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Introduction

What is the maximum level a certain river is likely to reach over the next
25 years? (Having experienced three times a few feet of water in my house,
I feel a keen personal interest in this question.) There are many questions of
the same nature: what is the likely magnitude of the strongest earthquake to
occur during the life of a planned building, or the speed of the strongest wind
a suspension bridge will have to stand? All these situations can be modeled
in the same manner. The value Xt of the quantity of interest (be it water
level or speed of wind) at time t is a random variable. What can be said
about the maximum value of Xt over a certain range of t?

A collection of random variables (Xt), where t belongs to a certain index
set T , is called a stochastic process, and the topic of this book is the study
of the supremum of certain stochastic processes, and more precisely to find
upper and lower bounds for the quantity

E sup
t∈T

Xt . (0.1)

Since T might be uncountable, some care has to be taken to define this
quantity. For any reasonable definition of E supt∈T Xt we have

E sup
t∈T

Xt = sup{E sup
t∈F

Xt ; F ⊂ T , F finite} , (0.2)

an equality that we will take as the definition of the quantity E supt∈T Xt.
Thus, the crucial case for the estimation of the quantity (0.1) is the case
where T is finite, an observation that should stress that this book is mostly
about inequalities.

The most important random variables (r.v.) are arguably Gaussian r.v.
The study of conditions under which Gaussian processes are bounded (i.e.
the quantity (0.1) is finite) goes back at least to Kolmogorov. The celebrated
Kolmogorov conditions for the boundedness of a stochastic process are still
useful today, but they are far from being necessary and sufficient. The un-
derstanding of Gaussian processes was long delayed by the fact that in the
most immediate examples the index set is a subset of R or R

n and that the
temptation to use the special structure of this index set is nearly irresistible.
Probably the single most important conceptual progress about Gaussian pro-
cesses is the realization, in the late sixties, that the boundedness of a (cen-
tered) Gaussian process is determined by the structure of the metric space
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(T, d), where the distance d is given by

d(s, t) = (E(Xs − Xt)2)1/2 . (0.3)

In 1967, R. Dudley obtained a sharp sufficient condition for the boundedness
of a Gaussian process, the so-called Dudley entropy condition. It is based on
the fact that, for a Gaussian process,

∀u > 0 , P(|Xs − Xt| ≥ u) ≤ 2 exp
(
− u2

2d(s, t)2

)
. (0.4)

Dudley’s condition is however not necessary. A few years later, X. Fernique
(building on earlier ideas of C. Preston) introduced a condition based on
the use of a new tool called majorizing measures. Fernique’s condition is
weaker than Dudley’s, and Fernique conjectured that his condition was in
fact necessary. Gilles Pisier suggested in 1983 that I should work on this
conjecture, and kept goading me until I proved it in 1985, obtaining thus a
necessary and sufficient condition for the boundedness of a Gaussian process,
or equivalently, upper and lower bounds of the same order for the quantity
(0.1) in terms of the structure of the metric space (T, d). A few years of
great excitement followed this discovery, during which I proved a number
of extensions of this result, or of parts of it, to other classes of processes.
I was excited because I liked (and still like) these results. Unfortunately, I
was about the only one to get excited. Part of the reason is that Fernique’s
concept of majorizing measures is very difficult to grasp at the beginning,
and was consequently dismissed by the main body of probabilists as a mere
curiosity. (I must admit that I did have a terrible time myself to understand
it.)

In 2000, while discussing one of the open problems of this book with K.
Ball (be he blessed for his interest in it) I discovered that one could replace
majorizing measures by a suitable variation on the usual chaining arguments,
a variation that is moreover totally natural. That this was not discovered
much earlier is a striking illustration of the inefficiency of the human brain
(and of mine in particular). This new approach not only removes the psy-
chological obstacle of having to understand the somewhat disturbing idea of
majorizing measures, it also removes a number of technicalities, and allows
one to give significantly shorter proofs. I thus felt the time had come to make
a new exposition of my body of work on lower and upper bounds for stochas-
tic processes. The feeling that, this time, the approach was possibly (and
even probably) the correct one gave me the energy to rework all the proofs.
For several of the most striking results, such as Shor’s matching theorem,
the decomposition theorem for infinitely divisible processes, and Bourgain’s
solution of the Λp problem, the proofs given here are at least three times
shorter than the previously published proofs.

Beside enjoying myself immensely and giving others a chance to under-
stand the results presented here (and even possibly to get excited about them)
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a main objective of this book is to point out several problems that remain
open. Of course opinions differ as to what constitutes an important prob-
lem, but I like those presented here. One of them deals with the geometry of
Hilbert space, a topic that can hardly be dismissed as exotic. I stated only
the problems that I find really interesting. Possibly they are challenging. At
least, I made every effort to make progress on them. A significant part of
the material of the book was discovered while trying to solve the “Bernoulli
problem” of Chapter 4. I have spent many years thinking to that problem,
and will be glad to offer a prize of $ 5000 for a positive solution of it. A
smaller prize of $ 1000 is offered for a positive solution of the possibly even
more important problem raised at the end of chapter 5. The smaller amount
simply reflects the fact that I have spent less time on this question than on
the Bernoulli problem. It is of course advisable to claim these prizes before
I am too senile to understand the solution, for there will be no guarantee of
payment afterwards. (Cash awards will also be given for a negative solution
of any of these two problems, the amount depending on the beauty of the
solution.)

It is my pleasure to thank the Ohio State University and the National
Science Foundation for supporting the typing of this book, and making its
publication possible.

I must apologize for the countless inaccuracies and mistakes, small or big,
that this book is bound to contain despite all the efforts made to remove
them. I was very much helped in this endeavor by a number of colleagues,
and in particular by A. Hanen and R. Latala, who read the entire book. Of
course, all the remaining mistakes are my sole responsibility.

In conclusion, a bit of wisdom. I think that I finally discovered a foolproof
way to ensure that the writing of a book of this size be a delightful and easy
experience. Just write a 600 page book first!



1 Overview and Basic Facts

1.1 Overview of the Book

This section will describe the philosophy underlying this book, and some of
its highlights. This will be done using words rather than formulas, so that
the description is necessarily imprecise, and is only intended to provide some
insight in our point of view.

The practitioner of stochastic processes is likely to be struggling at any
given time with his favorite model of the moment, a model that will typically
involve a rather rich and complicated structure. There is a near infinite supply
of such models. Fashions come and go, and the importance with which we
view any specific model is likely to strongly vary over time.

The first advice the author received from his advisor Gustave Choquet
was as follows: Always consider a problem under the minimum structure in
which it makes sense. This advice will probably be as fruitful in the future as
it has been in the past, and it has strongly influenced this work. By following
it, one is naturally led to the study of problems with a kind of minimal and
intrinsic structure. Besides the fact that it is much easier to find the crux
of the matter in a simple structure than in a complicated one, there are not
so many really basic structures, so one can hope that they will remain of
interest for a very long time. This book is devoted to the study of a few of
these structures.

It is of course very nice to enjoy the feeling, real or imaginary, that one
is studying structures that might be of intrinsic importance, but the suc-
cess of the approach of studying “minimal structures” has ultimately to be
judged by the results it obtains. It is a fact of life that general principles
are, more often than not, insufficient to answer specific questions. Still, as
we will demonstrate, they are able to explain in complete detail a number of
fascinating and very deep facts.

The most important question considered in the book is the boundedness of
Gaussian processes. As we already noticed, the intrinsic distance (0.3) points
to the fact that the relevant object is the metric space (T, d) where T is the
index set. This metric space is far from being arbitrary, since it is isometric
to a subset of a Hilbert space. (By its very nature, this introduction is going
to contain many statements, like the previous one, that might or might not
look obvious to the reader, depending on his background. The best way to
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obtain complete clarification about these statements is to start reading from
the next section on.) It turns out, quite surprisingly, that it is much better
to forget this specificity of the metric space (T, d) and to just think of it as
a general metric space. Since there is only so much one can do with a bare
metric space structure, nothing can get really complicated then.

In Section 1.2 we explain the basic idea, how to get a sharp upper bound
on a process satisfying the increment condition (0.4) through the “generic
chaining”. This simple bound involves only the structure of the metric space
(T, d). The author feels that this result requires less energy than most books
spend e.g. to prove the continuity of Brownian motion by weaker methods.
Yet, it turns out to be the very best result possible. A convenient way to use
the generic chaining bound is through sequences of partitions of the metric
space (T, d), and in Section 1.3 we learn how to construct these partitions.
This is the core result in the direction of lower bounds. This construction
takes place in a general metric space, and while it is definitely non-trivial,
it is not very complicated either. The reader who has never thought about
metric spaces might disagree with this latter statement, so the best action
to take in that case is simply to skip this proof and to judge the efficiency of
the approach by the subsequent results.

In Section 2.1 we give the first application of the general tools of Chap-
ter 1, the characterization of sample-boundedness of Gaussian processes.
Gaussian processes are deeply related to the geometry of Hilbert space, and a
number of basic questions in this direction remain unanswered. In Section 2.2,
we investigate ellipsoids of a Hilbert space, and we explain why their struc-
ture as metric spaces (with the distance induced by the entire space) is not
trivial from the point of view of Gaussian processes. Ellipsoids will play a
basic role in Chapter 3.

It is natural to expect that this understanding of Gaussian processes will
yield information on processes that are conditionally Gaussian. It turns out
that p-stable processes, an important class of processes, are conditionally
Gaussian, and in Section 2.3 we provide lower bounds for such processes.
These bounds are the best possible of their type. Essentially more general
(but more difficult) results are proved later in Chapter 5 for infinitely divisible
processes. Another natural class of processes that are conditionally Gaussian
are order 2 Gaussian chaos (these are essentially second degree polynomials
of Gaussian r.v.). It seems at present a hopelessly difficult task to give lower
and upper bounds of the same order for these processes, but in Section 2.5 we
obtain a number of results in the right direction. The results of Section 2.5
are not used in the sequel.

In Section 2.6 we investigate the structure of subsets of the classical Ba-
nach space L2(µ) from different points of view. Interpolation is the basic
idea, in the sense that a generic subset U can be obtained by interpolation
between two sets, each of which having in some respect a simpler structure
than the set U itself. In particular, for one of the pieces of the decomposition,
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we achieve control not only in the L2 norm, but also in the L∞ norm, and this
is very helpful to use Bernstein’s inequality. The results of this section are
abstract and somewhat technical, but are very useful in the long range. They
are however not needed at all for Chapter 3, and it is advised that the casual
reader jumps directly to this chapter at this point. Section 2.7 investigates
on which classes of functions the empirical process behaves uniformly well,
“with the convergence speed of the central limit theorem”. The “geometry”
of such classes can be described to a large extent in full generality. We then
give a sharp version of Ossiander’s bracketing theorem, a practical criteria to
control the empirical process uniformly on a class of functions.

Chapter 3 is completely independent of the material of the last four sec-
tions of Chapter 2. It is devoted to matchings, or, equivalently, to the problem
of understanding precisely how far N points independently and uniformly dis-
tributed in the unit square are from being “evenly spread”. This is measured
by the “cost” of pairing (=matching) these points with N fixed points that
are very uniformly spread, for various notions of cost. The results of this
chapter illustrate particularly well the benefits of an abstract point of view:
we are able to trace some deep results about a simple concrete structure back
to the geometry of ellipsoids. In the first section of the chapter, we investi-
gate further the structure of ellipsoids as metric spaces. The philosophy of
the main result, the Ellipsoid Theorem, is that an ellipsoid is in some sense
somewhat smaller that what one might think at first. This is due to the fact
that an ellipsoid is sufficiently convex, and that, somehow, it gets “thinner”
when one gets away from its center. For the reader willing to accept this
result without proof, only Section 1.2 is required reading for this chapter.
The Ellipsoid Theorem is a special case of a more general result (with the
same proof) about the structure of sufficiently convex bodies, that will have
important applications in Chapter 6. In Section 3.3 we investigate the sit-
uation where the cost of a matching is measured by the average distance
between paired points. We prove the result of Ajtai, Komlós, Tusnády, that
the expected cost of an optimal matching is at most L

√
log N/

√
N where

L is a number. In Section 3.4 we investigate the situation where the cost
of a matching is measured instead by the maximal distance between paired
points. We prove the theorem of Leighton and Shor that the expected cost
of a matching is at most L(log N)3/4/

√
N . The Ellipsoid Theorem explains

the occurrence of these fractional powers of log in a transparent way. In both
situations, the link with ellipsoids is obtained by parameterizing a suitable
class of function by an ellipsoid using Fourier transforms. In Section 3.5 we
prove (an extension of) a deep improvement of the Ajtai, Komlós, Tusnády
theorem due to P. Shor. To prove this result, the Ellipsoid Theorem is no
longer sufficient. The arguments we use instead are not fully satisfactory,
and the best conceivable matching theorem, that would encompass all the
results of this chapter, and much more, remains as a challenging problem,
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“the ultimate matching conjecture”. With the exception of Section 3.1, the
results of Chapter 3 are not connected to any subsequent result of the book.

In Chapter 4 we investigate Bernoulli processes, where the individual
random variables Xt are linear combination of independent random signs.
Random signs are obviously important r.v., and occur frequently in connec-
tion with “symmetrization procedures”, a very useful tool. Each Bernoulli
process is associated with a Gaussian process in a canonical manner, when
one replaces the random signs by independent standard Gaussian r.v. The
Bernoulli process has better tails than the corresponding Gaussian process (it
is “subgaussian”) and is bounded whenever the Gaussian process is bounded.
There is however a completely different reason for which a Bernoulli process
might be bounded, namely that the sum of the absolute values of the coeffi-
cients of the random signs remain bounded independently of the index t. A
natural question is then to decide whether these two extreme situations are
the only reasons why a Bernoulli process can be bounded, in the sense that a
suitable “mixture” of them occurs in every bounded Bernoulli process. This
is the yet unsolved “Bernoulli Conjecture”. In Chapter 4 we develop tools
to study Bernoulli processes, and give partial positive results in the direc-
tion of the Bernoulli Conjecture. These partial results fall far short of solving
this conjecture, but are sufficient to obtain striking applications to infinitely
divisible processes in Chapter 5 and to Banach spaces in Chapter 6.

Up to this point we have studied special processes: Gaussian, p-stable,
Gaussian chaos, Bernoulli. These share the property that they are built on
r.v. that have tails which can be well described with one or two parameters,
such as in (0.4). More often a good description of the tail of a r.v. requires
an entire sequence of parameters. Chapter 5 studies certain processes based
on such r.v. In this case, the natural underlying structure is not a metric
space, but a space equipped with a suitable family of distances. Once one has
survived the initial surprise of this new idea, it is very pleasant to realize that
the tools of Section 1.3 can be extended to this setting. This is the purpose of
Section 5.1. In Section 5.2 we apply these tools to the situation of “canonical
process” where the r.v. Xt are linear combinations of independent copies of
symmetric r.v. with density proportional to exp(−|x|α) where α ≥ 1. The
material of this section is independent of the rest of Chapter 5, which is de-
voted to infinitely divisible processes. These processes are studied in a much
more general setting than what mainstream probability theory has yet inves-
tigated. (There is no assumption of stationarity of increments of any kind;
the processes are actually indexed by an abstract set.) The main tool there is
the Rosinski representation, that makes infinitely divisible processes appear
as conditionally Bernoulli processes. (Unfortunately they do not seem to be
conditionally Gaussian.) By using the tools of Chapter 4, for a large class of
these processes, we are able to prove lower bounds that extend those given
in Section 2.3 for p-stable process, and perhaps more importantly, to prove
a general decomposition theorem showing that each bounded process in this
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class naturally decomposes into two parts, each of which is bounded for a
rather obvious reason. We then give a sharp version of a “bracketing theo-
rem”, in the spirit of Ossiander’s theorem of Chapter 2, a practical method
to control infinitely divisible processes in great generality.

Chapter 6 gives applications to Banach space theory. The sections of this
Chapter are largely independent of each other, and the link between them
is mostly that they all reflect past interests of the author. The results of
this chapter do not use those of Chapter 5. In Section 6.1, we study the
cotype of operators from �∞N into a Banach space. In Section 6.2, we prove a
new comparison principle between Rademacher (=Bernoulli) and Gaussian
averages of vectors in a finite dimensional Banach space, and we use it to
compute the Rademacher cotype-2 of a finite dimensional space using only
a few vectors. In Section 6.3 we study the norm of the restriction of an
operator from �q

N to the subspace generated by a randomly chosen small
proportion of the coordinate vectors, and in Section 6.4 we use these results
to obtain a sharpened version of the celebrated results of J. Bourgain on
the Λp problem. A pretty recent theorem of G. Schechtman concludes this
chapter in Section 6.5.

1.2 The Generic Chaining

In this section we consider a metric space (T, d) and a process (Xt)t∈T

that satisfies the increment condition (0.4). We want to find bounds for
E supt∈T Xt depending on the structure of the metric space (T, d). We will
always assume that

∀t ∈ T, EXt = 0 . (1.1)

Thus, given any t0 in T , we have

E sup
t∈T

Xt = E sup
t∈T

(Xt − Xt0) . (1.2)

The latter form has the advantage that we now seek estimates for the ex-
pectation of the non-negative random variable (r.v.) Y = supt∈T (Xt − Xt0).
Then,

EY =
∫ ∞

0

P(Y > u) du . (1.3)

Thus we look for bounds of

P
(
sup
t∈T

(Xt − Xt0) ≥ u
)

. (1.4)

We will assume that T is finite, which, as explained, does not decrease gen-
erality. The first bound that comes to mind is
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P
(
sup
t∈T

(Xt − Xt0) ≥ u
) ≤

∑
t∈T

P(Xt − Xt0 ≥ u) . (1.5)

This bound is going to be effective if the variables Xt − Xt0 are rather un-
correlated (and if there are not too many of them). But it is a disaster if the
variables (Xt)t∈T are nearly identical. Thus it seems a good idea to regroup
those variables Xt that are nearly identical. To do this, we consider a subset
T1 of T , and for t in T we consider a point π1(t) in T1, which we can think
of as a (first) approximation of t. The elements of T to which correspond the
same point π1(t) are, at this level of approximation, considered as identical.
We then write

Xt − Xt0 = Xt − Xπ1(t) + Xπ1(t) − Xt0 . (1.6)

The idea is that it will be effective to use (1.5) on the variables Xπ1(t) −Xt0 ,
because there are not too many of them, and they are rather different. On
the other hand, since π1(t) is an approximation of t, the variables Xt−Xπ1(t)

are “smaller” than the original variables Xt − Xt0 , so that their supremum
should be easier to handle. The procedure will then be iterated.

Let us set up the general procedure. For n ≥ 0, we consider a subset Tn

of T , and for t ∈ T we consider πn(t) in Tn. (The idea is of course that the
points πn(t) are successive approximations of t.) We assume that T0 consists
of a single element t0, so that π0(t) = t0 for each t in T . The fundamental
relation is

Xt − Xt0 =
∑
n≥1

(
Xπn(t) − Xπn−1(t)

)
, (1.7)

that holds provided we arrange that πn(t) = t for n large enough, in which
case the series is actually a finite sum. Relation (1.7) decomposes the incre-
ments of the process Xt − Xt0 along the “chain” (πn(t))n≥0.

It will be convenient to control the set Tn through its cardinality, with

cardTn ≤ Nn (1.8)

where
N0 = 1 ; Nn = 22n

if n ≥ 1 . (1.9)

The notation (1.9) will be used throughout the book.
Since πn(t) approximates t, it is natural to assume that

d(t, πn(t)) = d(t, Tn) = inf
s∈Tn

d(t, s) . (1.10)

Using (0.4) we get that for u > 0 we have

P
(|Xπn(t) − Xπn−1(t)| ≥ u2n/2d(πn(t), πn−1(t)

) ≤ 2 exp(−u22n) .

The number of possible pairs (πn(t), πn−1(t)) is bounded by cardTn ·
cardTn−1 ≤ NnNn−1 ≤ Nn+1 = 22n+1

. Thus, if we denote by Ωu the event
defined by
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∀n ≥ 1 , ∀t , |Xπn(t) − Xπn−1(t)| ≤ u2n/2d(πn(t), πn−1(t)) ,

we see that
P(Ωc

u) ≤ p(u) :=
∑
n≥1

2 · 22n+1
exp(−u22n) . (1.11)

When Ωu occurs, we see from (1.7) that

|Xt − Xt0 | ≤ u
∑
n≥1

2n/2d(πn(t), πn−1(t)) ,

so that we have
sup
t∈T

|Xt − Xt0 | ≤ uS

where
S = sup

t∈T

∑
n≥1

2n/2d(πn(t), πn−1(t)) ,

and thus we have
P
(
sup
t∈T

|Xt − Xt0 | > uS
) ≤ p(u) .

Writing u22n ≥ u2/2 + u22n−1 ≥ u2/2 + 2n+1 for u ≥ 2, we see that for
u ≥ 2 we have p(u) ≤ L exp(−u2/2). Here, as well as in the entire book, L
denotes a universal constant, not necessarily the same at each occurrence.
Thus, using (1.3) and keeping in mind that the integrand is ≤ 1 we get

E sup
t∈T

Xt ≤ LS .

Using the triangle inequality and (1.3) we see that

d(πn(t), πn−1(t)) ≤ d(t, πn(t)) + d(t, πn−1(t))
≤ d(t, Tn) + d(t, Tn−1) ,

so that S ≤ L supt∈T

∑
n≥0 2n/2d(t, Tn), and we have proved that

E sup
t∈T

Xt ≤ L sup
t

∑
n≥0

2n/2d(t, Tn) . (1.12)

Now, how do we construct the sets Tn? The traditional method chooses
them so that

sup
t

d(t, Tn)

is as small as possible for cardTn ≤ Nn, where of course

d(t, Tn) = inf
s∈Tn

d(t, s) .

Thus we define
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en(T ) = inf sup
t

d(t, Tn) , (1.13)

where the infimum is taken over all subsets Tn of T with cardTn ≤ Nn.
(Since here T is finite, the infimum is actually a minimum.) This definition
is convenient for our purposes. It is unfortunately not consistent with the
conventions of Operator Theory, that denotes by e2n what we denote by en.

It is good to observe that (since N0 = 1) ,

∆(T )
2

≤ e0(T ) ≤ ∆(T ) . (1.14)

Here and in the sequel, ∆(T ) denotes the diameter of T ,

∆(T ) = sup
t1,t2∈T

d(t1, t2) . (1.15)

When there is need to make clear which distance we use in the definition of
the diameter, we will write ∆(T, d) rather than ∆(T ).

Let us then choose for each n a subset Tn of T with cardTn ≤ Nn and
en(T ) = supt∈T d(t, Tn). Since d(t, Tn) ≤ en(T ), for each t, we see that from
(1.12) we have proved the following.

Proposition 1.2.1. (Dudley’s entropy bound [7]) Under the increment con-
dition (0.4), we have

E sup
t∈T

Xt ≤ L
∑
n≥0

2n/2en(T ) . (1.16)

This bound was proved only when T is finite, but using (0.2) it also
extends to the case where T is infinite, as is shown by the following easy fact.

Lemma 1.2.2. If U is a subset of T , we have en(U) ≤ 2en(T ).

Proof. Indeed, if a > en(T ), one can cover T by Nn balls for d of radius a,
and the intersections of these balls with U are of diameter ≤ 2a, so U can be
covered by Nn balls in U of radius 2a. �

The reader already familiar with Dudley’s entropy bound might not rec-
ognize it. Usually this bound is formulated using covering numbers. The cov-
ering number N(T, d, ε) is defined as the smallest integer N such that one
can find a subset F of T , with cardF ≤ N and

∀t ∈ T , d(t, F ) ≤ ε .

Thus
en(T ) = inf{ε ; N(T, d, ε) ≤ Nn} ,

and

ε < en(T ) ⇒ N(T, d, ε) > Nn

⇒ N(T, d, ε) ≥ 1 + Nn .
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So we have

√
log(1 + Nn)(en(T ) − en+1(T )) ≤

∫ en(T )

en+1(T )

√
log N(T, d, ε) dε .

Since log(1 + Nn) ≥ 2n log 2 for n ≥ 0, summation over n ≥ 0 yields

√
log 2

∑
n≥0

2n/2(en(T ) − en+1(T )) ≤
∫ e0(T )

0

√
log N(T, d, ε) dε . (1.17)

Now, ∑
n≥0

2n/2(en(T ) − en+1(T )) =
∑
n≥0

2n/2en(T ) −
∑
n≥1

2(n−1)/2en(T )

≥
(

1 − 1√
2

) ∑
n≥0

2n/2en(T ) ,

so (1.17) yields

∑
n≥0

2n/2en(T ) ≤ L

∫ ∞

0

√
log N(T, d, ε) dε ,

and hence Dudley’s bound in the familiar form

E sup
t∈T

Xt ≤ L

∫ ∞

0

√
log N(T, d, ε) dε . (1.18)

Of course, since log 1 = 0, the integral is in fact over 1 ≤ ε ≤ ∆(T ).
We leave as an exercise the proof of the fact that∫ ∞

0

√
log N(T, d, ε) dε ≤ L

∑
n≥0

2n/2en(T ) ,

showing that (1.16) is not an improvement over (1.18).
We can however notice that the bound (1.12) seems genuinely better than

the bound (1.16) because when going from (1.12) to (1.16) we have used the
inequality

sup
t∈T

∑
n≥0

2n/2d(t, Tn) ≤
∑
n≥0

2n/2 sup
t∈T

d(t, Tn) .

The bound (1.12) is the central idea of this work. Of course the fact that
it appears now so naturally does not reflect the history of the subject, but
rather that the proper approach is being used. When using this bound, we
will choose the sets Tn in order to minimize the right-hand side of (1.12)
instead of choosing them as in (1.13).
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While at first one might think that (1.12) is not much of an improvement
over (1.16), its importance arises from the fact that, as will be demonstrated
later, in many cases it is essentially the best possible bound for E supt∈T Xt.

It turns out that the idea behind the bound (1.12) admits a more conve-
nient formulation.

Definition 1.2.3. Given a set T an admissible sequence is an increasing
sequence (An) of partitions of T such that cardAn ≤ Nn.

By increasing sequence of partitions we mean that every set of An+1 is
contained in a set of An. Throughout the book we denote by An(t) the unique
element of An that contains t.

Theorem 1.2.4. (The generic chaining bound). Under the increment con-
dition (0.4) (and if EXt = 0) for each admissible sequence we have

E sup
t∈T

Xt ≤ L sup
t∈T

∑
n≥0

2n/2∆(An(t)) . (1.19)

Here of course, as always, ∆(An(t)) is the diameter of An(t).
Proof. We can assume T finite. We construct a subset Tn of T by taking
exactly one point in each set A of An. We define πn(t) by

Tn ∩ An(t) = {πn(t)} .

Then, since t , πn(t) ∈ An(t) for n ≥ 0, we have d(t, πn(t)) ≤ ∆(An(t)) and
the result follows from (1.12). �

Definition 1.2.5. Given α > 0, and a metric space (T, d) (that need not be
finite) we define

γα(T, d) = inf sup
t

∑
n≥0

2n/α∆(An(t)) ,

where the infimum is taken over all admissible sequences.

It is good to observe that since A0(t) = T we have γα(T, d) ≥ ∆(T ). An
immediate consequence of Theorem 1.2.4 is as follows.

Theorem 1.2.6. Under (0.4) and (1.1) we have

E sup
t∈T

Xt ≤ Lγ2(T, d) . (1.20)

Of course to make this of interest we must learn how to control γ2(T, d),
i.e. we must learn how to construct admissible sequences, a topic that we will
first address in Section 1.3.

The following theorem applies to processes that satisfy a weaker bound
than (0.4). It will be used many times.
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Theorem 1.2.7. Consider a set T provided with two distances d1 and d2.
Consider a process (Xt)t∈T that satisfies EXt = 0 and

∀s, t ∈ T , ∀u > 0 , (1.21)

P(|Xs − Xt| ≥ u) ≤ 2 exp
(
−min

(
u2

d2(s,t)2 , u
d1(s,t)

))
.

Then
E sup

s,t∈T
|Xs − Xt| ≤ L(γ1(T, d1) + γ2(T, d2)) . (1.22)

Proof. We denote by ∆j(A) the diameter of the set A for dj . We consider
an admissible sequence (Bn)n≥0 such that

∀t ∈ T ,
∑
n≥0

2n∆1(Bn(t)) ≤ 2γ1(T, d1) (1.23)

and an admissible sequence (Cn)n≥0 such that

∀t ∈ T ,
∑
n≥0

2n/2∆2(Cn(t)) ≤ 2γ2(T, d2) . (1.24)

Of course here Bn(t) is the unique element of Bn that contains t (etc.). We
define partitions An of T as follows. We set A0 = {T }, and, for n ≥ 1, we
define An as the partition generated by Bn−1 and Cn−1, that is the partition
that consists of the sets B ∩ C for B ∈ Bn−1 and C ∈ Cn−1. Thus

cardAn ≤ N2
n−1 ≤ Nn ,

and the sequence (An) is admissible. Let us define πn(t) as in the proof of
Theorem 1.2.4. From (1.21) we see that, given u ≥ 1, we have

P
(
|Xπn(t) − Xπn−1(t)| ≥ u

(
2nd1(πn(t), πn−1(t)) + 2n/2d2(πn(t), πn−1(t)

))
≤ 2 exp(−u2n) , (1.25)

so that, proceeding as in (1.11), with probability ≥ 1 − L exp(−u) we have

∀n , ∀t , |Xπn(t) − Xπn−1(t)| ≤ u
(
2nd1(πn(t), πn−1(t))

+ 2n/2d2(πn(t), πn−1(t))
)

,

and thus

sup
t∈T

|Xt − Xt0 | ≤ u sup
t∈T

∑
n≥1

(
2nd1(πn(t), πn−1(t)) + 2n/2d2(πn(t), πn−1(t))

)
.

Now, if n ≥ 2 we have πn(t), πn−1(t) ∈ An−1(t) ⊂ Bn−2(t), so that

d1(πn(t), πn−1(t)) ≤ ∆1(Bn−2(t))
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and hence, since d1(π1(t), π0(t)) ≤ ∆1(B0(t)) = ∆1(T ),∑
n≥1

2nd1(πn(t), πn−1(t)) ≤ L
∑
n≥0

2n∆1(Bn(t)) .

Proceeding similarly for d2 gives that

P
(
sup
t∈T

|Xt − Xt0 | ≥ Lu(γ1(T, d1) + γ2(T, d2))
) ≤ L exp(−u)

and (1.3) finishes the proof, using that

|Xs − Xt| ≤ |Xs − Xt0 | + |Xt − Xt0 | .

�
The reader has certainly noted that the left-hand sides of (1.20) and (1.22)

are different. He might also have noticed that our proof of (1.20) gives in fact
the apparently stronger result that

E sup
s,t∈T

|Xs − Xt| ≤ Lγ2(t, d) . (1.26)

This inequality is in fact not much stronger than (1.20). Let us say that a
process (Xt)t∈T is symmetric if it has the same law as the process (−Xt)t∈T .
Almost all the processes we will consider will be symmetric.

Lemma 1.2.8. If the process (Xt)t∈T is symmetric then

E sup
s,t∈T

|Xs − Xt| = 2E sup
t∈T

Xt .

Proof. We note that

sup
s,t∈T

|Xs − Xt| = sup
s,t∈T

(Xs − Xt) = sup
s∈T

Xs + sup
t∈T

(−Xt) ,

and we take expectation. �

In this book, we state inequalities about the supremum of a symmetric
process using the quantity E supt∈T Xt simply because this quantity looks
typographically more elegant than the equivalent quantity E sups,t∈T |Xs −
Xt|.

We will at times need the following more precise version of Theorem 1.2.7.
This more specialized version could be skipped at first reading.

Theorem 1.2.9. Under the conditions of Theorem 1.2.7, for all values
u1, u2 > 0 we have

P
(
sup
t∈T

|Xt − Xt0 | ≥ L(γ1(T, d1) + γ2(T, d2)) + u1D1 + u2D2

)
(1.27)

≤ L exp(−min(u2
2, u1)) ,

where Dj = 2
∑

n≥0 en(T, dj).
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This is better than Theorem 1.2.7 because Dj ≤ Lγj(T, dj).

Proof. There exists a partition of T into Nn sets, each of which having a
diameter ≤ 2en(T, d1) for d1. Thus there is an admissible sequence (B′

n) such
that

∀B ∈ B′
n , ∆1(B) ≤ 2en−1(T, d1)

and an admissible sequence (C′
n) that has the same property for d2. We define

A0 = A1 = {T }, and for n ≥ 2 we define An as being the partition generated
by Bn−2 , B′

n−2 , Cn−2 and C′
n−2, where Bn and Cn are as in (1.23) and (1.24)

respectively.
Instead of (1.25) we use that for

U = (2n + u1)d1(πn(t), πn−1(t)) + (2n/2 + u2)d2(πn(t), πn−1(t))

we have

P(|Xπn(t) − Xπn−1(t)| ≥ U) ≤ 2 exp(−2n − min(u2
2, u1))

so that, with probability at least 1 − L exp(−min(u2
2, u1)) we have

∀n ≥ 3 , ∀t ∈ T , |Xπn(t) − Xπn−1(t)| ≤ 2n∆1(Bn−3(t)) + 2n/2∆2(Cn−3(t))
+ 2u1en−3(T, d1) + 2u2en−3(T, d2) .

This inequality remains true for n = 1, 2 if in the right-hand side one replaces
n − 3 by 0. �

1.3 A Partitioning Scheme

To make Theorem 1.2.4 useful, we must be able to construct good admissible
sequences. In this section we explain our basic method. This method, and its
variations, are at the core of the book.

We will say that a map F is a functional on a set T if, to each subset A
of T it associates a number F (A) ≥ 0, and if it is increasing, i.e.

A ⊂ A′ ⊂ T ⇒ F (A) ≤ F (A′) . (1.28)

Intuitively a functional is a measure of “size” of the subsets of T . It allows
to identify which subsets of T are “large” for our purposes. Suitable partitions
of T will then be constructed through an exhaustion procedure that selects
first the large subsets of T .

Consider a metric space (T, d) (that need not be finite), and a decreasing
sequence (Fn)n≥0 of functionals on T , that is

∀A ⊂ T , Fn+1(A) ≤ Fn(A) . (1.29)
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The basic property of these functionals is (somewhat imprecisely) that if we
consider a set that is the union of many small pieces well separated from each
other, then this set is significantly larger (as measured by the functionals)
than the smallest of its pieces. “Significantly larger” depends on the scale of
the pieces, and on their number through a function

θ : N ∪ {0} → R
+ .

The condition we are about to state involves two parameters of secondary
importance, β and τ . At first reading one should assume β = 1 and τ = 1.

Definition 1.3.1. We say that the functionals Fn satisfy the growth condi-
tion if for a certain integer τ ≥ 1, and for certain numbers r ≥ 4 and β > 0,
the following holds true. Consider any integer n ≥ 0, and set m = Nn+τ .
Then for any s ∈ T , any a > 0, any t1, . . . , tm such that

∀� ≤ m , t� ∈ B(s, ar) ; ∀� , �′ ≤ m , � �= �′ ⇒ d(t�, t�′) ≥ a , (1.30)

and any sets H1, . . . , Hm ⊂ T , we have

∀ � ≤ m , H� ⊂ B(t�, a/r) (1.31)

⇒ Fn

( ⋃
�≤m

H�

)
≥ aβθ(n + 1) + min

�≤m
Fn+1(H�) .

Of course here B(s, a) denotes the ball with center s and radius a in the
metric space (T, d). A crucial fact in Condition (1.31) is that H� ⊂ B(t�, a/r),
while the points t� are at distance a from each other. The sets (H�) are “well
separated”. Only for such families of sets do we need to have some control of
the functionals Fn. The role of the parameter r is to control how well these
sets are separated. (The separation is better for larger r.) In the right-hand
side of (1.31), the term aβθ(n+1) is made up of the part aβ that account for
the scale at which the sets H� are separated, and of the term θ(n + 1) that
accounts for the number of these sets. The “linear case” β = 1 is by far the
most important. The role of the parameter τ is to give us some room. When
τ is large, there are more sets and it should be easier to prove (1.31).

The first concrete example of the growth property occurs in this book is
the (fundamental) case of Gaussian processes, where the functionals Fn do
not depend on n and are given by Fn(A) = E supt∈A Xt, and the growth
property for these functionals is proved in Proposition 2.1.4.

We will also assume the following regularity condition for θ. For some
1 < ξ ≤ 2, and all n ≥ 0, we have

ξθ(n) ≤ θ(n + 1) ≤ rβ

2
θ(n) . (1.32)

The most important example is θ(n) = 2n/2 , β = 1, in which case (1.32)
holds for ξ =

√
2.
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It should be obvious that condition (1.31) imposes strong restrictions on
the metric space (T, d). For example, when β = 1, τ = 1 and θ(n) = 2n/2,
taking H� = {t�}, and since Fn+1 ≥ 0, we get F0(T ) ≥ Fn(T ) ≥ a2(n+1)/2.
Consider points t1, · · · , tk in B(s, ar) such that d(t�, t�′) ≥ a whenever � �= �′.
If k is as large as possible, then B(s, ar) is covered by the balls B(t�, a) so
that whenever a2(n+1)/2 > F0(T ), the ball B(s, ar) can be covered by Nn+1

balls B(t, a). If r = 4, as will often be the case, it is then a simple matter to
show that 2n/2en(T ) ≤ LF0(T ). There is however a slight gap between this
lower bound and the upper bound given by (1.16). This crude argument will
be improved in the following theorem, and the resulting information provides
a lower bound that is exactly of the order of the upper bound of (1.19).

Theorem 1.3.2. Under the preceeding conditions we can find an increasing
sequence (An) of partitions of T with cardAn ≤ Nn+τ such that

sup
t∈T

∑
n≥0

θ(n)∆β(An(t)) ≤ L(2r)β
(F0(T )

ξ − 1
+ θ(0)∆β(T )

)
. (1.33)

In all the situations we will consider, it will be true that F0(t1, t2) ≥
θ(0)dβ(t1, t2) for any points t1 and t2 of T . (Since F1(H) ≥ 0 for any set
H , this condition is essentially weaker in spirit than (1.31) for n = 0.) Then
θ(0)∆β(T ) ≤ F0(T ).

Theorem 1.3.2 constructs partitions given the functionals Fn, but it does
not say how to find these functionals. One must understand that there is no
magic. Admissible sequences are not going to come out of thin air, but rather
reflect the geometry of the space (T, d). Once this geometry is understood, it is
usually possible to guess a good choice for the functionals Fn. Many examples
will be given in subsequent chapters. It seems, at least to the author, that
it is much easier to guess the functionals Fn rather than the partitions of
Theorem 1.3.2. Besides, as Theorem 1.3.4 below shows, we really have no
choice. Functionals with the growth property are intimately connected with
admissible sequences of partitions.

The sequence (An) of Theorem 1.3.2 is not admissible because cardAn

is too large. To construct good admissible sequences we will combine Theo-
rem 1.3.2 with the following lemma.

Lemma 1.3.3. Consider α > 0, an integer τ and an increasing sequence of
partitions (Bn)n≥0 with cardBn ≤ Nn+τ . Let

S = sup
t∈T

∑
n≥0

2n/α∆(Bn(t)) .

Then we can find an admissible sequence (An)n≥0 such that

sup
t∈T

∑
n≥0

2n/α∆(An(t)) ≤ 2τ/α(S + K(α)∆(T )) .
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Of course here K(α) denotes a number depending on α only.

Proof. We set An = {T } if n ≤ τ and An = Bn−τ if n ≥ τ so that cardAn ≤
Nn and ∑

n≥τ

2n/α∆(An(t)) = 2τ/α
∑
n≥0

2n/α∆(Bn(t))

and, using the bound ∆(An(t)) ≤ ∆(T ), we have∑
n≤τ

2n/α∆(An(t)) ≤ K(α)2τ/α∆(T ) .

�

Our next result makes the point in the most important case that increasing
sequences of functionals satisfying a growth conditions are canonical objects.
It can be easily extended to the generality of Theorem 1.3.2.

Theorem 1.3.4. (a) Assume that on the metric space (T, d) there exists an
increasing sequence of functionals (Fn)n≥0 that satisfies the growth condition
for a certain r ≥ 4, for β = 1, τ = 1 and θ(n) = c2n/2, where c > 0. Then

γ2(T, d) ≤ Lr

c
(F0(T ) + ∆(T )) .

(b) In any metric space (T, d) there exists an increasing sequence of func-
tionals (Fn)n≥0 with F0(T ) = γ2(T, d) that satisfies the growth condition for
r = 4, β = 1, τ = 1 and θ(n) = 2n/2−1.

In this theorem, (b) is a kind of converse of (a), showing that sequences of
functionals satisfying the growth condition are a canonical method to control
γ2(T, d) from above.

Proof. We first observe that (a) is a straightforward consequence of Theo-
rem 1.3.2 and Lemma 1.3.3.

To prove (b) we define

Fn(A) = inf sup
t∈A

∑
k≥n

2k/2∆(Ak(t)) ,

where the infimum is taken over all admissible sequences of partitions of
A. Thus F0(T ) = γ2(T, d). To prove the growth condition (1.31), consider
m = Nn+1 and consider points (t�)�≤m of T , with d(t�, t�′) ≥ a if � �= �′.
Consider sets H� ⊂ B(t�, a/4), H =

⋃
�≤m H� and c < min�≤m Fn+1(H�).

Consider an admissible sequence (An) of H , and

I = {� ≤ m ; ∃A ∈ An , A ⊂ H�}
so that, since the sets H� for � ≤ m are disjoint, we have card I ≤ Nn, and
thus there exists � ≤ m with � �∈ I. Then for t ∈ H�, we have An(t) �⊂ H�, so
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that since An(t) ⊂ H , the set An(t) must meet a ball B(t�′ , a/4) for � �= �′,
and hence ∆(An(t)) ≥ a/2, so that∑

k≥n

2k/2∆(Ak(t)) ≥ a

2
2n/2 +

∑
k≥n+1

2k/2∆(Ak(t) ∩ H�)

and hence
sup
t∈H�

∑
k≥n

2k/2∆(Ak(t)) ≥ a2n/2−1 + Fn+1(H�) .

Since the admissible sequence (An) is arbitrary, we have shown that

Fn(H) ≥ a2n/2−1 + c ,

which is (1.31). �

The proof of Theorem 1.3.2 is not really difficult, but it requires some
tedious bookkeeping. Probably the reader should first understand Section
2.1 to get convinced that the power of Theorem 1.3.2 is worth the effort of
proving it.

Proof of Theorem 1.3.2. The beauty of this proof is that (almost) the
most obvious (“greedy”) construction works, but that it requires some skill
to prove that this is the case.

All the balls we will consider will have a radius of the type r−j for j in
Z, and before going into the proof, we rewrite (1.30) and (1.31) in the case
where a = r−j−1 respectively as

∀� ≤ m , t� ∈ B(s, r−j) ; ∀� , �′ ≤ m , � �= �′ ⇒ d(t�, t�′) ≥ r−j−1 ,

and

∀ � ≤ m , H� ⊂ B(t�, r−j−2)

⇒ Fn

( ⋃
�≤m

H�

)
≥ r−β(j+1)θ(n + 1) + min

�≤m
Fn+1(H�) .

We are going to construct the increasing sequence (An) of partitions by
induction. Together with C ∈ An, we will construct a point tC of T , an
integer j(C) in Z and three numbers bi(C) for i = 0 , 1 , 2. We assume

C ⊂ B(tC , r−j(C)) (1.34)

so that in particular ∆(C) ≤ 2r−j(C). We assume

Fn(C) ≤ b0(C) (1.35)

∀t ∈ C , Fn(C ∩ B(t, r−j(C)−1)) ≤ b1(C) (1.36)

∀t ∈ C, Fn(C ∩ B(t, r−j(C)−2)) ≤ b2(C) . (1.37)
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The idea here is that

a1(C) = sup
t∈C

Fn(C ∩ B(t, r−j(C)−1))

can be significantly smaller than a0(C) = Fn(C), and that we need to keep
track of this; but, for technical reasons, a0(C) and a1(C) are not convenient
and b0(C), b1(C) are a “regularized version” of these. The (technical) regu-
larity conditions we assume are

b1(C) ≤ b0(C) (1.38)

and
b0(C) − r−β(j(C)+1)θ(n) ≤ b2(C) ≤ b0(C) + εn , (1.39)

where
εn = 2−nF0(T ) . (1.40)

The all important relation will be as follows.
If n ≥ 0 , A ∈ An+1 , C ∈ An , A ⊂ C , then

∑
0≤i≤2

bi(A) + (1 − 1
ξ
)r−β(j(A)+1)θ(n + 1) (1.41)

≤
∑

0≤i≤2

bi(C) +
1
2
(1 − 1

ξ
)r−β(j(C)+1)θ(n) + εn+1 .

As we will show below, summation of these relations over n ≥ 0 implies
(1.33).

To start the construction, we set

A0 = {T } , b0(T ) = b1(T ) = b2(T ) = F0(T ) ,

and we choose any point tT ∈ T . We then take j(T ) the largest possible such
that T ⊂ B(tT , r−j(T )).

Let us now assume that for a certain n ≥ 0 we have already constructed
An with cardAn ≤ Nn+τ . To construct An+1 we will split each set of An in at
most Nn+τ pieces (so that, since N2

n+τ ≤ Nn+τ+1, we will have cardAn+1 ≤
Nn+τ+1). So, let us fix C ∈ An, and let j = j(C).

By induction over 1 ≤ � ≤ m = Nn+τ we construct points t� ∈ C and sets
A� ⊂ C as follows.

First, we set D0 = C and we choose t1 such that

Fn+1(C ∩ B(t1, r−j−2)) ≥ sup
t∈C

Fn+1(C ∩ B(t, r−j−2)) − εn+1 . (1.42)

We then set A1 = C ∩B(t1, r−j−1). The idea is simply that “we almost take
the largest possible piece of C”. The reader notices that the radius of the balls
in (1.42) is r−j−2 while it is r−j−1 in the definition of A1. This is the one trick
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of the proof. A “large piece” of C is a piece of the type A1 = C∩B(t1, r−j−1)
for which Fn+1(C∩B(t1, r−j−2)) (rather than Fn+1(A1)) is large. The rest of
the proof simply consists in iterating this construction and carefully checking
(1.41). It is of course unfortunate that this somewhat tedious argument arises
so early in this book. But the reader should take heart. The investment we
are about to make will pay handsome dividends.

To continue the construction, assume now that t1 , . . . , t� have already
been constructed, and set D� = C\⋃

1≤p≤� Ap. If D� = ∅, the construction
stops. Otherwise, we choose t�+1 in D� such that

Fn+1(D� ∩ B(t�+1, r
−j−2)) ≥ sup

t∈D�

Fn+1(D� ∩ B(t, r−j−2)) − εn+1 . (1.43)

We set A�+1 = D� ∩ B(t�+1, r
−j−1) and we continue until either we stop or

we construct
Dm−1 = C\

⋃
�<m

A� .

If Dm−1 is empty, the construction is finished. Otherwise we set Am = Dm−1,
so that A1, . . . , Am form a partition of C.

In this manner we have partitioned C in at most m pieces. Let A be one
of these.

If A = Am, we define j(A) = j(= j(C)) , tA = tC ,

b0(A) = b0(C) , b1(A) = b1(C)
b2(A) = b0(C) − r−β(j+1)θ(n + 1) + εn+1 .

It is obvious that A and n+1 in place of C and n satisfy the relations (1.34),
(1.38) and (1.39). The relations (1.35) and (1.36) for A follow from the fact
that similar relations holds for C rather than A, that Fn+1 ≤ Fn, and that
the functional Fn+1 is increasing.

We prove (1.37) for A. Consider any point t = tm ∈ Am. By construction,
for 1 ≤ l ≤ m, we have t� ∈ D�−1, and thus if �′ < � we have d(t�, t�′) ≥ r−j−1.
Hence by (1.31), used for a = r−j−1 and H� = D� ∩ B(t�+1, r

−j−2) we have
(since Fn is increasing),

Fn(C) ≥ r−β(j+1)θ(n + 1) + min
0≤�≤m−1

(
Fn+1(D� ∩ B(t�+1, r

−j−2))
)

. (1.44)

Now, by (1.43), since tm ∈ D�, we have

Fn+1(D� ∩ B(t�+1, r
−j−2)) ≥ Fn+1(D� ∩ B(tm, r−j−2)) − εn+1

≥ Fn+1(A ∩ B(tm, r−j−2)) − εn+1

because A ⊂ D�.
Since Fn(C) ≤ b0(C), (1.44) yields

b0(C) ≥ r−β(j+1)θ(n + 1) − εn+1 + Fn+1(A ∩ B(tm, r−j−2))
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and this proves (1.37) by definition of b2(A).
To prove (1.41), we observe that by definition

∑
0≤i≤2

bi(A) + (1 − 1
ξ
)r−β(j+1)θ(n + 1) (1.45)

= 2b0(C) + b1(C) − 1
ξ
r−β(j+1)θ(n + 1) + εn+1

≤ 2b0(C) + b1(C) − r−β(j+1)θ(n) + εn+1

using the regularity condition on θ(n) (1.32) in the last inequality. But by
(1.39) we have

b0(C) ≤ b2(C) + r−β(j+1)θ(n)

so that (1.45) implies (1.41).
We are finished with the case A = Am and we suppose now that A =

A� , � < m. We define j(A) = j + 1 and tA = t�, so that

A = A� ⊂ B(t�, r−j−1) = B(tA, r−j(A)) ,

and we define

b0(A) = b2(A) = b1(C) , b1(A) = min(b1(C), b2(C)) .

Relations (1.38) and (1.39) for A are obvious. To prove (1.35) for A, we write

Fn+1(A) ≤ Fn+1(C ∩ B(t�, r−j−1))
≤ Fn(C ∩ B(t�, r−j−1)) ≤ b1(C) = b0(A) ,

using (1.36) for C. In a similar manner, we have, if t ∈ A,

Fn+1(A ∩ B(t, r−j(A)−1)) ≤ Fn+1(C ∩ B(t, r−j−2))
≤ Fn(C ∩ B(t, r−j−2))
≤ min(b1(C), b2(C)) = b1(A) ,

and this proves (1.36) for A. Also, (1.37) for A follows from (1.35) for A since
b2(A) = b0(A).

To prove (1.41), we observe that∑
0≤i≤2

bi(A) ≤ 2b1(C) + b2(C) ≤
∑

0≤i≤2

bi(C) (1.46)

since b1(C) ≤ b0(C) by (1.38). We observe that, since j(A) = j(C) + 1, and
since r−βθ(n + 1) ≤ θ(n)/2 by (1.32), we have

r−β(j(A)+1)θ(n + 1) ≤ 1
2
r−β(j(C)+1)θ(n)
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and combining with (1.46) this proves (1.41).
We have completed the construction, and we turn to the proof of (1.33).

By (1.41), for any t in T , any n ≥ 0, we have, setting jn(t) = j(An(t))

∑
0≤i≤2

bi(An+1(t)) + (1 − 1
ξ
)r−β(jn+1(t)+1)θ(n + 1)

≤
∑

0≤i≤2

bi(An(t)) +
1
2
(1 − 1

ξ
)r−β(jn(t)+1)θ(n) + εn+1 .

Since bi(T ) = F0(T ) and since bi(A) ≥ 0 by (1.35) to (1.37), summation of
these relations for 0 ≤ n ≤ q implies

(1−1
ξ
)

∑
0≤n≤q

r−β(jn+1(t)+1)θ(n+1) ≤ 4F0(T )+
1
2
(1−1

ξ
)

∑
0≤n≤q

r−β(jn(t)+1)θ(n)

(1.47)
and thus

1
2
(1 − 1

ξ
)

∑
0≤n≤q

r−β(jn(t)+1)θ(n) ≤ 4F0(T ) + (1 − 1
ξ
)r−β(j(T )+1)θ(0) .

By (1.34), we have ∆(An(t)) ≤ 2r−jn(t), and by the choice of j(T ) we have
r−j(T )−1 ≤ ∆(T ) so that, since ξ ≤ 2

∑
n≥0

θ(n)∆β(An(t)) ≤ L(2r)β

ξ − 1
(F0(T ) + ∆β(T )θ(0)) . (1.48)

�

Theorem 1.3.5. Consider a metric space (T, d), an integer τ ′ ≥ 0 and for
n ≥ 0, consider subsets Tn of T with cardT0 = 1 and cardTn ≤ Nn+τ ′ =
22n+τ′

for n ≥ 1. Consider numbers α > 0 , S > 0, and let

U =
{
t ∈ T ;

∑
n≥0

2n/αd(t, Tn) ≤ S
}

.

Then γα(U, d) ≤ K(α, τ ′)S.

It is good to observe that this allows one to control γα(U) using sets Tn

that need not be subsets of U . When U = T , we have in particular that

γα(T, d) ≤ K(α) sup
t∈T

∑
n≥0

2n/αd(t, Tn) , (1.49)

which shows that the bound (1.19) is as good as the bound (1.12), if one does
not mind the possible loss of a constant factor. As the proof of Theorem 1.2.7
should indicate, the bound (1.19) is usually more convenient.
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One way to interpret (1.49) is as follows. Consider the quantity

γ′
α(T, d) = inf sup

t∈T

∑
n≥0

2n/αd(t, Tn) ,

where the infimum is over all choices of the sets Tn with cardTn ≤ Nn. It
is shown in the proof of Theorem 1.2.4 that γ′

α(T, d) ≤ γα(T, d), and (1.49)
implies that γα(T, d) ≤ K(α)γ′

α(T, d).
We will give two proofs of Theorem 1.3.5. The first proof relies on Theo-

rem 1.3.2. It should help the reader to penetrate further applications of this
theorem in the same spirit. The second proof is a simple direct argument.
First proof of Theorem 1.3.5. We will use Theorem 1.3.2 with r = 4 , β = 1
and τ = τ ′ + 1. For n ≥ 0 and a subset A of U we define

Fn(A) = sup
t∈A

∑
k≥n

2k/αd(t, Tk) .

Consider m = Nn+τ ′+1, points t1 , . . . , tm of U such that

1 ≤ � < �′ ≤ m ⇒ d(t�, t�′) ≥ a ,

and subsets H1 , . . . , Hm of U with H� ⊂ B(t�, a/4). By definition of Fn+1,
given any ε > 0, we can find u� ∈ H� such that∑

k≥n+1

2k/αd(u�, Tk) ≥ Fn+1(H�) − ε .

Since d(t�, t�′) ≥ a for � �= �′, the open balls B(t�, a/2) are disjoint. Since
there are Nn+τ ′+1 of them, whereas cardTn ≤ Nn+τ ′ , one of these balls
does not meet Tn. Thus there is � ≤ m with d(t�, Tn) ≥ a/2. Since we have
u� ∈ H� ⊂ B(t�, a/4), we have d(u�, Tn) ≥ a/4 and∑

k≥n

2k/αd(u�, Tk) ≥ 2n/α a

4
+

∑
k≥n+1

2k/αd(u�, Tk)

≥ 2n/α−2a + Fn+1(H�) − ε .

Since u� ∈ H� this shows that

Fn

( ⋃
p≤m

Hp

)
≥ 2n/α−2a + Fn+1(H�) − ε ,

and since ε is arbitrary, this proves that (1.31) holds with θ(n+1) = 2n/α−2.
(Condition (1.32) holds only when α ≥ 1, which is the most interesting case.
We leave to the reader to take care of the case α < 1 by using a different value
of r.) We have F0(U) ≤ S, and since d(t, T0) ≤ S for t ∈ U , and cardT0 = 1,
we have ∆(U) ≤ 2S. To finish the proof one simply applies Theorem 1.3.2
and Lemma 1.3.3. �
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Second proof of Theorem 1.3.5. For simplicity we assume τ ′ = 1. For u ∈ Tn,
let

V (u) = {t ∈ U ; d(t, Tn) = d(t, u)} .

We have U =
⋃

u∈Tn
V (u), so we can find a partition Cn of U , with cardCn ≤

Nn, and the property that

∀C ∈ Cn , ∃u ∈ Tn , C ⊂ V (u) .

Consider C as above, the smallest integer b > 1/α + 1, the set

Cbn = {t ∈ C ; d(t, u) ≤ 2−bn∆(U)}
and, for 0 ≤ k < bn, the set

Ck = {t ∈ C ; 2−k−1∆(U) < d(t, u) ≤ 2−k∆(U)} .

Thus ∆(Ck) ≤ 2−k+1∆(U), and, if k < bn,

∀t ∈ Ck , ∆(Ck) ≤ 4d(t, Tn)

and hence

∀k ≤ bn , ∀t ∈ Ck , ∆(Ck) ≤ 4d(t, Tn) + 2−bn+1∆(U) . (1.50)

Consider the partition Bn consisting of the sets Ck for C ∈ Cn , 0 ≤ k ≤
bn, so that cardBn ≤ (bn + 1)Nn. Consider the partition An generated by
B0 , . . . , Bn, so that the sequence (An) increases, and cardAn ≤ Nn+τ , where
τ depends on α only. From (1.50) we get that

∀A ∈ An , ∀t ∈ A , ∆(A) ≤ 4d(t, Tn) + 2−bn+1∆(U) ,

and thus∑
n≥0

2n/α∆(An(t)) ≤ 4
∑
n≥0

2n/αd(t, Tn) + ∆(U)
∑
n≥0

2n/α−bn+1

≤ 4(S + ∆(U)) .

Since ∆(U) ≤ 2S, the conclusion follows from Lemma 1.3.3. �
It is good to observe the following simple facts.

Theorem 1.3.6. (a) If U is a subset of T , then

γα(U, d) ≤ γα(T, d) .

(b) If f : (T, d) → (U, d′) is onto and for some constant A satisfies

∀x , y ∈ T , d′(f(x), f(y)) ≤ Ad(x, y) ,

then
γα(U, d′) ≤ K(α)Aγα(T, d) .

(c) We have
γα(T, d) ≤ K(α) sup γα(F, d) , (1.51)

where the supremum is over F ⊂ T and F finite.
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Proof. Part (a) is obvious. To prove (b) we consider sets Tn ⊂ T with
cardTn ≤ Nn and supt∈T

∑
n≥0 2n/αd(t, Tn) ≤ 2γα(T, d), we observe that

sups∈U

∑
n≥0 2n/αd′(s, f(Tn)) ≤ 2Aγα(T, d), and we apply Theorem 1.3.5.

To prove (c) we essentially repeat the argument of Theorem 1.3.4. We
define

γα,n(T, d) = inf sup
t∈T

∑
k≥n

2k/α∆(Ak(t))

where the infimum is over all admissible sequences (Ak). We consider the
functionals

Fn(A) = sup γα,n(G, d)

where the supremum is over G ⊂ A and G finite. We will use Theorem 1.3.2
with β = 1 , θ(n + 1) = 2n/α−1 , τ = 1, and r = 4. (As in Theorem 1.3.5
this works only for α ≥ 1, and the case α < 1 requires a different choice
of r.) To prove (1.31), consider m = Nn+1 and consider points (t�)�≤m

of T , with d(t�, t�′) ≥ a if � �= �′. Consider sets H� ⊂ B(t�, a/4) and
c < min�≤m Fn+1(H�). For � ≤ m, consider finite sets G� ⊂ H� with
γα,n+1(G�, d) > c, and G =

⋃
�≤m G�. Consider an admissible sequence (An)

of G, and
I = {� ≤ m ; ∃A ∈ An , A ⊂ G�}

so that, since the sets G� for � ≤ m are disjoint, we have card I ≤ Nn, and
thus there exists � ≤ m with � �∈ I. Then for t ∈ G�, we have An(t) �⊂ G�, so
An(t) meets a ball B(t�′ , a/4) for � �= �′, and hence ∆(An(t)) ≥ a/2; so that

∑
k≥n

2k/α∆(Ak(t)) ≥ a

2
2n/α +

∑
k≥n+1

2k/α∆(Ak(t) ∩ G�)

and hence

sup
t∈G�

∑
k≥n

2k/α∆(Ak(t)) ≥ a2n/α−1 + γα,n+1(G�, d) .

Since the admissible sequence (An) is arbitrary, we have shown that

γα,n(G, d) ≥ a2n/α−1 + c

and thus
Fn

( ⋃
�≤m

H�

)
≥ a2n/α−1 + min

�≤m
Fn+1(H�)

which is (1.31). Finally, we have F0(T ) = sup γα(G, d), where the supremum is
over G ⊂ T , G finite, and since ∆(G) ≤ γα(G, d), we have that ∆(T ) ≤ F0(T )
and we conclude by Lemma 1.3.3 and Theorem 1.3.2.

�
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There are many possible variations for the scheme of proof of Theo-
rem 1.3.2. We end this section by such a version. The proof of this specialized
result could be omitted at first reading.

There are natural situations, where, in order to be able to obtain inequal-
ity on the right-hand side of (1.31), we need to know that H� ⊂ B(t�, ηa)
where η is very small. In order to apply Theorem 1.3.2, we have to take
r ≥ 1/η, which (when β = 1) produces a loss of a factor 1/η. We will give
a simple modification of Theorem 1.3.2 that produces only a loss of a factor
log(1/η).

For simplicity, we assume r = 4 , β = 1 , θ(n) = 2n/2 and τ = 1. We
consider an integer q ≥ 2.

Theorem 1.3.7. Assume that the hypothesis of Theorem 1.3.2 are modi-
fied as follows. Whenever t1 , . . . , tm are as in (1.30), and whenever H� ⊂
B(t�, a4−q), we have

Fn

( ⋃
�≤m

H�

)
≥ a2n/2 + min

�≤m
Fn+1(H�) .

Then there exists an increasing sequence of partitions (An) in T such that
card An ≤ Nn+1 and

sup
t∈T

∑
n≥0

2n/2∆(An(t)) ≤ Lq(F0(T ) + ∆(T )) .

Proof. We closely follow the proof of Theorem 1.3.2. Together with each
set C in An, we construct numbers bi(C) ≥ 0 for 0 ≤ i ≤ q, such that if
εn = 2−nF0(T ), we have

∀i , 1 ≤ i ≤ q , bi(C) ≤ b0(C)

εn + b0(C) ≥ bq(C) ≥ b0(C) − 4−j(A)−12n/2

Fn(C) ≤ b0(C)

∀i , 1 ≤ i ≤ q , ∀t ∈ C , Fn(C ∩ B(t, 4−j(C)−i)) ≤ bi(C) .

We set bi(T ) = F0(T ) for 0 ≤ i ≤ q. In the construction by induction, we
take m = Nn+1 and we replace (1.43) by

Fn+1(D� ∩ B(t�+1, 4−j−q)) ≥ sup
t∈D�

Fn+1(D� ∩ B(t, 4−j−q)) − εn+1

Consider one of the pieces A of the partition of C. If A = Am, we set

∀i , 1 ≤ i < q , bi(A) = bi(C)

bq(A) = b0(A) − 4−j−12(n+1)/2 .

If A = A� with � < m we then set
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bq(A) = b1(C) ; ∀i < q , bi(A) = min(bi+1(C), b1(C)) .

Exactly as previously we show in both cases that∑
0≤i≤q

bi(A) + (1 − 1√
2
)4−j(A)−12(n+1)/2

≤
∑

0≤i≤q

bi(C) +
1
2
(1 − 1√

2
)4−j(C)−12n/2 + εn+1

and we finish the proof in the same manner. �

1.4 Notes and Comments

Consider an Orlicz function, that is a convex function Ψ on R
+ such that

Ψ(0) = 0. For a r.v. X , the Orlicz norm ‖X‖Ψ is defined by

‖X‖Ψ = inf{c > 0 ; EΨ
( |X |

c

)
≤ 1} .

A general problem is to control E supt∈T Xt under the increment condition

∀s, t ∈ T ‖Xs − Xt‖Ψ ≤ d(s, t) . (1.52)

The case of condition (0.4) is essentially the same as the case where Ψ(x) =
exp x2 − 1. The most important result on this problem is a generalization of
Dudley’s entropy bound due to Pisier [33] and Kono [15].

E sup
t∈T

Xt ≤ L

∫ ∆(T,d)

0

Ψ−1(N(T, d, ε))dε . (1.53)

In the study of the general problem of controlling the supremum of a process
under (1.52) it is useful to distinguish the “polynomial growth case” e.g.
Ψ(x) = xp where p ≥ 1 from the “exponential growth” case, e.g. Ψ(x) =
exp xα−1 where α ≥ 1. The polynomial growth case is the most difficult, and
in that case it is hard to go beyond (1.53). A serious attempt in that direction
took place in [46], using the tool of majorizing measures. (What majorizing
measures are will be briefly discussed in the Appendix.) It unfortunately
seems that the idea of the generic chaining fails to work in that case. For
example, when Ψ(x) = xp, the natural generalization of (1.12) seems to be
that if the sets Tn satisfy cardTn ≤ 2n then

E sup
t∈T

Xt ≤ L sup
t∈T

∑
n≥0

2n/pd(t, Tn) .

Unfortunately, this inequality does not hold true. Majorizing measures remain
of potential interest in that case, even though they are typically very difficult
to use. See [78] for an example of use.
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On the other hand, the idea of the generic chaining is well adapted to
the exponential growth case, that is far more important than the polynomial
growth case. In this case generic chaining makes the use of majorizing mea-
sures totally obsolete. As is shown is the Appendix, it yields the same results,
but a look at the existing literature will convince the reader that it does so
in a technically simpler fashion. Of course, entropy bounds in the spirit of
(1.16) are sufficient for many problems and remain useful.

Probabilists are often more interested in the continuity of processes than
in their boundedness. From the theoretical point of view that we adopt here,
boundedness is however the central problem. When it is understood, dealing
with continuity becomes a much easier question. Anticipating on the results
of Chapter 2 we state a typical result about continuity.

Theorem 1.4.1. Consider a Gaussian process (Xt)t∈T , where T is count-
able, and the distance (0.3). Then the following are equivalent:

1) The map t �→ Xt(ω) is uniformly continuous on (T, d) with probability
1.

2) We have
lim
ε→0

E sup
d(s,t)≤ε

|Xs − Xt| = 0 .

3) There exists an admissible sequence of partitions of T such that

lim
k→∞

sup
t∈T

∑
n≥k

2n/2∆(An(t)) = 0.

Of course, the assumption that T is countable can be removed when one
knows what a separable process is.

We will not develop results about continuity in order to keep this volume
attractively thin.



2 Gaussian Processes and Related Structures

2.1 Gaussian Processes and the Mysteries of Hilbert
Space

Consider a Gaussian process (Xt)t∈T , that is a jointly Gaussian family of
centered r.v. indexed by T . We provide T with the canonical distance

d(s, t) =
(
E(Xs − Xt)2

)1/2
. (2.1)

Theorem 2.1.1. (The majorizing measure theorem) For some universal
constant L we have

1
L

γ2(T, d) ≤ E sup
t∈T

Xt ≤ Lγ2(T, d) . (2.2)

The reason for the name is explained in the Appendix. We observe that
the right-hand side inequality follows from Theorem 1.2.6. To prove the lower
bound, using Theorem 1.3.6 (c) we will assume without loss of generality that
T is finite and we will then use Theorem 1.3.2. We will use the functionals

Fn(A) = F (A) = E sup
t∈A

Xt ,

so that Fn does not depend on n. On purpose we give a proof that relies on
general principles, and lends itself to generalizations.

Lemma 2.1.2. (Sudakov minoration) Assume that

∀p , q ≤ m , p �= q ⇒ d(tp, tq) ≥ a .

Then we have
E sup

p≤m
Xtp ≥ a

L1

√
log m . (2.3)

Here and below L1, L2, . . . are specific universal constants. Their values re-
main the same (at least within the same section).

A proof of Sudakov minoration can be found in [18], p. 83.
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Lemma 2.1.3. Consider a Gaussian process (Zt)t∈U , where U is finite and
a number σ such that σ ≥ supt∈U (EZ2

t )1/2. Then for u > 0 we have

P
(∣∣∣sup

t∈U
Zt − E sup

t∈U
Zt

∣∣∣ ≥ u
)
≤ 2 exp

(
− u2

2σ2

)
. (2.4)

This is a very important property of Gaussian processes. It is a facet of the
theory of concentration of measure, a leading idea of modern probability
theory. The reader is referred to the (very nice) book [17] to learn about this.

Proposition 2.1.4. Consider points (t�)�≤m of T . Assume that d(t�, t�′) ≥ a
if � �= �′. Consider σ > 0, and for � ≤ m a finite set H� ⊂ B(t�, σ). Then if
H =

⋃
�≤m H� we have

E sup
t∈H

Xt ≥ a

L1

√
log m − L2σ

√
log m + min

�≤m
E sup

t∈H�

Xt . (2.5)

If σ ≤ a/(2L1L2), (2.5) implies

E sup
t∈H

Xt ≥ a

2L1

√
log m + min

�≤m
E sup

t∈H�

Xt , (2.6)

which can be seen as a generalization of (2.3).

Proof. We can and do assume m ≥ 2. For � ≤ m, we consider the r.v.

Y� =
(
sup
t∈H�

Xt

) − Xt�
= sup

t∈H�

(Xt − Xt�
) .

We set U = H� and Zt = Xt − Xt�
so that for t ∈ U we have EZ2

t ≤ σ and,
for u ≥ 0, by (2.4), we have

P(|Y� − EY�| ≥ u) ≤ 2 exp
(
− u2

2σ2

)
.

Thus if V = max�≤m |Y� − EY�| we have

P(V ≥ u) ≤ 2m exp
(
− u2

2σ2

)
. (2.7)

For any non-negative r.v. V we have EV =
∫ ∞
0 P(V ≥ v) dv, and a simple

calculation using (2.7) gives that, since m ≥ 2,

EV ≤
∫ ∞

0

min
(
1, 2m exp

(
− u2

2σ2

))
du ≤ L2σ

√
log m .

Now, for each � ≤ m,

Y� ≥ EY� − V ≥ min
�≤m

EY� − V ,
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and thus
sup
t∈H�

Xt = Y� + Xt�
≥ Xt�

+ min
�≤m

EY� − V

so that
sup
t∈H

Xt ≥ max
�≤m

Xt�
+ min

�≤m
EY� − V .

We then take expectation and use (2.3). �

Proof of Theorem 2.1.1. We fix r ≥ 2L1L2, and we take β = 1, τ = 1.
To prove the growth condition for the functionals Fn we simply observe that
(2.6) implies that (1.31) holds for θ(n) = 2n/2/L. Using Theorem 1.3.2 and
Lemma 1.3.3, it remains only to control the term ∆(T ). But we have

E max(Xt1 , Xt2) = E max(Xt1 − Xt2 , 0) =
1√
2π

d(t1, t2) ,

so that ∆(T ) ≤ √
2πE supt∈T Xt. �

There is a rather interesting feature in the proof of Theorem 2.1.1. The
objective of this theorem is to understand E supt∈T Xt, and for this we use
functionals that are based precisely on this quantity we try to understand.
One can then expect that Theorem 2.1.1 in itself has little practical value
when we are faced with a concrete situation. Its content can be interpreted as
meaning that there is really no other way to bound a Gaussian process than
to control the quantity γ2(T, d). But of course, to control this quantity in a
specific situation, we must in some way gain understanding of the underlying
geometry of this situation.

The following is a noteworthy consequence of Theorem 2.1.1.

Theorem 2.1.5. Consider two processes (Yt)t∈T and (Xt)t∈T indexed by the
same set. Assume that the process (Xt)t∈T is Gaussian and that the process
(Yt)t∈T satisfies the condition

∀u > 0 , ∀s , t ∈ T , P(|Ys − Yt| ≥ u) ≤ 2 exp
(
− u2

d(s, t)2

)
,

where d is the distance (2.1) associated to the process Xt. Then we have

E sup
s,t∈T

|Ys − Yt| ≤ LE sup
t∈T

Xt .

Proof. We combine (1.26) and the left-hand side of (2.2). �

Let us now turn to a simple (and classical) example that illustrates well
the difference between (1.18) and (1.12). Consider an independent sequence
(gi)i≥1 of standard Gaussian r.v. and for i ≥ 2 set

Xi =
gi√
log i

. (2.8)
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Consider an integer s ≥ 2 and the process (Xi)i≤Ns so the index set is
T = {2, 3, . . . , Ns}. The distance d associated to the process satisfies for
p �= q

1√
log(min(p, q))

≤ d(p, q) ≤ 2√
log(min(p, q))

. (2.9)

If Tn ⊂ T and cardTn = Nn for 1 ≤ n < s, there exists p ≤ Nn + 1
with p /∈ Tn, so that by (2.9) we have d(p, Tn) ≥ 2−n/2/L, and thus en(T ) ≥
2−n/2/L. Thus ∑

n

2n/2en(T ) ≥ s − 1
L

. (2.10)

On the other hand, for n ≤ s let us define Tn = {2, 3, . . . , Nn, Ns}. Consider
integers p ∈ T and m ≤ s − 1 such that Nm < p ≤ Nm+1. Then d(p, Tn) = 0
if n ≥ m + 1, while, if n ≤ m,

d(p, Tn) ≤ d(p, Ns) ≤ L2−m/2

by (2.9) and since p, Ns ≥ Nm. Hence we have∑
n

2n/2d(p, Tn) ≤
∑
n≤m

L2n/22−m/2 ≤ L . (2.11)

Comparing (2.10) and (2.11) we see that the bound (1.18) is worse than
the bound (1.12) by a factor about s. This example is in a sense extremal.
It is simple to see that, when T is finite, the bound (1.18) cannot be worse
than (1.12) by a factor more than about log log cardT .

It follows from (2.11) and (1.12) that E supi≥1 Xi < ∞. A simpler proof
of this fact is given in Proposition 2.1.7 below.

We consider the Hilbert space �2 = �2(N∗) of sequences (ti)i≥1 such that∑
i≥1 t2i < ∞, provided with the norm ‖t‖ = ‖t‖2 = (

∑
i≥1 t2i )

1/2. To each t

in �2 we associate a Gaussian r.v.

Xt =
∑
i≥1

tigi (2.12)

(the series converges in �2). In this manner, for each subset T of �2 we can
consider the Gaussian process (Xt)t∈T . The distance induced on T by the
process coincides with the distance of �2 since from (2.12) we have EX2

t =∑
i≥1 t2i .
The importance of this construction is that it is generic. All Gaussian

processes can be obtained this way. (At least when there is a countable subset
T ′ of T that is dense in the space (T, d), which is the only case of importance
for us. Indeed, it suffices to think of the r.v. Yt of a Gaussian process as a
point in L2(Ω), where Ω is the underlying probability space, and to identify
L2(Ω), which is then separable, and �2 by choosing an orthonormal basis of
L2(Ω).)
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A subset T of �2 will always be provided with the distance induced by �2,
so we will write γ2(T ) rather than γ2(T, d). We denote by convT the convex
hull of T , and we write

T1 + T2 =
{
t1 + t2 ; t1 ∈ T1 , t2 ∈ T2

}
.

Theorem 2.1.6. For a subset T of �2, we have

γ2(convT ) ≤ Lγ2(T ) . (2.13)

For two subsets T1 and T2 of �2, we have

γ2(T1 + T2) ≤ L
(
γ2(T1) + γ2(T2)

)
. (2.14)

Proof. To prove (2.13) we use (2.2) and the fact that

sup
t∈convT

Xt = sup
t∈T

Xt (2.15)

since Xa1t1+a2t2 = a1Xt1 + a2Xt2 . The proof of (2.14) is similar. �

Here is a simple fact.

Proposition 2.1.7. Consider a set T = {tk ; k ≥ 1} where ‖tk‖ ≤
1/

√
log(k + 1). Then E supt∈T Xt ≤ L.

Proof. We could use (1.12), but it is easier to write

P
(
sup

k
|Xtk

| ≥ u
) ≤

∑
k

P(|Xtk
| ≥ u)

≤
∑

k

2 exp
(
−u2

2
log(k + 1)

)
(2.16)

since Xtk
is Gaussian with EX2

tk
≤ 1/ log(k + 1). Now for u ≥ 2, the right-

hand side of (2.16) is at most L exp(−u2/2). �

Combining with (2.15), this shows that E supt∈T Xt ≤ L, where T =
conv{tk, k ≥ 1}. The following means that this construction is generic.

Theorem 2.1.8. Consider a countable set T ⊂ �2, with 0 ∈ T . Then we can
find a sequence (tk) in �2, with ‖tk‖

√
log(k + 1) ≤ LE supt∈T Xt and

T ⊂ conv({tk : k ≥ 1} ∪ {0}) .

Proof. By Theorem 2.1.1 we can find an admissible sequence An of T with

∀t ∈ T ,
∑
n≥0

2n/2∆(An(t)) ≤ LE sup
t∈T

Xt = S . (2.17)
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We construct sets Tn ⊂ T , such that each A ∈ An contains exactly one
element of Tn. We ensure in the construction that T =

⋃
n≥0 Tn and that

T0 = {0}. (To do this, we simply enumerate the elements of T as (un)n≥1

with u0 = 0 and we put un in Tn.) For n ≥ 1 consider the set Un that consists
of all the points

2−n/2 t − v

‖t − u‖
where t ∈ Tn, v ∈ Tn−1 and t �= v. Thus each element of Un has norm 2−n/2,
and Un has at most NnNn−1 ≤ Nn+1 elements. Let U =

⋃
k≥1 Uk. We observe

that U contains at most Nn+2 elements of norm ≥ 2−n/2. If we enumerate
U = {tk, k = 1, . . .} where the sequence ‖tk‖ is non-increasing, then if ‖tk‖ ≥
2−n/2 we have k ≤ Nn+2 and this implies that ‖tk‖ ≤ L/

√
log(k + 1).

Consider t ∈ T , so that t ∈ Tm for some m ≥ 0. Writing πn(t) for the
unique element of Tn ∩ An(t), since π0(t) = 0 we have

t =
∑

1≤n≤m

πn(t) − πn−1(t) =
∑

1≤n≤m

an(t)un(t) , (2.18)

where

un(t) = 2−n/2 πn(t) − πn−1(t)
‖πn(t) − πn−1(t)‖ ∈ U ; an(t) = 2n/2‖πn(t) − πn−1(t)‖ .

Since ∑
1≤n≤m

an(t) ≤
∑
n≥1

2n/2∆(An−1(t)) ≤ 2S

we see from (2.18) that

t ∈ 2Sconv(U ∪ {0}) .

This concludes the proof. �
The simple proof of Theorem 2.1.6 hides the fact that (2.13) is a near

miraculous result. It does not provide any real understanding of what is
going on. Here is a simple question.

Research problem 2.1.9. Given a subset T of the unit ball of �2, give a
geometrical proof that γ2(convT ) ≤ L

√
log cardT .

The issue is that, while this result is true whatever the choice of T ,
the structure of an adapted sequence that witnesses that γ2(convT ) ≤
L
√

log cardT must depend on the “geometry” of the set T .
A geometrical proof should of course not use Gaussian processes but only

the geometry of Hilbert space. A really satisfactory argument would give
a proof that holds in Banach spaces more general than Hilbert space, for
example by providing a positive answer to the following.

Research problem 2.1.10. Consider 1 < p < ∞ and q with 1/p+1/q = 1.
Let α = min(2, q). Is it true that for any subset T of �p one has γα(convT, d) ≤
K(p)γα(T, d) where d denotes the distance of �p and K(p) depends on p only?
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2.2 A First Look at Ellipsoids

We have illustrated the gap between Dudley’s bound (1.18) and the sharper
bound (1.12), using the example (2.8), but perhaps the reader deems this
example artificial. In this section we will illustrate this gap again using el-
lipsoids in Hilbert space. It is hard to argue that ellipsoids are unnatural or
unimportant.

Given a sequence (ai)i≥1 , ai > 0, we consider the set

E =
{

t ∈ �2 ;
∑
i≥1

t2i
a2

i

≤ 1
}

. (2.19)

Proposition 2.2.1. We have

1
L

(∑
i≥1

a2
i

)1/2 ≤ E sup
t∈E

Xt ≤
(∑

i≥1

a2
i

)1/2
. (2.20)

Proof. We observe that, by the Cauchy-Schwarz inequality we have

Y := sup
t∈T

Xt = sup
t∈E

∑
i≥1

tigi ≤
(∑

i≥1

a2
i g

2
i

)1/2
. (2.21)

Taking ti = a2
i gi/

∑
j≥1 a2

jg
2
j , we see that actually Y = (

∑
i≥1 a2

i g
2
i )1/2 and

thus EY 2 =
∑

i≥1 a2
i . The right-hand side of (2.20) follows from the Cauchy-

Schwarz inequality. For the left-hand side, let σ = maxi≥1 |ai|. Since Y =
supt∈E Xt ≥ |ai||gi|, we have σ ≤ LEY . It follows from (2.4) that

E(Y − EY )2 ≤ Lσ2 ≤ L(EY )2

so that
∑

i≥1 a2
i = EY 2 ≤ L(EY )2. The result follows. �

It follows from Theorem 2.1.1 that

γ2(E) ≤ L
(∑

i≥1

a2
i

)1/2
. (2.22)

This is a statement about geometry of ellipsoids. Its proof was rather indirect.
We will later on give a “purely geometric” proof of this result that will have
many consequences.

Let us now assume that the sequence (ai)i≥1 is non-increasing. Since

2n ≤ i ≤ 2n+1 ⇒ a2n ≥ ai ≥ a2n+1

we get ∑
i≥1

a2
i =

∑
n≥0

∑
2n≤i<2n+1

a2
i ≤

∑
n≥0

2na2
2n
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and ∑
i≥1

a2
i ≥

∑
n≥0

2na2
2n+1 =

1
2

∑
n≥1

2na2
2n

and thus
∑

n≥0 2na2
2n ≤ 3

∑
i≥1 a2

i . So we can rewrite (2.20) as

1
L

(∑
n≥0

2na2
2n

)1/2 ≤ E sup
t∈E

Xt ≤
(∑
n≥0

2na2
2n

)1/2
. (2.23)

Proposition 2.2.2. We have

1
L

∑
n≥0

2n/2a2n ≤
∑
n≥0

2n/2en(E) ≤ L
∑
n≥0

2n/2a2n . (2.24)

The bounds in (2.23) and (2.24) are distinctively different. Dudley’s bound
(1.16) fails to describe the behavior of Gaussian processes on ellipsoids. This
is a simple occurrence of a general phenomenon. In some sense an ellipsoid is
smaller than what one would predict just by looking at its entropy numbers
en(E). This idea will be investigated further in Section 3.1.

The proof of (2.24) is based on ideas that are at least 50 years old. The
left-hand side is the easier part (and also the most important for us). It
follows from the next Lemma.

Lemma 2.2.3. We have en(E) ≥ 1
2a2n .

Proof. Consider the following ellipsoid in R
2n

:

En =
{

(ti)i≤2n ;
∑
i≤2n

t2i
a2

i

≤ 1
}

.

It should be obvious (using “projection on the first 2n coordinates”) that
en(En) ≤ en(E).

Let us denote by B the centered unit Euclidean ball of R
2n

and by Vol
the volume in this space. Let us consider a subset T of En, with cardT ≤ 22n

,
and ε > 0; Then

Vol
(⋃

t∈T

(εB + t)
)
≤

∑
t∈T

Vol(εB + t) ≤ 22n

ε2
n

VolB .

On the other hand, since ai ≥ a2n for i ≤ 2n, we have a2nB ⊂ En, so that
VolEn ≥ a2n

2nVolB. Thus if 2ε < a2n , we cannot have En ⊂ ⋃
t∈T (εB + t).

Thus en(En) ≥ ε. �

We now turn to the upper bound.

Lemma 2.2.4. We have

en+3(E) ≤ 3 max
k≤n

a2k2k−n . (2.25)
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Proof. We keep the notations of Lemma 2.2.3. First we show that

en+3(E) ≤ en+3(En) + a2n . (2.26)

To see this, we observe that, if t ∈ E , then

1 ≥
∑
i≥1

t2i
a2

i

≥
∑
i>2n

t2i
a2

i

≥ 1
a2
2n

∑
i>2n

t2i

so that (
∑

i>2n t2i )
1/2 ≤ a2n and, viewing En as a subset of E , we have

d(t, En) ≤ a2n . This proves (2.26).
Consider now ε > 0, and a subset Z of En with the following properties.

Any two points of Z are at mutual distance ≥ 2ε (2.27)

cardZ is as large as possible under (2.27). (2.28)

Then by (2.28) the balls centered at points of Z and of radius ≤ 2ε cover En.
Thus

cardZ ≤ Nn+3 ⇒ en+3(En) ≤ 2ε . (2.29)

The balls centered at the points of Z, of radius ε, have disjoint interiors,
so that

cardZ Vol(εB) ≤ Vol(En + εB) . (2.30)

Now for t = (ti)i≤2n ∈ En, we have
∑

i≤2n t2i /a2
i ≤ 1, and for t′ in εB, we

have
∑

i≤2n t′2i /ε2 ≤ 1. Since (ti + t′i)
2 ≤ 2t2i + 2t′2i , we have

En + εB ⊂ E1 =
{
t ;

∑
i≤2n

t2i
c2
i

≤ 1
}

where ci = 2 max(ε, ai), so that

Vol(En + εB) ≤ VolE1 = VolB
∏

i≤2n

ci

and comparing with (2.30) we have

cardZ ≤
∏

i≤2n

ci

ε
= 22n ∏

i≤2n

max
(
1,

ai

ε

)
.

Assume now that k ≤ n ⇒ a2k2k−n ≤ ε. Then ai ≤ ε2n−k for 2k < i ≤ 2k+1,
so that ∏

i≤2n

max
(
1,

ai

ε

)
=

∏
k≤n−1

∏
2k<i≤2k+1

max
(
1,

ai

ε

)

≤
∏

k≤n−1

(
2n−k

)2k

= 2
∑

k≤n(n−k)2k

≤ 22n+2
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since
∑

i≥0 i2−i = 4.
In summary, if ε = maxk≤n a2k2k−n, we have shown that cardZ ≤ 22n ·

22n+2 ≤ Nn+3, so that en+3(En) ≤ 2ε. The conclusion follows from (2.26).�
Proof of (2.24). We have, using (2.25)∑

n≥3

2n/2en(E) =
∑
n≥0

2(n+3)/2en+3(E)

≤ L
∑
n≥0

2n/2
(∑
k≤n

2k−na2k

)
≤ L

∑
k≥0

2ka2k

∑
n≥k

2−n/2

≤ L
∑
k≥0

2k/2a2k .

Since en(E) ≤ a1, the result follows. �

2.3 p-stable Processes

Consider a number 0 < p ≤ 2. A r.v. X is called (real, symmetric) p-stable if
for each λ ∈ R we have

E exp iλX = exp
(
−σp|λ|p

2

)
, (2.31)

where σ = σp(X) is called the parameter of X . The name “p-stable”
comes from the fact that if X1 , . . . , Xm are independent and p-stable, then∑

j≤m ajXj is p-stable, and

σp(
∑
j≤m

ajXj) =
(∑
j≤m

|aj |pσp(Xj)p
)1/p

.

This is obvious from (2.31).
The reason for the restriction p ≤ 2 is that for p > 2 a r.v. as in (2.31) does

not exist. The case p = 2 is the Gaussian case. Despite the formal similarity,
the case p < 2 is very different. It can be shown that

lim
s→∞ spP(|X | ≥ s) = cpσ

p (2.32)

where cp > 0 depends on p only. Thus X does not have moments of order p,
but it has moments of order q for q < p.

A process (Xt)t∈T is called p-stable if for every family (αt)t∈T for which
only finitely many of the numbers αt are not 0 the r.v.

∑
t αtXt is p-stable.

We can then define a (quasi) distance d on T by
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d(s, t) = σ(Xs − Xt) . (2.33)

One can also define an equivalent distance by d(s, t) = (E|Xs − Xt|q)1/q,
where q < p. In contrast with the Gaussian case, it seems unrealistic to hope
to compute E supt∈T Xt as a function of the geometry of (T, d). Yet, as a con-
sequence of Theorem 2.1.1 one can extend the lower bound of Theorem 2.1.1
as follows.

Theorem 2.3.1. For 1 < p < 2, there is a number K(p) such that for any
p-stable process (Xt)t∈T we have

γq(T, d) ≤ K(p)E sup
t∈T

Xt ,

where q is the conjugate exponent of p, i.e. 1/q + 1/p = 1, and where d is as
in (2.33).

At the heart of Theorem 2.3.1 is the fact that for 1 ≤ p < 2 the process
(Xt) can be represented as a conditionally Gaussian process. That is, we can
find two probability spaces (Ω , P) , (Ω′ , P′) and a family (Yt)t∈T of r.v. on
Ω × Ω′ (provided with the product probability), such that

Given any finite subset U of T, the joint (2.34)
laws of (Yt)t∈U and (Xt)t∈U are identical.

Given ω ∈ Ω , the process ω′ �→ Yt(ω, ω′) (2.35)
is a centered Gaussian process.

We refer the reader to [18], Theorem 5.1 (with η Gaussian) for a proof of
this and for general background on p-stable processes. A remarkable fact is
that we do not need to know precisely how this representation arises.

We denote by E′ integration in P′ only. Given ω, we consider the random
distance dω on T given by

dω(s, t) =
(
E′(Ys(ω, ω′) − Yt(ω, ω′))2

)1/2
. (2.36)

We consider 1 ≤ p < 2 and we define α by

1
α

=
1
p
− 1

2
. (2.37)

Lemma 2.3.2. If 1 ≤ p < 2, for all s, t ∈ T and ε > 0, we have

P(dω(s, t) ≤ εd(s, t)) ≤ exp
(
− bp

εα

)
(2.38)

where bp > 0 depends on p only.
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Proof. Since the process Yt(ω, ·) is Gaussian, we have

E′ exp iλ(Ys − Yt) = exp
(
−λ2

2
d2

ω(s, t)
)

.

Taking expectation, using (2.31), and the fact that the pair (Ys, Yt) has the
same law as the pair (Xs, Xt), we get

exp
(
−|λ|p

2
dp(s, t)

)
= E exp

(
−λ2

2
d2

ω(s, t)
)

. (2.39)

For a r.v. Z we have

P(Z ≤ u) ≤ exp
(λ2u

2

)
E exp

(
−λ2

2
Z

)
.

Using this for Z = d2
ω(s, t) and u = ε2d2(s, t), we get, using (2.39),

P(dω(s, t) ≤ εd(s, t)) ≤ exp
(1

2
(
λ2ε2d2(s, t) − |λ|pdp(s, t)

))
,

and the result by optimization over λ. �

This lemma shows the relevance of the following.

Theorem 2.3.3. Consider a (finite) metric space (T, d) and a random dis-
tance dω on T . Assume that for some b > 0 we have

∀s , t ∈ T , ∀ε > 0 , P(dω(s, t) ≤ εd(s, t)) ≤ exp
(
− b

εα

)
, (2.40)

where α > 2. Then

P
(
γ2(T, dω) ≥ 1

K
γq(T, d)

)
≥ 3

4
, (2.41)

where
1
q

=
1
2
− 1

α
,

and where K depends on α and b only.

The number 3/4 plays no special role.

Proof of Theorem 2.3.1. Using Theorem 1.3.6, we can assume that T is
finite. Consider Z = supt∈T Yt. From Theorem 2.1.1 we have

E′Z ≥ 1
L

γ2(T, dω)

and since E′Z ≥ 0, taking expectation and using (2.38) and (2.41) proves
that EZ ≥ γq(T, d)/K(p). �
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Proof of Theorem 2.3.3. Replacing d by b1/αd, we can and do assume that
b = 1. To prove (2.41) we will prove that if U ⊂ Ω satisfies P(U) ≥ 1/4, then

E(1Uγ2(T, dω)) ≥ 1
L

γq(T, d) . (2.42)

Since U = {γ2(T, dω) < γq(T, d)/L} violates (2.42), we must have P(U) <
1/4, and this proves (2.41).

We fix U once and for all with P(U) ≥ 1/4. Given a probability measure
µ on T and n ≥ 0 we set

Fn(µ) = E
(
1U inf

∫
T

∑
k≥n

2k/2∆(Ak(t), dω)dµ(t)
)

where the infimum is taken over all admissible sequences (An)n≥0 of T . Given
A ⊂ T , we set

Fn(A) = sup Fn(µ) ,

where the supremum is over all probability measures µ supported by A. Using
that

∫
fdµ ≤ sup f , we see that

F0(T ) ≤ E(1Uγ2(T, dω)) .

We claim that
∆(T, d) ≤ KF0(T ) . (2.43)

(Here and in the rest of the proof, K denotes a number depending on α only,
that need not be the same at each occurrence.) To see this, we simply note
that since A0 = {T }, we have A0(t) = T for each t, so that

F0(T ) ≥ E(1U∆(T, dω)) (2.44)
≥ ε∆(T, d)P(U ∩ {∆(T, dω) ≥ ε∆(T, d)})
≥ 1

K
∆(T, d)

using (2.40) for ε small enough.
Thus (2.42), and hence Theorem 2.3.3 will follow from Theorem 1.3.2

(used for r = 4 , β = 1 , θ(n) = 2n/q/K , ξ = 21/q and τ = 3) and
Lemma 1.3.3 provided we prove that the functionals satisfy the growth condi-
tion of Definition 1.2.5. The purpose of taking τ = 3 is that it greatly helps to
check this condition, although this will became apparent only at the end of our
calculations. To prove the growth condition, we consider n ≥ 0 , m = Nn+3,
and points (t�)�≤m in T , with

� �= �′ ⇒ d(t�, t�′) ≥ 4a > 0 . (2.45)

We consider sets H� ⊂ B(t�, a), and we want to show that
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Fn

( ⋃
�≤m

H�

)
≥ 2n/qa

K
+ min

�≤m
Fn+1(H�) . (2.46)

(Thus a does not have exactly the same meaning as in (1.31).) Consider
c < min�≤m Fn+1(H�), and consider for each � a probability µ� supported by
H�, and such that Fn+1(µ�) > c. Consider

µ =
1
m

∑
�≤m

µ� . (2.47)

This is a probability, which is supported by
⋃

�≤m H�. To prove (2.46), it
suffices to prove that

Fn(µ) ≥ 2n/qa

K
+ c . (2.48)

Using that inf(f(x) + g(x)) ≥ inf f(x) + inf g(x), we see that

Fn(µ) ≥ I + II

where

I = Fn+1(µ) = E
(
1U inf

∫ ∑
k≥n+1

2k/2∆(Ak(t), dω)dµ(t)
)

II = E
(
1U inf

∫
2n/2∆(An(t), dω)dµ(t)

)
,

where both infimum are over all admissible sequences (An) of T . Using (2.47),
we have

I ≥ 1
m

∑
�≤m

Fn+1(µ�) ≥ c

so all what remains to prove is that

II ≥ 2n/qa

K
. (2.49)

Given a partition An, let us define the random subset D of T by

D =
⋃{

A ∈ An ; ∆(A, dω) ≤ 2−(n+3)/αa
}

.

For t �∈ D, we have ∆(An(t), dω) ≥ 2−(n+3)/αa, and thus, since 1/2 − 1/α =
1/q, ∫

2n/2∆(An(t), dω)dµ(t) ≥ 2n/q

K
aµ(T \D) .

Now

E(1U inf µ(T \D)) = E(1U (1 − sup µ(D)) ≥ 1
4
− E supµ(D) , (2.50)
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where as usual the infimum and the supremum are over the choice of (An).
Thus all we now have to do is to prove that

E supµ(D) ≤ 1
8

. (2.51)

Let us define

D = {A ∈ An ; A ⊂ D} =
{
A ∈ An ; ∆(A, dω) ≤ 2−(n+3)/αa

}
.

Thus, by the Cauchy-Schwarz inequality, we have

µ(D) =
∑
A∈D

µ(A) ≤
(
cardD

∑
A∈D

µ2(A)
)1/2

. (2.52)

Now, by definition of D, for s, t ∈ A ∈ D we have dω(s, t) ≤ 2−(n+3)/αa, so
that

A2 ⊂ Vω :=
{
(s, t) ; dω(s, t) ≤ 2−(n+3)/αa

}
(2.53)

and since the sets A2 are disjoint, we have
∑

µ2(A) =
∑

µ⊗2(A2) ≤ µ⊗2(Vω)
and (2.52) yields, since cardD ≤ cardAn ≤ Nn,

µ(D) ≤ (
Nnµ⊗2(Vω)

)1/2
. (2.54)

Now, if s ∈ H� , t ∈ H�′ , � �= �′, we have d(s, t) ≥ 2a, so that if H =
⋃

�≤m H�

we have
H2 ∩ Vω ⊂ Wω ∪

⋃
�≤m

H2
� , (2.55)

where
Wω =

{
(s, t) ∈ T 2 ; dω(s, t) ≤ 2−(n+3)/αd(s, t)

}
.

Since µ(H�) = 1/m and µ(H) = 1, this yields

µ⊗2(Vω) ≤ 1
m

+ µ⊗2(Wω) .

This bound is independent of An, so combining with (2.54) we get

sup µ(D) ≤
(
Nn

( 1
m

+ µ⊗2(Wω)
))1/2

and, by the Cauchy-Schwarz inequality,

E supµ(D) ≤
(
Nn

( 1
m

+ Eµ⊗2(Wω)
))1/2

. (2.56)

Now
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Eµ⊗2(Wω) = E

∫
1Wω (s, t)dµ(s)dµ(t)

=
∫

E(1Wω (s, t))dµ(s)dµ(t)

≤ exp(−2n+3) ,

using (2.40) in the last line. Thus

E supµ(D) ≤
(

2Nn

Nn+3

)1/2

≤ 1
8

. (2.57)

�
We now turn to the case p = 1. We set M0 = 1 , Mn = 2Nn for n ≥ 1.

Given a metric space (T, d) we define

γ∞(T, d) = inf sup
t∈T

∑
n≥0

2n∆(Bn(t)) ,

where the infimum is taken over all increasing families of partitions (Bn) of
T with cardBn ≤ Mn.

Theorem 2.3.4. Consider a finite metric space (T, d) and a random dis-
tance dω on T . Assume that

∀s , t ∈ T , ∀ε > 0 , P (dω(s, t) < εd(s, t)) ≤ exp
(
− 1

ε2

)
.

Then
P

(
γ2(T, dω) ≥ 1

L
γ∞(T, d)

)
≥ 3

4
.

Proof. The proof of Theorem 2.3.4 closely follows that of Theorem 2.3.3,
so we indicate only the necessary modifications. It should be obvious that
Theorem 1.3.2 holds when we replace Nn by Mn. We will use it for θ(n) =
2n/L , r = 4 and τ = 2. We define

F (µ) = E
(
1U inf

∫ ∑
k≥2n−1

2k/2∆(Ak(t), dω)dµ(t)
)

.

Here, and everywhere in this proof the infimum is over all admissible se-
quences (An)n≥0 of T . (Thus, as usual, cardAn ≤ Nn.) All we have to do is
to prove that under the condition (2.45) (with now m = Mn+2) we have

E
(
1U inf

∫ ∑
2n−1≤k<2n+1−1

2k/2∆(Ak(t), dω)dµ(t)
)
≥ 2n

L
a .

It suffices for this purpose to prove that for each 2n − 1 ≤ k < 2n+1 − 1, we
have
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E
(
1U inf

∫
2k/2∆(Ak(t), dω)dµ(t)

)
≥ a

L
,

This will follow from (2.51), where now

D =
⋃{

A ∈ Ak , ∆(A, dω) ≤ 2−k/2a

4

}
.

To prove (2.51) we define

Wω =
{
(s, t) ∈ T 2 ; dω(s, t) ≤ 2−k/2−2d(s, t))

}
,

and copying the proof of (2.56) we obtain

µ(D) ≤
(
Nk

( 1
m

+ Eµ(Wω)
))1/2

≤
(
Nk

( 1
Mn+2

+ exp
(−2k+4

)))1/2

.

Since k < 2n+1 − 1, we have k ≤ 2n+2 − 3, so Mn+2 ≥ Nk+3 and then
µ(D) ≤ (2Nk/Nk+3)1/2 ≤ 1/8 as before. �

Theorem 2.3.5. For every 1-stable process (Xt)t∈T we have

P
(
sup
t∈T

(Xt − Xt0) ≥
1
L

γ∞(T, d)
)
≥ 1

L
.

To understand the formulation of this theorem, we note that we cannot
use expectation to measure the size of supt∈T Xt, as is shown by (2.32). Also,
we observe that when T consists of 2 points t0 and t1, then

sup
t∈T

(Xt − Xt0) = max(Xt1 − Xt0 , 0)

is 0 with probability 1/2.

Lemma 2.3.6. If (Yt)t∈T is a Gaussian process then

P
(
sup
t∈T

(Yt − Yt0) ≥
1
2
E sup

t∈T
(Yt − Yt0)

)
≥ 1

L
.

Proof. This is a consequence of two classical facts. Firstly, the r.v. Z =
supt∈T (Yt − Yt0) satisfies EZ2 ≤ L(EZ)2 (a weak consequence of (2.4)). Sec-
ondly a r.v. Z ≥ 0 satisfies

P
(
Z ≥ EZ

2

)
≥ 1

4
(EZ)2

EZ2
, (2.58)

the “second moment method”. �
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Remark 2.3.7. Since EZ2 ≤ L(EZ)2, (2.58) shows that, assuming Yt0 = 0 for
some t0 ∈ T

P
(
sup
t∈T

Yt ≥ 1
L

(
E(sup

t∈T
Yt)2

)1/2
)
≥ 1

L
. (2.59)

Proof of Theorem 2.3.5. Combining Theorems 2.3.4 and 2.1.1, we get

P
(
E′ sup

t∈T
(Yt(ω, ω′) − Yt0(ω, ω′)) ≥ 1

L
γ∞(T, d)

)
≥ 1

L

and we apply Lemma 2.3.6 given ω. �

2.4 Further Reading: Stationarity

In contrast with the Gaussian case, the inequality of Theorem 2.3.1 cannot
be reversed. This, and much more, will be apparent in Chapter 5. There is
however a special case of interest where everything behaves much better. It
is the case where one has a kind of “stationarity”. The remarkable fact about
“stationary” situations is that lower bounds such as that of Theorem 2.3.1
can often be reversed, yielding a complete understanding. To give a specific
example of what “stationarity” means without going into technicalities, con-
sider the case of a Gaussian processes, where T is a locally compact group,
and where the distance induced by the process is invariant under the action
of the group. This case is historically important, because it is connected with
the classical topic of random Fourier series. In this case, the lower bound
of Theorem 1.3.2 was discovered by X. Fernique [10]. Now that the correct
approach has been found, Fernique result is however not really simpler to
prove than Theorem 2.1.1.

Fernique’s result was an essential ingredient of the solution of all the
classical problems on random Fourier series by Marcus and Pisier [22], [23].
A somewhat simpler treatment of the work of Marcus and Pisier is given in
[18], and there is no point to reproduce it here. The work of Marcus and
Pisier was extended by Marcus [21] to more general situations (that involve
the infinitely divisible processes that we will study in Chapter 5). Marcus
fails however to obtain necessary and sufficient conditions. Obtaining these
requires the ideas of “families of distances” discussed in Section 5.1, and
is done in the paper [49]. This paper arguably contains results that go far
beyond the classical ones (in particular in the case of random Fourier series
with random coefficients that do not have second moments), and obtaining
these does not require really harder work than to get the classical results.
Not surprisingly however, the paper [49] is apparently still waiting for its
first reader.
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2.5 Order 2 Gaussian Chaos

. Consider independent standard normal sequences (gi) , (g′j) , i , j ≥ 1. Given
a double sequence t = (ti,j)i,j≥1 we consider the r.v.

Xt =
∑

i,j≥1

ti,jgig
′
j . (2.60)

The series converges in �2 as soon as
∑

i,j≥1 t2i,j < ∞. This random variable
is called a (decoupled) order 2 Gaussian chaos. There is also a theory of
non-decoupled chaos,

∑
i,j≥1 ti,jgigj . For the present purposes, this theory

reduces to the decoupled case using well understood arguments.
Given a finite family T of double sequences t = (ti,j), we would like to

find upper and lower bounds for the quantity

S(T ) = E sup
t∈T

Xt . (2.61)

We find it convenient to assume that the underlying probability space is
a product (Ω × Ω′ , P = P0 ⊗ P′), so that

Xt(ω, ω′) =
∑
i,j

ti,jgi(ω)g′j(ω
′) .

We denote by E′ integration in ω′ only (i.e. conditional expectation given
ω).

Conditionally on ω , Xt is a Gaussian r.v. and

E′X2
t =

∑
j≥1

(∑
i≥1

ti,jgi(ω)
)2

. (2.62)

Consider
σt = σt(ω) = (E′X2

t )1/2 .

Then

σt = sup
α

∑
j≥1

αj

(∑
i≥1

ti,jgi(ω)
)

(2.63)

= sup
α

∑
i≥1

gi(ω)
(∑

j≥1

αjti,j

)
:= sup

α
gt,α

where the supremum is over the sequences α = (αj) with
∑

j≥1 α2
j ≤ 1.

Let us set

‖t‖ = sup
α

(∑
i≥1

(∑
j≥1

αjti,j

)2)1/2

= sup
{ ∑

i,j≥1

αjβiti,j ;
∑
j≥1

α2
j ≤ 1 ,

∑
i≥1

β2
i ≤ 1

}
.
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If we think of t as a matrix, ‖t‖ is the operator norm of t from �2 to �2.
We will also need the Hilbert-Schmidt norm of this matrix, given by

‖t‖HS =
( ∑

i,j≥1

t2i,j

)1/2

.

We note that by the Cauchy-Schwarz inequality we have ‖t‖ ≤ ‖t‖HS . We
also have

(Eg2
t,α)1/2 =

(∑
i≥1

(∑
j≥1

αjti,j

)2)1/2

≤ ‖t‖ ,

and (2.4) implies that for v > 0,

P(|σt − Eσt| ≥ v) ≤ 2 exp
(
− v2

2‖t‖2

)
(2.64)

so that
E(σt − Eσt)2 ≤ L‖t‖2 .

Denoting by ‖ · ‖2 the norm in L2(Ω), we thus have ‖σt − Eσt‖2 ≤ L‖t‖,
so that |‖σt‖2 − |Eσt|| ≤ L‖t‖. Now

‖σt‖2 = (Eσ2
t )1/2 = (EX2

t )1/2 = ‖t‖HS , (2.65)

so that (2.64) implies

P(|σt − ‖t‖HS | ≥ v + L‖t‖) ≤ 2 exp
(
− v2

2‖t‖2

)
. (2.66)

Taking v = ‖t‖HS/4, and distinguishing the cases whether L‖t‖ ≤ ‖t‖HS/4
or not, we get

P
(
σt ≤ ‖t‖HS

2

)
≤ L exp

(
−‖t‖2

HS

L‖t‖2

)
. (2.67)

The random distance dω associated to the Gaussian process Xt (at given
ω) is

dω(s, t) = σs−t(ω) .

Considering the two distances on T defined by

d1(s, t) = ‖t − s‖ , d2(s, t) = ‖t − s‖HS

we then have shown that

P
(
dω(s, t) ≤ 1

2
d2(s, t)

)
≤ L exp

(
− d2

2(s, t)
Ld2

1(s, t)

)
. (2.68)

Let us prove another simple fact.
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Lemma 2.5.1. For v ≥ 0 we have

P(|Xt| ≥ v) ≤ L exp
(
− 1

L
min

( v2

‖t‖2
HS

,
v

‖t‖
))

. (2.69)

Proof. Given ω, the r.v. Xt is Gaussian so that

P′(|Xt| ≥ v) ≤ 2 exp
(
− v2

2σ2
t

)
,

and, given a > 0

P(|Xt| ≥ v) = EP′(|Xt| ≥ v) ≤ 2E exp
(
− v2

2σ2
t

)

≤ 2 exp
(
− v2

2a2

)
+ 2P(σt ≥ a) .

If a ≥ L‖t‖HS , it follows from (2.66) that

P(σt ≥ a) ≤ L exp
(
− a2

L‖t‖2

)
.

and thus

P(|Xt| ≥ v) ≤ 2 exp
(
− v2

2a2

)
+ L exp

(
− a2

L‖t‖2

)
. (2.70)

To finish the proof we take a = max
(
L‖t‖HS ,

√
v‖t‖) and we observe that

the last term in (2.70) is always at most L exp(−v/(L‖t‖)). �

As a consequence of (2.69), we have

P(|Xs − Xt| ≥ v) ≤ L exp
(
− 1

L
min

( v2

d2
2(s, t)

,
v

d1(s, t)

))

and Theorem 1.2.7 implies the following.

Theorem 2.5.2. For a set T of sequences (ti,j), we have

E sup
t∈T

Xt ≤ L
(
γ1(T, d1) + γ2(T, d2)

)
. (2.71)

At the end of this section, we will explain why there is no hope to reverse
this inequality. However, we have the following, where we recall the notation
(2.61).

Theorem 2.5.3. We have

γ2(T, d2) ≤ L
(
S(T ) +

√
S(T )γ1(T, d1)

)
. (2.72)

Combining with Theorem 2.5.2, we have the following.
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Corollary 2.5.4. If

R =
γ1(T, d1)
γ2(T, d2)

,

then
1

L(1 + R)
γ2(T, d2) ≤ S(T ) ≤ L(1 + R)γ2(T, d2) (2.73)

Proof. The right-hand side is obvious from (2.71). To obtain the left-hand
side, we simply write in (2.72) that, since

√
ab ≤ (a + b)/2,√

S(T )γ1(T, d1) =
√

S(T )Rγ2(T, d2)

≤ 1
2

( 1
L

γ2(T, d2) + LS(T )R
)

where L is as in (2.72), and this yields

γ2(T, d) ≤ LS(T ) +
1
2
γ2(T, d) + LS(T )R .

�

Theorem 2.5.3 relies on the following abstract statement.

Theorem 2.5.5. Consider a finite set T , provided with two distances d1 and
d2. Consider a random distance dω on T , and assume that

∀s , t ∈ T , P
(
dω(s, t) ≥ 1

L1
d2(s, t)

)
≥ 1

L1
(2.74)

∀s , t ∈ T , P
(
dω(s, t) ≤ d2(s, t)

) ≤ L1 exp
(
−d2

2(s, t)
d2
1(s, t)

)
. (2.75)

Consider a number M such that

P(γ2(T, dω) ≤ M) ≥ 1 − 1
2L1

. (2.76)

Then
γ2(T, d2) ≤ L

(
M +

√
Mγ1(T, d1)

)
. (2.77)

Proof of Theorem 2.5.3. By (2.68), the pair of distances d1 and d′2 = d2/L
satisfy (2.75). The formula (2.63) makes σt, and hence σs−t appear as the
supremum of a Gaussian process. Applying (2.59) to this process, we see that
P(σs−t ≥ (Eσ2

s−t)1/2/L) ≥ 1/L. Thus, using (2.65) we see that (2.74) holds if
L1 is large enough. Since EE′ supt∈T Xt = S(T ), and since E′ supt∈T Xt ≥ 0,
by Markov inequality we have

P
(
E′ sup

t∈T
Xt ≤ 2L1S(T )

)
≥ 1 − 1

2L1
.
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It then follows from Theorem 2.1.1 that (2.76) holds for M = LS(T ). �
Proof of Theorem 2.5.5. We consider the subset U of Ω given by U =
{γ2(T, dω) ≤ M}, so that P(U) ≥ 1 − 1/(2L1) by hypothesis. Let us fix
once and for all an admissible sequence (Cn)n≥0 of partitions of T such that

∀t ∈ T ,
∑
n≥0

2n∆(Cn(t), d1) ≤ 2γ1(T, d1) .

We consider an integer τ ≥ 0, that will be chosen later. Given a probability
measure µ on T , we define

Fn(µ) = E

(
1U inf

∫ (∑
k≥n

2k/2∆(Ak(t), dω) +
∑
�≥n

2�∆(C�+τ (t, d1))
)
dµ(t)

)
,

where the infimum is over all choices of the admissible sequence (Ak). Given
A ⊂ T , we define

Fn(A) = sup{Fn(µ) ; ∃C ∈ Cn+τ , µ(C ∩ A) = 1} .

Thus, since
∫

f(t)dµ(t) ≤ supt∈T f(t), we get

F0(T ) ≤ E

(
1U inf

(
sup
t∈T

∑
k≥0

2k/2∆(Ak(t), dω) + sup
t∈T

∑
�≥0

2�∆(C�+τ (t), d1)
))

≤ E
(
1U (γ2(T, dω) + 2−τ+1γ1(T, d1))

)
(2.78)

≤ M + 2−τ+1γ1(T, d1) ,

where in the second inequality we have used the fact that

sup
t∈T

∑
�≥0

2�+τ∆(C�+τ (t), d1) ≤ sup
t∈T

∑
k≥0

2k∆(Ck(t), d1) ≤ 2γ1(T, d1) .

Consider n ≥ 0, and set m = Nn+τ+3. Consider points (t�)�≤m of T , with
d2(t�, t�′) ≥ 4a when � �= �′ and sets H� ⊂ B2(t�, a). We will prove that if
τ ≥ τ0, where τ0 depends only on the value of the constant L1, we have

Fn

( ⋃
�≤m

H�

)
≥ 2n/2

L
a + min

�≤m
Fn+1(H�) , (2.79)

but before doing this we finish the argument. Using Theorem 1.3.2 with
r = 4 , θ(n) = 2n/2/L, and τ + 3 rather than τ , we get

γ2(T, d2) ≤ L2τ/2(F0(T ) + ∆(T, d2)) . (2.80)

Considering s , t ∈ T with d2(t, s) = ∆(T, d2), we see from (2.74) that

P
(
dω(t, s) ≥ 1

L1
∆(T, d2)

)
≥ 1

L1
.
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Since γ2(T, dω) ≥ dω(t, s), and since 1 − 1/(2L1) + 1/L1 > 1, we see from
(2.76) that ∆(T, d2) ≤ LM . Thus (2.78) and (2.80) imply that

γ2(T, d2) ≤ L2τ/2(M + 2−τγ1(T, d1)) .

Optimization over τ ≥ τ0 then gives (2.77).
We turn to the proof of (2.79). It closely resembles the proof of (2.46).

Consider c < inf� Fn+1(H�), and for � ≤ m consider a set C� ∈ Cn+τ+1

and a probability measure µ� on H� ∩ C� such that Fn+1(µ�) > c. Since
m = Nn+τ+3 ≥ Nn+τ+2Nn+τ we can find a subset I of {1 , . . . , m} with
card I ≥ Nn+τ+2 such that for all � ∈ I the set C� is contained in the same
element C0 of Cn+τ . We set

µ =
1

card I

∑
�∈I

µ�

so that µ(
⋃

�≤m H� ∩ C0) = 1. Thus, all we have to do is to prove that

Fn(µ) ≥ 2n/2

L
a + c .

Since for t in the support of µ we have Cn+τ (t) = C0, proceeding as in the
proof of Theorem 2.3.3 we see that it suffices to prove that

2n∆(C0, d1) + E
(
1U inf

∫
2n/2∆(An(t), dω)dµ(t)

)
≥ a2n/2

L
. (2.81)

Consider an integer q. This integer will be determined later, and its value
will depend only on the value of the constant L1. If ∆(C0, d1) > a2−n/2−q,
then (2.81) holds true, so that we can assume that ∆(C0, d1) ≤ a2−n/2−q.

Given the partition An, let us define the random subset D of T by

D =
⋃

{A ∈ An ; ∆(A, dω) ≤ 2a} .

For t �∈ D, we have ∆(An(t), dω) > 2a, and thus we have∫
∆(An(t), dω)dµ(t) ≥ 2aµ(T \D) .

As shown in (2.50), to prove (2.81) it suffices to show that E supµ(D) ≤
1/(4L1). Let us define

D = {A ∈ An ; A ⊂ D} = {A ∈ An ; ∆(A, dω) ≤ 2a} .

Then, as in (2.54) we see that µ(D) ≤ (Nnµ⊗2(Vω))1/2, where now Vω =
{(s, t) ∈ C2

0 ; dω(s, t) ≤ 2a}. We still have (2.55), where now

Wω =
{
(s, t) ∈ C2

0 ; dω(s, t) ≤ 2a ; d2(s, t) ≥ 2a
}

.
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By (2.75), for d2(s, t) ≥ 2a and d1(s, t) ≤ a2−n/2−q we have

P(dω(s, t) ≤ 2a) ≤ L1 exp
(−2n+2q+2

)
,

and rather than (2.56) we now have

E supµ(D) ≤
(
Nn

( 1
Nn+τ+2

+ L1 exp
(−2n+2q+2

)))1/2

.

We see that indeed we can choose q and τ0 depending only on L1 such that
for τ ≥ τ0 this is at most 1/(4L1). �

Let us give a simple consequence of Theorem 2.5.3. We recall the covering
numbers N(T, d, ε) of Section 1.2.

Proposition 2.5.6. There exists a constant L such if

∆(T, d1) ≤ α , (2.82)

then

log N
(
T, d2, L

√
αS(T )

) ≤ S(T )
α

. (2.83)

Proof. Consider a set T with cardT = m, and assume that for certain num-
bers ε and α, we have (2.82) and

∀s , t ∈ T , s �= t , d2(s, t) = ‖t− s‖HS ≥ ε . (2.84)

By Lemma 2.1.2 and Theorem 2.1.1 we have γ2(T, d2) ≥ ε
√

log m/L. (The
reader is encouraged to find a simple direct argument for this fact.) By (2.82),
we have γ1(T, d1) ≤ Lα log m, as is witnessed by an admissible sequence (An)
such that if Nn ≥ m, then each set A ∈ An contains exactly one point. By
(2.72), we have

ε

L

√
log m ≤ γ2(T, d2) ≤ L

(
S(T ) +

√
S(T )γ1(T, d1)

)
≤ L

(
S(T ) +

√
S(T )α log m

)
.

Thus, if ε ≥ L2

√
αS(T ), we have

2L
√

αS(T ) log m ≤ LS(T ) + L
√

S(T )α log m

and thus α log m ≤ S(T ).
If now T ′ is given satisfying (2.82), consider T ⊂ T ′ that satisfies (2.84)

and has a cardinality m as large as possible. Then we have shown that if ε ≥
L2

√
αS(T ′) we must have α log m ≤ S(T ) ≤ S(T ′). Thus α log m ≤ S(T ′),

and, since the cardinality of T is as large as possible, the balls centered at
the points of T of radius 2ε cover T ′. �
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Remark 2.5.7. If ε = L
√

αS(T ), then S(T )/α = L2S2(T )/ε2. Thus one can
reformulate Proposition 2.5.6 as follows. If T satisfies (2.82), then

S(T ) = E sup
t∈T

Xt ≥ 1
L

ε
√

log N(T, d2, ε)

provided ε ≥ L
√

αS(T ).
A very interesting example of a set T is as follows. Given an integer n,

we take
T = {t ; ‖t‖ ≤ 1 , ti,j �= 0 ⇒ i , j ≤ n} .

Since ∑
i,j

tijgig
′
j ≤

(∑
i≤n

g2
i

)1/2(∑
j≤n

g′2j
)1/2

‖t‖ ,

by the Cauchy-Schwarz inequality we have S(T ) ≤ n. On the other hand,
by volume arguments, we have log N(T, d1, 1/4) ≥ n2/L, so that γ1(T, d1) ≥
n2/L. It is also simple to see that (see [18])

log N(T, d2,
√

n/L) ≥ n2/L .

In fact it is simple to show that S(T ) is about n , γ1(T, d1) is about n2 and
γ2(T, d2) is about n3/2, so that in (2.73) the lower bound is tight. The upper
bound however is not tight, which means that there is no hope of reversing
the inequality (2.71).

For completeness let us mention the following.

Proposition 2.5.8. For each ε > 0, we have

ε(log N(T, d2, ε))1/4 ≤ LS(T ) . (2.85)

In the previous example, both sides are of order n for ε =
√

n/L.

Research problem 2.5.9. Is it true that

ε
√

log N(T, d1, ε) ≤ LS(T ) ? (2.86)

For a partial result, and a proof of Proposition 2.5.8, see [50].

It is interesting to observe that (2.85) would follow from (2.86) and (2.83).
Indeed by (2.86) we would have

log N(T, d1, α) ≤ L
S2(T )

α2

and by (2.83) if B is a ball B1(t, α) of T , we have

log N
(
B, d2, L

√
αS(T )

) ≤ S(T )
α

.
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Combining these, we would have

log N
(
T, d2, L

√
αS(T )

) ≤ L
(S2(T )

α2
+

S(T )
α

)
and taking α such that L

√
αS(T ) = ε, i.e. α = ε2/LS(T ) would prove (2.85).

To conclude this section, we describe a way to control S(T ) from above,
which is really different from the method of Theorem 2.5.2.

Given a convex balanced subset U of �2 (that is, λU ⊂ U for |λ| ≤ 1, or,
equivalently, U = −U), we write

g(U) = E sup
(ui)∈U

∑
i≥1

uigi

σ(U) = sup
(ui)∈U

(∑
i≥1

u2
i

)1/2
.

Given U , V convex balanced subsets of �2, we write

TU,V =
{
t = (ti,j) ; ∀(xi)i≥1 , ∀(yj)j≥1 ,∑

ti,jxiyj ≤ sup
(ui)∈U

∑
i≥1

xiui sup
(vj)∈V

∑
j≥1

yjvj

}
.

It follows from (2.4) that, if w > 0,

P
(

sup
(ui)∈U

∑
i≥1

giui ≥ g(U) + wσ(U)
)
≤ 2 exp

(−w2

2
)

so that (using that for positive numbers, when ab > cd we have either a > c
or b > d)

P

(
sup

(ui)∈U

∑
i≥1

giui sup
(vj)∈V

∑
g′jvj ≥ g(U)g(V ) (2.87)

+ w(σ(U)g(V ) + σ(V )g(U)) + w2σ(U)σ(V )
)

≤ 4 exp
(
−w2

2

)
.

We note that

sup
t∈TU,V

Xt ≤ sup
(ui)∈U

∑
i≥1

uigi sup
(vj)∈V

∑
j≥1

vjg
′
j ,

so that, if g(U) , g(V ) ≤ 1 , σ(U) , σ(V ) ≤ 2−n/2 , changing w into 2n/2w, we
see from (2.87) that

P
(

sup
t∈TU,V

Xt ≥ (1 + w)2
)
≤ 4 exp(−2n−1w2) (2.88)
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Proposition 2.5.10. Consider for n ≥ 0 a family Cn of pairs of convex
balanced subsets of �2. Assume that cardCn ≤ Nn and that

∀(U, V ) ∈ Cn , g(U) , g(V ) ≤ 1 ; σ(U) , σ(V ) ≤ 2−n/2 .

Then, if
T = conv

{⋃
n

⋃
(U,V )∈Cn

TU,V

}

we have S(T ) ≤ L.

Proof. This should be obvious from (2.88) writing

P
(
sup
T

Xt ≥ w
)
≤

∑
n

∑
(U,V )∈Cn

P
(

sup
t∈TU,V

Xt ≥ w
)

.

�
Having now found two very distinct ways of controlling S(T ) from above,

it is natural to ask whether these are essentially the only ways.

Research problem 2.5.11. Does there exist a number L with the following
property: given a (finite) set T of sequences (ti,j)i,j≥1, with 0 ∈ T and S(T ) ≤
1, can one find a sequence (tn)n≥2 with ‖tn‖ ≤ 1/ logn , ‖tn‖HS ≤ 1/

√
log n,

and families Cn as in Proposition 2.5.10 such that

T ⊂ L conv
(⋃

{tn ; n ≥ 2} ∪
⋃{

TU,V ; (U, V ) ∈ Cn , n ≥ 1
})

?

The reason for the sequence (tn) is as follows. If 0 ∈ T , γ1(T, d1) ≤ 1
and γ2(T, d2) ≤ 1, then T ⊂ L conv {tn ; n ≥ 1} for a sequence tn as in
Problem 2.5.11. This can be shown by a simple modification of the argument
of Theorem 2.1.8.

The only (flimsy...) support for a positive answer to this problem is our
failure to imagine another method to control S(T ) from above.

2.6 L2 , L1 , L∞ Balls

In this section we consider a measured space (Ω, Σ, µ), and the classical
Banach spaces L1 = L1(µ) , L2 = L2(µ) , L∞ = L∞(µ). There will be two
situations of special interest. The first one is when µ is a probability. The
second one is when Ω is countable and when µ is the counting measure,
µ(A) = cardA. In this case L2(µ) identifies with �2(N∗). We denote by B1

the unit ball of L1(µ).

Lemma 2.6.1. Consider f ∈ L2 and u > 0. Then we can write f = f1 + f2

where

‖f1‖2 ≤ ‖f‖2 , ‖f1‖∞ ≤ u ; ‖f2‖2 ≤ ‖f‖2 , ‖f2‖1 ≤ ‖f‖2
2

u
. (2.89)
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Proof. We set f1 = f1{|f |≤u}, so that the first part of (2.89) is obvious. We
set f2 = f1{|f |>u} = f − f1, so that

u‖f2‖1 =
∫

u|f |1{|f |>u}dµ ≤
∫

f2dµ = ‖f‖2
2 . (2.90)

�

The following is a version of Lemma 2.6.1 for classes of functions.

Theorem 2.6.2. Consider a countable set T ⊂ L2(µ), and a number u > 0.
Assume that S = γ2(T, d2) < ∞. Then there is a decomposition T ⊂ T1 + T2

where

γ2(T1, d2) ≤ LS ; γ1(T1, d∞) ≤ LSu (2.91)

γ2(T2, d2) ≤ LS ; T2 ⊂ LS

u
B1 . (2.92)

Here d2 is the distance induced by the norm ‖ · ‖2 (etc.). Also,

T1 + T2 =
{
t1 + t2 ; t1 ∈ T1 , t2 ∈ T2

}
.

In words, we can reconstruct T from the two sets T1 , T2. These two sets
are not really larger than T with respect to γ2. Moreover, for each of them
we have some extra information: we control γ1(T1, d∞), and we control the
L1 norm of the elements of T2.
Proof. As usual, ∆2(A) denotes the diameter of A for the distance d2. We
consider an admissible sequence of partitions (An)n≥0 such that

∀t ∈ T ,
∑
n≥0

2n/2∆2(An(t)) ≤ 2S . (2.93)

Let us enumerate T as (tn)n≥0. By induction over n we pick points tA ∈ A
for A ∈ An. We make sure that for A = An(tn) we have tA = tn. Thus each
point of T is of the type tA for some m and A = Am(t). Let πn(t) = tA where
A = An(t). For n ≥ 1, let ft,n = πn(t) − πn−1(t), so that ft,n depends only
on An(t) and

‖ft,n‖2 ≤ ∆2(An−1(t)) . (2.94)

Using Lemma 2.6.1 with 2−n/2u‖ft,n‖2 instead of u we can decompose ft,n =
f1

t,n + f2
t,n where

‖f1
t,n‖2 ≤ ‖ft,n‖2 , ‖f1

t,n‖∞ ≤ 2−n/2u‖ft,n‖2 (2.95)

‖f2
t,n‖2 ≤ ‖ft,n‖2 , ‖f2

t,n‖1 ≤ 2n/2

u
‖ft,n‖2 . (2.96)

Given t ∈ T we set g1
t,0 = tT and g2

t,0 = 0, while if n ≥ 1 we set
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g1
t,n = tT +

∑
1≤k≤n

f1
t,k , g2

t,n =
∑

1≤k≤n

f2
t,k .

We set

T 1
n =

{
g1

t,m ; m ≤ n , t ∈ T
}

; T 2
n =

{
g2

t,m ; m ≤ n , t ∈ T
}

T1 =
⋃
n≥0

T 1
n ; T2 =

⋃
n≥0

T 2
n .

We have T ⊂ T1+T2. Indeed, if t ∈ T , then t = tA for some m and A = Am(t).
Thus πn(t) = t, and since π0(t) = tT we have t − tT =

∑
1≤k≤m ft,k, so that

t = g1
t,m + g2

t,m.
Since for j = 1, 2 the element gj

t,n depends only on An(t), we have
cardT j

n ≤ N0 + . . . + Nn, so that cardT j
0 = 1 and cardT j

n ≤ Nn+1. Con-
sider t1 ∈ T1, so that t1 = g1

t,m for some m and some t ∈ T . If m ≤ n we
have t1 = g1

t,m ∈ T 1
n so that d(t1, T 1

n) = 0. If m > n we have g1
t,n ∈ T 1

n , so
that, using (2.94) and (2.95) we have

d2(t1, T 1
n) ≤ d2(g1

t,m, g1
t,n) ≤

∑
k>n

‖f1
t,k‖2 ≤

∑
k>n

∆2(Ak−1(t)) . (2.97)

Hence ∑
n≥0

2n/2d2(t1, T 1
n) ≤

∑
n≥0,k>n

2n/2∆2(Ak−1(t))

≤ L
∑
k≥1

2k/2∆2(Ak−1(t)) ≤ LS .

It then follows from Theorem 1.3.5 (used for τ ′ = 1) that γ2(T1, d2) ≤ LS.
The proof that γ2(T2, d2) ≤ LS is identical. The same approach works to
control γ1(T1, d∞). Indeed, we can replace (2.97) by

d∞(t1, T 1
n) ≤ d∞(g1

t,m, g1
t,n) ≤

∑
k>n

‖f1
t,k‖∞ ≤

∑
k>n

2−k/2u∆2(Ak−1(t)) .

Hence ∑
n≥0

2nd∞(t1, T 1
n) ≤ u

∑
n≥0,k>n

2n−k/2∆2(Ak−1(t))

≤ Lu
∑
k≥1

2k/2∆2(Ak−1(t)) ≤ LuS ,

and it follows again from Theorem 1.3.5 that γ1(T1, d∞) ≤ LS. Finally, by
(2.96) and (2.95) we have

‖g2
t,n‖1 ≤

∑
k≥1

‖f2
t,k‖1 ≤

∑
k≥1

2k/2

u
∆2(Ak−1(t)) ≤ LS

u
,
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so that T2 ⊂ LB1/u. This completes the proof. �
The material of the rest of this section is a bit technical. This technical

work will turn out later to be a good investment, but the first time reader
should probably proceed directly to Chapter 3.

Later in the book we will need a more general theorem than Theo-
rem 2.6.2. Some of the conditions occurring in this theorem might at this
stage look completely arbitrary and their meaning will become clear only
gradually. They are in particular related to the ideas of Chapter 5.

Theorem 2.6.3. Consider a countable set T of measurable functions on Ω,
a number V ≥ 2, and assume that 0 ∈ T . Consider an admissible sequence
of partitions (An) of T , and for A ∈ An consider j(A) ∈ Z and a number
δ(A) ∈ R

+, with the following properties:

∀t ∈ T , lim
n→∞ j(An(t)) = ∞ (2.98)

A ∈ An , B ∈ An−1 , A ⊂ B ⇒ j(A) ≥ j(B) (2.99)

A ⊂ B , A ∈ An , B ∈ An′ , j(A) = j(B) ⇒ δ(B) ≤ 2δ(A) (2.100)

∀s , t ∈ A ,

∫
(s(ω) − t(ω))2 ∧ V −2j(A)dµ(ω) ≤ δ2(A) , (2.101)

where x ∧ y = min(x, y). Then we can write T ⊂ T1 + T2 + T3 where

γ2(T1, d2) ≤ L sup
t∈T

∑
n≥0

2n/2δ(An(t)) (2.102)

γ1(T1, d∞) ≤ L sup
t∈T

∑
n≥0

2nV −j(An(t)) (2.103)

∀t ∈ T2 , ∀p ≥ 1 , ‖t‖p
p ≤ Lp sup

t∈T

∑
V 2j(An+1(t))−pj(An(t))δ2(An+1(t)) ,

(2.104)
where the summation is over the n ≥ 0 for which either n = 0 or j(An+1(t)) >
j(An(t)). Moreover,

∀t ∈ T3 , ∃s ∈ T , |t| ≤ 5|s|1{2|s|≥V −j(T )} . (2.105)

Conditions (2.98) to (2.100) are mild technical requirements. Condition
(2.101) is weaker than the condition ∆(A, d2) ≤ δ(A), in that it gives a much
weaker control of the large values of s− t. The term T3 of the decomposition
is of secondary importance, and will be easy to control. It is required be-
cause (2.101) says little about the functions |s|1{|s|≥V −j(T )}. The important
statements are (2.102) to (2.104). How one can use them is illustrated in the
following proof.

Second proof of Theorem 2.6.2. We denote by ∆2(A) the diameter of a
set A for the L2 norm. We consider an admissible sequence (An) of T such
that
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∀t ∈ T ,
∑
n≥0

2n/2∆2(An(t)) ≤ 2S . (2.106)

We define δ(A) = ∆2(A), so that A ⊂ B ⇒ δ(A) ≤ δ(B). We take V = 2,
and, given u > 0, for A ∈ An we define j(A) as the largest integer for which

2−j(A) ≥ u2−n/2δ(A) , (2.107)

so that
2−j(A) ≤ 2u2−n/2δ(A) , (2.108)

and (2.98), (2.99) and (2.100) hold. As for (2.101), it is obvious by definition
of δ(A). From (2.102) and (2.106) we see that γ2(T1, d2) ≤ LS, and from
(2.103), (2.106) and (2.108) we see that γ1(T1, d∞) ≤ LuS.

Using (2.104) for p = 1, and since 22j(An+1(t))δ2(An+1(t)) ≤ 2n+1/u2 by
(2.107), we see from (2.108) and (2.106) that ‖t‖1 ≤ LS/u for t ∈ T2.

We have 2−j(T ) ≥ u∆2(T ) by (2.107) and since 0 ∈ T , we have ‖s‖2 ≤
∆2(T ) for s ∈ T . Using (2.90) with u = 2−j(T ) we get ‖s1{2|s|≥2−j(T )}‖1 ≤
‖s‖2

2/2−j(T )−1 ≤ L∆2(T )/u. Since by (2.106), looking only at the term n = 0,
we have ∆2(T ) ≤ LS, we get ‖t‖1 ≤ LS/u for t ∈ T3. Setting T ′

2 = T2 + T3,
we have shown that ‖t‖1 ≤ LS/u for t ∈ T ′

2.
We have T ⊂ T1 + T ′

2 so that T ⊂ T1 + T ′′
2 where T ′′

2 = T ′
2 ∩ (T − T1),

and since γ2(T, d2) ≤ LS and γ2(T1, d2) ≤ LS, we have γ2(T ′′
2 , d2) ≤ LS by

(2.14). �
Proof of Theorem 2.6.3. This proof is rather tedious and technical, and read-
ing it should be attempted only after motivation has been found through the
subsequent applications of this principle, the first of which occurs in Chap-
ter 4. We define

p(t, n) = inf
{
p ≥ 0 ; j(An(t)) = j(Ap(t))

}
,

and we observe that by (2.100) we have

δ(Ap(t,n)(t)) ≤ 2δ(An(t)) . (2.109)

For A ∈ An , n ≥ 1, we choose an arbitrary point tA in A. If A = T , we
choose tA = 0. We define

πn(t) = tB where B = Ap(t,n)(t) .

It should be observed that πn(t) depends only on An(t), i.e. if s ∈ An(t) then
πn(s) = πn(t). We note also that π0(t) = 0.

We define jn(t) = j(An(t)) and

m(t, ω) = inf
{
n ≥ 0 ; |πn+1(t)(ω) − πn(t)(ω)| > V −jn(t)

}
if the set on the right is not empty and m(t, ω) = ∞ otherwise. Thus
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n < m(t, ω) ⇒ |πn+1(t)(ω) − πn(t)(ω)| ≤ V −jn(t) . (2.110)

Let us note that the construction of p(t, n) implies that p(t, n+1) = p(t, n)
as soon as jn+1(t) = jn(t). Thus if πn+1(t) �= πn(t) we have jn+1(t) ≥
jn(t) + 1. Since V ≥ 2, we deduce from (2.110) that if n < m(t, ω) then we
have ∑

n≤m<m(t,ω)

|πm+1(t)(ω) − πm(t)(ω)| ≤ 2V −jn(t) . (2.111)

Let us define t1 by t1(ω) = πm(t,ω)(t)(ω) if m(t, ω) < ∞ and t1(ω) =
limn→∞ πn(t)(ω) if m(t, ω) = ∞. The limit exists from (2.111) and (2.98),
and since π0(t) = 0, using (2.111) with n = 0 we have

|t1(ω)| ≤ 2V −j(T ) . (2.112)

We define T1 = {t1 , t ∈ T }.
For n ≥ 0, we define t1n by t1n(ω) = πn∧m(t,ω)(t)(ω). It follows from the

construction that n ∧ m(t, ω) = n ∧ m(s , ω) if An(s) = An(t). Thus if Un =
{t1n ; t ∈ T }, then cardUn ≤ Nn. We note that t1(ω) − t1n(ω) = 0 if n ≥
m(t, ω), and by (2.111) that if n < m(t, ω), we have

|t1(ω) − t1n(ω)| ≤ 2V −jn(t) .

Thus ‖t1 − t1n‖∞ ≤ 2V −jn(t), and hence d∞(t1, Un) ≤ 2V −jn(t). Thus (2.103)
follows from Theorem 1.3.5 with α = 1.

We have
t1n+1 − t1n = (πn+1(t) − πn(t))1{m(t,·)>n}

and thus

|t1n+1 − t1n| ≤ |πn+1(t) − πn(t)|1{|πn+1(t)−πn(t)|≤V −jn(t)} .

Now πn(t), πn+1(t) ∈ Ap(t,n)(t) so that by (2.101) we have

‖t1n+1 − t1n‖2
2 ≤

∫ (
πn(t)(ω) − πn+1(t)(ω)

)2 ∧ V −2jn(t)dµ(ω)

≤ δ2(Ap(t,n)(t)) ≤ 4δ2(An(t))

using (2.100). Thus ‖t1n+1 − t1n‖2 ≤ 2δ(An(t)) and thus

d2(t1, Un) ≤ ‖t1 − t1n‖2 ≤
∑
m≥n

‖t1m+1 − t1m‖2 ≤ 2
∑
m≥n

δ(Am(t)) .

Since ∑
n≥0

2n/2
∑
m≥n

δ(Am(t)) ≤
∑
m≥0

δ(Am(t))
∑
n≤m

2n/2

≤ L
∑
m≥0

2m/2δ(Am(t)) ,



66 2 Gaussian Processes and Related Structures

we conclude by Theorem 1.3.5 again that (2.102) holds.
For t ∈ T , define Ω(t) = {ω ; |t(ω)| ≤ V −j(T )/2} and t3 = (t − t1)1Ω(t)c .

Since for ω ∈ Ω(t)c we have |t(ω)| ≥ V −j(T )/2 and |t1(ω)| ≤ 2V −j(T ) by
(2.112), we have |t3| ≤ 5|t|1Ω(t)c , so that T3 = {t3 ; t ∈ T } satisfies (2.105).

We set t2 = t − t1 − t3 = (t − t1)1Ω(t), T2 = {t2 ; t ∈ T }, and we turn to
the proof of (2.104). We define

r(t, ω) = inf
{
n ≥ 0 ; |πn+1(t)(ω) − t(ω)| ≥ 1

2
V −jn+1(t)

}
if the set on the right is not empty and r(t, ω) = ∞ otherwise. For 0 ≤ n <
r(t, ω) and ω ∈ Ω(t) we have

|πn+1(t)(ω) − πn(t)(ω)| ≤ |πn+1(t)(ω) − t(ω)| + |πn(t)(ω) − t(ω)|
≤ 1

2
(V −jn+1(t) + V −jn(t)) ≤ V −jn(t) ,

using that n − 1 < r(t, ω) if n ≥ 1, and that

|π0(t)(ω) − t(ω)| = |t(ω)| ≤ V −j(T )/2

if n = 0. Thus for ω ∈ Ω(t) we have r(t, ω) ≤ m(t, ω). Since t(ω) =
limn→∞ πn(t)(ω) = t1(ω) when r(t, ω) = ∞, we have

t2 = (t − t1)1Ω(t) =
∑
n≥0

t2n

where
t2n = (t − t1)1{r(t,ω)=n}∩Ω(t) .

Now

|t2n(ω)| ≤ |t(ω) − πn(t)(ω)|1{r(t,ω)=n}∩Ω(t)(ω)

+
∑

n≤m<m(t,ω)

|πm+1(t)(ω) − πm(t)(ω)|

≤ 3V −jn(t) (2.113)

using (2.111) and that |t(ω)−πn(t)(ω)| ≤ V −jn(t)/2 if r(t, ω) ≥ n. Also, since
|πn+1(t)(ω) − t(ω)| ≥ V −jn+1(t)/2 when r(t, ω) = n, we have

µ ({ω ; r(t, ω) = n}) ·
(V −jn+1(t)

2

)2

≤
∫

(πn+1(t)(ω) − t(ω))2 ∧ V −2jn+1(t)dµ(ω)

≤ 4δ2(An+1(t)) ,

using in the last inequality that πn+1(t) , t ∈ Ap(t,n+1), and (2.101), (2.109).
Thus
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µ({t2n �= 0}) ≤ LV 2jn+1(t)δ2(An+1(t)) ,

so that, using (2.113)

‖t2n‖p
p ≤ LpV 2jn+1(t)δ2(An+1(t))V −pjn(t) .

The functions (t2n)n≥0 have disjoint supports. Moreover, t2n = 0 unless
the set {ω ; r(t, ω) = n} is non-empty. When n ≥ 1, this implies that
jn+1(t) �= jn(t), for otherwise we would have r(t, ω) ≤ n− 1. Thus (2.104) is
proved. �

The rest of the section is strongly influenced by ideas from Banach space
theory. It is not related to any subsequent material except Section 6.3. A
central result is the following, that provides a kind of classification of the
elements of the unit ball B1 of L1(µ).

Theorem 2.6.4. For any integer τ ≥ 0 there exists an admissible sequence
of partitions (Cn) of B1, and for each C ∈ Cn an integer �(C) ∈ Z, such that
if we set

�(f, n) = �(Cn(f)) (2.114)

we have
∀f ∈ B1 , µ

({|f | > 2−�(f,n)
}) ≤ 2n+τ (2.115)

∀f ∈ B1 ,
∑
n≥0

2n−�(f,n) ≤ 6 · 2−τ . (2.116)

Proof. Let us define

un(f) = inf
{
u > 0 ; µ({|f | > u}) ≤ 2n

}
so that

µ({|f | > un(f)}) ≤ 2n . (2.117)

We now claim that ∑
n≥1

2nun(f) ≤ 2 . (2.118)

Indeed, we have

1
2

∑
n≥1

2nun(f) =
∑
n≥1

(2n − 2n−1)un(f) =
∑
n≥1

2n(un(f) − un+1(f))

≤
∑
n≥1

∫ un(f)

un+1(f)

µ({|f | ≥ t}) dt ≤ ‖f‖1 ≤ 1 .

For n ≥ 1, we define

�(f, n) = sup
{
� ; � ≤ 2n + τ ; 2−� ≥ un+τ (f)

}
.
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Since un(f) ≤ 2−n by Markov’s inequality, we have

n + τ ≤ �(f, n) ≤ 2n + τ . (2.119)

Since 2−�(f,n) ≤ 2−2n−τ + 2un+τ(f), by (2.118) we have∑
n≥1

2n−�(f,n) ≤ 5 · 2−τ . (2.120)

We define C0 = {B1}, and �(B1) = τ . Given integers �m for 1 ≤ m ≤ n
such that m + τ ≤ �m ≤ 2m + τ we consider the set{

f ∈ B1 ; ∀m , 1 ≤ m ≤ n , �(f, m) = �m

}
. (2.121)

By (2.119) these sets form a partition Cn of B1, and the sequence (Cn)
increases. Moreover,

cardCn ≤ (n + 1)! ≤ Nn ,

so that the sequence (Cn) is admissible.
If C ∈ Cn is given by (2.121), we define �(C) = �n. We observe that for

f ∈ C, we have �(Cn(f)) = �(C) = �n = �(f, n), so that (2.114) holds. For
f ∈ C, we have

µ({|f | > 2−�n}) = µ({|f | > 2−�(f,n)}) ≤ 2n+τ

by (2.117) and since 2−�(f,n) ≥ un+τ (f). This proves (2.115). Finally (2.116)
follows from (2.120). �

In the rest of the section, Ω = N
∗ and µ is the counting measure, so that

L2 = �2(N∗), and L1 = �1(N∗).
Given a finite subset I of N

∗, and a number a > 0, we define

V (I, a) =
{
x ∈ �2 ; i �∈ I ⇒ xi = 0 ;

∑
i∈I

x2
i ≤ a2

}
.

Thus
V (I, a) ⊂ aB2 , (2.122)

where of course

B2 =
{
x ;

∑
i≥1

x2
i ≤ 1

}
; B1 =

{
x ;

∑
i≥1

|xi| ≤ 1
}

.

We recall that for T ⊂ �2 we write

g(T ) = E sup
t∈T

Xt = E sup
t∈T

∑
i≥1

tigi

and we note that
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g(V (I, a)) ≤ a
√

card I (2.123)

since ∑
i≥1

xigi ≤ a
(∑

i∈I

g2
i

)1/2

for x ∈ V (I, a).
One can interpret Theorem 2.1.8 and Proposition 2.1.7 as stating that,

from the point of view of Gaussian processes, the important sets are the
convex hulls of a sequence going to 0 with the proper rate of convergence.
This idea is behind the following definition.

Definition 2.6.5. We say that a subset T of �2 is an explicit unconditional
GB-set (EIGB-set) if there is a family F of pairs (I, a), where I is a finite
subset of N

∗ and a > 0, such that a
√

card I ≤ 1 for each (I, a) ∈ F and that

T ⊂ T ′ = conv
⋃
F

V (I, a) (2.124)

∀v > 0 , card{(I, a) ∈ F ; a ≥ v} ≤ exp
( 1

v2

)
− 1 . (2.125)

In (2.124) conv means the closed convex hull. We observe that T ′ is uncon-
ditional in the sense that if x = (xi)i≥1 ∈ T ′, then (|xi|)i≥1 ∈ T ′, and vice
versa. The name “explicit” in Definition 2.6.5 refers to the fact that we have
an explicit description of T ′ through the family F . This definition is inspired
by the result of Theorem 2.1.8, taking into account that we want here uncon-
ditionality. (A GB-set U is simply a set such that g(U) < ∞, a name that
we will not use elsewhere.)

Proposition 2.6.6. If T is a EIGB set then T ⊂ B1.

Proof. By the Cauchy-Schwarz inequality we have V (I, a) ⊂ B1 if a
√

card I ≤
1. �

Proposition 2.6.7. There exist a number L such that g(T ) ≤ L for each
EIGB set T .

The proof relies on a general principle that we spell out now.

Proposition 2.6.8. Consider subsets Tn of �2, and assume that Tn ⊂ anB2.
Then

g
( ⋃

n≥1

Tn

)
≤ sup

n

(
g(Tn) + Lan

√
log(n + 1)

)
+ L sup

n
an . (2.126)

This is a generalization of Proposition 2.1.7 which we recover when the sets
Tn consist of a single point.
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Proof. We can assume each set Tn finite. By Lemma 2.1.3 (the concentration
inequality for the supremum of a Gaussian process) we have

P
(
sup
Tn

Xt ≥ g(Tn) + u
)
≤ 2 exp

(
− u2

2a2
n

)

so that

P
(
sup
Tn

Xt ≥ g(Tn) + 2an

√
log(n + 1) + uan

)
≤ 2 exp

(
−u2

2
− 2 log(n + 1)

)

and thus

P

(
sup⋃

Tn

Xt ≥ sup
n

(
g(Tn) + 2an

√
log(n + 1)

)
+ u sup

n
an

)
≤ L exp

(
−u2

2
)
;

from which it follows that

g
(⋃

n

Tn

)
≤ sup

n

(
g(Tn) + 2an

√
log(n + 1)

)
+ L sup

n
an .

�
Proof of Proposition 2.6.7. We order the pairs (I, a) of F as a sequence

(In, an) such that the sequence (an) is non-increasing. Then (2.125) used for
v = an implies n + 1 ≤ exp(1/a2

n), i.e. an ≤ 1/
√

log(n + 1). Thus (2.126)
implies g

(⋃
n V (In, an)

) ≤ L. �

Theorem 2.6.9. Consider a subset T of �2. Assume that for a certain num-
ber S we have γ2(T, d2) ≤ S and T ⊂ SB1. Then there exists a EIGB set T1

with T ⊂ LST1.

This is a kind of converse of Propositions 2.6.6 and 2.6.7.

Proof. By homogeneity we can assume that S = 1. We consider an admissible
sequence (Bn) with

sup
t∈T

∑
n≥0

2n/2∆2(Bn(t)) ≤ 2 , (2.127)

and the admissible sequence (Cn) provided by Theorem 2.6.4 when τ = 0 (we
recall that ∆2 means that the diameter is for the distance in �2). We consider
the increasing sequence of partitions (An)n≥0 where An is generated by Bn

and Cn, so cardAn ≤ Nn+1. The numbers �(t, n) of (2.114) depend only on
An(t).

For every A ∈ An, we pick an arbitrary element x(A) of A, and we set

J(A) =
{
i ∈ N

∗ ; |xi(A)| > 2−�(x(A),n)
}

,

so that cardJ(A) ≤ 2n by (2.115). For n ≥ 1 and A ∈ An, consider the
unique element B ∈ An−1 such that A ⊂ B, and set
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I(A) = J(A)\J(B)

so that card I(A) ≤ 2n and

i ∈ I(A) ⇒ |xi(B)| ≤ 2−�(x(B),n−1) . (2.128)

For t ∈ T , we write πn(t) = x(An(t)), and, if n ≥ 1, we write In(t) = I(An(t)).
We observe that since x(An−1(t)) ∈ An−1(t) we have �(x(An−1), n − 1) =
�(t, n − 1). Thus it follows from (2.128) used for B = An−1(t) that

‖πn−1(t)1In(t)‖∞ ≤ 2−�(t,n−1) , (2.129)

and thus, since card In(t) ≤ 2n

‖πn−1(t)1In(t)‖2 ≤ 2n/2−�(t,n−1) .

Since ‖t − πn−1(t)‖2 ≤ ∆2(An−1(t)) we thus have

‖t1In(t)‖2 ≤ c(t, n) := ∆2(An−1(t)) + 2n/2−�(t,n−1) , (2.130)

and hence
t1In(t) ∈ 2n/2c(t, n)V (In(t), 2−n/2) .

For n = 0 we set I0(t) = J(T ), and the previous relation still holds for
c(t, 0) = ∆2(T ) + 1. We claim now that

t =
∑
n≥0

t1In(t) . (2.131)

Since the sets (In(t))n≥0 are disjoint, it suffices to show that

|ti| > 0 ⇒ i ∈
⋃
n≥0

In(t) =
⋃
n≥0

J(An(t)) . (2.132)

To prove this, consider i with |ti| > 0 and n large enough that ∆2(An(t)) <
|ti|/2. Then for all x ∈ An(t) we have |xi− ti| ≤ |ti|/2 and hence |xi| > |ti|/2.
Since �(x, n) ≥ n − 3 by (2.116), if n is large enough, for all x ∈ An(t) we
have 2−�(x,n) < |xi|. This proves (2.132) and hence (2.131).

Thus we have written t =
∑

n≥0 tn where

tn = t1In(t) ∈ b(t, n)V (In(t), 2−n/2) , (2.133)

for b(t, n) = 2n/2c(t, n). By (2.127) and (2.116) we have
∑

n≥0 b(t, n) ≤ L, so
(2.133) implies that

t ∈ L conv
⋃
F

V (I, a) .

where F consists of the pairs (I(A), 2−n/2−1) for A ∈ An and n ≥ 0. Since
card I(A) ≤ 2n, we have
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(I, a) ∈ F ⇒ a
√

card I ≤ 1 .

Consider u > 0, and the largest integer m with 2−m/2−1 ≥ u. If (I, a) ∈ F
and a ≥ u, then I = I(A) for some A ∈ An, where n ≤ m. Thus there are at
most

N0 + · · · + Nm+1 ≤ Nm+2 ≤ exp
( 1

u2

)
− 1

choices for A, so that

card
{
(I, a) ∈ F ; a ≥ u

} ≤ exp
( 1

u2

)
− 1 ,

Thus conv
⋃

V (I, a) is an EIGB set. �

Theorem 2.6.9 has the following striking consequence.

Theorem 2.6.10. Consider a Banach space W with an unconditional basis
(ei)i≥1. Assume that E‖∑

i≥1 giei‖ = S < ∞. Then we can find a family F
of pairs (I, a), where I is a finite subset of N

∗ and a is a number, with the
following properties

∀x ∈ W , x =
∑
i≥1

xiei , ‖x‖ ≤ LS sup
(I,a)∈F

a
(∑

i∈I

x2
i

)1/2 (2.134)

∀(I, a) ∈ F , a
√

card I ≤ 1 (2.135)

∀u > 0 , card
{
(I, a) ∈ F ; a ≥ u

} ≤ exp
( 1

u2

)
− 1 . (2.136)

Thus, we have ‖x‖ ≤ LSN (x), where N (x) = sup(I,a)∈F a(
∑

i∈I x2
i )

1/2,
and EN (

∑
i≥1 giei) ≤ L (as should be apparent after the following proof,

using Proposition 2.6.7). The norms of the type N are essentially the only
unconditional norms for which EN (

∑
i≥1 giei) < ∞.

Proof. We have
E
∥∥∑

i≥1

giei

∥∥ = g(T )

where
T =

{
(x∗(ei))i≥1 , x∗ ∈ W ∗ , ‖x∗‖ ≤ 1

}
.

By unconditionality, we have

sup
‖x∗‖≤1

∑
i≥1

x∗(ei)gi = sup
‖x∗‖≤1

∑
i≥1

|x∗(ei)||gi|

so that
E sup

‖x∗‖≤1

∑
i≥1

|x∗(ei)||gi| = S ,
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and, by Jensen’s inequality, we get T ⊂ LSB1. By Theorem 2.1.1 we have
γ2(T, d2) ≤ LS. By Theorem 2.6.9 there exists a family F that satisfies
(2.135), (2.136) and T ⊂ LST1, where

T1 = conv
⋃
F

V (I, a) .

Thus, by duality, if x =
∑

i≥1 xiei ∈ W , for any n we have

∥∥∑
i≤n

xiei

∥∥ ≤ LS sup
t∈T1

∑
i≤n

tixi ≤ LS sup
F

a
(∑

i∈I

x2
i

)1/2

and this proves (2.134) since ‖x‖ = supn ‖∑
i≤n xiei‖. �

For I ⊂ N
∗ and a > 0, we write

W (I, a) =
{
x = (xi)i≥1 ; i �∈ I ⇒ xi = 0 ; i ∈ I ⇒ |xi| ≤ a

}
.

Definition 2.6.11. We say that a subset T of �2 is a strong unconditional
GB set ( SIGB set) if there exists a family F of pairs (I, a), where I is a
finite subset of N

∗ , a > 0 , acard I ≤ 1 for every (I, a) ∈ F and

T ⊂ conv
⋃
F

W (I, a) (2.137)

∀ u > 0 , card{(I, a) ∈ F ; a ≥ u} ≤ exp
(1

u

)
− 1 . (2.138)

We have
x ∈ W (I, a) ⇒

∑
x2

i ≤ a2card I

and thus W (I , a) ⊂ V (I, a
√

card I). Moreover, if acard I ≤ 1, we have
a
√

card I ≤ √
a. This shows that a SIGB set is an EIGB set.

Theorem 2.6.12. Consider T ⊂ SB1, and assume that γ1(T, d∞) ≤ S.
Then we can find a SIGB set T1 with T ⊂ LST1.

Proof. By homogeneity we can assume that S = 1. We proceed as in the
proof of Theorem 2.6.9, but we can now assume

∀t ∈ T ,
∑
n≥0

2n∆∞(An(t)) ≤ 2 .

Using (2.129) rather than (2.130) we get

‖t1In(t)‖∞ ≤ c(t, n) := ∆∞(An(t)) + 2−�(t,n)

so that
t1In(t) ∈ 2nc(t, n)W (In(t), 2−n)

and the proof is finished exactly as before. �
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As a consequence, under the conditions of Theorem 2.6.12, we have
γ2(T, d2) ≤ LS. It is of course of interest to give a more direct (and more
general) proof of this fact.

Theorem 2.6.13. Consider a measure space (Ω, µ) and T ⊂ SB1, such that
γ1(T, d∞) < ∞. Then

γ2(T, d2) ≤ L
√

Sγ1(T, d∞) . (2.139)

Proof. If we replace µ by aµ, we replace d1 by ad1 , d2 by
√

ad2 and we
do not change d∞. By an appropriate choice of a, we see that it is enough
to prove (2.139) when S = γ1(T, d∞), and by homogeneity we can assume
S = γ1(T, d∞) = 2. With the notations of the proof of Theorem 2.6.4, let us
write

an(f) =
∥∥f1{|f |≤un(f)}

∥∥
2

.

Thus

an(f) ≤
∑
r≥n

∥∥f1{ur+1(f)≤|f |≤ur(f)}
∥∥

2

≤
∑
r≥n

ur(f)2(r+1)/2

using (2.117). Thus∑
n≥0

2n/2an(f) ≤
√

2
∑

r≥n≥1

ur(f)2r/2+n/2 ≤ L

by first summing over n and using (2.118). Following the proof of Theorem
2.6.4 we then construct an admissible sequence (Cn) of partitions of B1 and
for C ∈ Cn a number �(C) such that

f ∈ C ⇒ an(f) ≤ 2−�(C)

∀f ∈ B1 ,
∑
n≥0

2n/2−�(f,n) ≤ L (2.140)

where �(f, n) = �(Cn(f)) depends only on Cn(f).
Proceeding as in the proof of Theorem 2.6.9 we find an increasing sequence

of (An) of partitions of T such that cardAn ≤ Nn+1,

sup
t∈T

∑
n≥0

2n∆∞(An(t)) ≤ 2γ1(T, d∞) , (2.141)

and, moreover, the numbers �(f, n) depend only on An(f).
Consider f , g ∈ An(t), and set ∆ = ∆∞(An(t)), so that ‖f − g‖∞ ≤ ∆.

Thus
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‖f − g‖2 ≤ ‖min(|f − g|, ∆)‖2 (2.142)
≤ ‖min(|f |, ∆)‖2 + ‖min(|g|, ∆)‖2 .

Now
min(|f |, ∆) ≤ ∆1{|f |≥un(f)} + |f |1{|f |≤un(f)}

and, using (2.117),

‖min(|f |, ∆)‖2 ≤ 2n/2∆ + an(f)

and thus, combining with (2.142),

∆2(An(t)) ≤ 2
(
2n/2∆∞(An(t)) + 2−�(t,n)

)
.

Combining with (2.140) and (2.141) yields∑
n≥0

2n/2∆2(An(t)) ≤ L .

Since ∆2(T ) ≤ L, appealing to Lemma 1.3.3 finishes the proof. �

2.7 Donsker Classes

Throughout this section we consider a probability space (Ω, µ), and a
bounded subset F of L2(µ), which, following the standard notation, we will
denote by F rather than T . To avoid (well understood) measurability prob-
lems, we assume that F is countable. (Thus, there is no need to really dis-
tinguish between L2(µ) and L2(µ).)

Consider i.i.d r.v. (Xi)i≥1 valued in Ω, of law µ. We set µ(f) =
∫

fdµ
and

SN (F) = E sup
f∈F

∣∣∣ 1√
N

∑
i≤N

(f(Xi) − µ(f))
∣∣∣ (2.143)

S(F) = sup
N

SN (F) . (2.144)

The question of understanding when S(F) < ∞ is central to the study
of Donsker classes, which are classes of functions on which the central limit
theorem holds uniformly. The precise definition of Donsker classes includes
a number of technicalities that are not related to the topic of this book, and
since there exists an abundant (and most excellent) literature on this topic,
(see e.g. [8]) we will not deal with them, but will concentrate on the study
of upper bounds for S(F) and, more generally, for SN(F) at a given value of
N . To avoid trivial complications we will often assume µ(f) =

∫
fdµ = 0 for

each f in F .
The following classical result will play a fundamental role.
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Lemma 2.7.1. (Bernstein’s inequality). Consider independent r.v. (Yi)i≥1

with EYi = 0 and a number U with |Yi| ≤ U for each i. Then, for v > 0,

P
(
|
∑
i≥1

Yi| ≥ v
)
≤ 2 exp

(
−min

( v2

4
∑

i≥1 EY 2
i

,
v

2U

))
.

Proof. For |x| ≤ 1, we have

|ex − 1 − x| ≤ x2
∑
k≥2

1
k!

= x2(e − 2) ≤ x2

and thus, since EYi = 0, for U |λ| ≤ 1, we have

|E expλYi − 1| ≤ λ2EY 2
i

so that E expλYi ≤ 1 + λ2EY 2
i ≤ exp λ2EY 2

i , and thus

E exp λ
∑
i≥1

Yi =
∏
i≥1

E exp λYi ≤ exp λ2
∑
i≥1

EY 2
i .

Now

P
(∑

i≥1

Yi ≥ v
)
≤ exp(−λv)E exp λ

∑
i≥1

Yi

≤ exp
(
λ2

∑
i≥1

EY 2
i − λv

)
.

If Uv ≤ 2
∑

i≥1 EY 2
i , we take λ = v/(2

∑
i≥1 EY 2

i ), obtaining a bound
exp(−v2/(4

∑
i≥1 EY 2

i )). If Uv > 2
∑

i≥1 EY 2
i , we take λ = 1/U , and we

note that
1

U2

∑
i≥1

EY 2
i − v

U
≤ Uv

2U2
− v

U
≤ − v

2U
.

�
Proposition 2.7.2. If 0 ∈ F we have

SN (F) ≤ L
(
γ2(F , d2) +

1√
N

γ1(F , d∞)
)

, (2.145)

where d2 and d∞ are the distances induced by the norms of L2 and L∞

respectively.

Proof. We combine Bernstein’s inequality with Theorem 1.2.7 to get, since
0 ∈ F , that

E sup
f∈F

∣∣∣∑
i≤N

f(Xi)
∣∣∣ ≤ E sup

f,f ′∈F

∣∣∣∑
i≤N

f(Xi) − f ′(Xi)
∣∣∣

≤ L
(
γ2(F , 2

√
Nd2) + γ1(F , 2d∞)

)
.

To conclude, we use that γ2(F , 2
√

Nd2) = 2
√

Nγ2(F , d2) and γ1(F , 2d∞) =
2γ1(F , d∞). �
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Proposition 2.7.2 provides us with a method to bound SN (F) from above.
There is however a completely different method, namely the inequality

SN (F) ≤ E sup
f∈F

1√
N

∑
i≤N

|f(Xi)| . (2.146)

One should point out that the very idea of the central limit theorem is that
there is cancelation between terms of opposite signs, while (2.146), where
there is no such cancelation, is of a different nature.

One can of course combine (2.145) and (2.146) to control SN (F).

Proposition 2.7.3. Consider classes F ,F1 and F2 of functions in L2(µ)
with µ(f) = 0 for f ∈ F1 , f ∈ F2, and assume that F ⊂ F1 + F2. Assume
that 0 ∈ F1. Then

SN (F) = E sup
f∈F

∣∣∣∑
i≤N

f(Xi)
∣∣∣ ≤ L

(
γ2(F1, d2) +

1√
N

γ1(F1, d∞)
)

+ E sup
f∈F2

1√
N

∑
i≤N

|f(Xi)| .

The following question seems related to the Bernoulli problem of Chapter
4.

Research problem 2.7.4. Consider a class F of functions in L2(µ) with
µ(f) = 0 for f ∈ F . Given an integer N , can we find a decomposition
F ⊂ F1 + F2 with 0 ∈ F1 such that the following properties hold:

γ2(F1, d2) ≤ LSN(F)

γ1(F1, d∞) ≤ L
√

NSN (F)

E sup
f∈F2

1√
N

∑
i≤N

|f(Xi)| ≤ LSN(F) ?

A positive answer to this problem would mean that there is essentially
no other method to control SN (F) from above than the method of Proposi-
tion 2.7.3.

The main result of this section is a kind of partial answer to Research
Problem 2.7.4.

Theorem 2.7.5. Consider a class F of functions in L2(µ), with µ(f) = 0
for f ∈ F . Then we can find a decomposition F ⊂ F1 + F2 where 0 ∈ F1,

γ2(F1, d2) ≤ Lγ2(F) (2.147)

γ1(F1, d∞) ≤ L
√

Nγ2(F) (2.148)

E sup
f∈F2

1√
N

∑
i≤N

|f(Xi)| ≤ L(SN (F) + γ2(F)) . (2.149)
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To understand the link between this theorem and Research Problem 2.7.4
we prove the following easy fact.

Lemma 2.7.6. If µ(f) = 0 for each f in F , we have γ2(F) ≤ LS(F).

Of course here F is viewed as a subset of L2(µ), with the corresponding
distance.

Proof. Consider a finite subset T of F . By the ordinary central limit theorem,
the joint law of (N−1/2

∑
i≤N f(Xi))f∈T converges to the law of a Gaussian

process (gf )f∈T and thus

E sup
f∈T

gf ≤ S(F) . (2.150)

The construction of the process (gf )f∈T shows that for f1, f2 ∈ T we
have Egf1gf2 =

∫
f1f2dµ. If we identify L2(µ) with �2(N∗), and since the law

of a Gaussian process is determined by its covariance, the left-hand side of
(2.150) is exactly g(T ). This shows that g(T ) ≤ S(F), and the result follows
by Theorem 2.1.1 and (1.51). �

As a consequence, we have the following characterization of classes for
which S(F) < ∞.

Theorem 2.7.7. Consider a class of functions F of L2(µ) and assume that
µ(f) = 0 for each f ∈ F . Then we have S(F) < ∞ if and only if there
exists a number A and for each N there exists a decomposition F ⊂ F1 +F2

(depending on N) where 0 ∈ F1 such that

γ2(F1, d2) ≤ A

γ1(F1, d∞) ≤
√

NA

E sup
f∈F2

1√
N

∑
i≤N

|f(Xi)| ≤ A.

Proof of Theorem 2.7.5. We use the decomposition of Theorem 2.6.2 with
u =

√
N . This produces a decomposition F ⊂ F1 + F2, where F1 satisfies

(2.147) and (2.148), while F2 ⊂ Lγ2(F)B1/
√

N . Moreover the construction
is such that F2 ⊂ F − F1, and so that by (2.145) we have

E sup
f∈F2

∣∣∣∑
i≤N

f(Xi)
∣∣∣ ≤ (S + Lγ2(F))

√
N .

Then (2.149) follows from the next result. �
Theorem 2.7.8. (The Giné-Zinn Theorem) For a class F of functions with
µ(f) = 0 for f in F we have

E sup
f∈F

∑
i≤N

|f(Xi)| ≤ N sup
f∈F

∫
|f |dµ + 4E sup

f∈F

∣∣∣∑
i≤N

f(Xi)
∣∣∣ . (2.151)
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While simple, this is very useful. In order to avoid repetition, we will prove
some more general facts. We consider pairs (Ri, Xi) of r.v., with Xi ∈
Ω , Ri ≥ 0, and we assume that these pairs are independent. We consider a
Bernoulli sequence (εi)i≥1, that is an i.i.d. sequence with P(εi = ±1) = 1/2.
We assume that these sequences are independent of the r.v. (Ri, Xi). We
assume that for each ω, only finitely many of the r.v. Ri(ω) are not zero.

Lemma 2.7.9. For a countable class of functions F we have

E sup
f∈F

∣∣∣∑
i≥1

(
Rif(Xi) − E(Rif(Xi))

)∣∣∣ ≤ 2E sup
f∈F

∣∣∣∑
i≥1

εiRif(Xi)
∣∣∣ (2.152)

E sup
f∈F

∑
i≥1

Ri|f(Xi)| ≤ sup
f∈F

∑
i≥1

E(Ri|f(Xi)|) (2.153)

+ 2E sup
f∈F

∣∣∣∑
i≥1

εiRif(Xi)
∣∣∣ .

If E(Rif(Xi)) = 0 for each i ≥ 1, then

E sup
f∈F

∣∣∣∑
i≥1

εiRif(Xi)
∣∣∣ ≤ 2E sup

f∈F

∣∣∣∑
i≥1

Rif(Xi)
∣∣∣ . (2.154)

Proof of Theorem 2.7.8. We take Ri = 1 if i ≤ N and Ri = 0 if i ≥ N , and
we combine (2.153) and (2.154). �
Proof of Lemma 2.7.9. Consider an independent copy (Si, Yi)i≥1 of the se-
quence (Ri, Xi)i≥1, that is independent of the sequence (εi)i≥1. Then, by
Jensen’s inequality,

E sup
f∈F

∣∣∣∑
i≥1

(
Rif(Xi) − E(Rif(Xi))

)∣∣∣ ≤ E sup
f∈F

∣∣∣ ∑
i≥1

(Rif(Xi) − Sif(Yi))
∣∣∣ .

Since the sequences (Rif(Xi) − Sif(Yi)) and (εi(Rif(Xi) − Sif(Yi))) of r.v.
have the same law, we have

E sup
f∈F

∣∣∣∑
i≥1

(Rif(Xi) − Sif(Yi))
∣∣∣ = E sup

f∈F

∣∣∣∑
i≥1

εi(Rif(Xi) − Sif(Yi))
∣∣∣

≤ 2E sup
f∈F

∣∣∣∑
i≥1

εiRif(Xi)
∣∣∣

and we have proved (2.152). To prove (2.153), we write∑
i≥1

Ri|f(Xi)| ≤
∑
i≥1

E(Ri|f(Xi)|)

+
∑
i≥1

(
Ri|f(Xi)| − E(Ri|f(Xi)|)

)
,
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we take the supremum over f and expectation, and we use (2.152) to get

E sup
f∈F

∑
i≥1

Ri|f(Xi)| ≤ sup
f∈F

∑
i≥1

E(Ri|f(Xi)|)

+ 2E sup
f∈F

∣∣∣∑
i≥1

εiRi|f(Xi)|
∣∣∣ .

We then conclude with the comparison theorem for Bernoulli processes ([53],
Theorem 2.1) that implies that

E sup
f∈F

∣∣∣∑
i≥1

εiRi|f(Xi)|
∣∣∣ ≤ E sup

f∈F

∣∣∣ ∑
i≥1

εiRif(Xi)
∣∣∣ .

To prove (2.154), we work conditionally on the sequence (εi)i≥1. Setting I =
{i ≥ 1 ; εi = 1} and J = {i ≥ 1 ; εi = −1}, we have

E sup
f∈F

∣∣∣∑
i≤N

εiRif(Xi)
∣∣∣ ≤ E sup

f∈F

∣∣∣∑
i∈I

Rif(Xi)
∣∣∣

+ E sup
f∈F

∣∣∣∑
i∈J

Rif(Xi)
∣∣∣ .

Now, by Jensen’s inequality, we have

E sup
f∈F

∣∣∣∑
i∈I

Rif(Xi)
∣∣∣ ≤ E sup

f∈F

∣∣∣ ∑
i≥1

Rif(Xi)
∣∣∣

since ERif(Xi) = 0. �
The following is a very powerful practical method to control S(F).

Theorem 2.7.10. (Ossiander’s bracketing theorem) Consider a countable
class F of functions in L2(µ). Consider an admissible sequence An of parti-
tions of F . For A ∈ An, define the function hA by

hA(ω) = sup
f,f ′∈A

|f(ω) − f ′(ω)| . (2.155)

Assume that for a number S we have

sup
t∈F

∑
n≥0

2n/2‖hAn(t)‖2 ≤ S . (2.156)

Then
E sup

f∈F

∣∣∣ 1√
N

∑
i≤N

(f(Xi) − µ(f))
∣∣∣ ≤ LS . (2.157)
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Strictly speaking Ossiander [31] proved this result only under entropy
conditions, but once one understands the principles of the generic chaining it
is immediate to adapt her proof to the present setting. The reader will observe
that ∆(A) ≤ ‖hA‖2 for all A, so that (2.156) implies that γ2(F , d2) ≤ 2. This
alone is however not sufficient to prove (2.157).

Theorem 2.7.11. Consider a countable set T ⊂ L0(Ω, µ), where µ is a
positive measure (that need not be a probability). Consider a number u > 0.
Consider an admissible sequence (An) of partitions of T and for A ∈ An

define hA by (2.155). Assume that

∀t ∈ T ,
∑
n≥0

2n/2‖hAn(t)‖2 ≤ S . (2.158)

Then we can find two sets T1 , T2 ⊂ L0(Ω, µ) with the following properties:

γ2(T1, d2) ≤ LS , γ1(T1, d∞) ≤ LuS (2.159)

γ2(T2, d2) ≤ LS , γ1(T2, d∞) ≤ LuS (2.160)

s ∈ T2 ⇒ s ≥ 0 , ‖s‖1 ≤ LS/u , (2.161)

in such a way that

T ⊂ T1 + T ′
2,where T ′

2 = {t ; ∃s ∈ T2 , |t| ≤ s} . (2.162)

This theorem is related to Theorem 2.6.2, and the reader should be familiar
with the proof of that previous result before reading the following argument.

Proof. For n ≥ 0 and t ∈ T we define

Ω′(t, n) =
{
hAn(t) ≤ 2−n/2u‖hAn(t)‖2

}
,

so that by Markov’s inequality we have

P(Ω′(t, n)c) ≤ 2n

u2
.

We define
Ω(t, n) =

⋂
0≤�≤n

Ω′(t, �)

so that

P(Ω(t, n)c) ≤ 2n+1

u2
. (2.163)

We construct the points tA and πn(t) as in the proof of Theorem 2.6.2, and
for n ≥ 1 we define

f1
t,n = (πn(t) − πn−1(t))1Ω(t,n−1) ,
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so that, since |πn(t) − πn−1(t)| ≤ hAn−1(t), and since |hAn−1(t)(ω)| ≤
2−(n−1)/2u‖hAn−1(t)‖2 for ω ∈ Ω(t, n − 1) ⊂ Ω′(t, n − 1), we have

‖f1
t,n‖2 ≤ ‖hAn−1(t)‖2 , ‖f1

t,n‖∞ ≤ 2−(n−1)/2u‖hAn−1(t)‖2 .

We set g1
t,0 = tT and for n ≥ 1 we set g1

t,n = tT +
∑

1≤k≤n f1
t,k. Moreover we

define
T 1

n =
{
g1

t,m ; m ≤ n , t ∈ T
}

; T1 =
⋃
n≥0

T 1
n ,

and we prove (2.159) as in the proof of Theorem 2.6.2. Let us define f2
t,0 = 0

and for n ≥ 1
f2

t,n = 2−(n−1)/2u‖hAn−1(t)‖21Ω(t,n)c ,

so that using (2.163) we see that

‖f2
t,n‖2 ≤ ‖hAn−1(t)‖2

‖f2
t,n‖∞ ≤ L2−n/2u‖hAn−1(t)‖2

‖f2
t,n‖1 ≤ L2n/2

u
‖hAn−1(t)‖2 .

Let us define
w = hT 1{hT≥u‖hT ‖2} ,

so that ‖w‖1 ≤ ‖hT‖2/u. Let us further define g2
t,0 = w and for n ≥ 1

g2
t,n = w +

∑
1≤k≤n

f2
t,k .

Define finally

T 2
n =

{
g2

t,m ; m ≤ n , t ∈ T
}

; T2 =
⋃
n≥0

T 2
n .

It should be obvious from (2.158) that (2.161) holds, and that (2.160) can be
proved as (2.159). We turn to the proof of (2.162). Any t in T is of the type
t = tA for some m and A = Am(t), so that t = tT +

∑
1≤k≤m(πk(t)−πk−1(t)).

Let t2 = t − g1
t,m, so t = g1

t,m + t2. Since g1
t,m ∈ T1 is suffices to show that

t2 ∈ T ′
2, and to show this, we show that |t2| = |t − g1

t,m| ≤ g2
t,m ∈ T2. Since

t = tT +
∑

1≤k≤m(πk(t) − πk−1(t)), and since f1
t,k = πk(t)(ω) − πk−1(t)(ω)

for ω ∈ Ω(t, k − 1), the definition of g1
t,m shows that if t2(ω) �= 0, then for

some 1 ≤ k ≤ m we have ω �∈ Ω(t, k− 1). Consider the smallest such number
k. If k = 1, we have ω �∈ Ω(t, p) for p ≥ 0, and thus g1

t,m(ω) = tT (ω) so that
t2(ω) = t(ω) − tT (ω). Since ω ∈ Ω(t, 0)c = Ω′(t, 0)c = {hT > u‖hT‖2}, we
have |t2(ω)| = |t(ω) − tT (ω)| ≤ hT (ω) = w(ω) ≤ g2

t,m(ω). If k > 1, since k
is the smallest possible, and since the sequence of sets Ω(t, n) decreases as n



2.7 Donsker Classes 83

increases, we have ω ∈ Ω(t, � − 1) for � < k and ω �∈ Ω(t, � − 1) for � ≥ k so
that

g1
t,m(ω) = tT (ω) +

∑
1≤�≤k−1

(π�(t)(ω) − π�−1(t)(ω)) = πk−1(t)(ω)

and

|t2(ω)| = |t(ω) − g1
t,m(ω)| = |t(ω) − πk−1(t)(ω)|

≤ hAk−2(t)(ω)1Ω(t,k−1)c(ω)

≤ f2
t,k−1(ω) ≤ g2

t,m(ω) ,

where the first inequality uses that |t−πk−1(t)| ≤ hAk−2(t) and ω ∈ Ω(t, k−
1)c, and the second that, since ω ∈ Ω(t, k − 2) ⊂ Ω′(t, k − 2), we have
hAk−2(t)(ω) ≤ 2−(k−2)/2u‖hAk−2(t)‖2. �

Proof of Theorem 2.7.10. We apply Theorem 2.7.12 with u =
√

N , T = F .
The decomposition F ⊂ T1 + T ′

2 shows that it suffices to prove (2.157) when
F is one of the classes T1 or T ′

2. When F = T1, this follows from Bernstein’s
inequality and Theorem 1.2.7, since by (2.159) we have

γ2(T1, d2) ≤ LS ; γ1(T1, d∞) ≤ LS
√

N.

When F = T ′
2, we write

sup
f∈T ′

2

∣∣∣ 1√
N

∑
i≤N

(f(Xi) − µ(f))
∣∣∣ ≤ sup

f∈T ′
2

(√
N |µ(f)| + 1√

N

∑
i≤N

|f(Xi)|
)

≤ sup
f∈T2

(√
Nµ(f) +

1√
N

∑
i≤N

f(Xi)
)

≤ sup
f∈T2

(
2
√

Nµ(f) +
1√
N

∑
i≤N

(f(Xi) − µ(f))
)

.

By (2.161) we have µ(f) = ‖f‖1 ≤ LS/
√

N for f ∈ T2. Thus it suffices to
show that

E sup
f∈T2

∣∣∣ 1√
N

∑
i≤N

(f(Xi) − µ(f))
∣∣∣ ≤ LS .

This follows as in the case of T1 from the fact that γ2(T2, d2) ≤ LS and
γ1(T2, d∞) ≤ LS

√
N by (2.160). �

To cover further needs, we will also prove a general principle that is to
Theorem 2.7.11 what Theorem 2.6.3 is to Theorem 2.6.2. This result will be
used only in chapter 5, and its proof is better omitted at first reading.

Theorem 2.7.12. Consider a countable set T ⊂ L0(Ω, µ), where µ is a
positive measure (that need not be a probability). Assume that 0 ∈ T , and
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consider a number V ≥ 2. Consider an admissible sequence (An) of partitions
of T and for A ∈ An define hA by (2.155). For A ∈ An consider j(A) ∈
Z ∪ {∞} and δ(A) ∈ R

+. Assume the following properties

∀t ∈ T , lim
n→∞ j(An(t)) = ∞ (2.164)

A ∈ An , B ∈ An−1 , A ⊂ B ⇒ j(A) ≥ j(B) (2.165)

A ∈ An , B ∈ An′ , A ⊂ B , j(A) = j(B) ⇒ δ(B) ≤ 2δ(A) (2.166)

∀A ∈ An ,

∫
h2

A ∧ V −2j(A)dµ ≤ δ2(A) . (2.167)

Then we can find two sets T1 , T2 ⊂ L0(Ω, µ) with the following properties,
where jn(t) = j(An(t))

γ2(T1, d2) ≤ L sup
t∈T

∑
n≥0

2n/2δ(An(t)) (2.168)

γ1(T1, d∞) ≤ L sup
t∈T

∑
n≥0

2nV −jn(t) (2.169)

γ2(T2, d2) ≤ L sup
t∈T

∑
n≥1

2n/2V jn(t)−jn−1(t)δ(An(t)) (2.170)

γ1(T2, d∞) ≤ L sup
t∈T

∑
n≥0

2nV −jn(t) (2.171)

s ∈ T2 ⇒ s ≥ 0 , ‖s‖1 ≤ L sup
t∈T

∑
n≥1

V 2jn(t)−jn−1(t)δ2(An(t)) , (2.172)

in such a way that T ⊂ T1 + T ′
2 + T3, where

T ′
2 = {t ; ∃s ∈ T2 , |t| ≤ s}

T3 =
{
t ; |t| ≤ hT 1{hT≥V −j(T )}

}
.

Second proof of Theorem 2.7.10. We set δ(A) = ‖hA‖2, and we define j(A)
as the largest element of Z ∪ {∞} for which

2−j(A) ≥
√

N2−n/2δ(A) ,

so that (2.164) to (2.167) obviously hold true. We note that by definition of
j(A) we have

2−j(A) ≤
√

N2−n/2+1δ(A) ,

and hence we have

2jn(t)δ(An(t))
√

N ≤ 2n/2 ; 2−jn−1(t) ≤
√

N2−n/2+3/2δ(An−1(t)) . (2.173)
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We apply Theorem 2.7.12 with V = 2 , T = F . The decomposition F ⊂
T1 + T ′

2 + T3 shows that it suffices to prove (2.157) when F is one of the
classes T1, T

′
2, T3. When F = T1, this follows from Bernstein’s inequality and

Theorem 1.2.7, since by (2.168) and (2.169) we have

γ2(T1, d2) ≤ LS ; γ1(T1, d∞) ≤ LS
√

N.

When F = T ′
2, we proceed as in the first proof of Theorem 2.7.10, since

by (2.172) and (2.173) we have µ(f) = ‖f‖1 ≤ LS/
√

N for f ∈ T2 and
since γ2(T2, d2) ≤ LS and γ1(T2, d∞) ≤ LS

√
N by (2.170) and (2.171),

using (2.173) again. The case F = T3 is very simple after one notices that
‖hT 1{hT ≥2−j(T )}‖1 ≤ LS/

√
N , and is left to the reader. �

Proof of Theorem 2.7.12. This result will be used only in chapter 5, and this
proof is better omitted at first reading. We define

p(t, n) = inf{p ≥ 0 ; jp(t) = jn(t)}
A(t, n) = Ap(t,n)(t)

and we observe that by (2.166) we have

δ(A(t, n)) ≤ 2δ(An(t)) .

For n ≥ 1 and A ∈ An we choose tA ∈ A arbitrary. We choose tT = 0. We
define πn(t) = tA(t,n). We note that

πn+1(t) �= πn(t) ⇒ A(t, n + 1) �= A(t, n) ⇒ jn+1(t) > jn(t) . (2.174)

We define

Ωt,n = {hA(t,n) > V −jn(t)}
Ω = {hT > V −j(T )}

m(t, ω) = inf{n ≥ 0 ; ω ∈ Ωt,n}

if the set on the right is not empty, and m(t, ω) = ∞ otherwise. We note that

n < m(t, ω) ⇒ |πn+1(t)(ω) − πn(t)(ω)| ≤ hA(t,n)(ω) ≤ V −jn(t) . (2.175)

When m(t, ω) < ∞ we define

t1(ω) = πm(t,ω)(t)(ω)1Ωc(ω) ,

and if m(t, ω) = ∞ we define

t1(ω) = t(ω)1Ωc(ω) = lim
n→∞πn(t)(ω)1Ωc(ω) .

The second equality follows from (2.164) and the fact that
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n < m(t, ω) ⇒ |t(ω) − πn(t)(ω)| ≤ hA(t,n)(ω) ≤ V −jn(t) .

We set T1 = {t1 ; t ∈ T }. The proof of (2.168) and (2.169) is then the same
as in the case of Theorem 2.6.3. We set

t′2 = (t − t1)1Ωc =
∑
m≥0

(t − πm(t))1{m(t,·)=m}\Ω . (2.176)

We have {m(t, ·) = m} ⊂ Ωt,m, and, by (2.167),

µ(Ωt,m) ≤ V 2jm(t)δ2(Am(t)) . (2.177)

For m ≥ 1, we observe that the set {m(t, ·) = m} is empty when jm(t) =
jm−1(t), because then Ωt,m = Ωt,m−1.

Also, if m(t, ω) = m then ω �∈ Ωt,m−1, and thus

|t(ω) − πm(t)(ω)| ≤ hA(t,m−1)(ω) ≤ V −jm−1(t) .

Thus, for m ≥ 1

(t − πm(t))1{m(t,·)=m}\Ω ≤ u(t, m) ,

where
u(t, m) = V −jm−1(t)1Ωt,m\Ω (2.178)

if jm(t) �= jm−1(t) and u(t, m) = 0 otherwise. We observe that for every t ∈ T
we have Ω = {m(t, ·) = 0}, so that in (2.176) the term of the summation
corresponding to m = 0 is 0, and thus

|t′2| ≤
∑
m≥1

u(t, m) . (2.179)

We set T2 = {t2 :=
∑

m≥1 u(t, m) ; t ∈ T } .
We observe that u(t, m) depends only on Am(t). Thus if

Un =
{ ∑

1≤m≤n

u(t, m) ; t ∈ T
}

,

we have cardUn ≤ Nn. By (2.178) we have

d∞(t2, Un) ≤
∑
m>n

‖u(t, m)‖∞ ≤ 2V −jn(t)

so that (2.171) follows from Theorem 1.3.5.
By (2.177) and (2.178) we have

d2(t2, Un) ≤
∑
m>n

‖u(t, m)‖2 ≤
∑
m>n

V jm(t)−jm−1(t)δ(Am(t))
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and thus ∑
n≥0

2n/2d2(t2, Un) ≤ L
∑
m≥1

2m/2V jm(t)−jm−1(t)δ(Am(t)) ,

and (2.170) follows from Theorem 1.3.5. Moreover,

‖t2‖1 ≤
∑
m≥1

‖u(t, m)‖1 ≤
∑
m≥1

V 2jm(t)−jm−1(t)δ2(Am(t)) ,

using again (2.177) and (2.178). Finally, t3 := t1Ω = t − t1 − t′2 ∈ T3 for
t ∈ T , so that t = t1 + t′2 + t3 ∈ T1 + T ′

2 + T3. �



3 Matching Theorems

3.1 The Ellipsoid Theorem

As pointed out after Proposition 2.2.2, an ellipsoid E is in some sense quite
smaller than what one would predict by looking only at the numbers en(E).
We will trace the roots of this phenomenon to a simple geometric property,
namely that an ellipsoid is “sufficiently convex”.

An ellipsoid (2.19) is the unit ball of the norm

‖x‖E =
(∑

i≥1

x2
i

a2
i

)1/2

. (3.1)

Lemma 3.1.1. We have

‖x‖E , ‖y‖E ≤ 1 ⇒
∥∥∥x + y

2

∥∥∥
E
≤ 1 − ‖x − y‖2

E
8

. (3.2)

Proof. By the parallelogram identity we have

‖x − y‖2
E + ‖x + y‖2

E = 2‖x‖2
E + 2‖y‖2

E ≤ 4

so that
‖x + y‖2

E ≤ 4 − ‖x − y‖2
E

and ∥∥∥x + y

2

∥∥∥
E
≤

(
1 − 1

4
‖x − y‖2

E

)1/2

≤ 1 − 1
8
‖x − y‖2

E .

�

Since (3.2) is the only property of ellipsoids we will use, it clarifies matters
to state the following definition.

Definition 3.1.2. Consider a number p ≥ 2. A norm ‖·‖ in a Banach space
is called p-convex if for a certain number η > 0 we have

‖x‖ , ‖y‖ ≤ 1 ⇒
∥∥∥x + y

2

∥∥∥ ≤ 1 − η‖x − y‖p . (3.3)
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For example, for q < ∞ the classical Banach space Lq(µ) is p-convex
where p = min(2, q). The reader is referred to [20] for this result and any
other classical facts about Banach spaces.

In this section we will study the metric space (T, d) where T is the unit
ball of a p-convex Banach space B, and where d is the distance induced on
B by another norm ‖ · ‖∼.

Given a metric space (T, d), we consider the functionals

γα,β(T, d) =
(
inf sup

t

∑
n≥0

(
2n/α∆(An(t))

)β
)1/β

, (3.4)

where α and β are positive numbers, and where the infimum is over all
admissible sequences. Thus, with the notation of Definition 1.2.5, we have
γα,1(T, d) = γα(T ). The importance of these functionals is that in certain
conditions they will nicely relate to γ2(T, d) through Hölder’s inequality.

Theorem 3.1.3. If T is the unit ball of a p-convex Banach space, if η is as
in (3.3) and if the distance d on T is induced by another norm ‖ · ‖∼, then

γα,p(T, d) ≤ K(α, p, η) sup
n≥0

2n/αen(T, d) . (3.5)

The point of this theorem is that, for a general metric space (T, d), it is
true that

γα,p(T, d) ≤ K(α)
(∑

n≥0

(
2n/αen(T, d)

)p
)1/p

, (3.6)

which, if one does not mind the worst constant, is weaker in an essential
way than (3.5), but that in general it is essentially impossible to improve on
(3.6). The proofs of (3.6) and it optimality are left as an easy but instructive
exercise. Another easy observation is that

sup
n

2n/αen(T, d) ≤ K(α)γα,β(T, d) .

Corollary 3.1.4. (The Ellipsoid Theorem.) Consider the ellipsoid (2.19),
where the sequence ai is not necessarily non-increasing. Consider α ≥ 1.
Then we have

γα,2(E) ≤ K(α) sup
ε>0

ε(card{i ; ai ≥ ε})1/α. (3.7)

Proof. Without loss of generality we can assume that the sequence (ai) is
non-decreasing. We apply Theorem 3.1.3 to the case ‖ · ‖ = ‖ · ‖E , and where
‖ · ‖∼ is the norm of �2, and we get

γα,2(E) ≤ K(α) sup
n

2n/αen(E) ≤ K(α) sup
n

2n/αa2n

using (2.25) in the last inequality. Now, taking ε = a2n we see that we have
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2n/αa2n ≤ sup
ε>0

ε(card{i ; ai ≥ ε})1/α.

�

The restriction α ≥ 1 is inessential and can be removed by a suitable
modification of (2.25).

The Ellipsoid Theorem will be our main tool to construct matchings. The
more general Theorem 3.1.3 will have equally far-reaching consequences in
Section 6.3.

We will deduce Theorem 3.1.3 from the following general result.

Theorem 3.1.5. Under the hypothesis of Theorem 3.1.3, consider a se-
quence (θ(n))n≥0, such that

∀n ≥ 0 , θ(n) ≤ η
( 1

4en(T, d)

)p

(3.8)

and that, for certain numbers 1 < ξ ≤ 2 , r ≥ 4 we have

∀n ≥ 0 , ξθ(n) ≤ θ(n + 1) ≤ rp

2
θ(n) . (3.9)

Then there exists an increasing sequence (An) of partitions of T satisfying
cardAn ≤ Nn+1 such that

sup
t∈T

∑
n≥0

θ(n)∆(An(t), d)p ≤ L
(2r)p

ξ − 1
. (3.10)

The abstraction here might make it hard for the reader to realize at once
that this is a very powerful and precise statement. Not only it implies Corol-
lary 3.1.4, but also (2.22), as is shown after the statement of Theorem 3.1.6.

Proof. We will use Theorem 1.3.2 for τ = 1 , β = p and the functionals
Fn = F given by

F (A) = 1 − inf{‖v‖ ; v ∈ convA} .

To prove that these functionals satisfy the growth condition of Definition 1.2.5
we consider n ≥ 0 , m = Nn+1, and points (t�)�≤m in T , such that d(t�, t�′) ≥
a whenever � �= �′. Consider also sets H� ⊂ T ∩ Bd(t�, a/r), where the index
d emphasizes that the ball is for the distance d rather than for the norm ‖ · ‖.
Set

u = inf
{
‖v‖ ; v ∈ conv

⋃
�≤m

H�

}
= 1 − F

( ⋃
�≤m

H�

)
, (3.11)

and consider

u′ > max
�≤m

inf{‖v‖ ; v ∈ convH�} = 1 − min
�≤m

F (H�) . (3.12)
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For � ≤ m consider v� ∈ convH� with ‖v�‖ ≤ u′′ = min(u′, 1). It follows from
(3.3) that for � , �′ ≤ m,∥∥∥v� + v�′

2u′′

∥∥∥ ≤ 1 − η
∥∥∥v� − v�′

u′′

∥∥∥p

. (3.13)

Moreover, since (v� + v�′)/2 ∈ conv
⋃

�≤m H�, we have u ≤ ‖v� + v′�‖/2, and
(3.13) implies

u

u′′ ≤ 1 − η
∥∥∥v� − v�′

u′′

∥∥∥p

,

so that

‖v� − v�′‖ ≤ u′′
(u′′ − u

ηu′′
)1/p

≤ R :=
(u′′ − u

η

)1/p

and hence the points w� = R−1(v� − v1) belong to T . Now, since r ≥ 4, we
have d(v�, v�′) ≥ a/2 for � �= �′, and, since the distance d arises from a norm,
we have d(w�, w�′) ≥ R−1a/2 for � �= �′, and thus en+1(T, d) ≥ R−1a/4.

Since u′ − u ≥ u′′ − u ≥ ηRp it follows that

u′ ≥ u + η
( a

4en+1(T, d)

)p

.

Since u′ is arbitrary in (3.12) we get, using (3.11), that

F
( ⋃

�≤n

H�

)
≥ min

�≤n
F (H�) + η

( a

4en+1(T, d)

)p

.

This completes the proof of (1.31). To finish the proof one uses (1.33) and
one observes that F0(T ) = F (T ) = 1 and that θ(0)∆p(T ) ≤ θ(0)2pep

0(T ) ≤
η2−p ≤ 1, using (3.8) for n = 0 in the last inequality. �

Proof of Theorem 3.1.3. Let S = supn≥1 2n/αen(T, d). Then the sequence

θ(n) = η
2np/α

(4S)p

satisfies (3.8), and also (3.9) for ξ = min(2, 2p/α) and whenever r ≥ 21/p+1/α.
We then construct the desired admissible sequence by setting B0 = {T } and
Bn = An−1 for n ≥ 1. �

Another consequence of Theorem 3.1.5 is the following generalization of
Theorem 3.1.3. When applied to ellipsoids, it yields very precise results, and
in particular (2.22). It will not be used in the sequel, and could be omitted
at first reading.

Theorem 3.1.6. Consider β , β′ , p > 0 with

1
β

=
1
β′ +

1
p

. (3.14)
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Then, under the conditions of Theorem 3.1.3 we have

γα,β(T, d) ≤ K(p, η)
(∑

n

(2n/αen(T, d))β′)1/β′

.

The case of Theorem 3.1.5 is the case where β′ = ∞. To recover (2.22)
we simply use the case where α = 2, β = 1, β′ = p = 2 and (2.25).

Proof. For n ≥ 0, set

d(n) = η
( 1

4en(T, d)

)p

.

Consider a = p/(2α) , b = 2p/α, and set

θ(n) = min
(

inf
k≥n

d(k)2a(n−k) , inf
k≤n

d(k)2b(n−k)
)

.

Then we have
2aθ(n) ≤ θ(n + 1) ≤ 2bθ(n) . (3.15)

For example, to prove the left-hand side, we note that

2a inf
k≥n

d(k)2a(n−k) ≤ inf
k≥n+1

d(k)2a(n+1−k)

2b inf
k≤n

d(k)2b(n−k) ≤ inf
k≤n

d(k)2b(n+1−k)

and we observe that θ(n + 1) is the minimum of the right-hand sides of
the two previous inequalities. Thus (3.9) holds for ξ = min(2, 2a) and r =
max(4, 2(b+1)/p) and by Theorem 3.1.5 we can find an increasing sequence
(An) of partitions of T with cardAn ≤ Nn+1 and

sup
t∈T

∑
n≥0

θ(n)∆(An(t))p ≤ K(α, p) . (3.16)

Now we use (3.14) and Hölder’s inequality to see that

(∑
n≥0

(
∆(An(t))2n/α

)β
)1/β

≤
(∑

n≥0

θ(n)∆(An(t))p
)1/p

(∑
n≥0

2nβ′/α

θ(n)β′/p

)1/β′

.

(3.17)
If we set c = β′/α, we have aβ′/p = c/2 and bβ′/p = 2c, so that

θ(n)−β′/p ≤
∑
k≥n

d(k)−β′/p2c(k−n)/2 +
∑
k≤n

d(k)−β′/p22c(k−n)

and
∑
n≥0

2nβ′/α

θ(n)β′/p
≤

∑
n,k;k≥n

d(k)−β′/p2c(k+n)/2 +
∑

n,k;k≤n

d(k)−β′/p2c(2k−n)

≤ K(c)
∑
k≥0

d(k)−β′/p2ck
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by performing the summation in n first. Thus, recalling the value of d(k),

∑
n≥0

2nβ′/α

θ(n)β′/p
≤ K(p, β, η)

∑
k≥0

(
2k/αek(T, d)

)β′
.

Combining with (3.16) and (3.17) concludes the proof. �

3.2 Matchings

The rest of this chapter is devoted to the following problem. Consider N
r.v. X1, . . . , XN independently uniformly distributed in the unit cube [0, 1]d,
where d ≥ 2. Consider a typical realization of these points. How evenly dis-
tributed in [0, 1]d are the points X1, . . . , XN? To measure this, we will match
the points (Xi)i≤N with non-random “evenly distributed” points (Yi)i≤N ,
that is, we will find a permutation π of {1, . . . , N} such that the points Xi

and Yπ(i) are “close”. There are of course different ways to measure “close-
ness”. For example one may wish that the sum of the distances d(Xi, Yπ(i))
be as small as possible (Section 3.3), that the maximum distance d(Xi, Yπ(i))
be as small as possible, (Section 3.4), or one can use more complicated mea-
sures of “closeness” (Section 3.5). The case where d = 2 is very special, and
will be the only one we study. The reader having never thought of the matter
might think that the points X1, . . . , XN are very evenly distributed. A mo-
ment thinking reveals this is not quite the case, for example, with probability
close to one, one is bound to find a little square of area about N−1 log N that
contains no point Xi. This is a very local irregularity. In a somewhat informal
manner one can say that this irregularity occurs at scale

√
log N/

√
N . The

specific feature of the case d = 2 is that in some sense there are irregularities
at all scales 2−j for 1 ≤ j ≤ L−1 log N , and that these are all of the same
order. Of course, such a statement is by no mean obvious at this stage.

Matching problems in dimension d ≥ 2 are very interesting, but do not
share this feature, and this makes them somewhat easier. Essentially the final
solution to these problems is given in [57]. One of the very different features
between the case d = 2 and the case d > 2 is that for d = 2 we are not
concerned with what happens at a scale less that ((log N)/N)1/d, while in
dimension d > 2 we are concerned with what happens at a scale as small
as N−1/d, and the very local irregularities play the essential role there. In
a sense the heart of [57] is the study of bounds of processes with Poisson
tails. The main result of this paper lies as deep as anything presented in
this book. (The methods are somewhat similar to those of Section 3.5, but
simpler). Unfortunately we did not find the energy to rewrite this work, which
consequently is likely to keep awaiting its first reader.

What does it mean to say that the non-random points (Yi)i≤N are evenly
distributed? When N is a square, N = n2, everybody will agree that the
N points (k/n, �/n), 1 ≤ k , � ≤ n are evenly distributed. More generally
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we will say that the non-random points (Yi)i≤N are evenly spread if one
can cover [0, 1]2 with N rectangles with disjoint interiors, such that each
rectangle R has an area 1/N , contains exactly one point Yi, and is such that
R ⊂ B(Yi, 10/

√
N). To construct such points when N is not a square, one

can simply cut [0, 1]2 into horizontal strips of width k/N , where k is about√
N (and depends on the strip), use vertical cuts to cut such a strip into

k rectangles of area 1/N , and put a point Yi in each rectangle. There is an
elegant approach that dispenses of this slightly awkward construction. It is
the concept of “transportation cost”. One attributes mass 1/N to each point
Xi, and one measures the “cost of transporting” the resulting probability
measure to the uniform probability on [0, 1]2. (In the presentation one thus
replaces the evenly spread points Yi by a more canonical object, the uniform
probability on [0, 1]2.) Since this approach does not help with the proofs, we
will not use it.

The basic tool to construct matchings is the following classical fact.

Proposition 3.2.1. Consider a matrix C = (cij)i,j≤N . Let M(C) = inf∑
i≤N ciπ(i), where the infimum is over all permutations π of {1, . . . , N}.

Then
M(C) = sup

∑
i≤N

(wi + w′
i) , (3.18)

where the supremum is over all families (wi)i≤N , (w′
i)i≤N that satisfy

∀i , j ≤ N , wi + w′
j ≤ cij . (3.19)

Thus, if cij is the cost of matching i with j, M(C) is the minimal cost of a
matching, and is given by the “duality formula” (3.18).

Proof. Let us denote by a the right-hand side of (3.18). If the families
(wi)i≤N , (w′

i)i≤N satisfy (3.19), then for any permutation π of {1, . . . , N},
we have ∑

i≤N

ciπ(i) ≥
∑
i≤N

(wi + w′
i)

and thus ∑
i≤N

ciπ(i) ≥ a ,

so that M(C) ≥ a.
The converse relies on the Hahn-Banach Theorem. Consider the subset C

of R
N×N that consists of the vectors (xij)i,j≤N for which there exists numbers

(wi)i≤N , and (w′
i)i≤N such that∑

i≤N

(wi + w′
i) > a (3.20)

∀i , j ≤ N , xij ≥ wi + w′
j . (3.21)
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Then, by definition of a, we have (cij)i,j≤N �∈ C. Since C is an open convex
subset of R

N×N , we can separate the point (cij)i,j≤N from C by a linear
functional, i.e. we can find numbers (pij)i,j≤N such that

∀(xij) ∈ C ,
∑

i,j≤N

pijcij <
∑

i,j≤N

pijxij . (3.22)

Since by definition of C, and in particular (3.21), this remains true when
one increases xij , we see that pij ≥ 0, and because of the strict inequality in
(3.22) we see that not all the numbers pij are 0. Thus there is no loss of gen-
erality to assume that

∑
i,j≤N pij = N . Consider families (wi)i≤N , (w′

i)i≤N

that satisfy (3.20). Then if xij = wi + w′
j , the point (xij)i,j≤N belongs to C

and using (3.22) for this point we see that∑
i,j≤N

pijcij ≤
∑

i,j≤N

pij(wi + w′
j) . (3.23)

If (yi)i≤N are numbers with
∑

i≤N yi = 0, we have∑
i,j≤N

pijcij ≤
∑

i,j≤N

pij(wi + yi + w′
j) (3.24)

≤
∑

i,j≤N

pij(wi + w′
j) +

∑
i≤N

yi

(∑
j≤N

pij

)

as we see from (3.23), replacing wi by wi + yi. But (3.24) forces all the sums∑
j≤N pij to the equal, and since

∑
i,j≤N pij = N , we have

∑
j≤N pij = 1,

for all i. Similarly, we have
∑

i≤N pij = 1 for all j, i.e. the matrix (pij)i,j≤N

is bistochastic. Thus (3.23) becomes∑
i,j≤N

pijcij ≤
∑
i≤N

(wi + w′
i)

so that
∑

i,j≤N pijcij ≤ a. The set of bistochastic matrices is a convex set, so
the infimum of

∑
i,j≤N pijcij over this convex set is obtained at an extreme

point. The extreme points are of the type pij = 1{π(i)=j} for a permutation π
of {1, . . . , N}, so that we can find such a permutation with

∑
i≤N ciπ(i) ≤ a.

�

The following is a well-known, and rather useful, result of combinatorics.

Corollary 3.2.2. (Hall’s marriage Lemma). Assume that to each i ≤ N we
associate a subset A(i) of {1, . . . , N} and that, for each subset I of {1, . . . , N}
we have

card
(⋃

i∈I

A(i)
)
≥ card I . (3.25)

Then we can find a permutation π of {1, . . . , N} such that

∀i ≤ N , π(i) ∈ A(i) .
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Proof. We set cij = 0 if j ∈ A(i) and cij = 1 otherwise. We want to prove,
with the notations of Proposition 3.2.1, that M(C) = 0. Using (3.18), it
suffices to prove that given numbers ui(= −wi) , vi(= w′

i) we have

∀i,∀j ∈ A(i) , vj ≤ ui ⇒
∑
i≤N

vi ≤
∑
i≤N

ui . (3.26)

By adding a suitable constant, we can assume vi and ui ≥ 0 for all i, and
thus

∑
i≤N

ui =
∫ ∞

0

card{i ≤ N ; ui ≥ t}dt (3.27)

∑
i≤N

vi =
∫ ∞

0

card{i ≤ N ; vi ≥ t}dt . (3.28)

Given t, using (3.25) for I = {i ≤ N ; ui < t} and that vj ≤ ui if j ∈ A(i),
we see that

card{j ≤ N ; vj < t} ≥ card{i ≤ N ; ui < t}

and thus
card{i ≤ N ; ui ≥ t} ≤ card{i ≤ N ; vi ≥ t} .

Combining with (3.27) and (3.28) this proves (3.26). �

There are other proofs of Hall’s lemma, based on different ideas, see [3], § 2.

3.3 The Ajtai, Komlòs, Tusnàdy Matching Theorem

Theorem 3.3.1. [1]. If the points (Yi)i≤N are evenly spread and the points
(Xi)i≤N are i.i.d uniform on [0, 1]2, then (for N ≥ 2)

E inf
π

∑
i≤N

d(Xi, Yπ(i)) ≤ L
√

N log N (3.29)

where the infimum is over all permutations of {1, . . . , N} and where d is the
Euclidean distance.

The term
√

N is just a scaling effect. There are N terms d(Xi, Yπ(i)) each
of which should be about 1/

√
N . The non-trivial part of the theorem is the

factor
√

log N .
It is shown in [1] that (3.29) can be reversed, i.e.

E inf
π

∑
i≤N

d(Xi, Yπ(i)) ≥ 1
L

√
N log N . (3.30)
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As will be apparent later, the left-hand side of (3.30) is essentially the
expected value of the supremum of a stochastic process. Finding lower bounds
for such quantities is one of our main endeavors. It would be of interest to
prove (3.30) using our methods, but this has yet to be done.

Consider the class C of 1-Lipschitz functions on [0, 1]2, i.e. of functions f
that satisfy

∀x, y ∈ [0, 1]2 , |f(x) − f(y)| ≤ d(x, y) ,

where d denotes the Euclidean distance. Theorem 3.3.1 is a consequence of
the following fact, interesting in its own right. We denote by λ the uniform
measure on [0, 1]2.

Theorem 3.3.2. We have

E sup
f∈C

∣∣∣∑
i≤N

(f(Xi) −
∫

fdλ)
∣∣∣ ≤ L

√
N log N . (3.31)

This theorem is a prime example of a natural situation where Dudley’s
entropy bound cannot yield the correct result. We will let the reader con-
vince herself that Dudley’s entropy bound cannot yield better than a bound
L
√

N log N . This is closely related to the fact that, as explained in Section 2.2,
Dudley’s entropy bound is not sharp on all ellipsoids.

Research problem 3.3.3. Prove that the following limit

lim
N→∞

1√
N log N

E sup
f∈C

∣∣∣∑
i≤N

(f(Xi) −
∫

fdλ)
∣∣∣

exists.

Proof of Theorem 3.3.1. We use Proposition 3.2.1 with cij = d(Xi, Yj), so
that

inf
π

∑
i≤N

d(Xi, Yπ(i)) = sup
∑
i≤N

(wi + w′
i) , (3.32)

where the supremum is over all families (wi) , (w′
i) for which

∀i , j ≤ N , wi + w′
j ≤ d(Xi, Yj) . (3.33)

Given a family (w′
i)i≤N , consider the function

f(x) = min
j≤N

(−w′
j + d(x, Yj)) . (3.34)

It is 1-Lipschitz, since it is the minimum of functions that are themselves
1-Lipschitz. By definition we have f(Yj) ≤ −w′

j and by (3.33) for i ≤ N we
have wi ≤ f(Xi), so that
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i≤N

(wi + w′
i) ≤

∑
i≤N

(f(Xi) − f(Yi))

≤
∣∣∣∑
i≤N

(f(Xi) −
∫

fdλ)
∣∣∣ +

∣∣∣∑
i≤N

(f(Yi) −
∫

fdλ)
∣∣∣ .

It should be obvious that the last term is ≤ L
√

N , so that, using (3.32) and
taking expectation

E inf
π

∑
i≤N

d(Xi, Yπ(i)) ≤ L
√

N + E sup
f∈C

∣∣∣∑
i≤N

(f(Xi) −
∫

fdλ)
∣∣∣

≤ L
√

N log N

by (3.31). �
Consider the class C0 consisting of functions f : [0, 1]2 → R that are

differentiable and satisfy

sup
∣∣∂f

∂x

∣∣ ≤ 1 ; sup
∣∣∂f

∂y

∣∣ ≤ 1

∫
fdλ = 0 ; ∀u , 0 ≤ u ≤ 1 , f(u, 0) = f(u, 1) , f(0, u) = f(1, u) . (3.35)

The main ingredient in our proof of (3.31) is the following, where we use
the functional γ2,2 of (3.4), and where the underlying distance is the distance
induced by L2([0, 1]2).

Proposition 3.3.4. We have γ2,2(C0) < ∞.

Proof. The very beautiful idea (due to Coffman and Shor [6]) is to represent
C0 as a subset of an ellipsoid using Fourier transforms. Fourier transforms
associates to each function f on L2([0, 1]2) the complex numbers cp,q(f) given
by

cp,q(f) =
∫ ∫

[0,1]2
f(x1, x2) exp 2iπ(px1 + qx2)dx1dx2 . (3.36)

For our purpose the fundamental fact is that

‖f‖2 =
( ∑

p,q∈Z

|cp,q(f)|2
)1/2

, (3.37)

so that if
D = ((cp,q(f))p,q∈Z ; f ∈ C0) ,

it suffices to show that γ2,2(D, d) < ∞ where d is the distance in the complex
Hilbert space �2

C
(Z×Z). Using (3.36), integration by parts and (3.35), we get

−2iπpcp,q(f) = cp,q(
∂f

∂x
) .
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Using (3.37) for ∂f/∂x, and since ‖∂f/∂x‖2 ≤ 1 we get
∑

p,q∈Z
p2|cp,q(f)|2

≤ 1/4π2. Proceeding similarly for ∂f/∂y, we get

D ⊂ E =
{
(cp,q) ∈ �2

C(Z × Z) ; c0,0 = 0 ,
∑

p,q∈Z

(p2 + q2)|cp,q|2 ≤ 1
}

.

We view each complex number cp,q as a pair (xp,q, yp,q) of real numbers, and
|cp,q|2 = x2

p,q + y2
p,q. For u ≥ 1, we have

card
{
(p, q) ∈ Z × Z ; p2 + q2 ≤ u2

} ≤ (2u + 1)2 ≤ Lu2 .

We then deduce from Corollary 3.1.4 that γ2,2(E , d) < ∞ �

We set
C1 = {f ∈ C ; ‖f‖∞ ≤ 2} ,

so that C0 ⊂ C1. The following is classical.

Lemma 3.3.5. For each ε > 0 we have

N(C1, d∞, ε) ≤ exp
( L

ε2

)
, (3.38)

where N(C1, d∞, ε) is the smallest number of balls of radius ε needed to cover
C1.

Proof. We first show that given h ∈ C, an integer k and letting

A =
{
f ∈ C ; ‖f − h‖∞ ≤ 21−k

}
, (3.39)

we have
N(A, d∞, 2−k) ≤ exp(L022k) . (3.40)

Consider a subset C of A that is maximal with respect to the property that
if f1 , f2 ∈ C and f1 �= f2 then d∞(f1, f2) > 2−k. Then each point of A is
within distance ≤ 2−k of C, so N(A, d∞, 2−k) ≤ cardC.

Consider the subset U of [0, 1]2 that consists of the points of the type
y = (�12−k−3, �22−k−3) for �1 , �2 ∈ N , 1 ≤ �1 , �2 ≤ 2k+3, so that cardU ≤
22k+6. If f1 , f2 ∈ C and f1 �= f2, there is x ∈ [0, 1]2 with |f1(x) − f2(x)| >
2−k. Consider y ∈ U with d(x, y) ≤ 2−k−2. Then for j = 1 , 2 we have
|fj(x) − fj(y)| ≤ 2−k−2 so that |f1(y) − f2(y)| > 2−k−1. Thus, if we see C
as a subset of R

U , we have shown that any two distinct points of C are at
distance at least 2−k−1 of each other for the supremum norm. The balls for
this norm of radius 2−k−2 centered at the points of C have disjoint interiors,
and (from (3.39)) are entirely contained in a certain ball of radius 9 · 2−k−2,
so that, by volume considerations, we have cardC ≤ 9card U , and this prove
(3.40).

We now prove by induction over k ≥ 0 that
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N(C1, d∞, 21−k) ≤ exp(L022k) . (3.41)

This certainly holds true for k = 0. For the induction step, we use the induc-
tion hypothesis to cover C1 by exp(L022k) sets A of the type (3.39) and we
use (3.40) for each of these sets. This completes the induction. Finally, (3.38)
follows from (3.41). �

It is useful to reformulate (3.38) as follows. For n ≥ 0, we have

en(C1, d∞) ≤ L2−n/2 . (3.42)

Proposition 3.3.6. We have

E sup
f∈C0

∣∣∣∑
i≤N

f(Xi)
∣∣∣ ≤ L

√
N log N . (3.43)

Proof. Consider the largest integer m with 2−m ≥ 1/N . By (3.42), and since
C0 ⊂ C1, we can find a subset T of C0 with cardT ≤ Nm and

∀f ∈ C0 , d∞(f, T ) ≤ L2−m/2 ≤ L/
√

N .

Thus
E sup

f∈C0

∣∣∣∑
i≤N

f(Xi)
∣∣∣ ≤ E sup

f∈T

∣∣∣∑
i≤N

f(Xi)
∣∣∣ + L

√
N . (3.44)

By Proposition 3.3.4 we have γ2,2(T ) ≤ L, so that there is an admissible
sequence (An) of T for which

∀t ∈ T ,
∑
n≥0

2n∆(An(t), d2)2 ≤ L . (3.45)

Since cardT ≤ Nm, we can assume that Am(t) = {t} for each t, so
that in (3.45) the sum is really over n ≤ m − 1. Since

∑
0≤n≤m an ≤√

m(
∑

0≤n≤m a2
n)1/2 by the Cauchy- Schwarz inequality, we have shown that

∀t ∈ T ,
∑
n≥0

2n/2∆(An(t), d2) ≤ L
√

m ≤ L
√

log N , (3.46)

and thus γ2(T, d2) ≤ L
√

log N .
Using (1.49) with (3.42) and Tn = T for n ≥ m, we see that γ1(T, d∞) ≤

L2m/2 ≤ L
√

N . Thus (3.43) follows from Proposition 2.7.2. �

We consider the class C2 of functions of the type

f(x1, x2) = x1g(x2)

where g : [0, 1] → R is 1-Lipschitz, g(0) = g(1) and |g| ≤ 1.
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Proposition 3.3.7. We have

E sup
f∈C2

∣∣∣∑
i≤N

(f(Xi) −
∫

fdλ)
∣∣∣ ≤ L

√
N .

Proof. We observe that for 2 functions g and g∗ we have |x1g(x2)−x1g
∗(x2)| ≤

d∞(g, g∗). Mimicking the proof of the entropy estimate (3.38), we see that
for ε > 0 we have N(C2, d∞, ε) ≤ exp(L/ε) and hence en(C2, d∞) ≤ L2−n.
Thus, by Theorem 1.3.5 we have γ2(C2, d2) ≤ γ2(C2, d∞) ≤ L. We consider the
largest integer m such that 2−m ≥ 1/N . We choose T ⊂ C2 with cardT ≤ Nm

and
∀f ∈ T2 , d∞(f, T ) ≤ L2−m .

As in the proof of Proposition 3.3.6, we see that we have γ1(T, d∞) ≤ Lm and
we conclude by Bernstein’s inequality and Theorem 1.2.7, using an inequality
similar to (3.44), with huge room to spare. �

Proof of Theorem 3.3.2. We first observe that in (3.31) the supremum is
the same if we replace the class C of 1-Lipschitz functions by the class of
differentiable 1-Lipschitz functions. For a function f on [0, 1]2, we set ∆ =
f(1, 1) − f(1, 0)− f(0, 1) + f(0, 0) and we decompose

f = f1 + f2 + f3 + f4 , (3.47)

where

f4(x1, x2) = x1x2∆

f3(x1, x2) = x2(f(x1, 1) − f(x1, 0) − ∆x1)
f2(x1, x2) = x1(f(1, x2) − f(0, x2) − ∆x2)

f1 = f − f2 − f3 − f4 .

It is straightforward to see that f1(x1, 0) = f1(x1, 1) and f1(0, x2) = f1(0, x2),
so that if f is 2-Lipschitz and differentiable, f1 is L-Lipschitz, differentiable,
and f1 −

∫
f1dλ satisfies (3.35). We then write∣∣∣∑

i≤N

(
f(Xi) −

∫
fdλ

)∣∣∣≤ ∑
j≤4

Dj

where Dj = |∑i≤N (fj(Xi)−
∫

fjdλ)| and we conclude by Propositions 3.3.6
and 3.3.7. �

3.4 The Leighton-Shor Grid Matching Theorem.

Theorem 3.4.1. [19]. If the points (Yi)i≤N are evenly spread and if (Xi)i≤N

are i.i.d uniform over [0, 1]2, then (for N ≥ 2), with probability at least
1 − L exp(−(log N)3/2/L) we have
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inf
π

sup
i≤N

d(Xi, Yπ(i)) ≤ L
(log N)3/4

√
N

, (3.48)

and thus

E inf
π

sup
i≤N

d(Xi, Yπ(i)) ≤ L
(log N)3/4

√
N

. (3.49)

To deduce (3.49) from (3.48) one simply uses any matching in the (rare)
event that (3.48) fails.

It is proved in [19] that the inequality (3.49) can be reversed. It would be
interesting to prove this by our methods, but this has yet to be done.

We consider the largest integer �1 with 2−�1 ≥ (log N)3/4/
√

N , and the
grid G of [0, 1]2 of mesh width 2−�1 defined by

G =
{
(x1, x2) ∈ [0, 1]2 ; 2�1x1 ∈ N or 2�1x2 ∈ N

}
.

A vertex of the grid is a point (x1, x2) with 2�1x1 ∈ N , 2�1x2 ∈ N. An
edge of the grid is the segment between two vertices that are at distance 2−�1

of each other. A square of the grid is a square of side 2−�1 whose edges are
edges of the grid.

A simple curve is the image of a continuous map ϕ : [0, 1] → R
2 that is

one-to-one on [0, 1). We say that the curve is traced on G if ϕ([0, 1]) ⊂ G,
and that it is closed if ϕ(0) = ϕ(1). A closed simple curve separates R

2 in two
regions. One of these is bounded. It is called the interior of C and is denoted
by

o

C.
The key ingredient to Theorem 3.4.1 is as follows.

Theorem 3.4.2. With probability at least 1−L exp(−(log N)3/2/L), the fol-
lowing occurs. Given any closed simple curve C traced on G, we have∣∣∣∑

i≤N

(
1 o

C
(Xi) − λ(

o

C)
)∣∣∣ ≤ L�(C)

√
N(log N)3/4 , (3.50)

where λ(
o

C) is the area of
o

C and �(C) is the length of C.

In particular, this result allows the control for each number A of the
supremum of the left-hand side of (3.50) over all the simple curves C traced
on G with �(C) ≤ A.

This will be deduced from the following.

Proposition 3.4.3. Consider a vertex w of G and k ∈ Z. Define C(w, k) as
the set of closed simple curves traced on G that contain w and have length
≤ 2k. Then, if k ≤ �1 + 2, with probability at least 1−L exp(−(log N)3/2/L),
for each C ∈ C(w, k) we have∣∣∣∑

i≤N

(
1 o

C
(Xi) − λ(

o

C)
)∣∣∣ ≤ L2k

√
N(log N)3/4 . (3.51)
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Proof of Theorem 3.4.2. Since there are at most (2�1 + 1)2 choices for w, we
can assume with probability at least

1 − L(2�1 + 1)2(2�1 + 4) exp(−(log N)3/2/L) ≥ 1 − L′ exp
(−(log N)3/2/L′)

that (3.51) occurs for all choices of C ∈ C(w, k), for any w and any k with
−�1 ≤ k ≤ �1 + 2.

Consider a simple curve C traced on G. Then, bounding the length of C
by the total length of the edges of G, we have

2−�1 ≤ �(C) ≤ 2(2�1 + 1) ≤ 2�1+2 ,

so if k is the smallest integer for which �(C) ≤ 2k, then −�1 ≤ k ≤ �1 + 2, so
that we can use (3.51) and since 2k ≤ 2�(C) the proof is finished. �

Lemma 3.4.4. We have cardC(w, k) ≤ 22k+�1+1
= Nk+�1+1.

Proof. A curve C ∈ C(w, k) consists of at most 2k+�1 edges of G. If we move
through C, at each vertex of G we have at most 4 choices for the next edge,
so cardC(w, k) ≤ 42k+�1 = Nk+�1+1. �

On the set of closed simple curves traced on G, we define the distance d1

by d1(C, C′) = λ(
o

C ∆
o

C ′).

Proposition 3.4.5. We have

γ1,2(C(w, k), d1) ≤ L22k . (3.52)

This is the main ingredient of Proposition 3.4.3; we will prove it later.

Lemma 3.4.6. Consider a metric space (T, d) with cardT ≤ Nm. Then

γ2(T,
√

d) ≤ m3/4γ1,2(T, d)1/2 . (3.53)

Proof. Consider an admissible sequence (An) of T such that

∀t ∈ T ,
∑
n≥0

(2n∆(An(t), d))2 ≤ γ2
1,2(T, d) . (3.54)

Without loss of generality we can assume that Am(t) = {t} for each t, so
that in (3.54) the sum is over n ≤ m − 1. Now

∆(A,
√

d) ≤ ∆(A, d)1/2

so that, using Hölder’s inequality,
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0≤n≤m−1

2n/2∆(An(t),
√

d) ≤
∑

0≤n≤m−1

(2n∆(An(t), d))1/2

≤ m3/4(
∑
n≥0

(
2n∆(An(t), d))2

)1/4

≤ m3/4γ1,2(T, d)1/2 .

�

On the set of simple curves traced on G we consider the distance

d2(C1, C2) =
√

N
∥∥1 o

C1
− 1 o

C2

∥∥
2

=
(
Nd1(C1, C2)

)1/2
, (3.55)

so that
γ2(C(w, k), d2) ≤

√
Nγ2(C(w, k),

√
d1).

When k ≤ �1 + 2 we have m := k + �1 + 1 ≤ L log N , so that combining
Proposition 3.4.5 with Lemmas 3.4.4 and 3.4.6 we see that

γ2(C(w, k), d2) ≤ L2k
√

N(log N)3/4 . (3.56)

Proof of Proposition 3.4.3. We use Theorem 1.2.9 with T = C(w, k). It follows
from Bernstein’s inequality that the process XC = L−1

∑
i≤N (1 o

C
(Xi)−λ(C))

satisfies (1.21) where d2 is given by (3.55) and d1 is the distance δ given by
δ(C, C′) = 1 if C �= C′ and δ(C, C′) = 0 if C = C′. By Lemma 3.4.4 we
have γ1(T, δ) ≤ L2k+�1 ≤ L2k

√
N and

∑
n en(T, δ) ≤ k + �1 + 1, since

en(T, δ) ≤ 1 and en(T, δ) = 0 for n ≥ k + �1 + 1. Also, from (3.52) we have
(see (3.54)) en(T, d1) ≤ L22k2−n, so that en(T, d2) ≤ L

√
N 2k2−n/2 and∑

n≥0 en(T, d2) ≤ L
√

N 2k. We simply use (1.27) with u1 = (log N)3/2 , u2 =
(log N)3/4 to obtain the desired bound. �

Lemma 3.4.7. Consider the set L of functions f : [0, 1] → R such that
f(0) = f(1/2) = f(1) = 0, f is continuous on [0, 1], f is differentiable
outside a finite set and sup |f ′| ≤ 1. Then γ1,2(L, d2) ≤ L, where d2(f, g) =
‖f − g‖2 =

(∫
[0,1](f − g)2dλ

)1/2.

Proof. We use again Fourier transforms, and that

‖f‖2 =
(∑

p∈Z

|cp(f)|2)2 (3.57)

where

cp(f) =
∫ 1

0

exp 2πipxf(x)dx .

By integration by parts, −2πipcp(f) = cp(f ′), so that, using (3.57) for f ′, we
have

∑
p∈Z

p2|cp(f)|2 ≤ ∑
p∈Z

|cp(f ′)|2 ≤ 1 and since |c0(f)| ≤ ‖f‖2 ≤ 1, the
result follows by Corollary 3.1.4 as in the case of Proposition 3.3.4. �
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Lemma 3.4.8. If f : (T, d) → (U, d′) is onto and satisfies

∀x , y ∈ T , d′(f(x), f(y)) ≤ Ad(x, y)

for a certain constant A, then

γα,β(U, d′) ≤ K(α, β)Aγα,β(T, d) .

Proof. We proceed as in Theorem 1.3.6, b). It is straight forward to extend
the second proof of Theorem 1.3.5 to the case of γα,β. �

Proof of Proposition 3.4.5. To f ∈ L we associate the curve W (f) traced out
by the map

u �→
(
w1 + 2k+1f(

u

2
), w2 + 2k+1f(

u + 1
2

)
)

,

where (w1, w2) = w, so that C(w, k) ⊂ W (L). We set T = W−1(C(w, k)).
Consider f0 and f1 in T and the map h : [0, 1]2 → [0, 1]2 given by

h(u, v) =
(

w1 +2k+1
(
vf0(

u

2
) + (1 − v)f1(

u

2
)
)
,

w2 +2k+1
(
vf0(

1 + u

2
) + (1 − v)f1(

1 + u

2
)
))

.

The area of h([0, 1]2) is at most
∫∫

[0,1]2
|Jh(u, v)|dudv, where Jh is the Jaco-

bian of h, and a straightforward computation gives

Jh(u, v) = 22k+1
((

vf ′
0(

u

2
) + (1 − v)f ′

1(
u

2
)
)(

f0(
1 + u

2
) − f1(

1 + u

2
)
)

− (
vf ′

0(
1 + u

2
) + (1 − v)f ′

1(
1 + u

2
)
)(

f0(
u

2
) − f1(

u

2
)
))

,

so that, since |f ′
0| ≤ 1 , |f ′

1| ≤ 1,

|Jh(u, v)| ≤ 22k+1
(∣∣f0(

u

2
) − f1(

u

2
)
∣∣ +

∣∣f0(
1 + u

2
) − f1(

1 + u

2
)
∣∣)

and, by the Cauchy-Schwarz inequality,∫ ∫
|Jh(u, v)|dudv ≤ L22k‖f0 − f1‖2 . (3.58)

If x does not belong to the range of h, both curves W (f0) and W (f1) “turn

the same number of times around x”, so that either x ∈ o

W (f0) ∩
o

W (f1) or

x �∈ o

W (f0) ∪
o

W (f1). Thus the range of h contains
o

W (f0)∆
o

W (f1), and by
(3.58) we have

d1(W (f0), W (f1)) ≤ 22k‖f0 − f1‖2 .

Lemmas 3.4.7 and 3.4.8 finish the proof. �
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We say that a simple curve C traced on G is a chord if it is the range of
[0, 1] by a continuous map ϕ where ϕ(0) and ϕ(1) belong to the boundary of
[0, 1]2. A chord divides [0, 1]2 into two regions R1 and R2, and∑

i≤N

(
1R1(Xi) − λ(R1)

)
= −

∑
i≤N

(
1R2(Xi) − λ(R2)

)
.

We define

D(C) =
∣∣∣∑
i≤N

(1R1(Xi) − λ(R1))
∣∣∣ =

∣∣∣∑
i≤N

(1R2(Xi) − λ(R2))
∣∣∣ .

If C is a chord, there exists a closed simple curve C′ on G such that R1 =
o

C′

or R2 =
o

C′ and �(C′) ≤ 4�(C). Thus, the following is a consequence of
Theorem 3.4.2.

Theorem 3.4.9. With probability at least 1−L exp(−(log N)3/4/L), for each
chord C we have

D(C) ≤ L�(C)
√

N(log N)3/4 . (3.59)

Proof of Theorem 3.4.1. Consider a number �2 < �1, to be determined later,
and the grid G′ ⊂ G of mesh width 2−�2 .

Given a union R of squares of G′, we denote by R′ the union of the squares
of G′ such one of the 4 edges that form their boundary is entirely contained
in R (recall that squares include their boundaries). The main argument is
to establish that if (3.50) and (3.59) hold, and provided �2 has been chosen
appropriately, then for any choice of R we have

Nλ(R′) ≥ card{i ≤ N ; Xi ∈ R} . (3.60)

Let us say that a domain R is decomposable if R = R1 ∪ R2 where R1

and R2 are non-empty unions of squares of G′, and when every square of
G′ included in R1 has at most one vertex belonging to R2. (Equivalently,
R1 ∩ R2 is finite.) We can write R = R1 ∪ . . . ∪ Rk where each Rj is unde-
composable (i.e. not decomposable) and where any two of these sets have a
finite intersection.

We claim that
1
4

∑
�≤k

λ(R′
�\R�) ≤ λ(R′\R) . (3.61)

To see this, let us set S� = R′
�\R�, so that S� is the union of the squares D

of G′ that have one of the edges that form their boundary contained in R� but
are not themselves contained in R�. Obviously we have S� ⊂ R′. When � �= �′,
the sets R� and R�′ have a finite intersection, so that a square D contained
in S� cannot be contained in R�′ , since it has an entire edge contained in
R�. Since D is not contained in R� either it is not contained in R. Thus the
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interior of S� is contained in R′\R. Moreover, a given square D of G′ can be
contained in a set S� for at most 4 values of � (one for each of the edges of
D). This proves (3.61).

To prove that (3.60) holds for any domain R, it suffices to prove that
when R is an undecomposable domain we have (pessimistically)

N

4
λ(R′\R) ≥ card{i ≤ N ; Xi ∈ R} − Nλ(R) . (3.62)

Indeed, writing (3.62) for R = R�, summing over � ≤ k and using (3.61)
implies (3.60).

We turn to the proof of (3.62). The boundary S of R is a subset of G′.
By inspection of the cases, one sees that

If a vertice w of G′ belongs to S, either 2 or 4 of (3.63)
the edges of G′ incident to w are contained in S.

Any subset S of G′ that satisfies (3.63) is a union of closed simple
curves, any two of them intersecting only at vertices of G′. To see this,
it suffices to construct a closed simple curve C contained in S, to remove
C from S and to iterate, since S\C still satisfies (3.63). The construction
goes as follows. Starting with an edge w1w2 in S, we find successively edges
w2w3 , w3w4 , . . . with wk �= wk−2, and we continue the construction until
the first time wk = w� for some � ≤ k − 2 (in fact � ≤ k − 3). Then the edges
w�w�+1 , w�+1w�+2 , . . . , wk−1wk define a closed simple curve contained in
S.

Thus the boundary of an undecomposable set R is a union of closed simple
curves C1, . . . , Ck, any two of them having at most a finite intersection.

We next show that for each � , R is either contained in
o

C� (so that C� is

then the “outer boundary” of R) or else
o

C� ∩ R = ∅ (in which case
o

C� is “a
hole” in R). Indeed otherwise R would be the union of the 2 non-empty sets

R\ o

C� and R ∩ o

C�, and these two sets cannot have an edge of the grid G′ in
common, because this edge would have to be contained in C�, but could not
be on the boundary of R.

Without loss of generality we assume that C1 is the outer boundary of R,
so that

R =
o

C1\
⋃

2≤�≤k

o

C� . (3.64)

Let R∼
� be the union of the squares of G′ that have at least one edge

contained in C�. Thus, as in (3.61), we have∑
�≤k

λ(R∼
� \R�) ≤ 4λ(R′\R)

and to prove (3.62) it suffices to show that for each � ≤ k we have
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∣∣card
{
i ≤ N ; Xi ∈

o

C�

} − λ(
o

C�)
∣∣ ≤ N2−4λ(R∼

� \R) . (3.65)

For � ≥ 2 , C� does not intersect the boundary of [0, 1]2. Each edge con-
tained in C� is in the boundary of R. One of the 2 squares of G′ that contain
this edge is included in R′

�\R, and the other in R. Since a given square con-
tained in R∼

� \R must arise in this manner from one of its 4 edges, we have

λ(R∼
� \R) ≥ 1

4
2−�2�(C�) (3.66)

so that (3.65) follows from (3.50) provided

2−�2 ≥ 26L√
N

(log N)3/4 , (3.67)

where L is the constant of (3.50).
When � = 1, (3.66) need not be true because parts of C1 might be traced

on the boundary of [0, 1]2. In that case we simply decompose C1 in a union
of chords and of parts of the boundary of [0, 1]2 to deduce (3.65) from (3.59).

Thus we have proved that (3.50) and (3.59) imply (3.60). Now, since the
sequence (Yi)i≤N is evenly spread, it should be obvious that, provided

2−�2 ≥ 10√
N

(3.68)

we have
card{i ≤ N ; Yi ∈ (R′)′} ≥ Nλ(R′)

and by (3.60) we have

card{i ≤ N ; Yi ∈ (R′)′} ≥ card{i ≤ N ; Xi ∈ R} . (3.69)

Consequently, if

A(i) =
{
j ≤ N ; d(Xi, Yj) ≤ 2

√
2 · 2−�2

}
,

then for each subset I of 1 , . . . , N we have

card
⋃
i∈I

A(i) ≥ card I .

This is seen by using (3.69) for the domain R that is the union of the
squares of G′ that contain at least a point Xi , i ∈ I.

The Marriage Lemma (Corollary 3.2.2) then shows that we can find a
matching π for which Yπ(i) ∈ Ai, so that

sup
i≤N

d(Xi, Yπ(i)) ≤ 2
√

2 · 2−�2 ≤ L√
N

(log N)3/4 ,

by taking for �2 the largest integer that satisfies (3.67) and (3.68). Since this
is true whenever (3.50) and (3.59) occur, the proof of (3.48) is complete. �
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3.5 Shor’s Matching Theorem

Theorem 3.5.1. Consider a number 0 < α < 1/2, an integer N ≥ 2, and
evenly spread points (Yi)i≤N of [0, 1]2. Set Yi = (Y 1

i , Y 2
i ). Consider i.i.d

points (Xi)i≤Nuniform over [0, 1]2 and set Xi = (X1
i , X2

i ). Then with proba-
bility ≥ 1 − N−10 there exists a matching π such that

∑
i≤N

exp
(√

N

log N

|X1
i − Y 1

π(i)|
K(α)

)α

≤ 2N (3.70)

sup
i≤N

|X2
i − Y 2

π(i)| ≤ K(α)

√
log N

N
. (3.71)

Of course the power N10 plays no special role. Since exp |x|α ≥ |x|/K(α),
it follows from (3.70) that∑

i≤N

|X1
i − Y 1

π(i)| ≤ L
√

N log N . (3.72)

The existence of a matching satisfying (3.71) and (3.72) is due to P. Shor
[40]. Of course (3.71) and (3.72) show that Theorem 3.5.1 improves upon
Theorem 3.3.1.

When α increases, the conclusion of Theorem 3.5.1 becomes stronger.
This is a simple consequence of the fact that if α ≤ α′, there exists a number
K = K(α, α′) such that

x ≥ 0 ⇒ exp
xα

K
≤ 3

2
+

1
4

expxα′
.

We conjecture that Theorem 3.5.1 remains true for α = 2. (So that the
present version of Theorem 3.5.1 is quite far from being optimal.) This is a
special case of the following conjecture.

Research problem 3.5.2. (The ultimate matching conjecture). Prove or
disprove the following. Consider α1 , α2 > 0 with 1/α1 + 1/α2 = 1/2. Then
with high probability we can find a matching π such that, for j = 1, 2, we
have ∑

i≤N

exp
(√

N

log N

|Xj
i − Y j

π(i)|
L

)αj

≤ 2N .

Noting that ∑
i≤N

exp a4
i ≤ 2N ⇒ max

i≤N
|ai| ≤ L(log N)1/4 ,
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we see that the case α1 = α2 = 4 would provide a very neat generalization
of Theorems 3.3.1 and 3.4.1.

The proof of Theorem 3.5.1 relies on a result of the same nature as (3.31),
but for a more complicated class of functions. The basic new idea idea is to
decompose each function in this class as a sum of many functions in simpler
classes. This is done in Proposition 3.5.4 below. These simpler classes are
then studied separately. Unfortunately this process apparently produces an
irretrievable loss of information, and for this reason it seems probable that
a proof of the ultimate matching conjecture cannot come from a refinement
of the present approach, but rather needs a drastic new idea. Despite its
shortcomings, the proof of Theorem 3.5.1 is significantly more involved than
the other proofs of this chapter, and could be omitted at first reading. In
fact, the author should probably have attempted to find a simple proof of a
weaker result (e.g. not trying to control exponential moments in (3.70)), and
should have refrained from presenting the version that gives the best know
result in this book. On the other hand, it is nice to show once in a while how
hard one has tried, and it is not certain that a proof of a weaker result would
be essentially simpler.

We consider α < 1/2 fixed once and for all and the function

ξ(x) = |x|(log(e + |x|))1/α .

We consider an integer p and the set G = {1, . . . , 2p}2. We consider the
class H of functions h : G → R such that∑

|h(k, � + 1) − h(k, �)| +
∑

ξ(h(k + 1, �) − h(k, �)) ≤ 22p . (3.73)

The first summation is over 1 ≤ k ≤ 2p , 1 ≤ � ≤ 2p − 1, and the second
summation is over 1 ≤ k ≤ 2p − 1 , 1 ≤ � ≤ 2p. To lighten notation we will
not mention any more that it is always understood that when a quantity such
as h(k, � + 1)− h(k, �) occurs in a summation, we consider only the values of
� with � + 1 ≤ 2p.

For (k, �) ∈ G, we consider a integer n(k, �), with∑
(k,�)∈G

n(k, �) = N (3.74)

and we assume that for a certain integer m0 ≥ p we have

m0 ≤ n(k, �) ≤ 2m0 . (3.75)

Thus
N2−2p−1 ≤ m0 ≤ N2−2p . (3.76)

For a function h on G, we write

Eh =
1
N

∑
(k,�)∈G

n(k, �)h(k, �) . (3.77)
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Of course, the introduction of all these objects might look mysterious until
we derive Theorem 3.5.1 from Theorem 3.5.3, at the end of this section.

The central ingredient to our approach is the following.

Theorem 3.5.3. Consider independent r.v. Ui valued in G, with P(Ui =
(k, �)) = n(k, �)/N . Then, with probability ≥ 1 − exp(−96p), we have

∀h ∈ H ,
∣∣∣∑
i≤N

(h(Ui) − Eh)
∣∣∣ ≤ K(α)

√
pm0 22p . (3.78)

Of course the number 96 plays no special role. We consider the class H1

consisting of the functions h : G → R such that

∀k , � , |h(k + 1, �)− h(k, �)| ≤ 1 ; |h(k, � + 1) − h(k, �)| ≤ 1 . (3.79)

Given an integer j ≥ 2, we set a(j) = j−1/(2α)2j , b(j) = j1/(2α)2j, and,
for a number V > 0 we consider the class Hj(V ) of functions h : G → R such
that

∀k , � , |h(k + 1, �) − h(k, �)| ≤ a(j) , |h(k, � + 1) − h(k, �)| ≤ b(j) (3.80)

card{(k, �) ∈ G ; h(k, �) �= 0} ≤ V . (3.81)

Proposition 3.5.4. If h ∈ H we can find a sequence (V (j))j≥2 with the
following properties∑

j≥2

2jV (j) ≤ K(α)22p , V (j) ≤ 22p−1 (3.82)

h =
∑
j≥1

hj , h1 ∈ LH1 , hj ∈ LHj(V (j)) for j ≥ 2 . (3.83)

Thus, we can decompose h as a sum of terms that satisfy simple condi-
tions, and that will be studied separately.

We will denote by I an interval of {1, . . . , 2p}, that is a set of the type

I = {k ; k1 ≤ k ≤ k2} .

Lemma 3.5.5. Consider a map w : {1, . . . , 2p} → R
+, a number a > 0 and

A =
{
k ; ∃I , k ∈ I ,

∑
k′∈I

w(k′) ≥ acard I
}

.

Then
cardA ≤ L

a

∑
k∈A

w(k) .
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Proof. This uses a discrete version of the classical Vitali covering theorem
(with the same proof). Namely, a family I of intervals contains a disjoint
family I ′ such that

card
I∈I

⋃
I ≤ L card

I∈I′

⋃
I = L

∑
I∈I′

card I .

We use this for I = {I ;
∑

k′∈I w(k′) ≥ acard I}, so that A =
⋃

I∈I I and
cardA ≤ L

∑
I∈I′ card I. Since

∑
k′∈I w(k′) ≥ acard I for I ∈ I′, and since

the intervals of I ′ are disjoint and contained in A, we have a
∑

I∈I′ card I ≤∑
k′∈A w(k′). �

Proof of Proposition 3.5.4. We consider h ∈ H, and for j ≥ 2 we define

A(j) =
{
(k, �) ∈ G ; ∃I , k ∈ I ,

∑
k′∈I

|h(k′ + 1, �) − h(k′, �)| ≥ a(j)card I
}

.

Consider r ≤ 2p. We claim that

(k, �) �∈ A(j) ⇒ |h(k, �) − h(r, �)| ≤ a(j)|r − k| . (3.84)

To see this, assuming for specificity that r > k, we note that

|h(k, �) − h(r, �)| ≤
∑
k′∈I

|h(k′ + 1, �) − h(k′, �)| < a(j)card I

where I = {k, k + 1, . . . , r − 1}, and where the last inequality follows from
the fact that k ∈ I and (k, �) �∈ A(j).

It follows from Lemma 3.5.5 (applied for each �) that

cardA(j) ≤ L

a(j)

∑
(k,�)∈A(j)

w(k, �) (3.85)

where w(k, �) = |h(k + 1, �) − h(k, �)|. We observe that

∑
(k,�)∈A(j)

w(k, �) ≤ a(j)
2L

cardA(j) +
∑
k,�

w(k, �)1{w(k,�)≥a(j)/2L} (3.86)

and substituting this in the right-hand side of (3.85) we get

a(j)cardA(j) ≤ 2L
∑
k,�

w(k, �)1{w(k,�)≥a(j)/2L} . (3.87)

Since the statement of Theorem 3.5.1 becomes stronger when α increases,
we can assume without loss of generality that α ≥ 1/4, so that −1/2α ≥ −2
and hence a(j) = j−1/2α2j ≥ j−22j . Thus x ≥ a(j)/2L ⇒ j ≤ L log(e + x),
and since

∑
j≤j0

j−1+1/α ≤ Lj
1/α
0 , for x ≥ 0 we have
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j

j−1+1/α1{x≥a(j)/2L} ≤ L(log(e + x))1/α . (3.88)

Since α < 1/2, we have j−1+1/αa(j) ≥ 2j , so that multiplying (3.87) by
j−1+1/α and summing over j ≥ 2 we get that, using (3.73) and (3.88)∑

j≥2

2jcardA(j) ≤ L22p . (3.89)

We define

B(j) =
{
(k, �) ; ∃I , � ∈ I ,

∑
�′∈I

|h(k, �′ + 1) − h(k, �′)| ≥ b(j)card I
}

.

As in (3.84) we see that if r, s, � ≤ 2p, we have

(r, s) �∈ B(j) ⇒ |h(r, �) − h(r, s)| ≤ b(j)|� − s| . (3.90)

Using Lemma 3.5.5 and (3.73), we see that b(j)cardB(j) ≤ L22p, so that

2jcardB(j) ≤ L22pj−1/(2α)

and, since 1/(2α) > 1, this implies that∑
j≥2

2jcardB(j) ≤ K(α)22p . (3.91)

Thus, if C(j) = A(j) ∪ B(j), we have from (3.89) and (3.91) that∑
j≥2

2jcardC(j) ≤ L22p . (3.92)

We define

gj(k, �) = min
{
h(r, s) + a(j)|k − r| + b(j)|� − s| ; (r, s) �∈ C(j)

}
.

It should be obvious that

|gj(k + 1, �)− gj(k, �)| ≤ a(j) (3.93)

|gj(k, � + 1) − gj(k, �)| ≤ b(j) . (3.94)

Consider (k, �) �∈ C(j) and (r, s) �∈ C(j). Combining (3.84) and (3.90) we
see that

|h(k, �) − h(r, s)| ≤ a(j)|k − r| + b(j)|� − s|
and this shows that

(k, �) �∈ C(j) ⇒ gj(k, �) = h(k, �) . (3.95)
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We define g′j = gj+1 − gj so that, by (3.95), and since C(j + 1) ⊂ C(j),

g′j(k, �) �= 0 ⇒ (k, �) ∈ C(j) .

Thus, if V ′(j) = cardC(j), we have g′j ∈ LHj(V ′(j)). By (3.92) there exists
j0 = j0(α) (independent of h) such that cardV ′(j) ≤ 22p−1 for j ≥ j0. We
define hj = g′j and V (j) = V ′(j) for j ≥ j0 , hj = 0 , V (j) = 0 for 2 ≤ j ≤ j0,
and h1 = gj0 . Thus h1 ∈ K(α)H1 and hj ∈ LHj(V (j)) for j ≥ 2.

It should be obvious that for j large enough (e.g. j ≥ 22p) we have C(j) =
∅, so that gj = h and this shows that h =

∑
j≥1 hj. The proof is complete.�

The following simple result will take care of certain lower-order effects.

Proposition 3.5.6. Consider an integer q, a number S > 0 and the class
G(q, S) of functions h : {1, . . . , q} → R that satisfy

∀k ≤ q − 1 , |h(k + 1) − h(k)| ≤ S

∀k ≤ q , |h(k)| ≤ 2Sq .

Then
N(G(q, S), d∞, ε) ≤ exp

(LSq

ε

)
(3.96)

γ2(G(q, S), d) ≤ LSq3/2 , (3.97)

where d denotes the Euclidean distance in R
q and d∞ the supremum distance.

Proof. The proof of (3.96) is as in (3.38). Since d ≤ √
qd∞, (3.97) follows

from (3.96) and Theorem 1.3.5. �

The following is closely related to Proposition 3.3.4 and its relevance to
Theorem 3.5.3 should be obvious.

Proposition 3.5.7. Consider integers q1 , q2 ≤ 2p, a number S > 0 and the
class G (q1, q2, S) of functions h : G′ = {0, . . . , q1} × {0, . . . , q2} → R that
satisfy

∀k , � |h(k + 1, �) − h(k, �)| ≤ S

q1
; |h(k, � + 1) − h(k, �)| ≤ S

q2
(3.98)

∀k , � , |h(k, �)| ≤ 2S . (3.99)

Then
γ2(G(q1, q2, S), d) ≤ L

√
pS

√
q1q2 (3.100)

en(G(q1, q2, S), d) ≤ LS
√

q1q2 2−n/2 , (3.101)

where d is the Euclidean distance on R
G′

.
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Proof. A key idea is that there is a “main contribution” corresponding to the
class G1 of functions that satisfy (3.98) and∑

k,�

h(k, �) = 0 (3.102)

∀� ≤ q2 , h(0, �) = h(q1, �) (3.103)

∀k ≤ q1 , h(k, 0) = h(k, q2) . (3.104)

We take care of this main contribution first. Consider the groups H1 =
Z/q1Z , H2 = Z/q2Z and the class G of functions h from the product
H1 ⊗ H2 of H1 and H2 to R, of average 0, and that satisfy (3.98), where
now k ∈ H1 , � ∈ H2 and 1 denotes the image of 1 ∈ Z in either H1 or H2.
We use Fourier transforms in the group H1 ⊗ H2. For integers r1 , r2, we
define

cr1r2(h) =
∑

(k,l)∈H1⊗H2

exp
(
2iπ

(r1

q1
k +

r2

q2
�
))

h(k, �) , (3.105)

and we have the Plancherel formula

‖h‖2
2 =

∑
0≤r1<q1,0≤r2<q2

|cr1r2(h)|2 . (3.106)

Changing k into k + 1 in (3.105) we get

cr1r2(h) = exp
(
2iπ

r1

q1

) ∑
H1⊗H2

exp
(
2iπ

(r1

q1
k +

r2

q2
�
))

h(k + 1, �)

and thus (
exp

(−2iπ
r1

q1

)−1
)
cr1r2(h)

=
∑

(k,�)∈H1⊗H2

exp
(
2iπ

(r1

q1
k +

r2

q2
�
))

(h(k + 1, �)− h(k, �)) .

Using (3.106) for the function h′(k, �) = h(k+1, �)−h(k, �) and the first part
of (3.98) we get

∑
0≤r1<q1,0≤r2<q2

∣∣∣1 − exp
(
−2iπ

r1

q1

)∣∣∣2|cr1r2(h)|2 = ‖h′‖2
2 ≤ S2

q2
1

q1q2 = S2 q2

q1
.

We now use that for 0 ≤ r1 < q1 we have∣∣∣1 − exp
(
−2iπ

r1

q1

)∣∣∣ ≥ 1
Lq1

min(r1, q1 − r1)

to get
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0≤r1<q1,0≤r2<q2

min2(r1, q1 − r1)
∣∣cr1r2(h)

∣∣2 ≤ LS2q1q2 .

Proceeding in the same manner with the second variable, we get∑
0≤r1<q1,0≤r2<q2

(
min2(r1, q1 − r1) + min2(r2, q2 − r2)

)|cr1r2(h)|2 ≤ LS2q1q2 .

This relation and the Plancherel formula (3.106) describe G as isometric to
a subset of an ellipsoid E . For each integer n the number of pairs (r1, r2)
for which the above coefficients of |cr1r2(h)|2 are ≤ 2n is at most L2n, and
moreover r1, r2 ≤ 2p so that using (2.20) we get that γ2(G, d) ≤ LS

√
pq1q2,

and using (2.26) we get en(G, d) ≤ LS2−n/2√q1q2. The same bounds hold
true for G1 since G1 is isometric to a subset of G.

To finish the proof, we use a decomposition similar to (3.47) to write
G ⊂ LG1 + G2 + G3 + G4 where Gj , for 2 ≤ j ≤ 4 is a genuinely smaller class
that G1, that can be handled through Proposition 3.5.6. Finally, we appeal
to (2.14) and to the easy relation en+1(T1 + T2, d) ≤ en(T1, d) + en(T2, d). �

Proposition 3.5.8. Consider 1 ≤ k1 ≤ k2 ≤ 2p , 1 ≤ �1 ≤ �2 ≤ 2p and R =
{k1, . . . , k2} × {�1, . . . , �2}. Consider independent r.v. Ui valued in G, with
P(Ui = (k, �)) = n(k, �)/N . Then, with probability at least 1−L exp(−100p),
the following occurs. Consider any function h : G → R, and assume that

h(k, �) = 0 unless (k, �) ∈ R . (3.107)

(k, �), (k, � + 1) ∈ R ⇒ |h(k, � + 1) − h(k, �)| ≤ S

�2 − �1 + 1
(3.108)

(k, �) , (k + 1, �) ∈ R ⇒ |h(k + 1, �)− h(k, �)| ≤ S

k2 − k1 + 1
(3.109)

∀(k, �) ∈ G , |h(k, �)| ≤ 2S . (3.110)

Then we have∣∣∣∑
i≤N

(h(Ui) − Eh)
∣∣∣ ≤ LS

√
pm0(k2 − k1 + 1)(�2 − �1 + 1) . (3.111)

Proof. By homogeneity we may and do assume S = 1, and we denote by
G the class of functions on G that satisfy conditions (3.107) to (3.110). As
in (3.42) we see that en(G, d∞) ≤ L2−n/2. Consider then the largest integer
m such that 2m ≤ pm0(k2 − k1 + 1)(�2 − �1 + 1) and a subset T of G with
card T ≤ Nm and

∀t ∈ G , d∞(t, T ) ≤ L2−m/2 . (3.112)

Then by Theorem 1.3.5 we have γ1(T, d∞) ≤ L2m/2. By Proposition 3.5.7,
we have
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γ2(T, d) ≤ L
√

p(k2 − k1 + 1)(�2 − �1 + 1)

∀n ≥ 0 , en(T, d) ≤ L2−n/2
√

(k2 − k1 + 1)(�2 − �1 + 1) .

We observe that by (3.75) we have

Eh2 =
∑
k,�

n(k, �)
N

h2(k, �) ≤ 2m0

N

∑
k,�

h2(k, �) .

Thus, by Bernstein’s inequality, the conditions of Theorem 1.2.7 are satisfied
with d1 = Ld∞ and d2 = L

√
m0d. With this choice of distance d1 and

d2, the quantities D1 and D2 of Theorem 1.2.9 satisfy D1 ≤ L and D2 ≤
L

√
m0(k2 − k1 + 1)(�2 − �1 + 1). Using this theorem for u1 = Lp and u2 =

L
√

p, and since p ≤ m0, we see that with probability ≥ 1 − exp(−100p) we
have

sup
h∈T

∣∣∣∑
i≤N

(h(Ui) − Eh)
∣∣∣ ≤ L

√
pm0(k2 − k1 + 1)(�2 − �1 + 1) . (3.113)

Consider another function h∗ ∈ G. Since h and h∗ are 0 outside R, we have∣∣∣∑
i≤N

(h(Ui) − Eh) −
∑
i≤N

(h∗(Ui) − Eh∗)
∣∣∣ (3.114)

≤
∑
i≤N

|h(Ui) − h∗(Ui)| + NE|h − h∗|

≤ ‖h − h∗‖∞(card{i ≤ N ; Ui ∈ R} + NA) ,

where A = P(Ui ∈ R). Since P(Ui = (k, �)) = n(k, �)/N ≤ 2m0/N , we note
that

A ≤ 2m0

N
cardR ≤ 2m0

N
(k2 − k1 + 1)(�2 − �1 + 1) . (3.115)

By (3.114) and (3.112) we have

sup
h∈G

∣∣∣∑
i≤N

(h(Ui) − Eh)
∣∣∣ ≤ sup

h∈T

∣∣∣∑
i≤N

(h(Ui) − Eh)
∣∣∣ (3.116)

+ L2−m/2(NA + card{i ≤ N ; Ui ∈ R}) .

By Bernstein’s inequality, we have

P
(∑

i≤N

(1R(Ui) − A) ≥ u
)
≤ exp

(
− 1

L
min

( u2

NA
, u

))

so that, taking u = LNA, and since NA ≥ m0 ≥ p, we see that with
probability at least 1 − exp(−100p) we have

card{i ≤ N ; Ui ∈ R} =
∑
i≤N

1R(Ui) ≤ LNA ≤ Lm0(k2−k1 +1)(�2−�1+1) ,
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using (3.115) in the last inequality. Combining with (3.113), (3.116) and
recalling the choice of m finishes the proof. (The reader observes that there
is some room in the choice of m.) �

Proof of Theorem 3.5.3. Since in Proposition 3.5.8 there are (crudely) at
most 24p choices for the quadruplet (k1, k2, �1, �2), with probability at least
1−L exp(−96p), Condition (3.111) holds for all values of k1 , k2 , �1 , �2. We
assume that this is the case in the rest of the proof.

Consider h ∈ H, and the decomposition of h provided by Proposition
3.5.4. Using (3.111) for k1 = �1 = 1 , k2 = �2 = 2p and S = L2p we get∣∣∣∑

i≤N

(h1(Ui) − Eh1)
∣∣∣ ≤ K(α)

√
pm0 22p .

By (3.82) all we have to show is that if h ∈ Hj(V ) , V ≤ 22p−1 and V ≤
K(α)2−j22p then ∣∣∣∑

i≤N

(h(Ui) − Eh)
∣∣∣ ≤ K(α)

√
pm0 2jV . (3.117)

The idea is to use (3.111) for the functions h1R where R is a suitable
rectangle, and to recover (3.117) by summation. Considering j as being fixed
once and for all, we define d as the largest integer for which 2d ≤ 8j1/α, so
that d ≥ 3. For d ≤ q ≤ p we consider the partition D(q) of G consisting of
the sets of the type

{�12q + 1, . . . , (�1 + 1)2q} × {�22q−d + 1, . . . , (�2 + 1)2q−d} , (3.118)

where 0 ≤ �1 < 2p−q and 0 ≤ �2 < 2p−q+d. For 3 ≤ q ≤ d, we define D(q) as
the partition consisting of the sets of the type

{�12q + 1, . . . , (�1 + 1)2q} × {k} (3.119)

where 0 ≤ �1 < 2p−q and 1 ≤ k ≤ 2p.
We observe that if q′ > q , R′ ∈ D(q′) and R ∈ D(q), then either R ⊂ R′

or R ∩ R′ = ∅.
Consider the set C = {(k, �) : h(k, �) �= 0} so cardC ≤ V ≤ 22p−1. We

proceed to the following construction. First, we consider the set U(p) that is
the union of all rectangles R ∈ D(p) such that

card (R ∩ C) ≥ 1
8
cardR . (3.120)

Then we consider the union U(p− 1) of all the rectangles R ∈ D(p− 1) that
are not contained in U(p) and that satisfy (3.120), and we continue in this
manner until we construct U(3). Since the sets U(q) , . . . , U(3) are disjoint,
we have from (3.120) that
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3≤q≤p

cardU(p) ≤ 8cardC ≤ 8V . (3.121)

Moreover
C ⊂

∑
3≤q≤p

U(q) . (3.122)

This is simply because if (k, �) ∈ C and (k, �) ∈ R ∈ D(3) then if (k, �) �∈⋃
q≥4

U(q) we have R ⊂ U(3) since (3.120) holds because card R = 8. We also

note that

R ∈ D(q) , q ≤ p − 1 , R ⊂ U(q) ⇒ card (R ∩ C) ≤ 1
2
cardR . (3.123)

Indeed if R′ ⊃ R and R′ ∈ D(q + 1), then cardR′ ≤ 4cardR. Since R ∈ D(q)
we have R′ �⊂ U(q − 1), so that

card (R ∩ C) ≤ card (R′ ∩ C) ≤ 1
8
card R′ ≤ 1

2
cardR .

From (3.122) we have
h =

∑
h1R (3.124)

where the summation is over 3 ≤ q ≤ p , R ∈ D(q) and R ⊂ U(q). We will
apply (3.111) to each of the terms h1R. We start by the typical case, R ∈
D(q) , d ≤ q < p. Writing R = {k1, . . . , k2} × {�1, . . . , �2} as in Proposition
3.5.8, we have k2−k1+1 = 2q , �2−�1+1 = 2q−d, so that by (3.80) the function
h1R satisfies (3.108) and (3.109) for S = L2q+j−d/2 (since a(j) ≤ S2−q and
b(j) ≤ S2−(q−d)). By (3.123), there exists (k, �) ∈ R with h(k, �) = 0, so that
(3.108) and (3.109) imply that (3.110) holds and by (3.111) we have∣∣∣∑

i≤N

(h1R(Ui) − E(h1R))
∣∣∣ ≤ L

√
pm0 2j22q−d (3.125)

= L
√

pm0 2jcardR .

The case 3 ≤ q ≤ d being similar to the case d ≤ q < p, we consider the
case q = p so that R ∈ D(p). We take S = L2p+j−d/2. The difference with
the case R ∈ D(q) for q < p is that we have to find a new argument to prove
(3.110). We have R = {1, . . . , 2p}× {�12p−d + 1, . . . , (�1 + 1)2p−d + 1}. Given
an integer r, define

R′ = G ∩ ({1, . . . , 2p} × {�12p−d + 1 − r, . . . , (�1 + 1)2p−d + 1 + r}) .

Then, for r ≤ 2p, we have cardR′ ≥ 2pr/L, so that if 2pr/L > V , R′ contains
a point (k, �′) with h(k, �′) = 0. Then R contains a point (k, �) with |�−�′| ≤ r,
so that by (3.80) we have

|h(k, �)| ≤ rb(j) .



3.5 Shor’s Matching Theorem 121

Assuming that we chose r as small as possible with 2pr/L > V , we then have

|h(k, �)| ≤ LV 2−pb(j) ≤ LV 2−p+jj1/2α .

Since V 2j ≤ K(α)22p, since 2d ≤ 8j1/α, and since j1/α ≤ K(α)2j , we have
LV 2−p+jj1/2α ≤ K(α)S, so that R contains a point (k, �) with |h(k, �)| ≤
K(α)S and hence using (3.80) again

sup
(k,�)∈R

|h(k, �)| ≤ K(α)S .

We can appeal to (3.111) to see that (3.125) still holds true if one replaces
there L by K(α). Summation of the inequalities (3.125) for R ∈ D(q) , R ⊂
U(q) and 3 ≤ q ≤ p yields (3.117). �

Consider a number cα depending on α only, that will be determined later,
and the function θ given by

θ(x) = 0 if |x| < cα and θ(x) = |x|(log(1 + |x|))1/α for |x| ≥ cα .

Besides Theorem 3.5.3, the proof of Theorem 3.5.1 requires the following,
where we keep the notation of Theorem 3.5.1. We consider the function

ϕ(x) = exp |x|α − 1 .

Theorem 3.5.9. One can choose cα such that the following property holds.
Consider numbers u(k, �) for (k, �) ∈ G = {1, . . . , 2p}, and define

h(k, �) = inf
{
u(r, s) + ϕ(k − r) : (r, s) ∈ G , |� − s| ≤ 1

}
. (3.126)

Then

m0

∑
k,�

(
θ(h(k + 1, �)− h(k, �)) + |h(k, � + 1) − h(k, �)|) (3.127)

≤ L
∑
k,�

n(k, �)(u(k, �) − h(k, �)) .

Proof of Theorem 3.5.1. Consider an integer N ≥ 2 and an integer p, that
will be determined later. For (k, �) ∈ G we consider the point

a(k, �) = ((2k − 1)2−p−1 , (2� − 1)2−p−1) .

These are the centers of 22p little squares C(k, �) of side 2−p that divide
[0, 1]2. To lighten notation, for w = (k, �) ∈ G we write a(w) = a(k, �) and
C(w) = C(k, �).

Consider evenly spread points (Yi)i≤N , a map η : {1, . . . , N} → G such
that

Yi ∈ C(η(i)) , (3.128)
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so that
d(Yi, a(η(i))) ≤ 2−p+1 (3.129)

and set
n(k, �) = card{i ≤ N ; η(i) = (k, �)} ,

the number of points Yi that belong to C(k, �). To avoid trivial complications,
we assume that no point Yi belongs to the boundary of a little square C(k, �),
so that

∑
n(k, �) = N . The points Yi are evenly spread, so that these points

are centers of non-overlapping rectangles of area 1/N and diameter at most
20/

√
N . It should be clear that for N and N2−2p large enough, each square

C(k, �) contains about the same number of points Yi, so that, for a certain
integer m0, we have

m0 ≤ n(k, �) ≤ 2m0 . (3.130)

We consider N points (Zi) of G such that exactly n(k, �) of them are
located at the point n(k, �). We can assume by (3.129) that these points are
labeled in a way that d(Yi, a(Zi)) ≤ 2−p+1.

Consider points Xi independently uniformly distributed over [0, 1]2. We
claim that we can find independently distributed points Ui of G such that
P(Ui = (k, �)) = n(k, �)/N and d(Xi, a(Ui)) ≤ L2−p. To see this we recall
that by our definition, the fact that the points (Yi)i≤N are uniformly spread
means there exists a partition of [0, 1]2 into N rectangles (Ri)i≤N of area
1/N , each with a width and a height of order 1/

√
N , and each containing

exactly one point Yi. For (k, �) ∈ G we define the domain D(k, �) as the
union of the sets Ri for which η(i) = (k, �), and we define Ui = (k, �) when
Xi ∈ D(k, �) to obtain the required points Ui.

Let us write Xi = (X1
i , X2

i ), Yi = (Y 1
i , Y 2

i ) and, for w ∈ G, let us write
w = (w1, w2). Thus, by definition, if w = a(k, �) we have w1 = 2−p−1(2k−1)
and w2 = 2−p−1(2� − 1). Thus, for j = 1, 2 we have

|a(Ui)j − a(Zi′)j | = 2−p|U j
i − Zj

i′ | . (3.131)

For j = 1, 2 we have

|Xj
i − Y j

i′ | ≤ |Xj
i − a(Ui)j | + |a(Ui)j − a(Zi′)j | + |a(Zi′)j − Y j

i′ |
≤ d(Xi, a(Ui)) + |a(Ui)j − a(Zi′)j | + d(a(Zi′), Yi′ )
≤ L2−p + 2−p|U j

i − Zj
i′ | , (3.132)

using (3.131) in the last line. We then see that to prove Theorem 3.5.1, it
suffices to find p such that

2−p ≤ L

√
log N

N
(3.133)

and such that, with probability ≥ 1 − N−10, there is a permutation π of
{1, . . . , N} for which
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i≤N

(
exp |U1

i − Z1
π(i)|α − 1

) ≤ K(α)N (3.134)

∀i ≤ N , |U2
i − Z2

π(i)| ≤ 1 . (3.135)

The reason why (3.134) suffices to obtain (3.70) is that the function
ϕ(x) = exp |x|α − 1 satisfies ϕ(λx) ≤ λαϕ(x) for 0 ≤ λ ≤ 1.

We appeal to Proposition 3.2.1 (with cij = ϕ(U1
i − Z1

j ) if |U2
i − Z2

j | ≤ 1
and cij very large otherwise) to see the smallest value of the left-hand side
of (3.134) among all permutations that satisfy (3.135) is given by

M1 = sup
∑
i≤N

(wi + w′
i) , (3.136)

where the supremum is taken over all families (wi), (w′
i) such that

∀i , j ≤ N , |U2
i − Z2

j | ≤ 1 ⇒ wi + w′
j ≤ ϕ(U1

i − Z1
j ) . (3.137)

We fix families (wi) , (w′
i) satisfying (3.137), and such that the supremum

is attained in (3.136). We consider the function h′ on G given by

h′(k, �) = min
j

{
ϕ(k − Z1

j ) − w′
j ; |� − Z2

j | ≤ 1
}

.

When w = (k.�) ∈ G we define h′(w) = h′(k, �). By (3.137) we have h′(Ui) ≥
wi and thus by (3.136) we have

M1 ≤
∑
i≤N

(h′(Ui) + w′
i) .

For (k, �) ∈ G, we define

u(k, �) = − 1
n(k, �)

∑
{w′

i ; Zi = (k, �)} .

When Zi = (k, �), we replace w′
i by −u(k, �). In this manner we do not change∑

i≤N w′
i = −∑

G n(k, �)u(k, �), while we can only increase h′. Thus

M1 ≤
∑
i≤N

h(Ui) −
∑
k,�

n(k, �)u(k, �) (3.138)

where
h(k, �) = inf

{
ϕ(k − r) + u(r, s) ; |� − s| ≤ 1

}
.

From (3.138) we get

M1 ≤
∣∣∣∑
i≤N

(h(Ui) − Eh)
∣∣∣ − ∑

k,�

n(k, �)(u(k, �)− h(k, �)) . (3.139)

Define
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B = 2−2p
∑

|h(k, �+1)−h(k, �)|+2−2p
∑

ξ(h(k+1, �)−h(k, �)) , (3.140)

and B′ = B + 1. For λ > 0 , λ < 1 we have ξ(λx) ≤ λξ(x) so that h/B′ ∈ H.
By Theorem 3.5.3, it is true with probability ≥ 1−L exp(−96p) that we have∣∣∣∑

i≤N

(h(Ui) − Eh)
∣∣∣ ≤ K(α)

√
pm0 22pB′ . (3.141)

There exists a number K(α) such that ξ(x) ≤ 2(θ(x) + K(α), so that
θ(x) ≥ ξ(x)/2 − K(α)), and by (3.127) and (3.140) we have

∑
n(k, �)(u(k, �) − h(k, �)) ≥ m0

L

(∑
|h(k, � + 1) − h(k, �)|

+
∑

θ
(
h(k + 1, �)− h(k, �)

))
≥ m022p

L
(B − K(α)) .

Combining with (3.139) and (3.141) we get, since B′ = B + 1,

M1 ≤ K(α)
√

pm0 22pB′ − m0

L
22p

(
B − K(α)

)
(3.142)

≤ B22p
(
K(α)

√
pm0 − m0

L

)
+ K(α)22p

(m0

L
+
√

m0p
)

.

Thus we see that if we have chosen p so that the first term is negative, and
if p ≤ m0, then (3.142) implies as desired that M1 ≤ K(α)m022p ≤ K(α)N ,
recalling (3.76). To ensure that K(α)

√
pm0 ≤ m0/L, it suffices to ensure that

p ≤ m0/K(α) (so that in particular p ≤ m0 as required) and using (3.76)
again, that p2−2p ≤ N/K(α), i.e. 2−2p ≤ N/(K(α) log N). Taking p as small
as possible that satisfies this condition, for large N we have 96p ≥ 11 logN ,
and L exp(−96p) ≤ 1 − N−10. �

We turn to the proof of Theorem 3.5.9. This proof requires a significant
amount of work of an elementary nature. This work is not related to the main
theme of the book. We recall the function ϕ(x) = exp |x|α − 1.

Lemma 3.5.10. Consider numbers (vk)k≤2p and for k ≤ 2p define

g(k) = inf
{
vr + ϕ(k − r) ; 1 ≤ r ≤ 2p

}
. (3.143)

Then we have ∑
k<2p

θ(g(k + 1) − g(k)) ≤ 16
∑
k≤2p

(vk − g(k)) . (3.144)

Proof. For y ≥ 0 we write ϕ−1(y) = (log(1 + y))1/α, so that we have
ϕ(ϕ−1(y)) = y. For x ≥ cα we have θ(x) = xϕ−1(x). Consider the set
A ⊂ {1, . . . , 2p−1} consisting of the integers k for which g(k+1)−g(k) ≥ cα.
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For k ∈ A, we define xk = k+1−ϕ−1(g(k+1)−g(k)), so that ϕ(k+1−xk) =
g(k + 1) − g(k). Our first goal is to prove that

xk ≤ m ≤ k ⇒ g(m) ≤ g(k) . (3.145)

To this aim consider 1 ≤ r ≤ 2p with g(k) = vr + ϕ(k − r). Thus

vr + ϕ(k − r) = g(k) ≤ g(k + 1) ≤ vr + ϕ(k + 1 − r) (3.146)

and hence ϕ(k − r) ≤ ϕ(k + 1− r) , so that r ≤ k. Also, using (3.146) in the
first inequality, we have

ϕ(k + 1 − xk) = g(k + 1) − g(k) ≤ ϕ(k + 1 − r) − ϕ(k − r) ≤ ϕ(k + 1 − r) ,

so that xk ≥ r ≥ 1. For r ≤ m ≤ k, we have

g(m) ≤ vr + ϕ(m − r) ≤ vr + ϕ(k − r) = g(k) ,

and this proves (3.145). Consider, for k ∈ A, the domain

Dk =
{
(m, y) ; m ∈ {1, . . . , 2p} , y ∈ R , xk ≤ m ≤ k ,

g(k) ≤ y ≤ g(k + 1) − ϕ(k + 1 − m)
}

.

We show that for k , s ∈ A , k �= s, we have Dk ∩ Ds = ∅. To see this,
we can assume for definiteness that s < k. If s < xk, we obviously have
Dk ∩ Ds = ∅. If s ≥ xk, by (3.145) and since s + 1 ≤ k, we have g(s + 1) ≤
g(k). Now, if (m, y) ∈ Dk, we have y ≥ g(k), while if (m, y) ∈ Ds we have
y < g(s + 1) ≤ g(k).

If (m, y) ∈ Dk, and since g(k + 1) ≤ vm + ϕ(k + 1−m), we have y ≤ vm,
so that

Dk ⊂ ∆ =
{
(m, y) ; m ∈ {1, . . . , 2p} , g(m) ≤ y ≤ vm

}
.

Let us denote by µ the measure on {1, . . . , 2p} × R such that its restriction
to each line {m} × R is the Lebesgue measure on that line. Since the sets
(Dk)k∈A are disjoint, we have∑

k∈A

µ(Dk) ≤ µ(∆) =
∑
k≤2p

(vk − g(k)) . (3.147)

We proceed now to prove that if cα has been suitably chosen, we have

µ(Dk) ≥ 1
8
θ(g(k + 1) − g(k)) . (3.148)

First, we observe that by definition of µ we have

µ(Dk) ≥
∑(

g(k + 1) − g(k) − ϕ(k + 1 − m)
)

, (3.149)
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where the summation is over the integers m for which xk ≤ m ≤ k. Calculus
shows that ϕ(z)/z increases for z ≥ dα := (1/α)1/α so for xk ≤ m ≤ k+1−dα

we have
ϕ(k + 1 − m)

k + 1 − m
≤ ϕ(k + 1 − xk)

k + 1 − xk
=

g(k + 1) − g(k)
k + 1 − xk

and thus

g(k + 1) − g(k) − ϕ(k + 1 − m) ≥ (g(k + 1) − g(k))
m − xk

k + 1 − xk

Now,

m ≥ 1
2
(xk + k + 1) ⇒ m − xk

k + 1 − xk
≥ 1

2
. (3.150)

The number of integers contained in a closed interval of length y is greater
than y−1. Thus the number of values of m with (xk+k+1)/2 ≤ m ≤ k+1−dα

is greater than

k + 1 − dα − xk + k + 1
2

− 1 =
k + 1 − xk

2
− dα − 1

≥ k + 1 − xk

4

because k + 1 − xk = g(k + 1) − g(k) ≥ ϕ−1(cα), and provided cα has been
chosen such that cα ≥ ϕ(4(dα + 1)). Thus it follows form (3.149) that

µ(Dk) ≥ 1
8
(k + 1 − xk)(g(k + 1) − g(k))

=
1
8
(g(k + 1) − g(k))ϕ−1(g(k + 1) − g(k))

which is (3.148). Combining (3.148) and (3.147), and considering similarly
the set B where g(k) − g(k + 1) ≥ cα finishes the proof. �

We recall Definition 3.143.

Lemma 3.5.11. Consider numbers (vk)k≤2p , (v′k)k≤2p , and the numbers
g′(k) defined from the sequence (v′k) the way the numbers g(k) are defined
from the sequence (vk). Then we have∑

k≤2p

|g(k) − g′(k)| ≤
∑
k≤2p

(
vk + v′k − g(k) − g′(k) + |vk − v′k|

)
. (3.151)

Proof. Since ϕ(0) = 0 we have g(k) ≤ vk and g′(k) ≤ v′k. If g′(k) ≥ g(k), we
have

g′(k) − g(k) ≤ v′k − g(k) = v′k − vk + vk − g(k)
≤ |v′k − vk| + vk − g(k) + v′k − g′(k) .

A similar argument when g(k) ≥ g′(k) and summation finish the proof. �
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We consider numbers u(k, �) for (k, �) ∈ G, and h(k, �) as in (3.126). We
set

v(k, �) = min{u(k, s) ; |� − s| ≤ 1} . (3.152)

Thus we have

h(k, �) = inf
{
v(r, �) + ϕ(k − r) ; 1 ≤ r ≤ 2p

}
. (3.153)

Lemma 3.5.12. We have

m0

∑
k≤2p,�<2p

|v(k, �+1)−v(k, �)| ≤ 10
∑

k,�≤2p

n(k, �)(u(k, �)−v(k, �)) . (3.154)

Proof. We observe that |a − b| = a + b − 2 min(a, b), and that

v(k, �) ≤ min(u(k, � + 1), u(k, �))
v(k, � + 1) ≤ min(u(k, � + 1), u(k, �)) .

Thus

|u(k, � + 1) − u(k, �)| = u(k, �) + u(k, � + 1) − 2 min(u(k, � + 1) , u(k, �))
≤ u(k, �) − v(k, �) + u(k, � + 1) − v(k, � + 1) .

By summation we get∑
k≤2p,�<2p

|u(k, � + 1) − u(k, �)| ≤ 2
∑

k,�≤2p

(u(k, �) − v(k, �))

and since m0 ≤ n(k, �),

m0

∑
k≤2p,�<2p

|u(k, �+1)−u(k, �)| ≤ 2
∑

k,�≤2p

n(k, �)(u(k, �)−v(k, �)) . (3.155)

Now

|v(k, �) − u(k, �)| ≤ |u(k, � + 1) − u(k, �)| + |u(k, � − 1) − u(k, �)|

so that

|v(k, � + 1) − v(k, �)| ≤ |v(k, � + 1) − u(k, � + 1)| + |u(k, � + 1) − u(k, �)|
+ |u(k, �) − v(k, �)|
≤ |u(k, �) − u(k, � − 1)| + 3|u(k, � + 1) − u(k, �)|
+ |u(k, � + 2) − u(k, � + 1)| .

Then (3.154) follows by summation from (3.155). �
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Proof of Theorem 3.5.9. Given 1 ≤ � < 2p, we use Lemma 3.5.11 for vk =
v(k, �), and v′k = v(k, � + 1), where v(k, �) is given by (3.152). Thus g(k) =
h(k, �) and g′(k) = h(k, � + 1). Summing the inequalities (3.151) for 1 ≤ k ≤
2p we get ∑

k≤2p,�<2p

|h(k, � + 1) − h(k, �)| ≤ 2
∑
k,�

(v(k, �) − h(k, �))

+
∑
k,�

|v(k, �) − v(k, � + 1)| .

Using (3.154), and since m0 ≤ n(k, �) we get

m0

∑
k≤2p,�<2p

|h(k, � + 1) − h(k, �)| ≤ 2
∑
k,�

n(k, �)(v(k, �) − h(k, �))

+ 10
∑
k,�

n(k, �)(u(k, �) − v(k, �))

≤ 10
∑
k,�

n(k, �)(u(k, �) − h(k, �)) ,

using that h(k, �) ≤ v(k, �) ≤ u(k, �) in the last line. On the other hand,
summing the inequalities (3.144) for � ≤ 2p, we get∑

k<2p,�≤2p

θ(h(k + 1, �) − h(k, �)) ≤ 16
∑
k,�

(v(k, �) − h(k, �))

≤ 16
∑
k,�

(u(k, �) − h(k, �))

and thus

m0

∑
k<2p,�≤2p

θ(h(k + 1, �) − h(k, �)) ≤ 16
∑
k,�

n(k, �)(u(k, �) − h(k, �)) .

�



4 The Bernoulli Conjecture

4.1 The Conjecture

Gaussian r.v. are arguably the central object of Probability theory, but
Bernoulli (= coin-flipping) r.v. are also very useful. (Thus, if ε is a Bernoulli
r.v., P (ε = ±1) = 1/2.)

Consider a subset T of �2, and i.i.d. Bernoulli r.v. (εi)i≥1. We set

b(T ) = E sup
t∈T

∑
i≥1

tiεi . (4.1)

We observe that b(T ) ≥ 0, that b(T ) ≤ b(T ′) if T ⊂ T ′, and that b(T + t0) =
b(T ).

We would like to understand the value of b(T ) from the geometry of T .
We denote by ‖t‖1 =

∑
i≥1 |ti| the �1 norm of t, and by B1 the unit ball of

�1. The following is trivial.

Proposition 4.1.1. We have

b(T ) ≤ sup
t∈T

‖t‖1 . (4.2)

We recall the notation g(T ) = E supt∈T

∑
i≥1 tigi. Here is another way to

control b(T ).

Proposition 4.1.2. We have

b(T ) ≤
√

π

2
g(T ) . (4.3)

Proof. If (εi)i≥1 is an i.i.d. Bernoulli sequence that is independent of the
sequence (gi)i≥1 , then the sequence (εi|gi|)i≥1 is i.i.d. standard normal. Thus

g(T ) = E sup
t∈T

∑
i≥1

εi|gi|ti .

Using Jensen’s inequality to integrate in the r.v. gi inside the supremum
rather than outside, we get
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g(T ) ≥
√

2
π

E sup
t∈T

∑
i≥1

tiεi =

√
2
π

b(T )

since E|gi| =
√

2/π. �

Thus, besides (4.2), another way for b(T ) to be small is that g(T ), or,
equivalently, γ2(T ) is small. The Bernoulli conjecture expresses that the only
way b(T ) can be small is from a mixture of the two previous situations.

Conjecture 4.1.3. (The Bernoulli conjecture). There exists a universal con-
stant L such that given any subset T of �2, we can find two subsets T1 and
T2 of �2 with

γ2(T1) ≤ Lb(T ) (4.4)

T2 ⊂ Lb(T )B1 , i.e. t ∈ T2 ⇒ ‖t‖1 ≤ Lb(T ) (4.5)

T ⊂ T1 + T2 . (4.6)

The decomposition (4.6) would give a very explicit reason why b(T ) < ∞,
since it implies b(T ) ≤ √

π/2g(T1) + supt∈T2
‖t‖1 ≤ Lγ2(T1) + supt∈T2

‖t‖1.
Let us remind the reader that there is a $ 5000 prize offered by the author
for a positive solution of this conjecture.

Using Theorem 2.6.2, we see that we get an equivalent conjecture if we
also request that γ1(T1, d∞) ≤ Lb(T ).

One intrinsic difficulty in attacking the Bernoulli conjecture is that the
decomposition (4.6), when it exists, is neither unique nor canonical.

4.2 Control in �∞ Norm

The main result of this section is as follows.

Theorem 4.2.1. There exists a universal constant L such that for any subset
T of �2 we have

γ2(T ) ≤ L
(
b(T ) +

√
b(T )γ1(T, d∞)

)
. (4.7)

In particular, if γ1(T, d∞) ≤ Lb(T ), we have γ2(T ) ≤ Lb(T ) ≤ L′γ2(T ).
Our main tool is as follows.

Proposition 4.2.2. There exists constants L1 and L2 with the following
properties. Consider numbers a , b , σ > 0, vectors t1 , · · · , tm ∈ �2, and
assume that

� �= �′ ⇒ ‖t� − t�′‖2 ≥ a . (4.8)

Assume moreover that
∀� ≤ m , ‖t�‖∞ ≤ b . (4.9)
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For � ≤ m consider sets H� with H� ⊂ B2(t�, σ). Then

b
( ⋃

�≤m

H�

)
≥ 1

L1
min

(
a
√

log m,
a2

b

)
− L2σ

√
log m + min

�≤m
b(H�) . (4.10)

Corollary 4.2.3. There exists a constant L0 such that if the points t� satisfy
(4.8) and t� ∈ D with ∆(D, d∞) ≤ 4a/

√
log m, and if H� ⊂ B2(t�, a/L0), we

have
b
( ⋃

�≤m

H�

)
≥ a

L0

√
log m + min

�≤m
b(H�) . (4.11)

Of course the factor 4 in the condition ∆(D, d∞) ≤ 4a/
√

log m can be re-
moved. Its only purpose is that it find it convenient later to use the exact
statement given here.

Proof. We observe that without loss of generality we can assume that t1 = 0,
so that ‖t�‖∞ ≤ b = 4a/

√
log m for all � ≤ m and (4.10) used for σ = a/L0

gives

b
( ⋃

�≤m

H�

)
≥ 1

4L1
a
√

log m − aL2

L0

√
log m + min

�≤m
b(H�) ,

so that if L0 ≥ 8L1L2 and L0 ≥ 8L1 we get (4.11). �
The proof of Proposition 4.2.2 is identical to that of Proposition 2.1.4, if

one replaces Lemmas 2.1.2 and 2.1.3 respectively by the following principles.

Theorem 4.2.4. (Sudakov minoration for Bernoulli processes [53], Propo-
sition 2.2). For t1 , · · · , tm in �2 that satisfy (4.8) and (4.9), we have

E sup
�≤m

∑
i≥1

t�,iεi ≥ 1
L

min
(
a
√

log m,
a2

b

)
. (4.12)

Theorem 4.2.5. ([61] Theorem 8.2, or [18]) If T ⊂ B(t, σ) then

∀u > 0 , P
(∣∣sup

t∈T

∑
i≥1

tiεi − b(T )
∣∣ ≥ u

)
≤ L exp

(
− u2

Lσ2

)
. (4.13)

Remark 4.2.6. In our constructions, we will not only have the information
(4.8), but we will also know that for a certain s,

∀� ≤ m , t� ∈ B2(s, ra) .

Only minor changes are required to set things in a way that (4.12) is only
needed under this extra information. In that case this follows directly from
the main result of [67] (combined with the Sudakov minoration for Gaus-
sian processes), the proof of which is simpler and more elegant than that of
[53] (but one can also deduce (4.12) from the result of [67], combined with
iteration).
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Let us note a simple fact.

Lemma 4.2.7. For a subset T of �2 we have

∆(T, d2) ≤ Lb(T ) . (4.14)

Proof. Assuming without loss of generality that 0 ∈ T , we have

∀t ∈ T , b(T ) ≥ E max
(
0,

∑
i≥1

εiti

)

=
1
2
E
∣∣∣∑
i≥1

εiti

∣∣∣ ≥ 1
L
‖t‖2 ,

using symmetry in the equality and Khintchine’s inequality in the last in-
equality, and this proves (4.14). �

Proof of Theorem 4.2.1. We consider an integer τ ≥ 1 to be specified later,
and an admissible sequence of partitions (Dn) of T such that

sup
t∈T

∑
p≥0

2p∆(Dp(t), d∞) ≤ 2γ1(T, d∞) . (4.15)

The proof will rely on the application of Theorem 1.3.2 to the functionals

Fn(A) = sup
{
b(A ∩ D) + Un(D) , D ∈ Dn+τ , A ∩ D �= ∅} ,

where
Un(D) = sup

t∈D

∑
p≥n

2p∆(Dp+τ (t), d∞) .

We now check that these functionals satisfy the growth condition of Def-
inition 1.3.1 for a suitable value of the parameters. Consider m = Nn+τ+1

points t1 , . . . , tm of T such that

� �= �′ ⇒ ‖t� − t�′‖2 ≥ a , (4.16)

and consider sets H� ⊂ B2(t�, a/r), where r = 8L0 , L0 ≥ 1 being the constant
of Corollary 4.2.3.

Consider c < min�≤m Fn+1(H�), and for each � consider D� ∈ Dn+τ+1

such that H� ∩ D� �= ∅ and

b(H� ∩ D�) + Un+1(D�) > c . (4.17)

Each of the m sets D� is contained in one of the sets of Dn+τ . Since m =
Nn+τ+1 = N2

n+τ ≥ Nn+τ ·cardDn+τ , by the pigeon hole principle we can find
D ∈ Dn+τ such that if

I = {� ≤ m ; D� ⊂ D}
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then card I ≥ Nn+τ . We have

Fn

( ⋃
�≤m

H�

)
≥ b

(
D ∩

⋃
�∈I

H�

)
+ Un(D) . (4.18)

Now, for each � ∈ I, we have

Un(D) = 2n∆(D, d∞) + Un+1(D) ≥ 2n∆(D, d∞) + Un+1(D�) . (4.19)

Case 1. We have ∆(D, d∞) ≥ a2−n/2. Then (4.17), (4.18) and (4.19) show
that if �0 is an arbitrary element of I, we have

Fn

( ⋃
�≤m

H�

)
≥ 2n/2a + b(D�0 ∩ H�0) + Un+1(D�0)

≥ 2n/2a + c ,

using (4.17) for � = �0, and thus

Fn

( ⋃
�≤m

H�

)
≥ 2n/2a + inf

�≤m
Fn+1(H�) . (4.20)

Case 2. We have ∆(D, d∞) ≤ a2−n/2, and thus ∆(D, d∞) ≤ a/
√

log Nn.
We select an arbitrary subset J of I with cardJ = Nn. For � ∈ J we choose
arbitrarily u� ∈ H� ∩ D� ⊂ D, so that, since H� ⊂ B2(t�, a/r), we have
H� ⊂ B2(u�, 2a/r) = B2(u�, a/(4L0)) since r = 8L0. We observe that, since
r ≥ 4, by (4.16) we have d2(u�, u�′) ≥ a/4 for � �= �′.

We use Corollary 4.2.3 with m = Nn, H� ∩D� instead of H�, a/4 instead
of a and u� instead of t� to see that

b
(
D ∩

⋃
�∈I

H�

)
≥ b

(⋃
�∈J

(H� ∩ D�)
)

≥ a

4L0

√
log Nn + inf

�∈J
b(H� ∩ D�) .

Combining with (4.17), (4.18) and (4.19) we get

Fn

( ⋃
�≤m

H�

)
≥ 2n/2a

L
+ inf

�∈J
Fn+1(H�) ≥ 2n/2a

L
+ inf

�≤m
Fn+1(H�) . (4.21)

Thus, this relation holds, whichever of the preceding cases occur. That is, we
have proved that the growth condition of Definition 1.3.1 holds with θ(n) =
2n/2/L, τ + 1 instead of τ and β = 1 and we can apply Theorem 1.3.2 for
these values of the parameters. By definition we have

F0(T ) ≤ b(T ) + U0(T )

and by (4.15) we have 2τU0(T ) ≤ 2γ1(T, d∞), so that
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F0(T ) ≤ b(T ) + 2−τ+1γ1(T, d∞) .

Since ∆(T, d2) ≤ Lb(T ) by (4.14), we deduce from Lemma 1.3.3 that

γ2(T ) ≤ L2τ/2
(
b(T ) + 2−τγ1(T, d∞)

)
and Theorem 4.2.1 follows by optimization over τ ≥ 1. �

A striking application will be given in Section 6.2.

4.3 Chopping Maps and the Weak Solution

The purpose of this section is to prove the following weak form of the Bernoulli
conjecture, where Bp denotes the unit ball of �p,

Bp =
{

t ;
∑
i≥1

|ti|p ≤ 1
}

.

Theorem 4.3.1. Given p > 1, there exists a number K(p) < ∞ such that,
given T ⊂ �2, we can find two sets T1 , T2 ⊂ �2 with T ⊂ T1 + T2,

γ2(T1) ≤ K(p)b(T ) . (4.22)

T2 ⊂ K(p)b(T )Bp . (4.23)

Besides the fact that this result provides support for the Bernoulli con-
jecture, it does have striking applications to Banach Space Theory (Section
6.1).

The most successful idea to date about Bernoulli processes is that of
chopping maps.

Definition 4.3.2. Given c > 0 we define the chopping map ψc : R → R
Z as

follows. We have ψc(x) = (ψc,j(x))j∈Z, where, if x ≥ 0,

ψc,j(x) = 0 if j < 0
ψc,j(x) = c if c(j + 1) ≤ x , j ≥ 0

ψc,j(x) = x − cj if cj ≤ x ≤ c(j + 1) , j ≥ 0
ψc,j(x) = 0 if x ≤ cj , j ≥ 0 .

If x < 0, then ψc,j(x) = −ψc,−j(−x).

In other words, x is “chopped” in pieces of length c that are laid side to
side.

We define the chopping map Ψc : R
N → R

N×Z component-wise

Ψc((ti)i≥1) = (ψc,j(ti))i∈N,j∈Z . (4.24)
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Thus ‖Ψc(t)‖∞ ≤ c.
It should be obvious that (after suitably renumbering the coordinates) we

have, for k ∈ N,
Ψc/k = Ψc/k ◦ Ψc . (4.25)

In particular, if q is an integer, we have

Ψq−j−1 = Ψq−j−1 ◦ Ψq−j (4.26)

for all j ∈ Z.
The following is obvious.

Lemma 4.3.3. If x , y ∈ R, then

|x − y| =
∑
j∈Z

|ψc,j(x) − ψc,j(y)| (4.27)

and thus
|x − y|2 ≥

∑
j∈Z

(ψc,j(x) − ψc,j(y))2 . (4.28)

One of the reasons for the usefulness of chopping maps is their interplay
with the �1 and �2 norms.

Lemma 4.3.4. (a) If |x − y| ≤ c, we have

|x − y|2 ≤ 4
∑
j∈Z

(ψc,j(x) − ψc,j(y))2 ≤ 4|x − y|2 . (4.29)

(b) If |x − y| ≥ c, we have

c|x − y| ≤ 4
∑
j∈Z

(ψc,j(x) − ψc,j(y))2 ≤ 8c|x − y| . (4.30)

Proof. The right-hand side inequality of (4.29) follows from (4.28). To prove
the left-hand side inequality we note that when |x − y| ≤ c, at most two of
the terms |ψc,j(x) − ψc,j(y)| are not zero, and by (4.27) one of them is at
least |x − y|/2.

To prove the right-hand side inequality of (4.30) we use (4.27) and that,
since |ψc,j(x) − ψc,j(y)| ≤ 2c, we have

(ψc,j(x) − ψc,j(y))2 ≤ 2c|ψc,j(x) − ψc,j(y)| .

To prove the left-hand side inequality, we note that there are at most two
indices, say j1 and j2, for which uj = |ψc,j(x) − ψc,j(y)| satisfies 0 < uj < c.
Thus ∑

j =j1,j2

u2
j ≥ c

∑
j =j1,j2

uj .
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We are done if
∑

j =j1,j2
uj ≥ |x − y|/4. Otherwise, by (4.27), we have uj1 +

uj2 ≥ 3|x − y|/4, so that

u2
j1 + u2

j2 ≥ 1
2
(uj1 + uj2)

2 ≥ 9
32

|x − y|2 ≥ 1
4
c|x − y| .

�

Corollary 4.3.5. (a) For x , y ∈ R we have

|x − y|21{|x−y|<c} + c|x − y|1{|x−y|≥c} ≤ 4
∑
j∈Z

|ψc,j(x) − ψc,j(y)|2 (4.31)

∑
j∈Z

|ψc,j(x) − ψc,j(y)|2 ≤ |x − y|21{|x−y|<c} + 2c|x − y|1{|x−y|≥c} . (4.32)

(b) If s , t ∈ �2, we have∑
i≥1

(si−ti)21{|si−ti|<c}+c
∑
i≥1

|si−ti|1{|si−ti|≥c} ≤ 4‖Ψc(s)−Ψc(t)‖2
2 (4.33)

‖Ψc(s)−Ψc(t)‖2
2 ≤

∑
i≥1

(si−ti)21{|si−ti|<c}+2c
∑
i≥1

|si−ti|1{|si−ti|≥c} . (4.34)

Proof. To prove (4.31) we use the left-hand side of (4.29) if |x − y| ≤ c and
the left-hand side of (4.30) otherwise. Then (4.33) follows by summation of
(4.31) over the coordinates. To prove (4.32) we use the right-hand side of
(4.29) if |x − y| ≤ c and the right-hand side of (4.30) otherwise, and again
(4.34) follows by summation. �

The chopping map Ψc sends �2(N) to �2(N×Z). In the following B2 denotes
either the unit ball of �2(N) or of �2(N × Z), and similarly for B1.

Corollary 4.3.6. If t ∈ �2 we have

Ψc

(
t + εB2 +

ε2

c
B1

)
⊂ Ψc(t) + 4εB2 (4.35)

Ψ−1
c (Ψc(t) + εB2) ⊂ t + 2εB2 +

4ε2

c
B1 . (4.36)

Proof. Consider s ∈ �2 and t = s+u where u ∈ (ε2/c)B1. We write u = v+w
where

vi = ui1{|ui|<c} , wi = ui1{|ui|≥c} . (4.37)

Thus
∑

i≥1 v2
i ≤ c

∑
i≥1 |ui| ≤ ε2 and

∑
i≥1 |wi| ≤ ε2/c. It then follows

from (4.34) that ‖Ψc(t) − Ψc(s)‖2
2 ≤ 4ε2 so that

Ψc

(
s +

ε2

c
B1

)
⊂ Ψc(s) + 2εB2 .



4.3 Chopping Maps and the Weak Solution 137

If now u ∈ εB2, and v, w are as above, we have
∑

i≥1 v2
i ≤ ε2 and∑

i≥1 |wi| ≤
∑

i≥1 u2
i /c ≤ ε2/c, and, as before

Ψc(s + εB2) ⊂ Ψc(s) + 2εB2 .

This proves (4.35).
To prove (4.36), we consider u ∈ �2 and the decomposition u = v + w as

before. If t + u ∈ Ψ−1
c (Ψc(t) + εB2), then ‖Ψc(t + u) − Ψc(t)‖2 ≤ ε, and we

appeal to (4.33) to see that

‖v‖2 ≤ 2ε , ‖w‖1 ≤ 4ε2

c
,

so that t + u ∈ t + 2εB2 + (4ε2/c)B1. �

Besides the fact that the chopping maps have the remarkable behavior of
Corollary 4.3.6, it is central for our approach that they “decrease b(T )”.

Proposition 4.3.7. If T ⊂ �2, then

b(Ψc(T )) ≤ b(T ) . (4.38)

Proof. We consider i.i.d. Bernoulli r.v. (εi)i≥1 , (εij)i∈N,j∈Z. The double se-
quences (εij) and (εiεij) have the same distribution, so that

b(Ψc(T )) = E sup
t∈T

∑
i∈N,j∈Z

εijψc,j(ti) (4.39)

= E sup
t∈T

∑
i∈N,j∈Z

εiεijψc,j(ti)

= E
(
Eε sup

t∈T

∑
i≥1

εiθi(ti)
)

where θi(x) =
∑

j∈Z
εijψc,j(x), and where Eε means averaging only in (εi)i≥1.

We note that θi is a contraction, since

|θi(x) − θi(y)| ≤
∑
j∈Z

|ψc,j(x) − ψc,j(y)| ≤ |x − y|

by (4.27). The key point is then the comparison theorem for Bernoulli pro-
cesses, ([53], Theorem 2.1) that implies that we have that

Eε sup
t∈T

∑
i≥1

εiθi(ti) ≤ E sup
t∈T

∑
i≥1

εiti = b(T ) .

Combining with (4.39) finishes the proof. �

Chopping maps were invented to prove the following, that illustrates well
their power.
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Proposition 4.3.8. There exists a constant L such that for each subset T
of �2 we have, for ε > 0

ε
√

log N(T, εB2 + Lb(T )B1) ≤ Lb(T ) ,

where N(T, C) is the smallest number of translates of C that can cover T .

This would also follow from the Bernoulli conjecture. Indeed, by the Su-
dakov minoration (Lemma 2.1.2) we have ε

√
log N(T1, εB2) ≤ Lγ2(T1), and

if T ⊂ T1 + T2 we have

N(T, εB2 + Lb(T )B1) ≤ N(T1, εB2)N(T2, Lb(T )B1) ≤ N(T1, εB2)

whenever T2 ⊂ Lb(T )B1.

Proof. Considering c > 0, successive application of Propositions 4.3.7 and
Theorem 4.2.4 yields

b(T ) ≥ b(Ψc(T )) ≥ 1
L

min
(
ε
√

log N(Ψc(T ), εB2),
ε2

c

)
, (4.40)

because if m ≤ N(Ψc(T ), εB2), we can find points (t�)�≤m in Ψc(T ) with
‖t� − t�′‖ ≥ ε/2 for � �= �′, and since ‖t‖∞ ≤ c for t ∈ Ψc(T ). Thus if we
choose c = ε2/(2Lb(T )) where L is as in (4.40) we get

b(T ) ≥ min
( 1

L
ε
√

log N(Ψc(T ), εB2), 2b(T )
)

,

so that Lb(T ) ≥ ε
√

log N(Ψc(T ), εB2) and by (4.36) we have

N(T, 2εB2 +
4ε2

c
B1) ≤ N(Ψc(T ), εB2) .

�

The proof of Theorem 4.3.1 will rely on a specialized version of the par-
tition scheme of Section 1.3. This special scheme will not be used anywhere
else in the book. In this scheme we consider a set T provided with a family
of distances (dk)k≥0. This family is decreasing:

∀k ≥ 0 , dk+1 ≤ dk . (4.41)

We denote by ∆k(A) the diameter of a set A for the distance dk. We denote
by Bk(t, a) the ball for dk of center t and radius a.

Consider a family of functionals (Fk)k≥1 and assume that Fk+1 ≤ Fk.
Consider γ > 1.
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Definition 4.3.9. We say that the functionals satisfy the growth condition
(with parameter γ) if the following occurs. Given n ≥ 0, and 1 ≤ k ≤ j such
that

kγ ≥ j ; r−j2n/2 ≤ 1
r

, (4.42)

then, setting m = 22n

, given any points (t�)�≤m such that

∃t ∈ T , ∀� ≤ n , t� ∈ Bk(t, rj)

∀� �= �′ , dk(t�, t�′) ≥ r−j−1 (4.43)

and given sets H� ⊂ Bk(t�, r−j−2) for � ≤ m, we have

Fk

( ⋃
�≤m

H�

)
≥ r−j−12n/2 + min

�≤m
Fk(H�) . (4.44)

The reader observes that in (4.44), the functionals depend on which dis-
tance we use rather than on n.

Theorem 4.3.10. Under the previous conditions, and if moreover F1(T ) ≤
1/2r2 , ∆1(T ) ≤ 1/r and r ≥ 4, we can find an admissible sequence (An) of
T and for each A ⊂ An an integer j(A) ≥ 1 such that

∀A ∈ An , ∆j(A)(A) ≤ 2r−j(A) (4.45)

∀t ∈ T ,
∑
n≥0

2n/2r−j(An(t)) ≤ K(r, γ) (4.46)

A ∈ An , B ∈ An−1 , A ⊂ B ⇒ j(B) ≤ j(A) ≤ j(B) + 1 . (4.47)

Proof. The proof resembles that of Theorem 1.3.2. The difference is that the
construction will be performed for a distance that varies with the stage of the
construction. The main difficulty is that the information we have about the
behavior of certain sets for a distance dk says little about their behavior for
the distance dk+1. The way around this difficulty is that (roughly speaking)
we perform the construction of Theorem 1.3.2 as long as possible with the
same distance dk before we switch to another distance dk′ , where k′ > k.
When we switch distances, we lose a lot of information, but, fortunately,
enough information has been gathered while we were using the distance dk

to make the construction useful.
Together with C ∈ An we construct a point tC , integers 1 ≤ k(C) ≤ j(C),

and numbers ai(C) ≥ 0 , 0 ≤ i ≤ 2. (The numbers ai(C) play the role of the
numbers bi(C) of Theorem 1.3.2. We avoid the notation bi(C) to prevent
confusion with the quantity b(C).) The integer k(C) indicates with which
distance we work. Writing k = k(C) and j = j(C) we will have the following.

C ⊂ Bk(tC , r−j) (4.48)
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Fk(C) ≤ a0(C) ≤ 3 − 2−n (4.49)

∀t ∈ C , Fk(C ∩ Bk(t, r−j−1)) ≤ a1(C) (4.50)

∀t ∈ C , Fk(C ∩ Bk(t, r−j−2)) ≤ a2(C) (4.51)

a0(C) − 2(n−1)/2r−j(C)−1 − 2−n ≤ a2(C) ≤ a0(C) (4.52)

a1(C) ≤ a0(C) . (4.53)

We will also require the following technical conditions:

2n/2r−j ≤ 1
r

(4.54)

U j−k2−n ≤ a0(C) − a1(C) , (4.55)

where U = rc, for c = 2γ/(γ − 1). The intuitive meaning of (4.55) is that it
is a technical device to ensure that the ratio j/k stays close to one, since we
want this ratio to be < γ to be able to use (4.44). Finally, we will also ensure
the following relation. If A ∈ An+1 , A ⊂ C ∈ An, then

Ua0(A) + a1(A) + a2(A) +
1
4
2n/2r−j(A)−1 (4.56)

≤ Ua0(C) + a1(C) + a2(C) +
1
8
2(n−1)/2r−j(C)−1 + 2−n+1U .

To start the construction, we set A0 = {T } , a1(T ) = a2(T ) = F1(T ) ≤
1 , a0(T ) = a1(T ) + 1 ≤ 2 = 3 − 20 and k(T ) = j(T ) = 1, and we easily
check all the required relations. To perform the induction, given C ∈ An, we
set m = 22n

, so that mNn ≤ Nn+1; and we proceed to split C in at most m
pieces. We set k = k(C) , j = j(C) and ε = min(2−n , 2n/2r−j−1).

By induction over � , 1 ≤ � ≤ m, we construct points t� ∈ C and sets
A� ⊂ C as follows. First, we choose t1 such that

Fk(C ∩ Bk(t1, r−j−2)) ≥ sup
t∈C

Fk(C ∩ Bk(t, r−j−2)) − ε .

We then set A1 = C ∩ Bk(t1, r−j−1).
Assume now that t1 , · · · , t� and A1 , · · · , A� have been constructed, and

set D� = C\⋃
1≤p≤� Ap. If D� = ∅, the construction stops. Otherwise, we

choose t�+1 in D� such that

Fk(D� ∩ Bk(t�+1, r
−j−2)) ≥ sup

t∈D�

Fk(D� ∩ Bk(t, r−j−2)) − ε , (4.57)
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we set A�+1 = D�∩Bk(t�+1, r
−j−1) and we continue. If the construction does

not stop before tm−1 is constructed, we define Am = Dm−1 = C\⋃
�<m A�.

In this manner we have partitioned C in at most m pieces. Consider one of
these pieces; call it A.

We first consider the case where A = Am. We set j(A) = j = j(C) , k(A) =
k = k(C), tA = tC ,

a0(A) = a0(C) , a1(A) = a1(C) and a2(A) = a0(A)−2n/2r−j−1+ε . (4.58)

It is obvious that (4.48) to (4.50) and (4.53), (4.55) hold for A. Since ε ≤
2n/2r−j−1 it is also obvious that (4.52) holds for A. From (4.55) and since
a0(C) ≤ 3 we have

U j−k2−n ≤ 3

so that (
U

r2

)j

≤ 3 · Uk2nr−2j ≤ Uk

using (4.54) and since r ≥ 4. Since U = rc, this yields

rj(c−2) ≤ rck

so that k ≥ j(c−2)/c, i.e. γk ≥ j. Thus using (4.54) we see that (4.42) holds,
and hence, setting D0 = C, and choosing an arbitrary point t = tm in A we
can use (4.44) for the sets H� = D�−1 ∩Bk(t�, r−j−2). We first conclude that

r−j−12n/2 ≤ Fk(C) ≤ F1(T ) ≤ 1
2r2

,

so that r−j2(n+1)/2 ≤ 1/r, and (4.42) holds for A. Next, as in the proof of
Theorem 1.3.2, we deduce from (4.44) and (4.57) that

∀t ∈ A , Fk(A ∩ Bk(t, r−j−2)) ≤ Fk(C) − 2n/2r−j−1 + ε

and since Fk(C) ≤ a0(C), the definition of a2(A) shows that (4.51) follows
for A.

To prove (4.56), we set w = 2n/2r−j−1. By definition we have a2(A) =
a0(C) − w + ε, and since −3/4 < −1/

√
2, since ε ≤ 2−n ≤ 2−nU , we have

Ua0(A) + a1(A) + a2(A) +
w

4
≤ Ua0(C) + a1(C) + a0(C) − 3

4
w + ε

≤ Ua0(C) + a1(C) + a0(C) − w√
2

+ 2−nU

≤ Ua0(C) + a1(C) + a2(C) + 2−n+1U .

using the left-hand side of (4.52) in the last inequality. This finishes the
construction when A = Am.

We now examine the situation where A = A� , � < m. In this situation we
will have j(A) = j(C) + 1. In order to maintain the ratio j/k close to 1 as is



142 4 The Bernoulli Conjecture

required by (4.55) we will want to increase k often. There are two different
cases.
Case 1. We have

(U + 2) a1(C) ≤ Ua0(C) + a1(C) + a2(C) . (4.59)

The idea here is that this relation will suffice to prove (4.56), so that we can
afford to increase k as much as possible, change distances and lose much of
the information contained in (4.50) and (4.51). We set k(A) = j(A) = j + 1,
tA = t� and

a1(A) = a2(A) = a1(C)
a0(A) = a1(C) + 2−n−1 .

The purpose of this latter definition is to obtain (4.55) for A. By (4.53)
and (4.49) we have a0(A) ≤ a0(C) + 2−n−1 ≤ 3 − 2−n−1. Moreover, since
k(A) = j + 1 ≥ k, using (4.50) in the last inequality we have

Fk(A)(A) = Fj+1(A�) ≤ Fk(A�) ≤ Fk(C ∩ Bk(t�, r−j−1)) ≤ a1(C) .

This proves (4.49) for A. It follows from (4.59) that

Ua0(A) + a1(A) + a2(A) ≤ Ua0(C) + a1(C) + a2(C) + 2−n−1U ,

and since we have
√

2r−1 ≤ 1/2 because r ≥ 4 this implies (4.56), since
j(A) = j(C) = 1. All conditions (4.49) to (4.56) should now be obvious.
Case 2. Relation (4.59) fails, i.e. we have

(U + 2)a1(C) > Ua0(C) + a1(C) + a2(C) ,

which we rewrite as

a1(C) − a2(C) ≥ U(a0(C) − a1(C)) . (4.60)

We then set k(A) = k = k(C) , j(A) = j + 1, tA = t�,

a0(A) = a2(A) = a1(C) , a1(A) = min(a1(C), a2(C)) ,

so that a0(A) − a1(A) ≥ a1(C) − a2(C) and (4.60) and (4.55) for C imply
that (4.55) holds for A. To prove (4.56) we simply observe that a0(A) ≤
a1(C) ≤ a0(C) and that a1(A) + a2(A) ≤ a1(C) + a2(C) and we recall that√

2r−1 ≤ 1/2. The other relations should be obvious.
Summation of the relations (4.56) gives∑

n≥1

2n/2r−j(An(t)) ≤ K(r, γ)

and this yields (4.46), since j(T ) = 1. As for condition (4.47), it holds by
construction. �
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Proof of Theorem 4.3.1. Without loss of generality we can assume that 0 ∈ T ,
We recall the constant L0 of Corollary 4.2.3. We consider 2 > p > 1 and we
choose γ such that 2γ = 1 + 1/(2 − p) so that 1 < γ and (2 − p)γ < 1. We
then fix r ≥ max(4, L0) such that q = r2γ is an integer. For k ∈ Z we set
c(k) = r−2γk = q−k, and we consider the distance dk on �2 given by

dk(s, t) = ‖Ψc(k)(s) − Ψc(k)(t)‖2 .

It follows from (4.26) and (4.28) that dk+1 ≤ dk. For a subset A of �2, we
define

F ′
k(A) = b(Ψc(k)(A)) .

Thus by (4.26) and Proposition 4.3.7 we have F ′
k+1 ≤ F ′

k. Consider points
(t�)�≤m as in (4.43), and sets (H�)�≤m, with H� ⊂ Bk(t�, r−j−2). The defini-
tion of dk shows that we have Ψc(k)(H�) ⊂ B(u�, r

−j−2) where u� = Ψc(k)(t�)
and where the ball is for the �2 distance. Moreover u� ∈ D = {u , ‖u‖∞ ≤
c(k) = q−k}, and ∆(D, d∞) ≤ 2q−k. Thus, if

2q−k ≤ 4r−j−1/
√

log m , (4.61)

we can apply (4.11) with a = r−j−1 to the sets Ψc(k)(H�) rather than H�

and the points u� rather than t�. Since log 22n ≤ 2n, we see in particular
that (4.61) holds for m = 22n

whenever q−k ≤ r−j−12−n/2, and since 2n−1 ≤
log 22n

we then have

F ′
k

( ⋃
�≤m

H�

)
≥ 1

2L0
r−j−12n/2 + min

�≤m
F ′

k(H�) .

The condition
q−k = r−2γk ≤ r−j−12−n/2

is equivalent to
2n/2r−j+1 ≤ r2(γk−j)

so that it holds whenever γk ≥ j and 2n/2r−j ≤ 1/r. Thus we see that
the functionals Fk(A) = 2L0F

′
k(A) satisfy the growth condition of Defini-

tion 4.3.9. Next we observe that there is a constant K(r) such that

b(T ) ≤ 1
K(r)

⇒ F1(T ) ≤ 1
2r2

, ∆(T, d2) <
1

4rγ
, (4.62)

where now d2 denote the distance induced the norm of �2. This follows from
the fact that F1(T ) ≤ 2L0b(T ) and from (4.14). Thus, if b(T ) ≤ 1/K(r) all
the hypothesis of Theorem 4.3.10 are satisfied, and we can find an admissible
sequence (An) of T and integers j(A) that satisfy (4.45) to (4.47).

From (4.33), used for c = c(k) = r−2γk we see that if s = (si)i≥1 and
t = (ti)i≥1 we have
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i≥1

(si − ti)2 ∧ c2 ≤ 4d2
k(s, t) ,

and if we set V = r2γ , since c2 = V −2k we get∑
i≥1

(si − ti)2 ∧ V −2k ≤ 4d2
k(s, t) .

Since k(A) ≤ j(A) we then see that the hypothesis of Theorem 2.6.3 are
satisfied when µ is the counting measure on N and if δ(A) = 2r−j(A). Since
0 ∈ T and ∆(T, d2) ≤ 1/(4rγ), we have ‖t‖∞ < 1/(2rγ) ≤ 1/(2V ) for t ∈ T ,
and since j(T ) = 1 we have T3 = {0} by (2.105), and thus T ⊂ T1 + T2. By
(2.102) and (4.46) we have γ2(T1, d2) ≤ LK(r, p). Also,

V 2j(An+1(t))−pj(An(t))δ2(An+1(t)) ≤ Lr(4γ−2)j(An+1(t))−2pγj(An(t))

≤ K(r, γ)r2((2−p)γ−1)j(An(t))

since j(An+1(t)) ≤ j(An(t)) + 1 by (4.47). Since (2 − p)γ − 1 < 0, it follows
from (2.104) that ‖t‖p ≤ K(r, p) for t ∈ T2.

The conclusion of Theorem 4.3.1 follows by homogeneity. �

4.4 Further Thoughts

It should be stressed that the results presented in Sections 4.2 and 4.3 do not
even come close to addressing the real difficulty of the Bernoulli conjecture.
The method of chopping maps, by which we obtained lower bounds, is in-
sufficient. To see this, consider an integer k ≥ 1, and consider the class C of
elements t = (ti) that have the following property. For each i, ti takes one of
the values 0, 2−1 , · · · , 2−k, and for each 1 ≤ � ≤ k, there are exactly 2� in-
dices i for which ti = 2−�. Consider a set T that consists of 22k+1

elements of
C that have disjoint support. Since for t ∈ C we have P(

∑
εiti = k) ≥ 2−2k+1

,
it is simple to see that b(T ) ≥ k/L. Yet it does seem possible to use chopping
maps to prove this, or even to prove more than b(T ) ≥ 1/L.

The previous example shows that it could be of interest to study the
special case of the Bernoulli conjecture where there is a partition (Ik)k≥1 of
the index set such that for each t ∈ T , we have ti ∈ {0, 2−k} for i ∈ Ik.

Many of the results of this book were first discovered by following the idea
that T is “large” if and only if it contains a “large tree”. (What this means
precisely is explained in the Appendix.) Trees do not seem to suffice in the
case of the Bernoulli conjecture, as the previous example shows.
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5.1 A General Partition Scheme

Not all processes of interest satisfy a condition as simple as (0.4) or even
(1.21). In certain natural situations, the increments of a process cannot be
controlled using only one or two distances, but can be controlled using a
family of distances. Quite interestingly, once the first surprise is passed and
the right setting has been found, it turns out that this is not more difficult
than working with a single distance.

The goal of the present section is to generalize to this setting the partition-
ing scheme of Section 1.3. In Section 5.2 we will apply this tool to the study
of “canonical processes” and in Section 5.3 to infinitely divisible processes.
These two sections are independent of each other.

We consider a family of maps (ϕj)j∈Z, with the following properties:

ϕj : T × T → R
+ ∪ {∞} , ϕj ≥ 0 , ϕj(s, t) = ϕj(t, s) , ϕj+1 ≥ ϕj .

These maps play the role of a family of distances (although it probably would
be better to think of ϕj as the square of a distance rather than as of a
distance).

We consider functionals Fn,j on T for n ≥ 0 , j ∈ Z. We assume

Fn+1,j ≤ Fn,j ; Fn,j+1 ≤ Fn,j . (5.1)

We define
Bj(t, c) = {s ∈ T ; ϕj(s, t) ≤ c} ,

so that Bj+1(t, c) ⊂ Bj(t, c).
We will assume that the functionals satisfy a “growth condition”, that

is very similar in spirit to Definition 1.3.1. This condition involves as main
parameter an integer κ ≥ 6. We set r = 2κ−4. The role of r is as in (1.30),
the bigger r, the weaker the growth condition. The reason why we take r of
the type r = 2κ−4 for an integer κ is purely technical convenience.

The growth condition, that also involves as secondary parameter an inte-
ger n0 ≥ 1, is as follows.
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Definition 5.1.1. We say that the functionals Fn,j satisfy the growth con-
dition (for n0 and r) if the following occurs. Consider any j ∈ Z, any n ≥ n0

and m = Nn. Consider any points t , t1 , · · · , tm in T and assume

∀� ≤ m , t� ∈ Bj−1(t, 2n−1) (5.2)

∀� , �′ ≤ m , � �= �′ , ϕj(t�, t�′) ≥ 2n . (5.3)

Consider any sets H� ⊂ Bj+1(t�, 2n+κ). Then

Fn,j

( ⋃
�≤m

H�

)
≥ 2nr−j + min

�≤m
Fn+1,j+1(H�) . (5.4)

Besides the rather weak requirement that ϕj+1 ≥ ϕj , we have not made
assumptions on how ϕj relates to ϕj+1; but we have little chance to prove
(5.4) unless Bj+1(t�, 2n+κ) is quite smaller than Bj(t�, 2n).

To understand the preceding conditions we will carry out the case where

ϕj(s, t) = r2jd2(s, t) (5.5)

for a distance d on T . The reader is encouraged to carry out the more general
case where ϕj(s, t) = rαjdβ(s, t) for α, β > 0. Denoting by B(t, b) the ball for
d of center t and radius b, we thus have

Bj(t, c) = B(t, r−j√c) .

Thus in (5.3) we require that

∀� , �′ ≤ m , � �= �′ , d(t�, t�′) ≥ 2n/2r−j := a . (5.6)

On the other hand, the condition H� ⊂ Bj+1(t�, 2n+κ) means that

H� ⊂ B(t�, 2(n+κ)/2r−j−1) = B(t�, ηa) ,

for η = 2κ/2/r = 2−κ/2+4 = 4/
√

r. Thus, as r gets larger, η gets smaller, and
the sets H� become better separated. Also, (5.4) reads as

Fn,j

( ⋃
�≤m

H�

)
≥ 2n/2a + min

�≤m
Fn+1,j+1(H�) ,

which strongly resembles (1.31) for θ(n) = 2n/2 and β = 1.

Theorem 5.1.2. Assume that the functionals Fn,j are as above, and in par-
ticular satisfy the growth condition of Definition 5.1.1, and that, for some
j0 ∈ Z we have

∀s , t ∈ T , ϕj0−1(s, t) ≤ 2n0−1 . (5.7)

Then there exists an admissible sequence (An) and for each A ∈ An an integer
j(A) ∈ Z such that
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A ∈ An , B ∈ An−1 , A ⊂ B ⇒ j(B) ≤ j(A) ≤ j(B) + 1 (5.8)

∀t ∈ T ,
∑

n≥n0

2nr−j(An(t)) ≤ L(Fn0,j0(T ) + 2n0r−j0 ) (5.9)

∀n ≥ n0 , ∀A ∈ An , ∃tA ∈ T , A ⊂ Bj(A)−1(tA, 2n−1) . (5.10)

To make sense out of this, we again carry out the case (5.5). Then (5.7)
means that ∆(T, d) ≤ r−j0+12(n0−1)/2, while (5.10) implies that ∆(A, d) ≤
r−j(A)+12n/2+1, and (5.9) implies that

∀t ∈ T ,
∑

n≥n0

2n/2∆(An(t), d) ≤ Lr(Fn0,j0(T ) + 2n0r−j0 ) .

Taking for j0 the largest integer such that ∆(T, d) ≤ r−j0+12(n0−1)/2, we get

∀t ∈ T ,
∑

n≥n0

2n/2∆(An(t), d) ≤ Lr
(
Fn0,j0(T ) + 2n0/2∆(T, d)

)
.

This relation resembles the relation one gets by combing (1.33) with
Lemma 1.3.3, and the parameter n0 plays a role similar to τ .

The proof of Theorem 5.1.2 follows closely the proof of Theorem 1.3.2,
and of course the reader should master this latter result before attempting
to read it.

Proof of Theorem 5.1.2. Together with C ∈ An , n ≥ n0 we construct inte-
gers j(C) ∈ Z , q(C) ∈ N, points tC ∈ T , and numbers b0(C) , b1(C) , b2(C) ≥
0 satisfying the following conditions, where j = j(C)

C ⊂ Bj−1(tC , 2n−1) (5.11)

Fn,j(C) ≤ b0(C) (5.12)

∀t ∈ C , Fn,j(C ∩ Bj(t, 2n+κ−q(C))) ≤ b1(C) (5.13)

∀t ∈ C, Fn,j+1(C ∩ Bj+1(t, 2n+κ−1)) ≤ b2(C) (5.14)

b0(C) ≥ b1(C) ≥ b0(C) − 2n+κ−q(C)−4r−j (5.15)

b0(C) ≥ b2(C) ≥ b0(C) − 2n−1r−j . (5.16)

Moreover, we will arrange that if A ⊂ C , A ∈ An+1 and n ≥ n0 then

b0(A) + b1(A) + b2(A) +
1
4
2nr−j(A) (5.17)

≤ b0(C) + b1(C) + b2(C) +
3
16

2n−1r−j(C) .

To start the construction we pick an arbitrary point tT ∈ T . We define
An0 = {T } , j(T ) = j0 , q(T ) = 0 , b0(T ) = b1(T ) = b2(T ) = Fn0,j0(T ). Thus
(5.11) holds by (5.7), while (5.12) to (5.16) are obvious.
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To construct An+1 once An has been constructed, we will show how to
split an element C of An in at most m = Nn pieces. (Thus, since N2

n ≤ Nn+1,
An+1 contains at most Nn+1 sets.) We set j = j(C) and q = q(C). We
consider ε > 0 to be determined later. We set D0 = C. First we choose t1 in
D0 with

Fn+1,j+1(D0 ∩ Bj+1(t1, 2n+κ)) ≥ sup
t∈D0

Fn+1,j+1(D0 ∩ Bj+1(t, 2n+κ)) − ε .

We then set A1 = D0 ∩ Bj(t1, 2n) and D1 = D0\A1. If D1 is not empty, we
choose t2 in D1 such that

Fn+1,j+1(D1 ∩ Bj+1(t2, 2n+κ)) ≥ sup
t∈D1

Fn+1,j+1(D1 ∩ Bj+1(t, 2n+κ)) − ε ,

and we set A2 = D1 ∩ Bj(t2, 2n) and D2 = D1\A2. We continue in this
manner until either we exhaust C or we construct Dm−1. In the latter case
we set Am = Dm−1 and we stop the construction.

In this manner we split C in at most m = Nn pieces A1 , · · · , Am. Con-
sider one of these, which we call A.

We first examine the case where

A = Am = Dm−1 = C\
⋃

�<m

Bj(t�, 2n) .

In that case we set j(A) = j = j(C), q(A) = q(C) + 1, tA = tC and

b0(A) = b0(C) , b1(A) = b1(C) , b2(A) = b0(C) − 2nr−j + ε . (5.18)

It is obvious that (5.11) holds for A since it holds for C. Since Fn+1,j ≤ Fn,j

and since n + 1− q(A) = n− q(C), the fact that (5.12) and (5.13) hold for C
imply that they hold for A. It is obvious that (5.15) holds for A, and (5.16)
holds for A as soon as ε ≤ 2nr−j .

We turn to the proof of (5.14). Consider 1 ≤ � < m. By construction of
t� we have, since A = Dm−1 ⊂ D�−1,

∀t ∈ D�−1, Fn+1,j+1(A ∩ Bj+1(t, 2n+κ)) (5.19)
≤ Fn+1,j+1(D�−1 ∩ Bj+1(t, 2n+κ))
≤ Fn+1,j+1(D�−1 ∩ Bj+1(t�, 2n+κ)) + ε .

Consider t ∈ A and set H� = D�−1 ∩ Bj+1(t�, 2n+κ) for 1 ≤ � < m and
Hm = A ∩ Bj+1(t, 2n+κ). By (5.19), for � < m we have Fn+1,j+1(Hm) ≤
Fn+1,j+1(H�) + ε and thus

inf
�≤m

Fn+1,j+1(H�) ≥ Fn+1,j+1(Hm) − ε .

Define tm = t. We have ϕj(t�, t�′) ≥ 2n for � �= �′, and t� ∈ C ⊂
Bj−1(tC , 2n−1), so we have by (5.12) and (5.4) that
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b0(C) ≥ Fn,j(C) ≥ Fn,j

( ⋃
�≤m

H�

)
≥ 2nr−j + Fn+1,j+1(Hm) − ε

= 2nr−j + Fn+1,j+1(A ∩ Bj+1(t, 2n+κ) − ε

and this proves that (5.14) holds for A.
A good choice of ε is now obvious. Taking ε = 2n−2r−j , and since by

(5.16) we have b2(C) ≥ b0(C) − 2n−1r−j , we get by (5.18) that

b0(A) + b1(A) + b2(A) +
1
4
2nr−j ≤ 2b0(C) + b1(C) − 2n−1r−j

≤ b0(C) + b1(C) + b2(C) ,

from which (5.17) follows.
We now consider the case where A = D�−1 ∩ Bj(t�, 2n) , 1 ≤ � < m. We

define j(A) = j + 1 , q(A) = 2, tA = t�. It is obvious that (5.11) holds for A.
By (5.14) for C, and since Fn+1,j+1 ≤ Fn,j+1, we have

∀t ∈ A , Fn+1,j(A)(A ∩ Bj(A)(t, 2n+κ−1)) ≤ b2(C) . (5.20)

We note that, using (5.16) we have

b2(C) ≥ b0(C) − 2n−1r−j = b0(C) − 2n+1+κ−q(A)−4r−j(A) , (5.21)

because r = 2κ−4.
For the rest of the argument we need to distinguish cases. Let us first

assume that q(C) > κ. We then take

b1(A) = b2(C) , b0(A) = b2(A) = b0(C) . (5.22)

Since Fn+1,j+2 ≤ Fn+1,j+1 ≤ Fn,j+1 ≤ Fn,j , it is obvious that (5.12), (5.14)
and (5.16) hold for A. Moreover, since n+1− q(A) = n−1, (5.13) and (5.15)
for A follow from (5.20) and (5.21) respectively. Using again (5.22) we have

b0(A) + b1(A) + b2(A) = 2b0(C) + b2(C)
≤ b0(C) + b1(C) + b2(C) + 2n+κ−q(C)−4r−j

using (5.15). Thus, since q(C) ≥ κ + 1 we have

b0(A) + b1(A) + b2(A) ≤ b0(C) + b1(C) + b2(C) +
1
16

2n−1r−j . (5.23)

Since κ ≥ 6 we have r = 2κ−4 ≥ 4, so that 2nr−j(A) ≤ 2n−1r−j/2 and (5.23)
implies (5.17).

Suppose now that q(C) ≤ κ. In that case we take

b1(A) = min(b2(C), b1(C)) , b0(A) = b2(A) = b1(C) .
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From (5.13) we see that, since Fn+1,j+1 ≤ Fn,j

Fn+1,j(A)(A) ≤ Fn+1,j(A)(C ∩ Bj(t�, 2n)) ≤ b1(C) = b0(A) = b2(A) . (5.24)

This implies that (5.12) and (since Fn+1,j+2 ≤ Fn+1,j+1) that (5.14) hold
for A. Moreover, it follows from (5.24) and (5.20) that (5.13) holds for A.
Relation (5.16) for A is obvious, and since b1(A) ≤ b0(A) by construction,
relation (5.15) for A follows from (5.21) since b0(C) ≥ b1(C). Finally, we have

b0(A) + b1(A) + b2(A) ≤ 2b1(C) + b2(C) ≤ b0(C) + b1(C) + b2(C)

and since 2nr−j(A) ≤ 2n−1r−j/2, (5.17) holds. This completes the construc-
tion.

Summation of the relations (5.17) for n ≥ n0 yields

∀t ∈ T ,
∑

n≥n0+1

1
16

2n−1r−j(An(t)) ≤ 3Fn0,j0(T ) +
3
16

2n0−1r−j0 .

This concludes the proof, using that j(A0(t)) = j(T ) = j0 to control the term
n = n0 in the summation of (5.9). �

5.2 The Structure of Certain Canonical Processes

In this section we prove a far reaching generalization of Theorem 2.1.1. We
consider independent, centered, symmetric r.v. (Yi)i≥1. We assume that

Ui(x) = − log P (|Yi| ≥ x) (5.25)

is convex. Since it is a matter of normalization, we assume that Ui(1) = 1.
Since Ui(0) = 0 we then have U ′

i(1) ≥ 1.
Given t = (ti)i≥1 ∈ �2, we define

Xt =
∑
i≥1

tiYi .

The condition t ∈ �2 is to ensure the convergence of the series. (Very little
of the results we will present is lost if one assumes that only finitely many of
the coefficients ti are not 0). The aim of this section is to study collections of
such r.v. as t varies over a set T . It is in truth a rather amazing fact that this
can be done at all at the level of generality that we will achieve. The price
to pay for this is the same as ever: we will have to go through a few abstract
definitions. These represent the outcome of many steps of abstraction, and
the ideas behind them can be understood only gradually.

We consider the function Ûi(x) given by
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Ûi(x) = x2 if 0 < |x| ≤ 1
Ûi(x) = 2Ui(|x|) − 1 if |x| ≥ 1 ,

so that this function is convex.
Given u > 0, we define

Nu(t) = sup
{∑

i≥1

tiai ;
∑
i≥1

Ûi(ai) ≤ u
}

.

We define
B(u) = {t ; Nu(t) ≤ u}

and, given a number r, we define

ϕj(s, t) = inf{u > 0 ; s − t ∈ r−jB(u)} .

The only way to get a feeling of what happens is to carry out the meaning
of these definitions in a concrete case. The simplest case is when, for all i, we
have Ui(x) = x2. In that case, it is rather immediate that

x2 ≤ Ûi(x) ≤ 2x2 ;
√

u

2
‖t‖2 ≤ Nu(t) ≤ √

u‖t‖2,

so that B2(0,
√

u) ⊂ B(u) ⊂ B2(0,
√

2u), where B2 denotes the ball of �2,
and

1
2
r2j‖s − t‖2

2 ≤ ϕj(s, t) ≤ r2j‖s − t‖2
2 , (5.26)

and we are almost in the situation of (5.5).
The second simplest example is the case where for all i we have Ui(x) = x

for x ≥ 0. In that case we have |x| ≤ Ûi(x) = 2|x| − 1 ≤ x2 for |x| ≥ 1. Thus
Ûi(x) ≤ x2 and Ui(x) ≤ 2|x| for all x ≥ 0, and hence∑

i≥1

a2
i ≤ u ⇒

∑
i≥1

Ûi(ai) ≤ u

and ∑
i≥1

2|ai| ≤ u ⇒
∑
i≥1

Ûi(ai) ≤ u .

Moreover, if
∑

i≥1 Ûi(ai) ≤ u, writing bi = ai1{|ai|≥1} and ci = ai1{|ai|<1}
we have

∑
i≥1 |bi| ≤ u and

∑
i≥1 c2

i ≤ u. It follows that

1
L

(u‖t‖∞ +
√

u‖t‖2) ≤ Nu(t) ≤ L(u‖t‖∞ +
√

u‖t‖2) ,

and thus

1
L
{t ; ‖t‖∞ ≤ 1 , ‖t‖2 ≤ √

u} ⊂ B(u) ⊂ L{t ; ‖t‖∞ ≤ 1 , ‖t‖2 ≤ √
u} .

(5.27)
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In this case the functions ϕj have a genuinely more complicated structure
than in the case of (5.26).

The third simplest example is the case where for some p ≥ 1 and for
all i we have Ui(x) = xp for x ≥ 0, and the reader who truly wants to
understand what really is going on would do well to work out a version of
the general result in this special case. (The cases p > 2 and p < 2 offer
significant differences.) This case was treated by the author in [54] and we
owe the present more general setting to a further effort by R. Latala [16].

Theorem 5.2.1. Assume that there exists an admissible sequence (An) of
T ⊂ �2, and for A ∈ An an integer j(A) ∈ Z such that

∀A ∈ An , ∀s , s′ ∈ A , ϕj(A)−1(s, s′) ≤ 2n . (5.28)

Then
E sup

t∈T
Xt ≤ Lr sup

t∈T

∑
n≥0

2nr−j(An(t)) . (5.29)

Let us first interpret this statement in the case where for each i we
have Ui(x) = x2. In that case (and more generally when Ui(x) ≥ x2/L
for x ≥ 1) we have ϕj(s, t) ≤ Lr2j‖s − t‖2

2, so that (5.28) holds as soon
as r2j(A)−2∆(A, d2)2 ≤ 2n/L, where of course d2 denotes the distance in-
duced by the norm of �2. Taking for j(A) the largest integer that satis-
fies this inequality, we see that the right-hand side of (5.29) is bounded by
Lr supt∈T

∑
n≥0 2n/2∆(An(t), d2), so by taking the infimum over the admis-

sible sequences (An) we see that (5.29) implies

E sup
t∈T

Xt ≤ Lrγ2(T, d2) .

Let us now interpret Theorem 5.2.1 when Ui(x) = x for each i. Using
(5.27) we see that if ‖s − t‖∞ ≤ r−j/L we have ϕj(s, t) ≤ Lr2j‖s − t‖2

2, so
that (5.28) holds whenever rj(A)−1∆(A, d∞) ≤ 1/L and r2j(A)−2∆(A, d2)2 ≤
2n/L, where of course d∞ denotes the distance induced by the norm of �∞.
Taking for j(A) the largest integer that satisfies both conditions we see that

r−j(A) ≤ L
(
∆(A, d∞) + 2−n/2∆(A, d2)

)
,

so that (5.29) implies that

E sup
t∈T

Xt ≤ Lr sup
t∈T

∑
n≥0

(
2n∆(An(t), d∞) + 2n/2∆(An(t), d2)

)
.

Using the argument at the beginning of the proof of Theorem 1.2.7, we then
see that

E sup
t∈T

Xt ≤ Lr
(
γ2(T, d2) + γ1(T, d1)

)
. (5.30)

This resembles Theorem 1.2.7, and could actually be deduced from this
theorem and an appropriate version of Bernstein’s inequality.

It will be a simple adaptation of the proof of Theorem 1.2.6 to deduce
Theorem 5.2.1 from the following.



5.2 The Structure of Certain Canonical Processes 153

Proposition 5.2.2. If u > 0 , v ≥ 1, we have

P(Xt ≥ LvNu(t)) ≤ exp(−uv) . (5.31)

Proof of Theorem 5.2.1. We consider an arbitrary element t0 of T and we set
T0 = {t0}. For n ≥ 1 we consider a set Tn such that

∀A ∈ An , card(A ∩ Tn) = 1 .

For t ∈ T we define πn(t) by {πn(t)} = An(t) ∩ Tn. For any integer k and
any t in Tk we have

Xt − Xt0 =
∑

1≤n≤k

Xπn(t) − Xπn−1(t) . (5.32)

For v ≥ 1 consider the event Ωv defined by

∀n ≥ 1 , ∀s ∈ Tn , ∀s′ ∈ Tn−1 , |Xs − Xs′ | ≤ LvN2n−1(s − s′) , (5.33)

where L is as in (5.31). Then, using (5.31) and the fact that cardTn ·
cardTn−1 ≤ NnNn−1 ≤ 22n+1

, we see that

P(Ωc
v) ≤ p(v) :=

∑
n≥1

22n+1
exp(−v2n−1) . (5.34)

From (5.28) and the definition of ϕj we have

∀s , s′ ∈ A ∈ An , s − s′ ∈ r−j(A)+1B(2n) . (5.35)

Since πn(t), πn−1(t) ∈ An−1(t), by (5.35) we have

πn(t) − πn−1(t) ∈ r−j(An−1(t))+1B(2n−1) ,

so that, by definition of B(u) we have

N2n−1(πn(t) − πn−1(t)) ≤ 2n−1r−j(An−1(t))+1 .

By definition of Ωv, when this event occurs, we see using (5.33) for s = πn(t)
and s′ = πn−1(t) that we have

|Xπn(t) − Xπn−1(t)| ≤ Lv2nr−j(An−1(t))+1 ,

and by (5.32) for t ∈ Tk we have

|Xt − Xt0 | ≤ Lv
∑

1≤n≤k

2nr−j(An−1(t))+1 ,

and thus
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sup
t∈Tk

|Xt − Xt0 | ≤ Lv sup
t∈T

∑
1≤n≤k

2nr−j(An−1(t))+1 ,

so that

P
(

sup
t∈Tk

|Xt − Xt0 | > Lv sup
t∈T

∑
1≤n≤k

2nr−j(An−1(t))+1
)
≤ P(Ωc

v) ,

and using (5.34) we get

E sup
t∈Tk

|Xt − Xt0 | ≤ L sup
t∈T

∑
1≤n≤k

2nr−j(An−1(t))+1 ,

which implies the conclusion since k is arbitrary. �
The proof of Proposition 5.2.2 requires several lemmas. For λ ≥ 0 we

define Vi(λ) = supx(λx − Ûi(x)), so that Vi(λ) < ∞ for λ < λi, where
λi = limx→∞ Ûi(x)/x ≥ 1 (that exists by convexity). Taking x = λ/2 we
observe that

λ ≤ 2 ⇒ Vi(λ) ≥ λ2

4
(5.36)

and taking x = 1 we get
Vi(λ) ≥ λ − 1 . (5.37)

Lemma 5.2.3. For λ ≥ 0 we have

E expλYi ≤ exp Vi(Lλ) .

Proof. Since U ′
i(1) ≥ 1, for x ≥ 1 we have Ui(x) ≥ x, so that by (5.25) we

have P(|Yi| ≥ x) ≤ e−x and hence

EY 2
i exp

|Yi|
2

≤ L .

We have ex ≤ 1 + x + x2e|x| so that, if λ ≤ 1/2,

E expλYi ≤ 1 + λ2EX2
i exp λ|Yi| ≤ 1 + Lλ2

≤ exp Lλ2 ≤ exp Vi(L′λ)

using (5.36).
If λ ≥ 1/2, we have

E expλ|Yi| = 1 + λ

∫ ∞

0

exp λxP(|Yi| ≥ x)dx

≤ 1 + λ

∫ ∞

0

exp(λx − Ui(x))dx .

If x ≤ 1, we have 4λx ≤ 4λ ≤ 6λ−1 ≤ Vi(6λ), using that λ ≥ 1/2 and (5.37).
Thus we have
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λx − Ui(x) ≤ λx ≤ Vi(6λ)
2

− λx .

If x ≥ 1 we have Ui(x) ≥ Ûi(x)/2 and

λx − Ui(x) ≤ λx − Ûi(x)
2

≤ Vi(4λ)
2

− λx

by definition of Vi. Thus, since Vi(4λ) ≤ Vi(6λ) we have

E expλ|Yi| ≤ 1 + λ

∫ ∞

0

exp(
Vi(6λ)

2
− λx)dx

= 1 + exp
Vi(6λ)

2
≤ 2 exp

Vi(6λ)
2

≤ exp Vi(6λ)

because Vi(6λ) ≥ Vi(3) ≥ 2. �

Lemma 5.2.4. We have ∑
i≥1

Vi

( u|ti|
Nu(t)

) ≤ u .

Proof. It suffices to show that given numbers xi ≥ 0, we have

∑
i≥1

utixi

Nu(t)
−

∑
i≥1

Ûi(xi) ≤ u . (5.38)

If
∑

i≥1 Ûi(xi) ≤ u, then by definition of Nu(t) we have
∑

i≥1 tixi ≤ Nu(t)
so we are done. If

∑
i≥1 Ûi(xi) = θu with θ > 1, then

∑
i≥1 Ûi(xi/θ) ≤ u, so

that
∑

i≥1 tixi ≤ θNu(t) and the left-hand side of (5.38) is in fact ≤ 0. �

Lemma 5.2.5. If v ≥ 1 we have

Nuv(t) ≤ vNu(t) . (5.39)

Proof. For v ≥ 1 we have Ûi(ai/v) ≤ Ûi(ai)/v. If
∑

i≥1 Ûi(ai) ≤ uv we then
have

∑
i≥1 Ûi(ai/v) ≤ u so that by definition of Nu we have

∑
i≥1 tiai/v ≤

Nu(t) and thus
∑

i≥1 tiai ≤ vNu(t). �

Proof of Proposition 5.2.2. Since by Lemma 5.2.5 we have vNu(t) ≥ Nvu(t),
we can assume v = 1. Using Lemma 5.2.3 we have

P(Xt ≥ y) ≤ exp(−λy)E expλXt

≤ exp
(−λy +

∑
i≥1

Vi(L0λ|ti|)
)

.

We choose y = 2L0Nu(t) , λ = 2u/y, and we apply Lemma 5.2.4 to see that
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−λy +
∑
i≥1

Vi(L0λti) ≤ −2u + u = −u .

�
Let us now turn to the converse of Theorem 5.2.1. We assume the following

regularity conditions. For some constant C0, we have

∀i ≥ 1 , ∀s ≥ 1 , Ui(2s) ≤ C0Ui(s) . (5.40)

∀i ≥ 1 , U ′
i(0) ≥ 1/C0 . (5.41)

Here, U ′
i(0) is the right derivative at 0 of the function Ui(x). Condition (5.40)

is often called “the ∆2 condition”.

Theorem 5.2.6. Under conditions (5.40) and (5.41) we can find r (depend-
ing on C0 only) and a number K = K(C0) such that for each subset T of
�2 there exists an admissible sequence (An) of T and for A ∈ An an integer
j(A) ∈ Z such that (5.28) holds together with

sup
t∈T

∑
n≥0

2nr−j(An(t)) ≤ K(C0)E sup
t∈T

Xt . (5.42)

Together with Theorem 5.2.1, this essentially allows the computation of
E supt∈T Xt as a function of the geometry of T .

Let us interpret this statement in the case where for x ≥ 1 we have
Ui(x) = x2. In that case, and more generally when Ui(x) ≤ x2/L for x ≥ 1,
we have

ϕj(s, t) ≥ r2j‖s− t‖2
2/L , (5.43)

so that (5.28) implies that ∆(A, d2) ≤ L2n/2r−j(A)+1 and (5.42) shows that

sup
t∈T

∑
n≥0

2n/2∆(An(t), d2) ≤ LrE sup
t∈T

Xt ,

and hence
γ2(T, d2) ≤ LrE sup

t∈T
Xt . (5.44)

Thus, we have proved (an extension of) Theorem 2.1.1.
Consider now the case where Ui(x) = x for all x. From (5.27) we see that

we not only have (5.43), and thus (5.44), but also ϕj(s, t) = ∞ if ‖s− t‖∞ ≥
Lr−j . Thus (5.28) implies that ∆(A, d∞) ≤ Lr−j(A)+1, and (5.42) implies
that

γ1(T, d∞) ≤ LrE sup
t∈T

Xt .

Recalling (5.30) (and since here r is a universal constant) we thus have
proved the following very pretty fact.
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Theorem 5.2.7. Assume that the r.v. Yi are independent, symmetric and
satisfy P(|Yi| ≥ x) = exp(−x). Then we have

1
L

(γ2(T, d2) + γ1(T, d∞)) ≤ E sup
t∈T

Xt ≤ L(γ2(T, d2) + γ1(T, d∞)) .

We turn to the proof of Theorem 5.2.6.

Lemma 5.2.8. Under (5.40), given ρ > 0 we can find r0, depending on C0

and ρ only, such that if r ≥ r0, for u ∈ R
+ we have

Bj+1(0, 16ru) ⊂ ρBj(0, u) , (5.45)

where Bj(t, u) = {s ; ϕj(s, t) ≤ u} = s + r−jB(u).

Proof. It suffices to prove that

B(16ru) ⊂ ρrB(u) . (5.46)

Indeed if t ∈ Bj+1(0, 16ru), then we have t ∈ r−j−1B(16ru) ⊂ ρr−jB(u) =
ρBj(0, u) by definition of ϕj .

To prove (5.46), consider t ∈ B(16ru). Then N16ru(t) ≤ 16ru by defini-
tion, so that for any numbers (ai)i≥1 we have∑

i≥1

Ûi(ai) ≤ 16ru ⇒
∑
i≥1

aiti ≤ 16ru . (5.47)

From (5.40) we see that for some constant C1, depending only on C0 we
have

∀u > 0 , Ûi(2u) ≤ C1Ûi(u) . (5.48)

Consider an integer k large enough that 2−k+4 ≤ ρ and let r0 = Ck
1 . Assume

that r ≥ r0 and consider numbers bi with
∑

i≥1 Ûi(bi) ≤ u. Then by (5.48)
we have Ûi(2kbi) ≤ Ck

1 Ûi(bi) ≤ rÛ(bi), so that
∑

i≥1 Ûi(2kbi) ≤ ru ≤ 16ru,
and by (5.47) we have

∑
i≥1 2kbiti ≤ 16ru i.e. we have shown that

∑
i≥1

Ûi(bi) ≤ u ⇒
∑
i≥1

bi
ti
ρr

≤ u

so that Nu(t/ρr) ≤ u and thus t/ρr ∈ B(u). �

Theorem 5.2.9. Under Condition (5.41) we can find a number ρ > 0 with
the following property. Given any points t1, · · · , tm in �2 such that

� �= �′ ⇒ t� − t�′ �∈ B(u) (5.49)

and given any sets H� ⊂ t� + ρB(u), we have

E sup
t∈⋃

H�

Xt ≥ 1
L

min(u, log m) + min
�≤m

E sup
t∈H�

Xt . (5.50)
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The proof of this statement is very similar to the proof of (2.8). The first
ingredient is a suitable version of Sudakov minoration, asserting that, under
(5.49)

E sup
�≤m

Xt�
≥ 1

L
min(u, log m) (5.51)

and the second is a “concentration of measure” result that quantifies the
deviation of supt∈H�

Xt from its mean. Condition (5.41) is used there, to
assert that the law of Yi is the image of the probability ν of density e−2|x|

with respect to Lebesgue measure by a Lipschitz map. This allows to apply
the result of concentration of measure concerning ν first proved in [47]. Since
neither of these arguments is closely related to our main topic, we refer the
reader to [54] and [16].
Proof of Theorem 5.2.6. Consider the functionals Fn,j(A) = 2LE supt∈A Xt,
where L is the constant of (5.50). Consider n ≥ 1. We use (5.50) with u = 2n,
m = Nn and homogeneity to see that if

� �= �′ ⇒ t� − t�′ �∈ r−jB(2n) (5.52)

then given any sets H� ⊂ t� + r−jρB(2n) we have

Fn,j

( ⋃
�≤m

H�

)
≥ 2nr−j + min

�≤m
Fn+1,j+1(H�),

because log m = 2n log 2 ≥ 2n−1. The definition of ϕj shows that (5.3) coin-
cides with (5.52). If r = 2κ−4, where κ is large enough (depending on C0 only),
Lemma 5.2.8 used for u = 2n shows that B(2κ+n) ⊂ ρrB(2n) and the condi-
tion H� ⊂ t� + r−jρB(2n) follows from the condition H� ⊂ Bj+1(t�, 2κ+n) =
t� + r−j−1B(2κ+n). So we have proved that (5.4) holds true for n ≥ n0 = 1
under (5.2), i.e. we have proved that the growth condition of Definition 5.1.1
holds true (for n0 and r).

From (5.51) we see that if s , t ∈ T , s − t �∈ aB(1), then

a

L
≤ E max(Xs, Xt) ≤ E sup

t∈T
Xt .

Thus if j0 denotes the largest integer such that r−j0+1 > LE supt∈T Xt, for
s , t ∈ T we have s − t ∈ r−j0+1B(1) and thus ϕj0−1(s, t) ≤ 1, that is (5.7)
holds for n0 = 1 and this value of j0. Thus we are in a position to apply
Theorem 5.1.2. Setting j(T ) = j0, and recalling that A0 = {T }, we then see
that (5.42) follows from (5.9), and we prove (5.28). By definition of Bj(t, u)
and of ϕj , we have

s ∈ Bj−1(t, u) ⇒ ϕj−1(s, t) ≤ u ⇒ s − t ∈ r−j+1B(u) .

Thus, from (5.10) we have

∀n ≥ 1 , ∀A ∈ An , ∀s ∈ A , s − tA ∈ r−j(A)+1B(2n) .
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Since B(u) is a convex symmetric set, we have

s − tA ∈ r−j(A)+1B(2n), s′ − tA ∈ r−j(A)+1B(2n) ⇒ s − s′

2
∈ r−j(A)+1B(2n)

⇒ ϕj(A)−1

(s

2
,
s′

2

)
≤ 2n ,

and finally

∀n ≥ 1 , ∀A ∈ An , ∀s, s′ ∈ A , ϕj(A)−1

(s

2
,
s′

2

)
≤ 2n .

This is not exactly (5.28), but of course to get rid of the factor 1/2 it would
have sufficed to apply the above proof to 2T = {2t ; t ∈ T } instead of T . �

As a consequence of Theorems 5.2.1 and 5.2.6, we have the following
geometrical result. Consider a set T ⊂ �2, an admissible sequence (An) of T
and for A ∈ An an integer j(A) such that (5.28) holds true. Then there is
an admissible sequence (Bn) of conv T and for B ∈ Bn an integer j(B) that
satisfies (5.28) and

sup
t∈convT

∑
n≥0

2nr−j(Bn(t)) ≤ K(C0) sup
t∈T

∑
n≥0

2nr−j(An(t)) .

Research problem 5.2.10. Give a geometrical proof of this fact.

This is a far-reaching generalization of Research Problem 2.1.9.
The following generalizes Theorem 2.1.8.

Theorem 5.2.11. Assume (5.40) and (5.41). Consider a countable subset
T of �2, with 0 ∈ T . Then we can find a sequence (xn) of vectors of �2 such
that

T ⊂ conv{xn , n ≥ 2} ∪ {0}
and, for each n,

Nlog n(xn) ≤ K(C0)E sup
t∈T

Xt .

To appreciate this result, one should note that, by (5.31), if the sequence
(xn)n≥2 satisfies Nlog n(xn) ≤ 1, then E supn≥2 Xxn ≤ L.

Proof. We consider a sequence of partitions of T as provided by Theorem
5.2.6. We choose tT = 0, and for A ∈ An , n ≥ 1 we select tA ∈ An, making
sure (as in the proof of Theorem 2.1.1) that each point of T is of the form tA
for a certain A . For A ∈ An , n ≥ 1, we denote by A′ the unique element of
An−1 that contains A.

We define
uA =

tA − tA′

2nr−j(A′)+1
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and U = {uA , A ∈ An , n ≥ 1}. Consider t ∈ T , so that t = tA for some n
and some A ∈ An, and, since A0(t) = T and tT = 0,

t = tA =
∑

1≤k≤n

tAk(t) − tAk−1(t) =
∑

1≤k≤n

2kr−j(Ak−1(t))+1uAk(t) .

Since
∑

k≥0 2kr−j(Ak(t)) ≤ K(C0)E supt∈T Xt by (5.42), this shows that

T ⊂ (K(C0)E sup
t∈T

Xt)U .

Next, we prove that N2n+1(uA) ≤ 2 whenever A ∈ An. By (5.28) and the
definition of ϕj we have by homogeneity of Nu,

∀s , s′ ∈ A , s − s′ ∈ r−j(A)+1B(2n) .

Since tA, tA′ ∈ A′, using this for A′ instead of A and using the definition of
B(u) we have

N2n−1(tA − tA′) ≤ 2n−1r−j(A′)+1 ,

and thus N2n−1(uA) ≤ 1/2, so that N2n+1(uA) ≤ 2 using (5.39).
Let us enumerate U = (yn)n≥2 in such a manner that the points of the

type uA for A ∈ A1 are enumerated before the points of the type uA for
A ∈ A2, etc. Then if yn = uA for A ∈ Ak, we have n ≤ N0+N1+. . .+Nk ≤ N2

k

and log n ≤ 2k+1. Thus Nlog n(yn) ≤ N2k+1(yn) = N2k+1(uA) ≤ 2.We then
set xn = ynK(C0)E supt∈T Xt �

It is not very difficult to prove that Theorem 5.2.6 still holds true without
condition (5.41), and this is done in [16]. But it is an entirely different matter
to remove condition (5.40). In fact, it is not difficult to see that if one could
obtain (5.42) without condition (5.40) (and a universal constant instead of
K(C0)), one would have a positive answer to the Bernoulli conjecture.

5.3 Lower Bounds for Infinitely Divisible Processes

If T is a finite set, a stochastic process (Xt)t∈T is called (real, symmetric,
without Gaussian component) infinitely divisible if there exists a positive
measure ν on R

T such that
∫

RT (β(t)2 ∧ 1)dν(β) < ∞ for all t in T , and such
that for all families (αt)t∈T of real numbers we have

E exp i
∑
t∈T

αtXt = exp
(
−

∫
RT

(
1 − cos

(∑
t∈T

αtβ(t)
))

dν(β)
)

. (5.53)

Here, as in the rest of this section, x∧ 1 = min(x, 1). The positive measure ν
is called the Lévy measure of the process. To get a feeling for this formula,
consider the case where ν consists of a mass a at a point β ∈ R

T . Then,
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in distribution, we have (Xt)t∈T = (β(t)(Y − Y ′))t∈T where Y and Y ′ are
independent Poisson r.v. of expectation a/2. One can then view the formula
(5.53) as saying that the general case is obtained by taking a (kind of infinite)
sum of independent processes of the previous type.

The reason for which we exclude Gaussian components is that they are
well understood, as was seen in Chapter 2.

The reason why we consider only the symmetric case is that this is essen-
tially not a restriction, using the symmetrization procedure that we have met
several times, i.e. replacing the process (Xt)t∈T by the process (Xt −X ′

t)t∈T

where (X ′
t)t∈T is an independent copy of (Xt)t∈T .

For the type of inequalities we wish to prove, it is not a restriction to
assume that T is finite, which we will do for simplicity. But for the purpose of
this introduction it will be useful to consider also the case where T is infinite.
In that case, we still say that the process (Xt)t∈T is infinitely divisible if (5.53)
holds for each family (αt)t∈T such that only finitely many coefficients are not
0. Now ν is a “cylindrical measure” that is known through its projections
on R

S for S finite subset of T , projections that are positive measures (and
satisfy the obvious compatibility conditions).

An infinitely divisible process indexed by T is thus parameterized by a
cylindrical measure on R

T (with the sole restriction that
∫

(β(t)2∧1)dν(β) <
∞ for each t ∈ T ). This is a huge class, and only some extremely special
subclasses have yet been studied in any detail. The best known class is that
of infinitely divisible process with stationary increments. Then T = R

+ and
ν is the image of µ ⊗ λ under the map (x, u) �→ (x1{t≥u})t∈R+ , where µ is a
positive measure on R such that

∫
(x2∧1)dµ(x) < ∞ and where λ is Lebesgue

measure. More likely than not a probabilist selected at random (!) will think
that infinitely divisible process are intrinsically discontinuous. This is simply
because he has this extremely special case as a mental picture. As will be
apparent later (through Rosinski’s representation) discontinuity in this case
is created by the fact that ν is supported by the discontinuous functions
t �→ x1{t≥u} and is certainly not intrinsic to infinitely divisible processes. In
fact, some lesser known classes of infinitely divisible processes studied in the
literature, such as moving averages (see e.g. [24]) are often continuous. They
are still very much more special than the structures we consider.

Continuity will not be studied here, and was mentioned simply to stress
that we deal here with hugely general and complicated structures, and it is
almost surprising that so much can be said about them.

Unfortunately to prove lower bounds on infinitely divisible processes, we
need the following regularity condition. (On the other hand, the upper bound
of Theorem 5.4.5 requires no special conditions.)

Definition 5.3.1. Consider δ > 0 and C0 > 0. We say that condition
H(C0, δ) holds if for all s , t ∈ T , and all u > 0 , v > 1 we have

ν({β ; |β(s) − β(t)| ≥ uv}) ≤ C0v
−1−δν({β ; |β(s) − β(t)| ≥ u}) .
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It should be observed that without loss of generality one can assume that
δ < 1. This will be assumed henceforth.

Condition H(C0, δ) is certainly annoying, since it rules out important
cases, such as the case where the image of ν under the map β �→ β(t) charges
only one point (i.e. Xt is a symmetrized Poisson r.v.).

It is probably an interesting and difficult program to investigate what
happens when condition H(C0, δ) does not hold.

A large class of measures ν that satisfy condition H(C0, δ) can be con-
structed as follows. Consider a measure µ on R, and assume that

∀u > 0, ∀v > 1 , µ({x ; |x| ≥ uv}) ≤ C0v
−1−δµ({x ; |x| ≥ u}) . (5.54)

Consider a probability measure m on R
T . Assume that

ν is the image of µ ⊗ m under the map (x, γ) �→ xγ . (5.55)

Then ν satisfies condition H(C0, δ). This follows from (5.54) using the formula

ν({β ; |β(s) − β(t)| ≥ u}) =
∫

µ({x ; |x||γ(s) − γ(t)| ≥ u})dm(γ) .

An important special class of measures that satisfy (5.54) is obtained when µ
has density x−p−1 with respect to Lebesgue measure on R

+, and 1 < p < 2.
In that case, if the Lévy measure is given by (5.55), the process in (Xt)t∈T

is p-stable. To see this, we observe the formula∫
R+

(1 − cos(ax))x−p−1dx = C(p)|a|p ,

that is obvious through change of variable. Then, for each real λ we have∫
RT

(
1 − cos

(
λ

∑
t∈T

αtβ(t)
))

dν(t)

=
∫

RT

∫
R+

(
1 − cos

(
λx

∑
t∈T

αtγ(t)
))

x−p−1dxdm(γ)

= |λ|p σp

2
, (5.56)

where
σp = 2C(p)

∫
RT

∣∣∑
t∈T

αtγ(t)
∣∣pdm(γ) , (5.57)

and (5.53) and (2.31) show that the r.v.
∑

t∈T αtX(t) is p-stable.
The functions

ϕ(s, t, u) =
∫

RT

(
(u2(β(s) − β(t))2) ∧ 1

)
dν(β)
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will help measure the size of T .
For any fixed number u , ϕ(s, t, u) is the square of a distance on T , so that

for elements s , s′ , t of T we have

ϕ(s, s′, u)1/2 ≤ ϕ(s, t, u)1/2 + ϕ(s′, t, u)1/2 ,

and, using the inequality (a + b)2 ≤ 2(a2 + b2) we have

ϕ(s, s′, u) ≤ 2(ϕ(s, t, u) + ϕ(s′, t, u)) . (5.58)

Theorem 5.3.2. Under Condition H(C0, δ), there exists a number r ≥ 4
(depending only on C0 and δ), an admissible sequence of partitions An and
for A ∈ An a number j(A) ∈ Z such that (5.8) holds together with

∀n ≥ 0 , ∀A ∈ An , ∀s , s′ ∈ A , ϕ(s, s′, rj(A)−1) ≤ 2n+1 (5.59)

∀t ∈ T ,
∑
n≥0

2nr−j(An(t)) ≤ KE sup
t∈T

Xt . (5.60)

Here, and everywhere in this section, K denotes a number that depends
on C0 and δ only and that need not be the same at each occurrence.

Of course the level of abstraction reached here might make it hard for the
reader to understand the content of Theorem 5.3.2. As we will see in the next
section, this theorem is extremely precise. It exactly captures a certain aspect
of the process, in the sense that the necessary condition of this theorem is
sufficient to imply the boundedness of an “important part” of the process.

To gain a first understanding of Theorem 5.3.2, let us prove that in the
case where ν is obtained as in (5.55) and where µ has density x−p−1 on R

+

with respect to Lebesgue measure, we recover Theorem 2.3.1. By change of
variable, it is obvious that∫

R+
((ax)2 ∧ 1)x−p−1dx = C1(p)|a|p ,

so that

ϕ(s, t, u) =
∫

RT

∫
R+

((
xu(γ(s) − γ(t))

)2 ∧ 1
)
x−p−1dxdm(γ)

= C1(p)up

∫
RT

|γ(s) − γ(t)|pdm(γ) .

Using (5.56) and (5.57) when
∑

t∈T αtβ(t) = β(t)−β(s) and comparing with
(2.31) and (2.33) we see that

ϕ(s, t, u) = C2(p)updp(s, t) ,

so that (5.59) implies ∆(A, d) ≤ K2n/pr−j(A)+1, and (5.60) implies
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n≥0

2n/q∆(An(t), d) ≤ KE sup
t∈T

Xt ,

where 1/q = 1 − 1/p and thus γq(T, d) ≤ KE supt∈T Xt.
It is possible to prove a result that is conceivably stronger than Theorem

5.3.2. We know how to replace in (5.60) the upper bound KE supt∈T Xt by
KM where M is such that P(supt∈T Xt ≤ M) ≥ 1 − ε0, where ε0 is a
certain number (depending on C0 and δ). Carrying out this improvement is
straightforward, but cumbersome, and, for clarity, we will refrain to do it.
Moreover, it is believable (although we do not know how to prove it) that
when Condition H(C0, δ) holds, there always exists a number ε1 (depending
on C0 and δ only) such that if P(supt∈T Xt ≤ M) ≥ 1−ε1, then E supt∈T Xt ≤
KM .

The key to Theorem 5.3.2 is that infinitely divisible processes can be rep-
resented as a mixture of Bernoulli processes. Since we do not understand
Bernoulli processes as well as we understand Gaussian processes we can ex-
pect that the proof of Theorem 5.3.2 will be more difficult than the proof
of Theorem 2.3.1. We can also expect that there should be a strong corre-
lation between the possibility of extending Theorem 5.3.2 beyond condition
H(C0, δ) and a better understanding of Bernoulli processes. While our proof
of Theorem 5.3.2 is very much simpler than the original proof of [53], it cer-
tainly remains one of the hardest of this work. The reader should probably
learn first the remarkable consequences of this theorem explained in Section
5.4 to gather the energy required to penetrate this proof.

We now start the description of this representation of infinitely divisi-
ble processes as a mixture of Bernoulli processes. We denote by (τi)i≥1 the
sequence of arrival times of a Poisson process of parameter 1. Equivalently,
τi = Γ1 + · · ·+ Γi, where the sequence (Γk)k≥1 is i.i.d. and P(Γk ≥ u) = e−u.
Consider a measurable function G : R

+ × R
T → R

T . Consider a probability
measure m on R

T , and denote Lebesgue’s measure on R
+ by λ. We denote

by (Yi)i≥1 an i.i.d. sequence of R
T -valued r.v, distributed like m, and by

(εi)i≥1 a Bernoulli sequence. We assume that the sequences (τi) , (εi) , (Yi)
are independent of each other.

Theorem 5.3.3. (Rosinski [35]) Denote by ν the image measure of λ ⊗ m
under G, and assume that it is a Lévy measure, i.e. that

∫
RT (β(t)2∧1)dν(β) <

∞ for each t in T . Then the series
∑

i≥1 εiG(τi, Yi) converges a.e. in R
T and

its law is the law of the symmetric infinitely divisible process of Lévy measure
ν.

In practice, we are not given λ and m, but ν. There are many ways to
represent ν as the image of a product λ⊗m under a measurable transforma-
tion. One particular method is very fruitful (and is also brought to light in
[35]). Consider a probability measure m such that ν is absolutely continuous
with respect to m. (There are of course many possible choices, but, remark-
ably enough, the particular choice is irrelevant.) Consider a Radon-Nikodym
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derivative g of ν with respect to m and define G(u, β) = R(u, β)β where

R(u, β) = 1[0,g(β)](u) . (5.61)

For simplicity we write Ri = R(τi, Yi). It follows from Theorem 5.3.3 that∑
i≥1

εiRiYi (5.62)

is distributed like the infinitely divisible process of Lévy measure ν. This
representation of the process will be called Rosinski’s representation. Let us
note that

Ri ∈ {0, 1} ; Ri is a non-increasing function of τi . (5.63)

Conditionally on the sequence (τi)i≥1, the sequence (RiYi)i≥1 is indepen-
dent. The influence of the sequence (τi)i≥1 will be felt only through the two
quantities (that exist from the law of large numbers)

α− = min
i≥1

τi

i
; α+ = max

i≥1

τi

i
. (5.64)

Conditionally in the sequences (τi)i≥1 and (Yi)i≥1, the process (5.62) is
a Bernoulli process. Before we study it, however, we must understand better
the behavior of the sequence (RiYi)i≥1. We start a series of simple lemmas
to this effect. The first one is obvious.

Lemma 5.3.4. Consider α > 0 and a non-increasing function θ on R
+.

Then
α

∑
i≥1

θ(αi) ≤
∫ ∞

0

θ(x)dλ(x) ≤ α
∑
i≥0

θ(αi) . (5.65)

Since R(x, β) ∈ {0, 1}, the following is also obvious.

Lemma 5.3.5. If h(0) = 0 then

h(R(x, β)β) = R(x, β)h(β) . (5.66)

We denote by Eτ expectation given the sequence (τi)i≥1.

Lemma 5.3.6. Consider a non-negative measurable function h on R
T , with

h(0) = 0. Then

1
α+

∫
RT

h(β)dν(β) − sup h ≤
∑
i≥1

Eτh(RiYi) ≤ 1
α−

∫
RT

h(β)dν(β) . (5.67)
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Proof. Given β, the function θ(x) = h(R(x, β)β) is non-increasing since its
value is h(β) ≥ 0 for u ≤ g(β) and h(0) = 0 for u > g(β). Thus by (5.65) we
have ∑

i≥1

h(R(τi, β)β) + sup h ≥
∑
i≥0

h(R(α+i, β)β)

≥ 1
α+

∫ ∞

0

h(R(x, β)β)dλ(x) .

Since Yi is distributed like m and since ν is the law of λ ⊗m under the map
(x, β) �→ R(x, β)β, integrating both sides in β with respect to m yields the
left-hand side of (5.67). The right-hand side is similar. �

The following simple fact can be deduced from Bernstein’s inequality, but
it is amusing to give a direct proof.

Lemma 5.3.7. Consider independent r.v. (Wi)i≥1, with 0 ≤ Wi ≤ 1. Then
(a) if 4A ≤ ∑

i≥1 EWi, then

P
(∑

i≥1

Wi ≤ A
)
≤ exp(−A)

(b) if A ≥ 4
∑

i≥1 EWi, then

P
(∑

i≥1

Wi ≥ A
)
≤ exp

(
−A

2

)
.

Proof. (a) Since 1 − x ≤ e−x ≤ 1 − x/2 for 0 ≤ x ≤ 1 we have

E exp(−Wi) ≤ 1 − EWi

2
≤ exp

(
−EWi

2

)
and thus

E exp
(
−

∑
i≥1

Wi

)
≤ exp

(
−1

2

∑
i≥1

EWi

)
≤ exp(−2A)

and we use the inequality P(Z ≤ A) ≤ exp A E exp(−Z).
(b) Observe that 1 + x ≤ ex ≤ 1 + 2x for 0 ≤ x ≤ 1, so, as before,

E exp
∑
i≥1

Wi ≤ exp 2
∑
i≥1

EWi ≤ exp
A

2

and we use now that P(Z ≥ A) ≤ exp(−A)E exp Z. �

We denote by Pτ conditional probability given the sequence (τi)i≥1.
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Lemma 5.3.8. (a) Assume that 2α+ ≤ ϕ(s, t, u). Then

Pτ

(∑
i≥1

(
Riu

2(Yi(s)−Yi(t))2
)∧ 1 ≤ ϕ(s, t, u)

8α+

)
≤ exp

(
−ϕ(s, t, u)

8α+

)
. (5.68)

(b) If A ≥ 4ϕ(s, t, u)/α− then

Pτ

(∑
i≥1

(
Riu

2(Yi(s) − Yi(t))2
) ∧ 1 ≥ A

)
≤ exp

(
−A

2

)
. (5.69)

Proof. We set Wi = (Riu
2(Yi(s) − Yi(t))2) ∧ 1. We use Lemma 5.3.6 with

h(β) = u2(β(s) − β(t))2 ∧ 1 and the definition of ϕ to get that, under the
assumptions of (a),

1
2α+

ϕ(s, t, u) ≤ 1
α+

ϕ(s, t, u) − 1 ≤
∑
i≥1

EτWi ≤ 1
α−

ϕ(s, t, u)

and we use Lemma 5.3.7 to conclude. �

We now explore some consequences of Condition H(C0, δ). We recall that
K denotes a quantity depending on C0 and δ only.

Lemma 5.3.9. Under condition H(C0, δ), for s , t ∈ T and u > 0 , we have,
for v ≥ 1,

ϕ(s, t, uv) ≥ v1+δ

K
ϕ(s, t, u) .

Proof. We write f(β) = |β(s) − β(t)|, so that

ϕ(s, t, u) =
∫ (

(u2f2(β)) ∧ 1
)
dν(β)

=
∫ 1

0

ν({β ; u2f2(β) ≥ x})dx

=
∫ 1/v2

0

ν({β ; u2f2(β) ≥ x})dx +
∫ 1

1/v2
ν({β ; u2f2(β) ≥ x})dx .

Setting x = y/v2 in the first term and x = y2/v2 in the second term we get

ϕ(s, t, u) =
1
v2

ϕ(s, t, uv) +
1
v2

∫ v

1

2yν
({

β ; f(β) ≥ y

uv

})
dy . (5.70)

Now, by condition H(C0, δ), for y ≥ 1 we have

ν({β ; f(β) ≥ y

uv
}) ≤ C0y

−1−δν({β ; uvf(β) ≥ 1})
≤ C0y

−1−δϕ(s, t, uv) .
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Since we assume δ < 1, substitution in (5.70) yields

ϕ(s, t, u) ≤ K

v2
ϕ(s, t, uv)(1 +

∫ v

1

y−δdy) ≤ Kv−1−δϕ(s, t, uv) .

�

Lemma 5.3.10. Assume condition H(C0, δ). Consider s , t ∈ T and u > 0.
Set

Wi = Ri|Yi(s) − Yi(t)| .

Then
u1+δ/2

∑
i≥1

EτW
1+δ/2
i 1{uWi≥1} ≤ K

α−
ϕ(s, t, u) . (5.71)

Proof. We set f(β) = |β(s) − β(t)|. We use Lemma 5.3.6 with the function
h(β) = (uf(β))1+δ/21{uf(β)≥1} to see that the left hand side of (5.71) is
bounded by

1
α−

∫
{uf(β)≥1}

(uf(β))1+δ/2dν(β) ≤ I + II

where

I =
1

α−
ν({β ; uf(β) ≥ 1}) ≤ 1

α−
ϕ(s, t, u)

II =
1

α−

∫ ∞

1

ν({β ; (uf(β))1+δ/2 ≥ x})dx .

Now, by condition H(C0, δ), for x ≥ 1 we have

ν({β ; (uf(β))1+δ/2 ≥ x}) = ν({β ; uf(β) ≥ x1/(1+δ/2)})
≤ C0x

− 1+δ
1+δ/2 ν({β ; uf(β) ≥ 1})

and since ν({β ; uf(β) ≥ 1}) ≤ ϕ(s, t, u) the result follows. �

Lemma 5.3.11. Consider independent r.v. (Wi)i≥1 such that Wi ≥ 0, and
consider 0 < δ < 2. Assume that for certain numbers u , S > 0 we have

u1+δ/2
∑
i≥1

EW
1+δ/2
i ≤ S . (5.72)

Then we have
P
(
u

∑
i≥1

Wi1{uWi≥1} ≥ 4S
)
≤ LS−δ/2 . (5.73)
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Proof. Replacing Wi by uWi we can assume u = 1. We can assume S ≥ 1,
for there is nothing to prove otherwise. We set

Ui = Wi1{1≤Wi≤S} − E(Wi1{1≤Wi≤S}) .

We have ∑
i≥1

E(Wi1{1≤Wi≤S}) ≤
∑
i≥1

EW
1+δ/2
i ≤ S,

so that
P
(∑

i≥1

Wi1{1≤Wi≤S} ≥ 4S
)
≤ P

(∑
i≥1

Ui ≥ 3S
)

and thus

P
(∑

i≥1

Wi1{Wi≥1} ≥ 4S
)
≤ P

(∑
i≥1

Ui ≥ 3S
)

+
∑
i≥1

P(Wi ≥ S) .

Now ∑
i≥1

P(Wi ≥ S) ≤ 1
S1+δ/2

∑
i≥1

EW
1+δ/2
i ≤ S−δ/2 .

Also, we note that |Ui| ≤ S, so that since 1 − δ/2 ≥ 0 we have

EU2
i ≤ S1−δ/2E|Ui|1+δ/2 ≤ LS1−δ/2EW

1+δ/2
i , (5.74)

using that (a + b)c ≤ L(ac + bc) for c ≤ 2. Thus we have

P
(∑

i≥1

Ui ≥ 3S
)
≤ 1

9S2
E
(∑

i≥1

Ui

)2

=
1

9S2

∑
i≥1

EU2
i ≤ LS−δ/2

using (5.74) and (5.72). �

Lemma 5.3.12. Consider a measure µ on R such that
∫
(x2∧1)dµ(x) < ∞,

and a r.v. X that satisfies

∀α ∈ R , E exp iαX = exp
(
−

∫
R

(1 − cosαx)dµ(x)
)

. (5.75)

Then we have ∫
R

(( x

2E|X |
)2

∧ 1
)
dµ(x) ≤ L . (5.76)

Proof. Since cosx ≥ 1 − |x| we have

E cosαX ≥ 1 − αE|X | ≥ 1
2

if 0 ≤ α ≤ 1/2E|X |. By (5.75) we have
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1
2
≤ E cosαX = exp

(
−

∫
R

(1 − cosαx)dµ(x)
)

and hence ∫
R

(1 − cosαx)dµ(x) ≤ log 2 .

Averaging the previous inequality over 0 ≤ α ≤ 1/2E|X |, we get∫
R

(
1 − sin(x/(2E|X |))

x/(2E|X |)
)

dµ(x) ≤ log 2

and the result since y2 ∧ 1 ≤ L(1 − (sin y)/y). �

The proof of Theorem 5.3.2 will rely upon the application of Theorem 5.1.2
to suitable functionals, and we turn to the task of defining these. Consider
an integer κ ≥ 6, to be determined later, and r = 2κ−4. Consider the maps

ϕj(s, t) = ϕ(s, t, rj)

for j ∈ Z. From Lemma 5.3.9, we note that

ϕj+1(s, t) ≥ r1+δ

K
ϕj(s, t) . (5.77)

Given the sequences (τi)i≥1 , (Yi)i≥1, to each t ∈ T we can associate the
sequence S(t) = (RiYi(t))i≥1. To a subset A of T we can associate S(A) =
{S(t) ; t ∈ A}. This is a random set of sequences. Since the process (5.62) is
distributed like (Xt), we have the identity

E sup
t∈T

Xt = Eb(S(T )) , (5.78)

where the notation b is defined in (4.1). We recall the chopping maps Ψc

of Chapter 4, and for a set of sequences U , we use the notation bj(U) =
b(Ψr−j (U)).

Let us fix once and for all a number α such that P(Ω0) ≥ 3/4, where

Ω0 =
{ 1

α
≤ α− ≤ α+ ≤ α

}
. (5.79)

A random subset Z of T is a subset of T that depends on the sequences
(τi)i≥1 and (Yi)i≥1 and is such that for each t the set {t ∈ Z} is measurable.
It might help to think to a random subset of T as a (small) set of badly
behaved points.

Consider two decreasing sequences c(n), d(n) > 0, tending to 0, that will
be determined later. Given a probability measure µ on T , we first define the
functional Fn,j(µ) as the supremum of the numbers c that have the property
that there exists a random subset Z of T with Eµ(Z) ≤ d(n), with the
following property:
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∀U ⊂ T , U ∩ Z = ∅ , µ(U) ≥ c(n) ⇒ bj(S(U)) ≥ c1Ω0 . (5.80)

In words, when Ω0 occurs, for any subset U of T that is not too small and
contains no badly behaved points, we have bj(S(U)) ≥ c.

Given a subset A of T , we then define

Fn,j(A) = sup{Fn,j(µ) ; µ(A) = 1} .

Since c(n + 1) ≤ c(n) and d(n + 1) ≤ d(n), it is obvious that Fn+1,j ≤ Fn,j ;
and it follows from Proposition 4.3.7 that Fn,j+1 ≤ Fn,j .

Lemma 5.3.13. If d(n) ≤ 1/8 and c(n) ≤ 1/2, then Fn,j(T ) ≤ 2E supt∈T Xt

for all j ∈ Z.

Proof. Consider a probability measure µ on T with Fn,j(µ) > c and Z a
random subset of T with Eµ(Z) ≤ d(n), that satisfies (5.80). If d(n) ≤ 1/8,
then P(µ(Z) ≤ 1/2) ≥ 3/4 and thus P(Ω1) ≥ 1/2 where Ω1 = Ω0 ∩ {µ(Z) ≤
1/2}. Since

µ(T \Z) ≥ 1
2
1{µ(Z)≤1/2}

we see that by (5.80) we have

bj(S(T \Z)) ≥ c1Ω1 ,

so that b(S(T )) ≥ c1Ω1 . Since b(S(T )) ≥ 0, taking expectation we get c ≤
2Eb(S(T )), and the conclusion by (5.78). �

Lemma 5.3.14. Under condition H(C0, δ) and if r ≥ K, there exists j =
j0 ∈ Z such that

∀s , t ∈ T , ϕj−1(s, t) ≤ 1 (5.81)

r−j ≤ 4rE sup
t∈T

Xt . (5.82)

Proof. Consider s , t ∈ T . By Lemma 1.2.8 we have

E|Xs − Xt| ≤ 2E sup
t∈T

Xt := 2S .

Using (5.53) we see that the r.v. X = Xs − Xt satisfies (5.75) where µ is
the image of ν under the map β �→ β(s) − β(t). From (5.76) we get that
ϕ(s, t, 1/(4S)) ≤ L. Consider the largest integer j such that r−j ≥ 2S, so
that ϕj(s, t) ≤ L and r−j ≤ 2rS. It follows from (5.77) that if r ≥ K we have
ϕj−1(s, t) ≤ 1. �
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Proof of Theorem 5.3.2. The main step is to prove the existence of a
number K1, depending on C0 and δ only, and of sequences (d(n))n≥0 and
(c(n))n≥0, also depending on C0 and δ only, tending to 0 as n → ∞, such
that if n ≥ K1 and κ ≥ K1, the functionals K1Fn,j satisfy the growth
condition of Definition 5.1.1.

Once this is done, we complete the argument as follows. We choose
n0 ≥ K1 large enough that d(n0) ≤ 1/8 and c(n0) ≤ 1/2, and depending
only on C0 and δ. Consider the value of j0 constructed in Lemma 5.3.14,
so that 2n0r−j0 ≤ KE supt∈T Xt by (5.82) and Fn0,j0(T ) ≤ LE supt∈T Xt by
Lemma 5.3.13. We then apply Theorem 5.1.2 with these values of j0 and n0.
We observe that for n ≥ n0 (5.59) follows from (5.10) and (5.58). Finally for
A ∈ An, n ≤ n0 we define j(A) = j0, and (5.81) shows that (5.59) remains
true for n ≤ n0. This completes the proof of Theorem 5.3.2.

We now turn to the proof of the growth condition. Let us assume that
we are given points (t�)�≤m, as in (5.3), where m = Nn, and consider sets
H� ⊂ Bj+1(t�, 2n+κ).

The basic idea is that we want to apply (4.11) to the sets H ′
� =

Ψr−j (S(H�)). We however face two problems.
(a) It is not always true that the points u� := Ψr−j(S(t�)) for � ≤ m are

far from each other.
(b) It is not true that all the points of H ′

� are close to u�.
The route around these problems is to prove that
(c) it is very likely that sufficiently many of the points u� are far from

each other,
(d) for most of the points t of H� it is true that Ψr−j (S(t)) is close to u�.
The exceptional points are eliminated by putting them into a suitable

random set. This is the main purpose of introducing random sets.
Consider c < min�≤m Fn+1,j+1(H�). Since Fn+1,j+1 ≤ Fn+1,j , we can find

for each � ≤ m a probability measure µ� with µ�(H�) = 1, a random subset
Z� of H� with E(µ�(Z�)) ≤ d(n + 1), with the property that

U ⊂ H�\Z� , µ�(U) ≥ c(n + 1) ⇒ bj(S(U)) ≥ c1Ω0 . (5.83)

Consider an integer p that will be determined later, and, assuming n ≥ p,
set

µ =
1

Nn−p

∑
�≤Nn−p

µ� ; Z ′ =
⋃

�≤Nn−p

Z� .

The sets H� are disjoint, and µ�(H�) = 1. This implies that we have µ(Z ′) =
N−1

n−p

∑
�≤Nn−p

µ�(Z�) and thus Eµ(Z ′) ≤ d(n + 1).
We turn to the realization of (c) above. Since ϕj(t�, t�′) ≥ 2n for � �= �′,

we see from (5.68), used for u = rj , that

Pτ

(∑
i≥1

(
Ri(Yi(t�) − Yi(t�′))2

) ∧ r−2j ≤ 2nr−2j

8α+

)
≤ exp

(
− 2n

8α+

)
.
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Recalling (5.79), we have

P
(
Ω0∩

{∑
i≥1

(
Ri(Yi(t�)−Yi(t�′))2

)∧r−2j ≤ 2nr−2j

8α

})
≤ exp

(
− 2n

8α

)
. (5.84)

It follows from (4.33) that∑
i≥1

(
Ri(Yi(t�) − Yi(t�′))2

) ∧ r−2j ≤ 4‖Ψr−j(S(t�)) − Ψr−j(S(t�′ ))‖2
2 .

We choose p once and for all such that 2−p ≤ 1/(32α). Then we get from
(5.84) that

P(Ω0 ∩ {‖Ψr−j(S(t�)) − Ψr−j(S(t�′ ))‖2 ≤ 2(n−p)/2r−j})
≤ exp(−2n−p+2) .

Consider the event Ω1 defined as

Ω0 ∩ {∃� < �′ ≤ Nn−p ; ‖Ψr−j (S(t�)) − Ψr−j(S(t�′ ))‖2 < 2(n−p)/2r−j} .

Then
P(Ω1) ≤ N2

n−p exp(−2n−p+2) ≤ exp(−2n−p+1) .

Consider the random subset Z ′′ of T given by Z ′′ = T1Ω1. Thus Eµ(Z ′′) ≤
exp(−2n−p+1).

We turn to the realization of (d) above. We observe that for t ∈ H� ⊂
Bj+1(t�, 2n+κ), we have ϕj+1(t, t�) ≤ 2n+κ. By (5.77), and since r = 2κ−4,
we have ϕj(t, t�) ≤ K2nr−δ. Thus by (5.69) we have

P
(
1Ω0

∑
i≥1

Ri(Yi(t) − Yi(t�))2 ∧ r−2j ≥ K2nr−δr−2j
)
≤ exp(−2nr−δ) .

(5.85)
Using (5.71) and (5.73) with S = K2nr−δ and u = rj we get

P
(
1Ω0

∑
i≥1

Ri|Yi(t) − Yi(t�)|1{|Yi(t)−Yi(t�)|≥r−j} ≥ K2nr−δr−j
)

(5.86)

≤ K2−nδ/2rδ2/2 .

Let us say that a point t ∈ ⋃
�≤m H� is regular if, when � is such that t ∈ H�,

we have ∑
i≥1

Ri(Yi(t) − Yi(t�))2 ∧ r−2j ≤ K02nr−δr−2j (5.87)

∑
i≥1

Ri|Yi(t) − Yi(t�)|1{|Yi(t)−Yi(t�)|≥r−j} ≤ K02nr−δr−j . (5.88)

Thus, (5.85) and (5.86) imply that if K0 is large enough, the probability that
Ω0 occurs and t is not regular is at most exp(−2nr−δ) + K2−nδ/2rδ2/2.
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Consider the random set Z ′′′ defined as

Z ′′′ =
{
t ∈

⋃
�≤m

H� ; t is not regular
}

,

if Ω0 occurs and Z ′′′ = ∅ otherwise. Thus Eµ(Z ′′′) ≤ exp(−2nr−δ) +
K2−nδ/2rδ2/2.

We consider the random set Z = Z ′ ∪ Z ′′ ∪ Z ′′′, so that

Eµ(Z) ≤ d(n + 1) + exp(−2n−p+1) + exp(−2nr−δ) + K2−nδ/2rδ2/2 . (5.89)

This finishes the construction of the appropriate random set, and we turn
to the question of bounding Fn,j(

⋃
�≤m H�) from below. Consider a set U ⊂⋃

�≤m H�, with U ∩ Z = ∅, and assume that

µ(U) ≥ c(n + 1) +
1

Nn−p−1
. (5.90)

Using the definition of µ we see that

µ(U) ≤ 1
Nn−p

card{� ≤ Nn−p ; µ�(U) ≥ c(n + 1)} + c(n + 1) ,

so that card I ≥ Nn−p/Nn−p−1 ≥ Nn−p−1, where

I = {� ≤ Nn−p ; µ�(U) ≥ c(n + 1)} .

Let U� = U ∩ H�, so that µ�(U) = µ�(U�), and since U� ∩ Z� ⊂ U ∩ Z = ∅, it
follows from (5.83) that we have

∀� ∈ I , bj(S(U ∩ H�)) ≥ c1Ω0 .

We define H ′
� = Ψr−j (S(U�)), so that b(H ′

�) = bj(S(U�)). Defining u� =
Ψr−j (S(t�)), since U consists only of regular points, (5.87), (5.88) and (4.34)
show that

H ′
� ⊂ B(u�, Kr−δ/22n/2r−j) . (5.91)

Moreover, since U �= ∅ , U ∩ Z ′′ = ∅, and since Z ′′ = T1Ω1 , the event Ω1

does not occur, i.e.

∀� < �′ ≤ Nn−p , ‖u� − u�′‖2 ≥ 2(n−p)/2r−j .

We appeal to (4.11) with m = Nn−p−1 and a = r−j2(n−p)/2. We then
see that if we choose r = 2κ−4 where κ is the smallest integer such that
Kr−δ/2 ≤ 2−p/2/L0, where L0 is the constant of (4.11), then

b
(⋃

�∈I

H ′
�

)
≥ (

c +
1

K2
2nr−j

)
1Ω0 .
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Since

b
(⋃

�∈I

H ′
�

)
= b

(
Ψr−j

(S(
⋃
�∈I

U�)
)) ≤ b

(
Ψr−j(S(U)

)
= bj(S(U)) ,

this implies that

bj(S(U)) ≥ b
(⋃

�∈I

H ′
�

)
≥ (c +

1
K2

2nr−j)1Ω0 . (5.92)

From (5.90), we see that it is appropriate to define

c(n) =
∑
q≥n

1
Nq−p−1

and from (5.89)

d(n) =
∑
q≥n

(
exp(−2q−p+1) + exp(−2qr−δ) + K2−qδ/2rδ2/2

)
.

(Where the value of r is the one previously fixed.)
With these choices (5.89) implies that Eµ(Z) ≤ d(n), and (5.90) means

that µ(U) ≥ c(n). We have proved that these conditions, together with U ⊂⋃
�≤m H� and Z ∩U = ∅ , imply (5.92). By definition of the functionals Fn,j ,

this implies that

Fn,j

( ⋃
�≤m

H�

)
≥ c +

1
K2

2nr−j ,

so that (5.92) implies that (5.4) holds for the functionals K2Fn,j , and this
completes the proof of Theorem 5.3.2. �

5.4 The Decomposition Theorem for Infinitely Divisible
Processes

This section is closely connected to the previous one. The reader needs in
particular to keep in mind Rosinski’s representation (5.62) of an infinitely
divisible process of Lévy measure ν. We consider a Borel subset Ω of R

T with
m(Ωc) = 0 and we assume without loss of generality that Yi is valued in Ω. On
T we consider the distance d∞(s, t) given by d∞(s, t) = supβ∈Ω |β(s)− β(t)|,
and the distance d2(s, t) given by d2

2(s, t) =
∫

Ω
(β(s) − β(t))2dν(β).

Theorem 5.4.1. We have

E sup
t∈T

Xt ≤ L
(
γ2(T, d2) + γ1(T, d∞)

)
. (5.93)
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Proof. Let us denote by Eτ and Pτ expectation and probability given the
sequence (τi)i≥1. We will prove that

Eτ sup
t∈T

Xt ≤ L
( 1√

α−
γ2(T, d2) + γ1(T, d∞)

)
. (5.94)

Writing P(α− ≤ ε) ≤ ∑
i≥1 P(τi ≤ iε), simple estimates show that P(α− ≤

ε) ≤ Lε, so that E(1/
√

α−) < ∞ and taking expectation in (5.94) finishes the
proof.

Consider s , t ∈ T , and Gi = εiRi(Yi(s) − Yi(t)). Thus |Gi| ≤ d∞(s, t),
and, by the right-hand side of (5.67), used for h(β) = (β(s)−β(t))2, we have∑

i≥1 EτG2
i ≤ d2(s, t)2/α−. Thus (5.94) follows from Theorem 1.2.7 since, by

Bernstein’s inequality (Lemma 2.7.1), we have

Pτ

(∣∣∑
i≥1

Gi

∣∣ ≥ v
)
≤ exp

(
− 1

L
min

( v2α−
d2(s, t)2

,
v

d∞(s, t)
))

.

�

We have thus described a class of processes that we can certify are
bounded, and we turn to the description of another class of processes that
we can also certify are bounded, but for a very different reason.

Given a finite set T , we say that the process (Xt)t∈T is positive infinitely
divisible if there exists a positive measure ν on (R+)T , such that∫

(β(t) ∧ 1)dν(β) < ∞

for each t in T , and that for each family (αt)t∈T of real numbers we have

E exp i
∑
t∈T

αtXt = exp
(
−

∫ (
1 − exp(i

∑
t∈T

αtβ(t))
)
dν(β)

)
.

We will call ν the Lévy measure of the process. While by “infinitely divisi-
ble process” we understand that the process is symmetric, a positive infinitely
divisible process is certainly not symmetric. It is not obvious that this process
is positive; but another version of Rosinski’s representation shows that (with
the notation of Section 5.3) the process∑

i≥1

RiYi(t) (5.95)

has the same law as (Xt)t∈T . This is also proved in [35]. (The representation
(5.95) will also be called the Rosinski representation of the positive infinitely
divisible process.) The important feature here is that all terms in (5.95) are
non-negative. There is no cancelation in this sum.
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Consider now a (symmetric) infinitely divisible process (Xt)t∈T with Lévy
measure ν and assume that

∀t ∈ T ,

∫
(|β(t)| ∧ 1)dν(β) < ∞ .

Consider the positive measure ν′ on (R+)T that is the image of ν under the
map β �→ |β|, where |β|(t) = |β(t)|. Then

∀t ∈ T ,

∫
(β(t) ∧ 1)dν′(β) < ∞

so ν′ is the Lévy measure of a positive infinitely divisible process that we
denote by (|X |t). If ν is the image of λ⊗m under the map (x, β) �→ R(x, β)β,
then, since R(x, β) ≥ 0 , ν′ is the image of λ ⊗ m under the map

(x, β) �→ |R(x, β)β| = R(x, β)|β| .

Thus if
∑

i≥1 εiRiYi is a Rosinski representation of the process (Xt), then∑
i≥1 Ri|Yi| is a Rosinski representation of the process (|X |t). Hence

E sup
t∈T

Xt = E sup
t∈T

∑
i≥1

εiRiYi(t) ≤ E sup
t∈T

∑
i≥1

Ri|Yi(t)| = E sup
t∈T

|X |t .

This shows that to control E supt∈T Xt it suffices to control E supt∈T |X |t,
a control that does not involve any cancelation.

We now come to the main result of this chapter. In the following definition
as usual ν is the image of λ ⊗ m under the map (x, β) �→ R(x, β)β.

Definition 5.4.2. We say that an infinitely divisible process is S-certified
if γ1(T, d∞) ≤ S and γ2(T, d2) ≤ S, where, for a certain set Ω ⊂ R

T with
m(Ωc) = 0, we have

d∞(s, t) = sup
β∈Ω

|β(s) − β(t)| ,

and
d2(s, t) =

(∫
Ω

(β(s) − β(t))2dν(β)
)1/2

.

Theorem 5.4.3. Consider an infinitely divisible process (Xt)t∈T , and as-
sume that condition H(C0, δ) of Definition 5.3.1 holds. Let S = E supt∈T Xt.
Then we can write in distribution

Xt = X ′
t + X ′′

t

where both processes (X ′
t)t∈T and (X ′′

t )t∈T are infinitely divisible with the
following properties: (X ′

t) is KS-certified, and E supt∈T |X ′′|t ≤ KS.
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In other words, we know two ways to control E supt∈T Xt. One way is
that the process is S-certified. The other way is that we already control
E supt∈T |X |t. Under condition H(C0, δ) there is no other method: every sit-
uation is a combination of these.

To prove this theorem, it is convenient to adopt a different point of view.
This will also bring to light the fact that the material of this section is closely
connected to the material of Section 2.7. To make this more apparent, rather
than considering β ∈ Ω ⊂ R

T as a function of t ∈ T , we will think of t ∈ T
as a function of β, by the formula t(β) = β(t). Since ν is a Lévy measure, we
have

∀t ∈ T ,

∫
Ω

(t(β)2 ∧ 1)dν(β) < ∞ . (5.96)

Conversely, assume that we are given a (σ-finite) positive measure space
(Ω, ν) and a (countable) set T of measurable functions on Ω such that (5.96)
holds. Consider a probability measure m such that ν � m and a function g
such that ν = gm. Consider an i.i.d. sequence Yi distributed like m, and set
Ri = 1[0,g(Yi)](τi). Then Rosinski’s representation

Xt =
∑
i≥1

εiRit(Yi)

defines an infinitely divisible process (Xt)t∈T . Its Lévy measure ν̄ is the image
of ν under the map ω �→ (t(ω))t∈T . If, moreover,

∀t ∈ T ,

∫
Ω

(|t(β)| ∧ 1)dν(β) < ∞ , (5.97)

we can define a positive infinitely divisible process (|X |t)t∈T by

|X |t =
∑
i≥1

Ri|t(Yi)| .

The distances d2 and d∞ of Theorem 5.4.1 are simply the distances induced
by the norms of L2(ν) and L∞(ν) respectively.

Let us repeat: for the purpose of studying boundedness, an infinitely di-
visible process is essentially a class of functions on a measure space.

Theorem 5.4.4. We have

E sup
t∈T

|X |t ≤ L
(
E sup

t∈T
|Xt| + sup

t∈T

∫
|t(β)|dν(β)

)
.

Proof. As explained, if a Rosinski representation of Xt is
∑

i≥1 εiRit(Yi), a
Rosinski representation of |X |t is

∑
i≥1 Ri|t(Yi)|. We will need to use (5.67)

and a minor technical difficulty arises because 1/α− is not integrable. This
is why below we consider the first term separately. We write
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E sup
t∈T

|X |t = E sup
t∈T

∑
i≥1

Ri|t(Yi)| ≤ I + II (5.98)

I = E sup
t∈T

R1|t(Y1)| ; II = E sup
t∈T

∑
i≥2

Ri|t(Yi)| . (5.99)

We have

E sup
t∈T

R1|t(Y1)| = E sup
t∈T

|ε1R1t(Y1)| ≤ E sup
t∈T

∣∣∣∑
i≥1

εiRit(Yi)
∣∣∣ = E sup

t∈T
|Xt| .

(5.100)
To control the term II, we denote by Eτ expectation at (τi)i≥1 given.

Given τi, the pairs of r.v. (Ri, Yi) are independent. We appeal to (2.153) to
get

Eτ sup
t∈T

∑
i≥2

Ri|t(Yi)| ≤ sup
t∈T

∑
i≥2

EτRi|t(Yi)| + 2Eτ sup
t∈T

∣∣∣∑
i≥2

εiRit(Yi)
∣∣∣

≤ sup
t∈T

∑
i≥2

EτRi|t(Yi)| + 2Eτ sup
t∈T

|Xt| . (5.101)

An obvious extension of the right-hand side inequality of (5.67) gives

∑
i≥2

EτRi|t(Yi)| ≤ 1
α′

∫
|t(β)|dν(β) , (5.102)

where α′ = infi≥2 τi/i. Writing

P(α′ ≤ ε) ≤
∑
i≥2

P(τi ≤ εi) ,

one sees through simple estimates that E(1/α′) < ∞. We plug (5.102) in
(5.101), we take expectation, and we combine with (5.98), (5.99) and (5.100)
to conclude the proof. �

Proof of Theorem 5.4.3. We still think of T as a set of functions on
(Ω, m). Without loss of generality we can assume that 0 ∈ T , so that
E supt∈T |Xt| ≤ 2S by Lemma 1.2.8. The main argument consists in de-
composing T ⊂ T1 + T4, where γ1(T1, d∞) ≤ KS , γ2(T1, d2) ≤ KS, 0 ∈ T1

and supt∈T4

∫ |t(β)|dν(β) ≤ KS. Once this is done, it follows from Theorem
5.4.1 and Lemma 1.2.8 that E supt∈T1

|Xt| ≤ KS, and, since we can assume
that T4 ⊂ T − T1, that E supt∈T4

|Xt| ≤ KS. It then follows from Theorem
5.4.4 that E supt∈T4

|X |t ≤ KS. Finally, the decomposition Xt = X ′
t + X ′′

t

is obtained by fixing a decomposition t = t1 + t2 for each t in T with
t1 ∈ T1 , t2 ∈ T4, and setting X ′

t = Xt1 , X ′′
t = Xt2 .

To decompose T we first use Theorem 5.3.2 to find a number r (depending
only on C0 and δ), an admissible sequence (An) of T and for A ∈ An an
integer j(A) ∈ Z that satisfies (5.8) and
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∀s , t ∈ A , ϕ(s, t, rj(A)−1) ≤ 2n+1 (5.103)

∀t ∈ T ,
∑
n≥0

2nr−j(An(t)) ≤ KS . (5.104)

We then use Theorem 2.6.3, choosing µ = ν , V = r and δ(A) =
2(n+1)/2r−j(A)+1, so that (5.103) implies (2.101). Condition (2.99) follows
from (5.8) and Condition (2.100) is automatically satisfied since n ≥ n′.

We consider the decomposition T ⊂ T1 + T2 + T3 provided by Theorem
2.6.3. We set T4 = T2 + T3, so that T ⊂ T1 + T4. By (2.102), (2.103) and
(5.104) we have γ2(T1, d2) ≤ KS and γ1(T1, d∞) ≤ KS. By (2.104), used for
p = 1, we have ‖t‖1 ≤ KS for t ∈ T2, as is obvious since

V 2j(An+1(t))−j(An(t))δ2(An+1(t)) = 2n+1r−j(An(t))+2 .

Thus all we have to do is to show that ‖t‖1 ≤ KS for t ∈ T3, and, from (2.105),
we see that it suffices to show that ‖t‖1 ≤ KS for t = |s|1{2|s|≥r−j(T )}, s ∈ T .
Now, since 0 ∈ T , using (5.103) for n = 0 and A = T we have

ν({β ; |s(β)| ≥ r−j(T )/2}) ≤ 4r2

∫ (
(srj(T )−1)2 ∧ 1

)
dν

≤ 4r2ϕ(s, 0, rj(T )−1) ≤ 8r2 .

It follows from condition H(C0, δ) and integration by parts that ‖t‖1 ≤
Kr−j(T ), and since r−j(T ) ≤ KS by (5.104), that ‖t‖1 ≤ KS. The proof
is complete. �

We conclude this section by a “bracketing theorem” in the spirit of Os-
siander’s Theorem (Theorem 2.7.10). In this theorem, we still think of T as
a set of measurable functions on (Ω, m).

Theorem 5.4.5. Consider an admissible sequence (An) of T , and for A ∈
An consider hA given by hA(ω) = sups,t∈A |t(ω) − s(ω)|. Assume that for
A ∈ An we are given j(A) ∈ Z satisfying A ⊂ B ⇒ j(A) ≥ j(B). Assume
that for some numbers r ≥ 2 and S > 0 we have

∀A ∈ An ,

∫ (
r2j(A)h2

A ∧ 1
)
dν ≤ 2n

∀t ∈ T ,
∑
n≥0

2nr−j(An(t)) ≤ S ,

and that hT < r−j(T ). Then we have E supt∈T |Xt| ≤ LS.

This result follows from Theorem 2.7.12 (with δ(A) = 2nr−j(A)) just as
Theorem 2.7.10, using that T3 = {0} since hT < r−j(T ). The details are left
to the reader.
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5.5 Further Thoughts

The content of Theorem 5.4.3 can be viewed as the statement that (at least
under the condition H(C0, δ)), to understand boundedness of infinitely divis-
ible processes, it suffices to understand the boundedness of positive infinitely
divisible processes. As seen is the previous section, this basically amounts
to the following question. Given a probability space (Ω, m), a non-negative
function g on Ω, the positive measure ν = gm, and a class F of measurable
non-negative functions on Ω such that

∀f ∈ F ,

∫
(f ∧ 1)dν < ∞ ,

how can we control
sup
f∈F

∑
i≥1

Rif(Yi) , (5.105)

where (Yi)i≥1 are i.i.d. of law m and where Ri = 1{g(Yi)≤τi}? More precisely,
how could we compute this quantity from the “geometry” of F? This is a
rather difficult question, in particular because it is not clear in what direction
one should look. The author has made several attempts on problems of a
somewhat similar nature, and in particular [63], [44] and [68] (see also [27]),
by considering combinatorial quantities.

We would like to explain a new direction of investigation that became
apparent during the writing of this book. Let us first revisit our results on
Gaussian processes. Theorem 2.1.1 gives a complete description of the quan-
tity E supt∈T Xt as a function of the geometry of the metric space (T, d). This
is the kind of result one wishes to prove, as it provides a full understanding of
the situation. But is there a way to gather some understanding even if we do
not yet have the hope to fully understand the situation? Let us look back at
Theorem 2.1.8. A consequence of this result is that for any Gaussian process
we can find a jointly Gaussian sequence (uk) such that{

sup
t∈T

|Xt| ≥ KE sup
t∈T

|Xt|
}
⊂

⋃
k≥1

{uk ≥ 1} (5.106)

and moreover ∑
k≥1

P(uk ≥ 1) ≤ 1
2

.

In words, we have found a concrete witness that the set on the left-hand side
of (5.106) has a probability at most 1/2. This is a non-trivial information,
even though it is not as good as the information provided by Theorem 2.1.1.
(Let us observe in particular that this information is rather easy to deduce
from Theorem 2.1.1, but that it does not seem easy to go the other way
around.)
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Going back to the quantity (5.105), if M denotes a median of this quantity,
one can hope that, for some universal constant K, there always exists a
“concrete witness” that the set{

sup
f∈F

∑
i≥1

Rif(Yi) ≥ KM
}

(5.107)

has a probability at most 1/2. What should these concrete witness be? We will
not discuss this question, because it seems more fruitful at this stage to turn
towards a simpler problem of the same nature. We consider a number 0 <
δ < 1 and we consider independent r.v. (δi)i≥0 such that P(δi = 1) = δ and
P(δi = 0) = 1−δ. (These random variables are often called selectors, and have
been used in a variety of situations to select at random a “small proportion”
of a given set.) Consider a (finite if one wishes) class F of functions f on N,
such that (to avoid summability problems) each function has a finite support.
Assume moreover that for each i and each f ∈ F we have f(i) ≥ 0. We are
interested in the quantity

E sup
f∈F

∑
i≥0

δif(i) .

According to the philosophy previously explained, we would like that for some
universal constant K there always exists a simple witness that the set

sup
f∈F

∑
i≥0

δif(i) ≥ KE sup
f∈F

∑
i≥0

δif(i) (5.108)

has a probability at most 1/2.
There is a simple and natural choice for these witnesses. For a finite subset

I of N, let us consider the event B(I) defined by

B(I) = {∀i ∈ I, δi = 1} ,

so that P(B(I)) = δcard I .

Research problem 5.5.1. Is it true that we can find a universal constant
K such that given a class of functions F as in (5.108), we can find a family
G of subsets I of N with ∑

I∈G
δcard I ≤ 1/2 (5.109)

{
sup
f∈F

∑
i≥0

δif(i) ≥ KE sup
f∈F

∑
i≥0

δif(i)
}
⊂

⋃
I∈G

B(I) ?

In this problem, the sets B(I) play the role that the half-spaces play for
Gaussian processes in (5.106).

Part of the beauty of Problem 5.5.1 is that possibly the best way to ap-
proach it is through a natural question of a more general nature. To formulate



5.5 Further Thoughts 183

this more general question, we need to consider the law P of the sequence
(δi)i≥0 in {0, 1}N. With some abuse of notation, we will denote by (δi)i≥0 the
generic point of {0, 1}N. We define an abstract operation as follows. Given a
set D ⊂ {0, 1}N and an integer q, let us define the set D(q) as the subset of
{0, 1}N consisting of the sequences (δi)i≥1 such that

∀(δ1
i )i≥0, · · · , (δq

i )i≥0 ∈ D, ∃i ∈ N , δi = 1, ∀� ≤ q, δ�
i = 0 .

In words, D(q) consist of the sequences (δi) such that the set {i ∈ N ; δi = 1}
cannot be covered by q sets of the type {i ∈ N ; δi = 1} for δ ∈ D. To
understand the link with Problem 5.5.1, we observe that if D is the set
consisting of the sequences (δi)i∈N for which supf∈F

∑
i≥0 δif(i) ≤ M , where

M is a median of the left-hand side, then P(D) ≥ 1/2, while, due to positivity,
we have {

sup
f∈F

∑
i≥0

δif(i) > qM
}
⊂ D(q).

Research problem 5.5.2. Prove (or disprove) that there exist an integer
q with the following property. Consider any value of δ and any subset D of
{0, 1}N with P(D) ≥ 1 − 1/q. Then we can find a family G of sets I as in
Problem 5.5.1, that satisfies (5.109), and such that

P
(
D(q)\

⋃
I∈G

B(I)
)

= 0 .

Maybe one can even get D(q) ⊂ ⋃
I∈G B(I). A positive solution of this

problem will be rewarded by a $1000 prize, even if it applies only to suffi-
ciently small values of δ. It seems probable that progress on this question
requires methods unrelated to those of this book.

Material on “selector processes” related to this line of thought and to
Problem 5.5.2 can be found in the paper [69]. The methods of [69] being
unrelated to those of this book, we do not reproduce the results of this paper.
We will meet again selector processes in Chapter 6.
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6.1 Cotype of Operators from C(K)

We start by recalling some basic definitions. More background can be found
in classical books such as [9] or [71].

Given an operator U (i.e. a continuous linear map) from a Banach space
X to a Banach space Y and a number q ≥ 2, we denote by Cg

q (U) its Gaussian
cotype-q constant, that is, the smallest number A (possibly infinite) for which,
given any integer n, any elements x1, · · · , xn of X , we have(∑

i≤n

‖U(xi)‖q
)1/q ≤ AE

∥∥∑
i≤n

gixi

∥∥ .

Here, (gi)i≤n are i.i.d. standard normal, the norm of U(xi) is in Y and the
norm of

∑
i≤n gixi is in X .

Given a number q ≥ 2, we define the Rademacher cotype-q constant
Cr

q (U) as the smallest number A (possibly infinite) such that, given any
integer n, any elements (xi)i≤n of X , we have

(∑
i≤n

‖U(xi)‖q
)1/q ≤ AE

∥∥∑
i≤n

εixi

∥∥ , (6.1)

where (εi)i≤n are i.i.d. Bernoulli r.v. The name Rademacher cotype stems
from the fact that Bernoulli r.v. are usually (but inappropriately) called
Rademacher r.v. in Banach space theory.

Given 1 ≤ p ≤ q, we define the (q, p)-summing norm ‖U‖q,p of U as the
smallest number A (possibly infinite) such that, for any integer n, any vectors
x1, · · · , xn of X we have(∑

i≤n

‖U(xi)‖q
)1/q ≤ A sup

{(∑
i≤n

|x∗(xi)|p
)1/p ; x∗ ∈ X∗ , ‖x∗‖ ≤ 1

}
. (6.2)

This is an ideal norm, and in particular for an operator W from Y to another
Banach space we have

‖W ◦ U‖q,p ≤ ‖W‖‖U‖q,p . (6.3)

The proof is immediate. These quantities are related as follows.
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Proposition 6.1.1. We have

Cg
q (U) ≤

√
π

2
Cr

q (U) (6.4)

‖U‖q,1 ≤ Cr
q (U) . (6.5)

Proof. To prove (6.4) we simply observe that by Proposition 4.1.2 we have
E‖∑

i≤n εixi‖ ≤ √
π/2E‖∑

i≤n gixi‖. To prove (6.5) we observe that

∥∥∑
i≤n

εixi

∥∥ = sup
{∑

i≤n

εix
∗(xi) ; x∗ ∈ X∗ , ‖x∗‖ ≤ 1

}

≤ sup
{∑

i≤n

|x∗(xi)| ; x∗ ∈ X∗ , ‖x∗‖ ≤ 1
}

.

�

In the rest of this section we specialize to the case where X is the space
�∞N of sequences x = (xj)j≤N provided with the norm

‖x‖ = sup
j≤N

|xj | .

It is however possible to show that these results also hold in the case where
X = C(W ), the space of continuous functions over a compact topological
space W . The reduction technique that allows this is unrelated to the methods
of this book, see [26].

Theorem 6.1.2. Given q ≥ 2, there exists a number K(q) depending on q
only, such that, given an operator U from �∞N to a Banach space Y , we have√

2
π

max(Cg
q (U), ‖U‖q,1) ≤ Cr

q (U) (6.6)

≤ K(q)max(Cg
q (U), ‖U‖q,1) .

We observe right away that the left-hand side inequality is a consequence
of Proposition 6.1.1.

One of the ingredients of the proof of Theorem 6.1.2 is the following result
of B. Maurey, that will be proved just after Theorem 6.1.7.

Proposition 6.1.3. If 1 ≤ p < q there exists a constant K(p, q) depending
on p, q only, such that, for any operator U from �∞N to Y , we have

‖U‖q,p ≤ K(p, q)‖U‖q,1 . (6.7)
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Proof of Theorem 6.1.2. In this proof we fix a value of p with 1 < p < 2, e.g.
p = 3/2. We will prove that

Cr
q (U) ≤ L(Cg

q (U) + ‖U‖q,p), (6.8)

from which the right-hand side inequality of (6.6) will follow using (6.7).
For i ≤ n we consider elements xi of �∞N , and we write xi = (xij)j≤N . We

want to prove that

(∑
i≤n

‖U(xi)‖q
)1/q ≤ L

(
Cr

q (U) + ‖U‖p,q

)
E
∥∥∑

i≤n

εixi

∥∥ . (6.9)

Clearly, it suffices to consider the case where x1i = 0 for each i ≤ n. For
j ≤ N , consider tj ∈ R

n given by tj = (xij)i≤n, so that t1 = 0. Consider
T = {t1, · · · , tN}, so that

b(T ) = E sup
j≤N

∑
i≤n

εixij ≤ E
∥∥∑

i≤n

εixi

∥∥ . (6.10)

We appeal to the weak solution of the Bernoulli problem (Theorem 4.3.1)
for this value of p. We can write tj = t′j + t′′j , where t′j = (x′

ij)i≤n, t′′j =
(x′′

ij)i≤n, and

E sup
j≤N

∑
i≤n

gix
′
ij ≤ Lb(T ) (6.11)

∀j ≤ N ,
(∑

i≤n

|x′′
ij |p

)1/p ≤ Lb(T ) . (6.12)

(Since we have fixed p = 3/2 we do get a universal constant L in the right-
hand sides of these inequalities.) Since t1 = 0 = t′1 + t′′1 , we can replace t′j
by t′j − t′1 and t′′j by t′′j − t′′1 , so that we can assume that t′1 = 0. For i ≤ n,
we consider the elements x′

i = (x′
ij)j≤N and x′′

i = (x′′
ij)j≤N of �∞N . Thus

xi = x′
i + x′′

i . We will prove that

(∑
i≤n

‖U(x′
i)‖q

)1/q ≤ LCg
q (U)b(T ) (6.13)

(∑
i≤n

‖U(x′′
i )‖q

)1/q ≤ L‖U‖q,pb(T ) . (6.14)

Since ‖U(xi)‖ ≤ ‖U(x′
i)‖ + ‖U(x′′

i )‖, by the triangle inequality in �q
n we

have (∑
i≤n

‖U(xi)‖q
)1/q ≤ (∑

i≤n

‖U(x′
i)‖q

)1/q +
(∑

i≤n

‖U(x′′
i )‖q

)1/q
,

and combining with (6.10), (6.13) and (6.14), this proves (6.9) and hence
(6.8) and (6.6).
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To prove (6.14) we observe that in the quantity

sup
{∑

i≤n

|x∗(x′′
i )|p ; ‖x∗‖1 ≤ 1

}
,

by convexity the supremum is attained at an extreme point of the unit ball
of (�∞N )∗ = �1

N . These extreme points are the canonical basis vectors, and so
by (6.12) we have

sup
{(∑

i≤n

|x∗(x′′
i )|p)1/p ; ‖x∗‖1 ≤ 1

}
≤ Lb(T ) , (6.15)

and this implies (6.14) by definition of the norm ‖U‖q,p.
To prove (6.13) we observe that since t′1 = (x′

i1)i≤n = 0, using Lemma 1.2.8,
we have

E
∥∥∑

i≤n

gix
′
i

∥∥ = E sup
j≤N

∣∣∣∑
i≤n

gix
′
ij

∣∣∣
≤ 2E sup

j≤N

∑
i≤n

gix
′
ij .

Thus, using (6.11), we see that (6.13) follows from the definition of Cg
q (U).�

We now turn to the computation of Cg
q (U). We denote by Hq(U) the

quantity
Hq(U) = sup

{(∑
i≤n

‖U(xi)‖q
)1/q

}
,

where the supremum is taken over all n and all families (xi)i≤n with xi =∑
k≥2 aikuk, where uk ∈ �∞N , the elements (uk)k≥2 have disjoint supports,

‖uk‖∞ ≤ 1, and the numbers aik satisfy

∀k ≥ 2 ,

n∑
i=1

a2
ik ≤ 1

log k
. (6.16)

The following result is due to S. Montgomery-Smith.

Theorem 6.1.4. [28] For all U : �N∞ → Y we have

1
L

Hq(U) ≤ Cg
q (U) ≤ LHq(U) .

Proof. Suppose first that for i ≤ n the elements xi satisfy xi =
∑

k≥2 aikuk,
where the elements (uk)k≥2 of �∞N have disjoint support, ‖uk‖∞ ≤ 1, and
(6.16) holds. Then, if uk = (ukj)j≤N , we have

∥∥∑
i≤n

gixi

∥∥ = sup
j≤N

∣∣∣∑
i≤n

gi

∑
k≥2

aikukj

∣∣∣
= sup

j≤N

∣∣∣∑
k≥2

Xkukj

∣∣∣ ,
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where Xk =
∑

i≤n giaik. Since the elements uk have disjoint support and
‖uk‖∞ ≤ 1, for each j we have

∑
k≥2 |ukj | ≤ 1, and hence we have

supj≤N |∑k≥2 Xkukj | ≤ supk |Xk|. Now the r.v. Xk are Gaussian and by
(6.16) we have EX2

k ≤ 1/ log k. Thus E supk≥2 |Xk| ≤ L by Proposition 2.1.7,
and thus E‖∑

i≤n gixi‖ ≤ L. Hence

(∑
i≤n

‖U(xi)‖q
)1/q ≤ LCg

q (U) ,

and thus Hq(U) ≤ LCg
q (U).

We now turn to the proof of the converse inequality. Consider for i ≤ n
elements xi in �∞N , xi = (xij)j≤N and

D := E
∥∥∑

i≤n

gixi

∥∥ = E sup
j≤N

∣∣∣∑
i≤n

gixij

∣∣∣ ≥ E sup
j≤N

(∑
i≤n

gixij

)
+

= E sup
T

∑
i≤n

giti

where
T = {0} ∪ {tj = (xij)i≤n , j ≤ N} .

Since 0 ∈ T , by Theorem 2.1.8 we can find a sequence (ak)k≥2 of points of
�2
n, with ‖ak‖2 ≤ 1/

√
log k, such that

T ⊂ LD conv({ak , k ≥ 2} ∪ {0}) .

Thus for each j ≤ N , we can find numbers (ujk)k≥2 with tj =
∑

k≥2 ujkak

and
∀j ≤ N ,

∑
k≥2

|ujk| ≤ LD .

Writing ak = (aik)i≤n, this means that

∀j ≤ N , ∀i ≤ n , xij =
∑
k≥2

ujkaik ,

so that
∀i ≤ n , xi =

∑
k≥2

aikuk, (6.17)

where uk = (ujk)j≤N . We observe that

∑
i≤n

a2
ik = ‖ak‖2

2 ≤ 1
log k

.

When we fix the numbers aik, the quantity
∑

i≤n ‖U(
∑

k≥2 aikuk)‖q is a
convex function of the numbers (ujk)j≤N,k≥2. On the set{

∀j ≤ N ,
∑
k≥2

|ujk| ≤ LD
}

,
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the maximum of this function is attained at an extreme point (vjk)j≤N,k≥2.
By extremality, for each j, there is at most one value of k for which vjk �= 0,
and of course |vjk| ≤ LD. Thus if we define vk = (vjk)j≤N , this means that
the elements (vk)k≥2 have disjoint supports and satisfy ‖vk‖ ≤ LD. Hence

(∑
i≤n

‖U(xi)‖q
)1/q =

(∑
i≤n

∥∥U
(∑
k≥2

aikuk

)∥∥q)1/q

≤ (∑
i≤n

∥∥U
(∑
k≥2

aikvk

)∥∥q)1/q

≤ LDHq(U) ,

where the first inequality follows from the choice of the numbers (vjk)j≤N,k≥2

and the second inequality from the definition of Hq(U). This completes the
proof. �

Theorem 6.1.4 is the starting point of a rather complete theory for the
cotype of operators from �∞N . We will refer the reader to [48] for a full de-
velopment. We will only illustrate how sharp results can be with a precise
example. This example involves the spaces Lq,1(µ), q ≥ 1, where µ is a posi-
tive measure. (These spaces will again be used in Section 6.4.) The norm is
given by

‖f‖q,1 =
∫ ∞

0

(
µ({|f | ≥ t}))1/qdt . (6.18)

(This quantity is not really a norm, but can be shown to be equivalent to a
norm.)

We note that

p < q ⇒ ‖f‖q,1 ≤ K(p, q)‖f‖1−p/q
∞ ‖f‖p/q

p , (6.19)

where K(p, q) depends only on p and q. Indeed, if q′ = q/(q − 1) denotes the
conjugate exponent of q, by Hölder’s inequality we have

‖f‖q,1 =
∫ ‖f‖∞

0

(
µ({|f | ≥ t}))1/qdt

≤
(∫ ‖f‖∞

0

t(1−p) q′
q dt

)1/q′(∫ ∞

0

tp−1µ({|f | ≥ t})dt
)1/q

≤ K(p, q)‖f‖1−p/q
∞ ‖f‖p/q

p ,

since (p − 1)q′/q = (p − 1)/(q − 1) < 1 and (1 + (1 − p)q′/q)/q′ = 1 − p/q.
Also, we have, for all probability measures µ

q < p ⇒ ‖f‖q,1 ≤ K(p, q)‖f‖p . (6.20)

Indeed, assuming without loss of generality that ‖f‖p = 1, we have µ({|f | ≥
t}) ≤ min(1, t−p) and ‖f‖q,1 ≤ K(p, q) by (6.18).
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Finally, for all probability measures µ we have

‖f‖q ≤ K(q)‖f‖q,1 . (6.21)

Indeed, assuming without loss of generality that ‖f‖q,1 = 1, by (6.18) we
have µ({|f | ≥ t})1/q ≤ t−1, so that we have

tq−1µ({|f | ≥ t}) ≤ (tµ({|f | ≥ t})1/q)q−1(µ({|f | ≥ t}))1/q

≤ (µ({|f | ≥ t}))1/q ,

and thus
‖f‖q

q =
∫ ∞

0

qtq−1µ({|f | ≥ t})dt ≤ K(q) ,

using (6.18) again.

Proposition 6.1.5. Consider a probability measure µ on {1, · · · , N}. Then
if p < q the canonical injection Id : �∞N ↪→ Lq,1(µ) satisfies

‖Id‖q,p ≤ K(p, q) ,

where K(p, q) depends on p and q only.

Proof. Consider elements (xi)i≤n of �∞N , xi = (xij)j≤N , and assume that

∀x∗ ∈ �1
N = (�∞N )∗ ,

∑
i≤n

|x∗(xi)|p ≤ ‖x∗‖p .

Thus we have
∀j ≤ N ,

∑
i≤n

|xij |p ≤ 1 , (6.22)

which we simply write as ∑
i≤n

|xi|p ≤ 1 . (6.23)

Here and in the next few pages, we view an element of �∞N as a function on
{1, · · · , N}, so that for x = (xj)j≤N ∈ �∞N , |x|p is the element (|xj |p)j≤N of
�∞N . From (6.23) we have ‖xi‖∞ ≤ 1, so that, still viewing xi as a function
on {1, · · · , N}, by (6.19) we have

‖xi‖q
q,1 ≤ K(p, q)

∫
|xi|pdµ ,

so that
∑

i≤n ‖xi‖q
q,1 ≤ K(p, q) by (6.23) and since µ is a probability. �

Remark 6.1.6. When p = 1, we can take K(p, q) = 1.

The importance of the previous example stems from the fact that it is
essentially “generic” as the following factorization theorem, due to G. Pisier,
shows.
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Theorem 6.1.7. Given an operator U : �∞N → Y , there is a probability
measure µ on {1, · · · , N} such that if we denote by V the operator U as seen
operating from Lq,1(µ) to Y we have

‖V ‖ ≤ L‖U‖q,1 . (6.24)

We refer the reader to [32] for a proof.
This result witnesses the value of ‖U‖q,1 (within the multiplicative con-

stant L). Indeed, by (6.3), Proposition 6.1.5 and Remark 6.1.6 we have

‖U‖q,1 = ‖V ◦ Id‖q,1 ≤ ‖V ‖‖Id‖q,1 ≤ ‖V ‖ .

Proof of Proposition 6.1.3. Consider the positive measure provided by Theo-
rem 6.1.7, and V as in this theorem. Then, using Proposition 6.1.5 and (6.3)
we have

‖U‖q,p = ‖V ◦ Id‖q,p ≤ ‖V ‖‖Id‖q,p ≤ K(q, p)‖V ‖ ≤ LK(q, p)‖U‖q,1 .

�
Here is a simple fact.

Lemma 6.1.8. If M ≥ 2, for a positive measure µ on {1, · · · , M} and ele-
ments (xi)i≤n of �∞M , we have∑

i≤n

|xi|2 ≤ 1 ⇒
∑
i≤n

‖xi‖2
2,1 ≤ L log Mµ({1, · · · , M}) .

Proof. By homogeneity we can and do assume that µ is a probability measure.
There exists a probability measure µ′ on {1, · · · , M} such that µ′ ≥ µ/2
and µ′ gives mass ≥ 1/(2M) to each point of {1, · · · , M}. With obvious
notation we have ‖x‖2,1,µ ≤ √

2‖x‖2,1,µ′ . Thus we can assume without loss
of generality that µ gives mass ≥ 1/(2M) to each point of {1, · · · , M}. We
will prove that this implies that

∀x , ‖x‖2
2,1 ≤ L logM‖x‖2

2 .

This will conclude the proof since
∑

i≤n ‖xi‖2
2 ≤ 1. We set t0 = 0 and for

� ≥ 1, we define
t� = sup{t ; µ({|x| ≥ t}) ≥ 2−�} ,

so that
t� < t < t�+1 ⇒ 2−�−1 ≤ µ({|x| ≥ t}) ≤ 2−� (6.25)

and thus

‖x‖2,1 =
∫ ∞

0

√
µ({|x| ≥ t}) dt ≤

∑
�≥0

2−�/2(t�+1 − t�) . (6.26)
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If �0 is the smallest integer with 2−�0 < 1/2M , for � ≥ �0 we have t� = t�0 =
‖x‖∞, so that the sum in (6.26) has in fact at most (�0 + 1) terms. Since
(t�+1 − t�)2 ≤ t2�+1 − t2� , using (6.26), the Cauchy-Schwarz inequality and
(6.25) we get

‖x‖2
2,1 ≤ (�0 + 1)

∑
�≥0

(t2�+1 − t2� )2
−�

≤ 4(�0 + 1)
∑
�≥0

∫ t�+1

t�

tµ({|x| ≥ t}) dt

= 2(�0 + 1)‖x‖2
2 .

�

Theorem 6.1.9. For an operator U from �∞N to any Banach space Y , we
have, for N ≥ 3

Cr
q (U) ≤ L

√
log log N‖U‖2,1 .

Proof. Consider the probability measure provided by Theorem 6.1.7, and the
operator V as in that theorem. We have

Cr
q (U) = Cr

q (V ◦ Id) ≤ ‖V ‖Cr
q (Id) .

Thus it suffices to prove that Cr
q (U) ≤ L

√
log log N when U(= Id)

is the canonical injection from �∞N to L2,1(µ), where µ is any probability
measure on {1, · · · , N}. Using Theorem 6.1.2 and Proposition 6.1.5, it suf-
fices to show that Cg

2 (U) ≤ L
√

log log N , and, using Theorem 6.1.4, that
H2(U) ≤ L

√
log log N . Consider then elements (uk)k≥2 of �∞N with disjoint

supports, ‖uk‖∞ ≤ 1, and numbers (aik)i≤n,k≥2 such that

∀k ≥ 2 ,
∑
i≤n

a2
ik ≤ 1

log k
. (6.27)

Set xi =
∑

k≥2 aikuk. We want to prove that∑
i≤n

‖xi‖2
2,1 ≤ L log log N . (6.28)

We observe that there are at most N of the elements uk that are not zero
(since they have disjoint support). By renumbering them, we can assume that
k ≥ N + 2 ⇒ uk = 0. For � ≥ 0, we set

xi,� =
∑

M�≤k<M�+1

aikuk (6.29)

where M� = 22�

(so that M0 = 2). Consider the smallest integer �0 such that
M�0 ≥ N + 2. Then
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xi =
∑

0≤�≤�0

xi,� ,

so that, since ‖ · ‖2,1 is equivalent to a norm, we have

‖xi‖2,1 ≤ L
∑

0≤�≤�0

‖xi,�‖2,1 ,

and, by the Cauchy-Schwarz inequality,∑
i≤n

‖xi‖2
2,1 ≤ L(�0 + 1)

∑
0≤�≤�0,i≤n

‖xi,�‖2
2,1 .

Thus, it suffices to prove that
∑

�≤�0,i≤n ‖xi,�‖2
2,1 ≤ L. Denoting by S� the

union of the supports of the vectors uk for M� ≤ k < M�+1, we observe that
the sets S� are disjoint, so that it suffices to prove that∑

i≤n

‖xi,�‖2
2,1 ≤ Lµ(S�) . (6.30)

First we prove that for each � we have
∑

i≤n |xi,�|2 ≤ L2−�. We set
xi,� = (xi,�,j)j≤N and uk = (ukj)j≤N . Consider j ≤ N . By (6.29), if j
does not belong to the support of any uk, the numbers xi,�,j are 0 for each i.
Otherwise, since the supports of the elements uk are disjoint, j belongs to the
support of a unique element uk0 . If either k0 < M� or k0 ≥ M�+1, by (6.29)
the numbers xi,�,j are again 0 for each i. If M� ≤ k0 < M�+1 then by (6.29) for
each i ≤ n we have |xi,�,j | ≤ aik0 , so that

∑
i≤n x2

i,�,j ≤ 1/ log k0 ≤ L2−� by
(6.27), and since k0 ≥ M�. This proves the claim that

∑
i≤n |xi,�|2 ≤ L2−�.

Since ‖uk‖∞ ≤ 1 we have |ukj | ≤ 1. Since the vectors uk have disjoint
support, increasing |ukj | increases ‖∑

M�≤k<M�+1
aikuk‖2,1, and we can as-

sume without loss of generality that |ukj | ∈ {0, 1}. The span of the elements
|xi,�| , i ≤ n in �∞N consists of functions on {1, · · · , N} that are constants on
the sets {|uk| = 1} for M� ≤ k < M�+1, and that are zero outside the union
of these sets. If we identify each of these sets to a point, we are in a situation
where the underlying measured space has at most M�+1 points, and since
log M�+1 ≤ 2�+1, we see that (6.30) follows from Lemma 6.1.8. �

Theorem 6.1.10. Consider the uniform probability measure µ on {1,· · · ,N}.
Then for N ≥ 3 we have

Cg
2 (U) ≥ 1

L

√
log log N ,

where U is the canonical injection from �∞N into L2,1(µ).

Thus, we have shown that ‖U‖2,1 ≤ 1, and that both Cg
2 (U) and Cr

2 (U)
are of order

√
log log N .



6.1 Cotype of Operators from C(K) 195

Proof. To avoid messy details we will assume that N is of the type N =
(p − 3)22p

for some p ≥ 4.
For 2 ≤ j ≤ p − 2 we consider disjoint sets Sj with card Sj = 22j+2

, and
S =

⋃
2≤j≤p−2 Sj .

Consider the probability measure ν on S that gives mass 1/((p−3) card Sj)
to each point of Sj . The mass of each point of S is a multiple of N−1, so that
L2,1(ν) is isometric to a subspace of L2,1(µ), and it suffices to prove that if
V is the canonical injection from �∞(S) into L2,1(ν) we have

H2(V ) ≥
√

p

L
. (6.31)

We consider the family X consisting of all the elements x of �∞(S) of
the following type. The element x takes only the values 0 and 2k for 3 ≤
k ≤ 2p−2. If 2j−1 < k ≤ 2j where 2 ≤ j ≤ p − 2, then the set {x = 2k}
consists of exactly 2−2k−2jcard Sj points of Sj. This is possible because this
number is an integer since 2j+2 − 2j − 2k ≥ 2j+2 − 2j − 2j+1 ≥ 0. Thus
ν({x = 2k}) = 2−2k−2j/(p − 3), and

‖x‖2,1 ≥
∑

k

∫ 2k

2k−1

√
ν({|x| ≥ t}) dt ≥

∑
k

2k−1
√

ν({|x| = 2k})

≥
∑

2≤j≤p−2

∑
2j−1<k≤2j

2k−1 2−k−j

√
p − 3

=
p − 3

4
√

p − 3
≥

√
p

L
. (6.32)

Let us consider the family F consisting of the elements of �∞(S) of the
type x/

√
M , where x ∈ X and M = cardX . Then, by (6.32), we have∑

y∈F
‖y‖2

2,1 ≥ p

L
. (6.33)

For x ∈ X , the average value of x2 on the set Sj is∑
2j−1<k≤2j

22k2−2k−2j = 2−j−1

and thus, writing y = (yk)k∈S , we have

∀k ∈ Sj ,
∑
y∈F

y2
k = 2−j−1 , (6.34)

since by symmetry
∑

y∈F y2
k is independent of k ∈ Sj . We can and do assume

that the sets Sj are consecutive intervals. In that case, for k ∈ Sj we have
log k ≤ L2j, and (6.34) implies that

∀k ∈ Sj ,
∑
y∈F

y2
k ≤ L

log k
. (6.35)
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If we denote by (uk) the canonical basis of �∞(S) then

y =
∑
k∈S

ykuk

and the elements uk have disjoint supports. Combining with (6.33) and (6.35)
we have indeed shown that H2(V ) ≥ √

p/L. �

6.2 Computing the Rademacher Cotype-2 Constant

When U is an operator between two finite dimensional Banach spaces X and
Y , one may ask “how many vectors of X are needed in general to compute
the Rademacher cotype-2 constant Cr

2 (U) of U” within a constant L, that is,
how large should n be so that one can find (x1, · · · , xn) in X with

(∑
i≤n

‖U(xi)‖2
)1/2

>
1
L

Cr
2 (U)E

∥∥∑
i≤n

εixi

∥∥ .

Similar questions in various settings are investigated e.g. in [71], [14]. We
will approach this question through a comparison principle between Gaussian
and Rademacher averages that is of interest in its own right.

Consider a Banach space X of dimension N , and its dual X∗. Consider
elements x1 , · · · , xn in X and assume without loss of generality that they
span X .

Consider the norm ‖ · ‖2 on X such that its unit ball is the set{∑
i≤n

αixi ;
∑
i≤n

α2
i ≤ 1

}
.

Let us denote by ‖ · ‖2 the dual of this norm on X∗, so that

‖x∗‖2 = sup
{∣∣x∗(∑

i≤n

αixi

)∣∣ ;
∑
i≤n

α2
i ≤ 1

}
(6.36)

=
(∑

i≤n

x∗(xi)2
)1/2

.

This norm arises from the dot product given by

(x∗, y∗) =
∑
i≤n

x∗(xi)y∗(xi) .

Consider an orthonormal basis (e∗j )j≤N of X∗ for this dot product. Then

x∗ =
∑
j≤N

(x∗, e∗j) e∗j ; ‖x∗‖2
2 =

∑
j≤N

(x∗, e∗j )
2 .
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Thus

‖x‖2 = sup{|x∗(x)| ; ‖x∗‖2 ≤ 1}
= sup

{∣∣∑
j≤N

βje
∗
j (x)

∣∣ ;
∑
j≤N

β2
j ≤ 1

}
=

(∑
j≤N

e∗j (x)2
)1/2

.

We note that ∑
i≤n

‖xi‖2
2 =

∑
i≤n

∑
j≤N

e∗j (xi)2 (6.37)

=
∑
j≤N

∑
i≤n

e∗j (xi)2 = N ,

using (6.36) with x∗ = e∗j in the last inequality.
It is of interest to consider a subset T of X as a subset of the Hilbert space

(X, ‖ · ‖2). One can then define the usual quantity g(T ), that is concretely
given by

g(T ) = E sup
t∈T

∑
j≤N

gje
∗
j (t) , (6.38)

where (gi)j≤N are independent standard normal r.v. (Interestingly, this for-
mula will not be needed in the sequel.)

Lemma 6.2.1. If T = {x1, · · · , xn} then

g(T ) ≤ L
√

log(N + 1) . (6.39)

If the sequence (‖xi‖2)i≥1 is non-increasing, if M = N log N and if we write
T ′ = {xi ; M ≤ i ≤ n} we have

g(T ′) ≤ L . (6.40)

Proof. Both results are based on the fact that if T = {tk ; k ≥ 1} then

g(T ) ≤ L sup
k≥1

(‖tk‖2

√
log(k + 1)

)
,

as shown in Proposition 2.1.7. We observe that it is obvious from the defi-
nition of ‖ · ‖2 that ‖xi‖2 ≤ 1. Assuming without loss of generality that the
sequence (‖xi‖)i≥1 is non-increasing, we see from (6.37) that ‖xi‖ ≤ √

N/i.
Thus

g(T ) ≤ L sup
k≥1

(
min

(
1,

√
N

k

)√
log(k + 1)

)
≤ L

√
log(N + 1)

g(T ′) ≤ L sup
k≥1

(√
N

M + k

√
log(k + 1)

)
≤ L

√
N

M
log M ≤ L .

�
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In the next statement, we define T = {x1, · · · , xn}, and, for a subset I of
{1, · · · , n} we write

TI = {xi , i ≤ n , i �∈ I} .

Theorem 6.2.2. We have

E
∥∥∑

i≤n

gixi

∥∥ ≤ LE
∥∥∑

i≤n

εixi

∥∥(1 + g(T )) . (6.41)

More generally, for any subset I of {1, · · · , n} we have

E
∥∥∑

i∈I

gixi

∥∥ ≤ LE
∥∥∑

i∈I

εixi

∥∥ (
1 +

E‖∑
i≤n gixi‖

E‖∑
i∈I gixi‖ g(TI)

)
. (6.42)

Of course (6.41) is the special case of (6.42) where I = ∅. Using (6.39) we
see that (6.41) improves the known inequality

E
∥∥ ∑

i≤n

gixi

∥∥≤ L
√

log(N + 1)E
∥∥∑

i≤n

εixi

∥∥ . (6.43)

Corollary 6.2.3. There exists a subset I of {1, · · · , n} such that card I ≤
N log(N + 1) and that either of the following holds true

E
∥∥ ∑

i∈I

gixi

∥∥ ≤ 1
2
E
∥∥ ∑

i≤n

gixi

∥∥ (6.44)

or
E
∥∥∑

i∈I

gixi

∥∥ ≤ LE
∥∥∑

i∈I

εixi

∥∥ . (6.45)

Proof. By (6.40) we can find a set I with the required cardinality such that
g(TI) ≤ L, so that if (6.44) fails, (6.45) follows from (6.42). �
Corollary 6.2.4. Consider an operator U from X to Y , and vectors (xi)i≤n

of X such that
AE

∥∥∑
i≤n

εixi

∥∥ <
(∑

i≤n

‖U(xi)‖2
)1/2

. (6.46)

Then we can find vectors (yj)j≤M of X such that

A

L
E
∥∥ ∑

j≤M

εjyj

∥∥ <
( ∑
j≤M

‖U(yj)‖2
)1/2 (6.47)

and M ≤ N log N log log N .

For every A < Cr
2 (U), there exists vectors x1, . . . , xn such that (6.46) is

satisfied, and (6.47) means that within the loss of a constant factor one can
take n = M . In other words, the “Rademacher cotype 2 constant of U can
essentially be computed on M vectors”.

Of course, one should ask whether it would actually suffice to consider
LN vectors.
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Proof. The first part of the proof consists in showing that we can find a
subset J of {1, · · · , n} with cardJ ≤ M and

E
∥∥∑

i∈J

gixi

∥∥ ≤ LE
∥∥∑

i≤n

εixi

∥∥ . (6.48)

To this aim, consider the largest integer k0 with 2k0 ≤ √
log(N + 1). Using

Corollary 6.2.3, by induction over k, for k ≤ k0 we construct subsets Ik of
{1, · · · , n} with cardIk ≤ LN log N and either

E
∥∥ ∑

i∈I1∪...∪Ik

gixi

∥∥ ≤ 1
2
E
∥∥ ∑

i∈I1∪...∪Ik−1

gixi

∥∥.

or
E
∥∥ ∑

i∈I1∪...∪Ik

gixi

∥∥ ≤ LE
∥∥ ∑

i∈I1∪...∪Ik−1

εixi

∥∥. (6.49)

If at one step (6.49) holds, we stop the construction. Taking J = I1 ∪ . . .∪ Ik

we see that cardJ ≤ kN log N ≤ M and that (6.48) holds. Otherwise, for
J = I1 ∪ . . . ∪ Ik0 , we get cardJ ≤ k0N log N ≤ M and by (6.43) that

E
∥∥∑

i∈J

gixi

∥∥ ≤ 2−k0E
∥∥∑

i≤n

gixi

∥∥ ≤ 2−k0L
√

log(N + 1)E
∥∥∑

i≤n

εixi

∥∥ ,

and this proves (6.48) by the choice of k0.
Now that we have proved (6.48) we consider 2 cases.

Case 1. We have ∑
i∈J

‖U(xi)‖2 ≥ 1
2

∑
i≤n

‖U(xi)‖2 .

Then we have

A

2
E
∥∥∑

i∈J

εixi

∥∥ ≤ A

2
E
∥∥∑

i≤n

εixi

∥∥ <
1
2
(∑

i≤n

‖U(xi)‖2
)1/2 ≤ (∑

i∈J

‖U(xi)‖2
)1/2

,

and this proves (6.47).
Case 2. We have ∑

i∈J

‖U(xi)‖2 ≥ 1
2

∑
i≤n

‖U(xi)‖2 .

Then (6.46) yields

A

2
E
∥∥∑

i≤n

εixi

∥∥ <
(∑

i∈J

‖U(xi)‖2
)1/2
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and combining with (6.48) we see that

A

L
E
∥∥∑

i∈J

gixi

∥∥ <
(∑

i∈J

‖U(xi)‖2
)1/2

. (6.50)

To conclude the proof, we use that the Gaussian cotype 2 constant of U
can be computed on N vectors [71], so that by (6.50) we can find N vectors
y1 , . . . , yN of X such that

A

L
E
∥∥∑

j≤N

gjyj

∥∥ ≤ (∑
j≤N

‖U(yj)‖2
)1/2

,

which by (4.3) implies (6.47). �

The proof of Theorem 6.2.2 will use the following general fact. We recall
that N0 = 1 and that Nn = 22n

for n ≥ 1.

Lemma 6.2.5. Consider a set T provided with two distances d and d′. As-
sume that for a certain number S and every n ≥ 0, every ball Bd(t, a) of T
can be covered by Nn sets of d′-diameter at most aS2−n/2. Then we have

γ1(T, d′) ≤ LSγ2(T, d) .

Proof. Consider an admissible sequence (Bn) of T with

∀t ∈ T ,
∑
n≥0

2n/2∆(Bn(t), d) ≤ 2γ2(T, d) .

We construct by induction an increasing sequence of partitions (Cn) satisfying

cardCn ≤ Nn+2 (6.51)

∀C ∈ Cn , ∃B ∈ Bn , C ⊂ B , ∆(C, d′) ≤ S2−n/2∆(B, d) . (6.52)

First, we set C0 = {T }. We note that using the hypothesis for a = ∆(T, d)
and n = 0 we have

∆(T, d′) ≤ S∆(T, d) . (6.53)

Thus (6.52) is true for n = 0. Assuming that Cn has been constructed, we split
each element C of Cn as follows. First we split C in the sets C∩B , B ∈ Bn+1.
Then we split each set C ∩ B in Nn+1 pieces C′ such that

∆(C′, d′) ≤ S2−(n+1)/2∆(C ∩ B, d) .

This is possible by hypothesis, and this completes the construction of Cn+1.
Clearly, Cn+1 consists of at most Nn+2 · N2

n+1 = Nn+3 sets and it is obvious
that (6.51) and (6.52) hold for n + 1. A consequence of (6.52) is that

∀t , ∆(Cn(t), d′) ≤ S2−n/2∆(Bn(t), d)
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and thus ∑
n≥0

2n∆(Cn(t), d′) ≤ S
∑
n≥0

2n/2∆(Bn(t), d)

≤ 2Sγ2(T, d) .

Using (6.53) and Lemma 1.3.3 then yields the result. �

Proof of Theorem 6.2.2. We prove (6.42). On X∗ consider the norm given by

‖x∗‖I = sup
i∈I

|x∗(xi)| .

It follows from the Pajor-Tomczak reverse Sudakov minoration inequality
([18], equation (3.15)) that for n ≥ 0 the unit ball of (X∗, ‖ · ‖2) can be
covered by Nn balls for ‖ · ‖I of radius Lg(TI)2−n/2. Thus, by Lemma 6.2.5
we have

γ1(X∗
1 , dI) ≤ Lg(TI)γ2(X∗

1 , ‖ · ‖2) ,

where of course dI is the (quasi-) distance associated to the norm ‖ · ‖I and
where X∗

1 is the unit ball of X∗. Using Theorem 2.1.1 for the process given
for x∗ in X∗

1 by Xx∗ =
∑

i≤n gix
∗(xi) we get

γ1(X∗
1 , dI) ≤ Lg(TI)E

∥∥∑
i≤n

gixi

∥∥ . (6.54)

Consider now the set

T∼ = {(x∗(xi))i∈I ; x∗ ∈ X∗
1} .

It should be obvious that

g(T∼) = E
∥∥∑

i∈I

gixi

∥∥ ; b(T∼) = E
∥∥∑

i∈I

εixi

∥∥ ;

γ1(T∼, d∞) = γ1(X∗
1 , dI) . (6.55)

We appeal to Theorem 4.2.1 to see that

g(T∼) ≤ L
(
b(T∼) +

√
b(T∼)γ1(T∼, d∞)

)
≤ L

(
b(T∼) +

√
b(T∼)g(T∼)A

)
where

A = g(TI)
E‖∑

i≤n gixi‖
E‖∑

i∈I gixi‖ ,

using (6.54) and (6.55). Using the inequality
√

xy ≤ cx + y/c, we conclude
that

g(T∼) ≤ Lb(T∼) + Lb(T∼)A +
1
2
g(T∼) ,

so that g(T∼) ≤ L(1 + A)b(T∼). �
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6.3 Restriction of Operators

We consider q > 1, the space �q
N , and its canonical basis (ei)i≤N . Consider

a Banach space X and an operator U : �q
N → X . We will give conditions

under which there are large subsets J of {1, · · · , N} such that the norm of
the restriction UJ to the span of the vectors (ei)i∈J is much smaller than
the norm of U . We denote by X∗

1 the unit ball of the dual of X , by p the
conjugate exponent of q. Setting xi = U(ei), we have

‖UJ‖ = sup
{∑

i∈J

αix
∗(xi) ;

∑
i∈J

|αi|q ≤ 1 , x∗ ∈ X∗
1

}
(6.56)

= sup
{(∑

i∈J

|x∗(xi)|p
)1/p ; x∗ ∈ X∗

1

}
.

The set J will be constructed by a random choice. That is, given a number
δ > 0, we consider i.i.d. r.v. (δi)i≤N with

P(δi = 1) = δ ; P(δi = 0) = 1 − δ , (6.57)

and we set J = {i ≤ N ; δi = 1}. (The r.v. δi are often called selectors.)
Thus, using (6.56), we have

‖UJ‖p = sup
t∈T

∑
i≤N

δi|ti|p , (6.58)

where
T = {(x∗(xi))i≤N ; x∗ ∈ X∗

1} . (6.59)

Let us observe that, by interversion of the supremum and the expectation,
we have

E‖UJ‖p ≥ sup
t∈T

E
(∑
i≤N

δi|ti|p
)

(6.60)

= δ sup
t∈T

∑
i≤N

|ti|p .

This demonstrates the relevance of the quantity supt∈T

∑
i≤N |ti|p and why

we need to control it from above if we want to control E‖UJ‖p from above.
For a subset T of R

N , we set

|T |p = {(|ti|p)i≤N ; t ∈ T } .

Thus, if T is the set (6.59) we have by (6.58) that

‖UJ‖p = sup
t∈|T |p

∑
i≤N

δiti . (6.61)
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This shows that to control E‖UJ‖ we need information on the set |T |p. On
the other hand, information we might gather from the properties of X as a
Banach space is likely to bear on T . The link between the properties of T and
|T |p is provided in Theorem 6.3.1 below, that transfers a certain “smallness”
property of T into an appropriate smallness property of |T |p.

We recall from Section 2.5 that for a subset I of {1, · · · , N} and for a > 0
we write

W (I, a) = {(ti)i≤N ; i �∈ I ⇒ ti = 0 , ∀i ∈ I , |ti| ≤ a} .

Theorem 6.3.1. Consider a subset T of R
N with 0 ∈ T . Assume that there

exists an admissible sequence (Bn) of T such that

∀t ∈ T ,
∑
n≥0

2n∆p(Bn(t), d∞) ≤ A (6.62)

and let
B = max

(
A, sup

t∈T

∑
i≤N

|ti|p
)

. (6.63)

Then we can find a family F of couples (I, a) with

∀(I, a) ∈ F , a card I ≤ B/A (6.64)

∀n ≥ 0 , card {(I, a) ∈ F ; a ≥ 2−n} ≤ Nn+2 (6.65)

|T |p ⊂ K(p)A conv
⋃

(I,a)∈F
W (I, a) . (6.66)

Proof. The proof resembles that of Theorem 2.6.12. Consider the largest in-
teger τ for which 2τ ≤ B/A. Since B ≥ A, we have τ ≥ 0, and 2−τ ≤ 2A/B.

The set |T |p is a subset of the ball W of L1(µ) of center 0 and radius B,
where µ is the counting measure on {1, . . . , N}. So we can use Theorem 2.6.4
and homogeneity to find an admissible sequence of partitions (Cn) of T and
for each C ∈ Cn an integer �(C) ∈ Z, such that if for t ∈ W we set

�(t, n) = �(Cn(t)) (6.67)

we have

∀t ∈ T , card {i ≤ N ; |ti|p ≥ 2−�(t,n)} ≤ 2n+τ ≤ 2nB

A
(6.68)

∀t ∈ T ,
∑
n≥0

2n−�(t,n) ≤ 12 · 2−τB ≤ LA . (6.69)

Using (6.62) we see that the sequence of partitions An generated by Bn and
Cn satisfies

∀t ∈ T ,
∑
n≥0

2n∆p(An(t), d∞) ≤ A . (6.70)



204 6 Applications to Banach Space Theory

Moreover, this sequence is increasing and card An ≤ Nn+1. Also, the integers
�(t, n) depend only on An(t).

For A ∈ An , n ≥ 0, let us choose in an arbitrary manner u(A) ∈ A, and
set πn(t) = u(An(t)). We write πn(t) = (πn,i(t))i≤N and we define

I0(t) = {i ≤ N ; |π0,i(t)|p ≥ 2−�(t,0)} . (6.71)

For n ≥ 1 we define

In(t) = {i ≤ N ; |πn,i(t)|p ≥ 2−�(t,n) , |πn−1,i(t)|p < 2−�(t,n−1)} .

Thus, for n ≥ 1 and i ∈ In(t), we have

|ti| ≤ |ti − πn−1,i(t)| + |πn−1,i(t)|
≤ ∆(An−1(t), d∞) + 2−�(t,n−1)/p

and hence

|ti|p ≤ K(p)(∆(An−1(t), d∞)p + 2−�(t,n−1)) := c(t, n) . (6.72)

Since 0 ∈ T , this remains true for n = 0 if we define c(t, 0) = ∆(T, d∞)p.
From (6.70) and (6.69) we get

∀t ∈ T ,
∑
n≥0

2nc(t, n) ≤ K(p)A . (6.73)

We consider the family F of all pairs (In(t), 2−n). Thus by (6.68) if
(I, a) ∈ F we have a card I ≤ B/A. Since the set In(t) depends only on
An(t), there are at most Nn+1 sets of this type, and this proves (6.65), using
that

∑
k≤n Nk+1 ≤ Nn+2.

Finally,
i ∈ In(t) ⇒ |ti|p ≤ c(t, n) (6.74)

and this implies (6.66) as in the proof of Theorem 2.6.12. �
The smallness criterion provided by (6.66) is perfectly adapted to the

control of E‖UJ‖p.

Theorem 6.3.2. Consider the set T of (6.59), and assume that (6.62) and
(6.63) hold. Consider ε > 0 and

δ =
A

BεN ε log N
. (6.75)

Assume that δ ≤ 1. Then if the r.v. (δi)i≤N are as in (6.57) and J = {i ≤
N ; δi = 1}, for v > 0 we have

P
(
‖UJ‖p ≥ vK(p)

A

ε log N

)
≤ L exp

(
− v

L

)
and in particular

E‖UJ‖p ≤ K(p)
A

ε logN
. (6.76)
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Lemma 6.3.3. Consider a fixed set I. If u ≥ 6δ card I we have

P
(∑

i∈I

δi ≥ u
)
≤ exp

(
−u

2
log

u

2δ card I

)
. (6.77)

Proof. We are dealing here with the tails of the binomial law and (6.77)
follows from the Chernov bounds. For a direct proof, considering λ > 0 we
write

E expλδi ≤ 1 + δeλ ≤ exp(δeλ)

so that we have
E expλ

∑
i∈I

δi ≤ exp(δeλcard I)

and
P
(∑

i∈I

δi ≥ u
)
≤ exp(δeλcard I − λu) .

We take λ = log(u/(2δcard I)), so that λ ≥ 1 and δeλcard I = u/2 ≤ λu/2.
�

Proof of Theorem 6.3.2. Consider the family F provided by Theorem 6.3.1.
For (I, a) ∈ F , we have a card I ≤ B/A so that

δ card I ≤ 1
aεN ε log N

.

Considering v ≥ 6, we use (6.77) for u = v/(aε log N) ≥ 6δN εcard I to obtain

P
(
a

∑
i∈I

δi ≥ v

ε log N

)
≤ exp

(
− v

2aε logN
log(N ε)

)
(6.78)

= exp
(
− v

2a

)
.

By (6.65) and a simple computation we have for v and L large enough that

∑
(I,a)∈F

exp
(
− v

2a

)
≤ L exp

(
− v

L

)
. (6.79)

Thus, if we define the event

Ω(v) : ∀(I, a) ∈ F , a
∑
i∈I

δi ≤ v

ε logN
,

we see from (6.78) and (6.79) that P(Ω(v)c) ≤ L exp(−v/L). When Ω(v)
occurs, for t in W (I, a) we have

∑
i≤N δiti ≤ a

∑
i∈I δi ≤ v/(ε logN). By

(6.66) for t ∈ |T |p we have
∑

i≤N δiti ≤ K(p)vA/(ε log N), and by (6.61) we
have ‖UJ‖p ≤ K(p)vA/(ε log N). �
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Theorem 6.3.4. Consider 1 < q ≤ 2 and its conjugate p ≥ 2. Consider a
Banach space X such that X∗ is p-convex (see Definition 3.1.2). Consider
vectors x1 , · · · , xN of X, and S = maxi≤N ‖xi‖. Denote by U the operator
�q
N → X such that U(ei) = xi. For a number C > 0, denote by ‖ · ‖C the

norm on X such that the unit ball of the dual norm is{
x∗ ∈ X∗ , ‖x∗‖ ≤ 1 ;

∑
i≤N

|x∗(xi)|p ≤ C
}

. (6.80)

Then, for a number K(η, p) depending only on p and on the constant η in
Definition 3.1.2, if B = max(K(η, p)Sp log N, C), and if

δ =
Sp

BεN ε
≤ 1 , (6.81)

we have
E‖UJ‖p

C ≤ K(η, p)
Sp

ε
. (6.82)

It is remarkable that the right-hand side of (6.82) does not depend on
‖U‖C but only on S = maxi≤n ‖U(ei)‖. On the other hand, since ‖U‖C ≤ C
we should think of δ as depending on ‖U‖C.

Lemma 6.3.5. Consider the (quasi) distance d∞ on X∗
1 defined by

d∞(x∗, y∗) = max
i≤N

|x∗(xi) − y∗(xi)| .

Then
ek(X∗

1 , d∞) ≤ K(p, η)S2−k/p(log N)1/p (6.83)

or, equivalently,

log N(X∗
1 , d∞, ε) ≤ K(p, η)

(S

ε

)p

log N . (6.84)

Here X∗
1 is the unit ball of X∗, N(X∗

1 , d∞, ε) is the smallest number of balls
for d∞ of radius ε needed to cover X∗

1 and ek is defined in (1.13).
It would be nice to have a simple proof of this statement. The only proof

we know is somewhat indirect. It involves geometric ideas. First, one proves
a “duality” result, namely that if W denotes the convex hull of the points
(±xi)i≤N , it suffices to show that

log N(W, ‖ · ‖, ε) ≤ K(p, η)
(S

ε

)p

log N . (6.85)

This duality result is proved in [5], Proposition 2, (ii). We do not reproduce
the simple and very nice argument, that is not related to the ideas of this
work. One then observes that X is of type p because X∗ is p-convex, with
a type p constant depending only on p and η, and a beautiful probabilistic
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argument of Maurey, that is reproduced e.g. in [60], Lemma 3.2 then yields
(6.85).
Proof of Theorem 6.3.4. We combine (6.84) with Theorem 3.1.3 (used for
α = p) to see that

γp,p(X∗
1 , d∞) ≤ K(p, η)S(log N)1/p ,

i.e. there exists an admissible sequence (Bn) on X∗
1 , such that

∀t ∈ X∗
1 ,

∑
n≥0

2n∆p(Bn(t), d∞) ≤ K(p, η)Sp log N := A .

The set T corresponding to the norm (6.80) is

T =
{
(x∗(xi))i≤N ; ‖x∗‖ ≤ 1 ;

∑
i≤N

|x∗(xi)|p ≤ C
}

.

Thus we can use Theorem 6.3.2 with B = max(A, C). �
To conclude this section, we describe an example showing that Theorem

6.3.4 is very close to being optimal. Consider two integers r, m and N = rm.
We divide {1, · · · , N} into m disjoint subsets I1 , · · · , Im of cardinality r.
We consider 1 < q ≤ 2 and the operator U : �q

N → �q
m = X such that

U(ei) = ej for i ∈ Ij , where (ei)i≤N , (ej)j≤m are the canonical bases of �q
N

and �q
m respectively. It is classical [20] that X∗ = �p

m is p-convex. Consider δ
with δr = 1/m. Then

P(∃j ≤ m ; ∀i ∈ Ij , δj = 1) = 1 −
(
1 − 1

m

)m

≥ 1
L

,

and when this event occurs we have ‖UJ‖ ≥ r1/p, since ‖∑
i∈Ij

ei‖ = r1/q

and ‖UJ(
∑

i∈Ij
ei)‖ = r. Thus

E‖UJ‖p ≥ r

L
. (6.86)

On the other hand, let us apply Theorem 6.3.4 to this situation. To ensure
(6.80) one has to take C = r, so that B = r whenever K(q) log N . If ε is such
that

δ =
1

m1/r
=

1
rεN ε

=
1

rεmεrε
,

then ε is about 1/r, and (6.86) shows that (6.82) gives the exact order of
‖UJ‖ in this case.

6.4 The Λ(p) Problem

We denote by λ the uniform measure on [0, 1]. Consider functions (xi)i≤N on
[0, 1] such that
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∀i ≤ N , ‖xi‖∞ ≤ 1 (6.87)

the sequence (xi)i≤N is orthogonal in L2 = L2(λ) . (6.88)

Consider a number p > 2. J. Bourgain [4] proved the remarkable fact that
there exists a subset J of {1, · · · , N} with card J = N2/p, for which we have
an estimate

∀(αi)i∈J ,
∥∥∑

i∈J

αixi

∥∥
p
≤ K(p)

(∑
i∈J

α2
i

)1/2
, (6.89)

where ‖ · ‖p denotes the norm in Lp(λ). The most interesting case of applica-
tion of this theorem is the case of the trigonometric system. Even in that case,
no simpler proof is known. Bourgain’s argument is probabilistic, showing in
fact that a random choice of J works with positive probability.

We will give a sharpened version of (6.89). Consider r.v. δi as in (6.57)
with δ = N2/p−1, and J = {i ≤ N ; δi = 1}.
Theorem 6.4.1. Consider p < p1 < ∞ and p < p′ < 2p. Then there is a r.v.
W ≥ 0 with EW ≤ K such that for any numbers (αi)i∈J with

∑
i∈J α2

i ≤ 1
we can write

f :=
∑
i∈J

αixi = f1 + f2 + f3 (6.90)

where
‖f1‖p1 ≤ W (6.91)

‖f2‖2 ≤ W
√

log NN1/p−1/2 ; ‖f2‖∞ ≤ WN1/p′
(6.92)

‖f3‖2 ≤ WN1/p−1/2 ; ‖f3‖∞ ≤ WN1/p . (6.93)

Here, as well as in the rest of this section, K denotes a number depend-
ing only on p, p′ and p1, that need not be the same at each occurrence. To
understand Theorem 6.4.1, it helps to keep in mind that by (6.19), for any
function h we have

‖h‖p,1 ≤ K(p)‖h‖2/p
2 ‖h‖1−2/p

∞ . (6.94)

Thus (6.93) implies that ‖f3‖p,1 ≤ KW and (6.92) implies that ‖f2‖p,1 ≤
KWN−1/K . Since ‖f1‖p,1 ≤ K‖f1‖p1 by (6.20), (6.90) implies that ‖f‖p,1 ≤
KW , so that we have the estimate

∀(αi)i∈J ,
∥∥∑

i∈J

αixi

∥∥
p,1

≤ KW
(∑

i∈J

α2
i

)1/2
. (6.95)

Moreover, since P(cardJ ≥ N2/p) ≥ 1/L, with positive probability we have
both cardJ ≥ N2/p and W ≤ K and in this case we see using (6.21) that
(6.95) improves upon (6.89) . Thus Theorem 6.4.1 sharpens Bourgain’s result.

Moreover Theorem 6.4.1 shows the exact reason why we cannot increase
p in (6.89): the function f of (6.90) might take a value about N1/p on a set
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of measure about 1/N . We believe (but cannot prove) that the lower order
term f2 is not needed in (6.90).

We consider the operator U : �2
N → Lp given by U(ei) = xi, and we

denote by UJ its restriction to �2
J .

We choose once and for all p2 > p1. (This might be the time to mention
that there is some room in the proof, and that some of the choices we make
are simply convenient and in no way canonical.) We consider on Lp2 the
norms ‖ · ‖(1) and ‖ · ‖(2) such that the unit ball of the dual norm is given
respectively by{

x∗ ∈ Lq2 ; ‖x∗‖q2 ≤ 1 ,
∑
i≤N

x∗(xi)2 ≤ N1/2−1/p
}

. (6.96)

{
x∗ ∈ Lq2 ; ‖x∗‖q2 ≤ 1 ,

∑
i≤N

x∗(xi)2 ≤ N1−2/p
}

, (6.97)

where q2 is the conjugate exponent of p2.

Lemma 6.4.2. We have

E‖UJ‖(1) ≤ K ; E‖UJ‖(2) ≤ K
√

log N .

Proof. We appeal to Theorem 6.3.4 with p = 2. We recall the classical fact
that Lq2 is 2-convex [20], and we observe that it is enough to prove the result
for N large enough. We then use (6.82) with S = 1, noting that for N large
enough we have B = max(C, K(η, p) log N) = C and

δ = N2/p−1 ≤ 1
BεN ε

when C = N1/2−1/p and ε = 1/2 − 1/p (in which case S2/ε ≤ K) and also
when C = N1−2/p and ε = 1/ logN (in which case S2/ε ≤ L log N). �

We recall the norm

‖f‖ψ2 = inf
{

c > 0 ;
∫

exp
(f2

c2

)
dλ ≤ 2

}
. (6.98)

We denote by ‖ · ‖∗ψ2
the dual norm.

We consider a = N−1/p′
, b = N1/p′−1/p, and the norm ‖ · ‖(3) on Lp such

that the unit ball of the dual norm is the set

Z =
{
x∗ ∈ Lq(λ) ; ‖x∗‖1 ≤ a , ‖x∗‖∗ψ2

≤ b ;
∑
i≤N

x∗(xi)2 ≤ N1−2/p
}

,

(6.99)
where q is the conjugate of p.

Lemma 6.4.3. We have E‖UJ‖(3) ≤ L.
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This uses arguments really different from those of Lemma 6.4.2, and the proof
will be given at the end of this section.

Lemma 6.4.4. Assume that ‖f‖(1) ≤ 1 , ‖f‖(2) ≤ √
log N , ‖f‖(3) ≤ 1.

Then we can write f = f1 + f2 + f3, where

‖f1‖p1 ≤ K (6.100)

‖f2‖2 ≤ K
√

log NN1/p−1/2 ; ‖f2‖∞ ≤ KN1/p′
(6.101)

‖f3‖2 ≤ KN1/p−1/2 ; ‖f3‖∞ ≤ KN1/p . (6.102)

Proof of Theorem 6.4.1. This is an obvious consequence of the previous three
lemmas, with

W = ‖UJ‖(1) +
1√

log N
‖UJ‖(2) + ‖UJ‖(3) .

�
Proof of Lemma 6.4.4. Since ‖f‖(1) ≤ 1, by duality we can write f = u1 +u2

where ‖u1‖p2 ≤ 1 and u2 =
∑

i≤N βixi with
∑

i≤N β2
i ≤ N1/p−1/2. By (6.87)

and (6.88) we have ‖u2‖2
2 ≤ N1/p−1/2. Using that

λ({|f | ≥ t}) ≤ λ
({|u1| ≥ t

2
})

+ λ
({|u2| ≥ t

2
})

(6.103)

we see that

λ({|f | ≥ t}) ≤ K(t−p2 + t−2N1/p−1/2) ≤ Kt−p2

for t ≤ c1 = Nα, where α(p2 − 2) = 1/2 − 1/p. In particular we have

‖f1{|f |≤c1}‖p1 ≤ K . (6.104)

Since ‖f‖(2) ≤ √
log N , by duality we can write f = v1 + v2, where

‖v1‖p2 ≤ √
log N and v2 =

∑
i≤N βixi, with

∑
i≤N β2

i ≤ (log N)N2/p−1, so
that ‖v2‖2 ≤ √

log NN1/p−1/2. Let c2 = 3N1/p′
. We next show that

|f |1{c1≤|f |≤c2} ≤ 2|v1|1{|v1|≥c1/2} + 2|v2|1{|v2|≤2c2} (6.105)
:= h1 + h2 .

To see this, we can assume that c1 ≤ c2. Assume first that |v2| > 2c2.
Then if |f | = |v1 + v2| ≤ c2, we have |v1| > c2 so that since |f | ≤ c2, then
|f | ≤ c2 ≤ |v1|1{|v1|≥c2} and hence (6.105) holds true since c2 ≥ c1. Hence
to prove (6.105) we can assume that |v2| ≤ 2c2. Since |f | ≤ |v1| + |v2|, we
are done if |v1| ≤ |v2|, since then |f | ≤ 2|v2| and |f | ≤ 2|v2|1{|v2|≤2c2}. If
|v1| ≥ |v2|, then |f | ≤ 2|v1|, so |f |1{c1≤|f |} ≤ 2|v1|1{|v1|≥c1/2}, finishing the
proof of (6.105).
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Since ‖v1‖p2 ≤ √
log N , we have

λ({|v1| ≥ t}) ≤ (log N)p2/2t−p2

and a straightforward computation based on the formula

‖h‖p1
p1

=
∫

p1t
p1−1λ({|h| ≥ t})dt (6.106)

yields ‖h1‖p1 ≤ K. Since ‖h2‖∞ ≤ 2c2 ≤ 6N1/p′
and ‖h2‖2 ≤ 2‖v2‖2 ≤

2
√

log NN1/p−1/2, we see from (6.105) that

f1{c1≤|f |≤c2} = g1 + g2 (6.107)

where ‖g1‖p1 ≤ K , ‖g2‖∞ ≤ 6N1/p′
and ‖g2‖2 ≤ 2

√
log NN1/p−1/2.

Since ‖f‖(3) ≤ 1, by duality we have f = w1 + w2 + w3 with ‖w1‖∞ ≤
a−1 = N1/p′

, ‖w2‖ψ2 ≤ b−1 = N1/p−1/p′
and w3 =

∑
i≤N βixi with∑

i≤N β2
i ≤ N2/p−1.

Thus
‖w3‖2 ≤ N1/p−1/2 (6.108)

and, using (6.87)

‖w3‖∞ ≤
∑
i≤N

|βi| ≤ N1/2(
∑
i≤N

β2
i )1/2 ≤ N1/p .

We note that

|f |1{|f |≥c2} ≤ 3|w3| + 2|w2|1{|w2|≥c2/3} . (6.109)

To see this, we first observe that this is obvious if |w2| > c2/3, because then
|w1| ≤ N1/p′

= c2/3 ≤ |w2|, so |f | ≤ |w3| + 2|w2|. If now |w2| ≤ c2/3,
since |w1| ≤ c2/3, when |f | ≥ c2, we must have |w3| ≥ c2/3 and hence
|f | ≤ |w1|+ |w2|+ |w3| ≤ 2c2/3 + |w3| ≤ 3|w3|, finishing the proof of (6.109).

By definition of ‖ · ‖ψ2 , and since ‖w2‖ψ2 ≤ b−1, we have∫
exp(w2

2b
2)dλ ≤ 2

so that
λ({|w2| ≥ t}) ≤ 2 exp(−t2b2) . (6.110)

Since p′ < 2p we have 1/p − 1/p′ < 1/p′ and recalling the values of b and
c2 one checks from (6.110) and (6.106), with huge room to spare, that h3 =
2|w2|1{|w2|≥c2/3} satisfies ‖h3‖p1 ≤ K. Thus from (6.109) we see that

f1{|f |≥c2} = g3 + g4

where ‖g3‖2 ≤ KN1/p−1/2 , ‖g3‖∞ ≤ KN1/p, and ‖g4‖p1 ≤ K. Combining
with (6.104) and (6.107) finishes the proof. �

We turn to the proof of Lemma 6.4.3.
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Lemma 6.4.5. Consider independent standard Gaussian r.v. (gi)i≤N . Then,
given a set I we have

E
∥∥∑

i∈I

gixi

∥∥
ψ2

≤ L
√

card I .

Proof. We have

E

∫
exp

(
∑

i∈I gixi)2

3 card I
dλ =

∫
E exp

(
∑

i∈I gixi)2

3 card I
dλ ≤ L (6.111)

because for each t ∈ [0, 1] , g =
∑

i∈I gixi(t) is a Gaussian r.v. with Eg2 ≤
cardI.

For u ≥ 1, we have ef2/u ≤ 1+ef2
/u. We use this for u =

∫
exp f2dλ and

integrate to see that

‖f‖ψ2 ≤
∫

exp f2dλ .

Taking f = (3 card I)−1/2
∑

i∈I gixi and combining with (6.111) yields the
result. �

Proof of Lemma 6.4.3. The beginning of the proof uses arguments similar to
the Giné-Zinn Theorem (Theorem 2.7.8). We recall the set Z of (6.99), and
we set

T = {(x∗(xi)2)i≤N ; x∗ ∈ Z}
so that

∑
i≤N ti ≤ N1−2/p for t ∈ T , and hence δ

∑
i≤N ti ≤ 1. Thus

E‖UJ‖2
(3) = E sup

t∈T

∑
i≤N

δiti

≤ 1 + E sup
t∈T

∑
i≤N

(δi − δ)ti .

Consider an independent sequence (δ′i)i≤N distributed like (δi)i≤N . Then,
by Jensen’s inequality we have

E sup
t∈T

∣∣∣∑
i≤N

(δi − δ)ti
∣∣∣ ≤ E sup

t∈T

∣∣∣∑
i≤N

(δi − δ′i)ti
∣∣∣ .

Consider independent Bernoulli r.v. (εi)i≤N , independent of the r.v. δi

and δ′i. Since the sequences (δi − δ′i)i≤N and (εi(δi − δ′i))i≤N have the same
distribution, we have

E sup
t∈T

∣∣∣∑
i≤N

(δi − δ′i)ti
∣∣∣ = E sup

t∈T

∣∣∣∑
i≤N

εi(δi − δ′i)ti
∣∣∣

≤ 2E sup
t∈T

∣∣∣∑
i≤N

εiδiti

∣∣∣
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= 2E sup
t∈T

∣∣∣∑
i∈J

εiti

∣∣∣
≤ √

2πE sup
t∈T

∣∣∣∑
i∈J

giti

∣∣∣
≤ LE sup

t∈T

∑
i∈J

giti ,

using Proposition 4.1.2 and Lemma 1.2.8, and since 0 ∈ T . Since E cardJ =
N2/p, it suffices to show that given a set I we have

E sup
t∈T

∑
i∈I

giti = E sup
x∗∈Z

∑
i∈I

gix
∗(xi)2 ≤ Lab

√
card I . (6.112)

We have |x∗(xi)| ≤ a since ‖x∗‖1 ≤ a and ‖xi‖∞ ≤ 1, so that for a fixed set
I we have

d1(x∗, y∗) :=
(∑

i∈I

(
x∗(xi)2 − y∗(xi)2

)2
)1/2

≤ 2a
(∑

i∈I

(
x∗(xi) − y∗(xi)

)2
)1/2

:= 2ad2(x∗, y∗) .

Thus
γ2(Z, d1) ≤ Laγ2(Z, d2)

and, by Theorem 1.2.4 and Theorem 2.1.1, we have

E sup
x∗∈Z

∑
i∈I

gix
∗(xi)2 ≤ LaE sup

x∗∈Z
x∗(∑

i∈I

gixi

)
(6.113)

≤ LabE
∥∥∑

i∈I

gixi

∥∥
ψ2

,

where the second inequality holds because ‖x∗‖∗ψ2
≤ b for x∗ ∈ Z. Combining

with Lemma 6.4.5 this proves (6.112) and hence Lemma 6.4.3. �
Remark. One can also deduce (6.113) from the classical comparison theorems
for Gaussian r.v., see [18].

6.5 Schechtman’s Embedding Theorem

One should think that there are many other potential applications of the
material presented in this book to Banach Spaces, but, as far as the author
is aware, (with the notable exception of [37]) only Theorem 2.1.1 and its
corollary Theorem 2.1.5 have been applied in the literature. The following
is a particularly elegant application of Theorem 2.1.1. For any integer n, we
denote by ‖ · ‖2 the Euclidean norm on R

n.
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Theorem 6.5.1. (Schechtman’s embedding theorem [38]) Consider two in-
tegers n and m. Denote by Sm−1 the unit sphere of R

m. Consider a norm
‖ · ‖ on R

n, and assume that ‖ · ‖ ≤ ‖ · ‖2. Denote by Xt the canonical Gaus-
sian process on R

m, and by (ej)j≤n the canonical basis of R
n. Then for every

subset T of Sm−1 there is a linear operator U : R
m → R

n such that

∀t ∈ T , 1 − Lε ≤ ‖U(t)‖ ≤ 1 + Lε

where
ε =

E supt∈T Xt

E‖∑
j≤n gjej‖ .

Discussing all the remarkable consequences of this statement in Banach
Space Theory goes beyond the purpose of this work, and we refer to [38] and
references therein for this.

Proof. Consider independent standard Gaussian random variables (gi)i≥1,
(gij)i,j≥1, and for t = (t1, . . . , tm) ∈ R

m define Ct ∈ R
n by

Ct =
∑

i≤m,j≤n

tigijej =
∑
j≤n

ej

(∑
i≤m

gijti

)
,

so that the law of Ct in R
n is the same for all t ∈ Sm−1, because in that

case the sequence (
∑

i≤m gijti)j≤m is an independent sequence of standard
normal r.v. Moreover, for the same reason, when t ∈ Sm−1 we have

E‖Ct‖ = E
∥∥∑

j≤n

gjej

∥∥ . (6.114)

We fix t0 ∈ T , and for t ∈ Sm−1 we define

Yt = ‖Ct‖ − ‖Ct0‖ ,

so that EYt = 0. The key of the proof is to establish the inequality

∀u > 0 , ∀s , t ∈ Sm−1 , P(|Ys − Yt| ≥ u) ≤ 2 exp
(
− u2

L‖s − t‖2
2

)
. (6.115)

Once this is proved, we proceed as follows. Since Yt0 = 0, it follows from
Theorem 2.1.5 that

E sup
t∈T

|Yt| ≤ LE sup
t∈T

Xt . (6.116)

It follows from Lemma 2.3.6 that

P
(
‖Ct0‖ ≥ 1

2
E‖Ct0‖

)
≥ 1

L
,

and combining with (6.114) and (6.116), we see that we find a realization of
the r.v. such that
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sup
t∈T

|‖Ct‖ − ‖Ct0‖| ≤ LE sup
t∈T

Xt

‖Ct0‖ ≥ 1
2
E‖Ct0‖ =

1
2
E
∥∥∑

j≤n

gjej

∥∥ .

The operator U given by U(t) = Ct/‖Ct0‖ then satisfies our requirements.
The proof of (6.115) is very beautiful. First, we note that for any x ∈ R

n

and any b ∈ R
m the r.v ‖x + Cb‖ and ‖x − Cb‖ have the same law because

the distribution of Cb is symmetric, and thus

E‖x + Cb‖ = E‖x − Cb‖ ,

and also

P
(∣∣‖x + Cb‖ − ‖x − Cb‖

∣∣ ≥ u
)

(6.117)

≤ P
(∣∣‖x + Cb‖ − E‖x + Cb‖

∣∣ ≥ u

2

)
+ P

(∣∣‖x − Cb‖ − E‖x − Cb‖
∣∣ ≥ u

2

)
= 2P

(∣∣‖x + Cb‖ − E‖x + Cb‖
∣∣ ≥ u

2

)
.

Now,

‖x + Cb‖ = sup
{
x∗(x + Cb) ; x∗ ∈ W

}
= sup

{
Zx∗ ; x∗ ∈ W

}
,

where W is the unit ball of the dual of the Banach space (RN , ‖ · ‖), and
where Zx∗ = x∗(x + Cb). The crucial fact now is that Lemma 2.1.3 remains
true when the Gaussian process Zt is not necessarily centered, provided one
replaces the condition EZ2

t ≤ σ2 by the condition E(Zt − EZt)2 ≤ σ2. (This
property, as Lemma 2.1.3, takes its roots in the remarkable behavior of the
canonical Gaussian measure on R

k with respect to Lipschitz functions [17].)
We have

E(Zx∗ − EZx∗)2 = E(x∗(Cb))2 =
∑

i≤m,j≤n

x∗(ej)2b2
i .

Since we assume that ‖ · ‖ ≤ ‖ · ‖2, for x∗ ∈ W , we have |x∗(ej)| ≤ 1, and
thus E(Zx∗ − EZx∗)2 ≤ ‖b‖2

2. We can then deduce from the extension of
Lemma 2.1.3 mentioned above that

P
(∣∣‖x + Cb‖ − E‖x + Cb‖

∣∣ ≥ u

2

)
≤ 2 exp

(
− u2

8‖b‖2
2

)
,

and combining with (6.117) we have

P
(∣∣‖x + Cb‖ − ‖x − Cb‖

∣∣ ≥ u
) ≤ 4 exp

(
− u2

8‖b‖2
2

)
. (6.118)

Consider finally s and t in Sm−1. Writing a = (s + t)/2 and b = (s− t)/2 we
notice that
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Cs = Ca + Cb ; Ct = Ca − Cb .

Most importantly, since ‖s‖ = ‖t‖, the vectors a and b are orthogonal, so
that by the rotational invariance property of Gaussian measures the random
vectors Ca and Cb are independent, and (6.115) follows using (6.118) for
x = Ca conditionally on Ca. �

6.6 Further Reading

The paper [65] presents a significant extension of Theorem 6.3.4, but, unfor-
tunately, we did not see how to simplify the original proof using the ideas
of the present work (although of course the proof can be translated in the
language of the generic chaining).

Rudelson’s paper [37] contains a very beautiful construction in the spirit
of the present work. Another application of the present methods to Banach
space theory is found in [59], but the construction there is unfortunately
cluttered by technical complications, which it would be interesting to remove.
See also [79].
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Poincaré 25, pp. 153-166.

46. Talagrand, M. (1990) Sample boundedness of stochastic processes under incre-
ment conditions. Ann. Probab. 18, pp. 1-49.

47. Talagrand, M. (1991) A new isoperimetric inequality for product measure and
the concentration of measure phenomenon. Israel Seminar (GAFA), Springer
Verlag Lecture Notes in Math. 1469, pp. 94-124.

48. Talagrand, M. (1992) Cotype of Operators from C(K). Invent. Math. 107,
pp. 1-40.

49. Talagrand, M. (1992) Necessary and sufficient conditions for sample continuity
of Random Fourier series and of harmonic infinitely divisible processes. Ann.
Probab. 20, pp. 1-28.

50. Talagrand, M. (1992) Sudakov-type minoration for Gaussian chaos. Israël J.
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