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Signal/Image Restoration/Representation/Reconstruction

M i l/i t ti / i ti it i h th fMany signal/image reconstruction/approximation criteria have the form

is smooth and convex (the data fidelity term);  usually,

is a regularization/penalty function;

typically convex (sometimes not),  often non-differentiable. 

Examples:   TV-based and wavelet-based restoration/reconstruction, 
sparse representations sparse (linear or logistic) regression
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sparse representations, sparse (linear or logistic) regression,
compressive  sensing  (with                )
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Denoising/shrinkage operators

If , we have a denoising problem.

If is proper and convex ,     is strictly convex, there is a unique minimizer.

If , we have a denoising problem.

Thus, the so-called shrinkage/thresholding/denoising function

is well defined (Moreau proximal mapping) [Moreau 1962], [Combettes 2001]

Examples: 
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(not convex)



Iterative Shrinkage/Thresholding (IST)

Problem:

IST algorithm:

Adequate when products by and are efficiently computable 
(e g FFT)(e.g., FFT)

Since is the gradient of

if , IST is gradient descent with step length
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IST also applicale in Bregman iterations to solve constrained problems
[Yin, Osher, Goldfarb, Darbon, 2008]



IST  as  Expectation-Maximization [F. and Nowak, 2001, 2003]

Underlying observation model:

Equivalent model:Equivalent model:

Hidden image:

E-step: (Wiener)

M-step:
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monotonicity



IST  as  Majorization-Minimization [Daubechies,  Defrise, De Mol, 2004]

Majorization function:j

MM algorithm:

Monotonicity:

If , we can set
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Thus,



IST  as Forward-Backward Splitting

(the minimizer
is unique)

Back to the problem differentiable
convex

(fixed point equation)
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Fixed point scheme:



IST as Separable Approximation

Recall the problem:

Separable approximation to 

Recall the problem:

Iteration:

If i

Can be re-written as 

If is convex,

The objective function in each iteration can be seen as the Lagrangian for 
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…a trust-region method.
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Existence, Uniqueness

is non empty if is coercive (                                              )

has at most one element if is strictly convex or is invertible

[Combettes and Wajs 2004]

has exactly one element if is bounded bellow

[Combettes and Wajs, 2004]
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Convergence Results (I)

Problem:

IST algorithm:

[Daubechies, Defrise, De Mol, 2004]:  (applies in a Hilbert space setting)

Let and ; thenLet ,                   ,  and ; then, 

IST  converges  to a minimizer of

[Combettes and Wajs, 2005]:  (applies to a more general version of IST)

L t b d ( t h )Let be convex and proper (never , not everywhere)

; then, IST converges to a minimizer ofand
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Convergence Results (II)

Problem:

IST algorithm:

ob e

[Hale, Yin, Zhang, 2007]:  

Let and

Then, IST  converges  to some                  and, 

for all but a finite number of iterations: 
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where



Accelerating IST: Two-Step IST (TwIST)

IST becomes slow when is very ill conditioned and is small

Inspired by two-step method for linear systems [Frankel, 1950], [Axelsson, 1996],

TwIST algorithm [Bioucas-Dias and F., 2007]

IST  becomes slow when      is very ill-conditioned and     is small

g [ ]

Simplified analysis with

The minimizer is unique and TwIST converges to     , 

There is an optimal choice for      and for which
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Accelerating IST: TwIST (II)

A t th d i d fA one-step method is recovered for 

which is an over-relaxed version of the original IST.

For the optimal choice of :p

~ number of iterations to decrease error  by factor of 10.

Example: 
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Another two-step method was recently proposed  in [Beck and Teboulle, 2008]



original Blurred, 9x9, 40db noise restored

Accelerating IST: TwIST (III)

o g a Blurred, 9x9, 40db noise es o ed
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Initialization: choose and ; set

Accelerating IST: The SpaRSA Algorithmic Framework

Initialization:  choose             ,                            ,  and       ;  set

repeat:
choose
repeat:
choose

until (* acceptance criterion *)

until stopping criterion is satisfied

until (  acceptance criterion )    

[Wright, Nowak, F., 2008]
until stopping criterion is satisfied.

Variants of SpaRSA are distinguished by the choice of ,       ,  and

CS Workshop, Duke, 2009

Examples:                                      yields  standard IST.

yields  monotone SpaRSA 



The Barzilai Borwein approach: seek to mimic a Newton step

Choosing       for Speed

The Barzilai-Borwein approach: seek to mimic a Newton step, 

a less conservative choice than in IST:

With a least-squares criterion over the last step,

If ,  then

Alternative rule (SpaRSA-monotone):                             ,   with
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Compressed Sensing Experiment

210 x 212 random (Gaussian), 160  randomly located non-zeros

where, where

[F Nowak Wright 2007]

[Kim Koh Lustig Boyd Gorinvesky 2007]

[F., Nowak, Wright, 2007]

[Hale, Yin, Zhang, 2007]

[Kim, Koh, Lustig, Boyd, Gorinvesky, 2007]

[Bioucas-Dias, F.,  2007]

[Nesterov, 2007]
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GPSR and l1_ls are “hardwired” for 



Non-monotonicity

SpaRSA--monotone
SpaRSASpaRSA
GPSR
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Convergence of SpaRSA 

P blProblem: 

Critical point ifCritical point      if            

Criticality is necessary for optimality. 
If b th d it i l ffi i tIf  both     and     are convex, it is also sufficient.            

Safeguarded SpaRSA  (S-SParRSA) [Wright, Nowak, F., 2008] 

where usually e g

Let be Lipschitz continuously differentiable, convex and finite-valued, and

where                  ,  usually             , e.g.,              
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Let be Lipschitz continuously differentiable,      convex and finite valued, and   
bounded below. Then, all accumulation points of S-SpaRSA are critical points of 



Warm Starting and Continuation

SpaRSA (as GPSR, IST, etc)  is slow  for  small  

SpaRSA  (as GPSR and IST)  is “warm-startable”, 

i.e., it benefits (a lot) from a good initialization.   

Continuation  scheme:  start  with  largeg

slowly decrease     while tracking the solution.  

IST + continuation =  fixed point continuation (FPC)    [Hale, Yin, Zhang, 2007] 
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Continuation Experiment
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For                  , the solution is the zero vector  



Conclusions

- Reviewed several ways to derive the IST algorithm

Reviewed several convergence results for IST

- Described recent accelerated versions: TwIST, SpaRSA

- Reviewed several convergence results for IST

p

- IST and SpaRSA benefits (a lot) from a continuation scheme.

-State-of-the-art performance for a variety of problems:
MRI reconstruction (TV and wavelets), MEG imaging, deconvolution,( ), g g, ,
compressed sensing, … 
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