Iterative Shrinkage/Thresholding Algorithms: Some History and Recent Development

Mário A. T. Figueiredo

Instituto de Telecomunicações and Instituto Superior Técnico, Technical University of Lisbon

PORTUGAL

mario.figueiredo@lx.it.pt

Signal/Image Restoration/Representation/Reconstruction

Many signal/image reconstruction/approximation criteria have the form

$$\min_{\mathbf{x}\in\mathbb{R}^n}\phi(\mathbf{x}):=f(\mathbf{x})+\tau c(\mathbf{x})$$

 $f:\mathbb{R}^n o\mathbb{R}$ is smooth and convex (the data fidelity term); usually, $f(\mathbf{x})=rac{1}{2}\|\mathbf{A}\mathbf{x}-\mathbf{y}\|_2^2$

 $c: \mathbb{R}^n \to \overline{\mathbb{R}}$ is a regularization/penalty function;

typically convex (sometimes not), often non-differentiable.

Examples: TV-based and wavelet-based restoration/reconstruction, sparse representations, sparse (linear or logistic) regression, compressive sensing (with $\mathbf{A} = \mathbf{HD}$)

Outline

- 1. The optimization problem (previous slide)
- 2. IST Algorithms: 4 derivations
- 3. Convergence results
- 4. Enhanced (accelerated) versions: TwIST and SpaRSA
- 5. Warm starting and continuation
- 6. Concluding remarks

Denoising/shrinkage operators

$$\min_{\mathbf{x} \in \mathbb{R}^n} \phi(\mathbf{x}) := \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \tau c(\mathbf{x})$$

If $\mathbf{A} = \mathbf{I}$, we have a denoising problem.

If $m{c}$ is proper and convex , $m{\phi}$ is strictly convex, there is a unique minimizer.

Thus, the so-called shrinkage/thresholding/denoising function

$$\Psi_{\lambda}(\mathbf{u}) = \arg\min_{\mathbf{z}} \frac{1}{2} \|\mathbf{z} - \mathbf{u}\|_{2}^{2} + \lambda c(\mathbf{z})$$

is well defined (Moreau proximal mapping) [Moreau 1962], [Combettes 2001]

Examples:
$$c(\mathbf{z}) = \|\mathbf{z}\|_1 \Rightarrow \Psi_{\lambda}(\mathbf{z}) = \operatorname{soft}(\mathbf{z}, \lambda)$$

 $c(\mathbf{z}) = \|\mathbf{z}\| \Rightarrow \Psi_{\lambda}(\mathbf{z}) = (\mathbf{I} - P_{\lambda S_{c^*}})\mathbf{z}$
(not convex) $c(\mathbf{z}) = \|\mathbf{z}\|_0 \Rightarrow \Psi_{\lambda}(\mathbf{z}) = \operatorname{hard}(\mathbf{z}, \lambda)$

Iterative Shrinkage/Thresholding (IST)

Problem:
$$\min_{\mathbf{x} \in \mathbb{R}^n} \phi(\mathbf{x}) := \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \tau c(\mathbf{x})$$

IST algorithm:
$$\mathbf{x}^{k+1} = \Psi_{\tau/\alpha} \left(\mathbf{x}^k - \frac{1}{\alpha} \mathbf{A}^T (\mathbf{A} \mathbf{x}^k - \mathbf{y}) \right)$$

Adequate when products by \mathbf{A} and \mathbf{A}^T are efficiently computable (e.g., FFT)

Since
$$\mathbf{A}^T(\mathbf{A}\mathbf{x}^k - \mathbf{y})$$
 is the gradient of $\frac{1}{2}\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$

if au=0 , IST is gradient descent with step length 1/lpha

IST also applicale in Bregman iterations to solve constrained problems [Yin, Osher, Goldfarb, Darbon, 2008]

IST as Expectation-Maximization [F. and Nowak, 2001, 2003]

Underlying observation model:
$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$
, $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
Equivalent model: $\mathbf{y} = \mathbf{A}(\mathbf{x} + \mathbf{n}_1) + \mathbf{n}_2$, $\mathbf{n}_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{I}/\eta)$
 $\mathbf{n}_2 \sim \mathcal{N}(\mathbf{0}, \mathbf{I} - \mathbf{A}\mathbf{A}^T/\eta)$
Hidden image: $\mathbf{z} = \mathbf{x} + \mathbf{n}_1$, $p(\mathbf{y}|\mathbf{z}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{z}, \mathbf{I} - \mathbf{A}\mathbf{A}^T/\eta)$
 $p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mathbf{x}, \mathbf{I}/\eta)$

E-step:
$$\mathbf{z}^{k} = \mathbb{E}[\mathbf{z}|\mathbf{y}, \mathbf{x}^{k}] = \mathbf{x}^{k} + \mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\mathbf{x}^{k})/\eta$$
 (Wiener)
M-step: $\mathbf{x}^{k+1} = \arg \min_{\mathbf{x}} \frac{\eta}{2} \|\mathbf{z}^{k} - \mathbf{x}\|_{2}^{2} + \tau c(\mathbf{x}) = \Psi_{\tau/\eta}(\mathbf{z}^{k})$
 $\lambda_{\max}(\mathbf{A}^{T}\mathbf{A}) \leq \eta \Rightarrow \text{ monotonicity}$

IST as Majorization-Minimization [Daubechies, Defrise, De Mol, 2004] $rgmin Q(\mathbf{x}, \mathbf{y}) - \phi(\mathbf{x}) = \mathbf{y}$ (a)Majorization function: $\mathbf{x}^{k+1} = \arg\min Q(\mathbf{x}, \mathbf{x}^k)$ (b)MM algorithm: Monotonicity: $Q(\mathbf{x}^{k+1}, \mathbf{x}^k) - \phi(\mathbf{x}^{k+1}) \stackrel{(a)}{\geq} Q(\mathbf{x}^k, \mathbf{x}^k) - \phi(\mathbf{x}^k)$ $Q(\mathbf{x}^{k+1}, \mathbf{x}^k) \stackrel{(b)}{\leq} Q(\mathbf{x}^k, \mathbf{x}^k)$ $(a) \land (b) \Rightarrow \phi(\mathbf{x}^{k+1}) < \phi(\mathbf{x}^k)$ If $\lambda_{\max}(\mathbf{A}^T\mathbf{A}) \leq \gamma$, we can set $Q(\mathbf{x}, \mathbf{x}^k) = \frac{\gamma}{2} \|\mathbf{x} - \mathbf{z}^k\|_2^2 + \tau c(\mathbf{x})$ Thus, $\mathbf{x}^{k+1} = \Psi_{\tau/\gamma}(\mathbf{z}^k)$ $\mathbf{z}^k = \mathbf{x}^k + \mathbf{A}^T(\mathbf{y} - \mathbf{A}\mathbf{x}^k)/\gamma$

IST as Forward-Backward Splitting

$$\begin{split} \Psi_{\tau}(\mathbf{u}) &= \mathbf{a} \iff \mathbf{a} = \arg\min_{\mathbf{z}} \frac{1}{2} \|\mathbf{z} - \mathbf{u}\|_{2}^{2} + \tau c(\mathbf{z}) \\ \Leftrightarrow \mathbf{0} \in \tau \ \partial c(\mathbf{a}) + (\mathbf{a} - \mathbf{u}) \\ \Leftrightarrow \mathbf{u} \in (\mathbf{I} + \tau \ \partial c) \mathbf{a} \\ \Leftrightarrow \mathbf{a} = (\mathbf{I} + \tau \ \partial c)^{-1} \mathbf{u} = \Psi_{\tau}(\mathbf{u}) \quad \text{(the minimizer is unique)} \end{split}$$

Back to the problem
$$\widehat{\mathbf{x}} \in \arg\min_{\mathbf{x}} f(\mathbf{x}) + \tau c(\mathbf{x})$$

 $\Leftrightarrow \mathbf{0} \in \nabla f(\widehat{\mathbf{x}}) + \tau \partial c(\widehat{\mathbf{x}}) + (\widehat{\mathbf{x}} - \widehat{\mathbf{x}})\alpha$
 $\Leftrightarrow (\alpha \mathbf{I} - \nabla f)\widehat{\mathbf{x}} \in (\alpha \mathbf{I} + \tau \partial c)\widehat{\mathbf{x}}$
 $\Leftrightarrow \widehat{\mathbf{x}} \in (\alpha \mathbf{I} + \tau \partial c)^{-1}(\alpha \mathbf{I} - \nabla f)\widehat{\mathbf{x}}$
 $\Leftrightarrow \widehat{\mathbf{x}} = \Psi_{\tau/\alpha}(\widehat{\mathbf{x}} - \nabla f(\widehat{\mathbf{x}})/\alpha)$ (fixed point equation)
Fixed point scheme: $\mathbf{x}^{k+1} = \Psi_{\tau/\alpha}(\widehat{\mathbf{x}}^k - \frac{1}{\alpha}\nabla f(\widehat{\mathbf{x}}^k))$

IST as Separable Approximation

The objective function in each iteration can be seen as the Lagrangian for

$$\begin{aligned} \mathbf{x}^{k+1} \in \arg\min_{\mathbf{z}} \ (\mathbf{z} - \mathbf{x}^k)^T \nabla f(\mathbf{x}^k) + \tau c(\mathbf{z}) \\ \text{subject to } \|\mathbf{z} - \mathbf{x}^k\|_2^2 \leq \Delta_t \end{aligned}$$

...a trust-region method.

Bibliographical Notes

IST as expectation-maximization: [F. and Nowak, 2001, 2003]

IST as majorization-minimization: [Daubechies, Defrise, De Mol, 2003, 2004] [F., Nowak, Bioucas-Dias, 2005, 2007]

Forward-backward schemes in math: [Bruck, 1977], [Passty, 1979], [Lions and Mercier, 1979]

Forward-backward schemes in signal reconstruction: [Combettes and Wajs, 2003, 2004]

Separable approximation: [Wright, Nowak, and F., 2008]

Other authors independently proposed IST schemes for signal/image recovery: [Bect, Blanc-Féraud, Aubert, and Chambolle, 2004], [Elad, Matalon, and Zibulevsky, 2006], [Starck, Nguyen, Murtagh, 2003], [Starck, Candès, Donoho, 2003], [Hale, Yin, Zhang, 2007]

Existence, Uniqueness

$$G = \arg\min_{\mathbf{x}\in\mathbb{R}^n} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \tau c(\mathbf{x})$$

G is non empty if c is coercive $(\lim_{\|\mathbf{x}\| o +\infty} c(\mathbf{x}) = +\infty)$

G has at most one element if c is strictly convex or ${f A}$ is invertible

G has exactly one element if ${f A}$ is bounded bellow

[Combettes and Wajs, 2004]

Convergence Results (I)

Problem:
$$\min_{\mathbf{x}\in\mathbb{R}^n}\phi(\mathbf{x}) := \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \tau c(\mathbf{x})$$

IST algorithm:
$$\mathbf{x}^{k+1} = \Psi_{\tau/\alpha_k} \left(\mathbf{x}^k - \frac{1}{\alpha_k}\mathbf{A}^T(\mathbf{A}\mathbf{x}^k - \mathbf{y})\right)$$

[Daubechies, Defrise, De Mol, 2004]: (applies in a Hilbert space setting) Let $c(\mathbf{x}) = \|\mathbf{x}\|_p^p$, $p \in [1, 2]$, $\alpha_k = 1$, and $\|\mathbf{A}\|_2^2 < 1$; then, IST converges to a minimizer of ϕ

[Combettes and Wajs, 2005]: (applies to a more general version of IST)

Let c be convex and proper (never $-\infty$, not $+\infty$ everywhere) and $\frac{\|\mathbf{A}\|_2^2}{2} < \alpha_k < +\infty$; then, IST converges to a minimizer of ϕ

Convergence Results (II)

Problem:
$$\min_{\mathbf{x}\in\mathbb{R}^{n}}\phi(\mathbf{x}) := \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \tau c(\mathbf{x})$$

IST algorithm:
$$\mathbf{x}^{k+1} = \Psi_{\tau/\alpha_{k}} \left(\mathbf{x}^{k} - \frac{1}{\alpha_{k}}\mathbf{A}^{T}(\mathbf{A}\mathbf{x}^{k} - \mathbf{y})\right)$$

[Hale, Yin, Zhang, 2007]: Let $c(\mathbf{x}) = \|\mathbf{x}\|_1$ and $\alpha_k > \lambda_{\max}(\mathbf{A}^T \mathbf{A})/2$

Then, IST converges to some $\mathbf{x}^* \in G$ and, for all but a finite number of iterations:

$$egin{aligned} &x_i^k = x_i^* = 0, \ \ orall i \in L \ & ext{sign}\left((\mathbf{A}^T(\mathbf{A}\mathbf{x}^k - \mathbf{y}))_i
ight) = ext{sign}\left((\mathbf{A}^T(\mathbf{A}\mathbf{x}^* - \mathbf{y}))_i
ight), \ \ orall i \in E \ & ext{where} \ \ L \cup E = \{1, 2, ..., n\} \end{aligned}$$

Accelerating IST: Two-Step IST (TwIST)

IST becomes slow when **A** is very ill-conditioned and τ is small Inspired by two-step method for linear systems [Frankel, 1950], [Axelsson, 1996], TwIST algorithm [Bioucas-Dias and F., 2007]

$$\begin{split} \mathbf{x}^{k+1} &= (\alpha - \beta)\mathbf{x}^k + (1 - \alpha)\mathbf{x}^{k-1} - \beta \,\Psi_\tau \left(\mathbf{x}^k + \mathbf{A}^T (\mathbf{y} - \mathbf{A}\mathbf{x}^k)\right) \\ \text{Simplified analysis with} \quad 0 < m \leq \lambda_{\min}(\mathbf{A}^T \mathbf{A}) \leq \lambda_{\max}(\mathbf{A}^T \mathbf{A}) = 1 \\ \text{The minimizer } \widehat{\mathbf{x}} \text{ is unique and TwIST converges to } \widehat{\mathbf{x}}, \quad \lim_{t \to \infty} \|\mathbf{x}^t - \widehat{\mathbf{x}}\| = 0. \end{split}$$

There is an optimal choice for lpha and eta for which

$$\|\mathbf{x}^{t+1} - \widehat{\mathbf{x}}\| \le \frac{1 - \sqrt{m}}{1 + \sqrt{m}} \|\mathbf{x}^t - \widehat{\mathbf{x}}\|$$

Accelerating IST: TwIST (II)

A one-step method is recovered for lpha=1

$$\mathbf{x}^{t+1} = (1 - \beta)\mathbf{x}^t + \beta \Psi_\lambda \left(\mathbf{x}^t + \mathbf{K}^T (\mathbf{y} - \mathbf{K}\mathbf{x}^t)\right)$$

which is an over-relaxed version of the original IST.

For the optimal choice of β : $\|\mathbf{x}^{t+1} - \widehat{\mathbf{x}}\| \le \frac{1-m}{1+m} \|\mathbf{x}^t - \widehat{\mathbf{x}}\|$

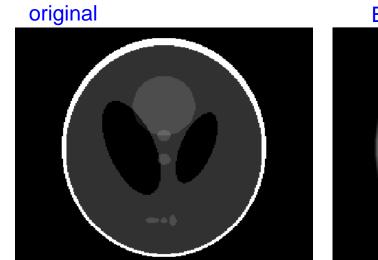
 $-1/\log_{10} rac{1-m}{1+m}$ ~ number of iterations to decrease error by factor of 10.

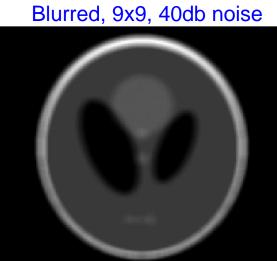
Example:

$$m = 10^{-3} \rightarrow -1/\log \frac{1-m}{1+m} \sim 1150$$
 $-1/\log \frac{1-\sqrt{m}}{1-\sqrt{m}} \sim 35$

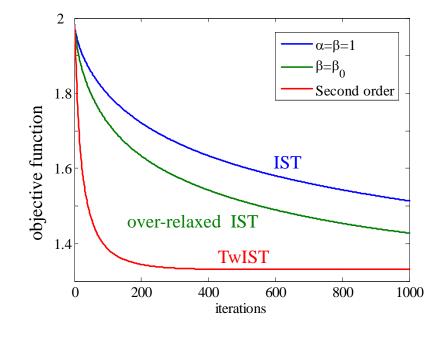
Another two-step method was recently proposed in [Beck and Teboulle, 2008]

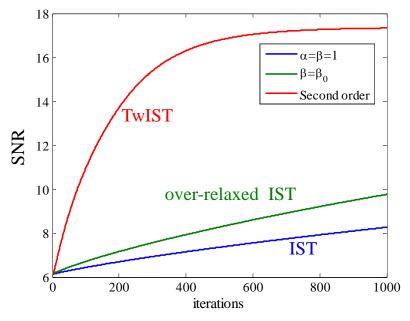
Accelerating IST: TwIST (III)





restored





Accelerating IST: The SpaRSA Algorithmic Framework

Initialization: choose $\eta > 1$, $lpha_{\min} \ll lpha_{\max}$, and \mathbf{x}^{0} ; set $k \leftarrow 0$ repeat: choose $lpha_k \in [lpha_{\min}, lpha_{\min}]$ $\mathbf{x}^{k+1} \leftarrow \Psi_{\tau/\alpha_k} \left(\mathbf{x}^k - \frac{1}{\alpha_k} \nabla f(\mathbf{x}^k) \right)$ repeat: $\alpha_k \leftarrow \eta \, \alpha_k$ until $Acc(\mathbf{x}^{k+1}) == 1$ (* acceptance criterion *) $k \leftarrow k + 1$ **until** stopping criterion is satisfied. [Wright, Nowak, F., 2008]

Variants of SpaRSA are distinguished by the choice of $lpha_{m k}$, $\Psi_{m \lambda}$, and Acc

Examples:
$$Acc = 1$$
, $\alpha_k = \alpha$ yields standard IST.
 $Acc(\mathbf{x}^{k+1}, \mathbf{x}^k) = 1_{\phi(\mathbf{x}^{k+1}) < \phi(\mathbf{x}^k)}$ yields monotone SpaRSA

Choosing α_k for Speed

The Barzilai-Borwein approach: seek α_k to mimic a Newton step, a less conservative choice than in IST:

$$\alpha_k \mathbf{I} \simeq \nabla^2 f(\mathbf{x})$$

With a least-squares criterion over the last step,

$$\alpha_{k} = \arg\min_{\alpha} \left\| \alpha(\mathbf{x}^{k} - \mathbf{x}^{k-1}) - (\nabla f(\mathbf{x}^{k}) - \nabla f(\mathbf{x}^{k-1})) \right\|_{2}^{2}$$

If
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2$$
, then $\alpha_k = \frac{\|\mathbf{A}(\mathbf{x}^k - \mathbf{x}^{k-1})\|_2^2}{\|\mathbf{x}^k - \mathbf{x}^{k-1}\|_2^2}$

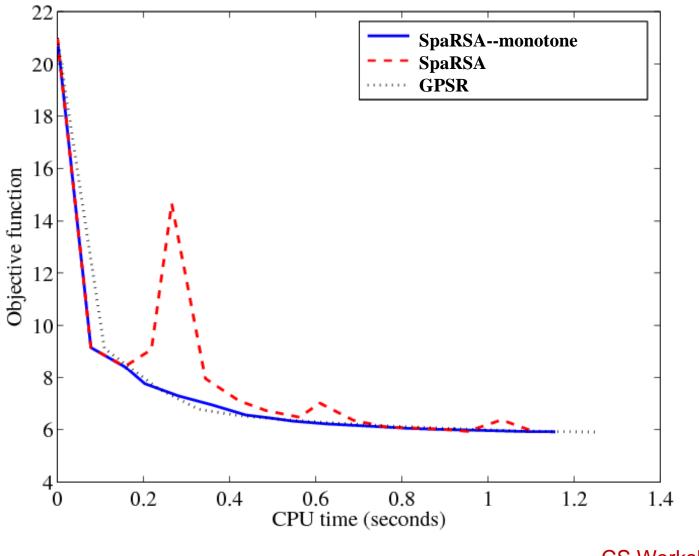
Alternative rule (SpaRSA-monotone): $lpha_k = eta \, lpha_{k-1}$, with eta < 1

Compressed Sensing Experiment

$\begin{split} f(\mathbf{x}) &= \frac{1}{2} \ \mathbf{A}\mathbf{x} - \mathbf{y}\ _2^2 \qquad c(\mathbf{x}) = \ \mathbf{x}\ _1 \\ \mathbf{A} \ 2^{10} \ \mathbf{x} \ 2^{12} \ \text{random (Gaussian)}, \qquad \mathbf{x} \ 160 \ \text{randomly located non-zeros} \\ \mathbf{y} &= \mathbf{A}\mathbf{x} + \mathbf{e}, \text{ where } \ \mathbf{e} \sim \mathcal{N}(0, 10^{-4}) \end{split}$			
	Algorithm	CPU time (secs.)	MSE
	SpaRSA	0.33	2.89e-3
	SpaRSA-monotone	0.34	2.91e-3
[F., Nowak, Wright, 2007]	GPSR-BB-monotone	0.42	2.92e-3
	GPSR-Basic	0.67	2.93e-3
[Hale, Yin, Zhang, 2007]	FPC	1.55	2.95e-3
[Kim, Koh, Lustig, Boyd, Gorinvesky, 2007]	l1_ls	9.80	2.96e-3
[Nesterov, 2007]	AC	2.83	2.91e-3
[Bioucas-Dias, F., 2007]	TwIST	0.63	2.91e-3

GPSR and I1_Is are "hardwired" for $c(\mathbf{x}) = \|\mathbf{x}\|_{\mathbf{1}}$

Non-monotonicity



Convergence of SpaRSA

Problem:
$$\min_{\mathbf{x} \in \mathbb{R}^n} \phi(\mathbf{x}) := f(\mathbf{x}) + \tau c(\mathbf{x})$$

Critical point $\bar{\mathbf{x}}$ if $\mathbf{0} \in \partial \phi(\bar{\mathbf{x}}) = \nabla f(\bar{\mathbf{x}}) + \tau \partial c(\bar{\mathbf{x}})$

Criticality is necessary for optimality. If both c and f are convex, it is also sufficient.

Safeguarded SpaRSA (S-SParRSA) [Wright, Nowak, F., 2008]

$$\begin{aligned} Acc(\mathbf{x}^{k+1}) &= 1 \ \Leftrightarrow \ \phi(\mathbf{x}^{k+1}) \leq \max_{t=k-M,\ldots,k} \phi(\mathbf{x}^t) - \frac{\sigma \, \alpha_t}{2} \|\mathbf{x}^{t+1} - \mathbf{x}^t\|_2^2 \\ \text{where } \sigma \in]0, \ 1[\ , \ \text{usually } \sigma \ll 1 \ , \ \text{e.g.}, \ \sigma = 10^{-5} \end{aligned}$$

Let f be Lipschitz continuously differentiable, c convex and finite-valued, and ϕ bounded below. Then, all accumulation points of S-SpaRSA are critical points of ϕ

Warm Starting and Continuation

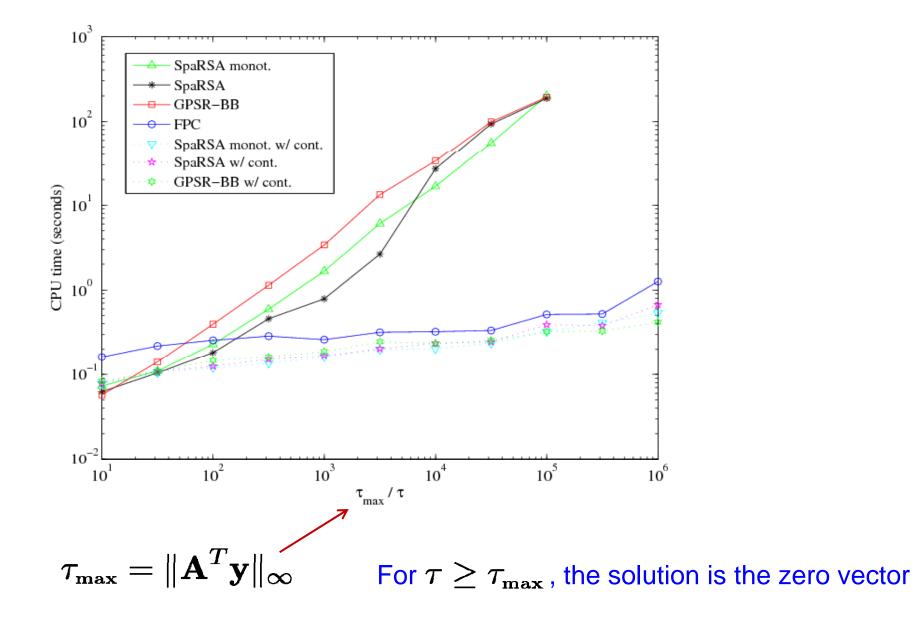
SpaRSA (as GPSR, IST, etc) is slow for small au

SpaRSA (as GPSR and IST) is "warm-startable", i.e., it benefits (a lot) from a good initialization.

Continuation scheme: start with large au slowly decrease au while tracking the solution.

IST + continuation = fixed point continuation (FPC) [Hale, Yin, Zhang, 2007]

Continuation Experiment



Conclusions

- Reviewed several ways to derive the IST algorithm
- Reviewed several convergence results for IST
- Described recent accelerated versions: TwIST, SpaRSA
- IST and SpaRSA benefits (a lot) from a continuation scheme.
- -State-of-the-art performance for a variety of problems: MRI reconstruction (TV and wavelets), MEG imaging, deconvolution, compressed sensing, ...