capacity, the parameter B in Theorem 16 scales (at least) like

O

(
1

log2
(

1
ε

)
)
.

Theorem 16 is therefore useful for the analysis of this LDPC code ensemble. As is shown above, the
parameter B in (2.188) tends to zero rather slowly as we let the fractional gap ε tend to zero (which
therefore demonstrates a rather fast concentration in Theorem 16).

Example 15. This Example forms a direct continuation of Example 13 for the (n, dv, dc) regular LDPC
code ensembles where dv = 2 and dc = 20. With the settings in this example, Theorem 15 gives that

P
(∣∣H(X|Y) − ELDPC(n,λ,ρ)[H(X|Y)]

∣∣ ≥ ξ
√
n
)
≤ 2 exp(−0.0113 ξ2), ∀ ξ > 0. (2.190)

As was mentioned already in Example 13, the exponential inequalities in Theorem 16 achieve an improve-
ment in the exponent of Theorem 15 by factors 5.134 and 9.051 for the BIAWGNC and BEC, respectively.
One therefore obtains from the concentration inequalities in Theorem 16 that, for every ξ > 0,

P
(∣∣H(X|Y) − ELDPC(n,λ,ρ)[H(X|Y)]

∣∣ ≥ ξ
√
n
)
≤
{

2 exp(−0.0580 ξ2), (BIAWGNC)

2 exp(−0.1023 ξ2), (BEC)
. (2.191)

2.6.6 Expansion of random regular bipartite graphs

Azuma’s inequality is useful for analyzing the expansion of random bipartite graphs. The following
theorem was introduced in [29, Theorem 25]. It is stated and proved here slightly more precisely, in the
sense of characterizing the relation between the deviation from the expected value and the exponential
convergence rate of the resulting probability.

Theorem 17. [Expansion of random regular bipartite graphs] Let G be chosen uniformly at
random from the regular ensemble LDPC(n, xl−1, xr−1). Let α ∈ (0, 1) and δ > 0 be fixed. Then, with
probability at least 1− exp(−δn), all sets of αn variables in G have a number of neighbors that is at least

n

[
l
(
1 − (1 − α)r

)

r
−
√

2lα
(
h(α) + δ

)
]

(2.192)

where h is the binary entropy function to the natural base (i.e., h(x) = −x ln(x) − (1 − x) ln(1 − x) for
x ∈ [0, 1]).

Proof. The proof starts by looking at the expected number of neighbors, and then exposing one neighbor
at a time to bound the probability that the number of neighbors deviates significantly from this mean.
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Note that the number of expected neighbors of αn variable nodes is equal to

nl
(
1 − (1 − α)r

)

r

since for each of the nl
r check nodes, the probability that it has at least one edge in the subset of nα chosen

variable nodes is 1− (1−α)r. Let us form a martingale sequence to estimate, via Azuma’s inequality, the
probability that the actual number of neighbors deviates by a certain amount from this expected value.

Let V denote the set of nα nodes. This set has nαl outgoing edges. Let us reveal the destination of
each of these edges one at a time. More precisely, let Si be the RV denoting the check-node socket which
the i-th edge is connected to, where i ∈ {1, . . . , nαl}. Let X(G) be a RV which denotes the number of
neighbors of a chosen set of nα variable nodes in a bipartite graph G from the ensemble, and define for
i ∈ {0, . . . , nαl}

Xi = E[X(G)|S1, . . . , Si−1].

Note that it is a martingale sequence where X0 = E[X(G)] and Xnαl = X(G). Also, for every i ∈
{1, . . . , nαl}, we have |Xi − Xi−1| ≤ 1 since every time only one check-node socket is revealed, so the
number of neighbors of the chosen set of variable nodes cannot change by more than 1 at every single
time. Thus, by the one-sided Azuma’s inequality in Section 2.2.1,

P
(
E[X(G)] −X(G) ≥ λ

√
lαn
)
≤ exp

(
−λ

2

2

)
, ∀λ > 0.

Since there are
( n
nα

)
choices for the set V then, from the union bound, the event that there exists a set of

size nα whose number of neighbors is less than E[X(G)]− λ
√
lαn occurs with probability that is at most( n

nα

)
exp
(
−λ2

2

)
.

Since
( n
nα

)
≤ enh(α), then we get the loosened bound exp

(
nh(α)−λ2

2

)
. Finally, choosing λ =

√
2n
(
h(α) + δ

)

gives the required result.

2.6.7 Concentration of the crest-factor for OFDM signals

Orthogonal-frequency-division-multiplexing (OFDM) is a modulation that converts a high-rate data
stream into a number of low-rate steams that are transmitted over parallel narrow-band channels. OFDM
is widely used in several international standards for digital audio and video broadcasting, and for wireless
local area networks. For a textbook providing a survey on OFDM, see e.g. [96, Chapter 19]. One of
the problems of OFDM signals is that the peak amplitude of the signal can be significantly higher than
the average amplitude; for a recent comprehensive tutorial that considers the problem of the high peak
to average power ratio (PAPR) of OFDM signals and some related issues, the reader is referred to [97].
The high PAPR of OFDM signals makes their transmission sensitive to non-linear devices in the commu-
nication path such as digital to analog converters, mixers and high-power amplifiers. As a result of this
drawback, it increases the symbol error rate and it also reduces the power efficiency of OFDM signals as
compared to single-carrier systems.

Given an n-length codeword {Xi}n−1
i=0 , a single OFDM baseband symbol is described by

s(t) =
1√
n

n−1∑

i=0

Xi exp
(j 2πit

T

)
, 0 ≤ t ≤ T. (2.193)

Lets assume that X0, . . . ,Xn−1 are complex RVs, and that a.s. |Xi| = 1 (these RVs should not be
necessarily independent). Since the sub-carriers are orthonormal over [0, T ], then the signal power over
the interval [0, T ] is 1 a.s., i.e.,

1

T

∫ T

0
|s(t)|2dt = 1. (2.194)
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The CF of the signal s, composed of n sub-carriers, is defined as

CFn(s) , max
0≤t≤T

|s(t)|. (2.195)

Commonly, the impact of nonlinearities is described by the distribution of the crest-factor (CF) of the
transmitted signal [98], but its calculation involves time-consuming simulations even for a small number
of sub-carriers. From [99, Section 4] and [100], it follows that the CF scales with high probability like√

lnn for large n. In [98, Theorem 3 and Corollary 5], a concentration inequality was derived for the CF
of OFDM signals. It states that for an arbitrary c ≥ 2.5

P

(∣∣∣CFn(s) −
√

lnn
∣∣∣ <

c ln lnn√
lnn

)
= 1 −O

(
1

(
lnn

)4

)
.

Remark 17. The analysis used to derive this rather strong concentration inequality (see [98, Ap-
pendix C]) requires some assumptions on the distribution of the Xi’s (see the two conditions in [98,
Theorem 3] followed by [98, Corollary 5]). These requirements are not needed in the following analysis,
and the derivation of concentration inequalities that are introduced in this subsection are much more
simple and provide some insight to the problem, though they lead to weaker concentration result than in
[98, Theorem 3].

In the following, Azuma’s inequality and a refined version of this inequality are considered under the
assumption that {Xj}n−1

j=0 are independent complex-valued random variables with magnitude 1, attaining
the M points of an M -ary PSK constellation with equal probability.

Establishing concentration of the crest-factor via Azuma’s inequality

In the following, Azuma’s inequality is used to derive a concentration result. Let us define

Yi = E[ CFn(s) |X0, . . . ,Xi−1], i = 0, . . . , n (2.196)

Based on a standard construction of martingales, {Yi,Fi}n
i=0 is a martingale where Fi is the σ-algebra

that is generated by the first i symbols (X0, . . . ,Xi−1) in (2.193). Hence, F0 ⊆ F1 ⊆ . . . ⊆ Fn is a
filtration. This martingale has also bounded jumps, and

|Yi − Yi−1| ≤
2√
n

for i ∈ {1, . . . , n} since revealing the additional i-th coordinate Xi affects the CF, as is defined in (2.195),
by at most 2√

n
(see the first part of Appendix 2.E). It therefore follows from Azuma’s inequality that,

for every α > 0,

P(|CFn(s) − E[CFn(s)]| ≥ α) ≤ 2 exp

(
−α

2

8

)
(2.197)

which demonstrates concentration around the expected value.

Establishing concentration of the crest-factor via the refined version of Azuma’s inequality
in Proposition 1

In the following, we rely on Proposition 1 to derive an improved concentration result. For the martingale
sequence {Yi}n

i=0 in (2.196), Appendix 2.E gives that a.s.

|Yi − Yi−1| ≤
2√
n
, E

[
(Yi − Yi−1)

2|Fi−1

]
≤ 2

n
(2.198)
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for every i ∈ {1, . . . , n}. Note that the conditioning on the σ-algebra Fi−1 is equivalent to the conditioning
on the symbols X0, . . . ,Xi−2, and there is no conditioning for i = 1. Further, let Zi =

√
nYi for 0 ≤ i ≤ n.

Proposition 1 therefore implies that for an arbitrary α > 0

P(|CFn(s) − E[CFn(s)]| ≥ α)

= P(|Yn − Y0| ≥ α)

= P(|Zn − Z0| ≥ α
√
n)

≤ 2 exp

(
−α

2

4

(
1 +O

( 1√
n

))
(2.199)

(since δ = α
2 and γ = 1

2 in the setting of Proposition 1). Note that the exponent in the last inequality
is doubled as compared to the bound that was obtained in (2.197) via Azuma’s inequality, and the

term which scales like O
(

1√
n

)
on the right-hand side of (2.199) is expressed explicitly for finite n (see

Appendix 2.A).

A concentration inequality via Talagrand’s method

In his seminal paper [6], Talagrand introduced an approach for proving concentration inequalities in
product spaces. It forms a powerful probabilistic tool for establishing concentration results for coordinate-
wise Lipschitz functions of independent random variables (see, e.g., [69, Section 2.4.2], [5, Section 4] and
[6]). This approach is used in the following to derive a concentration result of the crest factor around
its median, and it also enables to derive an upper bound on the distance between the median and the
expected value. We provide in the following definitions that will be required for introducing a special
form of Talagrand’s inequalities. Afterwards, this inequality will be applied to obtain a concentration
result for the crest factor of OFDM signals.

Definition 3 (Hamming distance). Let x,y be two n-length vectors. The Hamming distance between x
and y is the number of coordinates where x and y disagree, i.e.,

dH(x,y) ,

n∑

i=1

I{xi 6=yi}

where I stands for the indicator function.

The following suggests a generalization and normalization of the previous distance metric.

Definition 4. Let a = (a1, . . . , an) ∈ R
n
+ (i.e., a is a non-negative vector) satisfy ||a||2 =

∑n
i=1(ai)

2 = 1.
Then, define

da(x,y) ,

n∑

i=1

aiI{xi 6=yi}.

Hence, dH(x,y) =
√
nda(x,y) for a =

(
1√
n
, . . . , 1√

n

)
.

The following is a special form of Talagrand’s inequalities ([1], [5, Chapter 4] and [6]).

Theorem 18 (Talagrand’s inequality). Let the random vector X = (X1, . . . ,Xn) be a vector of indepen-
dent random variables with Xk taking values in a set Ak, and let A ,

∏n
k=1Ak. Let f : A → R satisfy

the condition that, for every x ∈ A, there exists a non-negative, normalized n-length vector a = a(x)
such that

f(x) ≤ f(y) + σda(x,y), ∀y ∈ A (2.200)
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for some fixed value σ > 0. Then, for every α ≥ 0,

P(|f(X) −m| ≥ α) ≤ 4 exp

(
− α2

4σ2

)
(2.201)

where m is the median of f(X) (i.e., P(f(X) ≤ m) ≥ 1
2 and P(f(X) ≥ m) ≥ 1

2). The same conclusion in
(2.201) holds if the condition in (2.200) is replaced by

f(y) ≤ f(x) + σda(x,y), ∀y ∈ A. (2.202)

At this stage, we are ready to apply Talagrand’s inequality to prove a concentration inequality for the
crest factor of OFDM signals. As before, let us assume that X0, Y0, . . . ,Xn−1, Yn−1 are i.i.d. bounded
complex RVs, and also assume for simplicity that |Xi| = |Yi| = 1. In order to apply Talagrand’s inequality
to prove concentration, note that

max
0≤t≤T

∣∣ s(t;X0, . . . ,Xn−1)
∣∣− max

0≤t≤T

∣∣ s(t;Y0, . . . , Yn−1)
∣∣

≤ max
0≤t≤T

∣∣ s(t;X0, . . . ,Xn−1) − s(t;Y0, . . . , Yn−1)
∣∣

≤ 1√
n

∣∣∣∣∣

n−1∑

i=0

(Xi − Yi) exp
(j 2πit

T

)∣∣∣∣∣

≤ 1√
n

n−1∑

i=0

|Xi − Yi|

≤ 2√
n

n−1∑

i=0

I{xi 6=yi}

= 2da(X,Y )

where

a ,
( 1√

n
, . . . ,

1√
n

)
(2.203)

is a non-negative unit-vector of length n (note that a in this case is independent of x). Hence, Talagrand’s
inequality in Theorem 18 implies that, for every α ≥ 0,

P(|CFn(s) −mn| ≥ α) ≤ 4 exp
(
−α

2

16

)
(2.204)

where mn is the median of the crest factor for OFDM signals that are composed of n sub-carriers. This
inequality demonstrates the concentration of this measure around its median. As a simple consequence
of (2.204), one obtains the following result.

Corollary 6. The median and expected value of the crest factor differ by at most a constant, indepen-
dently of the number of sub-carriers n.

Proof. By the concentration inequality in (2.204)
∣∣E[CFn(s)] −mn

∣∣ ≤ E |CFn(s) −mn|

=

∫ ∞

0
P(|CFn(s) −mn| ≥ α) dα

≤
∫ ∞

0
4 exp

(
−α

2

16

)
dα

= 8
√
π.
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Remark 18. This result applies in general to an arbitrary function f satisfying the condition in (2.200),
where Talagrand’s inequality in (2.201) implies that (see, e.g., [5, Lemma 4.6])

∣∣E[f(X)] −m
∣∣ ≤ 4σ

√
π.

Establishing concentration via McDiarmid’s inequality

McDiarmid’s inequality (see Theorem 2) is applied in the following to prove a concentration inequality
for the crest factor of OFDM signals. To this end, let us define

U , max
0≤t≤T

∣∣s(t;X0, . . . ,Xi−1,Xi, . . . ,Xn−1)
∣∣

V , max
0≤t≤T

∣∣s(t;X0, . . . ,X
′
i−1,Xi, . . . ,Xn−1)

∣∣

where the two vectors (X0, . . . ,Xi−1,Xi, . . . ,Xn−1) and X0, . . . ,X
′
i−1,Xi, . . . ,Xn−1) may only differ in

their i-th coordinate. This then implies that

|U − V | ≤ max
0≤t≤T

∣∣s(t;X0, . . . ,Xi−1,Xi, . . . ,Xn−1)

−s(t;X0, . . . ,X
′
i−1,Xi, . . . ,Xn−1)

∣∣

= max
0≤t≤T

1√
n

∣∣∣
(
Xi−1 −X ′

i−1

)
exp
(j 2πit

T

)∣∣∣

=
|Xi−1 −X ′

i−1|√
n

≤ 2√
n

where the last inequality holds since |Xi−1| = |X ′
i−1| = 1. Hence, McDiarmid’s inequality in Theorem 2

implies that, for every α ≥ 0,

P(|CFn(s) − E[CFn(s)]| ≥ α) ≤ 2 exp
(
−α

2

2

)
(2.205)

which demonstrates concentration of this measure around its expected value. By comparing (2.204)
with (2.205), it follows that McDiarmid’s inequality provides an improvement in the exponent. The
improvement of McDiarmid’s inequality is by a factor of 4 in the exponent as compared to Azuma’s
inequality, and by a factor of 2 as compared to the refined version of Azuma’s inequality in Proposition 1.

To conclude, this subsection derives four concentration inequalities for the crest-factor (CF) of OFDM
signals under the assumption that the symbols are independent. The first two concentration inequalities
rely on Azuma’s inequality and a refined version of it, and the last two concentration inequalities are
based on Talagrand’s and McDiarmid’s inequalities. Although these concentration results are weaker
than some existing results from the literature (see [98] and [100]), they establish concentration in a rather
simple way and provide some insight to the problem. McDiarmid’s inequality improves the exponent
of Azuma’s inequality by a factor of 4, and the exponent of the refined version of Azuma’s inequality
from Proposition 1 by a factor of 2. Note however that Proposition 1 may be in general tighter than
McDiarmid’s inequality (if γ < 1

4 in the setting of Proposition 1). It also follows from Talagrand’s method
that the median and expected value of the CF differ by at most a constant, independently of the number
of sub-carriers.

2.6.8 Random coding theorems via martingale inequalities

The following subsection establishes new error exponents and achievable rates of random coding, for
channels with and without memory, under maximum-likelihood (ML) decoding. The analysis relies on
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some exponential inequalities for martingales with bounded jumps. The characteristics of these coding
theorems are exemplified in special cases of interest that include non-linear channels. The material in
this subsection is based on [31], [32] and [33] (and mainly on the latest improvements of these achievable
rates in [33]).

Random coding theorems address the average error probability of an ensemble of codebooks as a
function of the code rate R, the block length N , and the channel statistics. It is assumed that the
codewords are chosen randomly, subject to some possible constraints, and the codebook is known to the
encoder and decoder.

Nonlinear effects are typically encountered in wireless communication systems and optical fibers, which
degrade the quality of the information transmission. In satellite communication systems, the amplifiers
located on board satellites typically operate at or near the saturation region in order to conserve energy.
Saturation nonlinearities of amplifiers introduce nonlinear distortion in the transmitted signals. Similarly,
power amplifiers in mobile terminals are designed to operate in a nonlinear region in order to obtain
high power efficiency in mobile cellular communications. Gigabit optical fiber communication channels
typically exhibit linear and nonlinear distortion as a result of non-ideal transmitter, fiber, receiver and
optical amplifier components. Nonlinear communication channels can be represented by Volterra models
[101, Chapter 14].

Significant degradation in performance may result in the mismatched regime. However, in the fol-
lowing, it is assumed that both the transmitter and the receiver know the exact probability law of the
channel.

We start the presentation by writing explicitly the martingale inequalities that we rely on, derived
earlier along the derivation of the concentration inequalities in this chapter.

Martingale inequalities

• The first martingale inequality that will be used in the following is given in (2.41). It was used earlier in
this chapter to prove the refinement of the Azuma-Hoeffding inequality in Theorem 5, and it is stated in
the following as a theorem:

Theorem 19. Let {Xk,Fk}n
k=0, for some n ∈ N, be a discrete-parameter, real-valued martingale with

bounded jumps. Let

ξk , Xk −Xk−1, ∀ k ∈ {1, . . . , n}

designate the jumps of the martingale. Assume that, for some constants d, σ > 0, the following two
requirements

ξk ≤ d, Var(ξk|Fk−1) ≤ σ2

hold almost surely (a.s.) for every k ∈ {1, . . . , n}. Let γ , σ2

d2 . Then, for every t ≥ 0,

E

[
exp

(
t

n∑

k=1

ξk

)]
≤
(
e−γtd + γetd

1 + γ

)n

.

• The second martingale inequality that will be used in the following is similar to (2.72) (while removing
the assumption that the martingale is conditionally symmetric). It leads to the following theorem:

Theorem 20. Let {Xk,Fk}n
k=0, for some n ∈ N, be a discrete-time, real-valued martingale with bounded

jumps. Let

ξk , Xk −Xk−1, ∀ k ∈ {1, . . . , n}
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and let m ∈ N be an even number, d > 0 be a positive number, and {µl}m
l=2 be a sequence of numbers

such that

ξk ≤ d,

E
[
(ξk)

l | Fk−1

]
≤ µl, ∀ l ∈ {2, . . . ,m}

holds a.s. for every k ∈ {1, . . . , n}. Furthermore, let

γl ,
µl

dl
, ∀ l ∈ {2, . . . ,m}.

Then, for every t ≥ 0,

E

[
exp

(
t

n∑

k=1

ξk

)]
≤
(

1 +
m−1∑

l=2

(γl − γm) (td)l

l!
+ γm(etd − 1 − td)

)n

.

Achievable rates under ML decoding

The goal of this subsection is to derive achievable rates in the random coding setting under ML decoding.
We first review briefly the analysis in [32] for the derivation of the upper bound on the ML decoding error
probability. This review is necessary in order to make the beginning of the derivation of this bound more
accurate, and to correct along the way some inaccuracies that appear in [32, Section II]. After the first
stage of this analysis, we proceed by improving the resulting error exponents and their corresponding
achievable rates via the application of the martingale inequalities in the previous subsection.

Consider an ensemble of block codes C of length N and rate R. Let C ∈ C be a codebook in the
ensemble. The number of codewords in C is M = dexp(NR)e. The codewords of a codebook C are
assumed to be independent, and the symbols in each codeword are assumed to be i.i.d. with an arbitrary
probability distribution P . An ML decoding error occurs if, given the transmitted message m and the
received vector y, there exists another message m′ 6= m such that

||y −Dum′ ||2 ≤ ||y −Dum||2.
The union bound for an AWGN channel implies that

Pe|m(C) ≤
∑

m′ 6=m

Q

(‖Dum −Dum′‖2

2σν

)

where the function Q is the complementary Gaussian cumulative distribution function (see (2.11)). By

using the inequality Q(x) ≤ 1
2 exp

(
−x2

2

)
for x ≥ 0, it gives the loosened bound (by also ignoring the

factor of one-half in the bound of Q)

Pe|m(C) ≤
∑

m′ 6=m

exp

(
−‖Dum −Dum′‖2

2

8σ2
ν

)
.

At this stage, let us introduce a new parameter ρ ∈ [0, 1], and write

Pe|m(C) ≤
∑

m′ 6=m

exp

(
−ρ ‖Dum −Dum′‖2

2

8σ2
ν

)
.

Note that at this stage, the introduction of the additional parameter ρ is useless as its optimal value is
ρopt = 1. The average ML decoding error probability over the code ensemble therefore satisfies

P e|m ≤ E



∑

m′ 6=m

exp

(
−ρ ‖Dum −Dum′‖2

2

8σ2
ν

)
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and the average ML decoding error probability over the code ensemble and the transmitted message
satisfies

P e ≤ (M − 1) E

[
exp

(
−ρ ‖Du−Dũ‖2

2

8σ2
ν

)]
(2.206)

where the expectation is taken over two randomly chosen codewords u and ũ where these codewords are
independent, and their symbols are i.i.d. with a probability distribution P .

Consider a filtration F0 ⊆ F1 ⊆ . . . ⊆ FN where the sub σ-algebra Fi is given by

Fi , σ(U1, Ũ1, . . . , Ui, Ũi), ∀ i ∈ {1, . . . , N} (2.207)

for two randomly selected codewords u = (u1, . . . , uN ), and ũ = (ũ1, . . . , ũN ) from the codebook; Fi is
the minimal σ-algebra that is generated by the first i coordinates of these two codewords. In particular,
let F0 , {∅,Ω} be the trivial σ-algebra. Furthermore, define the discrete-time martingale {Xk,Fk}N

k=0

by
Xk = E[||Du−Dũ||22 | Fk] (2.208)

designates the conditional expectation of the squared Euclidean distance between the distorted codewords
Du and Dũ given the first i coordinates of the two codewords u and ũ. The first and last entries of this
martingale sequence are, respectively, equal to

X0 = E [||Du −Dũ||22], XN = ||Du −Dũ||22. (2.209)

Furthermore, following earlier notation, let ξk = Xk −Xk−1 be the jumps of the martingale, then

N∑

k=1

ξk = XN −X0 = ||Du−Dũ||22 − E [||Du −Dũ||22]

and the substitution of the last equality into (2.206) gives that

P e ≤ exp(NR) exp

(
−ρE

[
||Du−Dũ‖|22

]

8σ2
ν

)
E

[
exp

(
− ρ

8σ2
·

N∑

k=1

ξk

)]
. (2.210)

Since the codewords are independent and their symbols are i.i.d., then it follows that

E||Du−Dũ‖|22

=
N∑

k=1

E

[(
[Du]k − [Dũ]k

)2]

=

N∑

k=1

Var
(
[Du]k − [Dũ]k

)

= 2

N∑

k=1

Var
(
[Du]k

)

= 2




q−1∑

k=1

Var
(
[Du]k

)
+

N∑

k=q

Var
(
[Du]k

)

 .

Due to the channel model (see Eq. (2.227)) and the assumption that the symbols {ui} are i.i.d., it follows
that Var

(
[Du]k

)
is fixed for k = q, . . . ,N . Let Dv(P ) designate this common value of the variance (i.e.,

Dv(P ) = Var
(
[Du]k

)
for k ≥ q), then

E||Du−Dũ‖|22 = 2

(
q−1∑

k=1

Var
(
[Du]k

)
+ (N − q + 1)Dv(P )

)
.
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Let

Cρ(P ) , exp

{
− ρ

8σ2
ν

(
q−1∑

k=1

Var
(
[Du]k

)
− (q − 1)Dv(P )

)}

which is a bounded constant, under the assumption that ||u||∞ ≤ K < +∞ holds a.s. for some K > 0,
and it is independent of the block length N . This therefore implies that the ML decoding error probability
satisfies

P e ≤ Cρ(P ) exp

{
−N

(
ρDv(P )

4σ2
ν

−R

)}
E

[
exp

(
ρ

8σ2
ν

·
N∑

k=1

Zk

)]
, ∀ ρ ∈ [0, 1] (2.211)

where Zk , −ξk, so {Zk,Fk} is a martingale-difference that corresponds to the jumps of the martingale
{−Xk,Fk}. From (2.208), it follows that the martingale-difference sequence {Zk,Fk} is given by

Zk = Xk−1 −Xk

= E[||Du−Dũ||22 | Fk−1] − E[||Du−Dũ||22 | Fk]. (2.212)

For the derivation of improved achievable rates and error exponents (as compared to [32]), the two
martingale inequalities presented earlier in this subsection are applied to the obtain two possible expo-
nential upper bounds (in terms of N) on the last term on the right-hand side of (2.211).

Let us assume that the essential supremum of the channel input is finite a.s. (i.e., ||u||∞ is bounded
a.s.). Based on the upper bound on the ML decoding error probability in (2.211), combined with the
exponential martingale inequalities that are introduced in Theorems 19 and 20, one obtains the following
bounds:

1. First Bounding Technique: From Theorem 19, if

Zk ≤ d, Var(Zk | Fk−1) ≤ σ2

holds a.s. for every k ≥ 1, and γ2 , σ2

d2 , then it follows from (2.211) that for every ρ ∈ [0, 1]

P e ≤ Cρ(P ) exp

{
−N

(
ρDv(P )

4σ2
ν

−R

)} 


exp
(
−ρ γ2 d

8σ2
ν

)
+ γ2 exp

(
ρ d
8σ2

ν

)

1 + γ2




N

.

Therefore, the maximal achievable rate that follows from this bound is given by

R1(σ
2
ν) , max

P
max
ρ∈[0,1]




ρDv(P )

4σ2
ν

− ln




exp
(
−ρ γ2 d

8σ2
ν

)
+ γ2 exp

(
ρ d
8σ2

ν

)

1 + γ2






 (2.213)

where the double maximization is performed over the input distribution P and the parameter ρ ∈ [0, 1].
The inner maximization in (2.213) can be expressed in closed form, leading to the following simplified
expression:

R1(σ
2
ν) = max

P





D

((
γ2

1+γ2
+ 2Dv(P )

d(1+γ2)

) ∣∣∣∣ γ2

1+γ2

)
, if Dv(P ) <

γ2 d

(
exp

(
d(1+γ2)

8σ2
ν

)
−1

)

2

(
1+γ2 exp

(
d(1+γ2)

8σ2
ν

))

Dv(P )
4σ2

ν
− ln




exp

(
− γ2 d

8σ2
ν

)
+γ2 exp

(
d

8σ2
ν

)

1+γ2


, otherwise

(2.214)
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where

D(p||q) , p ln

(
p

q

)
+ (1 − p) ln

(
1 − p

1 − q

)
, ∀ p, q ∈ (0, 1) (2.215)

denotes the Kullback-Leibler distance (a.k.a. divergence or relative entropy) between the two probability
distributions (p, 1 − p) and (q, 1 − q).

2. Second Bounding Technique Based on the combination of Theorem 20 and Eq. (2.211), we derive in the
following a second achievable rate for random coding under ML decoding. Referring to the martingale-
difference sequence {Zk,Fk}N

k=1 in Eqs. (2.207) and (2.212), one obtains from Eq. (2.211) that if for some
even number m ∈ N

Zk ≤ d, E
[
(Zk)

l | Fk−1

]
≤ µl, ∀ l ∈ {2, . . . ,m}

hold a.s. for some positive constant d > 0 and a sequence {µl}m
l=2, and

γl ,
µl

dl
∀ l ∈ {2, . . . ,m},

then the average error probability satisfies, for every ρ ∈ [0, 1],

P e ≤ Cρ(P ) exp

{
−N

(
ρDv(P )

4σ2
ν

−R

)} [
1 +

m−1∑

l=2

γl − γm

l!

(
ρd

8σ2
ν

)l

+ γm

(
exp
( ρ d

8σ2
ν

)
− 1 − ρ d

8σ2
ν

)]N

.

This gives the following achievable rate, for an arbitrary even number m ∈ N,

R2(σ
2
ν) , max

P
max
ρ∈[0,1]

{
ρDv(P )

4σ2
ν

− ln

(
1 +

m−1∑

l=2

γl − γm

l!

(
ρd

8σ2
ν

)l

+ γm

(
exp
( ρ d

8σ2
ν

)
− 1 − ρ d

8σ2
ν

))}
(2.216)

where, similarly to (2.213), the double maximization in (2.216) is performed over the input distribution
P and the parameter ρ ∈ [0, 1].

Achievable rates for random coding

In the following, the achievable rates for random coding over various linear and non-linear channels (with
and without memory) are exemplified. In order to assess the tightness of the bounds, we start with a
simple example where the mutual information for the given input distribution is known, so that its gap
can be estimated (since we use here the union bound, it would have been in place also to compare the
achievable rate with the cutoff rate).

1. Binary-Input AWGN Channel: Consider the case of a binary-input AWGN channel where

Yk = Uk + νk

where Ui = ±A for some constant A > 0 is a binary input, and νi ∼ N (0, σ2
ν) is an additive Gaussian

noise with zero mean and variance σ2
ν . Since the codewords U = (U1, . . . , UN ) and Ũ = (Ũ1, . . . , ŨN ) are

independent and their symbols are i.i.d., let

P (Uk = A) = P (Ũk = A) = α, P (Uk = −A) = P (Ũk = −A) = 1 − α
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for some α ∈ [0, 1]. Since the channel is memoryless and the all the symbols are i.i.d. then one gets from
(2.207) and (2.212) that

Zk = E[||U − Ũ||22 | Fk−1] − E[||U − Ũ||22 | Fk]

=




k−1∑

j=1

(Uj − Ũj)
2 +

N∑

j=k

E
[
(Uj − Ũj)

2
]

−




k∑

j=1

(Uj − Ũj)
2 +

N∑

j=k+1

E
[
(Uj − Ũj)

2
]



= E[(Uk − Ũk)
2] − (Uk − Ũk)

2

= α(1 − α)(−2A)2 + α(1 − α)(2A)2 − (Uk − Ũk)
2

= 8α(1 − α)A2 − (Uk − Ũk)
2.

Hence, for every k,

Zk ≤ 8α(1 − α)A2 , d. (2.217)

Furthermore, for every k, l ∈ N, due to the above properties

E
[
(Zk)

l | Fk−1

]

= E
[
(Zk)

l
]

= E

[(
8α(1 − α)A2 − (Uk − Ũk)

2
)l]

=
[
1 − 2α(1 − α)

](
8α(1 − α)A2

)l
+ 2α(1 − α)

(
8α(1 − α)A2 − 4A2

)l
, µl (2.218)

and therefore, from (2.217) and (2.218), for every l ∈ N

γl ,
µl

dl
=
[
1 − 2α(1 − α)

]
[
1 + (−1)l

(
1 − 2α(1 − α)

2α(1 − α)

)l−1
]
. (2.219)

Let us now rely on the two achievable rates for random coding in Eqs. (2.214) and (2.216), and apply them
to the binary-input AWGN channel. Due to the channel symmetry, the considered input distribution is
symmetric (i.e., α = 1

2 and P = (1
2 ,

1
2)). In this case, we obtain from (2.217) and (2.219) that

Dv(P ) = Var(Uk) = A2, d = 2A2, γl =
1 + (−1)l

2
, ∀ l ∈ N. (2.220)

Based on the first bounding technique that leads to the achievable rate in Eq. (2.214), since the first
condition in this equation cannot hold for the set of parameters in (2.220) then the achievable rate in
this equation is equal to

R1(σ
2
ν) =

A2

4σ2
ν

− ln cosh
( A2

4σ2
ν

)

in units of nats per channel use. Let SNR , A2

σ2
ν

designate the signal to noise ratio, then the first achievable

rate gets the form

R′
1(SNR) =

SNR

4
− ln cosh

(
SNR

4

)
. (2.221)

It is observed here that the optimal value of ρ in (2.214) is equal to 1 (i.e., ρ? = 1).

Let us compare it in the following with the achievable rate that follows from (2.216). Let m ∈ N be an
even number. Since, from (2.220), γl = 1 for all even values of l ∈ N and γl = 0 for all odd values of
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l ∈ N, then

1 +
m−1∑

l=2

γl − γm

l!

(
ρd

8σ2
ν

)l

+ γm

(
exp
( ρ d

8σ2
ν

)
− 1 − ρ d

8σ2
ν

)

= 1 −
m
2
−1∑

l=1

1

(2l + 1)!

(
ρd

8σ2
ν

)2l+1

+

(
exp
( ρ d

8σ2
ν

)
− 1 − ρ d

8σ2
ν

)
(2.222)

Since the infinite sum
∑m

2
−1

l=1
1

(2l+1)!

(
ρd
8σ2

ν

)2l+1
is monotonically increasing with m (where m is even and

ρ ∈ [0, 1]), then from (2.216), the best achievable rate within this form is obtained in the limit where m
is even and m→ ∞. In this asymptotic case one gets

lim
m→∞

(
1 +

m−1∑

l=2

γl − γm

l!

(
ρd

8σ2
ν

)l

+ γm

(
exp
( ρ d

8σ2
ν

)
− 1 − ρ d

8σ2
ν

))

(a)
= 1 −

∞∑

l=1

1

(2l + 1)!

(
ρd

8σ2
ν

)2l+1

+

(
exp
( ρ d

8σ2
ν

)
− 1 − ρ d

8σ2
ν

)

(b)
= 1 −

(
sinh

( ρ d
8σ2

ν

)
− ρ d

8σ2
ν

)
+

(
exp
( ρ d

8σ2
ν

)
− 1 − ρ d

8σ2
ν

)

(c)
= cosh

( ρ d
8σ2

ν

)
(2.223)

where equality (a) follows from (2.222), equality (b) holds since sinh(x) =
∑∞

l=0
x2l+1

(2l+1)! for x ∈ R, and

equality (c) holds since sinh(x) + cosh(x) = exp(x). Therefore, the achievable rate in (2.216) gives (from

(2.220), d
8σ2

ν
= A2

4σ2
ν
)

R2(σ
2
ν) = max

ρ∈[0,1]

(
ρA2

4σ2
ν

− ln cosh
(ρA2

4σ2
ν

))
.

Since the function f(x) , x−ln cosh(x) for x ∈ R is monotonic increasing (note that f ′(x) = 1−tanh(x) ≥
0), then the optimal value of ρ ∈ [0, 1] is equal to 1, and therefore the best achievable rate that follows
from the second bounding technique in Eq. (2.216) is equal to

R2(σ
2
ν) =

A2

4σ2
ν

− ln cosh
( A2

4σ2
ν

)

in units of nats per channel use, and it is obtained in the asymptotic case where we let the even number
m tend to infinity. Finally, setting SNR = A2

σ2
ν
, gives the achievable rate in (2.221), so the first and second

achievable rates for the binary-input AWGN channel coincide, i.e.,

R′
1(SNR) = R′

2(SNR) =
SNR

4
− ln cosh

(
SNR

4

)
. (2.224)

Note that this common rate tends to zero as we let the signal to noise ratio tend to zero, and it tends to
ln 2 nats per channel use (i.e., 1 bit per channel use) as we let the signal to noise ratio tend to infinity.

In the considered setting of random coding, in order to exemplify the tightness of the achievable rate in
(2.224), it is compared in the following with the symmetric i.i.d. mutual information of the binary-input
AWGN channel. The mutual information for this channel (in units of nats per channel use) is given by
(see, e.g., [12, Example 4.38 on p. 194])

C(SNR) = ln 2 + (2 SNR − 1)Q(
√

SNR) −
√

2 SNR

π
exp
(
−SNR

2

)

+

∞∑

i=1

{
(−1)i

i(i+ 1)
· exp(2i(i + 1) SNR) Q

(
(1 + 2i)

√
SNR

)}
(2.225)
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where the Q-function that appears in the infinite series on the right-hand side of (2.225) is the comple-
mentary Gaussian cumulative distribution function in (2.11). Furthermore, this infinite series has a fast
convergence where the absolute value of its n-th remainder is bounded by the (n + 1)-th term of the
series, which scales like 1

n3 (due to a basic theorem on infinite series of the form
∑

n∈N
(−1)n an where

{an} is a positive and monotonically decreasing sequence; the theorem states that the n-th remainder of
the series is upper bounded in absolute value by an+1).

The comparison between the mutual information of the binary-input AWGN channel with a symmetric
i.i.d. input distribution and the common achievable rate in (2.224) that follows from the martingale
approach is shown in Figure 2.3.
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Figure 2.3: A comparison between the symmetric i.i.d. mutual information of the binary-input AWGN
channel (solid line) and the common achievable rate in (2.224) (dashed line) that follows from the mar-
tingale approach in this subsection.

From the discussion in this subsection, the first and second bounding techniques in Section 2.6.8 lead
to the same achievable rate (see (2.224)) in the setup of random coding and ML decoding where we
assume a symmetric input distribution (i.e., P (±A) = 1

2). But this is due to the fact that, from (2.220),
the sequence {γl}l≥2 is equal to zero for odd indices of l and it is equal to 1 for even values of l (see
the derivation of (2.222) and (2.223)). Note, however, that the second bounding technique may provide
tighter bounds than the first one (which follows from Bennett’s inequality) due to the knowledge of {γl}
for l > 2.

2. Nonlinear Channels with Memory - Third-Order Volterra Channels: The channel model is first presented
in the following (see Figure 2.4). We refer in the following to a discrete-time channel model of nonlinear
Volterra channels where the input-output channel model is given by

yi = [Du]i + νi (2.226)

where i is the time index. Volterra’s operator D of order L and memory q is given by

[Du]i = h0 +

L∑

j=1

q∑

i1=0

. . .

q∑

ij=0

hj(i1, . . . , ij)ui−i1 . . . ui−ij . (2.227)

and ν is an additive Gaussian noise vector with i.i.d. entries νi ∼ N (0, σ2
ν).
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u y

Gaussian noise

ν

Volterra

Operator D

Figure 2.4: The discrete-time Volterra non-linear channel model in Eqs. (2.226) and (2.227) where the
channel input and output are {Ui} and {Yi}, respectively, and the additive noise samples {νi}, which are
added to the distorted input, are i.i.d. with zero mean and variance σ2

ν .

Table 2.1: Kernels of the 3rd order Volterra system D1 with memory 2
kernel h1(0) h1(1) h1(2) h2(0, 0) h2(1, 1) h2(0, 1)
value 1.0 0.5 −0.8 1.0 −0.3 0.6

kernel h3(0, 0, 0) h3(1, 1, 1) h3(0, 0, 1) h3(0, 1, 1)
value 1.0 −0.5 1.2 0.8

kernel h3(0, 1, 2)
value 0.6

Under the same setup of the previous subsection regarding the channel input characteristics, we consider
next the transmission of information over the Volterra system D1 of order L = 3 and memory q = 2,
whose kernels are depicted in Table 2.1. Such system models are used in the base-band representation of
nonlinear narrow-band communication channels. Due to complexity of the channel model, the calculation
of the achievable rates provided earlier in this subsection requires the numerical calculation of the pa-
rameters d and σ2 and thus of γ2 for the martingale {Zi,Fi}N

i=0. In order to achieve this goal, we have to
calculate |Zi−Zi−1| and Var(Zi|Fi−1) for all possible combinations of the input samples which contribute
to the aforementioned expressions. Thus, the analytic calculation of d and γl increases as the system’s
memory q increases. Numerical results are provided in Figure 2.5 for the case where σ2

ν = 1. The new

achievable rates R
(2)
1 (D1, A, σ

2
ν) and R2(D1, A, σ

2
ν), which depend on the channel input parameter A, are

compared to the achievable rate provided in [32, Fig. 2] and are shown to be larger than the latter.
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Figure 2.5: Comparison of the achievable rates in this subsection R1(D1, A, σ
2
ν) and R

(2)
2 (D1, A, σ

2
ν) (where

m = 2) with the bound Rp(D1, A, σ
2
ν) of [32, Fig.2] for the nonlinear channel with kernels depicted in

Table 2.1 and noise variance σ2
ν = 1. Rates are expressed in nats per channel use.
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To conclude, improvements of the achievable rates in the low SNR regime are expected to be ob-
tained via existing improvements to Bennett’s inequality (see [102] and [103]), combined with a possible
tightening of the union bound under ML decoding (see, e.g., [104]).

2.7 Summary

This chapter derives some classical concentration inequalities for discrete-parameter martingales with
uniformly bounded jumps, and it considers some of their applications in information theory and related
topics. The first part is focused on the derivation of these refined inequalities, followed by a discussion
on their relations to some classical results in probability theory. Along this discussion, these inequalities
are linked to the method of types, martingale central limit theorem, law of iterated logarithm, moderate
deviations principle, and to some reported concentration inequalities from the literature. The second part
of this work exemplifies these martingale inequalities in the context of hypothesis testing and information
theory, communication, and coding theory. The interconnections between the concentration inequalities
that are analyzed in the first part of this work (including some geometric interpretation w.r.t. some of
these inequalities) are studied, and the conclusions of this study serve for the discussion on information-
theoretic aspects related to these concentration inequalities in the second part of this chapter. A recent
interesting avenue that follows from the martingale-based inequalities that are introduced in this chapter
is their generalization to random matrices (see, e.g., [105] and [106]).

2.A Proof of Proposition 1

Let {Xk,Fk}∞k=0 be a discrete-parameter martingale. We prove in the following that Theorem 5 implies
(2.73).

Let {Xk,Fk}∞k=0 be a discrete-parameter martingale that satisfies the conditions in Theorem 5. From
(2.33)

P(|Xn −X0| ≥ α
√
n) ≤ 2 exp

(
−nD

(
δ′ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

))
(2.228)

where from (2.34)

δ′ ,

α√
n

d
=

δ√
n
. (2.229)

From the right-hand side of (2.228)

D

(
δ′ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

)

=
γ

1 + γ

[(
1 +

δ

γ
√
n

)
ln

(
1 +

δ

γ
√
n

)
+

1

γ

(
1 − δ√

n

)
ln

(
1 − δ√

n

)]
. (2.230)

From the equality

(1 + u) ln(1 + u) = u+
∞∑

k=2

(−u)k
k(k − 1)

, −1 < u ≤ 1

then it follows from (2.230) that for every n > δ2

γ2

nD

(
δ′ + γ

1 + γ

∣∣∣
∣∣∣

γ

1 + γ

)
=
δ2

2γ
− δ3(1 − γ)

6γ2

1√
n

+ . . .

=
δ2

2γ
+O

(
1√
n

)
.

Substituting this into the exponent on the right-hand side of (2.228) gives (2.73).
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2.B Analysis related to the moderate deviations principle in Sec-

tion 2.5.3

It is demonstrated in the following that, in contrast to Azuma’s inequality, Theorem 5 provides an upper
bound on

P

(∣∣∣
n∑

i=1

Xi

∣∣∣ ≥ αnη

)
, ∀α ≥ 0

which coincides with the exact asymptotic limit in (2.107). It is proved under the further assumption that
there exists some constant d > 0 such that |Xk| ≤ d a.s. for every k ∈ N. Let us define the martingale
sequence {Sk,Fk}n

k=0 where

Sk ,

k∑

i=1

Xi, Fk , σ(X1, . . . ,Xk)

for every k ∈ {1, . . . , n} with S0 = 0 and F0 = {∅,F}.

Analysis related to Azuma’s inequality

The martingale sequence {Sk,Fk}n
k=0 has uniformly bounded jumps, where |Sk − Sk−1| = |Xk| ≤ d a.s.

for every k ∈ {1, . . . , n}. Hence it follows from Azuma’s inequality that, for every α ≥ 0,

P (|Sn| ≥ αnη) ≤ 2 exp

(
−α

2n2η−1

2d2

)

and therefore

lim
n→∞

n1−2η ln P
(
|Sn| ≥ αnη

)
≤ − α2

2d2
. (2.231)

This differs from the limit in (2.107) where σ2 is replaced by d2, so Azuma’s inequality does not provide
the asymptotic limit in (2.107) (unless σ2 = d2, i.e., |Xk| = d a.s. for every k).

Analysis related to Theorem 5

The analysis here is a slight modification of the analysis in Appendix 2.A with the required adaptation
of the calculations for η ∈ (1

2 , 1). It follows from Theorem 5 that, for every α ≥ 0,

P(|Sn| ≥ αnη) ≤ 2 exp

(
−nD

(
δ′ + γ

1 + γ

∣∣∣
∣∣∣
γ

1 + γ

))

where γ is introduced in (2.34), and δ′ in (2.229) is replaced with

δ′ ,

α
n1−η

d
= δn−(1−η) (2.232)

due to the definition of δ in (2.34). Following the same analysis as in Appendix 2.A, it follows that for
every n ∈ N

P(|Sn| ≥ αnη) ≤ 2 exp

(
−δ

2n2η−1

2γ

[
1 +

α(1 − γ)

3γd
· n−(1−η) + . . .

])

and therefore (since, from (2.34), δ2

γ = α2

σ2 )

lim
n→∞

n1−2η ln P
(
|Sn| ≥ αnη

)
≤ − α2

2σ2
. (2.233)

Hence, this upper bound coincides with the exact asymptotic result in (2.107).
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2.C Proof of Proposition 2

The proof of (2.162) is based on calculus, and it is similar to the proof of the limit in (2.161) that relates
the divergence and Fisher information. For the proof of (2.164), note that

C(Pθ, Pθ′) ≥ EL(Pθ, Pθ′) ≥ min
i=1,2

{
δ2i
2γi

− δ3i
6γ2

i (1 + γi)

}
. (2.234)

The left-hand side of (2.234) holds since EL is a lower bound on the error exponent, and the exact value
of this error exponent is the Chernoff information. The right-hand side of (2.234) follows from Lemma 7

(see (2.159)) and the definition of EL in (2.163). By definition γi ,
σ2

i

d2
i

and δi , εi

di
where, based on

(2.149),

ε1 , D(Pθ||Pθ′), ε2 , D(P ′
θ||Pθ). (2.235)

The term on the left-hand side of (2.234) therefore satisfies

δ2i
2γi

− δ3i
6γ2

i (1 + γi)

=
ε2i
2σ2

i

− ε3i d
3
i

6σ2
i (σ

2
i + d2

i )

≥ ε2i
2σ2

i

(
1 − εidi

3

)

so it follows from (2.234) and the last inequality that

C(Pθ, Pθ′) ≥ EL(Pθ, Pθ′) ≥ min
i=1,2

{
ε2i
2σ2

i

(
1 − εidi

3

)}
. (2.236)

Based on the continuity assumption of the indexed family {Pθ}θ∈Θ, then it follows from (2.235) that

lim
θ′→θ

εi = 0, ∀ i ∈ {1, 2}

and also, from (2.130) and (2.140) with P1 and P2 replaced by Pθ and P ′
θ respectively, then

lim
θ′→θ

di = 0, ∀ i ∈ {1, 2}.

It therefore follows from (2.162) and (2.236) that

J(θ)

8
≥ lim

θ′→θ

EL(Pθ, Pθ′)

(θ − θ′)2
≥ lim

θ′→θ
min
i=1,2

{
ε2i

2σ2
i (θ − θ′)2

}
. (2.237)

The idea is to show that the limit on the right-hand side of this inequality is J(θ)
8 (same as the left-hand

side), and hence, the limit of the middle term is also J(θ)
8 .

lim
θ′→θ

ε21
2σ2

1(θ − θ′)2

(a)
= lim

θ′→θ

D(Pθ||Pθ′)
2

2σ2
1(θ − θ′)2

(b)
=
J(θ)

4
lim
θ′→θ

D(Pθ||Pθ′)

σ2
1
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(c)
=
J(θ)

4
lim
θ′→θ

D(Pθ||Pθ′)
∑

x∈X Pθ(x)
(
ln Pθ(x)

Pθ′(x) −D(Pθ||Pθ′)
)2

(d)
=
J(θ)

4
lim
θ′→θ

D(Pθ||Pθ′)
∑

x∈X Pθ(x)
(
ln Pθ(x)

Pθ′(x)

)2
− D(Pθ||Pθ′)2

(e)
=
J(θ)2

8
lim
θ′→θ

(θ − θ′)2

∑
x∈X Pθ(x)

(
ln Pθ(x)

Pθ′(x)

)2
− D(Pθ||Pθ′)2

(f)
=
J(θ)2

8
lim
θ′→θ

(θ − θ′)2

∑
x∈X Pθ(x)

(
ln Pθ(x)

Pθ′ (x)

)2

(g)
=
J(θ)

8
(2.238)

where equality (a) follows from (2.235), equalities (b), (e) and (f) follow from (2.161), equality (c) follows
from (2.131) with P1 = Pθ and P2 = Pθ′ , equality (d) follows from the definition of the divergence, and
equality (g) follows by calculus (the required limit is calculated by using L’Hôpital’s rule twice) and from
the definition of Fisher information in (2.160). Similarly, also

lim
θ′→θ

ε22
2σ2

2(θ − θ′)2
=
J(θ)

8

so

lim
θ′→θ

min
i=1,2

{
ε2i

2σ2
i (θ − θ′)2

}
=
J(θ)

8
.

Hence, it follows from (2.237) that limθ′→θ
EL(Pθ ,Pθ′)

(θ−θ′)2
= J(θ)

8 . This completes the proof of (2.164).

We prove now equation (2.166). From (2.130), (2.140), (2.149) and (2.165) then

ẼL(Pθ, Pθ′) = min
i=1,2

ε2i
2d2

i

with ε1 and ε2 in (2.235). Hence,

lim
θ′→θ

ẼL(Pθ, Pθ′)

(θ′ − θ)2
≤ lim

θ′→θ

ε21
2d2

1(θ
′ − θ)2

and from (2.238) and the last inequality, it follows that

lim
θ′→θ

ẼL(Pθ, Pθ′)

(θ′ − θ)2

≤ J(θ)

8
lim
θ′→θ

σ2
1

d2
1

(a)
=
J(θ)

8
lim
θ′→θ

∑
x∈X Pθ(x)

(
ln Pθ(x)

Pθ′(x) −D(Pθ||Pθ′)
)2

(
maxx∈X

∣∣∣ln Pθ(x)
Pθ′(x) −D(Pθ||Pθ′)

∣∣∣
)2 . (2.239)

It is clear that the second term on the right-hand side of (2.239) is bounded between zero and one
(if the limit exists). This limit can be made arbitrarily small, i.e., there exists an indexed family of
probability mass functions {Pθ}θ∈Θ for which the second term on the right-hand side of (2.239) can
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be made arbitrarily close to zero. For a concrete example, let α ∈ (0, 1) be fixed, and θ ∈ R
+ be

a parameter that defines the following indexed family of probability mass functions over the ternary
alphabet X = {0, 1, 2}:

Pθ(0) =
θ(1 − α)

1 + θ
, Pθ(1) = α, Pθ(2) =

1 − α

1 + θ
.

Then, it follows by calculus that for this indexed family

lim
θ′→θ

∑
x∈X Pθ(x)

(
ln Pθ(x)

Pθ′(x) −D(Pθ||Pθ′)
)2

(
maxx∈X

∣∣∣ln Pθ(x)
Pθ′(x) −D(Pθ||Pθ′)

∣∣∣
)2 = (1 − α)θ

so, for any θ ∈ R
+, the above limit can be made arbitrarily close to zero by choosing α close enough to 1.

This completes the proof of (2.166), and also the proof of Proposition 2.

2.D Proof of Lemma 8

In order to prove Lemma 8, one needs to show that if ρ′(1) <∞ then

lim
C→1

∞∑

i=1

(i+ 1)2Γi

[
h2

(
1 − C

i
2

2

)]2

= 0 (2.240)

which then yields from (2.188) that B → ∞ in the limit where C → 1.
By the assumption in Lemma 8 where ρ′(1) < ∞ then

∑∞
i=1 iρi < ∞, and therefore it follows from

the Cauchy-Schwarz inequality that
∞∑

i=1

ρi

i
≥ 1∑∞

i=1 iρi
> 0.

Hence, the average degree of the parity-check nodes is finite

davg
c =

1∑∞
i=1

ρi

i

<∞.

The infinite sum
∑∞

i=1(i+ 1)2Γi converges under the above assumption since

∞∑

i=1

(i+ 1)2Γi

=
∞∑

i=1

i2Γi + 2
∞∑

i=1

iΓi +
∑

i

Γi

= davg
c

( ∞∑

i=1

iρi + 2

)
+ 1 <∞.

where the last equality holds since

Γi =
ρi

i∫ 1
0 ρ(x) dx

= davg
c

(ρi

i

)
, ∀ i ∈ N.

The infinite series in (2.240) therefore uniformly converges for C ∈ [0, 1], hence, the order of the limit
and the infinite sum can be exchanged. Every term of the infinite series in (2.240) converges to zero in
the limit where C → 1, hence the limit in (2.240) is zero. This completes the proof of Lemma 8.
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2.E Proof of the properties in (2.198) for OFDM signals

Consider an OFDM signal from Section 2.6.7. The sequence in (2.196) is a martingale due to basic
properties of martingales. From (2.195), for every i ∈ {0, . . . , n}

Yi = E

[
max

0≤t≤T

∣∣s(t;X0, . . . ,Xn−1)
∣∣
∣∣∣X0, . . . ,Xi−1

]
.

The conditional expectation for the RV Yi−1 refers to the case where only X0, . . . ,Xi−2 are revealed. Let
X ′

i−1 and Xi−1 be independent copies, which are also independent of X0, . . . ,Xi−2,Xi, . . . ,Xn−1. Then,
for every 1 ≤ i ≤ n,

Yi−1 = E

[
max

0≤t≤T

∣∣s(t;X0, . . . ,X
′
i−1,Xi, . . . ,Xn−1)

∣∣
∣∣∣X0, . . . ,Xi−2

]

= E

[
max

0≤t≤T

∣∣s(t;X0, . . . ,X
′
i−1,Xi, . . . ,Xn−1)

∣∣
∣∣∣X0, . . . ,Xi−2,Xi−1

]
.

Since |E(Z)| ≤ E(|Z|), then for i ∈ {1, . . . , n}

|Yi − Yi−1| ≤ EX′

i−1,Xi,...,Xn−1

[
|U − V |

∣∣∣ X0, . . . ,Xi−1

]
(2.241)

where

U , max
0≤t≤T

∣∣s(t;X0, . . . ,Xi−1,Xi, . . . ,Xn−1)
∣∣

V , max
0≤t≤T

∣∣s(t;X0, . . . ,X
′
i−1,Xi, . . . ,Xn−1)

∣∣.

From (2.193)

|U − V | ≤ max
0≤t≤T

∣∣s(t;X0, . . . ,Xi−1,Xi, . . . ,Xn−1) − s(t;X0, . . . ,X
′
i−1,Xi, . . . ,Xn−1)

∣∣

= max
0≤t≤T

1√
n

∣∣∣
(
Xi−1 −X ′

i−1

)
exp
(j 2πit

T

)∣∣∣

=
|Xi−1 −X ′

i−1|√
n

. (2.242)

By assumption, |Xi−1| = |X ′
i−1| = 1, and therefore a.s.

|Xi−1 −X ′
i−1| ≤ 2 =⇒ |Yi − Yi−1| ≤

2√
n
.

In the following, an upper bound on the conditional variance Var(Yi | Fi−1) = E
[
(Yi − Yi−1)

2 | Fi−1

]
is

obtained. Since
(
E(Z)

)2 ≤ E(Z2) for a real-valued RV Z, then from (2.241) and (2.242)

E
[
(Yi − Yi−1)

2 |Fi−1

]
≤ 1

n
· EX′

i−1

[
|Xi−1 −X ′

i−1|2 | Fi

]
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where Fi is the σ-algebra that is generated by X0, . . . ,Xi−1. Due to symmetry of the PSK constellation,
then

E
[
(Yi − Yi−1)

2 | Fi−1

]

≤ 1

n
EX′

i−1

[
|Xi−1 −X ′

i−1|2 | Fi

]

=
1

n
E
[
|Xi−1 −X ′

i−1|2 |X0, . . . ,Xi−1

]

=
1

n
E
[
|Xi−1 −X ′

i−1|2 |Xi−1

]

=
1

n
E

[
|Xi−1 −X ′

i−1|2 |Xi−1 = e
jπ
M

]

=
1

nM

M−1∑

l=0

∣∣∣ e
jπ
M − e

j(2l+1)π
M

∣∣∣
2

=
4

nM

M−1∑

l=1

sin2
( πl
M

)
=

2

n

where the last equality holds since

M−1∑

l=1

sin2
( πl
M

)
=

1

2

M−1∑

l=0

(
1 − cos

(2πl

M

))

=
M

2
− 1

2
Re

{M−1∑

l=0

ej2lπ/M

}

=
M

2
− 1

2
Re

{
1 − e2jπ

1 − ej2π/M

}
=
M

2
.



Chapter 3

The Entropy Method, Log-Sobolev and
Transportation-Cost Inequalities: Links
and Applications in Information Theory

This chapter introduces the entropy method for deriving concentration inequalities for functions of many
independent random variables, and exhibits its multiple connections to information theory. The chapter
is divided into four parts. The first part of the chapter introduces the basic ingredients of the entropy
method and closely related topics, such as the logarithmic-Sobolev inequalities. These topics underlie
the so-called functional approach to deriving concentration inequalities. The second part is devoted to
a related viewpoint based on probability in metric spaces. This viewpoint centers around the so-called
transportation-cost inequalities, which have been introduced into the study of concentration by Marton.
The third part gives a brief summary of some results on concentration for dependent random variables,
emphasizing the connections to information-theoretic ideas. The fourth part lists several applications of
concentration inequalities and the entropy method to problems in information theory. The considered
applications include strong converses for several source and channel coding problems, empirical distribu-
tions of good channel codes with non-vanishing error probability, and an information-theoretic converse
for concentration of measures.

3.1 The main ingredients of the entropy method

As a reminder, we are interested in the following question. Let X1, . . . ,Xn be n independent random
variables, each taking values in a set X . Given a function f : X n → R, we would like to find tight
upper bounds on the deviation probabilities for the random variable U = f(Xn), i.e., we wish to bound
from above the probability P(|U − EU | ≥ r) for each r > 0. Of course, if U has finite variance, then
Chebyshev’s inequality already gives

P(|U − EU | ≥ r) ≤ var(U)

r2
, ∀ r > 0. (3.1)

However, in many instances a bound like (3.1) is not nearly as tight as one would like, so ideally we aim
for Gaussian-type bounds

P(|U − EU | ≥ r) ≤ K exp
(
−κr2

)
, ∀ r > 0 (3.2)

for some constants K,κ > 0. Whenever such a bound is available, K is a small constant (usually, K = 2),
while κ depends on the sensitivity of the function f to variations in its arguments.

84
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In the preceding chapter, we have demonstrated the martingale method for deriving Gaussian con-
centration bounds of the form (3.2). In this chapter, our focus is on the so-called “entropy method,” an
information-theoretic technique that has become increasingly popular starting with the work of Ledoux
[34] (see also [2]). In the following, we will always assume (unless specified otherwise) that the function
f : X n → R and the probability distribution P of Xn are such that

• U = f(Xn) has zero mean: EU = Ef(Xn) = 0

• U is exponentially integrable:

E[exp(λU)] = E
[
exp

(
λf(Xn)

)]
<∞, ∀λ ∈ R (3.3)

[another way of writing this is exp(λf) ∈ L1(P ) for all λ ∈ R].

In a nutshell, the entropy method has three basic ingredients:

1. The Chernoff bounding trick — using Markov’s inequality, the problem of bounding the deviation
probability P(|U − EU | ≥ r) is reduced to the analysis of the logarithmic moment-generating function
Λ(λ) , ln E[exp(λU)], λ ∈ R.

2. The Herbst argument — the function Λ(λ) is related through a simple first-order differential equa-
tion to the relative entropy (information divergence) D(P (λf)‖P ), where P = PXn is the probability
distribution of Xn and P (λf) is the tilted probability distribution defined by

dP (λf)

dP
=

exp(λf)

E[exp(λf)]
= exp

(
λf − Λ(λ)

)
. (3.4)

If the function f and the probability distribution P are such that

D(P (λf)‖P ) ≤ cλ2

2
(3.5)

for some c > 0, then the Gaussian bound (3.2) holds with K = 2 and κ = 1
2c . The standard way to

establish (3.5) is through the so-called logarithmic Sobolev inequalities.

3. Tensorization of the entropy — with few exceptions, it is rather difficult to derive a bound like
(3.5) directly. Instead, one typically takes a divide-and-conquer approach: Using the fact that PXn is a
product distribution (by the assumed independence of the Xi’s), the divergence D(P (λf)‖P ) is bounded
from above by a sum of “one-dimensional” (or “local”) conditional divergence terms

D
(
P

(λf)

Xi|X̄i

∥∥PXi

∣∣P (λf)

X̄i

)
, i = 1, . . . , n (3.6)

where, for each i, X̄i ∈ X n−1 denotes the (n−1)-tuple obtained from Xn by removing the ith coordinate,
i.e., X̄i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn). Despite their formidable appearance, the conditional divergences
in (3.6) are easier to handle because, for each given realization X̄i = x̄i, the ith such term involves a
single-variable function fi(·|x̄i) : X → R defined by fi(y|x̄i) , f(x1, . . . , xi−1, y, xi+1, . . . , xn) and the

corresponding tilted distribution P
(λf)

Xi|X̄i=x̄i , where

dP
(λf)

Xi|X̄i=x̄i

dPXi

=
exp

(
λfi(·|x̄i)

)

E
[
exp

(
λfi(Xi|x̄i)

)] , ∀x̄i ∈ X n−1. (3.7)
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In fact, from (3.4) and (3.7), it is easy to see that the conditional distribution P
(λf)

Xi|X̄i=x̄i is nothing but

the tilted distribution P
(λfi(·|x̄i))
Xi

. This simple observation translates into the following: If the function f
and the probability distribution P = PXn are such that there exist constants c1, . . . , cn > 0 so that

D
(
P

(λfi(·|x̄i))
Xi

∥∥∥PXi

)
≤ ciλ

2

2
, ∀i ∈ {1, . . . , n}, x̄i ∈ X n−1, (3.8)

then (3.5) holds with c =
∑n

i=1 ci (to be shown explicitly later), which in turn gives that

P

(
|f(Xn) − Ef(Xn)| ≥ r

)
≤ 2 exp

(
− r2

2
∑n

i=1 ci

)
, r > 0. (3.9)

Again, one would typically use logarithmic Sobolev inequalities to verify (3.8).

In the remainder of this section, we shall elaborate on these three ingredients. Logarithimic Sobolev
inequalities and their applications to concentration bounds are described in detail in Sections 3.2 and 3.3.

3.1.1 The Chernoff bounding trick

The first ingredient of the entropy method is the well-known Chernoff bounding trick1: Using Markov’s
inequality, for any λ > 0 we have

P(U ≥ r) = P
(
exp(λU) ≥ exp(λr)

)

≤ exp(−λr)E[exp(λU)].

Equivalently, if we define the logarithmic moment generating function Λ(λ) , ln E[exp(λU)], λ ∈ R, we
can write

P(U ≥ r) ≤ exp
(
Λ(λ) − λr

)
, ∀λ > 0. (3.10)

To bound the probability of the lower tail, P(U ≤ −r), we follow the same steps, but with −U instead of
U . From now on, we will focus on the deviation probability P(U ≥ r).

By means of the Chernoff bounding trick, we have reduced the problem of bounding the deviation
probability P(U ≥ r) to the analysis of the logarithmic moment-generating function Λ(λ). The following
properties of Λ(λ) will be useful later on:

• Λ(0) = 0

• Because of the exponential integrability of U [cf. (3.3)], Λ(λ) is infinitely differentiable, and one can
interchange derivative and expectation. In particular,

Λ′(λ) =
E[U exp(λU)]

E[exp(λU)]
and Λ′′(λ) =

E[U2 exp(λU)]

E[exp(λU)]
−
(

E[U exp(λU)]

E[exp(λU)]

)2

(3.11)

Since we have assumed that EU = 0, we have Λ′(0) = 0 and Λ′′(0) = var(U).

• Since Λ(0) = Λ′(0) = 0, we get

lim
λ→0

Λ(λ)

λ
= 0. (3.12)

1The name of H. Chernoff is associated with this technique because of his 1952 paper [107]; however, its roots go back to
S.N. Bernstein’s 1927 textbook on the theory of probability [108].
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3.1.2 The Herbst argument

The second ingredient of the entropy method consists in relating this function to a certain relative entropy,
and is often referred to as the Herbst argument because the basic idea underlying it had been described
in an unpublished note by I. Herbst.

Given any function g : X n → R which is exponentially integrable w.r.t. P , i.e., E[exp(g(Xn))] < ∞,
let us denote by P (g) the g-tilting of P :

dP (g)

dP
=

exp(g)

E[exp(g)]
.

Then

D
(
P (g)

∥∥P
)

=

∫

Xn

ln

(
dP (g)

dP

)
dP (g)

=

∫

Xn

dP (g)

dP
ln

(
dP (g)

dP

)
dP

=

∫

Xn

exp(g)

E[exp(g)]
·
(
g − ln E[exp(g)]

)
dP

=
1

E[exp(g)]

∫

Xn

g exp(g) dP − ln E[exp(g)]

=
E[g exp(g)]

E[exp(g)]
− ln E[exp(g)].

In particular, if we let g = tf for some t 6= 0, then

D
(
P (tf)

∥∥P
)

=
t · E[f exp(tf)]

E[exp(tf)]
− ln E[exp(tf)]

= tΛ′(t) − Λ(t)

= t2
(

Λ′(t)
t

− Λ(t)

t2

)

= t2
d

dt

(
Λ(t)

t

)
, (3.13)

where in the second line we have used (3.11). Integrating from t = 0 to t = λ and using (3.12), we get

Λ(λ) = λ

∫ λ

0

D
(
P (tf)

∥∥P
)

t2
dt. (3.14)

Combining (3.14) with (3.10), we have proved the following:

Proposition 4. Let U = f(Xn) be a zero-mean random variable that is exponentially integrable. Then,
for any r ≥ 0,

P
(
U ≥ r

)
≤ exp

(
λ

∫ λ

0

D(P (tf)‖P )

t2
dt− λr

)
, ∀λ > 0. (3.15)

Thus, we have reduced the problem of bounding the deviation probabilities P(U ≥ r) to the problem
of bounding the relative entropies D(P (tf)‖P ). In particular, we have
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Corollary 7. Suppose that the function f and the probability distribution P of Xn are such that

D
(
P (tf)

∥∥P
)
≤ ct2

2
, ∀t > 0 (3.16)

for some constant c > 0. Then,

P
(
U ≥ r

)
≤ exp

(
−r

2

2c

)
, ∀ r ≥ 0. (3.17)

Proof. Using (3.16) to upper-bound the integrand on the right-hand side of (3.16), we get

P
(
U ≥ r

)
≤ exp

(
cλ2

2
− λr

)
, ∀λ > 0. (3.18)

Optimizing over λ > 0 to get the tightest bound gives λ = r
c , and its substitution in (3.18) gives the

bound in (3.17).

3.1.3 Tensorization of the (relative) entropy

The relative entropy D(P (tf)‖P ) involves two probability measures on the Cartesian product space X n,
so bounding this quantity directly is generally very difficult. This is where the third ingredient of the
entropy method, the so-called tensorization step, comes in. The name “tensorization” reflects the fact
that this step involves bounding D(P (tf)‖P ) by a sum of “one-dimensional” relative entropy terms, each
involving the conditional distributions of one of the variables given the rest. The tensorization step hinges
on the following simple bound:

Proposition 5. Let P and Q be two probability measures on the product space X n, where P is a product
measure. For any i ∈ {1, . . . , n}, let X̄i denote the (n − 1)-tuple (X1, . . . ,Xi−1,Xi+1, . . . ,Xn) obtained
by removing Xi from Xn. Then

D(Q‖P ) ≤
n∑

i=1

D
(
QXi|X̄i

∥∥PXi

∣∣QX̄i

)
. (3.19)

Proof. From the relative entropy chain rule

D(Q||P ) =
n∑

i=1

D
(
QXi |Xi−1 ||PXi|Xi−1 |QXi−1

)

=

n∑

i=1

D
(
QXi |Xi−1 ||PXi

|QXi−1

)
(3.20)

where the last equality holds since X1, . . . ,Xn are independent random variables under P (which implies
that PXi|Xi−1 = PXi|X̄i = PXi

). Furthermore, for every i ∈ {1, . . . , n},

D
(
QXi|X̄i

∥∥PXi

∣∣QX̄i

)
−D

(
QXi|Xi−1

∥∥PXi

∣∣QXi−1

)

= EQ

[
ln

dQXi|X̄i

dPXi

]
− EQ

[
ln

dQXi|Xi−1

dPXi

]

= EQ

[
ln

dQXi|X̄i

dQXi|Xi−1

]

= D
(
QXi|X̄i

∥∥QXi|Xi−1

∣∣QX̄i

)
≥ 0. (3.21)

Hence, by combining (3.20) and (3.21), we get the inequality in (3.19).
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Remark 19. The quantity on the right-hand side of (3.19) is actually the so-called erasure divergence
D−(Q‖P ) between Q and P (see [109, Definition 4]), which in the case of arbitrary Q and P is defined
by

D−(Q‖P ) ,

n∑

i=1

D(QXi|X̄i‖PXi|X̄i |QX̄i). (3.22)

Because in the inequality (3.19) P is assumed to be a product measure, we can replace PXi|X̄i by PXi
. For

a general (non-product) measure P , the erasure divergence D−(Q‖P ) may be strictly larger or smaller
than the ordinary divergence D(Q‖P ). For example, if n = 2, PX1 = QX1 , PX2 = QX2 , then

dQX1|X2

dPX1|X2

=
dQX2|X1

dPX2|X1

=
dQX1,X2

dPX1,X2

,

so, from (3.22),

D−(QX1,X2‖PX1,X2) = D(QX1|X2
‖PX1|X2

|QX2) +D(QX2|X1
‖PX2|X1

|QX1) = 2D(QX1,X2‖PX1,X2).

On the other hand, if X1 = X2 under both P and Q, then D−(Q‖P ) = 0, but D(Q‖P ) > 0 whenever
P 6= Q, so D(Q‖P ) > D−(Q‖P ) in this case.

Applying Proposition 5 with Q = P (tf) to bound the divergence in the integrand in (3.15), we obtain
from Corollary 7 the following:

Proposition 6. For any r ≥ 0, we have

P
(
U ≥ r) ≤ exp


λ

n∑

i=1

∫ λ

0

D
(
P

(tf)

Xi|X̄i

∥∥PXi

∣∣P (tf)

X̄i

)

t2
dt− λr


 , ∀λ > 0 (3.23)

The conditional divergences in the integrand in (3.23) may look formidable, but the remarkable thing is
that, for each i and a given X̄i = x̄i, the corresponding term involves a tilting of the marginal distribution
PXi

. Indeed, let us fix some i ∈ {1, . . . , n}, and for each choice of x̄i ∈ X n−1 let us define a function
fi(·|x̄i) : X → R by setting

fi(y|x̄i) , f(x1, . . . , xi−1, y, xi+1, . . . , xn), ∀y ∈ X . (3.24)

Then

dP
(f)

Xi|X̄i=x̄i

dPXi

=
exp

(
fi(·|x̄i)

)

E
[
exp

(
fi(Xi|x̄i)

)] . (3.25)

In other words, P
(f)

Xi|X̄i=x̄i is the fi(·|x̄i)-tilting of PXi
. This is the essence of tensorization: we have

effectively decomposed the n-dimensional problem of bounding D(P (tf)‖P ) into n one-dimensional prob-
lems, where the ith problem involves the tilting of the marginal distribution PXi

by functions of the form
fi(·|x̄i),∀x̄i. In particular, we get the following:

Corollary 8. Suppose that the function f and the probability distribution P of Xn are such that there
exist some constants c1, . . . , cn > 0, so that, for any t > 0,

D
(
P

(tfi(·|x̄i))
Xi

∥∥PXi

)
≤ cit

2

2
, ∀i ∈ {1, . . . , n}, x̄i ∈ X n−1. (3.26)

Then

P

(
f(Xn) − Ef(Xn) ≥ r

)
≤ exp

(
− r2

2
∑n

i=1 ci

)
, ∀ r > 0. (3.27)
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Proof. For any t > 0

D(P (tf)||P )

≤
n∑

i=1

D
(
P

(tf)

Xi|X̄i

∥∥PXi
|P (tf)

X̄i

)
(3.28)

=

n∑

i=1

∫

Xn−1

D
(
P

(tf)

Xi|X̄i=x̄i

∥∥PXi

)
P

(tf)

X̄i (dx̄i) (3.29)

=

n∑

i=1

∫

Xn−1

D
(
P

(tfi(·|x̄i))
Xi

∥∥PXi

)
P

(tf)

X̄i (dx̄i) (3.30)

≤
n∑

i=1

∫

Xn−1

cit
2

2
P

(tf)

X̄i (dx̄i) (3.31)

=
t2

2
·

n∑

i=1

ci (3.32)

where (3.28) follows from the tensorization of the relative entropy, (3.29) holds since P is a product
measure (so PXi

= PXi|X̄i) and by the definition of the conditional relative entropy, (3.30) follows from

(3.24) and (3.25) which implies that P
(tf)

Xi|X̄i=x̄i = P
(tfi(·|x̄i))
Xi

, and inequality (3.31) holds by the assumption

in (3.26). Finally, the inequality in (3.27) follows from (3.32) and Corollary 7.

3.1.4 Preview: logarithmic Sobolev inequalities

Ultimately, the success of the entropy method hinges on demonstrating that the bounds in (3.26) hold for
the function f : X n → R and the probability distribution P = PXn of interest. In the next two sections,
we will show how to derive such bounds using the so-called logarithmic Sobolev inequalities. Here, we will
give a quick preview of this technique.

Let µ be a probability measure on X , and let A be a family of real-valued functions g : X → R,
such that for any a ≥ 0 and g ∈ A, also ag ∈ A. Let E : A → R

+ be a non-negative functional that is
homogeneous of degree 2, i.e., for any a ≥ 0 and g ∈ A, we have E(ag) = a2E(g). Suppose further that
there exists a constant c > 0, such that the inequality

D(µ(g)‖µ) ≤ cE(g)

2
(3.33)

holds for any g ∈ A. Now, suppose that, for each i ∈ {1, . . . , n}, inequality (3.33) holds with µ = PXi

holds and some constant ci > 0 where A is a suitable family of functions f such that, for any x̄i ∈ X n−1

and i ∈ {1, . . . , n},
1. fi(·|x̄i) ∈ A
2. E

(
fi(·|x̄i)

)
≤ 1

where fi is defined in (3.24). Then, the bounds in (3.26) hold since from (3.33) and the above properties
of the functional E, it follows that for every t > 0 and x̄i ∈ X n−1

D
(
P

(tf)

Xi|X̄i=x̄i

∥∥PXi

)

≤ ciE
(
t fi(·|x̄i)

)

2

=
cit

2E
(
fi(·|x̄i)

)

2

≤ cit
2

2
, ∀ i ∈ {1, . . . , n}.
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Consequently, the Gaussian concentration inequality in (3.27) follows from Corollary 8.

3.2 The Gaussian logarithmic Sobolev inequality (LSI)

Before turning to the general scheme of logarithmic Sobolev inequalities in the next section, we will
illustrate the basic ideas in the particular case when X1, . . . ,Xn are i.i.d. standard Gaussian random
variables. The relevant log-Sobolev inequality in this instance comes from a seminal paper of Gross
[35], and it connects two key information-theoretic measures, namely the relative entropy and the rel-
ative Fisher information. In addition, there are deep links between Gross’s log-Sobolev inequality and
other fundamental information-theoretic inequalities, such as Stam’s inequality and the entropy power
inequality. Some of these fundamental links are considered in this section.

For any n ∈ N and any positive-semidefinite matrix K ∈ R
n×n, we will denote by Gn

K the Gaussian
distribution with zero mean and covariance matrix K. When K = sIn for some s ≥ 0 (where In denotes
the n × n identity matrix), we will write Gn

s . We will also write Gn for Gn
1 when n ≥ 2, and G for G1

1.
We will denote by γn

K , γn
s , γs, and γ the corresponding densities.

We first state Gross’s inequality in its (more or less) original form:

Theorem 21. For Z ∼ Gn and for any smooth function φ : R
n → R, we have

E[φ2(Z) lnφ2(Z)] − E[φ2(Z)] ln E[φ2(Z)] ≤ 2 E
[
‖∇φ(Z)‖2

]
. (3.34)

Remark 20. As shown by Carlen [110], equality in (3.34) holds if and only if φ is of the form φ(z) =
exp 〈a, z〉 for some a ∈ R

n, where 〈·, ·〉 denotes the standard Euclidean inner product.

Remark 21. There is no loss of generality in assuming that E[φ2(Z)] = 1. Then (3.34) can be rewritten
as

E[φ2(Z) ln φ2(Z)] ≤ 2 E
[
‖∇φ(Z)‖2

]
, if E[φ2(Z)] = 1, Z ∼ Gn. (3.35)

Moreover, a simple rescaling argument shows that, for Z ∼ Gn
s and an arbitrary smooth function φ with

E[φ2(Z)] = 1,

E[φ2(Z) lnφ2(Z)] ≤ 2sE
[
‖∇φ(Z)‖2

]
. (3.36)

An information-theoretic proof of the Gaussian LSI (Theorem 21) is provided in the continuation to
this section. The reader is also referred to [111] for another proof that is not information-theoretic.

From an information-theoretic point of view, the Gaussian LSI (3.34) relates two measures of (dis)similarity
between probability measures — the relative entropy (or divergence) and the relative Fisher information
(or Fisher information distance). The latter is defined as follows. Let P1 and P2 be two Borel probability
measures on R

n with differentiable densities p1 and p2. Then the relative Fisher information (or Fisher
information distance) between P1 and P2 is defined as (see [112, Eq. (6.4.12)])

I(P1‖P2) ,

∫

Rn

∥∥∥∥∇ ln
p1(z)

p2(z)

∥∥∥∥
2

p1(z)dz = EP1

[∥∥∥∥∇ ln
dP1

dP2

∥∥∥∥
2
]
, (3.37)

whenever the above integral converges. Under suitable regularity conditions, I(P1‖P2) admits the equiv-
alent form (see [113, Eq. (1.108)])

I(P1‖P2) = 4

∫

Rn

p2(z)

∥∥∥∥∥∇
√
p1(z)

p2(z)

∥∥∥∥∥

2

dz = 4 EP2



∥∥∥∥∥∇
√

dP1

dP2

∥∥∥∥∥

2

 . (3.38)
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Remark 22. One condition under which (3.38) holds is as follows. Let ξ : R
n → R

n be the distributional
(or weak) gradient of

√
dP1/dP2 =

√
p1/p2, i.e., the equality

∫ ∞

−∞

√
p1(z)

p2(z)
∂iψ(z)dz = −

∫ ∞

−∞
ξi(z)ψ(z)dz

holds for all i = 1, . . . , n and all test functions ψ ∈ C∞
c (Rn) [114, Sec. 6.6]. Then (3.38) holds, provided

ξ ∈ L2(P2).

Now let us fix a smooth function φ : R
n → R satisfying the normalization condition

∫
Rn φ

2 dGn = 1;
we can assume w.l.o.g. that φ ≥ 0. Let Z be a standard n-dimensional Gaussian random variable, i.e.,
PZ = Gn, and let Y ∈ R

n be a random vector with distribution PY satisfying

dPY

dPZ
=

dPY

dGn
= φ2.

Then, on the one hand, we have

E
[
φ2(Z) ln φ2(Z)

]
= E

[(
dPY

dPZ
(Z)

)
ln

(
dPY

dPZ
(Z)

)]
= D(PY ‖PZ), (3.39)

and on the other, from (3.38),

E
[
‖∇φ(Z)‖2

]
= E



∥∥∥∥∥∇
√

dPY

dPZ
(Z)

∥∥∥∥∥

2

 =

1

4
I(PY ‖PZ). (3.40)

Substituting (3.39) and (3.40) into (3.35), we obtain the inequality

D(PY ‖PZ) ≤ 1

2
I(PY ‖PZ), PZ = Gn (3.41)

which holds for any PY � Gn with ∇
√

dPY /dGn ∈ L2(Gn). Conversely, for any PY � Gn satisfying
(3.41), we can derive (3.35) by letting φ =

√
dPY /dGn, provided ∇φ exists (e.g., in the distributional

sense). Similarly, for any s > 0, (3.36) can be written as

D(PY ‖PZ) ≤ s

2
I(PY ‖PZ), PZ = Gn

s . (3.42)

Now let us apply the Gaussian LSI (3.34) to functions of the form φ = exp(g/2) for all suitably well-
behaved g : R

n → R. Doing this, we obtain

E

[
exp(g) ln

exp(g)

E[exp(g)]

]
≤ 1

2
E
[
‖∇g‖2 exp(g)

]
, (3.43)

where the expectation is w.r.t. Gn. If we let P = Gn, then we can recognize the left-hand side of (3.43)
as E[exp(g)] ·D(P (g)‖P ), where P (g) denotes, as usual, the g-tilting of P . Moreover, the right-hand side

is equal to E[exp(g)] · E
(g)
P [‖∇g‖2] with E

(g)
P [·] denoting expectation w.r.t. P (g). We therefore obtain the

so-called modified log-Sobolev inequality for the standard Gaussian measure:

D(P (g)‖P ) ≤ 1

2
E

(g)
P

[
‖∇g‖2

]
, P = Gn (3.44)

which holds for all smooth functions g : R
n → R that are exponentially integrable w.r.t. Gn. Observe

that (3.44) implies (3.33) with µ = Gn, c = 1, and E(g) = ‖∇g‖2
∞.

In the remainder of this section, we first present a proof of Theorem 21, and then discuss several appli-
cations of the modified log-Sobolev inequality (3.44) to derivation of Gaussian concentration inequalities
via the Herbst argument.
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3.2.1 An information-theoretic proof of Gross’s log-Sobolev inequality

In accordance with our general theme, we will prove Theorem 21 via tensorization: We first scale up to
general n using suitable (sub)additivity properties, and then establish the n = 1 case. Indeed, suppose
that (3.34) holds in dimension 1. For n ≥ 2, let X = (X1, . . . ,Xn) be an n-tuple of i.i.d. N (0, 1) variables
and consider a smooth function φ : R

n → R, such that EP [φ2(X)] = 1, where P = PX = Gn is the
product of n copies of the standard Gaussian distribution G. If we define a probability measure Q = QX

with dQX/dPX = φ2, then using Proposition 5 we can write

EP

[
φ2(X) ln φ2(X)

]
= EP

[
dQ

dP
ln

dQ

dP

]

= D(Q‖P )

≤
n∑

i=1

D
(
QXi|X̄i

∥∥PXi

∣∣QX̄i

)
. (3.45)

Following the same steps as the ones that led to (3.24), we can define for each i = 1, . . . , n and each
x̄i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ R

n−1 the function φi(·|x̄i) : R → R via

φi(y|x̄i) , φ(x1, . . . , xi−1, y, xi+1, . . . , xn), ∀x̄i ∈ R
n−1, y ∈ R.

Then

dQXi|X̄i=x̄i

dPXi

=
φ2

i (·|x̄i)

EP [φ2
i (Xi|x̄i)]

for all i ∈ {1, . . . , n}, x̄i ∈ R
n−1. With this, we can write

D
(
QXi|X̄i

∥∥PXi

∣∣QX̄i

)
= EQ

[
ln

dQXi|X̄i

dPXi

]

= EP

[
dQ

dP
ln

dQXi|X̄i

dPXi

]

= EP

[
φ2(X) ln

φ2
i (Xi|X̄i)

EP [φ2
i (Xi|X̄i)|X̄i]

]

= EP

[
φ2

i (Xi|X̄i) ln
φ2

i (Xi|X̄i)

EP [φ2
i (Xi|X̄i)|X̄i]

]

=

∫

Rn−1

EP

[
φ2

i (Xi|x̄i) ln
φ2

i (Xi|x̄i)

EP [φ2
i (Xi|x̄i)]

]
PX̄i(dx̄i). (3.46)

Since each Xi ∼ G, we can apply the Gaussian LSI (3.34) to the univariate functions φi(·|x̄i) to get

EP

[
φ2

i (Xi|x̄i) ln
φ2

i (Xi|x̄i)

EP [φ2
i (Xi|x̄i)]

]
≤ 2 EP

[(
φ′i(Xi|x̄i)

)2]
, ∀i = 1, . . . , n; x̄i ∈ R

n−1 (3.47)

where

φ′i(y|x̄i) =
dφi(y|x̄i)

dy
=
∂φ(x)

∂xi

∣∣∣
xi=y

.

Since X1, . . . ,Xn are i.i.d. under P , we can express (3.47) as

EP

[
φ2

i (Xi|x̄i) ln
φ2

i (Xi|x̄i)

EP [φ2
i (Xi|x̄i)]

]
≤ 2 EP

[(
∂iφ(X)

)2∣∣∣X̄i = x̄i
]
.
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Substituting this bound into (3.46), we have

D
(
QXi|X̄i

∥∥PXi

∣∣QX̄i

)
≤ 2 EP

[(
∂iφ(X)

)2]
.

In turn, using this to bound each term in the summation on the right-hand side of (3.45) together with

the fact that
∑n

i=1

(
∂iφ(x)

)2
= ‖∇φ(x)‖2, we get

EP

[
φ2(X) ln φ2(X)

]
≤ 2 EP

[∥∥∇φ2(X)
∥∥2
]
, (3.48)

which is precisely the n-dimensional Gaussian LSI (3.35) for general n ≥ 2 provided that it holds for
n = 1.

Based on the above argument, we will now focus on proving the Gaussian LSI for n = 1. To that end,
it will be convenient to express it in a different but equivalent form that relates the Fisher information and
the entropy power of a real-valued random variable with a sufficiently regular density. In this form, the
Gaussian LSI was first derived by Stam [36], and the equivalence between Stam’s inequality and (3.34)
was only noted much later by Carlen [110]. We will first establish this equivalence following Carlen’s
argument, and then give a new information-theoretic proof of Stam’s inequality that, unlike existing
proofs [115, 38], does not require de Bruijn’s identity or the entropy-power inequality.

First, some definitions. Let Y be a real-valued random variable with density pY . The differential
entropy of Y (in nats) is given by

h(Y ) = h(pY ) , −
∫ ∞

−∞
pY (y) ln pY (y)dy, (3.49)

provided the integral exists. If it does, then the entropy power of Y is given by

N(Y ) ,
exp(2h(Y ))

2πe
. (3.50)

Moreover, if the density pY is differentiable, then the Fisher information (w.r.t. a location parameter) is
given by

J(Y ) = J(pY ) =

∫ ∞

−∞

(
d

dy
ln pY (y)

)2

pY (y)dy = E[ρ2
Y (Y )], (3.51)

where ρY (y) , (d/dy) ln pY (y) is known as the score function.

Remark 23. In theoretical statistics, an alternative definition of the Fisher information (w.r.t. a location
parameter) in a real-valued random variable Y is (see [116, Definition 4.1])

J(Y ) , sup
{∣∣Eψ′(Y )

∣∣2 : ψ ∈ C1,Eψ2(Y ) = 1
}
. (3.52)

Note that this definition does not involve derivatives of any functions of the density of Y (nor assumes
that such a density even exists). It can be shown that the quantity defined in (3.52) exists and is finite
if and only if Y has an absolutely continuous density pY , in which case J(Y ) is equal to (3.51) (see [116,
Theorem 4.2]).

We will need the following facts:

1. If D(PY ‖Gs) <∞, then

D(PY ‖Gs) =
1

2
ln

1

N(Y )
+

1

2
ln s− 1

2
+

1

2s
EY 2. (3.53)
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This is proved by direct calculation: Since D(PY ‖Gs) < ∞, we have PY � Gs and dPY /dGs = pY /γs.
Then

D(PY ‖Gs) =

∫ ∞

−∞
pY (y) ln

pY (y)

γs(y)
dy

= −h(Y ) +
1

2
ln(2πs) +

1

2s
EY 2

= −1

2
(2h(Y ) − ln(2πe)) +

1

2
ln s− 1

2
+

1

2s
EY 2

=
1

2
ln

1

N(Y )
+

1

2
ln s− 1

2
+

1

2s
EY 2,

which is (3.53).

2. If J(Y ) <∞ and EY 2 <∞, then for any s > 0

I(PY ‖Gs) = J(Y ) +
1

s2
EY 2 − 2

s
<∞, (3.54)

where I(·‖·) is the relative Fisher information, cf. (3.37). Indeed:

I(PY ‖Gs) =

∫ ∞

−∞
pY (y)

(
d

dy
ln pY (y) − d

dy
ln γs(y)

)2

dy

=

∫ ∞

−∞
pY (y)

(
ρY (y) +

y

s

)2
dy

= E[ρ2
Y (Y )] +

2

s
E[Y ρY (Y )] +

1

s2
EY 2

= J(Y ) +
2

s
E[Y ρY (Y )] +

1

s2
EY 2.

Because J(Y ) <∞ and EY 2 <∞, then E[Y ρY (Y )] = −1 (see [117, Lemma A1]), and we get (3.54).

We are now in a position to prove the following:

Proposition 7 (Carlen [110]). Let Y be a real-valued random variable with a smooth density pY , such
that J(Y ) <∞ and EY 2 <∞. Then the following statements are equivalent:

1. Gaussian log-Sobolev inequality, D(PY ‖G) ≤ (1/2)I(PY ‖G).

2. Stam’s inequality, N(Y )J(Y ) ≥ 1.

Remark 24. Carlen’s original derivation in [110] requires pY to be in the Schwartz space S(R) of infinitely
differentiable functions, all of whose derivatives vanish sufficiently rapidly at infinity. In comparison, the
regularity conditions of the above proposition are much weaker, requiring only that PY has a differentiable
and absolutely continuous density, as well as a finite second moment.

Proof. We first show the implication 1) ⇒ 2). If 1) holds, then

D(PY ‖Gs) ≤
s

2
I(PY ‖Gs), ∀s > 0. (3.55)

Since J(Y ) and EY 2 are finite by assumption, the right-hand side of (3.55) is finite and equal to (3.54).
Therefore, D(PY ‖Gs) is also finite, and it is equal to (3.53). Hence, we can rewrite (3.55) as

1

2
ln

1

N(Y )
+

1

2
ln s− 1

2
+

1

2s
EY 2 ≤ s

2
J(Y ) +

1

2s
EY 2 − 1.
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Because EY 2 <∞, we can cancel the corresponding term from both sides and, upon rearranging, obtain

ln
1

N(Y )
≤ sJ(Y ) − ln s− 1.

Importantly, this bound holds for every s > 0. Therefore, using the fact that, for any a > 0,

1 + ln a = inf
s>0

(as− ln s),

we obtain Stam’s inequality N(Y )J(Y ) ≥ 1.
To establish the converse implication 2) ⇒ 1), we simply run the above proof backwards.

We now turn to the proof of Stam’s inequality. Without loss of generality, we may assume that EY = 0
and EY 2 = 1. Our proof will exploit the formula, due to Verdú [118], that expresses the divergence in
terms of an integral of the excess mean squared error (MSE) in a certain estimation problem with additive
Gaussian noise. Specifically, consider the problem of estimating a real-valued random variable Y on the
basis of a noisy observation

√
sY + Z, where s > 0 is the signal-to-noise ratio (SNR) and the additive

standard Gaussian noise Z ∼ G is independent of Y . If Y has distribution P , then the minimum MSE
(MMSE) at SNR s is defined as

mmse(Y, s) , inf
ϕ

E[(Y − ϕ(
√
sY + Z))2], (3.56)

where the infimum is over all measurable functions (estimators) ϕ : R → R. It is well-known that the
infimum in (3.56) is achieved by the conditional expectation u 7→ E[Y |√sY + Z = u], so

mmse(Y, s) = E

[(
Y − E[Y |√sY + Z]

)2]
.

On the other hand, suppose we instead assume that Y has distributionQ and therefore use the mismatched
estimator u 7→ EQ[Y |√sY +Z], where the conditional expectation is now computed assuming that Y ∼ Q.
Then the resulting mismatched MSE is given by

mseQ(Y, s) = E

[(
Y − EQ[Y |√sY + Z]

)2]
,

where the expectation on the outside is computed using the correct distribution P of Y . Then the
following relation holds for the divergence between P and Q (see [118, Theorem 1]):

D(P‖Q) =
1

2

∫ ∞

0
[mseQ(Y, s) − mmse(Y, s)] ds. (3.57)

We will apply the formula (3.57) to P = PY and Q = G, where PY satisfies EY = 0 and EY 2 = 1. Then
it can be shown that, for any γ,

mseQ(Y, s) = mseG(Y, s) = lmmse(Y, s),

where lmmse(Y, s) is the linear MMSE, i.e., the MMSE attainable by any affine estimator u 7→ au + b,
a, b ∈ R:

lmmse(Y, s) = inf
a,b∈R

E

[(
Y − a(

√
sY + Z) − b

)2]
. (3.58)

The infimum in (3.58) is achieved by a∗ =
√
s/(1 + s) and b = 0, giving

lmmse(Y, s) =
1

1 + s
. (3.59)
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Moreover, mmse(γ) can be bounded from below using the so-called van Trees inequality [119] (cf. also
Appendix 3.A):

mmse(Y, s) ≥ 1

J(Y ) + s
. (3.60)

Then

D(PY ‖G) =
1

2

∫ ∞

0
(lmmse(Y, s) − mmse(Y, s)) ds

≤ 1

2

∫ ∞

0

(
1

1 + s
− 1

J(Y ) + s

)
ds

=
1

2
lim

λ→∞

∫ λ

0

(
1

1 + s
− 1

J(Y ) + s

)
ds

=
1

2
lim

λ→∞
ln

(
J(Y ) (1 + λ)

J(Y ) + λ

)

=
1

2
ln J(Y ), (3.61)

where the second step uses (3.59) and (3.60). On the other hand, using (3.53) with s = EY 2 = 1, we
get D(PY ‖G) = 1

2 ln(1/N(Y )). Combining this with (3.61), we recover Stam’s inequality N(Y )J(Y ) ≥ 1.
Moreover, the van Trees bound (3.60) is achieved with equality if and only if Y is a standard Gaussian
random variable.

3.2.2 From Gaussian log-Sobolev inequality to Gaussian concentration inequalities

We are now ready to apply the log-Sobolev machinery to establish Gaussian concentration for random
variables of the form U = f(Xn), where X1, . . . ,Xn are i.i.d. standard normal random variables and
f : R

n → R is any Lipschitz function. We start by considering the special case when f is also differentiable.

Proposition 8. Let X1, . . . ,Xn be i.i.d. N (0, 1) random variables. Then, for every differentiable function
f : R

n → R such that ‖∇f(Xn)‖ ≤ 1 almost surely, we have

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
−r

2

2

)
, ∀ r ≥ 0 (3.62)

Proof. Let P = Gn denote the distribution of Xn. If Q is any probability measure such that Q � P
and P � Q (i.e., P and Q are mutually absolutely continuous), then any event that has P -probability
1 will also have Q-probability 1 and vice versa. Since the function f is differentiable, it is everywhere
finite, so P (f) and P are mutually absolutely continuous. Hence, any event that occurs P -a.s. also occurs
P (tf)-a.s. for all t ∈ R. In particular, ‖∇f(Xn)‖ ≤ 1 P (tf)-a.s. for all t. Therefore, applying the modified
log-Sobolev inequality (3.44) to g = tf for some t > 0, we get

D(P (tf)‖P ) ≤ t2

2
E

(tf)
P

[
‖∇f(Xn)‖2

]
≤ t2

2
. (3.63)

Using Corollary 7 with U = f(Xn) − Ef(Xn), we get (3.62).

Remark 25. Corollary 7 and inequality (3.44) with g = tf imply that, for any smooth f with ‖∇f(Xn)‖2 ≤
L a.s.,

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
− r2

2L

)
, ∀ r ≥ 0. (3.64)

Thus, the constant κ in the corresponding Gaussian concentration bound (3.2) is controlled by the
sensitivity of f to modifications of its coordinates.
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Having established concentration for smooth f , we can now proceed to the general case:

Theorem 22. Let Xn be as before, and let f : R
n → R be a Lipschitz function with Lipschitz constant

1, i.e.,

|f(xn) − f(yn)| ≤ ‖xn − yn‖, ∀xn, yn ∈ R
n.

Then

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
−r

2

2

)
, ∀ r ≥ 0. (3.65)

Proof. The trick is to slightly perturb f to get a differentiable function with the norm of its gradient
bounded by the Lipschitz constant of f . Then we can apply Proposition 8, and consider the limit of
vanishing perturbation.

We construct the perturbation as follows. Let Z1, . . . , Zn be n i.i.d. N (0, 1) random variables, inde-
pendent of Xn. For any δ > 0, define the function

fδ(x
n) , E

[
f
(
xn +

√
δZn

)]
=

1

(2π)n/2

∫

Rn

f(xn +
√
δzn) exp

(
−‖zn‖2

2

)
dzn

=
1

(2πδ)n/2

∫

Rn

f(zn) exp

(
−‖zn − xn‖2

2δ

)
dzn.

It is easy to see that fδ is differentiable (in fact, it is in C∞; this is known as the smoothing property of
the Gaussian convolution kernel). Moreover, using Jensen’s inequality and the fact that f is 1-Lipschitz,
we have

|fδ(x
n) − f(xn)| =

∣∣∣E[f(xn +
√
δZn)] − f(xn)

∣∣∣

≤ E

∣∣∣f(xn +
√
δZn) − f(xn)

∣∣∣

≤
√
δE‖Zn‖.

Therefore, limδ→0 fδ(x
n) = f(xn) for every xn ∈ R

n. Moreover, because f is 1-Lipschitz, it is differentiable
almost everywhere by Rademacher’s theorem [120, Section 3.1.2], and ‖∇f‖ ≤ 1 almost everywhere.
Consequently, since ∇fδ(x

n) = E
[
∇f
(
xn +

√
δZn

)]
, Jensen’s inequality gives ‖∇fδ(x

n)‖ ≤ E
∥∥∇f

(
xn +√

δZn
)∥∥ ≤ 1 for every xn ∈ R

n. Therefore, we can apply Proposition 8 to get, for all δ > 0 and r > 0,

P

(
fδ(X

n) ≥ Efδ(X
n) + r

)
≤ exp

(
−r

2

2

)
.

Using the fact that fδ(x
n) converges to f(xn) everywhere as δ → 0, we obtain (3.65):

P

(
f(Xn) ≥ Ef(Xn) + r

)
= E

[
1{f(Xn)≥Ef(Xn)+r}

]

≤ lim
δ→0

E
[
1{fδ(Xn)≥Efδ(Xn)+r}

]

= lim
δ→0

P

(
fδ(X

n) ≥ Efδ(X
n) + r

)

≤ exp

(
−r

2

2

)

where the first inequality is by Fatou’s lemma.
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3.2.3 Hypercontractivity, Gaussian log-Sobolev inequality, and Rényi divergence

We close our treatment of the Gaussian log-Sobolev inequality with a striking result, proved by Gross in
his original paper [35], that this inequality is equivalent to a very strong contraction property (dubbed
hypercontractivity) of a certain class of stochastic transformations. The original motivation behind the
work of Gross [35] came from problems in quantum field theory. However, we will take an information-
theoretic point of view and relate it to data processing inequalities for a certain class of channels with
additive Gaussian noise, as well as to the rate of convergence in the second law of thermodynamics for
Markov processes [121].

Consider a pair (X,Y ) of real-valued random variables that are related through the stochastic trans-
formation

Y = e−tX +
√

1 − e−2tZ (3.66)

for some t ≥ 0, where the additive noise Z ∼ G is independent of X. For reasons that will become clear
shortly, we will refer to the channel that implements the transformation (3.66) for a given t ≥ 0 as the
Ornstein–Uhlenbeck channel with noise parameter t and denote it by OU(t). Similarly, we will refer to
the collection of channels {OU(t)}∞t=0 indexed by all t ≥ 0 as the Ornstein–Uhlenbeck channel family. We
immediately note the following properties:

1. OU(0) is the ideal channel, Y = X.

2. If X ∼ G, then Y ∼ G as well, for any t.

3. Using the terminology of [12, Chapter 4], the channel family {OU(t)}∞t=0 is ordered by degradation: for
any t1, t2 ≥ 0 we have

OU(t1 + t2) = OU(t2) ◦ OU(t1) = OU(t1) ◦ OU(t2), (3.67)

which is shorthand for the following statement: for any input random variable X, any standard Gaussian
Z independent of X, and any t1, t2 ≥ 0, we can always find independent standard Gaussian random
variables Z1, Z2 that are also independent of X, such that

e−(t1+t2)X +
√

1 − e−2(t1+t2)Z
d
= e−t2

[
e−t1X +

√
1 − e−2t1Z1

]
+
√

1 − e−2t2Z2

d
= e−t1

[
e−t2X +

√
1 − e−2t2Z1

]
+
√

1 − e−2t1Z2 (3.68)

where
d
= denotes equality of distributions. In other words, we can always define real-valued random

variables X,Y1, Y2, Z1, Z2 on a common probability space (Ω,F ,P), such that Z1, Z2 ∼ G, (X,Z1, Z2) are
mutually independent,

Y1
d
= e−t1X +

√
1 − e−2t1Z1

Y2
d
= e−(t1+t2)X +

√
1 − e−2(t1+t2)Z2

and X −→ Y1 −→ Y2 is a Markov chain. Even more generally, given any real-valued random vari-

able X, we can construct a continuous-time Markov process {Yt}∞t=0 with Y0
d
= X and Yt

d
= e−tX +√

1 − e−2tN (0, 1) for all t ≥ 0. One way to do this is to let {Yt}∞t=0 be governed by the Itô stochastic
differential equation (SDE)

dYt = −Yt dt+
√

2 dBt, t ≥ 0 (3.69)

with the initial condition Y0
d
= X, where {Bt} denotes the standard one-dimensional Wiener process

(a.k.a. Brownian motion). The SDE (3.69) is known as the Langevin equation [122, p. 75], and the
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random process {Yt} that solves it is called the Ornstein–Uhlenbeck process; the solution of (3.69) is
given by (see, e.g., [123, p. 358] or [124, p. 127]) is given by

Yt = Xe−t +
√

2

∫ t

0
e−(t−s) dBs, t ≥ 0

where by the Itô isometry the variance of the (zero-mean) additive Gaussian noise is indeed

E

[(√
2

∫ t

0
e−(t−s) dBs

)2
]

= 2

∫ t

0
e−2(t−s)ds = 2e−2t

∫ s

0
e2sds = 1 − e−2t, ∀ t ≥ 0.

This explains our choice of the name “Ornstein–Uhlenbeck channel” for the random transformation (3.66).

In order to state the main result to be proved in this section, we need the following definition: the Rényi
divergence of order α ∈ R

+\{0, 1} between two probability measures, P and Q, is defined as

Dα(P‖Q) ,

{
1

α−1 ln EQ

[(
dP
dQ

)α]
, if P � Q

+∞, otherwise.
(3.70)

We recall several key properties of the Rényi divergence (see, for example, [125]):

1. The ordinary divergence D(P‖Q) is the limit of Dα(P‖Q) as α ↓ 1.

2. If we define D1(P‖Q) as D(P‖Q), then the function α 7→ Dα(P‖Q) is nondecreasing.

3. For all α > 0, Dα(·‖·) satisfies the data processing inequality: if we have two possible distributions P and
Q for a random variable U , then for any channel (stochastic transformation) T that takes U as input we
have

Dα(P̃‖Q̃) ≤ Dα(P‖Q), ∀α > 0 (3.71)

where P̃ (resp., Q̃) is the distribution of the output of T when the input has distribution P (resp., Q).

Now consider the following set-up. LetX be a real-valued random variable with a sufficiently well-behaved
distribution P (at the very least, we assume P � G). For any t ≥ 0, let Pt denote the output distribution
of the OU(t) channel with input X ∼ G. Then, using the fact that the standard Gaussian distribution G
is left invariant by the Ornstein–Uhlenbeck channel family together with the data processing inequality
(3.71), we have

Dα(Pt‖G) ≤ Dα(P‖G), ∀ t ≥ 0, α > 0. (3.72)

In other words, as we increase the noise parameter t, the output distribution Pt starts to resemble the
invariant distribution G more and more, where the measure of resemblance is given by any of the Rényi
divergences. This is, of course, nothing but the second law of thermodynamics for Markov chains (see,
e.g., [81, Section 4.4] or [121]) applied to the continuous-time Markov process governed by the Langevin
equation (3.69). We will now show, however, that the Gaussian log-Sobolev inequality of Gross (see
Theorem 21) implies a stronger statement: For any α > 1 and any ε ∈ (0, 1), there exists a positive
constant τ = τ(α, ε), such that

Dα(Pt‖G) ≤ εDα(P‖G), ∀t ≥ τ. (3.73)

Here is the precise result:
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Theorem 23 (Hypercontractive estimate for the Ornstein–Uhlenbeck channel). The Gaussian log-
Sobolev inequality of Theorem 21 is equivalent to the following statement: For any 1 < β < α <∞

Dα(Pt‖G) ≤
(
α(β − 1)

β(α− 1)

)
Dβ(P‖G), ∀ t ≥ 1

2
ln

(
α− 1

β − 1

)
. (3.74)

Remark 26. To see that Theorem 23 implies (3.73), fix α > 1 and ε ∈ (0, 1). Let

β = β(ε, α) ,
α

α− ε(α− 1)
.

It is easy to verify that 1 < β < α and that α(β−1)
β(α−1) = ε. Hence, Theorem 23 implies that

Dα(Pt‖P ) ≤ εDβ(P‖G), ∀ t ≥ 1

2
ln

(
1 +

α(1 − ε)

ε

)
, τ(α, ε).

Since the Rényi divergence Dα(·‖·) is monotonic non-decreasing in the parameter α, and 1 < β < α, then
it follows that Dβ(P ||G) ≤ Dα(P ||G). It therefore follows from the last inequality that

Dα(Pt||P ) ≤ εDα(P ||G), ∀ t ≥ τ(α, ε).

We now turn to the proof of Theorem 23.

Proof. As a reminder, the Lp norm of a real-valued random variable U is defined by ‖U‖p , (E[|U |p])1/p.
It will be convenient to work with the following equivalent form of the Rényi divergence in (3.70): For
any two random variables U and V such that PU � PV , we have

Dα(PU‖PV ) =
α

α− 1
ln

∥∥∥∥
dPU

dPV
(V )

∥∥∥∥
α

, α > 1. (3.75)

Let us denote by g the Radon–Nikodym derivative dP/dG. It is easy to show that Pt � G for all t, so
the Radon–Nikodym derivative gt , dPt/dG exists. Moreover, g0 = g. Also, let us define the function
α : [0,∞) → [β,∞) by α(t) = 1 + (β− 1)e2t for some β > 1. Let Z ∼ G. Using (3.75), it is easy to verify
that the desired bound (3.74) is equivalent to the statement that the function F : [0,∞) → R, defined by

F (t) , ln

∥∥∥∥
dPt

dG
(Z)

∥∥∥∥
α(t)

≡ ln ‖gt(Z)‖α(t) ,

is non-increasing. From now on, we will adhere to the following notational convention: we will use either
the dot or d/dt to denote derivatives w.r.t. the “time” t, and the prime to denote derivatives w.r.t. the
“space” variable z. We start by computing the derivative of F w.r.t. t, which gives

Ḟ (t) =
d

dt

{
1

α(t)
ln E

[(
gt(Z)

)α(t)
]}

= − α̇(t)

α2(t)
ln E

[(
gt(Z)

)α(t)
]

+
1

α(t)

d

dt
E

[(
gt(Z)

)α(t)
]

E

[(
gt(Z)

)α(t)
] . (3.76)

To handle the derivative w.r.t. t in the second term in (3.76), we need to delve a bit into the theory of the
so-called Ornstein–Uhlenbeck semigroup, which is an alternative representation of the Ornstein–Uhlenbeck
channel (3.66).

For any t ≥ 0, let us define a linear operator Kt acting on any sufficiently regular (e.g., L1(G))
function h as

Kth(x) , E

[
h
(
e−tx+

√
1 − e−2tZ

)]
, (3.77)

where Z ∼ G, as before. The family of operators {Kt}∞t=0 has the following properties:
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1. K0 is the identity operator, K0h = h for any h.

2. For any t ≥ 0, if we consider the OU(t) channel, given by the random transformation (3.66), then for any
measurable function F such that E[F (Y )] <∞ with Y in (3.66), we can write

KtF (x) = E[F (Y )|X = x], ∀x ∈ R (3.78)

and

E[F (Y )] = E[KtF (X)]. (3.79)

Here, (3.78) easily follows from (3.66), and (3.79) is immediate from (3.78).

3. A particularly useful special case of the above is as follows. Let X have distribution P with P � G, and
let Pt denote the output distribution of the OU(t) channel. Then, as we have seen before, Pt � G, and
the corresponding densities satisfy

gt(x) = Ktg(x). (3.80)

To prove (3.80), we can either use (3.78) and the fact that gt(x) = E[g(Y )|X = x], or proceed directly
from (3.66):

gt(x) =
1√

2π(1 − e−2t)

∫

R

exp

(
−(u− e−tx)2

2(1 − e−2t)

)
g(u)du

=
1√
2π

∫

R

g
(
e−tx+

√
1 − e−2tz

)
exp

(
−z

2

2

)
dz

≡ E

[
g
(
e−tx+

√
1 − e−tZ

)]
(3.81)

where in the second line we have made the change of variables z = u−e−tx√
1−e−2t

, and in the third line Z ∼ G.

4. The family of operators {Kt}∞t=0 forms a semigroup, i.e., for any t1, t2 ≥ 0 we have

Kt1+t2 = Kt1 ◦Kt2 = Kt2 ◦Kt1 ,

which is shorthand for saying that Kt1+t2h = Kt2(Kt1h) = Kt1(Kt2h) for any sufficiently regular h.
This follows from (3.78) and (3.79) and from the fact that the channel family {OU(t)}∞t=0 is ordered by
degradation. For this reason, {Kt}∞t=0 is referred to as the Ornstein–Uhlenbeck semigroup. In particular,
if {Yt}∞t=0 is the Ornstein–Uhlenbeck process, then for any sufficiently regular function F : R → R we
have

KtF (x) = E[F (Yt)|Y0 = x], ∀x ∈ R.

Two deeper results concerning the Ornstein–Uhlenbeck semigroup, which we will need, are as follows:
Define the second-order differential operator L by

Lh(x) , h′′(x) − xh′(x)

for all sufficiently smooth functions h : R → R. Then:

1. The Ornstein–Uhlenbeck flow {ht}∞t=0, where ht = Kth with sufficiently smooth initial condition h0 = h,
satisfies the partial differential equation (PDE)

ḣt = Lht. (3.82)
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2. For Z ∼ G and all sufficiently smooth functions g, h : R → R we have the integration-by-parts formula

E[g(Z)Lh(Z)] = E[h(Z)Lg(Z)] = −E[g′(Z)h′(Z)]. (3.83)

We provide the details in Appendix 3.B.
We are now ready to tackle the second term in (3.76). Noting that the family of densities {gt}∞t=0

forms an Ornstein–Uhlenbeck flow with initial condition g0 = g, we have (assuming enough regularity
conditions to permit interchanges of derivatives and expectations)

d

dt
E

[(
gt(Z)

)α(t)
]

= E

[(
gt(Z)

)α(t) d

dt
ln
(
gt(Z)

)α(t)
]

= α̇(t) · E
[(
gt(Z)

)α(t)
ln gt(Z)

]
+ α(t) E

[(
gt(Z)

)α(t)−1 d

dt
gt(Z)

]

= α̇(t) · E
[(
gt(Z)

)α(t)
ln gt(Z)

]
+ α(t) E

[(
gt(Z)

)α(t)−1Lgt(Z)
]

(3.84)

= α̇(t) · E
[(
gt(Z)

)α(t)
ln gt(Z)

]
− α(t) E

[((
gt(Z)

)α(t)−1
)′

(gt(Z))′
]

(3.85)

= α̇(t) · E
[(
gt(Z)

)α(t)
ln gt(Z)

]
− α(t)

(
α(t) − 1

)
· E
[(
gt(Z)

)α(t)−2 ∣∣(gt(Z))′
∣∣2
]

(3.86)

where we have used (3.82) to get (3.84), and (3.83) to get (3.85). If we define the function φt = g
α(t)/2
t ,

then we can rewrite (3.86) as

d

dt
E

[(
gt(Z)

)α(t)
]

=
α̇(t)

α(t)
E
[
φ2

t (Z) lnφ2
t (Z)

]
− 4

(
α(t) − 1

)

α(t)
E

[∣∣φ′t(Z)
∣∣2
]
. (3.87)

Using the definition of φt and a substitution of (3.87) into the right-hand side of (3.76) gives that

α2(t) E[φ2
t (Z)] Ḟ (t) = α̇(t) ·

(
E[φ2

t (Z) lnφ2
t (Z)] − E[φ2

t (Z)] ln E[φ2
t (Z)]

)
− 4(α(t) − 1)E

[∣∣φ′t(Z)
∣∣2
]
.

(3.88)

If we now apply the Gaussian log-Sobolev inequality (3.34) to φt, then from (3.88) we get

α2(t) E[φ2
t (Z)] Ḟ (t) ≤ 2 (α̇(t) − 2(α(t) − 1)) E

[∣∣φ′t(Z)
∣∣2
]
. (3.89)

Since α(t) = 1 + (β− 1)e2t, then α̇(t)− 2(α(t)− 1) = 0 and the right-hand side of (3.89) is equal to zero.
Moreover, because α(t) > 0 and φ2

t (Z) > 0 a.s. (note that φ2
t > 0 if and only if gt > 0, but the latter

follows from (3.81) where g is a probability density function) then we conclude that Ḟ (t) ≤ 0.
What we have proved so far is that, for any β > 1 and any t ≥ 0,

Dα(t)(Pt‖G) ≤
(
α(t)(β − 1)

β(α(t) − 1)

)
Dβ(P‖G) (3.90)

where α(t) = 1 + (β − 1)e2t. By the monotonicity property of the Rényi divergence, the left-hand side
of (3.90) is greater than or equal to Dα(Pt‖G) as soon as α ≤ α(t). By the same token, because the
function u ∈ (1,∞) 7→ u/(u − 1) is strictly decreasing, the right-hand side of (3.90) can be upper-

bounded by α(β−1)
β(α−1)Dβ(P‖G) for all α ≥ α(t). Putting all these facts together, we conclude that the

Gaussian log-Sobolev inequality (3.34) implies (3.74).
We now show that (3.74) implies the log-Sobolev inequality of Theorem 21. To that end, we recall

that (3.74) is equivalent to the right-hand side of (3.88) being less than or equal to zero for all t ≥ 0 and
all β > 1. Let us choose t = 0 and β = 2, in which case

α(0) = α̇(0) = 2, φ0 = g.
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Using this in (3.88) for t = 0, we get

2
(
E
[
g2(Z) ln g2(Z)

]
− E[g2(Z)] ln E[g2(Z)]

)
− 4 E

[∣∣g′(Z)
∣∣2
]
≤ 0

which is precisely the log-Sobolev inequality (3.34).

As a consequence, we can establish a strong version of the data processing inequality for the ordinary
divergence:

Corollary 9. In the notation of Theorem 23, we have for any t ≥ 0

D(Pt‖G) ≤ e−2tD(P‖G). (3.91)

Proof. Let α = 1 + εe2t and β = 1 + ε for some ε > 0. Then using Theorem 23, we have

D1+εe2t(Pt‖G) ≤
(
e−2t + ε

1 + ε

)
D1+ε(P‖G), ∀t ≥ 0 (3.92)

Taking the limit of both sides of (3.92) as ε ↓ 0 and using D(P‖Q) = limα↓1 Dα(P‖Q), we get (3.91).

3.3 Logarithmic Sobolev inequalities: the general scheme

Now that we have seen the basic idea behind log-Sobolev inequalities in the concrete case of i.i.d. Gaussian
random variables, we are ready to take a more general viewpoint. To that end, we adopt the framework
of Bobkov and Götze [44] and consider a probability space (Ω,F , µ) together with a pair (A,Γ) that
satisfies the following requirements:

• (LSI-1) A is a family of bounded measurable functions on Ω, such that if f ∈ A, then af + b ∈ A as
well for any a ≥ 0 and b ∈ R.

• (LSI-2) Γ is an operator that maps functions in A to nonnegative measurable functions on Ω.

• (LSI-3) For any f ∈ A, a ≥ 0, and b ∈ R, Γ(af + b) = aΓf .

Then we say that µ satisfies a logarithmic Sobolev inequality with constant c ≥ 0, or LSI(c) for short, if

D(µ(f)‖µ) ≤ c

2
E

(f)
µ

[
(Γf)2

]
, ∀f ∈ A. (3.93)

Here, as before, µ(f) denotes the f -tilting of µ, i.e.,

dµ(f)

dµ
=

exp(f)

Eµ[exp(f)]
,

and E
(f)
µ [·] denotes expectation w.r.t. µ(f).

Remark 27. We have expressed the log-Sobolev inequality using standard information-theoretic nota-
tion. Most of the mathematics literature dealing with the subject, however, uses a different notation,
which we briefly summarize for the reader’s benefit. Given a probability measure µ on Ω and a nonneg-
ative function g : Ω → R, define the entropy functional

Entµ(g) ,

∫
g ln g dµ−

∫
g dµ · ln

(∫
g dµ

)

≡ Eµ[g ln g] − Eµ[g] ln Eµ[g].
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Then the LSI(c) condition can be equivalently written as (cf. [44, p. 2])

Entµ
(
exp(f)

)
≤ c

2

∫
(Γf)2 exp(f) dµ (3.94)

with the convention that 0 ln 0 , 0. To see the equivalence of (3.93) and (3.94), note that

Entµ
(
exp(f)

)

=

∫
exp(f) ln

(
exp(f)∫
exp(f)dµ

)
dµ

= Eµ[exp(f)]

∫ (dµ(f)

dµ

)
ln
(dµ(f)

dµ

)
dµ

= Eµ[exp(f)] ·D(µ(f)‖µ) (3.95)

and

∫
(Γf)2 exp(f) dµ

= Eµ[exp(f)]

∫
(Γf)2 dµ(f)

= Eµ[exp(f)] · E
(f)
µ

[
(Γf)2

]
. (3.96)

Substituting (3.95) and (3.96) into (3.94), we obtain (3.93). We note that the entropy functional Ent is
homogeneous: for any g such that Entµ(g) <∞ and any c > 0, we have

Entµ(cg) = cEµ

[
g ln

g

Eµ[g]

]
= cEntµ(g).

Remark 28. Strictly speaking, (3.93) should be called a modified (or exponential) logarithmic Sobolev
inequality. The ordinary log-Sobolev inequality takes the form

Entµ(g2) ≤ 2c

∫
(Γg)2 dµ (3.97)

for all strictly positive g ∈ A. If the pair (A,Γ) is such that ψ ◦g ∈ A for any g ∈ A and any C∞ function
ψ : R → R, and Γ obeys the chain rule

Γ(ψ ◦ g) = |ψ′ ◦ g| Γg, ∀g ∈ A, ψ ∈ C∞ (3.98)

then (3.93) and (3.97) are equivalent. Indeed, if (3.97) holds, then using it with g = exp(f/2) gives

Entµ
(
exp(f)

)
≤ 2c

∫ (
Γ
(
exp(f/2)

))2
dµ

=
c

2

∫
(Γf)2 exp(f) dµ

which is (3.94). Note that the last equality follows from (3.98) which implies that

Γ
(
exp(f/2)

)
=

1

2
exp(f/2) · Γf.
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Conversely, using (3.94) with f = 2 ln g, we get (note that if follows from (3.98) that Γ(2 ln g) = 2Γg
g

where g ≥ 0)

Entµ
(
g2
)
≤ c

2

∫
|Γ(2 ln g)|2 g2 dµ

= 2c

∫
(Γg)2dµ,

which is (3.97). In fact, the Gaussian log-Sobolev inequality we have looked at in Section 3.2 is an
instance, in which this equivalence holds with Γf = ||∇f || clearly satisfying the product rule (3.98).

Recalling the discussion of Section 3.1.4, we now show how we can pass from a log-Sobolev inequality
to a concentration inequality via the Herbst argument. Indeed, let Ω = X n and µ = P , and suppose that
P satisfies LSI(c) on an appropriate pair (A,Γ). Suppose, furthermore, that the function of interest f is
an element of A and that ‖Γ(f)‖∞ <∞ (otherwise, LSI(c) is vacuously true for any c). Then tf ∈ A for
any t ≥ 0, so applying (3.93) to g = tf we get

D
(
P (tf)

∥∥P
)
≤ c

2
E

(f)
P

[
(Γ(tf))2

]

=
ct2

2
E

(tf)
P

[
(Γf)2

]

≤ c‖Γf‖2
∞t

2

2
, (3.99)

where the second step uses the fact that Γ(tf) = tΓf for any f ∈ A and any t ≥ 0. In other words,
P satisfies the bound (3.33) for every g ∈ A with E(g) = ‖Γg‖2

∞. Therefore, using the bound (3.99)
together with Corollary 7, we arrive at

P
(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
− r2

2c‖Γf‖2∞

)
, ∀r ≥ 0. (3.100)

3.3.1 Tensorization of the logarithmic Sobolev inequality

In the above demonstration, we have capitalized on an appropriate log-Sobolev inequality in order to
derive a concentration inequality. Showing that a log-Sobolev inequality actually holds can be very
difficult for reasons discussed in Section 3.1.3. However, when the probability measure P is a product
measure, i.e., the random variables X1, . . . ,Xn ∈ X are independent under P , we can, once again, use
the “divide-and-conquer” tensorization strategy: we break the original n-dimensional problem into n
one-dimensional subproblems, then establish that each marginal distribution PXi

, i = 1, . . . , n, satisfies
a log-Sobolev inequality for a suitable class of real-valued functions on X , and finally appeal to the
tensorization bound for the relative entropy.

Let us provide the abstract scheme first. Suppose that for each i ∈ {1, . . . , n} we have a pair
(Ai,Γi) defined on X that satisfies the requirements (LSI-1)–(LSI-3) listed at the beginning of Sec-
tion 3.3. Recall that for any function f : X n → R, for any i ∈ {1, . . . , n}, and any (n − 1)-tuple
x̄i = (x1, . . . , xi−1, xi+1, . . . , xn), we have defined a function fi(·|x̄i) : X → R via fi(xi|x̄i) , f(xn). Then,
we have the following:

Theorem 24. Let X1, . . . ,Xn ∈ X be n independent random variables, and let P = PX1 ⊗ . . .⊗PXn be
their joint distribution. Let A consist of all functions f : X n → R such that, for every i ∈ {1, . . . , n},

fi(·|x̄i) ∈ Ai, ∀ x̄i ∈ X n−1. (3.101)
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Define the operator Γ that maps each f ∈ A to

Γf =

√√√√
n∑

i=1

(Γifi)2, (3.102)

which is shorthand for

Γf(xn) =

√√√√
n∑

i=1

(
Γifi(xi|x̄i)

)2
, ∀xn ∈ X n. (3.103)

Then the following statements hold:

1. If there exists a constant c ≥ 0 such that, for every i, PXi
satisfies LSI(c) with respect to (Ai,Γi), then

P satisfies LSI(c) with respect to (A,Γ).

2. For any f ∈ A with E[f(Xn)] = 0, and any r ≥ 0,

P
(
f(Xn) ≥ r

)
≤ exp

(
− r2

2c‖Γf‖2∞

)
. (3.104)

Proof. We first check that the pair (A,Γ), defined in the statement of the theorem, satisfies the require-
ments (LSI-1)–(LSI-3). Thus, consider some f ∈ A, choose some a ≥ 0 and b ∈ R, and let g = af + b.
Then, for any i and any x̄i,

gi(·|x̄i) = g(x1, . . . , xi−1, ·, xi+1, . . . , xn)

= af(x1, . . . , xi−1, ·, xi+1, . . . , xn) + b

= afi(·|x̄i) + b ∈ Ai,

where the last step uses (3.101). Hence, f ∈ A implies that g = af + b ∈ A for any a ≥ 0, b ∈ R, so
(LSI-1) holds. From the definitions of Γ in (3.102) and (3.103) it is readily seen that (LSI-2) and (LSI-3)
hold as well.

Next, for any f ∈ A and any t ≥ 0, we have

D
(
P (tf)

∥∥P
)
≤

n∑

i=1

D
(
P

(tf)

Xi|X̄i

∥∥∥PXi

∣∣∣P (tf)

X̄i

)

=

n∑

i=1

∫
P

(tf)

X̄i (dx̄i)D
(
P

(tf)

Xi|X̄i=x̄i

∥∥∥PXi

)

=
n∑

i=1

∫
P

(tf)

X̄i (dx̄i)D
(
P

(tfi(·|x̄i))
Xi

∥∥∥PXi

)

≤ ct2

2

n∑

i=1

∫
P

(tf)

X̄i (dx̄i) E
(tfi(·|x̄i))
Xi

[(
Γifi(Xi|x̄i)

)2]

=
ct2

2

n∑

i=1

E
(tf)
P

X̄i

{
E

(tf)
PXi

[ (
Γifi(Xi|X̄i)

)2 ∣∣∣X̄i
]}

=
ct2

2
· E(tf)

P

[
(Γf)2

]
, (3.105)

where the first step uses Proposition 5 with Q = P (tf), the second is by the definition of conditional
divergence where PXi

= PXi|X̄i , the third is due to (3.25), the fourth uses the fact that (a) fi(·|x̄i) ∈ Ai
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for all x̄i and (b) PXi
satisfies LSI(c) w.r.t. (Ai,Γi), and the last step uses the tower property of the

conditional expectation, as well as (3.102). We have thus proved the first part of the proposition, i.e.,
that P satisfies LSI(c) w.r.t. the pair (A,Γ). The second part follows from the same argument that was
used to prove (3.100).

3.3.2 Maurer’s thermodynamic method

With Theorem 24 at our disposal, we can now establish concentration inequalities in product spaces
whenever an appropriate log-Sobolev inequality can be shown to hold for each individual variable. Thus,
the bulk of the effort is in showing that this is, indeed, the case for a given probability measure P and a
given class of functions. Ordinarily, this is done on a case-by-case basis. However, as shown recently by
A. Maurer in an insightful paper [126], it is possible to derive log-Sobolev inequalities in a wide variety
of settings by means of a single unified method. This method has two basic ingredients:

1. A certain “thermodynamic” representation of the divergence D(µ(f)‖µ), f ∈ A, as an integral of the
variances of f w.r.t. the tilted measures µ(tf) for all t ∈ (0, 1).

2. Derivation of upper bounds on these variances in terms of an appropriately chosen operator Γ acting on
A, where A and Γ are the objects satisfying the conditions (LSI-1)–(LSI-3).

In this section, we will state two lemmas that underlie these two ingredients and then describe the overall
method in broad strokes. Several detailed demonstrations of the method in action will be given in the
sections that follow.

Once again, consider a probability space (Ω,F , µ) and recall the definition of the g-tilting of µ:

dµ(g)

dµ
=

exp(g)

Eµ[exp(g)]
.

The variance of any h : Ω → R w.r.t. µ(g) is then given by

var
(g)
µ [h] , E

(g)
µ [h2] −

(
E

(g)
µ [h]

)2
.

The first ingredient of Maurer’s method is encapsulated in the following (see [126, Theorem 3]):

Lemma 9 (Representation of the divergence in terms of thermal fluctuations). Consider a function
f : Ω → R, such that Eµ[exp(λf)] <∞ for all λ > 0. Then

D
(
µ(λf)

∥∥µ
)

=

∫ λ

0

∫ λ

t
var

(sf)
µ [f ] ds dt. (3.106)

Remark 29. The “thermodynamic” interpretation of the above result stems from the fact that the tilted
measures µ(tf) can be viewed as the Gibbs measures that are used in statistical mechanics as a probabilistic
description of physical systems in thermal equilibrium. In this interpretation, the underlying space Ω
is the state (or configuration) space of some physical system Σ, the elements x ∈ Ω are the states (or
configurations) of Σ, µ is some base (or reference) measure, and f is the energy function. We can view
µ as some initial distribution of the system state. According to the postulates of statistical physics, the
thermal equilibrium of Σ at absolute temperature θ corresponds to that distribution ν on Ω that will
globally minimize the free energy functional

Ψθ(ν) , Eν [f ] + θD(ν‖µ). (3.107)
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It is claimed that Ψθ(ν) is uniquely minimized by ν∗ = µ(−tf), where t = 1/θ is the inverse temperature.
To see this, consider an arbitrary ν, where we may assume, without loss of generality, that ν � µ. Let
ψ , dν/dµ. Then

dν

dµ(−tf)
=

dν
dµ

dµ(−tf)

dµ

=
ψ

exp(−tf)
Eµ[exp(−tf)]

= ψ exp(tf) Eµ[exp(−tf)]

and
Ψθ(ν) =

1

t
Eν [tf + lnψ]

=
1

t
Eν

[
ln
(
ψ exp(tf)

)]

=
1

t
Eν

[
ln

dν

dµ(−tf)
− Λ(−t)

]

=
1

t

[
D(ν‖µ(−tf)) − Λ(−t)

]
,

where, as before, Λ(−t) , ln
(
Eµ[exp(−tf)]

)
is the logarithmic moment generating function of f w.r.t. µ.

Therefore, Ψθ(ν) = Ψ1/t(ν) ≥ −Λ(−t)/t, with equality if and only if ν = µ(−tf).

Now we give the proof of Lemma 9:

Proof. We start by noting that (see (3.11))

Λ′(t) = E
(tf)
µ [f ] and Λ′′(t) = var

(tf)
µ [f ], (3.108)

and, in particular, Λ′(0) = Eµ[f ]. Moreover, from (3.13), we get

D
(
µ(λf)

∥∥µ
)

= λ2 d

dλ

(
Λ(λ)

λ

)
= λΛ′(λ) − Λ(λ). (3.109)

Now, using (3.108), we get

λΛ′(λ) =

∫ λ

0
Λ′(λ)dt

=

∫ λ

0

(∫ λ

0
Λ′′(s)ds+ Λ′(0)

)
dt

=

∫ λ

0

(∫ λ

0
var

(sf)
µ [f ] ds+ Eµ[f ]

)
dt (3.110)

and

Λ(λ) =

∫ λ

0
Λ′(t) dt

=

∫ λ

0

(∫ t

0
Λ′′(s) ds+ Λ′(0)

)
dt

=

∫ λ

0

(∫ t

0
var

(sf)
µ [f ] ds+ Eµ[f ]

)
dt. (3.111)

Substituting (3.110) and (3.111) into (3.109), we get (3.106).

Now the whole affair hinges on the second step, which involves bounding the variances var
(tf)
µ [f ], for

t > 0, from above in terms of expectations E
(tf)
µ

[
(Γf)2

]
for an appropriately chosen Γ. The following is

sufficiently general for our needs:
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Theorem 25. Let the objects (A,Γ) and {(Ai,Γi)}n
i=1 be constructed as in the statement of Theorem 24.

Suppose, furthermore, that, for each i, the operator Γi maps each g ∈ Ai to a constant (which may depend
on g), and there exists a constant c > 0 such that the bound

var
(sg)
i [g(Xi)|X̄i = x̄i] ≤ c (Γig)

2 , ∀x̄i ∈ X n−1 (3.112)

holds for all i ∈ {1, . . . , n}, s > 0, and g ∈ Ai, where var
(g)
i [·|X̄i = x̄i] denotes the (conditional) variance

w.r.t. P
(g)

Xi|X̄i=x̄i . Then, the pair (A,Γ) satisfies LSI(c) w.r.t. PXn .

Proof. Given a function g : Xi → R in Ai, let var
(g)
i [·|X̄i] denote the conditional variance w.r.t. P

(g)

Xi|X̄i .

Then we can write

D
(
P

(f)

Xi|X̄i=x̄i

∥∥∥PXi

)
= D

(
P

(fi(·|x̄i))
Xi

∥∥∥PXi

)

=

∫ 1

0

∫ 1

t
var

(sfi(·|x̄i))
i [fi(Xi|X̄i)|X̄i = x̄i] ds dt

≤ c (Γifi)
2
∫ λ

0

∫ λ

t
ds dt

=
c(Γifi)

2 λ2

2
.

where the first step uses the fact that P
(f)

Xi|X̄i=x̄i is equal to the fi(·|x̄i)-tilting of PXi
, the second step uses

Lemma 9, and the third step uses (3.112) with g = fi(·|x̄i). We have therefore established that, for each
i, the pair (Ai,Γi) satisfies LSI(c). Therefore, the pair (A,Γ) satisfies LSI(c) by Theorem 24.

The following two lemmas will be useful for establishing bounds like (3.112):

Lemma 10. Let U ∈ R be a random variable such that U ∈ [a, b] a.s. for some −∞ < a ≤ b < +∞.
Then

var[U ] ≤ (b− EU)(EU − a) ≤ (b− a)2

4
. (3.113)

Proof. The first inequality in (3.113) follows by direct calculation:

var[U ] = E[(U − EU)2]

≤ (b− EU)(EU − a).

The second line is due to the fact that the function u 7→ (b − u)(u − a) takes its maximum value of
(b− a)2/4 at u = (a+ b)/2.

Lemma 11. [126, Lemma 9] Let f : Ω → R be such that f − Eµ[f ] ≤ C for some C ∈ R. Then for any
t > 0 we have

var
(tf)
µ [f ] ≤ exp(tC) varµ[f ]

Proof. Because varµ[f ] = varµ[f + c] for any constant c ∈ R, we have

var
(tf)
µ [f ] = var

(tf)
µ

{
f − Eµ [f ]

}

≤ E
(tf)
µ

[
(f − Eµ[f ])2

]
(3.114)

= Eµ

[
exp(tf) (f − Eµ[f ])2

Eµ[exp(tf)]

]
(3.115)

≤ Eµ

{
(f − Eµ[f ])2 exp [t (f − Eµ[f ])]

}
(3.116)

≤ exp(tC) Eµ

[
(f − Eµ [f ])2

]
, (3.117)
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where:

• (3.114) uses the bound var[U ] ≤ EU2;

• (3.115) is by definition of the tilted distribution µ(tf);

• (3.116) follows from applying Jensen’s inequality to the denominator; and

• (3.117) uses the assumption that f − Eµ[f ] ≤ C and the monotonicity of exp(·).

This completes the proof of Lemma 11.

3.3.3 Discrete logarithmic Sobolev inequalities on the Hamming cube

We now use Maurer’s method to derive log-Sobolev inequalities for functions of n i.i.d. Bernoulli random
variables. Let X be the two-point set {0, 1}, and let ei ∈ X n denote the binary string that has 1 in the
ith position and zeros elsewhere. Finally, for any f : X n → R define

Γf(xn) ,

√√√√
n∑

i=1

(
f(xn ⊕ ei) − f(xn)

)2
, ∀xn ∈ X n, (3.118)

where the modulo-2 addition ⊕ is defined componentwise. In other words, Γf measures the sensitivity of
f to local bit flips. We consider the symmetric, i.e., Bernoulli(1/2), case first:

Theorem 26 (Discrete log-Sobolev inequality for the symmetric Bernoulli measure). Let A be the set
of all the functions f : X n → R. Then, the pair (A,Γ) with Γ defined in (3.118) satisfies the conditions
(LSI-1)–(LSI-3). Let X1, . . . ,Xn be n i.i.d. Bernoulli(1/2) random variables, and let P denote their
distribution. Then, P satisfies LSI(1/4) w.r.t. (A,Γ). In other words, for any f : X n → R,

D
(
P (f)

∥∥P
)
≤ 1

8
E

(f)
P

[
(Γf)2

]
. (3.119)

Proof. Let A0 be the set of all functions g : {0, 1} → R, and let Γ0 be the operator that maps every
g ∈ A0 to

Γg , |g(0) − g(1)| = |g(x) − g(x⊕ 1)|, ∀x ∈ {0, 1}. (3.120)

For each i ∈ {1, . . . , n}, let (Ai,Γi) be a copy of (A0,Γ0). Then, each Γi maps every function g ∈ Ai to
the constant |g(0)−g(1)|. Moreover, for any g ∈ Ai, the random variable Ui = g(Xi) is bounded between
g(0) and g(1), where we can assume without loss of generality that g(0) ≤ g(1). Hence, by Lemma 10,
we have

var
(sg)
Pi

[g(Xi)|X̄i = x̄i] ≤
(
g(0) − g(1)

)2

4
=

(Γig)
2

4
, ∀g ∈ Ai, x̄

i ∈ X n−1. (3.121)

In other words, the condition (3.112) of Theorem 25 holds with c = 1/4. In addition, it is easy to see that
the operator Γ constructed from Γ1, . . . ,Γn according to (3.102) is precisely the one in (3.118). Therefore,
by Theorem 25, the pair (A,Γ) satisfies LSI(1/4) w.r.t. P , which proves (3.119). This completes the proof
of Theorem 26.

Remark 30. The log-Sobolev inequality in (3.119) is an exponential form of the original log-Sobolev
inequality for the Bernoulli(1/2) measure derived by Gross [35], which reads:

EntP [g2] ≤ (g(0) − g(1))2

2
. (3.122)
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To see this, define f by ef = g2, where we may assume without loss of generality that 0 < g(0) ≤ g(1).
To show that (3.122) implies (3.119), note that

(g(0) − g(1))2 = (exp (f(0)/2) − exp (f(1)/2))2

≤ 1

8
[exp (f(0)) + exp (f(1))] (f(0) − f(1))2

=
1

4
EP

[
exp(f)(Γf)2

]
(3.123)

with Γf = |f(0)−f(1)|, where the inequality follows from the easily verified fact that (1−x)2 ≤ (1+x2)(ln x)2

2

for all x ≥ 0, which we apply to x , g(1)/g(0). Therefore, the inequality in (3.122) implies the following:

D(P (f)||P )

=
EntP [exp(f)]

EP [exp(f)]
(3.124)

=
EntP [g2]

EP [exp(f)]
(3.125)

≤
(
g(0) − g(1)

)2

2 EP [exp(f)]
(3.126)

≤ EP [exp(f) (Γf)2]

8 EP [exp(f)]
(3.127)

=
1

8
E

(f)
P

[
(Γf)2

]
(3.128)

where equality (3.124) follows from (3.95), equality (3.125) holds due to the equality ef = g2, inequal-
ity (3.126) holds due to (3.122), inequality (3.127) follows from (3.123), and equality (3.128) follows by
definition of the expectation w.r.t. the tilted probability measure P (f). Therefore, it is concluded that
indeed (3.122) implies (3.119).

Gross used (3.122) and the central limit theorem to establish his Gaussian log-Sobolev inequality (see
Theorem 21). We can follow the same steps and arrive at (3.34) from (3.119). To that end, let g : R → R

be a sufficiently smooth function (to guarantee, at least, that both g exp(g) and the derivative of g are
continuous and bounded), and define the function f : {0, 1}n → R by

f(x1, . . . , xn) , g

(
x1 + x2 + . . .+ xn − n/2√

n/4

)
.

If X1, . . . ,Xn are i.i.d. Bernoulli(1/2) random variables, then, by the central limit theorem, the sequence
of probability measures {PZn}∞n=1 with

Zn ,
X1 + . . .+Xn − n/2√

n/4

converges weakly to the standard Gaussian distribution G as n → ∞. Therefore, by the assumed
smoothness properties of g we have

E
[
exp

(
f(Xn)

)]
·D
(
P

(f)
Xn

∥∥PXn

)
= E

[
f(Xn) exp

(
f(Xn)

)]
− E[exp

(
f(Xn)

)
] ln E[exp

(
f(Xn)

)
]

= E
[
g(Zn) exp

(
g(Zn)

)]
− E[exp

(
g(Zn)

)
] ln E[exp

(
g(Zn)

)
]

n→∞−−−→ E
[
g(Z) exp

(
g(Z)

)]
− E[exp

(
g(Z)

)
] ln E[exp

(
g(Z)

)
]

= E [exp (g(Z))]D
(
P

(g)
Z

∥∥PZ

)
(3.129)
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where Z ∼ G is a standard Gaussian random variable. Moreover, using the definition (3.118) of Γ and
the smoothness of g, for any i ∈ {1, . . . , n} and xn ∈ {0, 1}n we have

|f(xn ⊕ ei) − f(xn)|2 =

∣∣∣∣∣g
(
x1 + . . .+ xn − n/2√

n/4
+

(−1)xi

√
n/4

)
− g

(
x1 + . . .+ xn − n/2√

n/4

)∣∣∣∣∣

2

=
4

n

(
g′
(
x1 + . . .+ xn − n/2√

n/4

))2

+ o

(
1

n

)
,

which implies that

|Γf(xn)|2 =

n∑

i=1

(f(xn ⊕ ei) − f(xn))2

= 4

(
g′
(
x1 + . . .+ xn − n/2√

n/4

))2

+ o (1) .

Consequently,

E [exp (f(Xn))] · E
(f)
[
(Γf(Xn))2

]
= E

[
exp (f(Xn)) (Γf(Xn))2

]

= 4 E

[
exp (g(Zn))

((
g′(Zn)

)2
+ o(1)

)]

n→∞−−−→ 4 E

[
exp (g(Z))

(
g′(Z)

)2]

= 4 E [exp (g(Z))] · E
(g)
[(
g′(Z)

)2]
. (3.130)

Taking the limit of both sides of (3.119) as n→ ∞ and then using (3.129) and (3.130), we obtain

D
(
P

(g)
Z

∥∥PZ

)
≤ 1

2
E

(g)
[(
g′(Z)

)2]
,

which is (3.44).

Now let us consider the case when X1, . . . ,Xn are i.i.d. Bernoulli(p) random variables with some
p 6= 1/2. We will use Maurer’s method to give an alternative, simpler proof of the following result of
Ledoux [42, Corollary 5.9]:

Theorem 27. Consider any function f : {0, 1}n → R with the property that

max
i∈{1,...,n}

|f(xn ⊕ ei) − f(xn)| ≤ c (3.131)

for all xn ∈ {0, 1}n. Let X1, . . . ,Xn be n i.i.d. Bernoulli(p) random variables, and let P be their joint
distribution. Then

D
(
P (f)

∥∥P
)
≤ pq

(
(c− 1) exp(c) + 1

c2

)
E

(f)
[
(Γf)2

]
, (3.132)

where q = 1 − p.

Proof. Following the usual route, we will establish the n = 1 case first, and then scale up to arbitrary n
by tensorization.

Let a = |Γ(f)| = |f(0) − f(1)|, where Γ is defined as in (3.120). Without loss of generality, we may
assume that f(0) = 0 and f(1) = a. Then

E[f ] = pa and var[f ] = pqa2. (3.133)



114 CHAPTER 3. THE ENTROPY METHOD, LSI AND TC INEQUALITIES

Using (3.133) and Lemma 11, we can write for any t > 0

var
(tf)[f ] ≤ pqa2 exp(tqa).

Therefore, by Lemma 9 we have

D
(
P (f)

∥∥P
)
≤ pqa2

∫ 1

0

∫ 1

t
exp(sqa) ds dt

= pqa2

(
(qa− 1) exp(qa) + 1

(qa)2

)

≤ pqa2

(
(c− 1) exp(c) + 1

c2

)
,

where the last step follows from the fact that the function u 7→ u−2[(u− 1) exp(u) + 1] is nondecreasing
in u ≥ 0, and 0 ≤ qa ≤ a ≤ c. Since a2 = (Γf)2, we can write

D
(
P (f)

∥∥P
)
≤ pq

(
(c− 1) exp(c) + 1

c2

)
E

(f)
[
(Γf)2

]
,

so we have established (3.132) for n = 1.

Now consider an arbitrary n ∈ N. Since the condition in (3.131) can be expressed as

∣∣fi(0|x̄i) − fi(1|x̄i)
∣∣ ≤ c, ∀ i ∈ {1, . . . , n}, x̄i ∈ {0, 1}n−1,

we can use (3.132) to write

D
(
P

(tfi(·|x̄i))
Xi

∥∥∥PXi

)
≤ pq

(
(c− 1) exp c+ 1

c2

)
E

(fi(·|x̄i))
[ (

Γifi(Xi|X̄i)
)2 ∣∣∣X̄i = x̄i

]

for every i = 1, . . . , n and all x̄i ∈ {0, 1}n−1. With this, the same sequence of steps that led to (3.105) in
the proof of Theorem 24 can be used to complete the proof of (3.132) for arbitrary n.

Remark 31. In order to capture the correct dependence on the Bernoulli parameter p, we had to use
a more refined, distribution-dependent variance bound of Lemma 11, as opposed to a cruder bound of
Lemma 10 that does not depend on the underlying distribution. Maurer’s paper [126] has other examples.

Remark 32. The same technique based on the central limit theorem that was used to arrive at the
Gaussian log-Sobolev inequality (3.44) can be utilized here as well: given a sufficiently smooth function
g : R → R, define f : {0, 1}n → R by

f(xn) , g

(
x1 + . . .+ xn − np√

npq

)
.

and then apply (3.132) to it.

3.3.4 The method of bounded differences revisited

As our second illustration of the use of Maurer’s method, we will give an information-theoretic proof
of McDiarmid’s inequality with the correct constant in the exponent (recall that the original proof in
[25, 5] used the martingale method; the reader is referred to the derivation of McDiarmid’s inequality
via the martingale approach in Theorem 2 of the preceding chapter). Following the exposition in [126,
Section 4.1], we have:
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Theorem 28. Let X1, . . . ,Xn ∈ X be independent random variables. Consider a function f : X n → R

with E[f(Xn)] = 0, and also suppose that there exist some constants 0 ≤ c1, . . . , cn < +∞ such that, for
each i ∈ {1, . . . , n},

∣∣fi(x|x̄i) − fi(y|x̄i)
∣∣ ≤ ci, ∀x, y ∈ X , x̄i ∈ X n−1. (3.134)

Then, for any r ≥ 0,

P

(
f(Xn) ≥ r

)
≤ exp

(
− 2r2∑n

i=1 c
2
i

)
. (3.135)

Proof. Let A0 be the set of all bounded measurable functions g : X → R, and let Γ0 be the operator that
maps every g ∈ A0 to

Γ0g , sup
x∈X

g(x) − inf
x∈X

g(x).

Clearly, Γ0(ag+ b) = aΓ0g for any a ≥ 0 and b ∈ R. Now, for each i ∈ {1, . . . , n}, let (Ai,Γi) be a copy of
(A0,Γ0). Then, each Γi maps every function g ∈ Ai to a non-negative constant. Moreover, for any g ∈ Ai,
the random variable Ui = g(Xi) is bounded between infx∈X g(x) and supx∈X g(x) ≡ infx∈X g(x) + Γig.
Therefore, Lemma 10 gives

var
(sg)
i [g(Xi)|X̄i = x̄i] ≤ (Γig)

2

4
, ∀ g ∈ Ai, x̄

i ∈ X n−1.

Hence, the condition (3.112) of Theorem 25 holds with c = 1/4. Now let A be the set of all bounded
measurable functions f : X n → R. Then for any f ∈ A, i ∈ {1, . . . , n}, and xn ∈ X n we have

sup
xi∈Xi

f(x1, . . . , xi, . . . , xn) − inf
xi∈Xi

f(x1, . . . , xi, . . . , xn)

= sup
xi∈Xi

fi(xi|x̄i) − inf
xi∈Xi

fi(xi|x̄i)

= Γifi(·|x̄i).

Thus, if we construct an operator Γ on A from Γ1, . . . ,Γn according to (3.102), the pair (A,Γ) will satisfy
the conditions of Theorem 24. Therefore, by Theorem 25, it follows that the pair (A,Γ) satisfies LSI(1/4)
for any product probability measure on X n, i.e., the inequality

P

(
f(Xn) ≥ r

)
≤ exp

(
− 2r2

‖Γf‖2
∞

)
(3.136)

holds for any r ≥ 0 and bounded f with E[f ] = 0. Now, if f satisfies (3.134), then

‖Γf‖2
∞ = sup

xn∈Xn

n∑

i=1

(
Γifi(xi|x̄i)

)2

≤
n∑

i=1

sup
xn∈Xn

(
Γifi(xi|x̄i)

)2

=

n∑

i=1

sup
xn∈Xn, y∈X

|fi(xi|x̄i) − f(y|x̄i)|2

≤
n∑

i=1

c2i .

Substituting this bound into the right-hand side of (3.136), we get (3.135).
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It is instructive to compare the strategy used to prove Theorem 28 with an earlier approach by
Boucheron, Lugosi and Massart [127] using the entropy method. Their starting point is the following
lemma:

Lemma 12. Define the function ψ : R → R by ψ(u) = exp(u) − u − 1. Consider a probability space
(Ω,F , µ) and a measurable function f : Ω → R such that tf is exponentially integrable w.r.t. µ for all
t ∈ R. Then, the following inequality holds for any c ∈ R:

D
(
µ(tf)

∥∥µ
)
≤ E

(tf)
µ

[
ψ
(
− t(f − c)

)]
. (3.137)

Proof. Recall that

D
(
µ(tf)

∥∥µ
)

= tE(tf)
µ [f ] + ln

1

Eµ[exp(tf)]

= tE(tf)
µ [f ] − tc+ ln

exp(tc)

Eµ[exp(tf)]

Using this together with the inequality lnu ≤ u− 1 for every u > 0, we can write

D
(
µ(tf)

∥∥µ
)
≤ tE(tf)

µ [f ] − tc+
exp(tc)

Eµ[exp(tf)]
− 1

= tE(tf)
µ [f ] − tc+ Eµ

[
exp(t(f + c)) exp(−tf)

Eµ[exp(tf)]

]
− 1

= tE(tf)
µ [f ] + exp(tc) E

(tf)
µ [exp(−tf)] − tc− 1,

and we get (3.137). This completes the proof of Lemma 12.

Notice that, while (3.137) is only an upper bound on D
(
µ(tf)

∥∥µ
)
, the thermal fluctuation representa-

tion (3.106) of Lemma 9 is an exact expression. Lemma 12 leads to the following inequality of log-Sobolev
type:

Theorem 29. Let X1, . . . ,Xn be n independent random variables taking values in a set X , and let U =
f(Xn) for a function f : X n → R. Let P = PXn = PX1 ⊗. . .⊗PXn be the product probability distribution
of Xn. Also, let X ′

1, . . . ,X
′
n be independent copies of the Xi’s, and define for each i ∈ {1, . . . , n}

U (i) , f(X1, . . . ,Xi−1,X
′
i,Xi+1, . . . ,Xn).

Then,

D
(
P (tf)

∥∥P
)
≤ exp

(
− Λ(t)

) n∑

i=1

E

[
exp(tU)ψ

(
−t(U − U (i))

)]
, (3.138)

where ψ(u) , exp(u) − u − 1 for u ∈ R, Λ(t) , ln E[exp(tU)] is the logarithmic moment-generating
function, and the expectation on the right-hand side is w.r.t. Xn and (X ′)n. Moreover, if we define the
function τ : R → R by τ(u) = u

(
exp(u) − 1

)
, then

D
(
P (tf)

∥∥P
)
≤ exp

(
− Λ(t)

) n∑

i=1

E

[
exp(tU) τ

(
−t(U − U (i))

)
1{U>U (i)}

]
(3.139)

and

D
(
P (tf)

∥∥P
)
≤ exp

(
− Λ(t)

) n∑

i=1

E

[
exp(tU) τ

(
−t(U − U (i))

)
1{U<U (i)}

]
. (3.140)
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Proof. Applying Proposition 5 to P and Q = P (tf), we have

D
(
P (tf)

∥∥P
)
≤

n∑

i=1

D
(
P

(tf)

Xi|X̄i

∥∥∥PXi

∣∣∣P (tf)

X̄i

)

=
n∑

i=1

∫
P

(tf)

X̄i (dx̄i)D
(
P

(tf)

Xi|X̄i=x̄i

∥∥∥PXi

)

=

n∑

i=1

∫
P

(tf)

X̄i (dx̄i)D
(
P

(tfi(·|x̄i))
Xi

∥∥∥PXi

)
. (3.141)

Fix some i ∈ {1, . . . , n}, x̄i ∈ X n−1, and x′i ∈ X . Let us apply Lemma 12 to the ith term of the summation
in (3.141) with µ = PXi

, f = fi(·|x̄i), and c = f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) = fi(x

′
i|x̄i) to get

D
(
P

(tfi(·|x̄i))
Xi

∥∥∥PXi

)
≤ E

(tfi(·|x̄i))
PXi

[
ψ
(
− t
(
fi(Xi|x̄i) − fi(x

′
i|x̄i)

))]
.

Substituting this into (3.141), and then taking expectation w.r.t. both Xn and (X ′)n, we get (3.138).

To prove (3.139) and (3.140), let us write (note that ψ(0) = 0)

exp(tU)ψ
(
−t(U − U (i))

)

= exp(tU)ψ
(
−t(U − U (i))

)
1{U>U (i)} + exp(tU)ψ

(
t(U (i) − U)

)
1{U<U (i)}. (3.142)

Since Xi and X ′
i are i.i.d. and independent of X̄i, we have (due to a symmetry consideration which follows

from the identical distribution of U and U (i))

E

[
exp(tU)ψ

(
t(U (i) − U)

)
1{U<U (i)}

∣∣∣X̄i
]

= E

[
exp(tU (i))ψ

(
t(U − U (i))

)
1{U>U (i)}

∣∣∣X̄i
]

= E

[
exp(tU) exp

(
t(U (i) − U)

)
ψ
(
t(U − U (i))

)
1{U>U (i)}

∣∣∣X̄i
]
.

Using this and (3.142), we can write

E

[
exp(tU)ψ

(
−t(U − U (i))

)]

= E

{
exp(tU)

[
ψ
(
−t(U − U (i))

)
+ exp

(
t(U (i) − U)

)
ψ
(
t(U − U (i))

)]
1{U>U (i)}

}
.

Using the equality ψ(u) + exp(u)ψ(−u) = τ(u) for every u ∈ R, we get (3.139). The proof of (3.140) is
similar.

Now suppose that f satisfies the bounded difference condition in (3.134). Using this together with
the fact that τ(−u) = u

(
1 − exp(−u)

)
≤ u2 for every u > 0, then for every t > 0 we can write

D
(
P (tf)

∥∥P
)
≤ exp

(
− Λ(t)

) n∑

i=1

E

[
exp(tU) τ

(
− t(U − U (i))

)
1{U>U (i)}

]

≤ t2 exp
(
− Λ(t)

) n∑

i=1

E

[
exp(tU)

(
U − U (i)

)2
1{U>U (i)}

]

≤ t2 exp
(
− Λ(t)

) n∑

i=1

c2i E

[
exp(tU) 1{U>U (i)}

]
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≤ t2 exp
(
− Λ(t)

)
(

n∑

i=1

c2i

)
E [exp(tU)]

=

(
n∑

i=1

c2i

)
t2.

Applying Corollary 7, we get

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
− r2

4
∑n

i=1 c
2
i

)
, ∀ r > 0

which has the same dependence on r and the ci’s as McDiarmid’s inequality (3.135), but has a worse
constant in the exponent by a factor of 8.

3.3.5 Log-Sobolev inequalities for Poission and compound Poisson measures

Let Pλ denote the Poisson(λ) measure. Bobkov and Ledoux [45] have established the following log-Sobolev
inequality: for any function f : Z+ → R,

D
(
P

(f)
λ

∥∥Pλ

)
≤ λE

(f)
Pλ

[
(Γf) eΓf − eΓf + 1

]
, (3.143)

where Γ is the modulus of the discrete gradient:

Γf(x) , |f(x) − f(x+ 1)|, ∀x ∈ Z+. (3.144)

Using tensorization of (3.143), Kontoyiannis and Madiman [128] gave a simple proof of a log-Sobolev
inequality for a compound Poisson distribution. We recall that a compound Poisson distribution is
defined as follows: given λ > 0 and a probability measure µ on N, the compound Poisson distribution
CPλ,µ is the distribution of the random sum Z =

∑N
i=1 Yi, where N ∼ Pλ and Y1, Y2, . . . are i.i.d. random

variables with distribution µ, independent of N .

Theorem 30 (Log-Sobolev inequality for compound Poisson measures [128]). For any λ > 0, any prob-
ability measure µ on N, and any bounded function f : Z+ → R,

D
(
CP

(f)
λ,µ

∥∥CPλ,µ

)
≤ λ

∞∑

k=1

µ(k) E
(f)
CPλ,µ

[
(Γkf) eΓkf − Γkf + 1

]
, (3.145)

where Γkf(x) , |f(x) − f(x+ k)| for each k, x ∈ Z+.

Proof. The proof relies on the following alternative representation of the CPλ,µ probability measure: if
Z ∼ CPλ,µ, then

Z
d
=

∞∑

k=1

kYk, Yk ∼ Pλµ(k), k ∈ Z+ (3.146)

where {Yk}∞k=1 are independent random variables (this equivalence can be verified by showing, e.g., that
these two representations yield the same characteristic function). For each n, let Pn denote the product
distribution of Y1, . . . , Yn. Consider a function f from the statement of Theorem 30, and define the
function g : Z

n
+ → R by

g(y1, . . . , yn) , f

(
n∑

k=1

kyk

)
, ∀y1, . . . , yn ∈ Z+.
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If we now denote by P̄n the distribution of the sum Sn =
∑n

k=1 kYk, then

D
(
P̄ (f)

n

∥∥P̄n

)
= EP̄n

[
exp

(
f(Sn)

)

EP̄n
[exp

(
f(Sn)

)
]
ln

exp
(
f(Sn)

)

EP̄n
[exp

(
f(Sn)

)
]

]

= EPn

[
exp

(
g(Y n)

)

EPn [exp
(
g(Y n)

)
]
ln

exp
(
g(Y n)

)

EPn [exp
(
g(Y n)

)
]

]

= D
(
P (g)

n

∥∥Pn

)

≤
n∑

k=1

D
(
P

(g)

Yk |Ȳ k

∥∥∥PYk

∣∣∣P (g)

Ȳ k

)
, (3.147)

where the last line uses Proposition 5 and the fact that Pn is a product distribution. Using the fact that

dP
(g)

Yk|Ȳ k=ȳk

dPYk

=
exp

(
gk(·|ȳk)

)

EPλµ(k)
[exp

(
gk(Yk|ȳk)

)
]
, PYk

= Pλµ(k)

and applying the Bobkov–Ledoux inequality in (3.143) to PYk
and all functions of the form gk(·|ȳk), we

can write

D
(
P

(g)

Yk |Ȳ k

∥∥PYk

∣∣P (g)

Ȳ k

)
≤ λµ(k) E

(g)
Pn

[(
Γgk(Yk|Ȳ k)

)
eΓgk(Yk |Ȳ k) − eΓgk(Yk|Ȳ k) + 1

]
(3.148)

where Γ is the absolute value of the “one-dimensional” discrete gradient in (3.144). Now, for any yn ∈ Z
n
+,

we have

Γgk(yk|ȳk) =
∣∣∣gk(yk|ȳk) − gk(yk + 1|ȳk)

∣∣∣

=

∣∣∣∣∣∣
f


kyk +

∑

j∈{1,...,n}\{k}
jyj


− f


k(yk + 1) +

∑

j∈{1,...,n}\{k}
jyj




∣∣∣∣∣∣

=

∣∣∣∣∣∣
f




n∑

j=1

jyj


− f




n∑

j=1

jyj + k




∣∣∣∣∣∣

= Γkf




n∑

j=1

jyj


 .

Using this in (3.148) and performing the reverse change of measure from Pn to P̄n, we can write

D
(
P

(g)

Yk|Ȳ k

∥∥PYk

∣∣P (g)

Ȳ k

)
≤ λµ(k) E

(f)

P̄n

[(
Γkf(Sn)

)
eΓkf(Sn) − eΓkf(Sn) + 1

]
. (3.149)

Therefore, the combination of (3.147) and (3.149) gives

D
(
P̄ (f)

n

∥∥P̄n

)
≤ λ

n∑

k=1

µ(k) E
(f)

P̄n

[
(Γkf) eΓkf − eΓkf + 1

]

≤ λ
∞∑

k=1

µ(k) E
(f)

P̄n

[
(Γkf) eΓkf − eΓkf + 1

]
(3.150)

where the second line follows from the inequality xex − ex + 1 ≥ 0 that holds for all x ≥ 0.
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Now we will take the limit as n → ∞ of both sides of (3.150). For the left-hand side, we use the
fact that, by (3.146), P̄n converges weakly (or in distribution) to CPλ,µ as n → ∞. Since f is bounded,

P̄
(f)
n → CP

(f)
λ,µ in distribution. Therefore, by the bounded convergence theorem we have

lim
n→∞

D
(
P̄ (f)

n

∥∥P̄n

)
= D

(
CP

(f)
λ,µ

∥∥CPλ,µ

)
. (3.151)

For the right-hand side, we have

∞∑

k=1

µ(k) E
(f)

P̄n

[
(Γkf) eΓkf − eΓkf + 1

]
= E

(f)

P̄n

{ ∞∑

k=1

µ(k)
[
(Γkf) eΓkf − eΓkf + 1

]}

n→∞−−−→ E
(f)
CPλ,µ

[ ∞∑

k=1

µ(k)
(
(Γkf) eΓkf − eΓkf + 1

)]

=

∞∑

k=1

µ(k) E
(f)
CPλ,µ

[
(Γkf) eΓkf − eΓkf + 1

]
(3.152)

where the first and the last steps follow from Fubini’s theorem, and the second step follows from the
bounded convergence theorem. Putting (3.150)–(3.152) together, we get the inequality in (3.145). This
completes the proof of Theorem 30.

3.3.6 Bounds on the variance: Efron–Stein–Steele and Poincaré inequalities

As we have seen, tight bounds on the variance of a function f(Xn) of independent random variables
X1, . . . ,Xn are key to obtaining tight bounds on the deviation probabilities P

(
f(Xn) ≥ Ef(Xn) + r

)

for r ≥ 0. It turns out that the reverse is also true: assuming that f has Gaussian-like concentration
behavior,

P
(
f(Xn) ≥ Ef(Xn) + r

)
≤ K exp

(
− κr2

)
, ∀r ≥ 0

it is possible to derive tight bounds on the variance of f(Xn).
We start by deriving a version of a well-known inequality due to Efron and Stein [129], with subsequent

refinements by Steele [130].

In the following, we say that a function f is “sufficiently regular” if the functions tf are exponentially
integrable for all sufficiently small t > 0.

Theorem 31. Let X1, . . . ,Xn be independent X -valued random variables. Then, for any sufficiently
regular f : X n → R we have

var[f(Xn)] ≤
n∑

i=1

E
{
var
[
f(Xn)

∣∣X̄i
]}

(3.153)

Proof. By Proposition 5, for any t > 0, we have

D
(
P (tf)

∥∥P
)
≤

n∑

i=1

D
(
P

(tf)

Xi|X̄i

∥∥PXi

∣∣PX̄i

)
.

Using Lemma 9, we can rewrite this inequality as

∫ t

0

∫ t

s
var

(τf)[f ] dτ ds ≤
n∑

i=1

E

[∫ t

0

∫ t

s
var

(τfi(·|X̄i))[fi(Xi|X̄i)] dτ ds

]
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Dividing both sides by t2, passing to the limit of t → 0, and using the fact that

lim
t→0

1

t2

∫ t

0

∫ t

s
var

(τf)[f ] dτ ds =
var[f ]

2
,

we get (3.153).

Next, we discuss the connection between log-Sobolev inequalities and another class of functional
inequalities: the Poincaré inequalities. Consider, as before, a probability space (Ω,F , µ) and a pair
(A,Γ) satisfying the conditions (LSI-1)–(LSI-3). Then we say that µ satisfies a Poincaré inequality with
constant c ≥ 0 if

varµ[f ] ≤ cEµ

[
|Γf |2

]
, ∀f ∈ A. (3.154)

Theorem 32. Suppose that µ satisfies LSI(c) w.r.t. (A,Γ). Then µ also satisfies a Poincaré inequality
with constant c.

Proof. For any f ∈ A and any t > 0, we can use Lemma 9 to express the corresponding LSI(c) for the
function tf as

∫ t

0

∫ t

s
var

(τf)
µ [f ] dτ ds ≤ ct2

2
· E(tf)

µ

[
(Γf)2

]
. (3.155)

Proceeding exactly as in the proof of Theorem 31 above (i.e., by dividing both sides of the above inequality
by t2 and taking the limit where t→ 0), we obtain

1

2
varµ[f ] ≤ c

2
· Eµ

[
(Γf)2

]
.

Multiplying both sides by 2, we see that µ indeed satisfies (3.154).

Moreover, Poincaré inequalities tensorize, as the following analogue of Theorem 24 shows:

Theorem 33. Let X1, . . . ,Xn ∈ X be n independent random variables, and let P = PX1 ⊗ . . . PXn be
their joint distribution. Let A consist of all functions f : X n → R, such that, for every i,

fi(·|x̄i) ∈ Ai, ∀x̄i ∈ X n−1 (3.156)

Define the operator Γ that maps each f ∈ A to

Γf =

√√√√
n∑

i=1

(Γifi)2, (3.157)

which is shorthand for

Γf(xn) =

√√√√
n∑

i=1

(
Γifi(xi|x̄i)

)2
, ∀xn ∈ X n. (3.158)

Suppose that, for every i ∈ {1, . . . , n}, PXi
satisfies a Poincare inequality with constant c with respect to

(Ai,Γi). Then P satisfies a Poincare inequality with constant c with respect to (A,Γ).

Proof. The proof is conceptually similar to the proof of Theorem 24 (which refers to the tensorization
of the logarithmic Sobolev inequality), except that now we use the Efron–Stein–Steele inequality of
Theorem 31 to tensorize the variance of f .
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3.4 Transportation-cost inequalities

So far, we have been discussing concentration of measure through the lens of various functional inequali-
ties, primarily log-Sobolev inequalities. In a nutshell, if we are interested in the concentration properties
of a given function f(Xn) of a random n-tuple Xn ∈ X n, we seek to control the divergence D(P (f)‖P ),
where P is the distribution of Xn and P (f) is its f -tilting, dP (f)/dP ∝ exp(f), by some quantity related
to the sensitivity of f to modifications of its arguments (e.g., the squared norm of the gradient of f , as
in the Gaussian log-Sobolev inequality of Gross [35]). The common theme underlying these functional
inequalities is that any such measure of sensitivity is tied to a particular metric structure on the under-
lying product space X n. To see this, suppose that X n is equipped with some metric d(·, ·), and consider
the following generalized definition of the modulus of the gradient of any function f : X n → R:

|∇f |(xn) , lim sup
yn:d(xn,yn)↓0

|f(xn) − f(yn)|
d(xn, yn)

. (3.159)

If we also define the Lipschitz constant of f by

‖f‖Lip , sup
xn 6=yn

|f(xn) − f(yn)|
d(xn, yn)

and consider the class A of all functions f with ‖f‖Lip < ∞, then it is easy to see that the pair (A,Γ)
with Γf(xn) , |∇f |(xn) satisfies the conditions (LSI-1)–(LSI-3) listed in Section 3.3. Consequently, if a
given probability distribution P for a random n-tuple Xn ∈ X n satisfies LSI(c) w.r.t. the pair (A,Γ), we
can use the Herbst argument to obtain the concentration inequality

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
− r2

2c‖f‖2
Lip

)
, ∀ r ≥ 0. (3.160)

All the examples of concentration we have discussed so far can be seen to fit this theme. Consider, for
instance, the following cases:

1. Euclidean metric: for X = R, equip the product space X n = R
n with the ordinary Euclidean metric:

d(xn, yn) = ‖xn − yn‖ =

√√√√
n∑

i=1

(xi − yi)2.

Then the Lipschitz constant ‖f‖Lip of any function f : X n → R is given by

‖f‖Lip , sup
xn 6=yn

|f(xn) − f(yn)|
d(xn, yn)

= sup
xn 6=yn

|f(xn) − f(yn)|
‖xn − yn‖ , (3.161)

and for any probability measure P on R
n that satisfies LSI(c) we have the bound (3.160). We have

already seen in (3.44) a particular instance of this with P = Gn, which satisfies LSI(1).

2. Weighted Hamming metric: for any n constants c1, . . . , cn > 0 and any measurable space X , let us
equip the product space X n with the metric

dcn(xn, yn) ,

n∑

i=1

ci1{xi 6=yi}.

The corresponding Lipschitz constant ‖f‖Lip, which we also denote by ‖f‖Lip, cn to emphasize the role of
the weights {ci}n

i=1, is given by

‖f‖Lip,cn , sup
xn 6=yn

|f(xn) − f(yn)|
dcn(xn, yn)

.
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Then it is easy to see that the condition ‖f‖Lip, cn ≤ 1 is equivalent to (3.134). As we have shown in
Section 3.3.4, any product probability measure P on X n equipped with the metric dcn satisfies LSI(1/4)
w.r.t.

A =
{
f : ‖f‖Lip, cn <∞

}

and Γf(·) = |∇f |(·) with |∇f | given by (3.159) with d = dcn . In this case, the concentration inequality
(3.160) (with c = 1/4) is precisely McDiarmid’s inequality (3.135).

The above two examples suggest that the metric structure plays the primary role, while the functional
concentration inequalities like (3.160) are simply a consequence. In this section, we describe an alternative
approach to concentration that works directly on the level of probability measures, rather than functions,
and that makes this intuition precise. The key tool underlying this approach is the notion of transportation
cost, which can be used to define a metric on probability distributions over the space of interest in terms
of a given base metric on this space. This metric on distributions is then related to the divergence via
so-called transporation cost inequalities. The pioneering work by K. Marton in [62] and [49] has shown
that one can use these inequalities to deduce concentration.

3.4.1 Concentration and isoperimetry

We start by giving rigorous meaning to the notion that the concentration of measure phenomenon is
fundamentally geometric in nature. In order to talk about concentration, we need the notion of a metric
probability space in the sense of M. Gromov [131]. Specifically, we say that a triple (X , d, µ) is a metric
probability space if (X , d) is a Polish space (i.e., a complete and separable metric space) and µ is a
probability measure on the Borel sets of (X , d).

For any set A ⊆ X and any r > 0, define the r-blowup of A by

Ar , {x ∈ X : d(x,A) < r} , (3.162)

where d(x,A) , infy∈A d(x, y) is the distance from the point x to the set A. We then say that the
probability measure µ has normal (or Gaussian) concentration on (X , d) if there exist some constants
K,κ > 0, such that

µ(A) ≥ 1/2 =⇒ µ(Ar) ≥ 1 −Ke−κr2
, ∀ r > 0. (3.163)

Remark 33. Of the two constants K and κ in (3.163), it is κ that is more important. For that reason,
sometimes we will say that µ has normal concentration with constant κ > 0 to mean that (3.163) holds
with that value of κ and some K > 0.

Here are a few standard examples (see [2, Section 1.1]):

1. Standard Gaussian distribution — if X = R
n, d(x, y) = ‖x − y‖ is the standard Euclidean metric,

and µ = Gn, the standard Gaussian distribution, then for any Borel set A ⊆ R
n with Gn(A) ≥ 1/2 we

have

Gn(Ar) ≥
1√
2π

∫ r

−∞
exp

(
− t

2

2

)
dt

≥ 1 − 1

2
exp

(
−r

2

2

)
, ∀ r ≥ 0 (3.164)

i.e., (3.163) holds with K = 1
2 and κ = 1

2 .
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2. Uniform distribution on the unit sphere — if X = S
n ≡

{
x ∈ R

n+1 : ‖x‖ = 1
}
, d is given by the

geodesic distance on S
n, and µ = σn (the uniform distribution on S

n), then for any Borel set A ⊆ S
n

with σn(A) ≥ 1/2 we have

σn(Ar) ≥ 1 − exp

(
−(n− 1)r2

2

)
, ∀ r ≥ 0. (3.165)

In this instance, (3.163) holds with K = 1 and κ = (n − 1)/2. Notice that κ is actually increasing with
the ambient dimension n.

3. Uniform distribution on the Hamming cube — if X = {0, 1}n, d is the normalized Hamming metric

d(x, y) =
1

n

n∑

i=1

1{xi 6=yi}

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ {0, 1}n, and µ = Bn is the uniform distribution on {0, 1}n

(which is equal to the product of n copies of a Bernoulli(1/2) measure on {0, 1}), then for any A ⊆ {0, 1}n

we have

Bn(Ar) ≥ 1 − exp
(
−2nr2

)
, ∀ r ≥ 0 (3.166)

so (3.163) holds with K = 1 and κ = 2n.

Remark 34. Gaussian concentration of the form (3.163) is often discussed in the context of the so-called
isoperimetric inequalities, which relate the full measure of a set to the measure of its boundary. To be
more specific, consider a metric probability space (X , d, µ), and for any Borel set A ⊆ X define its surface
measure as (see [2, Section 2.1])

µ+(A) , lim inf
r→0

µ(Ar \ A)

r
= lim inf

r→0

µ(Ar) − µ(A)

r
. (3.167)

Then the classical Gaussian isoperimetric inequality can be stated as follows: If H is a half-space in R
n,

i.e., H = {x ∈ Rn : 〈x, u〉 < c} for some u ∈ Rn with ‖u‖ = 1 and some c ∈ [−∞,+∞], and if A ⊆ Rn is
a Borel set with Gn(A) = Gn(H), then

(Gn)+(A) ≥ (Gn)+(H), (3.168)

with equality if and only if A is a half-space. In other words, the Gaussian isoperimetric inequality (3.168)
says that, among all Borel subsets of R

n with a given Gaussian volume, the half-spaces have the smallest
surface measure. An equivalent integrated version of (3.168) says the following (see, e.g., [132]): Consider
a Borel set A in R

n and a half-space H = {x : 〈x, u〉 < c} with ‖u‖ = 1, c ≥ 0 and Gn(A) = Gn(H).
Then for any r ≥ 0 we have

Gn(Ar) ≥ Gn(Hr),

with equality if and only if A is itself a half-space. Moreover, an easy calculation shows that

Gn(Hr) =
1√
2π

∫ c+r

−∞
exp

(
−ξ

2

2

)
dξ ≥ 1 − 1

2
exp

(
−(r + c)2

2

)
, ∀ r ≥ 0.

So, if G(A) ≥ 1/2, we can always choose c = 0 and get (3.164).
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Intuitively, what (3.163) says is that, if µ has normal concentration on (X , d), then most of the
probability mass in X is concentrated around any set with probability at least 1/2. At first glance, this
seems to have nothing to do with what we have been looking at all this time, namely the concentration
of Lipschitz functions on X around their mean. However, as we will now show, the geometric and the
functional pictures of the concentration of measure phenomenon are, in fact, equivalent. To that end, let
us define the median of a function f : X → R: we say that a real number mf is a median of f w.r.t. µ
(or a µ-median of f) if

Pµ

(
f(X) ≥ mf

)
≥ 1

2
and Pµ

(
f(X) ≤ mf

)
≥ 1

2
(3.169)

(note that a median of f may not be unique). The precise result is as follows:

Theorem 34. Let (X , d, µ) be a metric probability space. Then µ has the normal concentration property
(3.163) (with arbitrary constants K,κ > 0) if and only if for every Lipschitz function f : X → R (where
the Lipschitz property is defined w.r.t. the metric d) we have

Pµ

(
f(X) ≥ mf + r

)
≤ K exp

(
− κr2

‖f‖2
Lip

)
, ∀ r ≥ 0 (3.170)

where mf is any µ-median of f .

Proof. Suppose that µ satisfies (3.163). Fix any Lipschitz function f where, without loss of generality, we

may assume that ‖f‖Lip = 1, let mf be any median of f , and define the set Af ,

{
x ∈ X : f(x) ≤ mf

}
.

By definition of the median in (3.169), µ(Af ) ≥ 1/2. Consequently, by (3.163), we have

µ(Af
r ) ≡ Pµ

(
d(X,Af ) < r

)
≥ 1 −K exp(−κr2), ∀r ≥ 0. (3.171)

By the Lipschitz property of f , for any y ∈ Af we have f(X) − mf ≤ f(X) − f(y) ≤ d(X, y), so
f(X) −mf ≤ d(X,Af ). This, together with (3.171), implies that

Pµ

(
f(X) −mf < r

)
≥ Pµ

(
d(X,Af ) < r

)
≥ 1 −K exp(−κr2), ∀ r ≥ 0

which is (3.170).
Conversely, suppose (3.170) holds for every Lipschitz f . Choose any Borel set A with µ(A) ≥ 1/2

and define the function fA(x) , d(x,A) for every x ∈ X . Then fA is 1-Lipschitz, since

|fA(x) − fA(y)| =
∣∣∣ inf
u∈A

d(x, u) − inf
u∈A

d(y, u)
∣∣∣

≤ sup
u∈A

|d(x, u) − d(y, u)|

≤ d(x, y),

where the last step is by the triangle inequality. Moreover, zero is a median of fA, since

Pµ

(
fA(X) ≤ 0

)
= Pµ

(
X ∈ A

)
≥ 1

2
and Pµ

(
fA(X) ≥ 0

)
≥ 1

2
,

where the second bound is vacuously true since fA ≥ 0 everywhere. Consequently, with mf = 0, we get

1 − µ(Ar) = Pµ

(
d(X,A) ≥ r

)

= Pµ

(
fA(X) ≥ mf + r

)

≤ K exp
(
−κr2

)
, ∀ r ≥ 0

which gives (3.163).
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It is shown in the following that for Lipschitz functions, concentration around the mean also implies
concentration around any median, but possibly with worse constants [2, Proposition 1.7]:

Theorem 35. Let (X , d, µ) be a metric probability space, such that for any 1-Lipschitz function f : X →
R we have

Pµ

(
f(X) ≥ Eµ[f(X)] + r

)
≤ K0 exp

(
− κ0r

2
)
, ∀ r ≥ 0 (3.172)

with some constants K0, κ0 > 0. Then, µ has the normal concentration property (3.163) with K = K0

and κ = κ0/4. Consequently, the concentration inequality in (3.170) around any median mf is satisfied
with the same constants of κ and K.

Proof. Let A ⊆ X be an arbitrary Borel set with µ(A) > 0, and fix some r > 0. Define the function
fA,r(x) , min {d(x,A), r}. Then, from the triangle inequality, ‖fA,r‖Lip ≤ 1 and

Eµ[fA,r(x)] =

∫

X
min {d(x,A), r} µ(dx)

=

∫

A
min {d(x,A), r} µ(dx)

︸ ︷︷ ︸
=0

+

∫

Ac

min {d(x,A), r} µ(dx)

≤ rµ(Ac)

= (1 − µ(A))r. (3.173)

Then

1 − µ(Ar) = Pµ

(
d(X,A) ≥ r

)

= Pµ

(
fA,r(X) ≥ r

)

≤ Pµ

(
fA,r(X) ≥ Eµ[fA,r(X)] + rµ(A)

)

≤ K0 exp
(
−κ (µ(A)r)2

)
, ∀r ≥ 0,

where the first two steps use the definition of fA,r, the third step uses (3.173), and the last step uses
(3.172). Consequently, if µ(A) ≥ 1/2, we get (3.163) with K = K0 and κ = κ0/4. Consequently, from
Theorem 34, also the concentration inequality in (3.170) holds for any medianmf with the same constants
of κ and K.

Remark 35. Let (X , d, µ) be a metric probability space, and suppose that µ has the normal concentration
property (3.163) (with arbitrary constants K,κ > 0). Let f : X → R be an arbitrary Lipschitz function
(where the Lipschitz property is defined w.r.t. the metric d), and let Eµ[f(X)] and mf be, respectively,
the mean and any median of f w.r.t. µ. Theorem 3.172 considers concentration of f around the mean
and the median. In the following, we provide an upper bound on the distance between the mean and
any median of f in terms of the parameters κ and K of (3.163), and the Lipschitz constant of f . From
Theorem 34, it follows that

∣∣Eµ[f(X)] −mf

∣∣

≤ Eµ

[
|f(X) −mf |

]

=

∫ ∞

0
Pµ(|f(X) −mf | ≥ r) dr

≤
∫ ∞

0
2K exp

(
− κr2

‖f‖2
Lip

)
dr

=

√
π

κ
K‖f‖Lip (3.174)
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where the last inequality follows from the (one-sided) concentration inequality in (3.170) and since f and
−f are both Lipschitz functions with the same constant. This shows that the larger is κ and also the
smaller is K (so that the concentration inequality in (3.163) is more pronounced), then the mean and
any median of f get closer to each other, so the concentration of f around both the mean and median
becomes more well expected. Indeed, Theorem 34 provides a better concentration inequality around the
median when this situation takes place.

3.4.2 Marton’s argument: from transportation to concentration

As shown above, the phenomenon of concentration is fundamentally geometric in nature, as captured
by the isoperimetric inequality (3.163). Once we have established (3.163) on a given metric probability
space (X , d, µ), we immediately obtain Gaussian concentration for all Lipschitz functions f : X → R by
Theorem 34.

There is a powerful information-theoretic technique for deriving concentration inequalities like (3.163).
This technique, first introduced by Marton (see [62] and [49]), hinges on a certain type of inequality that
relates the divergence between two probability measures to a quantity called the transportation cost. Let
(X , d) be a Polish space. Given p ≥ 1, let Pp(X ) denote the space of all Borel probability measures µ on
X , such that the moment bound

Eµ[dp(X,x0)] <∞ (3.175)

holds for some (and hence all) x0 ∈ X .

Definition 5. Given p ≥ 1, the Lp Wasserstein distance between any pair µ, ν ∈ Pp(X ) is defined as

Wp(µ, ν) , inf
π∈Π(µ,ν)

(∫

X×X
dp(x, y)π(dx,dy)

)1/p

, (3.176)

where Π(µ, ν) is the set of all probability measures π on the product space X ×X with marginals µ and
ν.

Remark 36. Another equivalent way of writing down the definition of Wp(µ, ν) is

Wp(µ, ν) = inf
X∼µ,Y ∼ν

{E[dp(X,Y )]}1/p , (3.177)

where the infimum is over all pairs (X,Y ) of jointly distributed random variables with values in X , such
that PX = µ and PY = ν.

Remark 37. The name “transportation cost” comes from the following interpretation: Let µ (resp.,
ν) represent the initial (resp., desired) distribution of some matter (say, sand) in space, such that the
total mass in both cases is normalized to one. Thus, both µ and ν correspond to sand piles of some
given shapes. The objective is to rearrange the initial sand pile with shape µ into one with shape ν
with minimum cost, where the cost of transporting a grain of sand from location x to location y is given
by c(x, y) for some sufficiently regular function c : X × X → R. If we allow randomized transportation
policies, i.e., those that associate with each location x in the initial sand pile a conditional probability
distribution π(dy|x) for the destination in the final sand pile, then the minimum transportation cost is
given by

C∗(µ, ν) , inf
π∈Π(µ,ν)

∫

X×X
c(x, y)π(dx,dy) (3.178)
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When the cost function is given by c = dp for some p ≥ 1 and d is a metric on X , we will have
C∗(µ, ν) = W p

p (µ, ν). The optimal transportation problem (3.178) has a rich history, dating back to a
1781 essay by Gaspard Monge, who has considered a particular special case of the problem

C∗
0 (µ, ν) , inf

ϕ:X→X

{∫

X
c(x, ϕ(x))µ(dx) : µ ◦ ϕ−1 = ν

}
. (3.179)

Here, the infimum is over all deterministic transportation policies, i.e., measurable mappings ϕ : X → X ,
such that the desired final measure ν is the image of µ under ϕ, or, in other words, if X ∼ µ, then
Y = ϕ(X) ∼ ν. The problem (3.179) (or the Monge optimal transportation problem, as it has now
come to be called) does not always admit a solution (incidentally, an optimal mapping does exist in the
case considered by Monge, namely X = R

3 and c(x, y) = ‖x − y‖). A stochastic relaxation of Monge’s
problem, given by (3.178), was considered in 1942 by Leonid Kantorovich (and reprinted more recently
[133]). We recommend the books by Villani [50, 51] for a much more detailed historical overview and
rigorous treatment of optimal transportation.

Lemma 13. The Wasserstein distances have the following properties:

1. For each p ≥ 1, Wp(·, ·) is a metric on Pp(X ).

2. If 1 ≤ p ≤ q, then Pp(X ) ⊇ Pq(X ), and Wp(µ, ν) ≤Wq(µ, ν) for any µ, ν ∈ Pq(X ).

3. Wp metrizes weak convergence plus convergence of pth-order moments: a sequence {µn}∞n=1 in Pp(X )

converges to µ ∈ Pp(X ) in Wp, i.e., Wp(µn, µ)
n→∞−−−→ 0, if and only if:

(a) {µn} converges to µ weakly, i.e., Eµn [ϕ]
n→∞−−−→ Eµ[ϕ] for any continuous bounded function ϕ : X → R

(b) for some (and hence all) x0 ∈ X ,
∫

X
dp(x, x0)µn(dx)

n→∞−−−→
∫

X
dp(x, x0)µ(dx).

If the above two statements hold, then we say that {µn} converges to µ weakly in Pp(X ).

4. The mapping (µ, ν) 7→Wp(µ, ν) is continuous on Pp(X ), i.e., if µn → µ and νn → ν weakly in Pp(X ), then
Wp(µn, νn) → Wp(µ, ν). However, it is only lower semicontinuous in the usual weak topology (without
the convergence of pth-order moments): if µn → µ and νn → ν weakly, then

lim inf
n→∞

Wp(µn, νn) ≥Wp(µ, ν).

5. The infimum in (3.176) [and therefore in (3.177)] is actually a minimum; in other words, there exists an
optimal coupling π∗ ∈ Π(µ, ν), such that

W p
p (µ, ν) =

∫

X×X
dp(x, y)π∗(dx,dy).

Equivalently, there exists a pair (X∗, Y ∗) of jointly distributed X -valued random variables with PX∗ = µ
and PY ∗ = ν, such that

W p
p (µ, ν) = E[dp(X∗, Y ∗)].

6. If p = 2, X = R with d(x, y) = |x − y|, and µ is atomless (i.e., if µ({x}) = 0 for all x ∈ R), then the
optimal coupling between µ and any ν is given by the deterministic mapping

Y = F
−1
ν ◦ Fµ(X)

for X ∼ µ, where Fµ denotes the cumulative distribution (cdf) function of µ, i.e., Fµ(x) = Pµ(X ≤ x),
and F−1

ν is the quantile function of ν, i.e., F−1
ν (x) , inf {α : Fν(x) ≥ α}.
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Definition 6. We say that a probability measure µ on (X , d) satisfies an Lp transportation cost inequality
with constant c > 0, or a Tp(c) inequality for short, if for any probability measure ν � µ we have

Wp(µ, ν) ≤
√

2cD(ν‖µ). (3.180)

Example 16 (Total variation distance and Pinsker’s inequality). Here is a specific example illustrating
this abstract machinery, which should be a familiar territory to information theorists. Let X be a discrete
set equipped with the Hamming metric d(x, y) = 1{x 6=y}. In this case, the corresponding L1 Wasserstein
distance between any two probability measures µ and ν on X takes the simple form

W1(µ, ν) = inf
X∼µ,Y ∼ν

P (X 6= Y ) .

As we will now show, this turns out to be nothing but the usual total variation distance

‖µ− ν‖TV = sup
A⊆X

|µ(A) − ν(A)| =
1

2

∑

x∈X
|µ(x) − ν(x)|

(we are abusing the notation here, writing µ(x) for the µ-probability of the singleton {x}). To see this,
consider any π ∈ Π(µ, ν). Then for any x we have

µ(x) =
∑

y∈X
π(x, y) ≥ π(x, x),

and the same goes for ν. Consequently, π(x, x) ≤ min {µ(x), ν(x)}, and so

Eπ[d(X 6= Y )] = 1 −
∑

x∈X
π(x, x) (3.181)

≥ 1 −
∑

x∈X
min {µ(x), ν(x)} . (3.182)

On the other hand, if we define the set A = {x ∈ X : µ(x) ≥ ν(x)}, then

‖µ− ν‖TV =
1

2

∑

x∈A

|µ(x) − ν(x)| + 1

2

∑

x∈Ac

|µ(x) − ν(x)|

=
1

2

∑

x∈A

[µ(x) − ν(x)] +
1

2

∑

x∈Ac

[ν(x) − µ(x)]

=
1

2

(
µ(A) − ν(A) + ν(Ac) − µ(Ac)

)

= µ(A) − ν(A)

and
∑

x∈X
min {µ(x), ν(x)} =

∑

x∈A

ν(x) +
∑

x∈Ac

µ(x)

= ν(A) + µ(Ac)

= 1 −
(
µ(A) − ν(A)

)

= 1 − ‖µ− ν‖TV. (3.183)

Consequently, for any π ∈ Π(µ, ν) we see from (3.181)–(3.183) that

Pπ

(
X 6= Y

)
= Eπ[d(X,Y )] ≥ ‖µ− ν‖TV. (3.184)
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Moreover, the lower bound in (3.184) is actually achieved by π∗ taking

π∗(x, y) = min {µ(x), ν(x)} 1{x=y} +

(
µ(x) − ν(x)

)
1{x∈A}

(
ν(y) − µ(y)

)
1{y∈Ac}

µ(A) − ν(A)
1{x 6=y}. (3.185)

Now that we have expressed the total variation distance ‖µ−ν‖TV as the L1 Wasserstein distance induced
by the Hamming metric on X , we can recognize the well-known Pinsker’s inequality,

‖µ− ν‖TV ≤
√

1

2
D(ν‖µ), (3.186)

as a T1(1/4) inequality that holds for any probability measure µ on X .

Remark 38. It should be pointed out that the constant c = 1/4 in Pinsker’s inequality (3.186) is not
necessarily the best possible for a given distribution P . Ordentlich and Weinberger [134] have obtained
the following distribution-dependent refinement of Pinsker’s inequality. Let the function ϕ : [0, 1/2] → R

+

be defined by

ϕ(p) ,





(
1

1 − 2p

)
ln

(
1 − p

p

)
, if p ∈

[
0, 1

2

)

2, if p = 1/2
(3.187)

(in fact, ϕ(p) → 2 as p ↑ 1/2, ϕ(p) → ∞ as p ↓ 0, and ϕ is a monotonic decreasing and convex function).
Let X be a discrete set. For any P ∈ P(X ), define the balance coefficient

πP , max
A⊆X

min {P (A), 1 − P (A)} =⇒ πP ∈
[
0,

1

2

]
.

Then (cf. Theorem 2.1 in [134]), for any Q ∈ P(X ),

‖P −Q‖TV ≤
√(

1

ϕ(πP )

)
D(Q‖P ) (3.188)

From the above properties of the function ϕ, it follows that the distribution-dependent refinement of
Pinsker’s inequality is more pronounced when the balance coefficient is small (i.e., πP � 1). Moreover,
this bound is optimal for a given P , in the sense that

ϕ(πP ) = inf
Q∈P(X )

D(Q‖P )

‖P −Q‖2
TV

. (3.189)

For instance, if X = {0, 1} and P is the distribution of a Bernoulli(p) random variable, then πP =
min{p, 1 − p}, and (since ϕ(p) in (3.187) is symmetric around one-half)

ϕ(πP ) =





(
1

1 − 2p

)
ln

(
1 − p

p

)
, if p 6= 1

2

2, if p = 1
2

and for any other Q ∈ P({0, 1}) we have, from (3.188),

‖P −Q‖TV ≤





√(
1 − 2p

ln[(1 − p)/p]

)
D(Q‖P ), if p 6= 1

2

√
1

2
D(Q‖P ), if p = 1

2 .

(3.190)
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The above inequality provides an upper bound on the total variation distance in terms of the diver-
gence. In general, a bound in the reverse direction cannot be derived since the total variation distance
can be arbitrarily close to zero, whereas the divergence is equal to infinity. However, consider an i.i.d.
sample of size n that is generated from a probability distribution P . Sanov’s theorem implies that the
probability that the empirical distribution of the generated sample deviates in total variation from P by
at least some ε ∈ (0, 2] scales asymptotically like exp

(
−nD∗(P, ε)

)
where

D∗(P, ε) , inf
Q: ‖P−Q‖TV≥ε

D(Q‖P ).

Although a reverse form of Pinsker’s inequality (or its probability-dependent refinement in [134]) cannot
be derived, it was recently proved in [135] that

D∗(P, ε) ≤ ϕ(πP ) ε2 +O(ε3).

This inequality shows that the probability-dependent refinement of Pinsker’s inequality in (3.188) is
actually tight for D∗(P, ε) when ε is small, since both upper and lower bounds scale like ϕ(πP ) ε2 if
ε� 1.

Apart of providing a refined upper bound on the total variation distance between two discrete proba-
bility distributions, the inequality in (3.188) also enables to derive a refined lower bound on the relative
entropy when a lower bound on the total variation distance is available. This approach was studied in
[136, Section III] in the context of the Poisson approximation where (3.188) was combined with a new
lower bound on the total variation distance (using the so-called Chen-Stein method) between the distri-
bution of a sum of independent Bernoulli random variables and the Poisson distribution with the same
mean. It is noted that for a sum of i.i.d. Bernoulli random variables, the resulting lower bound on this
relative entropy (see [136, Theorem 7]) scales similarly to the upper bound on this relative entropy by
Kontoyiannis et al. (see [137, Theorem 1]), where the derivation of the latter upper bound relies on the
logarithmic Sobolev inequality for the Poisson distribution by Bobkov and Ledoux [45] (see Section 3.3.5
here).

Marton’s procedure for deriving Gaussian concentration from a transportation cost inequality [62, 49]
can be distilled in the following:

Proposition 9. Suppose µ satisfies a T1(c) inequality. Then, the Gaussian concentration inequality in
(3.163) holds with κ = 1/(2c) and K = 1 for all r ≥

√
2c ln 2.

Proof. Fix two Borel sets A,B ⊂ X with µ(A), µ(B) > 0. Define the conditional probability measures

µA(C) ,
µ(C ∩A)

µ(A)
and µB(C) ,

µ(C ∩B)

µ(B)
,

where C is an arbitrary Borel set in X . Then µA, µB � µ, and

W1(µA, µB) ≤W1(µ, µA) +W1(µ, µB) (3.191)

≤
√

2cD(µA‖µ) +
√

2cD(µB‖µ), (3.192)

where (3.191) is by the triangle inequality, while (3.192) is because µ satisfies T1(c). Now, for any Borel
set C, we have

µA(C) =

∫

C

1A(x)

µ(A)
µ(dx),

so it follows that µA � µ with dµA/dµ = 1A/µ(A), and the same holds for µB. Therefore,

D(µA‖µ) = Eµ

[
dµA

dµ
ln

dµA

dµ

]
= ln

1

µ(A)
, (3.193)
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and an analogous formula holds for µB in place of µA. Substituting this into (3.192) gives

W1(µA, µB) ≤
√

2c ln
1

µ(A)
+

√
2c ln

1

µ(B)
. (3.194)

We now obtain a lower bound on W1(µA, µB). Since µA (resp., µB) is supported on A (resp., B), any
π ∈ Π(µA, νA) is supported on A×B. Consequently, for any such π we have

∫

X×X
d(x, y) π(dx,dy) =

∫

A×B
d(x, y) π(dx,dy)

≥
∫

A×B
inf
y∈B

d(x, y) π(dx,dy)

=

∫

A
d(x,B) µA(dx)

≥ inf
x∈A

d(x,B) µA(A)

= d(A,B), (3.195)

where µA(A) = 1, and d(A,B) , infx∈A,y∈B d(x, y) is the distance between A and B. Since (3.195)
holds for every π ∈ Π(µA, νA), we can take the infimum over all such π and get W1(µA, µB) ≥ d(A,B).
Combining this with (3.194) gives the inequality

d(A,B) ≤
√

2c ln
1

µ(A)
+

√
2c ln

1

µ(B)
,

which holds for all Borel sets A and B that have nonzero µ-probability.
Let B = Ac

r, then µ(B) = 1 − µ(Ar) and d(A,B) ≥ r. Consequently,

r ≤
√

2c ln
1

µ(A)
+

√
2c ln

1

1 − µ(Ar)
. (3.196)

If µ(A) ≥ 1/2 and r ≥
√

2c ln 2, then (3.196) gives

µ(Ar) ≥ 1 − exp

(
− 1

2c

(
r −

√
2c ln 2

)2
)
. (3.197)

Hence, the Gaussian concentration inequality in (3.163) indeed holds with κ = 1/(2c) and K = 1 for all
r ≥

√
2c ln 2.

Remark 39. The formula (3.193), apparently first used explicitly by Csiszár [138, Eq. (4.13)], is actually
quite remarkable: it states that the probability of any event can be expressed as an exponential of a
divergence.

While the method described in the proof of Proposition 9 does not produce optimal concentration
estimates (which typically have to be derived on a case-by-case basis), it hints at the potential power of
the transportation cost inequalities. To make full use of this power, we first establish an important fact
that, for p ∈ [1, 2], the Tp inequalities tensorize (see, for example, [51, Proposition 22.5]):

Proposition 10 (Tensorization of transportation cost inequalities). For any p ∈ [1, 2], the following
statement is true: If µ satisfies Tp(c) on (X , d), then, for any n ∈ N, the product measure µ⊗n satisfies
Tp(cn

2/p−1) on (X n, dp,n) with the metric

dp,n(xn, yn) ,

(
n∑

i=1

dp(xi, yi)

)1/p

, ∀xn, yn ∈ X n. (3.198)



3.4. TRANSPORTATION-COST INEQUALITIES 133

Proof. Suppose µ satisfies Tp(c). Fix some n and an arbitrary probability measure ν on (X n, dp,n). Let
Xn, Y n ∈ X n be two independent random n-tuples, such that

PXn = PX1 ⊗ PX2|X1
⊗ . . .⊗ PXn|Xn−1 = ν (3.199)

PY n = PY1 ⊗ PY2 ⊗ . . .⊗ PYn = µ⊗n. (3.200)

For each i ∈ {1, . . . , n}, let us define the “conditional” Wp distance

Wp(PXi|Xi−1, PYi
|PXi−1) ,

(∫

X i−1

W p
p (PXi|Xi−1=xi−1 , PYi

)PXi−1(dxi−1)

)1/p

.

We will now prove that

W p
p (ν, µ⊗n) = W p

p (PXn , PY n) ≤
n∑

i=1

W p
p (PXi|Xi−1 , PYi

|PXi−1), (3.201)

where the Lp Wasserstein distance on the left-hand side is computed w.r.t. the dp,n metric. By Lemma 13,
there exists an optimal coupling of PX1 and PY1 , i.e., a pair (X∗

1 , Y
∗
1 ) of jointly distributed X -valued

random variables, such that PX∗

1
= PX1 , PY ∗

1
= PY1 , and

W p
p (PX1 , PY1) = E[dp(X∗

1 , Y
∗
1 )].

Now for each i = 2, . . . , n and each choice of xi−1 ∈ X i−1, again by Lemma 13, there exists an optimal
coupling of PXi|Xi−1=xi−1 and PYi

, i.e., a pair (X∗
i (xi−1), Y ∗

i (xi−1)) of jointly distributed X -valued random
variables, such that PX∗

i (xi−1) = PXi|Xi−1=xi−1, PY ∗

i (xi−1) = PYi
, and

W p
p (PXi|Xi−1=xi−1 , PYi

) = E[dp(X∗
i (xi−1), Y ∗

i (xi−1))]. (3.202)

Moreover, because X is a Polish space, all couplings can be constructed in such a way that the mapping
xi−1 7→ P

(
(X∗

i (xi−1), Y ∗
i (xi−1)) ∈ C

)
is measurable for each Borel set C ⊆ X × X [51]. In other words,

for each i we can define the regular conditional distributions

PX∗

i Y ∗

i |X∗i−1=xi−1 , PX∗

i (xi−1)Y ∗

i (xi−1), ∀xi−1 ∈ X i−1

such that
PX∗nY ∗n = PX∗

1 Y ∗

1
⊗ PX∗

2Y ∗

2 |X∗

1
⊗ . . .⊗ PX∗

n|X∗n−1

is a coupling of PXn = ν and PY n = µ⊗n, and

W p
p (PXi|Xi−1 , PYi

) = E[dp(X∗
i , Y

∗
i )|X∗i−1], i = 1, . . . , n. (3.203)

By definition of Wp, we then have

W p
p (ν, µ⊗n) ≤ E[dp

p,n(X∗n, Y ∗n)] (3.204)

=

n∑

i=1

E[dp(X∗
i , Y

∗
i )] (3.205)

=
n∑

i=1

E

[
E[dp(X∗

i , Y
∗
i )|X∗i−1]

]
(3.206)

=
n∑

i=1

W p
p (PXi|Xi−1, PYi

|PXi−1), (3.207)

where:
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• (3.204) is due to the fact that (X∗n, Y ∗n) is a (not necessarily optimal) coupling of PXn = ν and
PY n = µ⊗n;

• (3.205) is by the definition (3.198) of dp,n;

• (3.206) is by the law of iterated expectation; and

• (3.207) is by (3.202).

We have thus proved (3.201). By hypothesis, µ satisfies Tp(c) on (X , d). Therefore, since PYi
= µ for

every i, we can write

W p
p (PXi|Xi−1 , PYi

|PXi−1) =

∫

X i−1

W p
p (PXi|Xi−1=xi−1, PYi

)PXi−1(dxi−1)

≤
∫

X i−1

(
2cD(PXi|Xi−1=xi−1‖PYi

)
)p/2

PXi−1(dxi−1)

= (2c)p/2
(
D(PXi|Xi−1‖PYi

|PXi−1)
)p/2

. (3.208)

Summing from i = 1 to i = n and using (3.201), (3.208) and Hölder’s inequality, we obtain

W p
p (ν, µ⊗n) ≤ (2c)p/2

n∑

i=1

(
D(PXi|Xi−1‖PYi

|PXi−1)
)p/2

≤ (2c)p/2n1−p/2

(
n∑

i=1

D(PXi|Xi−1‖PYi
|PXi−1)

)p/2

= (2c)p/2n1−p/2 (D(PXn‖PY n))p/2

= (2c)p/2n1−p/2D(ν‖µ⊗n)p/2,

where the third line is by the chain rule for the divergence, and since PY n is a product probability measure.
Taking the p-th root of both sides, we finally get

Wp(ν, µ
⊗n) ≤

√
2cn2/p−1D(ν‖µ⊗n),

i.e., µ⊗n indeed satisfies the Tp(cn
2/p−1) inequality.

Since W2 dominates W1 (cf. item 2 of Lemma 13), a T2(c) inequality is stronger than a T1(c) inequality
(for an arbitrary c > 0). Moreover, as Proposition 10 above shows, T2 inequalities tensorize exactly: if µ
satisfies T2 with a constant c > 0, then µ⊗n also satisfies T2 for every n with the same constant c. By
contrast, if µ only satisfies T1(c), then the product measure µ⊗n satisfies T1 with the much worse constant
cn. As we shall shortly see, this sharp difference between the T1 and T2 inequalities actually has deep
consequences. In a nutshell, in the two sections that follow, we will show that, for p ∈ {1, 2}, a given
probability measure µ satisfies a Tp(c) inequality on (X , d) if and only if it has Gaussian concentration
with constant 1/(2c). Suppose now that we wish to show Gaussian concentration for the product measure
µ⊗n on the product space (X n, d1,n). Following our tensorization programme, we could first show that µ
satisfies a transportation cost inequality for some p ∈ [1, 2], then apply Proposition 10 and consequently
also apply Proposition 9. If we go through with this approach, we will see that:

• if µ satisfies T1(c) on (X , d), then µ⊗n satisfies T1(cn) on (X n, d1,n), which is equivalent to Gaussian
concentration with constant 1/(2cn). In this case, the concentration phenomenon becomes weaker and
weaker as the dimension n increases.
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• if, on the other hand, µ satisfies T2(c) on (X , d), then µ⊗n satisfies T2(c) on (X n, d2,n), which is equiv-
alent to Gaussian concentration with the same constant 1/(2c), and this constant is independent of the
dimension n. Of course, these two approaches give the same constants in concentration inequalities for
sums of independent random variables: if f is a 1-Lipschitz function on (X , d), then from the fact that

d1,n(xn, yn) =
n∑

i=1

d(xi, yi)

≤ √
n

(
n∑

i=1

d2(xi, yi)

) 1
2

=
√
n d2,n(xn, yn)

we can conclude that, for fn(xn) , (1/n)
∑n

i=1 f(xi),

‖fn‖Lip,1 , sup
xn 6=yn

|fn(xn) − fn(yn)|
d1,n(xn, yn)

≤ 1

n

and

‖fn‖Lip,2 , sup
xn 6=yn

|fn(xn) − fn(yn)|
d2,n(xn, yn)

≤ 1√
n

(the latter estimate cannot be improved). Therefore, both T1(c) and T2(c) give

P

(
1

n

n∑

i=1

f(Xi) ≥ r

)
≤ exp

(
− nr2

2c‖f‖2
Lip

)
,

whereX1, . . . ,Xn ∈ X are i.i.d. random variables whose common marginal µ satisfies either T2(c) or T1(c),
and f is a Lipschitz function on X with E[f(X1)] = 0. The difference between T1 and T2 inequalities
becomes quite pronounced in the case of “nonlinear” functions of X1, . . . ,Xn.

However, it is an experimental fact that T1 inequalities are easier to work with than T2 inequalities.
The same strategy as above can be used to prove the following generalization of Proposition 10:

Proposition 11. For any p ∈ [1, 2], the following statement is true: Let µ1, . . . , µn be n Borel probability
measures on a Polish space (X , d), such that µi satisfies Tp(ci) for some ci > 0, for each i = 1, . . . , n. Let
c , max1≤i≤n ci. Then µ = µ1 ⊗ . . . µn satisfies Tp(cn

2/p−1) on (X n, dp,n).

3.4.3 Gaussian concentration and T1 inequalities

As we have shown above, Marton’s argument can be used to deduce Gaussian concentration from a
transportation cost inequality. As we will demonstrate here and in the following section, in certain cases
these properties are equivalent. We will consider first the case when µ satisfies a T1 inequality. The first
proof of equivalence between T1 and Gaussian concentration is due to Bobkov and Götze [44], and it
relies on the following variational representations of the L1 Wasserstein distance and the divergence:

1. Kantorovich–Rubinstein theorem [50, Theorem 1.14] For any two µ, ν ∈ P1(X ),

W1(µ, ν) = sup
f : ‖f‖Lip≤1

|Eµ[f ] − Eν [f ]| . (3.209)

2. Donsker–Varadhan lemma [69, Lemma 6.2.13]: for any two Borel probability measures µ, ν,

D(ν‖µ) = sup
g: exp(g)∈L1(µ)

{Eν [g] − ln Eµ[exp(g)]} (3.210)
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Theorem 36 (Bobkov–Götze [44]). A Borel probability measure µ ∈ P1(X ) satisfies T1(c) if and only if
the inequality

Eµ {exp[tf(X)]} ≤ exp[ct2/2] (3.211)

holds for all 1-Lipschitz functions f : X → R with Eµ[f(X)] = 0, and all t ∈ R.

Remark 40. The moment condition Eµ[d(X,x0)] <∞ is needed to ensure that every Lipschitz function
f : X → R is µ-integrable:

Eµ

[
|f(X)|

]
≤ |f(x0)| + Eµ

[
|f(X) − f(x0)|

]
≤ |f(x0)| + ‖f‖Lip Eµ

[
d(X,x0)

]
<∞.

Proof. Without loss of generality, we may consider (3.211) only for t ≥ 0.

Suppose first that µ satisfies T1(c). Consider some ν � µ. Using the T1(c) property of µ together
with the Kantorovich–Rubinstein formula (3.209), we can write

∫
fdν ≤W1(ν, µ) ≤

√
2cD(ν‖µ)

for any 1-Lipschitz f : X → R with Eµ[f ] = 0. Next, from the fact that

inf
t>0

(
a

t
+
bt

2

)
=

√
2ab (3.212)

for any a, b ≥ 0, we see that any such f must satisfy

∫

X
f dν ≤ 1

t
D(ν‖µ) +

ct

2
, ∀ t > 0.

Rearranging, we obtain

∫

X
tf dν − ct2

2
≤ D(ν‖µ), ∀ t > 0.

Applying this inequality to ν = µ(g) (the g-tilting of µ) where g , tf , and using the fact that

D(µ(g)‖µ) =

∫

X
g dµ(g) − ln

∫
exp(g) dµ

=

∫

X
tf dν − ln

∫
exp(tf) dµ

we deduce that

ln

(∫

X
exp(tf) dµ

)
≤ ct2

2
=⇒ ln Eµ

{
exp

[
tf(X) − ct2

2

]}
≤ 0 (3.213)

for all t ≥ 0, and all f with ‖f‖Lip ≤ 1 and Eµ[f ] = 0, which is precisely (3.211).

Conversely, assume that µ satisfies (3.211). Then any function of the form tf , where t > 0 and f is
as in (3.211), is feasible for the supremization in (3.210). Consequently, given any ν � µ, we can write

D(ν‖µ) ≥
∫

X
tf dν − ln

∫

X
exp(tf) dµ

=

∫

X
tf dν −

∫

X
tf dµ− ct2

2
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where in the second step we have used the fact that
∫
f dµ = 0 by hypothesis, as well as (3.211).

Rearranging gives

∣∣∣∣
∫

X
f dν −

∫

X
f dµ

∣∣∣∣ ≤
1

t
D(ν‖µ) +

ct

2
, ∀t > 0 (3.214)

(the absolute value in the left-hand side is a consequence of the fact that exactly the same argument goes
through with −f instead of f). Applying (3.212), we see that the bound

∣∣∣∣
∫

X
f dν −

∫

X
f dµ

∣∣∣∣ ≤
√

2cD(ν‖µ). (3.215)

holds for all 1-Lipschitz f with Eµ[f ] = 0. In fact, we may now drop the condition that Eµ[f ] = 0 by
replacing f with f − Eµ[f ]. Thus, taking the supremum over all 1-Lipschitz f on the left-hand side of
(3.215) and using the Kantorovich–Rubinstein formula (3.209), we conclude that W1(µ, ν) ≤

√
2cD(ν‖µ)

for every ν � µ, i.e., µ satisfies T1(c). This completes the proof of Theorem 36.

The above theorem gives us an alternative way of deriving Gaussian concentration for Lipschitz
functions:

Corollary 10. Let A be the space of all Lipschitz functions on X , and define the operator Γ on A via

Γf(x) , lim sup
y∈X : d(x,y)↓0

|f(x) − f(y)|
d(x, y)

, ∀x ∈ X .

Suppose that µ satisfies T1(c), then it implies the following concentration inequality for every f ∈ A:

Pµ

(
f(X) ≥ E[f(X)] + r

)
≤ exp

(
− r2

2c‖f‖2
Lip

)
, ∀ r ≥ 0.

Corollary 10 shows that the method based on transportation cost inequalities gives the same (sharp)
constants as the entropy method. As another illustration, we prove the following sharp estimate:

Theorem 37. Let X = {0, 1}n, equipped with the metric

d(xn, yn) =
n∑

i=1

1{xi 6=yi}. (3.216)

Let X1, . . . ,Xn ∈ {0, 1} be i.i.d. Bernoulli(p) random variables. Then, for any Lipschitz function f :
{0, 1}n → R,

P

(
f(Xn) − E[f(Xn)] ≥ r

)
≤ exp

(
− ln[(1 − p)/p] r2

n‖f‖2
Lip(1 − 2p)

)
, ∀r ≥ 0. (3.217)

Proof. Taking into account Remark 41, we may assume without loss of generality that p 6= 1/2. From the
distribution-dependent refinement of Pinsker’s inequality (3.190), it follows that the Bernoulli(p) measure
satisfies T1(1/(2ϕ(p))) w.r.t. the Hamming metric, where ϕ(p) is defined in (3.187). By Proposition 10,
the product of n Bernoulli(p) measures satisfies T1(n/(2ϕ(p))) w.r.t. the metric (3.216). The bound
(3.217) then follows from Corollary 10.

Remark 41. In the limit as p→ 1/2, the right-hand side of (3.217) becomes exp

(
− 2r2

n‖f‖2
Lip

)
.
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Remark 42. If ‖f‖Lip ≤ C/n for some C > 0, then (3.217) implies that

P

(
f(Xn) − E[f(Xn)] ≥ r

)
≤ exp

(
− ln[(1 − p)/p]

C2(1 − 2p)
· nr2

)
, ∀ r ≥ 0.

This will be the case, for instance, if f(xn) = (1/n)
∑n

i=1 fi(xi) for some functions f1, . . . , fn : {0, 1} → R

satisfying |fi(0) − fi(1)| ≤ C for all i = 1, . . . , n. More generally, any f satisfying (3.134) with ci = c′i/n,
i = 1, . . . , n, for some constants c′1, . . . , c

′
n ≥ 0, satisfies

P

(
f(Xn) − E[f(Xn)] ≥ r

)
≤ exp

(
− ln[(1 − p)/p]

(1 − 2p)
∑n

i=1(c
′
i)

2
· nr2

)
, ∀ r ≥ 0.

3.4.4 Dimension-free Gaussian concentration and T2 inequalities

So far, we have confined our discussion to the “one-dimensional” case of a probability measure µ on a
Polish space (X , d). Recall, however, that in most applications our interest is in functions of n independent
random variables taking values in X . Proposition 10 shows that the transportation cost inequalities
tensorize, so in principle this property can be used to derive concentration inequalities for such functions.

As before, let (X , d, µ) be a metric probability space. We say that µ has dimension-free Gaussian
concentration if there exist constants K,κ > 0, such that for any k ∈ N

A ⊆ X k and µ⊗k(A) ≥ 1/2 =⇒ µ⊗k(Ar) ≥ 1 −Ke−κr2
,∀r > 0 (3.218)

where the isoperimetric enlargement Ar of a Borel set A ⊆ X k is defined w.r.t. the metric dk ≡ d2,k

defined according to (3.198):

Ar ,

{
yk ∈ X k :

k∑

i=1

d2(xi, yi) < r2, ∀xk ∈ A

}
.

Remark 43. As before, we are mainly interested in the constant κ in the exponent. Thus, we may
explicitly say that µ has dimension-free Gaussian concentration with constant κ > 0, meaning that
(3.218) holds with that κ and some K > 0.

Theorem 38 (Talagrand [139]). Let X = R
n, d(x, y) = ‖x− y‖, and µ = Gn. Then Gn satisfies a T2(1)

inequality.

Proof. The proof starts for n = 1: let µ = G, let ν ∈ P(R) have density f w.r.t. µ: f = dν
dµ , and let Φ

denote the standard Gaussian cdf, i.e.,

Φ(x) =

∫ x

−∞
γ(y)dy =

1√
2π

∫ x

−∞
exp

(
−y

2

2

)
dy, ∀x ∈ R.

If X ∼ G, then (by item 6 of Lemma 13) the optimal coupling of µ = G and ν, i.e., the one that achieves
the infimum in

W2(ν, µ) = W2(ν,G) = inf
X∼G, Y ∼ν

(
E[(X − Y )2]

)1/2

is given by Y = h(X) with h = F−1
ν ◦ Φ. Consequently,

W 2
2 (ν,G) = E[(X − h(X))2]

=

∫ ∞

−∞

(
x− h(x)

)2
γ(x) dx. (3.219)
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Since dν = f dµ with µ = G, and Fν(h(x)) = Φ(x) for every x ∈ R, then

∫ x

−∞
γ(y) dy = Φ(x) = Fν(h(x)) =

∫ h(x)

−∞
dν =

∫ h(x)

−∞
f dµ =

∫ h(x)

−∞
f(y)γ(y) dy. (3.220)

Differentiating both sides of (3.220) w.r.t. x gives

h′(x)f(h(x))γ(h(x)) = γ(x), ∀x ∈ R (3.221)

and, since h = F−1
ν ◦ Φ, then h is a monotonic increasing function and

lim
x→−∞

h(x) = −∞, lim
x→∞

h(x) = ∞.

Moreover,

D(ν‖G) = D(ν‖µ)

=

∫

R

dν ln
dν

dµ

=

∫ ∞

−∞
ln
(
f(x)

)
dν(x)

=

∫ ∞

−∞
f(x) ln

(
f(x)

)
dµ(x)

=

∫ ∞

−∞
f(x) ln

(
f(x)

)
γ(x) dx

=

∫ ∞

−∞
f
(
h(x)

)
ln
(
f
(
h(x)

))
γ
(
h(x)

)
h′(x) dx

=

∫ ∞

−∞
ln
(
f(h(x))

)
γ(x) dx (3.222)

while using above the change-of-variables formula, and also (3.221) for the last equality. From (3.221),
we have

ln f(h(x)) = ln

(
γ(x)

h′(x) γ
(
h(x)

)
)

=
h2(x) − x2

2
− lnh′(x)

so, by substituting this into (3.222), it follows that

D(ν‖µ) =
1

2

∫ ∞

−∞

[
h2(x) − x2

]
γ(x) dx−

∫ ∞

−∞
lnh′(x) γ(x) dx

=
1

2

∫ ∞

−∞

(
x− h(x)

)2
γ(x) dx+

∫ ∞

−∞
x
(
h(x) − x

)
γ(x) dx−

∫ ∞

−∞
lnh′(x) γ(x) dx

=
1

2

∫ ∞

−∞

(
x− h(x)

)2
γ(x) dx+

∫ ∞

−∞
(h′(x) − 1) γ(x) dx −

∫ ∞

−∞
lnh′(x) γ(x) dx

≥ 1

2

∫ ∞

−∞

(
x− h(x)

)2
γ(x) dx

=
1

2
W 2

2 (ν, µ)

where the third line relies on integration by parts, the forth line follows from the inequality ln t ≤ t− 1
for t > 0, and the last line holds due to (3.219). This shows that µ = G satisfies T2(1), so it completes the
proof of Theorem 38 for n = 1. Finally, this theorem is generalized for an arbitrary n by tensorization
via Proposition 10.
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We now get to the main result of this section, namely that dimension-free Gaussian concentration
and T2 are equivalent:

Theorem 39. Let (X , d, µ) be a metric probability space. Then, the following statements are equivalent:

1. µ satisfies T2(c).

2. µ has dimension-free Gaussian concentration with constant κ = 1/(2c).

Remark 44. As we will see, the implication 1) ⇒ 2) follows easily from the tensorization property of
transportation cost inequalities (Proposition 10). The reverse implication 2) ⇒ 1) is a nontrivial result,
which was proved by Gozlan [56] using an elegant probabilistic approach relying on the theory of large
deviations [69].

Proof. We first prove that 1) ⇒ 2). Assume that µ satisfies T2(c) on (X , d). Fix some k ∈ N and consider
the metric probability space (X k, d2,k, µ

⊗k), where the metric d2,k is defined by (3.198) with p = 2. By
the tensorization property of transportation cost inequalities (Proposition 10), the product measure µ⊗k

satisfies T2(c) on (X k, d2,k). Because the L2 Wasserstein distance dominates the L1 Wasserstein distance
(by item 2 of Lemma 13), µ⊗k also satisfies T1(c) on (X k, d2,k). Therefore, by the Bobkov–Götze theorem
(Theorem 36 in the preceding section), µ⊗k has Gaussian concentration (3.163) with respect to d2,k with
constant κ = 1/(2c). Since this holds for every k ∈ N, we conclude that µ indeed has dimension-free
Gaussian concentration with constant κ = 1/(2c).

We now prove the converse implication 2) ⇒ 1). Suppose that µ has dimension-free Gaussian con-
centration with constant κ > 0. Let us fix some k ∈ N and consider the metric probability space
(X k, d2,k, µ

⊗k). Given xk ∈ X k, let Pxk be the corresponding empirical measure, i.e.,

Pxk =
1

k

k∑

i=1

δxi
, (3.223)

where δx denotes a Dirac measure (unit mass) concentrated at x ∈ X . Now consider a probability measure
ν on X , and define the function fν : X k → R by

fν(x
k) , W2(Pxk , ν), ∀xk ∈ X k.

We claim that this function is Lipschitz w.r.t. d2,k with Lipschitz constant 1/
√
k. To verify this, note

that

∣∣fν(x
k) − fν(y

k)
∣∣ =

∣∣W2(Pxk , ν) −W2(Pyk , ν)
∣∣

≤W2(Pxk ,Pyk) (3.224)

= inf
π∈Π(P

xk ,P
yk )

(∫

X
d2(x, y)π(dx,dy)

)1/2

(3.225)

≤
(

1

k

k∑

i=1

d2(xi, yi)

)1/2

(3.226)

=
1√
k
d2,k(x

k, yk), (3.227)

where

• (3.224) is by the triangle inequality;

• (3.225) is by definition of W2;
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• (3.226) uses by the fact that the measure that places mass 1/k on each (xi, yi) for i ∈ {1, . . . , k}, is an
element of Π(Pxk ,Pyk) (due to the definition of an empirical distribution in (3.223), the marginals of the
above measure are indeed Pxk and Pyk); and

• (3.227) uses the definition (3.198) of d2,k.

Now let us consider the function fk , fµ ≡ W2(Pxk , µ), for which, as we have just seen, we have
‖fk‖Lip,2 = 1/

√
k. Let X1, . . . ,Xk be i.i.d. draws from µ. Then, by the assumed dimension-free Gaussian

concentration property of µ, we have

P

(
fk(X

k) ≥ E[fk(X
k)] + r

)
≤ exp

(
− r2

2c‖f‖2
Lip,2

)

= exp
(
−κkr2

)
, ∀ r ≥ 0 (3.228)

and this inequality holds for every k ∈ N; note that the last equality holds since c = 1
2κ and ‖f‖2

Lip,2 = 1
k .

Now, if X1,X2, . . . are i.i.d. draws from µ, then the sequence of empirical distributions {PXk}∞k=1

almost surely converges weakly to µ (this is known as Varadarajan’s theorem [140, Theorem 11.4.1]).
Since W2 metrizes the topology of weak convergence together with the convergence of second moments
(cf. Lemma 13), we have limk→∞ E[fk(X

k)] = 0. Consequently, taking logarithms of both sides of (3.228),
dividing by k, and taking limit superior as k → ∞, we get

lim sup
k→∞

1

k
ln P

(
W2(PXk , µ) ≥ r

)
≤ −κr2. (3.229)

On the other hand, for a fixed µ, the mapping ν 7→ W2(ν, µ) is lower semicontinuous in the topology of
weak convergence of probability measures (cf. Lemma 13). Consequently, the set {µ : W2(PXk , µ) > r}
is open in the weak topology, so by Sanov’s theorem [69, Theorem 6.2.10]

lim inf
k→∞

1

k
ln P

(
W2(PXk , µ) ≥ r

)
≥ − inf {D(ν‖µ) : W2(µ, ν) > r} . (3.230)

Combining (3.229) and (3.230), we get that

inf
{
D(ν‖µ) : W2(µ, ν) > r

}
≥ κr2

which then implies that D(ν‖µ) ≥ κW 2
2 (µ, ν). Upon rearranging, we obtain W2(µ, ν) ≤

√(
1
κ

)
D(ν‖µ),

which is a T2(c) inequality with c = 1
2κ . This completes the proof of Theorem 39.

3.4.5 A grand unification: the HWI inequality

At this point, we have seen two perspectives on the concentration of measure phenomenon: functional
(through various log-Sobolev inequalities) and probabilistic (through transportation cost inequalities).
We now show that these two perspectives are, in a very deep sense, equivalent, at least in the Euclidean
setting of R

n. This equivalence is captured by a striking inequality, due to Otto and Villani [141],
which relates three measures of similarity between probability measures: the divergence, L2 Wasserstein
distance, and Fisher information distance. In the literature on optimal transport, the divergence between
two probability measures Q and P is often denoted by H(Q‖P ) or H(Q,P ), due to its close links to the
Boltzmann H-functional of statistical physics. For this reason, the inequality we have alluded to above
has been dubbed the HWI inequality, where H stands for the divergence, W for the Wasserstein distance,
and I for the Fisher information distance.

As a warm-up, we first state a weaker version of the HWI inequality specialized to the Gaussian
distribution, and give a self-contained information-theoretic proof following [142]:
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Theorem 40. Let G be the standard Gaussian probability distribution on R. Then, the inequality

D(P‖G) ≤W2(P,G)
√
I(P‖G), (3.231)

where W2 is the L2 Wasserstein distance w.r.t. the absolute-value metric d(x, y) = |x− y|, holds for any
Borel probability distribution P on R, for which the right-hand side of (3.231) is finite.

Proof. Without loss of generality, we may assume that P has zero mean and unit variance. We first show
the following: Let X and Y be a pair of real-valued random variables, and let N ∼ G be independent of
(X,Y ). Then for any t > 0

D(PX+
√

tN‖PY +
√

tN ) ≤ 1

2t
W 2

2 (PX , PY ). (3.232)

Using the chain rule for divergence, we can expand D(PX,Y,X+
√

tN‖PX,Y,Y +
√

tN ) in two ways as

D(PX,Y,X+
√

tN‖PX,Y,Y +
√

tN ) = D(PX+
√

tN‖PY +
√

tN ) +D(PX,Y |X+
√

tN‖PX,Y |Y +
√

tN |PX+
√

tN )

≥ D(PX+
√

tN‖PY +
√

tN )

and since N is independent of (X,Y ), then

D(PX,Y,X+
√

tN‖PX,Y,Y +
√

tN ) = D(PX+
√

tN ‖PY +
√

tN |PX,Y )

= E[D(N (X, t) ‖N (Y, t)) |X,Y ]

=
1

2t
E[(X − Y )2]

where the last equality is a special case of the equality

D
(
N (m1, σ

2
1) ‖N (m2, σ

2
2)
)

=
1

2
ln

(
σ2

1

σ2
2

)
+

1

2

(
(m1 −m2)

2

σ2
2

+
σ2

1

σ2
2

− 1

)

where σ2
1 = σ2

2 = t, m1 = X and m2 = Y (given the values of X and Y ). Therefore, for any pair (X,Y )
of jointly distributed real-valued random variables, we have

D(PX+
√

tN‖PY +
√

tN ) ≤ 1

2t
E[(X − Y )2]. (3.233)

The left-hand side of (3.233) only depends on the marginal distributions of X and Y . Hence, taking the
infimum of the right-hand side of (3.233) w.r.t. all couplings of PX and PY (i.e., all µ ∈ Π(PX , PY )), we
get (3.232) (see (3.177)).

Let X have distribution P , Y have distribution G, and define the function

F (t) , D(PX+
√

tZ‖PY +
√

tZ),

where Z ∼ G is independent of (X,Y ). Then F (0) = D(P‖G), and from (3.232) we have

F (t) ≤ 1

2t
W 2

2 (PX , PY ) =
1

2t
W 2

2 (P,G). (3.234)

Moreover, the function F (t) is differentiable, and it follows from [118, Eq. (32)] that

F ′(t) =
1

2t2
[
mmse(X, t−1) − lmmse(X, t−1)

]
(3.235)
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where mmse(X, ·) and lmmse(X, ·) have been defined in (3.56) and (3.58), respectively. Now, for any
t > 0 we have

D(P ||G) = F (0)

= −
(
F (t) − F (0)

)
+ F (t)

= −
∫ t

0
F ′(s)ds+ F (t)

=
1

2

∫ t

0

1

s2
(
lmmse(X, s−1) − mmse(X, s−1)

)
ds+ F (t) (3.236)

≤ 1

2

∫ t

0

(
1

s(s+ 1)
− 1

s(sJ(X) + 1)

)
ds+

1

2t
W 2

2 (P,G) (3.237)

=
1

2

(
ln
tJ(X) + 1

t+ 1
+
W 2

2 (P,G)

t

)
(3.238)

≤ 1

2

(
t(J(X) − 1)

t+ 1
+
W 2

2 (P,G)

t

)
(3.239)

≤ 1

2

(
I(P‖G) t+

W 2
2 (P,G)

t

)
(3.240)

where

• (3.236) uses (3.235);

• (3.237) uses (3.59), the Van Trees inequality (3.60), and (3.234);

• (3.238) is an exercise in calculus;

• (3.239) uses the inequality lnx ≤ x− 1 for x > 0; and

• (3.240) uses the formula (3.54) (so I(P ||G) = J(X) − 1 since X ∼ P has zero mean and unit variance,
and one needs to substitute s = 1 in (3.54) to get Gs = G), and the fact that t ≥ 0.

Optimizing the choice of t in (3.240), we get (3.231).

Remark 45. Note that the HWI inequality (3.231) together with the T2 inequality for the Gaussian
distribution imply a weaker version of the log-Sobolev inequality (3.41) (i.e., with a larger constant).
Indeed, using the T2 inequality of Theorem 38 on the right-hand side of (3.231), we get

D(P‖G) ≤W2(P,G)
√
I(P‖G)

≤
√

2D(P‖G)
√
I(P‖G),

which gives D(P‖G) ≤ 2I(P‖G). It is not surprising that we end up with a suboptimal constant here:
the series of bounds leading up to (3.240) contributes a lot more slack than the single use of the van
Trees inequality (3.60) in our proof of Stam’s inequality (which is equivalent to the Gaussian log-Sobolev
inequality of Gross) in Section 3.2.1.

We are now ready to state the HWI inequality in its strong form:

Theorem 41 (Otto–Villani [141]). Let P be a Borel probability measure on R
n that is absolutely

continuous w.r.t. the Lebesgue measure, and let the corresponding pdf p be such that

∇2 ln

(
1

p

)
� KIn (3.241)
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for some K ∈ R (where ∇2 denotes the Hessian, and the matrix inequality A � B means that A− B is
positive semidefinite). Then, any probability measure Q� P satisfies

D(Q‖P ) ≤W2(Q,P )
√
I(Q‖P ) − K

2
W 2

2 (Q,P ). (3.242)

We omit the proof, which relies on deep structural properties of optimal transportation mappings
achieving the infimum in the definition of the L2 Wasserstein metric w.r.t. the Euclidean norm in R

n.
(An alternative, simpler proof was given later by Cordero–Erausquin [143].) We can, however, highlight
a couple of key consequences (see [141]):

1. Suppose that P , in addition to satisfying the conditions of Theorem 41, also satisfies a T2(c) inequality.
Using this fact in (3.242), we get

D(Q‖P ) ≤
√

2cD(Q‖P )
√
I(Q‖P ) − K

2
W 2

2 (Q,P ) (3.243)

If the pdf p of P is log-concave, so that (3.241) holds with K = 0, then (3.243) implies the inequality

D(Q‖P ) ≤ 2c I(Q‖P ) (3.244)

for any Q � P . This is, of course, an Euclidean log-Sobolev inequality similar to the one satisfied by
P = Gn. Of course, the constant in front of the Fisher information distance I(·‖·) on the right-hand
side of (3.244) is suboptimal, as can be easily seen by letting P = Gn, which satisfies T2(1), and going
through the above steps — as we know from Section 3.2 (in particular, see (3.41)), the optimal constant
should be 1/2, so the one in (3.244) is off by a factor of 4. On the other hand, it is quite remarkable that,
up to constants, the Euclidean log-Sobolev and T2 inequalities are equivalent.

2. If the pdf p of P is strongly log-concave, i.e., if (3.241) holds with some K > 0, then P satisfies the
Euclidean log-Sobolev inequality with constant 1/K. Indeed, using Young’s inequality ab ≤ a2/2 + b2/2,
we can write

D(Q‖P ) ≤
√
KW2(Q,P )

√
I(Q‖P )

K
− K

2
W 2

2 (Q,P )

≤ 1

2K
I(Q‖P ),

which shows that P satisfies the Euclidean LSI(1/K) inequality. In particular, the standard Gaussian
distribution P = Gn satisfies (3.241) with K = 1, so we even get the right constants. In fact, the
statement that (3.241) with K > 0 implies Euclidean LSI(1/K) was first proved in 1985 by Bakry and
Emery [144] using very different means.

3.5 Extension to non-product distributions

Our focus in this chapter has been mostly on functions of independent random variables. However, there
is extensive literature on the concentration of measure for weakly dependent random variables. In this
section, we describe (without proof) a few results along this direction that explicitly use information-
theoretic methods. The examples we give are by no means exhaustive, and are only intended to show
that, even in the case of dependent random variables, the underlying ideas are essentially the same as in
the independent case.

The basic scenario is exactly as before: We have n random variables X1, . . . ,Xn with a given joint
distribution P (which is now not necessarily of a product form, i.e., P = PXn may not be equal to
PX1 ⊗ . . . ⊗ PXn), and we are interested in the concentration properties of some function f(Xn).
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3.5.1 Samson’s transporation cost inequalities for weakly dependent random vari-
ables

Samson [145] has developed a general approach for deriving transportation cost inequalities for dependent
random variables that revolves around a certain L2 measure of dependence. Given the distribution
P = PXn of (X1, . . . ,Xn), consider an upper triangular matrix ∆ ∈ R

n×n, such that ∆i,j = 0 for i > j,
∆i,i = 1 for all i, and for i < j

∆i,j = sup
xi,x′

i

sup
xi−1

√∥∥∥PXn
j |Xi=xi,Xi−1=xi−1 − PXn

j |Xi=x′

i,X
i−1=xi−1

∥∥∥
TV
. (3.245)

Note that in the special case where P is a product measure, the matrix ∆ is equal to the n× n identity
matrix. Let ‖∆‖ denote the operator norm of ∆ in the Euclidean topology, i.e.,

‖∆‖ , sup
v∈Rn: v 6=0

‖∆v‖
‖v‖ = sup

v∈Rn: ‖v‖=1
‖∆v‖.

Following Marton [146], Samson considers a Wasserstein-type distance on the space of probability mea-
sures on X n, defined by

d2(P,Q) , inf
π∈Π(P,Q)

sup
α

∫ n∑

i=1

αi(y)1{xi 6=yi}π(dxn,dyn),

where the supremum is over all vector-valued positive functions α = (α1, . . . , αn) : X n → R
n, such that

EQ

[
‖α(Y n)‖2

]
≤ 1.

The main result of [145] goes as follows:

Theorem 42. The probability distribution P of Xn satisfies the following transportation cost inequality:

d2(Q,P ) ≤ ‖∆‖
√

2D(Q‖P ) (3.246)

for all Q� P .

Let us examine some implications:

1. Let X = [0, 1]. Then Theorem 42 implies that any probability measure P on the unit cube X n = [0, 1]n

satisfies the following Euclidean log-Sobolev inequality: for any smooth convex function f : [0, 1]n → R,

D
(
P (f)

∥∥P
)
≤ 2‖∆‖2

E
(f)
[
‖∇f(Xn)‖2

]
(3.247)

(see [145, Corollary 1]). The same method as the one we used to prove Proposition 8 and Theorem 22
can be applied to obtain from (3.247) the following concentration inequality for any convex function
f : [0, 1]n → R with ‖f‖Lip ≤ 1:

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
− r2

2‖∆‖2

)
, ∀r ≥ 0. (3.248)

2. While (3.246) and its corollaries, (3.247) and (3.248), hold in full generality, these bounds are nontrivial
only if the operator norm ‖∆‖ is independent of n. This is the case whenever the dependence between
the Xi’s is sufficiently weak. For instance, if X1, . . . ,Xn are independent, then ∆ = In×n. In this case,
(3.246) becomes

d2(Q,P ) ≤
√

2D(Q‖P ),
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and we recover the usual concentration inequalities for Lipschitz functions. To see some examples with
dependent random variables, suppose that X1, . . . ,Xn is a Markov chain, i.e., for each i, Xn

i+1 is condi-
tionally independent of Xi−1 given Xi. In that case, from (3.245), the upper triangular part of ∆ is given
by

∆i,j = sup
xi,x′

i

√∥∥∥PXj |Xi=xi
− PXj |Xi=x′

i

∥∥∥
TV

, i < j

and ‖∆‖ will be independent of n under suitable ergodicity assumptions on the Markov chain X1, . . . ,Xn.
For instance, suppose that the Markov chain is homogeneous, i.e., the conditional probability distribution
PXi|Xi−1

(i > 1) is independent of i, and that

sup
xi,x′

i

‖PXi+1|Xi=xi
− PXi+1|Xi=x′

i
‖TV ≤ 2ρ

for some ρ < 1. Then it can be shown (see [145, Eq. (2.5)]) that

‖∆‖ ≤
√

2

(
1 +

n−1∑

k=1

ρk/2

)

≤
√

2

1 −√
ρ
.

More generally, following Marton [146], we will say that the (not necessarily homogeneous) Markov chain
X1, . . . ,Xn is contracting if, for every i,

δi , sup
xi,x′

i

‖PXi+1|Xi=xi
− PXi+1|Xi=x′

i
‖TV < 1.

In this case, it can be shown that

‖∆‖ ≤ 1

1 − δ1/2
, where δ , max

i=1,...,n
δi.

3.5.2 Marton’s transportation cost inequalities for L
2 Wasserstein distance

Another approach to obtaining concentration results for dependent random variables, due to Marton
[147, 148], relies on another measure of dependence that pertains to the sensitivity of the conditional
distributions of Xi given X̄i to the particular realization x̄i of X̄i. The results of [147, 148] are set in the
Euclidean space R

n, and center around a transportation cost inequality for the L2 Wasserstein distance

W2(P,Q) , inf
Xn∼P,Y n∼Q

√
E‖Xn − Y n‖2, (3.249)

where ‖ · ‖ denotes the usual Euclidean norm.
We will state a particular special case of Marton’s results (a more general development considers

conditional distributions of (Xi : i ∈ S) given (Xj : j ∈ Sc) for a suitable system of sets S ⊂ {1, . . . , n}).
Let P be a probability measure on R

n which is absolutely continuous w.r.t. the Lebesgue measure. For
each xn ∈ R

n and each i ∈ {1, . . . , n} we denote by x̄i the vector in R
n−1 obtained by deleting the ith

coordinate of xn:
x̄i = (x1, . . . , xi−1, xi+1, . . . , xn).

Following Marton [147], we say that P is δ-contractive, with 0 < δ < 1, if for any yn, zn ∈ R
n

n∑

i=1

W 2
2 (PXi|X̄i=ȳi , PXi|X̄i=z̄i) ≤ (1 − δ)‖yn − zn‖2. (3.250)
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Remark 46. Marton’s contractivity condition (3.250) is closely related to the so-called Dobrushin–
Shlosman mixing condition from mathematical statistical physics.

Theorem 43 (Marton [147, 148]). Suppose that P is absolutely continuous w.r.t. the Lebesgue measure
on R

n and δ-contractive, and that the conditional distributions PXi|X̄i , i ∈ {1, . . . , n}, have the following
properties:

1. for each i, the function xn 7→ pXi|X̄i(xi|x̄i) is continuous, where pXi|X̄i−1(·|x̄i) denotes the univariate
probability density function of PXi|X̄i=x̄i

2. for each i and each x̄i ∈ R
n−1, PXi|X̄i=x̄i−1 satisfies T2(c) w.r.t. the L2 Wasserstein distance (3.249)

(cf. Definition 6)

Then for any probability measure Q on R
n we have

W2(Q,P ) ≤
(
K√
δ

+ 1

)√
2cD(Q‖P ), (3.251)

where K > 0 is an absolute constant. In other words, any P satisfying the conditions of the theorem
admits a T2(c

′) inequality with c′ = (K/
√
δ + 1)2c.

The contractivity criterion (3.250) is not easy to verify in general. Let us mention one sufficient
condition [147]. Let p denote the probability density of P , and suppose that it takes the form

p(xn) =
1

Z
exp (−Ψ(xn)) (3.252)

for some C2 function Ψ : R
n → R, where Z is the normalization factor. For any xn, yn ∈ R

n, let us define
a matrix B(xn, yn) ∈ R

n×n by

Bij(x
n, yn) ,

{
∇2

ijΨ(xi � ȳi), i 6= j

0, i = j
(3.253)

where ∇2
ijF denotes the (i, j) entry of the Hessian matrix of F ∈ C2(Rn), and xi � ȳi denotes the n-tuple

obtained by replacing the deleted ith coordinate in ȳi with xi:

xi � ȳi = (y1, . . . , yi−1, xi, yi+1, . . . , yn).

For example, if Ψ is a sum of one-variable and two-variable terms

Ψ(xn) =
n∑

i=1

Vi(xi) +
∑

i<j

bijxixj

for some smooth functions Vi : R → R and some constants bij ∈ R, which is often the case in statistical
physics, then the matrix B is independent of xn, yn, and has off-diagonal entries bij , i 6= j. Then (see
Theorem 2 in [147]) the conditions of Theorem 43 will be satisfied, provided the following holds:

1. For each i and each x̄i ∈ R
n−1, the conditional probability distributions PXi|X̄i=x̄i satisfy the Euclidean

log-Sobolev inequality

D(Q‖PXi|X̄i=x̄i) ≤ c

2
I(Q‖PXi|X̄i=x̄i),

where I(·‖·) is the Fisher information distance, cf. (3.37) for the definition.
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2. The operator norms of B(xn, yn) are uniformly bounded as

sup
xn,yn

‖B(xn, yn)‖2 ≤ 1 − δ

c2
.

We also refer the reader to more recent follow-up work by Marton [149, 150], which further elaborates
on the theme of studying the concentration properties of dependent random variables by focusing on the
conditional probability distributions PXi|X̄i , i = 1, . . . , n. These papers describe sufficient conditions on
the joint distribution P of X1, . . . ,Xn, such that, for any other distribution Q,

D(Q‖P ) ≤ K(P ) ·D−(Q‖P ), (3.254)

where D−(·‖·) is the erasure divergence (cf. (3.22) for the definition), and the P -dependent constant
K(P ) > 0 is controlled by suitable contractivity properties of P . At this point, the utility of a tensoriza-
tion inequality like (3.254) should be clear: each term in the erasure divergence

D−(Q‖P ) =

n∑

i=1

D(QXi|X̄i‖PXi|X̄i |QX̄i)

can be handled by appealing to appropriate log-Sobolev inequalities or transportation-cost inequalities
for probability measures on X (indeed, one can just treat PXi|X̄i=x̄i for each fixed x̄i as a probability
measure on X , in just the same way as with PXi

before), and then these “one-dimensional” bounds can
be assembled together to derive concentration for the original “n-dimensional” distribution.

3.6 Applications in information theory and related topics

3.6.1 The “blowing up” lemma and strong converses

The first explicit invocation of the concentration of measure phenomenon in an information-theoretic
context appears in the work of Ahlswede et al. [60, 61]. These authors have shown that the following
result, now known as the “blowing up lemma” (see, e.g., [151, Lemma 1.5.4]), provides a versatile tool
for proving strong converses in a variety of scenarios, including some multiterminal problems:

Lemma 14. For every two finite sets X and Y and every positive sequence εn → 0, there exist positive
sequences δn, ηn → 0, such that the following holds: For every discrete memoryless channel (DMC) with
input alphabet X , output alphabet Y, and transition probabilities T (y|x), x ∈ X , y ∈ Y, and every n ∈ N,
xn ∈ X n, and B ⊆ Yn,

T n(B|xn) ≥ exp (−nεn) =⇒ T n(Bnδn |xn) ≥ 1 − ηn. (3.255)

Here, for an arbitrary B ⊆ Yn and r > 0, the set Br denotes the r-blowup of B (see the definition in
(3.162)) w.r.t. the Hamming metric

dn(yn, un) ,

n∑

i=1

1{yi 6=ui}, ∀yn, un ∈ Yn.

The proof of the blowing-up lemma, given in [60], was rather technical and made use of a very delicate
isoperimetric inequality for discrete probability measures on a Hamming space, due to Margulis [152].
Later, the same result was obtained by Marton [62] using purely information-theoretic methods. We
will use a sharper, “nonasymptotic” version of the blowing-up lemma, which is more in the spirit of the
modern viewpoint on the concentration of measure (cf. Marton’s follow-up paper [49]):
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Lemma 15. Let X1, . . . ,Xn be n independent random variables taking values in a finite set X . Then,
for any A ⊆ X n with PXn(A) > 0,

PXn(Ar) ≥ 1 − exp


− 2

n

(
r −

√
n

2
ln

(
1

PXn(A)

))2

 , ∀ r >

√
n

2
ln

(
1

PXn(A)

)
. (3.256)

Proof. The proof of Lemma 15 is similar to the proof of Proposition 9, as is shown in the following:
Consider the L1 Wasserstein metric on P(X n) induced by the Hamming metric dn on X n, i.e., for any
Pn, Qn ∈ P(X n),

W1(Pn, Qn) , inf
Xn∼Pn, Y n∼Qn

E
[
dn(Xn, Y n)

]

= inf
Xn∼Pn, Y n∼Qn

E

[
n∑

i=1

1{Xi 6=Yi}

]

= inf
Xn∼Pn, Y n∼Qn

n∑

i=1

Pr(Xi 6= Yi).

Let Pn denote the product measure PXn = PX1 ⊗ . . . ⊗ PXn . By Pinsker’s inequality, any µ ∈ P(X )
satisfies T1(1/4) on (X , d) where d = d1 is the Hamming metric. By Proposition 11, the product measure
Pn satisfies T1(n/4) on the product space (X n, dn), i.e., for any µn ∈ P(X n),

W1(µn, Pn) ≤
√
n

2
D(µn‖Pn). (3.257)

For any set C ⊆ X n with Pn(C) > 0, let Pn,C denote the conditional probability measure Pn(·|C). Then,
it follows that (see (3.193))

D
(
Pn,C

∥∥Pn

)
= ln

(
1

Pn(C)

)
. (3.258)

Now, given any A ⊆ X n with Pn(A) > 0 and any r > 0, consider the probability measures Qn = Pn,A

and Q̄n = Pn,Ac
r
. Then

W1(Qn, Q̄n) ≤W1(Qn, Pn) +W1(Q̄n, Pn) (3.259)

≤
√
n

2
D(Qn‖Pn) +

√
n

2
D(Q̄n‖Pn) (3.260)

=

√
n

2
ln

(
1

Pn(A)

)
+

√
n

2
ln

(
1

1 − Pn(Ar)

)
(3.261)

where (3.259) uses the triangle inequality, (3.260) follows from (3.257), and (3.261) uses (3.258). Following
the same reasoning that leads to (3.195), it follows that

W1(Qn, Q̄n) = W1(Pn,A, Pn,Ac
r
) ≥ dn(A,Ac

r) ≥ r.

Using this to bound the left-hand side of (3.259) from below, we obtain (3.256).

We can now easily prove the blowing-up lemma (see Lemma 14). To this end, given a positive sequence
{εn}∞n=1 that tends to zero, let us choose a positive sequence {δn}∞n=1 such that

δn >

√
εn
2
, δn

n→∞−−−→ 0, ηn , exp

(
−2n

(
δn −

√
εn
2

)2
)

n→∞−−−→ 0.
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These requirements can be satisfied, e.g., by the setting

δn ,

√
εn
2

+

√
α lnn

n
, ηn =

1

n2α
, ∀n ∈ N

where α > 0 can be made arbitrarily small. Using this selection for {δn}∞n=1 in (3.256), we get (3.255)
with the rn-blowup of the set B where rn , nδn. Note that the above selection does not depend on the
transition probabilities of the DMC with input X and output Y (the correspondence between Lemmas 14
and 15 is given by PXn = T n(·|xn) where xn ∈ X n is arbitrary).

We are now ready to demonstrate how the blowing-up lemma can be used to obtain strong converses.
Following [151], from this point on, we will use the notation T : U → V for a DMC with input alphabet
U , output alphabet V, and transition probabilities T (v|u), u ∈ U , v ∈ V.

We first consider the problem of characterizing the capacity region of a degraded broadcast channel
(DBC). Let X , Y and Z be finite sets. A DBC is specified by a pair of DMC’s T1 : X → Y and T2 : X → Z
where there exists a DMC T3 : Y → Z such that

T2(z|x) =
∑

y∈Y
T3(z|y)T1(y|x), ∀x ∈ X , z ∈ Z. (3.262)

(More precisely, this is an instance of a stochastically degraded broadcast channel – see, e.g., [81, Sec-
tion 5.6] and [153, Chapter 5]). Given n,M1,M2 ∈ N, an (n,M1,M2)-code C for the DBC (T1, T2) consists
of the following objects:

1. an encoding map fn : {1, . . . ,M1} × {1, . . . ,M2} → X n;

2. a collection D1 of M1 disjoint decoding sets D1,i ⊂ Yn, 1 ≤ i ≤M1; and, similarly,

3. a collection D2 of M2 disjoint decoding sets D2,j ⊂ Zn, 1 ≤ j ≤M2.

Given 0 < ε1, ε2 ≤ 1, we say that C = (fn,D1,D2) is an (n,M1,M2, ε1, ε2)-code if

max
1≤i≤M1

max
1≤j≤M2

T n
1

(
Dc

1,i

∣∣∣fn(i, j)
)
≤ ε1

max
1≤i≤M1

max
1≤j≤M2

T n
2

(
Dc

2,j

∣∣∣fn(i, j)
)
≤ ε2.

In other words, we are using the maximal probability of error criterion. It should be noted that, although
for some multiuser channels the capacity region w.r.t. the maximal probability of error is strictly smaller
than the capacity region w.r.t. the average probability of error [154], these two capacity regions are
identical for broadcast channels [155]. We say that a pair of rates (R1, R2) (in nats per channel use) is
(ε1, ε2)-achievable if for any δ > 0 and sufficiently large n, there exists an (n,M1,M2, ε1, ε2)-code with

1

n
lnMk ≥ Rk − δ, k = 1, 2.

Likewise, we say that (R1, R2) is achievable if it is (ε1, ε2)-achievable for all 0 < ε1, ε2 ≤ 1. Now let
R(ε1, ε2) denote the set of all (ε1, ε2)-achievable rates, and let R denote the set of all achievable rates.
Clearly,

R =
⋂

(ε1,ε2)∈(0,1]2

R(ε1, ε2).

The following result was proved by Ahlswede and Körner [156]:
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Theorem 44. A rate pair (R1, R2) is achievable for the DBC (T1, T2) if and only if there exist random
variables U ∈ U ,X ∈ X , Y ∈ Y, Z ∈ Z such that U → X → Y → Z is a Markov chain, PY |X = T1,
PZ|Y = T3 (see (3.262)), and

R1 ≤ I(X;Y |U), R2 ≤ I(U ;Z).

Moreover, the domain U of U can be chosen so that |U| ≤ min {|X |, |Y|, |Z|}.

The strong converse for the DBC, due to Ahlswede, Gács and Körner [60], states that allowing for
nonvanishing probabilities of error does not enlarge the achievable region:

Theorem 45 (Strong converse for the DBC).

R(ε1.ε2) = R, ∀(ε1, ε2) ∈ (0, 1]2.

Before proceeding with the formal proof of this theorem, we briefly describe the way in which the
blowing up lemma enters the picture. The main idea is that, given any code, one can “blow up” the
decoding sets in such a way that the probability of decoding error can be as small as one desires (for
large enough n). Of course, the blown-up decoding sets are no longer disjoint, so the resulting object is
no longer a code according to the definition given earlier. On the other hand, the blowing-up operation
transforms the original code into a list code with a subexponential list size, and one can use Fano’s
inequality to get nontrivial converse bounds.

Proof (Theorem 45). Let C̃ = (fn, D̃1, D̃2) be an arbitrary (n,M1,M2, ε̃1, ε̃2)-code for the DBC (T1, T2)
with

D̃1 =
{
D̃1,i

}M1

i=1
and D̃2 =

{
D̃2,j

}M2

j=1
.

Let {δn}∞n=1 be a sequence of positive reals, such that

δn → 0,
√
nδn → ∞ as n→ ∞.

For each i ∈ {1, . . . ,M1} and j ∈ {1, . . . ,M2}, define the “blown-up” decoding sets

D1,i ,

[
D̃1,i

]
nδn

and D2,j ,

[
D̃2,j

]
nδn

.

By hypothesis, the decoding sets in D̃1 and D̃2 are such that

min
1≤i≤M1

min
1≤j≤M2

T n
1

(
D̃1,i

∣∣∣fn(i, j)
)
≥ 1 − ε̃1

min
1≤i≤M1

min
1≤j≤M2

T n
2

(
D̃2,j

∣∣∣fn(i, j)
)
≥ 1 − ε̃2.

Therefore, by Lemma 15, we can find a sequence εn → 0, such that

min
1≤i≤M1

min
1≤j≤M2

T n
1

(
D1,i

∣∣∣fn(i, j)
)
≥ 1 − εn (3.263a)

min
1≤i≤M1

min
1≤j≤M2

T n
2

(
D2,j

∣∣∣fn(i, j)
)
≥ 1 − εn (3.263b)

Let D1 = {D1,i}M1

i=1, and D2 = {D2,j}M2

j=1. We have thus constructed a triple (fn,D1,D2) satisfying
(3.263). Note, however, that this new object is not a code because the blown-up sets D1,i ⊆ Yn are not
disjoint, and the same holds for the blow-up sets {D2,j}. On the other hand, each given n-tuple yn ∈ Yn
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belongs to a small number of the D1,i’s, and the same applies to D2,j’s. More precisely, let us define for
each yn ∈ Yn the set

N1(y
n) , {i : yn ∈ D1,i} ,

and similarly for N2(z
n), zn ∈ Zn. Then a simple combinatorial argument (see [60, Lemma 5 and

Eq. (37)] for details) can be used to show that there exists a sequence {ηn}∞n=1 of positive reals, such that
ηn → 0 and

|N1(y
n)| ≤ |Bnδn(yn)| ≤ exp(nηn), ∀yn ∈ Yn (3.264a)

|N2(z
n)| ≤ |Bnδn(zn)| ≤ exp(nηn), ∀zn ∈ Zn (3.264b)

where, for any yn ∈ Yn and any r ≥ 0, Br(y
n) ⊆ Yn denotes the ball of dn-radius r centered at yn:

Br(y
n) , {vn ∈ Yn : dn(vn, yn) ≤ r} ≡ {yn}r

(the last expression denotes the r-blowup of the singleton set {yn}).
We are now ready to apply Fano’s inequality, just as in [156]. Specifically, let U have a uniform

distribution over {1, . . . ,M2}, and let Xn ∈ X n have a uniform distribution over the set T (U), where for
each j ∈ {1, . . . ,M2} we let

T (j) , {fn(i, j) : 1 ≤ i ≤M1} .

Finally, let Y n ∈ Yn and Zn ∈ Zn be generated from Xn via the DMC’s T n
1 and T n

2 , respectively. Now,
for each zn ∈ Zn, consider the error event

En(zn) , {U 6∈ N2(z
n)} , ∀ zn ∈ Zn

and let ζn , P (En(Zn)). Then, using a modification of Fano’s inequality for list decoding (see Ap-
pendix 3.C) together with (3.264), we get

H(U |Zn) ≤ h(ζn) + (1 − ζn)nηn + ζn lnM2. (3.265)

On the other hand, lnM2 = H(U) = I(U ;Zn) +H(U |Zn), so

1

n
lnM2 ≤ 1

n

[
I(U ;Zn) + h(ζn) + ζn lnM2

]
+ (1 − ζn)ηn

=
1

n
I(U ;Zn) + o(1),

where the second step uses the fact that, by (3.263), ζn ≤ εn, which converges to zero. Using a similar
argument, we can also prove that

1

n
lnM1 ≤ 1

n
I(Xn;Y n|U) + o(1).

By the weak converse for the DBC [156], the pair (R1, R2) with R1 = 1
nI(X

n;Y n|U) and R2 = 1
nI(U ;Zn)

belongs to the achievable region R. Since any element of R(ε1, ε2) can be expressed as a limit of rates(
1
n lnM1,

1
n lnM2

)
, and since the achievable region R is closed, we conclude that C(ε1, ε2) ⊆ C for all

ε1, ε2 ∈ (0, 1], and Theorem 45 is proved.

Our second example of the use of the blowing-up lemma to prove a strong converse is a bit more
sophisticated, and concerns the problem of lossless source coding with side information. Let X and
Y be finite sets, and {(Xi, Yi)}∞i=1 be a sequence of i.i.d. samples drawn from a given joint distribution
PXY ∈ P(X ×Y). The X -valued and the Y-valued parts of this sequence are observed by two independent



3.6. APPLICATIONS IN INFORMATION THEORY AND RELATED TOPICS 153

encoders. An (n,M1,M2)-code is a triple C =
(
f

(1)
n , f

(2)
n , gn

)
, where f

(1)
n : X n → {1, . . . ,M1} and

f
(2)
n : Yn → {1, . . . ,M2} are the encoding maps and gn : {1, . . . ,M1}×{1, . . . ,M2} → Yn is the decoding

map. The decoder observes

J (1)
n = f (1)

n (Xn) and J (2)
n = f (2)

n (Y n)

and wishes to reconstruct Y n with a small probability of error. The reconstruction is given by

Ŷ n = gn

(
J (1)

n , J (2)
n

)

= gn

(
f (1)

n (Xn), f (2)
n (Y n)

)
.

We say that C =
(
f

(1)
n , f

(2)
n , gn

)
is an (n,M1,M2, ε)-code if

P

(
Ŷ n 6= Y n

)
= P

(
gn

(
f (1)

n (Xn), f (2)
n (Y n)

)
6= Y n

)
≤ ε. (3.266)

We say that a rate pair (R1, R2) is ε-achievable if, for any δ > 0 and sufficiently large n ∈ N, there exists
an (n,M1,M2, ε)-code C with

1

n
lnMk ≤ Rk + δ, k = 1, 2. (3.267)

A rate pair (R1, R2) is achievable if it is ε-achievable for all ε ∈ (0, 1]. Again, let R(ε) (resp., R) denote
the set of all ε-achievable (resp., achievable) rate pairs. Clearly,

R =
⋂

ε∈(0,1]

R(ε).

The following characterization of the achievable region was obtained in [156]:

Theorem 46. A rate pair (R1, R2) is achievable if and only if there exist random variables U ∈ U ,
X ∈ X , Y ∈ Y, such that U → X → Y is a Markov chain, (X,Y ) has the given joint distribution PXY ,
and

R1 ≥ I(X;U)

R2 ≥ H(Y |U)

Moreover, the domain U of U can be chosen so that |U| ≤ |X | + 2.

Our goal is to prove the corresponding strong converse (originally established in [60]), which states
that allowing for a nonvanishing error probability, as in (3.266), does not asymptotically enlarge the
achievable region:

Theorem 47 (Strong converse for source coding with side information).

R(ε) = R, ∀ε ∈ (0, 1].

In preparation for the proof of Theorem 47, we need to introduce some additional terminology and
definitions. Given two finite sets U and V, a DMC S : U → V, and a parameter η ∈ [0, 1], we say,
following [151], that a set B ⊆ V is an η-image of u ∈ U under S if S(B|u) ≥ η. For any B ⊆ V, let
Dη(B;S) ⊆ U denote the set of all u ∈ U , such that B is an η-image of u under S:

Dη(B;S) ,

{
u ∈ U : S(B|u) ≥ η

}
.



154 CHAPTER 3. THE ENTROPY METHOD, LSI AND TC INEQUALITIES

Now, given PXY ∈ P(X × Y), let T : X → Y be the DMC corresponding to the conditional probability
distribution PY |X . Finally, given a strictly positive probability measure QY ∈ P(Y) and the parameters
c ≥ 0 and ε ∈ (0, 1], we define

Γ̂n(c, ε;QY ) , min
B⊆Yn

{
1

n
lnQn

Y (B) :
1

n
lnPn

X

(
D1−ε(B;T n) ∩ T n

[X]

)
≥ −c

}
(3.268)

where T n
[X] ⊂ X n denotes the typical set induced by the marginal distribution PX .

Theorem 48. For any c ≥ 0 and any ε ∈ (0, 1],

lim
n→∞

Γ̂n(c, ε;QY ) = Γ(c;QY ), (3.269)

where

Γ(c;QY ) , − max
U :|U|≤|X |+2

max
U∈U

{
D(PY |U‖QY |PU ) : U → X → Y ; I(X;U) ≤ c

}
. (3.270)

Moreover, the function c 7→ Γ(c;QY ) is continuous.

Proof. The proof consists of two major steps. The first is to show that (3.269) holds for ε = 0, and that
the limit Γ(c;QY ) is equal to (3.270). We omit the details of this step and instead refer the reader to
the original paper by Ahlswede, Gács and Körner [60]. The second step, which actually relies on the
blowing-up lemma, is to show that

lim
n→∞

[
Γ̂n(c, ε;QY ) − Γ̂n(c, ε′;QY )

]
= 0 (3.271)

for any ε, ε′ ∈ (0, 1]. To that end, let us fix an ε and choose a sequence of positive reals, such that

δn → 0 and
√
nδn → ∞ as n→ ∞. (3.272)

For a fixed n, let us consider any set B ⊆ Yn. If T n(B|xn) ≥ 1− ε for some xn ∈ X n, then by Lemma 15

T n(Bnδn |xn) ≥ 1 − exp


− 2

n

(
nδn −

√
n

2
ln

(
1

1 − ε

))2



= 1 − exp


−2

(
√
n δn −

√
1

2
ln

(
1

1 − ε

))2



, 1 − εn. (3.273)

Owing to (3.272), the right-hand side of (3.273) will tend to 1 as n→ ∞, which implies that, for all large
n,

D1−εn(Bnδn ;T n) ∩ T n
[X] ⊇ D1−ε(B;T n) ∩ T n

[X]. (3.274)

On the other hand, since QY is strictly positive,

Qn
Y (Bnδn) =

∑

yn∈Bnδn

Qn
Y (yn)

≤
∑

yn∈B

Qn
Y (Bnδn(yn))

≤ sup
yn∈Yn

Qn
Y (Bnδn(yn))

Qn
Y (yn)

∑

yn∈B

Qn
Y (yn)

= sup
yn∈Yn

Qn
Y (Bnδn(yn))

Qn
Y (yn)

·Qn
Y (B).
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Using this together with the fact that

lim
n→∞

1

n
ln sup

yn∈Yn

Qn
Y (Bnδn(yn))

Qn
Y (yn)

= 0

(see [60, Lemma 5]), we can write

lim
n→∞

sup
B⊆Yn

1

n
ln
Qn

Y (Bnδn)

Qn
Y (B)

= 0. (3.275)

From (3.274) and (3.275), it follows that

lim
n→∞

[
Γ̂n(c, ε;QY ) − Γ̂n(c, εn;QY )

]
= 0.

This completes the proof of Theorem 48.

We are now ready to prove Theorem 47. Let C =
(
f

(1)
n , f

(2)
n , gn

)
be an arbitrary (n,M1,M2, ε)-code.

For a given index j ∈ {1, . . . ,M1}, we define the set

B(j) ,

{
yn ∈ Yn : yn = gn

(
j, f (2)

n (yn)
)}

,

which consists of all yn ∈ Yn that are correctly decoded for any xn ∈ X n such that f
(1)
n (xn) = j. Using

this notation, we can write

E

[
T n
(
B(f (1)

n (Xn))
∣∣Xn

)]
≥ 1 − ε. (3.276)

If we define the set

An ,

{
xn ∈ X n : T n

(
B(f (1)

n (xn))
∣∣xn
)
≥ 1 −√

ε
}
,

then, using the so-called “reverse Markov inequality”2 and (3.276), we see that

Pn
X(An) = 1 − Pn

X(Ac
n)

= 1 − Pn
X

(
T n
(
B
(
f (1)

n (Xn)
)
|Xn

)

︸ ︷︷ ︸
≤1

< 1 −√
ε

)

≥ 1 −
1 − E

[
T n
(
B(f

(1)
n (Xn))

∣∣Xn
)]

1 − (1 −√
ε)

≥ 1 − 1 − (1 − ε)√
ε

= 1 −√
ε.

Consequently, for all sufficiently large n, we have

Pn
X

(
An ∩ T n

[X]

)
≥ 1 − 2

√
ε.

2The reverse Markov inequality states that if Y is a random variable such that Y ≤ b a.s. for some constant b, then for
all a < b

P(Y ≤ a) ≤
b − E[Y ]

b − a
.
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This implies, in turn, that there exists some j∗ ∈ f
(1)
n (X n), such that

Pn
X

(
D1−√

ε(B(j∗)) ∩ T n
[X]

)
≥ 1 − 2

√
ε

M1
. (3.277)

On the other hand,

M2 =
∣∣∣f (2)

n (Y n)
∣∣∣ ≥ |B(j∗)|. (3.278)

We are now in a position to apply Theorem 48. If we choose QY to be the uniform distribution on
Y, then it follows from (3.277) and (3.278) that

1

n
lnM2 ≥ 1

n
ln |B(j∗)|

=
1

n
lnQn

Y (B(j∗)) + ln |Y|

≥ Γ̂n

(
− 1

n
ln(1 − 2

√
ε) +

1

n
lnM1,

√
ε; QY

)
+ ln |Y|.

Using Theorem 48, we conclude that the bound

1

n
lnM2 ≥ Γ

(
− 1

n
ln(1 − 2

√
ε) +

1

n
lnM1; QY

)
+ ln |Y| + o(1) (3.279)

holds for any (n,M1,M2, ε)-code. If (R1, R2) ∈ R(ε), then there exists a sequence {Cn}∞n=1, where each

Cn =
(
f

(1)
n , f

(2)
n , gn

)
is an (n,M1,n,M2,n, ε)-code, and

lim
n→∞

1

n
lnMk,n = Rk, k = 1, 2.

Using this in (3.279), together with the continuity of the mapping c 7→ Γ(c;QY ), we get

R2 ≥ Γ(R1;QY ) + ln |Y|, ∀(R1, R2) ∈ R(ε). (3.280)

By definition of Γ in (3.270), there exists a triple U → X → Y such that I(X;U) ≤ R1 and

Γ(R1;QY ) = −D(PY |U‖QY |PU ) = − ln |Y| +H(Y |U), (3.281)

where the second equality is due to the fact that U → X → Y is a Markov chain and QY is the uniform
distribution on Y. Therefore, (3.280) and (3.281) imply that

R2 ≥ H(Y |U).

Consequently, the triple (U,X, Y ) ∈ R by Theorem 46, and hence R(ε) ⊆ R for all ε > 0. Since R ⊆ R(ε)
by definition, the proof of Theorem 47 is completed.

3.6.2 Empirical distributions of good channel codes with nonvanishing error proba-
bility

A more recent application of concentration of measure to information theory has to do with characterizing
stochastic behavior of output sequences of good channel codes. On a conceptual level, the random coding
argument originally used by Shannon, and many times since, to show the existence of good channel codes
suggests that the input (resp., output) sequence of such a code should resemble, as much as possible, a
typical realization of a sequence of i.i.d. random variables sampled from a capacity-achieving input (resp.,
output) distribution. For capacity-achieving sequences of codes with asymptotically vanishing probability
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of error, this intuition has been analyzed rigorously by Shamai and Verdú [157], who have proved the
following remarkable statement [157, Theorem 2]: given a DMC T : X → Y, any capacity-achieving
sequence of channel codes with asymptotically vanishing probability of error (maximal or average) has
the property that

lim
n→∞

1

n
D(PY n‖P ∗

Y n) = 0, (3.282)

where for each n PY n denotes the output distribution on Yn induced by the code (assuming the messages
are equiprobable), while P ∗

Y n is the product of n copies of the single-letter capacity-achieving output
distribution (see below for a more detailed exposition). In fact, the convergence in (3.282) holds not just
for DMC’s, but for arbitrary channels satisfying the condition

C = lim
n→∞

1

n
sup

PXn∈P(Xn)
I(Xn;Y n).

In a recent preprint [158], Polyanskiy and Verdú have extended the results of [157] and showed that
(3.282) holds for codes with nonvanishing probability of error, provided one uses the maximal probability
of error criterion and deterministic decoders.

In this section, we will present some of the results from [158] in the context of the material covered
earlier in this chapter. To keep things simple, we will only focus on channels with finite input and output
alphabets. Thus, let X and Y be finite sets, and consider a DMC T : X → Y. The capacity C is given
by solving the optimization problem

C = max
PX∈P(X )

I(X;Y ),

where X and Y are related via T . Let P ∗
X ∈ P(X ) be any capacity-achieving input distribution (there

may be several). It can be shown ([159, 160]) that the corresponding output distribution P ∗
Y ∈ P(Y) is

unique, and that for any n ∈ N, the product distribution P ∗
Y n ≡ (P ∗

Y )⊗n has the key property

D(PY n|Xn=xn‖P ∗
Y n) ≤ nC, ∀xn ∈ X n (3.283)

where PY n|Xn=xn is shorthand for the product distribution T n(·|xn). From the bound (3.283), we see
that the capacity-achieving output distribution P ∗

Y n dominates any output distribution PY n induced by
an arbitrary input distribution PXn ∈ P(X n):

PY n|Xn=xn � P ∗
Y n , ∀xn ∈ X n =⇒ PY n � P ∗

Y n , ∀PXn ∈ P(X n).

This has two important consequences:

1. The information density is well-defined for any xn ∈ X n and yn ∈ Yn:

i∗Xn;Y n(xn; yn) , ln
dPY n|Xn=xn(yn)

dP ∗
Y n

.

2. For any input distribution PXn , the corresponding output distribution PY n satisfies

D(PY n‖P ∗
Y n) ≤ nC − I(Xn;Y n)

Indeed, by the chain rule for divergence for any input distribution PXn ∈ P(X n) we have

I(Xn;Y n) = D(PY n|Xn‖PY n |PXn)

= D(PY n|Xn‖P ∗
Y n |PXn) −D(PY n‖P ∗

Y n)

≤ nC −D(PY n‖P ∗
Y n).

The claimed bound follows upon rearranging this inequality.
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Now let us bring codes into the picture. Given n,M ∈ N, an (n,M)-code for T is a pair C = (fn, gn)
consisting of an encoding map fn : {1, . . . ,M} → X n and a decoding map gn : Yn → {1, . . . ,M}. Given
0 < ε ≤ 1, we say that C is an (n,M, ε)-code if

max
1≤i≤M

P
(
gn(Y n) 6= i

∣∣Xn = fn(i)
)
≤ ε. (3.284)

Remark 47. Polyanskiy and Verdú [158] use a more precise nomenclature and say that any such C =
(fn, gn) satisfying (3.284) is an (n,M, ε)max,det-code to indicate explicitly that the decoding map gn is
deterministic and that the maximal probability of error criterion is used. Here, we will only consider
codes of this type, so we will adhere to our simplified terminology.

Consider any (n,M)-code C = (fn, gn) for T , and let J be a random variable uniformly distributed on
{1, . . . ,M}. Hence, we can think of any 1 ≤ i ≤M as one of M equiprobable messages to be transmitted

over T . Let P
(C)
Xn denote the distribution of Xn = fn(J), and let P

(C)
Y n denote the corresponding output

distribution. The central result of [158] is that the output distribution P
(C)
Y n of any (n,M, ε)-code satisfies

D
(
P

(C)
Y n

∥∥P ∗
Y n

)
≤ nC − lnM + o(n); (3.285)

moreover, the o(n) term may be refined to O(
√
n) for any DMC T , except those that have zeroes in

their transition matrix. For the proof of (3.285) with the O(
√
n) term, we will need the following strong

converse for channel codes due to Augustin [161] (see also [162]):

Theorem 49 (Augustin). Let S : U → V be a DMC with finite input and output alphabets, and let
PV |U be the transition probability induced by S. For any M ∈ N and 0 < ε ≤ 1, let f : {1, . . . ,M} → U
and g : V → {1, . . . ,M} be two mappings, such that

max
1≤i≤M

P
(
g(V ) 6= i

∣∣U = f(i)
)
≤ ε.

Let QV ∈ P(V) be an auxiliary output distribution, and fix an arbitrary map γ : U → R. Then, the
following inequality holds:

M ≤ exp
{
E[γ(U)]

}

inf
u∈U

PV |U=u

(
ln

dPV |U=u

dQV
< γ(u)

)
− ε

, (3.286)

provided the denominator is strictly positive. The expectation in the numerator is taken w.r.t. the
distribution of U = f(J) with J ∼ Uniform{1, . . . ,M}.

We first establish the bound (3.285) for the case when the DMC T is such that

C1 , max
x,x′∈X

D(PY |X=x‖PY |X=x′) <∞. (3.287)

Note that C1 <∞ if and only if the transition matrix of T does not have any zeroes. Consequently,

c(T ) , 2 max
x,x′∈X

max
y,y′∈Y

∣∣∣∣ln
PY |X(y|x)
PY |X(y′|x′)

∣∣∣∣ <∞.

We can now establish the following sharpened version of Theorem 5 from [158]:

Theorem 50. Let T : X → Y be a DMC with C > 0 satisfying (3.287). Then, any (n,M, ε)-code C for
T with 0 < ε < 1/2 satisfies

D
(
P

(C)
Y n

∥∥P ∗
Y n

)
≤ nC − lnM + ln

1

ε
+ c(T )

√
n

2
ln

1

1 − 2ε
. (3.288)
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Remark 48. Our sharpening of the corresponding result from [158] consists mainly in identifying an
explicit form for the constant in front of

√
n in (3.288).

Remark 49. As shown in [158], the restriction to codes with deterministic decoders and to the maximal
probability of error criterion is necessary both for this theorem and for the next one.

Proof. Fix an input sequence xn ∈ X n and consider the function hxn : Yn → R defined by

hxn(yn) , ln
dPY n|Xn=xn

dP
(C)
Y n

(yn).

Then E[hxn(Y n)|Xn = xn] = D(PY n|Xn=xn‖P (C)
Y n ). Moreover, for any i ∈ {1, . . . , n}, y, y′ ∈ Y, and

yi ∈ Yn−1, we have (see the notation used in (3.24))

∣∣hi,xn(y|yi) − hi,xn(y′|yi)
∣∣ ≤

∣∣lnPY n|Xn=xn(yi−1, y, yn
i+1) − lnPY n|Xn=xn(yi−1, y′, yn

i+1)
∣∣

+
∣∣∣lnP (C)

Y n (yi−1, y, yn
i+1) − lnP

(C)
Y n (yi−1, y′, yn

i+1)
∣∣∣

≤
∣∣∣∣ln

PYi|Xi=xi
(y)

PYi|Xi=xi
(y′)

∣∣∣∣+

∣∣∣∣∣∣∣
ln
P

(C)

Yi|Y
i(y|yi)

P
(C)

Yi|Y
i(y′|yi)

∣∣∣∣∣∣∣

≤ 2 max
x,x′∈X

max
y,y′∈Y

∣∣∣∣ln
PY |X(y|x)
PY |X(y′|x′)

∣∣∣∣ (3.289)

= c(T ) <∞ (3.290)

(see Appendix 3.D for a detailed explanation of the inequality in (3.289)). Hence, for each fixed xn ∈ X n,
the function hxn : Yn → R satisfies the bounded differences condition (3.134) with c1 = . . . = cn = c(T ).
Theorem 28 therefore implies that, for any r ≥ 0, we have

PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP
(C)
Y n

(Y n) ≥ D(PY n|Xn=xn‖P (C)
Y n ) + r

)
≤ exp

(
− 2r2

nc2(T )

)
(3.291)

(In fact, the above derivation goes through for any possible output distribution PY n , not necessarily one
induced by a code.) This is where we have departed from the original proof by Polyanskiy and Verdú
[158]: we have used McDiarmid’s (or bounded differences) inequality to control the deviation probability
for the “conditional” information density hxn directly, whereas they bounded the variance of hxn using a
suitable Poincaré inequality, and then derived a bound on the derivation probability using Chebyshev’s
inequality. As we will see shortly, the sharp concentration inequality (3.291) allows us to explicitly identify
the dependence of the constant multiplying

√
n in (3.288) on the channel T and on the maximal error

probability ε.
We are now in a position to apply Augustin’s strong converse. To that end, we let U = X n, V = Yn,

and consider the DMC S = T n together with an (n,M, ε)-code (f, g) = (fn, gn). Furthermore, let

ζn = ζn(ε) , c(T )

√
n

2
ln

1

1 − 2ε
(3.292)

and take γ(xn) = D(PY n|Xn=xn‖P (C)
Y n ) + ζn. Using (3.286) with the auxiliary distribution QV = P

(C)
Y n , we

get

M ≤ exp
{
E[γ(X n)]

}

inf
xn∈Xn

PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP
(C)
Y n

< γ(xn)

)
− ε

(3.293)
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where E[γ(Xn)] = D
(
PY n|Xn‖P (C)

Y n |P (C)
Xn

)
+ ζn. The concentration inequality in (3.291) with ζn in (3.292)

therefore gives that, for every xn ∈ X n,

PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP
(C)
Y n

≥ γ(xn)

)
≤ exp

(
− 2ζ2

n

nc2(T )

)

= 1 − 2ε

which implies that

inf
xn∈Xn

PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP
(C)
Y n

< γ(xn)

)
≥ 2ε.

Hence, from (3.293) and the last inequality, it follows that

M ≤ 1

ε
exp

(
D
(
PY n|Xn‖P (C)

Y n |P (C)
Xn

)
+ ζn

)

so, by taking logarithms on both sides of the last inequality and rearranging terms, we get from (3.292)
that

D(PY n|Xn‖P (C)
Y n |P (C)

Xn ) ≥ lnM + ln ε− ζn

= lnM + ln ε− c(T )

√
n

2
ln

1

1 − 2ε
. (3.294)

We are now ready to derive (3.288):

D
(
P

(C)
Y n

∥∥P ∗
Y n

)

= D
(
PY n|Xn

∥∥P ∗
Y n

∣∣P (C)
Xn

)
−D

(
PY n|Xn

∥∥P (C)
Y n

∣∣P (C)
Xn

)
(3.295)

≤ nC − lnM + ln
1

ε
+ c(T )

√
n

2
ln

1

1 − 2ε
(3.296)

where (3.295) uses the chain rule for divergence, while (3.296) uses (3.294) and (3.283). This completes
the proof of Theorem 50.

For an arbitrary DMC T with nonzero capacity and zeroes in its transition matrix, we have the
following result from [158]:

Theorem 51. Let T : X → Y be a DMC with C > 0. Then, for any 0 < ε < 1, any (n,M, ε)-code C for
T satisfies

D
(
P

(C)
Y n

∥∥P ∗
Y n

)
≤ nC − lnM +O

(√
n ln3/2 n

)
.

More precisely, for any such code we have

D
(
P

(C)
Y n

∥∥P ∗
Y n

)

≤ nC − lnM +
√

2n (lnn)3/2

(
1 +

√
1

lnn
ln

(
1

1 − ε

)) (
1 +

ln |Y|
lnn

)
+ 3 ln n+ ln

(
2|X ||Y|2

)
.

(3.297)
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Proof. Given an (n,M, ε)-code C = (fn, gn), let c1, . . . , cM ∈ X n be its codewords, and let D̃1, . . . , D̃M ⊂
Yn be the corresponding decoding regions:

D̃i = g−1
n (Yn) ≡

{
yn ∈ Yn : g−1

n (yn) = i
}
, i = 1, . . . ,M.

If we choose

δn = δn(ε) =
1

n

⌈
n

(√
lnn

2n
+

√
1

2n
ln

1

1 − ε

)⌉
(3.298)

(note that nδn is an integer), then by Lemma 15 the “blown-up” decoding regions Di ,

[
D̃i

]
nδn

, 1 ≤ i ≤
M , satisfy

PY n|Xn=ci
(Dc

i ) ≤ exp


−2n

(
δn −

√
1

2n
ln

1

1 − ε

)2



≤ 1

n
, ∀ i ∈ {1, . . . ,M}. (3.299)

We now complete the proof by a random coding argument. For

N ,
M

n
(

n
nδn

)
|Y|nδn

, (3.300)

let U1, . . . , UN be independent random variables, each uniformly distributed on the set {1, . . . ,M}. For
each realization V = UN , let PXn(V ) ∈ P(X n) denote the induced distribution of Xn(V ) = fn(cJ), where
J is uniformly distributed on the set {U1, . . . , UN}, and let PY n(V ) denote the corresponding output
distribution of Y n(V ):

PY n(V ) =
1

N

N∑

i=1

PY n|Xn=cUi
. (3.301)

It is easy to show that E

[
P

(V )
Y n

]
= P

(C)
Y n , the output distribution of the original code C, where the

expectation is w.r.t. the distribution of V = UN . Now, for V = UN and for every yn ∈ Yn, let NV (yn)
denote the list of all those indices in (U1, . . . , UN ) such that yn ∈ DUj

:

NV (yn) =
{
Uj : yn ∈ DUj

}
.

Consider the list decoder Y n 7→ NV (Y n), and let ε(V ) denote its average decoding error probability:
ε(V ) = P (J 6∈ NV (Y n)|V ). Then, for each realization of V , we have

D
(
PY n(V )

∥∥P ∗
Y n

)

= D
(
PY n|Xn

∥∥P ∗
Y n

∣∣PXn(V )

)
− I(Xn(V );Y n(V )) (3.302)

≤ nC − I(Xn(V );Y n(V )) (3.303)

≤ nC − I(J ;Y n(V )) (3.304)

= nC −H(J) +H(J |Y n(V )) (3.305)

≤ nC − lnN + (1 − ε(V )) ln |NV (Y n)| + nε(V ) ln |X | + ln 2 (3.306)

where:

• (3.302) is by the chain rule for divergence;
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• (3.303) is by (3.283);

• (3.304) is by the data processing inequality and the fact that J → Xn(V ) → Y n(V ) is a Markov chain;
and

• (3.306) is by Fano’s inequality for list decoding (see Appendix 3.C), and also since (i) N ≤ |X |n, (ii) J is
uniformly distributed on {U1, . . . , UN}, so H(J |U1, . . . , UN ) = lnN and H(J) ≥ lnN .

(Note that all the quantities indexed by V in the above chain of estimates are actually random variables,
since they depend on the realization V = UN .) Now, from (3.300) it follows that

lnN = lnM − lnn− ln

(
n

nδn

)
− nδn ln |Y|

≥ lnM − lnn− nδn (lnn+ ln |Y|) (3.307)

where the last inequality uses the simple inequality
(
n
k

)
≤ nk for k ≤ n with k , nδn (it is noted that the

gain in using instead the inequality
(

n
nδn

)
≤ exp

(
nh(δn)

)
is marginal, and it does not have any advantage

asymptotically for large n). Moreover, each yn ∈ Yn can belong to at most
(

n
nδn

)
|Y|nδn blown-up decoding

sets, so

ln |NV (Y n)| ≤ ln

(
n

nδn

)
+ nδn ln |Y|

≤ nδn (lnn+ ln |Y|) . (3.308)

Substituting (3.307) and (3.308) into (3.306), we get

D
(
PY n(V )

∥∥P ∗
Y n

)
≤ nC − lnM + lnn+ 2nδn (lnn+ ln |Y|) + nε(V ) ln |X | + ln 2. (3.309)

Using the fact that E
[
PY n(V )

]
= P

(C)
Y n , convexity of the relative entropy, and (3.309), we get

D
(
P

(C)
Y n

∥∥P ∗
Y n

)
≤ nC − lnM + lnn+ 2nδn (lnn+ ln |Y|) + nE [ε(V )] ln |X | + ln 2. (3.310)

To finish the proof and get (3.297), we use the fact that

E [ε(V )] ≤ max
1≤i≤M

PY n|Xn=ci
(Dc

i ) ≤
1

n
,

which follows from (3.299), as well as the substitution of (3.298) in (3.310) (note that, from (3.298), it

follows that δn <
√

lnn
2n +

√
1
2n ln 1

1−ε + 1
n). This completes the proof of Theorem 51.

We are now ready to examine some consequences of Theorems 50 and 51. To start with, consider a
sequence {Cn}∞n=1, where each Cn = (fn, gn) is an (n,Mn, ε)-code for a DMC T : X → Y with C > 0. We
say that {Cn}∞n=1 is capacity-achieving if

lim
n→∞

1

n
lnMn = C. (3.311)

Then, from Theorems 50 and 51, it follows that any such sequence satisfies

lim
n→∞

1

n
D
(
P

(Cn)
Y n

∥∥P ∗
Y n

)
= 0. (3.312)

Moreover, as shown in [158], if the restriction to either deterministic decoding maps or to the maximal
probability of error criterion is lifted, then the convergence in (3.312) may no longer hold. This is in
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sharp contrast to [157, Theorem 2], which states that (3.312) holds for any capacity-achieving sequence
of codes with vanishing probability of error (maximal or average).

Another remarkable fact that follows from the above theorems is that a broad class of functions
evaluated on the output of a good code concentrate sharply around their expectations with respect to the
capacity-achieving output distribution. Specifically, we have the following version of [158, Proposition 10]
(again, we have streamlined the statement and the proof a bit to relate them to earlier material in this
chapter):

Theorem 52. Let T : X → Y be a DMC with C > 0 and C1 < ∞. Let d : Yn × Yn → R+ be a
metric, and suppose that there exists a constant c > 0, such that the conditional probability distributions
PY n|Xn=xn , xn ∈ X n, as well as P ∗

Y n satisfy T1(c) on the metric space (Yn, d). Then, for any ε ∈ (0, 1),
there exists a constant a > 0 that depends only on T and on ε, such that for any (n,M, ε)-code C for T
and any function f : Yn → R we have

P
(C)
Y n

(
|f(Y n) − E[f(Y ∗n)]| ≥ r

)
≤ 4 exp

(
nC − lnM + a

√
n− r2

8c‖f‖2
Lip

)
, ∀ r ≥ 0 (3.313)

where E[f(Y ∗n)] designates the expected value of f(Y n) w.r.t. the capacity-achieving output distribution
P ∗

Y n , and

‖f‖Lip , sup
yn 6=vn

|f(yn) − f(vn)|
d(yn, vn)

is the Lipschitz constant of f w.r.t. the metric d.

Proof. For any f , define

µ∗f , E[f(Y ∗n)], φ(xn) , E[f(Y n)|Xn = xn], ∀xn ∈ X n. (3.314)

Since each PY n|Xn=xn satisfies T1(c), by the Bobkov–Götze theorem (Theorem 36), we have

P

(
|f(Y n) − φ(xn)| ≥ r

∣∣∣Xn = xn
)
≤ 2 exp

(
− r2

2c‖f‖2
Lip

)
, ∀ r ≥ 0. (3.315)

Now, given C, consider a subcode C′ with codewords xn ∈ X n satisfying φ(xn) > µ∗f + r for r > 0.
The number of codewords M ′ of C′ satisfies

M ′ = MP
(C)
Xn

(
φ(Xn) ≥ µ∗f + r

)
. (3.316)

Let Q = P
(C′)
Y n be the output distribution induced by C′. Then

µ∗f + r ≤ 1

M ′
∑

xn∈ codewords(C′)

φ(xn) (3.317)

= EQ[f(Y n)] (3.318)

≤ E[f(Y ∗n)] + ‖f‖Lip

√
2cD(QY n‖P ∗

Y n) (3.319)

≤ µ∗f + ‖f‖Lip

√
2c
(
nC − lnM ′ + a

√
n
)
, (3.320)

where:

• (3.317) is by definition of C′;
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• (3.318) is by definition of φ in (3.314);

• (3.319) follows from the fact that P ∗
Y n satisfies T1(c) and from the Kantorovich–Rubinstein formula

(3.209); and

• (3.320) holds, for an appropriate a = a(T, ε) > 0, by Theorem 50, because C′ is an (n,M ′, ε)-code for T .

From this and (3.316), we get

r ≤ ‖f‖Lip

√
2c
(
nC − lnM − lnP

(C)
Xn

(
φ(Xn) ≥ µ∗f + r

)
+ a

√
n
)

so, it follows that

P
(C)
Xn

(
φ(Xn) ≥ µ∗f + r

)
≤ exp

(
nC − lnM + a

√
n− r2

2c‖f‖2
Lip

)
.

Following the same line of reasoning with −f instead of f , we conclude that

P
(C)
Xn

( ∣∣φ(Xn) − µ∗f
∣∣ ≥ r

)
≤ 2 exp

(
nC − lnM + a

√
n− r2

2c‖f‖2
Lip

)
. (3.321)

Finally, for every r ≥ 0,

P
(C)
Y n

( ∣∣f(Y n) − µ∗f
∣∣ ≥ r

)

≤ P
(C)
Xn,Y n

(
|f(Y n) − φ(Xn)| ≥ r/2

)
+ P

(C)
Xn

( ∣∣φ(Xn) − µ∗f
∣∣ ≥ r/2

)

≤ 2 exp

(
− r2

8c‖f‖2
Lip

)
+ 2exp

(
nC − lnM + a

√
n− r2

8c‖f‖2
Lip

)
(3.322)

= 2 exp

(
− r2

8c‖f‖2
Lip

)(
1 + exp

(
nC − lnM + a

√
n
))

≤ 4 exp

(
nC − lnM + a

√
n− r2

8c‖f‖2
Lip

)
, (3.323)

where (3.322) is by (3.315) and (3.321), while (3.323) follows from the fact that

nC − lnM + a
√
n ≥ D(P

(C)
Y n ‖P ∗

Y n) ≥ 0

by Theorem 50, and the way that the constant a was selected above (see (3.320)). This proves (3.313).

As an illustration, let us consider Yn with the product metric

d(yn, vn) =

n∑

i=1

1{yi 6=vi} (3.324)

(this is the metric d1,n induced by the Hamming metric on Y). Then any function f : Yn → R of the
form

f(yn) =
1

n

n∑

i=1

fi(yi), ∀yn ∈ Yn (3.325)
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where f1, . . . , fn : Y → R are Lipschitz functions on Y, will satisfy

‖f‖Lip ≤ L

n
, L , max

1≤i≤n
‖fi‖Lip.

Any probability distribution P on Y equipped with the Hamming metric satisfies T1(1/4) (this is simply
Pinsker’s inequality); by Proposition 11, any product probability distribution on Yn satisfies T1(n/4) w.r.t.
the product metric (3.324). Consequently, for any (n,M, ε)-code for T and any function f : Yn → R of
the form (3.325), Theorem 52 gives the concentration inequality

P
(C)
Y n

(
|f(Y n) − E[f(Y ∗n)]| ≥ r

)
≤ 4 exp

(
nC − lnM + a

√
n− 2nr2

‖f‖2
Lip

)
, ∀r ≥ 0. (3.326)

Concentration inequalities like (3.313) or its more specialized version (3.326), can be very useful in
characterizing various performance characteristics of good channel codes without having to explicitly
construct such codes: all one needs to do is to find the capacity-achieving output distribution P ∗

Y and
evaluate E[f(Y ∗n)] for any f of interest. Then, Theorem 52 guarantees that f(Y n) concentrates tightly
around E[f(Y ∗n)], which is relatively easy to compute since P ∗

Y n is a product distribution.

Remark 50. This sub-section considers the empirical output distributions of good channel codes with
non-vanishing probability of error via the use of concentration inequalities. As a concluding remark, it is
noted that the combined result in [163, Eqs. (A17), (A19)] provides a lower bound on the rate loss with
respect to fully random block codes (with a binomial distribution) in terms of the normalized divergence
between the distance spectrum of the considered code and the binomial distribution. This result refers
to the empirical input distribution of good codes, and it was derived via the use of variations on the
Gallager bounds.

3.6.3 An information-theoretic converse for concentration of measure

If we were to summarize the main idea behind concentration of measure, it would be this: if a subset of a
metric probability space does not have a “too small” probability mass, then its isoperimetric enlargements
(or blowups) will eventually take up most of the probability mass. On the other hand, it makes sense to
ask whether a converse of this statement is true — given a set whose blowups eventually take up most of
the probability mass, how small can this set be? This question was answered precisely by Kontoyiannis
[164] using information-theoretic techniques.

The following setting is considered in [164]: Let X be a finite set, together with a nonnegative
distortion function d : X × X → R

+ (which is not necessarily a metric) and a strictly positive mass
function M : X → (0,∞) (which is not necessarily normalized to one). As before, let us extend the
“single-letter” distortion d to dn : X n → R

+, n ∈ N, where

dn(xn, yn) ,

n∑

i=1

d(xi, yi), ∀xn, yn ∈ X n.

For every n ∈ N and for every set C ⊆ X n, let us define

Mn(C) ,
∑

xn∈C

Mn(xn)

where

Mn(xn) ,

n∏

i=1

M(xi), ∀xn ∈ X n.
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As before, we define the r-blowup of any set A ⊆ X n by

Ar , {xn ∈ X n : dn(xn, A) ≤ r} ,

where dn(xn, A) , minyn∈A dn(xn, yn). Fix a probability distribution P ∈ P(X ), where we assume
without loss of generality that P is strictly positive. We are interested in the following question: Given
a sequence of sets A(n) ⊆ X n, n ∈ N, such that

P⊗n
(
A

(n)
nδ

)
→ 1, as n→ ∞

for some δ ≥ 0, how small can their masses Mn(A(n)) be?

In order to state and prove the main result of [164] that answers this question, we need a few prelim-
inary definitions. For any n ∈ N, any pair Pn, Qn of probability measures on X n, and any δ ≥ 0, let us
define the set

Πn(Pn, Qn, δ) ,

{
πn ∈ Πn(Pn, Qn) :

1

n
Eπn [dn(Xn, Y n)] ≤ δ

}
(3.327)

of all couplings πn ∈ P(X n ×X n) of Pn and Qn, such that the per-letter expected distortion between Xn

and Y n with (Xn, Y n) ∼ πn is at most δ. With this, we define

In(Pn, Qn, δ) , inf
πn∈Πn(Pn,Qn,δ)

D(πn‖Pn ⊗Qn),

and consider the following rate function:

Rn(δ) ≡ Rn(δ;Pn,M
n)

, inf
Qn∈P(Xn)

{
In(Pn, Qn, δ) + EQn [lnMn(Y n)]

}

≡ inf
PXnY n

{
I(Xn;Y n) + E[lnMn(Y n)] : PXn = Pn,

1

n
E[dn(Xn, Y n)] ≤ δ

}
.

When n = 1, we will simply write Π(P,Q, δ), I(P,Q, δ) and R(δ). For the special case when each Pn is
the product measure P⊗n, we have

R(δ) = lim
n→∞

1

n
Rn(δ) = inf

n≥1

1

n
Rn(δ) (3.328)

(see [164, Lemma 2]). We are now ready to state the main result of [164]:

Theorem 53. Consider an arbitrary set A(n) ⊆ X n, and denote

δ ,
1

n
E[dn(Xn, A(n))].

Then

1

n
lnMn(A(n)) ≥ R(δ;P,M). (3.329)

Proof. Given An ⊆ X n, let ϕn : X n → An be the function that maps each xn ∈ X n to the closest element
yn ∈ An, i.e.,

dn(xn, ϕn(xn)) = dn(xn, An)
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(we assume some fixed rule for resolving ties). If Xn ∼ P⊗n, then let Qn ∈ P(X n) denote the distribution
of Y n = ϕn(Xn), and let πn ∈ P(X n ×X n) denote the joint distribution of Xn and Y n:

Qn(xn, yn) = P⊗n(xn)1{yn=ϕn(xn)}.

Then, the two marginals of πn are P⊗n and Qn and

Eπn [dn(Xn, Y n)] = Eπn [dn(Xn, ϕn(Xn))]

= Eπn [dn(Xn, An)]

= nδ,

so πn ∈ Πn(P⊗n, Qn, δ). Moreover,

lnMn(An) = ln
∑

yn∈An

Mn(yn)

= ln
∑

yn∈An

Qn(yn) · M
n(yn)

Qn(yn)

≥
∑

yn∈An

Qn(yn) ln
Mn(yn)

Qn(yn)
(3.330)

=
∑

xn∈Xn,yn∈An

πn(xn, yn) ln
πn(xn, yn)

P⊗n(xn)Qn(yn)
+
∑

yn∈An

Qn(yn) lnMn(yn) (3.331)

= I(Xn;Y n) + EQn [lnMn(Y n)] (3.332)

≥ Rn(δ), (3.333)

where (3.330) is by Jensen’s inequality, (3.331) and (3.332) use the fact that πn is a coupling of P⊗n and
Qn, and (3.333) is by definition of Rn(δ). Using (3.328), we get (3.329), and the theorem is proved.

Remark 51. In the same paper [164], an achievability result was also proved: For any δ ≥ 0 and any
ε > 0, there is a sequence of sets A(n) ⊆ X n such that

1

n
lnMn(A(n)) ≤ R(δ) + ε, ∀n ∈ N (3.334)

and

1

n
dn(Xn, A(n)) ≤ δ, eventually a.s. (3.335)

We are now ready to use Theorem 53 to answer the question posed at the beginning of this sec-
tion. Specifically, we consider the case when M = P . Defining the concentration exponent Rc(r;P ) ,

R(r;P,P ), we have:

Corollary 11 (Converse concentration of measure). If A(n) ⊆ X n is an arbitrary set, then

P⊗n
(
A(n)

)
≥ exp (nRc(δ;P )) , (3.336)

where δ = 1
nE
[
dn(Xn, A(n))

]
. Moreover, if the sequence of sets {A(n)}∞n=1 is such that, for some δ ≥ 0,

P⊗n
(
A

(n)
nδ

)
→ 1 as n→ ∞, then

lim inf
n→∞

1

n
lnP⊗n

(
A(n)

)
≥ Rc(δ;P ). (3.337)
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Remark 52. A moment of reflection shows that the concentration exponent Rc(δ;P ) is nonpositive.
Indeed, from definitions,

Rc(δ;P ) = R(δ;P,P )

= inf
PXY

{
I(X;Y ) + E[lnP (Y )] : PX = P, E[d(X,Y )] ≤ δ

}

= inf
PXY

{
H(Y ) −H(Y |X) + E[lnP (Y )] : PX = P, E[d(X,Y )] ≤ δ

}

= inf
PXY

{
−D(PY ‖P ) −H(Y |X) : PX = P, E[d(X,Y )] ≤ δ

}

= − sup
PXY

{
D(PY ‖P ) +H(Y |X) : PX = P, E[d(X,Y )] ≤ δ

}
, (3.338)

which proves the claim, since both the divergence and the (conditional) entropy are nonnegative.

Remark 53. Using the achievability result from [164] (cf. Remark 51), one can also prove that there
exists a sequence of sets {A(n)}∞n=1, such that

lim
n→∞

P⊗n
(
A

(n)
nδ

)
= 1 and lim

n→∞
1

n
lnP⊗n

(
A(n)

)
≤ Rc(δ;P ).

As an illustration, let us consider the case when X = {0, 1} and d is the Hamming distortion,
d(x, y) = 1{x 6=y}. Then X n = {0, 1}n is the n-dimensional binary cube. Let P be the Bernoulli(p)

probability measure, which satisfies a T1

(
1

2ϕ(p)

)
transportation-cost inequality w.r.t. the L1 Wasserstein

distance induced by the Hamming metric, where ϕ(p) is defined in (3.187). By Proposition 10, the

product measure P⊗n satisfies a T1

(
n

2ϕ(p)

)
transportation-cost inequality on the product space (X n, dn).

Consequently, it follows from (3.197) that for any δ ≥ 0 and any A(n) ⊆ X n,

P⊗n
(
A

(n)
nδ

)
≥ 1 − exp


−ϕ(p)

n

(
nδ −

√
n

ϕ(p)
ln

1

P⊗n
(
A(n)

)
)2



= 1 − exp


−nϕ(p)

(
δ −

√
1

nϕ(p)
ln

1

P⊗n
(
A(n)

)
)2

 . (3.339)

Thus, if a sequence of sets A(n) ⊆ X n, n ∈ N, satisfies

lim inf
n→∞

1

n
lnP⊗n

(
A(n)

)
≥ −ϕ(p)δ2, (3.340)

then

P⊗n
(
A

(n)
nδ

)
n→∞−−−→ 1. (3.341)

The converse result, Corollary 11, says that if a sequence of sets A(n) ⊆ X n satisfies (3.341), then (3.337)
holds. Let us compare the concentration exponent Rc(δ;P ), where P is the Bernoulli(p) measure, with
the exponent −ϕ(p)δ2 on the right-hand side of (3.340):

Theorem 54. If P is the Bernoulli(p) measure with p ∈ [0, 1/2], then the concentration exponent Rc(δ;P )
satisfies

Rc(δ;P ) ≤ −ϕ(p)δ2 − (1 − p)h

(
δ

1 − p

)
, ∀ δ ∈ [0, 1 − p] (3.342)
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and

Rc(δ;P ) = ln p, ∀ δ ∈ [1 − p, 1] (3.343)

where h(x) , −x lnx− (1 − x) ln(1 − x), x ∈ [0, 1], is the binary entropy function (in nats).

Proof. From (3.338), we have

Rc(δ;P ) = − sup
PXY

{
D(PY ‖P ) +H(Y |X) : PX = P, P(X 6= Y ) ≤ δ

}
. (3.344)

For a given δ ∈ [0, 1 − p], let us choose PY so that ‖PY − P‖TV = δ. Then from (3.189),

D(PY ‖P )

δ2
=

D(PY ‖P )

‖PY − P‖2
TV

≥ inf
Q

D(Q‖P )

‖Q− P‖2
TV

= ϕ(p). (3.345)

By the coupling representation of the total variation distance, we can choose a joint distribution P
X̃Ỹ

with marginals P
X̃

= P and P
Ỹ

= PY , such that P(X̃ 6= Ỹ ) = ‖PY −P‖TV = δ. Moreover, using (3.185),
we can compute

PỸ |X̃=0 = Bernoulli

(
δ

1 − p

)
and PỸ |X̃=1(ỹ) = δ1(ỹ) , 1{ỹ=1}.

Consequently,

H(Ỹ |X̃) = (1 − p)H(Ỹ |X̃ = 0) = (1 − p)h

(
δ

1 − p

)
. (3.346)

From (3.344), (3.345) and (3.346), we obtain

Rc(δ;P ) ≤ −D(P
Ỹ
‖P ) −H(Ỹ |X̃)

≤ −ϕ(p)δ2 − (1 − p)h

(
δ

1 − p

)
.

To prove (3.343), it suffices to consider the case where δ = 1 − p. If we let Y be independent of X ∼ P ,
then I(X;Y ) = 0, so we have to minimize EQ[lnP (Y )] over all distributions Q of Y . But then

min
Q

EQ[lnP (Y )] = min
y∈{0,1}

lnP (y) = min {ln p, ln(1 − p)} = ln p,

where the last equality holds since p ≤ 1/2.

3.A Van Trees inequality

Consider the problem of estimating a random variable Y ∼ PY based on a noisy observation U =
√
sY +Z,

where s > 0 is the SNR parameter, while the additive noise Z ∼ G is independent of Y . We assume that
PY has a differentiable, absolutely continuous density pY with I(Y ) < ∞. Our goal is to prove the van
Trees inequality (3.60) and to establish that equality in (3.60) holds if and only if Y is Gaussian.

In fact, we will prove a more general statement: Let ϕ(U) be an arbitrary (Borel-measurable) estimator
of Y . Then

E
[
(Y − ϕ(U))2

]
≥ 1

s+ J(Y )
, (3.347)
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with equality if and only if Y has a standard normal distribution, and ϕ(U) is the MMSE estimator of
Y given U .

The strategy of the proof is, actually, very simple. Define two random variables

∆(U, Y ) , ϕ(U) − Y,

Υ(U, Y ) ,
d

dy
ln
[
pU |Y (U |y)pY (y)

]
∣∣∣∣∣
y=Y

=
d

dy
ln
[
γ(U −√

sy)pY (y)
]
∣∣∣∣∣
y=Y

=
√
s(U −√

sY ) + ρY (Y )

=
√
sZ + ρY (Y )

where ρY (y) , d
dy lnPY (y) for y ∈ R is the score function. We will show below that E[∆(U, Y )Υ(U, Y )] =

1. Then, applying the Cauchy–Schwarz inequality, we obtain

1 = |E[∆(U, Y )Υ(U, Y )]|2

≤ E[∆2(U, Y )] · E[Υ2(U, Y )]

= E[(ϕ(U) − Y )2] · E[(
√
sZ + ρY (Y ))2]

= E[(ϕ(U) − Y )2] · (s+ J(Y )).

Upon rearranging, we obtain (3.347). Now, the fact that J(Y ) < ∞ implies that the density pY is
bounded (see [117, Lemma A.1]). Using this together with the rapid decay of the Gaussian density γ at
infinity, we have

∫ ∞

−∞

d

dy

[
pU |Y (u|y)pY (y)

]
dy = γ(u−√

sy)pY (y)

∣∣∣∣∣

∞

−∞
= 0. (3.348)

Integration by parts gives

∫ ∞

−∞
y

d

dy

[
pU |Y (u|y)pY (y)

]
dy = yγ(u−√

sy)pY (y)

∣∣∣∣∣

∞

−∞
−
∫ ∞

−∞
pU |Y (u|y)pY (y)dy

= −
∫ ∞

−∞
pU |Y (u|y)pY (y)dy

= −pU(u). (3.349)

Using (3.348) and (3.349), we have

E[∆(U, Y )Υ(U, Y )]

=

∫ ∞

−∞

∫ ∞

−∞
(ϕ(u) − y)

d

dy
ln
[
pU |Y (u|y)pY (y)

]
pU |Y (u|y)pY (y)dudy

=

∫ ∞

−∞

∫ ∞

−∞
(ϕ(u) − y)

d

dy

[
pU |Y (u|y)pY (y)

]
dudy

=

∫ ∞

−∞
ϕ(u)

(∫ ∞

−∞

d

dy

[
pU |Y (u|y)pY (y)

]
dy

)

︸ ︷︷ ︸
=0

du−
∫ ∞

−∞

(∫ ∞

−∞
y

d

dy

[
pU |Y (u|y)pY (y)

]
dy

)

︸ ︷︷ ︸
=−pU (u)

du

=

∫ ∞

−∞
pU (u)du

= 1,
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as was claimed. It remains to establish the necessary and sufficient condition for equality in (3.347).
The Cauchy–Schwarz inequality for the product of ∆(U, Y ) and Υ(U, Y ) holds if and only if ∆(U, Y ) =
cΥ(U, Y ) for some constant c ∈ R, almost surely. This is equivalent to

ϕ(U) = Y + c
√
s(U −√

sY ) + cρY (Y )

= c
√
sU + (1 − cs)Y + cρY (Y )

for some c ∈ R. In fact, c must be nonzero, for otherwise we will have ϕ(U) = Y , which is not a valid
estimator. But then it must be the case that (1 − cs)Y + cρY (Y ) is independent of Y , i.e., there exists
some other constant c′ ∈ R, such that

ρY (y) ,
p′Y (y)

pY (y)
=
c′

c
+ (s− 1/c)y.

In other words, the score ρY (y) must be an affine function of y, which is the case if and only if Y is a
Gaussian random variable.

3.B Details on the Ornstein–Uhlenbeck semigroup

In this appendix, we will prove the formulas (3.82) and (3.83) pertaining to the Ornstein–Uhlenbeck
semigroup. We start with (3.82). Recalling that

ht(x) = Kth(x) = E

[
h
(
e−tx+

√
1 − e−2tZ

)]
,

we have

ḣt(x) =
d

dt
E

[
h
(
e−tx+

√
1 − e−2tZ

)]

= −e−txE

[
h′
(
e−tx+

√
1 − e−2tZ

)]
+

e−2t

√
1 − e−2t

· E
[
Zh′

(
e−tx+

√
1 − e−2tZ

)]
.

For any sufficiently smooth function h and any m,σ ∈ R,

E[Zh′(m+ σZ)] = σE[h′′(m+ σZ)]

(which is proved straightforwardly using integration by parts, provided that limx→±∞ e−
x2

2 h′(m+ σx) =
0). Using this equality, we can write

E

[
Zh′

(
e−tx+

√
1 − e−2tZ

)]
=
√

1 − e−2tE

[
h′′
(
e−tx+

√
1 − e−2tZ

)]
.

Therefore,

ḣt(x) = −e−tx ·Kth
′(x) + e−2tKth

′′(x). (3.350)

On the other hand,

Lht(x) = h′′t (x) − xh′t(x)

= e−2t
E

[
h′′
(
e−tx+

√
1 − e−2tZ

)]
− xe−t

E

[
h′
(
e−tx+

√
1 − e−2tZ

)]

= e−2tKth
′′(x) − e−txKth

′(x). (3.351)

Comparing (3.350) and (3.351), we get (3.82).
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The proof of the integration-by-parts formula (3.83) is more subtle, and relies on the fact that the
Ornstein–Uhlenbeck process {Yt}∞t=0 with Y0 ∼ G is stationary and reversible in the sense that, for any

two t, t′ ≥ 0, (Yt, Yt′)
d
= (Yt′ , Yt). To see this, let

p(t)(y|x) ,
1√

2π(1 − e−2t)
exp

(
−(y − e−tx)2

2(1 − e−2t)

)

be the transition density of the OU(t) channel. Then it is not hard to establish that

p(t)(y|x)γ(x) = p(t)(x|y)γ(y), ∀x, y ∈ R

(recall that γ denotes the standard Gaussian pdf). For Z ∼ G and any two smooth functions g, h, this
implies that

E[g(Z)Kth(Z)] = E[g(Y0)Kth(Y0)]

= E[g(Y0)E[h(Yt)|Y0]]

= E[g(Y0)h(Yt)]

= E[g(Yt)h(Y0)]

= E[Ktg(Y0)h(Y0)]

= E[Ktg(Z)h(Z)],

where we have used (3.78) and the reversibility property of the Ornstein–Uhlenbeck process. Taking the
derivative of both sides w.r.t. t, we conclude that

E[g(Z)Lh(Z)] = E[Lg(Z)h(Z)]. (3.352)

In particular, since L1 = 0 (where on the left-hand side 1 denotes the constant function x 7→ 1), we have

E[Lg(Z)] = E[1Lg(Z)] = E[g(Z)L1] = 0 (3.353)

for all smooth g.

Remark 54. If we consider the Hilbert space L2(G) of all functions g : R → R such that E[g2(Z)] <∞
with Z ∼ G, then (3.352) expresses the fact that L is a self-adjoint linear operator on this space.
Moreover, (3.353) shows that the constant functions are in the kernel of L (the closed linear subspace of
L2(G) consisting of all g with Lg = 0).

We are now ready to prove (3.83). To that end, let us first define the operator Γ on pairs of functions
g, h by

Γ(g, h) ,
1

2
[L(gh) − gLh− hLg] . (3.354)

Remark 55. This operator was introduced into the study of Markov processes by Paul Meyer under the
name “carré du champ” (French for “square of the field”). In the general theory, L can be any linear
operator that serves as an infinitesimal generator of a Markov semigroup. Intuitively, Γ measures how
far a given L is from being a derivation, where we say that an operator L acting on a function space is a
derivation (or that it satisfies the Leibniz rule) if, for any g, h in its domain,

L(gh) = gLh+ hLg.

An example of a derivation is the first-order linear differential operator Lg = g′, in which case the Leibniz
rule is simply the product rule of differential calculus.
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Now, for our specific definition of L, we have

Γ(g, h)(x) =
1

2

[
(gh)′′(x) − x(gh)′(x) − g(x)

(
h′′(x) − xh′(x)

)
− h(x)

(
g′′(x) − xg′(x)

)]

=
1

2

[
g′′(x)h(x) + 2g′(x)h′(x) + g(x)h′′(x)

− xg′(x)h(x) − xg(x)h′(x) − g(x)h′′(x) + xg(x)h′(x) − g′′(x)h(x) + xg′(x)h(x)
]

= g′(x)h′(x), (3.355)

or, more succinctly, Γ(g, h) = g′h′. Therefore,

E[g(Z)Lh(Z)] =
1

2

{
E[g(Z)Lh(Z)] + E[h(Z)Lg(Z)]

}
(3.356)

=
1

2
E[L(gh)(Z)] − E[Γ(g, h)(Z)] (3.357)

= −E[g′(Z)h′(Z)], (3.358)

where (3.356) uses (3.352), (3.357) uses the definition (3.354) of Γ, and (3.358) uses (3.355) together with
(3.353). This proves (3.83).

3.C Fano’s inequality for list decoding

The following generalization of Fano’s inequality has been used in the proof of Theorem 45: Let X and
Y be finite sets, and let (X,Y ) ∈ X × Y be a pair of jointly distributed random variables. Consider an
arbitrary mapping L : Y → 2X which maps any y ∈ Y to a set L(y) ⊆ X . Let Pe = P (X 6∈ L(Y )). Then

H(X|Y ) ≤ h(Pe) + (1 − Pe)E [ln |L(Y )|] + Pe ln |X | (3.359)

(see, e.g., [156] or [165, Lemma 1]).
To prove (3.359), define the indicator random variable E , 1{X 6∈L(Y )}. Then we can expand the

conditional entropy H(E,X|Y ) in two ways as

H(E,X|Y ) = H(E|Y ) +H(X|E,Y ) (3.360a)

= H(X|Y ) +H(E|X,Y ). (3.360b)

Since X and Y uniquely determine E (for the given L), the quantity on the right-hand side of (3.360b)
is equal to H(X|Y ). On the other hand, we can upper-bound the right-hand side of (3.360a) as

H(E|Y ) +H(X|E,Y ) ≤ H(E) +H(X|E,Y )

= h(Pe) + P(E = 0)H(X|E = 0, Y ) + P(E = 1)H(X|E = 1, Y )

≤ h(Pe) + (1 − Pe)E [ln |L(Y )|] + Pe ln |X |,
where the last line uses the fact that when E = 0 (resp, E = 1), the uncertainty about X is at most
E[ln |L(Y )|] (respectively, ln |X |). More precisely,

H(X|E = 0, Y ) = −
∑

y∈Y
P(Y = y,E = 0)

∑

x∈X
P(X = x|Y = y,E = 0) ln P(X = x|Y = y,E = 0)

= −
∑

y∈Y
P(Y = y,E = 0)

∑

x∈L(y)

P(X = x|Y = y) ln P(X = x|Y = y)

≤
∑

y∈Y
P(Y = y,E = 0) ln |L(y)|

≤
∑

y∈Y
P(Y = y) ln |L(y)|

= E [ln |L(Y )|] .
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In particular, when L is such that L(Y ) ≤ N a.s., we can apply Jensen’s inequality to the second term
on the right-hand side of (3.359) to get

H(X|Y ) ≤ h(Pe) + (1 − Pe) lnN + Pe ln |X |.

This is precisely the inequality we used to derive the bound (3.265) in the proof of Theorem 45.

3.D Details for the derivation of (3.290)

Let Xn ∼ PXn and Y n ∈ Yn be the input and output sequences of a DMC with transition matrix
T : X → Y, where the DMC is used without feedback. In other words, (Xn, Y n) ∈ X n ×Yn is a random
variable with Xn ∼ PXn and

PY n|Xn(yn|xn) =

n∏

i=1

PY |X(yi|xi), ∀yn ∈ Yn, ∀xn ∈ X n s.t. PXn(xn) > 0.

Because the channel is memoryless and there is no feedback, the ith output symbol Yi ∈ Y depends

only on the ith input symbol Xi ∈ X and not on the rest of the input symbols X
i
. Consequently,

Y
i → Xi → Yi is a Markov chain for every i = 1, . . . , n, so we can write

P
Yi|Y

i(y|yi) =
∑

x∈X
PYi|Xi

(y|x)P
Xi|Y

i(x|yi) (3.361)

=
∑

x∈X
PY |X(y|x)P

Xi|Y i(x|yi) (3.362)

for all y ∈ Y and all yi ∈ Yn−1 such that P
Y

i(yi) > 0. Therefore, for any two y, y′ ∈ Y we have

ln
P

Yi|Y
i(y|yi)

P
Yi|Y

i(y′|yi)
= lnP

Yi|Y
i(y|yi) − lnP

Yi|Y
i(y′|yi)

= ln
∑

x∈X
PY |X(y|x)P

Xi|Y
i(x|yi) − ln

∑

x∈X
PY |X(y′|x)P

Xi|Y
i(x|yi)

≤ max
x∈X

lnPY |X(y|x) − min
x∈X

lnPY |X(y′|x).

Interchanging the roles of y and y′, we get

ln
P

Yi|Y
i(y′|yi)

P
Yi|Y

i(y|yi)
≤ max

x,x′∈X
ln
PY |X(y′|x)
PY |X(y|x′) .

This implies, in turn, that

∣∣∣∣∣ln
P

Yi|Y
i(y|yi)

P
Yi|Y

i(y′|yi)

∣∣∣∣∣ ≤ max
x,x′∈X

max
y,y′∈Y

∣∣∣∣ln
PY |X(y|x)
PY |X(y′|x′)

∣∣∣∣ =
1

2
c(T )

for all y, y′ ∈ Y.
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[118] S. Verdú, “Mismatched estimation and relative entropy,” IEEE Trans. on Information Theory,
vol. 56, no. 8, pp. 3712–3720, August 2010.

[119] H. L. van Trees, Detection, Estimation and Modulation Theory, Part I. Wiley, 1968.

[120] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press,
1992.

[121] M. C. Mackey, Time’s Arrow: The Origins of Thermodynamic Behavior. New York: Springer,
1992.

[122] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, 5th ed. Berlin:
Springer, 1998.

[123] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed. Springer, 1988.

[124] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2nd ed. Imperial College
Press, 2005.
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