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Linear Discriminant Analysis

Notation
I The prior probability of class k is πk ,

∑K
k=1 πk = 1.

I πk is usually estimated simply by empirical frequencies of the
training set

π̂k =
# samples in class k

Total # of samples

I The class-conditional density of X in class G = k is fk(x).
I Compute the posterior probability

Pr(G = k | X = x) =
fk(x)πk∑K
l=1 fl(x)πl

I By MAP (the Bayes rule for 0-1 loss)

Ĝ (x) = arg max
k

Pr(G = k | X = x)

= arg max
k

fk(x)πk
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Linear Discriminant Analysis

Class Density Estimation

I Linear and quadratic discriminant analysis: Gaussian densities.

I Mixtures of Gaussians.

I General nonparametric density estimates.

I Naive Bayes: assume each of the class densities are products
of marginal densities, that is, all the variables are independent.
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Linear Discriminant Analysis

I Multivariate Gaussian:

fk(x) =
1

(2π)p/2|Σk |1/2
e−

1
2
(x−µk )T Σ−1

k (x−µk )

I Linear discriminant analysis (LDA): Σk = Σ, ∀k.

I The Gaussian distributions are shifted versions of each other.
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Linear Discriminant Analysis

I Optimal classification

Ĝ (x) = arg max
k

Pr(G = k | X = x)

= arg max
k

fk(x)πk = arg max
k

log(fk(x)πk)

= arg max
k

[
− log((2π)p/2|Σ|1/2)

−1

2
(x − µk)TΣ−1(x − µk) + log(πk)

]
= arg max

k

[
−1

2
(x − µk)TΣ−1(x − µk) + log(πk)

]
Note

−1

2
(x − µk)TΣ−1(x − µk) = xTΣ−1µk −

1

2
µT

k Σ−1µk −
1

2
xTΣ−1x
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Linear Discriminant Analysis

To sum up

Ĝ (x) = arg max
k

[
xTΣ−1µk −

1

2
µT

k Σ−1µk + log(πk)

]
I Define the linear discriminant function

δk(x) = xTΣ−1µk −
1

2
µT

k Σ−1µk + log(πk) .

Then
Ĝ (x) = arg max

k
δk(x) .

I The decision boundary between class k and l is:

{x : δk(x) = δl(x)} .

Or equivalently the following holds

log
πk

πl
− 1

2
(µk + µl)

TΣ−1(µk − µl) + xTΣ−1(µk − µl) = 0.
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Linear Discriminant Analysis

I Binary classification (k = 1, l = 2):
I Define a0 = log π1

π2
− 1

2 (µ1 + µ2)
TΣ−1(µ1 − µ2).

I Define (a1, a2, ..., ap)
T = Σ−1(µ1 − µ2).

I Classify to class 1 if a0 +
∑p

j=1 ajxj > 0; to class 2 otherwise.
I An example:

I π1 = π2 = 0.5.
I µ1 = (0, 0)T , µ2 = (2,−2)T .

I Σ =

„
1.0 0.0
0.0 0.5625

«
.

I Decision boundary:

5.56− 2.00x1 + 3.56x2 = 0.0 .
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Linear Discriminant Analysis

Estimate Gaussian Distributions

I In practice, we need to estimate the Gaussian distribution.

I π̂k = Nk/N, where Nk is the number of class-k samples.

I µ̂k =
∑

gi=k x (i)/Nk .

I Σ̂ =
∑K

k=1

∑
gi=k(x (i) − µ̂k)(x (i) − µ̂k)T/(N − K ).

I Note that x (i) denotes the ith sample vector.
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Linear Discriminant Analysis

Diabetes Data Set

I Two input variables computed from the principal components
of the original 8 variables.

I Prior probabilities: π̂1 = 0.651, π̂2 = 0.349.

I µ̂1 = (−0.4035,−0.1935)T , µ̂2 = (0.7528, 0.3611)T .

I Σ̂ =

(
1.7925 −0.1461
−0.1461 1.6634

)
I Classification rule:

Ĝ (x) =

{
1 0.7748− 0.6771x1 − 0.3929x2 ≥ 0
2 otherwise

=

{
1 1.1443− x1 − 0.5802x2 ≥ 0
2 otherwise

Jia Li http://www.stat.psu.edu/∼jiali



Linear Discriminant Analysis

The scatter plot follows. Without diabetes: stars (class 1), with
diabetes: circles (class 2). Solid line: classification boundary
obtained by LDA. Dash dot line: boundary obtained by linear
regression of indicator matrix.
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Linear Discriminant Analysis

I Within training data classification error rate: 28.26%.

I Sensitivity: 45.90%.

I Specificity: 85.60%.
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Contour plot for the density (mixture of two Gaussians) of the
diabetes data.
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Simulated Examples

I LDA is not necessarily bad when the assumptions about the
density functions are violated.

I In certain cases, LDA may yield poor results.
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LDA applied to simulated data sets. Left: The true within class
densities are Gaussian with identical covariance matrices across
classes. Right: The true within class densities are mixtures of two
Gaussians.
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Left: Decision boundaries by LDA. Right: Decision boundaries
obtained by modeling each class by a mixture of two Gaussians.
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Quadratic Discriminant Analysis (QDA)

I Estimate the covariance matrix Σk separately for each class k,
k = 1, 2, ...,K .

I Quadratic discriminant function:

δk(x) = −1

2
log |Σk | −

1

2
(x − µk)TΣ−1

k (x − µk) + log πk .

I Classification rule:

Ĝ (x) = arg max
k

δk(x) .

I Decision boundaries are quadratic equations in x .

I QDA fits the data better than LDA, but has more parameters
to estimate.
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Diabetes Data Set

I Prior probabilities: π̂1 = 0.651, π̂2 = 0.349.

I µ̂1 = (−0.4035,−0.1935)T , µ̂2 = (0.7528, 0.3611)T .

I Σ̂1 =

(
1.6769 −0.0461
−0.0461 1.5964

)
I Σ̂2 =

(
2.0087 −0.3330
−0.3330 1.7887

)
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Linear Discriminant Analysis

I Within training data classification error rate: 29.04%.

I Sensitivity: 45.90%.

I Specificity: 84.40%.

I Sensitivity is the same as that obtained by LDA, but
specificity is slightly lower.
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LDA on Expanded Basis
I Expand input space to include X1X2, X 2

1 , and X 2
2 .

I Input is five dimensional: X = (X1,X2,X1X2,X
2
1 ,X 2

2 ).
I

µ̂1 =


−0.4035
−0.1935
0.0321
1.8363
1.6306

 µ̂2 =


0.7528
0.3611
−0.0599
2.5680
1.9124


I

Σ̂ =


1.7925 −0.1461 −0.6254 0.3548 0.5215
−0.1461 1.6634 0.6073 −0.7421 1.2193
−0.6254 0.6073 3.5751 −1.1118 −0.5044
0.3548 −0.7421 −1.1118 12.3355 −0.0957
0.5215 1.2193 −0.5044 −0.0957 4.4650
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I Classification boundary:

0.651− 0.728x1 − 0.552x2 − 0.006x1x2 − 0.071x2
1 + 0.170x2

2 = 0 .

I If the linear function on the right hand side is non-negative,
classify as 1; otherwise 2.
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Linear Discriminant Analysis

Classification boundaries obtained by LDA using the expanded
input space X1, X2, X1X2, X 2

1 , X 2
2 . Boundaries obtained by LDA

and QDA using the original input are shown for comparison.

Jia Li http://www.stat.psu.edu/∼jiali



Linear Discriminant Analysis

I Within training data classification error rate: 26.82%.

I Sensitivity: 44.78%.

I Specificity: 88.40%.

I The within training data classification error rate is lower than
those by LDA and QDA with the original input.
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