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what is concentration?

We are interested in bounding random fluctuations of functions of
many independent random variables.



what is concentration?

We are interested in bounding random fluctuations of functions of
many independent random variables.

Xi,..., X, are independent random variables taking values in
some set X. Let f : X" — R and

Z="f(Xq,...,Xn) .

How large are “typical” deviations of Z from [EZ?
In particular, we seek upper bounds for

P{Z > EZ+t} and P{Z < EZ — t}

fort > 0.



various approaches

- martingales (Yurinskii, 1974; Milman and Schechtman, 1986;
Shamir and Spencer, 1987; McDiarmid, 1989,1998);

- information theoretic and transportation methods (Alhswede,
Gécs, and Korner, 1976; Marton 1986, 1996, 1997; Dembo 1997);

- Talagrand's induction method, 1996;

- logarithmic Sobolev inequalities (Ledoux 1996, Massart 1998,
Boucheron, Lugosi, Massart 1999, 2001).
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chernoff bounds
By Markov's inequality, if A > 0,
ReXZ—EZ)
_ XNZ—-EZ At
IP’{Z—IEZ>t}_]P’{e (2-52) 5 ¢ }ST

Next derive bounds for the moment generating function Ee*Z—EZ)

and optimize A.
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By Markov's inequality, if A > 0,
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Next derive bounds for the moment generating function Ee*Z—EZ)
and optimize A.

If Z= 3", Xi is a sum of independent random variables,
n n
Ee* =E H eMi = H Ee*
|=l l=1

by independence. It suffices to find bounds for Ee*Xi,



chernoff bounds
By Markov's inequality, if A > 0,
FEeMZ—EZ)
_ ANZ—-EZ At
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Next derive bounds for the moment generating function Ee*Z—EZ)
and optimize A.

If Z = Zinzl X; is a sum of independent random variables,
n n
Ee* = E H e = H Ee*Xi
i=1 i=1

by independence. It suffices to find bounds for Ee*Xi,

Serguei Bernstein (1880-1968) Herman Chernoff (1923-)



hoeffding's inequality
If X1,...,Xn € [0, 1], then

EerXi—EX) e,\2/8 .



hoeffding's inequality
If X1,...,Xn € [0, 1], then

EerXi—EX) e,\2/8 .

We obtain

Wassily Hoeffding (1914-1991)




bernstein’s inequality

Hoeffding's inequality is distribution free. It does not take variance
information into account.

Bernstein's inequality is an often useful variant:

Let X1,..., X, be independent such that X; < 1. Let
v=>1",E[X?]. Then

n 2
P {Z (Xi — EX;) > t} < exp (-M) .

i=1



martingale representation

Xi,..., X, are independent random variables taking values in
some set X'. Let f : X" — R and

Z=f(Xq,...,Xn) .

Denote Ei[-] = E[-|X1, ..., Xi]. Thus, EoZ = EZ and E,Z = Z.



martingale representation

Xi,..., X, are independent random variables taking values in
some set X'. Let f : X" — R and

Z=f(Xq,...,Xn) .

Denote Ei[-] = E[-|X1,...,X;]. Thus, EgZ = EZ and E,Z = Z.
Writing

A =FZ-FEZ,

we have

Z—EZ:iA;
i=1

This is the Doob martingale
representation of Z.



martingale representation

Xi,..., X, are independent random variables taking values in
some set X'. Let f : X" — R and

Z=f(Xq,...,Xn) .

Denote Ei[-] = E[-|X1,...,X;]. Thus, EgZ = EZ and E,Z = Z.
Writing

A =FZ—F_1Z,

we have

This is the Doob martingale
representation of Z. Joseph Leo Doob (1910-2004)



martingale representation: the variance

(&)

Now if j > i, E;A; = 0, so

n

=Y E|a +2) Ean;.

i=1 i>i

Var (Z) = E

EAjA; = AEA; =0,

We obtain

Var (Z) = E




martingale representation: the variance

n

Var (Z) = E <§A;>2 =Y E|a +2) Ean;.

i=1 j>i
Now if j > i, E;A; = 0, so
EiAjA; = AEA; =0,
We obtain

n

Var(Z) = E (;Ai)z =ZE[A?}.

i=1

From this, using independence, it is easy derive the Efron-Stein
inequality.



efron-stein inequality (1981)

Let Xg,...,X, be independent random variables taking values in
X. Letf: X" — Rand Z = f(Xq1,...,Xn).
Then

Var(Z)<EZ(Z E0Zz)? = EZVar()(Z)
i=1 i=1

where EWZ is expectation with respect to the i-th variable X; only.



efron-stein inequality (1981)

Let Xg,...,X, be independent random variables taking values in
X. Letf: X" — Rand Z = f(Xq1,...,Xn).
Then

Var(Z) < Ei(z —E0Z)? = Ezn:Var(i)(Z) :
i=1 i=1

where EWZ is expectation with respect to the i-th variable X; only.

We obtain more useful forms by using that
1
Var(X) = 5H«:(x —X)? and Var(X) < E(X — a)?

for any constant a.



efron-stein inequality (1981)

If Xi,...,X] are independent copies of X1, ...,X,, and
le = f(X17 cees Xz, Xlla Xit1seeos Xn),

then
1
Var(Z) < EE

S (z- z;>2]

i=1
Z is concentrated if it doesn’t depend too much on any of its
variables.



efron-stein inequality (1981)

If Xi,...,X] are independent copies of X1, ...,X,, and
Z|/ = f(X17 cees Xz, Xllv Xit1seeos Xn)a

then
1
Var(Z) < EE

n
-2y
i=1

Z is concentrated if it doesn’t depend too much on any of its
variables.

If Z =731, Xi then we have an equality. Sums are the “least
concentrated” of all functions!



efron-stein inequality (1981)

If for some arbitrary functions f;
Z; = fi(X1, oo, Xic1y Xig1y - -5 Xi)

then

Var(Z) <E

zn:(z — Zi)z]

i=1



efron, stein, and steele

Mike Steele

Bradley Efron Charles Stein



weakly self-bounding functions

f: X" — [0, 00) is weakly (a, b)-self-bounding if there exist
fi : "1 — [0, 00) such that for all x € &™,

n

3 (f(x) - f;(x(i)))z < af(x) + b.

i=1



weakly self-bounding functions

f: X" — [0, 00) is weakly (a, b)-self-bounding if there exist
fi : "1 — [0, 00) such that for all x € &™,

n

3 (f(x) - f;(x(i)))z < af(x) + b.

i=1

Then
Var(f(X)) < aEf(X) +b .



self-bounding functions

0 < f(x) —fi(x) <1

and
n

> (F) = fi(x®) ) < F(x)

i=1
then f is self-bounding and Var(f(X)) < Ef(X).



self-bounding functions

0<f(x) —fixP) <1

and
n

> (Fx) = ) <F(x)
i=1
then f is self-bounding and Var(f(X)) < Ef(X).

Rademacher averages, random VC dimension, random VC entropy,
longest increasing subsequence in a random permutation, are all
examples of self bounding functions.



self-bounding functions

0<f(x) —fixP) <1

and
n

> (Fx) = fi(x®)) < f(x)

i=1
then f is self-bounding and Var(f(X)) < Ef(X).

Rademacher averages, random VC dimension, random VC entropy,
longest increasing subsequence in a random permutation, are all
examples of self bounding functions.

Configuration functions.



example: uniform deviations

Let A be a collection of subsets of X, and let X1,...,X, ben
random points in X drawn i.i.d.
Let

1 n
P(A) =P{X; € A} and Pn(A)= -3 Ixeca
n i=1
If Z = suppc 4 [P(A) — Pu(A)],

1
Var(Z) < —
2n



example: uniform deviations

Let A be a collection of subsets of X, and let X1,...,X, ben
random points in X drawn i.i.d.
Let

1 n
P(A) =P{X; € A} and Pn(A)= -3 Ixeca
n i=1
If Z = suppc 4 [P(A) — Pu(A)],

1
Var(Z) < —
2n

regardless of the distribution and the richness of A.



beyond the variance

Xi,..., X, are independent random variables taking values in
some set X. Let f: X" — R and Z = f(Xy,...,X;). Recall the
Doob martingale representation:

n
Z-EZ=) A; where A=EZ-F_Z,
i=1

with E.[] = E[-|X1, cee Xi].

To get exponential inequalities, we bound the moment generating
function Ee*Z—EZ),



azuma's inequality

Suppose that the martingale differences are bounded: |A;| < ;.
Then

EeA(Z_EZ)z Ee)‘(z?ﬂ Ai) — EEneA(Zinz_ll Ai)"‘)\An
n—1 o
= Ee)‘(ziﬂ A')EneAA"

n—1
< BT 8) 3262 (b Hoefiding)

S eAz(Elnzl c|2)/2 .

This is the Azuma-Hoeffding inequality for sums of bounded
martingale differences.



bounded differences inequality
If Z = f(X1,...,Xp) and f is such that

[F(X15 .00 sxn) — F(x15. 00X, eeoyxn)| <

then the martingale differences are bounded.



bounded differences inequality
If Z = f(X1,...,Xp) and f is such that
[F(X15 .00 sxn) — F(x15. 00X, eeoyxn)| <
then the martingale differences are bounded.

Bounded differences inequality: if X1,...,X, are independent,
then , ,
P{|Z — EZ| > t} < 272"/ 2= |



bounded differences inequality
If Z = f(X1,...,Xp) and f is such that

[F(X15 .00 sxn) — F(x15. 00X, eeoyxn)| <
then the martingale differences are bounded.

Bounded differences inequality: if X1,...,X, are independent,
then , ,
P{|Z — EZ| > t} < 272"/ 2= |

McDiarmid's inequality.

Colin McDiarmid



hoeffding in a hilbert space
Let Xy,...,X, be independent zero-mean random variables in a
separable Hilbert space such that || X;|| < ¢/2 and denote
v =nc?/4. Then, for all t > /v,

P {‘ > t} < e~ (t=v¥)?/(2v)

> %
i=1




hoeffding in a hilbert space

Let Xy,...,X, be independent zero-mean random variables in a
separable Hilbert space such that ||X;|| < ¢/2 and denote
v = nc2/4. Then, for all t > 4/v,

}p{‘ > t} < e~ (t=v¥)?/(2v)

n
2%
i=1
Proof: By the triangle inequality, HZLI X;H has the bounded
differences property with constants c, so

(e e

QA )

2v

—E >t—E

n
%
i=1

}

Also,

n

>ox

—1

E <.|E

2 n
=\ZE||X;||2 < W

> %

=1




bounded differences inequality

*Easy to use.

*Distribution free.

*Often close to optimal.

*Does not exploit “variance information.”
*Often too rigid.

#*Other methods are necessary.



shannon entropy

If X, Y are random variables taking
values in a set of size N,

H(X) = — ) p(x) log p(x)

H(X[Y)=H(X,Y) — H(Y)
== p(x,y)logp(x]y)

X,y

H(X) < logN and H(X|Y) < H(X)

Claude Shannon
(1916-2001)



han's inequality
If X = (X1,...,Xp) and
X0 = (X1,...,Xi—1, Xis1,- -+, Xn), then

- _ 0]
> (HX) = H(XO) ) < H(X)

Proof:

H(X)= H(X®) 4+ H(X;|x®)
< H(XO) + H(Xi[ Xy, . . ., Xi—1)

Since Y ity H(Xi|X1, ..., Xi—1) = H(X), summing
the inequality, we get

Te Sun Han

(n — DH(X) < iH(X‘”) :
i=1



number of increasing subsequences

Let N be the number of increasing subsequences in a random
permutation. Then

Var(log, N) < Elog, N .



number of increasing subsequences

Let N be the number of increasing subsequences in a random
permutation. Then

Var(log, N) < Elog, N .

Proof: Let X = (X1,...,Xy) be i.i.d. uniform [0, 1].
fa(X) = logy N is now a function of independent random
variables. It suffices to prove that f is self-bounding:

0 < Fa(X) = Fact(X1s -+ s Xic 1 X1+ -+ 5 Xn) < 1

and

Z (Fa(x) — fa—1(x1, -+ oy Xic1, Xig1 - - -5 Xn)) < fo(x) ©
i=1



number of increasing subsequences

o foth 5,

W an Ak
SW mr
l | / 41)(; 15 1A w
ORENENGIOR A ’3”’“"‘2
Jro 10 41 1 d :
‘ J homisc



number of increasing subsequences
H(% 1) = o) (awikem Aistifrdhion)
, " M:Q A . !
HOR) = AL (e dll

2L () < 240 -HE)




subadditivity of entropy

The entropy of a random variable Z > 0 is
Ent(Z) = E®(Z) — ®(EZ)

where ®(x) = xlog x. By Jensen's inequality, Ent(Z) > 0.



subadditivity of entropy

The entropy of a random variable Z > 0 is
Ent(Z) = E®(Z) — ®(EZ)

where ®(x) = xlog x. By Jensen's inequality, Ent(Z) > 0.

Han's inequality implies the following sub-additivity property.
Let X1,..., X, be independent and let Z = f(Xy,...,X,),
where f > 0.
Denote

Ent?)(2) = EVo(2) — o(EDZ)

Then

Ent(Z) < Ezn:Ent(i)(Z) :
i=1



a logarithmic sobolev inequality on the hypercube

Let X = (X1,...,Xy) be uniformly distributed over {—1,1}". If
f:{-1,1}" — R and Z = f(X),

1 n
Ent(Z?) < —E Z —Z7')?
nt( )_2;( )

The proof uses subadditivity of the entropy and calculus for the
case n = 1.

Implies Efron-Stein.



Sergei Lvovich Sobolev
(1908-1989)




herbst’s argument: exponential concentration

If f:{—1,1}" — R, the log-Sobolev inequality may be used with
g(x) = eMM/2 where A €R.
If F(A) = Ee*? is the moment generating function of Z = f(X),
Ent(g(X)?)= AE {Ze)‘z} —E [e)‘z} logE [Ze)‘z]
= AF'(A) — F(A) log F(\) .

Differential inequalities are obtained for F().



herbst’s argument

As an example, suppose f is such that i ;(Z — Z./)i < v. Then
by the log-Sobolev inequality,

AF (M) — F(A)log F(\) < vi\zF()\)

If G(A) = log F(), this becomes
G /
( (>\)> < ¥
A — 4
This can be integrated: G(A) < AEZ 4+ Av/4, so

F(}\) S eAEZ—}\ZV/4

This implies
P{Z >EZ +t} < et/



herbst’s argument

As an example, suppose f is such that i ;(Z — Z./)i < v. Then
by the log-Sobolev inequality,

AF (M) — F(A)log F(\) < vi\zF()\)

If G(A) = log F(), this becomes
G /
( (>\)> < ¥
A — 4
This can be integrated: G(A) < AEZ 4+ Av/4, so

F(}\) S eAEZ—}\ZV/4

This implies
P{Z >EZ +t} < et/

Stronger than the bounded differences inequality!



gaussian log-sobolev inequality

Let X = (X1,...,X,) be a vector of i.i.d. standard normal If
f:R" — Rand Z = f(X),

Ent(22) < 2E || VF(X)|?]

(Gross, 1975).



gaussian log-sobolev inequality

Let X = (X1,...,X,) be a vector of i.i.d. standard normal If
f:R" — Rand Z = f(X),

Ent(22) < 2E || VF(X)|?]

(Gross, 1975).

Proof sketch: By the subadditivity of entropy, it suffices to prove it
forn=1.

Approximate Z = f(X) by

1 m
fl — Ei
where the g; are i.i.d. Rademacher random variables.

Use the log-Sobolev inequality of the hypercube and the central
limit theorem.



gaussian concentration inequality

Herbst't argument may now be repeated:
Suppose f is Lipschitz: for all x,y € R",

f(x) — f(y)| < Llx—yll .
Then, for all t > 0,
P {f(X) — Ef(X) > t} < et/

(Tsirelson, lbragimov, and Sudakov, 1976).



an application: supremum of a gaussian process

Let (Xt);cq be an almost surely continuous centered Gaussian
process. Let Z = supyc7 X;. If

7" = s (3 ])

P{|Z — EZ| > u} < 2e~V/(27°)

then



an application: supremum of a gaussian process

Let (Xt);cq be an almost surely continuous centered Gaussian
process. Let Z = supyc7 X;. If
o’ = sup (E [XED ,
teT
then , ,
P{|Z — EZ| > u} < 2e"v/(279)
Proof: We may assume 7 = {1,...,n}. Let I be the covariance
matrix of X = (X1,...,X,). Let A = T2 If Y is a standard
normal vector, then
f(Y) = max (AY). & max X;
i=1,...,n i=1,...,n

By Cauchy-Schwarz,
1/2

|(Au); — (Av);|= ZAi,j (uj —vj)| < ZA?,J- llu—v]|

< oflu— v



beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not
available.

Solution: modified logarithmic Sobolev inequalities.
Suppose Xi,..., X, are independent. Let Z = f(Xy,...,X,)
and Z; = fi(XD) = fi(Xq, ..., Xi—1, Xig1y -« - » Xn).

Let ¢(x) = e* —x — 1. Then for all A € R,

AE [Ze)‘z} —E [e“} log E [e“}

< ZE [e*zqs (=XMZ - zi))} :

i=1

Michel Ledoux



the entropy method

Define Z; = inf,/ f(X1,...,x/,...,Xy,) and suppose

n

Y(@E-z)<v.

i=1

Then for all t > 0,

P{Z—FEZ >t} <e ¥/@),



the entropy method

Define Z; = inf,/ f(X1,...,x/,...,Xy,) and suppose

n

Y(Z-zZ)P<v.
i=1
Then for all t > 0,
P{Z—FEZ >t} <e ¥/@),

This implies the bounded differences inequality and much more.



example: the largest eigenvalue of a symmetric matrix
Let A = (Xij)nxn be symmetric, the X;; independent (i < j) with
|Xi,j| < 1. Let

Z=X1= sup u'Au.
u:||ul|=1

and suppose v is such that Z = vT Av.
A;; is obtained by replacing Xi; by x;;. Then

(Z—Zij)+< (vTAv - vTAi’,jv> 757,
— (VT(A — Ai/,j)v> ]]'Z>Zi,j <2 (ViVj(Xi,j — Xi/,j)>+
< 4|vv| .

Therefore,

n 2
Y (Z-7Z)F < D 16wy <16< ) =16.

1<i<j<n 1< <j<n i=1



self-bounding functions

Suppose Z satisfies

n
0<Z-Z<1 and > (Z—-Z)<Z.
i=1
Recall that Var(Z) < EZ. We have much more:
P{Z > EZ + t} < e t'/(EZ+2t/3)

and ,
P{Z < EZ — t} < e V/(2E2)



self-bounding functions

Suppose Z satisfies
n
0<Z-7Z<1 and Y (Z-Z)<Z.
i=1

Recall that Var(Z) < EZ. We have much more:
P{Z > EZ + t} S e—tz/(2E2+2t/3)

and ,
P{Z < EZ — t} < e V/(2E2)

Rademacher averages, random VC dimension, random VC entropy,
longest increasing subsequence in a random permutation, are all
examples of self bounding functions.



self-bounding functions

Suppose Z satisfies

n
0<Z-Z<1 and » (Z-Z)<Z.
i=1

Recall that Var(Z) < EZ. We have much more:
P{Z > EZ + t} S e—tz/(2E2+2t/3)
and ,
P{Z < EZ — t} < e V/(2E2)

Rademacher averages, random VC dimension, random VC entropy,
longest increasing subsequence in a random permutation, are all
examples of self bounding functions.

Configuration functions.



exponential efron-stein inequality
Define

P —

i=1

V- = zn:nz' [(z - zi’)z_} .

i=1

and

By Efron-Stein,
Var(Z) < EVt and Var(Z) <EV~.



exponential efron-stein inequality
Define

W S —
and -

V- = ZH:IE' [(z - zi’)z_} .
i=1
By Efron-Stein,

Var(Z) < EVt and Var(Z) <EV~.

The following exponential versions hold for all A, 8 > 0 with
A0 < 1.

AZ-EZ) AVH/O

0
log Ee 10 log Ee

If also Z{ — Z < 1 for every i, then for all A € (0,1/2),

A -
log EeMZ—F2) < 1 2x log Ee?V™ .



weakly self-bounding functions

f: X" — [0, 00) is weakly (a, b)-self-bounding if there exist
fi : "1 — [0, 00) such that for all x € &™,

Zn: (f(x) — fi(x(i)))2 < af(x)+b.

i=1
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f: X" — [0, 00) is weakly (a, b)-self-bounding if there exist
fi : "1 — [0, 00) such that for all x € &™,

Zn: (f(x) — fi(x(i)))2 < af(x)+b.

i=1

Then

t2
P{Z>EZ+1t} < - .
{z=EZ+ }—exp< 2(aEZ+b+at/2))



weakly self-bounding functions

f: X" — [0, 00) is weakly (a, b)-self-bounding if there exist
fi : "1 — [0, 00) such that for all x € &™,

Zn: (f(x) — fi(x(i)))2 < af(x)+b.

i=1

Then

t2
P{Z>EZ+1t} < - .
{z=EZ+ }—exp< 2(aEZ+b+at/2))

If, in addition, f(x) — f;(x)) < 1, then for 0 < t < EZ,

t2
P{Z<EZ—t}<exp|— .
s }—eXp< 2(aEZ+b+c_t)>

where ¢ = (3a — 1)/6.



the isoperimetric view

Let X = (X1,...,X;,) have independent Es
components, taking values in X". Let |
ACAXx"

The Hamming distance of X to A is

n
d(X,A) = mind(X = mi Ly 2y -
(X,A) ;“6'{\‘ (X,y) %‘R; Xi 2y

Michel Talagrand



the isoperimetric view

Let X = (X1,...,X;,) have independent Es
components, taking values in X". Let |
ACAXx"

The Hamming distance of X to A is

n
d(X,A) = mind(X = mi Tx. 2y -
(X,A) ;“6'{\‘ (X,y) %‘R; Xiy;
Michel Talagrand

1
P{d(X, A) >t+ nIog} < e—2t2/n



the isoperimetric view

Let X = (X1,...,X;,) have independent Es
components, taking values in X". Let |
ACAXx"

The Hamming distance of X to A is

n
X,A) = mi X =mi Tyx.4y .«
d(X,A) = mind(X,y) ryrggi; Xisty
Michel Talagrand
n 1
P {d(X, A)>t+ = Iog} < e 2/n

Concentration of measure!



the isoperimetric view

Proof: By the bounded differences inequality,
P{Ed(X,A) — d(X,A) >t} < e~2¢/",
Taking t = Ed(X, A), we get

n 1
Ed(X,A) < /= log

By the bounded differences inequality again,

n 1 2
P{d(X,A) >t —1 < @ 2t%/n
{(, ) > +1/20gP{A}}_e




talagrand’s convex distance

The weighted Hamming distance is

da(x,A) = ;25\ da(x,y) = ;gglé;y |l

where a = (a1, ..., ap). The same argument as before gives

[|ex]|?
Prda(X,A) 2 t+ /7" log

This implies

_2t2 2
< e 2/l

IP’{A}} B

sup min (P{A},P{da(X,A) > t}) < e t/2.

aiflaf|=1



convex distance inequality

convex distance:

dT(Xa A) = sup da(xa A) .
a€[0,00)":|arf|=1



convex distance inequality

convex distance:

dT(X7 A) = sup da(xa A) .
a€[0,00)":|arf|=1

Talagrand’s convex distance inequality:

P{A}P {d7(X,A) >t} < e /4.



convex distance inequality

convex distance:

dT(X7 A) = sup da(xa A) .
a€[0,00)":|arf|=1

Talagrand’s convex distance inequality:
P{A}P {dr(X,A) >t} < e /4.

Follows from the fact that dr(X, A)? is (4, 0) weakly self
bounding (by a saddle point representation of dr).

Talagrand’s original proof was different.



convex lipschitz functions
For A C [0,1]" and x € [0, 1]", define

D(x,A) = inf [lx —y]| -

If A is convex, then

D(x,A) < dt(x,A) .



convex lipschitz functions
For A C [0,1]" and x € [0, 1]", define

D(x,A) = inf [lx —y]| -

If A is convex, then
D(x,A) < dt(x,A) .
Proof:

D(x,A)= uem/\/tf(A) |[x —E, Y| (since A is convex)

n

. 2 .
< f Ey 1y.2y: is Yi 0,1
< g | 2 (Boan)” (e ¥s € [01)

n
= inf sup o;E, 1y 2y, (by Cauchy-Schwarz
VEM(A)a:HaHSl; Lz )

= dt(x,A) (by minimax theorem) .



convex lipschitz functions
Let X = (X1,...,X;,) have independent components taking
values in [0, 1]. Let f : [0,1]" — R be quasi-convex such that
f(x) — f(y)| < [Ix — y[|. Then

P{f(X) > Mf(X) + t} < 2e~*"/

and
P{f(X) < MF(X) — t} < 2e~%/4 .



convex lipschitz functions

Let X = (X1,...,X;,) have independent components taking
values in [0, 1]. Let f : [0,1]" — R be quasi-convex such that
f(x) — fF(Y)| < lIx — yl|. Then

P{f(X) > Mf(X) + t} < 2e~*"/

and
P{f(X) < MF(X) — t} < 2e~%/4 .

Proof: Let Ag = {x : f(x) < s} C [0,1]". A is convex. Since f
is Lipschitz,

f(x) < s+ D(x, As) < s+ dr(x, As)
By the convex distance inequality,
P{f(X) > s + t}P{f(X) < s} < e /%,

Take s = Mf(X) for the upper tail and s = Mf(X) — t for the
lower tail.



¢ entropies

For a convex function ¢ on [0, c0), the ¢-entropy of Z > 0 is

Hy (Z2) =E[¢(2)] — ¢ (E[Z]) -

H is subadditive:
Ho (@) < 38 [E[02) | X0] - o (£[21x0])
i=1

if (and only if) ¢ is twice differentiable on (0, c0), and either ¢ is
affine or strictly positive and 1/¢” is concave.



¢ entropies

For a convex function ¢ on [0, c0), the ¢-entropy of Z > 0 is
Hy (2) = E[9(2)] — ¢ (E[Z]) -

H is subadditive:
Ho (@) < 38 [E[02) | X0] - o (£[21x0])
i=1

if (and only if) ¢ is twice differentiable on (0, c0), and either ¢ is
affine or strictly positive and 1/¢” is concave.

¢(x) = x? corresponds to Efron-Stein.
x log x is subadditivity of entropy.
We may consider ¢(x) = xP for p € (1, 2].



generalized efron-stein

Define

ZI/ = f(Xl, .. .,Xi_l, Xi/,Xi+17 oo

n
vt =Y (z-Z) .
i=1



generalized efron-stein

Define
Z|/ = f(Xh ey Xz, X|/a Xit1seees Xn) ’

n
vh=>Z-2);.
i=1
Forq>2andq/2<a<q-—1,
E[(z - EZ)]]
<E[(Z-E2);]"" +a(a-a)E|VF(Z-E2)]]

and similarly for E [(Z — EZ)? .



moment inequalities

We may solve the recursions, for q > 2.
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We may solve the recursions, for q > 2.

If V* < ¢ for some constant ¢ > 0, then for all integers q > 2,
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where K =1/ (e — y/e) < 0.935.



moment inequalities

We may solve the recursions, for q > 2.

If V* < ¢ for some constant ¢ > 0, then for all integers q > 2,
(E[(z -E2)1])"" < VKac ,

where K =1/ (e — y/e) < 0.935.

More generally,

(E[(z - E2)}))"* < 1.6va (E [v+“/2D1/q :



sums: khinchine's inequality

Let X1,...,X, be independent Rademacher variables and
Z =31, aX;. For any integer q > 2,

(5[23))% < V2K




sums: khinchine's inequality

Let Xi,...,X, be independent Rademacher variables and
Z =31, aX;. For any integer q > 2,

(5[23))% < V2K

Proof:

n

n n
vt =Y E [(ai(Xi — X)) | xi} =2 allaxs0 <2 a2,
i=1 i=1

i=1



Aleksandr Khinchin
(1894—1959)




sums: rosenthal’s inequality

Let Xg,..., X, be independent real-valued random variables with
EX; = 0. Define

i=1,...,n

n n
Z=>) X, o*=) EX?, Y= max |X.
i=1 i=1

Then for any integer q > 2,

(5[23))"/% < oy/10q + 30 (5 [¥1]) /" .
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