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Preface

The following are a few chapters from the book “Information, Physics and Compu-
tation” by M. Mézard and Andrea Montanari, collected here for the course given by
Marc Mézard at the summer school in Peyresq, July 2008. The book is scheduled
for the end of 2008. Please don’t circulate the present preliminary version, and don’t
hesitate to signal us any misprint or error!

The book itself is structured in five large parts, focusing on topics of increasing
complexity. Each part typically contains three chapters presenting some core topics
in each of the disciplines: information theory, statistical physics, and combinatorial
optimization. The topics in each part have a common mathematical structure, which
is developed in additional chapters serving as bridges.

• Part A (chapters 1-4) contains introductory chapters to each of the three disci-
plines and some common probabilistic tools.

• Part B (chapters 5-8) deals with problems in which independence plays an impor-
tant role: random energy model, random code ensemble, and number partitioning.
Thanks to independence of random variables, classical techniques can be success-
fully to these problems. It ends up with a description of the replica method.

• Part C (chapters 9-13) describes ensembles of problems on graphs: satisfiability,
low density parity check codes, and spin glasses. Factor graphs and statistical
inference provide a common language.

• Part D (chapters 14-17) explains belief propagation and the related ‘replica sym-
metric’ cavity method. These can be thought as approaches to study systems of
correlated random variables on large graphs. It shows the success of this approach
on three problems: decoding, assignment, and ferromagnets.

• Part E (chapters 18-22) is dedicated to the proliferation of pure states and ‘replica
symmetry breaking.’ It starts with the simpler problem of random linear equations
with Boolean variables, then develops the general approach and applies it to
satisfiability and coding. The final chapter reviews open problems.
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1

Introduction to Information Theory

This chapter introduces some of the basic concepts of information theory, as well as
the definitions and notations of probability theory that will be used throughout the
book. The notion of entropy, which is fundamental to the whole topic of this book,
is introduced here. We also present the main questions of information theory, data
compression and error correction, and state Shannon’s theorems.

Sec. 1.1 introduces basic notations in probability. The notion of entropy, and the
entropy rate of a sequence , are discussed in Sec. 1.2 and 1.3. A very important concept
in information theory is the mutual information of correlated random variables, is is
introduced in 1.4. Then we move to the two main aspects of the theory, the compression
of data in Sec. 1.5 and the transmission in Sec. 1.6.

1.1 Random variables

The main object of this book will be the behavior of large sets of discrete random
variables . A discrete random variable X is completely defined1 by the set of values
it can take, X , which we assume to be a finite set, and its probability distribution
{pX(x)}x∈X . The value pX(x) is the probability that the random variable X takes the
value x. The probability distribution pX : X → [0, 1] is a non-negative function that
satisfies the normalization condition:

∑

x∈X

pX(x) = 1 . (1.1)

We shall denote by P(A) the probability of an event A ⊆ X , so that pX(x) = P(X =
x). To lighten notations, when there is no ambiguity, we use p(x) to denote pX(x).

If f(X) is a real valued function of the random variable X, the expectation value
of f(X), which we shall also call the average of f , is denoted by:

E f =
∑

x∈X

pX(x)f(x) . (1.2)

While our main focus will be on random variables taking values in finite spaces,
we shall sometimes make use of continuous random variables taking values in
Rd or in some smooth finite-dimensional manifold. The probability measure for an
‘infinitesimal element’ dx will be denoted by dpX(x). Each time pX admits a density

1In probabilistic jargon (which we shall avoid hereafter), we take the probability space
(X ,P(X ), pX) where P(X ) is the σ-field of the parts of X and pX =

P
x∈X pX(x) δx.
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(with respect to the Lebesgue measure), we shall use the notation pX(x) for the value
of this density at the point x. The total probability P(X ∈ A) that the variable X
takes value in some (measurable) set A ⊆ X is given by the integral:

P(X ∈ A) =

∫

x∈A

dpX(x) =

∫
I(x ∈ A) dpX(x) , (1.3)

where the second form uses the indicator function I(s) of a logical statement s,which
is defined to be equal to 1 if the statement s is true, and equal to 0 if the statement
is false.

The expectation value E f(X) and the variance Var f(X) of a real valued function
f(x) are given by:

E f(X) =

∫
f(x) dpX(x) ; Var f(X) = E{f(X)2} − {E f(X)}2 (1.4)

Sometimes we may write EXf(X) for specifying the variable to be integrated over.
We shall often use the shorthand pdf for the probability density function pX(x).

Example 1.1 A fair dice with M faces has X = {1, 2, . . . ,M} and p(i) = 1/M for
all i ∈ {1, . . . ,M}. The average of x is EX = (1 + · · ·+M)/M = (M + 1)/2.

Example 1.2 Gaussian variable: a continuous variable X ∈ R has a Gaussian dis-
tribution of mean m and variance σ2 if its probability density is

p(x) =
1√
2πσ

exp

(
− [x−m]2

2σ2

)
. (1.5)

One has EX = m and E(X −m)2 = σ2.

Appendix A contains definitions and notations for the random variables that we
shall encounter most frequently

The notations of this chapter mainly deal with discrete variables. Most of the
expressions can be transposed to the case of continuous variables by replacing sums∑
x by integrals and interpreting p(x) as a probability density.

Exercise 1.1 Jensen’s inequality. Let X be a random variable taking value in a set X ⊆ R

and f a convex function (i.e. a function such that ∀x, y and ∀α ∈ [0, 1]: f(αx+ (1−α)y) ≤
αf(x) + (1 − α)f(y). Then

Ef(X) ≥ f(EX) . (1.6)

Supposing for simplicity that X is a finite set with |X | = n, prove this equality by recursion
on n.
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1.2 Entropy

The entropy HX of a discrete random variable X with probability distribution p(x)
is defined as

HX ≡ −
∑

x∈X

p(x) log2 p(x) = E log2

[
1

p(X)

]
, (1.7)

where we define by continuity 0 log2 0 = 0. We shall also use the notation H(p) when-
ever we want to stress the dependence of the entropy upon the probability distribution
of X.

In this Chapter we use the logarithm to the base 2, which is well adapted to digital
communication, and the entropy is then expressed in bits. In other contexts, and
in particular in statistical physics, one rather uses the natural logarithm (with base
e ≈ 2.7182818). It is sometimes said that, in this case, entropy is measured in nats.
In fact, the two definitions differ by a global multiplicative constant, which amounts
to a change of units. When there is no ambiguity we use H instead of HX .

Intuitively, the entropy HX is a measure of the uncertainty of the random variable
X. One can think of it as the missing information: the larger the entropy, the less a
priori information one has on the value of the random variable. It roughly coincides
with the logarithm of the number of typical values that the variable can take, as the
following examples show.

Example 1.3 A fair coin has two values with equal probability. Its entropy is 1 bit.

Example 1.4 Imagine throwing M fair coins: the number of all possible outcomes
is 2M . The entropy equals M bits.

Example 1.5 A fair dice with M faces has entropy log2M .

Example 1.6 Bernoulli process. A Bernoulli random variable X can take values
0, 1 with probabilities p(0) = q, p(1) = 1− q. Its entropy is

HX = −q log2 q − (1− q) log2(1− q) , (1.8)

it is plotted as a function of q in Fig.1.1. This entropy vanishes when q = 0 or q = 1
because the outcome is certain, it is maximal at q = 1/2 when the uncertainty on
the outcome is maximal.

Since Bernoulli variables are ubiquitous, it is convenient to introduce the function
H(q) ≡ −q log q − (1− q) log(1− q), for their entropy.
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Fig. 1.1 The entropy H(q) of a binary variable with p(X = 0) = q, p(X = 1) = 1 − q,

plotted versus q

Exercise 1.2 An unfair dice with four faces and p(1) = 1/2, p(2) = 1/4, p(3) = p(4) =
1/8 has entropy H = 7/4, smaller than the one of the corresponding fair dice.

Exercise 1.3 DNA is built from a sequence of bases which are of four types, A,T,G,C. In
natural DNA of primates, the four bases have nearly the same frequency, and the entropy per
base, if one makes the simplifying assumptions of independence of the various bases, is H =
− log2(1/4) = 2. In some genus of bacteria, one can have big differences in concentrations:
p(G) = p(C) = 0.38, p(A) = p(T ) = 0.12, giving a smaller entropy H ≈ 1.79.

Exercise 1.4 In some intuitive way, the entropy of a random variable is related to the
‘risk’ or ‘surprise’ which are associated to it. Let us see how these notions can be made
more precise.

Consider a gambler who bets on a sequence of Bernoulli random variables Xt ∈ {0, 1},
t ∈ {0, 1, 2, . . . } with mean EXt = p. Imagine he knows the distribution of the Xt’s and, at
time t, he bets a fraction w(1) = p of his money on 1 and a fraction w(0) = (1 − p) on 0.
He looses whatever is put on the wrong number, while he doubles whatever has been put
on the right one. Define the average doubling rate of his wealth at time t as

Wt =
1

t
E log2

(
tY

t′=1

2w(Xt′)

)
. (1.9)

It is easy to prove that the expected doubling rate EWt is related to the entropy of Xt:
EWt = 1 −H(p). In other words, it is easier to make money out of predictable events.
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Another notion that is directly related to entropy is the Kullback-Leibler (KL)

divergence between two probability distributions p(x) and q(x) over the same finite
space X . This is defined as:

D(q||p) ≡
∑

x∈X

q(x) log
q(x)

p(x)
(1.10)

where we adopt the conventions 0 log 0 = 0, 0 log(0/0) = 0. It is easy to show that: (i)
D(q||p) is convex in q(x); (ii)D(q||p) ≥ 0; (iii)D(q||p) > 0 unless q(x) ≡ p(x). The last
two properties derive from the concavity of the logarithm (i.e. the fact that the function
− log x is convex) and Jensen’s inequality (1.6): if E denotes expectation with respect
to the distribution q(x), then −D(q||p) = E log[p(x)/q(x)] ≤ log E[p(x)/q(x)] = 0. The
KL divergence D(q||p) thus looks like a distance between the probability distributions
q and p, although it is not symmetric.

The importance of the entropy, and its use as a measure of information, derives
from the following properties:

1. HX ≥ 0.

2. HX = 0 if and only if the random variable X is certain, which means that X
takes one value with probability one.

3. Among all probability distributions on a set X with M elements, H is maximum
when all events x are equiprobable, with p(x) = 1/M . The entropy is then HX =
log2M .
To prove this statement, notice that if X has M elements then the KL divergence
D(p||p) between p(x) and the uniform distribution p(x) = 1/M is D(p||p) =
log2M −H(p). The statement is a direct consequence of the properties of the KL
divergence.

4. If X and Y are two independent random variables, meaning that pX,Y (x, y) =
pX(x)pY (y), the total entropy of the pair X,Y is equal to HX +HY :

HX,Y = −
∑

x,y

pX,Y (x, y) log2 pX,Y (x, y)

= −
∑

x,y

pX,Y (x, y) (log2 pX(x) + log2 pY (y)) = HX +HY (1.11)

5. For any pair of random variables, one has in general HX,Y ≤ HX +HY , and this
result is immediately generalizable to n variables. (The proof can be obtained by
using the positivity of KL divergenceD(p1||p2), where p1 = pX,Y and p2 = pXpY ).

6. Additivity for composite events. Take a finite set of events X , and decompose it
into X = X1 ∪ X2, where X1 ∩ X2 = ∅. Call q1 =

∑
x∈X1

p(x) the probability of
X1, and q2 the probability of X2. For each x ∈ X1, define as usual the conditional
probability of x, given that x ∈ X1, by r1(x) = p(x)/q1 and define similarly r2(x)
as the conditional probability of x, given that x ∈ X2. Then the total entropy
can be written as the sum of two contributions HX = −∑x∈X p(x) log2 p(x) =

H(q) + H̃(q, r), where:



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

6 Introduction to Information Theory

H(q) = −q1 log2 q1 − q2 log2 q2 (1.12)

H̃(q, r) = −q1
∑

x∈X1

r1(x) log2 r1(x)− q2
∑

x∈X1

r2(x) log2 r2(x) (1.13)

The proof is straightforward by substituting the laws r1 and r2 by their definitions.
This property is interpreted as the fact that the average information associated to
the choice of an event x is additive, being the sum of the relative information H(q)
associated to a choice of subset, and the information H(r) associated to the choice
of the event inside the subsets (weighted by the probability of the subsets). It is the
main property of the entropy, which justifies its use as a measure of information.
In fact, this is a simple example of the so called chain rule for conditional entropy,
which will be further illustrated in Sec. 1.4.

Conversely, these properties together with appropriate hypotheses of continuity
and monotonicity can be used to define axiomatically the entropy.

1.3 Sequences of random variables and entropy rate

In many situations of interest one deals with a random process which generates se-
quences of random variables {Xt}t∈N, each of them taking values in the same finite
space X . We denote by PN (x1, . . . , xN ) the joint probability distribution of the first N
variables. If A ⊂ {1, . . . , N} is a subset of indices, we shall denote by A its complement
A = {1, . . . , N} \ A and use the notations xA = {xi, i ∈ A} and xA = {xi, i ∈ A}
(the set subscript will be dropped whenever clear from the context). The marginal
distribution of the variables in A is obtained by summing PN on the variables in A:

PA(xA) =
∑

xA

PN (x1, . . . , xN ) . (1.14)

Example 1.7 The simplest case is when the Xt’s are independent. This means that
PN (x1, . . . , xN ) = p1(x1)p2(x2) . . . pN (xN ). If all the distributions pi are identical,
equal to p, the variables are independent identically distributed, which will be
abbreviated as i.i.d.. The joint distribution is

PN (x1, . . . , xN ) =

N∏

t=1

p(xi) . (1.15)
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Example 1.8 The sequence {Xt}t∈N is said to be a Markov chain if

PN (x1, . . . , xN ) = p1(x1)
N−1∏

t=1

w(xt → xt+1) . (1.16)

Here {p1(x)}x∈X is called the initial state, and {w(x→ y)}x,y∈X are the transition
probabilities of the chain. The transition probabilities must be non-negative and
normalized:

∑

y∈X

w(x→ y) = 1 , for any x ∈ X . (1.17)

When we have a sequence of random variables generated by a certain process, it is
intuitively clear that the entropy grows with the number N of variables. This intuition
suggests to define the entropy rate of a sequence xN ≡ {Xt}t∈N as

hX = lim
N→∞

HXN
/N , (1.18)

if the limit exists. The following examples should convince the reader that the above
definition is meaningful.

Example 1.9 If the Xt’s are i.i.d. random variables with distribution {p(x)}x∈X ,
the additivity of entropy implies

hX = H(p) = −
∑

x∈X

p(x) log p(x) . (1.19)
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Example 1.10 Let {Xt}t∈N be a Markov chain with initial state {p1(x)}x∈X and
transition probabilities {w(x→ y)}x,y∈X . Call {pt(x)}x∈X the marginal distribution
of Xt and assume the following limit to exist independently of the initial condition:

p∗(x) = lim
t→∞

pt(x) . (1.20)

As we shall see in chapter ??, this turns indeed to be true under quite mild hypotheses
on the transition probabilities {w(x→ y)}x,y∈X . Then it is easy to show that

hX = −
∑

x,y∈X

p∗(x)w(x→ y) logw(x→ y) . (1.21)

If you imagine for instance that a text in English is generated by picking letters
randomly in the alphabet X , with empirically determined transition probabilities
w(x→ y), then Eq. (1.21) gives a rough estimate of the entropy of English.

A more realistic model is obtained using a Markov chain with memory. This
means that each new letter xt+1 depends on the past through the value of the k
previous letters xt, xt−1, . . . , xt−k+1. Its conditional distribution is given by the tran-
sition probabilities w(xt, xt−1, . . . , xt−k+1 → xt+1). Computing the corresponding
entropy rate is easy. For k = 4 one gets an entropy of 2.8 bits per letter, much smaller
than the trivial upper bound log2 27 (there are 26 letters, plus the space symbols),
but many words so generated are still not correct English words. Better estimates of
the entropy of English, through guessing experiments, give a number around 1.3.

1.4 Correlated variables and mutual information

Given two random variables X and Y , taking values in X and Y, we denote their
joint probability distribution as pX,Y (x, y), which is abbreviated as p(x, y), and the
conditional probability distribution for the variable y given x as pY |X(y|x), abbreviated
as p(y|x). The reader should be familiar with Bayes classical theorem:

p(y|x) = p(x, y)/p(x) . (1.22)

When the random variables X and Y are independent, p(y|x) is x-independent.
When the variables are dependent, it is interesting to have a measure on their degree of
dependence: how much information does one obtain on the value of y if one knows x?
The notions of conditional entropy and mutual information will answer this question.

Let us define the conditional entropy HY |X as the entropy of the law p(y|x),
averaged over x:

HY |X ≡ −
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log2 p(y|x) . (1.23)

The joint entropy HX,Y ≡ −
∑
x∈X ,y∈Y p(x, y) log2 p(x, y) of the pair of variables x, y

can be written as the entropy of x plus the conditional entropy of y given x, an identity
known as the chain rule:

HX,Y = HX +HY |X . (1.24)



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

Correlated variables and mutual information 9
In the simple case where the two variables are independent, HY |X = HY , and

HX,Y = HX + HY . One way to measure the correlation of the two variables is the
mutual information IX,Y which is defined as:

IX,Y ≡
∑

x∈X ,y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
. (1.25)

It is related to the conditional entropies by:

IX,Y = HY −HY |X = HX −HX|Y . (1.26)

This shows that the mutual information IX,Y measures the reduction in the uncertainty
of x due to the knowledge of y, and is symmetric in x, y.

Proposition 1.11 IX,Y ≥ 0. Moreover IX,Y = 0 if and only if X and Y are inde-
pendent variables.

Proof: Write IX,Y = Ex,y − log2
p(x)p(y)
p(x,y) . Consider the random variable u = (x, y)

with probability distribution p(x, y). As the function − log( · ) is convex, one can apply
Jensen’s inequality (1.6). This gives the result IX,Y ≥ 0 �

Exercise 1.5 A large group of friends plays the following game (telephone without ca-
bles). The guy number zero chooses a number X0 ∈ {0, 1} with equal probability and
communicates it to the first one without letting the others hear, and so on. The first guy
communicates the number to the second one, without letting anyone else hear. Call Xn

the number communicated from the n-th to the (n+ 1)-th guy. Assume that, at each step
a guy gets confused and communicates the wrong number with probability p. How much
information does the n-th person have about the choice of the first one?

We can quantify this information through IX0,Xn ≡ In. Show that In = 1−H(pn) with
pn given by 1 − 2pn = (1 − 2p)n. In particular, as n→ ∞

In =
(1 − 2p)2n

2 log 2

ˆ
1 +O((1 − 2p)2n)

˜
. (1.27)

The ‘knowledge’ about the original choice decreases exponentially along the chain.

mutual information gets degraded when data is transmitted or processed. This is
quantified by:

Proposition 1.12 (Data processing inequality). Consider a Markov chain X →
Y → Z (so that the joint probability of the three variables can be written as p1(x)w2(x→
y)w3(y → z)). Then: IX,Z ≤ IX,Y . In particular, if we apply this result to the case
where Z is a function of Y , Z = f(Y ), we find that applying f degrades the informa-
tion: IX,f(Y ) ≤ IX,Y .

Proof: Let us introduce, in general, the mutual information of two variables condi-
tioned to a third one: IX,Y |Z = HX|Z − HX|(Y Z). The mutual information between
a variable X and a pair of variables (Y Z) can be decomposed using the following
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chain rule : IX,(Y Z) = IX,Z + IX,Y |Z = IX,Y + IX,Z|Y . If we have a Markov chain
X → Y → Z, X and Z are independent when one conditions on the value of Y ,
therefore IX,Z|Y = 0. The result follows from the fact that IX,Y |Z ≥ 0. �

conditional entropy also gives a bound on the possibility to guess a variable. Sup-
pose you want to guess the value of the random variable X, but you observe only
the random variable Y (which can be thought as a noisy version of X). From Y , you

compute a function X̂ = g(Y ) which is your estimate for X. What is the probability
Pe that you guessed incorrectly? Intuitively, if X and Y are strongly correlated one
can expect that Pe is small, while it increases for less correlated variables. This is
quantified by:

Proposition 1.13 (Fano’s inequality). Consider a random variable X taking values

in the alphabet X , and the Markov chain X → Y → X̂ where X̂ = g(Y ) is an estimate

for the value of X. Define as Pe = P(X̂ 6= X) the probability to make a wrong guess.
It is bounded below as follows:

H(Pe) + Pe log2(|X | − 1) ≥ H(X|Y ) . (1.28)

Proof: Define the random variable E = I(X̂ 6= X) equal to 0 if X̂ = X, and to
1 otherwise, and decompose the conditional entropy HX,E|Y using the chain rule,
in two ways: HX,E|Y = HX|Y + HE|X,Y = HE|Y + HX|E,Y . Then notice that: (i)
HE|X,Y = 0 (because E is a function of X and Y ); (ii) HE|Y ≤ HE = H(Pe); (iii)
HX|E,Y = (1− Pe)HX|E=0,Y + PeHX|E=1,Y = PeHX|E=1,Y ≤ Pe log2(|X | − 1). �

Exercise 1.6 Suppose that X can take k values, and its distribution is p(1) = 1 − p,
p(x) = p

k−1
for x ≥ 2. If X and Y are independent, what is the value of the right hand side

of Fano’s inequality? Assuming that 1 − p > p
k−1

, what is the best guess one can make on
the value of X? What is the probability of error? Show that Fano’s inequality holds as an
equality in this case.

1.5 Data compression

Imagine an information source which generates a sequence of symbolsX = {X1, . . . ,XN}
taking values in a finite alphabet X . Let us assume a probabilistic model for the source,
meaning that the Xi’s are random variables. We want to store the information con-
tained in a given realization x = {x1 . . . xN} of the source in the most compact way.

This is the basic problem of source coding. Apart from being an issue of utmost
practical interest, it is a very instructive subject. It allows in fact to formalize in a
concrete fashion the intuitions of ‘information’ and ‘uncertainty’ which are associated
with the definition of entropy. Since entropy will play a crucial role throughout the
book, we present here a little detour into source coding.
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1.5.1 Codewords

We first need to formalize what is meant by “storing the information”. We define a
source code for the random variable X to be a mapping w which associates to any
possible information sequence in XN a string in a reference alphabet which we shall
assume to be {0, 1}:

w : XN→ {0, 1}∗
x 7→ w(x) . (1.29)

Here we used the convention of denoting by {0, 1}∗ the set of binary strings of arbitrary
length. Any binary string which is in the image of w is called a codeword.

Often the sequence of symbols X1 . . . XN is a part of a longer stream. The com-
pression of this stream is realized in three steps. First the stream is broken into blocks
of length N . Then each block is encoded separately using w. Finally the codewords
are glued to form a new (hopefully more compact) stream. If the original stream con-
sisted in the blocks x(1), x(2), . . . , x(r), the output of the encoding process will be the
concatenation of w(x(1)), . . . , w(x(r)). In general there is more than one way of parsing
this concatenation into codewords, which may cause troubles when one wants to re-
cover the compressed data. We shall therefore require the code w to be such that any
concatenation of codewords can be parsed unambiguously. The mappings w satisfying
this property are called uniquely decodable codes.

Unique decodability is surely satisfied if for any x, x′ ∈ XN , w(x) is not a prefix of
w(x′) (see Fig. 1.2). In such a case the code is said to be instantaneous. Hereafter we
shall focus on instantaneous codes, since they are both practical and slightly simpler
to analyze.

Now that we precised how to store information, namely using a source code, it is
useful to introduce some figure of merit for source codes. If lw(x) is the length of the
string w(x), the average length of the code is:

L(w) =
∑

x∈XN

p(x) lw(x) . (1.30)
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Fig. 1.2 An instantaneous source code: each codeword is assigned to a node in a binary

tree in such a way that no one among them is the ancestor of another one. Here the four

codewords are framed.

Example 1.14 Take N = 1 and consider a random variable X which takes values
in X = {1, 2, . . . , 8} with probabilities p(1) = 1/2, p(2) = 1/4, p(3) = 1/8, p(4) =
1/16, p(5) = 1/32, p(6) = 1/64, p(7) = 1/128, p(8) = 1/128. Consider the two
codes w1 and w2 defined by the table below

x p(x) w1(x) w2(x)
1 1/2 000 0
2 1/4 001 10
3 1/8 010 110
4 1/16 011 1110
5 1/32 100 11110
6 1/64 101 111110
7 1/128 110 1111110
8 1/128 111 11111110

(1.31)

These two codes are instantaneous. For instance looking at the code w2, the encoded
string 10001101110010 can be parsed in only one way since each symbol 0 ends a
codeword . It thus corresponds to the sequence x1 = 2, x2 = 1, x3 = 1, x4 = 3, x5 =
4, x6 = 1, x7 = 2. The average length of code w1 is L(w1) = 3, the average length
of code w2 is L(w2) = 247/128. Notice that w2 achieves a shorter average length
because it assigns the shortest codeword (namely 0) to the most probable symbol
(i.e. x = 1).

Example 1.15 A useful graphical representation of a source code is obtained by
drawing a binary tree and associating each codeword to the corresponding node in
the tree. In Fig. 1.2 we represent in this way a source code with |XN | = 4. It is
quite easy to recognize that the code is indeed instantaneous. The codewords, which
are framed, are such that no codeword is the ancestor of any other codeword in the
tree. Given a sequence of codewords, parsing is immediate. For instance the sequence
00111000101001 can be parsed only in 001, 11, 000, 101, 001
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1.5.2 Optimal compression and entropy

Suppose to have a ‘complete probabilistic characterization’ of the source you want to
compress. What is the ‘best code’ w for this source?

This problem was solved (to a large extent) by Shannon in his celebrated 1948
paper, by connecting the best achievable average length to the entropy of the source.
Following Shannon we assume to know the probability distribution of the source p(x).
Moreover we interpret ‘best code’ as ‘code with the shortest average length’.

Theorem 1.16 Let L∗N be the shortest average length achievable by an instantaneous
code for the variable X = {X1, . . . ,XN}, which has entropy HX . Then

1. For any N ≥ 1:
HX ≤ L∗N ≤ HX + 1 . (1.32)

2. If the source has a finite entropy rate h = limN→∞HX/N , then

lim
N→∞

1

N
L∗N = h . (1.33)

Proof: The basic idea in the proof of Eq. (1.32) is that, if the codewords were
too short, the code wouldn’t be instantaneous. Kraft’s inequality makes this simple
remark more precise. For any instantaneous code w, the lengths lw(x) satisfy:

∑

x∈XN

2−lw(x) ≤ 1 . (1.34)

This fact is easily proved by representing the set of codewords as a set of leaves on a
binary tree (see Fig. 1.2). Let LM be the length of the longest codeword . Consider the
set of all the 2LM possible vertices in the binary tree which are at the generation LM ,
let us call them the ‘descendants’. If the information x is associated with a codeword
at generation l (i.e. lw(x) = l), there can be no other codewords in the branch of
the tree rooted on this codeword, because the code is instantaneous. We ‘erase’ the
corresponding 2LM−l descendants which cannot be codewords. The subsets of erased
descendants associated with each codeword are not overlapping. Therefore the total
number of erased descendants,

∑
x 2LM−lw(x), must be smaller or equal to the total

number of descendants, 2LM . This establishes Kraft’s inequality.
Conversely, for any set of lengths {l(x)}x∈XN which satisfies Kraft’s inequality

(1.34), there exists at least a code, whose codewords have the lengths {l(x)}x∈XN . A
possible construction is obtained as follows. Consider the smallest length l(x) and take
the first allowed binary sequence of length l(x) to be the codeword for x. Repeat this
operation with the next shortest length, and so on until you have exhausted all the
codewords. It is easy to show that this procedure is successful if Eq. (1.34) is satisfied.

The problem is therefore reduced to finding the set of codeword lengths l(x) = l∗(x)
which minimize the average length L =

∑
x p(x)l(x) subject to Kraft’s inequality

(1.34). Supposing first that l(x) can take arbitrary non-negative real values, this is
easily done with Lagrange multipliers, and leads to l(x) = − log2 p(x). This set of
optimal lengths, which in general cannot be realized because some of the l(x) are not
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integers, gives an average length equal to the entropy HX . It implies the lower bound
in (1.32). In order to build a real code with integer lengths, we use

l∗(x) = ⌈− log2 p(x)⌉ . (1.35)

Such a code satisfies Kraft’s inequality, and its average length is less or equal than
HX + 1, proving the upper bound in (1.32).

The second part of the theorem is a straightforward consequence of the first one.
�

The code we have constructed in the proof is often called a Shannon code. For
long strings (N ≫ 1), it gets close to optimal. However it has no reason to be optimal
in general. For instance if only one p(x) is very small, it will assign to x to a very long
codeword , while shorter codewords are available. It is interesting to know that, for a
given source {X1, . . . ,XN}, there exists an explicit construction of the optimal code,
called Huffman’s code.

At first sight, it may appear that Theorem 1.16, together with the construction
of Shannon codes, completely solves the source coding problem. Unhappily this is far
from true, as the following arguments show.

From a computational point of view, the encoding procedure described above is
unpractical when N is large. One can build the code once for all, and store it some-
where, but this requires Θ(|X |N ) memory. On the other hand, one could reconstruct
the code each time a string requires to be encoded, but this takes Θ(|X |N ) operations.
One can use the same code and be a bit smarter in the encoding procedure, but this
does not yield a big improvement. (The symbol Θ means ’of the order of’; the precise
definition is given in Appendix A.)

From a practical point of view, the construction of a Shannon code requires an
accurate knowledge of the probabilistic law of the source. Suppose now you want to
compress the complete works of Shakespeare. It is exceedingly difficult to construct a
good model for the source ‘Shakespeare’. Even worse: when you will finally have such
a model, it will be of little use to compress Dante or Racine.

Happily, source coding has made tremendous progresses in both directions in the
last half century. However in this book we will focus on another crucial aspect of
information theory, the transmission of information.

1.6 Data transmission

We have just seen how to encode some information in a string of symbols (we used
bits, but any finite alphabet is equally good). Suppose now we want to communicate
this string. When the string is transmitted, it may be corrupted by some noise, which
depends on the physical device used in the transmission. One can reduce this problem
by adding redundancy to the string. The redundancy is to be used to correct some
transmission errors, in the same way as redundancy in the English language can be
used to correct some of the typos in this book. This is the domain of channel coding.
A central result in information theory, again due to Shannon’s pioneering work in 1948,
relates the level of redundancy to the maximal level of noise that can be tolerated for
error-free transmission. As in source coding , entropy again plays a key role in this
result. This is not surprising in view of the duality between the two problems. In data
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Fig. 1.3 Typical flowchart of a communication device.

compression , one wants to reduce the redundancy of the data, and the entropy gives
a measure of the ultimate possible reduction. In data transmission, one wants to add
some well tailored redundancy to the data.

1.6.1 Communication channels

The typical flowchart of a communication system is shown in Fig. 1.3. It applies to
situations as diverse as communication between the earth and a satellite, cellular
phones, or storage within the hard disk of your computer. Alice wants to send a
message m to Bob. Let us assume that m is a M bit sequence. This message is first
encoded into a longer one, a N bit message denoted by x with N > M , where the
added bits will provide the redundancy used to correct for transmission errors. The
encoder is a map from {0, 1}M to {0, 1}N . The encoded message is sent through the
communication channel. The output of the channel is a message y. In a noiseless
channel, one would simply have y = x. In a realistic channel, y is in general a string
of symbols different from x. Notice that y is not even necessarily a string of bits. The
channel will be described by the transition probability Q(y|x). This is the probability
that the received signal is y, conditional to the transmitted signal being x. Different
physical channels will be described by different Q(y|x) functions. The decoder takes
the message y and deduces from it an estimate m′ of the sent message.

Exercise 1.7 Consider the following example of a channel with insertions. When a bit x
is fed into the channel, either x or x0 are received with equal probability 1/2. Suppose that
you send the string 111110. The string 1111100 will be received with probability 2·1/64 (the
same output can be produced by an error either on the 5th or on the 6th digit). Notice that
the output of this channel is a bit string which is always longer or equal to the transmitted
one.

A simple code for this channel is easily constructed: use the string 100 for each 0 in the
original message and 1100 for each 1. Then for instance you have the encoding

01101 7→ 100110011001001100 . (1.36)

The reader is invited to define a decoding algorithm and verify its effectiveness.

Hereafter we shall consider memoryless channels. In this case, for any input
x = (x1, ..., xN ), the output message is a string of N letters, y = (y1, ..., yN ), from
an alphabet Y ∋ yi (not necessarily binary). In memoryless channels, the noise acts
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Fig. 1.4 Three communication channels. Left: the binary symmetric channel. An error in the

transmission, in which the output bit is the opposite of the input one, occurs with probability

p. Middle: the binary erasure channel. An error in the transmission, signaled by the output ∗,
occurs with probability ǫ. Right: the Z channel. An error occurs with probability p whenever

a 1 is transmitted.

independently on each bit of the input. This means that the conditional probability
Q(y|x) factorizes:

Q(y|x) =
N∏

i=1

Q(yi|xi) , (1.37)

and the transition probability Q(yi|xi) is i independent.

Example 1.17 Binary symmetric channel (BSC). The input xi and the output
yi are both in {0, 1}. The channel is characterized by one number, the probability
p that the channel output is different from the input, also called the crossover (or
flip) probability. It is customary to represent it by the diagram of Fig. 1.4.

Example 1.18 Binary erasure channel (BEC). In this case some of the input
bits are erased instead of being corrupted: xi is still in {0, 1}, but yi now belongs
to {0, 1, ∗}, where ∗ means that the symbol has been erased. In the symmetric case,
this channel is described by a single number, the probability ǫ that a bit is erased,
see Fig. 1.4.

Example 1.19 Z channel. In this case the output alphabet is again {0, 1}. More-
over, a 0 is always transmitted correctly, while a 1 becomes a 0 with probability p.
The name of this channel come from its graphical representation, see Fig. 1.4.

A very important characteristic of a channel is the channel capacity C. It is
defined in terms of the mutual information IX,Y of the variables X (the bit which was
sent) and Y (the signal which was received), through:

C = max
p(x)

IX,Y = max
p(x)

∑

x∈X ,y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
(1.38)
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We recall that in our case p(x, y) = p(x)Q(y|x), and IX,Y measures the reduction

on the uncertainty of x due to the knowledge of y. The capacity C gives a measure
of how faithful a channel can be: If the output of the channel is pure noise, x and y
are uncorrelated and C = 0. At the other extreme if y = f(x) is known for sure, given
x, then C = max{p(x)}H(p) = 1 bit (for binary inputs). The interest of the capacity
will become clear in section 1.6.3 with Shannon’s coding theorem which shows that C
characterizes the amount of information which can be transmitted faithfully through
a channel.

Example 1.20 Consider a binary symmetric channel with flip probability p. Let us
call q the probability that the source sends x = 0, and 1−q the probability of x = 1.
It is easy to show that the mutual information in Eq. (1.38) is maximized when zeros
and ones are transmitted with equal probability (i.e. when q = 1/2).

Using the expression (1.38), we get, C = 1−H(p) bits, where H(p) is the entropy
of Bernoulli’s process with parameter p (plotted in Fig. 1.1).

Example 1.21 Consider now the binary erasure channel with error probability ǫ.
The same argument as above applies. It is therefore easy to get C = 1− ǫ.

Exercise 1.8 Compute the capacity of the Z channel.

1.6.2 Error correcting codes

We need one last ingredient in order to have a complete definition of the channel
coding problem: the behavior of the information source. We shall assume that the
source produces a sequence of uncorrelated unbiased bits. This may seem at first a very
crude model for any real information source. Surprisingly, Shannon’s source-channel
separation theorem assures that there is indeed no loss of generality in treating this
case.

The sequence of bits produced by the source is divided into blocks m1,m2,m3, . . .
of length M . The encoding is a mapping from {0, 1}M ∋ m to {0, 1}N , with N ≥M .
Each possible M -bit message m is mapped to a codeword x(m) which can be seen as
a point in the N -dimensional unit hypercube. The codeword length N is also called the
blocklength. There are 2M codewords, and the set of all possible codewords is called
the codebook. When the message is transmitted, the codeword x is corrupted to
y ∈ YN with probability Q(y|x) =

∏N
i=1Q(yi|xi). The output alphabet Y depends on

the channel. The decoder is a mapping from YN to {0, 1}M which takes the received
message y ∈ YN and maps it to one of the possible original messages m′ = d(y) ∈
{0, 1}M .

An error correcting code is defined by the set of two functions, the encoding
x(m) and the decoding d(y). The ratio
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R =
M

N
(1.39)

of the original number of bits to the transmitted number of bits is called the rate of
the code. The rate is a measure of the redundancy of the code. The smaller the rate,
the more redundancy is added to the code, and the more errors one should be able to
correct.

The block error probability of a code on the input message m, denoted by
PB(m), is the probability that the decoded message differs from the one which was
sent:

PB(m) =
∑

y

Q(y|x(m)) I(d(y) 6= m) . (1.40)

Knowing the error probability for each possible transmitted message is an exceedingly
detailed characterization of the code performances. One can therefore introduce a
maximal block error probability as

Pmax
B ≡ max

m∈{0,1}M
PB(m) . (1.41)

This corresponds to characterizing the code by its ‘worst case’ performances. A more
optimistic point of view consists in averaging over the input messages. Since we as-
sumed all of them to be equiprobable, we introduce the average block error prob-
ability as

Pav
B ≡

1

2M

∑

m∈{0,1}M

PB(m) . (1.42)

Since this is a very common figure of merit for error correcting codes, we shall call it
block error probability and use the symbol PB without further specification hereafter.

Example 1.22 Repetition code. Consider a BSC which transmits a wrong bit
with probability p. A simple code consists in repeating k times each bit, with k odd.
Formally we have M = 1, N = k and

x(0) = 000 . . . 00︸ ︷︷ ︸
k

, (1.43)

x(1) = 111 . . . 11︸ ︷︷ ︸
k

. (1.44)

This code has rate R = M/N = 1/k. For instance with k = 3, the original stream
0110001 is encoded as 000111111000000000111. A possible decoder consists in pars-
ing the received sequence in groups of k bits, and finding the message m′ using a
majority rule among the k bits. In our example with k = 3, if the received group
of three bits is 111 or 110 or any permutation, the corresponding input bit is as-
signed to 1, otherwise it is assigned to 0. For instance if the channel output is
000101111011000010111, this decoder returns 0111001.
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Exercise 1.9 The k-repetition code corrects up to ⌊k/2⌋ errors per group of k bits. Show
that the block error probability for general k is

PB =
kX

r=⌈k/2⌉

„
k
r

«
(1 − p)k−rpr . (1.45)

Notice that, for any finite k and p > 0, PB is strictly positive. In order to have PB → 0 we
must consider k → ∞. Since the rate is R = 1/k, the price to pay for a vanishing block
error probability is a vanishing communication rate!

Happily enough, we will see that much better codes exist.

1.6.3 The channel coding theorem

Consider a communication channel whose capacity (1.38) is C. In his seminal 1948
paper, Shannon proved the following theorem.

Theorem 1.23 For every rate R < C, there exists a sequence of codes {CN}, of
blocklength N , rate RN , and block error probability PB,N , such that RN → R and
PB,N → 0 as N →∞. Conversely, if for a sequence of codes {CN}, one has RN → R
and PB,N → 0 as N →∞, then R < C.

In practice, for long messages (i.e. large N), reliable communication is possible if
and only if the communication rate stays below capacity. The direct part of the proof
will be given in Sec. 6.4 using the random code ensemble. We shall not give a full proof
of the converse part in general, but only in the case of the BSC channel, in Sec. 6.5.2.
Here we keep to some qualitative comments and provide the intuitive idea underlying
this theorem.

First of all, the result is rather surprising when one meets it for the first time.
As we saw on the example of repetition codes above, simple minded codes typically
have a positive error probability, for any non-vanishing noise level. Shannon’s theorem
establishes that it is possible to achieve vanishing error probability, while keeping the
communication rate bounded away from zero.

One can get an intuitive understanding of the role of the capacity through a quali-
tative reasoning, which uses the fact that a random variable with entropy H ‘typically’
takes 2H values. For a given codeword x(m) ∈ {0, 1}N , the channel output y is a ran-

dom variable with an entropy Hy|x = NHy|x. There exist about 2NHy|x such outputs.

For a perfect decoding, one needs a decoding function d(y) that maps each of them

to the original message m. Globally, the typical number of possible outputs is 2NHy ,
therefore one can distinguish at most 2N(Hy−Hy|x) codewords. In order to have van-
ishing maximal error probability, one needs to be able to send all the 2M = 2NR

codewords. This is possible only if R < Hy −Hy|x ≤ C.



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

20 Introduction to Information Theory

Notes

There are many textbooks introducing to probability and to information theory. A
classic probability textbook is (Feller, 1968). For a more recent reference see (Durrett,
1995). The original Shannon paper (Shannon, 1948) is universally recognized as the
foundation of information theory. A very nice modern introduction to the subject is the
book (Cover and Thomas, 1991). The reader may find there a description of Huffman
codes which we did not treat in the present Chapter, as well as more advanced topics
in source coding .

We did not show that the six properties listed in Sec. 1.2 provide in fact an alter-
native (axiomatic) definition of entropy. The interested reader is referred to (Csiszár
and Körner, 1981). An advanced information theory book with much space devoted
to coding theory is (Gallager, 1968). The recent and very rich book (MacKay, 2002)
discusses the relations with statistical inference and machine learning.

The information-theoretic definition of entropy has been used in many contexts. It
can be taken as a founding concept in statistical mechanics. This approach, pioneered
in (Jaynes, 1957), is discussed in (Balian, 1992).
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Statistical physics and probability
theory

One of the greatest achievement of science has been to realize that matter is made out
of a small number of simple elementary components. This result seems to be in striking
contrast with our experience. Both at a simply perceptual level and with more refined
scientific experience, we come in touch with an ever-growing variety of states of the
matter with disparate properties. The ambitious purpose of statistical physics (and,
more generally, of a large branch of condensed matter physics) is to understand this
variety. It aims at explaining how complex behaviors can emerge when large numbers
of identical elementary components are allowed to interact.

We have, for instance, experience of water in three different states (solid, liquid and
gaseous). Water molecules and their interactions do not change when passing from one
state to the other. Understanding how the same interactions can result in qualitatively
different macroscopic states, and what rules the change of state, is a central topic of
statistical physics.

The foundations of statistical physics rely on two important steps. The first one
consists in passing form the deterministic laws of physics, like Newton’s law, to a
probabilistic description. The idea is that a precise knowledge of the motion of each
molecule in a macroscopic system is inessential to the understanding of the system
as a whole: instead, one can postulate that the microscopic dynamics, because of its
chaoticity, allows for a purely probabilistic description. The detailed justification of this
basic step has been achieved only in a small number of concrete cases. Here we shall
bypass any attempt at such a justification: we directly adopt a purely probabilistic
point of view, as a basic postulate of statistical physics.

The second step starts from the probabilistic description and recovers determinism
at a macroscopic level by some sort of law of large numbers. We all know that water
boils at 100o Celsius (at atmospheric pressure) or that its density (at 25o Celsius and
atmospheric pressures) is 1 gr/cm3. The regularity of these phenomena is not related
to the deterministic laws which rule the motions of water molecule. It is instead the
consequence of the fact that, because of the large number of particles involved in any
macroscopic system, fluctuations are “averaged out”. We shall discuss this kind of
phenomena in Sec. 2.4 and, more mathematically, in Ch. ??.

The purpose of this Chapter is to introduce the most basic concepts of this disci-
pline, for an audience of non-physicists with a mathematical background. We adopt a
somewhat restrictive point of view, which keeps to classical (as opposed to quantum)
statistical physics, and basically describes it as a branch of probability theory (Secs.
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2.1 to 2.3). In Section 2.4 we focus on large systems, and stress that the statistical
physics approach becomes particularly meaningful in this regime. Theoretical statis-
tical physics often deals with highly idealized mathematical models of real materials.
The most interesting (and challenging) task is in fact to understand the qualitative

behavior of such systems. With this aim, one can discard any “irrelevant” microscopic
detail from the mathematical description of the model. In Sec. 2.5, the study of fer-
romagnetism through the introduction of the Ising model gives an example of this
modelization procedure. Compared to the case of Ising ferromagnets, the theoretical
understanding of spin glasses is much less developed. Section 2.6 presents a rapid
preview of this fascinating subject.

2.1 The Boltzmann distribution

The basic ingredients for a probabilistic description of a physical system are:

• A space of configurations X . One should think of x ∈ X as giving a complete
microscopic determination of the state of the system under consideration. We are
not interested in defining the most general mathematical structure for X such
that a statistical physics formalism can be constructed. Throughout this book
we will in fact consider only two very simple types of configuration spaces: (i)
finite sets, and (ii) smooth, compact, finite-dimensional manifolds. If the system
contains N ‘particles’, the configuration space is a product space:

XN = X × · · · × X︸ ︷︷ ︸
N

. (2.1)

The configuration of the system has the form x = (x1, . . . , xN ). Each coordinate
xi ∈ X is meant to represent the state (position, orientation, etc) of one of the
particles.
But for a few examples, we shall focus on configuration spaces of type (i). We will
therefore adopt a discrete-space notation for X . The generalization to continuous
configuration spaces is in most cases intuitively clear (although it may present
some technical difficulties).

• A set of observables, which are real-valued functions on the configuration space
O : x 7→ O(x). If X is a manifold, we shall limit ourselves to observables which
are smooth functions of the configuration x. Observables are physical quantities
which can be measured through an experiment (at least in principle).

• Among all the observables, a special role is played by the energy function E(x).
When the system is a N particle system, the energy function generally takes the
form of sums of terms involving few particles. An energy function of the form:

E(x) =

N∑

i=1

Ei(xi) (2.2)

corresponds to a non-interacting system. An energy of the form

E(x) =
∑

i1,..,ik

Ei1,..,ik(xi1 , ..., xik) (2.3)
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is called a k-body interaction. In general, the energy will contain some pieces
involving k-body interactions, with k ∈ {1, 2, ...,K}. An important feature of real
physical systems is that K is never a large number (usually K = 2 or 3), even
when the number of particles N is very large. The same property holds for all
measurable observables. However, for the general mathematical formulation which
we will use here, the energy can be any real valued function on X .

Once the configuration space X and the energy function are fixed, the probability
µβ(x) for the system to be found in the configuration x is given by the Boltzmann’s
distribution:

µβ(x) =
1

Z(β)
e−βE(x) , Z(β) =

∑

x∈X

e−βE(x) . (2.4)

The real parameter T = 1/β is the temperature (and one refers to β as the inverse
temperature). Note that the temperature is usually defined as T = 1/(kBβ) where the
value of kB, Boltzmann’s constant, depends on the unit of measure for temperature.
Here we adopt the simple choice kB = 1. The normalization constant Z(β) is called
the partition function. Notice that Eq. (2.4) defines indeed the density of the Boltz-
mann distribution with respect to some reference measure. The reference measure is
usually the counting measure if X is discrete or the Lebesgue measure if X is con-
tinuous. It is customary to denote the expectation value with respect to Boltzmann’s
measure by brackets: the expectation value 〈O(x)〉 of an observable O(x), also called
its Boltzmann average is given by:

〈O〉 =
∑

x∈X

µβ(x)O(x) =
1

Z(β)

∑

x∈X

e−βE(x)O(x) . (2.5)
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Example 2.1 One intrinsic property of elementary particles is their spin. For ‘spin
1/2’ particles, the spin σ takes only two values: σ = ±1. A localized spin 1/2 particle,
whose only degree of freedom is the spin, is described by X = {+1,−1}, and is called
an Ising spin. The energy of the spin in the state σ ∈ X in a magnetic field B is

E(σ) = −B σ (2.6)

Boltzmann’s probability of finding the spin in the state σ is

µβ(σ) =
1

Z(β)
e−βE(σ) Z(β) = e−βB + eβB = 2 cosh(βB) . (2.7)

The average value of the spin, called the magnetization is

〈σ〉 =
∑

σ∈{1,−1}

µβ(σ) σ = tanh(βB) . (2.8)

At high temperatures, T ≫ |B|, the magnetization is small. At low temperatures,
the magnetization its close to its maximal value, 〈σ〉 = 1 if B > 0. Section 2.5
will discuss the behaviors of many Ising spins, with some more complicated energy
functions.

Example 2.2 Some spin variables can have a larger space of possible values. For
instance a Potts spin with q states takes values in X = {1, 2, . . . , q}. In presence of
a magnetic field of intensity h pointing in direction r ∈ {1, . . . , q}, the energy of the
Potts spin is

E(σ) = −B I(σ = r) . (2.9)

In this case, the average value of the spin in the direction of the field is

〈I(σ = r)〉 =
exp(βB)

exp(βB) + (q − 1)
. (2.10)
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Example 2.3 Let us consider a single water molecule inside a closed container, for
instance, inside a bottle. A water molecule H2O is already a complicated object. In a
first approximation, we can neglect its structure and model the molecule as a point
inside the bottle. The space of configurations reduces then to:

X = BOTTLE ⊂ R3 , (2.11)

where we denoted by BOTTLE the region of R3 delimited by the container. Notice
that this description is not very accurate at a microscopic level.

The description of the precise form of the bottle can be quite complex. On the
other hand, it is a good approximation to assume that all positions of the molecule
are equiprobable: the energy is independent of the particle’s position x ∈ BOTTLE.
One has then:

µ(x) =
1

Z
, Z = |X | , (2.12)

and the Boltzmann average of the particle’s position, 〈x〉, is the barycenter of the
bottle.

Example 2.4 In assuming that all the configurations of the previous example are
equiprobable, we neglected the effect of gravity on the water molecule. In the presence
of gravity our water molecule at position x has an energy:

E(x) = w h(x) , (2.13)

where h(x) is the height corresponding to the position x and w is a positive con-
stant, determined by terrestrial attraction, which is proportional to the mass of the
molecule. Given two positions x and y in the bottle, the ratio of the probabilities to
find the particle at these positions is

µβ(x)

µβ(y)
= exp{−βw[h(x)− h(y)]} (2.14)

For a water molecule at a room temperature of 20 degrees Celsius (T = 293 degrees
Kelvin), one has βw ≈ 7 × 10−5 m−1. Given a point x at the bottom of the bottle
and y at a height of 20 cm, the probability to find a water molecule ‘near’ x is
approximately 1.000014 times larger than the probability to find it ‘near’ y. For a
tobacco-mosaic virus, which is about 2×106 times heavier than a water molecule, the
ratio is µβ(x)/µβ(y) ≈ 1.4× 1012 which is very large. For a grain of sand the ratio is
so large that one never observes it floating around y. Notice that, while these ratios
of probability densities are easy to compute, the partition function and therefore
the absolute values of the probability densities can be much more complicated to
estimate, depending on the shape of the bottle.
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Example 2.5 In many important cases, we are given the space of configurations X
and a stochastic dynamics defined on it. The most interesting probability distribution
for such a system is the stationary state µst(x) (we assume that it is unique). For
sake of simplicity, we can consider a finite space X and a discrete time Markov chain
with transition probabilities {w(x → y)} (in Chapter ?? we shall recall some basic
definitions concerning Markov chains). It happens sometimes that the transition
rates satisfy, for any couple of configurations x, y ∈ X , the relation

f(x)w(x→ y) = f(y)w(y → x) , (2.15)

for some positive function f(x). As we shall see in Chapter ??, when this condition,
called detailed balance, is satisfied (together with a couple of other technical con-
ditions), the stationary state has the Boltzmann form (2.4) with e−βE(x) = f(x).

Exercise 2.1 As a particular realization of the above example, consider an 8×8 chessboard
and a special piece sitting on it. At any time step the piece will stay still (with probability
1/2) or move randomly to one of the neighboring positions (with probability 1/2). Does this
process satisfy the condition (2.15)? Which positions on the chessboard have lower (higher)
“energy”? Compute the partition function.

From a purely probabilistic point of view, one can wonder why one bothers to
decompose the distribution µβ(x) into the two factors e−βE(x) and 1/Z(β). Of course
the motivations for writing the Boltzmann factor e−βE(x) in exponential form come
essentially from physics, where one knows (either exactly or within some level of ap-
proximation) the form of the energy. This also justifies the use of the inverse temper-
ature β (after all, one could always redefine the energy function in such a way to set
β = 1).

However, even if we adopt a mathematical viewpoint, and if we are interested in
a particular distribution µ(x) which corresponds to a particular value of the temper-
ature, it is often illuminating to embed it into a one-parameter family as is done in
the Boltzmann expression (2.4). Indeed, (2.4) interpolates smoothly between several
interesting situations. As β → 0 (high-temperature limit), one recovers the uniform
probability distribution

lim
β→0

µβ(x) =
1

|X | . (2.16)

Both the probabilities µβ(x) and the observables expectation values 〈O(x)〉 can be
expressed as convergent Taylor expansions around β = 0. For small β the Boltzmann
distribution can be seen as a “softening” of the original one.

In the limit β → ∞ (low-temperature limit), the Boltzmann distribution con-
centrates on the global maxima of the original one. More precisely, a configuration
x0 ∈ X such that E(x) ≥ E(x0) for any x ∈ X is called a ground state. The min-
imum value of the energy E0 = E(x0) is called the ground state energy. We will
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denote the set of ground states as X0. It is elementary to show that, for a discrete
configuration space:

lim
β→∞

µβ(x) =
1

|X0|
I(x ∈ X0) , (2.17)

where I(x ∈ X0) = 1 if x ∈ X0 and I(x ∈ X0) = 0 otherwise. The above behavior
is summarized in physicists jargon by saying that, at low temperature, “low energy
configurations dominate” the behavior of the system.

2.2 Thermodynamic potentials

Several properties of the Boltzmann distribution (2.4) are conveniently summarized
through the thermodynamic potentials. These are functions of the temperature 1/β
and of the various parameters defining the energy E(x). The most important thermo-
dynamic potential is the free-energy:

F (β) = − 1

β
logZ(β) , (2.18)

where Z(β) is the partition function already defined in Eq. (2.4). The factor −1/β
in Eq. (2.18) is due essentially to historical reasons. In calculations it is often more
convenient to use the free-entropy1 Φ(β) = −βF (β) = logZ(β).

Two more thermodynamic potentials are derived from the free-energy: the internal
energy U(β) and the canonical entropy S(β):

U(β) =
∂

∂β
(βF (β)) , S(β) = β2 ∂F (β)

∂β
. (2.19)

By direct computation one obtains the following identities concerning the potentials
defined so far:

F (β) = U(β)− 1

β
S(β) = − 1

β
Φ(β) , (2.20)

U(β) = 〈E(x)〉 , (2.21)

S(β) = −
∑

x

µβ(x) log µβ(x) , (2.22)

−∂
2

∂β2
(βF (β)) = 〈E(x)2〉 − 〈E(x)〉2 . (2.23)

For discrete X , equation (2.22) can be rephrased by saying that the canonical entropy
is the Shannon entropy of the Boltzmann distribution, as we defined it in Ch. 1.
It implies that S(β) ≥ 0. Equation (2.23) implies that the free-entropy is a convex
function of the temperature. Finally, Eq. (2.21) justifies the name “internal energy”
for U(β).

1Unlike the other potentials, there is no universally accepted name for Φ(β); because this potential
is very useful, we adopt for it the name ‘free-entropy’
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In order to have some intuition of the content of these definitions, let us reconsider
the high- and low-temperature limits already treated in the previous Section. In the
high-temperature limit, β → 0, one finds

F (β) = − 1

β
log |X |+ 〈E(x)〉0 + Θ(β) , (2.24)

U(β) = 〈E(x)〉0 + Θ(β) , (2.25)

S(β) = log |X |+ Θ(β) . (2.26)

(Recall that Θ stands for ‘of the order of,’ cf. Appendix A). The interpretation of
these formulae is straightforward. At high temperature the system can be found in
any possible configuration with similar probabilities (the probabilities being exactly
equal when β = 0). The entropy counts the number of possible configurations. The
internal energy is just the average value of the energy over the configurations with
uniform probability.

While the high temperature expansions (2.24)–(2.26) have the same form both
for a discrete and a continuous configuration space X , in the low temperature case,
we must be more careful. If X is finite we can meaningfully define the energy gap
∆E > 0 as follows (recall that we denoted by E0 the ground-state energy)

∆E = min{E(y)− E0 : y ∈ X\X0} . (2.27)

With this definition we get

F (β) = E0 −
1

β
log |X0|+ Θ(e−β∆E) , (2.28)

E(β) = E0 + Θ(e−β∆E) , (2.29)

S(β) = log |X0|+ Θ(e−β∆E) . (2.30)

The interpretation is that, at low temperature, the system is found with equal prob-
ability in any of the ground states, and nowhere else. Once again the entropy counts
the number of available configurations and the internal energy is the average of their
energies (which coincide with the ground state).
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Fig. 2.1 Thermodynamic potentials for a two-level system with ǫ1 = −1, ǫ2 = +1 as a

function of the temperature T = 1/β.

Exercise 2.2 A two level system. This is the simplest non-trivial example: X = {1, 2},
E(1) = ǫ1, E(2) = ǫ2. Without loss of generality we assume ǫ1 < ǫ2. It can be used as a
mathematical model for many physical systems, like the spin 1/2 particle discussed above.

Derive the following results for the thermodynamic potentials (∆ = ǫ2− ǫ1 is the energy
gap):

F (β) = ǫ1 − 1

β
log(1 + e−β∆) , (2.31)

U(β) = ǫ1 +
e−β∆

1 + e−β∆
∆ , (2.32)

S(β) =
e−β∆

1 + e−β∆
β∆ + log(1 + e−β∆) . (2.33)

The behavior of these functions is presented in Fig. 2.1. The reader can work out the
asymptotics, and check the general high and low temperature behaviors given above.
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Exercise 2.3 We come back to the example of the previous section: one water molecule,
modeled as a point, in a bottle. Moreover, we consider the case of a cylindrical bottle of
base B ⊂ R2 (surface |B|) and height d.

Using the energy function (2.13), derive the following explicit expressions for the ther-
modynamic potentials:

F (β) = − 1

β
log |B| − 1

β
log

1 − e−βwd

βw
, (2.34)

U(β) =
1

β
− wd

eβwd − 1
, (2.35)

S(β) = log |Bd| + 1 − βwd

eβwd − 1
− log

„
βwd

1 − e−βwd

«
. (2.36)

Notice that the internal energy formula can be used to compute the average height of the
molecule 〈h(x)〉 = U(β)/w. This is a consequence of the definition of the energy, cf. Eq.
(2.13) and of Eq. (2.21). Plugging in the correct w constant, one may find that the average
height descends below 49.99% of the bottle height d = 20 cm only when the temperature is
below 3.2oK.

Exercise 2.4 Using the expressions (2.34)–(2.36), derive the low-temperature expansions:

F (β) = − 1

β
log

„ |B|
βw

«
+ Θ(e−βwd) , (2.37)

U(β) =
1

β
+ Θ(e−βwd) , (2.38)

S(β) = log

„ |B|e
βw

«
+ Θ(e−βwd) . (2.39)

In this case X is continuous, and the energy has no gap. Nevertheless these results can
be understood as follows: at low temperature the molecule is confined to a layer of height
of order 1/(βw) above the bottom of the bottle. It occupies therefore a volume of size
|B|/(βw). Its entropy is approximately given by the logarithm of such a volume.
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Exercise 2.5 Let us reconsider the above example and assume the bottle to have a different
shape, for instance a sphere of radius R. In this case it is difficult to compute explicit expres-
sions for the thermodynamic potentials but one can easily compute the low-temperature
expansions. For the entropy one gets at large β:

S(β) = log

„
2πe2R

β2w2

«
+ Θ(1/β) . (2.40)

The reader should try understand the difference between this result and Eq. (2.39) and
provide an intuitive explanation as in the previous example. Physicists say that the low-
temperature thermodynamic potentials reveal the “low-energy structure” of the system.

2.3 The fluctuation dissipation relations

It often happens that the energy function depends smoothly upon some real param-
eters. They can be related to the experimental conditions under which a physical
system is studied, or to some fundamental physical quantity. For instance, the energy
of a water molecule in the gravitational field, cf. Eq. (2.13), depends upon the weight
w of the molecule itself. Although this is a constant number in the physical world, it
is useful, in the theoretical treatment, to consider it as an adjustable parameter.

It is therefore interesting to consider an energy function Eλ(x) which depends
smoothly upon some parameter λ and admits the following Taylor expansion in the
neighborhood of λ = λ0:

Eλ(x) = Eλ0
(x) + (λ− λ0)

∂E

∂λ

∣∣∣∣
λ0

(x) +O((λ− λ0)
2) . (2.41)

The dependence of the free-energy and of other thermodynamic potentials upon
λ in the neighborhood of λ0 is easily related to the explicit dependence of the energy
function itself. Let us consider the partition function, and expand it to first order in
λ− λ0:

Z(λ) =
∑

x

exp

(
−β
[
Eλ0

(x) + (λ− λ0)
∂E

∂λ

∣∣∣∣
λ0

(x) +O((λ− λ0)
2)

])

= Z(λ0)

[
1− β(λ− λ0)〈

∂E

∂λ

∣∣∣∣
λ0

〉0 +O((λ− λ0)
2)

]
(2.42)

where we denoted by 〈·〉0 the expectation with respect to the Boltzmann distribution
at λ = λ0.

This shows that the free-entropy behaves as:

∂Φ

∂λ

∣∣∣∣
λ0

= −β 〈 ∂E
∂λ

∣∣∣∣
λ0

〉0 , (2.43)
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One can also consider the λ dependence of the expectation value of a generic observable
A(x). Using again the Taylor expansion one finds that

∂〈A〉λ
∂λ

∣∣∣∣
λ0

= −β 〈A ;
∂E

∂λ

∣∣∣∣
λ0

〉0 . (2.44)

where we denoted by 〈A;B〉 the connected correlation function: 〈A;B〉 = 〈AB〉−
〈A〉〈B〉. A particular example of this relation was given in Eq. (2.23).

The result (2.44) has important practical consequences and many generalizations.
Imagine you have an experimental apparatus that allows you to tune some parameter
λ (for instance the pressure of a gas, or the magnetic or electric field acting on some
material) and to monitor the value of the observable A(x) (the volume of the gas,
the polarization or magnetization of the material). The quantity on the left-hand
side of Eq. (2.44) is the response of the system to an infinitesimal variation of the
tunable parameter. On the right-hand side, we find some correlation function within
the “unperturbed” system. One possible application is to measure correlations within
a system by monitoring its response to an external perturbation. The relation (2.44)
between a correlation and a response is called fluctuation dissipation theorem.

2.4 The thermodynamic limit

The main purpose of statistical physics is to understand the macroscopic behavior of
a large number, N ≫ 1, of simple components (atoms, molecules, etc) when they are
brought together.

To be concrete, let us consider a few drops of water in a bottle. A configuration of
the system is given by the positions and orientations of all the H2O molecules inside
the bottle. In this case X is the set of positions and orientations of a single molecule,
and N is typically of order 1023 (more precisely, 18 gr of water contain approximately
6 · 1023 molecules). The sheer magnitude of such a number leads physicists to focus on
the N →∞ limit, also called the thermodynamic limit.

As shown by the examples below, for large N the thermodynamic potentials are of-
ten proportional to N . One is thus lead to introduce the intensive thermodynamic
potentials as follows. Let us denote by FN (β), UN (β), SN (β) the free-energy, inter-
nal energy and canonical entropy for a system with N ‘particles’. The free-energy
density is defined by

f(β) = lim
N→∞

FN (β)/N , (2.45)

if the limit exists, which is usually the case (at least if the forces between particles
decrease fast enough at large distance). One defines analogously the energy density
u(β) and the entropy density s(β).

The free-energy FN (β), is, quite generally, an analytic function of β in a neigh-
borhood of the real β axis. This is a consequence of the fact that Z(β) is analytic
throughout the entire β plane, and strictly positive for real β’s. A question of great
interest is whether analyticity is preserved in the thermodynamic limit (2.45), under
the assumption that the limit exists. Whenever the free-energy density f(β) is non-
analytic, one says that a phase transition occurs. Since the free-entropy density
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φ(β) = −βf(β) is convex, the free-energy density is necessarily continuous whenever
it exists.

In the simplest cases the non-analyticities occur at isolated points. Let βc be such
a point. Two particular type of singularities occur frequently:

• The free-energy density is continuous, but its derivative with respect to β is
discontinuous at βc. This singularity is named a first order phase transition.

• The free-energy and its first derivative are continuous, but the second
derivative is discontinuous at βc. This is called a second order phase
transition.

Higher order phase transitions can be defined as well along the same lines.
Apart from being interesting mathematical phenomena, phase transitions corre-

spond to qualitative changes in the underlying physical system. For instance the tran-
sition from water to vapor at 100oC at normal atmospheric pressure is modeled math-
ematically as a first order phase transition in the above sense. A great part of this book
will be devoted to the study of phase transitions in many different systems, where the
interacting ‘particles’ can be very diverse objects like information bits or occupation
numbers on the vertices of a graph.

When N grows, the volume of the configuration space increases exponentially:
|XN | = |X |N . Of course, not all the configurations are equally important under the
Boltzmann distribution: lowest energy configurations have greater probability. What is
important is therefore the number of configurations at a given energy. This information
is encoded in the energy spectrum of the system:

N∆(E) = |Ω∆(E)| ; Ω∆(E) ≡ {x ∈ XN : E ≤ E(x) < E + ∆} . (2.46)

In many systems of interest, the energy spectrum diverges exponentially as N →∞, if
the energy is scaled linearly with N . More precisely, there exists a function s(e) such
that, given two numbers e and δ > 0,

lim
N→∞

1

N
logNNδ(Ne) = sup

e′∈[e,e+δ]

s(e′) . (2.47)

The function s(e) is called the microcanonical entropy density. The statement
(2.47) is often rewritten in the more compact form:

N∆(E)
.
=N exp

[
Ns

(
E

N

)]
. (2.48)

The notation AN
.
=N BN is used throughout the book to denote that two quantities

AN and BN (which behave exponentially in N) are equal to leading exponential
order, meaning: limN→∞(1/N) log(AN/BN ) = 0. We often use

.
= without index when

there is no ambiguity on the large variable N .
The microcanonical entropy density s(e) conveys a great amount of information

about the system. Furthermore it is directly related to the intensive thermodynamic
potentials through a fundamental relation:
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Proposition 2.6 If the microcanonical entropy density (2.47) exists for any e and if
the limit in (2.47) is uniform in e, then the free-entropy density (2.45) exists and is
given by:

φ(β) = max
e

[s(e)− βe] . (2.49)

If the maximum of the s(e) − βe is unique, then the internal energy density equals
arg max[s(e)− βe].

Proof: The basic idea is to write the partition function as follows

ZN (β)
.
=

∞∑

k=−∞

N∆(k∆) e−β∆ .
=

∫
exp{Ns(e)−Nβe} de , (2.50)

and to evaluate the last integral by saddle point. The reader will find references in the
Notes section at the end of the chapter. �

Example 2.7 Let us consider N identical two-level systems: XN = X × · · · × X ,
with X = {1, 2}. We take the energy to be the sum of single-systems energies:
E(x) = Esingle(x1) + · · · + Esingle(xN ), with xi ∈ X . As in the previous Section we
set Esingle(1) = ǫ1, and Esingle(2) = ǫ2 > ǫ1 and ∆ = ǫ2 − ǫ1.

The energy spectrum of this model is quite simple. For any energy E = Nǫ1+n∆,
there are

(
N
n

)
configurations x with E(x) = E. Therefore, using the definition (2.47),

we get

s(e) = H
(
e− ǫ1

∆

)
. (2.51)

Equation (2.49) can now be used to get

f(β) = ǫ1 −
1

β
log(1 + e−β∆) , (2.52)

which agrees with the result obtained directly from the definition (2.18).

The great attention paid by physicists to the thermodynamic limit is extremely
well justified by the huge number of degrees of freedom involved in a macroscopic
piece of matter. Let us stress that the interest of the thermodynamic limit is more
general than these huge numbers might suggest. First of all, it often happens that fairly
small systems are well approximated by the thermodynamic limit. This is extremely
important for numerical simulations of physical systems: one cannot of course simulate
1023 molecules on a computer! Even the cases in which the thermodynamic limit is not

a good approximation are often fruitfully analyzed as violations of this limit. Finally,
the insight gained in analyzing the N → ∞ limit is always crucial in understanding
moderate-size systems.
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Fig. 2.2 A configuration of a two dimensional Ising model with L = 5. There is an Ising spin

σi on each vertex i, shown by an arrow pointing up if σi = +1, pointing down if σi = −1. The

energy (2.53) is given by the sum of two types of contributions: (i) A term −σiσj for each

edge (ij) of the graph, such that the energy is minimized when the two neighboring spins σi

and σj point in the same direction; (ii) A term −Bσi for each site i, due to the coupling to

an external magnetic field. The configuration depicted here has energy −8 + 9B

2.5 Ferromagnets and Ising models

Magnetic materials contain molecules with a magnetic moment, a three-dimensional
vector which tends to align with the magnetic field felt by the molecule. Moreover,
the magnetic moments of two distinct molecules interact with each other. Quantum
mechanics plays an important role in magnetism. Because of quantum effects, the
space of possible configurations of a magnetic moment becomes discrete. It is also at
the origin of the so-called exchange interaction between magnetic moments. In many
materials, the effect of the exchange interactions are such that the energy is lower when
two moments align. While the behavior of a single magnetic moment in an external
field is qualitatively simple, when we consider a bunch of interacting moments, the
problem is much richer, and exhibits remarkable collective phenomena.

A simple mathematical model for such materials is the Ising model. It describes
the magnetic moments by Ising spins localized at the vertices of a certain region of the
d-dimensional cubic lattice. To keep things simple, let us consider a region L which is a
cube of side L: L = {1, . . . , L}d. On each site i ∈ L there is an Ising spin σi ∈ {+1,−1}.

A configuration σ = (σ1 . . . σN ) of the system is given by assigning the values of
all the spins in the system. Therefore the space of configurations XN = {+1,−1}L has
the form (2.1) with X = {+1,−1} and N = Ld.

The definition of ferromagnetic Ising models is completed by the definition of the
energy function. A configuration σ has an energy:

E(σ) = −
∑

(ij)

σiσj −B
∑

i∈L

σi , (2.53)
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where the sum over (ij) runs over all the (unordered) couples of sites i, j ∈ L which are
nearest neighbors. The real number B measures the applied external magnetic field.

Determining the free-energy density f(β) in the thermodynamic limit for this model
is a non-trivial task. The model was invented by Wilhem Lenz in the early twenties,
who assigned the task of analyzing it to his student Ernst Ising. In his dissertation
thesis (1924) Ising solved the d = 1 case and showed the absence of phase transitions.
In 1948, Lars Onsager brilliantly solved the d = 2 case, exhibiting the first soluble
“finite-dimensional” model with a second order phase transition. In higher dimensions
the problem is unsolved although many important features of the solution are well
understood.

Before embarking on any calculation, let us discuss some qualitative properties of
this model. Two limiting cases are easily understood. At infinite temperature, β = 0,
the energy (2.53) no longer matters and the Boltzmann distribution weights all the
configurations with the same factor 2−N . We have therefore an assembly of com-
pletely independent spins. At zero temperature, β → ∞, the Boltzmann distribution
concentrates onto the ground state(s). If there is no magnetic field, B = 0, there are
two degenerate ground states: the configurations σ(+) with all the spins pointing up,
σi = +1, and the configuration σ(−) with all the spins pointing down, σi = −1. If the
magnetic field is set to some non-zero value, one of the two configuration dominates:
σ(+) if B > 0 and σ(−) if B < 0.

Notice that the reaction of the system to the external magnetic field B is quite
different in the two cases. To see this fact, define a “rescaled” magnetic field x = βB
and take the limits β → 0 or β →∞ keeping x fixed. The expected value of any spin
in L, in the two limits, is:

〈σi〉 =

{
tanh(x) for β → 0
tanh(Nx) for β →∞ . (2.54)

Each spin reacts independently for β → 0. On the contrary, they react as a whole as
β →∞: one says that the response is cooperative.

A useful quantity for describing the response of the system to the external field is
the average magnetization:

MN (β,B) =
1

N

∑

i∈L

〈σi〉 . (2.55)

Because of the symmetry between the up and down directions, MN (β,B) is an odd
function of B. In particular MN (β, 0) = 0. A cooperative response can be emphasized
by considering the spontaneous magnetization

M+(β) = lim
B→0+

lim
N→∞

MN (β,B) . (2.56)

It is important to understand that a non-zero spontaneous magnetization can appear
only in an infinite system: the order of the limits in Eq. (2.56) is crucial. Our analysis
so far has shown that the spontaneous magnetization exists at β = ∞: M+(∞) =
1. On the other hand M+(0) = 0. It can be shown that actually the spontaneous
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magnetization M(β) is always zero in a high temperature phase β < βc(d) (such a
phase is called paramagnetic). In one dimension (d = 1), we will show below that
βc(1) =∞. The spontaneous magnetization is always zero, except at zero temperature
(β =∞): one speaks of a zero temperature phase transition. In dimensions d ≥ 2, βc(d)
is finite, and M(β) becomes non zero in the so called ferromagnetic phase β > βc:
a phase transition takes place at β = βc. The temperature Tc = 1/βc is called the
critical temperature. In the following we shall discuss the d = 1 case, and a variant
of the model, called the Curie Weiss model, where each spin interacts with all the other
ones: this is the simplest model which exhibits a finite temperature phase transition.

2.5.1 The one-dimensional case

The d = 1 case has the advantage of being simple to solve. We want to compute the
partition function (2.4) for a system of N spins with energy E(σ) = −∑N−1

i=1 σiσi+1−
B
∑N
i=1 σi. We will use the so-called transfer matrix method, which belongs to the

general dynamic programming strategy familiar to computer scientists.
We introduce the partial partition function where the configurations of all spins

σ1,. . . , σp have been summed over, at fixed σp+1:

zp(β,B, σp+1) ≡
∑

σ1,...,σp

exp

[
β

p∑

i=1

σiσi+1 + βB

p∑

i=1

σi

]
. (2.57)

The partition function (2.4) is given by ZN (β,B) =
∑
σN

zN−1(β,B, σN ) exp(βBσN ).
Obviously zp satisfies the recursion relation

zp(β,B, σp+1) =
∑

σp=±1

T (σp+1, σp)zp−1(β,B, σp) (2.58)

where we define the transfer matrix T (σ, σ′) = exp [βσσ′ + βBσ′]. This is the 2× 2
matrix:

T =

(
eβ+βB e−β−βB

e−β+βB eβ−βB

)
(2.59)

Introducing the two component vectors ψL =

(
exp(βB)

exp(−βB)

)
and ψR =

(
1
1

)
, and the

standard scalar product between vectors (a, b) = a1b1 + a2b2, the partition function
can be written in matrix form:

ZN (β,B) = (ψL, T
N−1ψR) . (2.60)

Let us call λ1, λ2 the eigenvalues of T , and ψ1, ψ2 the corresponding eigenvectors. It
is easy to realize that ψ1, ψ2 can be chosen to be linearly independent, hence ψR can
be decomposed as ψR = u1ψ1 + u2ψ2. The partition function is then expressed as:

ZN (β,B) = u1 (ψL, ψ1) λ
N−1
1 + u2 (ψL, ψ2) λ

N−1
2 . (2.61)

The diagonalization of the matrix T gives:
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Fig. 2.3 The average magnetization of the one dimensional Ising model, as a function of the

magnetic field B, at inverse temperatures β = 0.5, 1, 1.5

λ1,2 = eβ cosh(βB)±
√
e2β sinh2 βB + e−2β . (2.62)

For β finite, in the large N limit, the partition function is dominated by the largest
eigenvalue λ1, and the free entropy density is given by φ = log λ1:

φ(β,B) = log

[
eβ cosh(βB) +

√
e2β sinh2 βB + e−2β

]
. (2.63)

Using the same transfer matrix technique we can compute expectation values of
observables. For instance the expected value of a given spin is

〈σi〉 =
1

ZN (β,B)
(ψL, T

i−1σ̂TN−iψR) , (2.64)

where σ̂ is the following matrix:

σ̂ =

(
1 0
0 −1

)
. (2.65)

Averaging over the position i, one can compute the average magnetization MN (β,B).
In the thermodynamic limit we get

lim
N→∞

MN (β,B) =
sinhβB√

sinh2 βh+ e−4β
=

1

β

∂φ

∂B
(β,B) . (2.66)

Both the free-energy and the average magnetization turn out to be analytic functions
of β and B for β < ∞. In particular the spontaneous magnetization vanishes at any
non-zero temperature:

M+(β) = 0 , ∀β <∞ . (2.67)

In Fig. 2.3 we plot the average magnetization M(β,B) ≡ limN→∞MN (β,B) as a
function of the applied magnetic field B for various values of the temperature β. The
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curves become steeper and steeper as β increases. This statement can be made more
quantitative by computing the susceptibility associated to the average magnetiza-
tion:

χM (β) =
∂M

∂h
(β, 0) = β e2β . (2.68)

This result can be interpreted as follows. A single spin in a field has susceptibility
χ(β) = β. If we consider N spins constrained to take the same value, the corresponding
susceptibility will be Nβ, as in Eq. (2.54). In the present case the system behaves as
if the spins were blocked into groups of χM (β)/β spins each. The spins in each group
are constrained to take the same value, while spins belonging to different blocks are
independent.

This qualitative interpretation receives further support by computing a correla-
tion function.

Exercise 2.6 Consider the one dimensional Ising model in zero field, B = 0. Show that,
when δN < i < j < (1 − δ)N , the correlations function 〈σiσj〉 is, in the large N limit:

〈σiσj〉 = e−|i−j|/ξ(β) + Θ(e−αN ) , (2.69)

with ξ(β) = −1/ log tanhβ.
[Hint: You can either use the general transfer matrix formalism, or more simply use the
identity eβσiσi+1 = coshβ(1 + σiσi+1 tanhβ)]

Notice that, in Eq.(2.69), ξ(β) gives the typical distance below which two spins
in the system are well correlated. For this reason it is usually called the correlation
length of the model. This correlation length increases when the temperature decreases:
spins become correlated at larger and larger distances. The result (2.69) is clearly
consistent with our interpretation of the susceptibility. In particular, as β →∞, ξ(β) ≈
e2β/2 and χM (β) ≈ 2βξ(β).

The connection between correlation length and susceptibility is very general and
can be understood as a consequence of the fluctuation-dissipation theorem (2.44):

χM (β) = βN

〈(
1

N

N∑

i=1

σi

)
;

(
1

N

N∑

i=1

σi

)〉

=
β

N

N∑

i,j=1

〈σi ; σj〉 =
β

N

N∑

i,j=1

〈σiσj〉 , (2.70)

where the last equality comes from the fact that 〈σi〉 = 0 when B = 0. Using (2.69),
we get

χM (β) = β
+∞∑

i=−∞

e−|i|/ξ(β) + Θ(e−αN ) . (2.71)

It is therefore evident that a large susceptibility must correspond to a large correlation
length.
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2.5.2 The Curie-Weiss model

The exact solution of the one-dimensional model lead Ising to think that there couldn’t
be a phase transition in any dimension. Some thirty years earlier a qualitative theory
of ferromagnetism had been put forward by Pierre Curie. Such a theory assumed the
existence of a phase transition at non-zero temperature Tc (the so-called the “Curie
point”) and a non-vanishing spontaneous magnetization for T < Tc. The dilemma was
eventually solved by Onsager solution of the two-dimensional model.

Curie theory is realized exactly within a rather abstract model: the so-called Curie-
Weiss model. We shall present it here as one of the simplest solvable models with a
finite-temperature phase transition. Once again we have N Ising spins σi ∈ {±1} and
a configuration is given by σ = (σ1, . . . , σN ). However the spins no longer sits on a
d-dimensional lattice: they all interact in pairs. The energy function, in presence of a
magnetic field B, is given by:

E(σ) = − 1

N

∑

(ij)

σiσj −B
N∑

i=1

σi , (2.72)

where the sum on (ij) runs over all the N(N − 1)/2 couples of spins. Notice the
peculiar 1/N scaling in front of the exchange term. The exact solution presented
below shows that this is the only choice which yields a non-trivial free-energy density
in the thermodynamic limit. This can be easily understood intuitively as follows. The
sum over (ij) involves Θ(N2) terms of order Θ(1). In order to get an energy function
scaling as N , we need to put a 1/N coefficient in front.

In adopting the energy function (2.72), we gave up the description of any finite-
dimensional geometrical structure. This is a severe simplification, but has the advan-
tage of making the model exactly soluble. The Curie-Weiss model is the first example
of a large family: the so-called mean-field models. We will explore many instances
of this family throughout the book.

A possible approach to the computation of the partition function consists in ob-
serving that the energy function can be written in terms of a simple observable, the
instantaneous (or, empirical) magnetization:

m(σ) =
1

N

N∑

i=1

σi . (2.73)

Notice that this is a function of the configuration σ, and shouldn’t be confused with its
expected value, the average magnetization, cf. Eq. (2.55). It is a “simple” observable
because it is equal to the sum of observables depending upon a single spin.

We can write the energy of a configuration in terms of its instantaneous magneti-
zation:

E(σ) =
1

2
N − 1

2
N m(σ)2 −NBm(σ) . (2.74)

This implies the following formula for the partition function
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ZN (β,B) = e−Nβ/2

∑

m

NN (m) exp

{
Nβ

2
m2 +NβBm

}
, (2.75)

where the sum over m runs over all the possible instantaneous magnetizations of N
Ising spins: m = −1 + 2k/N with 0 ≤ k ≤ N an integer number, and NN (m) is
the number of configurations having a given instantaneous magnetization m. This is
a binomial coefficient whose large-N behavior is expressed in terms of the entropy
function of Bernoulli variables:

NN (m) =

(
N

N 1+m
2

)
.
= exp

[
N H

(
1 +m

2

)]
. (2.76)

To leading exponential order in N , the partition function can thus be written as:

ZN (β,B)
.
=

∫ +1

−1

eNφmf (m;β,B) dm, (2.77)

where we have defined

φmf(m;β,B) = −β
2

(1−m2) + βBm+H
(

1 +m

2

)
. (2.78)

The integral in (2.77) is easily evaluated by Laplace method, to get the final result for
the free-energy density

φ(β,B) = max
m∈[−1,+1]

φmf(m;β,B) . (2.79)

One can see that the maximum is obtained away from the boundary points, so that
the corresponding m must be a stationary point of φmf(m;β,B), which satisfies the
saddle-point equation ∂φmf(m;β,B)/∂m = 0:

m∗ = tanh(βm∗ + βB) . (2.80)

In the above derivation we were slightly sloppy at two steps: substituting the bino-
mial coefficient with its asymptotic form and changing the sum over m into an integral.
The mathematically minded reader is invited to show that these passages are indeed
correct. ⋆

With a bit more work, the above method can be extended to expectation values of
observables. Let us consider for instance the average magnetization M(β,B). It can be ⋆
easily shown that, whenever the maximum of φmf(m;β,B) over m is non-degenerate,

M(β,B) ≡ lim
N→∞

〈m(σ)〉 = m∗(β,B) ≡ arg max
m

φmf(m;β,B) , (2.81)

We can now examine the implications that can be drawn from Eqs. (2.79) and
(2.80). Let us first consider the B = 0 case (see Fig.2.4). The function φmf(m;β, 0)
is symmetric in m. For 0 ≤ β ≤ 1 ≡ βc, it is also concave and achieves its unique
maximum in m∗(β) = 0. For β > 1, m = 0 remains a stationary point but becomes
a local minimum, and the function develops two degenerate global maxima at m±(β)
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Fig. 2.4 Left: the function φmf(m;β,B = 0) is plotted versus m, for β = 0.7, 0.9, 1.1, 1.3

(from top to bottom). For β < βc = 1 there is a unique maximum at m = 0, for β < βc = 1

there are two degenerate maxima at two symmetric values ±m+(β). Right: values of m which

maximize φmf(m;β,B = 0) are plotted versus β. The phase transition at βc = 1 is signaled

by the bifurcation.

with m+(β) = −m−(β) > 0. These two maxima bifurcate continuously from m = 0
at β = βc.

A phase transition takes place at βc. Its meaning can be understood by computing
the expectation value of the spins. Notice that the energy function (2.72) is sym-
metric under a spin-flip transformation which maps σi → −σi for all i’s. Therefore
〈σi〉 = 〈(−σi)〉 = 0 and the average magnetization vanishes M(β, 0) = 0. On the other
hand, the spontaneous magnetization, defined in (2.56), is zero in the paramagnetic
phase β < βc, and equal to m+(β) in the ferromagnetic phase β > βc. The physical
interpretation of this phase is the following: for any finite N the pdf of the instanta-
neous magnetization m(σ) has two symmetric peaks, at m±(β), which become sharper
and sharper as N increases. Any external perturbation which breaks the symmetry
between the peaks, for instance a small positive magnetic field B, favors one peak with
respect to the other one, and therefore the system develops a spontaneous magnetiza-
tion. Let us stress that the occurrence of a phase transition is a property of systems
in the thermodynamic limit N →∞.

In physical magnets, symmetry breaking can come for instance from impurities,
subtle effects of dipolar interactions together with the shape of the magnet, or an
external magnetic field. The result is that at low enough temperatures some systems,
the ferromagnets, develop a spontaneous magnetization. If you heat a magnet made
of iron, its magnetization disappears at a critical temperature Tc = 1/βc ≈ 770 de-
grees Celsius. The Curie Weiss model is a simple solvable case exhibiting this phase
transition.

Exercise 2.7 Compute the expansion of m+(β) and of φ(β,B = 0) near β = βc, and
show that the transition is of second order. Compute the low temperature behavior of the
spontaneous magnetization.
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Exercise 2.8 Inhomogeneous Ising chain. The one-dimensional Ising problem does not
have a finite temperature phase transition, as long as the interactions are short range and
translational invariant. On the other hand, if the couplings in the Ising chain grow fast
enough at large distance, one can have a phase transition. This is not a very realistic model
from the point of view of physics, but it is useful as a solvable example of phase transition.

Consider a chain of Ising spins σ0, σ1, . . . , σN with energy E(σ) = −PN−1
n=0 Jnσnσn+1.

Suppose that the coupling constants Jn form a positive, monotonously increasing sequence,
growing logarithmically. More precisely, we assume that limn→∞ Jn/ log n = 1 . Denote by
〈 · 〉+ (resp. 〈 · 〉−) the expectation value with respect to Boltzmann’s probability distribution
when the spin σN is fixed to σN = +1 (resp. fixed to σN = −1).

(i) Show that , for any n ∈ {0. . . . , N − 1}, the magnetization is 〈σn〉± =
QN−1

p=n tanh(βJp)

(ii) Show that the critical inverse temperature βc = 1/2 separates two regimes, such that: for
β < βc, one has limN→∞〈σn〉+ = limN→∞〈σn〉− = 0; for β > βc, one has limN→∞〈σn〉± =
±M(β), with M(β) > 0.

Notice that in this case, the role of the symmetry breaking field is played by the choice of
boundary condition.

2.6 The Ising spin glass

In real magnetic materials, localized magnetic moments are subject to several sources
of interactions. Apart from the exchange interaction mentioned in the previous Sec-
tion, they may interact through intermediate conduction electrons, etc. . . As a result,
depending on the material which one considers, their interaction can be either ferro-
magnetic (their energy is minimized when they are parallel) or antiferromagnetic
(their energy is minimized when they point opposite to each other). Spin glasses are
a family of materials whose magnetic properties are particularly complex. They can
be produced by diluting a small fraction of a ‘transition magnetic metal’ like man-
ganese into a ‘noble metal’ like copper in a ratio, say, of 1 : 100. In such an alloy,
magnetic moments are localized at manganese atoms, which are placed at random po-
sitions in a copper background. Depending on the distance of two manganese atoms,
the net interaction between their magnetic moments can be either ferromagnetic or
antiferromagnetic.

The Edwards-Anderson model is a widely accepted mathematical abstraction
of these physical systems. Once again, the basic degrees of freedom are Ising spins
σi ∈ {−1,+1} sitting on the vertices of a d-dimensional cubic lattice L = {1, . . . , L}d,
i ∈ L. The configuration space is therefore {−1,+1}L. As in the ferromagnetic Ising
model, the energy function reads

E(σ) = −
∑

(ij)

Jijσiσj −B
∑

i∈L

σi , (2.82)

where
∑

(ij) runs over each edge of the lattice. Unlike in the Ising ferromagnet, a

different coupling constant Jij is now associated to each edge (ij), and its sign can
be positive or negative. The interaction between spins σi and σj is ferromagnetic if
Jij > 0 and antiferromagnetic if Jij < 0.
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Fig. 2.5 A configuration of a two dimensional Edwards-Anderson model with L = 5. Spins

are coupled by two types of interactions: ferromagnetic (Jij = +1), indicated by a contin-

uous line, and antiferromagnetic (Jij = −1), indicated by a dashed line. The energy of the

configuration shown here is −14 − 7h.

A pictorial representation of this energy function is given in Fig. 2.5. The Boltz-
mann distribution is given by

µβ(σ) =
1

Z(β)
exp



β

∑

(ij)

Jijσiσj + βB
∑

i∈L

σi



 , (2.83)

Z(β) =
∑

σ

exp



β

∑

(ij)

Jijσiσj + βB
∑

i∈L

σi



 . (2.84)

It is important to notice that the couplings {Jij} play a completely different role
from the spins {σi}. The couplings are just parameters involved in the definition of
the energy function, as the magnetic field B, and they are not summed over when
computing the partition function. In principle, for any particular sample of a magnetic
material, one should estimate experimentally the values of the Jij ’s, and then compute
the partition function. We could have made explicit the dependence of the partition
function and of the Boltzmann distribution on the couplings by using notations such as
Z(β,B; {Jij}), µβ,B;{Jij}(σ). However, when these explicit mentions are not necessary,
we prefer to keep to lighter notations.

The present understanding of the Edwards-Anderson model is much poorer than
for the ferromagnetic models introduced in the previous Section. The basic reason of
this difference is frustration and is illustrated in Fig. 2.6 on an L = 2, d = 2 model
(a model consisting of just 4 spins).

A spin glass is frustrated whenever there exist local constraints that are in conflict,
meaning that it is not possible to satisfy all of them simultaneously. In the Edwards-
Anderson model, a plaquette is a group of four neighboring spins forming a square (i.e.
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Fig. 2.6 Four configurations of a small Edwards-Anderson model: continuous lines indicate

ferromagnetic interactions (Jij = +1), while dashed lines are for antiferromagnetic interac-

tions (Jij = −1). In zero magnetic field (B = 0), the four configurations are degenerate and

have energy E = −2. The double bar indicates an unsatisfied interaction. Notice that there is

no configuration with lower energy. This system is frustrated since it is impossible to satisfy

simultaneously all constraints.

a cycle of length four). A plaquette is frustrated if and only if the product of the Jij
along all four edges of the plaquette is negative. As shown in Fig. 2.6, it is then impos-
sible to minimize simultaneously all the four local energy terms associated with each
edge. In a spin glass, the presence of a finite density of frustrated plaquettes generates
a very complicated energy landscape. The resulting effect of all the interactions is not
obtained by ‘summing’ the effects of each of them separately, but is the outcome of a
complex interplay. The ground state spin configuration (the one satisfying the largest
possible number of interactions) is difficult to find: it cannot be guessed on symmetry
grounds. It is also frequent to find in a spin glass a configuration which is very different
from the ground state but has an energy very close to the ground state energy. We
shall explore these and related issues throughout the book.

Notes

There are many good introductory textbooks on statistical physics and thermody-
namics, for instance the books (Reif, 1965) or (Huang, 1987). Going towards more
advanced texts, one can suggest the books (Ma, 1985) and (Parisi, 1988). A more
mathematically minded presentation can be found in the books (Galavotti, 1999) and
(Ruelle, 1999). The reader will find there the proof of Proposition 2.6.

The two-dimensional Ising model at vanishing external field can also be solved by a
transfer matrix technique, see for instance (Baxter, 1982). The transfer matrix, which
passes from a column of the lattice to the next, is a 2L× 2L matrix, and its dimension
diverges exponentially with the lattice size L. Finding its largest eigenvalue is therefore
a complicated task. Nobody has found the solution so far for B 6= 0.

Spin glasses will be a recurring theme in this book, and more will be said about
them in the next Chapters. An introduction to this subject from a physicist point
of view is provided by the book (Fischer and Hetz, 1993) or the review (Binder and
Young, 1986). The concept of frustration was introduced by (Toulouse, 1977).
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3

Introduction to combinatorial
optimization

This Chapter provides an elementary introduction to some basic concepts in theoretical
computer science. Which computational tasks can/cannot be accomplished efficiently
by a computer? How much resources (time, memory, etc.) are needed for solving a
specific problem? What are the performances of a specific solution method (an algo-
rithm), and, whenever more than one method is available, which one is preferable?
Are some problems intrinsically harder than others? This are some of the questions
one would like to answer.

One large family of computational problems is formed by combinatorial optimiza-
tion problems. These consist in finding an element of a finite set which maximizes (or
minimizes) an easy-to-evaluate objective function. Several features make such problems
particularly interesting. First of all, most of the times they are equivalent to decision
problems (questions which require a YES/NO answer), which is the most fundamen-
tal class of problems within computational complexity theory. Second, optimization
problems are ubiquitous both in applications and in pure sciences. In particular, there
exist some evident connections both with statistical mechanics and with coding the-
ory. Finally, they form a very large and well studied family, and therefore an ideal
context for understanding some advanced issues. One should however keep in mind
that computation is more than just combinatorial optimization. A larger family, that
we will also discuss later on, contains the counting problems: one wants to count how
many elements of a finite set have some easy-to-check property. Finally, there are
other important families of computational problem that we shall not address at all,
like continuous optimization problems.

The study of combinatorial optimization is introduced in Sec. 3.1 through the
simple example of the minimum spanning tree. This section also contains the basic
definitions of graph theory that we use throughout the book. General definitions and
terminology are given in Sec. 3.2. These definitions are further illustrated in Sec. 3.3
through several additional examples. Section 3.4 provides an informal introduction to
some basic concepts in computational complexity: we define the classes P and NP,
and the notion of NP-completeness. As mentioned above, combinatorial optimization
problems often appear in pure sciences and applications. The examples of statistical
physics and coding are briefly discussed in Secs. 3.5 and 3.6.
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Fig. 3.1 This graph has 7 vertices (labeled a to g) and 10 edges. The ‘cost’ of each edge is

indicated next to it. In the Minimum Spanning Tree problem, one seeks a loop-free subgraph

of minimum cost connecting all vertices.

3.1 A first example: minimum spanning tree

The minimum spanning tree problem is easily stated and may appear in many prac-
tical applications. Suppose for instance you have a bunch of computers in a building.
You may want to connect them pairwise in such a way that the resulting network is
connected and the amount of cable used is minimum.

3.1.1 Definition and basics of graph theory

A mathematical abstraction of the above practical problem requires a few basic def-
initions from graph theory. A graph is a set V of vertices, labeled by {1, 2, . . . , |V|},
together with a set E of edges connecting them: G = (V, E). The vertex set can be any
finite set but one often takes the set of the first |V| integers: V = {1, 2, . . . , |V|}. The
edges are simply unordered couples of distinct vertices E ⊆ V × V. For instance an
edge joining vertices i and j is identified as e = (i, j). A weighted graph is a graph
where a cost (a real number) is associated with every edge. The degree of a vertex is
the number of edges connected to it. A path between two vertices i and j is a set of
edges {(j, i2); (i2, i3); (i3, i4); . . . ; (ir−1, ir); (ir, j)} ⊆ E . A graph is connected if, for
every pair of vertices, there is a path which connects them. A completely connected
graph, or complete graph, also called a clique, is a graph where all the |V|(|V|−1)/2
edges are present. A cycle is a path starting and ending on the same vertex. A tree
is a connected graph without cycles.

Consider the graph in Fig. 3.1. You are asked to find a tree (a subset of the edges
forming a cycle-free subgraph) such that any two vertices are connected by exactly one
path (in this case the tree is said to be spanning). To find such a subgraph is an easy
task. The edges {(a, b); (b, c); (c, d); (b, g); (d, e)}, for instance, do the job. However in
our problem a cost is associated with each edge. The cost of a subgraph is assumed to
be equal to the sum of the costs of its edges, and you want to minimize it. This is a
non-trivial problem.

In general, an instance of the minimum spanning tree (MST) problem is given
by a connected weighted graph (each edge e has a cost w(e) ∈ R). The optimization
problem consists in finding a spanning tree with minimum cost. What one seeks is an
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algorithm which, given an instance of the MST problem, outputs the spanning tree
with lowest cost.

3.1.2 An efficient algorithm

The simple-minded approach would consist in enumerating all the spanning trees for
the given graph, and comparing their weights. However the number of spanning trees
grows very rapidly with the size of the graph. Consider, as an example, the complete
graph on N vertices. The number of spanning trees of such a graph is, according to the
Cayley formula, NN−2. Even if the cost of any such tree were evaluated in 10−3 sec,
it would take 2 years to find the MST of a N = 12 graph, and half a century for
N = 13. At the other extreme, if the graph is very simple, it may contain a small
number of spanning trees, a single one in the extreme case where the graph is itself a
tree. Nevertheless, in most interesting examples the situation is nearly as dramatic as
in the complete graph case.

A much better algorithm can be obtained from the following theorem:

Theorem 3.1 Let U ⊂ V be a proper subset of the vertex set V (such that neither U
nor V\U are empty). Let us consider the subset F of edges which connect a vertex in U
to a vertex in V\U , and let e ∈ F be an edge of lowest cost in this subset: w(e) ≤ w(e′)
for any e′ ∈ F . If there are several such edges, e can be any one of them. Then there
exists a minimum spanning tree which contains e.

Proof: Consider a MST T , and suppose that it does not contain the edge e mentioned
in the statement. This edge is such that e = (i, j) with i ∈ U and j ∈ V\U . The
spanning tree T must contain a path between i and j. This path contains at least one
edge f connecting a vertex in U to a vertex in V\U , and f is distinct from e. Now
consider the subgraph T ′ built from T by removing the edge f and adding the edge
e. We leave to the reader the exercise of showing that T ′ is a spanning tree. If we
denote by E(T ) the cost of tree T , E(T ′) = E(T ) + w(e)− w(f). Since T is a MST,
E(T ′) ≥ E(T ). On the other hand e has minimum cost within F , hence w(e) ≤ w(f).
Therefore w(e) = w(f) and T ′ is a MST containing e. �

This result allows to construct a minimum spanning tree of G incrementally. One
starts from a single vertex. At each step a new edge is added to the tree, whose cost is
minimum among all the ones connecting the already existing tree with the remaining
vertices. After N − 1 iterations, the tree will be spanning.

MST algorithm (Graph G = (V, E), weight function w : E → R+)
1: Set U := {1}, T := ∅ and E = 0;
2: while V\U is not empty:
3: Let F := {e = (i, j) ∈ E such that i ∈ U , j ∈ V\U};
4: Find e∗ = (i∗, j∗) := arg mine∈F{w(e)};
5: Set U := U ∪ j∗, T := T ∪ e∗, and E := E + w(e∗);
6: end
7: return the spanning tree T and its cost E.
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Fig. 3.2 A minimum spanning tree for the graph defined in Fig. 3.1. The cost of this tree is

E = 17.

Exercise 3.1 Write a code for this algorithm, and find a MST for the problem described
in Fig. 3.1. A solution is given in Fig. 3.2

Exercise 3.2 Show explicitly that the algorithm MST always outputs a minimum spanning
tree.

Theorem 3.1 establishes that, for any U ⊂ V, and any lowest cost edge e among the
ones connecting U to V\U , there exists a MST containing e. This does not guarantee that,
when two different sets U1 and U2, and the corresponding lowest cost edges e1 and e2 are
considered, there exists a MST containing both e1 and e2. The above algorithm works by
constructing a sequence of such U ’s and adding to the tree the corresponding lowest weight
edges. It is therefore not obvious a priori that it will output a MST (unless this is unique).

Let us analyze the number of elementary operations required by the algorithm to
construct a spanning tree on an N nodes graph. By ‘elementary operation’ we mean
comparisons, sums, multiplications, etc, all of them counting as one. Of course, the
number of such operations depends on the graph, but we can find a simple upper
bound by considering the completely connected graph. Most of the operations in the
above algorithm are comparisons among edge weights for finding e∗ in step 4. In
order to identify e∗, one has to scan at most |U| × |V\U| = |U| × (N − |U|) edges
connecting U to V\U . Since |U| = 1 at the beginning and is augmented of one element
at each iteration of the cycle 2-6, the number of comparisons is upper bounded by∑N
U=0 U(N − U) ≤ N3/61. This is an example of a polynomial algorithm, whose

computing time grows like a power of the number of vertices. The insight gained from
the theorem provides an algorithm which is much better than the naive one, at least
when N gets large.

1The algorithm can be easily improved by keeping an ordered list of the edges already encountered
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Exercise 3.3 Suppose you are given a weighted graph (V, E) in which the weights are all
different, and the edges are ordered in such a way that their weights form an increasing
sequence w(e1) < w(e2) < w(e3) < · · · . Another graph with the same (V, E) has different
weights w′(e), but they are also increasing along the same sequence w′(e1) < w′(e2) <
w′(e3) < · · · . Show that the MST is the same in these two graphs.

3.2 General definitions

MST is an example of a combinatorial optimization problem. This is defined by
a set of possible instances. An instance of MST is defined by a connected weighted
graph. In general, an instance of a combinatorial optimization problem is described
by a finite set X of allowed configurations and a cost function E defined on this
set and taking values in R. The optimization problem consists in finding the optimal
configuration C ∈ X , namely the one with the smallest cost E(C). Any set of such
instances defines a combinatorial optimization problem. For a particular instance of
MST, the space of configurations X is simply the set of spanning trees on the given
graph, while the cost function associated with each spanning tree is the sum of the
costs of its edges.

We shall say that an algorithm solves an optimization problem if, for every instance
of the optimization problem, it gives the optimal configuration, or if it computes its
cost. In all the problems which we shall discuss, there is a ‘natural’ measure of the size
of the problem N (typically a number of variables used to define a configuration, like
the number of edges of the graph in MST), and the number of configurations scales,
at large N like cN , or in some cases even faster, e. g. like N ! or NN . Notice that,
quite generally, evaluating the cost function on a particular configuration is an easy
task. The difficulty of solving the combinatorial optimization problem comes therefore
essentially from the size of the configuration space.

It is a generally accepted practice to estimate the complexity of an algorithm
as the number of ‘elementary operations’ required to solve the problem. Usually one
focuses onto the asymptotic behavior of this quantity as N → ∞. It is obviously
of great practical interest to construct algorithms whose complexity is as small as
possible.

One can solve a combinatorial optimization problem at several levels of refinement.
Usually one distinguishes three types of problems:

• The optimization problem: Find an optimal configuration C∗.

• The evaluation problem: Determine the cost E(C∗) of an optimal configuration.

• The decision problem: Answer to the question: “Is there a configuration of cost
less than a given value E0?”

3.3 More examples

The general setting described in the previous Section includes a large variety of prob-
lems having both practical and theoretical interest. In the following we shall provide
a few selected examples.
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3.3.1 Eulerian circuit

One of the oldest documented examples goes back to the 18th century. The old city
of Königsberg had seven bridges (see Fig. 3.3), and its inhabitants were wondering
whether it was possible to cross once each of this bridges and get back home. This can
be generalized and translated in graph-theoretic language as the following decision
problem. Define a multigraph exactly as a graph but for the fact that two given
vertices can be connected by several edges. The problem consists in finding whether
there is there a circuit which goes through all edges of the graph only once, and returns
to its starting point. Such a circuit is now called a Eulerian circuit, because this
problem was solved by Euler in 1736, when he proved the following nice theorem. As
for ordinary graphs, we define the degree of a vertex as the number of edges which
have the vertex as an end-point.

Theorem 3.2 Given a connected multigraph, there exists an Eulerian circuit if and
only if every vertex has even degree.

This theorem directly provides an algorithm for the decision problem whose complexity
grows linearly with the number of vertices of the graph: just go through all the vertices
of the graph and check their degree.

Exercise 3.4 Show that, if an Eulerian circuit exists, the degrees are necessarily even.
Proving the inverse implication is more difficult. A possible approach consists in showing

the following slightly stronger result. If all the vertices of a connected graph G have even
degree but i and j, then there exists a path from i to j that visits once each edge in G. This
can be proved by induction on the number of vertices. [Hint: Start from i and make a step
along the edge (i, i′). Show that it is possible to choose i′ in such a way that the residual
graph G\(i, i′) is connected.]

3.3.2 Hamiltonian cycle

More than a century after Euler’s theorem, the great scientist sir William Hamilton
introduced in 1859 a game called the icosian game. In its generalized form, it basically
asks whether there exists, in a graph, a Hamiltonian cycle, that is a path going
once through every vertex of the graph, and getting back to its starting point. This is
another decision problem, and, at a first look, it seems very similar to the Eulerian cir-
cuit. However it turns out to be much more complicated. The best existing algorithms
for determining the existence of an Hamiltonian cycle on a given graph run in a time
which grows exponentially with the number of vertices N . Moreover, the theory of
computational complexity, which we shall describe in Sec. 3.4, strongly suggests that
this problem is in fact intrinsically difficult.

3.3.3 Traveling salesman

Given a complete graph with N points, and the distances dij between all pairs of points
1 ≤ i < j ≤ N , the famous traveling salesman problem (TSP) is an optimization
problem: find a Hamiltonian cycle of minimum total length. One can consider the case
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Fig. 3.3 Left: a map of the old city of Königsberg, with its seven bridges, as drawn in

Euler’s paper of 1736. The problem is whether one can walk along the city, crossing each

bridge exactly once and getting back home. Right: a graph summarizing the problem. The

vertices A,B,C,D are the various parts of lands separated by a river, an edge exists between

two vertices whenever there is a bridge. The problem is to make a closed circuit on this graph,

going exactly once through every edge.

where the points are in a portion of the plane, and the distances are Euclidean distances
(we then speak of Euclidean TSP), but of course the problem can be stated more
generally, with dij representing general costs, which are not necessarily distances. As
for the Hamiltonian cycle problem, the best algorithms known so far for the TSP have
a running time which grows exponentially with N at large N . Nevertheless Euclidean
problems with thousands of points can be solved.

3.3.4 Assignment

Given N persons and N jobs, and a matrix Cij giving the affinity of person i for job j,
the assignment problem consists in finding the assignment of the jobs to the persons
(an exact one-to-one correspondence between jobs and persons) which maximizes the
total affinity. A configuration is characterized by a permutation of the N indices (there
are thus N ! configurations), and the cost of the permutation π is

∑
i Ciπ(i). This is an

example of a polynomial problem: there exists algorithms solving it in a time growing
like N3.

3.3.5 Satisfiability

In the satisfiability problem one has to find the values of N Boolean variables xi ∈
{T, F} which satisfy a set of logical constraints. Since each variable can be either true
or false, the space of configurations has size |X | = 2N . Each logical constraint, called
in this context a clause, takes a special form: it is the logical OR (for which we use
the symbol ∨) of some variables or their negations. For instance x1 ∨ x2 is a 2-clause
(a ‘2-clause’ is a clause of length 2, i.e. which involves exactly 2 variables), which is
satisfied if either x1 = T , or x2 = F , or both. Analogously x1 ∨ x2 ∨ x3 is a 3-clause,
which is satisfied by all configurations of the three variables except x1 = x2 = T ,
x3 = F . The problem is to determine whether there exists a configuration which
satisfies all constraints (decision problem), or to find the configuration which minimizes
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the number of violated constraints (optimization problem). The K-satisfiability (or
“K-SAT”) problem is the restriction of satisfiability to the case where all clauses have
length K. In 2-satisfiability the decision problem is easy: there exists an algorithm
running in a time growing linearly with N . For K-satisfiability, and therefore also for
the general satisfiability problem, all known algorithms solving the decision problem
run in a time which grows exponentially with N .

3.3.6 Coloring and vertex covering

Given a graph and an integer q, the famous q-coloring problem asks if it is possible to
color the vertices of the graph using q colors, in such a way that two vertices connected
by an edge have different colors. In the same spirit, the vertex-cover problem asks
to cover the vertices with ‘pebbles’, using the smallest possible number of pebbles, in
such a way that every edge of the graph has at least one of its two endpoints covered
by a pebble.

3.3.7 Number partitioning

Number partitioning is an example which does not come from graph theory. An
instance is a set S of N integers S = {x1, .., xN}. A configuration is a partition of
these numbers into two groups A and S \A . Is there a partition such that

∑
i∈A xi =∑

i∈S\A xi?

3.4 Elements of the theory of computational complexity

One main branch of theoretical computer science aims at constructing an intrinsic
theory of computational complexity. One would like, for instance, to establish which
problems are harder than others. By ‘harder problem’, we mean a problem that takes
a longer running time to be solved. In order to discuss rigorously the computational
complexity of a problem, we would need to define a precise model of computation

(introducing, for instance, Turing machines). This would take us too far. We will
instead evaluate the running time of an algorithm in terms of ‘elementary operations’:
comparisons, sums, multiplications, etc. This informal approach is essentially correct
as long as the size of the operands remains uniformly bounded.

3.4.1 The worst case scenario

As we already mentioned in Sec. 3.2, a combinatorial optimization problem is defined
by the set of its possible instances. Given an algorithm solving the problem, its running
time will vary from instance to instance, even if the ‘size’ of the instance is fixed.
How should we quantify the overall hardness of the problem? A crucial choice of
computational complexity theory consists in considering the ‘worst’ (i.e. the one which
takes longer time to be solved) instance among all the ones having the same size.

This choice has two advantages: (i) It allows to construct a ‘universal’ theory. (ii)
Once the worst case running time of a given algorithm is estimated, this provides a
performance guarantee on any instance of the problem.
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3.4.2 Polynomial or not?

A second crucial choice consists in classifying algorithms in two classes: (i) Polyno-
mial, if the running time is upper bounded by a fixed polynomial in the size of the
instance. In mathematical terms, let TN the number of operations required for solving
an instance of size N in the worst case. The algorithm is polynomial when there exist
a constant k such that TN = O(Nk). (ii) Super-polynomial, if no such upper bound
exists. This is for instance the case if the time grows exponentially with the size of
the instance (we shall call algorithms of this type exponential), i.e. TN = Θ(kN ) for
some constant k > 1.

Example 3.3 In 3.1.2, we were able to show that the running time of the MST
algorithm is upper bounded by N3, with N the number of vertices tin the graph.
This implies that such an algorithm is polynomial.

Notice that we did not give a precise definition of the ‘size’ of a problem. One
may wonder whether, changing the definition, a particular problem can be classified
both as polynomial an as super-polynomial. Consider, for instance, the assignment
problem with 2N points. One can define the size as being N , or 2N , or even N2

which is the number of possible person-job pairs. The last definition would be relevant
if one would count, for instance, the number of entries in the person-job cost matrix.
However, any of these ‘natural’ definitions of size are a polynomial function one of the
other. Therefore they do not affect the classification of an algorithm as polynomial or
super-polynomial. We will discard other definitions (such as eN or N !) as ‘unnatural’,
without any further ado. The reader can convince herself on each of the examples of
the previous Section.

3.4.3 Optimization, evaluation, decision

In order to get a feeling of their relative levels of difficulty, let us come back for a while
to the three types of optimization problems defined in Sec. 3.2, and study which one
is the hardest.

Clearly, if the cost of any configuration can be computed in polynomial time, the
evaluation problem is not harder than the optimization problem: if one can find the
optimal configuration in polynomial time, one can compute its cost also in polynomial
time. The decision problem (deciding whether there exists a configuration of cost
smaller than a given E0) is not harder than the evaluation problem. So the order of
increasing difficulty is: decision, evaluation, optimization.

However, in many cases where the costs take discrete values, the evaluation problem
is not harder than the decision problem, in the following sense. Suppose that we
have a polynomial algorithm solving the decision problem, and that the costs of all
configurations can be scaled to be integers in an interval [0, Emax] of length Emax =
exp{O(Nk)} for some k > 0. An algorithm solving the decision problem can be used
to solve the evaluation problem by dichotomy: one first takes E0 = Emax/2. If there
exists a configuration of energy smaller than E0, one iterates with E0 the center of the
interval [0, Emax/2]. In the opposite case, one iterates with E0 the center of the interval



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

Elements of the theory of computational complexity 55
[Emax/2, Emax]. Clearly this procedure finds the cost of the optimal configuration(s)
in a time which is also polynomial.

3.4.4 Polynomial reduction

One would like to compare the levels of difficulty of various decision problems. The
notion of polynomial reduction formalizes the sentence “not harder than” which we
used so far, and helps to get a classification of decision problems.

Roughly speaking, we say that a problem B is not harder than A if any efficient
algorithm for A (if such an algorithm existed) could be used as a subroutine of an
algorithm solving efficiently B. More precisely, given two decision problems A and B,
one says that B is polynomially reducible to A if the following conditions hold:

1. There exists a mapping R which transforms any instance I of problem B into an
instance R(I) of problem A, such that the solution (yes/no) of the instance R(I)
of A gives the solution (yes/no) of the instance I of B.

2. The mapping I 7→ R(I) can be computed in a time which is polynomial in the
size of I.

3. The size of R(I) is polynomial in the size of I. This is in fact a consequence of
the previous assumptions but there is no harm in stating it explicitly.

A mapping R satisfying the above requirements is called a polynomial reduction.
Constructing a polynomial reduction among two problems is an important achievement
since it effectively reduces their study to the study of just one of them. Suppose
for instance to have a polynomial algorithm AlgA for solving A. Then a polynomial
reduction of B to A can be used for constructing a polynomial algorithm for solving
B. Given an instance I of B, the algorithm just compute R(I), feeds it into the AlgA,
and outputs the output of AlgA. Since the size of R(I) is polynomial in the size of I,
the resulting algorithm for B is still polynomial.

Let us work out an explicit example. We will show that the problem of existence of
a Hamiltonian cycle in a graph is polynomially reducible to the satisfiability problem.
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Example 3.4 An instance of the Hamiltonian cycle problem is a graph with N
vertices, labeled by i ∈ {1, ..., N}. If there exists a Hamiltonian cycle in the graph,
it can be characterized by N2 Boolean variables xri ∈ {0, 1}, where xri = 1 if vertex
number i is the r’th vertex in the cycle, and xri = 0 otherwise (one can take for
instance x11 = 1). We shall now write a number of constraints that the variables
xri must satisfy in order for a Hamiltonian cycle to exist, and we shall ensure that
these constraints take the forms of the clauses used in the satisfiability problem
(identifying x = 1 as true, x = 0 as false):

• Each vertex i ∈ {1, . . . , N} must belong to the cycle: this can be written as the
clause x1i ∨ x2i ∨ · · · ∨ xNi, which is satisfied only if at least one of the numbers
x1i, x2i, . . . , xNi equals one.

• For every r ∈ {1, . . . , N}, one vertex must be the r’th visited vertex in the cycle:
xr1 ∨ xr2 ∨ · · · ∨ xrN .

• Each vertex i ∈ {1, . . . , N} must be visited only once. This can be implemented
through the N(N − 1)/2 clauses x̄rj ∨ x̄sj , for 1 ≤ r < s ≤ N .

• For every r ∈ {1, . . . , N}, there must be only one r’th visited vertex in the
cycle. This can be implemented through the N(N − 1)/2 clauses xri ∨ xrj , for
1 ≤ i < j ≤ N .

• If two vertices i < j which are not connected by an edge of the graph, these
vertices should not appear consecutively in the list of vertices of the cycle.
Therefore we add, for every such pair and for every r ∈ {1, . . . , N}, the clauses
xri ∨ x(r+1)j and xrj ∨ x(r+1)i (with the ‘cyclic’ convention N + 1 = 1).

It is straightforward to show that the size of the satisfiability problem constructed
in this way is polynomial in the size of the Hamiltonian cycle problem. We leave
as an exercise to show that the set of all above clauses is a sufficient set: if the N2

variables satisfy all the above constraints, they describe a Hamiltonian cycle.

3.4.5 Complexity classes

Let us continue to focus onto decision problems. The classification of these problems
with respect to polynomiality is as follows:

• Class P: These are the polynomial problems, that can be solved by an algorithm
running in polynomial time. An example, cf. Sec. 3.1, is the decision version of the
minimum spanning tree (which asks for a yes/no answer to the question: given a
graph with costs on the edges, and a number E0, is there a spanning tree with
total cost less than E0?).

• Class NP: This is the class of non-deterministic polynomial problems, which
can be solved in polynomial time by a ‘non deterministic’ algorithm. Roughly
speaking, such an algorithm can run in parallel on an arbitrarily large number
of processors. We shall not explain this notion in detail here, but rather use an
alternative and equivalent characterization. We say that a problem is in the class
NP if there exists a ‘short’ certificate which allows to check a ‘yes’ answer to the
problem. A short certificate means a certificate that can be checked in polynomial
time.
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A polynomial problem like the MST described above is automatically in NP so
P ⊆ NP. The decision version of the TSP is also in NP: if there is a TSP tour
with cost smaller than E0, the short certificate is simple: just give the tour, and
its cost will be computed in linear time, allowing to check that it is smaller than
E0. Satisfiability also belongs to NP: a certificate is obtained from the assignment
of variables satisfying all clauses. Checking that all clauses are satisfied is linear
in the number of clauses, taken here as the size of the system. In fact there are
many important problems in the class NP, with a broad spectrum of applications
ranging from routing to scheduling, to chip verification, or to protein folding. . .

• Class NP-complete: These are the hardest problem in the NP class. A prob-
lem is NP-complete if: (i) it is in NP, (ii) any other problem in NP can be
polynomially reduced to it, using the notion of polynomial reduction defined in
Sec. 3.4.4. If A is NP-complete, then: for any other problem B in NP, there is a
polynomial reduction mapping B to A. In other words, if we had a polynomial
algorithm to solve A, then all the problems in the broad class NP would be solved
in polynomial time.

It is not a priori obvious whether there exist any NP-complete problem. A major
achievement of the theory of computational complexity is the following theorem, ob-
tained by Cook in 1971.

Theorem 3.5 The satisfiability problem is NP-complete

We shall not give here the proof of the theorem. Let us just mention that the sat-
isfiability problem has a very universal structure (an example of which was shown
above, in the polynomial reduction of the Hamiltonian cycle problem to satisfiability).
A clause is built as the logical OR (denoted by ∨) of some variables, or their negations.
A set of several clauses, to be satisfied simultaneously, is the logical AND (denoted by
∧) of the clauses. Therefore a satisfiability problem is written in general in the form
(a1∨a2∨ . . . )∧ (b1∨b2∨ . . . )∧ . . . , where the ai, bi are ‘literals’, i.e. any of the original
variables or their negations. This form is called a conjunctive normal form (CNF),
and it is easy to see that any logical statement between Boolean variables can be writ-
ten as a CNF. This universal decomposition gives an idea of why the satisfiability
problem plays a central role.

3.4.6 P=NP ?

When a NP-complete problem A is known, one can relatively easily find other NP-
complete problems: if there exists a polynomial reduction from A to another problem
B ∈ NP, then B is also NP-complete. In fact, whenever RA←P is a polynomial reduc-
tion from a problem P to A and RB←A is a polynomial reduction from A to B, then
RB←A ◦ RA←P is a polynomial reduction from P to B. Starting from satisfiability, it
has been possible to find, with this method, thousands of NP-complete problems. To
quote a few of them, among the problems we have encountered so far, Hamiltonian
circuit, TSP, and 3-satisfiability are NP-complete. Actually most of NP problems can
be classified either as being in P, or being NP-complete. The precise status of some
NP problems, like graph isomorphism, is still unknown.
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Fig. 3.4 Classification of some famous decision problems. If P 6= NP, the classes P and

NP -complete are disjoint. If it happened that P = NP , all the problems in NP, and in

particular all those mentioned here, would be solvable in polynomial time.

Exercise 3.5 Show that 3-satisfiability is NP-complete, by constructing a polynomial re-
duction from satisfiability. The idea is to transform all possible clauses into sets of 3-clauses,
using the following steps:

• A 2-clause x1 ∨ x2 can be written as two 3-clauses (x1 ∨ x2 ∨ y) ∧ (x1 ∨ x2 ∨ y) with one
extra variable y.

• Write a 1-clause with four 3-clauses and two extra variables.

• Show that a k-clause x1 ∨ x2 ∨ · · · ∨ xk with k ≥ 4 can be written with k − 3 auxiliary
variables as (x1 ∨ x2 ∨ y1)∧ (x3 ∨ y1 ∨ y2)∧ · · · ∧ (xk−2 ∨ yk−4 ∨ yk−3)∧ (xk−1 ∨ xk ∨ yk−3)

Finally, those problems which, not being in NP are at least as hard as NP-complete
problems, are usually called NP-hard. These includes both decision problems for
which a short certificate does not exist, and non-decision problems. For instance the
optimization and evaluation versions of TSP are NP-hard. However, in such cases, we
shall chose among the expressions ‘TSP is NP-complete’ or ‘TSP is NP-hard’ rather
freely.

One major open problem in the theory of computational complexity is whether
the classes P and NP are distinct or not. It might be that P=NP=NP-complete:
this would be the case if someone found a polynomial algorithm for one NP-complete
problem. This would imply that any problem in the broad NP-class could be solved
in polynomial time.

It is a widespread conjecture that there exists no polynomial algorithm for NP-
complete problems. Then the classes P and NP-complete would be disjoint. Moreover
it is known that, if P 6= NP, then there are NP problems which are neither in P nor
in NP-complete.
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3.4.7 Other complexity classes

Notice the fundamental asymmetry in the definition of the NP class: the existence of
a short certificate is requested only for the yes answers. To understand the meaning
of this asymmetry, consider the problem of unsatisfiability (which is the complement
of the satisfiability problem) formulated as: “given a set of clauses, is the problem
unsatisfiable?”. It is not clear if there exists a short certificate allowing to check a yes
answer: it is very difficult to prove that a problem cannot be satisfied without checking
an exponentially large number of possible configurations. So it is not at all obvious that
unsatisfiability is in NP. Problems which are complements of those in NP define the
class of co-NP problems, and it is not known whether NP=co-NP or not, although it is
widely believed that co-NP is different from NP. This consideration opens a Pandora
box with many other classes of complexities, but we shall immediately close it since it
would carry us too far.

3.5 Optimization and statistical physics

3.5.1 General relation

There exists a natural mapping from optimization to statistical physics. Consider an
optimization problem defined by a finite set X of allowed configurations, and a cost
function E defined on this set with values in R. While optimization consists in finding
the configuration C ∈ X with the smallest cost, one can introduce a probability
measure of the Boltzmann type on the space of configurations: For any β, each C is
assigned a probability

µβ(C) =
1

Z(β)
e−βE(C) ; Z(β) =

∑

C∈X

e−βE(C) . (3.1)

The positive parameter β plays the role of an inverse temperature. In the limit β →∞,
the probability distribution µβ concentrates on the configurations of minimum energy
(ground states in the statistical physics jargon). This is the relevant limit for opti-
mization problems. Notice that there exist many alternatives to the straightforward
generalization (3.1). In some problems it may be useful to use more than one in-
verse temperature parameters β. Some of these parameters can be used to ‘soften’
constraints. For instance in the TSP one might like to relax the constraint that a con-
figuration is a tour, by summing over all length N paths of the salesman, with an extra
cost each time the path does not make a full tour, associated with inverse temperature
β1. The length of the path is another cost, associated with inverse temperature β2.
The original problem is recovered when both β1 and β2 go to infinity.

In the statistical physics approach one generalizes the optimization problem to
study properties of the distribution µβ at finite β. In many cases it is useful to fol-
low µβ when β increases (for instance by monitoring the thermodynamic properties:
internal energy, entropy, the specific heat, . . . ). This may be particularly useful, both
for analytical and for algorithmic purpose, when the thermodynamic properties evolve
smoothly. An example of practical application is the simulated annealing method,
which actually samples the configuration space at larger and larger values of β until it



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

60 Introduction to combinatorial optimization

finds a ground state. It will be described in Chap. ??. As we will see, the occurrence
of phase transitions poses major challenges to this kind of approaches.

3.5.2 Spin glasses and maximum cuts

To give a concrete example, let us go back to the spin glass problem of Sec. 2.6. This
involves N Ising spins σ1, . . . , σN in {±1}, located on the vertices of a graph, and the
energy function is:

E(σ) = −
∑

(ij)

Jijσiσj , (3.2)

where the sum
∑

(ij) runs over all edges of the graph and the Jij variables are exchange
couplings which can be either positive or negative. Given the graph and the exchange
couplings, what is the ground state of the corresponding spin glass? This is a typical
optimization problem. In fact, it very well known in computer science in a slightly
different form.

Each spin configuration partitions the set of vertices into two complementary sub-
sets: V± = {i |σi = ±1}. Let us call γ(V+) the set of edges with one endpoint in V+,
the other in V−. The energy of the configuration can be written as:

E(σ) = −C + 2
∑

(ij)∈γ(V+)

Jij , (3.3)

where C =
∑

(ij) Jij . Finding the ground state of the spin glass is thus equivalent to

finding a partition of the vertices, V = V+∪V−, such that
∑

(ij)∈γ(V+) cij is maximum,

where cij ≡ −Jij . This problem is known as the maximum cut problem (MAX-CUT):
the set of edges γ(V+) is a cut, each cut is assigned a weight

∑
(ij)∈γ(V+) cij , and one

seeks the cut with maximal weight.
Standard results on max-cut immediately apply: In general this is an NP-hard

problem, but there are some categories of graphs for which it is polynomially solvable.
In particular the max-cut of a planar graph can be found in polynomial time, providing
an efficient method to obtain the ground state of a spin glass on a square lattice in two
dimensions. The three dimensional spin glass problem falls into the general NP-hard
class, but efficient ‘branch and bound’ methods, based on its max-cut formulation,
have been developed for this problem in recent years.

Another well known application of optimization to physics is the random field
Ising model, which is a system of Ising spins with ferromagnetic couplings (all Jij are
positive), but with a magnetic field hi which varies from site to site taking positive
and negative values. Its ground state can be found in polynomial time thanks to the
equivalence with the problem of finding a maximal flow in a graph.

3.6 Optimization and coding

Computational complexity issues are also crucial in all problems of information the-
ory. We will see it recurrently throughout book, but let us just give here some small
examples in order to fix ideas.
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Consider the error correcting code problem of Chapter 1. We have a code, which

maps an original message to a codeword x, which is a point in the N -dimensional
hypercube {0, 1}N . There are 2M codewords (with M < N), which we assume to be
a priori equiprobable. When the message is transmitted through a noisy channel, the
codeword x is corrupted to -say- a vector y with probability Q(y|x). The decoder maps
the received message y to one of the possible input codewords x′ = d(y).

As we saw, a measure of performance is the average block error probability:

Pav
B ≡

1

2M

∑

x

∑

y

Q(y|x) I(d(y) 6= x) (3.4)

A simple decoding algorithm would be the following: for each received message y, con-

sider all the 2M codewords, and determine the most likely one: d(y) = arg maxx∈CodeQ(y|x).
It is clear that this algorithm minimizes the average block error probability.

For a general code, there is no better way for maximizingQ(y|x) than going through
all codewords and computing their likelihood one by one. This takes a time of order
2M , which is definitely too large. Recall in fact that, to achieve reliable communication,
M and N have to be large (in data transmission application one may use N as large as
105). One might object that ‘decoding a general code’ is too a general problem. Just
for specifying a single instance we would need to specify all the codewords, which takes
N 2M bits. Therefore, the complexity of decoding could be a trivial consequence of the
fact that even reading the input takes a huge time. However, it can be proved that, also
for codes admitting a concise (polynomial in the blocklength) specification, decoding
is NP-hard. We will see some examples, linear codes, in the following chapters.

Notes

We have left aside most algorithmic issues in this chapter. A general approach for
designing efficient algorithms consists in finding a good ‘convex relaxation’ of the
problem. The idea is to enlarge the space of feasible solution in such a way that the
problem translates into minimizing a convex function, a task that can be performed
efficiently. A general introduction to combinatorial optimization, including all these
aspects, is provided by (Papadimitriou and Steiglitz, 1998). Convex optimization is
the topic of many textbooks, for instance (Boyd and Vandenberghe, 2004).

The MST algorithm described in Sec. 3.1 was found in (Prim, 1957).
A complete treatment of computational complexity theory can be found in (Garey

and Johnson, 1979), or in the more recent (Papadimitriou, 1994). The seminal theorem
by Cook, (Cook, 1971), was independently rediscovered by Levin in 1973. The reader
can find its proof in one of the above books.

Euler discussed the Könisberg’s 7 bridges problem in (Euler, 1736).
The TSP, which is simple to state, difficult to solve, and lends itself to nice figures

representations, has attracted lots of works. The interested reader can find many ref-
erences, pictures of TSP’s optimal tours with thousands of vertices, including tours
among the main cities in various countries, applets, etc.. on the web, starting from
instance from (Applegate, Bixby, Chvátal and Cook, ).

The book (Hartmann and Rieger, 2002) focuses on the use of optimization algo-
rithms for solving some problems in statistical physics. In particular it explains the
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determination of the ground state of a random field Ising model with a maximum flow
algorithm. A recent volume edited by these same authors (Hartmann and Rieger, 2004)
addresses several algorithmic issues connecting optimization and physics. Chapter 4
by Liers, Jünger, Reinelt and Rinaldi describes the branch-and-cut approach to the
maximum cut problem used for spin glass studies. The book (Hartmann and Weigt,
2005) contains an introduction to combinatorial optimization as a physics problem,
with particular emphasis on the vertex cover problem.

Standard computational problems from coding theory are reviewed in (Barg, 1998).
Some more recent issues are addressed by (Spielman, 1997). Finally, the first proof of
NP-completeness for a decoding problem was obtained by (Berlekamp, McEliecee and
van Tilborg, 1978).
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The Random Energy Model

The random energy model (REM) is probably the simplest statistical physics model
of a disordered system which exhibits a phase transition. It is not supposed to give
a realistic description of any physical system, but it provides an example on which
various concepts and methods can be studied in full detail. Moreover, due to its sim-
plicity, the same mathematical structure appears in a large number of contexts. This
is witnessed by the examples from information theory and combinatorial optimization
presented in the next two chapters. The model is defined in Sec. 5.1 and its thermo-
dynamic properties are studied in Sec. 5.2. The simple approach developed in these
section turns out to be useful in a large variety of problems. A more detailed, and more
involved, study of the low temperature phase is developed in Sec. 5.3. Section 5.4 pro-
vides an introduction to the so-called annealed approximation, which will be useful
in more complicated models. Finally, in Sec. 5.5 we consider a variation of the REM
that which is a cartoon for the structure of the set of solutions of random constraint
satisfaction problems.

5.1 Definition of the model

A statistical mechanics model is defined by a set of configurations and an energy
function defined on this space. In the REM there are M = 2N configurations (like
in a system of N Ising spins) to be denoted by indices i, j, · · · ∈ {1, . . . , 2N}. The
REM is a disordered model: the energy is not a deterministic function but rather a
stochastic process. A particular realization of such a process is usually called a sample
(or instance). In the REM, one makes the simplest possible choice for this process: the
energies {Ei} are i.i.d. random variables (the energy of a configuration is also called
an energy level). For definiteness we shall keep here to the case where they have
Gaussian distribution with zero mean and variance N/2, but other distributions could
be studied as well. The scaling with N of the distribution should always be chosen in
such a way that thermodynamic potentials are extensive. The pdf for the energy Ei
of the state i is given by

P (E) =
1√
πN

e−E
2/N , (5.1)

Given an instance of the REM, defined by the 2N real numbers {E1, E2, . . . , E2N },
one assigns to each configuration j a Boltzmann probability µβ(j) in the usual way:

µβ(j) =
1

Z
exp (−βEj) (5.2)
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where β = 1/T is the inverse of the temperature, and the normalization factor Z, the
partition function, equals:

Z =
2N∑

j=1

exp (−βEj) . (5.3)

Notice that Z depends upon the temperature β, the ‘sample size’ N , and the particular
realization of the energy levels E1, . . . , EM . We shall write Z = ZN (β) to emphasize
the dependency of the partition function upon N and β.

It is important not to be confused by the existence of two levels of probabilities
in the REM, as in all disordered systems. We are interested in the properties of a
probability distribution, the Boltzmann distribution (5.2), which is itself a random
object because the energy levels are random variables.

Physically, a particular realization of the energy function corresponds to a given
sample of some substance whose microscopic features cannot be controlled experimen-
tally. This is what happens, for instance, in a metallic alloy: only the proportions of
the various components can be controlled. The precise positions of the atoms of each
species are described as random variables. The expectation value with respect to the
sample realization will be denoted in the following by E(·). For a given sample, Boltz-
mann’s law (5.2) gives the probability of occupying the various possible configurations,
according to their energies. The average with respect to Boltzmann distribution will
be denoted by 〈 · 〉. In experiments one deals with a single (or a few) sample(s) of a
given disordered material. One could therefore be interested in computing the vari-
ous thermodynamic potential (free energy FN , internal energy UN , or entropy SN )
for this given sample. This is an extremely difficult task. However, in most cases, as
N → ∞, the probability distributions of intensive thermodynamic potentials concen-
trate around their expected values. Formally, for any tolerance θ > 0

lim
N→∞

P

[∣∣∣∣
XN

N
− E

(
XN

N

)∣∣∣∣ ≥ θ
]

= 0 (5.4)

where X is a thermodynamic potential (X = F, S, U, . . . ). In statistical phisics, the
quantity X is then said to be self-averaging (in probability theory, one says that
it concentrates). This essential property can be summarized plainly by saying that
almost all large samples “behave” in the same way. This is the reason why different
samples of alloys with the same chemical composition have the same thermodynamic
properties. Often the convergence is exponentially fast in N (this happens for instance
in the REM): this means that the expected value EXN provides a good description
of the system already at moderate sizes.

5.2 Thermodynamics of the REM

In this Section we compute the thermodynamic potentials of the REM in the ther-
modynamic limit N → ∞. Our strategy consists in estimating the microcanonical
entropy density, which has been introduced in Sec. 2.4. This knowledge is then used
for computing the partition function Z to leading exponential order at large N .



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

Thermodynamics of the REM 65
5.2.1 Direct evaluation of the entropy

Let us consider an interval of energies I = [Nε,N(ε + δ)], and call N (ε, ε + δ) the
number of configurations i such that Ei ∈ I. Each energy level Ei belongs to I
independently with probability:

PI =

√
N

π

∫ ε+δ

ε

e−Nx
2

dx . (5.5)

Therefore N (ε, ε+ δ) is a binomial random variable, and its expectation and variance
are given by:

EN (ε, ε+ δ) = 2N PI , VarN (ε, ε+ δ) = 2N PI [1− PI ] , (5.6)

Because of the appropriate scaling with N of the interval I, the probability PI depends
exponentially upon N . To exponential accuracy we thus have

EN (ε, ε+ δ)
.
= exp

{
N max
x∈[ε,ε+δ]

sa(x)

}
, (5.7)

VarN (ε, ε+ δ)

[EN (ε, ε+ δ)]2
.
= exp

{
−N max

x∈[ε,ε+δ]
sa(x)

}
(5.8)

where sa(x) ≡ log 2 − x2. Notice that sa(x) ≥ 0 if and only if x ∈ [−ε∗, ε∗], with
ε∗ =

√
log 2.

The intuitive content of these equalities is the following: When ε is outside the
interval [−ε∗, ε∗], the typical density of energy levels is exponentially small in N : for
a generic sample there is no configuration at energy Ei ≈ Nε. On the contrary, when
ε ∈]− ε∗, ε∗[, there is an exponentially large density of levels, and the fluctuations of
this density are very small. This result is illustrated by a small numerical experiment
in Fig. 5.1. We now give a more formal version of this statement.

Proposition 5.1 Define the entropy function

s(ε) =

{
sa(ε) = log 2− ε2 if |ε| ≤ ε∗,
−∞ if |ε| > ε∗.

(5.9)

Then, for any couple ε and δ, with probability one:

lim
N→∞

1

N
logN (ε, ε+ δ) = sup

x∈[ε,ε+δ]

s(x) . (5.10)

Proof: The proof makes a simple use of the two moments of the number of energy
levels in I, found in (5.7,5.8).

Let us first assume that the interval [ε, ε + δ] is disjoint from [−ε∗, ε∗]. Then
EN (ε, ε + δ)

.
= e−AN , with A = − supx∈[ε,ε+δ] sa(x) > 0. As N (ε, ε + δ) is an in-

teger, we have the simple inequality

P[N (ε, ε+ δ) > 0] ≤ EN (ε, ε+ δ)
.
= e−AN . (5.11)

In words, the probability of having an energy level in any fixed interval outside [−ε∗, ε∗]
is exponentially small in N . The inequality of the form (5.11) goes under the name of
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Fig. 5.1 Histogram of the energy levels for three samples of the random energy model with

increasing sizes: from left to right N = 10, 15 and 20. Here we plot N−1 logN (ε, ε+ δ) versus

ε, with δ = 0.05. The dashed curve gives the N → ∞ analytical prediction (5.9).

Markov inequality, and the general strategy is sometimes called the first moment
method.

Assume now that the intersection between [ε, ε+δ] and [−ε∗, ε∗] is a finite length in-
terval. In this case N (ε, ε+δ) is tightly concentrated around its expectation EN (ε, ε+
δ) as can be shown using Chebyshev inequality. For any fixed C > 0 one has

P

{∣∣∣∣
N (ε, ε+ δ)

EN (ε, ε+ δ)
− 1

∣∣∣∣ > C

}
≤ VarN (ε, ε+ δ)2

C2[EN (ε, ε+ δ)]2
.
= e−BN , (5.12)

with B = supx∈[ε,ε+δ] sa(x) > 0.
Finally, the statement (5.10) follows from the previous estimates through a straight-

foward application of the Borel-Cantelli Lemma. �

Exercise 5.1 (Large deviations.) Let Nout(δ) be the total number of configurations j such
that |Ej | > N(ε∗ + δ), with δ > 0. Use Markov inequality to show that the fraction of
samples in which there exist such configurations is exponentially small.

Besides being an interesting mathematical statement, Proposition 5.1 provides a
good quantitative estimate. As shown in Fig. 5.1, already at N = 20, the outcome of
a numerical experiment is quite close to the asymptotic prediction. Notice that, for
energies in the interval ] − ε∗, ε∗[, most of the discrepancy is due to the fact that we
dropped subexponential factors in EN (ε, ε + δ): This produces corrections of order
Θ(logN/N) to the asymptotic behavior (5.10). The contribution due to fluctuations
of N (ε, ε+ δ) around its average is instead exponentially small in N .

5.2.2 Thermodynamics and phase transition

From the previous result on the microcanonical entropy density, we now compute the

partition function ZN (β) =
∑2N

i=1 exp(−βEi). In particular, we are interested in inten-
sive thermodynamic potentials like the free-entropy density φ(β) = limN→∞[logZN (β)]/N .
We start with a quick (and loose) argument, using the general approach outlined in



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

Thermodynamics of the REM 67

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

ε

slope β

ε* ε1

Fig. 5.2 The ‘annealed’ entropy density sa(ε) = log 2 − ε2 of the REM as a function of

the energy density ε. The canonical entropy density s(β) is the ordinate of the point with

slope dsa/dε = β when this point lies within the interval [−ε∗, ε∗] (this is for instance the

case at ε = ε1 in the plot), and s(β) = 0 otherwise. This gives rise to a phase transition at

βc = 2
√

log 2.

Sec. 2.4. It amounts to discretizing the energy axis using some step δ, and counting
the energy levels in each interval with (5.10). Taking in the end the limit δ → 0 (after
the limit N →∞), one expects to get, to leading exponential order:

ZN (β)
.
=

∫ ε∗

−ε∗

exp [N (sa(ε)− βε)] dǫ . (5.13)

The rigorous formulation of the result can be obtained in analogy1 with the general
equivalence relation stated in Proposition 2.6. We find the free-entropy density:

φ(β) = max
ε∈[−ε∗,ε∗]

[sa(ε)− βε] , (5.14)

Notice that although every sample of the REM is a new statistical physics system,
with its own thermodynamic potentials, we have found that, with high probability, a
random sample has free-entropy (or free-energy) density arbitrarily close to (5.14). A
little more work shows that the internal energy and entropy density do concentrate as
well. More precisely, for any fixed tolerance θ > 0, we have |(1/N) logZN (β)−φ(β)| < θ
with probability approaching one as N →∞.

Let us now discuss the physical content of the result (5.14). The optimization
problem on the right-hand side can be solved through the geometrical construction
illustrated in Fig. 5.2. One has to find a tangent to the curve sa(ε) = log 2− ε2 with
slope β ≥ 0. Call εa(β) = −β/2 the abscissa of the tangent point. If εa(β) ∈ [−ε∗, ε∗],

1The task is however more difficult here, because the density of energy levels N (ε, ε + δ) is a
random function whose fluctuations must be controlled.
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Fig. 5.3 Thermodynamics of the REM: the free-energy density (full line), the energy density

(dashed line) and the entropy density (dotted line) are plotted versus temperature T = 1/β.

The phase transition takes place at Tc = 1/(2
√

log 2) ≈ 0.6005612.

then the max in Eq. (5.14) is realized in εa(β). In the other case εa(β) < −ε∗ (because
β ≥ 0) and the max is realized in −ε∗. Therefore:

Proposition 5.2 The free-energy density of the REM, f(β) = −φ(β)/β, is equal to:

f(β) =

{
− 1

4β − log 2/β if β ≤ βc ,
−√log 2 if β > βc ,

where βc = 2
√

log 2 . (5.15)

This shows that a phase transition (i.e. a non-analyticity of the free-energy density)
takes place at the inverse critical temperature βc = 1/Tc = 2

√
log 2. It is a second order

phase transition in the sense that the derivative of f(β) is continuous, but because
of the condensation phenomenon which we will discuss in Sec. 5.3 it is often called
a ‘random first order’ transition. The other thermodynamic potentials are obtained
through the usual formulas, cf. Sec. 2.2. They are plotted in Fig. 5.3.

The two temperature regimes -or ‘phases’- , β < βc and β > βc, have distinct
qualitative properties which are most easily characterized through the thermodynamic
potentials.

• In the high temperature phase β ≤ βc, the energy and entropy densities are:
u(β) = −β/2 and s(β) = log 2 − β2/4. Boltzmann measure is dominated by
configurations with energy Ei ≈ −Nβ/2. There is an exponentially large num-
ber of configurations having such an energy density (the microcanonical entropy
density s(ε) is strictly positive at ε = −β/2), and the Boltzmann measure is
roughly equidistributed among such configurations. In the infinite temperature
limit β → 0 it becomes uniform, and one finds as expected u(β) → 0 (because
nearly all configurations have an energy Ei/N close to 0) and s→ log 2.
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• In the low temperature phase β > βc, the thermodynamic potentials are constant:
u(β) = −ε∗ and s(β) = 0. The relevant configurations are the ones with the lowest
energy density, namely with Ei/N ≈ −ε∗. Boltzmann measure is dominated by a
relatively small set of configurations, which is not exponentially large in N (the
entropy density vanishes).

Exercise 5.2 The REM was originally motivated as a simple model of spin glass. One
can generalize it by introducing the effect of a magnetic field B. The 2N configura-
tions are divided in N + 1 groups. Each group is labelled by its ‘magnetization’ M ∈
{−N,−N + 2, . . . , N − 2, N}, and includes

„
N

(N +M)/2

«
configurations. Their ener-

gies {Ej} are independent Gaussian variables with variance
p
N/2 as in (5.1), and mean

EEj = −MB which depends upon the group j belongs to. Show that there exists a phase
transition line βc(B) in the plane β,B such that:

1

N
EM =


tanh [βB] when β ≤ βc(B) ,
tanh [βc(B)B] when β > βc(B) ,

(5.16)

and plot the magnetic susceptibility ∂M
∂B

˛̨
β

= 0 versus T = 1/β.

Exercise 5.3 Consider a generalization of the REM where the pdf of energies, instead of
being Gaussian, is P (E) ∝ exp

ˆ
−C|E|δ

˜
, where δ > 0. Show that, in order to have extensive

thermodynamic potentials, one should scale C as C = N1−δ bC (i.e. the thermodynamic limit

N → ∞ should be taken at fixed bC). Compute the critical temperature and the ground
state energy density. What is the qualitative difference between the cases δ > 1 and δ < 1?

5.3 The condensation phenomenon

In the low temperature phase a smaller-than-exponential set of configurations domi-
nates Boltzmann’s measure: we say that a condensation of the measure onto these
configurations takes place. This is a scenario which is typical of the appearance of
a glass phase, and we shall encounter it in several other problems, including for in-
stance satisfiability or colouring. It usually leads to many difficulties in finding the
relevant configurations. In order to characterize the condensation, one can compute a
participation ratio YN (β) defined from Boltzmann’s weights (5.2) as:

YN (β) ≡
2N∑

j=1

µβ(j)
2 =



∑

j

e−2βEj





∑

j

e−βEj



−2

. (5.17)

One can think of 1/YN (β) as giving some estimate of the ‘effective’ number of con-
figurations which contribute to the measure. If the measure were equidistributed on r
levels, one would have YN (β) = 1/r.



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

70 The Random Energy Model

The participation ratio can be expressed as YN (β) = ZN (2β)/ZN (β)2, where
ZN (β) is the partition function at inverse temperature β. The analysis in the pre-
vious Section showed that ZN (β)

.
= exp[N(log 2 + β2/4)] with very small fluctuations

when β < βc, while ZN (β)
.
= exp[Nβ

√
log 2] when β > βc. This indicates that YN (β) is

exponentially small in N for almost all samples in the high temperature phase β < βc,
in agreement with the fact that the measure is not condensed at high temperatures.
In the low temperature phase, on the contrary, we shall see that YN (β) is finite and
fluctuates from sample to sample.

The computation of EY (we drop hereafter its arguments N and β) in the low
temperature phase is slightly involved. It requires to control of the energy levels Ei
with Ei/N ≈ −ε∗. We give here a sketch of the computation, and leave the details to
the reader as an exercise. Using the integral representation 1/Z2 =

∫∞
0
t exp(−tZ) d,

one gets (denoting M = 2N ):

EY = M E

∫ ∞

0

t exp [−2βE1] exp

[
−t

M∑

i=1

e−βEi

]
dt = (5.18)

= M

∫ ∞

0

t a(t) [1− b(t)]M−1 dt , (5.19)

where

a(t) ≡
∫

exp
[
−2βE − te−βE

]
dP (E) , (5.20)

b(t) ≡
∫

[1− exp(−te−βE)] dP (E) , (5.21)

and P (E) is the Gaussian distribution (5.1). For large N the leading contributions
to EY come from the regions where E is close to −Nε0 and log t is close to −Nβε0,
where

ε0 = ε∗ −
1

2ε∗
log
√
πN (5.22)

is fixed by the condition 2NP (−Nε0) = 1. It can be thought as a refined estimate for
the energy density of the lowest energy configuration.

We thus change variables from E, t to u, θ through E = −Nε0 + u and t =
θ exp(−Nβε0), and we study the regime where u and θ are finite as N → ∞. In
this regime, the function P (E) can be replaced by 2−Neβcu. One gets:

a(t) ≃ 1

M
e2Nβε0

∫ +∞

−∞

du eβcu−2βu−ze−βu

=
e2Nβε0

Mβ
zβc/β−2 Γ(2− βc/β) , (5.23)

b(t) ≃ 1

M

∫ +∞

−∞

du eβcu [1− exp(−ze−βu)] = − 1

Mβ
zβc/β Γ(−βc/β) , (5.24)

where Γ(x) is Euler’s Gamma function. Notice that the substitution P (E) ≃ 2−Neβcu

is harmless because the resulting integrals (5.23) and (5.24) converge at large u.
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At large N , the expression [1−b(t)]M−1 in (5.19) can be approximated by e−Mb(t),

and one finally obtains:

EY = M

∫ ∞

0

dt t a(t) e−Mb(t) = (5.25)

=
1

β
Γ

(
2− βc

β

)∫ ∞

0

dz zβc/β−1 exp

[
1

β
Γ

(
−βc

β

)
zβc/β

]
= 1− βc/β ,

where we used the approximate expressions (5.23), (5.24) and equalities are understood
to hold up to corrections which vanish as N →∞.

We obtain therefore the following:

Proposition 5.3 In the REM, when N →∞, the expectation value of the participa-
tion ratio is:

EY =

{
0 when T > Tc ,
1− T/Tc when T ≤ Tc .

(5.26)

This gives a quantitative measure of the degree of condensation of Boltzmann’s mea-
sure: when T decreases, the condensation starts at the phase transition temperature Tc.
At lower temperatures the participation ratio Y increases, meaning that the measure
concentrates onto fewer and fewer configurations, until at T = 0 only one configuration
contributes and Y = 1.

With the participation ratio we have a first qualitative and quantitative character-
ization of the low temperature phase. Actually the energies of the relevant configura-
tions in this phase have many interesting probabilistic properties, to which we shall
return in Chapter ??.

5.4 A comment on quenched and annealed averages

In the previous section we have found that the self-averaging property holds in the
REM, and this result allowed us to discuss the thermodynamics of a generic sample.

Self-averaging of the thermodynamic potentials is a very frequent property, but in
more complicated systems it is often difficult to compute their expectation. We discuss
here an approximation which is frequently used in such cases, the so-called annealed
average. When the free-energy density is self averaging, the value of fN is roughly
the same for almost all samples and can be estimated by its expectation, called the
quenched average fN,q:

fN,q = E fN = − T
N

E logZN (5.27)

This is the quantity that we computed in (5.15). In general it is hard to compute
the expectation of the logarithm of the partition function. A much easier task is to
compute the annealed average:

fN,a = − T
N

log(EZN ) (5.28)
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Let us compute it for the REM. Starting from the partition function (5.3), we find:

EZN = E

2N∑

i=1

e−βEi = 2NE e−βE = 2NeNβ
2/4 , (5.29)

yielding fN,a(β) = −β/4− log 2/β.
Let us compare this with the correct free-energy density found in (5.15). Jensen’s

inequality (1.6) shows that the annealed free-energy density fa(β) is always smaller
than the correct one (remember that the logarithm is a concave function). In the REM,
and a few other particularly simple problems, the annealed average gives the correct
result in the high temperature phase T > Tc, but fails to identify the phase transition,
and predicts wrongly a free-energy density in the low temperature phase which is the
analytic prolongation of the one at T > Tc. In particular, it yields a negative entropy

density sa(β) = log 2− β2/4 for T < Tc (see Fig. 5.2).
A negative entropy is impossible in a system with finite configuration space, as

can be seen from the definition of entropy. It thus signals a failure, and the reason is
easily understood. For a given sample with free-energy density f , the partition function
behaves as ZN = exp(−βNfN ). Self-averaging means that fN has small sample-to-
sample fluctuations. However these fluctuations exist and are amplified in the partition
function because of the factor N in the exponent. This implies that the annealed
average of the partition function can be dominated by some very rare samples (those
with an anomalously low value of fN ). Consider for instance the low temperature
limit. We already know that in almost all samples the configuration with the lowest
energy density is found at Ei ≈ −Nε∗. However, there exist exceptional samples
where one configuration has a smaller energy, Ei = −Nε, ε > ε∗. These samples are
exponentially rare (they occur with probability

.
= 2Ne−Nε

2

), they are irrelevant as far
as the quenched average is concerned, but they dominate the annealed average.

Let us add a short semantic note. The terms ‘quenched’ and ‘annealed’ originate in
the thermal processing of materials used for instance in metallurgy of alloys: a quench
corresponds to preparing a sample by bringing it suddenly from high to low tempera-
tures. During a quench, atoms do not have time to change position (apart from some
small vibrations). A given sample is formed by atoms at some random positions. On
the contrary in an annealing process one gradually cools down the alloy, and the vari-
ous atoms will find favorable positions. In the REM, the energy levels Ei are quenched:
for each given sample, they take certain fixed values (like the positions of atoms in a
quenched alloy). In the annealed approximation, one treats the configurations i and
the energies Ei on the same footing. One says that the Ei variables are thermalized
(like the positions of atoms in an annealed alloy).

In general, the annealed average can be used to find a lower bound on the free-
energy in any system with finite configuration space. Useful results can be obtained
for instance using the two simple relations, valid for all temperatures T = 1/β and
sizes N :

fN,q(T ) ≥ fN,a(T ) ;
dfN,q(T )

dT
≤ 0 . (5.30)
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The first one follows from Jensen as mentioned above, while the second can be ob-
tained from the positivity of canonical entropy, cf. Eq. (2.22), after averaging over the
quenched disorder.

In particular, if one is interested in optimization problems (i.e. in the limit of
vanishing temperature), the annealed average provides the general bound:

Proposition 5.4 The ground state energy density

uN (T = 0) ≡ 1

N
E

[
min
x∈XN

E(x)

]
. (5.31)

satisfies the bound uN (0) ≥ maxT∈[0,∞] fN,a(T )

Proof: Consider the annealed free-energy density fN,a(T ) as a function of the tem-
perature T = 1/β. For any given sample, the free-energy is a concave function of T
because of the general relation (2.23). It is easy to show that the same property holds
for the annealed average. Let T∗ be the temperature at which fN,a(T ) achieves its
maximum, and f∗N,a be its maximum value. If T∗ = 0, then uN (0) = fN,q(0) ≥ f∗N,a.
It T∗ > 0, using the two inequalities (5.30), one gets:

uN (0) = fN,q(0) ≥ fN,q(T∗) ≥ fa(T∗) . (5.32)

�

In the REM, this result immediately implies that u(0) ≥ maxβ [−β/4− log 2/β] =
−√log 2, which is actually a tight bound.

5.5 The random subcube model

In the spirit of the REM, it is possible to construct a toy model for the set of solutions
of a random constraint satisfaction problem. The random subcube model is defined
by three parameters N,α, p. It has 2N configurations: the vertices x = (x1, · · · , xN )
of the unit hypercube {0, 1}N . An instance of the model is defined by a subset S of
the hypercube, the ‘set of solutions.’ Given an instance, the analogous of Boltzmann’s
measure is defined as the uniform distribution µ(x) over S.

The solution space S is the union of M = ⌊2(1−α)N⌋ random subcubes which are
i.i.d. subsets. Each subcube Cr, r ∈ {1, · · · ,M} is generated through the following
procedure:

1. Generate the vector t(r) = (t1(r), t2(r), . . . , tN (r)), with independent entries

ti(r) =





0 with probability (1− p)/2 ,
1 with probability (1− p)/2 ,
∗ with probability p.

(5.33)

2. Given the values of {ti(r)}, Cr is a subcube constructed as follows. For all i’s such
that ti(r) is 0 or 1, fix xi = ti(r). Such variables are said to be ‘frozen’ for the
subcube Cr. For all other i’s, xi can be 0 or 1. These variables are said to be ‘free’.

A configuration x may belong to several subcubes. Whenever it belongs to at least
one subcube, it is in S.
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To summarize, α < 1 fixes the number of subcubes, and p ∈ [0, 1] fixes their size.
It can be studied using exactly the same methods as the REM. Here we shall just
describe the main results, omitting all proofs. It is a good exercise to work out the
details and prove the various assertions.

Let us denote by σr the entropy density of the r-th cluster in bits: σr = (1/N) log2 |Cr|.
It is clear that σr coincides with the fraction of ∗’s in the vector t(r). In the large N
limit, the number of clusters N (σ) with entropy density σ obeys a large deviation
principle:

N (σ)
.
= 2NΣ(σ) . (5.34)

The function Σ(σ) is given as follows. LetD(σ||p) denote the Kullback-Leibler distance
between a Bernoulli σ and a Bernoulli p random variable. As we saw in Section 1.2,
this is given by

D(σ||p) = σ log2

σ

p
+ (1− σ) log2

1− σ
1− p . (5.35)

and define [σ1(p, α), σ2(p, α)] as the interval in which D(σ||p) ≤ 1− α. Then:

Σ(σ) =

{
1− α−D(σ||p) when σ ∈ [σ1(p, α), σ2(p, α)] ,
−∞ otherwise.

(5.36)

We can now derive the phase diagram (see Fig. 5.4). Denote by s the total en-
tropy density of the solution space, s = (1/N) log2 |S|. Consider a configuration x.
The expected number of clusters to which it belongs is 2N(1−α)( 1+p

2 )N . Therefore, if
α < αd ≡ log2(1 + p), the solution space contains all but a vanishing fraction of the
configurations, with high probability: s = log 2. On the other hand, if α > αd, the
probability that a configuration in S belongs to at least two distinct clusters is very
small. In this regime s = maxσ(Σ(σ)+σ). As in the REM, there are two cases: (i) The
maximum of Σ(σ) + σ is achieved for σ = σ∗(p, α) ∈]s1(p, α), s2(p, α)[. This happens
when α < αc(p) ≡ log2(1+p)+(1−p)/(1+p). In this case s = (1−α) log 2+log(1+p).
(ii) The maximum of Σ(σ) + σ is obtained for σ = σ2(p, α). In this case s = σ2(p, α).

Altogether we found three phases:

• For α < αd, subcubes overlap and one big cluster contains most configurations:
stot = 1

• For αd < α < αc, the solution space S is splits into 2N(1−α) non overlapping clus-
ters of configurations (every subcube is a cluster of solution, separated from the
others). Most configurations of S are in the eNΣ(s∗) clusters which have entropy
density close to s∗(p, α). Notice that the majority of clusters have entropy density
1− p < s∗. There is a tension between the number of clusters and their size (i.e.
their internal entropy). The result is that the less numerous, but larger, clusters
with entropy density s∗ dominate the uniform measure.

• For α > αc, the solution space S is still partitioned into 2N(1−α) non overlapping
clusters of configurations. However most solutions are in clusters with entropy
density close to s2(p, α). The number of such clusters is not exponentially large.
In fact the uniform measure over S shows a condensation phenomenon, which
is completely analogous to the one of the REM. One can define a participation
ratio Y =

∑
r µ(r)2, where µ(r) is the probability that a configuration of S
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Fig. 5.4 Left: the function Σ(σ) of the random subcubes model, for p = 0.6 and

α = 0.8 ∈]αd, αc[. The maximum of the curve gives the total number of clusters Σmax.

A ‘typical’ random solution x ∈ S belongs to one of the eNΣ(σ∗) clusters with entropy density

σ∗, with Σ′(σ∗) = −1. As α increases above αc, random solutions condense in a few clusters

with entropy density s2. Right: thermodynamic quantities plotted versus α for p = 0.6: total

entropy s, total number of clusters Σmax, and number of clusters where typical configurations

are found Σ∗.

chosen uniformly at random belongs to cluster r, µ(r) = eNσr/
∑
r′ e

Nσr′ . This
participation ratio is finite, and equal to 1−m, where m is the slope m = −dΣ

dσ ,
evaluated at s2(p, α).

Notes

The REM was invented in (Derrida, 1980), as an extreme case of some spin glass sys-
tem. Here we have followed his original analysis which makes use of the microcanonical
entropy. More detailed computations can be found in (Derrida, 1981) as well, including
the solution to Exercise 2.

The condensation formula (5.3) appears first in (Gross and Mézard, 1984) as an
application of replica computations which we shall discuss in Chapter ??. The direct
estimate of the participation ratio presented here and its fluctuations were developed
in (Mézard, Parisi and Virasoro, 1985) and (Derrida and Toulouse, 1985). We shall
return to the properties of the fascinating condensed phase in Chapter ??.

Exercise 3 shows a phase transition which goes from second order for δ > 1 to first
order when δ < 1. Its solution can be found in (Bouchaud and Mézard, 1997).

The random subcube model was introduced by (Achlioptas, 2007) and studied
in detail in (Mora and Zdeborová, 2007). We refer to this paper for the derivations
omitted from Sec. 5.5.

As a final remark, let us notice that in most of the physics literature, authors
don’t explicitely write down all the rigorous mathematical steps leading for instance
to Eq. (5.13), preferring a more synthetic presentation which focuses on the basic
ideas. In more complicated problems, it may be very difficult to fill the corresponding
mathematical gaps. In many of the models studied in this book, it is still beyond the
range of rigorous techniques. The recent book by Talagrand (Talagrand, 2003) adopts
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a fully rigorous point of view, and it starts with a presentation of the REM which
nicely complements the one given here and in Ch. ??.
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Random Code Ensemble

As already explained in Sec. 1.6, one of the basic problem of information theory consists
in communicating reliably through a noisy communication channel. Error correcting
codes achieve this task by systematically introducing some form of redundancy in the
message to be transmitted. One of the major breakthrough accomplished by Claude
Shannon was to understand the importance of code ensembles. He realized that it is
much easier to construct ensembles of codes which have good properties with high
probability, rather than exhibit explicit examples achieving the same performances. In
a nutshell: ‘stochastic’ design is much easier than ‘deterministic’ design.

At the same time he defined and analyzed the simplest of such ensembles, which
has been named thereafter the random code ensemble (or, sometimes, Shannon ensem-
ble). Despite its great simplicity, the random code ensemble (RCE) has very interesting
properties, and in particular it achieves optimal error correcting performances. It pro-
vides therefore a proof of the ‘direct’ part of the channel coding theorem: it is possible
to communicate with vanishing error probability as long as the communication rate is
smaller than the channel capacity. Furthermore, it is the prototype of a code based on
a random construction. In the following Chapters we shall explore several examples of
this approach, and the random code ensemble will serve as a reference.

We introduce the idea of code ensembles and define the RCE in 6.1. Some properties
of this ensemble are described in Sec. 6.2, while its performances over the BSC are
worked out in Sec. 6.3. We generalize these results to a general discrete memoryless
channel in Sec. 6.4. Finally, in Sec. 6.5 we show that the RCE is optimal by a simple
sphere-packing argument.

6.1 Code ensembles

An error correcting code is defined as a couple of encoding and decoding maps. The
encoding map is applied to the information sequence to get an encoded message which
is transmitted through the channel. The decoding map is applied to the (noisy) channel
output. For the sake of simplicity, we shall assume throughout this Chapter that the
message to be encoded is given as a sequence of M bits and that encoding produces
a redundant sequence of N > M bits. The possible codewords (i.e. the 2M points
in the space {0, 1}N which are all the possible outputs of the encoding map) form
the codebook CN . On the other hand, we denote by Y the output alphabet of the
communication channel. We use the notations

x : {0, 1}M → {0, 1}N encoding map , (6.1)

xd : YN → {0, 1}N decoding map . (6.2)
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Notice that the definition of the decoding map is slightly different from the one given in
Sec. 1.6. Here we consider only the difficult part of the decoding procedure, namely how
to reconstruct from the received message the codeword which was sent. To complete
the decoding as defined in Sec. 1.6, one should get back the original message knowing
the codeword, but this is supposed to be an easier task (encoding is assumed to be
injective).

The customary recipe for designing a code ensemble is the following: (i) Define
a subset of the space of encoding maps (6.1); (ii) Endow this set with a probability
distribution; (iii) Finally, for each encoding map in the ensemble, define the associated
decoding map. In practice, this last step is accomplished by declaring that one among
a few general ‘decoding strategies’ is adopted. We shall introduce a couple of such
strategies below.

Our first example is the random code ensemble (RCE). Notice that there

exist 2N2M

possible encoding maps of the type (6.1): one must specify N bits for
each of the 2M codewords. In the RCE, any of these encoding maps is picked with
uniform probability. The code is therefore constructed as follows. For each of the
possible information messages m ∈ {0, 1}M , we obtain the corresponding codeword

x(m) = (x
(m)
1 , x

(m)
2 , . . . , x

(m)
N ) by throwing N times an unbiased coin: the i-th outcome

is assigned to the i-th coordinate x
(m)
i .

Exercise 6.1 Notice that, with this definition the code is not necessarily injective: there
could be two information messages m1 6= m2 with the same codeword: x(m1) = x(m2).
This is an annoying property for an error correcting code: each time that we send either of
the messages m1 or m2, the receiver will not be able to distinguish between them, even in
the absence of noise. Happily enough these unfortunate coincidences occur rarely, i.e. their
number is much smaller than the total number of codewords 2M . What is the expected
number of couples m1, m2 such that x(m1) = x(m2)? What is the probability that all the
codewords are distinct?

Let us now turn to the definition of the decoding map. We shall introduce here
two among the most important decoding schemes: word MAP (MAP stands here for
maximum a posteriori probability) and symbol MAP decoding. Both schemes can be
applied to any code. In order to define them, it is useful to introduce the probability
distribution P (x|y) for x to be the channel input conditional to the received message
y. For a memoryless channel with transition probability Q(y|x), this probability has
an explicit expression as a consequence of Bayes rule:

P(x|y) =
1

Z(y)

N∏

i=1

Q(yi|xi) P(x) . (6.3)

Here Z(y) is fixed by the normalization condition
∑
x P(x|y) = 1, and P(x) is the a

priori probability for x to be the transmitted message. Throughout this book, we shall
assume that the transmitter chooses the codeword to be transmitted with uniform
probability. Therefore P(x) = 1/2M if x ∈ CN and P(x) = 0 otherwise. In formulas:
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P(x) =

1

|CN |
I(x ∈ CN ) . (6.4)

Indeed it is not hard do realize that Z(y) is the probability of observing y when
a random codeword is transmitted. Hereafter we shall use µy( · ) to denote the a
posteriori distribution (6.3) and µ0( · ) for the a priori one (6.4). We can thus rewrite
(6.3) as

µy(x) =
1

Z(y)

N∏

i=1

Q(yi|xi)µ0(x) . (6.5)

It is also useful to define the marginal distribution µ
(i)
y (xi) = P(xi|y) of the i-th bit

of the transmitted message conditional to the output message. This is obtained from
the distribution (6.5) by marginalizing over all the bits xj with j 6= i:

µ(i)
y (xi) =

∑

x\i

µy(x) , (6.6)

where we introduced the shorthand x\i ≡ {xj : j 6= i}. Word MAP decoding outputs
the most probable transmitted codeword, i.e. it maximizes the distribution (6.5)

xw(y) = arg max
x

µy(x) . (6.7)

We do not specify what to do in case of ties (i.e. if the maximum is degenerate), since
this is irrelevant for all the coding problems that we shall consider. The scrupulous
reader can chose her own convention in such cases.

A strongly related decoding strategy is maximum-likelihood decoding. In this
case one maximizes Q(y|x) over x ∈ CN . This coincides with word MAP decoding
whenever the a priori distribution over the transmitted codeword P(x) = µ0(x) is
taken to be uniform as in Eq. (6.4). Hereafter we will therefore blur the distinction
between these two strategies.

Symbol (or bit) MAP decoding outputs the sequence of most probable trans-
mitted bits, i.e. it maximizes the marginal distribution (6.6):

xb(y) =

(
arg max

x1

µ(1)
y (x1) , . . . , arg max

xN

µ(N)
y (xN )

)
. (6.8)

Exercise 6.2 Consider a code of block-length N = 3, and codebook size |C| = 4, with

codewords x(1) = 001, x(1) = 101, x(1) = 110, x(1) = 111. What is the code rate? This
code is used to communicate over a binary symmetric channel (BSC) with flip probability
p < 0.5. Suppose that the channel output is y = 000. Show that the word MAP decoding
outputs the codeword 001. Now apply symbol MAP decoding to decode the first bit x1:
Show that the result coincides with the one of word MAP decoding only when p is small
enough.
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It is important to notice that each of the above decoding schemes is optimal with
respect a different criterion. Word MAP decoding minimizes the average block error
probability PB defined in Sec. 1.6.2. This is the probability, with respect to the channel
distribution Q(y|x), that the decoded codeword xd(y) is different from the transmitted
one, averaged over the transmitted codeword:

PB ≡
1

|C|
∑

x∈C

P[xd(y) 6= x] . (6.9)

Bit MAP decoding minimizes the bit error probability, or bit error rate (BER)
Pb. This is the fraction of incorrect bits, averaged over the transmitted codeword:

Pb ≡
1

|C|
∑

x∈C

1

N

N∑

i=1

P[xd
i (y) 6= xi] . (6.10)

Exercise 6.3 Show that word MAP and symbol MAP decoding are indeed optimal with
respect to the above criteria.

6.2 Geometry of the Random Code Ensemble

We begin our study of the RCE by first working out some of its geometrical properties.
A code from this ensemble is defined by the codebook, a set CN of 2M points (all the
codewords) in the Hamming space {0, 1}N . Each of these points is drawn with
uniform probability over the Hamming space. The simplest question one may ask
about CN is the following. Suppose you sit on one of the codewords and look around
you. How many other codewords are there at a given distance? We will use here the
Hamming distance: the distance of two points x, y ∈ {0, 1}N is the number of
coordinates in which they differ.

This question is addressed through the distance enumerator Nx(0)(d) with re-

spect to a codeword x(0) ∈ CN . This is defined as the number of codewords in x ∈ CN
whose Hamming distance from x(0) is equal to d: d(x, x(0)) = d.

We shall now compute the typical properties of the distance enumerator for a
random code. The simplest quantity to look at is the average distance enumerator
ENx(0)(d), the average being taken over the code ensemble. In general one should

further specify which one of the codewords is x(0). Since in the RCE all codewords
are drawn independently, and each one with uniform probability over the Hamming
space, such a specification is irrelevant and we can in fact fix x(0) to be the all zeros
codeword, x(0) = 000 · · · 00. Therefore we are asking the following question: take
2M − 1 point at random with uniform probability in the Hamming space {0, 1}N ;
what is the average number of points at distance d form the 00 · · · 0 corner? This
is simply the number of points (2M − 1), times the fraction of the Hamming space
‘volume’ at a distance d from 000 · · · 0 (2−N

(
N
d

)
):

ENx(0)(d) = (2M − 1) 2−N
(
N

d

)
.
= 2N [R−1+H2(δ)] . (6.11)
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Fig. 6.1 Growth rate of the distance enumerator for the random code ensemble with rate

R = 1/2 as a function of the Hamming distance d = Nδ.

In the second expression we introduced the fractional distance δ ≡ d/N and the rate
R ≡ M/N , and considered the N → ∞ asymptotics with these two quantities kept
fixed. In Figure 6.1 we plot the function R− 1 +H2(δ) (which is sometimes called the
growth rate of the distance enumerator). For δ small enough, δ < δGV , the growth
rate is negative: the average number of codewords at small distance from x(0) vanishes
exponentially with N . By Markov inequality, the probability of having any codeword
at all at such a short distance vanishes as N → ∞. The distance δGV(R), called the
Gilbert Varshamov distance, is the smallest root of R−1+H2(δ) = 0. For instance
we have δGV(1/2) ≈ 0.110278644.

Above the Gilbert Varshamov distance, δ > δGV, the average number of codewords
is exponentially large, with the maximum occurring at δ = 1/2: ENx(0)(N/2)

.
= 2NR =

2M . It is easy to show that the distance enumerator Nx(0)(d) is sharply concentrated
around its average in this whole regime δGV < δ < 1 − δGV. This is done using
arguments similar to those developed in Sec.5.2 for the random energy model (REM
configurations become codewords in the present context and the role of energy is
played by Hamming distance; finally, the Gaussian distribution of the energy levels
is replaced here by the binomial distribution). A pictorial interpretation of the above
result is shown in Fig. 6.2 (notice that it is often misleading to interpret phenomena
occurring in spaces with a large number of dimensions using finite dimensional images:
such images must be handled with care!).
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δGV

codewords

x (0)

Fig. 6.2 A pictorial view of a typical code from the random code ensemble. The codewords

are random points in the Hamming space. If we pick a codeword at random from the code

and consider a ball of radius Nδ around it, the ball will not contain any other codeword as

long as δ < δGV(R), it will contain exponentially many codewords when δ > δGV(R)

Exercise 6.4 The random code ensemble can be easily generalized to other (non bi-
nary) alphabets. Consider for instance a q-ary alphabet, i.e. an alphabet with letters
{0, 1, 2, . . . , q− 1} ≡ A. A code CN is constructed by taking 2M codewords with uni-
form probability in AN . We can define the distance between any two codewords dq(x, y) as
the number of positions in which the sequence x, y differ. Show that the average distance
enumerator is now

ENx(0)(d)
.
= 2N [R−log2 q+δ log2(q−1)+H2(δ)] , (6.12)

with δ ≡ d/N and R ≡M/N . The maximum of the above function is no longer at δ = 1/2.
How can we explain this phenomenon in simple terms?

6.3 Communicating over the Binary Symmetric Channel

We shall now analyze the performances of the RCE when used for communicating over
the binary symmetric channel (BSC) already defined in Fig. 1.4. We start by consid-
ering a word MAP (or, equivalently, maximum likelihood) decoder, and we analyze
the slightly more complicated symbol MAP decoder afterwards. Finally, we introduce
another decoding strategy inspired by the statistical physics analogy, that generalizes
the word MAP and symbol MAP decoding.

6.3.1 Word MAP decoding

For a BSC, both the channel input x and output y are sequences of bits of length N .
The probability for the codeword x to be the channel input conditional to the output



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

Communicating over the Binary Symmetric Channel 83
codewords

x y(0)

codewords

x y

x

(0)

(1)

Fig. 6.3 A pictorial view of word MAP decoding for the BSC. A codeword x(0) is chosen and

transmitted through a noisy channel. The channel output is y. If the distance between x(0)

and y is small enough (left frame), the transmitted message can be safely reconstructed by

looking for the closest codeword to y. In the opposite case (right frame), the closest codeword

x1 does not coincide with the transmitted one.

y, defined in Eqs. (6.5) and (6.4), depends uniquely on the Hamming distance d(x, y)
between these two vectors. Denoting by p the channel flip probability, we have

µy(x) =
1

Z ′(y)
pd(x,y)(1− p)N−d(x,y) I(x ∈ CN ) , (6.13)

Z ′(y) being a normalization constant which depends uniquely upon y (up to a factor,
this coincides with the normalization Z(y) in Eq. (6.5)). Without loss of generality,
we can assume p < 1/2. Therefore word MAP decoding, which prescribes to maximize
µy(x) with respect to x, outputs the codeword which is the closest to the channel
output.

We have obtained a purely geometrical formulation of the original communication
problem. A random set of points CN is drawn in the Hamming space {0, 1}N and
one of them (let us call it x(0)) is chosen for communicating. The noise perturbs this
vector yielding a new point y. Decoding consists in finding the closest to y among all

the points in CN and fails every time this is not x(0). The block error probability is
simply the probability for such an event to occur. This formulation is illustrated in
Fig. 6.3.

This description should make immediately clear that the block error probability
vanishes (in the N → ∞ limit) as soon as p is below some finite threshold. In the
previous Section we saw that, with high probability, the closest codeword x′ ∈ CN\x(0)

to x(0) lies at a distance d(x′, x(0)) ≃ NδGV(R). On the other hand y is obtained from

x(0) by flipping each bit independently with probability p, therefore d(y, x(0)) ≃ Np

with high probability. By the triangle inequality x(0) is surely the closest codeword
to y (and therefore word MAP decoding is successful) if d(x(0), y) < d(x(0), x′)/2.
If p < δGV(R)/2, this happens with probability approaching one as N → ∞, and
therefore the block error probability vanishes.
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Fig. 6.4 Logarithm of the distance enumerator bNy(d) (counting the number of codewords at

a distance d = Nδ from the received message) divided by the block-length N . Here the rate

is R = 1/2. We also show the distance of the transmitted codeword for two different noise

levels: p = 0.03 < δGV(1/2) ≈ 0.110278644 (left) and p = 0.3 > δGV(R) (right). The tangent

lines with slope 2B = log[(1 − p)/p] determine which codewords dominate the symbol MAP

decoder.

However the above argument overestimates the effect of noise. Although about
NδGV(R)/2 incorrect bits may cause an unsuccessful decoding, they must occur in the
appropriate positions for y to be closer to x′ than to x(0). If they occur at uniformly
random positions (as it happens in the BSC) they will be probably harmless. The
difference between the two situations is most significant in large-dimensional spaces,
as shown by the analysis provided below.

The distance between x(0) and y is the sum of N i.i.d. Bernoulli variables of pa-
rameter p (each bit gets flipped with probability p). By the central limit theorem,
N(p − ε) < d(x(0), y) < N(p + ε) with probability approaching one in the N → ∞
limit, for any ε > 0. As for the remaining 2M − 1 codewords, they are completely un-

correlated with x(0) and, therefore, with y: {y, x(1), · · · , x(2M−1)} are 2M i.i.d. random

points drawn from the uniform distribution over {0, 1}N . The analysis of the previous
section shows that with probability approaching one as N →∞, none of the codewords

{x(1), · · · , x(2M−1)} lies within a ball of radius Nδ centered on y, when δ < δGV(R).
In the opposite case, if δ > δGV(R), there is an exponential (in N) number of these
codewords within a ball of radius Nδ.

The performance of the RCE is easily deduced (see Fig. 6.4) : If p < δGV(R), the
transmitted codeword x(0) lies at a shorter distance than all the other ones from the
received message y: decoding is successful. At a larger noise level, p > δGV(R) there is
an exponential number of codewords closer to y than the transmitted one: decoding is
unsuccessful. Note that the condition p < δGV(R) can be rewritten as R < CBSC(p),
where CBSC(p) = 1−H2(p) is the capacity of a BSC with flip probability p.
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6.3.2 Symbol MAP decoding

In symbol MAP decoding, the i-th bit is decoded by first computing the marginal
P (i)(xi|y) and then maximizing it with respect to xi. Using Eq. (6.13) we get

µ(i)
y (xi) =

∑

x\i

µy(x) =
1

Z

∑

x\i

exp{−2B d(x, y)} , (6.14)

where we introduced the parameter

B ≡ 1

2
log

(
1− p
p

)
, (6.15)

and the normalization constant

Z ≡
∑

x∈CN

exp{−2B d(x, y)} . (6.16)

Equation (6.14) shows that the marginal distribution µ
(i)
y (xi) sums contributions from

all the codewords, not only from the one closest to y. This makes the analysis of symbol
MAP decoding slightly more involved than the word MAP decoding case.

Let us start by estimating the normalization constant Z. It is convenient to separate
the contribution coming from the transmitted codeword x(0) from the one of the

incorrect codewords x(1), . . . , x(2M−1) :

Z = e−2Bd(x(0),y) +

N∑

d=0

N̂y(d) e−2Bd ≡ Zcorr + Zerr , (6.17)

where we denoted by N̂y(d) the number of incorrect codewords at a distance d from

the vector y. The contribution of x(0) in the above expression is easily estimated. By

the law of large numbers d(x(0), y) ≃ Np and therefore Zcorr is close to e−2NBp with

high probability. More precisely, for any ε > 0, e−N(2Bp+ε) ≤ Zcorr ≤ e−N(2Bp−ε) with
probability approaching one in the N →∞ limit.

As for Zerr, one proceeds in two steps: first compute the distance enumerator N̂y(d),
and then sum over d. The distance enumerator was already computed in Sec. 6.2. As
in the word MAP decoding analysis, the fact that the distances are measured with
respect to the channel output y and not with respect to a codeword does not change

the result, because y is independent from the incorrect codewords x(1) · · ·x(2M−1).

Therefore N̂y(d) is exponentially large in the interval δGV(R) < δ ≡ d/N < 1 −
δGV(R), while it vanishes with high probability outside the same interval. Moreover,

if δGV(R) < δ < 1− δGV(R), N̂y(d) is tightly concentrated around its mean given by

Eq. (6.11). The summation over d in Eq. (6.17) can then be evaluated by the saddle
point method. This calculation is very similar to the estimation of the free-energy of
the random energy model, cf. Sec. 5.2. Roughly speaking, we have

Zerr =
N∑

d=0

N̂y(d) e−2Bd ≃ N
∫ 1−δGV

δGV

eN [(R−1) log 2+H(δ)2Bδ] dδ
.
= eNφerr , (6.18)
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where

φerr ≡ max
δ∈[δGV,1−δGV]

[ (R− 1) log 2 +H(δ)− 2Bδ ] . (6.19)

The reader can complete the mathematical details of the above derivation as outlined
in Sec. 5.2. The bottom line is that Zerr is close to eNφerr with high probability as
N →∞.

Let us examine the resulting expression (6.19) (see Fig. 6.4). If the maximum
is achieved on the interior of [δGV, 1 − δGV], its location δ∗ is determined by the
stationarity condition H′(δ∗) = 2B, which implies δ∗ = p. In the opposite case, it
must be realized at δ∗ = δGV (remember that B > 0). Evaluating the right hand side
of Eq. (6.19) in these two cases, we get

φerr =

{
−δGV(R) log

(
1−p
p

)
if p < δGV,

(R− 1) log 2− log(1− p) otherwise.
(6.20)

We can now compare Zcorr and Zerr. At low noise level (small p), the transmitted
codeword x(0) is close enough to the received one y to dominate the sum in Eq. (6.17).
At higher noise level, the exponentially more numerous incorrect codewords overcome
the term due to x(0). More precisely, with high probability we have

Z =

{
Zcorr[1 + e−Θ(N)] if p < δGV,
Zerr[1 + e−Θ(N)] otherwise,

(6.21)

where the Θ(N) exponents are understood to be positive.
We consider now Eq. (6.14), and once again separate the contribution of the trans-

mitted codeword:

P (i)(xi|y) =
1

Z
[Zcorr I(xi = x

(0)
i ) + Zerr,xi

] , (6.22)

where we have introduced the quantity

Zerr,xi
=

∑

z∈CN\x(0)

e−2Bd(z,y) I(zi = xi) . (6.23)

Notice that Zerr,xi
≤ Zerr. Together with Eq. (6.21), this implies, if p < δGV(R):

µ
(i)
y (xi = x

(0)
i ) = 1− e−Θ(N) and µ

(i)
y (xi 6= x

(0)
i ) = e−Θ(N). Therefore, in this regime,

the symbol MAP decoder correctly outputs the transmitted bit x
(0)
i . It is important to

stress that this result holds with probability approaching one as N →∞. Concretely,
there exists bad choices of the code CN and particularly unfavorable channel realiza-

tions y such that µ
(i)
y (xi = x

(0)
i ) < 1/2 and the decoder fails. However the probability

of such an event (i.e. the bit-error rate Pb) vanishes in the large blocklength limit
N →∞.

What happens for p > δGV(R)? Arguing as for the normalization constant Z, it
is easy to show that the contribution of incorrect codewords dominates the marginal
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distribution (6.22). Intuitively, this suggests that the decoder fails. A more detailed
computation, sketched below, shows that the bit error rate in the N →∞ limit is:

Pb =

{
0 if p < δGV(R),
p if δGV(R) < p < 1/2.

(6.24)

Notice that, above the threshold δGV(R), the bit error rate is the same as if the
information message were transmitted without coding through the BSC: the code is
useless.

A complete calculation of the bit error rate Pb in the regime p > δGV(R) is rather
lengthy. We shall provide here an heuristic, albeit essentially correct, justification,
and leave a more detailed derivation as the exercise below. As already stressed, the
contribution Zcorr of the transmitted codeword can be safely neglected in Eq. (6.22).

Assume, without loss of generality, that x
(0)
i = 0. The decoder will be successful if

Zerr,0 > Zerr,1 and fail in the opposite case. Two cases must be considered: either
yi = 0 (this happens with probability 1−p), or yi = 1 (probability p). In the first case
we have

Zerr,0 =
∑

z∈CN\x(0)

I(zi = 0) e−2Bdi(y,z)

Zerr,1 = e−2B
∑

z∈CN\x(0)

I(zi = 1) e−2Bdi(y,z) , (6.25)

where we denoted by di(x, y) the number of of positions j, distinct form i, such that
xj 6= yj . The sums in the above expressions are independent identically distributed
random variables. Moreover they are tightly concentrated around their mean. Since
B > 0, this implies Zerr,0 > Zerr,1 with high probability. Therefore the decoder is
successful in the case yi = 0. Analogously, the decoder fails with high probability if
yi = 1, and hence the bit error rate converges to Pb = p for p > δGV(R).

Exercise 6.5 From a rigorous point of view, the weak point of the above argument is the
lack of any estimate of the fluctuations of Zerr,0/1. The reader may complete the derivation
along the following lines:

(a) Define X0 ≡ Zerr,0 and X1 ≡ e2B Zerr,1. Prove that X0 and X1 are independent and identi-
cally distributed.

(b) Define the correct distance enumerators N0/1(d) such that a representation of the form
X0/1 =

P
d N0/1(d) exp(−2Bd) holds.

(c) Show that a significant fluctuation of N0/1(d) from its average is highly (more than expo-
nentially) improbable (within an appropriate range of d).

(d) Deduce that a significant fluctuation of X0/1 is highly improbable (the last two points can
be treated along the lines already discussed for the random energy model in Chapter 5).
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6.3.3 Finite-temperature decoding

The expression (6.14) for the marginal µ
(i)
y (xi) is strongly reminiscent of a Boltzmann

average. This analogy suggests a generalization which interpolates between the two
‘classical’ MAP decoding strategies discussed so far: finite-temperature decoding.
We first define this new decoding strategy in the context of the BSC context. Let β
be a non-negative number playing the role of an inverse temperature, and y ∈ {0, 1}N
the channel output. Define the probability distribution µy,β(x) to be given by

µy,β(x) =
1

Z(β)
e−2βBd(y,x) I(x ∈ CN ) , Z(β) ≡

∑

x∈CN

e−2βBd(x,y) , (6.26)

where B is always related to the noise level p through Eq. (6.15). This distribution
depends upon the channel output y: for each received message y, the finite-temperature
decoder constructs the appropriate distribution µy,β(x). For the sake of simplicity we

don’t write this dependence explicitly. Let µ
(i)
y,β(xi) be the marginal distribution of xi

when x is distributed according to µy,β(x). The new decoder outputs

xβ =

(
arg max

x1

µ
(1)
y,β(x1) , . . . , arg max

xN

µ
(N)
y,β (xN )

)
. (6.27)

As in the previous Sections, the reader is free to choose her favorite convention in the

case of ties (i.e. for those i’s such that µ
(i)
y,β(0) = µ

(i)
y,β(1)).

Two values of β are particularly interesting: β = 1 and β =∞. If β = 1 the distri-
bution µy,β(x) coincides with the distribution µy(x) of the channel input conditional
to the output, see Eq. (6.13). Therefore, for any y, symbol MAP decoding coincides

with finite-temperature decoding at β = 1: xβ=1
i = xb.

If β =∞, the distribution (6.26) concentrates over those codewords which are the
closest to y. In particular, if there is a unique closest codeword to y, finite-temperature

decoding at β =∞ coincides with word MAP decoding: xβ=∞ = xw.

Exercise 6.6 Using the approach developed in the previous Section, analyze the perfor-
mances of finite-temperature decoding for the RCE at any β.

The results of the last exercise are summarized in Fig. 6.5 which give the finite-
temperature decoding phase diagram. There exist three regimes which are three dis-
tinct phases with very different behaviors.

1. A ‘completely ordered’ phase at low noise (p < δGV(R)) and low tempera-
ture (large enough β). In this regime the decoder works: the probability dis-
tribution µy,β(x) is dominated by the transmitted codeword x(0). More precisely
µy,β(x

(0)) = 1− exp{−Θ(N)}. The bit and block error rates vanish as N →∞.

2. A ‘glassy’ phase at higher noise (p > δGV(R)) and low temperature (large enough
β). The transmitted codeword has a negligible weight µy,β(x

(0)) = exp{−Θ(N)}.
The bit error rate is bounded away from 0, and the block error rate converges to
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Fig. 6.5 Phase diagram for the rate 1/2 random code ensemble over the binary symmetric

channel, using finite temperature decoding. Word MAP and bit MAP decoding correspond

(respectively) to 1/β = 0 and 1/β = 1. Notice that the phase boundary of the error-free

(ordered) phase is vertical in this interval of temperatures.

1 as N →∞. The measure µy,β(x) is dominated by the closest codewords to the
received message y (which are distinct from the correct one since p > δGV(R)). Its
Shannon entropy H(µy,β) is sub-linear in N . This situation is closely related to
the ‘measure condensation’ phenomenon occurring in the low-temperature phase
of the random energy model.

3. An ‘entropy dominated’ (paramagnetic) phase at high temperature (small enough
β). The bit and block error rates behave as in the glassy phase, and µy,β(x

(0)) =
exp{−Θ(N)}. However the measure µy,β(x) is now dominated by codewords
whose distance d ≃ Nδ∗ from the received message is larger than the minimal
one: δ∗ = pβ/[pβ + (1− p)β ]. In particular δ∗ = p if β = 1, and δ∗ = 1/2 if β = 0.
In the first case we recover the result already obtained for symbol MAP decod-
ing. In the second one, µy,β=0(x) is the uniform distribution over the codewords
and the distance from the received message under this distribution is, with high
probability, close to N/2. In this regime, the Shannon entropy H(µβ) is linear in
N .

Finite-temperature decoding can be generalized to other channel models. Let µy(x)
be the distribution of the transmitted message conditional to the channel output, given
explicitly in Eq. (6.5). For β > 0, we define the distribution1

1The partition function Z(β) defined here differs by a multiplicative constant from the one defined
in Eq. (6.26) for the BSC.
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µy,β(x) =
1

Z(β)
µy(x)

β , Z(β) ≡
∑

x

µy(x)
β . (6.28)

Once more, the decoder decision for the i-th bit is taken according to the rule (6.27).
The distribution µy,β(x) is a ‘deformation’ of the conditional distribution µy(x). At
large β, more weight is given to highly probable transmitted messages. At small β
the most numerous codewords dominate the sum. A little thought shows that, as
for the BSC, the cases β = 1 and β = ∞ correspond, respectively, to symbol MAP
and word MAP decoding. The qualitative features of the finite-temperature decoding
phase diagram are easily generalized to any memoryless channel. In particular, the
three phases described above can be found in such a general context. Decoding is
successful in the low noise, large β phase.

6.4 Error-free communication with random codes

As we have seen, the block error rate PB for communicating over a BSC with a
random code and word MAP decoding vanishes in the large blocklength limit as long
as R < CBSC(p), with CBSC(p) = 1 − H2(p) the channel capacity. This establishes
the ‘direct’ part of Shannon’s channel coding theoremfor the BSC case: error-free
communication is possible at rates below the channel capacity. This result is in fact
much more general. We describe here a proof for general memoryless channels, always
based on random codes.

For the sake of simplicity we shall restrict ourselves to memoryless channels with
binary input and discrete output. These are defined by a transition probability Q(y|x),
x ∈ {0, 1} and y ∈ Y with Y a finite alphabet. In order to handle this case, we
must generalize the RCE: each codeword x(m) ∈ {0, 1}N , m = 0, . . . , 2M − 1, is

again constructed independently as a sequence of N i.i.d. bits x
(m)
1 · · ·x(m)

N . Unlike for

symmetric channels, x
(m)
i is now drawn from an arbitrary distribution P (x), x ∈ {0, 1}

instead of being uniformly distributed. It is important to distinguish P (x), which is an
arbitrary single bit distribution defining the code ensemble and will be chosen at our
convenience for optimizing it, from the a priori source distribution µ0(x) of Eq. (6.5),
which is a distribution over the codewords and models the information source behavior.
As in the previous Sections, we shall assume the source distribution µ0 to be uniform
over the codewords, cf. Eq. (6.4). On the other hand, the codewords themselves have
been constructed using the single-bit distribution P (x).

We shall first analyze the RCE for a generic distribution P (x), under word MAP
decoding. The main result is:

Theorem 6.1 Consider communication over a binary input discrete memoryless chan-
nel with transition probability Q(y|x), using a code from the RCE with input bit distri-
bution P (x) and word MAP decoding. If the code rate is smaller than the mutual infor-
mation IX,Y between two random variables X,Y with joint distribution P (x)Q(y|x),
then the block error rate vanishes in the large blocklength limit.

Using this result, one can optimize the ensemble performances over the choice of
the distribution P (·). More precisely, we maximixe the achievable rate for error-free
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communication: IX,Y . The corresponding optimal distribution P ∗(·) depends upon the
channel: it is the best distribution adapted to the channel. Since the channel capacity
is in fact defined as the maximum mutual information between channel input and
channel output, cf. Eq. (1.38), the RCE with input bit distribution P ∗(·) allows to
communicate error-free up to channel capacity. The above Theorem implies therefore
the ‘direct part’ of Shannon’s theorem 1.23.

Proof: Assume that the codeword x(0) is transmitted through the channel and
the message y ∈ YN is received. The decoder constructs the probability for x to be
the channel input, conditional to the output y, see Eq. (6.5). Word MAP decoding
consists in minimizing the cost function

E(x) = −
N∑

i=1

log2Q(yi|xi) (6.29)

over the codewords x ∈ CN (note that we use here natural logarithms). Decoding
will be successful if and only if the minimum of E(x) is realized over the transmitted
codeword x(0). The problem consists therefore in understanding the behavior of the

2M random variables E(x(0)), . . . , E(x(2M−1)).
Once more, it is necessary to single out E(x(0)). This is the sum of N i.i.d. random

variables − logQ(yi|x(0)
i ), and it is therefore well approximated by its mean

EE(x(0)) = −N
∑

x,y

P (x)Q(y|x) log2Q(y|x) = NHY |X . (6.30)

In particular (1− δ)NHY |X < E(x(0)) < (1 + δ)NHY |X with probability approaching
one as N →∞.

As for the 2M−1 incorrect codewords, the corresponding log-likelihoods E(x(1)), . . . , E(x(2M−1))
are i.i.d. random variables. We can therefore estimate the smallest among them by fol-
lowing the approach developed for the REM and already applied to the RCE on the
BSC. In Appendix 6.7, we prove the following large deviation result on the distribution
of these variables:

Lemma 6.2 Let εi = E(x(i))/N . Then ε1, . . . , ε2M−1 are i.i.d. random variables and
their distribution satisfy a large deviation principle of the form P(ε)

.
= 2−Nψ(ε). The

rate function is given by:

ψ(ε) ≡ min
{py(·)}∈Pε

[
∑

y

Q(y)D(py||P )

]
, (6.31)

where the minimum is taken over the set of probability distributions {py(·), y ∈ Y} in
the subspace Pε defined by the constraint:

ε = −
∑

xy

Q(y)py(x) log2Q(y|x) , (6.32)

and we defined Q(y) ≡∑xQ(y|x)P (x).
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The solution of the minimization problem formulated in this lemma is obtained through
a standard Lagrange multiplier technique:

py(x) =
1

z(y)
P (x)Q(y|x)γ , (6.33)

where the (ε dependent) constants z(y) and γ are chosen in order to verify the nor-
malizations

∑
x py(x) = 1 for all y ∈ Y, and the constraint (6.32).

The rate function ψ(ε) is convex with a global minimum (corresponding to γ = 0)
at ε∗ = −∑x,y P (x)Q(y) log2Q(y|x) where its value is ψ(ε∗) = 0. This implies that,

with high probability, all incorrect codewords will have costs E(x(i)) = Nε in the range
εmin−δ ≤ ε ≤ εmax+δ for all δ > 0, εmin and εmax being the two solutions of ψ(ε) = R.
Moreover, for any ε inside the interval, the number of codewords with E(x(i)) ≃ Nε
is exponentially large, and close to 2NR−Nψ(ε). So with high probability the incorrect
codeword with minimum cost has a cost close to Nεmin, while the correct codeword
has cost close to NHY |X . Therefore MAP decoding will find the correct codeword if
and only if HY |X < εmin.

Let us now show that the condition HY |X < εmin is in fact equivalent to R < IX,Y .
It turns out that the value ε = HY |X is obtained using γ = 1 in Eq. (6.33) and
therefore py(x) = P (x)Q(y|x)/Q(y). The corresponding value of the rate function is
ψ(ε = HY |X) = HY − HY |X = IY |X . The condition for error free communication,
HY |X < εmin, can thus be rewritten as R < ψ(HY |X), or R < IX,Y . �

Example 6.3 Reconsider the BSC with flip probability p. We have

E(x) = −(N − d(x, y)) log(1− p)− d(x, y) log p . (6.34)

Up to a rescaling the cost coincides with the Hamming distance from the received
message. If we take P (0) = P (1) = 1/2, the optimal types are, cf. Eq. (6.33),

p0(1) = 1− p0(0) =
pγ

(1− p)γ + pγ
, (6.35)

and analogously for p1(x). The corresponding cost is

ε = −(1− δ) log(1− p)− δ log p , (6.36)

where we defined δ = pγ/[(1− p)γ + pγ ]. The large deviations rate function is given,
parametrically, by ψ(ε) = log 2 − H(δ). The reader will easily recognize the results
already obtained in the previous section.

Exercise 6.7 Consider communication over a discrete memoryless channel with finite in-
put output alphabets X , and Y, and transition probability Q(y|x), x ∈ X , y ∈ Y. Check
that the above proof remains valid in this context.
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6.5 Geometry again: sphere packing

Coding has a lot to do with the optimal packing of spheres, which is a mathematical
problem of considerable interest in various branches of science. Consider for instance
the communication over a BSC with flip probability p. A code of rateR and blocklength

N consists of 2NR points {x(1) · · ·x(2NR)} in the hypercube {0, 1}N . To each possible
channel output y ∈ {0, 1}N , the decoder associates one of the codewords x(i). Therefore

we can think of the decoder as realizing a partition of the Hamming space in 2NR

decision regions D(i), i ∈ {1 . . . 2NR}, each one associated to a distinct codeword. If
we require each decision region {D(i)} to contain a sphere of radius ρ, the resulting code
is guaranteed to correct any error pattern such that less than ρ bits are flipped. One
often defines the minimum distance of a code as the smallest distance between any
two codewords If a code has minimal distance d, the Hamming spheres of radius ρ =
⌊(d− 1)/2⌋ don’t overlap and the code can correct ρ errors, whatever their positions.

6.5.1 The densest packing of Hamming spheres

We are thus led to consider the general problem of sphere packing on the hypercube
{0, 1}N . A (Hamming) sphere of center x(0) and radius r is defined as the set of
points x ∈ {0, 1}N , such that d(x, x(0)) ≤ r. A packing of spheres of radius r and
cardinality NS is specified by a set of centers x1, . . . , xNS

∈ {0, 1}N , such that the
spheres of radius r centered in these points are disjoint. Let Nmax

N (δ) be the maximum
cardinality of a packing of spheres of radiusNδ in {0, 1}N . We define the corresponding
rate as Rmax

N (δ) ≡ N−1 log2Nmax
N (δ) and would like to compute this quantity in the

infinite-dimensional limit

Rmax(δ) ≡ lim sup
N→∞

Rmax
N (δ) . (6.37)

The problem of determining the functionRmax(δ) is open: only upper and lower bounds
are known. Here we shall derive the simplest of these bounds:

Proposition 6.4
1−H2(2δ) ≤ Rmax(δ) ≤ 1−H2(δ) (6.38)

The lower bound is often called the Gilbert-Varshamov bound, the upper bound is called
the Hamming bound.

Proof: Lower bounds can be proved by analyzing good packing strategies. A
simple such strategy consists in taking the sphere centers as 2NR random points with
uniform probability in the Hamming space. The minimum distance between any couple
of points must be larger than 2Nδ. It can be estimated by defining the distance
enumerator M2(d) which counts how many couples of points have distance d. It is
straightforward to show that, if d = 2Nδ and δ is kept fixed as N →∞:

EM2(d) =

(
2NR

2

)
2−N

(
N

d

)
.
= 2N [2R−1+H2(2δ)] . (6.39)

As long as R < [1 − H2(2δ)]/2, the exponent in the above expression is negative.
Therefore, by Markov inequality, the probability of having any couple of centers ar a
distance smaller than 2δ is exponentially small in the size. This implies that
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Rmax(δ) ≥ 1

2
[1−H2(2δ)] . (6.40)

A better lower bound can be obtained by a closer examination of the above (ran-
dom) packing strategy. In Sec. 6.2 we derived the following result. If 2NR points are
chosen from the uniform distribution in the Hamming space {0, 1}N , and one of them
is considered, with high probability its closest neighbour is at a Hamming distance
close to NδGV(R). In other words, if we draw around each point a sphere of radius
δ, with δ < δGV(R)/2, and one of the spheres is selected randomly, with high proba-
bility it will not intersect any other sphere. This remark suggests the following trick
(sometimes called expurgation in coding theory). Go through all the spheres one by
one and check if it intersects any other one. If the answer is positive, simply elimi-
nate the sphere. This reduces the cardinality of the packing, but only by a fraction
approaching 0 as N → ∞: the packing rate is thus unchanged. As δGV(R) is defined
by R = 1−H2(δGV(R)), this proves the lower bound in (6.38).

The upper bound can be obtained from the fact that the total volume occupied by
the spheres is not larger than the volume of the hypercube. If we denote by ΛN (δ) the
volume of an N -dimensional Hamming sphere of radius Nδ, we get NS ΛN (δ) ≤ 2N .
Since ΛN (δ)

.
= 2NH2(δ), this implies the upper bound in (6.38). �

Better upper bounds can be derived using more sophisticated mathematical tools.
An important result of this type is the so-called linear programming bound:

Rmax(δ) ≤ H2(1/2−
√

2δ(1− 2δ)) , (6.41)

whose proof goes beyond our scope. On the other hand, no better lower bound than
the Gilbert-Varshamov result is known. It is a widespread conjecture that this bound
is indeed tight: in high dimension there is no better way to pack spheres than placing
them randomly and expurgating the small fraction of them that are ‘squeezed’. The
various bounds are shown in Fig. 6.6.

Exercise 6.8 Derive two simple alternative proofs of the Gilbert-Varshamov bound using
the following hints:

(a) Given a constant δ, let’s look at all the ‘dangerous’ couples of points whose distance is

smaller than 2Nδ. For each dangerous couple, we can expurgate one of its two points.
The number of points expurgated is smaller or equal than the number of dangerous cou-
ples, which can be bounded using EM2(d). What is the largest value of δ such that this
expurgation procedure does not reduce the rate?

(b) Construct a packing x1 . . . xN as follows. The first center x1 can be placed anywhere in

{0, 1}N . The second one is everywhere outside a sphere of radius 2Nδ centered in x(0). In
general the i-th center xi can be at any point outside the spheres centered in x1 . . . xi−1.

This procedures stops when the spheres of radius 2Nδ cover all the space {0, 1}N , giving a
packing of cardinality N equal to the number of steps and radius Nδ.
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Fig. 6.6 Upper and lower bounds on the maximum packing rateRmax(δ) of Hamming spheres

of radius Nδ. Random packing and expurgated random packing provide lower bounds. The

Hamming and linear programming bounds are upper bounds.

6.5.2 Sphere packing and decoding over the BSC

Let us now see the consequences of Proposition 6.4 for coding over the BSC. If the
transmitted codeword is x(i), the channel output will be (with high probability) at
a distance from x(i) close to Np. Clearly R ≤ Rmax(p) is a necessary and sufficient
condition for the existence of a code which corrects any error pattern such that less
than Np bits are flipped. Notice that this correction criterion is much stronger than
requiring a vanishing (bit or block) error rate. The direct part of Shannon theorem
shows the existence of codes with a vanishing (as N →∞) block error probability for
R < 1 − H2(p) = CBSC(p). As shown by the linear programming bound in Fig. 6.6
CBSC(p) lies above Rmax(p) for large enough p. Therefore, for such values of p, there
is a non-vanishing interval of rates Rmax(p) < R < CBSC(p) such that one can correct
Np errors with high probability but one cannot correct all error patterns involving
that many bits.

Let us show, for the BSC case, that the condition R < 1 − H2(p) is actually
a necessary one for achieving zero block error probability (this is nothing but the
converse part of Shannon channel coding theorem 1.23).

Define PB(k) the block error probability under the condition that k bits are flipped
by the channel. If the codeword x(i) is transmitted, the channel output lies on the
border of a Hamming sphere of radius k centered in x(i): ∂Bi(k) ≡ {z : d(z, x(i)) = k}.
Therefore
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PB(k) =
1

2NR

2NR∑

i=1

[
1− |∂Bi(k) ∩D(i)|

|∂Bi(k)|

]
≥ (6.42)

≥ 1− 1

2NR

2NR∑

i=1

|D(i)|
|∂Bi(k)|

. (6.43)

For a typical channel realization k is close to Np, and |∂Bi(Np)| .= 2NH2(p). Since
{D(i)} is a partition of {0, 1}N ,

∑
i |D(i)| = 2N . We deduce that, for any ε > 0, and

large enough N :

PB ≥ 1− 2N(1−R−H2(p)+ε) , (6.44)

and thus reliable communication is possible only if R ≤ 1−H2(p).

6.6 Other random codes

A major drawback of the random code ensemble is that specifying a particular code
(an element of the ensemble) requires N2NR bits. This information has to be stored
somewhere when the code is used in practice and the memory requirement is soon
beyond the hardware capabilities. A much more compact specification is possible for
the random linear code (RLC) ensemble. In this case the encoder is required to be
a linear map, and any such map is equiprobable. Concretely, the code is fully specified
by a N ×M binary matrix G = {Gij} (the generator matrix) and encoding is left
multiplication by G:

x : {0, 1}M → {0, 1}N , (6.45)

z 7→ G z , (6.46)

where the multiplication has to be carried modulo 2. Endowing the set of linear codes
with uniform probability distribution is essentially equivalent to assuming the entries
of G to be i.i.d. random variables, with Gij = 0 or 1 with probability 1/2. Notice that
only MN bits are required for specifying a code within this ensemble.

Exercise 6.9 Consider a linear code with N = 4 and |C| = 8 defined by

C = {(z1 ⊕ z2, z2 ⊕ z3, z1 ⊕ z3, z1 ⊕ z2 ⊕ z3) | z1, z2, z3 ∈ {0, 1}} , (6.47)

where we denoted by ⊕ the sum modulo 2. For instance (0110) ∈ C because we can take

z1 = 1, z2 = 1 and z3 = 0, but (0010) 6∈ C. Compute the distance enumerator for x(0) =
(0110).

It turns out that the RLC has extremely good performances. As the original Shan-
non ensemble, it allows to communicate error-free below capacity. Moreover, the rate
at which the block error probability PB vanishes is faster for the RLC than for the
RCE. This justifies the considerable effort devoted so far to the design and analysis
of specific ensembles of linear codes satisfying additional computational requirements.
We shall discuss some among the best such codes in the following Chapters.
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6.7 A remark on coding theory and disordered systems

We would like to stress here the fundamental similarity between the analysis of random
code ensembles and the statistical physics of disordered systems. As should be already
clear, there are several sources of randomness in coding:

• First of all, the code used is chosen randomly from an ensemble. This was the
original idea used by Shannon to prove the channel coding theorem.

• The codeword to be transmitted is chosen with uniform probability from the code.
This hypothesis is supported by the source-channel separation theorem.

• The channel output is distributed, once the transmitted codeword is fixed, ac-
cording to a probabilistic process which accounts for the channel noise.

• Once all the above elements are given, one is left with the decoding problem.
As we have seen in Sec. 6.3.3, both classical MAP decoding strategies and finite-
temperature decoding can be defined in a unified frame. The decoder constructs
a probability distribution µy,β(x) over the possible channel inputs, and estimates

its single bit marginals µ
(i)
y,β(xi). The decision on the i-th bit depends upon the

distribution µ
(i)
y,β(xi).

The analysis of a particular coding system can therefore be regarded as the analysis
of the properties of the distribution µy,β(x) when the code, the transmitted codeword
and the noise realization are distributed as explained above.

In other words, we are distinguishing two levels of randomness: on the first level
we deal with the first three sources of randomness, and on the second level we use the
distribution µy,β(x). The deep analogy with the theory of disordered system should
be clear at this point. The code, channel input, and noise realization play the role
of quenched disorder (the sample), while the distribution µy,β(x) is the analog of the
Boltzmann’s distribution. In both cases the problem consists in studying the properties
of a probability distribution which is itself a random object.

Appendix: Proof of Lemma 6.2

We estimate (to the leading exponential order in the large N limit) the probability
PN (ε) for one of the incorrect codewords, x, to have cost E(x) = Nε. The channel
output y = (y1 · · · yN ) is a sequence of N i.i.d. symbols distributed according to

Q(y) ≡
∑

x

Q(y|x)P (x) , (6.48)

and the cost can be rewritten as:

E(x) ≡ −
N∑

i=1

logQ(yi|xi)

= −N
∑

x,y

Q(y) logQ(y|x) 1

NQ(y)

N∑

i=1

I(xi = x, yi = y) . (6.49)

There are approximatively NQ(y) positions i such that yi = y, for y ∈ Y. We assume
that there are exactly NQ(y) such positions, and that NQ(y) is an integer (of course
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this hypothesis is in general false: it is a routine exercise, left to the reader, to show
that it can be avoided with a small technical detour). Furthermore we introduce

py(x) ≡
1

NQ(y)

N∑

i=1

I(xi = x, yi = y) . (6.50)

Under the above assumptions the function py(x) is a probability distribution over
x ∈ {0, 1} for each y ∈ Y. Looking at the subsequence of positions i such that yi = y,
it counts the fraction of the xi’s such that xi = x. In other words py(·) is the type
of the subsequence {xi|yi = y}. Because of Eq. (6.49), the cost is written in terms of
these types as follows

E(x) = −N
∑

xy

Q(y)py(x) logQ(y|x) . (6.51)

Therefore E(x) depends upon x uniquely through the types {py(·) : y ∈ Y}, and
this dependence is linear in py(x). Moreover, according to our definition of the RCE,
x1, . . . , xN are i.i.d. random variables with distribution P (x). The probability PN (ε)
that E(x)/N = ε can therefore be deduced from the Corollary ??. To the leading
exponential order, we get

PN (ε)
.
= exp{−Nψ(ε) log 2} , (6.52)

ψ(ε) ≡ min
py(·)

[
∑

y

Q(y)D(py||P ) s.t. ε = −
∑

xy

Q(y)py(x) log2Q(y|x)
]
. (6.53)

Notes

The random code ensemble dates back to Shannon (Shannon, 1948) who used it (some-
how implicitely) in his proof of the channel coding thorem. A more explicit (and
complete) proof was provided by Gallager in (Gallager, 1965). The reader can find
alternative proofs in standard textbooks such as (Cover and Thomas, 1991; Csiszár
and Körner, 1981; Gallager, 1968).

The distance enumerator is a feature extensively investigated in coding theory. We
refer for instance to (Csiszár and Körner, 1981; Gallager, 1968). A treatment of the
random code ensemble in analogy with the random energy model was presented in
(Montanari, 2001). More detailed results in the same spirit can be found in (Barg
and Forney, 2002; Forney and Montanari, 2001). The analogy between coding theory
and the statistical physics of disordered systems was put forward by Sourlas (Sourlas,
1989). Finite temperature decoding has been introduced in (Rujan, 1993).

A key ingredient of our analysis was the assumption, already mentioned in Sec. 1.6.2,
that any codeword is a priori equiprobable. The fundamental motivation for such an
assumption is the source-channel separation theorem. In simple terms: one does not
loose anything in constructing an encoding system in two blocks. First an ideal source
code compresses the data produced by the information source and outputs a sequence
of i.i.d. unbiased bits. Then a channel code adds redundancy to this sequence in order
to contrast the noise on the channel. The theory of error correcting codes focuses on
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the design and analysis of this second block, leaving the first one to source coding. The
interested reader may find a proofs of the separation theorem in (Cover and Thomas,
1991; Csiszár and Körner, 1981; Gallager, 1968).

Sphere packing is a classical problem in mathematics, with applications in various
branches of science. The book (Conway and Sloane, 1998) provides both a very good
introduction and some far reaching results on this problem and its connections, in
particular to coding theory. Finding the densest packing of spheres in Rn is an open
problem when n ≥ 4.
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Factor graphs and graph ensembles

Systems involving a large number of simple variables with mutual dependencies (or
constraints, or interactions) appear recurrently in several fields of science. It is often
the case that such dependencies can be ‘factorized’ in a non-trivial way, and distinct
variables interact only ‘locally’. In statistical physics, the fundamental origin of such
a property can be traced back to the locality of physical interactions. In computer
vision it is due to the two dimensional character of the retina and the locality of
reconstruction rules. In coding theory it is a useful property for designing a system
with fast encoding/decoding algorithms. This important structural property plays a
crucial role in many interesting problems.

There exist several possibilities for expressing graphically the structure of depen-
dencies among random variables: graphical models, Bayesian networks, dependency
graphs, normal realizations, etc. We adopt here the factor graph language, because of
its simplicity and flexibility.

As argumented in the previous Chapters, we are particularly interested in ensem-
bles of probability distributions. These may emerge either from ensembles of error
correcting codes, or in the study of disordered materials, or, finally, when studying
random combinatorial optimization problems. Problems drawn from these ensembles
are represented by factor graphs which are themselves random. The most common ex-
amples are random hyper-graphs, which are a simple generalization of the well known
random graphs.

Section 9.1 introduces factor graphs and provides a few examples of their utility. In
Sec. 9.2 we define some standard ensembles of random graphs and hyper-graphs. We
summarize some of their important properties in Sec. 9.3. One of the most surprising
phenomena in random graph ensembles is the sudden appearance of a ‘giant’ connected
component as the number of edges crosses a threshold. This is the subject of Sec. 9.4.
Finally, in Sec. 9.5 we describe the local structure of large random factor graphs.

9.1 Factor graphs

9.1.1 Definitions and general properties



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

Factor graphs 101
z

yy

x x x x

f

f f

p p p p

1 2 3 4

1 2 3 4

N S

Fig. 9.1 Factor graph representation of the electoral process described in Example 1.

Example 9.1 We begin with a toy example. A country elects its president among
two candidates {A,B} according to the following peculiar system. The country is
divided into four regions {1, 2, 3, 4}, grouped in two states: North (regions 1 and 2),
and South (3 and 4). Each of the regions chooses its favorite candidate according to
popular vote: we call her xi ∈ {A,B}, with i ∈ {1, 2, 3, 4}. Then a North candidate
yN, and a South candidate yS are decided according to the following rule. If the
preferences x1 and x2 in regions 1 and 2 agree, then yN takes this same value. If
they don’t agree yN is decided according to a fair coin trial. The same procedure
is adopted for the choice of yS, given x3, x4. Finally, the president z ∈ {A,B} is
decided on the basis of the choices yN and yS in the two states using the same rule
as inside each state.

A polling institute has obtained fairly good estimates of the probabilities pi(xi)
for the popular vote in each region i to favor the candidate xi. They ask you to
calculate the odds for each of the candidates to become the president.

It is clear that the electoral procedure described above has important ‘factoriza-
tion’ properties. More precisely, the probability distribution for a given realization
of the random variables {xi}, {yj}, z has the form:

P ({xi}, {yj}, z) = f(z, yN, yS) f(yN, x1, x2) f(yS, x3, x4)

4∏

i=1

pi(xi) . (9.1)

We leave it to the reader to write explicit forms for the function f . The election
process, as well as the above probability distribution, can be represented graphically
as in Fig. 9.1. Can this particular structure be exploited when computing the chances
for each candidate to become president?

Abstracting from the previous example, let us consider a set ofN variables x1, . . . , xN
taking values in a finite alphabet X . We assume that their joint probability distribution
takes the form
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Fig. 9.2 A generic factor graph is formed by several connected components. Variables be-

longing to distinct components (for instance x3 and x15 in the graph above) are statistically

independent.

P (x) =
1

Z

M∏

a=1

ψa(x∂a) . (9.2)

Here we use the shorthands x ≡ {x1, . . . , xN}, and x∂a ≡ {xi | i ∈ ∂a}, where ∂a ⊆ [N ].
The set of indices ∂a, with a ∈ [M ], has size ka ≡ |∂a|. When necessary, we shall use
the notation {ia1 , . . . , iaka

} ≡ ∂a to denote the variable indices which correspond to
the factor a, and xia1 ,...,iaka

≡ x∂a for the corresponding variables. The compatibility

functions ψa : X ka → R are non-negative, and Z is a positive constant. In order to
completely determine the form (9.2), we should precise both the functions ψa( · ), and
an ordering among the indices in ∂a. In practice this last specification will be always
clear from the context.

Factor graphs provide a graphical representations of distributions of the form
(9.2) which are also denominated undirected graphical models. The factor graph
for the distribution (9.2) contains two types of nodes: N variable nodes, each one
associated with a variable xi (represented by circles); M function nodes, each one
associated with a function ψa (squares). An edge joins the variable node i and the
function node a if the variable xi is among the arguments of ψa(x∂a) (in other words
if i ∈ ∂a). The set of function nodes that are adjacent to (share an edge with) the
variable node i, is denoted as ∂i. The graph is bipartite: an edge always joins a variable
node to a function nodes. The reader will easily check that the graph in Fig. 9.1 is
indeed the factor graph corresponding to the factorized form (9.1). The degree of a
variable node |∂i|, or of a factor node |∂a|, is defined as usual as the number of edges
incident on it. In order to avoid trivial cases, we will assume |∂a| ≥ 1 for any factor
node a. The basic property of the probability distribution (9.2), encoded in its factor
graph, is that two ‘well separated’ variables interact uniquely through those variables
which are interposed between them. A precise formulation of this intuition is given by
the following observation, named the global Markov property:

Proposition 9.2 Let A,B, S ⊆ [N ] be three disjoint subsets of the variable nodes,
and denote by xA, xB and xS the corresponding sets of variables. If S ‘separates’ A
and B (i.e., if there is no path in the factor graph joining a node of A to a node of B
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Fig. 9.3 The action of conditioning on the factor graph. The probability distribution on the

left has the form P (x1...6) ∝ fa(x1...4)fb(x3,4,5)fc(x1,3,5,6)fd(x5). After conditioning on x3,

we get P (x1...6|x3 = x∗) ∝ f ′a(x1,2,4)f
′
b(x4,5)f

′
c(x1,5,6)fd(x5). Notice that the functions f ′a(·),

f ′b(·), f ′c(·) (gray nodes on the right) are distinct from fa(·), fb(·), fc(·) and depend upon the

value x∗.

without passing through S) then

P (xA, xB |xS) = P (xA|xS)P (xB |xS) . (9.3)

In such a case the variables xA, xB are said to be conditionally independent.

Proof: It is easy to provide a ‘graphical’ proof of this statement. Notice that, if
the factor graph is disconnected, then variables belonging to distinct components are
independent, cf. Fig. 9.2. Conditioning upon a variable xi is equivalent to eliminating
the corresponding variable node from the graph and modifying the adjacent function
nodes accordingly, cf. Fig. 9.3. Finally, when conditioning upon xS as in Eq. (9.3), the
factor graph gets split in such a way that A and B belong to distinct components. We
leave to the reader the exercise of filling the details. �

It is natural to wonder whether any probability distribution which is ‘globally
Markov’ with respect to a given graph can be written in the form (9.2). In general, the
answer is negative, as can be shown on a simple example. Consider the small factor
graph in Fig. (9.4). The global Markov property has a non trivial content only for
the following choice of subsets: A = {1}, B = {2, 3}, S = {4}. The most general
probability distribution such that x1 is independent from {x2, x3} conditionally to
x4 is of the type fa(x1, x4)fb(x2, x3, x4). The probability distribution encoded by the
factor graph is a special case where fb(x2, x3, x4) = fc(x2, x3)fd(x3, x4)fe(x4, x2).

The factor graph of our counterexample, Fig. 9.4, has a peculiar property: it con-
tains a subgraph (the one with variables {x2, x3, x4}) such that, for any pair of variable
nodes, there is a function node adjacent to both of them. We call any factor subgraph
possessing this property a clique (its definition generalizes the notion of clique in usual
graphs). It turns out that, once one gets rid of cliques, the converse of Proposition
9.2 can be proved. We shall ‘get rid’ of cliques by completing the factor graph. Given
a factor graph F , its completion F is obtained by adding one factor node for each
clique in the graph and connecting it to each variable node in the clique and to no
other node.
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Fig. 9.4 A factor graph with four variables. {x1} and {x2, x3} are independent conditionally

to x4. The set of variables {x2, x3, x4} and the three function nodes connecting two points in

this set form a clique.

Theorem 9.3. (Hammersley-Clifford) Let P (·) be a strictly positive probability
distributions over the variables x = (x1, . . . , xN ) ∈ XN , satisfying the global Markov
property (9.3) with respect to a factor graph F . Then P can be written in the factorized
form (9.2), with respect to the completed graph F .

Roughly speaking: the only assumption behind the factorized form (9.2) is the rather
weak notion of locality encoded by the global Markov property. This may serve as
a general justification for studying probability distributions having a factorized form.
Notice that the positivity hypothesis P (x1, . . . , xN ) > 0 is not just a technical assump-
tion: there exist counterexamples to the Hammersley-Clifford theorem if P is allowed
to vanish.

9.1.2 Examples

Let us look at a few examples.
We start with the Markov chains. The random variables X1, . . . ,XN taking values

in the finite state space X form a Markov chain of order r (with r < N) if

P (x1 . . . xN ) = P0(x1 . . . xr)

N−1∏

t=r

w(xt−r+1 . . . xt → xt+1) , (9.4)

for some non-negative transition probabilities {w(x−r . . . x−1 → x0)}, and initial con-
dition P0(x1 . . . xr), satisfying the normalization conditions

∑

x1...xr

P0(x1 . . . xr) = 1 ,
∑

x0

w(x−r . . . x−1 → x0) = 1 . (9.5)

The parameter r is the ‘memory range’ of the chain. Ordinary Markov chains have
r = 1. Higher order Markov chains allow to model more complex phenomena. For
instance, in order to get a reasonable probabilistic model of the English language with
the usual alphabet X = {a,b,. . . z, blank} as state space, it is reasonable to choose r
of the order of the average word length.

It is clear that Eq. (9.4) is a particular case of the factorized form (9.2). The
corresponding factor graph includes N variable nodes, one for each variable xi, N − r
function nodes, one for each of the factors w(·), and one function node for the initial
condition P0(·). In Fig. 9.5 we present a small example with N = 6 and r = 2.
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Fig. 9.5 On the left: factor graph for a Markov chain of length N = 6 and memory range

r = 2. On the right: by adding auxiliary variables, the same probability distribution can be

written as a Markov chain with memory range r = 1.

Exercise 9.1 Show that a Markov chain with memory r and state space X can always be
rewritten as a Markov chain with memory 1 and state space X r.
[Hint: The transition probabilities ŵ of the new chain are given in terms of the original ones

ŵ(~x→ ~y) =


w(x1, . . . , xr → yr) if x2 = y1, x3 = y2, . . . xr = yr−1 ,
0 otherwise,

(9.6)

where we used the shorthands ~x ≡ (x1, . . . , xr) and ~y = (y1, . . . , yr)].
Figure 9.5 shows the reduction to an order 1 Markov chain in the factor graph language.

What is the content of the global Markov property for Markov chains? Let us start
from the case of order 1 chains. Without loss of generality we can choose S as containing
one single variable node (let’s say the i-th one) while A and B are, respectively the
nodes on the left and on the right of i: A = {1, . . . , i−1} and B = {i+1, . . . , N}. The
global Markov property reads

P (x1 . . . xN |xi) = P (x1 . . . xi−1|xi)P (xi+1 . . . xN |xi) , (9.7)

which is just a rephrasing of the usual Markov condition: Xi+1 . . . XN depend upon
X1 . . . Xi uniquely through Xi. We invite the reader to discuss the global Markov
property for order-r Markov chains.

Our second example is borrowed from coding theory. Consider the code C of block-
length N = 7 defined by the codebook:

C = {(x1, x2, x3, x4) ∈ {0, 1}4 | x1 ⊕ x3 ⊕ x5 ⊕ x7 = 0 , (9.8)

x2 ⊕ x3 ⊕ x6 ⊕ x7 = 0 , x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0} .

Let µ0(x) be the uniform probability distribution over the codewords. Then:

µ0(x) =
1

Z0
I(x1 ⊕ x3 ⊕ x5 ⊕ x7 = 0) I(x2 ⊕ x3 ⊕ x6 ⊕ x7 = 0) · (9.9)

· I(x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0) ,

where Z0 = 16 is a normalization constant. This distribution has the form (9.2) and
the corresponding factor graph is reproduced in Fig. 9.6.
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Fig. 9.6 Left: factor graph for the uniform distribution over the code defined in Eq. (9.8).

Right: factor graph for the distribution of the transmitted message conditional to the channel

output. Gray function nodes encode the information carried by the channel output.
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Fig. 9.7 Factor graph for an Edwards-Anderson model with size L = 4 in d = 2 dimensions.

Full squares correspond to pairwise interaction terms −Jijσiσj . Hatched squares denote mag-

netic field terms −Bσi.

Exercise 9.2 Suppose that a codeword in C is transmitted through a binary memoryless
channel, and that the message (y1, y2, . . . , y7) is received. As argued in Chap. 6, in order
to find the codeword which has been sent, one should consider the probability distribution
of the transmitted message conditional to the channel output, cf. Eq. (6.5). Show that the
factor graph representation for this distribution is the one given in Fig. 9.6, right-hand
frame.

Let us now introduce an example from statistical physics. In Sec. 2.6 we introduced
the Edwards-Anderson model, a statistical mechanics model for spin glasses, whose
energy function reads: E(σ) = −∑(ij) Jijσiσj−B

∑
i σi. The Boltzmann distribution

can be written as
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µβ(σ) =

1

Z

∏

(ij)

eβJijσiσj

∏

i

eβBσi , (9.10)

with i runs over the sites of a d-dimensional cubic lattice of side L: i ∈ [L]d, and (ij)
over the couples of nearest neighbors in the lattice. Once again, this distribution admits
a factor graph representation, as shown in Fig. 9.7. This graph includes two types of
function nodes. Nodes corresponding to pairwise interaction terms −Jijσiσj in the
energy function are connected to two neighboring variable nodes. Nodes representing
magnetic field terms −Bσi are connected to a unique variable.

The final example comes from combinatorial optimization: Satisfiability is a deci-
sion problem introduced in Chap. 3. Given N boolean variables x1, . . . , xN ∈ {T, F}
and M logical clauses among them, one is asked to find a truth assignment verifying all
of the clauses. The logical AND of the M clauses is usually called a formula. Consider
for instance the formula over N = 7 variables:

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x5 ∨ x7 ∨ x6) . (9.11)

For a given satisfiability formula, it is quite natural to consider the uniform probability
distribution µsat(x1, . . . , xN ) over the truth assignments which satisfy (9.11)(whenever
there exists at least one such assignment). A little thought shows that such a distri-
bution can be written in the factorized form (9.2). For instance, the formula (9.11)
yields

µsat(x1, . . . , x7) =
1

Zsat
I(x1 ∨ x2 ∨ x4) I(x2 ∨ x3 ∨ x5)) I(x4 ∨ x5) ·

·I(x5 ∨ x7 ∨ x6) , (9.12)

where Zsat is the number of distinct truth assignment which satisfy Eq. (9.11). We
invite the reader to draw the corresponding factor graph.

Exercise 9.3 Consider the problem of coloring a graph G with q colors, already encoun-
tered in Sec. 3.3. Build a factor graph representation for this problem, and write the as-
sociated compatibility functions. [Hint: in the simplest such representation the number of
function nodes is equal to the number of edges of G, and every function node has degree 2.]

9.2 Ensembles of factor graphs: definitions

We shall be generically interested in understanding the properties of ensembles of
probability distributions taking the factorized form (9.2). We introduce here a few
useful ensembles of factor graphs. In the simple case where every function node has
degree 2, factor graphs are in one to one correspondence with usual graphs, and we
are just treating random graph ensembles, as first studied by Erdös and Renyi. The
case of arbitrary factor graphs is a simple generalization. From the graph theoretical
point of view they can be regarded either as hyper-graphs (by associating a vertex
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to each variable node and an hyper-edge to each function node), or as bipartite graphs
(variable and function nodes are both associated to vertices in this case).

For any integer k ≥ 1, the random k-factor graph with M function nodes and N
variables nodes is denoted by GN (k,M), and is defined as follows. For each function
node a ∈ {1 . . .M}, the k-uple ∂a is chosen uniformly at random among the

(
N
k

)

k-uples in {1 . . . N}.
Sometimes, one may encounter variations of this basic distribution. For instance,

it can be useful to prevent any two function nodes to have the same neighborhood,
by imposing the condition ∂a 6= ∂b for any a 6= b. This can be done in a natural
way through the ensemble GN (k, α) defined as follows. For each of the

(
N
k

)
k-uples

of variables nodes, a function node is added to the factor graph independently with
probability Nα/

(
N
k

)
, and all of the variables in the k-uple are connected to it. The

total number M of function nodes in the graph is a random variable, with expectation
Mav = αN .

In the following we shall often be interested in large graphs (N →∞) with a finite
density of function nodes. In GN (k,M) this means that M →∞, with the ratio M/N
kept fixed. In GN (k, α), the large N limit is taken at α fixed. The exercises below
suggests that, for some properties, the distinction between the two graph ensembles
does not matter in this limit.

Exercise 9.4 Consider a factor graph from the ensemble GN (k,M). What is the prob-
ability pdist that for all couples of function nodes, the corresponding neighborhoods are
distinct? Show that, in the limit N → ∞, M → ∞ with M/N ≡ α and k fixed

pdist =

8
><
>:

O(e−
1
2

α2N ) if k = 1 ,

e−α2

[1 + Θ(N−1)] if k = 2 ,
1 + Θ(N−k+2) if k ≥ 3 .

(9.13)

Exercise 9.5 Consider a random factor graph from the ensemble GN (k, α), in the large
N limit. Show that the probability of getting a number of function nodes M different from
its expectation αN by an ‘extensive’ number (i.e. a number of order N) is exponentially
small. In mathematical terms: there exist a constant A > 0 such that, for any ε > 0,

P [|M −Mav| > Nε] ≤ 2 e−ANε2

. (9.14)

Consider the distribution of a GN (k, α) random graph conditioned on the number of func-

tion nodes being M . Show that this is the same as the distribution of a GN (k,M) random
graph conditioned on all the function nodes having distinct neighborhoods.

An important local property of a factor graph is its degree profile. Given a graph,
we denote by Λi (by Pi) the fraction of variable nodes (function nodes) of degree i.
Notice that Λ ≡ {Λn : n ≥ 0} and P ≡ {Pn : n ≥ 0} are in fact two distributions over
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the non-negative integers (they are both non-negative and normalized). Moreover, they
have non-vanishing weight only on a finite number of degrees (at most N for Λ and
M for P ). The couple (Λ, P ) is called the degree profile of the graph F . A practical
representation of the degree profile is provided by the generating functions Λ(x) =∑
n≥0 Λn x

n and P (x) =
∑
n≥0 Pn x

n. Because of the above remarks, both Λ(x) and
P (x) are in fact finite polynomials with non-negative coefficients. The average variable
node (resp. function node) degree is given by

∑
n≥0 Λn n = Λ′(1) (resp.

∑
n≥0 Pn n =

P ′(1))
If the graph is randomly generated, its degree profile is a random variable. For

instance, in the random k-factor graph ensemble GN (k,M) defined above, the variable
node degree Λ depends upon the graph realization: we shall investigate some of its
properties below. In contrast, its function node profile Pn = I(n = k) is deterministic.

It is convenient to consider ensembles of factor graphs with a prescribed degree
profile. We therefore introduce the ensemble of degree constrained factor graphs
DN (Λ, P ) by endowing the set of graphs with degree profile (Λ, P ) with the uniform
probability distribution. Notice that the number M of function nodes is fixed by the
relation MP ′(1) = NΛ′(1). A special case which is important in this context is that
of random regular graphs in which the degrees of variable nodes is fixed, as well
as the degree of function nodes. In a (l, k) random regular graph, each variable node
has degree l and each function node has degree k, corresponding to Λ(x) = xl and
P (x) = xk.

A degree constrained factor graph ensemble is non-empty only if NΛn and MPn
are integers for any n ≥ 0. Even if these conditions are satisfied, it is not obvious how
to construct efficiently a graph in DN (Λ, P ). Since such ensembles play a crucial role
in the theory of sparse graph codes, we postpone this issue to Chap. 11.

9.3 Random factor graphs: basic properties

For the sake of simplicity, we shall study here only the ensemble GN (k,M) with
k ≥ 2. Generalizations to graphs in DN (Λ, P ) will be mentioned in Sec. 9.5.1 and
further developed in Chap. 11. We study the asymptotic limit of large graphs N →∞
with k (the degree of function nodes) and M/N = α fixed.

9.3.1 Degree profile

The variable node degree profile {Λn : n ≥ 0} is a random variable. By linearity of
expectation E Λn = P[degi = n], where degi is the degree of the node i. Let p be the
probability that a uniformly chosen k-uple in {1, . . . , N} contains i. It is clear that
degi is a binomial random variable (defined in Appendix A.3) with parameters M and
p. Furthermore, since p does not depend upon the site i, it is equal to the probability
that a randomly chosen site belongs to a fixed k-uple. In formulae

P[degi = n] =

(
M

n

)
pn(1− p)M−n , p =

k

N
. (9.15)

If we consider the large graph limit, with n fixed, we get

lim
N→∞

P [degi = n] = lim
N→∞

E Λn = e−kα
(kα)n

n!
. (9.16)
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The degree of site i is asymptotically a Poisson random variable.
How correlated are the degrees of variable nodes? By a simple generalization of the

above calculation, we can compute the joint probability distribution of degi and degj ,
with i 6= j. Think of constructing the graph by choosing a k-uple of variable nodes at
a time and adding the corresponding function node to the graph. Each node can have
one of four possible ‘fates’: it connects to both nodes i and j (with probability p2); it
connects only to i or only to j (each case has probability p1); it connects neither to i nor
to j (probability p0 ≡ 1−2p1−p2). A little thought shows that p2 = k(k−1)/N(N−1),
p1 = k(N − k)/N(N − 1) and

P[degi = n, degj = m] =

min(n,m)∑

l=0

(
M

n− l, m− l, l

)
pl2p

n+m−2l
1 pM−n−m+l

0 (9.17)

where l is the number of function nodes which connect both to i and to j and we used
the standard notation for multinomial coefficients (see Appendix A).

Once again, it is illuminating to look at the large graphs limit N → ∞ with n
and m fixed. It is clear that the l = 0 term dominates the sum (9.17). In fact, the
multinomial coefficient is of order Θ(Nn+m−l) and the various probabilities are of
order p0 = Θ(1), p1 = Θ(N−1), p2 = Θ(N−2). Therefore the l-th term of the sum is
of order Θ(N−l). Elementary calculus then shows that

P[degi = n, degj = m] = P[degi = n] P[degj = m] + Θ(N−1) . (9.18)

This shows that, asymptotically, the nodes’ degrees are pairwise independent Poisson
random variables. This fact can be used to show that the degree profile {Λn : n ≥ 0}
is, for large graphs, close to its expectation. In fact

E

[
(Λn − EΛn)

2
]

=
1

N2

N∑

i,j=1

{
P[degi = n, degj = n]− P[degi = n]P[degj = n]

}

= Θ(N−1) , (9.19)

which implies, via Chebyshev inequality, P(|Λn − EΛn| ≥ δ EΛn) = Θ(N−1) for any
δ > 0.

The pairwise independence expressed in Eq. (9.18) is essentially a consequence of
the fact that, given two distinct variable nodes i and j the probability that they are
connected to the same function node is of order Θ(N−1). It is easy to see that the
same property holds when we consider any finite number of variable nodes. Suppose
now that we look at a factor graph from the ensemble GN (k,M) conditioned to the
function node a being connected to variable nodes i1, . . . , ik. What is the distribution
of the residual degrees deg′i1 , . . . , deg′ik (by residual degree deg′i, we mean the degree of
node i once the function node a has been pruned from the graph)? It is clear that the
residual graph is distributed according to the ensemble GN (k,M − 1). Therefore the
residual degrees are (in the large graph limit) independent Poisson random variables
with mean kα. We can formalize these simple observations as follows.

Proposition 9.4 Let i1, . . . , in ∈ {1, . . . , N} be n distinct variable nodes, and G a
random graph from GN (k,M) conditioned to the neighborhoods of m function nodes
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a1, . . . , am being ∂a1, . . . , ∂am. Denote by deg′i the degree of variable node i once
a1, . . . , am have been pruned from the graph. In the limit of large graphs N → ∞
with M/N ≡ α, k, n and m fixed, the residual degrees deg′i1 , . . . , deg′in converge in
distribution to independent Poisson random variables with mean kα.

This property is particularly useful when investigating the local properties of a GN (k,Nα)
random graph. In particular, it suggests that such local properties are close to the ones
of the ensemble DN (Λ, P ), where P (x) = xk and Λ(x) = exp[kα(x− 1)].

A remark: in the above discussion we have focused on the probability of finding a
node with some constant degree n in the asymptotic limit N →∞. One may wonder
whether, in a typical graph G ∈ GN (k,M) there may exist some variable nodes with
exceptionally large degrees. The exercise below shows that this is not the case.

Exercise 9.6 We want to investigate the typical properties of the maximum variable node
degree ∆(G) in a random graph G from GN (k,M).

(a) Let nmax be the smallest value of n > kα such that NP[degi = n] ≤ 1. Show that ∆(G) ≤
nmax with probability approaching one in the large graph limit. [Hint: Show that NP[degi =
nmax + 1] → 0 at large N ]

(b) Show that the following asymptotic form holds for nmax:

nmax

kαe
=

z

log(z/ log z)

»
1 + Θ

„
log log z

(log z)2

«–
, (9.20)

where z ≡ (logN)/(kαe).

(c) Let nmax be the largest value of n such that NP[degi = n] ≥ 1. Show that ∆(G) ≥ nmax

with probability approaching one in the large graph limit. [Hints: Show that NP[degi =
nmax − 1] → ∞ at large N ; Apply the second moment method to Zl, the number of nodes
of degree l.]

(d) What is the asymptotic behavior of nmax? How does it compare to nmax?

9.3.2 Small subgraphs

The next simplest question one may ask, concerning a random graph, is the occurrence
in it of a given small subgraph. We shall not give a general treatment of the problem
here, but rather work out a few simple examples.

Let’s begin by considering a fixed k-uple of variable nodes i1, . . . , ik and ask for the
probability p that they are connected by a function node in a graph G ∈ GN (k,M).
In fact, it is easier to compute the probability that they are not connected:

1− p =

[
1−

(
N

k

)−1
]M

. (9.21)

The quantity in brackets is the probability that a given function node is not a neighbor
of i1, . . . , ik. It is raised to the power M because the M function nodes are independent



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

112 Factor graphs and graph ensembles

Fig. 9.8 A factor graph from the GN (k,M) with k = 3, N = 23 and M = 8. It contains

Zisol = 3 isolated function nodes, Zisol,2 = 1 isolated couples of function nodes and Zcycle,3 = 1

cycle of length 3. The remaining 3 variable nodes have degree 0.

in the model GN (k,M). In the large graph limit, we get

p =
αk!

Nk−1
[1 + Θ(N−1)] . (9.22)

This confirms an observation of the previous section: for any fixed set of nodes, the
probability that a function node connects any two of them vanishes in the large graph
limit.

As a first example, let’s ask how many isolated function nodes appear in a graph
G ∈ GN (k,M). We say that a node is isolated if all the neighboring variable nodes
have degree one. Call the number of such function nodes Zisol. It is easy to compute
the expectation of this quantity

EZisol = M

[(
N

k

)−1(
N − k
k

)]M−1

. (9.23)

The factor M is due to the fact that each of the M function nodes can be isolated.
Consider one such node a and its neighbors i1, . . . , ik. The factor in

(
N
k

)−1(N−k
k

)
is the

probability that a function node b 6= a is not incident on any of the variables i1, . . . , ik.
This must be counted for any b 6= a, hence the exponent M − 1. Once again, things
become more transparent in the large graph limit:

EZisol = Nαe−k
2α[1 + Θ(N−1)] . (9.24)

So, there is a non-vanishing density of isolated function nodes, EZisol/N . This density
approaches 0 at small α (because there are few function nodes) and at large α (because
function nodes are unlikely to be isolated). A more refined analysis shows that indeed
Zisol is tightly concentrated around its expectation: the probability of an order N
fluctuation vanishes exponentially as N →∞.

There is a way of getting the asymptotic behavior (9.24) without going through the
exact formula (9.23). We notice that EZisol is equal to the number of function nodes
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(M = Nα) times the probability that the neighboring variable nodes i1, . . . , ik have
degree 0 in the residual graph. Because of Proposition 9.4, the degrees deg′i1 , . . . , deg′ik
are approximatively i.i.d. Poisson random variables with mean kα. Therefore the prob-
ability for all of them to vanish is close to (e−kα)k = e−k

2α.
Of course this last type of argument becomes extremely convenient when consider-

ing small structures which involve more than one function node. As a second example,
let us compute the number Zisol,2 of couples of function nodes which have exactly
one variable node in common and are isolated from the rest of the factor graph (for
instance in the graph of Fig. 9.8, we have Zisol,2 = 1). One gets

EZisol,2 =

(
N

2k − 1

)
· k
2

(
2k − 1

k

)
·
(

αk!

Nk−1

)2

· (e−kα)2k−1

[
1 + Θ

(
1

N

)]
. (9.25)

The first factor counts the ways of choosing the 2k − 1 variable nodes which support
the structure. Then we count the number of way of connecting two function nodes to
(2k − 1) variable nodes in such a way that they have only one variable in common.
The third factor is the probability that the two function nodes are indeed present
(see Eq. (9.22)). Finally we have to require that the residual graph of all the (2k − 1)
variable nodes is 0, which gives the factor (e−kα)2k−1. The above expression is easily
rewritten as

EZisol,2 = N · 1
2
(kα)2 e−k(2k−1)α [1 + Θ(1/N)] . (9.26)

With some more work one can prove again that Zisol,2 is in fact concentrated around
its expected value: a random factor graph contains a finite density of isolated couples
of function nodes.

Let us consider, in general, the number of small subgraphs of some definite type.
Its most important property is how it scales with N in the large N limit. This is easily
found. For instance let’s have another look at Eq. (9.25): N enters only in counting
the (2k − 1)-uples of variable nodes which can support the chosen structure, and in
the probability of having two function nodes in the desired positions. In general, if we
consider a small subgraph with v variable nodes and f function nodes, the number
Zv,f of such structures has an expectation which scales as:

EZv,f ∼ Nv−(k−1)f . (9.27)

This scaling has important consequences on the nature of small structures which ap-
pear in a large random graph. For discussing such structures, it is useful to introduce
the notions of ‘connected (sub-)graph’, of ‘tree’, of ‘path’ in a factor graph exactly in
the same way as in usual graphs, whereby both variable and function nodes are viewed
as vertices (see Chap. 3). We further define a component of the factor graph G as
a subgraph C which is is connected and isolated, in the sense that there is no path
between a node of C and a node of G\C

Consider a connected factor graph with v variable nodes and f function nodes, all
of them having degree k. This graph is a tree if and only if v = (k−1)f+1. Call Ztree,v

the number of isolated trees over v variable nodes which are contained in a GN (k,M)
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random graph. Because of Eq. (9.27), we have EZtree,v ∼ N : a random graph contains
a finite density (when N →∞) of trees of any finite size. On the other hand, connected
subgraphs which are not trees must have v < (k − 1)f + 1, and Eq. (9.27) shows that
their number does not grow with N . In other words, most (more precisely, all but a
vanishing fraction) of finite components of a random factor graph are trees.

Exercise 9.7 Consider the largest component in the graph of Fig. 9.8 (the one with three
function nodes), and let Zcycle,3 be the number of times it occurs as a component of a
GN (k,M) random graph. Compute EZcycle,3 in the large graph limit.

Exercise 9.8 A factor graph is said to be unicyclic if it contains a unique (up to shifts)
closed, self-avoiding path ω0, ω1, . . . , ωℓ = ω0 (‘self-avoiding’ means that for any t, s ∈
{0 . . . ℓ− 1} with t 6= s, one has ωt 6= ωs).

(a) Show that a connected factor graph with v variable nodes and f function nodes, all of them
having degree k is unicyclic if and only if v = (k − 1)f .

(b) Let Zcycle,v(N) be the number of unicyclic components over v nodes in a GN (k,M) random
graph. Use Eq. (9.27) to show that Zcycle,v is finite with high probability in the large graph
limit. More precisely, show that limn→∞ limN→∞ PGN

[Zcycle,v ≥ n] = 0.

9.4 Random factor graphs: The giant component

We have just argued that most finite size components of a GN (k, αN) factor graph
are trees in the large N limit. However, finite size tree do not always exhaust the
graph. It turns out that when α becomes larger than a threshold value, a ‘giant com-
ponent’ appears in the graph. This is a connected component containing an extensive
(proportional to N) number of variable nodes, with many cycles.

9.4.1 Nodes in finite trees

We want to estimate which fraction of a random graph from the GN (k, αN) ensemble
is covered by finite size trees. This fraction is defined as:

xtr(α, k) ≡ lim
s→∞

lim
N→∞

1

N
ENtrees,s , (9.28)

where Ntrees,s is the number of sites contained in trees of size not larger than s. In
order to compute ENtrees,s, we use the number of trees of size equal to s, which we
denote by Ztrees,s. Using the approach discussed in the previous Section, we get
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ENtrees,s =

s∑

v=0

v · EZtrees,v = (9.29)

=
s∑

v=0

v

(
N

v

)
· Tk(v) ·

(
αk!

Nk−1

) v−1
k−1

· (e−kα)v
[
1 + Θ

(
1

N

)]
=

= N(αk!)−1/(k−1)
s∑

v=0

1

(v − 1)!
Tk(v)

[
(αk!)

1
k−1 e−kα

]v
+ Θ(1) ,

where Tk(v) is the number of trees which can be built out of v distinct variable nodes
and f = (v − 1)/(k − 1) function nodes of degree k. The computation of Tk(v) is a
classical piece of enumerative combinatorics which is developed in Sec. 9.4.3 below.
The result is

Tk(v) =
(v − 1)! vf−1

(k − 1)!ff !
, (9.30)

and the generating function T̂k(z) =
∑∞
v=1 Tk(v)z

v/(v − 1)!, which we need in order
to compute ENtrees,s from (9.29), is found to satisfy the self consistency equation:

T̂k(z) = z exp

{
T̂k(z)

k−1

(k − 1)!

}
. (9.31)

It is a simple exercise to see that, for any z ≥ 0, this equation has two solutions such
that T̂k(z) ≥ 0, the relevant one being the smallest of the two (this is a consequence

of the fact that T̂k(z) has a regular Taylor expansion around z = 0). Using this

characterization of T̂k(z), one can show that xtr(α, k) is the smallest positive solution
of the equation

xtr = exp
(
−kα+ kαxk−1

tr

)
. (9.32)

This equation is solved graphically in Fig. 9.9, left frame. In the range α ≤ αp ≡
1/(k(k − 1)), the only non-negative solution is xtr = 1: all but a vanishing fraction
of nodes belong to finite size trees. When α > αp, the solution has 0 < xtr < 1: the
fraction of nodes in finite trees is strictly smaller than one.

9.4.2 Size of the giant component

This result is somewhat surprising. For α > αp, a strictly positive fraction of variable
nodes does not belong to any finite tree. On the other hand, we saw in the previous
Section that finite components with cycles contain a vanishing fraction of nodes. Where
are the other N(1− xtr) nodes? It turns out that, roughly speaking, they belong to a
unique connected component, the so-called giant component, which is not a tree. One
basic result describing this phenomenon is the following.
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Fig. 9.9 Left: graphical representation of Eq. (9.32) for the fraction of nodes of a GN (k,M)

random factor graph that belong to finite-size tree components. The curves refer to k = 3

and (from top to bottom) α = 0.05, 0.15, 0.25, 0.35, 0.45. Right: typical size of the giant

component.

Theorem 9.5 Let X1 be the size of the largest connected component in a GN (k,M)
random graph with M = N [α + oN (1)], and xG(α, k) = 1 − xtr(α, k) where xtr(α, k)
is defined as the smallest solution of (9.32). Then, for any positive ε,

|X1 −NxG(α, k)| ≤ Nε , (9.33)

with high probability.

Furthermore, the giant component contains many loops. Let us define the cyclic num-
ber c of a factor graph containing v vertices and f function nodes of degree k, as
c = v− (k−1)f −1. Then the cyclic number of the giant component is c = Θ(N) with
high probability.

Exercise 9.9 Convince yourself that there cannot be more than one component of size
Θ(N). Here is a possible route. Consider the event of having two connected components
of sizes ⌊Ns1⌋ and ⌊Ns2⌋ for two fixed positive numbers s1 and s2 in a GN (k,M) random
graph with M = N [α + oN (1)] (with α ≥ s1 + s2). In order to estimate the probability of
such an event, imagine constructing the GN (k,M) graph by adding one function node at a
time. Which condition must hold when the number of function nodes is M − ∆M? What
can happen to the last ∆M nodes? Now take ∆M = ⌊Nδ⌋ with 0 < δ < 1.

The appearance of a giant component is sometimes referred to as percolation on
the complete graph and is one of the simplest instance of a phase transition. We
shall now give a simple heuristic argument which predicts correctly the typical size of
the giant component. This argument can be seen as the simplest example of the ‘cavity
method’ that we will develop in the next Chapters. We first notice that, by linearity
of expectation, EX1 = NxG, where xG is the probability that a given variable node i
belongs to the giant component. In the large graph limit, site i is connected to l(k−1)
distinct variable nodes, l being a Poisson random variable of mean kα (see Sec. 9.3.1).
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Tree
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Tree

Tree =

root
root(1)

root(2)

root(n)

Fig. 9.10 A rooted tree G on v + 1 vertices can be decomposed into a root and the union

of n rooted trees G1, . . . , Gn, respectively on v1, . . . , vn vertices.

The node i belongs to the giant component if any of its l(k− 1) neighbors does. If we
assume that the l(k− 1) neighbors belong to the giant component independently with
probability xG, then we get

xG = El[1− (1− xG)l(k−1)] . (9.34)

where l is Poisson distributed with mean kα. Taking the expectation, we get

xG = 1− exp[−kα+ kα(1− xG)k−1] , (9.35)

which coincides with Eq. (9.32) if we set xG = 1− xtr.
The above argument has several flaws but only one of them is serious. In writing

Eq. (9.34), we assumed that the probability that none of l randomly chosen variable
nodes belongs to the giant component is just the product of the probabilities that
each of them does not. In the present case it is not difficult to fix the problem, but
in subsequent Chapters we shall see several examples of the same type of heuristic
reasoning where the solution is less straightforward.

9.4.3 Appendix: counting trees

This section is a technical appendix devoted to the computation Tk(v), the number
of trees with v variable nodes, when function nodes have degree k. Let us begin by
considering the case k = 2. Notice that, if k = 2, we can uniquely associate to any
factor graph F an ordinary graph G obtained by replacing each function node by
an edge joining the neighboring variables (for basic definitions on graphs we refer to
Chap. 3). In principle G may contain multiple edges but this does not concern us as
long as we stick to F being a tree. Therefore T2(v) is just the number of ordinary (non-
factor) trees on v distinct vertices. Rather than computing T2(v) we shall compute the
number T ∗2 (v) of rooted trees on v distinct vertices. Recall that a rooted graph is just
a couple (G, i∗) where G is a graph and i∗ is a distinguished node in G. Of course we
have the relation T ∗2 (v) = vT2(v).

Consider now a rooted tree on v+ 1 vertices, and assume that the root has degree
n (of course 1 ≤ n ≤ v). Erase the root together with its edges and mark the n vertices
that were connected to the root. One is left with n rooted trees of sizes v1, . . . , vn such
that v1 + · · ·+ vn = v. This naturally leads to the recursion
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T ∗2 (v + 1) = (v + 1)
v∑

n=1

1

n!

∑

v1...vn>0
v1+···+vn=v

(
v

v1, · · · , vn

)
T ∗2 (v1) · · ·T ∗2 (vn) , (9.36)

which holds for any v ≥ 1. Together with the initial condition T ∗2 (1) = 1, this relation
allows to determine recursively T ∗2 (v) for any v > 0. This recursion is depicted in
Fig. 9.10.

The recursion is most easily solved by introducing the generating function T̂ (z) =∑
v>0 T

∗
2 (v) zv/v!. Using this definition in Eq. (9.36), we get

T̂ (z) = z exp{T̂ (z)} , (9.37)

which is closely related to the definition of Lambert’s W function (usually written as

W (z) exp(W (z)) = z). One has in fact the identity T̂ (z) = −W (−z). The expansion of

T̂ (z) in powers of z can be obtained through Lagrange’s inversion method (see Exercise
below). We get T ∗2 (v) = vv−1, and therefore T2(v) = vv−2. This result is known as
Cayley formula and is one of the most famous results in enumerative combinatorics.

Exercise 9.10 Assume that the generating function A(z) =
P

n>0Anz
n is solution of the

equation z = f(A(z)), with f an analytic function such that f(0) = 0 and f ′(0) = 1. Use
Cauchy formula An =

H
dz
2πi

z−n−1A(z) to show that

An = coeff
˘
f ′(x) (x/f(x))n+1; xn−1¯ . (9.38)

Use this result, known as ‘Lagrange inversion method’, to compute the power expansion of
bT (z) and prove Cayley formula T2(v) = vv−2.

Let us now return to the generic k case. The reasoning is similar to the k = 2 case.
One finds after some work that the generating function T̂k(z) ≡

∑
v>0 T

∗
k (v)zv/v!

satisfies the equation:

T̂k(z) = z exp

{
T̂k(z)

k−1

(k − 1)!

}
, (9.39)

from which one deduces the number of trees with v variable nodes:

T ∗k (v) =
v! vf−1

(k − 1)!ff !
. (9.40)

In this expression the number of function nodes f is fixed by v = (k − 1)f + 1.

9.5 The locally tree-like structure of random graphs

9.5.1 Neighborhood of a node

There exists a natural notion of distance between variable nodes of a factor graph.
Given a path (ω0, . . . , ωℓ) on the factor graph, we define its length as the number of
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function nodes in it. Then the distance between two variable nodes is defined as the
length of the shortest path connecting them (by convention it is set to +∞ when the
nodes belong to distinct connected components). We also define the neighborhood
of radius r of a variable node i, denoted by Bi,r(F ) as the subgraph of F including all
the variable nodes at distance at most r from i, and all the function nodes connected
only to these variable nodes.

What does the neighborhood of a typical node look like in a random graph? It
is convenient to step back for a moment from the GN (k,M) ensemble and consider

a degree-constrained factor graph F
d
= DN (Λ, P ). We furthermore define the edge

perspective degree profiles as λ(x) ≡ Λ′(x)/Λ′(1) and ρ(x) ≡ P ′(x)/P ′(1). These
are polynomials

λ(x) =

lmax∑

l=1

λl x
l−1 , ρ(x) =

kmax∑

k=1

ρk x
k−1 , (9.41)

where λl (respectively ρk) is the probability that a randomly chosen edge in the graph
is adjacent to a variable node (resp. function node) of degree l (degree k). The explicit
formulae

λl =
lΛl∑
l′ l
′Λl′

, ρk =
kPk∑
k′ k
′Pk′

, (9.42)

are derived by noticing that the graph F contains nlΛl (resp. mkPk) edges adjacent
to variable nodes of degree l (resp. function nodes of degree k).

Imagine constructing the neighborhoods of a node i of increasing radius r. Given
Bi,r(F ), let i1, . . . , iL be the nodes at distance r from i, and deg′i1 , . . . , deg′iL their
degrees in the residual graph F \Bi,r(F ). Arguments analogous to the ones leading to
Proposition 9.4 imply that deg′i1 , . . . , deg′iL are asymptotically i.i.d. random variables
with deg′in = ln−1, and ln distributed according to λln . An analogous result holds for
function nodes (just invert the roles of variable and function nodes).

This motivates the following definition of an r-generations tree ensemble Tr(Λ, P ).
If r = 0 there is a unique element in the ensemble: a single isolated node, which is
attributed the generation number 0. If r > 0, first generate a tree from the Tr−1(Λ, P )
ensemble. Then for each variable-node i of generation r − 1 draw an independent
integer li ≥ 1 distributed according to λl and add to the graph li − 1 function nodes
connected to the variable i (unless r = 1, in which case li function nodes are added,
with li distributed according to Λli). Next, for each of the newly added function nodes
{a}, draw an independent integer ka ≥ 1 distributed according to ρk and add to the
graph ka − 1 variable nodes connected to the function a. Finally, the new variable
nodes are attributed the generation number r. The case of uniformly chosen random
graphs where function nodes have a fixed degree, k, corresponds to the tree ensemble
Tr(e

kα(x−1), xk). In this case, it is easy to check that the degrees in the residual graph
have a Poisson distribution with mean kα, in agreement with proposition 9.4. With
a slight abuse of notation, we shall use the shorthand Tr(k, α) to denote this tree
ensemble.
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It is not unexpected that Tr(Λ, P ) constitutes a good model for r-neighborhoods
in the degree-constrained ensemble. Analogously, Tr(k, α) is a good model for r-
neighborhoods in the GN (k,M) ensemble when M ≃ Nα. This is made more precise
below.

Theorem 9.6 Let F be a random factor graph in the DN (Λ, P ) ensemble (respectively
in the GN (k,M) ensemble), let i be a uniformly random variable node in F , and r
a non-negative integer. Then Bi,r(F ) converges in distribution to Tr(Λ, P ) (resp. to
Tr(k, α)) as N →∞ with Λ, P fixed (α, k fixed).

In other words, the factor graph F looks locally like a random tree from the ensemble
Tr(Λ, P ).

9.5.2 Loops

We have seen that in the large graph limit, a factor graph F
d
= GN (k,M) converges

locally to a tree. Furthermore, it has been shown in Sec. 9.3.2 that the number of
‘small’ cycles in such a graph is only Θ(1) an N → ∞. It is therefore natural to
wonder at which distance from any given node loops start playing a role.

More precisely, let i be a uniformly random node in F . We would like to know
what is the typical length of the shortest loop through i. Of course, this question has
a trivial answer if k(k − 1)α < 1, since in this case most of the variable nodes belong
to small tree components, cf. Sec. 9.4. We shall hereafter consider k(k − 1)α > 1.

A heuristic guess of the size of this loop can be obtained as follows. Assume that the
neighborhood Bi,r(F ) is a tree. Each function node has k−1 adjacent variable nodes at
the successive generation. Each variable node has a Poisson number adjacent function
nodes at the successive generation, with mean kα. Therefore the average number of
variable nodes at a given generation is [k(k − 1)α] times the number at the previous
generation. The total number of nodes in Bi,r(F ) is about [k(k− 1)α]r, and loops will
appear when this quantity becomes comparable with the total number of nodes in the
graph. This yields [k(k− 1)α]r = Θ(N), or r = logN/ log[k(k− 1)α]. This is of course
a very crude argument, but it is also a very robust one: one can for instance change
N with N1±ε affecting uniquely the prefactor. It turns out that the result is correct,
and can be generalized to the DN (Λ, P ) ensemble:

Proposition 9.7 Let F be a random factor graph in the DN (Λ, P ) ensemble (in the
GN (k,M) ensemble), let i be a uniformly chosen random variable node in F , and
ℓi the length of the shortest loop in F through i. Assume that c = λ′(1)ρ′(1) > 1
(c = k(k − 1)α > 1). Then, with high probability,

ℓi =
logN

log c
[1 + o(1)] . (9.43)

We shall refer the reader to the literature for the proof, the following exercise gives a
slightly more precise, but still heuristic, version of the previous argument.
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Exercise 9.11 Assume that the neighborhood Bi,r(F ) is a tree and that it includes n
‘internal’ variables nodes (i.e. nodes whose distance from i is smaller than r), nl ‘boundary’
variable nodes (whose distance from i is equal to r), and m function nodes. Let Fr be the

residual graph, i.e. F minus the subgraph Bi,r(F ). It is clear that Fr
d
= GN−n(k,M −m).

Show that the probability, pr, that a function node of Fr connects two of the variable nodes
on the boundary of Bi,r(F ) is

pr = 1 −
h
(1 − q)k + k (1 − q)k−1 q

iM−m

, (9.44)

where q ≡ nl/(N − n). As a first estimate of pr, we can substitute in this expression nl, n,
m, with their expectations (in the tree ensemble) and call pr the corresponding estimate.

Assuming that r = ρ log N
log[k(k−1)α]

, show that

pr = 1 − exp


−1

2
k(k − 1)αN2ρ−1

ff
[1 +O(N−2+3ρ)] . (9.45)

If ρ > 1/2, this indicates that, under the assumption that there is no loop of length 2r or
smaller through i, there is, with high probability, a loop of length 2r + 1. If, on the other
hand, ρ < 1/2, it indicates that there is no loop of length 2r+ 1 or smaller through i. This

argument suggests that the length of the shortest loop through i is about log N
log[k(k−1)α]

.

Notes

A nice introduction to factor graphs is the paper (Kschischang, Frey and Loeliger,
2001), see also (Aji and McEliece, 2000). They are related to graphical models (Jordan,
1998), to Bayesian networks (Pearl, 1988), and to Tanner graphs in coding (Tanner,
1981). Among the alternatives to factor graphs, it is worth recalling ‘normal realiza-
tions’ discussed by Forney in (Forney, 2001).

The proof of the Hammersley-Clifford theorem (initially motivated by the proba-
bilistic modeling of some physical problems) goes back to 1971. A proof, more detailed
references and some historical comments can be found in (Clifford, 1990).

The theory of random graphs has been pioneered by Erdös and Renyi (Erdös and
Rényi, 1960). The emergence of a giant component in a random graph is a classic result
which goes back to their work. Two standard textbooks on random graphs like (Bol-
lobás, 2001) and (Janson, Luczak and Ruciński, 2000) provide in particular a detailed
study of the phase transition. Graphs with constrained degree profiles were studied in
(Bender and Canfield, 1978). A convenient ‘configuration mode’ for analyzing them
was introduced in (Bollobás, 1980) and allowed for the location of the phase transi-
tion in (Molloy and Reed, 1995). Finally, (Wormald, 1999) provides a useful survey
(including short loop properties) of degree constrained ensembles.

For general background on hyper-graphs, see (Duchet, 1995). The threshold for
the emergence of a giant component in a random hyper-graph with edges of fixed size
k (corresponding to the factor graph ensemble GN (k,M)) is discussed in (Schmidt-
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Pruzan and Shamir, 1985). The neighborhood of the threshold is analyzed in (Karoński
and Luczak, 2002) and references therein.

In enumerating trees we used generating functions. This aproach to combinatorics
is developed thoroughly in (Flajolet and Sedgewick, 2008).

Ensembles with hyper-edges of different sizes were considered recently in combina-
torics (Darling and Norris, 2005), as well as in coding theory (as code ensembles). Our
definitions and notations for degree profiles and degree constrained ensembles follows
the coding literature (Luby, Mitzenmacher, Shokrollahi, Spielman and Stemann, 1997;
Richardson and Urbanke, 2001a).

The local structure of random graphs, and of more complex random objects (in
particular random labeled graphs) is the object of the theory of local weak convergence
(Aldous and Steele, 2003).
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Satisfiability

Because of Cook’s theorem, see Chapter 3, satisfiability lies at the heart of computa-
tional complexity theory: this fact has motivated an intense research activity on this
problem. This Chapter will not be a comprehensive introduction to such a vast topic,
but rather present some selected research directions. In particular, we shall pay special
attention to the definition and analysis of ensembles of random satisfiability instances.
There are various motivations for studying random instances. In order to test and
improve algorithms that aim at solving satisfiability, it is highly desirable to have an
automatic generator of ‘hard’ instances at hand. As we shall see, properly ‘tuned’ en-
sembles provide such a generator. Also, the analysis of ensembles has revealed a rich
structure and stimulated fruitful contacts with other disciplines. The present chapter
focuses on ‘standard’ algorithmic and probabilistic approaches. We shall come back to
satisfiability, using methods inspired from statistical physics, in Ch. ??.

Sec. 10.1 recalls the definition of satisfiability and introduces some standard ter-
minology. A basic, and widely adopted, strategy for solving decision problems consists
in exploring exhaustively the tree of possible assignments of the problem’s variables.
Sec. 10.2 presents a simple implementation of this strategy. In Sec. 10.3 we introduce
some important ensembles of random instances. The hardness of satisfiability depends
on the maximum clause length. When clauses have length 2, the decision problem is
solvable in polynomial time. This is the topic of Sec. 10.4. Finally, in Sec. 10.5 we
discuss the existence of a phase transition for random K-satisfiability with K ≥ 3,
when the density of clauses is varied, and derive some rigorous bounds on the location
of this transition.

10.1 The satisfiability problem

10.1.1 SAT and UNSAT formulas

An instance of the satisfiability problem is defined in terms of N Boolean variables,
and a set of M constraints between them, where each constraint takes the special
form of a clause. A clause is the logical OR of some variables or their negations. Here
we shall adopt the following representation: a variable xi, with i ∈ {1, . . . , N}, takes
values in {0, 1}, 1 corresponding to ‘true’, and 0 to ‘false’; the negation of xi is xi ≡
1− xi. A variable or its negation is called a literal, and we shall denote it by zi, with
i ∈ {1, . . . , N} (therefore zi denotes any of xi, xi). A clause a, with a ∈ {1, ...,M},
involvingKa variables is a constraint which forbids exactly one among the 2Ka possible
assignments to these Ka variables. It is written as the logical OR (denoted by ∨)
function of some variables or their negations. For instance the clause x2∨x12∨x37∨x41
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Fig. 10.1 Factor graph representation of the formula

(x1 ∨ x2 ∨ x4)∧(x1 ∨ x2)∧(x2 ∨ x4 ∨ x5)∧(x1 ∨ x2 ∨ x5)∧(x1 ∨ x3 ∨ x5).

is satisfied by all the variables’ assignments except those where x2 = 0, x12 = 1, x37 =
0, x41 = 1. When it is not satisfied, a clause is said to be violated.

We denote by ∂a the subset {ia1 , . . . , iaKa
} ⊆ {1, . . . , N} containing the indices

of the Ka = |∂a| variables involved in clause a. Then clause a is written as Ca =
zia1 ∨ zia2 ∨ · · · ∨ ziaKa

. An instance of the satisfiability problem can be summarized as

the logical formula (in the so-called conjunctive normal form (CNF)):

F = C1 ∧ C2 ∧ · · · ∧ CM . (10.1)

As we have seen in Sec. 9.1.2, there exists 1 a simple and natural representation
of a satisfiability formula as a factor graph associated with the indicator function
I(x satisfies F ). Actually, it is often useful to use a slightly more elaborate factor
graph with two types of edges: A full edge is drawn between a variable vertex i and
a clause vertex a whenever xi appears in a, and a dashed edge is drawn whenever xi
appears in a. In this way there is a one to one correspondence between a CNF formula
and its graph. An example is shown in Fig. 10.1.

Given the formula F , the question is whether there exists an assignment of the
variables xi to {0, 1} (among the 2N possible assignments), such that the formula F
is true. An algorithm solving the satisfiability problem must be able, given a formula
F , to either answer ‘YES’ (the formula is then said to be SAT), and provide such an
assignment, called a SAT-assignment, or to answer ‘NO’, in which case the formula
is called UNSAT. The restriction of the satisfiability problem obtained by requiring
that all the clauses in F have the same length Ka = K, is called the K-satisfiability
(or K-SAT) problem.

As usual, an optimization problem is naturally associated to the decision version
of satisfiability: Given a formula F , one is asked to find an assignment which violates
the smallest number of clauses. This is called the MAX-SAT problem.

1It may happen that there does not exist any assignment satisfying F , so that one cannot use
this indicator function to define a probability measure. However one can still characterize the local
structure of I(x satisfies F ) by the factor graph
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Exercise 10.1 Consider the 2-SAT instance defined by the formula F1 = (x1 ∨x2)∧ (x2 ∨
x3)∧ (x2 ∨ x4)∧ (x4 ∨ x1)∧ (x3 ∨ x4)∧ (x2 ∨ x3). Show that this formula is SAT and write
a SAT-assignment.
[Hint: assign for instance x1 = 1; the clause x4 ∨ x1 is then reduced to x4, this is a unit
clause which fixes x4 = 1; the chain of ‘unit clause propagation’ either leads to a SAT
assignment, or to a contradiction.]

Exercise 10.2 Consider the 2-SAT formula F2 = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x4 ∨
x1)∧ (x3 ∨ x4)∧ (x2 ∨ x3). Show that this formula is UNSAT by using the same method as
in the previous Exercise.

Exercise 10.3 Consider the 3-SAT formula F3 = (x1∨x2∨x3)∧ (x1∨x3∨x4)∧ (x2∨x3∨
x4)∧(x1∨x2∨x4)∧(x1∨x2∨x4)∧(x1∨x2∨x4)∧(x2∨x3∨x4)∧(x2∨x3∨x4)∧(x1∨x3∨x4).
Show that it is UNSAT.
[Hint: try to generalize the previous method by using a decision tree, cf. Sec. 10.2.2 below,
or list the 16 possible assignments and cross out which one is eliminated by each clause.]

As we already mentioned, satisfiability was the first problem to be proved NP-
complete. The restriction defined by requiring Ka ≤ 2 for each clause a, is polynomial.
However, if one relaxes this condition to Ka ≤ K, with K = 3 or more, the resulting
problem is NP-complete. For instance 3-SAT is NP-complete while 2-SAT is polyno-
mial. It is intuitively clear that MAX-SAT is “at least as hard” as SAT: an instance
is SAT if and only if the minimum number of violated clauses (that is the output of
MAX-SAT) vanishes. It is less obvious that MAX-SAT can be “much harder” than
SAT. For instance, MAX-2-SAT is NP-hard, while as said above, its decision counter-
part is in P.

The study of applications is not the aim of this book, but one should keep in
mind that satisfiability is related to a myriad of other problems, some of which have
enormous practical relevance. It is a problem of direct importance to the fields of
mathematical logic, computing theory and artificial intelligence. Applications range
from integrated circuit design (modeling, placement, routing, testing,. . . ) to computer
architecture design (compiler optimization, scheduling and task partitioning,. . . ) and
to computer graphics, image processing etc. . .

10.2 Algorithms

10.2.1 A simple case: 2-SAT

The reader who worked out Exercises 10.1 and 10.2 has already a feeling that 2-
SAT is an easy problem. The main tool for solving it is the so-called unit clause
propagation (UCP) procedure. If we start from a 2-clause C = z1 ∨ z2 and fix the
literal z1, two things may happen:
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Fig. 10.2 Factor graph representation of the 2SAT formula

F = (x1 ∨ x2)∧(x1 ∨ x3)∧(x2 ∨ x3) (left) and the corresponding directed graph D(F )

(right).

• If we fix z1 = 1 the clause is satisfied and disappears from the formula

• If we fix z1 = 0 the clause is transformed into the unit clause z2 which implies
that z2 = 1.

Given a 2-SAT formula, one can start from a variable xi, i ∈ {1, . . . , N} and fix, for
instance xi = 0. Then apply the reduction rule described above to all the clauses in
which xi or xi appears. Finally, fix recursively in the same way all the literals which
appear in unit clauses. This procedure may halt for one of the following reasons: (i)
the formula does not contain any unit clause; (ii) the formula contains the unit clause
zj together with its negation zj .

In the first case, a partial SAT assignment (i.e. an assignment of a subset of the
variables such that no clause is violated) has been found. We will prove below that
such a partial assignment can be extended to a complete SAT assignment if and only
if the formula is SAT. One therefore repeats the procedure by fixing a not-yet-assigned
variable xj .

In the second case, the partial assignment cannot be extended to a SAT assignment.
One proceeds by changing the initial choice and setting xi = 1. Once again, if the
procedure stops because of reason (i), then the formula can be effectively reduced and
the already-fixed variables do not need to be reconsidered in the following. If on the
other hand, also the choice xi = 1 leads to a contradiction (i.e. the procedure stops
because of (ii)), then the formula is UNSAT.

It is clear that the algorithm defined in this way is very efficient. Its complexity
can be measured by the number of variable-fixing operations that it involves. Since
each variable is considered at most twice, this number is at most 2N .

For proving the correctness of this algorithm, we still have to show the following
fact: if the formula is SAT and UCP stops because of reason (i), then the resulting
partial assignment can be extended to a global SAT assignment (The implication in
the reverse direction is obvious). The key point is that the residual formula is formed
by a subset R of the variables (the ones which have not yet been fixed) together with
a subset of the original clauses (those which involve uniquely variables in R). If a SAT
assignment exists, its restriction to R satisfies the residual formula and constitutes an
extension of the partial assignment generated by UCP.
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Exercise 10.4 Write a code for solving 2-SAT using the algorithm described above.

Exercise 10.5 A nice way to understand UCP, and why it is so effective for 2-SAT, consists
in associating to the formula F a directed graph D(F ) (not to be confused with the factor
graph!) as follows. Associate a vertex to each of the 2N literals (for instance we have one
vertex for x1 and one vertex for x1). Whenever a clause like e.g. x1 ∨ x2 appears in the
formula, we have two implications: if x1 = 1 then x2 = 1; if x2 = 0 then x1 = 0. Represent
them graphically by drawing an directed edge from the vertex x1 toward x2, and an directed
edge from x2 to x1.

Show that F is UNSAT if and only if there exists a variable index i ∈ {1, . . . , N} such
that: D(F ) contains a directed path from xi to xi, and a directed path from xi to xi. [Hint:
Consider the UCP procedure described above and rephrase it in terms of the directed graph
D(F ). Show that it can be regarded as an algorithm for finding a pair of paths from xi to
xi and vice-versa in D(F ).]

Let us finally notice that the procedure described above does not give any clue
about an efficient solution of MAX-2SAT, apart from determining whether the min-
imum number of violated clauses vanishes or not. As already mentioned MAX-2SAT
is NP-hard.

10.2.2 A general complete algorithm

As soon as we allow an unbounded number of clauses of length 3 or larger, satisfiability
becomes an NP-complete problem. Exercise 10.3 shows how the UCP strategy fails:
fixing a variable in a 3-clause may leave a 2-clause. As a consequence, UCP may halt
without contradictions and produce a residual formula containing clauses which were
not present in the original formula. Therefore, it can be that the partial assignment
produced by UCP cannot be extended to a global SAT assignment even if the original
formula is SAT. Once a contradiction is found, it may be necessary to change any
of the choices made so far in order to find a SAT assignment (in contrast to 2SAT
where only the last choice had to be changed). The exploration of all such possibilities
is most conveniently described through a decision tree. Each time a contradiction is
found, the search algorithm backtracks to the last choice for which one possibility was
not explored.

The most widely used complete algorithms (i.e. algorithms which are able to
either find a satisfying assignment, or prove that there is no such assignment) rely on
this idea. They are known under the name DPLL, from the initials of their inventors,
Davis, Putnam, Logemann and Loveland. The basic recursive process is best explained
on an example, as in Fig. 10.3. Its structure can be summarized in few lines, using
the recursive procedure DPLL, which takes as input a CNF formula F , a partial
assignment of the variables A, and the list of indices of unassigned variables V , and
returns either ‘UNSAT’, or a SAT assignment. For solving a problem given by the
CNF formula F , written in terms of the N variables x1, · · · , xN , the initial call to this
procedure should be DPLL(F , ∅, {1, · · · , N}).
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DPLL ( formula F , partial assignment A, unassigned variables V )
1: if V 6= ∅:
2: Choose an index i ∈ V ;
3: B=DPLL(F |{xi = 0}, A ∪ {xi = 0}, V \ i);
4: if B=UNSAT B=DPLL(F |{xi = 1}, A ∪ {xi = 1}, V \ i);
5: else return A ∪ {xi = 0} ∪B;
6: if B=UNSAT return B;
7: else return A ∪ {xi = 1} ∪B;
8: else:
9: if F has no clause return A;
10: else return UNSAT;

The notation F |{xi = 0} refers to the formula obtained from F by assigning xi to 0:
all clauses of F which contain the litteral xi are eliminated, while clauses that contain
xi are shortened, namely y ∨ xi is reduced to y. The reduced formula F |{xi = 1} is
defined analogously.

As shown in Fig. 10.3 the algorithm can be represented as a walk in the decision
tree. When it finds a contradiction, i.e. it reaches an ‘UNSAT’ leaf of the tree, it
backtracks and searches a different branch.

In the above pseudo-code, we did not specify how to select the next variable to
be fixed in step 2. Various versions of the DPLL algorithm differ in the order in
which the variables are taken in consideration and the branching process is performed.
Unit clause propagation can be rephrased in the present setting as the following rule:
whenever the formula F contains clauses of length 1, xi must be chosen among the
variables appearing in such clauses. In such a case, no branching takes place. For
instance, if the literal xi appears in a unit clause, setting xi = 0 would produce an
empty clause and therefore a contradiction: one is forced to set xi = 1.

Apart from the case of unit clauses, deciding on which variable the next branching
will be done is an art, and can result in strongly varying performances. For instance,
it is a good idea to branch on a variable which appears in many clauses, but other
criteria, like the number of unit clauses that a branching will generate, can also be
used. It is customary to characterize the performances of this class of algorithms by
the number of branching nodes it generates. This does not correspond to the actual
number of operations executed, which may depend on the heuristic. However, for many
reasonable heuristics, the actual number of operations is within a polynomial factor
(in the instance size) from the number of branchings and such a factor does not affect
the leading exponential behavior.

Whenever the DPLL procedure does not return a SAT assignment, the formula is
UNSAT: a representation of the explored search tree provides a proof. This is some-
times also called an UNSAT certificate. Notice that the length of an UNSAT certifi-
cate is (in general) larger than polynomial in the input size. This is at variance with
a SAT certificate, which is provided, for instance, by a particular SAT assignment.
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Fig. 10.3 A sketch of the DPLL algorithm, acting on the formula

(x1 ∨ x2 ∨ x3)∧(x1 ∨ x3 ∨ x4)∧(x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x4)∧(x2 ∨ x3 ∨ x4)∧
(x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x3)∧(x1 ∨ x2 ∨ x4). In order to get a more readable figure,

the notation has been simplified: a clause like (x1 ∨ x2 ∨ x4) is denoted here as (1̄ 2 4). One

fixes a first variable, here x1 = 0. The problem is then reduced: clauses containing x1 are

eliminated, and clauses containing x1 are shortened by eliminating the literal x1. Then one

proceeds by fixing a second variable, etc. . . At each step, if a unit clause is present, the next

variable to be fixed is chosen among the those appearing in unit clauses. This corresponds

to the unit clause propagation (UCP) rule. When the algorithm finds a contradiction

(two unit clauses fixing a variable simultaneously to 0 and to 1), it backtracks to the last

not-yet-explored branching node and explores another choice for the corresponding variable.

In this case for instance, the algorithm first fixes x1 = 0, then it fixes x2 = 0, which implies

through UCP that x3 = 0 and x3 = 1. This is a contradiction, and therefore the algorithm

backtracks to the last choice, which was x2 = 0, and tries instead the other choice: x2 = 1,

etc. . . Here, branching follows the order of appearence of variables in the formula.

Exercise 10.6 Resolution and DPLL.

(i) A powerful approach to proving that a formula is UNSAT relies on the idea of the resolu-
tion proof. Imagine that F contains two clauses: xj ∨A, and xj ∨B, where A and B are
subclauses. Show that these two clauses automatically imply the resolvent on xj , that is
the clause A ∨B.

(ii) A resolution proof is constructed by adding resolvent clauses to F . Show that, if this process
produces an empty clause, then the original formula is necessarily UNSAT. An UNSAT
certificate is simply given by the sequence of resolvents leading to the empty clause.

(iii) Although this may look different from DPLL, any DPLL tree is an example of resolution
proof. To see this proceed as follows. Label each ‘UNSAT’ leave of the DPLL tree by the
resolution of a pair of clauses of the original formula which are shown to be contradictory
on this branch (e.g. the leftmost such leaf in Fig. 10.3 corresponds to the pair of initial
clauses x1 ∨ x2 ∨ x3 and x1 ∨ x2 ∨ x3, so that it can be labeled by the resolvent of these
two clauses on x3, namely x1 ∨ x2). Show that each branching node of the DPLL tree can
be labeled by a clause which is a resolvent of the two clauses labeling its children, and that
this process, when carried on an UNSAT formula, produces a root (the top node of the
tree) which is an empty clause.
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10.2.3 Incomplete search

As we have seen above, proving that a formula is SAT is much easier than proving that
it is UNSAT: one ‘just’ needs to exhibit an assignment that satisfies all the clauses. One
can therefore relax the initial objective, and look for an algorithm that only tries to
deal with the first task. This is often referred to as an incomplete search algorithm.
Such an algorithm can either return a satisfying assignment or just say ‘I do not know’
whenever it is unable to find one (or to prove that the formula is UNSAT).

A basic algorithm for incomplete search, due to Schöning, is based on the simple
random walk routine:

Walk (CNF formula F in N variables)
1: for each variable i, set xi = 0 or xi = 1 with probability 1/2;
2: repeat 3N times:
3: if the current assignment satisfies F , return it and stop;
4: else:
5: choose an unsatisfied clause a uniformly at random;
6: choose a variable index i uniformly at random in ∂a;
7: flip the variable i (i.e.: xi ← 1− xi);
8: end

For this algorithm one can obtain a guarantee of performance:

Proposition 10.1 Denote by p(F ) the probability that this routine, when executed on
a formula F , returns a satisfying assignment. If F is SAT, then p(F ) ≥ pN where

pN =
2

3

(
K

2(K − 1)

)N
. (10.2)

One can therefore run the routine many times (with independent random numbers
each time) in order to increase the probability of finding a solution. Suppose that the
formula is SAT. If the routine is run 20/pN times, the probability of not finding any
solution is (1− pN )20/pN ≤ e−20. While this is of course not a proof of unsatisfiability,
it is very close to it. In general, the time required for this procedure to reduce the
error probability below any fixed ε grows as

τN
.
=

(
2(K − 1)

K

)N
. (10.3)

This simple randomized algorithm achieves an exponential improvement over the naive
exhaustive search which takes about 2N operations.

Proof: Let us now prove the lower bound (10.2) on the probability of finding a
satisfying assignment during a single run of the routine Walk. Since, by assumption,
F is SAT, we can consider a particular SAT assignment, let us say x∗. Let xt be the
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assignment produced by Walk(F ) after t spin flips, and dt be the Hamming distance
between x∗ and xt. Obviously, at time 0 we have

P{d0 = d} =
1

2N

(
N

d

)
. (10.4)

Since x∗ satisfies F , each clause is satisfied by at least one variable as assigned in
x∗. Mark exactly one such variable per clause. Each time Walk( · ) chooses a violated
clause, it flips a marked variable with probability 1/K, reducing the Hamming distance
by one. Of course, the Hamming distance can decrease also when another variable is
flipped (if more than one variable in x∗ satisfies this clause). In order to get a bound we

introduce an auxiliary integer variable d̂t which decreases by one each time a marked
variable is selected, and increases by one (the maximum possible increase in Hamming

distance due to a single flip) otherwise. If we choose the initial condition d̂0 = d0, it

follows from the previous observations that dt ≤ d̂t for any t ≥ 0. We can therefore
upper bound the probability that Walk finds a solution by the probability that d̂t = 0
for some 0 ≤ t ≤ 3N . But the random process d̂t = 0 is simply a biased random walk
on the half-line with initial condition (10.4): at each time step it moves to the left with
probability 1/K and to the right with probability 1− 1/K. The probability of hitting
the origin can then be estimated as in Eq. (10.2), as shown in the following exercise.

Exercise 10.7 Analysis of the biased random walk d̂t.

(a) Show that the probability for d̂t to start at position d at t = 0 and be at the origin at time
t is

P
˘
d̂0 = d ; d̂t = 0

¯
=

1

2N

 
N

d

!
1

Kt

 
t

t−d
2

!
(K − 1)

t−d
2 (10.5)

for t+ d even, and vanishes otherwise.

(b) Use Stirling’s formula to derive an approximation of this probability to the leading expo-

nential order: P
˘
d̂0 = d ; d̂t = 0

¯ .
= exp{−NΨ(θ, δ)}, where θ = t/N and δ = d/N .

(c) Minimize Ψ(θ, δ) with respect to θ ∈ [0, 3] and δ ∈ [0, 1], and show that the minimum value
is Ψ∗ = log[2(K − 1)/K]. Argue that pN

.
= exp{−NΨ∗} to the leading exponential order.

�

Notice that the above algorithm applies a very noisy strategy. While ‘focusing’ on
unsatisfied clauses, it makes essentially random steps. The opposite philosophy would
be that of making greedy steps. An example of ‘greedy’ step is the following: flip
a variable which will lead to the largest positive increase in the number of satisfied
clause.

There exist several refinements of the simple random walk algorithm. One of the
greatest improvement consists in applying a mixed strategy: With probability p, pick
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an unsatisfied clause, and flip a randomly chosen variable in this clause (as in Walk);
With probability 1− p, perform a ‘greedy’ step as defined above.

The pseudocode of this “Walksat” algorithm is given below, using the following
notations: E(x) is the number of clauses violated by assignment x = (x1, · · · , xN ) and
x(i) is the assignment obtained from x by flipping xi → 1− xi.

WalkSAT ( CNF formula F , number of flips f , mixing p )
1 : t = 0;
2 : Initialize x to a random assignment;
3 : While t < f do
4 : If x satisfies F , return x;
5 : Let r be uniformly random in [0, 1];
6 : If r < 1− p then
7 : For each i ∈ V , let ∆i = E(x(i))− E(x);
8 : Flip a variable xi for which ∆i is minimal;
9 : else
10: Choose a violated clause a uniformly at random;
11: Flip a uniformly random variable xi, i ∈ ∂a;
12 End-While
13: Return ‘Not found’;

This strategy works reasonably well if p is properly optimized. The greedy steps
drive the assignment toward ‘quasi-solutions’, while the noise term allows to escape
from local minima.

10.3 Random K-satisfiability ensembles

Satisfiability is NP-complete. One thus expects a complete algorithm to take exponen-
tial time in the worst case. However empirical studies have shown that many formulas
are very easy to solve. A natural research direction is therefore to characterize en-
sembles of problems which are easy, separating them from those that are hard. Such
ensembles can be defined by introducing a probability measure over the space of in-
stances.

One of the most interesting family of ensembles is random K-SAT. An instance
of random K-SAT contains only clauses of length K. The ensemble is further charac-
terized by the number of variables N , and the number of clauses M , and denoted as
SATN (K,M). A formula in SATN (K,M) is generated by selecting M clauses of size
K uniformly at random among the

(
N
K

)
2K such clauses. Notice that the factor graph

associated to a random K-SAT formula from the SATN (K,M) ensemble is in fact a
random GN (K,M) factor graph.

It turns out that a crucial parameter characterizing the random K-SAT ensemble
is the clause density α ≡M/N . We shall define the ‘thermodynamic’ limit as M →
∞, N →∞, with fixed density α. In this limit, several important properties of random
formulas concentrate in probability around their typical values.

As in the case of random graphs, it is sometimes useful to consider slight variants
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Fig. 10.4 Probability that a formula generated from the random K-SAT ensemble is satis-

fied, plotted versus the clause density α. Left: K = 2, right: K = 3. The curves have been

generated using a DPLL algorithm. Each point is the result of averaging over 104 random

formulas. The curves for K = 2 correspond to formulas of size N = 50, 100, 200, 400 (from

right to left). In the case K = 3 the curves correspond to N = 50 (full line), N = 100

(dashed), N = 200 (dotted). The transition between satisfiable and unsatisfiable formulas

becomes sharper as N increases.

of the above definition. One such variant is the SATN (K,α) ensemble. A random in-
stance from this ensemble is generated by including in the formula each of the

(
N
K

)
2K

possible clauses independently with probability αN2−K/
(
N
K

)
. Once again, the corre-

sponding factor graph will be distributed according to the GN (K,α) ensemble intro-
duced in Chapter 9. For many properties, differences between such variants vanish in
the thermodynamic limit (this is analogous to the equivalence of different factor graph
ensembles).

10.3.1 Numerical experiments

Using the DPLL algorithm, one can investigate the properties of typical instances of the
random K-SAT ensemble SATN (K,M). Figure 10.4 shows the probability PN (K,α)
that a randomly generated formula is satisfiable, for K = 2 and K = 3. For fixed K
and N , this is a decreasing function of α, which to 1 in the α → 0 limit and goes
to 0 in the α → ∞ limit. One interesting feature in these simulations is the fact
that the crossover from high to low probability becomes sharper and sharper when
N increases. This numerical result points at the existence of a phase transition at a
finite value αs(K): for α < αs(K) (α > αs(K)) a random K-SAT formula is SAT
(respectively, UNSAT) with probability approaching 1 as N →∞.

The conjectured phase transition in random satisfiability problems with K ≥ 3
has drawn considerable attention. One important reason comes from the study of
the computational effort needed to solve the problem. Figure 10.5 shows the typical
number of branching nodes in the DPLL tree required to solve a typical random 3-SAT
formula. One may notice two important features: For a given value of the number of
variables N , the computational effort has a peak in the region of clause density where
a phase transition seems to occur (compare to Fig. 10.4). In this region it also increases
rapidly with N . Looking carefully at the data one can distinguish qualitatively three
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Fig. 10.5 Computational effort of our DPLL algorithm applied to random 3-SAT formulas.

The logarithm of the number of branching nodes was averaged over 104 instances. From

bottom to top: N = 50, 100, 150, 200.

different regions: at low α the solution is ‘easily’ found and the computer time grows
polynomially; at intermediate α, in the phase transition region, the problem becomes
typically very hard and the computer time grows exponentially. At larger α, in the
region where a random formula is almost always UNSAT, the problem becomes easier,
although the size of the DPLL tree still grows exponentially with N .

The hypothetical phase transition region is therefore the one where the hardest
instances of random 3-SAT are located. This makes such a region particularly inter-
esting, both from the point of view of computational complexity and from that of
statistical physics.

10.4 Random 2-SAT

From the point of view of computational complexity, 2-SAT is polynomial while K-
SAT is NP-complete forK ≥ 3. It turns out that random 2-SAT is also much simpler to
analyze than the other cases. One important reason is the existence of the polynomial
decision algorithm described in Sec. 10.2.1 (see in particular Exercise 10.5). This can
be analyzed in detail using the representation of a 2-SAT formula as a directed graph
whose vertices are associated to literals. One can then use the mathematical theory of
random directed graphs. In particular, the existence of a phase transition at critical
clause density αs(2) = 1 can be established.

Theorem 10.2 Let PN (K = 2, α) the probability for a SATN (K = 2,M) random
formula to be SAT. Then

lim
N→∞

PN (K = 2, α) =

{
1 if α < 1 ,
0 if α > 1 .

(10.6)

Proof: Here we shall prove that a random formula is SAT with high proability for
α < 1. It follows from theorem 10.5 below that it is with probability unsat for α > 1.
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We use the directed graph representation defined in Ex. 10.5. In this graph, define

a bicycle of length s as a path (u,w1, w2, . . . , ws, v), where the wi’s are literals on
s distinct variables, and u, v ∈ {w1, . . . , ws, w1, . . . , ws}. As we saw in Ex. 10.5, if a
formula F is UNSAT, its directed graph D(F ) has a cycle containing the two literals
xi and xi for some i. From such a cycle one easily builds a bicycle. The probability
that a bicycle appears in D(F ) is in turn upper bounded by the expected number of
bicycles. Therefore:

P(F is UNSAT) ≤ P(D(F ) has a bicycle) ≤
N∑

s=2

Ns2s(2s)2Ms+1

(
1

4
(
N
2

)
)s+1

.

(10.7)
The sum is over the size s of the bicycle; Ns is an upper bound to

(
N
s

)
, the number of

ways one can choose the s variables; 2s corresponds to the choice of literals, given the
variables; (2s)2 to the choice of u, v; Ms+1 is an upper bound to

(
M
s+1

)
, the number

of choices of the clauses involved in the bicycle; the last factor is the probability that
each of the chosen clauses of the bicycle appears in the random formula. A direct
summation of the series in 10.7 shows that, in the large N limit, the result is O(1/N)
whenever α < 1. �

10.5 Phase transition in random K(≥ 3)-SAT

10.5.1 Satisfiability threshold conjecture

As noticed above, numerical studies suggest that random K-SAT undergoes a phase
transition between a SAT phase and an UNSAT phase, for any K ≥ 2. There is a
widespread belief that this is indeed true, as formalized by the following conjecture:

Conjecture 10.3 For any K ≥ 2, there exists a threshold αs(K) such that:

lim
N→∞

PN (K,α) =

{
1 if α < αs(K) ,
0 if α > αs(K) .

(10.8)

As discussed in the previous section, this conjecture is proved in the case K = 2. The
existence of a phase transition is still an open problem for larger K, although the
following theorem gives some strong support:

Theorem 10.4. (Friedgut) Let PN (K,α) be the probability for a random formula
from the SATN (K,M) ensemble to be satisfiable, and assume K ≥ 2. Then there exists

a sequence of α
(N)
s (K) such that, for any ε > 0,

lim
N→∞

PN (K,αN ) =

{
1 if αN < α

(N)
s (K)− ε ,

0 if αN > α
(N)
s (K) + ε ,

(10.9)

In other words, the crossover from SAT to UNSAT becomes sharper and sharper as
N increases. For N large enough, it takes place in a window smaller than any fixed
width ε. The ‘only’ missing piece to prove the satisfiability threshold conjecture (10.3)

is the convergence of α
(N)
s (K) to some value αs(K) as N →∞.
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10.5.2 Upper bounds

Rigorous studies have allowed to establish bounds on the satisfiability threshold α
(N)
s (K)

in the large N limit. Upper bounds are obtained by using the first moment method.
The general strategy is to introduce a function U(F ) acting on formulas such that:

U(F ) =

{
0 if F is UNSAT,
≥ 1 otherwise.

(10.10)

Therefore, if F is a random K-SAT formula

P {F is SAT} ≤ EU(F ) . (10.11)

The inequality becomes an equality if U(F ) = I(F is SAT). Of course, we do not know
how to compute the expectation in this case. The idea is to find some function U(F )
which is simple enough that EU(F ) can be computed, and with an expectation value
that goes to zero as N →∞, for large enough α.

The simplest such choice is U(F ) = Z(F ), the number of SAT assignments (this
is the analogous of a “zero-temperature” partition function). The expectation EZ(F )
is equal to the number of assignments, 2N , times the probability that an assignment
is SAT (which does not depend on the assignment). Consider for instance the all-zero
assignment xi = 0, i = 1, . . . , N . The probability that it is SAT is equal to the product
of the probabilities that is satisfies each of the M clauses. The probability that the
all-zero assignment satisfies a clause is (1 − 2−K) because a K-clause excludes one
among the 2K assignments of variables which appear in it. Therefore

EZ(F ) = 2N (1− 2−K)M = exp
[
N
(
log 2 + α log(1− 2−K)

)]
. (10.12)

This result shows that, for α > αUB,1(K), where

αUB,1(K) ≡ − log 2/ log(1− 2−K) , (10.13)

EZ(F ) is exponentially small at large N . Equation (10.11) implies that the probability
of a formula being SAT also vanishes at large N for such an α:

Theorem 10.5 If α > αUB,1(K), then limN→∞ P{F is SAT} = 0, whence α
(N)
s (K) ≤

αUB,1(K).

One should not expect this bound to be tight. The reason is that, in the SAT phase,
Z(F ) takes exponentially large values, and its fluctuations tend to be exponential in
the number of variables.
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Example 10.6 As a simple illustration consider a toy example: the random 1-SAT
ensemble SATN (1, α). A formula is generated by including each of the 2N literals
as a clause independently with probability α/2 (we assume α ≤ 2). In order for the
formula to be SAT, for each of the N variables, at most 1 of the 2 corresponding
literals must be included. We have therefore

PN (K = 1, α) = (1− α2/4)N . (10.14)

In other words, the probability for a random formula to be SAT goes exponentially
fast to 0 for any α > 0: αs(K = 1) = 0. On the other hand the upper bound deduced
from EZ(F ) is αUB,1(K) = 1. This is due to large fluctuations in the number of SAT
assignments Z, as we will see in the next exercise.

Exercise 10.8 Consider the distribution of Z(F ) in the random 1-SAT ensemble.

(a) Show that:

P {Z(F ) = 2n} =

 
N

n

! “
1 − α

2

”2n h
α
“
1 − α

4

”iN−n

, (10.15)

for any n ≥ 0.
[Hint: If F is SAT, then Z(F ) = 2n, where n is the number of variables which do not appear
in any clause].

(b) From this expression, deduce the large deviation principle :

P

n
Z(F ) = 2Nν

o
.
= exp{−N Iα(ν)} (10.16)

where:
Iα(ν) ≡ −H(ν) − 2ν log(1 − α/2) − (1 − ν) log(α(1 − α/4)) . (10.17)

What is the most probable value of ν?

(c) Show that:

EZ(F )
.
= exp

n
N max

ν
[−Iα(ν) + ν log 2]

o
. (10.18)

What is the value of ν where the maximum is achieved, ν∗? Show that Iα(ν∗) > 0: the

probability of having Z(F )
.
= 2Nν∗

is exponentially small, therefore EZ(F ) is dominated
by rare events.
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Exercise 10.9 Repeat the derivation of Theorem 10.5 for the SATN (K,α) ensemble (i.e.
compute EZ(F ) for this ensemble and find for which values of α this expectation is expo-
nentially small). Show that the upper bound obtained in this case is α = 2K log 2. This is
worse than the previous upper bound αUB,1(K), although one expects the threshold to be
the same. Why?
[Hint: The number of clauses M in a SATN (K,α) formula has binomial distribution with
parameters N , and α. What values of M provide the dominant contribution to EZ(F )?]

In order to improve upon Theorem 10.5 using the first moment method, one needs
a better (but still simple) choice of the function U(F ). A possible strategy consists
in defining some small subclass of ‘special’ SAT assignments, such that if a SAT
assignment exists, then a special SAT assignment exists too. If the subclass is small
enough, one can hope to reduce the fluctuations in U(F ) and sharpen the bound.

One choice of such a subclass consists in ‘locally maximal’ SAT assignments. Given
a formula F , an assignment x for this formula is said to be a locally maximal SAT
assignment if and only if: (1) It is a SAT assignment, (2) for any i such that xi = 0, the
assignment obtained by flipping it to xi = 1 is UNSAT. Define U(F ) as the number of
locally maximal SAT assignments and apply the first moment method to this function.
This gives:

Theorem 10.7 For any K ≥ 2, let αUB,2(K) be the unique positive solution of the
equation:

α log(1− 2−K) + log

[
2− exp

(
− Kα

2K − 1

)]
= 0 . (10.19)

Then α
(N)
s (K) ≤ αUB,2(K) for large enough N .

The proof is left as the following exercise:
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Exercise 10.10 Consider an assignment x where exactly L variables are set to 0, the
remaining N − L ones being set to 1. Without loss of generality, assume x1, . . . , xL to be
the variables set to zero.

(a) Let p be the probability that a clause constrains the variable x1, given that the clause is
satisfied by the assignment x (By a clause constraining x1, we mean that the clause becomes

unsatisfied if x1 is flipped from 0 to 1). Show that p =
`

N−1
K−1

´
[(2K − 1)

`
N
K

´
]−1.

(b) Show that the probability that variable x1 is constrained by at least one of the M clauses,

given that all these clauses are satisfied by the assignment x, is equal to q = 1 − (1 − p)M

(c) Let Ci be the event that xi is constrained by at least one of the M clauses. If C1, . . . ,
CL were independent events, under the condition that x satisfies F , the probability that
x1, . . . xL are constrained would be equal qL. Of course C1, . . . , CL are not independent.
Find an heuristic argument to show that they are anti-correlated and their joint probability
is at most qL (consider for instance the case L = 2).

(d) Assume the claim at previous point to be true. Show that E [U(F )] ≤ (1 −
2−K)M PN

L=0

`
N
L

´
qL = (1 − 2−K)M [1 + q]N and finish the proof by working out the

large N asymptotics of this formula (with α = M/N fixed).

In Table 10.1 we report the numerical values of the upper bounds αUB,1(K) and
αUB,2(K) for a few values of K. These results can be slightly improved upon by pursu-
ing the same strategy. For instance, one may strengthen the condition of maximality
to flipping 2 or more variables. However the quantitative improvement in the bound
is rather small.

10.5.3 Lower bounds

Two main strategies have been used to derive lower bounds of α
(N)
c (K) in the large

N limit. In both cases one takes advantage of Theorem 10.4: In order to show that

α
(N)
c (K) ≥ α∗, it is sufficient to prove that a random SATN (K,M) formula, with
M = αN , is SAT with non vanishing probability in the N →∞ limit.

The first approach consists in analyzing explicit heuristic algorithms for finding
SAT assignments. The idea is to prove that a particular algorithm finds a SAT assign-
ment with positive probability as N →∞ when α is smaller than some value.

One of the simplest such bounds is obtained by considering unit clause propagation.
Whenever there exist a unit clause, assign the variables appearing in one of them in
such a way to satisfy it, and proceed recursively. Otherwise, chose a variable uniformly
at random among those which are not yet fixed and assign it to 0 or 1 with probability
1/2. The algorithm halts if it finds a contradiction (i.e. a couple of opposite unit
clauses) or if all the variables have been assigned. In the latter case, the assignment
produced by the algorithm satisfies the formula.

This algorithm is then applied to a random K-SAT formula with clause density α.
It can be shown that a SAT assignment is found with positive probability for α small

enough: this gives the lower bound α
(N)
c (K) ≥ 1

2

(
K−1
K−2

)K−2
2K

K in the N →∞ limit.
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In the Exercise below we give the main steps of the reasoning for the case K = 3,
referring to the literature for more detailed proofs.

Exercise 10.11 After T iterations, the formula will contain 3-clauses, as well as 2-clauses
and 1-clauses. Denote by Cs(T ) the set of s-clauses, s = 1, 2, 3, and by Cs(T ) ≡ |Cs(T )| its
size. Let V(T ) be the set of variables which have not yet been fixed, and L(T ) the set of
literals on the variables of V(T ) (obviously we have |L(T )| = 2|V(T )| = 2(N −T )). Finally,
if a contradiction is encountered after Thalt steps, we adopt the convention that the formula
remains unchanged for all T ∈ {Thalt, . . . , N}.

(a) Show that, for any T ∈ {1, . . . , N}, each clause in Cs(T ) is uniformly distributed among
the s-clauses over the literals in L(T ).

(b) Show that the expected change in the number of 3- and 2-clauses is given by

E [C3(T + 1) − C3(T )] = − 3C3(T )
N−T

and E [C2(T + 1) − C2(T )] = 3C3(T )
2(N−T )

− 2C2(T )
N−T

.

(c) Show that, conditional on C1(T ), C2(T ), and C3(T ), the change in the number of 1-clauses

is distributed as follows: C1(T+1)−C1(T )
d
= −I(C1(T ) > 0)+B

“
C2(T ), 1

N−T

”
. (We recall

that B(n, p) denotes a binomial random variable of parameters n, and p (cf. App. A)).

(d) It can be shown that, as N → ∞ at fixed t = T/N , the variables Cs(T )/N for s ∈ {2, 3}
concentrate around their expectation values, and these converge to smooth functions cs(t).

Argue that these functions must solve the ordinary differential equations: dc3
dt

= − 3
1−t

c3(t);
dc2
dt

= 3
2(1−t)

c3(t) − 2
1−t

c2(t). Check that the solutions of these equations are: c3(t) =

α(1 − t)3, c2(t) = (3α/2)t(1 − t)2.

(e) Show that the number of unit clauses is a Markov process described by C1(0) = 0, C1(T +

1) − C1(T )
d
= −I(C1(T ) > 0) + η(T ), where η(T ) is a Poisson distributed random variable

with mean c2(t)/(1− t), where t = T/N . Given C1 and a time T , show that the probability
that there is no contradiction generated by the unit clause algorithm up to time T isQT

τ=1 (1 − 1/(2(N − τ)))[C1(τ)−1]I(C1(τ)≥1).

(f) Let ρ(T ) be the probability that there is no contradiction up to time T . Consider T =

N(1 − ǫ); show that ρ(N(1 − ǫ)) ≥ (1 − 1/(2Nǫ))AN+B P(
PN(1−ǫ)

τ=1 C1(τ) ≤ AN + B).
Assume that α is such that, ∀t ∈ [0, 1 − ǫ] : c2(t)/(1 − t) < 1. Show that there exists

A,B such that limN→∞ P(
PN(1−ǫ)

τ=1 C1(τ) ≤ AN +B) is finite. Deduce that in the large N
limit, there is a finite probability that, at time N(1− ǫ), the unit clause algorithm has not
produced any contradiction so far, and C1(N(1 − ǫ)) = 0.

(g) Conditionnaly to the fact that the algorithm has not produced any contradiction and
C1(N(1 − ǫ)) = 0, consider the residual formula at time T = N(1 − ǫ). Transform each
3-clause into a 2-clause by removing from it a uniformly random variable. Show that one
obtains, for ǫ small enough, a random 2-SAT problem with a small clause density ≤ 3ǫ2/2,
so that this is a satisfiable instance.

(h) Deduce that, for α < 8/3, the unit clause propagation algorithm finds a solution with a
finite probability

More refined heuristics have been analyzed using this method and lead to better
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lower bounds on α

(N)
c (K). We shall not elaborate on this approach here, but rather

present a second strategy, based on a structural analysis of the problem. The idea is
to use the second moment method. More precisely, we consider a function U(F ) of the
SAT formula F , such that U(F ) = 0 whenever F is UNSAT and U(F ) > 0 otherwise.
We then make use of the following inequality:

P{F is SAT} = P{U(F ) > 0} ≥ [E U(F )]2

E[U(F )2]
. (10.20)

The present strategy is more delicate to implement than the first moment method,

used in Sec. 10.5.2 to derive upper bounds on α
(N)
c (K). For instance, the simple choice

U(F ) = Z(F ) does not give any result: It turns out that the ratio [EZ(F )]2/E[Z(F )2]
is exponentially small in N for any non vanishing value of α, so that the inequality
(10.20) is useless. Again one needs to find a function U(F ) whose fluctuations are
smaller than for the number Z(F ) of SAT assignments. More precisely, one needs the
ratio [EU(F )]2/E[U(F )2] to be non vanishing in the N →∞ limit.

A successful idea uses a weighted sum of SAT assignments:

U(F ) =
∑

x

M∏

a=1

W (x, a) . (10.21)

Here the sum is over all the 2N assignments, and W (x, a) is a weight associated with
clause a. This weight must be such that W (x, a) = 0 when the assignment x does not
satisfy clause a, and W (x, a) > 0 otherwise. Let us choose a weight which depends on
the number r(x, a) of variables which satisfy clause a in the assignment x:

W (x, a) =

{
ϕ(r(x, a)) if r(x, a) ≥ 1,
0 otherwise.

(10.22)

It is then easy to compute the first two moments of U(F ):

EU(F ) = 2N

[
2−K

K∑

r=1

(
K

r

)
ϕ(r)

]M
, (10.23)

E
[
U(F )2

]
= 2N

N∑

L=0

(
N

L

)
[gϕ(N,L)]

M
. (10.24)

Here gϕ(N,L) is the expectation value of the product W (x, a)W (y, a) when a clause a
is chosen uniformly at random, given that x and y are two assignments of N variables
which agree on exactly L of them.

In order to compute gϕ(N,L), it is convenient to introduce two binary vectors
~u,~v ∈ {0, 1}K . They encode the following information: Consider a clause a, fix us = 1
if in the assignment x the s-th variable of clause a satisfies the clause, and us = 0
otherwise. The components of ~v are defined similarly but with the assignment y.
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Furthermore, we denote by d(~u,~v) the Hamming distance between these vectors, and
by w(~u), w(~v) their Hamming weights (number of non zero components). Then

gϕ(N,L) = 2−K
∑

~u,~v

′ ϕ (w(~u))ϕ (w(~v))

(
L

N

)d(~u,~v)(
1− L

N

)K−d(~u,~v)
. (10.25)

Here the sum
∑′

runs over K-component vectors ~u, ~v with at least one non zero
component. A particularly simple choice is ϕ(r) = λr. Denoting z = L/N , one finds:

gw(N,L) = 2−K
([

(λ2 + 1)z + 2λ(1− z)
]K − 2 [z + λ(1− z)]K + zk

)
. (10.26)

The first two moments can be evaluated from Eqs. (10.23), (10.24):

EU(F )
.
= exp{Nh1(λ, α)} , E [U(F )2]

.
= exp{N max

z
h2(λ, α, z)} , (10.27)

where the maximum is taken over z ∈ [0, 1] and

h1(λ, α) ≡ log 2− αK log 2 + α log
[
(1 + λ)K − 1

]
, (10.28)

h2(λ, α, z) ≡ log 2− z log z − (1− z) log(1− z)− αK log 2 + (10.29)

+α log
([

(λ2 + 1)z + 2λ(1− z)
]K − 2 [z + λ(1− z)]K + zk

)
.

Evaluating the above expression for z = 1/2 one finds h2(λ, α, 1/2) = 2h1(λ, α). The
interpretation is as follows. Setting z = 1/2 amounts to assuming that the second mo-
ment of U(F ) is dominated by completely uncorrelated assignments (two uniformly
random assignments agree on about half of the variables). This results in the factor-
ization of the expectation E [U(F )2] ≈ [EU(F )]2.

Two cases are possible: either the maximum of h2(λ, α, z) over z ∈ [0, 1] is achieved
only at z = 1/2 or not.

(i) In the latter case maxz h2(λ, α, z) > 2h1(λ, α) strictly, and therefore the ratio
[EU(F )]2/E[U(F )2] is exponentially small in N , the second moment inequality
(10.20) is useless.

(ii) If on the other hand the maximum of h2(λ, α, z) is achieved only at z = 1/2,
then the ratio [EU(F )]2/E[U(F )2] is 1 to the leading exponential order. It is
not difficult to work out the precise asymptotic behavior (i.e. to compute the
prefactor of the exponential). One finds that [EU(F )]2/E[U(F )2] remains finite

when N →∞. As a consequence α ≤ α(N)
c (K) for N large enough.

A necessary condition for the second case to occur is that z = 1/2 is a local maximum
of h2(λ, α, z). This implies that λ must be the (unique) strictly positive root of:

(1 + λ)K−1 =
1

1− λ . (10.30)

We have thus proved that:
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K 3 4 5 6 7 8 9 10

αLB(K) 2.548 7.314 17.62 39.03 82.63 170.6 347.4 701.5
αUB,1(K) 5.191 10.74 21.83 44.01 88.38 177.1 354.5 709.4
αUB,2(K) 4.666 10.22 21.32 43.51 87.87 176.6 354.0 708.9

Table 10.1 Satisfiability thresholds for random K-SAT. We report the lower bound from

Theorem 10.8 and the upper bounds from Eqs. (10.13) and (10.19).

Theorem 10.8 Let λ be the positive root of Eq. (10.30), and the function h2( · ) be
defined as in Eq. (10.29). Assume that h2(λ, α, z) achieves its maximum, as a function
of z ∈ [0, 1] only at z = 1/2. Then a random SATN (K,α) is SAT with probability
approaching one as N →∞.

Let αLB(K) be the largest value of α such that the hypotheses of this Theorem are
satisfied. The Theorem implies an explicit lower bound on the satisfiability threshold:

α
(N)
s (K) ≥ αLB(K) in the N →∞ limit. Table 10.1 summarizes some of the values of

the upper and lower bounds found in this Section for a few values of K. In the large
K limit the following asymptotic behaviors can be shown to hold:

αLB(K) = 2K log 2− 2(K + 1) log 2− 1 + o(1) , (10.31)

αUB,1(K) = 2K log 2− 1

2
log 2 + o(1) . (10.32)

In other words, the simple methods exposed in this Chapter allow to determine the
satisfiability threshold with a relative error behaving as 2−K in the large K limit. More
sophisticated tools, to be discussed in the next Chapters, are necessary for obtaining
sharp results at finite K.

Exercise 10.12 [Research problem] Show that the choice of weight ϕ(r) = λr is optimal:
all other choices for ϕ(r) give a worse lower bound. What strategy could be followed to
improve the bound further?

Notes

The review paper (Gu, Purdom, Franco and Wah, 1996) is a rather comprehensive
source of information on the algorithmic aspects of satisfiability. The reader interested
in applications will also find there a detailed and referenced list.

Davis and Putnam first studied an algorithm for satisfiability in (Davis and Put-
nam, 1960). This was based on a systematic application of the resolution rule. The
backtracking algorithm discussed in the main text was introduced in (Davis, Logemann
and Loveland, 1962).

Other ensembles of random CNF formulas have been studied, but it turns out
it is not so easy to find hard formulas. For instance take N variables, and generate
M clauses independently according to the following rule. In a clause a, each of the
variables appears as xi or xi with the same probability p ≤ 1/2, and does not appear
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with probability 1− 2p. The reader is invited to study this ensemble; an introduction
and guide to the corresponding literature can be found in (Franco, 2000). Another
useful ensemble is the “2 + p” SAT problem which interpolates between K = 2 and
K = 3 by picking pM 3-clauses and (1− p)M 2-clauses, see (Monasson and Zecchina,
1998; Monasson, Zecchina, Kirkpatrick, Selman and Troyansky, 1999)

The polynomial nature of 2-SAT is discussed in (Cook, 1971). MAX-2SAT was
shown to be NP-complete in (Garey, Johnson and Stockmeyer, 1976).

Schöning’s algorithm was introduced in (Schöning, 1999) and further discussed
in (Schöning, 2002). More general random walk strategies for SAT are treated in
(Papadimitriou, 1991; Selman and Kautz, 1993; Selman, Kautz and Cohen, 1994).

The threshold αs = 1 for random 2-SAT was proved in (Chvátal and Reed, 1992),
(Goerdt, 1996) and (de la Vega, 1992), see also (de la Vega, 2001). The scaling be-
havior near to the threshold has been analyzed through graph theoretical methods in
(Bollobas, Borgs, Chayes, Kim and Wilson, 2001).

The numerical identification of the phase transition in random 3-SAT, and the
observation that difficult formulas are found near the phase transition, were done in
(Kirkpatrick and Selman, 1994; Selman and Kirkpatrick, 1996). See also (Selman,
Mitchell and Levesque, 1996).

Friedgut’s theorem is proved in (Friedgut, 1999).
Upper bounds on the threshold are discussed in (Dubois and Boufkhad, 1997;

Kirousis, Kranakis, Krizanc and Stamatiou, 1998). Lower bounds for the threshold
in random K-SAT based on the analysis of some algorithms were pioneered by Chao
and Franco. The paper (Chao and Franco, 1986) corresponds to Exercise 10.11, and
a generalization can be found in (Chao and Franco, 1990). A review of this type of
methods is provided by (Achlioptas, 2001). Backtracking algorithms were first analyzed
using an heuristic approach in (Cocco and Monasson, 2001b; Cocco and Monasson,
2001a). (Cocco, Monasson, Montanari and Semerjian, 2006) gives a survey of the
analysis of algorithms based on statistical physics methods.

The idea of deriving a lower bound with the weighted second moment method was
introduced in (Achlioptas and Moore, 2007). The lower bound which we discuss here
is derived in (Achlioptas and Peres, 2004); this paper also solves the first question
of Exercise 10.12. A simple introduction to the second moment method in various
constraint satisfaction problems is (Achlioptas, Naor and Peres, 2005), see also (Gomes
and Selman, 2005).
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Low-Density Parity-Check Codes

Low-density parity-check (LDPC) error correcting codes were introduced in 1963 by
Robert Gallager in his Ph.D. thesis. The basic motivation came from the observation
that random linear codes, cf. Sec. 6.6, had excellent theoretical performances (in terms
of the number of channel errors they could correct) but were unpractical. In particular,
no efficient algorithm was known for decoding. In retrospect, this is not surprising,
since it was later shown that decoding for linear codes is an NP-hard problem.

The idea was then to restrict the random linear code ensemble, introducing some
structure that can be exploited for more efficient decoding. Of course, the risk is that
such a restriction of the ensemble might spoil its performances. Gallager’s proposal
was simple and successful (but ahead of times): LDPC codes are among the most
efficient codes around.

In this chapter we introduce one of the most important families of LDPC ensembles
and derive some of its basic properties. As for any code, one can take two quite
different points of view. The first is to study the code performances with respect to
an appropriate metric, under optimal decoding, in which no constraint is imposed on
the computational complexity of decoding procedure. For instance decoding through
a scan of the whole, exponentially large, codebook is allowed. The second approach
consists in analyzing the code performance under some specific, efficient, decoding
algorithm. Depending on the specific application, one can be interested in algorithms
of polynomial complexity, or even require the complexity to be linear in the block-
length.

Here we will focus on performances under optimal decoding. We will derive rigorous
bounds, showing that appropriately chosen LDPC ensembles allow to communicate
reliably at rates close to Shannon’s capacity. However, the main interest of LDPC
codes is that they can be decoded efficiently, and we will discuss a simple example
of decoding algorithm with linear time complexity. A more extensive study of LDPC
codes under practical decoding algorithms is deferred to Ch. 15.

After defining LDPC codes and LDPC code ensembles in Section 11.1, we discuss
some geometric properties of their codebooks in Section 11.2. In Section 11.3 we use
these properties to derive a lower bound on the threshold for reliable communication.
An upper bound follows from information-theoretic considerations. Section 11.4 dis-
cusses a simple decoding algorithm, which is shown to correct a finite fraction of errors.
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11.1 Definitions

11.1.1 Linear algebra with binary variables

Remember that a code is characterized by its codebook C, which is a subset of {0, 1}N .
LDPC codes are linear codes, which means that the codebook is a linear subspace
of {0, 1}N . In practice such a subspace can be specified through an M ×N matrix H,
with binary entries Hij ∈ {0, 1}, and M < N . The codebook is defined as the kernel
of H:

C = {x ∈ {0, 1}N : Hx = 0 } . (11.1)

Here and in all this chapter, the multiplications and sums involved in Hx are under-
stood as being computed modulo 2. The matrix H is called the parity check matrix
of the code. The size of the codebook is |C| = 2N−rank(H), where rank(H) denotes the
rank of the matrix H (the number of linearly independent rows). As rank(H) ≤M , we
have |C| ≥ 2N−M . With a slight modification with respect to the notation of Chapter
1, we let L ≡ N −M . The rate R of the code verifies therefore R ≥ L/N , equality
being obtained when all the rows of H are linearly independent.

Given such a code, encoding can always be implemented as a linear operation.
There exists a N × L binary matrix G, called the generator matrix, such that the
codebook is the image of G: C = {x = Gz , where z ∈ {0, 1}L}. Encoding is therefore
realized as the mapping z 7→ x = Gz. (Notice that the product H G is a M × L ‘null’
matrix with all entries equal to zero).

11.1.2 Factor graph

In Sect. 9.1.2 we described the factor graph associated with one particular linear code
(the Hamming code of (9.8)). The recipe to build the factor graph, knowing H, is as
follows. Let us denote by ia1 , . . . , i

a
k(a) ∈ {1, . . . , N} the column indices such that H has

a matrix element equal to 1 at row a and column iaj . Then the a-th coordinate of the
vector Hx is equal to xia1 ⊕ · · · ⊕ xiak(a)

. Let µ0,H(x) be the uniform distribution over

all codewords of the code H (hereafter we shall often identify a code with its parity
check matrix). It is given by:

µ0,H(x) =
1

Z

M∏

a=1

I(xia1 ⊕ · · · ⊕ xiak = 0) . (11.2)

Therefore, the factor graph associated with µ0,H(x) (or with H) includes N variable
nodes, one for each column of H, and M function nodes (also called, in this context,
check nodes), one for each row. A factor node and a variable node are joined by an
edge if the corresponding entry in H is non-vanishing. Clearly this procedure can be
inverted: to any factor graph with N variable nodes and M function nodes, we can
associate an M × N binary matrix H, the adjacency matrix of the graph, whose
non-zero entries correspond to the edges of the graph.

11.1.3 Ensembles with given degree profiles

In Chapter 9 we introduced the ensembles of factor graphs DN (Λ, P ). These have N
variable nodes, and the two polynomials Λ(x) =

∑∞
n=0 Λnx

n, P (x) =
∑∞
n=0 Pnx

n
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PERMUTATION

Fig. 11.1 Construction of a graph/code with given degree profiles. Here a graph with N = 7,

M = 4, Λ(x) = 1
7
(2x+ 2x2 + 3x3), and P (x) = 1

4
(3x3 + x6). The ‘sockets’ from the variable

nodes and those from the checks are connected through a uniformly random permutation.

define the degree profiles: Λn is the probability that a randomly chosen variable node
has degree n, Pn is the probability that a randomly chosen function node has degree
n.

We define LDPCN (Λ, P ) to be the ensemble of linear codes whose parity check
matrix is the adjacency matrix of a random graph from the DN (Λ, P ) ensemble. We
will be interested in the limit N →∞ while keeping the degree profiles fixed. Therefore
each vertex has bounded degree, and hence the parity check matrix has ‘low density.’

In order to eliminate trivial cases, we always assume that variable nodes have degree
at least 1, and function nodes at least 2. The numbers of parity check and variable
nodes satisfy the relation M = NΛ′(1)/P ′(1). The ratio L/N = (N − M)/N =
1−Λ′(1)/P ′(1), which is a lower bound to the actual rate R, is called the design rate
Rdes of the code (or of the ensemble). The actual rate of a code from the LDPCN (Λ, P )
ensemble is of course a random variable, but we will see below that it is in general
sharply concentrated ‘near’ Rdes.

A special case which is often considered is the one of ‘regular’ graphs: all variable
nodes have degree l and all function nodes have degree k, (i.e. P (x) = xk and Λ(x) =
xl). The corresponding code ensemble is usually simply denoted as LDPCN (l, k), or,
more synthetically as (l, k). It has design rate Rdes = 1− l

k .
Generating a uniformly random graph from the DN (Λ, P ) ensemble is not a trivial

task. The simplest way to by-pass this problem consists in substituting the uniformly
random ensemble with a slightly different one which has a simple algorithmic descrip-
tion. One can proceed for instance as follows. First separate the set of variable nodes
uniformly at random into subsets of sizes NΛ0, NΛ1, . . . , NΛlmax

, and attribute 0
‘sockets’ to the nodes in the first subset, 1 socket to each of the nodes in the second,
and so on. Analogously, separate the set of check nodes into subsets of size MP0,
MP1, . . . , MPkmax

and attribute to nodes in each subset 0, 1, . . . , kmax socket. At this
point the variable nodes have NΛ′(1) sockets, and so have the check nodes. Draw a
uniformly random permutation over NΛ′(1) objects and connect the sockets on the
two sides accordingly (see Fig. 11.1).
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Exercise 11.1 In order to sample a graph as described above, one needs two routines. The
first one separates a set of N objects uniformly into subsets of prescribed sizes. The second
one samples a random permutation over a NΛ′(1). Show that both of these tasks can be
accomplished with O(N) operations (having at your disposal a random number generator).

This procedure has two flaws: (i) It does not sample uniformly DN (Λ, P ), because
two distinct factor graphs may correspond to a different number of permutations. (ii)
It may generate multiple edges joining the same couple of nodes in the graph.

In order to cure the last problem, we shall agree that each time n edges join any
two nodes, they must be erased if n is even, and they must be replaced by a single
edge if n is odd. Of course the resulting graph does not necessarily have the prescribed
degree profile (Λ, P ), and even if we condition on this to be the case, its distribution is
not uniform. We shall nevertheless insist in denoting the ensemble as LDPCN (Λ, P ).
The intuition is that, for large N , the degree profile is ‘close’ to the prescribed one
and the distribution is ‘uniform enough’ for our purposes. Moreover -and this is really
important- this, or similar graph generation techniques are used in practice.

Exercise 11.2 This exercise aims at proving that, for large N , the degree profile produced
by the explicit construction is close to the prescribed one.

(a) Let m be the number of multiple edges appearing in the graph and compute its expectation.
Show that Em = O(1) as N → ∞ with Λ and P fixed.

(b) Let (Λ′, P ′) be the degree profile produced by the above procedure. Denote by

d ≡
X

l

|Λl − Λ′l| +
X

k

|Pk − P ′k| , (11.3)

the ‘distance’ between the prescribed and the actual degree profiles. Derive an upper bound
on d in terms of m and show that it implies E d = O(1/N).

11.2 Geometry of the codebook

As we saw in Sec. 6.2, a classical approach to the analysis of error correcting codes
consists in studying the geometric properties of the corresponding codebooks. An
important example of such properties is the distance enumerator Nx0

(d), giving the
number of codewords at Hamming distance d from x0. In the case of linear codes,
the distance enumerator does not depend upon the reference codeword x0 (the reader
is invited to prove this statement). It is therefore customary to take the all-zeros
codeword as the reference, and to use the denomination weight enumerator:N (w) =
Nx0

(d = w) is the number of codewords having weight (the number of ones in the
codeword) equal to w.

In this section we want to estimate the expected weight enumerator N (w) ≡
EN (w), for a random code in the LDPCN (Λ, P ) ensemble. As for the random code
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ensemble of Sec. 6.2, that N (w) grows exponentially in the block-length N , and that
most of the codewords have a weight w = Nω growing linearly with N . We will in fact
compute the exponential growth rate φ(ω) defined by

N (w = Nω)
.
= eNφ(ω) . (11.4)

In the jargon of statistical physics, N (w) is an ‘annealed average,’ hence it may
be dominated by rare instances in the ensemble. On the other hand, one expects
logN (w) to be tightly concentrated around its typical value Nφq(ω). The typical
exponent φq(ω) can be computed through a quenched calculation, for instance consid-
ering limN→∞N−1E log [1 +N (w)]. Of course φq(ω) ≤ φ(ω) because of the concavity
of the logarithm. In this chapter we keep to the annealed calculation, which is much
easier and gives an upper bound of the quenched result φq.

Let x ∈ {0, 1}N be a binary word of length N and weight w. Notice that Hx =
0 mod 2 if and only if the corresponding factor graph has the following property.
Consider all the w variable nodes i such that xi = 1, and color in red all edges incident
on these nodes. Color in blue all the other edges. Then all the check nodes must have
an even number of incident red edges. A little thought shows that N (w) is the number
of ‘colored’ factor graphs having this property for some set of w variable nodes, divided
by the total number of factor graphs in the ensemble. We shall compute this number
first for a graph with fixed degrees, i.e. for codes in the LDPCN (l, k) ensemble, and
then we shall generalize to arbitrary degree profiles.

11.2.1 Weight enumerator: regular ensembles

In the fixed degree case we have N variable nodes of degree l, M function nodes of
degree k. We denote by F = Mk = Nl the total number of edges. A valid colored
graph must have E = wl red edges. It can be constructed as follows. First choose
w variable nodes, which can be done in

(
N
w

)
ways. Assign to each node in this set l

red sockets, and to each node outside the set l blue sockets. Then, for each of the
M function nodes, color in red an even subset of its sockets in such a way that the
total number of red sockets is E = wl. Let mr be the number of function nodes with
r red sockets. The numbers mr can be non-zero only when r is even, and they are
constrained by

∑k
r=0mr = M and

∑k
r=0 rmr = lw. The number of ways one can

color the sockets of the function nodes is thus:

C(k,M,w) =
∑

m0,...,mk

(e)
(

M

m0, . . . ,mk

) ∏

r

(
k

r

)mr

I

( k∑

r=0

mr = M
)

I

( k∑

r=0

rmr = lw
)
,

(11.5)

where the sum
∑(e)

means that non-zeromr appear only for r even. Finally we join the
variable node and check node sockets in such a way that colors are matched. There are
(lw)!(F − lw)! such matchings out of the total number of F ! corresponding to different
element in the ensemble. Putting everything together, we get the final formula:
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N (w) =
(lw)!(F − lw)!

F !

(
N

w

)
C(k,M,w) . (11.6)

In order to compute the function φ(ω) in (11.4), one needs to work out the asymp-
totic behavior of this formula when N → ∞ at fixed ω = w/N . Assuming that
mr = xrM = xrNl/k, one can expand the multinomial factors using Stirling’s for-
mula. This gives:

φ(ω) = max
{xr}

∗

[
(1− l)H(ω) +

l

k

∑

r

(
−xr log xr + xr log

(
k

r

))]
, (11.7)

where the max∗ is taken over all choices of x0, x2, x4, . . . in [0, 1], subject to the two
constraints

∑
r xr = 1 and

∑
r rxr = kω. The maximization can be done by imposing

these constraints via two Lagrange multipliers. One gets xr = Czr
(
k
r

)
I(r even), where

C and z are two constants fixed by the equations:

C =
2

(1 + z)k + (1− z)k , (11.8)

ω = z
(1 + z)k−1 − (1− z)k−1

(1 + z)k + (1− z)k . (11.9)

Plugging back the resulting xr into the expression (11.7) of φ, this gives finally:

φ(ω) = (1− l)H(ω) +
l

k
log

(1 + z)k + (1− z)k
2

− ωl log z , (11.10)

where z is the function of ω defined in (11.9).
We shall see in the next sections how to use this result, but let us first explain how

it can be generalized.

11.2.2 Weight enumerator: general case

We want compute the leading exponential behavior N (w)
.
= exp[Nφ(ω)] of the ex-

pected weight enumerator for a general LDPCN (Λ, P ) code. The idea of the approach
is the same as the one we have just used for the case of regular ensembles, but the
computation becomes heavier. It is therefore useful to adopt a more powerful formal-
ism. Altogether this section is more technical than the others: the reader who is not
interested in the details can skip it and go to the results.

We want to build a valid colored graph, let us denote by E its number of red
edges (which is no longer fixed by w). There are coeff[

∏
l(1 + xyl)NΛl , xwyE ] ways

of choosing the w variable nodes in such a way that their degrees add up to E 1.
As before, for each of the M function nodes, we color in red an even subset of its
sockets in such a way that the total number of red sockets is E. This can be done in
coeff[

∏
k qk(z)

MPk , zE ] ways, where qk(z) ≡ 1
2 (1 + z)k + 1

2 (1 − z)k. The numbers of
ways one can match the red sockets in variable and function nodes is still E!(F −E)!,

1We denote by coeff[f(x), xn] the coefficient of xn in the formal power series f(x).
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Fig. 11.2 Modulus of the function z−3ξ q4(z)
3/4 for ξ = 1/3.

where F = NΛ′(1) = MP ′(1) is the total number of edges in the graph. This gives
the result:

N (w) =

F∑

E=0

E!(F − E)!

F !

coeff

[
lmax∏

l=1

(1 + xyl)NΛl , xwyE

]
coeff

[
kmax∏

k=2

qk(z)
MPk , zE

]
. (11.11)

In order to estimate the leading exponential behavior of N (w) at large N , when
w = Nω, we set E = Fξ = NΛ′(1)ξ. The asymptotic behaviors of the coeff[. . . , . . . ]
terms can be estimated using the saddle point method. Here we sketch the idea for
the second of these terms. By Cauchy theorem

coeff

[
kmax∏

k=2

qk(z)
MPk , zE

]
=

∮
1

zNΛ′(1)ξ+1

kmax∏

k=2

qk(z)
MPk

dz

2πi
≡
∮
f(z)N

z

dz

2πi
,

(11.12)

where the integral runs over any path encircling the origin of the complex z plane in
the anticlockwise direction, and

f(z) ≡ 1

zΛ′(1)ξ

kmax∏

k=2

qk(z)
Λ′(1)Pk/P

′(1) . (11.13)

In Fig. 11.2 we plot the modulus of the function f(z) for degree distributions Λ(x) =
x3, P (x) = x4 and ξ = 1/3. The function has two saddle points in ±z∗, where z∗ =
z∗(ξ) ∈ R+ solves the equation f ′(z∗) = 0, namely:
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ξ =

kmax∑

k=2

ρk z∗
(1 + z∗)

k−1 − (1− z∗)k−1

(1 + z∗)k + (1− z∗)k
. (11.14)

Here we used the notation ρk ≡ kPk/P ′(1) already introduced in Sec. 9.5 (analogously,
we shall write λl ≡ lΛl/Λ

′(1)). This equation generalizes (11.9). If we take the inte-
gration contour in Eq. (11.12) to be the circle of radius z∗, the integral is dominated
by the saddle point at z∗ (together with the symmetric point −z∗). We get therefore

coeff

[
kmax∏

k=2

qk(z)
MPk , zE

]
.
= exp

{
N

[
−Λ′(1)ξ log z∗ +

Λ′(1)

P ′(1)

kmax∑

k=2

Pk log qk(z∗)

]}
.

Proceeding analogously with the second coeff[. . . , . . . ] term in Eq. (11.11), we get
N (w = Nω)

.
= exp{Nφ(ω)}. The function φ is given by

φ(ω) = sup
ξ

inf
x,y,z

{
−Λ′(1)H(ξ)− ω log x− Λ′(1)ξ log(yz) +

+

lmax∑

l=2

Λl log(1 + xyl) +
Λ′(1)

P ′(1)

kmax∑

k=2

Pk log qk(z)

}
, (11.15)

where the minimization over x, y, z is understood to be taken over the positive real
axis while ξ ∈ [0, 1]. The stationarity condition with respect to variations of z is given
by Eq. (11.14). Stationarity with respect to ξ, x, y yields, respectively

ξ =
yz

1 + yz
, ω =

lmax∑

l=1

Λl
xyl

1 + xyl
, ξ =

lmax∑

l=1

λl
xyl

1 + xyl
. (11.16)

If we use the first of these equations to eliminate ξ, we obtain the final parametric
representation (in the parameter x ∈ [0,∞[) of φ(ω):

φ(ω) = −ω log x− Λ′(1) log(1 + yz) +

lmax∑

l=1

Λl log(1 + xyl) + (11.17)

+
Λ′(1)

P ′(1)

kmax∑

k=2

Pk log qk(z) ,

ω =

lmax∑

l=1

Λl
xyl

1 + xyl
. (11.18)

The two functions y = y(x) and z = z(x) are solutions of the coupled equations

y =

∑kmax

k=2 ρk p
−
k (z)

∑kmax

k=2 ρk p
+
k (z)

, z =

∑lmax

l=1 λlxy
l−1/(1 + xyl)

∑lmax

l=1 λl/(1 + xyl)
, (11.19)

where we defined p±k (z) ≡ (1+z)k−1±(1−z)k−1

(1+z)k+(1−z)k .
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Exercise 11.3 The numerical solution of Eqs. (11.18) and (11.19) can be somewhat tricky.
Here is a simple iterative procedure which usually works reasonably well. The reader is
invited to try it with her favorite degree distributions Λ, P .

First, solve Eq. (11.18) for x at given y ∈ [0,∞[ and ω ∈ [0, 1], using a bisection method.
Next, substitute this value of x in Eq. (11.19), and write the resulting equations as y = f(z)
and z = g(y, ω). Define Fω(y) ≡ f(g(y, ω)). Solve the equation y = Fω(y) by iteration of the
map yn+1 = Fω(yn) Once the fixed point y∗ is found, the other parameters are computed
as z∗ = g(y∗, ω) and x∗ is the solution of Eq. (11.18) for y = y∗. Finally x∗, y∗, z∗ are
substituted in Eq. (11.17) to obtain φ(ω).

Examples of functions φ(ω) are shown in Figures 11.3, 11.4, 11.5. We shall now
discuss these results, paying special attention to the region of small ω.

11.2.3 Short distance properties

In the low noise limit, the performance of a code depends a lot on the existence of
codewords at short distance from the transmitted one. For linear codes and symmetric
communication channels, we can assume without loss of generality that the all zeros
codeword has been transmitted. Here we will work out the short distance (i.e. small
weight ω) behavior of φ(ω) for several LDPC ensembles. These properties will be used
to characterize the code performances in Sect. 11.3.

As ω → 0, solving Eqs. (11.18) and (11.19) yields y, z → 0. By Taylor expansion
of these equations, we get

y ≃ ρ′(1)z , z ≃ λlmin
xylmin−1 , ω ≃ Λlmin

xylmin , (11.20)

where we neglected higher order terms in y, z. At this point we must distinguish
whether lmin = 1, lmin = 2 or lmin ≥ 3.

We start with the case lmin = 1. Then x, y, z all scale like
√
ω, and a short compu-

tation shows that

φ(ω) = −1

2
ω log

(
ω/Λ2

1

)
+O(ω) . (11.21)

In particular φ(ω) is strictly positive for ω sufficiently small. The expected number of
codewords within a small relative Hamming distance w = Nω from a given codeword
is exponential in N . Furthermore, Eq. (11.21) is reminiscent of the behavior in absence
of any parity check, where one gets φ(ω) = H(ω) ≃ −ω logω.

Exercise 11.4 In order to check Eq. (11.21), compute the weight enumerator for the
regular LDPCN (l = 1, k) ensemble. Notice that, in this case the weight enumerator
does not depend on the code realization and admits the simple representation N (w) =

coeff[qk(z)N/k, zw].

An example of weight enumerator for an irregular code with lmin = 1 is shown in
Fig. 11.3. The behavior (11.21) is quite bad for an error correcting code. In order to
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Fig. 11.3 Logarithm of the expected weight enumerator, φ(ω), plotted versus the reduced

weight ω = w/N , for the ensemble LDPCN ( 1
4
x+ 1

4
x2 + 1

2
x3, x6). Inset: small weight region.

φ(ω) is positive near to the origin, and in fact its derivative diverges as ω → 0: each codeword

is surrounded by a large number of very close other codewords. This makes it a bad error

correcting code.

understand why, let us for a moment forget that this result was obtained by taking
ω → 0 after N →∞, and apply it in the regime N →∞ at w = Nω fixed. We get

N (w) ∼
(
N

w

) 1
2w

. (11.22)

It turns out that this result holds not only in average but for most codes in the
ensemble. In other words, already at Hamming distance 2 from any given codeword
there are Θ(N) other codewords. It is intuitively clear that discriminating between
two codewords at Θ(1) Hamming distance, given a noisy observation, is in most of the
cases impossible. Because of these remarks, one usually discards lmin = 1 ensembles
in error correction.

Consider now the case lmin = 2. From Eq. (11.20), we get

φ(ω) ≃ Aω , A ≡ log

[
P ′′(1)

P ′(1)

2Λ2

Λ′(1)

]
= log [λ′(0)ρ′(1)] . (11.23)

As it will appear in Ch. 15, the combination λ′(0)ρ′(1) has an important concrete
interpretation.

The code ensemble has significantly different properties depending on the sign of
A. If A > 0, the expected number of codewords within a small (but Θ(N)) Hamming
distance from any given codeword is exponential in the block-length. The situation
seems similar to the lmin = 1 case. Notice however that φ(ω) goes much more quickly
to 0 as ω → 0 in the present case. Assuming again that (11.23) holds beyond the
asymptotic regime in which it was derived, we get

N (w) ∼ eAw . (11.24)
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meaning that all function nodes have degree 4. Inset: small weight region. The constant A is

positive, so there exist codewords at short distances.

In other words the number of codewords around any particular one is o(N) until we
reach a Hamming distance d∗ ≃ logN/A. For many purposes d∗ plays the role of an
‘effective’ minimum distance. The example of the regular code LDPCN (2, 4), for which
A = log 3, is shown in Fig. 11.4

If on the other hand A < 0, then φ(ω) < 0 in some interval ω ∈]0, ω∗[. The first
moment method then shows that there are no codewords of weight ‘close to’ Nω for
any ω in this range.

A similar conclusion is reached if lmin ≥ 3, where one finds:

φ(ω) ≃
(
lmin − 2

2

)
ω log

(
ω

Λlmin

)
, (11.25)

An example of weight enumerator exponent for a code with good short distance prop-
erties, the LDPCN (3, 6) code, is given in Fig. 11.5.

This discussion can be summarized as:

Proposition 11.1 Consider a random linear code from the LDPCN (Λ, P ) ensemble
with lmin ≥ 3. Let ω∗ ∈]0, 1/2[ be the first non-trivial zero of φ(ω), and consider
any interval [ω1, ω2] ⊂]0, ω∗[. With high probability, there does not exist any pair of
codewords with distance belonging to this interval. The same result holds when lmin = 2

and λ′(0)ρ′(1) = P ′′(1)
P ′(1)

2Λ2

Λ′(1) < 1.

Notice that our study only deals with weights w = ωN which grow linearly with
N . The proposition excludes the existence of codewords of arbitrarily small ω, but it
does not tell anything about possible codewords of sub-linear weight: w = o(N) (for
instance, with w finite as N → ∞). It turns out that, if lmin ≥ 3, the code has with
high probability no such codewords, and its minimum distance is at least Nω∗. If on
the other hand lmin = 2, the code has typically some codewords of finite weight w.
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Inset: small weight region. φ(ω) < 0 for ω < ω∗ ≈ 0.02. There are no codewords except from

the ‘all-zeros’ one in the region ω < ω∗.

However (if A < 0), they can be eliminated without changing the code rate by an
‘expurgation’ procedure similar to the one described in Sec. 6.5.1.

11.2.4 Rate

The weight enumerator can also be used to obtain a precise characterization of the
rate of a LDPCN (Λ, P ) code. For ω = 1/2, x = y = z = 1 satisfy Eqs. (11.18) and
(11.19). This gives:

φ(ω = 1/2) =

(
1− Λ′(1)

P ′(1)

)
log 2 = Rdes log 2 . (11.26)

It turns out that, in most cases of practical interest, the curve φ(ω) has its maximum
at ω = 1/2 (see for instance the figures 11.3, 11.4, 11.5). In such cases the result (11.26)
shows that the rate equals the design rate:

Proposition 11.2 Let R be the rate of a code from the LDPCN (Λ, P )ensemble, Rdes =
1−Λ′(1)/P ′(1) the associated design rate and φ(ω) the function defined in Eqs. (11.17)
to (11.19). Assume that φ(ω) achieves its absolute maximum over the interval [0, 1] at
ω = 1/2. Then, for any δ > 0, there exists a positive N -independent constant C1(δ)
such that

P{|R−Rdes| ≥ δ} ≤ C1(δ) 2−Nδ/2 . (11.27)

Proof: Since we already established that R ≥ Rdes, we only need to prove an upper
bound on R. The rate is defined as R ≡ (log2N )/N , where N is the total number of
codewords. Markov’s inequality gives:

P{R ≥ Rdes + δ} = P{N ≥ 2N(Rdes+δ)} ≤ 2−N(Rdes+δ) EN . (11.28)
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The expectation of the number of codewords is EN (w)

.
= exp{Nφ(w/N)}, and there

are only N + 1 possible values of the weight w, therefore:

EN .
= exp{N sup

ω∈[0,1]

φ(ω)} , (11.29)

As supφ(ω) = φ(1/2) = Rdes log 2 by hypothesis, there exists a constant C1(δ) such
that, for any N , EN ≤ C1(δ)2

N(Rdes+δ/2) for any N . Plugging this into Eq. (11.28),
we get

P{R ≥ Rdes + δ} ≤ C1(δ) 2−Nδ/2 . (11.30)

�

11.3 LDPC codes for the binary symmetric channel

Our study of the weight enumerator has shown that codes from the LDPCN (Λ, P )
ensemble with lmin ≥ 3 have a good short distance behavior. The absence of codewords
within an extensive distance Nω∗ from the transmitted one guarantees that any error
(even introduced by an adversarial channel) changing a fraction of the bits smaller
than ω∗/2 can be corrected. Here we want to study the performance of these codes
in correcting typical errors introduced from a given (probabilistic) channel. We will
focus on the BSC(p) which flips each bit independently with probability p < 1/2.
Supposing as usual that the all-zero codeword x(0) = 0 has been transmitted, let us
call y = (y1 . . . yN ) the received message. Its components are i.i.d. random variables
taking value 0 with probability 1−p, value 1 with probability p. The decoding strategy
which minimizes the block error rate is word MAP (or maximum likelihood) decoding,
which outputs the codeword closest to the channel output y. As already mentioned, we
don’t bother about the practical implementation of this strategy and its computational
complexity.

The block error probability for a code C, denoted by PB(C), is the probability that
there exists a ‘wrong’ codeword, distinct from 0, whose distance to y is smaller than
d(0, y). Its expectation value over the code ensemble, PB = E PB(C), is an important
indicator of ensemble performances. We will show that in the large N limit, codes
with lmin ≥ 3 undergo a phase transition, separating a low noise phase, p < pMAP, in
which limN→∞ PB is zero, from a high noise phase, p > pMAP, where the limit is not
zero. While the computation of pMAP is deferred to Ch. 15, we derive here rigorous
bounds which imply that appropriate LDPC codes have very good performances, close
to Shannon’s information theoretic limit, under MAP decoding.

11.3.1 Lower bound on the error

We start by deriving a general bound on the block error probability PB(C) on the
BSC(p) channel, valid for any linear code. Let N = 2NR be the size of the codebook
C. By union bound:

PB(C) = P

{
∃α 6= 0 s.t. d(x(α), y) ≤ d(0, y)

}

≤
N−1∑

α=1

P

{
d(x(α), y) ≤ d(0, y)

}
. (11.31)
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As the components of y are i.i.d. Bernoulli variables, the probability P{d(x(α), y) ≤
d(0, y)} depends on the vector x(α) only through its weight w. Let x(w) be the vector
formed by w ones followed byN−w zeroes, and denote byN (w) the weight enumerator
of the code C. Then

PB(C) ≤
N∑

w=1

N (w) P
{
d(x(w), y) ≤ d(0, y)

}
. (11.32)

The probability P
{
d(x(w), y) ≤ d(0, y)

}
can be written as

∑
u

(
w
u

)
pu(1− p)w−u I(u ≥

w/2), where u is the number of sites i ∈ {1, · · · , w} such that yi = 1. A good bound
is provided by a standard method known as Chernoff bound.

Exercise 11.5 Let X be a random variable. Show that, for any a and any λ > 0:

P(X ≥ a) ≤ e−λa
E

“
eλX

”
. (11.33)

In our case this gives

P
{
d(x(w), y) ≤ d(0, y)

}
≤ Eeλ[d(0,y)−d(x(w),y)] = [(1− p) e−λ + p eλ]w .

The bound is optimized for λ = 1
2 log(1−p

p ) > 0, and gives

PB(C) ≤
N∑

w=1

N (w) e−γw . (11.34)

where γ ≡ − log
√

4p(1− p) ≥ 0. The quantity
√

4p(1− p) is sometimes referred to
as Bhattacharya parameter of the channel BSC(p).

Exercise 11.6 Consider the case of a general binary memoryless symmetric channel with
transition probability Q(y|x), x ∈ {0, 1} y ∈ Y ⊆ R. First show that Eq. (11.31) remains
valid if the Hamming distance d(x, y) is replaced by the log-likelihood

dQ(x|y) = −
NX

i=1

logQ(yi|xi) . (11.35)

[Hint: remember the general expressions (6.5) for the probability µy(x) = P(x|y) that

the transmitted codeword was x, given that the received message is y]. Then repeat the

derivation from Eq. (11.31) to Eq. (11.34). The final expression involves γ = − logBQ,

where the Bhattacharya parameter is defined as BQ =
P

y

p
Q(y|1)Q(y|0).
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Fig. 11.6 Geometric construction yielding the lower bound on the threshold for reliable

communication for the LDPCN (3, 6) ensemble used over the binary symmetric channel. In

this case pLB ≈ 0.0438737. The other two lines refer to p = 0.01 < pLB and p = 0.10 > pLB.

Equation (11.34) shows that the block error probability depends on two factors:
one is the weight enumerator, the second one, exp(−γw) is a channel-dependent term:
as the weight of the codewords increases, their contribution is scaled down by an
exponential factor because it is less likely that the received message y will be closer to
a codeword of large weight than to the all-zero codeword.

So far the discussion is valid for any given code. Let us now consider the average
over LDPCN (Λ, P ) code ensembles. A direct averaging gives the bound:

PB ≡ ECPB(C) ≤
N∑

w=1

N (w) e−γw
.
= exp

{
N sup

ω∈]0,1]

[φ(ω)− γω]

}
. (11.36)

As such, this expression is useless, because the supω[φ(ω)− γω], being larger or equal
than the value at ω = 0, is always positive. However, if we restrict to ensembles with
lmin ≥ 3, we know that, with probability going to one in the large N limit, there
exists no codeword in the ω interval ]0, ω∗[. In such cases, the maximization over ω in
(11.36) can be performed in the interval [ω∗, 1] instead of ]0, 1]. (By Markov inequality,

this is true whenever N
∑Nω∗−1
w=1 N (w) → 0 as N → ∞). The bound becomes useful

whenever the supremum supω∈[ω∗,1][φ(ω)− γω] < 0: then PB vanishes in the large N
limit. We have thus obtained:

Proposition 11.3 Consider the average block error rate PB for a random code in the
LDPCN (Λ, P ) ensemble, with lmin ≥ 3, used over a BSC(p) channel, with p < 1/2. Let
γ ≡ − log

√
4p(1− p) and let φ(ω) be the the weight enumerator exponent, defined in

(11.4) [φ(ω) can be computed using Eqs. (11.17), (11.18), and (11.19)]. If φ(ω) < γω
for any ω ∈ (0, 1] such that φ(ω) ≥ 0, then PB → 0 in the large block-length limit.

This result has a pleasing geometric interpretation which is illustrated in Fig. 11.6.
As p increases from 0 to 1/2, γ decreases from +∞ to 0. The condition φ(ω) < γω
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can be rephrased by saying that the weight enumerator exponent φ(ω) must lie below
the straight line of slope γ through the origin. Let us call pLB the smallest value of p
such that the line γω touches φ(ω).

The geometric construction implies pLB > 0. Furthermore, for p large enough
Shannon’s theorem implies that PB is bounded away from 0 for any non-vanishing rate
R > 0. The MAP threshold pMAP for the ensemble LDPCN (Λ, P ) can be defined as
the largest (or, more precisely, the supremum) value of p such that limN→∞ PB = 0.
This definition has a very concrete practical meaning: for any p < pMAP one can
communicate with an arbitrarily small error probability, by using a code from the
LDPCN (Λ, P ) ensemble provided N is large enough. Proposition 11.3 then implies:

pMAP ≥ pLB . (11.37)

In general one expects limN→∞ PB to exist (and to be strictly positive) for p > pMAP.
However, there exists no proof of this statement.

It is interesting to notice that, at p = pLB, our upper bound on PB is dominated by
codewords of weight w ≈ Nω̃, where ω̃ > 0 is the value where φ(ω)− γω is maximum.
This suggests that, each time an error occurs, a finite fraction of the bits are decoded
incorrectly and this fraction fluctuates little from transmission to transmission (or,
from code to code in the ensemble). The geometric construction also suggests the less
obvious (but essentially correct) guess that this fraction jumps discontinuously from
0 to a finite value when p crosses the critical value pMAP. Finally ω̃ > ω∗ strictly:
dominant error events are not triggered by the closest codewords!

Exercise 11.7 Let us study the case lmin = 2. Proposition 11.3 is no longer valid, but we
can still apply Eq. (11.36).

(a) Consider the (2, 4) ensemble whose weight enumerator exponent is plotted in Fig. 11.4, the
small weight behavior being given by Eq. (11.24). At small enough p, it is reasonable to
assume that the block error rate is dominated by small weight codewords. Estimate PB

using Eq. (11.36) under this assumption.

(b) Show that the assumption breaks down for p ≥ ploc, where ploc ≤ 1/2 solves the equation

3
p

4p(1 − p) = 1.

(c) Discuss the case of a general code ensemble with lmin = 2, and φ(ω) concave for ω ∈ [0, 1].
Draw a weight enumerator exponent φ(ω) such that the assumption of low-weight codewords
dominance breaks down before ploc. What do you expect of the average bit error rate Pb

for p < ploc? And for p > ploc?

Exercise 11.8 Discuss the qualitative behavior of the block error rate for the cases where
lmin = 1.
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11.3.2 Upper bound on the error

Let us consider as before the communication over a BSC(p), keeping for simplicity to
regular codes LDPCN (l, k). Gallager has proved the following bound:

Theorem 11.4 Let pMAP be the threshold for reliable communication over the binary
symmetric channel using codes from the LDPCN (l, k), with design rate Rdes = 1−k/l.
Then pMAP ≤ pUB, where pUB ≤ 1/2 is the solution of

H(p) = (1−Rdes)H
(

1− (1− 2p)k

2

)
, (11.38)

We shall not give a full proof of this result, but we show in this section a sequence of
heuristic arguments which can be turned into a proof. The details can be found in the
original literature.

Assume that the all-zero codeword 0 has been transmitted and that a noisy vector
y has been received. The receiver will look for a vector x at Hamming distance about
Np from y, and satisfying all the parity check equations. In other words, let us denote

by z = Hx, z ∈ {0, 1}M (here H is the parity check matrix and multiplication is
performed modulo 2), the syndrome. This is a vector with M components. If x is
a codeword, all parity checks are satisfied, and we have z = 0. There is at least one
vector x fulfilling the conditions d(x, y) ≈ Np, and z = 0: the transmitted codeword
0. Decoding is successful only if it is the unique such vector.

The number of vectors x whose Hamming distance from y is close to Np is ap-

proximatively 2NH(p). Let us now estimate the number of distinct syndromes z = Hx,
when x is on the sphere d(x, y) ≈ Np. Writing x = y ⊕ x′, this is equivalent to count-
ing the number of distinct vectors z′ = Hx′ when the weight of x′ is about Np. It is
convenient to think of x′ as a vector of N i.i.d. Bernoulli variables of mean p: we are
then interested in the number of distinct typical vectors z′. Notice that, since the code
is regular, each entry z′i is a Bernoulli variable of parameter

pk =

k∑

n odd

(
k

n

)
pn(1− p)k−n =

1− (1− 2p)k

2
. (11.39)

If the bits of z′ were independent, the number of typical vectors z′ would be 2N(1−Rdes)H(pk)

(the dimension of z′ being M = N(1− Rdes)). It turns out that correlations between
the bits decrease this number, so we can use the i.i.d. estimate to get an upper bound.

Let us now assume that for each z in this set, the number of reciprocal images (i.e. of
vectors x such that z = Hx) is approximatively the same. If 2NH(p) ≫ 2N(1−Rdes)H(pk),
for each z there is an exponential number of vectors x, such that z = Hx. This will be
true, in particular, for z = 0: the received message is therefore not uniquely decodable.
In the alternative situation most of the vectors z correspond to (at most) a single x.
This will be the case for z = 0: decoding can be successful.

11.3.3 Summary of the bounds

In Table 11.1 we consider a few regular LDPCN (Λ, P ) ensembles over the BSC(p)
channel. We show the window of possible values of the noise threshold pMAP, using
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l k Rdes LB of Sec. 11.3.1 Gallager UB Gallager LB Shannon limit
3 4 1/4 0.1333161 0.2109164 0.2050273 0.2145018
3 5 2/5 0.0704762 0.1397479 0.1298318 0.1461024
3 6 1/2 0.0438737 0.1024544 0.0914755 0.1100279
4 6 1/3 0.1642459 0.1726268 0.1709876 0.1739524
5 10 1/2 0.0448857 0.1091612 0.1081884 0.1100279

Table 11.1 Bounds on the threshold for reliable communication over the BSC(p) channel

using LDPCN (l, k) ensembles with MAP decoding. The fourth and fifth columns are the

lower bound of Proposition 11.3 and the upper bound of Theorem 11.4. The sixth column is

an improved lower bound by Gallager.

the lower bound of Proposition 11.3 and the upper bound of Theorem 11.4. In most
cases, the comparison is not satisfactory (the gap between upper and lower bound
is close to a factor 2). A much smaller uncertainty is achieved using an improved
lower bound again derived by Gallager, based on a refinement of the arguments in the
previous section. As we shall see in Ch. 15 by computing pMAP, neither of the bounds
is tight. On the other hand they are sufficiently good to show that, for large k, l the
MAP threshold of these ensembles is close to Shannon capacity (although bounded
away from it). Indeed, studying the asymptotic behavior of these bounds, one can
show that the MAP threshold of the (k, l) ensemble converges to pSh as k, l→∞ with
a fixed ratio l/k.

Exercise 11.9 Let pSh be the upper bound on pMAP provided by Shannon channel coding
theorem. Explicitly, pSh ≤ 1/2 is the solution of H(p) = 1 −R. Prove that, if R = Rdes (as
is the case with high probability for LDPCN (l, k) ensembles), then pUB < pSh.

11.4 A simple decoder: bit flipping

So far we have analyzed the behavior of LDPC ensembles under the optimal (word
MAP) decoding strategy. However there is no known way of implementing this decoder
with an efficient algorithm. The naive algorithm goes through each codeword x(α),
α = 0, . . . 2NR − 1 and outputs the one of greatest likelihood Q(y|x(α)). However this
approach takes a time which grows exponentially with the block-length N . For large N
(which is the regime where the error rate becomes close to optimal), this is unpractical.

LDPC codes are interesting because there exist fast sub-optimal decoding algo-
rithms with performances close to the theoretical optimal performance, and therefore
close to Shannon’s limit. Here we show one example of a very simple decoding method,
called the bit flipping algorithm. After transmission through a BSC channel, we have
received the message y and try to find the sent codeword x by:
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Fig. 11.7 Performances of the bit-flipping decoding algorithm on random codes from the

(5, 10) regular LDPC ensemble, used over the BSC(p) channel. Left: block error rate. Right:

residual number of unsatisfied parity checks after the algorithm has halted. Statistical error

bars are smaller than symbols.

Bit-flipping decoder (Received message y)

1: Set x(0) = y.
2: for t = 1, . . . , N :
3: find a bit belonging to more unsatisfied than satisfied parity checks;
4: if such a bit exists, flip it: xi(t+ 1) = xi(t)⊕ 1,

and keep the other bits: xj(t+ 1) = xj(t) for all j 6= i;
5: if there is no such bit, return x(t) and halt.

The bit to be flipped is usually chosen uniformly at random among the ones satis-
fying the condition at step 3. However this is irrelevant in the analysis below.

Exercise 11.10 Consider a code from the (l, k) regular LDPC ensemble (with l ≥ 3).
Assume that the received message differs from the transmitted one only in one position.
Show that the bit-flipping algorithm always corrects such an error.

Exercise 11.11 Assume now that the channel has introduced two errors. Draw the factor
graph of a regular (l, k) code for which the bit-flipping algorithm is unable to recover such
an error event. What can you say of the probability of this type of graphs in the ensemble?

In order to monitor the bit-flipping algorithm, it is useful to introduce the ‘energy’:

E(t) ≡ Number of parity check equations not satisfied by x(t) . (11.40)
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This is a non-negative integer, and if E(t) = 0 the algorithm is halted and its output
is x(t). Furthermore E(t) cannot be larger than the number of parity checks M and
decreases (by at least one) at each cycle. Therefore, the algorithm complexity is O(N)
(this is a commonly regarded as the ultimate goal for many communication problems).

It remains to be seen if the output of the bit-flipping algorithm is related to the
transmitted codeword. In Fig. 11.7 we present the results of a numerical experiment.
We considered the (5, 10) regular ensemble and generated about 1000 random code
and channel realizations for each value of the noise in some mesh. Then we applied the
above algorithm and plotted the fraction of successfully decoded blocks, as well as the
residual energy E∗ = E(t∗), where t∗ is the total number of iterations of the algorithm.
The data suggests that bit-flipping is able to overcome a finite noise level: it recovers
the original message with high probability when less than about 2.5% of the bits are
corrupted by the channel. Furthermore, the curves for Pbf

B under bit-flipping decoding
become steeper and steeper as the system size is increased. It is natural to conjecture
that asymptotically, a phase transition takes place at a well defined noise level pbf :
Pbf

B → 0 for p < pbf and Pbf
B → 1 for p > pbf . Numerically pbf = 0.025± 0.005.

This threshold can be compared with the one for MAP decoding: The results in
Table 11.1 imply 0.108188 ≤ pMAP ≤ 0.109161 for the (5, 10) ensemble. Bit-flipping is
significantly sub-optimal, but is still surprisingly good, given the extreme simplicity
of the algorithm.

Can we provide any guarantee on the performances of the bit-flipping decoder? One
possible approach consists in using the expansion properties of the underlying factor
graph. Consider a graph from the (l, k) ensemble. We say that it is an (ε, δ)-expander
if, for any set U of variable nodes such that |U | ≤ Nε, the set |D| of neighboring check
nodes has size |D| ≥ δ|U |. Roughly speaking, if the factor graph is an expander with a
large expansion constant δ, any small set of corrupted bits induces a large number
of unsatisfied parity checks. The bit-flipping algorithm can exploit these checks to
successfully correct the errors.

It turns out that random graphs are very good expanders. This can be understood
as follows. Consider a fixed subset U . As long as U is small, the subgraph induced by
U and the neighboring factor nodes D is a tree with high probability. If this is the
case, elementary counting shows that |D| = (l − 1)|U | + 1. This would suggest that
one can achieve an expansion factor (close to) l− 1, for small enough ε. Of course this
argument has several flaws. First of all, the subgraph induced by U is a tree only if
U has sub-linear size, but we are interested in all subsets U with |U | ≤ εN for some
fixed N . Then, while most of the small subsets U are trees, we need to be sure that all
subsets expand well. Nevertheless, one can prove that the heuristic expansion factor
is essentially correct:

Proposition 11.5 Consider a random factor graph F from the (l, k) ensemble. Then,
for any δ < l − 1, there exists a constant ε = ε(δ; l, k) > 0, such that F is a (ε, δ)
expander with probability approaching 1 as N →∞.

In particular, this implies that, for l ≥ 5, a random (l, k) regular factor graph is,
with high probability a (ε, 3

4 l) expander. In fact, this is enough to assure that the code
will perform well at low noise level:
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Theorem 11.6 Consider a regular (l, k) LDPC code C, and assume that the corre-
sponding factor graph is an (ε, 3

4 l) expander. Then, the bit-flipping algorithm is able to
correct any pattern of less then Nε/2 errors produced by a binary symmetric channel.
In particular PB(C)→ 0 for communication over a BSC(p) with p < ε/2.

Proof: As usual, we assume the channel input to be the all-zeros codeword 0. We
denote by w = w(t) the weight of x(t) (the current configuration of the bit-flipping
algorithm), and by E = E(t) the number of unsatisfied parity checks, as in Eq. (11.40).
Finally, we call F the number of satisfied parity checks among the ones which are
neighbors of at least one corrupted bit in x(t) (a bit is ‘corrupted’ if it takes value 1).

Assume first that 0 < w(t) ≤ Nε at some time t. Because of the expansion property
of the factor graph, we have E+F > 3

4 l w. On the other hand, every unsatisfied parity
check is the neighbor of at least one corrupted bit, and every satisfied check which
is the neighbor of some corrupted bit must involve at least two of them. Therefore
E + 2F ≤ l w. Eliminating F from the above inequalities, we deduce that E(t) >
1
2 l w(t). Let Ei(t) be the number of unsatisfied checks involving bit xi. Then:

∑

i:xi(t)=1

Ei(t) ≥ E(t) >
1

2
l w(t) . (11.41)

Therefore, there must be at least one bit having more unsatisfied than satisfied neigh-
bors, and the algorithm does not halt.

Let us now start the algorithm with w(0) ≤ Nε/2. It must halt at some time t∗,
either with E(t∗) = w(t∗) = 0 (and therefore decoding is successful), or with w(t∗) ≥
Nε. In this second case, as the weight of x(t) changes by one at each step, we have
w(t∗) = Nε. The above inequalities imply E(t∗) > Nlε/2 and E(0) ≤ lw(0) ≤ Nlε/2.
This contradicts the fact that E(t) is a strictly decreasing function of t. Therefore the
algorithm, started with w(0) ≤ Nε/2 ends up in the w = 0, E = 0 state. �

The approach based on expansion of the graph has the virtue of pointing out one
important mechanism for the good performance of random LDPC codes, namely the
local tree-like structure of the factor graph. It also provides explicit lower bounds on
the critical noise level pbf for bit-flipping. However, these bounds turn out to be quite
pessimistic. For instance, in the case of the (5, 10) ensemble, it has been proved that
a typical factor graph is an (ε, 3

4 l) = (ε, 15
4 ) expander for ε < ε∗ ≈ 10−12. On the

other hand, numerical simulations, cf. Fig. 11.7, show that the bit flipping algorithm
performs well up to noise levels much larger than ε∗/2.

Notes

Modern (post-Cook Theorem) complexity theory was first applied to coding by (Berlekamp,
McEliecee and van Tilborg, 1978) who showed that maximum likelihood decoding of
linear codes is NP-hard.

LDPC codes were first introduced by Gallager in his Ph.D. thesis (Gallager, 1963;
Gallager, 1962), which is indeed older than these complexity results. An excellent
detailed account of modern developments is provided by (Richardson and Urbanke,
2008).
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Gallager proposal did not receive enough consideration at the time. One possible
explanation is the lack of computational power for simulating large codes in the sixties.
The rediscovery of LDPC codes in the nineties (MacKay, 1999) was (at least in part)
a consequence of the invention of Turbo codes by (Berrou and Glavieux, 1996). Both
these classes of codes were soon recognized to be prototypes of a larger family: codes
on sparse graphs.

The major technical advance after this rediscovery has been the introduction of
irregular ensembles (Luby, Mitzenmacher, Shokrollahi, Spielman and Stemann, 1997;
Luby, Mitzenmacher, Shokrollahi and Spielman, 1998). There exist no formal proof of
the ‘equivalence’ (whatever this means) of the various possible definitions of LDPC
ensembles in the large block-length limit. But as we will see in Ch. 15, the main
property that enters in the analysis of LDPC ensembles is the local tree-like structure
of the factor graph described in Sec. 9.5.1; and this property is rather robust with
respect to a change of the ensemble.

Gallager (Gallager, 1963) was the first to compute the expected weight enumerator
for regular ensembles, and to use it in order to bound the threshold for reliable commu-
nication. General ensembles were considered in (Litsyn and Shevelev, 2003; Burshtein
and Miller, 2004; Di, Richardson and Urbanke, 2006). It turns out that the expected
weight enumerator coincides with the typical (most likely) one to leading exponential
order for regular ensembles (in statistical physics jargon: the annealed computation co-
incides with the quenched one). This is not the case for irregular ensembles, as pointed
out in (Di, Montanari and Urbanke, 2004).

Proposition 11.2 is essentially known since (Gallager, 1963). The formulation quoted
here is from (Méasson, Montanari and Urbanke, 2005a). This paper contains some ex-
amples of ‘exotic’ LDPC ensembles such that the maximum of the expected weight
enumerator is at weight w = Nω∗, with ω∗ 6= 1/2.

A proof of the upper bound 11.4 can be found in (Gallager, 1963). For some recent
refinements, see (Burshtein, Krivelevich, Litsyn and Miller, 2002).

Bit-flipping algorithms played an important role in the revival of LDPC codes,
especially following the work of Sipser and Spielman (Sipser and Spielman, 1996).
These authors focused on explicit code construction based on expander graph. They
also provide bounds on the expansion of random LDPCN (l, k) codes. The lower bound
on the expansion mentioned in Sec. 11.4 is taken from (Richardson and Urbanke, 2008).
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Spin glasses

We have already encountered several examples of spin glasses in chapters 2 and ??.
Like most problems in equilibrium statistical physics, they can be formulated in the
general framework of factor graphs. Spin glasses are disordered systems, whose mag-
netic properties are dominated by randomly placed impurities. The theory aims at
describing the behavior of a typical sample of such materials. This motivates the def-
inition and study of spin glass ensembles.

In this chapter we shall explore the glass phase of these models. It is useful to
have a good understanding of glass phases as we shall see them appearing in various
problems from optimization or coding theory. In general the occurence of a glass phase
is described physically in terms of a dramatic slowdown in a dynamical relaxation pro-
cess. Here we will focus instead on purely static characterizations of the glass phases,
which can be applied to a broad class of problems. The focus of our presentation is on
so-called ‘mean field models’, for at least two reasons: (i) A deep mathematical the-
ory (still under developement) provides a precise understanding of their behavior; (ii)
The ensembles of combinatorial optimization, and coding problems to be considered
in the following fall naturally in this class. We shall discuss the two types of spin glass
transitions that have been encountered such models.

In contrast to these ‘soluble’ cases, it must be stressed that very little is known
(let alone proven) for realistic models of real spin glass materials. Even the existence
of a spin glass phase is not established rigorously in this last case.

We first discuss in Sec. 12.1 how Ising models and their generalizations can be
formulated in terms of factor graphs, and introduce several ensembles of these models.
Frustration is a crucial feature of spin glasses; in Sec. 12.2 we discuss it in conjunction
with gauge transformations. This section also explains how to derive some exact results
with the sole use of gauge transformations. Sec. 12.3 describes the spin glass phase
and the main approaches to its characterization. Finally, the phase diagram of a spin
glass model with several glassy phases is traced in Sec. 12.4.

12.1 Spin glasses and factor graphs

12.1.1 Generalized Ising models

Let us recall the main ingredients of magnetic systems with interacting Ising spins.
The variables are N Ising spins σ = {σ1, . . . , σN} taking values in {+1,−1}. These
are jointly distributed according to Boltzmann’s law for the energy function:
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Fig. 12.1 Factor graph representation of the SK model with N = 4 (left), and the fully–

connected 3-spin model with N = 4 (right). The squares denote the interactions between the

spins.

E(σ) = −
pmax∑

p=1

∑

i1<···<ip

Ji1...ipσi1 · · ·σip . (12.1)

The index p gives the order of the interaction. One-body terms (p = 1) are also referred
to as external field interactions, and will be sometimes written as −Biσi. If Ji1...ip ≥ 0,
for any i1 . . . ip, and p ≥ 2, the model is said to be a ferromagnet. If Ji1...ip ≤ 0, it is
an antiferromagnet. Finally, if both positive and negative couplings are present for
p ≥ 2, the model is a spin glass.

The energy function can be rewritten as E(σ) =
∑
aEa(σ∂a), where Ea(σ∂a) ≡

−Jaσia1 · · ·σiapa
. Each interaction term a involves the spins contained in a subset σ∂a =

{σia1 , . . . , σiapa
}, of size pa. We then introduce a factor graph in which each interaction

term is represented by a square vertex and each spin is represented by a circular vertex.
Edges are drawn between the interaction vertex a and the variable vertex i whenever
the spin σi appears in σ∂a. We have already seen in Fig. 9.7 the factor graph of a
‘usual’ two-dimensional spin glass, where the energy contains terms with p = 1 and
p = 2. Fig. 12.1 shows the factor graphs of some small samples of the SK model in
zero magnetic field (p = 2 only) and the ‘3-spin model’ in which terms with p = 3
appear in the energy function.

The energy function (12.1) can be straightforwardly interpreted as a model for a
magnetic system. We used so far the language inherited from this application: the spins
{σi} are ‘rotational’ degrees of freedom associated to magnetic particle, their average
is the magnetization etc. In this context, the most relevant interaction between distinct
degrees of freedom is pairwise: −Jijσiσj .

Higher order terms naturally arise in other applications, one of the simplest one
being lattice particle systems. These are used to model the liquid-to-gas, liquid-to-
solid, and similar phase transitions. One normally starts by considering some base
graph G over N vertices, which is often taken to be a portion of Zd (to model a real
physical system the dimension of choice is of course d = 3). Each vertex in the graph
can be either occupied by a particle, which we shall assume indistinguishable from the
others, or empty. The particles are assumed indistinguishable from each other, and
a configuration is characterized by occupation variables ni = {0, 1}. The energy is
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a function E(n) of the occupancies n = {n1, . . . , nN}, which takes into account local
interaction among neighboring particles. Usually it can be rewritten in the form (12.1),
using the mapping σi = 1− 2ni. We give a few examples in the exercises below.

Exercise 12.1 Consider an empty box which is free to exchange particles with a reservoir,
and assume that particles do not interact with each other (except for the fact that they
cannot superimpose). This can be modeled by taking G to be a cube of side L in Zd, and
establishing that each particle in the system contributes by a constant amount −µ to the
energy: E(n) = −µPi ni. This is a model for what is usually called an ideal gas.

Compute the partition function. Rewrite the energy function in terms of spin variables
and draw the corresponding factor graph.

Exercise 12.2 In the same problem, imagine that particles attract each other at short
distance: whenever two neighboring vertices i and j are occupied, the system gains an
energy −ǫ. This is a model for the liquid-gas phase transition.

Write the corresponding energy function both in terms of occupancy variables {ni} and
spin variables {σi}. Draw the corresponding factor graph. Based on the phase diagram of
the Ising model, cf. Sec. 2.5, discuss the behavior of this particle system. What physical
quantity corresponds to the magnetization of the Ising model?

Exercise 12.3 In some materials, molecules cannot be packed in a regular lattice at high
density, and this may result in amorphous solid materials. In order to model this phe-
nomenon, one can modify the energy function of the previous exercises as follows. Each
time that a particle (i.e. an occupied vertex) is surrounded by more than k other particles
in the neighboring vertices, a penalty +δ is added to the energy.

Write the corresponding energy function (both in terms of {ni} and {σi}) and draw the
factor graph associated with it.

12.1.2 Spin glass ensembles

A sample (or an instance) of a spin glass is defined by:

• Its factor graph, which specifies the subsets of spins which interact;

• The value of the coupling constant Ja ∈ R for each function node in the factor
graph.

An ensemble is defined by a probability distribution over the space of samples.
In all cases which we shall consider, the couplings are assumed to be i.i.d. random
variables, independent of the factor graph. The most studied cases are Gaussian Ja’s,
or Ja taking values {+1,−1} with equal probability (in jargon this is called the ±J
model). More generally, we shall denote by P(J) the pdf of Ja.

One can distinguish two large families of spin glass ensembles which have attracted
the attention of physicists: ‘realistic’ and ‘mean field’ ones. While in the first case
the focus is on modeling actual physical systems, mean field models have proved to
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be analytically tractable, and revealed a rich mathematical structure. The relation
between these two classes is a fascinating open problem that we will not try to address.

Physical spin glasses are mostly three-dimensional systems, but in some cases they
can be two-dimensional. The main feature of realistic ensembles is that they retain this
geometric structure: a position x in d dimensions can be associated with each spin.
The interaction strength (the absolute value of the coupling J) decays rapidly with
the distance between the positions of the associated spins. The Edwards-Anderson
model is the most studied example of this family. The spins are located on the vertices
of a d-dimensional hyper-cubic lattice. Neighboring spins interact, through two-body
interactions (i.e. pmax = 2 in Eq. (12.1)). The corresponding factor graph is not ran-
dom, as can be seen on the two-dimensional example of Fig. 9.7. The only source of
disorder are the random couplings Jij distributed according to P(J). It is customary
to add a uniform magnetic field B which is written as a p = 1 term with Ji = B. Very
little is known about these models when d ≥ 2, and most of our knowledge comes from
numerical simulations. They suggest the existence of a glass phase when d ≥ 3 but
this is not proven yet.

There exists no general mathematical definition of mean field models. From a
technical point of view, mean field models admit exact expressions for the asymptotic
(N → ∞) free-energy density, as the optimum of some sort of large deviation rate
function. The distinctive feature allowing for a solution in this form is the lack of any
finite-dimensional geometrical structure.

The p-spin glass model discussed in Sec. ?? (and in particular the p = 2 case,
which is the SK model) is a mean field model. Also in this case the factor graph is
non-random, and the disorder enters only in the random couplings. The factor graph
is a regular bipartite graph. It contains

(
N
p

)
function nodes, one for each p-uple of

spins; for this reason it is called fully connected. Each function node has degree p,
each variable node has degree

(
N−1
p−1

)
. Since the degree diverges with N , the coupling

distribution P(J) must be scaled appropriately with N , cf. Eq. (??).
Fully connected models are among the best understood in the mean field family.

They can be studied either via the replica method, as in Ch. ??, or via the cavity
method that we shall develop in the next chapters. Some of the predictions from these
two heuristic approaches have been confirmed rigorously.

One unrealistic feature of fully connected models is that each spin interacts with
a diverging number of other spins (the degree of a spin variable in the factor graph
diverges in the thermodynamic limit). In order to eliminate this feature, one can study
spin glass models on Erdös-Rényi random graphs with finite average degree. Spins are
associated with vertices in the graph and p = 2 interactions (with couplings that are
i.i.d. random variables drawn from P(J)) are associated with edges in the graph. The
generalization to p-spin interactions is immediate. The corresponding spin glass models
will be named diluted spin glasses (DSG). We define the ensemble DSGN (p,M,P)
as follows:

• Generate a factor graph from the GN (p,M) ensemble ( the graph has therefore
M function nodes, all of degree p);

• For every function node a in the graph, connecting spins ia1 , . . . , i
a
p, draw a random

coupling Jia1 ,...,iap from the distribution P(J), and introduce an energy term;
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Ea(σ∂a) = −Jia1 ,...,iapσia1 · · ·σiap ; (12.2)

• The final energy is E(σ) =
∑M
a=1Ea(σ∂a).

The thermodynamic limit is taken by letting N →∞ at fixed α = M/N .
As in the case of random graphs, one can introduce some variants of this defini-

tion. In the ensemble DSG(p, α,P), the factor graph is drawn from GN (p, α): each
p-uple of variable nodes is connected by a function node independently with proba-
bility α/

(
N
p

)
. As we shall see, the ensembles DSGN (p,M,P) and DSGN (p, α,P) have

the same free-energy per spin in the thermodynamic limit, and many of their ther-
modynamic properties are identical. One basic reason of this phenomenon is that any
finite neighborhood of a random site i has the same asymptotic distribution in the two
ensembles.

Obviously, any ensemble of random graphs can be turned into an ensemble of spin
glasses by the same procedure. Some of these ensembles have been considered in the
literature. Mimicking the notation defined in Sect. 9.2, we shall introduce general
diluted spin glasses with constrained degree profiles, to be denoted by DSGN (Λ, P,P),
as the ensemble derived from the random graphs in DN (Λ, P ).

Diluted spin glasses are a very interesting class of models, which are intimately
related to sparse graph codes and to random satisfiability problems, among others. Our
understanding of DSGs is intermediate between fully connected models and realistic
ones. It is believed that both the replica and cavity methods should allow to compute
exactly many thermodynamic properties for most of these models. However the number
of these exact results is still rather small, and only a fraction of these have been proved
rigorously.

12.2 Spin glasses: Constraints and frustration

Spin glasses at zero temperature can be seen as constraint satisfaction problems. Con-
sider for instance a model with two-body interactions

E(σ) = −
∑

(i,j)∈E

Jijσiσj , (12.3)

where the sum is over the edge set E of a graph G (the corresponding factor graph is
obtained by associating a function node a to each edge (ij) ∈ E). At zero temperature
the Boltzmann distribution is concentrated on those configurations which minimize
the energy. Each edge (i, j) induces therefore a constraint between the spins σi and
σj : they should be aligned if Jij > 0, or anti-aligned if Jij < 0. If there exists a
spin configuration which satisfies all the constraint, the ground state energy is Egs =
−∑(i,j)∈E |Jij | and the sample is said to be unfrustrated (see Ch. 2.6). Otherwise
it is frustrated. In this case one defines a ground state as a spin configuration which
violates the minimum possible number of constraints.

As shown in the Exercise below, there are several methods to check whether an
energy function of the form (12.3) is frustrated.
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Exercise 12.4 Define a ‘plaquette’ of the graph as a circuit i1, i2, . . . , iL, i1 such that no
shortcut exists: ∀r, s ∈ {1, . . . , L}, the edge (ir, is) is absent from the graph whenever
r 6= s± 1 (mod L). Show that a spin glass sample is unfrustrated if and only if the product
of the couplings along every plaquette of the graph is positive.

Exercise 12.5 Consider a spin glass of the form (12.3), and define the Boolean variables
xi = (1−σi)/2. Show that the spin glass constraint satisfaction problem can be transformed
into an instance of the 2-satisfiability problem. [Hint: Write the constraint Jijσiσj > 0 in
Boolean form using xi and xj .]

Since 2-SAT is in P, and because of the equivalence explained in the last exercise,
one can check in polynomial time whether the energy function (12.3) is frustrated or
not. This approach does not work when p ≥ 3 because K-SAT is NP-complete for
K ≥ 3. However, as we shall see in Ch. ??, checking whether a spin glass energy
function is frustrated remains a polynomial problem for any p.

12.2.1 Gauge transformation

When a spin glass sample has some negative couplings but is unfrustrated, one is in
fact dealing with a ‘disguised ferromagnet’. By this we mean that, through a change
of variables, the problem of computing the partition function for such a system can
be reduced to the one of computing the partition function of a ferromagnet. Indeed,
by assumption, there exists a ground state spin configuration σ∗i ∈ {±1} such that
∀(i, j) ∈ E Jijσ

∗
i σ
∗
j > 0. Given a configuration σ, define τi = σiσ

∗
i , and notice that τi ∈

{+1,−1}. Then the energy of the configuration is E(σ) = E∗(τ) ≡ −
∑

(i,j)∈E |Jij |τiτj .
Obviously the partition function for the system with energy function E∗( · ) (which is
a ferromagnet since |Jij | > 0) is the same as for the original system.

This change of variables is an example of a gauge transformation. In general,
such a transformation amounts to changing all spins and simultaneously all couplings
according to:

σi 7→ σ
(s)
i = σisi , Jij 7→ J

(s)
ij = Jijsisj , (12.4)

where s = {s1, . . . , sN} is an arbitrary configuration in {−1, 1}N . If we regard the
partition function as a function of the coupling constants J = {Jij : (ij) ∈ E}:

Z[J ] =
∑

{σi}

exp


β

∑

(ij)∈E

Jijσiσj


 , (12.5)

then we have

Z[J ] = Z[J (s)] . (12.6)

The system with coupling constants J (s) is sometimes called the ‘gauge transformed
system’.



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

Spin glasses: Constraints and frustration 173
Exercise 12.6 Consider adding a uniform magnetic field (i.e. a linear term of the form
−BPi σi) to the energy function (12.3), and apply a generic gauge transformation to such
a system. How must the uniform magnetic field be changed in order to keep the partition
function unchanged? Is the new magnetic field term still uniform?

Exercise 12.7 Generalize the above discussion of frustration and gauge transformations
to the ±J 3-spin glass (i.e. a model of the type (12.1) involving only terms with p = 3).

12.2.2 The Nishimori temperature. . .

In many spin glass ensembles, there exists a special temperature (called the Nishi-
mori temperature) at which some thermodynamic quantities, such as the internal
energy, can be computed exactly. This nice property is particularly useful in the study
of inference problems (a particular instance being symbol MAP decoding of error cor-
recting codes), since the Nishimori temperature naturally arises in these context. There
are in fact two ways of deriving it: either as an application of gauge transformations
(this is how it was discovered in physics), or by mapping the system onto an inference
problem.

Let us begin by taking the first point of view. Consider, for the sake of simplicity,
the model (12.3). The underlying graph G = (V, E) can be arbitrary, but we assume
that the couplings Jij on all the edges (ij) ∈ E are i.i.d. random variables taking values
Jij = +1 with probability 1− p and Jij = −1 with probability p. We denote by E the
expectation with respect to this distribution.

The Nishimori temperature for this system is given by TN = 1/βN, where βN =
1
2 log (1−p)

p . It is chosen in such a way that the coupling constant distribution P(J)
satisfies the condition:

P(J) = e−2βNJ P(−J) . (12.7)

An equivalent way of stating the same condition consists in writing

P(J) =
eβNJ

2 cosh(βNJ)
Q(|J |) . (12.8)

where Q(|J |) denotes the distribution of the absolute values of the couplings (in the
present example, this is a Dirac’s delta on |J | = 1).

Let us now turn to the computation of the average, over the distribution of cou-
plings, of the internal energy1 U ≡ E〈E(σ)〉. More explicitly

U = E





1

Z[J ]

∑

σ

(
−
∑

(kl)

Jklσkσl

)
eβ

P
(ij) Jijσiσj



 , (12.9)

1The same symbol U was used in Ch. 2 to denote the internal energy 〈E(σ)〉 (instead of its
average). There should be no confusion with the present use.
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In general, it is very difficult to compute U . It turns out that at the Nishi-
mori temperature, the gauge invariance allows for an easy computation. The av-
erage internal energy U can be expressed as U = E{ZU [J ]/Z[J ]}, where ZU [J ] =
−∑σ

∑
(kl) Jklσkσl

∏
(ij) e

βNJijσiσj .

Let s ∈ {−1, 1}N . By an obvious generalization of (12.6), we have ZU [J (s)] =
ZU [J ], and therefore

U = 2−N
∑

s

E{ZU [J (s)]/Z[J (s)]} . (12.10)

If the coupling constants Jij are i.i.d. with distribution (12.8), then the gauge trans-

formed constants J ′ij = J
(s)
ij are equally independent but with distribution

Ps(Jij) =
eβNJijsisj

2 coshβN
. (12.11)

Equation (12.10) can therefore be written as U = 2−N
∑
s Es{ZU [J ]/Z[J ]}, where Es

denotes expectation with respect to the modified measure Ps(Jij). Using Eq. (12.11),
and denoting by E0 the expectation with respect to the uniform measure over Jij ∈
{±1}, we get

U = 2−N
∑

s

E0




∏

(ij)

eβNJijsisj

coshβN

ZU [J ]

Z[J ]



 = (12.12)

= 2−N (coshβN)−|E|E0




∑

s

eβN

P
(ij) Jijsisj

ZU [J ]

Z[J ]



 = (12.13)

= 2−N (coshβN)−|E|E0 {ZU [J ]} . (12.14)

It is easy to compute E0ZU [J ] = −2N (coshβN)|E|−1 sinhβN. This implies our final
result for the average energy at the Nishimori temperature:

U = −|E| tanh(βN) . (12.15)

Notice that this simple result holds for any choice of the underlying graph. Further-
more, it is easy to generalize it to other choices of the coupling distribution satisfying
Eq. (12.8) and to models with multi-spin interactions of the form (12.1). An even wider
generalization is treated below.

12.2.3 . . . and its relation with probability

The calculation of the internal energy in the previous Section is straightforward but
somehow mysterious. It is hard to grasp what is the fundamental reason that make
things simpler at the Nishimori temperature. Here we discuss a more general deriva-
tion, in a slightly more abstract setting, which is related to the connection with infer-
ence mentioned above.
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Consider the following process. A configuration σ ∈ {±1} is chosen uniformly at

random, we call P0(σ) the corresponding distribution. Next a set of coupling constants
J = {Ja} is chosen according to the conditional distribution

P(J |σ) = e−βEJ (σ) Q0(J) . (12.16)

Here EJ(σ) is an energy function with coupling constants J , and Q0(J) is some refer-
ence measure (that can be chosen in such a way that the resulting P(J |σ) is normal-
ized). This can be interpreted as a communication process. The information source
produces the message σ uniformly at random, and the receiver observes the couplings
J .

The joint distribution of J and σ is P(J, σ) = e−βEJ (σ) Q0(J)P0(σ). We shall denote
expectation with respect to this joint distribution by Av in order to distinguish it from
the thermal average (the one over the Boltzmann measure, denoted by 〈 . 〉) and from
the quenched average over the couplings, denoted by E.

We assume that this process enjoys a gauge symmetry: this assumption defines
the Nishimori temperature. By this we mean that, given s ∈ {±1}N , there exists an

invertible mapping J → J (s) such that Q0(J
(s)) = Q0(J) and EJ(s)(σ(s)) = EJ(σ).

Then it is clear that the joint probability distribution of the coupling and the spins,
and the conditional one, enjoy the same symmetry

P(σ(s), J (s)) = P(σ, J) , P(J (s)|σ(s)) = P(J |σ) . (12.17)

Let us introduce the quantity

U(J) = Av(EJ (σ)|J) =
∑

σ

P(σ|J)EJ (σ) . (12.18)

and denote by U(σ0) =
∑
J P(J |σ0)U(J). This is nothing but the average internal

energy for a disordered system with energy function EJ(σ) and coupling distribution
P(J |σ0). For instance, if we take σ0 as the ‘all-plus’ configuration, Q0(J) proportional
to the uniform measure over {±1}E , and EJ(σ) as given by Eq. (12.3), then U(σ0) is
exactly the quantity U that we computed in the previous Section.

Gauge invariance implies that U(J) = U(J (s)) for any s, and U(σ0) does not depend
upon σ0. We can therefore compute U = U(σ0) by averaging over σ0. We obtain

U =
∑

σ0

P0(σ0)
∑

J

P(J |σ0)
∑

σ

P(σ|J)EJ (σ)

=
∑

σ,J

P(σ, J)EJ (σ) =
∑

J

P(J |σ0)EJ (σ) , (12.19)

where we used gauge invariance, once more, in the last step. The final expression is
generally easy to evaluate since the coublings Ja are generically independent under
P(J |σ0) In particular, it is straightforward to recover Eq. (12.15) for the case treated
in the last Section.
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Exercise 12.8 Consider a spin glass model on an arbitrary graph, with energy given by
(12.3), and i.i.d. random couplings on the edges, drawn from the distribution P(J) =
P0(|J |)eaJ . Show that the Nishimori inverse temperature is βN = a, and that the internal
energy at this point is given by: U = −|E|PJ P0(|J |) J sinh(βNJ). In the case where P is
a Gaussian distribution of mean J0, show that U = −|E|J0.

12.3 What is a glass phase?

12.3.1 Spontaneous local magnetizations

In physics, a ‘glass’ is defined through its dynamical properties. For classical spin mod-
els such as the ones we are considering here, one can define several types of physically
meaningful dynamics. For definiteness we use the single spin flip Glauber dynamics
defined in Sec. ??. The main features of our discussion should remain unchanged as
far as we keep to local dynamics (i.e. a bounded number of spins is flipped at each
step), which obey detailed balance.

Consider a system at equilibrium at time 0 (i.e., assume σ(0) to be distributed
according to the Boltzmann distribution) and denote by 〈 · 〉σ(0) the expectation with
respect to Glauber dynamics conditional to the initial configuration. Within a ‘solid’ 2

phase, spins are correlated with their initial value on long time scales:

lim
t→∞

lim
N→∞

〈σi(t)〉σ(0) ≡ mi,σ(0) 6= 〈σi〉 . (12.20)

In other words, on arbitrary long but finite (in the system size) time scales, the system
converges to a ‘quasi-equilibrium’ state, which we shall call for brevity ‘quasi-state’,
with local magnetizations mi,σ(0) depending on the initial condition.

The condition (12.20) is for instance satisfied by a d ≥ 2 Ising ferromagnet in zero
external field, at temperatures below the ferromagnetic phase transition. In this case we
have either mi,σ(0) = M(β), or mi,σ(0) = −M(β) depending on the initial condition,
where M(β) is the spontaneous magnetization of the system. There are two quasi-
states, invariant by translation and related by a simple symmetry transformation. If
the different quasi-states are not periodic, nor related by any symmetry, one may speak
of a glass phase.

It is also very important to characterize the glass phase at the level of equilibrium
statistical mechanics, without introducing a specific dynamics. For the case of ferro-
magnets we have already seen the solution of this problem in Ch. 2. Let 〈 . 〉B denote
expectation with respect to the Boltzmann measure for the energy function (12.1),
after a uniform magnetic field has been added. One then defines the two quasi-states
by:

mi,± ≡ lim
B→0±

lim
N→∞

〈σi〉B . (12.21)

A natural generalization to glasses consists in adding a small magnetic field which is
not uniform. Let us add to the energy function (12.1) a term of the form −ǫ∑i siσi

2The name comes from the fact that in a solid the preferred position of the atoms are time
independent, for instance in a crystal they are the vertices of a periodic lattice
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where s ∈ {±1}N is an arbitrary configuration. Denote by 〈 · 〉ǫ,s the expectation with
respect to the corresponding Boltzmann distribution and let

mi,s ≡ lim
ǫ→0±

lim
N→∞

〈σi〉ǫ,s . (12.22)

The Edwards-Anderson order parameter, defined as

qEA ≡ lim
ǫ→0±

lim
N→∞

1

N

∑

i

〈σi〉2ǫ,s , (12.23)

where s is an equilibrium configuration sampled from Boltzmann’s distribution, then
signals the onset of the spin glass phase.

The careful reader will notice that the Eq. (12.20) is not really completely defined:
How should we take the N →∞ limit? Do the limits exist, how does the result depend
on s? These are subtle questions. They underly the problem of defining properly the
pure states (extremal Gibbs states) in disordered systems. We will come back to these
issues in Chapter ??.

An extremely fruitful idea is instead to study glassy phases by comparing several
equilibrated (i.e. drawn from the Boltzmann distribution) configurations of the system:
one can then use one configuration as defining the direction of the polarizing field, as we
just did for the Edwards-Anderson order parameter. Remarkably, this idea underlies
the formal manipulations within the replica method.

We shall explain below in greater detail two distinct criteria, based on this idea,
which can be used to define a glass phase. Before this, let us discuss a criterion of
stability of the high temperature phase.

12.3.2 Spin glass susceptibility

Take a spin glass sample, with energy (12.1), and add to it a local magnetic field on
site i, Bi. The magnetic susceptibility of spin j with respect to the field Bi is defined
as the rate of change of mj = 〈σj〉Bi

with respect to Bi:

χji ≡
dmj

dBi

∣∣∣∣
Bi=0

= β(〈σiσj〉 − 〈σi〉〈σj〉) , (12.24)

where we used the fluctuation dissipation relation (2.44).
The uniform (ferromagnetic) susceptibility defined in Sec. 2.5.1 gives the rate of

change of the average magnetization with respect to an infinitesimal global uniform
field: χ = 1

N

∑
i,j χji. Consider a ferromagnetic Ising model as introduced in Sec. 2.5.

Within the ferromagnetic phase (i.e. at zero external field and below the critical tem-
perature) χ diverges with the system size N . One way to understand this divergence is
the following. If we denote by m(B) the infinite volume magnetization in a magnetic
field B, and by M(β) the spontaneous magnetization, we have

χ = lim
B→0

1

2B
[m(B)−m(−B)] = lim

B→0+
M(β)/B =∞ , (12.25)

within the ferromagnetic phase.
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The above argument relates the susceptibility divergence with the existence of two
distinct pure states of the system (‘plus’ and ‘minus’). What is the appropriate suscep-
tibility to detect a spin glass ordering? Following our previous discussion, we should
consider the addition of a small non-uniform field Bi = siǫ. The local magnetizations
are given by

〈σi〉ǫ,s = 〈σi〉0 + ǫ
∑

j

χijsj +O(ǫ2) . (12.26)

As suggested by Eq. (12.25) we compare the local magnetization obtained by perturb-
ing the system in two different directions s and s′

〈σi〉ǫ,s − 〈σi〉ǫ,s′ = ǫ
∑

j

χij(sj − s′j) +O(ǫ2) . (12.27)

How should we choose s and s′? A simple choice takes them independent and uniformly
random in {±1}N ; let us denote by Es the expectation with respect to this distribution.
The above difference becomes therefore a random variable with zero mean. Its second
moment allows to define the spin glass susceptibility (sometimes called non-linear
susceptibility):

χSG ≡ lim
ǫ→0

1

2Nǫ2

∑

i

Es
(
〈σi〉ǫ,s − 〈σi〉ǫ,s′

)2
(12.28)

This is somehow the equivalent of Eq. (12.25) for the spin glass case. Using Eq. (12.27)
one gets the expression χSG = 1

N

∑
ij(χij)

2, which can also be written, using the
fluctuation dissipation relation, as:

χSG =
β2

N

∑

i,j

[〈σiσj〉 − 〈σi〉〈σj〉]2 . (12.29)

Usually, a necessary condition for the system to be in a paramagnetic, non-solid,
phase is that χSG remain finite when N →∞. We shall see below that this necessary
condition of local stability is not always sufficient.

Exercise 12.9 Another natural choice would consist in choosing s and s′ as independent
configurations drawn from Boltzmann’s distribution. Show that with such a choice one
would get χSG = (1/N)

P
i,j,k χijχjkχki. This susceptibility has not been studied in the

literature, but it is reasonable to expect that it will lead generically to the same criterion
of stability as the usual one (12.29).

12.3.3 The overlap distribution function P (q)

One of the main indicators of a glass phase is the overlap distribution, which we
defined in Sect. ??. Given a general magnetic model of the type (12.1), one generates
two independent configurations σ and σ′ from the associated Boltzmann distribution
and consider their overlap qσ,σ′ = N−1

∑
i σiσ

′
i. The overlap distribution PN (q) is the
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distribution of qσ,σ′ when the couplings and the underlying factor graph are taken
randomly from their ensemble. Its infinite N limit is denoted by P (q). Its moments
are given by: ∫

PN (q)qr dq = E

{ 1

Nr

∑

i1,...,ir

〈σi1 . . . σir 〉2
}
. (12.30)

In particular, the first moment
∫
PN (q) q dq = N−1

∑
im

2
i is the expected overlap

and the variance Var(q) ≡
∫
PN (q) q2 dq −

[∫
PN (q) q dq

]2
is related to the spin glass

susceptibility:

Var(q) = E

{ 1

N2

∑

i,j

[〈σiσj〉 − 〈σi〉〈σj〉]2
}

=
1

N
χSG . (12.31)

How is a glass phase detected through the behavior of the overlap distribution
P (q)? We will discuss here two scenarios that appear to be remarkably universal
within mean field models. In the next section we will see that the overlap distribution
is in fact related to the idea, discussed in Section 12.3.1, of perturbing the system in
order to explore its quasi-states.

Generically, at small β, a system of the type (12.1) is found in a ‘paramagnetic’ or
‘liquid’ phase. In this regime PN (q) concentrates as N →∞ on a single (deterministic)
value q(β): with high probability, two independent configurations σ and σ′ have overlap
close to q(β). In fact, in such a phase, the spin glass χSG susceptibility is finite, and
the variance of PN (q) vanishes therefore as 1/N .

For β larger than a critical value βc, the distribution P (q) may acquire some
structure, in the sense that several values of the overlap have non-zero probability in
the N →∞ limit. The temperature Tc = 1/βc is called the static (or equilibrium)
glass transition temperature. . For β > βc the system is in an equilibrium glass
phase.

How does P (q) look like at β > βc? Generically, the transition falls into one of
the following two categories, the names of which come from the corresponding replica
symmetry breaking pattern found in the replica approach:

(i) Continuous (“Full replica symmetry breaking -FRSB”) glass transition. In Fig. 12.2
we sketch the behavior of the thermodynamic limit of P (q) in this case. The delta
function present at β < βc ‘broadens’ for β > βc, giving rise to a distribution
with support in some interval [q0(β), q1(β)]. The width q1(β) − q0(β) vanishes
continuously when β ↓ βc. Furthermore, the asymptotic distribution has a con-
tinuous density which is strictly positive in ]q0(β), q1(β)[ and two discrete (delta)
contributions at q0(β) and q1(β).
This type of transition has a ‘precursor’. If we consider the N → ∞ limit of
the spin glass susceptibility, this diverges as β ↑ βc. This phenomenon is quite
important for identifying the critical temperature experimentally, numerically and
analytically.

(ii) Discontinuous (“1RSB”) glass transition. Again, P (q) acquires a non trivial
structure in the glass phase, but the scenario is different. When β increases above
βc, the δ-peak at q(β), which had unit mass at β ≤ βc, becomes a peak at q0(β),
with a mass 1− x(β) < 1. Simultaneously, a second δ-peak appears at a value of
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T0 Tc

P
q

q q

P

P

Fig. 12.2 Typical behavior of the order parameter P (q) (asymptotic overlap distribution)

at a continuous-FRSB glass transition. Vertical arrows denote Dirac’s delta function.

the overlap q1(β) > q0(β) with mass x(β). As β ↓ βc, q0(β)→ q(βc) and x(β)→ 0.
Unlike in a continuous transition, the width q1(β)−q0(β) does not vanish as β ↓ βc

and the open interval ]q0(β), q1(β)[ has vanishing probability in the N →∞ limit.
Furthermore, the thermodynamic limit of the spin glass susceptibility, χSG has a
finite limit as β ↑ βc. This type of transition has no ‘simple’ precursor (but we
shall describe below a more subtle indicator).

The two-peaks structure of P (q) in a discontinuous transition has a particularly
simple geometrical interpretation. When two configurations σ and σ′ are chosen inde-
pendently with the Boltzmann measure, their overlap is (with high probability) either
approximately equal to q0 or to q1. In other words, their Hamming distance is either
N(1− q1)/2 or N(1− q0)/2. This means that the Boltzmann measure µ(σ) is concen-
trated in some regions of the Hamming space {−1, 1}N , called clusters. With high
probability, two independent random configurations in the same cluster have distance
(close to) N(1− q1)/2, and two configurations in distinct clusters have distance (close
to) N(1− q0)/2. In other words, while the overlap does not concentrate in probability
when σ and σ′ are drawn from the Boltzmann measure, it does when this measure is
restricted to one cluster. In a more formal (but still imprecise) way, we might write

µ(σ) ≈
∑

α

wα µα(σ) , (12.32)

where the pα( · ) are probability distributions concentrated onto a single cluster, and
Wα are the weights attributed by the Boltzmann distribution to each cluster.

According to this interpretation, x(β) = E
{∑

α w
2
α

}
. Notice that, since x(β) > 0

for β > βc, the weights are sizeable only for a finite number of clusters (if there were
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T0 Tc

P
q

q q

P

P

Td

Glass phase
Trivial P(q)

Fig. 12.3 Typical behavior of the order parameter P (q) (overlap distribution) in a discon-

tinuous-1RSB glass transition. Vertical arrows denote Dirac’s delta function.

R clusters, all with the same weight wα = 1/R, one would have x(β) = 1/R). This is
what we found already in the REM, as well as in the replica solution of the completely
connected p-spin model, cf. Sec. ??.

Generically, clusters exist already in some region of temperatures above Tc, but the
measure is not yet condensed on a finite number of them. The existence of clusters in
this intermediate temperature region can be detected instead using the tools described
below.

There is no clear criterion that allows to distinguish a priori between systems un-
dergoing one or the other type of transition. The experience gained on models solved
via the replica or cavity methods indicated that a continuous transition typically oc-
curs in standard spin glasses with p = 2-body interactions, but also, for instance, in the
vertex-cover problem. A discontinuous transition is instead found in structural glasses,
generalized spin glasses with p ≥ 3, random satisfiability and coloring. To complicate
things, both types of transitions may occur in the same system at different tempera-
tures (or varying some other parameter). This may lead to a rich phase diagram with
several glass phases of different nature.

It is natural to wonder whether gauge transformations may give some information
on P (q). Unfortunately, it turns out that the Nishimori temperature never enters a
spin glass phase: the overlap distribution at TN is concentrated on a single value, as
suggested by the next exercise.
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Exercise 12.10 Using the gauge transformation of Sec. 12.2.1, show that, at the Nishimori
temperature, the overlap distribution PN (q) is equal to the distribution of the magnetization
per spin m(σ) ≡ N−1P

i σi. (In many spin glass models one expects that this distribution
of magnetization per spin obeys a large deviation principle, and to concentrate on a single
value as N → ∞.)

12.3.4 The ǫ-coupling method

The overlap distribution is in fact related to the idea of quasi-states introduced in
Sec. 12.3.1. Let us again consider a perturbation of the Boltzmann distribution defined
by adding to the energy a magnetic field term −ǫ∑i siσi, where s = (s1, . . . , sN ) is a
generic configuration. We introduce the ǫ-perturbed energy of a configuration σ as

Eǫ,s(σ) = E(σ)− ǫ
N∑

i=1

siσi . (12.33)

Is is important to realize that both the original energy E(σ) and the new term
−ǫ∑i siσi are extensive, i.e. they grow proportionally to N as N → ∞. Therefore
in this limit the presence of the perturbation can be relevant. The ǫ-perturbed Boltz-
mann’s measure is

µǫ,s(σ) =
1

Zǫ,s
e−βEǫ,s(σ) . (12.34)

In order to quantify the effect of the perturbation, let us measure the expected distance
between σ and s

d(s, ǫ) ≡ 1

N

N∑

i=1

1

2
(1− si〈σi〉s,ǫ) (12.35)

(notice that
∑
i(1 − siσi)/2 is just the number of positions in which σ and s differ).

For ǫ > 0 the coupling between σ and s is attractive, for ǫ < 0 it is repulsive. In fact
it is easy to show that d(s, ǫ) is a decreasing function of ǫ.

In the ǫ-coupling method, s is taken as a random variable, drawn from the
(unperturbed) Boltzmann distribution. The rationale for this choice is that in this
way s will point in the directions corresponding to quasi-states. The average distance
induced by the ǫ-perturbation is then obtained, after averaging over s and over the
choice of sample:

d(ǫ) ≡ E

{∑

s

1

Z
e−βE(s) d(s, ǫ)

}
. (12.36)

There are two important differences between the ǫ-coupling method and the computa-
tion of the overlap distribution PN (q): (i) When computing PN (q), the two copies of
the system are treated on equal footing: they are independent and distributed accord-
ing to the Boltzmann law. In the ǫ-coupling method, one of the copies is distributed
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according to Boltzmann’s law, while the other follows a perturbed distribution de-
pending on the first one. (ii) In the ǫ-coupling method the N → ∞ limit is taken at
fixed ǫ. Therefore, the sum in Eq. (12.36) can be dominated by values of the overlap
q(s, σ) which would have been exponentially unlikely for the original (unperturbed)
measure. When computing the N → ∞ limit P (q), such values of the overlap have a
vanishing weight. The two approaches provide complementary informations.

Within a paramagnetic phase d(ǫ) remains a smooth function of ǫ in the neighbor-
hood of ǫ = 0, even after the N →∞ limit has been taken: perturbing the system does
not have any dramatic effect. But in a glass phase d(ǫ) becomes singular: it develops
a discontinuity at ǫ = 0, that can be detected by defining

∆ = lim
ǫ→0+

lim
N→∞

d(ǫ)− lim
ǫ→0−

lim
N→∞

d(ǫ) . (12.37)

Notice that the limit N →∞ is taken first: for finite N there cannot be any disconti-
nuity.

One expects ∆ to be non-zero if and only if the system is in a ‘solid’ phase. In order
to get an intuitive understanding, one can think of the process of adding a positive ǫ
coupling and then letting it to 0, as of a physical process. The system is first forced
in an energetically favorable configuration (given by s). The forcing is then gradually
removed and one checks whether any memory of the preparation is retained (∆ > 0),
or, vice-versa, the system ‘liquefies’ (∆ = 0).

The advantage of the ǫ-coupling method with respect to the overlap distribution
P (q) is twofold:

• In some cases the dominant contribution to the Boltzmann measure comes from
several distinct clusters, but a single one dominates over the others. More pre-
cisely, it may happen that the weights for sub-dominant clusters scale as wα =
exp[−Θ(Nθ)], with θ ∈]0, 1[. In this case, P (q) is a delta function and does not
allow to distinguish from a purely paramagnetic phase. However, the ǫ-coupling
method identifies the phase transition through a singularity of d(ǫ) at ǫ = 0.

• One can use it to analyze a system undergoing a discontinuous transition, when
it is in a glass phase but in the T > Tc regime. In this case, the existence of
clusters cannot be detected from P (q) because the Boltzmann measure is spread
among an exponential number of them. This situation will be the object of the
next section.

12.3.5 1RSB clusters and the potential method

The 1RSB equilibrium glass phase corresponds to a condensation of the measure on
a small number of clusters of configurations. However, the most striking phenomenon
is the appearance of clusters themselves. In the next chapters we will argue that this
has important consequences on Monte Carlo dynamics as well as on other algorithmic
approaches to these systems. It turns out that the Boltzmann measure splits into
clusters at a distinct temperature Td > Tc. In the region of temperatures [Tc, Td]
we will say that the system is in a clustered phase or dynamical glass phase or
dynamical 1RSB phase. The phase transition at Td will be referred to as clustering
or dynamical (glass) transition. In this regime, an exponential number of clusters
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N .
= eNΣ carry a roughly equal weight. The rate of growth Σ is called complexity3

or configurational entropy.
The thermodynamic limit of the overlap distribution, P (q), does not show any

signature of the clustered phase. In order to understand this point, it is useful to
work out a toy example. Assume that the Boltzmann measure is entirely supported
onto exactly eNΣ sets of configurations in {±1}N (each set is a clusters), denoted by
α = 1, . . . , eNΣ and that the Boltzmann probability of each of these sets is w = e−NΣ.
Assume furthermore that, for any two configurations belonging to the same cluster
σ, σ′ ∈ α, their overlap is qσ,σ′ = q1, while if they belong to different clusters σ ∈ α,
σ′ ∈ α′, α 6= α′ their overlap is qσ,σ′ = q0 < q1. Although it might be actually difficult
to construct such a measure, we shall neglect this for a moment, and compute the
overlap distribution. The probability that two independent configurations fall in the
same cluster is eNΣw2 = e−NΣ. Therefore, we have

PN (q) = (1− e−NΣ) δ(q − q0) + e−NΣ δ(q − q1) , (12.38)

which converges to δ(q − q0) as N → ∞: P (q) has a single delta function, as in the
paramagnetic phase.

A first signature of the clustered phase is provided by the ǫ-coupling method de-
scribed in the previous Section. The reason is very clear if we look at Eq. (12.33):
the epsilon coupling ‘tilts’ the Boltzmann distribution in such a way that unlikely
values of the overlap acquire a strictly positive probability. It is easy to compute the
thermodynamic limit d∗(ǫ) ≡ limN→∞ d(ǫ). We get

d∗(ǫ) =

{
(1− q0)/2 for ǫ < ǫc,
(1− q1)/2 for ǫ > ǫc,

(12.39)

where ǫc = Σ/β(q1 − q0). As T ↓ Tc, clusters becomes less and less numerous and
Σ→ 0. Correspondingly, ǫc ↓ 0 as the equilibrium glass transition is approached.

The picture provided by this toy example is essentially correct, with the caveats
that the properties of clusters will hold only within some accuracy and with high
probability. Nevertheless, one expects d∗(ǫ) to have a discontinuity at some ǫc > 0 for
all temperatures in an interval ]Tc, T

′
d]. Furthermore ǫc ↓ 0 as T ↓ Tc.

In general, the temperature T ′d computed through the ǫ-coupling method does not
coincide with the clustering transition. The reason is easily understood. As illustrated
by the above example, we are estimating the exponentially small probability P(q|s, J)
that an equilibrated configuration σ has overlap q with the reference configuration s,
in a sample J . In order to do this we compute the distance d(ǫ) in a problem with
a tilted measure. As we have seen already several times since Ch. 5, exponentially
small (or large) quantities, usually do not concentrate in probability, and d(ǫ) may be
dominated by exponentially rare samples. We also learnt the cure for this problem:
take logarithms! We therefore define4 the glass potential

3This use of the term ‘complexity’, which is customary in statistical physics, should not be confused
with its use in theoretical computer science.

4One should introduce a resolution, so that the overlap is actually constrained in some window
around q. The width of this window can be let to 0 after N → ∞.
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V (q) = − lim

N→∞

1

Nβ
Es,J {log P(q|s, J)} . (12.40)

Here (as in the ǫ-coupling method) the reference configuration is drawn from the
Boltzmann distribution. In other words

Es,J( · · · ) = EJ

{ 1

ZJ

∑

s

e−βEJ (s)( · · · )
}
. (12.41)

If, as expected, log P(q|s, J) concentrates in probability, one has P(q|s, J)
.
= e−NV (q)

with high probability.

Exercise 12.11 Consider the following refined version of the toy model (12.38): P(q|s, J) =

(1 − e−NΣ(s,J))Gq0(s,J);(b0/Nβ)(q) + e−NΣ(s,J))Gq1(s,J);(b1/Nβ)(q), where Ga,b is a Gaus-
sian distribution of mean a and variance b. We suppose that b0, b1 are constants, but
Σ(s, J), q0(s, J), q1(s, J) fluctuate as follows: when J and s are distributed according to
the correct joint distribution (12.41), then Σ(s, J), q0(s, J), q1(s, J) are independent Gaus-

sian random variable of means respectively Σ, q0, q1 and variances δΣ2/N, δq20/N, δq
2
1/N .

Assuming for simplicity that δΣ2 < 2Σ, compute P (q) and d(ǫ) for this model. Show
that the glass potential V (q) is given by two arcs of parabolas:

V (q) = min


(q − q0)

2

2b0
,

(q − q1)
2

2b1
+

1

β
Σ

ff
(12.42)

The glass potential V (q) has been computed using the replica method, only in
a small number of cases, mainly fully connected p-spin glasses. Here we shall just
mention the qualitative behavior that is expected on the basis of these computations.
The result is summarized in Fig. 12.4. At small enough β the glass potential is convex.
Increasing β one first encounters a value β∗ where V (q) stops to be convex. When
β > βd = 1/Td, V (q) develops a secondary minimum, at q = q1(β) > q0(β). This
secondary minimum is in fact an indication of the existence of an exponential number
of clusters, such that two configurations in the same cluster typically have overlap q1,
while two configurations in distinct clusters have overlap q0. A little thought shows
that the difference between the value of the glass potential at the two minima gives
the complexity: V (q1)− V (q0) = TΣ.

In models in which the glass potential has been computed exactly, the temperature
Td computed in this way coincides with a dramatic slowing down of the relaxational
dynamics. More precisely, a properly defined relaxation time for Glauber-type dynam-
ics is finite for T > Td and diverges exponentially in the system size for T < Td.

12.3.6 Cloning and the complexity function

When the various clusters don’t have all the same weight, the system is most appropri-
ately described through a complexity function. Consider a cluster of configurations,
called α. Its free-energy Fα can be defined by restricting the partition function to con-
figurations in cluster α. One way of imposing this restriction is to chose a reference
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Fig. 12.4 Qualitative shapes of the glass potential V (q) at various temperatures. When the

temperature is very high (not shown) V (q) is convex. Below T = Td, it develops a secondary

minimum. The height difference between the two minima is V (q1)−V (q0) = TΣ. In the case

shown here q0 = 0 is independent of the temperature.

configuration σ0 ∈ α, and restricting the Boltzmann sum to those configurations σ
whose distance from σ0 is smaller than Nδ. In order to correctly identify clusters, one
has to take (1− q1)/2 < δ < (1− q∗)/2, where q∗ > q1 is such that V (q∗) > V (q1).

Let Nβ(f) be the number of clusters such that Fα = Nf (more precisely, this is
an un-normalized measure attributing unit weight to the points Fα/N). We expect it
to satisfy a large deviations principle of the form

Nβ(f)
.
= exp{NΣ(β, f)} . (12.43)

The rate function Σ(β, f) is the complexity function. If clusters are defined as above,
with the cut-off δ in the appropriate interval, they are expected to be disjoint up to a
subset of configurations of exponentially small Boltzmann weight. Therefore the total
partition function is given by:

Z =
∑

α

e−βFα
.
=

∫
eN [Σ(β,f)−βf ] df

.
= eN [Σ(β,f∗)−βf∗] , (12.44)

where we applied the saddle point method as in standard statistical mechanics calcu-
lations, cf. Sec. 2.4. Here f∗ = f∗(β) solves the saddle point equation ∂Σ/∂f = β.

For several reasons, it is interesting to determine the full complexity function
Σ(β, f), as a function of f for a given inverse temperature β. The cloning method
is a particularly efficient (although non-rigorous) way to do this computation. Here
we sketch the basic idea: several applications will be discussed in the next chapters.
One begins by introducing m identical ‘clones’ of the initial system. These are non-
interacting except for the fact that they are constrained to be in the same cluster. In
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practice one can constrain all their pairwise Hamming distances to be smaller than
Nδ, where (1−q1)/2 < δ < (1−q∗)/2. The partition function for the m clones systems
is therefore

Zm =
∑

σ(1),...,σ(m)

′ exp
{
− βE(σ(1)) · · · − βE(σ(m))

}
. (12.45)

where the prime reminds us that σ(1), . . .σ(m) stay in the same cluster. By splitting
the sum over the various clusters we have

Zm =
∑

α

∑

σ(1)...σ(m)∈α

e−βE(σ(1))···−βE(σ(m)) =
∑

α

(∑

σ∈α

e−βE(σ)
)m

. (12.46)

At this point we can proceed as for the calculation of the usual partition function and
obtain

Zm =
∑

α

e−βmFα
.
=

∫
eN [Σ(β,f)−βmf ] df

.
= eN [Σ(β,f̂)−βmf̂ ] , (12.47)

where f∗ = f∗(β,m) solves the saddle point equation ∂Σ/∂f = βm.
The free-energy density per clone of the cloned system is defined as

Φ(β,m) = − lim
N→∞

1

βmN
logZm . (12.48)

The saddle point estimate (12.47) implies that Φ(β,m) is related to Σ(β, f) through
Legendre transform:

Φ(β,m) = f − 1

βm
Σ(β, f) ,

∂Σ

∂f
= βm . (12.49)

If we forget that m is an integer, and admit that Φ(β,m) can be ‘continued’ to
non-integer m, the complexity Σ(β, f) can be computed from Φ(β,m) by inverting
this Legendre transform. The similarity to the procedure used in the replica method
is not fortuitous. Notice however that replicas are introduced to deal with quenched
disorder, while cloning is more general: it also applies to systems without disorder.
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Exercise 12.12 In the REM, the natural definition of overlap between two configurations
i, j ∈ {1, . . . , 2N} is qi,j = I(i = j). Taking a configuration j0 as reference, the ǫ-perturbed
energy of a configuration j is E′(ǫ, j) = Ej −NǫI(j = j0). (Note the extra N multiplying
ǫ, introduced in order to ensure that the new ǫ-coupling term is typically extensive).

(a) Consider the high temperature phase where β < βc = 2
√

log 2. Show that the ǫ-perturbed

system has a phase transition at ǫ = log 2
β

− β
4
.

(b) In the low temperature phase β > βc, show that the phase transition takes place at ǫ = 0.

Therefore in the REM the clusters exist at any β, and every cluster is reduced to one single
configuration: one must have Σ(β, f) = log 2 − f2 independently of β. Show that this is
compatible with the cloning approach, through a computation of the potential Φ(β,m):

Φ(β,m) =

(
− log 2

βm
− βm

4
for m < βc

β

−√
log 2 for m > βc

β

(12.50)

12.4 An example: the phase diagram of the SK model

Several mean field models have been solved using the replica method. Sometimes a
model may present two or more glass phases with different properties. Determining
the phase diagram can be particularly challenging in these cases.

A classical example is provided by the SK model with ferromagnetically biased
couplings. As in the other examples of this chapter, this is a model for N Ising spins
σ = (σ1, . . . , σN ). The energy function is

E(σ) = −
∑

(i,j)

Jijσiσj , (12.51)

where (i, j) are un-ordered couples, and the couplings Jij are i.i.d. Gaussian random
variables with mean J0/N and variance 1/N . The model somehow interpolates be-
tween the Curie-Weiss model treated in Sec. 2.5.2, corresponding to J0 →∞, and the
unbiased Sherrington-Kirkpatrick model, considered in Ch. ??, for J0 = 0.

The phase diagram is plotted in terms of two parameters: the ferromagnetic bias
J0, and the temperature T . Depending on their values, the system is found in one of
four phases, cf. Fig. 12.5: paramagnetic (P), ferromagnetic (F), symmetric spin glass
(SG) and mixed ferromagnetic spin glass (F-SG). A simple characterization of these
four phases is obtained in terms of two quantities: the average magnetization and
overlap. In order to define them, we must first observe that, since E(σ) = E(−σ), in
the present model 〈σi〉 = 0 identically for all values of J0, and T . In order to break
this symmetry, we may add a magnetic field term −B∑i σi and let B → 0 after the
thermodynamic limit. We then define

m = lim
B→0+

lim
N→∞

E〈σi〉B , q = lim
B→0+

lim
N→∞

E(〈σi〉2B) , (12.52)
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Fig. 12.5 Phase diagram of the SK model in zero magnetic field. When the temperature T

and the ferromagnetic bias J0 are varied, four distinct phases are encountered: paramagnetic

(P), ferromagnetic (F), spin glass (SG) and mixed ferromagnetic-spin glass (F-SG). The

full lines separate these various phases. The dashed line is the location of the Nishimori

temperature.

(which don’t depend on i because the coupling distribution is invariant under a permu-
tation of the sites). In the P phase one has m = 0, q = 0; in the SG phase m = 0, q > 0,
and in the F and F-SG phases one has m > 0, q > 0.

A more complete description is obtained in terms of the overlap distribution P (q).
Because of the symmetry under spin inversion mentioned above, P (q) = P (−q) identi-
cally. The qualitative shape of P (q) in the thermodynamic limit is shown in Fig. 12.6.
In the P phase it consists of a single delta function with unit weight at q = 0: two
independent configurations drawn from the Boltzmann distribution have, with high
probability, overlap close to 0. In the F phase, it is concentrated on two symmetric val-
ues q(J0, T ) > 0 and −q(J0, T ) < 0, each carrying weight one half. We can summarize
this behavior by saying that a random configuration drawn from the Boltzmann dis-
tribution is found, with equal probability, in one of two different states. In the first one
the local magnetizations are {mi}, in the second one they are {−mi}. If one draws two
independent configurations, they fall in the same state (corresponding to the overlap
value q(J0, T ) = N−1

∑
im

2
i ) or in opposite states (overlap −q(J0, T )) with probabil-

ity 1/2. In the SG phase the support of P (q) is a symmetric interval [−qmax, qmax],
with qmax = qmax(J0, T ). Finally, in the F-SG phase the support is the union of two
intervals [−qmax,−qmin] and [qmin, qmax]. Both in the SG and F-SG phases, the pres-
ence of a whole range of overlap values carrying non-vanishing probability, suggests
the existence of a multitude of quasi-states (in the sense discussed in the previous
Section).

In order to remove the degeneracy due to the symmetry under spin inversion, one
sometimes define an asymmetric overlap distribution by adding a magnetic field terms,
and taking the thermodynamic limit as in Eq. (12.52):

P+(q) = lim
B→0+

lim
N→∞

PB(q) . (12.53)
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Fig. 12.6 The typical shape of the P (q) function in each of the four phases of the SK model

ferromagnetically biased couplings.

Somewhat surprisingly, it turns out that P+(q) = 0 for q < 0, while P+(q) = 2P (q)
for q > 0. In other words P+(q) is equal to the distribution of the absolute value of
the overlap.

Exercise 12.13 Consider the Curie-Weiss model in a magnetic field, cf. Sec. 2.5.2. Draw
the phase diagram and compute the asymptotic overlap distribution. Discuss its qualitative
features for different values of the temperature and magnetic field.

A few words for the reader interested in how one derives this diagram: Some of
the phase boundaries were already derived using the replica method in Exercise ??.
The boundary P-F is obtained by solving the RS equation (??) for q, ω, x. The P-SG
and F-M lines are obtained by the AT stability condition (??). Deriving the phase
boundary between the SG and F-SG phases is much more challenging, because it
separates glassy phases, therefore it cannot be derived within the RS solution. It is
known to be approximately vertical, but there is no simple expression for it. The
Nishimori temperature is deduced from the condition (12.7): TN = 1/J0, and the line
T = 1/J0 is usually called ‘Nishimori line’. The internal energy per spin on this line
is U/N = −J0/2. Notice that the line does not enter any of the glass phases, as we
know from general arguments.

An important aspect of the SK model is that the appearance of the glass phase on
the lines separating P from SG on the one hand, and F from F-SG on the other hand is
a continuous transition. Therefore it is associated with the divergence of the non-linear
susceptibility χSG. The following exercise, reserved to the replica aficionados, sketches
the main lines of the argument showing this.
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Exercise 12.14 Let us see how to compute the non-linear susceptibility of the SK model,

χSG = β2

N

P
i6=j (〈σiσj〉 − 〈σi〉〈σj〉)2, with the replica method Show that:

χSG = lim
n→0

β2

N

X

i6=j

0
@
 
n

2

!−1X

(ab)

〈σa
i σ

b
iσ

a
j σ

b
j〉 −

 
n

3

!−1 X

(abc)

〈σa
i σ

b
iσ

a
j σ

c
j 〉

+

 
n

4

!−1 X

(abcd)

〈σa
i σ

b
iσ

c
jσ

d
j 〉

1
A

= N lim
n→0

Z
e−NG(Q,λ)A(Q)

Y

(ab)

(dQabdλab) , (12.54)

where we follow the notations of (??), the sum over (a1a2 . . . ak) is understood to run over
all the k-uples of distinct replica indices, and

A(Q) ≡
 
n

2

!−1X

(ab)

Q2
ab −

 
n

3

!−1 X

(abc)

QabQac +

 
n

4

!−1 X

(abcd)

QabQcd . (12.55)

Analyze the divergence of χSG along the following lines: The leading contribution to (12.54)
should come from the saddle point and be given, in the high temperature phase, by A(Qab =
q) where Qab = q is the RS saddle point. However this contribution clearly vanishes when
one takes the n → 0 limit. One must thus consider the fluctuations around the saddle
point. Each of the terms like QabQcd in A(Q) gives a factor 1

N
time the appropriate matrix

element of the inverse of the Hessian matrix. When this Hessian matrix is non-singular,
these elements are all finite and one obtains a finite result in the N → ∞ limit. (The 1/N
cancels the factor N in (12.54)). When one reaches the AT instability line, the elements of
the inverse of the Hessian matrix diverge, and therefore χSG also diverges.

Notes

Lattice gas models of atomic systems, such as those discussed in the first two exercises,
are discussed in statistical physics textbooks, see for instance (Ma, 1985). The simple
model of glasses of exercise 12.3 was introduced and solved with the cavity method by
(Biroli and Mézard, 2002).

The order parameter for spin glasses defined by (Edwards and Anderson, 1975)
is a dynamic order parameter which captures the long time persistence of the spins.
The static definition that we have introduced here should give the same result as
the original dynamical one (although of course we have no proof of this statement in
general). A review on the simulations of the Edwards-Anderson model can be found
in (Marinari, Parisi and Ruiz-Lorenzo, 1997).

Mathematical results on mean field spin glasses are found in the book (Talagrand,
2003). A short recent survey is provided by (Guerra, 2005).

Diluted spin glasses were introduced in (Viana and Bray, 1985).
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The implications of the gauge transformation were derived by Hidetoshi Nishimori
and his coworkers, and are explained in details in his book (Nishimori, 2001).

The notion of pure states in phase transitions, and the decomposition of Gibbs
measures into pure states, is discussed in the book (Georgii, 1988). We shall discuss
this topic further in Chapter ??.

The divergence of the spin glass susceptibility is specially relevant because this
susceptibility can be measured in zero field. The experiments of (Monod and Bouchiat,
1982) present evidence of a divergence. This supports the existence of a spin glass
transition in real (three dimensional) spin glasses in zero magnetic field, at non-zero
temperature.

The existence of two transition temperatures Tc < Td was first discussed by Kirk-
patrick, Thirumalai and Wolynes (Kirkpatrick and Wolynes, 1987; Kirkpatrick and
Thirumalai, 1987), who pointed out the relevance to the theory of structural glasses.
In particular, (Kirkpatrick and Thirumalai, 1987) discusses the case of the p-spin glass.
A review of this line of approach to structural glasses, and particularly its relevance
to dynamical effects, is (Bouchaud, Cugliandolo, Kurchan and Mézard, 1997).

The ǫ-coupling method was introduced in (Caracciolo, Parisi, Patarnello and Sourlas,
1990). The idea of cloning in order to study the complexity function is due to Monasson
(Monasson, 1995). Its application to studies of the glass transition without quenched
disorder was developed in (Mézard and Parisi, 1999).

The glass potential method was introduced in (Franz and Parisi, 1995).
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Belief propagation

Consider the ubiquitous problem of computing marginals of a graphical model with N
variables x = (x1, . . . , xN ) taking values in a finite alphabet X . The naive algorithm,
summing over all configurations, takes a time of order |X |N . The complexity can be
reduced dramatically when the underlying factor graph has some special structure.
One extreme case is that of tree factor graphs. On trees, marginals can be computed
in a number of operations which grows linearly with N . This can be done through
a ‘dynamic programming’ procedure that recursively sums over all variables starting
from the leaves and progressing towards the ‘center’ of the tree.

Remarkably, such a recursive procedure can be recast as a distributed ‘message
passing’ algorithm. Message passing algorithms operate on ‘messages’ associated with
edges of the factor graph, and update them recursively through local computations
done at the vertices of the graph. The update rules that yield exact marginals on trees
have been discovered independently in several different contexts: statistical physics
(under the name ‘Bethe Peierls approximation’), coding theory (‘sum-product’ algo-
rithm), and artificial intelligence (‘belief propagation’ - BP). Here we will adopt the
artificial intelligence terminology.

This chapter gives a detailed presentation of BP, and more generally message pass-
ing procedures, which provide one of the main building blocks that we use throughout
the rest of the book. It is therefore important that the reader has a good understanding
of it.

It is straightforward to prove that BP exactly computes marginals on tree fac-
tor graphs. However, it was found only recently that it can be extremely effective on
loopy graphs as well. One of the basic intuitions behind this success is that BP, being
a local algorithm, should be successful whenever the underlying graph is ‘locally’ a
tree. Such factor graphs appear frequently, for instance in error correcting codes, and
BP turns out to be very powerful in this context. However, even in such cases, its
application is limited to distributions such that far apart variables become approxi-
mately uncorrelated. The onset of long range correlations, typical of the occurrence of
a phase transition, generically leads to poor performances of BP. We shall see several
applications of this idea in the next chapters.

We introduce the basic ideas in Section 14.1 by working out a couple of simple
examples. The general BP equations are stated in Section 14.2, which also shows how
they provide exact results on tree factor graphs. Section 14.3 describes an alterna-
tive message passing procedure, the max-product (equivalently, min-sum) algorithm,
which can be used in optimization problems. In Section 14.4 we discuss the use of
BP in graphs with loops. In the study of random constraint satisfaction problems, BP
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j

Fig. 14.1 Top: the factor graph of the one-dimensional Ising model in an external field.

Bottom: the three messages arriving on site j describe the contributions to the probability

distribution of σj , due to the left chain (bν→j), to the right chain (bνj←) and to the external

field B.

messages become random variables. The study of their distribution provides a large
amount of information on such instances and can be used to characterize the corre-
sponding phase diagram. The time evolution of these distributions is known under the
name of density evolution, while their fixed point analysis is the replica symmetric
cavity method. Both are explained in Section 14.6.

14.1 Two examples

14.1.1 Example 1: Ising chain

Consider the ferromagnetic Ising model on a line. The variables are Ising spins (σ1, . . . , σN ) =
σ, with σi ∈ {+1,−1} and their joint distribution takes Boltzmann’s form

µβ(σ) =
1

Z
e−βE(σ) , E(σ) = −

N−1∑

i=1

σiσi+1 −B
N∑

i=1

σi . (14.1)

The corresponding factor graph is shown in Figure 14.1.1.
Let us now compute the marginal probability distribution µ(σj) of spin σj . We shall

introduce three ‘messages’ arriving on spin j as the contributions to µ(σj) coming from
each of the function nodes which are connected to i. More precisely, let us define

ν̂→j(σj) =
1

Z→j

∑

σ1...σj−1

exp

{
β

j−1∑

i=1

σiσi+1 + βB

j−1∑

i=1

σi

}
,

ν̂j←(σj) =
1

Zj←

∑

σj+1...σN

exp



β

N−1∑

i=j

σiσi+1 + βB
N∑

i=j+1

σi



 . (14.2)

Messages are understood to be probability distributions and thus normalized. In the
present case, the constants Z→j , Zj← are set by the conditions ν̂→j(+1)+ν̂→j(−1) = 1,
and ν̂j←(+1)+ ν̂j←(−1) = 1. In the following, when dealing with normalized distribu-
tions, we shall avoid writing explicitly the normalization constants and use the symbol
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∼= to denote ‘equality up to a normalization’. With this notation, the first of the above
equations can be rewritten as

ν̂→j(σj) ∼=
∑

σ1...σj−1

exp

{
β

j−1∑

i=1

σiσi+1 + βB

j−1∑

i=1

σi

}
. (14.3)

By rearranging the summation over spins σi, i 6= j, the marginal µ(σj) can be
written as:

µ(σj) ∼= ν̂→j(σj) e
βBσj ν̂j←(σj) . (14.4)

In this expression we can interpret each of the three factors as a ‘message’ sent to j from
each of the three function nodes connected to the variable j. Each message coincides
with the marginal distribution of σj in a modified graphical model. For instance,
ν̂→j(σj) is the distribution of σj in the graphical model obtained by removing all the
factor nodes adjacent to j, except the one on its left (cf. Fig. 14.1.1).

This decomposition is interesting because the various messages can be computed
iteratively. Consider for instance ν̂→i+1. It is expressed in terms of ν̂→i as:

ν̂→i+1(σ) ∼=
∑

σ′

ν̂→i(σ
′) eβσ

′σ+βBσ′

. (14.5)

Furthermore, ν̂→1 is the uniform distribution over {+1,−1}: ν̂→1(σ) = 1
2 for σ = ±1.

Equation (14.5) allows to compute all the messages ν̂→i, i ∈ {1, . . . , N}, in O(N)
operations. A similar procedure yields ν̂i← starting from the uniform distribution
ν̂N← and computing recursively ν̂i−1← from ν̂i←. Finally, Eq. (14.4) can be used to
compute all the marginals µ(σj) in linear time.

All the messages are distributions over binary variables and can thus be parame-
terized by a single real number. One popular choice for such a parameterization is to
use the log-likelihood ratio1

u→i ≡
1

2β
log

ν̂→i(+1)

ν̂→i(−1)
. (14.6)

In statistical physics terms u→i is an ‘effective (or local) magnetic field’: ν̂→i(σ) ∼=
eβu→iσ. Using this definition (and noticing that it implies ν̂→i(σ) = 1

2 (1+σ tanh(βu→i))),
Eq. (14.5) becomes:

u→i+1 = f (u→i +B) , (14.7)

where the function f(x) is defined as

f(x) =
1

β
atanh [tanh(β) tanh(βx)] . (14.8)

The mapping u 7→ f(u+B) is differentiable with derivative bounded by tanhβ < 1.
Therefore the fixed point equation u = f(u + B) has a unique solution u∗, and u→i

1Notice that our definition differs by a factor 1/2β from the standard log-likelihood definitions in
statistics. This factor is introduced to make contact with statistical physics definitions.
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Fig. 14.2 Left: A simple parity check code with 7 variables and 3 checks. Right: the factor

graph corresponding to the problem of finding the sent codeword, given a received message.

goes to u∗ when i → ∞. Consider a very long chain, and a node in the bulk j ∈
[εN, (1 − ε)N ]. Then, as N → ∞, both u→j and uj← converge to u∗, so that 〈σj〉 →
tanh[β(2u∗ +B)]. This is the bulk magnetization. If on the other hand we consider a
spin on the boundary we get a smaller magnetization 〈σ1〉 = 〈σN 〉 → tanh[β(u∗+B)].

Exercise 14.1 Use the recursion (14.7) to show that, when N and j go to infinity, 〈σj〉 =
M + O(λj , λN−j) where M = tanh(2u∗ + B) and λ = f ′(u∗ + B). Compare this with the
treatment of the one-dimensional Ising model in Sec. 2.5.

The above method can be generalized to the computation of joint distributions of
two or more variables. Consider for instance the joint distribution µ(σj , σk), for k > j.
Since we already know how to compute the marginal µ(σj), it is sufficient to consider
the conditional distribution µ(σk|σj). For each of the two values of σj , the conditional
distribution of σj+1, · · · , σN takes a form analogous to Eq. (14.1) but with σj fixed.
Therefore, the marginal µ(σk|σj) can be computed through the same algorithm as
before. The only difference is in the initial condition that becomes ν̂→j(+1) = 1,
ν̂→j(−1) = 0 (if we condition on σj = +1) and ν̂→j(+1) = 0, ν̂→j(−1) = 1 (if we
condition on σj = −1).

Exercise 14.2 Compute the correlation function 〈σjσk〉, when j, k ∈ [Nε,N(1 − ε)] and

N → ∞. Check that, when B = 0, 〈σjσk〉 = (tanhβ)|j−k|. Find a simpler derivation of this
last result.

14.1.2 Example 2: a tree-parity-check code

Our second example deals with a decoding problem. Consider the simple linear code
whose factor graph is reproduced in Fig. 14.1.2, left frame. It has block-length N = 7



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

Two examples 197
and codewords satisfy the 3 parity check equations:

x0 ⊕ x1 ⊕ x2 = 0 , (14.9)

x0 ⊕ x3 ⊕ x4 = 0 , (14.10)

x0 ⊕ x5 ⊕ x6 = 0 . (14.11)

One of the codewords is sent through a BSC(p). Assume that the received message is
y = (1, 0, 0, 0, 0, 1, 0). The conditional distribution for x to be the transmitted code-
word, given the received y, takes the usual form µy(x) = P(x|y):

µy(x) ∼=I(x0 ⊕ x1 ⊕ x2 = 0)I(x0 ⊕ x3 ⊕ x4 = 0)I(x0 ⊕ x5 ⊕ x6 = 0)

6∏

i=0

Q(yi|xi) ,

where Q(0|0) = Q(1|1) = 1 − p and Q(1|0) = Q(0|1) = p. The corresponding factor
graph is drawn in Fig. 14.1.2, right frame.

In order to implement symbol MAP decoding, cf. Ch. 6, we need to compute
the marginal distribution of each bit. The computation is straightforward but it is
illuminating to recast it as a message passing procedure, similar to the one in the
Ising chain example. Consider for instance bit x0. We start from the boundary. In the
absence of the check a, the marginal of x1 would be ν1→a = (1 − p, p) (we use here
the convention of writing distributions ν(x) over a binary variable as two dimensional
vectors (ν(0), ν(1))). This is interpreted as a message sent from variable 1 to check a.

Variable 2 sends an analogous message ν2→a to a (in the present example, this
happens to be equal to ν1→a). Knowing these two messages, we can compute the
contribution to the marginal probability distribution of variable x0 coming from the
part of the factor graph containing the whole branch connected to x0 through the
check a:

ν̂a→0(x0) ∼=
∑

x1,x2

I(x0 ⊕ x1 ⊕ x2 = 0) ν1→a(x1)ν2→a(x2) . (14.12)

Clearly, ν̂a→0(x0) is the marginal distribution of x0 in the modified factor graph that
does not include either factor node b or c, and in which the received symbol y0 has been
erased. This is analogous to the messages ν̂→j(σj) used in the Ising chain example.
The main difference is that the underlying factor graph is no longer a line, but a tree.
As a consequence, the recursion (14.12) is no longer linear in the incoming messages.
Using the rule (14.12), and analogous ones for ν̂b→0(x0), ν̂c→0(x0), we obtain:

ν̂a→0 = (p2 + (1− p)2, 2p(1− p)) ,
ν̂b→0 = (p2 + (1− p)2, 2p(1− p)) ,
ν̂c→0 = (2p(1− p), p2 + (1− p)2) .

The marginal probability distribution of the variable x0 is finally obtained by taking
into account the contributions of each subtree, together with the channel output for
bit x0:

µ(x0) ∼= Q(y0|x0) ν̂a→0(x0)ν̂b→0(x0)ν̂c→0(x0)
∼=
(
2p2(1− p)[p2 + (1− p)2]2, 4p2(1− p)3[p2 + (1− p)2]

)
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In particular, the MAP symbol decoding of the symbol x0 is always x0 = 0 in this
case, for any p < 1/2.

An important fact emerges from this simple calculation. Instead of performing a
summation over 27 = 128 configurations, we were able to compute the marginal at
x0 doing 6 summations (one for every factor node a, b, c and for every value of x0),
each one over 2 summands, cf. Eq. (14.12). Such complexity reduction was achieved by
merely rearranging the order of sums and multiplications in the marginal computation.

Exercise 14.3 Show that the message ν0→a(x0) is equal to (1/2, 1/2), and deduce that
µ(x1) ∼= ((1 − p), p).

14.2 Belief Propagation on tree graphs

We shall define belief propagation and analyze it in the simplest possible setting: tree
graphical models. In this case it solves several computational problems in an efficient
and distributed fashion.

14.2.1 Three problems

Let us consider a graphical model such that the associated factor graph is a tree (we
shall call it a tree-graphical model). We use the same notations as in Sec. 9.1.1.
The model describes N random variables (x1, . . . , xN ) ≡ x taking values in a finite
alphabet X , whose joint probability distribution has the form

µ(x) =
1

Z

M∏

a=1

ψa(x∂a) . (14.13)

where x∂a ≡ {xi | i ∈ ∂a}. The set ∂a ⊆ [N ], of size |∂a|, contains all variables involved
in constraint a. We always use indices i, j, k, . . . for the variables and a, b, c, . . . for the
function nodes. The set of indices ∂i involves all function nodes a connected to i.

When the factor graph has no loop the following are among the basic problems
that can be solved efficiently with a message-passing procedure:

1. Compute the marginal distributions of one variable, µ(xi), or the joint distribution
of a small number of variables.

2. Sample from µ(x), i.e. draw independent random configurations x with distribu-
tion µ(x).

3. Compute the partition function Z, or equivalently, in statistical physics language,
the free-entropy logZ.

These three tasks can be accomplished using belief propagation, which is the obvious
generalization of the procedure exemplified in the previous section.

14.2.2 The BP equations

Belief propagation is an iterative ‘message passing’ algorithm. The basic variables on
which it acts are messages associated with directed edges on the factor graph. For each
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edge (i, a) (where i is a variable node and a a function node) there exist, at the t-th

iteration, two messages ν
(t)
i→a and ν̂

(t)
a→i. Messages take values in the space of probability

distributions over the single variable space X . For instance, ν
(t)
i→a = {ν(t)

i→a(xi) : xi ∈
X}, with ν

(t)
i→a(xi) ≥ 0 and

∑
xi
ν

(t)
i→a(xi) = 1.

In tree-graphical models, the messages converge when t→∞ to fixed point values
(see Theorem 14.1). These coincide with single variable marginals in modified graphical

models, as we saw in the two examples of the previous section. More precisely ν
(∞)
i→a(xi)

is the marginal distribution of variable xi in a modified graphical model which does not
include the factor a (i.e. the product in Eq. (14.13) does not include a). Analogously

ν̂
(∞)
a→i(xi) is the distribution of xi in a graphical model where all factors in ∂i, except
a, have been erased.

Messages are updated through local computations at the nodes of the factor graph.
By local we mean that a given node updates the outgoing messages on the basis of
incoming ones at the previous iterations. This is a characteristic feature of message
passing algorithms, while different algorithms in this family differ in the precise form
of the update equations. The belief propagation (BP), or sum-product update
rules, are:

ν
(t+1)
j→a (xj) ∼=

∏

b∈∂j\a

ν̂
(t)
b→j(xj) , (14.14)

ν̂
(t)
a→j(xj)

∼=
∑

x∂a\j

ψa(x∂a)
∏

k∈∂a\j

ν
(t)
k→a(xk) . (14.15)

It is understood that, when ∂j\a is an empty set, νj→a(xj) is the uniform distribution.
Similarly, if ∂a \ j is empty, then ν̂a→j(xj) = ψa(xj). A pictorial illustration of these
rules is provided in Fig. 14.2.2. A BP fixed point is a set of t-independent messages

ν
(t)
i→a = νi→a, ν̂

(t)
a→i = ν̂a→i which satisfy Eqs. (14.14), (14.15). From these one obtains

2|E| equations (one equation for each directed edge of the factor graph) relating 2|E|
messages. We will often refer to these fixed point conditions as to the BP equations.

After t iterations, one can estimate the marginal distribution µ(xi) of variable i
using the set of all incoming messages. The BP estimate is:

ν
(t)
i (xi) ∼=

∏

a∈∂i

ν̂
(t−1)
a→i (xi) . (14.16)

In writing the update rules, we are assuming that the update is done in parallel at all
the variable nodes, then in parallel at all function nodes and so on. Clearly, in this
case, the iteration number must be incremented either at variable nodes or at factor
nodes, but not necessarily at both. This is what happens in Eqs. (14.14), (14.15).
Other update schedules are possible and sometimes useful. For the sake of simplicity
we shall however stick to the parallel one.

In order to fully define the algorithm, we need to specify an initial condition. It
is a widespread habit to set initial messages to the uniform distribution over X (i.e.

ν
(0)
i→a(xi) = 1/|X |). On the other hand, it can be useful to explore several distinct
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b

k

j

aj

a

Fig. 14.3 Left: portion of the factor graph involved in the computation of ν
(t+1)
j→a (xj). This

message is a function of the ‘incoming messages’ bν(t)
b→j(xj), with b 6= a. Right: portion of

the factor graph involved in the computation of bν(t)
a→j(xj). This message is a function of the

‘incoming messages’ ν
(t)
k→a(xk), with k 6= j.

(random) initial conditions. This can be done defining some probability measure P

over the space M(X ) of distributions over X (i.e. the |X |-dimensional simplex) and

taking ν
(0)
i→a( · ) as i.i.d. random variables with distribution P.

The BP algorithm can be applied to any graphical model, irrespective of whether
the factor graph is a tree or not. One possible version of the algorithm is as follows:

BP ( Graphical model (G,ψ), Accuracy ǫ, Iterations tmax )
1 : Initialize BP messages as i.i.d. random variables with distribution P ;
2 : For t ∈ {0, . . . , tmax}
3 : For each (j, a) ∈ E
4 : Compute the new value of ν̂a→j using Eq. (14.15);
5 : For each (j, a) ∈ E
6 : Compute the new value of νj→a using Eqs. (14.14);
7 : Let ∆ be the maximum message change;
8 : If ∆ < ǫ return current messages;
9 : End-For;
10 : Return ‘Not Converged’;

Among all message passing algorithms, BP is uniquely characterized by the prop-
erty of computing exact marginals on tree-graphical models.

Theorem 14.1. (BP is exact on trees) Consider a tree-graphical model with di-
ameter t∗ (which means that t∗ is the maximum distance between any two variable
nodes). Then

1. Irrespective of the initial condition, the BP update (14.14), (14.15) converges
after at most t∗ iterations. In other words, for any edge (ia), and any t > t∗
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ν

(t)
i→a = ν∗i→a, ν̂

(t)
a→i = ν̂∗a→i.

2. The fixed point messages provide the exact marginals: for any variable node i, and

any t > t∗, ν
(t)
i (xi) = µ(xi).

Proof: As exemplified in the previous section, on tree factor graphs BP is just a clever
way to organize the sum over configurations to compute marginals. In this sense the
theorem is obvious.

Let us sketch a formal proof, leaving a few details to the reader. Given a directed
edge i→ a between a variable i and a factor node a, we define T(i→ a) as the sub-tree
rooted on this edge. This is the subtree containing all nodes w which can be connected
to i by a non-reversing path2 which does not include the edge (i, a). Let t∗(i→ a) be
the depth of T(i→ a) (the maximal distance from a leaf to i).

We will show that, for any number of iterations t > t∗(i → a), the message ν
(t)
i→a

coincides with the marginal distribution of the root variable with respect to the graph-
ical model T(i→ a). In other words, for tree graphs the interpretation of BP messages
in terms of modified marginals is correct.

This claim is proved by induction on the tree depth t∗(i→ a). The base step of the
induction is trivial: T(i→ a) is the graph formed by the unique node i. By definition,

for any t ≥ 1, ν
(t)
i→a(xi) = 1/|X | is the uniform distribution, which coincides with the

marginal of the trivial graphical model associated to T(i→ a).
The induction step is easy as well. Assuming the claim to be true for t∗(i→ a) ≤ τ ,

one has to show that it holds when t∗(i→ a) = τ + 1. To this end, take any t > τ + 1

and compute ν
(t+1)
i→a (xi) using Eqs. (14.14), (14.15) in terms of messages ν

(t)
j→b(xj) in

the subtrees for b ∈ ∂i \ a and j ∈ ∂b \ i. By the induction hypothesis, and since the

depth of the sub-tree T (j → b) is at most τ , ν
(t)
j→b(xj) is the root marginal in such

a subtree. It turns out that, combining the marginals at roots of subtrees T(j → b)
using Eqs. (14.14), (14.15), one obtains the marginal at the root of T(i → a). This
proves the claim. �

14.2.3 Correlations and energy

The use of BP is not limited to computing one variable marginals. Suppose we want
to compute the joint probability distribution µ(xi, xj) of two variables xi and xj .
Since BP already enables to compute µ(xi), this task is equivalent to computing the
conditional distribution µ(xj | xi). Given a model that factorizes as in Eq. (14.13),
the conditional distribution of x = (x1, . . . , xN ) given xi = x takes the form

µ(x|xi = x) ∼=
M∏

a=1

ψa(x∂a) I(xi = x) . (14.17)

In other words, it is sufficient to add to the original graph a new function node of
degree 1 connected to variable node i, which fixes xi = x. One can then run BP on

2A non-reversing path on a graph G is a sequence of vertices ω = (j0, j1, . . . , jn), such that
(js, js+1) is an edge for any s ∈ {0, . . . , n− 1}, and js−1 6= js+1 for s ∈ {1, . . . , n− 1}.
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the modified factor graph and obtain estimates ν
(t)
j (xj |xi = x) for the conditional

marginal of xj .
This strategy is easily generalized to the joint distribution of any number m of

variables. The complexity grows however exponentially in the number of variables
involved, since we have to condition over |X |m−1 possible assignments.

Happily, for tree-graphical models, the marginal distribution of any number of
variables admits an explicit expression in terms of messages. Let FR be a subset of
function nodes, VR be the subset of variable nodes adjacent to FR, R the induced
subgraph, and xR the corresponding variables. Without loss of generality, we shall
assume R to be connected. Further, denote by ∂R the subset of function nodes that
are not in FR, but are adjacent to a variable node in VR.

Then, for a ∈ ∂R there exists a unique i ∈ ∂a∩VR, that we denote by i(a). It then
follows immediately from Theorem 14.1, and its characterization of messages, that the
joint distribution of variables in R is

µ(xR) =
1

ZR

∏

a∈FR

ψa(x∂a)
∏

a∈∂R

ν̂∗a→i(a)(xi(a)) , (14.18)

where ν̂∗a→i( · ) are the fixed point BP messages.

Exercise 14.4 Let us use the above result to write the joint distribution of variables along
a path in a tree factor graph. Consider two variable nodes i, j, and let R = (VR, FR, ER)
be the subgraph induced by nodes along the path between i and j. For any function node
a ∈ R, denote by i(a), j(a) the variable nodes in R that are adjacent to a. Show that the
joint distribution of the variables along this path, xR = {xl : l ∈ VR}, takes the form.

µ(xR) =
1

ZR

Y

a∈FR

ψ̃a(xi(a), xj(a))
Y

l∈VR

ψ̃l(xl) . (14.19)

In other words µ(xR) factorizes according to the subgraph R. Write expressions for the

compatibility functions ψ̃a( · , · ), ψ̃l( · ) in terms of the original compatibility functions and
of the messages going from ∂R to VR.

A particularly useful case is the computation of the internal energy. In physics prob-
lems, the compatibility functions in Eq. (14.13) take the form ψa(x∂a) = e−βEa(x∂a),
where β is the inverse temperature and Ea(x∂a) is the energy function characterizing
constraint a. Of course, any graphical model can be written in this form (allowing for
Ea(x∂a) = +∞ in the case of hard constraints), adopting for instance the convention
β = 1, that we will use hereafter. The internal energy U is the expectation value of
the total energy:

U = −
∑

x

µ(x)
M∑

a=1

logψa(x∂a) . (14.20)

This can be computed in terms of BP messages using Eq. (14.18) with FR = {a}. If
we further use Eq. (14.14) to express products of check-to-variable messages in terms
of variable-to-check ones, we get
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U = −

M∑

a=1

1

Za

∑

x∂a

(
ψa(x∂a) logψa(x∂a)

∏

i∈∂a

ν∗i→a(xj)

)
, (14.21)

where Za ≡
∑
x∂a

ψa(x∂a)
∏
i∈∂a ν

∗
i→a(xj). Notice that in this expression the internal

energy is a sum of ‘local’ terms, one for each compatibility function.
On loopy graph Eqs. (14.18) and (14.21) are no longer valid, and indeed BP does

not necessarily converge to fixed point messages {ν∗i→a, ν̂∗a→i}. However one can replace
fixed point messages with BP messages after any number t of iterations and take these
as definitions of the BP estimates for the corresponding quantities. From Eq. (14.18)
one obtains an estimate of the joint distribution of a subset of variables, call it ν(t)(xR),
and from (14.21) an estimate of the internal energy.

14.2.4 Entropy

Remember that the entropy of a distribution µ over X V is defined asH[µ] = −∑x µ(x) log µ(x).
In a tree graphical model the entropy, like the internal energy, has a simple expression
in terms of local quantities. This follows from an important decomposition property.
Let us denote by µa(x∂a) the marginal probability distribution of all the variables
involved in the compatibility function a, and by µi(xi) the marginal probability dis-
tribution of variable xi.

Theorem 14.2 In a tree graphical model, the joint probability distribution µ(x) of all
the variables can be written in terms of the marginals µa(x∂a) and µi(xi) as:

µ(x) =
∏

a∈F

µa(x∂a)
∏

i∈V

µi(xi)
1−|∂i| . (14.22)

Proof: The proof is by induction on the number M of factors. Relation (14.22) holds
for M = 1 (since the degrees |∂i| are all equal to 1). Let us assume that it is valid for
any factor graph with up to M factors, and consider a specific factor graph G with
M + 1 factors. Since G is a tree, it contains at least one factor node such that all
its adjacent variable nodes have degree 1, except at most one of them. Call such a
factor node a, and let i be the only neighbor with degree larger than one (the case in
which no such neighbor exists is treated analogously). Further, let x∼ be the vector
of variables in G that are not in ∂a \ i. Then (writing Pµ( · ) for probability under the
distribution µ) the Markov property together with Bayes rule yields

Pµ(x) = Pµ(x∼)Pµ(x|x∼) = Pµ(x∼)Pµ(x∂a\i|xi) = Pµ(x∼)µa(x∂a)µi(xi)
−1 .(14.23)

The probability Pµ(x∼) can be written as P(x∼) ∼= ψ̃a(xi)
∏
b∈F\a ψb(x∂b), where

ψ̃a(xi) =
∑
x∂a\i

ψa(x∂a). As the factor ψ̃a has degree one, it can be erased and

incorporated in another factor as follows: take one of the other factors connected to
i, c ∈ ∂i \ a, and change it to ψ̃c(x∂c) = ψc(x∂c)ψ̃a(xi). In the reduced factor graph,
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the degree of i is smaller by one and the number of factors is M . Using the induction
hypothesis, we get

Pµ(x∼) = µi(xi)
2−|∂i|

∏

b∈F\a

µb(x∂b)
∏

j∈V \i

µj(xj)
1−|∂j| . (14.24)

The proof is completed by putting together Eqs. (14.23) and (14.24). �

As an immediate consequence of (14.22), the entropy of a tree graphical model can
be expressed as sums of local terms:

H[µ] = −
∑

a∈F

µa(x∂a) log µa(x∂a)−
∑

i∈V

(1− |∂i|)µi(xi) log µi(xi) . (14.25)

It is also easy to express the free-entropy Φ = logZ in terms of local quantities.
Recalling that Φ = H[µ]−U [µ] (where U [µ] is the internal energy given by Eq. (14.21))
we get Φ = F[µ], where

F[µ] = −
∑

a∈F

µa(x∂a) log

{
µa(x∂a)

ψa(x∂a)

}
−
∑

i∈V

(1− |∂i|)µi(xi) log µi(xi) . (14.26)

Expressing local marginals in terms of messages, via Eq. (14.18), we can in turn
write the free-entropy as a function of the fixed point messages. We shall intro-
duce the function F∗(ν), that yields the free-entropy in terms of 2|E| messages ν =
{νi→a( · ), ν̂a→i( · )}:

F∗(ν) =
∑

a∈F

Fa(ν) +
∑

i∈V

Fi(ν)−
∑

(ia)∈E

Fia(ν) (14.27)

where:

Fa(ν) = log



∑

x∂a

ψa(x∂a)
∏

i∈∂a

νi→a(xi)


 , Fi(ν) = log

[
∑

xi

∏

b∈∂i

ν̂b→i(xi)

]
,

Fai(ν) = log

[
∑

xi

νi→a(xi)ν̂a→i(xi)

]
. (14.28)

It is not hard to show that, evaluating this functional on the BP fixed point ν∗, one
gets F∗(ν

∗) = F[µ] = Φ thus recovering the correct free-entropy. The function F∗(ν)
defined in (14.27) is known as the Bethe free-entropy (when multiplied by a factor
−1/β, it is called the Bethe free-energy). The above observations are important
enough to be highlighted in a Theorem.

Theorem 14.3. (Bethe free-entropy is exact on trees) Consider a tree graphi-
cal model. Let {µa, µi} denote its local marginals, and ν∗ = {ν∗i→a, ν̂∗a→i} be the fixed
point BP messages. Then Φ = logZ = F[µ] = F∗(ν

∗).

Notice that in the above statement we have used the correct local marginals in F[ · ]
and the fixed point messages in F∗( · ). In Section 14.4 we will reconsider the Bethe
free-entropy for more general graphical models, and regard it as functions over the
space of all ‘possible’ marginals/messages.
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Fig. 14.4 Left: the factor graph of a small satisfiability instance with 5 variables and 5

clauses. A dashed line means that the variable appears negated in the adjacent clause. Right:

the set of fixed point BP messages for the uniform measure over solutions of this instance.

All messages are normalized, and we show their weight on the value “True”. For any edge

(a, i) (a being the clause and i the variable), the weight corresponding to the message bνa→i

is shown above the edge, and the weight corresponding to νi→a below the edge.

Exercise 14.5 Consider the satisfiability instance in Fig. 14.4, left. Show by exhaustive
enumeration that it has only two satisfying assignments, x = (0, 1, 1, 1, 0) and (0, 1, 1, 1, 1).
Re-derive this result using BP. Namely, compute the entropy of the uniform measure over
satisfying assignments, and check that its value is indeed log 2. The BP fixed point is shown
in Fig. 14.4, right.

Exercise 14.6 In many systems some of the function nodes have degree 1 and amount to
a local redefinition of the reference measure over X . It is then convenient to single out these
factors. Let us write µ(x) ∼=

Q
a∈F ψa(x∂a)

Q
i∈V ψi(xi), where the second product runs

over degree-1 function nodes (indexed by the adjacent variable node), while the factors ψa

have degree at least 2. In the computation of F∗, the introduction of ψi adds N extra factor
nodes and subtracts N extra ‘edge’ terms corresponding to the edge between the variable
node i and the function node corresponding to ψi. Show that these two effects cancel, and
that the net effect is to replace the variable node contribution in Eq. (14.27) with

Fi(ν) = log

"
X

xi

ψi(xi)
Y

a∈∂i

bνa→i(xi)

#
. (14.29)

The problem of sampling from the distribution µ(x) over the large-dimensional
space XN reduces to the one of computing one-variable marginals of µ(x), conditional
on a subset of the other variables. In other words, if we have a black box that computes
µ(xi|xU ) for any subset U ⊆ V , it can be used to sample a random configuration x.
The standard procedure for doing this is called sequential importance sampling.
Let us describe it in the case of tree-graphical models, using BP to implement such a
‘black box’:
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BP-Guided Sampling ( Graphical model (G,ψ) )
1: initialize BP messages;
2: initialize U = ∅;
3: for t = 1, . . . , N :
4: run BP until convergence;
5: choose i ∈ V \ U ;
6: compute the BP marginal νi(xi);
7: choose x∗i distributed according to νi;
8: fix xi = x∗i and set U ← U ∪ {i};
9: add a factor I(xi = x∗i ) to the graphical model;
10: end
11: return x∗.

14.2.5 Pairwise models

Pairwise graphical models, i.e. graphical models such that all factor nodes have degree
2, form an important class. A pairwise model can be conveniently represented as an
ordinary graph G = (V,E) over variable nodes. An edge joins two variables each
time they are the arguments of the same compatibility function. The corresponding
probability distribution reads

µ(x) =
1

Z

∏

(ij)∈E

ψij(xi, xj) . (14.30)

Function nodes can be identified with edges (ij) ∈ E.
In this case belief propagation can be described as operating directly on G. Further,

one of the two types of messages can be easily eliminated: we shall work uniquely

with variable-to-function messages, that we will denote as ν
(t)
i→j(xi), a shortcut for

ν
(t)
i→(ij)(xi). The BP updates then read

ν
(t+1)
i→j (xi) ∼=

∏

l∈∂i\j

∑

xl

ψil(xi, xl) ν
(t)
l→i(xl) . (14.31)

Simplified expressions can be derived in this case for the joint distribution of several
variables, cf. Eq. (14.18), as well as for the free-entropy:
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Exercise 14.7 Show that, for pairwise models, the free-entropy of Eq. (14.27) can be
written as F∗(ν) =

P
i∈V Fi(ν) −

P
(ij)∈E F(ij)(ν), where:

Fi(ν) = log

2
4X

xi

Y

j∈∂i

0
@X

xj

ψij(xi, xj)νj→i(xj)

1
A
3
5 ,

F(ij)(ν) = log

2
4X

xi,xj

νi→j(xi)ψij(xi, xj)νj→i(xj)

3
5 . (14.32)

14.3 Optimization: max-product and min-sum

Message passing algorithms are not limited to computing marginals. Imagine that you
are given a probability distribution µ( · ) as in Eq. (14.13), and you are asked to find a
configuration x which maximizes the probability µ(x). Such a configuration is called
a mode of µ( · ). This task is important for many applications, ranging from MAP
estimation (e.g. in image reconstruction) to word MAP decoding.

It is not hard to devise a message passing algorithm adapted to this task, which
correctly solves the problem on trees.

14.3.1 Max-marginals

The role of marginal probabilities is here played by the so-called max-marginals

Mi(x
∗
i ) = max

x
{µ(x) : xi = x∗i } . (14.33)

In the same way as sampling and computing partition functions can be reduced to
computing marginals, optimization can be reduced to computing max-marginals. In
other words, given a black box that computes max-marginals, optimization can be
performed efficiently.

Consider first the simpler case in which the max-marginals are non-degenerate, i.e.
for each i ∈ V , there exists x∗i such that Mi(x

∗
i ) > Mi(xi) (strictly) for any xi 6= x∗i .

Then the unique maximizing configuration is given by x∗ = (x∗1, . . . , x
∗
N ).

In the general case, the following ‘decimation’ procedure, which is closely related
to the BP-guided sampling algorithm of Sec. 14.2.4, returns one of the maximizing
configurations. Choose an ordering of the variables, say (1, . . . , N). Compute M1(x1)
and let x∗1 be one of the values maximizing it: x∗ ∈ arg maxM1(x1). Fix x1 to take this
value, i.e. modify the graphical model by introducing the factor I(x1 = x∗1) (this cor-
responds to considering the conditional distribution µ(x|x1 = x∗1)). Compute M2(x2)
for the new model, fix x2 to one value x∗2 ∈ arg maxM2(x2) and iterate this procedure
fixing sequentially all the xi’s.
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14.3.2 Message passing

It is clear from the above that max-marginals only need to be computed up to a
multiplicative normalization. We shall therefore stick to our convention of denoting
by ∼= equality between max-marginals up to an overall normalization. Adapting the
message passing update rules to the computation of max-marginals is not hard: it is
sufficient to replace sums with maximizations. This yields the following max-product
update rules:

ν
(t+1)
i→a (xi) ∼=

∏

b∈∂i\a

ν̂
(t)
b→i(xi) , (14.34)

ν̂
(t)
a→i(xi)

∼= max
x∂a\i



ψa(x∂a)

∏

j∈∂a\i

ν
(t)
j→a(xj)



 . (14.35)

The fixed-point conditions for this recursion are also called max-product equations.
As in BP, it is understood that, when ∂j\a is an empty set, νj→a(xj) ∼= 1 is the uniform
distribution. Similarly, if ∂a \ j is empty, then ν̂a→j(xj) ∼= ψa(xj). After any number
of iterations, an estimate of the max-marginals is obtained as follows

ν
(t)
i (xi) ∼=

∏

a∈∂i

ν̂
(t−1)
a→i (xi) . (14.36)

As in the case of BP, the main motivation for the above updates comes from the
analysis of graphical models on trees.

Theorem 14.4. (Max-product is exact on trees) Consider a tree graphical model
with diameter t∗. Then

1. Irrespective of the initialization, the max-product updates (14.34), (14.35) con-
verge after at most t∗ iterations. In other words, for any edge (i, a), and any

t > t∗ ν
(t)
i→a = ν∗i→a, ν̂

(t)
a→i = ν̂∗a→i.

2. The max-marginals are estimated correctly, i.e. for any variable node i, and ant

t > t∗, ν
(t)
i (xi) = Mi(xi).

The proof follows closely the one of Theorem 14.1, and is left as an exercise for the
reader.
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Exercise 14.8 The crucial property used both in both Theorems 14.1 and 14.4 is the
distributive property of sum and max with respect to the product. Consider for instance a
function of the form f(x1, x2, x3) = ψ1(x1, x2)ψ2(x1, x3). Then one can decompose the sum
and max as

X

x1,x2,x3

f(x1, x2, x3) =
X

x1

" 
X

x2

ψ1(x1, x2)

! 
X

x3

ψ2(x1, x3)

!#
, (14.37)

max
x1,x2,x3

f(x1, x2, x3) = max
x1

»„
max

x2

ψ1(x1, x2)

«„
max

x3

ψ2(x1, x3)

«–
. (14.38)

Formulate a general ‘marginalization’ problem (with the ordinary sum and product substi-
tuted by general operations with a distributive property) and describe a message passing
algorithm that solves it on trees.

The max-product messages ν
(t)
i→a( · ), ν̂

(t)
a→i( · ) admit an interpretation which is anal-

ogous to the one of pum-product messages. For instance ν
(t)
i→a( · ) is an estimate of the

max-marginal of variable xi with respect to the modified graphical model in which
factor node a is removed from the graph. Along with the proof of Theorem 14.4, it is
easy to show that, on a tree-graphical model, fixed point messages do indeed coincide
with max-marginals of such modified graphical models.

The problem of finding the mode of a distribution that factorizes as in Eq. (14.13)
has an alternative formulation, namely minimizing a cost (energy) function that can
be written as the sum of local terms:

E(x) =
∑

a∈F

Ea(x∂a) . (14.39)

The problems are mapped onto each other by writing ψa(x∂a) = e−βEa(x∂a) (with
β some positive constant). A set of message passing rules that is better adapted to
the last formulation is obtained by taking the logarithm of Eqs. (14.34), (14.35). This
version of the algorithm is known as min-sum:

E
(t+1)
i→a (xi) =

∑

b∈∂i\a

Ê
(t)
b→i(xi) + C

(t)
i→a , (14.40)

Ê
(t)
a→i(xi) = min

x∂a\i


Ea(x∂a) +

∑

j∈∂a\i

E
(t)
j→a(xj)


+ Ĉ

(t)
a→i . (14.41)

The corresponding fixed-point equations are also known in statistical physics as the
energetic cavity equations. Notice that, since the max-product marginals are rel-
evant up to a multiplicative constant, the min-sum messages are defined up to an

overall additive constant. In the following we will choose the constant C
(t)
i→a (respec-

tively Ĉ
(t)
a→i) such that minxi

E
(t+1)
i→a (xi) = 0 (respectively minxi

Ê
(t)
a→i(xi) = 0). The
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analogous of the max-marginal estimate in Eq. (14.36) is provided by the following
log-max-marginal

E
(t)
i (xi) =

∑

a∈∂i

Ê
(t−1)
a→i (xi) + C

(t)
i . (14.42)

In the case of tree graphical models, the minimum energy U∗ = minxE(x) can

be immediately written in terms of the fixed point messages {E∗i→a, Ê∗i→a}. We get
indeed

U∗ =
∑

a

Ea(x
∗
∂a) , (14.43)

x∗∂a = arg min
x∂a

{
Ea(x∂a) +

∑

i∈∂a

Ê∗i→a(xi)

}
. (14.44)

In the case of non-tree graphs, this can be taken as a prescription to obtain a max-

product estimate U
(t)
∗ of the minimum energy. One just needs to replace the fixed point

messages in Eq. (14.44) with the ones obtained after t iterations. Finally, a minimizing
configuration x∗ can be obtained through the decimation procedure described in the
previous section.

Exercise 14.9 Show that U∗ is also given by U∗ =
P

a∈F ǫa +
P

i∈V ǫi −
P

(ia)∈E ǫia,

where:

ǫa = min
x∂a

2
4Ea(x∂a) +

X

j∈∂a

E∗j→a(xj)

3
5 , ǫi = min

xi

"
X

a∈∂i

bE∗a→i(xi)

#
,

ǫia = min
xi

h
E∗i→a(xi) + bE∗a→i(xi)

i
. (14.45)

[Hints: (i) Define x∗i (a) = arg min
h
bE∗a→i(xi) + E∗i→a(xi)

i
, and show that the minima in

Eqs. (14.45) are achieved at xi = x∗i (a) (for ǫi and ǫai), and at x∗∂a = {x∗i (a)}i∈∂a (for ǫa);

(ii) Show that
P

(ia)
bE∗a→i(x

∗
i (a)) =

P
i ǫi.]

14.3.3 Warning propagation

A frequently encountered case is that of constraint satisfaction problems, where the
energy function just counts twice the number of violated constraints:

Ea(x∂a) =

{
0 if constraint a is satisfied,
1 otherwise.

(14.46)

The structure of messages can be simplified considerably in this case. More precisely,

if the messages are initialized in such a way that Ê
(0)
a→i ∈ {0, 1}, this condition is

preserved by the min-sum updates (14.41), (14.40) at any subsequent time. Let us
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prove this statement by induction. Suppose it holds up to time t−1. From Eq. (14.41)

it follows that E
(t)
i→a(xi) is a non-negative integer. Consider now Eq. (14.40). Since

both E
(t)
j→a(xj) and Ea(x∂a) are integers, Ê

(t)
a→i(xi), the minimum of the right hand

side is a non-negative integer as well. Further, since for each j ∈ ∂a \ i there exists x∗j

such that E
(t)
j→a(x

∗
j ) = 0, the minimum in Eq. (14.40) is at most 1, which proves our

claim.
This argument also shows that the outcome of the minimization in Eq. (14.40)

only depends on which entries of the messages E
(t)
j→a( · ) are vanishing. If there exists

an assignment x∗j , such that E
(t)
j→a(x

∗
j ) = 0 for each j ∈ ∂a \ i, and Ea(xi, x

∗
∂a\i) = 0,

then the value of the minimum is 0. Otherwise it is 1.
In other words, instead of keeping track of the messages Ei→a( · ), one can use their

‘projections’
Ei→a(xi) = min {1, Ei→a(xi)} . (14.47)

Proposition 14.5 Consider an optimization problem with cost function of the form
(14.39) with Ea(x∂a) ∈ {0, 1}, and assume the min-sum algorithm to be initialized

with Êa→i(xi) ∈ {0, 1} for all edges (i, a). Then, after any number of iterations, the
function node-to-variable node messages coincide with the ones computed with the
following update rules

E
(t+1)
i→a (xi) = min



1,

∑

b∈∂i\a

Ê
(t)
b→i(xi) + C

(t)
i→a



 , (14.48)

Ê
(t)
a→i(xi) = min

x∂a\i



Ea(x∂a) +

∑

j∈∂a\i

E
(t)
j→a(xj)



+ Ĉ

(t)
a→i , (14.49)

where C
(t)
i→a, Ĉ

(t)
a→i are normalization constants determined by minxi

Êa→i(xi) = 0 and
minxi

Ei→a(xi) = 0.
Finally, the ground state energy takes the same form as (14.45), with Ei→a( · )

replacing Ei→a( · ).

We shall call warning propagation the simplified min-sum algorithm with update
equations (14.49), (14.48).

The name is due to the remark that the messages Ei→a( · ) can be interpreted as
the following warnings:

Ei→a(xi) = 1 → “according to the set of constraints b ∈ ∂i\a, the i-th variable
should not take value xi.”

Ei→a(xi) = 0→ “according to the set of constraints b ∈ ∂i\a, the i-th variable
can take value xi.”

Warning propagation provides a procedure for finding all direct implications of some
partial assignment of the variables in a constraint satisfaction problem. For instance,
in satisfiability it finds all implications found by unit clause propagation, cf. Sec. 10.2.
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14.4 Loopy BP

We have seen how message passing algorithms can be used efficiently on tree-graphical
models. In particular they allow to exactly sample, compute marginals, partition func-
tions, modes of distributions that factorize according to tree factor graphs. It would
be very important for a number of applications to accomplish the same tasks when
the underlying factor graph is no longer a tree.

It is tempting to use the BP equations in this more general context, hoping to
get approximate results for large graphical models. Often we shall be dealing with
problems that are NP-hard, even to approximate, and it is difficult to provide general
guarantees of performance. Indeed, an important unsolved challenge is to identify
classes of graphical models where the following questions can be answered:

1. Is there any set of messages {ν∗i→a, ν̂∗a→i} that reproduces the local marginals of
µ( · ) through Eq. (14.18), within some prescribed accuracy?

2. Do such messages correspond to an (approximate) fixed point of the BP update
rules (14.14), (14.15)?

3. Do the BP update rules have at least one (approximate) fixed point? Is it unique?

4. Does such a fixed point have a non-empty ‘basin of attraction’ with respect to
Eqs. (14.14), (14.15)? Does this basin of attraction include all possible (or all
‘reasonable’) initializations?

We shall not treat these questions in depth, as a general theory is lacking. We shall
rather describe the rather sophisticated picture that has emerged, building on a mix-
ture of physical intuition and methods, empirical observations, and rigorous proofs.
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Exercise 14.10 Consider a ferromagnetic Ising model on the two dimensional grid with
periodic boundary conditions (i.e. ‘wrapped’ on a torus), defined in Sec. 9.1.2, cf. Fig. 9.7.
Ising spins σi, i ∈ V are associated to the vertices of the grid, and interact along the edges:

µ(σ) =
1

Z
eβ

P
(ij)∈E σiσj . (14.50)

(a) Describe the associated factor graph.

(b) Write the BP equations.

(c) Look for a solution that is invariant under translation νi→a(σi) = ν(σi), bνa→i(σi) = bν(σi):
write the equations satisfied by ν( · ), bν( · ).

(d) Parameterize ν(σ) in terms of the log-likelihood h = 1
2β

log ν(+1)
ν(−1)

and show that h satisfies

the equation tanh(βh) = tanh(β) tanh(3βh).

(e) Study this equation and show that, for 3 tanhβ > 1, it has three distinct solutions corre-
sponding to three BP fixed points.

(f) Consider iterating the BP updates starting from a translation invariant initial condition.
Does the iteration converge to a fixed point? Which one?

(g) Discuss the appearance of three BP fixed points in relation with the structure of the
distribution µ(σ), and the paramagnetic-ferromagnetic transition. What is the approxi-
mate value of the critical temperature obtained from BP? Compare with the exact value
βc = 1

2
log(1 +

√
2).

(h) What results does one obtain for an Ising model on a d-dimensional (instead of two-
dimensional) grid?

14.4.1 Bethe free-entropy and variational methods

As we saw in Section 14.2.4, the free-entropy of a tree graphical model has a simple
expression in terms of local marginals, cf. Eq. (14.26). We can use it in graphs with
loops with the hope that it provides a good estimate of the actual free-entropy. In
spirit this approach is similar to the ‘mean field’ free-entropy introduced in Ch. 2,
although it differs from it in several respects.

In order to define precisely the Bethe free-entropy, we must first describe a space
of ‘possible’ local marginals. A minimalistic approach is to restrict ourselves to the
so-called ‘locally consistent marginals’. A set of locally consistent marginals is a
collection of distributions bi( · ) over X , for each i ∈ V , and ba( · ) over X |∂a| for each
a ∈ F . Being distributions they must be non-negative, bi(xi) ≥ 0 ba(x∂a) ≥ 0, and
they must satisfy the normalization condition

∑

xi

bi(xi) = 1 ∀i ∈ V ,
∑

x∂a

ba(x∂a) = 1 ∀a ∈ F . (14.51)

To be ‘locally consistent’, they must satisfy the marginalization condition:
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b1 =

[
0.5
0.5

]

b3 =

[
0.5
0.5

]
b2 =

[
0.5
0.5

]

b12 =

[
0.49 0.01
0.01 0.49

]

b31 =

[
0.01 0.49
0.49 0.01

]

b23 =

[
0.49 0.01
0.01 0.49

]

Fig. 14.5 A set of locally consistent marginals, ‘beliefs’, that cannot arise as the marginals

of any global distribution.

∑

x∂a\i

ba(x∂a) = bi(xi) ∀a ∈ F , ∀i ∈ ∂a . (14.52)

Given a factor graph G, we shall denote the set locally consistent marginals as LOC(G),
and the Bethe free-entropy will be defined as a real valued function on this space.

It is important to stress that, although the marginals of any probability distribution
µ(x) over x = (x1, . . . , xN ) must be locally consistent, the converse is not true: one can
find sets of locally consistent marginals that do not correspond to any distribution.
In order to emphasize this point, locally consistent marginals are sometimes called
“beliefs”.

Exercise 14.11 Consider the graphical model in Fig. 14.4.1, on binary variables
(x1, x2, x3), xi ∈ {0, 1}. The figure also gives a set of beliefs in the vector/matrix form:

bi =

»
bi(0)
bi(1)

–
; bij =

»
bij(00) bij(01)
bij(10) bij(11)

–
. (14.53)

Check that this set of beliefs is locally consistent, but they cannot be the marginals of any
distribution µ(x1, x2, x3).

Given a set of locally consistent marginals b = {ba, bi}, we associate to it a Bethe
free-entropy exactly as in Eq. (14.26)

F[b] = −
∑

a∈F

ba(x∂a) log

{
ba(x∂a)

ψa(x∂a)

}
−
∑

i∈V

(1− |∂i|) bi(xi) log bi(xi) . (14.54)

The analogy with naive mean field suggests that stationary points (and in particular
maxima) of the Bethe free-entropy should play an important role. This is partially
confirmed by the following result.

Proposition 14.6 Assume ψa(x∂a) > 0 for each a and x∂a. Then the stationary
points of the Bethe free-entropy F[b] are in one-to-one correspondence with the fixed
points of BP.
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As it will appear from the proof, the correspondence between BP fixed points and
stationary points of F[b] is completely explicit.

Proof: We want to check stationarity with respect to variations of b within the
set LOC(G), that is defined by the constraints (14.51), (14.52), as well as ba(x∂a) ≥ 0,
bi(xi) ≥ 0. We thus introduce a set of Lagrange multipliers λ = {λi, i ∈ V ; λai(xi), (a, i) ∈
E, xi ∈ X}, where λi corresponds to the normalization of bi( · ) and λai(xi) corre-
sponds to the marginal of ba coinciding with bi. We then define the Lagrangian

L(b, λ) = F[b]−
∑

a∈F

λi

[
∑

xi

bi(xi)− 1

]
−
∑

(ia),xi

λai(xi)



∑

x∂a\i

ba(x∂a)− bi(xi)


 .

(14.55)

Notice that we did not introduce a Lagrange multiplier for the normalization of ba(x∂a)
as this follows from the two constraints already enforced. The stationarity conditions
with respect to bi and ba imply:

bi(xi) ∼= e−
1

|∂i|−1

P
a∈∂i λai(xi) , ba(x∂a)

∼= ψa(x∂a) e
−

P
i∈∂a λai(xi) . (14.56)

The Lagrange multipliers must be chosen in such a way that Eq. (14.52) is fulfilled.
Any such set of Lagrange multipliers yields a stationary point of F[b]. Once the λai(xj)
are found, the computation of the normalization constants in these expressions fixes λi.
Conversely, any stationary point corresponds to a set of Lagrange multipliers satisfying
the stated condition.

It remains to show that sets of Lagrange multipliers such that
∑
x∂a\i

ba(x∂a) =

bi(xi) are in one-to-one correspondence with BP fixed points. In order to see this,
define the messages

νi→a(xi) ∼= e−λai(xi) , ν̂a→i(xi) ∼=
∑

x∂a\i

ψa(x∂a) e
−

P
j∈∂a\i λaj(xj) . (14.57)

It is clear from the definition that such messages satisfy

ν̂a→i(xi) ∼=
∑

x∂a\i

ψa(x∂a)
∏

j∈∂a\i

νi→a(xi) . (14.58)

Further, using the second of Eqs. (14.56) together with (14.57) we get
∑
x∂a\i

ba(x∂a)
∼=

νi→a(xi)ν̂a→i(xi). On the other hand, from the first of Eqs. (14.56) together with

(14.57), we get bi(xi) ∼=
∏
b νi→b(xi)

1
|∂i|−1 . The marginalization condition thus implies

∏

b∈∂i

νi→b(xi)
1

|∂i|−1 ∼= νi→a(xi)ν̂a→i(xi) . (14.59)

Taking the product of these equalities for a ∈ ∂i \ b, and eliminating
∏
a∈∂i\b νi→a(xi)

from the resulting equation (which is possible if ψa(x∂a) > 0), we get

νi→b(xi) ∼=
∏

a∈∂i\b

ν̂a→i(xi) . (14.60)

At this point we recognize in Eqs. (14.58), (14.60) the fixed point condition for BP,
cf. Eqs. (14.14), (14.15). Conversely, given any solution of Eqs. (14.58), (14.60) one
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xi xi

xj xj

xl xl

Fig. 14.6 Neighborhood of node i in a pairwise graphical model. Right: the modified graph-

ical model used to define message νi→j(xi).

can define a set of Lagrange multipliers using the first of Eqs. (14.57). It follows from
the fixed point condition that the second Eq. (14.57) is fulfilled as well, and that the
marginalization condition holds. �

An important consequence of this proposition is the existence of BP fixed points.

Corollary 14.7 Assume ψa(xa) > 0 for each a and x∂a. Then BP has at least one
fixed point.

Proof: Since F[b] is bounded and continuous in LOC(G) (which is closed), it takes
its maximum at some point b∗ ∈ LOC(G). Using the condition ψa(xa) > 0 it is easy
to see that such a maximum is reached in the relative interior of LOC(G), i.e. that
b∗a(x∂a) > 0, b∗i (xi) > 0 strictly. As a consequence b∗ must be a stationary point and
therefore, by Proposition 14.6, there is a BP fixed point associated with it. �

The ‘variational principle’ provided by Proposition 14.6 is particularly suggestive
as it is analogous to naive mean field bounds. For practical applications it is sometimes
more convenient to use the free-entropy functional F∗(ν) of Eq.(14.27). This can be

regarded as a function from the space of messages to reals: F : M(X )|
~E| → R (remem-

ber that M(X ) denotes the set of measures over X , and ~E is the set of directed edges
in the factor graph)3. It satisfies the following variational principle.

Proposition 14.8 The stationary points of the Bethe free-entropy F∗(ν) are fixed
points of belief propagation. Conversely, any fixed point ν of belief propagation such
that F∗(ν) is finite, is also a stationary point of F∗(ν).

The proof is simple calculus and is left to the reader.
It turns out that for tree graphs and for unicyclic graphs, F[b] is convex, and the

above results then prove the existence and unicity of BP fixed points. But for general
graphs F[b] is non-convex and may have multiple stationary points.
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xi xi

xj xj

xl xl

Fig. 14.7 Left: Modified graphical model used to define νl→i(xl). Right: Modified graphical

model corresponding to the cavity distribution of the neighbors of i, µ∂i\j(x∂i\j).

14.4.2 Correlations

What is the origin of the error made when using BP in an arbitrary graph with loops,
and under what conditions can it be small? In order to understand this point, let
us consider for notational simplicity a pairwise graphical model, cf. Eq. (14.2.5). The
generalization to other models is straightforward. Taking seriously the probabilistic
interpretation of messages, we want to compute the marginal distribution νi→j(xi) of
xi in the modified graphical model that does not include the factor ψij(xi, xj) (see
Fig. 14.6). Call µ∂i\j(x∂i\j) the joint distribution of all variables in ∂i\ j in the model
where all the factors ψil(xi, xl), l ∈ ∂i, have been removed. Then:

νi→j(xi) ∼=
∑

x∂i\j

∏

l∈∂i\j

ψil(xi, xl)µ∂i\j(x∂i\j) . (14.61)

Comparing this expression to the BP equations, cf. Eq. (14.31), we deduce that the
messages {νi→j} solve these equations if

µ∂i\j(x∂i\j) =
∏

l∈∂i\j

νl→i(xl) . (14.62)

We can think that this happens when two conditions are fulfilled:

1. Under µ∂i\j( · ), the variables {xl : l ∈ ∂i \ j} are independent: µ∂i\j(x∂i\j) =∏
l∈∂i\j µ∂i\j(xl).

2. The marginal of each of these variables under µ∂i\j( · ) is equal to the correspond-
ing message νl→i(xl). In other words the two graphical models obtained by remov-
ing all the compatibility functions that involve xi (namely, the model µ∂i\j( · ))
and by removing only ψil(xi, xl), must have the same marginal for variable xl, cf.
Fig. 14.7.

These two conditions are obviously fulfilled for tree graphical models. They are also
approximately fulfilled if correlations among variables {xl : l ∈ ∂i} are ‘small’ under

3On a tree F∗(ν) is (up to a change of variables) the Lagrangian dual of F(b).
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µ∂i\j( · ). As we have seen, in many cases of practical interest (LDPC codes, random
K-SAT, etc.) the factor graph is locally tree-like. In other words, when removing node
i, the variables {xl : l ∈ ∂i} are with high probability far apart from each other. This
suggests that, in such models, the two conditions above may indeed hold in the large
size limit, provided far apart variables are weakly correlated. A simple illustration
of this phenomenon is provided in the exercises below. The following chapters will
investigate this property further and discuss how to cope with cases in which it does
not hold.

Exercise 14.12 Consider the antiferromagnetic Ising model on a ring, with variables
(σ1, . . . , σN ) ≡ σ, σi ∈ {+1,−1} and distribution

µ(σ) =
1

Z
e−β

PN
i=1 σiσi+1 (14.63)

where σN+1 ≡ σ1. This is a pairwise graphical model whose graph G is the ring over N
vertices.

(a) Write the BP update rules for this model (see Section 14.2.5).

(b) Express the update rules in terms of log-likelihoods h
(t)
i→ ≡ 1

2
log

ν
(t)
i→i+1(+1)

ν
(t)
i→i+1(−1)

, and h
(t)
←i ≡

1
2

log
ν
(t)
i→i−1(+1)

ν
(t)
i→i−1(−1)

.

(c) Show that, for any β ∈ [0,∞), and any initialization, the BP updates converge to the unique
fixed point h←i = hi→ = 0 for all i.

(d) Assume β = +∞ andN even. Show that any set of log-likelihoods of the form hi→ = (−1)ia,
h←i = (−1)ib, with a, b ∈ [−1, 1], is a fixed point.

(e) Consider now β = ∞ and N odd, and show that the only fixed point is h←i = hi→ = 0.
Find an initialization of the messages such that BP does not converge to this fixed point.
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Exercise 14.13 Consider the ferromagnetic Ising model on a ring with magnetic field.
This is defined through the distribution

µ(σ) =
1

Z
eβ

PN
i=1 σiσi+1+B

PN
i=1 σi (14.64)

where σN+1 ≡ σ1. Notice that with respect to the previous exercise we changed a sign in
the exponent.

(a, b) As in the previous exercise.

(c) Show that, for any β ∈ [0,∞), and any initialization, the BP updates converge to the unique
fixed point h←i = hi→ = h∗(β,B) for all i.

(d) Let 〈σi〉 be the expectation of spin σi with respect to the measure µ( · ), and 〈σi〉BP the
corresponding BP estimate. Show that |〈σi〉 − 〈σi〉BP| = O(λN ) for some λ ∈ (0, 1).

14.5 General message passing algorithms

Both the sum-product and max-product (or min-sum) algorithms are instances of a
more general class of message passing algorithms. All the algorithms in this family
share some common features that we now highlight.

Given a factor graph, a message-passing algorithm is defined by the following in-
gredients:

1. An alphabet of messages M. This can be either continuous or discrete. The algo-

rithm operates on messages ν
(t)
i→a, ν̂

(t)
a→i ∈ M associated with the directed edges in

the factor graph.

2. Update functions Ψi→a : M|∂i\a| → M and Φa→i : M|∂a\i| → M that describe how
to update messages.

3. An initialization, i.e. a mapping from the directed edges in the factor graph to M

(it can be a random mapping). We shall denote by ν
(0)
i→a, ν̂

(0)
a→i the image of such

a mapping.

4. A decision rule, i.e. a local function from messages to a space of ‘decisions’ among
which we are interested to make a choice. Since we will be mostly interested in
computing marginals (or max-marginals), we shall assume the decision rule to be

given by a family of functions Ψ̂i : M|∂i| →M(X ).

Notice the characterizing feature of message passing algorithms: messages outgoing
from a node are functions of messages incoming on the same node through the other
edges.

Given these ingredients, a message passing algorithm with parallel updating is

defined as follows. Assign the values of initial messages ν
(0)
i→a, ν̂

(0)
a→i according to the

initialization rule. Then, for any t ≥ 0, update messages through local operations at
variable/check nodes as follows:
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ν
(t+1)
i→a = Ψi→a({ν̂(t)

b→i : b ∈ ∂i \ a}) , (14.65)

ν̂
(t)
a→i = Φa→i({ν(t)

j→a : j ∈ ∂a \ i}) . (14.66)

Finally, after a pre-established number of iterations t, take the decision using the rules
Ψ̂i, namely return

ν
(t)
i (xi) = Ψ̂i({ν̂(t−1)

b→i : b ∈ ∂i})(xi) . (14.67)

Many variants are possible concerning the update schedule. For instance in sequential
updating one can pick up a directed edge uniformly at random and compute the
corresponding message. Another possibility is to generate a random permutation of
the edges and update the messages according to this permutation. We shall not discuss
these ‘details’, but the reader should be aware that they can be important in practice:
some update schemes may converge better than others.

Exercise 14.14 Recast the sum-product and min-sum algorithms in the general message
passing framework. In particular, specify the messages alphabet, the update and decision
rules.

14.6 Probabilistic analysis

In the following chapters we shall repeatedly be concerned with the analysis of message
passing algorithms on random graphical models. In this context messages become
random variables, and their distribution can be characterized in the large system
limit, as we will now see.

14.6.1 Assumptions

Before proceeding, it is necessary to formulate a few technical assumptions under which
the approach works. The basic idea is that, in a ‘random graphical model’, distinct
nodes should be essentially independent. Specifically, we shall consider below a setting
which already includes many cases of interest; it is easy to extend our analysis to even
more general situations.

A random graphical model is a (random) probability distribution on x =
(x1, . . . , xN ) of the form4

µ(x) ∼=
∏

a∈F

ψa(x∂a)
∏

i∈V

ψi(xi) , (14.68)

where the factor graphG = (V, F,E) (with variable nodes V , factor nodes F , and edges
E), and the various factors ψa, ψi, are independent random variables. More precisely,
we assume that the factor graph is distributed according to one of the ensembles
GN (K,α) or DN (Λ, P ) (see Ch. 9).

4Notice that the factors ψi, i ∈ V could have been included as degree 1 function nodes as we do in
(14.13); including them explicitly yields a description of density evolution which is more symmetric
between variables and factors, and applies more directly to decoding
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The random factors are assumed to be distributed as follows. For any given degree

k, we are given a list of possible factors ψ(k)(x1, . . . , xk; Ĵ), indexed by a ‘label’ Ĵ ∈ J,

and a distribution P
(k)
bJ over the set of possible labels J. For each function node a ∈ F

of degrees |∂a| = k, a label Ĵa is drawn with distribution P
(k)
bJ , and the function

ψa( · ) is taken equal to ψ(k)( · ; Ĵa). Analogously, the factors ψi are drawn from a list
of possible {ψ( · ;J)}, indexed by the label J which is drawn from a distribution PJ .
The random graphical model is fully characterized by the graph ensemble, the set of

distributions P
(k)
bJ , PJ , and the lists of factors {ψ(k)( · ; Ĵ)}, {ψ( · ;J)}.

We need to make some assumptions on the message update rules. Specifically, we
assume that the variable-to-function node update rules Ψi→a depend on i → a only
through |∂i| and Ji, and the function-to-variable node update rules Φa→i depend on

a→ i only through |∂a| and Ĵa. With a slight abuse of notation, we shall denote the
update functions as:

Ψi→a({ν̂b→i : b ∈ ∂i \ a}) = Ψl(ν̂1, . . . , ν̂l;Ji) , (14.69)

Φa→i({νj→a : j ∈ ∂a \ i}) = Φk(ν1, . . . , νk; Ĵa) , (14.70)

where we let l ≡ |∂i| − 1, k ≡ |∂a| − 1, {ν̂1, . . . , ν̂l} ≡ {ν̂b→i : b ∈ ∂i \ a} and
{ν1, . . . , νk} ≡ {νj→a : j ∈ ∂a \ i}. A similar notation will be used for the decision

rule Ψ̂.

Exercise 14.15 Let G = (V,E) be a uniformly random graph with M = Nα edges over
N vertices, and let λi, i ∈ V be i.i.d. random variables uniform in [0, λ̄]. Recall that an
independent set for G is a subset of the vertices S ⊆ V such that if i, j ∈ S, then (ij) is
not an edge. Consider the following weighted measure over independent sets

µ(S) =
1

Z
I(S is an independent set)

Y

i∈S

λi . (14.71)

(a) Write the distribution µ(S) as a graphical model with binary variables and define the
corresponding factor graph.

(b) Describe the BP algorithm to compute its marginals.

(c) Show that this model is a random graphical model in the sense defined above.

14.6.2 Density evolution equations

Consider a random graphical model, with factor graph G = (V, F,E) and let (i, a) be

a uniformly random edge in G. Let ν
(t)
i→a be the message sent by the BP algorithm

in iteration t along edge (i, a). We assume that the initial messages ν
(0)
i→a, ν̂

(0)
a→i are

i.i.d. random variables, with distribution independent of N . A considerable amount

of information is contained in the distribution of ν
(t)
i→a and ν̂

(t)
a→i with respect to the

model realization. We are interested in characterizing these distributions in the large
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i

a

Fig. 14.8 A radius 2 directed neighborhood Bi→a,2(F ).

system limit N → ∞. Our analysis will assume that both the message alphabet M

and the node labels alphabet J are subsets of Rd for some fixed d, and that the update
functions Ψi→a, Φa→i are continuous with respect to the usual topology of Rd.

It is convenient to introduce the directed neighborhood of radius t of the di-
rected edge i→ a: Bi→a,t(G). This is defined as the subgraph of G that includes all the
variable nodes which can be reached from i through a non-reversing path of length at
most t, whose first step is not the edge (i, a). It includes as well all the function nodes
connected only to the above specified variable nodes- see Fig. 14.8. Let us consider, to
be definite, the case where G is a random factor graph from the DN (Λ, P ) ensemble.
Then Bi→a,t(F ) converges in distribution, when N →∞, to the random tree ensemble
Tt(Λ, P ) defined in Sec. 9.5.1.

For illustrative reasons, we shall occasionally add a ‘root edge’ as i→ a in Fig. 14.8.

Exercise 14.16 Consider a random graph from the regular DN (Λ, P ) ensemble with Λ2 =
1, P3 = 1 (each variable node has degree 2 and each function node degree 3). The three
possible radius-1 directed neighborhoods appearing in such factor graphs are depicted in
Fig. 14.9.

(a) Show that the probability that a given edge (i, a) has neighborhoods as in (B) or (C) is
O(1/N).

(b) Deduce that Bi→a,1(F )
d→ T1 where T1 is distributed according to the tree model T1(2, 3)

(i.e. it is the tree on Fig. 14.9, (A)).

(c) Discuss the case of a radius-t neighborhood.

For our purposes it is necessary to include in the description of the neighborhood
Bi→a,t(F ), the value of the labels Ji, Ĵb for function nodes b in this neighborhood. It is
understood that the tree model Tt(Λ, P ) includes labels as well: these have to be drawn
as i.i.d. random variables independent of the tree and with the same distribution as
in the original graphical model.
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i

a

i

a

i

a

(A) (B) (C)

Fig. 14.9 The three possible radius–1 directed neighborhoods in a random factor graph from

the regular DN (2, 3) graph ensemble.

Now consider the message ν
(t)
i→a. This is a function of the factor graph G, of the

labels {Jj}, {Ĵb} and of the initial condition {ν(0)
j→b}. However, a moment of thought

shows that its dependence on G and on the labels occurs only through the radius-
(t+ 1) directed neighborhood Bi→a,t+1(F ). Its dependence on the initial condition is

only through the messages ν
(0)
j→b for j, b ∈ Bi→a,t(F ).

In view of the above discussion, let us pretend for a moment that the neighborhood
of (i, a) is a random tree Tt+1 with distribution Tt+1(Λ, P ). We define ν(t) to be the
message passed through the root edge of such a random neighborhood after t message
passing iterations. Since Bi→a,t+1(F ) converges in distribution to the tree Tt+1, we

find that5 ν
(t)
i→a

d→ ν(t) as N →∞.

We have shown that, as N →∞, the distribution of ν
(t)
i→a converges to the one of a

well defined (N -independent) random variable ν(t). The next step consists in finding a
recursive characterization of ν(t). Consider a random tree from the Tr(Λ, P ) ensemble
and let j → b be an edge directed towards the root, at distance d from it. The directed
subtree rooted at j → b is distributed according to Tr−d(Λ, P ). Therefore the message
passed through it after r − d − 1 (or more) iterations is distributed as ν(r−d−1). The
degree of the root variable node i (including the root edge) has distribution λl. Each
check node connected to i has a number of other neighbors (distinct from i) which
is a random variable distributed according to ρk. These facts imply the following
distributional equations for ν(t) and ν̂(t):

ν(t+1) d
= Ψl(ν̂

(t)
1 , . . . , ν̂

(t)
l ;J) , ν̂(t) d

= Φk(ν
(t)
1 , . . . , ν

(t)
k ; Ĵ) . (14.72)

Here ν̂
(t)
b , b ∈ {1, . . . , l− 1} are independent copies of ν̂(t), and ν

(t)
j , j ∈ {1, . . . , k− 1}

are independent copies of ν(t). As for l and k, they are independent random integers

distributed, respectively, according to λl and ρk, Ĵ is distributed as P
(k)
bJ and J is

5The mathematically suspicious reader may wonder about the topology we are assuming on the

message space space. In fact no assumption is necessary if the distribution of labels Ji, bJa is inde-
pendent of N . If it is N dependent but converges, then the topology must be such that the messages
updates are continuous with respect to it.
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distributed as PJ . It is understood that the recursion is initiated with ν(0) d
= ν

(0)
i→a,

ν̂(0) d
= ν̂

(0)
a→i.

In coding theory, the equations (14.72), or sometimes the sequence of random
variables {ν(t), ν̂(t)}, are referred to as density evolution. In probabilistic combina-
torics, they are also called recursive distributional equations. We have proved the
following characterization of the messages distribution:

Proposition 14.9 Consider a random graphical model satisfying assumptions 1-4 in
Section 14.6.1. Let t ≥ 0 and (ia) be a uniformly random edge in the factor graph.

Then, as N →∞, the message ν
(t)
i→a (respectively ν̂

(t)
i→a) converges in distribution to the

random variable ν(t) (respectively ν̂(t)) defined through the density evolution equations
(14.72).

We shall discuss several applications of density evolution in the following chapters.
Here we just mention that it allows to compute the asymptotic distribution of mes-
sage passing decisions at a uniformly random site i. Recall that the general message
passing decision after t iterations is taken using the rule (14.67), with Ψ̂i({ν̂b}) =

Ψ̂l(ν̂1, . . . , ν̂l;Ji) (where l ≡ |∂i|). Arguing as in the previous paragraphs it is easy

to show that, in the large N limit, ν
(t)
i

d→ ν(t), where the random variable ν(t) is
distributed according to:

ν(t) d
= Ψ̂l(ν̂

(t−1)
1 , . . . , ν̂

(t−1)
l ;J) . (14.73)

As above ν̂
(t−1)
1 , . . . , ν̂

(t−1)
l are i.i.d. copies of ν̂(t−1), J is an independent copy of the

variable node label Ji, and l is a random integer distributed according to Λl.

14.6.3 The replica symmetric cavity method

The replica symmetric (RS) cavity method of statistical mechanics adopts a point of
view which is very close to the previous one, but less algorithmic. Instead of considering
the BP update rules as an iterative message passing rule, it focuses on the fixed point
BP equations themselves.

The idea is to compute the partition function recursively, by adding one variable
node at a time. Equivalently one may think of taking one variable node out of the
system and computing the change in the partition function. The name of the method
comes exactly from this image: one digs a ‘cavity’ in the system.

As an example, take the original factor graph, delete the factor node a and all
the edges incident on it. If the graph is a tree, this procedure separates it into |∂a|
disconnected trees. Consider now the tree-graphical model described by the connected
component containing the variable j ∈ ∂a. Denote the corresponding partition func-
tion, when the variable j is fixed to the value xj , by Zj→a(xj). These partial partition
functions can be computed iteratively as:

Zj→a(xj) =
∏

b∈∂j\a



∑

x∂b\j

ψb(x∂b)
∏

k∈∂b\j

Zk→b(xk)


 . (14.74)
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The equations obtained by letting j → b be a generic directed edge in G, are called
cavity equations, or Bethe equations.

The cavity equations are mathematically identical to the BP equations, with two
important conceptual differences: (i) One is naturally led to think that the equations
(14.74) must have a fixed point, and to give special importance to it; (ii) The partial
partition functions are unnormalized messages, and, as we will see in Chapter ??, their
normalization provides a useful information. The relation between BP messages and
partial partition functions is

νj→a(xj) =
Zj→a(xj)∑
y Zj→a(y)

. (14.75)

Within the cavity approach, the replica symmetry assumption consists in pre-
tending that, for random graphical models as introduced above, and in the large N
limit:

1. There exists a solution (or quasi-solution6) to these equations.

2. This solution provides good approximations of the marginals of the graphical
model.

3. The messages in this solution are distributed according to a density evolution
fixed point.

The last statement amounts to assuming that the normalized variable-to-factor mes-
sages νi→a, cf. Eq. (14.75), converge in distribution to a random variable ν, that solves
the distributional equations:

ν
d
= Ψ(ν̂1, . . . , ν̂k−1;J) , ν̂

d
= Φ(ν1, . . . , νl−1; Ĵ) . (14.76)

Here we use the same notations as in Eq. (14.72): ν̂b, b ∈ {1, . . . , l−1} are independent

copies of ν̂(t); ν
(t)
j , j ∈ {1, . . . , k − 1} are independent copies of ν(t); l and k are

independent random integers distributed, respectively, according to λl and ρk; J , Ĵ
are distributed as the variable and function nodes labels Ji, Ĵa.

Using the distributions of ν and ν̂, the expected Bethe free-entropy per variable
F/N can be computed by taking the expectation of Eq. (14.27). The result is:

fRS = fRS
v + nf f

RS
f − nef

RS
e (14.77)

where nf is the average number of function nodes per variable, and ne is the average
number of edges per variable: In the DN (Λ, P ) ensemble one has nf = Λ′(1)/P ′(1) and
ne = Λ′(1); Within the GN (K,α) ensemble, nf = α and ne = Kα. The contributions
of variable nodes fRS

v , function nodes fRS
f , and edges fRS

e are:

6A quasi-solution is a set of messages νj→a such that the average difference between the left and
right hand sides of the BP equations goes to zero in the large N limit
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fRS
v = El,J,{bν} log

[
∑

x

ψ(x;J) ν̂1(x) · · · ν̂l(x)
]
,

fRS
f = Ek, bJ,{ν} log

[
∑

x1,...,xk

ψ(k)(x1, . . . , xk; Ĵ) ν1(x1) · · · νk(xk)
]
,

fRS
e = Eν,bν log

[
∑

x

ν(x)ν̂(x)

]
. (14.78)

In these expressions, E denotes expectation with respect to the random variables in
subscript. For instance, if G is distributed according to the DN (Λ, P ) ensemble, El,J,{bν}
implies that l is drawn from distribution Λ, J is drawn from PJ , and ν̂1, . . . ν̂l are l
independent copies of the random variable ν̂.

Instead of estimating the partition function, the cavity method can be used to
compute the ground state energy. One then uses min-sum like messages instead of
those in (14.74). The method is then called the ‘energetic cavity method’, we leave
to the reader the task of writing the corresponding average ground state energy per
variable.

14.6.4 Numerical methods

Generically, the RS cavity equations (14.76), as well as density evolution (14.72),
cannot be solved in close form, and one uses numerical methods to estimate the distri-
bution of the random variables ν, ν̂. Here we limit ourselves to describing a stochastic
approach that has the advantage of being extremely versatile and simple to implement.
It has been used in coding theory under the name of ‘sampled density evolution’ or
‘Monte Carlo’, and is known in statistical physics as population dynamics, a name
which we shall adopt in the following.

The idea is to approximate the distribution of ν (or ν̂) through a sample of (ideally)
N i.i.d. copies of ν (respectively ν̂). As N gets large, the empirical distribution of such
a sample should converge to the actual distribution of ν (or ν̂). We shall call the sample
{νi} ≡ {ν1, . . . , νN} (or {ν̂i} ≡ {ν̂1, . . . , ν̂N}) a population.

The algorithm is described by the pseudo-code below. As inputs, it requires the
population size N , the maximum number of iterations T and a specification of the
ensemble of (random) graphical models. The latter consists in a description of the
(edge perspective) degree distributions λ, ρ , of the variable node labels PJ , and of

the factor node labels P
(k)
bJ
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Population dynamics ( Model ensemble, Size N , Iterations T )

1: Initialize {ν(0)
i };

2: for t = 1, . . . , T :
3: for i = 1, . . . , N :
4: Draw an integer k with distribution ρ;
5: Draw i(1), . . . , i(k − 1) uniformly in {1, . . . , N};
6: Draw Ĵ with distribution P

(k)
bJ ;

7: Set ν̂
(t)
i = Φk(ν

(t−1)
i(1) , . . . , ν

(t−1)
i(k−1); Ĵ);

8: end;
9: for i = 1, . . . , N :
10: Draw an integer l with distribution λ;
11: Draw i(1), . . . , i(l − 1) uniformly in {1, . . . , N};
12: Draw J with distribution PJ ;

13: Set ν
(t)
i = Ψl(ν̂

(t)
i(1), . . . , ν̂

(t)
i(l−1);J);

14: end;
15: end;

16: return {ν(T )
i } and {ν̂(T )

i }.

In step 1 the initialization is done by drawing ν
(0)
1 , . . . , ν

(0)
N independently with the

same distribution P that was used for the initialization of BP.
It is not hard to show that, for any fixed T , the empirical distribution of {ν(T )

i }
(respectively {ν̂(T )

i }) converges, as N →∞ to the distribution of the density evolution
random variable ν(t) (ν̂(t)). The limit T → ∞ is trickier. Let us first assume that
density evolution has a unique fixed point, and ν(t), ν̂(t) converges to this fixed point.

Then we expect the empirical distribution of {ν(T )
i } to converge to this fixed point,

also if the N → ∞ limit is taken after T → ∞. Finally, when density evolution has
more than a fixed point, which is probably some of the most interesting case, the

situation is even more subtle. The population {ν(T )
i } evolves according to a large,

but finite dimensional Markov chain. Therefore (under some technical conditions) the
distribution of the population is expected to converge to the unique fixed point of
this Markov chain. This seems to imply that population dynamics cannot describe
the multiple fixed points of density evolution. Luckily, the convergence of population
dynamics to its unique fixed point appears to happen on a time scale that increases
very rapidly with N . For large N and on moderate time scales T , it converges instead
to one of several ‘quasi-fixed points’ that correspond to the density evolution fixed
points.

In practice, one can monitor the effective convergence of the algorithm by comput-
ing, after any number of iterations t, averages of the form

〈ϕ〉t ≡
1

N

N∑

i=1

ϕ(ν
(t)
i ) , (14.79)

for a smooth function ϕ : M(X )→ R. If these averages are well settled (up to statistical
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fluctuations of order 1/
√
N), this is interpreted as a signal that the iteration has

converged to a ‘quasi-fixed point.’
The populations produced by the above algorithm can be used to to estimate

expectation with respect to the density evolution random variables ν, ν̂. For instance,
the expression in Eq. (14.79) is an estimate for E{ϕ(ν)}. When ϕ = ϕ(ν!, . . . , νl) is a
function of l i.i.d. copies of ν, the above formula is modified as

〈ϕ〉t ≡
1

R

R∑

n=1

ϕ(ν
(t)
in(1), . . . , ν

(t)
in(l)) . (14.80)

Here R is a large number (typically of the same order as N), and in(1), . . . , in(l) are
i.i.d. indices in {1, . . . , N}. Of course such estimates will be reasonable only if l≪ N .

A particularly important example is the computation of the free entropy (14.77).
Each of the terms fRS

v , fRS
f and fRS

e can be estimated as in Eq. (14.80). The precision of
these estimates can be improved by repeating the computation for several iterations
and averaging the result.

Notes

Belief propagation equations have been rediscovered several times. They were devel-
oped by Pearl (Pearl, 1988) as exact algorithm for probabilistic inference in acyclic
Bayesian networks. In the early 60’s, Gallager had introduced them as an iterative
procedure for decoding low density parity check codes (Gallager, 1963). Gallager de-
scribed several message passing procedures and, among them, the sum-product al-
gorithm. Within coding theory, the basic idea of this algorithm was rediscovered in
several works in the 90’s, and, in particular, in (Berrou and Glavieux, 1996).

In the physics context, the history is even longer. In 1935, Bethe used a free-energy
functional written in terms of pseudo-marginals to approximate the partition function
of the ferromagnetic Ising model (Bethe, 1935). Bethe equations were of the simple
form discussed Exercise 14.10, because of the homogeneity (translation invariance) of
the underlying model. Their generalization to inhomogeneous systems, which has a
natural algorithmic interpretation, waited until the application of Bethe’s method to
spin glasses (Thouless, Anderson and Palmer, 1977; Klein, Schowalter and Shukla,
1979; Katsura, Inawashiro and Fujiki, 1979; Morita, 1979; Nakanishi, 1981).

The review paper (Kschischang, Frey and Loeliger, 2001) gives a general overview
of belief propagation in the factor graphs framework. The role of the distributive
property, mentioned in Exercise 14.8, is emphasized in (Aji and McEliece, 2000). On
tree graphs, belief propagation can be regarded as an instance of the junction-tree
algorithm (Lauritzen, 1996). This algorithm constructs a tree from the graphical model
under study, by grouping some of its variables. Belief propagation is then applied to
this tree.

Although implicit in these earlier works, the equivalence between BP, Bethe ap-
proximation, and sum-product algorithm was only recognized in the 90’s. The turbo-
decoding and sum-product algorithm were shown to be instances of BP in (McEliece,
MacKay and Cheng, 1998). A variational derivation of the turbo decoding algorithm
was proposed in (Montanari and Sourlas, 2000). The equivalence between BP and



‘‘Info Phys Comp’’ Draft: 22 July 2008  --  ‘‘Info Phys Comp’’ Draft: 22 July 2008  --  

Notes 229
Bethe approximation was first put forward in (Kabashima and Saad, 1998) and, in
a more general setting, in (Yedidia, Freeman and Weiss, 2001; Yedidia, Freeman and
Weiss, 2005).

The last paper proved, in particular, the variational formulation in Proposition
14.8. This suggests to look for fixed points of BP by seeking directly stationary points
of the Bethe free-entropy, without iterating the BP equations. An efficient such pro-
cedure, based on the observation that the Bethe free-entropy can be written as the
difference between a convex and a concave function, was proposed in (Yuille, 2002).
An alternative approach consists in constructing convex surrogates of the Bethe free-
energy (Wainwright, Jaakkola and Willsky, 2005b; Wainwright, Jaakkola and Willsky,
2005a), which allow to define provably convergent message passing procedures.

Bethe approximation can also be regarded as a first step in a hierarchy of varia-
tional methods describing exactly larger and larger clusters of variables. This point
of view was first developed in (Kikuchi, 1951), leading to the so called ‘cluster varia-
tional method’ in physics. The algorithmic version of this approach is referred to as
‘generalized BP,’ and is described in details in (Yedidia, Freeman and Weiss, 2005).

The analysis of iterative message passing algorithms on random graphical models
dates back to (Gallager, 1963). These ideas were developed into a systematic method,
also thanks to efficient numerical techniques, in (Richardson and Urbanke, 2001b) who
coined the name ‘density evolution.’ The point of view taken in this book is however
closer to the one of ‘local weak convergence’ (Aldous and Steele, 2003).

In physics, the replica symmetric cavity method for sparse random graphical mod-
els, was first discussed in (Mézard and Parisi, 1987). The use of population dynamics
first appeared in (Abou-Chacra, Anderson and Thouless, 1973), and was further de-
veloped for spin glasses in (Mézard and Parisi, 2001), but this paper mainly deals with
RSB effects which will be the object of Ch. ??.
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Decoding with belief propagation

As we have already seen, symbol MAP decoding of error correcting codes can be
regarded as a statistical inference problem. It is a very natural idea to accomplish
this task using belief propagation (BP). For properly constructed codes (in particu-
lar LDPC ensembles), this approach has low complexity while achieving very good
performances.

However, it is clear that an error correcting code cannot achieve good performances
unless the associated factor graph has loops. As a consequence, belief propagation has
to be regarded only as an approximate inference algorithm in this context. A major
concern of the theory is to establish conditions for its optimality, and, more generally,
the relation between message passing and optimal (exact symbol MAP) decoding.

In this chapter we discuss belief propagation decoding of the LDPC ensembles in-
troduced in Chapter 11. The message passing approach can be generalized to several
other applications within information and communication theory: other code ensem-
bles, source coding, channels with memory, etc. . . . Here we shall keep to the ‘canonical’
example of channel coding as most of the theory has been developed in this context.

BP decoding is defined in Section 15.1. One of the main tools in the analysis is the
‘density evolution’ method that we discuss in Section 15.2. This allows to determine the
threshold for reliable communication under BP decoding, and to optimize accordingly
the code ensemble. The whole process is considerably simpler for the erasure channel,
which is treated in Section 15.3. Finally, Section 15.4 explains the relation between
optimal (MAP) decoding and BP decoding in the large block-length limit: the two
approaches can studied within the unified framework base on the Bethe free-energy.

15.1 BP decoding: the algorithm

In this chapter, we shall consider communication over a binary input, output sym-
metric, memoryless channel (BMS). This is a channel in which the transmitted
codeword is binary, x ∈ {0, 1}N , and the output y is a sequence of N letters yi from
an alphabet Y ⊂ R. The probability of receiving letter y when bit x is sent, Q(y|x),
enjoys the symmetry property Q(y|0) = Q(−y|1).

Let us suppose that a LDPC error correcting code is used in this communication.
The conditional probability for the channel input being x ∈ {0, 1}N given the output
y is P(x|y) = µy(x), where

µy(x) =
1

Z(y)

N∏

i=1

Q(yi|xi)
M∏

a=1

I(xia1 ⊕ · · · ⊕ xiak(a)
= 0) , (15.1)
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The factor graph associated with this distribution is the usual one: an edge joins a
variable node i to a check node a whenever the variable xi appears in the a-th parity
check equation.

Messages νi→a(xi), ν̂a→i(xi), are exchanged along the edges. We shall assume a
parallel updating of BP messages, as introduced in Sec. 14.2:

ν
(t+1)
i→a (xi) ∼= Q(yi|xi)

∏

b∈∂i\a

ν̂
(t)
b→i(xi) , (15.2)

ν̂
(t)
a→i(xi)

∼=
∑

{xj}

I(xi ⊕ xj1 ⊕ · · · ⊕ xjk−1
= 0)

∏

j∈∂a\i

ν
(t)
j→a(xj) , (15.3)

where we used the notation ∂a ≡ {i, j1, . . . , jk−1}, and the symbol ∼= denotes as before
‘equality up to a normalization constant’. We expect that the asymptotic performances
at large t and large N of such BP decoding, for instance its asymptotic bit error rate,
should be insensitive to the precise update schedule. On the other hand, this schedule
can have an important influence on the speed of convergence, and on performances at
moderate N . Here we shall not address these issues.

The BP estimate for the marginal distribution at node i at time t, also called
‘belief’ or ‘soft decision’, is

ν
(t)
i (xi) ∼= Q(yi|xi)

∏

b∈∂i

ν̂
(t−1)
b→i (xi) . (15.4)

Based on this estimate, the optimal BP decision for bit i at time t, sometimes called
‘hard decision’, is

x̂
(t)
i = arg max

xi

ν
(t)
i (xi) . (15.5)

In order to fully specify the algorithm, one should address two more issues: (1) How
are the messages initialized, and (2) After how many iterations t, the hard decision
(15.5) is taken.

In practice, one usually initializes the messages to ν
(0)
i→a(0) = ν

(0)
i→a(1) = 1/2.

One alternative choice, that is sometimes useful for theoretical reasons, is to take the

messages ν
(0)
i→a( · ) as independent random variables, for instance by choosing ν

(0)
i→a(0)

uniformly on [0, 1].
As for the number of iterations, one would like to have a stopping criterion. In

practice, a convenient criterion is to check whether x̂(t) is a codeword, and to stop
if this is the case. If this condition is not fulfilled, the algorithm is stopped after a
fixed number of iterations tmax. On the other hand, for the purpose of performance
analysis, we shall rather fix tmax and assume that belief propagation is run always for
tmax iterations, regardless whether a valid codeword is reached at an earlier stage.

Since the messages are distributions over binary valued variables, we parameterize
them by the log-likelihoods:

hi→a =
1

2
log

νi→a(0)

νi→a(1)
, ua→i =

1

2
log

ν̂a→i(0)

ν̂a→i(1)
. (15.6)
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j

b

i

a

ub→jhi→a

Fig. 15.1 Factor graph of a (2,3) regular LDPC code, and notation for the belief propagation

messages.

We further introduce the a-priori log-likelihood for bit i, given the received message
yi:

Bi =
1

2
log

Q(yi|0)
Q(yi|1)

. (15.7)

For instance if communication takes place over a BSC channel with flip probability
p, one has Bi = 1

2 log 1−p
p on variable nodes which have received yi = 0, and Bi =

− 1
2 log 1−p

p on those with yi = 1. The BP update equations (15.2), (15.3) read in this

notation (see Fig. 15.1):

h
(t+1)
i→a = Bi +

∑

b∈∂i\a

u
(t)
b→i , u

(t)
a→i = atanh

{ ∏

j∈∂a\i

tanhh
(t)
j→a

}
. (15.8)

The hard-decision decoding rule depends on the overall BP log-likelihood

h
(t+1)
i = Bi +

∑

b∈∂i

u
(t)
b→i , (15.9)

and is given by (using for definiteness a fair coin outcome in case of a tie):

x̂
(t)
i (y) =





0 if h
(t)
i > 0,

1 if h
(t)
i < 0,

0 or 1 with probability 1/2 if h
(t)
i = 0.

(15.10)

15.2 Analysis: density evolution

Let us study BP decoding of random codes from the LDPCN (Λ, P ) ensemble in the
large block-length limit. The code ensemble is specified by the degree distributions of
variable nodes Λ = {Λl} and of check nodes, P = {Pk}. We assume for simplicity that

messages are initialized to u
(0)
a→i = 0.

Because of the symmetry of the channel, under the above hypotheses, the bit
(or block) error probability is independent of the transmitted codeword. The explicit
derivation of this fact is outlined in Exercise 15.1 below. Thanks to this freedom, we
can assume that the all-zero codeword has been transmitted. We shall first write the
density evolution recursion as a special case of the one written in Sec. 14.6.2. It turns
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out that this recursion can be analyzed in quite some detail, and in particular one can
show that the decoding performance improves as t increases. The analysis hinges on
two important properties of BP decoding and density evolution, related to the notions
of ‘symmetry’ and ‘physical degradation’.

Exercise 15.1 Independence of the transmitted codeword. Assume the codeword x has

been transmitted and let Bi(x), u
(t)
a→i(x), h

(t)
i→a(x) be the corresponding channel log-

likelihoods and messages. Because of the randomness in the channel realization, they are
random variables. Let furthermore σi = σi(x) = +1 if xi = 0, and = −1 otherwise.

(a) Prove that the distribution of σiBi is independent of x.

(b) Use the equations (15.8) to prove by induction over t that the (joint) distribution of

{σih
(t)
i→a, σiu

(t)
a→i} is independent of x.

(c) Use Eq. (15.9) to show that the distribution of {σih
(t)
i } is independent of x for any t ≥ 0.

Finally, prove that the distribution of the ‘error vector’ z(t) ≡ x⊕ bx(t)(y) is independent of

x as well. Write the bit and block error rate in terms of the distribution of z(t).

15.2.1 Density evolution equations

Let us consider the distribution of messages after a fixed number t of iterations. As we
saw in Sec. 14.6.2, in the large N limit, the directed neighborhood of any given edge
is with high probability a tree, whose distribution converges to the model Tt(Λ, P ).
This implies the following recursive distributional characterization for h(t) and u(t):

h(t+1) d
= B +

l−1∑

b=1

u
(t)
b , u(t) d

= atanh
{ k−1∏

j=1

tanhh
(t)
j

}
. (15.11)

Here u
(t)
b , b ∈ {1, . . . , l − 1} are independent copies of u(t), h

(t)
j , j ∈ {1, . . . , k − 1}

are independent copies of h(t), l and k are independent random integers distributed,

respectively, according to λl and ρk. Finally, B = 1
2 log Q(y|0)

Q(y|1) where y is independently

distributed according to Q(y|0). The recursion is initialized with u(0) = 0.
Let us finally consider the BP log-likelihood at site i. The same arguments as above

imply h
(t)
i

d→ h
(t)
∗ , where the distribution of h

(t)
∗ is defined by

h
(t+1)
∗

d
= B +

l∑

b=1

u
(t)
b , (15.12)

with l a random integer distributed according to Λl. In particular, if we let P
(N,t)
b

be the expected (over a LDPCN (Λ, P ) ensemble) bit error rate for the decoding rule
(15.10), then:

lim
N→∞

P
(N,t)
b = P

{
h

(t)
∗ < 0

}
+

1

2
P
{
h

(t)
∗ = 0

}
. (15.13)
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The suspicious reader will notice that this statement is non-trivial, because f(x) =
I(x < 0) + 1

2 I(x = 0) is not a continuous function. We shall prove it below using the

symmetry property of the distribution of h
(t)
i ,which allows to write the bit error rate

as the expectation of a continuous function (cf. Exercise 15.2).

15.2.2 Basic properties: 1. Symmetry

A real random variable Z (or, equivalently, its distribution) is said to be symmetric
if

E {f(−Z)} = E
{
e−2Zf(Z)

}
. (15.14)

for any function f such that one of the expectations exists. If Z has a density p(z),
then the above condition is equivalent to p(−z) = e−2zp(z).

Symmetric variables appear naturally in the description of BMS channels:

Proposition 15.1 Consider a BMS channel with transition probability Q(y|x). Let Y
be the channel output conditional to input 0 (this is a random variable with distribution

Q(y|0)), and let B ≡ 1
2 log Q(Y |0)

Q(Y |1) . Then B is a symmetric random variable.

Conversely, if Z is a symmetric random variable, there exists a BMS channel whose
log-likelihood ratio, conditioned on the input being 0, is distributed as Z.

Proof: To avoid technicalities, we prove this claim when the output alphabet Y is a
discrete subset of R. Then, using channel symmetry in the form Q(y|0) = Q(−y|1),
we get

E {f(−B)} =
∑

y

Q(y|0) f
(

1

2
log

Q(y|1)
Q(y|0)

)
=
∑

y

Q(y|1) f
(

1

2
log

Q(y|0)
Q(y|1)

)
=

=
∑

y

Q(y|0) Q(y|1)
Q(y|0) f

(
1

2
log

Q(y|0)
Q(y|1)

)
= E

{
e−2Bf(B)

}
. (15.15)

We now prove the converse. Let Z be a symmetric random variable. We build a
channel with output alphabet R as follows: Under input 0, the output is distributed
as Z, and under input 1, it is distributed as −Z. In terms of densities

Q(z|0) = p(z) , Q(z|1) = p(−z) . (15.16)

This is a BMS channel with the desired property. Of course this construction is not
unique. �

Example 15.2 Consider the binary erasure channel BEC(ǫ). If the channel input
is 0, then Y can take two values, either 0 (with probability 1− ǫ) or ∗ (probability
ǫ). The distribution of B, PB = (1− ǫ) δ∞ + ǫ δ0 , is symmetric. In particular, this is
true for the two extreme cases: ǫ = 0 (a noiseless channel) and ǫ = 1 (a completely
noisy channel: PB = δ0).
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Example 15.3 Consider a binary symmetric channel BSC(p). The log-likelihood B
can take two values, either b0 = 1

2 log 1−p
p (input 0 and output 0) or −b0 (input 0

and output 1). Its distribution, PB = (1− p) δb0 + p δ−b0 is symmetric.

Example 15.4 Finally consider the binary white noise additive Gaussian channel
BAWGN(σ2). If the channel input is 0, the output Y has probability density

q(y) =
1√

2πσ2
exp

{
− (y − 1)2

2σ2

}
, (15.17)

i.e. it is a Gaussian of mean 1 and variance σ2. The output density upon input 1

is determined by the channel symmetry, it is therefore a Gaussian of mean −1 and
variance σ2. The log-likelihood under output y is easily checked to be b = y/σ2.
Therefore B also has a symmetric Gaussian density, namely:

p(b) =

√
σ2

2π
exp

{
−σ

2

2

(
b− 1

σ2

)2
}
. (15.18)

The variables appearing in density evolution are symmetric as well. The argument
is based on the symmetry of the channel log-likelihood, and the fact that symmetry is
preserved by the operations in BP evolution: If Z1 and Z2 are two independent sym-
metric random variables (not necessarily identically distributed), it is straightforward
to show that Z = Z1 + Z2, and Z ′ = atanh[tanhZ1 tanhZ2] are both symmetric.

Let us consider now the communication of the all-zero codeword over a BMS chan-
nel using a LDPC code, but let us first assume that the factor graph associated with
the code is a tree. We apply BP decoding with a symmetric random initial condition

like e.g. u
(0)
a→i = 0. The messages passed during the decoding procedure can be regarded

as random variables, because of the random received symbols yi (which yield random
log-likelihoods Bi). Furthermore, messages incoming at a given node are independent
since they are functions of Bi’s (and of initial conditions) on disjoint subtrees. From
the above remarks, and looking at the BP equations (15.8) it follows that the mes-

sages u
(t)
a→i, and h

(t)
i→a, as well as the overall log-likelihoods h

(t)
i are symmetric random

variables at all t ≥ 0. Therefore:

Proposition 15.5 Consider BP decoding of an LDPC code under the above assump-

tions. If Bi→a,t+1(F ) is a tree, then h
(t)
i→a is a symmetric random variable. Analogously,

if Bi,t+1(F ) is a tree, then H
(t)
i is a symmetric random variable.

Proposition 15.6 The density evolution random variables {h(t), u(t),H
(t)
∗ } are sym-

metric.
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Exercise 15.2 Using Proposition 15.5, and the fact that, for any finite t Bi→a,t+1(F ) is a
tree with high probability as N → ∞, show that

lim
N→∞

P
(N,t)
b = lim

N→∞
E

(
1

N

NX

i=1

f(h
(t)
i )

)
, (15.19)

where f(x) = 1/2 for x ≤ 0 and f(x) = e−2x/2 otherwise.

Symmetry does not hold uniquely for the BP log-likelihood, but also for the actual
(MAP) log-likelihood of a bit, as shown in the exercise below.

Exercise 15.3 Consider the actual (MAP) log-likelihood for bit i (as opposed to its BP
approximation). This is defined as

hi(y) =
1

2
log

P{xi = 0|y}
P{xi = 1|y} . (15.20)

If we condition on the all-zero codeword being transmitted, so that P(y) =
Q

i Q(yi|0), then

the random variable Hi = hi(y) is symmetric. This can be shown as follows.

(a) Suppose that a codeword z 6= 0 has been transmitted, so that P(y) =
Q

i Q(yi|zi), and define

in this case the random variable associated with the log-likelihood of bit xi as: H
(z)
i = hi(y).

Show that H
(z)
i

d
= Hi if zi = 0, and H

(z)
i

d
= −Hi if zi = 1.

(b) Consider the following process. A bit zi is chosen uniformly at random. Then a codeword
z is chosen uniformly at random conditioned on the value of zi, and transmitted through a

BMS channel, yielding an output y. Finally, the log-likelihood H
(z)
i is computed. Hiding the

intermediate steps in a black box, this can be seen as a communication channel: zi → H
(z)
i .

Show this is a BMS channel.

(c) Show that Hi is a symmetric random variable.

The symmetry property is a generalization of the Nishimori condition that we
encountered in spin glasses. As can be recognized from Eq. (12.7) the Nishimori con-
dition is satisfied if and only if for each coupling constant J , βJ is a symmetric random
variable. While in spin glasses symmetry occurs only at very special values of the tem-
perature, it holds generically for decoding. The common mathematical origin of these
properties can be traced back to the structure discussed in Sec. 12.2.3.

15.2.3 Basic properties: 2. Physical degradation

It turns out that, for large blocklengths, BP decoding gets better when the number of
iterations t increases (although it does not necessarily converge to the correct values).
This is an extremely useful result, which does not hold when BP is applied to general
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BMS(2)

BMS(1) C

x y2

x y1 y2

Fig. 15.2 The channel BMS(2) (top) is said to be physically degraded with respect to

BMS(1) if it is equivalent to the concatenation of BMS(1) with a second channel C.

inference problems. A precise formulation of this statement is provided by the notion
of physical degradation. We shall first define this notion in terms of BMS channels,
and then extend it to all symmetric random variables. This allows to apply it to the
random variables encountered in BP decoding and density evolution.

Let us start with the case of BMS channels. Consider two such channels, denoted as
BMS(1) and BMS(2), denote by {Q1(y|x)}, {Q2(y|x)}, their transition matrices and
by Y1, Y2, the corresponding output alphabets. We say that BMS(2) is physically
degraded with respect to BMS(1) if there exists a third channel C with input alphabet
Y1 and output Y2 such that BMS(2) can be regarded as the concatenation of BMS(1)
and C. By this we mean that passing a bit through BMS(1) and then feeding the output
to C is statistically equivalent to passing the bit through BMS(2). If the transition
matrix of C is {R(y2|y1)}, this can be written in formulae as

Q2(y2|x) =
∑

y1∈Y1

R(y2|y1)Q1(y1|x) , (15.21)

where, to simplify the notation, we assumed Y1 to be discrete. A pictorial representa-
tion of this relationship is provided by Fig. 15.2. A formal way of expressing the same
idea is that there exists a Markov chain X → Y1 → Y2.

Whenever BMS(2) is physically degraded with respect to BMS(1) we shall write
BMS(1) � BMS(2) (which is read as: BMS(1) is ‘less noisy than’ BMS(2)). Physical
degradation is a partial ordering: If BMS(1) � BMS(2) and BMS(2) � BMS(3), then
BMS(1) � BMS(3). Furthermore, if BMS(1) � BMS(2) and BMS(2) � BMS(1), then
BMS(1) = BMS(2). However, given two binary memoryless symmetric channels, they
are not necessarily ordered by physical degradation (i.e. it can happen that neither
BMS(1) � BMS(2) nor BMS(2) � BMS(1)).

Here are a few examples of channel pairs ordered by physical degradation.
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Example 15.7 Let ǫ1, ǫ2 ∈ [0, 1] with ǫ1 ≤ ǫ2. Then the corresponding erasure
channels are ordered by physical degradation: BEC(ǫ1) � BEC(ǫ2).

Consider in fact a channel C that has input and output alphabet Y = {0, 1, ∗} (the
symbol ∗ representing an erasure). On inputs 0, 1, it transmits the input unchanged
with probability 1 − x and erases it with probability x. On input ∗ it outputs an
erasure. If we concatenate this channel at the output of BEC(ǫ1), we obtain a channel
BEC(ǫ), with ǫ = 1 − (1 − x)(1 − ǫ) (the probability that a bit is not erased is the
product of the probability that it is not erased by each of the component channels).
The claim is thus proved by taking x = (ǫ2 − ǫ1)/(1− ǫ1).

Exercise 15.4 If p1, p2 ∈ [0, 1/2] with p1 ≤ p2, then BSC(p1) � BSC(p2). This can be
proved by showing that BSC(p2) is equivalent to the concatenation of BSC(p1) with a
second binary symmetric channel BSC(x). What value of the crossover probability x should
one take?

Exercise 15.5 If σ2
1 , σ

2
2 ∈ [0,∞[ with σ2

1 ≤ σ2
2 , show that BAWGN(σ2

1) � BAWGN(σ2
2).

If BMS(1) � BMS(2), most measures of the channel ‘reliability’ are ordered ac-
cordingly. Let us discuss here two important such measures: (1) conditional entropy
and (2) bit error rate.

(1): Let Y1 and Y2 be the outputs of passing a uniformly random bit, respectively,
through channels BMS(1) and BMS(2). Then H(X|Y1) ≤ H(X|Y2) (the uncertainty
on the transmitted bit is larger for the ‘noisier’ channel). This follows immediately
from the fact that X → Y1 → Y2 is a Markov chain by applying the data processing
inequality, cf. Sec. 1.4.

(2) Assume the outputs of channels BMS(1), BMS(2), are y1 and y2. The MAP
decision rule for x knowing ya is x̂a(ya) = arg maxx P{X = x|Ya = ya}, with a = 1, 2.

The corresponding bit error rate is P
(a)
b = P{x̂a(ya) 6= x}. Let us show that P

(1)
b ≤ P

(2)
b .

As BMS(1) � BMS(2), there is a channel C such that BMS(1) concatenated with C is

equivalent to BMS(2). Then P
(2)
b can be regarded as the bit error rate for a non-MAP

decision rule given y1. The rule is: transmit y1 through C, denote by y2 the output, and
then compute x̂2(y2). This non-MAP decision rule cannot be better than the MAP
rule applied directly to y1.

Since symmetric random variables can be associated with BMS channels (see
Proposition 15.1), the notion of physical degradation of channels can be extended
to symmetric random variables. Let Z1, Z2 be two symmetric random variables and
BMS(1), BMS(2) the associated BMS channels, constructed as in the proof of propo-
sition 15.1. We say that Z2 is physically degraded with respect to Z1 (and we write
Z1 � Z2) if BMS(2) is physically degraded with respect to BMS(1). It can be proved
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that this definition is in fact independent of the choice of BMS(1), BMS(2) within the
family of BMS channels associated to Z1, Z2.

The interesting result is that BP decoding behaves in the intuitively most natural
way with respect to physical degradation. As above, we fix a particular LDPC code
and look at BP message as random variables due to the randomness in the received
vector y.

Proposition 15.8 Consider communication over a BMS channel using an LDPC
code under the all-zero codeword assumption, and BP decoding with standard initial

condition X = 0. If Bi,r(F ) is a tree, then h
(0)
i � h

(1)
i � · · · � h

(t−1)
i � h

(t)
i for any

t ≤ r−1. Analogously, if Bi→a,r(F ) is a tree, then h
(0)
i→a � h

(1)
i→a � · · · � h

(t−1)
i→a � h

(t)
i→a

for any t ≤ r − 1.

We shall not prove this proposition in full generality here, but rather prove its
most useful consequence for our purpose, namely the fact that the bit error rate is
monotonously decreasing with t.

Proof: Under the all-zero codeword assumption, the bit error rate is P{x̂(t)
i =

1} = P{h(t)
i < 0} (for the sake of simplicity we neglect here the case h

(t)
i = 0). Assume

Bi,r(F ) to be a tree and fix t ≤ r − 1. Then we want to show that P{h(t)
i < 0} ≤

P{h(t−1)
i < 0}. The BP log-likelihood after T iterations on the original graph, h

(t)
i , is

equal to the actual (MAP) log-likelihood for the reduced model defined on the tree
Bi,t+1(F ). More precisely, let us call Ci,t the LDPC code associated to the factor graph
Bi,t+1(F ), and imagine the following process. A uniformly random codeword in Ci,t
is transmitted through the BMS channel yielding output y

t
. Define the log-likelihood

ratio for bit xi

ĥ
(t)
i =

1

2
log

{
P(xi = 0|y

t
)

P(xi = 1|y
t
)

}
, (15.22)

and denote the MAP estimate for xi as x̂i. Clearly, P{x̂i = 1|xi = 0} = P{h(t)
i < 0}.

Instead of this MAP decoding one can imagine to scratch all the received symbols
at distance t from i, and then perform MAP decoding on the reduced information. Call
x̂′i the resulting estimate. The vector of non-erased symbols is y

t−1
. The corresponding

log-likelihood is clearly the BP log-likelihood after t− 1 iterations. Therefore P{x̂′i =

1|xi = 0} = P{h(t−1)
i < 0}. By optimality of the MAP decision rule P{x̂i 6= xi} ≤

P{x̂′i 6= xi}, which proves our claim. �

In the case of random LDPC codes Bi,r(F ) is a tree with high probability for any
fixed r, in the large block length limit. Therefore Proposition 15.8 has an immediate
consequence in the asymptotic setting.

Proposition 15.9 The density evolution random variables are ordered by physical

degradation. Namely, h(0) � h(1) � · · · � h(t−1) � h(t) � · · · . Analogously h
(0)
∗ �

h
(1)
∗ � · · · � h(t−1)

∗ � h(t)
∗ � · · · . As a consequence, the asymptotic bit error rate after

a fixed number t of iterations P
(t)
b ≡ limN→∞ P

(N,t)
b is monotonically decreasing with

t.
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Fig. 15.3 Predicted performances of two LDPC ensembles on a BSC channel. The curves

have been obtained through a numerical solution of density evolution, using population dy-

namics algorithm with population size 5 · 105. Left: the (3, 6) regular ensemble. Right: an

optimized irregular ensemble with the same design rate Rdes = 1/2, and degree distribution

pair Λ(x) = 0.4871x2 +0.3128x3 +0.0421x4 +0.1580x10, P (x) = 0.6797x7 +0.3203x8. Dot-

ted curves give the bit error rate obtained after t = 1, 2, 3, 6, 11, 21, 51 iterations (from top

to bottom), and bold continuous lines to the limit t→ ∞. In the inset we plot the expected

conditional entropy EH(Xi|Y ).

Exercise 15.6 An alternative measure of the reliability of h
(t)
i is provided by the condi-

tional entropy. Assuming that a uniformly random codeword is transmitted, this is given

by Hi(t) = H(Xi|h(t)
i ).

(a) Prove that, if Bi,r(F ) is a tree, then Hi(t) is monotonically decreasing with t for t ≤ r− 1.

(b) Assume that, under the all-zero codeword assumption h
(t)
i has density pt(.). Show that

Hi(t) =
R

log(1 + e−2z) dpt(z) . [Hint: remember that pt(.) is a symmetric distribution.]

15.2.4 Numerical implementation and threshold

Density evolution is a useful tool because it can be simulated efficiently. One can
estimate numerically the distributions of the density evolution variables {h(t), u(t)},
as well as {h(t)

∗ }. As we have seen this gives access to the properties of BP decoding

in the large block-length limit, such as the bit error rate P
(t)
b after t iterations.

A possible approach1 consists in representing the distributions by samples of some
fixed size S. This leads to the population dynamics algorithm discussed in Sec. 14.6.4.

The algorithm generates at each time t ∈ {0, . . . , T} two populations {h(t)
1 , · · · , h(t)

Npop
}

1An alternative approach is as follows. Both maps (15.11) can be regarded as convolutions of
probability densities for an appropriate choice of the message variables. The first one is immediate in
terms of log-likelihoods. For the second map, one can use variables r(t) = (signh(t), log | tanhh(t)|),

s(t) = (signu(t), log | tanh y(t)|)). By using fast Fourier transform to implement convolutions, this can
result in a significant speedup of the calculation.
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l k Rdes pd Shannon limit
3 4 1/4 0.1669(2) 0.2145018
3 5 2/5 0.1138(2) 0.1461024
3 6 1/2 0.0840(2) 0.1100279
4 6 1/3 0.1169(2) 0.1739524

Table 15.1 Belief propagation thresholds for the BSC channel, for a few regular LDPC

ensembles. The third column is the design rate 1 − l/k.

and {u(t)
1 , · · · , u(t)

Npop
} which are approximately i.i.d. variables distributed respectively

as h(t) and u(t). From these populations one can estimate the bit error rate following
Eq. (15.13). More precisely, the population dynamics estimate is

P
(t),pop dyn
b =

1

R

R∑

n=1

ϕ
(
Bn +

l(n)∑

j=1

u
(t−1)
in(j)

)
(15.23)

where ϕ(x) ≡ 1 if x > 0, ϕ(0) = 1/2, and ϕ(x) = 0 otherwise. Here the Bn are

distributed as 1
2 log Q(y|0)

Q(y|1) , l(n) is distributed as Λl, and the indices in(1), . . . , in(l)

are uniformly random in {1, . . . , Npop}. The parameter R is usually taken to be of the
same order as the population size.

In Fig. 15.3 we report the results of population dynamics computations for two
different LDPC ensembles used on a BSC channel with crossover probability p. We

consider two performance measures: the bit error rate P
(t)
b and the conditional entropy

H(t), which can also be easily estimated from the population.

As follows from proposition 15.9, P
(t)
b and H(t) are monotonically decreasing func-

tions of the number of iterations. One can also show that they are monotonically

increasing functions of p. Since P
(t)
b is non-negative and decreasing in t, it has a finite

limit PBP
b ≡ limt→∞ P

(t)
b , which is itself non-decreasing in p (the limit curve PBP

b

is estimated in Fig. 15.3 by choosing t large enough so that P
(t)
b is independent of t

within the numerical accuracy). One defines the BP threshold as

pd ≡ sup
{
p ∈ [0, 1/2] : PBP

b (p) = 0
}
. (15.24)

Here the subscript d stands for ‘dynamical:’ its intrinsic meaning and its relation with
phase transitions in other combinatorial problems will be discussed in Chapter ??.
Analogous definitions can be provided for other channel families such as the erasure
BEC(ǫ) or Gaussian BAWGN(σ2) channels. In general, the definition (15.24) can be
extended to any family of BMS channels BMS(p) indexed by a real parameter p which
orders the channels with respect to physical degradation.

Numerical simulation of density evolution allows to determine the BP threshold pd

with good accuracy. In Table 15.2.4 we report the results of a few such results. Let us
stress that the threshold pd has an important practical meaning. For any p < pd one
can achieve arbitrarily small bit error rate with high probability by just picking one
random code from the ensemble LDPCN (Λ, P ) with large N and decoding it using
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BP with a large enough (but independent of N) number of iterations. For p > pd the
bit error rate is asymptotically lower bounded by PBP

b (p) > 0 for any fixed number of
iterations (in practice it turns out that doing more iterations, say Na, does not help).
The value of pd is therefore a primary measure of the performance of a code.

One possible approach to the design of good LDPC consists in sticking to random
ensembles, and optimizing the degree distribution. For instance one can look for the
degree distribution pair (Λ, P ) with the largest BP threshold pBP, given a certain
design rate Rdes = 1 − P ′(1)/Λ′(1). In the simple case of communication over the
BEC, the optimization over the degree distributions can be carried out analytically, as
we shall see in Sec. 15.3. For general BMS channels, it can be done numerically. One
computes the threshold noise level for a given degree distribution pair using density
evolution, and maximizes it by a local search procedure. Figure 15.3 shows the example
of an optimized irregular ensemble with rate 1/2 for the BSC, including variable nodes
of degrees 2, 3, 4 and 10 and check nodes of degree 7 and 8. Its threshold is pd ≈ 0.097
(while Shannon’s limit is 0.110).

Note that this ensemble has a finite fraction of variable nodes of degree 2. We can
use the analysis in Chapter 11 to compute its weight enumerator function. It turns out
that the parameter of A in Eq. (11.23) is positive. This optimized ensemble has a large
number of codewords with small weight. It is surprising, and not very intuitive, that
a code such that there exists codewords at sublinear distance from the transmitted
one, has nevertheless a large BP threshold pd. It turns out that this phenomenon is
pretty general: code ensembles that approach Shannon capacity turn out to have bad
‘short distance properties’. In particular the weight enumerator exponent, discussed in
Section 11.2, is positive for all values of the normalized weight. Low-weight codewords
don’t spoil the performance in terms of pd. They are not harmless though: they degrade
the code performances at moderate block-length N , below the threshold pd. Further
they prevent the block error probability from vanishing as N goes to infinity (in each
codeword a fraction 1/N of the bits is decoded incorrectly). This phenomenon is
referred to as the error floor.

Exercise 15.7 While the BP threshold (15.24) was defined in terms of the bit error rate,
any other ‘reasonable’ measure of error on the decoding of a single bit would give the
same result. This can be shown as follows. Let Z be a symmetric random variable and
Pb ≡ P{Z < 0} + 1

2
P{Z = 0}. Show that, for any ∆ > 0, P{Z < ∆} ≤ (2 + e2∆)Pb.

Consider then a sequence of symmetric random variables {Z(t)}, such that the sequence

of P
(t)
b → 0 defined as before goes to 0. Show that the distribution of Z(t) becomes a Dirac

delta at plus infinity as t→ ∞.

15.2.5 Local stability

Beside numerical computation, it is useful to derive simple analytical bounds on the
BP threshold. A particularly interesting bound is provided by a local stability analysis.
It applies to any BMS channel, and the result depends on the specific channel only
through its Bhattacharya parameter B ≡ ∑y

√
Q(y|0)Q(y|1) ≤ 1. This parameter,

that we already encountered in Ch. 11, is a measure of the channel noise level. It
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preserves the ordering by physical degradation (i.e. the Bhattacharya parameters of
two channels BMS(1) � BMS(2) satisfy B(1) ≤ B(2)), as can be checked by explicit
computation.

The local stability condition depends on the LDPC code through the fraction of

vertices with degree 2, Λ2 = λ′(0), and the value of ρ′(1) =
P

k Pkk(k−1)P
k Pkk

. It is expressed
as:

Theorem 15.10 Consider communication of the all-zero codeword over a binary mem-
oryless symmetric channel with Bhattacharyia parameter B, using random elements
from the ensemble LDPCN (Λ, P ) and belief propagation decoding in which the initial

messages u
(0)
a→i are i.i.d. copies of a symmetric random variable. Let P

(t,N)
b be the bit

error rate after t iterations, and P
(t)
b = limN→∞ P

(t,N)
b .

1. If λ′(0)ρ′(1)B < 1, then there exists ξ > 0 such that, if P
(t)
b < ξ for some ξ, then

P
(t)
b → 0 as t→∞.

2. If λ′(0)ρ′(1)B > 1, then there exists ξ > 0 such that P
(t)
b > ξ for any t.

Corollary 15.11 Define the local stability threshold ploc as

ploc = inf
{
p | λ′(0)ρ′(1)B(p) > 1

}
. (15.25)

The BP threshold pBP for decoding a communication over an ordered channel family
BMS(p) using random codes from the LDPCN (Λ, P ) ensemble satisfies:

pd ≤ ploc .

We shall not give the full proof of the theorem, but will explain the stability
argument that underlies it. If the minimum variable node degree is 2 or larger, the

density evolution recursions (15.11) have as a fixed point h, u
d
= Z∞, where Z∞ is

the random variable that takes value +∞ with probability 1. The BP threshold pd is
the largest value of the channel parameter such that {h(t), u(t)} converge to this fixed
point as t→∞. It is then quite natural to ask what happens if the density evolution
recursion is initiated with some random initial condition that is ‘close enough’ to Z∞.
To this end, we consider the initial condition

X =

{
0 with probability ǫ,
+∞ with probability 1− ǫ. (15.26)

This is nothing but the log-likelihood distribution for a bit revealed through a binary
erasure channel, with erasure probability ǫ.

Let us now apply the density evolution recursions (15.11) with initial condition

u(0) d
= X. At the first step we have h(1) d

= B +
∑l−1
b=1Xb, where {Xb} are i.i.d. copies
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of X. Therefore h(1) = +∞ unless X1 = · · · = Xl−1 = 0, in which case h(1) d
= B. We

have therefore

With probability λl : h(1) =

{
B with prob. ǫl−1,
+∞ with prob. 1− ǫl−1.

(15.27)

where B is distributed as the channel log-likelihood. Since we are interested in the
behavior ‘close’ to the fixed point Z∞, we linearize in ǫ, thus getting

h(1) =





B with prob. λ2ǫ+O(ǫ2),
+∞ with prob. 1− λ2ǫ+O(ǫ2),
· · · with prob. O(ǫ2).

(15.28)

The last line is absent here, but it will become necessary at next iterations. It signals
that h(1) could take some other value with a negligible probability.

Next consider the first iteration at check node side: u(1) = atanh{∏k−1
j=1 tanhh

(1)
j }.

At first order in ǫ, we need to consider only two cases. Either h
(1)
1 = · · · = h

(1)
k−1 = +∞

(this happens with probability 1− (k− 1)λ2ǫ+O(ǫ2)), or one of the log-likelihoods is
distributed like B (with probability (k−1)λ2ǫ+O(ǫ2)). Averaging over the distribution
of k, we get

u(1) =





B with prob. λ2ρ
′(1)ǫ+O(ǫ2),

+∞ with prob. 1− λ2ρ
′(1)ǫ+O(ǫ2),

· · · with prob. O(ǫ2).
(15.29)

Repeating the argument t times (and recalling that λ2 = λ′(0)), we get

h(t) =





B1 + · · ·+Bt with prob. (λ′(0)ρ′(1))tǫ+O(ǫ2),
+∞ with prob. 1− (λ′(0)ρ′(1))tǫ+O(ǫ2),
· · · with prob. O(ǫ2).

(15.30)

The bit error rate vanishes if and only P(t; ǫ) = P
{
h(t) ≤ 0

}
goes to 0 as t→∞. The

above calculation shows that

P(t; ǫ) = (λ′(0)ρ′(1))t ǫ P
{
B1 + · · ·+Bt ≤ 0

}
+O(ǫ2) . (15.31)

The probability of B1 + · · · + Bt ≤ 0 is computed, to leading exponential order,
using the large deviations estimates of Sec. ??. In particular, we saw in Exercise ??
that:

P
{
B1 + · · ·+Bt ≤ 0

} .
=

{
inf
z≥0

E [e−zB ]

}t
. (15.32)

We leave to the reader the exercise of showing that, since B is a symmetric random
variable, E e−zB is minimized for z = 1, thus yielding

P
{
B1 + · · ·+Bt ≤ 0

} .
= Bt . (15.33)

As a consequence, the order ǫ coefficient In Eq. (15.31) behaves, to leading exponen-
tial order, as (λ′(0)ρ′(1)B)t. Depending whether λ′(0)ρ′(1)B < 1 or λ′(0)ρ′(1)B > 1,
density evolution converges or not to the error-free fixed point if initiated sufficiently
close to it. The full proof relies on these ideas, but it requires to control the terms of
higher order in ǫ, and other initial conditions as well.
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15.3 BP decoding of the erasure channel

We now focus on the erasure channel BEC(ǫ). The analysis can be greatly simplified
in this case: the BP decoding algorithm has a simple interpretation, and the density
evolution equations can be studied analytically. This allows to construct capacity
achieving ensembles, i.e. codes which are, in the large N limit, error free up to a
noise level given by Shannon’s threshold.

15.3.1 BP, peeling and stopping sets

We consider BP decoding, with initial condition u
(0)
a→i = 0. As can be seen from

Eq. (15.7), the channel log likelihood Bi can take three values: +∞ (if a 0 has been
received at position i), −∞ (if a 1 has been received at position i), 0 (if an erasure
occurred at position i).

It follows from the update equations (15.8) that the messages exchanged at any
subsequent time take values in {−∞, 0,+∞} as well. Consider first the equation at

check nodes. If one of the incoming messages h
(t)
j→a is 0, then u

(t)
a→i = 0 as well. If

on the other hand h
(t)
j→a = ±∞ for all incoming messages, then u

(t)
a→i = ±∞ (the

sign being the product of the incoming signs). Next consider the update equation at

variable nodes. If u
(t)
b→i = 0 for all the incoming messages, and Bi = 0 as well, then of

course h
(t+1)
i→a = 0. If on the other hand some of the incoming messages, or the received

value Bi take value ±∞, then h
(t+1)
i→a takes the same value. Notice that there can never

be contradicting messages (i.e. both +∞ and −∞) incoming at a variable node.

Exercise 15.8 Show that, if contradicting messages were sent to the same variable node,
this would imply that the transmitted message was not a codeword.

The meaning of the three possible messages ±∞ and 0, and of the update equations

is very clear in this case. Each time the message h
(t)
i→a, or u

(t)
a→i is +∞ (respectively,

−∞), this means that the bit xi is 0 (respectively 1) in all codewords that coincide
with the channel output on the non-erased positions: the value of xi is perfectly known.

Vice-versa, if, h
(t)
i→a = 0 (or u

(t)
a→i = 0) the bit xi is currently considered equally likely

to be 0 or 1.
The algorithm is very simple: each message changes value at most one time, either

from 0 to +∞, or from 0 to −∞.

Exercise 15.9 To show this, consider the first time, t1 at which a message h
(t)
i→a changes

from +∞ to 0. Find out what has happened at time t1 − 1.

Therefore a fixed point is reached after a number of updates smaller or equal to
the number of edges NΛ′(1). There is also a clear stopping criterion: if in one update

round no progress is made (i.e. if h
(t)
i→a = h

(t+1)
i→a for all directed edges i→ a) then no

progress will be made at successive rounds.
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An alternative decoding formulation of BP decoding is the so-called peeling algo-
rithm. The idea is to view decoding as a linear algebra problem. The code is defined
through a linear system over Z2, of the form Hx = 0. The output of an erasure chan-
nel fixes a fraction of the bits in the vector x (the non-erased ones). One is left with
an inhomogeneous linear system L over the remaining erased bits. Decoding amounts
to using this new linear system to determine the bits erased by the channel. If an
equation in L contains a single variable xi with non vanishing coefficient, it can be
used to determine xi, and replace it everywhere. One can then repeat this operation
recursively until either all the variables have been fixed (in which case decoding is
successful), or the residual linear systems includes only equations over two or more
variables (in which case the decoder gets stuck).

Exercise 15.10 An explicit characterization of the fixed points of the peeling algorithm
can be given in terms of stopping sets (or 2-cores). stopping set—see2-core A stop-
ping set is a subset of variable nodes in the factor graph such that each check has a number
of neighbors in the subset which is either zero, or at least 2. Let S be the subset of unde-
termined bits when the peeling algorithm stops.

(a) Show that S is a stopping set.

(b) Show that the union of two stopping sets is a stopping set. Deduce that, given a subset of
variable nodes U , there exists a unique ‘largest’ stopping set contained in U that contains
any other stopping set in U .

(c) Let U be the set of erased bits. Show that S is the largest stopping set contained in U .

Exercise 15.11 Let us prove that the peeling algorithm is indeed equivalent to BP decod-
ing. As in the previous exercise, we denote by S the largest stopping set contained in the
erased set U .

(a) Prove that, for any edge (i, a) with i ∈ S, u
(t)
a→i = h

(t)
a→i = 0 at all times.

(b) Vice-versa, let S′ be the set of bits that are undetermined by BP after a fixed point is
reached. Show that S′ is a stopping set.

(c) Deduce that S′ = S (use the maximality property of S).

15.3.2 Density evolution

Let us study BP decoding of an LDPCN (Λ, P ) code after communication through a
binary erasure channel. Under the assumption that the all-zero codeword has been
transmitted, messages will take values in {0,+∞}, and their distribution can be pa-
rameterized by a single real number. We denote by zt the probability that h(t) = 0, and
by ẑt the probability that u(t) = 0. The density evolution recursions (15.11) translate
into the following recursion on {zt, ẑt}:

zt+1 = ǫλ(ẑt) , ẑt = 1− ρ(1− zt) . (15.34)
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Fig. 15.4 Density evolution for the (3, 6) LDPC ensemble over the erasure channel BEC(ǫ),

for two values of ǫ below and above the BP threshold ǫd = 0.4294.

We can eliminate ẑt from this recursion to get zt+1 = Fǫ(zt), where we defined Fǫ(z) ≡
ǫλ(1− ρ(1− z)). The bit error rate after t iterations in the large block-length limit is

P
(t)
b = ǫΛ(ẑt).

In Fig. 15.4 we show as an illustration the recursion zt+1 = Fǫ(zt) for the (3, 6)
regular ensemble. The edge perspective degree distributions are λ(z) = z2 and ρ(z) =
z5, so that Fǫ(z) = ǫ[1 − (1 − z)2]5. Notice that Fǫ(z) is a monotonously increasing
function with Fǫ(0) = 0 (if the minimum variable node degree is at least 2), and
Fǫ(1) = ǫ < 1. As a consequence the sequence {zt} is decreasing and converges at large
t to the largest fixed point of Fǫ. In particular zt → 0 (and consequently PBP

b = 0) if
and only if Fǫ(z) < z for all z ∈]0, 1]. This yields the following explicit characterization
of the BP threshold:

ǫd = inf

{
z

λ(1− ρ(1− z)) : z ∈]0, 1]

}
. (15.35)

It is instructive to compare this characterization with the local stability threshold
that in this case reads ǫloc = 1/λ′(0)ρ′(1). It is obvious that ǫd ≤ ǫloc, since ǫloc =
limz→0 z/λ(1− ρ(1− z)).

Two cases are possible, as illustrated in Fig. 15.5: either ǫd = ǫloc or ǫd < ǫloc.
Each one corresponds to a different behavior of the bit error rate. If ǫd = ǫloc, then,
generically2, PBP

b (ǫ) is a continuous function of ǫ at ǫd with PBP
b (ǫd + δ) = Cδ+O(δ2)

just above threshold. If on the other hand ǫd < ǫloc, then PBP
b (ǫ) is discontinuous at

ǫd with PBP
b (ǫd + δ) = PBP,∗

b + Cδ1/2 +O(δ) just above threshold.

2Other behaviors are possible but they are not ‘robust’ with respect to a perturbation of the degree
sequences.
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Fig. 15.5 The bit error rate under belief propagation decoding for the (3, 6) (left) and (2, 4)

(right) ensembles. The prediction of density evolution (bold lines) is compared to numerical

simulations (averaged over 10 code/channel realizations with block-length N = 104). For

the (3, 6) ensemble ǫBP ≈ 0.4294 < ǫloc = ∞, the transition is discontinuous. For the (2, 4)

ensemble ǫBP = ǫloc = 1/4, the transition is continuous.

Exercise 15.12 Consider communication over the binary erasure channel using random
elements from the regular (l, k) ensemble, in the limit k, l → ∞, with a fixed rate Rdes =
1 − l/k. Prove that the BP threshold ǫd tends to 0 in this limit.

15.3.3 Ensemble optimization

The explicit characterization (15.35) of the BP threshold for the binary erasure channel
opens the way to the optimization of the code ensemble.

A possible setup is the following. Fix an erasure probability ǫ ∈]0, 1[: this is
the estimated noise level on the channel that we are going to use. For a given de-
gree sequence pair (λ, ρ), let ǫd(λ, ρ) denote the corresponding BP threshold, and

R(λ, ρ) = 1−
P

k ρk/kP
l λl/l

be the design rate. Our objective is to maximize the rate, while

keeping ǫd(λ, ρ) ≤ ǫ. Let us assume that the check node degree distribution ρ is given.
Finding the optimal variable node degree distribution can then be recast as a (infinite
dimensional) linear programming problem:





maximize
∑
l λl/l ,

subject to
∑
l λl = 1

λl ≥ 0 ∀ l ,
ǫλ(1− ρ(1− z)) ≤ z ∀ z ∈]0, 1] .

(15.36)

Notice that the constraint ǫλ(1− ρ(1− z)) ≤ z is conflicting with the requirement
of maximizing

∑
l λl/l, since both are increasing functions in each of the variables

λl. As usual with linear programming, one can show that the objective function is
maximized when the constraints are satisfied with equality i.e. ǫλ(1 − ρ(1 − z)) = z
for all z ∈ 0, 1]. This ‘matching condition’ allows to derive λ, for a given ρ.
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Fig. 15.6 Belief propagation bit error rate for LDPCN (Λ, P ) ensembles from the capac-

ity achieving sequence (λ(k), ρ(k)) defined in the main text. The sequence is constructed in

such a way as to achieve capacity at the noise level ǫ = 0.5 (the corresponding capacity is

C(ǫ) = 1 − ǫ = 0.5). The 5 ensembles considered here have design rates Rdes = 0.42253,

0.48097, 0.49594, 0.49894, 0.49976 (respectively for k = 4, 6, 8, 10, 12).

We shall do this in the simple case where the check nodes have uniform degree k,

i.e. ρ(z) = zk−1. The saturation condition implies λ(z) = 1
ǫ [1− (1− z) 1

k−1 ]. By Taylor
expanding this expression we get, for l ≥ 2

λl =
(−1)l

ǫ

Γ
(

1
k−1 + 1

)

Γ(l) Γ
(

1
k−1 − l + 2

) . (15.37)

In particular λ2 = 1
(k−1)ǫ , λ3 = (k−2)

2(k−1)2ǫ , and λl ≃ λ∞l
−k/(k−1) as l →∞. Unhappily

this degree sequence does not satisfy the normalization condition in (15.36). In fact∑
l λl = λ(1) = 1/ǫ. This problem can however be overcome by truncating the series

and letting k →∞, as shown in the exercise below. The final result is that a sequence
of LDPC ensembles can be found that allows for reliable communication under BP
decoding, at a rate that asymptotically achieved the channel capacity C(ǫ) = 1 − ǫ.
This is stated more formally below.

Theorem 15.12 Let ǫ ∈ (0, 1). Then there exists a sequence of degree distribution
pairs (λ(k), ρ(k)), with ρ(k)(x) = xk−1, such that ǫd(λ(k), ρ(k)) > ǫ and R(λ(k), ρ(k))→
1− ǫ.

The precise construction of the sequence (λ(k), ρ(k)) is outlined in the next exercise.
In Fig. 15.6 we show the BP error probability curves for this sequence of ensembles.
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Exercise 15.13 Let ρ(k)(z) = zk−1, λ̂(k)(z) = 1
ǫ
[1 − (1 − z)1/(k−1)], and zL =

PL
l=2 λ̂

(k)
l .

Define L(k, ǫ) as the smallest value of L such that zL ≥ 1. Finally, set λ
(k)
l = λ̂

(k)
l /zL(k,ǫ) if

l ≤ L(k, ǫ) and λ
(k)
l = 0 otherwise.

(a) Show that ǫλ(k)(1− ρ(k)(1− z)) < z for all z ∈]0, 1], and, as a consequence ǫd(λ(k), ρ(k)) >
ǫ. [Hint: Use the fact that the coefficients λl in Eq. (15.37) are non-negative and hence

λ(k)(x) ≤ λ̂(k)(z)/zL(k,ǫ).]

(b) Show that, for any sequence l(k), λ̂
(k)

l(k) → 0 as k → ∞. Deduce that L(k, ǫ) → ∞ and

zL(k,ǫ) → 1 as k → ∞.

(c) Prove that limk→∞R(λ(k), ρ(k)) = limk→∞ 1 − ǫ zL(k,ǫ) = 1 − ǫ.

15.4 Bethe free-energy and MAP decoding

So far we have studied the performance of LDPCN (Λ, P ) ensembles under BP mes-
sage passing decoding, in the large block-length limit. Remarkably, sharp asymptotic
predictions can be obtained for optimal decoding as well, and they involve the same
mathematical objects, namely messages distributions. We shall focus here on symbol
MAP decoding for a channel family {BMS(p)} ordered by physical degradation. As
in Ch. 11, we can define a threshold pMAP depending on the LDPC ensemble, such
that MAP decoding allows to communicate reliably at all noise levels below pMAP. We
shall compute pMAP using the Bethe free-entropy. The free-entropy of our decoding
problem, averaged over the received signal, is defined as Ey logZ(y). Let us see how
its value can be related to the properties of MAP decoding.

A crucial step to understand MAP decoding is to estimate the typical number of
inputs with non-negligible probability for a given channel output. We can quantify
it precisely by introducing the ‘codeword entropy density’ hN = (1/N) EHN (X|Y ),
averaged over the code ensemble (throughout this section we shall use natural log-
arithms in the definition of the entropies, instead of logarithms in base 2). If hN is
bounded away from 0 as N →∞, the typical channel output is likely to correspond to
an exponential number of inputs. If on the other hand hN → 0, the correct input has
to be searched among a sub-exponential number of candidates, and one may hope to
be able to decode correctly. A precise relation with the error probability is provided
by Fano’s inequality (1.28):

Proposition 15.13 Denote by PNb the bit error probability for communication using
a code of block-length N . Then:

H(PNb ) ≥ HN (X|Y )

N
.

In particular, if the entropy density HN (X|Y )/N is bounded away from 0, so is PNb .
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Although this gives only a bound, it suggests to identify the MAP threshold as the
largest noise level such that hN → 0 as N →∞. In other words, we define

pc ≡ sup
{
p : lim

N→∞
hN = 0

}
, (15.38)

and conjecture that, for LDPC ensembles, the bit error rate vanishes asymptotically
if p < pc, thus implying pMAP = pc. Hereafter we shall use pc (or ǫc for the BEC) to
denote the MAP threshold. The relation between this and similar phase transitions in
other combinatorial problems will be discussed in Ch. ??.

The conditional entropy HN (X|Y ) is directly related to the free-entropy of the
model defined in (15.1). More precisely we have

HN (X|Y ) = Ey logZ(y)−N
∑

y

Q(y|0) logQ(y|0) , (15.39)

where Ey denotes expectation with respect to the output vector y. In order to derive

this expression, we first use the entropy chain rule to write (dropping the subscript
N)

H(X|Y ) = H(Y |X) +H(X)−H(Y ) . (15.40)

Since the input message is uniform over the code, H(X) = N log |C|. Further, since
the channel is memoryless and symmetric, H(Y |X) =

∑
iH(Yi|Xi) = NH(Yi|Xi =

0) = −N∑y Q(y|0) logQ(y|0). Finally, rewriting the distribution (15.1) as

p(x|y) =
|C|
Z(y)

p(y, x) , (15.41)

we can identify (by Bayes theorem) Z(y) = |C| p(y). The expression (15.39) follows by
putting together these contributions.

The free-entropy Ey logZ(y) is the non-trivial term in Eq. (15.39). For LDPC
codes, in the large N limit, it is natural to compute it using the Bethe approximation
of Sec. 14.2.4. Suppose u = {ua→i}, h = {hi→a} is a set of messages which solves the
BP equations

hi→a = Bi +
∑

b∈∂i\a

ub→i , ua→i = atanh




∏

j∈∂a\i

tanhhj→a



 . (15.42)

Then the corresponding Bethe free-entropy follows from Eq. (14.28):

F(u, h) = −
∑

(ia)∈E

log

[
∑

xi

νua→i
(xi)νhi→a

(xi)

]
(15.43)

+
N∑

i=1

log

[
∑

xi

Q(yi|xi)
∏

a∈∂i

νua→i
(xi)

]
+

M∑

a=1

log



∑

xa

Ia(x)
∏

i∈∂a

νhi→a
(xi)


 .

where we denote by νu(x) the distribution of a bit x whose log-likelihood ratio is u,
given by: νu(0) = 1/(1 + e−2u), νu(1) = e−2u/(1 + e−2u).
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We are interested in the expectation of this quantity with respect to the code and
channel realization, in the N → ∞ limit. As in Sec. 14.6.3, we assume that messages

are asymptotically identically distributed, ua→i
d
= u, hi→a

d
= u, and that messages

incoming in the same node along distinct edges are asymptotically independent. Under
these hypotheses we get:

lim
N→∞

1

N
Ey F(u, h) = fRS

u,h +
∑

y

Q(y|0) logQ(y|0) , (15.44)

where the ‘shifted’ free-entropy density fRS
u,h associated with the random variables u, h

is defined by:

fRS
u,h = −Λ′(1) Eu,h log

[
∑

x

νu(x)νh(x)

]
+ El,y,{ui} log

[
∑

x

Q(y|x)
Q(y, 0)

l∏

i=1

νui
(x)

]
−

+
Λ′(1)

P ′(1)
EkE{hi} log

[
∑

x1...xk

I (x1 ⊕ · · · ⊕ xk = 0)

k∏

i=1

νhi
(xi)

]
. (15.45)

Here k and l are distributed according to Pk and Λl respectively, and u1, u2, . . . (re-
spectively h1, h2, . . . ) are i.i.d.’s and distributed as u (respectively as h).

If the Bethe free-entropy is correct, the shifted Bethe free-entropy density fRS
u,h is

equal to the codeword entropy density hN . This reasonable assumption can be turned
into a rigorous inequality:

Theorem 15.14 If u, h are symmetric random variables satisfying the distributional

identities u
d
= atanh

{∏k−1
i=1 tanhhi

}
and h

d
= B +

∑l−1
a=1 ua, then

lim
N→∞

hN ≥ fRS
u,h . (15.46)

It is natural to conjecture that the correct limit is obtained by optimizing the above
lower bound, i.e.

lim
N→∞

hN = sup
u,h

fRS
u,h , (15.47)

where, once again the sup is taken over the couples of symmetric random variables u,

h satisfying u
d
= atanh

{∏k−1
i=1 tanhhi

}
and h

d
= B +

∑l−1
a=1 ua.

This conjecture has indeed been proved in the case of communication over the
binary erasure channel for a large class of LDPC ensembles (including, for instance,
regular ones).

The above expression is interesting because it establishes a bridge between BP and
MAP decoding. For instance, it is immediate to show that it implies pd ≤ pc:
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Fig. 15.7 Illustration of the RS cavity method applied to a (3, 6) regular code used over the

BSC channel. Left: non-trivial distribution of the h fields found by population dynamics at

noise level p = 0.095. Right: Shifted free-entropy versus p, for the non-trivial solution (the

normalization is such that the free-entropy of the perfect decoding phase u = h = ∞ is zero).

When increasing the noise level, the non-trivial solution appears at pd, and its free-entropy

becomes positive at pc

Exercise 15.14(a) Recall that u, h = +∞ with probability one constitute a density evolution
fixed point for any noise level. Show that fRS

h,u = 0 on such a fixed point.

(b) Use ordering by physical degradation to show that, if any other fixed point exists, then
density evolution converges to it.

(c) Deduce that pd ≤ pc.

Evaluating the expression (15.47) implies an a priori infinite dimensional optimiza-
tion problem. In practice good approximations can be obtained through the following
procedure:

1. Initialize h, u to a couple of symmetric random variables h(0), u(0).

2. Implement numerically the density evolution recursion (15.11) by population dy-
namics, and iterate it until an approximate fixed point is attained.

3. Evaluate the functional fRS
u,h on such a fixed point, after enforcing u

d
= atanh

{∏k−1
i=1 tanhhi

}

exactly.

The above procedure can be repeated for several different initializations u(0), h(0). The
largest of the corresponding values of fRS

u,v is then picked as an estimate for limN→∞ hN .
While this procedure is not guaranteed to exhaust all the possible density evolu-

tion fixed points, it allows to compute a sequence of lower bounds to the conditional
entropy density. Further, in analogy with exactly solvable cases (such as the binary
erasure channel) one expects a small finite number of density evolution fixed points.
In particular, for regular ensembles and p > pd, a unique (stable) fixed point is ex-
pected to exist apart from the no-error one u, h = +∞. In Table 15.4 we present the
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l k Rdes pd pc Shannon limit
3 4 1/4 0.1669(2) 0.2101(1) 0.2145018
3 5 2/5 0.1138(2) 0.1384(1) 0.1461024
3 6 1/2 0.0840(2) 0.1010(2) 0.1100279
4 6 1/3 0.1169(2) 0.1726(1) 0.1739524

Table 15.2 MAP thresholds for the BSC channel are compared to the BP decoding thresh-

olds, for a few regular LDPC ensembles

l k Rdes ǫd ǫc Shannon limit
3 4 1/4 0.647426 0.746010 0.750000
3 5 2/5 0.517570 0.590989 0.600000
3 6 1/2 0.429440 0.488151 0.500000
4 6 1/3 0.506132 0.665656 0.666667

Table 15.3 MAP thresholds for the BEC channel are compared to the BP decoding thresh-

olds, for a few regular LDPC ensembles

corresponding MAP thresholds for the BSC, for a few regular ensembles.
The whole approach simplifies considerably in the case of communication over the

binary erasure channel, as shown in the exercise below.

Exercise 15.15 Consider the erasure channel BEC(ǫ), and look for a fixed point of the
density evolution equations (15.11) such that: (i) h = 0 with probability z and h = ∞ with
probability 1 − z; (ii) u = 0 with probability ẑ and u = ∞ with probability 1 − ẑ.

(a) Show that z and ẑ must satisfy the equations (15.34).

(b) Show that the shifted free-entropy (15.45) is equal to:

fRS
u,h =

»
Λ′(1)z(1 − ẑ) +

Λ′(1)

P ′(1)
(P (1 − z) − 1) + ǫΛ(ẑ)

–
log 2 . (15.48)

(c) Use this expression and the conjecture (15.47) to obtain the MAP thresholds for regular
ensembles of Table 15.4.

The two problems of computing the BP and MAP thresholds are thus unified by
the use of the RS cavity method. For any noise level p, there always exists the solution
to the RS cavity equations in which the distribution of u is a point mass distribution
at u = +∞, and the distribution of h is a point mass distribution at h = +∞. This
solution corresponds to a perfect decoding, its shifted free-entropy density is fRS

u,h = 0.
When p > pd another solution to the RS cavity equations appears. Its shifted free-
entropy density fRS can be computed from (15.44): it is initially negative and increases
with p. The MAP threshold is the value p = pd above which fRS becomes positive.
Figure 15.7 illustrates this behaviour.
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Still, this description leaves us with a puzzle. In the regime pd ≤ p < pc, the

codeword entropy density associated to the solution h, u <∞ is limN→∞ hN ≥ fRS
u,h <

0. Analogously to what happens within the replica method, cf. Ch. ??, the solution
should therefore be discarded as unphysical. It turns out that a consistent picture can
be obtained only by including replica symmetry breaking, which will be the object of
Ch. ??.

Notes

Belief propagation was first applied to the decoding problem by Robert Gallager in
his Ph. D. thesis (Gallager, 1963), and called there ‘sum-product’ algorithm. Several
low-complexity alternative message-passing approaches were introduced in the same
work, along with the basic ideas of their analysis.

The analysis of iterative decoding of irregular ensembles over the erasure channel
was pioneered by Luby and co-workers in (Luby, Mitzenmacher, Shokrollahi, Spiel-
man and Stemann, 1997; Luby, Mitzenmacher, Shokrollahi and Spielman, 1998; Luby,
Mitzenmacher, Shokrollahi and Spielman, 2001a; Luby, Mitzenmacher, Shokrollahi and
Spielman, 2001b). These papers also presented the first examples of capacity achieving
sequences.

Density evolution for general binary memoryless symmetric channels was intro-
duced in (Richardson and Urbanke, 2001b). The whole subject is surveyed in the
review (Richardson and Urbanke, 2001a) as well as in the upcoming book (Richard-
son and Urbanke, 2008). One important property we left out is ‘concentration:’ the
error probability under message passing decoding is, for most of the codes, close to its
ensemble average, that is predicted by density evolution.

The design of capacity approaching LDPC ensembles for general BMS channels is
discussed in (Chung, Forney, Richardson and Urbanke, 2001; Richardson, Shokrollahi
and Urbanke, 2001).

Since message passing allows for efficient decoding, one may wonder whether encod-
ing (whose complexity is, a priori, O(N2)) might become the bottleneck. Luckily this
is not the case: efficient encoding schemes are discussed in (Richardson and Urbanke,
2001c).

The use of the RS replica method (equivalent to the cavity method) to charac-
terize MAP decoding in sparse graph codes was initiated in (Kabashima and Saad,
1999), which considered Sourlas’ LDGM codes. MN codes (a class of sparse graph
codes defined by (MacKay and Neal, 1996)) and turbo codes were studied shortly af-
ter, respectively in (Kabashima, Murayama and Saad, 2000a; Kabashima, Murayama,
Saad and Vicente, 2000b) and (Montanari and Sourlas, 2000; Montanari, 2000). Plain
regular LDPC ensembles were considered first in (Kabashima and Saad, 2000) which
considered the problem on a tree, and in (Nakamura, Kabashima and Saad, 2001).
The effect of replica symmetry breaking was first investigated in (Montanari, 2001),
and standard irregular ensembles were studied in (Franz, Leone, Montanari and Ricci-
Tersenghi, 2002).

The fact that the RS cavity method yields the exact value of the MAP threshold
and that pMAP = pc has not yet been proven rigorously in a general setting. The first
proof that it gives a rigorous bound was found in (Montanari, 2005), and subsequently
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generalized in (Macris, 2007). An alternative proof technique uses the so-called area
theorem and the related ‘Maxwell construction’ (Méasson, Montanari, Richardson and
Urbanke, 2005b). Tightness of these bounds for the binary erasure channel was proved
in (Méasson, Montanari and Urbanke, 2005a). In this case the asymptotic codeword
entropy density, and the MAP threshold have been determined rigorously for a large
family of ensembles.

The analysis we describe in this Chapter is valid in the large block-length limit
N → ∞. In practical applications, a large block-length implies some communication
delay. This has motivated a number of works that aim at estimating and optimizing
LDPC codes at moderate block-lengths. Some pointers to this large literature can
be found in (Di, Proietti, Richardson, Telatar and Urbanke, 2002; Amraoui, Monta-
nari, Richardson and Urbanke, 2004; Amraoui, Montanari and Urbanke, 2007; Wang,
Kulkarni and Poor, 2006; Kötter and Vontobel, 2003; Stepanov, Chernyak, Chertkov
and Vasic, 2005).
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Appendix A

Symbols and notations

In this Appendix we summarize the conventions adopted throughout the book for
symbols and notations. Secs. A.1 and A.2 deal with equivalence relations and orders
of growth. Sec. A.3 presents notations used in combinatorics and probability. Table A.4
gives the main mathematical notations, and A.5 information theory notations. Table
A.6 summarizes the notations used for factor graphs and graph ensembles. Table A.7
focuses on the notations used in message-passing, belief and survey propagation, and
the cavity method.

A.1 Equivalence relations

As usual, the symbol = denotes equality. We also use ≡ for definitions and ≈ for
‘numerically close to’. For instance we may say that the Euler-Mascheroni constant is
given by

γE ≡ lim
n→∞

(
n∑

k=1

1

k
− log n

)
≈ 0.5772156649 . (A.1)

When dealing with two random variables X and Y , we write X
d
= Y if X and

Y have the same distribution. For instance, given n + 1 i.i.d. gaussian variables
X0, . . . ,Xn, with zero mean and unitary variance, then

X0
d
=

1√
n

(X1 + · · ·+Xn) . (A.2)

We adopted several equivalence symbols to denote the asymptotic behavior of
functions as their argument tends to some limit. For sake of simplicity we assume here
the argument to be an integer n → ∞. The limit to be considered in each particular
case should be clear from the context. We write f(n)

.
= g(n) if f and g are equal ‘to

the leading exponential order’ as n→∞, i.e. if

lim
n→∞

1

n
log

f(n)

g(n)
= 0 . (A.3)

For instance we may write

(
n

⌊n/2⌋

)
.
= 2n . (A.4)
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We write instead f(n) ∼ g(n) if f and g are asymptotically equal ‘up to a constant’,
i.e. if

lim
n→∞

f(n)

g(n)
= C , (A.5)

for some constant C 6= 0. For instance we have

1

2n

(
n

⌊n/2⌋

)
∼ n−1/2 . (A.6)

Finally, the symbol ≃ is reserved for asymptoric equality, i.e. if

lim
n→∞

f(n)

g(n)
= 1 . (A.7)

For instance we have

1

2n

(
n

⌊n/2⌋

)
≃
√

2

πn
. (A.8)

The symbol ∼= denotes equality up to a constant. If p( · ) and q( · ) are two measures
on the same finite space X (not necessarily normalized), we write p(x) ∼= q(x) if there
exists C > 0 such that

p(x) = C q(x) , (A.9)

for any x ∈ X . The definition generalizes straightforwardly to infinite sets X : the
Radon-Nikodyn derivative between p and q is a positive constant.

A.2 Orders of growth

We used a couple of symbols to denote the order of growth of functions when their
arguments tend to some definite limit. For sake of definiteness we refer here to functions
of an integer n → ∞. As above, the adaptation to any particular context should be
straightforward.

We write f(n) = Θ(g(n)), and say that f(n) is of order g(n), if there exists two
positive constants C1 and C2 such that

C1 g(n) ≤ |f(n)| ≤ C2g(n) , (A.10)

for any n large enough. For instance we have

n∑

k=1

k = Θ(n2) . (A.11)

We write instead f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0 , (A.12)
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For instance

n∑

k=1

k − 1

2
n2 = o(n2) . (A.13)

Finally f(n) = O(g(n)) if there exist a constant C such that

|f(n)| ≤ C g(n) (A.14)

for any n large enough. For instance

n3 sin(n/10) = O(n3) . (A.15)

Notice that both f(n) = Θ(g(n)) and f(n) = o(g(n)) imply f(n) = O(g(n)). As the
last example shows, the converse is not necessarily true.

A.3 Combinatorics and probability

The standard notation is used for multinomial coefficients. For any n ≥ 0, l ≥ 2 and
n1, . . . , nl ≥ 0 such that n1 + · · ·+ nl = n, we have:

(
n

n1, n2, . . . , nl

)
≡ n!

n1!n2! . . . nl!
. (A.16)

For binomial coefficients (i.e. for l = 2) the usual shorhand is

(
n

k

)
≡
(

n

k, l − k

)
=

n!

k!(n− k)! . (A.17)

In combinatorics, certain quantities are most easily described in terms of their
generating functions. Given a formal power series f(x), coeff{f(x), xn} denotes the
coefficient of the monomial xn in the series. More formally

f(x) =
∑

n

fnx
n ⇒ fn = coeff{f(x), xn} . (A.18)

For instance

coeff{(1 + x)m, xn} =

(
m

n

)
. (A.19)

Some standard random variables:

• A Bernoulli p variable is a random variable X taking values in {0, 1} such that
P(X = 1) = p.

• B(n, p) denotes a binomial random variable of parameters n and p. This is de-
fined as a random variable taking values in {0, . . . , n}, and having probability
distribution

P{B(n, p) = k} =

(
n

k

)
pk(1− p)n−k . (A.20)
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• A Poisson random variable X of parameter λ takes integer values and has prob-
ability distribution:

P{X = k} =
λk

k!
e−λ . (A.21)

The parameter λ is the mean of X.

Finally, we used the symbol δa for Dirac ‘delta function’. This is in fact a measure,
that attributes unit mass to the point a. In formulae, for any set A:

δa(A) = I(a ∈ A) . (A.22)

A.4 Summary of mathematical notations

= Equal.
≡ Defined as.
≈ Numerically close to.
d
= Equal in distribution.
.
= Equal to the leading exponential order.
∼ Asymptotically equal up to a constant.
∼= Equal up to a normalization constant (for probabilities: see

Eq.(14.3)).
Θ(f) Of the same order as f (see Sec. A.2).
o(f) Grows more slowly than f (see Sec. A.2).
argmaxf(x) Set of values of x where the real valued function f reaches its

maximum.
⌊·⌋ Integer part. ⌊x⌋ is the largest integer n such that n ≤ x.
⌈·⌉ ⌈x⌉ is the smallest integer n such that n ≥ x.
N The set of integer numbers.
R The set of real numbers.
β ↓ βc β goes to βc through values > βc.
β ↑ βc β goes to βc through values < βc.
]a, b[ Open interval of real numbers x such that a < x < b.
]a, b] Interval of real numbers x such that a < x ≤ b.
Z2 The field of integers modulo 2.
a⊕ b Sum modulo 2 of the two integers a and b.
I(·) Indicator function: I(A) = 1 if the logical statement A is true,

I(A) = 0 if the statement A is false .
A � 0 The matrix A is positive semidefinite.
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A.5 Information theory

HX Entropy of the random variable X (See Eq.(1.7)).
IXY Mutual information of the random variables X and Y (See

Eq.(1.25)).
H(p) Entropy of a Bernoulli variable with parameter p.
M(X ) Space of probability distributions over a finite set X .
C Codebook.
� BMS(1) � BMS(2): Channel BMS(2) is physically degraded

with respect to BMS(1).
B Bhattacharya parameter of a channel.

A.6 Factor graphs

GN (k,M) Random k-factor graph withM function nodes andN variables
nodes.

GN (k, α) Random k-factor graph with N variables nodes. Each function
node is present independently with probability Nα/

(
N
k

)
.

DN (Λ, P ) Degree constrained random factor graph ensemble.
Tr(Λ, P ) Degree constrained random tree factor graph ensemble.
Tr(k, α) Shorthand for the random tree factor graph Tr(Λ(x) =

ekα(x−1), P (x) = xk).
Λ(x) Degree profile of variable nodes.
P (x) Degree profile of function nodes.
λ(x) Edge perspective degree profile of variable nodes.
ρ(x) Edge perspective degree profile of function nodes.
Bi,r(F ) Neighborhood of radius r of variable node i.
Bi→a,t(F ) Directed neigborhood of an edge.
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A.7 Cavity and Message passing

νi→a(xi) BP messages (variable to function node).
ν̂a→i(xi) BP messages (function to variable node).
Φ Free-entropy.
F(ν) Bethe free-entropy (as a function of messages).
Fe(ν) Bethe energy (as a function of min-sum messages).
fRS Bethe (RS) free-entropy density.
Qi→a(ν) 1RSB cavity message/SP message (variable to function node).

Q̂a→i(ν̂) 1RSB cavity message/SP message (function to variable node).
x Parisi 1RSB parameter.
F(x) free-entropy density of the auxiliary model counting BP fixed

points.
Σ(φ) Complexity.
FRSB(Q) 1RSB cavity free-entropy (Bethe free-entropy of the auxiliary

model, function of the messages).
fRSB 1RSB cavity free-entropy density.
y Zero-temperature Parisi 1RSB parameter (y = limβ→∞ βx).
Fe(y) Free-entropy density of the auxiliary model counting min-sum

fixed points.
Σe(e) Energetic complexity.
FRSB,e(Q) Energetic 1RSB cavity free-entropy (Bethe free-entropy of the

auxiliary model, function of the messages).
fRSB,e Energetic 1RSB cavity free-entropy density.
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Janson, S., Luczak, T., and Ruciński, A. (2000). Random graphs. John Wiley and
sons, New York.

Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. Phys. Rev., 106,
620–630.

Jordan, M. (ed.) (1998). Learning in graphical models. MIT Press, Boston.
Kabashima, Y., Murayama, T., and Saad, D. (2000a). Typical Performance of
Gallager-Type Error-Correcting Codes. Phys. Rev. Lett., 84, 1355–1358.

Kabashima, Y., Murayama, T., Saad, D., and Vicente, R. (2000b). Regular and
Irregular Gallager-type Error Correcting Codes. In Advances in Neural Information
Processing Systems 12 (ed. S. A. S. et al.). MIT press, Cambridge, MA.

Kabashima, Y. and Saad, D. (1998). Belief propagation vs. TAP for decoding cor-
rupted messages. Europhys. Lett , 44, 668–674.

Kabashima, Y. and Saad, D. (1999). Statistical Mechanics of Error Correcting Codes.
Europhys. Lett., 45, 97–103.

Kabashima, Y. and Saad, D. (2000). Error-correcting Code on a Cactus: a solvable
Model. Europhys. Lett., 51, 698–704.
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