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Preface

Signal processing, data analysis and data mining are pervasivaghout science and engi-
neering. Extracting an interesting knowledge from experimental raw datasets, measurements,
observations and understanding complex data has become an important challenge and objec-
tive. Often datasets collected from complex phenomenarepresent the integrated result of several
inter-related variables or they are combinations of underlying latent components or factors. Such
datasets can be first decomposed or separated into the components that underlie them in order
to discover structures and extract hidden information. In many situations, the measurements are
gathered and stored as data matrices or multi-way arrays (tensors), and described by linear or
multi-linear models.

Approximative low-rank matrix and tensor factorizations or decompositions play a funda-
mental role in enhancing the data and extracting latent components. A common thread in vari-
ous approaches for noise removal, model reduction, feasibility reconstruction, and Blind Source
Separation (BSS) is to replace the original data by a lower dimensional approximate represen-
tation obtained via a matrix or multi-way array factorization or decomposition. The notion of a
matrix factorization arises in a wide range of important applications and each matrix factoriza-
tion makes a dierent assumption regarding component (factor) matrices and their underlying
structures, so choosing the appropriate one is critical in each application domain. Very often
the data, signals or images to be analyzed are nonnegative (or partially nonnegative), and some-
times they also have sparse or smooth representation. For such data, it is preferable to take
these constraints into account in the analysis to extract nonnegative andspartd compo-
nents or factors with physical meaning or reasonable interpretation, and thereby avoid absurd or
unpredictable results. Classical tools cannot guarantee to maintain the nonnegativity.

In this research monograph, we provide a wide survey of models and algorithmic aspects of
Nonnegative Matrix Factorization (NMF), and its various extensions and modifications, espe-
cially the Nonnegative Tensor Factorization (NTF) and the Nonnegative Tucker Decomposition
(NTD). Inthe NTF and NTD approaches high-dimensional data, such as hyper-spectral or medi-

XVii
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cd images are factored or decomposed directly and they are approximated by a sum of rank-one
nonnegative tensors. The motivation behind NMF, NTF and NTD is that besides the dimension-
ality reduction sought in many applications, the underlying data ensemble is nonnegative and
can be better modeled and interpreted by means of nonnegative and, preferably, also sparse or
smooth components.

The notions of NMF, NTF and NTD play a major role in a wide range of important ap-
plications, including bioinformatics, micro-array analysis, neuroscience, text mining, image
understanding, air pollution research, chemometrics, and spectral data analysis. Nonnegative
matrix and tensor factorizations and decompositions have many other applications, such as lin-
ear sparse coding, image classification, clustering, neural learning process, sound recognition,
remote sensing, and object characterization. For example,/NWH-processing permits the
detection alternative or context-dependent patterns of gene expression in complex biological
systems and especially to recover meaningful biological information from cancer-related mi-
croarray data. We believe that a potential impact of the NMF and its extensions on scientific
advancements might be as great as the Independent Component Analysis (ICA) or the Singular
Value Decomposition (SVD) and Principal Component Analysis (PCA). In contrast to ICA or
SVD/PCA approaches, NMNTF and NTD techniques, if successively realized, may improve
interpretability and visualization of large-scale data while maintaining the physical feasibility
more closely.

Researchers from various research fields are interesteéténedfit, usually very diverse as-
pects, of NMF and NTF. For example, neuroscientists and biologists need reliable methods
and techniques which can extract or separate useful information from superimposed biomedical
data corrupted by a large level of noise and interference, for example, by using non-invasive
recordings of human brain activities targeted at understanding the ability of the brain to sense,
recognize, store and recall patterns and comprehending crucial elements of learning: associa-
tion, abstraction and generalization. A second group of researchers: engineers and computer
scientists, are fundamentally interested in developing and implementing flexiblefanieng
algorithms for specific practical engineering and scientific applications. A third group of re-
searchers: mathematicians and physicists, have an interest in the development of a fundamental
theory to understand mechanisms, properties and abilities of the developed algorithms, and their
generalizations to more complex and sophisticated models. The interactions among such groups
permits a real progress to be made in this very interdisciplinary research devoted {dITNIMIF
and NTD, and each group benefits from the others.

The theory built up around NMF, NTF and NTD is so extensive and the applications are so
numerous that we are, of course, not able to cover all of them. Our selection and treatment of
material reflects our background and our own research interests and results in this fascinating
area over the last five years.

The book provides a wide coverage of the models and algorithms for nonnegative matrix
factorizations and tensor decompositions both from a theoretical and practical point of view.
The main objective is to derive and implement in MATLABieient and relatively simple iter-
ative algorithms that work well in practice for real-world data. In fact, almost all the algorithms
presented in the book have been implemented in MATLAB and extensively tested. We have at-
tempted to present the concepts, models and algorithms in general or flexible forms to stimulate
a reader to be creative in visualizing new approaches and adopt methods or algorithms for their
specific needs and applications.

In Chapter1 we describe the basic NMF models and their extensions, and fatenthle
fundamental problems related to the calculation of component (factor) matrices. A special em-
phasis is given to basic properties and mathematical operations for multi-way arrays, also called



PREFACE XiX

multi-dimensional matrices or tensors. Chaptentroduces the basic linear and multi-linear
modeb for matrix factorizations and tensor decompositions, and formulates the fundamental
analytical framework for the solution of the problems posed in this book. The workhorse is the
NMF algorithms for sparse representations of data, and its extensions, including the multi-layer
NMF, semi-NMF, sparse NMF, tri-NMF, symmetric NMF, orthogonal NMF, non-smooth NMF
(nsNMF), overlapping NMF, convolutive NMF (CNMF), and large-scale NMF. Our particular
emphasis is on the NMF and semi-NMF models and their extensions to multi-way models (i.e.,
multi-linear models which perform multi-way array (tensor) decompositions) with nonnegativ-
ity and sparsity constraints, especially NTD, together with nonnegative and semi-nonnegative
tensor factorizations that are mostly based on a family of Tucker and PARAFAC models.

In Chapter2, we give an overview and discuss properties of a large family oégdized
and flexible divergences or similarity distances between two nonnegative sequences or patterns.
They are formulated for probability distributions used in the development of novel algorithms
for NMF and NTF. Information theory, convex analysis, and information geometry play key
roles in the formulation of the divergences. The scope of these results is vast since the gener-
alized divergence functions and their variants include quite a large number of useful loss func-
tions, including those based on relative entropies, generalized Kullback-Leibler or I-divergence,
Hellinger distance, Jensen-Shannon divergence, J-divergence, Pearson and Neyman Chi-squared
divergences, triangular discrimination, and arithmetic-geometric Taneya divergence. Many of
these measures belong to the class of Alpha-divergences and Beta-divergences, and have been
applied successfully in the disciplines such as signal processing, pattern recognition, probability
distributions, information theory, finance and economics. In the following chapters we will ap-
ply such divergences as cost functions (possibly with additional constraints and regularization
terms) to derive novel multiplicative and additive projected gradient and fixed-point algorithms.
They provide working solutions for the problems where nonnegative latent (hidden) compo-
nents can be generally statistically dependent, and satisfy some other conditions or additional
constraints such as sparsity or smoothness.

In Chapter3, we introduce a wide family of iterative multiplicative algdwits for NMF
and related problems, subject to additional constraints such as spargity sméothness. Al-
though a standard multiplicative update rule for NMF achieves a sparse representation of its
components, we can impose a control over the sparsity of the components by designing a suit-
able cost function with additional penalty terms. In this chapter we consider a wide class of cost
functions or divergences, leading to generalized multiplicative algorithms with regularization
andor penalty terms. Such relaxed forms of the multiplicative NMF algorithms usually provide
better performance and convergence speed, and allows us to extract the desired components
uniquely up to the scale and permutation ambiguities. As special cases we introduce the multi-
plicative algorithms for Alpha and Beta divergences, squared Hellinger, Pearson’s Chi-squared,
and Itakura-Saito distances.

In Chapter4, we derive and give an overview of the Alternating Least Squagesithms re-
ferred to as the ALS algorithms for NMF, semi-NMF, and multi-layer NMF. This is important as
many existing NMF techniques are prohibitively slow andiicgent, especially for large-scale
problems. For such problems a promising approach is to apply the ALS algorithms with the
regularization anr extended line search techniques. A special emphasis in this chapter is put
on various regularization and penalty terms together with local learning rules. By incorporating
the regularization and penalty terms into the weighted Frobenius norm, we show that it is pos-
sible to achieve sparse, orthogonal, or smooth representations, thus helping to obtain a desired
global solution. The main objective of this chapter is to develipient and robust Regularized
ALS (RALS) algorithms. For this purpose, we use several approaches from constrained opti-
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mization and regularization theory, and in addition introduce several heuristic algorithms. The
proposed algorithms are characterized by improvgdiency and often very good convergence
properties, especially for large-scale problems.

In Chapter5, we present a wide class of Projected Gradient (PG) algorithmsamgare
their performance, especially for large-scale problems. In contrast to the multiplicative NMF
algorithms discussed in Chapterthe PG algorithms have additive updates, and provide an
appoximate solution to the Non-Negative Least Squares (NNLS) problems. CHafuteuses
on thefollowing PG algorithms: Oblique Projected Landweber (OPL), projected gradients with
Armijo rule, Barzilai-Borwein gradient projection, Projected Sequential Subspace Optimization
(PSESOP), Interior-Point Newton (IPN), Minimal Residual Norm Steepest Descent (MRNSD),
and Sequential Coordinate-Wise Algorithm (SCWA).

In Chapters, we introduce learning algorithms for NMF, using second-ordprayamations,
that is, the information about the Hessian and gradient of a cost function. Using the information
about the curvature of the cost function, which is intimately related to second-order deriva-
tives, the convergence can be considerably accelerated. This, however, also introduces many
related practical problems that must be addressed prior to applying learning algorithms. For
example, the Hessian must be positive-definite to ensure the convergence of approximationsto a
local minimum of a specific cost function. Unfortunately, this is not guaranteed using the NMF
alternating minimization rule, and we need to resort to some suitable Hessian approximation
techniques. In addition, the Hessian values may be very large, and of a severely ill-conditioned
nature (in particular for large-scale problems), which gives rise to médfigudt problems re-
lated to its inversion. Moreover, the nonlinear projections may be performed in many ways,
similarly to the PG and steepest descent algorithms. This chapter provides a comprehensive
study of the solutions to the above-mentioned problems. We also give some heuristics on the
selection of a cost function and the related regularization terms which restrict the area of feasible
solutions, and help the algorithms to converge to the global minimum of a specific cost function.
In particular, we discuss the simplest approach to the projected quasi-Newton optimization using
the Levenberg-Marquardt regularization of the Hessian. We then extend the discussion to more
sophisticated second-order algorithms that iteratively update only the strictly positive (inactive)
variables. The example includes the Gradient Projection Conjugate Gradient (GPCG). Further-
more, as a special case of the second-order method, we present one Quadratic Programming
(QP) method that solves a QP problem using the trust-region subproblem algorithm. The QP
problem is formulated from the Tikhonov regularized squared Euclidean cost function extended
with a logarithmic barrier function to satisfy nonnegativity constraints. The BSS experiments
demonstrate the high atiency of the proposed algorithms.

In Chapter7, we attempt to extend and generalize the results and algorittemsthe previ-
ous chapters for the NTF and NTD models. In fact, almost all the NMF algorithms described in
the earlier chapters can be extended or generalized to the various nonnegative tensor factoriza-
tions and decompositions formulated in Chagdtedowever, in this chapter we mainly focus on
NTF, that is, PARAFAC with nonnegativity constraints and NTD. In order to make this chap-
ter as self-contained as possible, we re-introduce some concepts and derive several novel and
efficient algorithms for nonnegative and semi-nonnegative tensor (multi-way arrays) factoriza-
tions and decompositions. Our particular emphasis is on a detailed treatment of the generalized
cost functions, including Alpha- and Beta-divergences. Based on these cost functions, several
classes of algorithms are introduced, including: (1) multiplicative updating; (2) ALS; and (3)
Hierarchical ALS (HALS). These algorithms are then incorporated into multi-layer hierarchical
networks in order to improve their performance. A special emphasis is given on the ways to
impose nonnegativity or semi-nonnegativity, together with optional constraints such as orthogo-
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nality, sparsity angbr smoothness. The developed algorithms are tested for several applications
such as denoising, compression, feature extraction, clustering, EEG data analysis, brain com-
puter interface and video tracking. To understand the material in this chapter it would be helpful
to be familiar with the previous chapters, especially Chapters 1, 3 and 4.

Finally, in Chapter8, we briefly discuss the selected applications of NMF and multiedisional
array decompositions, with a special emphasis on these applications to which the algorithms de-
scribed in the previous chapters are applicable. We review the following applications: data
clustering, text mining, email surveillance, musical instrument classification, face recognition,
handwritten digit recognition, texture classification, Raman spectroscopy, fluorescence spec-
troscopy, hyper-spectral imaging, chemical shift imaging, and gene expression classification.

The book is partly a textbook and partly a research monograph. It is a textbook because it
gives the detailed introduction to the basic models and algorithms of nonnegative and sparse
matrix and tensor decompositions. It is simultaneously a monograph because it presents many
new results, methods, ideas, models, further developments and implementatiboiefiteal-
gorithms which are brought together and published in this monograph for the first time. As a
result of its twofold character the book is likely to be of interest to graduate and postgraduate
students, engineers and scientists working in the field of biomedical engineering, data analy-
sis, data mining, multidimensional data visualization, sigmelge processing, mathematics,
computer science, finance, economics, optimization, geophysics, and neural computing. Fur-
thermore, the book may also be of interest to researchers workinfénetit areas of science,
because a number of the results and concepts have been included which may be advantageous
for their further research. One can read this book through sequentially but it is not necessary
since each chapter is essentially self-contained, with as few cross references as possible. So,
browsing is encouraged.
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n-dimensional real vector space
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element of time serieg(t) for a time instant or it-th entry ofY
j-th column vector of the matriX = AX

it-th element of the matri¥ = AX

three-way array (third-order tensor) representing basis matrices (slices)
ijg-th element of a three-way arrdye R'**Q

third-order core tensor representing links between factor matrices
jrp-th element of a three-way arr&y e R¥>R<P

three-way array representing hidden components

jtg-th element of a three-way arra§/e R

three-way array (a third-order tensor) representing input (observed) data
itg-th element of the three-way arriye R'*T*Q

three-way array (third-order tensor) representing error or noise
theitg-th element of the three-way arr&ye R'*T*Q

Nth order tensor representing usually input (observed) data
n-mode matricized (unfolded) version ¥f

sultensor of the tensor € R'vx1z-xIn

obtained by fixing ther-th index to some valup

N-th order core tensor

then-th factor (loading matrix) oN-th order tensor

j-th column vector of factoA®

set of factors (loading matrice8f?, A@, .. AN

set of vectors(”, &, ..., al"

divergence between two nonnegative 1D sequences:

p={p} andq = {o}

divergence between two nonnegative 2D sequences:

P = {pi} andQ = {qjt}

divergence between two nonnegative three-way arrays:

P = {piq} and Q = {Cltq}

diagonal scaling matrix

determinant of matriXA

vector or matrix of suitable dimension with all ones

I by J matrix with all ones
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expf-} exponential function
E{} expectation operator

I identity matrix

In identity matrix of dimensiom x n

J(X) penalty or regularization term of a cost function

In natural logarithm (equivalent to log)

k k-th alternating step

K total number of alternating steps

Q number of frontal slices, trials, experiments or subjects
I,T,Q dimensions of dterent modes in three-way array
p(x) or px(x) probability density function (p.d.f.) ok

py(y) probability density function (p.d.f.) of(t)

P permutation matrix

sign(x) sign function € 1 for x > 0 and= -1 for x < 0)

t continuous or discrete time

tr (A) trace of matrixA

[X| absolute value (magnitude) &f

[IXIlp p-norm (length) of the vectax, wherep=0,1,2,..., 0
8ij Kronecker delta

n learning rate for discrete-time algorithms

Amax(A) maximal eigenvalue of matrif

Amin(A) minimal eigenvalue of matriA

a? variance

w over-relaxation parameterw < 2

v gradient operator

VyD gradient ofD with respect to variablg;

VxD gradient of cost functio® with respect to matrix

[X]+ = maxO, x} nonlinear “half-wave rectifying” projection replacing negative values

of x (element-wise) by zero or by a small positive vaiue
[ superscript symbol for Moore-Penrose pseudo-inversion of a matrix
[1" transpose of matrix or vector

0 inner product or average operator
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= or = left hand variable is defined by the right hand variable
@ or .x Hadamard product

@ or ./ element-wise division

X[l rise to the powew each element of matrixX

o outer product

Khatri-Rao product
Kronecker productf ® B := [&;;B])

Xn n — modeproduct of a tensor by matrix
Xn n — modeproduct of a tensor by vector
ALyB concatenation of two tensors along tiréh mode
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AO-n AN o...0 Ao AM-Do...0AQ
A® AN @ AN-1) ... AQ
A®-n AN g ... x A o AM-D g ... AQ)
G x (A} G x; AWM X2 A ... XN AN
X_n {A} G x AD ... Xno1 AM-1) Xl AM+D) XN AWN)

Abbreviations

ALS Alternating Least Squares

HALS Hierarchical Alternating Least Squares
RALS Regularized Alternating Least Squares
iid. independent identically distributed
BOD Block Oriented Decmposition

BSE Blind Signal Extraction

BSS Blind Signal Separation

BSD Blind Signal Deconvolution

EVD Eigenvalue Decomposition

ICA Independent Component Analysis

IR Infinite Impulse Response

SIR Signal-to-Interference-Ratio
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SVD
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Peak Signal-to-Noise-Ratio

Joint approximative diagonalization
Least Mean Squares

Kullback Leibler divergence

Minor Component Analysis
Multichannel Blind Deconvolution
Maximum Entropy Distribution
Morphological Component Analysis
Multiple-Input, Multiple-Output
Nonnegative Matrix Factorization
affine NMF

Convolutive NMF

non-smooth NMF
Nonnegative Tucker Decomposition
Nonnegative Tensor Factorization
CANDECOMBPARAFAC

Parallel Factor Analysis (equivalent to CP)

Canonical Decomposition (equivalent to PARAFAC or CP)

Principal Component Analysis
Sparse Component Analysis
Slice Oriented Decomposition

Singular Value Decomposition
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Introduction — Problem
Statements and Models

Matrix factorization is an important and unifying topic in sigpabcessing and linear algebra,
which has found numerous applications in many other areas. This chapter introduces basic linear
and multi-lineat models for matrix and tensor factorizations and decompositams formu-

lates the analysis framework for the solution of problems posed in this book. The workhorse in
this book is Nonnegative Matrix Factorization (NMF) for sparse representation of data and its
extensions including the multi-layer NMF, semi-NMF, sparse NMF, tri-NMF, symmetric NMF,
orthogonal NMF, non-smooth NMF (nsNMF), overlapping NMF, convolutive NMF (CNMF),
and large-scale NMF. Our particular emphasis is on NMF and semi-NMF models and their ex-
tensions to multi-way models (i.e., multi-linear models which perform multi-way array (tensor)
decompositions) with nonnegativity and sparsity constraints, including, Nonnegative Tucker De-
compositions (NTD), Constrained Tucker Decompositions, Nonnegative and semi-nonnegative
Tensor Factorizations (NTF) that are mostly based on a family of the TUCKER, PARAFAC and
PARATUCK models.

As the theory and applications of NMF, NTF and NTD are still being developed, our aim is to
produce a unified, state-of-the-art framework for the analysis and developmdhtigine and
robust algorithms. In doing so, our main goals are to:

1. Develop various working tools and algorithms for data decomposition and feature ex-
traction based on nonnegative matrix factorization (NMF) and sparse component anal-
ysis (SCA) approaches. We thus integrate several emerging techniques in order to es-
timate physically, physiologically, and neuroanatomically meaningful sources or latent

1A function in two or more variables is said to be multi-linear if it is linear in each variable separately.
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(hidden) components with morphological constraints. These constraints include nonneg-
ativity, sparsity, orthogonality, smoothness, and semi-orthogonality.

. Extend NMF models to multi-way array (tensor) decompositions, factorizations, and fil-

tering, and to derivef@cient learning algorithms for these models.

. Develop a class of advanced blind source separation (BSS), unsupervised feature extrac-

tion and clustering algorithms, and to evaluate their performance agirigri knowledge
and morphological constraints.

. Develop computational methods tieiently solve the bi-linear system = AX + E for

noisy data, wher&' is an input data matrixA andX represent unknown matrix factors
to be estimated, and the matiixrepresents error or noise (which should be minimized
using suitably designed cost function).

. Describe and analyze various cost functions (also referred to as (dis)similarity measures

or divergences) and apply optimization criteria to ensure robustness with respect to uncer-
tainty, ill-conditioning, interference and noise distribution.

. Present various optimization techniques and statistical methods to déioien¢ and

robust learning (update) rules.

. Study what kind of prior information and constraints can be used to render the problem

solvable, and illustrate how to use this information in practice.

. Combine information from dlierent imaging modalities (e.g., electroencephalography

(EEG), magnetoencephalography (MEG), electromyography (EMG), electrooculography
(EOG), functional magnetic resonance imaging (fMRI), positron emission tomography
(PET)), in order to provide data integration and assimilation.

. Implement and optimize algorithms for NMF, NTF and NTD together with providing

pseudo-source codes gdadefficient source codes in MATLAB, suitable for parallel com-
puting and large-scale-problems.

Develop user-friendly toolboxes which supplement this book: NMFLAB and MULTI-
WAY-LAB for potential applications to data analysis, data mining, and blind source sep-
aration.

Probably the most useful and best understood matrix factorizations are the Singular Value De-
composition (SVD), Principal Component Analysis (PCA), and LU, QR, and Cholesky decom-
positions (see Appendix). In this book we mainly focus on nonnegativity and sparsity constraints
for factor matrices. We shall therefore attempt to illustrate why nonnegativity and sparsity con-
straints play a key role in our investigations.

1.1

BLIND SOURCE SEPARATION AND LINEAR GENERALIZED
COMPONENT ANALYSIS

Blind source separation (BSS) and related methods, e.g., indeperomponent analysis (ICA),
employ a wide class of unsupervised learning algorithms and have found important applications
across several areas from engineering to neurosci@éte The recent trends in blind source
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Fig. 1.1 (a) General model illustrating blind source separation (BSS), (b) Such models are ex-
ploited, for example, in noninvasive multi-sensor recording of brain activity using EEG (electroen-
cephalography) or MEG (magnetoencephalography). It is assumed that the scalp sensors (e.g.,
electrodes, magnetic or optical sensors) pick up a superposition of neuronal brain sources and
non-neuronal sources (noise or physiological artifacts) related, for example, to movements of eyes
and muscles. Our objective is to identify the individual signals coming from different areas of the
brain.

separation and generalized (flexible) component analysis (GCA) are to consider problems in the
framework of matrix factorization or more general multi-dimensional data or signal decomposi-
tion with probabilistic generative models and expiojiriori knowledge about true nature, mor-
phology or structure of latent (hidden) variables or sources such as nonnegativity, sparseness,
spatio-temporal decorrelation, statistical independence, smoothness or lowest possible complex-
ity. The goal of BSS can be considered as estimation of true physical sources and parameters
of a mixing system, while the objective of GCA is to find a new reduced or hierarchical and
structured component representation for the observed (sensor) data that can be interpreted as
physically or physiologically meaningful coding or blind signal decomposition. The key issue
is to find such a transformation or coding which has true physical meaning and interpretation.
Throughout this book we discuss some promising applications of BS& in analyzing
multi-modal, multi-sensory data, especially brain data. Furthermore, we derive sboene
unsupervised learning algorithms for linear blind source separation, and generalized component
analysis using various criteria, constraints and assumptions.
Figurel.lillustrates a fairly general BSS problem also referred to aslisignal decomposi-
tion or blind source extraction (BSE). We observe recordsseinsor signalg(t) = [yi(t), ya(t),
..,yi(®O]T coming from a MIMO (multiple-inpytnultiple-output) mixing and filtering system,
wheret is usually a discrete time sam@@nd ()" denotes transpose of a vector. These signals
are wsually a superposition (mixture) dfunknown source signaigt) = [xy(t), X2(t), . .., X3(t)]"
and noise®(t) = [ey(t), ex(t)....,e(t)]". The primary objective is to estimate all the primary

2Dataare often represented not in the time domain but in the complex frequency or time-frequency domain, so, the
indext may have a dferent meaning and can be multi-dimensional.



4 A. CICHOCKI, R. ZDUNEK, A.H. PHAN, S. AMARI

saurce signalsxj(t) = x; or only some of them with specific properties. This estimation is
usually performed based only on the output (sensor, observed) sjgnakg (t).

In order to estimate sources, sometimes we try first to identify the mixing system or its in-
verse (unmixing) system and then estimate the sources. Usually, the inverse (unmixing) system
should be adaptive in such a way that it has some tracking capability in a nonstationary envi-
ronment. Instead of estimating the source signals directly by projecting observed signals using
the unmixing system, it is often more convenient to identify an unknown mixing and filtering
system (e.g., when the unmixing system does not exist, especially when the system is underde-
termined, i.e., the number of observations is lower than the number of source signdlsiwijh
and simultaneously estimate the source signals by exploiting sopneri information about
the source signals and applying a suitable optimization procedure.

There appears to be something magical about blind source separation since we are estimating
the original source signals without knowing the parameters of the mixingpafiltering pro-
cesses. Itis diicult to imagine that one can estimate this at all. In fact, without samegori
knowledge, it is not possible tmniquelyestimate the original source signals. However, one can
usually estimate them up to certain indeterminacies. In mathematical terms these indetermi-
nacies and ambiguities can be expressed as arbitrary scaling and permutation of the estimated
source signals. These indeterminacies preserve, however, the waveforms of original sources.
Although these indeterminacies seem to be rather severe limitations, in a great number of ap-
plications these limitations are not crucial, since the most relevant information about the source
signals is contained in the temporal waveforms or time-frequency patterns of the source signals
and usually not in their amplitudes or the order in which they are arranged in the systemfoutpuit.

The problem of separating or extracting source signals fromsosarray, without knowing
the transmission channel characteristics and the sources, can be expressed briefly as a number
of related BSS or GCA methods such as ICA and its extensions: Topographic ICA, Multi-way
ICA, Kernel ICA, Tree-dependent Component Analysis, Multi-resolution Subband Decompo-
sition -ICA [77], [4]], [28], [29], Non-negative Matrix Factorization (NMFPB], [124, [35],

Spase Component Analysis (SCAYf], [95], [141], [70], [72], and Multi-channel Morpholog-
ical Component Analysis (MCA)13] (see Figurel.2).

The miing and filtering processes of the unknown input sourcé€d, (j = 1.2,...,J)
may have dferent mathematical or physical models, depending on the specific applications
[77], [4]. Most linear BSS models in their simplest forms can be expresgmibmically as
some specific forms of matrix factorization: Given observation (often called sensor or input
data matrix)Y = [yi] = [y(1),...,¥(T)] € R'¥T perform the matrix factorization (see Figure

1.3(a):
@)

where A € R™ represents the unknown basis matrix or mixing matrix (depending on the appli-
cation),E € R™T is an unknown matrix representing errors or noisess [x;] = [x(1), X(2),

..., X(T)] € RT contains the corresponding latent (hidden) components that give the contribu-
tion of each basis vector, is the number of available sampléss the number of observations

andJ is the number of sources or components. In general, the number of source digmals
unknown and can be larger, equal or smaller than the number of observations. The above model

3 For some models, however, there is no guarantee that the estimated or extracted signals have exactly the same wave-
forms as the source signals, and then the requirements must be sometimes further relaxed to the extent that the extracted
waveforms are distorted (i.e., time delayed, filtered or convolved) versions of the primary source signals.
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NMF
(non-negativity
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(independency
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features)

Fig. 1.2 Four basic component analysis methods: Independent Component Analysis (ICA), Non-
negative Matrix Factorization (NMF), Sparse Component Analysis (SCA) and Morphological
Component Analysis (MCA).

can be written in an equivalent scalar (element-wise) form (see Fig8(k):

J J
Vo= Y@ Xp+e  or ¥ = )& xi(t) +e(). (1.2)
j=1 j=1

Usually, the latent components represent unknown source signals with specific statistical proper-
ties or temporal structures. The matrices usually have clear statistical properties and meanings.
For example, the rows of the matrk that represent sources or components should be statis-
tically independent for ICA, sparse for SCA{], [95], [70], [69], [72], nonnegative for NMF,

or have other specific and additional morphological properties such as sparsity, smoothness,
continuity, or orthogonality in GCAZ9], [13], [26].

In sone applications the mixing matri& is ill-conditioned or even singular. In such cases,
some special models and algorithms should be applied. Although some decompositions or ma-
trix factorizations provide an exact reconstruction of the data {f.es,AX), we shall consider
here factorizations which are approximative in nature. In fact, many problems in signal and
image processing can be solved in terms of matrix factorization. Howe¥keratit cost func-
tions and imposed constraints may lead tdéedtent types of matrix factorization. In many signal
processing applications the data matrix= [y(1), y(2)...,y(T)] € R'™T is represented by vec-
torsy(t) e R' (t = 1,2,...,T) for a set of discrete time instartss multiple measurements or
recordings. As mentioned above, the compact aggregated matrix equafipoahn be written
in a vector form as a system of linear equations (see Figu4éa), that is,

y(t) = A X(t) + e(t), (t=12,...,T), (1.3)

wherey(t) = [y1(t), y2(t), ...,y ()] " is a vector of the observed signals at the discrete time instant

t whereax(t) = [x1(t), X2(t), . .., x3(t)] " is a vector of unknown sources at the same time instant.
The problems formulated above are closely related to the concept of linear inverse problems or
more generally, to solving a large ill-conditioned system of linear equations (overdetermined or
underdetermined), where it is required to estimate vect(ijgalso in some cases to identify a
matrix A) from noisy data§7], [26], [32]. Physical systems are often contaminated by noise,
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(@

(b)

Fig. 1.3 Basic linear instantaneous BSS model: (a) Block diagram, (b) detailed model.

thus,our task is generally to find an optimal and robust solution in a noisy environment. Wide
classes of extrapolation, reconstruction, estimation, approximation, interpolation and inverse
problems can be converted into minimum norm problems of solving underdetermined systems
of linear equations1(.3) for J > | [87)], [26].* It is often assumed that only the sensor vectors
y(t) are available and we need to estimate parameters of the unmixing system online. This
enables us to perform indirect identification of the mixing mafri¢or | > J) by estimating the
separating matri¥v = A, where the symbol)’ denotes the Moore-Penrose pseudo-inverse
and simultaneously estimate the sources. In other words$, ¥od the original sources can be
estimated by the linear transformation

KM =Wyt), (t=12...T) (1.4)

Although many diferent BSS criteria and algorithms are available, most of them exploit various
diversitie$ or constraints imposed for estimated componentgandixing matrices such as
mutual independence, nonnegativity, sparsity, smoothness, predictability or lowest complexity.
More sophisticated or advanced approaches use combinations or integration of various diversi-

4Gererally speaking, in signal processing applications, an overdetermined J) system of linear equationd..Q)

descibes filtering, enhancement, deconvolution and identification problems, while the underdetermined case describes
inverse and extrapolation probleng2], [26].

5By diversities we mean usuallyfiierent morphological characteristics or features of the signals.
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Fig. 1.4 Blind source separation using unmixing (inverse) model: (a) block diagram, and(b)
detailed model.

ties, in order to separate or extract sources with various constraints, morphology, structures or
statistical properties and to reduce the influence of noise and undesirable interfee&hces [

All the above-mentioned BSS methods belong to a wide class of unsupervised learning al-
gorithms. Unsupervised learning algorithms try to discover a structure underlying a data set,
extract of meaningful features, and find useful representations of the given data. Since data can
always be interpreted in manyftérent ways, some knowledge is needed to determine which fea-
tures or properties best represent our true latent (hidden) components. For example, PCA finds a
low-dimensional representation of the data that captures most of its variance. On the other hand,
SCA tries to explain data as a mixture of sparse components (usually, in the time-frequency
domain), and NMF seeks to explain data by parts-based localized additive representations (with
nonnegativity constraints).

Generalized component analysis algorithms, i.e., a combination of ICA, SCA, NMF, and
MCA, are often considered as pure mathematical formulas, powerful, but rather mechanical
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procedures. There is an illusion that there is not very much left for the user to do after the ma-
chinery has been optimally implemented. However, the successfullacidra use of such tools
strongly depends oa priori knowledge, common sense, and appropriate use of the preprocess-
ing and postprocessing tools. In other words, it is the preprocessing of data and postprocessing
of models where expertise is truly needed in order to extract and identify physically significant
and meaningful hidden components.

1.2 MATRIX FACTORIZATION MODELS WITH NONNEGATIVITY AND
SPARSITY CONSTRAINTS

1.2.1 Why Nonnegativity and Sparsity Constraints?

Many real-world data are nonnegative and the correspondinghiclm@ponents have a phys-
ical meaning only when nonnegative. In practice, both nonnegative and sparse decompositions
of data are often either desirable or necessary when the underlying components have a physical
interpretation. For example, in image processing and computer vision, involved variables and
parameters may correspond to pixels, and nonnegative sparse decomposition is related to the ex-
traction of relevant parts from the imag&s], [94]. In computer vision and graphics, we often
encounter multi-dimensional data, such as images, video, and medical data, one type of which is
MRI (magnetic resonance imaging). A color image can be considered as 3D nonnegative data,
two of the dimensions (rows and columns) being spatial, and the third one being a color plane
(channel) depending on its color space, while a color video sequence can be considered as 4D
nonnegative data, time being the fourth dimension. A sparse representation of the data by a
limited number of components is an important research problem. In machine learning, sparse-
ness is closely related to feature selection and certain generalizations in learning algorithms,
while nonnegativity relates to probability distributions. In economics, variables and data such
as volume, price and many other factors are nonnegative and sparse. Sparseness constraints may
increase the effiency of a portfolio, while nonnegativity both increasé$céency and reduces
risk [143, [12d. In microeconomics, household expenditures ifiedtert commodityservice
groups are recorded as a relative proportion. In information retrieval, documents are usually
represented as relative frequencies of words in a prescribed vocabulary. In environmental sci-
ence, scientists investigate a relative proportion @edént pollutants in water or aid.]. In
biology, each coordinate axis may correspond to a specific gene and the sparseness is necessary
for finding local patterns hidden in data, whereas the nonnegativity is required to give physical
or physiological meaning. This is also important for the robustness of biological systems, where
any observed change in the expression level of a specific gene emerges from either positive or
negative influence, rather than a combination of both, which partly cancel each@th¢i #3.

Itis clear, however, that with constraints such as sparsity and nonnegativity some of the ex-
plained variance (FIT) may decrease. In other words, it is natural to seek a tidutvoeen
the two goals of interpretability (making sure that the estimated components have physical or
physiological sense and meaning) and statistical fidelity (explaining most of the variance of the
data, if the data are consistent and do not contain too much noise). Generally, compositional data
(i.e., positive sum of components or real vectors) are natural representations when the variables
(features) are essentially the probabilities of complementary and mutually exclusive events. Fur-
thermore, note that NMF is an additive model which does not allow subtraction; therefore it
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often quantitatively describes the parts that comprise the entire entity. In other words, NMF can

be considered as a part-based representation in which a zero-value represents the absence and a
positive number represents the presence of some event or component. Specifically, in the case of
facial image data, the additive or part-based nature of NMF has been shown to result in a basis
of facial features, such as eyes, nose, and B@k [Furthermore, matrix factorization methods

that exploit nonnegativity and sparsity constraints usually lead to estimation of the hidden com-
ponents with specific structures and physical interpretations, in contrast to other blind source
separation methods.

1.2.2 Basic NMF Model

NMF has been investigated by many researchers, e.g. Paaterggued [L13, but it has gained
popukrity through the works of Lee and Seung published in Nature and NIBJ P4]. Based
on theargument that the nonnegativity is important in human perception they proposed simple
algorithms (often called the Lee-Seung algorithms) for finding nonnegative representations of
nonnegative data and images.

The basic NMF problem can be stated as follows: Given a nonnegative data ¥hatiik*
(with yi; > 0 or equivalentlyy > 0) and a reduced rank(J < min(l, T)), find two nonnegative
matricesA = [a, &, ..., a;] € RY andX = BT = [by, by, ..., by]" € RXT which factorizeY
as well as possible, that is (see Figar8):

'Y =AX +E=ABT +E,

(1.5)

where the matrixE € R'*T represents approximation erforThe factorsA andX may have
different physical meanings inftBrent applications. In a BSS problei,plays the role of
mixing matrix, whileX expresses source signals. In clustering probléis,the basis matrix,
while X denotes the weight matrix. In acoustic analysigepresents the basis patterns, while
each row ofX expresses time points (positions) when sound patterns are activated.

In standard NMF we only assume nonnegativity of factor matrieesd X. Unlike blind
source separation methods based on independent component analysis (ICA), here we do not
assume that the sources are independent, although we will introduce other assumptions or con-
straints onA andor X later. Notice that this symmetry of assumptions leads to a symmetry in
the factorization: we could just as easily writé ~ XTAT | so the meaning of “source” and
“mixture” in NMF are often somewhat arbitrary.

The NMF model can also be represented as a special form of the bilinear model (see Figure

1.5:

J J
Y:Z;ajobj+E=Z;ajbjT+E, (1.6)
i= i=

where the symbodb denotes the outer product of two vectors. Thus, we can build an approximate
representation of the nonnegative data ma¥fias a sum of rank-one nonnegative matrices
a bjT. If such decomposition is exact (i.e&, = 0) then it is called the Nonnegative Rank

6Sinae we usually operate on column vectors of matrices (in order to avoid a complex or confused notation) it is often
convenient to use the matri = X7 instead of the matrixX.
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Factorization (NRF) b3]. Among the many possible series representations of data nyatrnx
nonnegative rank-one matrices, the smallest intelgiar which such a nonnegative rank-one
series representation is attained is called the nonnegative rank of the nonnegativeynaaidix
it is denoted by rank(Y). The nonnegative rank satisfies the following bourk}: [

rank(Y) < rank. (Y) < min{l, T}. a.7)

It should be noted that an NMF is not necessarily an NRF in the sense that the latter demands
the exact factorization whereas the former is usually only an approximation.
b/ b;

| a— |
. =H + : + +
a

1 a./

(IxT) (IxT)

Fig. 1.5 Bilinear NMF model. The nonnegative data matrix Y € R*T is approximately repre-
sented by a sum or linear combination of rank-one nonnegative matrices Y = ajob; = a; bjT e RIXT,

Although the NMF can be applied to BSS problems for nonnegative sources and nonnegative
mixing matrices, its application is not limited to BSS and it can be used in various and diverse
applications far beyond BSS (see Chaf@erin many applications we require additional con-
strants on the elements of matricésandor X, such as smoothness, sparsity, symmetry, and
orthogonality.

1.2.3 Symmetric NMF

In the special case whet= B € R*J the NMF is called a symmetric NMF, given by
Y =AAT +E. (1.8)

This model is also considered equivalent to Kernel K-means clustering and Laplace spectral
clustering pQ].

If the exact symmetric NMFE = 0) exists then a nonnegative mathixe R'*! is said to be
completely positive (CP) and the smallest number of columms efR!*? satisfying the exact
factorizationY = AAT is called the cp-rank of the matrik, denoted by rank(Y). If Y is CP,
then the upper bound estimate of the cp-rank is giverbBy [

rank(Y)(rank(Y) + 1) B
2

rankp(Y) < 1, (1.9

provided ranky) > 1.
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1.2.4 Semi-Orthogonal NMF
The semi-orthogonal NMF can be defined as
Y =AX +E=AB" +E, (1.10)

subject to nonnegativity constraings > 0 andX > 0 (component-wise) and an additional
orthogonality constraintATA = I3 or XXT =1 ;.

Probably the simplest and most ei@nt way to impose orthogonality onto the mathor X
is to perform the following transformation after each iteration

2

AA[ATA] T, or X [XXT| X (1.12)

]71/2

1.2.5 Semi-NMF and Nonnegative Factorization of Arbitrary Matrix

In some applications the observed input data are unsigned (uraioesl or bipolar) as indicated
byY =Y. € R™*T which allows us to relax the constraints regarding nonnegativity of one factor
(or only specific vectors of a matrix). This leads to approximative semi-NMF which can take
the following form

Y.=AX,+E,  of Y.=A.X,+E, (1.12)

where the subscript iA, indicates that a matrix is forced to be nonnegative.

In Chapted we discuss models and algorithms for approximative factoriaatio which the
matricesA andor X are restricted to contain nonnegative entries, but the data méatniray
have entries with mixed signs, thus extending the range of applications of NMF. Such a model
is often referred to as Nonnegative Factorization (Ng8],[[59].

1.2.6 Three-factor NMF

Three-factor NMF (also called the tri-NMF) can be considered gseaial case of the multi-
layer NMF and can take the following general forg2], [51]

Y = ASX +E, (1.13)

where nonnegativity constraints are imposed to all or only to the selected factor makiees:
R SeR>R andor X e RAT.

It should be noted that if we do not impose any additional constraints to the factors (besides
nonnegativity), the three-factor NMF can be reduced to the standard (two-factor) NMF by the
transformatiolA <« AS or X « SX. However, the three-factor NMF is not equivalent to
the standard NMF if we apply special constraints or conditions as illustrated by the following
special cases.

1.2.6.1 Orthogonal Three-Factor NMF Orthogonal three-factor NMF imposes additional
constaints upon the two matrice&TA = |; andXXT = I while the matrixS can be an
arbitrary unconstrained matrix (i.e., it has both positive and negative ent#s)$1].

For un-orthogonal three-factor NMF only one matri or X is orthogonal and all three
matrices are usually nonnegative.
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=S

(IXT) (IxJ)  (JxR) (RxT)

Fig. 1.6 Tlustration of three factor NMF (tri-NMF). The goal is to estimate two matrices A € R
and X € RR*Tassuming that the matrix Se R™>R is given, or to estimate all three factor matrices
A, S, X subject to additional constraints such as orthogonality or sparsity.

1.2.6.2 Non-Smooth NMF Non-smooth NMF (nsNMF) was proposed by Pascual-Montano
et al.[114] and is a special case of the three-factor NMF model in which theixn&tis fixed
and known, and is used for controlling the sparsity or smoothness of the fagmdor A.
Typically, the smoothing matri$ € R takes the form:

(C]
S:u_GHJ+jlkL (1.14)
wherel ; is Jx J identity matrix andl;. is the matrix of all ones. The scalar parameter® <
1 controls the smoothness of the matrix oper&dror® = 0, S = | 3, the model reduces to the
standard NMF and fo® — 1 strong smoothing is imposed & causing increased sparseness
of bothA andX in order to maintain the faithfulness of the model.

1.2.6.3 Filtering NMF  In many applications it is necessary to impose some kind of filterin
upon the rows of the matriX (representing source signals), e.g., lowpass filtering to perform
smoothing or highpass filtering in order to remove slowly changing trends from the estimated
components (source signals). In such cases we can define the filtering NMF as

Y = AXF +E, (1.15)

where F is a suitably designed (prescribed) filtering matrix. In the case of lowpass filtering, we
usually perform some kind of averaging in the sense that every samplexjgiseeplaced by

a weighted average of that value and the neighboring value, so that in the simplest scenario the
smoothing lowpass filtering matri can take the following form:

(1/2 13 0 0]

1/2 1/3 1/3 0
1/3 1/3 1/3

) ) e R™T, (1.16)

0 yé ué 1/2
0 0 1/3 1/2]

A standard way of performing highpass filtering is equivalent to an application of a first-order
differential operator, which means (in the simplest scenario) just replacing each sample value by
the diference between the value at that point and the value at the preceding point. For example,
a highpass filtering matrix can take following form (using the first order or second order discrete
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Y C U R
R IIII - III
C
(A% T) (IxC) (CxR) RxT)

Fig. 1.7 Tlustration of CUR decomposition. The objective is to select such rows and columns
of data matrix Y € R™T which provide the best approximation. The matrix U is usually the
pseudo-inverse of the matrix Z € RR*C, ie., U = Z'. For simplicity of graphical illustration, we
have assumed that the joint R rows and the joint C columns of the matrix Y are selected.

difference forms):

1-1 0 0]
-1 2-1 0
-1 2-1
F= o e R™T, (1.17)
0 -1 2-1
0 -1 1

Note that since the matri® in the nsNMF and the matrif in filtering NMF are known or
designed in advance, almost all the algorithms known for the standard NMF can be straight-
forwardly extended to the nsNMF and Filtering NMF, for example, by defining new matrices

A = AS, X 2 SX, orX = XF, respectively.

1.2.6.4 CGR/CUR Decomposition Inthe CGR, also recently called CUR decomposition, a
givendata matrixy € R'*T is decomposed as follows]], [60], [55], [101], [100:

Y =CUR +E, (1.18)

where C € R™C is a matrix constructed froi@ selected columns of, R € R®T consists oR
rows ofY and matrixU € R®*R is chosen to minimize the errére R'*T. The matrixU is often
the pseudo-inverse of a matixe R®C, i.e.,U = Z7, which is defined by the intersections of
the selected rows and columns (see Figui. Alternatively, we can compute a core matiix
asU = CTYRT, but in this case knowledge of the whole data maifiis necessary.

Since typicallyC << T andR << I, our challenge is to find a matrl¥ and select rows and
columns ofY so that for the fixed number of columns and rows the error cost funkl:Emﬁ is
minimized. It was proved by Goreinat al.[60] that for R = C the fdlowing bounds can be
theoretically achieved:

[IY = CUR[Imax < (R+ 1) ors1, (1.19)
IY -=CURJr < 1+ R(T - R) ors1, (1.20)

where||Y|lmax = maX{|yit|} denotes max norm ang is ther-th singular value of .

A
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Without loss of generality, let us assume that the @rsblumns and the firdR rows of the
matrix Y are selected so the matrix is partitioned as follows:

Y11 Y2 IxT
Y = eR™, and C=
[YZI Yzz]

YﬂeRNZ R=[Yu Y15| e R?T, (1.21)
Y21

then the following bound is obtained [p1

IY = CYLRIE < 7R 0Re1, (1.22)

whereyg = min{\/(1+ Y 20Y1,112), \/(1+ ||YLY12||§)}. This formula allows us to identify

optimal columns and rows in sequential mannei [22 fact, there are several strategies for the
seledion of suitable columns and rows. The main principle is to select columns and rows that
exhibit high “statistical leverage” and provide the best low-rank fit of the data mé&@jx[[55].

In thespecial case, assuming th#R = X, we have CX decomposition:

Y =CX +E. (1.23)

TheCX and CUR (CGR) decompositions are low-rank matrix decompositions that are explicitly
expressed in terms of a small number of actual columngmaadtual rows of the data matrix and

they have recently received increasing attention in the data analysis community, especially for
nonnegative data due to many potential applicati60s45, 100, 101]. The CUR decomposition

has anadvantage that components (factor matriCeandR) are directly obtained from rows

and columns of data matriX, preserving desired properties such as nonnegativity or sparsity.
Because they are constructed from actual data elements, CUR decomposition is often more
easily interpretable by practitioners of the field from which the data are drawn (to the extent that
the original data points apal features are interpretablé)]qd.

1.2.7 NMF with Offset (Affine NMF)

In NMF with offset @so called affie NMF, aNMF), our goal is to remove the base line or DC
bias from the matrix/ by using a slightly modified NMF model:

Y = AX +aol” +E, (1.24)

where 1 € RT is a vector of all ones andy € RL is a vector which is selected in such a way
that the matrixX is zero-grounded, that is, with a possibly large number of zero entries in each
row (or for noisy data close to zero entries). The t&fgn= ap1" denotes fiset, which together

with nonnegativity constraint often ensures the sparseness of factored matrices. The main role
of the dfset is to absorb the constant values of a data matrix, thereby making the factorization
sparser and therefore improving (relaxing) conditions for the uniqueness of NMF (see next sec-
tions). ChapteB will demonstrates the afie NMF with multiplicative algorithms. However,

in practice, the fisets are not the same and perfectly constant in all data sources. For image
data, due to illumination flicker, the intensities dfset regions vary between imagesttiAe

NMF with the model {.24) fails to decompose such data. The Block-Oriented Decomposition
(BOD1) model presented in sectioh.%.9 will help us resolving this problem.
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1.2.8 Multi-layer NMF

In multi-layer NMF the basic matriA is redaced by a set of cascaded (factor) matrices. Thus,
the model can be described as (see Fiduég

Y = AWA@ ... AUX 4 E.| (1.25)

Since the model is linear, all the matrices can be merged into a single n#aifixo special
constraints are imposed upon the individual matriéés (I = 1,2,...,L). However, multi-

layer NMF can be used to considerably improve the performance of standard NMF algorithms
due to distributed structure and alleviating the problem of local minima.

Fig. 1.8 Multilayer NMF model. In this model the global factor matrix A = AWA®@ ... AL has
distributed representation in which each matrix A can be sparse.

To improve the performance of the NMF algorithms (especially for ill-conditioned and badly-
scaled data) and to reduce the risk of converging to local minima of a cost function due to non-
convex alternating minimization, we have developed a simple hierarchical multi-stage procedure
[39], [39], [27], [37] combined with a multi-start initialization, in which we perforarsequen-
tial decomposition of nonnegative matrices as follows. In the first step, we perform the basic
approximate decomposition = AWX® e R*T using any available NMF algorithm. In the
second stage, the results obtained from the first stage are used to build up a new input data matrix
Y « XM, thatis, in the next step, we perform a similar decomposigh= A@X® ¢ R*T,
using the same or ferent update rules. We continue our decomposition taking into account
only the last obtained components. The process can be repeated for an arbitrary number of
times until some stopping criteria are satisfied. Thus, our multi-layer NMF model has the form:

Y = AOA@ ... ALXD), (1.26)

with the final resultsh = AMA@ ... AL andX = XU, Physically, this means that we build up

a distributed system that has many layers or cascade connectibmiging subsystems. The

key point in this approach is that the learning (update) process to find parameters of matrices
XD andAO, (I = 1,2,...,L) is performed sequentially, layer-by-layer, where each layer is
randomly initialized with diferent initial conditions. We have found that the hierarchical multi-
layer approach can improve performance of most NMF algorithms discussed in this3#hok [

[27], [38].

1.2.9 Simultaneous NMF

In simultaneous NMF (siNMF) we have available two or more linkgulii data matrices (say,
Y, andY) and the objective is to decompose them into nonnegative factor matrices in such
a way that one of a factor matrix is common, for example, (which is a special form of the



16 A. CICHOCKI, R. ZDUNEK, A.H. PHAN, S. AMARI

() (b)

Fig. 1.9 (a) Hlustration of Projective NMF (typically, A = B = W) and (b) Convex NMF.

Nonngyative Tensor Factorization NTF2 model presented in Sedtiom),

Y]_ = A]_X + E]_,
Yo = AX + Ea. (12D

Such a problem arises, for example, in bio-informatics if we combine gene expression and tran-
scription factor regulationg]. In this application the data matrix; € R'"™T is theexpression

level of genet in a data samplée (i.e., the index; denotes samples, whitestands for genes)
andY, € R">*T is a transcription matrix (which is 1 whenever transcription fagtoegulates
genet).

1.2.10 Projective and Convex NMF

A projective NMF model can be formulated as the estimation ofsspand nonnegative matrix
W e R, 1 > J, which satisfies the matrix equation

Y =WW'TY +E. (1.28)

In a more general nonsymmetric form the projective NMF involves estimation of two nonnega-
tive matricesA € R andB e R'*? in the model (see Figure.9(a):

Y =ABTY +E. (1.29)
This may lead to the following optimization problem:

min||Y — ABTY|Z, st.A>0 B>0. (1.30)

The projective NMF is similar to the subspace PCA. However, it involves nonnegativity con-
straints.

In the convex NMF proposed by Ding, Li and Jordan][™e assume that the basis vectors
A = [a, a,...,ay] are constrained to be convex combinations of the data input m¥Ateix
[V1, Yo, ..., Y7]. In other words, we require that the vectardie within the column space of the
data matrixy, i.e.:

:
aj= ) wyy =Yw; or  A=YW, (1.31)
t=1
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where W € RT*) andX = BT € R*T. Usually each column iW satisfies the sum-to-one
constraint, i.e., they are unit length in terms of thenorm. We restrict ourselves to convex
combinations of the columns &f. The convex NMF model can be written in the matrix form

as
Y = YWX +E (1.32)
and we can apply the transpose operator to give
YT =XTWTyT 4+ ET. (1.33)

This illustrates that the convex NMF can be represented in a similar way to the projective NMF
(see Figurel.9(b). The convex NMF usually implies that both nonnegative factvrand
B = XT tend to be very sparse.

The standard cost function (squared Euclidean distance) can be expressed as

J

Y -YWBT|Z =tr( —-BWH)YTY (I —WBT) = Z*i v (1 -WBT) I3, (1.34)

=1

whereJ; is the positivej-th eigenvalue (a diagonal entry of diagonal matkixandv; is the
corresponding eigenvector for the eigenvalue decomposMoN: = VAVT = Zle A,—vjva.
This form of NMF can also be considered as a special form of the kernel NMF with a linear
kernel defined a& = YTY.
1.2.11 Kernel NMF

The convex NMF leads to a natural extension of the kernel NMF, [®1], [119. Consider
amapingy, — ¢(y,) orY — &(Y) = [¢(Yo), (Vo). - - ., ¢(y7)], then the kernel NMF can be
defined as

oY) =p(Y)WBT. (1.35)
This leads to the minimization of the cost function:
oY) — (Y)W BT|2 = tr(K) — 2tr(B" K W) + tr(W'" K W BTB), (1.36)

which depends only on the kerri€l= ¢"(Y)a(Y).

1.2.12 Convolutive NMF

The Convolutive NMF (CNMF) is a natural extension and generatinaif the standard NMF.
In the Convolutive NMF, we process a set of nonnegative matrices or patterns which are hori-
zontally shifted (or time delayed) versions of the primary ma¥ikl25. In the simplest form

7In general, the convex NMF applies to both nonnegative data and mixed sign data which can be written symbolically
asY. =Y.W, X, +E.
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Fig. 1.10 Tllustration of Convolutive NMF. The goal is to estimate the input sources represented
by nonnegative matrix X € R>T (typically, T >> |) and to identify the convoluting system, i.e., to
estimate a set of nonnegative matrices {Ag,A1,...,Ap_1} (Ap € RY, p=0,1,...,P-1) knowing
only the input data matrix Y € R™T. Each operator Sp = T; (p = 1,2,...,P — 1) performs a
horizontal shift of the columns in X by one spot.

the CNMF can be described as (see Figlifi€)

T

4l
p—

Y =) ApX +E, (1.37)

0

=]
I

whereY € RXT is a given input data matri¥, € R* is a set of unknown nonnegative basis
0— ps
matricesX = X e R>T is a matrix representing primary sources or patteMiss a shifted by

p—
p columns version oK. In other words, X means that the columns ¥fare shifted to the right
p spots (columns), while the entries in the columns shifted into the matrix from the outside are
set to zero. This shift (time-delay) is performed by a basic operator illustrated in Hidifras

p
Sp = T1. Analogously, Y means that the columns &f are shifted to the lefp spots. These

notations will also be used for the shift operations of other matrices throughout this book (see
0— «~0
Chapter3 for more detail). Note thatX = X = X.

The shift operator is illustrated by the following example:

2>
9 x =

123] 1 [012
x=[456]’ X=[o45 = :

001} <4

230
004

560

In the Convolutive NMF model, temporal continuity exhibited by many audio signals can be
expressed moreflgciently in the time-frequency domain, especially for signals whose frequen-
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(@

(b)

Fig. 1.11 (a) Block diagram schema for overlapping NMF, (b) Extended Multi-layer NMF model.

ciesvary with time. We will present severalfieient and extensively tested algorithms for the
CNMF model in ChapteB.

1.2.13 Overlapping NMF

In Convolutive NMF we perform horizontal shift of the columns o tlnatrixX. In some ap-
plications, such as in spectrogram decomposition, we need to perfieredi transformations

by shift vertically the rows of the matriX. For example, the observed data may be represented
by a linear combination of horizontal bars or features and modeled by transposing the CNMF
model (.37 as

P P P
2P
Y ) (X)TAY =) (XTp) AL = > TEXTAL (1.38)
p=0 p=0 p=0

—p <p
whereTp 2 T, is the horizontal-shift matrix operator such that= XTp and X = XTp. For
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example, for the fourth-order identity matrix this operator can take the following form

0100 0010 0000
0010 0001 1000
Ti=lo001]" T2=T1T1=lp000|" "t=|0100/|
0000 0000 0010

Transposing the horizontal shift operalay := T, gives us the vertical shift operatdr, = T},
andT, = T}, in fact, we havel 1, = Tp andT p = Tp.

Itis interesting to note that by interchanging the role of matrk@sdX, that is,A £ X and

Xp = Ap, we obtain the overlapping NMF introduced by Eggsiral. [S6] and investigated by
Choiet al. [81], which can be described as (see Figl1(a)

P
YEZTWWQ (1.39)
p=0

Figure 1.11(b)illustrates the extended multi-layer overlapping NMF (by angloghe stan-
dard multi-layer NMF in order to improve the performance of the overlapping NMF). The over-
lapping NMF model can be considered as a modification or variation of the CNMF model, where
transform-invariant representations and sparseness constraints are incorpdlaféd][

1.3 BASIC APPROACHES TO ESTIMATE PARAMETERS OF STANDARD
NMF

In order to estimate factor matricés and X in the standard NMF, we need to consider the
similarity measure to quantify a f#iérence between the data mat¥ixand the approximative

NMF model matrixY = AX. The choice of the similarity measure (also referred to as distance,
divergence or measure of dissimilarity) mostly depends on the probability distribution of the
estimated signals or components and on the structure of data or a distribution of noise. The
simplest and most often used measure is based on Frobenius norm:

1
De(YIAX) = SIIY - AX]IZ, (1.40)

which is also referred to as the squared Euclidean distance. It should be noted that the above
cost function is convex with respect to either the elements of the matoixthe matrixX, but

not both® Alternating minimization of such a cost leads to the ALS (Alteimgit_east Squares)
algorithm which can be described as follows:

1. Initialize A randomly or by using a specific deterministic strategy.

8Although the NMF optimization problem is not convex, the objective functions are separately convex in each of the
two factorsA andX, which implies that finding the optimal factor matxcorresponding to a fixed matrx reduces

to a convex optimization problem and vice versa. However, the convexity is lost as soon as we try to optimize factor
matrices simultaneoushb9].
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2. EstimateX from the matrix equatioA” AX = ATY by solving
. 1 .
min De(Y[|AX) = E||Y — AX|I, with fixed  A. (1.41)

3. Set all the negative elementsXto zero or some small positive value.

4. EstimateA from the matrix equatioXX AT = XY T by solving
. 1 —
min D (Y[|AX) = 5||YT -XTATIZ,  withfixed  X. (1.42)

5. Set all negative elements Afto zero or some small positive valge

The above ALS algorithm can be written in the following fofm:

X « max{s, (ATA)'ATY} = [ATY]., (1.43)

A — max{e, YXT(XXT)?} = [YX]., (1.44)

whereA™ is the Moore-Penrose inverse Af ¢ is a small constant (typically, 13%) to enforce
positive entries. Various additional constraints®oandX can be imposed.

Today the ALS method is considered as a basic “workhorse” approach, however it is not
guaranteed to converge to a global minimum nor even a stationary point, but only to a solution
where the cost functions cease to decre®& [11]. Moreover, it is often not sticienty
accurate. The ALS method can be dramatically improved and its computational complexity
reduced as it will be shown in Chaptér

It is interesting to note that the NMF problem can be considered as a natural extension of
a Nonnegative Least Squares (NLS) problem formulated as the following optimization prob-
lem: given a matrixA € R and a set of observed values given by the vegtarR', find a
nonnegative vectax € RY which minimizes the cost functiod(x) = %Hy— Ax||§, i.e.,

1 5
min Slly - A Xz, (1.45)

subject tox > 0. There is a large volume of literature devoted to the NLS problems which will
be exploited and adopted in this book.

Another frequently used cost function for NMF is the generalized Kullback-Leibler diver-
gence (also called the I-divergence)[94

D18 = 3 (e 10 -+ A1) (1.40

Most existing approaches minimize only one kind of cost function by alternately switching
between sets of parameters. In this book we adopt a more general and flexible approach in
which instead of one cost function we rather exploit two or more cost functions (with the same

9Notethat the max operator is applied element-wise, that is, each element of a matrix is compared with scalar parameter
E.
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global minima); one of them is minimized with respect&cand the other one with respect to
X. Such an approach is fully justified &sandX may have dierent distributions or dlierent
statistical properties and thereforéfdient cost functions can be optimal for them.

Algorithm 1.1: Mul ti-layer NMF using alternating minimization of two cost functions

Input: Y € RT: input data,J: rank of approximation
Output: A € R andX € RT suchthat some given cost functions are minimized.

1 begin

2 X=Y, A=

3 forl =1toL do

4 Initialize randomlyA ) andX, a

5 repeat

6 A(l) =arg min{Dl (X I A(I)X(I))} for f|XedX(|)
Ap=0

- Xqy = arg min{Dz (X || AgyX(y)} for fixed A,
X)=0

8 until a stopping criterion is met /* convergence condition */

9 X = X(|)

10 A — AA)

11 end

12 end

2 Instead of random initialization, we can use ALS or SVD based initialization, see Sdc8dh

Algorithm 1.1lillustrates such a case, where the cost functid(¥ ||AX) and D,(Y [JAX) can
take various forms, e.g.: I-divergence and Euclidean distat@e[B5] (see Chapte).

We cangeneralize this concept by using not one or two cost functions but rather a set of
cost functions to be minimized sequentially or simultaneously. Act [&, a1, ...,a;] and
B = XT =[by, by,..., b;], we can express the squared Euclidean cost function as

1
(a1, 2, ..., a3, by, by, ba) = JIY - ABT|12

J

1

= I = bl (1.47)
=1

An underlying idea is to define a residual (rank-one approximated) matrix (see Chdpter
more cktail and explanation)

YO 2y - Z aphy (1.48)
p#]

and alternately minimize the set of cost functions with respect to the unknown varéghitgs
DY(a) = SIYD - abfIE,  forafixedd, (1.49a)

. 1 . ]
DY(b) = §|IY“) —a; b"|2, forafixeda;, (1.49b)

forj=1,2,...,Jsubjecttoa> 0andb > O, respectively.
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Y A X
T T
T _(x] I J
I = T
T
(IxT) IxJ) J*x1)

Fig. 1.12  Conceptual illustration of block-wise data processing for large-scale NMF. Instead of
processing the whole matrix Y € R™T, we can process much smaller block matrices Y. € R™*€ and
Y, € R™T and corresponding factor matrices X, € R™C and A, € R®J with C << T and R<< I.
For simplicity of graphical illustration, we have assumed that the first R rows and the first C
columns of the matrices Y, A and X are selected.

1.3.1 Large-Scale NMF

In many applications, especially in dimension reduction apiitioa the data matri¥ e R'*T
can be very large (with millions of entries), but it can be approximately factorized using a rather
smaller number of nonnegative componeds that is,J << | andJ << T. Then the problem
Y ~ AX becomes highly redundant and we do not need to use information about all entries of
Y in order to estimate precisely the factor matriges R’ andX € R¥*T. In other words, to
solve the large-scale NMF problem we do not need to know the whole data matrix but only a
small random part of it. As we will show later, such an approach can outperform considerably
the standard NMF methods, especially for extremely overdetermined systems.

In this approach, instead of performing large-scale factorization

Y = AX +E,
we can consider a two set of linked factorizations using much smaller matrices, given by

Y, = AAX+E,, for fixed (known) Ar, (1.50)
Y: = AX¢ + Eg, for fixed (known) X, (1.51)

whereY, € R¥®T andY. € RC are the matrices constructed from the selected rows and
columns of the matrixy, respectively. Analogously, we can construct the reduced matrices:
A; € RRJ andX. € R¥C by using the same indices for the columns and rows as those used
for the construction of the data sub-matridésandY,. In practice, it is usually dticient to
chooseld < R<4JandJ < C < 4J.

In the special case, for the squared Euclidean distance (Frobenius norm), instead of alter-
nately minimizing the cost function

1
De(Y Il AX) = S1IY — AXIIE, (152)
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we can minimize sequentially the two cost functions:
1 .
De(Y: | AlX) = §||Yr - AX|2, forfixed A, (1.53)
1 .
De(Ye | AX,) = 5||Yc—Axc||§, for fixed X (1.54)

The minimization of these cost functions with respeciXt@nd A, subject to nonnegativity
constraints, leads to the simple ALS update formulas for the large-scale NMF:

X [AlY ] =[ATA)IAY ], . A YeXE], = [YXEXXD) T, .| (1.55)

A similar strategy can be applied for other cost functions and details will be given in Ct&apter
and Chapte4.

Thereare several strategies to choose the columns and rows of the input data matrix [
[10Q,[22],[66], [67]. The simplest scenario is to choose the fiksbws and the firstC columns
of the data matrixy (see Figurd..12) or select them randomly using a uniform distribution. An
optional strategy is to select randomly rows and columns from the set of all rows and columns
with probability proportional to their relevance, e.g., with probability proportional to square of
Euclideant,-norm of rows and columns, i.dlying and ||yt||§, respectively. Another heuristic
option is to choose those rows and columns that provide the lahgesirm. For noisy data with
uncorrelated noise, we can construct new columns and rows as a local average (mean values)
of some specific numbers of the columns and rows of raw data. For example, the first selected
column is created as an average of the filstolumns, the second column is an average of the
nextM columns, and so on; the same procedure applies for rows. Another strategy is to select
optimal rows and columns using optimal CUR decompositish. [

1.3.2 Non-uniqueness of NMF and Techniques to Alleviate the Ambiguity
Problem

Usually, we perform NMF using the alternating minimization scheisee Algorithml.1) of

a set gven objective functions. However, in general, such minimization does not guarantee
a unique solution (neglecting unavoidable scaling and permutation ambiguities). Even the
guadratic function with respect to both sets of arguméatsand {X} may have many local
minima, which makes NMF algorithms #&r from rotational indeterminacy (ambiguity). For
example, consider the quadratic function:

De(Y[IAX) = [[Y = AX||Z = [[Y - ART'RX||Z = |IY - AX|1Z. (1.56)

There are many ways to select a rotational ma®iwhich is not necessarily nonnegative or
not necessarily a generalized permutation maftso that the transformed (rotatef}+ A and

X # X arenonnegative. Here, it is important to note that the inverse of a nonnegative matrix
is nonnegative if and only if it is a generalized permutation mattid. If we assume that

R > 0 andR™! > 0 (element-wise) which are ficient conditions for the nonnegativity of the
transform matrice&R ! andRX, thenR must be a generalized permutation (also called mono-

19Genealized permutation matrix is a matrix with only one nonzero positive element in each row and each column.
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mial) matrix, i.e.,R can be expressed as a product of a nonsingular positive definite diagonal
matrix and a permutation matrix. It is intuitively easy to understand that if the original matrices
X andA are stificiently sparse only a generalized permutation maix R can satisfy the
nonnegativity constraints of any transform matrices and NMF is unique.

To illustrate rotational indeterminacy consider the following mixing and source matrices:

A= [3 g] X= [28 ’ (1.57)
which give the output
_Iyn®]_ | 3xa(t) + 2xo(t)
v y;(t)] = AX = 7xi(t) + 2x;(t) : (1.58)

It is clear that there exists another nonnegative decomposition which gives us the following
components:

3 +2%(t) | e |01 Xq(t)
i [7xi(t) + 2x§(t)} =AX= [4 1] [3X1(t)l+ 2%a(t) ] (1.59)
where
X 01 o X (t)
" [4 1}’ = [3xl(t>l+ 2xZ(t>} (1.60)

are new nonnegative components which do not come from the permutation or scaling indeter-
minacies.

However, incorporating some sparsity or smoothness measures to the objective function is
suficient to solve the NMF problem uniquely (up to unavoidable scale and permutation indeter-
minacies). The issues related to sparsity measures for NMF have been widely discugsed [76
[54], [73, [36], [39], [144, and are addressed in almost all chapters in this book.

Whenno prior information is available, we should perform normalization of the columAs in
andor the rows inX to help mitigate the edicts of rotation indeterminacies. Such normalization
is usually performed by scaling the columemsof A = [ay, ..., aj] as follows:

A — AD,,  where Da =diag(lall llaall .. llallyh).  pef0,0).  (1.61)

Heuristics based on extensive experimentations show that best results can be obtgined for
i.e., when the columns & are normalized to unif;-norm. This may be justified by the fact
that the mixing matrix should contain only a few dominant entries in each column, which is
emphasized by the normalization to the uhihorms!! The normalization.61) for the alter-
nating minimization scheme (Algorithrh.1) helps to alleviate many numericafidculties, like
numerical instabilities or ill-conditioning, however, it makes searching for the global minimum
more complicated.

Moreover, to avoid rotational ambiguity of NMF, the rows Xfshould be sparse or zero-
grounded. To achieve this we may apply some preprocessing, sparsification, or filtering of the

11In the case when the columns Afand rows ofX are both normalized, the standard NMF modet AX is converted
to a three-factor NMF mod&f ~ ADX, whereD = DaDx is a diagonal scaling matrix.
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input data. For example, we may remove the baseline from the inputvdataapplying the
affine NMF instead of the regular NMF, that is,

Y = AX + apl] +E, (1.62)

whereay € R!, is a vector selected in such a way that the unbiased m#étsxy — aplT € R\XT
has many zeros or close to zero entries (see Ch8jteralgorithms).

In summary, in order to obtain a unique NMF solution (neglecting unavoidable permutation
and scaling indeterminacies), we need to enforce at least one of the following techniques:

1. Normalize or filter the input datd, especially by applying thefltne NMF model 1.62),
in order to make the factorized matrices zero-grounded.

2. Normalize the columns & andor the rows ofX to unit length.

3. Impose sparsity ayiok smoothness constraints to the factorized matrices.

1.3.3 Initialization of NMF

The solution and convergence provided by NMF algorithms usuadliglyr depends on initial
conditions, i.e., its starting guess values, especially in a multivariate context. Thus, it is impor-
tant to have efient and consistent ways for initializing matricgsandor X. In other words,
the dficiency of many NMF strategies is afited by the selection of the starting matrices. Poor
initializations often result in slow convergence, and in certain instances may lead even to an
incorrect or irrelevant solution. The problem of selecting appropriate starting initialization ma-
trices becomes even more complicated for large-scale NMF problems and when certain struc-
tures or constraints are imposed on the factorized matrices involved. As a good initialization
for one data set may be poor for another data set, to evaluatdittierecy of an initialization
strategy and the algorithm we should perform uncertainty analysis such as Monte Carlo simula-
tions. Initialization in NMF plays a key role since the objective function to be minimized may
have many local minima, and the intrinsic alternating minimization in NMF is nonconvex, even
though the objective function is strictly convex with respect to one set of variables. For example,
the quadratic function:

De(Y[IAX) = [IY — AX||2

is strictly convexin one set of variables, eittieor X, but not in both. The issues of initialization
in NMF have been widely discussed in the literati8g [82], [92], [14].
As a ule of thumb, we can obtain a robust initialization using the following steps:

1. First, we built up a search method for generaRigitial matricesA andX. This could be
based on random starts or the output from a simple ALS NMF algorithm. The parameter
R depends on the number of required iterations (typically, 10-20ffc&nt).

2. Run a specific NMF algorithm for each set of initial matrices and with a fixed but small
number of iterations (typically, 10-20). As a result, the NMF algorithm proviRlgstial
estimates of the matricés” andX®.

3. Select the estimates (denotedAfm~) and X)) corresponding to the lowest value of
the cost function (the best likelihood) among tRerials as initial values for the final
factorization.
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Algorithm 1.2: Multi-start initialization
Input: Y € RT: input data,
J: rank of approximation R: number of restarts,
Kinit, Kfin: Nnumber of alternating steps for initialization and completion
Output: A € R andX € R>T sud that a given cost function is minimized.

begin
parfor r = 1to Rdo /* process in parallel mode */
Initialize randomlyA© or X©)
{AD), X0} — nmf_algorithm(Y, A©, X©, Kii)
dr = D(YJADOX®0) /* compute the cost value */
endfor
Imin = argminy<r<r dr
{A, X} « nmf_algorithm(y, ATmn) X Tmn) K ;)
end

© 00 N O g b~ W N P

In other words, the main idea is to find good initial estimates (“candidates”) with the following
multi-start initialization algorithm:

Thus, the multi-start initialization selects the initial estimatesAoand X which give the
steepest decrease in the assumed objective fund(gHiAX) via alternating steps. Usually, we
choose the generalized Kullback-Leibler divergebgg (Y ||AX) for checking the convergence
results afterKi,;; initial alternating steps. The initial estimaté$? and X© which give the
lowest values oDk (Y]|AX) after Kini; alternating steps are expected to be the most suitable
candidates for continuing the alternating minimization. In practiceKfar> 10, the algorithm
works quite diciently.

Throughoutthis book, we shall explore various alternative methods fofiibeat initializa-
tion of the iterative NMF algorithms and provide supporting pseudo-source codes and MATLAB
codes; for example, we use extensively the ALS-based initialization technique as illustrated by
the following MATLAB code:

Listing 1.1 Basic initializations for NMF algorithms.

function [A'i nit,Xinit] = NMFinitialization(Y,J,inittype)
% Y : nonnegative matrix

% J : number of components

% inittype 1 {random}, 2 {ALS}, 3 {SVD}
[ILT] = size(Y);

Ainit = rand(l,J);
Xinit = rand(J,T);

© ©® N ® O b~ W N P

switch in i ttype
case 2 % AS
Ainit = max(eps,(Y *Xinit)  *pinv(Xinit * Xinit'));
Xin i t = max(eps,pinv(Ainit' *Ainit)  * (Ainit'  *Y));
case 3 %S/D
[Ai nit,Xinit] = IsvNMF(Y,J);

S
2 w N P O

end
Ainit = Ainit * bs xfun(@rdivide,Ainit,sum(Ainit));
end

PR e
~ o o
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1.3.4 Stopping Criteria
There are several possible stopping criteria for the iteratiyerahms used in NMF:

e The cost function achieves a zero-value or a value below a given thresHotdexample,
5 50112
DX [ Y®) Y - YO|Z <&. (1.63)

e There is little or no improvement between successive iterations in the minimization of a
cost function, for example,

DEDY D || Y0y = |90 — {((k+l)||i <e, (1.64)
or

|Dg<) _ DE:|<—1)||

<e. (1.65)
K]

e There is little or no change in the updates for factor matricesdX.

e The number of iterations achieves or exceeds a predefined maximum number of iterations.

In practice, the iterations usually continue until some combinations of stopping conditions are
satisfied. Some more advanced stopping criteria are discussed in Chapter

1.4 TENSOR PROPERTIES AND BASIS OF TENSOR ALGEBRA

Matrix factorization models discussed in the previous sect@amsbe naturally extended and
generalized to multi-way arrays, also called multi-dimensional matrices or simply tensor de-
compositiong?

1.4.1 Tensors (Multi-way Arrays) — Preliminaries

A tensor is a multi-way array or multi-dimensional matrix. Theerdf a tensor is the number
of dimensions, also known as ways or modes. Tensor can be formally defined as

Definition 1.1 (Tensor) Let I3, 15,...,In € N denote index upper bounds. A tensore
RI¥I2<xIn of order N is an N-way array where elements,y;, are indexed byie {1,2, ..., 1n}
forl<n<N.

Tensors are obviously generalizations of vectors and matrixes, for example, a third-order tensor
(or three-way array) has three modes (or indices or dimensions) as shown in Eigj8reA
zero-order tensor is a scalar, a first-order tensor is a vector, a second-order tensor is a matrix,
and tensors of order three and higher are called higher-order tensors (seelEldure

12The notion of tensors used in this book should not be confused with field tensors used in physicsfensahtiil
geometry, which are generally referred to as tensor fields (i.e., tensor-valued functions on manifolds) in mathematics
[85]. Examples include, stress tensor, moment-of inertia tensost&n tensor, metric tensor, curvature tensor, Ricci
tensor.
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Y

Mode-3

Mode-1

Mode-2

Fig. 1.13 A three-way array (third-order tensor) Y € R™®® with elements Yiq.

Generally, tensors are denoted by an underlined capital boldface letter¥, e. /2>,
In contrast, matrices are denoted by boldface capital letters, ¥, giectors are denoted by
boldface lowercase letters, e.g., columns of the matrby a; and scalars are denoted by low-
ercase letters, e.gs;j. Thei-th entry of a vector is denoted byg;, and the , j)-th element
of a matrixA by a;j. Analogously, the element, ¢, q) of a third-order tenso¥ € R™*™Q s
denoted byiq. The values of indices are typically ranging from 1 to their capital version, e.g.,
i=12...,1;t=12...,T;9q=1,2,...,Q.

1.4.2 Subarrays, Tubes and Slices

Subtensors or subarrays are formed when a subset of the inditesds For matrices, these

are the rows and columns. A colon is used to indicate all elements of a mode in the style of
MATLAB. Thus, the j-th column of a matri¥A = [ay, ay, ..., a;] is formally denoted bya. j;
likewise, thej-th row of X is denoted b)gj = Xj..

Definition 1.2 (Tensor Fiber) A ten®r fiber is a one-dimensional fragment of a tensor, ob-
tained by fixing all indices except for one.

A matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber. Third-order tensors have
column, row, and tube fibers, denotedyoy,, y;. 4, andy;; ., respectively (see Figude15). Note
that fbers are always assumed to be oriented as column ve8g&jrs [

Definition 1.3 (Tensor Slice)A ten®r slice is a two-dimensional section (fragment) of a tensor,
obtained by fixing all indices except for two indices.

Figure1.16shows the horizontal, lateral, and frontal slices of a third-otelesorY € R'*TQ,
deroted respectively byY;.., Y.;. andY..q (see also Figurd.17). Two special subarrays
have nore compact representations: ti¢h column of matrixA, a.j, may also be denoted
as aj, whereas thel-th frontal slice of a third-order tensoy,..q may also be denoted &§;,

(9=1,2,....,Q).

1.4.3 Unfolding — Matricization

Itis often very convenientto represent tensors as matricegeptesent multi-way relationships
and a tensor decomposition in their matrix forms. Unfolding, also known as matricization or
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1
Scalar 1T} v.ER
1 T

=
1 _YIER

1-way
(Vectors)
|

yeR™ 4-way

S-way

3-way 3
(3" order eR
Tensor)I

Fig. 1.14 Tllustration of multi-way data: zero-way tensor = scalar, 1-way tensor = row or column
vector, 2-way tensor = matrix, N-way tensor = higher-order tensors. The 4-way and 5-way tensors
are represented here as a set of the three-way tensors.

flattening, is a process of reordering the elements &-@h order tensor into a matrix. There are
various ways to order the fibers of tensors, therefore, the unfolding process is not unique. Since
the concept is easy to understand by examples, Figui@sl.19and1.20illustrate the various
unfalding processes of a three-way array. For example, for a third-order tensor we can arrange
frontal, horizontal and lateral slices in row-wise and column-wise ways. Generally speaking,
the unfolding of arN-th order tensor can be understood as the process of the construction of a
matrix containing all the mode-~ectors of the tensor. The order of the columns is not unique
and in this book it is chosen in accordance with][88d based on the following definition:

Definition 1.4 (Unfolding) The male-n unfolding of tensor € R'*!2>Ix js denoted b¥? Y
and aranges the mode-n fibers into columns of a matrix. More specifically, a tensor element

(i1,12,...,in) maps onto a matrix elemef(it, j), where
1, if p=1orif p=2 and n=1,
=1+ (ip-1)Jp, with Jy={P= 1.66
J ;( p= 1 P 1_[ Im, otherwise. ( )
m#N

13We use the Kolda - Bader notations4.
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Tube (Mode-3)
Column (Mode-1) Fibers

Row (Mode-2)
Fibers

Fibers

Fig. 1.15 Fibers: for a third-order tensor Y = [yig] € R (all fibers are treated as column
vectors).

Horizontal Slices Frontal Slices

Lateral Slices

Y Y

'
A
|

q R q/ .
| :
. B4 g : A
! 7yi:l ! /L -
I T S (4
1 .. t.T | R

Fig. 1.17 Tllustration of subsets (subarrays) of a three-way tensor and basic tensor notations of
tubes and slices.
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Fig. 1.18 Tllustration of row-wise and column-wise unfolding (flattening, matricizing) of a third-
order tensor.

Observe that in the modeunfolding the modea fibers are rearranged to be the columns of the
matrix'Y o).
More generally, a subtensor of the ten¥oe R'+<!2x-*In denoted byv; _;)» is obtained by

fixing then-th index to some valug For example, a third-order tensére R'1*'2¥1s with entries
Yiviris @nd indicesig, iz, i3) has a corresponding position,(j) in the moden unfolded matrix
Y (n=1,2,3) as follows

e mode-1:j =iy + (i3 — 1ly,
o mOde-Z:j =i+ (|3 - 1)|1,
o mode-3:j =i+ (|2 - 1)|1

Note that moder unfolding of a tensok € R'>l2xIn glso represents mode-1 unfolding of its
permuted tensoY e R'»xlv->Inaxina-xIn gptained by permuting its modes to obtain the mode-1
bel,.

1.4.4 Vectorization

It is often convenient to represent tensors and matrices as segtbereby vectorization of
matrixY = [y;, Y, ..., yr] € R™¥T is defined as

.
y = vec(Y) = [yI,yZ, . yH eR'T. (1.67)

The vec-operator applied on a mat¥stacks its columns into a vector. The reshape is a reverse
function to vectorization which converts a vector to a matrix. For example, reshape) €
R'*T is defined as (using MATLAB notations and similar to the reshape MATLAB function):

reshapef, |, T) = [y(@: 1), y(l +1:21),....y(T =l : IT)] e R™T. (1.68)
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A

Mode-1 unfolding: A, € R
12 12 12

1
L= I 1

1,

Mode-2 unfolding: A, € R

I, I,
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1

Iyx 1)1,

Mode-3 unfolding: A; € R
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Fig. 1.19 Unfolding (matricizing) of a third-order tensor. The tensor can be unfolded in three
ways to obtain matrices comprising its mode-1, mode-2 and mode-3 vectors.

Analogously, we define the vectorization of a teng@s a vectorization of the associated mode-

1 urfolded matrixY (1). For example, the vectorization of the third-order tenéa R can

bewritten in the following form

vec(Y) = vec(Y q)) = [vec(Y;;l)T,vec(Y; )7, .,vec(Y;;Q)T]T eR'TQ

Basic properties of the vec-operators include (assuming that matrices are appropriate sizes):

(1.69)

vec(c A) = cvec@), (1.70)

vecA + B) = vec(A) + vec®B), (1.72)
vec(A)" vecB) = trace@A"B), (1.72)
vec(ABC) = (CT ® A)vec@). (1.73)

1.4.5 Outer, Kronecker, Khatri-Rao and Hadamard Products

Several special matrix products are important for representati tensor factorizations and

decompositions.
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Fig. 1.20 Example of unfolding the third-order tensor in mode-1, mode-2 and mode-3.

1.4.5.1 Outer Product The aiter product of the tenso¥s € R'1*12¢>In andX e RIxJ2x->xdu
is given by

Z=YoXe Rllxlgx-uxlN><J1><J2><-~-><JM’ (1.74)
where

Ziyjy..insivizeiv = Yivizeoin Xinjzeju- (1.75)

Observe that, the tensd@rcontains all the possible combinations of pair-wise products between
theelements ofY andX.
As special cases, the outer product of two vectarsR' andb € R’ yields a rank-one matrix

A=aob=ab erR™ (1.76)

and the outer product of three vectoasz R', b € R’ andc € R? yields a third-order rank-one
tensor:

Z=aoboceR™XQ (1.77)
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where
Zjq = & bj Cg. (1.78)

1.4.5.2 Kronecker Product The Kronecker product of two matricés € R’ amd B ¢
R™Ris a matrix denoted a& ® B € R'™Rand defined as (see the MATLAB functi@mon):

allB a]_zB ---aUB
ayBapB---ayB
A®B . . .

(1.79)

a|1B a|zB cee Qg B

[a1®b1 a®b ay®bz - ay®br1 ag®bR]. (180)

For any given three matrices, B, andC of (appropriate size), whet® andC have the same
size, the following properties hold:

(AeB) = AT®BT, (1.81)
(AeB)" = AT®BT, (1.82)
A®B+C)=(A®B)+(A®C), (1.83)
(B+C)®A = (B®A)+(C®A), (1.84)
(A®B)(C®D) = AC ®BD, (1.85)
c(A®B) = (cA)®B =A®(cB). (1.86)

It should be mentioned that, in general, the outer product of vectors yields a tensor whereas the
Kronecker product gives a vector. For example, for the three veatar®’, b € RT, c e R®

their three-way outer produdt = ao bo ¢ € R™*™Q js a third-order tensor with the entries

Yitg = ajbiCy, while the three-way Kronecker product of the same vectors is a vector vec(
cobeacR ™

1.4.5.3 Hadamard Product The Hadamard product of two equal-size matrices is the element
wise product denoted by (or .= for MATLAB notation) and defined as

agp by app by oo @y by
ap1 b1 @by oo apy by

AeB=| e l (1.87)
aiby azbo - ajby

1.4.5.4 Khatri-Rao Product For two matricesA = [a;, @y,...,a;] € R andB =
[by, by, ..., by] € R™ with the same number of columdstheir Khatri-Rao product, denoted
by ®, performs the following operation:

A@Bz[a1®b1 a2®b2---ad®b3] (188)

= |vecna]) vec(o,a]) --- vecl,aj)| e R, (1.89)

The Khatri-Rao product is:
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e asociative
AoBoeC)=(AeB)oC, (2.90)
e distributive
(A+B)oC=AcC+BoC, (2.91)
e non-commutative
AOB#BOA, (1.92)

its cross-product simplifies into

(AoB)" (AoB)=ATA @ B'B, (1.93)

and the Moore-Penrose pseudo-inverse can be expressed as
(AoB) = [(AoB)"(AoB)] Y(AoB) =[(ATA) @ (B"B)] *(A ©B)", (1.94)
(AoB)) = (AeB)[(ATA) ® (BTB)] ™. (1.95)

1.4.6 Mode-N Multiplication of Tensor by Matrix and Tensor by Vector,
Contracted Tensors Product

To multiply a tensor by a matrix, we need to specify which mode otémsor is multiplied by
the columns (or rows) of a matrix (see Figur@2land Tablel.l).

Definition 1.5 (mode- tensor matrix product) The node-n producl = G x, A of a tensor
G e R gand a matrixA € R js a tensory € RIX x> with elements

Jn
Yitjomin-sindniein = Z Ois.jzedn Slin,jn- (1.96)
jn:]-
The tensor-matrix product can be applied successively along several modes, and it is commuta-
tive, that is
(G Xxn A) XmB = (G Xm B) Xy A =G xpAXxnpB, (m# n). (2.97)

The repeated (iterated) modeensor-matrix product for matrices andB of appropriate di-
mensions can be simplified as

(G xnA)XnB =G xn (BA). (1.98)

For G e R»%xxW and a set of matrice8™ e R'™, their multiplication in all possible
modesfi=1,2,...,N)is denoted as

G x{A} = G x1 AW x; A@ .5 AN, (1.99)

and the resulting tensor has dimensigx I, x - - - x ly. Multiplication of a tensor with all but
one mode is denoted as

GxnfA} =G xs AW .oy g ADD s AMED sy AN (1.100)
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@
A L€ Y,
XIW =

4 x7) (7 x5 x 8) (4 x5 x8)

(b)
G B

(9 x5) (7 x 9x 8)

(©)
(6 x 8)
(7 x5 x8) (7 x5 x 6)

Fig. 1.21 Tllustration of the mode-n multiplications of a third-order tensor by matrices. (a) mode-
1 multiplication Y, = G x3 A, (b) mode-2 multiplication Y, = G x; B, (c¢) mode-3 multiplication
Y,=G x3 C.
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-
a
= O

(7 x5 x8) (7x1x1)  (1x5x8) (Bx1x1) (1x1x8) Bx1x1) (1x1x1)

G

Fig. 1.22 Tllustration of mode-n multiplication of a third-order tensor G by vectors, yielding scalar
y =G X1 a Xz b X3 ¢ Note that the dimension of the result is reduced by one. For example,
multiplying a three-way (a third-order) tensor by a vector in mode-1 results in a 2-way tensor (a
matrix).

giving a tensor of dimensioh, X --- X In.1 X Jy X I X --- X Iy. The above notation is
adopted from§5)].
It is not difficult to verify that these operations satisfy the following properties

[g % {A}](n) = A(n)G(n) [A(N) QAN-I) . o A+ g A(-1) . ®A(1)]T ) (1.101)

Definition 1.6 (mode- tensor-vector product) The node-n multiplication of a tensor
Y e R'I2>xxIv by a vectora € R is denoted b

Y %, a (1.102)

and has dimension Ix - - - X In-1 X Iy X - - - X Iy, that is,

Z =Y X, ae RWCHIxdnxexi (1.103)
Element-wise, we have
In
Zi i oin vinain = ZYil,iz,...,iN T (1.104)
in=1

It is also possible to multiply a tensor by a vector in more than one mode. Multiplying a three-
way tensor by vectors in the two modes results in a 1-way tensor (a vector); multiplying it in all
modes results in a scalar. We can exchange the order of multiplication by the following rule:

Y Xmaxpb=(Y Xna) X, b= (Y x, b) Xy, a, for m<n. (1.105)

14A bar over the operatox indicates a contracted product.
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Table 1.1 Rules for the mode-n multiplication of tensor G € R™PP with matrices A € R, B €
RTR and C € R®P and with vectors: ae R, be RR and c e RP.

Moden product Matricized version Vectorized version
Y=GXx1Ae RIXRxP Y =AGq) VEC(Y(l)) =(® A)vec(G(l))
J
yirp = Zgjrp aij
=1
Y=Gx,Be RIXT*P Y2 = BG(p vec(Y ) = (I ® B)vecG(p)
R
Yitp = Zgjrp btr
r=1
Y=Gx3Ce¢ RESEY Y@3) = CGgz) vec(Y 3)) = (I ® C)vecG(z)
P
Yirg = Z Qjrp Cap
p=1
Y=Gx;ae RRxP Y = aTG(l) vec(Y@) =(I1® aT)vec(G(l))
J
Yio = ), Gip @ vec(Y ) = G(j a
=1
V=6 X2 b e R¥>*P Yo = bTG(g) VEC(Y(z)) =(® bT)VEC(G(g))
R
Yip = Z 9jrp br vec(Y @) = G b
r=1
Y =G X3 ce R>R Y3 = "G vec(Y(3) = (I ® c")vecG )
P
Yip = Z Qirp Cp vec(Yg) = G ¢
p=1

For example, the mode-multiplication of a tensoG € R™>®P py vectorsa e R, b e RR and
c € RP can be expressed as (see Figli22and Tablel.1)

_ _ J R P
=ZZZgjrp a; by cp.

More generally, foG € R¥>*%2<*I anda e R¥, the multiplication by all vectors in all modes
(n=1,2,...,N) gives a scalar:

z=G

X
o))
X
N
(o
X
@
O

y=GxgaPxa® ...xya™ =G x{ajeR (1.106)
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whereas multiplication in every mode except madeesults in a vectox of length J,:

x=G X1 a® ... Xno1 a1 Xl a1 L. XN a™
= G (a(N) ®--ead™gaVg...q a(l)) =G X_p{a} eR™. (1.107)

Also note that multiplication in every mode except maodand modem, results in a matrix of
sizeJ, X Jm.

A matrix G (I x J) can be considered as a third-order terSon which the 3rd dimension is
1 (I x J x 1), and its matricized versions in each mode are given by

.
|G| o =G (1.108)

vec(G)' . (1.109)

],
<

The mode-3 product of the tengBrwith a vectora is exactly the outer product d& anda.
Gxza=Goa (1.110)

Definition 1.7 The scalar product (or inner product) of two tensord, B € R'»*2x-*In of the
same order is denoted A, B) andis computed as a sum of element-wise products over all the
indices, that is,

1 2 In
C=(ABY=> > - > bip in@iuisiy ER. (1.112)
1N

it iz

The scalar product allows us to define the higher-order Frobenius norm of a feasor

[E P

In
IAllE = {(AA) = JZZ--'Z%ZWJN, (1.112)

whereas thé;-norm of a tensor is defined as

i Iz

In
Al = Z Z o Z 1By in- (1.113)

Definition 1.8 The contracted product of two tensors A € Rve>XIwduexdv gngd
B e R xIwxKix-xKe glong the first M modes is a tensor of sizexJ - - x Jy x Ki X - - x Kp,
given by

Im

Iy
A B g mite o Ik k) = D> @0 g Bk e (1.114)

i1=1 im=1

The remaining modes are ordered such that those A@ome beford. The arguments speci-

fying the modes oA and those oB for contraction need not be consecutive. However, the sizes

of the corresponding dimensions must be equal. For example, the contracted tensor product
along the mode-2 of a tensAre R¥>*5, and the mode-3 of a tensBre R™® returns a tensor

Q — <A’ §>2;3 € R3X5X7x8
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The contracted tensor product AfandB along the sam& modes simplifies to

(A’ §>l,...,M;l,...,M = (A’ E)l e (1115)

.....

whereas the contracted product of tensérs R'™*n andB e R along all modes
except the moderis denoted as

(AB)_,=A@B eR™, (k= VYk#n). (1.116)

The tensor-vector, tensor-matrix and scalar multiplications can be expressed in a form of con-
tracted product. For example, the contracted product along the mofithe tensoA and the
mode-2 of matrixC € R¥! can be obtained by permuting the dimensions of the maui@auct

of A andC

(A, C)n;2 = (A, CT)n;l = permute(A x, C,[1,....,n=Ln+1,....,N,n]). (1.117)
We also have
(C,A)Z;n = <CT,A>1;n = permute(A X, C,[n,1,...,n=1,n+1,...,N]). (1.118)

For two tensors of the same dimension, their contracted product along all their modes is their
inner product

(A,B); n = (AB). (1.119)

.....

In a special case d¥l = 0, the contracted product becomes the outer product of two tensors.

1.4.7 Special Forms of Tensors

Tensors can take special forms or structures. For instance,afénsor is sparse or symmetric.

1.4.7.1 Rank-One Tensor Using the outer product, the rank of tensor can be defined as
follows (see Figure 1.23)

Definition 1.9 (Rank-one tensor)A tensr Y e R'*!2¢xIn of order N has rank-one if it can
be written as an outer product of N vectorsi.e.,

Y=a®oa@o...0aM, (1.120)

wherea®™ e R and y, i, i, = 81(11) .(22) o a](L“) The rank of a tensoY e R'"x2xxIn jg defined

as the minimal number of rank-one tensyrs, ..., Y g sudithatY = Zlexr.

This outer product is often computed via the Khatri-Rao product or the Kronecker product
based on the following relation

vec(Y) = veclYp)) = vec@P(@W o -0 ad)=aV o . .0a®oab.  (1.121)

Rank-one tensors have many interesting properties and play an important role in multi-way
analysis 145, [139,[139, [31],[68],[98],[30], [115. In general, rank of a higher-order tensor

is defned as the minimal number of rank-one tensors whose linear combination Yie®isch

a repesentation of a tensor by a linear combination of rank-one tensors is just a CANonical
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(IxTxQ)

Fig. 1.23 Rank-one third-order tensor: Y = aoboce R™™Q aeR! beRT, ce R

=
B I

~1

@ (b) (©

Fig. 1.24 Special forms of third-order tensors: (a) Super-Identity cube tensor |, (b) sparse tensor
with diagonal frontal slices, which can be mathematically expressed as | x3 C, and (c) block
diagonal tensor.

DECOMPposition (CANDECOMP) or PARAFAC (PARAllel FACtor decomposition) which
preserves the uniqueness under some mild conditRjs [

1.4.7.2 Symmetric and Super-Symmetric Tensors For the particular case when all the
N vectas al)) are equal to a vectay, their outer product is called a supersymmetric rank-one
tensort® A super-symmetric tensor has the same dimension in every mode.

Tenors can also only be (partially) symmetric in two or more modes. For example, a three-
way tensolY € R™!*Q is symmetric in modes one and two if all its frontal slices are symmetric,
ie,Yq=Yq.¥q=12....Q

1.4.7.3 Diagonal Tensors An N-th order cubical tenso¥ e R'™!2>Iv is diagonal if its
elementsy, i, iy # 0onlyifiy =i = --- = iy (See Figurel.24(a). We usel to denote the
cubical identity tensor with ones on the superdiagonal and zeros elsewhere. This concept can be
generalized or extended as illustrated in Figur@g(b)and1.24(c)

1.5 TENSOR DECOMPOSITIONS AND FACTORIZATIONS

Many modern applications generate large amounts of data withipteuispects and high di-
mensionality for which tensors (i.e., multi-way arrays) provide a natural representation. These

15In general, by analogy to symmetric matrices a higher-order tensor is called supersymmetric if its entries are invariant
under any permutation of their indices.
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include text mining, clustering, Internet ffiec, telecommunication records, and large-scale so-
cial networks.

Tensor decompositions and factorizations were initiated by Hitchcock in 1R% 7and later
devebped by Cattelin in 194485] and by Tucker in 1966135, [13§. These concepts and
appraches received more attention after Carroll and Chanyy [25] proposed the Canoni-
cal Decomposition (CANDECOMP) and independently Harshn@&®),[[63], [64] proposed an
equialent model called the PARAFAC (Parallel Factor Analysis) in 1970.

Mock rediscovered the PARAFAC when tackling a neuroscience problem of event related po-
tentials (ERP) in the context of brain imagiry]. These foundations for tensor factorizations
and deompositions also include results on the uniqueness of tensor factorizations and some
recommendations on how to choose the number of components. The subsequent contributions
put Mock’s results in the framework proposed by Harshmai, [€&iskal [89] and Carroll and
Chang[24].

Most o the early results devoted to tensor factorizations and decompositions appeared in
the psychometrics literature. Appellof, Davidson and Bro are credited as being the first to use
tensor decompositions (in 1981-1998) in chemometrics, which have since become extremely
popular in that field (see, e.g7][ [17], [16], [19], [2], [85]). In parallel with the developments
in psychometrics and chemometrics, there was a great deal of interest in decompositions of
bilinear forms in the field of algebraic complexity [B$80.

Although some tensor decomposition models have been proposed long time ago, they have
recently attracted the interest of researchers working in mathematics, signal processing, data
mining, and neuroscience. This probably explains why available mathematical theory seldom
deals with the computational and algorithmic aspects of tensor decompositions, together with
many still unsolved fundamental problems.

Higher-order tensor decompositions are nowadays frequently used in a variety of fields in-
cluding psychometrics, chemometrics, image analysis, graph analysis, and signal processing.
Two of the most commonly used decompositions are the Tucker decomposition and PARAFAC
(also known as CANDECOMP or simply CP) which are often considered (thought of) as higher-
order generalizations of the matrix singular value decomposition (SVD) or principal component
analysis (PCA). In this book, we superimposf&etient constraints such as nonnegativity, spar-
sity or smoothness, and generally such an analogy is no longer valid.

In this chapter we formulate the models and problems for three-way arrays. Extension for
arbitraryN-th order tensors will be given in Chaptér

1.5.1 Why Multi-way Array Decompositions and Factorizations?

Standard matrix factorizations, such as PGA/D, ICA, NMF, and their variants, are invaluable
tools for feature selection, dimensionality reduction, noise reduction, and data minipag [26
Howe\er, they have only two modes or 2-way representations (say, space and time), and their
use is therefore limited. In many applications the data structures often contain higher-order
ways (modes) such as trials, task conditions, subjects, and groups together with the intrinsic
dimensions of space, time, and frequency. For instance, a sequence of trials may lead to a
large stream of data encompassing many dimensions: space, time-frequency, subjects, trials,
and conditions9], [86).

Cleaty the “flat-world view” provided by 2-way matrix factorizations (ICA, NMF, SCA)
may be insfficient and it is natural to use tensor decomposition approaches. This way all di-
mensions or modes are retained by virtue of multi-linear models which often produce unique and
physically meaningful components. For example, studies in neuroscience often involve multi-
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Fig. 1.25 Tllustration of various possible arrangements (organization) of three-way and multi-way
multichannel EEG/MEG data.

ple subjects (people or animals) and trials leading to experimental data structures conveniently
represented by multiway arrays or blocks of three-way data. If the data for every subject were
analyzed separately by extracting a matrix or slice from a data block we would lose the covari-
ance information among subjects. To discover hidden components within the data and retain the
integrative information, the analysis tools should reflect the multi-dimensional structure of the
data.

The multi-way analysis (tensor factorizations and decompositions) is a natural choice, for in-
stance, in EEG studies as it provides convenient multi-channel and multi-subject time-frequency-
space sparse representations, artifacts rejection in the time-frequency domain, feature extraction,
multi-way clustering and coherence tracking. Our main objective here is to decompose the mul-
tichannel time-varying EEG signals into multiple components with distinct modalities in the
space, time, and frequency domains in order to identify among them the components common
across these flerent domains, which at the same time are discriminative acréssedit con-
ditions (see Figurd.25. The two most popular decompositjfactorization models foN-th
order tensors are the Tucker model and the more restricted PARAFAC model. Especially, NMF
and NTF in conjunction with sparse coding, have recently been given much attention due to their
easy interpretation and meaningful representation. NTF has been used in numerous applications
in environmental analysis, food studies, pharmaceutical analysis and in chemistry in general
(see L8], [2], [85] for review).

As aresult of such tensor decompositions, the inherent structures of the recorded brain signals
usually become enhanced and better exposed. Further operations performed on these compo-
nents can remove redundancy and achieve compact sparse representations. There are at least
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two possible operations we can perform. First, the extracted factors or hidden latent compo-
nents can be grouped (clustered) together and represented collectively in a lower dimensional
space to extract features and remove redundancy. Second, the components can be simply pruned
if they are correlated with a specific mental task. With the addition of extra dimensions it is pos-
sible to investigate topography and time and frequency patterns in one analysis. The resulting
components can be described not only by the topography and the time-frequency signature but
also by the relative contribution fromftirent subjects or conditions. Regarding an application

to brain signal analysis, various oscillatory activities within the EEG may overlap, however, the
sparse and nonnegative tensor representation by means of the time-frequency-space transforma-
tion makes it possible in many cases to isolate each oscillatory behavior well, even when these
activities are not well-separated in the space-time (2-way) domain.

Recent development in high spatial density arrays of EEG signals involve multi-dimensional
signal processing techniques (referred to as multi-way analysis (MWA), multi-way-array (ten-
sor) factorizatiofdecomposition, dynamic tensor analysis (DTA), or window-based tensor anal-
ysis (WTA)). These can be employed to analyze multi-modal and multichannel experimental
EEGMEG and fMRI data §], [107, [140.

1.5.2 PARAFAC and Nonnegative Tensor Factorization

The PARAFAC® can be formulated as follows (see Figufieg6and1.27for graphical repre-
senttions).

Given a data tensof € R'X7*Q and the positive inde3, find three-component matrices, also
called loading matrices or factols, = [a;, @, ..., a;] € R, B = [by, by, ..., bs] € R™ and
C =[cy, G, ..., €3] € R which perform the following approximate factorization:

J
Y =) ajobjoc+E=[AB,CI+E, (1.122)
i=1

or equivalently in the element-wise form

J
Yiq = . &jl0tjCqj + iq. (1.123)
=1

Thewmboli = [A, B, C] is ashorthand notation for the PARAFAC factorization, aad=
[aj] € R', bj = [by] € RT, andcj = [cqj] € R are respectively the constituent vectors of the
corresponding factor matricés B andC.

The PARAFAC algorithms decompose a given tensor into a sum of multi-linear terms (in this
case tri-linear), in a way analogous to the bilinear matrix decomposition. As discussed before,
unlike SVD, PARAFAC usually does not impose any orthogonality constraints. A model which
imposes nonnegativity on factor matrices is called the NTF (Nonnegative Tensor Factorization)
or Nonnegative PARAFAC. A nonnegative version of PARAFAC was first introduced by Carroll
et al.[25). Later, more ficientapproaches were developed by Bro][1&], [80], based on
the malified NLS and Paaterdl[Z, [11]] who generalized his earlier 2-way positive matrix

16Also called the CANDECOMP (Canonical Decomposition) or CP decomposition or simply CPD.
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Fig. 1.26 A graphical representation of the third-order PARAFAC as a sum of rank-one tensors.
All the vectors {a;, by, ¢j} are treated as column vectors of factor matrices and are linked for each
index | via the outer product operator, that is, Y = Zle ajobjoc;+E or equivalently in a compact
form Y =1 %3 A X2 B x3C+E. (In this model not all vectors are normalized to unit length).

factorization (PMF) method to the three-way PARAFAC model, referring to the result as PMF3
(three-way positive matrix factorization). Although such constrained nonnegativity based model
may not match perfectly the input data (i.e., it may have larger residual &tbes the standard
PARAFAC without any constraints) such decompositions are often very meaningful and have
physical interpretation30], [115, [116].

It is often convenient to assume that all vectors have unit length so that we can use the
modified Harshman’s PARAFAC model given by [6P63]

J
Y=>2a0bjoc+E=[1AB,CI, (1.124)
=1

or in equivalent element-wise form

J
Yia = ) Aj &j by Cqj + i, (1.125)
-1

where 1; are scaling factors andl = [, Ao, .. ., A3]". Figurel.28illustrates the above model
and is alternative equivalent representations. The basic PARAFAC model can be represented in
compact matrix forms upon applying unfolding representations of the t&hsor

Yo =AA(CoB)', (1.126)
Yz = BA(CoA), (1.127)
Y@ = CA(BoA), (1.128)

whereA = diag(1) and® means the Khatri-Rao product.
Using the modet multiplication of a tensor by a matrix, we have

Y=Ax1Ax;BXx3C+E, (1.129)

where A € R?>J*J s diagonal cubical tensor with nonzero element®n the superdiagonal.
In other words, within Harshman’s model for the core tensor all but the superdiagonal elements
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Fig. 1.27 The alternative representations of the third-order PARAFAC model: (a) as a set of
three matrices using a scalar representation (see Eq. (1.123)), (b) as a set of vectors using
summation of rank-one tensors expressed by the outer products of the vectors (see Eq. (1.122)),
(¢) decomposition into two matrices using row-wise unfolding and (d) representation by frontal
slices (see Eq. (1.134)) The tensor D € R™Q has diagonal frontal slices Dq € R¥, so we can
write Y =~ D x1 A X, B.
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Fig. 1.28 Harshman’s PARAFAC model with a superdiagonal core temsor G = A =
diag(Ay, A2, . .., A3) € R>¥ for the third-order tensor Y = A X3 A X2 B x3C = Zfﬂ Aj a0 bjoc;.
(In this model all vectors are normalized to unit length).

vanish (see Figur#.28. This also means that PARAFAC can be considered as a specialfcase o
the Tucker3 model in which the core tensor is a cubical superdiagonal or super-identity tensor,
i.e.,G = A € R»PJ with gjj; £ 0.

Another form of the PARAFAC model is the vectorized form given by

\vec@ = (C@B@A)/l.‘ (1.130)

Thethree-way PARAFAC model can be also described by using frontal, lateral and horizontal
slices as follow¥’

Y..q = ADg(cq:) BT, (1.131)
Y. = ADy(b:) CT, (1.132)
Yi.. = BDi(a)CT, (1.133)

whereDi(a;.), Di(bt:) andDq(cq:) are diagonal matrices which take thth, t-th andg-th row
of the matricesA, B, andC, respectively, and produce diagonal matrices by placing the corre-
sponding row on the main diagonal.

17Sucha representation does not exist for higher-order tensors wher8.
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Table 1.2 Mathematical formulations of the standard PARAFAC model for a third-order tensor
Y € R*™Q with factor matrices: A = [, @p,...,a3] € R, B = [by,by,...,b] € R™ and
C =[cyCy...,C5] € R¥J. There are two optional and equivalent representations: one in which
we have a linear combination of rank-one tensors with unit length vectors and a second in which
the vectors aj € R' and b; € RT have a unit f;-norm and the scaling factors 1j are absorbed by
the non-normalized vectors ¢j € R?.

Operator Fomulation

J

Y =) ajobjoc+E (st llajll=lbjlz =1, Vj)
j=1

Outer products JJ

Y = Z/lj ajobjoc;+E, (st llajll2 = lIbjll2 = licjll = 1, ¥j)
=1
J

Yig = ) @j brj Cqj + €iq

j=1
Scalar

J
Yig = ) 4j aj byj Cqj + Eig
=1

o . i =|_X1AXQBX3C+E
Moden multiplications Y =Ax1AxoBxsC+E
Y.q= A diag(cq) B" + E.q = ADqg(cq) B" +E:q
Slice representations ~ Yi: = B diag(@:) C" +Ei; = B Di (a;) C + Ei:
Y. = A diagby) C" + Ex. = AD(b:) CT + Ex.
Vectors veqY) = vec(Y () = (CoBOA) A+ vecy

Kronecker products Y@= A Duy(cq) (I ® B)" + Ey)

Yu= A (CoB)" +Eq; Ya =AA(COB)" +Egy,
Khatri-Rao products Y@= B (COA)" +Ep); Y2 =BA(COA) +Ep
Y3=C((BoA)T+Ez; Y@ =CABOA) +Egy),.

In particular, it is convenient to represent the three-way PARAFAC model in terms of the
frontal slices, asfq = Y..qof Y

Yq=ADB', (1.134)

where a matrixDq := Dq(Cy:) is the diagonal matrix based on theh row of C.

The above representation of the PARAFAC model has striking similarity to the Approxima-
tive Joint Diagonalization method, thus having a clear interpretation for the BSS problem, where
the matrixA represents a mixing matriX, = B' represents unknown sources, @hcepresents
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a galing matrix j45], [44]. In fact, the PARAFAC factorization can be reformulated as stezul
neous diagonalization of a set of matrices, which often leads to fast and reliable way to compute
this factorization.

The PARAFAC model has some severe limitations as it represents observed data by common
factors utilizing the same number of components (columns). In other words, we do not have
enough degrees of freedom as compared to other models. Moreover, the PARAFAC approxima-
tion may be ill-posed and may lead to unstable estimation of its components. The next sections
discuss more flexible models.

1.5.2.1 Basic Approaches to Solve NTF Problem In order to compute the nonnegative
compaent matricegA, B, C} we usually apply constrained optimization approach as by min-
imizing a suitable design cost function. Typically, we minimize (with respect the component
matrices) the following global cost function

De(Y ITA,B,CIl) = [IlY — [A,B,CIII2 + aa IIAl2 + ag [IBIZ + ac ICII2,  (1.135)

subject to nonnegativity constraints, wherg, ag, ac are nonnegative regularization parame-
ters.

There are at least threeffdirent approaches for solving this optimization problem. The first
approach is to use a vectorized form of the above cost function in the J(xjin= vec(Y —
[A,B,C]) = 0 andemploy the Nonnegative Least Squares (NLS) approach. Such a method
was first applied for NTF by Paaterd]1] and also Tomasi and Brd B3, [134]. The Jacobian
of sud function can be of large si2@ QJx (I + T + Q), yielding very high computation cost.

In the second approach, Acar, Kolda and Dunlavy propose to optimize the cost function
simultaneously with respect to all variables using a modern nonlinear conjugate gradient op-
timization technique J]. However, such a cost function is generally not convex and is not
guaranteed to obtain the optimal solution although results are very promising.

The most popular approach is to apply the ALS technique (see Chafiiemore detail).

In this approach we compute the gradient of the cost function with respect to each individual
component matrix (assuming that the others are fixed and independent):

VaDe = =Yy (COB)+A [(C'C) ® (B"B) +aa I], (1.136)
VeDr = -Y (2 (COA)+B[(C'C) ® (ATA) +ag 1], (1.137)
VeDE = =Y (BOA)+C[(B™B) ® (ATA) +ac I]. (1.138)

By equating the gradient components to zero and applying the nonlinear projection to maintain
nonnegativity of components we obtaifiieient and relatively simple nonnegative ALS update
rules for the NTF:

A « [Y@ (CoB)[(C'C) ®(B'B)+aa 1], . (1.139)
B « [Y@ (COA)[(C'C) ®(ATA) +as 1], , (1.140)
C « [Y@ (BOA)[(B'B) ®(ATA) +ac 117, . (1.141)

In Chapter4 and Chapter6 we prove that the ALS algorithms are special cases of a quasi-
Newton method that implicitly employ information about the gradient and Hessian of a cost
function. The main advantage of ALS algorithms is high convergence speed and its scalability
for large-scale problems.
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Fig. 1.29 (a) NTF1 model that (approximately) decomposes tensor Y € R>™Q into a set of
nonnegative matrices A = [g;] € R, C € RSXJ and {X1,X2,...,Xq}, Xq = [Xig] € R>T, and
E € RXTXQ is a tensor representing errors. Matrices Xq are frontal slices of the tensor X € R¥>*T*Q,
typically with J << I. (b) Equivalent representation using joint diagonalization of frontal slices,
where Dgq = diag(cy) are diagonal matrices. (c) Global matrix representation using row-wise

unfolding of the tensor; the sub-matrices are defined as Xq = DeXg, (@=12,...,Q).

1.5.3 NTF1 Model

Figurel.29illustrates the basic 3D NTF1 model, which is an extension of the Nibdel B4].
A given data (observed) tensdre R'XTXQ is decomposed into a set of matricks R'>’ and
C e R9, as well as a third-order tensor with reduced dimensiba (), for which the frontal
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G i

Fig. 1.30 Extended NTF1 model for a three-way array. The goal is to estimate the set of non-
negative matrices A, C and {Xy, Xa,...,Xg}.

slices{X1, X2, ..., Xq} have nonnegative entries. This three-way NTF1 model is given by

‘Yq =AD¢Xq+Eq,  (9=1,2...,Q), (1.142)

where Yq = Y..q € R are the frontal slices of e RY™?, Q is the number of the frontal
slices,A = [a;;] € RV is the basis (mixing matrix) representing common factbgse R is

a diagonal matrix that holds thegth row of matrixC € R?XJ in its main diagonalXq = [Xjiq] €
R{T is matrix representing the sources (or hidden components)EgrdE..q € R'™*T is the
g-th vertical slice of the tensdg € R'T*Q representing the errors or noise depending on the
application. Typically, for BSS problems >> 1 > Q > J.

We wish to estimate the set of matrics C, and{Xy, X», ..., Xg} subject to nonnegativ-
ity constraints (and other constraints such as sparsenegs amdoothness), given only the
observed dat¥. Since the diagonal matricé, are scaling matrices, they can be absorbed
into the matricesXq by introducing the row-normalized matriceg, = DgXq, thus giving
Yq = AXq + Eq. Therefore, in the multi-way BSS applications only the ma#iand the set of
scaled source matrice§, X, ..., Xq need be estimated.

For applications where the observed data are incomplete or hfieeedit dimensions for
each frontal slice (as shown in Figute30 the model can be described as

Yq = ADqu + Eq, (q = 1, 2, ey Q), (1.143)

whereYq € RLXT‘* are the frontal slices of the irregular tree-dimensional anay= [Xjiq] €

RiXT“ are matrices representing sources (or hidden componentsggaacE. . € R™T is the

g-th vertical slice of the multi-way array comprising errors.
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1.5.4 NTF2 Model

The dual model to the NTF1 is referred to as the 3D NTF2 (by analoghiddPARAFAC?2
model®[78], [17], [105, [126, [88], see Figurel.31).

A given tensorY € R}~ is decomposed into a set of matridés, Ao, . Agh, X = BT
andC with nonnegative entries, by the three-way NTF2 model as

‘Yq =ADX+E;, (q=12...,Q), (1.144)

where Yq = Y..q = [yrg] € RYT are the frontal slices of € R™?, Q is the number of
frontal slices,Aq = [ajq] € R} are the basis (mixing) matriceBq € R?*’ is a diagonal
matrix that holds ther-th row of C € R?* in its main diagonalX = [x;] € R>T is a matrix
representing latent sources (or hidden components or common factorgg ané..q € R'*T

is the g-th frontal slice of a tensoE € R'*TQ comprising error or noise depending on the
application. The goal is to estimate the set of matrigég, (= 1,2,..., Q), C andX, subjectto

some nonnegativity constraints and other possible natural constraints such as spars¢omess and
smoothness. Since the diagonal matribgsare scaling matrices they can be absorbed into the
matricesAq by introducing column-normalization, that I8, := AqDq. In BSS applications,
therefore, only the matriX and the set of scaled matricas, . .., Ag need be estimated. This,
however, comes at a price, as we may lose the uniqueness of the NTF2 representation ignoring
the scaling and permutation ambiguities. The uniqueness can still be preserved by imposing
nonnegativity and sparsity constraints.

The NTF2 model is similar to the well-known PARAFAC2 motfekith nonnegativity con-
strants and to the Tucker models described in the next sectior,[084, [88]. In a special
casewhen all matricesAq are identical, the NTF2 model can be simplified into the ordinary
PARAFAC model (see Sectioh5.2 with the nonnegativity constraints described by

Yq=ADX+E;  (q=12....Q). (1.145)

As shown in Figurel.32(a)the NTF2 model can be extended to the decomposition of multi-way
arrays with diferent dimensions using the simultaneous factorizations

Yq = Aqux + Eq, (q = 1, 2, ey Q), (1.146)

whereY € R'"T X e R¥T, C e RYY, A, € '™}, E, = E..q € R is theg-th frontal slice
of a three-way array (of the same dimensions as the data arraypardR?* is a diagonal
matrix that holds the-th row of C in its main diagonal. Using the transformatigg := DgXg,

we can convert the NTF2 problem to the standard (2-way) NMF problem:

Y = AX +E, (1.147)

18I fact the NTF2 model be can obtained form NTF1 model via simple permutation of tensors and matrices. However,
since the frontal sliced\q and Xq of the core tensors havefiiirent physical interpretations we discuss these models
separately.

9In the PARAFAC2 model we usually assume thdtAq = ® € R¥J, vq (i.e., itis required that the matrix product

Agq with its transpose is invariant for all frontal slices of a core three-way teAsor
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Fig. 1.31 (a) NTF2 model in which a third-order tensor is decomposed into a set of nonnegative
matrices: {A1,...,Aq}), C, and X. (b) Equivalent representation in which the frontal slices of a
tensor are factorized by a set of nonnegative matrices. (c) Global matrix representation using

column-wise unfolding with sub-matrices Aq = AqDq.
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Fig. 1.32 (a) Extended NTF2 model. (b) An equivalent representation in which the frontal
slices of a three-way array are factorized by a set of nonnegative matrices. (c¢) Global matrix
representation using column-wise unfolding with sub-matrices Aq = ADq.
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whereY = Y[, = [Y1;Y2;...;Yq] € RYT,A = AL = [A; Az Al € RYYE = B, =

[E1;Ez;...;EqQl € R[XT andl = Yqlg-

1.5.5 Individual Differences in Scaling (INDSCAL) and Implicit Slice Canonical
Decomposition Model (IMCAND)

Individual Differerces in Scaling (INDSCAL) was proposed by Carroll and Cha29 in the
same pper in which they introduced CANDECOMP, and is a special case of the three-way
PARAFAC for third-order tensors that are symmetric in two modes.

The INDSCAL imposes the constraint that the first two factor matrices in the decomposition
are the same, that is,

J
Y = Z aj o ajocC, (1.148)
=1
or equivalently
‘X;I_xlA X2 A X3 C, (1.149)
wheeY € RX>Q with yig = Vig,i = 1,...,1,t = 1,...,1,q = 1,...,Q, and] is the cubic

identity tensor. The goal is to find an optimal solution for matridesand C, subject to the
nonnegativity and sparsity constraints.

In data mining applications third-order input tensdrss R"*'*Q may have a special form
where each frontal slic& is the product of two matrices which are typically the maifixe
R™T and its transposkg, thus yielding

Yq = XoXq. (q=1,2,...,Q). (1.150)

Such a model is called the IMplicit Slice Canonical Decomposition (IMSCAND) Model (see
Figure 1.33 where the PARAFAC or Tucker decompositions of the tenéare performed
implicitly, that is, by using matriceXq and not directly the elemenys, (which do not need to
be stored on computer) 21].

For example, these slice matrices may represent covariance matrices in signal processing,
whereas in text mining (clustering of scientific publications from a set of SIAM journals) slices
Y 4 are document by document matrices and may have the following mead2js [

e Y, = similarity between names of authors,

e Y, = similarity between words in the abstract,

e Y3 = similarity between author-specified keywords,
e Y, = similarity between titles,

e Y5 = co-citation information,

e Y = co-reference information.

The first four slices are formed from feature-document matrices for the specified similarity. If
there exists no similarity between two documents, then the corresponding element in a slice is
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(I x1x6)

Fig. 1.33 Tlustration of IMplicit Slice Canonical Decomposition (IMSCAND). The frontal slices
Yy are not stored directly but rather represented by a set of matrices Xq as Yq = qug for
q=12,...,6.

nonzero. For the fifth slice, the elemsgt indicates the number of papers that both documents
i andt cite. Whereas the elemewis on the sixth slice is the number of papers cited by both
documents$ andt.

1.5.6 Shifted PARAFAC and Convolutive NTF

Harshmaret al.[64] introduced the shifted PARAFAC (S-PARAFAC) in order to deal veiltift
factors in sequential data such as time series or spectra data. For example, the S-PARAFAC for
mode-2 can be described for each enigyas

J
Yia = ) & Bitesy)j Caj + Stg, (1.151)
=

where the shift parametes;; gives the shift at columij of the factorB. We can rewrite this
model for frontal slices

Yq=ADySs(B)" +Eq, (q=1,...,Q), (1.152)

where the shift operator (or functio®), (B) shifts all elements in each column of the matrix

B by amountsy;. The vectors; is a vector ofJ shift values taken from row of the (implied)

shift matrixS € R?, and the matriDq is a diagonal matrix containing thieth row of C. One
limitation of S-PARAFAC is that it only considers one-dimensional shifts, typically time, but
does not handle two-dimensional shifts that might be encountered in neuroimages of brain scans

(2], [107)
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Table 1.3 Basic description of PARAFAC (CP) and NTF (if we impose additional nonnegativity
constraints) family models. Some models are expressed in matrix and/or scalar notations to make
it easier understand the differences and compare them with standard PARAFAC. For Shifted NTF
(S-NTF), s represents the shift at column g for the j-th factor. For Convolutive NTF (CNTF),
S is used usually to capture the shifts in the frequency spectrogram.

Model Degription

J
Yitg = Zaij btj Cqj + €iq
Nonnegative PARAFAC (NTF) = ;
Yq = AD¢B" +Eq= ) cqia; b] + Eq
=1

<
Qo
1l

NGB

aj brjq Cqj + €iq

NTF1 I 5
Yq = ADgB{ +Eq= Zcqj aj (b)) + Eq
=1
J
Yig = ), 8ijq bj Caj + &g
NTF2 =

J
=1

J
i itg = ) aij Drsy)j Caj + &
Shifted NTF (S-NTF) Yig ; j Pt+sq)i Caj T Citq

Yq = ADqSs(B)" +Eq

aj b-s+1)j Cqjs + Eitg

'M“‘
Mo

Convolutive NTF (CNTF) e
Yq =AY DY (TysnB)" +Eq
s=1
J S R
C2NTF Vitg = Z Z Z ajj be_s+1)jr Cig-r+1)js + Gitg
j=1 s=1 r=1

J
INDSCAL Yia = ). & a Cqj + 6ug
=
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Another extension of PARAFAC is Convolutive PARAFAC (CPARAFAC or CNTF) which
is a generalization of CNMF to multiway spectral data. Morup and Schrih@if introduced
this model with the name Sparse Nonnegative Tensor 2D Deconvolution (SNTF2D). The single
convolutive NTF on mode-2 and mode-3 and with rahfor the nonnegative tensdtr e R}7*?
returns a factor matrixd € R on the first dimension, a factor matike RTY on the second

dimension, and a set &factor matrices or tens@ € RY*7*°, and can be expressed as follows

J S
Yia = > ) @b s1)j Cajs + Ga. (1.153)
j=1 s=1

ForS = 1, CPARAFAC (CNTF) simplifies to PARAFAC (NTF). Matrix representation of this
model via frontal slice¥y, (q=1,...,Q) is given by

S-1 S-1
Yq=A Z D (Ty9B)T = A Z DSBS (1.154)
s=0 s=0

whereDEf) is a diagonal matrix containing the fibegs, and the shift operatorg,s), Ts are
defined in Section 1.2.12. In the tensor form the CNTF can be described as

S
Y =Y 1x1Axs Tys1)B x3Cs+E. (1.155)

s=1

The CPARAFAC can be extended to the double convolutive model (C2PARAFAC or C2NTF)
as

J S R
Yitg = Z Z Z aj Be-s+1)jr Cig-r+1)js» (1.156)

where the second factor in Equatioh.{55 is no longer a matrix but a tensor of siZexX J x R).

1.5.7 Nonnegative Tucker Decompositions

The Tucker decomposition, also called the Tucker3 or best rai P) approximation, can be
formulated as follow® [135, [134:

Givena third-order data tensof € R'*T*Q and three positive indicgd, R, P} << {I, T, Q},
find a core tenso& = [gj,] € R®P and three component matrices called factor or loading
matrices or factorsA = [aj, ap,...,a;] € R, B = [by,by,...,bg] € R™R andC =

[C1, Ca, ..., cp] € R¥P which perform the following approximate decomposition:
J R P
Y=g (@jobocy)+E (1.157)
j=1r=1 p=1

20The Tucker3 model with orthogonal factors is also known as three-way PCA (principal component analysis). The
model can be naturally extendedNeway Tucker decomposition of arbitrafy-th order tensor.
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Fig. 1.34 Tucker3 model is a weighted sum of the outer product of three vectors (factors) stored
as columns of component matrices A € R™,B = XT € R™R and C € R®P. The core tensor
G € R™PP defines a linking structure between the set of components and J, R, and P denote the
number of components. In order to achieve uniqueness for the Tucker models it is necessary to
impose additional constraints such as sparsity and nonnegativity.

or equivalently in the element-wise form

P

J R
Yia = > > > Girp &) b Cgp+ 6rg, (1.158)

j=1 r=1 p=1

where a; € R!, bj € RT, andc; € R, (that is, the vectors within the associated component
(factor) matrices\, B andC,), andgj, are scaling factors which are the entries of a core tensor
G = [gyp] € RVRP,

The original Tucker model makes the assumption of orthogonality of the factor matrices (in
analogy to SVD), 19, [17], [84], [83], [117], [104. We will, however, ignore these constraints.
By imposing nonnegativity constraints the problem of estimating the component matrices and a
core tensor is converted into a generalized NMF problem called the Nonnegative Tucker Decom-
position (NTD) (see Chaptétfor details). The first implementations of Tucker decomposition
with nonnegativity constraints together with a number of other constraints were given by Kiers,
Smilde and Bro inT9], [17]. The NTD imposes nonnegativity constraints for all component
matices and a core tensor, while a semi-NTD (in analogy to semi-NMF) imposes nonnegativity
constraints to only some components matriceg@rgbme elements of the core tensor.

There are several equivalent mathematical descriptions for the Tucker model (se&.Znble
It canbe expressed in a compact matrix form using modedltiplications

Y =G x;Ax;Bx3C+E = [G;A,B,C] +E, (1.159)

wherei = [[G; A, B, CJ is the shorthand notation for the Tucker3 tensor decomposition.
Using the unfolding approach we can obtain matrix forms expressed compactly by the Kro-
necker products:

= AGqy (CeB)T, (1.160)
= BGpp) (CR®A)T, (1.161)

< <
= =
N =)
S &
I I
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Table 1.4 Formulations of the Tucker3 model for a third-order tensor Y € R™T*Q with the core

tensor G € R”®P and the factor matrices: A = [ag, @, ..., ] € R™, B = [by, by, ..., bg] € RPR
and C = [Cl, Co,..., Cp] e ROP,
Operator Mathematical Formula

P
Outer product Z Qirp @jobroco +E

=1

<
Mc_.
M=~

I
iy
=

1
iy

©

P
Z Ojrp aij brr Cqp t Eitq

M
M=

Scalar Yitq
j=1 r=1 p=1
Moden multiplications Y =Gx1Ax2Bx3C+E
Yy =AHB +E;, (@=12...,Q
Slice representation =
p=1
Vector vedY) = vec(Y(y) = (C®B®A) vecG)
Y = A G (Ce B)T
Kronecker product Yo =BGy (CeA)
Y (3) = C Gy (B ®A)T
Y@ = CGp (BoA)". (1.162)

It is often convenient to represent the three-way Tucker model in its vectorized forms

vec (Y1) = vec AG1)(C®B)") = (C®B)® A vec(Gy), (1.163)
vec (Y(2) = vec BGp(C® A)T) = (C®A)®B vec (G), (1.164)
vec (Y(3) = vec CGEB®A)") = (B®A)® C vec(G). (1.165)

The Tucker model described above is often called the Tucker3 model because a third-order
tensor is decomposed into three factor (loading) matrices (g&yB, C}) and a core tensde.

In applications where we have two factor matrices or even only one, the Tucker3 model for a
three-way tensor simplifies into the Tucker2 or Tuckerl models (see Tdf)leThe Tucker2
modelcan be obtained from the Tucker3 model by absorbing one factor by a core tensor (see
Figurel1.35(b), that is,

Y = G x; A x2 B. (1.166)
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Fig. 1.35 Summary of the three related Tucker decompositions.

For the Tuckerl model we have only one factor matrix (while two others are absorbed by a core
tensor) which is described as (see also Fidugs(c)

@67

It is interesting to note that the approximation of a tensor by factor matrices and a core

tensor often helps to simplify mathematical operations and reduce the computation cost of some
operations in multi-linear (tensor) algebra. For example:

X=£>?3a% (gX]_AXzBX3C) >?3a
= (g >?3CT3.) X1 A %X, B
= gCaxlezB,

whereG ., = G X3 CTa. Comparison of tensor decomposition models are summarized in Table
1.6.
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Table 1.5 Tucker models for a third-order tensor Y € R>*T*Q,

Model Degription

J
Yitg = Z Ojtq @ij + €itq
=1
Tuckerl Y = Gx;A+E, (G c RJXTXQ)
Yq =AGq+Eq, (q=1,29"',Q)
Ya) = AGw + Eq

J R
Yitg = Z Z Ojrq &j by + €xq
j=1r=1
Y =Gx1AxyB+E, (G e RRXQ)

Y =iiajobfogjr+g

j=1 r=1

Tucker2

X
@
|
o
@
™
®
>
N—r
+
1m
©

Jjrp &j b Cqp + Eig

T
M
M'U

Tucker3
Y =Gx1Ax;Bx3C+E, (QERJXRXP)

M
M=
M'U

Shifted Tucker3 Ojrp &i+sy)j Ptr Cqp + Eitg

1.5.8 Block Component Decompositions

Block Component Decompositions (BCDs) (also called Block ConepbiModels) introduced
by De Lathauwer and Nion for applications in signal processing and wireless communications
[4€], [47], [11Q, [109, [48] can be considered as a sum of basic subtensor decompositions
(see kgure 1.36). Each basic subtensor in this sum has the same kind of factorizatide-
composition, typically, Tucker2 or Tucker3 decomposition, and the corresponding components
have a similar structure (regarding dimensions, sparsity profile and nonnegativity constraints) as
illustrated in Figured.36(a), (b) and (c).

The malel shown in Figurel.36(a) called the BCD rank4, 1), decomposes a data tensor
Y € R"™Q into a sum ofR sultensorsy @ € R*™Q (r = 1,2,...,R). Each of the subtensor
Y s factorized into three factord, € R, B, € R™¥ andc, € RQ. The mathematical
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Table 1.6 Matrix and tensor representations for various factorization models (for most of the
models we impose additional nonnegativity constraints).

Model Matrix Representation Tensor Representation
NMF Y=AX=AB" Y x| x;AxyXT
SVD Y=UXVT Y=ExUxpV
R R
:Zo'rurvp— ZZO—rUrOVr
r=1 r=1
Three-factor NMF Y=ASX=ASBT Y = Sx; Axo XT
NTF Yq 2 ADg(cq) BT Y =lx;Ax;BxsC
J
(nonnegative PARAFAC) ¢=1,2,...,Q) = Z aj o bjoc;
=1
NTF1 Yq = A Dg(cq) Bl = A Dg(cq) Xq
=212,...,Q) Y =Xx1Ax3C
NTF2 Yq = Aq Dg(cq) BT = Aq Dg(Cq) X
=212,...,Q) Y =Ax;Bx3C
Tuckerl Yq=AG.q Y=Gx1A
(q: 1923'--9Q)
Tucker2 Yq=AG.qBT Y=Gx;Ax,B
J R
=212,...,Q) ZZZajObrOgjr
j=1r=1
Tucker3 Yq = AHBT Y=Gx;Ax;Bx,C
P J R P
Hq:chpG::p :ZZZgjrp(ajobrocp)
p=1 j=1 r=1 p=1

description of this BCD model is given by

R R
Y = Z‘x@ +E= Z;(ArBrT) oG +E, (1.168)
r= r=
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Fig. 1.36 Block Component Decompositions (BCD) for a third-order tensor Y € R*™Q: (a) BCD
with rank-(J, 1), (b) BCD with rank -(J, P) and (¢) BCD with rank-(J, S, P).

or equvalently

R
Y =) A xB xs¢ +E, (1.169)
r=1

where tensorg\, = 2 A, € R grethree-way tensors with only one frontal slice. With this
notation, each subtenslrSFr ) is aTucker2 model with the core tensgfr , ard factorsB, andc;.

Hence, the BCD rankd(, 1) decomposition can be considered as a sum of simplified Tucker-
2 models. The objective is to estimate component matges R, B, € R™Y,  (r =
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1,2,...,R) and a factor matrixC = [c1, Cp, ..., Cr] € R¥R subject to optional nonnegativity
and sparsity constraints.

Using the unfolding approach, the above BCD model can be written in several equivalent
forms:

R R
Yo = Z [Ar](l) (c®B)" = ZAr (¢ ®By)'
r=1 r=1
=
=[A1As - Ar| [c1®B1 @B - cR®BR] . (1.170)
R R
Yo = ) B[A, o) =) BAT(Cel)
r=1 r=1
R R
= ZBr [(Cr®|I)Ar]T = ZBr (Cr®Ar)T
r=1 r=1
-
=|[B1B: - Br| [c1i®A1 2 ®A; - r®AR] - (1.171)
R
Yo = ) oA, Bel)T =) avec(A) B @)
r=1

M= 1M

¢ [(Br @ h)vec(A)]” = > covec(AB])'
r=1

]
=

r

= C[vec(AlBI) vec(Ang) vec(ARBE) ]T- (1.172)

A simple and natural extension of the model BCD radk-{) assumes that the tensdks ¢
R™>P containsP (instead of one) frontal slices of sizex J) (see Figurel.36(b). This model
is referred to as the BCD with rank}(P) and is described as follows

(1.173)

R
Y =) (A x2B x3C/)+E
=1

r

The objective is to find a set oR tensorsA, € R™*P a ensorB € R™R and a tensor

C e R¥PR By stacking tensor8, along their third dimension, we form a common tengoe
R™>PR The mode-1 matricization of this BCD model gives an equivalent matrix factorization
model [L10, [48]:

I

R
Yo = ) A (CroB)T (1.174)
r=1

= A(l) [C1®Bl Co®Bs --- Cr® BR]T. (1.175)
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The most general, BCD rank3(S, P) model is formulated as a sum Bf Tucker3 models of
corresponding factors, € R, B, € R™S, C, € R and core tensoB, € R¥>*P, and
described in a compact form as (see FigLr&6(c):

(1.176)

R
Y =3 (G x1Ar x2B xsC;) + E
=1

r

This model can be also converted in a similar way to a matrix factorization model with set of
constrained component matrices.

1.5.9 Block-Oriented Decompositions

A natural extension of the tensor decomposition models discusshd previous sections will

be a decomposition which uses sum of subtensors factorized the data tensor &keremtdi
modes. Such decompositions will be referred to as Block-Oriented Decompositions (BODS).
The key distinction between BOD and BCD models is that subtensors in a BCD model attempt
to explain the data tensor in the same modes while BOD models exploit at least two up to all pos-
sible separate modes for each subtensors. For example, using Tucker2 model the corresponding
BOD2 model can be formulated as follows

l = 91 X1 Al X2 B]_ + gz X1 A2 X3 C]_ + 93 X2 Bg X3 Cg, (1177)

where core tensors and factor matrices have suitable dimensions.
Analogously, we can define a simpler BOD1 model which is based on the Tuckerl models
(see Figurd.37):

Y=Hx1A+L x2B+Fx3C, (1.178)

where tensorgd € RR>TQ | ¢ R*RXQ F ¢ R'XT*Rs gre core tensors in the Tuckerl models
with moden, n = 1,2,3, A € R>*R B € R™R andC e R®® are corresponding factors.
The objective is to find three core tenseétsL, F and three corresponding factor matridesB
andC. This model is also called the Slice Oriented Decomposition (SOD) which was recently
proposed and investigated by Caiafa and CichocHj [@3d may have various mathematical and

graphcal representations.

Remark 1.1 The main motivation to use BOD1 model is to elimingfget ina data tensor

and provide unique and meaningful representation of the extracted components. The BOD1 can
be considered as a generalization or extension of ffieeaNMF model presented in section
(2.2.7. As we will show in Chapter the BOD1 model can resolve the problem related with
offset dgraded by flicker, occlusion or discontinuity.

Using matricization approach we obtain for BOD1 model several equivalent matrix factor-
ization models:

Y(l) = AH(;L) + L(l)(|Q® B)T + F(l) (C® |'|')T

=|[ALw Fo|[Hy 108B" CTelIr . (1.179)

= Hp (Ig®A) +BLp +F (Co 1))

<
=
N
S
I
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Fig. 1.37 Tllustration of the Block-Oriented Decomposition (BOD1) for a third-order tensor.
Three Tuckerl models express the data tensor along each modes. Typically, core tensors H €
RRXTXQ | ¢ RPMRXQF ¢ R*TRs have much smaller dimensions than a data tensor Y € R>TxQ
ie, Ry <<l, Ro<< T, and R3 << Q.

=|[He B Fa | [10®AT Ly CT o1/ |- (1.180)
Y = He (I1®A) +Lg Bl +CFg

=|[H@ L C|[Ir AT BT ol Fg - (1.181)

These matrix representations allow us to compute core tensors and factor matrices via matrix
factorization.

Similar, but more sophisticated BOD models can be defined based on a restricted Tucker3
model [L2g and also PARATUCK2 or DEDICOM models (see the next section).

1.5.10 PARATUCK2 and DEDICOM Models

The PARATUCK?2, developed by Harshman and Lundy] [6% generalization of the PARAFAC
modéd, that adds some of the flexibility of Tucker2 model while retaining some of PARAFAC’s
unigueness properties. The name PARATUCK2 indicates its similarity to both the PARAFAC
and the Tucker2 model. The PARATUCK?2 model performs decomposition of an arbitrary third-
order tensor (see Figufe38(a) Y € R™*T*Q as follows

Yq=AD{ RDP BT +E, (=12,...,Q), (1.182)

whee A € R™, B € RPP, R € R, D € R¥ andD{® ¢ RP* are diagonal matrices
representing the-th frontal slices of the tensoB® e R™>Q, ard D® e RP*PXQ, respec-
tively. In fact, tensoD® is formed by a matrixJ € R whose columns are diagonals of the
corresponding frontal slices and ten&8P is constructed from a matri¥ € RP*Q.

DY) = diag(us), D = diagt). (1.183)

The j-th rowy, (or\_/j) gives the weights of participation for the corresponding compoagint

the factorA (or bj in B) with respect to the third dimension. The terﬁa{é\)RDgB)T correspond
to frontal slices of the core tens@ of a Tucker2 model, but due to the restricted structure of
the @re tensor compared to Tucker2 uniqueness is retained. The core@oanibe described
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as
vec(Gq) = vec(DgA)RDgB)) = vec(diag(uq)R diag(vq)T)
= (diag(vq) ® diag(uq)) vec(R) = diag(vq ® uq) vec(R)
= (Vg ® Ug) ® vec(R) , (1.184)
or simply via frontal slices
Gy=(ugvg)®R, (@=12...,Q). (1.185)

This leads to the mode-3 matricization of the core tei@biaving following form

G = [vec(Gy),...,vec(Gr)]"
= [(vy ® u1) ® vec(R),..., (VR ® ur) ® vec(R)]"
=[vi®U1,...,VR®UR]" ®[vec(R),...,vec(R)]"
=(VoU)eTg
=Z@@Tp (1.186)

or
G=ZeT. (1.187)

whereZ € R™P<Q is a rankQ PARAFAC tensor represented by two factdssandV (the third
factor for the mode-3 is identity matriy), that is

Z=1xUx,V, (1.188)

andT e R>™Q s a tensor with identical frontal slices expressed by the m&rixT, =

R, Vq. Equation (1.187 indicates that the core tens@ is the Hadamard product of the
PARAFAC tensor and a special (constrained) tensor with identity frontal slices. In other words
the PARATUCK?2 can be considered as the Tucker2 model in which the core tensor has spe-
cial PARAFAC decomposition as illustrated in Figur&8(a) The PARATUCK2 model is well

suited for a certain class of multi-way problems that involve interactions between factors.

Figure 1.38(b)illustrates a special form of PARATUCK?2 called the three-way DEDM
(inxDEcomposition into Directional COMponents) modé], [2L0], [85]. In this case for a given
symmearic third-order data tensof € R'*Q with frontal slicesY 4 the simplified decomposi-
tion is:

Yq=ADgqRDgA" +E, (=1,2,...,Q), (1.189)

where A € R is a matrix of loadingsDy is a diagonal matrix representing theth frontal
slice of the tensob € R™>¥*Q, andR € R is an asymmetric matrix.

The three-way DEDICOM model can be considered as natural extension of the 2-way DEDI-
COM model L31]:

Y =ARAT +E, (1.190)
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Fig. 1.38 (a) PARATUCK?2 model performing decomposition of tensor Y € R>*™Q. (b) DEDI-
COM model for a symmetric third-order tensor Y € R (¢) DEDICOM model for a square
data matrix (usually, we assume that a matrix A is orthogonal).

whereY e R™! is a given data matrix (generally asymmetric), & a matrix representing
error not explained by the model. The goal is to estimate the best-fitting matice®'*’ and
R € R?J. To achieve this goal we usually perform the following optimization problem:

rpin IY — ARAT|Z. (1.191)

The matrixA € R'*? comprises loadings or weights (with< 1), and the square matrR is a
matrix that represents the asymmetric relationships for the latent dimensiéns of
This uniqueness of the three-way DEDICOM gives plausibility to the factors making them
a valid description with a high confidence that they can explain more variance than convenient
rotated 2-way solutions3f].
It shauld be noted that is some close relationships between PARAFAC?2 and three-way PARATUCK?2
and DEDICOM models. In fact the PARATUCK2 model can be derived from PARAFAC2
model by performing PARAFAC factorization of a tensdr For the PARFAAC2 model the
matix R = H is dense, symmetric matrix (usually positive definite), while the marix
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Fig. 1.39 Graphical illustration of hierarchical tensor decomposition.

the PARATUCK2 or DEDICOM model is a dense, generally asymmetric matrix that captures
asymmetric relationships.

1.5.11 Hierarchical Tensor Decomposition

Recently, multi-linear models based on tensor approximatioe heseived much attention as

tools for denoising, reduction or compression as they have the potential to produce more com-
pact representations of multi-dimensional data than traditional dimensionality reduction meth-
ods. We will exploit the aforementioned characteristics of visual 3D data and develop an anal-
ysis and a representation technique based on a hierarchical tensor-based transformation. In this
technique, a multi-dimensional dataset is transformed into a hierarchy of signals to reflect multi-
scale structures present in the multi-way data. The signal at each level of the hierarchy is further
divided into a number of tensors with smaller spatial support to expose spatial inhomogene-
ity structures. To achieve a highly compact representation these smaller dimension tensors are
further transformed and pruned using a tensor approximation techriigde [
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It is interesting to note that the hierarchical scheme is very similar to the BCD model dis-
cussed in sectiorl(5.8. A source (data) tensor is expressed as a sum of multiple tensomde
position models. However, the hierarchical technique is much more simpler than BCD model.
For BCD model, all factors in all subtensors are simultaneously estimated, hence, constraints
imposed on these factors such as nonnegative can be assured during the estimation process.
However, BCD increases the complexity of the algorithms, especially for very large-scale data
set. For a specified data, we can choose an acceptable fifdzdveeen simplicity and accuracy.

1.6 DISCUSSION AND CONCLUSIONS

In this chapter we have presented a variety dfedert models, graphical and mathematical
representations for NMF, NTF, NTD and the related maixsor factorizations and decompo-
sitions. Our emphasis has been on the formulation of the problems and establishing relationships
and links among dierent models. Each model usually providesféedént interpretation of the

data and may have fiierent applications. Various equivalent representations have been pre-
sented which will serve as a basis for the development of learning algorithms throughout this
book.

It has been highlighted that constrained models with nonnegativity and sparsity constraints
for real-world data cannot provide a perfect fit to the observed data (i.e., they do not explain
as much variance in the input data and may have larger residual errors) as compared to uncon-
strained factorization and decomposition models. They, however, often produce more meaning-
ful physical interpretations. Although nonnegative factorizatidesompositions already ex-
hibit some degree of sparsity, the combination of both constraints enables a precise control of
sparsity.

Appendix 1.A. Uniqueness Conditions for Three-way Tensor Factorizations

The most attractive feature of the PARAFAC model is its uniquepesgserty. Kruskal 89 has
proved that, for fixed error tensdt, the vectorsa;, bj, andc; of component matrice&, B and
C are unique up to unavoidable scaling and permutation of col#tmsvided that

ka+ kg +ke>J+2 (A1)

whereka, kg, ke denote thek-ranks of the component matrices. Tkeank of a matrix is the
largest numbek such that every subset btolumns of the matrix is linearly independeh8[).
Kruskal's uniqueness condition was generalizeMth order tensors withl > 3 by Sidropou-
los and Bro 124]. A more accessible proof of the uniqueness conditbei) for the PARAFAC
modelwas given by Stegeman and Sidiropould29. For the case where one of the component
matricesA, B andC has full column rank, weaker uniqueness conditions than)(#ate been
derived by Jiang and Sidiropoulos, De Lathauwer, and Stegeman (e.g12&e[130). For
exampe, if a component matri€ € R is full column rank, and\ € R™’ andB € R™ have

21If a PARAFAC solution is unique up to these indeterminacies, it is called essentially unique. Two PARAFAC solutions
that are identical up to the essential uniqueness indeterminacies will be called equivalent.



APPENDIX 73

k-rank at least 2, then Kruskal's conditid@ + kg > J + 2 implies uniqueness of a PARAFAC
solution [L27).

It shauld be noted that the above conditions are only valid for the unrestricted PARAFAC
model. If we impose additional constraints such as nonnegativity, sparsity, orthogonality the
conditions for uniqueness can be rela¥eand they can be fierent[12§, [21]. For exam-
ple, he NTF, NTF1, NTF2 and NTD models are unique (i.e., without rotational ambiguity) if
component matrices afat core tensor are fliciently sparse.

Appendix 1.B. Singular Value Decomposition (SVD) and Principal Component Anal-
ysis (PCA) with Sparsity and/or Nonnegativity Constraints

SVD and PCA are widely used tools, for example, in medical imagéysisaor dimension
reduction, model building, and data understanding and exploration. They have applications
in virtually all areas of science, machine learning, image processing, engineering, genetics,
neurocomputing, chemistry, meteorology, computer networks, to name just a few, where large
data sets are encountered.Yife R'*T is a data matrix encoding samples ofl variables,

with | being large, PCA aims at finding a few linear combinations of these variables, called the
principal components, which point in orthogonal directions explaining as much of the variance
in the data as possible. The purpose of principal componentanalysis PCA is to derive a relatively
small number of uncorrelated linear combinations (principal components) of a set of random
zero-mean variables while retaining as much of the information from the original variables as
possible. Among the objectives of Principal Components Analysis are the following.

Dimensionality reduction.
. Determination of linear combinations of variables.

. Feature selection: the choosing of the most useful variables.

1.
2
3
4. Visualization of multi-dimensional data.
5. ldentification of underlying variables.

6

. ldentification of groups of objects or of outliers.

The success of PGAVD is due to two main optimal properties: Principal components sequen-
tially capture the maximum variability of thus guaranteeing minimal information loss, and

they are mutually uncorrelated. Despite the power and popularity of PCA, one key drawback
is its lack of sparseness (i.e., factor loadings are linear combinations of all the input variables),
yet sparse representations are generally desirable since they aid human understanding (e.g., with
gene expression data), reduce computational costs and promote better generalization in learning
algorithms. In other words, the standard principal components (PCs) can sometimés- be di
cult to interpret, because they are linear combinations of all the original variables. To facilitate
better interpretation, sparse godnonnegative PCA estimate modified PCs with sparsgoand

22Moreover, by imposing the nonnegativity or orthogonality constraints the PARAFAC has an optimal solution, i.e., there
is no risk for degenerate solutiondg]. Imposing nonnegativity constraints makes degenerative ispkiimpossible

since no factor can counteract thigeet of another factor and usually improves convergence since the search space is
greatly reduced.
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nonnegative eigenvectors, i.e. loadings with very few nonzero and possibly nonnegative entries.
We use the connection of PCA with SVD of the data matrix and extract the PCs through solving
a low rank matrix approximation problem. Regularization penalties are usually incorporated to
the corresponding minimization problem to enforce sparsity@ambnnegativity in PC loadings
[143, [123.

Standrd PCA is essentially the same technique as SVD but usually obtained using slightly
different assumptions. Usually, in PCA we use normalized data with each variable centered and
possibly normalized by the standard deviation.

B.1 STANDARD SVD AND PCA

At first let us consider basic properties of standard SVD and P@A SVD of a data matriX €
R™T assuming without loss of generality tHRt> | leads to the following matrix factorization

J
Y=uzv' =) ojup v, (B.1)

=1
where the matrix = [ug, Uy, ..., u;] € R™! contains the left singular vectorst € R*T with
nonnegative elements on the main diagonal representing the singular ¥alaed the matrix
V = [v1,Vo,...,vr] € R™T represents th& right singular vectors called the loading factors.
The nonnegative quantities;, sorted asry > o2 > - > 03> 031 =032 =---=0) =0can
be shown to be the square roots of the eigenvalues of the data covariance¥ivatrix R'™' .
The terrmjva is anl xT rank-one matrix called often theth eigenimage of . Orthogonality of
the SVD expansion ensures that the left and right singular vectors are orthogomﬂu'}e_:, 8ij
andvv; = &jj,with 6;j the Kronecker function (or equivalently’ U = 1 andVTV = I). In many
applications, it is most practical to work with the truncated form of the SVD where only the first
P < J, (whered is a rank ofY with J < I) singular values are used so that

P
Y=UpZpVE= ) ojupvi, (B.2)
=1

whereUp = [Uy, Uy, ..., up] € R*P Ep = diago1, 02, ...,0p}andV = [vy, Vo, ..., vp] € RT*P.
This is no longer an exact decomposition of the data mafribut according to the Eckart-
Young theorem it is the best rarfkapproximation in the least-squares sense and it is still unique
(neglecting signs of vectors ambiguity) if the singular values are distinct.

Approximation of the matrixy by a rank-one matrixruv’ of two unknown vectors: =
[ug, Uz,...,u]" € R andv = [vi,Va,...,vr]T € RT normalized to unit length with a scaling
constant terna- can be presented as follows:

Y=0uVv +E, (B.3)

whereE € R™¥T is a matrix of the residual erroe. In order to compute the unknown vectors
we minimize the squared Euclidean error ag|[99

T
=lER = &= > -0 uw? (B4)
it

i=1 t=1
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The necessary conditions for minimization &.4) are obtained by equating gradients to zero:

8J il
a_uil =-20 t=El(yit —o U v = 0, (B.5)
0 :
—=—2§ it — o U VU = 0, B.6
v o 2. (Yit — o Ui V)i (B.6)

These equations can be expressed as follows:
T T

Dyivi=ou Y

t=1 1

t=

| |
Vit Ui = 0 Vg Z u?. (B.7)
= =]

Taking into account that the vectors are normalized to unit length, thatis= Y|_; u? = 1
andv'v = Zthl v2 = 1, we can write the above equations in a compact matrix form as

Yv=ou, YTu=ov (B.8)
or equivalently (by substituting one of Eq®.8) into another)
YTY v =02y, YYTu = o?u, (B.9)

which are classical eigenvalue problems which estimate the maximum eigevlyalue—f =
a2 ., With the corresponding eigen vectars= u andv; = v. The solutions of these problems
give the best first rank-one approximation of EB.1).

One ofthe most important results for nonnegative matrices is the followigp [

Theorem B.1 (Perron-Frobenius) For a square nonnegative matriX there exists a largest
modulus eigenvalue &f which is nonnegative and a corresponding nonnegative eigenvector.

The eigenvector satisfying the Perron-Frobenius theorem is usually referred to as the Perron
vector of a honnegative matrix. For a rectangular nonnegative matrix, a similar result can be
established for the largest singular value and its corresponding singular vector:

Theorem B.2 The leading singular vectorsu;, and v, corresponding to the largest singular
valueomax = o1 of a nonnegative matriY = ULVT = ¥ ojuiv] (Withoy > 02 > -+ > o)
are nonnegative.

Based on this observation, it is straightforward to compute the best rank-one NMF approxima-
tion a-lule, this idea can be extended to approximate a higher-order NMF. If we compute the
rank-one NMF and subtract it from the original matvix = Y — ouVI, the input data matrix

will no longer be nonnegative, however, all negative elements can be forced to be zero or are
positive and the procedure can be repeatedl [l order to estimate the next singular values
and tre corresponding singular vectors, we may apply a deflation approach, that is,

Yi=Yj1-ojupv, (j=12....7), (B.10)

whereYo = Y. Solving the same optimization proble.4) for the residual matriy ; yields
the set of consecutive singular values and corresponding singular vectors. Repeating reduction
of the matrix yields the next set of the solution until the deflation matgix becomes the zero.



76 A. CICHOCKI, R. ZDUNEK, A.H. PHAN, S. AMARI

Using the property of the orthogonality of the eigenvectors, and the equélty = v Yu =
o we can estimate the precision of the matrix approximation with theMiest] pairs of singular
vectors P9:

J

Iy — ZU;UJV I = ZZ(yut Zo'juiivit)z

i=1 t=1 j=1

= VI - Z(r?, (B.11)
=1

and the residual error reduces exactly to zero with the number of singular values equal to the
matrix rank, that is, foP = J. Thus, we can write for the rankmatrix:

J
IYIiE =) o, (B.12)
j=1

It is interesting to note that (taking into account thai = Zthl YitVt/ Zthl V2 (see Egs. B.7))
the st function B.4) can be expressed &89

|
h=lER =), Z(yn o vy’
i=1 t=1
.
ZZ(O' u) Z Yit\) + Z(O' u)? thz
t=1

M—c

i t=1

=1

Vi
_ . Zl 1(Zt 1y|t t) . (B.13)
i=1 t=1 Zt th
In matrix notation the cost function can be written as
VIYTYvy
IENZ = IYIZ - e - IYIIE = o2, (B.14)
2

where the second term is called the Rayleigh quotient. The maximum value of the Rayleigh
guotient is exactly equal to the maximum eigenvalye a-i.

B.2 SPARSE PCA

For sparse PCA we may employ many alternative approadt&s [One of the simplest and
most dficient approaches is to apply minimization of the following cost functiti2f:

@ =Y —u |2 + p(), (B.15)

whereV = oV, p(V) is the additional penalty term which imposes sparsity. Typicall§i]) =
22|[¥|1 or p(¥) = A2|[¥o, whereA is the nonnegative cigcient that controls the degree of
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sparsity.?® The cost function can be evaluated in scalar form as follows

MUEDIDNTEIEEDWIOESY [Z(yn - U W)+ p(w)
i t t t i
= Z Zyﬁ -2 [YTule % + % +p(\7t)], t=12...,T). (B.16)
t i

It is not difficult to see (see Chapté) that the optimal value of; depeads on the penalty term
p(%), in particular foro(%) = 24||¥]; we use soft shrinkage with threshold

% = PP(x) = sign@)[1x| - 4. (B.17)
and forp(%) = A2||¥l|o we use hard shrinkage projection

- x, for |x > 4;
%= PO = 1(x> ) x= {0 otherice (B.18)

wherex = [YTu];. This leads to the following iterative algorithm proposed by Shen and Huang

[123

1. Initialize: Apply the regular SVD to data matri and estimate the maximum singular
valueo; = omax and corresponding singular vectars= u; andv = vy, takevi = o1vs.
This corresponds to the best rank-one approximation efY g,

2. Update:

U« Py(YTw), (B.19)
G« (YU) /Y Tl2, (B.20)

3. Repeat Step 2 until convergence,
4. Normalize the vector,"asvy = V1 /||V4]|».

Note that fori = 0 the nonlinear shrinkage functid®, becomes a linear function and the
above procedure simplifies to the well-known standard alternating least squares SVD algorithm.
The subsequent paju,, opVv»} provides the best rank-one approximation of the corresponding
residual matrixy; = Y — o1ugvs. In other words, subsequent sparse loading vestocan be
obtained sequentially via a deflation approach and a rank-one approximation of the residual data
matricesy ;.

B.3 NONNEGATIVE PCA

In some applications it is necessary to incorporate both notimggand/or sparseness con-
straints into PCA maintaining the maximal variance property of PCA and relaxing orthogonality
constraints. The algorithm described in the previous section can be applied almost directly to

23We ddine the degree of sparsity of a PC as the number of zero elements in the corresponding loading vector
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nonnegative PCA by applying a suitable nonnegative shrinkage function. However, in such a
case, it should be noted that the orthogonality among veefasscompletely lost. If we need

to control the orthogonality constraint (to some extent) together with nonnegativity constraints,
we may alternatively apply the following optimization problebd §

1
MaxsIV3YIIE - aolll = VIVilig - adlVslh, (B.21)

subject to nonnegativity constraintg > 0, where||V4|l; = 1"V;1. The nonnegative cdie-
cientsa, andas control a level and tradébbetween sparsity and orthogonality.

Alternatively, we can use nonnegative loading parametrization, for example, exponential
parametrizationg9|

Vi = eXp()/t), Vi, (822)

wherey; are the estimated parameters. To obtain the loading in the range from zero to one we
can use multinomial parametrization

__exphn) _
R e B G ) (B.23)

Appendix 1.C. Determining a True Number of Components

Determining the number of component$or the NMF/NTF models, or more generally deter-
mining the dimensions of a core tens@iR, P, for the Tucker models is very important since the
approximately valid model is instrumental in discovering or capturing the underlying structure
in the data.

There are several approximative and heuristic techniques for determining the number of com-
ponents 20|, [132, [42], [43], [40], [108, [71]. In an ideal noiseless case when the PARAFAC
modé is perfectly satisfied, we can apply a specific procedure for calculating the PARAFAC
components fod = 2,3,... until we reach the number of components for which the errors
E = Y —Y are zero. However, in practice, it is not possible to perfectly satisfy this model. Other
proposed methods include: residual analysis, visual appearance of loadings, the number of iter-
ations of the algorithm and core consistency. In this book, we mostly rely on the PCA approach
and the core consistency diagnostic developed by Bro and Ki6y$dr finding the number of
compaents and selecting an appropriate (PARAFAC or Tucker) model. The core consistency
guantifies the resemblance between the Tucker3 core tensor and the PARAFAC core, which is a
super-identity or a superdiagonal core tensor, or in other words, a vectorfbtmogs. This di-
agnostic tool suggests whether the PARAFAC model with the specified number of components
is a valid model for the data. The core consistency above 90% is often used as an indicator of the
trilinear structure of the data, and suggests that the PARAFAC model would be an appropriate
model for the data. A core consistency value close to or lower than 50%, on the other hand,
would indicate that the PARAFAC-like model is not appropriate. This diagnostic method has
been commonly applied in the neuroscience-multi-way literakife [103, often together with
otherdiagnostic tools, in order to determine the number of components.

An efficient way is to use the PQ&VD approach, whereby for a three-way data set we first

unfold the tensor as matric¥g;) and eventually compute covariance maRix= (1/T)Y(1)Y(Tl).
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Under the assumption that the power of the signals is larger than the power of the noise, the
PCA enables us to divide observed (measured) sensor sigifgls: xs(t) + v(t) into two sub-
spaces: thsignal subspaceorresponding to principal components associated with the largest
eigenvalues called the principal eigenvalugs:is, ..., 13, (I > J) and associated eigenvectors
Vj = [v1,V2,...,V;] called the principal eigenvectors and theise subspaceorresponding to
the minor components associated with the eigenvalygs..., 4,. The subspace spanned by the
J first eigenvectors; can be considered as an approximation of the noiseless signal subspace.
One important advantage of this approach is that it enables not only a reduction in the noise
level, but also allows us to estimate the number of sources on the basis of distribution of the
eigenvalues. However, a problem arising from this approach is how to correctly set or estimate
the threshold which divides eigenvalues into the two subspaces, especially when the noise is
large (i.e., the SNR is low). The covariance matrix of the observed data can be written as

Ry

As Q
E(y:){ } = [Vs. V4] OS AN][VS,VN]T

VsAsVg + VaAxVy, (C.1)

whereV sAsV] is a rankd matrix, Vs € R™? contains the eigenvectors associated Wigin-

cipal (signaknoise subspace) eigenvalues\gf = diag11 > 1> - - - > 43} in a descending order.
Similarly, the matrixV 5 € R'™*(-9) contains thel(— J) (noise) eigenvectors that correspond to
noise eigenvalueAy = diag1;1,...,41} = o-ng. This means that, theoretically, thie< J)
smallest eigenvalues & are equal ter2, so we can determine the dimension of the signal sub-
space from the multiplicity of the smallest eigenvalues under the assumption that the variance
of the noise is relatively low and we have a perfect estimate of the covariance matrix. However,
in practice, we estimate the sample covariance matrix from a limited number of samples and the
smallest eigenvalues are usuallytdient, so the determination of the dimension of the signal
subspace is usually not an easy task.

A crucial problem is to decide how many principal components (PCs) should be retained. A
simple ad hoc rule is to plot the eigenvalues in decreasing order and search for an elbow where
the signal eigenvalues are on the left side and the noise eigenvalues on the right. Another simple
technique is to compute the cumulative percentage of the total variation explained by the PCs
and retain the number of PCs that represent, say 95% of the total variation. Such techniques
often work well in practice, but their disadvantage is that they need a subjective decision from
the user {37]. Many sophisticated methods have been introduced such as a&@ayeodel
selection method, which is referred to as the Laplace method. It is based on computing the
evidence for the data and requires integrating out all the model parameters. Another method is
the BIC (Bayesian Information Criterion) method which can be thought of as an approximation
of the Laplace criterion.

A simple heuristic method proposed by He and CichodW,[[10§ computes the Gap
(smodhness) index defined as

var[{il 5| 6%

var[(iNy] 9%

GAP(p) = (p=12....1-2), (C.2)



80 A. CICHOCKI, R. ZDUNEK, A.H. PHAN, S. AMARI

where i = Ai — Az andy > A, > --- > A, > 0 are eigenvalues of the covariance matrix for the
noisy data and the sample variance is computed as follows

-1

1-1
&2 = var[()-1] = % > { - ip > /l.] (€3)
i=p

i=p

The number of components (for each mode) is selected using the following criterion:

J= argpzl!rg!.rywl_SGAP( p). (C.4)

Recently, Ulfarsson and Sol@37 proposed a method called SURE (Steins Unbiased Risk
Estimator) which allows the number of PC components to estimate reliably.

The Laplace, BIC and SURE methods are based on the following considerati8rs The
PCA mael is given by

Vi =AXi+e+y=p+8, (C.5)

wherey = (1/T) X1, y; andy, = Ax; + y. The maximum-likelihood estimate (MLE) of PCA is
given by

|
A=Vi(A -F)2Q,  F= ), (C.6)
j=r+1

whereQ € R™ is an arbitrary orthogonal rotation matriX; = diag11, A2, ..., 4;} is a diagonal
matrix with ordered eigenvalueg > A, > --- > A, andV, = [vi,Vo,...,V;] iS @ matrix of
corresponding eigenvectors of the data covariance matrix:

1 T
Ry=1 ;(yt =9 (=N = VAV (C.7)

Hence, the estimate fag = Ax; + Y is given by

r . ’\2

_ /1,
N
j=1

Ideally, we would like to choose= J that minimizes the risk functioR, = E(||pt—;’[t||§) which
is estimated by the SURE formula

T 202 ¢ ou
2, t
-} S ()

t=1

Vi (Y - V) (C8)

—||H

In practice, the SURE algorithm chooses the number of components to minimize the SURE
formula, that is,

J= arg_min R, (C.10)
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where the SURE formula is given byL87]

_ 1 1
R =( I—I’)o'r+0'rz:/l 5(1——)r
-1 )
- 1 L1 4(1- 1/T)o—232 :
T MRS Lo om
= !
AL-1T)od <~ \ 4 - 07 2(L- 1/T)”
Cw%ZZ}J* = r(r +1)
j=li=r+1 :
2(1- T o7
wa - 1)2( ) (C12)
o2 = medlan@r+}i/li+2,-~ /ll)’ (C13)
Fy,l(i)

andy = T/I, F, 1 denotes the Marchenko-Pastur (MP) distribution function with paramegter “

Our extensive numerical experiments indicate that the Laplace method usually outperforms
the BIC method while the SURE method can achieve significantly better performance than the
Laplace method for NMF, NTF and Tucker models.

Appendix 1.D. Nonnegative Rank Factorization Using Wedderborn Theorem — Esti-
mation of the Number of Components

Nonnegative Rank Factorization (NRF) is defined as exact bilideeomposition:
J
Y= ab], (D.1)
=1

whereY € R™T, a; e R! andb; € RT.
In order to perform such decomposition (if it exists), we begin with a simple, but far reaching,
result first proved by Wedderburn.

Theorem D.3 Suppos&’ e R™*T, aeR' andb e R". Then
rank(Y — 'Y ba’ Y) = rank(Y) - 1, (D.2)
ifand onlyifc=a’ Y b # 0.
Usually, the Wedderburn theorem is formulated in more general form:
Theorem D.4 Supposé’; € R*T, ae R' andb € RT. Then the matrix
Y,=Y;-otab (D.3)

satisfies the rank subtractivity rafk,) = rank(Y) — 1 if and only if there are vectors € RT
andy € R' such that

a=Yix, b=Yly, o=y Yix. (D.4)
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The Wedderburn rank-one reduction formula.4) has led to a general matrix factorization
process (e.g., the LDU and QR decompositions, the Lanczos algorithm and the SVD are special

cases)$3.

The baic idea for the NRF is that, starting witfy = Y, then so long a¥'; are nonnegative,
we can repeatedly apply the Wedderburn formula to generate a seqighceé matrices by
defining

Yia =YY= Yix) 7YXy Y, (j=12....9) (D.5)

for properly chosen nonnegative vectors satistflej,-x,- # 0. We continue such extraction till
the residual matri¥ ; becomes zero matrix or with negative elements. Without loss of generality
we assume th@tJTYj Xj = 1 and consider the following constrained optimization probl&gj [

max min(Y;=Y;x; y'Y; D.6
XieB CRT (J i XiYj 1) (D.6)

st Yjx>0, y[Y;=0, yYja=1

There are some available routines for solving the above optimization problem, especially, the
MATLAB routine “fminmax” implements a sequential quadratic programming method. It should
be noted that this method does not guarantee finding a global solution, but only a suboptimal
local solution. On the basis of this idea Dong, Lin and Chu developed an algorithm for the NRF
using the Wedderburn rank reduction formusa]|

e Givena nonnegative data matrik and a small threshold of machiee- 0 setj = 1 and
Yi=Y.

e Step 1. If||Y|ll > &, go to Step 2. Otherwise, retrieve the following information and stop.
1. rank{) =rank.(Y) = j - 1.
2. The NRF ofY is approximately given by the summatiyn= le(j Yk Xk y{ Yk with
an error less thaa.

e Step 2. Randomly select a feasible initial vallxéao)( y(jo)) satisfying the nonnegativity
constraints.

e Step 3. Solve the maximin problei ©).

e Step4. If the objective value at the local maximizex;(y;) is negative, go to Step 5.
Otherwise, do update as follows and go to Step 1.
1. DefineYj+1 = Yj —Yj Xj ij Yj.
2.Setj=j+1.

e Step 5. Since the algorithm may get stuck at a local minimum try to restart Steps 2 and

3 multiple times. If it is decided within reasonable trials that no initial value can result in
nonnegative values, report with caution that the matrtoes not have an NRF and stop

[53.
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Similarity Measures and
Generalized Divergences

In this chapter, we overview and discuss properties of a largdyfashgeneralized and flex-
ible divergences or similarity distances between two nonnegative sequences or patterns. They
are formulated for probability distributions and for arrays used in Nonnegative Matrix Fac-
torization (NMF) and Nonnegative Tensor Factorizations (NTF). Divergences, or their counter
part (dis)similarity measures play an important role in the areas of neural computation, pattern
recognition, learning, estimation, inference, and optimization. Generally speaking, they mea-
sure a quasi-distance or directefelience between two probability distributiopandq which
can also be expressed for unconstrained nonnegative arrays and patterns.

Information theory, convex analysis, and information geometry play key roles in the formu-
lation of divergences?, 3, 6, 40, 23, 9, 29, 15, 21, 58, 36, 39, 38, 54, 55, 56, 57]. Diver-
gen@ measures are commonly used to find a distancefterdnce between twae-dimensional
probability distribution$ p = (p1, P2,...,Pn) @andqg = (g, G, ..., 0n). They are called non-
normalized measures when they are not normalizéiftppi = 1, that is, their total masses are
not necessarily unity but an arbitrary positive number.

We are mostly interested in distance-type measures which are separable, thus, satisfying the
condition

n
D(pllq) = Z d(pi, ) >0, which equals zeroif and only ifo = g (2.1)
i=1

1Usually, the vectorp corresponds to the observed data and the veptoestimated or expected data which are subject

to constraints imposed on the assumed models. For NMF proptemresponds to the data mathixandq corresponds

to estimated matri¥’ = AX. An information divergence is a measure of distance between two probability curves. In
this chapter, we discuss only one-dimensional probability curves (represented by nonnegative signals or time series).
Generalization to two or multidimensional dimensional variables is straightforward; each single subscript is simply
replaced by a doubly or triply indexed one.

95



96 A. Cichocki, S. Amari et al.

but are not necessarily symmetric in the sense

D(plla) = D(qll p). (2.2)
and do not necessarily satisfy the triangular inequality
D(pllg) < D(pll 2 + D(z|| 9. (2.3)

In other words, the distance-type measures under consideration are not necessarily’ametric
the gace® of all probability distributions.

The scope of the results presented in this chapter is vast since the generalized divergence
functions and their variants include quite a large number of useful loss functions including
those based on the Relative entropies, generalized Kullback-Leibler or I-divergence, Hellinger
distance, Jensen-Shannon divergence, J-divergence, Pearson and Neyman Chi-squared diver-
gences, Triangular Discrimination and Arithmetic-Geometric (AG) Taneya divergence. Many
of these measures belong to the class of Alpha-divergences and Beta-divergences and have been
applied successfully in disciplines such as signal processing, pattern recognition, probability
distributions, information theory, finance and economic$.[B¥the following chapters we will
applysuch divergences as cost functions (possibly with additional constraints and regularization
terms) to derive novel multiplicative and additive projected gradient and fixed point algorithms.
These provide working solutions for the problems where nonnegative latent (hidden) compo-
nents can be generally statistically dependent, and satisfy some other conditions or additional
constraints such as sparsity or smoothness.

Section2.1 addresses the divergences derived from simple component-wiss @psses),
these include the Euclidean and Minkowski metrics. We show that they are related to robust cost
functions in Sectior2.2 We then study in Sectiod.3the class of Csiszéafr-divergences, which
are characterized by the invariance and monotonicity properties. This class includes the Alpha-
divergence, in particular the Kullback-Leibler divergence. The Bregman type divergences, de-
rived from convex functions, are studied in Sectihd. We also discuss divergences between
postive-definite matrices. An important class of the Beta-divergences belongs to the class of
Bregman divergences and is studied in detail in Sec?i@n They do not satisfy the invari-
ance poperty except for the special case of the KL-divergence. When we extend divergences
to positive measures where the total masg; is not restricted to unity, the Alpha-divergences
belong to the classes of both CsisZadivergences and Bregman divergences. They are studied
in detail in Sectior2.5. Moreover, in Sectio2.7we discuss briefly Gamma-divergences which
have ‘super robust” properties. Furthermore, in Sec28we derive various divergences from
Tsallis and Rényi entropy.

The divergences are closely related to the invariant geometrical properties of the manifold
of probability distributions. This is a two-way relation: Divergences, in particular the Alpha-
divergences, are naturally induced from geometry, and on the other hand divergences give a
geometrical structure to the set of probability distributions or positive measdire#\[brief
introduction to information geometry is given in Appendix A. Information geometry provides
mathematical tools to analyze families of probability distributions and positive measures. The
structure of a manifold of probability distributions is derived from the invariance principle, and
it consists of a Riemannian metric derived from the Fisher information matrix, together with

2The dstance between two pdfs is called a metric if the following conditions hd(gh|| g) > 0 with equality ff p= g,
D(pll g) = D(qll p andD(pll g) < D(pll 2) + D(z|| g). Distances which are not a metric, are referred to as divergences.
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Fig. 2.2 Plots of typical M-functions (continued): (a),(b),(c) Cauchy; (d),(e),(f) Welsh; (g),(h),(i)
Tukey. (p(€) - loss function, ¥(€) influence function, and w(e)-weight function).
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Fig. 2.7 Plots of the Rényi divergence for different values of parameters r (see Eq. (2.105)). All
plots are evaluated against p; = 0.5.

whereq = (p+ q)/2.
For the singular values = 1 anda = 0, the Alpha-divergenceg(106 can be evaluated as

: (@) o Pi + i pi +Gi Pi — i
lim Dy, (pIl ) = §i ( 5 ln( oh )+ > ) (2.108)
and
: a ~ Zp' g —pPi
(@) _ ' i
(IlanlDAml(qu)_ Ei (p. In(pi+Qi) > ) (2.109)

Itis important to consider the following particular cases &l Q7):

1. Triangular Discrimination (TD) (Dacunha-Castelle)

DS P = 7Dr(pll o) = Z(p AL (2.110)

2. Relative Jensen-Shannon divergence (Burbea and Rao, Sgarro, Sihsbh {8])

q o 2 i
lim DY@l P) = Dros(pll O) = Z (pi In(IOi fqi ) -p+ qi). (2.111)

3. Relative Arithmetic-Geometric divergencg() 51, 52|

im D@ ) = 30c(pl )= Y (@ + )P ) e p-a).| (2112
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3. Neyman Chi-squared divergence

)2
D26l = gD(pll ) = 5 37 P (2.113)

2.5.2 Symmetric Alpha-Divergences

The standard Alpha-divergence is asymmetric, thd])iﬁ,(pll q) # fo)(q“ p). The symmetric
Alpha-divergence (Type-1) can be defined as

@ ~1-a 1-a ~a
(@) _ p@ (@) Rl S e )
D$Z,(pll @) = DP(pll @) + D (allp) = > =T | (114

As special cases, we obtain several well-known symmetric divergences:

1. Symmetric Chi-Squared divergen@g]

DL2(pll o) = DZ,(PIIc) = 2D,(plla) = Z(p' q';lélp'+q') (2.115)

2. J-divergence corresponding tdtdeys entropy maximizatior8p, 35|

im DE(PI9) = im D (Pl = Dx(pId = Y -a)in(B).|  2119)

3. Squared Hellinger distanca]]

D7 (pll &) = 8Dw(pll o) = 42(@. VG- (2.117)

An alternative wide class of symmetric divergences can be described by the following sym-
metric Alpha-divergence (Type-2):

D<C')('°+q||q)+D<“')(ID Giip)

Z ((Pi g (%)n ~(pi + Qi)). (2.118)

DY (pll )

a(a -1

The above measure admits the following particular cases:

1. Triangular Discrimination

DLA(Pll @) = 3Dr(pll ) = Z(pw. (2.119)
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Fig. 2.8 2D and 3D plots of Symmetric Alpha-divergences for different values of parameter «
(a)-(b) D(")l(pH g — Eq. (2.114) and (c)-(d) D(”) &(plla) — Eq. (2.118). (All plots are evaluated
against pj = 0.5).

2. Symmetric Jensen-Shannon divergéhce

@ 2p; 2q;
im DLl = Dustpll ) = 3 (pin( 25 ) vain( 22 )| 2120)

3. Arithmetic-Geometric divergencé&(), 51, 52]

lim D&”%z(pll d) = Dac(pll Q) = Z(p. + q.)ln(z\/pl_?]'l) (2.121)

11The Jensen-Shannon divergence is a symmetrized and smoothed version of the Kullback-Leibler divergence, i.e., it
can be interpreted as the average of the Kullback-Leibler divergences to the average distribution. In other words, the
Jensen-Shannon divergence is the entropy of the average from which the average of the Shannon entropies is subtracted:

Dys = Hs((p+ 0)/2) — (Hs(p) + Hs(q))/2, whereHs(p) = - 3; pi In p;.
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4. Symmetric Chi-squared divergen@d|

)2 (n 1
DR, (pll o) = % ,(pll o) = %Z (P~ 6)(pr + ) q';iéip' ) (2.122)

The above Alpha-divergence is symmetric in its argumeraadg, and it is well-defined even

if pandq are not absolutely continuous, i.®as; is well-defined even if, for some indexes
pi it vanishes without vanishing or if g vanishes without vanishing;. It is also lower- and
upper-bounded, for example, the Jensen-Shannon divergence is bounded between 0 and 2.

2.6 BETA-DIVERGENCES

The Beta-divergence was introduced by Eguchi, Kano, Minardiaso investigated by others
[38, 8,41, 40, 42, 14, 15, 16, 17, 38, 36]. It has a dually flat structure of information geometry,
where the Pythagorean theorem holds. However, it is not invariant under a change of the domi-
nating measure, and not invariance monotone for summarization, except for the special case of
B = 0 which gives the KL-divergence.

First let us define the discrete Beta-divergence between two un-normalized density functions:
pi andg; by

DY (plla) = | ik S il

N 1) (2.123)

whereg is a real numberd # 0 andB # —1).

It is interesting to note that, fg# = 1, we obtain the standard squared Euclidean distance,
while for the singular casgs= 0 andg = —1 the Beta-divergence has to be defined in limiting
cases ag — 0 andB — —1, respectively.

When these limits are evaluated f6r— 0, we obtain the generalized Kullback-Leibler
divergence (called the I-divergence) definetfas

Diw(pllg) = lim DE(plla) =) (pa In % —pi+ qi), (2.124)

whereas fop — —1 the Itakura-Saito divergence is obtained as

Dis(pll) = fim DE(pll ) = Z(In(%) T 1). (2.125)

Remark 2.5 Recently, Févotte, Bertin and Durrie@9] investigated and emphasized the fun-
damental properties of Itakura-Saito divergence as follows: “This divergence was obtained by
Itakura and Saito (in 1968) from the maximum likelihood (ML) estimation of short-time speech

121t should be noted that lip,o # = In(p/q) and linp_o pBT'l =Inp.
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spectra under autoregressive modeling. It was presented as 'a measure of the goodness of fit
between two spectra’ and became a standard measure in the speech processing community due
to the good perceptual properties of the reconstructed signals. Other important properties of
the Itakura-Saito divergence include scale invariance, meaning that low energy components of
p bear the same relative importance as high energy ones. This is relevant to situations where
the cogficients of p have a large dynamic range, such as in short-term audio spectra. The
Itakura-Saito divergence also leads to desirable statistical interpretations of the NMF prob-
lem”. Furthermore, they explained how under simple Gaussian assumptions NMF can be recast
as a maximum likelihood (ML) estimation of matrideand X and described how IS-NMF can

be interpreted as ML oA and X in multiplicative Gamma noise?p, 30].

Hence, the Beta-divergence can be represented in a more explicit form:

pig_qf} piBJrl—qul
Z(pi 5 = s ), B#0,-1,
DY (pllq) = Z (pa In(%) -pi+ qi), B=0, (2.126)
Sy, P_ =-
Z(In(pi) " Qi 1)’ pet

As observed by Févottet al. [29] the derivative of the Beta-divergence for separable terms
d(pillai), with respect tay is continuous iB € R parameter, and can be expressed as

Vo d(pillar) = ¢ (a - pr.) (2.127)

Itis obvious that thadl(pi||g;), as a function of; for fixed p;, has a single minimum af = p; and
that it increases withy, — pil, justifying its relevance as a measure of distortion of dissimilarity
[29, 30].

The Beta-divergence smoothly connects the Itakura-Saito distance and the squared Euclidean
distance and passes through the KL I-divergeDgg(p|| ). Such a parameterized connection
is impossible in the family of the Alpha-divergences.

The Beta-divergence is related to the Tweedie distributi@8s38, 8]. In probability and
gtatistics, the Tweedie distributions are a family of probability distributions which include con-
tinuous distributions such as the normal and gamma, the purely discrete scaled Poisson distribu-
tion, and the class of mixed compound Poisson-Gamma distributions which have positive mass
at zero, but are otherwise continuous. Tweedie distributions belong to the exponential dispersion
model family of distributions, a generalization of the exponential family, which are the response
distributions for generalized linear modeBs]. Tweedie distributions exist for all real values of
B except for 0< B < 1. Apart from special cases shown in TaBl&, their probability density
function have no closed form. The choice of the parangetimpends on the statistical distribu-
tion of data. For example, the optimal choice of the parangfer the normal distribution is
B = 1, for the gamma distribution it i8 = —1, for the Poisson distributiof = 0, and for the
compound Poisson distributighe (-1, 0) (see Tabl®.8) [14, 15, 16, 17, 38, 40, 41].
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Table 2.8 Special cases for Tweedie distributions.

Parametef Divergence Distribution

1 Squared Euclidean distance Normal

0 KL I-divergenceDg (pl| 9) Poisson

(-1,0) Compound Poisson
-1 Dual KL I-divergenceDk(q| p) Gamma

-2 Dual KL I-divergenceDk(q] p) Inverse—Gaussian

The Beta-divergences can be obtained from the Alpha-diverg@n&® by applying nonlin-
ear transformations:

poft a-od"t = T+ 5 (2.128)

For example, using these substitutions @A) and assuming that = (3 + 1)~ we obtain the
following divergence

p?‘+1 p|$| q/ij+1

DP(pllg) = (8+ 1) )

Observe that, after simple algebraic manipulations and by ignoring the scaling faetdnd,
we obtain the Beta-divergence defined by Eqj123.

In fact, there exists the same link between the whole family of Alpha-divergences and the
family of Beta-divergences (see Talfle/). For example, we can derive the symmetric Beta
divergence from symmetric Alpha-divergence (Type 2114

D®(pllg) + DY (all p

3 2 (™ = pef - o). (2.130)

DY (pll )

and from symmetric Alpha-divergence (Type-2)X18
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Table 2.9 The fundamental generalized divergences.
Divergence name Formula
o ~l-a
i(p g -1)g-ap
Alpha-divergence D(pllg) = i+ (@-1) g —a p)
ala—1)
+1 +1
T ®) _Zi(pf{ +ﬂ(f _(ﬂ"'l)pi(f)
Beta-divergence Dg’(pllg) = 3G+ 0)
NP +yin (g™ -@+)In@Eipq
S 0y = ME A YN @G - 7+ Din (5 )

y(y+1)

Bregman divergence

DA(pI) = X (¢(p) - () - o (P - )

Csiszarf-divergence

D+(plg) = Zqif(%)

Rényi divergence

| i@ = i -1g+1
o - 3, P -0 D

Rényi-type divergence

0.(pl) = ) '”(‘Vl(p“”(%)))

Burbea-Rao divergence

Der(pla) = 5’ (h(pi) ; h(a) _ h( P ;'Qi ))

Similarly to the Alpha and Beta-divergences, we can also define the symmetric Gamma-divergence

as

1
D&(pll ) = DY(pli o) + DL(qlI p) = ~In

Z)ze))
(St )[Zne)

(2.135)

The symmetric Gamma-divergence has similar properties to the asymmetric Gamma-divergence:



134 A. Cichocki, S. Amari et al.

Table 2.9 The fundamental generalized divergences.
Divergence name Fomula
a ~l-a
i(p g -1)g-ap
Alpha-divergence DY(plg) = Lo +le-a-ap)
ala—1)
+1 +1
T ®) _Zi(pf{ +ﬂ(f _(ﬂ"'l)pi(f)
Beta-divergence Dg’(pllg) = G0
nNECpEYH+ynCad™ -G+ Cp o
S 0y = ME A HYINE G - (7 + D (5P )

y(y+1)

Bregman divergence

DA(pl) = 3 (¢(p) - () - o (P - )

Csiszarf-divergence

D+(plg) = Zqif(%)

Rényi divergence

| i@ = ] -1g+1
o - 3, P =B~ Da D

Rényi-type divergence

0.(pl) = ) '”(‘Vl(p“”(%)))

Burbea-Rao divergence

Der(pla) = 5’ (h(pi) ; h(a) _ h( P ;'Qi ))

Similarly to the Alpha and Beta-divergences, we can also define the symmetric Gamma-divergence

as

1
D&(pll ) = DY(pli o) + DL(qlI p) = ~In

Z)ze))
(St )[Zne)

(2.135)

Thesymmetric Gamma-divergence has similar properties to the asymmetric Gamma-divergence:



References

. M.S. Aliand S.D. Silvey. A general class of dbeients of divergence of one distribution
from anotherJournal of Royal Statistical Societger B(28):131-142, 1966.

. S. Amari.Differential-Geometrical Methods in StatisticSpringer Verlag, 1985.

. S. Amari. Dualistic geometry of the manifold of higher-order neurdweural Networks
4(4):443-451, 1991.

. S. Amari. Information geometry and its applications: Convex function and dually flat man-
ifold. In F. Nielson, editorEmerging Trends in Visual Computingages 75-102. Springer
Lecture Notes in Computer Science, 2009.

. S. Amari, K. Kurata, and H. Nagaoka. Information geometry of Boltzman macHiEE&E
Transactions on Neural Network3:260-271, 1992.

. S. Amari and H. NagaokaMethods of Information Geometry. Oxford University Press,
New York, 2000.

. A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D.S. Modha. A generalized maximum
entropy approach to Bregman co-clustering and matrix approximatiokDD '04: Pro-
ceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining pages 509-514, New York, NY, USA, 2004. ACM Press.

. A. Basu, I. R. Harris, N.L. Hjort, and M.C. Jones. Robust afiitient estimation by
minimising a density power divergendgiometrikg 85(3):549-559, 1998.

. L. Bregman. The relaxation method of finding a common point of convex sets and its
application to the solution of problems in convex programmi@gmp. Math. Phys., USSR
7:200-217, 1967.

151



152 REFERENCES

10. J. Burbea and C.R. Rao. Entropyfdrential metric, distance and divergence measures in
probability spaces: A unified approach.Multi. Analysis12:575-596, 1982.

11. J. Burbea and C.R. Rao. On the convexity of some divergence measures based on entropy
functions.|EEE Transactions on Information Theghf-28:489—-495, 1982.

12. N.N. Chentsov.Statistical Decision Rules and Optimal Inferend®MS (translated from
Russian, Nauka, 1972, New York, NY, 1982.

13. H. Chernéf. A measure of asymptotic effency for tests of a hypothesis based on a sum
of observationsAnnals of Mathematical Statistic83:493-507, 1952.

14. A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Hori, and Z. He. Extended SMART al-
gorithms for non-negative matrix factorizatid®pringer, LNAI-40294029:548-562, 2006.

15. A. Cichocki, R. Zdunek, and S. Amari. Csiszar’s divergences for non-negative matrix fac-
torization: Family of new algorithmsSpringer, LNCS-3883889:32—-39, 2006.

16. A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S. Amari. Nonnegative tensor fac-
torization using Alpha and Beta divergencies.Piroc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSROIDMe 111, pages 1393-1396, Hon-
olulu, Hawaii, USA, April 15-20 2007.

17. A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S.-I. Amari. Novel multi-layer nonneg-
ative tensor factorization with sparsity constrain&pringer, LNCS-44324432:271-280,
April 11-14 2007.

18. N. Cressie and T. Read. Multinomial goodness-of-fit tedtsurnal of Royal Statistical
Society B46(3):440-464, 1984.

19. N.A. Cressie and T.C.R. Reatoodness-of-Fit Statistics for Discrete Multivariate Data
Springer, New York, 1988.

20. I. Csiszar. Eine Informations Theoretische Ungleichung und ihre Anwendung auf den Be-
weis der Ergodizitt von Markiischen Ketten. Magyar Tud. Akad. Mat. Kutat Int. Kzl,
8:85-108, 1963.

21. I. Csiszar. Information measures: A critial survey. Thansactions of the 7th Prague
Conferencepages 83-86, 1974.

22. 1. Csiszar. A geometric interpretation of darroch and ré$cfjeneralized iterative scaling.
The Annals of Statistic47(3):1409-1413, 1989.

23. I. Csiszar. Axiomatic characterizations of information measuggstropy, 10:261-273,
2008.

24. 1. Csiszar and J. Kdérnemformation Theory: Coding Theorems for Discrete Memoryless
SystemsAcademic Press, New York, USA, 1981.

25. |. Dhillon and S. Sra. Generalized nonnegative matrix approximations with Bregman diver-
gences. IlNeural Information Proc. Systemsages 283-290, Vancouver, Canada, Decem-
ber 2005.



26

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

REFERENCES 153

I.S. Dhillon and J.A. Tropp. Matrix nearness problems with Bregman divergeSt&»]
Journal on Matrix Analysis and Application89(4):1120-1146, 2007.

S.S. Dragomirlnequalities for Csiszar f-Divergence in Information Theovfctoria Uni-
versity, Melbourne, Australia, 2000. edited monograph.

S. Eguchi and Y. Kano. Robustifying maximum likelihood estimationlngtitute of Sta-
tistical MathematicsTokyo, 2001.

C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with the takura-
Saito divergence. With application to music analyslsural Computation21(3):793-830,
20009.

C. Févotte and A. T. Cemgil. Nonnegative matrix factorizations as probabilistic infer-
ence in composite models. In Proc. 17th European Signal Processing Conference (EU-
SIPCO’09) Glagow, Scotland, Augustr 24—28 2009.

Y. Fujimoto and N. Murata. A modified EM algorithm for mixture models based on Breg-
man divergenceAnnals of the Institute of Statistical Mathema}i69:57-75, 2007.

H. Fujisawa and S. Eguchi. Robust parameter estimation with a small bias against heavy
contaminationMultivariate Analysis99(9):2053-2081, 2008.

E. Hellinger. Neue Begriindung der Theorie Quadratischen Formen von unendlichen vielen
VeranderlichenJournal Reine Ang. Math136:210-271, 1909.

H. Jéfreys. An invariant form for the prior probability in estimation probler®soc. Roy.
Soc. Lon., Ser. AL86:453—-461, 1946.

B. JorgenseriThe Theory of Dispersion Model€hapman and Hall, London, 1997.

R. Kompass. A generalized divergence measure for nonnegative matrix factorikegion.
ral Computation 19(3):780-791, 2006.

S. Kullback and R. Leibler. On information andistiency.Annals of Mathematical Statis-
tics, 22:79-86, 1951.

M. Minami and S. Eguchi. Robust blind source separation by Beta-divergéfmeral
Computation14:1859-1886, 2002.

T.P. Minka. Divergence measures and message pasingosoft Research Technical
Report (MSR-TR-20052005.

M.N.H. Mollah, S. Eguchi, and M. Minami. Robust prewhitening for ICA by minimizing
beta-divergence and its application to FastiQ¥eural Processing Letter25(2):91-110,
2007.

M.N.H. Mollah, M. Minami, and S. Eguchi. Exploring latent structure of mixture ica models
by the minimum beta-divergence methdteural Computationl6:166—190, 2006.

N. Murata, T. Takenouchi, T. Kanamori, and S. Eguchi. Information geometry of U-Boost
and Bregman divergencbleural Computation16:1437-1481, 2004.



154

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

REFERENCES

J. Naudats. Generalized exponential families and associated entropy funé&idrepy;
10:131-149, 2008.

A. Ohara. Possible generalization of Boltzmann-Gibbs statisticsnal Statistics Physi¢cs
52:479-487, 1988.

A. Ohara. Geometry of distributions associated with Tsallis statistics and properties of
relative entropy minimizationPhysics Letters A370:184-193, 2007.

A. Rényi. On measures of entropy and informatiorPioc. 4th Berk. Symp. Math. Statist.
and Probl, volume 1, pages 547-561, University of California Press, Berkeley, 1961.

A.L. Rukhin. Recursive testing of multiple hypotheses: Consistency fateacy of the
Bayes rule Ann. Statist.22(2):616—633, 1994.

B.D. Sharma and D.P. Mittal. New nonadditive measures of inaccuracylath. Sci.
10:122-133, 1975.

B.D. Sharma and D.P. Mittal. New nonadditive measures of relative informdti@omb.
Inform. and Syst. S¢i2:122-133, 1977.

B.D. Sharma and I.J. Taneja. Entropy of typg3) and other generalized additive measures
in information theoryMetrika, 22:205-215, 1975.

R. Sibson. Information radiuBrobability Theory and Related Field$4(2):149-160, June
1969.

I.J. Taneja. On measures of information and inaccudr8tatist. Phys14:203-270, 1976.

I.J. Taneja. On generalized entropies with applications. In L.M. Ricciardi, d#ciyres in
Applied Mathematics and Informatigsages 107—-169. Manchester University Press, Eng-
land, 1990.

I.J. Taneja. New developments in generalized information measures. In P.W. Hawkes,
editor,Advances in Imaging and Electron Physieslume 91, pages 37—135. 1995.

I. Vajda.Theory of Statistical Inference and Informatidduwer Academic Press, London,
1989.

J. Zhang. Divergence function, duality, and convex analydi¢eural Computation
16(1):159-195, 2004.

J. Zhang. Referential duality and representational duality on statistical manifolBg-In
ceedings of the Second International Symposium on Information Geometry and its Applica-
tions), pages 58-67, Tokyo, Japan, 2006.

J. Zhang. A note on curvature of a-connections of a statistical manifatchals of the
Institute of Statistical Mathematic§9:161-170, 2007.

J. Zhang and H. Matsuzoe. Dualisti¢feiential geometry associated with a convex func-
tion. In Springer Series of Advances in Mechanics and Mathemauézges 58—67, 2008.

H. Zhu and R. Rohwer. Information geometric measurements of generalization. Technical
Report NCR@4350, Aston University, Birmingham, UK, August 31 1995.



Multiplicative Iterative
Algorithms for NMFE with
Sparsity Constraints

In this chapter we introduce a wide family of iterative multiptiga algorithms for nonnega-
tive matrix factorization (NMF) and related problems, subject to additional constraints such as
sparsity angbr smoothness. Although a standard multiplicative update rule for NMF achieves
a sparse representatfoof its factor matrices, we can impose control over the sparsithef t
matrices by designing a suitable cost function with additional penalty terms. There are several
ways to incorporate sparsity constraints. A simple approach is to add suitable regularization or
penalty terms to an optimized cost (loss) function. Another alternative approach is to implement
at each iteration step a nonlinear projection (shrinkage) or filtering which increases sparseness
of the estimated matrices.

We consider a wide class of cost functions or divergences (see Chapter 2, leading to general-
ized multiplicative algorithms with regularization god penalty terms. Such relaxed forms of
the multiplicative NMF algorithms usually provide better performance and convergence speed,
and allow us to extract desired unique components. The results included in this chapter give
a vast scope as the range of cost functions includes a large number of generalized divergences,
such as the squared weighted Euclidean distance, relative entropy, Kullback Leibler I-divergence,
Alpha- and Beta-divergences, Bregman divergence and Cdisdi#ergence. As special cases
we introduce the multiplicative algorithms for the squared Hellinger, Pearson’s Chi-squared, and
Itakura-Saito distances.

We consider the basic NMF model

Y = AX, (3.1)

1We ddine sparse NMFY = AX as approximate nonnegative matrix factorization in which both or at least one factor
matrix A or X is sparse.
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for which we construct a set of suitable cost functi@(® ||AX) which measure the distance
between datg; = [Y]i and the set of estimated parameigys= [\?]it = [AX]i = Z]-]zlainjt.

The multiplicative learning algorithms aim at minimizing a specific cost function or a set of cost
functions by alternately updating the parametgysvhile keepingx; fixed, and then updating

the parameters;; while keeping alla; fixed. In fact, it is often convenient to estimate a set
of parameteré\ andX by the sequential minimization of twoftirent cost functions with the
same global minima.

For a large-scale NMF problem (with > | >> J) we do not need to store and process large
data matrice¥ € R™*T andY = AX € R'XT. Instead of the typical alternating minimization of
a one global cost functioD(Y||AX) we may perform the following alternating minimization on
the subsets:

A = argminD1(YJAX,), forfixed X, (3.2)
A>0

= argminDy(Y(||A;X), forfixed A, (3.3)
X>0

whereY, € RPT andY . € R"*© comprise respectively the row and column subsets of the matrix
Y, whereasA; € R?¥J andX. € R are the row and column subsets of matriéeand X.
Typically R << | andC << T (see Chapter 1 for more detail).

All multiplicative learning rules ensure the nonnegativity of the factor matrices. Obviously,
all the successive estimates remain positive if the initial estimate is positive. However, if a com-
ponent of the solution becomes equal to zero, it remains at zero for all the successive iterations.
To circumvent this problem, we usually force the values of the estinagteadx not to be less
than a certain small positive valegtypically, s = 107°), called the threshold constraint, which
often determines the noise floor, thatig, = ¢ if x;; < &, or in vector formx = max(x, ). This
means that we need to perform the following optimization problem:

A = argminD1(YJAX,), forfixed X, (3.4)
A>E

X = argminD,(Y,||A;X), forfixed A, (3.5)
X>E&

which lead in fact to Positive Matrix Factorization (PMF).

3.1 EXTENDED ISRA AND EMML ALGORITHMS: REGULARIZATION AND
SPARSITY

The most popular algorithms for NMF belong to the class of muttgilve ISRA (Image Space
Reconstruction Algorithm)1[8, 20, 38, 26] and EMML (Expectation Maximization Maximum
Likelihood) 22, 27, 19, 21, 37, 2, 3, 4, 31, 32, 42] update rules (also often referred to as Lee-
Seungalgorithms [40, 41]). These classes of algorithms have a relative low complexity but
are characterized by slow convergence and the risk of converging to spurious local minima. In

2Gererally, we assume that we minimize sequentially one or twiecént cost functions with the same global minima,
depending on statistical distributions of factor matrices. For simplicity, in this chapter we assume in the most cases that
D; andD; are equal. However, in general the “mixture” or combination of updates rules are possible.

SHowever, since these algorithms have a long history, we refer to them as ISRA and EMML algorithms. They have been
developed independently in many fields, including emission tomography, image restoration and astronomical imaging.
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this section, we discuss extensions of this class of multiplicative NMF algorithms by imposing
additional constraints such as sparsity and smoothness. Moreover, we discuss how to unify and
generalize them and how to implement them for large-scale problems.

3.1.1 Multiplicative NMF Algorithms Based on the Squared Euclidean Distance

ForE = Y — AX modded as i.i.d. (independent identically distributed) white Gaussian noise,
we can formulate the problem of estimating the matrideand X as that of maximizing the
likelihood function:

P(YIA, X) =

_y ‘AX”%], (36)

Voro P ( 257

subject toA > 0 andX > 0, element-wise, where is the standard deviation of the Gaussian
noise.

Maximizing the likelihood is equivalent to minimizing the corresponding negative log-likelihood
function, or equivalently, the squared Frobenius norm

1
De(YlIAX) = §|IY - AX||3, (3.7)
subjecttoa;; >0, x>0, Vi, jt

Using the gradient descent approach and switching alternatively between the two sets of param-
eters, we obtain simple multiplicative update formulas (see derivation bélow):

a o ay O (38)
J PIAXXT)jj + & '
[AT Y]j
Xit < X ATAX] v 6 (39)

The above algorithm3.8)-(3.9), called often Lee-Seung NMF algorithm can be considered
as an gtension of the well known ISRA algorithm proposed first by Daube-Witherspoon and
Muehllehner 18] and investigated by many researchers, especially, De Pierr@yma [20,

19, 21, 37, 3, 42]. The above update rules can be written in compact matrix form as

A — Ae|(YXT) o (AXXT +&)|, (3.10)
X « Xe|ATY)o (ATAX +4)|, (3.11)

where® is the Hadamard (components-wise) product arid element-wise division between
two matrices.

4Smal positive constant is usually added to denominators to avoid division by zero.
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Remark 3.1 The ISRA NMF algorithm can be extended to weighted squared Eaolii@m
(corresponding to colored Gaussian noise) by minimizing the cost functions

1 1
Dw(YlIAXc) = > tr(Ye — AXe)TWa (Y, — AXc) = §I|W2(Yc - AX c)II.Z:, (3.12)
1 1
DW(Yr”Arx) = é tr(Yr - ArX)TWX(Yr - Arx) = EHWl(Yr - Arx)”z’ (3-13)
whereWp = WEWZ andWy = WIWl are symmetric positive-definite weighted matrices, thus
giving
A« A ® [(WaYeX:) @ (WaAXeX])], (3.14)
X « X @ [(ATWxY:) @ (ATWxAX)], . (3.15)

In practice, the columns of the matri should be normalized to the urig-norm (typically,
p=1).

The original ISRA algorithm is relatively slow, and many heuristic approaches have been pro-
posed to speed it up. For example, a relaxation approach rises the multiplicafiteieots to
some powew € (0, 2], that is,

[YXTTij \*
8jj « & (7[AXXT]”) ) (3.16)
[AT Y] \©

in order to achieve faster convergence.

The above learning rules usually provide sparse nonnegative representations of the data, al-
though they do not guarantee the sparsest possible solution (that is, that the solutions contain the
largest possible number of zero elementX@ndor A). Moreover, the solutions are not neces-
sarily unique and the algorithms may converge to local minima. A much better performance (in
the sense of convergence) may be achieved by using the multilayer NMF structure as explained
in Chapter 110, 15,17, 11].

To understand the origin of the above update rules, consider the Karush—Kuhn—TuckeP(KKT)
first-order optimality conditions for NMF3Q]:

A > 0, X > 0, (3.19
VaDEe > 0, VxDg > 0, (319)
A®@VaDE = 0, X®VxDg = 0, (320)

5The Karush—Kuhn—Tucker conditions (also known as the Kuhn-Tucker or the KKT conditions) are contained in a
system of equations and inequalities which the solution of a nonlinear programming problem must satisfy when the
objective function and the constraint functions aredentiable. The KKT conditions are necessary for a solution in
nonlinear programming to be optimal, provided some regularity conditions are satisfied. It is a generalization of the
method of Lagrange multipliers to inequality constraints which provides a strategy for finding the minimum of a cost
function subject to constraints.
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Algorithm 3.5: Multiplicative Beta NMF with Over-relaxation and Sparsity C ontrol

Input: Y € RT: input data,J: rank of approximations: order of Beta divergence
w: over-relaxation, anda, ax: sparsity degrees
Output: A € R and X € RXT such that cost functior8(146 is minimized.

1 begin
2 initialization for A andX
3 repeat /* update X and A */
4 selectR row indices
: X — X @ ([AT (Yr @ V) - ax Lt ], @ (ATH; )™ /% ¥ = A X #/
6 selectC column indices

N ~ [w] . O ,
7 A—Ae([(Yeo V¥ M) XT - anlia|, @ (V¥IXD) /% Ye=AX, */
8 foreacha; of Ado aj < aj/llajllp /* normalize to ¢, unit length */
9 until a stopping criterion is met /* convergence condition */
10 end

The Itakura-Saito distance is optimal fora Gamma distribution, in other words, it corresponds
to maximum likelihood estimation using the Gamma likelihood function. This feature has been
investigated recently by C. Févogeal.[29, 30]. To illustrate this, consider the Gamma likeli-
hood of ordery (y > 0)

~Y\v—1 N\ 7
LX) = U Z."Yy §>(<5)( y.t/zt), (3.159)

wherez; = [AX]it/y.
The negative log-likelihood is then equal to

Lr(X) = IT In(T(y)) + ; (yln ze — (y = 1) Iny + % . (3.160)

Substitutingz; and noting that some terms in the above expression do not depehdwodX,
we obtain the Itakura-Saito divergence.
The minimization of the above cost function leads to the following algoritAr [

X « X @ [(ATP) o (ATQ +¢)] 1, (3.161)
A« Ao [PX) o (QXT+g)] 1, (3.162)
A — A diag(ladll;" llaall % . llagllsh). (3.163)

wherew € (0.5,1) is a relaxation parameter and

P=YoY® Q=Y  Y=AX+e (3.164)
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Fig. 3.9 Functional block diagram illustrating the generalized multiplicative Beta NMF algorithm
for a large-scale NMF: X&) = X® @ (AT p(Y,, ATXW) @ (AT p(AXH, ATX®)). A similar
block diagram can be formulated for updating matrix A as: A®D = AW @ (p (Y., AWX) X]) @
(P (AWX,, ALX) XD).

+IK

3.4.3 Generalized Multiplicative Beta Algorithm for NMF

The multiplicative Beta NMF algorithm can be generalizedse® (also Figur8.9) [38, 12, 10,
23:

Z aj ‘P(Yit Git) Z Xjt P(Yit, Git)
ieSr teSt
Xt = Xt —————> Qj — A 4, (3.165)
Z aj ‘(. Git) Z Xjt P (e, Oft)
ieSr te Sy

whereq; = [AX]i, ¥(q,q) is a nonnegative nondecreasing function, 8f(g, q) may take
several diferent forms, for example:

1L ¥(y.q)=y, ¥(.0q9=q
2. ¥Y(y.0) =y/q, ¥(Q.9 =1,
3. Y(y.9) =y/q?, ¥(q.0) = g"7;

4. ¥(y,q)=y/(c+d), ¥(g,9)=a/(c+0).

Not all the generalized multiplicative NMF algorithms are expected to work well for any
given set of functions and parameters. In practice, in order to ensure stability it is necessary to
introduce a suitable scaling giod a relaxation parametef.

Our main objective here was to unify most existing multipiiea algorithms for the stan-
dard NMF problem and to show how to incorporate additional constraints such as sparsity and

151t is still an open question and active area of research to decide which algorithms are potentially most useful and
practical.
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Alternating Least Squares

and Related Algorithms for
NMF and SCA Problems

In this chapter we derive and overview Alternating Least Squalgsithms referred to as

ALS algorithms for Nonnegative Matrix Factorization (NMF) and Sparse Component Analy-
sis (SCA). This is important as many existing NMIEA techniques are prohibitively slow and
inefficient, especially for very large-scale problems. For such problems a promising approach
is to apply the ALS algorithms4[7], [2]. Unfortunately, the standard ALS algorithm and its
simpe modifications sflier from unstable convergence properties, they often return suboptimal
solutions, are quite sensitive with respect to noise, and can be relatively slow for nearly collinear
data p7], [43], [2], [64)].

As exdained in Chapter 1 solutions obtained by NMF algorithms may not be unique, and
to this end it is often necessary to impose additional constraints (which arise naturally from the
data considered) such as sparsity or smoothness. Therefore, special emphasis in this chapter is
put on various regularization and penalty terms together with local learning rules in which we
update sequentially one-by-one vectors of factor matrices. By incorporating the regularization
and penalty terms into the weighted Frobenius norm, we show that it is possible to achieve
sparse, orthogonal, or smooth representations thus helping to obtain a desired global solution.

The main objective of this chapter is to develdpaent and robust regularized ALS (RALS)
algorithms. For this purpose, we use several approaches from constrained optimization and
regularization theory, and introduce in addition several heuristic algorithms. The algorithms are
characterized by improvedieiency and very good convergence properties, especially for large-
scale problems. The RALS and HALS algorithms were implemented in our NMZNAB
FLAB MATLAB Toolboxes, and compared with standard NMF algorithrhg][ Moreover, we
have @plied the ALS approach for semi-NMF, symmetric NMF, and NMF with orthogonality
constraints.

237
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4.1 STANDARD ALS ALGORITHM

Consider the standard NMF model, given'y:
Y=AX+E=ABT+E, A>0andX>0. (4.1)

The problem of estimating the nonnegative elements andX can be formulated as the mini-
mization of the standard squared Euclidean distance (Frobenius norm):
1 , 1 T
De(Y|IAX) = §||Y -AX|lg = > tr(Y — AX)' (Y — AX), (4.2)
subjecttoa; >0, x>0, Vi, |t

In such a case the basic approach is to perform the alternating minimization or alternating pro-
jection: the above cost function can be alternately minimized with respect to the two sets of
parametergx;} and{a;}, each time optimizing one set of arguments while keeping the other
one fixed B9], [13]. This corresponds to the following set of minimization problems

A®D = argminly - AX®2,  st. A>0, (4.3)
A

x (k+1)

argxmin||YT - XTA®DIT2 . st X > 0. (4.4)

Instead of applying the gradient descent technique, we rather estimate directly the stationary
points and thereby exploit the fixed point approach. According to the Karush-Kuhn-Tucker
(KKT) optimality conditions,A* andX* are stationary points of the cost functioh2) if and

only if

A* >0, X* >0, (4.5)
VADE(Y[A*X) = AX*X T =YX T >0, A®VaDe(Y[|A*X*) =0, (4.6)
VxDe(Y[A*X") = ATA'X* =ATY >0, X ® VxDe(Y[JA™X") = 0. 4.7)

Assuming that the factor matricés and X are positive (with zero entries replaced by e.g.,
& = 1079, the stationary points can be found by equating the gradient components to zero:

IDE(YIAX)

VaDe(Y|IAX) = A = [-YXT + AXXT] =0, (4.8)
VxDe(Y|IAX) = % =[-ATY +ATAX] =0 (4.9)
or equivalently in a scalar form
% = [-YXT + AXXT]; =0, Vij, (4.10)
% =[-ATY +ATAX];p =0, Vit (4.11)

IWe us a simplified notationA > 0 which is used to denote component-wise relations, thatjis; 0.
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Assuming that the estimated components are nonnegative we obtain the simple nonnegative ALS
update rules:

A« [YXTxxT?], = [vxT], . (4.12)
X « [(ATA)’lATYL = [A"‘\(]+ , (4.13)

whereA denotes the Moore-Penrose pseudo inverse, dndd max{e, X} is a half-wave recti-
fying nonlinear projection to enforce nonnegativity or strictly speaking positive constraints.
In the special case, for a symmetric NMF model, given by

Y = AAT, (4.14)

whereY e R™ is a symmetric nonnegative matrix, aAde R’ with | > J, we obtain a
simplified algorithm

A — [YA(ATA), = [YIATT'] (4.15)

o, ©

sulject to additional normalization of the columns of mathix

It is interesting to note that the modified ALS algoriththi2 — (4.13 can also be derived
from Newton’s method based on the second-order gradient descent approach, that is, based not
only on the gradient but also on the Hesstaipplying the gradient descent approach, we have

vec(X) « [vec(X) — pyvec(Vx De(Y[IAX))], , (4.16)

whereny is no longer a positive scalar, but a symmetric positive-definite matrix comprising the
learning rates, defined as:

1y = no(VZDe(YIIAX)) (4.17)

whereno < 1 (typicallyno = 1). The gradient and Hessian of cost functidr with respect to
X are gven by
VxDe(Y[[AX) = ATAX — AY, (4.18)
VADe(Y[IAX) = 1T @ ATA. (4.19)

Hence, we obtain the learning rule f¥r

vec(X) — [vec(X) —no(1t ® ATA) " vec(ATAX — AY )] (4.20)

+

= [vec(x) — novec((ATA) " (ATAX — AY (4.21)
(A™A) )

+

or in the matrix form as

X —[(@-no)X + ;70(ATA)—1ATY]+ . (4.22)

2See etails in Chapter 6.
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In asimilar way, assuming that

1a = 10(VADE(YIAX) ™ = no(XXT @ )™, (4.23)

we obtain:
vec(A) — [vec(A) - ((xxT)_1 ® |.)vec(AxxT - YxT)]+ , (4.24)
- [vec(A) — vec((AxxT - YXT) (xxT)’l)]+ , (4.25)

or in the matrix form as
A — [(1=no)A +noYXT(XXT)] . (4.26)

For no = 1 the above updating rules simplify to the standard ALS illustrating that the ALS
algorithm is in fact the Newton method with a relatively good convergence rate since it exploits
information not only about gradient but also Hessian.

The main problem with the standard ALS algorithm is that it often cannot escape local min-
ima. In order to alleviate this problem we introduce additional regularizatioroapenhalty
terms and introduce novel cost functions to derive local hierarchical ALS (HALS) algorithms.

4.1.1 Multiple Linear Regression — Vectorized Version of ALS Update Formulas

The minimization problems4(12— (4.13 can also be formulated using multiple linear regres-
sion by vectorizing matrices, leading to the minimization of the following two cost functions:

min|ly - Ax|3 (4.27)
x>0
min|ly - Xalj3, (4.28)
ax0
where

y = vec(y) e R'T, y=veclY") eR'T,

x = vecX) e R, a=vec@A") eRY,

A =diagA,A,...,A} e RTVT X =diagx™,X",..., X} e RV,

The solution to the above optimization problem can be expressed as:
X — [(/KTA_)-l/KTyL , (4.29)
a—|[(XTX)XTY], (4.30)

Such representations are not computationally optimal, since for large-scale problems the block-
diagonal matriceé andX are very large-scale, which makes the inversion of these matrices in
each iteration step very time consuming.
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normalization after each iterative step, to give a simplified scalar form of the HALS algorithm:

| T
byj [Z aj yi(t’)] LA [Z by ¥
i=1 " t=1

: (4.93)

+

with aij < aj/llajllz, whereyy) = [Y O] = yi — 3. @ipbip.

4.7.2 Extensions and Implementations of the HALS Algorithm

The above simple algorithm can be further extended or improvésdregpect to the convergence
rate and performance by imposing additional constraints such as sparsity and smoothness.
Firstly, observe that the residual mati%? can be rewritten as

YO =y -3 bl =Y -ABT +ajby],
p#]
=Y -AB" +aj1b] ; —aj1b] ; + ajby]. (4.94)

It then follows that instead of computing explicitly the residual matti& at each iteration step,
we can just perform a smart upda&s]. An efficient implementation of the HALS algorithm
(4.92 is given in the detailed pseudo-code in Algoritdn2.

Algorithm 4.2: HAL S

Input: Y € RXT: input data,J: rank of approximation
Output: A € R andX = BT € R>T suchthat the cost functior4(85) is minimized.

1 begin

2 ALS or random nonnegative initialization fér andX = BT

3 foreacha; of Ado a; < aj/llajll /* normalize to ¢, unit length */
4 E=Y-ABT /* residue */
5 repeat

6 for j=1toJdo

7 YD — E+ g b]-T

8 bj « [Y(i)T ajL /* update bj */
9 aj « [Y(j) bj]+ /* update aj; */
10 aj — a,-/||a,-||2

11 E YO a bjT /* update residue */
12 end

13 until a stopping criterion is met /* convergence condition */
14 end

Different cost functions can be used for the estimation of the rows of the nXatsxB"
ard the columns of matriXA (possibly with various additional regularization terms][J21],
[59)). Furthermore, the columns @& can beestimated simultaneously, and the rowsXn
sequentially. In other words, by minimizing the set of cost functions4i85 with respect
to bj, ard simultaneously the cost functiod.@) with normalization of the columna; to unit
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(@) v+

(I XT) (I xD) (I <)
(b) =L Y |- [x-B"|
(I <) (1)) (JXT)
| aa— |
X a,

(I XD (] XD \—\,—/

Rank 1 matrix
(T x1) L (T xI) (I x4

b ’ aj(_aj/“aj“b (.]: 13 27 )'])

(I x1) L (T'x1)_| +
-:-T
a;
(I xT) (I xT)

Fig. 4.1 Tlustration of the basic (local) HALS algorithm and its comparison with the standard
(global) ALS algorithm. In the standard ALS algorithm we minimize the mean squared error of
the cost function [[E|2 = ||Y - QIIE, where Y = ABT and the target (desired) data Y is known and
fixed (Figures (a)-(b)). In the HALS algorithm the targets residual matrices Y®, (j=1,2,...,J)
(Figures (c),(f)) are not fixed but they are estimated during an iterative process via the HALS
updates (Figures (d)-(e)) and they converge to rank-one matrices.
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{>-norm, we obtain a very ficient NMF learning algorithm in which the individual vectors
of B = [by, by, ..., b;] are updated locally (column-by-column) and the matixs updated
globally using the global nonnegative ALS (all colummssimultaneously) (see alsa1]):

bj —[YPTa] ., A<[YB@B)|, =[YXT(XX")7], , (4.95)

with the normalization (scaling) of the columnsAnto unit length in the sense of thig-norm
after each iteration.

4.7.3 Fast HALS NMF Algorithm for Large-Scale Problems

Alternatively, an even mordigcient approach is to perform a factor-by-factor procedure instead
of updating column-by-column vector§g]. This way, from @.92), we obtain the following

updae rule forb; = xf

- T
bj « Y0Ta/(afa) = (Y - ABT + ajb]) aj/(a] a))

= (YTaj - BATa; + bjaj a))/(a] a))

- ([YTA]j ~B[ATA| +b, aJTaj)/(ajTaj), (4.96)

with the nonlinear projectiom; « [bjL at each iteration step to impose the nonnegativity
constraints. Sincmug = 1, the learning rule fob; has a simplified form as

b, [bj +[Y7A] —B[ATA]J_] , (4.97)
+
and analogously, for vectear:
aj « vy bj = (Y -ABT + a; b-Jr) bj
= ij —ABTbj + ajbijj
= [YB];-A [BTB]J, +ajb] b,
= ajb/ by +[YB]; - A [BTB]J,. (4.98)
Hence, by imposing the nonnegativity constraints, we finally have
a [a,»bJTbj +[YB], —A[BTB]J,] , (4.99)
+
aj <« aj/||aj||2. (4.100)

Based on these expressions, the improved and modified HALS NMF algorithm is given in the
pseudo-code Algorithm.3.

The NMF problem is often highly redundant for>> J, thus, for large-scale problems in
order to estimate the vectoas andb; = 51T ¥j, we can use only some selected vectors/and
rows of the data input matriX. For large-scale data and a block-wise update strategy (see
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Chapter 1), the fast HALS learning rule for (4.96) can be rewritten as follows
by [y + [¥7 A, /1215 - B[ATA ] /13E]
- [bj +[VTADA] - B[A:ArDA]j]+, (4.101)
whereDp, = diag(lall;% 132152 . . .. 1&sll;?) is a diagonal matrix, and;is the j-th column

vector of the reduced matri, € R,
The update rule foa; takes a similar form

aj « [a,» +[YeBeDg,J, —A[BIBCDBC]J,] , (4.102)
+

whereDg, = diag(lbul;2 1Bl . . ., 11bsll;2) and by is the j-th column vector of the reduced
matrix B, = X[ € R9.

Algorithm 4.3: FAST HALS for Large Scale NMF

Input: Y € RXT: input data,J: rank of approximation
Output: A € R andX = BT € R>T suchthat the cost functior485) is minimized.

1 begin

2 ALS or random nonnegative initialization fér andX = B"

3 foreacha; of Ado a; < aj/llajll2 /* normalize to ¢ unit length */
4 repeat

5 W=YTA;V =ATA

6 for j=1toJdo

7 ‘ bj — [bj +Wj — B Vj]+ /% update bj &/
8 end

9 P=YB;Q=B"B

10 for j=1toJdo

11 aj « [aj qj; + pj -A qu /* update 4; &)
12 aj « aj/llajllg

13 end

14 until a stopping criterion is met /* convergence condition */
15 end

In order to estimate all the vectoag andx; we only need to take into account the selected

rows and columns of the residual matrid€8 and the input data matrik. To estimate precisely

all aj, X;» ¥ j we need to select at leagtrows and columns of . Moreover, the computations are
performed only for the nonzero elements, thus allowing the computation time to be dramatically
reduced for sparse and very large-scale problems. The rows and columns of the data matrix
Y can be selected usingftirent criteria. For example, we can choose only those rows and
columns which provide the highest normalized squared Euclidean norms. Alternatively, instead
of removing completely some rows agod columns ofY, we can merge (collapse) them into
some clusters by adding them together or computing their averages. In this case we can select
the rows and columns uniformly. Recently, extensive research is performed how to choose the
optimal number of rows and vectors of data matrix][42], [32], [50], [51], [10].
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Appendix 4.D. MATLAB Source Code for HALS CS Algorithm

1 function X = CS_HALS(Y,options)

2 %

3 % Hierarchical ALS algorithm for Compressed sensing

4 % using linear and nonlinear thresholding techniques

5 % with Hard, Soft, Non negative garrotte, Abramovich,

6 % Ndegree garrotte shrinkage rules

7 %

8 % INPUT

9 % Y : T compressed signals of | samples as columns (I x T

10 % options struct of optional parameters

1 % A : projection matrix

12 % Xinit initialization for sources X, zeros matrix is default

13 % < : number of samples of original source X

12 % .Niter : number of iteration (1 000)
15 % Nrst : number of restart 1)
16 % .Lmax : maximum threshold of lambda (20)
17 % .Lmin : minimum threshold of lambda 0)
18 % .psitype:  decreasing funtion type for threshold A 2)
19 % 1. s hape—prese rving piecewise cubic Hermite interpolation

20 % (2) . exponential function

21 % .Hshape: initial points (at least two)(x,y) y=y(x) forming

2 % the decreaseing line used for shape —prese rving

23 % Her mite interpolation.

22 % Ex. 2 points (0.2,0.8) and (0.4, 0.2)

s % Hshape = [0.2 .8; 4 .2]

% % .betarate: decreasing speed for exponential decreasing strat egy (4)
217 % .shrinkage: shrinkage rule 1)
28 % (1) . HARD 2. SOFT

29 % 3. Non negative garrotte 4  Abramovich's rule

30 % 5. N —degre e garrotte

a1 % OUTPUTS:

2 % X : reconstructed signals (columns)

33 %

s % Copyright 2008 by A.H. Phan and A. Cichocki

35 % 04/2008

a6 Yo HEHFHIHHIE BT R T THEHItHH
37 %%

38 [l,T]=size(Y);

39 defoptions = struct( ‘AL, '3 I, ‘Niter'  ,300, ..

40 Xinit' [ 1. 'psitype’ ,'exp' , 'betarate’ 4, 'Hshape' ,[.2 .8; .8 .2],

41 ‘Lmax’ ,2 0, 'Lmin" ,0, 'shrinkage' ,1, 'nbrestart' ,1);

a2 if ~exist( 'options' ,'var )

43 options = struct;

4 end

[A,J,Niter,X,psitype,betarate,Hshape,Lmax,Lmin,shrinkrule,Nrst] =
scanparam(defoptions,options);

if isempty(X)
X = zeros(J,T);

A oa A A
© N o o

49 end

so Hshape = [0 1;Hshape;1 O];

51 tol = le -5;

s2 alpha = .6; % reduction rate

%% Normalization of initial guess
normA = sqrt(sum(A."2,1));

A = bsxfun(@rdivide,A,normA);
s6 G = A'xA;

o a0
a A w
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Projected Gradient
Algorithms

In contrast to the multiplicative NMF algorithms discussed in @ba3, this class of Projected
Gradient (PG) algorithms has additive updates. The algorithms discussed here provide approxi-
mate solutions to Non-negative Least Squares (NLS) problems, and are based on the alternating
minimization technique:

. 1

minDe(ylIAX) = Sl —Axl3  (t=12...T), (5.1)
. 1 .

minDe(y/X"a) = 5y - X"alf  G=12...1). (5:2)

This can also be written in equivalent matrix forms
. 1 2
minDe(Y[IAX) = Z|IY — AX||E, (5.3)
X](ZO 2
. 1
minDe(YTIXTAT) = Z|IYT - XTAT|2, (54)
a,-,-zO 2

whereA = [ay,...,a)] € Ry, AT = [a,...,a] € R, X = [x1,....x7] € RXT, XT =
[Xpooo o X5 €RILY = [yg, .o,y e RXTYT = Y-yl € R™! ard usuallyl > J. The
matrix A is assumed to be full-rank, thus providing the existence of a unique soXitiarR’*T .
Since the NNLS problen®(1) is strictly convex with respect to one set of varialilés a ungue
solution exists for any matriX, and the solutiorx; satisfies the Karush-Kuhn-Tucker (KKT)

conditions:

X =0, gx(x) =0, gx(x)'xi =0 (5.5)

309
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orin an equivalent compact matrix form as:
X" >0, Gx(X*)>0, tr{Gx(X")"X*}=0, (5.6)
where the symbolgy andGyx denote the corresponding gradient vector and gradient matrix:
Ox (%) = VxDe(VilIAX) = AT(AX — ). (5.7)
Gx(X) = VxDe(Y[IAX) = AT(AX -Y). (5.8)

Similarly, the KKT conditions for the solutioa® to (5.2), and the solutiorA* to (5.4) are as
follows:

>0, ga@)=0, ga(®)'a =0, (59
and the corresponding conditions B ) are
A*>0, Ga(A") >0, tr{A*Ga(A")"} =0, (5.10)
whereg, andGa are the gradient vector and gradient matrix of the objective function:

ga(@) = VaDr(ylIXTa) =X(XTa -y). (511)
Ga(A) = VADF(YT IXTAT) = (AX - Y)X. (5.12)

There are many approaches to solve the minimization probl&riysand 6.2), or equivalently
(5.3 and 6.4). In this chapter, we shall discuss several projected gradietitads which take
a general form of iterative updates:

X (1) — [X(k) _ 'lgf) p§|(<)]+’ (5.13)
Al+l) [ AL _ pK ,&)L i (5.14)

where K], = Pq[X] denotes a projection of entries of onto a convex “feasible” se@ =
{th eR:Xjp> 0} — namely, the nonnegative orthdnt (the subspace of nonnegative real num-
bers),PY andPY are descent directions far andA in thek-th inner iterative step, ang and

q(:) are the learning rate scalars or the diagonal matrices of positive learning rates.

The projectionX], can be performed in many way<ne straightforward way is to replace
all the negative entries iX by zero, or for practical purposes, by a small positive nunatiar
order to avoid numerical instabilities, thus giving (component-wise)

[X]+ = maxXe, X}. (5.15)

Alternatively, it may be morefﬁuent to &reserve the nonnegativity of the solutions by an opti-
mal choice of the learning rat andq or by solving least-squares problems subject to the

1Although in this chapter we use only the simple nonlinear projection “half-wave rectifying”, which replaces negative
values by small positive constant the PG algorithms discussed here can be easily adopted to the factors which are
upper angbr lower bounded at any specific level, for exampjes xjx < uj, Vj. This can be achieved by applying a
suitable projection functio®[x;:] which transforms the updated factors to the feasible region.
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constraints §.6) and 6.10. We here present exemplary PG methods which are provento be very
efficient for NMF problems, and are all part of our MATLAB toolbox: NMFLASTFLAB for
Signal and Image Processirg B0, 8].

5.1 OBLIQUE PROJECTED LANDWEBER (OPL) METHOD

The Landweber method3] performs gradient descent minimization based on the following
iterative scheme:

XD = x®0 e GY, (5.16)

where the descent directicﬁﬂ‘) is replaced with the gradie@y given in (.8), and the range
of the learning ratenx € (0,7may. This update ensures the asymptotic convergence to the
minimum-norm least squares solution, with the convergence radius defined by

2

= 5.17
Umax /lmax(ATA) B ( )

wherelma(ATA) is the maximum eigenvalue &TA. SinceA is nonnegative, for its eigen-
values we havelna(ATA) < max@ATAL;), wherel; = [1,...,1]" € R7, and the modified
Landweber method can be expressed as:

2

,mt, nj < m (5.18)

(k1) _ [X(") — iy Gg‘(‘)L, where 1y = diagn, n2, . . .

Onevariant of the method is the Oblique Projected Landweber (OPL) mett&dvfhich can
be regarded as a particular case of the PG iterative formaulb3d—(5.14), where at each iterative
step he solution obtained bys(16) is projected onto the feasible set. Based on these, the method
can ke implemented for the standard NMF problem as shown in Algorktin

The MATLAB implementation of the OPL algorithm is given in Listirigl

5.2 LIN'S PROJECTED GRADIENT (LPG) ALGORITHM WITH ARMIJO RULE

A typical representative of PG algorithms in applications to NMEhih-Jen Lin’s algorithm
[21], which is given by the iterative formul&(13—(5.14) with Pg'(‘) and Pﬂ‘) expressed by the
gradients 5.8) and 6.12), respectively, and the projection rulg.15. In contrast to the OPL
algoiithm given in Sectiorb.1the learning rate23§< andnff) in Lin’s PG algorithm in the inner
iterations are not fixed diagonal matrices, but are scalars computed by inexact estimation tech-
nigues. Lin considered two options for estimating the learning rules: the Armijo rule along the
projective arc of the algorithm proposed by Bertselad], and the modified Armijo rule.

In thefirst case, for every inner iterative step of the algorithm, the value of the learning rate
ngf) is given by

=", (5.19)
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Algorithm 5.1: OPL-NMF

Input: Y € RT: inputdata, J: rank of approximation

Output: A € R andX e R>T suchthat the cost function$(3) and 6.4) are minimized.

1 begin

2 initialization forA, X

3 repeat

4 X « OPL(Y, A, X)

5 A « OPL(YT,XT,AT)T
6

/* Update X */
/* Update A */

until a stopping criterion is met /* convergence condition */

7 end

8 function X = OPL(Y, A, X)
9 begin

10 R =ATA,

11 Z=ATY,

12 | 1 = diag(1; o (R1y))
13 repeat

14 Gx=RX-Z /* Gradient with respect to X */

15 X« [X —nx Gx],

/* Update X */

16 until a stopping criterion is met /* convergence condition */

17 end

Listing 5.1 OPL-NMF algorithm.

function [X] = nmf_opl(AY,X,no _iter)

%

% INPUTS:

% A- fi xed matrix of dimension [I by J]

% Y — data matrix of dimension [I by T]

% X - in i tial solution matrix of dimension [J by T]
% naiter - maximum number of iterations
%

% OUTPUTS:

% X — estimated matrix of dimension [J by T]
%

© ©® N ® O b~ W N P

T
w N Pk O

R = AxA; Z = A'+Y; eta = 1./sum(R,2);

-
IS

for k=1:no _iter

G =RX - Z

X = max(eps, X - bsxfun(@times,G,eta));
end % for k

B oR e e
© N o

Vo e B L G P A L A L L L R

SRR L L e

wheremy is the first nonnegative integarfor which

De (Y[IAX ®1) — D (Y[JAX®) < o tr {Vx D (Y AX )T (XD — X0y} (5.20)



Quasi-Newton Algorithms
for Nonnegative Matrix
Factorization

So far we have discussed the NMF algorithms which perform optimizéy searching for sta-
tionary points of a cost function based on first-order approximations, that is, using the gradient.
In consequence, the additive learning algorithms have the following general form:

A — Po[A -naVaD(YIIAX)], (6.1)
X & Pa[X = nxVxD(YIIAX)], (6.2)

wherePq[¢] denotes the projection @f onto the sef of feasible solutions,and the learning
ratesn, andny are either fixed or iteratively updated scalars or diagonal matrices.
Let us consider a Taylor series expansion

D(Y[I(A + AA)X) = D(Y|IAX) + vec(VaD(Y|IAX))T vec(AA)
+ %vec(AA)T Ha vec(AA) + O ((AA)%), (6.3)
D(YIIA(X + AX)) = D(Y|IAX) + vec(VxD(Y[IAX))" vec(AX)

+ %vec(AX)T Hx vec (AX) + O ((AX)®). (6.4)

whereHa = VaD(Y[JAX) € RV andHyx = VAD(Y[|AX) € R7™JT are Hessians with respect
to A andX.

Typically, the se2 in NMF is the nonnegative orthant of the space of real numbers, th@hg] = [£]., however,
other sets can also be used. For example, the updated factors can be bounded by a box rul,thigtidmin < £ <
Umax}-
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In this chapter, we introduce learning algorithms for the NMF problem using second-order
approximations, i.e. the third-order term in the above Taylor series expansion. In consequence,
the learning rateg, andny in (6.1)—(6.2) become the inverses of the Hessian, thus yielding the
following projected Newton updating rules:

vec(A) « Pq|vec(A) — Hylvec(Ga)|, (6.5)
vec(X) « Po [vec(X) ~Ht vec(Gx)], (6.6)

whereGa = VAD(Y||AX) andGx = VxD(Y||AX). The symbol vedG) denotes the vectorized
version of the matrixG € R™T, that is, vedG) = [011, 021, - - ., 031, 012, - . ., Qat] " € RIT.

Using the information about the curvature of the cost function, which is intimately related
to second-derivatives, the convergence can be considerably accelerated. This, however, also
introduces many related practical problems that must be addressed prior to applying learning
algorithms. For example, the HessidR andHyx must be positive-definite to ensure the con-
vergence of approximations d.6)—(6.6) to a local minimum oD(Y||AX). Unfortunately, this
is not guaranteed using the NMF alternating minimization rule, and we need to resort to some
suitable Hessian approximation techniques. In addition, the Hessian values may be very large
(especially when updating) and of severely ill-conditioned nature (in particular for large-scale
problems), which gives rise to manyfidi¢ult problems related to its inversion.

This chapter provides a comprehensive study on the solutions to the above-mentioned prob-
lems. We also give some heuristics on the selection of a cost function and related regularization
terms which restrict the area of feasible solutions, and help to converge to the global minimum
of the cost function.

The layout of the chapter is as follows: first, we discuss the simplest approach to the projected
guasi-Newton optimization using the Levenberg-Marquardt regularization of the Hessian. For
generality, as a cost function, we consider the Alpha- and Beta-divergeh,eZ9[ 22] that
unify many well-known cost functions (see the details in Chapter 2), we then discuss the reduced
guasi-Newton optimization that involves the Gradient Projection Conjugate Gradient (GPCG)
algorithm 24, 2, 1, 34], followed by the FNMA method proposed by Kim, Sra and Dhill@d][

Further, as a special case of the quasi-Newton method, we present one quadratic programming
method B5]. The simulations that conclude the chapter are performed orathe senchmark
data (mixed signals) as those in other chapters.

6.1 PROJECTED QUASI-NEWTON OPTIMIZATION

In Chapter 2, we have demonstrated that the Bregman, Alpha- ordBetegences]s, 11] are
particularly useful for dealing with non-Gaussian noisy disturbances. In this section, we discuss
the projected quasi-Newton method in the context of application to alternating minimization of
these functions. First, the basic computations of the gradient and Hessian matrices are presented,
and then the effient method for computing the inverse to the Hessian is discussed.

6.1.1 Projected Quasi-Newton for Frobenius Norm

First, we will present the projected quasi-Newton method thatmiies the standard Euclidean
distance in NMF. This case deserves special attention since normally distributed white noise is



PROJECTED QUASI-NEWTON OPTIMIZATION 345

Algorithm 6.1: QNE-NMF

Input: Y € RT: inputdata, J: rank of approximation
Output: A € R andX e R¥T suchthat the cost functiorg(7) is minimized.

1 begin

2 initialization for A, X

3 repeat

4 X « QNE(Y, A, X) /* Update X */
5 A« QNE(YT,XT,AT)T /* Update A */
6 until a stopping criterion is met /* convergence condition */
7 end

8 function X = QNE(Y, A, X)

9 begin

10 R=ATY

11 repeat

12 | X —[(@-n)X+noR], /* Update X */
13 until a stopping criterion is met /* convergence condition */
14 end

a common assumption in practice. For the squared Euclidean distance:
1 2
De(Y[IAX) = SIY = AXllg. (6.7)

the gradients and Hessians have the following forms:

Gx = AT(AX =Y) eR>™T,  Ga = (AX = Y)XT e R™, (6.8)
Hx = It ® ATA e RITIT, Ha = XXT®1; e RV, (6.9)

wherelt € R™T andl, € R™! are identity matrices, and the symlsstands for the Kronecker
product.
The update ruleg.6) for X can be reformulated as follows
vec(X) « Pq [vec(X) — 10 (Hx)™® vec(Gx)]

= Pq [vec(X) — 1o (IT ® ATA)_1 vec(Gx)]

_ P, [vec(X) . (|T @(ATA)‘l) vec(Gx)], (6.10)
thus it is re-written in the matrix form as

X — P [x o (ATA)" Gx]

- Py [x —no (ATA) T AT(AX - Y)] (6.11)



Multi-Way Array (Tensor)

Factorizations and
Decompositions

The problems of nonnegative multi-way array (tensor) factaomatand decompositions arise

in a variety of disciplines in the sciences and engineering. They have a wide range of important
applications such as in bioinformatics, neuroscience, image understanding, text mining, chemo-
metrics, computer vision and graphics, where tensor factorizations and decompositions can be
used to perform factor retrieval, dimensionality reduction, compression, denoising, to mention
but a few. For example, in neuroimage processing, images and videos are naturally represented
by third-order, or general higher-order tensors. Color video sequences are normally represented
by fourth-order tensors, thus requiring three indices for color images and a fourth index for the
temporal information.

Almost all NMF algorithms described in the earlier chapters can be extended or general-
ized to the various nonnegative tensor factorizations and decompositions formulated in Chapter
1. In this chapter we mainly focus on the Nonnegative Tensor Factorization (NTF) (i.e., the
PARAFAC with nonnegativity and sparsity constraints), the Nonnegative Tucker Decomposi-
tion (NTD) and the Block-Oriented Decomposition (BOD). In order to make this chapter as
self-contained as possible, we re-introduce some concepts and derive flieieyteheuristic
algorithms for nonnegative tensor (multi-way array) factorizations and decompositions. Our par-
ticular emphasis is on a detailed treatment of generalized robust cost functions, such as Alpha-
and Beta-divergences. Based on these cost functions, several classes of algorithms are intro-
duced, including: (1) multiplicative updating; (2) Alternating Least Squares (ALS); and (3)
Hierarchical ALS (HALS). These algorithms are then incorporated into multi-layer networks in
order to improve the performance (see also Chapters 3-6), starting from relatively simple third-
order nonnegative tensor factorizations through to extensions to arbitrarily high order tensor
decompositions.
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Practical considerations include the ways to impose nonnegativity or semi-nonnegativity, to-
gether with optional constraints such as orthogonality, sparsitjoasthoothness. To follow
the material in this chapter it would be helpful to be familiar with Chapters 1, 3 and 4.

7.1 LEARNING RULES FOR THE EXTENDED THREE-WAY NTF1 PROBLEM

Based on the background given in Chapter 1, we shall now intrgahactical learning rules for
several extended tensor decompositions.

7.1.1 Basic Approaches for the Extended NTF1 Model

Consider the extended NTF1 model with irregular frontal slickswa in Figure7.1(a) [25],

which can be exploited as follows: “Given a three-way (third-order) tensor formed by a set of

matricesY € RLXT‘* (g =12,...,Q), formulate a set of nonnegative and sparse matrices

A e R, C e R®Y andXq € R for q = 1,2, ..., Q with reduced dimensions (typically,
J << <Ty)"

The extended NTF1 model for a three-way array can be represented inffar@ali mathemat-

ical forms, as illustrated in Figurea1(b) and7.1(c). Firstly, it can be described by a set of
tri-NMF models:

‘Yq =ADXq+Eq, (q=12...,Q), (7.1)

where Dq € R are diagonal matrices (each diagonal matrix containgjitierow of matrix
Ce R?XJ in its main diagonal)Xq = [Xjq] € RiXT‘* are matrices representing sources (or
hidden components), and matricEs = [eyq] € R'*Te represent errors or noise depending
upon the application. The diagonal matriégscan be considered as scaling matrices and can
therefore be absorbed into the matridgsupon defining a new set of matricesXg = DX

(if no additional constraints on the component ma@igre imposed), to give

‘YquXq+Eq, (q=1,2,...,Q).‘ (7.2)

Thus, only the mixing (bases) matri and the set of scaled source matri¥gsieed to be found
whereas due to the scaling ambiguity the mafristoes not need to be calculated explicitly. This
also allows us to use row-wise unfolding to convert the NTF1 problem into the standard NMF
problem described by the single matrix equation

‘ Y(l) = AX(l) ah E(l), (7.3)

theY(l) = Y_ = [)_/d = [Yl,Yz, .;.,YQ]_E RIX-F; X(Jﬁ = X = [ijt_i = [Xl’xz,n-»XQ] €
R, Eqy = [E,E,...,Eq] e R*T,andT = £2 Tg, t=1,2,...,T.

Based on the above representations, we have several possible approaches to find (identify)
the extended NTF1 model:
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(=12,

Fig. 7.1 (a) NTF1 model that approximately decomposes a three-way array with irregular frontal

slices Yq € R™™ into a set of nonnegative matrices A = [aj] € RY,C = [cg] € RYY and

{X1.X2,..., Xa}, Xq = [Xjq] € Riﬂq; (Eq € R"™Ta represents errors). (b) An equivalent repre-

sentation using set of three-factor NMF, where Dq = diag(cy) are diagonal matrices. (c) Global
matrix representation using row-wise (mode-1) unfolding of the three-way array; in this case the
sub-matrices are defined as Xq £ DeXg. (@=12,...,Q).
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Fig. 7.2 (a) Illustration of the standard nonnegative tensor factorization (NTF) and (b) Super-
Symmetric Tensor Nonnegative Factorization (SSNTF) for a third-order tensor by sum of rank-one
tensors. The SSNTF is a special case of the NTF for | =T = Q and A = B = C (or equivalently
aj = bj =Cj GRI, V])

negative component (factor) matricés= [ay, @, ..., a;] € R™?, B =[by, by, ..., bj] e RT
and C = [cy, G, ..., ¢3] € R¥ (see Figuré.2and also Chapter 1)

J
Y=Y (ajobjoc)+E=1x1Ax;BxsC+E, (7.30)
=1

whereE = Y — Y € RTQ js a tensor representing the error.

The goal is to estimate matrices B, C subject to constraints. These include scaling to unit
length vectors, nonnegativity, orthogonality, sparsenes®arthoothness of all or some of the
columnsa;.

A super-symmetric tensor has entries which are invariant under any permutation of the in-
dices. For example, for a third-order super-symmetric teMserR'<™<Q (with | = T = Q) we
haveyiq = Yiqt = Ytiq = Yo = Yait = Yqi» and its nonnegative factorization (referred to as the
SSNTF) simplifies into the form

J
Y=> (ajoajoa)+E=Ix1Ax2AxsA+E, (7.31)
=1
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Algorithm 7.4: Simple HALS NTF
Input: Y: input data of sizé; x I, x - - - X I, J: number of basis components

Output: N component matricea®™ e RL”XJ suchthat the cost functions(94) are
minimized.
1 begin
2 | ALS or random initialization for all factora ™
3 aﬁ”) - agn)/||a‘j”)||2 for¥j,n=1,2,..,N-1 /* normalize to unit length */
4 E=Y- z =Y - [{A}ll /* residual tensor */
5 repeat
6 for j=1to Jdo
7 YO =g+, &?,...,a"]
8 forn=1to Ndo
. alV [Yg)) {aj}e’”] /* See Egs. (7.99) and (7.100) */
+
10 if n# N then a(jn) — a(j”)/llagn)llg /* normalize to unit length */
11 end
— v _ @0 5@ (N)
12 E_x [[a] ’a] ,""a' ]]
13 end
14 until a stopping criterion is met /* convergence condition */
15 end

Algorithm 7.5: FAST HALS NTF

Input: Y: input data of sizé; x I, x - - - X Iy, J: number of basis components
Output: N factorsA®™ e RL"XJ sud that the cost functiong/(94) are minimized.

=

begin

2 Nonnegative random or nonnegative ALS initialization for all factf®  /* @ =/
3 agn) — agn)/lla(jn)llg for¥j,n=2,2,...,N-1 /* normalize to unit length */
4 TO = (AOTAD) @ ... @ (AN TAN)

5 repeat

6 y = diagAM TAMN)

7 for n=1to Ndo

8 if n=Ntheny=1

9 T@ =Y (A

10 TO =TO o (AO TAM)

11 for j=1toJdo

12 agn) — [y,— a(jn) + t§2) - AM t§3)]+

B if n# Nthen agn) = agn)/”agn) , /* mormalize to unit length */
14 end

15 TO =TE @ (AMTAM)

16 end

17 until a stopping criterion is met /* convergence condition */
18 end

@ For athree-way tensor, direct trilinear decomposition can be used for initialization.
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(I xJ,)
(1, X] x 1) (L x ), xJ,x ) (J,x1,) (I, x I, x L)

Fig. 7.4 Tlustration and notations used for a higher-order Tucker decomposition; the objective
here is to find optimal component (common factor) matrices A® € R'™ and a core tensor
G € R 2> We usually impose additional constraints on the component matrices and/or the
core tensor such as nonnegativity and sparsity.

where the parametets, asm andac, control respectively the degrees of sparsity, smoothness,
and uncorrelatednes;éif’) are scaling co@cients defined in1.98, andSis a smoothing matrix.
Thes parameters can beflirent for each factoh™.

7.4 ALGORITHMS FOR NONNEGATIVE AND SEMI-NONNEGATIVE
TUCKER DECOMPOSITIONS

The higher-order tensor Tucker decomposition is described as@hdposition of a giveil-
th order tensol e R'™2**In into an unknown core tens@ € RN multiplied by a
set of N unknown component matricea®™ = [a”,al", .. a(“)] eR™n (n=12...,N),
representing common factors or loading87]| [33] [50], [62] [51] [76], [52

Jhh X
1 2 N
Y = Z Z Z Osjpiv 800 a0 0al +E (7.115)
j1=1j2=1 iN=
= Gx1 AW X APy AN L E= G X (A} +E (7.116)
=Y+E (7.117)

where tensol is an approximation of tensof, and tensoE = Y — Y denotes the residual or
error tensor (see Figuré.4). In the next sections, we consider at first a simple Tucker model
with orthogonality constraints followed by Tucker models with nonnegativity and sparsity con-
straints, in which the orthogonality is not necessarily imposed.
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2. Compute the residual error tens@y = Y- fl, ard divide it into two parts by thresh-
old values set up by its most frequent values (defined by the mode funcgq[;gz =
max(R;, mod(R,)), Ry, = MiN(R;, mod(R,)). Then, we normalize these two tensors

Ry,p amd Ry, to unit scale [0, 1], and also inveR,;,, =1-Ry,.

3. Decompose these two nonnegative residue tensors to get two new approximation tensors
Yp @d Yy, Invertand scale these two tensors to the original ranges of their corre-
sponding tensor®,,, and Ry,

4. Obtain the level-2 approximation tensEE andreturn to step 2 for the next level.

The residual tensdR does not need to be split if we use the standard or semi-nonnegative
Tucker decomposition. Multi-level decomposition allows much smaller errors and higher perfor-
mance to be achieved. Figurel8illustrates the approximated slices in the multi-level scheme
illustrated in Figur&.6applied to face representation. The accuracy of approximatwaases
gradually with the number of decomposition levels (Figutds8(b)-7.18(h). It should be noted
that he approximated tensor obtained in the first layer is similar to the low-resolution data of its
raw data. In the case of noisy data, to receive the high-resolution details we must mak# tradeo
between the level of detail and noise. Upon applying denoising to the residue tensors, NTD may
become an eflient tool for multi-way restoration and compression. In reconstrutenising
applications, we take into account an approximation telsdut for feature extraction appli-
cafons, factorsA(™ and core tensoB are analyzed. Another advantage of this scheme is that
we can avoid decomposition using a large core tensor, since in hierarchical decomposition the
dimension of the core tensor can be much smaller.

Fig. 7.6 Hierarchical multi-level nonnegative tensor decomposition.

7.7 SIMULATIONS, ILLUSTRATIVE EXAMPLES AND APPLICATIONS

The performance of the algorithms introduced in this chapter aneilustrated with several
case studies for various benchmarks and real-world data (see a]spa@8[19]). For conve-
nierce, the case studies are explained through examples which reveal performance and conver-
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(a) 3D volume of original data tensor with corresponding input (b) Frontal slices of the original data tensor
factors
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(c) Performance of the Alpha NTF Algorithm (d) Comparison of initialization techniques (SIR on the left

vertical axis, No. iterations on the right vertical axis)

Fig. 7.8 Example 7.2: The data tensor was constructed using five basis waveforms (all three
factors are identical) (a) 3D visualization of original tensor with the corresponding factors; (b)
Frontal slices of the original tensor (c) SIR distributions obtained by Alpha NTF algorithm with
a = [0.2-2]; (reconstruction is almost perfect and estimated factors are almost identical to original
factors, ignoring scaling and permutation ambiguities); (d) Performance comparison of Alpha NTF
algorithm for three initialization techniques: HOOI, ALS and Random mode. (The performance
index is Signal to Interference Ratio (SIR), where larger values indicate better performance of teh

algorithm).

which was corrupted by additive Gaussian noise with SNE) dB (see Figur&.9a)). For the

data ensor without additive noise (Figu®e9(b) the NTF model was able to explain 98.59%

of thevariation withJ = 4 components, and 99.20% of the variation witk= 5 components.
Figure7.9(c)presents the estimated factors and the corresponding recdadtdata tensor ob-
tained by the Fast HALS NTF algorithm for the data tensor without additive noise. In the next
experiment the noisy data tensor (see Figugfa) was approximated by the NTF model based
on theAlpha and Beta HALS NTF algorithms with smoothness constraints, which gave the FIT
value of 961% using onlyJ = 4 components. Figuré.9(d)displays the reconstructed data
tengr for the estimated components by applying the Beta HALS NTE (&) algorithm. The



SIMULATIONS, ILLUSTRATIVE EXAMPLES AND APPLICATIONS 437

(a) Iso-surface of noisy 3D image (b) Slice mode representation of the 3D (c) Iso-surface of the reconstructed 3D image

image using its estimated factors
(d) Iso-surface of the reconstructed (e) The 40-th noisy slice (f) The reconstructed 40-th slice using
image using the Beta HALS NTF theBeta HALS NTF; PSNR= 27.19 dB

(PSNR= 27.19 dB)

[ —— PSNR =—©— Number of iterations‘ PSNR =—©— Number of iterations‘
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(g) Alpha HALS sNTF with smoothness constraints (h) Beta HALS sNTF with smoothness constraints

Fig. 7.9 Reconstruction of noisy 3D image for the membrane tensor Y € RS540 from Example
7.3: (a)-(b) iso-surface and slice mode visualizations of the noisy and “clean” data tensors, (c)
estimated factors and the data tensor by the Fast HALS-NTF for the “clean” data tensor (without
additive noise), (d) iso-surface visualization of the reconstructed tensor by using Beta-HALS-
NTF algorithm; (e)-(f) surface visualizations of the 40-th slices of the noisy data tensor and
reconstructed tensor by Beta (8 = 2) HALS NTF algorithm, respectively; (g)-(h) Performance of
multiplicative Alpha NTF and Beta NTF algorithms with smoothness constraints.
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Listing 7.2 Example 7.2.

MULTI-WAY ARRAY (TENSOR) FACTORIZATIONS AND DECOMPOSITIONS

1 % Alpha NTF with alpha = 0.2:.2:2 using ALS initialization

2 randn( 's tate' ,7256157);

3 Ainit = mat2cell(rand(sum(In),R),In,R);

4+ alpha = .2:2:2;

s R = 5;

6 SIR = zeros(3 *R,numel(alpha));

7

g for k = l:numel(alpha)

9 options = struct( 'v erbose' ,1, 'tol' ,le -6, 'maxiters'
10 'no nlinearproj' 1, 'alpha’ ,alpha(k), ‘fixsign'

11 [Y _alpha,Atemp,Ahat] = parafac _alpha(Y,R,options);
12 SIR(:,k) = cell2Zmat(cellfun(@CalcSIR,A,Ahat, 'un
13 end

14

15 figure

16 labels = mat2cell(sprintf( '%. 1f \n' ,alp ha),1,4 +*ones(
17 boxplot(SIR, | abel' ,labels, ‘notch’ ,‘'on' )

18 Xxlabel( 'A | pha' );ylabel( 'SIR [dB]" );

50 0, 'init ,3, ...
0, ‘Ainit, {Ainit });
i ,0);

1,numel(alphay)))

(a) 3D volume for noisy input data tensor(b) 3D volume of reconstructed tensor
using NTF with FIT 99.9%
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(d) Original 10-th slice of the noisy data (e) 10-th reconstructed slice using HALS
tensor NTF algorithm

(c) Iso-surface visualization of the
reconstructed tensor with the FIT 99.99%

(f) Estimated factors using HALS NTF
algorithm

Fig. 7.10 NTF for a large-scale data tensor Y € R30%500<500 degraded by additive Gaussian noise

with SNR = 0 dB in Example 7.4.

perfamance is also illustrated by the visualization of the reconstructed exemplary horizontal
40-th slice (see Figur@.9(f)) where the original noisy slice is shown as a reference in Figure
7.9(e). In addition, the performance for férentvalues of parameters andp for the Alpha
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Fig. 7.11 Comparison of performance for various algorithms in Example 7.5. Illustration of esti-
mated factors by the FAST HALS NTF in comparison with the multiplicative NMWF algorithm
for three-way tensor factorization of amino acid data. (a)-(b) the first slices of the original amino
acid tensor and the same tensor corrupted by large Gaussian noise, (¢)-(d) the reconstructed slice
using the HALS NTF and NMWF algorithms, (e)-(f) three estimated factors using the HALS NTF
and NMWF algorithms (the estimated factors should be as smooth as possible), (g) comparison
of distributions of PSNR (dB) for all slices, CPU time (seconds) and the explained variation (FIT

Listing 7.3 Example 7.3 generates membrane tensor of 40 slices.

1 LO = membrane(1,25); LO = LO — min(LO(Y));
2 nlayers = 40;

3 Y = LO(:,:,ones(1,nlayers));

4 sc = reshape(l:nlayers,[1,1,nlayers]);

5 Y = bsxfun(@times,Y,sc);

and Beta HALS NTF algorithms are illustrated in Figured(g) and7.9(h)with Peak Signal to
NoiseRatio (PSNR) in the left (blue) axis and number of iterations in the right (red) axis.

Example 7.4 Large-scale tensor decomposition
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(a) Original core tensor and factors (b) Estimated factors with core tensor using (a¢{ALSNTF
algorithm for the data tensor without noise

200

| e g

o-NTD  B-NTD [2 HALS HONMF enhHALS

(c) Frontal slices of the noisy data  (d) The reconstructed tensor for noisye) SIR distributions for the reconstructed tensors for
tersor with SNR= 0 dB dawith PSNR= 85.49 dB various Tucker decomposition algorithms

Fig. 7.14 Tllustration of NTD for a data tensor with sparse factors (with and without noise) for
Examples 7.8 and 7.9: (a)-(b) original and estimated factors and core tensors; (c) frontal slices of
the noisy tensor with SNR = 0 dB; (d) reconstructed tensor by £, HALS NTF algorithm (scaled
to the unit f,-norm) with PSNR = 85.49 dB; (e) SIR distributions obtained by Alpha, Beta, ¢,
HALS and enhanced HALS NTD algorithms for the data tensor without noise.

The components (columns of factor matrices) were estimated by imposing additional orthog-
onality constraints and the stopping criterion used was tfferdnce value of the explained
variations (with the threshold of 16). The estimated factors were initialized by the HOOI
algorithm, and the orthogonal parameigy; was set to 0.05 for all the estimated factors. Fig-
ures?7.14(b)illustrates the estimated component matrices and core tensonetitby the basic
HALS NTD algorithm after being rearranged to match the component order of the original
factors. Next, we performed nonnegative Tucker decomposition using the multi-layer model
(referred to as enhanced HALS or briefly enhHALS). The estimated core t€rsoeach layer
wasadjusted by the product of the observed tensor and the pseudo-inverse fséfoes

G =Y xg AWT 5, ADT ..o AT (7.200)

In each layer, the new core tensor and the estimated factors were used for the initialization of the
succeeding layer. Using this model, we were able to improve the performance of nonnegative
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Fig. 7.22  Visualization of EEG signals tutorialdataset2.zip [61] in Example 7.16.

IPTC ime-frequency measurements, whereas the performance comparisons are given in Table
7.3. The components of the first factéé?) arerelative to the location of electrodes, and are
used to illustrate the scalp topographic maps (the first row in Fig2®; whereas the second

factar A represents the time-frequency spectral maps which were vectorized, and presented in
the second row. Each component of these factors corresponds to a specific stimulus (left, right
and both hand actions).

Example 7.17 Decomposition and classification of visual and auditory EEG align
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Fig. 7.23 EEG analysis based on the FAST HALS NTF for Example 7.16, the component matrices
are A® for a scalp topographic map (first row), and factor A® for spectral (time-frequency) map
(second row) (see [61] for details). Results are consistent with the previous analysis [61] but
convergence properties of the FAST HALS NTF algorithm are different.

We illustrate decomposition and classification of EEG signals according to the nature of the
stimulus: visual or auditory for the benchmakG_AV_stimuli [9, 3, 60, 86]. The stimuli
were

1. Auditory stimulus with a single tone of 2000 Hz of 30 ms duration.

2. Visual stimulus in the form of a &% 5 checkerboard (608 600 pixels) displayed on a
LCD screen (3% 25cm). The stimulus duration was also 30 ms.

3. Both the auditory and the visual stimuli simultaneously.

A single class (stimulus type) consistdtd= 25 trials, and was stored in a separate file. In
each trial, EEG signals were recorded from 61 channels (except channels VEOG, HEOG, FP1)
during 1.5 seconds after stimulus presentation at a sampling rate of 1 kHz. All the EEG signals
in one class formed a third-order tensor of 25 trials500 time samples 61 channels. Hence,

the full dataset is a 4-way tensor of size 25 trial$500 samples 61 channelx 3 classes.

These three types of event related potentials can be classified according to the latency at
which their components occur after stimulus presentation. The latency features of the three
classes (corresponding to threéfeiient conditions) in the time domain can be found in Figures
7.24(d) 7.24(e)and 7.24(f). For instance, there is a P100 peak appearing around at 100 ms
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following the stimulus for auditory stimuli as shown in Figar@4(d) We applied the nonneg-

ative Tucker decomposition in analyzing the dataset in order to find the complex interactions
and relationships between components expressing three modes: channels (space), spectra (time
frequency representation), and classes (corresponding to three stimuli).

First, the EEG signals were transformed by the complex Morlet wavelet into the time-frequency
spectrograms of 31 frequency bins (10-40 K2)26 time frames (0-500ms) to form a raw data
tensorW of 61 channels< 31 frequency bin 126 time frames< 25 trialsx 3 classes. To
analyze this spectral tensor, we averaged the wavel#iceat magnitudes along all the trials
as

1 N
Vel = 5 Zn: We, - (7.201)

This data tensor corresponds to the time-frequency transformed Event Related Potentials (ERP)
[37]. In practice, to reduce the high computational cost, we compaxedages of the tensor
along 25 trials, to obtain 183 (61 channgl8 classes) EEG signals for all three classes (each
with 1500 time samples); then transformed them to the time-frequency domain. In this way, we
avoided wavelet transformation for all 4575 (61 channeBb trialsx 3 classes) EEG signals.

The preprocessed data ten§ohas size of 61 channeks31 frequency binx 126 time frames

x 3 classes. Figurea24(a) 7.24(b) and7.24(c)show some selected spectra for three stimulus
clas®s.
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Fig. 7.24 Spectrograms and corresponding ERP for three types of stimuli in Example 7.17: (a)-
(d) auditory, (b)-(e) visual, (c)-(f) auditory-visual stimulus.



SIMULATIONS, ILLUSTRATIVE EXAMPLES AND APPLICATIONS 457

(1)
%

(a) Topographic and Spherically-splined EEG field maps - fasfér

(2 2 )
& & &
1 10 10
— 20 — 20 — 20
N N N
L. L. ==
30 30 30
4 40 40
0 100200300400 500 0 100200300400 500 0 100200 300400500
[ms] [ms] [ms]
(b) Spectrograms - factax®
(3) (3) (3)
% 1 % 1 % 1
.8 0.8 .8
0.6 0.6 0.6
04 0.4 04
2 0.2 2
O—71 72 3 O— "2 3 O—172 3
Class components Class components Class components

(c) Classes - factoh®

Fig. 7.25 Visualization of components of the NTD model in Example 7.17. (a) factor 1 A®
characterizes spatial components displayed in topographic maps and sherically-spline EEG field
maps; (b) spectral components expressed by factor A®); (c) expression of factor A® for 3 classes:
component 1 a(f) - auditory-visual class, component 2 a(f) - Auditory class, and component 3 a.(;')
- visual class-2 in Example 7.17.

Finally, we reshaped data tensdiinto a third-order nonnegative tensor of the sizex63906
x 3. The Nonnegative Tucker Decomposition model was chosen to decompose the preprocessed
tensor data, and th® HALS NTD was selected to extract underlying components. We set the
number of components to three, that is, the size of core tensor wa8 & 3. The listing
code 7.12 shows how the data tensor was processed and results were visualized. The three
estimated components of the fact®®) express spatial activations (channels) distributed over
61 channels. The topographic maps and the corresponding spherically-splined field maps are
displayed in Figurd.25(a) The three basis spectral componeajt j; = 1, 2,3 were reshaped

and displayed in Figuré.25(b) The three componens?”, js = 1,2, 3 indicating the category
of stimuli are plotted in Figur@.25(c) Using such multi-way analysis, the three classes of
stimuli were clearly classified, as illustrated by Taflé.
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Fig. 7.26 Tlustration of the core tensor via Hinton diagrams: (a) full core tensor G in 3-D mode;
(b)-(d) Frontal slices Gj = G, _;, ] = 12,3 express the interaction of the j-th component a§3) with
components expressing channel and spectrogram in factors A and A®: Auditory class-1 - a(f)
concentrates mainly on coefficient gszp, or spreads on a(31) by spectrogram a(sz); Visual class-2 - a?)
spreads on a% by spectrogram a(zz), class-2 - a(f) spreads on agl), a(zl), and a(ll) by spectrogram afl
aéz) and aéz). Darker colors (in (a) indicate dominant components for each of the three factors.

strongly the spatial componeal? affects the category componeaj? is expressed as

J

2
Z i zis
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Z Z ng1]2]3
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Fig. 7.28 Visualization of the three significant components agl), aéz), a(23

tensor in the NTD for the visual class-2.
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Fig. 7.29 Hinton diagrams of the Joint Rate indices between (a) spatial and category components,
(b) spectral and category components and (c) spatial and spectral components.

among components for each class can be evaluated directly from these plots; for example, the
J@g has the largest value. This means that the the 2nd category compdieets primarily

the third spatial component, the 3rd category category component correlates mainly with the
second spatial componenll@é), whereas the 1st one spreads over all the three components.
In Figure7.29 we show Hinton diagrams which illustrate the strength of irttwas of spatial

and spectral components with respect to the category components, and their mutual interactions.

7.7.5 Application of Tensor Decomposition in Brain Computer Interface and
Classification of Motor Imagery Tasks

In comprehensive Brain Computer Interface (BCI) studies, thia bigta structures often contain
higher-order ways (modes) such as trials, tasks conditions, subjects, and groups in addition to
the intrinsic dimensions of space, time and frequency. In fact, specific mental tasks or stimuli
are often presented repeatedly in a sequence of trials leading to a large volume stream of data
encompassing many dimensions: Channels (space), time-frequencies, trials, and conditions [5
69, 12,63, 22].

As Figure 7.30shows, most existing BCI systems use three basic signal-pragdssicks.
The system applies a preprocessing step to remove noise and artifacts (mostly related to ocular,
muscular, and cardiac activities) to enhance the SNR. In the next step, the system performs fea-
ture extraction and selection to detect the specific target patterns in brain activity that encode the
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user's mental tasks, detect an event-related response, or reflect the subject’s motor intentions.
The last step is aimed at translating or associating these specific features into useful control
(command) signals to be sent to an external device. Ideally, the translator block supports the
noncontrol state, because without NC support, all classifier output states are considered inten-
tional. With NC support, the user can control whether or not the output is considered intentional.
In the latter case, a self-paced NC state paradigm is monitored continuously, where users can
perform specific mental tasks whenever they want.
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Fig. 7.30 Multistage procedure for online BCI. Preprocessing and feature extraction play a key
role in real-time, high-performance BCI systems. In the calibration step, most BCI ERP studies
are based on multi-subject and multi-condition analysis. For such scenarios, the tensor decompo-
sitions naturally encompass extra modalities such as trials, subjects, conditions, and so on and
allow the system to find the dominant sources of activity differences without supervision.

In the preprocessing step, the system can decompose the recorded brain signals into useful
signal and noise subspaces using standard techniques (like ICA or nonlinear adaptive filter-
ing). One promising approach to enhance signals, extract significant features, and perform some
model reduction is to apply blind source separation techniques, especially multiway blind source
separation and multiway array (tensor) decomposition.

A promising and popular approach based on the passive endogenous paradigm is to exploit
temporalspatial changes or spectral characteristics of the sensorimotor rhythm (SMR) oscilla-
tions, or mu-rhythm (8-12 Hz) and beta rhythm (18-25 Hz). These oscillations typically decrease
during, or immediately before a movement event related desynchronization (ERD). External
stimuli-visual, auditory, or somatosensory — drive exogenous BCI tasks, which usually do not
require special training. Two often used paradigms are P300 and steady-state visually evoked
potentials (SSVEP). P300 is an event-related potential that appears approximately 300 ms after
a relevant and rare event. SSVEP uses a flicker stimulus at relatively low frequency (typically,
5-45 Hz).

Another promising and related extension of BCI is to incorporate real-time neuro-feedback
capabilities to train subjects to modulate EEG brain patterns and parameters such as ERPs,
ERD, SMR, and P300 to meet a specific criterion or learn self-regulation skills where users
change their EEG patterns in response to feedback. Such integration of neuro-feedback in BCI
is an emerging technology for rehabilitation, but it is also a new paradigm in neuroscience
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that might reveal previously unknown brain activities associated with behavior or self-regulated
mental states (see Figure3]). In a neuro-feedback-modulated response (active endogenous)
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Fig. 7.31 Conceptual BCI system with various kinds of neuro-feedback combined with Human
Computer Interactions (HCI). The development of a BCI must handle two learning systems: The
computer should learn to discriminate between different complex patterns of brain activity as
accurately as possible, and BCI users should learn via different neuro-feedback configurations to
modulate and self-regulate or control BCI activity.

BCI paradigm, users learn to generate specific brain waves through various mental strategies
while monitoring the outcome of theifferts in near real time. Typically, the user visualizes the
preprocessed and translated target brain signal to increase motivation and improve recognition
accuracy. However, the successful control of the interface in this way usually requires quite a
long process and up to several weeks of training. BCI neuro-feedback in any of these paradigms
should be as speedy as possible, which requires fast real-time signal processing algorithms.
Recent neurofeedback experiments confirm that performance increases with richer feedback.
For example, a simple bar gives lower accuracies than a fullimmersive 3D dynamic visualization
or sonification.

Standard matrix factorizations, such as PCA, SVD, ICA and NMF and their variants, are
invaluable tools for BCI feature selection, dimensionality reduction, noise reduction, and mining
[5, 69, 12, 63, 46, 56,57, 59, 58]. However, they have only two modes or 2-way representations
(e.g, channels and time) and therefore have severe intrinsic limitations. For such kind of data
2-way matrix factorizations (ICA, NMF) or “flat-world view” may be inSicient for future BCI
systems. In order to obtain more natural representations of the original multi-dimensional data
structure, it is necessary to use tensor decomposition approaches, since additional dimensions
or modes can be retained only in multi-linear models to produce structures that are unique and
which admit interpretations that are neurophysiologically meaning)[1].

Recemadvances in developing high-spatial density array EEG have called for multi-dimensional
signal processing techniques (referred to here as the multi-way analysis (MWA), multi-way ar-
ray (tensor) factorizatigdecomposition or dynamic tensor analysis (DTA) or window-based
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Fig. 7.32 Decomposition of the 4-way time-frequency-spectral EEG data into basic components
during motor imaginary tasks.

C4 electrodes during right and left hand motor imagery (70 left-hand trials and 70 right-hand
ones). Each trial is represented by the three-way tensor (frequetitye x channel) in Figure
7.32(a) A spectral tensor was factorized into four components displayd-igure 7.32(b)
Compament 1 corresponds to left-hand imagery (due to the significantly greater C3 weight than
the C4 one), component 2 represents the right-hand imagery and component 3 reflects both left
and right hand imagery stimuli. The theta rhythm (4-8 Hz), which is related to concentration is
represented by component3H].

Figure 7.33 illustrates the experimental results using the 4-way tensorrmdposition of
multi-channel (62 electrodes) EEG data (channel, frequency, time, conditions) into four compo-
nent (factor) matrices in the space (topographic map), frequency, time and class domain shown
from left-to-right on this figure. In order to find the most discriminative components fi@rdit
classes (i.e., left hand and right hand motor imagery), we imposed a sparseness constraint on the
class mode. Each row of Figure32(b)represents one component of the factor matrices. From
theseplots components 4 and 5 are recognized as discriminative components corresponding to
the motor imaginary tasks due to their scalp maps covering sensorimotor areas. Component 4
illustrates the ERIERS phenomena that indicates in the spatial distribution a larger amplitude
on the left hemisphere and lower amplitude for the right hemisphere (see column 1), and the
energy of oscillations dominated by the mu rhythm in frequency range mainly 8-12 Hz of mu
rhythm (see column 2), and observation of quasi-stationary oscillations through the whole trial
duration (see column 3). Hence a larger amplitude is shown for class-1(right-hand imagery) and
lower amplitude on class-2 (left-hand imagery) conditions (column 4). Similarly, component 5
shows ERD on the left hemisphere and ERS on the right hemisphere. Components 1 and 3 show
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Freguency [Hz] Time [s] Class

Fig. 7.33 Decomposition of 62 channels EEG signals into basis components. Four columns rep-
resent the four factors in the analysis.

the visual evoked potentials caused by the cue stimulus, which have spatial distribution over the
visual cortex. Other components represent the existing artifacts (EOG, EMG) and other brain
activities uncorrelated with event related potentials.

The multi-way analysis approach and the related concepts (tensor decompositions, especially
their extensions to dynamic tensor analysis) presented in this chapter are only a subset of a num-
ber of promising and emerging signal processing and data mining tools with potential applica-
tions to future BCI systems. The main advantage of the presented approach is its flexibility when
dealing with multi-dimensional data and the possibility to enforce various physical constraints.
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Selected Applications

Eally applications of the concept inherited by NMF appeared innthedle 1990s under the
name Positive Matrix Factorization (PMF). This kind of factorization was applied by Pagttero
al. [82) to process environmental data, however, the popularity of NNMRicantly increased
since Lee and Seung published simple multiplicative NMF algorithms which they applied to
image data§2, 63]. At present, NMF and its variants have already found a wide spexcof
applications.

In this chapter, we briefly discuss some selected applications of NMF and multi-dimensional
array decompositions, with special emphasis on those applications to which the algorithms de-
scribed in the previous chapters are applicable. We review the following applications: data clus-
tering [LOQ, 67, 27, 24, 126, 5, 14, 16, 127, text mining [L19 100, 86, 67], email surveillance
[9], musical instrument classificatioB,[6, 7], face recognition42, 43,45, 120, 121, 128 113,
handwitten digit recognition §1], texture classificationg9, 87], Raman spectroscop®5, 65,

75, fluorescence spectroscoBg 37, 46], hyperspectral imagin@®p, 85, 28, 50, 76, 40, 104,
chemctal shift imaging 96, 95, 11], and gene expression classificati&b,[13, 14, 53, 83, 84,
73, 33,109.

8.1 CLUSTERING

Data clustering can be regarded as an unsupervised classifio&patterns into groups (clus-
ters) that have similar features, as illustrated in Fidile The data points reside in a 2D space
and ca be classified into three disjoint groups. The grouping can basically be obtained with hi-
erarchical or partitioning techniques [4® hierarchical clustering, a nested series of partitions

is performed with varying dissimilarity level whereas partitioned clustering techniques yield a
single partition of data for which a given clustering criterion is optimized (usually locally). The
former technique is usually more robust but due to its high computational complexity it is not
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Fig. 8.9 Raman spectra: (a) target spectra of Epsomite and Demantoid, (b) ten sample compo-
nents of 256 mixtures, (c) estimated spectra of Epsomite and Demantoid, (d) NMF with smooth-
ness constraints.

the incident ones are emitted. The molecular structure of the species can thereby be determined,
by analyzing the spectrum of the emitted light with respect to the frequency of monochromatic
light.

Nevertheless, the spectral analysis is not straightforward since the observed spectra are in-
stantaneous mixtures of pure species spectra and other intermediate species spectra. The prob-
lem of extracting pure spectra from the mixtures can be formulated in terms of a blind source
separation problem, and solved with many algorithms for 1€8].[ Furthermore, considering
intrinsic nonnegativity constraints on spectra and their concentrglmnsdances, the problem
can be solved with NMF, which is more profitable since the separated spectra could be partially
statistically dependent.

Assuming the mixed spectra are observed bgnsors and each spectrum asamples, all
the observations can be stored in the observation méteixR'<". Applying NMF to'Y under
the assumption thal is the number of constituent spectra, we obtain the abundance matrix
A e R and the nonnegative matri € R*T of the pure spectra.

Applications of NMF to fluorescence spectroscopy can be found, e.§8,i87, 78]. Gobinet
et al. [37] applied NMF to analyze a distribution of some organic compoundé €s bound
ferulic acid, free ferulic acid, and p-coumaric acid in durum wheat and barley grains. They used
a laser scanning microspectrofluorometer to acquire fluorescence signals. A transversal section
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of awheat grain was scanned with a 3&% laser at a spatial resolution of approximatelyri,
and the fluorescence signal spectra were measured by a CCD detector in the range of 350 to 670
nm The observed area was discretized intox2B0 pixels, and each observed spectrum was
sampled to yield 128 points. Hence, the observations were stored in the Matrig*0%128,
Applying NMF under the assumption that the number of the constituent compounds is three,
they obtained the pure species spectra and the pure species concgatratidance maps of
the corresponding pure species. Each abundance map was obtained by matricization of the
corresponding column vector 8f € R400<3,

We present an extension of fluorescence spectra using tensor factorization algorithms. The
benchmark91, 12] contains 405 recorded measurements of five replicated fluoresspectra
for a total of six diferent fluorophores in the dataset: catechol, hydroquinone, indole, resor-
cinol, tryptohpane and tyrosine. Each spectra was expressed by two factors: Emission (136
wavelengths) and Excitation (19 wavelengths). In total 405 Emission-Excitation spectra
were recorded. If we vectorize all spectra, the NMF model will be applied to find the six basis
components. However, tensor factorization helps to return a much more accurate result. For
example, we can factorize the tensor with size of 405 samplE36 emission wavelengths
19 excitation wavelengths 5 replicates into six components. The second and third factors
A® andA® are the Emission and Excitation spectral components, respectively. Bgi)
and8.10(d)depict these basis components which correspond to six fluoroghmatechol, hy-
droquinone, indole, resorcinol, tryptohpane and tyrosine. Another factorization is presented in
Figure8.11with six basis spectra with size of 136 Emission wavelengtth® Exdtation wave-
lengths. Each 2-D spectrum slice is a composition of the six basis spectra. BigQ(a)is an
exampe of one Emissiorx Excitation slice.

8.3.3 Hyperspectral Imaging

Hyperspectral imaging has found many real-life applicatiet@.[ In the mining and oil in-
dusties it is mostly used for identifying various minerals or for searching ore or oil fields. In
agriculture it is useful for monitoring the development and health control of crops, detection of
the chemical composition of plans, and water quality control. Physicists use this technique in
electron microscopy, and soldiers for military surveillance.

Hyperspectral imaging remotely maps the object of interest with spectral observations of
electromagnetic waves emitted or reflected from the object. Typically, the object of interest is
a 2D remote surface from which sunlight is reflected, and a distribution of reflesisoyption
rate is reconstructed from the observations. The spectrum of sunlight in a wide range of wave-
lengths (from ultraviolet to infrared) is measured with a remote array of narrow-band sensors
of high spectral resolutions. For example, the Airborne VigihfeaRed Imaging Spectrometer
(AVIRIS) sensors measure spectral signals in the rangedef .45 umwithin 224 contiguous
subbands with a spectral resolution ofnb® The spatial resolution depends on the distance
from the object of interest to the observation point, and typically, it varies from 4 to 20 meters.
This kind of sensor is used in airborne observations; satellite observations (e.g., by NASA's
Hyperion sensors) are also commonly-used. The object of interest is discretized, and a spectral
characteristic is measured for each pixel, thus the observations are stored in a 3D array. In Figure
8.12(b) we illustrate the La Parguera datas®f][taken with the Hyperion sensor, atmospheric
corrected with the ACORN algorithm and with several bands discarded. The La Pargueraregion
is composed of dierent types of reefs in shallow and deep water, sea grass (mostly thalassia),
mangrove and sand. The true color image of the La Parguera region was collected from the three
bands of Red 634 nm, Greer= 545 nm, and Blue- 463 nm (Figure3.12(a).
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Fig. 8.10 [Illustration of factorization for fluorescence data of size 405 samples X 136 emission
wavelengths x 19 excitation wavelengths x 5 replicates : (a) one spectra slice of the tensor , (b)
one 3-D sample with five fluorescence replicates of size 36 emission wavelengths X 19 excitation
wavelengths, (c) - (d) estimated excitation and emission spectra of six different fluorophores in
the dataset: catechol, hydroquinone, indole, resorcinol, tryptohpane and tyrosine.

Each horizontal slice represents a spatial distribution of a reflgatisorption rate for a
given subband. A 3D multi-array is formed from the multiple subband observations. The hori-
zontal slices are divided into pixels, and thus a 3D multi-array of observations is composed from
voxels. A plot of the reflectigiabsorption rate along any vertical line determines the continuous
spectrum that identifies the surface material in a given position on the surface.

Unfortunately, the observed spectrum in any position on the surface of interest is practically a
superposition of spectra of many underlying materials. This also causes a poor spatial resolution
of spectral detectors. A single “pure” material is called the endmember, and the aim of applying
NMF to hyperspectral imaging is to extract the spectra of endmembers from the multi-array of
mixed spectral observations. Furthermore, having the spectra of endmembers computed, we can
estimate the maximum abundance of each endmember in a given position on the surface. A 2D
distribution of each corresponding abundance provides complete information for the surveyed
area. One should also notice that both abundances and spectra of endmembers are nonnegative



518 SELECTED APPLICATIONS
0.15. 0.15
0.1. 0.1
0.05« 0.05 g q
3207 320
. & 500 Q&
&, 300 o450 (N, 800 450 ¥
; 280 400 o ", 280 400 ¢
0, . e\e‘\ ek@/ 260 350 \ﬂ")\‘
al/s/eq 260° 200 350 « o 0, y 240 300 &\9";’\0‘\
2 - < Z 250
P, 280 50 o K ¢
(a) Component 1- Catechol (b) Component 2- Hydroquinone
0.06-
Ot 0.04-
§§ - 0.02- ~
.02- 3207 _ 500 N
320 Sy, 300 L 450 o
“00 . 500 \/o,, wy, 280 350400 2
S . 450 o "%,7 260 < oW
o, 280 a0 o 200 520 o
QV@/ 260 N 350 \‘4’3‘6 74
(S R\
", 240" 300 &
Oy 250 <«
(c) Component 3 - Indole (d) Component 4 - Resorcinol
0.08.
0.06- Ol
0.04. 08
0.02« ‘04 g
320 oo . 500 _320° 500
&, . 450 300 450 o
e, 280" %50 400 o T Tay 280 . 400 e\e‘&\\
QA . . e Q) - 35 N)
l/@/e,] 260 300 ‘ 4\0(\\“ V@/e/7 260 ) 300 0 o >
v / 240 i 0, 240 &
"y 250 <« Oy, 250 «®

(e) Component 5 - Tryptohpane

(f) Component 6 - Tyrosine

Fig. 8.11 Six spectra components were estimated from the tensor 405 samples x 2584 (emission-
excitation) wavelengths x 5 replicates. Slice in Figure 8.10(a) was expressed by addition of these
six basis spectra.
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Fig. 8.12 Hyperspectral imagery illustration for the La Parguera hyperspectra image [94], cap-
tured with the EO-1 (Hyperion sensor) over La Parguera area Lajas, and Puerto Rico. The dataset
processed using ACORN has 106 bands of size 250 x 239 pixels, where multiple subbands form a
3D multi-array. A vertical profile through a single pixel position shows the continuous spectrum
assigned to this position. The spectrum identifies the surface material: (a) true color visualization
includes bands at Red = 634 nm, Green = 545 nm, and Blue = 463 nm, (b) relative brightness
at pixel (45,102) through 106 bands.

curves, and hence, the usage of NMF for this application seems to be reasonable. However,
other decomposition methods (e.g., used in ICA) could also be apligd [

To appgy NMF a 3D multi-array should be unfolded to form an observation matrix R'*T
wherel is the total number of pixels in one slice, amdis the number of subbands (Figure
8.13(a). After applying NMF, we obtain the nonnegative matAxe R’ of atundances,
and the nonnegative matrix € R™T of endmember spectra. The rowsdncorrespond to
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Fig. 8.13 Analysis of hyperspectral images by the NMF model: (a) Pixels was reordered according
to wavelengths for analysis, (b) two first reflectance components were estimated by NMF, (c¢)-(d)
two endmember spectra correspond to the reflectance components.

endmembers, and the respective columné irefer to the abundances. The spectrum of an
endmember is some kind of “fingerprint” or signature of the underlying material and it should
be unique and suitable for identification. The abundance vectors are matricized in the reverse
way to the used vectorization, and hence each column vectardatermines a 2D image of
the abundance for a given material. Thus, we hhumages of distribution of the underlying
materials.

For the La Parguera hyperspectra ima@4 fvhich has 106 bands of size 250239 piels
(see Figure3.13(a), the mixed region is composed of two majoffdrentendmembers which
were recovered with NMF and shown in Fig@&@d3(b) The corresponding abundance maps are
illustrated in Figured.13(c)and Figure8.13(d) where lighter pixels denote higher abundance.
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Figure 8.15 presents the results obtained with NMF applied to the®3® CSI database
[130. The plots in FigureB.15a) represent the spectra of endmembers, and the abundance
maps a&e illustrated in Figur8.15b). As stated in Sajdet al.[96], the upper spectrum in Figure
8.15a) represents muscle tissue whereas the bottom one refersnaibsaie. Consequently,
the corresponding abundance maps present distributions of muscular and brain tissues. Indeed,
the muscle tissue is distributed near the skull border, which is visible in the top image in Figure
8.15b), whereas the brain tissue is centered in the interior of thik sk

8.4 APPLICATION OF NMF FOR ANALYZING MICROARRAY DATA

Matrix factorization and decomposition methods have also fouanynelevant applications in
biomedical data processing and analysis. Several works are concerned with application of NMF
to gene expression classificatidsb| 13, 14, 53, 83, 84, 73, 33, 109, mostly in order to classify
differert types of cancers. Other exemplary applications include muscle identifications in the
nervous systeml07], classification of PET imaged4], and protein fold recognitior0].

¢ >
@@@@@@@@@@@@ﬁ
T-observables (samples) J-metagenes T-samples

Fig. 8.16 Schematic representation of the NMF model applied to gene-expression matrix Y.

8.4.1 Gene Expression Classification

The aim of applying NMF to the analysis of DNA microarrays is to grgenes and experiments
according to their similarity in gene expression patterns. The groups of genes that are referred to
asmetagenegsee [L3]) capture latent structures in the observed data and may prowlbglcal

insight into underlying biological processes and the mechanisms of diseases. Metagenes also
provide meaningful information for clustering the genes as well as the related experiments.
Nested and partially overlapped clusters can also be identified with the NMF approach. Nested
clusters reflect local properties of expression patterns, and overlapping is due to global properties
of multiple biological processes (selected genes can participate in many processes). Typically,
there are a few metagenes in the observed DNA microarray that may monitor several thousands
of genes. Thus, the redundancy in this application is extremely high, which is very profitable for
NMF. Furthermore, metagenes and gene expression patterns can often be described by sparse
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Fig. 8.17 Patch plots of consensus matrices obtained with NMF (a) NMF applied for leukemia
dataset, (b) NMF applied for medulloblastoma dataset.

sists of the following samples: 10 classic medulloblastomas, 10 malignant gliomas, 10 rhab-
doids, and four normal samples. The goal of using NMF for analyzing the medulloblastoma
samples from this dataset is to find genes that are statistically correlated with two basic classes
of medulloblastomas: classic and desmoplastic. As reporteiBjndnly clustering with NMF
provides easily interpretable clusters that are shown in Figukgb). ForJ = 5, one nested
cluster is almost entirely related to the samples of the desmoplastic class.

Y ~ A

experiments

AS Xs = YS

sort byx, sorted experiments

|

Q

genes
genes
sort byay

sorted geneg

Fig. 8.18 Biclustering using NMF.

Brunetet al. [13] successfully applied NMF to the classification of four typdscentral
nervous system embryonal tumo88]. Moreover, NMF gave much more accurate results than
the hierarchical clustering and SOM. The SOM evidently identifies only three classes, merging
the malignant glioma and normal samples. Also, the hierarchical clustering misclassifies the
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Fig. 8.20 Visualization of consensus matrices for clustering gene expression profiles with 4, 5,
..., 9 classes from the Alpha-696 dataset. The similarity matrices are measured and reordered
from 1000 trials for each case.

to finding such highly correlated genes is to decompose the full dataseRE%4418) put with

the given and fixed basis componeKtsCodficients in the same column vectorAfreflect the
contribution levels of the corresponding basis profem the analyzed genes. Therefore,

a group of coefliients with high values in each column Afwill show the set of genes that

have a strong correlation with extracted profiles. The procedure for selecting such genes can be
summarized as:

e normalize column vectors & to unit-length,

e sort all the column vectors & in descending order,

¢ select the highly correlated genes based on their highesiaerts in each column over

one specified threshold.

The results of the selected gene profiles for the cases of four and nine component decompo-
sitions are shown in Figui@21and8.22 respectively. The most highly correlated profiles with
their gene ID are also listed in Tabl8s5and8.6.
The final application will illustrate how to sort gene profiles according to the basis expression
profiles. The procedure is performed as follows:
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Fig. 8.22 Comparison of nine components extracted by NMF (thick dash lines) with highly
correlated genes expression profiles from the Alpha_full dataset. The basis expression components
are extracted from the small dataset: Alpha-696. All selected profiles have correlation coefficients
r > 0.8, and are normalized to unit-length.
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Fig. 8.23 Sorting the dataset Alpha-696 according to the five extracted basis components. Basis
gene expression profiles X are rearranged in order of appearance of the first major peaks (events),
then the columns of the mixing matrix A are rearranged accordingly, and the coefficients in
columns of A are sorted in descending order. Finally, the genes of the original data are sorted
according to both events in X and weighting in A.
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