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Preface

Compressed sensing refers to a growing body of techniques that ‘undersample’ high-

dimensional signals and yet recover them accurately. Such techniques make fewer

measurements than traditional sampling theory demands: rather than sampling pro-

portional to frequency bandwidth, they make only as many measurements as the

underlying ‘information content’ of those signals. However, as compared with tra-

ditional sampling theory, which can recover signals by applying simple linear recon-

struction formulas, the task of signal recovery from reduced measurements requires

nonlinear, and so far, relatively expensive reconstruction schemes. One popular class

of reconstruction schemes uses linear programming (LP) methods; there is an ele-

gant theory for such schemes promising large improvements over ordinary sampling

rules in recovering sparse signals. However, solving the required LPs is substantially

more expensive in applications than the linear reconstruction schemes that are now

standard. In certain imaging problems, the signal to be acquired may be an image

with 106 pixels and the required LP would involve tens of thousands of constraints

and millions of variables. Despite advances in the speed of LP, such methods are still

dramatically more expensive to solve than we would like. In this thesis we focus on

a class of low computational complexity algorithms known as iterative thresholding.

We study them both theoretically and empirically. We will also introduce a new

class of algorithms called approximate message passing or AMP. These schemes have

several advantages over the classical thresholding approaches. First, they take advan-

tage of the statistical properties of the problem to improve the convergence rate and

predictability of the algorithm. Second, the nice properties of these algorithms enable

us to make very accurate theoretical predictions on the asymptotic performance of
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LPs as well. It will be shown that more traditional techniques such as coherence and

restricted isometry property are not able to make such precise predictions.
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Notational Conventions

Notation Description

R real numbers

RN vector space of real valued N dimensional vectors

xi ith element of vector x

| · | if applied to a number, absolute value

| · | if applied to a set, cardinality of the set

〈x, y〉
∑

i xiyi

〈x〉 1
N

∑N
i=1 xi

‖x‖p for a vector `p-norm or `p seminorm defined as (
∑

i |xi|p)
1
p

‖x‖0 `0-norm of a vector. Number of nonzero elements in x

`∞p Banach space of all vectors in R∞ with bounded `p-norm

BN
p (R) ball of radius R in `p space

SN−1 unit `2 sphere in RN

I indicator function

(a)+ a if a > 0 and zero otherwise

sgn(·) sign of a number

η(a;λ) soft thresholding function, i.e. sgn(a)(|a| − λ)+

ηH(a;λ) hard thresholding function, i.e. aI(|a| > λ)

ΥN
k The set of all k-sparse, N -dimensional vectors

Nε(T ) minimum number of elements in an ε-covering of T
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Notation Description

n number of measurements

N dimension of original vector

k sparsity level or the number of nonzeros of the original vector

‖A‖F Frobenius norm or Hilbert Schmidt norm of a matrix:
√∑

i,j A
2
i,j

‖A‖p→q operator norm of a matrix from `p to `q

A∗ transpose or adjoint or hermitian of matrix A

Ai ith column of matrix A

Aij ijth element of matrix A

AJ submatrix of A with columns restricted to set J

σmax(A) maximum singular value of matrix A

σmin(A) minimum singular value of matrix A

In identity matrix of size n

P(·) probability of an event

E(·) expected value of a random variable

‖X‖p for a random variable, [E(Xp)]
1
p

N (µ,Σ) Gaussian with mean µ and covariance Σ

φ(z) e−z
2/2

√
2π

Φ(z)
∫ z
−∞

e−t
2/2
√

2π
dt

logit(π) log( π
1−π )

Fε,γ family of distributions with F (0+)− F (0−) > 1− ε, EF (µ2) ≤ εγ2
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Chapter 1

Introduction

1.1 Shannon-Nyquist-Whittaker sampling

One of the most fundamental building blocks in digital signal processing systems is the

analog to digital converter. This block converts an analog signal to bits that can then

be used by digital systems to serve different purposes such as transmission, storage,

estimation, etcetera. The first step of analog to digital conversion is to discretize

the signal in time, which is called sampling. The common practice in acquisition of a

signal is to sample it according to the celebrated Shannon-Nyquist-Whittaker theorem

and reconstruct it with linear interpolation techniques. Consider an analog signal f(t)

with frequency domain representation F (jΩ). The following theorem which is due

to Nyquist and Whittaker [110], [85] and is popularized by Shannon [95], shows how

bandlimited signals can be sampled without loosing any information.

Theorem 1.1.1. If hT (t) = sin(πt/T )/(πt/T ), then {hT (t−nT )}n∈Z is an orthogonal

basis for the space UT of functions whose Fourier transform has a support included

in [−π/T, π/T ]. If f ∈ UT then,

f(nT ) =
1

T
〈f(t), hT (t− nT )〉. (1.1)

1
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According to this theorem if f ∈ UT , then

f(t) = lim
n→∞

n∑
−n

f(nT )hT (t− nT ), (1.2)

where the convergence is in the L2-norm sense. In other words, if we just keep the

samples of the original signal at times nT , we will still be able to reconstruct the

analog signal and the reconstruction is given by (1.2). Furthermore, it is not difficult

to see that if we sample the signal at a lower rate, there are some signals in this class

that can not be reconstructed correctly. Therefore, the sampling rate suggested by

Theorem 1.1.1 seems to be optimal in the sense that sampling at a lower rate may

lead to a loss of information.

However, researchers in image, video, and audio processing have observed that the

Shannon-Nyquist-Whittaker sampling is not ‘efficient’ or ‘optimal’. To understand

this claim, consider the Barbara image shown in Figure 1.1. As exhibited in this

figure, the wavelet representation of the image is ‘approximately sparse’, i.e., most

of the coefficients are either zero or close to zero. The fast decay in the histogram

of the wavelet coefficients confirms this phenomenon. As is shown in Figure 1.2,

if we knew the locations of the large wavelet coefficients, we could have used the

approximate sparsity structure present in the images and just measured the large

coefficients. However, in many applications the locations of the large coefficients are

not known beforehand. Therefore, there is a need for a new sampling paradigm that

demands fewer measurement of a sparse or nearly sparse signal without any knowledge

of the location of “important coefficients”. Compressed sensing [20], [31] is a field of

research that addresses this issue. In the next section, after the formal explanation

of our assumptions on the signal spaces, we discuss the basic ideas of compressed

sensing.

1.2 Compressed sensing

Compressed sensing exploits the ‘sparsity’ to sample the signal more efficiently than

the classic Shannon-Nyquist scheme. Suppose the vector xo ∈ RN , to be acquired,
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Figure 1.1: Left: Original Barbara image. Right: Number of coefficients in intervals
of size 10. The number of coefficients is shown in the logarithmic scale.

Figure 1.2: Left: Original Barbara image. Right: Barbara image reconstructed form
ten percent of the wavelet coefficients.
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has an additional structure and that is, there exists a basis of RN , called G, such

that θ = Gxo is sparse. There are several different notions of sparsity defined in the

compressed sensing literature. An important example is the class of `p-balls. In these

classes it is assumed that θ ∈ BN
p (C) = {θ ∈ RN | ‖θ‖p ≤ C} for p ∈ [0, 1] and a

constant C.1 Here ‖θ‖p = (
∑
|θi|p)1/p for p > 0. It is straightforward to confirm that

if θ ∈ BN
p (C) and θ(k) represents the kth largest coefficient of θ, then

|θ(k)| ≤
C

k
−1
p

. (1.3)

Therefore, smaller values of p correspond to faster decay in the magnitude of the

coefficients. The case p = 0 is of special interest. The `0-norm is defined as

‖θ‖0 = |{i : θi 6= 0}|, (1.4)

i.e., the number of non-zero elements of xi. In this case the signal is called exactly

sparse since it has at most bCc non-zero coefficients. In this thesis we consider the

`0-balls. However, the extensions to the more general class of `p-balls will be discussed

briefly in Chapter 8.

So far we have explained the first ingredient of compressed sensing which is the

structure of the signals. The next important ingredient is the “measurement opera-

tor”. We should keep in mind that the goal is to reduce the number of measurements.

The simplest way of making these measurements is through a linear operator, i.e., the

measurements are given by y = Axo, where A is an n×N measurement matrix. Noise

may also be present in the measurement process and therefore we will also consider a

more general model y = Axo + z, where z is the measurement noise. We will discuss

the statistics of the noise later in the thesis. Clearly, the assumption is that the num-

ber of measurements is less than the dimension of xo (n < N). More interestingly,

randomness is used for generating the measurement matrix A [31], [20]. For example,

A can be a matrix whose elements are independently drawn from Gaussian, Bernoulli,

1Although we use the word norm for ‖.‖p, it is not an actual norm when p ∈ [0, 1) since it does
not satisfy the triangle inequality.
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or any other sub-gaussian distribution. Refer to Appendix A for more information on

sub-gaussian matrices. Since n < N , the system of equation y = Ax is not invertible.

Hence, the structure of the signal must be incorporated in the recovery algorithm or

otherwise the recovery will not be successful. Hence, the compressed sensing recov-

ery algorithms are more sophisticated the Shannon-Nyquist sync interpolation. This

issue will be discussed in detail in Chapters 2, 3, 4.

In the rest of the thesis for notational simplicity we assume thatG = I; the sparsity

is happening in the time domain. To understand the intuition of the sparse recovery

algorithms, suppose that the original signal xo is exactly sparse. Since y = Axo is

an undersampled system of linear equation, it has infinitely many solutions. Among

these solutions we are interested in the sparsest one. This can be done by the following

minimization algorithm:

min ‖x‖0,

s.t. y = Ax. (1.5)

If the sparsest solution is unique in the sense that there is no other solution at the

same sparsity level, (1.5) will recover that solution. Although (1.5) is the most natural

recovery algorithm, it can not be used in practice since it is an NP-complete problem.

Many different heuristic approaches have been proposed with different performance

guarantees and different computational complexities. In the next chapter we discuss

some of these approaches and derive their deterministic performance guarantees. Be-

fore finishing up this chapter let us summarize some of the applications of compressed

sensing and the contributions of this thesis.

1.3 Applications of compressed sensing

Although compressed sensing is a new field, it has already found many applications.

In this section we briefly review some of these applications.
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Figure 1.3: Picture of an MRI machine

1.3.1 Magnetic resonance imaging

One of the interesting applications of compressed sensing is in magnetic resonance

imaging or MRI. Figure 1.3 shows a picture of an MRI machine. In order to take an

image of a tissue, organ, or joint, a person should stay still inside the machine for

10-45 minutes depending on the resolution needed. This may be difficult specially for

children. The best way to reduce the time of acquisition is to reduce the number of

samples. As mentioned before in Shannon-Nyquist framework, decreasing the number

of samples is equivalent to aliasing artifacts in the reconstructed images. However,

CS can reduce the number of measurements by exploiting the sparsity of MRI images.

The reduction in the acquisition time may help the real time imaging as well. This is

extremely useful in some application such as functional MRI. For more information

on compressed sensing MRI refer to [73] and the references therein.

1.3.2 Imaging

In some types of camera the sensors are either large or expensive. As a very simple

example consider SLR cameras that are usually larger and more expensive than the
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Figure 1.4: Rice University single pixel camera.

point and shoot cameras. Clearly, by using compressed sensing we can reduce the

number of sensors and have smaller and cheaper cameras. The Rice University single

pixel camera [48] and the MIT random lens imaging device [54] shown in Figure 1.4

and Figure 1.5 are two examples of such successful efforts.

1.3.3 Seismic data collection

Seismic data collection is an expensive and time consuming process. The ultimate

goal here is to estimate the layers of the earth by measuring the reflections of a signal

from different layers of the earth. Figure 1.6 depicts this process. The process starts

with an explosion at the surface of the earth. The waves resulting from this explosion

will be reflected from the boundaries of layers. There are many geo-phones to measure

these reflections. This process is repeated many times and every time an explosion

is made at a different location. By collecting all these reflections the final goal is to

reconstruct the layers of the earth. This process is very time consuming because of

the number of explosions. It turns out that compressed sensing has helped researchers

reduce the number of explosions and make the whole process faster and cheaper. For

more information refer to [100] and the references therein.
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Figure 1.5: Random Lens imaging device.

Figure 1.6: Seismic data collection procedure.
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1.3.4 Other applications

The applications of compressed sensing are not just limited to the examples mentioned

above. Compressed sensing has found applications in many other fields including but

not limited to radar, analog to digital convertor design, electron tomography, machine

learning, computational biology, astronomy, and .... We refer the interested reader to

Rice University website at http://dsp.rice.edu/cs.

1.4 Organization and contribution of the thesis

1.4.1 Chapter 2

In Chapter 2 we review some of the existing sparse recovery algorithms and their

theoretical guarantees. The theoretical results mentioned in this chapter are deter-

ministic and can be applied as long as the matrices satisfy some conditions. These

results are true whether or not the matrix is random. At the end of this chapter we

use these results to draw some conclusions on the performance of these algorithms

over some random matrix ensembles.

The main contribution of this chapter is the coherence proofs given for iterative hard

thresholding and iterative soft thresholding algorithms. These results are based on

[75]. Furthermore, we unify the existing deterministic results and provide the best

bounds.

1.4.2 Chapter 3

Although the theoretical results of Chapter 2 are useful and provide guarantees on the

performance of several algorithms, it has been shown in [10] that such performance

bounds are pessimistic and hence weak for random matrices. Nevertheless, for com-

parison of different algorithms more accurate performance evaluations are needed. In

chapter 3 we first introduce a weaker notion of correct recovery and based on that we

introduce the maximin framework for tuning the parameters and comparing different

compressed sensing algorithms. We then perform an extensive simulation to compare
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the performance of some of the well-known algorithms in the compressed sensing lit-

erature. The results derived in this chapter are referred in the next chapters when

we propose new sparse recovery algorithms. This chapter is based on the work that

has been published in IEEE journal of selected areas in signal processing [76].

1.4.3 Chapter 4

In this chapter we will introduce a new class of sparse recovery algorithm called ap-

proximate message passing or AMP. We also introduce the state evolution framework

as a flexible and very accurate analysis tool for AMP. This theoretical framework

proves the exponential convergence rate (linear convergence in convex optimization

literature) for the AMP algorithm which is the best known result for the compressed

sensing algorithms. For more information, refer to Chapter 7. Furthermore, the con-

nection between this algorithm and the `1-minimization will be discussed. Using the

maximin framework introduced in Chapter 3, we compare this algorithm with some

of the other well-known algorithms and conclude that AMP “outperforms” the other

algorithms.

This chapter is mainly based on the paper that has been published in Proceedings

of national academy of sciences [38]. Some of the results mentioned in this chapter

were published in [77].

1.4.4 Chapter 5

The goal of this chapter is to explain a general framework for deriving message pass-

ing algorithms. This chapter specially shows how one can design new approximate

message passing algorithms, if more sophisticated priors are available on the signal.

We will also generalize the state evolution framework. This chapter is based on the

following two papers [40, 39].
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1.4.5 Chapter 6

Measurement noise is an inevitable part of every compressed sensing system. In this

chapter we consider the measurement noise and analyze the performance of our algo-

rithm in the presence of noise. The connection between AMP and `1-regularized least

squares enables very accurate prediction of the noise sensitivity of the `1-minimization.

The results proved here will be compared with the corresponding results in the liter-

ature and as will be noticed these results are much more accurate and powerful. This

chapter is based on [41].

1.4.6 Chapter 7

Recently several first-order algorithms have been suggested in the convex optimization

and signal processing literatures for solving the `1-penalized least square problem. In

this chapter, we discuss these algorithms and their theoretical performance guaran-

tees. As we will see, these algorithms perform much better on compressed sensing

problems compared to their deterministic theoretical convergence rate. Therefore,

for a more realistic study of these algorithms, we will explain the statistical frame-

work and we explore the properties of the statistical convergence rate of different

algorithms. Finally, using these properties we design several problem instances to

compare the performance of these algorithms.

1.4.7 Chapter 8

In this chapter some of the open problems will be discussed. For each direction we

will also review the results that exist in the literature to pave the way for those who

want to solve these problems.



Chapter 2

Deterministic Results

In this chapter some of the algorithms for sparse recovery and compressed sensing are

discussed. Two deterministic frameworks for analyzing these algorithms are explained

and the guarantees these frameworks provide for the performance of each algorithm

are mentioned.

As before, we assume that the signal xo ∈ RN is exactly sparse and ‖x‖0 ≤ k. We

observe n linear measurements of this vector through the matrix A, y = Axo. We

assume that the columns of A have unit `2 norm.1 For a subset of columns of A called

J , AJ includes all the columns of A whose indices are in J , and xJ all the elements of

x whose indices are in the set J . Finally, ΥN
k represents the set of all N -dimensional

vectors that are k-sparse.

Historically, the first tool that has been proposed for analyzing sparse recovery algo-

rithms is the coherence [34]. The coherence of a matrix A is defined as

µ = max
1≤i<j≤N

|〈Ai, Aj〉|. (2.1)

For example, it is not difficult to see that the union of two orthonormal bases has

coherence larger than 1√
N

. Also, for a general dictionaries of size D the coherence is

lower bounded by µ ≥
√

N−d
d(N−1)

[99]. The dictionaries that achieve this lower bound

are equiangular dictionaries and every two elements have the same coherence.

1We may relax this condition a little bit when we talk about random ensembles.

12
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The second popular tool in compressed sensing is the Restricted Isometry Property

or RIP 2 that was introduced in [20] and [19]. The matrix A satisfies RIP(k, γ) if and

only if

(1− γ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + γ)‖x‖2
2, ∀x ∈ ΥN

k , (2.2)

where γ < 1 is a fixed number. This condition implies that any k × k submatrix

of the original matrix A is ‘near isometry’ and does not change the `2-norm of a

vector dramatically. One of the main disadvantages of the RIP condition is that for

a given matrix checking the validity of RIP condition is an NP-complete problem

itself. However, as will be discussed later in this chapter for random matrices that

are of particular interest in compressed sensing, RIP provides useful performance

guarantees.

In the rest of the chapter based on these two frameworks, we will summarize the best

results for the correctness of some of the sparse recovery algorithms in the literature.

Unfortunately, these sufficient conditions are not necessary and usually the constants

are loose. In the next chapter we will define a notion of phase transition and discuss

necessary and sufficient correct recovery conditions for different algorithms.

2.1 `1-minimization

In the last chapter we mentioned that the most natural way for recovering exactly

sparse signals is to solve `0-minimization. Unfortunately, this problem is NP-complete

and in general can not be solved by a polynomial time algorithm. Chen et al. [24]

proposed the following convex optimization for recovering the sparsest solution;

(Q1) min ‖x‖1, s.t. Ax = y. (2.3)

This algorithm is called is called basis pursuit and is the convex relaxation of the

`0-minimization. This problem can be cast as a linear programming (LP) problem

which in turn can be solved by interior point methods. The following theorem which

2It may also be called UUP for uniform uncertainty principle.
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is due to [34] was the first formal result (for general measurement matrices) on the

equivalence of basis pursuit and `0-minimization.

Theorem 2.1.1. For k < 1
2
(µ−1 +1) the sparsest solution is unique and basis pursuit

recovers that solution.

As this theorem suggests, if the signal is sparse enough, then basis pursuit solves the

NP-complete `0-minimization. The next result which is due to Candés and Tao [20]

proves the equivalence of `0 and `1 if the matrix A satisfies the RIP condition.

Theorem 2.1.2. If matrix A satisfies RIP(2k, γ) for γ ≤ 3
4+
√

6
, then BP recovers

the sparsest solution correctly when the sparsity is less than k.

The proof of this theorem in this form is due to [59]. However it was proved before

for γ ≤
√

2− 1 in [19] and with a different RIP condition in [20].

`1-minimization is a convex optimization problem and can be solved in polynomial

time. Several different schemes have been proposed for solving the `1-minimization.

These schemes range from interior point methods to homotopy schemes like LARS

[49]. These methods are still computationally expensive and can not be used for very

high dimensional problems. Therefore, researchers have suggested greedy approaches

for recovering the sparsest solution. We will discuss some of these approaches that

have deterministic performance guarantees in the next sections.3

2.2 Orthogonal matching pursuit (OMP)

Orthogonal matching pursuit is a greedy approach for finding the sparsest solution

[23, 87]. It iteratively improves its estimate of the signal by choosing the column of a

matrix that has the most correlation with the residual. More formally, OMP begins

by setting the initial residual to y, the initial estimate of the signal to 0 and the active

3Recently first-order methods for solving `1-minimization have attracted much attention because
of their simplicity. They are related to iterative thresholding algorithms that will be discusses in
this chapter but we postpone the formal discussion and analysis of these method to Chapter 7.
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set to ∅. Also set

r0 = y , x0 = 0 and I0 = ∅. (2.4)

At each step t, it first selects a new column of A according to

i∗t ∈ arg max
i
|〈rt−1, Ai〉|, (2.5)

and adds it to the active set,

I t = I t−1 ∪ {i∗t}. (2.6)

Finally, it projects y on the range of AIt and updates the residual,

xt = (A∗ItAIt)
−1A∗Ity,

rt = y − Axt. (2.7)

OMP was independently developed in [23] and [87]. The following theorem due to

[104] provides a sufficient condition for the convergence of OMP in terms of coherence.

Theorem 2.2.1. For k < 1
2
(µ−1+1) the sparsest solution is unique and OMP recovers

that solution.

It is also possible to provide sufficient RIP conditions for OMP [29].

Theorem 2.2.2. If the matrix A satisfies RIP(k + 1, 1
3
√
k
) then the OMP algorithm

is able to recover any k-sparse signal precisely after k iterations.

The RIP condition provided for OMP is weaker than the RIP condition provided for

`1 minimization. Several other greedy algorithms with similar ideas have been also

proposed in the literature[33],[80],[27]. The main difference between these algorithms

and the OMP is that instead of moving just one column to the active set at every

iteration they add more columns to the active set. In addition to that some of these

approaches allow removal of elements from the active set as well. We will discuss two

of these algorithms [80] and [27] in a more general framework in the next chapter and

compare their performance with other algorithms.
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2.3 Iterative hard thresholding (IHT)

As we will see in the next chapter although greedy approaches such as OMP are faster

than interior point or homotopy methods used in solving `1-minimization, they are

still slow since there is an inversion step involved in each step. A faster alternative ap-

proach is the family of iterative thresholding algorithms. Consider the hard threshold

functions ηH(x;µ) to be applied elementwise to vectors: ηH(x;µ) = xI{|x|>µ}, where I
is the indicator function. Iterative hard thresholding (IHT) algorithm is defined with

the following iteration:

xt+1 = ηH(xt + A∗(y − Axt);λt); (2.8)

where λt is the threshold value and xt is the estimate of the sparse signal at time t.

Note that the threshold value may depend on iteration t as well. The basic intuition

is that since the solution satisfies the equation y = Ax, algorithm makes progress by

moving in the direction of the gradient of ‖y − Ax‖2 and then promotes sparsity by

applying a nonlinear thresholding function. This is depicted in Figure 2.1. One of the

main challenges that affects the performance of iterative thresholding approaches is

the way the threshold parameter is set. Here we consider one approach that fits well

in the deterministic setting. In the next chapter, we will introduce other approaches

that can be used for compressed sensing problems and are derived from statistical

point of view. Suppose that an oracle tells us the true underlying k. Since the final

solution is k sparse, the threshold can be set to the magnitude of the (k+ 1)th largest

coefficient. Iterative hard thresholding algorithm in this form was first introduced in

[13]. However, this type of thresholding policy has also been used in [80],[27].

The iterations of IHT are the simplest among all the algorithms we have mentioned

so far and the only operations that are needed for each iteration are multiplication of a

vector by a matrix A or A∗. These operations can be performed efficiently for various

measurement matrices such as sparse, partial Fourier, or partial DCT measurement

matrices. The following two theorems prove the convergence of this algorithm to the

correct result under certain conditions.
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Figure 2.1: Geometric intuition of iterative hard thresholding algorithm. At every
iteration the algorithm moves toward the hyperplane y = Ax and then promotes
sparsity by the hard thresholding function.

Theorem 2.3.1. Suppose that k < 1
3.1
µ−1 and |xo(i)|

|xo(i+1)| < 3`i−4,∀i, 1 ≤ i < k. Then

IHT finds the correct active set in at most
∑k

i=1 `i + k steps. After this step all of

these elements will remain in the active set and the error will go to zero exponentially

fast.

The proof of this theorem is summarized in Appendix D.

Theorem 2.3.2. Suppose that the matrix A satisfies RIP(3k,γ) for γ < 1 and xo is

k sparse. Then the estimate given by IHT at time t satisfies

‖xt − xo‖2 ≤ γ−t‖xo‖2.

A more general version of this result was first proved in [13] for γ ≤ 1√
8
. Later the

bound on γ was improved in [59]. Since the proof of this theorem is very simple, we

summarize it here.
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Proof. The error at iteration t+ 1 can be bounded by

‖xt+1 − xo‖ =‖ηH(xt + A∗(y − Axt)− xo‖ = ‖xtIt − A
∗
It(AItxoIt − AItx

t
It − xoIt )‖ ≤

‖(I − A∗ItAIt)(x
t − xoIt )‖ ≤ δ3k‖(xt − xoIt )‖, (2.9)

where It is the set that includes the indices of xo, x
t, xt+1 and therefore its size is at

most 3k and this fact accounts for the last inequality. By applying the same inequality

inductively we obtain the inequality stated in the theorem.

Note 1: One of the main advantages of the coherence proof as we will see in the next

section is the easy extension of this approach to other iterative thresholding algorithm.

Another advantage is that it provides more detailed information on the performance

of the algorithm. For example, the number of iterations needed for recovering the

active set correctly and so on.

Note 2: Although the results that are provided in this algorithm are slightly weaker

than the results provided for `1-minimization, in practice and specially in compressed

sensing (as we will see in the next section), the algorithm performs much worse than `1

in the sparsity-measurement tradeoff. We will formally state this in the next chapter.

2.4 Iterative soft thresholding (IST)

Another iterative thresholding algorithm that will play an important role in our dis-

cussion in the next few chapters is iterative soft thresholding algorithm. Consider the

soft thresholding function ηSµ (x) = (|x| − µ)+ where (a)+ is equal to a if a > 0 and

is equal to zero otherwise. Then iterative soft thresholding algorithm is given by the

following iteration:

xt+1 = ηS(xt + A∗(y − Axt);λt); (2.10)

Clearly the iteration looks very similar to the iteration of iterative hard thresholding

algorithm. The only difference is the usage of soft thresholding function instead of

hard thresholding. The main advantage of using soft thresholding in the iteration is

the connection of soft thresholding function with `1-minimization. This connection
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will be explored in detail in Chapter 7. However, to provide some intuition on the

soft thresholding function it is useful to gloss over some of those results. Consider

the following optimization problem:

min
x∈RN

1

2
‖z − x‖2

2 + λ‖x‖1. (2.11)

It is straightforward to confirm that the function is minimized at x = ηS(z;λ). The

soft thresholding function is called the “proximity operator” of the `1-norm and this

suggests iterative soft thresholding algorithm with a fixed threshold parameter for

solving the following problem,

(Qλ)
1

2
‖y − Ax‖2

2 + λ‖x‖1. (2.12)

Refer to Chapter 7 for more information. Another interesting fact about the iterative

soft thresholding algorithm is that, if A is orthonormal and A∗A = I, then the solution

of Q1 will be ηS(A∗y;λ).

Theorem 2.4.1. Suppose that k < 1
4.1
µ−1 and ∀i, 1 ≤ i < k, we have |xo(i)|

|xo(i+1)| <

2`i−5. Then IST recovers the correct active set in at most
∑k

i=1 `i + k steps. After

that all these coefficients will remain in the active set and the error will go to zero

exponentially fast.

The proof of this theorem is summarized in Appendix D. The number of iterations

needed to recover the active set, depends on the ratio of the coefficients in IST and

IHT. But, this dependency is roughly logarithmic and therefore it works pretty well

in practice even in case of high dynamic range signals. Also, the algorithms find the

correct active set in a finite number of iterations and once they find the correct active

set, they will converge to the exact solution exponentially fast.

2.5 Connection between RIP and coherence

So far we have considered the RIP conditions and coherence conditions as two separate

conditions for sparse recovery problems. The following simple lemma explain this
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connection.

Lemma 2.5.1. If the coherence of matrix A is bounded above by µ and the columns

of A are normalized, then for any k < µ−1 + 1, A satisfies RIP(k,(k − 1)µ).

This lemma is a very simple application of Grešgorin’s theorem [66]. However, as

we will see later, the coherence condition provides weaker results compared to RIP

when dealing with random matrices. The main advantage of coherence is that it is

very easy to calculate for a given matrix and can be used for deterministic settings

while calculating RIP constant is an NP-complete problem itself.

2.6 Implications for compressed sensing

In compressed sensing the measurement matrices are drawn from some random ensem-

ble. In this section we aim to show the implications of coherence and RIP conditions

for random measurement matrices.

2.6.1 Coherence of random measurement matrices

The goal of this section is to derive upper bounds for the coherence of different

random matrix ensembles. Since our definition of the coherence is for matrices with

unit length columns, we normalize each column with its `2-norm.

Random sign ensemble matrix

Suppose that the elements of A are drawn iid from the following distribution:

Ai,j ∼

{
1√
n
, w.p. 0.5,

−1√
n
, w.p. 0.5.

(2.13)

This ensemble is one of the standard ensembles in CS and we call it Random Sign

Ensemble or RSE. The following well-known concentration result on a sequence of

bounded iid random variables is very useful in our discussion.
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Lemma 2.6.1. (Hoeffding Inequality) Suppose that X1, X2, . . . Xn are independent

random variables each bounded between [ai, bi].

P{Sn − E(Sn) ≥ t} ≤ exp

(
−2t2∑n

i (bi − ai)2

)
,

P{E(Sn)− Sn ≥ t} ≤ exp

(
−2t2∑n

i (bi − ai)2

)
. (2.14)

The interested reader may find the proof in most of the standard probability text

books such as [91].

Theorem 2.6.2. [105] If the elements of the matrix A are iid drawn from the RSE

ensemble then the coherence of the matrix is less than
√

4
n

ln N
ε

with probability larger

than 1− ε2.

Proof. According to the union bound we have,

P(max
i<j
|〈Ai, Aj〉| > x) ≤ N(N − 1)

2
P(|〈Ai, Aj〉| > x).

Also Hoeffding inequality implies that

P(|〈Ai, Aj〉| > x) ≤ 2e−
nx2

2 .

Plugging in
√

4
n

ln N
ε

for x, gives the desired bound.

Gaussian measurement matrix

Suppose that the elements of Φ are drawn iid fromN(0, 1
n
). We normalize each column

by its `2-norm. This ensemble is called uniform spherical ensemble since each column

is drawn iid from Haar measure on unit sphere. We call the final measurement matrix

A. The goal is to find an upper bound on the coherence of this matrix. Clearly, since

the matrices are random we expect the bound to hold with high probability. Let us

start with the following well-known Gaussian tail bound.

Lemma 2.6.3. For X ∼ N(0, σ2), P(|X| ≥ x) ≤ 2e−
x2

2σ2 .
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Proof.

P(X ≥ x) = P(eλX ≥ eλx) ≤ e−λxE[eλX ] = e−λxe
λ2σ2

2

λ∗ = x
σ2 minimizes the right hand side and the minimum value is e

−x2

2σ2 QED.

Theorem 2.6.4. Let the columns of the matrix A be iid samples from Haar measure

on unit sphere; If n ≥ 200 ln(N
√

3/ε), then the coherence of the matrix is less than√
9
n

ln
√

2N
ε

with probability larger than 1− ε2.

Proof. In this proof we call the original Gaussian matrix Φ and the actual matrix

which is the column normalized version of Φ, A.

Step 1: `2-norm of each column of Φ is concentrated around 1. The first question to

address is to calculate the norms of the columns of Φ. We prove

P(∃i : ‖Φi‖2
2 − 1 ≥ t) ≤ Ne−n/2(t−ln(1+t)),

P(∃i : ‖Φi‖2
2 − 1 ≤ −t) ≤ Nen/2(t+ln(1−t)). ∀t ∈ (0, 1). (2.15)

Here we just prove the first bound. The proof of the second one follows exactly the

same lines and therefore is skipped here.

P(∃i : ‖Φi‖2
2 − 1 ≥ t) ≤ NP(‖Φ1‖2

2 − 1 ≥ t) = NP(eλ(
∑n

i=1 Φ2
1i−1) ≥ Neλt)

≤ Ne−λtE(eλ(
∑n
i=1 Φ2

1i−1)) = Ne−λt−λ
(
E(eλΦ2

1i)
)n

= Ne−λt−λ

(
1

1− 2λ
n

)n
2

.

λ∗ = nt
2(t+1)

minimizes the last bound and proves (2.15). Substituting a value of t in

(2.15) proves

P(‖Φi‖2
2 < 0.81) ≤ e−0.01n,

P(‖Φi‖2
2 > 1.25) ≤ e−0.01n. (2.16)

Step 2: Correlations between the columns. From the union bound we have
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P(max
i<j
|〈Ai, Aj〉| > x) ≤ N(N − 1)

2
P(|〈Ai, Aj〉| > x).

The right hand side of the above equation can also be bounded by using Lemma 2.6.3

and (2.16).

P(|〈Ai, Aj〉| > x) = P(
|〈Φi,Φj〉|
‖Φi‖‖Φj‖

> x) =

P(
|〈Φi,Φj〉|
‖Φi‖‖Φj‖

> x | ‖Φi‖2 > .9, ‖Φj‖2 > .9)P(‖Φi‖2 > .9, ‖Φj‖2 > .9)+

P(
|〈Φi,Φj〉|
‖Φi‖‖Φj‖

> x | ‖Φi‖2 < .9 ∨ ‖Φj‖2 < .9)P(‖Φi‖2 < .9 ∨ ‖Φj‖2 < .9) ≤

P(|〈Φi,Φj〉| > .81x | ‖Φi‖2 > .9, ‖Φj‖2 > .9)P(‖Φi‖2 > .9, ‖Φj‖2 > .9)+

P(‖Φi‖2 < .9) + P(‖Φj‖2 < .9) ≤ P(|〈Φi,Φj〉| > .81x) + 2P(‖Φi‖2 < .9) =

E(P(|〈Φi,Φj〉| ≥ .81x | Φj)) + 2P(‖Φi‖2 < .9) = E(e
−.3nx2

‖φj‖22 ) + 2P(‖Φi‖2 < .9) ≤

2e−.24nx2P(‖Φj‖2
2 ≤ 1.25) + P(‖Φj‖2

2 ≥ 1.25) + 2P(‖Φi‖2 < .9) ≤

2e−.24nx2

+ 3e−0.01n.

After plugging x in, it is easy to see that this probability is less than ε2.

Note: From the proof of this theorem it is clear that we have not been very careful

with the constants. By changing the conditions in the above derivation one may

obtain better results. However in this chapter we just care to find the orders right

and not the constants. The constants are of course very important for engineering

applications as well and we will discuss this issue in detail in the next chapter.

Coherence of sub-gaussian matrices

The results mentioned for Gaussian and RSE matrices can also be extended to a more

general class of matrices which are called sub-gaussian matrices.

Definition 2.6.1. A random variable X is called sub-gaussian iff P(|X| > t) ≤
C exp(−ct2) for two constants c and C. Also a random variable Y is called sub-

exponential if and only if P(|Y | > t) ≤ C exp(−ct) for two constants c and C.
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Clearly, every bounded random variable is sub-gaussian. Gaussian random variable is

also sub-gaussian and exponential and Laplace random variables are sub-exponential.

Some of the standard properties of sub-gaussian and sub-exponential random variables

are summarized in Appendix A.

Lemma 2.6.5. Suppose that X and Y are two independent sub-gaussian random

variables with constants Cx, cx, Cy, cy. Then X2 and XY are sub-exponential random

variables.

Proof. The proof of X2 is immediate, therefore we just prove the second one.

P(|XY | > t) =

∫
P(|X| > t

|y|
)dFY (y) ≤

∫
Cxe

−cx t2

|y|2 dFY (y)

=

∫
|y|≥
√
t

Cxe
−cx t2

|y|2 dFY (y) +

∫
|y|≤
√
t

Cxe
−cx t2

|y|2 dFY (y)

≤
∫
|y|≥
√
t

CxdFY (y) +

∫
|y|≤
√
t

Cxe
−cxtdFY (y) ≤ CxCye

−cyt + Cxe
−cxt.

It is also possible to find a symmetric upper bound for this probability by switching

the role of X and Y and take the average of the two upper bounds.

Theorem 2.6.6. Suppose that the elements of the matrix are drawn iid from a sub-

gaussian distribution with mean zero and variance 1/n. There exists a constant c for

which the coherence of this matrix satisfies the following property.

P(µ <

√
1

nc
log

N2

ε
) ≥ 1− ε. (2.17)

Proof. Since most parts of the proof are very similar to the corresponding parts in

the proof of the Gaussian matrix, I just mention the differences. Suppose that Φ

represents the matrix before the column normalization. Then, we have

P(
∑
j

Φ1jΦ2j > t)
(1)
= P(

1

n

∑
j

Zj > t)
(2)

≤ e−cnt
2

.

For equality (1) we assume that Zj = Φ1jΦ2j and therefore, Zj is a sub-exponential

random variable. Inequality (2) is the result of Theorem A.0.5 and we assume that
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t < 1. Because of symmetry P(
∑

j Φ1jΦ2j < −t) ≤ e−cnt
2

as well. Another important

property that was necessary for the proof of the Gaussian matrix was the concentra-

tion of the column norm. We skip the proof of this as well since it is very similar to

what was explained here.

How many measurements?

So far we have considered the coherence of several ensembles. Apart from the con-

stants for all these ensembles µ ∼
√

lnN
n

. It is also important to notice that all the

algorithms mentioned in this chapter are able to recover the sparsest solution, if the

sparsity level is at the order of µ−1. Therefore the final conclusion is that in case of

random matrices, coherence condition proves that the exact recovery happens with

high probability if k ∼
√

n
lnN

or in other words the number of measurements that we

need is n ∼ k2 lnN . As we will see in the next section RIP provides stronger results

for random matrices.

2.6.2 Analysis of RIP for random matrices

In this section we consider n × N random matrices. We assume that elements are

normalized in a way that the norm of each column is concentrated around 1 and then

we find an upper bound for the RIP constants.

Gaussian ensemble

The first step in finding the RIP constants for random matrices is the concentration

of measure for functions of random vectors. Here is a well-known concentration of

measure theorem for Gaussian random vectors.

Theorem 2.6.7. [101] Let x ∈ Rn be a vector of N(0, 1) random variables and f be

a Lipschitz function, i.e.,

|f(x)− f(y)| ≤ L‖x− y‖2. (2.18)



26 CHAPTER 2. DETERMINISTIC RESULTS

Then, for any t > 0 we have

P(f(x)− Ef(x) > t) ≤ e
−t2
2L2 .

Theorem 2.6.8. For two matrices A and B we have, |σmax(A)−σmax(B) ≤ ‖A−B‖F
and ‖σmin(A)− σmin(B)| ≤ ‖A−B‖F . Here σmax represents the largest eigenvalue of

a matrix and σmin the smallest one.

Proof.

|σmax(A)− σmax(B)| ≤ |σmax(A−B)| ≤ ‖A−B‖F .

For the smallest eigenvalue we also have

σmin(A) = inf
u∈Sn−1

‖Au‖2 = inf
u∈Sn−1

‖(A−B)u+Bu‖2 ≤ inf
u∈Sn−1

‖(A−B)u‖2 + ‖Bu‖2

(1)

≤ inf
u∈Sn−1

‖A−B‖F + ‖Bu‖2 = ‖A−B‖F + σmin(B).

In the above derivation Sn−1 = {x ∈ Rn : ‖x‖2 = 1} and inequality (1) is due to

the Cauchy-Schwartz.

A more general version of this result is due to Weyl [66]. This theorem states

that both the smallest singular value and the largest singular value are Lipschitz

functions of the matrix and according to Theorem 2.6.7 they concentrate around

their means. Therefore, the main challenge is to calculate their means. We use the

following theorem to calculate a bound for the expected value of singular values which

is known as Gordon Inequality [71]. A special form of the Gordon Inequality is also

called Slepian inequality.

Theorem 2.6.9. Let Xu,v and Yu,v be centered Gaussian processes. Also assume that,

1. ‖Xu,v −Xu′,v′‖2 ≤ ‖Yu,v − Yu′,v′‖2 if u 6= u′;

2. ‖Xu,v −Xu,v′‖2 = ‖Yu,v − Yu,v′‖2.

Then E supu∈U infv∈V Xu,v ≤ E supu∈U infv∈V Yu,v.
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For the proof of this theorem refer to [71].

Theorem 2.6.10. Suppose that the elements of matrix A are iid N(0, 1
n
). The min-

imum and maximum singular values of this matrix satisfy the following inequality:

1−
√
N

n
≤ Eσmin(A) ≤ Eσmax(A) ≤ 1 +

√
N

n
.

Proof. We start with the definition of the largest and smallest singular values,

σmax(A) = sup
u∈SN−1,v∈Sn−1

〈Au, v〉,

σmin(A) = inf
u∈SN−1

sup
v∈Sn−1

〈Au, v〉.

The goal is to use the Gordon inequality. Therefore we should construct another

Gaussian process with the desired properties. Suppose that g ∼ N(0, 1
n
In) and h ∈

N(0, 1
N
IN) are two Gaussian vectors. Define Yu,v = 〈h, u〉+ 〈g, v〉 and Xu,v = 〈Au, v〉.

Using the fact that ‖u‖2 = 1 and ‖v‖2 = 1, it is straightforward to prove that all

the conditions of the Gordon inequality hold for Xu,v and Yu,v. Using the Gordon

inequality the proof of the upper bound is immediate.

E sup
u∈SN−1,v∈Sn−1

〈Au, v〉 = E sup
u∈SN−1,v∈Sn−1

Yu,v ≤ E sup
u∈SN−1

〈h, u〉+ E sup
v∈Sn−1

〈g, v〉
(1)

≤

E ‖g‖2 + E‖h‖2

(2)

≤ 1 +
√
N/n,

where (1) is the result of Cauchy-Schwartz inequality and (2) is derived from Jensen’s

inequality. This form of the Gordon inequality is known as Slepian inequality.

For the lower bound on the smallest singular value we should just use −Xu,v and

−Yu,v in the Gordon inequality and use similar arguments.

The following result can be easily proved by combining the results of Theorems

2.6.10 and 2.6.7.

Theorem 2.6.11. Suppose that the elements of an n×N matrix A are drawn from
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N(0, 1/n). Then

P ( sup
T :|T |<αk

σmax(AT ) > 1 +

√
αS

n
+ t) ≤

(
N

αk

)
e−n

t2

2 ,

P ( inf
T :|T |<αk

σmin(AT ) < 1−
√
αS

n
− t) ≤

(
N

αk

)
e−n

t2

2 .

To see the implication of this theorem for the compressed sensing problem it is just

enough to use the Stirling approximation for
(
N
αk

)
term eαk lnN/αke−n t2

2 . Therefore, if

we set t such that 1+
√

αk
n

+t ≤
√

1 + β and 1+
√

αk
n
−t ≤

√
1− β, and if n & αk ln N

αk

the probability that this class of matrices satisfies RIP (αk, β) goes to 1 exponentially

fast and the number of measurements needed is logarithmically proportional to the

dimension of the signal.

Sub-gaussian ensemble

In the last section we discussed the results for Gaussian random matrices. Similar

results can be proved for sub-gaussian random matrices. However the results are a

little bit weaker for this general class as will be shown in this section. We start with

Dudley’s integral inequalities that will be used throughout this section. For the proof

of this theorem refer to [108].

Theorem 2.6.12. Consider a random process Xt where t belongs to a compact set

T of a given metric space (M, d). Suppose that this process satisfies the following

properties,

1. E(Xt) = 0 ∀t.

2. P(|Xt −Xs| > ud(t, s)) ≤ Ce−cu
2 ∀u > 0.

Then,

E sup
t∈T

Xt ≤ C

∫ ∞
0

√
logNε(T )dε,

where Nε(T ) is the minimum number of elements in an ε covering of the space T .
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If we replace the sub-gaussian tail in the second condition with sub-exponential tail

we get another version of Dudley’s inequality which is,

E sup
t∈T

Xt ≤ C

∫ ∞
0

logNε(T )dε.

We can now prove the following theorem for general sub-gaussian matrices.

Theorem 2.6.13. There exist two constants c, C such that,

P( sup
T :|T |<αk

σmax(AT ) > 1 + c

√
αS

n
) ≤

(
N

αk

)
e−Cn

P( inf
T :|T |<αk

σmin(AT ) > 1− c
√
αS

n
) ≤

(
N

αk

)
e−Cn

Proof. We do not intend to give the complete proof here and we refer the interested

reader to [108]. We just highlight the main tricks in the proof that may help readers

to prove it for themselves. The first step is of course the union bound as before.

Therefore we just need an upper bound for one submatrix of size n × αk. Consider

the following random process on unit sphere Sαk−1.

Xx = | 1
n
‖Ax‖2

2 − 1|.

The next step is to prove that this process is sub-exponential and use the second form

of Dudley’s inequality to prove the theorem.

Note: As mentioned before the result is weaker than the Gaussian results since

σmax(A) < 1 + c
√

αk
n

with high probability and the constant c is always bigger than

1. However for Gaussian ensembles we could prove similar result with c = 1.

How many measurements?

Form the above arguments it is clear that if we ignore the constants, the RIP condition

implies that if the number of measurements is m ∼ k logN/k then the algorithms we

mentioned before recover the correct answer with overwhelmingly high probability. If
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we compare this with what we achieved through coherence conditions we see that the

bounds provided with RIP are stronger. The order of the bounds derived from RIP for

random matrices are optimal. However, in engineering applications the constants are

as important. Therefore, there is a need for deriving exact sampling theorems with all

the constants specified carefully. In the next chapter we explain the concept of phase

transition that gives us an accurate and exact sampling theorem for an algorithm.

Unfortunately, because of the more difficult nature of the phase transition phenomena

much less effort has been devoted to this fundamental problem of compressed sensing

compared to the RIP or coherence conditions. This thesis provides a new approach

for measuring phase transition for a class of algorithms. We hope that extensions of

this approach may shed more light on the phase transitions of different algorithms in

the near future.

2.7 Other algorithms

Developing new algorithms for sparse recovery is a very active area of research and new

algorithms are proposed monthly. Unfortunately, it is almost impossible to go over all

the algorithms and compare their theoretical guarantees and their actual performance.

We will discuss some of these algorithms in the next chapters. Specially we will

devote one chapter to the first-order methods that have been proposed for solving

`1-minimization and comparison of those algorithms with the algorithms proposed in

this thesis. However, the first step is to propose a unified framework for comparing

different compressed sensing algorithms which is the scope of the next chapter.



Chapter 3

Maximin Framework

As mentioned in the previous chapter numerous schemes have been proposed for

obtaining sparse solutions of underdetermined systems of linear equations; Popu-

lar methods have been developed from many viewpoints: `1-minimization [24, 35,

104, 49, 70, 47], matching pursuit [78, 87, 105, 33], iterative thresholding methods

[92, 28, 96, 97, 52, 65, 50, 11, 58, 80, 12, 13], subspace methods [33, 81, 80, 27],

convex regularization [26, 115] and nonconvex optimization [63, 53, 22]. The spe-

cific proposals are often tailored to different viewpoints, ranging from formal analysis

of algorithmic properties [28, 105, 62, 33, 47], to particular application requirements

[96, 97, 52]. Such algorithms have potential applications in fields ranging from medical

imaging to astronomy [73, 15].

The potential user now has a bewildering variety of ideas and suggestions that

might be helpful, but this, paradoxically creates uncertainty and may cause said

potential user of such algorithms to avoid the topic entirely.

The goal of this chapter is to develop a common framework for comparing proper-

ties of reconstruction algorithms in compressed sensing. It considers several popular

iterative thresholding algorithms, and abstracts them into a few different types, each

with tunable parameters. It defines a quantitative notion of performance and after

a large-scale computational study, identifies a tuned version of each algorithm type

offering the best performance guarantee across a universe of test suites. Performance

is measured by the undersampling-sparsity tradeoff, or ‘phase-transition curve’, and

31
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for each algorithm type, we identify the optimally tuned instance that maximizes the

worst-case tradeoff, yielding one recommended algorithm for each algorithm type.

The empirical tuning approach has a larger significance for the field of sparse

representations and compressed sensing. Many of the better known papers in this field

discuss what can be proved rigorously, using mathematical analysis. Often, what can

be proved is weaker than happens in practice. For practical engineering applications

it is more important to know what really happens rather than what can be proved.

Empirical studies provide a direct method to give engineers useful guidelines about

what really does happen.

To make this chapter self sufficient we first review the notations. An unknown vector

xo ∈ RN is of interest; we have measurements y = Axo. Here A is an n × N matrix

and N > n. Although the system is underdetermined, it has been shown that, when

it exists, sufficient sparsity of xo may allow unique identification of xo. We say that

xo is k-sparse if it has at most k nonzeros.

3.1 Phase transitions

In the case of `1-minimization with A a random matrix, there is a well-defined ‘break-

down point’: `1 can successfully recover the sparsest solution provided k is smaller

than a certain definite fraction of n.

Let δ = n/N be a normalized measure of problem indeterminacy and let ρ = k/n

be a normalized measure of the sparsity. We obtain a two-dimensional phase space

(δ, ρ) ∈ [0, 1]2 describing the difficulty of a problem instance – problems are intrinsi-

cally harder as one moves up and to the left. Displays indicating success and failure

of `1-minimization as a function of position in phase space often have an interesting

two-phase structure (as shown in Figure 3.1), with phases separated by the curve

(δ, ρ`1(δ)), for a specific function ρ`1 .

Let A be a random matrix with iid Gaussian entries and let y = Ax0 with x0

k-sparse. In [32, 45] one can find explicit formulas for a function ρ definable with the

aid of polytope theory and having the following property. Fix ε > 0. The probability

that (P1) recovers the sparsest solution to y = Ax tends to 0 or 1 with increasing
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Figure 3.1: Phase Diagram for `1 minimization. horizontal axis: indeterminacy
δ = n/N . vertical axis: sparsity ρ = k/n. Shaded attribute depicts limiting proba-
bility that `1 successfully reconstructs the sparsest solution, as a function of the state
variables (ρ, δ). Dark region: limiting probability 0. Light region: limiting probability
is 1.

system size according as k ∼ n · (ρ`1(n/N) ± ε). Informally, all that matters is

whether (n/N, k/n) lies above or below the curve (δ, ρ`1(δ)). This is the conclusion

of a rigorously proven theorem that describes asymptotic properties as N → ∞; it

also describes what actually happens at finite problem sizes [43]. The empirically

observed fraction of successful recoveries decays from one to zero as the problem

sparsity ρ = k/n varies from just below the critical level ρ`1(δ) specified in theory

to just above it. This transition zone is observed to get increasingly narrow as N

increases, matching the theorem, which says that in the large N limit, the zone has

vanishing width. Similar phenomena have been either observed or proved for other

algorithms as well. To explain it more formally here, suppose that the elements of xo

are drawn from a given distribution FX(xoi) = (1 − ε)δ0(xoi) + εG(xoi), where δ0 is

equal to 1 when xoi is zero and 0 otherwise. G(xoi) is another distribution function

that specifies the distribution of the non-zero elements in the vector but it is usually

unknown beforehand. In other words each element of xo is zero with probability 1− ε
and is drawn from another distribution G with probability ε. If the dimension of xo is
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N then the expected number of non-zero elements is Nε and according to Hoeffding

inequality the number of non-zeros will concentrate around this value pretty rapidly

as N →∞. According to the compressed sensing framework xo is measured through

a fat random matrix A whose elements are drawn iid from some distribution. Suppose

that algorithm A is used for recovering the original vector from the measurements y.

No matter how well A works there are certain samples of this random ensemble on

which A has no chance of recovering the correct answer. For example when A matrix

is equal to zero or when xo is dense. Therefore an important measure of performance is

the probability of correct recovery of the algorithm as a function of (N, δ, ρ, F ). If the

distribution F is fixed, the probability of correct recovery is considered as a function

of (N, ρ, δ). Since in compressed sensing we are interested in very high dimensional

vectors, we calculate these probabilities as N →∞. This results in a 2-D map of the

probability of correct recovery in terms of (ρ, δ). The mapping is called the phase

diagram. Figure 3.1 depicts the phase diagram for the `1 minimization algorithm.

As explained before the probability of correct recovery exhibits a sharp transition i.e.

there is a curve ρ∗(δ) below which the `1 minimization recovers the correct answer

with probability 1 and above which the probability of correct recovery goes to zero

very rapidly as N →∞. The existence of phase transition for many other algorithms

has been either empirically observed or theoretically proved. As an example Figure

3.2 summarizes the fact for the IHT algorithm the transition becomes sharper and

sharper as we increase the dimension of the problem. The interested reader may refer

to these papers for more information [33, 105, 47, 44, 32, 45, 46]. Phase transition

displays the sparsity-measurement trade-off for an algorithm. Therefore it is useful for

comparison and tuning purposes. The only problem is the dependence of the phase

transition on the distribution of the input coefficients which is usually not known in

practice. This issue is addressed in the next section.

3.1.1 Maximin tuning

Consider a sparse recovery algorithm Aθ. θ includes all the free parameters of the

algorithm. It is clear that the performance of this algorithm depends highly on the
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Figure 3.2: Finite-N Phase Transitions. Fraction of unsuccessful recovery attempts
by IHT, as a function of sparsity level ρ. Here δ = .5 and ρ = k/n is varying. Results
are shown at 3 values of N : 500, 1000, 4000; note steepening of the transition as
N increases, in accord with theory. At each unique parameter combination, twenty
random problem instances were tried.

parameter vector θ and therefore a good tuning of the algorithm seems necessary.

Phase transition provides us a tool for tuning these parameters. The only problem

is the dependence of the phase transition on the distribution of nonzero elements of

xo. We represent the value of ρ at the phase transition as ρ∗A(δ, θ;G), where as before

G is the distribution of the non-zero elements of xo. But as mentioned in the last

section the distribution of the non-zero elements may not be known beforehand. In

order to solve this issue we propose the maximin framework. Suppose that we have

a class of distributions G for the non-zero values of the original vector.

θ∗(δ) = arg max
θ

inf
G∈G

ρ∗(δ, θ;A, G) (3.1)

In other words for every value of θ the worst distribution is found and the phase

transition for that value of parameter and that value of δ is calculated for the least fa-

vorable distribution. Then all the phase transition values are compared and the value

of θ that exhibits the maximum value of ρ∗ is chosen. The optimal phase transition



36 CHAPTER 3. MAXIMIN FRAMEWORK

is called maximin phase transition ρMM(δ,A;G). We may also represent this value

by ρMM(δ,A) in cases where the family of distributions is clear from the context. In

the rest of this chapter we will consider several compressed sensing algorithms and

use this framework to tune and compare them. For this purpose an empirical version

of the maximin tuning will be used.

3.2 Iterative algorithms

In this note we consider two families of such iterative algorithms.

3.2.1 Simple iterative algorithms

The first family is inspired by the classical relaxation method for approximate solu-

tion of large linear systems as explained in Section 2.3. In classical relaxation, one

iteratively applies A and its transpose A∗ to appropriate vectors and under appropri-

ate conditions, the correct solution is obtained as a limit of the process. While the

classical theory is inapplicable to underdetermined systems, it has been found that a

sparsity-promoting variant of relaxation can correctly solve such systems, when they

have sufficiently sparse solutions. For more information you may refer to Section 2.3

and Section 2.4. Starting from x1 = 0, one repeatedly applies this rule:

xt+1 = η(xt + κ · (A∗rt);λt); rt = y − Axt;

Here κ is a relaxation parameter (0 < κ < 1) and we assume throughout that A is

normalized so that its columns have unit length. η(·;λ) denotes a scalar nonlinearity,

applied entrywise; we consider both hard thresholding – ηH(y;λ) = y1{|y|>λ} and

soft thresholding ηS(y;λ) = sgn(y)(|y| − λ)+. In the above functions λ is called

the threshold value. Note that if we set η(y) = y we would just have classical

relaxation. Iterative Soft Thresholding (IST) with a fixed threshold has been used

in various settings more than a decade ago – see for example published work of

Sylvain Sardy and co-authors [92]. A formal convergence analysis was given by [28]

in the determined case. For more extensive review of the literature on iterative
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soft thresholding algorithms and their connection to `1 minimization you may refer

to Chapter 7. Iterative Hard Thresholding (IHT) was reported useful for several

underdetermined cases by Starck, Elad, and their co-authors in papers appearing as

early as 2004, [96, 97, 52, 50, 14] – often outperforming IST. Other recent examples

of such ideas include [65, 58, 11, 94, 13, 12].

These iterative schemes are easy to implement: they require only two matrix-

vector products per iteration and some vector additions and subtractions. For certain

very large matrices we can rapidly apply A and A∗ without representing A as a

full matrix – examples include partial Fourier and Hadamard transforms. In such

settings, the work required scales very favorably with N (e.g. N log(N) flops rather

than O(N2)).

Actually using such a scheme in practice requires choosing a parameter vector

θ = (type, κ, λ); here type = S or H depending as soft or hard thresholding is

required; the other parameters are as earlier. Moreover the threshold value λ needs

to vary from iteration to iteration. The general form in which such schemes are often

discussed does not give a true ready-to-run algorithm. This keeps potential users

from successfully exploiting the idea.

3.2.2 Composite iterative algorithms

In solving determined linear systems, relaxation can often be outperformed by other

methods. Because of the similarity of relaxation to IST/IHT schemes, parallel im-

provements seem worth pursuing in the sparsity setting. A more sophisticated scheme

– Two Stage Thresholding (TST) – combines exact solution of small linear systems

combined with thresholding before and after this solution. In stage one, we screen

for ‘significant’ nonzeros just as in IST and IHT:

vt = η(1)(xt + κA∗rt;λ1t); rt = y − Axt;

We let I t denote the combined support of vti and xt and we solve

wt = (A∗ItAIt)
−1A∗Ity.
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We then threshold a second time,

xt+1 = η(2)(wi;λ2t),

producing a sparse vector. Here the threshold λ and even the nonlinearity η(i) might

be chosen differently in stages 1 and 2 and might depend on the iteration and on

measured signal properties. CoSaMP [80] and subspace pursuit [27] may be considered

as special cases of TST. This will be clearer when we explain the threshold choice in

the next section.

It seems that the use of explicit solutions to the smaller systems might yield

improved performance, although at the cost of potentially much more expense per

iteration. An important problem is user reticence. In the case of TST there are

even more choices to be made than with IST/IHT. This scheme again presents the

‘recipe ingredients without recipe amounts’ obstacle: users may be turned off by the

requirement to specify many such tunable parameters.

3.2.3 Threshold choice

Effective choice of thresholds is a heavily-developed topic in statistical signal process-

ing. We have focused on two families of tunable alternatives.

Interference heuristic. We pretend that the marginal histogram of A∗r at sites in

the coefficient vector where xo(i) = 0 is Gaussian, with common standard deviation

σ. We robustly estimate the marginal standard deviation σ of the entries in A∗r at a

given iteration and set the threshold λt as a fixed multiple of that standard deviation

– t = τ · σt, where τ is our chosen threshold control parameter, typically in the range

0 < τ < 4. The underlying rationale for this approach is explained in [33] where its

correctness was heavily tested. Under this heuristic, we control the threshold τ as in

standard detection theory using the False Alarm Rate (FAR); thus FAR = 2 ·Φ(−τ)

where Φ denotes the standard normal distribution function. Oracle heuristic. In the

TST scheme, imagine that an oracle tells us the true underlying sparsity level k, and

we scale the threshold adaptively at each iteration so that at stage 1 we yield α · k
nonzeros and at stage two β · k nonzeros. The method CoSaMP [80] corresponds to
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β = 2, α = 1, while subspace pursuit [27] corresponds to β = α = 1.

A problem with the oracle heuristic is that, in interesting applications, there is

no such oracle, meaning that we wouldn’t in practice ever know what k to use. A

problem with the interference heuristic is that the Gaussian model may not work

when the matrix is not really ‘random’.

3.3 Estimating the empirical phase transition

For a given algorithm with a fully specified parameter vector θ, we conduct one phase

transition measurement experiment as follows. We fix a problem suite, i.e. a matrix

ensemble and a coefficient distribution for generating problem instances (A, x0) and

a measure of success; see below. For a fixed N = 800, we varied n = dδNe and

k = dρne through a grid of 900 δ and ρ combinations, with δ varying from .05 to 1

in 30 steps and ρ varying from .05 up to a ceiling value ρmax < 1 in as many as 30

steps. We then have a grid of δ, ρ values in parameter space [0, 1]2. At each (δ, ρ)

combination, we will take M problem instances and obtain M algorithm outputs x̂i;

in our case M = 100. For each problem instance we declare success if

‖xo − x̂‖2

‖xo‖2

≤ tol,

where tol is a given parameter, in our case 10−2; the variable Si indicates success on

the ith Monte Carlo realization. We summarize the M Monte Carlo repetitions by

the total number of successes S =
∑

i Si in those M trials. S is distributed bino-

mial Bin(π,M) where π denotes the success probability π ∈ [0, 1]. This probability

depends on k, n,N so we write π = π(ρ|δ;N) .

We define the location of the phase transition using logistic regression similarly to

[47, 46]. The finite-N phase transition is the value of ρ at which success probability

crosses 50%:

π(ρ|δ;N) =
1

2
at ρ = ρ∗(δ; θ).

This notion is well-known in biometrics where the 50% point of the dose-response is

called the LD50. (Actually there is a dependence on the tolerance tol so ρ∗(δ; θ) ≡
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ρ∗(δ; θ|N, tol); but this dependence is found to be weak.)

To estimate the phase transition from data, we collect triples (k,M, S(k, n,N))

all at one value of (n,N), and model S(k, n,N) ∼ Bin(πk;M) using a generalized

linear model with logistic link

logit(π) = a+ bρ,

where ρ = k/n and logit(π) = log( π
1−π ); in biometric language, we assume that the

dose-response probability follows a logistic curve.

The fitted parameters â,b̂, give the estimated phase transition from

ρ̂∗(δ; θ) = −â/b̂.

We denote this estimated value by ρ∗(δ; θ) in the rest of the paper.

3.4 Tuning procedure

We conducted extensive computational experiments to evaluate the phase transitions

of various algorithms. In all, we performed more than 90, 000, 000 reconstructions,

using 38 servers at a commercial dedicated server facility for one month. These

calculations would have run more than 3 years on a single desktop computer.

For a fixed iterative scheme and a fixed tuning parameter θ, we considered in turn

each of several problem suites S = (E,C), i.e. several combinations of random matrix

ensemble E and coefficient amplitude distributions C. At each such combination, we

measured the phase transitions as a function of δ.

In the tuning stage of our project we worked only with the standard suite S0;

here the matrix ensemble is the Uniform Spherical Ensemble (USE) 1 matrix and

the coefficient ensemble has all nonzeros randomly ± equiprobable and independent.

Below we call this the CARS ensemble, short for Constant Amplitude, with Random

Signs.

1The columns of these matrices are iid samples from the uniform distribution on the unit sphere
in Rn.
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For a fixed N = 800 we made simulations at the standard suite, and measured

the empirical phase transition ρ∗(δ; θ) as described above. We denote the optimal

parameter choice via

θ∗(δ) = arg max
θ
ρ∗(δ; θ). (3.2)

In the later evaluation stage, we will observe that the CARS ensemble is the least

favorable distribution among the distributions we consider. See Section 3.7.

3.5 Tuning results

Figure 3.3 illustrates tuning results for IST on the standard suite S0. Here θ =

(RelaxationParameter, FARParameter). Panel (a) shows the different optimized

phase transitions available by tuning FAR to depend on δ while the relaxation pa-

rameter is fixed. Panel (b) shows the optimally tuned FAR parameters at each given

δ and choice of relaxation parameter. Figure 3.4 offers the same information for IHT.

Optimum performance of IST occurs at higher values of the false alarm rate than

for IHT. Decreasing the relaxation parameter beyond the range shown here does not

improve the results for IST and IHT.

Figure 3.5 illustrates performance of TST for different values of θ = (α, β). Panel

(a) shows the different optimized phase transitions available by tuning β at fixed

α = 1 and Panel (b) shows optimal phase transitions with α = β varying. Both

displays point to the conclusion that α = β = 1 dominates other choices. Hence

subspace pursuit (α = 1, β = 1) dominates CoSaMP (α = 1, β = 2).

3.6 Recommended choices

We provide three versions of iterative algorithms based on our optimal tuning exer-

cise: recommended-IST, recommended-IHT and recommended-TST. They are imple-

mented in Matlab and published at URL

sparselab.stanford.edu/OptimalTuning/main.htm. In our recommended versions,

there are no free parameters. The user specifies only the matrix A and the left-hand
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Figure 3.3: (a) Optimized phase transitions for IST at various choices of relaxation
parameter κ. (b) FAR parameter choices yielding those optima. The value κ = 0.6
outperforms the other choices.

Figure 3.4: (a) Optimized phase transitions for IHT at various choices of relaxation
parameter κ. (b) FAR parameter choices yielding those optima. The value κ = 0.6
outperforms the other choices.
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Figure 3.5: (a) Empirical phase transitions of TST-(α, β) for α = 1 and different
values of β; β = 1 performs best; (b) Empirical phase transitions when α = β;
again β = 1 performs best. In both panels, differences are small for δ < .5, i.e.
undersampling factors greater than 2.

side y. In particular the user does not specify the expected sparsity level, which in

most applications cannot be considered known.

These recommended algorithms are not the same as previously published algo-

rithms. For example, recommended TST has parameters α = 1 and β = 1, so

it initially seems identical to subspace pursuit [27]. However, subspace pursuit de-

mands an oracle to inform the user of the true underlying sparsity of the vector.

Recommended-TST de facto assumes a specific value for the assumed sparsity level

at each given δ (see Table 3.3). If the actual sparsity in xo is better than the assumed

value, the algorithm still works. If the sparsity is actually worse than what Rec-TST

assumes, no other tuning of the algorithm will work either. The user does not need

to know the assumed sparsity level – it is hard-coded. In effect, we have removed the

oracle dependence of the subspace pursuit method.

We remind the reader that these algorithms dominate other implementations in

the same class. Thus, recommended TST dominates CoSaMP; this is particularly

evident for δ > .5 (see Figure 3.5).
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A companion set of algorithms – described later – is available for the case where

A is not an explicit matrix but instead a linear operator for which Av and A′w can

be computed without storing A as a matrix. Some differences in tuning for that case

have been found to be valuable.

We record in the following tables a selection of the optimally tuned parameter

values.

Table 3.1: Recommended IST: Optimally tuned FAR parameter and resulting opti-
mized phase transition, both as a function of δ. Recommended value of relaxation
parameter κ = 0.6.

δ .05 .11 .21 .31 .41 .5 .6 .7 .8 .93

ρ .124 .13 .16 .18 .2 .22 .23 .25 .27 .29

FAR .02 .037 .07 .12 .16 .2 .25 .32 .37 .42

Table 3.2: Recommended IHT: Optimally tuned FAR parameter and resulting opti-
mized phase transition, both as a function of δ. Recommended value of relaxation
parameter κ = 0.65.

δ .05 .11 .21 .41 .5 .6 .7 .8 .93

ρ .12 .16 .18 .25 .28 .31 .34 .38 .41

100 · FAR .15 .2 .4 1.1 1.5 2 2.7 3.5 4.3

Table 3.3: Recommended TST: optimal tuning parameters are α = β = 1.

δ .05 .11 .21 .31 .41 .5 .6 .7 .8 .93

ρ .124 .17 .22 .26 .30 .33 .368 .4 .44 .48

Figure 3.6 compares our recommended implementations with each other and with

LARS [49] and OMP [87], as well as, the theoretical phase transition curve for `1. The

figure depicts empirical phase transitions at the Standard Suite. These transitions
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Figure 3.6: Phase Transitions of several algorithms at the standard suite. Upper
curve: theoretical phase transition, `1 minimization; lower curves: Observed transi-
tions of algorithms recommended here.

obey the following ordering:

`1 > LARS > Rec-TST > Rec-IHT > Rec-IST,

where `1 refers to the phase transition of the limiting probability for exact recon-

struction by `1 minimization (Figure 3.1), and the other symbols denote empirical

transitions of specific algorithms. One might have expected this result based on qual-

itative grounds; however, it is striking to see how close some of the curves actually

are. For example, OMP performance is very similar to tuned IHT for δ < 0.7. These

simple iterative algorithms are dramatically easier to program and also dramatically

cheaper to run on a per iteration basis, than usual optimization-based approaches.

However there is still large gap between the phase transition of iterative thresholding

algorithms and the phase transition of `1. This issue will be addressed in the next

chapter.
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3.7 Robustness

A robust choice of parameters offers a guaranteed level of performance across all

situations. Such a choice can be made by solving the maximin problem as mentioned

at the beginning of this chapter

θr(δ) = arg max
θ

min
G∈G

ρ∗(δ; θ;G).

In words, we tune θ to give the highest possible performance guarantee valid across

a universe G of ensembles G. The maximin is achieved at the worst case or least-

favorable distribution; this depends on the given algorithm, the tuning, and the uni-

verse of distributions. We considered four coefficient ensembles G: in addition to the

CARS ensemble defined above, we considered coefficients from the double exponential

distribution, the Cauchy, and the uniform distribution on [−1, 1]. As it turns out,

our recommended tuning in effect has the maximin property. As described earlier,

we tuned at the standard suite S0, with constant amplitude, random-sign (CARS)

coefficients and matrices from USE. Figures 3.7-3.8-3.9 display results for Rec-IST,

Rec-IHT, and Rec-TST at a range of problem suites. For all three algorithms, the

CARS ensemble is approximately the least favorable coefficient ensemble. Since we

have tuned at that ensemble, our choice of tuning parameters can be said to be ro-

bust. In other words, if the problem suite is different from the standard suite, the

phase transition of the algorithm will be even better than the phase transitions tabu-

lated in the tables above. We have also done some experiment to check robustness to

the matrix ensemble. Matrix ensembles included the USE defined above, as well as

matrices with random ± entries [Random Sign Ensemble (RSE)] and partial Fourier

matrices (to be explained later). Figures 3.10-3.11-3.12 study Rec-IST, Rec-IHT,

and Rec-TST at three matrix ensembles: USE, Random Sign Ensemble (RSE) where

the elements of the matrix are chosen iid from ±1, and Uniform Random Projection

(URP) ensemble. Results are similar for the RSE and USE ensembles and usually

better for URP. A surprising exception to the above pattern is described below in

Section 3.9.
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Figure 3.7: Observed phase transitions of recommended IST at different coefficient
ensembles.

Figure 3.8: Observed phase transition of recommended IHT at different coefficient
ensembles.
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Figure 3.9: Observed phase transition of recommended TST at different coefficient
ensembles.

Figure 3.10: Observed phase transition of recommended IST for different matrix
ensembles.
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Figure 3.11: Observed phase transition of recommended IHT for different matrix
ensembles. Note that the red curve (URP matrix ensemble) is significantly below the
blue curve (USE matrix ensemble) for 0.3 < δ < .85. This was the only substantial
exception observed to the maximin property in our study.

Figure 3.12: Observed phase transition of recommended TST for different matrix
ensembles.
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3.8 Running times

Algorithm running times are given in Table 3.4. They were measured on an Intel 2

Core Processor (2.13GHz, 4 GBytes RAM). All implementations are in Matlab. In

order to give a fair comparison between algorithms with very different internal logic,

we ran each iterative algorithm until a convergence criterion was met: ‖y−Ax̂‖2‖y‖2 ≤ .001.

Table 3.4: Algorithm Timings at the Standard Suite. Average running time (sec) until
‖y−Ax̂‖2
‖y‖2 ≤ .001. Averages cover 10 independent runs. Problem sizes as indicated.

N δ ρ IHT TST OMP LARS

2000 0.9 0.17 10.6 12 20 28

4000 0.9 0.17 44.8 91.2 157 216

6000 0.9 0.17 90 286 537 798

2000 0.7 0.28 7.2 3.3 7.6 11.5

4000 0.7 0.28 28.4 24.5 57.8 98.4

6000 0.7 0.28 64.5 118 188 987

2000 0.5 0.2 5.8 0.91 1.5 2.7

4000 0.5 0.2 23 7 12 20

6000 0.5 0.2 52 23 38 65

8000 0.5 0.2 91 52 97 164

10000 0.5 0.2 130 100 168 270

2000 0.3 0.12 2 0.08 0.25 0.4

4000 0.3 0.12 9 0.65 1.8 2.6

8000 0.3 0.12 34 5 15 22

10000 0.3 0.12 54 13 28.5 38.5
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3.9 Ensembles based on fast operators

The matrix ensembles discussed so far all used dense matrices with random elements.

However, many applications of sparsity-seeking decompositions use linear operators

which are never stored as matrices. Typically such operators can be applied rapidly so

we call the resulting measurement operators FastOps ensembles. The partial Fourier

ensemble [20] provides an example. Here the n×N matrix A has for its rows a random

subset of the N rows in the standard Fourier transform matrix. Av and A′w can both

be computed in order N log(N) time; the comparable dense matrix vector products

would cost order N2 flops. The partial Hadamard ensemble is defined similarly, using

the Hadamard matrix of order N in place of the Fourier matrix.

The simple iterative algorithms IHT and IST are particularly suited for use with

FastOps ensemble since they require only repetitive application of Av and A′w inter-

leaved with thresholding, and this is exactly how FastOps ensembles are set up to be

used.

We considered two FastOps suites: the 1D partial Fourier ensemble and the 1D

partial Hadamard ensembles. The Standard FastOps suite uses the partial Fourier

matrix ensemble and CARS coefficients. Figure 3.13 compares the optimally-tuned

performance of IHT, IST and TST at the standard FastOps suite.

We found that

• it is beneficial to tune IHT and IST specially for FastOps ensembles, because the

previous tuning (aka maximin tuning) was driven by least favorable cases oc-

curring at non-FastOps ensembles. Here such cases are ruled out, and maximin

tuning only considers a narrower range of relevant cases; the achieved maximin

phase transition improves.

• For TST, α = β = 1 is still optimal, but for the maximin tuning restricted to

FastOps, ρ∗, improves.

• the relaxation parameter in IHT/IST makes essentially no contribution to per-

formance in this setting.

• 1D partial Hadamard and 1D partial Fourier gave very similar results.
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Figure 3.13: Comparison of the performance of recommended IHT, IST and TST for
partial fourier ensemble.

• the performance of IHT is very much in line with earlier results for the random

matrix ensembles.

• IST behaves dramatically better at partial Fourier ensembles than for the ran-

dom matrix ensembles (Figure 3.14) and even outperforms IHT for δ > .5

(Figure 3.13).

Recommended parameters are shown in Tables 3.5-3.6. Running times are studied

in Table 3.7. The execution times of both the fast IHT and fast TST scale favorably

with the problem size N . In most of our studies TST is faster than IHT and they are

both much faster than LARS. The favorable timing results of TST on large problem

sizes surprised us.

3.10 Before using these results

Readers may find the following reminders helpful:

• Our software already has embedded within it the appropriate values from the
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Table 3.5: Recommended IST, Standard FastOps Suite. Optimally Tuned FAR and
optimized phase transition ρ∗ of the recommended IST algorithm. Recommended
relaxation parameter κ = 1.

δ .11 .21 .31 .41 .5 .6 .7 .8 .9

ρ .092 .16 .21 .26 .31 .37 .41 .44 .48

FAR .0209 .0736 .13 .19 .26 .32 .32 .32 .32

Table 3.6: Recommended IHT, Standard FastOps Suite. Optimally Tuned FAR and
optimized phase transition ρ∗ of the recommended IHT algorithm. Recommended
relaxation parameter κ = 1.

δ .05 .11 .21 .31 .41 .5 .6 .7 .8

ρ .056 .14 .2 .24 .27 .3 .32 .34 .38

1000FAR .3 .4 1.8 2.9 3.8 5 5 5 5

tables presented here, so you may not need to copy information from the tables

and apply it. However, if you need to code your own implementation, remember

that the parameter ρ = ρ∗ in our tables specifies the largest workable k∗ via

k∗ = bρ∗ · nc = bρ∗ · δ ·Nc.

• Your A matrix must be normalized so that all columns have unit Euclidean

norm; for a badly-scaled matrix the algorithms may diverge rapidly.

• The software assumes the sparsity level k is unknown a priori, and uses, for

each level of the indeterminacy ratio δ = n/N , the largest workable sparsity

level k∗. If your application provides an oracle that makes k known in advance.

you may wish to customize the code to use this information – but this is not

necessary.
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Table 3.7: Algorithm Timings at the Standard FastOps Suite. Average running time
(sec) until ‖y−Ax̂‖2‖y‖2 ≤ .001. Averages cover 10 independent runs. Problem sizes as
indicated.

N δ ρ IHT TST LARS

8192 .1 .1 .5 .1 .6

16384 .1 .1 1.2 .25 2.5

32768 .1 .1 2.56 .48 10.8

65536 .1 .1 8 2.3 65

131072 .1 .1 18 5.6 > 900

262144 .1 .1 39 13 > 900

524288 .1 .1 85 27 > 900

16384 .3 .18 .5 .4 25

8192 .3 .18 .25 .21 5.2

8192 .5 .21 .18 .19 13.5

16384 .5 .21 .38 .4 81

3.11 The computational effort-phase transition trade-

off

This project adopted the goal of squeezing the best phase transition performance out

of some simple, computationally feasible algorithms. Staring us in the face is the fact

that `1 minimization generally offers better performance (higher phase transitions)

than any of our tuned algorithms. We will address this issue in the next chapter. The

goal of the next chapter is to design an algorithm as simple as IST and IHT that has

the same phase transition curve as `1 minimization.
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Figure 3.14: (a) Phase transitions of recommended IHT for different matrix ensembles
(b) Phase transitions of recommended IST for different matrix ensembles. Generally
speaking, the partial Fourier ensemble is not the worst case ensemble; note especially
the case IST with δ > 0.4.



Chapter 4

Approximate Message Passing

4.1 Introduction

As we showed in the last chapter most of the algorithms that are faster than `1 perform

worse in the sparsity measurement trade-off. In this chapter we develop an iterative

algorithm achieving reconstruction performance in one important sense identical to

`1-based reconstruction while running dramatically faster. This algorithm is called

Approximate Message Passing or AMP. As before, we assume that a vector y of n

measurements is obtained from an unknown N -vector x0 according to y = Ax0, where

A is the n × N measurement matrix n < N . Starting from an initial guess x0 = 0,

the first order approximate message passing (AMP) algorithm proceeds iteratively

according to:

xt+1 = ηt(A
∗zt + xt) , (4.1)

zt = y − Axt +
1

δ
zt−1〈η′t(A∗zt−1 + xt−1)〉 . (4.2)

Here ηt( · ) are scalar threshold functions (applied componentwise), xt ∈ RN is the

current estimate of x0, and zt ∈ Rn is the current residual. A∗ denotes transpose of

A. For a vector u = (u(1), . . . , u(N)), 〈u〉 ≡
∑N

i=1 u(i)/N . Finally η′t( s ) = ∂
∂s
ηt( s ).

The iterations of the approximate message passing seem very similar to the iter-

ations of iterative thresholding algorithms which is given by

56
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xt+1 = ηt(A
∗zt + xt) , (4.3)

zt = y − Axt. (4.4)

But Iterative thresholding schemes based on (4.3), (4.4) lack the crucial term in (4.2) –

namely, 1
δ
zt−1〈η′t(A∗zt−1 +xt−1)〉 is not included. We derive this term from the theory

of belief propagation in graphical models, and show that it substantially improves the

sparsity-undersampling tradeoff1.

Extensive numerical and Monte Carlo work reported here shows that AMP, de-

fined by (4.1), (4.2) achieves a sparsity-undersampling tradeoff matching the theo-

retical tradeoff which has been proved for LP-based reconstruction. We consider a

parameter space with axes quantifying sparsity and undersampling. In the limit of

large dimensions N, n, the parameter space splits in two phases: one where the AMP

approach is successful in accurately reconstructing x0 and one where it is unsuccessful.

References [32, 44, 42] derived regions of success and failure for LP-based recovery.

We find these two ostensibly different partitions of the sparsity-undersampling pa-

rameter space to be identical. Both reconstruction approaches succeed or fail over

the same regions, see Figure 4.1.

Our finding has extensive empirical evidence and strong theoretical support. We

introduce a state evolution formalism and find that it accurately predicts the dynam-

ical behavior of numerous observables of the AMP algorithm. In this formalism, the

mean squared error of reconstruction is a state variable; its change from iteration

to iteration is modeled by a simple scalar function, the MSE map. When this map

has nonzero fixed points, the formalism predicts that AMP will not successfully re-

cover the desired solution. The MSE map depends on the underlying sparsity and

undersampling ratios, and can develop nonzero fixed points over a region of spar-

sity/undersampling space. The region is evaluated analytically and found to coincide

1Here we are considering the class of iterative thresholding algorithms that are using aggressive
continuation strategies. There are other iterative thresholding algorithms with exactly the same
sparsity measurement tradeoff as `1. Those algorithms will be discussed and compared with AMP
in Chapter 7.
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very precisely (i.e. within numerical precision) with the region over which LP-based

methods are proved to fail. Extensive Monte Carlo testing of AMP reconstruction

finds the region where AMP fails is, to within statistical precision, the same region.

In short we introduce a fast iterative algorithm which is found to perform as well as

corresponding linear programming based methods on random problems. Our findings

are supported from simulations and from a theoretical formalism. Remarkably, the

success/failure phases of LP reconstruction were previously found by methods in

combinatorial geometry; we give here what amounts to a very simple formula for

the phase boundary, derived using a very different and seemingly elegant theoretical

principle.

4.1.1 Underdetermined linear systems

Let x0 ∈ RN be the signal of interest. We are interested in reconstructing it from

the vector of measurements y = Ax0, with y ∈ Rn, for n < N . For the moment, we

assume the entries Aij of the measurement matrix are independent and identically

distributed normal N(0, 1/n).

In this chapter to prove the strength of AMP in dealing with different structures we

consider three canonical models for the signal x0 and three nonlinear reconstruction

procedures based on linear programming.

+: x0 is nonnegative, with at most k entries different from 0. Reconstruct by solving

the LP: minimize
∑N

i=1 xi subject to x ≥ 0, and Ax = y.

±: x0 has as many as k nonzero entries. Reconstruct by solving the minimum `1

norm problem: minimize ||x||1, subject to Ax = y. This can be cast as an LP.

�: x0 ∈ [−1, 1]N , with at most k entries in the interior (−1, 1). Reconstruction by

solving the LP feasibility problem: find any vector x ∈ [−1,+1]N with Ax = y.

Despite the fact that the systems are underdetermined, under certain conditions on

k, n,N these procedures perfectly recover x0. This takes place subject to a sparsity-

undersampling tradeoff namely an upper bound on the signal complexity k relative

to n and N .
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4.1.2 Phase transitions

We defined the phase transition in Chapter 3 for the problem ±. The extension

of the definition to other problem instances is very simple. However for the sake

of self-sufficiency of this chapter we briefly explain it. If we define ρ = k/n and

δ = n/N , for each choice of χ ∈ {+,±,�} there is a function ρCG(·;χ) whose graph

partitions the domain into two regions. In the ‘upper’ region, where ρ > ρCG(δ;χ),

the corresponding LP reconstruction x1(χ) fails to recover x0, in the following sense:

as k, n,N →∞ in the large system limit with k/n→ ρ and n/N → δ, the probability

of exact reconstruction {x1(χ) = x0} tends to zero exponentially fast. In the ‘lower’

region, where ρ < ρCG(δ;χ), LP reconstruction succeeds to recover x0, in the following

sense: as k, n,N → ∞ in the large system limit with k/n → ρ and n/N → δ, the

probability of exact reconstruction {x1(χ) = x0} tends to one exponentially fast. We

refer to [32, 44, 45, 42] for proofs and precise definitions of the curves ρCG(·;χ).

The three functions ρCG( · ; +), ρCG( · ;±), ρCG( · ;�) are shown in Figure 4.1; they

are the red, blue, and green curves, respectively. The ordering ρCG(δ; +) > ρCG(δ;±)

(red > blue) says that knowing that a signal is sparse and positive is more valuable

than only knowing it is sparse. Both the red and blue curves behave as ρCG(δ; +,±) ∼
(2 log(1/δ))−1 as δ → 0; surprisingly large amounts of undersampling are possible,

if sufficient sparsity is present. In contrast, ρCG(δ;�) = 0 (green curve) for δ <

1/2 so the bounds [−1, 1] are really of no help unless we use a limited amount of

undersampling, i.e. by less than a factor of two.

4.2 Statistical heuristic for iterative approaches

In Chapter 2 we discussed a linear algebraic heuristic that led us to iterative thresh-

olding algorithms. Since we are using the statistical properties of the problem in

AMP, it is important to understand the statistical heuristic for iterative approaches.

We will later use this heuristic for AMP. The case ± has been most discussed and we

focus on that case for this section. Imagine first of all that A is an orthogonal matrix,
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Figure 4.1: The phase transition lines for reconstructing sparse non-negative vectors
(problem +, red), sparse signed vectors (problem ±, blue) and vectors with entries in
[−1, 1] (problem �, green). Continuous lines refer to analytical predictions from com-
binatorial geometry or the state evolution formalisms. Dashed lines present data from
experiments with the AMP algorithm, with signal length N = 1000 and T = 1000
iterations. For each value of δ, we considered a grid of ρ values, at each value, gener-
ating 50 random problems. The dashed line presents the estimated 50th percentile of
the response curve. At that percentile, the root mean square error after T iterations
obeys σT ≤ 10−3 in half of the simulated reconstructions.

in particular A∗ = A−1. Then the iteration (4.1)-(4.2) stops in 1 step, correctly find-

ing x0. Next, imagine that A is an invertible matrix; [28], has shown that a related

thresholding algorithm with clever scaling of A∗ and clever choice of threshold, will

correctly find x0. Of course both of these motivational observations assume n = N ,

so we are not really undersampling.

We sketch a motivational argument for thresholding in the truly undersampled

case n < N which is statistical, which has been popular with engineers [74] and

which leads to a proper ‘psychology’ for understanding our results. Consider the

operator H = A∗A − I, and note that A∗y = x0 + Hx0. If A were orthogonal, we

would of course have H = 0, and the iteration would, as we have seen immediately

succeed in one step. If A is a Gaussian random matrix and n < N , then of course A is
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not invertible and A∗ is not A−1. Instead of Hx0 = 0, in the undersampled case Hx0

behaves as a kind of noisy random vector, i.e. A∗y = x0 + noise. Now x0 is supposed

to be a sparse vector, and, one can see, the noise term is accurately modeled as a

vector with iid Gaussian entries with variance n−1‖x0‖2
2. This is summarized in the

following lemma.

Lemma 4.2.1. Let Aij be the ijth element of the measurement matrix and sup-

pose that these elements are drawn iid from a given distribution with the following

properties,E(Aij) = 0, E(A2
ij) = 1

n
and E(A4

ij) = O( 1
n2 ). We assume that the ra-

tio δ = n
N

is fixed. Let the vector x be a vector with elements iid from a different

distribution and independent of the matrix A with a bounded second moment. If

s = (A∗A− I)x, then

E(si) = 0,

E(sisj) = O(
1

n
),

E(s2
i ) =

E(x2
i )

δ
+O(

1

n
).

The proof of this lemma is summarized in Appendix E.

In short, the first iteration gives us a ‘noisy’ version of the sparse vector we

are seeking to recover. The problem of recovering a sparse vector from noisy mea-

surements has been heavily discussed [36], [67]. and it is well understood that soft

thresholding can produce a reduction in mean-squared error when sufficient sparsity

is present and the threshold is chosen appropriately. Consequently, one anticipates

that x1 will be closer to x0 than A∗y.

At the second iteration, one has A∗(y − Ax1) = x0 + H(x0 − x1). Naively, the

matrix H does not correlate with x0 or x1, and so we might pretend that H(x0−x1) is

again a Gaussian vector whose entries have variance n−1||x0−x1||22. This ‘noise level’

is smaller than at iteration zero, and so thresholding of this noise can be anticipated

to produce an even more accurate result at iteration two; and so on.

There is a valuable digital communications interpretation of this process. The

vector w = Hx0 is the cross-channel interference or mutual access interference (MAI),
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i.e. the noiselike disturbance each coordinate of A∗y experiences from the presence of

all the other ‘weakly interacting’ coordinates. The thresholding iteration suppresses

this interference in the sparse case by detecting the many ‘silent’ channels and setting

them a priori to zero, producing a putatively better guess at the next iteration.

At that iteration, the remaining interference is proportional not to the size of the

estimand, but instead to the estimation error, i.e. it is caused by the errors in

reconstructing all the weakly interacting coordinates; these errors are only a fraction

of the sizes of the estimands and so the error is significantly reduced at the next

iteration.

4.2.1 State evolution

The above ‘sparse denoising’/‘interference suppression’ heuristic, does agree qualita-

tively with the actual behavior one can observe in sample reconstructions. It is very

tempting to take it literally. Assuming it is literally true that the MAI is Gaussian

and independent from iteration to iteration, we can formally track the evolution, from

iteration to iteration, of the mean-squared error.

This gives a recursive equation for the formal MSE, i.e. the MSE which would be

true if the heuristic were true. This takes the form

σ2
t+1 = Ψ(σ2

t ) , (4.5)

Ψ(σ2) ≡ E
{[
η
(
X +

σ√
δ
Z;λσ

)
−X

]2}
. (4.6)

Here expectation is with respect to independent random variables Z ∼ N(0, 1) and

X, whose distribution coincides with the empirical distribution of the entries of x0.

We use soft thresholding if the signal is sparse and signed, i.e. if χ = ±. In the case of

sparse non-negative vectors, χ = +, we will let η(u;λσ,+) = max(u−λσ, 0). Finally,

for χ = �, we let η(u;�) = sign(u) min(|u|, 1). Calculations of this sort are familiar

from the theory of soft thresholding of sparse signals [67]. We call Ψ : σ2 7→ Ψ(σ2)

the MSE map.
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Figure 4.2: Development of fixed points for formal MSE evolution. Here we plot
Ψ(σ2) − σ2 where Ψ( · ) is the MSE map for χ = + (left column), χ = ± (center
column) and χ = � (right column), δ = 0.1 (upper row,χ ∈ {+,±}), δ = 0.55 (upper
row,χ = �), δ = 0.4 (lower row,χ ∈ {+,±}) and δ = 0.75 (lower row,χ = �). A
crossing of the y-axis corresponds to a fixed point of Ψ. If the graphed quantity is
negative for positive σ2, Ψ has no fixed points for σ > 0. Different curves correspond
to different values of ρ: where ρ is respectively less than, equal to and greater than
ρSE. In each case, Ψ has a stable fixed fixed point at zero for ρ < ρSE, and no other
fixed points, an unstable fixed point at zero for ρ = ρSE and develops two fixed points
at ρ > ρSE. Blue curves correspond to ρ = ρSE(δ;χ), green to ρ = 1.05 · ρSE(δ;χ), red
to ρ = 0.95 · ρSE(δ;χ).

Definition 4.2.1. Given implicit parameters (χ, δ, ρ, λ, F ), with F = FX the distribu-

tion of the random variable X. State Evolution is the recursive map (one-dimensional

dynamical system): σ2
t 7→ Ψ(σ2

t ).

Implicit parameters (χ, δ, ρ, λ, F ) stay fixed during the evolution. Equivalently, the

full state evolves by the rule

(σ2
t ;χ, δ, ρ, λ, FX) 7→ (Ψ(σ2

t );χ, δ, ρ, λ, FX) .

The parameter space is partitioned into two regions:

Region (I): Ψ(σ2) < σ2 for all σ2 ∈ (0,EX2]. Here σ2
t → 0 as t → ∞: the SE
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converges to zero.

Region (II): The complement of Region (I). Here, the SE recursion does not evolve

to σ2 = 0.

The partitioning of parameter space induces a notion of sparsity threshold, the

minimal sparsity guarantee needed to obtain convergence of the formal MSE:

ρSE(δ;χ, λ, FX) ≡ sup {ρ : (δ, ρ, λ, FX) ∈ Region (I)} . (4.7)

The subscript SE stands for State Evolution. Of course, ρSE depends on the case

χ ∈ {+,±,�}; it also seems to depend also on the signal distribution FX ; however,

an essential simplification is provided by

Proposition 4.2.2. For the three canonical problems χ ∈ {+,±,�}, any δ ∈ [0, 1],

and any random variable X with the prescribed sparsity and bounded second moment,

ρSE(δ;χ, λ, FX) is independent of FX .

Independence from F allows us to write ρSE(δ;χ, λ) for the sparsity thresholds.

The proof of this statement is sketched in Appendix E, along with the derivation of

a more explicit expression.

4.3 Message passing algorithm

Unhappily the formal MSE does not predict the properties of iterative thresholding

algorithms. Numerical simulations show very clearly that the MSE map does not

describe the evolution of the actual MSE under iterative thresholding. The mathe-

matical reason for this failure is quite simple. After the first iteration, the entries of

xt become strongly dependent, and State Evolution does not predict the moments of

xt. The main surprise of this chapter is that this failure is not the end of the story.

We now consider a modification of iterative thresholding inspired by message passing

algorithms for inference in graphical models [88], and graph-based error correcting

codes [60, 90]. These are iterative algorithms, whose basic variables (‘messages’) are

associated to directed edges in a graph that encodes the structure of the statistical
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model. The relevant graph here is a complete bipartite graph over N nodes on one

side (‘variable nodes’), and n on the others (‘measurement nodes’). Messages are

updated according to the rules

xt+1
i→a = ηt

( ∑
b∈[n]\a

Abiz
t
b→i

)
, (4.8)

zta→i = ya −
∑
j∈[p]\i

Aajx
t
j→a , (4.9)

for each (i, a) ∈ [N ]× [n]. We will refer to this algorithm2 as MP. We will explain a

framework for deriving these algorithms in the next chapter. The main goal of this

chapter is to derive the properties of this new algorithm on the compressed sensing

problems.

MP has one important drawback with respect to iterative thresholding. Instead

of updating N estimates, at each iterations we need to update Nn messages, thus

increasing significantly the algorithm complexity. On the other hand, it is easy to

see that the right-hand side of (4.8) depends weakly on the index a (only one out

of n terms is excluded) and that the right-hand side of (4.8) depends weakly on

i. Neglecting altogether this dependence leads to the iterative thresholding (4.3),

(4.4). A more careful analysis of this dependence leads to corrections of order one in

the high-dimensional limit. Such corrections are however fully captured by the last

term on the right hand side of (4.2), thus leading to the AMP algorithm. Statistical

physicists would call this the ‘Onsager reaction term’; see [102]. In order to justify

this we assume that the messages can be approximated in the following way.

xti→a = xti + δxti→a +O(1/N),

zta→i = zta + δzta→i +O(1/N), (4.10)

with δxti→a, δz
t
a→i = O( 1√

N
) (here the O( · ) errors are uniform in the choice of the

2For earlier applications of MP to compressed sensing see [72, 93, 116]. Relations between MP and
LP were explored in a number of papers, see for instance [109, 5], albeit from a different perspective.
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edge). We also consider a general message passing algorithms of the form

xt+1
i→a = ηt

(∑
b6=a

Abiz
t
b→i

)
, zta→i ≡ ya −

∑
j 6=i

Aajx
t
j→a, (4.11)

with {ηt( · )}t∈N a sequence of differentiable nonlinear functions with bounded deriva-

tives. In the interest of simplicity, we shall stick to the differentiable model.

Lemma 4.3.1. Suppose that the asymptotic behavior (4.10) holds for the message

passing algorithm (4.8) and (4.9). Then xti and zta satisfy the following equations

xt+1
i = ηt

(∑
a

Aiaz
t
a + xti

)
+ oN(1), (4.12)

zta = ya −
∑
j

Aajx
t
j +

1

δ
zt−1
a 〈η′t−1(A∗zt−1 + xt−1)〉+ oN(1), (4.13)

where the oN(1) terms vanish as N, n→∞.

The proof of this lemma may be found in Appendix E.

Although AMP seems very similar to simple iterative thresholding (4.3)-(4.4), SE

accurately describes its properties, but not those of the standard iteration.

We have conducted extensive simulation experiments with AMP, and more limited

experiments with MP, which is computationally more intensive (for details see the

simulation section). These experiments show that the performance of the algorithms

can be accurately modeled using the MSE map. Let’s be more specific.

According to SE, performance of the AMP algorithm is predicted by tracking the

evolution of the formal MSE σ2
t via the recursion (4.5). Although this formalism

is quite simple, it is accurate in the high dimensional limit. Corresponding to the

formal quantities calculated by SE are the actual quantities, so of course to the

formal MSE corresponds the true MSE N−1‖xt − x0‖2
2. Other quantities can be

computed in terms of the state σ2
t as well: for instance the true false alarm rate

(N − k)−1#{i : xt(i) 6= 0 and x0(i) = 0} is predicted via the formal false alarm

rate P{ηt(X + δ−1/2σtZ) 6= 0|X = 0}. Analogously, the true missed-detection rate

k−1#{i : xt(i) = 0 and x0(i) 6= 0} is predicted by the formal missed-detection rate
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Figure 4.3: Observed phase transitions of reconstruction algorithms. Algorithms
studied include iterative soft and hard thresholding, orthogonal matching pursuit,
and related. Parameters of each algorithm are tuned to achieve the best possible
phase transition [76]. Reconstructions signal length N = 1000. Iterative thresholding
algorithms used T = 1000 iterations. Phase transition curve displays the value of
ρ = k/n at which success rate is 50%.

P{ηt(X + δ−1/2σtZ) = 0|X 6= 0}, and so on.

Our experiments establish agreement of actual and formal quantities.

Finding 1. For the AMP algorithm, and large dimensions N, n, we observe

I. SE correctly predicts the evolution of numerous statistical properties of xt with the

iteration number t. The MSE, the number of nonzeros in xt, the number of false

alarms, the number of missed detections, and several other measures all evolve in way

that matches the state evolution formalism to within experimental accuracy.

II. SE correctly predicts the success/failure to converge to the correct result. In

particular, SE predicts no convergence when ρ > ρSE(δ;χ, λ), and convergence if

ρ < ρSE(δ;χ, λ). This is indeed observed empirically.

Analogous observations were made for MP.
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4.3.1 Optimizing the MP phase transition

In the previous chapter we observed that if we use a version of an algorithm which

is not tuned properly it will perform very poorly. This is true about AMP as well.

An inappropriately tuned version of MP/AMP will not perform well compared to

other algorithms, for example LP-based reconstructions. However, SE provides a

natural strategy to tune MP and AMP theoretically. This section is devoted to this

derivation.

Maximin tuning

Although the maximin tuning was explained in great detail in the previous chapter, for

the sake of completeness of this chapter we summarize our discussion here. Consider

a sparse recovery algorithm Aθ. θ includes all the free parameters of the algorithm.

The goal of the maximin tuning is to tune the parameters so that the algorithm

achieves its highest phase transition over a set of distributions. Suppose that we have

a class of distributions G for the non-zero values of the original vector.

θ∗(δ) = arg max
θ

inf
G∈G

ρ∗(δ, θ;A, G) (4.14)

In other words for every value of θ the worst distribution is found and the phase

transition for that value of parameter and that value of δ is calculated for the least fa-

vorable distribution. Then all the phase transition values are compared and the value

of θ that exhibits the maximum value of ρ∗ is chosen. In the next section we discuss

a theoretical framework that aims to predict the performance of the approximate

message passing algorithm.

Maximin tuning of AMP

In the AMP algorithm that uses λσ thresholding policy, the only parameter that shall

be set according to the maximin framework is λ. Adopt the notation
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ρSE(δ, χ) = sup
λ≥0

ρSE(δ;χ, λ). (4.15)

It is easy to see that this supremum is achieved and we denote this value of λ by λχ(δ),

χ ∈ {+,±,�}, and refer to the resulting algorithms as to Maximin tuned MP/AMP

(or sometimes MPM/AMPM for short). The optimal value of λ for χ ∈ {±,+} is

given by the following formula

λχ(δ) =
1√
δ

arg max
z≥0

{
1− (κχ/δ)

[
(1 + z2)Φ(−z)− zφ(z)

]
1 + z2 − κχ

[
(1 + z2)Φ(−z)− zφ(z)

]} ,

where κχ = 1 for χ = + and is equal to two for χ = ±. This formula is drawn in the

proof of Proposition 4.2.2 in Appendix E.

High precision numerical evaluations of such expression uncovers the following

very suggestive

Finding 2. For the three canonical problems χ ∈ {+,±,�}, and for any δ ∈ (0, 1)

ρSE(δ;χ) = ρCG(δ;χ) . (4.16)

In short, the formal MSE evolves to zero exactly over the same region of (δ, ρ)

phase space as does the phase diagram for the corresponding convex optimization!

Not only the algorithm converges to the correct solution on the same region as LP

does, but also the convergence rate is exponentially fast. The following theorem

formalizes this statement.

Theorem 4.3.1. For δ ∈ [0, 1], ρ < ρSE(δ;χ), and any associated random variable X,

the formal MSE of optimally-tuned AMP/MP evolves to zero under SE. Viceversa,

if ρ > ρSE(δ;χ), the formal MSE does not evolve to zero. Further, for ρ < ρSE(δ;χ),

there exists b = b(δ, ρ) > 0 with the following property. If σ2
t denotes the formal MSE
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after t SE steps, then, for all t ≥ 0

σ2
t ≤ σ2

0 exp(−bt). (4.17)

The proof of this theorem is summarized in Appendix E.

4.4 Other thresholding policies

So far we have considered three different canonical models and discussed the cor-

responding AMP algorithms. Hereafter, we focus on just AMP for the canonical

problem ±. For this problem we have considered a very special form of the thresh-

olding policy; the threshold is proportional to the standard deviation of MAI noise.

This section aims to show that this thresholding policy is “optimal”. Consider a

thresholding policy that can be a “general” function of σ, in contrast to the linear

function that was considered in the previous section. As before the state evolution is

defined as

σ2
t 7→ Ψ(σ2

t ) =
1

δ
E{[η(X + σtZ;λ(σt)))−X]2}. (4.18)

Suppose that the state evolution explains the performance of an algorithm. The

thresholding policy λ(σ) may be considered as a free parameter in this algorithm.

Clearly, this parameter affects the phase transition of the algorithm and it is therefore

important to tune it optimally. The goal of this section is to find the maximin

threshold policy for the iterative algorithm that satisfies SE. Consider the class of

distributions Fε,γ = {F (µ) : F (0+) − F (0−) > 1 − ε, EF (µ2) ≤ εγ2}. Whenever we

remove the parameter γ from the subscript it means that we are considering the set

of all distributions that have a mass of at least 1− ε at 0 without any second moment

constraint. We also use the notation Fε,γ(µ) = (1 − ε)δ0 + εδγ for the distribution

that puts a mass of 1− ε at 0 and a mass of ε at γ. Clearly, Fε,γ(µ) ∈ Fε,γ. Finally,

Gγ = {G : EGµ
2 ≤ γ2}. Gγ includes the set of distributions with the second moment

bounded above by γ2.
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Definition 4.4.1. The risk of the soft thresholding function is defined as,

r(µ, λ;σ) = E(η(µ+ σZ;λ)− µ)2, (4.19)

where Z ∼ N(0, 1) and η is the soft thresholding function as defined before.

Lemma 4.4.1. r(µ, λ;σ) is a concave function of µ2.

Proof. To prove the concavity, we use the second order conditions. For notational

simplicity we assume that µ > 0. We have

d

dµ2
r(µ, λ;σ) =

1

µ
E[−I(−λ < µ+ σZ < λ))(η(µ+ σZ;λ)− µ)]

=E[I(−λ < µ+ σZ < λ)] =

∫ λ−µ
σ

−λ−µ
σ

φZ(z)dz.

Therefore, the second derivative is given by

d2

d2µ2
r(µ, λ;σ) = − 1

σµ
(φ(

λ− µ
σ

) + φ(
λ+ µ

σ
)).

Since λ, µ > 0, the second derivative is negative and therefore the risk function is

concave.

Definition 4.4.2. Minimum risk thresholding policy is defined as

λ∗MR(σ; ε, γ) = arg min
λ

sup
F∈Fε,γ

Eµ∼F r(µ, λ;σ). (4.20)

Theorem 4.4.2. Under the minimum risk thresholding policy λ∗MR(σ; ε, γ) the SE

phase transition happens at:

ρSE(δ, λ∗MR) = max
z

(
1− 2/δ[(1 + z2)Φ(−z)− zφ(z)]

1 + z2 − 2[(1 + z2)Φ(−z)− zφ(z)]

)
. (4.21)

Furthermore,

ρSE(δ, λ∗MR) = sup
λ(σ)

inf
G∈Gγ

ρSE(δ, λ(σ), G). (4.22)
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Although the above theorem claims that the minimum risk thresholding policy

is optimal in the maximin sense, it should be emphasized that it is not a legitimate

thresholding policy yet, since in the maximin framework the sparsity level of the

signal is not known beforehand, while the minimum risk thresholding policy is using

this information which is hidden in the parameter ε. To fix this issue, we consider

the minimum risk thresholding policy and plug in the value of the ρSE(δ, λ∗MR). From

the proof of the above theorem it is clear that this new thresholding policy that does

not use the sparsity level still exhibits phase transition at exactly the same place

as λ∗MR(σ; ε, γ). The proof of the theorem is moved to the appendix. Here we just

mention parts of the proof that explain several interesting properties of the algorithm.

Corollary 4.4.3. The least favorable distribution that achieves the supremum in

supF∈Fε,γ Eµ∼F r(µ, λ;σ) is independent of the standard deviation of the noise σ.

Corollary 4.4.4. For any thresholding policy λ(σ), and G ∈ Fε,γ we have

Ψ(σ2;G) ≤ Ψ(σ2;Fε,γ), ∀σ. (4.23)

In other words a two point prior is the least favorable prior for the algorithm.

It should be mentioned that the least favorable prior is not unique. All the dis-

tributions that have a point mass of 1 − ε at zero and mass of ε on the set {−γ, γ}
are least favorable as well. Although it is possible to calculate the minimum risk

thresholding policy as a function of σ, δ, there are a few obstacles in using such a

policy. First there is no explicit solution for the optimal λ in terms of σ and δ and

therefore, we have to save a huge table in a memory. Second, we may need an oracle

information about γ. There are other simpler thresholding policies that can achieve

the same phase transition.

Fixing false alarm rate

In the first three sections of this chapter we considered a class of thresholding policies

in which λ(σ) = βσ where β just depends on δ. This is called the fixed false alarm

rate thresholding policy. A false alarm happens when an element whose actual value
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is zero passes the threshold due to noise. By considering this thresholding policy the

number of free parameters reduce to one. According to the maximin framework, the

optimal value of this parameter is given by

β∗(δ) = arg max
β∈[0,∞)

inf
G∈Gγ

ρ(δ, β,G). (4.24)

The following theorem is shown in the proof of Proposition 4.2.2 about this fixed false

alarm rate thresholding policy.

Theorem 4.4.3. Under fixed FAR thresholding policy and for the optimal value of β

given from above, the SE has the following phase transition:

ρSE(δ;λ∗FAR) = max
z

(
1− 2/δ[(1 + z2)Φ(−z)− zφ(z)]

1 + z2 − 2[(1 + z2)Φ(−z)− zφ(z)]

)
, (4.25)

which is exactly the same as the SE phase transition of minimum risk thresholding

policy. Also the optimal value of β is equal to the maximizing z∗ in (4.25).

The following corollary is clear from the Theorems 4.4.3 and 4.4.2.

Corollary 4.4.5. The optimized fixed false alarm rate thresholding policy has the

same phase transition as the phase transition of the minimum risk thresholding policy

and therefore it is also maximin for the original problem supλ(σ) infG∈Gγ ρSE(δ, λ(σ), G)

In other words, the above corollary shows that the phase transition that we obtain

from such a simple thresholding policy is the same as the phase transition of the

minimum risk thresholding policy. Figure 3.4 shows the optimal values of β as a

function of δ. The final remark about this algorithm is the estimation of the σ at

each iteration. Although there are many ways to do that, here we explain one simple,

yet efficient way which is the median of the absolute value. Since xo is sparse and at

each iteration we observe xo + σz where z ∼ N(0, IN×N) in order to estimate σ we

can calculate the median of |xo + σz|. The median is robust to outliers and hence

one might assume that it is close to the median of |σz| ≈ 0.6745σ. But, as mentioned

before there are many other ways to estimate σ.
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Fixing the number of detections

Consider another thresholding policy in which the threshold is set according to the

following equation,

P (|X + σZ| > λFD(σ)) = α, (4.26)

where as before X ∼ F ∈ Fε,γ is the sparse signal and Z ∼ N(0, 1) is the Gaussian

noise. In practice this thresholding policy corresponds to fixing the number of ele-

ments that pass the threshold. At each step the threshold is set to the magnitude of

the `th largest coefficient (in the absolute value). A good aspect of this thresholding

policy is that no estimation of the noise variance is involved in this thresholding pol-

icy. Again the parameter α that corresponds to the parameter ` is a free parameter

that may be optimized by the maximin framework. The following theorem gives us

a very simple rule for the maximin tuning of this parameter.

Theorem 4.4.4. For α = δ the fixed number of detections thresholding policy achieves

the same phase transition as the phase transition of the minimum risk thresholding

policy.

The proof of this theorem is omitted from the dissertation. It is basically similar to

the proof of Theorem 4.4.3, and the main difference is that the calculations needed

for proving concavity are more complicated. It is also clear that we are not able

to improve this phase transition with any thresholding policy according to Theorem

4.4.2 and therefore this thresholding policy can also be considered as maximin for the

original problem i.e. supλ(σ) infF∈Fε,γ ρSE(δ, λ(σ), F ). In practice, the optimal value of

α corresponds to the case where ` = n elements pass the threshold at each iteration.

Therefore at each iteration we can easily set the threshold to the magnitude of the

nth largest coefficient in absolute value.

One of the main questions that is left unanswered yet is the reason that all these

three thresholding policies exhibit the same phase transition. The following lemma

shows the main similarity among these three thresholding policies.
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Lemma 4.4.5. Let λ∗MR(σ), λ∗FAR(σ) and λ∗FD(σ) be the maximin optimally tuned

value of λ in minimum risk, fixed false alarm rate and fixed number of detections

thresholding policies, respectively. Suppose X ∼ F and F = (1− ε)δ0 + εG where G is

continuous at 0 and ε = ρ∗δ where ρ∗ is the value of ρ at the phase transition. Then,

lim
σ→0

P(η(X + σZ;λ∗MR(σ)) > 0) =

lim
σ→0

P(η(X + σZ;λ∗FAR(σ)) > 0) =

lim
σ→0

P(η(X + σZ;λ∗FD(σ)) > 0) = δ. (4.27)

Proof. For the fixed detection thresholding policy it is clear from the definition. Also,

in Appendix E.2.4 we showed that limσ→0
λ∗MR(σ)

λ∗FAR(σ)
= 1 therefore the only thing that

we should prove for this lemma is the fixed false alarm rate thresholding policy case.

For the simplicity of notation I call β∗FAR = β∗.

lim
σ→0

P(η(X + σZ;λ∗FAR(σ)) > 0) = 2(1− ε)P(σZ > β∗σ)+

εP(|X + σZ| > β∗σ) = 2(1− ε)(1− Φ(β∗)) + ε. (4.28)

By some reparametrization of the phase transition formula it is easy to show,

δ =
φ(β∗)

φ(β∗) + β∗(Φ(β∗)− 1/2)
,

ρ∗ = 1− β∗(1− Φ(β∗))

φ(β∗)

By plugging in these two equations in (4.28) we get

2(1− ε)(1− Φ(β∗)) + ε = δ.

This lemma is suggesting that as σ → 0 all the algorithms are setting the thresh-

olds similarly. Of course for larger values of σ they perform differently. But what
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matters for the phase transition is the performance as σ → 0.

4.5 Universality

The SE-derived phase transitions are not sensitive to the detailed distribution of coef-

ficient amplitudes. Empirical results in the simulation section find similar insensitivity

of observed phase transitions for MP.

Gaussianity of the measurement matrix A can be relaxed; Simulation section finds

that other random matrix ensembles exhibit comparable phase transitions.

In applications, one often uses very large matrices A which are never explicitly

represented, but only applied as operators; examples include randomly undersam-

pled partial Fourier transforms. Supporting Information finds that observed phase

transitions for MP in the partial Fourier case are comparable to those for random A.

4.6 Simulation results

4.6.1 Data generation

For a given algorithm with a fully specified parameter vector, we conduct one phase

transition measurement experiment as follows. We fix a problem suite, i.e. a matrix

ensemble and a coefficient distribution for generating problem instances (A, x0). We

also fix a grid of δ values in [0, 1], typically 30 values equispaced between 0.02 and

0.99. Subordinate to this grid, we consider a series of ρ values. Two cases arise

frequently:

• Focused Search design. 20 values between ρCG(δ;χ) − 1/10 and ρCG(δ;χ) +

1/10, where ρCG is the theoretically expected phase transition deriving from

combinatorial geometry (according to case χ ∈ {+,±,�}).

• General Search design. 40 values equispaced between 0 and 1.

We then have a (possibly non-cartesian) grid of δ, ρ values in parameter space [0, 1]2.

At each (δ, ρ) combination, we will take M problem instances; in our case M = 20.
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We also fix a measure of success; see below.

Once we specify the problem size N , the experiment is now fully specified; we set

n = dδNe and k = dρne, and generate M problem instances, and obtain M algorithm

outputs x̂i, and M success indicators Si, i = 1, . . .M .

A problem instance (y, A, x0) consists of n × N matrix A from the given matrix

ensemble and a k-sparse vector x0 from the given coefficient ensemble. Then y = Ax0.

The algorithm is called with problem instance (y, A) and it produces a result x̂. We

declare success if
‖x0 − x̂‖2

‖x0‖2

≤ tol,

where tol is a given parameter; in our case 10−4; the variable Si indicates success on

the ith Monte Carlo realization. To summarize all M Monte Carlo repetitions, we set

S =
∑

i Si.

The result of such an experiment is a dataset with tuples (N, n, k,M, S); each tuple

giving the results at one combination (ρ, δ). The meta-information describing the

experiment is the specification of the algorithm with all its parameters, the problem

suite, and the success measure with its tolerance.

4.6.2 Estimating phase transitions

From such a dataset we find the location of the phase transition as follows. Corre-

sponding to each fixed value of δ in our grid, we have a collection of tuples (N, n, k,M, S)

with n/N = δ and varying k. Pretending that our random number generator makes

truly independent random numbers, the result S at one experiment is binomial

Bin(π,M), where the success probability π ∈ [0, 1]. Extensive prior experiments

show that this probability varies from 1 when ρ is well below ρCG to 0 when ρ is well

above ρCG. In short, the success probability

π = π(ρ|δ;N).
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We define the finite-N phase transition as the value of ρ at which success proba-

bility is 50%:

π(ρ|δ;N) =
1

2
at ρ = ρ(δ).

This notion is well-known in biometrics where the 50% point of the dose-response is

called the LD50. Actually we have the implicit dependence ρ(δ) ≡ ρ(δ|N, tol); the

tolerance in the success definition has a (usually slight) effect, as well as the problem

size N .

To estimate the phase transition from data, we model dependence of success prob-

ability on ρ using generalized linear models (GLMs). We take a δ-constant slice of

the dataset obtaining triples (k,M, S(k, n,N)), and model S(k, n,N) ∼ Bin(πk;M)

where the success probabilities obeys a generalized linear model with logistic link

logit(π) = a+ bρ

where ρ = k/n; in biometric language, we are modeling that the dose-response prob-

ability, where ρ is the ‘complexity-dose’, follows a logistic curve.

In terms of the fitted parameters â,b̂, we have the estimated phase transition

ρ̂(δ) = −â/b̂,

and the estimated transition width is

ŵ(δ) = 1/b̂.

Note that, actually,

ρ̂(δ) = ρ̂(δ|N, tol), ŵ(δ) = ŵ(δ|N, tol) .

We may be able to see the phase transition and its width varying with N and with

the success tolerance.

Because we make only M measurements in our Monte Carlo experiments, these

results are subject to sampling fluctuations. Confidence statements can be made for
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ρ̂ using standard statistical software.

4.6.3 Tuning of algorithms

The procedure so far gives us, for each fully-specified combination of algorithm param-

eters Λ and each problem suite S, a dataset (Λ,S, δ, ρ̂(δ; Λ, S)). When an algorithm

has such parameters, we can define, for each fixed δ, the value of the parameters

which gives the highest transition:

ρ̂opt(δ;S) = max
Λ

ρ̂(δ; Λ,S);

with associated optimal parameters Λopt(δ;S). When the results of the algorithm

depend strongly on problem suite as well, we can also tune to optimize worst-case

performance across suites, getting the maximin transition

ρ̂MM(δ) = max
Λ

min
S
ρ̂(δ; Λ,S).

and corresponding maximin parameters ΛMM(δ). This procedure was followed in

Chapter 3 for a wide range of popular algorithms. Figure 4.4 presents the observed

maximin transitions.

4.6.4 Empirical phase transition

Figure 4.4 (which is a complete version of Figure 4.3) compares observed phase transi-

tions of several algorithms including AMP. For AMP we used a focused search design,

focused around ρCG(δ). To reconstruct x, we run T = 1000 AMP iterations and re-

port the mean square error at the final iteration. For other algorithms, we used the

general search design as described in the previous chapter. For more details about

observed phase transitions we refer the reader to Chapter 3.

The calculation of the phase transition curve of AMP takes around 36 hours on a

single Pentium 4 processor.

Observed Phase transitions for other coefficient ensembles and matrix ensembles

are discussed below in Section 4.6.7 and Section 4.6.8.
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4.6.5 Example of the interference heuristic

In Section 4.2, our motivation of the SE formalism used the assumption that the

mutual access interference term MAIt = (A∗A − I)(xt − x0) is marginally nearly

Gaussian – i.e. the distribution function of the entries in the MAI vector is approxi-

mately Gaussian.

As we mentioned, this heuristic motivates the definition of the MSE map. It is

easy to prove that the heuristic is valid at the first iteration; but for the validity of

SE, it must continue to be true at every iteration until the algorithm stops. Figure 4.5

presents a typical example. In this example we have considered USE matrix ensemble

and Rademacher coefficient ensemble. Also N is set to a small size problem 2000 and

(δ, ρ) = (0.9, 0.52). The algorithm is tracked across 90 iterations. Each panel exhibits

a linear trend, indicating approximate Gaussianity. The slope is decreasing with

iteration count. The slope is the square root of the MSE, and its decrease indicates

that the MSE is evolving towards zero. More interestingly, Figure 4.6 shows the

QQplot of the MAI noise for the partial Fourier matrix ensemble. Coefficients here

are again from Rademacher ensemble and (N, δ, ρ) = (16384, 0.5, 0.35).

4.6.6 Testing predictions of state evolution

The last section gave an illustration tracking the actual evolution of the AMP algo-

rithm, it showed that the State Evolution heuristic is qualitatively correct.

We now consider predictions made by SE and their quantitative match with em-

pirical observations. We consider predictions of four observables:

• MSE on zeros and MSE on non-zeros:

MSEZ = E[x̂(i)2|x0(i) = 0],

MSENZ = E[(x̂(i)− x0(i))2|x0(i) 6= 0] (4.29)
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• Missed detection rate and False alarm rate:

MDR = P[x̂(i) = 0|x0(i) 6= 0],

FAR = P[x̂(i) 6= 0|x0(i) = 0] (4.30)

We illustrate the calculation of MDR. Other quantities are computed similarly. Let

ε = δρ, and suppose that entries in x0(i) are either 0, 1, or −1, with P{x0(i) = ±1} =

ε/2. Then, with Z ∼ N(0, 1),

P[x̂(i) = 0|x0(i) 6= 0] = P[η(1 +
σ√
δ
Z) 6= 0]

= P[1 +
σ√
δ
Z 6∈ (−λσ, λσ)]

= P[Z 6∈ (a, b)] (4.31)

with a = ((−λ− 1/σ) ·
√
δ, b = (λ− 1/σ) ·

√
δ.

In short, the calculation merely requires classical properties of the normal dis-

tribution. The three other quantities simply require other similar properties of the

normal. As discussed before, SE evolution makes an iteration-by-iteration prediction

of σt; in order to calculate predictions of MDR, FAR, MSENZ and MSEZ, the parameters

ε and λ are also needed.

We compared the state evolution predictions with the actual values by a Monte

Carlo experiment. We chose these triples (δ, ρ,N): (0.3, 0.15, 5000), (0.5, 0.2, 4000),

(0.7, 0.36, 3000). We again used the standard problem suite (USE matrix and unit

amplitude nonzero). At each combination of (δ, ρ,N), we generated M = 200 random

problem instances from the standard problem suite, and ran the AMP algorithm for

a fixed number of iterations. We computed the observables at each iteration. For

example, the empirical missed detection rate is estimated by

eMDR(t) =
#{i : xt(i) = 0 and x0(i) 6= 0}

#{i : x0(i) 6= 0}
.

We averaged the observable trajectories across the M Monte Carlo realizations, pro-

ducing empirical averages.
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The results for the three cases are presented in Figures 4.7, 4.8, 4.9. Shown on

the display are curves indicating both the theoretical prediction and the empirical

averages. In the case of the upper row and the lower left panel, the two curves are so

close that one cannot easily tell that two curves are, in fact, being displayed.

4.6.7 Coefficient universality

SE displays invariance of the evolution results with respect to the coefficient distri-

bution of the nonzeros. What happens in practice?

We studied invariance of AMP results as we varied the distributions of the nonzeros

in x0. We consider the problem χ = ± and used the following distributions for the

non-zero entries of x0:

• Uniform in [−1,+1];

• Radamacher (uniform in {+1,−1});

• Gaussian;

• Cauchy.

In this study, N = 2000, and we considered δ = 0.1, 0.3. For each value of δ we

considered 20 equispaced values of ρ in the interval [ρCG(δ;±)−1/10, ρCG(δ;±)+1/10],

running each time T = 1000 AMP iterations. Data are presented, respectively, in

Figure 4.10.

Each plot displays the fraction of success (S/M) as a function of ρ and a fitted

success probability, i.e. in terms of success probabilities, the curves display π(ρ).

In each case 4 curves and 4 sets of data points are displayed, corresponding to the 4

ensembles. The four datasets are visually quite similar, and it is apparent that indeed

a considerable degree of invariance is present.

4.6.8 Matrix universality

In section 4.5 we referred to evidence that our results are not limited to the Gaussian

distribution.
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We conducted a study of AMP where everything was the same as in Figure 4.3

above, however, the matrix ensemble could change. We considered three such en-

sembles: USE (columns iid uniformly distributed on the unit sphere), Rademacher

(random entries iid ±1 equiprobable), and Partial Fourier, (randomly select n rows

from N ×N fourier matrix.) We only considered the case χ = ±. Results are shown

in Figure 4.11, and compared to the theoretical phase transition for `1.

4.6.9 Timing results

In actual applications, AMP runs rapidly.

We first describe a study comparing AMP to the LARS algorithm [49]. For com-

parison with other first-order methods you may refer to Chapter 7. LARS is appro-

priate for comparison because, among the iterative algorithms previously proposed,

its phase transition is closest to the `1 transition. So it comes closest to duplicating

the AMP sparsity-undersampling tradeoff.

Each algorithm proceeds iteratively and needs a stopping rule. In both cases,

we stopped calculations when the relative fidelity measure exceeded 0.999, i.e. when

‖y − Axt‖2/‖y‖2 < 0.001.

In our study, we used the partial Fourier matrix ensemble with unit amplitude

for nonzero entries in the signal x0. We considered a range of problem sizes (N, n, k)

and in each case averaged timing results over M = 20 problem instances. Table 4.1

presents timing results.

In all situations studied, AMP is substantially faster than LARS. There are a

few very sparse situations – i.e. where k is in the tens or few hundreds – where

LARS performs relatively well, losing the race by less than a factor 3. However,

as the complexity of the objects increases, so that k is several hundred or even one

thousand, LARS is beaten by factors of 10 or even more.

(For very large k, AMP has a decisive advantage. When the matrix A is dense,

LARS requires at least c1 · k · n ·N operations, while AMP requires at most c2 · n ·N
operations. Here c2 = log((EX2)/σ2

T )/b is a bound on the number of iterations, and

(EX2)/σ2
T is the relative improvement in MSE in T iterations. Hence in terms of
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Table 4.1: Timing Comparison of AMP and LARS. Average Times in CPU seconds.

N n k AMP LARS
4096 820 120 0.19 0.7
8192 1640 240 0.34 3.45
16384 3280 480 0.72 19.45
32768 1640 160 2.41 7.28
16384 820 80 1.32 1.51
8192 820 110 0.61 1.91
16384 1640 220 1.1 5.5
32768 3280 440 2.31 23.5
4096 1640 270 0.12 1.22
8192 3280 540 0.22 5.45
16384 6560 1080 0.45 27.3
32768 1640 220 6.95 17.53

flops we have
flops(LARS)

flops(AMP)
≥ kb(δ, ρ)

log((EX2)/σ2
T )
.

This logarithmic dependence of the denominator is very weak, and very roughly this

ratio scales directly with k.)

We also studied AMP’s ability to solve very large problems.

We conducted a series of trials with increasing N in a case where A and A∗ can

be applied rapidly, without using ordinary matrix storage and matrix operations;

specifically, the partial Fourier ensemble. For nonzeros of the signal x0. we chose unit

amplitude nonzeros.

We considered the fixed choice (δ, ρ) = (1/6, 1/8) and N ranging from 1K (K =

1024) to 256K in powers of 2. At each signal length N we generated M = 10 random

problem instances and measured CPU times (on a single Pentium 4 processor) and

iteration counts for AMP in each instance. We considered four stopping rules, based

on MSE σ2, σ2/2, σ2/4, and σ2/8, where σ2 = 2−13. We then averaged timing results

over the M = 10 randomly generated problem instances

Figure 4.12 presents the number of iterations as a function of the problem size and

accuracy level. According to the SE formalism, this should be a constant independent
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of N at each fixed (δ, ρ) and we see indeed that this is the case for AMP: the number of

iterations is close to constant for all large N . Also according to the SE formalism, each

additional iteration produces a proportional reduction in formal MSE, and indeed in

practice each increment of 5 AMP iterations reduces the actual MSE by about half.

Figure 4.13 presents CPU time as a function of the problem size and accuracy

level. Since we are using the partial Fourier ensemble, the cost of applying A and

A∗ is proportional to N log(N); this is much less than what we would expect for the

cost of applying a general dense matrix. We see that indeed AMP execution time

scales very favorably with N in this case – to the eye, the timing seems practically

linear with N . The timing results show that each doubling of N produces essentially

a doubling of execution time. iteration produces a proportional reduction in formal

MSE, and indeed in practice each increment of 5 AMP iterations reduces the MSE

by about half. Each doubling of accuracy costs about 30% more computation time.
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Figure 4.4: Observed Phase Transitions for 6 Algorithms, and ρSE. AMP: method
introduced in main text. IST: Iterative Soft Thresholding. IHT: Iterative Hard
Thresholding. TST: a class of two-stage thresholding algorithms including subspace
pursuit and CoSaMP. OMP: Orthogonal Matching Pursuit. Note that the `1 curve
coincides with the state evolution transition ρSE, a theoretical calculation. The other
curves show empirical results.



4.6. SIMULATION RESULTS 87

Figure 4.5: QQPlots tracking marginal distribution of mutual access interference
(MAI). Panels (a)-(i): iterations 10, 20, . . . , 90. Each panel shows QQplot of MAI
values versus normal distribution in blue, and in red (mostly obscured) points along
a straight line. Approximate linearity indicates approximate normality. Decreasing
slope with increasing iteration number indicates decreasing standard deviation as
iterations progress.
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Figure 4.6: QQPlots tracking marginal distribution of mutual access interference
(MAI). Matrix Ensemble: partial Fourier. Panels (a)-(i): iterations 30,60,. . . , 270.
For other details, see Figure 4.5.
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Figure 4.7: Comparison of State Evolution predictions against observations. ρ =
.15, δ = .3. Panels (a)-(d): MSENZ, MSE, MDR, FAR. Curve in red: theoretical
prediction. Curve in blue: mean observable. Each panel shows the evolution of
a specific observable as iterations progress. Two curves are present in each panel,
however, except for the lower left panel, the blue curve (empirical data) is obscured
by the presence of the red curve. The two curves are in close agreement in all panels.
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Figure 4.8: Comparison of State Evolution predictions against observations. ρ = 0.2,
δ = 0.5. For details, see Figure 4.7.
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Figure 4.9: Comparison of State Evolution predictions against observations for ρ =
0.36, δ = 0.7. For details, see Figure 4.7.
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Figure 4.10: Comparison of Failure probabilities for different ensembles. In the left
window, δ = 0.10 and in the right window δ = 0.3. Red: unit-amplitude coefficients.
Blue: uniform [−1, 1]. Green: Gaussian. Black: Cauchy. Points: observed success
fractions Curves: Logistic fit.
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Figure 4.11: Observed Phase Transitions at different matrix ensembles. Case χ =
±. Red: Uniform Spherical Ensemble (Gaussian with normalize column lengths).
Magenta: Rademacher (±1 equiprobable). Green: partial Fourier. Blue: ρ`1 .
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Figure 4.12: Iteration Counts versus Signal Length N . Different curves show results
for different stopping rules. Horizontal axis: signal lengthN . Vertical axis: Number of
iterations, T . Blue, Green, Red, Aqua curves depict results when stopping thresholds
are set at 2−13−`, with ` = 0, 1, 2, 3 Each doubling of accuracy costs about 5 iterations.
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Figure 4.13: CPU Time Scaling with N . Different curves show results for different
stopping rules. Horizontal axis: signal length N . Vertical axis: CPU time(seconds).
Blue, Green, Red, Aqua curves depict results when stopping thresholds are set at
2−13−`, with ` = 0, 1, 2, 3



Chapter 5

Designing Approximate Message

Passing

In the previous chapter we introduced a class of algorithms dubbed AMP, for ‘ap-

proximate message passing’, and was inspired by the ideas from graphical models

theory, message passing algorithms, and statistical physics. Starting from x0 = 0, the

algorithm proceeds according to the following iteration:

xt+1 = η(xt + A∗zt;λσ̂t),

zt = y − Axt + 〈η′(xt−1 + A∗zt−1;λσ̂t−1)〉. (5.1)

η is the thresholding function applied entry-wise. In this chapter, it will be shown

that this algorithm is equivalent to the sum product belief propagation algorithm if

a suitable joint distribution is considered on the sparse signal. Remarkably, AMP

update rules are much simpler than the justifying sum-product rules. Indeed, such a

striking simplification emerge in the large system limit. This is one instance of the

“blessings of dimensionality”[30]. Apart from justifying the algorithms studied in the

previous chapter, the unified derivation provided here allows to develop algorithms

for other structures and priors as well. For example, we will consider the following

96
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problem

minimize λ ‖s‖1 +
1

2
‖y − As‖2

2 , (5.2)

also known as Basis Pursuit De-Noising (BPDN), or Lasso. We derive an iterative

AMP algorithm for this problem that has exactly the same structure as the AMP with

different threshold values. Finally, the approach presented here allows to systemati-

cally incorporate further information concerning the distribution of the signal s, thus

bridging the gap with a Baysian approach to compressed sensing reconstruction.

5.1 Contribution and organization

In this section we explain the notation that will be used throughout this chapter and

will then explain our main contributions. We will also compare the ideas presented

here with the related work in the literature.

5.1.1 Notation

Let so be a vector in RN . We observe n < N linear measurements of this vector

through the matrix A, y = Aso. As before the goal is to recover so from (y, A).

Note that the notation we use for the optimal vector in this chapter is different

from the other chapters. This is for avoiding any confusion in the derivations of this

chapter. The columns of A are assumed to have unit `2-norm. a, b, c, . . . and i, j, k, . . .

denote the indices in [n] ≡ {1, 2, . . . , n} and [N ] ≡ {1, 2, . . . , N} respectively. The

a, i element of the matrix A will be indicated as Aai. We are following the standard

notation in graphical models where a, b, c, . . . represent the factor nodes and i, j, k, . . .

are used for the variable nodes [79]. The elements of the vectors y, s, x, so are indicated

by ya, si, xi, so,i respectively. Let δ = n/N be a measure of indeterminacy of the

measurement system. Whenever we refer to the large system limit we consider the

case where N →∞ while δ is fixed. Since in most of the applications of compressed

sensing such as the magnetic resonance imaging the problem of interest has millions

of variables with tens of thousands of measurements, the large system limits of the
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algorithms are of particular interest. In addition large system limit provides very

sharp and exact sampling theorems that can then be used for comparing compressed

sensing algorithms [76]. It is worth mentioning that in practice, the algorithms we

develop in this chapter perform well even in the medium size problems where there

are just thousands of variables and hundreds of measurements [38]. In the rest of this

section we explain the original problems and the corresponding AMP algorithms.

5.1.2 Basis pursuit problem

Consider the following distribution over the variables s1, s2, . . . , sN

µ(ds) =
1

Z

N∏
i=1

exp (−β|si|)
n∏
a=1

δ{ya=(As)a} , (5.3)

where δ{ya=(As)a} denotes a Dirac distribution on the hyperplane ya = (Ax)a. It is clear

that as β →∞, the mass of this distribution concentrates around the solution of basis

pursuit. If the minimizer is unique and the marginals of µ are known, the solution

of basis pursuit will be immediate. Belief propagation provides a low-complexity

heuristic for approximating such marginals. In order to introduce belief propagation,

we consider the factor graph G = (V, F,E) with variable nodes V = [N ], factor nodes

F = [n] and edges E = [N ] × [n] = {(i, a) : i ∈ [N ], a ∈ [n]}. Hence G is the

complete bipartite graph with N variable nodes and n functional nodes. It is easy to

see that the joint distribution (5.3) is structured according to this factor graph.

The state variables of the belief propagation are the messages {νi→a}i∈V,a∈F ,

{ν̂a→i}i∈V,a∈F associated with the edges of this graph. In the present case, mes-

sages are probability measures over the real line. Throughout this chapter νi→a, ν̂a→i

denote densities. The update rules for the densities are

νt+1
i→a(si)

∼= e−β|si|
∏
b6=a

ν̂tb→i(si) , (5.4)

ν̂ta→i(si)
∼=

∫ ∏
j 6=i

νtj→a(si) δ{ya−(As)a}ds . (5.5)
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Here and below a superscript denotes the iteration number. Moreover, the symbol ∼=
denotes identity between probability distributions up to a normalization constant.1

Unfortunately this message passing algorithm has two problems. First, the messages

are density functions over the real line and unless they have certain structure, keeping

track of these messages will be very difficult. Second, since the graph is dense the

number of messages are 2nN and therefore the algorithm is computationally expen-

sive. In Section 5.2 we will prove that in the large system limit and as β → ∞ this

complicated message passing algorithm is equivalent to the following simple iterative

algorithm.

Starting from x0 = 0 and τ̂ 0 = 1 the resulting iterative algorithm proceeds ac-

cording to

xt+1 = η(A∗zt + xt; τ̂ t) ,

zt = y − Axt +
1

δ
zt−1〈η′(A∗zt−1 + xt−1

i ; τ̂ t−1)〉 ,

τ̂ t =
τ̂ t−1

δ
〈η′(A∗zt−1 + xt; τ̂ t−1)〉 , (5.6)

where η(x; b) = sign(x)(|x| − b)+ is the soft thresholding function applied entry-wise.

η′ is the first derivative of η with respect to the first argument and the notation

〈·〉 is the averaging operator. Intuitively speaking, the xti in the iterative algorithm

corresponds to the mean of the message νti→a, z
t
a corresponds to the mean of the

message ν̂ta→i and finally τ̂ t corresponds to the variance of the message νti→a. For

more careful definition and analysis of these terms refer to Section 5.2. We will call

this algorithm AMP0.

5.1.3 BPDN problem

Now consider the following density function over the variables s = (s1, . . . sN).

µ(ds) =
1

Z

N∏
i=1

exp(−βλ|si|)
n∏
a=1

exp
{
− β

2
(ya − (As)a)

2
}

ds . (5.7)

1More precisely, given two non-negative functions p, q : Ω → R over the same space, we write
p(s)∼=q(s) if there exists a positive constant a such that p(s) = a q(s) for every s ∈ Ω.
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Notice that the mode of this distribution coincides with the solution of BPDN and

the distribution concentrates on its mode as β →∞.

In Section 5.3 we will show that each iteration of the sum-product message passing

algorithm is equivalent to the following AMP algorithm.

xt = η(xt + A∗zt;λ+ γt),

zt+1 = y − Axt +
1

δ
zt〈η′(xt−1 + A∗zt−1), 〉

γt+1 =
λ+ γt

δ
〈η′(Azt + xt; γt + λ)〉 . (5.8)

The only difference between this algorithm and AMP0 is in the way the threshold

parameter is set. We call this algorithm AMPA where A stands for the automatic

threshold selection.

5.1.4 Theoretical prediction

Statistical properties of approximate message passing algorithms allow us to accu-

rately analyze their performance in the asymptotic regime. The state evolution

framework introduced in the previous chapter will be briefly reviewed in Section

5.4. Based on this framework we derive the following equations that predict the evo-

lution of AMP0 and AMPA algorithms. Assuming that the empirical distribution of

so converges weakly to ps the state evolution equations are

τ 2
t+1 = σ2 +

1

δ
E[η(X0 + τtZ;λ+ γt)−X0]2,

γt+1 =
γt + λ

δ
E[η′(X0 + τtZ;λ+ γt)].

In these two equations (τ t, γt) are called the states of the system at time t. X0

and Z are two independent random variables with density function ps and N(0, 1)

respectively. σ is the standard deviation of the measurement noise. In the above

equations, λ = 0 corresponds to the AMP0 algorithm.
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5.1.5 Extensions

The method we will propose for deriving the above AMP algorithms, enables us to

incorporate more complicated priors (if available on the data). To demonstrate this,

we consider two more complicated priors in the extension section and develop the

corresponding message passing algorithms. First, we will see how one can add a

positivity constraint. Second, we will consider an arbitrary product distribution on

the variables and will derive a simple iterative algorithm that is equivalent to the sum

product belief propagation.

5.1.6 Comparison with other work

First order methods

As mentioned in the introduction finding fast first-order methods for `1-minimization

is an active area of research and numerous approaches have been proposed [92, 56, 96,

28, 26, 51, 64, 50, 55, 9, 57, 84, 115, 106, 11, 12, 113, 6, 7, 76]. Here we just emphasize

on the main differences between the algorithms constructed here with those proposals.

For more formal comparison the reader is referred to Chapter 7.

(1) The AMP algorithm is derived from the statistical point of view rather than

linear algebraic or convex analysis view point. This makes the accurate analysis of

the algorithm on compressed sensing problem possible. The linear algebraic analysis

of the convergence rate may provide lower bounds that are far from the reality of

compressed sensing problems. For instance, we are able to prove linear convergence

of the estimate of AMP to the final solution, while the best result known for linear

algebraic methods is strong convergence without any specific bound on the rate [28,

6, 26].

(2) As a result of the statistical analysis all the free parameters can be tuned opti-

mally. Therefore, the algorithms we propose are parameter free. Also the theoretical

framework of this algorithm enables us to analyze different continuation strategies

[64] which is considered as a difficult problem for other approaches.
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Message passing algorithms

The use of message passing algorithms for compressed sensing problems was suggested

before, see for instance [93]. However such a proposal faces two major difficulties.

(1) According to the standard prescription, messages used in the sum-product algo-

rithm should be probability measures over the real line R, cf. (5.10), (5.11). This is

impractical from a computational point of view. That’s why simpler models such as

mixture models are sometimes considered in these cases.

(2) The factor graph on which the sum-product algorithm is run is the complete

bipartite graph with N variable nodes, and n function nodes. In other words, unless

the underlying matrix is sparse, the graphical model is very dense. This requires to

update Nn messages per iteration, and each message update depend on N or n input

messages. Again this is very expensive computationally.

(3) The use of belief propagation requires a prior on the vector so. However, for most

applications, the actual prior is not available.

State evolution and replica calculations

In the context of coding theory, message passing algorithms are analyzed through

density evolution [90]. The common justification for density evolution is that the

underlying graph is random and sparse, and hence converges locally to a tree in

the large system limit. In the case of trees density evolution is exact, hence it is

asymptotically exact for sparse random graphs.

State evolution is the analog of density evolution in the case of dense graphs. For

definitions and results on state evolution we refer to [38, 41]. The success of state

evolution cannot be ascribed to the locally tree-like structure of the graph, and calls

for new mathematical ideas.

The fixed points of state evolution describe the output of the corresponding AMP,

when the latter is run for a sufficiently large number of iterations (independent of the

dimensions n,N). It is well known, within statistical mechanics [79], that the fixed

point equations do indeed coincide with the equations obtained through a completely

different non-rigorous approach, the replica method (in its replica-symmetric form).
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This is indeed an instance of a more general equivalence between replica and cavity

methods.

During the last year, several papers investigated compressed sensing problems

using the replica method [89, 68, 2]. In view of the discussion above, it is not surprising

that these results can be recovered from the state evolution formalism put forward in

[38]. Let us mention that the latter has several advantages over the replica method:

(1) It is more concrete, and its assumptions can be checked quantitatively through

simulations; (2) It is intimately related to efficient message passing algorithms; (3) It

actually allows to predict the performances of these algorithms.

5.1.7 Organization

In the interest of clarity, we first present our results on the basis pursuit problem in

Section 5.2. We will then consider problem (5.2) in Section 5.3. Section 5.4 will be

devoted to the asymptotic analysis of the algorithm and finally in Section 5.5 we will

be discussing more complicated priors.

5.2 AMP for hard constraints

In the concrete derivation, for the sake of simplicity we assume thatAai ∈ {+1/
√
n,−1/

√
n}.

This is not crucial, and only simplifies some of the calculations. The derivation of

AMP proceeds in 4 steps:

1. Construct a joint distribution over (s1, . . . , sN), parameterized by β ∈ R+,

associated with the problem of interest. The distribution is structured according

to a graphical model and it is immediate to write down the corresponding sum-

product belief propagation algorithm.

2. Show, by central limit theorem argument, that in the large system limit, the sum

product messages are well approximated by families with two scalar parameters.

Derive the update rules for these parameters.



104 CHAPTER 5. DESIGNING APPROXIMATE MESSAGE PASSING

3. Find the limit β → ∞ (the entire mass of the distribution will concentrate

around the mode) and get the appropriate rules for minimization.

4. Approximate the message passing rules for large systems with updates of the

form (5.6).

5.2.1 Construction of the graphical model

We consider the following joint probability distribution over the variables s1, s2, . . . sN

µ(ds) =
1

Z

N∏
i=1

exp (−β|si|)
n∏
a=1

µA,y(ds) ,

where µA,y is the Lebesgue measure on the hyperplane {s : As = y}, and Z is a

constant that ensures the normalization
∫
µ(ds) = 1. In other words, the weights

that are assigned to the solutions of the linear system As = y, decay exponentially

with the `1 norm of the solutions. This measure can be written more explicitly as

µ(ds) =
1

Z

N∏
i=1

exp (−β|si|)
n∏
a=1

δ{ya=(As)a} . (5.9)

Here and below δ{ya=(As)a} denotes a Dirac distribution on the hyperplane ya = (Ax)a.

Products of such distributions associated with distinct hyperplanes yield a well defined

measure. As we let β → ∞, the mass of the above distribution concentrates around

the solution of basis pursuit problem. If the minimizer is unique and the marginals

of µ are known, the solution of basis pursuit will be immediate. Belief propagation

provides a low-complexity heuristic for approximating marginals.

The update rules for the sum-product message passing algorithm on this graph

are

νt+1
i→a(si)

∼= e−β|si|
∏
b6=a

ν̂tb→i(si) , (5.10)

ν̂ta→i(si)
∼=

∫ ∏
j 6=i

νtj→a(si) δ{ya−(As)a} , (5.11)



5.2. AMP FOR HARD CONSTRAINTS 105

where superscript denotes the iteration number. In the next section we will try to

find the form of the messages in the large system limit.

5.2.2 Large system limit

The main goal in this section is to show that in the large system limit as N → ∞
the messages have very simple forms. More specifically we show that under certain

conditions that will be explained later for n,N large, the messages ν̂ta→i( · ) are ap-

proximately Gaussian distributions with variances of order N . On the other hand,

the densities of messages νti→a( · ) are well approximated by the product of a Gaussian

and a Laplace density. We state this fact formally below. Recall that, given two

distributions µ1, µ2, their Kolmogorov distance is

||µ1 − µ2||K ≡ sup
a∈R

∣∣∣ ∫ a

−∞
µ1(dx)−

∫ a

−∞
µ2(dx)

∣∣∣ . (5.12)

The first Lemma provides an estimate for the messages ν̂ta→i.

Lemma 5.2.1. Let xtj→a and (τ tj→a/β) be, respectively, the mean and variance of the

distribution νtj→a. Assume further
∫
|sj|3dνtj→a(sj) ≤ Ct uniformly in N, n. Then

there exists a constant C ′t such that

||ν̂ta→i − φ̂ta→i||K ≤ C ′t
N1/2(τ̂ ta→i)

3/2
,

φ̂ta→i(dsi) ≡

√
βA2

ai

2πτ̂ ta→i
exp

{
β

2τ̂ ta→i
(Aaisi − zta→i)2

}
dsi , (5.13)

where the distribution parameters are given by

zta→i ≡ ya −
∑
j 6=i

Aajx
t
j→a, τ̂ ta→i ≡

∑
j 6=i

A2
ajτ

t
j→a. (5.14)

Proof. By an easy manipulation, we see that, for any Borel set S

ν̂t+1
a→i(S) = P

{
ya −

∑
j 6=i

Aajsj ∈ AaiS
}
,
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where AaiS = {Aaix : x ∈ S}. Here probability is over the random vector

(s1, s2, . . . , si−1, si+1, . . . , sN), that is distributed according to the product measure

νt1→a(s1) . . . νtN→a(sN).

Consider the random variable Z = ya−
∑

j 6=iAajsj. According to the assumptions

and the central limit theorem, Z is approximately normal. Clearly

E(Z) = ya −
∑
j 6=i

Aajx
t
j→a,

Var(Z) =
∑
j 6=i

A2
ajτ

t
j→a .

The statement follows from Berry-Esseen central limit theorem.

Motivated by this lemma, we consider the computation of means and variances of

the messages νt+1
i→a(si). To state the result, it is convenient to introduce the family of

densities

fβ(s;x, b) ≡ 1

zβ(x, b)
exp

{
− β|s| − β

2b
(s− x)2

}
. (5.15)

We also denote as follows its mean and variance (here Z has density fβ( · ;x, b))

Fβ(x; b) ≡ Efβ( · ;x,b)(Z) , Gβ(x; b) ≡ Varfβ( · ;x,b)(Z) . (5.16)

Notice that, because of (5.14), τ̂ ti→a is expected to concentrate tightly, and we will

therefore assume that it is independent of the edge (i, a).

Lemma 5.2.2. Suppose that at iteration t, the messages from factor nodes to the

variable nodes are set to ν̂ta→i = φ̂ta→i, with φ̂ta→i defined as in (5.13) with parameters

zta→i and τ̂ ta→i = τ̂ t. Then at the next iteration we have

νt+1
i→a(si) = φt+1

i→a(si) {1 +O(s2
i /n)} , φt+1

i→a(si) ≡ fβ(si;
∑
b6=a

Abiz
t
b→i, τ̂

t) . (5.17)
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In particular, the mean and variances of these messages are given by

xt+1
i→a = Fβ(

∑
b6=a

Abiz
t
b→i; τ̂

t), τ ti→a = β Gβ

(∑
b 6=a

Abiz
t
b→i; τ̂

t
)
.

Proof. (5.17) is simply obtained by pointwise multiplication of the densities φ̂ta→i in

(5.13), according to the general sum-product rule (5.10). More precisely, we obtain

νt+1
i→a(si)

∼= e−β|si|
∏
b 6=a

ν̂tb→i(si) = exp
{
− β|si| −

∑
b6=a

β

2τ̂ t
(Aaisi − ztb→i)2

}
∼= exp

{
− β|si| −

β

2τ̂ t

(n− 1

n
s2
i − 2si

∑
b 6=a

Abiz
t
b→i

)}
,

which coincides with φt+1
i→a(si) up to terms of order s2

i /n. Finally the formulae for

xt+1
i→a and τ ti→a follow directly from the definitions of Fβ and Gβ.

Summarizing the above discussion, and approximating τ̂ ta→i with an edge-independent

quantity τ̂ t, we reach to the following algorithm.

xt+1
i→a = Fβ

(∑
b 6=a

Abiz
t
b→i; τ̂

t
)
, zta→i ≡ ya −

∑
j 6=i

Aajx
t
j→a, (5.18)

τ̂ t+1 =
β

n

N∑
i=1

Gβ

(∑
b

Abiz
t
b→i; τ̂

t
)
. (5.19)

5.2.3 Large β limit

Although we gave a simplified belief propagation formula for a general value of β in

the last section, the special case β → ∞ is of particular interest since the mode of

the distribution introduced in (5.9) is the same as the Basis pursuit solution. The

goal of this section is to derive explicit and simple formulas for the two functions Fβ

and Gβ in the large β limit. Consider the soft threshold function

η(x; b) =


x− b if b < x,

0 if −b ≤ x ≤ b,

x+ b if x < −b.
(5.20)
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It is easy to confirm that,

η(x; b) = argmins∈R

{
|s|+ 1

2b
(s− x)2

}
. (5.21)

In the β →∞ limit, the integral that defines Fβ(x; b) is dominated by the maximum

value of the exponent, that corresponds to s∗ = η(x; b). Therefore Fβ(x; b)→η(x; b)

as β → ∞. The variance (and hence the function Fβ(x; b)) can be estimated by

approximating the density fβ(s;x, b) near s∗. Two cases can occur. If s∗ 6= 0, then

at this point the derivative of the exponent is equal to zero and therefore the density

can well be approximate with a Gaussian distribution and Gβ(x; b) = Θ(1/β). On

the other hand if s∗ = 0, fβ(s;x, b) can be approximated by a Laplace distribution,

leading to Gβ(x; b) = Θ(1/β2). We summarize this discussion in the following lemma:

Lemma 5.2.3. For bounded x, b, we have

lim
β→∞

Fβ(x; β) = η(x; b) ,

lim
β→∞

β Gβ(x; β) = b η′(x; b) . (5.22)

We are therefore led to the following message passing algorithm:

xt+1
i→a = η

(∑
b 6=a

Abiz
t
b→i; τ̂

t
)
, zta→i ≡ ya −

∑
j 6=i

Aajx
t
j→a, (5.23)

τ̂ t+1 =
τ̂ t

Nδ

N∑
i=1

η′
(∑

b

Abiz
t
b→i; τ̂

t
)
. (5.24)

5.2.4 From message passing to AMP

The updates in (5.23), (5.24) are easy to implement but nevertheless the overall algo-

rithm is still computationally expensive since it requires tracking of 2nN messages.

The goal of this section is to further simplify the message passing update equations.

The modification we introduce is expected to become negligible in the large system

limit, but reduces the computation cost dramatically.
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In order to justify approximation we assume that the messages can be approxi-

mated in the following way.

xti→a = xti + δxti→a +O(1/N),

zta→i = zta + δzta→i +O(1/N), (5.25)

with δxti→a, δz
t
a→i = O( 1√

N
) (here the O( · ) errors are uniform in the choice of the

edge). We also consider a general message passing algorithms of the form

xt+1
i→a = ηt

(∑
b6=a

Abiz
t
b→i

)
, zta→i ≡ ya −

∑
j 6=i

Aajx
t
j→a, (5.26)

with {ηt( · )}t∈N a sequence of differentiable nonlinear functions with bounded deriva-

tives. Notice that the algorithm derived at the end of the previous section, cf. (5.23),

(5.24), is indeed of this form, albeit with ηt non-differentiable at 2 points. This does

not change the result, as long as the nonlinear functions are Lipschitz continuous. In

the interest of simplicity, we shall stick to the differentiable model.

Lemma 5.2.4. Suppose that the asymptotic behavior (5.25) holds for the message

passing algorithm (5.26). Then xti and zta satisfy the following equations

xt+1
i = ηt

(∑
a

Aiaz
t
a + xti

)
+ oN(1),

zta = ya −
∑
j

Aajx
t
j +

1

δ
zt−1
a 〈η′t−1(A∗zt−1 + xt−1)〉+ oN(1),

where the oN(1) terms vanish as N, n→∞.

Proof. To prove the lemma we substitute (5.25) in (5.26) and write the Taylor ex-

pansion of the latter. The update equation for zta→i yields

zta→i = ya −
∑
j∈[N ]

Aajx
t
j −

∑
j∈[N ]

Aajδx
t
j→a︸ ︷︷ ︸

zta

+Aaix
t
i︸ ︷︷ ︸

δztai

+O(1/N).
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For xt+1
i→a we have

xt+1
i→a = ηt(

∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

Abiδz
t
b→i)︸ ︷︷ ︸

xti

−Aaiztaη′t(
∑
b∈∂i

Abiz
t
b +
∑
b∈∂i

Abiδz
t
b→i)︸ ︷︷ ︸

δxti→a

+O(1/N) .

In underbraces we have identified the various contributions. Substituting the expres-

sion indicated for δxti→a, δz
t
a→i we obtain the recursion for xti and zta. In particular xti

is updated according to

xt+1
i = ηt(

∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

Abiδz
t
b→i) + o(1)

= ηt(
∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

A2
bix

t
i) + o(1)

= ηt(
∑
b∈[n]

Abiz
t
b + xti) + o(1) .

For zta we get

zta = ya −
∑
j∈[N ]

Aajx
t
j +

∑
j∈[N ]

A2
ajz

t−1
a η′t−1(

∑
b∈[n]

Abjz
t−1
b +

∑
b∈[n]

Aajδz
t−1
a→j) + o(1)

= ya −
∑
j∈[N ]

Aajx
t
j +

1

n
zt−1
a

∑
j∈[N ]

η′(
∑
b∈[n]

Abiz
t−1
b + xt−1

i ) + o(1)

= ya −
∑
j∈[N ]

Aajx
t
j +

1

δ
zt−1
a 〈ηt−1(

∑
b∈[n]

Abiz
t−1
b + xt−1

i ) + o(1)〉 .

This theorem naturally suggest a simplified form of the Iterations (5.23), (5.24).

The resulting algorithm can be written in the vector notation as

xt+1 = η(A∗zt + xt; τ̂ t) ,

zt = y − Axt +
1

δ
zt−1〈η′(A∗zt−1 + xt−1

i ; τ̂ t−1)〉 , (5.27)

where 〈 · 〉 denotes the average entry of a a vector.
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The recursion for τ̂ is also as follows.

τ̂ t =
τ̂ t−1

δ
〈η′(A∗zt−1 + xt; τ̂ t−1)〉 . (5.28)

5.3 AMP for soft constraints

Another popular reconstruction procedure in compressed sensing is the following op-

timization problem

minimize λ‖s‖1 +
1

2
‖y − As‖2

2. (5.29)

In this section we describe another approximate message passing algorithm for solving

this optimization problem. We will follow closely the four-step procedure already

outlined in the previous section. The algorithm that is derived is very similar to

the AMP algorithm introduced in the previous section. The only difference is in the

update rule for the threshold level.

5.3.1 Construction of the graphical model

As before we define a joint density distribution on the variables s = (s1, . . . , sN)

µ(ds) =
1

Z

N∏
i=1

exp(−βλ|si|)
n∏
a=1

exp
{
− β

2
(ya − (As)a)

2
}

ds . (5.30)

Notice that –as in the previous case– the mode of this distribution coincides with the

solution of the relevant problem (5.29). The distribution concentrates on its mode as

β →∞. The sum-product algorithm is

νt+1
i→a(si)

∼= exp(−βλ|si|)
∏
b 6=a

νtb→i(si), (5.31)

ν̂ta→i(si)
∼=

∫
exp

{
− β

2
(ya − (As)a)

2
} ∏

j 6=i

dνtj→a(sj) . (5.32)
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5.3.2 Large system limit

The normal approximation lemma is similar in form to the one given before, with two

important differences: (i) The variance of the resulting messages is larger (because the

constraint ya = (As)a is only enforced softly); (ii) We can approximate the density

of ν̂ta→i with a Gaussian density (not just the corresponding distribution function)

which is in fact stronger than the previous result.

Lemma 5.3.1. Let xtj→a and (τ tj→a/β) be, respectively, the mean and variance of

the distribution νtj→a, for the sum-product algorithm (5.31), (5.32). Assume further∫
|sj|3dνtj→a(sj) ≤ Ct uniformly in N, n. Then there exists a constant C ′t such that

sup
si∈R
|ν̂ta→i(si)− φ̂ta→i(si)| ≤

C ′t
N(τ̂ ta→i)

3/2
,

φ̂ta→i(si) ≡

√
βA2

ai

2π(1 + τ̂ ta→i)
exp

{
− β

2(1 + τ̂ ta→i)
(Aaisi − zta→i)2

}
,(5.33)

where the distribution parameters are given by

zta→i ≡ ya −
∑
j 6=i

Aajx
t
j→a, τ̂ ta→i ≡

∑
j 6=i

A2
ajτ

t
j→a. (5.34)

Proof. We have

ν̂ta→i(si)
∼= E exp (−β

2
(ya − Aaisi −

∑
j 6=i

Aajsj)
2)

∼= E exp
(
− β

2
(Aaisi − Z)2

)
∼= Ehsi(Z) ,

Here expectation is over s1, s2, . . . , si−1, si+1, . . . , sN independent and distributed ac-

cording to νt1→a, . . . ν
t
N→a. Further, we defined Z = ya −

∑
j 6=iAajsj and hsi(z) ≡

exp(−(β/2)(Aaisi − z)2).



5.3. AMP FOR SOFT CONSTRAINTS 113

It is not hard to compute the mean and the variance of Z

E(Z) = ya −
∑
j 6=i

Aajx
t
j→a = zta→i,

Var(Z) =
1

β

∑
j 6=i

A2
ajτ

t
j→a =

1

β
τ̂ ta→i .

Let W be a normal random variable with the same mean and variance as Z. By a

different form of Berry-Esseen central limit theorem mentioned in Appendix B,

∣∣Ehsi(Z)− Ehsi(W )
∣∣ ≤ ||h′||∞

C ′′t
N1/2(τ̂ ta→i)

3/2
≤ C ′′′t
N1/2(τ̂ ta→i)

3/2
,

where ||h′||∞ = supt |h′(t)| is the infinity norm of h′ (which is bounded by
√
β). We

therefore get

sup
si∈R

∣∣∣ν̂ta→i(si)− Ehsi(W )
∣∣∣ ≤ | Ehsi(Z)∫

Ehsi(Z)dsi
− Ehsi(W )∫

Ehsi(W )dsi
|

≤ |Ehsi(Z)− Ehsi(W )∫
Ehsi(Z)dsi

|+ |
∫
Ehsi(W )dsi −

∫
Ehsi(Z)dsi∫

Ehsi(W )dsi
∫
Ehsi(Z)dsi

Ehsi(Z)|

≤ C ′t
N(τ̂ ta→i)

3/2
.

The last inequality is due to the following facts,∫
Ehsi(Z)dsi = E

∫
hsi(Z)dsi =

√
2π√
A2
aiβ

,∫
Ehsi(W )dsi =

√
2π√
A2
aiβ

.

The proof is completed by computing Ehsi(W ). Such computation amounts to a

straightforward Gaussian integral, yielding Ehsi(W ) ∼= φ̂ta→i(si).

The update rule for variable-to-factor node messages, cf. (5.31), is identical to

the one used in the case of hard constraints, cf. (5.10), apart from the factor λ in the

exponent. Keeping track of this term we obtain the following result.
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Lemma 5.3.2. Suppose that at iteration t, the messages from factor nodes to the

variable nodes are set to ν̂ta→i = φ̂ta→i, with φ̂ta→i defined as in (5.56). with parameters

zta→i and τ̂ ta→i = τ̂ t. Then at the next iteration we have

νt+1
i→a(si) = φt+1

i→a(si) {1 +O(s2
i /n)} , φt+1

i→a(si) ≡ λ fβ(λsi;λ
∑
b 6=a

Abiz
t
b→i, λ

2(1 + τ̂ t)) .(5.35)

In particular, the mean and variances of these messages are given by

xt+1
i→a =

1

λ
Fβ(λ

∑
b 6=a

Abiz
t
b→i;λ

2(1 + τ̂ t)), τ ti→a =
β

λ2
Gβ

(
λ
∑
b6=a

Abiz
t
b→i;λ

2(1 + τ̂ t)
)
,

where, fβ, Fβ, andGβ are defined in 5.15 and 5.16.

The proof is very similar to the proof of Lemma 5.2.2 and for the sake of brevity

we do not mention it here.

As a summary, we get the following simple iterative algorithm which at each iteration

equivalent to the corresponding iteration of the message passing algorithm.

xt+1
i→a =

1

λ
Fβ
(
λ
∑
b6=a

Abiz
t
b→i;λ

2(1 + τ̂ t)
)
, zta→i ≡ ya −

∑
j 6=i

Aajx
t
j→a, (5.36)

τ̂ t+1 =
β

λ2n

N∑
i=1

Gβ

(
λ
∑
b

Abiz
t
b→i;λ

2(1 + τ̂ t)
)
. (5.37)

As before the next step is to derive the algorithm in the limit β → ∞ which is the

most interesting regime and is equivalent to basis pursuit denoising problem.

5.3.3 Large β limit

Applying Lemma 5.2.3 to (5.36), (5.37) they reduce –in the large β limit– to

xt+1
i→a = η

(∑
b 6=a

Abiz
t
b→i;λ(1 + τ̂ t)

)
, zta→i ≡ ya −

∑
j 6=i

Aajx
t
j→a,

τ̂ t+1 =
1 + τ̂ t

Nδ

N∑
i=1

η′
(∑

b

Abiz
t
b→i;λ(1 + τ̂ t)

)
,
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where we used the invariance property η(a x; a b) = aη(x; b) valid for any a > 0. If

we call λτ̂ t = γt the new form of the AMP algorithm is,

xt+1
i→a = η

(∑
b 6=a

Abiz
t
b→i;λ+ γt

)
, zta→i ≡ ya −

∑
j 6=i

Aajx
t
j→a, (5.38)

γt+1 =
λ+ γt

Nδ

N∑
i=1

η′
(∑

b

Abiz
t
b→i;λ+ γt

)
, (5.39)

These expression should be compared with (5.38), (5.39) for the basis pursuit

algorithm. The only difference is just in the threshold value.

5.3.4 From message passing to AMP

Again, this algorithm can be considerably simplified using the Lemma 5.2.4. In matrix

notation we obtain the following equations

xt = η(xt + A∗zt;λ+ γt), (5.40)

zt+1 = y − Axt +
1

δ
zt〈η′(xt−1 + A∗zt−1), 〉 (5.41)

which generalize (5.27) and (5.27). The threshold level is computed iteratively as

follows

γt+1 =
λ+ γt

δ
〈η′(Azt + xt; γt + λ)〉 . (5.42)

5.3.5 Comments

Threshold level. The derivation presented above provides a ‘parameter free’ algorithm.

The threshold level τ̂ t or γt is fixed by the recursions (5.28), (5.39). In the basis pursuit

problem, one could take the alternative point of view that τ̂ t is a parameter that can

be optimized over. This point of view was adopted in Chapter 4. For the case of Lasso

it is again possible to consider the threshold as a free parameter and then tune it such

that the fixed point of iteration satisfies the KKT conditions. This approach has been

adopted in chapter 6. The analysis and comparison of these thresholding policies are
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presented in Section 5.4. We call the AMP algorithm with the thresholding policy

introduced in (5.28) and (5.39) AMP0 and AMPA respectively. When we tune the

algorithm to get the best phase transition the algorithm is called AMPM where M

stands for minimaxity. Finally, when the free parameter is tuned to satisfy the KKT

conditions the algorithm is called AMPT.

Mathematical derivation of the AMP. We showed that in a specific limit (large sys-

tems, and large β) the sum-product update rules can be considerably simplified to

get the update rules (5.27), (5.40). Let us emphasize that our proofs concern just a

single step of the iterative procedure. Therefore they do not prove that the (averages

and variances) of the sum-product message are precisely tracked by (5.27), (5.40).

It could be that the error terms in our approximation, while negligible at each step,

conjure up to become large after a finite number of iterations. We do not expect this

to happen, but it is nevertheless an open mathematical problem.

5.4 State evolution

In chapter 4 we introduced the state evolution framework for analyzing the perfor-

mance of the AMP algorithm. This approach has been also rigorously proved recently

[4]. Consider the following iterative algorithm

xt+1 = ηt(x
t + A∗zt),

zt = y − Axt +
1

δ
〈η′t−1(A∗zt−1 + xt−1)〉. (5.43)

where ηt(.) is a function that may also depend on the iteration. We recall the fol-

lowing result from [4]. Let {A(N)} be a sequence of sensing matrices A ∈ Rn×N

indexed by N , with iid entries Aij ∼ N(0, 1/n), and assume n/N → δ. Consider

further a sequence of signals {x0(N)}N≥0, whose empirical distributions converge

to a probability measure pX0 on R with bounded (2k − 2)th moment, and assume

Ep̂(X2k−2
0 )→ EpX0

(X2k−2
0 ) as N →∞ for some k ≥ 2.
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Theorem 5.4.1. For any pseudo-Lipschitz function ψ : R2 → R we have,

lim
N→∞

1

N

N∑
i=1

ψ(xt+1
i , x0,i) = E[ψ(ηt(X0 + τtZ), X0)],

with X0 ∼ pX0 and Z ∼ N(0, 1) independent.

According to the above theorem we can consider the parameter τt as the state of

the algorithm and track the behavior of this state variable across iterations. If we

consider the measurements to be of the form y = Ax + w with w ∼ N(0, σ2In), the

state evolution equation is given by,

τ 2
t+1 = σ2 +

1

δ
E[ηt(X0 + τtZ)−X0]2, (5.44)

where again X0 ∼ pX0 and Z ∼ N(0, 1) independent.

Although the state evolution equation has been proved for the case of Gaussian mea-

surement matrix, its validity has been carefully verified through extensive simulations

for other random matrices [38]. According to the state evolution we can predict the

performance of the AMP algorithm theoretically. For the AMPA algorithm the state

evolution can be written as,

τ 2
t+1 = σ2 +

1

δ
E[η(X0 + τtZ;λ+ γt)−X0]2,

γt+1 =
γt + λ

δ
E[η′(X0 + τtZ;λ+ γt)]. (5.45)

Figure (5.1) shows the match between the predictions of the state evolution and

the Monte Carlo simulation results.

5.4.1 Exactly sparse solution

Suppose there is no measurement noise in the system, i.e. y = Aso. Also the elements

of so are drawn from (1 − ε)δ0(soi) + εG(soi) where G is a density function on R+ 2

without a point mass at 0 and define ρ = ε/δ. We are interested in the solution of

2This is just for the simplicity of exposition. The results can be easily extended to other cases.
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Figure 5.1: Comparison of state evolution predictions against observations. Top row:
N = 4000, δ = .2 and ρ = 0.05. Bottom row: N = 4000, δ = .3 and ρ = 0.17. Each
red point is the average of 50 Monte Carlo samples and the bars show the 95 percent
confidence interval.
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the basis pursuit problem and therefore we consider the AMP0 algorithm. It is easy

to see that the state evolution equation for this case is given by,

τ 2
t+1 =

1

δ
E[η(X0 + τtZ; γt)−X0]2,

γt+1 =
γt

δ
E[η′(X0 + τtZ; γt)]. (5.46)

Lemma 5.4.2. Consider the state evolution 5.46. Suppose that the sparsity level ε is

small enough such that the algorithm converges to the correct answer, i.e. (τt, γt)→
(0, 0). Then

lim
t→∞

τt
γt

= c, (5.47)

where c is a finite non-zero constant.

Proof. The proof is by contradiction. The goal is to rule out the two cases c = 0

and c = ∞. Although the proof is a simple application of dominated convergence

theorem, for the sake of clarity we mention the proof here.

case I: c =∞. We know that,

γt+1

γt
=

1

δ
Eη′(X + τ tZ; γt) =

1− ε
δ

Eη′(τ tZ; γt) +
ε

δ
EX∼Gη′(X + τ tZ; γt) =

1− ε
δ

Eη′(Z; γt/τ t) +
ε

δ
EX∼Gη′(X + τ tZ; γt).

By taking the limit and using the dominated convergence theorem we get,

lim
t→∞

γt+1

γt
=

1− ε
δ

+
ε

δ
=

1

δ
> 1,

and this means that γt is not going to zero which is a contradiction.

Case II: c = 0.

τ 2
t+1

γ2
t

=
1

δ
E[η(X0/γt + Zτt/γt; 1)−X0/γt]

2 =

1− ε
δ

E[η(Zτt/γt; 1)]2 +
ε

δ
EX∼G[η(X0/γt + Zτt/γt; 1)−X0/γt]

2. (5.48)
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Clearly we can use the dominated convergence theorem again to get the limit and

therefore,

lim
t→∞

τ 2
t+1

γ2
t

=
ε

δ
> 0, (5.49)

which is again a contradiction.

Inspired with the above lemma we can introduce a simpler AMP algorithm.

xt+1 = η(xt + A∗zt; θσt),

zt = y − Axt +
1

δ
zt−1〈η′(xt−1 + A∗zt−1; θσt−1)〉, (5.50)

where σt is the standard deviation of the MAI noise at iteration t and θ is a constant

number. This is the algorithm that was proposed in chapter 4. Here θ is a parameter

that has to be tuned before applying the algorithm. The state evolution for this

algorithm is simpler since there is just one state variable.

τ 2
t+1 7→ Ψ(τ 2

t ) =
1

δ
E[η(X0 + τtZ; θτt)−X0]2. (5.51)

The performance of these two algorithms is very similar as τt → 0. This is formally

stated in the following lemma.

Lemma 5.4.3. Suppose that limτ→0
γ
τ
→ c we then have,

lim
τ→0

E[η(X0 + τZ; γ)−X0]2/τ 2

E[η(X0 + τZ; cτ)−X0]2/τ 2
= 1.

The proof of this lemma is very simple and is omitted. The following result taken

from chapter 4 helps us analyze the performance of the new thresholding policy.

Lemma 5.4.4. The Ψ function is concave and its derivative at τt = 0 is independent

of G which is the distribution of the non-zero coefficients .

Let ρ = ε/δ and define ρ∗LS(δ) ≡ supθ sup{ρ : dΨ
dτ2 |0 < 1}. The optimal value of θ is

represented by θMM which stands for the maximin. The value of θMM as a function of
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Figure 5.2: The maximin optimal values of θ as proposed in [38].

δ is shown in Figure 5.2. Using the above two lemmas it is easy to prove the following

theorem.

Theorem 5.4.5. If ρ > ρ∗LS(δ), AMP0 does not converge to the correct answer, i.e.

(τt, γt) 9 (0, 0). On the other hand for ρ < ρ∗LS(δ) the AMPM algorithm converges

to the correct answer.

According to the above theorem from the sparsity measurement point of view

AMPM is at least as good as AMP0. The only advantage of AMP0 is that it does

not need any tuning. We will show in the next section that for most of the values

of δ the phase transitions of AMP0 and AMPA happen at the same place. But for

small values of δ, the recursion of AMPA suffer from oscillatory phenomena.

Comparison of AMPA and AMPM

In the previous section we showed that the phase transition of AMP0 algorithm can

not surpass the phase transition of AMPM. However the main question is if the state

evolution of AMP0 always converges to the correct answer for ρ < ρ∗LS. In other words

what is the actual phase transition region of the AMPA algorithm? In order to answer
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this question precisely, we again use the state evolution equation. We consider 200

equisapced points on the [0, 1] for the values of δ. For each value of δ we also consider

200 equispaced values of ρ. For each pair (δ, ρ) we run the state evolution for 500

iterations and measure the `2 norm of the estimate after a) 50, (b) 100 (c) 200 and (d)

500 iterations. If ‖x̂
t−so‖2
‖so‖2 < .001, we declare success. With this method we calculate

the phase transition of the AMPA algorithm. In this simulation we have chosen the

input ensemble from a constant amplitude ensemble which is known to be the least

favorable distribution for approximate message passing algorithms [77]. Figure 5.3

compares the phase transition of the AMP0 algorithm derived by this method with

the phase transition of AMPM or basis pursuit algorithm. As it is seen in this figure

above δ > 0.2 the phase transitions are indistinguishable. However below δ = 0.2 the

extra state variable γ causes some instability in the recursive equations that does not

exist in AMPM.

5.5 Extensions

So far, we have considered the general compressed sensing problem. However in some

applications more information is known about the original signal. In this section we

consider two of these scenarios and derive the corresponding approximate message

passing algorithms.

5.5.1 Positivity constraint

Suppose that the signal is known to lie in the positive orthant, i.e. so,i ≥ 0 ∀i. It

has been proved that this extra information may be used properly to improve the

phase transition region of the `1 minimization [45]. This information can be easily

incorporated into the message passing algorithm. In this section we just consider

the BPDN problem with the above constraint. The BP problem is a very simple

modification of this approach and is therefore skipped.
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Figure 5.3: Theoretical phase transition of AMPA after (a)50 (b) 100 (c) 200 and (d)
500 iterations. Dotted line is the phase transition curve of the basis pursuit problem
derived in [44] and [38].
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Large system limit

Define a joint probability density on the variables s = (s1, . . . , sN)

µ(ds) =
1

Z

N∏
i=1

exp(−βλsi)I{si>0}

n∏
a=1

exp
{
− β

2
(ya − (As)a)

2
}

ds . (5.52)

As before the messages in the sum-product message passing algorithm are

νt+1
i→a(si)

∼= exp(−βλsi)I{si > 0}
∏
b 6=a

νtb→i(si), (5.53)

ν̂ta→i(si)
∼=

∫
exp

{
− β

2
(ya − (As)a)

2
} ∏

j 6=i

dνtj→a(sj) . (5.54)

Clearly the messages from the functional nodes to the variable nodes have exactly

the same form and therefore the following lemma is the immediate result of Theorem

5.3.1.

Lemma 5.5.1. Let xtj→a and (τ tj→a/β) be, respectively, the mean and variance of

the distribution νtj→a, for the sum-product algorithm (5.31), (5.32). Assume further∫
|sj|3dνtj→a(sj) ≤ Ct uniformly in N, n. Then there exists a constant C ′t such that

sup
si∈R
|ν̂ta→i(si)− φ̂ta→i(si)| ≤

C ′t
N(τ̂ ta→i)

3
, (5.55)

φ̂ta→i(si) ≡

√
βA2

ai

2π(1 + τ̂ ta→i)
exp

{
− β

2(1 + τ̂ ta→i)
(Aaisi − zta→i)2

}
,(5.56)

where the distribution parameters are given by

zta→i ≡ ya −
∑
j 6=i

Aajx
t
j→a, τ̂ ta→i ≡

∑
j 6=i

A2
ajτ

t
j→a. (5.57)

Define

f+
β (s;x, b) ≡ 1

zβ(x, b)
exp{−βs− β

2b
(s− x)2}, (5.58)
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and

F+
β (x; b) ≡ Efβ(·;x,b)(Z), G+

β (x; b) ≡ Varfβ(·;x,b)(Z). (5.59)

It is easy to prove that,

Lemma 5.5.2. Suppose that at iteration t, the messages from factor nodes to the

variable nodes are set to ν̂ta→i = φ̂ta→i, with φ̂ta→i defined as in (5.56). with parameters

zta→i and τ̂ ta→i = τ̂ t. Then at the next iteration we have

νt+1
i→a(si) = φt+1

i→a(si) {1 +O(s2
i /n)} , φt+1

i→a(si) ≡ λ f+
β (λsi;λ

∑
b6=a

Abiz
t
b→i, λ

2(1 + τ̂ t)) .(5.60)

In particular, the mean and variances of these messages are given by

xt+1
i→a =

1

λ
F+
β (λ

∑
b6=a

Abiz
t
b→i;λ

2(1 + τ̂ t)), τ ti→a =
β

λ2
G+
β

(
λ
∑
b6=a

Abiz
t
b→i;λ

2(1 + τ̂ t)
)
,

where, f+
β , F

+
β and G+

β are defined in 5.58 and 5.59.

Large β limit

Consider the following new form of the soft thresholding function.

η+(x; b) =

{
x− b if b < x,

0 if −b ≤ x ≤ b.
(5.61)

b in this equation is assumed to be larger than 0. As before when β →∞, F+
β (x; β)

and G+
β (x; β) can be simplified even more.

Lemma 5.5.3. For bounded x,b, we have

lim
β→∞

F+
β (x; β) = η+(x; b),

lim
β→∞

βG+
β (x; β) = bη′+(x; b).

we are therefore led to the following message passing algorithm,
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xt+1
i→a = η+

(∑
b 6=a

Abiz
t
b→i; τ̂

t
)
, zta→i ≡ ya −

∑
j 6=i

Aajx
t
j→a, (5.62)

τ̂ t+1 =
τ̂ t

Nδ

N∑
i=1

η′+
(∑

b

Abiz
t
b→i; τ̂

t
)
. (5.63)

Finally by similar arguments we can reach to the following approximate message

passing algorithm.

xt+1 = η+(A∗zt + xt; τ̂ t),

zt = y − Axt +
1

δ
〈η′(A∗zt−1 + xt−1; τ̂ t−1)〉,

τ̂ t =
τ̂ t

δ
〈η′(A∗zt−1 + xt−1; τ̂ t−1)〉.

5.5.2 AMP for reconstruction with prior information

In many compressed sensing applications it is not realistic to assume that the signal

s is random with a known distribution. Nevertheless, it might be possible in spe-

cific scenarios to estimate the input distribution. Further, the case of known signal

distribution provides a benchmark for other approaches.

Construction of the graphical model

Let ρ = ρ1×ρ2 · · ·×ρN be a joint probability distribution on the variables s1, s2, . . . , sN .

It is then natural to consider the joint distribution

µ(ds) =
1

Z

n∏
a=1

exp
{
− β

2
(ya − (As)a)

2
} N∏
i=1

ρi(dsi) , (5.64)

since µ is the a posteriori distribution of s, when y = As + z is observed, with z a

noise vector with iid normal entries and independent of s. The sum-product update
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rules are

νt+1
i→a(dsi)

∼=
∏
b 6=a

ν̂tb→i(si) ρi(dsi) , (5.65)

νta→i(si)
∼=

∫
exp

{
− β

2
(ya − (As)a)

2
}∏
j 6=i

νtj→a(dsj) . (5.66)

Notice that the above update rules are well defined. At each iteration t, the message

νt+1
i→a(dsi) is a probability measure on R, and (5.65) gives its density with respect to

ρi. The message νta→i(si) is instead a non-negative measurable function (equivalently,

a density) given by (5.66).

It is easy to see that the case studied in the previous section corresponds to

choosing the ρi’s to be identical exponential distributions.

Large system limit

In view the parallel between the update equations (5.65), (5.66) and (5.31), (5.32)

it is easy to realize that Lemma 5.3.1 applies verbatimly to the algorithm described

above.

In order to formulate the analogs of Lemma 5.5.2, we introduce the following

family of measures over R:

fi(ds;x, b) ≡
1

zβ(x, b)
exp

{
− β

2b
(s− x)2

}
ρi(ds) , (5.67)

indexed by i ∈ [N ], x ∈ R, b ∈ R+ (we think β as fixed). We use this notation for its

mean and variance (here Z ∼ fi( · ;x, b))

Fi(x; b) ≡ Efi( · ;x,b)(Z) , Gi(x; b) ≡ Varfi( · ;x,b)(Z) . (5.68)

These functions have a natural estimation theoretic interpretation. Let Xi be a

random variable with distribution ρi, and assume that Ỹi = Xi +Wi is observed with

Wi Gaussian noise with variance b/β. The above functions are –respectively– the
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conditional expectation and conditional variance of Xi, given that Ỹi = x:

Fi(x; b) = E(Xi|Ỹi = x) , Gi(x; b) = Var(Xi|Ỹ = x) . (5.69)

With these definitions, it is immediate to prove the following analogous of Lemma

5.5.2.

Lemma 5.5.4. Suppose that at iteration t, the messages from factor nodes to the

variable nodes are set to ν̂ta→i = φ̂ta→i, with φ̂ta→i defined as in (5.56). with parameters

zta→i and τ̂ ta→i = τ̂ t. Then at the next iteration we have

νt+1
i→a(si) = φt+1

i→a(si) {1 +O(s2
i /n)} , φt+1

i→a(si) ≡ fi(si;
∑
b6=a

Abiz
t
b→i, (1 + τ̂ t)) .(5.70)

In particular, the mean and variances of these messages are given by

xt+1
i→a = Fi(

∑
b 6=a

Abiz
t
b→i; (1 + τ̂ t)), τ ti→a = βGi

(∑
b 6=a

Abiz
t
b→i; (1 + τ̂ t)

)
.

If we let τ̂ t+1
i→a = τ̂ t+1 for all edges (i, a) we get the message passing algorithm

xt+1
i→a = Fi

(∑
b 6=a

Abiz
t
b→i; (1 + τ̂ t)

)
, zta→i ≡ ya −

∑
j 6=i

Aajx
t
j→a, (5.71)

τ̂ t+1 =
β

n

N∑
i=1

Gi

(
λ
∑
b

Abiz
t
b→i; (1 + τ̂ t)

)
. (5.72)

Remarkably, knowledge of the prior distribution is asymptotically equivalent to knowl-

edge of the functions Fi and Gi.

From message passing to AMP

By applying Lemma 5.2.4 we obtain the following algorithm (in matrix notation)

xt = F(xt + A∗zt;λ+ γt), (5.73)

zt+1 = y − Axt +
1

δ
zt〈F′(xt−1 + A∗zt−1)〉 . (5.74)
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Here, if x ∈ RN , F(x; b) ∈ RN is the vector F(x; b) = (F1(xi; b),F2(x2; b), . . . ,FN(xN ; b)).

Analogously F′(x) = (F′1(xi; b),F
′
2(x2; b), . . . ,F′N(xN ; b)) (derivative being taken with

respect to the first argument). Finally, the threshold level is computed iteratively as

follows

γt+1 =
1

δ
〈G(Azt + xt; γt + λ)〉 . (5.75)

5.6 Advantages

We presented a step-by-step approach for constructing message passing algorithms.

This approach has several advantages:

1. The approach provided here is very general and can be applied to many other

settings. The AMP algorithms in general may be slightly more complicated

than the AMPA and AMP0 was demonstrated in Section 5.5, but they are much

simpler than the actual message passing algorithms on the complete graph.

2. The final approximate message passing algorithm does not have any free pa-

rameter. This may come at the cost of more complicated algorithm. The com-

plications may show themselves specially in the analysis as was demonstrated

in 5.4.

3. The state evolution framework provides a very simple approach to predict the

asymptotic performance of the resulting algorithms.

There are a few open questions that are yet to be answered.

1. The state evolution has been proved to accurately predict the performance

of AMP algorithm when the measurement matrix is iid Gaussian. However

simulation results show the correctness of state evolution on a wider range of

matrix ensembles.

2. Our main concern in the derivation has been the single step performance of

the message passing algorithm and not the whole algorithm. Therefore it is
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conceivable that the errors accumulate and the algorithm does not perform as

well as the actual message passing. The simulation results again confirm that

this phenomena does not happen but this has not been addressed theoretically.



Chapter 6

Noise Sensitivity Phase Transition

6.1 Introduction

So far in this thesis we have considered ideal types of compressed sensing problems

where the signal is exactly sparse and there is no measurement noise in the system.

In this chapter the goal is to consider more realistic assumption i.e. measurement

noise is also present in the system. Consider the noisy underdetermined system of

linear equations:

y = Ax0 + z0 , (6.1)

where the matrix A is n×N , n < N , the N -vector x0 is k-sparse (i.e. it has at most

k non-zero entries), and z0 ∈ Rn is a Gaussian white noise z0 ∼ N(0, σ2I). Both y

and A are known, both x0 and z0 are unknown, and we seek an approximation to x0.

A very popular approach estimates x0 via the solution x1,λ of the following convex

optimization problem

(P2,λ,1) minimize
1

2
‖y − Ax‖2

2 + λ‖x‖1. (6.2)

Thousands of articles use or study this approach, which has variously been called

LASSO, Basis Pursuit, or more prosaically, `1-penalized least-squares [103],[24]. There

131
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is a clear need to understand the extent to which (P2,λ,1) accurately recovers x0.

Dozens of papers present partial results, setting forth often loose bounds on the be-

havior of x̂1,λ. The most well-known analytic approach is the Restricted Isometry

Principle (RIP), developed by Candès and Tao [20, 21]. Again in the case where A

has iid Gaussian entries, and in the same large-system limit, the RIP implies that,

under sufficient sparsity of x0, with high probability one has stability bounds of the

form ‖x̂1,λ − x0‖2 ≤ C(δ, ρ)‖z0‖2 logN . The region where C(δ, ρ) < ∞ was orig-

inally an implicitly known, but clearly nonempty region of the (δ, ρ) phase space.

Blanchard, Cartis and Tanner [10] recently improved the estimates of C in the case

of Gaussian matrices A, by careful large deviations analysis, and by developing an

asymmetric RIP, obtaining the largest region where x̂1,λ is currently known to be

stable. Unfortunately as they show, this region is still relatively small compared to

the region ρ < ρ`1(δ), 0 < δ < 1.

It may seem that, in the presence of noise, the precise tradeoff between under-

sampling and sparsity worsens dramatically, compared to the noiseless case. In fact,

the opposite is true. In this chapter, we show that in the presence of Gaussian white

noise, the mean-squared error of the optimally tuned `1 penalized least squares esti-

mator behaves well over quite a large region of the phase plane, in fact, it is finite

over the exact same region of the phase plane as the region of `1 − `0 equivalence

derived in the noiseless case.

Our main results, stated in Section 6.3, give explicit evaluations for the worst-

case formal mean square error of x̂1,λ under given conditions of noise, sparsity and

undersampling. Our results indicate the noise sensitivity of solutions to (6.2), the

optimal penalization parameter λ, and the hardest-to-recover sparse vector. As we

show, the noise sensitivity exhibits a phase transition in the undersampling-sparsity

(δ, ρ) domain along a curve ρ = ρMSE(δ), and this curve is precisely the same as the

`1-`0 equivalence curve ρ`1 .

Our results might be compared to work of Xu and Hassibi [114], who considered

a different departure from the noiseless case. In their work, the noise z0 was still

vanishing, but the vector x0 was allowed to be an `1-norm bounded perturbation

to a k-sparse vector. They considered stable recovery with respect to such small
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perturbations and showed that the natural boundary for such stable recovery is again

the curve ρ = ρMSE(δ).

6.1.1 Results of our formalism

We define below a so-called formal MSE (fMSE), and evaluate the (minimax, formal)

noise sensitivity:

M∗(δ, ρ) = sup
σ>0

max
ν

min
λ

fMSE(x̂1,λ, ν, σ2)/σ2; (6.3)

here ν denotes the marginal distribution of x0 (which has fraction of nonzeros not

larger than ρδ), and λ denotes the tuning parameter of the `1-penalized `2 minimiza-

tion. Let M±(ε) denote the minimax MSE of scalar thresholding, defined in Section

6.2 below. Let ρMSE(δ) denote the solution of

M±(ρδ) = δ . (6.4)

Our main theoretical result is the formula

M∗(δ, ρ) =

{
M±(δρ)

1−M±(δρ)/δ
, ρ < ρMSE(δ),

∞, ρ ≥ ρMSE(δ).
(6.5)

Quantity (6.3) is the payoff of a traditional two-person zero sum game, in which

the undersampling and sparsity are fixed in advance, the researcher plays against

Nature, Nature picks both a noise level and a signal distribution, and the researcher

picks a penalization level, in knowledge of Nature’s choices. It is traditional in ana-

lyzing such games to identify the least-favorable strategy of Nature (who maximizes

payout from the researcher), and the optimal strategy for the researcher (who wants

to minimize payout). We are able to identify both and give explicit formulas for the

so-called saddlepoint strategy, where Nature plays the least-favorable strategy against

the researcher and the researcher minimizes the consequent damage. In Proposition

6.3.7 below we give formulas for this pair of strategies. The phase-transition structure
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Figure 6.1: Contour lines of the minimax noise sensitivity M∗(δ, ρ) in the (ρ, δ) plane. The

dotted black curve graphs the phase boundary (δ, ρMSE(δ)). Above this curve, M∗(δ, ρ) =∞.

The colored lines present level sets of M∗(δ, ρ) = 1/8, 1/4, 1/2, 1, 2, 4 (from bottom to

top).
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evident in (6.5) is saying that above the curve ρMSE, Nature has available unboundedly

good strategies, to which the researcher has no effective response. Our approach is

based on the formalism we derived for approximate message passing algorithms.

6.2 Minimax MSE of soft thresholding

We briefly recall notions from, e.g., [37, 36] and then generalize them. We wish to

recover an N vector x0 = (x0(i) : 1 ≤ i ≤ N) which is observed in Gaussian white

noise

y(i) = x0(i) + z0(i), 1 ≤ i ≤ N,

with z0(i) ∼ N(0, σ2) independent and identically distributed. This can be regarded

as special case of the compressed sensing model (6.1), whereby n = N and A = I

is the identity matrix – i.e. there is no underdetermined system of equations. We

assume that x0 is sparse. It makes sense to consider soft thresholding

x̂τ (i) = η(y(i); τσ), 1 ≤ i ≤ N,

where the soft threshold function (with threshold level θ) is defined by

η(x; θ) =


x− θ if θ < x,

0 if −θ ≤ x ≤ θ,

x+ θ if x ≤ −θ.
(6.6)

In words, the estimator (6.2) ‘shrinks’ the observations y towards the origin by a

multiple τ of the noise level σ.

In place of studying x0 which are k-sparse, [37, 36] consider random variables X

which obey P{X 6= 0} ≤ ε, where ε = k/n. So let Fε denote the set of probability

measures placing all but ε of their mass at the origin:

Fε = {ν : ν is probability measure with ν({0}) ≥ 1− ε}.
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We define the soft thresholding mean square error by

mse(σ2; ν, τ) ≡ E
{[
η
(
X + σ · Z; τσ

)
−X

]2}
. (6.7)

Here expectation is with respect to independent random variables Z ∼ N(0, 1) and

X ∼ ν.

It is important to allow general σ in calculations below. However, note to the

scale invariance

mse(σ2; ν, τ) = σ2mse(1; ν1/σ, τ) , (6.8)

where νa is the probability distribution obtained by rescaling ν: νa(S) = ν({x :

a x ∈ S}). It follows that all calculations can be made in the σ = 1 setting and

results rescaled to obtain final answers. Below, when we deal with σ = 1, we will

suppress the σ argument, and simply write mse(ν, τ) ≡ mse(1; ν, τ)

The minimax threshold MSE was defined in [37, 36] by

M±(ε) = inf
τ>0

sup
ν∈Fε

mse(ν, τ) . (6.9)

(The superscript ± reminds us that, when the estimand X is nonzero, it may take

either sign. In Section 6.6.1, the superscript + will be used to cover the case where

X ≥ 0.) We will denote by τ±(ε) the threshold level achieving the infimum. Figure

6.2 depicts the behavior of M± and τ± as a function of ε. M±(ε) was studied in

[36] where one can find a considerable amount of information about the behavior of

the optimal threshold τ± and the least favorable distribution ν±ε . In particular, the

optimal threshold behaves as

τ±(ε) ∼
√

2 log(ε−1) , as ε→ 0,

and is explicitly computable at finite ε.

A peculiar aspect of this supremum requires us to generalize it somewhat.
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Lemma 6.2.1. For a given, fixed τ > 0, the worst case MSE obeys

sup
ν∈Fε

mse(ν, τ) = ε (1 + τ 2) + (1− ε)[2(1 + τ 2) Φ(−τ)− 2τ φ(τ)] , (6.10)

with φ(z) = exp(−z2/2)/
√

2π the standard normal density and Φ(z) =
∫ z
−∞ φ(x) dx

the Gaussian distribution.

The proof of this lemma is based on 4.4.1 and Jensen Inequality. Interestingly,

this supremum is “achieved” by a three-point mixture on the extended real line R ∪
{−∞,∞}:

ν∗ε = (1− ε)δ0 +
ε

2
δ∞ +

ε

2
δ−∞.

We will need approximations which place no mass at ∞. We say distribution νε,α is

α-least-favorable for η( · ; τ) if it is the least-dispersed distribution in Fε achieving a

fraction (1− α) of the worst case risk for η( · ; τ), i.e. if both (i)

mse(νε,α, τ
±(ε)) = (1− α) · sup

ν∈Fε
mse(ν, τ±(ε)) ,
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δµ + ε

2
δ−µ has mse(νε,µ, τ

∗) ≥ 0.98M±(0.1) (i.e. the MSE
is at least 98 % of the minimax MSE).

and (ii) ν has the smallest second moment for which (i) is true. The least favorable

distribution νε,α has the form of a three-point mixture

νε,α = (1− ε) δ0 +
ε

2
δµ±(ε,α) +

ε

2
δ−µ±(ε,α) .

Here µ±(ε, α) is an explicitly computable function, see below, and for α > 0 fixed we

have

µ±(ε, α) ∼
√

2 log(ε−1) , as ε→ 0 .

Note in particular the relatively weak role played by α. This shows that although

the precise least-favorable situation places mass at infinity, an approximately least-

favorable situation is already achieved much closer to the origin.
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6.3 Main results

The notation of the last section allows us to state our main results.

6.3.1 Terminology

Definition 6.3.1. (Large-System Limit). A sequence of problem size parameters

n,N will be said to grow proportionally if both n,N →∞ while n/N → δ ∈ (0, 1).

Consider a sequence of random variables (Wn,N), where n,N grow proportionally.

Suppose that Wn,N converges in probability to a deterministic quantity W∞, which

may depend on δ > 0. Then we say that Wn,N has large-system limit W∞, denoted

W∞ = ls lim(Wn,N).

Definition 6.3.2. (Large-System Framework). We denote by LSF(δ, ρ, σ, ν) a

sequence of problem instances (y, A, x0)n,N as per (6.1) indexed by problem sizes n,N

growing proportionally: n/N → δ. In each instance, the entries of the n×N matrix A

are Gaussian iid N(0, 1/n), the entries of z0 are Gaussian iid N(0, σ2) and the entries

of x0 are iid ν.

For the sake of concreteness we focus here on problem sequences whereby the

matrix A has iid Gaussian entries. An obvious generalization of this setting would

be to assume that the entries are iid with mean 0 and variance 1/n. We expect our

result to hold for a broad set of distributions in this class.

In order to match the k-sparsity condition underlying (6.1) we consider the stan-

dard framework only for ν ∈ Fδρ.

Definition 6.3.3. (Observable). Let x̂ denote the output of a reconstruction algo-

rithm on problem instance (y, A, x0). An observable J is a function J(y, A, x0, x̂) of

the tuple (y, A, x0, x̂).

In an abuse of notation, the realized values Jn,N = J(y, A, x0, x̂) in this framework

will also be called observables. An example is the observed per-coordinate MSE:

MSE ≡ 1

N
‖x̂− x0‖2

2 .
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The MSE depends explicitly on x0 and implicitly on y and A (through the reconstruc-

tion algorithm). Unless specified, we shall assume that the reconstruction algorithm

solves the LASSO problem (6.2), and hence x̂1,λ = x̂. Further in the following we will

drop the dependence of the observable on the arguments y, A, x0, x̂, and the problem

dimensions n,N , when clear from context.

Definition 6.3.4. (Formalism). A formalism is a procedure that assigns a pur-

ported large-system limit Formal(J) to an observable J in the LSF(δ, ρ, σ, ν). This

limit in general depends on δ, ρ, σ2, and ν ∈ Fδρ: Formal(J) = Formal(J ; δ, ρ, σ, ν).

Thus in sections below we will consider J = MSE(y, A, x0, x̂1,λ) and describe a

specific formalism yielding Formal(MSE), the formal MSE (also denoted by fMSE).

Our formalism has the following character when applied to MSE: for each σ2, δ,

and probability measure ν on R, it calculates a purported limit fMSE(δ, ν, σ). For a

problem instance with large n,N realized from the standard framework LSF(δ, ρ, σ, ν),

we claim the MSE will be approximately fMSE(δ, ν, σ) . In fact we will show how

to calculate formal limits for several observables. For clarity, we always attach the

modifier formal to any result of our formalism: e.g., formal MSE, formal False Alarm

Rate, formally optimal threshold parameter, and so on.

Definition 6.3.5. (Validation). A formalism is theoretically validated by proving

that, in the standard asymptotic framework, we have

ls lim(Jn,N) = Formal(J)

for a class J of observables to which the formalism applies, and for a range of

LSF(δ, ρ, σ2, ν).

A formalism is empirically validated by showing that, for problem instances (y, A, x0)

realized from LSF(δ, ρ, σ, ν) with large N we have

Jn,N ≈ Formal(J ; δ, ρ, σ, ν),

for a collection of observables J ∈ J and a range of asymptotic framework param-

eters (δ, ρ, σ, ν); here the approximation ≈ should be evaluated by usual standards of
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empirical science.

Obviously, theoretical validation is stronger than empirical validation, but care-

ful empirical validation is still validation. We do not attempt here to theoretically

validate this formalism in any generality; see the last chapter for the discussion in

this direction. Instead we view the formalism as calculating predictions of empirical

results. We have compared these predictions with empirical results and found a per-

suasive level of agreement. For example, our formalism has been used to predict the

MSE of reconstructions by (6.2), and actual empirical results match the predictions,

i.e.:
1

N
‖x̂1,λ − x0‖2

2 ≈ fMSE(δ, ρ, ν, σ).

6.3.2 Results of the formalism

The behavior of formal mean square error changes dramatically at the following phase

boundary.

Definition 6.3.6 (Phase Boundary). For each δ ∈ [0, 1], let ρMSE(δ) be the value of

ρ solving

M±(ρδ) = δ . (6.11)

It is well known that M±(ε) is monotone increasing and concave in ε, with

M±(0) = 0 and M±(1) = 1. As a consequence, ρMSE is also a monotone increas-

ing function of δ, in fact ρMSE(δ)→ 0 as δ → 0 and ρMSE(δ)→ 1 as δ → 1.

Proposition 6.3.7. Results of Formalism. The formalism developed below yields

the following conclusions.

1.a In the region ρ < ρMSE(δ), the minimax formal noise sensitivity obeys the formula

M∗(δ, ρ) ≡ M±(ρδ)

1−M±(ρδ)/δ
.

In particular, M∗ is finite throughout this region.



142 CHAPTER 6. NOISE SENSITIVITY PHASE TRANSITION

1.b With σ2 the noise level in (6.1), define the formal noise-plus interference level

fNPI = fNPI(τ ; δ, ρ, σ, ν)

fNPI = σ2 + fMSE/δ,

and its minimax value NPI∗(δ, ρ;σ) ≡ σ2 · (1 +M∗(δ, ρ)/δ). For α > 0, define

µ∗(δ, ρ;α) ≡ µ±(δρ, α) ·
√

NPI∗(δ, ρ)

In LSF(δ, ρ, σ, ν) let ν ∈ Fδρ place fraction 1 − δρ of its mass at zero and the

remaining mass equally on ±µ∗(δ, ρ;α). This ν is α̃-least-favorable: the formal

noise sensitivity of x̂1,λ equals (1 − α̃)M∗(δ, ρ), with (1 − α̃) = (1 − α)(1 −
M±(δρ))/(1− (1− α)M±(δρ)).

1.c The formally maximin penalty parameter obeys

λ∗(ν; δ, ρ, σ) ≡ τ±(δρ) ·
√

fNPI(τ±; δ, ρ, σ, ν) · (1− EqDR(ν; τ±(δρ))/δ) ,

where EqDR( · · · ) is the asymptotic detection rate, i.e. the asymptotic fraction

of coordinates that are estimated to be nonzero. (An explicit expression for this

quantity is given in Section 6.16.)

In particular with this ν-adaptive choice of penalty parameter, the formal MSE

of x̂1,λ does not exceed M∗ · σ2.

2 In the region ρ > ρMSE(δ), the formal noise sensitivity is infinite. Throughout this

phase, for each fixed number M <∞, there exists α > 0 such that the probability

distribution ν ∈ Fδρ placing its nonzeros at ±µ∗(δ, ρ, α), yields formal MSE

larger than M .

We explain the formalism and derive these results in Section 6.4 below.
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Figure 6.4: Contour lines of the near-least-favorable signal amplitude µ∗(δ, ρ, α) in the
(ρ, δ) plane. The dotted line corresponds to the phase transition (δ, ρMSE(δ)), while the
colored solid lines portray level sets of µ∗(δ, ρ, α). The 3-point mixture distribution (1 −
ε)δ0 + ε

2δµ + ε
2δ−µ, (ε = δρ) will cause 98% of the worst-case MSE. When a k-sparse vector

is drawn from this distribution, its nonzeros are all at ±µ.

6.3.3 Interpretation of the predictions

Figure 6.1 displays the noise sensitivity; above the phase transition boundary ρ =

ρMSE(δ), it is infinite. The different contour lines show positions in the δ, ρ plane

where a given noise sensitivity is achieved. As one might expect, the sensitivity blows

up rather dramatically as we approach the phase boundary.

Figure 6.4 displays the least-favorable coefficient amplitude µ∗(δ, ρ, α = 0.02). No-

tice that µ∗(δ, ρ, α) diverges as the phase boundary is approached. Indeed beyond the

phase boundary arbitrarily large MSE can be produced by choosing µ large enough.

Figure 6.5 displays the value of the optimal penalization parameter amplitude

λ∗ = λ∗(ν∗δ,ρ; δ, ρ, σ = 1). Note that the parameter tends to zero as we approach

phase transition.

For these figures, the region above phase transition is not decorated, because the

values there are infinite or not defined.
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Figure 6.5: Contour lines of the maximin penalization parameter: λ∗(δ, ρ) in the (ρ, δ)
plane. The dotted line corresponds to the phase transition (δ, ρMSE(δ)), while thin lines are
contours for λ∗(δ, ρ, α). Close to phase transition, the maximin value approaches 0.

6.3.4 Comparison to other phase transitions

In view of the importance of the phase boundary for Proposition 6.3.7, we note the

following:

Finding 3. Phase Boundary Equivalence. The phase boundary ρMSE is identi-

cal to the phase boundary ρ`1 below which `1 minimization and `0 minimization are

equivalent.

In words, throughout the phase where `1 minimization is equivalent to `0 mini-

mization, the solution to (6.2) has bounded formal MSE. When we are outside that

phase, the solution has unbounded formal MSE. The verification of Finding 3 follows

in two steps. First, the formulas for the phase boundary discussed in this chapter are

identical to the phase boundary formulas given in chapter 4; Second, in that chapter

it was shown that these formulas agree numerically with the formulas known for ρ`1 .
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6.3.5 Validating the predictions

Proposition 6.3.7 makes predictions for the behavior of solutions to (6.2). It will be

validated empirically, by showing that such solutions behave as predicted.

In particular, simulation evidence will be presented to show that in the phase

where noise sensitivity is finite:

1. Running (6.2) for data (y, A) generated from vectors x0 with coordinates with

distribution ν which is nearly least-favorable results in an empirical MSE ap-

proximately equal to M∗(δ, ρ) · σ2.

2. Running (6.2) for data (y, A) generated from vectors x0 with coordinates with

distribution ν which is far from least-favorable results in empirical MSE notice-

ably smaller than M∗(δ, ρ) · σ2.

3. Running (6.2) with a suboptimal penalty parameter λ results in empirical MSE

noticeably greater than M∗(δ, ρ) · σ2.

Second, in the phase where formal MSE is infinite:

4. Running (6.2) on vectors x0 generated by formally least-favorable results in an

empirical MSE which is very large.

Evidence for all these claims will be given below.

6.4 The formalism

The formalism that is used for deriving the above properties is the state evolution

recursions that we derived for the AMP algorithm. For the sake of completeness of

this chapter we summarize our discussion of previous chapter here.

6.4.1 The AMPT algorithm

We now consider first-order approximate message passing (AMP) algorithm recon-

struction algorithm. Starting at x̂0 = 0 it proceeds iteratively and produces the
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estimate x̂t of x0 at iteration t according to the iteration:

zt = y − Ax̂t + zt−1 dft
n

(6.12)

x̂t+1 = η(A∗zt + x̂t; θt) , (6.13)

Here x̂t ∈ Rp is the current estimate of x0, and dft = ‖x̂t‖0 is the number of nonzeros

in the current estimate. Again η( · ; · ) is the soft threshold nonlinearity with threshold

parameter θt

θt = τ · σt; (6.14)

τ is a tuning constant, fixed throughout iterations and σt is an empirical measure of

the scale of the residuals. Finally zt ∈ Rn is the current working residual. Compare

with the usual residual defined by rt = y−Ax̂t via the identity zt = rt + zt−1 dft
n

. The

extra term in AMP plays a subtle but crucial role. 1

6.4.2 Formal MSE, and its evolution

Let npi(m;σ, δ) ≡ σ2 +m/δ. We define the MSE map Ψ through

Ψ(m, δ, σ, τ, ν) ≡ mse(npi(m,σ, δ); ν, τ) , (6.15)

where the function mse( · ; ν, τ) is the soft thresholding mean square error already

introduced in (6.7). It describes the MSE of soft thresholding in a problem where the

noise level is
√

npi. A heuristic explanation of the meaning and origin of npi will be

given below.

1The only difference between this algorithm and the AMPM algorithm introduced in the last
chapter is the choice of threshold; instead of a tuning parameter τ like in (6.14) – one that can
be set freely – a fixed choice τ(δ) was made for each specific δ through the maximin framework.
Here we call that algorithm AMPM - M for maximin. In contrast, the current algorithm is tunable,
allowing choice of τ , we label it AMPT(τ), T for tunable.
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Definition 6.4.1. State Evolution. The state is a 5-tuple (m; δ, σ, τ, ν). State

evolution is the evolution of the state by the rule

(mt; δ, σ, τ, ν) 7→ (Ψ(mt); δ, σ, τ, ν),

t 7→ t+ 1.

As the parameters (δ, σ, τ, ν) remain fixed during evolution, we usually omit mention

of them and think of state evolution simply as the iterated application of Ψ:

mt 7→ mt+1 ≡ Ψ(mt),

t 7→ t+ 1.

Definition 6.4.2. Stable Fixed Point. The Highest Fixed Point of the continuous

function Ψ is

HFP(Ψ) = sup{m : Ψ(m) ≥ m}.

The stability coefficient of the continuously differentiable function Ψ is

SC(Ψ) =
d

dm
Ψ(m)

∣∣∣∣
m=HFP(Ψ)

.

We say that HFP(Ψ) is a stable fixed point if 0 ≤ SC(Ψ) < 1.

To illustrate this, Figure 6.6 shows the MSE map and fixed points in three cases.

In what follows we denote by µ2(ν) =
∫
x2dν the second-moment of the distribu-

tion ν.

Lemma 6.4.1. Let Ψ( · ) = Ψ( · , δ, σ, τ, ν), and assume either σ2 > 0 or µ2(ν) > 0.

Then the sequence of iterates mt defined by mt+1 = Ψ(mt) starting from m0 = µ2(ν)

converges monotonically to HFP(Ψ):

mt → HFP(Ψ), t→∞.

Further, if σ > 0 then HFP(Ψ) ∈ (0,∞) is the unique fixed point.
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Figure 6.6: MSE Map Ψ in three cases, and associated fixed points. Left: δ = 0.25,
ρ = ρMSE/2, σ = 1, ν = ν∗(δ, ρ, α) Center: δ = 0.25, ρ = ρMSE × 0.95, σ = 1,
ν = ν∗(δ, ρ, α) Right: δ = 0.25, ρ = ρMSE, σ = 1, ν = ν∗(δ, ρ, α)

Suppose further that the stability coefficient satisfies 0 < SC(Ψ) < 1. Then there

exists a constant A(ν,Ψ) such that

∣∣mt − HFP(Ψ)
∣∣ ≤ A(ν,Ψ) SC(Ψ)t .

Finally, if µ2(ν) ≥ HFP(Ψ) then the sequence {mt} is monotonically decreasing to

µ2(ν) with

(mt − HFP(Ψ)) ≤ SC(Ψ)t · (µ2(ν)− HFP(Ψ)).

In short, barring the trivial case x0 = 0, z0 = 0 (no signal, no noise), state

evolution converges to the highest fixed point. If the stability coefficient is smaller

than 1, convergence is exponentially fast.

Proof (Lemma 6.4.1). This lemma is an immediate consequence of the fact that m 7→
Ψ(m) is a concave non-decreasing function, with Ψ(0) > 0 as long as σ > 0 and

Ψ(0) = 0 for σ = 0.



6.4. THE FORMALISM 149

Indeed in the last chapter it was shown that at noise level σ = 0, the MSE map

m→ Ψ(m; δ, σ, ν, τ) is concave as a function of m. We have the identity

Ψ(m; δ, σ, ν, τ) = Ψ(m+ σ2 · δ; δ, σ = 0, ν, τ),

relating the noise-level 0 MSE map to the noise-level σ MSE map. From this it follows

that Ψ is concave for σ > 0 as well. Also, we showed that Ψ(m = 0; δ, σ = 0, ν, τ) = 0

and dΨ
dm

(m = 0; δ, σ = 0, ν, τ) > 0, whence Ψ(m = 0; δ, σ, ν, τ) > 0 for any positive

noise level σ.

Lemma 6.4.2. If M±(δ, ρ) < δ in the noiseless case σ = 0, the only fixed point of

the Ψ is zero. Furthermore

SC∗(δ, ρ, σ = 0) , inf
τ

sup
ν∈Fδρ

SC(Ψ(·; δ, σ = 0, ν, τ)) =
M±(δρ)

δ
.

Proof.

E(η(X +

√
m

δ
Z; τ

√
m

δ
)−X) =

m

δ
E(η(

√
δ/mX + Z; τ)−

√
δ/mX)

≤ sup
ν∈Fδρ

E(η(X +

√
m

δ
Z; τ

√
m

δ
)−X).

By taking the infimum over τ we have,

inf
τ
E(η(X +

√
m

δ
Z; τ

√
m

δ
)−X) ≤ inf

τ
sup
ν∈Fδρ

E(η(X +

√
m

δ
Z; τ

√
m

δ
)−X)

≤ M±(δρ)

δ
m.

Therefore if M±(δρ)
δ

< 1 then the only fixed point of Ψ is m = 0. In the previous

chapter we showed that at m = 0 the derivative of Ψ is independent of the distribution

of the non-zero elements. Also since Ψ(0) = 0 we have,

Ψ(m)−Ψ(0)

m
≤ M±(δρ)

δ
.
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By taking the limitm→ 0 we get SC∗(δ, ρ, σ = 0) ≤ M±(δρ)
δ

. It can also be proved that

if we calculate Ψ(m) on the least favorable distribution then we have Ψ(m) = M±(δρ)
δ

m

which will prove the equality2.

For this reason, the region M±(δ, ρ) < δ can also be called the stability phase, not

only the stability coefficient is smaller than 1, SC(Ψ) < 1, but that it can be bounded

away from 1 uniformly in the signal distribution ν. Outside the stability region, for

each large m, we can find measures ν obeying the sparsity constraint ν ∈ Fδρ for

which state evolution converges to a fixed point suffering equilibrium MSE > m. The

construction in Section 6.4.5 shows that HFP(Ψ) > µ2(ν) > m. Figure 6.7 shows the

MSE map and the state evolution in three cases which may be compared to 6.6. In

the first case, ρ is well below ρMSE and the fixed point is well below µ2(ν). In the

second case, ρ is slightly below ρMSE and the fixed point is close to µ2(ν). In the third

case, ρ is above ρMSE and the fixed point, lies above µ2(ν).

µ2(ν) is the MSE one suffers by ‘doing nothing’: setting threshold λ = ∞ and

taking x̂ = 0. When HFP(Ψ) > µ2(ν), one iteration of thresholding makes things

worse, not better. In words, the phase boundary is exactly the place below which we

are sure that, if µ2(ν) is large, a single iteration of thresholding gives an estimate x̂1

that is better than the starting point x̂0. Above the phase boundary, even a single

iteration of thresholding may be a catastrophically bad thing to do.

Definition 6.4.3. (Equilibrium States and State-Conditional Expectations)

Consider a real-valued function ζ : R3 7→ R, its expectation in state S = (m; δ, σ, ν)

is

E(ζ|S) = E
{
ζ(X,Z, η(X +

√
npiZ; τ

√
npi))

}
,

where npi = npi(m;σ, δ) and X ∼ ν, Z ∼ N(0, 1) are independent random variables.

Suppose we are given (δ, σ, ν, τ), and a fixed point m∗, m∗ = HFP(Ψ) with Ψ =

Ψ( · ; δ, σ, ν, τ). The tuple S∗ = (m∗; δ, σ, ν) is called the equilibrium state of state

evolution. The expectation in the equilibrium state is E(ζ|S∗).

2Since the least favorable distribution has a point mass at ∞ we should make this statement
precise by a limit argument
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Figure 6.7: Crossing the phase transition: effects on MSE Map Ψ, and associated
state evolution. Left: δ = 0.25, ρ = ρMSE/2, σ = 1, ν = ν(δ, ρ, 0.01) Middle: δ = 0.25,
ρ = 0.9 · ρMSE, σ = 1, ν = ν(δ, ρ, 0.01) Right: δ = 0.25, ρ = 1.5 · ρMSE, σ = 1,
ν = ν(δ, ρ, 0.01). In each case τ = τ±(δρ).
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Name Abbrev. ζ = ζ(u, v, w)
Mean Square Error MSE ζ = (u− w)2

False Alarm Rate FAR ζ = 1{w 6=0&u=0}/(1− ρδ)
Detection Rate DR ζ = 1{w 6=0}
Missed Detection Rate MDR ζ = 1{w=0&u6=0}/(ρδ)
False Detection Rate FDeR ζ = 1{w 6=0&u=0}/(ρδ)

Table 6.1: Some observables and their names.

Definition 6.4.4. (State Evolution Formalism for AMPT) . Run the AMPT

algorithm and assume that the sequence of estimates (x̂t, zt) converges to the fixed

point (x̂∞, z∞). To each function ζ : R3 7→ R associate the observable

Jζ(y, A, x0, x̂) =
1

N

N∑
i=1

ζ
(
x0(i), AT z(i) + x̂(i)− x0(i), x̂(i)

)
.

Let S∗ denote the equilibrium state reached by state evolution in a given situation

(δ, σ, ν, τ). The state evolution formalism assigns the purported limit value

Formal(Jζ) = E(ζ|S∗).

Validity of the state evolution formalism for AMPT entails that, for a sequence

of problem instances (y, A, x0) drawn from LSF(δ, ρ, σ, ν), the large-system limit for

observable Jζn,N is simply the expectation in the equilibrium state:

ls limJζn,N = E(ζ|S∗).

The class J of observables representable by the form Jζ is quite rich, by choosing

ζ(u, v, w) appropriately. Table 6.1 gives examples of well-known observables and the

ζ which will generate them. Formal values for other interesting observables can in

principle be obtained by combining such simple ones. For example, the False Discov-

ery rate FDR is the ratio FDeR/DR and so the ratio of two elementary observables
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of the kind for which the formalism is defined. We assign it the purported limit value

Formal(FDR) =
Formal(FDeR)

Formal(DR)
.

Below we list a certain number of observables for which the formalism was checked

empirically and that play an important role in characterizing the fixed point estimates.

Calculation of Formal Operating Characteristics of AMPT(τ) by State Evo-

lution

Given δ, σ, ν, τ , identify the fixed point HFP(Ψ( · ; δ, σ, ν, τ). Calculate the fol-

lowing quantities

– Equilibrium MSE

EqMSE = m∞ = HFP(Ψ( · ; ν, τ); δ, σ).

– Equilibrium Noise Plus Interference Level

npi∞ =
1

δ
m∞ + σ2

– Equilibrium Threshold (absolute units)

θ∞ = τ ·
√

npi∞.

– Equilibrium Mean Squared Residual. Let Y∞ = X +
√

npi∞ Z for X ∼ ν

and Z ∼ N(0, 1) are independent. Then

EqMSR = E
{

[Y∞ − η(Y∞; θ∞)]2
}
.

– Equilibrium Mean Absolute Estimate

EqMAE = E{|η(Y∞; θ∞)|} .
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– Equilibrium Detection Rate

EqDR = P{η(Y∞; θ∞) 6= 0} . (6.16)

– Equilibrium Penalized MSR

EqPMSR = EqMSR/2 + θ∞ · (1− EqDR/δ) · EqMAE.

6.4.3 AMPT-LASSO calibration

Of course at this point the reader is entitled to feel that the introduction of AMPT is a

massive digression. The relevance of AMPT is indicated by the following conclusion:

Finding 4. In the large system limit, the operating characteristics of AMPT(τ) are

equivalent to those of LASSO(λ) under an appropriate calibration τ ↔ λ.

By calibration, we mean a rescaling that maps results on one problem into re-

sults on the other problem. The correct mapping can be guessed from the following

remarks:

LASSO(λ): no residual exceeds λ: ‖AT (y − Ax̂1,λ)‖∞ ≤ λ. Further

x̂1,λ
i > 0 ⇔ (AT (y − Ax̂1,λ))i = λ ,

x̂1,λ
i = 0 ⇔ |(AT (y − Ax̂1,λ))i| < λ ,

x̂1,λ
i < 0 ⇔ (AT (y − Ax̂1,λ))i = −λ .

• AMPT(τ): At a fixed point x̂∞, z∞, no working residual exceeds the equilibrium

threshold θ∞: ‖AT z∞‖∞ ≤ θ∞. Further

x̂∞i > 0 ⇔ (AT z∞)i = θ∞ ,

x̂∞i = 0 ⇔ |(AT z∞)i| < θ∞ ,

x̂∞i < 0 ⇔ (AT z∞)i = −θ∞ .
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Define df = #{i : x̂∞i 6= 0}. Further notice that at the AMPT fixed point (1 −
df/n)z∞ = y − AT x̂∞. We can summarize these remarks in the following statement.

Lemma 6.4.3. Solutions x̂1,λ of LASSO(λ) (i.e. optima of the problem (6.2)) are

in correspondence with fixed points (x̂∞, z∞) of the AMPT(τ) under the bijection

x̂∞ = x̂1,λ, z∞ = (y − AT x̂1,λ)/(1 − df/n), provided the threshold parameters are in

the following relation

λ = θ∞ · (1− df/n) . (6.17)

In other words, if we have a fixed point of AMPT(τ) we can choose λ in such a way

that this is also an optimum of LASSO(λ). Viceversa, any optimum of LASSO(λ)

can be realized as a fixed point of AMPT(τ): notice in fact that the relation (6.17)

is invertible whenever df < n.

This simple rule gives a calibration relationship between τ and λ, i.e. a one-one

correspondence between τ and λ that renders the two apparently different reconstruc-

tion procedures equivalent, provided the iteration AMPT(τ) converges rapidly to its

fixed point. Our empirical results confirm that this is indeed what happens for typical

large system frameworks LSF(δ, ρ, σ, ν).

The next lemma characterizes the equilibrium calibration relation between AMP

and LASSO.

Lemma 6.4.4. Let EqDR(τ) = EqDR(τ ; δ, ρ, ν, σ) denote the equilibrium detection

rate obtained from state evolution when the tuning parameter of AMPT is τ . Define

τ 0(δ, ρ, ν, σ) > 0, so that EqDR(τ) ≤ δ when τ > τ 0. For each λ ≥ 0, there is a

unique value τ(λ) ∈ [τ0,∞) such that

λ = θ∞(τ) · (1− EqDR(τ)/δ).

We can restate Finding 4 in the following more convenient form.

Finding 5. For each λ ∈ [0,∞) we find that AMPT(τ(λ)) and LASSO(λ) have

statistically equivalent observables. In particular the MSE, MAE, MSR, DR, have

the same distributions.



156 CHAPTER 6. NOISE SENSITIVITY PHASE TRANSITION

6.4.4 Derivation of proposition 6.3.7

Consider the following minimax problem for AMPT(τ). With fMSE(τ ; δ, ρ, σ, ν) de-

noting the equilibrium formal MSE for AMPT (τ) for the framework LSF(δ, ρ, σ, ν),

fix σ = 1 and define

M [(δ, ρ) = inf
τ

sup
ν∈Fδρ

fMSE(τ ; δ, ρ, σ = 1, ν). (6.18)

We will first show that this definition obeys the formula just like the one in

Proposition 6.3.7, given for M∗. Later we show that M [ = M∗.

Proposition 6.4.5. For M [ defined by (6.18),

M [(δ, ρ) =
M±(δρ)

1−M±(δρ)/δ
(6.19)

The AMPT threshold rule

τ ∗(δ, ρ) = τ±(δρ), 0 < ρ < ρMSE(δ) , (6.20)

minimaxes the formal MSE:

sup
ν∈Fδρ

fMSE(τ ∗; δ, ρ, 1, ν) = inf
τ

sup
ν∈Fδρ

fMSE(τ ; δ, ρ, 1, ν) = M [(δ, ρ). (6.21)

Figure 6.8 depicts the behavior of τ ∗ in the (δ, ρ) plane.

Proof. For the simplicity of notation we consider m∞ instead of M [(δ, ρ). First sup-

pose that m∞ satisfies the following equation,

m∞ = inf
τ

sup
Fδρ

E(η(X +
√
σ2 +m∞/δZ; τ

√
σ2 +m∞/δ)−X)2. (6.22)

If we prove this then the statement of the theorem can be easily derived from above.

We know that if the distribution of X belongs to Fδρ then the distribution of aX
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Figure 6.8: Contour lines of τ∗(δ, ρ) in the (ρ, δ) plane. The dotted line corresponds to the
phase transition (δ, ρMSE(δ)), while thin lines are contours for τ∗(δ, ρ)

clearly belongs to Fδρ and therefore

m∞ = (σ2 +m∞/δ) inf
τ

sup
Fδρ

E(η(X + Z; τ)−X)2 = (σ2 +m∞/δ)M
∗(δρ).

which is equivalent to the statement of the theorem. Therefore we should just prove

(6.22). Suppose that τ ∗ and ν∗ correspond to the saddle point of (6.18)3 and the fixed

point is called m∗. Then we have,

m∗ = E(η(X +
√
σ2 +m∗/δZ; τ ∗

√
σ2 +m∗/δ)−X)2.

The goal here is to prove that (τ ∗, ν∗) plays the role of the saddle point for (6.22). We

prove this by contradiction. If this is not true, one of these two cases may happen.

Either there exist ν0 for which τ0 is the minimizer of right hand side of (6.22) and

this ν0 is able to increase the RHS of (6.22) or there exist a τ0 and the corresponding

3Here for simplicity of the notation we assume that the inf and sup are achieved. By limit
arguments these results can be extended to other cases.
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maximizing distribution ν0 such that RHS of (6.22) is smaller. Since the argument

for both cases is very similar we just prove that the first thing can not happen. If the

first scenario happens this means that,

m∞ < EX∼ν0(η(X +
√

(σ2 +m∞/δ)Z; τ0

√
(σ2 +m∞/δ))−X)2.

Therefore there will be another fixed point larger than m∞ which is in contradiction

with the fact that τ ∗, ν∗ is the saddle point of (6.18). Since the saddle points are the

same the two equations become equivalent.

We now explain how this result about AMPT leads to our claim for the behavior of

the LASSO estimator x̂1,λ. By a scale invariance the quantity (6.3) can be rewritten

as a fixed-scale σ = 1 property:

M∗(δ, ρ) = sup
ν∈Fδρ

inf
λ

fMSE(ν, λ|LASSO) ,

where we introduced explicit reference to the algorithm used, and dropped the ir-

relevant arguments. We will analogously write fMSE(ν, τ |AMPT) for the AMPT(τ)

MSE.

Proposition 6.4.6. Assume the validity of our calibration relation i.e. the equiva-

lence of formal operating characteristics of AMPT(τ) and LASSO(λ(τ)). Then

M∗(δ, ρ) = M [(δ, ρ).

Also, for λ∗ as defined in Proposition 6.3.7,

M∗(δ, ρ) = sup
ν∈Fδρ

fMSE(ν, λ∗(ν; δ, ρ, σ)|LASSO).

In words, λ∗ is the maximin penalization and the maximin MSE of LASSOis

precisely given by the formula (6.19).

Proof. Taking the validity of our calibration relationship τ ↔ λ(τ) as given, we must
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have

fMSE(ν, λ(τ)|LASSO) = fMSE(ν, τ |AMPT) .

Our definition of λ∗ in Proposition 6.3.7 is simply the calibration relation applied to

the minimax AMPT threshold τ ∗, i.e. λ∗ = λ(τ ∗). Hence assuming the validity of

our calibration relation, we have:

sup
ν∈Fδρ

fMSE(ν, λ∗(ν; δ, ρ, σ)|LASSO) = sup
ν∈Fδρ

fMSE(ν, λ(τ ∗)|LASSO)

= sup
ν∈Fδρ

fMSE(ν, τ ∗|AMPT)

= sup
ν∈Fδρ

inf
τ

fMSE(ν, τ |AMPT) (6.23)

= sup
ν∈Fδρ

inf
τ

fMSE(ν, λ(τ)|LASSO)

= sup
ν∈Fδρ

inf
λ

fMSE(ν, λ|LASSO).

Display (6.23) shows that all these equalities are equal to M [(δ, ρ).

The proof of Proposition 6.3.7, points 1a, 1b, 1c follows immediately from the

above.

6.4.5 Formal MSE above phase transition

We now make an explicit construction showing that noise sensitivity is unbounded

above PT.

We first consider the AMPT algorithm above PT. Fix δ, ρ with ρ > ρMSE(δ) and

set ε = δρ.

In this section we focus on 3 point distributions with mass at 0 equal to 1 − ε.
With an abuse of notation we let mse(µ, τ) denote the MSE of scalar soft thresholding

for amplitude of the non-zeros equal to µ, and noise variance equal to 1. In formulas,

mse(µ, τ) ≡ mse(1; (1− ε)δ0 + (ε/2)δµ + (ε/2)δ−µ, τ), and

mse(µ, τ) = (1− ε)Eη(Z; τ)2 + εE (µ− η(µ+ Z; τ))2 .
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Consider values of the AMPT threshold τ such that mse(0, τ) < δ; this will be possible

for all τ sufficiently large. Pick a number γ ∈ (0, 1) obeying

1 < γ < mse(0, τ)/δ. (6.24)

Let M±(ε, τ) = supµ mse(µ, τ) denote the worst case risk of η( · ; τ) over the class

Fε. Let µ±(ε, α, τ) denote the α-least-favorable µ for threshold τ :

mse(µ±, τ) = (1− α)M±(ε, τ).

Define α∗ = 1 − γδ/M±(ε, τ), and note that α∗ ∈ (0, 1) by earlier assumptions. Let

µ∗ = µ±(α∗, τ, ε). A straightforward calculation along the lines of the previous section

yields.

Lemma 6.4.5. For the measure ν = (1− ε)δ0 +(ε/2)δµ∗+(ε/2)δ−µ∗, the formal MSE

and formal NPI are given by

fMSE(ν, τ |AMPT) =
δγ

1− γ
,

fNPI(ν, τ |AMPT) =
1

1− γ
.

Assumption (6.24) permits us to choose γ very close to 1. Hence the above for-

mulas show explicitly that MSE is unbounded above phase transition.

What do the formulas say about x̂1,λ above PT? The τ ’s which can be associated

to λ obey

0 < EqDR(ν, τ) ≤ δ,

where EqDR(ν, τ) = EqDR(τ ; δ, ρ, ν, σ) is the equilibrium detection rate for a signal

with distribution ν. Equivalently, they are those τ where the equilibrium discovery

number is n or smaller.

Lemma 6.4.6. For each τ > 0, obeying both

mse(0, τ) < δ and EqDR(ν, τ) < δ,
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the parameter λ ≥ 0 defined by the calibration relation

λ(τ) =
τ√

1− γ
· (1− EqDR(ν, τ)/δ),

has the formal MSE

fMSE(ν, τ |LASSO) =
δγ

1− γ
.

One can check that, for each λ ≥ 0, for each phase space point above phase

transition, the above construction allows to construct a measure µ with ε = δρ mass

on nonzeros and with arbitrarily high formal MSE. This completes the derivation of

part 2 of Proposition 6.3.7.

6.5 Empirical validation

So far our discussion explains how state evolution calculations are carried out so others

might reproduce them. The actual ‘science contribution’ of this chapter comes in

showing that these calculations describe the actual behavior of solutions to (6.2). We

check these calculations in two ways: first, to show that individual MSE predictions

are accurate, and second, to show that the mathematical structures (least-favorable,

minimax saddlepoint, maximin threshold) that lead to our predictions are visible in

empirical results.

6.5.1 Below phase transition

Let fMSE(λ; δ, ρ, σ, ν) denote the formal MSE we assign to x̂1,λ for problem instances

from LSF(δ, ρ, σ, ν). Let eMSE(λ)n,N denote the empirical MSE of the LASSO esti-

mator x̂1,λ in a problem instance drawn from LSF(δ, ρ, σ, ν) at a given problem size

n,N . In claiming that the noise sensitivity of x̂1,λ is bounded above by M∗(δ, ρ), we

are saying that in empirical trials, the ratio eMSE/σ2 will not be larger than M∗ with

statistical significance. We now present empirical evidence for this claim.
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δ ρ ε M±(ε) τ±(ε) µ±(ε, 0.02) M∗(δ, ρ) µ∗(δ, ρ, 0.02) τ ∗(δ, ρ) λ∗

0.10 0.09 0.01 0.06 1.96 3.74 0.14 5.79 1.96 1.28
0.10 0.14 0.01 0.08 1.83 3.63 0.41 8.24 1.83 0.83
0.10 0.17 0.02 0.09 1.77 3.58 1.20 12.90 1.77 0.51
0.10 0.18 0.02 0.10 1.75 3.57 2.53 18.28 1.75 0.41
0.25 0.13 0.03 0.15 1.54 3.41 0.39 5.46 1.54 0.98
0.25 0.20 0.05 0.20 1.40 3.29 1.12 7.68 1.40 0.62
0.25 0.24 0.06 0.23 1.33 3.24 3.28 12.22 1.33 0.39
0.25 0.25 0.06 0.24 1.31 3.23 6.89 17.31 1.31 0.30
0.50 0.19 0.10 0.32 1.15 3.11 0.90 5.19 1.15 0.70
0.50 0.29 0.14 0.42 1.00 2.99 2.55 7.35 1.00 0.42
0.50 0.35 0.17 0.47 0.92 2.93 7.51 11.75 0.92 0.26
0.50 0.37 0.18 0.48 0.90 2.91 15.75 16.67 0.90 0.20

Table 6.2: Parameters of quasi-least-favorable settings studied in the empirical results
presented here.

Accuracy of MSE at the LF signal

We first consider the accuracy of theoretical predictions at the nearly-least-favorable

signals generated by νδ,ρ,α = (1− ε)δ0 + (ε/2)δ−µ∗(δ,ρ,α) + (ε/2)δµ∗(δ,ρ,α) defined by Part

2.b of Proposition 6.3.7. If the empirical ratio eMSE/σ2 is substantially above the

theoretical bound M∗(δ, ρ), according to standards of statistical significance, we have

falsified the proposition.

We consider parameter points δ ∈ {0.10, 0.25, 0.50} and ρ ∈ {1
2
· ρMSE,

3
4
· ρMSE,

9
10
·

ρMSE,
19
20
· ρMSE}. The predictions of the SE formalism are detailed in Table 6.2.

Results at N = 1500

To test these predictions, we generate in each situation R = 200 random realizations

of size N = 1500 from LSF(δ, ρ, σ, ν) with the parameters shown in Table 6.2 and

run the LARS/LASSO solver to find the solution x̂1,λ. Table 6.3 shows the empirical

average MSE in 200 trials at each tested situation.

Except at δ = 0.10 the mismatch between empirical and theoretical a few to

several percent - reasonable given the sample size R = 200. At δ = 0.10, ρ = 0.180
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δ ρ µ λ∗ fMSE eMSE SE
0.100 0.095 5.791 1.258 0.136 0.126 0.0029
0.100 0.142 8.242 0.804 0.380 0.329 0.0106
0.100 0.170 12.901 0.465 1.045 0.755 0.0328
0.100 0.180 18.278 0.338 2.063 1.263 0.0860
0.250 0.134 5.459 0.961 0.374 0.373 0.0046
0.250 0.201 7.683 0.592 1.028 1.002 0.0170
0.250 0.241 12.219 0.351 2.830 2.927 0.0733
0.250 0.254 17.314 0.244 5.576 5.169 0.1978
0.500 0.193 5.194 0.689 0.853 0.836 0.0078
0.500 0.289 7.354 0.400 2.329 2.251 0.0254
0.500 0.347 11.746 0.231 6.365 6.403 0.1157
0.500 0.366 16.667 0.159 12.427 11.580 0.2999

Table 6.3: Results at N = 1500. MSE of LASSO(λ∗) at nearly-least-favorable situa-
tions, together with standard errors (SE)

– close to phase transition – there is a mismatch needing attention. (In fact, at each

level of δ the most serious mismatch is at the value of ρ closest to phase transition.

This can be attributed partially to the blowup of the quantity being measured as we

approach phase transition.) We will pursue this mismatch below.

We also ran trials at δ ∈ {0.15, 0.20, 0.30, 0.35, 0.40, 0.45}. These cases exhibited

the same patterns seen above, with adequate fit except at small δ, especially near

phase transition. We omit the data here.

In all our trials, we measured numerous observables – not only the MSE. The trend

in mismatch between theory and observation in such observables was comparable to

that seen for MSE.

Results at N = 4000

Statistics of random sampling dictate that there always be some measure of disagree-

ment between empirical averages and expectations. When the expectations are taken

in the large-system limit, as ours are, there are additional small-N effects that appear

separate from random sampling effects. However, both sorts of effects should visibly

decline with increasing N .
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δ ρ µ λ∗ fMSE eMSE SE
0.100 0.095 5.791 1.258 0.136 0.128 0.0016
0.100 0.142 8.242 0.804 0.380 0.348 0.0064
0.100 0.170 12.901 0.465 1.045 0.950 0.0228
0.100 0.180 18.278 0.338 2.063 1.588 0.0619
0.250 0.134 5.459 0.961 0.374 .371 0.0028
0.250 0.201 7.683 0.592 1.028 1.023 0.0106
0.250 0.241 12.219 0.351 2.830 2.703 0.0448
0.250 0.254 17.314 0.244 5.576 5.619 0.0428
0.500 0.193 5.194 0.689 0.853 0.849 0.0047
0.500 0.289 7.354 0.400 2.329 2.296 0.016
0.500 0.347 11.746 0.231 6.365 6.237 0.0677
0.500 0.366 16.667 0.159 12.427 12.394 0.171

Table 6.4: Results at N = 4000. Theoretical and empirical MSE’s of LASSO(λ∗) at
nearly-least-favorable situations, together with standard errors (SE).

Table 6.4 presents results for N = 4000; we expect the discrepancies to shrink

when the experiments are run at larger value of N . We study the same ρ and δ that

were studied for N = 1500, and see that the mismatches in our MSE’s have grown

smaller with N .

Results at N = 8000

Small values of δ have the largest discrepancy specially when ρ is chosen very close

to the phase transition curve. To show that this discrepancy shrinks as we increase

the value of N , we do a similar experiment for δ = 0.10 but this time with N =

8000. Table 6.5 summarizes the results of this simulation and shows better agreement

between the formal predictions and empirical results.

The alert reader will no doubt have noticed that the discrepancy between theoret-

ical predictions and empirical results is in many cases quite a bit larger in magnitude

than the size of the formal standard errors reported in the above tables. We em-

phasize that the theoretical predictions are formal limits for the N →∞ case, while

empirical results take place at finite N . In both statistics and statistical physics it
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δ ρ µ λ∗ fMSE eMSE SE
0.100 0.095 5.791 1.258 0.136 0.131 0.0012
0.100 0.142 8.242 0.804 0.380 0.378 0.0046
0.100 0.170 12.901 0.465 1.045 1.024 0.0186
0.100 0.180 18.278 0.338 2.063 1.883 0.0458

Table 6.5: Results at N = 8000. Theoretical and empirical MSE’s of LASSO(λ∗) at
nearly-least-favorable situations with δ = 0.10, together with standard errors (SE) of
the empirical MSE’s

is quite common for mismatches between finite-N results and N -large to occur as ei-

ther O(N−1/2) (e.g. Gaussian approximation to the Poisson) or O(N−1) effects (e.g.

Gaussian approximation to fair coin tossing). Analogously, we might anticipate that

mismatches in this setting of order N−α with α either 1/2 or 1. Figure 6.9 presents

empirical and theoretical results taken from the cases N = 1500, 4000, and 8000

and displays them on a common graph, with y-axis a mean-squared error (empirical

or theoretical) and on the x axis the inverse system size 1/N . The case 1/N = 0

presents the formal large-system limit predicted by our calculations and the other

cases 1/N > 0 present empirical results described in the tables above. As can be

seen, the discrepancy between formal MSE and empirical MSE tends to zero linearly

with 1/N . (A similar plot with 1/
√
N on the x-axis would not be so convincing.)

Finding 6. The formal and empirical MSE’s at the quasi saddlepoint (ν∗, λ∗) show

statistical agreement at the cases studied, in the sense that either the MSE’s are con-

sistent with standard statistical sampling formulas, or, where they were not consistent

at N = 1500, fresh data at N = 4000 and N = 8000 showed marked reductions in the

anomalies confirming that the anomalies decline with increasing N .

Existence of game-theoretic saddlepoint in eMSE

Underlying our derivations of minimax formal MSE is a game-theoretic saddlepoint

structure, illustrated in Figure 6.10. The loss function MSE has the following struc-

ture around the quasi saddlepoint (ν∗, λ∗): any variation of µ to lower values, will

cause a reduction in loss, while a variation of λ to other values will cause an increase
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Figure 6.9: Finite-N scaling of empirical MSE. Empirical MSE results from the cases
N = 1500, N = 4000 and N = 8000 and δ = 0.1. Vertical axis: empirical MSE.
Horizontal axis: 1/N . Different colors/symbols indicate different values of the sparsity
control parameter δ. Vertical bars denote ±2SE limits. Theoretical predictions for
the N =∞ case appear at 1/N = 0. Lines connect the cases N = 1500 and N =∞.
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Figure 6.10: Saddlepoint in formal MSE. Right panel: Behavior of formal MSE as
λ is varied away from λ∗. Left panel: Behavior of formal MSE as µ is varied away
from µ∗ in the direction of smaller values. Black lines indicate locations of µ∗ and λ∗.
δ = 0.25, ρ = ρMSE(δ)/2.

in loss.

Other penalization gives larger MSE

If our formalism is correct in deriving optimal penalization for x̂1,λ, we will see that

changes of the penalization away from λ∗ will cause MSE to increase. We consider

the same situations as earlier, but now vary λ away from the minimax value, while

holding the other aspects of the problem fixed. In the appendix, Tables 6.7 and 6.8

presents numerical values of the empirical MSE obtained. Note the agreement of

formal MSE, in which a saddlepoint is rigorously proven, and empirical MSE, which

represents actual LARS/LASSO reconstructions. Also in this case we used R = 200

Monte Carlo replications.

To visualize the information in those tables, we refer to Figure 6.11.
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Figure 6.11: Scatterplots comparing Theoretical and Empirical MSE’s found in Tables
6.7 and 6.8. Left Panel: results at N = 1500. Right Panel: results at N = 4000.
Note visible tightening of the scatter around the identity line as N increases.

MSE with more favorable measures is smaller

In our formalism, fixing λ = λ∗, and varying µ to smaller values will cause a reduction

in formal MSE. Namely, if instead of µ∗(δ, ρ, 0.01) we used µ∗(δ, ρ, α) for α significantly

larger than 0.01, we would see a significant reduction in MSE, by an amount matching

the predicted amount.

Recall that mse(ν, τ) denotes the ‘risk’ (MSE) of scalar soft thresholding as in

Section 6.2, with input distribution ν, noise variance 1, and threshold τ . Now suppose

that mse(ν0, τ) > mse(ν1, τ). Then also the resulting formal noise-plus-interference

obeys fNPI(ν0, τ) > fNPI(ν1, τ). As noticed several times in Section 6.4.4, the formal

MSE of AMPT obeys fMSE(ν, τ) = mse(ν̃, τ) · fNPI(ν, τ), where ν̃ denotes a rescaled

probability measure (as in the proof of Proposition 6.4.5). Hence

fMSE(ν1, τ) ≤ mse(ν̃1, τ) · fNPI(ν0, τ) ,

where the scaling uses fNPI(ν0). In particular, for µ = µ∗(δ, ρ, α) = µ±(δ·ρ, α)
√

NPI∗(δ, ρ),
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the three point mixture: νδ,ρ,α has

fMSE(νδ,ρ,α, τ
∗) ≤ (1− α)M∗(δ, ρ),

and we ought to be able to see this. Table 6.9 shows results of simulations at N =

1500. The theoretical MSE drops as we move away from the nearly least favorable µ

in the direction of smaller µ, and the empirical MSE responds similarly.

Finding 7. The empirical data exhibit the saddlepoint structures predicted by the SE

formalism.

MSE of mixtures

The SE formalism contains a basic mathematical structure which allows one to infer

that behavior at one saddlepoint determines the global minimax value: behavior

under taking convex combinations (mixtures) of measures ν.

Let mse(ν, λ) denote the ‘risk’ (MSE) of scalar soft thresholding as in Section 6.2.

For such scalar thresholding, we have the affine relation

mse((1− γ)ν0 + γν1, τ) = (1− γ)mse(ν0, τ) + γ ·mse(ν1, τ) .

Now suppose that mse(ν0, τ) > mse(ν1, τ). Then also NPI(ν0, τ) > NPI(ν1, τ). The

formal MSE of AMPT obeys the scaling relation fMSE(ν, τ) = mse(ν̃, τ) · NPI(ν, τ),

where ν̃ denotes the rescaled probability measure, argument rescaled by 1/
√
NPI.

We conclude that

fMSE((1− γ)ν0 + γν1, τ) ≤ (1− γ) ·mse(ν̃0, τ) ·NPI(ν0, τ) + γ ·mse(ν̃1, τ) ·NPI(ν0, τ),

(6.25)

This ‘quasi-affinity’ relation allows to extend the saddlepoint structure from 3 point

mixtures to more general measures.

To check this, we consider two near-least-favorable measures, ν0 = νδ,ρ,0.02 and

ν1 = νδ,ρ,0.50. and generate a range of cases ν(α) = (1 − α)ν0 + αν1 by varying

alpha. When α 6∈ {0, 1} this is a 5 point mixture rather than one of the 3-point
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Figure 6.12: Convexity structures in formal MSE. Behavior of formal MSE of 5 point
mixture combining nearly least-favorable µ with discount of 1% and one with discount
of 50%. Also, the convexity bound (6.25) and the formal MSE of associated 3-point
mixtures is displayed. δ = 0.25, ρ = ρMSE(δ)/2.
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mixtures we have been studying. Figure 6.12 displays the convexity bound (6.25),

and the behavior of the formal MSE of this 5 point mixture. For comparison it also

presents the formal MSE of the 3 point mixture having its mass at the weighted

mean (1 − α)µ(δ, ρ, 0.02) + αµ(δ, ρ, 0.50). Evidently, the 5 point mixture typically

has smaller MSE than the comparable 3-point mixture, and it always is below the

convexity bound.

Finding 8. The empirical MSE obeys the mixture inequalities predicted by the SE

formalism.

6.5.2 Above phase transition

We conducted an empirical study of the formulas derived in Section 6.4.5. At δ =

0.25 we chose ρ = 0.401 - well above phase transition - and selected a range of τ

and γ values allowed by our formalism. For each pair γ, τ , we generated R = 200

Monte Carlo realizations and obtained LASSO solutions with the given penalization

parameter λ. The results are described in Table 6.6. The match between formal MSE

and empirical MSE is acceptable.

Finding 9. Running x̂1,λ at the 3-point mixtures defined for the regime above phase

transition in Lemma 6.4.6 yields empirical MSE consistent with the formulas of that

Lemma.

This validates the unboundedness of MSE of LASSO above phase transition.

6.6 Extensions

6.6.1 Positivity constraints

A completely parallel treatment can be given for the case where x0 ≥ 0. In that

setting, we use the positivity-constrained soft-threshold

η+(x; θ) =

{
x− θ if θ < x,

0 if x ≤ θ,
(6.26)
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and consider the corresponding positive-constrained thresholding minimax MSE [37]

M+(ε) = inf
τ>0

sup
ν∈F+

ε

E
{[
η+
(
X + σ · Z; τσ

)
−X

]2}
, (6.27)

where

F+
ε = {ν : ν is probability measure with ν[0,∞) = 1, ν({0}) ≥ 1− ε}.

We consider the positive-constrained `1-penalized least-squares estimator x1,λ,+, the

solution to

(P+
2,λ,1) minimizex≥0

1

2
‖y − Ax‖2

2 + λ‖x‖1. (6.28)

We define the minimax, formal noise sensitivity:

M+,∗(δ, ρ) = sup
σ>0

max
ν

min
λ

fMSE(x1,λ,+, ν, σ2)/σ2; (6.29)

here ν ∈ F+
ρδ is the marginal distribution of x0. Let ρ+

MSE(δ) denote the solution of

M+(ρδ) = δ . (6.30)

In complete analogy to (6.5) we have the formula:

M+,∗(δ, ρ) =

{
M+(δρ)

1−M+(δρ)/δ
, ρ < ρ+

MSE(δ),

∞, ρ ≥ ρ+
MSE(δ).

(6.31)

The argument is the same as above, using the AMP formalism, with obvious

modifications. All other features of Proposition 6.3.7 carry over, with obvious sub-

stitutions. Figure 6.13 shows the phase transition for the positivity constrained case,

as well as the contour lines of M+,∗. Again in analogy to the sign-unconstrained

case, the phase boundary ρ+
MSE occurs at precisely the same location at the phase

boundary for `1-`0 equivalence;
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Figure 6.13: Contour lines of the positivity-constrained minimax noise sensitivity

M∗,+(δ, ρ) in the (ρ, δ) plane. The dotted black curve graphs the phase boundary

(δ, ρ+
MSE(δ)). Above this curve, M∗,+(δ, ρ) = ∞. The colored lines present level sets of

M∗,+(δ, ρ) = 1/8, 1/4, 1/2, 1, 2, 4 (from bottom to top).
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6.6.2 Other classes of matrices

We focused here on matrices A with Gaussian iid entries.

Previously, extensive empirical evidence was presented by Donoho and Tanner [46],

that pure `1-minimization has its `1-`0 equivalence phase transition at the boundary

ρ±MSE not only for Gaussian matrices but for a wide collection of ensembles, including

partial Fourier, partial Hadamard, expander graphs, iid ±1. This is the noiseless,

λ = 0 case of the general noisy, λ ≥ 0 case studied here.

We believe that similar results to those obtained here hold for matrices A with

uniformly bounded iid entries with zero mean and variance 1/n. In fact, we believe

our results should extend to a broader universality class including matrices with iid

entries with same mean and variance, under an appropriate light tail condition.

6.7 Tables

This appendix contains table of empirical results supporting our claims.
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δ ρ γ µ τ λ fMSE eMSE
0.250 0.401 0.75 2.8740 1.500 0.9840 0.750 0.746
0.250 0.401 0.85 4.142 1.500 1.168 1.417 1.425
0.250 0.401 0.90 5.345 1.500 1.366 2.250 2.239
0.250 0.401 0.95 7.954 1.500 1.841 4.750 4.724
0.250 0.401 0.97 10.4781 1.500 2.328 8.083 8.126
0.250 0.401 0.98 12.9628 1.500 2.822 12.250 12.327
0.250 0.401 0.99 18.5172 1.500 3.949 24.750 24.601
0.250 0.401 0.995 26.3191 1.500 5.5558 49.750 49.837
0.250 0.401 0.75 2.9031 2.000 2.8766 1.417 1.409
0.250 0.401 0.85 4.058 2.000 3.626 2.250 2.238
0.250 0.401 0.90 5.158 2.000 4.385 2.250 2.238
0.250 0.401 0.95 7.560 2.000 6.122 4.750 4.742
0.250 0.401 0.97 9.897 2.000 7.861 8.083 8.054
0.250 0.401 0.98 12.205 2.000 9.6019 12.250 12.215
0.250 0.401 0.99 17.380 2.000 13.5425 24.750 24.634
0.250 0.401 0.995 24.662 2.000 19.1260 49.750 49.424
0.250 0.401 0.75 2.817 2.500 4.501 1.417 1.409
0.250 0.401 0.85 3.896 2.500 5.750 2.250 2.241
0.250 0.401 0.90 4.926 2.500 7.004 2.250 2.241
0.250 0.401 0.95 7.181 2.500 9.848 4.750 4.712
0.250 0.401 0.97 9.380 2.500 12.6846 8.083 8.050
0.250 0.401 0.98 11.555 2.500 15.5170 12.250 12.215
0.250 0.401 0.99 16.436 2.500 21.9183 24.750 24.619
0.250 0.401 0.995 23.311 2.500 30.9786 49.750 49.442
0.250 0.401 0.75 2.7649 3.000 5.8144 1.417 1.408
0.250 0.401 0.85 3.809 3.000 7.4730 2.250 2.241
0.250 0.401 0.90 4.806 3.000 9.131 2.250 2.241
0.250 0.401 0.95 6.991 3.000 12.880 4.750 4.735
0.250 0.401 0.97 9.125 3.000 16.6113 8.083 8.053
0.250 0.401 0.98 11.236 3.000 20.3339 12.250 12.218
0.250 0.401 0.99 15.975 3.000 28.7413 24.750 24.621
0.250 0.401 0.995 22.652 3.000 40.6356 49.750 49.419

Table 6.6: Results above Phase transition. Parameters of the construction as well as
theoretical predictions and resulting empirical MSE figures
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Table 6.7: N = 1500, λ dependence of the MSE at fixed µ

δ ρ µ λ fMSE eMSE SE

0.100 0.095 5.791 0.402 0.152 0.140 0.0029
0.100 0.095 5.791 1.258 0.136 0.126 0.0029
0.100 0.095 5.791 3.169 0.174 0.164 0.0028
0.100 0.095 5.791 4.948 0.239 0.228 0.0025

0.100 0.142 8.242 0.804 0.380 0.329 0.0106
0.100 0.142 8.242 1.960 0.408 0.374 0.0087
0.100 0.142 8.242 3.824 0.534 0.504 0.0084
0.100 0.142 8.242 6.865 0.737 0.716 0.0059

0.100 0.180 18.278 0.338 2.063 1.263 0.0860
0.100 0.180 18.278 2.934 2.467 1.573 0.0741
0.100 0.180 18.278 7.545 3.474 3.167 0.0569
0.100 0.180 18.278 14.997 4.677 4.438 0.0321

0.250 0.134 5.459 0.518 0.403 0.390 0.0044
0.250 0.134 5.459 0.961 0.374 0.373 0.0046
0.250 0.134 5.459 2.165 0.452 0.455 0.0053
0.250 0.134 5.459 3.555 0.623 0.612 0.0042

0.250 0.201 7.683 0.036 1.151 1.155 0.0174
0.250 0.201 7.683 0.592 1.028 1.002 0.0170
0.250 0.201 7.683 2.243 1.324 1.293 0.0158
0.250 0.201 7.683 4.392 1.861 1.837 0.0114

0.250 0.254 17.314 0.244 5.576 5.169 0.1978
0.250 0.254 17.314 1.433 6.291 5.992 0.1712
0.250 0.254 17.314 3.855 8.667 8.492 0.1148
0.250 0.254 17.314 8.886 12.154 11.978 0.0697

0.500 0.193 5.194 0.176 1.121 1.108 0.0080
0.500 0.193 5.194 0.470 0.894 0.879 0.0070
0.500 0.193 5.194 0.933 0.866 0.862 0.008
0.500 0.193 5.194 1.355 0.965 0.960 0.0078
0.500 0.193 5.194 2.237 1.273 1.263 0.0075

0.500 0.289 7.354 0.179 2.489 2.438 0.0262
0.500 0.289 7.354 0.400 2.329 2.251 0.0254
0.500 0.289 7.354 0.655 2.377 2.329 0.0268
0.500 0.289 7.354 1.137 2.728 2.718 0.0256
0.500 0.289 7.354 2.258 3.704 3.672 0.0212

0.500 0.366 16.666 0.159 12.427 11.580 0.2998
0.500 0.366 16.666 0.582 13.300 13.565 0.2851
0.500 0.366 16.666 1.491 17.028 17.194 0.2082
0.500 0.366 16.666 3.769 23.994 23.571 0.1409
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Table 6.8: N = 4000, λ dependence of the MSE at fixed µ

δ ρ µ λ fMSE eMSE SE

0.100 0.095 5.791 0.402 0.152 0.144 0.0017
0.100 0.095 5.791 1.258 0.136 0.128 0.0016
0.100 0.095 5.791 2.037 0.142 0.133 0.0016
0.100 0.095 5.791 3.169 0.174 0.168 0.0016
0.100 0.095 5.791 4.948 0.239 0.228 0.0012
0.100 0.142 8.242 0.804 0.380 0.348 0.0064
0.100 0.142 8.242 1.960 0.408 0.389 0.0058
0.100 0.142 8.242 3.824 0.534 0.510 0.0051
0.100 0.142 8.242 6.865 0.737 0.716 0.0034
0.100 0.180 18.278 0.338 2.063 1.588 0.0619
0.100 0.180 18.278 2.934 2.467 2.171 0.0532
0.100 0.180 18.278 7.545 3.474 3.367 0.0312
0.100 0.180 18.278 14.997 4.677 4.551 0.0169

0.150 0.109 5.631 0.420 0.236 0.228 0.0022
0.150 0.109 5.631 1.073 0.212 0.209 0.0023
0.150 0.109 5.631 1.700 0.218 0.213 0.0021
0.150 0.109 5.631 2.657 0.260 0.251 0.0024
0.150 0.109 5.631 4.284 0.359 0.353 0.0017
0.150 0.163 8.030 0.720 0.588 0.595 0.0072
0.150 0.163 8.030 1.614 0.626 0.610 0.0078
0.150 0.163 8.030 3.135 0.804 0.807 0.0058
0.150 0.163 8.030 5.868 1.125 1.118 0.0047
0.150 0.207 17.814 0.305 3.185 2.864 0.0861
0.150 0.207 17.814 2.231 3.715 3.582 0.0722
0.150 0.207 17.814 5.879 5.202 5.141 0.0439
0.150 0.207 17.814 12.455 7.142 7.154 0.0269
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Table 6.9: N = 1500, µ dependence of the MSE at fixed λ

δ ρ µ λ fMSE eMSE SE

0.100 0.095 5.291 1.253 0.131 0.125 0.0022
0.100 0.095 5.541 1.256 0.134 0.132 0.0025
0.100 0.095 5.691 1.257 0.135 0.126 0.0027
0.100 0.095 5.791 1.258 0.136 0.129 0.0024
0.100 0.095 5.891 1.259 0.137 0.125 0.0027
0.100 0.095 6.041 1.260 0.138 0.126 0.0030
0.100 0.095 6.291 1.262 0.139 0.127 0.0028
0.100 0.095 6.791 1.264 0.141 0.125 0.0031
0.100 0.142 7.242 0.794 0.349 0.317 0.0074
0.100 0.142 7.742 0.800 0.366 0.335 0.0084
0.100 0.142 7.992 0.802 0.373 0.351 0.0089
0.100 0.142 8.000 0.802 0.373 0.362 0.0094

0.250 0.134 4.459 0.952 0.338 0.336 0.0036
0.250 0.134 5.209 0.959 0.367 0.356 0.0044
0.250 0.134 5.459 0.961 0.374 0.362 0.0047
0.250 0.134 5.559 0.962 0.376 0.367 0.0045
0.250 0.134 5.709 0.962 0.379 0.372 0.0048
0.250 0.134 5.959 0.963 0.383 0.362 0.0052
0.250 0.134 6.459 0.964 0.387 0.387 0.0058
0.250 0.201 6.683 0.587 0.939 0.899 0.0126
0.250 0.201 7.183 0.590 0.988 0.965 0.0147
0.250 0.201 7.433 0.591 1.009 0.956 0.0147
0.250 0.201 7.583 0.592 1.021 1.027 0.0155

0.500 0.193 4.194 0.684 0.769 0.770 0.0052
0.500 0.193 4.694 0.687 0.818 0.823 0.0066
0.500 0.193 4.944 0.688 0.837 0.838 0.0073
0.500 0.193 5.294 0.689 0.858 0.845 0.0079
0.500 0.193 5.444 0.690 0.865 0.863 0.0079
0.500 0.193 5.694 0.690 0.874 0.887 0.0085
0.500 0.193 6.194 0.691 0.886 0.868 0.0085
0.500 0.289 6.354 0.398 2.119 2.071 0.0195
0.500 0.289 6.854 0.399 2.234 2.214 0.0235
0.500 0.289 7.254 0.400 2.313 2.271 0.0244
0.500 0.289 7.454 0.400 2.346 2.287 0.0287
0.500 0.289 7.604 0.400 2.370 2.327 0.0306
0.500 0.289 7.854 0.401 2.404 2.339 0.0284
0.500 0.289 8.000 0.401 2.422 2.409 0.0300
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Table 6.10: N = 1500, MSE for 5-point prior

δ ρ µ λ Theoretical MSE Empirical MSE α

0.250 0.134 1.894 0.857 0.120 0.151 0
0.250 0.134 2.171 0.897 0.162 0.163 0.122
0.250 0.134 2.447 0.901 0.178 0.177 0.244
0.250 0.134 2.724 0.906 0.196 0.195 0.366
0.250 0.134 3.001 0.912 0.215 0.210 0.488
0.250 0.134 3.277 0.918 0.237 0.236 0.611
0.250 0.134 3.554 0.926 0.261 0.257 0.7333
0.250 0.134 3.830 0.935 0.287 0.280 0.8556
0.250 0.134 4.107 0.945 0.317 0.307 0.9778
0.250 0.134 4.383 0.957 0.348 0.359 1.1000



Chapter 7

AMP Versus Other First Order

Methods

Consider the simplest form of a convex optimization problem

min
x∈RN

f(x), (7.1)

where f is a differentiable convex function. Iterative approaches are used to ap-

proximate the optimal point when the exact solution cannot be calculated explicitly.

According to the type of information an iterative algorithm uses at each step, it may

be categorized as zeroth, first, second ,... order method. Suppose that the algo-

rithm is iterative and our estimate of the optimal point x∗ at iteration t is called

xt. Zeroth-order methods just use the values of f(x1), f(x2), . . . , f(xt) to propose

the next estimate. First-order methods however are allowed to use the gradients of

the function at those points as well. Clearly, second-order methods also exploit the

Hessian of the function and so on. From the computational complexity point of view,

each iteration of zeroth-order method is using cheaper information than the first-order

method, and the computational complexity of each iteration increases as the order

goes up. However, it should be mentioned that the higher order methods are able to

make a ‘bigger step’ toward the solution at each step. An example of a zeroth-order

method is to first find a compact set in which the optimum lies and define a grid

180
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on that set and evaluate the function at all the points of the grid. An example of

a first-order method is gradient descent; finally, Newton’s method is a well-known

second-order method. Following [83] we define the function class Ck,`
L (Q): The class

of convex functions obeying

1. f is k times continuously differentiable.

2. Its `th derivative is Lipschitz Continuous on Q with Lipschitz constant L.

Also we will use the following definition several times in this chapter. Let (H, ‖ · ‖)
be a Hilbert space.

Definition 7.0.1. An operator T : H → H is nonexpansive if it satisfies the following

property:

‖Tx− Ty‖ ≤ ‖x− y‖. ∀(x, y) ∈ H ×H.

7.1 Proximity operator

Our goal in this section is to consider a few different optimization problems and pro-

pose seemingly different first-order approaches for solving them. Then we introduce

the proximity operator and show how it unifies all these problems. The material of

this section is taken from [83], [17], [107], [26] and the interested reader may consult

these references for further information.

7.1.1 Unconstrained problem

Let f be a differentiable, convex function and suppose that the goal is to find

min
x∈RN

f(x). (7.2)

The most well-known first-order method for the above problem is the gradient descent

which uses the following iteration:

xt+1 = xt − αtOf(xt), (7.3)
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where αt is the step size that can be set from many different heuristics including back-

tracking or Barzilai-Borwein. We will discuss the convergence rate of this algorithm

and several ways to improve it later in this chapter.

7.1.2 Optimization over ‘easy’ convex sets

Consider the following optimization problem:

min
x∈C

f(x), (7.4)

where C is a closed, convex set. Also suppose that finding the solution of the following

minimization is cheap:

PC(x) = arg min
y∈C
‖y − x‖2. (7.5)

For example, if C = {y : ‖y‖2 ≤ 1}, PC(x) = x
‖x‖2 , and if C = {y : ‖y‖∞ ≤ 1}, then

(PC(x))i =


1 if 1 < xi,

xi if −1 ≤ xi ≤ 1,

1 if xi < −1.

Lemma 7.1.1. The projection operator PC is nonexpansive:

‖PC(x)− PC(y)‖2 ≤ ‖x− y‖2, ∀x, y ∈ dom(PC).

dom(PC) is the domain of PC.

The proof of this statement is simple and therefore we skip it. The following gener-

alized gradient descent iteration can be used for solving this problem:

xt+1 = PC(x
t − αtOf(xt)). (7.6)

We will discuss the convergence of this algorithm later in this chapter.
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7.1.3 ‘Easy’ non-differentiable functions

Now consider the following optimization problem:

min
x∈RN

f(x) + g(x), (7.7)

where, as before, f is a differentiable convex function. g is also convex but non-

differentiable. In addition to the above assumptions, suppose that g has the property

that it is easy to solve the following optimization problem:

Proxαg(x) = arg min
1

2
‖y − x‖2

2 + αg(y). (7.8)

This is called the proximity operator of the function g. For example a well-known

example of the proximity operator is Proxαg(x) = η(x;α) which is the proximity

operator of g(x) = ‖x‖1. The following two lemmas taken from [26] will be useful in

our discussions in this chapter.

Lemma 7.1.2. Given the proximity operator of a function g we can calculate the

proximity operator of its dual function g∗ from,

Proxαg∗(x) = x− αProx 1
α
g(
x

α
);

Proof. According to the definition,

Proxαg∗(x) = arg min
y

1

2
‖x− y‖2

2 + αg∗(y).

If we write the definition of g∗ we obtain

min
y

1

2
‖x− y‖2

2 + αg∗(y) = min
y

1

2
‖x− y‖2

2 + αmax
z
〈z, y〉 − g(y)

1
=

max
z

min
y

1

2
‖x− y‖2

2 + α〈z, y〉 − αg(y) = max
z
−1

2
‖αz‖2

2 + α〈x, z〉 − αg(z) =

1

2
‖x‖2

2 −min
z
‖x− αz‖2

2 + αg(z),

where equality 1 is true since the function is convex in terms of y and concave in
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terms of z. Therefore, z∗ = Prox 1
α
g(
x
α

) and Proxαg∗(x) = y∗ = x − αz∗ = x −
αProx 1

α
g(
x
α

).

It is easy to see from the above lemma that Proxg(x) + Proxg∗(x) = x; this is

called Moreau’s decomposition. We return to this point in the next section.

Lemma 7.1.3. For a convex function g, Proxαφ(x) is a non-expansive operator.

Proof. Suppose that ∂g(x) represents the set of all subgradients of function f at x.

For u ∈ ∂g(Proxαg(x)) we have

g(Proxαg(z)) ≥ g(Proxαg(x)) + 〈u,Proxαg(z)− Proxαg(x)〉.

From the Karush-Kuhn-Tucker or KKT condition we have, (Proxαg(x) − x)/α ∈
∂g(Proxαg(x)). Therefore,

g(Proxαg(z)) ≥ g(Proxαg(x)) + 〈Proxαg(x)− x,Proxαg(z)− Proxαg(x)〉.

Similarly,

g(Proxαg(x)) ≥ g(Proxαg(z)) + 〈Proxαg(z)− z,Proxαg(x)− Proxαg(z)〉.

Adding these two we obtain

‖Proxαg(x)− Proxαg(z)‖2 ≤ 〈Proxαg(x)− Proxαg(z), x− z〉

≤ ‖Proxαg(x)− Proxαg(z)‖‖x− z‖.

f we assume that the proximity operator can be calculated easily for function g

in (7.7), then we can use generalized gradient descent algorithm for this problem; its

main iteration is given by

xt+1 = Proxαg(x
t − αtOf(xt)). (7.9)
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We will analyze the convergence rates of these algorithms in Section 7.2.

7.1.4 One framework for all

So far we have mentioned three seemingly different problems and proposed similar

approaches for each of them. It turns out that all these algorithms can be derived from

a general framework. This framework has already been introduced in the last section.

Proximity operators provide us a tool to derive generalized gradient descent algorithm.

As a first step to demonstrate this claim let us show that projection operators are

proximity operators themselves. Consider a new type of indicator function

ıC(x) =

{
0 if x ∈ C,
∞ if x /∈ C.

By using this function we can write optimization (7.4) as

min
x∈RN

f(x) + ıC(x),

which is in the form (7.7). It is not difficult to check that the proximity operator of

ıC(x) is the projection operator. Now consider the minimization problem (7.7) and

suppose that the current estimate of the optimal solution x∗ is xt and the goal is to

give a new estimate for time t+ 1. Since f is differentiable we approximate it with a

quadratic function and then do the minimization on the quadratic function

xt+1 = arg min
z∈RN

f(xt) + 〈Of(xt), z − xt〉+
1

αt
‖z − xt‖2

2 + g(z),

which results in

xt+1 = Proxαtg(x
t − αtOf(xt)). (7.10)

If g was zero, the proximity operator would be equal to the identity and the algorithm

would be the same as gradient descent algorithm. Another approach to derive this

generalized gradient descent algorithm is the majorization-minimization approach.
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Suppose that f ∈ C1,1
L ((R)). Then, we have

f(x) + g(x) ≤ f(xt) + 〈x− xt,Of(xt)〉+
1

2αt
‖x− xt‖2

2 + g(x), (7.11)

where αt < 1
L

is assumed here. In other words, the convex function is majorized by a

quadratic cost function plus g(x). Now if we minimize the right hand side, we again

obtain the gradient descent algorithm.

Theorem 7.1.4. [107] Suppose that f ∈ C1,1
L ((R)) and αt < 1

L
. Under these two

assumptions, every step of the generalized gradient descent reduces the composite cost

function, i.e., f(xt+1) + g(xt+1) ≤ f(xt) + g(xt). Furthermore, if f(xt+1) + g(xt+1) =

f(xt) + g(xt) then xt+1 = xt and xt is one of the minimizers of f(x) + g(x).

Proof. we know that

f(x) + g(x) ≤ f(xt) + 〈x− xt,Of(xt)〉+
1

2αt
‖x− xt‖2

2 + g(x), ∀x ∈ RN .

Therefore,

f(xt+1) + g(xt+1) ≤ f(xt) + 〈xt+1 − xt,Of(xt)〉+
1

2αt
‖xt+1 − xt‖2

2 + g(xt+1)

1

≤ f(xt) + g(xt).

Inequality (1) is due to the fact that xt+1 minimizes the right hand side and hence

the proof of the first part is complete. For proving the second part we use the above

inequalities. If f(xt+1) + g(xt+1) = f(xt) + g(xt) then

f(xt+1) + g(xt+1) ≤ f(xt) + 〈xt+1 − xt,Of(xt)〉+
1

2αt
‖xt+1 − xt‖2

2 + g(xt+1).

and since αt < 1
L

we see that xt+1 = xt. Also, since we know that xt+1 is the minimizer

of (7.11) we see that −Of(xt) ∈ ∂g(xt).
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7.1.5 First order methods for compressed sensing

So far in this chapter we have focused on general convex optimization problems and

mentioned how one can design generalized gradient descent for a class of convex

optimization problems. Using the proximity operator for solving the `1-minimization

problem has been an active area of research in the last decade. Here is a list of papers

published in the last several years in this area [24], [63], [28], [49], [26], [47],[70], [115],

[57], [106], [56], [55], [113], [113], [50], [51], [64], [6], [9], [75], [38], [84], [7], [18], [86],

[16]. To remind our notation, the measurement matrix is called A ∈ Rn×N which is

drawn at random from a distribution. We measure a signal xo through the matrix

A, i.e., y = Axo + w, where w is the measurement noise. The ultimate goal is to

recover xo from the measurements y. As mentioned in chapter 3, `1-minimization

provides the highest phase transition among several algorithms that we examined in

that chapter. Suppose that we are interested in solving the following optimization

problem:

min
x

1

2
‖y − Ax‖2

2 + λ‖x‖1. (7.12)

Since calculating the proximity operator for ‖x‖1 is straightforward we use the gen-

eralized gradient descent algorithm for solving this problem. The resulting algorithm

is

xt+1 = η(xt + αtA∗(y − Axt);αtλ), (7.13)

which is the very similar in form to the iterative soft thresholding algorithm that we

suggested before. The main difference is that λ does not change with time. The cost

per iteration of this algorithms is very low, however the important question that shall

be addressed here is the rate of convergence. There are two different approaches to

address this problem. Deterministic and statistical. The most popular approach for

analyzing algorithms in convex optimization is deterministic, where we first define a

class of functions, and derive an upper bound on the convergence rate of the algorithm

that holds for all the problems in this subclass. On the other hand in the statistical

approach there is some randomness in the problem. For instance, the measurement

matrix A is random in any recovery algorithm of compressed sensing. Therefore, here

we change the notion of convergence rate to the expected convergence rate, i.e., we



188 CHAPTER 7. AMP VERSUS OTHER FIRST ORDER METHODS

measure the convergence rate of 1
N
E‖xt − x∗‖2. Since we are usually interested in

large problem sizes, we may consider limN→∞
1
N
E‖xt − x∗‖2. As we will see in the

next section, the deterministic approach is of limited use in compressed sensing and

a better way to analyze the algorithms is the statistical approach.

7.2 Analyzing the convergence rate

In this section we first discuss the deterministic approach for calculating the con-

vergence rate of algorithms. We then demonstrate the advantage of the statistical

approach by a simple example. Finally, we will explain the statistical approach for

compressed sensing problems.

7.2.1 Drawback of deterministic approach

Let F be a class of convex functions. Also, let A be a class of iterative algorithms for

solving the optimization problems minx f(x) for f ∈ F . We use the notation xta,f for

the estimate of algorithm a ∈ A on the function f ∈ F at time t. Further, assume

that X∗f is the set of minimizers of f . Define d(xta,f , X
∗
f ) = infx∗∈X∗ ‖xta,f − x∗‖2.

Inspired by [83], we define the following two minimax errors at iteration t:

MSEt(F ,A) = min
a∈A

max
f∈F

d(xta,f , X
∗
f ),

PEt(F ,A) = min
a∈A

max
f∈F

[f(xta,f )− f(x∗f )],

where X∗f is the set of minimizers of f and x∗f ∈ X∗f . We call the first one minimax

mean square error at time t and the second one minimax prediction error at time t. In

the next section we will provide a lower bound for the minimax errors on compressed

sensing problems.
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Lower bound for the deterministic convergence rate

Consider the following class of functions:

Pn,NL = {f(x) =
1

2
‖y − Ax‖2

2 + λ‖x‖1 : A ∈ Rn×N & ‖A∗A‖2→2 ≤ L}.

This is the class of functions we are interested in compressed sensing. Also let Afo
be the class of all first-order methods. The following theorem provides a lower bound

on the minimax mean square and prediction errors.

Theorem 7.2.1. Consider the class of functions Pn,NL . For any given L, n,N, and

for any t ≤ n−1
2

,

PEt(Pn,NL ,Afo) ≥ CL
‖x0 − xo‖2

(t+ 1)2
,

MSEt(Pn,NL ,Afo) ≥
1

5
‖x0 − xo‖.

Our proof is very similar to the proof given for differentiable functions in [83]. We

will cook up a problem instance for which the performance of the first-order methods

is lower bounded by the above formulas. For the complete proof, please refer to F.1.

Note: As is clear from the above theorem and explained in the previous section,

the convergence rate given for ‖xt − x∗‖2 is very disappointing and we could not use

first-order methods if it was true. However, this result is pessimistic since it considers

a problem that has a very specific structure.

Considering the class Pn,NL we can now analyze the convergence rate of iterative

soft thresholding for a fixed value of threshold. Since Theorem 7.2.1 rules out the

possibility of providing any deterministic rate for the convergence of ‖xt−x∗‖2 we just

consider the convergence of f(xt) − f(xo). The following theorem due to [6] bounds

the prediction error of the iterative soft thresholding algorithm.

Theorem 7.2.2. [6] For any f ∈ Pn,NL , the estimates of iterative soft thresholding,

given by

xt+1 = η(xt +
1

L
A∗(y − Axt); λ

L
),
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satisfies

f(xt)− f(x∗) ≤ CL
‖x0 − xo‖2

t+ 1
.

In 1983 Nesterov [82] suggested an algorithm for differentiable functions to achieve

the lower bound of the minimax prediction error derived in Theorem 7.2.1. This algo-

rithm has been extended to the `1-minimization problem by using proximal operators;

see [6],[84]. The algorithm proceeds as follows:

xt+1 = η(zt + αtA∗(y − Azt);λαt),

zt = xt +
t− 1

t+ 2
(xt − xt−1). (7.14)

This algorithm is also known as FISTA which stands for fast iterative soft thresholding

algorithm. The next theorem due to [6] and [82] proves that this algorithm achieves

the lower bound of the minimax prediction error at time t.

Theorem 7.2.3. For any f ∈ Pn,NL , FISTA given by (7.14) obeys,

f(xt)− f(x∗) ≤ CL
‖x0 − xo‖2

(t+ 1)2
.

The interested reader may refer to [6].

We finish this section by emphasizing that since the deterministic approach does not

provide any bound on the convergence of ‖xt−x∗‖, it is of a limited use in compressed

sensing.

7.2.2 Linear system: motivating example

In this section we consider an example of an iterative approach for solving linear

system of equations and show how the statistical convergence rate can be calculated

by using asymptotic arguments. We also compare the statistical error at iteration t

with the minimax error introduced in the last section.

Example 7.1. Suppose that A ∈ Rn×n is a symmetric matrix and the upper

triangular elements and the diagonal elements are iid N(0, 1
n
). We define a new
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positive definite matrix B = (I + 1
2
A). The elements of x∗ are again iid FX(x) with

the following two properties, EF (X) = 0, EF (X2) = 1. We form a vector y = Bx∗

and the goal is to find x∗ with the following iteration:

xt+1 = xt +
1

2
(y −Bxt).

The algorithm starts at x0 = 0. The goal is to calculate the expectation of the mean

square error at iteration t in the asymptotic setting.

xt − xo =
1

2t
(I − 1

2
A)t(x0 − xo).

Therefore,

E
1

n
(‖xt − xo‖2

2) =
1

n22t
ETr(I − 1

2
A)2t,

According to Lemma C.0.8 and Theorem C.0.3,

lim
n→∞

1

n22t
ETr(I − 1

2
A)2t =

1

22t
E(1− γ

2
)2t,

where the second expectation is with respect to Wigner semicircle law, explained in

Appendix C.

1

22t
E(1− γ

2
)2t =

1

2π22t

∫ 2

−2

(1− γ

2
)2t
√

(4− γ2)dγ

=
1

2π42t

∫ 2

−2

(2− γ)2t+1/2
√

2 + γ.



192 CHAPTER 7. AMP VERSUS OTHER FIRST ORDER METHODS

By changing the integration variable to ω =
√

2 + γ we have

1

22t
E(1− γ

2
)2t =

1

2π42t

∫ 2

−2

(2− γ)2t+1/2
√

2 + γ

=
1

2π42t

∫ 2

0

ω2(4− ω2)2t+1/2dω

1
=

2

2π42t(2t+ 3/2)

∫ 2

0

(4− ω2)(2t+3/2)dω

2
=

42t+3/2

π42t(2t+ 3/2)

∫ π/2

0

cos4t+4 θdθ

=
4

π(t+ 3/4)

∫ π/2

0

cos4t+4 θdθ.

(1) is the result of integration by parts for u = ω and dv = ω(4 − ω2)2t+1/2dω. (2)

is the result of another change of variable ω = 2 cos(θ). For the last integral we

can use integration by parts to derive
∫ π/2

0
cos4t+4(θ)dθ = 4t+3

4t+4

∫ π/2
0

cos4t+2(θ)dθ and

therefore,
∫ π/2

0
cos4t+4(θ)dθ = (4t+3)(4t+1)...1

(4t+4)(4t+2)...2
π
2
. Figure 7.1 compares the theoretical

value predicted by the above formula with the result of Monte Carlo simulations on

a medium size problem.

There are a couple of points about the above example that are worth mentioning:

Relatively fast convergence: It is clear that as t grows, the algorithm convergence is

O(1/t). This is faster than the rate predicted by the deterministic framework.1

Coefficient universality: One of the remarkable properties of the above algorithm is

that the convergence does not depend on the distribution of the coefficients and we

only need EF (X) = 0, EF (X2) = 1. Therefore on a wide range of distributions the

performance of the algorithm is the same. We call this phenomenon ‘coefficient uni-

versality’ of the above algorithm.

1Since the maximum eigenvalue is converging to one, the problem is not strongly convex and
therefore, the minimax mean square error at iteration t < n/2 is lower bounded by ‖x0 − x∗‖2/5.
For more information, see [83]
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Figure 7.1: Comparison of the theoretical asymptotic prediction provided in Example
7.1 for a linear system and the Monte Carlo simulation result on a medium size
problem, n = 1000. Elements of xo are iid N(0, 1), 1000 Monte Carlo simulations are
considered. The bars show 95 percent confidence intervals.

Matrix universality: Although the matrix is drawn at random from N(0, 1/n), all the

arguments can be extended to more general distributions with no effort. For example,

the semicircle law holds for all the distributions with EF (X2) = 1/n and EF (X) = 0

and the sub-gaussianity argument is also true for any sub-gaussian matrix [108]. In

other words, for a wide range of matrix ensembles the performance of the algorithm

is the same. This phenomenon is called ‘matrix universality’.

As summarized in the above example the statistical approach for analyzing sparse

recovery algorithms is more suitable for compressed sensing problems. However, un-

fortunately except for the AMP algorithm, the main focus has been on the deter-

ministic convergence rates of different algorithms. In the next section, we discuss the

statistical convergence rates for the `1-minimization problem.
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7.2.3 Average case convergence for CS problems

In the average case performance analysis, we exploit the randomness of A and instead

of calculating ‖xt − xo‖2
2 on the worst possible case we consider E(‖xt − xo‖2

2). Since

we are interested in very high dimensional problem sizes, we consider the convergence

of limN→∞
1
N
E(‖xt − xo‖2

2) while δ = n/N and ρ = k/n are fixed. In order to show

the strength of this type of analysis we mention the following theorem for the AMP

algorithm from [38],[4].

Theorem 7.2.4. [38],[4] Suppose that the elements of the measurement matrix are

iid N(0, 1/n). For δ ∈ [0, 1], ρ < ρSE(δ), the formal MSE of optimally-tuned AMP

evolves to zero under SE. Furthermore, there exists b > 0 with the following property.

lim
N→∞

1

N
E‖xt − xo‖2

2 ≤ e−bt lim
N→∞

1

N
E‖x0 − xo‖2

2.

In other words, although AMP is a first-order method it converges exponentially fast

in the MSE sense. As mentioned before the AMP algorithm matches the statistical

framework we proposed in the last section and therefore we could analyze it theo-

retically. However there is not much information about the statistical convergence

of FISTA, IST and other first-order methods. In this thesis, we use the tools we

developed in this thesis in addition to an empirical approach to analyze these algo-

rithms. We will first analyze the effects of coefficient ensemble and matrix ensemble

on the performance of different algorithms. The last section will be devoted to the

comparison of the average performance of different first-order methods.

7.3 Difficulty of compressed sensing problems

We observed that in the specific problem mentioned in Example 7.1, the mean square

error at iteration t did not depend on the matrix ensemble or coefficient ensemble.

The goal of this section is to discuss the effects of matrix distribution and coefficient

distribution on the performance of several popular first-order methods for compressed

sensing.
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7.3.1 Notations

We consider the sparse recovery problem in the presence of noise. Let y = Axo + w,

where xo is the signal to be recovered, and w is iid N(0, ω). We denote a prob-

lem instance by Θ = (DA, G, ε; δ, ν). DA represents the distribution from which

the matrix is drawn, G is the probability density function of non-zero elements of

xo
2, and ε is the probability that an element of xo is non-zero. In other words,

xo,i ∼ (1− ε)δ0(xo,i) + εG(xo,i), where xo,i is the ith element of the vector xo. Finally

δ = n/N and ν = w/EG(X2). Suppose that xt is a sequence resulting from one of the

algorithms. We define the mean-time-to-converge as t(α) , inf{t0 : limN→∞ E‖xt −
xo‖2

2/E‖xo‖2
2 ≤ α ∀t > t0}. t(α) depends on both the problem instance and the

algorithm. It is also worth mentioning that if xt does not converge to xo in the mean

square sense, then t(α) will be infinite for α < limt→∞ limN→∞ E‖xt − xo‖2
2/E‖xo‖2

2.

Also, according to [38], limN→∞ E‖xt−xo‖2
2 for these problem instances may converge

to their final value exponentially fast (linear convergence).

7.3.2 Matrix universality

In Example 7.1 we exhibited an algorithm whose performance was the same for a

large class of random matrices. In this section our goal is to check the same phe-

nomena for FISTA, IST, and AMP. Our approach in this section is empirical, i.e. we

run Monte Carlo simulations to check the matrix universality hypothesis. Our ex-

periments confirm the matrix universality hypothesis as is summarized in this finding.

Empirical Finding 1: Suppose that the elements of n × N measurement ma-

trix are chosen iid at random from a ‘well-behaved’ probability distribution.3 Fur-

thermore, the non-zero elements of the vector xo are sampled randomly from a given

distribution G. The observed behavior of E‖xt−xo‖2
2/N for the FISTA algorithm (or

IST or AMP) will exhibit the same behavior as the Gaussian ensemble with large N .

2It may be replaced with the distribution function as well. However, for the simplicity of notation
we assume that the probability density function exists.

3We assume that E(Aij) = 0 and E(A2
ij) = 1

n .
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We used a vague statement of ‘well-behaved’ since the exact specifications of the

universality class are not known yet. The class of ensembles on which we have tested

the above hypothesis is summarized in Table 7.1. We performed extensive Monte

Carlo simulations to check the matrix universality hypothesis. Figure 7.2 shows the

result of Monte Carlo simulations on FISTA and IST. To see the statistical analysis,

range of problem instances we checked, our methodology, in addition to the results

of our simulations for other algorithms refer to Section 7.6.2.

Table 7.1: Matrix ensembles considered in the matrix universality hypothesis tests.
Name Specification
RSE iid elements equally likely to be ±1√

n

USE iid elements N(0, 1/n)

TERN iid elements equally likely to be 0,
√

3/2n,
√
−3/2n

TERN0P6 iid elements taken values 0,
√

5/2n,−
√

5/2n
with P (0) = .6

7.3.3 Coefficient ensemble

In Example 7.1 we also observed the ‘coefficient universality’ phenomena. Our goal

here is to check the coefficient universality for FISTA, IST, and AMP algorithms.

As before suppose that the elements of xo are drawn iid from the distribution (1 −
ε)δo(xi) + εG(xi) and that EG(X2) is bounded. Since we have observed universality

phenomena for matrix ensembles we just consider Gaussian measurement matrices

where the elements are iid N(0, 1
n
). Finally we use the notation Fε,γ(µ) = (1 −

ε)δ0(µ) + εδγ(µ) and Gε(xi) = (1 − ε)δo(xi) + εG(xi). There are two factors that

change the distribution here, ε, the fraction of non-zeros and G, the distribution

on the non-zero elements. In this section we assume that ε is fixed and we just

consider different G. Next section will be devoted to the analysis of ε. Before we

see if ‘coefficient universality’ holds or not, let us explain formally what we mean by

equivalence here.
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Figure 7.2: Checking the matrix universality hypothesis. Left: logarithm of the mean
square error of FISTA for four different matrix ensembles defined in Table 7.1 at
N = 2000, δ = .5, ρ = .25ρSE, λ = .001. Right: logarithm of the mean square error
of IST for four different matrix ensembles defined in Table 7.1 at N = 2000, δ = .5,
ρ = .25ρSE, λ = .1. The four curves shown in the above figures are on top of each
other and this confirms the matrix universality hypothesis. For the statistical analysis
of the discrepancies refer to Section 7.6.2.
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Definition 7.3.1. Coefficient distributions Λε and Gε′ are called equivalent for an

iterative LASSO solver A if and only if, for every λΛ,ε there exists λG,ε′ such that

for every α > 0, tλΛ,ε
(α) = tλG,ε′ (α) for the estimates of A on the problem instances

(N(0, 1/n),Λ, ε, λΛ,ε; δ, ν) and (N(0, 1/n), G, ε′, λG,ε′ ; δ, ν) respectively and vice versa,

i.e., for any λG,ε′ there exists λΛ,ε with the same property.

Definition 7.3.2. Coefficient distributions Λε and Gε′ are called equivalent for an

AMPT if and only if, for every τΛ,ε there exists τG,ε′ such that for every α > 0,

tτΛ,ε(α) = tτG,ε′ (α) for the estimates of AMPT on the problem instances (N(0, 1/n),Λ, ε, τΛ,ε; δ, ν)

and (N(0, 1/n), G, ε′, τG,ε′ ; δ, ν) respectively and vice versa, i.e., for any τG,ε′ there ex-

ists τΛ,ε with the same property.

Definition 7.3.3. Coefficient Distribution Universality Hypothesis- Algorithm A sat-

isfies the coefficient distribution universality hypothesis on a class of distribution C,

if and only if all any two distributions in C are equivalent for A.

Lemma 7.3.1. For a fixed G with EG(X2) bounded and for any α, all the coefficient

ensembles of the form (1 − ε)δo(µ) + ε|α|G(αµ) are equivalent for FISTA, IST, and

AMPT.

The proof is very simple and skipped.

Lemma 7.3.2. The coefficient universality hypothesis does not hold for FISTA, IST,

or AMPT algorithms on C = {U1, 3P,G1} defined in table 7.2.

The proof may be found in Section 7.6.3.

Since the coefficient universality hypothesis does not hold for any of the sparse

recovery algorithms, the next question is which distributions are less favorable for

these algorithms.

Definition 7.3.4. Coefficient distribution Λε is called less favorable than distribution

Gε′ for LASSO solver A if and only if, for every λF,ε there exists λG,ε′ such that for

every α > 0, tλΛ,ε
(α) ≥ tλG,ε′ (α) on the problem instances (N(0, 1/n),Λ, ε, λΛ,ε; δ, ν)

and (N(0, 1/n), G, ε′, λG,ε′ ; δ, ν) respectively.
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Table 7.2: Coefficient ensembles considered in coefficient ensemble analysis experi-
ments.

Name Specification
3P iid elements taking value 0, 1,−1 with P (0) = 1− ε
5P1 iid elements taking values 0,±1,±5 with

P (1) = P (−1) = .3ε and P (5) = P (−5) = .2ε
5P2 iid elements taking values 0,±1,±5 with

P (1) = P (−1) = .3ε and P (20) = P (−20) = .2ε
U1 iid U [0, 4]
U2 iid U [0, 20]
G1 iid N(0, 4)

Similarly for comparing distributions for AMPT algorithm, we should just sub-

stitute τ wherever there is λ in the above definition as we did for the equivalence

definition.

As mentioned in the beginning of this section our goal here is to characterize the

distribution G and we consider fixed ε. Therefore we drop ε in our notations. In

order to make any comparison the first step is to find the corresponding λG. The

following lemma helps us in this regard.

Lemma 7.3.3. Consider the distribution G with EG(X2) = 1. For every λ ≥ 0 and

for any ν > 0 if

lim
t→∞

lim
N→∞

1

N
EFε,1Exo‖x̂λ − xo‖2

2 ≤ ε,

then there exists a corresponding λG such that,

lim
t→∞

lim
N→∞

1

N
EGExo‖x̂λG − xo‖2

2 = lim
t→∞

lim
N→∞

1

N
EFε,1Exo‖x̂λ − xo‖2

2.

It is worth mentioning that the condition limt→∞ limN→∞
1
N
EFε,1Exo‖x̂λ−xo‖2

2 ≤ ε

means the final error of the algorithm is less than 1
N
E‖xo‖2

2 which is the error of the

algorithm if we set the estimate to 0.

Empirical Finding 2: Under the above assumptions the 3P is less favorable for

FISTA, IST than the other ensembles defined in table 7.2.
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Figure 7.3: Logarithm of the relative mean square error for several distributions. 3P
stands for three point prior or constant amplitude prior. The other abbreviations are
explained in table 7.2. Left: δ = .5, ε = .15, λ = .01,

√
ν = .001 and the algorithm is

FISTA. Right: δ = .3, ε = .03, λ = 0.01,
√
ν = 0.01 and the algorithm is IST. These

simulations confirm the fact that 3P is less favorable than the other distributions.

Theorem 7.3.4. 3P is the least favorable distribution for AMP algorithm in the class

C = {F | EF (X2) ≤ C}.

The proof of this theorem is sketched in Section 7.6.3.

Figure 7.3 summarizes the result of one of our experiments that led to the above

finding. It should be mentioned that in these figures the final mean square error is

not exactly the same for different distributions and therefore the definition may have

been violated at the final iterations. Since the tuning has is done theoretically for the

asymptotic setting, small discrepancies are expected here. However as the dimension

of the problem increases, we expect the discrepancies to disappear. Refer to Chapter

6 for more information on this issue. The other problem instances we considered and

the tuning step are explained in detail in Section 7.6.3.
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7.3.4 Sparsity level

In the previous section we assumed that the sparsity level is fixed and discussed the

distribution of the nonzero coefficients. In this section our goal is to see what happens

if the distribution of non-zero coefficients is fixed and the sparsity level changes. The

following lemma shows that again the ‘coefficient universality’ does not hold in this

case.

Lemma 7.3.5. Fε,1 and Fε′,1 are not equivalent for any of the FISTA, IST and AMPT

algorithms unless ε = ε′.

The proof of the above lemma is summarized in Section 7.6.3. Although the above

lemma is just considering three point priors, the extension to more general priors is

very simple. For simplicity of notation we have mentioned the 3-point prior here.

All the theorems mentioned in this section for Fε,1, can be easily extended to more

general distributions G of non-zero coefficients. For more information on this you may

refer to Section 7.6.4. Here since we fix the distribution of the non-zero coefficients

we drop the dependence of λ on the distribution G and write shortly λε.

Lemma 7.3.6. Suppose that ε′ ≤ ε. For every λε > 0 and for any ν > 0 if

lim
N→∞

1

N
EFε,1/√ε‖x̂λε − xo‖

2
2 ≤ 1.

there exists a corresponding λε′ such that,

lim
N→∞

1

N
EFε,1/√ε‖x̂λε − xo‖

2
2 = lim

N→∞

1

N
EF

ε′,1/
√
ε′
‖x̂λε′ − xo‖

2
2

The proof of this lemma is sketched in Appendix 7.6.4. Note that in the above

lemma the inputs are scaled such that the E‖xo‖2
2 is fixed. This is important since

we are dealing with the relative mean square error and that is what makes the above

theorem non-trivial. Also the condition limN→∞
1
N
EFε,1/√ε‖x̂λε −xo‖

2
2 ≤ 1 means that

the algorithm is improving the estimate since 1 is the mean square error of the zero

estimation. Figure 7.4 represents the values of λ that lead to the same relative mean

square error on the phase plane.
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Figure 7.4: The values of λ that lead to the same relative mean square error. The
elements of the measurement matrix are iid N(0, 1/n) and the coefficients are drawn
from 3-point prior (1− ε)δ0 + ε/2δ1 + ε/2δ−1. The standard deviation of the measure-
ment noise is σ = .001. The dashed curve represents .95ρSE. The results are derived
from the theoretical calculations.

Theorem 7.3.7. If ε < ε′, Fε′,1 is less favorable than Fε,1 for AMPT algorithm.

The proof of this theorem is given in Section 7.6.4. Empirical observations confirm

similar results for the FISTA and IST algorithms. These observations are summarized

in the following.

Empirical Finding 3. For a fixed value of δ if ε < ε′, Fε,1 is more favorable for

FISTA and IST than Fε′,1.

One of the simulation results that confirms the above empirical finding is depicted

in Figure 7.5. The values of λ are set according to Lemma 7.3.6. As before because of

the finite sample size effect the hypothesis may seem to be violated at the final itera-

tions. However, we expect the discrepancies to vanish as the dimension increases. For

more information on the problem instances we have tested and on our methodology

please refer to Section 7.6.4.
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Figure 7.5: Comparison of convergence of FISTA and IST algorithms for different
values of ρ. Left: δ = .05, N = 1500, σ = .001 and the algorithm is FISTA. Right:
δ = 0.32, N = 1500, σ = .001 and the algorithm is IST. These simulation confirm
the hypothesis that larger values of ε are less favorable.

7.4 Other first-order methods

So far we have mainly discussed three algorithms FISTA, IST, and AMP. However

there are several other first-order algorithms proposed for solving the `1 minimization

problem. Here we discuss some of these algorithms.

7.4.1 Regularization parameter and continuation strategies

So far we have considered three different factors, the distribution of the matrix, dis-

tribution of coefficients and the sparsity level. In this section, we analyze the last

parameter, i.e. the regularization parameter. Our goal is to see how the convergence

rate and limt→∞ limN→∞
1
N
E‖xt − xo‖2

2 changes with respect to the regularization

parameter of the LASSO problem.

Lemma 7.4.1. Suppose that the sparsity level ρ < ρSE is given and y = Axo + σz

where z ∼ N(0, 1). Let λ∗ denote arg minλ lim 1
N
E‖xλ − xo‖2

2. For λ > λ∗ the error
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Figure 7.6: Performance of FISTA in terms of λ. Left: δ = .3,
√
ν = .01, N = 2000,

ρ = .5ρSe; Right: the same problem with ν = 0

limN→∞
1
N
E‖x̂λ − xo‖2

2 is monotonically increasing and below λ∗ it is monotonically

decreasing. As σ → 0 the optimal λ also goes to zero.

The above phenomenon is shown in Figure 7.6. The simulation results also confirm

the following observation that smaller values of λ result in more difficult problems.

This observation has led the researchers to the idea of continuation strategies, i.e.

starting from larger values of λ and solving the problem for those and then decrease

the value of λ. One of the first algorithms that used the idea of continuation for the

IST is [64] and is called FPC for fixed point continuation. This algorithm starts with

a large value of λ1 and uses IST to find x̂λ1 . After the convergence it switches to

smaller value λ2 = κλ1 for κ < 1 and initialize IST with x̂λ1 and again repeats the

iterations. This process continues until it reaches the desired value of λ. As we will

see in the simulation section this approach is extremely useful specially when λ is

small compared to ‖A∗y‖∞. For the application of continuation strategies in other

algorithms you may refer to [49], [64], [96], [57], [12], [33], and [86]. Clearly, since

at the heart of this algorithm lies iterative soft thresholding algorithm the problems

that are more difficult for IST will be also difficult for the FPC algorithm.
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7.4.2 Other Heuristics

So far we have explained four different first-order algorithms. AMP, IST, FISTA,

and FPC. Several other heuristics have been also proposed for speeding up the IST

algorithm for CS problems. We briefly review some of these algorithms. There is

no proof either from the deterministic point of view nor from the statistical point of

view to show that the following algorithms outperform IST, however in practice they

usually work better.

7.4.3 TwIST

Inspired by two step methods for solving linear systems [1], Bioucas-Dias and Figuereido

proposed TwIST or two stage iterative thresholding algorithm [9].

xt+1 = (1− α)xt−1 + (α− β)xt + βη(xt + A∗(y − Axt);λ). (7.15)

Similar to FISTA this algorithm uses longer history of the algorithm.

7.4.4 GPSR-BB

It is not difficult to see that by writing x = u − v where u < 0 and v < 0 and by

defining z as a concatenation of u and v, Pλ can be cast as,

min c∗z +
1

2
z∗Bz.

z < 0. (7.16)

Defining b = A∗y, B, c are,

B =

(
A∗A −A∗A
−A∗A A∗A

)
, c = λ1 +

(
−b
b

)
.

Therefore the following first-order algorithm can be used for solving the above
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problem,

wt = (zt − αt(Bzt − c))+,

zt+1 = zt + λt(wt − zt). (7.17)

This algorithm was first proposed in [57] and was called Gradient Projection for Sparse

Reconstruction or GPSR. GPSR-BB is the same algorithm with a subtle difference.

It uses the Barzilai-Borwein idea [3] for setting the step size.

7.4.5 FPC-AS

This algorithm has been motivated by both the FPC algorithm and some other greedy

algorithms such as StOMP or CoSaMP. As in FPC the algorithm starts at a large

value of λ1 and applies iterative soft thresholding algorithm to achieve x̂λ1 . The

only difference from FPC is that the step size is chosen dynamically according to

Barzilai-Borwein. After the convergence it then fixes the active set and the signs of

the elements and replaces ‖.‖1-norm with s∗x where s is the sign of x̂λ1 . Then the `1

minimization problem is cast as a smooth optimization problem that can be solved

by other iterative methods such as conjugate gradient or quasi Newton methods on

the active set. After convergence λ2 < λ1 is considered in the optimization and x̂λ1 is

used as the initialization in the IST algorithm. The algorithm iterates until it reaches

the actual value of λ.

7.4.6 Properties of statistical convergence rates

Matrix universality

We did similar tests on FPC-AS, TWIST and GPSR and observed that the matrix

universality hypothesis holds for these algorithms as well. For more information on

the experiments we conducted for these algorithms you may refer to the Section 7.6.2.
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Coefficient ensemble

We conducted similar experiments to analyze the effect of coefficient ensemble on the

performance of FPC-AS, TWIST and GPSR as well. The conclusion here was the

same as the our conclusion about FIST, IST and FPC. For more information about

the tests refer to Section 7.6.3.

Sparsity level

Our experiments on TwIST, FPC-AS and GPSR confirmed that finding 3 holds for

these algorithms as well. For more information you may refer to Section 7.6.4.

7.5 Comparison results

So far we have explained the statistical properties of different algorithms. The goal

of this section is to compare the convergence of the algorithms explained above.

The main point is that since the computational complexity of the iterations of each

algorithm is different, counting the number of iterations does not provide a fair com-

parison. Therefore we calculate the CPU time that each algorithm takes to achieve

a certain accuracy.

7.5.1 Exact recovery problem

In this section we consider the exact recovery problem. We therefore assume that

the signal is exactly sparse and that ρ ≤ ρSE. As mentioned before if we run our

experiments on Gaussian matrix ensemble, according to the universality hypothesis

the results for a wide class of distributions will be the same. Therefore we do the sim-

ulations on two different types of matrices. Gaussian and partial DCT. The partial

DCT ensemble is constructed by selecting n rows of the DCT matrix at random and

normalizing them such that each column has `2 norm equal to one. These measure-

ment matrices are more useful in practice for two different reasons. First, applying
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A and A∗ to a vector needs O(N logN) operations rather than O(nN) and therefore

they are suitable for first-order methods. Second, we do not need to store the whole

matrix in the memory.

Two different coefficient ensembles are considered in our simulations 3P and Cauchy.

According to Section 7.3.3 we know that when we consider the relative mean square

error 3P is less favorable than the other ensembles and that is why this ensemble is

considered. The second ensemble is meant to test the performance of the algorithms

on very high dynamic range signals. It seems that if we are interested in correct

support recovery then these distributions may be less favorable then 3P. For all these

problem suites the performance of AMPM is compared with the other algorithms.

AMPM is a version of the AMPT algorithm in which the parameter τ is set by the

maximin tuning. For more information on this framework you may refer to Chap-

ters 3 and 4. However, since the other algorithms are solving Pλ and we know that

the solution of Pλ converges to the solution of Q0 as λ → 0, we use the other al-

gorithms to solve Pλ for small values of λ. We consider three different values of λ:

.01‖A∗y‖∞, .001‖A∗y‖∞ and .0001‖A∗y‖∞. In each case we report the final errors

of each algorithm as well. The error that we are considering in these simulations is

‖xt − xo‖2/‖xo‖2‖. In the tables we will use the following notations:

• fpe = log(‖x
∞−x∗‖2
‖x∗‖2 ).

• ι0 = max{t : MDRt = 0 and DRt < δ}.

• ι1 = inf{t : ‖x
t′−x∗‖2
‖x∗‖2 ≤ 0.01 ∀t′ > t}.

• ι2 = inf{t : ‖x
t′−x∗‖2
‖x∗‖2 ≤ 0.001 ∀t′ > t}.

• ι3 = inf{t : ‖x
t′−x∗‖2
‖x∗‖2 ≤ 0.0001 ∀t′ > t}.

In the above equations MDR stands for the missed detection rate and DR stands

for the actual detection rate. We have introduced `0 since some of the algorithms

use the de-biasing technique after the convergence of the algorithm. ι0 is the first

iteration at which an oracle can stop the algorithms and use de-biasing to get to the

correct answer. However in the table we have used `0, `1, `2, `3 instead of ι0, ι1, ι2, ι3.
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`i represents the average time spent by the algorithm until it reaches iteration ιi. All

the simulations are done on Pentium 4, 2.44 GHz Dual core, 4GByte RAM machine.

For the calculation of fpe we ran FISTA for 5000 iterations and replace x∞ with

x5000 of FISTA in the calculation of fpe. The problem instances are chosen such that

FISTA converges to its final solution in 5000 iterations. Finally each data point in

the table is the average of 100 realizations of the same problem suite.

7.5.2 Measurement noise

In the last section we considered the exact recovery problem and compared a few

different algorithms. The goal of this section is to evaluate the performance of different

algorithms in the presence o f measurement noise. Again we just consider the Gaussian

and partial DCT matrices. We fix N = 2048 and δ = .25. Three different values of

ρ are considered as in the previous section. The measurements are now corrupted

with the noise y = Axo +
√
νn. We consider

√
ν ∈ {0.001, .01, .1}. The goal is still

to recover xo. λ =
√
νE‖A∗n‖∞ is chosen for the `1 solvers. This ensures that xo is

still in the feasible set. AMPM is still used in this case. The other parameters of all

these algorithms are set to the default values as explained in the previous section.

7.6 Detailed experiments and proofs

7.6.1 AMPT-LASSO calibration

Here we briefly summarize some of the recent advances in predicting the asymp-

totic performance of the LASSO algorithm. In chapter 4 we introduced the AMPT

algorithm. Starting at x0 = 0, it proceeds according to the iteration:

zt = y − Axt +
|I t|
n
zt−1,

xt+1 = η(A∗zt; τ σ̂t).

As mentioned in that chapter, state evolution provides a framework for predicting the

asymptotic performance of the AMPT algorithm. According to this framework, if mt
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is the normalized mean square error at iteration t the mean square error at iteration

t+ 1 is

mt+1 = Ψ(mt),

where

Ψ(mt) , E(η(X +

√
mt

δ
+ νZ; τ

√
mt

δ
+ ν)−X)2.

X ∼ (1 − ε)δ0(µ) + εG(µ) and Z ∼ N(0, 1) are two independent random variables.

Clearly, the final mean square error of the AMPT algorithm (as N →∞) corresponds

to the stable fixed points of the Ψ function. It is proved that the Ψ function is concave

and therefore it has just one stable fixed point. In addition to MSE, other observables

of AMPT algorithm can be calculated through the state evolution framework. Some

examples are the following:

- Equilibrium threshold

θ∞ = τ

√
m∞
δ

+ ν.

- Equilibrium Detection Rate

EqDR = P{|η(Y∞; θ∞| 6= 0},

where Y∞ = X +
√

m∞
δ

+ νZ.

m∞ represents the fixed point of Ψ function. The final component that will be used

in our arguments is the equivalence between LASSO and AMPT solutions. The

following finding taken from [41], which has been recently proved in case of Gaussian

measurement matrices in [4], explains the equivalence.

Theorem 7.6.1. [41], [4] For each λ ∈ [0,∞) we find that AMPT(τ(λ)) and LASSO(λ)

have statistically equivalent observables. In particular the MSE have the same value

when τ and λ satisfy the following relation:

λ = θ∞(τ)(1− EqDR(τ)/δ).
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Lemma 7.6.2. [41] Define τ 0, so that EqDR(τ) ≤ δ when τ > τ 0. For each λ there

is a unique value of τ(λ) ∈ [τ0,∞) such that

λ = θ∞(τ)(1− EqDR(τ)/δ).

The above discussion is mainly used in the calibration of λ for two different dis-

tributions.

7.6.2 Discussion of matrix universality

Data generation

To check the universality with respect to the matrix ensemble we considered four dif-

ferent distributions and for each of them we tried different combinations of the other

parameters. The matrix ensembles we considered areM = {RSE,USE,TERN,TERN0P6}.
These ensembles are explained in table 7.1. For each matrix ensemble we considered

36 different problems that are formed as a combination of the following values for δ,

ρ,λ, and ν.

- δ ∈ {.2, .5, .7}

- ρ ∈ {.25ρSE, .5ρSE, .75ρSE}.

- λ ∈ {.01, .001}.

- σ ∈ {0, .01}.

In the above experiments ±1 coefficient ensemble is considered. We also chose 5

random subsets of the above instances and tested them on Uniform[0, 1] and N(0, 1)

coefficient ensembles. We ran these algorithms FISTA, IST, TwIST, FPC-AS, and

GPSR on the problem instances for a number of iterations specified in table 7.3. We

considered 80 Monte Carlo samples for each problem instance and each algorithm.
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Table 7.3: Number of iterations of each algorithm in matrix universality experiments.
Algorithm Number of Iterations
FISTA 2000
IST 6000
GPSR 2000
TWIST 2000
FPC-AS 1000

Testing universality hypothesis

Our hypothesis which was explained in Section 7.3.2 is as follows.

Empirical Finding 1: Suppose that the elements of the n × N measurement

matrix are chosen iid at random from a“well-behaved” probability distribution4. Fur-

thermore, the non-zero elements of the vector xo are sampled randomly from a given

distribution G. The observed behavior of E‖xt − xo‖2
2/N for the FISTA algorithm

(or IST,AMP, FPC, GPSR, TWIST, FPCAS) will exhibit the same behavior as the

Gaussian ensemble with large N .

Our goal is to empirically test this hypothesis and see if the experiments confirm

or reject the hypothesis

H0 : MSEt
1 = MSE2

2 versus H1 : MSEt
1 6= MSEt

2. (7.18)

In the experimental setup we chose the sample size equal to 80. Since the sample size

is large enough we use the two sample Z-test to test the universality hypothesis. If

ˆMSE
t

1 is the mean square error for the Gaussian ensemble at iteration t and ˆMSE
t

2

the MSE of another ensemble at the same iteration the Z-score is defined as,

Z(M̂SE
t

1, M̂SE
t

2) =
M̂SE

t

1 − M̂SE
t

2

SD(M̂SE
t

1 − M̂SE
t

2)
(7.19)

4We assume that E(Aij) = 0 and E(A2
ij) = 1

n .
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Figure 7.7: Checking matrix universality hypothesis. Top-Left: logarithm of the
mean square error of FISTA for two different matrix ensembles defined in Table 7.1
at N = 2000, δ = .5, ρ = .25ρSE, λ = .001. Bottom-Left: The p-values of the
test specified in (7.18). Top-Right: logarithm of the mean square error of IST for
two different matrix ensembles defined in Table 7.1 at N = 2000, δ = .5, ρ = .25ρSE,
λ = .1. Bottom-right: The p-values of the test specified in (7.18). Clearly the p-values
are large for both experiments and therefore we cannot reject the null hypothesis.

Under the universality hypothesis Z has approximately Gaussian distribution. We use

this distribution to calculate the p-values. These p-values are displayed in Figures 7.7,

7.8. In case of FPCAS the match does not seem as good as other ensembles. However

this is due to large variances of our estimations as explained by the p-values. We also

considered the same problem instances for AMPT algorithm. The only difference is

that for AMPT we considered τ ∈ {1.5, 2}.

7.6.3 Discussion of coefficient distribution experiments

Tuning process

Let the elements of A be iid N(0, 1/n) and the elements of the measurement vector

are also drawn iid from (1 − ε)δ0(xo,i) + εδ1(xo,i). For a fixed value of λ and ν we
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Figure 7.8: Checking matrix universality hypothesis of FPC-AS. Top-left: logarithm
of the mean square error for two different matrix ensembles defined in Table 7.1 at
N = 2000, δ = .5, ρ = .75ρSE, λ = .001, ν = 0. Bottom-left: The p-values of the test
specified in (7.18). Top-right: logarithm of the mean square error for two different
matrix ensembles defined in Table 7.1 at N = 2000, δ = .5, ρ = .25ρSE, λ = .001,
ν = 0. Bottom-right: The p-values of the test specified in (7.18). Clearly the p-values
are large for both experiments and therefore we cannot reject the null hypothesis.
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Figure 7.9: Matrix universality results for Left: AMPT with δ = .5, ρ = .5ρSE, τ = 2,
ν = 0. Right: TWIST with δ = .5, ρ = .5ρSE, λ = .001, ν = 0. In both simulations
the number of Monte Carlo samples is 80.

calculate limN→∞
1
N
‖x̂λ−xo‖2

2. According to Section 7.6.1, we can calculate this error

theoretically. Now, suppose that we change the distribution of xo to (1− ε)δ0(xo,i) +

εG(xi) where EG(X2) = 1. The goal is to find λG such that it may lead to the same

value of asymptotic mean square error. In this section we answer two main questions.

1. Does such λG always exist? 2. If it exists, how can we calculate λG? The key part

in answering these two questions is the connection between LASSO and AMPT. Let

us first prove the following lemma which was also stated in the text.

Lemma 7.6.3. Consider the distribution G with EG(X2) = 1. For every λ ≥ 0 and

for any ν > 0 if

lim
t→∞

lim
N→∞

1

N
EFε,1Exo‖x̂λ − xo‖2

2 ≤ ε,

then there exists a corresponding λG such that,

lim
t→∞

lim
N→∞

1

N
EGExo‖x̂λG − xo‖2

2 = lim
t→∞

lim
N→∞

1

N
EFε,1Exo‖x̂λ − xo‖2

2,

Proof. According to Lemma 7.6.2, there exist a value of τ for which the asymptotic
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mean square error of the state evolution frameworks is the same as the asymptotic

mean square error of LASSO(λ). Here is our approach for solving this lemma. The

first thing that we want to prove is that there exists a value of τ for which the asymp-

totic mean square error of AMPT(τ) on G is below the MSE of AMPT(τ) on Fε,1.

Then we prove there exists a value of τ for which the asymptotic mean square error

of AMPT(τ) is larger than the mean square error of AMPT(τ) on Fε,1. Finally we

will use implicit function theorem to prove that there exists a value of τG for which

the asymptotic mean square error of AMPT(τG) on G is exactly the same as the MSE

of AMPT(τ) on Fε,1. Choice τ = ∞ is clear. Therefore we focus on constructing a

choice for τ . The claim is that τ = τ .

Claim 1: For every m and for any β we have, EGEX(η(X +
√
m/δZ; β)−X)2 ≤

Eδ1EX(η(X +
√
m/δZ; β)−X)2.

First we should emphasize that once we prove the above claim, since the Ψ function

is equal to

ΨGε(m) = (1− ε)E(η(

√
m

δ
+ ν; τ

√
m/δ + ν))2

+ εEGEX(η(X +
√
m/δ + νZ; τ

√
m/δ + ν)−X)2,

from the above claim we will have,

ΨGε(m) ≤ ΨFε,1(m),

and therefore the fixed point for G will happen at a lower value of m. Therefore we

just have to prove the above claim. By simple calculations we can show that,

d2

(dX2)2 (η(X + σZ; β)−X)2 = 1
−σX (φ((β −X)/σ) + φ((β +X)/σ)) < 0.

Using this concavity in addition to Jensen inequality it is very easy to prove our claim.

So far, we have proved the existence of τ and τ . The final step is to prove continuity
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of the fixed point of Ψ in terms of τ . This is an easy implication of the implicit

function theorem and therefore our claim is proved. Now that we could find τG we

can again use Lemma 7.6.2 to get λG.

The interesting fact about the above proof is that it is also kind of constructive

and therefore we use the same approach for calculating λG. In other words, we first

find the value of τ that corresponds to λ and then we find the value of τG that gives

the same MSE as τ on G and finally we calculate λG from τG.

Note: There might be more than one value of λ that generates the same mean

square error on Fε,1 and there may be more than one value of λG with the same mean

square error. In these cases we compare the fastest achievable rates for each case and

as was shown in Section 7.4.1 this corresponds to comparison of largest λ and largest

λG.

Theorem 7.3.4 3P is the least favorable distribution for AMP algorithm in the

class C = {F | EF (X2) ≤ C}.

Proof. Suppose that an arbitrary distribution G ∈ C is given. According to Lemma

7.3.1 without loss of generality we assume EG(X2) = 1. Our goal is to prove that Fε,1

is less favorable than Gε. We choose τG = τ . Let MSEt
G the mean square error on

Gε problem instance at time t and MSEt
F represent the same thing for Fε,1. Suppose

that MSEt
G ≤MSEt

F at time t, our goal is to first prove that MSEt+1
G ≤MSEt+1

F .

MSEt+1
G = EGεEX(η(X +

√
MSEt

G

δ
+ νZ; τ

√
MSEt

G

δ
+ ν)−X)2;

Also let us define,

˜MSEt+1
F = EFε,1EX(η(X +

√
MSEt

G

δ
+ νZ; τ

√
MSEt

G

δ
+ ν)−X)2;
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Figure 7.10: Performance of AMPT algorithm on a few different distributions. In this
simulation N = 4000, δ = .5, ε = .075, τ = 2,

√
ν = .001 and the number of Monte

Carlo samples 25. For more information on the decrease of the discrepancy between
theory and Monte Carlo simulation refer to [41].

Our claim is that,

MSEt+1
G ≤ ˜MSEt+1

F ≤MSEt+1
F .

The second inequality is a simple result of the fact that the mean square error is

non-decreasing function of standard deviation of the noise Z. The first inequality

is the result of Jensen inequality. In the last lemma we proved that EX(η(X +√
MSEtG

δ
+ νZ; τ

√
MSEtG

δ
+ ν)−X) is a concave function of X; The proof of the main

theorem is now a very simple induction. Since the mean square error for the two

distributions are the same at iteration one. The proof is therefore complete.

Figure 7.10 shows the result of the above theorem in practice.

Lemma 7.3.2 The coefficient universality hypothesis does not hold for FISTA,

IST, or AMPT algorithms on C = {U1, 3P,G1}.
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Proof. The proof is based on some of the facts that were proved in the above the-

orem. Suppose that two distributions F and G are equivalent for AMPT. Then

we can conclude that for every τG there exists a τF such that AMPT may lead to

the same relative mean square error on problem instances (N(0, 1/n), F, ε, τF ; δ, σ),

(N(0, 1/n), G, ε, τG; δ, σ). Now suppose that G = N(0, 1) and F = 1
2
δ1 + 1

2
δ−1. For

a given noise variance ν > 0 set τG such that it minimizes the mean square error

for G = N(0, 1). We claim that no τF leads to the same mean square error for F .

Suppose that such τF does exist; According to the previous theorem and strict con-

cavity of EX(η(X + σZ; τσ)−X)2 with respect to X, the final mean square error of

τF on G is less than the mean square error on 3P itself. Since we assumed that the

final mean square on F is the same as the minimum mean square error on G this is

a contradiction. Therefore there is no equivalent τF that may lead to the same mean

square error.

For the Lasso solvers we use the connection between the fixed points of Lasso and

AMPT and the above observation. Again we consider the value of λG that leads to

the minimum mean square error and with a very similar argument claim that there

is no λF with the same mean square error.

Experimental setup

Since we have demonstrated the universality hypothesis on the matrix ensemble, in

these experiments we just consider the Gaussian matrix. In order to analyze the

performance of different algorithm we considered the coefficient ensembles specified

in table 7.2. For each algorithm and each coefficient distribution we considered the

following problem instances,

- δ = .5, ε = .15 , λ = .01 , σ = .001

- δ = .5, ε = .075 , λ = .001 , σ = .001

- δ = .3, ε = .07 , λ = .01 , σ = .001

- δ = .3, ε = .03 , λ = .001 , σ = .001
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- δ = .5, ε = .03 , λ = .001 , σ = .01

We considered 4000 iterations of the FISTA, 2000 iteration of FPC-AS, 8000 it-

erations of TWIST, IST, GPSR which are enough for convergence of all the above

cases. Finally the results are the average of 80 Monte Carlo simulations. We also con-

sidered the following values of α in the calculation of tλ(α), where α ∈ {.2, .1, .05, .02,

.01, .005, .002, .001, .0005}.

Designing a test

As mentioned before the goal is to compare t(α) for a given distribution versus t(α)

at Fε,1. Since in our experiments t(α) is calculated from the average of Monte Carlo

samples we assume that the sample size is large enough and we can assume they are

samples from Gaussian normal distributions, i.e.,

tλ(α) ∼ N(µF , σ
2
F ),

tλG(α) ∼ N(µG, σ
2
G).

The goal is to check the null hypothesis

H0 : µG ≤ µF versus the alternative H1 : µG > µF . (7.20)

Our claim is that the uniformly most powerful (UMP) test exists for this test and is

given according to tλ(α)− tλG(α) > ω for some ω that satisfies the level constraint.

Lemma 7.6.4. For the above test, tλ(α) − tλG(α) > ω is the UMP test with level

constraint γ, if and only if ω is chosen to satisfy the level constraint.

Proof. The proof is standard in the statistical testing literature. We first consider a

specific choice of an alternative, let’s say (µ′G, µ
′
F ), and test it versus the whole null. To

do this test we consider the least favorable distribution on the null space. It is easy to

confirm that the least favorable distribution is a point mass on (
µ′F σ

2
G+µ′Gσ

2
F

σ2
F+σ2

G
,
µ′F σ

2
G+µ′Gσ

2
F

σ2
F+σ2

G
).

Now that the least favorable distribution has such a simple form one can easily use

Neyman-Pearson lemma to derive the UMP test. Since this test does not depend on

the choice of (µ′G, µ
′
F ), it is the most powerful test for the original problem as well.
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Figure 7.11: Comparison of t(α) for two different coefficient distributions specified in
Table 7.2. Top-left: t(α) for FISTA, at δ = .3, ε = .03, λ = .001, σ = .001. Bottom-
left: The p-value of the test (7.20). Top-right: t(α) for IST, δ = .3, ε = .07, λ = .05,
σ = .001. Bottom-left: The p-value of the test (7.20). Large p-values indicate that
we cannot reject the null.

7.6.4 Discussions of the sparsity level

Proofs of the theorems

Lemma 7.6.5. Define the risk of the soft thresholding function as,

rs(µ, τ ;σ) = E(η(µ+ σZ; τσ)− µ)2;

We then have
d

dµ
rs(µ, τ ;σ) = 2µ

∫ τ+µ/σ

−τ−µ/σ
φZ(z)dz.

Proof.

d

dµ
rs(µ, τ ;σ) = −2E[(η(µ+ σZ; τσ)− µ)I(|µ+ σZ| ≤ τσ)]

= 2µE(I(|µ+ σZ| ≤ τσ)) = 2µP(|µ+ σZ| ≤ τσ).
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Figure 7.12: Comparison of t(α) for two different distributions on Top-left: t(α) for
TWIST at δ = .3, ε = .07, λ = .05, σ = .001. Bottom-left: The p-value of the
test (7.20). Top-right: t(α) of FPCAS at δ = .3, ε = .07 , λ = 0.01 , σ = .001.
Bottom-left: The p-value of the test (7.20). Large p-values indicate that we cannot
reject the null.
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Lemma 7.6.6. Consider the following risk function,

R(ε) = EX∼Fε,1/√εEX(η(X + σZ; τσ)−X)2;

R(ε) is an increasing function of ε.

Proof.

R(ε) = (1− ε)E(η(σZ; τσ))2 + εE(η(
1√
ε

+ σZ; τσ)− 1√
ε
)2.

Therefore,

dR(ε)

dε
= −E(η(σZ; τσ))2 + E(η(

1√
ε

+ σZ; τσ)− 1√
ε
)2+

2ε

2ε1.5
E[(η(

1√
ε

+ σZ; τσ)− 1√
ε
)(I(| 1√

ε
+ σZ| ≤ τσ))] =

−E(η(σZ; τσ))2 + E(η(
1√
ε

+ σZ; τσ)− 1√
ε
)2 − 1

ε
P (| 1√

ε
+ σZ| ≤ τσ). (7.21)

We know that

−E(η(σZ; τσ))2 + E(η(
1√
ε

+ σZ; τσ)− 1√
ε
)2

=

∫ 1√
ε

0

d

dµ
rs(µ, τ ;σ)dµ =

∫ 1√
ε

0

2µ

∫ τ+µ/σ

−τ−µ/σ
φZ(z)dzdµ

1
>

1

ε

∫ τ+1/(
√
εσ)

−τ−1/(
√
εσ)

φZ(z)dz, (7.22)

where 1 is due to the fact that
∫ τ+µ/σ

−τ−µ/σ φZ(z)dz is decreasing function of µ for µ > 0

and therefore we replace µ with 1√
ε

we get something smaller. Combining (7.21) and

(7.22) we conclude that,
dR(ε)

dε
> 0

which is what we intended to prove.
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Remark: It is clear that this theorem can be easily extended to more general

types of distributions and the proof is essentially the same. Here is a generalization

of the above theorem. Suppose that G is a distribution with EG(X2) = 1. We define

Gε(x) = (1− ε)δ0 + εG(x).

Lemma 7.6.7. Consider the following risk function,

RG(ε) = EX∼1/
√
εGε(x/

√
ε)EX(η(X + σZ; τσ)−X)2;

RG(ε) is an increasing function of ε.

As mentioned before since the proof is a simple modification of the previous proof

we skip it.

Theorem 7.3.7 If ε > ε′, Fε,1 is less favorable than Fε′,1 for AMPT algorithm.

Proof. According to Lemma 7.3.1, Fε,1 is equivalent to Fε,1/√ε and Fε′,1 is equivalent to

Fε′,1/
√
ε′ . Therefore we compare these two distributions. These two new distributions

have the same energy and therefore we do not need to scale the mean square error

for comparison of these two distributions. We use mathematical induction to prove

the above theorem. Let MSEt
ε be the mean squared error of AMPT(τ) at iteration

t on ε. Suppose that

MSEt
ε > MSEt

ε′ .

Our goal is to prove,

MSEt+1
ε > MSEt+1

ε′ .

We define

˜MSEt+1
ε = EFε,1/√εEX(η(X +

√
MSEt

ε′

δ
+ σ2Z; τ

√
MSEt

ε′

δ
+ σ2)−X)2;

We claim,

MSEt+1
ε > ˜MSEt+1

ε > MSEt+1
ε′ .

The first inequality is due to the fact that the mean square error is a non-decreasing
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Figure 7.13: Comparison of different sparsity levels on AMPT algorithm δ = .5,
ε = .04, N = 4000, τ = 1.8,

√
ν = .001, and the coefficient distribution is 3P. The

empirical results are the result of 100 Monte Carlo samples.

function of the standard deviation of the noise. The second inequality however is the

result of Lemma 7.6.6. The base of the induction is correct since both algorithms

start with the same mean square error.

Figure 7.13 depicts the result of the above theorem on a problem instance.

Lemma 7.3.5 Fε,1 and Fε′,1 are not equivalent for any of FISTA, IST and AMPT

algorithms unless ε = ε′.

Proof. Suppose ε > ε′. Let us first prove that the two distributions are not equivalent

for AMPT. Using Lemma 7.3.1 we consider the distributions Fε,1/√ε and Fε′,1/
√
ε′ . The

main advantage of the two new distributions is that their energy is equal to one and

therefore relative mean square error is the same as the mean square error for them.

According to the definition if these two distributions are equivalent for AMPT then

for every τε there exist τε′ such that the mean square error of the two estimates are

the same at every iteration. Choose τε′ such that it achieves the minimum final mean
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square error for Fε′,1/
√
ε′ . Suppose there exists τε achieves the same final mean square

error. We now run AMPT(τε′) for distribution Fε′,1/
√
ε′ and according to Lemma 7.6.6

it will achieve an MSE which is less than the mean square error of τε on Fε,1/√ε which

is equal to the mean square error of τε′ on Fε′,1/
√
ε′ . This is a contradiction with

our assumption that τε′ is achieving the minimum mean square error for Fε′,1/
√
ε′ .

Therefore the two distributions are not equivalent for AMPT.

Clearly we can use a very similar argument for LASSO solvers. The only extra trick

that we should use here is the equivalence of fixed point of LASSO and AMPT which

was explained in Section 7.6.1. In other words we again start with the value of λε′

that achieves the minimum mean square error on Fε′,1/
√
ε′ and we prove that no λε can

achieve the same MSE. To prove this fact we use the relation between τ in AMPT

and λ is LASSO(λ) and the fact that Fε,1/√ε is less favorable for AMPT.

Lemma 7.3.6 Suppose that ε′ ≤ ε. For every λε > 0 and for any ν > 0 if

lim
N→∞

EFε,1/√ε‖x̂λε − xo‖
2
2 ≤ 1.

there exists a corresponding λε′ such that,

lim
N→∞

EFε,1/√ε‖x̂λε − xo‖
2
2 = lim

N→∞
EF

ε′,1/
√
ε′
‖x̂λε′ − xo‖

2
2

Proof. With LASSO(λε) we mean the problem where the coefficient is drawn from

Fε,1/√ε. According to Lemma 7.6.2 there exists a value τε for which the asymptotic

mean square error of the state evolution is the same as the asymptotic mean square

error of the LASSO solver. If we consider τ = τε, according to Lemma 7.6.6, the

fixed point of AMPT(τ) on Fε′,1/
√
ε′ is less than limN→∞ EFε,1/√ε‖x̂λε − xo‖

2
2. If we set

τ =∞, The mean square error of AMPT(τ) is larger than limN→∞ EFε,1/√ε‖x̂λε−xo‖
2
2.

Therefore there exists a value of τε′ that gives us exactly the same means square error

according to the implicit function theorem. If we use Lemma 7.6.2, we can conclude

that there exists a value of λε′ with the same MSE on Fε′,1/
√
ε′ .
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Experimental setup for sparsity level experiments

Here we fixed the matrix distribution to N(0, 1
n
) and the coefficient distribution to

3P explained in the previous section. We also fixed the standard deviation of the

noise σ = .001 and the relative mean square error to 1.6 × 10−4. We considered 30

different equispaced values of δ and for every δ we also considered 30 differen values

of ρ from 0 to .95ρSE(δ). On each problem instance we set λ theoretically such that

in the asymptotic regime E‖x̂λ − xo‖2
2/E‖xo‖2 = 1.6 × 10−4. Figure 7.4 depicts the

values of λ that result in this value of relative mean square error. These values are

derived theoretically according to Lemma 7.3.6. In this approach we first find the

values of τ that may lead to the given mean squared error in AMPT (τ). Then we

calculate the corresponding values of λ for τ . Finally if there are more than one λ

that lead to the same mean square error we consider the largest one (according to the

observations of Section 7.4.2 gives the better convergence rate). Once the values of

λ are calculated we set N = 1500 and we run the algorithms 20 times on each given

grid point on the (ρ, δ) grid and take the average of the results. Some of the results

are depicted in Figure 7.5.
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Figure 7.14: Comparison of different values of ρ or ε for TWIST and FPCAS. Left:
δ = .07, N = 1500, σ = .001, Algorithm = TWIST, matrix ensemble = N(0, 1/n)
and Coefficient ensemble is Fε,1. Right: δ = .48, N = 1500, σ = .001, Algorithm =
FPC-AS, matrix ensemble = N(0, 1/n) and Coefficient ensemble is Fε,1. The sudden
drops in FPC-AS correspond to the steps in which is solving a linear system.
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Table 7.4: Performance of different algorithms on several compressed sensing problem
instances. Here matrix ensemble is N(0, 1/n) and the coefficient ensemble is 3P. When
the timing is shown by NA it means that the specified criteria has not been achieved
by 3000 iterations of the algorithm.
Algorithm N δ ρ τ or λ `0 (sec) `1(sec) `2(sec) `3(sec) fpe
AMP 2048 0.50 0.19 0.8769 0.001 0.007 0.016 0.026 1.187e-016
FISTA 2048 0.50 0.19 0.0220 0.014 0.038 NA NA 4.093e-003
IST 2048 0.50 0.19 0.0220 0.051 0.235 NA NA 4.093e-003
TWIST 2048 0.50 0.19 0.0220 0.010 0.023 NA NA 4.093e-003
GPSR 2048 0.50 0.19 0.0220 0.016 0.065 NA NA 4.093e-003
FPC 2048 0.50 0.19 0.0221 0.029 0.106 NA NA 4.093e-003
FPC-AS 2048 0.50 0.19 0.0215 0.006 0.014 NA NA 3.971e-003
AMP 2048 0.50 0.19 0.8769 0.001 0.007 0.016 0.026 1.187e-016
FISTA 2048 0.50 0.19 0.0022 0.038 0.123 0.168 NA 4.117e-004
IST 2048 0.50 0.19 0.0022 0.209 2.012 NA NA 4.117e-004
TWIST 2048 0.50 0.19 0.0022 0.037 0.195 0.234 NA 4.117e-004
GPSR 2048 0.50 0.19 0.0022 0.053 0.596 0.762 NA 4.117e-004
FPC 2048 0.50 0.19 0.0022 0.028 0.092 0.179 NA 4.117e-004
FPC-AS 2048 0.50 0.19 0.0022 0.013 0.014 0.018 NA 4.202e-004
AMP 2048 0.50 0.19 0.8769 0.001 0.007 0.016 0.026 1.187e-016
FISTA 2048 0.50 0.19 0.0002 0.000 0.401 0.563 0.669 4.099e-005
IST 2048 0.50 0.19 0.0002 1.207 NA NA NA 4.099e-005
TWIST 2048 0.50 0.19 0.0002 0.472 NA NA NA 4.099e-005
GPSR 2048 0.50 0.19 0.0002 0.957 NA NA NA 4.099e-005
FPC 2048 0.50 0.19 0.0002 0.018 0.075 0.149 0.229 4.099e-005
FPC-AS 2048 0.50 0.19 0.0002 0.013 0.014 0.017 0.030 4.047e-005

AMP 1024 0.30 0.22 1.1924 0.000 0.002 0.005 0.008 1.702e-016
FISTA 1024 0.30 0.22 0.0002 0.057 0.126 0.174 .203 7.615e-005
IST 1024 0.30 0.22 0.0002 0.192 NA NA NA 7.615e-005
TWIST 1024 0.30 0.22 0.0002 0.280 NA NA NA 7.615e-005
GPSR 1024 0.30 0.22 0.0002 0.258 NA NA NA 7.615e-005
FPC 1024 0.30 0.22 0.0002 0.008 NA NA NA 7.615e-005
FPC-AS 1024 0.30 0.22 0.0002 0.002 0.004 0.005 0.007 7.307e-005
AMP 2048 0.30 0.22 1.1924 0.002 0.010 0.027 0.153 2.298e-011
FISTA 2048 0.30 0.22 0.0002 0.245 0.536 0.740 0.972 5.506e-005
IST 2048 0.30 0.22 0.0002 1.241 NA NA NA 5.506e-005
TWIST 2048 0.30 0.22 0.0002 1.444 NA NA NA 5.506e-005
GPSR 2048 0.30 0.22 0.0002 1.255 NA NA NA 5.506e-005
FPC 2048 0.30 0.22 0.0002 0.044 0.345 NA NA 5.506e-005
FPC-AS 2048 0.30 0.22 0.0002 0.008 0.019 0.028 NA 2.190e-004
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Table 7.5: Performance of different algorithms on several compressed sensing problem
instances. Here the matrix ensemble is N(0, 1/n) and the coefficient ensemble is
Cauchy. When the timing is shown by NA it means that the specified criteria has
not been achieved by 3000 iterations of the algorithm.
Algorithm N δ ρ τ or λ `0 (sec) `1(sec) `2(sec) `3(sec) fpe
AMP 2048 0.30 0.14 1.1924 0.017 0.003 0.005 0.008 3.453e-016
FISTA 2048 0.30 0.14 0.2837 NA 0.605 0.834 NA 3.622e-004
IST 2048 0.30 0.14 0.2837 NA NA NA NA 3.622e-004
TWIST 2048 0.30 0.14 0.1917 NA NA NA NA 3.622e-004
GPSR 2048 0.30 0.14 0.1917 NA NA NA NA 3.622e-004
FPC 2048 0.30 0.14 0.2270 NA 0.016 0.040 NA 3.622e-004
FPC-AS 2048 0.30 0.14 0.1917 NA 0.004 0.009 NA 5.693e-004
AMP 2048 0.30 0.14 1.1924 0.017 0.003 0.005 0.008 3.453e-016
FISTA 2048 0.30 0.14 0.0284 NA NA NA NA 2.370e-005
IST 2048 0.30 0.14 0.0284 NA NA NA NA 2.545e-005
TWIST 2048 0.30 0.14 0.0171 NA NA NA NA 2.545e-005
GPSR 2048 0.30 0.14 0.0171 NA NA NA NA 2.545e-005
FPC 2048 0.30 0.14 0.0187 NA 0.015 0.023 .041 2.545e-005
FPC-AS 2048 0.30 0.14 0.0171 1.321 0.003 0.007 .017 2.545e-005

Table 7.6: Performance of different algorithms on several compressed sensing problem
instances. Here the matrix ensemble is partial-DCT and the coefficient ensemble is
3P . When the timing is shown by NA it means that the specified criteria has not
been achieved by 3000 iterations of the algorithm.
Algorithm N δ ρ τ or λ `0 (sec) `1(sec) `2(sec) `3(sec) fpe
AMP 8192 0.50 0.19 0.8769 0.000 0.002 0.006 0.011 2.354e-017
FISTA 8192 0.50 0.19 0.0200 0.006 0.014 NA NA 1.455e-003
IST 8192 0.50 0.19 0.0200 0.021 0.078 NA NA 1.455e-003
TWIST 8192 0.50 0.19 0.0200 0.000 0.006 NA NA 1.455e-003
GPSR 8192 0.50 0.19 0.0200 0.002 0.012 NA NA 1.455e-003
FPC 8192 0.50 0.19 0.0198 0.003 0.006 NA NA 1.455e-003
FPCAS 8192 0.50 0.19 0.0200 0.000 0.006 NA NA 1.455e-003
AMP 8192 0.50 0.19 0.8769 0.000 0.002 0.006 0.011 2.354e-017
FISTA 8192 0.50 0.19 0.0019 0.017 0.051 0.072 NA 1.416e-004
IST 8192 0.50 0.19 0.0019 0.141 0.806 0.855 NA 1.416e-004
TWIST 8192 0.50 0.19 0.0019 0.002 0.025 0.036 NA 1.416e-004
GPSR 8192 0.50 0.19 0.0019 0.014 0.081 0.133 NA 1.416e-004
FPC 8192 0.50 0.19 0.0020 0.002 0.006 0.013 NA 1.416e-004
FPCAS 8192 0.50 0.19 0.0019 0.000 0.006 0.008 NA 1.416e-004
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Table 7.7: Performance of different algorithms on several compressed sensing problem
instances in the presence of measurement noise. Here the matrix ensemble isN(0, 1/n)
and coefficient ensemble is 3P. When the timing is shown by NA it means that the
specified criteria has not been achieved by 3000 iterations of the algorithm.

Algorithm N δ ρ σ `0 (sec) `1(sec) `2(sec) fpe
AMP 2048 0.25 0.13 0.010 0.000 0.000 0.002 8.766e-003
FISTA 2048 0.25 0.13 0.010 0.002 0.004 NA 1.290e-002
IST 2048 0.25 0.13 0.010 0.005 0.017 NA 1.290e-002
TWIST 2048 0.25 0.13 0.010 0.001 0.002 NA 1.290e-002
GPSR 2048 0.25 0.13 0.010 0.001 0.004 NA 1.290e-002
FPC 2048 0.25 0.13 0.010 0.006 0.006 NA 1.290e-002
FPCAS 2048 0.25 0.13 0.010 0.002 0.002 NA 1.290e-002
AMP 2048 0.25 0.13 0.001 0.000 0.000 0.001 8.790e-004
FISTA 2048 0.25 0.13 0.001 0.000 0.012 0.020 1.279e-003
IST 2048 0.25 0.13 0.001 0.000 0.158 0.268 1.279e-003
TWIST 2048 0.25 0.13 0.001 0.000 0.010 0.015 1.279e-003
GPSR 2048 0.25 0.13 0.001 0.000 0.038 0.080 1.279e-003
FPC 2048 0.25 0.13 0.001 0.005 0.005 0.018 1.279e-003
FPCAS 2048 0.25 0.13 0.001 0.001 0.001 0.002 1.279e-003
AMP 2048 0.25 0.20 0.010 0.001 0.001 NA 1.208e-002
FISTA 2048 0.25 0.20 0.010 0.005 0.006 NA 2.138e-002
IST 2048 0.25 0.20 0.010 0.029 0.048 NA 2.138e-002
TWIST 2048 0.25 0.20 0.010 0.003 0.004 NA 2.138e-002
GPSR 2048 0.25 0.20 0.010 0.007 0.010 Na 2.138e-002
FPC 2048 0.25 0.20 0.010 0.013 0.012 NA 2.138e-002
FPCAS 2048 0.25 0.20 0.010 0.043 0.039 NA 2.138e-002
AMP 2048 0.25 0.20 0.001 0.001 0.001 0.004 1.398e-003
FISTA 2048 0.25 0.20 0.001 0.016 0.020 0.038 2.008e-003
IST 2048 0.25 0.20 0.001 0.268 0.269 0.269 2.008e-003
TWIST 2048 0.25 0.20 0.001 0.011 0.015 0.030 2.008e-003
GPSR 2048 0.25 0.20 0.001 0.073 0.088 0.271 2.008e-003
FPC 2048 0.25 0.20 0.001 0.017 0.011 0.084 2.008e-003
FPCAS 2048 0.25 0.20 0.001 0.002 0.002 0.008 2.008e-003



Chapter 8

Future Directions

In this chapter we explain some of the open problems and the directions that can be

further explored.

8.1 Other sparsity patterns

In the first five chapters of this thesis we considered the ideal problem where the

signals were exactly sparse and the measurements were accurate and there was no

measurement noise. In chapter 6, we studied a more practical problem where the

measurements were noisy and analyzed the asymptotic performance of LASSO and

AMPT. However often in practice, natural signals are not exactly sparse and instead

they have a few large coefficients and many small ones. This type of sparsity can be

modeled in several different ways. One of the most popular ways to model this is to

use `p balls for 0 ≤ p ≤ 1 as explained in chapter 1. In these cases even when there is

no measurement noise in the system, perfect recovery does not happen. Upper bounds

have been derived in this setting [31], [25]. For instance, the following theorem due

to Candés, Romberg and Tao [20] is one sample of these types of results.

Theorem 8.1.1. Suppose the measurement matrix A satisfies the RIP(2k,
√

2 − 1).

If x̂`1 is the solution of basis pursuit problem and x̂o is the best k-term approximation

232
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of the original vector x in some `p-norm, then the following statement is true.

‖x̂`1 − x̂o‖2 ≤ C
‖x− x̂o‖1√

k
.

for some constant C which is independent of the dimension of the problem.

From the above theorem the following bound can be derived for the performance

of basis pursuit on `p balls.

Theorem 8.1.1. Suppose that x ∈ BN
p (R) i.e. x is in the `p ball of radius R for

p ≤ 1. We take n random measurements with a Gaussian random matrix and use

basis pursuit to reconstruct x̂`1. This reconstruction satisfies,

‖x̂`1 − x‖2 ≤ C ′
(

n

log(N/n)

)−1/p−1/2

.

Proof. We know from chapter 2 that if n ∼ k log(N/k) then the matrix satisfies RIP

of order k with overwhelmingly high probability. We prove that n
log(N/n)

≤ βk. clearly,
n

log(N/n)
∼ k log(N/k)

log(N/k)−log log(N/k)
. It is easy to show that log log(x) < 1

2
log(x) for every

x > 1; Therefore, k . n
log(N/n)

.

According to Theorem 8.1.1,

‖x̂`1 − x̂o‖2 ≤ C
‖x− x̂o‖1√

k
≤

∞∑
j=k+1

|x|(j)√
k
≤ CR

k−1/p−1/2
≤ C ′

(
n

log(N/n)

)−1/p−1/2

.

where |x|(j) is the jth largest element of the vector x.

This result is due to [69],[61] for p = 1 and [31] for p < 1. It has been proved

that the bound
(

n
log(N/n)

)−1/p−1/2

is up to the constant optimal for both p = 1 [61]

and p < 1 [31]. However, as before the constants are very loose and are not useful

for practical purposes. State evolution may again provide a way to calculate the

constants accurately in the asymptotic setting. The discussion of these questions is

left for the future studies.
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8.2 Correctness of state evolution

In chapter 4 we introduced the state evolution equation for the AMP algorithm. The

claim was that in the asymptotic setting where N →∞, δ = n/N and ρ = k/n these

equations predict many different observables including false alarm rate, mean square

error, prediction error, and missed detection rate of the algorithm at every iteration.

Lots of simulation evidences were presented that confirmed the accuracy of these pre-

dictions. However the main questions that are left unanswered are 1) The theoretical

validation of these equations and 2) The range of problem suites for which these

predictions are accurate. Recently the correctness of the state evolution equation

was proved for Gaussian measurement matrix. We quote the following theorem from

[4]. Let {A(N)} be a sequence of sensing matrices A ∈ Rn×N indexed by N , with

iid entries Aij ∼ N(0, 1/n), and assume n/N → δ. Consider further a sequence of

signals {x0(N)}N≥0, whose empirical distributions converge to a probability measure

pX0 on R with bounded (2k − 2)th moment, and assume Ep̂(X2k−2
0 ) → EpX0

(X2k−2
0 )

as N →∞ for some k ≥ 2.

Theorem 8.2.1. For any pseudo-Lipschitz function ψ : R2 → R we have,

lim
N→∞

1

N

N∑
i=1

ψ(xt+1
i , x0,i) = E[ψ(ηt(X0 + τtZ), X0)],

with X0 ∼ pX0 and Z ∼ N(0, 1) independent.

Unfortunately the proofs mentioned here can not be easily extended to other

random matrices and does not explain the universality that has been observed in the

simulation results. Therefore finding a more general framework for answering these

questions and explaining the observed universality is an open question.
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8.3 Convergence rate of first-order methods

In Chapter 7 we mentioned the first-order methods for solving the Lasso or basis

pursuit denoising problems,

min ‖y − Ax‖2
2 + λ‖x‖1. (8.1)

Let f(x) = 1/2‖y − Ax‖2
2 + λ‖x‖1. The following theorem is quoted again from

that chapter,

Theorem 8.3.1. For any t ≤ n−1
2

and any λ, n,N , there exists a matrix A ∈ Rn×N

and a vector y ∈ Rn such that |X∗| = 1 and for any first-order method that uses the

value of x1, x2, . . . , xt and gradient of ‖y − Ax‖2
2 at x1, . . . , xt we have:

f(xt)− f(x∗) ≥ CL
‖x0− x∗‖2

(t+ 1)2
,

‖xt − x∗‖2
2 ≥

1

25
‖x0 − x∗‖2

2. (8.2)

As mentioned before, this result is somewhat disappointing since it claims that the

convergence of xt → x∗ can be in fact very slow. However it is based on the worst case

analysis of the algorithm. A better notion of convergence rate for compressed sensing

problems is the notion of average convergence rate since we are dealing with a random

phenomena. Except for the AMP algorithm the average performance of these algo-

rithms have not been analyzed theoretically yet. In Chapter 7, we characterized some

of the characteristics of the convergence rates through an experimental studies. For

instance, our experimental results confirmed the universality of the convergence rate

with respect to the matrix ensemble. Furthermore, among the coefficient ensembles

we tested the 3P or constant amplitude ensemble was the least favorable distribution

for mean square error. However accurate theoretical predictions of the convergence

rate will be more insightful. This question remains open for future studies.



Appendix A

Sub-gaussian and Sub-exponential

Random Variables

In this section we summarize some of the properties of sub-gaussian and sub-exponential

random variables used in the thesis. For better understanding of the results they may

be compared with similar results for Gaussian and exponential random variables. The

results are mainly taken from [108]. For more elaborate discussion of these topics the

reader is referred to [108].

Lemma A.0.2. Let X be a zero-mean random variable. The following statements

are all equivalent.

1. P(|X| > t) ≤ C1e−c1t
2
.

2. E(|X|k)1/k ≤ C2

√
k ∀k ≥ 1.

3. E(ecX
2
) ≤ C3 for 0 ≤ c ≤ c3.

4. E(etX) ≤ ect
2 ∀t ∈ R.

Proof. We will prove that 1⇒ 2, 2⇒ 3, 2, 3⇒ 4, 3⇒ 1 and finally 4⇒ 1.
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1⇒ 2:

E(|X|k) =

∫ ∞
0

P(|X|k ≥ t)dt ≤
∫ ∞
t=0

C1e−c1t
2/k

dt

=

∫ ∞
t=0

C1k/2z
k/2−1e−c1zdz = C1k/2Γ(k/2)/c

k/2
1 ≤ Ck

2

√
k
k
.

The last equality is derived from the normalization constant of the Gamma distribu-

tion.

2⇒ 3:

EecX
2

= E
∞∑
k=0

(cX2)k

k!
≤ 1 +

∞∑
k=1

ckC2k
2 2kkk

k!

1

≤ 1 +
∞∑
k=1

ckC2k
2 2kkk

c′
√
k(k/e)k

. (A.1)

Inequality (1) is due to the fact that k! ≥ c′
√
k
(
k
e

)k
. If 2ecC2

2 < 1 the last summation

converges QED.

2, 3⇒ 4:

This is the only part for which X has to be zero mean. Since the random variable is

zero mean, we can write the following.

E(etX) ≤ 1 +
∞∑
k=2

tk
E(Xk)

k!
≤ 1 +

∞∑
k=2

tkCk
2

√
k
k

k!
≤ 1 +

∞∑
k=2

tk(C ′2)k
√
k
k
.

When t < 1
C′2

the right hand side is less than a geometric series. Therefore it is

less than 1 +C ′3t
2/2 ≤ eC

′
3t

2
. For the range t < 1

C′2
the proof is complete. Next step is

to extend it to larger values of t. For this purpose we use part 3 of the lemma. Since

E(ecX
2
) ≤ C3, if tX− ct2 ≤ c2X

2 then we have E(etX) ≤ Cect
2

and since we just want

to consider the values of t > 1/C ′2 we can just change the rate of exponential and have

E(etX) ≤ ect
2

that we were looking for. Also tX−ct2 ≤ c2X
2 is clearly true for c2 = 1

4c
.

3⇒ 1:

P(|X| > u) = P(exp(c2X
2) > exp(c2u

2)) ≤ C2e−c2u
2

,
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where the last inequality is the result of the Markov inequality.

4⇒ 1:

P(|X| > u) = P(exp(tX) > exp(tu)) ≤ ect
2−tu.

If we do the optimization over the value of t we get the sub-gaussian tail.

Theorem A.0.3. Let X1, . . . , Xn be independent mean zero sub-gaussian random

variables. A linear combination of these random variables is also a sub-gaussian

random variable.

Proof. Suppose that Z =
∑n

i=1 aiXi. Since these random variables are all zero mean

Z is also zero mean and therefore according to the previous lemma it is sub-gaussian

iff E(et(
∑n
i=1 aiXi)) ≤ ect

2
. However since they are all independent calculating the

expected value is simple,

E(et(
∑n
i=1 aiXi)) ≤ et

2(
∑n
i=1 cia

2
i ),

and therefore this random variable is also sub-gaussian.

Definition A.0.1. X is a sub-exponential random variable iff P(|X| > t) ≤ Ce−ct,

∀t > 0.

Lemma A.0.4. Let X be a zero mean sub-exponential random variable. Then the

following statements are true.

1. E(|X|p)1/p ≤ Cp for p = 1, 2, 3, . . ..

2. E(eλX) ≤ eC1λ2
for λ < C1.

Since the proof is very similar to the proof of Lemma A.0.2 it is skipped here.

The following theorem from [108] shows the concentration of measure for the linear

combination of sub-exponential random variables.
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Theorem A.0.5. Let X1, X2, . . . , Xn be iid sub-exponential random variables with

Exi = 0, a1, a2, . . . , an ∈ R. Let T = ‖a‖2
‖a‖∞ . Then for all t > 0,

P(|
∑
k

akxk| > t‖a‖2) ≤

{
ce−ct

2
if t ≤ T ,

ce−cT t otherwise.

The main idea in the above proof is to use Markov inequality for e
∑
k akxk and

optimize over λ. This approach was done several times in Chapter 2 and we do not

repeat it here. For the details, the reader may refer to [108].



Appendix B

Berry-Esseen Central Limit

Theorem

In this section we present a proof of the Berry-Esseen central limit theorem which is

used in Section 5.3 and Section 5.2. This proof is mainly due to Charles Stein [98].

Although more widely known approaches such as Lindeberg swapping trick [8] can

also be used for proving similar results, we use Stein’s method that gives stronger

bound.

Theorem B.0.6. Let S1, S2, . . . , Sn be independent zero mean random variables. Sup-

pose E(S2
i ) = 1 and E(|Si|3) ≤ C where C is independent of i. For any bounded

differentiable function φ(x) with bounded first derivative we have,

E(φ(
S1 + S2 + . . .+ Sn√

n
)) = E(φ(G)) +O(

C√
n

(1 + sup |φ′(x)|)),

where G ∼ N (0, 1).

Proof. Let Zn = S1+S2+...+Sn√
n

. Following Stein’s method, for a given function φ(x) we

define its Stein transform as,

Tφ(x) = e
x2

2

∫ x

−∞
e−

y2

2 (φ(y)− Eφ(G))dy.
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This function is bounded and has bounded derivative and second order deriva-

tive and supx |T ′′φ (x)| ≤ supx |φ′(x)|. It is also not difficult to see that E(T ′φ(Zn) −
ZnTφ(Zn)) = E(φ(Zn)− φ(G)). Define Ti = Zn − Si√

n
.

EZnTφ(Zn) =
∑
i

SiTφ(Zn) = E
1√
n

∑
i

SiTφ(Ti)+
S2
i√
n
T ′φ(Ti+t

Si√
n

) =
1

n
ES2

i T
′
φ(Ti+t

Si√
n

).

We now try to bound E(f ′(Zn)− Znf(Zn)).

E (T ′φ(Zn)− ZnTφ(Zn)) = ET ′φ(Zn) +
1

n

∑
i

T ′φ(Ti +
Si√
n

)− S2
i T
′
φ(Ti + t

Si√
n

)

= E
1

n

∑
i

T ′φ(Ti +
Si√
n

)− T ′φ(Ti) + f ′(Ti)− S2
i T
′
φ(Ti + t

Si√
n

)

= E
1

n

∑
i

T ′φ(Ti +
Si√
n

)− T ′φ(Ti) + S2
i T
′
φ(Ti)− S2

i T
′
φ(Ti + t

Si√
n

)

≤ 1√
n
E(|Si| sup

x
|T ′′φ (x)|) + E(|Si|3) sup

x
|T ′′φ (x)|)

≤ 4√
n

sup |φ′(x)|.

Theorem B.0.7. Let S1, S2, . . . , Sn be independent zero mean random variables. Sup-

pose E(S2
i ) = 1 and E(|Si|3) ≤ C where C is independent of i.

P(Zn < a) = P(G < a) +O(
1√
n

)

uniformly for all a ∈ R, where G ∼ N(0, 1).

Proof. The proof is very similar to what we did for the previous theorem. We define

φ(x) = I(x < a) and use the Stein’s method. Although the function is not differen-

tiable any more, it is possible to see that xTφ(x) is Lipschitz and we can use similar

arguments.



Appendix C

Wigner’s Semicircle Law

Theorem C.0.2. [111, 112] Let A be a real symmetric N ×N matrix. Suppose that

for i ≥ j, the elements Aij are drawn iid. from a distribution F . Further, assume

that EF (A2
ij) = 1/N . If S is the number of eigenvalues of A that lie in the interval

(α, β), for real α < β, then,

lim
N→∞

E(S) =
1

2π

∫ β

α

√
4− x2dx.

Suppose that the empirical distribution of the eigenvalues of a given matrix is

called µAN . This is of course a probability measure, but it may depend on the

ensemble we draw and therefore it is random itself. The above theorem implies

that the expected value of these distributions, which we may call µN , converges to

the semicircle law.

Lemma C.0.8. Let A be as given in the previous theorem. We have

E
1

N
Tr(Ak) =

∫
xkdµN(x).

Proof.

1

N
Tr(Ak) =

∫
xkdµAN (x).
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Taking expectation from both sides will give us the result.

Theorem C.0.3. Let A be as given in Theorem C.0.2. Furthermore, suppose F is

sub-gaussian. If γ is an eigenvalue of A,

lim
N→∞

∫
xkdµN(x) =

1

2π

∫ 2

−2

γk
√

4− γ2dγ, ∀k ∈ N.

Proof. According to Wigner’s theorem we know that µN(x) is converging to the semi-

circle law. It is not difficult to prove that the maximum and minimum eigenvalues of

this matrix are also sub-gaussian; We did it for similar cases in Chapter 2. Therefore

according to Theorem 4, Lecture 1 of [101], we conclude the above theorem.



Appendix D

Proofs of Chapter 2

D.1 Proof of Theorem 2.3.1

The goal of this section is to give an outline of the proof of Theorem 2.3.1. Theorem

2.3.1 Suppose that k < 1
3.1
µ−1 and |xo(i)|

|xo(i+1)| < 3`i−4,∀i, 1 ≤ i < k. Then IHT finds

the correct active set in at most
∑k

i=1 `i+k steps. After this step all of these elements

will remain in the active set and the error will go to zero exponentially fast.

Proof. Let me first summarize the behavior of the algorithm intuitively. It will help

the reader understand the steps of the proof more easily. All these things will be

proved rigorously later in this section. When we run the algorithm, at the first

iteration the largest element of xo will get into the active set. Interestingly, once this

element gets into the active set it will always remain in the active set. In the next few

iterations of the algorithm the first element remains in the active set and the error

term decreases and finally it will be so small that the second largest element will be

detected (This statement is not exactly right. The error term may go up for a finite

number of iterations, but eventually it will decrease. You will see the rigorous bound

of this error and its performance in the next lemma). Once the second largest term

gets into the active set, the first and second elements will remain in the active set and

the same process will happen again, i.e. the error term will decrease and eventually
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the third largest element will get into the active set. The goal of this section is to

make all the above statements precise.

The next lemma will be useful later when we try to bound the error at each iteration.

Lemma D.1.1. Consider the following sequence for s ≥ 0,

fs = α1 + . . . αs + βαs+1,

where 0 < α < 1. The following statements are true;

1. If β(1− α) < 1, then for every s, fs <
α

1−α .

2. If β(1− α) > 1, then for every s, fs < βα.

3. If β(1− α) = 1, then fs is a constant sequence and is always equal to α
1−α .

It is easy to see that the sequence is either increasing or decreasing or constant

depending on the values of α and β. The proof is simple and is omitted for the sake

of brevity.

Lemma D.1.2. Suppose that xo(1), xo(2), . . . , xo(r − 1), r − 1 < k, are in the active

set at the mth step. Also assume that,

|zm(j)− xo(j)| ≤ 1.5 · k · µ|xo(r − 1)| ∀j.

If kµ < 1
3.1

, then at stage m + s and for every j, we have the following upper bound

for |zm+s(j)− xo(j)|:

|xo(r)| (kµ+ . . .+ (kµ)s) + 1.5(kµ)s+1|xo(r − 1)|. (D.1)

Moreover, xo(1), xo(2), . . . , xo(r − 1) will remain in the active set.

Before proving this theorem, it should be mentioned that at this point, the factor

1.5 may seem unnecessary in the proof. But as will be seen later in Lemma D.1.3,

this factor is necessary and can not be omitted.
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Proof. We prove this by induction; Assuming that the bound holds at stage m + s

and xo(1), xo(2), . . . , xo(r − 1) are in the active set, we show that the upper bound

holds at stage m+ s+ 1 and the first r − 1 elements will remain in the active set.

|zm+s+1(i)− xo(i)|

≤ |
k∑
j=1

〈Ai, Aj〉wm+`
j +

∑
j∈Im+`

〈Ai, Aj〉wm+`
j |,

≤
∑

j∈Im+s\{i}

|〈Ai, Aj〉wm+s(j)|+
∑

j∈{1,2,...k}\Im+s∪{i}

|〈Ai, Aj〉wm+s(j)|,

1
=

∑
j∈Im+s\{i}

|〈Ai, Aj〉wm+s(j)|+
∑

j∈{r,...k}\Im+s∪{i}

|〈Ai, Aj〉wm+s(j)|,

2

≤
∑

j∈Im+s\{i}

|〈Ai, Aj〉(zm+s(j)− xo(j))|+ kµxo(r),

≤ kµ|xo(r)|(kµ+ . . .+ (kµ)s) + 1.5(kµ)s+2|xo(r − 1)|

+ kµ|xo(r)|,

≤ |xo(r)|(kµ+ . . .+ (kµ)s+1) + 1.5(kµ)s+2|xo(r − 1)|.

In these calculations equality (1) is due to the assumptions of the induction, i.e. the

first r− 1 elements are in the active set at stage m+ s. To get inequality (2) we have

used two different facts. The first one is that when j ∈ Im+s, wm+s(j) = xo(j) −
zm+s(j) and the second one is that when j ∈ {r, . . . k}\Im+s then wm+s(j) = xo(j)

and therefore |xo(j)| ≤ |xo(r)|. The last step is to prove that all the first r − 1

elements remain in the active set. For i ∈ {1, 2 . . . , r − 1},

|zm+s+1(i)| ≥ |xo(i)| − |zm+s+1(i)− xo(i)|,
1

≥ |xo(i)| − (kµ|xo(r − 1)|+ . . .+ (kµ)s+1|xo(r − 1)|)

−1.5(kµ)s+2|xo(r − 1)|
2

≥ |xo(i)| −
|xo(r − 1)|

2.05

≥ |xo(r − 1)| − |xo(r − 1)|
2.05

.
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In inequality (1) we have used the bound in (D.1) by replacing xo(r) with xo(r − 1).

Inequality (2) is the result of Lemma D.1.1. For i /∈ {1, 2 . . . k}, we have

|zm+s+1(i)| ≤ |xo(r − 1)|
2.05

,

and since min{i:i≤r−1} |zm+s+1(i)| > max{i:i>k} |zm+s+1(i)|, the first r−1 elements will

remain in the active set. The base of the induction is the same as the assumptions of

this lemma.

Lemma D.1.3. Suppose that k < 1
3.1
µ−1, and xo(1), xo(2), . . . , xo(r), r < k, are in

the active set at the mth step. Also assume that |xo(r)|
|xo(r+1)| ≤ 3`r−4. If

|zm(j)− xo(j)| ≤ 1.5 · k · µ|xo(r)| ∀ j,

after `r more steps xo(r + 1) will get into the active set, and

|zm+`r+1(j)− xo(j)| ≤ 1.5 · k · µ|xo(r + 1)| ∀ j.

Proof. By setting s = `r in the upper bound of the last lemma we get,

|zm+`r(j)− xo(j)| ≤
1.5|xo(r + 1)|

273
+
|xo(r + 1)|

2.1
.

Similar to the last lemma it is also not difficult to see that

|zm+`r(r + 1)| = |zm+`r(r + 1)− xo(r + 1) + xo(r + 1)|

≥ |xo(r + 1)| − |zm+`r(r + 1)− xo(r + 1)|

≥ |xo(r + 1)| − |1.5xo(r + 1)|
273

− |xo(r + 1)|
2.1

.

But,

|zm+`r(r + 1)| > max
{i:i>k}

|zm+`r(i)|,

and therefore xo(r+1) will be detected at this step. It may also be noted that at this

stage the error is less than |xo(r + 1)|/2. For the next stage we will have at most k
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active elements the error of each is less than |xo(r+ 1)|/2 and at most k− r non-zero

elements of xo that have not passed the threshold and whose magnitudes are smaller

than |xo(r+1)|. Therefore, the error of the next step is less than 1.5kµ|xo(r+1)|.

Our goal is to prove the correctness of IHT by induction and we have to know the

correctness of IHT at the first stage. The following lemma provides this missing step.

Lemma D.1.4. Suppose that k < 1
3.1
µ−1, then at the first stage of the IHT, xo(1)

will be in the active set1 and for every j, |z1(j)− xo(j)| ≤ kµ|xo(1)|.

The proof is very simple and is omitted.

Finally the following lemma describes the performance of the algorithm after detecting

all the non-zero elements.

Lemma D.1.5. Suppose that xo(1), xo(2), . . . , xo(k), are in the active set at the mth

step. Also assume that,

|zm(j)− xo(j)| ≤ 1.5 · k · µ|xo(k)| ∀j.

If kµ < 1
3.1

, then at stage m+ s and for every j, we have

|zm+s(j)− xo(j)| ≤ 1.5(kµ)s+1|xo(k)|.

Since the proof of this lemma is very simple , it is omitted.

The proof of the main theorem is an induction that combines the above lemmas.

Suppose that xo(1), xo(2), . . . , xo(r) are already in the active set. According to Lemma

D.1.2 all these terms will remain in the active set, and according to Lemma D.1.3

after `r steps xo(r + 1) will also get into the active set. In one more step, the error

on each element gets smaller than 1.5kµ|xo(r + 1)|, and everything can be repeated.

Lemma D.1.4 provides the first step of the induction. Finally when all the elements

are in the active set Lemma D.1.5 tells us that the error goes to zero exponentially

fast.

1This result holds even if kµ < 1
2 . For the sake of consistency with the other parts of the proof

we state it in this way
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D.2 Proof of Theorem 2.4.1

Theorem 2.4.1 Suppose that k < 1
4.1
µ−1 and ∀i, 1 ≤ i < k, we have |xo(i)|

|xo(i+1)| < 2`i−5.

Then IST recovers the correct active set in at most
∑k

i=1 `i + k steps. After that all

these coefficients will remain in the active set and the error will go to zero exponen-

tially fast.

Proof. As mentioned before the main ideas of the proof of the IST algorithm are

very similar to those of the IHT. We will mention the proof in detail but will try to

emphasize more on the differences. The following lemma helps us find some bounds

on the error of the algorithm at each step.

Lemma D.2.1. Suppose that xo(1), xo(2), . . . , xo(r), r ≤ k, are in the active set at

the mth step. Also assume that

|xm(j)− xo(j)| ≤ 4 · k · µ|xo(r)|, ∀j ∈ Im,

and kµ < 1
4.1

. Then at stage m+ s, ∀ i ∈ Im+s we have the following upper bound for

|xm+s(i)− xo(i)|,

|xo(r + 1)| (2kµ+ . . .+ (2kµ)s) + 2(2kµ)s+1|xo(r)|.

Moreover, xo(1), xo(2), . . . , xo(r) remain in the active set.

Proof. As before, this can be proved by induction. We assume that at step m+ s the

upper bound holds and xo(1), xo(2), . . . , xo(r) are in the active set and we prove the
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same things for m+ s+ 1. Similar to what we saw before,

|zm+s+1(i)− xo(i)|

≤
∑

j∈Im+s\{i}

|〈Ai, Aj〉wm+s(j)|+
∑

j∈{1,2,...k}\Im+s∪{i}

|〈Ai, Aj〉wm+s(j)|,

1
=

∑
j∈Im+s\{i}

|〈Ai, Aj〉wm+s(j)|+
∑

j∈{r+1,...k}\Im+s∪{i}

|〈Ai, Aj〉wm+s(j)|,

2

≤ (k − 1)µ(2kµ|xo(r + 1)|+ . . .+ (2kµ)s|xo(r + 1)|

+ 2(2kµ)s+1|xo(r)|) + kµ|xo(r + 1)| := αs.

Equality (1) is using the assumption that the first r elements are in the active set at

stage m + s. Inequality (2) is also due to the assumptions of the induction and the

fact that wm+s(j) = xo(j)− xm+s(j).

At least one of the largest k+1 coefficients of z, corresponds to an element whose index

is not in {1, 2, . . . k}, and the magnitude of this coefficient is less than αs. Therefore

the threshold value is less than or equal to αs. Applying the soft thresholding to z

will at most add αs to the distance of zs+1(i) and xo(i), and this completes the proof

of the upper bound. The main thing that should be checked is whether the first r

elements will remain in the active set or not. For i ∈ {1, 2 . . . r} we have,

|zm+s+1(i)| ≥ |xo(i)| − |zm+s+1(i)− xo(i)|,

≥ |xo(i)| − kµ|xo(r)|(1 + 2kµ+ . . .+ (2kµ)s+1)

−2kµ(2kµ)s+1|xo(r)| ≥ |xo(i)| −
|xo(r)|
2.05

≥ |xo(r)| −
|xo(r)|
2.05

. (D.2)

If the sequence in the above expression is multiplied by 2, the result will be a sequence

in the form of the sequences mentioned in Lemma D.1.1 for α = 2kµ, β = 2 and the

last equality is based on that lemma.
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If i /∈ {1, 2 . . . k},

|zm+s+1(i)| ≤ kµ|xo(r)|(1 + 2kµ+ . . .+ (2kµ)s+1)

+ 2kµ(2kµ)s+1|xo(r)| ≤
|xo(r)|
2.05

.

Since min{i:i≤r} |zm+s+1(i)| > max{i:i>k} |zm+s+1(i)|, the first r elements remain in

the active set. The base of the induction is also clear since it is the same as the

assumptions of the lemma.

Lemma D.2.2. Suppose that k ≤ µ−1

4.1
, and xo(1), xo(2), . . . , xo(r), r ≤ k, are in the

active set at the mth step. Also, assume that |xo(r)|
|xo(r+1)| ≤ 2`r−5. If

|xm(j)− xo(j)| ≤ 4 · k · µ|xo(r)|, ∀j ∈ Im,

then after `r steps xo(r + 1) will get into the active set, and

|xm+`r+1(j)− xo(j)| ≤ 4kµ|xo(r + 1)|, ∀j ∈ Im+`r+1.

Proof. As before, we try to find a bound for the error at time m + `r. For i ∈
{1, 2, . . . , k},

|zm+`r(i)− xo(i)| ≤
1

2
|xo(r + 1)|(2kµ+ . . .+ (2kµ)`r)

+ (2kµ)`r+1|xo(r)| ≤
|xo(r + 1)|

2.1
+
|xo(r + 1)|

64

and therefore, for i = r + 1,

|zm+`r(r + 1)| ≥|xo(r + 1)| − |zm+`r(i)− xo(i)| ≥

|xo(r + 1)| − |xo(r + 1)|
2.1

− |xo(r + 1)|
64

(D.3)

Since |zm+`r(r+ 1)| > max{i:k<i} |zm+`r(i)|, the r+ 1th element will get into the active

set at this stage. On the other hand for any i ∈ Im+`r we have |xm+`r(i) − xo(i)| ≤
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xo(r + 1). For the next stage of the algorithm we will have at most 2k non-zero

xm+`r(i)− xo(i) and absolute value of each of them is less than |xo(r+ 1)|. Therefore

|zm+`r+1(i) − xo(i)| ≤ 2kµ|xo(r + 1)| and after thresholding we have, |xm+`r+1(i) −
xo(i)| ≤ 4kµ|xo(r + 1)| for i ∈ Im+`r+1.

The base of the induction is also clear from the assumptions of this lemma.

For the IHT algorithm we proved that at the first step the first element will

pass the threshold. Since the selection step of IST and IHT is exactly the same, we

can claim that the same thing is true for IST, i.e. the largest magnitude coefficient

will pass the threshold. Also, as we saw for IHT, the error was less than kµ|xo(1)|.
Therefore, for the IST we have |x1(j)−xo(j)| < 2kµ|xo(1)| for every j. These bounds

are even better than the bounds we need for D.2.1 and D.2.2 and D.2.3.

The following lemma will explain what happens when the algorithm detects all the

non-zero elements.

Lemma D.2.3. Suppose that xo(1), . . . , xo(k), are in the active set at the mth step.

Also assume that,

|xm(j)− xo(j)| ≤ 4 · k · µ|xo(k)|.

If kµ < 1
4.1

, at stage m + s all the elements remain in the active set and for every j

we will have,

|zm+s(j)− xo(j)| ≤ 2(2kµ)s+1|xo(k)|

The proof of this lemma is very similar to the other lemmas and is omitted.

The proof of the main theorem is a simple induction by combining the above

lemmas. Suppose that xo(1), xo(2), . . . , xo(r) are already in the active set. According

to Lemma D.2.1 all these terms will remain in the active set, and according to Lemma

D.2.2 after `r steps xo(r + 1) will also get into the active set. In one more step, the

error on each element gets smaller than 4kµ|xo(r+1)|, and everything can be repeated.

Although we have not mentioned the first step of the induction, it is not difficult to

see that it is also true and it is very similar to the first step of IHT. Finally when all
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the elements are in the active set, Lemma D.2.3 ensures that the error goes to zero

exponentially fast.



Appendix E

Proofs of Chapter 4

E.1 proof of Lemma 4.2.1

Lemma 4.2.1 Let Aij be the ijth element of the measurement matrix and suppose

that these elements are drawn iid from a given distribution with the following prop-

erties, E(Aij) = 0, E(A2
ij) = 1

n
and E(A4

ij) = O( 1
n2 ). We assume that the ratio δ = n

N

is fixed. Let the vector x be a vector with elements iid from a possibly different

distribution, with a bounded second moment and independent of the matrix A. If

s = (A∗A− I)x, then

E(si) = 0,

E(sisj) = O(
1

n
),

E(s2
i ) =

E(x2
i )

δ
+O(

1

n
).

Proof. In this proof xi represents the ith element of x and H = A∗A − I. Hi and

Ai the ith column of the H and A matrices respectively and Hij and Aij are the ijth

elements of H and A. It is easy to see that,

E(Hij) = 0. (E.1)

254
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Therefore,

E(si) = E(
∑
j

Hijxj) =
∑
j

E(Hij)E(xj) = 0.

It is also clear that Hik depends on the ith and kth columns of the A matrix. Hence

if i 6= j, i 6= `. j 6= k and j 6= `,

E(HijHk`) = 0. (E.2)

Now consider another case i 6= j and ` 6= i, j.

E(HijHj`) = E(A∗iAjA
∗
jA`) = E(A∗i )E(AjA

∗
jA`) = 0.

The final case we consider here is i 6= j.

E(H2
ij) = E(A∗iAjA

∗
jAi) =

1

n
E(A∗iAi) =

1

n
.

E(sisj) = E((
∑
k

Hikxk)(
∑
`

Hj`x`)) =

∑
k

∑
`

E(HikHj`)E(xkx`)
1
= E(HijHji)E(xjxi) = O(

1

n
). (E.3)

Equality (1) is the result of what we proved before for the covariance of Hij and Hk`.

E(s2
i ) = E(x∗HiH

∗
i x) = E(x∗E(H∗iHi)x).

From what we proved before E(H∗iHi) is a diagonal matrix and therefore,

E(x∗E(H∗iHi)x) = E(x2
i )
∑
k

E(H2
ik). (E.4)
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We also have,

∑
k 6=i

E((A∗iAk))
2 =

∑
k 6=i

ETr(A∗iAkA∗kAi) =

∑
k 6=i

E
1

n2
Tr(In) =

N − 1

n
=

1

δ
+O(

1

n
).

where In is the n× n identity matrix and

E((A∗iAi − 1))2 = E((A∗iAi)
2 − 2(A∗iAi) + 1) =

E((A∗iAi)
2) +−2 + 1 = E(

∑
j

A2
ij

∑
k

A2
ik)− 1 =

∑
k

∑
j 6=k

E(A2
ijA

2
ik) +

∑
k

E(A4
ik) =

n(n− 1)

n2
+O(

1

n
)− 1 = O(

1

n
). (E.5)

By combining the three above equations we have,

E(s2
i ) =

E(x2
i )

δ
+O(

1

n
). (E.6)

E.2 Proof of Proposition 4.2.2

Proposition 4.2.2. For the three canonical problems χ ∈ {+,±,�}, any δ ∈ [0, 1],

and any random variable X with the prescribed sparsity and bounded second mo-

ment, ρSE(δ;χ, λ, FX) is independent of FX .

Since the calculations that are needed for each case is different we do the proof

for each canonical model separately .
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E.2.1 proof for the case χ = +

Lemma E.2.1. The MSE map Ψ(σ2) is a concave function of σ2 for the case χ = +.

Proof. First, recall the expression for the MSE map

Ψ(σ2) = E
{(
η(X +

σ√
δ
Z;λσ, χ)−X

)2
}
. (E.7)

We denote by ∂1η and ∂2η the partial derivatives of η with respect to its first and

second arguments. Using Stein’s lemma and the fact that ∂2
1η(x; y, χ) = 0 almost

everywhere, we get

dΨ

dσ2
=

1

δ
E
{
∂1η(X +

σ√
δ
Z;λσ)2

}
+
λ

σ
E
{[
η(X +

σ√
δ
Z;λσ)−X

]
∂2η(X +

σ√
δ
Z;λσ)

}
, (E.8)

where we dropped the dependence of η( · ) on the constraint χ to simplify the formula.

In this case we have X ≥ 0 almost surely and the threshold function is

η(x;λσ) =

{
(x− λσ) if x ≥ λσ,

0 otherwise.

As a consequence ∂1η(x;λσ) = −∂2η(x;λσ) = I(x ≥ λσ) (almost everywhere). This

yields

dΨ

dσ2
=

(
1

δ
+ λ2

)
EΦ
(√δ
σ

(X − λσ)
)

− λ√
δ
Eφ
(√δ
σ

(X − λσ)
)
.

In order to prove the concavity of σ2 7→ Ψ(σ2) first notice that a convex combi-

nation of concave functions is concave and so it is sufficient to show the concavity in

the case X = x ≥ 0 deterministically. Next notice that, in the case x = 0, dΨ
dσ2 is

independent of σ2. A a consequence, it is sufficient to prove d2Ψx
d(σ2)2 ≤ 0 where
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δ
dΨx

dσ2
=
(
1 + λ2δ

)
Φ
(√δ
σ

(x− λσ)
)
− λ
√
δ φ
(√δ
σ

(x− λσ)
)
.

Using Φ′(u) = φ(u) and φ′(u) = −uφ(u), we get

δ
d2Ψx

d(σ2)2
= − x

2σ3

{
1 +

λδ

σ
x

}
φ
(√δ
σ

(x− λσ)
)
< 0 (E.9)

for x > 0.

Now we turn our attention to the proof of Proposition 4.2.2 for the canonical

problem χ = +. Since the Ψ(σ2) function is concave the state evolution phase

transition can be simplified to

ρSE(δ; +, λ) = sup{ρ :
dΨ

dσ2
|σ2=0< 1}. (E.10)

As σ ↓ 0, we have Φ
(√

δ
σ

(X−λσ)
)
→ 1 and φ

(√
δ
σ

(X−λσ)
)
→ 0 if X > 0. Therefore,

dΨ

dσ2

∣∣∣∣
0

=

(
1

δ
+ λ2

)
ρδ +

(
1

δ
+ λ2

)
(1− ρδ) Φ(−λ

√
δ)

− λ√
δ

(1− ρδ)φ(−λ
√
δ) .

The threshold ρSE(δ; +, λ) is obtained by setting dΨ
dσ2

∣∣
0

= 1 which is independent of the

distribution of non-zero elements of X. Therefore, for the canonical problem χ = +

the phase transition is independent of the distribution of the non-zero elements of X

and is given by,

ρSE(δ; +, λ) =
1− (1

δ
)[(1 + z2)Φ(−z)− zφ(z)]

1 + z2 − [(1 + z2)Φ(−z)− zφ(z)]
, (E.11)

where z = λ
√
δ.
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Case χ = ±

Lemma E.2.2. The MSE map Ψ(σ2) is a concave function of σ2 for the case χ = ±.

Proof. Recall the definition of soft threshold

η(x;λσ) =


(x− λσ) if x ≥ λσ,

(x+ λσ) if x ≤ −λσ,

0 otherwise.

As a consequence ∂1η(x;λσ) = I(|x| ≥ λσ) and ∂2η(x;λσ) = −sign(x)I(|x| ≥ λσ).

This yields

dΨ

dσ2
=

(
1

δ
+ λ2

)
E
{

Φ
(√δ
σ

(X − λσ)
)

+Φ
(
−
√
δ

σ
(X + λσ)

)}
− λ√

δ
E
{
φ
(√δ
σ

(X − λσ)
)

+ φ
(√δ
σ

(X + λσ)
)}

.

Calculating the second derivative at X = x as before it is easy to see that the

second derivative is negative and the function is concave.

Now we turn our attention to the proof of Proposition 4.2.2 for the canonical

problem χ = ±. As before we consider the behavior of the derivative of Ψ(σ2) at

σ2 = 0. By letting σ ↓ 0 we obtain

dΨ

dσ2

∣∣∣∣
0

=

(
1

δ
+ λ2

)
ρδ +

(
1

δ
+ λ2

)
(1− ρδ) 2 Φ(−λ

√
δ)

− λ√
δ

(1− ρδ) 2φ(−λ
√
δ) ,

By setting dΨ
dσ2

∣∣
0

= 1 we get the ρSE(δ;±), which is independent of the distribution

of the non-zero elements of X. Considering z = λ
√
δ we get the following formula for
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the phase transition.

ρSE(δ;±, λ) =
1− (2

δ
)[(1 + z2)Φ(−z)− zφ(z)]

1 + z2 − 2[(1 + z2)Φ(−z)− zφ(z)]
. (E.12)

Case χ = �

Finally consider the case of X supported on [−1,+1] with P{X 6∈ {+1,−1}} ≤ ε. In

this case we proposed the following nonlinearity,

η(x) =


+1 if x > +1,

x if −1 ≤ x ≤ +1,

−1 if x ≤ −1.

Notice that the nonlinearity does not depend on any threshold parameter. Since

∂1η(x) = I(x ∈ [−1,+1]),

dΨ

dσ2
=

1

δ
P
{
X +

σ√
δ
Z ∈ [−1,+1]

}
=

1

δ
E
{

Φ
(√δ
σ

(1−X)
)
− Φ

(
−
√
δ

σ
(1 +X)

)}
.

As σ ↓ 0 we get

dΨ

dσ2

∣∣∣∣
0

=
1

2δ
(1 + ρδ) ,

whence the local stability condition dΨ
dσ2

∣∣
0
< 1 yields ρSE(δ;�) = (2− δ−1)+.

Concavity of σ2 7→ Ψ(σ2) immediately follows from the fact that Φ(
√
δ
σ

(1− x)) is

non-increasing in σ for x ≤ 1 and Φ(−
√
δ
σ

(1+x)) is non-decreasing for x ≥ −1. Using

the combinatorial geometry result of [42] we get

Theorem E.2.1. For any δ ∈ [0, 1],

ρCG(δ;�) = ρSE(δ;�) = max
{

0, 2− δ−1
}
. (E.13)
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E.2.2 Proof of Lemma 5.2.4

Lemma 5.2.4 Suppose that the asymptotic behavior (5.25) holds for the message

passing algorithm (4.8) and (4.9). Then xti and zta satisfy the following equations

xt+1
i = ηt

(∑
a

Aiaz
t
a + xti

)
+ oN(1),

zta = ya −
∑
j

Aajx
t
j +

1

δ
zt−1
a 〈η′t−1(A∗zt−1 + xt−1)〉+ oN(1),

where the oN(1) terms vanish as N, n→∞.

Proof. To prove the lemma we substitute (5.25) in the general equations (5.26) and

write the Taylor expansion of the latter. The update equation for zta→i yields

zta→i = ya −
∑
j∈[N ]

Aajx
t
j −

∑
j∈[N ]

Aajδx
t
j→a︸ ︷︷ ︸

zta

+Aaix
t
i︸ ︷︷ ︸

δztai

+O(1/N)

For xt+1
i→a we have

xt+1
i→a = ηt(

∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

Abiδz
t
b→i)︸ ︷︷ ︸

xti

−Aaiztaη′t(
∑
b∈∂i

Abiz
t
b +
∑
b∈∂i

Abiδz
t
b→i)︸ ︷︷ ︸

δxti→a

+O(1/N) .

In underbraces we have identified the various contributions. Substituting the expres-

sion indicated for δxti→a, δz
t
a→i we obtain the recursion for xti and zta. In particular xti

is updated according to

xt+1
i = ηt(

∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

Abiδz
t
b→i) + o(1)

= ηt(
∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

A2
bix

t
i) + o(1)

= ηt(
∑
b∈[n]

Abiz
t
b + xti) + o(1) .
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For zta we get

zta = ya −
∑
j∈[N ]

Aajx
t
j +

∑
j∈[N ]

A2
ajz

t−1
a η′t−1(

∑
b∈[n]

Abjz
t−1
b +

∑
b∈[n]

Aajδz
t−1
a→j) + o(1)

= ya −
∑
j∈[N ]

Aajx
t
j +

1

n
zt−1
a

∑
j∈[N ]

η′(
∑
b∈[n]

Abiz
t−1
b + xt−1

i ) + o(1)

= ya −
∑
j∈[N ]

Aajx
t
j +

1

δ
zt−1
a 〈ηt−1(

∑
b∈[n]

Abiz
t−1
b + xt−1

i ) + o(1)〉 .

E.2.3 Proof of Theorem 4.3.1

Suppose that the derivative of the Ψ(σ2) function at zero is equal to ω and below the

phase transition the derivative is less than one we have ω < 1. According to concavity

Ψ(σ2) ≤ ωσ2. Therefore after t application of the Ψ function to σ2
0 we get σ2

t ≤ ωtσ2
0

and therefore we have the exponentially fast convergence of the algorithm as claimed

in the theorem.

E.2.4 Proof of Theorem 4.4.2

Lemma E.2.3. For any λ and σ, Fε,γ(µ) is the least favorable distribution for the

soft thresholding risk function, i.e., it achieve the supF∈Fε,γ Eµ∼F r(µ, λ;σ).

Proof. Let G(µ) denote the distribution of non-zero components. We have

E(r(µ, λ;σ)) = (1− ε)E(r(0, λ;σ)) + εEµ∼G(E(r(µ, λ;σ)|µ)).

Since the first part of the risk is fixed and does not depend on the distribution G, we

ignore it and we just focus on the second term. We call Υ(µ;λ, σ) = E(r(µ, λ;σ)|µ).

Eµ∼GΥ(µ;λ, σ) = EΥ(µ2;λ, σ) ≤ Υ(γ2;λ, σ). (E.14)

The inequality is coming from the Jensen’s inequality and concavity of Υ that was
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proved in Lemma 4.4.1. The equality is achieved if and only if P (µ ∈ {γ,−γ}) =

1. We should emphasize that this is just true on the non-zero elements since we

conditioned on this event.

Corollary E.2.2. The least favorable distribution is independent of σ and therefore

no other thresholding policy can have better phase transition than the minimum risk

policy.

Lemma E.2.4.

lim
σ→0

λ∗MR(σ)

σ
= c, (E.15)

where c is finite constant.

Proof. By calculating the derivative of the risk function with respect to λ we obtain,

λ∗MR

σ
E(1− Φ(

λ∗MR − µ
σ

) + 1− Φ(
λ∗MR + µ

σ
)) = E(φ(

λ∗MR − µ
σ

) + φ(
λ∗MR + µ

σ
)),

(E.16)

where φ and Φ are the probability density function and distribution function of a

normal random variable with mean zero and variance one. If λ
σ
→ ∞ then the left

hand side is going to be infinite while the right hand side is 0. Therefore, the limit

converges to a finite constant.

Theorem E.2.5. Under the minimum risk thresholding policy λ∗MR the SE phase

transition happens at,

ρMR(δ) = max
z

(
1− 2/δ[(1 + z2)Φ(−z)− zφ(z)]

1 + z2 − 2[(1 + z2)Φ(−z)− zφ(z)]

)
(E.17)

Proof. Consider the following two thresholding policies. The first one is the λMR

and the second one is λ(σ) = βσ where β is fixed and does not depend on σ. Also

suppose that β = limσ→0
λMR(σ)

σ
. Call the density evolution mappings for these two

thresholdings ΨMR(σ2) and ΨL(σ2). We have,

ΨMR(σ2) ≤ ΨL(σ2),
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and

lim
σ→0

ΨMR(σ2)

ΨL(σ2)
= 1.

Clearly,

ρMR(δ) > ρL(δ). (E.18)

But it has been proved in [38] that ΨL(σ2) is a concave function and therefore ∀ρ > ρL,

lim
σ→0

ΨL(σ2)

σ2
> 1.

Which makes it clear that ∀ρ > ρL,

lim
σ→0

ΨMR(σ2)

σ2
> 1.

In other words this tell us ρMR(δ) > ρL(δ). So we basically see that these two methods

give us the same phase transitions.



Appendix F

Proofs of Chapter 7

F.1 Proof of Theorem 7.2.1

Consider matrix B ∈ R2t×2t specified by Bii = 2, Bi(i−1) = −1 and B(i−1)i = −1. The

rest of the elements are equal to zero. This matrix is non-negative definite; therefore

we can calculate the square root of this matrix. Define the measurement matrix

A =

( √
B 02t,N−2t

0n−2t,2t 0n−2t,N−2t.

)
, (F.1)

Also let y satisfy the following equation A∗y = [1, 0, . . . , 0]∗. Put

x(λ) = arg min
x

1

2
‖y − Ax‖2

2 + λ‖x‖1.

The following fact is clear from the structure of the problem.

Claim 1: x(λ) is unique and limλ→0 x(λ) = x? where x? satisfies x?i = 0 for i > 2t

and x?i = −i
2t+1

+ 1 for 1 ≤ i ≤ 2t.

According to the above theorem, there exists a λ? for which ‖x(λ) − x?‖2
2 ≤

1
64
‖x?‖2

2. We can now consider the first-order methods for solving minx
1
2
‖y−Ax‖2

2 +

λ?‖x‖1, where (A, y) is the same as before. We will show that there is a lower bound

on the distance of the estimates of a first-order method from x?. Since the algorithm

starts at 0, the first derivative is in the direction of A∗e1 (where ei is the unit vector

265
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that is zero at every location except at the ith position) and has therefore components

in the directions of e1 and e2. Therefore the best thing that a first-order approach

can do is to estimate x?1 and x?2 correctly and set the rest to zero. With the same

reasoning at the `th iteration the best first-order method is able to get x?1, x
?
2, . . . , x

?
`+1

right and set the rest to zero. Therefore at iteration t, the mean square error of the

estimate from x? is lower bounded by,

2t∑
i=t+1

(1− i

2t+ 1
)2 ≥ 2t3

(2t+ 1)2
=

1

8
‖x?‖2

2.

Therefore,

‖xt − x(λ?)‖2 ≥ ‖xt − x?‖2 − ‖x? − x(λ?)‖2 ≥ .2286 · ‖x?‖2.

Also,

‖x(λ?)‖2 ≤ ‖x?‖2 + ‖x? − x(λ)‖2 ≥
9

8
‖x?‖2.

By combining the above two equations we have,

‖xt − x(λ?)‖2
2 ≥

1

25
‖x(λ?)‖2

2.

The other claim in the theorem can be proved with the same problem instance

and with a very similar method and therefore is not repeated here.



Bibliography

[1] O. Axelsson. Iterative solution methods. Cambridge University Press, first

edition, 1996.

[2] D. Baron, D. Guo, and S. Shamai. A single-letter characterization of optimal

noisy compressed sensing. Proc. of the 47th Annual Allerton Conference, 2009.

[3] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA

Journal of Numerical Analysis, 8:141–148, 1988.

[4] M. Bayati and A. Montanri. The dynamics of message passing on dense graphs,

with applications to compressed sensing. IEEE Transactions on Information

Theory, 2010. submitted.

[5] M. Bayati, D. Shah, and M. Sharma. Max-product for maximum weight match-

ing: convergence, correctness, and lp duality. IEEE Transactions on Informa-

tion Theory, 54(3):1241–1251, 2008.

[6] A. Beck and M. Teboulle. A fast iterative shrinkage thresholding algorithm

for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202,

2009.

[7] S. Becker, J. Bobin, and E. Candès. Nesta: a fast and accurate first-order

method for sparse recovery. 2010. submitted for publication.

[8] P. Billingsley. Probability and measure. John Willey and Sons, 3 edition, 1995.

267



268 BIBLIOGRAPHY

[9] J. Bioucas-Dias and M. Figueiredo. A new twist: Two-step iterative shrink-

age/thresholding algorithms for image restoration. IEEE Transactions on Im-

age Processing, 16:2992–3004, 2007.

[10] J. D. Blanchard, C. Cartis, and J. Tanner. The restricted isometry property

and lq-regularization: Phase transitions for sparse approximation. submitted.

[11] T. Blumensath and M. E. Davies. Iterative thresholding for sparse approxima-

tions. Journal of Fourier Analysis and Applications, special issue on sparsity,

14(5):629–654, 2008.

[12] T. Blumensath and M. E. Davies. How to use the iterative hard thresholding

algorithm. Proc. SPARS, 2009.

[13] T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed

sensing. Applied and Computational Harmonic Analysis, 27(3):265–274, 2009.

[14] J. Bobin, J. L. Starck, J. Fadili, Y. Moudden, and D. L. Donoho. Morphological

component analysis: An adaptive thresholding strategy. IEEE Transactions on

Image Processing, 16(11):2675–2681, 2007.

[15] J. Bobin, J. L. Starck, and R. Ottensamer. Compressed sensing in astronomy.

IEEE Journal of Selected Topics in Signal Processing, 2(5):718–726, 2008.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, , and J. Eckstein. Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers.

to be submitted, 2010.

[17] S. Boyd and L. Vanderberghe. Convex optimization. Cambridge University

Press, 2004.

[18] K. Bredies and D. Lorenz. Linear convergence of iterative soft-thresholding.

Journal of Fourier Analysis and Applications, 14:813–837, 2008.

[19] E. Candès. The restricted isometry property and its implications for compressed

sensing. Compte Rendus de l’Academie des Sciences, 346:589–592, 2008.



BIBLIOGRAPHY 269

[20] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information. IEEE Transac-

tions on Information Theory, 52(2):489–509, February 2006.

[21] E. Candès and T. Tao. Rejoinder: the dantzig selector: statistical estimation

when p is much larger than n. Annals of Statistics, 35:2392–2404, 2007.

[22] R. Chartrand. Exact reconstructions of sparse signals via nonconvex minimiza-

tion. IEEE Signal Processing Letters, 14:707–710, 2007.

[23] S. Chen, S. A. Billing, and W. Lue. Orthogonal least squares methods and

their application to nonlinear system identification. International Journal of

Control, 50(5):1873–1896, 1989.

[24] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis

pursuit. SIAM Journal on Scientific Computing, 20:33–61, 1998.

[25] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term

approximation. IGPM Report, July 2006.

[26] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward

splitting. Multiscale Modeling and Simulation, 4(4):1168–1200, 2005.

[27] W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing signal

reconstruction. IEEE Transactions on Information Theory, 55(5):2230–2249,

2009.

[28] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint. Communications on Pure

and Applied Mathematics, 75:1412–1457, 2004.

[29] M. A. Davenport and M. B. Wakin. Analysis of orthogonal matching pur-

suit using the restricted isometry property. IEEE Transactions on Information

Theory, 2010. to appear.



270 BIBLIOGRAPHY

[30] D. L. Donoho. High-dimensional data analysis: The curses and blessings of di-

mensionality. Amer. Math. Soc. Lecture: “Math challenges of the 21st century”,

2000.

[31] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,

52(4):489–509, April 2006.

[32] D. L. Donoho. High-dimensional centrally symmetric polytopes with neigh-

borliness proportional to dimension. Discrete and Computational Geometry,

35(4):617–652, 2006.

[33] D. L. Donoho, I. Drori, Y. Tsaig, and J. L. Starck. Sparse solution of underde-

termined linear equations by stagewise orthogonal matching pursuit. Stanford

Statistics Department Technical Report, 2006.

[34] D. L. Donoho and M. Elad. Maximal sparsity representation via minimization.

Proceedings of National Academy of Sciences, 100:2197–2202, March 2003.

[35] D. L. Donoho, M. Elad, and V. Temlyakov. Stable recovery of sparse overcom-

plete representations in the presence of noise. IEEE Transactions on Informa-

tion Theory, 52:6–18, January 2006.

[36] D. L. Donoho and I. M. Johnstone. Minimax risk over lp balls. Probability

Theory and Related Fields, 99:277–303, 1994.

[37] D. L. Donoho, I. M. Johnstone, J. C. Hoch, and A. S. Stern. Maximum entropy

and the nearly black object. Journal of the Royal Statistical Society, Series B

(Methodological), 54(1):41–81, 1992.

[38] D. L. Donoho, A. Maleki, and A. Montanari. Message passing algo-

rithms for compressed sensing. Proceedings of National Academy of Sciences,

106(45):18914–18919, 2009.

[39] D. L. Donoho, A. Maleki, and A. Montanari. Construction of message passing

algorithms for compressed sensing. submitted to IEEE Transactions on Infor-

mation Theory, 2010.



BIBLIOGRAPHY 271

[40] D. L. Donoho, A. Maleki, and A. Montanari. Message passing algorithms for

compressed sensing: I. motivation and construction. Proc. of Information The-

ory Workshop, 2010.

[41] D. L. Donoho, A. Maleki, and A. Montanari. Noise sensitivity phase transition.

IEEE Transactions on Information Theory, 2010. submitted.

[42] D. L. Donoho and J. Tanner. Counting the faces of randomly projected hyper-

cubes and orthants with applications. Discrete and Computational Geometry.

to appear.

[43] D. L. Donoho and J. Tanner. Precise undersampling theorems. IEEE Transac-

tions on Information Theory. submitted for publication.

[44] D. L. Donoho and J. Tanner. Neighborliness of randomly-projected sim-

plices in high dimensions. Proceedings of the National Academy of Sciences,

102(27):9452–9457, 2005.

[45] D. L. Donoho and J. Tanner. Counting faces of randomly projected polytopes

when the projection radically lowers dimension. Journal of American Mathe-

matical Society, 22:1–53, 2009.

[46] D. L. Donoho and J. Tanner. Observed universality of phase transitions in high-

dimensional geometry, with applications in modern signal processing and data

analysis. Philosophical Transactions of the Royal Society A, 367(1906):4273–

4293, 2009.

[47] D. L. Donoho and Y. Tsaig. Fast solution of `1-norm minimization problems

when the solution may be sparse. IEEE Transactions on Information Theory,

54(11):4789–4812, November 2008.

[48] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Bara-

niuk. Single-pixel imaging via compressive sampling. IEEE Signal Processing

Magazine, 25(2):83–91, 2008.



272 BIBLIOGRAPHY

[49] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.

Annals of Statistics, 32:407–499, 2004.

[50] M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky. A wide-angle view at iterated

shrinkage algorithms. Proc. SPIE (Wavelet XII), August 2007.

[51] M. Elad, B. Matalon, and M. Zibulevsky. Image denosing with shrinkage and re-

dundant representations. Proceedings of the IEEE computer Society Conference

on Computer Vision and Pattern Recognition, 2006.

[52] M. Elad, J. L. Starck, P. Querre, and D. L. Donoho. Simultaneous cartoon

and texture image inpainting using morphological component analysis (MCA).

Applied and Computational Harmonic Analysis, 19:340–358, November 2005.

[53] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of American Statistical Association., 96(456):1348–

1360, 2001.

[54] R. Fergus, A. Torralba, and W. T. Freeman. Random lens imaging. MIT

Technical Report MIT-CSAIL-TR-2006-058, September 2006.

[55] M. Figueiredo, J. Bioucas-Dias, and R. Nowak. Majorization-minimization al-

gorithms for wavelet-based image restoration. IEEE Transactions on Image

Processing, 16(12):2980–2991, 2007.

[56] M. Figueiredo and R. Nowak. An em algorithm for wavelet-based image restora-

tion. IEEE Transactions on Image Processing, 12(8):906–916, 2003.

[57] M. Figueiredo, R. Nowak, and S. Wright. Gradient projection for sparse recon-

struction: Application to compressed sensing and other inverse problems. IEEE

Journal of Selected Topics of Signal Processing, 1(4):586–598, 2007.

[58] M. Fornasier and H. Rauhut. Iterative thresholding algorithms. Applied and

Computational Harmonic Analysis, 25(2):187–208, 2008.



BIBLIOGRAPHY 273

[59] S. Foucart. Sparse recovery algorithms: Sufficient conditions in terms of re-

stricted isometry constants. 2010. submitted.

[60] R. G. Gallager. Low-density parity-check codes. MIT

Press, Cambridge, Massachussetts, 1963. Available online at

http://web./gallager/www/pages/ldpc.pdf.

[61] A. Y. Garnaev and E. D. Gluskin. On widths of the euclidean ball. Soviet

Mathematics Doklady, 30:200–203, 1984.

[62] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. One sketch for

all: fast algorithms for compressed sensing. Proc. STOC, pages 237–246, 2007.

[63] I. F. Gorodnitsky and B. D. Rao. Sparse signal reconstruction from limited data

using FOCUSS: a re-weighted minimum norm algorithm. IEEE Transactions

on Signal Processing, 45:600–616, March 1997.

[64] E. Hale, W. Yin, and Y. Zhang. Fixed point continuation method for `1 min-

imization with application to compressed sensing. Rice University Technial

Report TR07-07, 2007.

[65] K. K. Herrity, A. C. Gilbert, and J. A. Tropp. Sparse approximation via iterative

thresholding. Proc. ICASSP, 3:624–627, May 2006.

[66] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press,

first edition, 1985.

[67] I. M. Johnstone. Function estimation and gaussian sequence models. Mono-

graph, 2010.

[68] Y. Kabashima, T. Wadayama, and T. Tanaka. A typical reconstruction limit

for compressed sensing based on lp-norm minimization. Journal of Statistical

Mechanics, 2009.

[69] B. S. Kashin. Diameters of certain finite-dimensional sets in classes of smooth

functions. Izv. Akad. Nauk SSSR, 41(2):334–351, 1977.



274 BIBLIOGRAPHY

[70] S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. A method for large-

scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal

Processing, 1(4):606–617, December 2007.

[71] M. Ledoux and M. Talagrand. Probability in Banach spaces. Springer, second

edition, 2002.

[72] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani.

Counter braids: A novel counter architecture for per-flow measurement. In

SIGMETRICS, Annapolis, June 2008.

[73] M. Lustig, D. L. Donoho, and J. Pauly. Sparse MRI: The application of

compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine,

58(6):1182–1195, December 2007.

[74] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed sensing

MRI. IEEE Signal Processing Magazine, 2008.

[75] A. Maleki. Coherence analysis of iterative thresholding algorithms. To be sub-

mitted to IEEE Transactions on Information Theory; Partially published in

Proc. of 44th Allerton Conference, 2010.

[76] A. Maleki and D. L. Donoho. Optimally tuned iterative thresholding algorithm

for compressed sensing. IEEE Journal of Selected Areas in Signal Processing,

April 2010.

[77] A. Maleki and A. Montanari. Analysis of approximate message passing algo-

rithm. 44th Annual Conforence on Information Sciences and Systems, 2010.

[78] S. Mallat and S. Zhang. Matching pursuits with time-frequency dictionaries.

IEEE Transactions on Signal Processing, December 1993.
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