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what is concentration?

We are interested in bounding random fluctuations of functions of
many independent random variables.

X1, . . . ,Xn are independent random variables taking values in
some set X . Let f : X n → R and

Z = f(X1, . . . ,Xn) .

How large are “typical” deviations of Z from EZ?
In particular, we seek upper bounds for

P{Z > EZ + t} and P{Z < EZ− t}

for t > 0.
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various approaches

- martingales (Yurinskii, 1974; Milman and Schechtman, 1986;
Shamir and Spencer, 1987; McDiarmid, 1989,1998);

- information theoretic and transportation methods (Alhswede,
Gács, and Körner, 1976; Marton 1986, 1996, 1997; Dembo 1997);

- Talagrand’s induction method, 1996;

- logarithmic Sobolev inequalities (Ledoux 1996, Massart 1998,
Boucheron, Lugosi, Massart 1999, 2001).





chernoff bounds
By Markov’s inequality, if λ > 0,

P{Z− EZ > t} = P
{

eλ(Z−EZ) > eλt
}
≤

Eeλ(Z−EZ)

eλt

Next derive bounds for the moment generating function Eeλ(Z−EZ)

and optimize λ.

If Z =
∑n

i=1 Xi is a sum of independent random variables,

EeλZ = E
n∏

i=1

eλXi =
n∏

i=1

EeλXi

by independence. It suffices to find bounds for EeλXi .

Serguei Bernstein (1880-1968) Herman Chernoff (1923–)
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hoeffding’s inequality

If X1, . . . ,Xn ∈ [0, 1], then

Eeλ(Xi−EXi) ≤ eλ
2/8 .

We obtain

P

{∣∣∣∣∣1n
n∑

i=1

Xi − E

[
1

n

n∑
i=1

Xi

]∣∣∣∣∣ > t

}
≤ 2e−2nt2

Wassily Hoeffding (1914–1991)
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bernstein’s inequality

Hoeffding’s inequality is distribution free. It does not take variance
information into account.
Bernstein’s inequality is an often useful variant:
Let X1, . . . ,Xn be independent such that Xi ≤ 1. Let
v =

∑n
i=1 E

[
X2

i

]
. Then

P

{
n∑

i=1

(Xi − EXi) ≥ t

}
≤ exp

(
−

t2

2(v + t/3)

)
.



martingale representation

X1, . . . ,Xn are independent random variables taking values in
some set X . Let f : X n → R and

Z = f(X1, . . . ,Xn) .

Denote Ei[·] = E[·|X1, . . . ,Xi]. Thus, E0Z = EZ and EnZ = Z.

Writing

∆i = EiZ− Ei−1Z ,

we have

Z− EZ =
n∑

i=1

∆i

This is the Doob martingale
representation of Z. Joseph Leo Doob (1910–2004)
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martingale representation: the variance

Var (Z) = E

( n∑
i=1

∆i

)2
 =

n∑
i=1

E
[
∆2

i

]
+ 2

∑
j>i

E∆i∆j .

Now if j > i, Ei∆j = 0, so

Ei∆j∆i = ∆iEi∆j = 0 ,

We obtain

Var (Z) = E

( n∑
i=1

∆i

)2
 =

n∑
i=1

E
[
∆2

i

]
.

From this, using independence, it is easy derive the Efron-Stein
inequality.
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efron-stein inequality (1981)

Let X1, . . . ,Xn be independent random variables taking values in
X . Let f : X n → R and Z = f(X1, . . . ,Xn).
Then

Var(Z) ≤ E
n∑

i=1

(Z− E(i)Z)2 = E
n∑

i=1

Var(i)(Z) .

where E(i)Z is expectation with respect to the i-th variable Xi only.

We obtain more useful forms by using that

Var(X) =
1

2
E(X− X′)2 and Var(X) ≤ E(X− a)2

for any constant a.
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efron-stein inequality (1981)

If X′1, . . . ,X′n are independent copies of X1, . . . ,Xn, and

Z′i = f(X1, . . . ,Xi−1,X′i ,Xi+1, . . . ,Xn),

then

Var(Z) ≤
1

2
E

[
n∑

i=1

(Z− Z′i )
2

]
Z is concentrated if it doesn’t depend too much on any of its
variables.

If Z =
∑n

i=1 Xi then we have an equality. Sums are the “least
concentrated” of all functions!
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efron-stein inequality (1981)

If for some arbitrary functions fi

Zi = fi(X1, . . . ,Xi−1,Xi+1, . . . ,Xn) ,

then

Var(Z) ≤ E

[
n∑

i=1

(Z− Zi)
2

]



efron, stein, and steele

Bradley Efron Charles Stein Mike Steele



weakly self-bounding functions

f : X n → [0,∞) is weakly (a, b)-self-bounding if there exist
fi : X n−1 → [0,∞) such that for all x ∈ X n,

n∑
i=1

(
f(x)− fi(x(i))

)2
≤ af(x) + b .

Then
Var(f(X)) ≤ aEf(X) + b .
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self-bounding functions

If
0 ≤ f(x)− fi(x(i)) ≤ 1

and
n∑

i=1

(
f(x)− fi(x(i))

)
≤ f(x) ,

then f is self-bounding and Var(f(X)) ≤ Ef(X).

Rademacher averages, random VC dimension, random VC entropy,
longest increasing subsequence in a random permutation, are all
examples of self bounding functions.

Configuration functions.
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example: uniform deviations

Let A be a collection of subsets of X , and let X1, . . . ,Xn be n
random points in X drawn i.i.d.
Let

P(A) = P{X1 ∈ A} and Pn(A) =
1

n

n∑
i=1

1Xi∈A

If Z = supA∈A |P(A)− Pn(A)|,

Var(Z) ≤
1

2n

regardless of the distribution and the richness of A.
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beyond the variance

X1, . . . ,Xn are independent random variables taking values in
some set X . Let f : X n → R and Z = f(X1, . . . ,Xn). Recall the
Doob martingale representation:

Z− EZ =
n∑

i=1

∆i where ∆i = EiZ− Ei−1Z ,

with Ei[·] = E[·|X1, . . . ,Xi].

To get exponential inequalities, we bound the moment generating
function Eeλ(Z−EZ).



azuma’s inequality

Suppose that the martingale differences are bounded: |∆i| ≤ ci.
Then

Eeλ(Z−EZ)= Eeλ(
∑n

i=1 ∆i) = EEne
λ
(∑n−1

i=1 ∆i

)
+λ∆n

= Ee
λ
(∑n−1

i=1 ∆i

)
Eneλ∆n

≤ Ee
λ
(∑n−1

i=1 ∆i

)
eλ

2c2
n/2 (by Hoeffding)

· · ·

≤ eλ
2(
∑n

i=1 c2
i )/2 .

This is the Azuma-Hoeffding inequality for sums of bounded
martingale differences.



bounded differences inequality
If Z = f(X1, . . . ,Xn) and f is such that

|f(x1, . . . , xn)− f(x1, . . . , x′i , . . . , xn)| ≤ ci

then the martingale differences are bounded.

Bounded differences inequality: if X1, . . . ,Xn are independent,
then

P{|Z− EZ| > t} ≤ 2e−2t2/
∑n

i=1 c2
i .

McDiarmid’s inequality.

Colin McDiarmid
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hoeffding in a hilbert space
Let X1, . . . ,Xn be independent zero-mean random variables in a
separable Hilbert space such that ‖Xi‖ ≤ c/2 and denote
v = nc2/4. Then, for all t ≥

√
v,

P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t

}
≤ e−(t−

√
v)2/(2v) .

Proof: By the triangle inequality,
∥∥∑n

i=1 Xi

∥∥ has the bounded
differences property with constants c, so

P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t

}
= P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t− E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
}

≤ exp

(
−
(
t− E

∥∥∑n
i=1 Xi

∥∥)2

2v

)
.

Also,

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≤
√√√√E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

=

√√√√ n∑
i=1

E ‖Xi‖2 ≤
√

v .
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bounded differences inequality

Easy to use.

Distribution free.

Often close to optimal.

Does not exploit “variance information.”

Often too rigid.

Other methods are necessary.



shannon entropy

If X,Y are random variables taking
values in a set of size N,

H(X) = −
∑

x

p(x) log p(x)

H(X|Y)= H(X,Y)− H(Y)

= −
∑
x,y

p(x, y) log p(x|y)

H(X) ≤ log N and H(X|Y) ≤ H(X)

Claude Shannon
(1916–2001)



han’s inequality

Te Sun Han

If X = (X1, . . . ,Xn) and
X(i) = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn), then

n∑
i=1

(
H(X)− H(X(i))

)
≤ H(X)

Proof:

H(X)= H(X(i)) + H(Xi|X(i))

≤ H(X(i)) + H(Xi|X1, . . . ,Xi−1)

Since
∑n

i=1 H(Xi|X1, . . . ,Xi−1) = H(X), summing
the inequality, we get

(n− 1)H(X) ≤
n∑

i=1

H(X(i)) .



number of increasing subsequences

Let N be the number of increasing subsequences in a random
permutation. Then

Var(log2 N) ≤ E log2 N .

Proof: Let X = (X1, . . . ,Xn) be i.i.d. uniform [0, 1].
fn(X) = log2 N is now a function of independent random
variables. It suffices to prove that f is self-bounding:

0 ≤ fn(x)− fn−1(x1, . . . , xi−1, xi+1 . . . , xn) ≤ 1

and

n∑
i=1

(fn(x)− fn−1(x1, . . . , xi−1, xi+1 . . . , xn)) ≤ fn(x) .
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subadditivity of entropy

The entropy of a random variable Z ≥ 0 is

Ent(Z) = EΦ(Z)− Φ(EZ)

where Φ(x) = x log x. By Jensen’s inequality, Ent(Z) ≥ 0.

Han’s inequality implies the following sub-additivity property.
Let X1, . . . ,Xn be independent and let Z = f(X1, . . . ,Xn),
where f ≥ 0.
Denote

Ent(i)(Z) = E(i)Φ(Z)− Φ(E(i)Z)

Then

Ent(Z) ≤ E
n∑

i=1

Ent(i)(Z) .
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a logarithmic sobolev inequality on the hypercube

Let X = (X1, . . . ,Xn) be uniformly distributed over {−1, 1}n. If
f : {−1, 1}n → R and Z = f(X),

Ent(Z2) ≤
1

2
E

n∑
i=1

(Z− Z′i )
2

The proof uses subadditivity of the entropy and calculus for the
case n = 1.

Implies Efron-Stein.



Sergei Lvovich Sobolev
(1908–1989)



herbst’s argument: exponential concentration

If f : {−1, 1}n → R, the log-Sobolev inequality may be used with

g(x) = eλf(x)/2 where λ ∈ R .

If F(λ) = EeλZ is the moment generating function of Z = f(X),

Ent(g(X)2)= λE
[
ZeλZ

]
− E

[
eλZ
]

log E
[
ZeλZ

]
= λF′(λ)− F(λ) log F(λ) .

Differential inequalities are obtained for F(λ).



herbst’s argument

As an example, suppose f is such that
∑n

i=1(Z− Z′i )
2
+ ≤ v. Then

by the log-Sobolev inequality,

λF′(λ)− F(λ) log F(λ) ≤
vλ2

4
F(λ)

If G(λ) = log F(λ), this becomes(
G(λ)

λ

)′
≤

v

4
.

This can be integrated: G(λ) ≤ λEZ + λv/4, so

F(λ) ≤ eλEZ−λ2v/4

This implies

P{Z > EZ + t} ≤ e−t2/v

Stronger than the bounded differences inequality!
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gaussian log-sobolev inequality

Let X = (X1, . . . ,Xn) be a vector of i.i.d. standard normal If
f : Rn → R and Z = f(X),

Ent(Z2) ≤ 2E
[
‖∇f(X)‖2

]
(Gross, 1975).

Proof sketch: By the subadditivity of entropy, it suffices to prove it
for n = 1.
Approximate Z = f(X) by

f

(
1
√

m

m∑
i=1

εi

)

where the εi are i.i.d. Rademacher random variables.
Use the log-Sobolev inequality of the hypercube and the central
limit theorem.
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gaussian concentration inequality

Herbst’t argument may now be repeated:
Suppose f is Lipschitz: for all x, y ∈ Rn,

|f(x)− f(y)| ≤ L‖x− y‖ .

Then, for all t > 0,

P {f(X)− Ef(X) ≥ t} ≤ e−t2/(2L2) .

(Tsirelson, Ibragimov, and Sudakov, 1976).



an application: supremum of a gaussian process
Let (Xt)t∈T be an almost surely continuous centered Gaussian
process. Let Z = supt∈T Xt. If

σ2 = sup
t∈T

(
E
[
X2

t

])
,

then
P {|Z− EZ| ≥ u} ≤ 2e−u2/(2σ2)

Proof: We may assume T = {1, ..., n}. Let Γ be the covariance
matrix of X = (X1, . . . ,Xn). Let A = Γ1/2. If Y is a standard
normal vector, then

f(Y) = max
i=1,...,n

(AY)i
distr.

= max
i=1,...,n

Xi

By Cauchy-Schwarz,

|(Au)i − (Av)i|=

∣∣∣∣∣∣
∑

j

Ai,j (uj − vj)

∣∣∣∣∣∣ ≤
∑

j

A2
i,j

1/2

‖u− v‖

≤ σ‖u− v‖
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beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not
available.

Solution: modified logarithmic Sobolev inequalities.
Suppose X1, . . . ,Xn are independent. Let Z = f(X1, . . . ,Xn)
and Zi = fi(X(i)) = fi(X1, . . . ,Xi−1,Xi+1, . . . ,Xn).

Let φ(x) = ex − x− 1. Then for all λ ∈ R,

λE
[
ZeλZ

]
− E

[
eλZ
]

log E
[
eλZ
]

≤
n∑

i=1

E
[
eλZφ (−λ(Z− Zi))

]
.

Michel Ledoux



the entropy method

Define Zi = infx′i
f(X1, . . . , x′i , . . . ,Xn) and suppose

n∑
i=1

(Z− Zi)
2 ≤ v .

Then for all t > 0,

P {Z− EZ > t} ≤ e−t2/(2v) .

This implies the bounded differences inequality and much more.
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example: the largest eigenvalue of a symmetric matrix
Let A = (Xi,j)n×n be symmetric, the Xi,j independent (i ≤ j) with
|Xi,j| ≤ 1. Let

Z = λ1 = sup
u:‖u‖=1

uTAu .

and suppose v is such that Z = vTAv.
A′i,j is obtained by replacing Xi,j by x′i,j. Then

(Z− Zi,j)+≤
(

vTAv − vTA′i,jv
)
1Z>Zi,j

=
(

vT(A− A′i,j)v
)
1Z>Zi,j ≤ 2

(
vivj(Xi,j − X′i,j)

)
+

≤ 4|vivj| .

Therefore,

∑
1≤i≤j≤n

(Z− Z′i,j)
2
+ ≤

∑
1≤i≤j≤n

16|vivj|2 ≤ 16

(
n∑

i=1

v2
i

)2

= 16 .



self-bounding functions

Suppose Z satisfies

0 ≤ Z− Zi ≤ 1 and
n∑

i=1

(Z− Zi) ≤ Z .

Recall that Var(Z) ≤ EZ. We have much more:

P{Z > EZ + t} ≤ e−t2/(2EZ+2t/3)

and
P{Z < EZ− t} ≤ e−t2/(2EZ)

Rademacher averages, random VC dimension, random VC entropy,
longest increasing subsequence in a random permutation, are all
examples of self bounding functions.

Configuration functions.
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exponential efron-stein inequality
Define

V+ =
n∑

i=1

E′
[
(Z− Z′i )

2
+

]
and

V− =
n∑

i=1

E′
[
(Z− Z′i )

2
−

]
.

By Efron-Stein,

Var(Z) ≤ EV+ and Var(Z) ≤ EV− .

The following exponential versions hold for all λ, θ > 0 with
λθ < 1:

log Eeλ(Z−EZ) ≤
λθ

1− λθ
log EeλV+/θ .

If also Z′i − Z ≤ 1 for every i, then for all λ ∈ (0, 1/2),

log Eeλ(Z−EZ) ≤
2λ

1− 2λ
log EeλV− .
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weakly self-bounding functions

f : X n → [0,∞) is weakly (a, b)-self-bounding if there exist
fi : X n−1 → [0,∞) such that for all x ∈ X n,

n∑
i=1

(
f(x)− fi(x(i))

)2
≤ af(x) + b .

Then

P {Z ≥ EZ + t} ≤ exp

(
−

t2

2 (aEZ + b + at/2)

)
.

If, in addition, f(x)− fi(x(i)) ≤ 1, then for 0 < t ≤ EZ,

P {Z ≤ EZ− t} ≤ exp

(
−

t2

2 (aEZ + b + c−t)

)
.

where c = (3a− 1)/6.
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the isoperimetric view

Let X = (X1, . . . ,Xn) have independent
components, taking values in X n. Let
A ⊂ X n.
The Hamming distance of X to A is

d(X,A) = min
y∈A

d(X, y) = min
y∈A

n∑
i=1

1Xi 6=yi .

Michel Talagrand

P

{
d(X,A) ≥ t +

√
n

2
log

1

P[A]

}
≤ e−2t2/n .

Concentration of measure!
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the isoperimetric view

Proof: By the bounded differences inequality,

P{Ed(X,A)− d(X,A) ≥ t} ≤ e−2t2/n.

Taking t = Ed(X,A), we get

Ed(X,A) ≤

√
n

2
log

1

P{A}
.

By the bounded differences inequality again,

P

{
d(X,A) ≥ t +

√
n

2
log

1

P{A}

}
≤ e−2t2/n



talagrand’s convex distance

The weighted Hamming distance is

dα(x,A) = inf
y∈A

dα(x, y) = inf
y∈A

∑
i:xi 6=yi

|αi|

where α = (α1, . . . , αn). The same argument as before gives

P

{
dα(X,A) ≥ t +

√
‖α‖2

2
log

1

P{A}

}
≤ e−2t2/‖α‖2

,

This implies

sup
α:‖α‖=1

min (P{A}, P {dα(X,A) ≥ t}) ≤ e−t2/2 .



convex distance inequality

convex distance:

dT(x,A) = sup
α∈[0,∞)n:‖α‖=1

dα(x,A) .

Talagrand’s convex distance inequality:

P{A}P {dT(X,A) ≥ t} ≤ e−t2/4 .

Follows from the fact that dT(X,A)2 is (4, 0) weakly self
bounding (by a saddle point representation of dT).

Talagrand’s original proof was different.
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convex lipschitz functions
For A ⊂ [0, 1]n and x ∈ [0, 1]n, define

D(x,A) = inf
y∈A
‖x− y‖ .

If A is convex, then

D(x,A) ≤ dT(x,A) .

Proof:

D(x,A)= inf
ν∈M(A)

‖x− EνY‖ (since A is convex)

≤ inf
ν∈M(A)

√√√√ n∑
j=1

(
Eν1xj 6=Yj

)2
(since xj,Yj ∈ [0, 1])

= inf
ν∈M(A)

sup
α:‖α‖≤1

n∑
j=1

αjEν1xj 6=Yj (by Cauchy-Schwarz)

= dT(x,A) (by minimax theorem) .
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convex lipschitz functions
Let X = (X1, . . . ,Xn) have independent components taking
values in [0, 1]. Let f : [0, 1]n → R be quasi-convex such that
|f(x)− f(y)| ≤ ‖x− y‖. Then

P{f(X) > Mf(X) + t} ≤ 2e−t2/4

and
P{f(X) < Mf(X)− t} ≤ 2e−t2/4 .

Proof: Let As = {x : f(x) ≤ s} ⊂ [0, 1]n. As is convex. Since f
is Lipschitz,

f(x) ≤ s + D(x,As) ≤ s + dT(x,As) ,

By the convex distance inequality,

P{f(X) ≥ s + t}P{f(X) ≤ s} ≤ e−t2/4 .

Take s = Mf(X) for the upper tail and s = Mf(X)− t for the
lower tail.
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φ entropies

For a convex function φ on [0,∞), the φ-entropy of Z ≥ 0 is

Hφ (Z) = E [φ (Z)]− φ (E [Z]) .

Hφ is subadditive:

Hφ (Z) ≤
n∑

i=1

E
[
E
[
φ (Z) | X(i)

]
− φ

(
E
[
Z | X(i)

])]
if (and only if) φ is twice differentiable on (0,∞), and either φ is
affine or strictly positive and 1/φ′′ is concave.

φ(x) = x2 corresponds to Efron-Stein.

x log x is subadditivity of entropy.

We may consider φ(x) = xp for p ∈ (1, 2].
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generalized efron-stein

Define
Z′i = f(X1, . . . ,Xi−1,X′i ,Xi+1, . . . ,Xn) ,

V+ =
n∑

i=1

(Z− Z′i )
2
+ .

For q ≥ 2 and q/2 ≤ α ≤ q− 1,

E
[
(Z− EZ)q

+

]
≤ E

[
(Z− EZ)α+

]q/α
+ α (q− α) E

[
V+ (Z− EZ)q−2

+

]
,

and similarly for E
[
(Z− EZ)q

−
]
.
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moment inequalities

We may solve the recursions, for q ≥ 2.

If V+ ≤ c for some constant c ≥ 0, then for all integers q ≥ 2,(
E
[
(Z− EZ)q

+

])1/q ≤
√

Kqc ,

where K = 1/
(
e−
√

e
)
< 0.935.

More generally,

(
E
[
(Z− EZ)q

+

])1/q ≤ 1.6
√

q
(
E
[
V+q/2

])1/q
.
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sums: khinchine’s inequality

Let X1, . . . ,Xn be independent Rademacher variables and
Z =

∑n
i=1 aiXi. For any integer q ≥ 2,

(
E
[
Zq

+

])1/q ≤
√

2Kq

√√√√ n∑
i=1

a2
i

Proof:

V+ =
n∑

i=1

E
[
(ai(Xi − X′i ))2

+ | Xi

]
= 2

n∑
i=1

a2
i 1aiXi>0 ≤ 2

n∑
i=1

a2
i ,
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Aleksandr Khinchin
(1894–1959)



sums: rosenthal’s inequality

Let X1, . . . ,Xn be independent real-valued random variables with
EXi = 0. Define

Z =
n∑

i=1

Xi , σ2 =
n∑

i=1

EX2
i , Y = max

i=1,...,n
|Xi| .

Then for any integer q ≥ 2,(
E
[
Zq

+

])1/q ≤ σ
√

10q + 3q
(
E
[
Yq

+

])1/q
.
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