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Abstract. In these notes the main theoretical concepts and techniques in the

field of mean-field spin-glasses are reviewed in a compact and pedagogical way,

for the benefit of the graduate and undergraduate student. One particular spin-

glass model is analyzed (the p-spin spherical model) by using three different

approaches. Thermodynamics, covering pure states, overlaps, overlap distribution,

replica symmetry breaking, and the static transition. Dynamics, covering the

generating functional method, generalized Langevin equation, equations for the

correlation and the response, the Mode Coupling approximation, and the dynamical

transition. And finally complexity, covering the mean-field (TAP) free energy,

metastable states, entropy crisis, threshold energy, and saddles. Particular attention

has been paid on the mutual consistency of the results obtained from the different

methods.
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1. Introduction

The aim of these notes is to provide graduate and undergraduate students in statistical

physics with a sort of handbook of the main theoretical concepts in the physics of

spin-glasses. It is important to emphasize that this is not an overview of the entire

field of disordered systems and spin-glasses: the whole experimental phenomenology

is missing; not a word is present on the large amount of numerical investigations and

results; only one model is analyzed, compared to the vast number of different models

on the spin-glass market; very little is said about the connections between spin-glasses

and structural glasses (although something is said); and finally, the focus is entirely on

mean-field spin-glasses, leaving completely untouched what may be regarded as one of

the most challenging open problems of the field, that is whether or not the mean-field

picture has some validity also in finite dimensional systems.

The student may thus rightfully ask what is contained in these notes. The basic

idea is to present the most important theoretical techniques developed in the context of

spin-glasses in a coherent, detailed, but at the same time very compact way. For this

reason we study just one specific model, which we use as an ideal arena where to discuss,

apply and compare different theoretical methods. Although the model we consider has

its own relevance in the field, the important point for us is to tell the student a consistent

and self-contained story, where each conceptual step has to be logically connected to

the previous one.

In order to do this we had to necessarily disregard many important topics in the

field, and at the same time to be very brief when introducing new ideas, hoping that

their practical implementation would help to grasp their relevance. The perfect example

is ergodicity breaking and pure states: an entire chapter, rather than few lines, should

be devoted to these tricky, but crucial concepts. In this way, however, the notes would

be unbearably long, and the main line of the story would quickly be lost. We opt for a

synthetic exposure, leaving the student the freedom to go deeper on certain subjects by

a careful use of the extensive list of references.

The concepts and techniques developed in spin-glasses have found in recent years a

wide range of applications in statistical physics and beyond, from biology to economics,

passing through computer science and optimization theory. Our hope is that these notes

may help the student to familiarize with the concepts, to practically learn how to handle

them in a non-superficial way, and to eventually apply them to their own field of interest.

The basic knowledge required to follow these notes is just a reasonable preparation in

standard statistical mechanics.

The three pillars of our discussion are Statics, Dynamics, and Complexity. The test

system where all the calculations are done and the consistency of the different results
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is analyzed, is the mean-field p-spin spherical model (PSM). This model is particularly

apt to our purposes for more than one reason. First, the static (i.e. thermodynamic)

analysis of the PSM gives results which are drastically different from the dynamical

ones. For example, the two approaches give two different transition temperatures. This

naturally leads to the introduction of a third technique, dominated by the concept

of complexity, which very nicely reconcile static and dynamic results. Therefore, the

PSM is the ideal model where to develop and compare the three approaches. Secondly,

the PSM is probably a simpler model than the more famous and extensively studied

Sherrington-Kirkpatrick model, which after more than 25 year still puzzles us with its

enormous variety of weird, yet very interesting, results. Finally, the PSM has some

features which are intriguingly similar to structural glasses, most notably it is described

by a set of dynamical equations which are identical to those provided by the Mode

Coupling Theory for glasses. Therefore the PSM seems a good model to try and bridge

the gap between spin-glasses and structural glasses.

As we have said, the target of these notes are graduate and undergraduate students.

For this reason we tried to be as complete as possible when giving the details of the

calculations, typically providing more technical steps than it is usual in a technical paper.

We hope that in such a way it will always be possible for the student to work out the

final result. It is impossible to develop a genuine familiarity with spin-glasses without

a serious training in the most technical aspects of the field. We therefore encourage

the student to perform and check the calculations in these notes, in order to become as

independent as possible when studying similar subjects in her/his future. At the same

time, we tried not to lose contact with the broader picture, and to always stick a sense

to any calculation we perform. In particular, we stressed as much as possible the mutual

consistency of results obtained with different techniques. The theory of spin-glasses is

infamous for being crowded with not-too-obvious formal steps, so it is always nice to

find the same result with two (or more) different, independent methods.

These notes are the expanded version of the lectures that one of us (AC) delivered

in Bangalore, at the Conference and School on Unifying Concepts in Glassy Physics

(UCGP III), in June 2004, where also other lectures on different areas in the physics of

glassy systems were presented. Wherever we could, we tried to make contact, avoiding

overlaps, with the notes of the other participants. In particular, we mention the Mode

Coupling approximation in the section on Dynamics, in order to connect with the notes

of David Reichmann, and we restricted ourselves to equilibrium dynamics, given that

the subject of aging, and off-equilibrium dynamics in general, is extensively treated in

the notes of Giulio Biroli. We finally hope that the student will get the similarities

between the chapter on the TAP approach and the energy landscape method analyzed

by Francesco Sciortino.

We thank the organizers of UCGP III for giving us the opportunity to bring together

in a single work what we hope will be a useful collection of ideas and results in such a

fascinating field of science.
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2. Basic concepts

Before we start studying a specific spin-glass model, we need to introduce a couple of

simple concepts and tricks, which we will extensively use all along these notes. Each of

them would deserve much more space than we can afford, and therefore we encourage

the student to exploit the references. A background in statistical mechanics and in

particular in the theory of critical phenomena is very helpful. A nice and compact

overview on this subject can be found in references [1] and [2]. We also add here that

a very nice and informal introduction to spin glasses can be found in [3], whereas the

classic review for spin-glass theory is still reference [4].

2.1. Disorder

There are two main classes of disordered systems. The one spin-glasses belong to is

that of quenched disorder. In these systems the disorder is explicitly present in the

Hamiltonian, typically under the form of random couplings J among the degrees of

freedom σ,

H = H(σ; J) . (1)

The disorder J is completely specified by its probability distribution p(J) dJ which is

the same for each different coupling constant in the system. A famous example is the

Edwards-Anderson model [5],

H = −
∑

<ij>

Jijσiσj , (2)

where the spins σi = ±1 are the degrees of freedom, and the couplings Jij are Gaussian

random variables. This is a finite dimensional model, since the sum is performed over

nearest-neighbor spins. The disorder is quenched, meaning that the J are constant on

the time scale over which the σ fluctuate. This will have a crucial consequence on the

way we will have to perform the averages over J , compared to σ. Spin-glasses are indeed

systems with quenched disorder.

Disorder creates frustration: it becomes impossible to satisfy all the couplings at

the same time, as it would be in a ferromagnetic system. Formally a system is frustrated

if there exists a loop on which the product of the couplings is negative. In a frustrated

loop, if we fix an initial spin, and starting from it we try to chain-fix the other spins

one after the other according to the sign of the couplings, we are bound to return to

the initial spin and flip it. The only way to avoid frustration is to consider a lattice

where there are no loops, for example a tree. Frustration is the main reason for the

proliferation of metastable states in disordered systems.

In some system the disorder is not present in the Hamiltonian, but is in a way

self-generated. This is the case of structural glasses, whose Hamiltonian typically takes

the form,

H =
∑

ij

V (ri − rj) (3)



Spin-Glass Theory for Pedestrians 6

where the degrees of freedom ri are the positions of the particles, and the function

V (r) is a deterministic potential (for example, Lennard-Jones). Even though there

is no quenched disorder in the Hamiltonian, at low temperature, in a frozen glassy

configuration of the system, each particle sees a different, disordered environment around

itself. In this sense the disorder is self-generated. The origin of this phenomenon is the

large number of non-crystalline local minima of the Hamiltonian.

It may seem odd that systems with quenched and self-generated disorder do have

any property in common, given their very different definitions. However, we shall

see that some spin-glass models do have a phenomenology quite similar to the one

of structural glasses.

2.2. Self-averaging quantities

In these notes we deal with spin-glasses, i.e. systems with quenched disorder in the

Hamiltonian. Therefore, the first key question is: How do we deal with the disorder?

The problem is that, in principle, each observable depends on J , including the free

energy of the system,

FN(J) = − 1

βN
log

∫

Dσe−βH(σ;J) (4)

where N is the size of the system. This is very unpleasant, since it seems to suggest that

the physical properties of spin-glasses are different for each different realization of the

disorder J , i.e. for each different sample. Were this true, it would be a disaster: we want

to build a theory for spin-glasses, and not just for a specific piece of material ! In fact,

both common sense and experience tells us that for sufficiently large systems, physical

properties do not depend on J anymore. Quantities like that are called self-averaging

[4], and the free energy is one of them,

lim
N→∞

FN(β, J) = F∞(β) . (5)

In this case it is clear that the average over the disorder of a self-averaging quantity is

equal to its J-independent value,

F = − lim
N→∞

1

βN
logZ(J) = F∞(β) (6)

where,

A =

∫

dJ p(J)A(J) . (7)

This is good, since it means that analytically we can average over J , and that the result

we obtain in this way is in agreement with the physical value of the observable. Self-

averageness is basically the same as asking that the distribution of physical quantities

is (for N large) sharply peaked around their average value, that is that the variance of
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their distribution must go to zero for N →∞. The free energy is self-averaging, and in

particular,

F 2 − F 2
= O

(
1

N

)

(8)

If a quantity has, for example, a bimodal distribution, it is not self-averaging. Indeed

its average is a very poor indicator of the physical values of the quantity itself.

A simple argument to work out equation (8) can be given in finite dimension. We

divide our system in a number K of macroscopic sub-systems, with 1≪ K ≪ N . The

total (extensive) free energy will be the sum of the free energies of the sub-systems, plus

a contribution coming from the interactions at the interfaces between the sub-systems.

Once we compute the free energy density, this surface contribution can be neglected in

the limit N → ∞. Moreover, the sub-systems free energies are independent random

variables and therefore we can apply the central limit theorem to the sum, and get (8).

2.3. Annealed and quenched averages

In order to average the free energy we have to compute the integral,

F = − 1

βN

∫

dJ p(J) log

∫

Dσ e−βH(σ;J) , (9)

which looks pretty bad, since we have to integrate a log over J . We could be tempted

to define the following different quantity,

Fa = − 1

βN
log

∫

dJ p(J)

∫

Dσ e−βH(σ;J) , (10)

which is certainly much simpler to compute. Unfortunately, this is not the right solution

to our problem. The difference between the two formulas above is in the role played

by the disorder J : in (9) we first integrate over the degrees of freedom, then take the

log, and finally integrate over the random couplings. In this way, the couplings J are

fixed, i.e. quenched, for each integration over the spins. In other words, couplings and

spins do not fluctuate together: for each realization of the disorder we compute the free

energy, and eventually we average it over J . This kind of average is called quenched,

and it is precisely what we need to do.

On the other hand, it is clear that in (10) the disorder J and the degrees of freedom

σ have been put on the same footing, fluctuating together. This is not what we want,

since it means that the time scale of variation of J and σ is the same, and therefore

the disorder becomes yet another degree of freedom, and it is no longer quenched. This

second kind of average is called annealed, and, even though it may be correct at high

temperatures, where the frustration induced by the disorder is irrelevant, it is normally

wrong at low temperatures, where the spins freeze in a state determined by the quenched

value of the couplings. A different way to see this point is that in the annealed case we

are in fact averaging the partition function Z, rather than the free energy F , over J .
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The fact is that F is an extensive quantity, while Z is not (it is exponential in N !), and

therefore Z is not in general self-averaging.

Therefore, we have to find a way to treat integrals like the one in (9). This is where

the replica trick comes into play.

2.4. The replica trick

The replica trick [5] (which becomes in fact a method, when it is explained more deeply

than here [4]), stems from the following simple formula,

log Z = lim
n→0

1

n
log Zn . (11)

If n remains a real number (as it should), there is no advantage at all in computing the

r.h.s. compared to the l.h.s., of course. However, if we now promote n to be an integer,

we can write:

Zn =

∫

Dσ1 . . .Dσn e−βH(σ1,J)···−βH(σn,J) (12)

which is in fact much simpler to compute. What we do is to replicate the system n

times, compute everything as a function of n, and finally cross our finger in taking the

limit n→ 0. It is crucial to understand that all the Hamiltonians in (12) have the same

realization of the quenched disorder, and in this sense are replicas one of the other.

A different useful form of the replica trick is the following,

〈A〉 =
1

Z

∫

Dσ A(σ) e−βH(σ,J) = lim
n→0

Zn−1

∫

Dσ A(σ) e−βH(σ,J) =

lim
n→0

∫

Dσ1 . . . Dσn A(σ1) e−βH(σ1,J)···−βH(σn,J) . (13)

Of course, the label 1 we used for the replica into the observable A is completely

arbitrary, and thus we have to be careful that our result must not depend on this

particular index, otherwise we have a complete nonsense.

To conclude this small section, let us have a look to a case where the replica trick

does work. Imagine that we ignore the rule (xa)b = xab with a, b real, but that we know

that xm = x · · · · · x, m times. Given y = x · x, we want to know what is y1/2. We can

use the replica trick:

y1/2 = lim
n→1/2

yn = lim
n→1/2

x · x · · · · · x · x = lim
n→1/2

x2n = x . (14)

2.5. Pure states

In the low temperature phase, and in the limit N →∞ we can have ergodicity breaking:

the system at equilibrium explores only a sub-part of the phase space [6, 7, 4]. When

this happens the Gibbs measure can be split into sub-components, called pure states,

〈·〉 =
∑

α

wα〈·〉α (15)
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where α is an index running over all the states, and wα is the statistical (Gibbs) weight

of state α. To better understand this formula, we must assume that it is possible to

assign each configuration in the phase space with nonzero thermodynamics weight, to

one and only one state. In this case we can write for any observable A,

〈A〉 =
1

Z

∫

Dσ eβH(Σ)A(σ) =
1

Z

∑

α

∫

σ∈α

Dσ eβH(Σ)A(σ) =

∑

α

Zα

Z

1

Zα

∫

σ∈α

Dσ eβH(Σ)A(σ) =
∑

α

wα〈A〉α (16)

where we have defined,

Zα =

∫

σ∈α

Dσ eβH(Σ) (17)

that is the partition function restricted to state α, and

wα =
Zα

Z
(18)

the statistical weight of state α.

As an example we can consider the Ising model below Tc. In the thermodynamic

limit the ergodicity is broken, and we have two states, with positive and negative

spontaneous magnetization,

〈·〉 =
1

2
〈·〉+ +

1

2
〈·〉− (19)

that is w+ = w− = 1/2, in absence of external magnetic field. It is crucial to split the

measure, otherwise we would not see any spontaneous magnetization,

〈σ〉 =
1

2
〈σ〉+ +

1

2
〈σ〉− = 0 (20)

A very important feature of pure states is the clustering property. In essence, this

property states the very physical concept that the statistical correlation between two

different points goes to zero when their distance goes to infinity,

〈σiσj〉 → 〈σi〉〈σj〉 for |i− j| → ∞ . (21)

In other words, a very basic physical requirement is that connected correlation functions

decay to zero at large distances [7, 4]. As we have said, this property only holds in pure

states. Take, for example, the paramagnetic state in the Ising model below Tc, that is

the Gibbs ergodic measure over the full phase space:

〈σiσj〉 =
1

2
〈σiσj〉+ +

1

2
〈σiσj〉− →

1

2
〈σ〉2+ +

1

2
〈σ〉2− = m2 6= 0 . (22)

Therefore, the paramagnetic state is not a pure state below the critical temperature.

The example of the Ising model is particularly simple because we know a priori

what is the structure of pure states below Tc. In particular, we know how to select a

state, i.e. how to project the system onto any one of the two states: we simply apply a



Spin-Glass Theory for Pedestrians 10

magnetic field. In disordered systems the situation is not as simple as that, since we do

not know what is the field projecting the system onto any particular state. This crucial

fact is at the heart of the difficulty in studying disordered systems: we lack the magnetic

field as a crucial tool to select states. Of course, given a state, there is a (disordered)

magnetic field selecting that state. The problem is that we do not know what this field

is !

A final important remark. In finite-dimensional systems, only equilibrium states

can break the ergodicity, i.e. states with the lowest free energy density. In other words,

the system cannot remain trapped for an infinite time in a metastable state, because in

finite dimension free energy barriers surrounding metastable states are always finite. The

extra free energy of a droplet of size r of equilibrium phase in a background metastable

phase has a positive interface contribution which grows as rd−1, and a negative volume

contribution which grows as rd,

∆F = σ rd−1 − δf rd , (23)

where here σ is the surface tension and δf is the bulk free energy difference between

the two phases. This function has always a maximum, whose finite height gives the free

energy barrier to nucleation of the equilibrium phase (note that at coexistence δf = 0

and the barrier is infinite).

Therefore, if initially in a metastable states the system will, sooner or later, collapse

in the stable state with lower free energy density. For this reason, in finite dimension we

cannot decompose the Gibbs measure in metastable components. When this is done, it

is always understood that the decomposition is only valid for finite times, i.e times much

smaller than the time needed for the stable equilibrium state to take over. On the other

hand, in mean-field systems (infinite dimension), barriers between metastable states

may be infinite in the thermodynamic limit, and it is therefore possible to call ’pure

states’ also metastable states, and to assign them a Gibbs weight wα. We will analyze

a mean-field spin-glass model, so that we will be allowed to perform the decomposition

above even for metastable states.

2.6. Overlap, self-overlap

In non-disordered magnetic systems, a good order parameter is normally the total

average magnetization,

m =
1

N

N∑

i=1

〈σi〉 (24)

which is zero in the high temperature phase, and different from zero in the low

temperature phase, where the ± symmetry is broken. In disordered systems we may be

tempted to use a similar order parameter,

m =
1

N

N∑

i=1

〈σi〉 (25)
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However, due to the disorder the local magnetizations in the low temperature phase

are all frozen in different directions (if the disorder distribution is unbiased, as we shall

assume), and thus the magnetization defined above is zero at all temperatures, even

though the ± symmetry is physically broken for each spin in our sample. A better order

parameter is the Edward-Anderson parameter [5],

qEA =
1

N

N∑

i=1

〈σi〉2 (26)

Such a quantity is nonzero if the local magnetizations mi are locally nonzero, and thus

is a good order parameter. In fact qEA is a particular case of a more general quantity

called overlap.

In our study of spin glasses we will often need a tool to measure the similarity of

two configurations, or two states. To this aim we introduce the overlap. Given two

configurations σ and τ , we define their mutual overlap as,

qστ =
1

N

N∑

i=1

σiτi (27)

With Ising spins si = ±1 we have that,

qστ =







1 if σ e τ almost coincide

−1 if σ e τ are anti-correlated

0 if σ e τ are totally uncorrelated

(28)

The overlap is thus a measure of the similarity among different configurations. We can

also compute the overlap of a configuration with itself, the self-overlap,

qσσ =
1

N

N∑

i=1

σiσi (29)

With Ising spins qσσ = 1. In the following we will always deal with systems where the

self-overlap of configurations is 1.

The overlap can measure also the similarity between states: if the Gibbs measure is

split into sub-components α due to ergodicity breaking, we define the overlap between

states α and β as,

qαβ =
1

N

N∑

i=1

〈σi〉α〈σi〉β (30)

which can also be written as,

qαβ =
1

N

N∑

i=1

1

Z α

∫

σ∈α

Dσ σie
−βH(σ) 1

Z β

∫

τ∈β

Dτ τie
−βH(τ) =

1

ZαZβ

∫

σ∈α

∫

τ∈β

Dσ Dτ e−βH(σ)e−βH(τ) qστ (31)
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This expression shows that by measuring the overlap among states, we are in fact

measuring the overlaps among configurations belonging to the states, and summing

over all pairs of configurations, each one weighted with its own statistical weight.

The self-overlap of a state is simply,

qαα =
1

N

N∑

i=1

〈σi〉2α (32)

The self-overlap will be very important in what follows. It is a measure of the size of

the state in the phase space: the larger qαα, the smaller the state, i.e. the smaller the

number of configurations belonging to the state. On the other hand, a very small self-

overlap indicates a very broad state. In particular, the paramagnetic state (unbroken

ergodicity) has self-overlap equal to zero.

In the limit T → 0 each states concentrate on its lowest energy configuration. In

this case, the self-overlap of each state is qαα = 1, since it is just the self-overlap of a

configuration. When the temperature T grows, more configurations participate to the

state and the self-overlap becomes smaller than one.

2.7. Overlap distribution

As we shall see, in mean-field spin-glasses there are many inequivalent pure states at low

temperatures. In this case, it is useful to introduce the probability distribution of all the

possible values of the overlaps among states. We first compute the overlap distribution

by considering two physical systems with the same disorder (also called real replicas),

and averaging the value of the overlap qστ among the two real replicas,

P (q) =
1

Z2

∫

DσDτe−βH(σ)e−βH(τ) δ(q − qστ ) . (33)

Using the definitions of the previous sections, we have,

P (q) =
∑

αβ

wαwβ
1

Zα

∫

σ∈α

1

Zβ

∫

τ∈β

DσDτe−βH(σ)e−βH(τ) δ(q − qστ ) , (34)

and using the clustering property we finally obtain,

P (q) =
∑

αβ

wαwβ δ(q − qαβ) . (35)

In this formula (which can also be taken as a definition of the P (q)) the sum is extended

over all the possible pairs of states, including pairs of the same state, giving its self-

overlap. Once again, the simple Ising model can help us. At low temperature we have
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two pure states, so we have in principle four possible overlaps,

q++ =
1

N

∑

i

〈σi〉2+ =
1

N

∑

i

m2
i = m2 (36)

q−− =
1

N

∑

i

〈σi〉2− =
1

N

∑

i

m2
i = m2 (37)

q+− = q−+ =
1

N

∑

i

〈σi〉+〈σi〉− = − 1

N

∑

i

mimi = −m2 . (38)

Therefore the function P (q) has two peaks, at−m2 and +m2, each with weight 1/2. It

is important to stress that the number of peaks of the P (q) is not equal to the number

of states, but to the number of possible values taken by the overlap. If we had a very

large number of states, all with the same self-overlap and mutual overlap, we would still

have a bimodal P (q).

To conclude, we note that the particular structure of states of a given sample

depends on the particular realization J of the quenched disorder. For this reason

both the pure states weights, and the distribution P (q) depend on the disorder J . In

particular, P (q) is not a self-averaging quantity when the structure of states is nontrivial.

For the proof and discussion of this crucial statement see [8].

3. Statics

We have now all the tools to start a thermodynamic study of a specific spin-glass. We

will use the replica method to compute the free energy of the system, and will discover

that replicas have (surprisingly enough) a rather deep physical meaning: they will act

as probes exploring the unknown phase space, and sending us important information on

the structure of states in it.

The spin-glass model we will analyze is the p-spin spherical model (PSM). Among

spin-glasses it is the one which bears more similarities with structural glasses, suggesting

that some concepts which are exactly valid for the PSM may be exported to the case of

glasses.

3.1. The p-spin spherical model

The Ising version (i.e. with ±1 spins) of the PSM was introduced in [9], while its

spherical, and simpler, counterpart appeared in [10]. The Hamiltonian of the spherical

PSM is,

H = −
N∑

i1>...>ip=1

Ji1...ipσi1 . . . σip p ≥ 3 (39)

where the spins are now real continuous variables. In order to keep the energy finite, we

have to put a constraint on the spins,

N∑

i=1

σi
2 = N (40)
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this is the spherical constraint, from which the model takes its name. With this

constraint the self-overlap of each configuration is one. The Hamiltonian is a sum

of p-body interactions, and the sum is extended over all groups of spins, not only the

nearest-neighbor, so the model has no spatial structure, and it is in fact a mean-field

model. For such models the droplet argument given above does not work (each spin

interacts with N other spins, there are no surfaces), and thus the free energy barriers

around metastable states may be infinite. For this reason mean-field models are the

ideal play-ground to study metastability.

Each random coupling J is a Gaussian variable, with distribution,

dp(J) = exp

(

−1

2
J2 2Np−1

p!

)

dJ (41)

where the factors 2 and p! are a matter of convention, whereas the factorNp−1 is essential

in order to have the Hamiltonian of order N , and thus extensive energy and free energy,

√

J2 ∼ 1

N
p−1

2

⇒ H ∼ N (42)

The relevance of the PSM in the context of glassy physics is due to the great

role played by metastable states in such a model. A hint of this fact comes from the

ferromagnetic version of the PSM, that is Ji1...ip = 1/Np−1 for each coupling: unlike its

p = 2 counterpart, this model has a first order transition between a high T paramagnetic

phase and a low T ferromagnetic one (solving the ferromagnetic mean-field PSM is a

trivial exercise). In particular, there are two relevant temperatures: a temperature Td

below which a ferromagnetic state develops, but with a free energy higher than the

paramagnetic one, and a lower temperature Ts, where the ferromagnetic state becomes

stable and the thermodynamic transition takes place. From a dynamical point of view,

however, the higher temperature Td is quite relevant, since for T < Td the system

may remain trapped by the ferromagnetic state, even though metastable, if the initial

magnetization is positive and large enough.

The first order transition at Ts in the ferromagnetic PSM is driven by entropy, since

the energy of the ferromagnetic states is always lower than the paramagnetic one. We

can roughly understand this point by noting that the p-body interaction indeed increases

very much the entropic contribution of the paramagnet, compared to the canonical p = 2

case. Metastability, entropy driven transitions, and purely dynamical transitions will

be also key ingredients of the disordered PSM we are about to study.

3.2. First try: the replica symmetric calculation

We start our static study of the PSM by performing an annealed calculation of the free

energy. We know it is wrong at low temperatures, but it will be anyway a useful warm-

up exercise. In what follows we will often write the indices for the p = 3 case, such

that Ji1...ip becomes Jijk. However, to give formulas that are valid even in the general

case, we will write all the factors containing a term p for the generic p case, for example
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we will write Np/p! rather than N3/6. Another short-cut we will use is to disregard

all normalizing factors that, once taken the log and divided by N , go to zero in the

thermodynamic limit. Finally, we have to remember that all our integrals over σ are

restricted to the surface of a sphere by the spherical constraint. The average partition

function is given by,

Z =

∫

Dσ

∫
∏

i<j<k

dJijk exp

[

−J2
ijk

Np

p!
+ Jijkβσiσjσk

]

=

∫

Dσ exp

[

β2

4Np−1

(
∑

i

σ2
i

)p]

=

exp

[

N
β2

4

]

Ω , (43)

where Ω is the surface of the sphere. In the equations above we have used the formula,

p!
N∑

i<j<k

=
N∑

ijk

(44)

which is valid in the thermodynamic limit. The annealed free energy is therefore given

by,

Fa = −β/4− TS∞ , (45)

with the infinite temperature entropy, S∞ = log(Ω)/N . This is, in fact, the correct

free energy at high temperatures, i.e. in the paramagnetic phase. However, it can

be proved that at lower temperatures the annealed-paramagnetic solutions has a free

energy larger than the free energy found by the quenched computation: as anticipated

above the annealed approximation in general only holds at higher temperatures, while

at low temperature the quenched computation must be performed. Note that the fact

that the annealed entropy becomes negative at low temperatures would not be by itself

a sufficient reason to discard it, since the model is continuous, and a negative entropy

is thus perfectly legal.

In order to perform the quenched calculation we must compute the average of the

replicated partition function. Since now on the indices i, j, k, . . . will refer to sites, while

a, b, . . . will refer to replicas. We have,

Zn =

∫

Dσa
i

∏

ijk

∫

dJijk exp

[

−J2
ijk

Np

p!
+ Jijkβ

n∑

a

σa
i σ

a
j σ

a
k

]

=

∫

Dσa
i

∏

ijk

exp

[

β2p!

4Np−1

n∑

ab

σa
i σ

b
iσ

a
jσ

b
jσ

a
kσ

b
k

]

=

∫

Dσa
i exp

[

β2

4Np−1

n∑

ab

(
N∑

i

σa
i σ

b
i

)p]

. (46)

We can see here the powerful replica trick at work: we started from a set of coupled

sites and uncoupled replicas, and averaging over the disorder we decoupled the sites,
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but coupled the replicas (unfortunately in non-mean field models the replica trick is not

enough to decouple the sites). In particular, the overlap between two different replicas

of the system very naturally appeared in the calculation,

Qab =
1

N

∑

i

σa
i σ

b
i (47)

Note that Qaa = 1 due to the spherical constraint. We introduce now a factor 1 in our

calculation,

1 =

∫

dQab δ

(

NQab −
∑

i

σa
i σ

b
i

)

, (48)

and finally we use an exponential representation for the δ-function, to obtain,

Zn =

∫

DQab Dλab Dσ
a
i ·

· exp

[

β2N

4

∑

ab

Qp
ab +N

∑

ab

λabQab −
∑

i

∑

ab

σa
i λabσ

b
i

]

=

=

∫

DQab Dλab exp [−N S(Q, λ)] (49)

with,

S(Q, λ) = −β
2

4

∑

ab

Qp
ab −

∑

ab

λabQab +
1

2
log det(2λab) (50)

In (49) the integration over Qab is performed over all the matrices with a 6= b, while the

integration over λab includes also a = b to enforce the spherical constraint. The sums in

the exponentials are over all the indices, including a = b.

The great advantage of this form of the integral is that we can use the saddle point

(or Laplace, or steepest-descent) method [11], to solve it in the limit N → ∞. This

simplification is the big effect of mean-field, and it is the result of the decoupling of the

sites operated by the use of the replica trick. The price we had to pay is that we coupled

replicas, and this looks somewhat weird at this stage of the computation.

The saddle-point method states that in the limit N → ∞ the integral (49) is

concentrated in the minimum of the integrand. However, we have to be careful here,

for a twofold reason. First, the free energy is in principle given by,

−βF = lim
N→∞

lim
n→0

1

nN
log

∫

DQab Dλab exp [−N S(Q, λ)] (51)

and thus we should first take the limit n → 0, and then N → ∞. Unfortunately, we

are unable to do this: S is not an explicit function of n, and moreover we need to send

N → ∞ first to solve the integral. As a conclusion, we need to exchange the order of

the two limits, solve the integral, find a parametrization of the matrix Qab, and finally

take the n → 0 limit at the end. Of course, this is mathematically risky, to say the

least.
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The second point we have to pay attention to, is what do we actually mean by

“minimum” of S. The problem here is that the number of independent elements of Qab

is n(n − 1)/2, which becomes negative is the limit n → 0. It is hard to say what is a

minimum of a function with a negative number of variables ! There is however a criterion

we can use to select the correct saddle point: the corrections to the saddle point result

are given by the Gaussian integration around the saddle point itself. This integration

gives as a result the square root of the determinant of the second derivative matrix of

S, and thus, in order to have a sensible result, we must have all the eigenvalues of this

matrix positive. Summarizing, we have to select saddle points with a positive-defined

second derivative of S [12].

At this point we can proceed with the saddle point calculation. We first minimize

(maximize ?) S with respect to λab. By using the general formula,

∂

∂Mab
log detMab = (M−1)ab (52)

we get,

2λab = (Q−1)ab (53)

and thus,

F = lim
n→0
− 1

2βn

[

β2

2

∑

ab

Qp
ab + log detQab

]

(54)

where Qab satisfies the saddle point equation,

0 =
∂F

∂Qab
=
β2p

2
Qp−1

ab + (Q−1)ab . (55)

Note that Qaa = 1 due to the spherical constraint.

What we have obtained is a free energy F , function of an order parameter, Qab,

which is definitely weirder than the simple magnetization m = 〈σ〉 we would have in the

ferromagnetic Ising model. This order parameter is the overlap between configuration

belonging to different replicas, and its physical meaning will be clearer later on. For

now, we limit ourselves to find a solution of the saddle point equation. To do this we

have first to find a parametrization of the matrix Qab, and to write (55) as a function

of the elements of Qab and of its dimension n.

Given that all replicas are equivalent (they just come from a formal trick !), it seems

wise to assume a replica symmetric form for the matrix Qab. This is what Sherrington

and Kirkpatrick did in their first mean-field spin glass model [13], that is,

Qab = q0 + (1− q0)δab . (56)

This means that all the elements of Qab are equal to q0, but on the diagonal, where they

are 1. The value of q0 must be found from the saddle point equations. We have,

(Q−1)ab =
1

1− q0
δab −

q0
(1− q0)[1 + (n− 1)q0]

(57)
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and thus (55) becomes, in the limit n→ 0,

β2p

2
qp−1
0 − q0

(1− q0)2
= 0 (58)

We first see that q0 = 0 is always solution of this equation. This is the paramagnetic

solution, and from (54) we get F = −β/4, which is the same as the annealed result

(except for the phase space volume S∞ we did not include here). Thus, the annealed

calculation gives the same result as the quenched calculation when the overlap matrix

Qab is the identity. This is obvious, because when Qab = δab replicating or not the

system is exactly the same.

However, we also have a non-paramagnetic solution q0 6= 0. Recasting the equation

in the following form,

qp−2
0 (1− q0)2 =

2

p
T 2 (59)

we clearly see that at high temperatures there is no nontrivial solution, while by

decreasing T we arrive at a critical value T ⋆ below which a pair of nonzero solutions

forms. Of these two solution the only acceptable one is the larger one, which increases

with decreasing T (the self overlap must increase if the number of configurations

belonging to a state decreases, and this is exactly what we expect when we decrease

the temperature). Therefore we seem to have a transition at T ⋆, and in particular a

discontinuous transition, since the value of q0 at the transition is different from zero,

i.e. there is a jump of the order parameter at the transition. Moreover, the free energy

associated to this new solution is lower than the paramagnetic one, therefore it would

seem we have found the new non-paramagnetic state at low temperatures.

All this seems very interesting, but there is a problem: the nontrivial solution we

have found is unstable [12, 10]. As we have said above, when we select a saddle point, we

have to be sure that all the eigenvalues of the second derivative of F around the saddle

point are positive. Unfortunately, this is not the case for this solution: both roots of

equation (59) have one negative eigenvalue below T ⋆.

What can we do ? Remember that we did not search the whole space of Qab to

find a solution, but rather assumed a certain parametrization, which looked more or

less sensible, and plugged it into the saddle point equation. The fact that the replica

symmetric ansatz gave us a nontrivial solution at low T , but which is unstable, clearly

means that the low temperature phase of the model must be describe by a replica

symmetry breaking form of the order parameterQab. Before looking for this new solution,

it is finally the moment to try and understand what is the physical meaning of the weird

order parameter Qab.

3.3. The key connection between replicas and physics

Let us consider the following quantity,

q(1) =
1

N

∑

i

〈σi〉2 (60)
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which, as we have seen in the previous chapter, is a quite natural definition of an order

parameter, since it is just a generalization of the average magnetization m. By using

the technology developed in the first chapter, we can rewrite q(1) in the following way,

q(1) =
1

N

∑

i

∑

αβ

wαwβ 〈σi〉α〈σi〉β =
∑

αβ

wαwβ qαβ =

∫

dq
∑

αβ

wαwβ δ(q − qαβ) q =

∫

dq P (q) q (61)

Therefore q(1) is the first moment of the overlap distribution, averaged over the disorder.

By using the clustering property, we can easily find a generalization of this formula [4],

q(k) =
1

Nk

∑

i1...ik

〈σi1 . . . σik〉2 =

∫

dq P (q) qk (62)

The important fact is that we can compute these quantities also using the replica trick.

In particular,

q(1) =
1

N

∑

i

〈σi〉2 = lim
n→0

∫

Dσa
i

1

N

∑

i

σ1
i · σ2

i e
−β

∑

a H(σa) (63)

If we now go on with the calculation along the lines of the previous paragraphs,

introducing the overlap matrix Qab, we get,

q(1) =

∫

DQab e−NS(Qab)Q12 = QSP
12 (64)

where QSP
ab is the saddle point value of the the overlap matrix (since now on we will

drop the suffix SP), and where we have exploited the fact that S is of order n, and

therefore does not contribute when n → 0. Of course, there is something wrong about

this formula: replicas 1 and 2 cannot be different from the others! If we decided to call

them 4 and 7, we would get a different result when Qab is not replica symmetric: this

is nonsense ! What is going on here ? To understand this point we note that if the

saddle point overlap matrix is not symmetric, then there must be other saddle point

solutions with the same free energy, but corresponding to matrices obtained from Qab

by a permutation of lines and columns [4]. This is a general result: when a saddle point

breaks a symmetry corresponding to a given transformation, all the points obtained

by applying the transformation to that particular saddle point, are equally valid. This

means that we must average over all these saddle points, and this is equivalent to

symmetrize equation (64) [14, 15], obtaining,

q(1) = lim
n→0

2

n(n− 1)

∑

a>b

Qab (65)

This result is already telling us that there is a connection between the physical order

parameter q(1), and the matrix of the overlap among replicas Qab. To go further, we can

generalize (65), to get,

q(k) = lim
n→0

2

n(n− 1)

∑

a>b

Qk
ab (66)
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A comparison with equation (62), gives for a generic function f(q) the relation,

∫

dq f(q) P (q) = lim
n→0

2

n(n− 1)

∑

a>b

f(Qab) (67)

and in particular choosing f(q) = δ(q−q′), we finally find the crucial equation connecting

physics to replicas,

P (q) = lim
n→0

2

n(n− 1)

∑

a>b

δ(q −Qab) . (68)

This equation is telling us that the average probability that two pure states of the system

have overlap q is equal to the fraction of elements of the overlap matrix Qab equal to q.

In other words, the elements of the overlap matrix (in the saddle point) are the physical

values of the overlap among pure states, and the number of elements of Qab equal to q

is related to the probability of q.

This is a key connection, and we understand now that Qab has an enormous physical

meaning. As a first application, let us analyze the meaning of the replica symmetric

ansatz, Qab = q0 for each a 6= b. From (68) we see that this structure of the overlap

matrix implies that the average overlap distribution is given by,

P (q) = δ(q − q0) , (69)

that is there is one single possible value of the overlap among states. As we have seen,

the overlap distribution should also include the self-overlap of the states, and therefore

this value q0 must be the self-overlap of the unique state in the system. The conclusion

is that a replica symmetric form of the overlap matrix in the free energy calculation,

can only be valid if there is one single equilibrium state. This state will typically be

the paramagnetic state, and its self-overlap will be q0. On the other hand, if at low

temperatures there is ergodicity breaking, with the emergence of many inequivalent

pure states, then the correct form of Qab cannot be replica symmetric.

Now that we know what is the meaning of the overlap matrix, there is a slight

chance to understand how to find a replica symmetry breaking form of it.

3.4. Replica symmetry breaking

Thanks to equation (68) the relations of overlap among states translate into relations

of overlaps among replicas. Therefore, in order to give an ansatz on the form of Qab we

have to guess what may be the structure of states in the low temperature phase of a

spin-glass model. Vast programme ! - as someone once said [16].

Our starting point is a fact we already know: if there is ergodicity breaking, that is

if there are many states, configurations in the phase space are organized into states. In

other words, we can think of states as blobs of configurations in the phase space, with

each configuration belonging to just one blob. The self overlap of a state is just the

average overlap of the configurations belonging to it, i.e. it is a measure of the largeness
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of the blob. On the other hand, the overlap between different states is basically the

overlap between configurations belonging to them.

Given this, the simplest possible spectrum of overlaps we can have when there

are many states is the following: q = 1, if we consider twice the same configuration,

q = q1 < 1 if we consider different configurations belonging to the same state, q = q0 < q1
if we consider configurations belonging to different states. In this way we are assuming

that all states have the same self-overlap q1, and mutual overlap q0. Moreover, a physical

requirement is that q1 > q0, since configurations belonging to the same state must be

closer than those in different states.

What is the corresponding structure of Qab ? What is clear by now is that replicas

act as probing configurations of the structure of the states, so we must reproduce for

replicas the same clustering procedure we have seen for the configurations: replicas may

belong to the same group, having overlap Qab = q1, or to different groups, with overlap

Qab = q0. Finally, when we select twice the same replica we obtain Qaa = 1. To this

structure corresponds the matrix [17],

Qab =















1 q1 q1
q1 1 q1
q1 q1 1

q0 · · ·

q0

1 q1 q1
q1 1 q1
q1 q1 1

...
. . .















(70)

where we have assumed, to make an example, that the number m of replicas in each

group is m = 3. As we have seen, the parameter m is connected to the probability of

having a given value of the overlap, therefore it will become a variational parameter in

the saddle point equations, as q1 and q0. This structure of Qab reflects what we have

said above. Note that any permutation of lines or column (replica permutation) would

also correspond to the same structure, but it would simply be much harder to visualize.

This matrix has the important property that
∑

a Qab does not depend on b, which is an

essential requirement, since replicas must be all equivalent [19].

It is clear that the clustering process we have described can be iterated [18]: states

can be grouped into clusters, which can be grouped into super-clusters, and so on. The

structure of states one obtains in this way is called ultrametric, and unfortunately we

do not have time to describe it here [8]. The important point is that for the PSM

the simple structure described above is sufficient [10]. This kind of replica symmetry

breaking (RSB) is called one step RSB, or 1RSB.

Let us compute the overlap distribution associated to the 1RSB structure of Qab.

From (68) we get,

P (q) =
m− 1

n− 1
δ(q − q1) +

n−m
n− 1

δ(q − q0) (71)
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with,

1 ≤ m ≤ n (72)

We clearly see that while the elements q1, q0 fix the position of the peaks, the parameter

m fixes their height, and therefore the probability of the overlaps. We have now to take

the limit n → 0. Here lies possibly the weirdest twist of the replica method. Relation

(72) seems to resist strenuously to our will to send n to zero. However, in this limit it

is clear that also m must be promoted to be a real number, rather than an integer. To

see how to do this we can appeal to physics (for once !), and accept the fact that the

probability (71) must be positive even in the limit n→ 0,

P (q) = (1−m) δ(q − q1) +mδ(q − q0) (73)

For this to be positive we must have m < 1 and m > 0. Therefore, the correct limit of

(72) for n→ 0, is,

0 ≤ m ≤ 1 . (74)

Summarizing, with the 1-step replica symmetry breaking ansatz we have parametrized

the overlap matrix Qab by means of two values of the overlap,

0 ≤ q0 ≤ q1 ≤ 1 (75)

and one value of the probability parameter m. We have now to fix them via the saddle

point equation.

3.5. The 1RSB solution and the static transition

The first thing to do is to compute the free energy as a function of q1, q0, m. We had,

F = lim
n→0
− 1

2βn

[

β2

2

∑

a,b

Qp
ab + log detQ

]

(76)

The first piece is easy to compute and gives in the limit n→ 0,

1

n

∑

ab

Qp
ab =

∑

a

Qp
ab = 1 + (m− 1)qp

1 −mqp
0 (77)

The second piece is a bit harder: the 1RSB matrix Qab has three different eigenvalues

and degeneracies (the student should be able to work them out),

λ1 = 1− q d1 = n− n/m (78)

λ2 = m(q1 − q0) + (1− q1) d2 = n/m− 1 (79)

λ3 = nq0 +m(q1 − q0) + (1− q) d3 = 1 (80)

From this, taking carefully the limit n→ 0, we finally obtain,

− 2βF1RSB =
β2

2
[1 + (m− 1)qp

1 −mqp
0 ] +

m− 1

m
log(1− q1) +

+
1

m
log[m(q1 − q0) + (1− q1)] +

q0
m(q1 − q0) + (1− q1)

(81)
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to be compared with the replica symmetric (RS) free energy,

−2βFRS =
β2

2
[1− qp

0] + log(1− q0) +
q0

1− q0
(82)

It is interesting to note that the RS form is obtained either from q1 → q0, or m→ 1. In

the first limit, many states merge to form a single paramagnetic state. This is exactly

what happens in the Ising model when T → T−
c , and it is a consequence of the second

order nature of the transition in that model. The m → 1 limit has a different, less

trivial, interpretation, as we shall see in a minute.

We have now to study the saddle point equations with respect to q1, q0, m. First,

the equation ∂q0
F = 0 gives as a solution q0 = 0. This solution is correct in absence

of external magnetic field: q0 is the mutual overlap among different states, and it is

natural to think that without external field the distribution of states in the phase space

is symmetric, and thus all states must be orthogonal to each other.

The two remaining equations ∂q1
F = 0 and ∂mF = 0 are,

(1−m)

(
β2

2
pqp−1

1 − q1
(1− q1)[(m− 1)q1 + 1]

)

= 0

β2

2
qp
1 +

1

m2
log

(
1− q1

1− (1−m)q1

)

+
q1

m[1− (1−m)q1]
= 0 (83)

These equations can be easily studied on a computer, but most of the physics can be

worked out also graphically. At high T the only solution is q1 = 0 and m undetermined:

this is the paramagnetic solution, which is equal to the RS one. We want to know

whether there is a nontrivial spin-glass solution with q1 6= 0. The first equation is solved

by m = 1. So let us plug m = 1 into the second equation,

β2

2
qp
1 + log (1− q1) + q1 ≡ g(q1) = 0 (84)

The graphical study of this equation for 0 ≤ q1 ≤ 1 is trivial. The limits are g(0) = 0 and

g(1) = −∞. At high T the function is monotonous and only the q1 = 0 solution exists.

However, by lowering the temperature, g(q1) develops a maximum, whose height diverges

for decreasing T . Therefore, it must exist a temperature Ts, where this maximum

touches the axis at q1 ≡ qs 6= 0. Therefore, at T = Ts a new spin-glass solution appears,

with q1 = qs and m = 1. When T < Ts we have to move m from 1, and one can see that

the solution simply shifts, q1 > qs, m < 1 [10]. The important point is that, unlike the

RS nontrivial solution, this solution is stable. Moreover, its free energy its lower than

the paramagnetic one. The temperature Ts where this nontrivial 1RSB solution appears

is called static transition temperature. It has been proved that the 1RSB solution is

exact in the PSM [10]. This means that if we take higher order RSB ansatz for Qab,

from the saddle point equations we find that all the extra parameters we introduce have

in fact a trivial value, and that the 1RSB solution is recovered.

As we have seen, at Ts the value of the self-overlap is nonzero, q1 = qs, while m = 1.

This fact has an interesting physical interpretation. For T > Ts the overlap distribution
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is trivial, P (q) = δ(q). By decreasing the temperature, finally a second peak appears

at Ts, for q = qs. This value is nonzero, meaning that at the transition the states are

already well formed, that is tight. However, at Ts we have m = 1, meaning that the

height of this nontrivial peak is in fact zero: the probability of these new states is zero at

the transition, and it grows below Ts as m becomes smaller than one. In other words,

it seems that when the states appear, they are already well formed, but have a zero

thermodynamic weight.

This fact has a possible interpretation in terms of metastable states: the calculation

we have just performed is a thermodynamic one, and therefore by its very nature it is

unable to capture the contribution of metastable states. If in this systems there were

some metastable states even above Ts, and some of them became stable only below Ts,

the behaviour of P (q) would be exactly the one described above. The states are already

present in the phase space, even above Ts, with a well defined nonzero self-overlap, but

their thermodynamic weight is zero, as long as the temperature does not drop below the

static transition. At that point the free energy of these states becomes smaller than the

paramagnetic one, therefore their weight is nonzero, and the P (q) develops a secondary

peak. For now, this is just a well motivated hypothesis. We will see in the following

chapters that it is in fact verified.

Summarizing, in the PSM we find a static transition between a high temperature

paramagnetic phase, and a low temperature spin-glass phase below Ts. In this phase

many pure states dominate the partition function. The order parameter of this unusual

transition is the overlap matrix Qab, and more precisely, within the 1RSB scheme, the

self-overlap q1 and the probability parameter m. In the paramagnetic phase the overlap

matrix has a replica symmetric form, with q1 = 0 and m undetermined, while in the

spin-glass phase there is replica symmetry breaking, with nontrivial values of q1 and

m. The nature of this transition is discontinuous if we consider the parameter q1, but

continuous if we consider the whole probability distribution P (q).

4. Equilibrium dynamics

As we have already pointed out, the dynamical behaviour of a system will be very

different from its thermodynamic behaviour, if metastable states are present. This

is particularly true in mean-field, where metastable states may have infinite lifetime.

The results from the previous chapter seem to suggest that something nontrivial is

going on in the PSM even for T > Ts. It is therefore important that we perform

an independent dynamical study of the model, and see whether our guess about the

presence of metastable states was right. A nice introduction to the main concepts of

dynamics can be found in [20].
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4.1. The generating functional formalism

Before focusing on the PSM, we give a brief summary on how to study the dynamics

of a degree of freedom x(t), described by an Hamiltonian H(x), which contains some

quenched disorder. The starting point of our dynamical study is the Langevin equation

[21],
dx

dt
= −∂H

∂x
+ η(t) (85)

where η(t) is a Gaussian noise, playing the role of the thermal agitation, with

〈η(t)〉 = 0 (86)

〈η(t)η(t′)〉 = 2T δ(t− t′) (87)

The factor 2T is crucial, since it relates the strength of the noise to the friction coefficient

in the Langevin equation [20]. In the rest of this chapter we will have to integrate

repeatedly over the degrees of freedom x(t), and over the disorder η(t), which are both

functions of time. Thus, most of the integrals will be functional integrals. With the

notation Dx we actually mean a measure over all the paths, i.e. D[x(t)] [23]. The

probability P (η) of the noise can be written as,

P (η) ∼ exp

[

−1

2

∫

dtdt′ η(t)D−1(t− t′)η(t′)
]

(88)

with

D(t− t′) = 2T δ(t− t′) (89)

Every solution x(t) of the Langevin equation depends on the particular realization of

the thermal noise η(t), and we indicate it as xη(t). From the probability distribution

on η we can therefore obtain a distribution on x. To work this out, let us compute the

average over the noise of a generic observable A, function of the degree of freedom x(t),

〈A(x)〉 =

∫

Dη P (η)A(xη) =

∫

Dη P (η)

∫

dx δ(x− xη)A(x) =

=

∫

dx

[∫

Dη P (η) δ(∂tx+ ∂xH − η)
]

A(x) =

=

∫

dxP (x)A(x) (90)

where we have defined the probability of x as,

P (x) =

∫

Dη P (η) δ(∂tx+ ∂xH − η) (91)

Note that in principle we should introduce the Jacobian of the equation in the formula

above. However, it can be proved that if we discretize the Langevin equation according

to the Ito prescription, this Jacobian is in fact equal to 1, and can therefore be neglected

[21, 22].
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When the Hamiltonian contains quenched disorder J (as in the case of the PSM) we

must find a way to average over J . Clearly, if we simply average the Langevin equation

we get a disappointing 0 = 0. In fact, the correct quantity which has to be averaged

over the disorder is the distribution P (x) above, such that to compute the average over

J of an observable A we can simply use the formula,

〈A(x)〉 =

∫

Dx P (x) A(x) (92)

Rather than precisely compute P (x), we average the integral of P (x), in order to deal

with a scalar quantity. This is the generating functional method [24, 25], which has

been first applied and studied in the field of spin-glasses in [26, 27, 28]. The starting

point of the method is an apparently redundant way to represent the number 1,

1 ≡ Z =

∫

DxP (x) =

∫

DxDη P (η) δ(∂tx+ ∂xH − η) =

=

∫

DxDx̂Dη exp

[

−1

2

∫

dtdt′ η(t)D−1(t, t′)η(t′)+

+ i

∫

dt x̂(t)(∂tx+ ∂xH)− i
∫

dt x̂(t)η(t) ]

=

∫

DxDx̂ exp

[

−1

2
x̂Dx̂+ ix̂(∂tx+ ∂xH)

]

≡
∫

DxDx̂ exp [S(x, x̂)] (93)

with S = −1
2
x̂Dx̂ + ix̂(∂tx + ∂xH). We used the integral representation of the delta

function and the fact that the functional integral is Gaussian. In our notation we do

not indicate explicitly the time contractions: x̂Dx̂ =
∫
dt dt′ x(t)D(t, t′)x(t′), and the

same holds for ix̂(∂tx+ ∂xH).

The quantity Z is the generating functional. The fact that it is just equal to 1,

must not deceive the student. In fact, we can calculate all the interesting dynamical

quantities with this functional. Let us see how. When we introduce a time dependent

magnetic field in the system, we have an extra term,

∫

dt x(t)h(t) (94)

in the Hamiltonian. Thus we have an extra term h(t) in the original Langevin equation,

which translate into a term, ∫

dt x̂(t)h(t) (95)

in the action S above. Therefore, when we derive the average of any quantity with

respect to h(t) we pull down a factor x̂(t) from the exponential, and in particular,

∂

∂h(t)
〈x(t′)〉 = 〈x̂(t)x(t′)〉 ≡ R(t, t′) (96)
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which is the dynamical response function of the system, i.e. the dynamical equivalent

of the susceptibility in thermodynamics. On the other hand, we can couple a field ĥ(t)

to x(t) in the generating functional, and get,

∂

∂ĥ(t)
〈x(t′)〉 = 〈x(t)x(t′)〉 ≡ C(t, t′) (97)

that is the time dependent correlation function. Summarizing, once the conjugate fields

h(t) and ĥ(t) are introduced, we have,

R(t, t′) =
∂Z

∂ĥ(t′)∂h(t)

C(t, t′) =
∂Z

∂ĥ(t′)∂ĥ(t)
(98)

Let us now consider a system with quenched disorder in the Hamiltonian. We first

define,

L(x) ≡ ∂tx+
∂H

∂x
(99)

and then split the Hamiltonian into a part without disorder H0, and a part with disorder

HJ , such that the Langevin equation becomes,

L(x) = L0(x) + LJ(x) = η(t) (100)

with

L0 = ∂tx+
∂H0

∂x
LJ =

∂HJ

∂x
(101)

and

〈ηη〉 = 2Tδ(t− t′) ≡ D0(t− t′) . (102)

The generating functional becomes,

Z =

∫

DxDx̂ exp

{

−1

2
x̂D0x̂+ ix̂ [L0(x) + LJ(x)]

}

(103)

It should be clear by now that Z has, in the dynamical approach, the same role as

the partition function in thermodynamic. This may suggest that, when averaging over

J , we should consider log Z rather than Z, in order to reproduce the quenched case.

However, this is not the case. In fact, the crucial point is that Z = 1, and thus it can

be safely averaged over J ! Therefore in the dynamic approach we do not need replicas

[27]. This does not mean that the calculation will be simpler. Actually, we will see that

time plays the same role as replicas: by averaging over J we will decouple the sites, but

couple different times.

We fact that replicas are not needed in the dynamical case can be understood also

in a more direct way. As we have already said, the correct quantity to average over the

disorder J is the probability distribution PJ(x) of the degree of freedom x. In the static

case we have,

P
(s)
J (x) =

e−βHJ (x)

∫
Dx̂ e−βHJ (x̂)

(104)
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In order to be averaged over J this expression must be rewritten in terms of replicas,

P
(s)
J (x) = lim

n→0

∫

Dx̂a6=1 e
−β

∑n
a HJ (x̂a) , (105)

where x̂1 = x. On the other hand, from (93) we see that the distribution in the dynamic

case is given by,

P
(d)
J (x) =

∫

Dx̂(t) e
∫

dt SJ [x(t),x̂(t)] (106)

where we have reinstated the dependence on the time t to emphasize the formal similarity

between the replicated static case and the unreplicated dynamic one. It is clear that in

the latter case we do not need replicas to average over J . However, in the dynamic case

the variable t plays a role analogous to the replica index a.

Expression (103) is interesting for two reasons: first, the coefficients of x̂2 and x̂ are

respectively the correlator of the noise, and the noise-independent part of the original

Langevin equation; second, the disorder J is only contained in LJ at the exponent, and

it can be easily integrated out. This average will renormalize the coefficients of x̂2 and

x̂, giving rise to a new effective Langevin equation [29]. More specifically, the average

over J gives,

Z =

∫

DxDx̂ exp

[

−1

2
x̂D0x̂+ ix̂L0(x)

]

exp[ix̂LJ(x)] (107)

We define the quantity ∆(x, x̂) as

exp[∆(x, x̂)] ≡ exp[ix̂LJ(x)] (108)

Once the average is done, it is possible in general to isolate various pieces in ∆, and in

particular,

∆(x, x̂) = −1

2
x̂D1(x, x̂)x̂+ ix̂L1(x, x̂) + . . . (109)

where L1 renormalizes the disorder-independent part of the Langevin equation L0, and

D1 renormalizes the noise correlator. In the end we have the effective Langevin equation,

L0(x) + L1(x, x̂) = ξ with 〈ξξ〉 = D0 +D1(x, x̂) (110)

In this equation the disorder is no longer present, but we had to pay a price: the

original equation gets some nontrivial corrections. The most evident difference is that

the variable ξ, the new effective noise, is no longer delta-correlated in time. In other

words the integration over J has introduced a sort of memory in the dynamics of the

system. This phenomenon is common in statistical physics: whenever starting from a

Markovian stochastic process we integrate over some degrees of freedom (the disorder,

the fast variables, the momenta, etc.), we end up with a new effective equation which

is no longer Markovian, and where modes which were previously uncoupled, are now

coupled (a simple example of this phenomenon can be found in [20]).
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4.2. Dynamics of p-spin spherical model

In the following section we will apply the technique described above to the PSM [29, 30].

The formalism is trivially generalized to the case of a vectorial degree of freedom σk. In

the Langevin equation we must add a Lagrange multiplier µ(t) in order to impose the

spherical constraint:

∂tσi(t) = −∂H
∂σi
− µ(t)σi(t) + ηi(t) with 〈η(t)η(t′)〉 = 2Tδ(t− t′) (111)

The derivative of the Hamiltonian with respect to σi gives,

∂H

∂σi

= − p
p!

∑

kl

Jikl σkσl (112)

The generating functional is given by equation (103), with x→ σk, x̂→ σ̂k, and,

iσ̂ · L0 =
∑

k

∫

dt iσ̂k(t) [∂tσk(t) + µ(t)σk(t)]

iσ̂ · LJ = − ip

p!

∫

dt
∑

ikl

Jikl σ̂i(t)σk(t)σl(t) (113)

If we compare this last expression with the static formulas (see equation 3.2), we can

see that in this case the time has the same function as the replica index,

∫

dt
∑

ikl

Jikl σ̂i(t)σk(t)σl(t)←→
∑

a

∑

ikl

Jikl σ
a
i σ

a
kσ

a
l (114)

The following step is to average over the disorder, that is to compute exp(iσ̂ · LJ). In

the statics this operation gives a coupling among replicas, in this case we will have a

coupling among times. A technical remark: before averaging, we need to symmetrize

the term σ̂σσ in (113), since the couplings are completely symmetric. We find,

exp(iσ̂ · LJ) =

=

∫
∏

i>k>l

dJikl exp

{

− 1

2p!
J2

ikl2N
p−1 − Jikl

∫

dt[iσ̂iσkσl + σiiσ̂kσl + σiσkiσ̂l]

}

=

= exp

{∫
dtdt′

4Np−1
[p(iσ̂ · iσ̂)(σ · σ)p−1 + p(p− 1)(iσ̂ · σ)(σ · iσ̂)(σ · σ)p−2]

}

(115)

where we used the notation,

σ · σ ≡
N∑

i=1

σi(t)σi(t
′) (116)

As we anticipated, in the calculation appeared a coupling among different times, through

the overlap of the configuration at time t and t′. In complete analogy with the static
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case, we therefore introduce as an order parameter the dynamical overlap [31, 30], and

get,

exp(iσ̂ · LJ) =

=

∫

DQ δ

(

NQ1 −
∑

k

iσ̂k(t)iσ̂k(t
′)

)

δ

(

NQ2 −
∑

k

σk(t)σk(t
′)

)

·

· δ

(

NQ3 −
∑

k

iσ̂k(t)σk(t
′)

)

δ

(

NQ4 −
∑

k

σk(t)iσ̂k(t
′)

)

·

· exp

{
pN

4

∫

dtdt′[Q1(t, t
′)Q2(t, t

′)p−1 + (p− 1)Q3(t, t
′)Q4(t, t

′)Q2(t, t
′)p−2]

}

It is clear the similarity between the overlap matrix Qab =
∑

k σ
a
kσ

b
k/N in the static

approach, and Q2(t, t
′) =

∑

k σk(t)σk(t
′)/N : in the first case we have a static overlap

between configurations belonging to different replicas, in the second case we have a

dynamic overlap between configurations at different times. It is not only Q2 that has

a physical meaning. From their definitions and from the discussion above, we see that

Q3 and Q4 are both a response functions, 〈σσ̂〉, with their time arguments exchanged.

Finally, it is possible to argue that the (hard to interpret) order parameter Q1 = 〈σ̂σ̂〉
must be zero [31]. Summarizing,







Q1(t, t
′) = 0

Q2(t, t
′) = C(t, t′)

Q3(t, t
′) = R(t′, t)

Q4(t, t
′) = R(t, t′)

(117)

We now give an exponential representations of the δ-functions. For example,

δ

(

NQ2(t, t
′)−

∑

k

σk(t)σk(t
′)

)

=

∫

Dl2 exp

[

iN

∫

dtdt′ (l2Q2 − l2σ · σ)

]

(118)

and we use the saddle-point method to compute the integral. By setting to zero the

derivatives with respect to all the Q’s, we get the equations,






il1 = p
4
Qp−1

2

il2 = p
4
(p− 1)Q1Q

p−2
2 + p

4
(p− 1)(p− 2)Q3Q4Q

p−3
2 ≡ 0

il3 = p
4
(p− 1)Q4Q

p−2
2

il4 = p
4
(p− 1)Q3Q

p−2
2

The product Q3Q4 is zero because of causality: if t > t′, then R(t′, t) = 0 and vice versa.

In order to write the effective Langevin equation we have to recognize what are the new

coefficients of σ̂σ̂ and of σ̂σ. From the definition of the l’s we have the following new

term in the generating functional,

∆ =
∑

k

∫

dt dt′
{

−p
4
C(t, t′)p−1σ̂k(t)σ̂k(t

′)− 1

2
p(p− 1)R(t, t′)C(t, t′)p−2iσ̂k(t)σk(t

′)

}

,

(119)
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Note that at this point the sites in the action of the generating functional are all

decoupled. Therefore we can write an effective Langevin equation for a scalar degree of

freedom σ [29],

∂tσ(t) = −µ(t)σ(t) +
1

2
p(p− 1)

∫

dt′′R(t, t′′)C(t, t′′)p−2σ(t′′) + ξ(t) (120)

with

〈ξ(t)ξ(t′)〉 = 2Tδ(t− t′) +
p

2
C(t, t′)p−1 (121)

Note that the average over the disorder did not generate terms σσ, which we would not

know how to interpret. The effective Langevin equation does not contain the disorder,

and it is uncoupled in the sites. However, it is more complicated than the original one,

since the noise is no longer δ-correlated in time, and we have an explicit memory term

at the r.h.s., that is a non-local kernel which couples the external time t with all the

earlier times t′′ < t.

4.3. Equations for the correlation and the response

We now want to use the effective Langevin equation to write some self-consistent

equations for the correlation and the response function. In order to do this we have

to introduce some useful formal relations. The first one is already known,

R(t, t′) =
∂〈x(t)〉
∂h(t′)

= 〈x(t)x̂(t′)〉 (122)

The second relation is the following,

〈 ∂x(t)
∂η(t′)

〉 =

∫

Dη exp

[

−1

2
ηD−1η

]
∂

∂η(t′)

∫

DxDx̂ x(t) exp[x̂(∂tx+ ∂xH) + x̂η]

= 〈x(t)x̂(t′)〉 = R(t, t′) (123)

The last relation is a little harder to prove,

〈x(t)η(t′)〉 =

=

∫

DηDxDx̂ exp

[

−1

2
ηD−1η

]

x(t)η(t′) exp[x̂(∂tx+ ∂xH) + x̂η + jη]|j=0 =

=

∫

DηDxDx̂ exp

[
1

2
ηD−1η

]

x(t)
∂

∂j(t′)
exp[x̂(∂tx+ ∂xH) + x̂η + jη]|j=0 =

=
∂

∂j(t′)

∫

DxDx̂ x(t) exp[−1

2
x̂Dx̂+ x̂(∂tx+ ∂xH) + jDj + jDx̂+ x̂Dj]|j=0

=

∫

DxDx̂x(t)

∫

dt′′D(t′, t′′)x̂(t′′) exp[S(x, x̂′)]

=

∫

dt′′D(t′, t′′)R(t, t′′) (124)
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Note that this last equation is only valid for Gaussian noise. We are now ready to write

the two equations for the response and the correlation function. To get the equation

for the response we differentiate the effective Langevin equation with respect to the

effective noise and average,

∂R(t1, t2)

∂t1
=

∂

∂t1
〈δσ(t1)

δξ(t2)
〉 = 〈δσ̇(t1)

δξ(t2)
〉 =

= − µ(t1)R(t1, t2) +
1

2
p(p− 1)

∫ t1

t2

dt′′R(t1, t
′′)Cp−2(t1, t

′′)R(t′′, t2) +

+ δ(t1, t2) (125)

The equation for the correlation is obtained by multiplying the effective Langevin

equation by σ and averaging,

∂C(t1, t2)

∂t1
=

∂

∂t1
〈σ(t1)σ(t2)〉 = 〈σ̇(t1)σ(t2)〉 =

= − µ(t1)C(t1, t2) +
1

2
p(p− 1)

∫ t1

−∞

dt′′R(t1, t
′′)Cp−2(t1, t

′′)C(t′′, t2) +

+ 〈ξ(t1)σ(t2)〉 (126)

where we can use the third one of the relations above and get,

〈ξ(t1)σ(t2)〉 =

∫

dt′′D(t1, t
′′)R(t2, t

′′) = 2TR(t2, t1) +
p

2

∫ t2

−∞

dt′′R(t2, t
′′)Cp−1(t1, t

′′)

(127)

Because of causality, the term 2TR(t2, t1) is zero if t2 < t1, as we shall assume. Finally we

have to get rid of the Lagrange multiplier µ(t). Differentiating the constant C(t, t) ≡ 1,

we obtain [∂tC(t, t′) + ∂t′C(t, t′)]t,t′=s = 0, giving the equation [30],

µ(t1) =
1

2
p2

∫ t1

−∞

dt′′R(t1, t
′′)Cp−1(t1, t

′′) + T (128)

These are the exact dynamical equations for the PSM. When they were first derived

in [29] it was immediately noted that they were formally identical to the approximated

equations formulated by Mode Coupling Theory (MCT) for structural glasses [32, 33, 34,

35]. This observation is at the heart of the theory for the glass-transition in structural

glasses inspired by p-spin spin-glass models [36]. The physics of the PSM has probably

something to do with structural glasses, at least at the dynamical level, and provided

that MCT works well. Moreover, it looks like MC theory must also work in the PSM,

since it gives the same equations ! Let us analyze this last point more in detail.

4.4. Diagrammatic technique and Mode Coupling approximation

The dynamical equations (125) and (126) can indeed be obtained within the Mode

Coupling approximation. Within this approach we consider the perturbative expansion

of the Langevin equation and write all the physical quantities using a diagrammatic
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Φ = + + + . . .

Figure 1. Diagrammatic representation of the perturbative solution to equation 130.

The various terms of the equation for φ(t) are represented: a line stands for the bare

propagatore R0, a cross indicates the noise. As usual in Feynman diagrams, a vertex

stands for a time convolution.

representations. For the rest of this section see [38, 39]. For the sake of simplicity, we

consider the case of a single scalar degree of freedom φ, with an energy

H =
µ(t)

2
φ2 +

g

p!
φp (129)

and we assume that the dynamics of φ is described by the Langevin equation

∂φ

∂t
= −µ(t)φ− g

(p− 1)!
φp−1 + η (130)

with the initial condition φ(0) = 0. Note that this Hamiltonian is a scalar version,

without disorder, of the p-spin one. The thermal noise η is defined as in the previous

case.

We consider the inverse operator R0 = [µ(t) + ∂
∂t

]−1, which we use to write the

perturbative expansion of φ(t). In figure 1 we can see the diagrammatic representation

of this expansion in the case p = 3. In this case we can write the following equation:

φ(t) = R0 ⊗ η −
g

2!
R0 ⊗ {R0 ⊗ η · R0 ⊗ η}+ . . . (131)

where ⊗ stands for time convolution: (R0 ⊗ f)(t) =
∫ t

0
dt′R0(t, t

′)f(t′). The explicit

expression of R0 is

R0(t, t
′) = exp

[

−
∫ t

t′
du µ(u)

]

(132)

as we can easily see by differentiating φ(t). The correlation and response function can

be written as,

C(t, t′) = 〈φ(t)φ(t′)〉 (133)

R(t, t′) = 〈 ∂φ(t)

∂η(t′)
〉 =

1

2T
〈φ(t)η(t′)〉 (134)

These functions can be diagrammatically represented, in figure 2 we show the case p = 3.

In what follows we shall assume that all tadpoles (like the second diagram in figure 2) are
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C(t,t’) = + + + ...

+ + + ...R(t,t’) =

Figure 2. Diagrammatic representations of the perturbative expansions of the

correlation and response function. These diagrams are obtained combining all the

different terms of the diagrams for the perturbative solution.

already resummed. The contribution of these diagrams to the self-energy Σ that we are

going to write is in fact simply a constant: disregarding tadpoles is equivalent to operate

mass renormalization in a usual field theory [2, 39]. The diagrammatic expansion of C

and R can be self-consistently resummed, given the following Dyson equations (fig. 3,

upper panel),

R(t, t′) = R0(t, t
′) +

∫ t

t′
dt1

∫ t1

t′
dt2R0(t, t1)Σ(t1, t2)R(t2, t

′) (135)

C(t, t′) =

∫ t

0

dt1

∫ t′

0

dt2R(t, t1)D(t1, t2)R(t′, t2) (136)

where the self-energies (or kernels) Σ(t, t′) and D(t, t′) are, as usual, the sum of all the

amputated connected diagrams. If we multiply by R−1
0 we can write the equations in

the following way:

R−1
0 ⊗ R = I + Σ⊗R (137)

R−1
0 ⊗ C = D ⊗ R + Σ⊗ C (138)

where I is the identity operator. Explicitly we have

∂R(t, t′)

∂t
= −µ(t)R(t, t′) + δ(t− t′) +

∫ t

t′
duΣ(t, u)R(u, t′) (139)

∂C(t, t′)

∂t
= −µ(t)C(t, t′) +

∫ t′

0

duD(t, u)R(t′, u) +

∫ t

0

duΣ(t, u)C(u, t′)

Up to know this was very general, and most importantly exact. The mode coupling

approximation (MCA) consists in approximating the kernels Σ(t, t′) and D(t, t′): we

neglect all the vertex corrections and keep only line corrections, that is we take the

values of Σ and G at order g2 and substitute in them the bare response and correlation
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C
D

~ ~

= +

 =

D

R R R R

R R

Σ

Σ

0 0

Figure 3. The first two lines are the exact Dyson equations for the correlation and

the response. The third line gives the value of the kernels Σ and D within the Mode

Coupling Approximation.

by their renormalized values, R0 → R, C0 → C. In this way we get the following

equations:

Σ(t, t′) =
g2

2
Cp−1(t, t′)R(t, t′)

D(t, t′) = 2Tδ(t− t′) +
g2

6
[C(t, t′)]p (140)

If we now plug this MCA form of Σ and D into equations (139), it is easy to see that they

become identical to the equations we wrote for the p-spin model in the previous section

within the generating functional method (we have considered a scalar field, but the same

equations can be obtained for a vectorial field). This raises an interesting question: how

is that the equations obtained with the Mode Coupling approximation are identical to

those obtained with the exact generating functional method ? The answer is that in a

mean-field disordered system, thanks to the scaling with N of the couplings J , vertex

corrections are sub-leading, and vanish when N → ∞, while line corrections remain

finite in the thermodynamic limit. In other words MCA is in fact exact for mean field

systems !

To understand this fact, we can write the Hamiltonian with a vector σi (where

i = 1, . . . , N). The interaction term for p = 3 is g
∑

i<j<k Jijkσjσjσk. In this case the

average value of J2 is 1/Np−1. When averaging over the disorder, the behavior in the

limit N → ∞ is different for vertex and line corrections. In the first case we have (for

p = 3) that in the term JijkJjlmJmniJkln the average over the noise causes the indices to

couple two by two, e.g. i = l and k = m. We obtain a factor (1/N2)2, which we must
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multiply by N4 having in the best case four free indices over which we have to sum. This

factor is then of order 1 and vanishes once we normalize the correlation by N . Instead

in the line correction the average over the noise causes only two indices to coincide in

the best case, giving a N factor that remains finite also after the normalization [39].

Although a bit boring, this last section proved an important point: the exact

dynamical equations of the PSM are identical to the MC equations, and in particular

to the (approximated) equations that MC theory writes for deeply supercooled liquids

close to the glass transition. This is one of the main evidences supporting the idea that

the PSM is a sort of mean-field model for structural glasses, and that some of the main

physical concepts valid in the PSM, should be valid in real glasses as well. As long as

one believes that MC theory describes reasonably well fragile glasses [40, 41], one has

to accept that the physics of these systems caught by MC must have something to do

with the physics of the PSM.

4.5. The dynamical transition

It is now time to solve the dynamical equations of the PSM. In order to do this we

must make some simplifications on the correlation and response functions. First, we

shall assume that Time Translation Invariance (TTI) holds: correlation and response

no longer depend independently on the two times, but only on their difference. This

is true only at equilibrium, and therefore we are restricting ourselves to equilibrium

dynamics. The second simplification is in fact a consequence of TTI, and is the validity

of the Fluctuation-Dissipation Theorem (FDT). These two properties can be written as,

TTI:

{

C(t1, t2) = C(t1 − t2) ≡ C(τ)

R(t1, t2) = R(t1 − t2) ≡ R(τ)
(τ ≡ t1 − t2) (141)

FDT: R(τ) = − 1

T

dC(τ)

dτ
(142)

Using these formulas, and a bit of algebra, we can reduce the two coupled equations

(125) and (126) to a single equations for C(τ), namely [30],

Ċ(τ) = −TC(τ)− p

2T

∫ τ

0

du Cp−1(τ − u)Ċ(u) (143)

A crucial point: in order to perform the integrals we have supposed C(∞) = 0, that

is we assumed that there is no ergodicity breaking: after a sufficiently long time the

dynamic configuration must be allowed to go as far as possible from the initial time

configuration. In terms of overlap, this means that the overlap between σ(τ = 0) and

σ(τ =∞) must be zero. Recall that we have,

C(τ) =
1

N

∑

k

〈σk(τ)σk(0)〉 (144)

so that the dynamical correlation function is exactly the average overlap between the two

configurations at times 0 and τ . Therefore assuming unbroken ergodicity is equivalent
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to assume that C(∞) = 0. Ergodicity will be verified self-consistently at the end of the

calculation.

The first term on the r.h.s. of equation (143) comes from the J-independent part

of the original Langevin equation, i.e. from the spherical constraint. The second term,

that comes from the integration over J , is clearly a memory term, for it causes the

properties of the system at time t to depend on all times between 0 and t.

By imposing the physical condition Ċ(τ) ≤ 0 (the average correlation cannot

increase with time), we obtain from (143) the following relation [37],

Cp−2(τ)[1− C(τ)]
︸ ︷︷ ︸

≡g(C)

≤ 2T 2

p
. (145)

This inequality can be easily studied graphically: for τ = 0 we have C = 1 and g(1) = 0,

and for τ = ∞ we have C = 0 and g(0) = 0. The function g(C) has thus a maximum

between zero and one: let us call qd the position of this maximum, given by,

qd =
p− 2

p− 1
(146)

The r.h.s. of the inequality is a constant larger the larger the temperature. At very

high temperatures the inequality is always satisfied, since g(qd) ≪ 2T 2/p. This is the

paramagnetic phase, which is indeed ergodic. When we lower the temperature, the

difference between 2T 2/p and g(C) gets smaller. From equation (143) we see that this

difference is proportional the time-derivative of C: it is large when C ∼ 1, that is for

short times, it becomes smaller when C ∼ qd, and again large for C ∼ 0, i.e. for very

long times. In other words, when we lower the temperature, we observe the formation

of a plateau of the correlation function, with C(τ) ∼ qd.

If we lower further the temperature, we arrive at a point where the r.h.s. of the

inequality touches the curve, i.e. there is a temperature Td such that 2T 2
d /p = g(qd).

Using (146) and the definition of g(C), we have,

Td =

√

p(p− 2)p−2

2(p− 1)p−1
(147)

At this temperature the correlation function remains stuck at a plateau C = qd, since

Ċ = 0. Ergodicity is therefore broken. We cannot go below Td, since all our assumptions

are violated in this phase, and in particular C(∞) 6= 0. What we have just proved is that

there is a dynamical transition at Td: the system passes from the paramagnetic state,

to a phase where ergodicity is broken. Let us give a physical interpretation of what we

have found, in terms of overlap of the configuration at time t with the configuration at

time 0.

T≫ Td : The dynamical overlap (i.e. the correlation function) rapidly decays to zero,

such that the configuration goes as far as it wants in the phase space from its initial

position. This is the fast equilibrium dynamics in the paramagnetic state. In this

phase relaxation is exponential, and nothing particularly exciting happens.
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T
>∼ Td : In this phase the dynamics is still ergodic, but something strange happens:

for a long time (longer the closer to Td we are) the configuration stays close to its

initial value, since C(τ) has a plateau. More precisely, the dynamics explores a

“spot” of phase space around the initial configuration, of largeness roughly equal

to qd, which is the value of C at the plateau. This “spot” cannot be a true state: if

it were, the system would stay trapped there forever, while in this case, after a long

while, the system drifts away. Eventually the overlap goes to zero, consistently with

the paramagnetic state. So what is going on ? Why the system is almost trapped

close to the dynamical transition ? We shall answer these key questions in the next

chapter.

T→ T+
d

: The plateau becomes infinite, the correlation function does not decay

anymore, so that the system takes an infinite time to equilibrate. The configuration

remains close to its initial position for an infinite time, and it is clearly trapped by

a state of self-overlap qd. Ergodicity is broken and our dynamical equations break

down.

The behaviour of the correlation function we have just described is not a peculiarity of

the PSM. In fact, it is the typical phenomenology of glassy systems, and in particular

of structural glasses. The core aim of Mode Coupling Theory is indeed to explain this

phenomenology in fragile glasses. The interpretation of the plateau in finite dimensional

glasses is usually given in terms of cage effect: at low enough temperature, each particle

is surrounded by a cage of nearest-neighbor particles, and it takes a long time (longer

the lower the temperature) to the particle to break this cage and achieve asymptotic

relaxation. This interpretation is very nice for structural glasses, but of course it cannot

be applied to the mean-field PSM, where there is no space structure, nor cage. However

the behaviour of the correlation function is indeed the same. This suggests that the cage

effect must have a deeper interpretation, which must be valid both in finite-dimensional

and mean-field systems. We will propose such an interpolation in the next chapter.

Let us make a brief summary of the dynamical results. Using the generating

functional method we obtained two exact equations for the correlation and the response,

which are formally identical to those obtained with the MC approximation. In fact MC

is exact for the mean-field PSM. We studied the equations assuming that the system is at

equilibrium and that ergodicity is not broken, in other words we studied the properties

of the (ergodic) paramagnetic state. The correlation function decays to zero, but it

develops a plateau as the temperature lowers. In particular, as T → T+
d the plateau

diverges and ergodicity is broken in this limit. Thus, this must be the limit of existence

of the paramagnetic phase, and therefore Td marks a dynamical transition in the system.

The relaxation time (roughly, the time the correlation takes to decay to zero) diverges

at Td.

A natural question is whether this dynamical transition at Td coincides with

the static one at Ts. The answer is no. One can easily check that Td > Ts:

dynamically, the ergodicity is broken at a temperature higher than the thermodynamic
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singularity. Clearly, metastability, combined with the peculiar features of mean-field,

must be responsible for this: metastable states trap the dynamics at Td, while the

thermodynamics cannot detect these states. This is what we suspected when we studied

the statics: at Ts the equilibrium spin-glass states appeared as a secondary peak in the

P (q). This peak had zero weight, but nonzero overlap qs, suggesting that even above

Ts some metastable states existed. From the dynamics we have a clear evidence that

metastable states exist from the simple fact that Td > Ts. The mean-field nature of the

PSM makes the barrier around these states infinite, so that the equilibrium states are

never reached.

A last important comment: we assumed ergodicity, so we can see ergodicity

breaking at Td as the limit of validity of our calculation. In fact, what we should do for

T ≤ Td is to give up the assumption of TTI and FDT, and solve the full equations. This

is hard, but can be done (with some suitable approximation) [42, 43]. What is found in

this way is that if the system starts from a high temperature (random) configuration,

it never reaches the static equilibrium energy, and in this sense dynamics and statics

strongly differ. However, the correlation function behaves differently from what one may

think. The plateau is not infinite below Td, but rather has a length that increases as the

earlier of the two times in C(t, t′) increases. This phenomenon is known as aging, and

its description is beyond the scope of these notes [44]. What happens is the following:

if we constrain the system to be at equilibrium, then for T → Td we have divergence

of the relaxation time, and thus ergodicity breaking. Therefore we cannot study the

equilibrium properties of the system for T ≤ Td, and we have to give up equilibrium.

When this is done, what we find is a weak ergodicity breaking below Td, which is an

intrinsically off-equilibrium phenomenon [42].

Even though we have an explanation in terms of metastable states of why the two

sets of results from statics and dynamics differ, it would be nice to have a way to unify

the two pictures, and obtain both results. This will be achieved in the next chapter.

5. Complexity

We have seen that in the PSM different results are obtained from the static and dynamic

approaches. Are we able to find a unifying approach, within which it is possible to give

an interpretation of all the results collected until now ? The answer is yes. By now

we have understood that the discrepancy between statics and dynamics is due to the

presence of many metastable states. It is time to directly study these states.

5.1. What is the TAP free energy ?

Up to know we have seen the effect of the existence of many pure states only in a indirect

way. In the statics, we had to break the replica symmetry because of ergodicity breaking,

but the free energy we computed was not the individual free energy of the states, but

rather the average free energy over all the thermodynamically relevant states. On the
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other hand, we have seen that dynamically the ergodicity is broken at a temperature

Td > Ts because of the presence of metastable states. However, even in that case we

could not put our finger on the individual states trapping the dynamics. To do this we

need to introduce the TAP free energy.

Pure states are objects living in an N dimensional phase space: in each state α

the local magnetizations have a well defined value depending on the site, mα
i = 〈σi〉α,

and a state is identified by the vector of its magnetizations. Therefore, what we need is

a function defined on this space, i.e. a function of the local magnetizations mi, whose

local minima coincide with the pure states of the system. The minimization of such

a function must provide a set of equations for the vector mi, equivalent to the mean

field equation for m in the Ising model, m = tanh(βm). This function is the mean-field

free energy, which is known in the context of spin-glasses as Thouless-Anderson-Palmer

(TAP) free energy, fTAP(m1 . . .mN ) [45].

It is important to stress that the mean-field, or TAP, free energy is a function of

the magnetizations mi and not of the microscopic degrees of freedom σi. In particular

its minima do not necessarily coincide with the energy minima, that is the minima of

the Hamiltonian H(σi). In fact, pure states cannot in general be simply identified with

minima of the energy. The problem is that different energy minima may be separated

by energy barriers which at high temperature are small compared with kBT , and thus

belong to the same pure state. Even though for T → 0 a state essentially collapses onto

its lowest energy configuration, it is important to keep the two concepts distinct. A

pure state α, identified by the vector mα
1 . . .m

α
N , is fundamentally a subcomponent of

the Gibbs measure, 〈·〉α. As we have stressed in the first chapter, a pure state enjoys

the crucial clustering property, property that is meaningless when referred to a simple

configuration σ1 . . . σN .

The TAP free energy density for the PSM is the following [46, 47, 48],

fTAP = − 1

Np!

∑

ikl

Jiklmimkml −
1

2β
log(1− q)− β

4
[(p− 1)qp − pqp−1 + 1] (148)

with,

q =
1

N

∑

i

mi
2 ; mi = 〈σi〉 (149)

The first term is the energy, the second term is minus the entropy multiplied by the

temperature, and the third one is the so-called reaction term [49]. By setting mi = 0 for

each i, we get fTAP = −β/4, the correct result for the paramagnetic state we already

met in the statics. The mean-field equations are obtained by finding the minima of

the TAP free energy, ∂mi
fTAP = 0 for i = 1 . . . N . However, in order to study these

equations, it is convenient to change variables [47]. Let us introduce the new set of

variables {σ1 . . . σN ; q}, defined in the following way,

mi =
√
q σi

∑

i

σ2
i = N (150)
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These variables σi (sometimes called angular variable) are formally different from the

original spin degrees of freedom, even though they play a very similar role, and are

subject to the same spherical constraint. In terms of the new variables the TAP free

energy becomes,

fTAP (σi, q) =
1

N
qp/2 H(σ) +R(q, β) (151)

where H is formally the original Hamiltonian (this clarifies why we called σi the new

variables), and R is the q dependent part in (148). Now we must minimize this free

energy with respect to the angular variables σi and the self-overlap q, taking into account

the spherical constraint. We have,







∂fTAP

∂σi
= 0 →

{
∂H(σ)

∂σi
= 0 i = 1 . . . N

∑

i σi
2 = N

∂fTAP

∂q
= 0 → 1

N
p
2
q

p

2
−1H(σ) + ∂R

∂q
= 0

(152)

The first N equations, at fixed values of the random couplings J , contain all the

complexity of the problem: if there are many states, i.e. many solutions of the mean-

field equations, it is because of these N equations. What is surprising is that in the PSM

these equations do not depend on the temperature ! Moreover, they formally coincide

with the minimization equations of the Hamiltonian of the model. Once we have a

solution of these first N equations, call it σα
i , we can compute its zero temperature

energy Eα = H(σα), and plug it into the equation for q. This equation does depend on

β, so that the self-overlap of a state depends on its zero temperature energy and on the

temperature.

This result is surprising. We said above that in general the minima of the mean-

field free energy do not coincide with the minima of the Hamiltonian, but we seem to

have right here an exception to this rule: in the PSM minima of the TAP free energy

are basically minima of the Hamiltonian. Their positions in the phase space does not

depend on the temperature, while their self-overlap does. In other words, in the PSM

there is a one-to-one mapping between minima of the Hamiltonian (the energy) and

states, i.e. minima of the free energy. At T = 0 a state (stable or metastable) is just a

minimum (absolute or local) of the energy. When T grows energy minima get dressed

up by thermal fluctuations, and become states. So the structure of states of the PSM

is just the structure of minima of the Hamiltonian.

It is very important to understand that this is a peculiar feature of the PSM, due

to its homogeneous nature, and that in general it is not like that. However, in the PSM

such a simplification holds. If one wants to extend such a simplification to more realistic,

finite-dimensional systems (as structural glasses), it is crucial that the temperature is

small enough and times are short. Nevertheless, in realistic systems barriers are finite,

so that identifying minima of H with states is in fact conceptually very risky.

In the PSM, thus, the zero temperature energy density, or bare energy density

E = H(σ) of the minima of the Hamiltonian, is the only relevant quantity to label
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states. The self-overlap q, the free energy density f , and the finite temperature energy

E thus depend on the bare energy and on the temperature,

q = q(E, β)

f = f(E, β) (153)

E = E(E, β) =
∂(βf)

∂β
(154)

Where, of course, E(E,∞) = E: the zero-temperature average energy of a state is equal

to its bare energy.

5.2. Definition of complexity (and a problem with the modulus).

The states of the systems, i.e. the minima of the TAP free energy, have the same

structure as the minima of the Hamiltonian. Therefore, we want to study the structure

of minima of H , and in particular their number. The number of minima N grows

exponentially with the size of the system,

N ∼ eNΣ (155)

The quantity Σ is called complexity in the spin-glass community, and configurational

entropy in the glass community, where minima of the potential energy are considered.

In order to compute N (and thus Σ), we have to compute the number of solutions of

the equations,
∂H

∂σi

= 0 i = 1 . . . N (156)

By calling σα a solution of these equations, we have,

N =

∫

Dσ
N∑

α=1

δ(σ − σα) (157)

By using the standard formula,

δ(∂H) =
∑

α

δ(σ − σα)

|∂∂H| (158)

we have [50],

N =

∫

Dσ δ(∂H) |∂∂H| (159)

where ∂∂H is a short-cut for the determinant of the second derivative matrix of H (the

Hessian). Here we have two problems: first, having the modulus in such an equation is

algebraically very unpleasant; second, in this way we are counting all stationary points

of H , not simply minima, but also unstable saddles, which can hardly be associated to

pure states of the system. To solve the first problem we are tempted to disregard the

modulus, and define,

N̂ =

∫

Dσ δ(∂H) ∂∂H (160)
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However, now we have a very severe problem: this quantity is a topological invariant

(the Morse constant), which has no connections whatsoever with the number of minima

[51]. By disregarding the modulus we are weighting each stationary point with the sign

of its Hessian, such that,

N̂ =

∫

Dσ
∑

α

δ(σ − σα) sign(∂∂H) = +1− 1 + 1− 1 + 1 . . . (161)

The situation seems to be going from bad to worse. However, if we restrict our counting

to a fixed energy density level E, things improve a lot. What we want to do is to count

minima of H which have energy E. To do this we can use the formula,

N (E) =

∫

Dσ δ(∂H) ∂∂H δ(H − E) (162)

By restricting ourselves to the level E and by keeping E low enough we can hope that

we are in a region of the phase space where minima dominate, and thus where the

Hessian is positive and the modulus can in fact be disregarded [52]. This is certainly

true close to the ground state E0. Moreover, the quantity defined in (162) has a further

advantage in its very limitation: if we push E high enough to arrive in a region which

is no longer dominated by minima, but by saddles, we expect to have some instability

in the calculation due to the change in the sign of the Hessian. Thus, we expect that

an instability in our calculation will be telling us something relevant about the nature

of the stationary points we are counting.

5.3. The calculation of the complexity.

To find the stationary points of H with the spherical constraint we can use the Lagrange

method. In this way we obtain [53],

− p
p!

∑

kl

Jiklσkσl − p
1

N
H(σ)σi = 0 (163)

Given that we want to fix the energy density H(σ)/N = E, the equations become,

− p
p!

∑

kl

Jiklσkσl − pEσi = 0 (164)

and thus we have,

N (E) =

∫

Dσ
∏

i

δ

(

− p
p!

∑

kl

Jiklσkσl − pEσi

)

det

(

−p(p− 1)

p!

∑

kl

Jiklσl − pEδik
)

(165)

with the complexity given by,

Σ(E) = lim
N→∞

1

N
log N (E) (166)
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In order to average over J we have to understand whether the self-averaging quantity

is N or Σ. In general it is the complexity, since extensive quantities are self-averaging,

while exponentials are not (in the statics we had to average F rather than Z). However,

in the PSM we have a further simplification: in absence of external magnetic field we

have that

logN = logN (167)

and thus we can simply average the number, which is much simpler than averaging the

logarithm of it. Equation (167) holds because the PSM is a 1RSB system at the static

level. It can be proved [54] that if the static overlap matrix of configurations is kRSB,

the corresponding overlap matrix of magnetizations is (k − 1)RSB. For the PSM this

implies that the complexity calculation is 0RSB and can therefore be performed at an

annealed level. We give the usual exponential representation of the δ-function,

∏

i

δ(Xi) =

∫
Dµ

(2π)N
exp

(

i

N∑

i=1

µiXi

)

(168)

On the other hand, for the determinant we can use an integral representation in terms

of Grassmann variables (fermions) [23],

detAik =

∫

Dψ̄Dψ exp

(
N∑

ik=1

ψ̄iAikψk

)

(169)

where ψ̄ and ψ are anti-commuting N -dimensional Grassmann vectors,

{ψ̄i, ψi} = 0 (170)

Note that we could have used commuting variables to write the determinant, but at the

price of introducing replicas [50]. So, putting all together, we have,

Σ(E) =
1

N
logN (E) =

1

N
log

∫

Dσ
Dµ

(2π)N
Dψ̄Dψ exp[S(σ, µ, ψ̄, ψ)] (171)

where the action S is given by,

S(σ, µ, ψ̄, ψ) = −ipE
∑

i

µiσi− i
p

p!

∑

ikl

Jiklµiσkσl−pE
∑

i

ψ̄iψi−
p(p− 1)

p!

∑

ikl

Jiklψ̄iψkσl

(172)

Part of this action depend on the disorder and it therefore must be averaged over the

couplings Jikl. This is not difficult to do, since these are Gaussian integral of the form,

exp[SJ ] =
∏

ikl

∫

dJikl exp

[

−1

2
J2

ikl

2Np−1

p!
− Jikl(. . . )

]

(173)

we only have to be careful about a few technical details: first, the terms µσσ and

ψ̄ψσ must be symmetrized before averaging; second, it can be proved that the mixed
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commuting-anticommuting terms obtained from the integrals are zero [52], so that we

can effectively treat separately the commuting and anticommuting parts; third, we have

to remember that we are integrating on the surface of a sphere of radius
√
N , due to

the spherical constraint. The integral of the commuting part can be performed exactly,

while for the anticommuting part we will have to work a bit more. Once the J integral

is performed, we obtain,

Σ(E) =

[

−1

2
log(p/2) +

1

2
− E2

]

+
1

N
log I (174)

The term in square bracket comes from the J integral of the commuting part, while I

comes from the fermionic part,

I =

∫

Dψ̄Dψ exp



− 1

4N
p(p− 1)

(
∑

i

ψ̄iψi

)2

− pE
∑

i

ψ̄iψi



 (175)

To treat this integral we use an inverse Gaussian integration (Hubbard-Stratonovich

transformation), and write,

I =

∫

Dψ̄Dψ

∫

dω exp

[

− Nω2

p(p− 1)
+ (iω − pE)

∑

i

ψ̄iψi

]

=

∫

dω exp

[

N

(

− Nω2

p(p− 1)
+ log(iω − pE)

)]

∫

dω exp [NG(ω)] (176)

where we have performed the (diagonal) fermionic integral. The crucial feature of this

formula is the factor N in the exponential: for N → ∞ we can use the saddle-point

method and write,

I = exp[NG(ω̂)] (177)

where ω̂ satisfies the saddle-point equation,

∂G(ω)

∂ω

∣
∣
∣
∣
ω̂

= 0 (178)

It is easy to check that the saddle-point solution ω̂ lies on the imaginary axis, and thus

it is convenient to define,

ω = iz (179)

such that,

G(z) =
Nz2

p(p− 1)
+ log(z − pE) (180)

Finally we can write the complexity of the PSM as,

Σ(E) = −1

2
log(p/2) +

1

2
−E2 +

Nẑ2

p(p− 1)
+ log(ẑ − pE) (181)
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where the solution ẑ of the saddle point equation ∂zG(ẑ) = 0 is,

ẑ =
p

2

(

E +

√

E2 − 2(p− 1)

p

)

(182)

The second root gives a sub-leading contribution in the thermodynamic limit [53].

5.4. Threshold energy and saddles.

From the form of ẑ we clearly see that something weird happens when the absolute

value of the energy E becomes too small. In fact, for the complexity to be a well

defined physical quantity we must have ẑ real. If we define the threshold energy as

[47, 42],

Eth = −
√

2(p− 1)

p
(183)

we can write,

ẑ =
p

2

(

E +
√

E2 − E2
th

)

(184)

We see that ẑ is real, and thus the complexity physically defined, only for,

E ≤ Eth (185)

What have we obtained ? If we plot the complexity, we see that it is an increasing

function of E, with negative second derivative. The complexity is zero at an energy

E0: below this energy the complexity is negative, and thus the number of states is

exponentially small in the thermodynamic limit. The energy E0 corresponds thus to

the ground state of the system, the lowest part in our landscape. On the other hand,

the complexity grows up to E = Eth beyond which it is no longer defined, since ẑ takes

an imaginary part. Therefore, the interval [E0 : Eth] is the physical band of states of

the PSM, and all the states with E > E0 are metastable.

A natural question at this point is: what happens above the threshold energy ?

Why is the complexity no longer defined in that regime ? In order to answer these

questions, we have to remember that we disregarded the modulus of the determinant

of the Hessian, and that we therefore expected to have some problems if minima were

no longer dominant in the energy regime under consideration. This is exactly what

is going on here: above Eth minima are not dominant anymore, but unstable saddles

are, so the Hessian gets the contribution of the negative eigenvalues of saddles. To see

this we have to recall that the anticommuting (fermionic) part of our total integral was

basically nothing else that the average determinant of the Hessian,

∆ = det

(
∂H

∂σi∂σk

)

(186)
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What we have obtained above can thus be rewritten as,

∆ = exp

(
Nẑ2

p(p− 1)

)

(ẑ − pE)N (187)

We see that as long as E ≤ Eth, and thus ẑ is real, ∆ is positive (it is easy to see

that the term ẑ − pE is positive). This means that below the threshold the Hessian

is on average positive-defined, and this is the same as saying that on average minima

dominate in this energy regime. On the other hand, for E > Eth, we have ẑ = a + i b,

and if we plug this into ∆ we obtain [55],

∆(E) = (−1)k(E)N exp[Ng(E)] (188)

where k(E) and g(E) are two not-too-complicated functions of E. In this energy regime,

thus, the sign of the determinant oscillates when N goes to infinity. This is exactly what

we would expect from the determinant of a matrix with k(E)N negative eigenvalues. In

fact, it is possible to calculate the eigenvalue spectrum of the Hessian and prove that

k(E) is exactly the fraction of negative eigenvalues of the Hessian [55].

The physical picture is therefore the following: below the threshold the energy

landscape is dominated by minima, and the Hessian is positive on average. In this

phase disregarding the modulus is harmless, and the complexity we find in this way

is well defined. On the other hand, above the threshold the landscape is dominated

by unstable saddles, and the average determinant gets an oscillating part. Having

disregarded the modulus, we detect this transition as the point where the complexity

develops an imaginary contribution. However, if we are not too picky, we can define

a new physical complexity in this phase, by isolating the factor (−1)kN and taking

the logarithm of the real part exp[Ng]. By doing this we are in fact computing the

complexity of saddles dominating at energy E > Eth [56].

5.5. The equation for the self-overlap

What we have said above about the threshold and saddles may seem a bit exotic. In

order to check all that, it is sound to consider the remaining equation for the self-overlap

q. Once we specify the bare energy E of a minimum, we can work out the self-overlap of

the associated finite T state. We expect that a bona fide pure state, i.e. a minimum of

the TAP free energy, must have a well defined self-overlap, indicating roughly the size

of the state in the phase space. On the other hand, we definitely do not expect saddles

to have a well defined self-overlap, since saddles are not trapping stationary points, and

it is hard (although perhaps not impossible [57]) to define their size.

Given a solution with bare energy E of the first N equations, the corresponding

equation for q reads,

−p
2
q

p

2
−1 E +

1

2β(1− q) −
β

4

[
p(p− 1)qp−1 − p(p− 1)qp−2

]
= 0 (189)
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By introducing the auxiliary variable,

y =
1

T
q

p−2

2 (1− q) (190)

we can rewrite the equation as,

p(p− 1)y2 + 2pEy + 2 = 0 giving y =
−E ±

√

E2 − E2
th

p− 1
(191)

where Eth is the same threshold energy as we have introduced in the calculation of the

complexity. Given that the self-overlap q =
∑

im
2
i /N must definitely be real, equation

(189) does not admit solutions for E > Eth and the self-overlap is not physically defined

above the threshold. This is indeed what we expected: it is natural to associate a state

to a minimum of the energy when we turn on the temperature, but it is not natural at

all to do the same with a saddle.

What is the self-overlap at the threshold energy ? For E = Eth we have

y2 = E2
th/(p− 1)2 and thus from (190),

qp−2
th (1− qth)2 = T 2 2

p(p− 1)
(192)

This equation gives the self-overlap of the threshold states as a function of the

temperature. We know that the PSM has a purely dynamic transition at Td, where

the correlation function, instead of decaying to zero, remains trapped for an infinite

time at a plateau, C(τ) → qd, for τ → ∞. Our interpretation of this phenomenon was

that the dynamic configuration remains trapped in a region of the phase space of size

(self-overlap) qd. It is tempting to compare this value qd with the self-overlap of the

threshold states at Td: indeed these are the highest metastable states, so it is reasonable

to expect they are responsible for trapping the dynamics at Td. Recalling the definition

of Td, we have,

T 2
d =

p(p− 2)p−2

2(p− 1)p−1
=⇒ q2

th(1− qth)2 =
(p− 2)p−2

(p− 1)p
(193)

This equation could easily be solved on a computer. However, we have a good guess

for the solution: if we plug into it qd = p−2
p−1

, we see that it is identically satisfied. The

important conclusion is that,

qth(Td) = qd (194)

This result confirms all our expectations: the dynamical overlap at the transition

Td has an asymptotic limit equal to the self-overlap of the threshold states. These

states therefore are the ones trapping the dynamics, and forbidding it to relax to the

equilibrium values.

Another way for the q equation to stop having solution, is by increasing the

temperature, T > T ⋆(E), at fixed bare energy E. This means that, even though minima

of the energy do not depend on the temperature, states, i.e. minima of the free energy,
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do. When the temperature becomes too large, the paramagnetic states becomes the only

pure ergodic states, even though the energy landscape is broken up in many basins of the

energy minima. This is just one particularly evident demonstration of the fundamental

different between pure states and energy minima.

5.6. Life with many metastable states

We have computed the complexity Σ(E), a function of the bare energy E of the minima,

which does not depend on the temperature. All these minima become states when T 6= 0.

As we have seen, the bare energy E and the temperature T are the only variables we

need in order to compute the other properties at finite temperature. In particular the

free energy density of the states is a function f = f(E, T ).

We now ask what is the role (if any) of the complexity when computing the

equilibrium properties of the system. A first intuitive answer is that there must be

no role at all: after all, the complexity is zero for ground (stable) states, which rule the

equilibrium properties of the system, and it is only different from zero for metastable

states, which we expect to have no influence on equilibrium. In fact, it is not like that.

We must remember that the PSM is a mean-field model, where even metastable states

have an infinite lifetime, and contribute as stable states in partitioning the phase space

in ergodic sub-components. So, metastable states do play a role also in determining

equilibrium properties. We could expect, thus, that what follows is valid only for mean-

field systems. Strictly speaking, yes. However, in real system, like supercooled liquids

at low temperatures, many of the following observations apply as well, provided that

we pay great attention to the “states vs energy minima” issue. More precisely, in the

temperature regime where T is low enough so that the dynamics is activated, but high

enough so that the system is still ergodic and at equilibrium, the dynamics consists in

vibrations inside a potential energy minimum, with some rare jumps among minima. In

this regime, which is the one close to the Mode Coupling temperature, a phase space

decomposition as the one we are going to explain below is applicable [58].

Let us compute the equilibrium partition function Z of the system,

Z =

∫

Dσ exp[−βH(σ)] =
∑

α

∫

σ∈α

Dσ exp[−βH(σ)] =
∑

α

Zα (195)

where Zα is the partition function restricted to state α (stable or metastable it may be).

We have,

Zα = e−βNfα (196)

and thus,

Z =
∑

a

e−βNfα (197)

In these formulas the free energy density of state α is fα = f(Eα, T ), where Eα is the

bare energy of state α. We want to pass from a sum over all states to an integral over
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all bare energies,

Z =
∑

α

∫

dE δ(E − Eα) exp[−βNf(E, T )] =

=

∫

dE N (E) exp[−βNf(E, T )] =

=

∫

dE exp{−βN [f(E, T )− TΣ(E)]} ≡

≡
∫

dE exp[−βNΦ(E, T )] (198)

where we have defined,

Φ(E, T ) ≡ f(E, T )− TΣ(E) (199)

and where we have used the very definition of the number of states at energy E,

N (E) =
∑

α

δ(E − Eα) (200)

In the equation above we can use the saddle-point method in the limit N → ∞: the

integral is concentrated on the value Eeq(T ) which minimize the exponent. The total

equilibrium free energy density Feq(T ) is therefore given by,

Feq(T ) = − 1

βN
logZ = min

E
[f(E, T )− TΣ(E)] = Φ(Eeq(T ), T ) (201)

with
∂Φ

∂E
(Eeq(T )) = 0 (202)

From its definition we see that Φ is clearly a sort of generalized free energy, with f

playing the role of the energy, and the complexity playing the role of the entropy,

f = E − TS with S entropy

Φ = f − TΣ with Σ complexity
(203)

and putting together these formulas we have,

Φ = E − T (S + Σ) (204)

so the complexity is the extra contribution to the total entropy due to the presence

of an exponentially large number of metastable states. We recall that E is the

finite temperature energy density of the states, which is different from the bare (zero-

temperature) energy E. In fact, E = E(E, T ) and E(E, 0) = E.

From what said above we see that the total equilibrium free energy density is found

by minimization with respect to E of the potential Φ(E, T ), in which the complexity

plays a major role. The bare energy density Eeq(T ) obtained minimizing Φ, fixes the

equilibrium states of the system. The free energy density of these equilibrium states

will then be feq = f(Eeq(T ), T ). What is a bit surprising is that,

Feq = f(Eeq, T )− TΣ(Eeq) < f(Eeq, T ) (205)
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since the complexity is positive. In other words, the free energy density of equilibrium

states is larger than the global equilibrium free energy density. This funny thing is due to

the presence of an exponentially large number of metastable states: equilibrium is given

by an ensemble of states, each one with rather large free energy density feq, but whose

collective contribution to equilibrium is enhanced by their complexity, which lowers the

global free energy Feq.

This situation may seem paradoxical: equilibrium is given by a mixture of

metastable states, but each of them is surrounded by infinite free energy barriers, so

dynamically the system would not be able to exit from anyone of these states ! On the

one hand, this is just a particular way of breaking the ergodicity, which is of course

strictly valid only in mean-field. On the other hand, this situation makes much more

sense in finite dimensions, where these metastable states may trap the dynamics for a

time sufficiently long to allow us to define a complexity, but sufficiently short to make

the system ergodic. This may indeed be the situation in structural glasses close to the

glass transition [58, 59, 60].

5.7. Low temperatures, entropy crisis

The interval of definition of Φ(E, T ) is the same as Σ(E), that is E ∈ [E0 : Eth].

Assuming that at a given temperature T the energy Eeq(T ) minimizing Φ lies in this

interval, what happens if we lower the temperature ? Remember that the complexity is

an increasing function of E, as of course is f(E, T ). When T decreases we favor states

with lower free energy and lower complexity, and therefore Eeq decreases. As a result,

it must exist a temperature T0, such that,

Eeq(T0) = E0 (206)

and thus,

Σ(Eeq(T )) = Σ(E0) = 0 (207)

Below T0 the bare energy Eeq cannot decrease any further: there are no other states

below the ground states E0. Thus, Eeq(T ) = E0 for each temperature T ≤ T0. As a

result, if we plot the complexity of equilibrium states Σ(Eeq(T )) as a function of the

temperature, we find a discontinuity of the first derivative at T0, where the complexity

vanishes.

A thermodynamic transition takes place at T0: below this temperature equilibrium

is no longer dominated by metastable states, but by the lowest lying states, which have

zero complexity and lowest free energy density. The temperature T0 can be computed

by studying numerically equation (202). The following result should not be surprising

at this point,

T0 = Ts (208)

The temperature where equilibrium is given for the first time by the lowest energy

states, is equal to the static transition temperature. Above T0 the partition function is
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dominated by an exponentially large number of states, each with high free energy and

thus low statistical weight, such that they are not captured by the overlap distribution

P (q). At T0 the number of these states becomes sub-exponential and their weight

nonzero, such that the P (q) develops a secondary peak at qs 6= 0.

In supercooled liquids, we can give an interesting interpretation of what is going

on. As we have seen the total entropy is the sum of the entropy S inside each state and

the complexity Σ. But in liquids the entropy of each energy minimum is (at low enough

temperatures) very similar to the entropy of the crystal SCR, while the total entropy is

just the entropy SLQ observed in the supercooled liquid phase. Thus we can write,

Σ(T ) = SLQ(T )− SCR(T ) (209)

i.e. the complexity is the excess entropy of the liquid compared to the crystal. Therefore,

the temperature T0 is the temperature where the entropy of the liquid seems to become

equal to the temperature of the crystal, as first observed by Kauzmann in 1948 [61].

This scenario (vanishing complexity at T0) is normally known as entropy crisis.

Of course in real systems we cannot observe T0, since it is far below the dynamical

glass transition, where the system falls out of equilibrium. The possible existence of T0

in real liquids relies on low temperature extrapolations of high temperature equilibrium

data.

5.8. High temperatures, the threshold

When we raise the temperature we privilege states with higher free energy and

complexity. Also in this case, thus, we must have a temperature beyond which we

exit from our range of definition of the complexity. Indeed, there is a temperature Tth,

such that,

Eeq(Tth) = Eth (210)

i.e. the bare energy density of equilibrium states becomes equal to the threshold energy

at Tth. What happens above Tth ? If we close our eyes and insist minimizing the potential

Φ, we see that the system would try to thermalize in an energy regime dominated by

unstable saddles, and not by minima. This fact suggests that the dynamics above Tth

is no longer trapped by minima, and that therefore it is ergodic. More precisely, we can

argue that while below Tth equilibrium is in fact given by a superposition of metastable

states with infinite barriers surrounding them, above Tth the system enters a phase

dominated no longer by minima, but by saddles [62, 63, 56]. A crucial result, which can

easily be proved, and which confirms this scenario, is the following,

Tth = Td (211)

The temperature Tth associated to the transition from minima to saddle (going up in

temperature) is thus the same as the temperature Td marking the passage from an

ergodic to nonergodic dynamics (going down in temperature). In the light of this, it
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becomes clearer the interpretation of the dynamics for T > Td, but close to Td: the

landscape visited by the system in this phase is dominated by unstable saddle points,

which have however a very small number of negative modes, since T ∼ Td = Tth implies

E ∼ Eth. These objects cannot trap the dynamics for infinite times, but they can slow it

down. In particular, the finite, but very long plateau of the dynamic correlation function

C(τ), can be interpreted as a pseudo-relaxation of the system into a saddle with very few

(order one) unstable modes [57]. At Td the bare energy is Eth and unstable saddles turn

into stable trapping minima. The plateau becomes infinite and ergodicity is broken.

The identification of Td with Tth, and its resulting interpretation, is a crucial point

in the physics of the PSM. It connects the dynamical and topological properties of the

system in a very general way and it suggests that even in different systems where a

glassy transition occurs, the topological properties of the underlying energy landscape

may be the responsible for the slowing down of the system [68]. We have seen in the

previous chapter that the dynamical equations of the PSM are just the Mode Couping

equations, strongly suggesting that systems well described by MCT close to the glass

transition, as fragile glasses, may have a dynamical behaviour similar to the PSM. As a

consequence, one can try to extend to fragile glasses the topological approach developed

in this chapter, which, as we have seen, is so closely related to dynamics. The cage

effect, which as we have seen cannot explain the plateau in a mean-field model, can thus

be reinterpreted in general as the effect of quasi-stable saddles probed by the system

close to the glass transition [57].

A final remark. Mode coupling theory predicts a sharp transition at Td, but this

cannot be strictly true out of mean-field, where barriers are finite. In fact, even in

fragile glasses, at Td one just observes a very steep crossover, but not a transition [40].

However, it may be that the underlying description of the landscape, in terms of minima-

to-saddle transition, is still valid [62]. In this way, a unique topological phenomenon

would be responsible for the dynamical transition in the mean-field PSM, and of the

sharp crossover in finite-dimensional fragile glasses [64, 66, 65, 67].

The complexity has at last unified all our results. The two transition temperatures

are nothing else than the manifestation, at the static and dynamical level, of the lower

and upper edges of the band of metastable states.

6. Conclusions

It was long enough, so let us be brief in these conclusions. We have seen that the

PSM has two transitions. There is a thermodynamic transition at a temperature Ts,

where the free energy switches from a paramagnetic state, to many spin-glass states.

Moreover, Ts is also the temperature where the complexity of equilibrium states vanishes.

What happens at Ts is a perfect realization of the entropy crisis scenario described by

Kauzmann for supercooled liquids. Below Ts equilibrium is given by a non-exponential

number of lowest free energy states, which are detected and described by a standard

thermodynamic approach. Above Ts an exponentially large number of metastable states
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dominates the partition function, due to their nonzero complexity. In this phase, we

have the funny result that the free energy density of equilibrium states is larger than

the global equilibrium free energy density. Thermodynamics is totally unaware of these

states, and predicts a trivial paramagnetic state, with P (q) = δ(q).

At higher temperatures we have a purely dynamic transition Td > Ts. When we

arrive at this temperature coming from above, the dynamics gets trapped by metastable

states, and the correlation time diverges. The equations describing such dynamical

behavior are the same as the MCT equations for supercooled liquids. This suggests

that what happens in the PSM at Td is similar to what happens in real glasses close

to the MCT temperature. The crucial difference, of course, is that in the PSM there

can be no barrier crossing, since barriers are infinite, while in real glasses activation is

present. On the other hand, the fact that standard MCT predicts a sharp dynamical

transition at Td seems to suggest that this theory too, as the PSM, does not account for

activated events.

We have finally seen that there is a close relationship between the topological

properties of the model and its dynamical behavior. In particular, the slowing down

of the dynamics above but close to Td is connected to the presence of saddles, whose

instability decreases with decreasing energy. In fact, we have seen that the threshold

energy level Eth separating saddles from minima, can be associated to the temperature

Tth = Td, marking the passage from ergodicity to ergodicity breaking. In this context

the dynamical transition can be seen as a topological transition. The plateau of the

dynamical correlation function, which has an interpretation in terms of cage effect in

liquids, may be reinterpreted as a pseudo-thermalization inside a saddle with a very

small number of unstable modes.

A very final warning. We should never forget that the PSM is a mean-field model,

with no spatial structure at all. As a consequence, all physical modelizations and

interpretations coming from the PSM, inevitably have a mean-field flavor. In particular,

this is true for the topological interpretation of the dynamical transition: no fluctuations

are taken into account, not to mention spatial heterogeneities, which may play a very

important role. However, the arguments we gave in terms of phase space and topological

concepts have at least the virtue of being simple and effective. If not pushed too far,

they provide a nice tool to understand in a unifying way the physics of glassy systems.
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