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Preface

Signal processing, data analysis and data mining are pervasive throughout science and engi-
neering. Extracting an interesting knowledge from experimental raw datasets, measurements,
observations and understanding complex data has become an important challenge and objec-
tive. Often datasets collected from complex phenomena represent the integrated result of several
inter-related variables or they are combinations of underlying latent components or factors. Such
datasets can be first decomposed or separated into the components that underlie them in order
to discover structures and extract hidden information. In many situations, the measurements are
gathered and stored as data matrices or multi-way arrays (tensors), and described by linear or
multi-linear models.

Approximative low-rank matrix and tensor factorizations or decompositions play a funda-
mental role in enhancing the data and extracting latent components. A common thread in vari-
ous approaches for noise removal, model reduction, feasibility reconstruction, and Blind Source
Separation (BSS) is to replace the original data by a lower dimensional approximate represen-
tation obtained via a matrix or multi-way array factorization or decomposition. The notion of a
matrix factorization arises in a wide range of important applications and each matrix factoriza-
tion makes a different assumption regarding component (factor) matrices and their underlying
structures, so choosing the appropriate one is critical in each application domain. Very often
the data, signals or images to be analyzed are nonnegative (or partially nonnegative), and some-
times they also have sparse or smooth representation. For such data, it is preferable to take
these constraints into account in the analysis to extract nonnegative and sparse/smooth compo-
nents or factors with physical meaning or reasonable interpretation, and thereby avoid absurd or
unpredictable results. Classical tools cannot guarantee to maintain the nonnegativity.

In this research monograph, we provide a wide survey of models and algorithmic aspects of
Nonnegative Matrix Factorization (NMF), and its various extensions and modifications, espe-
cially the Nonnegative Tensor Factorization (NTF) and the Nonnegative Tucker Decomposition
(NTD). In the NTF and NTD approaches high-dimensional data, such as hyper-spectral or medi-

xvii
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cal images are factored or decomposed directly and they are approximated by a sum of rank-one
nonnegative tensors. The motivation behind NMF, NTF and NTD is that besides the dimension-
ality reduction sought in many applications, the underlying data ensemble is nonnegative and
can be better modeled and interpreted by means of nonnegative and, preferably, also sparse or
smooth components.

The notions of NMF, NTF and NTD play a major role in a wide range of important ap-
plications, including bioinformatics, micro-array analysis, neuroscience, text mining, image
understanding, air pollution research, chemometrics, and spectral data analysis. Nonnegative
matrix and tensor factorizations and decompositions have many other applications, such as lin-
ear sparse coding, image classification, clustering, neural learning process, sound recognition,
remote sensing, and object characterization. For example, NMF/NTF processing permits the
detection alternative or context-dependent patterns of gene expression in complex biological
systems and especially to recover meaningful biological information from cancer-related mi-
croarray data. We believe that a potential impact of the NMF and its extensions on scientific
advancements might be as great as the Independent Component Analysis (ICA) or the Singular
Value Decomposition (SVD) and Principal Component Analysis (PCA). In contrast to ICA or
SVD/PCA approaches, NMF/NTF and NTD techniques, if successively realized, may improve
interpretability and visualization of large-scale data while maintaining the physical feasibility
more closely.

Researchers from various research fields are interested in different, usually very diverse as-
pects, of NMF and NTF. For example, neuroscientists and biologists need reliable methods
and techniques which can extract or separate useful information from superimposed biomedical
data corrupted by a large level of noise and interference, for example, by using non-invasive
recordings of human brain activities targeted at understanding the ability of the brain to sense,
recognize, store and recall patterns and comprehending crucial elements of learning: associa-
tion, abstraction and generalization. A second group of researchers: engineers and computer
scientists, are fundamentally interested in developing and implementing flexible and efficient
algorithms for specific practical engineering and scientific applications. A third group of re-
searchers: mathematicians and physicists, have an interest in the development of a fundamental
theory to understand mechanisms, properties and abilities of the developed algorithms, and their
generalizations to more complex and sophisticated models. The interactions among such groups
permits a real progress to be made in this very interdisciplinary research devoted to NMF/NTF
and NTD, and each group benefits from the others.

The theory built up around NMF, NTF and NTD is so extensive and the applications are so
numerous that we are, of course, not able to cover all of them. Our selection and treatment of
material reflects our background and our own research interests and results in this fascinating
area over the last five years.

The book provides a wide coverage of the models and algorithms for nonnegative matrix
factorizations and tensor decompositions both from a theoretical and practical point of view.
The main objective is to derive and implement in MATLAB efficient and relatively simple iter-
ative algorithms that work well in practice for real-world data. In fact, almost all the algorithms
presented in the book have been implemented in MATLAB and extensively tested. We have at-
tempted to present the concepts, models and algorithms in general or flexible forms to stimulate
a reader to be creative in visualizing new approaches and adopt methods or algorithms for their
specific needs and applications.

In Chapter1 we describe the basic NMF models and their extensions, and formulate the
fundamental problems related to the calculation of component (factor) matrices. A special em-
phasis is given to basic properties and mathematical operations for multi-way arrays, also called
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multi-dimensional matrices or tensors. Chapter1 introduces the basic linear and multi-linear
models for matrix factorizations and tensor decompositions, and formulates the fundamental
analytical framework for the solution of the problems posed in this book. The workhorse is the
NMF algorithms for sparse representations of data, and its extensions, including the multi-layer
NMF, semi-NMF, sparse NMF, tri-NMF, symmetric NMF, orthogonal NMF, non-smooth NMF
(nsNMF), overlapping NMF, convolutive NMF (CNMF), and large-scale NMF. Our particular
emphasis is on the NMF and semi-NMF models and their extensions to multi-way models (i.e.,
multi-linear models which perform multi-way array (tensor) decompositions) with nonnegativ-
ity and sparsity constraints, especially NTD, together with nonnegative and semi-nonnegative
tensor factorizations that are mostly based on a family of Tucker and PARAFAC models.

In Chapter2, we give an overview and discuss properties of a large family of generalized
and flexible divergences or similarity distances between two nonnegative sequences or patterns.
They are formulated for probability distributions used in the development of novel algorithms
for NMF and NTF. Information theory, convex analysis, and information geometry play key
roles in the formulation of the divergences. The scope of these results is vast since the gener-
alized divergence functions and their variants include quite a large number of useful loss func-
tions, including those based on relative entropies, generalized Kullback-Leibler or I-divergence,
Hellinger distance, Jensen-Shannon divergence, J-divergence, Pearson and Neyman Chi-squared
divergences, triangular discrimination, and arithmetic-geometric Taneya divergence. Many of
these measures belong to the class of Alpha-divergences and Beta-divergences, and have been
applied successfully in the disciplines such as signal processing, pattern recognition, probability
distributions, information theory, finance and economics. In the following chapters we will ap-
ply such divergences as cost functions (possibly with additional constraints and regularization
terms) to derive novel multiplicative and additive projected gradient and fixed-point algorithms.
They provide working solutions for the problems where nonnegative latent (hidden) compo-
nents can be generally statistically dependent, and satisfy some other conditions or additional
constraints such as sparsity or smoothness.

In Chapter3, we introduce a wide family of iterative multiplicative algorithms for NMF
and related problems, subject to additional constraints such as sparsity and/or smoothness. Al-
though a standard multiplicative update rule for NMF achieves a sparse representation of its
components, we can impose a control over the sparsity of the components by designing a suit-
able cost function with additional penalty terms. In this chapter we consider a wide class of cost
functions or divergences, leading to generalized multiplicative algorithms with regularization
and/or penalty terms. Such relaxed forms of the multiplicative NMF algorithms usually provide
better performance and convergence speed, and allows us to extract the desired components
uniquely up to the scale and permutation ambiguities. As special cases we introduce the multi-
plicative algorithms for Alpha and Beta divergences, squared Hellinger, Pearson’s Chi-squared,
and Itakura-Saito distances.

In Chapter4, we derive and give an overview of the Alternating Least Squares algorithms re-
ferred to as the ALS algorithms for NMF, semi-NMF, and multi-layer NMF. This is important as
many existing NMF techniques are prohibitively slow and inefficient, especially for large-scale
problems. For such problems a promising approach is to apply the ALS algorithms with the
regularization and/or extended line search techniques. A special emphasis in this chapter is put
on various regularization and penalty terms together with local learning rules. By incorporating
the regularization and penalty terms into the weighted Frobenius norm, we show that it is pos-
sible to achieve sparse, orthogonal, or smooth representations, thus helping to obtain a desired
global solution. The main objective of this chapter is to develop efficient and robust Regularized
ALS (RALS) algorithms. For this purpose, we use several approaches from constrained opti-
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mization and regularization theory, and in addition introduce several heuristic algorithms. The
proposed algorithms are characterized by improved efficiency and often very good convergence
properties, especially for large-scale problems.

In Chapter5, we present a wide class of Projected Gradient (PG) algorithms andcompare
their performance, especially for large-scale problems. In contrast to the multiplicative NMF
algorithms discussed in Chapter3, the PG algorithms have additive updates, and provide an
approximate solution to the Non-Negative Least Squares (NNLS) problems. Chapter5 focuses
on thefollowing PG algorithms: Oblique Projected Landweber (OPL), projected gradients with
Armijo rule, Barzilai-Borwein gradient projection, Projected Sequential Subspace Optimization
(PSESOP), Interior-Point Newton (IPN), Minimal Residual Norm Steepest Descent (MRNSD),
and Sequential Coordinate-Wise Algorithm (SCWA).

In Chapter6, we introduce learning algorithms for NMF, using second-order approximations,
that is, the information about the Hessian and gradient of a cost function. Using the information
about the curvature of the cost function, which is intimately related to second-order deriva-
tives, the convergence can be considerably accelerated. This, however, also introduces many
related practical problems that must be addressed prior to applying learning algorithms. For
example, the Hessian must be positive-definite to ensure the convergence of approximations to a
local minimum of a specific cost function. Unfortunately, this is not guaranteed using the NMF
alternating minimization rule, and we need to resort to some suitable Hessian approximation
techniques. In addition, the Hessian values may be very large, and of a severely ill-conditioned
nature (in particular for large-scale problems), which gives rise to many difficult problems re-
lated to its inversion. Moreover, the nonlinear projections may be performed in many ways,
similarly to the PG and steepest descent algorithms. This chapter provides a comprehensive
study of the solutions to the above-mentioned problems. We also give some heuristics on the
selection of a cost function and the related regularization terms which restrict the area of feasible
solutions, and help the algorithms to converge to the global minimum of a specific cost function.
In particular, we discuss the simplest approach to the projected quasi-Newton optimization using
the Levenberg-Marquardt regularization of the Hessian. We then extend the discussion to more
sophisticated second-order algorithms that iteratively update only the strictly positive (inactive)
variables. The example includes the Gradient Projection Conjugate Gradient (GPCG). Further-
more, as a special case of the second-order method, we present one Quadratic Programming
(QP) method that solves a QP problem using the trust-region subproblem algorithm. The QP
problem is formulated from the Tikhonov regularized squared Euclidean cost function extended
with a logarithmic barrier function to satisfy nonnegativity constraints. The BSS experiments
demonstrate the high efficiency of the proposed algorithms.

In Chapter7, we attempt to extend and generalize the results and algorithms from the previ-
ous chapters for the NTF and NTD models. In fact, almost all the NMF algorithms described in
the earlier chapters can be extended or generalized to the various nonnegative tensor factoriza-
tions and decompositions formulated in Chapter1. However, in this chapter we mainly focus on
NTF, that is, PARAFAC with nonnegativity constraints and NTD. In order to make this chap-
ter as self-contained as possible, we re-introduce some concepts and derive several novel and
efficient algorithms for nonnegative and semi-nonnegative tensor (multi-way arrays) factoriza-
tions and decompositions. Our particular emphasis is on a detailed treatment of the generalized
cost functions, including Alpha- and Beta-divergences. Based on these cost functions, several
classes of algorithms are introduced, including: (1) multiplicative updating; (2) ALS; and (3)
Hierarchical ALS (HALS). These algorithms are then incorporated into multi-layer hierarchical
networks in order to improve their performance. A special emphasis is given on the ways to
impose nonnegativity or semi-nonnegativity, together with optional constraints such as orthogo-
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nality, sparsity and/or smoothness. The developed algorithms are tested for several applications
such as denoising, compression, feature extraction, clustering, EEG data analysis, brain com-
puter interface and video tracking. To understand the material in this chapter it would be helpful
to be familiar with the previous chapters, especially Chapters 1, 3 and 4.

Finally, inChapter8, we briefly discuss the selected applications of NMF and multi-dimensional
array decompositions, with a special emphasis on these applications to which the algorithms de-
scribed in the previous chapters are applicable. We review the following applications: data
clustering, text mining, email surveillance, musical instrument classification, face recognition,
handwritten digit recognition, texture classification, Raman spectroscopy, fluorescence spec-
troscopy, hyper-spectral imaging, chemical shift imaging, and gene expression classification.

The book is partly a textbook and partly a research monograph. It is a textbook because it
gives the detailed introduction to the basic models and algorithms of nonnegative and sparse
matrix and tensor decompositions. It is simultaneously a monograph because it presents many
new results, methods, ideas, models, further developments and implementation of efficient al-
gorithms which are brought together and published in this monograph for the first time. As a
result of its twofold character the book is likely to be of interest to graduate and postgraduate
students, engineers and scientists working in the field of biomedical engineering, data analy-
sis, data mining, multidimensional data visualization, signal/image processing, mathematics,
computer science, finance, economics, optimization, geophysics, and neural computing. Fur-
thermore, the book may also be of interest to researchers working in different areas of science,
because a number of the results and concepts have been included which may be advantageous
for their further research. One can read this book through sequentially but it is not necessary
since each chapter is essentially self-contained, with as few cross references as possible. So,
browsing is encouraged.
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{
aj

}
set of vectorsa(1)

j , a
(2)
j , . . . , a
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1
Introduction – Problem
Statements and Models

Matrix factorization is an important and unifying topic in signalprocessing and linear algebra,
which has found numerous applications in many other areas. This chapter introduces basic linear
and multi-linear1 models for matrix and tensor factorizations and decompositions, and formu-
lates the analysis framework for the solution of problems posed in this book. The workhorse in
this book is Nonnegative Matrix Factorization (NMF) for sparse representation of data and its
extensions including the multi-layer NMF, semi-NMF, sparse NMF, tri-NMF, symmetric NMF,
orthogonal NMF, non-smooth NMF (nsNMF), overlapping NMF, convolutive NMF (CNMF),
and large-scale NMF. Our particular emphasis is on NMF and semi-NMF models and their ex-
tensions to multi-way models (i.e., multi-linear models which perform multi-way array (tensor)
decompositions) with nonnegativity and sparsity constraints, including, Nonnegative Tucker De-
compositions (NTD), Constrained Tucker Decompositions, Nonnegative and semi-nonnegative
Tensor Factorizations (NTF) that are mostly based on a family of the TUCKER, PARAFAC and
PARATUCK models.

As the theory and applications of NMF, NTF and NTD are still being developed, our aim is to
produce a unified, state-of-the-art framework for the analysis and development of efficient and
robust algorithms. In doing so, our main goals are to:

1. Develop various working tools and algorithms for data decomposition and feature ex-
traction based on nonnegative matrix factorization (NMF) and sparse component anal-
ysis (SCA) approaches. We thus integrate several emerging techniques in order to es-
timate physically, physiologically, and neuroanatomically meaningful sources or latent

1A function in two or more variables is said to be multi-linear if it is linear in each variable separately.

1
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(hidden) components with morphological constraints. These constraints include nonneg-
ativity, sparsity, orthogonality, smoothness, and semi-orthogonality.

2. Extend NMF models to multi-way array (tensor) decompositions, factorizations, and fil-
tering, and to derive efficient learning algorithms for these models.

3. Develop a class of advanced blind source separation (BSS), unsupervised feature extrac-
tion and clustering algorithms, and to evaluate their performance usinga priori knowledge
and morphological constraints.

4. Develop computational methods to efficiently solve the bi-linear systemY = AX + E for
noisy data, whereY is an input data matrix,A andX represent unknown matrix factors
to be estimated, and the matrixE represents error or noise (which should be minimized
using suitably designed cost function).

5. Describe and analyze various cost functions (also referred to as (dis)similarity measures
or divergences) and apply optimization criteria to ensure robustness with respect to uncer-
tainty, ill-conditioning, interference and noise distribution.

6. Present various optimization techniques and statistical methods to derive efficient and
robust learning (update) rules.

7. Study what kind of prior information and constraints can be used to render the problem
solvable, and illustrate how to use this information in practice.

8. Combine information from different imaging modalities (e.g., electroencephalography
(EEG), magnetoencephalography (MEG), electromyography (EMG), electrooculography
(EOG), functional magnetic resonance imaging (fMRI), positron emission tomography
(PET)), in order to provide data integration and assimilation.

9. Implement and optimize algorithms for NMF, NTF and NTD together with providing
pseudo-source codes and/or efficient source codes in MATLAB, suitable for parallel com-
puting and large-scale-problems.

10. Develop user-friendly toolboxes which supplement this book: NMFLAB and MULTI-
WAY-LAB for potential applications to data analysis, data mining, and blind source sep-
aration.

Probably the most useful and best understood matrix factorizations are the Singular Value De-
composition (SVD), Principal Component Analysis (PCA), and LU, QR, and Cholesky decom-
positions (see Appendix). In this book we mainly focus on nonnegativity and sparsity constraints
for factor matrices. We shall therefore attempt to illustrate why nonnegativity and sparsity con-
straints play a key role in our investigations.

1.1 BLIND SOURCE SEPARATION AND LINEAR GENERALIZED

COMPONENT ANALYSIS

Blind source separation (BSS) and related methods, e.g., independent component analysis (ICA),
employ a wide class of unsupervised learning algorithms and have found important applications
across several areas from engineering to neuroscience [26]. The recent trends in blind source
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Fig. 1.1 (a) General model illustrating blind source separation (BSS), (b) Such models are ex-
ploited, for example, in noninvasive multi-sensor recording of brain activity using EEG (electroen-
cephalography) or MEG (magnetoencephalography). It is assumed that the scalp sensors (e.g.,
electrodes, magnetic or optical sensors) pick up a superposition of neuronal brain sources and
non-neuronal sources (noise or physiological artifacts) related, for example, to movements of eyes
and muscles. Our objective is to identify the individual signals coming from different areas of the
brain.

separation and generalized (flexible) component analysis (GCA) are to consider problems in the
framework of matrix factorization or more general multi-dimensional data or signal decomposi-
tion with probabilistic generative models and exploita priori knowledge about true nature, mor-
phology or structure of latent (hidden) variables or sources such as nonnegativity, sparseness,
spatio-temporal decorrelation, statistical independence, smoothness or lowest possible complex-
ity. The goal of BSS can be considered as estimation of true physical sources and parameters
of a mixing system, while the objective of GCA is to find a new reduced or hierarchical and
structured component representation for the observed (sensor) data that can be interpreted as
physically or physiologically meaningful coding or blind signal decomposition. The key issue
is to find such a transformation or coding which has true physical meaning and interpretation.

Throughout this book we discuss some promising applications of BSS/GCA in analyzing
multi-modal, multi-sensory data, especially brain data. Furthermore, we derive some efficient
unsupervised learning algorithms for linear blind source separation, and generalized component
analysis using various criteria, constraints and assumptions.

Figure1.1illustrates a fairly general BSS problem also referred to as blind signal decomposi-
tion or blind source extraction (BSE). We observe records ofI sensor signalsy(t) = [y1(t), y2(t),
. . . , yI (t)]T coming from a MIMO (multiple-input/multiple-output) mixing and filtering system,
wheret is usually a discrete time sample,2 and (·)T denotes transpose of a vector. These signals
are usually a superposition (mixture) ofJ unknown source signalsx(t) = [x1(t), x2(t), . . . , xJ(t)]T

and noisese(t) = [e1(t), e2(t),. . . , eI (t)]T . The primary objective is to estimate all the primary

2Dataare often represented not in the time domain but in the complex frequency or time-frequency domain, so, the
index t may have a different meaning and can be multi-dimensional.
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source signalsx j(t) = x jt or only some of them with specific properties. This estimation is
usually performed based only on the output (sensor, observed) signalsyit = yi(t).

In order to estimate sources, sometimes we try first to identify the mixing system or its in-
verse (unmixing) system and then estimate the sources. Usually, the inverse (unmixing) system
should be adaptive in such a way that it has some tracking capability in a nonstationary envi-
ronment. Instead of estimating the source signals directly by projecting observed signals using
the unmixing system, it is often more convenient to identify an unknown mixing and filtering
system (e.g., when the unmixing system does not exist, especially when the system is underde-
termined, i.e., the number of observations is lower than the number of source signals withI < J)
and simultaneously estimate the source signals by exploiting somea priori information about
the source signals and applying a suitable optimization procedure.

There appears to be something magical about blind source separation since we are estimating
the original source signals without knowing the parameters of the mixing and/or filtering pro-
cesses. It is difficult to imagine that one can estimate this at all. In fact, without somea priori
knowledge, it is not possible touniquelyestimate the original source signals. However, one can
usually estimate them up to certain indeterminacies. In mathematical terms these indetermi-
nacies and ambiguities can be expressed as arbitrary scaling and permutation of the estimated
source signals. These indeterminacies preserve, however, the waveforms of original sources.
Although these indeterminacies seem to be rather severe limitations, in a great number of ap-
plications these limitations are not crucial, since the most relevant information about the source
signals is contained in the temporal waveforms or time-frequency patterns of the source signals
and usually not in their amplitudes or the order in which they are arranged in the system output.3

The problem of separating or extracting source signals from a sensor array, without knowing
the transmission channel characteristics and the sources, can be expressed briefly as a number
of related BSS or GCA methods such as ICA and its extensions: Topographic ICA, Multi-way
ICA, Kernel ICA, Tree-dependent Component Analysis, Multi-resolution Subband Decompo-
sition -ICA [77], [41], [28], [29], Non-negative Matrix Factorization (NMF) [93], [120], [35],
Sparse Component Analysis (SCA) [96], [95], [141], [70], [72], and Multi-channel Morpholog-
ical Component Analysis (MCA) [13] (see Figure1.2).

The mixing and filtering processes of the unknown input sourcesx j(t), ( j = 1, 2, . . . , J)
may have different mathematical or physical models, depending on the specific applications
[77], [4]. Most linear BSS models in their simplest forms can be expressed algebraically as
some specific forms of matrix factorization: Given observation (often called sensor or input
data matrix)Y = [yit ] = [y(1), . . . , y(T)] ∈ RI×T perform the matrix factorization (see Figure
1.3(a)):

Y = AX + E, (1.1)

whereA ∈ RI×J represents the unknown basis matrix or mixing matrix (depending on the appli-
cation),E ∈ RI×T is an unknown matrix representing errors or noises,X = [x jt ] = [x(1), x(2),
. . . , x(T)] ∈ RJ×T contains the corresponding latent (hidden) components that give the contribu-
tion of each basis vector,T is the number of available samples,I is the number of observations
and J is the number of sources or components. In general, the number of source signalsJ is
unknown and can be larger, equal or smaller than the number of observations. The above model

3 For some models, however, there is no guarantee that the estimated or extracted signals have exactly the same wave-
forms as the source signals, and then the requirements must be sometimes further relaxed to the extent that the extracted
waveforms are distorted (i.e., time delayed, filtered or convolved) versions of the primary source signals.
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Fig. 1.2 Four basic component analysis methods: Independent Component Analysis (ICA), Non-
negative Matrix Factorization (NMF), Sparse Component Analysis (SCA) and Morphological
Component Analysis (MCA).

can be written in an equivalent scalar (element-wise) form (see Figure1.3(b)):

yit =

J∑

j=1

ai j x jt + eit or yi(t) =
J∑

j=1

ai j x j(t) + ei(t). (1.2)

Usually, the latent components represent unknown source signals with specific statistical proper-
ties or temporal structures. The matrices usually have clear statistical properties and meanings.
For example, the rows of the matrixX that represent sources or components should be statis-
tically independent for ICA, sparse for SCA [96], [95], [70], [69], [72], nonnegative for NMF,
or have other specific and additional morphological properties such as sparsity, smoothness,
continuity, or orthogonality in GCA [29], [13], [26].

In some applications the mixing matrixA is ill-conditioned or even singular. In such cases,
some special models and algorithms should be applied. Although some decompositions or ma-
trix factorizations provide an exact reconstruction of the data (i.e.,Y = AX), we shall consider
here factorizations which are approximative in nature. In fact, many problems in signal and
image processing can be solved in terms of matrix factorization. However, different cost func-
tions and imposed constraints may lead to different types of matrix factorization. In many signal
processing applications the data matrixY = [y(1), y(2) . . . , y(T)] ∈ RI×T is represented by vec-
tors y(t) ∈ RI (t = 1, 2, . . . ,T) for a set of discrete time instantst as multiple measurements or
recordings. As mentioned above, the compact aggregated matrix equation (1.1) can be written
in a vector form as a system of linear equations (see Figure1.4(a)), that is,

y(t) = A x(t) + e(t), (t = 1, 2, . . . ,T), (1.3)

wherey(t) = [y1(t), y2(t), . . . , yI (t)]T is a vector of the observed signals at the discrete time instant
t whereasx(t) = [x1(t), x2(t), . . . , xJ(t)]T is a vector of unknown sources at the same time instant.
The problems formulated above are closely related to the concept of linear inverse problems or
more generally, to solving a large ill-conditioned system of linear equations (overdetermined or
underdetermined), where it is required to estimate vectorsx(t) (also in some cases to identify a
matrix A) from noisy data [87], [26], [32]. Physical systems are often contaminated by noise,
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Fig. 1.3 Basic linear instantaneous BSS model: (a) Block diagram, (b) detailed model.

thus,our task is generally to find an optimal and robust solution in a noisy environment. Wide
classes of extrapolation, reconstruction, estimation, approximation, interpolation and inverse
problems can be converted into minimum norm problems of solving underdetermined systems
of linear equations (1.3) for J > I [87], [26].4 It is often assumed that only the sensor vectors
y(t) are available and we need to estimate parameters of the unmixing system online. This
enables us to perform indirect identification of the mixing matrixA (for I ≥ J) by estimating the
separating matrixW = Â†, where the symbol (·)† denotes the Moore-Penrose pseudo-inverse
and simultaneously estimate the sources. In other words, forI ≥ J the original sources can be
estimated by the linear transformation

x̂(t) =W y(t), (t = 1, 2, . . . ,T). (1.4)

Although many different BSS criteria and algorithms are available, most of them exploit various
diversities5 or constraints imposed for estimated components and/or mixing matrices such as
mutual independence, nonnegativity, sparsity, smoothness, predictability or lowest complexity.
More sophisticated or advanced approaches use combinations or integration of various diversi-

4Generally speaking, in signal processing applications, an overdetermined (I > J) system of linear equations (1.3)
describes filtering, enhancement, deconvolution and identification problems, while the underdetermined case describes
inverse and extrapolation problems [32], [26].
5By diversities we mean usually different morphological characteristics or features of the signals.
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Fig. 1.4 Blind source separation using unmixing (inverse) model: (a) block diagram, and(b)
detailed model.

ties, in order to separate or extract sources with various constraints, morphology, structures or
statistical properties and to reduce the influence of noise and undesirable interferences [26].

All the above-mentioned BSS methods belong to a wide class of unsupervised learning al-
gorithms. Unsupervised learning algorithms try to discover a structure underlying a data set,
extract of meaningful features, and find useful representations of the given data. Since data can
always be interpreted in many different ways, some knowledge is needed to determine which fea-
tures or properties best represent our true latent (hidden) components. For example, PCA finds a
low-dimensional representation of the data that captures most of its variance. On the other hand,
SCA tries to explain data as a mixture of sparse components (usually, in the time-frequency
domain), and NMF seeks to explain data by parts-based localized additive representations (with
nonnegativity constraints).

Generalized component analysis algorithms, i.e., a combination of ICA, SCA, NMF, and
MCA, are often considered as pure mathematical formulas, powerful, but rather mechanical
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procedures. There is an illusion that there is not very much left for the user to do after the ma-
chinery has been optimally implemented. However, the successful and efficient use of such tools
strongly depends ona priori knowledge, common sense, and appropriate use of the preprocess-
ing and postprocessing tools. In other words, it is the preprocessing of data and postprocessing
of models where expertise is truly needed in order to extract and identify physically significant
and meaningful hidden components.

1.2 MATRIX FACTORIZATION MODELS WITH NONNEGATIVITY AND

SPARSITY CONSTRAINTS

1.2.1 Why Nonnegativity and Sparsity Constraints?

Many real-world data are nonnegative and the corresponding hidden components have a phys-
ical meaning only when nonnegative. In practice, both nonnegative and sparse decompositions
of data are often either desirable or necessary when the underlying components have a physical
interpretation. For example, in image processing and computer vision, involved variables and
parameters may correspond to pixels, and nonnegative sparse decomposition is related to the ex-
traction of relevant parts from the images [93], [94]. In computer vision and graphics, we often
encounter multi-dimensional data, such as images, video, and medical data, one type of which is
MRI (magnetic resonance imaging). A color image can be considered as 3D nonnegative data,
two of the dimensions (rows and columns) being spatial, and the third one being a color plane
(channel) depending on its color space, while a color video sequence can be considered as 4D
nonnegative data, time being the fourth dimension. A sparse representation of the data by a
limited number of components is an important research problem. In machine learning, sparse-
ness is closely related to feature selection and certain generalizations in learning algorithms,
while nonnegativity relates to probability distributions. In economics, variables and data such
as volume, price and many other factors are nonnegative and sparse. Sparseness constraints may
increase the efficiency of a portfolio, while nonnegativity both increases efficiency and reduces
risk [143], [122]. In microeconomics, household expenditures in different commodity/service
groups are recorded as a relative proportion. In information retrieval, documents are usually
represented as relative frequencies of words in a prescribed vocabulary. In environmental sci-
ence, scientists investigate a relative proportion of different pollutants in water or air [11]. In
biology, each coordinate axis may correspond to a specific gene and the sparseness is necessary
for finding local patterns hidden in data, whereas the nonnegativity is required to give physical
or physiological meaning. This is also important for the robustness of biological systems, where
any observed change in the expression level of a specific gene emerges from either positive or
negative influence, rather than a combination of both, which partly cancel each other [94], [143].

It is clear, however, that with constraints such as sparsity and nonnegativity some of the ex-
plained variance (FIT) may decrease. In other words, it is natural to seek a trade-off between
the two goals of interpretability (making sure that the estimated components have physical or
physiological sense and meaning) and statistical fidelity (explaining most of the variance of the
data, if the data are consistent and do not contain too much noise). Generally, compositional data
(i.e., positive sum of components or real vectors) are natural representations when the variables
(features) are essentially the probabilities of complementary and mutually exclusive events. Fur-
thermore, note that NMF is an additive model which does not allow subtraction; therefore it
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often quantitatively describes the parts that comprise the entire entity. In other words, NMF can
be considered as a part-based representation in which a zero-value represents the absence and a
positive number represents the presence of some event or component. Specifically, in the case of
facial image data, the additive or part-based nature of NMF has been shown to result in a basis
of facial features, such as eyes, nose, and lips [93]. Furthermore, matrix factorization methods
that exploit nonnegativity and sparsity constraints usually lead to estimation of the hidden com-
ponents with specific structures and physical interpretations, in contrast to other blind source
separation methods.

1.2.2 Basic NMF Model

NMF has been investigated by many researchers, e.g. Paatero and Tapper [113], but it has gained
popularity through the works of Lee and Seung published in Nature and NIPS [93], [94]. Based
on theargument that the nonnegativity is important in human perception they proposed simple
algorithms (often called the Lee-Seung algorithms) for finding nonnegative representations of
nonnegative data and images.

The basic NMF problem can be stated as follows: Given a nonnegative data matrixY ∈ RI×T
+

(with yit ≥ 0 or equivalentlyY ≥ 0) and a reduced rankJ (J ≤ min(I ,T)), find two nonnegative
matricesA = [a1, a2, . . . , aJ] ∈ RI×J

+ andX = BT = [b1, b2, . . . , bJ]T ∈ RJ×T
+ which factorizeY

as well as possible, that is (see Figure1.3):

Y = AX + E = ABT + E, (1.5)

where the matrixE ∈ RI×T represents approximation error.6 The factorsA andX may have
different physical meanings in different applications. In a BSS problem,A plays the role of
mixing matrix, whileX expresses source signals. In clustering problems,A is the basis matrix,
while X denotes the weight matrix. In acoustic analysis,A represents the basis patterns, while
each row ofX expresses time points (positions) when sound patterns are activated.

In standard NMF we only assume nonnegativity of factor matricesA andX. Unlike blind
source separation methods based on independent component analysis (ICA), here we do not
assume that the sources are independent, although we will introduce other assumptions or con-
straints onA and/or X later. Notice that this symmetry of assumptions leads to a symmetry in
the factorization: we could just as easily writeYT ≈ XTAT , so the meaning of “source” and
“mixture” in NMF are often somewhat arbitrary.

The NMF model can also be represented as a special form of the bilinear model (see Figure
1.5):

Y =
J∑

j=1

a j ◦ b j + E =
J∑

j=1

aj bT
j + E, (1.6)

where the symbol◦ denotes the outer product of two vectors. Thus, we can build an approximate
representation of the nonnegative data matrixY as a sum of rank-one nonnegative matrices
a j bT

j . If such decomposition is exact (i.e.,E = 0) then it is called the Nonnegative Rank

6Since we usually operate on column vectors of matrices (in order to avoid a complex or confused notation) it is often
convenient to use the matrixB = XT instead of the matrixX.
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Factorization (NRF) [53]. Among the many possible series representations of data matrixY by
nonnegative rank-one matrices, the smallest integerJ for which such a nonnegative rank-one
series representation is attained is called the nonnegative rank of the nonnegative matrixY and
it is denoted by rank+(Y). The nonnegative rank satisfies the following bounds [53]:

rank(Y) ≤ rank+(Y) ≤ min{I ,T}. (1.7)

It should be noted that an NMF is not necessarily an NRF in the sense that the latter demands
the exact factorization whereas the former is usually only an approximation.

a1

Y E+

aJ

+

b1

+

aJ

=

( )I Tx ( )I Tx

T
bJ

T

Fig. 1.5 Bilinear NMF model. The nonnegative data matrix Y ∈ RI×T
+ is approximately repre-

sented by a sum or linear combination of rank-one nonnegative matrices Y( j) = aj◦bj = aj b
T
j ∈ RI×T

+ .

Although the NMF can be applied to BSS problems for nonnegative sources and nonnegative
mixing matrices, its application is not limited to BSS and it can be used in various and diverse
applications far beyond BSS (see Chapter8). In many applications we require additional con-
straints on the elements of matricesA and/or X, such as smoothness, sparsity, symmetry, and
orthogonality.

1.2.3 Symmetric NMF

In the special case whenA = B ∈ RI×J
+ the NMF is called a symmetric NMF, given by

Y = AAT + E. (1.8)

This model is also considered equivalent to Kernel K-means clustering and Laplace spectral
clustering [50].

If the exact symmetric NMF (E = 0) exists then a nonnegative matrixY ∈ RI×I
+ is said to be

completely positive (CP) and the smallest number of columns ofA ∈ RI×J
+ satisfying the exact

factorizationY = AAT is called the cp-rank of the matrixY, denoted by rankcp(Y). If Y is CP,
then the upper bound estimate of the cp-rank is given by [53]:

rankcp(Y) ≤ rank(Y)(rank(Y) + 1)
2

− 1, (1.9)

provided rank(Y) > 1.
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1.2.4 Semi-Orthogonal NMF

The semi-orthogonal NMF can be defined as

Y = AX + E = ABT + E, (1.10)

subject to nonnegativity constraintsA ≥ 0 and X ≥ 0 (component-wise) and an additional
orthogonality constraint:ATA = I J or XXT = I J.

Probably the simplest and most efficient way to impose orthogonality onto the matrixA or X
is to perform the following transformation after each iteration

A ← A
[
ATA

]−1/2
, or X ←

[
XXT

]−1/2
X. (1.11)

1.2.5 Semi-NMF and Nonnegative Factorization of Arbitrary Matrix

In some applications the observed input data are unsigned (unconstrained or bipolar) as indicated
by Y = Y± ∈ RI×T which allows us to relax the constraints regarding nonnegativity of one factor
(or only specific vectors of a matrix). This leads to approximative semi-NMF which can take
the following form

Y± = A±X+ + E, or Y± = A+X± + E, (1.12)

where the subscript inA+ indicates that a matrix is forced to be nonnegative.
In Chapter4 we discuss models and algorithms for approximative factorizations in which the

matricesA and/or X are restricted to contain nonnegative entries, but the data matrixY may
have entries with mixed signs, thus extending the range of applications of NMF. Such a model
is often referred to as Nonnegative Factorization (NF) [58], [59].

1.2.6 Three-factor NMF

Three-factor NMF (also called the tri-NMF) can be considered as aspecial case of the multi-
layer NMF and can take the following general form [52], [51]

Y = ASX + E, (1.13)

where nonnegativity constraints are imposed to all or only to the selected factor matrices:A ∈
R

I×J, S ∈ RJ×R, and/or X ∈ RR×T .
It should be noted that if we do not impose any additional constraints to the factors (besides

nonnegativity), the three-factor NMF can be reduced to the standard (two-factor) NMF by the
transformationA ← AS or X ← SX. However, the three-factor NMF is not equivalent to
the standard NMF if we apply special constraints or conditions as illustrated by the following
special cases.

1.2.6.1 Orthogonal Three-Factor NMF Orthogonal three-factor NMF imposes additional
constraints upon the two matricesATA = I J and XXT = IR while the matrixS can be an
arbitrary unconstrained matrix (i.e., it has both positive and negative entries) [52], [51].

For uni-orthogonal three-factor NMF only one matrixA or X is orthogonal and all three
matrices are usually nonnegative.
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( )I T ( )I J ( )J R ( )R T

@Y A
XS

××××

Fig. 1.6 Illustration of three factor NMF (tri-NMF). The goal is to estimate two matrices A ∈ RI×J
+

and X ∈ RR×T
+ , assuming that the matrix S ∈ RJ×R is given, or to estimate all three factor matrices

A,S,X subject to additional constraints such as orthogonality or sparsity.

1.2.6.2 Non-Smooth NMF Non-smooth NMF (nsNMF) was proposed by Pascual-Montano
et al. [114] and is a special case of the three-factor NMF model in which the matrix S is fixed
and known, and is used for controlling the sparsity or smoothness of the matrixX and/or A.
Typically, the smoothing matrixS ∈ RJ×J takes the form:

S= (1− Θ) I J +
Θ

J
1J×J, (1.14)

whereI J is J× J identity matrix and1J×J is the matrix of all ones. The scalar parameter 0≤ Θ ≤
1 controls the smoothness of the matrix operatorS. ForΘ = 0, S= I J, the model reduces to the
standard NMF and forΘ → 1 strong smoothing is imposed onS, causing increased sparseness
of bothA andX in order to maintain the faithfulness of the model.

1.2.6.3 Filtering NMF In many applications it is necessary to impose some kind of filtering
upon the rows of the matrixX (representing source signals), e.g., lowpass filtering to perform
smoothing or highpass filtering in order to remove slowly changing trends from the estimated
components (source signals). In such cases we can define the filtering NMF as

Y = AXF + E, (1.15)

whereF is a suitably designed (prescribed) filtering matrix. In the case of lowpass filtering, we
usually perform some kind of averaging in the sense that every sample valuex jt is replaced by
a weighted average of that value and the neighboring value, so that in the simplest scenario the
smoothing lowpass filtering matrixF can take the following form:

F =



1/2 1/3 0 0
1/2 1/3 1/3 0

1/3 1/3 1/3
. . .

. . .
. . .

0 1/3 1/3 1/2
0 0 1/3 1/2



∈ RT×T . (1.16)

A standard way of performing highpass filtering is equivalent to an application of a first-order
differential operator, which means (in the simplest scenario) just replacing each sample value by
the difference between the value at that point and the value at the preceding point. For example,
a highpass filtering matrix can take following form (using the first order or second order discrete
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@
ZR

C

Y RC

(I T)´ (I C)´ (R T)´

U

(C R)´

Fig. 1.7 Illustration of CUR decomposition. The objective is to select such rows and columns
of data matrix Y ∈ RI×T which provide the best approximation. The matrix U is usually the
pseudo-inverse of the matrix Z ∈ RR×C, i.e., U = Z†. For simplicity of graphical illustration, we
have assumed that the joint R rows and the joint C columns of the matrix Y are selected.

difference forms):

F =



1 −1 0 0
−1 2 −1 0
−1 2 −1

. . .
. . .

. . .

0 −1 2 −1
0 −1 1



∈ RT×T . (1.17)

Note that since the matrixS in the nsNMF and the matrixF in filtering NMF are known or
designed in advance, almost all the algorithms known for the standard NMF can be straight-
forwardly extended to the nsNMF and Filtering NMF, for example, by defining new matrices
A
△
= AS, X

△
= SX, or X

△
= XF, respectively.

1.2.6.4 CGR/CUR Decomposition In the CGR, also recently called CUR decomposition, a
givendata matrixY ∈ RI×T is decomposed as follows [61], [60], [55], [101], [100]:

Y = CUR + E, (1.18)

where C ∈ RI×C is a matrix constructed fromC selected columns ofY, R ∈ RR×T consists ofR
rows ofY and matrixU ∈ RC×R is chosen to minimize the errorE ∈ RI×T . The matrixU is often
the pseudo-inverse of a matrixZ ∈ RR×C, i.e.,U = Z†, which is defined by the intersections of
the selected rows and columns (see Figure1.7). Alternatively, we can compute a core matrixU
asU = C†YR†, but in this case knowledge of the whole data matrixY is necessary.

Since typically,C << T andR<< I , our challenge is to find a matrixU and select rows and
columns ofY so that for the fixed number of columns and rows the error cost function||E||2F is
minimized. It was proved by Goreinovet al. [60] that for R = C the following bounds can be
theoretically achieved:

||Y − CUR||max ≤ (R+ 1) σR+1, (1.19)

||Y − CUR||F ≤
√

1+ R(T − R) σR+1, (1.20)

where||Y||max= maxit {|yit |} denotes max norm andσr is ther-th singular value ofY.
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Without loss of generality, let us assume that the firstC columns and the firstR rows of the
matrixY are selected so the matrix is partitioned as follows:

Y =
[
Y11 Y12

Y21 Y22

]
∈ RI×T , and C =

[
Y11

Y21

]
∈ RI×C, R =

[
Y11 Y12

]
∈ RR×T , (1.21)

then the following bound is obtained [61]

||Y − CY†11R||F ≤ γR σR+1, (1.22)

whereγR = min
{√

(1+ ||Y21Y
†
11||2F),

√
(1+ ||Y†11Y12||2F)

}
. This formula allows us to identify

optimal columns and rows in sequential manner [22]. In fact, there are several strategies for the
selection of suitable columns and rows. The main principle is to select columns and rows that
exhibit high “statistical leverage” and provide the best low-rank fit of the data matrix [60], [55].

In thespecial case, assuming thatUR = X, we have CX decomposition:

Y = CX + E. (1.23)

TheCX and CUR (CGR) decompositions are low-rank matrix decompositions that are explicitly
expressed in terms of a small number of actual columns and/or actual rows of the data matrix and
they have recently received increasing attention in the data analysis community, especially for
nonnegative data due to many potential applications [60, 55, 100, 101]. The CUR decomposition
has anadvantage that components (factor matricesC andR) are directly obtained from rows
and columns of data matrixY, preserving desired properties such as nonnegativity or sparsity.
Because they are constructed from actual data elements, CUR decomposition is often more
easily interpretable by practitioners of the field from which the data are drawn (to the extent that
the original data points and/or features are interpretable) [100].

1.2.7 NMF with Offset (Affine NMF)

In NMF with offset (also called affine NMF, aNMF), our goal is to remove the base line or DC
bias from the matrixY by using a slightly modified NMF model:

Y = AX + a01T + E, (1.24)

where 1 ∈ RT is a vector of all ones anda0 ∈ RI
+ is a vector which is selected in such a way

that the matrixX is zero-grounded, that is, with a possibly large number of zero entries in each
row (or for noisy data close to zero entries). The termY0 = a01T denotes offset, which together
with nonnegativity constraint often ensures the sparseness of factored matrices. The main role
of the offset is to absorb the constant values of a data matrix, thereby making the factorization
sparser and therefore improving (relaxing) conditions for the uniqueness of NMF (see next sec-
tions). Chapter3 will demonstrates the affine NMF with multiplicative algorithms. However,
in practice, the offsets are not the same and perfectly constant in all data sources. For image
data, due to illumination flicker, the intensities of offset regions vary between images. Affine
NMF with the model (1.24) fails to decompose such data. The Block-Oriented Decomposition
(BOD1) model presented in section (1.5.9) will help us resolving this problem.
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1.2.8 Multi-layer NMF

In multi-layer NMF the basic matrixA is replaced by a set of cascaded (factor) matrices. Thus,
the model can be described as (see Figure1.8)

Y = A(1)A(2) · · ·A(L)X + E. (1.25)

Since the model is linear, all the matrices can be merged into a single matrixA if no special
constraints are imposed upon the individual matricesA(l), (l = 1, 2, . . . , L). However, multi-
layer NMF can be used to considerably improve the performance of standard NMF algorithms
due to distributed structure and alleviating the problem of local minima.

X
( )L

X
(2)

X
(1)

E

Y

A
( )L

A
(1)

SA
(2)

( )J T´ ( )I T´

Fig. 1.8 Multilayer NMF model. In this model the global factor matrix A = A(1)A(2) · · ·A(L) has
distributed representation in which each matrix A(l) can be sparse.

To improve the performance of the NMF algorithms (especially for ill-conditioned and badly-
scaled data) and to reduce the risk of converging to local minima of a cost function due to non-
convex alternating minimization, we have developed a simple hierarchical multi-stage procedure
[39], [38], [27], [37] combined with a multi-start initialization, in which we performa sequen-
tial decomposition of nonnegative matrices as follows. In the first step, we perform the basic
approximate decompositionY � A(1)X(1) ∈ RI×T using any available NMF algorithm. In the
second stage, the results obtained from the first stage are used to build up a new input data matrix
Y ← X(1), that is, in the next step, we perform a similar decompositionX(1) � A(2)X(2) ∈ RJ×T ,
using the same or different update rules. We continue our decomposition taking into account
only the last obtained components. The process can be repeated for an arbitrary number of
times until some stopping criteria are satisfied. Thus, our multi-layer NMF model has the form:

Y � A(1)A(2) · · ·A(L)X(L), (1.26)

with the final resultsA = A(1)A(2) · · ·A(L) andX = X(L). Physically, this means that we build up
a distributed system that has many layers or cascade connections ofL mixing subsystems. The
key point in this approach is that the learning (update) process to find parameters of matrices
X(l) and A(l), (l = 1, 2, . . . , L) is performed sequentially, layer-by-layer, where each layer is
randomly initialized with different initial conditions. We have found that the hierarchical multi-
layer approach can improve performance of most NMF algorithms discussed in this book [33],
[27], [36].

1.2.9 Simultaneous NMF

In simultaneous NMF (siNMF) we have available two or more linked input data matrices (say,
Y1 andY2) and the objective is to decompose them into nonnegative factor matrices in such
a way that one of a factor matrix is common, for example, (which is a special form of the
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Fig. 1.9 (a) Illustration of Projective NMF (typically, A = B = W) and (b) Convex NMF.

Nonnegative Tensor Factorization NTF2 model presented in Section1.5.4),

Y1 = A1X + E1,

Y2 = A2X + E2. (1.27)

Such a problem arises, for example, in bio-informatics if we combine gene expression and tran-
scription factor regulation [8]. In this application the data matrixY1 ∈ RI1×T is theexpression
level of genet in a data samplei1 (i.e., the indexi1 denotes samples, whilet stands for genes)
andY2 ∈ RI2×T is a transcription matrix (which is 1 whenever transcription factori2 regulates
genet).

1.2.10 Projective and Convex NMF

A projective NMF model can be formulated as the estimation of sparse and nonnegative matrix
W ∈ RI×J

+ , I > J, which satisfies the matrix equation

Y =WWTY + E. (1.28)

In a more general nonsymmetric form the projective NMF involves estimation of two nonnega-
tive matrices:A ∈ RI×J

+ andB ∈ RI×J
+ in the model (see Figure1.9(a)):

Y = ABTY + E. (1.29)

This may lead to the following optimization problem:

min
A,B
||Y − ABTY||2F , s.t. A ≥ 0, B ≥ 0. (1.30)

The projective NMF is similar to the subspace PCA. However, it involves nonnegativity con-
straints.

In the convex NMF proposed by Ding, Li and Jordan [51], we assume that the basis vectors
A = [a1, a2, . . . , aJ] are constrained to be convex combinations of the data input matrixY =
[y1, y2, . . . , yT ]. In other words, we require that the vectorsa j lie within the column space of the
data matrixY, i.e.:

a j =

T∑

t=1

wt j yt = Yw j or A = YW, (1.31)
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where W ∈ RT×J
+ andX = BT ∈ RJ×T

+ . Usually each column inW satisfies the sum-to-one
constraint, i.e., they are unit length in terms of theℓ1-norm. We restrict ourselves to convex
combinations of the columns ofY. The convex NMF model can be written in the matrix form
as7

Y = YWX + E (1.32)

and we can apply the transpose operator to give

YT = XTWTYT + ET . (1.33)

This illustrates that the convex NMF can be represented in a similar way to the projective NMF
(see Figure1.9(b)). The convex NMF usually implies that both nonnegative factorsA and
B = XT tend to be very sparse.

The standard cost function (squared Euclidean distance) can be expressed as

||Y − Y W BT ||2F = tr(I − B WT ) YT Y (I −W BT) =
J∑

j=1

λ j || vT
j (I −W BT ) ||22, (1.34)

whereλ j is the positivej-th eigenvalue (a diagonal entry of diagonal matrixΛ) andvj is the
corresponding eigenvector for the eigenvalue decomposition:YTY = VΛVT =

∑J
j=1 λ jvjvT

j .
This form of NMF can also be considered as a special form of the kernel NMF with a linear
kernel defined asK = YTY.

1.2.11 Kernel NMF

The convex NMF leads to a natural extension of the kernel NMF [97], [91], [119]. Consider
a mapping yt → φ(yt) or Y → φ(Y) = [φ(y1), φ(y2), . . . , φ(yT)], then the kernel NMF can be
defined as

φ(Y) � φ(Y) W BT . (1.35)

This leads to the minimization of the cost function:

||φ(Y) − φ(Y)W BT ||2F = tr(K ) − 2 tr(BT K W) + tr(WT K W B TB), (1.36)

which depends only on the kernelK = φT(Y)φ(Y).

1.2.12 Convolutive NMF

The Convolutive NMF (CNMF) is a natural extension and generalization of the standard NMF.
In the Convolutive NMF, we process a set of nonnegative matrices or patterns which are hori-
zontally shifted (or time delayed) versions of the primary matrixX [125]. In the simplest form

7In general, the convex NMF applies to both nonnegative data and mixed sign data which can be written symbolically
asY± = Y±W+X+ + E.
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Fig. 1.10 Illustration of Convolutive NMF. The goal is to estimate the input sources represented
by nonnegative matrix X ∈ RJ×T

+ (typically, T >> I) and to identify the convoluting system, i.e., to
estimate a set of nonnegative matrices {A0,A1, . . . ,AP−1} (Ap ∈ RI×J

+ , p = 0, 1, . . . ,P− 1) knowing
only the input data matrix Y ∈ RI×T. Each operator Sp = T1 (p = 1,2, . . . ,P − 1) performs a
horizontal shift of the columns in X by one spot.

the CNMF can be described as (see Figure1.10)

Y =
P−1∑

p=0

Ap

p→
X + E, (1.37)

where Y ∈ RI×T
+ is a given input data matrix,Ap ∈ RI×J

+ is a set of unknown nonnegative basis

matrices,X =
0→
X ∈ RJ×T

+ is a matrix representing primary sources or patterns,
p→
X is a shifted by

p columns version ofX. In other words,
p→
X means that the columns ofX are shifted to the right

p spots (columns), while the entries in the columns shifted into the matrix from the outside are
set to zero. This shift (time-delay) is performed by a basic operator illustrated in Figure1.10as

Sp = T1. Analogously,
←p
Y means that the columns ofY are shifted to the leftp spots. These

notations will also be used for the shift operations of other matrices throughout this book (see

Chapter3 for more detail). Note that,
0→
X =

←0
X = X.

The shift operator is illustrated by the following example:

X =
[

1 2 3
4 5 6

]
,

1→
X =

[
0 1 2
0 4 5

]
,

2→
X =

[
0 0 1
0 0 4

]
,

←1
X =

[
2 3 0
5 6 0

]
.

In the Convolutive NMF model, temporal continuity exhibited by many audio signals can be
expressed more efficiently in the time-frequency domain, especially for signals whose frequen-
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Fig. 1.11 (a) Block diagram schema for overlapping NMF, (b) Extended Multi-layer NMF model.

ciesvary with time. We will present several efficient and extensively tested algorithms for the
CNMF model in Chapter3.

1.2.13 Overlapping NMF

In Convolutive NMF we perform horizontal shift of the columns of the matrixX. In some ap-
plications, such as in spectrogram decomposition, we need to perform different transformations
by shift vertically the rows of the matrixX. For example, the observed data may be represented
by a linear combination of horizontal bars or features and modeled by transposing the CNMF
model (1.37) as

Y ≈
P∑

p=0

(
→p
X )TAT

p =

P∑

p=0

(XT p
→
)TAT

p =

P∑

p=0

TT
p
→
XTAT

p , (1.38)

whereT p
→

△
= Tp is the horizontal-shift matrix operator such that

→p
X = X T p

→
and

←p
X = X T p

←
. For
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example, for the fourth-order identity matrix this operator can take the following form

T1
→
=



0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


, T2

→
= T1

→
T1
→
=



0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


, T1

←
=



0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


.

Transposing the horizontal shift operatorT p
→

:= Tp gives us the vertical shift operatorT↑p = TT
p
←

andT↓p = TT
p
→
, in fact, we haveT↑p = T p

→
andT↓p = T p

←
.

It is interesting to note that by interchanging the role of matricesA andX, that is,A
△
= X and

Xp
△
= Ap, we obtain the overlapping NMF introduced by Eggertet al. [56] and investigated by

Choiet al. [81], which can be described as (see Fig.1.11(a))

Y �
P∑

p=0

T↑pAX p. (1.39)

Figure1.11(b)illustrates the extended multi-layer overlapping NMF (by analogy to the stan-
dard multi-layer NMF in order to improve the performance of the overlapping NMF). The over-
lapping NMF model can be considered as a modification or variation of the CNMF model, where
transform-invariant representations and sparseness constraints are incorporated [56], [81].

1.3 BASIC APPROACHES TO ESTIMATE PARAMETERS OF STANDARD

NMF

In order to estimate factor matricesA and X in the standard NMF, we need to consider the
similarity measure to quantify a difference between the data matrixY and the approximative
NMF model matrix̂Y = AX. The choice of the similarity measure (also referred to as distance,
divergence or measure of dissimilarity) mostly depends on the probability distribution of the
estimated signals or components and on the structure of data or a distribution of noise. The
simplest and most often used measure is based on Frobenius norm:

DF (Y||AX) =
1
2
||Y − AX ||2F , (1.40)

which is also referred to as the squared Euclidean distance. It should be noted that the above
cost function is convex with respect to either the elements of the matrixA or the matrixX, but
not both.8 Alternating minimization of such a cost leads to the ALS (Alternating Least Squares)
algorithm which can be described as follows:

1. InitializeA randomly or by using a specific deterministic strategy.

8Although the NMF optimization problem is not convex, the objective functions are separately convex in each of the
two factorsA andX, which implies that finding the optimal factor matrixA corresponding to a fixed matrixX reduces
to a convex optimization problem and vice versa. However, the convexity is lost as soon as we try to optimize factor
matrices simultaneously [59].
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2. EstimateX from the matrix equationATAX = ATY by solving

min
X

DF(Y||AX) =
1
2
||Y − AX ||2F , with fixed A. (1.41)

3. Set all the negative elements ofX to zero or some small positive value.

4. EstimateA from the matrix equationXXTAT = XYT by solving

min
A

DF(Y||AX) =
1
2
||YT − XTAT ||2F , with fixed X. (1.42)

5. Set all negative elements ofA to zero or some small positive valueε.

The above ALS algorithm can be written in the following form:9

X ← max
{
ε, (ATA)−1ATY

}
= [A†Y]+ , (1.43)

A ← max
{
ε, YXT (XXT)−1

}
= [YX†]+ , (1.44)

whereA† is the Moore-Penrose inverse ofA, ε is a small constant (typically, 10−16) to enforce
positive entries. Various additional constraints onA andX can be imposed.

Today the ALS method is considered as a basic “workhorse” approach, however it is not
guaranteed to converge to a global minimum nor even a stationary point, but only to a solution
where the cost functions cease to decrease [85], [11]. Moreover, it is often not sufficiently
accurate. The ALS method can be dramatically improved and its computational complexity
reduced as it will be shown in Chapter4.

It is interesting to note that the NMF problem can be considered as a natural extension of
a Nonnegative Least Squares (NLS) problem formulated as the following optimization prob-
lem: given a matrixA ∈ RI×J and a set of observed values given by the vectory ∈ RI , find a
nonnegative vectorx ∈ RJ which minimizes the cost functionJ(x) = 1

2 ||y− Ax||22, i.e.,

min
x≥0

1
2
||y− A x||22, (1.45)

subject tox ≥ 0. There is a large volume of literature devoted to the NLS problems which will
be exploited and adopted in this book.

Another frequently used cost function for NMF is the generalized Kullback-Leibler diver-
gence (also called the I-divergence) [94]:

DKL(Y||AX) =
∑

it

(
yit ln

yit

[AX] it
− yit + [AX] it

)
. (1.46)

Most existing approaches minimize only one kind of cost function by alternately switching
between sets of parameters. In this book we adopt a more general and flexible approach in
which instead of one cost function we rather exploit two or more cost functions (with the same

9Notethat the max operator is applied element-wise, that is, each element of a matrix is compared with scalar parameter
ε.
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global minima); one of them is minimized with respect toA and the other one with respect to
X. Such an approach is fully justified asA andX may have different distributions or different
statistical properties and therefore different cost functions can be optimal for them.

Algorithm 1.1 : Mul ti-layer NMF using alternating minimization of two cost funct ions

Input : Y ∈ RI×T
+ : input data,J: rank of approximation

Output : A ∈ RI×J
+ andX ∈ RJ×T

+ suchthat some given cost functions are minimized.

begin1

X = Y, A = I2

for l = 1 to L do3

Initialize randomlyA(l) andX(l)
a4

repeat5

A(l) = arg min
A(l)≥0

{
D1

(
X || A(l)X(l)

)}
for fixedX(l)

6

X(l) = arg min
X(l)≥0

{
D2

(
X || A(l)X(l)

)}
for fixedA(l)

7

until a stopping criterion is met /* convergence condition */8

X = X(l)9

A ← AA (l)10

end11

end12

a Instead of random initialization, we can use ALS or SVD based initialization, see Section1.3.3.

Algorithm1.1illustrates such a case, where the cost functionsD1(Y||AX) andD2(Y||AX) can
take various forms, e.g.: I-divergence and Euclidean distance [49], [35] (see Chapter2).

We cangeneralize this concept by using not one or two cost functions but rather a set of
cost functions to be minimized sequentially or simultaneously. ForA = [a1, a1, . . . , aJ] and
B = XT = [b1, b2, . . . , bJ], we can express the squared Euclidean cost function as

J(a1, a1, . . . , aJ, b1, b2, . . . , bJ) =
1
2
||Y − ABT ||2F

=
1
2
||Y −

J∑

j=1

a j bT
j ||2F . (1.47)

An underlying idea is to define a residual (rank-one approximated) matrix (see Chapter4 for
more detail and explanation)

Y( j) △= Y −
∑

p, j

apbT
p (1.48)

and alternately minimize the set of cost functions with respect to the unknown variablesaj , b j :

D( j)
A (a) =

1
2
||Y( j) − a bT

j ||2F , for a fixedb j , (1.49a)

D( j)
B (b) =

1
2
||Y( j) − a j bT ||2F , for a fixeda j , (1.49b)

for j = 1, 2, . . . , J subject toa ≥ 0 andb ≥ 0, respectively.
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Fig. 1.12 Conceptual illustration of block-wise data processing for large-scale NMF. Instead of
processing the whole matrix Y ∈ RI×T, we can process much smaller block matrices Yc ∈ RI×C and
Yr ∈ RR×T and corresponding factor matrices Xc ∈ RJ×C and Ar ∈ RR×J with C << T and R << I .
For simplicity of graphical illustration, we have assumed that the first R rows and the first C
columns of the matrices Y, A and X are selected.

1.3.1 Large-Scale NMF

In many applications, especially in dimension reduction applications the data matrixY ∈ RI×T

can be very large (with millions of entries), but it can be approximately factorized using a rather
smaller number of nonnegative components (J), that is,J << I andJ << T. Then the problem
Y ≈ AX becomes highly redundant and we do not need to use information about all entries of
Y in order to estimate precisely the factor matricesA ∈ RI×J andX ∈ RJ×T . In other words, to
solve the large-scale NMF problem we do not need to know the whole data matrix but only a
small random part of it. As we will show later, such an approach can outperform considerably
the standard NMF methods, especially for extremely overdetermined systems.

In this approach, instead of performing large-scale factorization

Y = AX + E,

we can consider a two set of linked factorizations using much smaller matrices, given by

Yr = ArX + Er , for fixed (known) Ar , (1.50)

Yc = AX c + Ec, for fixed (known) Xc, (1.51)

whereYr ∈ RR×T
+ and Yc ∈ RI×C

+ are the matrices constructed from the selected rows and
columns of the matrixY, respectively. Analogously, we can construct the reduced matrices:
Ar ∈ RR×J andXc ∈ RJ×C by using the same indices for the columns and rows as those used
for the construction of the data sub-matricesYc andYr . In practice, it is usually sufficient to
choose:J < R≤ 4J andJ < C ≤ 4J.

In the special case, for the squared Euclidean distance (Frobenius norm), instead of alter-
nately minimizing the cost function

DF (Y || AX) =
1
2
‖Y − AX‖2

F , (1.52)
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we can minimize sequentially the two cost functions:

DF(Yr || ArX) =
1
2
‖Yr − ArX‖2F , for fixed Ar , (1.53)

DF(Yc || AX c) =
1
2
‖Yc − AX c‖2F , for fixed Xc. (1.54)

The minimization of these cost functions with respect toX and A, subject to nonnegativity
constraints, leads to the simple ALS update formulas for the large-scale NMF:

X ←
[
A†r Yr

]
+
=

[
(AT

r Ar )−1ArYr

]
+
, A ←

[
YcX†c

]
+
=

[
YcXT

c (XcXT
c )−1

]
+
. (1.55)

A similar strategy can be applied for other cost functions and details will be given in Chapter3
and Chapter4.

Thereare several strategies to choose the columns and rows of the input data matrix [15],
[100], [22], [66], [67]. The simplest scenario is to choose the firstR rows and the firstC columns
of the data matrixY (see Figure1.12) or select them randomly using a uniform distribution. An
optional strategy is to select randomly rows and columns from the set of all rows and columns
with probability proportional to their relevance, e.g., with probability proportional to square of
Euclideanℓ2-norm of rows and columns, i.e.,||y

i
||22 and ||yt||22, respectively. Another heuristic

option is to choose those rows and columns that provide the largestℓp-norm. For noisy data with
uncorrelated noise, we can construct new columns and rows as a local average (mean values)
of some specific numbers of the columns and rows of raw data. For example, the first selected
column is created as an average of the firstM columns, the second column is an average of the
next M columns, and so on; the same procedure applies for rows. Another strategy is to select
optimal rows and columns using optimal CUR decomposition [22].

1.3.2 Non-uniqueness of NMF and Techniques to Alleviate the Ambiguity

Problem

Usually, we perform NMF using the alternating minimization scheme (see Algorithm1.1) of
a set given objective functions. However, in general, such minimization does not guarantee
a unique solution (neglecting unavoidable scaling and permutation ambiguities). Even the
quadratic function with respect to both sets of arguments{A} and {X} may have many local
minima, which makes NMF algorithms suffer from rotational indeterminacy (ambiguity). For
example, consider the quadratic function:

DF(Y||AX) = ||Y − AX||2F = ||Y − AR−1RX||2F = ||Y − ÃX̃||2F . (1.56)

There are many ways to select a rotational matrixR which is not necessarily nonnegative or
not necessarily a generalized permutation matrix,10 so that the transformed (rotated)Ã , A and
X̃ , X arenonnegative. Here, it is important to note that the inverse of a nonnegative matrix
is nonnegative if and only if it is a generalized permutation matrix [118]. If we assume that
R ≥ 0 andR−1 ≥ 0 (element-wise) which are sufficient conditions for the nonnegativity of the
transform matricesAR−1 andRX, thenR must be a generalized permutation (also called mono-

10Generalized permutation matrix is a matrix with only one nonzero positive element in each row and each column.
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mial) matrix, i.e.,R can be expressed as a product of a nonsingular positive definite diagonal
matrix and a permutation matrix. It is intuitively easy to understand that if the original matrices
X andA are sufficiently sparse only a generalized permutation matrixP = R can satisfy the
nonnegativity constraints of any transform matrices and NMF is unique.

To illustrate rotational indeterminacy consider the following mixing and source matrices:

A =
[

3 2
7 2

]
, X =

[
x1(t)
x2(t)

]
, (1.57)

which give the output

Y =
[

y1(t)
y2(t)

]
= AX =

[
3x1(t) + 2x2(t)
7x1(t) + 2x2(t)

]
. (1.58)

It is clear that there exists another nonnegative decomposition which gives us the following
components:

Y =
[

3x1(t) + 2x2(t)
7x1(t) + 2x2(t)

]
= ÃX̃ =

[
0 1
4 1

] [
x1(t)

3x1(t) + 2x2(t)

]
, (1.59)

where

Ã =
[

0 1
4 1

]
, X̃ =

[
x1(t)

3x1(t) + 2x2(t)

]
(1.60)

are new nonnegative components which do not come from the permutation or scaling indeter-
minacies.

However, incorporating some sparsity or smoothness measures to the objective function is
sufficient to solve the NMF problem uniquely (up to unavoidable scale and permutation indeter-
minacies). The issues related to sparsity measures for NMF have been widely discussed [76],
[54], [73], [36], [39], [144], and are addressed in almost all chapters in this book.

Whenno prior information is available, we should perform normalization of the columns inA
and/or the rows inX to help mitigate the effects of rotation indeterminacies. Such normalization
is usually performed by scaling the columnsa j of A = [a1, . . . , aJ] as follows:

A ← ADA, where DA = diag(||a1||−1
p , ||a2||−1

p , . . . , ||aJ||−1
p ), p ∈ [0,∞). (1.61)

Heuristics based on extensive experimentations show that best results can be obtained forp = 1,
i.e., when the columns ofA are normalized to unitℓ1-norm. This may be justified by the fact
that the mixing matrix should contain only a few dominant entries in each column, which is
emphasized by the normalization to the unitℓ1-norms.11 The normalization (1.61) for the alter-
nating minimization scheme (Algorithm1.1) helps to alleviate many numerical difficulties, like
numerical instabilities or ill-conditioning, however, it makes searching for the global minimum
more complicated.

Moreover, to avoid rotational ambiguity of NMF, the rows ofX should be sparse or zero-
grounded. To achieve this we may apply some preprocessing, sparsification, or filtering of the

11In the case when the columns ofA and rows ofX are both normalized, the standard NMF modelY ≈ AX is converted
to a three-factor NMF modelY ≈ ADX, whereD = DADX is a diagonal scaling matrix.
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input data. For example, we may remove the baseline from the input dataY by applying the
affine NMF instead of the regular NMF, that is,

Y = AX + a01T
T + E, (1.62)

wherea0 ∈ RI
+ is a vector selected in such a way that the unbiased matrixŶ = Y − a01T

T ∈ RI×T
+

has many zeros or close to zero entries (see Chapter3 for algorithms).
In summary, in order to obtain a unique NMF solution (neglecting unavoidable permutation

and scaling indeterminacies), we need to enforce at least one of the following techniques:

1. Normalize or filter the input dataY, especially by applying the affine NMF model (1.62),
in order to make the factorized matrices zero-grounded.

2. Normalize the columns ofA and/or the rows ofX to unit length.

3. Impose sparsity and/or smoothness constraints to the factorized matrices.

1.3.3 Initialization of NMF

The solution and convergence provided by NMF algorithms usually highly depends on initial
conditions, i.e., its starting guess values, especially in a multivariate context. Thus, it is impor-
tant to have efficient and consistent ways for initializing matricesA and/or X. In other words,
the efficiency of many NMF strategies is affected by the selection of the starting matrices. Poor
initializations often result in slow convergence, and in certain instances may lead even to an
incorrect or irrelevant solution. The problem of selecting appropriate starting initialization ma-
trices becomes even more complicated for large-scale NMF problems and when certain struc-
tures or constraints are imposed on the factorized matrices involved. As a good initialization
for one data set may be poor for another data set, to evaluate the efficiency of an initialization
strategy and the algorithm we should perform uncertainty analysis such as Monte Carlo simula-
tions. Initialization in NMF plays a key role since the objective function to be minimized may
have many local minima, and the intrinsic alternating minimization in NMF is nonconvex, even
though the objective function is strictly convex with respect to one set of variables. For example,
the quadratic function:

DF(Y||AX) = ||Y − AX||2F
is strictly convex in one set of variables, eitherA orX, but not in both. The issues of initialization
in NMF have been widely discussed in the literature [3], [82], [92], [14].
As a rule of thumb, we can obtain a robust initialization using the following steps:

1. First, we built up a search method for generatingR initial matricesA andX. This could be
based on random starts or the output from a simple ALS NMF algorithm. The parameter
Rdepends on the number of required iterations (typically, 10-20 is sufficient).

2. Run a specific NMF algorithm for each set of initial matrices and with a fixed but small
number of iterations (typically, 10-20). As a result, the NMF algorithm providesR initial
estimates of the matricesA(r) andX(r).

3. Select the estimates (denoted byA(rmin) andX(rmin)) corresponding to the lowest value of
the cost function (the best likelihood) among theR trials as initial values for the final
factorization.
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Algorithm 1.2 : Mul ti-start initialization

Input : Y ∈ RI×T
+ : input data,

J: rank of approximation ,R: number of restarts,
Kinit , K f in: number of alternating steps for initialization and completion

Output : A ∈ RI×J
+ andX ∈ RJ×T

+ such that a given cost function is minimized.

begin1

parfor r = 1 to Rdo /* process in parallel mode */2

Initialize randomlyA(0) or X(0)3

{A(r),X(r)} ← nmf−algorithm(Y,A(0),X(0),Kinit )4

dr = D(Y||A(r)X(r)) /* compute the cost value */5

endfor6

rmin = argmin1≤r≤R dr7

{A,X} ← nmf−algorithm(Y,A(rmin),X(rmin),K f in)8

end9

In other words, the main idea is to find good initial estimates (“candidates”) with the following
multi-start initialization algorithm:

Thus, the multi-start initialization selects the initial estimates forA andX which give the
steepest decrease in the assumed objective functionD(Y||AX) via alternating steps. Usually, we
choose the generalized Kullback-Leibler divergenceDKL(Y||AX) for checking the convergence
results afterKinit initial alternating steps. The initial estimatesA(0) and X(0) which give the
lowest values ofDKL(Y||AX) after Kinit alternating steps are expected to be the most suitable
candidates for continuing the alternating minimization. In practice, forKinit ≥ 10, the algorithm
works quite efficiently.

Throughout this book, we shall explore various alternative methods for the efficient initializa-
tion of the iterative NMF algorithms and provide supporting pseudo-source codes and MATLAB
codes; for example, we use extensively the ALS-based initialization technique as illustrated by
the following MATLAB code:

Listing 1.1 Basic initializations for NMF algorithms.

1 function [A i nit,Xinit] = NMFinitialization(Y,J,inittype)
2 % Y : nonnegative matrix
3 % J : number of components
4 % inittype 1 {ra ndom}, 2 {ALS}, 3 {SVD}
5 [I,T] = size(Y);
6 Ainit = rand(I,J);
7 Xinit = rand(J,T);
8

9 switch in i ttype
10 case 2 % ALS
11 Ain i t = max(eps,(Y * Xinit') * pinv(Xinit * Xinit'));
12 Xin i t = max(eps,pinv(Ainit' * Ainit) * (Ainit' * Y));
13 case 3 %SVD
14 [Ai nit,Xinit] = lsvNMF(Y,J);
15 end
16 Ainit = Ainit * bs xfun(@rdivide,Ainit,sum(Ainit));
17 end
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1.3.4 Stopping Criteria

There are several possible stopping criteria for the iterative algorithms used in NMF:

• The cost function achieves a zero-value or a value below a given thresholdε, for example,

D(k)
F (Y || Ŷ(k)) −

∥∥∥Y − Ŷ(k)
∥∥∥2

F
≤ ε . (1.63)

• There is little or no improvement between successive iterations in the minimization of a
cost function, for example,

D(k+1)
F (Ŷ(k+1) || Ŷ(k)) =

∥∥∥Ŷ(k) − Ŷ(k+1)
∥∥∥2

F
≤ ε, (1.64)

or

|D(k)
F − D(k−1)|

F |
D(k)

F

≤ ε . (1.65)

• There is little or no change in the updates for factor matricesA andX.

• The number of iterations achieves or exceeds a predefined maximum number of iterations.

In practice, the iterations usually continue until some combinations of stopping conditions are
satisfied. Some more advanced stopping criteria are discussed in Chapter5.

1.4 TENSOR PROPERTIES AND BASIS OF TENSOR ALGEBRA

Matrix factorization models discussed in the previous sectionscan be naturally extended and
generalized to multi-way arrays, also called multi-dimensional matrices or simply tensor de-
compositions.12

1.4.1 Tensors (Multi-way Arrays) – Preliminaries

A tensor is a multi-way array or multi-dimensional matrix. The order of a tensor is the number
of dimensions, also known as ways or modes. Tensor can be formally defined as

Definition 1.1 (Tensor) Let I1, I2, . . . , IN ∈ N denote index upper bounds. A tensorY ∈
R

I1×I2×···×IN of order N is an N-way array where elements yi1i2···in are indexed by in ∈ {1, 2, . . . , In}
for 1 ≤ n ≤ N.

Tensors are obviously generalizations of vectors and matrixes, for example, a third-order tensor
(or three-way array) has three modes (or indices or dimensions) as shown in Figure1.13. A
zero-order tensor is a scalar, a first-order tensor is a vector, a second-order tensor is a matrix,
and tensors of order three and higher are called higher-order tensors (see Figure1.14).

12The notion of tensors used in this book should not be confused with field tensors used in physics and differential
geometry, which are generally referred to as tensor fields (i.e., tensor-valued functions on manifolds) in mathematics
[85]. Examples include, stress tensor, moment-of inertia tensor, Einstein tensor, metric tensor, curvature tensor, Ricci
tensor.
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651y

Fig. 1.13 A three-way array (third-order tensor) Y ∈ R7×5×8 with elements yitq.

Generally, tensors are denoted by an underlined capital boldface letters, e.g.,Y ∈ RI1×I2×···×IN .
In contrast, matrices are denoted by boldface capital letters, e.g.,Y; vectors are denoted by
boldface lowercase letters, e.g., columns of the matrixA by a j and scalars are denoted by low-
ercase letters, e.g.,ai j . The i-th entry of a vectora is denoted byai , and the (i, j)-th element
of a matrixA by ai j . Analogously, the element (i, t, q) of a third-order tensorY ∈ RI×T×Q is
denoted byyitq. The values of indices are typically ranging from 1 to their capital version, e.g.,
i = 1, 2, . . . , I ; t = 1, 2, . . . ,T; q = 1, 2, . . . ,Q.

1.4.2 Subarrays, Tubes and Slices

Subtensors or subarrays are formed when a subset of the indices isfixed. For matrices, these
are the rows and columns. A colon is used to indicate all elements of a mode in the style of
MATLAB. Thus, the j-th column of a matrixA = [a1, a2, . . . , aJ] is formally denoted bya: j ;
likewise, thej-th row ofX is denoted byx j = x j:.

Definition 1.2 (Tensor Fiber) A tensor fiber is a one-dimensional fragment of a tensor, ob-
tained by fixing all indices except for one.

A matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber. Third-order tensors have
column, row, and tube fibers, denoted byy: t q, yi : q, andyi t :, respectively (see Figure1.15). Note
that fibers are always assumed to be oriented as column vectors [85].

Definition 1.3 (Tensor Slice)A tensor slice is a two-dimensional section (fragment) of a tensor,
obtained by fixing all indices except for two indices.

Figure1.16shows the horizontal, lateral, and frontal slices of a third-order tensorY ∈ RI×T×Q,
denoted respectively byY i : : , Y: t : and Y: : q (see also Figure1.17). Two special subarrays
have more compact representations: thej-th column of matrixA, a: j , may also be denoted
as aj , whereas theq-th frontal slice of a third-order tensor,Y: : q may also be denoted asYq,
(q = 1, 2, . . . ,Q).

1.4.3 Unfolding – Matricization

It is often very convenient to represent tensors as matrices or torepresent multi-way relationships
and a tensor decomposition in their matrix forms. Unfolding, also known as matricization or
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Fig. 1.14 Illustration of multi-way data: zero-way tensor = scalar, 1-way tensor = row or column
vector, 2-way tensor = matrix, N-way tensor = higher-order tensors. The 4-way and 5-way tensors
are represented here as a set of the three-way tensors.

flattening, is a process of reordering the elements of anN-th order tensor into a matrix. There are
various ways to order the fibers of tensors, therefore, the unfolding process is not unique. Since
the concept is easy to understand by examples, Figures1.18, 1.19and1.20illustrate the various
unfolding processes of a three-way array. For example, for a third-order tensor we can arrange
frontal, horizontal and lateral slices in row-wise and column-wise ways. Generally speaking,
the unfolding of anN-th order tensor can be understood as the process of the construction of a
matrix containing all the mode-n vectors of the tensor. The order of the columns is not unique
and in this book it is chosen in accordance with [85] and based on the following definition:

Definition 1.4 (Unfolding) The mode-n unfolding of tensorY ∈ RI1×I2×···×IN is denoted by13 Y(n)

and arranges the mode-n fibers into columns of a matrix. More specifically, a tensor element
(i1, i2, . . . , iN) maps onto a matrix element(in, j), where

j = 1+
∑

p,n

(ip − 1)Jp, with Jp =



1, if p = 1 or if p = 2 and n= 1,
p−1∏

m,n

Im, otherwise.
(1.66)

13We use the Kolda - Bader notations [85].
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Fig. 1.15 Fibers: for a third-order tensor Y = [yitq] ∈ RI×T×Q (all fibers are treated as column
vectors).

Fig. 1.16 Slices for a third-order tensor Y = [yitq] ∈ RI×T×Q.
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Fig. 1.17 Illustration of subsets (subarrays) of a three-way tensor and basic tensor notations of
tubes and slices.
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Y

Fig. 1.18 Illustration of row-wise and column-wise unfolding (flattening, matricizing) of a third-
order tensor.

Observe that in the mode-n unfolding the mode-n fibers are rearranged to be the columns of the
matrixY(n).

More generally, a subtensor of the tensorY ∈ RI1×I2×···×IN , denoted byY(in= j), is obtained by
fixing then-th index to some valuej. For example, a third-order tensorY ∈ RI1×I2×I3 with entries
yi1,i2,i3 and indices (i1, i2, i3) has a corresponding position (in, j) in the mode-n unfolded matrix
Y(n) (n = 1, 2, 3) as follows

• mode-1: j = i2 + (i3 − 1)I2,

• mode-2: j = i1 + (i3 − 1)I1,

• mode-3: j = i1 + (i2 − 1)I1.

Note that mode-n unfolding of a tensorY ∈ RI1×I2···×IN also represents mode-1 unfolding of its
permuted tensor̃Y ∈ RIn×I1···×In−1×In+1···×IN obtained by permuting its modes to obtain the mode-1
be In.

1.4.4 Vectorization

It is often convenient to represent tensors and matrices as vectors, whereby vectorization of
matrixY = [y1, y2, . . . , yT ] ∈ RI×T is defined as

y = vec(Y) =
[
yT

1 , y
T
2 , . . . , y

T
T

]T
∈ RIT . (1.67)

The vec-operator applied on a matrixY stacks its columns into a vector. The reshape is a reverse
function to vectorization which converts a vector to a matrix. For example, reshape(y, I ,T) ∈
R

I×T is defined as (using MATLAB notations and similar to the reshape MATLAB function):

reshape(y, I ,T) =
[
y(1 : I ), y(I + 1 : 2I ), . . . , y((T − 1)I : IT )

] ∈ RI×T . (1.68)
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Fig. 1.19 Unfolding (matricizing) of a third-order tensor. The tensor can be unfolded in three
ways to obtain matrices comprising its mode-1, mode-2 and mode-3 vectors.

Analogously, we define the vectorization of a tensorY as a vectorization of the associated mode-
1 unfolded matrixY(1). For example, the vectorization of the third-order tensorY ∈ RI×T×Q can
bewritten in the following form

vec(Y) = vec(Y(1)) =
[
vec(Y: : 1)T , vec(Y: : 2)T , . . . , vec(Y: : Q)T

]T
∈ RITQ. (1.69)

Basic properties of the vec-operators include (assuming that matrices are appropriate sizes):

vec(c A) = c vec(A), (1.70)

vec(A + B) = vec(A) + vec(B), (1.71)

vec(A)T vec(B) = trace(ATB), (1.72)

vec(ABC) = (CT ⊗ A)vec(B). (1.73)

1.4.5 Outer, Kronecker, Khatri-Rao and Hadamard Products

Several special matrix products are important for representation of tensor factorizations and
decompositions.
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Fig. 1.20 Example of unfolding the third-order tensor in mode-1, mode-2 and mode-3.

1.4.5.1 Outer Product The outer product of the tensorsY ∈ RI1×I2×···×IN andX ∈ RJ1×J2×···×JM

is given by

Z = Y ◦ X ∈ RI1×I2×···×IN×J1×J2×···×JM , (1.74)

where

zi1,i2,...,iN, j1, j2,..., jM = yi1,i2,...,iN x j1, j2,..., jM . (1.75)

Observe that, the tensorZ contains all the possible combinations of pair-wise products between
theelements ofY andX.

As special cases, the outer product of two vectorsa ∈ RI andb ∈ RJ yields a rank-one matrix

A = a ◦ b = abT ∈ RI×J (1.76)

and the outer product of three vectors:a ∈ RI , b ∈ RJ andc ∈ RQ yields a third-order rank-one
tensor:

Z = a ◦ b ◦ c ∈ RI×J×Q, (1.77)
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where

zi jq = ai b j cq. (1.78)

1.4.5.2 Kronecker Product The Kronecker product of two matricesA ∈ RI×J and B ∈
R

T×R is a matrix denoted asA ⊗ B ∈ RIT×JR and defined as (see the MATLAB functionkron):

A ⊗ B =



a11 B a12 B · · · a1J B
a21 B a22 B · · · a2J B
...

...
. . .

...

aI1 B aI2 B · · · aIJ B


(1.79)

=
[

a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bR−1 aJ ⊗ bR

]
. (1.80)

For any given three matricesA,B, andC of (appropriate size), whereB andC have the same
size, the following properties hold:

(A ⊗ B)T = AT ⊗ BT , (1.81)

(A ⊗ B)† = A† ⊗ B†, (1.82)

A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C), (1.83)

(B + C) ⊗ A = (B ⊗ A) + (C ⊗ A), (1.84)

(A ⊗ B)(C ⊗ D) = AC ⊗ BD, (1.85)

c (A ⊗ B) = (c A) ⊗ B = A ⊗ (c B). (1.86)

It should be mentioned that, in general, the outer product of vectors yields a tensor whereas the
Kronecker product gives a vector. For example, for the three vectorsa ∈ RJ, b ∈ RT , c ∈ RQ

their three-way outer productY = a ◦ b ◦ c ∈ RI×T×Q is a third-order tensor with the entries
yitq = a jbtcq, while the three-way Kronecker product of the same vectors is a vector vec(Y) =
c⊗ b⊗ a ∈ RITQ.

1.4.5.3 Hadamard Product The Hadamard product of two equal-size matrices is the element-
wise product denoted by⊛ (or .∗ for MATLAB notation) and defined as

A ⊛ B =



a11 b11 a12 b12 · · · a1J b1J

a21 b21 a22 b22 · · · a2J b2J
...

...
. . .

...

aI1 bI1 aI2 bI2 · · · aIJ bIJ


. (1.87)

1.4.5.4 Khatri-Rao Product For two matricesA = [a1, a2, . . . , aJ] ∈ RI×J and B =
[b1, b2, . . . , bJ] ∈ RT×J with the same number of columnsJ, their Khatri-Rao product, denoted
by⊙, performs the following operation:

A ⊙ B = [a1 ⊗ b1 a2 ⊗ b2 · · · aJ ⊗ bJ] (1.88)

=
[
vec(b1aT

1 ) vec(b2aT
2 ) · · · vec(bJaT

J )
]
∈ RIT×J. (1.89)

The Khatri-Rao product is:
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• associative
A ⊙ (B ⊙ C) = (A ⊙ B) ⊙ C, (1.90)

• distributive
(A + B) ⊙ C = A ⊙ C + B ⊙ C, (1.91)

• non-commutative
A ⊙ B , B ⊙ A, (1.92)

• its cross-product simplifies into

(A ⊙ B)T (A ⊙ B) = ATA ⊛ BTB, (1.93)

• and the Moore-Penrose pseudo-inverse can be expressed as

(A ⊙ B)† = [(A ⊙ B)T(A ⊙ B)]−1(A ⊙ B)T = [(ATA) ⊛ (BTB)]−1(A ⊙ B)T , (1.94)

((A ⊙ B)T)† = (A ⊙ B)[(ATA) ⊛ (BTB)]−1. (1.95)

1.4.6 Mode-n Multiplication of Tensor by Matrix and Tensor by Vector,

Contracted Tensors Product

To multiply a tensor by a matrix, we need to specify which mode of thetensor is multiplied by
the columns (or rows) of a matrix (see Figure1.21and Table1.1).

Definition 1.5 (mode-n tensor matrix product) The mode-n productY = G ×n A of a tensor
G ∈ RJ1×J2×···×JN and a matrixA ∈ RIn×Jn is a tensorY ∈ RJ1×···×Jn−1×In×Jn+1×···×JN , with elements

y j1, j2,..., jn−1,in, jn+1,..., jN =

Jn∑

jn=1

g j1, j2,...,JN ain, jn. (1.96)

The tensor-matrix product can be applied successively along several modes, and it is commuta-
tive, that is

(G ×n A) ×m B = (G ×m B) ×n A = G ×n A ×m B, (m, n). (1.97)

The repeated (iterated) mode-n tensor-matrix product for matricesA andB of appropriate di-
mensions can be simplified as

(G ×n A) ×n B = G ×n (BA). (1.98)

For G ∈ RJ1×J2×···×JN and a set of matricesA(n) ∈ RIn×Jn, their multiplication in all possible
modes (n = 1, 2, . . . ,N) is denoted as

G × {A} = G ×1 A(1) ×2 A(2) · · · ×N A(N), (1.99)

and the resulting tensor has dimensionI1 × I2 × · · · × IN. Multiplication of a tensor with all but
one mode is denoted as

G ×−n {A} = G ×1 A(1) · · · ×n−1 A(n−1) ×n+1 A(n+1) · · · ×N A(N) (1.100)
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Fig. 1.21 Illustration of the mode-n multiplications of a third-order tensor by matrices. (a) mode-
1 multiplication Y1 = G ×1 A, (b) mode-2 multiplication Y2 = G ×2 B, (c) mode-3 multiplication
Y3 = G ×3 C.
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Fig. 1.22 Illustration of mode-n multiplication of a third-order tensor G by vectors, yielding scalar
y = G ×̄1 a ×̄2 b ×̄3 c. Note that the dimension of the result is reduced by one. For example,
multiplying a three-way (a third-order) tensor by a vector in mode-1 results in a 2-way tensor (a
matrix).

giving a tensor of dimensionI1 × · · · × In−1 × Jn × In+1 × · · · × IN. The above notation is
adopted from [85].

It is not difficult to verify that these operations satisfy the following properties

[
G × {A}

]
(n)
= A(n)G(n)

[
A(N) ⊗ A(N−1) · · · ⊗ A(n+1) ⊗ A(n−1) · · · ⊗ A(1)

]T
. (1.101)

Definition 1.6 (mode-n tensor-vector product)The mode-n multiplication of a tensor
Y ∈ RI1×I2×···×IN by a vectora ∈ RIn is denoted by14

Y ×̄n a (1.102)

and has dimension I1 × · · · × In−1 × In+1 × · · · × IN, that is,

Z = Y ×̄n a ∈ RI1×···×In−1×In+1×···×IN , (1.103)

Element-wise, we have

zi1,i2,...,in−1,in+1,...,iN =

In∑

in=1

yi1,i2,...,iN ain. (1.104)

It is also possible to multiply a tensor by a vector in more than one mode. Multiplying a three-
way tensor by vectors in the two modes results in a 1-way tensor (a vector); multiplying it in all
modes results in a scalar. We can exchange the order of multiplication by the following rule:

Y ×̄m a ×̄n b = (Y ×̄m a) ×̄n b = (Y ×̄n b) ×̄m a, for m< n. (1.105)

14A bar over the operator× indicates a contracted product.
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Table 1.1 Rules for the mode-n multiplication of tensor G ∈ RJ×R×P with matrices A ∈ RI×J, B ∈
R

T×R, and C ∈ RQ×P and with vectors: a ∈ RJ, b ∈ RR and c ∈ RP.

Mode-n product Matricized version Vectorized version

Y = G ×1 A ∈ RI×R×P Y(1) = AG(1) vec(Y(1)) = (I ⊗ A)vec(G(1))

yirp =

J∑

j=1

g jrp ai j

Y = G ×2 B ∈ RJ×T×P Y(2) = BG(2) vec(Y(2)) = (I ⊗ B)vec(G(2))

y jtp =

R∑

r=1

g jrp btr

Y = G ×3 C ∈ RJ×R×Q Y(3) = CG(3) vec(Y(3)) = (I ⊗ C)vec(G(3))

y jrq =

P∑

p=1

g jrp cqp

Y = G ×̄1 a ∈ RR×P Y(1) = aTG(1) vec(Y(1)) = (I ⊗ aT)vec(G(1))

yrp =

J∑

j=1

g jrp a j vec(Y(1)) = GT
(1) a

Y = G ×̄2 b ∈ RJ×P Y(2) = bTG(2) vec(Y(2)) = (I ⊗ bT)vec(G(2))

y jp =

R∑

r=1

g jrp br vec(Y(2)) = GT
(2) b

Y = G ×̄3 c ∈ RJ×R Y(3) = cTG(3) vec(Y(3)) = (I ⊗ cT )vec(G(3))

y jp =

P∑

p=1

g jrp cp vec(Y(3)) = GT
(3) c

For example, the mode-n multiplication of a tensorG ∈ RJ×R×P by vectorsa ∈ RJ, b ∈ RR and
c ∈ RP can be expressed as (see Figure1.22and Table1.1)

z= G ×̄1 a ×̄2 b ×̄3 c =
J∑

j=1

R∑

r=1

P∑

p=1

g jrp a j br cp.

More generally, forG ∈ RJ1×J2×···×JN anda(n) ∈ RJn, the multiplication by all vectors in all modes
(n = 1, 2, . . . ,N) gives a scalar:

y = G ×̄1 a(1) ×̄2 a(2) · · · ×̄N a(N) = G ×̄ {a} ∈ R (1.106)
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whereas multiplication in every mode except mode-n results in a vectorx of lengthJn:

x = G ×̄1 a(1) · · · ×̄n−1 a(n−1) ×̄n+1 a(n+1) · · · ×̄N a(N)

= G(n)

(
a(N) ⊗ · · · ⊗ a(n+1) ⊗ a(n−1) ⊗ · · · ⊗ a(1)

)
= G ×̄−n {a} ∈ RJn. (1.107)

Also note that multiplication in every mode except mode-n and mode-m, results in a matrix of
sizeJn × Jm.

A matrix G (I × J) can be considered as a third-order tensorG in which the 3rd dimension is
1 (I × J × 1), and its matricized versions in each mode are given by

[
G

]
(1)
=

[
G

]T

(2)
= G, (1.108)

[
G

]
(3)
= vec(G)T . (1.109)

The mode-3 product of the tensorG with a vectora is exactly the outer product ofG anda.

G ×3 a = G ◦ a. (1.110)

Definition 1.7 The scalar product (or inner product) of two tensorsA,B ∈ RI1×I2,×···×IN of the
same order is denoted by

〈
A,B

〉
andis computed as a sum of element-wise products over all the

indices, that is,

c =
〈
A,B

〉
=

I1∑

i1

I2∑

i2

· · ·
IN∑

iN

bi1,i2,...,iNai1,i2,...,iN ∈ R. (1.111)

The scalar product allows us to define the higher-order Frobenius norm of a tensorA as

||A||F =
√〈

A,A
〉
=

√√√ I1∑

i1

I2∑

i2

· · ·
IN∑

iN

a2
i1,i2,...,iN

, (1.112)

whereas theℓ1-norm of a tensor is defined as

||A||1 =
I1∑

i1

I2∑

i2

· · ·
IN∑

iN

|ai1,i2,...,iN |. (1.113)

Definition 1.8 The contracted product of two tensors A ∈ R
I1×···×IM×J1×···×JN and

B ∈ RI1×···×IM×K1×···×KP along the first M modes is a tensor of size J1 × · · · × JN × K1 × · · · × KP,
given by

〈A,B〉1,...,M;1,...,M( j1, . . . , jN, k1, . . . , kP) =
I1∑

i1=1

· · ·
IM∑

iM=1

ai1,...,iM , j1,..., jN bi1,...,iM ,k1,...,kP. (1.114)

The remaining modes are ordered such that those fromA come beforeB. The arguments speci-
fying the modes ofA and those ofB for contraction need not be consecutive. However, the sizes
of the corresponding dimensions must be equal. For example, the contracted tensor product
along the mode-2 of a tensorA ∈ R3×4×5, and the mode-3 of a tensorB ∈ R7×8×4 returns a tensor
C = 〈A,B〉2;3 ∈ R3×5×7×8.
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Thecontracted tensor product ofA andB along the sameM modes simplifies to

〈A,B〉1,...,M;1,...,M = 〈A,B〉1,...,M , (1.115)

whereas the contracted product of tensorsA ∈ RI1×···×IN and B ∈ RJ1×···×JN along all modes
except the mode-n is denoted as

〈A,B〉−n = A(n) BT
(n) ∈ RIn×Jn, (Ik = Jk, ∀k , n). (1.116)

The tensor-vector, tensor-matrix and scalar multiplications can be expressed in a form of con-
tracted product. For example, the contracted product along the mode-n of the tensorA and the
mode-2 of matrixC ∈ RJ×In can be obtained by permuting the dimensions of the mode-nproduct
of A andC

〈A,C〉n;2 = 〈A,C
T〉n;1 = permute(A ×n C, [1, . . . , n− 1, n+ 1, . . . ,N, n]). (1.117)

We also have

〈C,A〉2;n = 〈C
T ,A〉1;n = permute(A ×n C, [n, 1, . . . , n− 1, n+ 1, . . . ,N]). (1.118)

For two tensors of the same dimension, their contracted product along all their modes is their
inner product

〈A,B〉1,...,N = 〈A,B〉. (1.119)

In a special case ofM = 0, the contracted product becomes the outer product of two tensors.

1.4.7 Special Forms of Tensors

Tensors can take special forms or structures. For instance, often a tensor is sparse or symmetric.

1.4.7.1 Rank-One Tensor Using the outer product, the rank of tensor can be defined as
follows (see Figure 1.23)

Definition 1.9 (Rank-one tensor)A tensor Y ∈ RI1×I2×···×IN of order N has rank-one if it can
be written as an outer product of N vectors i.e.,

Y = a(1) ◦ a(2) ◦ · · · ◦ a(N), (1.120)

wherea(n) ∈ RIn and yi1,i2,...,iN = a(1)
i1

a(2)
i2
· · ·a(N)

iN
. The rank of a tensorY ∈ RI1×I2×···×IN is defined

as the minimal number of rank-one tensorsY 1, . . . ,Y R such thatY =
∑R

r=1 Y r .

This outer product is often computed via the Khatri-Rao product or the Kronecker product
based on the following relation

vec(Y) = vec(Y(1)) = vec(a(1)(a(N) ⊙ · · · ⊙ a(2))T) = a(N) ⊙ · · · ⊙ a(2) ⊙ a(1). (1.121)

Rank-one tensors have many interesting properties and play an important role in multi-way
analysis [145], [138], [139], [31], [68], [98], [30], [115]. In general, rank of a higher-order tensor
is defined as the minimal number of rank-one tensors whose linear combination yieldsY. Such
a representation of a tensor by a linear combination of rank-one tensors is just a CANonical
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Fig. 1.23 Rank-one third-order tensor: Y = a ◦ b ◦ c ∈ RI×T×Q, a ∈ RI , b ∈ RT , c ∈ RQ.
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Fig. 1.24 Special forms of third-order tensors: (a) Super-Identity cube tensor I , (b) sparse tensor
with diagonal frontal slices, which can be mathematically expressed as I ×3 C, and (c) block
diagonal tensor.

DECOMPposition (CANDECOMP) or PARAFAC (PARAllel FACtor decomposition) which
preserves the uniqueness under some mild conditions [90].

1.4.7.2 Symmetric and Super-Symmetric Tensors For the particular case when all the
N vectors a( j) are equal to a vectorg, their outer product is called a supersymmetric rank-one
tensor.15 A super-symmetric tensor has the same dimension in every mode.

Tensors can also only be (partially) symmetric in two or more modes. For example, a three-
way tensorY ∈ RI×I×Q is symmetric in modes one and two if all its frontal slices are symmetric,
i.e., Yq = YT

q ,∀q = 1, 2, . . . ,Q.

1.4.7.3 Diagonal Tensors An N-th order cubical tensorY ∈ RI1×I2×···×IN is diagonal if its
elementsyi1,i2,...,iN , 0 only if i1 = i2 = · · · = iN (see Figure1.24(a)). We useI to denote the
cubical identity tensor with ones on the superdiagonal and zeros elsewhere. This concept can be
generalized or extended as illustrated in Figures1.24(b)and1.24(c).

1.5 TENSOR DECOMPOSITIONS AND FACTORIZATIONS

Many modern applications generate large amounts of data with multiple aspects and high di-
mensionality for which tensors (i.e., multi-way arrays) provide a natural representation. These

15In general, by analogy to symmetric matrices a higher-order tensor is called supersymmetric if its entries are invariant
under any permutation of their indices.
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include text mining, clustering, Internet traffic, telecommunication records, and large-scale so-
cial networks.

Tensor decompositions and factorizations were initiated by Hitchcock in 1927 [74], and later
developed by Cattelin in 1944 [85] and by Tucker in 1966 [135], [136]. These concepts and
approaches received more attention after Carroll and Chang [24], [25] proposed the Canoni-
cal Decomposition (CANDECOMP) and independently Harshman [62], [63], [64] proposed an
equivalent model called the PARAFAC (Parallel Factor Analysis) in 1970.

Möck rediscovered the PARAFAC when tackling a neuroscience problem of event related po-
tentials (ERP) in the context of brain imaging [104]. These foundations for tensor factorizations
and decompositions also include results on the uniqueness of tensor factorizations and some
recommendations on how to choose the number of components. The subsequent contributions
put Möck’s results in the framework proposed by Harshman [62], Kruskal [89] and Carroll and
Chang[24].

Most of the early results devoted to tensor factorizations and decompositions appeared in
the psychometrics literature. Appellof, Davidson and Bro are credited as being the first to use
tensor decompositions (in 1981-1998) in chemometrics, which have since become extremely
popular in that field (see, e.g., [7], [17], [16], [19], [2], [85]). In parallel with the developments
in psychometrics and chemometrics, there was a great deal of interest in decompositions of
bilinear forms in the field of algebraic complexity [85], [80].

Although some tensor decomposition models have been proposed long time ago, they have
recently attracted the interest of researchers working in mathematics, signal processing, data
mining, and neuroscience. This probably explains why available mathematical theory seldom
deals with the computational and algorithmic aspects of tensor decompositions, together with
many still unsolved fundamental problems.

Higher-order tensor decompositions are nowadays frequently used in a variety of fields in-
cluding psychometrics, chemometrics, image analysis, graph analysis, and signal processing.
Two of the most commonly used decompositions are the Tucker decomposition and PARAFAC
(also known as CANDECOMP or simply CP) which are often considered (thought of) as higher-
order generalizations of the matrix singular value decomposition (SVD) or principal component
analysis (PCA). In this book, we superimpose different constraints such as nonnegativity, spar-
sity or smoothness, and generally such an analogy is no longer valid.

In this chapter we formulate the models and problems for three-way arrays. Extension for
arbitraryN-th order tensors will be given in Chapter7.

1.5.1 Why Multi-way Array Decompositions and Factorizations?

Standard matrix factorizations, such as PCA/SVD, ICA, NMF, and their variants, are invaluable
tools for feature selection, dimensionality reduction, noise reduction, and data mining [26].
However, they have only two modes or 2-way representations (say, space and time), and their
use is therefore limited. In many applications the data structures often contain higher-order
ways (modes) such as trials, task conditions, subjects, and groups together with the intrinsic
dimensions of space, time, and frequency. For instance, a sequence of trials may lead to a
large stream of data encompassing many dimensions: space, time-frequency, subjects, trials,
and conditions [5], [86].

Clearly the “flat-world view” provided by 2-way matrix factorizations (ICA, NMF, SCA)
may be insufficient and it is natural to use tensor decomposition approaches. This way all di-
mensions or modes are retained by virtue of multi-linear models which often produce unique and
physically meaningful components. For example, studies in neuroscience often involve multi-
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Fig. 1.25 Illustration of various possible arrangements (organization) of three-way and multi-way
multichannel EEG/MEG data.

ple subjects (people or animals) and trials leading to experimental data structures conveniently
represented by multiway arrays or blocks of three-way data. If the data for every subject were
analyzed separately by extracting a matrix or slice from a data block we would lose the covari-
ance information among subjects. To discover hidden components within the data and retain the
integrative information, the analysis tools should reflect the multi-dimensional structure of the
data.

The multi-way analysis (tensor factorizations and decompositions) is a natural choice, for in-
stance, in EEG studies as it provides convenient multi-channel and multi-subject time-frequency-
space sparse representations, artifacts rejection in the time-frequency domain, feature extraction,
multi-way clustering and coherence tracking. Our main objective here is to decompose the mul-
tichannel time-varying EEG signals into multiple components with distinct modalities in the
space, time, and frequency domains in order to identify among them the components common
across these different domains, which at the same time are discriminative across different con-
ditions (see Figure1.25). The two most popular decomposition/factorization models forN-th
order tensors are the Tucker model and the more restricted PARAFAC model. Especially, NMF
and NTF in conjunction with sparse coding, have recently been given much attention due to their
easy interpretation and meaningful representation. NTF has been used in numerous applications
in environmental analysis, food studies, pharmaceutical analysis and in chemistry in general
(see [18], [2], [85] for review).

As a result of such tensor decompositions, the inherent structures of the recorded brain signals
usually become enhanced and better exposed. Further operations performed on these compo-
nents can remove redundancy and achieve compact sparse representations. There are at least
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two possible operations we can perform. First, the extracted factors or hidden latent compo-
nents can be grouped (clustered) together and represented collectively in a lower dimensional
space to extract features and remove redundancy. Second, the components can be simply pruned
if they are correlated with a specific mental task. With the addition of extra dimensions it is pos-
sible to investigate topography and time and frequency patterns in one analysis. The resulting
components can be described not only by the topography and the time-frequency signature but
also by the relative contribution from different subjects or conditions. Regarding an application
to brain signal analysis, various oscillatory activities within the EEG may overlap, however, the
sparse and nonnegative tensor representation by means of the time-frequency-space transforma-
tion makes it possible in many cases to isolate each oscillatory behavior well, even when these
activities are not well-separated in the space-time (2-way) domain.

Recent development in high spatial density arrays of EEG signals involve multi-dimensional
signal processing techniques (referred to as multi-way analysis (MWA), multi-way-array (ten-
sor) factorization/decomposition, dynamic tensor analysis (DTA), or window-based tensor anal-
ysis (WTA)). These can be employed to analyze multi-modal and multichannel experimental
EEG/MEG and fMRI data [5], [102], [140].

1.5.2 PARAFAC and Nonnegative Tensor Factorization

The PARAFAC16 can be formulated as follows (see Figures1.26and1.27for graphical repre-
sentations).

Given a data tensorY ∈ RI×T×Q and the positive indexJ, find three-component matrices, also
called loading matrices or factors,A = [a1, a2, . . . , aJ] ∈ RI×J,B = [b1, b2, . . . , bJ] ∈ RT×J and
C = [c1, c2, . . . , cJ] ∈ RQ×J which perform the following approximate factorization:

Y =
J∑

j=1

a j ◦ b j ◦ c j + E = ~A,B,C� + E, (1.122)

or equivalently in the element-wise form

yitq =

J∑

j=1

ai jbt jcq j + eitq. (1.123)

Thesymbol Ŷ = ~A,B,C� is ashorthand notation for the PARAFAC factorization, andaj =

[ai j ] ∈ RI , b j = [bt j ] ∈ RT , andc j = [cq j] ∈ RQ are respectively the constituent vectors of the
corresponding factor matricesA,B andC.

The PARAFAC algorithms decompose a given tensor into a sum of multi-linear terms (in this
case tri-linear), in a way analogous to the bilinear matrix decomposition. As discussed before,
unlike SVD, PARAFAC usually does not impose any orthogonality constraints. A model which
imposes nonnegativity on factor matrices is called the NTF (Nonnegative Tensor Factorization)
or Nonnegative PARAFAC. A nonnegative version of PARAFAC was first introduced by Carroll
et al. [25]. Later, more efficient approaches were developed by Bro [16], [6], [80], based on
the modified NLS and Paatero [112], [111] who generalized his earlier 2-way positive matrix

16Also called the CANDECOMP (Canonical Decomposition) or CP decomposition or simply CPD.
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Fig. 1.26 A graphical representation of the third-order PARAFAC as a sum of rank-one tensors.
All the vectors {aj , bj , cj } are treated as column vectors of factor matrices and are linked for each
index j via the outer product operator, that is, Y =

∑J
j=1 aj ◦bj ◦cj +E or equivalently in a compact

form Y = I ×1 A ×2 B ×3 C + E. (In this model not all vectors are normalized to unit length).

factorization (PMF) method to the three-way PARAFAC model, referring to the result as PMF3
(three-way positive matrix factorization). Although such constrained nonnegativity based model
may not match perfectly the input data (i.e., it may have larger residual errorsE than the standard
PARAFAC without any constraints) such decompositions are often very meaningful and have
physical interpretation [30], [115], [116].

It is often convenient to assume that all vectors have unit length so that we can use the
modified Harshman’s PARAFAC model given by [62], [63]

Y =
J∑

j=1

λ j aj ◦ b j ◦ c j + E � ~λ,A,B,C�, (1.124)

or in equivalent element-wise form

yitq =

J∑

j=1

λ j ai j bt j cq j + eitq, (1.125)

where λ j are scaling factors andλ = [λ1, λ2, . . . , λJ]T . Figure1.28illustrates the above model
and its alternative equivalent representations. The basic PARAFAC model can be represented in
compact matrix forms upon applying unfolding representations of the tensorY:

Y(1) � A Λ (C ⊙ B)T , (1.126)

Y(2) � B Λ (C ⊙ A)T , (1.127)

Y(3) � C Λ (B ⊙ A)T , (1.128)

whereΛ = diag(λ) and⊙means the Khatri-Rao product.
Using the mode-n multiplication of a tensor by a matrix, we have

Y = Λ ×1 A ×2 B ×3 C + E, (1.129)

whereΛ ∈ RJ×J×J is diagonal cubical tensor with nonzero elementsλ j on the superdiagonal.
In other words, within Harshman’s model for the core tensor all but the superdiagonal elements
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Fig. 1.27 The alternative representations of the third-order PARAFAC model: (a) as a set of
three matrices using a scalar representation (see Eq. (1.123)), (b) as a set of vectors using
summation of rank-one tensors expressed by the outer products of the vectors (see Eq. (1.122)),
(c) decomposition into two matrices using row-wise unfolding and (d) representation by frontal
slices (see Eq. (1.134)) The tensor D ∈ RJ×J×Q has diagonal frontal slices Dq ∈ RJ×J, so we can
write Y ≈ D ×1 A ×2 B.
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Fig. 1.28 Harshman’s PARAFAC model with a superdiagonal core tensor G = Λ =

diag(λ1, λ2, . . . , λJ) ∈ RJ×J×J for the third-order tensor Y � Λ ×1 A ×2 B ×3 C =
∑J

j=1 λ j aj ◦ bj ◦ cj .
(In this model all vectors are normalized to unit length).

vanish (see Figure1.28). This also means that PARAFAC can be considered as a special case of
the Tucker3 model in which the core tensor is a cubical superdiagonal or super-identity tensor,
i.e.,G = Λ ∈ RJ×J×J with g j j j , 0.

Another form of the PARAFAC model is the vectorized form given by

vec (Y) � (C ⊙ B ⊙ A)λ. (1.130)

Thethree-way PARAFAC model can be also described by using frontal, lateral and horizontal
slices as follows17

Y: : q � A Dq(cq :) BT , (1.131)

Y: t : � A Dt(bt :) CT , (1.132)

Y i : : � B Di(ai :) CT , (1.133)

whereDi(ai :), Dt(bt :) andDq(cq :) are diagonal matrices which take thei-th, t-th andq-th row
of the matricesA,B, andC, respectively, and produce diagonal matrices by placing the corre-
sponding row on the main diagonal.

17Sucha representation does not exist for higher-order tensors whereN > 3.
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Table 1.2 Mathematical formulations of the standard PARAFAC model for a third-order tensor
Y ∈ RI×T×Q with factor matrices: A = [a1, a2, . . . , aJ] ∈ RI×J, B = [b1, b2, . . . , bJ] ∈ RT×J and
C = [c1, c2, . . . , cJ] ∈ RQ×J. There are two optional and equivalent representations: one in which
we have a linear combination of rank-one tensors with unit length vectors and a second in which
the vectors aj ∈ RI and bj ∈ RT have a unit ℓ2-norm and the scaling factors λ j are absorbed by
the non-normalized vectors cj ∈ RQ.

Operator Formulation

Outer products

Y =

J∑

j=1

a j ◦ b j ◦ c j + E, (s.t. ||aj ||2 = ||bj ||2 = 1, ∀ j)

Y =

J∑

j=1

λ j a j ◦ b j ◦ c j + E, (s.t. ||aj ||2 = ||bj ||2 = ||cj ||2 = 1, ∀ j)

Scalar

yitq =

J∑

j=1

ai j bt j cq j + eitq

yitq =

J∑

j=1

λ j ai j bt j cq j + eitq

Mode-n multiplications
Y = I ×1 A ×2 B ×3 C + E
Y = Λ ×1 A ×2 B ×3 C + E

Slice representations

Y::q = A diag(cq:) BT + E::q = A Dq (cq:) BT + E::q

Y i:: = B diag(ai:) CT + Ei:: = B Di (ai:) CT + Ei::

Y:t: = A diag(bt:) CT + E:t: = A Dt (bt:) CT + E:t:

Vectors vec(Y) = vec(Y(1)) = (C ⊙ B ⊙ A) λ + vec(E(1)

Kronecker products Y(1)= A D(1)(cq) (I ⊗ B)T + E(1)

Khatri-Rao products

Y(1)= A (C ⊙ B)T + E(1); Y(1) = A Λ(C ⊙ B)T + E(1)

Y(2)= B (C ⊙ A)T + E(2); Y(2) = B Λ(C ⊙ A)T + E(2)

Y(3)= C (B ⊙ A)T + E(3); Y(3) = C Λ(B ⊙ A)T + E(3).

In particular, it is convenient to represent the three-way PARAFAC model in terms of the
frontal slices, asYq = Y: : q of Y

Yq � ADqBT , (1.134)

where a matrixDq := Dq(cq :) is the diagonal matrix based on theq-th row ofC.
The above representation of the PARAFAC model has striking similarity to the Approxima-

tive Joint Diagonalization method, thus having a clear interpretation for the BSS problem, where
the matrixA represents a mixing matrix,X = BT represents unknown sources, andC represents
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a scaling matrix [45], [44]. In fact, the PARAFAC factorization can be reformulated as simulta-
neous diagonalization of a set of matrices, which often leads to fast and reliable way to compute
this factorization.

The PARAFAC model has some severe limitations as it represents observed data by common
factors utilizing the same number of components (columns). In other words, we do not have
enough degrees of freedom as compared to other models. Moreover, the PARAFAC approxima-
tion may be ill-posed and may lead to unstable estimation of its components. The next sections
discuss more flexible models.

1.5.2.1 Basic Approaches to Solve NTF Problem In order to compute the nonnegative
component matrices{A,B,C} we usually apply constrained optimization approach as by min-
imizing a suitable design cost function. Typically, we minimize (with respect the component
matrices) the following global cost function

DF(Y || ~A,B,C�) = ||Y − ~A,B,C�||2F + αA ||A||2F + αB ||B||2F + αC ||C||2F , (1.135)

subject to nonnegativity constraints, whereαA , αB, αC are nonnegative regularization parame-
ters.

There are at least three different approaches for solving this optimization problem. The first
approach is to use a vectorized form of the above cost function in the formJ(x) = vec(Y −
~A,B,C�) = 0 andemploy the Nonnegative Least Squares (NLS) approach. Such a method
was first applied for NTF by Paatero [111] and also Tomasi and Bro [133], [134]. The Jacobian
of such function can be of large sizeIT QJ× (I + T + Q), yielding very high computation cost.

In the second approach, Acar, Kolda and Dunlavy propose to optimize the cost function
simultaneously with respect to all variables using a modern nonlinear conjugate gradient op-
timization technique [1]. However, such a cost function is generally not convex and is not
guaranteed to obtain the optimal solution although results are very promising.

The most popular approach is to apply the ALS technique (see Chapter4 for more detail).
In this approach we compute the gradient of the cost function with respect to each individual
component matrix (assuming that the others are fixed and independent):

∇A DF = −Y(1) (C ⊙ B) + A [(CTC) ⊛ (BTB) + αA I ], (1.136)

∇BDF = −Y(2) (C ⊙ A) + B [(CTC) ⊛ (ATA) + αB I ], (1.137)

∇CDF = −Y(3) (B ⊙ A) + C [(BTB) ⊛ (ATA) + αC I ]. (1.138)

By equating the gradient components to zero and applying the nonlinear projection to maintain
nonnegativity of components we obtain efficient and relatively simple nonnegative ALS update
rules for the NTF:

A ←
[
Y(1) (C ⊙ B) [(CTC) ⊛ (BTB) + αA I ]−1

]
+
, (1.139)

B ←
[
Y(2) (C ⊙ A) [(CTC) ⊛ (ATA) + αB I ]−1

]
+
, (1.140)

C ←
[
Y(3) (B ⊙ A) [(BTB) ⊛ (ATA) + αC I ]−1

]
+
. (1.141)

In Chapter4 and Chapter6 we prove that the ALS algorithms are special cases of a quasi-
Newton method that implicitly employ information about the gradient and Hessian of a cost
function. The main advantage of ALS algorithms is high convergence speed and its scalability
for large-scale problems.



TENSOR DECOMPOSITIONS AND FACTORIZATIONS 51

(a)

Q Q

EA

Q

J

J

X

XQ

I I I

T T

T

= +..
.

..
.Yi

q

Tt

J

C

1

1
1

1

1

1

1

(b)

( )I T ( )I J ( )J J

@

(J T)

Yq A
Dq

Xq

××××

(c)

A
@

Y =Y(1)

( )I TQ ( )I J

( )J TQ

Y1 Y...
X1 ... X

X D X×

X =X(1)

qqq
(q = 1, 2, . . . ,Q)

Q

Q

rr

×

××

Fig. 1.29 (a) NTF1 model that (approximately) decomposes tensor Y ∈ RI×T×Q
+ into a set of

nonnegative matrices A = [ai j ] ∈ RI×J
+ ,C ∈ RQ×J

+ and {X1,X2, . . . ,XQ}, Xq = [xjtq] ∈ RJ×T
+ , and

E ∈ RI×T×Q is a tensor representing errors. Matrices Xq are frontal slices of the tensor X ∈ RJ×T×Q,
typically with J << I . (b) Equivalent representation using joint diagonalization of frontal slices,
where Dq = diag(cq) are diagonal matrices. (c) Global matrix representation using row-wise

unfolding of the tensor; the sub-matrices are defined as Xq
△
= DqXq, (q = 1,2, . . . ,Q).

1.5.3 NTF1 Model

Figure1.29illustrates the basic 3D NTF1 model, which is an extension of the NTF model [34].
A given data (observed) tensorY ∈ RI×T×Q

+ is decomposed into a set of matricesA ∈ RI×J
+ and

C ∈ RQ×J
+ , as well as a third-order tensor with reduced dimension (J < I ), for which the frontal
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Fig. 1.30 Extended NTF1 model for a three-way array. The goal is to estimate the set of non-
negative matrices A,C and {X1,X2, . . . ,XQ}.

slices{X1,X2, ...,XQ} have nonnegative entries. This three-way NTF1 model is given by

Yq = ADqXq + Eq, (q = 1, 2, . . . ,Q), (1.142)

where Yq = Y: : q ∈ RI×T
+ are the frontal slices ofY ∈ RI×T×Q

+ , Q is the number of the frontal
slices,A = [ai j ] ∈ RI×J

+ is the basis (mixing matrix) representing common factors,Dq ∈ RJ×J
+ is

a diagonal matrix that holds theq-th row of matrixC ∈ RQ×J
+ in its main diagonal,Xq = [x jtq] ∈

R
J×T
+ is matrix representing the sources (or hidden components), andEq = E: : q ∈ RI×T is the

q-th vertical slice of the tensorE ∈ RI×T×Q representing the errors or noise depending on the
application. Typically, for BSS problemsT >> I ≥ Q > J.

We wish to estimate the set of matricesA, C, and{X1,X2, . . . ,XQ} subject to nonnegativ-
ity constraints (and other constraints such as sparseness and/or smoothness), given only the
observed dataY. Since the diagonal matricesDq arescaling matrices, they can be absorbed
into the matricesXq by introducing the row-normalized matricesXq := DqXq, thus giving
Yq = AXq + Eq. Therefore, in the multi-way BSS applications only the matrixA and the set of
scaled source matricesX1,X2, . . . ,XQ need be estimated.

For applications where the observed data are incomplete or have different dimensions for
each frontal slice (as shown in Figure1.30) the model can be described as

Yq = ADqXq + Eq, (q = 1, 2, . . . ,Q), (1.143)

whereYq ∈ RI×Tq
+ are the frontal slices of the irregular tree-dimensional array,Xq = [x jtq] ∈

R
J×Tq
+ are matrices representing sources (or hidden components), andEq = E: : q ∈ RI×T is the

q-th vertical slice of the multi-way array comprising errors.
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1.5.4 NTF2 Model

The dual model to the NTF1 is referred to as the 3D NTF2 (by analogy tothe PARAFAC2
model18 [78], [17], [105], [126], [88], see Figure1.31).

A given tensorY ∈ RI×T×Q
+ is decomposed into a set of matrices{A1,A2, ...,AQ}, X = BT

andC with nonnegative entries, by the three-way NTF2 model as

Yq = AqDqX + Eq, (q = 1, 2, . . . ,Q), (1.144)

where Yq = Y: : q = [yitq] ∈ RI×T
+ are the frontal slices ofY ∈ RI×T×Q

+ , Q is the number of
frontal slices,Aq = [ai jq] ∈ RI×J

+ are the basis (mixing) matrices,Dq ∈ RJ×J
+ is a diagonal

matrix that holds theq-th row of C ∈ RQ×J
+ in its main diagonal,X = [x jt ] ∈ RJ×T

+ is a matrix
representing latent sources (or hidden components or common factors), andEq = E: : q ∈ RI×T

is the q-th frontal slice of a tensorE ∈ RI×T×Q comprising error or noise depending on the
application. The goal is to estimate the set of matrices{Aq}, (q = 1, 2, . . . ,Q), C andX, subject to
some nonnegativity constraints and other possible natural constraints such as sparseness and/or
smoothness. Since the diagonal matricesDq are scaling matrices they can be absorbed into the
matricesAq by introducing column-normalization, that is,Aq := AqDq. In BSS applications,
therefore, only the matrixX and the set of scaled matricesA1, . . . ,AQ need be estimated. This,
however, comes at a price, as we may lose the uniqueness of the NTF2 representation ignoring
the scaling and permutation ambiguities. The uniqueness can still be preserved by imposing
nonnegativity and sparsity constraints.

The NTF2 model is similar to the well-known PARAFAC2 model19 with nonnegativity con-
straints and to the Tucker models described in the next section [105], [126], [88]. In a special
case,when all matricesAq are identical, the NTF2 model can be simplified into the ordinary
PARAFAC model (see Section1.5.2) with the nonnegativity constraints described by

Yq = ADqX + Eq, (q = 1, 2, . . . ,Q). (1.145)

As shown in Figure1.32(a)the NTF2 model can be extended to the decomposition of multi-way
arrays with different dimensions using the simultaneous factorizations

Yq = AqDqX + Eq, (q = 1, 2, . . . ,Q), (1.146)

whereY ∈ RIq×T
+ , X ∈ RJ×T

+ , C ∈ RQ×J
+ , Aq ∈ RIq×J

+ }, Eq = E: : q ∈ RIq×T is theq-th frontal slice
of a three-way array (of the same dimensions as the data array) andDq ∈ RJ×J

+ is a diagonal
matrix that holds theq-th row ofC in its main diagonal. Using the transformationXq := DqXq,
we can convert the NTF2 problem to the standard (2-way) NMF problem:

Ȳ = ĀX + Ē, (1.147)

18In fact the NTF2 model be can obtained form NTF1 model via simple permutation of tensors and matrices. However,
since the frontal slicesAq andXq of the core tensors have different physical interpretations we discuss these models
separately.

19In the PARAFAC2 model we usually assume thatAT
q Aq = Φ ∈ RJ×J , ∀q (i.e., it is required that the matrix product

Aq with its transpose is invariant for all frontal slices of a core three-way tensorA).
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Fig. 1.31 (a) NTF2 model in which a third-order tensor is decomposed into a set of nonnegative
matrices: {A1, . . . ,AQ}, C, and X. (b) Equivalent representation in which the frontal slices of a
tensor are factorized by a set of nonnegative matrices. (c) Global matrix representation using

column-wise unfolding with sub-matrices Aq
△
= AqDq.
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representation using column-wise unfolding with sub-matrices Aq
△
= AqDq.
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where Ȳ = YT
(2) = [Y1; Y2; . . . ; YQ] ∈ RĪ×T

+ , Ā = AT
(2) = [A1; A2; . . . ; AQ] ∈ RĪ×J

+ , Ē = ET
(2) =

[E1; E2; . . . ; EQ] ∈ RĪ×T
+ andĪ =

∑
q Iq.

1.5.5 Individual Differences in Scaling (INDSCAL) and Implicit Slice Canonical

Decomposition Model (IMCAND)

Individual Differences in Scaling (INDSCAL) was proposed by Carroll and Chang [24] in the
same paper in which they introduced CANDECOMP, and is a special case of the three-way
PARAFAC for third-order tensors that are symmetric in two modes.

The INDSCAL imposes the constraint that the first two factor matrices in the decomposition
are the same, that is,

Y �
J∑

j=1

a j ◦ a j ◦ c j , (1.148)

or equivalently

Y � I ×1 A ×2 A ×3 C, (1.149)

where Y ∈ RI×I×Q with yitq = ytiq, i = 1, . . . , I , t = 1, . . . , I , q = 1, . . . ,Q, andI is the cubic
identity tensor. The goal is to find an optimal solution for matricesA andC, subject to the
nonnegativity and sparsity constraints.

In data mining applications third-order input tensorsY ∈ RI×I×Q may have a special form
where each frontal sliceYq is the product of two matrices which are typically the matrixXq ∈
R

I×T and its transposeXT
q , thus yielding

Yq = XqXT
q , (q = 1, 2, . . . ,Q). (1.150)

Such a model is called the IMplicit Slice Canonical Decomposition (IMSCAND) Model (see
Figure 1.33) where the PARAFAC or Tucker decompositions of the tensorY are performed
implicitly, that is, by using matricesXq and not directly the elementsyitq (which do not need to
be stored on computer) [121].

For example, these slice matrices may represent covariance matrices in signal processing,
whereas in text mining (clustering of scientific publications from a set of SIAM journals) slices
Yq are document by document matrices and may have the following meanings [121]:

• Y1 = similarity between names of authors,

• Y2 = similarity between words in the abstract,

• Y3 = similarity between author-specified keywords,

• Y4 = similarity between titles,

• Y5 = co-citation information,

• Y6 = co-reference information.

The first four slices are formed from feature-document matrices for the specified similarity. If
there exists no similarity between two documents, then the corresponding element in a slice is
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Fig. 1.33 Illustration of IMplicit Slice Canonical Decomposition (IMSCAND). The frontal slices
Yq are not stored directly but rather represented by a set of matrices Xq as Yq = XqXT

q for
q = 1, 2, . . . ,6.

nonzero. For the fifth slice, the elementyit5 indicates the number of papers that both documents
i andt cite. Whereas the elementyit6 on the sixth slice is the number of papers cited by both
documentsi andt.

1.5.6 Shifted PARAFAC and Convolutive NTF

Harshmanet al.[64] introduced the shifted PARAFAC (S-PARAFAC) in order to deal withshift
factors in sequential data such as time series or spectra data. For example, the S-PARAFAC for
mode-2 can be described for each entryyitq as

yitq =

J∑

j=1

ai j b(t+sqj) j cq j + eitq, (1.151)

where the shift parametersq j gives the shift at columnj of the factorB. We can rewrite this
model for frontal slices

Yq = A DqSsq(B)T + Eq, (q = 1, . . . ,Q), (1.152)

where the shift operator (or function)Ssq(B) shifts all elements in each column of the matrix
B by amountsq j. The vectorsq is a vector ofJ shift values taken from rowq of the (implied)
shift matrixS ∈ RQ×J, and the matrixDq is a diagonal matrix containing theq-th row ofC. One
limitation of S-PARAFAC is that it only considers one-dimensional shifts, typically time, but
does not handle two-dimensional shifts that might be encountered in neuroimages of brain scans
[2], [107]
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Table 1.3 Basic description of PARAFAC (CP) and NTF (if we impose additional nonnegativity
constraints) family models. Some models are expressed in matrix and/or scalar notations to make
it easier understand the differences and compare them with standard PARAFAC. For Shifted NTF
(S-NTF), sq j represents the shift at column q for the j-th factor. For Convolutive NTF (CNTF),
s is used usually to capture the shifts in the frequency spectrogram.

Model Description

Nonnegative PARAFAC (NTF)

yitq =

J∑

j=1

ai j bt j cq j + eitq

Yq = ADqBT + Eq =

J∑

j=1

cq ja j bT
j + Eq

NTF1

yitq =

J∑

j=1

ai j bt jq cq j + eitq

Yq = A Dq BT
q + Eq =

J∑

j=1

cq j a j (b(q)
j )T + Eq

NTF2

yitq =

J∑

j=1

ai jq bt j cq j + eitq

Yq = Aq Dq BT + Eq =

J∑

j=1

cq j a(q)
j bT

j + Eq

Shifted NTF (S-NTF)
yitq =

J∑

j=1

ai j b(t+sqj) j cq j + eitq

Yq = A Dq Ssq(B)T + Eq

Convolutive NTF (CNTF)

yitq =

J∑

j=1

S∑

s=1

ai j b(t−s+1) j cq js + eitq

Yq = A
S∑

s=1

D(s)
q (T↑(s−1)B)T + Eq

C2NTF yitq =

J∑

j=1

S∑

s=1

R∑

r=1

ai j b(t−s+1) jr c(q−r+1) js + eitq

INDSCAL yitq =

J∑

j=1

ai j at j cq j + eitq
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Another extension of PARAFAC is Convolutive PARAFAC (CPARAFAC or CNTF) which
is a generalization of CNMF to multiway spectral data. Morup and Schmidt [107] introduced
this model with the name Sparse Nonnegative Tensor 2D Deconvolution (SNTF2D). The single
convolutive NTF on mode-2 and mode-3 and with rank-J for the nonnegative tensorY ∈ RI×T×Q

+

returns a factor matrixA ∈ RI×J
+ on the first dimension, a factor matrixB ∈ RT×J

+ on the second
dimension, and a set ofS factor matrices or tensorC ∈ RQ×J×S

+ , and can be expressed as follows

yitq =

J∑

j=1

S∑

s=1

ai j b(t−s+1) j cq js + eitq. (1.153)

For S = 1, CPARAFAC (CNTF) simplifies to PARAFAC (NTF). Matrix representation of this
model via frontal slicesYq, (q = 1, . . . ,Q) is given by

Yq � A
S−1∑

s=0

D(s+1)
q (T↑(s)B)T = A

S−1∑

s=0

D(s+1)
q BTT s

→
(1.154)

whereD(s)
q is a diagonal matrix containing the fibercq:s, and the shift operatorsT↑(s), T s

→
are

defined in Section 1.2.12. In the tensor form the CNTF can be described as

Y =
S∑

s=1

I ×1 A ×2 T↑(s−1)B ×3 Cs + E. (1.155)

The CPARAFAC can be extended to the double convolutive model (C2PARAFAC or C2NTF)
as

yitq �

J∑

j=1

S∑

s=1

R∑

r=1

ai j b(t−s+1) jr c(q−r+1) js, (1.156)

where the second factor in Equation (1.155) is no longer a matrix but a tensor of size (T× J×R).

1.5.7 Nonnegative Tucker Decompositions

The Tucker decomposition, also called the Tucker3 or best rank (J,R,P) approximation, can be
formulated as follows20 [135], [136]:

Givena third-order data tensorY ∈ RI×T×Q and three positive indices{J,R,P} << {I ,T,Q},
find a core tensorG = [g jrp] ∈ RJ×R×P and three component matrices called factor or loading
matrices or factors:A = [a1, a2, . . . , aJ] ∈ RI×J, B = [b1, b2, . . . , bR] ∈ RT×R, andC =
[c1, c2, . . . , cP] ∈ RQ×P, which perform the following approximate decomposition:

Y =
J∑

j=1

R∑

r=1

P∑

p=1

g jrp (aj ◦ br ◦ cp) + E (1.157)

20The Tucker3 model with orthogonal factors is also known as three-way PCA (principal component analysis). The
model can be naturally extended toN-way Tucker decomposition of arbitraryN-th order tensor.
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Fig. 1.34 Tucker3 model is a weighted sum of the outer product of three vectors (factors) stored
as columns of component matrices A ∈ RI×J,B = XT ∈ RT×R and C ∈ RQ×P. The core tensor
G ∈ RJ×R×P defines a linking structure between the set of components and J, R, and P denote the
number of components. In order to achieve uniqueness for the Tucker models it is necessary to
impose additional constraints such as sparsity and nonnegativity.

or equivalently in the element-wise form

yitq =

J∑

j=1

R∑

r=1

P∑

p=1

g jr p ai j btr cqp + eitq, (1.158)

where a j ∈ RI , b j ∈ RT , andc j ∈ RQ, (that is, the vectors within the associated component
(factor) matricesA,B andC,), andg jrp are scaling factors which are the entries of a core tensor
G = [g jrp] ∈ RJ×R×P.

The original Tucker model makes the assumption of orthogonality of the factor matrices (in
analogy to SVD), [79], [17], [84], [83], [117], [106]. We will, however, ignore these constraints.
By imposing nonnegativity constraints the problem of estimating the component matrices and a
core tensor is converted into a generalized NMF problem called the Nonnegative Tucker Decom-
position (NTD) (see Chapter7 for details). The first implementations of Tucker decomposition
with nonnegativity constraints together with a number of other constraints were given by Kiers,
Smilde and Bro in [79], [17]. The NTD imposes nonnegativity constraints for all component
matrices and a core tensor, while a semi-NTD (in analogy to semi-NMF) imposes nonnegativity
constraints to only some components matrices and/or some elements of the core tensor.

There are several equivalent mathematical descriptions for the Tucker model (see Table1.4).
It canbe expressed in a compact matrix form using mode-n multiplications

Y = G ×1 A ×2 B ×3 C + E = ~G; A,B,C� + E, (1.159)

where Ŷ = ~G; A,B,C� is the shorthand notation for the Tucker3 tensor decomposition.
Using the unfolding approach we can obtain matrix forms expressed compactly by the Kro-

necker products:

Y(1) � A G(1) (C ⊗ B)T , (1.160)

Y(2) � B G(2) (C ⊗ A)T , (1.161)
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Table 1.4 Formulations of the Tucker3 model for a third-order tensor Y ∈ RI×T×Q with the core
tensor G ∈ RJ×R×P and the factor matrices: A = [a1, a2, . . . , aJ] ∈ RI×J, B = [b1, b2, . . . , bR] ∈ RT×R,
and C = [c1, c2, . . . , cP] ∈ RQ×P.

Operator Mathematical Formula

Outer product Y =

J∑

j=1

R∑

r=1

P∑

p=1

g jrp a j ◦ br ◦ cp + E

Scalar yitq =

J∑

j=1

R∑

r=1

P∑

p=1

g jr p ai j btr cqp + eitq

Mode-n multiplications Y = G ×1 A ×2 B ×3 C + E

Slice representation

Yq = AHqBT + Eq, (q = 1, 2, . . . ,Q)

Hq =

P∑

p=1

cqpGp, Gp
△
= G::p ∈ RJ×R

Vector vec(Y) = vec(Y(1)) � (C ⊗ B ⊗ A) vec(G)

Kronecker product

Y(1) � A G(1) (C ⊗ B)T

Y(2) � B G(2) (C ⊗ A)T

Y(3) � C G(3) (B ⊗ A)T

Y(3) � C G(3) (B ⊗ A)T . (1.162)

It is often convenient to represent the three-way Tucker model in its vectorized forms

vec (Y(1)) � vec (AG(1)(C ⊗ B)T) = (C ⊗ B) ⊗ A vec(G(1)), (1.163)

vec (Y(2)) � vec (BG(2)(C ⊗ A)T) = (C ⊗ A) ⊗ B vec(G(2)), (1.164)

vec (Y(3)) � vec (CG(3)(B ⊗ A)T) = (B ⊗ A) ⊗ C vec(G(3)). (1.165)

The Tucker model described above is often called the Tucker3 model because a third-order
tensor is decomposed into three factor (loading) matrices (say,{A,B,C}) and a core tensorG.
In applications where we have two factor matrices or even only one, the Tucker3 model for a
three-way tensor simplifies into the Tucker2 or Tucker1 models (see Table1.5). The Tucker2
modelcan be obtained from the Tucker3 model by absorbing one factor by a core tensor (see
Figure1.35(b)), that is,

Y � G ×1 A ×2 B. (1.166)
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Fig. 1.35 Summary of the three related Tucker decompositions.

For the Tucker1 model we have only one factor matrix (while two others are absorbed by a core
tensor) which is described as (see also Figure1.35(c))

Y � G ×1 A. (1.167)

It is interesting to note that the approximation of a tensor by factor matrices and a core
tensor often helps to simplify mathematical operations and reduce the computation cost of some
operations in multi-linear (tensor) algebra. For example:

Y = X ×̄3 a ≈ (G ×1 A ×2 B ×3 C) ×̄3 a

= (G ×̄3CT a) ×1 A ×2 B

= G Ca ×1 A ×2 B,

whereG Ca = G ×̄3 CT a. Comparison of tensor decomposition models are summarized in Table
1.6.
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Table 1.5 Tucker models for a third-order tensor Y ∈ RI×T×Q.

Model Description

Tucker1

yitq =

J∑

j=1

g jtq ai j + eitq

Y = G ×1 A + E, (G ∈ RJ×T×Q)
Yq = AGq + Eq, (q = 1, 2, . . . ,Q)
Y(1) = AG(1) + E(1)

Tucker2

yitq =

J∑

j=1

R∑

r=1

g jrq ai j btr + eitq

Y = G ×1 A ×2 B + E, (G ∈ RJ×R×Q)

Y =

J∑

j=1

R∑

r=1

a j ◦ br ◦ g jr + E

Y(3) = G(3) (B ⊗ A)T + E(3)

Tucker3
yitq =

J∑

j=1

R∑

r=1

P∑

p=1

g jr p ai j btr cqp + eitq

Y = G ×1 A ×2 B ×3 C + E, (G ∈ RJ×R×P)

Shifted Tucker3 yitq =

J∑

j=1

R∑

r=1

P∑

p=1

g jr p a(i+st j) j btr cqp + eitq

1.5.8 Block Component Decompositions

Block Component Decompositions (BCDs) (also called Block Component Models) introduced
by De Lathauwer and Nion for applications in signal processing and wireless communications
[46], [47], [110], [109], [48] can be considered as a sum of basic subtensor decompositions
(see Figure 1.36). Each basic subtensor in this sum has the same kind of factorization or de-
composition, typically, Tucker2 or Tucker3 decomposition, and the corresponding components
have a similar structure (regarding dimensions, sparsity profile and nonnegativity constraints) as
illustrated in Figures1.36(a), (b) and (c).

The model shown in Figure1.36(a), called the BCD rank-(Jr , 1), decomposes a data tensor
Y ∈ RI×T×Q into a sum ofR subtensorsY(r) ∈ RI×T×Q, (r = 1, 2, . . . ,R). Each of the subtensor
Y(r) is factorized into three factorsAr ∈ RI×Jr , Br ∈ RT×Jr and cr ∈ RQ. The mathematical
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Table 1.6 Matrix and tensor representations for various factorization models (for most of the
models we impose additional nonnegativity constraints).

Model Matrix Representation Tensor Representation

NMF Y � A X = A BT Y � I ×1 A ×2 XT

SVD Y � U Σ VT Y � Σ ×1 U ×2 V

=

R∑

r=1

σr urvT
r =

R∑

r=1

σr ur ◦ vr

Three-factor NMF Y � A S X = A S BT Y � S×1 A ×2 XT

NTF Yq � A Dq(cq:) BT Y � I ×1 A ×2 B ×3 C

(nonnegative PARAFAC) (q = 1, 2, . . . ,Q) =

J∑

j=1

a j ◦ b j ◦ c j

NTF1 Yq � A Dq(cq:) BT
q = A Dq(cq:) Xq

(q = 1, 2, . . . ,Q) Y � X ×1 A ×3 C

NTF2 Yq � Aq Dq(cq:) BT = Aq Dq(cq:) X

(q = 1, 2, . . . ,Q) Y � A ×2 B ×3 C

Tucker1 Yq � A G ::q Y = G ×1 A

(q = 1, 2, . . . ,Q)

Tucker2 Yq � A G ::q BT Y � G ×1 A ×2 B

(q = 1, 2, . . . ,Q) =

J∑

j=1

R∑

r=1

a j ◦ br ◦ g jr

Tucker3 Yq � AHqBT Y � G ×1 A ×2 B ×2 C

Hq =

P∑

p=1

cqp G ::p =

J∑

j=1

R∑

r=1

P∑

p=1

g jr p (a j ◦ br ◦ cp)

description of this BCD model is given by

Y =
R∑

r=1

Y(r) + E =
R∑

r=1

(ArBT
r ) ◦ cr + E, (1.168)
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Fig. 1.36 Block Component Decompositions (BCD) for a third-order tensor Y ∈ RI×T×Q: (a) BCD
with rank-(Jr ,1), (b) BCD with rank -(J,P) and (c) BCD with rank-(J,S,P).

or equivalently

Y =
R∑

r=1

Ar ×2 Br ×3 cr + E, (1.169)

where tensorsAr
△
= Ar ∈ RI×Jr×1 arethree-way tensors with only one frontal slice. With this

notation, each subtensorY(r) is aTucker2 model with the core tensorA(r), and factorsBr andcr .
Hence, the BCD rank-(Jr , 1) decomposition can be considered as a sum of simplified Tucker-
2 models. The objective is to estimate component matricesAr ∈ RI×Jr , Br ∈ RT×Jr , (r =
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1, 2, . . . ,R) and a factor matrixC = [c1, c2, . . . , cR] ∈ RQ×R subject to optional nonnegativity
and sparsity constraints.

Using the unfolding approach, the above BCD model can be written in several equivalent
forms:

Y(1) �

R∑

r=1

[
Ar

]
(1)

(cr ⊗ Br )T =

R∑

r=1

Ar (cr ⊗ Br )T

=
[
A1 A2 · · · AR

] [
c1 ⊗ B1 c2 ⊗ B2 · · · cR ⊗ BR

]T
, (1.170)

Y(2) �

R∑

r=1

Br

[
Ar

]
(2)

(cr ⊗ I I )T =

R∑

r=1

BrAT
r (cr ⊗ I I )T

=

R∑

r=1

Br [(cr ⊗ I I ) Ar ]T =

R∑

r=1

Br (cr ⊗ Ar )T

=
[
B1 B2 · · · BR

] [
c1 ⊗ A1 c2 ⊗ A2 · · · cR ⊗ AR

]T
, (1.171)

Y(3) �

R∑

r=1

cr

[
Ar

]
(3)

(Br ⊗ I I )T =

R∑

r=1

crvec(Ar )T (Br ⊗ I I )T

=

R∑

r=1

cr [(Br ⊗ I I ) vec(Ar )]T =

R∑

r=1

crvec
(
ArBT

r

)T

= C
[
vec

(
A1BT

1

)
vec

(
A2BT

2

)
· · · vec

(
ARBT

R

) ]T
. (1.172)

A simple and natural extension of the model BCD rank-(Jr , 1) assumes that the tensorsAr ∈
R

I×J×P containsP (instead of one) frontal slices of size (I × J) (see Figure1.36(b)). This model
is referred to as the BCD with rank-(J,P) and is described as follows

Y =
R∑

r=1

(
Ar ×2 Br ×3 Cr

)
+ E. (1.173)

The objective is to find a set ofR tensorsAr ∈ RI×J×P, a tensor B ∈ RT×J×R, and a tensor
C ∈ RQ×P×R. By stacking tensorsAr along their third dimension, we form a common tensorA ∈
R

I×J×PR. The mode-1 matricization of this BCD model gives an equivalent matrix factorization
model [110], [48]:

Y(1) �

R∑

r=1

Ar (1) (Cr ⊗ Br )T (1.174)

= A(1)

[
C1 ⊗ B1 C2 ⊗ B2 · · · CR ⊗ BR

]T
. (1.175)
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The most general, BCD rank-(J,S,P) model is formulated as a sum ofR Tucker3 models of
corresponding factorsAr ∈ RI×J, Br ∈ RT×S, Cr ∈ RQ×P and core tensorGr ∈ RJ×S×P, and
described in a compact form as (see Figure1.36(c)):

Y =
R∑

r=1

(
Gr ×1 Ar ×2 Br ×3 Cr

)
+ E. (1.176)

This model can be also converted in a similar way to a matrix factorization model with set of
constrained component matrices.

1.5.9 Block-Oriented Decompositions

A natural extension of the tensor decomposition models discussedin the previous sections will
be a decomposition which uses sum of subtensors factorized the data tensor along different
modes. Such decompositions will be referred to as Block-Oriented Decompositions (BODs).
The key distinction between BOD and BCD models is that subtensors in a BCD model attempt
to explain the data tensor in the same modes while BOD models exploit at least two up to all pos-
sible separate modes for each subtensors. For example, using Tucker2 model the corresponding
BOD2 model can be formulated as follows

Y � G1 ×1 A1 ×2 B1 +G2 ×1 A2 ×3 C1 +G3 ×2 B2 ×3 C2, (1.177)

where core tensors and factor matrices have suitable dimensions.
Analogously, we can define a simpler BOD1 model which is based on the Tucker1 models

(see Figure1.37):

Y � H ×1 A + L ×2 B + F ×3 C, (1.178)

where tensorsH ∈ RR1×T×Q, L ∈ RI×R2×Q, F ∈ RI×T×R3 are core tensors in the Tucker1 models
with mode-n, n = 1, 2, 3, A ∈ RI×R1, B ∈ RT×R2 andC ∈ RQ×R3 are corresponding factors.
The objective is to find three core tensorsH, L , F and three corresponding factor matricesA, B
andC. This model is also called the Slice Oriented Decomposition (SOD) which was recently
proposed and investigated by Caiafa and Cichocki [23], and may have various mathematical and
graphical representations.

Remark 1.1 The main motivation to use BOD1 model is to eliminate offset ina data tensor
and provide unique and meaningful representation of the extracted components. The BOD1 can
be considered as a generalization or extension of the affine NMF model presented in section
(1.2.7). As we will show in Chapter7 the BOD1 model can resolve the problem related with
offset degraded by flicker, occlusion or discontinuity.

Using matricization approach we obtain for BOD1 model several equivalent matrix factor-
ization models:

Y(1) � A H (1) + L (1)
(
I Q ⊗ B

)T
+ F(1) (C ⊗ IT )T

=
[
A L (1) F(1)

] [
H(1) I Q ⊗ BT CT ⊗ IT

]
, (1.179)

Y(2) � H(2)
(
I Q ⊗ A

)T
+ B L (2) + F(2) (C ⊗ I I )T
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Fig. 1.37 Illustration of the Block-Oriented Decomposition (BOD1) for a third-order tensor.
Three Tucker1 models express the data tensor along each modes. Typically, core tensors H ∈
R

R1×T×Q, L ∈ RI×R2×Q, F ∈ RI×T×R3 have much smaller dimensions than a data tensor Y ∈ RI×T×Q,
i.e., R1 << I , R2 << T, and R3 << Q.

=
[
H(2) B F(2)

] [
I Q ⊗ AT L (2) CT ⊗ I I

]
, (1.180)

Y(3) � H(3) (IT ⊗ A)T + L (3) (B ⊗ I I )T + C F(3)

=
[
H(3) L (3) C

] [
IT ⊗ AT BT ⊗ I I F(3)

]
. (1.181)

These matrix representations allow us to compute core tensors and factor matrices via matrix
factorization.

Similar, but more sophisticated BOD models can be defined based on a restricted Tucker3
model [128] and also PARATUCK2 or DEDICOM models (see the next section).

1.5.10 PARATUCK2 and DEDICOM Models

The PARATUCK2, developed by Harshman and Lundy [65] is a generalization of the PARAFAC
model, that adds some of the flexibility of Tucker2 model while retaining some of PARAFAC’s
uniqueness properties. The name PARATUCK2 indicates its similarity to both the PARAFAC
and the Tucker2 model. The PARATUCK2 model performs decomposition of an arbitrary third-
order tensor (see Figure1.38(a)) Y ∈ RI×T×Q as follows

Yq = A D(A)
q R D(B)

q BT + E, (q = 1, 2, . . . ,Q), (1.182)

where A ∈ RI×J, B ∈ RT×P, R ∈ RJ×P, D(A)
q ∈ RJ×J andD(B)

q ∈ RP×P are diagonal matrices
representing theq-th frontal slices of the tensorsD(A) ∈ RJ×J×Q, and D(B) ∈ RP×P×Q, respec-
tively. In fact, tensorD(A) is formed by a matrixU ∈ RJ×Q whose columns are diagonals of the
corresponding frontal slices and tensorD(B) is constructed from a matrixV ∈ RP×Q.

D(A)
q = diag(uq), D(B)

q = diag(vq). (1.183)

The j-th rowu j (or v j) gives the weights of participation for the corresponding componenta j in

the factorA (or bj in B) with respect to the third dimension. The termsD(A)
q RD(B) T

q correspond
to frontal slices of the core tensorG of a Tucker2 model, but due to the restricted structure of
the core tensor compared to Tucker2 uniqueness is retained. The core tensorG can be described
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as

vec
(
Gq

)
= vec

(
D(A)

q RD(B)
q

)
= vec

(
diag(uq)R diag(vq)T

)

=
(
diag(vq) ⊗ diag(uq)

)
vec(R) = diag

(
vq ⊗ uq

)
vec(R)

=
(
vq ⊗ uq

)
⊛ vec(R) , (1.184)

or simply via frontal slices

Gq =
(
uq vT

q

)
⊛ R , (q = 1, 2, . . . ,Q). (1.185)

This leads to the mode-3 matricization of the core tensorG having following form

G(3) = [vec(G1) , . . . , vec(GR)]T

= [(v1 ⊗ u1) ⊛ vec(R) , . . . , (vR ⊗ uR) ⊛ vec(R)]T

= [v1 ⊗ u1, . . . , vR ⊗ uR]T
⊛ [vec(R) , . . . , vec(R)]T

= (V ⊙ U)T
⊛ T(3)

= Z(3) ⊛ T(3) (1.186)

or

G = Z ⊛ T, (1.187)

whereZ ∈ RJ×P×Q is a rank-Q PARAFAC tensor represented by two factorsU andV (the third
factor for the mode-3 is identity matrixI Q), that is

Z = I ×1 U ×2 V, (1.188)

and T ∈ RJ×P×Q is a tensor with identical frontal slices expressed by the matrixR: Tq =

R, ∀q. Equation (1.187) indicates that the core tensorG is the Hadamard product of the
PARAFAC tensor and a special (constrained) tensor with identity frontal slices. In other words
the PARATUCK2 can be considered as the Tucker2 model in which the core tensor has spe-
cial PARAFAC decomposition as illustrated in Figure1.38(a). The PARATUCK2 model is well
suited for a certain class of multi-way problems that involve interactions between factors.

Figure1.38(b)illustrates a special form of PARATUCK2 called the three-way DEDICOM
(inxDEcomposition into DIrectional COMponents) model [9], [10], [85]. In this case for a given
symmetric third-order data tensorY ∈ RI×I×Q with frontal slicesYq the simplified decomposi-
tion is:

Yq = A Dq R Dq AT + E, (q = 1, 2, . . . ,Q), (1.189)

where A ∈ RI×J is a matrix of loadings,Dq is a diagonal matrix representing theq-th frontal
slice of the tensorD ∈ RJ×J×Q, andR ∈ RJ×J is an asymmetric matrix.

The three-way DEDICOM model can be considered as natural extension of the 2-way DEDI-
COM model [131]:

Y = ARAT + E, (1.190)
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Fig. 1.38 (a) PARATUCK2 model performing decomposition of tensor Y ∈ RI×T×Q. (b) DEDI-
COM model for a symmetric third-order tensor Y ∈ RI×I×Q, (c) DEDICOM model for a square
data matrix (usually, we assume that a matrix A is orthogonal).

whereY ∈ RI×I is a given data matrix (generally asymmetric), andE is a matrix representing
error not explained by the model. The goal is to estimate the best-fitting matrices:A ∈ RI×J and
R ∈ RJ×J. To achieve this goal we usually perform the following optimization problem:

min
A,R
||Y − ARAT ||2F . (1.191)

The matrixA ∈ RI×J
+ comprises loadings or weights (withJ < I ), and the square matrixR is a

matrix that represents the asymmetric relationships for the latent dimensions ofA.
This uniqueness of the three-way DEDICOM gives plausibility to the factors making them

a valid description with a high confidence that they can explain more variance than convenient
rotated 2-way solutions [85].

It should be noted that is some close relationships between PARAFAC2 and three-way PARATUCK2
and DEDICOM models. In fact the PARATUCK2 model can be derived from PARAFAC2
model by performing PARAFAC factorization of a tensorA. For the PARFAAC2 model the
matrix R = H is dense, symmetric matrix (usually positive definite), while the matrixR in
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Fig. 1.39 Graphical illustration of hierarchical tensor decomposition.

the PARATUCK2 or DEDICOM model is a dense, generally asymmetric matrix that captures
asymmetric relationships.

1.5.11 Hierarchical Tensor Decomposition

Recently, multi-linear models based on tensor approximation have received much attention as
tools for denoising, reduction or compression as they have the potential to produce more com-
pact representations of multi-dimensional data than traditional dimensionality reduction meth-
ods. We will exploit the aforementioned characteristics of visual 3D data and develop an anal-
ysis and a representation technique based on a hierarchical tensor-based transformation. In this
technique, a multi-dimensional dataset is transformed into a hierarchy of signals to reflect multi-
scale structures present in the multi-way data. The signal at each level of the hierarchy is further
divided into a number of tensors with smaller spatial support to expose spatial inhomogene-
ity structures. To achieve a highly compact representation these smaller dimension tensors are
further transformed and pruned using a tensor approximation technique [142].
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It is interesting to note that the hierarchical scheme is very similar to the BCD model dis-
cussed in section (1.5.8). A source (data) tensor is expressed as a sum of multiple tensor decom-
position models. However, the hierarchical technique is much more simpler than BCD model.
For BCD model, all factors in all subtensors are simultaneously estimated, hence, constraints
imposed on these factors such as nonnegative can be assured during the estimation process.
However, BCD increases the complexity of the algorithms, especially for very large-scale data
set. For a specified data, we can choose an acceptable trade-off between simplicity and accuracy.

1.6 DISCUSSION AND CONCLUSIONS

In this chapter we have presented a variety of different models, graphical and mathematical
representations for NMF, NTF, NTD and the related matrix/tensor factorizations and decompo-
sitions. Our emphasis has been on the formulation of the problems and establishing relationships
and links among different models. Each model usually provides a different interpretation of the
data and may have different applications. Various equivalent representations have been pre-
sented which will serve as a basis for the development of learning algorithms throughout this
book.

It has been highlighted that constrained models with nonnegativity and sparsity constraints
for real-world data cannot provide a perfect fit to the observed data (i.e., they do not explain
as much variance in the input data and may have larger residual errors) as compared to uncon-
strained factorization and decomposition models. They, however, often produce more meaning-
ful physical interpretations. Although nonnegative factorizations/decompositions already ex-
hibit some degree of sparsity, the combination of both constraints enables a precise control of
sparsity.

Appendix 1.A. Uniqueness Conditions for Three-way Tensor Factorizations

The most attractive feature of the PARAFAC model is its uniquenessproperty. Kruskal [89] has
proved that, for fixed error tensorE, the vectorsaj , b j , andc j of component matricesA, B and
C are unique up to unavoidable scaling and permutation of columns,21 provided that

kA + kB + kC ≥ J + 2, (A.1)

wherekA, kB, kC denote thek-ranks of the component matrices. Thek-rank of a matrix is the
largest numberk such that every subset ofk columns of the matrix is linearly independent [130].

Kruskal’s uniqueness condition was generalized toN-th order tensors withN > 3 by Sidropou-
los and Bro [124]. A more accessible proof of the uniqueness condition (A.1) for the PARAFAC
modelwas given by Stegeman and Sidiropoulos [129]. For the case where one of the component
matricesA, B andC has full column rank, weaker uniqueness conditions than (A.1) have been
derived by Jiang and Sidiropoulos, De Lathauwer, and Stegeman (e.g., see [127], [130]). For
example, if a component matrixC ∈ RQ×J is full column rank, andA ∈ RI×J andB ∈ RT×J have

21If a PARAFAC solution is unique up to these indeterminacies, it is called essentially unique. Two PARAFAC solutions
that are identical up to the essential uniqueness indeterminacies will be called equivalent.
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k-rank at least 2, then Kruskal’s conditionkA + kB ≥ J + 2 implies uniqueness of a PARAFAC
solution [127].

It should be noted that the above conditions are only valid for the unrestricted PARAFAC
model. If we impose additional constraints such as nonnegativity, sparsity, orthogonality the
conditions for uniqueness can be relaxed22 and they can be different[128], [21]. For exam-
ple, the NTF, NTF1, NTF2 and NTD models are unique (i.e., without rotational ambiguity) if
component matrices and/or core tensor are sufficiently sparse.

Appendix 1.B. Singular Value Decomposition (SVD) and Principal Component Anal-

ysis (PCA) with Sparsity and/or Nonnegativity Constraints

SVD and PCA are widely used tools, for example, in medical image analysis for dimension
reduction, model building, and data understanding and exploration. They have applications
in virtually all areas of science, machine learning, image processing, engineering, genetics,
neurocomputing, chemistry, meteorology, computer networks, to name just a few, where large
data sets are encountered. IfY ∈ RI×T is a data matrix encodingT samples ofI variables,
with I being large, PCA aims at finding a few linear combinations of these variables, called the
principal components, which point in orthogonal directions explaining as much of the variance
in the data as possible. The purpose of principal component analysis PCA is to derive a relatively
small number of uncorrelated linear combinations (principal components) of a set of random
zero-mean variables while retaining as much of the information from the original variables as
possible. Among the objectives of Principal Components Analysis are the following.

1. Dimensionality reduction.

2. Determination of linear combinations of variables.

3. Feature selection: the choosing of the most useful variables.

4. Visualization of multi-dimensional data.

5. Identification of underlying variables.

6. Identification of groups of objects or of outliers.

The success of PCA/SVD is due to two main optimal properties: Principal components sequen-
tially capture the maximum variability ofY thus guaranteeing minimal information loss, and
they are mutually uncorrelated. Despite the power and popularity of PCA, one key drawback
is its lack of sparseness (i.e., factor loadings are linear combinations of all the input variables),
yet sparse representations are generally desirable since they aid human understanding (e.g., with
gene expression data), reduce computational costs and promote better generalization in learning
algorithms. In other words, the standard principal components (PCs) can sometimes be diffi-
cult to interpret, because they are linear combinations of all the original variables. To facilitate
better interpretation, sparse and/or nonnegative PCA estimate modified PCs with sparse and/or

22Moreover, by imposing the nonnegativity or orthogonality constraints the PARAFAC has an optimal solution, i.e., there
is no risk for degenerate solutions [98]. Imposing nonnegativity constraints makes degenerative solutions impossible
since no factor can counteract the effect of another factor and usually improves convergence since the search space is
greatly reduced.
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nonnegative eigenvectors, i.e. loadings with very few nonzero and possibly nonnegative entries.
We use the connection of PCA with SVD of the data matrix and extract the PCs through solving
a low rank matrix approximation problem. Regularization penalties are usually incorporated to
the corresponding minimization problem to enforce sparsity and/or nonnegativity in PC loadings
[143], [123].

Standard PCA is essentially the same technique as SVD but usually obtained using slightly
different assumptions. Usually, in PCA we use normalized data with each variable centered and
possibly normalized by the standard deviation.

B.1 STANDARD SVD AND PCA

At first let us consider basic properties of standard SVD and PCA. The SVD of a data matrixY ∈
R

I×T assuming without loss of generality thatT > I leads to the following matrix factorization

Y = UΣVT =

J∑

j=1

σ j u j vT
j , (B.1)

where the matrixU = [u1, u2, . . . , uI ] ∈ RI×I contains theI left singular vectors,Σ ∈ RI×T
+ with

nonnegative elements on the main diagonal representing the singular valuesσ j and the matrix
V = [v1, v2, . . . , vT ] ∈ RT×T represents theT right singular vectors called the loading factors.
The nonnegative quantitiesσ j , sorted asσ1 ≥ σ2 ≥ · · · ≥ σJ > σJ+1 = σJ+2 = · · · = σI = 0 can
be shown to be the square roots of the eigenvalues of the data covariance matrixYYT ∈ RI×I .
The termu jvT

j is anI×T rank-one matrix called often thej-th eigenimage ofY. Orthogonality of
the SVD expansion ensures that the left and right singular vectors are orthogonal, i.e.,uT

i u j = δi j

andvT
i v j = δi j ,with δi j the Kronecker function (or equivalentlyUTU = I andVTV = I ). In many

applications, it is most practical to work with the truncated form of the SVD where only the first
P < J, (whereJ is a rank ofY with J < I ) singular values are used so that

Y � UP ΣP VT
P =

P∑

j=1

σ j u j vT
j , (B.2)

whereUP = [u1, u2, . . . , uP] ∈ RI×P,ΣP = diag{σ1, σ2, . . . , σP} andV = [v1, v2, . . . , vP] ∈ RT×P.
This is no longer an exact decomposition of the data matrixY, but according to the Eckart-
Young theorem it is the best rank-Papproximation in the least-squares sense and it is still unique
(neglecting signs of vectors ambiguity) if the singular values are distinct.

Approximation of the matrixY by a rank-one matrixσuvT of two unknown vectorsu =
[u1, u2, . . . , uI ]T ∈ RI andv = [v1, v2, . . . , vT ]T ∈ RT normalized to unit length with a scaling
constant termσ can be presented as follows:

Y = σ u vT + E, (B.3)

whereE ∈ RI×T is a matrix of the residual errorseit . In order to compute the unknown vectors
we minimize the squared Euclidean error as [99]

J1 = ||E||2F =
∑

it

e2
it =

I∑

i=1

T∑

t=1

(yit − σ ui vt)2. (B.4)
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Thenecessary conditions for minimization of (B.4) are obtained by equating gradients to zero:

∂J1

∂ui
= −2σ

T∑

t=1

(yit − σ ui vt)vt = 0, (B.5)

∂J1

∂vt
= −2σ

I∑

i=1

(yit − σ ui vt)ui = 0, (B.6)

These equations can be expressed as follows:

T∑

t=1

yit vt = σ ui

T∑

t=1

v2
t ,

I∑

i=1

yit ui = σ vt

I∑

i=1

u2
i . (B.7)

Taking into account that the vectors are normalized to unit length, that is,uTu =
∑I

i=1 u2
i = 1

andvTv =
∑T

t=1 v2
t = 1, we can write the above equations in a compact matrix form as

Y v = σ u, YT u = σ v (B.8)

or equivalently (by substituting one of Eqs. (B.8) into another)

YTY v = σ2v, YYTu = σ2u, (B.9)

which are classical eigenvalue problems which estimate the maximum eigenvalueλ1 = σ2
1 =

σ2
max with the corresponding eigen vectorsu1 = u andv1 = v. The solutions of these problems

give the best first rank-one approximation of Eq. (B.1).
One ofthe most important results for nonnegative matrices is the following [75]:

Theorem B.1 (Perron-Frobenius) For a square nonnegative matrixY there exists a largest
modulus eigenvalue ofY which is nonnegative and a corresponding nonnegative eigenvector.

The eigenvector satisfying the Perron-Frobenius theorem is usually referred to as the Perron
vector of a nonnegative matrix. For a rectangular nonnegative matrix, a similar result can be
established for the largest singular value and its corresponding singular vector:

Theorem B.2 The leading singular vectors:u1, andv1 corresponding to the largest singular
valueσmax = σ1 of a nonnegative matrixY = UΣVT =

∑
i σiuivT

i (with σ1 ≥ σ2 ≥ · · · ≥ σI )
are nonnegative.

Based on this observation, it is straightforward to compute the best rank-one NMF approxima-
tion σ1u1vT

1 , this idea can be extended to approximate a higher-order NMF. If we compute the
rank-one NMF and subtract it from the original matrixŶ1 = Y − σ1u1vT

1 , the input data matrix
will no longer be nonnegative, however, all negative elements can be forced to be zero or are
positive and the procedure can be repeated [12]. In order to estimate the next singular values
and the corresponding singular vectors, we may apply a deflation approach, that is,

Y j = Y j−1 − σ ju jvT
j , ( j = 1, 2, . . . , J), (B.10)

whereY0 = Y. Solving the same optimization problem (B.4) for the residual matrixY j yields
the set of consecutive singular values and corresponding singular vectors. Repeating reduction
of the matrix yields the next set of the solution until the deflation matrixYJ+1 becomes the zero.
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Using the property of the orthogonality of the eigenvectors, and the equalityuTYv = vTYu =
σwe can estimate the precision of the matrix approximation with the firstP ≤ J pairs of singular
vectors [99]:

||Y −
P∑

j=1

σ ju jvT
j ||2F =

I∑

i=1

T∑

t=1

(yit −
J∑

j=1

σ jui jv jt)2

= ‖Y‖2F −
P∑

j=1

σ2
j , (B.11)

and the residual error reduces exactly to zero with the number of singular values equal to the
matrix rank, that is, forP = J. Thus, we can write for the rank-J matrix:

‖Y‖2F =
J∑

j=1

σ2
j . (B.12)

It is interesting to note that (taking into account thatσui =
∑T

t=1 yitvt/
∑T

t=1 v2
t (see Eqs. (B.7))

the cost function (B.4) can be expressed as [99]

J1 = ||E||2F =
I∑

i=1

T∑

t=1

(yit − σ ui vt)2

=

I∑

i=1

T∑

t=1

y2
it − 2

I∑

i=1

(σ ui)
T∑

t=1

yitvt) +
I∑

i=1

(σ ui)2
T∑

t=1

v2
t

=

I∑

i=1

T∑

t=1

y2
it −

∑I
i=1(

∑T
t=1 yitvt)2

∑T
t=1 v2

t

. (B.13)

In matrix notation the cost function can be written as

‖E‖2F = ‖Y‖2F −
vTYTYv

‖v‖22
= ‖Y‖2F − σ2, (B.14)

where the second term is called the Rayleigh quotient. The maximum value of the Rayleigh
quotient is exactly equal to the maximum eigenvalueλ1 = σ

2
1.

B.2 SPARSE PCA

For sparse PCA we may employ many alternative approaches [123]. One of the simplest and
most efficient approaches is to apply minimization of the following cost function [123]:

Jρ(ṽ) = ‖Y − u ṽT‖2F + ρ(ṽ), (B.15)

whereṽ = σv, ρ(ṽ) is the additional penalty term which imposes sparsity. Typically,ρ(|ṽ|) =
2λ||ṽ||1 or ρ(ṽ) = λ2||ṽ||0, whereλ is the nonnegative coefficient that controls the degree of
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sparsity.23 The cost function can be evaluated in scalar form as follows

Jρ(ṽ) =
∑

i

∑

t

(yit − ui ṽt)2 +
∑

t

ρ(ṽt) =
∑

t


∑

i

(yit − ui ṽt)2 + ρ(vt)



=
∑

t


∑

i

y2
it − 2 [YTu] t ṽt + ṽ2

t + ρ(ṽt)

 , (t = 1, 2, . . . ,T). (B.16)

It is not difficult to see (see Chapter4) that the optimal value of ˜vt depends on the penalty term
ρ(ṽt), in particular forρ(ṽt) = 2λ||ṽ||1 we use soft shrinkage with thresholdλ

ṽt = P(s)
λ

(x) = sign(x)[|x| − λ]+ (B.17)

and forρ(ṽt) = λ2||ṽ||0 we use hard shrinkage projection

ṽt = P(h)
λ

(x) = I (x > λ) x =


x, for |x| ≥ λ;

0, otherwise,
(B.18)

wherex = [YTu] t. This leads to the following iterative algorithm proposed by Shen and Huang
[123]

1. Initialize: Apply the regular SVD to data matrixX and estimate the maximum singular
valueσ1 = σmax and corresponding singular vectorsu = u1 andv = v1, takeṽ1 = σ1v1.
This corresponds to the best rank-one approximation ofY = Y0,

2. Update:

ṽ1 ← Pλ

(
YTu1

)
, (B.19)

ũ1 ← (Yṽ1) /||Yṽ1||2, (B.20)

3. Repeat Step 2 until convergence,

4. Normalize the vector ˜v1 asṽ1 = ṽ1/||ṽ1||2.

Note that forλ = 0 the nonlinear shrinkage functionPλ becomes a linear function and the
above procedure simplifies to the well-known standard alternating least squares SVD algorithm.
The subsequent pair{u2, σ2v2} provides the best rank-one approximation of the corresponding
residual matrixY1 = Y − σ1u1v1. In other words, subsequent sparse loading vectorsv j can be
obtained sequentially via a deflation approach and a rank-one approximation of the residual data
matricesY j .

B.3 NONNEGATIVE PCA

In some applications it is necessary to incorporate both nonnegativity and/or sparseness con-
straints into PCA maintaining the maximal variance property of PCA and relaxing orthogonality
constraints. The algorithm described in the previous section can be applied almost directly to

23We define the degree of sparsity of a PC as the number of zero elements in the corresponding loading vectorv.
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nonnegative PCA by applying a suitable nonnegative shrinkage function. However, in such a
case, it should be noted that the orthogonality among vectorsv j is completely lost. If we need
to control the orthogonality constraint (to some extent) together with nonnegativity constraints,
we may alternatively apply the following optimization problem [143]

max
V≥0

1
2
||VT

J Y||2F − αo||I − VT
J VJ||2F − αs||VJ||1, (B.21)

subject to nonnegativity constraintsVJ ≥ 0, where||VJ||1 = 1TVJ1. The nonnegative coeffi-
cientsαo andαs control a level and tradeoff between sparsity and orthogonality.

Alternatively, we can use nonnegative loading parametrization, for example, exponential
parametrization [99]

vt = exp(γt), ∀t, (B.22)

whereγt are the estimated parameters. To obtain the loading in the range from zero to one we
can use multinomial parametrization

vt =
exp(γt)∑
t exp(γt)

, (t = 1, 2, . . . ,T). (B.23)

Appendix 1.C. Determining a True Number of Components

Determining the number of componentsJ for the NMF/NTF models, or more generally deter-
mining the dimensions of a core tensor,J,R,P, for the Tucker models is very important since the
approximately valid model is instrumental in discovering or capturing the underlying structure
in the data.

There are several approximative and heuristic techniques for determining the number of com-
ponents [20], [132], [42], [43], [40], [108], [71]. In an ideal noiseless case when the PARAFAC
model is perfectly satisfied, we can apply a specific procedure for calculating the PARAFAC
components forJ = 2, 3, . . . until we reach the number of components for which the errors
E = Y− Ŷ are zero. However, in practice, it is not possible to perfectly satisfy this model. Other
proposed methods include: residual analysis, visual appearance of loadings, the number of iter-
ations of the algorithm and core consistency. In this book, we mostly rely on the PCA approach
and the core consistency diagnostic developed by Bro and Kiers [20] for finding the number of
components and selecting an appropriate (PARAFAC or Tucker) model. The core consistency
quantifies the resemblance between the Tucker3 core tensor and the PARAFAC core, which is a
super-identity or a superdiagonal core tensor, or in other words, a vector of coefficients. This di-
agnostic tool suggests whether the PARAFAC model with the specified number of components
is a valid model for the data. The core consistency above 90% is often used as an indicator of the
trilinear structure of the data, and suggests that the PARAFAC model would be an appropriate
model for the data. A core consistency value close to or lower than 50%, on the other hand,
would indicate that the PARAFAC-like model is not appropriate. This diagnostic method has
been commonly applied in the neuroscience-multi-way literature [57], [103], often together with
otherdiagnostic tools, in order to determine the number of components.

An efficient way is to use the PCA/SVD approach, whereby for a three-way data set we first
unfold the tensor as matricesY(1) and eventually compute covariance matrixRy = (1/T)Y(1)YT

(1).
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Under the assumption that the power of the signals is larger than the power of the noise, the
PCA enables us to divide observed (measured) sensor signals:x(t) = xs(t) + ν(t) into two sub-
spaces: thesignal subspacecorresponding to principal components associated with the largest
eigenvalues called the principal eigenvalues:λ1, λ2, ..., λJ, (I > J) and associated eigenvectors
VJ = [v1, v2, . . . , vJ] called the principal eigenvectors and thenoise subspacecorresponding to
the minor components associated with the eigenvaluesλJ+1, ..., λI . The subspace spanned by the
J first eigenvectorsvi can be considered as an approximation of the noiseless signal subspace.
One important advantage of this approach is that it enables not only a reduction in the noise
level, but also allows us to estimate the number of sources on the basis of distribution of the
eigenvalues. However, a problem arising from this approach is how to correctly set or estimate
the threshold which divides eigenvalues into the two subspaces, especially when the noise is
large (i.e., the SNR is low). The covariance matrix of the observed data can be written as

Ry = E{yt y
T
t } = [VS,VN ]

[
ΛS 0

¯0 ΛN

]
[VS,VN ]T

= VSΛSVT
S + VNΛNVT

N , (C.1)

whereVSΛSVT
S is a rank-J matrix,VS ∈ RI×J contains the eigenvectors associated withJ prin-

cipal (signal+noise subspace) eigenvalues ofΛS = diag{λ1 ≥ λ2 · · · ≥ λJ} in a descending order.
Similarly, the matrixVN ∈ RI×(I−J) contains the (I − J) (noise) eigenvectors that correspond to
noise eigenvaluesΛN = diag{λJ+1, . . . , λI } = σ2

eI I−J. This means that, theoretically, the (I − J)
smallest eigenvalues ofRy are equal toσ2

e, so we can determine the dimension of the signal sub-
space from the multiplicity of the smallest eigenvalues under the assumption that the variance
of the noise is relatively low and we have a perfect estimate of the covariance matrix. However,
in practice, we estimate the sample covariance matrix from a limited number of samples and the
smallest eigenvalues are usually different, so the determination of the dimension of the signal
subspace is usually not an easy task.

A crucial problem is to decide how many principal components (PCs) should be retained. A
simple ad hoc rule is to plot the eigenvalues in decreasing order and search for an elbow where
the signal eigenvalues are on the left side and the noise eigenvalues on the right. Another simple
technique is to compute the cumulative percentage of the total variation explained by the PCs
and retain the number of PCs that represent, say 95% of the total variation. Such techniques
often work well in practice, but their disadvantage is that they need a subjective decision from
the user [137]. Many sophisticated methods have been introduced such as a Bayesian model
selection method, which is referred to as the Laplace method. It is based on computing the
evidence for the data and requires integrating out all the model parameters. Another method is
the BIC (Bayesian Information Criterion) method which can be thought of as an approximation
of the Laplace criterion.

A simple heuristic method proposed by He and Cichocki [71], [108] computes the Gap
(smoothness) index defined as

GAP(p) =
var

[
{λ̃i}I−1

i=p+1

]

var
[
{λ̃i}I−1

i=p

] =
σ̂2

p+1

σ̂2
p
, (p = 1, 2, . . . , I − 2), (C.2)
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where λ̃i = λi − λi+1 andλ1 ≥ λ2 ≥ · · · ≥ λI > 0 are eigenvalues of the covariance matrix for the
noisy data and the sample variance is computed as follows

σ̂2
p = var

[
{λ̃i}I−1

i=p

]
=

1
I − p

I−1∑

i=p

λ̃i −
1

I − p

I−1∑

i=p

λ̃i



2

. (C.3)

The number of components (for each mode) is selected using the following criterion:

Ĵ = arg min
p=1,2,...,I−3

GAP(p). (C.4)

Recently, Ulfarsson and Solo [137] proposed a method called SURE (Steins Unbiased Risk
Estimator) which allows the number of PC components to estimate reliably.

The Laplace, BIC and SURE methods are based on the following considerations [137]. The
PCA model is given by

yt = Axt + et + ȳ = µt + et, (C.5)

whereȳ = (1/T)
∑T

t=1 yt andµt = Axt + ȳ. The maximum-likelihood estimate (MLE) of PCA is
given by

Â = Vr (Λr − σ̂2
r I r )1/2Q, σ̂2

r =

I∑

j=r+1

λ j , (C.6)

whereQ ∈ Rr×r is an arbitrary orthogonal rotation matrix,Λr = diag{λ1, λ2, . . . , λr } is a diagonal
matrix with ordered eigenvaluesλ1 > λ2 > · · · > λr andVr = [v1, v2, . . . , vr ] is a matrix of
corresponding eigenvectors of the data covariance matrix:

Ry =
1
T

T∑

t=1

(yt − ȳ) (yt − ȳ)T = VrΛrVT
r . (C.7)

Hence, the estimate forµt = Axt + ȳ is given by

µ̂t = ȳ+
r∑

j=1

v j
λ j − σ̂2

r

λ j
vT

j (yt − ȳ). (C.8)

Ideally, we would like to chooser = J that minimizes the risk functionRr = E(||µt − µ̂t ||22) which
is estimated by the SURE formula

R̂r =
1
T

T∑

t=1

||et||22 +
2σ2

e

T

T∑

t=1

tr

(
∂µ̂t

∂yT
t

)
− Iσ2

e. (C.9)

In practice, the SURE algorithm chooses the number of components to minimize the SURE
formula, that is,

Ĵ = arg min
r=1,2,...,I

R̂r , (C.10)
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where the SURE formula is given by [137]

R̂r = (I − r)σ̂2
r + σ̂

4
r

r∑

j=1

1
λ j
+ 2σ2

e(1− 1
T

)r

−2σ2
eσ̂

2
r (1− 1

T
)

r∑

j=1

1
λ j
+

4(1− 1/T)σ2
eσ̂

2
k

T

r∑

j=1

1
λ j
+Cr , (C.11)

Cr =
4(1− 1/T)σ2

e

T

r∑

j=1

I∑

i=r+1

λ j − σ̂2
r

λ j − λi
+

2(1− 1/T)σ2
e

T
r(r + 1)

−2(1− 1/T)σ2
e

T
(I − 1)

r∑

j=1

(
1− σ̂

2
r

λ j

)
, (C.12)

σ2 =
median(λr+1, λr+2, . . . , λI )

F−1
γ,1(

1
2)

, (C.13)

andγ = T/I , Fγ,1 denotes the Marchenko-Pastur (MP) distribution function with parameter “γ”.
Our extensive numerical experiments indicate that the Laplace method usually outperforms

the BIC method while the SURE method can achieve significantly better performance than the
Laplace method for NMF, NTF and Tucker models.

Appendix 1.D. Nonnegative Rank Factorization Using Wedderborn Theorem – Esti-

mation of the Number of Components

Nonnegative Rank Factorization (NRF) is defined as exact bilineardecomposition:

Y =
J∑

j=1

a j bT
j , (D.1)

whereY ∈ RI×T , a j ∈ RI
+ andb j ∈ RT

+.
In order to perform such decomposition (if it exists), we begin with a simple, but far reaching,

result first proved by Wedderburn.

Theorem D.3 SupposeY ∈ RI×T , a ∈ RI andb ∈ RT . Then

rank
(
Y − σ−1Y b aT Y

)
= rank(Y) − 1, (D.2)

if and only ifσ = aT Y b , 0.

Usually, the Wedderburn theorem is formulated in more general form:

Theorem D.4 SupposeY1 ∈ RI×T , a ∈ RI andb ∈ RT . Then the matrix

Y2 = Y1 − σ−1abT (D.3)

satisfies the rank subtractivity rank(Y2) = rank(Y1) − 1 if and only if there are vectorsx ∈ RT

andy ∈ RI such that

a = Y1x, b = YT
1 y, σ = yT Y1 x . (D.4)
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The Wedderburn rank-one reduction formula (D.4) has led to a general matrix factorization
process (e.g., the LDU and QR decompositions, the Lanczos algorithm and the SVD are special
cases) [53].

The basic idea for the NRF is that, starting withY1 = Y, then so long asY j are nonnegative,
we can repeatedly apply the Wedderburn formula to generate a sequence{Y j} of matrices by
defining

Y j+1 = Y j − (yT
j Y j x j)−1Y j x j yT

j Y j , ( j = 1, 2, . . . , J) (D.5)

for properly chosen nonnegative vectors satisfyingyT
j Y j x j , 0. We continue such extraction till

the residual matrixY j becomes zero matrix or with negative elements. Without loss of generality
we assume thatyT

j Y j x j = 1 and consider the following constrained optimization problem [53]

max
x j∈RI

+, y j∈RT
+

min
(
Y j − Y j x j yT

j Y j

)
(D.6)

s.t. Y j x j ≥ 0, yT
j Y j ≥ 0, yT

j Y j a j = 1.

There are some available routines for solving the above optimization problem, especially, the
MATLAB routine “fminmax” implements a sequential quadratic programming method. It should
be noted that this method does not guarantee finding a global solution, but only a suboptimal
local solution. On the basis of this idea Dong, Lin and Chu developed an algorithm for the NRF
using the Wedderburn rank reduction formula [53].

• Givena nonnegative data matrixY and a small threshold of machineε > 0 set j = 1 and
Y1 = Y.

• Step 1. If||Y j || ≥ ε , go to Step 2. Otherwise, retrieve the following information and stop.

1. rank(Y) = rank+(Y) = j − 1.

2. The NRF ofY is approximately given by the summationY �
∑ j−1

k=1 Yk xk yT
k Yk with

an error less thanε.

• Step 2. Randomly select a feasible initial value (x(0)
j , y

(0)
j ) satisfying the nonnegativity

constraints.

• Step 3. Solve the maximin problem (D.6).

• Step4. If the objective value at the local maximizer (x j , y j) is negative, go to Step 5.
Otherwise, do update as follows and go to Step 1.

1. DefineY j+1 := Y j − Y j x j yT
j Y j .

2. Set j = j + 1.

• Step 5. Since the algorithm may get stuck at a local minimum try to restart Steps 2 and
3 multiple times. If it is decided within reasonable trials that no initial value can result in
nonnegative values, report with caution that the matrixY does not have an NRF and stop
[53].
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2
Similarity Measures and
Generalized Divergences

In this chapter, we overview and discuss properties of a large family of generalized and flex-
ible divergences or similarity distances between two nonnegative sequences or patterns. They
are formulated for probability distributions and for arrays used in Nonnegative Matrix Fac-
torization (NMF) and Nonnegative Tensor Factorizations (NTF). Divergences, or their counter
part (dis)similarity measures play an important role in the areas of neural computation, pattern
recognition, learning, estimation, inference, and optimization. Generally speaking, they mea-
sure a quasi-distance or directed difference between two probability distributionsp andq which
can also be expressed for unconstrained nonnegative arrays and patterns.

Information theory, convex analysis, and information geometry play key roles in the formu-
lation of divergences [2, 3, 6, 40, 23, 9, 29, 15, 21, 58, 36, 39, 38, 54, 55, 56, 57]. Diver-
gencemeasures are commonly used to find a distance or difference between twon-dimensional
probability distributions1 p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn). They are called non-
normalized measures when they are not normalized to

∑n
i=1 pi = 1, that is, their total masses are

not necessarily unity but an arbitrary positive number.
We are mostly interested in distance-type measures which are separable, thus, satisfying the

condition

D(p|| q) =
n∑

i=1

d(pi, qi) ≥ 0, which equals zero if and only ifp= q (2.1)

1Usually, the vectorpcorresponds to the observed data and the vectorq to estimated or expected data which are subject
to constraints imposed on the assumed models. For NMF problempcorresponds to the data matrixY andq corresponds
to estimated matrix̂Y = AX. An information divergence is a measure of distance between two probability curves. In
this chapter, we discuss only one-dimensional probability curves (represented by nonnegative signals or time series).
Generalization to two or multidimensional dimensional variables is straightforward; each single subscript is simply
replaced by a doubly or triply indexed one.
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but are not necessarily symmetric in the sense

D(p|| q) = D(q || p), (2.2)

and do not necessarily satisfy the triangular inequality

D(p|| q) ≤ D(p|| z) + D(z|| q). (2.3)

In other words, the distance-type measures under consideration are not necessarily a metric2 on
the spaceP of all probability distributions.

The scope of the results presented in this chapter is vast since the generalized divergence
functions and their variants include quite a large number of useful loss functions including
those based on the Relative entropies, generalized Kullback-Leibler or I-divergence, Hellinger
distance, Jensen-Shannon divergence, J-divergence, Pearson and Neyman Chi-squared diver-
gences, Triangular Discrimination and Arithmetic-Geometric (AG) Taneya divergence. Many
of these measures belong to the class of Alpha-divergences and Beta-divergences and have been
applied successfully in disciplines such as signal processing, pattern recognition, probability
distributions, information theory, finance and economics [37]. In the following chapters we will
applysuch divergences as cost functions (possibly with additional constraints and regularization
terms) to derive novel multiplicative and additive projected gradient and fixed point algorithms.
These provide working solutions for the problems where nonnegative latent (hidden) compo-
nents can be generally statistically dependent, and satisfy some other conditions or additional
constraints such as sparsity or smoothness.

Section2.1 addresses the divergences derived from simple component-wise errors (losses),
these include the Euclidean and Minkowski metrics. We show that they are related to robust cost
functions in Section2.2. We then study in Section2.3the class of Csiszárf -divergences, which
are characterized by the invariance and monotonicity properties. This class includes the Alpha-
divergence, in particular the Kullback-Leibler divergence. The Bregman type divergences, de-
rived from convex functions, are studied in Section2.4. We also discuss divergences between
positive-definite matrices. An important class of the Beta-divergences belongs to the class of
Bregman divergences and is studied in detail in Section2.6. They do not satisfy the invari-
ance property except for the special case of the KL-divergence. When we extend divergences
to positive measures where the total mass

∑
pi is not restricted to unity, the Alpha-divergences

belong to the classes of both Csiszárf -divergences and Bregman divergences. They are studied
in detail in Section2.5. Moreover, in Section2.7we discuss briefly Gamma-divergences which
have “super robust” properties. Furthermore, in Section2.8we derive various divergences from
Tsallis and Rényi entropy.

The divergences are closely related to the invariant geometrical properties of the manifold
of probability distributions. This is a two-way relation: Divergences, in particular the Alpha-
divergences, are naturally induced from geometry, and on the other hand divergences give a
geometrical structure to the set of probability distributions or positive measures [4]. A brief
introduction to information geometry is given in Appendix A. Information geometry provides
mathematical tools to analyze families of probability distributions and positive measures. The
structure of a manifold of probability distributions is derived from the invariance principle, and
it consists of a Riemannian metric derived from the Fisher information matrix, together with

2The distance between two pdfs is called a metric if the following conditions hold:D(p || q) ≥ 0 with equality iff p= q,
D(p|| q) = D(q || p) andD(p || q) ≤ D(p || z) + D(z|| q). Distances which are not a metric, are referred to as divergences.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2.2 Plots of typical M-functions (continued): (a),(b),(c) Cauchy; (d),(e),(f) Welsh; (g),(h),(i)
Tukey. (ρ(e) - loss function, Ψ(e) influence function, and w(e)-weight function).
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Fig. 2.7 Plots of the Rényi divergence for different values of parameters r (see Eq. (2.105)). All
plots are evaluated against pi = 0.5.

wherẽq = (p+ q)/2.
For the singular valuesα = 1 andα = 0, the Alpha-divergences (2.106) can be evaluated as

lim
α→0

D(α)
Am1(p|| q̃) =

∑

i

(
pi + qi

2
ln

(
pi + qi

2pi

)
+

pi − qi

2

)
, (2.108)

and

lim
α→1

D(α)
Am1(p|| q̃) =

∑

i

(
pi ln

(
2pi

pi + qi

)
+

qi − pi

2

)
. (2.109)

It is important to consider the following particular cases for (2.107):

1. Triangular Discrimination (TD) (Dacunha-Castelle)

D(−1)
Am2(̃q || p) =

1
4

DT(p|| q) =
1
4

∑

i

(pi − qi)2

pi + qi
. (2.110)

2. Relative Jensen-Shannon divergence (Burbea and Rao, Sgarro, Sibson [10, 11, 49])

lim
α→0

D(α)
Am2(̃q || p) = DRJS(p|| q) =

∑

i

(
pi ln

(
2pi

pi + qi

)
− pi + qi

)
. (2.111)

3. Relative Arithmetic-Geometric divergence [50, 51, 52]

lim
α→1

D(α)
Am2(̃q || p) =

1
2

DRAG(p|| q) =
∑

i

(
(pi + qi) ln

(
pi + qi

2pi

)
+ pi − qi

)
. (2.112)
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3. Neyman Chi-squared divergence

D(2)
Am2(̃q || p) =

1
8

Dχ(p|| q) =
1
8

∑

i

(pi − qi)2

pi
. (2.113)

2.5.2 Symmetric Alpha-Divergences

The standard Alpha-divergence is asymmetric, that is,D(α)
A (p|| q) , D(α)

A (q || p). The symmetric
Alpha-divergence (Type-1) can be defined as

D(α)
AS1(p|| q) = D(α)

A (p|| q) + D(α)
A (q || p) =

∑

i

pαi q1−α
i + p1−α

i qαi − (pi + qi)

α(α − 1)
. (2.114)

As special cases, we obtain several well-known symmetric divergences:

1. Symmetric Chi-Squared divergence [27]

D(−1)
AS1(p|| q) = D(2)

AS1(p|| q) =
1
2

Dχ(p|| q) =
1
2

∑

i

(pi − qi)2(pi + qi)
piqi

. (2.115)

2. J-divergence corresponding to Jeffreys entropy maximization [32, 35]

lim
α→0

D(α)
AS1(p|| q) = lim

α→1
D(α)

AS1(p|| q) = DJ(p|| q) =
∑

i

(pi − qi) ln

(
pi

qi

)
. (2.116)

3. Squared Hellinger distance [31]

D(1/2)
AS1 (p|| q) = 8DH(p || q) = 4

∑

i

(
√

pi −
√

qi)
2. (2.117)

An alternative wide class of symmetric divergences can be described by the following sym-
metric Alpha-divergence (Type-2):

D(α)
AS2(p|| q) = D(α)

A

( p+ q
2
|| q

)
+ D(α)

A

( p+ q
2
|| p

)

=
1

α(α − 1)

∑

i

(
(p1−α

i + q1−α
i )

( pi + qi

2

)α
− (pi + qi)

)
. (2.118)

The above measure admits the following particular cases:

1. Triangular Discrimination

D(−1)
AS2(p|| q) =

1
2

DT(p|| q) =
1
2

∑

i

(pi − qi)2

pi + qi
. (2.119)
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Fig. 2.8 2D and 3D plots of Symmetric Alpha-divergences for different values of parameter α
(a)-(b) D(α)

AS1(p|| q) – Eq. (2.114) and (c)-(d) D(α)
AS2(p|| q) – Eq. (2.118). (All plots are evaluated

against pi = 0.5).

2. Symmetric Jensen-Shannon divergence11

lim
α→0

D(α)
AS2(p|| q) = DJS(p|| q) =

∑

i

(
pi ln

(
2pi

pi + qi

)
+ qi ln

(
2qi

pi + qi

))
. (2.120)

3. Arithmetic-Geometric divergence [50, 51, 52]

lim
α→1

D(α)
AS2(p|| q) = DAG(p || q) =

∑

i

(pi + qi) ln

(
pi + qi

2
√

piqi

)
. (2.121)

11The Jensen-Shannon divergence is a symmetrized and smoothed version of the Kullback-Leibler divergence, i.e., it
can be interpreted as the average of the Kullback-Leibler divergences to the average distribution. In other words, the
Jensen-Shannon divergence is the entropy of the average from which the average of the Shannon entropies is subtracted:
DJS = HS((p+ q)/2)− (HS(p) + HS(q))/2, whereHS(p) = −∑

i pi ln pi .



BETA-DIVERGENCES 129

4. Symmetric Chi-squared divergence [27]

D(2)
AS2(p|| q) =

1
8

Dχ(p|| q) =
1
8

∑

i

(pi − qi)2(pi + qi)
piqi

. (2.122)

The above Alpha-divergence is symmetric in its argumentsp andq, and it is well-defined even
if p and q are not absolutely continuous, i.e.,DAS2 is well-defined even if, for some indexes
pi it vanishes without vanishingqi or if qi vanishes without vanishingpi . It is also lower- and
upper-bounded, for example, the Jensen-Shannon divergence is bounded between 0 and 2.

2.6 BETA-DIVERGENCES

The Beta-divergence was introduced by Eguchi, Kano, Minami and also investigated by others
[38, 8, 41, 40, 42, 14, 15, 16, 17, 38, 36]. It has a dually flat structure of information geometry,
where the Pythagorean theorem holds. However, it is not invariant under a change of the domi-
nating measure, and not invariance monotone for summarization, except for the special case of
β = 0 which gives the KL-divergence.

First let us define the discrete Beta-divergence between two un-normalized density functions:
pi andqi by

D(β)
B (p|| q) =

∑

i

pi
pβi − qβi
β

−
pβ+1

i − qβ+1
i

β + 1

 , (2.123)

whereβ is a real number (β , 0 andβ , −1).
It is interesting to note that, forβ = 1, we obtain the standard squared Euclidean distance,

while for the singular casesβ = 0 andβ = −1 the Beta-divergence has to be defined in limiting
cases asβ→ 0 andβ→ −1, respectively.

When these limits are evaluated forβ → 0, we obtain the generalized Kullback-Leibler
divergence (called the I-divergence) defined as12

DKL(p|| q) = lim
β→0

D(β)
B (p || q) =

∑

i

(
pi ln

pi

qi
− pi + qi

)
, (2.124)

whereas forβ→ −1 the Itakura-Saito divergence is obtained as

DIS(p|| q) = lim
β→−1

D(β)
B (p|| q) =

∑

i

(
ln(

qi

pi
) +

pi

qi
− 1

)
. (2.125)

Remark 2.5 Recently, Févotte, Bertin and Durrieu [29] investigated and emphasized the fun-
damental properties of Itakura-Saito divergence as follows: “This divergence was obtained by
Itakura and Saito (in 1968) from the maximum likelihood (ML) estimation of short-time speech

12It should be noted that limβ→0
pβ−qβ

β
= ln(p/q) and limβ→0

pβ−1
β
= ln p.
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spectra under autoregressive modeling. It was presented as ’a measure of the goodness of fit
between two spectra’ and became a standard measure in the speech processing community due
to the good perceptual properties of the reconstructed signals. Other important properties of
the Itakura-Saito divergence include scale invariance, meaning that low energy components of
p bear the same relative importance as high energy ones. This is relevant to situations where
the coefficients ofp have a large dynamic range, such as in short-term audio spectra. The
Itakura-Saito divergence also leads to desirable statistical interpretations of the NMF prob-
lem”. Furthermore, they explained how under simple Gaussian assumptions NMF can be recast
as a maximum likelihood (ML) estimation of matricesA andX and described how IS-NMF can
be interpreted as ML ofA andX in multiplicative Gamma noise [29, 30].

Hence, the Beta-divergence can be represented in a more explicit form:

D(β)
B (p|| q) =



∑

i

pi
pβi − qβi
β

−
pβ+1

i − qβ+1
i

β + 1

 , β , 0,−1,

∑

i

(
pi ln(

pi

qi
) − pi + qi

)
, β = 0,

∑

i

(
ln(

qi

pi
) +

pi

qi
− 1

)
, β = −1.

(2.126)

As observed by Févotteet al. [29] the derivative of the Beta-divergence for separable terms
d(pi ||qi), with respect toqi is continuous inβ ∈ R parameter, and can be expressed as

∇qi d(pi ||qi) = qβ+1
i (qi − pi .) (2.127)

It is obvious that thatd(pi ||qi), as a function ofqi for fixedpi , has a single minimum atqi = pi and
that it increases with|qi − pi |, justifying its relevance as a measure of distortion of dissimilarity
[29, 30].

The Beta-divergence smoothly connects the Itakura-Saito distance and the squared Euclidean
distance and passes through the KL I-divergenceDKL(p|| q). Such a parameterized connection
is impossible in the family of the Alpha-divergences.

The Beta-divergence is related to the Tweedie distributions [35, 38, 8]. In probability and
statistics, the Tweedie distributions are a family of probability distributions which include con-
tinuous distributions such as the normal and gamma, the purely discrete scaled Poisson distribu-
tion, and the class of mixed compound Poisson-Gamma distributions which have positive mass
at zero, but are otherwise continuous. Tweedie distributions belong to the exponential dispersion
model family of distributions, a generalization of the exponential family, which are the response
distributions for generalized linear models [35]. Tweedie distributions exist for all real values of
β except for 0< β < 1. Apart from special cases shown in Table2.8, their probability density
function have no closed form. The choice of the parameterβ depends on the statistical distribu-
tion of data. For example, the optimal choice of the parameterβ for the normal distribution is
β = 1, for the gamma distribution it isβ = −1, for the Poisson distributionβ = 0, and for the
compound Poisson distributionβ ∈ (−1, 0) (see Table2.8) [14, 15, 16, 17, 38, 40, 41].
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Table 2.8 Special cases for Tweedie distributions.

Parameterβ Divergence Distribution

1 Squared Euclidean distance Normal

0 KL I-divergenceDKL(p|| q) Poisson

(−1, 0) Compound Poisson

−1 Dual KL I-divergenceDKL(q || p) Gamma

−2 Dual KL I-divergenceDKL(q || p) Inverse–Gaussian

The Beta-divergences can be obtained from the Alpha-divergence (2.42) by applying nonlin-
ear transformations:

pi → pβ+1
i , qi → qβ+1

i α =
1

1+ β
. (2.128)

For example, using these substitutions for (2.42) and assuming thatα = (β + 1)−1 we obtain the
following divergence

D(β)
A (p|| q) = (β + 1)2

∑

i


pβ+1

i

β(β + 1)
−

piq
β

i

β
+

qβ+1
i

β + 1

 (2.129)

Observe that, after simple algebraic manipulations and by ignoring the scaling factor (β + 1)2,
we obtain the Beta-divergence defined by Eq. (2.123).

In fact, there exists the same link between the whole family of Alpha-divergences and the
family of Beta-divergences (see Table2.7). For example, we can derive the symmetric Beta
divergence from symmetric Alpha-divergence (Type-1) (2.114:

D(β)
BS1(p|| q) = D(β)

B (p|| q) + D(β)
B (q || p)

=
1
β

∑

i

(
pβ+1

i + qβ+1
i − piq

β

i − pβi qi

)
, (2.130)

and from symmetric Alpha-divergence (Type-2) (2.118
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Table 2.9 The fundamental generalized divergences.

Divergence name Formula

Alpha-divergence D(α)
A (p||q) =

∑
i(p

α
i q1−α

i + (α − 1) qi − α pi)

α(α − 1)

Beta-divergence D(β)
B (p||q) =

∑
i(p

β+1
i + β qβ+1

i − (β + 1) pi qβi )

β(β + 1)

Gamma-divergence D(γ)
G (p||q) =

ln (
∑

i pγ+1
i ) + γ ln (

∑
i qγ+1

i ) − (γ + 1) ln (
∑

i pi qγi )

γ(γ + 1)

Bregman divergence Dφ(p||q) =
∑

i

(
φ(pi) − φ(qi ) −

dφ
dqi

(pi − qi)

)

Csiszárf -divergence D f (p||q) =
∑

i

qi f

(
pi

qi

)

Rényi divergence DR(p||q) =
∑

i

ln(pr
i q

1−r
i − rpi + (r − 1)qi + 1)

r(r − 1)

Rényi-type divergence Dψ(p||q) =
∑

i

ln

(
ψ−1

(
piψ

(
pi

qi

)))

Burbea-Rao divergence DBR(p||q) =
∑

i

(
h(pi ) + h(qi )

2
− h

( pi + qi

2

))

Similarly to the Alpha and Beta-divergences, we can also define the symmetric Gamma-divergence
as

D(γ)
GS(p|| q) = D(γ)

G (p|| q) + D(γ)
G (q || p) =

1
γ

ln




∑

i

p1+γ
i



∑

i

q1+γ
i



∑

i

pγi qi



∑

i

pi qγi




. (2.135)

The symmetric Gamma-divergencehas similar properties to the asymmetric Gamma-divergence:
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Table 2.9 The fundamental generalized divergences.

Divergence name Formula

Alpha-divergence D(α)
A (p||q) =

∑
i(p

α
i q1−α

i + (α − 1) qi − α pi)

α(α − 1)

Beta-divergence D(β)
B (p||q) =

∑
i(p

β+1
i + β qβ+1

i − (β + 1) pi qβi )

β(β + 1)

Gamma-divergence D(γ)
G (p||q) =

ln (
∑

i pγ+1
i ) + γ ln (

∑
i qγ+1

i ) − (γ + 1) ln (
∑

i pi qγi )

γ(γ + 1)

Bregman divergence Dφ(p||q) =
∑

i

(
φ(pi) − φ(qi ) −

dφ
dqi

(pi − qi)

)

Csiszárf -divergence D f (p||q) =
∑

i

qi f

(
pi

qi

)

Rényi divergence DR(p||q) =
∑

i

ln(pr
i q

1−r
i − r pi + (r − 1)qi + 1)

r(r − 1)

Rényi-type divergence Dψ(p||q) =
∑

i

ln

(
ψ−1

(
piψ

(
pi

qi

)))

Burbea-Rao divergence DBR(p||q) =
∑

i

(
h(pi ) + h(qi )

2
− h

( pi + qi

2

))

Similarly to the Alpha and Beta-divergences, we can also define the symmetric Gamma-divergence
as

D(γ)
GS(p|| q) = D(γ)

G (p|| q) + D(γ)
G (q || p) =

1
γ

ln




∑

i

p1+γ
i



∑

i

q1+γ
i



∑

i

pγi qi



∑

i

pi qγi




. (2.135)

Thesymmetric Gamma-divergencehas similar properties to the asymmetric Gamma-divergence:
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3
Multiplicative Iterative

Algorithms for NMF with
Sparsity Constraints

In this chapter we introduce a wide family of iterative multiplicative algorithms for nonnega-
tive matrix factorization (NMF) and related problems, subject to additional constraints such as
sparsity and/or smoothness. Although a standard multiplicative update rule for NMF achieves
a sparse representation1 of its factor matrices, we can impose control over the sparsity of the
matrices by designing a suitable cost function with additional penalty terms. There are several
ways to incorporate sparsity constraints. A simple approach is to add suitable regularization or
penalty terms to an optimized cost (loss) function. Another alternative approach is to implement
at each iteration step a nonlinear projection (shrinkage) or filtering which increases sparseness
of the estimated matrices.

We consider a wide class of cost functions or divergences (see Chapter 2, leading to general-
ized multiplicative algorithms with regularization and/or penalty terms. Such relaxed forms of
the multiplicative NMF algorithms usually provide better performance and convergence speed,
and allow us to extract desired unique components. The results included in this chapter give
a vast scope as the range of cost functions includes a large number of generalized divergences,
such as the squared weighted Euclidean distance, relative entropy, Kullback Leibler I-divergence,
Alpha- and Beta-divergences, Bregman divergence and Csiszárf -divergence. As special cases
we introduce the multiplicative algorithms for the squared Hellinger, Pearson’s Chi-squared, and
Itakura-Saito distances.

We consider the basic NMF model

Y � AX, (3.1)

1We define sparse NMFY � AX as approximate nonnegative matrix factorization in which both or at least one factor
matrix A or X is sparse.
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for which we construct a set of suitable cost functionsD(Y||AX) which measure the distance
between datayit = [Y] it and the set of estimated parametersqit = [Ŷ] it = [AX] it =

∑J
j=1 ai j x jt .

The multiplicative learning algorithms aim at minimizing a specific cost function or a set of cost
functions by alternately updating the parametersai j while keepingx jt fixed, and then updating
the parametersx jt while keeping allai j fixed. In fact, it is often convenient to estimate a set
of parametersA andX by the sequential minimization of two different cost functions with the
same global minima.

For a large-scale NMF problem (withT ≥ I >> J) we do not need to store and process large
data matricesY ∈ RI×T andŶ = AX ∈ RI×T

+ . Instead of the typical alternating minimization of
a one global cost functionD(Y||AX) we may perform the following alternating minimization on
the subsets:2

A = arg min
A≥0

D1(Yc||AX c), for fixed X, (3.2)

X = arg min
X≥0

D2(Yr ||ArX), for fixed A, (3.3)

whereYr ∈ RR×T andYc ∈ RI×C comprise respectively the row and column subsets of the matrix
Y, whereasAr ∈ RR×J

+ andXc ∈ RJ×C
+ are the row and column subsets of matricesA andX.

Typically R<< I andC << T (see Chapter 1 for more detail).
All multiplicative learning rules ensure the nonnegativity of the factor matrices. Obviously,

all the successive estimates remain positive if the initial estimate is positive. However, if a com-
ponent of the solution becomes equal to zero, it remains at zero for all the successive iterations.
To circumvent this problem, we usually force the values of the estimatesai j andx jt not to be less
than a certain small positive valueε (typically,ε = 10−9), called the threshold constraint, which
often determines the noise floor, that is,x jt = ε if x jt ≤ ε, or in vector formx = max(x, ε). This
means that we need to perform the following optimization problem:

A = arg min
A≥ε

D1(Yc||AX c), for fixed X, (3.4)

X = arg min
X≥ε

D2(Yr ||ArX), for fixed A, (3.5)

which lead in fact to Positive Matrix Factorization (PMF).

3.1 EXTENDED ISRA AND EMML ALGORITHMS: REGULARIZATION AND

SPARSITY

The most popular algorithms for NMF belong to the class of multiplicative ISRA (Image Space
Reconstruction Algorithm) [18, 20, 38, 26] and EMML (Expectation Maximization Maximum
Likelihood) [22, 27, 19, 21, 37, 2, 3, 4, 31, 32, 42] update rules (also often referred to as Lee-
Seungalgorithms3 [40, 41]). These classes of algorithms have a relative low complexity but
are characterized by slow convergence and the risk of converging to spurious local minima. In

2Generally, we assume that we minimize sequentially one or two different cost functions with the same global minima,
depending on statistical distributions of factor matrices. For simplicity, in this chapter we assume in the most cases that
D1 andD2 are equal. However, in general the “mixture” or combination of updates rules are possible.
3However, since these algorithms have a long history, we refer to them as ISRA and EMML algorithms. They have been
developed independently in many fields, including emission tomography, image restoration and astronomical imaging.
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this section, we discuss extensions of this class of multiplicative NMF algorithms by imposing
additional constraints such as sparsity and smoothness. Moreover, we discuss how to unify and
generalize them and how to implement them for large-scale problems.

3.1.1 Multiplicative NMF Algorithms Based on the Squared Euclidean Distance

For E = Y − AX modeled as i.i.d. (independent identically distributed) white Gaussian noise,
we can formulate the problem of estimating the matricesA andX as that of maximizing the
likelihood function:

p(Y|A,X) =
1
√

2πσ
exp

−
||Y − AX||2F

2σ2

 , (3.6)

subject toA ≥ 0 andX ≥ 0, element-wise, whereσ is the standard deviation of the Gaussian
noise.

Maximizing the likelihood is equivalent to minimizing the corresponding negative log-likelihood
function, or equivalently, the squared Frobenius norm

DF(Y||AX) =
1
2
‖Y − AX‖2

F , (3.7)

subject to ai j ≥ 0, x jt ≥ 0, ∀ i, j, t.

Using the gradient descent approach and switching alternatively between the two sets of param-
eters, we obtain simple multiplicative update formulas (see derivation below):4

ai j ← ai j
[Y XT ] i j

[A X X T] i j + ε
, (3.8)

x jt ← x jt
[AT Y] jt

[ATA X ] jt + ε
. (3.9)

The above algorithm (3.8)-(3.9), called often Lee-Seung NMF algorithm can be considered
as an extension of the well known ISRA algorithm proposed first by Daube-Witherspoon and
Muehllehner [18] and investigated by many researchers, especially, De Pierro andByrne [20,
19, 21, 37, 3, 42]. The above update rules can be written in compact matrix form as

A ← A ⊛
[
(YXT) ⊘ (AXXT + ε)

]
, (3.10)

X ← X ⊛
[
(ATY) ⊘ (ATAX + ε)

]
, (3.11)

where⊛ is the Hadamard (components-wise) product and⊘ is element-wise division between
two matrices.

4Small positive constantε is usually added to denominators to avoid division by zero.
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Remark 3.1 The ISRA NMF algorithm can be extended to weighted squared Euclidean norm
(corresponding to colored Gaussian noise) by minimizing the cost functions

DW(Yc||AX c) =
1
2

tr(Yc − AXc)TWA(Yr − AXc) =
1
2
||W2(Yc − AX c)||2F , (3.12)

DW(Yr ||ArX) =
1
2

tr(Yr − ArX)TWX(Yr − ArX) =
1
2
||W1(Yr − ArX)||2F , (3.13)

whereWA =WT
2 W2 andWX =WT

1 W1 are symmetric positive-definite weighted matrices, thus
giving

A ← A ⊛
[
(WAYcXT

c ) ⊘ (WAAX cXT
c )

]
+
, (3.14)

X ← X ⊛
[
(AT

r WXYr ) ⊘ (AT
r WXArX)

]
+
. (3.15)

In practice, the columns of the matrixA should be normalized to the unitℓp-norm (typically,
p = 1).

The original ISRA algorithm is relatively slow, and many heuristic approaches have been pro-
posed to speed it up. For example, a relaxation approach rises the multiplicative coefficients to
some powerω ∈ (0, 2], that is,

ai j ← ai j

(
[Y XT ] i j

[A X X T ] i j

) ω
, (3.16)

x jt ← x jt

(
[AT Y] jt

[ATA X ] jt

) ω
, (3.17)

in order to achieve faster convergence.
The above learning rules usually provide sparse nonnegative representations of the data, al-

though they do not guarantee the sparsest possible solution (that is, that the solutions contain the
largest possible number of zero elements ofX and/or A). Moreover, the solutions are not neces-
sarily unique and the algorithms may converge to local minima. A much better performance (in
the sense of convergence) may be achieved by using the multilayer NMF structure as explained
in Chapter 1 [10, 15, 17, 11].

To understand the origin of the above update rules, consider the Karush–Kuhn–Tucker (KKT)5

first-order optimality conditions for NMF [30]:

A ≥ 0, X ≥ 0, (3.18)

∇ADF ≥ 0, ∇XDF ≥ 0, (3.19)

A ⊛ ∇ADF = 0, X ⊛ ∇XDF = 0, (3.20)

5The Karush–Kuhn–Tucker conditions (also known as the Kuhn–Tucker or the KKT conditions) are contained in a
system of equations and inequalities which the solution of a nonlinear programming problem must satisfy when the
objective function and the constraint functions are differentiable. The KKT conditions are necessary for a solution in
nonlinear programming to be optimal, provided some regularity conditions are satisfied. It is a generalization of the
method of Lagrange multipliers to inequality constraints which provides a strategy for finding the minimum of a cost
function subject to constraints.
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Algorithm 3.5 : Multiplicative Beta NMF with Over-relaxation and Sparsity C ontrol

Input : Y ∈ RI×T
+ : input data,J: rank of approximation,β: order of Beta divergence

ω: over-relaxation, andαA , αX : sparsity degrees
Output : A ∈ RI×J

+ andX ∈ RJ×T
+ such that cost function (3.146) is minimized.

begin1

initialization forA andX2

repeat /* update X and A */3

selectR row indices4

X ←− X ⊛
([

AT
r

(
Yr ⊛ Ŷ . [β−1]

r

)
− αX 1J×T

]
+
⊘ (AT

r Ŷ . [β]
r )

) . [ω]
/* Ŷr = Ar X */5

selectC column indices6

A ←− A ⊛
([(

Yc ⊛ Ŷ . [β−1]
c

)
XT

c − αA1I×J

]
+
⊘ (Ŷ . [β]

c XT
c )

) . [ω]
/* Ŷc = A Xc */7

foreach a j of A do a j ← aj/‖a j‖p /* normalize to ℓp unit length */8

until a stopping criterion is met /* convergence condition */9

end10

The Itakura-Saito distance is optimal for a Gamma distribution, in other words, it corresponds
to maximum likelihood estimation using the Gamma likelihood function. This feature has been
investigated recently by C. Févotteet al. [29, 30]. To illustrate this, consider the Gamma likeli-
hood of orderγ (γ > 0)

L(X) =
∏

it

z−γit yγ−1
it exp(−yit/zit )

Γ(γ)
, (3.159)

wherezit = [AX ] it/γ.
The negative log-likelihood is then equal to

LΓ(X) = IT ln(Γ(γ)) +
∑

it

(
γ ln zit − (γ − 1) lnyit +

yit

zit

)
. (3.160)

Substitutingzit and noting that some terms in the above expression do not depend onA andX,
we obtain the Itakura-Saito divergence.

The minimization of the above cost function leads to the following algorithm [27]:

X ← X ⊛ [(ATP) ⊘ (ATQ + ε)] . [ω] , (3.161)

A ← A ⊛ [(PXT) ⊘ (QXT + ε)] . [ω] , (3.162)

A ← A diag(‖a1‖−1
1 , ‖a2‖−1

1 , . . . , ‖aJ‖−1
1 ), (3.163)

whereω ∈ (0.5, 1) is a relaxation parameter and

P = Y ⊘ Ŷ . [2] , Q = Ŷ . [−1], Ŷ = AX + ε. (3.164)
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Fig. 3.9 Functional block diagram illustrating the generalized multiplicative Beta NMF algorithm
for a large-scale NMF: X(k+1) = X(k) ⊛ (AT

r ρ (Yr , AT
r X(k))) ⊘ (AT

r ρ (ArX(k) , AT
r X(k))). A similar

block diagram can be formulated for updating matrix A as: A(k+1) = A(k) ⊛ (ρ (Yc , A(k)Xc) XT
c ) ⊘

(ρ (A(k)Xc , A(k)Xc) XT
c ).

3.4.3 Generalized Multiplicative Beta Algorithm for NMF

The multiplicative Beta NMF algorithm can be generalized as (see also Figure3.9) [38, 12, 10,
23]:

x jt ← x jt

∑

i ∈SI

ai j Ψ(yit , qit)

∑

i ∈SI

ai j Ψ(qit , qit)
, ai j ← ai j

∑

t ∈ST

x jt Ψ(yit , qit)

∑

t ∈ST

x jt Ψ(qit , qit)
, (3.165)

whereqit = [AX ] it , Ψ(q, q) is a nonnegative nondecreasing function, andΨ(y, q) may take
several different forms, for example:

1. Ψ(y, q) = y, Ψ(q, q) = q;

2. Ψ(y, q) = y/q, Ψ(q, q) = 1;

3. Ψ(y, q) = y/q β, Ψ(q, q) = q1−β;

4. Ψ(y, q) = y/(c+ q), Ψ(q, q) = q/(c+ q).

Not all the generalized multiplicative NMF algorithms are expected to work well for any
given set of functions and parameters. In practice, in order to ensure stability it is necessary to
introduce a suitable scaling and/or a relaxation parameter .15

Our main objective here was to unify most existing multiplicative algorithms for the stan-
dard NMF problem and to show how to incorporate additional constraints such as sparsity and

15It is still an open question and active area of research to decide which algorithms are potentially most useful and
practical.
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4
Alternating Least Squares

and Related Algorithms for
NMF and SCA Problems

In this chapter we derive and overview Alternating Least Squares algorithms referred to as
ALS algorithms for Nonnegative Matrix Factorization (NMF) and Sparse Component Analy-
sis (SCA). This is important as many existing NMF/SCA techniques are prohibitively slow and
inefficient, especially for very large-scale problems. For such problems a promising approach
is to apply the ALS algorithms [47], [2]. Unfortunately, the standard ALS algorithm and its
simple modifications suffer from unstable convergence properties, they often return suboptimal
solutions, are quite sensitive with respect to noise, and can be relatively slow for nearly collinear
data [47], [43], [2], [64].

As explained in Chapter 1 solutions obtained by NMF algorithms may not be unique, and
to this end it is often necessary to impose additional constraints (which arise naturally from the
data considered) such as sparsity or smoothness. Therefore, special emphasis in this chapter is
put on various regularization and penalty terms together with local learning rules in which we
update sequentially one-by-one vectors of factor matrices. By incorporating the regularization
and penalty terms into the weighted Frobenius norm, we show that it is possible to achieve
sparse, orthogonal, or smooth representations thus helping to obtain a desired global solution.

The main objective of this chapter is to develop efficient and robust regularized ALS (RALS)
algorithms. For this purpose, we use several approaches from constrained optimization and
regularization theory, and introduce in addition several heuristic algorithms. The algorithms are
characterized by improved efficiency and very good convergence properties, especially for large-
scale problems. The RALS and HALS algorithms were implemented in our NMFLAB/NT-
FLAB MATLAB Toolboxes, and compared with standard NMF algorithms [19]. Moreover, we
have applied the ALS approach for semi-NMF, symmetric NMF, and NMF with orthogonality
constraints.

237
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4.1 STANDARD ALS ALGORITHM

Consider the standard NMF model, given by:1

Y = AX + E = ABT + E, A ≥ 0 and X ≥ 0. (4.1)

The problem of estimating the nonnegative elements inA andX can be formulated as the mini-
mization of the standard squared Euclidean distance (Frobenius norm):

DF (Y||AX) =
1
2
‖Y − AX‖2

F =
1
2

tr(Y − AX)T(Y − AX) , (4.2)

subject to ai j ≥ 0, x jt ≥ 0, ∀ i, j, t.

In such a case the basic approach is to perform the alternating minimization or alternating pro-
jection: the above cost function can be alternately minimized with respect to the two sets of
parameters{x jt} and{ai j }, each time optimizing one set of arguments while keeping the other
one fixed [49], [13]. This corresponds to the following set of minimization problems:

A(k+1) = arg min
A
‖Y − AX (k)‖2F , s.t. A ≥ 0, (4.3)

X(k+1) = arg min
X
‖YT − XT [A(k+1)]T‖2F , s.t. X ≥ 0. (4.4)

Instead of applying the gradient descent technique, we rather estimate directly the stationary
points and thereby exploit the fixed point approach. According to the Karush-Kuhn-Tucker
(KKT) optimality conditions,A∗ andX∗ are stationary points of the cost function (4.2) if and
only if

A∗ ≥ 0, X∗ ≥ 0, (4.5)

∇ADF (Y||A∗X∗) = A∗X∗X∗T − YX ∗T ≥ 0, A ⊛ ∇ADF (Y||A∗X∗) = 0, (4.6)

∇XDF (Y||A∗X∗) = A∗TA∗X∗ − A∗TY ≥ 0, X ⊛ ∇XDF (Y||A∗X∗) = 0. (4.7)

Assuming that the factor matricesA and X are positive (with zero entries replaced by e.g.,
ε = 10−9), the stationary points can be found by equating the gradient components to zero:

∇A DF(Y||AX) =
∂DF(Y||AX)

∂A
= [−YXT + AXXT ] = 0, (4.8)

∇X DF(Y||AX) =
∂DF(Y||AX)

∂X
= [−ATY + ATAX] = 0 (4.9)

or equivalently in a scalar form

∂DF(Y||AX)
∂ai j

= [−YXT + AXXT ] i j = 0, ∀i j, (4.10)

∂DF (Y||AX)
∂x jt

= [−ATY + ATAX ] jt = 0, ∀ jt. (4.11)

1We use a simplified notation:A ≥ 0 which is used to denote component-wise relations, that is,ai j ≥ 0.
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Assuming that the estimated components are nonnegative we obtain the simple nonnegative ALS
update rules:

A ←
[
YXT(XXT)−1

]
+
=

[
YX †

]
+
, (4.12)

X ←
[
(ATA)−1ATY

]
+
=

[
A†Y

]
+
, (4.13)

whereA† denotes the Moore-Penrose pseudo inverse, and [x]+ = max{ε, x} is a half-wave recti-
fying nonlinear projection to enforce nonnegativity or strictly speaking positive constraints.

In the special case, for a symmetric NMF model, given by

Y = AAT , (4.14)

whereY ∈ RI×I is a symmetric nonnegative matrix, andA ∈ RI×J with I ≥ J, we obtain a
simplified algorithm

A ←
[
YA(ATA)−1

]
+
=

[
Y[AT ]†

]
+
, (4.15)

subject to additional normalization of the columns of matrixA.
It is interesting to note that the modified ALS algorithm (4.12) – (4.13) can also be derived

from Newton’s method based on the second-order gradient descent approach, that is, based not
only on the gradient but also on the Hessian.2 Applying the gradient descent approach, we have

vec(X)← [
vec(X) − ηXvec(∇XDF (Y||AX) )

]
+ , (4.16)

whereηX is no longer a positive scalar, but a symmetric positive-definite matrix comprising the
learning rates, defined as:

ηX = η0(∇2
XDF (Y||AX))−1, (4.17)

whereη0 ≤ 1 (typicallyη0 = 1). The gradient and Hessian of cost function (4.2) with respect to
X are given by

∇X DF(Y||AX) = ATAX − AY , (4.18)

∇2
X DF(Y||AX) = IT ⊗ ATA. (4.19)

Hence, we obtain the learning rule forX:

vec(X) ←
[
vec(X) − η0

(
IT ⊗ ATA

)−1
vec

(
ATAX − AY

)]

+

(4.20)

=

[
vec(X) − η0 vec

((
ATA

)−1 (
ATAX − AY

))]

+

(4.21)

or in the matrix form as

X ←
[
(1− η0)X + η0(ATA)−1ATY

]
+
. (4.22)

2See details in Chapter 6.
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In a similar way, assuming that

ηA = η0(∇2
ADF (Y||AX))−1 = η0(XXT ⊗ I I )

−1, (4.23)

we obtain:

vec(A) ←
[
vec(A) − η0

((
XXT

)−1
⊗ I I

)
vec

(
AXX T − YXT

)]

+

, (4.24)

=

[
vec(A) − η0 vec

((
AXX T − YXT

) (
XXT

)−1
)]

+

, (4.25)

or in the matrix form as

A ←
[
(1− η0)A + η0YXT(XXT)−1

]
+
. (4.26)

For η0 = 1 the above updating rules simplify to the standard ALS illustrating that the ALS
algorithm is in fact the Newton method with a relatively good convergence rate since it exploits
information not only about gradient but also Hessian.

The main problem with the standard ALS algorithm is that it often cannot escape local min-
ima. In order to alleviate this problem we introduce additional regularization and/or penalty
terms and introduce novel cost functions to derive local hierarchical ALS (HALS) algorithms.

4.1.1 Multiple Linear Regression – Vectorized Version of ALS Update Formulas

The minimization problems (4.12)– (4.13) can also be formulated using multiple linear regres-
sion by vectorizing matrices, leading to the minimization of the following two cost functions:

min
x≥0
||y− Āx||22 (4.27)

min
a≥0
||ȳ− X̄a||22, (4.28)

where

y = vec(Y) ∈ RIT , ȳ = vec(YT) ∈ RIT ,

x = vec(X) ∈ RJT, ā = vec(AT) ∈ RIJ ,

Ā = diag{A,A, . . . ,A} ∈ RIT×JT, X̄ = diag{XT ,XT , . . . ,XT} ∈ RIJ×JT.

The solution to the above optimization problem can be expressed as:

x←
[
(ĀTĀ)−1ĀT y

]
+
, (4.29)

ā←
[
(X̄TX̄)−1X̄T ȳ

]
+
. (4.30)

Such representations are not computationally optimal, since for large-scale problems the block-
diagonal matrices̄A andX̄ are very large-scale, which makes the inversion of these matrices in
each iteration step very time consuming.
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normalization after each iterative step, to give a simplified scalar form of the HALS algorithm:

bt j ←


I∑

i=1

ai j y( j)
it


+

, ai j ←


T∑

t=1

bt j y( j)
it


+

, (4.93)

with ai j ← ai j/||aj ||2, wherey( j)
it = [Y( j)] it = yit −

∑
p, j aipbtp.

4.7.2 Extensions and Implementations of the HALS Algorithm

The above simple algorithm can be further extended or improved with respect to the convergence
rate and performance by imposing additional constraints such as sparsity and smoothness.

Firstly, observe that the residual matrixY( j) can be rewritten as

Y( j) = Y −
∑

p, j

apbT
p = Y − ABT + a j bT

j ,

= Y − ABT + aj−1bT
j−1 − a j−1bT

j−1 + a j bT
j . (4.94)

It then follows that instead of computing explicitly the residual matrixY( j) at each iteration step,
we can just perform a smart update [55]. An efficient implementation of the HALS algorithm
(4.92) is given in the detailed pseudo-code in Algorithm4.2.

Algorithm 4.2 : HAL S

Input : Y ∈ RI×T
+ : input data,J: rank of approximation

Output : A ∈ RI×J
+ andX = BT ∈ RJ×T

+ suchthat the cost function (4.85) is minimized.

begin1

ALS or random nonnegative initialization forA andX = BT2

foreach a j of A do a j ← a j/‖aj‖2 /* normalize to ℓ2 unit length */3

E = Y − ABT /* residue */4

repeat5

for j = 1 to J do6

Y( j) ← E + a j bT
j7

b j ←
[
Y( j)T a j

]
+

/* update b j */8

a j ←
[
Y( j) b j

]
+

/* update a j */9

a j ← a j/‖aj‖210

E← Y( j) − a j bT
j /* update residue */11

end12

until a stopping criterion is met /* convergence condition */13

end14

Different cost functions can be used for the estimation of the rows of the matrixX = BT

and the columns of matrixA (possibly with various additional regularization terms [24], [21],
[55]). Furthermore, the columns ofA can beestimated simultaneously, and the rows inX
sequentially. In other words, by minimizing the set of cost functions in (4.85) with respect
to b j , and simultaneously the cost function (4.2) with normalization of the columnsa j to unit
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Fig. 4.1 Illustration of the basic (local) HALS algorithm and its comparison with the standard
(global) ALS algorithm. In the standard ALS algorithm we minimize the mean squared error of
the cost function ‖E‖2F = ||Y − Ŷ||2F , where Ŷ = ABT and the target (desired) data Y is known and
fixed (Figures (a)-(b)). In the HALS algorithm the targets residual matrices Y( j), ( j = 1,2, . . . , J)
(Figures (c),(f)) are not fixed but they are estimated during an iterative process via the HALS
updates (Figures (d)-(e)) and they converge to rank-one matrices.
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ℓ2-norm, we obtain a very efficient NMF learning algorithm in which the individual vectors
of B = [b1, b2, . . . , bJ] are updated locally (column-by-column) and the matrixA is updated
globally using the global nonnegative ALS (all columnsaj simultaneously) (see also [21]):

b j ←
[
Y( j) T a j

]
+
, A ←

[
YB(BTB)−1

]
+
=

[
YXT(XXT)−1

]
+
, (4.95)

with the normalization (scaling) of the columns inA to unit length in the sense of theℓ2-norm
after each iteration.

4.7.3 Fast HALS NMF Algorithm for Large-Scale Problems

Alternatively, an even more efficient approach is to perform a factor-by-factor procedure instead
of updating column-by-column vectors [55]. This way, from (4.92), we obtain the following
update rule forbj = xT

j

b j ← Y( j)T a j/(aT
j a j) =

(
Y − ABT + a j bT

j

)T
a j/(aT

j a j)

= (YT a j − BAT aj + b j aT
j aj)/(aT

j a j)

=

([
YTA

]
j
− B

[
ATA

]
j
+ b j aT

j aj

)
/(aT

j a j), (4.96)

with the nonlinear projectionbj ←
[
b j

]
+

at each iteration step to impose the nonnegativity

constraints. Since‖a‖22 = 1, the learning rule forb j has a simplified form as

b j ←
[
bj +

[
YTA

]
j
− B

[
ATA

]
j

]

+

, (4.97)

and analogously, for vectoraj :

a j ← Y( j) b j =
(
Y − ABT + a j bT

j

)
b j

= Yb j − ABT b j + aj bT
j b j

= [YB] j − A
[
BTB

]
j
+ a j bT

j b j

= a j bT
j b j + [YB] j − A

[
BTB

]
j
. (4.98)

Hence, by imposing the nonnegativity constraints, we finally have

a j ←
[
a j bT

j bj + [YB] j − A
[
BTB

]
j

]

+

, (4.99)

a j ← aj/‖a j‖2. (4.100)

Based on these expressions, the improved and modified HALS NMF algorithm is given in the
pseudo-code Algorithm4.3.

The NMF problem is often highly redundant forI >> J, thus, for large-scale problems in
order to estimate the vectorsa j andb j = xT

j ∀ j, wecan use only some selected vectors and/or
rows of the data input matrixY. For large-scale data and a block-wise update strategy (see
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Chapter 1), the fast HALS learning rule forb j (4.96) can be rewritten as follows

bj ←
[
b j +

[
YT

r Ar

]
j
/‖ãj‖22 − B

[
AT

r Ar

]
j
/‖ãj‖22

]

+

=

[
b j +

[
YT

r ArDAr

]
j
− B

[
AT

r ArDAr

]
j

]

+

, (4.101)

whereDAr = diag(‖ã1‖−2
2 , ‖ã2‖−2

2 , . . . , ‖ãJ‖−2
2 ) is a diagonal matrix, and ˜a j is the j-th column

vector of the reduced matrixAr ∈ RR×J
+ .

The update rule fora j takes a similar form

aj ←
[
a j +

[
YcBcDBc

]
j − A

[
BT

c BcDBc

]
j

]

+

, (4.102)

whereDBc = diag(‖b̃1‖−2
2 , ‖b̃2‖−2

2 , . . . , ‖b̃J‖−2
2 ) and b̃j is the j-th column vector of the reduced

matrixBc = XT
c ∈ RC×J

+ .

Algorithm 4.3 : FAST HALS for Large Scale NMF

Input : Y ∈ RI×T
+ : input data,J: rank of approximation

Output : A ∈ RI×J
+ andX = BT ∈ RJ×T

+ suchthat the cost function (4.85) is minimized.

begin1

ALS or random nonnegative initialization forA andX = BT2

foreach a j of A do a j ← a j/‖aj‖2 /* normalize to ℓ2 unit length */3

repeat4

W = YTA; V = ATA5

for j = 1 to J do6

b j ←
[
bj + w j − B v j

]
+

/* update b j */7

end8

P = YB; Q = BTB9

for j = 1 to J do10

a j ←
[
aj q j j + pj − A qj

]
+

/* update a j */11

a j ← a j/‖aj‖212

end13

until a stopping criterion is met /* convergence condition */14

end15

In order to estimate all the vectorsa j andx j we only need to take into account the selected

rows and columns of the residual matricesY( j) and the input data matrixY. To estimate precisely
all aj , x j , ∀ j we need to select at leastJ rows and columns ofY. Moreover, the computations are
performed only for the nonzero elements, thus allowing the computation time to be dramatically
reduced for sparse and very large-scale problems. The rows and columns of the data matrix
Y can be selected using different criteria. For example, we can choose only those rows and
columns which provide the highest normalized squared Euclidean norms. Alternatively, instead
of removing completely some rows and/or columns ofY, we can merge (collapse) them into
some clusters by adding them together or computing their averages. In this case we can select
the rows and columns uniformly. Recently, extensive research is performed how to choose the
optimal number of rows and vectors of data matrix [42], [7], [32], [50], [51], [10].
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Appendix 4.D. MATLAB Source Code for HALS CS Algorithm

1 function X = CS HALS(Y,options)
2 %
3 % Hierarchical ALS algorithm for Compressed sensing
4 % using linear and nonlinear thresholding techniques
5 % with Hard, Soft, Non negative garrotte, Abramovich,
6 % N−degree garrotte shrinkage rules
7 %
8 % INPUT
9 % Y : T compressed signals of I samples as columns (I × T)

10 % options : struct of optional parameters
11 % .A : projection matrix
12 % .Xinit : initialization for sources X, zeros matrix is default
13 % .J : number of samples of original source X
14 % .Niter : number of iteration (1 000)
15 % .Nrst : number of restart (1 )
16 % .Lmax : maximum threshold of lambda (2 0)
17 % .Lmin : minimum threshold of lambda (0 )
18 % .psitype: decreasing funtion type for threshold λ (2 )
19 % 1. s hape−prese rving piecewise cubic Hermite interpolation
20 % (2) . exponential function
21 % .Hshape: initial points (at least two)(x,y) y = ψ(x) f orming
22 % the decreaseing line used for shape −prese rving
23 % Her mite interpolation.
24 % Ex. 2 points (0.2,0.8) and (0.4, 0.2)
25 % Hshape = [0.2 .8; .4 .2]
26 % .betarate: decreasing speed for exponential decreasing strat egy (4)
27 % .shrinkage: shrinkage rule (1 )
28 % (1) . HARD 2. SOFT
29 % 3. N on negative garrotte 4 Abramovich's rule
30 % 5. N −degre e garrotte
31 % OUTPUTS:
32 % X : reconstructed signals (columns)
33 %
34 % Copyright 2008 by A.H. Phan and A. Cichocki
35 % 04/2008
36 % ###################################################### #################
37 %%
38 [I,T]=size(Y);
39 defoptions = struct( 'A ' , [], 'J' ,I, 'Niter' ,300, ...
40 'Xinit' ,[ ] , 'psitype' , 'exp' , 'betarate' ,4, 'Hshape' ,[.2 .8; .8 .2], ...
41 'Lmax' ,2 0, 'Lmin' ,0, 'shrinkage' ,1, 'nbrestart' ,1);
42 if ∼exist( ' options' , 'va r' )
43 options = struct;
44 end
45 [A,J,Niter,X,psitype,betarate,Hshape,Lmax,Lmin,shrinkrule,Nrst] = .. .
46 scanparam(defoptions,options);
47 if isempty(X)
48 X = zeros(J,T);
49 end
50 Hshape = [0 1;Hshape;1 0];
51 tol = 1e −5;
52 alpha = .6; % reduction rate
53 %% Normalization of initial guess
54 normA = sqrt(sum(A.ˆ2,1));
55 A = bsxfun(@rdivide,A,normA);
56 G = A' * A;
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5
Projected Gradient

Algorithms

In contrast to the multiplicative NMF algorithms discussed in Chapter 3, this class of Projected
Gradient (PG) algorithms has additive updates. The algorithms discussed here provide approxi-
mate solutions to Non-negative Least Squares (NLS) problems, and are based on the alternating
minimization technique:

min
xt≥0

DF(yt||Axt) =
1
2
‖yt − Axt‖22, (t = 1, 2, . . . ,T), (5.1)

min
ai≥0

DF(y
i
||XT ai) =

1
2
‖y

i
− XT ai‖

2
2, (i = 1, 2, . . . , I ). (5.2)

This can also be written in equivalent matrix forms

min
x jt≥0

DF(Y||AX) =
1
2
‖Y − AX‖2

F , (5.3)

min
ai j≥0

DF(YT ||XTAT) =
1
2
‖YT − XTAT‖2F , (5.4)

whereA = [a1, . . . , aJ] ∈ RI×J
+ , AT = [a1, . . . , aI ] ∈ RJ×I

+ , X = [x1, . . . , xT ] ∈ RJ×T
+ , XT =

[x1, . . . , xJ] ∈ RT×J
+ , Y = [y1, . . . , yT ] ∈ RI×T , YT = [y

1
, . . . , y

I
] ∈ RT×I , and usuallyI ≥ J. The

matrixA is assumed to be full-rank, thus providing the existence of a unique solutionX∗ ∈ RJ×T .
Since the NNLS problem (5.1) is strictly convex with respect to one set of variables{X}, a unique
solution exists for any matrixX, and the solutionx∗t satisfies the Karush-Kuhn-Tucker (KKT)
conditions:

x∗t ≥ 0, gX(x∗t ) ≥ 0, gX(x∗t )
T x∗t = 0 (5.5)
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or in an equivalent compact matrix form as:

X∗ ≥ 0, GX(X∗) ≥ 0, tr{GX(X∗)TX∗} = 0, (5.6)

where the symbolsgX andGX denote the corresponding gradient vector and gradient matrix:

gX(xt) = ∇xt DF (yt ||Axt) = AT(Axt − yt), (5.7)

GX(X) = ∇X DF(Y||AX) = AT(AX − Y). (5.8)

Similarly, the KKT conditions for the solutiona∗ to (5.2), and the solutionA∗ to (5.4) are as
follows:

a∗i ≥ 0, gA(a∗i ) ≥ 0, gA(a∗i )
T a∗i = 0, (5.9)

and the corresponding conditions in (5.6) are

A∗ ≥ 0, GA(A∗) ≥ 0, tr{A∗GA(A∗)T} = 0, (5.10)

wheregA andGA are the gradient vector and gradient matrix of the objective function:

gA(ai) = ∇ai
DF (y

i
||XT ai) = X(XT ai − y

i
), (5.11)

GA(A) = ∇A DF(YT ||XTAT) = (AX − Y)XT . (5.12)

There are many approaches to solve the minimization problems (5.1) and (5.2), or equivalently
(5.3) and (5.4). In this chapter, we shall discuss several projected gradient methods which take
a general form of iterative updates:

X(k+1) =
[
X(k) − η(k)

X P(k)
X

]
+
, (5.13)

A(k+1) =
[
A(k) − P(k)

A η
(k)
A

]
+
, (5.14)

where [X]+ = PΩ[X] denotes a projection of entries ofX onto a convex “feasible” setΩ ={
x jt ∈ R : x jt ≥ 0

}
– namely, the nonnegative orthantR+ (the subspace of nonnegative real num-

bers),P(k)
X andP(k)

A are descent directions forX andA in thek-th inner iterative step, andη(k)
X and

η
(k)
A are the learning rate scalars or the diagonal matrices of positive learning rates.

The projection [X]+ can be performed in many ways.1 One straightforward way is to replace
all the negative entries inX by zero, or for practical purposes, by a small positive numberε in
order to avoid numerical instabilities, thus giving (component-wise)

[X]+ = max{ε,X}. (5.15)

Alternatively, it may be more efficient to preserve the nonnegativity of the solutions by an opti-
mal choice of the learning ratesη(k)

X andη(k)
A , or by solving least-squares problems subject to the

1Although in this chapter we use only the simple nonlinear projection “half-wave rectifying”, which replaces negative
values by small positive constantε, the PG algorithms discussed here can be easily adopted to the factors which are
upper and/or lower bounded at any specific level, for example,l j ≤ xjt ≤ uj , ∀ j. This can be achieved by applying a
suitable projection functionPΩ[xjt ] which transforms the updated factors to the feasible region.
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constraints (5.6) and (5.10). We here present exemplary PG methods which are proven to be very
efficient for NMF problems, and are all part of our MATLAB toolbox: NMFLAB/NTFLAB for
Signal and Image Processing [9, 30, 8].

5.1 OBLIQUE PROJECTED LANDWEBER (OPL) METHOD

The Landweber method [3] performs gradient descent minimization based on the following
iterative scheme:

X(k+1) = X(k) − ηX G(k)
X , (5.16)

where the descent directionP(k)
X is replaced with the gradientGX given in (5.8), and the range

of the learning rateηX ∈ (0, ηmax). This update ensures the asymptotic convergence to the
minimum-norm least squares solution, with the convergence radius defined by

ηmax=
2

λmax(ATA)
, (5.17)

whereλmax(ATA) is the maximum eigenvalue ofATA. SinceA is nonnegative, for its eigen-
values we haveλmax(ATA) ≤ max(ATA1J), where1J = [1, . . . , 1]T ∈ RJ, and the modified
Landweber method can be expressed as:

X(k+1) =
[
X(k) − ηX G(k)

X

]
+
, where ηX = diag{η1, η2, . . . , ηJ}, η j <

2
(ATA1J) j

. (5.18)

Onevariant of the method is the Oblique Projected Landweber (OPL) method [18], which can
be regarded as a particular case of the PG iterative formula (5.13)–(5.14), where at each iterative
step the solution obtained by (5.16) is projected onto the feasible set. Based on these, the method
can be implemented for the standard NMF problem as shown in Algorithm5.1.

The MATLAB implementation of the OPL algorithm is given in Listing5.1.

5.2 LIN’S PROJECTED GRADIENT (LPG) ALGORITHM WITH ARMIJO RULE

A typical representative of PG algorithms in applications to NMF is Chih-Jen Lin’s algorithm
[21], which is given by the iterative formula (5.13)–(5.14) with P(k)

X andP(k)
A expressed by the

gradients (5.8) and (5.12), respectively, and the projection rule (5.15). In contrast to the OPL
algorithm given in Section5.1 the learning ratesη(k)

X andη(k)
A in Lin’s PG algorithm in the inner

iterations are not fixed diagonal matrices, but are scalars computed by inexact estimation tech-
niques. Lin considered two options for estimating the learning rules: the Armijo rule along the
projective arc of the algorithm proposed by Bertsekas [5, 4], and the modified Armijo rule.

In thefirst case, for every inner iterative step of the algorithm, the value of the learning rate
η

(k)
X is given by

η
(k)
X = β

mk , (5.19)
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Algorithm 5.1 : OPL-NMF

Input : Y ∈ RI×T
+ : input data, J: rank of approximation

Output : A ∈ RI×J
+ andX ∈ RJ×T

+ suchthat the cost functions (5.3) and (5.4) are minimized.

begin1

initialization forA, X2

repeat3

X ← OPL(Y,A,X) /* Update X */4

A ← OPL(YT ,XT ,AT)T /* Update A */5

unti l a stopping criterion is met /* convergence condition */6

end7

function X = OPL(Y,A,X)8

begin9

R = ATA,10

Z = ATY,11

ηX = diag(1J ⊘ (R1J))12

repeat13

GX = RX − Z /* Gradient with respect to X */14

X ← [
X − ηX GX

]
+ /* Update X */15

until a stopping criterion is met /* convergence condition */16

end17

Listing 5.1 OPL-NMF algorithm.

1 function [X ] = nmf opl(A,Y,X,no iter)
2 %
3 % INPUTS:
4 % A − fi xed matrix of dimension [I by J]
5 % Y − dat a matrix of dimension [I by T]
6 % X − in i tial solution matrix of dimension [J by T]
7 % no iter − maximum number of iterations
8 %
9 % OUTPUTS:

10 % X − es t imated matrix of dimension [J by T]
11 %
12 % ###################################################### ###################
13 R = A' * A; Z = A' * Y; eta = 1./sum(R,2);
14

15 for k=1:no iter
16 G = R* X − Z;
17 X = max(eps, X − bsxfun(@times,G,eta));
18 end % for k

wheremk is the first nonnegative integerm for which

DF(Y||AX (k+1)) − DF(Y||AX (k)) ≤ σ tr
{
∇XDF (Y||AX (k))T(X(k+1) − X(k))

}
, (5.20)



6
Quasi-Newton Algorithms

for Nonnegative Matrix
Factorization

So far we have discussed the NMF algorithms which perform optimization by searching for sta-
tionary points of a cost function based on first-order approximations, that is, using the gradient.
In consequence, the additive learning algorithms have the following general form:

A ← PΩ
[
A − ηA ∇AD(Y||AX)

]
, (6.1)

X ← PΩ
[
X − ηX∇XD(Y||AX)

]
, (6.2)

wherePΩ[ξ] denotes the projection ofξ onto the setΩ of feasible solutions,1 and the learning
ratesηA andηX are either fixed or iteratively updated scalars or diagonal matrices.

Let us consider a Taylor series expansion

D(Y||(A + ∆A)X) = D(Y||AX) + vec(∇AD(Y||AX) )T vec(∆A)

+
1
2

vec(∆A)T HA vec(∆A) + O
(
(∆A)3

)
, (6.3)

D(Y||A(X + ∆X)) = D(Y||AX) + vec(∇XD(Y||AX) )T vec(∆X)

+
1
2

vec(∆X)T HX vec(∆X) + O
(
(∆X)3

)
, (6.4)

whereHA = ∇2
A D(Y||AX) ∈ RIJ×IJ andHX = ∇2

XD(Y||AX) ∈ RJT×JT are Hessians with respect
to A andX.

1Typically, the setΩ in NMF is the nonnegative orthant of the space of real numbers, that is,PΩ[ξ] = [ξ]+, however,
other sets can also be used. For example, the updated factors can be bounded by a box rule, that is,Ω = {ξ : lmin ≤ ξ ≤
umax}.
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In this chapter, we introduce learning algorithms for the NMF problem using second-order
approximations, i.e. the third-order term in the above Taylor series expansion. In consequence,
the learning ratesηA andηX in (6.1)–(6.2) become the inverses of the Hessian, thus yielding the
following projected Newton updating rules:

vec(A) ← PΩ
[
vec(A) − H−1

A vec(GA)
]
, (6.5)

vec(X) ← PΩ
[
vec(X) − H−1

X vec(GX)
]
, (6.6)

whereGA = ∇AD(Y||AX ) andGX = ∇XD(Y||AX). The symbol vec(G) denotes the vectorized
version of the matrixG ∈ RJ×T , that is, vec(G) = [g11, g21, . . . , gJ1, g12, . . . , gJT]T ∈ RJT.

Using the information about the curvature of the cost function, which is intimately related
to second-derivatives, the convergence can be considerably accelerated. This, however, also
introduces many related practical problems that must be addressed prior to applying learning
algorithms. For example, the HessianHA andHX must be positive-definite to ensure the con-
vergence of approximations of (6.5)–(6.6) to a local minimum ofD(Y||AX). Unfortunately, this
is not guaranteed using the NMF alternating minimization rule, and we need to resort to some
suitable Hessian approximation techniques. In addition, the Hessian values may be very large
(especially when updatingX) and of severely ill-conditioned nature (in particular for large-scale
problems), which gives rise to many difficult problems related to its inversion.

This chapter provides a comprehensive study on the solutions to the above-mentioned prob-
lems. We also give some heuristics on the selection of a cost function and related regularization
terms which restrict the area of feasible solutions, and help to converge to the global minimum
of the cost function.

The layout of the chapter is as follows: first, we discuss the simplest approach to the projected
quasi-Newton optimization using the Levenberg-Marquardt regularization of the Hessian. For
generality, as a cost function, we consider the Alpha- and Beta-divergences [11, 29, 22] that
unify many well-known cost functions (see the details in Chapter 2), we then discuss the reduced
quasi-Newton optimization that involves the Gradient Projection Conjugate Gradient (GPCG)
algorithm [24, 2, 1, 34], followed by the FNMA method proposed by Kim, Sra and Dhillon [21].
Further, as a special case of the quasi-Newton method, we present one quadratic programming
method [35]. The simulations that conclude the chapter are performed on the same benchmark
data (mixed signals) as those in other chapters.

6.1 PROJECTED QUASI-NEWTON OPTIMIZATION

In Chapter 2, we have demonstrated that the Bregman, Alpha- or Beta-divergences [15, 11] are
particularly useful for dealing with non-Gaussian noisy disturbances. In this section, we discuss
the projected quasi-Newton method in the context of application to alternating minimization of
these functions. First, the basic computations of the gradient and Hessian matrices are presented,
and then the efficient method for computing the inverse to the Hessian is discussed.

6.1.1 Projected Quasi-Newton for Frobenius Norm

First, we will present the projected quasi-Newton method that minimizes the standard Euclidean
distance in NMF. This case deserves special attention since normally distributed white noise is
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Algorithm 6.1 : QNE-NMF

Input : Y ∈ RI×T
+ : input data, J: rank of approximation

Output : A ∈ RI×J
+ andX ∈ RJ×T

+ suchthat the cost function (6.7) is minimized.

begin1

initialization forA, X2

repeat3

X ← QNE(Y,A,X) /* Update X */4

A ← QNE(YT ,XT ,AT)T /* Update A */5

unti l a stopping criterion is met /* convergence condition */6

end7

function X = QNE(Y,A,X)8

begin9

R = A†Y10

repeat11

X ← [
(1− η0 )X + η0 R

]
+ /* Update X */12

until a stopping criterion is met /* convergence condition */13

end14

a common assumption in practice. For the squared Euclidean distance:

DF (Y||AX ) =
1
2
||Y − AX ||2F , (6.7)

the gradients and Hessians have the following forms:

GX = AT(AX − Y) ∈ RJ×T , GA = (AX − Y)XT ∈ RI×J, (6.8)
HX = IT ⊗ ATA ∈ RJT×JT, HA = XXT ⊗ I I ∈ RIJ×IJ , (6.9)

whereIT ∈ RT×T andI I ∈ RI×I are identity matrices, and the symbol⊗ stands for the Kronecker
product.

The update rule (6.6) for X can be reformulated as follows

vec(X) ← PΩ
[
vec(X) − η0 (HX)−1 vec(GX)

]

= PΩ
[
vec(X) − η0

(
IT ⊗ ATA

)−1
vec(GX)

]

= PΩ
[
vec(X) − η0

(
IT ⊗

(
ATA

)−1
)

vec(GX)
]
, (6.10)

thus it is re-written in the matrix form as

X ← PΩ
[
X − η0

(
ATA

)−1
GX

]

= PΩ
[
X − η0

(
ATA

)−1
AT(AX − Y)

]
(6.11)



7
Multi-Way Array (Tensor)

Factorizations and
Decompositions

The problems of nonnegative multi-way array (tensor) factorizations and decompositions arise
in a variety of disciplines in the sciences and engineering. They have a wide range of important
applications such as in bioinformatics, neuroscience, image understanding, text mining, chemo-
metrics, computer vision and graphics, where tensor factorizations and decompositions can be
used to perform factor retrieval, dimensionality reduction, compression, denoising, to mention
but a few. For example, in neuroimage processing, images and videos are naturally represented
by third-order, or general higher-order tensors. Color video sequences are normally represented
by fourth-order tensors, thus requiring three indices for color images and a fourth index for the
temporal information.

Almost all NMF algorithms described in the earlier chapters can be extended or general-
ized to the various nonnegative tensor factorizations and decompositions formulated in Chapter
1. In this chapter we mainly focus on the Nonnegative Tensor Factorization (NTF) (i.e., the
PARAFAC with nonnegativity and sparsity constraints), the Nonnegative Tucker Decomposi-
tion (NTD) and the Block-Oriented Decomposition (BOD). In order to make this chapter as
self-contained as possible, we re-introduce some concepts and derive many efficient heuristic
algorithms for nonnegative tensor (multi-way array) factorizations and decompositions. Our par-
ticular emphasis is on a detailed treatment of generalized robust cost functions, such as Alpha-
and Beta-divergences. Based on these cost functions, several classes of algorithms are intro-
duced, including: (1) multiplicative updating; (2) Alternating Least Squares (ALS); and (3)
Hierarchical ALS (HALS). These algorithms are then incorporated into multi-layer networks in
order to improve the performance (see also Chapters 3–6), starting from relatively simple third-
order nonnegative tensor factorizations through to extensions to arbitrarily high order tensor
decompositions.

389
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Practical considerations include the ways to impose nonnegativity or semi-nonnegativity, to-
gether with optional constraints such as orthogonality, sparsity and/or smoothness. To follow
the material in this chapter it would be helpful to be familiar with Chapters 1, 3 and 4.

7.1 LEARNING RULES FOR THE EXTENDED THREE-WAY NTF1 PROBLEM

Based on the background given in Chapter 1, we shall now introducepractical learning rules for
several extended tensor decompositions.

7.1.1 Basic Approaches for the Extended NTF1 Model

Consider the extended NTF1 model with irregular frontal slices, shown in Figure7.1(a) [25],
which can be exploited as follows: “Given a three-way (third-order) tensor formed by a set of
matricesYq ∈ RI×Tq

+ (q = 1, 2, . . . ,Q), formulate a set of nonnegative and sparse matrices

A ∈ RI×J
+ , C ∈ RQ×J

+ andXq ∈ RJ×Tq
+ for q = 1, 2, . . . ,Q with reduced dimensions (typically,

J << I < Tq)”.
The extended NTF1 model for a three-way array can be represented in two different mathemat-
ical forms, as illustrated in Figures7.1(b) and7.1(c). Firstly, it can be described by a set of
tri-NMF models:

Yq = ADqXq + Eq, (q = 1, 2, . . . ,Q), (7.1)

where Dq ∈ RJ×J
+ are diagonal matrices (each diagonal matrix contains theq-th row of matrix

C ∈ RQ×J
+ in its main diagonal),Xq = [x jtq] ∈ RJ×Tq

+ are matrices representing sources (or
hidden components), and matricesEq = [eitq] ∈ RI×Tq represent errors or noise depending
upon the application. The diagonal matricesDq can be considered as scaling matrices and can

therefore be absorbed into the matricesXq upon defining a new set of matrices asXq
△
= DqXq

(if no additional constraints on the component matrixC are imposed), to give

Yq = AXq + Eq, (q = 1, 2, . . . ,Q). (7.2)

Thus, only the mixing (bases) matrixA and the set of scaled source matricesXq need to be found
whereas due to the scaling ambiguity the matrixC does not need to be calculated explicitly. This
also allows us to use row-wise unfolding to convert the NTF1 problem into the standard NMF
problem described by the single matrix equation

Y(1) = AX(1) + E(1), (7.3)

where Y(1) = Ȳ = [ȳit̄] = [Y1,Y2, . . . ,YQ] ∈ RI×T̄ ; X(1) = X̄ = [ x̄ jt̄] = [X1,X2, . . . ,XQ] ∈
R

J×T̄ ; E(1) = [E1,E2, . . . ,EQ] ∈ RI×T̄ , andT̄ =
∑Q

q=1 Tq, t̄ = 1, 2, . . . , T̄.

Based on the above representations, we have several possible approaches to find (identify)
the extended NTF1 model:
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Fig. 7.1 (a) NTF1 model that approximately decomposes a three-way array with irregular frontal

slices Yq ∈ R
I×Tq
+ into a set of nonnegative matrices A = [ai j ] ∈ RI×J

+ ,C = [cq j] ∈ RQ×J
+ and

{X1,X2, . . . ,XQ}, Xq = [xjtq] ∈ RJ×Tq
+ ; (Eq ∈ RI×Tq represents errors). (b) An equivalent repre-

sentation using set of three-factor NMF, where Dq = diag(cq) are diagonal matrices. (c) Global
matrix representation using row-wise (mode-1) unfolding of the three-way array; in this case the

sub-matrices are defined as Xq
△
= DqXq, (q = 1,2, . . . ,Q).
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Fig. 7.2 (a) Illustration of the standard nonnegative tensor factorization (NTF) and (b) Super-
Symmetric Tensor Nonnegative Factorization (SSNTF) for a third-order tensor by sum of rank-one
tensors. The SSNTF is a special case of the NTF for I = T = Q and A = B = C (or equivalently
aj = bj = cj ∈ RI , ∀ j).

negative component (factor) matrices:A = [a1, a2, . . . , aJ] ∈ RI×J, B = [b1, b2, . . . , bJ] ∈ RT×J

and C = [c1, c2, . . . , cJ] ∈ RQ×J (see Figure7.2and also Chapter 1)

Y =
J∑

j=1

(
aj ◦ bj ◦ c j

)
+ E = I ×1 A ×2 B ×3 C + E, (7.30)

whereE = Y − Ŷ ∈ RI×T×Q is a tensor representing the error.
The goal is to estimate matricesA,B,C subject to constraints. These include scaling to unit

length vectors, nonnegativity, orthogonality, sparseness and/or smoothness of all or some of the
columnsa j .

A super-symmetric tensor has entries which are invariant under any permutation of the in-
dices. For example, for a third-order super-symmetric tensorY ∈ RI×T×Q (with I = T = Q) we
haveyitq = yiqt = ytiq = ytqi = yqit = yqti, and its nonnegative factorization (referred to as the
SSNTF) simplifies into the form

Y =
J∑

j=1

(
a j ◦ a j ◦ a j

)
+ E = I ×1 A ×2 A ×3 A + E, (7.31)
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Algorithm 7.4 : Simple HALS NTF
Input : Y: input data of sizeI1 × I2 × · · · × IN, J: number of basis components
Output : N component matricesA(n) ∈ RIn×J

+ suchthat the cost functions (7.94) are
minimized.

begin1

ALS or random initialization for all factorsA(n)2

a(n)
j ← a(n)

j /‖a
(n)
j ‖2 for ∀ j, n = 1, 2, ...,N − 1 /* normalize to unit length */3

E = Y − Ŷ = Y − ~{A}� /* residual tensor */4

repeat5

for j = 1 to J do6

Y( j) = E + ~a(1)
j , a

(2)
j , . . . , a

(N)
j �7

for n = 1 to N do8

a(n)
j ←

[
Y( j)

(n)

{
a j

}⊙−n
]

+

/* See Eqs. (7.99) and (7.100) */9

if n , N then a(n)
j ← a(n)

j /‖a
(n)
j ‖2 /* normalize to unit length */10

end11

E = Y( j) − ~a(1)
j , a

(2)
j , . . . , a

(N)
j �12

end13

until a stopping criterion is met /* convergence condition */14

end15

Algorithm 7.5 : FAST HALS NTF
Input : Y: input data of sizeI1 × I2 × · · · × IN, J: number of basis components
Output : N factorsA(n) ∈ RIn×J

+ such that the cost functions (7.94) are minimized.

begin1

Nonnegative random or nonnegative ALS initialization for all factorsA(n) /* a */2

a(n)
j ← a(n)

j /‖a
(n)
j ‖2 for ∀ j, n = 1, 2, ...,N − 1 /* normalize to unit length */3

T(1) = (A(1) TA(1)) ⊛ · · · ⊛ (A(N) TA(N))4

repeat5

γ = diag(A(N) TA(N))6

for n = 1 to N do7

if n = N then γ = 18

T(2) = Y(n) {A⊙−n}9

T(3) = T(1) ⊘ (A(n) TA(n))10

for j = 1 to J do11

a(n)
j ←

[
γ j a(n)

j + t(2)
j − A(n) t(3)

j

]
+

12

if n , N then a(n)
j = a(n)

j /
∥∥∥∥ a(n)

j

∥∥∥∥
2
/* normalize to unit length */13

end14

T(1) = T(3) ⊛ (A(n) TA(n))15

end16

until a stopping criterion is met /* convergence condition */17

end18

a For athree-way tensor, direct trilinear decomposition can be used for initialization.
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Fig. 7.4 Illustration and notations used for a higher-order Tucker decomposition; the objective
here is to find optimal component (common factor) matrices A(n) ∈ RIn×Jn and a core tensor
G ∈ RJ1×J2×···×Jn . We usually impose additional constraints on the component matrices and/or the
core tensor such as nonnegativity and sparsity.

where the parametersαsp, αsm, andαcr control respectively the degrees of sparsity, smoothness,
and uncorrelatedness,γ(n)

j are scaling coefficients defined in (7.98), andS is a smoothing matrix.

These parameters can be different for each factorA(n).

7.4 ALGORITHMS FOR NONNEGATIVE AND SEMI-NONNEGATIVE

TUCKER DECOMPOSITIONS

The higher-order tensor Tucker decomposition is described as a “decomposition of a givenN-
th order tensorY ∈ RI1×I2···×IN into an unknown core tensorG ∈ RJ1×J2···×JN multiplied by a
set ofN unknown component matrices,A(n) = [a(n)

1 , a(n)
2 , . . . , a(n)

Jn
] ∈ RIn×Jn (n = 1, 2, . . . ,N),

representing common factors or loadings” [82], [33], [50], [62], [51], [76], [52]

Y =
J1∑

j1=1

J2∑

j2=1

· · ·
JN∑

jN=1

g j1 j2··· jN a(1)
j1
◦ a(2)

j2
◦ · · · ◦ a(N)

jN
+ E (7.115)

= G ×1 A(1) ×2 A(2) · · · ×N A(N) + E = G × {A} + E (7.116)

= Ŷ + E, (7.117)

where tensor̂Y is an approximation of tensorY, and tensorE = Y − Ŷ denotes the residual or
error tensor (see Figure7.4). In the next sections, we consider at first a simple Tucker model
with orthogonality constraints followed by Tucker models with nonnegativity and sparsity con-
straints, in which the orthogonality is not necessarily imposed.
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2. Compute the residual error tensorR1 = Y- Ŷ1, and divide it into two parts by thresh-
old values set up by its most frequent values (defined by the mode function):R1up =

max(R1,mode(R1)), R1low = min(R1,mode(R1)). Then, we normalize these two tensors
R1up and R1low to unit scale [0, 1], and also invertR1low =1−R1low.

3. Decompose these two nonnegative residue tensors to get two new approximation tensors
Ŷ1up and Ŷ1low. Invert and scale these two tensors to the original ranges of their corre-
sponding tensorsR1up and R1low.

4. Obtain the level-2 approximation tensorŶ2 andreturn to step 2 for the next level.

The residual tensorR does not need to be split if we use the standard or semi-nonnegative
Tucker decomposition. Multi-level decomposition allows much smaller errors and higher perfor-
mance to be achieved. Figure7.18illustrates the approximated slices in the multi-level scheme
ill ustrated in Figure7.6applied to face representation. The accuracy of approximation increases
gradually with the number of decomposition levels (Figures7.18(b)–7.18(h)). It should be noted
that the approximated tensor obtained in the first layer is similar to the low-resolution data of its
raw data. In the case of noisy data, to receive the high-resolution details we must make tradeoff

between the level of detail and noise. Upon applying denoising to the residue tensors, NTD may
become an efficient tool for multi-way restoration and compression. In reconstruction/denoising
applications, we take into account an approximation tensorŶ, but for feature extraction appli-
cations, factorsA(n) and core tensorG are analyzed. Another advantage of this scheme is that
we can avoid decomposition using a large core tensor, since in hierarchical decomposition the
dimension of the core tensor can be much smaller.

Y

ì1

R1

R1L

R1H

R2

ì2

ì1L

ì1H

Fig. 7.6 Hierarchical multi-level nonnegative tensor decomposition.

7.7 SIMULATIONS, ILLUSTRATIVE EXAMPLES AND APPLICATIONS

The performance of the algorithms introduced in this chapter are now illustrated with several
case studies for various benchmarks and real-world data (see also [68], [66], [19]). For conve-
nience, the case studies are explained through examples which reveal performance and conver-
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(a) 3D volume of original data tensor with corresponding input
factors

(b) Frontal slices of the original data tensor

0.2 0.4 0.6 0.8   1 1.2 1.4 1.6 1.8   2

70

80

90

100

110

120

Alpha

S
IR

[d
B

]

(c) Performance of the Alpha NTF Algorithm

HOOI ALS Random

20

40

60

80

100

Initialization

160

180

200

220

240

260

280

N
o

. 
it
e

ra
ti
o

n
s

S
IR

[d
B

]

(d) Comparison of initialization techniques (SIR on the left
vertical axis, No. iterations on the right vertical axis)

Fig. 7.8 Example 7.2: The data tensor was constructed using five basis waveforms (all three
factors are identical) (a) 3D visualization of original tensor with the corresponding factors; (b)
Frontal slices of the original tensor (c) SIR distributions obtained by Alpha NTF algorithm with
α = [0.2−2]; (reconstruction is almost perfect and estimated factors are almost identical to original
factors, ignoring scaling and permutation ambiguities); (d) Performance comparison of Alpha NTF
algorithm for three initialization techniques: HOOI, ALS and Random mode. (The performance
index is Signal to Interference Ratio (SIR), where larger values indicate better performance of teh
algorithm).

which was corrupted by additive Gaussian noise with SNR= 10 dB (see Figure7.9(a)). For the
data tensor without additive noise (Figure7.9(b)) the NTF model was able to explain 98.59%
of thevariation withJ = 4 components, and 99.20% of the variation withJ = 5 components.
Figure7.9(c)presents the estimated factors and the corresponding reconstructed data tensor ob-
tained by the Fast HALS NTF algorithm for the data tensor without additive noise. In the next
experiment the noisy data tensor (see Figure7.9(a)) was approximated by the NTF model based
on theAlpha and Beta HALS NTF algorithms with smoothness constraints, which gave the FIT
value of 96.1% using onlyJ = 4 components. Figure7.9(d)displays the reconstructed data
tensor for the estimated components by applying the Beta HALS NTF (β= 2) algorithm. The
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(a) Iso-surface of noisy 3D image (b) Slice mode representation of the 3D
image

(c) Iso-surface of the reconstructed 3D image
using its estimated factors

(d) Iso-surface of the reconstructed
image using the Beta HALS NTF
(PSNR= 27.19 dB)

(e) The 40-th noisy slice (f) The reconstructed 40-th slice using
theBeta HALS NTF; PSNR= 27.19 dB
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(g) Alpha HALS sNTF with smoothness constraints
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(h) Beta HALS sNTF with smoothness constraints

Fig. 7.9 Reconstruction of noisy 3D image for the membrane tensor Y ∈ R51×51×40
+ from Example

7.3: (a)-(b) iso-surface and slice mode visualizations of the noisy and “clean” data tensors, (c)
estimated factors and the data tensor by the Fast HALS-NTF for the “clean” data tensor (without
additive noise), (d) iso-surface visualization of the reconstructed tensor by using Beta-HALS-
NTF algorithm; (e)-(f) surface visualizations of the 40-th slices of the noisy data tensor and
reconstructed tensor by Beta (β = 2) HALS NTF algorithm, respectively; (g)-(h) Performance of
multiplicative Alpha NTF and Beta NTF algorithms with smoothness constraints.
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Listing 7.2 Example 7.2.

1 % Alpha NTF with alpha = 0.2:.2:2 using ALS initialization
2 randn( 's t ate' ,7256157);
3 Ainit = mat2cell(rand(sum(In),R),In,R);
4 alpha = .2:.2:2;
5 R = 5;
6 SIR = zeros(3 * R, numel(alpha));
7

8 for k = 1:numel(alpha)
9 options = struct( 'v erbose' ,1, 'tol' ,1e −6, 'maxiters' ,50 0, 'init' ,3, ...

10 'no nlinearproj' ,1, 'alpha' ,alpha(k), 'fixsign' ,0, 'Ainit' , {Ainit });
11 [Y alpha,Atemp,Ahat] = parafac alpha(Y,R,options);
12 SIR(:,k) = cell2mat(cellfun(@CalcSIR,A,Ahat, 'u ni' ,0));
13 end
14

15 figure
16 labels = mat2cell(sprintf( '%. 1f \n' ,alp ha),1,4 * ones( 1,numel(alpha)))
17 boxplot(SIR, 'l abel' ,labels, 'notch' , 'on' )
18 xlabel( 'A l pha' );ylabel( 'SIR [dB]' );

(a) 3D volume for noisy input data tensor(b) 3D volume of reconstructed tensor
using NTF with FIT 99.9%

(c) Iso-surface visualization of the
reconstructed tensor with the FIT 99.99%
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Fig. 7.10 NTF for a large-scale data tensor Y ∈ R500×500×500
+ degraded by additive Gaussian noise

with SNR = 0 dB in Example 7.4.

performance is also illustrated by the visualization of the reconstructed exemplary horizontal
40-th slice (see Figure7.9(f)) where the original noisy slice is shown as a reference in Figure
7.9(e). In addition, the performance for differentvalues of parametersα andβ for the Alpha
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(a) Original first slice of
amino acid data tensor

(b) The same slice with
Gaussian noise (SNR= 0 dB)

(c) The estimated slice using
HALSNTF, FIT= 99.51%

(d) NMWF, FIT= 98.76%
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Fig. 7.11 Comparison of performance for various algorithms in Example 7.5. Illustration of esti-
mated factors by the FAST HALS NTF in comparison with the multiplicative NMWF algorithm
for three-way tensor factorization of amino acid data. (a)-(b) the first slices of the original amino
acid tensor and the same tensor corrupted by large Gaussian noise, (c)-(d) the reconstructed slice
using the HALS NTF and NMWF algorithms, (e)-(f) three estimated factors using the HALS NTF
and NMWF algorithms (the estimated factors should be as smooth as possible), (g) comparison
of distributions of PSNR (dB) for all slices, CPU time (seconds) and the explained variation (FIT
%).

Listing 7.3 Example 7.3 generates membrane tensor of 40 slices.

1 L0 = membrane(1,25); L0 = L0 − mi n(L0(:));
2 nlayers = 40;
3 Y = L0(:,:,ones(1,nlayers));
4 sc = reshape(1:nlayers,[1,1,nlayers]);
5 Y = bsxfun(@times,Y,sc);

and Beta HALS NTF algorithms are illustrated in Figures7.9(g) and7.9(h)with Peak Signal to
NoiseRatio (PSNR) in the left (blue) axis and number of iterations in the right (red) axis.

Example 7.4 Large-scale tensor decomposition
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(a) Original core tensor and factors (b) Estimated factors with core tensor using theℓ2 HALSNTF
algorithm for the data tensor without noise

(c) Frontal slices of the noisy data
tensor with SNR= 0 dB

(d) The reconstructed tensor for noisy
datawith PSNR= 85.49 dB
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(e) SIR distributions for the reconstructed tensors for
various Tucker decomposition algorithms

Fig. 7.14 Illustration of NTD for a data tensor with sparse factors (with and without noise) for
Examples 7.8 and 7.9: (a)-(b) original and estimated factors and core tensors; (c) frontal slices of
the noisy tensor with SNR = 0 dB; (d) reconstructed tensor by ℓ2 HALS NTF algorithm (scaled
to the unit ℓ2-norm) with PSNR = 85.49 dB; (e) SIR distributions obtained by Alpha, Beta, ℓ2

HALS and enhanced HALS NTD algorithms for the data tensor without noise.

The components (columns of factor matrices) were estimated by imposing additional orthog-
onality constraints and the stopping criterion used was the difference value of the explained
variations (with the threshold of 10−6). The estimated factors were initialized by the HOOI
algorithm, and the orthogonal parameterλort was set to 0.05 for all the estimated factors. Fig-
ures7.14(b)illustrates the estimated component matrices and core tensor obtained by the basic
HALS NTD algorithm after being rearranged to match the component order of the original
factors. Next, we performed nonnegative Tucker decomposition using the multi-layer model
(referred to as enhanced HALS or briefly enhHALS). The estimated core tensorG at each layer
wasadjusted by the product of the observed tensor and the pseudo-inverse factorsA(n)† as

G = Y ×1 A(1)† ×2 A(2)† · · · ×N A(N)† . (7.200)

In each layer, the new core tensor and the estimated factors were used for the initialization of the
succeeding layer. Using this model, we were able to improve the performance of nonnegative
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subject: left hand stimuli
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Fig. 7.22 Visualization of EEG signals tutorialdataset2.zip [61] in Example 7.16.

IPTC time-frequency measurements, whereas the performance comparisons are given in Table
7.3. The components of the first factorA(1) arerelative to the location of electrodes, and are
used to illustrate the scalp topographic maps (the first row in Figure7.23); whereas the second
factor A(2) represents the time-frequency spectral maps which were vectorized, and presented in
the second row. Each component of these factors corresponds to a specific stimulus (left, right
and both hand actions).

Example 7.17 Decomposition and classification of visual and auditory EEG signals
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Fig. 7.23 EEG analysis based on the FAST HALS NTF for Example 7.16, the component matrices
are A(1) for a scalp topographic map (first row), and factor A(2) for spectral (time-frequency) map
(second row) (see [61] for details). Results are consistent with the previous analysis [61] but
convergence properties of the FAST HALS NTF algorithm are different.

We illustrate decomposition and classification of EEG signals according to the nature of the
stimulus: visual or auditory for the benchmarkEEG AV stimuli [9, 3, 60, 86]. The stimuli
were

1. Auditory stimulus with a single tone of 2000 Hz of 30 ms duration.

2. Visual stimulus in the form of a 5× 5 checkerboard (600× 600 pixels) displayed on a
LCD screen (32× 25cm). The stimulus duration was also 30 ms.

3. Both the auditory and the visual stimuli simultaneously.

A single class (stimulus type) consistedN = 25 trials, and was stored in a separate file. In
each trial, EEG signals were recorded from 61 channels (except channels VEOG, HEOG, FP1)
during 1.5 seconds after stimulus presentation at a sampling rate of 1 kHz. All the EEG signals
in one class formed a third-order tensor of 25 trials× 1500 time samples× 61 channels. Hence,
the full dataset is a 4-way tensor of size 25 trials× 1500 samples× 61 channels× 3 classes.

These three types of event related potentials can be classified according to the latency at
which their components occur after stimulus presentation. The latency features of the three
classes (corresponding to three different conditions) in the time domain can be found in Figures
7.24(d), 7.24(e)and7.24(f). For instance, there is a P100 peak appearing around at 100 ms
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following the stimulus for auditory stimuli as shown in Figure7.24(d). We applied the nonneg-
ative Tucker decomposition in analyzing the dataset in order to find the complex interactions
and relationships between components expressing three modes: channels (space), spectra (time
frequency representation), and classes (corresponding to three stimuli).

First, the EEG signals were transformed by the complex Morlet wavelet into the time-frequency
spectrograms of 31 frequency bins (10-40 Hz)× 126 time frames (0-500ms) to form a raw data
tensorW of 61 channels× 31 frequency bins× 126 time frames× 25 trials× 3 classes. To
analyze this spectral tensor, we averaged the wavelet coefficient magnitudes along all the trials
as

yc, f ,t,l =
1
N

N∑

n

∣∣∣wc, f ,t,n,l

∣∣∣. (7.201)

This data tensor corresponds to the time-frequency transformed Event Related Potentials (ERP)
[37]. In practice, to reduce the high computational cost, we computedaverages of the tensor
along 25 trials, to obtain 183 (61 channels× 3 classes) EEG signals for all three classes (each
with 1500 time samples); then transformed them to the time-frequency domain. In this way, we
avoided wavelet transformation for all 4575 (61 channels× 25 trials× 3 classes) EEG signals.
The preprocessed data tensorY has size of 61 channels× 31 frequency bins× 126 time frames
× 3 classes. Figures7.24(a), 7.24(b), and7.24(c)show some selected spectra for three stimulus
classes.
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Fig. 7.24 Spectrograms and corresponding ERP for three types of stimuli in Example 7.17: (a)-
(d) auditory, (b)-(e) visual, (c)-(f) auditory-visual stimulus.
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Fig. 7.25 Visualization of components of the NTD model in Example 7.17. (a) factor 1 A(1)

characterizes spatial components displayed in topographic maps and sherically-spline EEG field
maps; (b) spectral components expressed by factor A(2); (c) expression of factor A(3) for 3 classes:
component 1 a(3)

1 - auditory-visual class, component 2 a(3)
2 - Auditory class, and component 3 a(3)

3
- visual class-2 in Example 7.17.

Finally, we reshaped data tensorY into a third-order nonnegative tensor of the size 61× 3906
× 3. The Nonnegative Tucker Decomposition model was chosen to decompose the preprocessed
tensor data, and theℓ2 HALS NTD was selected to extract underlying components. We set the
number of components to three, that is, the size of core tensor was 3× 3 × 3. The listing
code 7.12 shows how the data tensor was processed and results were visualized. The three
estimated components of the factorA(1) express spatial activations (channels) distributed over
61 channels. The topographic maps and the corresponding spherically-splined field maps are
displayed in Figure7.25(a). The three basis spectral componentsa(2)

j2
, j2 = 1, 2, 3 were reshaped

and displayed in Figure7.25(b). The three componentsa(3)
j3
, j3 = 1, 2, 3 indicating the category

of stimuli are plotted in Figure7.25(c). Using such multi-way analysis, the three classes of
stimuli were clearly classified, as illustrated by Table7.6.
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Fig. 7.26 Illustration of the core tensor via Hinton diagrams: (a) full core tensor G in 3-D mode;
(b)-(d) Frontal slices G j = G:,:, j , j = 1, 2,3 express the interaction of the j-th component a(3)

j with

components expressing channel and spectrogram in factors A(1) and A(2): Auditory class-1 - a(3)
2

concentrates mainly on coefficient g332, or spreads on a(1)
3 by spectrogram a(2)

3 ; Visual class-2 - a(3)
3

spreads on a1
2 by spectrogram a(2)

2 , class-2 - a(3)
1 spreads on a(1)

3 , a(1)
2 , and a(1)

1 by spectrogram a(2)
1 ,

a(2)
2 and a(2)

3 . Darker colors (in (a) indicate dominant components for each of the three factors.

strongly the spatial componenta(1)
j1

affects the category componenta(3)
j3

is expressed as

JRj1
j3
=

J2∑

j2=1

g2
j1 j2 j3

J1∑

j1=1

J2∑

j2=1

g2
j1 j2 j3

. (7.202)
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Fig. 7.28 Visualization of the three significant components a(1)
3 , a(2)

3 , a(3)
2 for a dominant rank-one

tensor in the NTD for the visual class-2.

Classes

S
pa

ce

1 2 3

1

2

3

(a) JRindices between channels and
classes

Classes

S
pe

ct
ra

1 2 3

1

2

3

(b) JR indices between spectrograms and
classes

S
pa

ce

Spectra
1 2 3

1

2

3

(c) JR indices between spectrograms and
classes

Fig. 7.29 Hinton diagrams of the Joint Rate indices between (a) spatial and category components,
(b) spectral and category components and (c) spatial and spectral components.

among components for each class can be evaluated directly from these plots; for example, the
JR3/1

2/3 has the largest value. This means that the the 2nd category component affects primarily
the third spatial component, the 3rd category category component correlates mainly with the
second spatial component (JR2/1

3/3), whereas the 1st one spreads over all the three components.
In Figure7.29, we show Hinton diagrams which illustrate the strength of interactions of spatial
and spectral components with respect to the category components, and their mutual interactions.

7.7.5 Application of Tensor Decomposition in Brain Computer Interface and

Classification of Motor Imagery Tasks

In comprehensive Brain Computer Interface (BCI) studies, the brain data structures often contain
higher-order ways (modes) such as trials, tasks conditions, subjects, and groups in addition to
the intrinsic dimensions of space, time and frequency. In fact, specific mental tasks or stimuli
are often presented repeatedly in a sequence of trials leading to a large volume stream of data
encompassing many dimensions: Channels (space), time-frequencies, trials, and conditions [5,
69, 12, 63, 22].

As Figure7.30shows, most existing BCI systems use three basic signal-processing blocks.
The system applies a preprocessing step to remove noise and artifacts (mostly related to ocular,
muscular, and cardiac activities) to enhance the SNR. In the next step, the system performs fea-
ture extraction and selection to detect the specific target patterns in brain activity that encode the
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user’s mental tasks, detect an event-related response, or reflect the subject’s motor intentions.
The last step is aimed at translating or associating these specific features into useful control
(command) signals to be sent to an external device. Ideally, the translator block supports the
noncontrol state, because without NC support, all classifier output states are considered inten-
tional. With NC support, the user can control whether or not the output is considered intentional.
In the latter case, a self-paced NC state paradigm is monitored continuously, where users can
perform specific mental tasks whenever they want.

Cluster
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Signal Processing
Imagination,
Mental state

Preprocessing

Feature
Extraction

and
Selection

Feature
Classification

and
Postprocessing

Control
Interface
Device

Controller

Commands

Multiway Array Decomposition,
Dynamic Tensor Analysis

Feature
Selection

Calibration

Sliding window

Fig. 7.30 Multistage procedure for online BCI. Preprocessing and feature extraction play a key
role in real-time, high-performance BCI systems. In the calibration step, most BCI ERP studies
are based on multi-subject and multi-condition analysis. For such scenarios, the tensor decompo-
sitions naturally encompass extra modalities such as trials, subjects, conditions, and so on and
allow the system to find the dominant sources of activity differences without supervision.

In the preprocessing step, the system can decompose the recorded brain signals into useful
signal and noise subspaces using standard techniques (like ICA or nonlinear adaptive filter-
ing). One promising approach to enhance signals, extract significant features, and perform some
model reduction is to apply blind source separation techniques, especially multiway blind source
separation and multiway array (tensor) decomposition.

A promising and popular approach based on the passive endogenous paradigm is to exploit
temporal/spatial changes or spectral characteristics of the sensorimotor rhythm (SMR) oscilla-
tions, or mu-rhythm (8-12 Hz) and beta rhythm (18-25 Hz). These oscillations typically decrease
during, or immediately before a movement event related desynchronization (ERD). External
stimuli-visual, auditory, or somatosensory – drive exogenous BCI tasks, which usually do not
require special training. Two often used paradigms are P300 and steady-state visually evoked
potentials (SSVEP). P300 is an event-related potential that appears approximately 300 ms after
a relevant and rare event. SSVEP uses a flicker stimulus at relatively low frequency (typically,
5-45 Hz).

Another promising and related extension of BCI is to incorporate real-time neuro-feedback
capabilities to train subjects to modulate EEG brain patterns and parameters such as ERPs,
ERD, SMR, and P300 to meet a specific criterion or learn self-regulation skills where users
change their EEG patterns in response to feedback. Such integration of neuro-feedback in BCI
is an emerging technology for rehabilitation, but it is also a new paradigm in neuroscience
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that might reveal previously unknown brain activities associated with behavior or self-regulated
mental states (see Figure7.31). In a neuro-feedback-modulated response (active endogenous)
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Fig. 7.31 Conceptual BCI system with various kinds of neuro-feedback combined with Human
Computer Interactions (HCI). The development of a BCI must handle two learning systems: The
computer should learn to discriminate between different complex patterns of brain activity as
accurately as possible, and BCI users should learn via different neuro-feedback configurations to
modulate and self-regulate or control BCI activity.

BCI paradigm, users learn to generate specific brain waves through various mental strategies
while monitoring the outcome of their efforts in near real time. Typically, the user visualizes the
preprocessed and translated target brain signal to increase motivation and improve recognition
accuracy. However, the successful control of the interface in this way usually requires quite a
long process and up to several weeks of training. BCI neuro-feedback in any of these paradigms
should be as speedy as possible, which requires fast real-time signal processing algorithms.
Recent neurofeedback experiments confirm that performance increases with richer feedback.
For example, a simple bar gives lower accuracies than a full immersive 3D dynamic visualization
or sonification.

Standard matrix factorizations, such as PCA, SVD, ICA and NMF and their variants, are
invaluable tools for BCI feature selection, dimensionality reduction, noise reduction, and mining
[5, 69, 12, 63, 46, 56, 57, 59, 58]. However, they have only two modes or 2-way representations
(e.g., channels and time) and therefore have severe intrinsic limitations. For such kind of data
2-way matrix factorizations (ICA, NMF) or “flat-world view” may be insufficient for future BCI
systems. In order to obtain more natural representations of the original multi-dimensional data
structure, it is necessary to use tensor decomposition approaches, since additional dimensions
or modes can be retained only in multi-linear models to produce structures that are unique and
which admit interpretations that are neurophysiologically meaningful [62, 1].

Recent advances in developing high-spatial density array EEG have called for multi-dimensional
signal processing techniques (referred to here as the multi-way analysis (MWA), multi-way ar-
ray (tensor) factorization/decomposition or dynamic tensor analysis (DTA) or window-based
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Fig. 7.32 Decomposition of the 4-way time-frequency-spectral EEG data into basic components
during motor imaginary tasks.

C4 electrodes during right and left hand motor imagery (70 left-hand trials and 70 right-hand
ones). Each trial is represented by the three-way tensor (frequency× time× channel) in Figure
7.32(a). A spectral tensor was factorized into four components displayed in Figure 7.32(b).
Component 1 corresponds to left-hand imagery (due to the significantly greater C3 weight than
the C4 one), component 2 represents the right-hand imagery and component 3 reflects both left
and right hand imagery stimuli. The theta rhythm (4-8 Hz), which is related to concentration is
represented by component 4 [57].

Figure 7.33 illustrates the experimental results using the 4-way tensor decomposition of
multi-channel (62 electrodes) EEG data (channel, frequency, time, conditions) into four compo-
nent (factor) matrices in the space (topographic map), frequency, time and class domain shown
from left-to-right on this figure. In order to find the most discriminative components for different
classes (i.e., left hand and right hand motor imagery), we imposed a sparseness constraint on the
class mode. Each row of Figure7.32(b)represents one component of the factor matrices. From
theseplots components 4 and 5 are recognized as discriminative components corresponding to
the motor imaginary tasks due to their scalp maps covering sensorimotor areas. Component 4
illustrates the ERD/ERS phenomena that indicates in the spatial distribution a larger amplitude
on the left hemisphere and lower amplitude for the right hemisphere (see column 1), and the
energy of oscillations dominated by the mu rhythm in frequency range mainly 8-12 Hz of mu
rhythm (see column 2), and observation of quasi-stationary oscillations through the whole trial
duration (see column 3). Hence a larger amplitude is shown for class-1(right-hand imagery) and
lower amplitude on class-2 (left-hand imagery) conditions (column 4). Similarly, component 5
shows ERD on the left hemisphere and ERS on the right hemisphere. Components 1 and 3 show
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Fig. 7.33 Decomposition of 62 channels EEG signals into basis components. Four columns rep-
resent the four factors in the analysis.

the visual evoked potentials caused by the cue stimulus, which have spatial distribution over the
visual cortex. Other components represent the existing artifacts (EOG, EMG) and other brain
activities uncorrelated with event related potentials.

The multi-way analysis approach and the related concepts (tensor decompositions, especially
their extensions to dynamic tensor analysis) presented in this chapter are only a subset of a num-
ber of promising and emerging signal processing and data mining tools with potential applica-
tions to future BCI systems. The main advantage of the presented approach is its flexibility when
dealing with multi-dimensional data and the possibility to enforce various physical constraints.
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8
Selected Applications

Early applications of the concept inherited by NMF appeared in themiddle 1990s under the
name Positive Matrix Factorization (PMF). This kind of factorization was applied by Paateroet
al. [82] to process environmental data, however, the popularity of NMF significantly increased
since Lee and Seung published simple multiplicative NMF algorithms which they applied to
image data [62, 63]. At present, NMF and its variants have already found a wide spectrum of
applications.

In this chapter, we briefly discuss some selected applications of NMF and multi-dimensional
array decompositions, with special emphasis on those applications to which the algorithms de-
scribed in the previous chapters are applicable. We review the following applications: data clus-
tering [100, 67, 27, 24, 126, 5, 14, 16, 127], text mining [119, 100, 86, 67], email surveillance
[9], musical instrument classification [8, 6, 7], face recognition [42, 43, 45, 120, 121, 128, 113],
handwritten digit recognition [61], texture classification [89, 87], Raman spectroscopy [95, 65,
75], fluorescence spectroscopy [38, 37, 46], hyperspectral imaging [95, 85, 28, 50, 76, 40, 106],
chemical shift imaging [96, 95, 11], and gene expression classification [55, 13, 14, 53, 83, 84,
73, 33, 109].

8.1 CLUSTERING

Data clustering can be regarded as an unsupervised classificationof patterns into groups (clus-
ters) that have similar features, as illustrated in Figure8.1. The data points reside in a 2D space
and can be classified into three disjoint groups. The grouping can basically be obtained with hi-
erarchical or partitioning techniques [49]. In hierarchical clustering, a nested series of partitions
is performed with varying dissimilarity level whereas partitioned clustering techniques yield a
single partition of data for which a given clustering criterion is optimized (usually locally). The
former technique is usually more robust but due to its high computational complexity it is not
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Fig. 8.9 Raman spectra: (a) target spectra of Epsomite and Demantoid, (b) ten sample compo-
nents of 256 mixtures, (c) estimated spectra of Epsomite and Demantoid, (d) NMF with smooth-
ness constraints.

the incident ones are emitted. The molecular structure of the species can thereby be determined,
by analyzing the spectrum of the emitted light with respect to the frequency of monochromatic
light.

Nevertheless, the spectral analysis is not straightforward since the observed spectra are in-
stantaneous mixtures of pure species spectra and other intermediate species spectra. The prob-
lem of extracting pure spectra from the mixtures can be formulated in terms of a blind source
separation problem, and solved with many algorithms for ICA [18]. Furthermore, considering
intrinsic nonnegativity constraints on spectra and their concentrations/abundances, the problem
can be solved with NMF, which is more profitable since the separated spectra could be partially
statistically dependent.

Assuming the mixed spectra are observed byI sensors and each spectrum hasT samples, all
the observations can be stored in the observation matrixY ∈ RI×T . Applying NMF to Y under
the assumption thatJ is the number of constituent spectra, we obtain the abundance matrix
A ∈ RI×J and the nonnegative matrixX ∈ RJ×T of the pure spectra.

Applications of NMF to fluorescence spectroscopy can be found, e.g., in [38, 37, 78]. Gobinet
et al. [37] applied NMF to analyze a distribution of some organic compounds such as bound
ferulic acid, free ferulic acid, and p-coumaric acid in durum wheat and barley grains. They used
a laser scanning microspectrofluorometer to acquire fluorescence signals. A transversal section
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of awheat grain was scanned with a 365nm laser at a spatial resolution of approximately 1µm,
and the fluorescence signal spectra were measured by a CCD detector in the range of 350 to 670
nm. The observed area was discretized into 20× 20 pixels, and each observed spectrum was
sampled to yield 128 points. Hence, the observations were stored in the matrixY ∈ R400×128.
Applying NMF under the assumption that the number of the constituent compounds is three,
they obtained the pure species spectra and the pure species concentration/abundance maps of
the corresponding pure species. Each abundance map was obtained by matricization of the
corresponding column vector ofA ∈ R400×3.

We present an extension of fluorescence spectra using tensor factorization algorithms. The
benchmark [91, 12] contains 405 recorded measurements of five replicated fluorescence spectra
for a total of six different fluorophores in the dataset: catechol, hydroquinone, indole, resor-
cinol, tryptohpane and tyrosine. Each spectra was expressed by two factors: Emission (136
wavelengths) and Excitation (19 wavelengths). In total 405× 5 Emission-Excitation spectra
were recorded. If we vectorize all spectra, the NMF model will be applied to find the six basis
components. However, tensor factorization helps to return a much more accurate result. For
example, we can factorize the tensor with size of 405 samples× 136 emission wavelengths×
19 excitation wavelengths× 5 replicates into six components. The second and third factors
A(2) andA(3) are the Emission and Excitation spectral components, respectively. Figure8.10(c)
and8.10(d)depict these basis components which correspond to six fluorophores: catechol, hy-
droquinone, indole, resorcinol, tryptohpane and tyrosine. Another factorization is presented in
Figure8.11with six basis spectra with size of 136 Emission wavelengths× 19 Excitation wave-
lengths. Each 2-D spectrum slice is a composition of the six basis spectra. Figure8.10(a)is an
example of one Emission× Excitation slice.

8.3.3 Hyperspectral Imaging

Hyperspectral imaging has found many real-life applications [40]. In the mining and oil in-
dustries it is mostly used for identifying various minerals or for searching ore or oil fields. In
agriculture it is useful for monitoring the development and health control of crops, detection of
the chemical composition of plans, and water quality control. Physicists use this technique in
electron microscopy, and soldiers for military surveillance.

Hyperspectral imaging remotely maps the object of interest with spectral observations of
electromagnetic waves emitted or reflected from the object. Typically, the object of interest is
a 2D remote surface from which sunlight is reflected, and a distribution of reflection/absorption
rate is reconstructed from the observations. The spectrum of sunlight in a wide range of wave-
lengths (from ultraviolet to infrared) is measured with a remote array of narrow-band sensors
of high spectral resolutions. For example, the Airborne Visible/InfraRed Imaging Spectrometer
(AVIRIS) sensors measure spectral signals in the range of 0.4− 2.45µm within 224 contiguous
subbands with a spectral resolution of 10nm. The spatial resolution depends on the distance
from the object of interest to the observation point, and typically, it varies from 4 to 20 meters.
This kind of sensor is used in airborne observations; satellite observations (e.g., by NASA’s
Hyperion sensors) are also commonly-used. The object of interest is discretized, and a spectral
characteristic is measured for each pixel, thus the observations are stored in a 3D array. In Figure
8.12(b), we illustrate the La Parguera dataset [94] taken with the Hyperion sensor, atmospheric
corrected with the ACORN algorithm and with several bands discarded. The La Parguera region
is composed of different types of reefs in shallow and deep water, sea grass (mostly thalassia),
mangrove and sand. The true color image of the La Parguera region was collected from the three
bands of Red= 634 nm, Green= 545 nm, and Blue= 463 nm (Figure8.12(a)).
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Fig. 8.10 Illustration of factorization for fluorescence data of size 405 samples × 136 emission
wavelengths × 19 excitation wavelengths × 5 replicates : (a) one spectra slice of the tensor , (b)
one 3-D sample with five fluorescence replicates of size 36 emission wavelengths × 19 excitation
wavelengths, (c) - (d) estimated excitation and emission spectra of six different fluorophores in
the dataset: catechol, hydroquinone, indole, resorcinol, tryptohpane and tyrosine.

Each horizontal slice represents a spatial distribution of a reflection/absorption rate for a
given subband. A 3D multi-array is formed from the multiple subband observations. The hori-
zontal slices are divided into pixels, and thus a 3D multi-array of observations is composed from
voxels. A plot of the reflection/absorption rate along any vertical line determines the continuous
spectrum that identifies the surface material in a given position on the surface.

Unfortunately, the observed spectrum in any position on the surface of interest is practically a
superposition of spectra of many underlying materials. This also causes a poor spatial resolution
of spectral detectors. A single “pure” material is called the endmember, and the aim of applying
NMF to hyperspectral imaging is to extract the spectra of endmembers from the multi-array of
mixed spectral observations. Furthermore, having the spectra of endmembers computed, we can
estimate the maximum abundance of each endmember in a given position on the surface. A 2D
distribution of each corresponding abundance provides complete information for the surveyed
area. One should also notice that both abundances and spectra of endmembers are nonnegative
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Fig. 8.11 Six spectra components were estimated from the tensor 405 samples × 2584 (emission-
excitation) wavelengths × 5 replicates. Slice in Figure 8.10(a) was expressed by addition of these
six basis spectra.
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Fig. 8.12 Hyperspectral imagery illustration for the La Parguera hyperspectra image [94], cap-
tured with the EO-1 (Hyperion sensor) over La Parguera area Lajas, and Puerto Rico. The dataset
processed using ACORN has 106 bands of size 250 × 239 pixels, where multiple subbands form a
3D multi-array. A vertical profile through a single pixel position shows the continuous spectrum
assigned to this position. The spectrum identifies the surface material: (a) true color visualization
includes bands at Red = 634 nm, Green = 545 nm, and Blue = 463 nm, (b) relative brightness
at pixel (45,102) through 106 bands.

curves, and hence, the usage of NMF for this application seems to be reasonable. However,
other decomposition methods (e.g., used in ICA) could also be applied [77].

To apply NMF a 3D multi-array should be unfolded to form an observation matrixY ∈ RI×T

where I is the total number of pixels in one slice, andT is the number of subbands (Figure
8.13(a)). After applying NMF, we obtain the nonnegative matrixA ∈ RI×J of abundances,
and the nonnegative matrixX ∈ RJ×T of endmember spectra. The rows inX correspond to
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Fig. 8.13 Analysis of hyperspectral images by the NMF model: (a) Pixels was reordered according
to wavelengths for analysis, (b) two first reflectance components were estimated by NMF, (c)-(d)
two endmember spectra correspond to the reflectance components.

endmembers, and the respective columns inA refer to the abundances. The spectrum of an
endmember is some kind of “fingerprint” or signature of the underlying material and it should
be unique and suitable for identification. The abundance vectors are matricized in the reverse
way to the used vectorization, and hence each column vector inA determines a 2D image of
the abundance for a given material. Thus, we haveJ images of distribution of the underlying
materials.

For the La Parguera hyperspectra image [94] which has 106 bands of size 250× 239 pixels
(see Figure8.13(a)), the mixed region is composed of two major differentendmembers which
were recovered with NMF and shown in Figure8.13(b). The corresponding abundance maps are
illustrated in Figure8.13(c)and Figure8.13(d), where lighter pixels denote higher abundance.
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Figure 8.15 presents the results obtained with NMF applied to the 3D31P CSI database
[130]. The plots in Figure8.15(a) represent the spectra of endmembers, and the abundance
maps are illustrated in Figure8.15(b). As stated in Sajdaet al.[96], the upper spectrum in Figure
8.15(a) represents muscle tissue whereas the bottom one refers to brain tissue. Consequently,
the corresponding abundance maps present distributions of muscular and brain tissues. Indeed,
the muscle tissue is distributed near the skull border, which is visible in the top image in Figure
8.15(b), whereas the brain tissue is centered in the interior of the skull.

8.4 APPLICATION OF NMF FOR ANALYZING MICROARRAY DATA

Matrix factorization and decomposition methods have also found many relevant applications in
biomedical data processing and analysis. Several works are concerned with application of NMF
to gene expression classification [55, 13, 14, 53, 83, 84, 73, 33, 109], mostly in order to classify
different types of cancers. Other exemplary applications include muscle identifications in the
nervous system [107], classification of PET images [1], and protein fold recognition [80].
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Fig. 8.16 Schematic representation of the NMF model applied to gene-expression matrix Y.

8.4.1 Gene Expression Classification

The aim of applying NMF to the analysis of DNA microarrays is to group genes and experiments
according to their similarity in gene expression patterns. The groups of genes that are referred to
asmetagenes(see [13]) capture latent structures in the observed data and may provide biological
insight into underlying biological processes and the mechanisms of diseases. Metagenes also
provide meaningful information for clustering the genes as well as the related experiments.
Nested and partially overlapped clusters can also be identified with the NMF approach. Nested
clusters reflect local properties of expression patterns, and overlapping is due to global properties
of multiple biological processes (selected genes can participate in many processes). Typically,
there are a few metagenes in the observed DNA microarray that may monitor several thousands
of genes. Thus, the redundancy in this application is extremely high, which is very profitable for
NMF. Furthermore, metagenes and gene expression patterns can often be described by sparse
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(a) Leukemia dataset
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Fig. 8.17 Patch plots of consensus matrices obtained with NMF (a) NMF applied for leukemia
dataset, (b) NMF applied for medulloblastoma dataset.

sists of the following samples: 10 classic medulloblastomas, 10 malignant gliomas, 10 rhab-
doids, and four normal samples. The goal of using NMF for analyzing the medulloblastoma
samples from this dataset is to find genes that are statistically correlated with two basic classes
of medulloblastomas: classic and desmoplastic. As reported in [13], only clustering with NMF
provides easily interpretable clusters that are shown in Figure8.17(b). For J = 5, one nested
cluster is almost entirely related to the samples of the desmoplastic class.
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Fig. 8.18 Biclustering using NMF.

Brunet et al. [13] successfully applied NMF to the classification of four types of central
nervous system embryonal tumors [88]. Moreover, NMF gave much more accurate results than
the hierarchical clustering and SOM. The SOM evidently identifies only three classes, merging
the malignant glioma and normal samples. Also, the hierarchical clustering misclassifies the
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Fig. 8.20 Visualization of consensus matrices for clustering gene expression profiles with 4, 5,
. . . , 9 classes from the Alpha-696 dataset. The similarity matrices are measured and reordered
from 1000 trials for each case.

to finding such highly correlated genes is to decompose the full dataset (Y ∈ R6044×18
+ ) but with

the given and fixed basis componentsX. Coefficients in the same column vector ofA reflect the
contribution levels of the corresponding basis profilesX in the analyzed genesY. Therefore,
a group of coefficients with high values in each column ofA will show the set of genes that
have a strong correlation with extracted profiles. The procedure for selecting such genes can be
summarized as:

• normalize column vectors ofA to unit-length,

• sort all the column vectors ofA in descending order,

• select the highly correlated genes based on their highest coefficients in each column over
one specified threshold.

The results of the selected gene profiles for the cases of four and nine component decompo-
sitions are shown in Figure8.21and8.22, respectively. The most highly correlated profiles with
their gene ID are also listed in Tables8.5and8.6.

The final application will illustrate how to sort gene profiles according to the basis expression
profiles. The procedure is performed as follows:
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(h) Class 8 - 23 genes
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Fig. 8.22 Comparison of nine components extracted by NMF (thick dash lines) with highly
correlated genes expression profiles from the Alpha full dataset. The basis expression components
are extracted from the small dataset: Alpha-696. All selected profiles have correlation coefficients
r > 0.8, and are normalized to unit-length.
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(b) Sorted Alpha-696

Fig. 8.23 Sorting the dataset Alpha-696 according to the five extracted basis components. Basis
gene expression profiles X are rearranged in order of appearance of the first major peaks (events),
then the columns of the mixing matrix A are rearranged accordingly, and the coefficients in
columns of A are sorted in descending order. Finally, the genes of the original data are sorted
according to both events in X and weighting in A.
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