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Linear Discriminant Analysis

Notation

» The prior probability of class k is 7y, Zszl e = 1.
> 7 is usually estimated simply by empirical frequencies of the
training set

R # samples in class k
Tk =

Total # of samples

» The class-conditional density of X in class G = k is f(x).
» Compute the posterior probability

fk(X)ﬂ'k
i i)
» By MAP (the Bayes rule for 0-1 loss)

G(x) = arngxPr(G =k|X=x)

Pr(G=k| X =x)=

= argmax fe(x) 7k
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Linear Discriminant Analysis

Class Density Estimation

Linear and quadratic discriminant analysis: Gaussian densities.

>
» Mixtures of Gaussians.

» General nonparametric density estimates.
>

Naive Bayes: assume each of the class densities are products
of marginal densities, that is, all the variables are independent.
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Linear Discriminant Analysis

» Multivariate Gaussian:

1

W) = G
0 k

» Linear discriminant analysis (LDA): X, = X, Vk.
» The Gaussian distributions are shifted versions of each other.
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Linear Discriminant Analysis

» Optimal classification
G(x) = arngxPr(G:k\X:x)
= argmax fu(x)m = arg max log(fi(x)7k)
= argmax [— log((27)P/2|Z|/?)

1

_E(X — ) TE T (= ) + Iog(”)}

1 _
~ argmax [—§(x — = )+ log(m]
Note

1 _ _ 1 _ 1 _
—5lx = p) T = ) = x T g — EN[Z Yy — EXTZ 'x
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To sum up

R 1
G(x) = arg max [XTZ_llﬁk — EMkTZ_INk + IOg(Wk)]

» Define the linear discriminant function

1
Ok(x) = x "X e = Sy T+ log(mi)

Then )
G(x) =arg mfxék(x) .

» The decision boundary between class k and / is:

{x:0k(x) =(x)} .

Or equivalently the following holds

7 1 _ _
|og7r_l,( = o (e ) TET e = )+ xTE T (e — pua) = 0.
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» Binary classification (k =1, | = 2):
> Define ag = log T — 3 (pu1 + p12) T H(pa — o).
Define (a1, a2, ..., ap) " = Z 1 (1 — p2).
Classify to class 1 if ag + Y_7_; a;x; > 0; to class 2 otherwise.
An example:

v vy

» m = m = 0.5.

» w1 =(0,0)7, p2=(2,-2)".
1.0 0.0

> Y —
0.0 0.5625

> Decision boundary:

5.56 — 2.00x; + 3.56x2 = 0.0 .
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Estimate Gaussian Distributions

In practice, we need to estimate the Gaussian distribution.

v

v

7k = Nk /N, where Ny is the number of class-k samples.
ﬁk = Zg,-:k X(i)/Nk
£ = 2k Xk (3 = ) (D = ) T/(N = K).

Note that x() denotes the ith sample vector.

v

v

v
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Diabetes Data Set

» Two input variables computed from the principal components
of the original 8 variables.

» Prior probabilities: 7; = 0.651, 7, = 0.349.
> fiy = (—0.4035,—-0.1935)7, fi» = (0.7528,0.3611) .

> o 1.7925  —0.1461
-\ —0.1461 1.6634

» Classification rule:

G

(X) _ 1 0.7748 — 0.6771x; — 0.3929x>, > 0
- 2 otherwise

(1 1.1443 — x; — 0.5802x, > 0
o 2 otherwise
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Linear Discriminant Analysis

The scatter plot follows. Without diabetes: stars (class 1), with
diabetes: circles (class 2). Solid line: classification boundary
obtained by LDA. Dash dot line: boundary obtained by linear
regression of indicator matrix.
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» Within training data classification error rate: 28.26%.
» Sensitivity: 45.90%.
» Specificity: 85.60%.
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Contour plot for the density (mixture of two Gaussians) of the
diabetes data.
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Simulated Examples

» LDA is not necessarily bad when the assumptions about the
density functions are violated.

» In certain cases, LDA may yield poor results.
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Lo L L=

LDA applied to simulated data sets. Left: The true within class
densities are Gaussian with identical covariance matrices across
classes. Right: The true within class densities are mixtures of two

Gaussians.
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Left: Decision boundaries by LDA. Right: Decision boundaries
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obtained by modeling each class by a mixture of two Gaussians.
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Quadratic Discriminant Analysis (QDA)

» Estimate the covariance matrix X, separately for each class k,
k=1,2,...K.

» Quadratic discriminant function:
Su(x) = 3 108 [Z4] — 5 (x — ) T (x = ) +log i
» Classification rule:
G(x) = arg mkaxék(x) .

» Decision boundaries are quadratic equations in x.

» QDA fits the data better than LDA, but has more parameters
to estimate.
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Diabetes Data Set

» Prior probabilities: 7; = 0.651, 7, = 0.349.
> [i1 = (—0.4035, —0.1935)T, fio = (0.7528, 0.3611)T.

L ¢ _ (16769 —0.0461
1=\ —0.0461 1.5964

_ ( 2.0087  —0.3330 )

™M>

> 2=\ _03330 1.7887
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Linear Discriminant Analysis

» Within training data classification error rate: 29.04%.

» Sensitivity: 45.90%.

» Specificity: 84.40%.

» Sensitivity is the same as that obtained by LDA, but
specificity is slightly lower.
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LDA on Expanded Basis

» Expand input space to include X3 X, X12, and X22.
» Input is five dimensional: X = (X1, Xa, X1 Xo, X2, X2).

>
—0.4035 0.7528
—0.1935 0.3611
fi1 =] 0.0321 it =1 —0.0599
1.8363 2.5680
1.6306 1.9124
>
1.7925  —0.1461 —-0.6254 0.3548  0.5215
—0.1461 1.6634 0.6073 —0.7421 1.2193
> =| —06254 0.6073 35751 —1.1118 —0.5044

0.3548  —0.7421 —1.1118 12.3355 —0.0957
0.5215 1.2193  —-0.5044 —0.0957 4.4650
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» Classification boundary:
0.651 — 0.728x; — 0.552x — 0.006x;x, — 0.071x7 +0.170x3 = 0 .

» If the linear function on the right hand side is non-negative,
classify as 1; otherwise 2.
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Classification boundaries obtained by LDA using the expanded
input space X1, X3, X1X5, X12, X22. Boundaries obtained by LDA
and QDA using the original input are shown for comparison.
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» Within training data classification error rate: 26.82%.
» Sensitivity: 44.78%.
» Specificity: 88.40%.

» The within training data classification error rate is lower than
those by LDA and QDA with the original input.
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Elements of Statistical Learning @Hastie, Tibshirani & Friedman 2001  Chapier 4

Figure 4.6: Two methods for fitting quadratic bound-
aries. The left plot shows the quadratic decision bound-
aries for the data in Figure 4.1 (obtained using LDA in
the five-dimensional space T1, Tz, T12, 71, 73). The right
plot shows the gquadratic decision boundaries found by

QDA. The differences are small, as is usually the case.
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