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Roots of random matrix theory

The need to understand spectra of random matrices.

Statistics: Principal Component Analysis (PCA)
[Wishart’20 ...]

PCA of a multivariate Gaussian distribution. [Gaël Varoquaux’s blog gael-varoquaux.info]
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Roots of random matrix theory

Collect a sample of n independent points;
organize them as rows of the random matrix

Compute the p × p Wishart matrix W = ATA. The
eigenvalues of

√
W = |A| are called the singular vectors of A.

For the largest singular vectors, the eigenvectors of W are the
principal components.

See [Wikipedia, Estimation of covariance matrices]
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Roots of random matrix theory

Quantum mechanics: excitation spectra of nuclei
[Wigner, Dyson 50-60...]

Slow neutron resonance on thorium 232 and uranium 238 nuclei [Rahn et al, Phys. Rev. C 6 (1972), 1854]

Distributon different from Poisson: energy levels tend to repel

Similar to the eigenvalues of Wigner matrices, the n × n
symmetric matrices with i.i.d. entries above the diagonal.

Heuristics: energy levels are the eigenvalues of a Hamiltonian
(complicated, modeled as a random operator)

See [Mehta, Random matrices (book)]
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Roots of random matrix theory

Numerical analysis: average analysis of matrix algorithms
[von Neumann’50, Smale’80...]

Solvers for systems of linear equations

Ax = b

can be tested on random inputs, for A = random matrix.

Accuracy, speed usually depends on the condition number of
A, the ratio of the largest to the smallest singular values:

κ(A) =
smax(A)

smin(A)
.

Algorithms usually work well for well-conditioned matrices, for
which κ(A) = O(1) or polynomial in dimension.

See [Smale’85, Spielman-Teng ICM’02]
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Roots of random matrix theory

Functional analysis: probabilistic constructions [Milman,

Gluskin’70...]

In finite dimensional normed spaces (Rn, ‖ · ‖), random
matrices A model “typical” linear operators.

This is a functional analytic version of the probabilistic
method in combinatorics.
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Roots of random matrix theory

Example: Kashin’s theorem on Euclidean subspaces of LN1 with the

norm ‖f ‖L1 = 1
N

∑N
i=1 |f (i)|.

Theorem (Euclidean subspaces) [Kashin’77].
For all N = (1 + δ)n, there exist subspace E of LN1 of dimension n
which is uniformly isomorphic to Ln2:

‖f ‖L2 .δ ‖f ‖L1 ≤ ‖f ‖L2 for all f ∈ E .
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Roots of random matrix theory

Kashin constructs E as a kernel of a random Bernoulli matrix
with independent ±1 entries. Other constructions possible:
image instead of kernel [Litvak et al’05, Rudelson’06];
random Gaussian matrix with independent N(0, 1) entries,
random orthogonal matrix uniform in O(n). Spaces more
general than L1 also possible (with the same volumetric
properties) [Szarek-Tomczak’80, Litvak et al’05].

Open problem: deterministic constructions.

See [Any of V. Milman’s surveys]
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Limit laws in random matrix theory

Wigner’s semicircle law ’58. Consider an n× n symmetric Gaussian
matrix An, whose above diagonal entries are independent N(0, 1).
As n→∞, the spectrum of 1√

n
An is distributed according to the

semicircle law with density

1

2π

√
4− x2 on [−2, 2].

Precisely, if Sn(z) is the empirical spectral distribution function of
1√
n
An (the number of eigenvalues ≤ z), then

Sn(z)

n
→ 1

2π

∫ z

−∞
(4− x2)

1/2
+ dx almost surely as n→∞.

[J. French, S. Wong, Phys. Lett. B. 35 (1971), 5]
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Limit laws in random matrix theory

Marchenko-Pastur law governs the limiting spectrum of n × n
Wishart matrices WN,n = ATA, where A = AN,n is an N × n
random Gaussian matrix with i.i.d. N(0, 1) entries.

Marchenko-Pastur law ’67. As the dimensions N, n→∞ while
aspect ratio n/N → y ∈ (0, 1], the spectrum of 1

NWN,n has
limiting density

1

2πxy

√
(b − x)(x − a) where a = (1−√y)2, b = (1 +

√
y)2.

[El Karoui, Estimation of large dimensional sparse covariance matrices, 2009]
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Limit laws in random matrix theory

Limiting density in Marchenko-Pastur law:

[El Karoui, Estimation of large dimensional sparse covariance matrices, 2009]
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Limit laws in random matrix theory

Circular law governs the limiting spectrum of n × n random
Gaussian matrices An with i.i.d. N(0, 1) entries.

Circular law [Mehta’67]. As the dimension n→∞ the spectrum
of 1√

n
An is distributed according to the uniform measure on the

unit disc {z ∈ C : |z | = 1}.

[B.Valkó, A course on random matrices, math.wisc.edu/~valko/courses/833/833.html]
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Universality

It is widely believed that phenomena typically observed in
statistical physics and in asymptotic random matrix theory are
universal – independent of the distribution of the entries.

Analogy with classical probability: for independent N(0, 1)
random variables Zi , their normalized sum

Sn =
1√
n

n∑
i=1

Zi

is again a standard normal random variable.

Central Limit Theorem: the above fact is universal as n→∞.
Valid for general i.i.d. Zi with zero mean and unit variance.

Universality in random matrix theory: holds!
Wigner’s semicircle law [Pastur’73, Bai-Silverstein’10]

Marchenko-Pastur law [Watcher’78, see Bai’99]

circular law [Girko’84, Bai’97, Götze-Tikhomirov’08,

Tao-Vu’08-10]
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Asymptotic and non-asymptotic regimes

Asymptotic random matrix theory offers remarkable
predictions as dimensions grow to infinity. This fits very well
the purposes of statistical physics.

However, there is often lack of understanding of finite (fixed
but large) dimensions. Many applications operate there:

statistics (number of parameters is fixed),
numerical analysis of algorithms (number of variables and
equations is fixed),
functional analysis (operators act on fixed spaces).

Asymptotic regime = dimensions grow to infinity; precise
limiting phenomena

Non-asymptotic regime = any fixed dimensions; results are
optimal up to constants
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Compressed Sensing

New connections arise in compressed sensing.

Sparse recovery problem. Find the sparsest solution to an
underdetermined system of linear equations Ax = b where A is an
m × N matrix, m� N.

Many applications. x : unknown sparse signal, A: known
observation matrix, b = Ax : known observation of x . Problem:
recover the signal x from the observation b.

Roman Vershynin Non-asymptotic theory of random matrices and sparsity



Compressed Sensing

In other words, we want to solve the optimization problem

min ‖x‖0 subject to Ax = b

where ‖x‖0 = | supp(x)| = number of nonzero coordinates.

We relax this non-convex problem to the convex program

min ‖x‖1 subject to Ax = b.

When are these two problems equivalent?
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Compressed Sensing

Answer: when the operator A respects all sparse vectors.

Definition. A matrix A is a restricted isometry given sparsity s if

(1− δ)‖x‖2 ≤ K‖Ax‖2 ≤ (1 + δ)‖x‖2 for all x , ‖x‖0 ≤ s

where K is any normalization factor, and δ = δs ∈ (0, 1) is small.

Theorem [Candes, Tao’04]. Assume that an s-sparse vector x is
a solution to Ax = b, where A is a restricted isometry with
δ2s ≤ 0.2. Then x can be recovered from b by the convex program

min ‖x‖1 subject to Ax = b.
Roman Vershynin Non-asymptotic theory of random matrices and sparsity



Restriced isometries

Restricted isometries form an interesting class of matrices. They
have been implicitly used in geometric functional analysis in
constructions of Euclidean subspaces:

Observation (Restricted isometries imply Kashin-type sections).
Assume A is an m × N matrix with orthonormal rows, m = εN. If
A is a restricted isometry with δ = δγN < 1, then AT acts as an
almost isometric embedding of Lm2 into LN1 :

‖f ‖L2 .ε,γ ‖AT f ‖L1 ≤ ‖f ‖L2 for all f ∈ Lm2 .
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Restriced isometries

Connection with random matrix theory: Restricted isometries
are difficult to construct. Deterministic constructions with
good dimensions are uknown (e.g. those yielding Kashin’s
sections of proportional dimensions).

The best known constructions of restricted isometries are
randomized, i.e. random matrices:
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Restriced isometries

Theorem (Random matrices are restricted isometries). Let A be an
m × N Gaussian random matrix (entries = N (0, 1) iid). If

m ∼ s log(N/s)

then with high probability A is a restricted isometry for s-sparse
vectors, with δs ≤ 0.1.

This result allows one to recover a sparse signal from few
measurements (m ∼ sparsity s, not the dimension N).
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Restriced isometries

General measurement ensembles:

The same result holds for Bernoulli random matrices (±1
entries), and generally for subgaussian random matrices.

A similar result holds for partial Fourier random matrices,
which are obtained by randomly selecting m rows from an
N × N Discrete Fourier Transform matrix. However, the
number of measurements is a bit higher: m ∼ s log4 N
[Candes-Tao, Rudelson-Vershynin].
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Approximate isometries

Theorem (Random matrices are restricted isometries). Let A be an
m × N Gaussian random matrix. If m ∼ s log(N/s) then with high
probability A is a restricted isometry for s-sparse vectors.

Why true? Because a given n × s random Gaussian matrix AI

is an approximate isometry with very high probability (allowing
one to take the union bound over all submatrices AI of A):
Indeed, AI is tall, n� s, thus we have with high probability

‖AI x‖2 ≈ ‖x‖2 for all x ∈ Rs .

This is proved using concentration of measure in Gauss space.
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Approximate isometries in statistics

Question. When a tall random matrix is an approximate isometry?

This question brings us back to a basic problem in statistics –
estimating the covariance structure of a high dimensional
distribution.

PCA of a multivariate Gaussian distribution. [Gaël Varoquaux’s blog gael-varoquaux.info]
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Covariance matrix

The covariance structure of a centered high-dimensional
distribution µ (equivalently, a random vector X distributed
according to µ) is captured by its covariance matrix

Σ = EXXT = (EXiXj)
p
i ,j=1 = (cov(Xi ,Xj))pi ,j=1

Σ = Σ(X) is a symmetric, positive semi-definite p × p matrix.
It is a multivariate version of the variance Var(X ).

If Σ(X) = I we say that X is isotropic. Every full dimensional
random vector X can be made into an isotropic one by the
linear transformation Σ−1/2X .
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Estimation of covariance matrices

Problem: estimate Σ. It arises in signal processing, genomics,
financial mathematics, pattern recognition, convex geometry.
We take a sample of n independent points X1, . . . ,Xn from
the distribution. We hope to estimate Σ by the sample
covariance matrix

Σn =
1

n

n∑
i=1

XkX
T
k =

1

n
ATA,

where A is a tall random matrix with independent rows:

Roman Vershynin Non-asymptotic theory of random matrices and sparsity



Estimation of covariance matrices

Covariance Estimation Problem. Determine the minimal sample
size n = n(p) that guarantees with high probability (say, 0.99) that
the sample covariance matrix Σn estimates the actual covariance
matrix Σ with fixed accuracy (say, ε = 0.01) in the operator norm:

‖Σn − Σ‖ ≤ ε‖Σ‖.

PCA of a multivariate Gaussian distribution. [Gaël Varoquaux’s blog gael-varoquaux.info]
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Estimation problem and random matrices

Σn = 1
nA

TA.

For isotropic distributions (Σ = I ), the desired estimation
‖Σn − I‖ ≤ ε is equivalent to saying that 1√

n
A is an

approximate isometry:

(1− ε)
√
n ≤ ‖Ax‖2 ≤ (1 + ε)

√
n for all x ∈ Sp−1.

Equivalently, the singular values si (A) = eig(ATA)1/2 are all
close to each other and to

√
n:

(1− ε)
√
n ≤ smin(A) ≤ smax(A) ≤ (1 + ε)

√
n.

Question. What random matrices with independent rows are
approximate isometries?
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Random matrices with independent entries

Simplest example: Gaussian distributions.
A is a p × n random matrix with independent N(0, 1) entries.

The endpoints of Marchenko-Pastur law suggest that, as
n, p →∞, n/p → const, we have

smin(A)→
√
n −√p, smax(A)→

√
n +
√
p a.s.

This is indeed true: Bai-Yin law [+Silverstein, Krishnaiah].
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Random matrices with independent entries

Bai-Yin: smin(A)→
√
n −√p, smax(A)→

√
n +
√
p.

Thus making n slightly bigger than p we force both extreme
values to be close to each other, and make A an almost
isometry.

This easily translates into the statement that the sample
covariance matrix Σn = 1

nA
TA nicely approximates the actual

covariance matrix I :

‖Σn − I‖ ≈ 2

√
p

n
+

p

n
.

Answer to the Estimation Problem for Gaussian distributions.
Sample size n ∼ p suffices to estimate the covariance matrix by the
sample covariance matrix: ‖Σn − Σ‖ ≤ ε‖Σ‖.
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Non-gaussian distribtions

Answer to the Estimation Problem for Gaussian distributions.
Sample size n ∼ p suffices to estimate the covariance matrix in Rp

by the sample covariance matrix: ‖Σn − Σ‖ ≤ ε‖Σ‖.

The same answer holds for more general distributions:

OK for sub-gaussian distributions, whose one-dimensional
marginals have tails dominated by gaussian,
P{|〈X, x〉| ≥ t} ≤ 2 exp(−ct2). Reason: ε-net argument.

OK for sub-exponential distributions, those with heavier tails
2 exp(−ct) [Adamczak, Litvak, Pajor, Tomczak’09].

OK for distributions with finite 4-th moments, up to a
log log p factor. [V’10]. Conjecture: log log p is not needed.

OK for arbitrary distributions up to a log p moment
[Rudelson’99], [Bourgain’99]. Reason: operator-valued
deviation inequalities for sums of independent random
matrices, see e.g. [Tropp’10].
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Sparse estimation of covariance matrices

Like in compressed sensing, most of today’s practical
applications require very small sample sizes n compared with
the dimension p (number of parameters), calling for

n� p.

In this regime, covariance estimation is generally impossible
for dimension reasons. But usually (in practice) one knows a
priori some structure of the covariance matrix Σ.

For example, as in compressed sensing settng, Σ may be
known to be sparse, having few non-zero entries (i.e. most
random variables are uncorrelated). Example:
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Covariance graph

Gene association network of E. coli [J. Schäfer, K. Strimmer’05]
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Sparse estimation of covariance matrices

Sparse Estimation Problem. Consider a distribution in Rp whose
covariance matrix Σ has at most s ≤ p nonzero entries in each
column (equivalently, each component of the distribution is
correlated with at most s other components). Determine the
minimal sample size n = n(p, s) needed to estimate Σ with a fixed
error in the operator norm, and with high probability.

A variety of techniques has been proposed in statistics, notably the
shrinkage methods going back to Stein.
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Sparse estimation of covariance matrices

The sparse estimation problem is nontrivial even for Gaussian
distributions, and even if we know the locations of the
non-zero entries of Σ. Let’s assume this (otherwise take the
biggest entries of Σn).

Method for sparse covariance estimation: Take the sample of n
points and compute the sample covariance matrix Σn. Zero out
the entries that are known to be zero a priori. The resulting sparse
matrix should be a good estimator for Σ.

Zeroing out amounts to taking Hadamard product (entrywise)
M · Σn with a given sparse 0/1 matrix M (mask).
Does this method work? Yes:
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Sparse estimation of covariance matrices

Theorem (Sparse Estimation) [Levina-V’10]

Consider a centered Gaussian distribution in Rp with covariance
matrix Σ. Let M be a symmetric p × p “mask” matrix with 0, 1
entries and with at most s nonzero entries in each column. Then

E‖M · Σn −M · Σ‖ ≤ C log3 p
(√ s

n
+

s

n

)
· ‖Σ‖.

Compare this with the consequence of the Bai-Yin law:

E‖Σn − Σ‖ ≈
(

2

√
p

n
+

p

n

)
‖Σ‖.

This matches the Theorem in the non-sparse case s = p.

Corollary. Sample size n ∼ s log6 p suffices for sparse estimation.
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Sparse estimation of covariance matrices

More generally:

Theorem (Estimation of Hadamard Products) [Levina-V’10]

Consider a centered Gaussian distribution on Rp with covariance
matrix Σ. Then for every symmetric p × p matrix M we have

E‖M · Σn −M · Σ‖ ≤ C log3 p
(‖M‖1,2√

n
+
‖M‖
n

)
· ‖Σ‖.

where ‖M‖1,2 = maxj(
∑

i m
2
ij)

1/2 is the `1 → `2 operator norm.

This result is quite general. Applies for arbitrary Gaussian
distributions (no covariance structure assumed), arbitrary
mask matrices M.
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Sparse estimation: location of support

Question. So far we assumed that we knew the locations of
nonzero elements of the covariance matrix Σ. If we did not
(similarly to compressed sensing), how to find them?

Thresholding: we can just choose the few biggest elements of
the sample covariance matrix Σn.

But this requires the entry-wise approximation of Σ by Σn. It
is OK if n & h−2 where h is a lower bound on the entries of Σ.

Is thresholding the best way to estimate the location of
nonzeros?
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