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Organization

From exponential inequalities to the concentration of measure phenomenon

Concentration inequalities using the entropy method

Learning-theoretical applications

Moment inequalities using the generalized entropy method
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From exponential inequalities to concentration
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Lecture I: from exponential inequalities to concentration

Introduction and Motivations

Path to Bernstein inequality

Martingales with bounded increments

Efron-Stein inequality
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Lecture I: Roadmap

The introduction describes traditional exponential inequalities (Hoeffding/Bernstein) as
non-asymptotic counterparts to limit theorems for sums of independent random variables.
Concentration inequalities are presented as upper-bounds on tail probabilities for functions
of many independent random variables. The scope of concentration inequalities is illustrated
on a combinatorial optimization problem.
The path to Bernstein inequality is described in detail, stressing the fact that good bounds on
the Log-Laplace transform of a random variable provide exponential bounds on the tail
probabilities. The main topic of this course will be the derivation of Bernstein-like inequalities
for general functions.
Martingales methods provide a general recipe for constructing Bernstein-like inequalities.
The exponential super-martingale associated with martingales with bounded increments
allows to refine the celebrated bounded-differences inequality. Despite and because of their
generality, using martingale methods may be quite difficult. This has prompted the search for
more user-friendly methods as (for example) the entropy method.
The first step in the entropy method is illustrated by the Efron-Stein inequality. The latter
inequality provides a general and often tight upper-bound on the the variance of general
functions of independent random variables. The Efron-Stein bound is first illustrated on a
combinatorial optimization problem.
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Appetizer

Basic concern of Probability Theory : sums of independent bounded random variables

� �
	 � 	 �� i.i.d. in

��� ��� � � � � � 	 � � � � � � �	 � ���

� � � 
	 � ! �"	
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Appetizer

Basic concern of Probability Theory : sums of independent bounded random variables

� �
	 � 	 �� i.i.d. in

��� ��� � � � � � 	 � � � � � � �	 � ���

� � � 
	 � ! �"	

Law of Large Numbers (LLN):

#%$ & �� '( ) * +, � � � � � � , &- $ . � �

Central Limit Theorem (CLT, Invariance principle)

#0/ 1 2 '( ) * 3 �4- � � � � � � � � 5 / 6 � 7
8 9

�4: ;� < 8 = ��> �? /

LLN and CLT : asymptotic statements.
Z Need for statements dealing with fixed values of- .
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Appetizer

Central Limit Theorem (CLT, Invariance principle)

#0/ 1 2 '( ) * 3 �4- � � � � � � � � 5 / 6 � 7
8 9

�4: ;� < 8 = ��> �? /

LLN and CLT : asymptotic statements.
Z Need for statements dealing with fixed values of- .
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Appetizer

Probability Theory provides informations about the rate of convergence in the CLT.
(Berry-Esseen, 1943)

� �, �"	 , @ � 5 A BC DE 7
FGFHF * 3 �4- � � � � � � � � 5 / 6 � 7

8 9
�4 : ;� < 8 = ��> �? / FGFHF � I4-

Berry-Esseen Theorems say nothing meaningful about

FHFJFHF * K � � � � � � � � &- / L � 9
7

�4: ;� < 8 M = ��> � ? / FHFJFHF

Large deviations depend upon the P.D. of

� 	ON !
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Appetizer

Probability Theory provides informations about the rate of convergence in the CLT.
(Berry-Esseen, 1943)

� �, �"	 , @ � 5 A BC DE 7
FGFHF * 3 �4- � � � � � � � � 5 / 6 � 7

8 9
�4 : ;� < 8 = ��> �? / FGFHF � I4-

Berry-Esseen Theorems say nothing meaningful about

FHFJFHF * K � � � � � � � � &- / L � 9
7

�4: ;� < 8 M = ��> � ? / FHFJFHF

Large deviations depend upon the P.D. of

� 	ON !

If

�

is Gaussian:

* + �P Q . � 9
R

�
/ 4 : ;� / < 8 = ��> ? /

� S � �
/

�4: ;� < 8 = ��> T 9
R U 9
R

4� 4: ;
�

/ � < 8 = ��> ? /

� 4�4: ; Q < 8 V ��>
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Appetizer

Gaussian tail bounds:

* + � P Q . � 4�4 : ; Q < 8 V ��>
What about sums of i.i.d. random variables ? Exponential inequalities provide a widely
applicable answer to those questions:

If

�

is a sum of- independent centered

� � � � � �

-variables:

* + �P � � � � U Q . �XW YE Z � R�� [
Hoeffding

* + �P � � � � U Q . �W YE Z � R�� \
Var

]^ _` Ra @ b [

Bernstein.

Gaussian-like tail bounds.
In Bernstein inequality,- does not appear in the exponent,

Bernstein inequality looks dimension-free.
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Motivations

“While exponential inequalities for sums of independent random variables are
at the core of classical probabilities, the new abstract inequalities are
far-reaching extensions that apply to considerably more general functions.”

M. Talagrand.Ann. Probability,

�c cd
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Motivations

“While exponential inequalities for sums of independent random variables are
at the core of classical probabilities, the new abstract inequalities are
far-reaching extensions that apply to considerably more general functions.”

M. Talagrand.Ann. Probability,

�c cd

“Any function of many independent random variables that depend on many of
them but not too much on each of them is essentially constant.”

M. Talagrand. Inventiones Mathematicae,
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Motivations

“While exponential inequalities for sums of independent random variables are
at the core of classical probabilities, the new abstract inequalities are
far-reaching extensions that apply to considerably more general functions.”

M. Talagrand.Ann. Probability,

� c c d

“Any function of many independent random variables that depend on many of
them but not too much on each of them is essentially constant.”

M. Talagrand. Inventiones Mathematicae,

�c cd

What’s in depend not too much on each of the variables ?

How general should be the considerably more general functions ?

Combinatorial optimization problems provide a cavalcade of illustrations of the
concentration of measure phenomenon.
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Random interval packings

�
	 are intervals from

� �� � �

: extremities are picked by picking random numbers from

� �� � �

A packing is a set of pairwise disjoint intervals.�

: maximum cardinality of a packing extracted from

� ! � N N N � �
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Random interval packings

�

: maximum cardinality of a packing extracted from

� ! � N N N � �

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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20 random intervals sorted according to rightmost extremity

Z: a maximum packing can be constructed (in

e f- 'hg i- j

operations) by a greedy algorithm.

1 sort intervals according their right-most extremities in ascending order.
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Random interval packings
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A greedy packing of 4 intervals

2 the initial packing contains the first interval

3 scan the remaining intervals in ascending order

4 add the current interval to the packing if its left-most extremity is larger

than the right-most extremity of the last interval in the packing.
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Random interval packings

How does

� � � �

behave as

4- goes to infinity?

Law of large numbers? CLT? Asymptotic theorems ?

Tail behavior for fixed- ?

No obvious way to represent

�

as a sum of independent random variables.�

is a kind of “much more general function” of many independent random variables
does not depend to much on each of them.
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Random interval packings

1 interval k 1 point

f / � l j

in

� �� � � �

with / � lN
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Example:

� � � � �

random intervals,
� � � � m� � � � �on �pq 4- n � �r

�

satisfies a Central Limit Theorem:f � � � � � � js - ! at

is asymptotically Gaussian with variance

: f m � ; js ; @ a �N
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Random interval packings

Z If

�P Q� then there exists a sequence of

Q

intervals

� 	Ou � �
	 � � N N N � �
	 V that witnesses this
fact.
This is just a sequence of

Q

disjoint intervals !

A set property (P) is hereditary if every subset of a set satisfying (P) also satisfies (P)

�

is a configuration function:

�

is the largest cardinality of a subset of the random variables
that satisfy some hereditary property.

Concentration inequalities assert that:

* + �P � � � � U Q . � W YE v � Q �
: f � � � � U Qs r j

w

* + � � � � � � � Q . � W YE v � Q �
: � � � �

w N

Z The concentration of measure perspective deals with deviations around
expectation/median by focusing on the structure of increments of the functional under
consideration.

The average behavior

� � � �

is analyzed separately.
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Path to Bernstein inequality

� ! � N N N � � �
	 1 ��� � � � � � independent,

� � � 	 � � �� Var

� � 	 � �� N

Markov inequality.

�

an

2

-valued random variable.x

a positive measurable function, such that

x

is non-decreasing on
� Q� A j

.

* K � & Q L � * y x f � j P x f Q j z x
is non-decreasing.

� � {}|�~ \ ^ b� ~ \ Rb �

� � {�|�~ \ ^ b� ~ \ Rb x f � j
x f Q j �

� � { x f � j
x f Q j �
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Path to Bernstein inequality

� ! � N N N � � �
	 1 ��� � � � � � independent,

� � � 	 � � �� Var

� � 	 � �� N

Markov inequality.

�

an

2

-valued random variable.x

a positive measurable function, such that

x

is non-decreasing on
� Q� A j

.

* K � & Q L � � { x f � j
x f Q j �

Examples:x f / j � / � � * y � � � � � � & Q z � � { \ ^ 8 � ]^ _ b �R� � � Var

\ ^ bR�

x f / j �W YE f� / j

where

� & � * y � & Q z �XW YE v � �� Q � 'hg i � � < 8 � ^� � w

x f / j � , / ,� * y � & Q z � � {� ^ � � R� � � Z� ^ � � R [�

Z Markov inequality relates tail-behavior and integrability.
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Path to Bernstein inequality

� ! � N N N � � �
	 1 ��� � � � � � independent,

� � � 	 � � �� Var

� � 	 � �� N

Exponential Markov inequalities for sums of independent random variables.

� � � 	 � ! �
	

* y � & Q z � < 8 � R� { < � ��� �� �

� < 8 � R� {
	 < � �� �

� < 8 � R
	 � { < � �� �

by independence
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Path to Bernstein inequality

� ! � N N N � � �
	 1 ��� � � � � � independent,

� � � 	 � � �� Var

� � 	 � �� N

Exponential Markov inequalities for sums of independent random variables.

� � � 	 � ! �
	

* y � & Q z � < 8 � R
	 � { < � �� �

	
Z � { < � �� � [ � 	 � { 9

�� �
� � � �	�� �

� 	 � { � U 9
�� �

� �, �
	 , �
�� �

centering

� 	 � U� 9
�� �

� �
�� variance, boundedness

� 	
Z � U� f < � � � � � j [

�W YE Z

Var

f � j f < � � � � � j [
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Path to Bernstein inequality

� ! � N N N � � �
	 1 ��� � � � � � independent,

� � � 	 � � �� Var

� � 	 � �� N

Exponential Markov inequalities for sums of independent random variables.

� � � 	 � ! �
	

With � � f� j � < � � � � ���
* y � & Q z � < 8 � RW YE Z

Var

f � j � � f � j [

Convex duality: � f / j � C DE � �� / � � � f� j � � f / U � j 'hg i f / U � j � /

* y � & Q z � W YE v � C DE � �� Q � Var

f � j � � f� j� w

� W YE v � Var

f � j � v Q

Var

f � j
w w

Bennett

� W YE v � Q �

: f

Var

f � j U Qs r j
w

Bernstein
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Martingale inequalities

Doob’s embedding.

�	 � � { x f � ! � � � � N N N � � j , � 	 ! � � � � � , � 	 ! �

�	 is � f � ! � N N N � �
	 j

-measurable.

� � � � � � � � � �

� { �	 ` ! , � 	 ! � � �	

The sequence

� �	 �  	 � � is an

� � f � ! j � 	 � ���� � � �  -adapted martingale.

Z Doob’s embedding allows to represent a general function of many random variables as
the last value of a martingale. The increments

�	 ` ! � �	 reflect the sensitivity of

x

with
respect to its arguments.
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Martingale inequalities

Martingale with bounded increments.
Assumption: for all

�� , �	 ` ! � �	 , � �

and

� � � � � �

Increasing process associated with martingale

f �	 jN

� � � 	 � 	
�� ! � � f � � � � � 8 ! j � , � � 8 !! �

Var

f � j � Var

f � j � � � � � �  �

The process

ZW YE Z� �	 � � � f� j � � � 	 [ [ 	 is an
f � f � 	 ! j j 	 -adapted super-martingale:

� { ZW YE Z� �	 � � � f � j � � � 	 [ [ , � 	 8 !! � �W YE Z� �	 8 ! � � � f� j � � � 	 8 ! [
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Martingale inequalities

Bounded-differences inequality (McDiarmid).

Assumption:

� � �  ��  with probability

�N
� { < � \ ^ 8 � ]^ _ b � �XW YE �  � � f� j �

As increments are bounded by

�

, we have

� � �  �- N
Azuma inequality (Hoeffding inequality for martingales with bounded increments)

* y � � � � � � P Q z �W YE Z � Q �
: -

[

§ A worst-case upper bound on

� � �  may be excessively conservative.
Z It is highly desirable to take advantage of the integrability of

� � �  in order to derive tight
tail bounds for martingale with bounded increments.
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Martingale inequalities

Bernstein inequality for martingales. Stopping

¡

is a stopping time with respect to

f � f � 	 ! j j 	 if

¡ � �

is � f � 	 ! j

-measurable.

The optional sampling theorem entails that

ZW YE Z� � � � � � f � j � � � � [ � W YE Z� �£¢ � � � f� j � � � ¢ [ [

is a super-martingale.

For a (finite) stopping time

¡ � {W YE Z� � ¢ � � � f � j � � � ¢ [ � � �

Let

¤

denote a fixed positive quantity

¡ � ) (¦¥ y- � ) (¦¥ K¨§ © � � � �` ! & ¤ L z

is a stopping time.
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Martingale inequalities

Bernstein inequality for martingales. Stopping

¡

is a stopping time with respect to

f � f � 	 ! j j 	 if

¡ � �

is � f � 	 ! j

-measurable.

* y �P Qª ¡ �- z � * y � ¢ P Q z

� * y � � ¢ � � � f� j � � � ¢ P � Q � � � f� j � � � ¢ z

�W YE Z � � Q U � � f� j ¤ [

�W YE Z � ¤ � v Q ¤
w [

Optimizing with respect to

�

�W YE Z � Q �
: f ¤ U Qs r j [
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Martingale inequalities

Bernstein inequality for martingales. Stopping

¡

is a stopping time with respect to

f � f � 	 ! j j 	 if

¡ � �

is � f � 	 ! j

-measurable.

* y �P Qª ¡ �- z �W YE Z � Q �
: f ¤ U Qs r j [

* y �P Q z � * y � � �  P ¤ z UW YE Z � Q �
: f ¤ U Qs r j [

Z The stopping-time trick allows to search for trade-offs and just requires the martingale to
be smooth on average. It is tight for moderate deviations.
§ The conditional variance process may be as difficult to analyze as

�

...

Z Efron-Stein estimates will serve as surrogates for conditional variance process.
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Conventions

� ! � N N N � � : independent random variables.

: function of many independent random variables.

: independent copies of

Two perturbations of :
is replaced by an independent copy :

does not depend on .

and allow to monitor the sensitivity of

Var
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Conventions

� ! � N N N � � : independent random variables.� � x f � ! � N N N � � j

: function of many independent random variables.

: independent copies of

Two perturbations of :
is replaced by an independent copy :
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and allow to monitor the sensitivity of
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Conventions

� ! � N N N � � : independent random variables.� � x f � ! � N N N � � j

: function of many independent random variables.� « ! � N N N � � « : independent copies of

� ! � N N N � � N

Two perturbations of

�

:�
	 is replaced by an independent copy

�¬ 	 :� \ 	 b � x f � ! � N N N � �
	 8 ! � � «	 � �
	 ` ! � N N N � � j

�	 does not depend on

� 	 .�	 � x	 f � ! � N N N � �
	 8 ! � �
	 ` ! � N N N � � jN

and allow to monitor the sensitivity of

Var
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Conventions

� ! � N N N � � : independent random variables.� � x f � ! � N N N � � j

: function of many independent random variables.� « ! � N N N � � « : independent copies of

� ! � N N N � � N

Two perturbations of

�

:�
	 is replaced by an independent copy

�¬ 	 :� \ 	 b � x f � ! � N N N � �
	 8 ! � � «	 � �
	 ` ! � N N N � � j

�	 does not depend on

� 	 .�	 � x	 f � ! � N N N � �
	 8 ! � �
	 ` ! � N N N � � jN¤`

and

¤

allow to monitor the sensitivity of
�

¤` � 	 � { � � � � \ 	 b � � | ^  ^ ® � ¯ , � ! �

¤ � 	
� � � �	 � �N

Var
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Conventions

� ! � N N N � � : independent random variables.� � x f � ! � N N N � � j

: function of many independent random variables.� « ! � N N N � � « : independent copies of

� ! � N N N � � N

Two perturbations of

�

:�
	 is replaced by an independent copy

�¬ 	 :� \ 	 b � x f � ! � N N N � �
	 8 ! � � «	 � �
	 ` ! � N N N � � j

�	 does not depend on

� 	 .�	 � x	 f � ! � N N N � �
	 8 ! � �
	 ` ! � N N N � � jN¤`

and

¤

allow to monitor the sensitivity of
�

¤` � 	 � { � � � � \ 	 b � � | ^  ^ ® � ¯ , � ! �

¤ � 	
� � � �	 � �N

Var

� � , �"	 � � 1 ° � � � �� ± ² { � �´³ � � µ± ² � f � � � � � , �"	 � � 1 ° � j � , �"	 � � 1 °� �

°¶ + � � N N N � - .
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Efron-Stein inequality

Var

� � � � � � ¤` � �
·¹¸

º
! � � 	 � { � � � � \ 	 b � � � � � 	 Var

� � , � 	 8 !! � � 	 ` ! �

� 	 � { � � � � \ 	 b � � | ^  ^ ® � ¯ �
As Var

� � , � 	 8 !! � � 	 ` ! � � � � f � � �	 j � � � for any

�	 that is

� 	 8 !! � � 	 ` ! -measurable,

Var

� � � � � � ¤` � � � � ¤ �N
Z E-S inequality is tight: for sums of independent random variables, it becomes an
inequality.
Z E-S inequality is (sometimes) called the Jacknife estimate of variance.
Z E-S inequality is also called the tensorization property of variance.
§ E-S inequality may be poor: let

� � » 	 �
	 where

�
	 are Bernouilli random variables with
expectation ¼. Var

� � � � ¼ f � � ¼ j
while the Efron-Stein estimate equals- ¼ f � � ¼ j

!!
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Efron-Stein inequality

Var

� � � � � � ¤` � � � � ¤ �N

Proof of Efron-Stein inequality.(I)
w.l.o.g. assume

� � � � � �N

� � � �� � � { � 
	 � ! � � � , � 	 ! � � � � � , � 	 8 !! � � � �

martingale decomposition of

�

� 
	 � ! � { � � � � , � 	 ! � � � � � , � 	 8 !! � � � �

orthogonality martingale increments

� 
	 � ! � � �u { v � � M�½ u � � , � 	 ! � � � � M�½ u � � �� � � , � 	 8 !! � � w � �
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Efron-Stein inequality

Var

� � � � � � ¤` � � � � ¤ �N

Proof of Efron-Stein inequality.(I)
w.l.o.g. assume

� � � � � �N

� � � �� � � { � 
	 � ! � � � , � 	 ! � � � � � , � 	 8 !! � � � �

martingale decomposition of

�

� 
	 � ! � { � � � � , � 	 ! � � � � � , � 	 8 !! � � � �

orthogonality martingale increments

(conditional) Jensen inequality, / �
convex

� 
	 � ! � � �o¾ uu � � M� ½ u

{ � �� � f � � � �� � � , � 	 8 !! � � 	 ` ! � j � , � 	 8 !! � � 	 ` !� �

� 
	 � ! Var

� � , � 	 8 !! � � 	 ` ! � � � � ¤` �
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Efron-Stein inequality

Where does convexity show up ?

Jensen inequality in large spaces.¿

: a locally convex Haussdorf topological vector space, with dual

¿ �
Rockafellar duality Lemma.

x

: a lower-semi-continuous convex function from

¿

onf � A� A �

if À is defined on

¿ �

as À f l j �C D E 7 ± Á l f / j � x f / j � then

x f / j �C DEÃÂ ± ÁÄ l f / j � À f l j

� ¿

-valued r.v.

� S x f � j T � � S C DEÂ ± ÁÄ � l f � j � À f l j � T

Rockafellar

P C DEÂ ± ÁÄ
{ � S � l f � j � À f l j � T �

� C DEÂ ± ÁÄ
{ l v � � �� w � À f l j �

� x Z � � � � [

RockafellarN
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Efron-Stein inequality

Var

� � � � � � ¤` � � � � ¤ �N

Proof of Efron-Stein inequality.(II)

Variance maps

Å � toward

2` N Variance is convex !

duality Var

� � � � C D E¢ ± Æ½ �
{ : � � ¡ � � � Var

� ¡ � �

Var

� � , � � � � � � �
Ç C DE¢ ± Æ � \ �u b

y : � �u � ¡ f � ! j � � � Var

� ¡ � z È

P C D E¢ ± Æ � \ �u b � � � { : � �u � ¡ f � ! j � � � Var

� ¡ � �

� C D E¢ ± Æ � \ �u b � �u � : � � � � � � ¡ �u � Var

� ¡ ��

� Var

� � � � , � ! � �
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Efron-Stein inequality

Var

� � � � � � ¤` � � � � ¤ �N

Proof of Efron-Stein inequality.(II)

duality Var

� � � � C D E¢ ± Æ½ �
: � � ¡ � � � Var

� ¡ �

B Var

� � , � ! � N N N �"	 8 ! � �
Var

� � , � ! � N N N � �"	 8 ! � �"	 ` ! � N N N � � �

Var

� � � � � { � � � � � � , � ! � � � � U � { � � � � � � , � ! � � � � � � � � �

� � �u { � � � � � � � � � � , � ! � � �� � U � �u { � � � � � � , � ! � � � � � � � � �

�

Var

� � , � ! � U Var
� � � � , � ! � �

�

Var

� � , � ! � U Var

� � , � � �
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Application of Efron-Stein inequality

Back to Random interval packings�	 is the size of the largest packing that can be constructed when the

�
th interval is removed.

�	 � �

if the

�

th interval does not belong to a witness of the value of

��
otherwise

�	 P � � �N
� � � � �	 � �

and 	
f � � �	 j � �

¤ � �

> Var
� � � � � � � �

Z If

� � � � É A with- � E-S and Chebyshev imply a law of large numbers for

�s � � � �

.

Z As- B goes to infinity,

� � � �s 4- B : s 4 ; while Var

� � �s 4- B � \t 8q bq � Ê �

The Efron-Stein estimate is within ;s f m � ; jn r N d d

from truth (asymptotically)!!

Z

¤ � �

also holds for all configuration functions, this includes VC-dimension, fat-shattering
dimension, VC-entropy, conditional Rademacher averages.
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Lecture II: The entropy method

From exponential inequalities to the concentration of measure phenomenon

Concentration inequalities using the entropy method

Entropy

Tensorization

Modified Logarithmic Sobolev inequalities

Exponential Efron-Stein inequalities

Convex distance inequality

Learning-theoretical applications

Moment inequalities using the generalized entropy method
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Lecture II: where are we ?
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Lecture II: where are we ?

Concentration inequalities are aimed to extend the classical exponential inequalities for
sums of independent random variables, to functions of independent random variables.Such
functions show up in learning theory as the sumpremum of the deviations between the true
risk and the empirical risk, the empirical VC-dimension, the empirical VC entropy, the
eigenvalues of the Gram matrix.... They play an important role in the estimation of the
generalization error and have proved useful in the design of model selection strategies.
Even when a function cannot be coded as a sum of independent random variables, it may be
usually represented as a sum of martingale increments. If the increments happen to be
bounded, martingale extensions of the classical inequalities allow (in principle) to derive
exponential inequalities for the function of interest. There is indeed a tight relationship
between the moments of the function under concern and the moments of the increasing
process associated to the martingale representation.
Unfortunately the increasing process is not so easy to analyze. Efron-Stein estimates of the
variance of the function of interest have proved to be reasonable surrogates for the
increasing process. Indeed, in the second lecture, we will relate the exponential moments of
the function under concern and the exponential moments of the Efron-Stein estimates. This
will be carried out using the entropy method.
Efron-Stein estimates have often turned out to be surprisingly easy to analyze. This is
exemplified by a derivation of Talagrand’s convex distance inequality.
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Lecture II: roadmap

The entropy of a random variable is defined and elementary properties are presented. Then
the Gaussian logarithmic-Sobolev inequality is described. It is shown to imply a tight
upper-bound on the log-Laplace transform of smooth functions of Gaussian random
variables. A remarkable feature of the Gaussian logarithmic-Sobolev inequality lies in the
fact that it is dimension-free.
The derivation of modified logarithmic-Sobolev inequalities in product spaces is carried in
two steps: tensorization of entropy is derived by resorting to convexity arguments that proved
useful when deriving the Efron-Stein inequality; then an energy that will prove to be
adequate for general product spaces is defined. The Efron-Stein upper-bound on variance
shows up in the right-hand-side of modified logarithmic-Sobolev inequalities.
Under various integrability conditions of the Efron-Stein upper-bound of variance,
Bernstein-like inequalities for functions of many independent random variables that depend
not too much on each of them are derived.
Bernstein-like inequalities for self-bounded functionals are derived. A derivation of
Talagrand’s convex distance inequality is finally presented.
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Gaussian tails from logarithmic Sobolev inequalities

To get exponential tail bounds for

�

> control

� �W YE f� � j �

or

'hg i � �W YE f� f � � � � � � j j �

.

Control over log-Laplace transform of smooth functions of Gaussian random variables can
be obtained from functional inequalities known as logarithmic Sobolev inequalities.

Entropy of a (positive) function

x & �

with respect to a probability distribution

Ent

f x j � � � � x 'hg i x� � � � x � 'hg i � � x � � � �Ë f x j � � Ë f � � x � j

with

Ë f / j � / 'hg i / N

Jensen inequality > Ent

f x j P �N
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Gaussian tails from logarithmic Sobolev inequalities

To get exponential tail bounds for

�

> control

� �W YE f� � j �

or

'hg i � �W YE f� f � � � � � � j j �

.

Control over log-Laplace transform of smooth functions of Gaussian random variables can
be obtained from functional inequalities known as logarithmic Sobolev inequalities.

Entropy of a (positive) function

x & �

with respect to a probability distribution

Ent

f x j � � � � x 'hg i x� � � � x � 'hg i � � x � � � �Ë f x j � � Ë f � � x � j

with

Ë f / j � / 'hg i / N

Jensen inequality > Ent

f x j P �N
'( )Ì Í 9 Ent

� f x UÏÎ j � � � m

Var

� x � N
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Gaussian tails from logarithmic Sobolev inequalities

To get exponential tail bounds for

�

> control

� �W YE f� � j �

or

'hg i � �W YE f� f � � � � � � j j �

.

Control over log-Laplace transform of smooth functions of Gaussian random variables can
be obtained from functional inequalities known as logarithmic Sobolev inequalities.

Entropy of a (positive) function

x & �

with respect to a probability distribution

Ent

f x j � � � � x 'hg i x� � � � x � 'hg i � � x � � � �Ë f x j � � Ë f � � x � j

with

Ë f / j � / 'hg i / N

Jensen inequality > Ent

f x j P �N
Gaussian Logarithmic-Sobolev Inequality (Gross, 1975)

Ent

f x � j � : � �Ð Ñ x Ð ��

Entropy Energy
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Gaussian tails from logarithmic Sobolev inequalities

To get exponential tail bounds for

�

> control

� �W YE f� � j �

or

'hg i � �W YE f� f � � � � � � j j �

.

Control over log-Laplace transform of smooth functions of Gaussian random variables can
be obtained from functional inequalities known as logarithmic Sobolev inequalities.

Entropy of a (positive) function

x & �

with respect to a probability distribution

Ent

f x j � � � � x 'hg i x� � � � x � 'hg i � � x � � � �Ë f x j � � Ë f � � x � j

with

Ë f / j � / 'hg i / N

Jensen inequality > Ent

f x j P �N
Gaussian Logarithmic-Sobolev Inequality (Gross, 1975)

Ent

f x � j � : � �Ð Ñ x Ð ��
> Ent

� < �~ � � � �
: � �Ð Ñ x Ð � < �~ � N N

Z This step critically depends on the chain rule for derivation.
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Gaussian tails from logarithmic Sobolev inequalities

Herbst argument: derive a differential inequality satisfied by the log-Laplace transform.

Assumption:

Ð Ñ x Ð 9 � �

. Notation :
Ò f� j � ! � 'hg i � S < � ^ T

�� � Ent

f < � ^ j � Ò « f � j � � < � ^�

and

'( )�Ó �½ Ò f� j � � � � �

Ò « f� j � �
: Gaussian logarithmic-Sobolev inequality!

Ò f � j � Ò f �` j � �
: Integration

'hg i � S < � \ ^ 8 � ]^ _ b T � � �
: Rewriting.

* K x f � ! � N N N � � j P � � x � U Q L �XW YE v � Q �
: Ð Ñ x Ð � 9

w
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Gaussian tails from logarithmic Sobolev inequalities

Herbst argument: derive a differential inequality satisfied by the log-Laplace transform.

Assumption:

Ð Ñ x Ð 9 � �

. Notation :
Ò f� j � ! � 'hg i � S < � ^ T

�� � Ent

f < � ^ j � Ò « f � j � � < � ^�

and

'( )�Ó �½ Ò f� j � � � � �

'hg i � S < � \ ^ 8 � ]^ _ b T � � �
:

* K x f � ! � N N N � � j P � � x � U Q L �XW YE v � Q �
: Ð Ñ x Ð � 9

w

Z Any smooth function of a Gaussian random variable enjoys Gaussian tail-behavior.
The dimension of the Gaussian vector does not appear in tail-behavior.

The Gaussian concentration inequality is dimension-free.
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Variation on Herbst’s argument

Z The Gaussian logarithmic Sobolev inequality provides with concentration inequalities
when

Ð Ñ Ô Ð �

is (somewhat) exponentially integrable.

Decoupling inequality

� {� Õ < � ^ � �

Ent

{ < � ^ � U � { < � ^ � 'hg i � { < �Ö �

Variational characterization of Entropy:

� S x
� � x � À T �

Ent

S x
� � x �

T U 'hg i � � < × �

Applying the decoupling inequality to the Gaussian logarithmic Sobolev inequality:

Ent

{ < �~ � � Ø�
: Z

Ent

{ < �~ � U � { < �~ � 'hg i � { < Ù ÚÜÛ Ý Ú �Þ � [

ß

�� � Ent

{ < �~ �
� { < �~ � � Ø

: � f � � � Øs : j 'hg i � { < Ù ÚÛ Ý Ú �Þ �
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Variation on Herbst’s argument

Notations: Ò f� j � �� 'hg i � { < �~ �

and

à f� j � 'hg i � { < �� á~ � � � �

�� � Ent

{ < �~ �
� { < �~ � � Ø

: � f � � � Øs : j 'hg i � { < Ù ÚÜÛ Ý Ú �Þ �

translates into: Ò « f� j � â� � \ ! 8 � â a � b à f � s Ø j

Convexity of

à

> RHS is non-decreasing with respect to

�

Ò f� j � Ò f � j � �
ã� �

Ø
:�ä f � � ä Øs : j à fä s Ø j? ä

� Ø
: f � � � Øs : j à f� s Ø j
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Variation on Herbst’s argument

'hg i � { < � \~ \ � b 8 � ]~ _ b � � � â� \ ! 8 � â a � b 'hg i � { < �� á~ � � a â �
If

Ð Ñ x Ð 9 � å� taking

Ø

toward

�� we recover sub-Gaussian behavior.

'hg i � { < � \~ \ � b 8 � ]~ _ b � � � � å �
:

If

Ð Ñ x Ð � IÐ � Ð

(sub-quadratic function),

'hg i � { < �� á~ � � a â � 5 A for a non-trivial
range of values of

� N

Z In the sequel, we will try to reproduce this line of reasoning for product distributions.
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Toward modified Logarithmic Sobolev inequalities

The Gaussian logarithmic Sobolev inequality is (almost) a characterization of the
Gaussian distribution.

In order to derive tail bounds for other kinds of distributions using analogues of Herbst
argument, we need to develop:æ modified logarithmic Sobolev inequalities tailored to the distributions we
have in mind (exponential, Poisson, product distributions,... )æ analogues of Herbst argument.

Z In Learning Theory we are interested in (modified) logarithmic Sobolev inequalities for
product measures

S. Boucheron Concentration Inequalities, August,

�� � �

– p.19/47



Toward modified Logarithmic Sobolev inequalities

The Gaussian logarithmic Sobolev inequality is (almost) a characterization of the
Gaussian distribution.

In order to derive tail bounds for other kinds of distributions using analogues of Herbst
argument, we need to develop:æ modified logarithmic Sobolev inequalities tailored to the distributions we
have in mind (exponential, Poisson, product distributions,... )æ analogues of Herbst argument.

Z In Learning Theory we are interested in (modified) logarithmic Sobolev inequalities for
product measures

General form: Ent

f x � j � ç � x � �

where

ç � x �

is an energy-like functional.
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Toward modified Logarithmic Sobolev inequalities

The Gaussian logarithmic Sobolev inequality is (almost) a characterization of the
Gaussian distribution.

In order to derive tail bounds for other kinds of distributions using analogues of Herbst
argument, we need to develop:æ modified logarithmic Sobolev inequalities tailored to the distributions we
have in mind (exponential, Poisson, product distributions,... )æ analogues of Herbst argument.

Z In Learning Theory we are interested in (modified) logarithmic Sobolev inequalities for
product measures

General form: Ent

f x � j � ç � x � �

where

ç � x �

is an energy-like functional.

Balanced Bernouilli Log-Sobolev Inequality (Gross, 1975)

Ent
f x � j � �

: � � fè x j ��

with

è x � � x f � j � x f � � jN
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Tensorization of entropy

Derivation of modified LS inequalities proceeds in two steps:

Tensorization. (analogue of Efron-Stein inequality)

Notation Ent

� � , � ! � N N N � �
	 8 ! � �
	 ` ! � N N N � �

� � �u �� � � � ��¾ u � ��½ u �� � � � M {

Ent

� � f / ! � N N N � / 	 8 ! � �
	 � / 	 ` ! � N N N /  j � �

Ent

� � � � 
	 � ! Ent

� � , � 	 8 !! � � 	 ` ! �

Upper-bounding of entropies with respect to single random variables.
. 'hg i / � / � � & � � �é � 'hg i � �é � � � � �é � 'hg iê � � �é � U ê #ê & �N
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Tensorization of entropy

The tensorization step is generic.
Its relies on a convexity property of the functional

��ë B Ent

� � �

on

Å !` N
Not to be confused with the convexity of / ë B / 'hg i / N

Z A representation formula for Entropy:

Ent

� � � � C DE¢ ± Æ½ u
� { � 'hg i ¡� � ¡ � �

Ent

� � , � � � P
Ent

� � � � , � ! � �

2 variables

Ent

� � , � ! � N N N � �"	 8 ! � �"	 ` ! � N N N � � � P
Ent

� � � � , � ! � N N N � �"	 8 ! � , �"	 ` ! � N N N � �

The conditional distribution of

�
with respect

� ! � N N N � �
	 8 ! is a convex combination of
conditional distributions with respect to

� ! � N N N � �
	 8 ! � �
	 ` ! � N N N � �
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Tensorization of entropy

Ent

� � f � ! � � � j �

�C DE¢ � { � 'hg i ¡ f � ! � � � j
� � ¡ � �

�C DE¢ � { � 'hg i ¡
� � � � ¡ � U � 'hg i � � � � ¡ �
� � ¡ � �

� C DE¢ � { � 'hg i ¡
� � � � ¡ � � UC D E¢ � � � { � �u { � 'hg i � � � � ¡ �
� � ¡ � � �

� � �u { C D E¢ ± Æ½ u \ � � b � � � { � 'hg i ¡
� � � � ¡ � � � U � � � C DE¢ ± Æ½ u \ �u b

{ � �u { � 'hg i ¡
� �u � ¡ � � �

�

Ent

� � , � ! � U Ent

� � , � � �N
The general formula follows by induction on the number of variables.

� ! � N N N � � 8 !ì íî ï �

é ! é �
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Bounding entropy with respect to one random variable

When dealing with the variance, the proof of the Efron-Stein inequality reduced to the
proof of the tensorization property of the variance. Here, the tensorization property of
entropy leaves us with a sum of one-dimensional conditional entropies.

More work is needed in order to get an energy-like term.

'hg i / � / � � B � � �é � 'hg i � �é � � � � � é � 'hg iê � � �é � U ê #ê & �N

Ent

� x f � j � � � { x f � j 'hg i x f � j
ê � f x f � j � ê j � #ê & �N
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Bounding entropy with respect to one random variable

'hg i / � / � � B � � �é � 'hg i � �é � � � � � é � 'hg iê � � �é � U ê #ê & �N

Ent

� x f � j � � � { x f � j 'hg i x f � j
ê � f x f � j � ê j � #ê & �N

Let À 	 denote a function of the- � �

random variables:
� 	 8 !! � � 	 ` ! .

Ent

� x , � 	 8 !! � � 	 ` ! � � � � �¾ uu � � M� ½ u
Ç � �� { x 'hg i x

À 	 � � x � À 	 � , � 	 8 !! � � 	 ` ! � È
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Bounding entropy with respect to one random variable

'hg i / � / � � B � � �é � 'hg i � �é � � � � � é � 'hg iê � � �é � U ê #ê & �N

Ent

� x f � j � � � { x f � j 'hg i x f � j
ê � f x f � j � ê j � #ê & �N

Let À denote a function of- � �

random variables.
Combining with the tensorization property of Entropy:

Ent

� x � � 	 � � �¾ uu � � M�½ u
Ç � �� { x 'hg i x

À � � x � À � , � 	 8 !! � � 	 ` ! � È

Z entails the Gaussian logarithmic Sobolev inequality, the Poissonian logarithmic Sobolev
inequality...
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Bounding entropy with respect to one random variable

'hg i / � / � � B � � �é � 'hg i � �é � � � � � é � 'hg iê � � �é � U ê #ê & �N

Ent

� x f � j � � � { x f � j 'hg i x f � j
ê � f x f � j � ê j � #ê & �N

Specializing to functions

x f � ! j � < � ^

, letting À f � 	 8 !! � � 	 ` ! j � < � ^ � �

Ent

{ < � ^ � � 	 � � �o¾ uu � � M�½ u
Ç � �� { < � ^ v� � � � �	 w � v < � ^ � < � ^ � w � È

� 	 � � �o¾ uu � � M�½ u
Ç � �� { < � ^ v < � \ ^ � 8^ b � � f �	 � � j � � w � È

� 	 � � �o¾ uu � � M�½ u
Ç � �� { < � ^ � � f� f �	 � � j j � È
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Modified Log-Sobolev Inequalities (I)

Ent

{ < � ^ � � � { < � ^ � 	 � � f� f �	 � � j j �

where

�	 is a measurable function of

� ! � N N N � �
	 8 ! � �
	 ` ! � N N N � � �
and � � f / j � � < 7 � / � �N
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Modified Log-Sobolev Inequalities (I)

Ent

{ < � ^ � � � { < � ^ � 	 � � f� f �	 � � j j �

where

�	 is a measurable function of

� ! � N N N � �
	 8 ! � �
	 ` ! � N N N � � �
and � � f / j � � < 7 � / � �N

If

�P �	 and

� P �

as < 7 � / � � � / � s :

for / � �
Ent

{ < � ^ � � � �
: � { < � ^

	
f � � �	 j � �

Let

¤ � � 	 f � � �	 j � �

Ent

{ < � ^ � � � �
: � { ¤ < � ^ � B 'hg i � { < � \ ^ 8 � ]^ _ b � � � Ø
: f � � � Øs : j 'hg i � { < �ð a â �

Z Not only the second moment of

�
is related to some moment of

¤� (Efron-Stein) but also
the log-Laplace transforms are connected.
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Modified Log-Sobolev Inequalities (I)

Ent

{ < � ^ � � � { < � ^ � 	 � � f� f �	 � � j j �

Self-bounded functionsæ If �	 � � � �	 U � � as � �

is convex:

� � f � � f � � �	 j j � f � U � � �	 j � f � j U � � f � � j f � � �	 j

� � � f � � j f � � �	 j

Ent

{ < � ^ � � � �
: � { < � ^ � � f � � j �

	 � � �	 � �

æ If furthermore

� 	 f � � �	 j � �
Ent

{ < � ^ � � � � f � � j � { � < � ^ �
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Modified Log-Sobolev Inequalities (I)

Stating and solving the differential inequality:

� {� � < � ^ � � � { < � ^ � 'hg i � { < � ^ � � � � f � � j � { � < � ^ �
multiplying byW YE f � � � � � � j
regrouping

dividing by

Ô f� j � � {W YE �� f � � � � � � j � �

f� � � � f� j j Ô « f � j
Ô f � j � 'hg i Ô f� j � � � f� j � � � �

Note that

� � � � � � f� j

is a solution of the differential equation

f� � � � f � j j x « f� j � x f� j � � � f� j � � � �

One can check that

'hg i Ô f� j � � � � � � � f � j
is the largest solution of the differential inequality,

by showing that for all solutions
ñ f� j � f < � � � j À f� j

of
f � � � � f� j j ñ « f� j � ñ f � j � �

are non-positive. S. Boucheron Concentration Inequalities, August,
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Modified Log-Sobolev Inequalities (I)

Self-bounded functionsæ If �	 � � � �	 U � � as � �

is convex:

� � f � � f � � �	 j j � f � U � � �	 j � f � j U � � f � � j f � � �	 j

� � � f � � j f � � �	 j
Ent

{ < � ^ � � � �
: � { < � ^ � � f � � j �

	 � � �	 � �

æ If furthermore

� 	 f � � �	 j � �

Ent
{ < � ^ � � � � f � � j � { � < � ^ �

'hg i � { < � \ ^ 8 � ]^ _ b � � � � � � � � f � j

* K �P � � � � U Q z �XW YE Z � Q �
: f � � � � U Qs r j [N

S. Boucheron Concentration Inequalities, August,

�� � �

– p.22/47



Modified Log-Sobolev Inequalities (II)

Rather than

�
	 � we may consider

� \ 	 b � where� \ 	 b � x f � ! � N N N � �
	 8 ! � � «	 � �
	 ` ! � N N N � � j

Z

�

and

� \ 	 b

are identically distributed.

Ent

S < � ^ T � 
	 � ! � { < � ^ � � f � � f � � � \ 	 b j j �

� 
	 � ! � { < � ^ � � f � � f � � � \ 	 b j j | ^  ^ ® � ¯ �

U 
	 � ! � { < � ^ � � f � � f � � � \ 	 b j j | ^ ò ^ ® � ¯ �

� 
	 � ! � { < � ^ � � f � � f � � � \ 	 b j j | ^  ^ ® � ¯ �

U 
	 � ! � { < � ^ ® � ¯ � � f � � f � \ 	 b � � j j | ^  ^ ® � ¯ �

� 
	 � ! � S < � ^ v < 8 � \ ^ 8^ ® � ¯ b � � w � � � \ 	 b � � � | ^  ^ ® � ¯ T
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Modified Log-Sobolev Inequalities (II)

Symmetrized version of modified logarithmic Sobolev inequalities.

Ent

S < � ^ T � 
	 � ! � { < � ^ ó f � � f � � � \ 	 b j j | ^  ^ ® � ¯ �

where

� \ 	 b

is a measurable function of

� ! � N N N � �"	 8 ! � �"	 ` ! � N N N � � � and

� «	

while ó f / j � < 7 � � f � / j U � � f / j � / f < 7 � � jN

ó f j

is convex and for / & �� ó f � / j � / � �
for

� & �
Ent

S < � ^ T � � � � { < � ^ ¤` �

Where

� � ¤` �

is the Efron-Stein upper-bound on Var

� � �N
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Modified Log-Sobolev Inequalities (II)

For / � �

,

ó f / j � / �N The modified logarithmic Sobolev inequality implies that for
� P � ©

Ent

S < � ^ T � � � � S < � ^ ¤` T

� Ø� v

Ent

S < � ^ T U � S < � ^ T 'hg i � S < � ð ½ a â T wN

which translates into:

�� � Ent

S < � ^ T
� S < � ^ T � Ø

� f � � Ø� j 'hg i � S < �ð ½ a â T

Z This has exactly the same form as the inequality encountered while carrying the
extended Herbst argument !
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Modified Log-Sobolev Inequalities (II)

An exponential Efron-Stein inequality.

Ø & �

and

� 1 f �� �s Ø j

,

'hg i � �W YE f� f � � � � � � j j � � � Ø
� � � Ø 'hg i � SW YE v � ¤` Ø

w T N

The exponential integrability of

�

is actually related to the exponential integrability of
the Efron-Stein estimate(s) of variance. If we can bound

'hg i � {W YE Z � ð ½ â [ � � then we can
use an exponential Markov inequality in order to get a Bernstein-like inequality for

�N

Modus operandi: check whetheræ ¤

or

¤

is constant.æ ¤

or

¤`

is upper-bounded byÎ � U ô
,æ ¤

or

¤`

is simpler than

�N

Done or to be done for:æC DE~ õ � x � � õ

emp

f x jNæ Empirical VC or fat-shattering dimension.æ Empirical VC entropy.æ Number of support vectors.
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Control by convex distance

ö¶ ¿
? ÷ f /  ! � ö j � (¦¥ øÂ Mu ± ù? ÷ f /  ! � l ! j

� (¦¥ øÂ Mu ± ù 	¨ú 7 � µ� Â �
,üû 	 ,

? ¢ f /  ! � ö j � C D E÷ ± ] ��� 9 b Mú � ÷� � !? ÷ f /  ! � ö j

Talagrand’s convex distance.
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Control by convex distance

ö¶ ¿
? ÷ f /  ! � ö j � (¦¥ øÂ Mu ± ù? ÷ f /  ! � l ! j

� (¦¥ øÂ Mu ± ù 	¨ú 7 � µ� Â �
,üû 	 ,

? ¢ f /  ! � ö j � C D E÷ ± ] ��� 9 b Mú � ÷� � !? ÷ f /  ! � ö j

Talagrand’s convex distance.

If

* � � ! 1 ö � P �s : � * �? ¢ f � ! � ö j P Q � � : < 8 R� a t

Control by convex distance provides sharp deviation inequalities around the median, for

1. configuration functions,

2. euclidean traveling salesman,

3. bin-packing,

4. minimum spanning trees.
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Control by convex distance

Control by convex distance can be recovered from exponential Efron-Stein inequalities.

? ¢ fþý � ý j

can be represented as a saddle point.

ÿ f ö j

: set of probabilities on

ö

.

? ¢ f � ! � ö j � (¦¥ ø
� ± � \ ù b C DE÷ú � ÷� � � ! � û � � � �| �h³ µ� �³ �

� C DE÷ú � ÷� � � ! (¦¥ ø
� ± � \ ù b � û � � � �| �´³ µ� �³ �
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Control by convex distance

? ¢ fþý � ý j

can be represented as a saddle point.

ÿ f ö j

: set of probabilities on

ö
.

? ¢ f � ! � ö j � (¦¥ ø
� ± � \ ù b C DE÷ú � ÷� � � ! � û � � � �| �´³ µ� �³ �

� C DE÷ú � ÷� � � ! (¦¥ ø
� ± � \ ù b � û � � � �| �h³ µ� �³ �

Sion Minimax Theorem

x © ¿�� � B 2
convex and lower-semi-continuous with respect to /

concave and upper-semi-continuous with respect to l

¿
convex and compact(¦¥ ø7 C DEÂ x f / � l j � C D EÂ (¦¥ ø7 x f / � l j � ) (¦¥ 7 C DEÂ x f / � l jN
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Control by convex distance

f��� � �û j

: a saddle point for

� ! .

� \ 	 b � (¦¥ ø
� ± � \ ù bC DE ÷ � û � � � �| � ® � ¯³ µ� �³ � P (¦¥ ø
� � \ ù b �

�û � � � �| � ® � ¯³ µ� �³ �N

	� : distribution on

ö

that achieves the infimum.

� � (¦¥ ø� �
�û � � � �| �h³ µ� �³ � � �
�û � ��
 � �| �h³ µ� �³ �N

� � � \ 	 b � �
�û � ��
 � �| �h³ µ� �³ � | � ® � ¯³ µ� �³ � � �û 	 ��
 � �| �� µ� �� � | � ® � ¯� µ� �� � � �û 	 N

¤` � 	
�û �	 � �N

Var
�? ¢ f � ! � ö j � � �

Efron-Stein inequality !

* �? ¢ f � ! � ö j � �? ¢ f � ! � ö j P Q� � < 8 R� a t

exponential Efron-Stein inequality !N

S. Boucheron Concentration Inequalities, August,

�� � �

– p.24/47



Control by convex distance

Var

�? ¢ f � ! � ö j � � �

Efron-Stein inequality !

* �? ¢ f � ! � ö j � �? ¢ f � ! � ö j P Q� � < 8 R� a t

exponential Efron-Stein inequality !N

* �? ¢ f � ! � ö j � �? ¢ f � ! � ö j � � Q � � Var

�? ¢ f � ! � ö j �
Q � � �
Q � Chebyshev inequality

* � ö � � �
f � �? ¢ fþý � ö j � j �
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Control by convex distance

Var

�? ¢ f � ! � ö j � � �

Efron-Stein inequality !

* �? ¢ f � ! � ö j � �? ¢ f � ! � ö j P Q� � < 8 R� a t

exponential Efron-Stein inequality !N

* �? ¢ f � ! � ö j � �? ¢ f � ! � ö j � � Q � � Var

�? ¢ f � ! � ö j �
Q � � �
Q � Chebyshev inequality

�? ¢ f � ! � ö j � �
 * � ö �

* �? ¢ f � ! � ö j P Q U 4: � � < 8 R� at

if

* � ö � P �s :
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Control by convex distance

Var

�? ¢ f � ! � ö j � � �

Efron-Stein inequality !

* �? ¢ f � ! � ö j � �? ¢ f � ! � ö j P Q� � < 8 R� a t

exponential Efron-Stein inequality !N

* �? ¢ f � ! � ö j � �? ¢ f � ! � ö j � � Q � � Var

�? ¢ f � ! � ö j �
Q � � �
Q � Chebyshev inequality

�? ¢ f � ! � ö j � �
 * � ö �

Q & 4 : & f Q � 4: j � P Q � s : � m 'hg i :

* �? ¢ f � ! � ö j P Q � � : < 8 R� a�
for

Q & 4:

and

* � ö � P �s :
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Plan III : Statistical learning applications

From exponential inequalities to the concentration of measure phenomenon

Concentration inequalities using the entropy method

Learning-theoretical applications

Fat-shattering VC-dimension

VC entropy

Conditional Rademacher averages

Supremum of empirical processes

...

Moment inequalities using the generalized entropy method
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Where are we?

We hope (and have some evidence) that we have developped valuable tools for deriving tail
bounds for general functions of independent variables.

� � x f � ! � N N N � � j

� \ 	 b � x f � ! � N N N � � «	 � N N N � � j

�	 � x	 f � ! � N N N � �
	 8 ! � �
	 ` ! � N N N � � j

¤` � � « {
	

f � � � \ 	 b j � | ^  ^ ® � ¯ , � ! �

¤ � 	
f � � �	 j �

Var
� � � � � � ¤` � � � � ¤ �

'hg i � { < � \ ^ 8 � ]^ _ b � � Ø�
� � Ø� 'hg i � { < � ð ½ a â �

We need to check that for some learning problems, either

¤

or

¤`

is manageable.
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Lecture III: Roadmap

Concentration inequalities have proved helpful in statistical learning theory because they are
key ingredients in the derivation of risk bounds for empirical risk minimizers in classification
and bounded regression.
Concentration inequalities for self-bounded functionals allow to prove that many of the
quantities that have been considered in order to quantify the complexity of a class of
functions, like the empirical VC-dimension, the empirical VC-entropy and conditional
Rademacher averages are sharply concentrated.
This paves the way to data-dependent estimation of the complexity of function classes,
which is of great importance in model selection.
The most important consequence of concentration inequalities concerns suprema of
empirical processes. The most refined versions of Talagrand’s concentration inequality for
suprema of empirical processes may be considered as process versions of Bernstein
inequality. They provide new insights on Vapnik-Chervonenkis inequalities.
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Fat-shattering dimension

Fat-shattering dimension fat

f � ! � �� � j

.
Given � & �� and

�

, and sample

� ! � N N N � � fat

f � ! � �� � j

is the largest

?
such that there

exists

+ � ! � N N N � ��� . ¶ + � � N N N � - .

with

# f $ 	 ³ j � � � 1 + � � � � . � � � x 1 �� $ 	 ³ x f �
	 ³ j P �N

� � fat

f � ! � �� � j
Fat-shattering dimension captures the complexity of a function class at certain scale on

a certain sample.
If a set of linear classifiers

�

separates a sample
� ! � N N N � � with margin � & � ©

# f $ 	 j 	 �� 1 + � � � � . � � x 1 �� $ 	 x f �"	 j P � then fat

f � ! � �� � j �- N � �

Depending on the choice of kernels, on underlying distribution, fat

f �  ! � �� � j

may scale very
differently with- N Is the fat-shattering dimension relatively stable?

fat

f � ! � �� � j

� {

fat

f � ! � �� � j � B �

?
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Fat-shattering dimension

Fat-shattering dimension fat

f � ! � �� � j

.
Given � & �� and

�

, and sample

� ! � N N N � � fat

f � ! � �� � j

is the largest

?
such that there

exists

+ � ! � N N N � ��� . ¶ + � � N N N � - .

with

# f $ 	 ³ j � � � 1 + � � � � . � � � x 1 �� $ 	 ³ x f �
	 ³ j P �N

� � fat

f � ! � �� � j

�

is a configuration function: a �-shattered sub-sample witnesses the value of

�

With

�	 � fat

f � 	 8 !! � � 	 ` ! � �� � j � � � � � �	 � � � 	 � � �	 � �N

�

is sub-Poissonian !!!

'hg i � { < � \ ^ 8 � ]^ _ b � � � � � � � � f� jN

* � �P � � U Q � �XW YE S� Q �
: � � U : Qs r

T

For every

� 5 Q � � �� * � � � � � � Q � �XW YE S� Q �
: � �

T N
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VC-entropy

�

: a class of

+ � � � � .

-valued functions.� ! a sample.

Trace of

�

on

� ! :

3 f ô 	 j 	 �� � f ô 	 j 1 + � � � � . � � x 1 �� ô 	 � x f �
	 j 6

The VC-entropy of

�

in

� ! is defined as:

� � 'hg i � FGFHF
3 f ô 	 j 	 �� � f ô 	 j 1 + � � � � . � � x 1 �� ô 	 � x f �
	 j 6 FGFHF

�	 is defined as

�	 � 'hg i � FJFHF
3 f ô � j � �� � � µ� 	 � f ô � j 1 + � � � � . 8 ! � � x 1 �� ô � � x f � � j #§ 6 FJFHF

Obvious:

� � � � �	 � � �
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VC-entropy

�

a probability on a finite set.

Shannon entropy of

� Ò f � j � 	 � � f � j 'hg i � � f � j
Shannon entropy is positive and maximal when

�

is uniform.

Notation

Ò f � j � Ò f

dist

f � j j
Conditional entropy

Ò f � , é j � � { Ò f
dist

f � , é j j �

Chain rule.

Ò f �� é j � Ò f é j U Ò f � , é j

Conditionning

Ò f � , é j � Ò f � j
...decreasses Shannon entropy.
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VC-entropy

Han inequality.

	 Ò f � ! j � Ò f � 	 8 !! � � 	 ` ! j � 
	 � ! Ò f �"	 , � 	 8 !! � � 	 ` ! j

� 
	 � ! Ò f �
	 , � 	 8 !! j

� Ò f � ! jN

The uniform distribution on the trace of

�

on
� ! defines a random element

é  ! of

+ � � � � .

� � Ò f é  ! j

�	 is the Shannon-entropy of the uniform distribution on the trace of

�

on

� 	 8 !! � � 	 ` !N

�	 P Ò f é 	 8 !! � é 	 ` ! jN

Z Han inequality entails
� 	 � � �	 � �N
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VC-entropy

The VC-entropy is a self bounded functional. It enjoys a sub-Poissonian behavior.

¤ � �

> Var

� � � � � � � �
Z VC-entropy may be almost-surely constant (half-spaces when samples are in general

position with probability one.)

Z VC-entropy may be approximately Gaussian: samples of size- from the uniform
distribution on a shattered set of sizeû - whereû is fixed and- tends to infinity...

If we just know that the

�

is a VC-entropy, the inequality is tight.
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VC-entropy

�

a VC-class of classifiers.

� {C DE~ ± �
FGFGF 	 |�~ \ �� b µ� �� � - � �|�~ \ � b µ� �� FGFGF �

� � {C DE~ ± �
FGFGF 	 | ~ \ �� b µ� �� � 	 � « �|~ \ � �� b µ� � ��� FGFGF �

� � � « {C DE~ ± �
FHFHF 	 | ~ \ �� b µ� �� � |~ \ � �� b µ� � �� FHFHF �

� � � « ��� {C DE~ ± �
FJFHF 	 $ 	 � |�~ \ �� b µ� �� � |�~ \ � �� b µ� � �� � FJFHF �

� � ��� {C DE~ ± �
FHFGF 	 $ 	 | ~ \ �� b µ� �� FHFGF� U � « ��� {C DE~ ± �
FHFGF 	 $ 	 |~ \ � �� b µ� � �� FHFGF �

� : � { ��� {C DE~ ± �
FHFJF 	 $ 	 |�~ \ �� b µ� �� FHFJF , � ! � �

The conditional Rademacher average only depends on the trace of

�

on

� ! ....
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VC-entropy

�� {C DE~ ± � FHFJF � 	 $ 	 |~ \ �� b µ� �� FHFJF , � ! � � : 'hg i , trace

f �� � ! j , � C DE~ ± � � 	 |~ \ �� b µ� ��

For a fixed

x 1 � ��� { < � FHF �� � � � Ý ®� � ¯�! "� FHF � � : W YE Z � �� � 	 |�~ \ �� b µ� �� [
Hoeffding!

Revisiting the union bound: W YE Z� � { ) # Y~ ± trace
\ �� � Mu b FGF 	 $ 	 |�~ \ �� b µ� �� FGF � [

� � {W YE Z� ) # Y~ ± trace

\ �� � Mu b FGF 	 $ 	 | ~ \ �� b µ� �� FGF [ �

� � {
~ ± trace

\ �� � Mu bW YE Z� FHF 	 $ 	 | ~ \ �� b µ� �� FHF [ �

� ~ ± trace

\ �� � Mu b � {W YE Z� FJF 	 $ 	 | ~ \ �� b µ� �� FJF [ �

� : ,

trace
f �� � ! j , ) # Y~ ± trace

\ �� � Mu bW YE Z � �
: 	 | ~ \ �� b µ� �� [

The bound follows by optimizing with respect to

� N
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VC-entropy

� � � � � � {C DE~ ± �
FGFGF 	 |�~ \ �� b µ� �� � - � �|�~ \ � b µ� �� FGFGF �

� � { : 'hg i , trace

f �� � ! j , � C D E~ ± � 	 | ~ \ �� b µ� �� �

� � { : 'hg i , trace

f �� � ! j , � � � {C DE~ ± � 	 |�~ \ �� b µ� �� �

� � { : 'hg i , trace

f �� � ! j , � � C DE~ ± �- � �|�~ \ � b µ� �� U � � � �

� � � � � � { : 'hg i , trace
f �� � ! j , � U C DE~ ± �- � �| ~ \ � b µ� ��

May be highly relevant if
�

is constituted by classifiers with law error rate (order

�s - ).

Line of reasoning is at the origin of (some) localization procedures.
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Rademacher complexity

The empirical fat-shattering dimension, and the empirical VC-entropy, are two capacity
concepts in statistical learning theory. Their relevance stems from their relationship to the
average value ofC D E~ ± � FGFHF � 	 | ~ \ �� b µ� �� � - � �| ~ \ � b µ� �� FGFHFN

This relationship is proved using conditional Rademacher averages (symmmetrization).
Why shouldn’t we prove that conditional Rademacher averages are concentrated around
their mean value.

�

: countable class of measurable centered real-valued functions of

��� � � � �

-valued
functions.. � � � {C DE~ ± �

FJFHFGFGF 	 $ 	 x f �
	 j FJFHFGFGF , � ! �

$ 	 : independent centered

+ � ��� � .
-valued Random variables.

�	 � � {C DE~ ± �
FHFHFJFHFGF � µ� 	 $ � x f � � j
FHFHFJFHFGF

, � 	 8 !! � � 	 ` ! �
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Rademacher complexity

�	 � � {C DE~ ± �
FHFGFGFGFHF � µ� 	 $ � x f � � j U ��� � $ 	 x f � � j
FHFGFGFGFHF

, � ! �

� � {C DE~ ± �
FHFJFHFGFGF � µ� 	 $ � x f � � j U $ 	 x f � � j
FHFJFHFGFGF

, � ! �
Jensen

� �
� � ��� {C DE~ ± �
FHF � µ� 	 $ � x f � � j FHF U � , � ! � � �	 U �N

	
f � � �	 j � �
triangle inequality.
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Rademacher complexity

Rademacher complexities are self-bounded functionals. They also enjoy sub-Poissonian
behavior. ¤ � �

> Var

� � � � � � � �

For VC-classes,

� � � � n I 4

vc- N

E-S inequality implies that the typical fluctuations of Rademacher complexities. are of order
at most

f? - j ! at N

Again this may be too conservative.
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Suprema of positive bounded empirical processes

� � C DE~ ± � 	 x f �
	 j

where

�

is a set of positive functions, ...
AssumptionC DE~ C D E 7 x f / j � �

�	 � C DE~ ± � � µ� 	
x f � � j

� � � � �	 � �

and 	 � � �	 � �N

�

is sub-Poissonian !!!
'hg i � { < � \ ^ 8 � ]^ _ b � � � � � � � � f� jN

* � �P � � U Q � �XW YE S� Q �
: � � U : Qs r

T

For every
� 5 Q � � �� * � � � � � � Q � �XW YE S� Q �

: � �
T N
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Suprema of positive bounded empirical processes

Gram matrix (Kernel-machines)

à 	 � � � � �
	 � � � �

Let

� ! P � � P N N N �  P �

denote the ordered sequence of eigenvalues of
à

.

What can we say about

� $	 � ! � 	 ?

It may be representeed as a supremum of a positive bounded empirical processes%ð : projection on subspace

¤

.

$
	 � ! � 	 � C DEð ú dim

\ ð b� $
Ð %ð f �
	 j Ð �

If the distribution of

� �

has bounded support, this is the supremum of a bounded positive
empirical process...
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Suprema of bounded empirical processes

Suprema of empirical processes

C DE~ ± �
,

	
Z x f �
	 j � � � x f �
	 j � [ ,

where

�

may be a set of classifiers, regression functions, ...
AssumptionC DE~ C D E 7 , x f / j , � �

The analysis of empirical processes are at the root of the Vapnik-Chervonenkis theory
of learning. More generally, they prove to be central in the annalysis of M-estimators.

The supremum is one among many quantities associated with an empirical process. Another
is the modulus of continuity.

As the supremum of an empirical process is the sup-norm of a sum of random vectors,
a natural question is: are there extensions of Bernstein inequalities for suprema of empirical
processes?

Using specifically modified logarithmic Sobolev inequalities, Rio and Bousquet have proved
that Bernstein inequality scales up to the vector-valued setting.
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Suprema of bounded empirical processes

Suprema of bounded empirical processes provide an exemple of a two-steps approach
of concentration inequalities:æ Compute a tractable upper-bound for Efron-Stein estimates.æ Analyse the concentration properties of this Efron-Stein estimate.

¤` � C DE~ ± � � 	 � « { f x f �
	 j � x f � «	 j j � �

If

� � x � � �
for all

x 1 �

¤` � C DE~ ± � 	 x � f �
	 j U C DE~ ± � � { x � f �
	 j �

The stochastic part of the upper-bound on
¤`

is a supremum of a bounded positive
process !

'hg i � { < �ð ½ � � � Z � �C D E~ ± � 	 x � f �"	 j � U C DE~ ± � � { x � f �"	 j � [ U � �C DE~ ± � 	 x � f �"	 j � � � f� jN
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Suprema of bounded empirical processes
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Suprema of bounded empirical processes

� {C DE~ ± � 	 x � f �
	 j � � � {C DE~ ± � 	 x � f �
	 j � � � x � f �
	 j � � U C DE~ ± � 	 � { x � f �
	 j �

� : � {C DE~ ± � 	 $ 	 x � f �
	 j � U C D E~ ± � 	 � { x � f �
	 j �
symmetrization

� m � {C DE~ ± � 	 $ 	 x f �
	 j � U C DE~ ± � � { x � f �
	 j �
contraction

� m � {C DE~ ± �
,

	 x f �
	 j � � � x f �
	 j � , � U C DE~ ± � 	 � { x � f �
	 j �

'hg i � { < �ð ½ �

� f : � U � � f � j j
	

Z C DE~ ± � � { x � f �
	 j � [ U m f � � f� j U � j � �C DE~ ± � 	
, x f �
	 j � � � x f �
	 j � , �
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Suprema of bounded empirical processes

Plugging

'hg i � { < �ð ½ �

� f : � U � � f � j j Z C DE~ ± � 	 � { x � f �
	 j � [ U m f � � f� j U � j � �C DE~ ± � 	
, x f �
	 j � � � x f �
	 j � , �

in exponential Efron-Stein inequality.

'hg i � { < � \ ^ 8 � ]^ _ b½ �
Ø�

� � Ø� Z : �
Ø U � � � � Ø � [ C D E~ ± � 	 � { x � f �"	 j � U m � � Ø U � � � � Ø � � � � � �
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Suprema of bounded empirical processes

The official concentration inequality for suprema of bounded empirical processes.
Talagrand (94,96), Leddoux (97), Massart(2000), Rio(2001), Bousquet (2002)

� � C D E~ ± � 	 � { x � f �
	 j � U : � � � �

* y �P � � � � U 4 : / � U /r z � < 8 7

This holds for very small classes as well as for large classes ...
ZWhat distinguishes large and small classes is

� � � �
not the concentration phenomenon.

Z

� � � �

may be analyzed using different techniques (chaining).
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Moment inequalities
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Organization

From exponential inequalities to the concentration of measure phenomenon

Concentration inequalities using the entropy method

Learning-theoretical applications

Moment inequalities using the generalized entropy method
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Plan IV : when increments are not bounded

From exponential inequalities to the concentration of measure phenomenon

Concentration inequalities using the entropy method

Learning-theoretical applications

Moment inequalities

Beyond exponential inequalities

Main moment inequalities&

-Sobolev inequalities

From

&

-Sobolev inequalities to moment inequalities

Rosenthal inequalities from

&

-Sobolev inequalities

Conditional Rademacher averages for general processes
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Where are we?

The entropy method (lecture II) has allowed us to scale up Efron-Stein inequalities (lecture I)
to the level of exponential moments. In lecture III, we have illustrated the power of
exponential Efron-Stein inequalities by showing that some quantities that play a central role
in Vapnik-Chervonenkis theory of learning are indeed concentrated around their mean value.

Such results proved vvery helpful when understanding classification problems. However, the
concentration inequalities described in lecture II, took full advantage of some boundedness
assumptions.

In some settings (regression, SVM-soft-margin classification), assuming that everything is
bounded seems very restrictive. Hence there is a need to interpolate between Efron-Stein
and exponential Efron-Stein inequalities.
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Lecture IV: Roadmap

Exponential inequalities prove powerless when dealing with sums of poorly integrable
independent random variables. In order to get tail inequalities for such sums, we traditionally
resort to moment inequalities known as Rosenthal-Pinelis inequalities. The aim of this
lecture is to describe the generalized entropy method. This generalized entropy method
provides upper-bound on the 'th norm of functions of many independent random variables.

The approach is to relate the 'th norm of some functional of independent random variables,
with the 'th norm of the square root of

¤`

(the quantity which shows up in the Efron-Stein
upper-bound), and then to upper-bound

Ð 4 ¤` Ð � N
The relationship between

Ð f � � � � � � j ` Ð � and
Ð 4 ¤` Ð � � interpolates between Efron-Stein

inequality and modified logarithmic Sobolev inequalities. It is proved by resorting to
functionals called

&

-entropies that generalize both entropy and variance. Those functionals
called

&

-entropies enjoy a duality property that warrants that they also enjoy the
tensorization property. Using tensorization and optimization, it is thus possible to show that
product probability distributions enjoy

&
-Sobolev inequalities that may be used to derive

moment inequalities.
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Inspirations

The Martingale approach is well-adapted to derive moment inequalities.
Recall:

f �	 j � � f � 	 ! j

-algebra.Z �	 � � � �, �	 � [ 	 is an

�	 -adapted martingale.

� � � � 
	 � !

f �	 � �	 8 ! j �N
Burkholder inequalities

Ð � � � � � � Ð � � f ' � � j Ð � � � Ð � a � � f ' � � j ()(*( � � � ()(*(� N

Efron-Stein inequalities

Var

What about other moments?

Exponential Efron-Stein inequality.

for

Requires exponential integrability of

Goal: Burkholder-type inequalities relating the th norm of with the th norm or
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Inspirations

Burkholder inequalities

Ð � � � � � � Ð � � f ' � � j Ð � � � Ð � a � � f ' � � j ()(*( � � � ()(*(� N

Efron-Stein inequalities

¤` � � 	 � S Z � � � \ 	 b [ � | ^  ^ ® � ¯ , � ! T N

Var
f � j � � � ¤` � N

What about other moments?

Exponential Efron-Stein inequality.

for

Requires exponential integrability of

Goal: Burkholder-type inequalities relating the th norm of with the th norm or
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Inspirations

Burkholder inequalities

Ð � � � � � � Ð � � f ' � � j Ð � � � Ð � a � � f ' � � j ()(*( � � � ()(*(� N

Efron-Stein inequalities

Var

f � j � � � ¤` � N
What about other moments?

Exponential Efron-Stein inequality.

'hg i � { < � \ ^ 8 � ]^ _ b � � � Ø
� � � Ø 'hg i � S < Ù+ ½ Þ T

for

� 1 f �� �s Ø jN

Requires exponential integrability of

¤` N

Goal: Burkholder-type inequalities relating the th norm of with the th norm or
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Inspirations

Burkholder inequalities

Ð � � � � � � Ð � � f ' � � j Ð � � � Ð � a � � f ' � � j ()(*( � � � ()(*(� N

Efron-Stein inequalities

Var

f � j � � � ¤` � N
What about other moments?

Exponential Efron-Stein inequality.

'hg i � { < � \ ^ 8 � ]^ _ b � � � Ø
� � � Ø 'hg i � S < Ù+ ½ Þ T

for

� 1 f �� �s Ø jN

Requires exponential integrability of

¤` N

Goal: Burkholder-type inequalities relating the 'th norm of

�

with the 's :

th norm

¤

or¤`
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The case for moment inequalities

Goal: relate the integrability of

�

with the integrability of

¤` N

Viewing Burkholder inequalities, it is reasonable to assume that

�
is as integrable as4 ¤` N

It seems highly desirable to get a sharp dependence on 'N

Moment inequalities might be interesting per se:

The relationship between and reflects the tail behavior of
“Equivalence of moments” principle asserts that grows slower than iff is
exponentially integrable.

Moment inequalities with a tight dependence on provide Bernstein-like inequalities.

if
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The case for moment inequalities

Goal: relate the integrability of

�

with the integrability of

¤` N

Viewing Burkholder inequalities, it is reasonable to assume that

�
is as integrable as4 ¤` N

It seems highly desirable to get a sharp dependence on 'N
Moment inequalities might be interesting per se:

* K �P Q L � ) (¦¥�
Ð � Ð �Q
� � (¦¥ ø�
� { < � ^ �

< � R

The relationship between and reflects the tail behavior of
“Equivalence of moments” principle asserts that grows slower than iff is
exponentially integrable.

Moment inequalities with a tight dependence on provide Bernstein-like inequalities.

if
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The case for moment inequalities

Goal: relate the integrability of

�

with the integrability of

¤` N

Viewing Burkholder inequalities, it is reasonable to assume that

�
is as integrable as4 ¤` N

It seems highly desirable to get a sharp dependence on 'N
Moment inequalities might be interesting per se:

* K �P Q L � ) (¦¥�
Ð � Ð �Q
� � (¦¥ ø�
� { < � ^ �

< � R

The relationship between

Ð � Ð � and ' reflects the tail behavior of

�N

“Equivalence of moments” principle asserts that

Ð � Ð � grows slower than '� iff

� ! a �

is
exponentially integrable.

Moment inequalities with a tight dependence on provide Bernstein-like inequalities.

if
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The case for moment inequalities

Goal: relate the integrability of

�

with the integrability of

¤` N

Viewing Burkholder inequalities, it is reasonable to assume that

�
is as integrable as4 ¤` N

It seems highly desirable to get a sharp dependence on 'N
Moment inequalities might be interesting per se:

* K �P Q L � ) (¦¥�
Ð � Ð �Q
� � (¦¥ ø�
� { < � ^ �

< � R

The relationship between

Ð � Ð � and ' reflects the tail behavior of

�N

“Equivalence of moments” principle asserts that

Ð � Ð � grows slower than '� iff

� ! a �

is
exponentially integrable.

Moment inequalities with a tight dependence on ' provide Bernstein-like inequalities.

if

Ð f � � � � � � j` Ð � � �
	 � ! ö 	 ' 	 a � * + � & � � � � U Q . �W YE � 'hg i : ) (¦¥	 � �

v ? Q: ö 	
w � a 	

N
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Main inequalities

' 1 ,� 'P : N

Gaussian type behavior, bounded-difference inequality.

if

¤` ��  � then 'P : � Ð f � � � � � � j` Ð � � 4 '  N

Burkholder-like inequality

,

Burkholder-like inequality (II)
If for all

,
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Main inequalities

' 1 ,� 'P : N

Gaussian type behavior, bounded-difference inequality.

if

¤` ��  � then 'P : � Ð f � � � � � � j` Ð � � 4 '  N

Burkholder-like inequality

(*()( f � � � � � � j` (*()(� � r ' (*()( 4 ¤` (*()(� ,

Burkholder-like inequality (II)
If for all

,
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Main inequalities

' 1 ,� 'P : N

Gaussian type behavior, bounded-difference inequality.

if

¤` ��  � then 'P : � Ð f � � � � � � j` Ð � � 4 '  N

Burkholder-like inequality

(*()( f � � � � � � j` (*()(� � r ' (*()( 4 ¤` (*()(� ,

Burkholder-like inequality (II)
If

�	 � �

for all

�� ()(*( f � � � � � � j` ()(*(� � r ' ()(*( 4 ¤ ()(*(� ,
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Scheme of Proof

Modified

&

-Sobolev inequalities.

The milestone in the proof of the Burkholder-like inequalities is a relationship with the
following flavor:

'P :

andû satisfies 's : � û � ' � �N Then

� { f � � � � � � j� ` � � � { f � � � � � � j ÷` �� a ÷ � ' f ' � û j
: � { ¤ f � � - � � � j� 8 �` �

,

Letting

& f / j � / � a ÷ � this translates into

� { & � f � � � � � � j ÷` � � � & Z � { f � � � � � � j ÷` � [ � ' f ' � û j
: � { ¤ f � � - � � � j� 8 �` �

,

For ' � :

andû � ��� this is (almost) Efron-Stein !!!
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Scheme of Proof

In order to establish Burkholder-like inequality, we proceed by induction on 'N At each step
we takeû � ' � � � that is

& f / j � / � a \� 8 ! bN

Z when dealing with moments of high order, we consider functions

&
that get closer and

closer to / 'hg i / N

� { f � � � � � � j� ` � � � { f � � � � � � j� 8 !` �� a \� 8 ! b U ': � { ¤ f � � - � � � j� 8 �` �

,
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Scheme of Proof

In order to establish Burkholder-like inequality, we proceed by induction on 'N At each step
we takeû � ' � � � that is

& f / j � / � a \� 8 ! bN

Z when dealing with moments of high order, we consider functions

&
that get closer and

closer to / 'hg i / N

� { f � � � � � � j� ` � � � { f � � � � � � j� 8 !` �� a \� 8 ! b U ': � { ¤ f � � - � � � j� 8 �` �

,

Hölder

� { f � � � � � � j� ` � � � { f � � � � � � j� 8 !` �� a \� 8 ! b
U ': � { ¤� a � � � a� � { f � � - � � � j� ` � \� 8 � b a�

,
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Scheme of Proof

Hölder

� { f � � � � � � j� ` � � � { f � � � � � � j� 8 !` �� a \� 8 ! b
U ': � { ¤� a � � � a� � { f � � - � � � j� ` � \� 8 � b a�

,

.� � � Ð f � � � � � � j` Ð � and� � � � (*(/( 4 ¤ (*(/(� N

æ Base case : Efron-Stein: . � �� �N

æ Assume .� 8 ! � r f ' � � j� � 8 ! ,

.�� � .�� 8 ! U ': � �� .� 8 ��

� r f ' � � j� � �� 8 ! U ': � �� .� 8 ��

N N N � r '� � N
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Modified

0

-Sobolev inequalities

Ë © functions

&

on

1`

(Latala and Oleskiewicz)

æ convex and continuous,æ twice differentiable on

f �� U A j �æ & « «

is positive ,æ �s & « «

is concave. &

-entropy.

Ò32 f � j � � � & f � j� � & � � � � � �N

Examples :

Ò 7 4657 7 f � j � � � � 'hg i � � � � � � � 'hg i � � � �

Ò 7 8 f � j � � � � 9 � � f � � � � j 9 ¼ 1 f � � : �N
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Modified

0

-Sobolev inequalities

Tensorization of

&

-entropy.

Ò�2 f � j � 
	 � ! � { � { & f � j , � 	 8 !! � � 	 ` ! � � & Z � { � , � 	 8 !! � � 	 ` ! � [ � N

Ò�2 f � j � 
	 � ! Ò�2 f � , � 	 8 !! � � 	 ` ! jN
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Modified

0

-Sobolev inequalities

Tensorization of

&

-entropy.

Ò�2 f � j � 
	 � ! � { � { & f � j , � 	 8 !! � � 	 ` ! � � & Z � { � , � 	 8 !! � � 	 ` ! � [ � N

Duality and

&

-entropy.

Ò�2 is convex and continuous in

Å` ! .
Obvious when the base space is discrete.

Ò32 f � j � C DE¢ ± :½ u � ¢ µ� �
y � { � & « f ¡ j � & « f � � ¡ � j � f � � ¡ j U & f ¡ j � � & f � � ¡ � j z N

The duality representation implies that

Ò 2 is convex and lower-semi-continuous.
This is the basis of a Jensen-like property:

Ò f � � � , � ! � j � Ò f � , � � j
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Modified

0

-Sobolev inequalities

Duality and

&

-entropy.

Ò�2 is convex and continuous in

Å` ! .
Obvious when the base space is discrete.

Ò32 f � j � C DE¢ ± :½ u � ¢ µ� �
y � { � & « f ¡ j � & « f � � ¡ � j � f � � ¡ j U & f ¡ j � � & f � � ¡ � j z N

The duality representation implies that

Ò 2 is convex and lower-semi-continuous.
This is the basis of a Jensen-like property:

Ò f � � � , � ! � j � Ò f � , � � j

Examples.

Ò�2 f � j � C DE¢ + � � f 'hg i f ¡ j � 'hg i f � � ¡ � j j � � .

for

& f / j � / 'hg i /

Ò�2 f � j � C DE¢
y ¼ � { � Z ¡ 9 8 ! � f � � ¡ � j 9 8 ! [ � � f ¼ � � j Ò�2 f ¡ j z

, for

& f / j � / 9
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Modified

0

-Sobolev inequalities

Optimization.

If

& 1 Ë

, then both

& «

and / B f & f / j � & f � j j s / are concave functions on

1 �` .
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Modified

0

-Sobolev inequalities

Optimization.

If

& 1 Ë

, then both

& «

and / B f & f / j � & f � j j s / are concave functions on

1 �` .

S. Boucheron Concentration Inequalities, August,

�� � �

– p.42/47



Modified

0

-Sobolev inequalities

Optimization.

If

& 1 Ë

, then both

& «

and / B f & f / j � & f � j j s / are concave functions on

1 �` .
Let

ó

denote the function / B f & f / j � & f � j j s / .

Ò�2 f x f � j j � � � ¤` x « � f � j ó « f x f � j j�

if
ó<; x

is convex.
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Modified

0

-Sobolev inequalities

Optimization.

If

& 1 Ë

, then both

& «

and / B f & f / j � & f � j j s / are concave functions on

1 �` .
Application :

x f>= j �W YE f� = j

and

& f / j � / 'hg i f / j

:

Ò 7 4657 7 Z < � ^ [ � � � � � ¤` W YE f � � j�
,

Let 'P :

and letû satisfy 's : � û � ' � �N Then

� { f � � � � � � j� ` � �

� { f � � � � � � j ÷` �� a ÷ U ' f ' � û j
: � { ¤ f � � - � � � j� 8 �` �

,
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Khinchine inequalities (warm-up)

Î ! � N N N � Î  : non-negative constants,� ! � N N N � � independent Rademacher variables.
If

� � � 	 � ! Î 	 �
	

then for any integer 'P :

,

Ð f � j` Ð � � Ð f � j 8Ð � � : '
?A@*@)B


	 � !Î

�	

Z Optimal constants can be obtained using hypercontractivity arguments.

If

¤` �   � Ð f � � � � � � j` Ð � � 4 '  N

¤` � 
	 � ! � � fÎ 	 f �
	 � � «	 j j �` , �
	� � : 
	 � !Î

�	 | Ì� ��  � � : 
	 � !Î

�	 �
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Rosenthal-Pinelis inequalities

Rosenthal-Pinelis inequalities deal with suprema of empirical processes in the absence of
uniform boundedness assumption.
Let

�

: a countable class of measurable functions from

¿ B 1

.� ! � N N N � � : independent

¿

-valued random variables such that for all
x 1 �� � x f � 	 j � �

.

C � � � {C D E~ 	 x � f �
	 j �

� � � C DE~ � {
	 x � f �
	 j �

� � C DE~ � 	 , x f �
	 j , N

In Talagrand’s inequality,

�

is assumed to be bounded.
Here, integrability of

�

is related wit integrability of

�N

� � C DE~ ± �
FGFGFHF


	 � ! x f �
	 j FGFGFHFN
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Rosenthal-Pinelis inequalities

� � C DE~ ± �
FJFHFHF


	 � ! x f �
	 j FJFHFHFN

The application of Burkholder like inequality leads to:

Ð f � � � � � � j` Ð � � d ' Z C U � [ Ud ' Z Ð � Ð � U C DE	 �~ ± �
Ð x f �"	 j Ð � [ �

Ð � Ð � � : � � U : � d ' U d � ' Ð � Ð � U m r ' Ð � Ð � N
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Rosenthal-Pinelis inequalities

� � C DE~ ± �
FJFHFHF


	 � ! x f �
	 j FJFHFHFN

Ð f � � � � � � j` Ð � � d ' Z C U � [ Ud ' Z Ð � Ð � U C DE	 �~ ± �
Ð x f �
	 j Ð � [ �

As

� � x � � �

for all

x 1 �

:

¤` � C D E~ ± � 	 x � f �
	 j U C DE~ ± � � { x � f �
	 j � � C D E~ ± � 	 x � f �
	 j U � �

4 ¤` � C D E~ ± � C DE÷ú � � ÷ �� � ! 	 û 	 x f �
	 j U �N

Applying the second Burkholder-like inequality again:

(*(/(/(/(*(
C DE~ ± � C DE÷ú � � ÷ �� � ! 	 û 	 x f �
	 j (*(/(/(/(*(�

� C U r ' Ð � Ð �
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Rosenthal-Pinelis inequalities

� � C DE~ ± �
FJFHFHF


	 � ! x f �
	 j FJFHFHFN

Ð � Ð � � : � � U : � d ' U d � ' Ð � Ð � U m r ' Ð � Ð � N

To get this inequality, need to relate

C� � � � �

and �
In the uniformly bounded case, symmetrization and the contraction principle were enough.
We need a new ingredient.

Hoffman-Jorgensen inequality.
Let $ ! � N N N � $  denote independent Rademacher variables.
Let

� & m

and define

Q � � � � � � � �
.

� SC DE~ FGF 	 $ 	 x � f �
	 j |ED FG Ý �~ \ �� b�  R� FGF T � �
f � � : s 4� j � � � � �� N
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Rosenthal-Pinelis inequalities

� � C DE~ ± �
FJFHFHF


	 � ! x f �
	 j FJFHFHFN

C � � � SC DE~ FGF 	 x � f �
	 j � � � x � f �
	 j � FGF T UC D E~ � S
	 x � f �
	 j T

� � � U : � SC DE~ FHF 	 $ 	 x � f �
	 j FHF T

� � � U : � SC DE~ FJF 	 $ 	 x � f �
	 j |ED FG Ý �~ \ �� b� � R� FJF T

U : � SC DE~ FGF 	 $ 	 x � f �
	 j |D FG Ý �~ \ �� b�  R� FGF T

� � � U m Q � � SC DE~ FGF 	 $ 	 x f �"	 j FGF T U : � SC DE~ FGF 	 $ 	 x � f �"	 j |ED FG Ý �~ \ �� b�  R� FGF T

� � � U m Q � � SC DE~ FHF 	 $ 	 x f �
	 j FHF T U :f � � � s : j � � � � � �

� � � U H � � � � � � Ð � Ð ! U :
f � � : s 4� j � � � � ��
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Rademacher complexity

�

: countable class of measurable centered real-valued functions.

� � � {C DE~ ± �
FGFHFJFHF 	 $ 	 x f �
	 j FGFHFJFHF , � ! �

� �C DE	 �~ , x f �
	 j , N
Tools derived from Burkholder-like inequalities:

If

¤ � Õ �� Ð f � � � � � � j` Ð � � : ' Ð Õ Ð � � � � � U : ' Ð Õ Ð � N
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Rademacher complexity

Tools derived from Burkholder-like inequalities:

If

¤ � Õ �� Ð f � � � � � � j` Ð � � : ' Ð Õ Ð � � � � � U : ' Ð Õ Ð � N

�	 � � {C D E~ ± �
FHFJFHFHFJF � µ� 	 $ � x f � � j
FHFJFHFHFJF

, � \ 	 b �

# �� � � � � �	 � � � 	 � � �	 � �

>

¤ � � �N
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Rademacher complexity

Tools derived from Burkholder-like inequalities:

If

¤ � Õ �� Ð f � � � � � � j` Ð � � : ' Ð Õ Ð � � � � � U : ' Ð Õ Ð � N

Hence: Ð f � � � � � � j` Ð � � : ' Ð � Ð � � � � � U : ' Ð � Ð � N

If

�

is uniformly-bounded, conditional Rademacher averages have sub-Poissonian tails.
If

�

is a VC-class of VC-dimension

? � � � � � � I 4? - � and

* + �P � � � � U Q . � < 8 V �� ®I JK L½ V Ê � ¯ N

If the maximum of- envelops of
�

is '-integrable, so is

�

.
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