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Preface

In the spring of 2010, I taught a topics graduate course on random

matrix theory, the lecture notes of which then formed the basis for

this text. This course was inspired by recent developments in the

subject, particularly with regard to the rigorous demonstration of

universal laws for eigenvalue spacing distributions of Wigner matri-

ces (see the recent survey [Gu2009b]). This course does not directly

discuss these laws, but instead focuses on more foundational topics

in random matrix theory upon which the most recent work has been

based. For instance, the first part of the course is devoted to basic

probabilistic tools such as concentration of measure and the central

limit theorem, which are then used to establish basic results in ran-

dom matrix theory, such as the Wigner semicircle law on the bulk

distribution of eigenvalues of a Wigner random matrix, or the cir-

cular law on the distribution of eigenvalues of an iid matrix. Other

fundamental methods, such as free probability, the theory of deter-

minantal processes, and the method of resolvents, are also covered in

the course.

This text begins in Chapter 1 with a review of the aspects of prob-

ability theory and linear algebra needed for the topics of discussion,

but assumes some existing familiarity with both topics, as will as a

first-year graduate-level understanding of measure theory (as covered

for instance in my books [Ta2011, Ta2010]). If this text is used

ix



x Preface

to give a graduate course, then Chapter 1 can largely be assigned as

reading material (or reviewed as necessary), with the lectures then

beginning with Section 2.1.

The core of the book is Chapter 2. While the focus of this chapter

is ostensibly on random matrices, the first two sections of this chap-

ter focus more on random scalar variables, in particular discussing

extensively the concentration of measure phenomenon and the cen-

tral limit theorem in this setting. These facts will be used repeatedly

when we then turn our attention to random matrices, and also many

of the proof techniques used in the scalar setting (such as the moment

method) can be adapted to the matrix context. Several of the key

results in this chapter are developed through the exercises, and the

book is designed for a student who is willing to work through these

exercises as an integral part of understanding the topics covered here.

The material in Chapter 3 is related to the main topics of this

text, but is optional reading (although the material on Dyson Brow-

nian motion from Section 3.1 is referenced several times in the main

text).
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1



2 1. Preparatory material

1.1. A review of probability theory

Random matrix theory is the study of matrices whose entries are ran-

dom variables (or equivalently, the study of random variables which

take values in spaces of matrices). As such, probability theory is an

obvious prerequisite for this subject. As such, we will begin by quickly

reviewing some basic aspects of probability theory that we will need

in the sequel.

We will certainly not attempt to cover all aspects of probability

theory in this review. Aside from the utter foundations, we will be

focusing primarily on those probabilistic concepts and operations that

are useful for bounding the distribution of random variables, and on

ensuring convergence of such variables as one sends a parameter n off

to infinity.

We will assume familiarity with the foundations of measure the-

ory, which can be found in any text book (including my own text

[Ta2011]). This is also not intended to be a first introduction to

probability theory, but is instead a revisiting of these topics from a

graduate-level perspective (and in particular, after one has under-

stood the foundations of measure theory). Indeed, it will be almost

impossible to follow this text without already having a firm grasp of

undergraduate probability theory.

1.1.1. Foundations. At a purely formal level, one could call prob-

ability theory the study of measure spaces with total measure one,

but that would be like calling number theory the study of strings

of digits which terminate. At a practical level, the opposite is true:

just as number theorists study concepts (e.g. primality) that have

the same meaning in every numeral system that models the natural

numbers, we shall see that probability theorists study concepts (e.g.

independence) that have the same meaning in every measure space

that models a family of events or random variables. And indeed, just

as the natural numbers can be defined abstractly without reference

to any numeral system (e.g. by the Peano axioms), core concepts of

probability theory, such as random variables, can also be defined ab-

stractly, without explicit mention of a measure space; we will return

to this point when we discuss free probability in Section 2.5.
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For now, though, we shall stick to the standard measure-theoretic

approach to probability theory. In this approach, we assume the pres-

ence of an ambient sample space Ω, which intuitively is supposed to

describe all the possible outcomes of all the sources of randomness

that one is studying. Mathematically, this sample space is a proba-

bility space Ω = (Ω,B,P) - a set Ω, together with a σ-algebra B of

subsets of Ω (the elements of which we will identify with the proba-

bilistic concept of an event), and a probability measure P on the space

of events, i.e. an assignment E 7→ P(E) of a real number in [0, 1] to

every event E (known as the probability of that event), such that

the whole space Ω has probability 1, and such that P is countably

additive.

Elements of the sample space Ω will be denoted ω. However, for

reasons that will be explained shortly, we will try to avoid actually

referring to such elements unless absolutely required to.

If we were studying just a single random process, e.g. rolling

a single die, then one could choose a very simple sample space - in

this case, one could choose the finite set {1, . . . , 6}, with the dis-

crete σ-algebra 2{1,...,6} := {A : A ⊂ {1, . . . , 6}} and the uniform

probability measure. But if one later wanted to also study addi-

tional random processes (e.g. supposing one later wanted to roll a

second die, and then add the two resulting rolls), one would have to

change the sample space (e.g. to change it now to the product space

{1, . . . , 6} × {1, . . . , 6}). If one was particularly well organised, one

could in principle work out in advance all of the random variables one

would ever want or need, and then specify the sample space accord-

ingly, before doing any actual probability theory. In practice, though,

it is far more convenient to add new sources of randomness on the

fly, if and when they are needed, and extend the sample space as nec-

essary. This point is often glossed over in introductory probability

texts, so let us spend a little time on it. We say that one probability

space (Ω′,B′,P ′) extends1 another (Ω,B,P) if there is a surjective

map π : Ω′ → Ω which is measurable (i.e. π−1(E) ∈ B′ for every

E ∈ B) and probability preserving (i.e. P′(π−1(E)) = P(E) for every

1Strictly speaking, it is the pair ((Ω′,B′,P′), π) which is the extension of
(Ω,B,P), not just the space (Ω′,B′,P′), but let us abuse notation slightly here.
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E ∈ B). By definition, every event E in the original probability space

is canonically identified with an event π−1(E) of the same probability

in the extension.

Example 1.1.1. As mentioned earlier, the sample space {1, . . . , 6},
that models the roll of a single die, can be extended to the sample

space {1, . . . , 6} × {1, . . . , 6} that models the roll of the original die

together with a new die, with the projection map π : {1, . . . , 6} ×
{1, . . . , 6} → {1, . . . , 6} being given by π(x, y) := x.

Another example of an extension map is that of a permutation -

for instance, replacing the sample space {1, . . . , 6} by the isomorphic

space {a, . . . , f} by mapping a to 1, etc. This extension is not actually

adding any new sources of randomness, but is merely reorganising the

existing randomness present in the sample space.

In order to have the freedom to perform extensions every time we

need to introduce a new source of randomness, we will try to adhere

to the following important dogma2: probability theory is only

“allowed” to study concepts and perform operations which

are preserved with respect to extension of the underlying

sample space. As long as one is adhering strictly to this dogma,

one can insert as many new sources of randomness (or reorganise

existing sources of randomness) as one pleases; but if one deviates

from this dogma and uses specific properties of a single sample space,

then one has left the category of probability theory and must now

take care when doing any subsequent operation that could alter that

sample space. This dogma is an important aspect of the probabilistic

way of thinking , much as the insistence on studying concepts and

performing operations that are invariant with respect to coordinate

changes or other symmetries is an important aspect of the modern

geometric way of thinking. With this probabilistic viewpoint, we shall

soon see the sample space essentially disappear from view altogether,

after a few foundational issues are dispensed with.

2This is analogous to how differential geometry is only “allowed” to study con-
cepts and perform operations that are preserved with respect to coordinate change, or
how graph theory is only “allowed” to study concepts and perform operations that are
preserved with respect to relabeling of the vertices, etc..
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Let us now give some simple examples of what is and what is

not a probabilistic concept or operation. The probability P(E) of

an event is a probabilistic concept; it is preserved under extensions.

Similarly, boolean operations on events such as union, intersection,

and complement are also preserved under extensions and are thus

also probabilistic operations. The emptiness or non-emptiness of an

event E is also probabilistic, as is the equality or non-equality3 of two

events E,F . On the other hand, the cardinality of an event is not a

probabilistic concept; for instance, the event that the roll of a given

die gives 4 has cardinality one in the sample space {1, . . . , 6}, but

has cardinality six in the sample space {1, . . . , 6} × {1, . . . , 6} when

the values of an additional die are used to extend the sample space.

Thus, in the probabilistic way of thinking, one should avoid thinking

about events as having cardinality, except to the extent that they are

either empty or non-empty.

Indeed, once one is no longer working at the foundational level,

it is best to try to suppress the fact that events are being modeled as

sets altogether. To assist in this, we will choose notation that avoids

explicit use of set theoretic notation. For instance, the union of two

events E,F will be denoted E ∨ F rather than E ∪ F , and will often

be referred to by a phrase such as “the event that at least one of E

or F holds”. Similarly, the intersection E∩F will instead be denoted

E ∧ F , or “the event that E and F both hold”, and the complement

Ω\E will instead be denoted E, or “the event that E does not hold”

or “the event that E fails”. In particular the sure event Ω can now be

referred to without any explicit mention of the sample space as ∅. We

will continue to use the subset notation E ⊂ F (since the notation

E ≤ F may cause confusion), but refer to this statement as “E is

contained in F” or “E implies F” or “E holds only if F holds” rather

than “E is a subset of F”, again to downplay the role of set theory

in modeling these events.

We record the trivial but fundamental union bound

(1.1) P(
∨
i

Ei) ≤
∑
i

P(Ei)

3Note how it was important here that we demanded the map π to be surjective
in the definition of an extension.
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for any finite or countably infinite collection of events Ei. Taking

complements, we see that if each event Ei fails with probability at

most εi, then the joint event
∧
iEi fails with probability at most∑

i εi. Thus, if one wants to ensure that all the events Ei hold at once

with a reasonable probability, one can try to do this by showing that

the failure rate of the individual Ei is small compared to the number

of events one is controlling. This is a reasonably efficient strategy so

long as one expects the events Ei to be genuinely “different” from

each other; if there are plenty of repetitions, then the union bound is

poor (consider for instance the extreme case when Ei does not even

depend on i).

We will sometimes refer to use of the union bound to bound

probabilities as the zeroth moment method, to contrast it with the

first moment method, second moment method, exponential moment

method, and Fourier moment methods for bounding probabilities that

we will encounter later in this course.

Let us formalise some specific cases of the union bound that we

will use frequently in the course. In most of this course, there will be

an integer parameter n, which will often be going off to infinity, and

upon which most other quantities will depend; for instance, we will

often be considering the spectral properties of n×n random matrices.

Definition 1.1.2 (Asymptotic notation). We use X = O(Y ), Y =

Ω(X), X � Y , or Y � X to denote the estimate |X| ≤ CY for

some C independent of n and all n ≥ C. If we need C to depend on

a parameter, e.g. C = Ck, we will indicate this by subscripts, e.g.

X = Ok(Y ). We write X = o(Y ) if |X| ≤ c(n)Y for some c that goes

to zero as n→∞. We write X ∼ Y or X = Θ(Y ) if X � Y � X.

Given an event E = En depending on such a parameter n, we

have five notions (in decreasing order of confidence) that an event is

likely to hold:

(i) An event E holds surely (or is true) if it is equal to the sure

event ∅.

(ii) An event E holds almost surely (or with full probability) if

it occurs with probability 1: P(E) = 1.



1.1. A review of probability theory 7

(iii) An event E holds with overwhelming probability if, for every

fixed A > 0, it holds with probability 1−OA(n−A) (i.e. one

has P(E) ≥ 1− CAn−A for some CA independent of n).

(iv) An event E holds with high probability if it holds with prob-

ability 1−O(n−c) for some c > 0 independent of n (i.e. one

has P(E) ≥ 1− Cn−c for some C independent of n).

(v) An event E holds asymptotically almost surely if it holds

with probability 1 − o(1), thus the probability of success

goes to 1 in the limit n→∞.

Of course, all of these notions are probabilistic notions.

Given a family of events Eα depending on some parameter α, we

say that each event in the family holds with overwhelming probability

uniformly in α if the constant CA in the definition of overwhelming

probability is independent of α; one can similarly define uniformity

in the concepts of holding with high probability or asymptotic almost

sure probability.

From the union bound (1.1) we immediately have

Lemma 1.1.3 (Union bound).

(i) If Eα is an arbitrary family of events that each hold surely,

then
∧
αEα holds surely.

(ii) If Eα is an at most countable family of events that each hold

almost surely, then
∧
αEα holds almost surely.

(iii) If Eα is a family of events of polynomial cardinality (i.e.

cardinality O(nO(1))) which hold with uniformly overwhelm-

ing probability, the
∧
αEα holds with overwhelming proba-

bility.

(iv) If Eα is a family of events of sub-polynomial cardinality (i.e.

cardinality O(no(1))) which hold with uniformly high proba-

bility, the
∧
αEα holds with high probability. (In particular,

the cardinality can be polylogarithmic in size, O(logO(1) n).)

(v) If Eα is a family of events of uniformly bounded cardinality

(i.e. cardinality O(1)) which each hold asymptotically al-

most surely, then
∧
αEα holds asymptotically almost surely.
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(Note that uniformity of asymptotic almost sureness is au-

tomatic when the cardinality is bounded.)

Note how as the certainty of an event gets stronger, the num-

ber of times one can apply the union bound increases. In particular,

holding with overwhelming probability is practically as good as hold-

ing surely or almost surely in many of our applications (except when

one has to deal with the entropy of an n-dimensional system, which

can be exponentially large, and will thus require a certain amount of

caution).

1.1.2. Random variables. An event E can be in just one of two

states: the event can hold or fail, with some probability assigned to

each. But we will usually need to consider the more general class of

random variables which can be in multiple states.

Definition 1.1.4 (Random variable). Let R = (R,R) be a measur-

able space (i.e. a set R, equipped with a σ-algebra of subsets of R). A

random variable taking values in R (or an R-valued random variable)

is a measurable map X from the sample space to R, i.e. a function

X : Ω→ R such that X−1(S) is an event for every S ∈ R.

As the notion of a random variable involves the sample space,

one has to pause to check that it invariant under extensions before

one can assert that it is a probabilistic concept. But this is clear: if

X : Ω→ R is a random variable, and π : Ω′ → Ω is an extension of Ω,

then X ′ := X ◦π is also a random variable, which generates the same

events in the sense that (X ′)−1(S) = π−1(X−1(S)) for every S ∈ R.

At this point let us make the convenient convention (which we

have in fact been implicitly using already) that an event is identified

with the predicate which is true on the event set and false outside of

the event set. Thus for instance the event X−1(S) could be identified

with the predicate “X ∈ S”; this is preferable to the set-theoretic

notation {ω ∈ Ω : X(ω) ∈ S}, as it does not require explicit reference

to the sample space and is thus more obviously a probabilistic notion.

We will often omit the quotes when it is safe to do so, for instance

P(X ∈ S) is shorthand for P(“X ∈ S′′).
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Remark 1.1.5. On occasion, we will have to deal with almost surely

defined random variables, which are only defined on a subset Ω′ of Ω

of full probability. However, much as measure theory and integration

theory is largely unaffected by modification on sets of measure zero,

many probabilistic concepts, in particular probability, distribution,

and expectation, are similarly unaffected by modification on events of

probability zero. Thus, a lack of definedness on an event of probability

zero will usually not cause difficulty, so long as there are at most

countably many such events in which one of the probabilistic objects

being studied is undefined. In such cases, one can usually resolve such

issues by setting a random variable to some arbitrary value (e.g. 0)

whenever it would otherwise be undefined.

We observe a few key subclasses and examples of random vari-

ables:

(i) Discrete random variables, in which R = 2R is the discrete

σ-algebra, and R is at most countable. Typical examples

of R include a countable subset of the reals or complexes,

such as the natural numbers or integers. If R = {0, 1},
we say that the random variable is Boolean, while if R is

just a singleton set {c} we say that the random variable is

deterministic, and (by abuse of notation) we identify this

random variable with c itself. Note that a Boolean random

variable is nothing more than an indicator function I(E) of

an event E, where E is the event that the boolean function

equals 1.

(ii) Real-valued random variables, in which R is the real line and

R is the Borel σ-algebra, generated by the open sets of R.

Thus for any real-valued random variable X and any interval

I, we have the events “X ∈ I”. In particular, we have the

upper tail event “X ≥ λ” and lower tail event “X ≤ λ” for

any threshold λ. (We also consider the events “X > λ” and

“X < λ” to be tail events; in practice, there is very little

distinction between the two.)

(iii) Complex random variables, whose range is the complex plane

with the Borel σ-algebra. A typical event associated to a
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complex random variableX is the small ball event “|X−z| <
r” for some complex number z and some (small) radius

r > 0. We refer to real and complex random variables col-

lectively as scalar random variables.

(iv) Given a R-valued random variable X, and a measurable map

f : R → R′, the R′-valued random variable f(X) is indeed

a random variable, and the operation of converting X to

f(X) is preserved under extension of the sample space and

is thus probabilistic. This variable f(X) can also be defined

without reference to the sample space as the unique random

variable for which the identity

“f(X) ∈ S” = “X ∈ f−1(S)”

holds for all R′-measurable sets S.

(v) Given two random variables X1 and X2 taking values in

R1, R2 respectively, one can form the joint random variable

(X1, X2) with range R1×R2 with the product σ-algebra, by

setting (X1, X2)(ω) := (X1(ω), X2(ω)) for every ω ∈ Ω. One

easily verifies that this is indeed a random variable, and that

the operation of taking a joint random variable is a proba-

bilistic operation. This variable can also be defined without

reference to the sample space as the unique random variable

for which one has π1(X1, X2) = X1 and π2(X1, X2) = X2,

where π1 : (x1, x2) 7→ x1 and π2 : (x1, x2) 7→ x2 are the

usual projection maps from R1 ×R2 to R1, R2 respectively.

One can similarly define the joint random variable (Xα)α∈A
for any family of random variables Xα in various ranges Rα
(note here that the set A of labels can be infinite or even

uncountable).

(vi) Combining the previous two constructions, given any mea-

surable binary operation f : R1×R2 → R′ and random vari-

ables X1, X2 taking values in R1, R2 respectively, one can

form theR′-valued random variable f(X1, X2) := f((X1, X2)),

and this is a probabilistic operation. Thus for instance one

can add or multiply together scalar random variables, and

similarly for the matrix-valued random variables that we
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will consider shortly. Similarly for ternary and higher or-

der operations. A technical issue: if one wants to perform

an operation (such as division of two scalar random vari-

ables) which is not defined everywhere (e.g. division when

the denominator is zero). In such cases, one has to adjoin

an additional “undefined” symbol > to the output range R′.

In practice, this will not be a problem as long as all random

variables concerned are defined (i.e. avoid >) almost surely.

(vii) Vector-valued random variables, which take values in a finite-

dimensional vector space such as Rn or Cn with the Borel

σ-algebra. One can view a vector-valued random variable

X = (X1, . . . , Xn) as the joint random variable of its scalar

component random variables X1, . . . , Xn.

(viii) Matrix-valued random variables or random matrices, which

take values in a space Mn×p(R) or Mn×p(C) of n × p real

or complex-valued matrices, again with the Borel σ-algebra,

where n, p ≥ 1 are integers (usually we will focus on the

square case n = p). Note here that the shape n × p of

the matrix is deterministic; we will not consider in this

course matrices whose shapes are themselves random vari-

ables. One can view a matrix-valued random variable X =

(Xij)1≤i≤n;1≤j≤p as the joint random variable of its scalar

components Xij . One can apply all the usual matrix oper-

ations (e.g. sum, product, determinant, trace, inverse, etc.)

on random matrices to get a random variable with the ap-

propriate range, though in some cases (e.g with inverse) one

has to adjoin the undefined symbol > as mentioned earlier.

(ix) Point processes, which take values in the space N(S) of sub-

sets A of a space S (or more precisely, on the space of multi-

sets of S, or even more precisely still as integer-valued locally

finite measures on S), with the σ-algebra being generated by

the counting functions |A∩B| for all precompact measurable

sets B. Thus, if X is a point process in S, and B is a pre-

compact measurable set, then the counting function |X ∩B|
is a discrete random variable in {0, 1, 2, . . .}∪{+∞}. For us,

the key example of a point process comes from taking the
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spectrum {λ1, . . . , λn} of eigenvalues (counting multiplicity)

of a random n × n matrix Mn. Point processes are dis-

cussed further in [Ta2010b, §2.6]. We will return to point

processes (and define them more formally) later in this text.

Remark 1.1.6. A pedantic point: strictly speaking, one has to in-

clude the range R = (R,R) of a random variable X as part of that

variable (thus one should really be referring to the pair (X,R) rather

than X). This leads to the annoying conclusion that, technically,

boolean random variables are not integer-valued, integer-valued ran-

dom variables are not real-valued, and real-valued random variables

are not complex-valued. To avoid this issue we shall abuse notation

very slightly and identify any random variable X = (X,R) to any

coextension (X,R′) of that random variable to a larger range space

R′ ⊃ R (assuming of course that the σ-algebras are compatible).

Thus, for instance, a real-valued random variable which happens to

only take a countable number of values will now be considered a dis-

crete random variable also.

Given a random variable X taking values in some range R, we

define the distribution µX of X to be the probability measure on the

measurable space R = (R,R) defined by the formula

(1.2) µX(S) := P(X ∈ S),

thus µX is the pushforward X∗P of the sample space probability

measure P by X. This is easily seen to be a probability measure, and

is also a probabilistic concept. The probability measure µX is also

known as the law for X.

We write X ≡ Y for µX = µY ; we also abuse notation slightly

by writing X ≡ µX .

We have seen that every random variable generates a probability

distribution µX . The converse is also true:

Lemma 1.1.7 (Creating a random variable with a specified dis-

tribution). Let µ be a probability measure on a measurable space

R = (R,R). Then (after extending the sample space Ω if necessary)

there exists an R-valued random variable X with distribution µ.
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Proof. Extend Ω to Ω × R by using the obvious projection map

(ω, r) 7→ ω from Ω × R back to Ω, and extending the probability

measure P on Ω to the product measure P × µ on R. The random

variable X(ω, r) := r then has distribution µ. �

If X is a discrete random variable, µX is the discrete probability

measure

(1.3) µX(S) =
∑
x∈S

px

where px := P(X = x) are non-negative real numbers that add up

to 1. To put it another way, the distribution of a discrete random

variable can be expressed as the sum of Dirac masses (defined below):

(1.4) µX =
∑
x∈R

pxδx.

We list some important examples of discrete distributions:

(i) Dirac distributions δx0 , in which px = 1 for x = x0 and

px = 0 otherwise;

(ii) discrete uniform distributions, in which R is finite and px =

1/|R| for all x ∈ R;

(iii) (Unsigned) Bernoulli distributions, in which R = {0, 1},
p1 = p, and p0 = 1− p for some parameter 0 ≤ p ≤ 1;

(iv) The signed Bernoulli distribution, in which R = {−1,+1}
and p+1 = p−1 = 1/2;

(v) Lazy signed Bernoulli distributions, in whichR = {−1, 0,+1},
p+1 = p−1 = µ/2, and p0 = 1 − µ for some parameter

0 ≤ µ ≤ 1;

(vi) Geometric distributions, in which R = {0, 1, 2, . . .} and pk =

(1 − p)kp for all natural numbers k and some parameter

0 ≤ p ≤ 1; and

(vii) Poisson distributions, in which R = {0, 1, 2, . . .} and pk =
λke−λ

k! for all natural numbers k and some parameter λ.

Now we turn to non-discrete random variables X taking values

in some range R. We say that a random variable is continuous if

P(X = x) = 0 for all x ∈ R (here we assume that all points are
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measurable). If R is already equipped with some reference measure

dm (e.g. Lebesgue measure in the case of scalar, vector, or matrix-

valued random variables), we say that the random variable is abso-

lutely continuous if P(X ∈ S) = 0 for all null sets S in R. By the

Radon-Nikodym theorem (see e.g. [Ta2010, §1.10]), we can thus find

a non-negative, absolutely integrable function f ∈ L1(R, dm) with∫
R
f dm = 1 such that

(1.5) µX(S) =

∫
S

f dm

for all measurable sets S ⊂ R. More succinctly, one has

(1.6) dµX = f dm.

We call f the probability density function of the probability distribu-

tion µX (and thus, of the random variable X). As usual in measure

theory, this function is only defined up to almost everywhere equiva-

lence, but this will not cause any difficulties.

In the case of real-valued random variables X, the distribution µX
can also be described in terms of the cumulative distribution function

(1.7) FX(x) := P(X ≤ x) = µX((−∞, x]).

Indeed, µX is the Lebesgue-Stieltjes measure of FX , and (in the ab-

solutely continuous case) the derivative of FX exists and is equal to

the probability density function almost everywhere. We will not use

the cumulative distribution function much in this text, although we

will be very interested in bounding tail events such as P(X > λ) or

P(X < λ).

We give some basic examples of absolutely continuous scalar dis-

tributions:

(i) uniform distributions, in which f := 1
m(I)1I for some subset

I of the reals or complexes of finite non-zero measure, e.g.

an interval [a, b] in the real line, or a disk in the complex

plane.

(ii) The real normal distribution N(µ, σ2) = N(µ, σ2)R of mean

µ ∈ R and variance σ2 > 0, given by the density function

f(x) := 1√
2πσ2

exp(−(x− µ)2/2σ2) for x ∈ R. We isolate in

particular the standard (real) normal distribution N(0, 1).
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Random variables with normal distributions are known as

gaussian random variables.

(iii) The complex normal distribution N(µ, σ2)C of mean µ ∈ C

and variance σ2 > 0, given by the density function f(z) :=
1
πσ2 exp(−|z−µ|2/σ2). Again, we isolate the standard com-

plex normal distribution N(0, 1)C.

Later on, we will encounter several more scalar distributions of

relevance to random matrix theory, such as the semicircular law or

Marcenko-Pastur law. We will also of course encounter many ma-

trix distributions (also known as matrix ensembles) as well as point

processes.

Given an unsigned random variable X (i.e. a random variable

taking values in [0,+∞]), one can define the expectation or mean EX

as the unsigned integral

(1.8) EX :=

∫ ∞
0

x dµX(x),

which by the Fubini-Tonelli theorem (see e.g. [Ta2011, §1.7]) can

also be rewritten as

(1.9) EX =

∫ ∞
0

P(X ≥ λ) dλ.

The expectation of an unsigned variable lies in also [0,+∞]. If X is

a scalar random variable (which is allowed to take the value ∞) for

which E|X| < ∞, we say that X is absolutely integrable, in which

case we can define its expectation as

(1.10) EX :=

∫
R

x dµX(x)

in the real case, or

(1.11) EX :=

∫
C

z dµX(z)

in the complex case. Similarly for vector-valued random variables

(note that in finite dimensions, all norms are equivalent, so the pre-

cise choice of norm used to define |X| is not relevant here). If X =

(X1, . . . , Xn) is a vector-valued random variable, then X is absolutely

integrable if and only if the components Xi are all absolutely inte-

grable, in which case one has EX = (EX1, . . . ,EXn).
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Examples 1.1.8. A deterministic scalar random variable c is its

own mean. An indicator function I(E) has mean P(E). An unsigned

Bernoulli variable (as defined previously) has mean p, while a signed

or lazy signed Bernoulli variable has mean 0. A real or complex

gaussian variable with distribution N(µ, σ2) has mean µ. A Poisson

random variable has mean λ; a geometric random variable has mean

p. A uniformly distributed variable on an interval [a, b] ⊂ R has mean
a+b

2 .

A fundamentally important property of expectation is that it is

linear: if X1, . . . , Xk are absolutely integrable scalar random vari-

ables and c1, . . . , ck are finite scalars, then c1X1 + . . .+ ckXk is also

absolutely integrable and

(1.12) Ec1X1 + . . .+ ckXk = c1EX1 + . . .+ ckEXk.

By the Fubini-Tonelli theorem, the same result also applies to infinite

sums
∑∞
i=1 ciXi provided that

∑∞
i=1 |ci|E|Xi| is finite.

We will use linearity of expectation so frequently in the sequel

that we will often omit an explicit reference to it when it is being

used. It is important to note that linearity of expectation requires no

assumptions of independence or dependence amongst the individual

random variables Xi; this is what makes this property of expectation

so powerful.

In the unsigned (or real absolutely integrable) case, expectation is

also monotone: if X ≤ Y is true for some unsigned or real absolutely

integrable X,Y , then EX ≤ EY . Again, we will usually use this

basic property without explicit mentioning it in the sequel.

For an unsigned random variable, we have the obvious but very

useful Markov inequality

(1.13) P(X ≥ λ) ≤ 1

λ
EX

for any λ > 0, as can be seen by taking expectations of the inequality

λI(X ≥ λ) ≤ X. For signed random variables, Markov’s inequality

becomes

(1.14) P(|X| ≥ λ) ≤ 1

λ
E|X|
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Another fact related to Markov’s inequality is that if X is an un-

signed or real absolutely integrable random variable, then X ≥ EX

must hold with positive probability, and also X ≤ EX must also hold

with positive probability. Use of these facts or (1.13), (1.14), com-

bined with monotonicity and linearity of expectation, is collectively

referred to as the first moment method . This method tends to be par-

ticularly easy to use (as one does not need to understand dependence

or independence), but by the same token often gives sub-optimal re-

sults (as one is not exploiting any independence in the system).

Exercise 1.1.1 (Borel-Cantelli lemma). Let E1, E2, . . . be a sequence

of events such that
∑
i P(Ei) <∞. Show that almost surely, at most

finitely many of the events Ei occur at once. State and prove a result

to the effect that the condition
∑
i P(Ei) <∞ cannot be weakened.

If X is an absolutely integrable or unsigned scalar random vari-

able, and F is a measurable function from the scalars to the unsigned

extended reals [0,+∞], then one has the change of variables formula

(1.15) EF (X) =

∫
R

F (x) dµX(x)

when X is real-valued and

(1.16) EF (X) =

∫
C

F (z) dµX(z)

when X is complex-valued. The same formula applies to signed or

complex F if it is known that |F (X)| is absolutely integrable. Impor-

tant examples of expressions such as EF (X) are moments

(1.17) E|X|k

for various k ≥ 1 (particularly k = 1, 2, 4), exponential moments

(1.18) EetX

for real t, X, and Fourier moments (or the characteristic function)

(1.19) EeitX

for real t,X, or

(1.20) Eeit·X
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for complex or vector-valued t,X, where · denotes a real inner prod-

uct. We shall also occasionally encounter the resolvents

(1.21) E
1

X − z
for complex z, though one has to be careful now with the absolute

convergence of this random variable. Similarly, we shall also occasion-

ally encounter negative moments E|X|−k of X, particularly for k = 2.

We also sometimes use the zeroth moment E|X|0 = P(X 6= 0), where

we take the somewhat unusual convention that x0 := limk→0+ xk for

non-negative x, thus x0 := 1 for x > 0 and 00 := 0. Thus, for in-

stance, the union bound (1.1) can be rewritten (for finitely many i,

at least) as

(1.22) E|
∑
i

ciXi|0 ≤
∑
i

|ci|0E|Xi|0

for any scalar random variables Xi and scalars ci (compare with

(1.12)).

It will be important to know if a scalar random variable X is

“usually bounded”. We have several ways of quantifying this, in de-

creasing order of strength:

(i) X is surely bounded if there exists an M > 0 such that

|X| ≤M surely.

(ii) X is almost surely bounded if there exists an M > 0 such

that |X| ≤M almost surely.

(iii) X is subgaussian if there exist C, c > 0 such that P(|X| ≥
λ) ≤ C exp(−cλ2) for all λ > 0.

(iv) X has sub-exponential tail if there exist C, c, a > 0 such that

P(|X| ≥ λ) ≤ C exp(−cλa) for all λ > 0.

(v) X has finite kth moment for some k ≥ 1 if there exists C

such that E|X|k ≤ C.

(vi) X is absolutely integrable if E|X| <∞.

(vii) X is almost surely finite if |X| <∞ almost surely.

Exercise 1.1.2. Show that these properties genuinely are in decreas-

ing order of strength, i.e. that each property on the list implies the

next.
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Exercise 1.1.3. Show that each of these properties are closed under

vector space operations, thus for instance ifX,Y have sub-exponential

tail, show that X + Y and cX also have sub-exponential tail for any

scalar c.

Examples 1.1.9. The various species of Bernoulli random variable

are surely bounded, and any random variable which is uniformly dis-

tributed in a bounded set is almost surely bounded. Gaussians and

Poisson distributions are subgaussian, while the geometric distribu-

tion merely has sub-exponential tail. Cauchy distributions are typical

examples of heavy-tailed distributions which are almost surely finite,

but do not have all moments finite (indeed, the Cauchy distribution

does not even have finite first moment).

If we have a family of scalar random variables Xα depending on

a parameter α, we say that the Xα are uniformly surely bounded

(resp. uniformly almost surely bounded, uniformly subgaussian, have

uniform sub-exponential tails, or uniformly bounded kth moment)

if the relevant parameters M,C, c, a in the above definitions can be

chosen to be independent of α.

Fix k ≥ 1. If X has finite kth moment, say E|X|k ≤ C, then from

Markov’s inequality (1.14) one has

(1.23) P(|X| ≥ λ) ≤ Cλ−k,

thus we see that the higher the moments that we control, the faster

the tail decay is. From the dominated convergence theorem we also

have the variant

(1.24) lim
λ→∞

λkP(|X| ≥ λ) = 0.

However, this result is qualitative or ineffective rather than quanti-

tative because it provides no rate of convergence of λkP(|X| ≥ λ)

to zero. Indeed, it is easy to construct a family Xα of random vari-

ables of uniformly bounded kth moment, but for which the quantities

λkP(|Xα| ≥ λ) do not converge uniformly to zero (e.g. take Xm to be

m times the indicator of an event of probability m−k for m = 1, 2, . . .).

Because of this issue, we will often have to strengthen the property

of having a uniformly bounded moment, to that of obtaining a uni-

formly quantitative control on the decay in (1.24) for a family Xα of
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random variables; we will see examples of this in later lectures. How-

ever, this technicality does not arise in the important model case of

identically distributed random variables, since in this case we trivially

have uniformity in the decay rate of (1.24).

We observe some consequences of (1.23):

Lemma 1.1.10. Let X = Xn be a scalar random variable depending

on a parameter n.

(i) If |Xn| has uniformly bounded expectation, then for any

ε > 0 independent of n, we have |Xn| = O(nε) with high

probability.

(ii) If Xn has uniformly bounded kth moment, then for any A >

0, we have |Xn| = O(nA/k) with probability 1−O(n−A).

(iii) If Xn has uniform sub-exponential tails, then we have |Xn| =
O(logO(1) n) with overwhelming probability.

Exercise 1.1.4. Show that a real-valued random variable X is sub-

gaussian if and only if there exist C > 0 such that EetX ≤ C exp(Ct2)

for all real t, and if and only if there exists C > 0 such that E|X|k ≤
(Ck)k/2 for all k ≥ 1.

Exercise 1.1.5. Show that a real-valued random variable X has

subexponential tails if and only if there exist C > 0 such that E|X|k ≤
exp(CkC) for all positive integers k.

Once the second moment of a scalar random variable is finite, one

can define the variance

(1.25) Var(X) := E|X −E(X)|2.

From Markov’s inequality we thus have Chebyshev’s inequality

(1.26) P(|X −E(X)| ≥ λ) ≤ Var(X)

λ2
.

Upper bounds on P(|X − E(X)| ≥ λ) for λ large are known as large

deviation inequality . Chebyshev’s inequality(1.26) gives a simple but

still useful large deviation inequality, which becomes useful once λ

exceeds the standard deviation Var(X)1/2 of the random variable.

The use of Chebyshev’s inequality, combined with a computation of

variances, is known as the second moment method.
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Exercise 1.1.6 (Scaling of mean and variance). If X is a scalar

random variable of finite mean and variance, and a, b are scalars,

show that E(a + bX) = a + bE(X) and Var(a + bX) = |b|2Var(X).

In particular, if X has non-zero variance, then there exist scalars a, b

such that a+ bX has mean zero and variance one.

Exercise 1.1.7. We say that a real number M(X) is a median of a

real-valued random variable X if P(X > M(X)),P(X < M(X)) ≤
1/2.

(i) Show that a median always exists, and if X is absolutely

continuous with strictly positive density function, then the

median is unique.

(ii) If X has finite second moment, show that M(X) = E(X) +

O(Var(X)1/2) for any median M(X).

Exercise 1.1.8 (Jensen’s inequality). Let F : R → R be a convex

function (thus F ((1− t)x+ ty) ≥ (1− t)F (x) + tF (y) for all x, y ∈ R

and 0 ≤ t ≤ 1), and let X be a bounded real-valued random variable.

Show that EF (X) ≥ F (EX). (Hint: Bound F from below using a

tangent line at EX.) Extend this inequality to the case when X takes

values in Rn (and F has Rn as its domain.)

Exercise 1.1.9 (Paley-Zygmund inequality). Let X be a positive

random variable with finite variance. Show that

P(X ≥ λE(X)) ≥ (1− λ)2 (EX)2

EX2

for any 0 < λ < 1.

If X is subgaussian (or has sub-exponential tails with exponent

a > 1), then from dominated convergence we have the Taylor expan-

sion

(1.27) EetX = 1 +

∞∑
k=1

tk

k!
EXk

for any real or complex t, thus relating the exponential and Fourier

moments with the kth moments.
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1.1.3. Independence. When studying the behaviour of a single

random variable X, the distribution µX captures all the probabilistic

information one wants to know about X. The following exercise is

one way of making this statement rigorous:

Exercise 1.1.10. Let X, X ′ be random variables (on sample spaces

Ω,Ω′ respectively) taking values in a range R, such that X ≡ X ′.

Show that after extending the spaces Ω,Ω′, the two random variables

X,X ′ are isomorphic, in the sense that there exists a probability

space isomorphism π : Ω → Ω′ (i.e. an invertible extension map

whose inverse is also an extension map) such that X = X ′ ◦ π.

However, once one studies families (Xα)α∈A of random variables

Xα taking values in measurable spaces Rα (on a single sample space

Ω), the distribution of the individual variables Xα are no longer

sufficient to describe all the probabilistic statistics of interest; the

joint distribution of the variables (i.e. the distribution of the tuple

(Xα)α∈A, which can be viewed as a single random variable taking val-

ues in the product measurable space
∏
α∈ARα) also becomes relevant.

Example 1.1.11. Let (X1, X2) be drawn uniformly at random from

the set {(−1,−1), (−1,+1), (+1,−1), (+1,+1)}. Then the random

variables X1, X2, and −X1 all individually have the same distribu-

tion, namely the signed Bernoulli distribution. However the pairs

(X1, X2), (X1, X1), and (X1,−X1) all have different joint distribu-

tions: the first pair, by definition, is uniformly distributed in the set

{(−1,−1), (−1,+1), (+1,−1), (+1,+1)},

while the second pair is uniformly distributed in {(−1,−1), (+1,+1)},
and the third pair is uniformly distributed in {(−1,+1), (+1,−1)}.
Thus, for instance, if one is told that X,Y are two random variables

with the Bernoulli distribution, and asked to compute the probability

that X = Y , there is insufficient information to solve the problem;

if (X,Y ) were distributed as (X1, X2), then the probability would

be 1/2, while if (X,Y ) were distributed as (X1, X1), the probability

would be 1, and if (X,Y ) were distributed as (X1,−X1), the proba-

bility would be 0. Thus one sees that one needs the joint distribution,
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and not just the individual distributions, to obtain a unique answer

to the question.

There is however an important special class of families of ran-

dom variables in which the joint distribution is determined by the

individual distributions.

Definition 1.1.12 (Joint independence). A family (Xα)α∈A of ran-

dom variables (which may be finite, countably infinite, or uncount-

ably infinite) is said to be jointly independent if the distribution of

(Xα)α∈A is the product measure of the distribution of the individual

Xα.

A family (Xα)α∈A is said to be pairwise independent if the pairs

(Xα, Xβ) are jointly independent for all distinct α, β ∈ A. More

generally, (Xα)α∈A is said to be k-wise independent if (Xα1
, . . . , Xαk′ )

are jointly independent for all 1 ≤ k′ ≤ k and all distinct α1, . . . , αk′ ∈
A.

We also say that X is independent of Y if (X,Y ) are jointly

independent.

A family of events (Eα)α∈A is said to be jointly independent if

their indicators (I(Eα))α∈A are jointly independent. Similarly for

pairwise independence and k-wise independence.

From the theory of product measure, we have the following equiv-

alent formulation of joint independence:

Exercise 1.1.11. Let (Xα)α∈A be a family of random variables, with

each Xα taking values in a measurable space Rα.

(i) Show that the (Xα)α∈A are jointly independent if and only

for every collection of distinct elements α1, . . . , αk′ of A, and

all measurable subsets Ei ⊂ Rαi for 1 ≤ i ≤ k′, one has

P(Xαi ∈ Ei for all 1 ≤ i ≤ k′) =

k′∏
i=1

P(Xαi ∈ Ei).

(ii) Show that the necessary and sufficient condition (Xα)α∈A
being k-wise independent is the same, except that k′ is con-

strained to be at most k.
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In particular, a finite family (X1, . . . , Xk) of random variables Xi, 1 ≤
i ≤ k taking values in measurable spaces Ri are jointly independent

if and only if

P(Xi ∈ Ei for all 1 ≤ i ≤ k) =

k∏
i=1

P(Xi ∈ Ei)

for all measurable Ei ⊂ Ri.
If the Xα are discrete random variables, one can take the Ei to

be singleton sets in the above discussion.

From the above exercise we see that joint independence implies k-

wise independence for any k, and that joint independence is preserved

under permuting, relabeling, or eliminating some or all of the Xα. A

single random variable is automatically jointly independent, and so

1-wise independence is vacuously true; pairwise independence is the

first nontrivial notion of independence in this hierarchy.

Example 1.1.13. Let F2 be the field of two elements, let V ⊂ F3
2

be the subspace of triples (x1, x2, x3) ∈ F3
2 with x1 + x2 + x3 = 0,

and let (X1, X2, X3) be drawn uniformly at random from V . Then

(X1, X2, X3) are pairwise independent, but not jointly independent.

In particular, X3 is independent of each of X1, X2 separately, but is

not independent of (X1, X2).

Exercise 1.1.12. This exercise generalises the above example. Let

F be a finite field, and let V be a subsapce of Fn for some finite n.

Let (X1, . . . , Xn) be drawn uniformly at random from V . Suppose

that V is not contained in any coordinate hyperplane in Fn.

(i) Show that each Xi, 1 ≤ i ≤ n is uniformly distributed in F.

(ii) Show that for any k ≥ 2, that (X1, . . . , Xn) is k-wise inde-

pendent if and only if V is not contained in any hyperplane

which is definable using at most k of the coordinate vari-

ables.

(iii) Show that (X1, . . . , Xn) is jointly independent if and only if

V = Fn.
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Informally, we thus see that imposing constraints between k variables

at a time can destroy k-wise independence, while leaving lower-order

independence unaffected.

Exercise 1.1.13. Let V ⊂ F3
2 be the subspace of triples (x1, x2, x3) ∈

F3
2 with x1 +x2 = 0, and let (X1, X2, X3) be drawn uniformly at ran-

dom from V . Then X3 is independent of (X1, X2) (and in particular,

is independent of x1 and x2 separately), but X1, X2 are not indepen-

dent of each other.

Exercise 1.1.14. We say that one random variable Y (with values

in RY ) is determined by another random variable X (with values in

RX) if there exists a (deterministic) function f : RX → RY such that

Y = f(X) is surely true (i.e. Y (ω) = f(X(ω)) for all ω ∈ Ω). Show

that if (Xα)α∈A is a family of jointly independent random variables,

and (Yβ)β∈B is a family such that each Yβ is determined by some

subfamily (Xα)α∈Aβ of the (Xα)α∈A, with the Aβ disjoint as β varies,

then the (Yβ)β∈B are jointly independent also.

Exercise 1.1.15 (Determinism vs. independence). Let X,Y be ran-

dom variables. Show that Y is deterministic if and only if it is simul-

taneously determined by X, and independent of X.

Exercise 1.1.16. Show that a complex random variable X is a

complex gaussian random variable (i.e. its distribution is a com-

plex normal distribution) if and only if its real and imaginary parts

Re(X), Im(X) are independent real gaussian random variables with

the same variance. In particular, the variance of Re(X) and Im(X)

will be half of variance of X.

One key advantage of working with jointly independent random

variables and events is that one can compute various probabilistic

quantities quite easily. We give some key examples below.

Exercise 1.1.17. If E1, . . . , Ek are jointly independent events, show

that

(1.28) P(

k∧
i=1

Ei) =

k∏
i=1

P(Ei)
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and

(1.29) P(

k∨
i=1

Ei) = 1−
k∏
i=1

(1−P(Ei))

Show that the converse statement (i.e. that (1.28) and (1.29) imply

joint independence) is true for k = 2, but fails for higher k. Can one

find a correct replacement for this converse for higher k?

Exercise 1.1.18.

(i) If X1, . . . , Xk are jointly independent random variables tak-

ing values in [0,+∞], show that

E

k∏
i=1

Xi =

k∏
i=1

EXi.

(ii) If X1, . . . , Xk are jointly independent absolutely integrable

scalar random variables taking values in [0,+∞], show that∏k
i=1Xi is absolutely integrable, and

E

k∏
i=1

Xi =

k∏
i=1

EXi.

Remark 1.1.14. The above exercise combines well with Exercise

1.1.14. For instance, if X1, . . . , Xk are jointly independent subgaus-

sian variables, then from Exercises 1.1.14, 1.1.18 we see that

(1.30) E

k∏
i=1

etXi =

k∏
i=1

EetXi

for any complex t. This identity is a key component of the exponential

moment method, which we will discuss in the next set of notes.

The following result is a key component of the second moment

method.

Exercise 1.1.19 (Pairwise independence implies linearity of vari-

ance). If X1, . . . , Xk are pairwise independent scalar random vari-

ables of finite mean and variance, show that

Var(

k∑
i=1

Xi) =

k∑
i=1

Var(Xi)
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and more generally

Var(

k∑
i=1

ciXi) =

k∑
i=1

|ci|2Var(Xi)

for any scalars ci (compare with (1.12), (1.22)).

The product measure construction allows us to extend Lemma

1.1.7:

Exercise 1.1.20 (Creation of new, independent random variables).

Let (Xα)α∈A be a family of random variables (not necessarily inde-

pendent or finite), and let (µβ)β∈B be a collection (not necessarily

finite) of probability measures µβ on measurable spaces Rβ . Then,

after extending the sample space if necessary, one can find a fam-

ily (Yβ)β∈B of independent random variables, such that each Yβ has

distribution µβ , and the two families (Xα)α∈A and (Yβ)β∈B are inde-

pendent of each other.

We isolate the important case when µβ = µ is independent of

β. We say that a family (Xα)α∈A of random variables is indepen-

dently and identically distributed, or iid for short, if they are jointly

independent and all the Xα have the same distribution.

Corollary 1.1.15. Let (Xα)α∈A be a family of random variables (not

necessarily independent or finite), let µ be a probability measure on

a measurable space R, and let B be an arbitrary set. Then, after

extending the sample space if necessary, one can find an iid family

(Yβ)β∈B with distribution µ which is independent of (Xα)α∈A.

Thus, for instance, one can create arbitrarily large iid families

of Bernoulli random variables, Gaussian random variables, etc., re-

gardless of what other random variables are already in play. We thus

see that the freedom to extend the underyling sample space allows

us access to an unlimited source of randomness. This is in contrast

to a situation studied in complexity theory and computer science, in

which one does not assume that the sample space can be extended at

will, and the amount of randomness one can use is therefore limited.
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Remark 1.1.16. Given two probability measures µX , µY on two

measurable spaces RX , RY , a joining or coupling of the these mea-

sures is a random variable (X,Y ) taking values in the product space

RX×RY , whose individual componentsX,Y have distribution µX , µY
respectively. Exercise 1.1.20 shows that one can always couple two

distributions together in an independent manner; but one can cer-

tainly create non-independent couplings as well. The study of cou-

plings (or joinings) is particularly important in ergodic theory, but

this will not be the focus of this text.

1.1.4. Conditioning. Random variables are inherently non-deterministic

in nature, and as such one has to be careful when applying determin-

istic laws of reasoning to such variables. For instance, consider the

law of the excluded middle: a statement P is either true or false, but

not both. If this statement is a random variable, rather than deter-

ministic, then instead it is true with some probability p and false with

some complementary probability 1 − p. Also, applying set-theoretic

constructions with random inputs can lead to sets, spaces, and other

structures which are themselves random variables, which can be quite

confusing and require a certain amount of technical care; consider, for

instance, the task of rigorously defining a Euclidean space Rd when

the dimension d is itself a random variable.

Now, one can always eliminate these difficulties by explicitly

working with points ω in the underlying sample space Ω, and replac-

ing every random variable X by its evaluation X(ω) at that point;

this removes all the randomness from consideration, making every-

thing deterministic (for fixed ω). This approach is rigorous, but goes

against the “probabilistic way of thinking”, as one now needs to take

some care in extending the sample space.

However, if instead one only seeks to remove a partial amount

of randomness from consideration, then one can do this in a manner

consistent with the probabilistic way of thinking, by introducing the

machinery of conditioning. By conditioning an event to be true or

false, or conditioning a random variable to be fixed, one can turn that

random event or variable into a deterministic one, while preserving the

random nature of other events and variables (particularly those which

are independent of the event or variable being conditioned upon).
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We begin by considering the simpler situation of conditioning on

an event.

Definition 1.1.17 (Conditioning on an event). Let E be an event

(or statement) which holds with positive probability P(E). By con-

ditioning on the event E, we mean the act of replacing the underlying

sample space Ω with the subset of Ω where E holds, and replacing

the underlying probability measure P by the conditional probability

measure P(|E), defined by the formula

(1.31) P(F |E) := P(F ∧ E)/P(E).

All events F on the original sample space can thus be viewed as events

(F |E) on the conditioned space, which we model set-theoretically as

the set of all ω in E obeying F . Note that this notation is compatible

with (1.31).

All random variables X on the original sample space can also be

viewed as random variables X on the conditioned space, by restric-

tion. We will refer to this conditioned random variable as (X|E), and

thus define conditional distribution µ(X|E) and conditional expecta-

tion E(X|E) (if X is scalar) accordingly.

One can also condition on the complementary event E, provided

that this event holds with positive probility also.

By undoing this conditioning, we revert the underlying sample

space and measure back to their original (or unconditional) values.

Note that any random variable which has been defined both after

conditioning on E, and conditioning on E, can still be viewed as a

combined random variable after undoing the conditioning.

Conditioning affects the underlying probability space in a manner

which is different from extension, and so the act of conditioning is not

guaranteed to preserve probabilistic concepts such as distribution,

probability, or expectation. Nevertheless, the conditioned version of

these concepts are closely related to their unconditional counterparts:

Exercise 1.1.21. If E and E both occur with positive probability,

establish the identities

(1.32) P(F ) = P(F |E)P(E) + P(F |E)P(E)
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for any (unconditional) event F and

(1.33) µX = µ(X|E)P(E) + µ(X|E)P(E)

for any (unconditional) random variable X (in the original sample

space). In a similar spirit, if X is a non-negative or absolutely in-

tegrable scalar (unconditional) random variable, show that (X|E),

(X|E) are also non-negative and absolutely integrable on their re-

spective conditioned spaces, and that

(1.34) EX = E(X|E)P(E) + E(X|E)P(E).

In the degenerate case when E occurs with full probability, condition-

ing to the complementary event E is not well defined, but show that

in those cases we can still obtain the above formulae if we adopt the

convention that any term involving the vanishing factor P(E) should

be omitted. Similarly if E occurs with zero probability.

The above identities allow one to study probabilities, distribu-

tions, and expectations on the original sample space by conditioning

to the two conditioned spaces.

From (1.32) we obtain the inequality

(1.35) P(F |E) ≤ P(F )/P(E),

thus conditioning can magnify probabilities by a factor of at most

1/P(E). In particular,

(i) If F occurs unconditionally surely, it occurs surely condi-

tioning on E also.

(ii) If F occurs unconditionally almost surely, it occurs almost

surely conditioning on E also.

(iii) If F occurs unconditionally with overwhelming probability,

it occurs with overwhelming probability conditioning on E

also, provided that P(E) ≥ cn−C for some c, C > 0 inde-

pendent of n.

(iv) If F occurs unconditionally with high probability, it occurs

with high probability conditioning on E also, provided that

P(E) ≥ cn−a for some c > 0 and some sufficiently small

a > 0 independent of n.
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(v) If F occurs unconditionally asymptotically almost surely, it

occurs asymptotically almost surely conditioning on E also,

provided that P(E) ≥ c for some c > 0 independent of n.

Conditioning can distort the probability of events and the dis-

tribution of random variables. Most obviously, conditioning on E

elevates the probability of E to 1, and sends the probability of the

complementary event E to zero. In a similar spirit, if X is a random

variable uniformly distributed on some finite set S, and S′ is a non-

empty subset of S, then conditioning to the event X ∈ S′ alters the

distribution of X to now become the uniform distribution on S′ rather

than S (and conditioning to the complementary event produces the

uniform distribution on S\S′).
However, events and random variables that are independent of the

event E being conditioned upon are essentially unaffected by condi-

tioning. Indeed, if F is an event independent of E, then (F |E) occurs

with the same probability as F ; and if X is a random variable inde-

pendent of E (or equivalently, independently of the indicator I(E)),

then (X|E) has the same distribution as X.

Remark 1.1.18. One can view conditioning to an event E and its

complement E as the probabilistic analogue of the law of the excluded

middle. In deterministic logic, given a statement P , one can divide

into two separate cases, depending on whether P is true or false;

and any other statement Q is unconditionally true if and only if it is

conditionally true in both of these two cases. Similarly, in probability

theory, given an event E, one can condition into two separate sample

spaces, depending on whether E is conditioned to be true or false; and

the unconditional statistics of any random variable or event are then

a weighted average of the conditional statistics on the two sample

spaces, where the weights are given by the probability of E and its

complement.

Now we consider conditioning with respect to a discrete random

variable Y , taking values in some range R. One can condition on any

event Y = y, y ∈ R which occurs with positive probability. It is then

not difficult to establish the analogous identities to those in Exercise

1.1.21:
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Exercise 1.1.22. Let Y be a discrete random variable with range R.

Then we have

(1.36) P(F ) =
∑
y∈R

P(F |Y = y)P(Y = y)

for any (unconditional) event F , and

(1.37) µX =
∑
y∈R

µ(X|Y=y)P(Y = y)

for any (unconditional) random variable X (where the sum of non-

negative measures is defined in the obvious manner), and for abso-

lutely integrable or non-negative (unconditional) random variables X,

one has

(1.38) EX =
∑
y∈R

E(X|Y = y)P(Y = y).

In all of these identities, we adopt the convention that any term in-

volving P(Y = y) is ignored when P(Y = y) = 0.

With the notation as in the above exercise, we define the condi-

tional probability P(F |Y ) of an (unconditional) event F conditioning

on Y to be the (unconditional) random variable that is defined to

equal P(F |Y = y) whenever Y = y, and similarly, for any absolutely

integrable or non-negative (unconditional) random variable X, we

define the conditional expectation E(X|Y ) to be the (unconditional)

random variable that is defined to equal E(X|Y = y) whenever Y = y.

(Strictly speaking, since we are not defining conditional expectation

when P(Y = y) = 0, these random variables are only defined al-

most surely, rather than surely, but this will not cause difficulties in

practice; see Remark 1.1.5.) Thus (1.36), (1.38) simplify to

(1.39) P(F ) = E(P(F |Y ))

and

(1.40) E(X) = E(E(X|Y )).

Remark 1.1.19. One can interpret conditional expectation as a type

of orthogonal projection; see for instance [Ta2009, §2.8]. But we will

not use this perspective in this course. Just as conditioning on an

event and its complement can be viewed as the probabilistic analogue
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of the law of the excluded middle, conditioning on a discrete random

variable can be viewed as the probabilistic analogue of dividing into

finitely or countably many cases. For instance, one could condition on

the outcome Y ∈ {1, 2, 3, 4, 5, 6} of a six-sided die, thus conditioning

the underlying sample space into six separate subspaces. If the die is

fair, then the unconditional statistics of a random variable or event

would be an unweighted average of the conditional statistics of the

six conditioned subspaces; if the die is weighted, one would take a

weighted average instead.

Example 1.1.20. Let X1, X2 be iid signed Bernoulli random vari-

ables, and let Y := X1 +X2, thus Y is a discrete random variable tak-

ing values in −2, 0,+2 (with probability 1/4, 1/2, 1/4 respectively).

Then X1 remains a signed Bernoulli random variable when condi-

tioned to Y = 0, but becomes the deterministic variable +1 when

conditioned to Y = +2, and similarly becomes the deterministic vari-

able −1 when conditioned to Y = −2. As a consequence, the con-

ditional expectation E(X1|Y ) is equal to 0 when Y = 0, +1 when

Y = +2, and −1 when Y = −2; thus E(X1|Y ) = Y/2. Similarly

E(X2|Y ) = Y/2; summing and using the linearity of (conditional)

expectation (which follows automatically from the unconditional ver-

sion) we obtain the obvious identity E(Y |Y ) = Y .

If X,Y are independent, then (X|Y = y) ≡ X for all y (with the

convention that those y for which P(Y = y) = 0 are ignored), which

implies in particular (for absolutely integrable X) that

E(X|Y ) = E(X)

(so in this case the conditional expectation is a deterministic quan-

tity).

Example 1.1.21. Let X,Y be bounded scalar random variables (not

necessarily independent), with Y discrete. Then we have

E(XY ) = E(E(XY |Y )) = E(YE(X|Y ))

where the latter equality holds since Y clearly becomes deterministic

after conditioning on Y .
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We will also need to condition with respect to continuous random

variables (this is the probabilistic analogue of dividing into a poten-

tially uncountable number of cases). To do this formally, we need

to proceed a little differently from the discrete case, introducing the

notion of a disintegration of the underlying sample space.

Definition 1.1.22 (Disintegration). Let Y be a random variable with

range R. A disintegration (R′, (µy)y∈R′) of the underlying sample

space Ω with respect to Y is a subset R′ of R of full measure in µY
(thus Y ∈ R′ almost surely), together with assignment of a probability

measure P(|Y = y) on the subspace Ωy := {ω ∈ Ω : Y (ω) = y} of

Ω for each y ∈ R, which is measurable in the sense that the map

y 7→ P(F |Y = y) is measurable for every event F , and such that

P(F ) = EP(F |Y )

for all such events, where P(F |Y ) is the (almost surely defined) ran-

dom variable defined to equal P(F |Y = y) whenever Y = y.

Given such a disintegration, we can then condition to the event

Y = y for any y ∈ R′ by replacing Ω with the subspace Ωy (with the

induced σ-algebra), but replacing the underlying probability measure

P with P(|Y = y). We can thus condition (unconditional) events

F and random variables X to this event to create conditioned events

(F |Y = y) and random variables (X|Y = y) on the conditioned space,

giving rise to conditional probabilities P(F |Y = y) (which is consis-

tent with the existing notation for this expression) and conditional

expectations E(X|Y = y) (assuming absolute integrability in this

conditioned space). We then set E(X|Y ) to be the (almost surely de-

fined) random variable defined to equal E(X|Y = y) whenever Y = y.

Example 1.1.23 (Discrete case). If Y is a discrete random variable,

one can set R′ to be the essential range of Y , which in the discrete case

is the set of all y ∈ R for which P(Y = y) > 0. For each y ∈ R′, we

define P(|Y = y) to be the conditional probability measure relative

to the event Y = y, as defined in Definition 1.1.17. It is easy to

verify that this is indeed a disintegration; thus the continuous notion

of conditional probability generalises the discrete one.

Example 1.1.24 (Independent case). Starting with an initial sample

space Ω, and a probability measure µ on a measurable space R, one
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can adjoin a random variable Y taking values in R with distribution

µ that is independent of all previously existing random variables, by

extending Ω to Ω×R as in Lemma 1.1.7. One can then disintegrate

Y by taking R′ := R and letting µy be the probability measure on

Ωy = Ω× {y} induced by the obvious isomorphism between Ω× {y}
and Ω; this is easily seen to be a disintegration. Note that if X is any

random variable from the original space Ω, then (X|Y = y) has the

same distribution as X for any y ∈ R.

Example 1.1.25. Let Ω = [0, 1]2 with Lebesgue measure, and let

(X1, X2) be the coordinate random variables of Ω, thus X1, X2 are iid

with the uniform distribution on [0, 1]. Let Y be the random variable

Y := X1 + X2 with range R = R. Then one can disintegrate Y by

taking R′ = [0, 2] and letting µy be normalised Lebesgue measure on

the diagonal line segment {(x1, x2) ∈ [0, 1]2 : x1 + x2 = y}.

Exercise 1.1.23 (Almost uniqueness of disintegrations). Let (R′, (µy)y∈R′),

(R̃′, (µ̃y)y∈R̃′) be two disintegrations of the same random variable Y .

Show that for any event F , one has P(F |Y = y) = P̃(F |Y = y) for

µY -almost every y ∈ R, where the conditional probabilities P(|Y = y)

and P̃(|Y = y) are defined using the disintegrations (R′, (µy)y∈R′),

(R̃′, (µ̃y)y∈R̃′) respectively. (Hint: argue by contradiction, and con-

sider the set of y for which P(F |Y = y) exceeds P̃(F |Y = y) (or vice

versa) by some fixed ε > 0.)

Similarly, for a scalar random variable X, show that for µY -

almost every y ∈ R, that (X|Y = y) is absolutely integrable with

respect to the first disintegration if and only if it is absolutely inte-

grable with respect to the second integration, and one has E(X|Y =

y) = Ẽ(X|Y = y) in such cases.

Remark 1.1.26. Under some mild topological assumptions on the

underlying sample space (and on the measurable space R), one can

always find at least one disintegration for every random variable Y ,

by using tools such as the Radon-Nikodym theorem; see [Ta2009,

Theorem 2.9.21]. In practice, we will not invoke these general re-

sults here (as it is not natural for us to place topological conditions

on the sample space), and instead construct disintegrations by hand
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in specific cases, for instance by using the construction in Example

1.1.24.

Remark 1.1.27. Strictly speaking, disintegration is not a proba-

bilistic concept; there is no canonical way to extend a disintegration

when extending the sample space;. However, due to the (almost)

uniqueness and existence results alluded to earlier, this will not be

a difficulty in practice. Still, we will try to use conditioning on con-

tinuous variables sparingly, in particular containing their use inside

the proofs of various lemmas, rather than in their statements, due to

their slight incompatibility with the “probabilistic way of thinking”.

Exercise 1.1.24 (Fubini-Tonelli theorem). Let (R′, (µy)y∈R′) be a

disintegration of a random variable Y taking values in a measurable

space R, and let X be a non-negative (resp. absolutely integrable)

scalar random variable. Show that for µY -almost all y ∈ R, (X|Y =

y) is a non-negative (resp. absolutely integrable) random variable,

and one has the identity 4

(1.41) E(E(X|Y )) = E(X),

where E(X|Y ) is the (almost surely defined) random variable that

equals E(X|Y = y) whenever y ∈ R′. More generally, show that

(1.42) E(E(X|Y )f(Y )) = E(Xf(Y )),

whenever f : R → R is a non-negative (resp. bounded) measurable

function. (One can essentially take (1.42), together with the fact

that E(X|Y ) is determined by Y , as a definition of the conditional

expectation E(X|Y ), but we will not adopt this approach here.)

A typical use of conditioning is to deduce a probabilistic state-

ment from a deterministic one. For instance, suppose one has a

random variable X, and a parameter y in some range R, and an

event E(X, y) that depends on both X and y. Suppose we know that

PE(X, y) ≤ ε for every y ∈ R. Then, we can conclude that when-

ever Y is a random variable in R independent of X, we also have

PE(X,Y ) ≤ ε, regardless of what the actual distribution of Y is. In-

deed, if we condition Y to be a fixed value y (using the construction

4Note that one first needs to show that E(X|Y ) is measurable before one can take
the expectation.
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in Example 1.1.24, extending the underlying sample space if neces-

sary), we see that P(E(X,Y )|Y = y) ≤ ε for each y; and then one

can integrate out the conditioning using (1.41) to obtain the claim.

The act of conditioning a random variable to be fixed is occasion-

ally also called freezing.

1.1.5. Convergence. In a first course in undergraduate real analy-

sis, we learn what it means for a sequence xn of scalars to converge

to a limit x; for every ε > 0, we have |xn − x| ≤ ε for all sufficiently

large n. Later on, this notion of convergence is generalised to metric

space convergence, and generalised further to topological space con-

vergence; in these generalisations, the sequence xn can lie in some

other space than the space of scalars (though one usually insists that

this space is independent of n).

Now suppose that we have a sequence Xn of random variables,

all taking values in some space R; we will primarily be interested

in the scalar case when R is equal to R or C, but will also need to

consider fancier random variables, such as point processes or empirical

spectral distributions. In what sense can we say that Xn “converges”

to a random variable X, also taking values in R?

It turns out that there are several different notions of convergence

which are of interest. For us, the four most important (in decreasing

order of strength) will be almost sure convergence, convergence in

probability, convergence in distribution, and tightness of distribution.

Definition 1.1.28 (Modes of convergence). Let R = (R, d) be a σ-

compact5 metric space (with the Borel σ-algebra), and let Xn be a

sequence of random variables taking values in R. Let X be another

random variable taking values in R.

(i) Xn converges almost surely to X if, for almost every ω ∈ Ω,

Xn(ω) converges to X(ω), or equivalently

P(lim sup
n→∞

d(Xn, X) ≤ ε) = 1

for every ε > 0.

5A metric space is σ-compact if it is the countable union of compact sets.
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(ii) Xn converges in probability to X if, for every ε > 0, one has

lim inf
n→∞

P(d(Xn, X) ≤ ε) = 1,

or equivalently if d(Xn, X) ≤ ε holds asymptotically almost

surely for every ε > 0.

(iii) Xn converges in distribution to X if, for every bounded con-

tinuous function F : R→ R, one has

lim
n→∞

EF (Xn) = EF (X).

(iv) Xn has a tight sequence of distributions if, for every ε > 0,

there exists a compact subset K of R such that P(Xn ∈
K) ≥ 1− ε for all sufficiently large n.

Remark 1.1.29. One can relax the requirement that R be a σ-

compact metric space in the definitions, but then some of the nice

equivalences and other properties of these modes of convergence begin

to break down. In our applications, though, we will only need to

consider the σ-compact metric space case. Note that all of these

notions are probabilistic (i.e. they are preserved under extensions of

the sample space).

Exercise 1.1.25 (Implications and equivalences). Let Xn, X be ran-

dom variables taking values in a σ-compact metric space R.

(i) Show that if Xn converges almost surely to X, then Xn

converges in probability to X. (Hint: use Fatou’s lemma.)

(ii) Show that if Xn converges in distribution to X, then Xn

has a tight sequence of distributions.

(iii) Show that if Xn converges in probability to X, then Xn

converges in distribution to X. (Hint: first show tightness,

then use the fact that on compact sets, continuous functions

are uniformly continuous.)

(iv) Show that Xn converges in distribution to X if and only if

µXn converges to µX in the vague topology (i.e.
∫
f dµXn →∫

f dµX for all continuous functions f : R→ R of compact

support).

(v) Conversely, if Xn has a tight sequence of distributions, and

µXn is convergent in the vague topology, show that Xn is
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convergent in distribution to another random variable (pos-

sibly after extending the sample space). What happens if

the tightness hypothesis is dropped?

(vi) If X is deterministic, show that Xn converges in probability

to X if and only if Xn converges in distribution to X.

(vii) If Xn has a tight sequence of distributions, show that there

is a subsequence of the Xn which converges in distribution.

(This is known as Prokhorov’s theorem).

(viii) If Xn converges in probability to X, show that there is a

subsequence of the Xn which converges almost surely to X.

(ix) Xn converges in distribution toX if and only if lim infn→∞P(Xn ∈
U) ≥ P(X ∈ U) for every open subset U of R, or equiva-

lently if lim supn→∞P(Xn ∈ K) ≤ P(X ∈ K) for every

closed subset K of R.

Remark 1.1.30. The relationship between almost sure convergence

and convergence in probability may be clarified by the following ob-

servation. If En is a sequence of events, then the indicators I(En)

converge in probability to zero iff P(En) → 0 as n → ∞, but con-

verge almost surely to zero iff P(
⋃
n≥N En)→ 0 as N →∞.

Example 1.1.31. Let Y be a random variable drawn uniformly from

[0, 1]. For each n ≥ 1, let En be the event that the decimal ex-

pansion of Y begins with the decimal expansion of n, e.g. every

real number in [0.25, 0.26) lies in E25. (Let us ignore the annoying

0.999 . . . = 1.000 . . . ambiguity in the decimal expansion here, as it

will almost surely not be an issue.) Then the indicators I(En) con-

verge in probability and in distribution to zero, but do not converge

almost surely.

If yn is the nth digit of Y , then the yn converge in distribution

(to the uniform distribution on {0, 1, . . . , 9}, but do not converge in

probability or almost surely. Thus we see that the latter two notions

are sensitive not only to the distribution of the random variables, but

how they are positioned in the sample space.

The limit of a sequence converging almost surely or in probabil-

ity is clearly unique up to almost sure equivalence, whereas the limit
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of a sequence converging in distribution is only unique up to equiv-

alence in distribution. Indeed, convergence in distribution is really a

statement about the distributions µXn , µX rather than of the random

vaariables Xn, X themselves. In particular, for convergence in distri-

bution one does not care about how correlated or dependent the Xn

are with respect to each other, or with X; indeed, they could even

live on different sample spaces Ωn,Ω and we would still have a well-

defined notion of convergence in distribution, even though the other

two notions cease to make sense (except when X is deterministic,

in which case we can recover convergence in probability by Exercise

1.1.25(vi)).

Exercise 1.1.26 (Borel-Cantelli lemma). Suppose that Xn, X are

random variables such that
∑
n P(d(Xn, X) ≥ ε) < ∞ for every

ε > 0. Show that Xn converges almost surely to X.

Exercise 1.1.27 (Convergence and moments). Let Xn be a sequence

of scalar random variables, and let X be another scalar random vari-

able. Let k, ε > 0.

(i) If supn E|Xn|k < ∞, show that Xn has a tight sequence of

distributions.

(ii) If supn E|Xn|k <∞ and Xn converges in distribution to X,

show that E|X|k ≤ lim infn→∞E|Xn|k.

(iii) If supn E|Xn|k+ε < ∞ and Xn converges in distribution to

X, show that E|X|k = limn→∞E|Xn|k.

(iv) Give a counterexample to show that (iii) fails when ε = 0,

even if we upgrade convergence in distribution to almost

sure convergence.

(v) If theXn are uniformly bounded and real-valued, and EXk =

limn→∞EXk
n for every k = 0, 1, 2, . . ., then Xn converges in

distribution to X. (Hint: use the Weierstrass approximation

theorem. Alternatively, use the analytic nature of the mo-

ment generating function EetX and analytic continuation.)

(vi) If the Xn are uniformly bounded and complex-valued, and

EXkX
l

= limn→∞EXk
nXn

l
for every k, l = 0, 1, 2, . . ., then

Xn converges in distribution to X. Give a counterexample
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to show that the claim fails if one only considers the cases

when l = 0.

There are other interesting modes of convergence on random vari-

ables and on distributions, such as convergence in total variation

norm, in the Lévy-Prokhorov metric, or in Wasserstein metric, but

we will not need these concepts in this text.

1.2. Stirling’s formula

In this section we derive Stirling’s formula, which is a useful approx-

imation for n! when n is large. This formula (and related formulae

for binomial coefficients)
(
n
m

)
will be useful for estimating a number

of combinatorial quantities in this text, and also in allowing one to

analyse discrete random walks accurately.

From Taylor expansion we have xn/n! ≤ ex for any x ≥ 0. Spe-

cialising this to x = n we obtain a crude lower bound

(1.43) n! ≥ nne−n.

In the other direction, we trivially have

(1.44) n! ≤ nn

so we know already that n! is within6 an exponential factor of nn.

One can do better by starting with the identity

log n! =

n∑
m=1

logm

and viewing the right-hand side as a Riemann integral approximation

to
∫ n

1
log x dx. Indeed a simple area comparison (cf. the integral test)

yields the inequalities∫ n

1

log x dx ≤
n∑

m=1

logm ≤ log n+

∫ n

1

log x dx

which leads to the inequalities

(1.45) enne−n ≤ n! ≤ en× nne−n

6One can also see this fact without Taylor expansion, by observing the trivial

lower bound n! ≥ (n/2)bn/2c coming from considering the second half of the product
n! = 1 · . . . · n.
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so the lower bound in (1.43) was only off7 by a factor of n or so.

One can do better by using the trapezoid rule as follows. On any

interval [m,m + 1], log x has a second derivative of O(1/m2), which

by Taylor expansion leads to the approximation∫ m+1

m

log x dx =
1

2
logm+

1

2
log(m+ 1) + εm

for some error εm = O(1/m2).

The error is absolutely convergent; by the integral test, we have∑n
m=1 εm = C + O(1/n) for some absolute constant C :=

∑∞
m=1 εm.

Performing this sum, we conclude that∫ n

1

log x dx =

n−1∑
m=1

logm+
1

2
log n+ C +O(1/n)

which after some rearranging leads to the asymptotic

(1.46) n! = (1 +O(1/n))e1−C√nnne−n

so we see that n! actually lies roughly at the geometric mean of the

two bounds in (1.45).

This argument does not easily reveal what the constant C actually

is (though it can in principle be computed numerically to any specified

level of accuracy by this method). To find this out, we take a different

tack, interpreting the factorial via the Gamma function Γ : R → R

as follows. Repeated integration by parts reveals the identity

(1.47) n! =

∫ ∞
0

tne−t dt.

(The right-hand side, by definition, is Γ(n + 1).) So to estimate n!,

it suffices to estimate the integral in (1.47). Elementary calculus

reveals that the integrand tne−t achieves its maximum at t = n, so it

is natural to make the substitution t = n+ s, obtaining

n! =

∫ ∞
−n

(n+ s)ne−n−s ds

7This illustrates a general principle, namely that one can often get a non-terrible
bound for a series (in this case, the Taylor series for en) by using the largest term in
that series (which is nn/n!).
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which we can simplify a little bit as

n! = nne−n
∫ ∞
−n

(1 +
s

n
)ne−s ds,

pulling out the now-familiar factors of nne−n. We combine the inte-

grand into a single exponential,

n! = nne−n
∫ ∞
−n

exp(n log(1 +
s

n
)− s) ds.

From Taylor expansion we see that

n log(1 +
s

n
) = s− s2

2n
+ . . .

so we heuristically have

exp(n log(1 +
s

n
)− s) ≈ exp(−s2/2n).

To achieve this approximation rigorously, we first scale s by
√
n to

remove the n in the denominator. Making the substitution s =
√
nx,

we obtain

n! =
√
nnne−n

∫ ∞
−
√
n

exp(n log(1 +
x√
n

)−
√
nx) dx,

thus extracting the factor of
√
n that we know from (1.46) has to be

there.

Now, Taylor expansion tells us that for fixed x, we have the point-

wise convergence

(1.48) exp(n log(1 +
x√
n

)−
√
nx)→ exp(−x2/2)

as n→∞. To be more precise, as the function n log(1+ x√
n

) equals 0

with derivative
√
n at the origin, and has second derivative −1

(1+x/
√
n)2

,

we see from two applications of the fundamental theorem of calculus

that

n log(1 +
x√
n

)−
√
nx = −

∫ x

0

(x− y)dy

(1 + y/
√
n)2

.

This gives a uniform lower bound

n log(1 +
x√
n

)−
√
nx ≤ −cx2
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for some c > 0 when |x| ≤
√
n, and

n log(1 +
x√
n

)−
√
nx ≤ −cx

√
n

for |x| >
√
n. This is enough to keep the integrands exp(n log(1 +

x√
n

) −
√
nx) dominated by an absolutely integrable function. By

(1.48) and the Lebesgue dominated convergence theorem, we thus

have∫ ∞
−
√
n

exp(n log(1 +
x√
n

)−
√
nx) dx→

∫ ∞
−∞

exp(−x2/2) dx.

A classical computation (based for instance on computing
∫∞
−∞

∫∞
−∞ exp(−(x2+

y2)/2) dxdy in both Cartesian and polar coordinates) shows that∫ ∞
−∞

exp(−x2/2) dx =
√

2π

and so we conclude Stirling’s formula

(1.49) n! = (1 + o(1))
√

2πnnne−n.

Remark 1.2.1. The dominated convergence theorem does not imme-

diately give any effective rate on the decay o(1) (though such a rate

can eventually be extracted by a quantitative version of the above

argument. But one can combine (1.49) with (1.46) to show that the

error rate is of the form O(1/n). By using fancier versions of the

trapezoid rule (e.g. Simpson’s rule) one can obtain an asymptotic

expansion of the error term in 1/n; see [KeVa2007].

Remark 1.2.2. The derivation of (1.49) demonstrates some general

principles concerning the estimation of exponential integrals
∫
eφ(x) dx

when φ is large. Firstly, the integral is dominated by the local maxima

of φ. Then, near these maxima, eφ(x) usually behaves like a rescaled

Gaussian, as can be seen by Taylor expansion (though more compli-

cated behaviour emerges if the second derivative of φ degenerates).

So one can often understand the asymptotics of such integrals by a

change of variables designed to reveal the Gaussian behaviour. This

technique is known as Laplace’s method . A similar set of principles

also holds for oscillatory exponential integrals
∫
eiφ(x) dx; these prin-

ciples are collectively referred to as the method of stationary phase.
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One can use Stirling’s formula to estimate binomial coefficients.

Here is a crude bound:

Exercise 1.2.1 (Entropy formula). Let n be large, let 0 < γ < 1 be

fixed, and let 1 ≤ m ≤ n be an integer of the form m = (γ + o(1))n.

Show that
(
n
m

)
= exp((h(γ) + o(1))n), where h(γ) is the entropy

function

h(γ) := γ log
1

γ
+ (1− γ) log

1

1− γ
.

For m near n/2, one also has the following more precise bound:

Exercise 1.2.2 (Refined entropy formula). Let n be large, and let

1 ≤ m ≤ n be an integer of the formm = n/2+k for some k = o(n2/3).

Show that

(1.50)

(
n

m

)
= (

√
2

π
+ o(1))

2n√
n

exp(−2k2/n).

Note the gaussian-type behaviour in k. This can be viewed as

an illustration of the central limit theorem (see Section 2.2) when

summing iid Bernoulli variables X1, . . . , Xn ∈ {0, 1}, where each Xi

has a 1/2 probability of being either 0 or 1. Indeed, from (1.50) we

see that

P(X1 + . . .+Xn = n/2 + k) = (

√
2

π
+ o(1))

1√
n

exp(−2k2/n)

when k = o(n2/3), which suggests that X1 + . . . + Xn is distributed

roughly like the gaussian N(n/2, n/4) with mean n/2 and variance

n/4.

1.3. Eigenvalues and sums of Hermitian matrices

Let A be a Hermitian n × n matrix. By the spectral theorem for

Hermitian matrices (which, for sake of completeness, we prove below),

one can diagonalise A using a sequence8

λ1(A) ≥ . . . ≥ λn(A)

8The eigenvalues are uniquely determined by A, but the eigenvectors have a little
ambiguity to them, particularly if there are repeated eigenvalues; for instance, one

could multiply each eigenvector by a complex phase eiθ. In this text we are arrang-
ing eigenvalues in descending order; of course, one can also arrange eigenvalues in
increasing order, which causes some slight notational changes in the results below.
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of n real eigenvalues, together with an orthonormal basis of eigenvec-

tors u1(A), . . . , un(A) ∈ Cn. The set {λ1(A), . . . , λn(A)} is known as

the spectrum of A.

A basic question in linear algebra asks the extent to which the

eigenvalues λ1(A), . . . , λn(A) and λ1(B), . . . , λn(B) of two Hermitian

matrices A,B constrains the eigenvalues λ1(A+B), . . . , λn(A+B) of

the sum. For instance, the linearity of trace

tr(A+B) = tr(A) + tr(B),

when expressed in terms of eigenvalues, gives the trace constraint

(1.51) λ1(A+B) + . . .+ λn(A+B) = λ1(A) + . . .+ λn(A)

+λ1(B) + . . .+ λn(B);

the identity

(1.52) λ1(A) = sup
|v|=1

v∗Av

(together with the counterparts for B and A+B) gives the inequality

(1.53) λ1(A+B) ≤ λ1(A) + λ1(B);

and so forth.

The complete answer to this problem is a fascinating one, requir-

ing a strangely recursive description (once known as Horn’s conjec-

ture, which is now solved), and connected to a large number of other

fields of mathematics, such as geometric invariant theory, intersec-

tion theory, and the combinatorics of a certain gadget known as a

“honeycomb”. See [KnTa2001] for a survey of this topic.

In typical applications to random matrices, one of the matrices

(say, B) is “small” in some sense, so that A+B is a perturbation of A.

In this case, one does not need the full strength of the above theory,

and instead rely on a simple aspect of it pointed out in [HeRo1995],

[To1994], which generates several of the eigenvalue inequalities re-

lating A, B, and C, of which (1.51) and (1.53) are examples9. These

eigenvalue inequalities can mostly be deduced from a number of min-

imax characterisations of eigenvalues (of which (1.52) is a typical

9Actually, this method eventually generates all of the eigenvalue inequalities, but
this is a non-trivial fact to prove; see [KnTaWo2004]
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example), together with some basic facts about intersections of sub-

spaces. Examples include the Weyl inequalities

(1.54) λi+j−1(A+B) ≤ λi(A) + λj(B),

valid whenever i, j ≥ 1 and i+ j − 1 ≤ n, and the Ky Fan inequality

λ1(A+B) + . . .+ λk(A+B) ≤

(1.55) λ1(A) + . . .+ λk(A) + λ1(B) + . . .+ λk(B).

One consequence of these inequalities is that the spectrum of a Her-

mitian matrix is stable with respect to small perturbations.

We will also establish some closely related inequalities concern-

ing the relationships between the eigenvalues of a matrix, and the

eigenvalues of its minors.

Many of the inequalities here have analogues for the singular

values of non-Hermitian matrices (by exploiting the augmented ma-

trix(2.80)). However, the situation is markedly different when deal-

ing with eigenvalues of non-Hermitian matrices; here, the spectrum

can be far more unstable, if pseudospectrum is present. Because of

this, the theory of the eigenvalues of a random non-Hermitian ma-

trix requires an additional ingredient, namely upper bounds on the

prevalence of pseudospectrum, which after recentering the matrix is

basically equivalent to establishing lower bounds on least singular

values. See Section 2.8.1 for further discussion of this point.

We will work primarily here with Hermitian matrices, which can

be viewed as self-adjoint transformations on complex vector spaces

such as Cn. One can of course specialise the discussion to real sym-

metric matrices, in which case one can restrict these complex vector

spaces to their real counterparts Rn. The specialisation of the com-

plex theory below to the real case is straightforward and is left to the

interested reader.

1.3.1. Proof of spectral theorem. To prove the spectral theorem,

it is convenient to work more abstractly, in the context of self-adjoint

operators on finite-dimensional Hilbert spaces:

Theorem 1.3.1 (Spectral theorem). Let V be a finite-dimensional

complex Hilbert space of some dimension n, and let T : V → V
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be a self-adjoint operator. Then there exists an orthonormal basis

v1, . . . , vn ∈ V of V and eigenvalues λ1, . . . , λn ∈ R such that Tvi =

λivi for all 1 ≤ i ≤ n.

The spectral theorem as stated in the introduction then follows

by specialising to the case V = Cn and ordering the eigenvalues.

Proof. We induct on the dimension n. The claim is vacuous for

n = 0, so suppose that n ≥ 1 and that the claim has already been

proven for n = 1.

Let v be a unit vector in Cn (thus v∗v = 1) that maximises the

form Rev∗Tv; this maximum exists by compactness. By the method

of Lagrange multipliers, v is a critical point of Rev∗Tv − λv∗v for

some λ ∈ R. Differentiating in an arbitrary direction w ∈ Cn, we

conclude that

Re(v∗Tw + w∗Tv − λv∗w − λw∗v) = 0;

this simplifies using self-adjointness to

Re(w∗(Tv − λv)) = 0.

Since w ∈ Cn was arbitrary, we conclude that Tv = λv, thus v

is a unit eigenvector of T . By self-adjointness, this implies that the

orthogonal complement v⊥ := {w ∈ V : v∗w = 0} of v is preserved by

T . Restricting T to this lower-dimensional subspace and applying the

induction hypothesis, we can find an orthonormal basis of eigenvectors

of T on v⊥. Adjoining the new unit vector v to the orthonormal basis,

we obtain the claim. �

Suppose we have a self-adjoint transformation A : Cn → Cn,

which of course can be identified with a Hermitian matrix. Using

the orthogonal eigenbasis provided by the spectral theorem, we can

perform an orthonormal change of variables to set that eigenbasis

to be the standard basis e1, . . . , en, so that the matrix of A becomes

diagonal. This is very useful when dealing with just a single matrixA -

for instance, it makes the task of computing functions of A, such as Ak

or exp(tA), much easier. However, when one has several Hermitian

matrices in play (e.g. A,B,C), then it is usually not possible to

standardise all the eigenbases simultaneously (i.e. to simultaneously
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diagonalise all the matrices), except when the matrices all commute.

Nevertheless one can still normalise one of the eigenbases to be the

standard basis, and this is still useful for several applications, as we

shall soon see.

Exercise 1.3.1. Suppose that the eigenvalues λ1(A) > . . . > λn(A)

of an n× n Hermitian matrix are distinct. Show that the associated

eigenbasis u1(A), . . . , un(A) is unique up to rotating each individual

eigenvector uj(A) by a complex phase eiθj . In particular, the spectral

projections Pj(A) := uj(A)∗uj(A) are unique. What happens when

there is eigenvalue multiplicity?

1.3.2. Minimax formulae. The ith eigenvalue functionalA 7→ λi(A)

is not a linear functional (except in dimension one). It is not even a

convex functional (except when i = 1) or a concave functional (ex-

cept when i = n). However, it is the next best thing, namely it is a

minimax expression of linear functionals10. More precisely, we have

Theorem 1.3.2 (Courant-Fischer min-max theorem). Let A be an

n× n Hermitian matrix. Then we have

(1.56) λi(A) = sup
dim(V )=i

inf
v∈V :|v|=1

v∗Av

and

(1.57) λi(A) = inf
dim(V )=n−i+1

sup
v∈V :|v|=1

v∗Av

for all 1 ≤ i ≤ n, where V ranges over all subspaces of Cn with the

indicated dimension.

Proof. It suffices to prove (1.56), as (1.57) follows by replacing A by

−A (noting that λi(−A) = −λn−i+1(A)).

We first verify the i = 1 case, i.e. (1.52). By the spectral theorem,

we can assume that A has the standard eigenbasis e1, . . . , en, in which

case we have

(1.58) v∗Av =

n∑
i=1

λi|vi|2

10Note that a convex functional is the same thing as a max of linear functionals,
while a concave functional is the same thing as a min of linear functionals.
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whenever v = (v1, . . . , vn). The claim (1.52) is then easily verified.

To prove the general case, we may again assume A has the stan-

dard eigenbasis. By considering the space V spanned by e1, . . . , ei,

we easily see the inequality

λi(A) ≤ sup
dim(V )=i

inf
v∈V :|v|=1

v∗Av

so we only need to prove the reverse inequality. In other words,

for every i-dimensional subspace V of Cn, we have to show that V

contains a unit vector v such that

v∗Av ≤ λi(A).

LetW be the space spanned by ei, . . . , en. This space has codimension

i − 1, so it must have non-trivial intersection with V . If we let v be

a unit vector in V ∩W , the claim then follows from (1.58). �

Remark 1.3.3. By homogeneity, one can replace the restriction |v| =
1 with v 6= 0 provided that one replaces the quadratic form v∗Av with

the Rayleigh quotient v∗Av/v∗v.

A closely related formula is as follows. Given an n×n Hermitian

matrix A and an m-dimensional subspace V of Cn, we define the

partial trace tr(A �V ) to be the expression

tr(A �V ) :=

m∑
i=1

v∗iAvi

where v1, . . . , vm is any orthonormal basis of V . It is easy to see that

this expression is independent of the choice of orthonormal basis, and

so the partial trace is well-defined.

Proposition 1.3.4 (Extremal partial trace). Let A be an n×n Her-

mitian matrix. Then for any 1 ≤ k ≤ n, one has

λ1(A) + . . .+ λk(A) = sup
dim(V )=k

tr(A �V )

and

λn−k+1(A) + . . .+ λn(A) = inf
dim(V )=k

tr(A �V ).

As a corollary, we see that A 7→ λ1(A) + . . .+ λk(A) is a convex

function, and A 7→ λn−k+1(A) + . . .+ λn(A) is a concave function.
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Proof. Again, by symmetry it suffices to prove the first formula.

As before, we may assume without loss of generality that A has the

standard eigenbasis e1, . . . , en corresponding to λ1(A), . . . , λn(A) re-

spectively. By selecting V to be the span of e1, . . . , ek we have the

inequality

λ1(A) + . . .+ λk(A) ≤ sup
dim(V )=k

tr(A �V )

so it suffices to prove the reverse inequality. For this we induct on the

dimension n. If V has dimension k, then it has a k − 1-dimensional

subspace V ′ that is contained in the span of e2, . . . , en. By the in-

duction hypothesis applied to the restriction of A to this span (which

has eigenvalues λ2(A), . . . , λn(A)), we have

λ2(A) + . . .+ λk(A) ≥ tr(A �V ′).

On the other hand, if v is a unit vector in the orthogonal complement

of V ′ in V , we see from (1.52) that

λ1(A) ≥ v∗Av.

Adding the two inequalities we obtain the claim. �

Specialising Proposition 1.3.4 to the case when V is a coordi-

nate subspace (i.e. the span of k of the basis vectors e1, . . . , en), we

conclude the Schur-Horn inequalities

λn−k+1(A) + . . .+ λn(A) ≤

(1.59) ai1i1 + . . .+ aikik ≤ λ1(A) + . . .+ λk(A)

for any 1 ≤ i1 < . . . < ik ≤ n, where a11, a22, . . . , ann are the diagonal

entries of A.

Exercise 1.3.2. Show that the inequalities (1.59) are equivalent to

the assertion that the diagonal entries diag(A) = (a11, a22, . . . , ann)

lies in the permutahedron of λ1(A), . . . , λn(A), defined as the convex

hull of the n! permutations of (λ1(A), . . . , λn(A)) in Rn.

Remark 1.3.5. It is a theorem of Schur and Horn[Ho1954] that

these are the complete set of inequalities connecting the diagonal

entries diag(A) = (a11, a22, . . . , ann) of a Hermitian matrix to its

spectrum. To put it another way, the image of any coadjoint orbit
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OA := {UAU∗ : U ∈ U(n)} of a matrix A with a given spectrum

λ1, . . . , λn under the diagonal map diag : A 7→ diag(A) is the per-

mutahedron of λ1, . . . , λn. Note that the vertices of this permutahe-

dron can be attained by considering the diagonal matrices inside this

coadjoint orbit, whose entries are then a permutation of the eigen-

values. One can interpret this diagonal map diag as the moment

map associated with the conjugation action of the standard maximal

torus of U(n) (i.e. the diagonal unitary matrices) on the coadjoint

orbit. When viewed in this fashion, the Schur-Horn theorem can

be viewed as the special case of the more general Atiyah convex-

ity theorem[At1982] (also proven independently by Guillemin and

Sternberg[GuSt1982]) in symplectic geometry. Indeed, the topic of

eigenvalues of Hermitian matrices turns out to be quite profitably

viewed as a question in symplectic geometry (and also in algebraic

geometry, particularly when viewed through the machinery of geo-

metric invariant theory).

There is a simultaneous generalisation of Theorem 1.3.2 and Propo-

sition 1.3.4:

Exercise 1.3.3 (Wielandt minimax formula). Let 1 ≤ i1 < . . . <

ik ≤ n be integers. Define a partial flag to be a nested collection

V1 ⊂ . . . ⊂ Vk of subspaces of Cn such that dim(Vj) = ij for all

1 ≤ j ≤ k. Define the associated Schubert variety X(V1, . . . , Vk) to

be the collection of all k-dimensional subspaces W such that dim(W ∩
Vj) ≥ j. Show that for any n× n matrix A,

λi1(A) + . . .+ λik(A) = sup
V1,...,Vk

inf
W∈X(V1,...,Vk)

tr(A �W ).

1.3.3. Eigenvalue inequalities. Using the above minimax formu-

lae, we can now quickly prove a variety of eigenvalue inequalities. The

basic idea is to exploit the linearity relationship

(1.60) v∗(A+B)v = v∗Av + v∗Bv

for any unit vector v, and more generally

(1.61) tr((A+B) �V ) = tr(A �V ) + tr(B �V )

for any subspace V .
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For instance, as mentioned before, the inequality (1.53) follows

immediately from (1.52) and (1.60). Similarly, for the Ky Fan in-

equality (1.55), one observes from (1.61) and Proposition 1.3.4 that

tr((A+B) �W ) ≤ tr(A �W ) + λ1(B) + . . .+ λk(B)

for any k-dimensional subspace W . Substituting this into Proposition

1.3.4 gives the claim. If one uses Exercise 1.3.3 instead of Proposition

1.3.4, one obtains the more general Lidskii inequality

λi1(A+B) + . . .+ λik(A+B)

≤ λi1(A) + . . .+ λik(A) + λ1(B) + . . .+ λk(B)
(1.62)

for any 1 ≤ i1 < . . . < ik ≤ n.

In a similar spirit, using the inequality

|v∗Bv| ≤ ‖B‖op = max(|λ1(B)|, |λn(B)|)

for unit vectors v, combined with (1.60) and (1.56), we obtain the

eigenvalue stability inequality

(1.63) |λi(A+B)− λi(A)| ≤ ‖B‖op,

thus the spectrum of A + B is close to that of A if B is small in

operator norm. In particular, we see that the map A 7→ λi(A) is

Lipschitz continuous on the space of Hermitian matrices, for fixed

1 ≤ i ≤ n.

More generally, suppose one wants to establish the Weyl inequal-

ity (1.54). From (1.56) that it suffices to show that every i + j − 1-

dimensional subspace V contains a unit vector v such that

v∗(A+B)v ≤ λi(A) + λj(B).

But from (1.56), one can find a subspace U of codimension i− 1 such

that v∗Av ≤ λi(A) for all unit vectors v in U , and a subspace W of

codimension j − 1 such that v∗Bv ≤ λj(B) for all unit vectors v in

W . The intersection U ∩W has codimension at most i + j − 2 and

so has a nontrivial intersection with V ; and the claim follows.

Remark 1.3.6. More generally, one can generate an eigenvalue in-

equality whenever the intersection numbers of three Schubert varieties

of compatible dimensions is non-zero; see [HeRo1995]. In fact, this

generates a complete set of inequalities; see [Klyachko].. One can
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in fact restrict attention to those varieties whose intersection num-

ber is exactly one; see [KnTaWo2004]. Finally, in those cases, the

fact that the intersection is one can be proven by entirely elementary

means (based on the standard inequalities relating the dimension of

two subspaces V,W to their intersection V ∩W and sum V +W ); see

[BeCoDyLiTi2010]. As a consequence, the methods in this section

can, in principle, be used to derive all possible eigenvalue inequalities

for sums of Hermitian matrices.

Exercise 1.3.4. Verify the inequalities (1.62) and (1.54) by hand

in the case when A and B commute (and are thus simultaneously

diagonalisable), without the use of minimax formulae.

Exercise 1.3.5. Establish the dual Lidskii inequality

λi1(A+B) + . . .+ λik(A+B) ≥ λi1(A) + . . .+ λik(A)

+ λn−k+1(B) + . . .+ λn(B)

for any 1 ≤ i1 < . . . < ik ≤ n and the dual Weyl inequality

λi+j−n(A+B) ≥ λi(A) + λj(B)

whenever 1 ≤ i, j, i+ j − n ≤ n.

Exercise 1.3.6. Use the Lidskii inequality to establish the more gen-

eral inequality

n∑
i=1

ciλi(A+B) ≤
n∑
i=1

ciλi(A) +

n∑
i=1

c∗i λi(B)

whenever c1, . . . , cn ≥ 0, and c∗1 ≥ . . . ≥ c∗n ≥ 0 is the decreasing

rearrangement of c1, . . . , cn. (Hint: express ci as the integral of I(ci ≥
λ) as λ runs from 0 to infinity. For each fixed λ, apply (1.62).)

Combine this with Hölder’s inequality to conclude the p-Weilandt-

Hoffman inequality

(1.64) ‖(λi(A+B)− λi(A))ni=1‖`pn ≤ ‖B‖Sp

for any 1 ≤ p ≤ ∞, where

‖(ai)ni=1‖`pn := (

n∑
i=1

|ai|p)1/p
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is the usual `p norm (with the usual convention that ‖(ai)ni=1‖`∞n :=

sup1≤i≤p |ai|), and

(1.65) ‖B‖Sp := ‖(λi(B))ni=1‖`pn
is the p-Schatten norm of B.

Exercise 1.3.7. Show that the p-Schatten norms are indeed a norm

on the space of Hermitian matrices for every 1 ≤ p ≤ ∞.

Exercise 1.3.8. Show that for any 1 ≤ p ≤ ∞ and any Hermitian

matrix A = (aij)1≤i,j≤n, one has

(1.66) ‖(aii)ni=1‖`pn ≤ ‖A‖Sp .

Exercise 1.3.9. Establish the non-commutative Hölder inequality

| tr(AB)| ≤ ‖A‖Sp‖B‖Sp′

whenever 1 ≤ p, p′ ≤ ∞ with 1/p + 1/p′ = 1, and A,B are n × n
Hermitian matrices. (Hint: Diagonalise one of the matrices and use

the preceding exercise.)

The most important11 p-Schatten norms are the∞-Schatten norm

‖A‖S∞ = ‖A‖op, which is just the operator norm, and the 2-Schatten

norm ‖A‖S2 = (
∑n
i=1 λi(A)2)1/2, which is also the Frobenius norm

(or Hilbert-Schmidt norm)

‖A‖S2 = ‖A‖F := tr(AA∗)1/2 = (

n∑
i=1

n∑
j=1

|aij |2)1/2

where aij are the coeffiicents of A. Thus we see that the p = 2 case

of the Weilandt-Hoffman inequality can be written as

(1.67)

n∑
i=1

|λi(A+B)− λi(A)|2 ≤ ‖B‖2F .

We will give an alternate proof of this inequality, based on eigenvalue

deformation, in the next section.

11The 1-Schatten norm S1, also known as the nuclear norm or trace class norm,
is important in a number of applications, such as matrix completion, but will not be
used in this text.
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1.3.4. Eigenvalue deformation. From the Weyl inequality (1.63),

we know that the eigenvalue maps A 7→ λi(A) are Lipschitz contin-

uous on Hermitian matrices (and thus also on real symmetric matri-

ces). It turns out that we can obtain better regularity, provided that

we avoid repeated eigenvalues. Fortunately, repeated eigenvalues are

rare:

Exercise 1.3.10 (Dimension count). Suppose that n ≥ 2. Show that

the space of Hermitian matrices with at least one repeated eigenvalue

has codimension 3 in the space of all Hermitian matrices, and the

space of real symmetric matrices with at least one repeated eigenvalue

has codimension 2 in the space of all real symmetric matrices. (When

n = 1, repeated eigenvalues of course do not occur.)

Let us say that a Hermitian matrix has simple spectrum if it has

no repeated eigenvalues. We thus see from the above exercise and

(1.63) that the set of Hermitian matrices with simple spectrum forms

an open dense set in the space of all Hermitian matrices, and similarly

for real symmetric matrices; thus simple spectrum is the generic be-

haviour of such matrices. Indeed, the unexpectedly high codimension

of the non-simple matrices (naively, one would expect a codimension

1 set for a collision between, say, λi(A) and λi+1(A)) suggests a re-

pulsion phenomenon: because it is unexpectedly rare for eigenvalues

to be equal, there must be some “force” that “repels” eigenvalues

of Hermitian (and to a lesser extent, real symmetric) matrices from

getting too close to each other. We now develop some machinery to

make this more precise.

We first observe that when A has simple spectrum, the zeroes of

the characteristic polynomial λ 7→ det(A − λI) are simple (i.e. the

polynomial has nonzero derivartive at those zeroes). From this and

the inverse function theorem, we see that each of the eigenvalue maps

A 7→ λi(A) are smooth on the region where A has simple spectrum.

Because the eigenvectors ui(A) are determined (up to phase) by the
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equations (A−λi(A)I)ui(A) = 0 and ui(A)∗ui(A) = 1, another appli-

cation of the inverse function theorem tells us that we can (locally12)

select the maps A 7→ ui(A) to also be smooth.

Now suppose that A = A(t) depends smoothly on a time variable

t, so that (when A has simple spectrum) the eigenvalues λi(t) =

λi(A(t)) and eigenvectors ui(t) = ui(A(t)) also depend smoothly on

t. We can then differentiate the equations

(1.68) Aui = λiui

and

(1.69) u∗i ui = 1

to obtain various equations of motion for λi and ui in terms of the

derivatives of A.

Let’s see how this works. Taking first derivatives of (1.68), (1.69)

using the product rule, we obtain

(1.70) Ȧui +Au̇i = λ̇iui + λiu̇i

and

(1.71) u̇∗i ui + u∗i u̇i = 0.

The equation (1.71) simplifies to u̇∗i ui = 0, thus u̇i is orthogonal to ui.

Taking inner products of (1.70) with ui, we conclude the Hadamard

first variation formula

(1.72) λ̇i = u∗i Ȧui.

This can already be used to give alternate proofs of various eigen-

value identities. For instance, If we apply this to A(t) := A+ tB, we

see that
d

dt
λi(A+ tB) = ui(A+ tB)∗Bui(A+ tB)

whenever A + tB has simple spectrum. The right-hand side can be

bounded in magnitude by ‖B‖op, and so we see that the map t 7→
λi(A+ tB) is Lipschitz with norm ‖B‖op whenever A+ tB has simple

12There may be topological obstructions to smoothly selecting these vectors
globally, but this will not concern us here as we will be performing a local analy-
sis only. In some applications, it is more convenient not to work with the ui(A)
at all due to their phase ambiguity, and work instead with the spectral projections
Pi(A) := ui(A)ui(A)∗, which do not have this ambiguity.
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spectrum, which happens for generic A,B (and all t) by Exercise

1.3.10. By the fundamental theorem of calculus, we thus conclude

(1.63).

Exercise 1.3.11. Use a similar argument to the one above to estab-

lish (1.67) without using minimax formulae or Lidskii’s inequality.

Exercise 1.3.12. Use a similar argument to the one above to deduce

Lidskii’s inequality (1.62) from Proposition 1.3.4 rather than Exercise

1.3.6.

One can also compute the second derivative of eigenvalues:

Exercise 1.3.13. Suppose that A = A(t) depends smoothly on t.

By differentiating (1.70), (1.71) twice, establish the Hadamard second

variation formula13

(1.73)
d2

dt2
λk = u∗kÄuk + 2

∑
j 6=k

|u∗j Ȧuk|2

λk − λj

whenever A has simple spectrum and 1 ≤ k ≤ n.

Remark 1.3.7. In the proof of the four moment theorem[TaVu2009b]

on the fine spacing of Wigner matrices, one also needs the variation

formulae for the third, fourth, and fifth derivatives of the eigenvalues

(the first four derivatives match up with the four moments mentioned

in the theorem, and the fifth derivative is needed to control error

terms). Fortunately, one does not need the precise formulae for these

derivatives (which, as one can imagine, are quite complicated), but

only their general form, and in particular an upper bound for these

derivatives in terms of more easily computable quantities.

1.3.5. Minors. In the previous sections, we perturbed n×n Hermit-

ian matrices A = An by adding a (small) n× n Hermitian correction

matrix B to them to form a new n × n Hermitian matrix A + B.

Another important way to perturb a matrix is to pass to a principal

13If one interprets the second derivative of the eigenvalues as being proportional
to a “force” on those eigenvalues (in analogy with Newton’s second law), (1.73) is
asserting that each eigenvalue λj “repels” the other eigenvalues λk by exerting a force
that is inversely proportional to their separation (and also proportional to the square of

the matrix coefficient of Ȧ in the eigenbasis). See [Ta2009b, §1.5] for more discussion.
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minor , for instance to the top left n − 1 × n − 1 minor An−1 of An.

There is an important relationship between the eigenvalues of the two

matrices:

Exercise 1.3.14 (Cauchy interlacing law). For any n×n Hermitian

matrix An with top left n− 1× n− 1 minor An−1, then

(1.74) λi+1(An) ≤ λi(An−1) ≤ λi(An)

for all 1 ≤ i ≤ n. (Hint: use the Courant-Fischer min-max theorem,

Theorem 1.3.2.) Show furthermore that the space of An for which

equality holds in one of the inequalities in (1.74) has codimension 2

(for Hermitian matrices) or 1 (for real symmetric matrices).

Remark 1.3.8. If one takes successive minors An−1, An−2, . . . , A1

of an n × n Hermitian matrix An, and computes their spectra, then

(1.74) shows that this triangular array of numbers forms a pattern

known as a Gelfand-Tsetlin pattern.

One can obtain a more precise formula for the eigenvalues of An
in terms of those for An−1:

Exercise 1.3.15 (Eigenvalue equation). Let An be an n×n Hermit-

ian matrix with top left n − 1 × n − 1 minor An−1. Suppose that λ

is an eigenvalue of An distinct from all the eigenvalues of An−1 (and

thus simple, by (1.74)). Show that

(1.75)

n−1∑
j=1

|uj(An−1)∗X|2

λj(An−1)− λ
= ann − λ

where ann is the bottom right entry of A, and X = (anj)
n−1
j=1 ∈ Cn−1

is the right column of A (minus the bottom entry). (Hint: Expand out

the eigenvalue equation Anu = λu into the Cn−1 and C components.)

Note the similarities between (1.75) and (1.73).

Observe that the function λ →
∑n−1
j=1

|uj(An−1)∗X|2
λj(An−1)−λ is a rational

function of λ which is increasing away from the eigenvalues of An−1,

where it has a pole (except in the rare case when the inner prod-

uct uj−1(An−1)∗X vanishes, in which case it can have a removable
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singularity). By graphing this function one can see that the interlac-

ing formula (1.74) can also be interpreted as a manifestation of the

intermediate value theorem.

The identity (1.75) suggests that under typical circumstances,

an eigenvalue λ of An can only get close to an eigenvalue λj(An−1)

if the associated inner product uj(An−1)∗X is small. This type of

observation is useful to achieve eigenvalue repulsion - to show that

it is unlikely that the gap between two adjacent eigenvalues is small.

We shall see examples of this in later notes.

1.3.6. Singular values. The theory of eigenvalues of n×n Hermit-

ian matrices has an analogue in the theory of singular values of p×n
non-Hermitian matrices. We first begin with the counterpart to the

spectral theorem, namely the singular value decomposition.

Theorem 1.3.9 (Singular value decomposition). Let 0 ≤ p ≤ n,

and let A be a linear transformation from an n-dimensional complex

Hilbert space U to a p-dimensional complex Hilbert space V . (In par-

ticular, A could be an p× n matrix with complex entries, viewed as a

linear transformation from Cn to Cp.) Then there exist non-negative

real numbers

σ1(A) ≥ . . . ≥ σp(A) ≥ 0

(known as the singular values of A) and orthonormal sets u1(A), . . . , up(A) ∈
U and v1(A), . . . , vp(A) ∈ V (known as singular vectors of A), such

that

Auj = σjvj ; A∗vj = σjuj

for all 1 ≤ j ≤ p, where we abbreviate uj = uj(A), etc.

Furthermore, Au = 0 whenever u is orthogonal to all of the

u1(A), . . . , up(A).

We adopt the convention that σi(A) = 0 for i > p. The above the-

orem only applies to matrices with at least as many rows as columns,

but one can also extend the definition to matrices with more columns

than rows by adopting the convention σi(A
∗) := σi(A) (it is easy to

check that this extension is consistent on square matrices). All of

the results below extend (with minor modifications) to the case when
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there are more columns than rows, but we have not displayed those

extensions here in order to simplify the notation.

Proof. We induct on p. The claim is vacuous for p = 0, so suppose

that p ≥ 1 and that the claim has already been proven for p− 1.

We follow a similar strategy to the proof of Theorem 1.3.1. We

may assume that A is not identically zero, as the claim is obvious

otherwise. The function u 7→ ‖Au‖2 is continuous on the unit sphere

of U , so there exists a unit vector u1 which maximises this quantity. If

we set σ1 := ‖Au1‖ > 0, one easily verifies that u1 is a critical point of

the map u 7→ ‖Au‖2−σ2
1‖u‖2, which then implies that A∗Au1 = σ2

1u1.

Thus, if we set v1 := Au1/σ1, then Au1 = σ1v1 and A∗v1 = σ1u1.

This implies that A maps the orthogonal complement u⊥1 of u1 in U to

the orthogonal complement v⊥1 of v1 in V . By induction hypothesis,

the restriction of A to u⊥1 (and v⊥1 ) then admits a singular value

decomposition with singular values σ2 ≥ . . . ≥ σp ≥ 0 and singular

vectors u2, . . . , up ∈ u⊥1 , v2, . . . , vp ∈ v⊥1 with the stated properties.

By construction we see that σ2, . . . , σp are less than or equal to σ1. If

we now adjoin σ1, u1, v1 to the other singular values and vectors we

obtain the claim. �

Exercise 1.3.16. Show that the singular values σ1(A) ≥ . . . ≥
σp(A) ≥ 0 of a p × n matrix A are unique. If we have σ1(A) >

. . . > σp(A) > 0, show that the singular vectors are unique up to

rotation by a complex phase.

By construction (and the above uniqueness claim) we see that

σi(UAV ) = σi(A) whenever A is a p× n matrix, U is a unitary p× p
matrix, and V is a unitary n×n matrix. Thus the singular spectrum

of a matrix is invariant under left and right unitary transformations.

Exercise 1.3.17. If A is a p×n complex matrix for some 1 ≤ p ≤ n,

show that the augmented matrix

Ã :=

(
0 A

A∗ 0

)
is a p + n × p + n Hermitian matrix whose eigenvalues consist of

±σ1(A), . . . ,±σp(A), together with n − p copies of the eigenvalue
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zero. (This generalises Exercise 2.3.17.) What is the relationship

between the singular vectors of A and the eigenvectors of Ã?

Exercise 1.3.18. If A is an n× n Hermitian matrix, show that the

singular values σ1(A), . . . , σn(A) of A are simply the absolute values

|λ1(A)|, . . . , |λn(A)| of A, arranged in descending order. Show that

the same claim also holds when A is a normal matrix (that is, when

A commutes with its adjoint). What is the relationship between the

singular vectors and eigenvectors of A?

Remark 1.3.10. When A is not normal, the relationship between

eigenvalues and singular values is more subtle. We will discuss this

point in later notes.

Exercise 1.3.19. If A is a p×n complex matrix for some 1 ≤ p ≤ n,

show that AA∗ has eigenvalues σ1(A)2, . . . , σp(A)2, and A∗A has

eigenvalues σ1(A)2, . . . , σp(A)2 together with n−p copies of the eigen-

value zero. Based on this observation, give an alternate proof of the

singular value decomposition theorem using the spectral theorem for

(positive semi-definite) Hermitian matrices.

Exercise 1.3.20. Show that the rank of a p × n matrix is equal to

the number of non-zero singular values.

Exercise 1.3.21. Let A be a p×n complex matrix for some 1 ≤ p ≤
n. Establish the Courant-Fischer min-max formula

(1.76) σi(A) = sup
dim(V )=i

inf
v∈V ;|v|=1

|Av|

for all 1 ≤ i ≤ p, where the supremum ranges over all subspaces of

Cn of dimension i.

One can use the above exercises to deduce many inequalities

about singular values from analogous ones about eigenvalues. We

give some examples below.

Exercise 1.3.22. Let A,B be p× n complex matrices for some 1 ≤
p ≤ n.

(i) Establish the Weyl inequality σi+j−1(A + B) ≤ σi(A) +

σj(B) whenever 1 ≤ i, j, i+ j − 1 ≤ p.
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(ii) Establish the Lidskii inequality

σi1(A+B) + . . .+ σik(A+B) ≤ σi1(A) + . . .+ σik(A)

+σ1(B) + . . .+ σk(B)

whenever 1 ≤ i1 < . . . < ik ≤ p.
(iii) Show that for any 1 ≤ k ≤ p, the map A 7→ σ1(A) + . . . +

σk(A) defines a norm on the space Cp×n of complex p × n
matrices (this norm is known as the kth Ky Fan norm).

(iv) Establish the Weyl inequality |σi(A+B)− σi(A)| ≤ ‖B‖op
for all 1 ≤ i ≤ p.

(v) More generally, establish the q-Weilandt-Hoffman inequality

‖(σi(A+B)− σi(A))1≤i≤p‖`qp ≤ ‖B‖Sq for any 1 ≤ q ≤ ∞,

where ‖B‖Sq := ‖(σi(B))1≤i≤p‖`qp is the q-Schatten norm of

B. (Note that this is consistent with the previous definition

of the Schatten norms.)

(vi) Show that the q-Schatten norm is indeed a norm on Cp×n

for any 1 ≤ q ≤ ∞.

(vii) If A′ is formed by removing one row from A, show that

λi+1(A) ≤ λi(A′) ≤ λi(A) for all 1 ≤ i < p.

(viii) If p < n and A′ is formed by removing one column from A,

show that λi+1(A) ≤ λi(A
′) ≤ λi(A) for all 1 ≤ i < p and

λp(A
′) ≤ λp(A). What changes when p = n?

Exercise 1.3.23. Let A be a p×n complex matrix for some 1 ≤ p ≤
n. Observe that the linear transformation A : Cn → Cp naturally

induces a linear transformation A∧k :
∧k

Cn →
∧k

Cp from k-forms

on Cn to k-forms on Cp. We give
∧k

Cn the structure of a Hilbert

space by declaring the basic forms ei1 ∧ . . . ∧ eik for 1 ≤ i1 < . . . <

ik ≤ n to be orthonormal.

For any 1 ≤ k ≤ p, show that the operator norm of A∧k is equal

to σ1(A) . . . σk(A).

Exercise 1.3.24. Let A be a p × n matrix for some 1 ≤ p ≤ n, let

B be a r × p matrix, and let C be a n× s matrix for some r, s ≥ 1.

Show that σi(BA) ≤ ‖B‖opσi(A) and σi(AC) ≤ σi(A)‖C‖op for

any 1 ≤ i ≤ p.
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Exercise 1.3.25. Let A = (aij)1≤i≤p;1≤j≤n be a p × n matrix for

some 1 ≤ p ≤ n, let i1, . . . , ik ∈ {1, . . . , p} be distinct, and let

j1, . . . , jk ∈ {1, . . . , n} be distinct. Show that

ai1j1 + . . .+ aikjk ≤ σ1(A) + . . .+ σk(A).

Using this, show that if j1, . . . , jp ∈ {1, . . . , n} are distinct, then

‖(aiji)
p
i=1‖`qp ≤ ‖A‖Sq

for every 1 ≤ q ≤ ∞.

Exercise 1.3.26. Establish the Hölder inequality

| tr(AB∗)| ≤ ‖A‖Sq‖B‖Sq′

whenever A,B are p×n complex matrices and 1 ≤ q, q′ ≤ ∞ are such

that 1/q + 1/q′ = 1.
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2.1. Concentration of measure

Suppose we have a large number of scalar random variablesX1, . . . , Xn,

which each have bounded size on average (e.g. their mean and vari-

ance could be O(1)). What can one then say about their sum Sn :=

X1 + . . .+Xn? If each individual summand Xi varies in an interval

of size O(1), then their sum of course varies in an interval of size

O(n). However, a remarkable phenomenon, known as concentration

of measure, asserts that assuming a sufficient amount of indepen-

dence between the component variables X1, . . . , Xn, this sum sharply

concentrates in a much narrower range, typically in an interval of size

O(
√
n). This phenomenon is quantified by a variety of large deviation

inequalities that give upper bounds (often exponential in nature) on

the probability that such a combined random variable deviates sig-

nificantly from its mean. The same phenomenon applies not only to

linear expressions such as Sn = X1 + . . . + Xn, but more generally

to nonlinear combinations F (X1, . . . , Xn) of such variables, provided

that the nonlinear function F is sufficiently regular (in particular,

if it is Lipschitz, either separately in each variable, or jointly in all

variables).

The basic intuition here is that it is difficult for a large number

of independent variables X1, . . . , Xn to “work together” to simulta-

neously pull a sum X1 + . . . + Xn or a more general combination

F (X1, . . . , Xn) too far away from its mean. Independence here is the

key; concentration of measure results typically fail if the Xi are too

highly correlated with each other.

There are many applications of the concentration of measure phe-

nomenon, but we will focus on a specific application which is useful

in the random matrix theory topics we will be studying, namely on

controlling the behaviour of random n-dimensional vectors with inde-

pendent components, and in particular on the distance between such

random vectors and a given subspace.

Once one has a sufficient amount of independence, the concentra-

tion of measure tends to be sub-gaussian in nature; thus the proba-

bility that one is at least λ standard deviations from the mean tends

to drop off like C exp(−cλ2) for some C, c > 0. In particular, one
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is O(log1/2 n) standard deviations from the mean with high prob-

ability, and O(log1/2+ε n) standard deviations from the mean with

overwhelming probability. Indeed, concentration of measure is our

primary tool for ensuring that various events hold with overwhelming

probability (other moment methods can give high probability, but

have difficulty ensuring overwhelming probability).

This is only a brief introduction to the concentration of mea-

sure phenomenon. A systematic study of this topic can be found in

[Le2001].

2.1.1. Linear combinations, and the moment method. We be-

gin with the simple setting of studying a sum Sn := X1 + . . .+Xn of

random variables. As we shall see, these linear sums are particularly

amenable to the moment method, though to use the more powerful

moments, we will require more powerful independence assumptions

(and, naturally, we will need more moments to be finite or bounded).

As such, we will take the opportunity to use this topic (large deviation

inequalities for sums of random variables) to give a tour of the mo-

ment method, which we will return to when we consider the analogous

questions for the bulk spectral distribution of random matrices.

In this section we shall concern ourselves primarily with bounded

random variables; in the next section we describe the basic truncation

method that can allow us to extend from the bounded case to the

unbounded case (assuming suitable decay hypotheses).

The zeroth moment method gives a crude upper bound when S

is non-zero,

(2.1) P(Sn 6= 0) ≤
n∑
i=1

P(Xi 6= 0)

but in most cases this bound is worse than the trivial bound P(Sn 6=
0) ≤ 1. This bound, however, will be useful when performing the

truncation trick, which we will discuss below.

The first moment method is somewhat better, giving the bound

E|Sn| ≤
n∑
i=1

E|Xi|
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which when combined with Markov’s inequality(1.14) gives the rather

weak large deviation inequality

(2.2) P(|Sn| ≥ λ) ≤ 1

λ

n∑
i=1

E|Xi|.

As weak as this bound is, this bound is sometimes sharp. For in-

stance, if the Xi are all equal to a single signed Bernoulli variable

X ∈ {−1,+1}, then Sn = nX, and so |Sn| = n, and so (2.2) is

sharp when λ = n. The problem here is a complete lack of inde-

pendence; the Xi are all simultaneously positive or simultaneously

negative, causing huge fluctuations in the value of Sn.

Informally, one can view (2.2) as the assertion that Sn typically

has size Sn = O(
∑n
i=1 |Xi|).

The first moment method also shows that

ESn =

n∑
i=1

EXi

and so we can normalise out the means using the identity

Sn −ESn =

n∑
i=1

Xi −EXi.

Replacing the Xi by Xi − EXi (and Sn by Sn − ESn) we may thus

assume for simplicity that all the Xi have mean zero.

Now we consider what the second moment method gives us. We

square Sn and take expectations to obtain

E|Sn|2 =

n∑
i=1

n∑
j=1

EXiXj .

If we assume that the Xi are pairwise independent (in addition to

having mean zero), then EXiXj vanishes unless i = j, in which case

this expectation is equal to Var(Xi). We thus have

(2.3) Var(Sn) =

n∑
i=1

Var(Xi)
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which when combined with Chebyshev’s inequality(1.26) (and the

mean zero normalisation) yields the large deviation inequality

(2.4) P(|Sn| ≥ λ) ≤ 1

λ2

n∑
i=1

Var(Xi).

Without the normalisation that the Xi have mean zero, we obtain

(2.5) P(|Sn −ESn| ≥ λ) ≤ 1

λ2

n∑
i=1

Var(Xi).

Informally, this is the assertion that Sn typically has size Sn =

ESn+O((
∑n
i=1 Var(Xi))

1/2), if we have pairwise independence. Note

also that we do not need the full strength of the pairwise indepen-

dence assumption; the slightly weaker hypothesis of being pairwise

uncorrelated1 would have sufficed.

The inequality (2.5) is sharp in two ways. Firstly, we cannot

expect any significant concentration in any range narrower than the

standard deviation O((
∑n
i=1 Var(Xi))

1/2), as this would likely con-

tradict (2.3). Secondly, the quadratic-type decay in λ in (2.5) is sharp

given the pairwise independence hypothesis. For instance, suppose

that n = 2m−1, and thatXj := (−1)aj ·Y , where Y is drawn uniformly

at random from the cube {0, 1}m, and a1, . . . , an are an enumeration

of the non-zero elements of {0, 1}m. Then a little Fourier analysis

shows that each Xj for 1 ≤ j ≤ n has mean zero, variance 1, and are

pairwise independent in j; but S is equal to (n+1)I(Y = 0)−1, which

is equal to n with probability 1/(n+ 1); this is despite the standard

deviation of S being just
√
n. This shows that (2.5) is essentially (i.e.

up to constants) sharp here when λ = n.

Now we turn to higher moments. Let us assume that the Xi are

normalised to have mean zero and variance at most 1, and are also

almost surely bounded in magnitude by some2 K: |Xi| ≤ K. To

simplify the exposition very slightly we will assume that the Xi are

real-valued; the complex-valued case is very analogous (and can also

be deduced from the real-valued case) and is left to the reader.

1In other words, we only need to assume that Cov(Xi, Xj) := E(Xi−EXi)(Xj−
EXj) for all distinct i, j.

2Note that we must have K ≥ 1 to be consistent with the unit variance hypothesis.
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Let us also assume that the X1, . . . , Xn are k-wise independent

for some even positive integer k. With this assumption, we can now

estimate the kth moment

E|Sn|k =
∑

1≤i1,...,ik≤n

EXi1 . . . Xik .

To compute the expectation of the product, we can use the k-wise

independence, but we need to divide into cases (analogous to the i 6= j

and i = j cases in the second moment calculation above) depending

on how various indices are repeated. If one of the Xij only appear

once, then the entire expectation is zero (since Xij has mean zero),

so we may assume that each of the Xij appear at least twice. In

particular, there are at most k/2 distinct Xj which appear. If exactly

k/2 such terms appear, then from the unit variance assumption we

see that the expectation has magnitude at most 1; more generally, if

k/2 − r terms appear, then from the unit variance assumption and

the upper bound by K we see that the expectation has magnitude at

most K2r. This leads to the upper bound

E|Sn|k ≤
k/2∑
r=0

K2rNr

where Nr is the number of ways one can assign integers i1, . . . , ik in

{1, . . . , n} such that each ij appears at least twice, and such that

exactly k/2− r integers appear.

We are now faced with the purely combinatorial problem of es-

timating Nr. We will use a somewhat crude bound. There are(
n

k/2−r
)
≤ nk/2−r/(k/2 − r)! ways to choose k/2 − r integers from

{1, . . . , n}. Each of the integers ij has to come from one of these

k/2− r integers, leading to the crude bound

Nr ≤
nk/2−r

(k/2− r)!
(k/2− r)k

which after using a crude form n! ≥ nne−n of Stirling’s formula (see

Section 1.2) gives

Nr ≤ (en)k/2−r(k/2)k/2+r,
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and so

E|Sn|k ≤ (enk/2)k/2
k/2∑
r=0

(
K2k

en
)r.

If we make the mild assumption

(2.6) K2 ≤ n/k

then from the geometric series formula we conclude that

E|Sn|k ≤ 2(enk/2)k/2

(say), which leads to the large deviation inequality

(2.7) P(|Sn| ≥ λ
√
n) ≤ 2(

√
ek/2

λ
)k.

This should be compared with (2.2), (2.5). As k increases, the rate of

decay in the λ parameter improves, but to compensate for this, the

range that Sn concentrates in grows slowly, to O(
√
nk) rather than

O(
√
n).

Remark 2.1.1. Note how it was important here that k was even.

Odd moments, such as ES3
n, can be estimated, but due to the lack

of the absolute value sign, these moments do not give much usable

control on the distribution of the Sn. One could be more careful in

the combinatorial counting than was done here, but the net effect of

such care is only to improve the unspecified constant C (which can

easily be made explicit, but we will not do so here).

Now suppose that the X1, . . . , Xn are not just k-wise independent

for any fixed k, but are in fact jointly independent. Then we can apply

(2.7) for any k obeying (2.6). We can optimise in k by setting
√
nk

to be a small multiple of λ, and conclude the gaussian-type bound3

(2.8) P(|Sn| ≥ λ
√
n) ≤ C exp(−cλ2)

for some absolute constants C, c > 0, provided that |λ| ≤ c
√
n/
√
K

for some small c. Thus we see that while control of each individual

moment E|Sn|k only gives polynomial decay in λ, by using all the

moments simultaneously one can obtain square-exponential decay (i.e.

subgaussian type decay).

3Note that the bound (2.8) is trivial for |λ| �
√
n, so we may assume that λ is

small compared to this quantity.
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By using Stirling’s formula (see Exercise 1.2.2) one can show that

the quadratic decay in (2.8) cannot be improved; see Exercise 2.1.2

below.

It was a little complicated to manage such large moments E|Sn|k.

A slicker way to proceed (but one which exploits the joint indepen-

dence and commutativity more strongly) is to work instead with the

exponential moments E exp(tSn), which can be viewed as a sort of

generating function for the power moments. A useful lemma in this

regard is

Lemma 2.1.2 (Hoeffding’s lemma). Let X be a scalar variable taking

values in an interval [a, b]. Then for any t > 0,

(2.9) EetX ≤ etEX(1 +O(t2Var(X) exp(O(t(b− a)))).

In particular

(2.10) EetX ≤ etEX exp(O(t2(b− a)2)).

Proof. It suffices to prove the first inequality, as the second then fol-

lows using the bound Var(X) ≤ (b−a)2 and from various elementary

estimates.

By subtracting the mean from X, a, b we may normalise E(X) =

0. By dividing X, a, b (and multiplying t to balance) we may assume

that b − a = 1, which implies that X = O(1). We then have the

Taylor expansion

etX = 1 + tX +O(t2X2 exp(O(t)))

which on taking expectations gives

EetX = 1 +O(t2Var(X) exp(O(t))

and the claim follows. �

Exercise 2.1.1. Show that the O(t2(b− a)2) factor in (2.10) can be

replaced with t2(b−a)2/8, and that this is sharp. (Hint: use Jensen’s

inequality, Exercise 1.1.8.)

We now have the fundamental Chernoff bound :
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Theorem 2.1.3 (Chernoff inequality). Let X1, . . . , Xn be indepen-

dent scalar random variables with |Xi| ≤ K almost surely, with mean

µi and variance σ2
i . Then for any λ > 0, one has

(2.11) P(|Sn − µ| ≥ λσ) ≤ C max(exp(−cλ2), exp(−cλσ/K))

for some absolute constants C, c > 0, where µ :=
∑n
i=1 µi and σ2 :=∑n

i=1 σ
2
i .

Proof. By taking real and imaginary parts we may assume that the

Xi are real. By subtracting off the mean (and adjusting K appropri-

ately) we may assume that µi = 0 (and so µ = 0); dividing the Xi

(and σi) through by K we may assume that K = 1. By symmetry it

then suffices to establish the upper tail estimate

P(Sn ≥ λσ) ≤ C max(exp(−cλ2), exp(−cλσ))

(with slightly different constants C, c).

To do this, we shall first compute the exponential moments

E exp(tSn)

where 0 ≤ t ≤ 1 is a real parameter to be optimised later. Expand-

ing out the exponential and using the independence hypothesis, we

conclude that

E exp(tSn) =

n∏
i=1

E exp(tXi).

To compute E exp(tX), we use the hypothesis that |X| ≤ 1 and (2.9)

to obtain

E exp(tX) ≤ exp(O(t2σ2
i )).

Thus we have

E exp(tSn) = exp(O(t2σ2))

and thus by Markov’s inequality(1.13)

P(Sn ≥ λσ) ≤ exp(O(t2σ2)− tλσ).

If we optimise this in t, subject to the constraint 0 ≤ t ≤ 1, we obtain

the claim. �

Informally, the Chernoff inequality asserts that Sn is sharply con-

centrated in the range nµ+O(σ
√
n). The bounds here are fairly sharp,

at least when λ is not too large:
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Exercise 2.1.2. Let 0 < p < 1/2 be fixed independently of n, and let

X1, . . . , Xn be iid copies of a Bernoulli random variable that equals

1 with probability p, thus µi = p and σ2
i = p(1 − p), and so µ = np

and σ2 = np(1− p). Using Stirling’s formula (Section 1.2), show that

P(|Sn − µ| ≥ λσ) ≥ c exp(−Cλ2)

for some absolute constants C, c > 0 and all λ ≤ cσ. What happens

when λ is much larger than σ?

Exercise 2.1.3. Show that the term exp(−cλσ/K) in (2.11) can

be replaced with (λK/σ)−cλσ/K (which is superior when λK � σ).

(Hint: Allow t to exceed 1.) Compare this with the results of Exercise

2.1.2.

Exercise 2.1.4 (Hoeffding’s inequality). Let X1, . . . , Xn be indepen-

dent real variables, with Xi taking values in an interval [ai, bi], and

let Sn := X1 + . . .+Xn. Show that one has

P(|Sn −ESn| ≥ λσ) ≤ C exp(−cλ2)

for some absolute constants C, c > 0, where σ2 :=
∑n
i=1 |bi − ai|2.

Remark 2.1.4. As we can see, the exponential moment method is

very slick compared to the power moment method. Unfortunately,

due to its reliance on the identity eX+Y = eXeY , this method relies

very strongly on commutativity of the underlying variables, and as

such will not be as useful when dealing with noncommutative random

variables, and in particular with random matrices. Nevertheless, we

will still be able to apply the Chernoff bound to good effect to various

components of random matrices, such as rows or columns of such

matrices.

The full assumption of joint independence is not completely nec-

essary for Chernoff-type bounds to be present. It suffices to have a

martingale difference sequence, in which each Xi can depend on the

preceding variables X1, . . . , Xi−1, but which always has mean zero

even when the preceding variables are conditioned out. More pre-

cisely, we have Azuma’s inequality :
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Theorem 2.1.5 (Azuma’s inequality). Let X1, . . . , Xn be a sequence

of scalar random variables with |Xi| ≤ 1 almost surely. Assume also

that we have4 the martingale difference property

(2.12) E(Xi|X1, . . . , Xi−1) = 0

almost surely for all i = 1, . . . , n. Then for any λ > 0, the sum

Sn := X1 + . . .+Xn obeys the large deviation inequality

(2.13) P(|Sn| ≥ λ
√
n) ≤ C exp(−cλ2)

for some absolute constants C, c > 0.

A typical example of Sn here is a dependent random walk, in

which the magnitude and probabilities of the ith step are allowed to

depend on the outcome of the preceding i − 1 steps, but where the

mean of each step is always fixed to be zero.

Proof. Again, we can reduce to the case when the Xi are real, and

it suffices to establish the upper tail estimate

P(Sn ≥ λ
√
n) ≤ C exp(−cλ2).

Note that |Sn| ≤ n almost surely, so we may assume without loss of

generality that λ ≤
√
n.

Once again, we consider the exponential moment E exp(tSn) for

some parameter t > 0. We write Sn = Sn−1 +Xn, so that

E exp(tSn) = E exp(tSn−1) exp(tXn).

We do not have independence between Sn−1 and Xn, so cannot split

the expectation as in the proof of Chernoff’s inequality. Nevertheless

we can use conditional expectation as a substitute. We can rewrite

the above expression as

EE(exp(tSn−1) exp(tXn)|X1, . . . , Xn−1).

The quantity Sn−1 is deterministic once we condition onX1, . . . , Xn−1,

and so we can pull it out of the conditional expectation:

E exp(tSn−1)E(exp(tXn)|X1, . . . , Xn−1).

4Here we assume the existence of a suitable disintegration in order to define
the conditional expectation, though in fact it is possible to state and prove Azuma’s
inequality without this disintegration.
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Applying (2.10) to the conditional expectation, we have

E(exp(tXn)|X1, . . . , Xn−1) ≤ exp(O(t2))

and

E exp(tSn) ≤ exp(O(t2))E exp(tSn−1).

Iterating this argument gives

E exp(tSn) ≤ exp(O(nt2))

and thus by Markov’s inequality(1.13)

P(Sn ≥ λ
√
n) ≤ exp(O(nt2)− tλ

√
n).

Optimising in t gives the claim. �

Exercise 2.1.5. Suppose we replace the hypothesis |Xi| ≤ 1 in

Azuma’s inequality with the more general hypothesis |Xi| ≤ ci for

some scalars ci > 0. Show that we still have (2.13), but with
√
n

replaced by (
∑n
i=1 c

2
i )

1/2.

Remark 2.1.6. The exponential moment method is also used fre-

quently in harmonic analysis to deal with lacunary exponential sums,

or sums involving Radamacher functions (which are the analogue of

lacunary exponential sums for characteristic 2). Examples here in-

clude Khintchine’s inequality (and the closely related Kahane’s in-

equality); see e.g. [Wo2003], [Ka1985]. The exponential moment

method also combines very well with log-Sobolev inequalities, as we

shall see below (basically because the logarithm inverts the exponen-

tial), as well as with the closely related hypercontractivity inequalities.

2.1.2. The truncation method. To summarise the discussion so

far, we have identified a number of large deviation inequalities to

control a sum Sn = X1 + . . .+Xn:

(i) The zeroth moment method bound (2.1), which requires no

moment assumptions on the Xi but is only useful when Xi

is usually zero, and has no decay in λ.

(ii) The first moment method bound (2.2), which only requires

absolute integrability on the Xi, but has only a linear decay

in λ.
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(iii) The second moment method bound (2.5), which requires

second moment and pairwise independence bounds on Xi,

and gives a quadratic decay in λ.

(iv) Higher moment bounds (2.7), which require boundedness

and k-wise independence, and give a kth power decay in λ

(or quadratic-exponential decay, after optimising in k).

(v) Exponential moment bounds such as (2.11) or (2.13), which

require boundedness and joint independence (or martingale

behaviour), and give quadratic-exponential decay in λ.

We thus see that the bounds with the strongest decay in λ require

strong boundedness and independence hypotheses. However, one can

often partially extend these strong results from the case of bounded

random variables to that of unbounded random variables (provided

one still has sufficient control on the decay of these variables) by

a simple but fundamental trick, known as the truncation method.

The basic idea here is to take each random variable Xi and split it

as Xi = Xi,≤N + Xi,>N , where N is a truncation parameter to be

optimised later (possibly in manner depending on n),

Xi,≤N := XiI(|Xi| ≤ N)

is the restriction of Xi to the event that |Xi| ≤ N (thus Xi,≤N van-

ishes when Xi is too large), and

Xi,>N := XiI(|Xi| > N)

is the complementary event. One can similarly split Sn = Sn,≤N +

Sn,>N where

Sn,≤N = X1,≤N + . . .+Xn,≤N

and

Sn,>N = X1,>N + . . .+Xn,>N .

The idea is then to estimate the tail of Sn,≤N and Sn,>N by two

different means. With Sn,≤N , the point is that the variables Xi,≤N
have been made bounded by fiat, and so the more powerful large

deviation inequalities can now be put into play. With Sn,>N , in

contrast, the underlying variables Xi,>N are certainly not bounded,
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but they tend to have small zeroth and first moments, and so the

bounds based on those moment methods tend to be powerful here5.

Let us begin with a simple application of this method.

Theorem 2.1.7 (Weak law of large numbers). Let X1, X2, . . . be iid

scalar random variables with Xi ≡ X for all i, where X is absolutely

integrable. Then Sn/n converges in probability to EX.

Proof. By subtracting EX from X we may assume without loss of

generality that X has mean zero. Our task is then to show that

P(|Sn| ≥ εn) = o(1) for all fixed ε > 0.

If X has finite variance, then the claim follows from (2.5). If

X has infinite variance, we cannot apply (2.5) directly, but we may

perform the truncation method as follows. LetN be a large parameter

to be chosen later, and splitXi = Xi,≤N+Xi,>N , Sn = Sn,≤N+Sn,>N
(and X = X≤N + X>N ) as discussed above. The variable X≤N is

bounded and thus has bounded variance; also, from the dominated

convergence theorem we see that |EX≤N | ≤ ε/4 (say) if N is large

enough. From (2.5) we conclude that

P(|Sn,≤N | ≥ εn/2) = o(1)

(where the rate of decay here depends on N and ε). Meanwhile, to

deal with the tail X>N we use (2.2) to conclude that

P(|Sn,>N | ≥ εn/2) ≤ 2

ε
E|X>N |.

But by the dominated convergence theorem (or monotone convergence

theorem), we may make E|X>N | as small as we please (say, smaller

than δ > 0) by taking N large enough. Summing, we conclude that

P(|Sn| ≥ εn) =
2

ε
δ + o(1);

since δ is arbitrary, we obtain the claim. �

A more sophisticated variant of this argument6 gives

5Readers who are familiar with harmonic analysis may recognise this type of
“divide and conquer argument” as an interpolation argument; see [Ta2010, §1.11].

6See [Ta2009, §1.4] for a more detailed discussion of this argument.
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Theorem 2.1.8 (Strong law of large numbers). Let X1, X2, . . . be iid

scalar random variables with Xi ≡ X for all i, where X is absolutely

integrable. Then Sn/n converges almost surely to EX.

Proof. We may assume without loss of generality that X is real,

since the complex case then follows by splitting into real and imagi-

nary parts. By splitting X into positive and negative parts, we may

furthermore assume that X is non-negative7. In particular, Sn is now

non-decreasing in n.

Next, we apply a sparsification trick. Let 0 < ε < 1. Suppose that

we knew that, almost surely, Snm/nm converged to EX for n = nm
of the form nm := b(1 + ε)mc for some integer m. Then, for all other

values of n, we see that asymptotically, Sn/n can only fluctuate by a

multiplicative factor of 1 + O(ε), thanks to the monotone nature of

Sn. Because of this and countable additivity, we see that it suffices

to show that Snm/nm converges to EX. Actually, it will be enough

to show that almost surely, one has |Snm/nm − EX| ≤ ε for all but

finitely many m.

Fix ε. As before, we split X = X>Nm + X≤Nm and Snm =

Snm,>Nm + Snm,≤Nm , but with the twist that we now allow N = Nm
to depend on m. Then for Nm large enough we have |EX≤Nm−EX| ≤
ε/2 (say), by dominated convergence. Applying (2.5) as before, we

see that

P(|Snm,≤Nm/nm −EX| > ε) ≤ Cε
nm

E|X≤Nm |2

for some Cε depending only on ε (the exact value is not important

here). To handle the tail, we will not use the first moment bound

(2.2) as done previously, but now turn to the zeroth-moment bound

(2.1) to obtain

P(Snm,>Nm 6= 0) ≤ nmP(|X| > Nm);

summing, we conclude

P(|Snm/nm −EX| > ε) ≤ Cε
nm

E|X≤Nm |2 + nmP(|X| > Nm).

7Of course, by doing so, we can no longer normalise X to have mean zero, but
for us the non-negativity will be more convenient than the zero mean property.
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Applying the Borel-Cantelli lemma (Exercise 1.1.1), we see that we

will be done as long as we can choose Nm such that

∞∑
m=1

1

nm
E|X≤Nm |2

and
∞∑
m=1

nmP(|X| > Nm)

are both finite. But this can be accomplished by setting Nm := nm
and interchanging the sum and expectations (writing P(|X| > Nm)

as EI(|X| > Nm)) and using the lacunary nature of the nm. �

To give another illustration of the truncation method, we extend

a version of the Chernoff bound to the subgaussian case.

Proposition 2.1.9. Let X1, . . . , Xn ≡ X be iid copies of a subgaus-

sian random variable X, thus X obeys a bound of the form

(2.14) P(|X| ≥ t) ≤ C exp(−ct2)

for all t > 0 and some C, c > 0. Let Sn := X1 + . . .+Xn. Then for

any sufficiently large A (independent of n) we have

P(|Sn − nEX| ≥ An) ≤ CA exp(−cAn)

for some constants CA, cA depending on A, p,C, c. Furthermore, cA
grows linearly in A as A→∞.

Proof. By subtracting the mean from X we may normalise EX = 0.

We perform a dyadic decomposition

Xi = Xi,0 +

∞∑
m=1

Xi,m

where Xi,0 := XiI(Xi ≤ 1) and Xi,m := XiI(2m−1 < Xi ≤ 2m). We

similarly split

Sn = Sn,0 +

∞∑
m=1

Sn,m
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where Sn,m =
∑n
i=1Xi,m. Then by the union bound and the pigeon-

hole principle we have

P(|Sn| ≥ An) ≤
∞∑
m=0

P

(
|Sn,m| ≥

A

100(m+ 1)2
n

)
(say). Each Xi,m is clearly bounded in magnitude by 2m; from the

subgaussian hypothesis one can also verify that the mean and variance

of Xi,m are at most C ′ exp(−c′22m) for some C ′, c′ > 0. If A is

large enough, an application of the Chernoff bound (2.11) (or more

precisely, the refinement in Exercise 2.1.3) then gives (after some

computation)

P(|Sn,m| ≥ 2−m−1An) ≤ C ′2−m exp(−c′An)

(say) for some C ′, c′ > 0, and the claim follows. �

Exercise 2.1.6. Show that the hypothesis that A is sufficiently large

can be replaced by the hypothesis that A > 0 is independent of n.

Hint: There are several approaches available. One can adapt the

above proof; one can modify the proof of the Chernoff inequality

directly; or one can figure out a way to deduce the small A case from

the large A case.

Exercise 2.1.7. Show that the subgaussian hypothesis can be gen-

eralised to a sub-exponential tail hypothesis

P(|X| ≥ t) ≤ C exp(−ctp)

provided that p > 1. Show that the result also extends to the

case 0 < p ≤ 1, except with the exponent exp(−cAn) replaced by

exp(−cAnp−ε) for some ε > 0. (I do not know if the ε loss can be

removed, but it is easy to see that one cannot hope to do much better

than this, just by considering the probability that X1 (say) is already

as large as An.)

2.1.3. Lipschitz combinations. In the preceding discussion, we

had only considered the linear combination X1, . . . , Xn of indepen-

dent variables X1, . . . , Xn. Now we consider more general combina-

tions F (X), where we write X := (X1, . . . , Xn) for short. Of course,

to get any non-trivial results we must make some regularity hypothe-

ses on F . It turns out that a particularly useful class of regularity
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hypothesis here is a Lipschitz hypothesis - that small variations in

X lead to small variations in F (X). A simple example of this is

McDiarmid’s inequality :

Theorem 2.1.10 (McDiarmid’s inequality). Let X1, . . . , Xn be in-

dependent random variables taking values in ranges R1, . . . , Rn, and

let F : R1 × . . .×Rn → C be a function with the property that if one

freezes all but the ith coordinate of F (x1, . . . , xn) for some 1 ≤ i ≤ n,

then F only fluctuates by most ci > 0, thus

|F (x1, . . . , xi−1, xi, xi+1, . . . , xn)−

F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci

for all xj ∈ Xj, x
′
i ∈ Xi for 1 ≤ j ≤ n. Then for any λ > 0, one has

P(|F (X)−EF (X)| ≥ λσ) ≤ C exp(−cλ2)

for some absolute constants C, c > 0, where σ2 :=
∑n
i=1 c

2
i .

Proof. We may assume that F is real. By symmetry, it suffices to

show the one-sided estimate

(2.15) P(F (X)−EF (X) ≥ λσ2) ≤ C exp(−cλ2).

To compute this quantity, we again use the exponential moment

method. Let t > 0 be a parameter to be chosen later, and consider

the exponential moment

(2.16) E exp(tF (X)).

To compute this, let us condition X1, . . . , Xn−1 to be fixed, and look

at the conditional expectation

E(exp(tF (X))|X1, . . . , Xn−1).

We can simplify this as

E(exp(tY )|X1, . . . , Xn−1) exp(tE(F (X)|X1, . . . , Xn−1))

where

Y := F (X)−E(F (X)|X1, . . . , Xn−1)

For X1, . . . , Xn−1 fixed, tY only fluctuates by at most tcn and has

mean zero. Applying (2.10), we conclude that

E(exp(tY )|X1, . . . , Xn−1) ≤ exp(O(t2c2n)).
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Integrating out the conditioning, we see that we have upper bounded

(2.16) by

exp(O(t2c2n))E exp(t(E(F (X)|X1, . . . , Xn−1)).

We observe that (E(F (X)|X1, . . . , Xn−1) is a function Fn−1(X1, . . . , Xn−1)

of X1, . . . , Xn−1, where Fn−1 obeys the same hypotheses as F (but

for n − 1 instead of n). We can then iterate the above computation

n times and eventually upper bound (2.16) by

exp(

n∑
i=1

O(t2c2i )) exp(tEF (X)),

which we rearrange as

E exp(t(F (X)−EF (X))) ≤ exp(O(t2σ2)),

and thus by Markov’s inequality(1.13)

P(F (X)−EF (X) ≥ λσ) ≤ exp(O(t2σ2)− tλσ).

Optimising in t then gives the claim. �

Exercise 2.1.8. Show that McDiarmid’s inequality implies Hoeffd-

ing’s inequality (Exercise 2.1.4).

Remark 2.1.11. One can view McDiarmid’s inequality as a tensori-

sation of Hoeffding’s lemma, as it leverages the latter lemma for a

single random variable to establish an analogous result for n random

variables. It is possible to apply this tensorisation trick to random

variables taking values in more sophisticated metric spaces than an

interval [a, b], leading to a class of concentration of measure inequali-

ties known as transportation cost-information inequalities, which will

not be discussed here.

The most powerful concentration of measure results, though, do

not just exploit Lipschitz type behaviour in each individual variable,

but joint Lipschitz behaviour. Let us first give a classical instance of

this, in the special case when the X1, . . . , Xn are gaussian variables.

A key property of gaussian variables is that any linear combination

of independent gaussians is again an independent gaussian:
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Exercise 2.1.9. Let X1, . . . , Xn be independent real gaussian vari-

ables with Xi = N(µi, σ
2
i )R, and let c1, . . . , cn be real constants.

Show that c1X1 + . . .+ cnXn is a real gaussian with mean
∑n
i=1 ciµi

and variance
∑n
i=1 |ci|2σ2

i .

Show that the same claims also hold with complex gaussians and

complex constants ci.

Exercise 2.1.10 (Rotation invariance). Let X = (X1, . . . , Xn) be an

Rn-valued random variable, where X1, . . . , Xn ≡ N(0, 1)R are iid real

gaussians. Show that for any orthogonal matrix U ∈ O(n), UX ≡ X.

Show that the same claim holds for complex gaussians (so X is

now Cn-valued), and with the orthogonal group O(n) replaced by the

unitary group U(n).

Theorem 2.1.12 (Gaussian concentration inequality for Lipschitz

functions). Let X1, . . . , Xn ≡ N(0, 1)R be iid real gaussian variables,

and let F : Rn → R be a 1-Lipschitz function (i.e. |F (x) − F (y)| ≤
|x− y| for all x, y ∈ Rn, where we use the Euclidean metric on Rn).

Then for any λ one has

P(|F (X)−EF (X)| ≥ λ) ≤ C exp(−cλ2)

for some absolute constants C, c > 0.

Proof. We use the following elegant argument of Maurey and Pisier.

By subtracting a constant from F , we may normalise EF (X) = 0.

By symmetry it then suffices to show the upper tail estimate

P(F (X) ≥ λ) ≤ C exp(−cλ2).

By smoothing F slightly we may assume that F is smooth, since the

general case then follows from a limiting argument. In particular, the

Lipschitz bound on F now implies the gradient estimate

(2.17) |∇F (x)| ≤ 1

for all x ∈ Rn.

Once again, we use the exponential moment method. It will suf-

fice to show that

E exp(tF (X)) ≤ exp(Ct2)
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for some constant C > 0 and all t > 0, as the claim follows from

Markov’s inequality(1.13) and optimisation in t as in previous argu-

ments.

To exploit the Lipschitz nature of F , we will need to introduce

a second copy of F (X). Let Y be an independent copy of X. Since

EF (Y ) = 0, we see from Jensen’s inequality (Exercise 1.1.8) that

E exp(−tF (Y )) ≥ 1

and thus (by independence of X and Y )

E exp(tF (X)) ≤ E exp(t(F (X)− F (Y ))).

It is tempting to use the fundamental theorem of calculus along a line

segment,

F (X)− F (Y ) =

∫ 1

0

d

dt
F ((1− t)Y + tX) dt,

to estimate F (X)−F (Y ), but it turns out for technical reasons to be

better to use a circular arc instead,

F (X)− F (Y ) =

∫ π/2

0

d

dθ
F (Y cos θ +X sin θ) dθ,

The reason for this is that Xθ := Y cos θ+X sin θ is another gaussian

random variable equivalent to X, as is its derivative X ′θ := −Y sin θ+

X cos θ (by Exercise 2.1.9); furthermore, and crucially, these two ran-

dom variables are independent (by Exercise 2.1.10).

To exploit this, we first use Jensen’s inequality (Exercise 1.1.8)

to bound

exp(t(F (X)− F (Y ))) ≤ 2

π

∫ π/2

0

exp

(
2t

π

d

dθ
F (Xθ)

)
dθ.

Applying the chain rule and taking expectations, we have

E exp(t(F (X)− F (Y ))) ≤ 2

π

∫ π/2

0

E exp

(
2t

π
∇F (Xθ) ·X ′θ

)
dθ.

Let us condition Xθ to be fixed, then X ′θ ≡ X; applying Exercise 2.1.9

and (2.17), we conclude that 2t
π∇F (Xθ) ·X ′θ is normally distributed

with standard deviation at most 2t
π . As such we have

E exp

(
2t

π
∇F (Xθ) ·X ′θ

)
≤ exp(Ct2)
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for some absolute constant C; integrating out the conditioning on Xθ

we obtain the claim. �

Exercise 2.1.11. Show that Theorem 2.1.12 is equivalent to the

inequality

P(X ∈ A)P(X 6∈ Aλ) ≤ C exp(−cλ2)

holding for all λ > 0 and all measurable setsA, whereX = (X1, . . . , Xn)

is an Rn-valued random variable with iid gaussian componentsX1, . . . , Xn ≡
N(0, 1)R, and Aλ is the λ-neighbourhood of A.

Now we give a powerful concentration inequality of Talagrand,

which we will rely heavily on later in this text.

Theorem 2.1.13 (Talagrand concentration inequality). Let K >

0, and let X1, . . . , Xn be independent complex variables with |Xi| ≤
K for all 1 ≤ i ≤ n. Let F : Cn → R be a 1-Lipschitz convex

function (where we identify Cn with R2n for the purposes of defining

“Lipschitz” and “convex”). Then for any λ one has

(2.18) P(|F (X)−MF (X)| ≥ λK) ≤ C exp(−cλ2)

and

(2.19) P(|F (X)−EF (X)| ≥ λK) ≤ C exp(−cλ2)

for some absolute constants C, c > 0, where MF (X) is a median of

F (X).

We now prove the theorem, following the remarkable argument

of Talagrand[Ta1995].

By dividing through by K we may normalise K = 1. X now

takes values in the convex set Ωn ⊂ Cn, where Ω is the unit disk in

C. It will suffice to establish the inequality

(2.20) E exp(cd(X,A)2) ≤ 1

P(X ∈ A)

for any convex set A in Ωn and some absolute constant c > 0, where

d(X,A) is the Euclidean distance between X and A. Indeed, if one

obtains this estimate, then one has

P(F (X) ≤ x)P(F (X) ≥ y) ≤ exp(−c|x− y|2)
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for any y > x (as can be seen by applying (2.20) to the convex set

A := {z ∈ Ωn : F (z) ≤ x}). Applying this inequality of one of x, y

equal to the median MF (X) of F (X) yields (2.18), which in turn

implies that

EF (X) = MF (X) +O(1),

which then gives (2.19).

We would like to establish (2.20) by induction on dimension n. In

the case when X1, . . . , Xn are Bernoulli variables, this can be done;

see [Ta2010b, §1.5]. In the general case, it turns out that in order

to close the induction properly, one must strengthen (2.20) by replac-

ing the Euclidean distance d(X,A) by an essentially larger quantity,

which I will call the combinatorial distance dc(X,A) from X to A.

For each vector z = (z1, . . . , zn) ∈ Cn and ω = (ω1, . . . , ωn) ∈ {0, 1}n,

we say that ω supports z if zi is non-zero only when ωi is non-zero.

Define the combinatorial support UA(X) of A relative to X to be all

the vectors in {0, 1}n that support at least one vector in A−X. De-

fine the combinatorial hull VA(X) of A relative to X to be the convex

hull of UA(X), and then define the combinatorial distance dc(X,A)

to be the distance between VA(X) and the origin.

Lemma 2.1.14 (Combinatorial distance controls Euclidean distance).

Let A be a convex subset of Ωn. d(X,A) ≤ 2dc(X,A).

Proof. Suppose dc(X,A) ≤ r. Then there exists a convex combi-

nation t = (t1, . . . , tn) of elements ω ∈ UA(X) ⊂ {0, 1}n which has

magnitude at most r. For each such ω ∈ UA(X), we can find a vector

zω ∈ X−A supported by ω. As A,X both lie in Ωn, every coefficient

of zω has magnitude at most 2, and is thus bounded in magnitude

by twice the corresponding coefficent of ω. If we then let zt be the

convex combination of the zω indicated by t, then the magnitude of

each coefficient of zt is bounded by twice the corresponding coefficient

of t, and so |zt| ≤ 2r. On the other hand, as A is convex, zt lies in

X −A, and so d(X,A) ≤ 2r. The claim follows. �

Thus to show (2.20) it suffices (after a modification of the con-

stant c) to show that

(2.21) E exp(cdc(X,A)2) ≤ 1

P(X ∈ A)
.
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We first verify the one-dimensional case. In this case, dc(X,A)

equals 1 when X 6∈ A, and 0 otherwise, and the claim follows from

elementary calculus (for c small enough).

Now suppose that n > 1 and the claim has already been proven

for n − 1. We write X = (X ′, Xn), and let AXn := {z′ ∈ Ωn−1 :

(z′, Xn) ∈ A} be a slice of A. We also let B := {z′ ∈ Ωn−1 : (z′, t) ∈
A for some t ∈ Ω}. We have the following basic inequality:

Lemma 2.1.15. For any 0 ≤ λ ≤ 1, we have

dc(X,A)2 ≤ (1− λ)2 + λdc(X
′, AXn)2 + (1− λ)dc(X

′, B)2.

Proof. Observe that UA(X) contains both UAXn (X ′)×{0} and UB(X ′)×
{1}, and so by convexity, VA(X) contains (λt+ (1−λ)u, 1−λ) when-

ever t ∈ VAXn (X ′) and u ∈ VB(X ′). The claim then follows from

Pythagoras’ theorem and the Cauchy-Schwarz inequality. �

Let us now freeze Xn and consider the conditional expectation

E(exp(cdc(X,A)2)|Xn).

Using the above lemma (with some λ depending on Xn to be chosen

later), we may bound the left-hand side of (2.21) by

ec(1−λ)2E((ecdc(X
′,AXn ))λ(ecdc(X

′,B))1−λ|Xn);

applying Hölder’s inequality and the induction hypothesis (2.21), we

can bound this by

ec(1−λ)2 1

P(X ′ ∈ AXn |Xn)λP(X ′ ∈ B|Xn)1−λ

which we can rearrange as

1

P(X ′ ∈ B)
ec(1−λ)2r−λ

where r := P(X ′ ∈ AXn |Xn)/P(X ′ ∈ B) (here we note that the

event X ′ ∈ B is independent of Xn). Note that 0 ≤ r ≤ 1. We then

apply the elementary inequality

inf
0≤λ≤1

ec(1−λ)2r−λ ≤ 2− r,
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which can be verified by elementary calculus if c is small enough (in

fact one can take c = 1/4). We conclude that

E(exp(cdc(X,A)2)|Xn) ≤ 1

P(X ′ ∈ B)

(
2− P(X ′ ∈ AXn |Xn)

P(X ′ ∈ B)

)
.

Taking expectations in n we conclude that

E(exp(cdc(X,A)2)) ≤ 1

P(X ′ ∈ B)

(
2− P(X ∈ A)

P(X ′ ∈ B)

)
.

Using the inequality x(2 − x) ≤ 1 with x := P(X∈A)
P(X′∈B) we conclude

(2.21) as desired.

The above argument was elementary, but rather “magical” in na-

ture. Let us now give a somewhat different argument of Ledoux[Le1995],

based on log-Sobolev inequalities, which gives the upper tail bound

(2.22) P(F (X)−EF (X) ≥ λK) ≤ C exp(−cλ2),

but curiously does not give the lower tail bound8.

Once again we can normalise K = 1. By regularising F we may

assume that F is smooth. The first step is to establish the following

log-Sobolev inequality:

Lemma 2.1.16 (Log-Sobolev inequality). Let F : Cn → R be a

smooth convex function. Then

EF (X)eF (X) ≤ (EeF (X))(log EeF (X)) + CEeF (X)|∇F (X)|2

for some absolute constant C (independent of n).

Remark 2.1.17. If one sets f := eF/2 and normalises Ef(X)2 = 1,

this inequality becomes

E|f(X)|2 log |f(X)|2 ≤ 4CE|∇f(X)|2

which more closely resembles the classical log-Sobolev inequality (see

[Gr1975] or [Fe1969]). The constant C here can in fact be taken to

be 2; see [Le1995].

8The situation is not symmetric, due to the convexity hypothesis on F .
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Proof. We first establish the 1-dimensional case. If we let Y be

an independent copy of X, observe that the left-hand side can be

rewritten as

1

2
E((F (X)− F (Y ))(eF (X) − eF (Y ))) + (EF (X))((EeF (X)).

From Jensen’s inequality (Exercise 1.1.8), EF (X) ≤ log EeF (X), so it

will suffice to show that

E((F (X)− F (Y ))(eF (X) − eF (Y ))) ≤ 2CEeF (X)|∇F (X)|2.

From convexity of F (and hence of eF ) and the bounded nature of

X,Y , we have

F (X)− F (Y ) = O(|∇F (X)|)
and

eF (X) − eF (Y ) = O(|∇F (X)|eF (X))

when F (X) ≥ F (Y ), which leads to

((F (X)− F (Y ))(eF (X) − eF (Y ))) = O(eF (X)|∇F (X)|2)

in this case. Similarly when F (X) < F (Y ) (swapping X and Y ). The

claim follows.

To show the general case, we induct on n (keeping care to en-

sure that the constant C does not change in this induction process).

Write X = (X ′, Xn), where X ′ := (X1, . . . , Xn−1). From induction

hypothesis, we have

E(F (X)eF (X)|Xn) ≤ f(Xn)ef(Xn) + CE(eF (X)|∇′F (X)|2|Xn)

where∇′ is the n−1-dimensional gradient and f(Xn) := log E(eF (X)|Xn).

Taking expectations, we conclude that

(2.23) EF (X)eF (X) ≤ Ef(Xn)ef(Xn) + CEeF (X)|∇′F (X)|2.

From the convexity of F and Hölder’s inequality we see that f is

also convex, and Eef(Xn) = EeF (X). By the n = 1 case already

established, we have

(2.24) Ef(Xn)ef(Xn) ≤ (EeF (X))(log EeF (X))+CEef(Xn)|f ′(Xn)|2.

Now, by the chain rule

ef(Xn)|f ′(Xn)|2 = e−f(Xn)|EeF (X)Fxn(X)|2
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where Fxn is the derivative of F in the xn direction. Applying Cauchy-

Schwarz, we conclude

ef(Xn)|f ′(Xn)|2 ≤ EeF (X)|Fxn(X)|2.

Inserting this into (2.23), (2.24) we close the induction. �

Now let F be convex and 1-Lipschitz. Applying the above lemma

to tF for any t > 0, we conclude that

EtF (X)etF (X) ≤ (EetF (X))(log EetF (X)) + Ct2EetF (X);

setting H(t) := EetF (X), we can rewrite this as a differential inequal-

ity

tH ′(t) ≤ H(t) logH(t) + Ct2H(t)

which we can rewrite as

d

dt
(
1

t
logH(t)) ≤ C.

From Taylor expansion we see that

1

t
logH(t)→ EF (X)

as t→ 0, and thus

1

t
logH(t) ≤ EF (X) + Ct

for any t > 0. In other words,

EetF (X) ≤ exp(tEF (X) + Ct2).

By Markov’s inequality(1.13), we conclude that

P(F (X)−EF (X) > λ) ≤ exp(Ct2 − tλ);

optimising in t gives (2.22).

Remark 2.1.18. The same argument, starting with Gross’s log-

Sobolev inequality for the gaussian measure, gives the upper tail

component of Theorem 2.1.12, with no convexity hypothesis on F .

The situation is now symmetric with respect to reflections F 7→ −F ,

and so one obtains the lower tail component as well. The method of

obtaining concentration inequalities from log-Sobolev inequalities (or

related inequalities, such as Poincaré-type inequalities) by combining

the latter with the exponential moment method is known as Herbst’s
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argument, and can be used to establish a number of other functional

inequalities of interest.

We now close with a simple corollary of the Talagrand concen-

tration inequality, which will be extremely useful in the sequel.

Corollary 2.1.19 (Distance between random vector and a subspace).

Let X1, . . . , Xn be independent complex-valued random variables with

mean zero and variance 1, and bounded almost surely in magnitude by

K. Let V be a subspace of Cn of dimension d. Then for any λ > 0,

one has

P(|d(X,V )−
√
n− d| ≥ λK) ≤ C exp(−cλ2)

for some absolute constants C, c > 0.

Informally, this corollary asserts that the distance between a ran-

dom vector X and an arbitrary subspace V is typically equal to√
n− dim(V ) +O(1).

Proof. The function z 7→ d(z, V ) is convex and 1-Lipschitz. From

Theorem 2.1.13, one has

P(|d(X,V )−Md(X,V )| ≥ λK) ≤ C exp(−cλ2).

To finish the argument, it then suffices to show that

Md(X,V ) =
√
n− d+O(K).

We begin with a second moment calculation. Observe that

d(X,V )2 = ‖π(X)‖2 =
∑

1≤i,j≤n

pijXiXj ,

where π is the orthogonal projection matrix to the complement V ⊥ of

V , and pij are the components of π. Taking expectations, we obtain

(2.25) Ed(X,V )2 =

n∑
i=1

pii = tr(π) = n− d

where the latter follows by representing π in terms of an orthonormal

basis of V ⊥. This is close to what we need, but to finish the task we
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need to obtain some concentration of d(X,V )2 around its mean. For

this, we write

d(X,V )2 −Ed(X,V )2 =
∑

1≤i,j≤n

pij(XiXj − δij)

where δij is the Kronecker delta. The summands here are pairwise

independent (hence also pairwise uncorrelated) for 1 ≤ i ≤ j ≤ n, and

the i > j cases can be combined with the i < j cases by symmetry.

Each summand also has a variance of O(K2). We thus have the

variance bound

Var(d(X,V )2) = O(K2
∑

1≤i,j≤n

|pij |2) = O(K2(n− d)),

where the latter bound comes from representing π in terms of an

orthonormal basis of V ⊥. From this, (2.25), and Chebyshev’s in-

equality(1.26), we see that the median of d(X,V )2 is equal to n −
d + O(

√
K2(n− d)), which implies on taking square roots that the

median of d(X,V ) is
√
n− d+O(K), as desired. �

2.2. The central limit theorem

Consider the sum Sn := X1 + . . . + Xn of iid real random variables

X1, . . . , Xn ≡ X of finite mean µ and variance σ2 for some σ >

0. Then the sum Sn has mean nµ and variance nσ2, and so (by

Chebyshev’s inequality(1.26)) we expect Sn to usually have size nµ+

O(
√
nσ). To put it another way, if we consider the normalised sum

(2.26) Zn :=
Sn − nµ√

nσ

then Zn has been normalised to have mean zero and variance 1, and

is thus usually of size O(1).

In Section 2.1, we were able to establish various tail bounds on

Zn. For instance, from Chebyshev’s inequality(1.26) one has

(2.27) P(|Zn| > λ) ≤ λ−2,

and if the original distribution X was bounded or subgaussian, we

had the much stronger Chernoff bound

(2.28) P(|Zn| > λ) ≤ C exp(−cλ2)
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for some absolute constants C, c > 0; in other words, the Zn are

uniformly subgaussian.

Now we look at the distribution of Zn. The fundamental central

limit theorem tells us the asymptotic behaviour of this distribution:

Theorem 2.2.1 (Central limit theorem). Let X1, . . . , Xn ≡ X be

iid real random variables of finite mean µ and variance σ2 for some

σ > 0, and let Zn be the normalised sum (2.26). Then as n →
∞, Zn converges in distribution to the standard normal distribution

N(0, 1)R.

Exercise 2.2.1. Show that Zn does not converge in probability or in

the almost sure sense. (Hint: the intuition here is that for two very

different values n1 � n2 of n, the quantities Zn1
and Zn2

are almost

independent of each other, since the bulk of the sum Sn2
is determined

by those Xn with n > n1. Now make this intuition precise.)

Exercise 2.2.2. Use Stirling’s formula (Section 1.2) to verify the

central limit theorem in the case when X is a Bernoulli distribution,

taking the values 0 and 1 only. (This is a variant of Exercise 1.2.2

or Exercise 2.1.2. It is easy to see that once one does this, one can

rescale and handle any other two-valued distribution also.)

Exercise 2.2.3. Use Exercise 2.1.9 to verify the central limit theorem

in the case when X is gaussian.

Note we are only discussing the case of real iid random variables.

The case of complex random variables (or more generally, vector-

valued random variables) is a little bit more complicated, and will be

discussed later in this post.

The central limit theorem (and its variants, which we discuss be-

low) are extremely useful tools in random matrix theory, in particular

through the control they give on random walks (which arise naturally

from linear functionals of random matrices). But the central limit

theorem can also be viewed as a “commutative” analogue of various

spectral results in random matrix theory (in particular, we shall see in

later sections that the Wigner semicircle law can be viewed in some

sense as a “noncommutative” or “free” version of the central limit the-

orem). Because of this, the techniques used to prove the central limit
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theorem can often be adapted to be useful in random matrix theory.

Because of this, we shall use these notes to dwell on several different

proofs of the central limit theorem, as this provides a convenient way

to showcase some of the basic methods that we will encounter again

(in a more sophisticated form) when dealing with random matrices.

2.2.1. Reductions. We first record some simple reductions one can

make regarding the proof of the central limit theorem. Firstly, we

observe scale invariance: if the central limit theorem holds for one

random variable X, then it is easy to see that it also holds for aX+ b

for any real a, b with a 6= 0. Because of this, one can normalise to

the case when X has mean µ = 0 and variance σ2 = 1, in which case

Zn simplifies to

(2.29) Zn =
X1 + . . .+Xn√

n
.

The other reduction we can make is truncation: to prove the

central limit theorem for arbitrary random variables X of finite mean

and variance, it suffices to verify the theorem for bounded random

variables. To see this, we first need a basic linearity principle:

Exercise 2.2.4 (Linearity of convergence). Let V be a finite-dimensional

real or complex vector space, Xn, Yn be sequences of V -valued ran-

dom variables (not necessarily independent), and let X,Y be another

pair of V -valued random variables. Let cn, dn be scalars converging

to c, d respectively.

(i) If Xn converges in distribution to X, and Yn converges in

distribution to Y , and at least one of X,Y is deterministic,

show that cnXn+dnYn converges in distribution to cX+dY .

(ii) If Xn converges in probability to X, and Yn converges in

probability to Y , show that cnXn+dnYn converges in prob-

ability to cX + dY .

(iii) If Xn converges almost surely to X, and Yn converges almost

surely Y , show that cnXn + dnYn converges almost surely

to cX + dY .

Show that the first part of the exercise can fail if X,Y are not deter-

ministic.
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Now suppose that we have established the central limit theorem

for bounded random variables, and want to extend to the unbounded

case. Let X be an unbounded random variable, which we can nor-

malise to have mean zero and unit variance. Let N = Nn > 0 be

a truncation parameter depending on n which, as usual, we shall

optimise later, and split X = X≤N + X>N in the usual fashion

(X≤N = XI(|X| ≤ N); X>N = XI(|X| > N)). Thus we have

Sn = Sn,≤N + Sn,>N as usual.

Let µ≤N , σ
2
≤N be the mean and variance of the bounded random

variable X≤N . As we are assuming that the central limit theorem

is already true in the bounded case, we know that if we fix N to be

independent of n, then

Zn,≤N :=
Sn,≤N − nµ≤N√

nσ≤N

converges in distribution to N(0, 1)R. By a diagonalisation argument,

we conclude that there exists a sequence Nn going (slowly) to infinity

with n, such that Zn,≤Nn still converges in distribution to N(0, 1)R.

For such a sequence, we see from dominated convergence that

σ≤Nn converges to σ = 1. As a consequence of this and Exercise

2.2.4, we see that

Sn,≤Nn − nµ≤Nn√
n

converges in distribution to N(0, 1)R.

Meanwhile, from dominated convergence again, σ>Nn converges

to 0. From this and (2.27) we see that

Sn,>Nn − nµ>Nn√
n

converges in distribution to 0. Finally, from linearity of expectation

we have µ≤Nn + µ>Nn = µ = 0. Summing (using Exercise 2.2.4), we

obtain the claim.

Remark 2.2.2. The truncation reduction is not needed for some

proofs of the central limit (notably the Fourier-analytic proof), but

is very convenient for some of the other proofs that we will give here,

and will also be used at several places in later notes.



2.2. The central limit theorem 97

By applying the scaling reduction after the truncation reduction,

we observe that to prove the central limit theorem, it suffices to do so

for random variables X which are bounded and which have mean zero

and unit variance. (Why is it important to perform the reductions in

this order?)

2.2.2. The Fourier method. Let us now give the standard Fourier-

analytic proof of the central limit theorem. Given any real random

variable X, we introduce the characteristic function FX : R → C,

defined by the formula

(2.30) FX(t) := EeitX .

Equivalently, FX is the Fourier transform of the probability measure

µX .

Example 2.2.3. The signed Bernoulli distribution has characteristic

function F (t) = cos(t).

Exercise 2.2.5. Show that the normal distribution N(µ, σ2)R has

characteristic function F (t) = eitµe−σ
2t2/2.

More generally, for a random variable X taking values in a real

vector space Rd, we define the characteristic function FX : Rd → C

by

(2.31) FX(t) := Eeit·X

where · denotes the Euclidean inner product on Rd. One can similarly

define the characteristic function on complex vector spaces Cd by

using the complex inner product

(z1, . . . , zd) · (w1, . . . , wd) := Re(z1w1 + . . .+ zdwd)

(or equivalently, by identifying Cd with R2d in the usual manner.)

More generally9, one can define the characteristic function on any

finite dimensional real or complex vector space V , by identifying V

with Rd or Cd.

9Strictly speaking, one either has to select an inner product on V to do this,
or else make the characteristic function defined on the dual space V ∗ instead of on
V itself; see for instance [Ta2010, §1.12]. But we will not need to care about this
subtlety in our applications.
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The characteristic function is clearly bounded in magnitude by 1,

and equals 1 at the origin. By the Lebesgue dominated convergence

theorem, FX is continuous in t.

Exercise 2.2.6 (Riemann-Lebesgue lemma). Show that if X is an

absolutely continuous random variable taking values in Rd or Cd,

then FX(t) → 0 as t → ∞. Show that the claim can fail when the

absolute continuity hypothesis is dropped.

Exercise 2.2.7. Show that the characteristic function FX of a ran-

dom variable X taking values in Rd or Cd is in fact uniformly con-

tinuous on its domain.

Let X be a real random variable. If we Taylor expand eitX

and formally interchange the series and expectation, we arrive at the

heuristic identity

(2.32) FX(t) =

∞∑
k=0

(it)k

k!
EXk

which thus interprets the characteristic function of a real random

variable X as a kind of generating function for the moments. One

rigorous version of this identity is as follows.

Exercise 2.2.8 (Taylor expansion of characteristic function). Let X

be a real random variable with finite kth moment for some k ≥ 1.

Show that FX is k times continuously differentiable, and one has the

partial Taylor expansion

FX(t) =

k∑
j=0

(it)j

j!
EXj + o(|t|k)

where o(|t|k) is a quantity that goes to zero as t → 0, times |t|k. In

particular, we have

dj

dtj
FX(t) = ijEXj

for all 0 ≤ j ≤ k.

Exercise 2.2.9. Establish (2.32) in the case that X is subgaussian,

and show that the series converges locally uniformly in t.
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Note that the characteristic function depends only on the distri-

bution of X: if X ≡ Y , then FX = FY . The converse statement is

true also: if FX = FY , then X ≡ Y . This follows from a more general

(and useful) fact, known as Lévy’s continuity theorem.

Theorem 2.2.4 (Lévy continuity theorem, special case). Let V be

a finite-dimensional real or complex vector space, and let Xn be a

sequence of V -valued random variables, and let X be an additional V -

valued random variable. Then the following statements are equivalent:

(i) FXn converges pointwise to FX .

(ii) Xn converges in distribution to X.

Proof. Without loss of generality we may take V = Rd.

The implication of (i) from (ii) is immediate from (2.31) and the

definition of convergence in distribution (see Definition 1.1.28), since

the function x 7→ eit·x is bounded continuous.

Now suppose that (i) holds, and we wish to show that (ii) holds.

By Exercise 1.1.25(iv), it suffices to show that

Eϕ(Xn)→ Eϕ(X)

whenever ϕ : V → R is a continuous, compactly supported function.

By approximating ϕ uniformly by Schwartz functions (e.g. using the

Stone-Weierstrass theorem, see [Ta2010]), it suffices to show this for

Schwartz functions ϕ. But then we have the Fourier inversion formula

ϕ(Xn) =

∫
Rd

ϕ̂(t)eit·Xn dt

where

ϕ̂(t) :=
1

(2π)d

∫
Rd

ϕ(x)e−it·x dx

is a Schwartz function, and is in particular absolutely integrable (see

e.g. [Ta2010, §1.12]). From the Fubini-Tonelli theorem, we thus have

(2.33) Eϕ(Xn) =

∫
Rd

ϕ̂(t)FXn(t) dt

and similarly for X. The claim now follows from the Lebesgue domi-

nated convergence theorem. �
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Remark 2.2.5. Setting Xn := Y for all n, we see in particular the

previous claim that FX = FY if and only if X ≡ Y . It is instructive

to use the above proof as a guide to prove this claim directly.

Exercise 2.2.10 (Lévy’s continuity theorem, full version). Let V be

a finite-dimensional real or complex vector space, and let Xn be a

sequence of V -valued random variables. Suppose that FXn converges

pointwise to a limit F . Show that the following are equivalent:

(i) F is continuous at 0.

(ii) Xn is a tight sequence.

(iii) F is the characteristic function of a V -valued random vari-

able X (possibly after extending the sample space).

(iv) Xn converges in distribution to some V -valued random vari-

able X (possibly after extending the sample space).

Hint : To get from (ii) to the other conclusions, use Prokhorov’s the-

orem (see Exercise 1.1.25) and Theorem 2.2.4. To get back to (ii)

from (i), use (2.33) for a suitable Schwartz function ϕ. The other

implications are easy once Theorem 2.2.4 is in hand.

Remark 2.2.6. Lévy’s continuity theorem is very similar in spirit to

Weyl’s criterion in equidistribution theory (see e.g. [KuNi2006]).

Exercise 2.2.11 (Esséen concentration inequality). Let X be a ran-

dom variable taking values in Rd. Then for any r > 0, ε > 0, show

that

(2.34) sup
x0∈Rd

P(|X − x0| ≤ r) ≤ Cd,εrd
∫
t∈Rd:|t|≤ε/r

|FX(t)| dt

for some constant Cd,ε depending only on d and ε. (Hint: Use (2.33)

for a suitable Schwartz function ϕ.) The left-hand side of (2.34) is

known as the small ball probability of X at radius r.

In Fourier analysis, we learn that the Fourier transform is a par-

ticularly well-suited tool for studying convolutions. The probability

theory analogue of this fact is that characteristic functions are a par-

ticularly well-suited tool for studying sums of independent random

variables. More precisely, we have
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Exercise 2.2.12 (Fourier identities). Let V be a finite-dimensional

real or complex vector space, and let X,Y be independent random

variables taking values in V . Then

(2.35) FX+Y (t) = FX(t)FY (t)

for all t ∈ V . Also, for any scalar c, one has

FcX(t) = FX(ct)

and more generally, for any linear transformation T : V → V , one

has

FTX(t) = FX(T ∗t).

Remark 2.2.7. Note that this identity (2.35), combined with Exer-

cise 2.2.5 and Remark 2.2.5, gives a quick alternate proof of Exercise

2.1.9.

In particular, in the normalised setting (2.29), we have the simple

relationship

(2.36) FZn(t) = FX(t/
√
n)n

that describes the characteristic function of Zn in terms of that of X.

We now have enough machinery to give a quick proof of the cen-

tral limit theorem:

Proof of Theorem 2.2.1. We may normalise X to have mean zero

and variance 1. By Exercise 2.2.8, we thus have

FX(t) = 1− t2/2 + o(|t|2)

for sufficiently small t, or equivalently

FX(t) = exp(−t2/2 + o(|t|2))

for sufficiently small t. Applying (2.36), we conclude that

FZn(t)→ exp(−t2/2)

as n → ∞ for any fixed t. But by Exercise 2.2.5, exp(−t2/2) is

the characteristic function of the normal distribution N(0, 1)R. The

claim now follows from the Lévy continuity theorem. �
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Exercise 2.2.13 (Vector-valued central limit theorem). Let ~X =

(X1, . . . , Xd) be a random variable taking values in Rd with finite

second moment. Define the covariance matrix Σ( ~X) to be the d× d
matrix Σ whose ijth entry is the covariance E(Xi − E(Xi))(Xj −
E(Xj)).

(i) Show that the covariance matrix is positive semi-definite

real symmetric.

(ii) Conversely, given any positive definite real symmetric d× d
matrix Σ and µ ∈ Rd, show that the normal distribution

N(µ,Σ)Rd , given by the absolutely continuous measure

1

((2π)d det Σ)1/2
e−(x−µ)·Σ−1(x−µ)/2 dx,

has mean µ and covariance matrix σ, and has a character-

istic function given by

F (t) = eiµ·te−t·Σt/2.

How would one define the normal distribution N(µ,Σ)Rd if

Σ degenerated to be merely positive semi-definite instead of

positive definite?

(iii) If ~Sn := ~X1 + . . .+ ~Xn is the sum of n iid copies of ~X, show

that
~Sn−nµ√

n
converges in distribution to N(0,Σ(X))Rd .

Exercise 2.2.14 (Complex central limit theorem). Let X be a com-

plex random variable of mean µ ∈ C, whose real and imaginary parts

have variance σ2/2 and covariance 0. Let X1, . . . , Xn ≡ X be iid

copies of X. Show that as n → ∞, the normalised sums (2.26) con-

verge in distribution to the standard complex gaussian N(0, 1)C.

Exercise 2.2.15 (Lindeberg central limit theorem). Let X1, X2, . . .

be a sequence of independent (but not necessarily identically dis-

tributed) real random variables, normalised to have mean zero and

variance one. Assume the (strong) Lindeberg condition

lim
N→∞

lim sup
n→∞

1

n

n∑
j=1

E|Xj,>N |2 = 0
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where Xj,>N := XjI(|Xj | > N) is the truncation of Xj to large

values. Show that as n→∞, X1+...+Xn√
n

converges in distribution to

N(0, 1)R. (Hint : modify the truncation argument.)

A more sophisticated version of the Fourier-analytic method gives

a more quantitative form of the central limit theorem, namely the

Berry-Esséen theorem.

Theorem 2.2.8 (Berry-Esséen theorem). Let X have mean zero, unit

variance, and finite third moment. Let Zn := (X1 + . . . + Xn)/
√
n,

where X1, . . . , Xn are iid copies of X. Then we have

(2.37) P(Zn < a) = P(G < a) +O(
1√
n

(E|X|3))

uniformly for all a ∈ R, where G ≡ N(0, 1)R, and the implied con-

stant is absolute.

Proof. (Optional) Write ε := E|X|3/
√
n; our task is to show that

P(Zn < a) = P(G < a) +O(ε)

for all a. We may of course assume that ε < 1, as the claim is trivial

otherwise.

Let c > 0 be a small absolute constant to be chosen later. Let

η : R → R be an non-negative Schwartz function with total mass 1

whose Fourier transform is supported in [−c, c], and let ϕ : R → R

be the smoothed out version of 1(−∞,0], defined as

ϕ(x) :=

∫
R

1(−∞,0](x− εy)η(y) dy.

Observe that ϕ is decreasing from 1 to 0.

We claim that it suffices to show that

(2.38) Eϕ(Zn − a) = Eϕ(G− a) +Oη(ε)

for every a, where the subscript means that the implied constant

depends on η. Indeed, suppose that (2.38) held. Define

(2.39) σ := sup
a
|P(Zn < a)−P(G < a)|

thus our task is to show that σ = O(ε).
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Let a be arbitrary, and let K > 0 be a large absolute constant to

be chosen later. We write

P(Zn < a) ≤ Eϕ(Zn − a−Kε)
+ E(1− ϕ(Zn − a−Kε))I(Zn < a)

and thus by (2.38)

P(Zn < a) ≤ Eϕ(G− a−Kε)
+ E(1− ϕ(Zn − a−Kε))I(Zn < a) +Oη(ε).

Meanwhile, from (2.39) and an integration by parts we see that

E(1− ϕ(Zn − a−Kε))I(Zn < a) = E(1− ϕ(G− a−Kε))I(G < a)

+O((1− ϕ(−Kε))σ).

From the bounded density of G and the rapid decrease of η we have

Pϕ(G− a−Kε) + E(1− ϕ(G− a−Kε))I(G < a)

= P(G < a) +Oη,K(ε).

Putting all this together, we see that

P(Zn < a) ≤ P(G < a) +Oη,K(ε) +O((1− ϕ(−Kε))σ).

A similar argument gives a lower bound

P(Zn < a) ≥ P(G < a)−Oη,K(ε)−O(ϕ(Kε)σ),

and so

|P(Zn < a)−P(G < a)| ≤ Oη,K(ε)+O((1−ϕ(−Kε))σ)+O(ϕ(Kε)σ).

Taking suprema over a, we obtain

σ ≤ Oη,K(ε) +O((1− ϕ(−Kε))σ) +O(ϕ(Kε)σ).

If K is large enough (depending on c), we can make 1−ϕ(−Kε) and

ϕ(Kε) small, and thus absorb the latter two terms on the right-hand

side into the left-hand side. This gives the desired bound σ = O(ε).

It remains to establish (2.38). Applying (2.33), it suffices to show

that

(2.40) |
∫
R

ϕ̂(t)(FZn(t)− FG(t)) dt| ≤ O(ε).
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Now we estimate each of the various expressions. Standard Fourier-

analytic computations show that

ϕ̂(t) = 1̂(−∞,a](t)η̂(t/ε)

and that

1̂(−∞,a](t) = O(
1

1 + |t|
).

Since η̂ was supported in [−c, c], it suffices to show that

(2.41)

∫
|t|≤c/ε

|FZn(t)− FG(t)|
1 + |t|

dt ≤ O(ε).

From Taylor expansion we have

eitX = 1 + itX − t2

2
X2 +O(|t|3|X|3)

for any t; taking expectations and using the definition of ε we have

FX(t) = 1− t2/2 +O(ε
√
n|t|3)

and in particular

FX(t) = exp(−t2/2 +O(ε
√
n|t|3))

if |t| ≤ c/E|X|3 and c is small enough. Applying (2.36), we conclude

that

FZn(t) = exp(−t2/2 +O(ε|t|3))

if |t| ≤ cε. Meanwhile, from Exercise 2.2.5 we have FG(t) = exp(−t2/2).

Elementary calculus then gives us

|FZn(t)− FG(t)| ≤ O(ε|t|3 exp(−t2/4))

(say) if c is small enough. Inserting this bound into (2.41) we obtain

the claim. �

Exercise 2.2.16. Show that the error terms here are sharp (up to

constants) when X is a signed Bernoulli random variable.
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2.2.3. The moment method. The above Fourier-analytic proof of

the central limit theorem is one of the quickest (and slickest) proofs

available for this theorem, and is accordingly the “standard” proof

given in probability textbooks. However, it relies quite heavily on the

Fourier-analytic identities in Exercise 2.2.12, which in turn are ex-

tremely dependent on both the commutative nature of the situation

(as it uses the identity eA+B = eAeB) and on the independence of the

situation (as it uses identities of the form E(eAeB) = (EeA)(EeB)).

When we turn to random matrix theory, we will often lose (or be

forced to modify) one or both of these properties, which often causes

the Fourier-analytic methods to fail spectacularly. Because of this,

it is also important to look for non-Fourier based methods to prove

results such as the central limit theorem. These methods often lead to

proofs that are lengthier and more technical than the Fourier proofs,

but also tend to be more robust, and in particular can often be ex-

tended to random matrix theory situations. Thus both the Fourier

and non-Fourier proofs will be of importance in this course.

The most elementary (but still remarkably effective) method avail-

able in this regard is the moment method , which we have already used

in Section 2.1. This method to understand the distribution of a ran-

dom variable X via its moments Xk. In principle, this method is

equivalent to the Fourier method, through the identity (2.32); but in

practice, the moment method proofs tend to look somewhat different

than the Fourier-analytic ones, and it is often more apparent how to

modify them to non-independent or non-commutative settings.

We first need an analogue of the Lévy continuity theorem. Here

we encounter a technical issue: whereas the Fourier phases x 7→ eitx

were bounded, the moment functions x 7→ xk become unbounded at

infinity. However, one can deal with this issue as long as one has

sufficient decay:

Theorem 2.2.9 (Carleman continuity theorem). Let Xn be a se-

quence of uniformly subgaussian real random variables, and let X be

another subgaussian random variable. Then the following statements

are equivalent:

(i) For every k = 0, 1, 2, . . ., EXk
n converges pointwise to EXk.
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(ii) Xn converges in distribution to X.

Proof. We first show how (ii) implies (i). Let N > 0 be a truncation

parameter, and let ϕ : R → R be a smooth function that equals

1 on [−1, 1] and vanishes outside of [−2, 2]. Then for any k, the

convergence in distribution implies that EXk
nϕ(Xn/N) converges to

EXkϕ(X/N). On the other hand, from the uniform subgaussian

hypothesis, one can make EXk
n(1−ϕ(Xn/N)) and EXk(1−ϕ(X/N))

arbitrarily small for fixed k by making N large enough. Summing,

and then letting N go to infinity, we obtain (i).

Conversely, suppose (i) is true. From the uniform subgaussian

hypothesis, the Xn have (k + 1)st moment bounded by (Ck)k/2 for

all k ≥ 1 and some C independent of k (see Exercise 1.1.4). From

Taylor’s theorem with remainder (and Stirling’s formula, Section 1.2)

we conclude

FXn(t) =

k∑
j=0

(it)j

j!
EXj

n +O((Ck)−k/2|t|k+1)

uniformly in t and n. Similarly for X. Taking limits using (i) we see

that

lim sup
n→∞

|FXn(t)− FX(t)| = O((Ck)−k/2|t|k+1).

Then letting k → ∞, keeping t fixed, we see that FXn(t) converges

pointwise to FX(t) for each t, and the claim now follows from the

Lévy continuity theorem. �

Remark 2.2.10. One corollary of Theorem 2.2.9 is that the distri-

bution of a subgaussian random variable is uniquely determined by

its moments (actually, this could already be deduced from Exercise

2.2.9 and Remark 2.2.5). The situation can fail for distributions with

slower tails, for much the same reason that a smooth function is not

determined by its derivatives at one point if that function is not an-

alytic.

The Fourier inversion formula provides an easy way to recover the

distribution from the characteristic function. Recovering a distribu-

tion from its moments is more difficult, and sometimes requires tools

such as analytic continuation; this problem is known as the inverse

moment problem and will not be discussed here.
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To prove the central limit theorem, we know from the truncation

method that we may assume without loss of generality that X is

bounded (and in particular subgaussian); we may also normalise X

to have mean zero and unit variance. From the Chernoff bound (2.28)

we know that the Zn are uniformly subgaussian; so by Theorem 2.2.9,

it suffices to show that

EZkn → EGk

for all k = 0, 1, 2, . . ., where G ≡ N(0, 1)R is a standard gaussian

variable.

The moments EGk are easy to compute:

Exercise 2.2.17. Let k be a natural number, and let G ≡ N(0, 1)R.

Show that EGk vanishes when k is odd, and equal to k!
2k/2(k/2)!

when k

is even. (Hint: This can either be done directly by using the Gamma

function, or by using Exercise 2.2.5 and Exercise 2.2.9.)

So now we need to compute EZkn. Using (2.29) and linearity of

expectation, we can expand this as

EZkn = n−k/2
∑

1≤i1,...,ik≤n

EXi1 . . . Xik .

To understand this expression, let us first look at some small values

of k.

(i) For k = 0, this expression is trivially 1.

(ii) For k = 1, this expression is trivially 0, thanks to the mean

zero hypothesis on X.

(iii) For k = 2, we can split this expression into the diagonal and

off-diagonal components:

n−1
∑

1≤i≤n

EX2
i + n−1

∑
1≤i<j≤n

E2XiXj .

Each summand in the first sum is 1, as X has unit variance.

Each summand in the second sum is 0, as the Xi have mean

zero and are independent. So the second moment EZ2
n is 1.
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(iv) For k = 3, we have a similar expansion

n−3/2
∑

1≤i≤n

EX3
i + n−3/2

∑
1≤i<j≤n

E3X2
iXj + 3XiX

2
j

+ n−3/2
∑

1≤i<j<k≤n

E6XiXjXk.

The summands in the latter two sums vanish because of the

(joint) independence and mean zero hypotheses. The sum-

mands in the first sum need not vanish, but are O(1), so the

first term is O(n−1/2), which is asymptotically negligible, so

the third moment EZ3
n goes to 0.

(v) For k = 4, the expansion becomes quite complicated:

n−2
∑

1≤i≤n

EX4
i + n−2

∑
1≤i<j≤n

E4X3
iXj + 6X2

iX
2
j + 4XiX

3
j

+ n−2
∑

1≤i<j<k≤n

E12X2
iXjXk + 12XiX

2
jXk + 12XiXjX

2
k

+ n−2
∑

1≤i<j<k<l≤n

E24XiXjXkXl.

Again, most terms vanish, except for the first sum, which

is O(n−1) and is asymptotically negligible, and the sum

n−2
∑

1≤i<j≤n E6X2
iX

2
j , which by the independence and

unit variance assumptions works out to n−26
(
n
2

)
= 3 + o(1).

Thus the fourth moment EZ4
n goes to 3 (as it should).

Now we tackle the general case. Ordering the indices i1, . . . , ik
as j1 < . . . < jm for some 1 ≤ m ≤ k, with each jr occuring with

multiplicity ar ≥ 1 and using elementary enumerative combinatorics,

we see that EZkn is the sum of all terms of the form

(2.42) n−k/2
∑

1≤j1<...<jm≤n

ck,a1,...,amEXa1
j1
. . . Xam

jm

where 1 ≤ m ≤ k, a1, . . . , am are positive integers adding up to k,

and ck,a1,...,am is the multinomial coefficient

ck,a1,...,am :=
k!

a1! . . . am!
.
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The total number of such terms depends only on k. More pre-

cisely, it is 2k−1 (exercise!), though we will not need this fact.

As we already saw from the small k examples, most of the terms

vanish, and many of the other terms are negligible in the limit n→∞.

Indeed, if any of the ar are equal to 1, then every summand in (2.42)

vanishes, by joint independence and the mean zero hypothesis. Thus,

we may restrict attention to those expressions (2.42) for which all the

ar are at least 2. Since the ar sum up to k, we conclude that m is at

most k/2.

On the other hand, the total number of summands in (2.42) is

clearly at most nm (in fact it is
(
n
m

)
), and the summands are bounded

(for fixed k) since X is bounded. Thus, if m is strictly less than k/2,

then the expression in (2.42) is O(nm−k/2) and goes to zero as n→∞.

So, asymptotically, the only terms (2.42) which are still relevant are

those for which m is equal to k/2. This already shows that EZkn goes

to zero when k is odd. When k is even, the only surviving term in

the limit is now when m = k/2 and a1 = . . . = am = 2. But then by

independence and unit variance, the expectation in (2.42) is 1, and

so this term is equal to

n−k/2
(
n

m

)
ck,2,...,2 =

1

(k/2)!

k!

2k/2
+ o(1),

and the main term is happily equal to the moment EGk as computed

in Exercise 2.2.17.

2.2.4. The Lindeberg swapping trick. The moment method proof

of the central limit theorem that we just gave consisted of four steps:

(i) (Truncation and normalisation step) A reduction to the case

when X was bounded with zero mean and unit variance.

(ii) (Inverse moment step) A reduction to a computation of as-

ymptotic moments limn→∞EZkn.

(iii) (Analytic step) Showing that most terms in the expansion

of this asymptotic moment were zero, or went to zero as

n→∞.

(iv) (Algebraic step) Using enumerative combinatorics to com-

pute the remaining terms in the expansion.
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In this particular case, the enumerative combinatorics was very

classical and easy - it was basically asking for the number of ways one

can place k balls in m boxes, so that the rth box contains ar balls,

and the answer is well known to be given by the multinomial k!
a1!...ar! .

By a small algebraic miracle, this result matched up nicely with the

computation of the moments of the gaussian N(0, 1)R.

However, when we apply the moment method to more advanced

problems, the enumerative combinatorics can become more non-trivial,

requiring a fair amount of combinatorial and algebraic computation.

The algebraic miracle that occurs at the end of the argument can

then seem like a very fortunate but inexplicable coincidence, making

the argument somehow unsatisfying despite being rigorous.

In [Li1922], Lindeberg observed that there was a very simple way

to decouple the algebraic miracle from the analytic computations,

so that all relevant algebraic identities only need to be verified in

the special case of gaussian random variables, in which everything is

much easier to compute. This Lindeberg swapping trick (or Lindeberg

replacement trick) will be very useful in the later theory of random

matrices, so we pause to give it here in the simple context of the

central limit theorem.

The basic idea is follows. We repeat the truncation-and-normalisation

and inverse moment steps in the preceding argument. Thus, X1, . . . , Xn

are iid copies of a boudned real random variable X of mean zero

and unit variance, and we wish to show that EZkn → EGk, where

G ≡ N(0, 1)R, where k ≥ 0 is fixed.

Now let Y1, . . . , Yn be iid copies of the gaussian itself: Y1, . . . , Yn ≡
N(0, 1)R. Because the sum of independent gaussians is again a gauss-

ian (Exercise 2.1.9), we see that the random variable

Wn :=
Y1 + . . .+ Yn√

n

already has the same distribution as G: Wn ≡ G. Thus, it suffices to

show that

EZkn = EW k
n + o(1).

Now we perform the analysis part of the moment method argument

again. We can expand EZkn into terms (2.42) as before, and discard
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all terms except for the a1 = . . . = am = 2 term as being o(1).

Similarly, we can expand EW k
n into very similar terms (but with the

Xi replaced by Yi) and again discard all but the a1 = . . . = am term.

But by hypothesis, the second moments of X and Y match:

EX2 = EY 2 = 1. Thus, by joint independence, the a1 = . . . =

am = 2 term (2.42) for X is exactly equal to that of Y . And the

claim follows.

This is almost exactly the same proof as in the previous section,

but note that we did not need to compute the multinomial coefficient

ck,a1,...,am , nor did we need to verify the miracle that this coefficient

matched (up to normalising factors) to the moments of the gaussian.

Instead, we used the much more mundane “miracle” that the sum of

independent gaussians was again a gaussian.

To put it another way, the Lindeberg replacement trick factors a

universal limit theorem, such as the central limit theorem, into two

components:

(i) A universality or invariance result, which shows that the

distribution (or other statistics, such as moments) of some

random variable F (X1, . . . , Xn) is asymptotically unchanged

in the limit n→∞ if each of the input variables Xi are re-

placed by a gaussian substitute Yi; and

(ii) The gaussian case, which computes the asymptotic distri-

bution (or other statistic) of F (Y1, . . . , Yn) in the case when

Y1, . . . , Yn are all gaussians.

The former type of result tends to be entirely analytic in nature (ba-

sically, one just needs to show that all error terms that show up when

swapping X with Y are o(1)), while the latter type of result tends

to be entirely algebraic in nature (basically, one just needs to exploit

the many pleasant algebraic properties of gaussians). This decoupling

of the analysis and algebra steps tends to simplify both, both at a

technical level and at a conceptual level.

2.2.5. Individual swapping. In the above argument, we swapped

all the original input variables X1, . . . , Xn with gaussians Y1, . . . , Yn
en masse. There is also a variant of the Lindeberg trick in which the
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swapping is done individually. To illustrate the individual swapping

method, let us use it to show the following weak version of the Berry-

Esséen theorem:

Theorem 2.2.11 (Berry-Esséen theorem, weak form). Let X have

mean zero, unit variance, and finite third moment, and let ϕ be

smooth with uniformly bounded derivatives up to third order. Let

Zn := (X1 + . . . + Xn)/
√
n, where X1, . . . , Xn are iid copies of X.

Then we have

(2.43) Eϕ(Zn) = Eϕ(G) +O(
1√
n

(E|X|3) sup
x∈R
|ϕ′′′(x)|)

where G ≡ N(0, 1)R.

Proof. Let Y1, . . . , Yn and Wn be in the previous section. As Wn ≡
G, it suffices to show that

Eϕ(Zn)− ϕ(Wn) = o(1).

We telescope this (using linearity of expectation) as

Eϕ(Zn)− ϕ(Wn) = −
n−1∑
i=0

Eϕ(Zn,i)− ϕ(Zn,i+1)

where

Zn,i :=
X1 + . . .+Xi + Yi+1 + . . .+ Yn√

n

is a partially swapped version of Zn. So it will suffice to show that

Eϕ(Zn,i)− ϕ(Zn,i+1) = O((E|X|3) sup
x∈R
|ϕ′′′(x)|/n3/2)

uniformly for 0 ≤ i < n.

We can write Zn,i = Sn,i+Yi+1/
√
n and Zn,i+1 = Sn,i+Xi+1/

√
n,

where

(2.44) Sn,i :=
X1 + . . .+Xi + Yi+2 + . . .+ Yn√

n
.

To exploit this, we use Taylor expansion with remainder to write

ϕ(Zn,i) = ϕ(Sn,i) + ϕ′(Sn,i)Yi+1/
√
n

+
1

2
ϕ′′(Sn,i)Y

2
i+1/n+O(|Yi+1|3/n3/2 sup

x∈R
|ϕ′′′(x)|)
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and

ϕ(Zn,i+1) = ϕ(Sn,i) + ϕ′(Sn,i)Xi+1/
√
n

+
1

2
ϕ′′(Sn,i)X

2
i+1/n+O(|Xi+1|3/n3/2 sup

x∈R
|ϕ′′′(x)|)

where the implied constants depend on ϕ but not on n. Now, by

construction, the moments of Xi+1 and Yi+1 match to second order,

thus

Eϕ(Zn,i)− ϕ(Zn,i+1) = O(E|Yi+1|3 sup
x∈R
|ϕ′′′(x)|/n3/2)

+O(E|Xi+1|3 sup
x∈R
|ϕ′′′(x)|/n3/2),

and the claim follows10. �

Remark 2.2.12. The above argument relied on Taylor expansion,

and the hypothesis that the moments of X and Y matched to second

order. It is not hard to see that if we assume more moments matching

(e.g. EX3 = EY 3 = 3), and more smoothness on ϕ, we see that we

can improve the 1√
n

factor on the right-hand side. Thus we see that

we expect swapping methods to become more powerful when more

moments are matching. We will see this when we discuss the four

moment theorem of Van Vu and myself in later lectures, which (very)

roughly speaking asserts that the spectral statistics of two random

matrices are asymptotically indistinguishable if their coefficients have

matching moments to fourth order.

Theorem 2.2.11 is easily implied by Theorem 2.2.8 and an inte-

gration by parts. In the reverse direction, let us see what Theorem

2.2.11 tells us about the cumulative distribution function

P(Zn < a)

of Zn. For any ε > 0, one can upper bound this expression by

Eϕ(Zn)

where ϕ is a smooth function equal to 1 on (−∞, a] that vanishes

outside of (−∞, a+ ε], and has third derivative O(ε−3). By Theorem

10Note from Hölder’s inequality that E|X|3 ≥ 1
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2.2.11, we thus have

P(Zn < a) ≤ Eϕ(G) +O(
1√
n

(E|X|3)ε−3).

On the other hand, as G has a bounded probability density function,

we have

Eϕ(G) = P(G < a) +O(ε)

and so

P(Zn < a) ≤ P(G < a) +O(ε) +O(
1√
n

(E|X|3)ε−3).

A very similar argument gives the matching lower bound, thus

P(Zn < a) = P(G < a) +O(ε) +O(
1√
n

(E|X|3)ε−3).

Optimising in ε we conclude that

(2.45) P(Zn < a) = P(G < a) +O(
1√
n

(E|X|3))1/4.

Comparing this with Theorem 2.2.8 we see that we have lost an ex-

ponent of 1/4. In our applications to random matrices, this type of

loss is acceptable, and so the swapping argument is a reasonable sub-

stitute for the Fourier-analytic one in this case. Also, this method

is quite robust, and in particular extends well to higher dimensions;

we will return to this point in later lectures, but see for instance

[TaVuKr2010, Appendix D] for an example of a multidimensional

Berry-Esséen theorem proven by this method.

On the other hand there is another method that can recover this

loss while still avoiding Fourier-analytic techniques; we turn to this

topic next.

2.2.6. Stein’s method. Stein’s method, introduced by Charles Stein[St1970],

is a powerful method to show convergence in distribution to a spe-

cial distribution, such as the gaussian. In several recent papers, this

method has been used to control several expressions of interest in

random matrix theory (e.g. the distribution of moments, or of the

Stieltjes transform.) We will not use Stein’s method in this text, but

the method is of independent interest nonetheless.
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The probability density function ρ(x) := 1√
2π
e−x

2/2 of the stan-

dard normal distribution N(0, 1)R can be viewed as a solution to the

ordinary differential equation

(2.46) ρ′(x) + xρ(x) = 0.

One can take adjoints of this, and conclude (after an integration by

parts) that ρ obeys the integral identity∫
R

ρ(x)(f ′(x)− xf(x)) dx = 0

for any continuously differentiable f with both f and f ′ bounded

(one can relax these assumptions somewhat). To put it another way,

if G ≡ N(0, 1), then we have

(2.47) Ef ′(G)−Gf(G) = 0

whenever f is continuously differentiable with f, f ′ both bounded.

It turns out that the converse is true: if X is a real random

variable with the property that

Ef ′(X)−Xf(X) = 0

whenever f is continuously differentiable with f, f ′ both bounded,

then X is Gaussian. In fact, more is true, in the spirit of Theorem

2.2.4 and Theorem 2.2.9:

Theorem 2.2.13 (Stein continuity theorem). Let Xn be a sequence

of real random variables with uniformly bounded second moment, and

let G ≡ N(0, 1). Then the following are equivalent:

(i) Ef ′(Xn)−Xnf(Xn) converges to zero whenever f : R→ R

is continuously differentiable with f, f ′ both bounded.

(ii) Xn converges in distribution to G.

Proof. To show that (ii) implies (i), it is not difficult to use the uni-

form bounded second moment hypothesis and a truncation argument

to show that Ef ′(Xn)−Xnf(Xn) converges to Ef ′(G)−Gf(G) when

f is continuously differentiable with f, f ′ both bounded, and the claim

then follows from (2.47).

Now we establish the converse. It suffices to show that

Eϕ(Xn)−Eϕ(G)→ 0
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whenever ϕ : R → R is a bounded continuous function. We may

normalise ϕ to be bounded in magnitude by 1.

Trivially, the function ϕ(·) − Eϕ(G) has zero expectation when

one substitutes G for the argument ·, thus

(2.48)
1√
2π

∫ ∞
−∞

e−y
2/2(ϕ(y)−Eϕ(G)) dy = 0.

Comparing this with (2.47), one may thus hope to find a representa-

tion of the form

(2.49) ϕ(x)−Eϕ(G) = f ′(x)− xf(x)

for some continuously differentiable f with f, f ′ both bounded. This

is a simple ODE and can be easily solved (by the method of integrating

factors) to give a solution f , namely

(2.50) f(x) := ex
2/2

∫ x

−∞
e−y

2/2(ϕ(y)−Eϕ(G)) dy.

(One could dub f the Stein transform of ϕ, although this term does

not seem to be in widespread use.) By the fundamental theorem

of calculus, f is continuously differentiable and solves (2.49). Using

(2.48), we may also write f as

(2.51) f(x) := −ex
2/2

∫ ∞
x

e−y
2/2(ϕ(y)−Eϕ(G)) dy.

By completing the square, we see that e−y
2/2 ≤ e−x

2/2e−x(y−x). In-

serting this into (2.50) and using the bounded nature of ϕ, we con-

clude that f(x) = Oϕ(1/|x|) for x < −1; inserting it instead into

(2.51), we have f(x) = Oϕ(1/|x|) for x > 1. Finally, easy estimates

give f(x) = Oϕ(1) for |x| ≤ 1. Thus for all x we have

f(x) = Oϕ(
1

1 + |x|
)

which when inserted back into (2.49) gives the boundedness of f ′ (and

also of course gives the boundedness of f). In fact, if we rewrite (2.51)

as

f(x) := −
∫ ∞

0

e−s
2/2e−sx(ϕ(x+ s)−Eϕ(G)) ds,
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we see on differentiation under the integral sign (and using the Lip-

schitz nature of ϕ) that f ′(x) = Oϕ(1/x) for x > 1; a similar ma-

nipulation (starting from (2.50)) applies for x < −1, and we in fact

conclude that f ′(x) = Oφ( 1
1+|x| ) for all x.

Applying (2.49) with x = Xn and taking expectations, we have

ϕ(Xn)−Eϕ(G) = f ′(Xn)−Xnf(Xn).

By the hypothesis (i), the right-hand side goes to zero, hence the

left-hand side does also, and the claim follows. �

The above theorem gave only a qualitative result (convergence

in distribution), but the proof is quite quantitative, and can be used

to in particular to give Berry-Esséen type results. To illustrate this,

we begin with a strengthening of Theorem 2.2.11 that reduces the

number of derivatives of ϕ that need to be controlled:

Theorem 2.2.14 (Berry-Esséen theorem, less weak form). Let X

have mean zero, unit variance, and finite third moment, and let ϕ

be smooth, bounded in magnitude by 1, and Lipschitz. Let Zn :=

(X1 + . . .+Xn)/
√
n, where X1, . . . , Xn are iid copies of X. Then we

have

(2.52) Eϕ(Zn) = Eϕ(G) +O(
1√
n

(E|X|3)(1 + sup
x∈R
|ϕ′(x)|))

where G ≡ N(0, 1)R.

Proof. Set A := 1 + supx∈R |ϕ′(x)|.
Let f be the Stein transform (2.50) of ϕ, then by (2.49) we have

Eϕ(Zn)−Eϕ(G) = Ef ′(Zn)− Znf(Zn).

We expand Znf(Zn) = 1√
n

∑n
i=1Xif(Zn). For each i, we then split

Zn = Zn;i + 1√
n
Xi, where Zn;i := (X1 + . . . + Xi−1 + Xi+1 + . . . +

Xn)/
√
n (cf. (2.44)). By the fundamental theorem of calculus, we

have

EXif(Zn) = EXif(Zn;i) +
1√
n
X2
i f
′(Zn;i +

t√
n
Xi)

where t is uniformly distributed in [0, 1] and independent of all of the

X1, . . . , Xn. Now observe that Xi and Zn;i are independent, and Xi
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has mean zero, so the first term on the right-hand side vanishes. Thus

(2.53) Eϕ(Zn)−Eϕ(G) =
1

n

n∑
i=1

Ef ′(Zn)−X2
i f
′(Zn;i +

t√
n
Xi).

Another application of independendence gives

Ef ′(Zn;i) = EX2
i f
′(Zn;i)

so we may rewrite (2.53) as

1

n

n∑
i=1

E(f ′(Zn)− f ′(Zn;i))−X2
i (f ′(Zn;i +

t√
n
Xi)− f ′(Zn;i)).

Recall from the proof of Theorem 2.2.13 that f(x) = O(1/(1 + |x|))
and f ′(x) = O(A/(1 + |x|)). By the product rule, this implies that

xf(x) has a Lipschitz constant of O(A). Applying (2.49) and the

definition of A, we conclude that f ′ has a Lipschitz constant of O(A).

Thus we can bound the previous expression as

1

n

n∑
i=1

E
1√
n
O(A|Xi|+A|Xi|3)

and the claim follows from Hölder’s inequality. �

This improvement already reduces the 1/4 loss in (2.45) to 1/2.

But one can do better still by pushing the arguments further. Let us

illustrate this in the model case when the Xi not only have bounded

third moment, but are in fact bounded:

Theorem 2.2.15 (Berry-Esséen theorem, bounded case). Let X have

mean zero, unit variance, and be bounded by O(1). Let Zn := (X1 +

. . .+Xn)/
√
n, where X1, . . . , Xn are iid copies of X. Then we have

(2.54) P(Zn < a) = P(G < a) +O(
1√
n

)

whenever a = O(1), where G ≡ N(0, 1)R.

Proof. Write φ := 1(−∞,a], thus we seek to show that

Eφ(Zn)− φ(G) = O(
1√
n

).

Let f be the Stein transform (2.50) of φ. φ is not continuous, but it is

not difficult to see (e.g. by a limiting argument) that we still have the
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estimates f(x) = O(1/(1 + |x|)) and f ′(x) = O(1) (in a weak sense),

and that xf has a Lipschitz norm of O(1) (here we use the hypothesis

a = O(1)). A similar limiting argument gives

Eφ(Zn)− φ(G) = Ef ′(Zn)− Znf(Zn)

and by arguing as in the proof of Theorem 2.2.14, we can write the

right-hand side as

1

n

n∑
i=1

E(f ′(Zn)− f ′(Zn;i))−X2
i (f ′(Zn;i +

t√
n
Xi)− f ′(Zn;i)).

From (2.49), f ′ is equal to φ, plus a function with Lipschitz norm

O(1). Thus, we can write the above expression as

1

n

n∑
i=1

E(φ(Zn)−φ(Zn;i))−X2
i (φ(Zn;i+

t√
n
Xi)−φ(Zn;i))+O(1/

√
n).

The φ(Zn;i) terms cancel (due to the independence of Xi and Zn;i,

and the normalised mean and variance of Xi), so we can simplify this

as

Eφ(Zn)− 1

n

n∑
i=1

EX2
i φ(Zn;i +

t√
n
Xi)

and so we conclude that

1

n

n∑
i=1

EX2
i φ(Zn;i +

t√
n
Xi) = Eφ(G) +O(1/

√
n).

Since t and Xi are bounded, and φ is non-increasing, we have

φ(Zn;i +O(1/
√
n)) ≤ φ(Zn;i +

t√
n
Xi) ≤ φ(Zn;i −O(1/

√
n));

applying the second inequality and using independence to once again

eliminate the X2
i factor, we see that

1

n

n∑
i=1

Eφ(Zn;i −O(1/
√
n)) ≥ Eφ(G) +O(1/

√
n)

which implies (by another appeal to the non-increasing nature of φ

and the bounded nature of Xi) that

Eφ(Zn −O(1/
√
n)) ≥ Eφ(G) +O(1/

√
n)
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or in other words that

P(Zn ≤ a+O(1/
√
n)) ≥ P(G ≤ a) +O(1/

√
n).

Similarly, using the lower bound inequalities, one has

P(Zn ≤ a−O(1/
√
n)) ≤ P(G ≤ a) +O(1/

√
n).

Moving a up and down by O(1/
√
n), and using the bounded density

of G, we obtain the claim. �

Actually, one can use Stein’s method to obtain the full Berry-

Esséen theorem, but the computations get somewhat technical, re-

quiring an induction on n to deal with the contribution of the excep-

tionally large values of Xi: see [BaHa1984].

2.2.7. Predecessor comparison. Suppose one had never heard of

the normal distribution, but one still suspected the existence of the

central limit theorem - thus, one thought that the sequence Zn of

normalised distributions was converging in distribution to something,

but was unsure what the limit was. Could one still work out what

that limit was?

Certainly in the case of Bernoulli distributions, one could work ex-

plicitly using Stirling’s formula (see Exercise 2.2.2), and the Fourier-

analytic method would also eventually work. Let us now give a third

way to (heuristically) derive the normal distribution as the limit of the

central limit theorem. The idea is to compare Zn with its predecessor

Zn−1, using the recursive formula

(2.55) Zn =

√
n− 1√
n

Zn−1 +
1√
n
Xn

(normalising Xn to have mean zero and unit variance as usual; let us

also truncate Xn to be bounded, for simplicity). Let us hypothesise

that Zn and Zn−1 are approximately the same distribution; let us

also conjecture that this distribution is absolutely continuous, given

as ρ(x) dx for some smooth ρ(x). (If we secretly knew the central

limit theorem, we would know that ρ(x) is in fact 1√
2π
e−x

2/2, but let

us pretend that we did not yet know this fact.) Thus, for any test
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function ϕ, we expect

(2.56) Eϕ(Zn) ≈ Eϕ(Zn−1) ≈
∫
R

ϕ(x)ρ(x) dx.

Now let us try to combine this with (2.55). We assume ϕ to be

smooth, and Taylor expand to third order:

ϕ(Zn) = ϕ

(√
n− 1√
n

Zn−1

)
+

1√
n
Xnϕ

′
(√

n− 1√
n

Zn−1

)
+

1

2n
X2
nϕ
′′
(√

n− 1√
n

Zn−1

)
+O(

1

n3/2
)

Taking expectations, and using the independence of Xn and Zn−1,

together with the normalisations on Xn, we obtain

Eϕ(Zn) = Eϕ

(√
n− 1√
n

Zn−1

)
+

1

2n
ϕ′′
(√

n− 1√
n

Zn−1

)
+O(

1

n3/2
).

Up to errors of O( 1
n3/2 ), one can approximate the second term here

by 1
2nϕ

′′(Zn−1). We then insert (2.56) and are led to the heuristic

equation∫
R

ϕ(x)ρ(x) ≈
∫
R

ϕ

(√
n− 1√
n

x

)
ρ(x) +

1

2n
ϕ′′(x)ρ(x) dx+O(

1

n3/2
).

Changing variables for the first term on the right hand side, and

integrating by parts for the second term, we have∫
R

ϕ(x)ρ(x) ≈
∫
R

ϕ(x)

√
n√

n− 1
ρ

( √
n√

n− 1
x

)
+

1

2n
ϕ(x)ρ′′(x) dx+O(

1

n3/2
).

Since ϕ was an arbitrary test function, this suggests the heuristic

equation

ρ(x) ≈
√
n√

n− 1
ρ

( √
n√

n− 1
x

)
+

1

2n
ρ′′(x) +O(

1

n3/2
).

Taylor expansion gives
√
n√

n− 1
ρ

( √
n√

n− 1
x

)
= ρ(x) +

1

2n
ρ(x) +

1

2n
xρ′(x) +O(

1

n3/2
)

which leads us to the heuristic ODE

Lρ(x) = 0
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where L is the Ornstein-Uhlenbeck operator

Lρ(x) := ρ(x) + xρ′(x) + ρ′′(x).

Observe that Lρ is the total derivative of xρ(x) + ρ′(x); integrating

from infinity, we thus get

xρ(x) + ρ′(x) = 0

which is (2.46), and can be solved by standard ODE methods as

ρ(x) = ce−x
2/2 for some c; the requirement that probability density

functions have total mass 1 then gives the constant c as 1√
2π

, as we

knew it must.

The above argument was not rigorous, but one can make it so

with a significant amount of PDE machinery. If we view n (or more

precisely, log n) as a time parameter, and view φ as depending on

time, the above computations heuristically lead us eventually to the

Fokker-Planck equation for the Ornstein-Uhlenbeck process,

∂tρ(t, x) = Lρ

which is a linear parabolic equation that is fortunate enough that

it can be solved exactly (indeed, it is not difficult to transform this

equation to the linear heat equation by some straightforward changes

of variable). Using the spectral theory of the Ornstein-Uhlenbeck

operator L, one can show that solutions to this equation starting from

an arbitrary probability distribution, are attracted to the gaussian

density function 1√
2π
e−x

2/2, which as we saw is the steady state for

this equation. The stable nature of this attraction can eventually be

used to make the above heuristic analysis rigorous. However, this

requires a substantial amount of technical effort (e.g. developing the

theory of Sobolev spaces associated to L) and will not be attempted

here. One can also proceed by relating the Fokker-Planck equation

to the associated stochastic process, namely the Ornstein-Uhlenbeck

process, but this requires one to first set up stochastic calculus, which

we will not do here11. Stein’s method, discussed above, can also be

interpreted as a way of making the above computations rigorous (by

not working with the density function ρ directly, but instead testing

the random variable Zn against various test functions ϕ).

11(The various Taylor expansion calculations we have performed in this section,
though, are closely related to stochastic calculus tools such as Ito’s lemma.
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This argument does, though highlight two ideas which we will

see again in later notes when studying random matrices. Firstly,

that it is profitable to study the distribution of some random object

Zn by comparing it with its predecessor Zn−1, which one presumes

to have almost the same distribution. Secondly, we see that it may

potentially be helpful to approximate (in some weak sense) a discrete

process (such as the iteration of the scheme (2.55)) with a continuous

evolution (in this case, a Fokker-Planck equation) which can then be

controlled using PDE methods.

2.3. The operator norm of random matrices

Now that we have developed the basic probabilistic tools that we will

need, we now turn to the main subject of this text, namely the study

of random matrices. There are many random matrix models (aka

matrix ensembles) of interest - far too many to all be discussed here.

We will thus focus on just a few simple models. First of all, we shall

restrict attention to square matrices M = (ξij)1≤i,j≤n, where n is a

(large) integer and the ξij are real or complex random variables. (One

can certainly study rectangular matrices as well, but for simplicity we

will only look at the square case.) Then, we shall restrict to three

main models:

(i) Iid matrix ensembles, in which the coefficients ξij are iid

random variables with a single distribution ξij ≡ ξ. We

will often normalise ξ to have mean zero and unit vari-

ance. Examples of iid models include the Bernoulli ensem-

ble (aka random sign matrices) in which the ξij are signed

Bernoulli variables, the real gaussian matrix ensemble in

which ξij ≡ N(0, 1)R, and the complex gaussian matrix en-

semble in which ξij ≡ N(0, 1)C.

(ii) Symmetric Wigner matrix ensembles, in which the up-

per triangular coefficients ξij , j ≥ i are jointly independent

and real, but the lower triangular coefficients ξij , j < i are

constrained to equal their transposes: ξij = ξji. Thus M by

construction is always a real symmetric matrix. Typically,

the strictly upper triangular coefficients will be iid, as will

the diagonal coefficients, but the two classes of coefficients
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may have a different distribution. One example here is the

symmetric Bernoulli ensemble, in which both the strictly up-

per triangular and the diagonal entries are signed Bernoulli

variables; another important example is the Gaussian Or-

thogonal Ensemble (GOE), in which the upper triangular

entries have distribution N(0, 1)R and the diagonal entries

have distribution N(0, 2)R. (We will explain the reason for

this discrepancy later.)

(iii) Hermitian Wigner matrix ensembles, in which the up-

per triangular coefficients are jointly independent, with the

diagonal entries being real and the strictly upper triangu-

lar entries complex, and the lower triangular coefficients ξij ,

j < i are constrained to equal their adjoints: ξij = ξji. Thus

M by construction is always a Hermitian matrix. This class

of ensembles contains the symmetric Wigner ensembles as a

subclass. Another very important example is the Gaussian

Unitary Ensemble (GUE), in which all off-diagional entries

have distribution N(0, 1)C, but the diagonal entries have

distribution N(0, 1)R.

Given a matrix ensemble M , there are many statistics of M that

one may wish to consider, e.g. the eigenvalues or singular values of

M , the trace and determinant, etc. In these notes we will focus on a

basic statistic, namely the operator norm

(2.57) ‖M‖op := sup
x∈Cn:|x|=1

|Mx|

of the matrix M . This is an interesting quantity in its own right, but

also serves as a basic upper bound on many other quantities. (For

instance, ‖M‖op is also the largest singular value σ1(M) of M and

thus dominates the other singular values; similarly, all eigenvalues

λi(M) of M clearly have magnitude at most ‖M‖op.) Because of

this, it is particularly important to get good upper tail bounds

P(‖M‖op ≥ λ) ≤ . . .

on this quantity, for various thresholds λ. (Lower tail bounds are also

of interest, of course; for instance, they give us confidence that the
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upper tail bounds are sharp.) Also, as we shall see, the problem of up-

per bounding ‖M‖op can be viewed as a non-commutative analogue12

of upper bounding the quantity |Sn| studied in Section 2.1.

An n × n matrix consisting entirely of 1s has an operator norm

of exactly n, as can for instance be seen from the Cauchy-Schwarz

inequality. More generally, any matrix whose entries are all uni-

formly O(1) will have an operator norm of O(n) (which can again

be seen from Cauchy-Schwarz, or alternatively from Schur’s test (see

e.g. [Ta2010, §1.11]), or from a computation of the Frobenius norm

(see (2.63))). However, this argument does not take advantage of pos-

sible cancellations in M . Indeed, from analogy with concentration of

measure, when the entries of the matrix M are independent, bounded

and have mean zero, we expect the operator norm to be of size O(
√
n)

rather than O(n). We shall see shortly that this intuition is indeed

correct13.

As mentioned before, there is an analogy here with the concen-

tration of measure14 phenomenon, and many of the tools used in the

latter (e.g. the moment method) will also appear here. Similarly, just

as many of the tools from concentration of measure could be adapted

to help prove the central limit theorem, several the tools seen here

will be of use in deriving the semicircular law in Section 2.4.

The most advanced knowledge we have on the operator norm is

given by the Tracy-Widom law, which not only tells us where the

operator norm is concentrated in (it turns out, for instance, that for

a Wigner matrix (with some additional technical assumptions), it is

concentrated in the range [2
√
n − O(n−1/6), 2

√
n + O(n−1/6)]), but

what its distribution in that range is. While the methods in this

section can eventually be pushed to establish this result, this is far

from trivial, and will only be briefly discussed here. We will however

discuss the Tracy-Widom law at several later points in the text.

12The analogue of the central limit theorem studied in Section 2.2 is the Wigner
semicircular law, which will be studied in Section 2.4.)

13One can see, though, that the mean zero hypothesis is important; from the
triangle inequality we see that if we add the all-ones matrix (for instance) to a random
matrix with mean zero, to obtain a random matrix whose coefficients all have mean 1,
then at least one of the two random matrices necessarily has operator norm at least
n/2.

14Indeed, we will be able to use some of the concentration inequalities from Section
2.1 directly to help control ‖M‖op and related quantities.
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2.3.1. The epsilon net argument. The slickest way to control

‖M‖op is via the moment method. But let us defer using this method

for the moment, and work with a more “naive” way to control the

operator norm, namely by working with the definition (2.57). From

that definition, we see that we can view the upper tail event ‖M‖op >

λ as a union of many simpler events:

(2.58) P(‖M‖op > λ) ≤ P(
∨
x∈S
|Mx| > λ)

where S := {x ∈ Cd : |x| = 1} is the unit sphere in the complex space

Cd.

The point of doing this is that the event |Mx| > λ is easier to

control than the event ‖M‖op > λ, and can in fact be handled by the

concentration of measure estimates we already have. For instance:

Lemma 2.3.1. Suppose that the coefficients ξij of M are indepen-

dent, have mean zero, and uniformly bounded in magnitude by 1. Let

x be a unit vector in Cn. Then for sufficiently large A (larger than

some absolute constant), one has

P(|Mx| ≥ A
√
n) ≤ C exp(−cAn)

for some absolute constants C, c > 0.

Proof. Let X1, . . . , Xn be the n rows of M , then the column vector

Mx has coefficients Xi · x for i = 1, . . . , n. if we let x1, . . . , xn be the

coefficients of x, so that
∑n
j=1 |xj |2 = 1, then Xi ·x is just

∑n
j=1 ξijxj .

Applying standard concentration of measure results (e.g. Exercise

2.1.4, Exercise 2.1.5, or Theorem 2.1.13, we see that each Xi · x is

uniformly subgaussian, thus

P(|Xi · x| ≥ λ) ≤ C exp(−cλ2)

for some absolute constants C, c > 0. In particular, we have

Eec|Xi·x|
2

≤ C

for some (slightly different) absolute constants C, c > 0. Multiplying

these inequalities together for all i, we obtain

Eec|Mx|2 ≤ Cn

and the claim then follows from Markov’s inequality(1.14). �
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Thus (with the hypotheses of Proposition 2.3.1), we see that for

each individual unit vector x, we have |Mx| = O(
√
n) with over-

whelming probability. It is then tempting to apply the union bound

and try to conclude that ‖M‖op = O(
√
n) with overwhelming prob-

ability also. However, we encounter a difficulty: the unit sphere S

is uncountable, and so we are taking the union over an uncountable

number of events. Even though each event occurs with exponentially

small probability, the union could well be everything.

Of course, it is extremely wasteful to apply the union bound to

an uncountable union. One can pass to a countable union just by

working with a countable dense subset of the unit sphere S instead of

the sphere itself, since the map x 7→ |Mx| is continuous. Of course,

this is still an infinite set and so we still cannot usefully apply the

union bound. However, the map x 7→ |Mx| is not just continuous;

it is Lipschitz continuous, with a Lipschitz constant of ‖M‖op. Now,

of course there is some circularity here because ‖M‖op is precisely

the quantity we are trying to bound. Nevertheless, we can use this

stronger continuity to refine the countable dense subset further, to a

finite dense subset of S, at the slight cost of modifying the threshold

λ by a constant factor. Namely:

Lemma 2.3.2. Let Σ be a maximal 1/2-net of the sphere S, i.e. a

set of points in S that are separated from each other by a distance of

at least 1/2, and which is maximal with respect to set inclusion. Then

for any n×n matrix M with complex coefficients, and any λ > 0, we

have

P(‖M‖op > λ) ≤ P(
∨
y∈Σ

|My| > λ/2).

Proof. By (2.57) (and compactness) we can find x ∈ S such that

|Mx| = ‖M‖op.

This point x need not lie in Σ. However, as Σ is a maximal 1/2-net

of S, we know that x lies within 1/2 of some point y in Σ (since

otherwise we could add x to Σ and contradict maximality). Since

|x− y| ≤ 1/2, we have

|M(x− y)| ≤ ‖M‖op/2.



2.3. Operator norm 129

By the triangle inequality we conclude that

|My| ≥ ‖M‖op/2.

In particular, if ‖M‖op > λ, then |My| > λ/2 for some y ∈ Σ, and

the claim follows. �

Remark 2.3.3. Clearly, if one replaces the maximal 1/2-net here

with an maximal ε-net for some other 0 < ε < 1 (defined in the

obvious manner), then we get the same conclusion, but with λ/2

replaced by λ/(1− ε).

Now that we have discretised the range of points y to be finite,

the union bound becomes viable again. We first make the following

basic observation:

Lemma 2.3.4 (Volume packing argument). Let 0 < ε < 1, and let

Σ be a ε-net of the sphere S. Then Σ has cardinality at most (C/ε)n

for some absolute constant C > 0.

Proof. Consider the balls of radius ε/2 centred around each point

in Σ; by hypothesis, these are disjoint. On the other hand, by the

triangle inequality, they are all contained in the ball of radius 3/2

centred at the origin. The volume of the latter ball is at most (C/ε)n

the volume of any of the small balls, and the claim follows. �

Exercise 2.3.1. Conversely, if Σ is a maximal ε-net, show that Σ

has cardinality at least (c/ε)n for some absolute constant c > 0.

And now we get an upper tail estimate:

Corollary 2.3.5 (Upper tail estimate for iid ensembles). Suppose

that the coefficients ξij of M are independent, have mean zero, and

uniformly bounded in magnitude by 1. Then there exists absolute

constants C, c > 0 such that

P(‖M‖op > A
√
n) ≤ C exp(−cAn)

for all A ≥ C. In particular, we have ‖M‖op = O(
√
n) with over-

whelming probability.



130 2. Random matrices

Proof. From Lemma 2.3.2 and the union bound, we have

P(‖M‖op > A
√
n) ≤

∑
y∈Σ

P(|My| > A
√
n/2)

where Σ is a maximal 1/2-net of S. By Lemma 2.3.1, each of the

probabilities P(|My| > A
√
n/2) is bounded by C exp(−cAn) if A

is large enough. Meanwhile, from Lemma 2.3.4, Σ has cardinality

O(1)n. If A is large enough, the entropy loss of O(1)n can be absorbed

into the exponential gain of exp(−cAn) by modifying c slightly, and

the claim follows. �

Exercise 2.3.2. If Σ is a maximal 1/4-net instead of a maximal

1/2-net, establish the following variant

P(‖M‖op > λ) ≤ P(
∨

x,y∈Σ

|x∗My| > λ/4)

of Lemma 2.3.2. Use this to provide an alternate proof of Corollary

2.3.5.

The above result was for matrices with independent entries, but

it easily extends to the Wigner case:

Corollary 2.3.6 (Upper tail estimate for Wigner ensembles). Sup-

pose that the coefficients ξij of M are independent for j ≥ i, mean

zero, and uniformly bounded in magnitude by 1, and let ξij := ξji for

j < i. Then there exists absolute constants C, c > 0 such that

P(‖M‖op > A
√
n) ≤ C exp(−cAn)

for all A ≥ C. In particular, we have ‖M‖op = O(
√
n) with over-

whelming probability.

Proof. From Corollary 2.3.5, the claim already holds for the upper-

triangular portion of M , as well as for the strict lower-triangular

portion of M . The claim then follows from the triangle inequality

(adjusting the constants C, c appropriately). �

Exercise 2.3.3. Generalise Corollary 2.3.5 and Corollary 2.3.6 to the

case where the coefficients ξij have uniform subgaussian tails, rather

than being uniformly bounded in magnitude by 1.
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Remark 2.3.7. What we have just seen is a simple example of an

epsilon net argument , which is useful when controlling a supremum

of random variables supx∈S Xx such as (2.57), where each individual

random variable Xx is known to obey a large deviation inequality (in

this case, Lemma 2.3.1). The idea is to use metric arguments (e.g. the

triangle inequality, see Lemma 2.3.2) to refine the set of parameters

S to take the supremum over to an ε-net Σ = Σε for some suitable

ε, and then apply the union bound. One takes a loss based on the

cardinality of the ε-net (which is basically the covering number of the

original parameter space at scale ε), but one can hope that the bounds

from the large deviation inequality are strong enough (and the metric

entropy bounds sufficiently accurate) to overcome this entropy loss.

There is of course the question of what scale ε to use. In this

simple example, the scale ε = 1/2 sufficed. In other contexts, one has

to choose the scale ε more carefully. In more complicated examples

with no natural preferred scale, it often makes sense to take a large

range of scales (e.g. ε = 2−j for j = 1, . . . , J) and chain them together

by using telescoping series such as Xx = Xx1
+
∑J
j=1Xxj+1

− Xxj

(where xj is the nearest point in Σj to x for j = 1, . . . , J , and xJ+1 is

x by convention) to estimate the supremum, the point being that one

can hope to exploit cancellations between adjacent elements of the

sequence Xxj . This is known as the method of chaining. There is an

even more powerful refinement of this method, known as the method

of generic chaining, which has a large number of applications; see

[Ta2005] for a beautiful and systematic treatment of the subject.

However, we will not use this method in this course.

2.3.2. A symmetrisation argument (optional). We pause here

to record an elegant symmetrisation argument that exploits convexity

to allow us to reduce without loss of generality to the symmetric case

M ≡ −M , albeit at the cost of losing a factor of 2. We will not

use this type of argument directly in this text, but it is often used

elsewhere in the literature.

Let M be any random matrix with mean zero, and let M̃ be an

independent copy of M . Then, conditioning on M , we have

E(M − M̃ |M) = M.
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As the operator norm M 7→ ‖M‖op is convex, we can then apply

Jensen’s inequality (Exercise 1.1.8) to conclude that

E(‖M − M̃‖op|M) ≥ ‖M‖op.

Undoing the conditioning over M , we conclude that

(2.59) E‖M − M̃‖op ≥ E‖M‖op.

Thus, to upper bound the expected operator norm of M , it suffices

to upper bound the expected operator norm of M − M̃ . The point is

that even if M is not symmetric (M 6≡ −M), M−M̃ is automatically

symmetric.

One can modify (2.59) in a few ways, given some more hypothe-

ses on M . Suppose now that M = (ξij)1≤i,j≤n is a matrix with

independent entries, thus M − M̃ has coefficients ξij − ξ̃ij where

ξ̃ij is an independent copy of ξij . Introduce a random sign matrix

E = (εij)1≤i,j≤n which is (jointly) independent of M,M̃ . Observe

that as the distribution of ξij − ξ̃ij is symmetric, that

(ξij − ξ̃ij) ≡ (ξij − ξ̃ij)εij ,

and thus

(M − M̃) ≡ (M − M̃) · E
where A · B := (aijbij)1≤i,j≤n is the Hadamard product of A =

(aij)1≤i,j≤n and B = (bij)1≤i,j≤n. We conclude from (2.59) that

E‖M‖op ≤ E‖(M − M̃) · E‖op.

By the distributive law and the triangle inequality we have

‖(M − M̃) · E‖op ≤ ‖M · E‖op + ‖M̃ · E‖op.

But as M ·E ≡ M̃ ·E, the quantities ‖M ·E‖op and ‖M̃ ·E‖op have

the same expectation. We conclude the symmetrisation inequality

(2.60) E‖M‖op ≤ 2E‖M · E‖op.

Thus, if one does not mind losing a factor of two, one has the

freedom to randomise the sign of each entry of M independently (as-

suming that the entries were already independent). Thus, in proving

Corollary 2.3.5, one could have reduced to the case when the ξij were

symmetric, though in this case this would not have made the argu-

ment that much simpler.
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Sometimes it is preferable to multiply the coefficients by a Gauss-

ian rather than by a random sign. Again, let M = (ξij)1≤i,j≤n
have independent entries with mean zero. Let G = (gij)1≤i,j≤n be

a real gaussian matrix independent of M , thus the gij ≡ N(0, 1)R
are iid. We can split G = E · |G|, where E := (sgn(gij))1≤i,j≤n and

|G| = (|gij |)1≤i,j≤n. Note that E, M , |G| are independent, and E is

a random sign matrix. In particular, (2.60) holds. We now use

Exercise 2.3.4. If g ≡ N(0, 1)R, show that E|g| =
√

2
π .

From this exercise we see that

E(M · E · |G||M,E) =

√
2

π
M · E

and hence by Jensen’s inequality (Exercise 1.1.8) again

E(‖M · E · |G|‖op|M,E) ≥
√

2

π
‖M · E‖op.

Undoing the conditional expectation in M,E and applying (2.60) we

conclude the gaussian symmetrisation inequality

(2.61) E‖M‖op ≤
√

2πE‖M ·G‖op.

Thus, for instance, when proving Corollary 2.3.5, one could have

inserted a random gaussian in front of each coefficient. This would

have made the proof of Lemma 2.3.1 marginally simpler (as one could

compute directly with gaussians, and reduce the number of appeals

to concentration of measure results) but in this case the improvement

is negligible. In other situations though it can be quite helpful to

have the additional random sign or random gaussian factor present.

For instance, we have the following result of Latala[La2005]:

Theorem 2.3.8. Let M = (ξij)1≤i,j≤n be a matrix with independent

mean zero entries, obeying the second moment bounds

sup
i

n∑
j=1

E|ξij |2 ≤ K2n

sup
j

n∑
i=1

E|ξij |2 ≤ K2n
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and the fourth moment bound
n∑
i=1

n∑
j=1

E|ξij |4 ≤ K4n2

for some K > 0. Then E‖M‖op = O(K
√
n).

Proof. (Sketch only) Using (2.61) one can replace ξij by ξij · gij
without much penalty. One then runs the epsilon-net argument with

an explicit net, and uses concentration of measure results for gaussians

(such as Theorem 2.1.12) to obtain the analogue of Lemma 2.3.1.

The details are rather intricate, and we refer the interested reader to

[La2005]. �

As a corollary of Theorem 2.3.8, we see that if we have an iid

matrix (or Wigner matrix) of mean zero whose entries have a fourth

moment of O(1), then the expected operator norm is O(
√
n). The

fourth moment hypothesis is sharp. To see this, we make the trivial

observation that the operator norm of a matrix M = (ξij)1≤i,j≤n
bounds the magnitude of any of its coefficients, thus

sup
1≤i,j≤n

|ξij | ≤ ‖M‖op

or equivalently that

P(‖M‖op ≤ λ) ≤ P(
∨

1≤i,j≤n

|ξij | ≤ λ).

In the iid case ξij ≡ ξ, and setting λ = A
√
n for some fixed A inde-

pendent of n, we thus have

(2.62) P(‖M‖op ≤ A
√
n) ≤ P(|ξ| ≤ A

√
n)n

2

With the fourth moment hypothesis, one has from dominated conver-

gence that

P(|ξ| ≤ A
√
n) ≥ 1− oA(1/n2),

and so the right-hand side of (2.62) is asymptotically trivial. But

with weaker hypotheses than the fourth moment hypothesis, the rate

of convergence of P(|ξ| ≤ A
√
n) to 1 can be slower, and one can

easily build examples for which the right-hand side of (2.62) is oA(1)

for every A, which forces ‖M‖op to typically be much larger than
√
n

on the average.
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Remark 2.3.9. The symmetrisation inequalities remain valid with

the operator norm replaced by any other convex norm on the space

of matrices. The results are also just as valid for rectangular matrices

as for square ones.

2.3.3. Concentration of measure. Consider a random matrix M

of the type considered in Corollary 2.3.5 (e.g. a random sign ma-

trix). We now know that the operator norm ‖M‖op is of size O(
√
n)

with overwhelming probability. But there is much more that can be

said. For instance, by taking advantage of the convexity and Lips-

chitz properties of ‖M‖op, we have the following quick application of

Talagrand’s inequality (Theorem 2.1.13):

Proposition 2.3.10. Let M be as in Corollary 2.3.5. Then for any

λ > 0, one has

P(|‖M‖op −M‖M‖op| ≥ λ) ≤ C exp(−cλ2)

for some absolute constants C, c > 0, where M‖M‖op is a median

value for ‖M‖op. The same result also holds with M‖M‖op replaced

by the expectation E‖M‖op.

Proof. We view ‖M‖op as a function F ((ξij)1≤i,j≤n) of the indepen-

dent complex variables ξij , thus F is a function from Cn2

to R. The

convexity of the operator norm tells us that F is convex. The triangle

inequality, together with the elementary bound

(2.63) ‖M‖op ≤ ‖M‖F

(easily proven by Cauchy-Schwarz), where

(2.64) ‖M‖F := (

n∑
i=1

n∑
j=1

|ξij |2)1/2

is the Frobenius norm (also known as the Hilbert-Schmidt norm or 2-

Schatten norm), tells us that F is Lipschitz with constant 1. The

claim then follows directly from Talagrand’s inequality (Theorem

2.1.13). �

Exercise 2.3.5. Establish a similar result for the matrices in Corol-

lary 2.3.6.
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From Corollary 2.3.5 we know that the median or expectation

of ‖M‖op is of size O(
√
n); we now know that ‖M‖op concentrates

around this median to width at most O(1). (This turns out to be

non-optimal; the Tracy-Widom law actually gives a concentration of

O(n−1/6), under some additional assumptions on M . Nevertheless

this level of concentration is already non-trivial.)

However, this argument does not tell us much about what the

median or expected value of ‖M‖op actually is. For this, we will need

to use other methods, such as the moment method which we turn to

next.

Remark 2.3.11. Talagrand’s inequality, as formulated in Theorem

2.1.13, relies heavily on convexity. Because of this, we cannot apply

this argument directly to non-convex matrix statistics, such as singu-

lar values σj(M) other than the largest singular value σ1(M). Nev-

ertheless, one can still use this inequality to obtain good concentra-

tion results, by using the convexity of related quantities, such as the

partial sums
∑J
j=1 σj(M); see [Me2004]. Other approaches include

the use of alternate large deviation inequalities, such as those arising

from log-Sobolev inequalities (see e.g. [Gu2009]), or by using more

abstract versions of Talagrand’s inequality (see [AlKrVu2002]).

2.3.4. The moment method. We now bring the moment method

to bear on the problem, starting with the easy moments and working

one’s way up to the more sophisticated moments. It turns out that

it is easier to work first with the case when M is symmetric or Her-

mitian; we will discuss the non-symmetric case near the end of these

notes.

The starting point for the moment method is the observation that

for symmetric or Hermitian M , the operator norm ‖M‖op is equal to

the `∞ norm

(2.65) ‖M‖op = max
1≤i≤n

|λi|

of the eigenvalues λ1, . . . , λn ∈ R of M . On the other hand, we have

the standard linear algebra identity

tr(M) =

n∑
i=1

λi
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and more generally

tr(Mk) =

n∑
i=1

λki .

In particular, if k = 2, 4, . . . is an even integer, then tr(Mk)1/k is just

the `k norm of these eigenvalues, and we have the inequalities

(2.66) ‖M‖kop ≤ tr(Mk) ≤ n‖M‖kop.

To put this another way, knowledge of the kth moment tr(Mk) con-

trols the operator norm up to a multiplicative factor of n1/k. Taking

larger and larger k, we should thus obtain more accurate control on

the operator norm15.

Remark 2.3.12. In most cases, one expects the eigenvalues to be

reasonably uniformly distributed, in which case the upper bound in

(2.66) is closer to the truth than the lower bound. One scenario in

which this can be rigorously established is if it is known that the

eigenvalues of M all come with a high multiplicity. This is often the

case for matrices associated with group actions (particularly those

which are quasirandom in the sense of Gowers[Go2008]). However,

this is usually not the case with most random matrix ensembles, and

we must instead proceed by increasing k as described above.

Let’s see how this method works in practice. The simplest case

is that of the second moment tr(M2), which in the Hermitian case

works out to

tr(M2) =

n∑
i=1

n∑
j=1

|ξij |2 = ‖M‖2F .

Note that (2.63) is just the k = 2 case of the lower inequality in (2.66),

at least in the Hermitian case.

The expression
∑n
i=1

∑n
j=1 |ξij |2 is easy to compute in practice.

For instance, for the symmetric Bernoulli ensemble, this expression

is exactly equal to n2. More generally, if we have a Wigner matrix in

which all off-diagonal entries have mean zero and unit variance, and

the diagonal entries have mean zero and bounded variance (this is the

case for instance for GOE), then the off-diagonal entries have mean

15This is also the philosophy underlying the power method in numerical linear
algebra.
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1, and by the law of large numbers16 we see that this expression is

almost surely asymptotic to n2.

From the weak law of large numbers, we see in particular that

one has

(2.67)

n∑
i=1

n∑
j=1

|ξij |2 = (1 + o(1))n2

asymptotically almost surely.

Exercise 2.3.6. If the ξij have uniformly sub-exponential tail, show

that we in fact have (2.67) with overwhelming probability.

Applying (2.66), we obtain the bounds

(2.68) (1 + o(1))
√
n ≤ ‖M‖op ≤ (1 + o(1))n

asymptotically almost surely. This is already enough to show that the

median of ‖M‖op is at least (1 + o(1))
√
n, which complements (up

to constants) the upper bound of O(
√
n) obtained from the epsilon

net argument. But the upper bound here is terrible; we will need to

move to higher moments to improve it.

Accordingly, we now turn to the fourth moment. For simplicity

let us assume that all entries ξij have zero mean and unit variance.

To control moments beyond the second moment, we will also assume

that all entries are bounded in magnitude by some K. We expand

tr(M4) =
∑

1≤i1,i2,i3,i4≤n

ξi1i2ξi2i3ξi3i4ξi4i1 .

To understand this expression, we take expectations:

E tr(M4) =
∑

1≤i1,i2,i3,i4≤n

Eξi1i2ξi2i3ξi3i4ξi4i1 .

One can view this sum graphically, as a sum over length four cycles in

the vertex set {1, . . . , n}; note that the four edges {i1, i2}, {i2, i3}, {i3, i4}, {i4, i1}
are allowed to be degenerate if two adjacent ξi are equal. The value

of each term

(2.69) Eξi1i2ξi2i3ξi3i4ξi4i1

16There is of course a dependence between the upper triangular and lower tri-
angular entries, but this is easy to deal with by folding the sum into twice the upper
triangular portion (plus the diagonal portion, which is lower order).
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in this sum depends on what the cycle does.

Firstly, there is the case when all the four edges {i1, i2}, {i2, i3}, {i3, i4}, {i4, i1}
are distinct. Then the four factors ξi1i2 , . . . , ξi4i1 are independent;

since we are assuming them to have mean zero, the term (2.69) van-

ishes. Indeed, the same argument shows that the only terms that do

not vanish are those in which each edge is repeated at least twice. A

short combinatorial case check then shows that, up to cyclic permu-

tations of the i1, i2, i3, i4 indices there are now only a few types of

cycles in which the term (2.69) does not automatically vanish:

(i) i1 = i3, but i2, i4 are distinct from each other and from i1.

(ii) i1 = i3 and i2 = i4.

(iii) i1 = i2 = i3, but i4 is distinct from i1.

(iv) i1 = i2 = i3 = i4.

In the first case, the independence and unit variance assumptions

tells us that (2.69) is 1, and there are O(n3) such terms, so the total

contribution here to E tr(M4) is at most O(n3). In the second case,

the unit variance and bounded by K tells us that the term is O(K2),

and there are O(n2) such terms, so the contribution here is O(n2K2).

Similarly, the contribution of the third type of cycle is O(n2), and the

fourth type of cycle is O(nK2), so we can put it all together to get

E tr(M4) ≤ O(n3) +O(n2K2).

In particular, if we make the hypothesis K = O(
√
n), then we have

E tr(M4) ≤ O(n3),

and thus by Markov’s inequality(1.13) we see that for any ε > 0,

tr(M4) ≤ Oε(n
3) with probability at least 1 − ε. Applying (2.66),

this leads to the upper bound

‖M‖op ≤ Oε(n3/4)

with probability at least 1− ε; a similar argument shows that for any

fixed ε > 0, one has

‖M‖op ≤ n3/4+ε

with high probability. This is better than the upper bound obtained

from the second moment method, but still non-optimal.
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Exercise 2.3.7. If K = o(
√
n), use the above argument to show that

(E‖M‖4op)1/4 ≥ (21/4 + o(1))
√
n

which in some sense improves upon (2.68) by a factor of 21/4. In

particular, if K = O(1), conclude that the median of ‖M‖op is at

least (21/4 + o(1))
√
n.

Now let us take a quick look at the sixth moment, again with

the running assumption of a Wigner matrix in which all entries have

mean zero, unit variance, and bounded in magnitude by K. We have

E tr(M6) =
∑

1≤i1,...,i6≤n

Eξi1i2 . . . ξi5i6ξi6i1 ,

a sum over cycles of length 6 in {1, . . . , n}. Again, most of the sum-

mands here vanish; the only ones which do not are those cycles in

which each edge occurs at least twice (so in particular, there are at

most three distinct edges).

Classifying all the types of cycles that could occur here is some-

what tedious, but it is clear that there are going to be O(1) different

types of cycles. But we can organise things by the multiplicity of each

edge, leaving us with four classes of cycles to deal with:

(i) Cycles in which there are three distinct edges, each occuring

two times.

(ii) Cycles in which there are two distinct edges, one occuring

twice and one occuring four times.

(iii) Cycles in which there are two distinct edges, each occuring

three times17.

(iv) Cycles in which a single edge occurs six times.

It is not hard to see that summands coming from the first type of

cycle give a contribution of 1, and there are O(n4) of these (because

such cycles span at most four vertices). Similarly, the second and

third types of cycles give a contribution of O(K2) per summand, and

there are O(n3) summands; finally, the fourth type of cycle gives a

17Actually, this case ends up being impossible, due to a “bridges of Königsberg”
type of obstruction, but we will retain it for this discussion.
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contribution of O(K4), with O(n2) summands. Putting this together

we see that

E tr(M6) ≤ O(n4) +O(n3K2) +O(n2K4);

so in particular if we assume K = O(
√
n) as before, we have

E tr(M6) ≤ O(n4)

and if we then use (2.66) as before we see that

‖M‖op ≤ Oε(n2/3)

with probability 1 − ε, for any ε > 0; so we are continuing to make

progress towards what we suspect (from the epsilon net argument) to

be the correct bound of n1/2.

Exercise 2.3.8. If K = o(
√
n), use the above argument to show that

(E‖M‖6op)1/6 ≥ (51/6 + o(1))
√
n.

In particular, if K = O(1), conclude that the median of ‖M‖op is

at least (51/6 + o(1))
√
n. Thus this is a (slight) improvement over

Exercise 2.3.7.

Let us now consider the general kth moment computation under

the same hypotheses as before, with k an even integer, and make

some modest attempt to track the dependency of the constants on k.

Again, we have

(2.70) E tr(Mk) =
∑

1≤i1,...,ik≤n

Eξi1i2 . . . ξiki1 ,

which is a sum over cycles of length k. Again, the only non-vanishing

expectations are those for which each edge occurs twice; in particular,

there are at most k/2 edges, and thus at most k/2 + 1 vertices.

We divide the cycles into various classes, depending on which

edges are equal to each other. (More formally, a class is an equiv-

alence relation ∼ on a set of k labels, say {1, . . . , k} in which each

equivalence class contains at least two elements, and a cycle of k edges

{i1, i2}, . . . , {ik, i1} lies in the class associated to ≡ when we have that

{ij , ij+1} = {ij′ , ij′+1} iff j ∼ j′, where we adopt the cyclic notation

ik+1 := i1.)



142 2. Random matrices

How many different classes could there be? We have to assign up

to k/2 labels to k edges, so a crude upper bound here is (k/2)k.

Now consider a given class of cycle. It has j edges e1, . . . , ej for

some 1 ≤ j ≤ k/2, with multiplicities a1, . . . , aj , where a1, . . . , aj
are at least 2 and add up to k. The j edges span at most j + 1

vertices; indeed, in addition to the first vertex i1, one can specify all

the other vertices by looking at the first appearance of each of the

j edges e1, . . . , ej in the path from i1 to ik, and recording the final

vertex of each such edge. From this, we see that the total number

of cycles in this particular class is at most nj+1. On the other hand,

because each ξij has mean zero, unit variance and is bounded by K,

the ath moment of this coefficient is at most Ka−2 for any a ≥ 2.

Thus each summand in (2.70) coming from a cycle in this class has

magnitude at most

Ka1−2 . . .Kaj−2 = Ka1+...+aj−2j = Kk−2j .

Thus the total contribution of this class to (2.70) is nj+1Kk−2j , which

we can upper bound by

max(n
k
2 +1, n2Kk−2) = nk/2+1 max(1,K/

√
n)k−2.

Summign up over all classes, we obtain the (somewhat crude) bound

E tr(Mk) ≤ (k/2)knk/2+1 max(1,K/
√
n)k−2

and thus by (2.66)

E‖M‖kop ≤ (k/2)knk/2+1 max(1,K/
√
n)k−2

and so by Markov’s inequality(1.13) we have

P(‖M‖op ≥ λ) ≤ λ−k(k/2)knk/2+1 max(1,K/
√
n)k−2

for all λ > 0. This, for instance, places the median of ‖M‖op at

O(n1/kk
√
nmax(1,K/

√
n)). We can optimise this in k by choosing

k to be comparable to logn, and so we obtain an upper bound of

O(
√
n log nmax(1,K/

√
n)) for the median; indeed, a slight tweaking

of the constants tells us that ‖M‖op = O(
√
n log nmax(1,K/

√
n))

with high probability.

The same argument works if the entries have at most unit variance

rather than unit variance, thus we have shown
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Proposition 2.3.13 (Weak upper bound). Let M be a random Her-

mitian matrix, with the upper triangular entries ξij, i ≤ j being in-

dependent with mean zero and variance at most 1, and bounded in

magnitude by K. Then ‖M‖op = O(
√
n log nmax(1,K/

√
n)) with

high probability.

When K ≤
√
n, this gives an upper bound of O(

√
n log n), which

is still off by half a logarithm from the expected bound of O(
√
n). We

will remove this half-logarithmic loss later in these notes.

2.3.5. Computing the moment to top order. Now let us con-

sider the case when K = o(
√
n), and each entry has variance exactly

1. We have an upper bound

E tr(Mk) ≤ (k/2)knk/2+1;

let us try to get a more precise answer here (as in Exercises 2.3.7,

2.3.8). Recall that each class of cycle contributed a bound of nj+1Kk−2j

to this expression. If K = o(
√
n), we see that such expressions are

ok(nk/2+1) whenever j < k/2, where the ok() notation means that

the decay rate as n→∞ can depend on k. So the total contribution

of all such classes is ok(nk/2+1).

Now we consider the remaining classes with j = k/2. For such

classes, each equivalence class of edges contains exactly two represen-

tatives, thus each edge is repeated exactly once. The contribution

of each such cycle to (2.70) is exactly 1, thanks to the unit vari-

ance and independence hypothesis. Thus, the total contribution of

these classes to E tr(Mk) is equal to a purely combinatorial quantity,

namely the number of cycles of length k on {1, . . . , n} in which each

edge is repeated exactly once, yielding k/2 unique edges. We are thus

faced with the enumerative combinatorics problem of bounding this

quantity as precisely as possible.

With k/2 edges, there are at most k/2 + 1 vertices traversed by

the cycle. If there are fewer than k/2+1 vertices traversed, then there

are at most Ok(nk/2) = ok(nk/2+1) cycles of this type, since one can

specify such cycles by identifying up to k/2 vertices in {1, . . . , n} and

then matching those coordinates with the k vertices of the cycle. So

we set aside these cycles, and only consider those cycles which traverse
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exactly k/2+1 vertices. Let us call such cycles (i.e. cycles of length k

with each edge repeated exactly once, and traversing exactly k/2 + 1

vertices) non-crossing cycles of length k in {1, . . . , n}. Our remaining

task is then to count the number of non-crossing cycles.

Example 2.3.14. Let a, b, c, d be distinct elements of {1, . . . , n}.
Then (i1, . . . , i6) = (a, b, c, d, c, b) is a non-crossing cycle of length k,

as is (a, b, a, c, a, d). Any cyclic permutation of a non-crossing cycle

is again a non-crossing cycle.

Exercise 2.3.9. Show that a cycle of length k is non-crossing if and

only if there exists a tree18 in {1, . . . , n} of k/2 edges and k/2 + 1

vertices, such that the cycle lies in the tree and traverses each edge

in the tree exactly twice.

Exercise 2.3.10. Let i1, . . . , ik be a cycle of length k. Arrange the

integers 1, . . . , k around a circle, and draw a line segment between

two distinct integers 1 ≤ a < b ≤ k whenever ia = ib. Show that

the cycle is non-crossing if and only if the number of line segments is

exactly k/2− 1, and the line segments do not cross each other. This

may help explain the terminology “non-crossing”.

Now we can complete the count. If k is a positive even integer,

define a Dyck word19 of length k to be the number of words consisting

of left and right parentheses (, ) of length k, such that when one reads

from left to right, there are always at least as many left parentheses

as right parentheses (or in other words, the parentheses define a valid

nesting). For instance, the only Dyck word of length 2 is (), the two

Dyck words of length 4 are (()) and ()(), and the five Dyck words of

length 6 are

()()(), (())(), ()(()), (()()), ((())),

and so forth.

Lemma 2.3.15. The number of non-crossing cycles of length k in

{1, . . . , n} is equal to Ck/2n(n − 1) . . . (n − k/2), where Ck/2 is the

number of Dyck words of length k. (The number Ck/2 is also known

as the (k/2)th Catalan number.)

18In graph theory, a tree is a finite collection of vertices and (undirected) edges
between vertices, which do not contain any cycles.

19Dyck words are also closely related to Dyck paths in enumerative combinatorics.
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Proof. We will give a bijective proof . Namely, we will find a way to

store a non-crossing cycle as a Dyck word, together with an (ordered)

sequence of k/2 + 1 distinct elements from {1, . . . , n}, in such a way

that any such pair of a Dyck word and ordered sequence generates

exactly one non-crossing cycle. This will clearly give the claim.

So, let us take a non-crossing cycle i1, . . . , ik. We imagine travers-

ing this cycle from i1 to i2, then from i2 to i3, and so forth until we

finally return to i1 from ik. On each leg of this journey, say from ij
to ij+1, we either use an edge that we have not seen before, or else

we are using an edge for the second time. Let us say that the leg

from ij to ij+1 is an innovative leg if it is in the first category, and

a returning leg otherwise. Thus there are k/2 innovative legs and

k/2 returning legs. Clearly, it is only the innovative legs that can

bring us to vertices that we have not seen before. Since we have to

visit k/2 + 1 distinct vertices (including the vertex i1 we start at),

we conclude that each innovative leg must take us to a new vertex.

We thus record, in order, each of the new vertices we visit, starting

at i1 and adding another vertex for each innovative leg; this is an

ordered sequence of k/2 + 1 distinct elements of {1, . . . , n}. Next,

traversing the cycle again, we write down a ( whenever we traverse

an innovative leg, and an ) otherwise. This is clearly a Dyck word.

For instance, using the examples in Example 2.3.14, the non-crossing

cycle (a, b, c, d, c, b) gives us the ordered sequence (a, b, c, d) and the

Dyck word ((())), while (a, b, a, c, a, d) gives us the ordered sequence

(a, b, c, d) and the Dyck word ()()().

We have seen that every non-crossing cycle gives rise to an ordered

sequence and a Dyck word. A little thought shows that the cycle can

be uniquely reconstructed from this ordered sequence and Dyck word

(the key point being that whenever one is performing a returning leg

from a vertex v, one is forced to return along the unique innovative

leg that discovered v). A slight variant of this thought also shows

that every Dyck word of length k and ordered sequence of k/2 + 1

distinct elements gives rise to a non-crossing cycle. This gives the

required bijection, and the claim follows. �

Next, we recall the classical formula for the Catalan number:
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Exercise 2.3.11. Establish the recurrence

Cn+1 =

n∑
i=0

CiCn−i

for any n ≥ 1 (with the convention C0 = 1), and use this to deduce

that

(2.71) Ck/2 :=
k!

(k/2 + 1)!(k/2)!

for all k = 2, 4, 6, . . ..

Exercise 2.3.12. Let k be a positive even integer. Given a string of

k/2 left parentheses and k/2 right parentheses which is not a Dyck

word, define the reflection of this string by taking the first right paren-

thesis which does not have a matching left parenthesis, and then re-

versing all the parentheses after that right parenthesis. Thus, for

instance, the reflection of ())(() is ())))(. Show that there is a bi-

jection between non-Dyck words with k/2 left parentheses and k/2

right parentheses, and arbitrary words with k/2 − 1 left parentheses

and k/2 + 1 right parentheses. Use this to give an alternate proof of

(2.71).

Note that n(n− 1) . . . (n− k/2) = (1 + ok(1))nk/2+1. Putting all

the above computations together, we conclude

Theorem 2.3.16 (Moment computation). Let M be a real symmet-

ric random matrix, with the upper triangular elements ξij, i ≤ j

jointly independent with mean zero and variance one, and bounded in

magnitude by o(
√
n). Let k be a positive even integer. Then we have

E tr(Mk) = (Ck/2 + ok(1))nk/2+1

where Ck/2 is given by (2.71).

Remark 2.3.17. An inspection of the proof also shows that if we

allow the ξij to have variance at most one, rather than equal to one,

we obtain the upper bound

E tr(Mk) ≤ (Ck/2 + ok(1))nk/2+1.

Exercise 2.3.13. Show that Theorem 2.3.16 also holds for Hermitian

random matrices. (Hint : The main point is that with non-crossing
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cycles, each non-innovative leg goes in the reverse direction to the

corresponding innovative leg - why?)

Remark 2.3.18. Theorem 2.3.16 can be compared with the formula

ESk = (C ′k/2 + ok(1))nk/2

derived in Notes 1, where S = X1 + . . . + Xn is the sum of n iid

random variables of mean zero and variance one, and

C ′k/2 :=
k!

2k/2(k/2)!
.

Exercise 2.3.10 shows that Ck/2 can be interpreted as the number of

ways to join k points on the circle by k/2 − 1 non-crossing chords.

In a similar vein, C ′k/2 can be interpreted as the number of ways to

join k points on the circle by k/2 chords which are allowed to cross

each other (except at the endpoints). Thus moments of Wigner-type

matrices are in some sense the “non-crossing” version of moments of

sums of random variables. We will discuss this phenomenon more

when we turn to free probability in Section 2.5.

Combining Theorem 2.3.16 with (2.66) we obtain a lower bound

E‖M‖kop ≥ (Ck/2 + ok(1))nk/2.

In the bounded case K = O(1), we can combine this with Exercise

2.3.5 to conclude that the median (or mean) of ‖M‖op is at least

(C
1/k
k/2 +ok(1))

√
n. On the other hand, from Stirling’s formula (Section

1.2) we see that C
1/k
k/2 converges to 2 as k → ∞. Taking k to be a

slowly growing function of n, we conclude

Proposition 2.3.19 (Lower Bai-Yin theorem). Let M be a real sym-

metric random matrix, with the upper triangular elements ξij, i ≤ j

jointly independent with mean zero and variance one, and bounded in

magnitude by O(1). Then the median (or mean) of ‖M‖op is at least

(2− o(1))
√
n.

Remark 2.3.20. One can in fact obtain an exact asymptotic expan-

sion of the moments E tr(Mk) as a polynomial in n, known as the

genus expansion of the moments. This expansion is however some-

what difficult to work with from a combinatorial perspective (except

at top order) and will not be used here.



148 2. Random matrices

2.3.6. Removing the logarithm. The upper bound in Proposition

2.3.13 loses a logarithm in comparison to the lower bound coming from

Theorem 2.3.16. We now discuss how to remove this logarithm.

Suppose that we could eliminate the ok(1) error in Theorem

2.3.16. Then from (2.66) we would have

E‖M‖kop ≤ Ck/2nk/2+1

and hence by Markov’s inequality(1.13)

P(‖M‖op > λ) ≤ λ−kCk/2nk/2+1.

Applying this with λ = (2 + ε)
√
n for some fixed ε > 0, and setting

k to be a large multiple of log n, we see that ‖M‖op ≤ (2 +O(ε))
√
n

asymptotically almost surely, which on selecting ε to grow slowly in

n gives in fact that ‖M‖op ≤ (2 + o(1))
√
n asymptotically almost

surely, thus complementing the lower bound in Proposition 2.3.19.

This argument was not rigorous because it did not address the

ok(1) error. Without a more quantitative accounting of this error, one

cannot set k as large as log n without losing control of the error terms;

and indeed, a crude accounting of this nature will lose factors of kk

which are unacceptable. Nevertheless, by tightening the hypotheses

a little bit and arguing more carefully, we can get a good bound, for

k in the region of interest:

Theorem 2.3.21 (Improved moment bound). Let M be a real sym-

metric random matrix, with the upper triangular elements ξij, i ≤ j

jointly independent with mean zero and variance one, and bounded in

magnitude by O(n0.49) (say). Let k be a positive even integer of size

k = O(log2 n) (say). Then we have

E tr(Mk) = Ck/2n
k/2+1 +O(kO(1)2knk/2+0.98)

where Ck/2 is given by (2.71). In particular, from the trivial bound

Ck/2 ≤ 2k (which is obvious from the Dyck words definition) one has

(2.72) E tr(Mk) ≤ (2 + o(1))knk/2+1.

One can of course adjust the parameters n0.49 and log2 n in the

above theorem, but we have tailored these parameters for our appli-

cation to simplify the exposition slightly.
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Proof. We may assume n large, as the claim is vacuous for bounded

n.

We again expand using (2.70), and discard all the cycles in which

there is an edge that only appears once. The contribution of the

non-crossing cycles was already computed in the previous section to

be

Ck/2n(n− 1) . . . (n− k/2),

which can easily be computed (e.g. by taking logarithms, or using

Stirling’s formula) to be (Ck/2 + o(1))nk/2+1. So the only task is to

show that the net contribution of the remaining cycles isO(kO(1)2knk/2).

Consider one of these cycles (i1, . . . , ik); it has j distinct edges

for some 1 ≤ j ≤ k/2 (with each edge repeated at least once).

We order the j distinct edges e1, . . . , ej by their first appearance

in the cycle. Let a1, . . . , aj be the multiplicities of these edges, thus

the a1, . . . , aj are all at least 2 and add up to k. Observe from the mo-

ment hypotheses that the moment E|ξij |a is bounded by O(n0.49)a−2

for a ≥ 2. Since a1 + . . .+ aj = k, we conclude that the expression

Eξi1i2 . . . ξiki1

in (2.70) has magnitude at most O(n0.49)k−2j , and so the net contri-

bution of the cycles that are not non-crossing is bounded in magnitude

by

(2.73)

k/2∑
j=1

O(n0.49)k−2j
∑

a1,...,aj

Na1,...,aj

where a1, . . . , aj range over integers that are at least 2 and which

add up to k, and Na1,...,aj is the number of cycles that are not

non-crossing and have j distinct edges with multiplicity a1, . . . , aj
(in order of apeparance). It thus suffices to show that (2.73) is

O(kO(1)2knk/2+0.98).

Next, we estimate Na1,...,aj for a fixed a1, . . . , aj . Given a cycle

(i1, . . . , ik), we traverse its k legs (which each traverse one of the edges

e1, . . . , ej) one at a time and classify them into various categories:

(i) High-multiplicity legs, which use an edge ei whose multiplic-

ity ai is larger than two.
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(ii) Fresh legs, which use an edge ei with ai = 2 for the first

time.

(iii) Return legs, which use an edge ei with ai = 2 that has

already been traversed by a previous fresh leg.

We also subdivide fresh legs into innovative legs, which take one

to a vertex one has not visited before, and non-innovative legs, which

take one to a vertex that one has visited before.

At any given point in time when traversing this cycle, we define an

available edge to be an edge ei of multiplicity ai = 2 that has already

been traversed by its fresh leg, but not by its return leg. Thus, at any

given point in time, one travels along either a high-multiplicity leg,

a fresh leg (thus creating a new available edge), or one returns along

an available edge (thus removing that edge from availability).

Call a return leg starting from a vertex v forced if, at the time

one is performing that leg, there is only one available edge from v,

and unforced otherwise (i.e. there are two or more available edges to

choose from).

We suppose that there are l := #{1 ≤ i ≤ j : ai > 2} high-

multiplicity edges among the e1, . . . , ej , leading to j− l fresh legs and

their j − l return leg counterparts. In particular, the total number of

high-multiplicity legs is

(2.74)
∑
ai>2

ai = k − 2(j − l).

Since
∑
ai>2 ai ≥ 3l, we conclude the bound

(2.75) l ≤ k − 2j.

We assume that there are m non-innovative legs among the j − l
fresh legs, leaving j − l − m innovative legs. As the cycle is not

non-crossing, we either have j < k/2 or m > 0.

Similarly, we assume that there are r unforced return legs among

the j − l total return legs. We have an important estimate:

Lemma 2.3.22 (Not too many unforced return legs). We have

r ≤ 2(m+
∑
ai>2

ai).
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In particular, from (2.74), (2.75), we have

r ≤ O(k − 2j) +O(m).

Proof. Let v be a vertex visited by the cycle which is not the initial

vertex i1. Then the very first arrival at v comes from a fresh leg,

which immediately becomes available. Each departure from v may

create another available edge from v, but each subsequent arrival at

v will delete an available leg from v, unless the arrival is along a non-

innovative or high-multiplicity edge20. Finally, any returning leg that

departs from v will also delete an available edge from v.

This has two consequences. Firstly, if there are no non-innovative

or high-multiplicity edges arriving at v, then whenever one arrives at

v, there is at most one available edge from v, and so every return

leg from v is forced. (And there will be only one such return leg.)

If instead there are non-innovative or high-multiplicity edges arriving

at v, then we see that the total number of return legs from v is at

most one plus the number of such edges. In both cases, we conclude

that the number of unforced return legs from v is bounded by twice

the number of non-innovative or high-multiplicity edges arriving at v.

Summing over v, one obtains the claim. �

Now we return to the task of counting Na1,...,aj , by recording

various data associated to any given cycle (i1, . . . , ik) contributing

to this number. First, fix m, r. We record the initial vertex i1 of

the cycle, for which there are n possibilities. Next, for each high-

multiplicity edge ei (in increasing order of i), we record all the ai
locations in the cycle where this edge is used; the total number of

ways this can occur for each such edge can be bounded above by kai ,

so the total entropy cost here is k
∑
ai>2 ai = kk−2(j−l). We also record

the final endpoint of the first occurrence of the edge ei for each such

i; this list of l vertices in {1, . . . , n} has at most nl possibilities.

For each innovative leg, we record the final endpoint of that leg,

leading to an additional list of j− l−m vertices with at most nj−l−m

possibilities.

20Note that one can loop from v to itself and create an available edge, but this is
along a non-innovative edge and so is not inconsistent with the previous statements.
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For each non-innovative leg, we record the position of that leg,

leading to a list of m numbers from {1, . . . , k}, which has at most km

possibilities.

For each unforced return leg, we record the position of the cor-

responding fresh leg, leading to a list of r numbers from {1, . . . , k},
which has at most kr possibilities.

Finally, we record a Dyck-like word of length k, in which we place

a ( whenever the leg is innovative, and ) otherwise (the brackets need

not match here). The total entropy cost here can be bounded above

by 2k.

We now observe that all this data (together with l,m, r) can be

used to completely reconstruct the original cycle. Indeed, as one

traverses the cycle, the data already tells us which edges are high-

multiplicity, which ones are innovative, which ones are non-innovative,

and which ones are return legs. In all edges in which one could possi-

bly visit a new vertex, the location of that vertex has been recorded.

For all unforced returns, the data tells us which fresh leg to backtrack

upon to return to. Finally, for forced returns, there is only one avail-

able leg to backtrack to, and so one can reconstruct the entire cycle

from this data.

As a consequence, for fixed l,m and r, there are at most

nkk−2(j−l)nlnj−l−mkmkr2k

contributions to Na1,...,aj ; using (2.75), (2.3.22) we can bound this by

kO(k−2j)+O(m)nj−m+12k.

Summing over the possible values of m, r (recalling that we either

have j < k/2 or m > 0, and also that k = O(log2 n)) we obtain

Na1,...,aj ≤ kO(k−2j)+O(1)nmax(j+1,k/2)2k.

The expression (2.73) can then be bounded by

2k
k/2∑
j=1

O(n0.49)k−2jkO(k−2j)+O(1)nmax(j+1,k/2)
∑

a1,...,aj

1.

When j is exactly k/2, then all the a1, . . . , aj must equal 2, and so the

contribution of this case simplifies to 2kkO(1)nk/2. For j < k/2, the

numbers a1−2, . . . , aj−2 are non-negative and add up to k−2j, and
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so the total number of possible values for these numbers (for fixed j)

can be bounded crudely by jk−2j ≤ kk−2j (for instance). Putting all

this together, we can bound (2.73) by

2k[kO(1)nk/2 +

k/2−1∑
j=1

O(n0.49)k−2jkO(k−2j)+O(1)nj+1kk−2j ]

which simplifies by the geometric series formula (and the hypothesis

k = O(log2 n)) to

O(2kkO(1)nk/2+0.98)

as required. �

We can use this to conclude the following matching upper bound

to Proposition 2.3.19, due to Bai and Yin[BaYi1988]:

Theorem 2.3.23 (Weak Bai-Yin theorem, upper bound). Let M =

(ξij)1≤i,j≤n be a real symmetric matrix whose entries all have the

same distribution ξ, with mean zero, variance one, and fourth moment

O(1). Then for every ε > 0 independent of n, one has ‖M‖op ≤
(2 + ε)

√
n asymptotically almost surely. In particular, ‖M‖op ≤ (2 +

o(1))
√
n asymptotically almost surely; as another consequence, the

median of ‖M‖op is at most (2 + o(1))
√
n. (If ξ is bounded, we see

in particular from Proposition 2.3.19 that the median is in fact equal

to (2 + o(1))
√
n.)

The fourth moment hypothesis is best possible, as seen in the

discussion after Theorem 2.3.8. We will discuss some generalisations

and improvements of this theorem in other directions below.

Proof. To obtain Theorem 2.3.23 from Theorem 2.3.21 we use the

truncation method. We split each ξij as ξij,≤n0.49 + ξij,>n0.49 in the

usual manner, and split M = M≤n0.49 + M>n0.49 accordingly. We

would like to apply Theorem 2.3.21 to M≤n0.49 , but unfortunately the

truncation causes some slight adjustment to the mean and variance

of the ξij,≤n0.49 . The variance is not much of a problem; since ξij had

variance 1, it is clear that ξij,≤n0.49 has variance at most 1, and it

is easy to see that reducing the variance only serves to improve the

bound (2.72). As for the mean, we use the mean zero nature of ξij to
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write

Eξij,≤n0.49 = −Eξij,>n0.49 .

To control the right-hand side, we use the trivial inequality |ξij,≤n0.49 | ≤
n−3×0.49|ξij |4 and the bounded fourth moment hypothesis to conclude

that

Eξij,≤n0.49 = O(n−1.47).

Thus we can write M≤n0.49 = M̃≤n0.49 + EM≤n0.49 , where M̃≤n0.49 is

the random matrix with coefficients

ξ̃ij,≤n0.49 := ξij,≤n0.49 −Eξij,≤n0.49

and EM≤n0.49 is a matrix whose entries have magnitude O(n−1.47). In

particular, by Schur’s test this matrix has operator norm O(n−0.47),

and so by the triangle inequality

‖M‖op ≤ ‖M̃≤n0.49‖op + ‖M>n0.49‖op +O(n−0.47).

The error term O(n−0.47) is clearly negligible for n large, and it will

suffice to show that

(2.76) ‖M̃≤n0.49‖op ≤ (2 + ε/3)
√
n

and

(2.77) ‖M>n0.49‖op ≤
ε

3

√
n

asymptotically almost surely.

We first show (2.76). We can now apply Theorem 2.3.21 to con-

clude that

E‖M̃≤n0.49‖kop ≤ (2 + o(1))knk/2+1

for any k = O(log2 n). In particular, we see from Markov’s inequal-

ity(1.13) that (2.76) holds with probability at most(
2 + o(1)

2 + ε/3

)k
n.

Setting k to be a large enough multiple of log n (depending on ε),

we thus see that this event (2.76) indeed holds asymptotically almost

surely21.

21Indeed, one can ensure it happens with overwhelming probability, by letting
k/ logn grow slowly to infinity.
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Now we turn to (2.77). The idea here is to exploit the sparseness

of the matrix M>n0.49 . First let us dispose of the event that one of

the entries ξij has magnitude larger than ε
3

√
n (which would certainly

cause (2.77) to fail). By the union bound, the probability of this event

is at most

n2P
(
|ξ| ≥ ε

3

√
n
)
.

By the fourth moment bound on ξ and dominated convergence, this

expression goes to zero as n → ∞. Thus, asymptotically almost

surely, all entries are less than ε
3

√
n.

Now let us see how many non-zero entries there are in M>n0.49 .

By Markov’s inequality(1.13) and the fourth moment hypothesis, each

entry has a probability O(n−4×0.49) = O(n−1.96) of being non-zero;

by the first moment method, we see that the expected number of

entries is O(n0.04). As this is much less than n, we expect it to be

unlikely that any row or column has more than one entry. Indeed,

from the union bound and independence, we see that the probability

that any given row and column has at least two non-zero entries is at

most

n2 ×O(n−1.96)2 = O(n−1.92)

and so by the union bound again, we see that with probability at least

1−O(n−0.92) (and in particular, asymptotically almost surely), none

of the rows or columns have more than one non-zero entry. As the

entries have magnitude at most ε
3

√
n, the bound (2.77) now follows

from Schur’s test, and the claim follows. �

We can upgrade the asymptotic almost sure bound to almost sure

boundedness:

Theorem 2.3.24 (Strong Bai-Yin theorem, upper bound). Let ξ be

a real random variable with mean zero, variance 1, and finite fourth

moment, and for all 1 ≤ i ≤ j, let ξij be an iid sequence with distri-

bution ξ, and set ξji := ξij. Let Mn := (ξij)1≤i,j≤n be the random

matrix formed by the top left n×n block. Then almost surely one has

lim supn→∞ ‖Mn‖op/
√
n ≤ 2.
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Exercise 2.3.14. By combining the above results with Proposition

2.3.19 and Exercise 2.3.5, show that with the hypotheses of Theo-

rem 2.3.24 with ξ bounded, one has limn→∞ ‖Mn‖op/
√
n = 2 almost

surely22.

Proof. We first give ourselves an epsilon of room (cf. [Ta2010,

§2.7]). It suffices to show that for each ε > 0, one has

(2.78) lim sup
n→∞

‖Mn‖op/
√
n ≤ 2 + ε

almost surely.

Next, we perform dyadic sparsification (as was done in the proof

of the strong law of large numbers, Theorem 2.1.8). Observe that

any minor of a matrix has its operator norm bounded by that of the

larger matrix; and so ‖Mn‖op is increasing in n. Because of this, it

will suffice to show (2.78) almost surely for n restricted to a lacunary

sequence, such as n = nm := b(1 + ε)mc for m = 1, 2, . . ., as the

general case then follows by rounding n upwards to the nearest nm
(and adjusting ε a little bit as necessary).

Once we sparsified, it is now safe to apply the Borel-Cantelli

lemma (Exercise 1.1.1), and it will suffice to show that

∞∑
m=1

P(‖Mnm‖op ≥ (2 + ε)
√
nm) <∞.

To bound the probabilities P(‖Mnm‖op ≥ (2+ε)
√
nm), we inspect the

proof of Theorem 2.3.23. Most of the contributions to this probability

decay polynomially in nm (i.e. are of the form O(n−cm ) for some

c > 0) and so are summable. The only contribution which can cause

difficulty is the contribution of the event that one of the entries of

Mnm exceeds ε
3

√
nm in magnitude; this event was bounded by

n2
mP(|ξ| ≥ ε

3

√
nm).

But if one sums over m using Fubini’s theorem and the geometric

series formula, we see that this expression is bounded by Oε(E|ξ|4),

which is finite by hypothesis, and the claim follows. �

22The same claim is true without the boundedness hypothesis; we will see this in
Section 2.4.
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Now we discuss some variants and generalisations of the Bai-Yin

result.

Firstly, we note that the results stated above require the diago-

nal and off-diagonal terms to have the same distribution. This is not

the case for important ensembles such as the Gaussian Orthogonal

Ensemble (GOE), in which the diagonal entries have twice as much

variance as the off-diagonal ones. But this can easily be handled by

considering the diagonal separately. For instance, consider a diago-

nal matrix D = diag(ξ11, . . . , ξnn) where the ξii ≡ ξ are identically

distributed with finite second moment. The operator norm of this

matrix is just sup1≤i≤n |ξii|, and so by the union bound

P(‖D‖op > ε
√
n) ≤ nP(|ξ| > ε

√
n).

From the finite second moment and dominated convergence, the right-

hand side is oε(1), and so we conclude that for for every fixed ε > 0,

‖D‖op ≤ ε
√
n asymptotically almost surely; diagonalising, we con-

clude that ‖D‖op = o(
√
n) asymptotically almost surely. Because

of this and the triangle inequality, we can modify the diagonal by

any amount with identical distribution and bounded second moment

(a similar argument also works for non-identical distributions if one

has uniform control of some moment beyond the second, such as the

fourth moment) while only affecting all operator norms by o(
√
n).

Exercise 2.3.15. Modify this observation to extend the weak and

strong Bai-Yin theorems to the case where the diagonal entries are

allowed to have different distribution than the off-diagonal terms, and

need not be independent of each other or of the off-diagonal terms,

but have uniformly bounded fourth moment.

Secondly, it is a routine matter to generalise the Bai-Yin result

from real symmetric matrices to Hermitian matrices, basically for the

same reasons that Exercise 2.3.13 works. We leave the details to the

interested reader.

The Bai-Yin results also hold for iid random matrices, where

ξij ≡ ξ has mean zero, unit variance, and bounded fourth moment;

this is a result of Yin, Bai, and Krishnaiah[YiBaKr1988]. Because

of the lack of symmetry, the eigenvalues need not be real, and the

bounds (2.66) no longer apply. However, there is a substitute, namely
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the bound

(2.79) ‖M‖kop ≤ tr((MM∗)k/2) ≤ n‖M‖kop,

valid for any n × n matrix M with complex entries and every even

positive integer k.

Exercise 2.3.16. Prove (2.79).

It is possible to adapt all of the above moment calculations for

tr(Mk) in the symmetric or Hermitian cases to give analogous results

for tr((MM∗)k/2) in the non-symmetric cases; we do not give the

details here, but mention that the cycles now go back and forth along

a bipartite graph with n vertices in each class, rather than in the

complete graph on n vertices, although this ends up not to affect the

enumerative combinatorics significantly. Another way of viewing this

is through the simple observation that the operator norm of a non-

symmetric matrix M is equal to the operator norm of the augmented

matrix

(2.80) M̃ :=

(
0 M

M∗ 0

)
which is a 2n × 2n Hermitian matrix. Thus one can to some extent

identify an n × n iid matrix M with a 2n × 2n Wigner-type matrix

M̃ , in which two n× n blocks of that matrix are set to zero.

Exercise 2.3.17. If M has singular values σ1, . . . , σn, show that M̃

has eigenvalues ±σ1, . . . ,±σn. This suggests that the theory of the

singular values of an iid matrix should resemble to some extent the

theory of eigenvalues of a Wigner matrix; we will see several examples

of this phenomenon in later notes.

When one assumes more moment conditions on ξ than bounded

fourth moment, one can obtain substantially more precise asymptotics

on tr(Mk) than given by results such as Theorem 2.3.21, particularly

if one also assumes that the underlying random variable ξ is symmet-

ric (i.e. ξ ≡ −ξ). At a practical level, the advantage of symmetry is

that it allows one to assume that the high-multiplicity edges in a cycle

are traversed an even number of times; see the following exercise.
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Exercise 2.3.18. Let X be a bounded real random variable. Show

that X is symmetric if and only if EXk = 0 for all positive odd

integers k.

Next, extend the previous result to the case when X is subgaus-

sian rather than bounded. (Hint: The slickest way to do this is via

the characteristic function eitX and analytic continuation; it is also

instructive to find a “real-variable” proof that avoids the use of this

function.)

By using these methods, it is in fact possible to show that un-

der various hypotheses, ‖M‖op is concentrated in the range [2
√
n −

O(n−1/6), 2
√
n + O(n−1/6)], and even to get a universal distribu-

tion for the normalised expression (‖M‖op − 2
√
n)n1/6, known as

the Tracy-Widom law. See this [So1999] for details. There has also

been a number of subsequent variants and refinements of this result

(as well as counterexamples when not enough moment hypotheses are

assumed); see23 [So2004, SoFy2005, Ru2007, Pe2006, Vu2007,

PeSo2007, Pe2009, Kh2009, TaVu2009c].

2.4. The semicircular law

We can now turn attention to one of the centerpiece universality re-

sults in random matrix theory, namely the Wigner semicircle law for

Wigner matrices. Recall from Section 2.3 that a Wigner Hermitian

matrix ensemble is a random matrix ensemble Mn = (ξij)1≤i,j≤n of

Hermitian matrices (thus ξij = ξji; this includes real symmetric ma-

trices as an important special case), in which the upper-triangular

entries ξij , i > j are iid complex random variables with mean zero

and unit variance, and the diagonal entries ξii are iid real variables,

independent of the upper-triangular entries, with bounded mean and

variance. Particular special cases of interest include the Gaussian Or-

thogonal Ensemble (GOE), the symmetric random sign matrices (aka

symmetric Bernoulli ensemble), and the Gaussian Unitary Ensemble

(GUE).

23Similar results for some non-independent distributions are also available, see
e.g. the paper [DeGi2007], which (like many of the other references cited above)
builds upon the original work of Tracy and Widom[TrWi2002] that handled special
ensembles such as GOE and GUE.)
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In Section 2.3 we saw that the operator norm of Mn was typ-

ically of size O(
√
n), so it is natural to work with the normalised

matrix 1√
n
Mn. Accordingly, given any n × n Hermitian matrix Mn,

we can form the (normalised) empirical spectral distribution (or ESD

for short)

µ 1√
n
Mn

:=
1

n

n∑
j=1

δλj(Mn)/
√
n,

of Mn, where λ1(Mn) ≤ . . . ≤ λn(Mn) are the (necessarily real)

eigenvalues of Mn, counting multiplicity. The ESD is a probability

measure, which can be viewed as a distribution of the normalised

eigenvalues of Mn.

When Mn is a random matrix ensemble, then the ESD µ 1√
n
Mn

is now a random measure - i.e. a random variable24 taking values in

the space Pr(R) of probability measures on the real line.

Now we consider the behaviour of the ESD of a sequence of Her-

mitian matrix ensembles Mn as n → ∞. Recall from Section 1.1

that for any sequence of random variables in a σ-compact metrisable

space, one can define notions of convergence in probability and con-

vergence almost surely. Specialising these definitions to the case of

random probability measures on R, and to deterministic limits, we

see that a sequence of random ESDs µ 1√
n
Mn

converge in probability

(resp. converge almost surely) to a deterministic limit µ ∈ Pr(R)

(which, confusingly enough, is a deterministic probability measure!)

if, for every test function ϕ ∈ Cc(R), the quantities
∫
R
ϕ dµ 1√

n
Mn

converge in probability (resp. converge almost surely) to
∫
R
ϕ dµ.

Remark 2.4.1. As usual, convergence almost surely implies conver-

gence in probability, but not vice versa. In the special case of random

probability measures, there is an even weaker notion of convergence,

namely convergence in expectation, defined as follows. Given a ran-

dom ESD µ 1√
n
Mn

, one can form its expectation Eµ 1√
n
Mn
∈ Pr(R),

24Thus, the distribution of µ 1√
n
Mn

is a probability measure on probability

measures!
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defined via duality (the Riesz representation theorem) as∫
R

ϕ dEµ 1√
n
Mn

:= E

∫
R

ϕ dµ 1√
n
Mn

;

this probability measure can be viewed as the law of a random eigen-

value 1√
n
λi(Mn) drawn from a random matrix Mn from the ensem-

ble. We then say that the ESDs converge in expectation to a limit

µ ∈ Pr(R) if Eµ 1√
n
Mn

converges the vague topology to µ, thus

E

∫
R

ϕ dµ 1√
n
Mn
→
∫
R

ϕ dµ

for all φ ∈ Cc(R).

In general, these notions of convergence are distinct from each

other; but in practice, one often finds in random matrix theory that

these notions are effectively equivalent to each other, thanks to the

concentration of measure phenomenon.

Exercise 2.4.1. Let Mn be a sequence of n × n Hermitian matrix

ensembles, and let µ be a continuous probability measure on R.

(i) Show that µ 1√
n
Mn

converges almost surely to µ if and only

if µ 1√
n

(−∞, λ) converges almost surely to µ(−∞, λ) for all

λ ∈ R.

(ii) Show that µ 1√
n
Mn

converges in probability to µ if and only

if µ 1√
n

(−∞, λ) converges in probability to µ(−∞, λ) for all

λ ∈ R.

(iii) Show that µ 1√
n
Mn

converges in expectation to µ if and only

if Eµ 1√
n

(−∞, λ) converges to µ(−∞, λ) for all λ ∈ R.

We can now state the Wigner semicircular law.

Theorem 2.4.2 (Semicircular law). Let Mn be the top left n×n mi-

nors of an infinite Wigner matrix (ξij)i,j≥1. Then the ESDs µ 1√
n
Mn

converge almost surely (and hence also in probability and in expecta-

tion) to the Wigner semicircular distribution

(2.81) µsc :=
1

2π
(4− |x|2)

1/2
+ dx.
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The semicircular law nicely complements the upper Bai-Yin theo-

rem (Theorem 2.3.24), which asserts that (in the case when the entries

have finite fourth moment, at least), the matrices 1√
n
Mn almost surely

has operator norm at most 2 + o(1). Note that the operator norm is

the same thing as the largest magnitude of the eigenvalues. Because

the semicircular distribution (2.81) is supported on the interval [−2, 2]

with positive density on the interior of this interval, Theorem 2.4.2

easily supplies the lower Bai-Yin theorem, that the operator norm of
1√
n
Mn is almost surely at least 2−o(1), and thus (in the finite fourth

moment case) the norm is in fact equal to 2 + o(1). Indeed, we have

just shown that the circular law provides an alternate proof of the

lower Bai-Yin bound (Proposition 2.3.19).

As will become clearer in the Section 2.5, the semicircular law is

the noncommutative (or free probability) analogue of the central limit

theorem, with the semicircular distribution (2.81) taking on the role

of the normal distribution. Of course, there is a striking difference

between the two distributions, in that the former is compactly sup-

ported while the latter is merely subgaussian. One reason for this

is that the concentration of measure phenomenon is more powerful

in the case of ESDs of Wigner matrices than it is for averages of iid

variables; compare the concentration of measure results in Section 2.3

with those in Section 2.1.

There are several ways to prove (or at least to heuristically jus-

tify) the circular law. In this section we shall focus on the two most

popular methods, the moment method and the Stieltjes transform

method, together with a third (heuristic) method based on Dyson

Brownian motion (see Section 3.1). In Section 2.5 we shall study the

free probability approach, and in Section 2.6 we will study the the

determinantal processes method approach (although this method is

initially only restricted to highly symmetric ensembles, such as GUE).

2.4.1. Preliminary reductions. Before we begin any of the proofs

of the circular law, we make some simple observations which will

reduce the difficulty of the arguments in the sequel.

The first observation is that the Cauchy interlacing law (Exercise

1.3.14) shows that the ESD of 1√
n
Mn is very stable in n. Indeed, we
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see from the interlacing law that

n

m
µ 1√

n
Mn

(−∞, λ/
√
n)− n−m

m
≤ µ 1√

m
Mm

(−∞, λ/
√
m)

≤ n

m
µ 1√

n
Mn

(−∞, λ/
√
n)

for any threshold λ and any n > m > 0.

Exercise 2.4.2. Using this observation, show that to establish the

circular law (in any of the three senses of convergence), it suffices to do

so for an arbitrary lacunary sequence n1, n2, . . . of n (thus nj+1/nj ≥ c
for some c > 1 and all j).

The above lacunary reduction does not help one establish conver-

gence in probability or expectation, but will be useful25 when estab-

lishing almost sure convergence, as it significantly reduces the ineffi-

ciency of the union bound.

Next, we exploit the stability of the ESD with respect to pertur-

bations, by taking advantage of the Weilandt-Hoffmann inequality

(2.82)

n∑
j=1

|λj(A+B)− λj(A)|2 ≤ ‖B‖2F

for Hermitian matrices A,B, where ‖B‖F := (trB2)1/2 is the Frobe-

nius norm(2.64) of B; see Exercise 1.3.6 or Exercise 1.3.4. We convert

this inequality into an inequality about ESDs:

Lemma 2.4.3. For any n× n Hermitian matrices A,B, any λ, and

any ε > 0, we have

µ 1√
n

(A+B)(−∞, λ) ≤ µ 1√
n

(A)(−∞, λ+ ε) +
1

ε2n2
‖B‖2F

and similarly

µ 1√
n

(A+B)(−∞, λ) ≥ µ 1√
n

(A)(−∞, λ− ε)−
1

ε2n2
‖B‖2F .

Proof. We just prove the first inequality, as the second is similar

(and also follows from the first, by reversing the sign of A,B).

25Note that a similar lacunary reduction was also used to prove the strong law
of large numbers, Theorem 2.1.8.
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Let λi(A+B) be the largest eigenvalue of A+B less than λ
√
n,

and let λj(A) be the largest eigenvalue of A less than (λ+ε)
√
n. Our

task is to show that

i ≤ j +
1

ε2n
‖B‖2F .

If i ≤ j then we are clearly done, so suppose that i > j. Then we

have |λl(A+B)− λl(A)| ≥ ε
√
n for all j < l ≤ i, and hence

n∑
j=1

|λj(A+B)− λj(A)|2 ≥ ε2(j − i)n.

The claim now follows from (2.82). �

This has the following corollary:

Exercise 2.4.3 (Stability of ESD laws wrt small perturbations). Let

Mn be a sequence of random Hermitian matrix ensembles such that

µ 1√
n
Mn

converges almost surely to a limit µ. Let Nn be another

sequence of Hermitian random matrix ensembles such that 1
n2 ‖Nn‖2F

converges almost surely to zero. Show that µ 1√
n

(Mn+Nn) converges

almost surely to µ.

Show that the same claim holds if “almost surely” is replaced by

“in probability” or “in expectation” throughout.

Informally, this exercise allows us to discard any portion of the

matrix which is o(n) in the Frobenius norm(2.64). For instance, the

diagonal entries of Mn have a Frobenius norm of O(
√
n) almost surely,

by the strong law of large numbers (Theorem 2.1.8). Hence, without

loss of generality, we may set the diagonal equal to zero for the pur-

poses of the semicircular law.

One can also remove any component of Mn that is of rank o(n):

Exercise 2.4.4 (Stability of ESD laws wrt small rank perturbations).

Let Mn be a sequence of random Hermitian matrix ensembles such

that µ 1√
n
Mn

converges almost surely to a limit µ. Let Nn be an-

other sequence of random matrix ensembles such that 1
n rank(Nn)

converges almost surely to zero. Show that µ 1√
n

(Mn+Nn) converges

almost surely to µ. (Hint: use the Weyl inequalities instead of the

Wielandt-Hoffman inequality.)
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Show that the same claim holds if “almost surely” is replaced by

“in probability” or “in expectation” throughout.

In a similar vein, we may apply the truncation argument (much

as was done for the central limit theorem in Section 2.2) to reduce

the semicircular law to the bounded case:

Exercise 2.4.5. Show that in order to prove the semicircular law

(in the almost sure sense), it suffices to do so under the additional

hypothesis that the random variables are bounded. Similarly for the

convergence in probability or in expectation senses.

Remark 2.4.4. These facts ultimately rely on the stability of eigen-

values with respect to perturbations. This stability is automatic in the

Hermitian case, but for non-symmetric matrices, serious instabilities

can occur due to the presence of pseudospectrum. We will discuss this

phenomenon more in later sections (but see also [Ta2009b, §1.5]).

2.4.2. The moment method. We now prove the semicircular law

via the method of moments, which we have already used several times

in the previous notes. In order to use this method, it is convenient

to use the preceding reductions to assume that the coefficients are

bounded, the diagonal vanishes, and that n ranges over a lacunary

sequence. We will implicitly assume these hypotheses throughout the

rest of the section.

As we have already discussed the moment method extensively,

much of the argument here will be delegated to exercises. A full

treatment of these computations can be found in [BaSi2010].

The basic starting point is the observation that the moments of

the ESD µ 1√
n
Mn

can be written as normalised traces of powers of Mn:

(2.83)

∫
R

xk dµ 1√
n
Mn

(x) =
1

n
tr(

1√
n
Mn)k.

In particular, on taking expectations, we have∫
R

xk dEµ 1√
n
Mn

(x) = E
1

n
tr(

1√
n
Mn)k.

From concentration of measure for the operator norm of a random

matrix (Proposition 2.3.10), we see that the Eµ 1√
n
Mn

are uniformly
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subgaussian, indeed we have

Eµ 1√
n
Mn
{|x| ≥ λ} ≤ Ce−cλ

2n2

for λ > C, where C, c are absolute (so the decay in fact improves

quite rapidly with n). From this and the Carleman continuity theo-

rem (Theorem 2.2.9), we can now establish the circular law through

computing the mean and variance of moments:

Exercise 2.4.6. (i) Show that to prove convergence in expec-

tation to the semicircular law, it suffices to show that

(2.84) E
1

n
tr(

1√
n
Mn)k =

∫
R

xk dµsc(x) + ok(1)

for k = 1, 2, . . ., where ok(1) is an expression that goes to

zero as n → ∞ for fixed k (and fixed choice of coefficient

distribution ξ).

(ii) Show that to prove convergence in probability to the semi-

circular law, it suffices to show (2.84) together with the vari-

ance bound

(2.85) Var(
1

n
tr(

1√
n
Mn)k) = ok(1)

for k = 1, 2, . . ..

(iii) Show that to prove almost sure convergence to the semicir-

cular law, it suffices to show (2.84) together with the vari-

ance bound

(2.86) Var(
1

n
tr(

1√
n
Mn)k) = Ok(n−ck)

for k = 1, 2, . . . and some ck > 0. (Note here that it is useful

to restrict n to a lacunary sequence!)

Ordinarily, computing second-moment quantities such as the left-

hand side of (2.85) is harder than computing first-moment quantities

such as (2.84). But one can obtain the required variance bounds from

concentration of measure:

Exercise 2.4.7. (i) When k is a positive even integer, Use Ta-

lagrand’s inequality (Theorem 2.1.13) and convexity of the

Schatten norm ‖A‖Sk = (tr(Ak))1/k to establish (2.86) (and

hence (2.85)) when k is even.
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(ii) For k odd, the formula ‖A‖Sk = (tr(Ak))1/k still applies as

long as A is positive definite. Applying this observation,

the Bai-Yin theorem, and Talagrand’s inequality to the Sk

norms of 1√
n
Mn + cIn for a constant c > 2, establish (2.86)

(and hence (2.85)) when k is odd also.

Remark 2.4.5. More generally, concentration of measure results

(such as Talagrand’s inequality, Theorem 2.1.13) can often be used

to automatically upgrade convergence in expectation to convergence

in probability or almost sure convergence. We will not attempt to

formalise this principle here.

It is not difficult to establish (2.86), (2.85) through the moment

method as well. Indeed, recall from Theorem 2.3.16 of that we have

the expected moment

(2.87) E
1

n
tr(

1√
n
Mn)k = Ck/2 + ok(1)

for all k = 1, 2, . . ., where the Catalan number Ck/2 is zero when k is

odd, and is equal to

(2.88) Ck/2 :=
k!

(k/2 + 1)!(k/2)!

for k even.

Exercise 2.4.8. By modifying the proof of Theorem 2.3.16, show

that

(2.89) E| 1
n

tr(
1√
n
Mn)k|2 = C2

k/2 + ok(1)

and deduce (2.85). By refining the error analysis (e.g. using Theorem

2.3.21), also establish (2.86).

In view of the above computations, the establishment of the semi-

circular law now reduces to computing the moments of the semicir-

cular distribution:

Exercise 2.4.9. Show that for any k = 1, 2, 3, . . ., one has∫
R

xk dµsc(x) = Ck/2.

(Hint: use a trigonometric substitution x = 2 cos θ, and then express

the integrand in terms of Fourier phases einθ.)
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This concludes the proof of the semicircular law (for any of the

three modes of convergence).

Remark 2.4.6. In the spirit of the Lindeberg exchange method, ob-

serve that Exercise (2.4.9) is unnecessary if one already knows that

the semicircular law holds for at least one ensemble of Wigner matri-

ces (e.g. the GUE ensemble). Indeed, Exercise 2.4.9 can be deduced

from such a piece of knowledge. In such a situation, it is not neces-

sary to actually compute the main term Ck/2 on the right of (2.84);

it would be sufficient to know that that limit is universal, in that

it does not depend on the underlying distribution. In fact, it would

even suffice to establish the slightly weaker statement

E
1

n
tr

(
1√
n
Mn

)k
= E

1

n
tr

(
1√
n
M ′n

)k
+ ok(1)

whenever Mn,M
′
n are two ensembles of Wigner matrices arising from

different underlying distributions (but still normalised to have mean

zero, unit variance, and to be bounded (or at worst subgaussian)).

We will take advantage of this perspective later in these notes.

2.4.3. The Stieltjes transform method. The moment method

was computationally intensive, but straightforward. As noted in Re-

mark 2.4.6, even without doing much of the algebraic computation, it

is clear that the moment method will show that some universal limit

for Wigner matrices exists (or, at least, that the differences between

the distributions of two different Wigner matrices converge to zero).

But it is not easy to see from this method why the limit should be

given by the semicircular law, as opposed to some other distribution

(although one could eventually work this out from an inverse moment

computation).

When studying the central limit theorem, we were able to use the

Fourier method to control the distribution of random matrices in a

cleaner way than in the moment method. Analogues of this method

exist, but require non-trivial formulae from noncommutative Fourier

analysis, such as the Harish-Chandra integration formula (and also
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only work for highly symmetric ensembles, such as GUE or GOE),

and will not be discussed in this text26.

We now turn to another method, the Stieltjes transform method,

which uses complex-analytic methods rather than Fourier-analytic

methods, and has turned out to be one of the most powerful and

accurate tools in dealing with the ESD of random Hermitian matrices.

Whereas the moment method started from the identity (2.83), the

Stieltjes transform method proceeds from the identity∫
R

1

x− z
dµ 1√

n
Mn

(x) =
1

n
tr

(
1√
n
Mn − zI

)−1

for any complex z not in the support of µ 1√
n
Mn

. We refer to the

expression on the left-hand side as the Stieltjes transform of Mn or of

µ 1√
n
Mn

, and denote it by sµ 1
n
Mn

or as sn for short. The expression

( 1√
n
Mn − zI)−1 is the normalised resolvent of Mn, and plays an im-

portant role in the spectral theory of that matrix. Indeed, in contrast

to general-purpose methods such as the moment method, the Stielt-

jes transform method draws heavily on the specific linear-algebraic

structure of this problem, and in particular on the rich structure of

resolvents.

On the other hand, the Stieltjes transform can be viewed as a

generating function of the moments via the Taylor series expansion

sn(z) = −1

z
− 1

z2

1

n
trMn −

1

z3

1

n
trM2

n − . . . ,

valid for z sufficiently large. This is somewhat (though not exactly)

analogous to how the characteristic function EeitX of a scalar random

variable can be viewed as a generating function of the moments EXk.

Now let us study the Stieltjes transform method more systemat-

ically. Given any probability measure µ on the real line, we can form

its Stieltjes transform

sµ(z) :=

∫
R

1

x− z
dµ(x)

for any z outside of the support of µ; in particular, the Stieltjes

transform is well-defined on the upper and lower half-planes in the

26Section 2.6, however, will contain some algebraic identities related in some ways
to the noncommutative Fourier-analytic approach.
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complex plane. Even without any further hypotheses on µ other than

it is a probability measure, we can say a remarkable amount about

how this transform behaves in z. Applying conjugations we obtain

the symmetry

(2.90) sµ(z) = sµ(z)

so we may as well restrict attention to z in the upper half-plane (say).

Next, from the trivial bound

| 1

x− z
| ≤ 1

|Im(z)|
one has the pointwise bound

(2.91) |sµ(z)| ≤ 1

|Im(z)|
.

In a similar spirit, an easy application of dominated convergence gives

the asymptotic

(2.92) sµ(z) =
1 + oµ(1)

z

where oµ(1) is an expression that, for any fixed µ, goes to zero as

z goes to infinity non-tangentially in the sense that |Re(z)|/| Im(z)|
is kept bounded, where the rate of convergence is allowed to depend

on µ. From differentiation under the integral sign (or an application

of Morera’s theorem and Fubini’s theorem) we see that sµ(z) is com-

plex analytic on the upper and lower half-planes; in particular, it is

smooth away from the real axis. From the Cauchy integral formula

(or differentiation under the integral sign) we in fact get some bounds

for higher derivatives of the Stieltjes transform away from this axis:

(2.93) | d
j

dzj
sµ(z)| = Oj

(
1

|Im(z)|j+1

)
.

Informally, sµ “behaves like a constant” at scales significantly less

than the distance |Im(z)| to the real axis; all the really interesting

action here is going on near that axis.

The imaginary part of the Stieltjes transform is particularly in-

teresting. Writing z = a+ ib, we observe that

Im
1

x− z
=

b

(x− a)2 + b2
> 0



2.4. The semicircular law 171

and so we see that

Im(sµ(z)) > 0

for z in the upper half-plane; thus sµ is a complex-analytic map from

the upper half-plane to itself, a type of function known as a Herglotz

function27.

One can also express the imaginary part of the Stieltjes transform

as a convolution

(2.94) Im(sµ(a+ ib)) = πµ ∗ Pb(a)

where Pb is the Poisson kernel

Pb(x) :=
1

π

b

x2 + b2
=

1

b
P1(

x

b
).

As is well known, these kernels form a family of approximations to

the identity , and thus µ∗Pb converges in the vague topology to µ (see

e.g. [Ta2010, §1.13]). Thus we see that

Imsµ(·+ ib) ⇀ πµ

as b→ 0+ in the vague topology,or equivalently (by (2.90)) that28

(2.95)
sµ(·+ ib)− sµ(· − ib)

2πi
⇀ µ

as b→ 0+. Thus we see that a probability measure µ can be recovered

in terms of the limiting behaviour of the Stieltjes transform on the

real axis.

A variant of the above machinery gives us a criterion for conver-

gence:

Exercise 2.4.10 (Stieltjes continuity theorem). Let µn be a sequence

of random probability measures on the real line, and let µ be a de-

terministic probability measure.

27In fact, all complex-analytic maps from the upper half-plane to itself that obey
the asymptotic (2.92) are of this form; this is a special case of the Herglotz repre-
sentation theorem, which also gives a slightly more general description in the case
when the asymptotic (2.92) is not assumed. A good reference for this material and its
consequences is [Ga2007].

28The limiting formula (2.95) is closely related to the Plemelj formula in potential
theory.
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(i) µn converges almost surely to µ in the vague topology if and

only if sµn(z) converges almost surely to sµ(z) for every z

in the upper half-plane.

(ii) µn converges in probability to µ in the vague topology if and

only if sµn(z) converges in probability to sµ(z) for every z

in the upper half-plane.

(iii) µn converges in expectation to µ in the vague topology if

and only if Esµn(z) converges to sµ(z) for every z in the

upper half-plane.

(Hint: The “only if” parts are fairly easy. For the “if” parts, take a

test function φ ∈ Cc(R) and approximate
∫
R
φ dµ by

∫
R
φ ∗ Pb dµ =

1
π

∫
R
sµ(a+ ib)φ(a) da. Then approximate this latter integral in turn

by a Riemann sum, using (2.93).)

Thus, to prove the semicircular law, it suffices to show that for

each z in the upper half-plane, the Stieltjes transform

sn(z) = sµ 1√
n
Mn

(z) =
1

n
tr

(
1√
n
Mn − zI

)−1

converges almost surely (and thus in probability and in expectation)

to the Stieltjes transform sµsc
(z) of the semicircular law.

It is not difficult to compute the Stieltjes transform sµsc
of the

semicircular law, but let us hold off on that task for now, because

we want to illustrate how the Stieltjes transform method can be used

to find the semicircular law, even if one did not know this law in

advance, by directly controlling sn(z). We will fix z = a+ ib to be a

complex number not on the real line, and allow all implied constants

in the discussion below to depend on a and b (we will focus here only

on the behaviour as n→∞).

The main idea here is predecessor comparison: to compare the

transform sn(z) of the n×n matrix Mn with the transform sn−1(z) of

the top left n−1×n−1 minor Mn−1, or of other minors. For instance,

we have the Cauchy interlacing law (Exercise 1.74), which asserts that

the eigenvalues λ1(Mn−1), . . . , λn−1(Mn−1) of Mn−1 intersperse that

of λ1(Mn), . . . , λn(Mn). This implies that for a complex number a+ib
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with b > 0, the difference

n−1∑
j=1

b

(λj(Mn−1)/
√
n− a)2 + b2

−
n∑
j=1

b

(λj(Mn)/
√
n− a)2 + b2

is an alternating sum of evaluations of the function x 7→ b
(x−a)2+b2 .

The total variation of this function is O(1) (recall that we are sup-

pressing dependence of constaants on a, b), and so the alternating

sum above is O(1). Writing this in terms of the Stieltjes transform,

we conclude that√
n(n− 1)sn−1(

√
n√

n− 1
(a+ ib))− nsn(a+ ib) = O(1).

Applying (2.93) to approximate sn−1(
√
n√
n−1

(a+ ib)) by sn−1(a+ ib),

we conclude that

(2.96) sn(a+ ib) = sn−1(a+ ib) +O(
1

n
).

So for fixed z = a+ ib away from the real axis, the Stieltjes transform

sn(z) is quite stable in n.

This stability has the following important consequence. Observe

that while the left-hand side of (2.96) depends on the n × n matrix

Mn, the right-hand side depends only on the top left minor Mn−1

of that matrix. In particular, it is independent of the nth row and

column of Mn. This implies that this entire row and column has only

a limited amount of influence on the Stieltjes transform sn(a + ib):

no matter what value one assigns to this row and column (including

possibly unbounded values, as long as one keeps the matrix Hermitian

of course), the transform sn(a+ ib) can only move by O( |a|+|b|b2n ).

By permuting the rows and columns, we obtain that in fact any

row or column of Mn can influence sn(a+ ib) is at most O( 1
n ). (This

is closely related to the observation in Exercise 2.4.4 that low rank

perturbations do not significantly affect the ESD.) On the other hand,

the rows of (the upper triangular portion of) Mn are jointly indepen-

dent. When Mn is a Wigner random matrix, we can then apply a

standard concentration of measure result, such as McDiarmid’s in-

equality (Theorem 2.1.10) to conclude concetration of sn around its
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mean:

(2.97) P(|sn(a+ ib)−Esn(a+ ib)| ≥ λ/
√
n) ≤ Ce−cλ

2

for all λ > 0 and some absolute constants C, c > 0. (This is not

necessarily the strongest concentration result one can establish for the

Stieltjes transform, but it will certainly suffice for our discussion here.)

In particular, we see from the Borel-Cantelli lemma (Exercise 1.1.1)

that for any fixed z away from the real line, sn(z)−Esn(z) converges

almost surely (and thus also in probability) to zero. As a consequence,

convergence of sn(z) in expectation automatically implies convergence

in probability or almost sure convergence.

However, while concentration of measure tells us that sn(z) is

close to its mean, it does not shed much light as to what this mean

is. For this, we have to go beyond the Cauchy interlacing formula

and deal with the resolvent ( 1√
n
Mn − zIn)−1 more directly. Firstly,

we observe from the linearity of trace that

Esn(z) =
1

n

n∑
j=1

E

[
(

1√
n
Mn − zIn)−1

]
jj

where [A]jj denotes the jj component of a matrix A. Because Mn is

a Wigner matrix, it is easy to see on permuting the rows and columns

that all of the random variables [( 1√
n
Mn − zIn)−1]jj have the same

distribution. Thus we may simplify the above formula as

(2.98) Esn(z) = E

[
(

1√
n
Mn − zIn)−1

]
nn

.

So now we have to compute the last entry of an inverse of a matrix.

There are of course a number of formulae for this, such as Cramer’s

rule. But it will be more convenient here to use a formula based

instead on the Schur complement :

Exercise 2.4.11. Let An be a n × n matrix, let An−1 be the top

left n − 1 × n − 1 minor, let ann be the bottom right entry of An,

let X ∈ Cn−1 be the right column of An with the bottom right entry

removed, and let (X ′)∗ ∈ (Cn−1)∗ be the bottom row with the bottom

right entry removed. In other words,

An =

(
An−1 X

(X ′)∗ ann

)
.
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Assume that An and An−1 are both invertible. Show that

[A−1
n ]nn =

1

ann − (X ′)∗A−1
n−1X

.

(Hint: Solve the equation Anv = en, where en is the nth basis vector,

using the method of Schur complements (or from first principles).)

The point of this identity is that it describes (part of) the inverse

of An in terms of the inverse of An−1, which will eventually pro-

vide a non-trivial recursive relationship between sn(z) and sn−1(z),

which can then be played off against (2.96) to solve for sn(z) in the

asymptotic limit n→∞.

In our situation, the matrix 1√
n
Mn−zIn and its minor 1√

n
Mn−1−

zIn−1 is automatically invertible. Inserting the above formula into

(2.98) (and recalling that we normalised the diagonal of Mn to van-

ish), we conclude that

(2.99) Esn(z) = −E
1

z + 1
nX
∗( 1√

n
Mn−1 − zIn−1)−1X

,

where X ∈ Cn−1 is the top right column of Mn with the bottom

entry ξnn removed.

One may be concerned that the denominator here could vanish.

However, observe that z has imaginary part b if z = a + ib. Fur-

thermore, from the spectral theorem we see that the imaginary part

of ( 1√
n
Mn−1 − zIn−1)−1 is positive definite, and so X∗( 1√

n
Mn−1 −

zIn−1)−1X has non-negative imaginary part. As a consequence the

magnitude of the denominator here is bounded below by |b|, and so

its reciprocal is O(1) (compare with (2.91)). So the reciprocal here is

not going to cause any discontinuity, as we are considering b is fixed

and non-zero.

Now we need to understand the expressionX∗( 1√
n
Mn−1−zIn−1)−1X.

We write this as X∗RX, where R is the resolvent matrix R :=

( 1√
n
Mn−1−zIn−1)−1. The distribution of the random matrix R could

conceivably be quite complicated. However, the key point is that the

vector X only involves the entries of Mn that do not lie in Mn−1, and

so the random matrix R and the vector X are independent. Because

of this, we can use the randomness of X to do most of the work in
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understanding the expression X∗RX, without having to know much

about R at all.

To understand this, let us first condition R to be a determin-

istic matrix R = (rij)1≤i,j≤n−1, and see what we can do with the

expression X∗RX.

Firstly, observe that R will not be arbitrary; indeed, from the

spectral theorem we see that R will have operator norm at most

O(1). Meanwhile, from the Chernoff inequality (Theorem 2.1.3) or

Hoeffding inequality (Exercise 2.1.4) we know that X has magnitude

O(
√
n) with overwhelming probability. So we know that X∗RX has

magnitude O(n) with overwhelming probability.

Furthermore, we can use concentration of measure as follows.

Given any positive semi-definite matrix A of operator norm O(1),

the expression (X∗AX)1/2 = ‖A1/2X‖ is a Lipschitz function of X

with operator norm O(1). Applying Talagrand’s inequality (Theorem

2.1.13) we see that this expression concentrates around its median:

P(|(X∗AX)1/2 −M(X∗AX)1/2| ≥ λ) ≤ Ce−cλ
2

for any λ > 0. On the other hand, ‖A1/2X‖ = O(‖X‖) has magnitude

O(
√
n) with overwhelming probability, so the median M(X∗AX)1/2

must be O(
√
n). Squaring, we conclude that

P(|X∗AX −MX∗AX| ≥ λ
√
n) ≤ Ce−cλ

2

(possibly after adjusting the absolute constants C, c). As usual, we

may replace the median with the expectation:

P(|X∗AX −EX∗AX| ≥ λ
√
n) ≤ Ce−cλ

2

This was for positive-definite matrices, but one can easily use the

triangle inequality to generalise to self-adjoint matrices, and then to

arbitrary matrices, of operator norm 1, and conclude that

(2.100) P(|X∗RX −EX∗RX| ≥ λ
√
n) ≤ Ce−cλ

2

for any deterministic matrix R of operator norm O(1).

But what is the expectation EX∗RX? This can be expressed in

components as

EX∗RX =

n−1∑
i=1

n−1∑
j=1

Eξinrijξjn
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where ξin are the entries of X, and rij are the entries of R. But the

ξin are iid with mean zero and variance one, so the standard second

moment computation shows that this expectation is nothing more

than the trace

tr(R) =

n−1∑
i=1

rii

of R. We have thus shown the concentration of measure result

(2.101) P(|X∗RX − tr(R)| ≥ λ
√
n) ≤ Ce−cλ

2

for any deterministic matrix R of operator norm O(1), and any λ > 0.

Informally, X∗RX is typically tr(R) +O(
√
n).

The bound (2.101) was proven for deterministic matrices, but by

using conditional expectation it also applies for any random matrix

R, so long as that matrix is independent of X. In particular, we may

apply it to our specific matrix of interest

R :=

(
1√
n
Mn−1 − zIn−1

)−1

.

The trace of this matrix is essentially just the Stieltjes transform

sn−1(z) at z. Actually, due to the normalisation factor being slightly

off, we actually have

tr(R) = n

√
n√

n− 1
sn−1

( √
n√

n− 1
z

)
,

but by using the smoothness (2.93) of the Stieltjes transform, together

with the stability property (2.96) we can simplify this as

tr(R) = n(sn(z) + o(1)).

In particular, from (2.101) and (2.97), we see that

X∗RX = n(Esn(z) + o(1))

with overwhelming probability. Putting this back into (2.99), and

recalling that the denominator is bounded away from zero, we have

the remarkable equation

(2.102) Esn(z) = − 1

z + Esn(z)
+ o(1).

Note how this equation came by playing off two ways in which the

spectral properties of a matrix Mn interacted with that of its minor
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Mn−1; firstly via the Cauchy interlacing inequality, and secondly via

the Schur complement formula.

This equation already describes the behaviour of Esn(z) quite

well, but we will content ourselves with understanding the limiting

behaviour as n → ∞. From (2.93) and Fubini’s theorem we know

that the function Esn is locally uniformly equicontinuous and locally

uniformly bounded away from the real line. Applying the Arzelá-

Ascoli theorem, we thus conclude that on a subsequence at least, Esn
converges locally uniformly to a limit s. This will be a Herglotz

function (i.e. an analytic function mapping the upper half-plane to

the upper half-plane), and taking limits in (2.102) (observing that the

imaginary part of the denominator here is bounded away from zero)

we end up with the exact equation

(2.103) s(z) = − 1

z + s(z)
.

We can of course solve this by the quadratic formula, obtaining

s(z) = −z ±
√
z2 − 4

2
=

2

z ±
√
z2 − 4

.

To figure out what branch of the square root one has to use here, we

use (2.92), which easily implies29 that

s(z) =
1 + o(1)

z

as z goes to infinity non-tangentially away from the real line. Also, we

know that s has to be complex analytic (and in particular, continuous)

away from the real line. From this and basic complex analysis, we

conclude that

(2.104) s(z) =
−z +

√
z2 − 4

2

where
√
z2 − 4 is the branch of the square root with a branch cut at

[−2, 2] and which equals z at infinity.

As there is only one possible subsequence limit of the Esn, we

conclude that Esn converges locally uniformly (and thus pointwise)

to the function (2.104), and thus (by the concentration of measure of

29To justify this, one has to make the error term in (2.92) uniform in n, but this
can be accomplished without difficulty using the Bai-Yin theorem (for instance).
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sn(z)) we see that for each z, sn(z) converges almost surely (and in

probability) to s(z).

Exercise 2.4.12. Find a direct proof (starting from (2.102), (2.92),

and the smoothness of Esn(z)) that Esn(z) = s(z) + o(1) for any

fixed z, that avoids using the Arzelá-Ascoli theorem. (The basic point

here is that one has to solve the approximate equation (2.102), using

some robust version of the quadratic formula. The fact that Esn is a

Herglotz function will help eliminate various unwanted possibilities,

such as one coming from the wrong branch of the square root.)

To finish computing the limiting ESD of Wigner matrices, we

have to figure out what probability measure s comes from. But this

is easily read off from (2.104) and (2.95):

(2.105)
s(·+ ib)− s(· − ib)

2πi
⇀

1

2π
(4− x2)

1/2
+ dx = µsc

as b → 0. Thus the semicircular law is the only possible measure

which has Stieltjes transform s, and indeed a simple application of

the Cauchy integral formula and (2.105) shows us that s is indeed the

Stieltjes transform of µsc.

Putting all this together, we have completed the Stieltjes trans-

form proof of the semicircular law.

Remark 2.4.7. In order to simplify the above exposition, we opted

for a qualitative analysis of the semicircular law here, ignoring such

questions as the rate of convergence to this law. However, an inspec-

tion of the above arguments reveals that it is easy to make all of the

above analysis quite quantitative, with quite reasonable control on all

terms30. In particular, it is not hard to use the above analysis to show

that for |Im(z)| ≥ n−c for some small absolute constant c > 0, one

has sn(z) = s(z) + O(n−c) with overwhelming probability. Combin-

ing this with a suitably quantitative version of the Stieltjes continuity

theorem, this in turn gives a polynomial rate of convergence of the

ESDs µ 1√
n
Mn

to the semicircular law µsc, in that one has

µ 1√
n
Mn

(−∞, λ) = µsc(−∞, λ) +O(n−c)

30One has to use Exercise 2.4.12 instead of the Arzelá-Ascoli theorem if one wants
everything to be quantitative.
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with overwhelming probability for all λ ∈ R.

A variant of this quantitative analysis can in fact get very good

control on this ESD down to quite fine scales, namely to scales logO(1) n
n ,

which is only just a little bit larger than the mean spacing O(1/n) of

the normalised eigenvalues (recall that we have n normalised eigen-

values, constrained to lie in the interval [−2 − o(1), 2 + o(1)] by the

Bai-Yin theorem). This was accomplished by Erdös, Schlein, and

Yau[ErScYa2008]31 by using an additional observation, namely that

the eigenvectors of a random matrix are very likely to be delocalised

in the sense that their `2 energy is dispersed more or less evenly across

its coefficients. Such delocalization has since proven to be a funda-

mentally important ingredient in the fine-scale spectral analysis of

Wigner matrices, which is beyond the scope of this text.

2.4.4. Dyson Brownian motion and the Stieltjes transform.

We now explore how the Stieltjes transform interacts with the Dyson

Brownian motion (introduced in Section 3.1). We let n be a large

number, and let Mn(t) be a Wiener process of Hermitian random

matrices, with associated eigenvalues λ1(t), . . . , λn(t), Stieltjes trans-

forms

(2.106) s(t, z) :=
1

n

n∑
j=1

1

λj(t)/
√
n− z

and spectral measures

(2.107) µ(t, z) :=
1

n

n∑
j=1

δλj(t)/
√
n.

We now study how s, µ evolve in time in the asymptotic limit n→∞.

Our computation will be only heuristic in nature.

Recall from Section 3.1 that the eigenvalues λi = λi(t) undergo

Dyson Brownian motion

(2.108) dλi = dBi +
∑
j 6=i

dt

λi − λj
.

31Strictly speaking, this paper assumed additional regularity hypotheses on the
distribution ξ, but these conditions can be removed with the assistance of Talagrand’s
inequality, Theorem 2.1.13.
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Applying (2.106) and Taylor expansion (dropping all terms of higher

order than dt, using the Ito heuristic dBi = O(dt1/2)), we conclude

that

ds = − 1

n3/2

n∑
i=1

dBi
(λi/
√
n− z)2

− 1

n2

n∑
i=1

|dBi|2

(λi/
√
n− z)3

− 1

n3/2

∑
1≤i,j≤n:i6=j

dt

(λi − λj)(λj/
√
n− z)2

.

For z away from the real line, the term 1
n2

∑n
i=1

|dBi|2
(λi/
√
n−z)3 is of size

O(dt/n) and can heuristically be ignored in the limit n→∞. Drop-

ping this term, and then taking expectations to remove the Brownian

motion term dBi, we are led to

Eds = −E
1

n3/2

∑
1≤i,j≤n:i 6=j

dt

(λi − λj)(λj/
√
n− z)2

.

Performing the i summation using (2.106) we obtain

Eds = −E
1

n

∑
1≤j≤n

s(λj/
√
n)dt

(λj/
√
n− z)2

where we adopt the convention that for real x, s(x) is the average of

s(x+ i0) and s(x− i0). Using (2.107), this becomes

(2.109) Est = −E

∫
R

s(x)

(x− z)2
dµ(x)

where the t subscript denotes differentiation in t. From (2.95) we

heuristically have

s(x± i0) = s(x)± πiµ(x)

(heuristically treating µ as a function rather than a measure) and on

squaring one obtains

s(x± i0)2 = (s(x)2 − π2µ2(x))± 2πis(x)µ(x).

From this the Cauchy integral formula around a slit in real axis (using

the bound (2.91) to ignore the contributions near infinity) we thus

have

s2(z) =

∫
R

2s(x)

x− z
dµ(x)
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and thus on differentiation in z

2ssz(z) =

∫
R

2s(x)

(x− z)2
dµ(x).

Comparing this with (2.109), we obtain

Est + Essz = 0.

From concentration of measure, we expect s to concentrate around

its mean s := Es, and similarly sz should concentrate around sz. In

the limit n→∞, the expected Stieltjes transform s should thus obey

the (complex) Burgers’ equation

(2.110) st + ssz = 0.

To illustrate how this equation works in practice, let us give an in-

formal derivation of the semicircular law. We consider the case when

the Wiener process starts from M(0) = 0, thus Mt ≡
√
tG for a GUE

matrix G. As such, we have the scaling symmetry

s(t, z) =
1√
t
sGUE

(
z√
t

)
where sGUE is the asymptotic Stieltjes transform for GUE (which we

secretly know to be given by (2.104), but let us pretend that we did

not yet know this fact). Inserting this self-similar ansatz into (2.110)

and setting t = 1, we conclude that

−1

2
sGUE −

1

2
zs′GUE + ss′GUE = 0;

multiplying by two and integrating, we conclude that

zsGUE + s2
GUE = C

for some constant C. But from the asymptotic (2.92) we see that

C must equal −1. But then the above equation can be rearranged

into (2.103), and so by repeating the arguments at the end of the

previous section we can deduce the formula (2.104), which then gives

the semicircular law by (2.95).

As is well known in PDE, one can solve Burgers’ equation more

generally by the method of characteristics. For reasons that will be-

come clearer in Section 2.5, we now solve this equation by a slightly

different (but ultimately equivalent) method. The idea is that rather
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than think of s = s(t, z) as a function of z for fixed t, we think32 of

z = z(t, s) as a function of s for fixed t. Note from (2.92) that we

expect to be able to invert the relationship between s and z as long

as z is large (and s is small).

To exploit this change of perspective, we think of s, z, t as all

varying by infinitesimal amounts ds, dz, dt respectively. Using (2.110)

and the total derivative formula ds = stdt+ szdz, we see that

ds = −sszdt+ szdz.

If we hold s fixed (i.e. ds = 0), so that z is now just a function of t,

and cancel off the sz factor, we conclude that

dz

dt
= s.

Integrating this, we see that

(2.111) z(t, s) = z(0, s) + ts.

This, in principle, gives a way to compute s(t, z) from s(0, z). First,

we invert the relationship s = s(0, z) to z = z(0, s); then we add ts

to z(0, s); then we invert again to recover s(t, z).

Since Mt ≡ M0 +
√
tG, where G is a GUE matrix independent

of M0, we have thus given a formula to describe the Stieltjes trans-

form of M0 +
√
tG in terms of the Stieltjes transform of M0. This

formula is a special case of a more general formula of Voiculescu for

free convolution, with the operation of inverting the Stieltjes trans-

form essentially being the famous R-transform of Voiculescu; we will

discuss this more in the next section.

2.5. Free probability

In the foundations of modern probability, as laid out by Kolmogorov

(and briefly reviewed in Section 1.1), the basic objects of study are

constructed in the following order:

(i) Firstly, one selects a sample space Ω, whose elements ω rep-

resent all the possible states that one’s stochastic system

could be in.

32(This trick is sometimes known as the hodograph transform, especially if one
views s as “velocity” and z as “position”.
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(ii) Then, one selects a σ-algebra B of events E (modeled by

subsets of Ω), and assigns each of these events a probability

P(E) ∈ [0, 1] in a countably additive manner, so that the

entire sample space has probability 1.

(iii) Finally, one builds (commutative) algebras of random vari-

ables X (such as complex-valued random variables, mod-

eled by measurable functions from Ω to C), and (assuming

suitable integrability or moment conditions) one can assign

expectations EX to each such random variable.

In measure theory, the underlying measure space Ω plays a promi-

nent foundational role, with the measurable sets and measurable func-

tions (the analogues of the events and the random variables) always

being viewed as somehow being attached to that space. In proba-

bility theory, in contrast, it is the events and their probabilities that

are viewed as being fundamental, with the sample space Ω being ab-

stracted away as much as possible, and with the random variables

and expectations being viewed as derived concepts. See Section 1.1

for further discussion of this philosophy.

However, it is possible to take the abstraction process one step

further, and view the algebra of random variables and their expec-

tations as being the foundational concept, and ignoring both the

presence of the original sample space, the algebra of events, or the

probability measure.

There are two reasons for wanting to shed (or abstract33 away)

these previously foundational structures. Firstly, it allows one to more

easily take certain types of limits, such as the large n limit n → ∞
when considering n × n random matrices, because quantities built

from the algebra of random variables and their expectations, such as

the normalised moments of random matrices tend to be quite stable

in the large n limit (as we have seen in previous sections), even as the

sample space and event space varies with n.

Secondly, this abstract formalism allows one to generalise the clas-

sical, commutative theory of probability to the more general theory

33This theme of using abstraction to facilitate the taking of the large n limit also
shows up in the application of ergodic theory to combinatorics via the correspondence
principle; see [Ta2009, §2.10] for further discussion.
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of non-commutative probability theory, which does not have a classical

underlying sample space or event space, but is instead built upon a

(possibly) non-commutative algebra of random variables (or “observ-

ables”) and their expectations (or “traces”). This more general for-

malism not only encompasses classical probability, but also spectral

theory (with matrices or operators taking the role of random vari-

ables, and the trace taking the role of expectation), random matrix

theory (which can be viewed as a natural blend of classical probability

and spectral theory), and quantum mechanics (with physical observ-

ables taking the role of random variables, and their expected value

on a given quantum state being the expectation). It is also part of

a more general “non-commutative way of thinking”34 (of which non-

commutative geometry is the most prominent example), in which a

space is understood primarily in terms of the ring or algebra of func-

tions (or function-like objects, such as sections of bundles) placed

on top of that space, and then the space itself is largely abstracted

away in order to allow the algebraic structures to become less com-

mutative. In short, the idea is to make algebra the foundation of the

theory, as opposed to other possible choices of foundations such as

sets, measures, categories, etc..

It turns out that non-commutative probability can be modeled

using operator algebras such as C∗-algebras, von Neumann algebras,

or algebras of bounded operators on a Hilbert space, with the latter

being accomplished via the Gelfand-Naimark-Segal construction. We

will discuss some of these models here, but just as probability theory

seeks to abstract away its measure-theoretic models, the philosophy

of non-commutative probability is also to downplay these operator

algebraic models once some foundational issues are settled.

When one generalises the set of structures in one’s theory, for in-

stance from the commutative setting to the non-commutative setting,

34Note that this foundational preference is to some extent a metamathematical
one rather than a mathematical one; in many cases it is possible to rewrite the theory in
a mathematically equivalent form so that some other mathematical structure becomes
designated as the foundational one, much as probability theory can be equivalently
formulated as the measure theory of probability measures. However, this does not
negate the fact that a different choice of foundations can lead to a different way of
thinking about the subject, and thus to ask a different set of questions and to discover
a different set of proofs and solutions. Thus it is often of value to understand multiple
foundational perspectives at once, to get a truly stereoscopic view of the subject.
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the notion of what it means for a structure to be “universal”, “free”,

or “independent” can change. The most familiar example of this

comes from group theory. If one restricts attention to the category of

abelian groups, then the “freest” object one can generate from two

generators e, f is the free abelian group of commutative words enfm

with n,m ∈ Z, which is isomorphic to the group Z2. If however one

generalises to the non-commutative setting of arbitrary groups, then

the “freest” object that can now be generated from two generators

e, f is the free group F2 of non-commutative words en1fm1 . . . enkfmk

with n1,m1, . . . , nk,mk ∈ Z, which is a significantly larger extension

of the free abelian group Z2.

Similarly, when generalising classical probability theory to non-

commutative probability theory, the notion of what it means for two

or more random variables to be independent changes. In the classical

(commutative) setting, two (bounded, real-valued) random variables

X,Y are independent if one has

Ef(X)g(Y ) = 0

whenever f, g : R→ R are well-behaved functions (such as polynomi-

als) such that all of Ef(X), Eg(Y ) vanishes. In the non-commutative

setting, one can generalise the above definition to two commuting

bounded self-adjoint variables; this concept is useful for instance in

quantum probability, which is an abstraction of the theory of observ-

ables in quantum mechanics. But for two (bounded, self-adjoint)

non-commutative random variables X,Y , the notion of classical inde-

pendence no longer applies. As a substitute, one can instead consider

the notion of being freely independent (or free for short), which means

that

Ef1(X)g1(Y ) . . . fk(X)gk(Y ) = 0

whenever f1, g1, . . . , fk, gk : R → R are well-behaved functions such

that all of Ef1(X),Eg1(Y ), . . . ,Efk(X),Egk(Y ) vanish.

The concept of free independence was introduced by Voiculescu,

and its study is now known as the subject of free probability . We

will not attempt a systematic survey of this subject here; for this, we

refer the reader to the surveys of Speicher[Sp] and of Biane[Bi2003].

Instead, we shall just discuss a small number of topics in this area to

give the flavour of the subject only.
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The significance of free probability to random matrix theory lies

in the fundamental observation that random matrices which have in-

dependent entries in the classical sense, also tend to be independent35

in the free probability sense, in the large n limit n → ∞. Because

of this, many tedious computations in random matrix theory, par-

ticularly those of an algebraic or enumerative combinatorial nature,

can be done more quickly and systematically by using the framework

of free probability, which by design is optimised for algebraic tasks

rather than analytical ones.

Much as free groups are in some sense “maximally non-commutative”,

freely independent random variables are about as far from being com-

muting as possible. For instance, if X,Y are freely independent and

of expectation zero, then EXYXY vanishes, but EXXY Y instead

factors as (EX2)(EY 2). As a consequence, the behaviour of freely in-

dependent random variables can be quite different from the behaviour

of their classically independent commuting counterparts. Neverthe-

less there is a remarkably strong analogy between the two types of

independence, in that results which are true in the classically inde-

pendent case often have an interesting analogue in the freely indepen-

dent setting. For instance, the central limit theorem (Section 2.2) for

averages of classically independent random variables, which roughly

speaking asserts that such averages become gaussian in the large n

limit, has an analogue for averages of freely independent variables,

the free central limit theorem, which roughly speaking asserts that

such averages become semicircular in the large n limit. One can then

use this theorem to provide yet another proof of Wigner’s semicircle

law (Section 2.4).

Another important (and closely related) analogy is that while the

distribution of sums of independent commutative random variables

can be quickly computed via the characteristic function (i.e. the

Fourier transform of the distribution), the distribution of sums of

freely independent non-commutative random variables can be quickly

computed using the Stieltjes transform instead (or with closely related

objects, such as the R-transform of Voiculescu). This is strongly

35This is only possible because of the highly non-commutative nature of these
matrices; as we shall see, it is not possible for non-trivial commuting independent
random variables to be freely independent.
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reminiscent of the appearance of the Stieltjes transform in random

matrix theory, and indeed we will see many parallels between the use

of the Stieltjes transform here and in Section 2.4.

As mentioned earlier, free probability is an excellent tool for com-

puting various expressions of interest in random matrix theory, such

as asymptotic values of normalised moments in the large n limit

n → ∞. Nevertheless, as it only covers the asymptotic regime in

which n is sent to infinity while holding all other parameters fixed,

there are some aspects of random matrix theory to which the tools of

free probability are not sufficient by themselves to resolve (although

it can be possible to combine free probability theory with other tools

to then answer these questions). For instance, questions regarding

the rate of convergence of normalised moments as n→∞ are not di-

rectly answered by free probability, though if free probability is com-

bined with tools such as concentration of measure (Section 2.1) then

such rate information can often be recovered. For similar reasons,

free probability lets one understand the behaviour of kth moments as

n→∞ for fixed k, but has more difficulty dealing with the situation

in which k is allowed to grow slowly in n (e.g. k = O(log n)). Because

of this, free probability methods are effective at controlling the bulk

of the spectrum of a random matrix, but have more difficulty with

the edges of that spectrum (as well as with related concepts such as

the operator norm, see Section 2.3) as well as with fine-scale structure

of the spectrum. Finally, free probability methods are most effective

when dealing with matrices that are Hermitian with bounded opera-

tor norm, largely because the spectral theory of bounded self-adjoint

operators in the infinite-dimensional setting of the large n limit is non-

pathological36. For non-self-adjoint operators, free probability needs

to be augmented with additional tools, most notably by bounds on

least singular values, in order to recover the required stability for the

various spectral data of random matrices to behave continuously with

respect to the large n limit. We will return this latter point in Section

2.7.

36This is ultimately due to the stable nature of eigenvalues in the self-adjoint
setting; see [Ta2010b, §1.5] for discussion.
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2.5.1. Abstract probability theory. We will now slowly build up

the foundations of non-commutative probability theory, which seeks

to capture the abstract algebra of random variables and their expec-

tations. The impatient reader who wants to move directly on to free

probability theory may largely jump straight to the final definition

at the end of this section, but it can be instructive to work with

these foundations for a while to gain some intuition on how to handle

non-commutative probability spaces.

To motivate the formalism of abstract (non-commutative) prob-

ability theory, let us first discuss the three key examples of non-

commutative probability spaces, and then abstract away all features

that are not shared in common by all three examples.

Example 2.5.1 (Random scalar variables). We begin with classical

probability theory - the study of scalar random variables. In order

to use the powerful tools of complex analysis (such as the Stieltjes

transform), it is very convenient to allow our random variables to

be complex valued. In order to meaningfully take expectations, we

would like to require all our random variables to also be absolutely

integrable. But this requirement is not sufficient by itself to get good

algebraic structure, because the product of two absolutely integrable

random variables need not be absolutely integrable. As we want to

have as much algebraic structure as possible, we will therefore restrict

attention further, to the collection L∞− :=
⋂∞
k=1 L

k(Ω) of random

variables with all moments finite. This class is closed under multipli-

cation, and all elements in this class have a finite trace (or expecta-

tion). One can of course restrict further, to the space L∞ = L∞(Ω)

of (essentially) bounded variables, but by doing so one loses impor-

tant examples of random variables, most notably gaussians, so we will

work instead37 with the space L∞−.

The space L∞− of complex-valued random variables with all mo-

ments finite now becomes an algebra over the complex numbers C;

i.e. it is a vector space over C that is also equipped with a bilinear

multiplication operation · : L∞− × L∞− → L∞− that obeys the as-

sociative and distributive laws. It is also commutative, but we will

37This will cost us some analytic structure - in particular, L∞− will not be a
Banach space, in contrast to L∞ - but as our focus is on the algebraic structure, this
will be an acceptable price to pay.
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suppress this property, as it is not shared by the other two examples

we will be discussing. The deterministic scalar 1 then plays the role

of the multiplicative unit in this algebra.

In addition to the usual algebraic operations, one can also take

the complex conjugate or adjoint X∗ = X of a complex-valued ran-

dom variable X. This operation ∗ : L∞− → L∞− interacts well with

the other algebraic operations: it is in fact an anti-automorphism on

L∞−, which means that it preserves addition (X+Y )∗ = X∗+Y ∗, re-

verses multiplication (XY )∗ = Y ∗X∗, is anti-homogeneous ((cX)∗ =

cX∗ for c ∈ C), and it is invertible. In fact, it is its own inverse

((X∗)∗ = X), and is thus an involution.

This package of properties can be summarised succinctly by stat-

ing that the space L∞− of bounded complex-valued random variables

is a (unital) ∗-algebra.

The expectation operator E can now be viewed as a map E :

L∞− → C. It obeys some obvious properties, such as being linear

(i.e. E is a linear functional on L∞). In fact it is ∗-linear, which

means that it is linear and also that E(X∗) = EX for all X. We also

clearly have E1 = 1. We will remark on some additional properties

of expectation later.

Example 2.5.2 (Deterministic matrix variables). A second key ex-

ample is that of (finite-dimensional) spectral theory - the theory of

n × n complex-valued matrices X ∈ Mn(C). (One can also consider

infinite-dimensional spectral theory, of course, but for simplicity we

only consider the finite-dimensional case in order to avoid having to

deal with technicalities such as unbounded operators.) Like the space

L∞− considered in the previous example, Mn(C) is a ∗-algebra, where

the multiplication operation is of course given by matrix multiplica-

tion, the identity is the matrix identity 1 = In, and the involution

X 7→ X∗ is given by the matrix adjoint operation. On the other hand,

as is well-known, this ∗-algebra is not commutative (for n ≥ 2).

The analogue of the expectation operation here is the normalised

trace τ(X) := 1
n trX. Thus τ : Mn(C) → C is a *-linear functional

on Mn(C) that maps 1 to 1. The analogy between expectation and

normalised trace is particularly evident when comparing the moment

method for scalar random variables (based on computation of the
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moments EXk) with the moment method in spectral theory (based

on a computation of the moments τ(Xk)).

Example 2.5.3 (Random matrix variables). Random matrix theory

combines classical probability theory with finite-dimensional spectral

theory, with the random variables of interest now being the random

matrices X ∈ L∞− ⊗Mn(C), all of whose entries have all moments

finite. It is not hard to see that this is also a ∗-algebra with iden-

tity 1 = In, which again will be non-commutative for n ≥ 2. The

normalised trace τ here is given by

τ(X) := E
1

n
trX,

thus one takes both the normalised matrix trace and the probabilistic

expectation, in order to arrive at a deterministic scalar (i.e. a complex

number). As before, we see that τ : L∞− ⊗ Mn(C) → C is a ∗-
linear functional that maps 1 to 1. As we saw in Section 2.3, the

moment method for random matrices is based on a computation of

the moments τ(Xk) = E 1
n trXk.

Let us now simultaneously abstract the above three examples,

but reserving the right to impose some additional axioms as needed:

Definition 2.5.4 (Non-commutative probability space, preliminary

definition). A non-commutative probability space (or more accurately,

a potentially non-commutative probability space) (A, τ) will consist

of a (potentially non-commutative) ∗-algebra A of (potentially non-

commutative) random variables (or observables) with identity 1, to-

gether with a trace τ : A → C, which is a ∗-linear functional that

maps 1 to 1. This trace will be required to obey a number of addi-

tional axioms which we will specify later in this section.

This definition is not yet complete, because we have not fully

decided on what axioms to enforce for these spaces, but for now

let us just say that the three examples (L∞−,E), (Mn(C), 1
n tr),

(L∞−⊗Mn(C),E 1
n tr) given above will obey these axioms and serve

as model examples of non-commutative probability spaces. We men-

tion that the requirement τ(1) = 1 can be viewed as an abstraction

of Kolmogorov’s axiom that the sample space has probability 1.
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To motivate the remaining axioms, let us try seeing how some

basic concepts from the model examples carry over to the abstract

setting.

Firstly, we recall that every scalar random variable X ∈ L∞−

has a probability distribution µX , which is a probability measure on

the complex plane C; if X is self-adjoint (i.e. real valued), so that

X = X∗, then this distribution is supported on the real line R. The

condition that X lie in L∞− ensures that this measure is rapidly

decreasing, in the sense that
∫
C
|z|k dµX(x) < ∞ for all k. The

measure µX is related to the moments τ(Xk) = EXk by the formula

(2.112) τ(Xk) =

∫
C

zk dµX(z)

for k = 0, 1, 2, . . .. In fact, one has the more general formula

(2.113) τ(Xk(X∗)l) =

∫
C

zkzl dµX(z)

for k, l = 0, 1, 2, . . ..

Similarly, every deterministic matrix X ∈ Mn(C) has a empiri-

cal spectral distribution µX = 1
n

∑n
i=1 δλi(X), which is a probability

measure on the complex plane C. Again, if X is self-adjoint, then

distribution is supported on the real line R. This measure is related

to the moments τ(Xk) = 1
n trXk by the same formula (2.112) as in

the case of scalar random variables. Because n is finite, this measure

is finitely supported (and in particular is rapidly decreasing). As for

(2.113), the spectral theorem tells us that this formula holds when X

is normal (i.e. XX∗ = X∗X), and in particular if X is self-adjoint

(of course, in this case (2.113) collapses to (2.112)), but is not true in

general. Note that this subtlety does not appear in the case of scalar

random variables because in this commutative setting, all elements

are automatically normal.

Finally, for random matrices X ∈ L∞− ⊗Mn(C), we can form

the expected empirical spectral distribution µX = E 1
n

∑n
i=1 δλi(X),

which is again a rapidly decreasing probability measure on C, which

is supported on R if X is self-adjoint. This measure is again related

to the moments τ(Xk) = E 1
n trXk by the formula (2.112), and also

by (2.113) if X is normal.
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Now let us see whether we can set up such a spectral measure µX
for an element X in an abstract non-commutative probability space

(A, τ). From the above examples, it is natural to try to define this

measure through the formula (2.112), or equivalently (by linearity)

through the formula

(2.114) τ(P (X)) =

∫
C

P (z) dµX(z)

whenever P : C→ C is a polynomial with complex coefficients (note

that one can define P (X) without difficulty as X is a ∗-algebra). In

the normal case, one may hope to work with the more general formula

(2.115) τ(P (X,X∗)) =

∫
C

P (z, z) dµX(z)

whenever P : C ×C → C is a polynomial of two complex variables

(note that P (X,X∗) can be defined unambiguously precisely when X

is normal).

It is tempting to apply the Riesz representation theorem to (2.114)

to define the desired measure µX , perhaps after first using the Weier-

strass approximation theorem to pass from polynomials to continuous

functions. However, there are multiple technical issues with this idea:

(i) In order for the polynomials to be dense in the continuous

functions in the uniform topology on the support of µX , one

needs the intended support σ(X) of µX to be on the real

line R, or else one needs to work with the formula (2.115)

rather than (2.114). Also, one also needs the intended sup-

port σ(X) to be bounded for the Weierstrass approximation

theorem to apply directly.

(ii) In order for the Riesz representation theorem to apply, the

functional P 7→ τ(P (X,X∗)) (or P 7→ τ(P (X))) needs

to be continuous in the uniform topology, thus one must

be able to obtain a bound38 of the form |τ(P (X,X∗))| ≤
C supz∈σ(X) |P (z, z)| for some (preferably compact) set σ(X).

(iii) In order to get a probability measure rather than a signed

measure, one also needs some non-negativity: τ(P (X,X∗))

38To get a probability measure, one in fact needs to have C = 1.
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needs to be non-negative whenever P (z, z) ≥ 0 for z in the

intended support σ(X).

To resolve the non-negativity issue, we impose an additional ax-

iom on the non-commutative probability space (A, τ):

Axiom 2.5.5 (Non-negativity). For any X ∈ A, we have τ(X∗X) ≥
0. (Note that X∗X is self-adjoint and so its trace τ(X∗X) is neces-

sarily a real number.)

In the language of von Neumann algebras, this axiom (together

with the normalisation τ(1) = 1) is essentially asserting that τ is a

state. Note that this axiom is obeyed by all three model examples, and

is also consistent with (2.115). It is the noncommutative analogue of

the Kolmogorov axiom that all events have non-negative probability.

With this axiom, we can now define an positive semi-definite

inner product 〈, 〉L2(τ) on A by the formula

〈X,Y 〉L2(τ) := τ(X∗Y ).

This obeys the usual axioms of an inner product, except that it is only

positive semi-definite rather than positive definite. One can impose

positive definiteness by adding an axiom that the trace τ is faithful,

which means that τ(X∗X) = 0 if and only if X = 0. However, we

will not need the faithfulness axiom here.

Without faithfulness, A is a semi-definite inner product space

with semi-norm

‖X‖L2(τ) := (〈X,X〉L2(τ))
1/2 = τ(X∗X)1/2.

In particular, we have the Cauchy-Schwarz inequality

|〈X,Y 〉L2(τ)| ≤ ‖X‖L2(τ)‖Y ‖L2(τ).

This leads to an important monotonicity:

Exercise 2.5.1 (Monotonicity). Let X be a self-adjoint element of

a non-commutative probability space (A, τ). Show that we have the

monotonicity relationships

|τ(X2k−1)|1/(2k−1) ≤ |τ(X2k)|1/(2k) ≤ |τ(X2k+2)|1/(2k+2)

for any k ≥ 0.
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As a consequence, we can define the spectral radius ρ(X) of a

self-adjoint element X by the formula

(2.116) ρ(X) := lim
k→∞

|τ(X2k)|1/(2k),

in which case we obtain the inequality

(2.117) |τ(Xk)| ≤ ρ(X)k

for any k = 0, 1, 2, . . .. We then say that a self-adjoint element is

bounded if its spectral radius is finite.

Example 2.5.6. In the case of random variables, the spectral radius

is the essential supremum ‖X‖L∞ , while for deterministic matrices,

the spectral radius is the operator norm ‖X‖op. For random matri-

ces, the spectral radius is the essential supremum ‖‖X‖op‖L∞ of the

operator norm.

Guided by the model examples, we expect that a bounded self-

adjoint element X should have a spectral measure µX supported on

the interval [−ρ(X), ρ(X)]. But how to show this? It turns out

that one can proceed by tapping the power of complex analysis, and

introducing the Stieltjes transform

(2.118) sX(z) := τ((X − z)−1)

for complex numbers z. Now, this transform need not be defined for

all z at present, because we do not know that X − z is invertible in

A. However, we can avoid this problem by working formally. Indeed,

we have the formal Neumann series expansion

(X − z)−1 = −1

z
− X

z2
− X2

z3
− . . .

which leads to the formal Laurent series expansion

(2.119) sX(z) = −
∞∑
k=0

τ(Xk)

zk+1
.

If X is bounded self-adjoint, then from (2.117) we see that this formal

series actually converges in the region |z| > ρ(X). We will thus define

the Stieltjes transform sX(z) on the region |z| > ρ(X) by this series
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expansion (2.119), and then extend to as much of the complex plane

as we can by analytic continuation39.

We now push the domain of definition of sX(z) into the disk

{|z| ≤ ρ(X)}. We need some preliminary lemmas.

Exercise 2.5.2. Let X be bounded self-adjoint. For any real number

R, show that ρ(R2 +X2) = R2 +ρ(X)2. (Hint: use (2.116), (2.117)).

Exercise 2.5.3. Let X be bounded normal. Show that |τ(Xk)| ≤
τ((X∗X)k)1/2 ≤ ρ(X∗X)k/2.

Now let R be a large positive real number. The idea is to rewrite

the (formal) Stieltjes transform τ((X−z)−1) using the formal identity

(2.120) (X − z)−1 = ((X + iR)− (z + iR))−1

and take Neumann series again to arrive at the formal expansion

(2.121) sX(z) = −
∞∑
k=0

τ((X + iR)k)

(z + iR)k+1
.

From the previous two exercises we see that

|τ((X + iR)k)| ≤ (R2 + ρ(X)2)k/2

and so the above Laurent series converges for |z + iR| > (R2 +

ρ(X)2)1/2.

Exercise 2.5.4. Give a rigorous proof that the two series (2.119),

(2.121) agree for z large enough.

We have thus extended sX(z) analytically to the region {z : |z +

iR| > (R2 + ρ(X)2)1/2}. Letting R → ∞, we obtain an extension of

sX(z) to the upper half-plane {z : Im(z) > 0}. A similar argument

(shifting by −iR instead of +iR) gives an extension to the lower

half-plane, thus defining sX(z) analytically everywhere except on the

interval [−ρ(X), ρ(X)].

39There could in principle be some topological obstructions to this continuation,
but we will soon see that the only place where singularities can occur is on the real
interval [−ρ(X), ρ(X)], and so no topological obstructions will appear. One can also
work with the original definition (2.118) of the Stieltjes transform, but this requires
imposing some additional analytic axioms on the non-commutative probability space,
such as requiring that A be a C∗-algebra or a von Neumann algebra, and we will avoid
discussing these topics here as they are not the main focus of free probability theory.
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On the other hand, it is not possible to analytically extend sX(z)

to the region {z : |z| > ρ(X) − ε} for any 0 < ε < ρ(X). Indeed, if

this were the case, then from the Cauchy integral formula (applied at

infinity), we would have the identity

τ(Xk) = − 1

2πi

∫
|z|=R

sX(z)zk dz

for any R > ρ(X) − ε, which when combined with (2.116) implies

that ρ(X) ≤ R for all such R, which is absurd. Thus the spectral

radius ρ(X) can also be interpreted as the radius of the smallest ball

centred at the origin outside of which the Stieltjes transform can be

analytically continued.

Now that we have the Stieltjes transform everywhere outside of

[−ρ(X), ρ(X)], we can use it to derive an important bound (which

will soon be superceded by (2.114), but will play a key role in the

proof of that stronger statement):

Proposition 2.5.7 (Boundedness). Let X be bounded self-adjoint,

and let P : C→ C be a polynomial. Then

|τ(P (X))| ≤ sup
x∈[−ρ(X),ρ(X)]

|P (x)|.

Proof. (Sketch) We can of course assume that P is non-constant, as

the claim is obvious otherwise. From Exercise 2.5.3 (replacing P with

PP , where P is the polynomial whose coefficients are the complex

conjugate of that of P ) we may reduce to the case when P has real

coefficients, so that P (X) is self-adjoint. Since X is bounded, it is

not difficult (using (2.116), (2.117)) to show that P (X) is bounded

also (Exercise!).

As P (X) is bounded self-adjoint, it has a Stieltjes transform de-

fined outside of [−ρ(P (X)), ρ(P (X))], which for large z is given by

the formula

(2.122) sP (X)(z) = −
∞∑
k=0

τ(P (X)k)

zk
.
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By the previous discussion, to establish the proposition it will suffice

to show that the Stieltjes transform can be continued to the domain

Ω := {z ∈ C : z > sup
x∈[−ρ(X),ρ(X)]

|P (x)|}.

For this, we observe the partial fractions decomposition

1

P (w)− z
=

∑
ζ:P (ζ)=z

P ′(ζ)−1

w − ζ

of (P (w)− z)−1 into linear combinations of (w− ζ)−1, at least when

the roots of P − z are simple. Thus, formally, at least, we have the

identity

sP (X)(z) =
∑

ζ:P (ζ)=z

1

P ′(ζ)
sX(ζ).

One can verify this identity is consistent with (2.122) for z sufficiently

large. (Exercise! Hint: First do the case when X is a scalar, then

expand in Taylor series and compare coefficients, then use the agree-

ment of the Taylor series to do the general case.)

If z is in the domain Ω, then all the roots ζ of P (ζ) = z lie

outside the interval [−ρ(X), ρ(X)]. So we can use the above formula

as a definition of sP (X)(z), at least for those z ∈ Ω for which the roots

of P − z are simple; but there are only finitely many exceptional z

(arising from zeroes of P ′) and one can check (Exercise! Hint: use

the analytic nature of sX and the residue theoremto rewrite parts

of sP (X)(z) as a contour integral.) that the singularities here are

removable. It is easy to see (Exercise!) that sP (X) is holomorphic

outside of these removable singularities, and the claim follows. �

Exercise 2.5.5. Fill in the steps marked (Exercise!) in the above

proof.

From Proposition 2.5.7 and the Weierstrass approximation the-

orem (see e.g. [Ta2010, §1.10]), we see that the linear functional

P 7→ τ(P (X)) can be uniquely extended to a bounded linear func-

tional on C([−ρ(X), ρ(X)]), with an operator norm 1. Applying the

Riesz representation theorem (see e.g. [Ta2010, §1.10]), we thus can

find a unique Radon measure (or equivalently, Borel measure) µX on

[−ρ(X), ρ(X)] of total variation 1 obeying the identity (2.114) for all
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P . In particular, setting P = 1 see that µX has total mass 1; since it

also has total variation 1, it must be a probability measure. We have

thus shown the fundamental

Theorem 2.5.8 (Spectral theorem for bounded self-adjoint elements).

Let X be a bounded self-adjoint element of a non-commutative proba-

bility space (A, τ). Then there exists a unique Borel probability mea-

sure µX on [−ρ(X), ρ(X)] (known as the spectral measure of X) such

that (2.114) holds for all polynomials P : C→ C.

Remark 2.5.9. If one assumes some completeness properties of the

non-commutative probability space, such as that A is a C∗-algebra

or a von Neumann algebra, one can use this theorem to meaningfully

define F (X) for other functions F : [−ρ(X), ρ(X)] → C than poly-

nomials; specifically, one can do this for continuous functions F if A
is a C∗-algebra, and for L∞(µX) functions F if A is a von Neumann

algebra. Thus for instance we can start define absolute values |X|, or

square roots |X|1/2, etc.. Such an assignment F 7→ F (X) is known

as a functional calculus; it can be used for instance to go back and

make rigorous sense of the formula (2.118). A functional calculus is

a very convenient tool to have in operator algebra theory, and for

that reason one often completes a non-commutative probability space

into a C∗-algebra or von Neumann algebra, much as how it is often

convenient to complete the rationals and work instead with the reals.

However, we will proceed here instead by working with a (possibly in-

complete) non-commutative probability space, and working primarily

with formal expressions (e.g. formal power series in z) without trying

to evaluate such expressions in some completed space. We can get

away with this because we will be working exclusively in situations in

which the spectrum of a random variable can be reconstructed exactly

from its moments (which is in particular true in the case of bounded

random variables). For unbounded random variables, one must usu-

ally instead use the full power of functional analysis, and work with

the spectral theory of unbounded operators on Hilbert spaces.

Exercise 2.5.6. Let X be a bounded self-adjoint element of a non-

commutative probability space, and let µX as the spectral measure
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of X. Establish the formula

sX(z) =

∫
[−ρ(X),ρ(X)]

1

x− z
dµX(x)

for all z ∈ C\[−ρ(X), ρ(X)]. Conclude that the support40 of the

spectral measure µX must contain at least one of the two points

−ρ(X), ρ(X).

Exercise 2.5.7. Let X be a bounded self-adjoint element of a non-

commutative probability space with faithful trace. Show that ρ(X) =

0 if and only if X = 0.

Remark 2.5.10. It is possible to also obtain a spectral theorem for

bounded normal elements along the lines of the above theorem (with

µX now supported in a disk rather than in an interval, and with

(2.114) replaced by (2.115)), but this is somewhat more complicated

to show (basically, one needs to extend the self-adjoint spectral the-

orem to a pair of commuting self-adjoint elements, which is a little

tricky to show by complex-analytic methods, as one has to use several

complex variables).

The spectral theorem more or less completely describes the be-

haviour of a single (bounded self-adjoint) elementX in a non-commutative

probability space. As remarked above, it can also be extended to

study multiple commuting self-adjoint elements. However, when one

deals with multiple non-commuting elements, the spectral theorem

becomes inadequate (and indeed, it appears that in general there is

no usable substitute for this theorem). However, we can begin mak-

ing a little bit of headway if we assume as a final (optional) axiom a

very weak form of commutativity in the trace:

Axiom 2.5.11 (Trace). For any two elements X,Y , we have τ(XY ) =

τ(Y X).

Note that this axiom is obeyed by all three of our model examples.

From this axiom, we can cyclically permute products in a trace, e.g.

τ(XY Z) = τ(Y ZX) = τ(ZXY ). However, we cannot take non-

cyclic permutations; for instance, τ(XY Z) and τ(XZY ) are distinct

in general. This axiom is a trivial consequence of the commutative

40The support of a measure is the intersection of all the closed sets of full measure.
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nature of the complex numbers in the classical setting, but can play

a more non-trivial role in the non-commutative setting. It is however

possible to develop a large part of free probability without this axiom,

if one is willing instead to work in the category of von Neumann

algebras. Thus, we shall leave it as an optional axiom:

Definition 2.5.12 (Non-commutative probability space, final defi-

nition). A non-commutative probability space (A, τ) consists of a ∗-
algebra A with identity 1, together with a ∗-linear functional τ :

A → C, that maps 1 to 1 and obeys the non-negativity axiom. If τ

obeys the trace axiom, we say that the non-commutative probability

space is tracial. If τ obeys the faithfulness axiom, we say that the

non-commutative probability space is faithful.

From this new axiom and the Cauchy-Schwarz inequality we can

now get control on products of several non-commuting elements:

Exercise 2.5.8. Let X1, . . . , Xk be bounded self-adjoint elements of

a tracial non-commutative probability space (A, τ). Show that

|τ(Xm1
1 . . . Xmk

k )| ≤ ρ(X1)m1 . . . ρ(Xk)mk

for any non-negative integers m1, . . . ,mk. (Hint: Induct on k, and

use Cauchy-Schwarz to split up the product as evenly as possible,

using cyclic permutations to reduce the complexity of the resulting

expressions.)

Exercise 2.5.9. Let A∩L∞(τ) be those elements X in a tracial non-

commutative probability space (A, τ) whose real and imaginary parts

Re(X) := X+X∗

2 , Im(X) := X−X∗
2i are bounded and self-adjoint; we

refer to such elements simply as bounded elements. Show that this is

a sub-*-algebra of A.

This allows one to perform the following Gelfand-Naimark-Segal

(GNS) construction. Recall that A ∩ L∞(τ) has a positive semi-

definite inner product 〈, 〉L2(τ). We can perform the Hilbert space

completion of this inner product space (quotienting out by the ele-

ments of zero norm), leading to a complex Hilbert space L2(τ) into
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which A∩L∞(τ) can be mapped as a dense subspace by an isometry41

ι : A ∩ L∞(τ)→ L2(τ).

The space A ∩ L∞(τ) acts on itself by multiplication, and thus

also acts on the dense subspace ι(A∩L∞(τ)) of L2(τ). We would like

to extend this action to all of L2(τ), but this requires an additional

estimate:

Lemma 2.5.13. Let (A, τ) be a tracial non-commutative probability

space. If X,Y ∈ A ∩ L∞(τ) with X self-adjoint, then

‖XY ‖L2(τ) ≤ ρ(X)‖Y ‖L2(τ).

Proof. Squaring and cyclically permuting, it will suffice to show that

τ(Y ∗X2Y ) ≤ ρ(X)2τ(Y ∗Y ).

Let ε > 0 be arbitrary. By Weierstrass approximation, we can

find a polynomial P with real coefficients such that x2 + P (x)2 =

ρ(X)2 + O(ε) on the interval [−ρ(X), ρ(X)]. By Proposition 2.5.7,

we can thus write X2 + P (X)2 = ρ(X)2 + E where E is self-adjoint

with ρ(E) = O(ε). Multiplying on the left by Y ∗ and on the right by

Y and taking traces, we obtain

τ(Y ∗X2Y ) + τ(Y ∗P (X)2Y ) ≤ ρ(X)2τ(Y ∗Y ) + τ(Y ∗EY ).

By non-negativity, τ(Y ∗P (X)2Y ) ≥ 0. By Exercise 2.5.8, we have

τ(Y ∗EY ) = OY (ε). Sending ε→ 0 we obtain the claim. �

As a consequence, we see that the self-adjoint elements X of

A∩L∞(τ) act in a bounded manner on all of L2(τ), and so on taking

real and imaginary parts, we see that the same is true for the non-

self-adjoint elements too. Thus we can associate to each X ∈ L∞(τ)

a bounded linear transformation X ∈ B(L2(τ)) on the Hilbert space

L2(τ).

Exercise 2.5.10 (Gelfand-Naimark theorem). Show that the map

X 7→ X is a ∗-isomorphism from A ∩ L∞(τ) to a ∗-subalgebra of

B(L2(τ)), and that one has the representation

τ(X) = 〈e,Xe〉

41This isometry is injective when A is faithful, but will have a non-trivial kernel
otherwise.
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for any X ∈ L∞(τ), where e is the unit vector e := ι(1).

Remark 2.5.14. The Gelfand-Naimark theorem required the tracial

hypothesis only to deal with the error E in the proof of Lemma 2.5.13.

One can also establish this theorem without this hypothesis, by as-

suming instead that the non-commutative space is a C∗-algebra; this

provides a continuous functional calculus, so that we can replace P

in the proof of Lemma 2.5.13 by a continuous function and dispense

with E altogether. This formulation of the Gelfand-Naimark theorem

is the one which is usually seen in the literature.

The Gelfand-Naimark theorem identifies A ∩ L∞(τ) with a ∗-
subalgebra of B(L2(τ)). The closure of this ∗-subalgebra in the weak

operator topology42 is then a von Neumann algebra, which we denote

as L∞(τ). As a consequence, we see that non-commutative proba-

bility spaces are closely related to von Neumann algebras (equipped

with a tracial state τ). However, we refrain from identifying the for-

mer completely with the latter, in order to allow ourselves the freedom

to work with such spaces as L∞−, which is almost but not quite a

von Neumann algebra. Instead, we use the following looser (and more

algebraic) definition in Definition 2.5.12.

2.5.2. Limits of non-commutative random variables. One ben-

efit of working in an abstract setting is that it becomes easier to take

certain types of limits. For instance, it is intuitively obvious that the

cyclic groups Z/NZ are “converging” in some sense to the integer

group Z. This convergence can be formalised by selecting a distin-

guished generator e of all groups involved (1 mod N in the case of

Z/NZ, and 1 in the case of the integers Z), and noting that the set of

relations involving this generator in Z/NZ (i.e. the relations ne = 0

when n is divisible by N) converge in a pointwise sense to the set

of relations involving this generator in Z (i.e. the empty set). Here,

to see the convergence, we viewed a group abstractly via the rela-

tions between its generators, rather than on a concrete realisation of

a group as (say) residue classes modulo N .

42The weak operator topology on the space B(H) of bounded operators on a
Hilbert space is the weakest topology for which the coefficient maps T 7→ 〈Tu, v〉H are
continuous for each u, v ∈ H.
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We can similarly define convergence of random variables in non-

commutative probability spaces as follows.

Definition 2.5.15 (Convergence). Let (An, τn) be a sequence of non-

commutative probability spaces, and let (A∞, τ∞) be an additional

non-commutative space. For each n, let Xn,1, . . . , Xn,k be a sequence

of random variables in An, and let X∞,1, . . . , X∞,k be a sequence of

random variables in A∞. We say that Xn,1, . . . , Xn,k converges in

the sense of moments to X∞,1, . . . , X∞,k if we have

τn(Xn,i1 . . . Xn,im)→ τ∞(X∞,i1 . . . X∞,im)

as n → ∞ for any sequence i1, . . . , im ∈ {1, . . . , k}. We say that

Xn,1, . . . , Xn,k converge in the sense of ∗-moments toX∞,1, . . . , X∞,k
if Xn,1, . . . , Xn,k, X

∗
n,1, . . . , X

∗
n,k converges in the sense of moments to

X∞,1, . . . , X∞,k, X
∗
∞,1, . . . , X

∗
∞,k.

If X1, . . . , Xk (viewed as a constant k-tuple in n) converges in

the sense of moments (resp. ∗-moments) to Y1, . . . , Yk, we say that

X1, . . . , Xk and Y1, . . . , Yk have matching joint moments (resp. match-

ing joint ∗-moments).

Example 2.5.16. If Xn, Yn converge in the sense of moments to

X∞, Y∞ then we have for instance that

τn(XnY
k
nXn)→ τ∞(X∞Y

k
∞X∞)

as n → ∞ for each k, while if they converge in the stronger sense of

∗-moments then we obtain more limits, such as

τn(XnY
k
nX

∗
n)→ τ∞(X∞Y

k
∞X

∗
∞).

Note however that no uniformity in k is assumed for this convergence;

in particular, if k varies in n (e.g. if k = O(log n)), there is now no

guarantee that one still has convergence.

Remark 2.5.17. When the underlying objects Xn,1, . . . , Xn,k and

X1, . . . , Xk are self-adjoint, then there is no distinction between con-

vergence in moments and convergence in ∗-moments. However, for

non-self-adjoint variables, the latter type of convergence is far stronger,

and the former type is usually too weak to be of much use, even in the

commutative setting. For instance, let X be a classical random vari-

able drawn uniformly at random from the unit circle {z ∈ C : |z| = 1}.
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Then the constant sequence Xn = X has all the same moments as the

zero random variable 0, and thus converges in the sense of moments

to zero, but does not converge in the ∗-moment sense to zero.

It is also clear that if we require thatA∞ be generated byX∞,1, . . . , X∞,k
in the ∗-algebraic sense (i.e. every element of A∞ is a polynomial

combination of X∞,1, . . . , X∞,k and their adjoints) then a limit in

the sense of ∗-moments, if it exists, is unique up to matching joint

∗-moments.

For a sequence Xn of a single, uniformly bounded, self-adjoint

element, convergence in moments is equivalent to convergence in dis-

tribution:

Exercise 2.5.11. Let Xn ∈ An be a sequence of self-adjoint elements

in non-commutative probability spaces (An, τn) with ρ(Xn) uniformly

bounded, and let X∞ ∈ A∞ be another bounded self-adjoint element

in a non-commutative probability space (A∞, τ∞). Show that Xn

converges in moments to X∞ if and only if the spectral measure µXn
converges in the vague topology to µX∞ .

Thus, for instance, one can rephrase the Wigner semicircular

law (in the convergence in expectation formulation) as the asser-

tion that a sequence Mn ∈ L∞− ⊗Mn(C) of Wigner random ma-

trices with (say) subgaussian entries of mean zero and variance one,

when viewed as elements of the non-commutative probability space

(L∞−⊗Mn(C),E 1
n tr), will converge to any bounded self-adjoint ele-

ment u of a non-commutative probability space with spectral measure

given by the semicircular distribution µsc := 1
2π (4− x2)

1/2
+ dx. Such

elements are known as semicircular elements. Here are some easy

examples of semicircular elements:

(i) A classical real random variable u drawn using the proba-

bility measure µsc.

(ii) The identity function x 7→ x in the Lebesgue space L∞(dµsc),

endowed with the trace τ(f) :=
∫
R
f dµsc.

(iii) The function θ 7→ 2 cos θ in the Lebesgue space L∞([0, π], 2
π sin2 θ dθ).

Here is a more interesting example of a semicircular element:
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Exercise 2.5.12. Let (A, τ) be the non-commutative space consist-

ing of bounded operators B(`2(N)) on the natural numbers with

trace τ(X) := 〈e0, Xe0〉`2(N), where e0, e1, . . . is the standard ba-

sis of `2(N). Let U : en 7→ en+1 be the right shift on `2(N). Show

that U + U∗ is a semicircular operator. (Hint: one way to proceed

here is to use Fourier analysis to identify `2(N) with the space of

odd functions θ 7→ f(θ) on R/2πZ, with U being the operator that

maps sin(nθ) to sin((n+1)θ); show that U+U∗ is then the operation

of multiplication by 2 cos θ.) One can also interpret U as a creation

operator in a Fock space, but we will not do so here.

Exercise 2.5.13. With the notation of the previous exercise, show

that τ((U + U∗)k) is zero for odd k, and is equal to the Catalan

number Ck/2 from Section 2.3 when k is odd. Note that this provides

a (very) slightly different proof of the semicircular law from that given

from the moment method in Section 2.4.

Because we are working in such an abstract setting with so few

axioms, limits exist in abundance:

Exercise 2.5.14. For each n, let Xn,1, . . . , Xn,k be bounded self-

adjoint elements of a tracial non-commutative space (An, τn). Sup-

pose that the spectral radii ρ(Xn,1), . . . , ρ(Xn,k) are uniformly bounded

in n. Show that there exists a subsequence nj and bounded self-

adjoint elementsX1, . . . , Xk of a tracial non-commutative space (A, τ)

such that Xnj ,1, . . . , Xnj ,k converge in moments to X1, . . . , Xk as

j →∞. (Hint: use the Bolzano-Weierstrass theorem and the Arzelá-

Ascoli diagonalisation trick to obtain a subsequence in which each of

the joint moments of Xnj ,1, . . . , Xnj ,k converge as j →∞. Use these

moments to build a noncommutative probability space.)

2.5.3. Free independence. We now come to the fundamental con-

cept in free probability theory, namely that of free independence.

Definition 2.5.18 (Free independence). A collection X1, . . . , Xk of

random variables in a non-commutative probability space (A, τ) is

freely independent (or free for short) if one has

τ((P1(Xi1)− τ(P1(Xi1))) . . . (Pm(Xim)− τ(Pm(Xim)))) = 0
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whenever P1, . . . , Pm are polynomials and i1, . . . , im ∈ {1, . . . , k} are

indices with no two adjacent ij equal.

A sequenceXn,1, . . . , Xn,k of random variables in a non-commutative

probability space (An, τn) is asymptotically freely independent (or

asymptotically free for short) if one has

τn((P1(Xn,i1)− τ(P1(Xn,i1))) . . . (Pm(Xn,im)− τ(Pm(Xn,im))))

→ 0

as n → ∞ whenever P1, . . . , Pm are polynomials and i1, . . . , im ∈
{1, . . . , k} are indices with no two adjacent ij equal.

Remark 2.5.19. The above example describes freeness of collections

of random variables A. One can more generally define freeness of col-

lections of subalgebras of A, which in some sense is the more natural

concept from a category-theoretic perspective, but we will not need

this concept here. See e.g. [Bi2003] for more discussion.

Thus, for instance, ifX,Y are freely independent, then τ(P (X)Q(Y )R(X)S(Y ))

will vanish for any polynomials P,Q,R, S for which τ(P (X)), τ(Q(Y )), τ(R(X)), τ(S(Y ))

all vanish. This is in contrast to classical independence of classi-

cal (commutative) random variables, which would only assert that

τ(P (X)Q(Y )) = 0 whenever τ(P (X)), τ(Q(Y )) both vanish.

To contrast free independence with classical independence, sup-

pose that τ(X) = τ(Y ) = 0. If X,Y were freely independent, then

τ(XYXY ) = 0. If instead X,Y were commuting and classically in-

dependent, then we would instead have τ(XYXY ) = τ(X2Y 2) =

τ(X2)τ(Y 2), which would almost certainly be non-zero.

For a trivial example of free independence, X and Y automat-

ically are freely independent if at least one of X,Y is constant (i.e.

a multiple of the identity 1). In the commutative setting, this is

basically the only way one can have free independence:

Exercise 2.5.15. Suppose that X,Y are freely independent elements

of a faithful non-commutative probability space which also commute.

Show that at least one of X,Y is equal to a scalar. (Hint: First

normalise X,Y to have trace zero, and consider τ(XYXY ).)
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A less trivial example of free independence comes from the free

group, which provides a clue as to the original motivation of this

concept:

Exercise 2.5.16. Let F2 be the free group on two generators g1, g2.

Let A = B(`2(F2)) be the non-commutative probability space of

bounded linear operators on the Hilbert space `2(F2), with trace

τ(X) := 〈Xe0, e0〉, where e0 is the Kronecker delta function at the

identity. Let U1, U2 ∈ A be the shift operators

U1f(g) := f(g1g); U2f(g) := f(g2g)

for f ∈ `2(F2) and g ∈ F2. Show that U1, U2 are freely independent.

For classically independent commuting random variables X,Y ,

knowledge of the individual moments τ(Xk), τ(Y k) gave complete

information on the joint moments: τ(XkY l) = τ(Xk)τ(Y l). The

same fact is true for freely independent random variables, though the

situation is more complicated. We begin with a simple case: comput-

ing τ(XY ) in terms of the moments of X,Y . From free independence

we have

τ((X − τ(X))(Y − τ(Y )) = 0.

Expanding this using linear nature of trace, one soon sees that

(2.123) τ(XY ) = τ(X)τ(Y ).

So far, this is just as with the classically independent case. Next, we

consider a slightly more complicated moment, τ(XYX). If we split

Y = τ(Y ) + (Y − τ(Y )), we can write this as

τ(XYX) = τ(Y )τ(X2) + τ(X(Y − τ(Y ))X).

In the classically independent case, we can conclude the latter term

would vanish. We cannot immediately say that in the freely inde-

pendent case, because only one of the factors has mean zero. But

from (2.123) we know that τ(X(Y − τ(Y )) = τ((Y − τ(Y ))X) = 0.

Because of this, we can expand

τ(X(Y − τ(Y ))X) = τ((X − τ(X))(Y − τ(Y ))(X − τ(X)))

and now free independence does ensure that this term vanishes, and

so

(2.124) τ(XYX) = τ(Y )τ(X2).
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So again we have not yet deviated from the classically independent

case. But now let us look at τ(XYXY ). We split the second X into

τ(X) and X − τ(X). Using (2.123) to control the former term, we

have

τ(XYXY ) = τ(X)2τ(Y 2) + τ(XY (X − τ(X))Y ).

From (2.124) we have τ(Y (X − τ(X))Y ) = 0, so we have

τ(XYXY ) = τ(X)2τ(Y 2) + τ((X − τ(X))Y (X − τ(X))Y ).

Now we split Y into τ(Y ) and Y −τ(Y ). Free independence eliminates

all terms except

τ(XYXY ) = τ(X)2τ(Y 2) + τ((X − τ(X))τ(Y )(X − τ(X))τ(Y ))

which simplifies to

τ(XYXY ) = τ(X)2τ(Y 2) + τ(X2)τ(Y )2 − τ(X)2τ(Y )2

which differs from the classical independence prediction of τ(X2)τ(Y 2).

This process can be continued:

Exercise 2.5.17. Let X1, . . . , Xk be freely independent. Show that

any joint moment of X1, . . . , Xk can be expressed as a polynomial

combination of the individual moments τ(Xj
i ) of the Xi. (Hint: in-

duct on the complexity of the moment.)

The product measure construction allows us to generate classi-

cally independent random variables at will (after extending the un-

derlying sample space): see Exercise 1.1.20. There is an analogous

construction, called the amalgamated free product, that allows one

to generate families of freely independent random variables, each of

which has a specified distribution. Let us give an illustrative special

case of this construction:

Lemma 2.5.20 (Free products). For each 1 ≤ i ≤ k, let (Ai, τi)
be a non-commutative probability space. Then there exists a non-

commutative probability space (A, τ) which contain embedded copies

of each of the (Ai, τi), such that whenever Xi ∈ Ai for i = 1, . . . , k,

then X1, . . . , Xk are freely independent.
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Proof. (Sketch) Recall that each Ai can be given an inner product

〈, 〉L2(Ai). One can then orthogonally decompose each space Ai into

the constants C, plus the trace zero elements A0
i := {X ∈ Ai :

τ(X) = 0}.
We now form the Fock space F to be the inner product space

formed by the direct sum of tensor products

(2.125) A0
i1 ⊗ . . .⊗A

0
im

where m ≥ 0, and i1, . . . , im ∈ {1, . . . , k} are such that no adjacent

pair ij , ij+1 of the i1, . . . , im are equal. Each element Xi ∈ Ai then

acts on this Fock space by defining

Xi(Yi1 ⊗ . . .× Yim) := Xi ⊗ Yi1 ⊗ . . .× Yim

when i 6= i1, and

Xi(Yi1⊗. . .×Yim) := τ(XiYi1)Yi2⊗. . .×Yim+(XiYi1−τ(XiYi1))⊗Yi2⊗. . .×Yim

when i = i1. One can thus map Ai into the space A := Hom(F ,F)

of linear maps from F to itself. The latter can be given the structure

of a non-commutative space by defining the trace τ(X) of an element

X ∈ A by the formula τ(X) := 〈Xe∅, e∅〉F , where e∅ is the vacuum

state of F , being the unit of the m = 0 tensor product. One can verify

(Exercise!) that Ai embeds into A and that elements from different

Ai are freely independent. �

Exercise 2.5.18. Complete the proof of Lemma 2.5.20. (Hint: you

may find it helpful to first do Exercise 2.5.16, as the construction here

is in an abstraction of the one in that exercise.)

Finally, we illustrate the fundamental connection between free

probability and random matrices first observed by Voiculescu[Vo1991],

namely that (classically) independent families of random matrices are

asymptotically free. The intuition here is that while a large random

matrix M will certainly correlate with itself (so that, for instance,

trM∗M will be large), once one interposes an independent random

matrix N of trace zero, the correlation is largely destroyed (thus, for

instance, trM∗NM will usually be quite small).

We give a typical instance of this phenomenon here:
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Proposition 2.5.21 (Asymptotic freeness of Wigner matrices). Let

Mn,1, . . . ,Mn,k be a collection of independent n×n Wigner matrices,

where the coefficients all have uniformly bounded mth moments for

each m. Then the random variables 1√
n
Mn,1, . . . ,

1√
n
Mn,k ∈ (L∞− ⊗

Mn(C),E 1
n tr) are asymptotically free.

Proof. (Sketch) Let us abbreviate 1√
n
Mn,j as Xj (suppressing the n

dependence). It suffices to show that the traces

τ(

m∏
j=1

(X
aj
ij
− τ(X

aj
ij

))) = o(1)

for each fixed choice of natural numbers a1, . . . , am, where no two

adjacent ij , ij+1 are equal.

Recall from Section 2.3 that τ(X
aj
j ) is (up to errors of o(1)) equal

to a normalised count of paths of length aj in which each edge is tra-

versed exactly twice, with the edges forming a tree. After normalisa-

tion, this count is equal to 0 when aj is odd, and equal to the Catalan

number Caj/2 when aj is even.

One can perform a similar computation to compute τ(
∏m
j=1X

aj
ij

).

Up to errors of o(1), this is a normalised count of coloured paths of

length a1 + . . .+am, where the first a1 edges are coloured with colour

i1, the next a2 with colour i2, etc. Furthermore, each edge is traversed

exactly twice (with the two traversals of each edge being assigned the

same colour), and the edges form a tree. As a consequence, there

must exist a j for which the block of aj edges of colour ij form their

own sub-tree, which contributes a factor of Caj/2 or 0 to the final

trace. Because of this, when one instead computes the normalised

expression τ(
∏m
j=1(X

aj
ij
− τ(X

aj
ij

))), all contributions that are not

o(1) cancel themselves out, and the claim follows. �

Exercise 2.5.19. Expand the above sketch into a full proof of the

above theorem.

Remark 2.5.22. This is by no means the only way in which random

matrices can become asymptotically free. For instance, if instead one

considers random matrices of the form Mn,i = U∗i AiUi, where Ai are

deterministic Hermitian matrices with uniformly bounded eigenval-

ues, and the Ui are iid unitary matrices drawn using Haar measure
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on the unitary group U(n), one can also show that the Mn,i are

asymptotically free; again, see [Vo1991] for details.

2.5.4. Free convolution. When one is summing two classically in-

dependent (real-valued) random variables X and Y , the distribution

µX+Y of the sum X + Y is the convolution µX ∗ µY of the distribu-

tions µX and µY . This convolution can be computed by means of the

characteristic function

FX(t) := τ(eitX) =

∫
R

eitx dµX(x)

by means of the simple formula

τ(eit(X+Y )) = τ(eitX)τ(eitY ).

As we saw in Section 2.2, this can be used in particular to establish

a short proof of the central limit theorem.

There is an analogous theory when summing two freely indepen-

dent (self-adjoint) non-commutative random variables X and Y ; the

distribution µX+Y turns out to be a certain combination µX � µY ,

known as the free convolution of µX and µY . To compute this free

convolution, one does not use the characteristic function; instead, the

correct tool is the Stieltjes transform

sX(z) := τ((X − z)−1) =

∫
R

1

x− z
dµX(x)

which has already been discussed earlier.

Here’s how to use this transform to compute free convolutions. If

one wishes, one can that X is bounded so that all series involved con-

verge for z large enough, though actually the entire argument here can

be performed at a purely algebraic level, using formal power series,

and so the boundedness hypothesis here is not actually necessary.

The trick (which we already saw in Section 2.4) is not to view

s = sX(z) as a function of z, but rather to view z = zX(s) as a

function of s. Given that one asymptotically has s ∼ −1/z for z, we

expect to be able to perform this inversion for z large and s close to

zero; and in any event one can easily invert (2.119) on the level of

formal power series.
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With this inversion, we thus have

(2.126) s = τ((X − zX(s))−1)

and thus

(X − zX(s))−1 = s(1− EX)

for some EX = EX(s) of trace zero. Now we do some (formal) alge-

braic sleight of hand. We rearrange the above identity as

X = zX(s) + s−1(1− EX)−1.

Similarly we have

Y = zY (s) + s−1(1− EY )−1

and so

X + Y = zX(s) + zY (s) + s−1[(1− EX)−1 + (1− EY )−1].

We can combine the second two terms via the identity

(1−EX)−1 +(1−EY )−1 = (1−EX)−1(1−EY +1−EX)(1−EY )−1.

Meanwhile

1 = (1− EX)−1(1− EY − EX + EXEY )(1− EY )−1

and so

X+Y = zX(s)+zY (s)+s−1+s−1[(1−EX)−1(1−EXEY )(1−EY )−1].

We can rearrange this a little bit as

(X+Y −zX(s)−zY (s)−s−1)−1 = s[(1−EY )(1−EXEY )−1(1−EX)].

We expand out as (formal) Neumann series:

(1−EY )(1−EXEY )−1(1−EX) = (1−EY )(1+EXEY +EXEY EXEY +. . .)(1−EX).

This expands out to equal 1 plus a whole string of alternating products

of EX and EY .

Now we use the hypothesis that X and Y are free. This easily

implies that EX and EY are also free. But they also have trace zero,

thus by the definition of free independence, all alternating products

of EX and EY have zero trace43. We conclude that

τ((1− EY )(1− EXEY )−1(1− EX)) = 1

43In the case when there are an odd number of terms in the product, one can
obtain this zero trace property using the cyclic property of trace and induction.
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and so

τ((X + Y − zX(s)− zY (s)− s−1)−1) = s.

Comparing this against (2.126) for X + Y we conclude that

zX+Y (s) = zX(s) + zY (s) + s−1.

Thus, if we define the R-transform RX of X to be (formally) given

by the formula

RX(s) := zX(−s)− s−1

then we have the addition formula

RX+Y = RX +RY .

Since one can recover the Stieltjes transform sX (and hence the R-

transform RX) from the spectral measure µX and vice versa, this

formula (in principle, at least) lets one compute the spectral measure

µX+Y of X+Y from the spectral measures µX , µY , thus allowing one

to define free convolution.

For comparison, we have the (formal) addition formula

logFX+Y = logFX + logFY

for classically independent real random variables X,Y . The following

exercises carry this analogy a bit further.

Exercise 2.5.20. Let X be a classical real random variable. Working

formally, show that

logFX(t) =

∞∑
k=1

κk(X)

k!
(it)k

where the cumulants κk(X) can be reconstructed from the moments

τ(Xk) by the recursive formula

τ(Xk) = κk(X) +

k−1∑
j=1

κj(X)
∑

a1+...+aj=k−j

τ(Xa1+...+aj )

for k ≥ 1. (Hint: start with the identity d
dtFX(t) = ( ddt logFX(t))FX(t).)

Thus for instance κ1(X) = τ(X) is the expectation, κ2(X) = τ(X2)−
τ(X)2 is the variance, and the third cumulant is given by the formula

κ3(X) = τ(X3) + 3τ(X2)τ(X)− 4τ(X)3.
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Establish the additional formula

τ(Xk) =
∑
π

∏
A∈π

C|A|(X)

where π ranges over all partitions of {1, . . . , k} into non-empty cells

A.

Exercise 2.5.21. Let X be a non-commutative random variable.

Working formally, show that

RX(s) =
∞∑
k=1

Ck(X)sk−1

where the free cumulants Ck(X) can be reconstructed from the mo-

ments τ(Xk) by the recursive formula

τ(Xk) = Ck(X) +

k−1∑
j=1

Cj(X)
∑

a1+...+aj=k−j

τ(Xa1) . . . τ(Xaj )

for k ≥ 1. (Hint: start with the identity sX(z)RX(−sX(z)) =

1 + zsX(z).) Thus for instance C1(X) = τ(X) is the expectation,

C2(X) = τ(X2)− τ(X)2 is the variance, and the third free cumulant

is given by the formula

C3(X) = τ(X3)− 3τ(X2)τ(X) + 2τ(X)3.

Establish the additional formula

τ(Xk) =
∑
π

∏
A∈π

κ|A|(X)

where π ranges over all partitions of {1, . . . , k} into non-empty cells

A which are non-crossing, which means that if a < b < c < d lie in

{1, . . . , k}, then it cannot be the case that a, c lie in one cell A while

b, d lie in a distinct cell A′.

Remark 2.5.23. These computations illustrate a more general prin-

ciple in free probability, in that the combinatorics of free probability

tend to be the “non-crossing” analogue of the combinatorics of clas-

sical probability; compare with Remark 2.3.18.

Remark 2.5.24. The R-transform allows for efficient computation

of the spectral behaviour of sums X + Y of free random variables.

There is an analogous transform, the S-transform, for computing the
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spectral behaviour (or more precisely, the joint moments) of products

XY of free random variables; see for instance [Sp].

The R-transform clarifies the privileged role of the semicircular

elements:

Exercise 2.5.22. Let u be a semicircular element. Show thatR√tu(s) =

ts for any t > 0. In particular, the free convolution of
√
tu and

√
t′u

is
√
t+ t′u.

Exercise 2.5.23. From the above exercise, we see that the effect of

adding a free copy of
√
tu to a non-commutative random variable X

is to shift the R-transform by ts. Explain how this is compatible with

the Dyson Brownian motion computations in Section 2.4.

It also gives a free analogue of the central limit theorem:

Exercise 2.5.24 (Free central limit theorem). Let X be a self-adjoint

random variable with mean zero and variance one (i.e. τ(X) = 0 and

τ(X2) = 1), and let X1, X2, X3, . . . be free copies of X. Let Sn :=

(X1 + . . .+Xn)/
√
n. Show that the coefficients of the formal power

series RSn(s) converge to that of the identity function s. Conclude

that Sn converges in the sense of moments to a semicircular element

u.

The free central limit theorem implies the Wigner semicircular

law, at least for the GUE ensemble and in the sense of expectation.

Indeed, if Mn is an n× n GUE matrix, then the matrices 1√
n
Mn are

a.s. uniformly bounded (by the Bai-Yin theorem, Notes 3), and so

(after passing to a subsequence, if necessary), they converge in the

sense of moments to some limit u.

On the other hand, if M ′n is an independent copy of Mn, then

Mn + M ′n ≡
√

2Mn from the properties of gaussians. Taking limits,

we conclude that u + u′ ≡
√

2u, where (by Proposition 2.5.21) u′ is

a free copy of u. Comparing this with the free central limit theorem

(or just the additivity property of R-transforms we see that u must

have the semicircular distribution. Thus the semicircular distribu-

tion is the only possible limit point of the 1√
n
Mn, and the Wigner

semicircular law then holds (in expectation, and for GUE). Using con-

centration of measure, we can upgrade the convergence in expectation
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to a.s. convergence; using the Lindeberg replacement trick one can

replace GUE with arbitrary Wigner matrices with (say) bounded co-

efficients; and then by using the truncation trick one can remove the

boundedness hypothesis. (These latter few steps were also discussed

in Section 2.4.)

2.6. Gaussian ensembles

Our study of random matrices, to date, has focused on somewhat

general ensembles, such as iid random matrices or Wigner random

matrices, in which the distribution of the individual entries of the

matrices was essentially arbitrary (as long as certain moments, such

as the mean and variance, were normalised). In these notes, we now

focus on two much more special, and much more symmetric, ensem-

bles:

(i) The Gaussian Unitary Ensemble (GUE), which is an ensem-

ble of random n × n Hermitian matrices Mn in which the

upper-triangular entries are iid with distribution N(0, 1)C,

and the diagonal entries are iid with distribution N(0, 1)R,

and independent of the upper-triangular ones; and

(ii) The Gaussian random matrix ensemble, which is an ensem-

ble of random n × n (non-Hermitian) matrices Mn whose

entries are iid with distribution N(0, 1)C.

The symmetric nature of these ensembles will allow us to com-

pute the spectral distribution by exact algebraic means, revealing a

surprising connection with orthogonal polynomials and with determi-

nantal processes. This will, for instance, recover the semicircular law

for GUE, but will also reveal fine spacing information, such as the

distribution of the gap between adjacent eigenvalues, which is largely

out of reach of tools such as the Stieltjes transform method and the

moment method (although the moment method, with some effort, is

able to control the extreme edges of the spectrum).

Similarly, we will see for the first time the circular law for eigen-

values of non-Hermitian matrices.

There are a number of other highly symmetric ensembles which

can also be treated by the same methods, most notably the Gaussian
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Orthogonal Ensemble (GOE) and the Gaussian Symplectic Ensem-

ble (GSE). However, for simplicity we shall focus just on the above

two ensembles. For a systematic treatment of these ensembles, see

[De1999].

2.6.1. The spectrum of GUE. We have already shown using Dyson

Brownian motion in Section 3.1 that that we have the Ginibre formula[Gi1965]

(2.127) ρn(λ) =
1

(2π)n/2
e−|λ|

2/2|∆n(λ)|2

for the density function of the eigenvalues (λ1, . . . , λn) ∈ Rn
≥ of a

GUE matrix Mn, where

∆n(λ) =
∏

1≤i<j≤n

(λi − λj)

is the Vandermonde determinant . We now give an alternate proof

of this result (omitting the exact value of the normalising constant
1

(2π)n/2
) that exploits unitary invariance and the change of variables

formula (the latter of which we shall do from first principles). The

one thing to be careful about is that one has to somehow quotient

out by the invariances of the problem before being able to apply the

change of variables formula.

One approach here would be to artificially “fix a gauge” and work

on some slice of the parameter space which is “transverse” to all the

symmetries. With such an approach, one can use the classical change

of variables formula. While this can certainly be done, we shall adopt

a more “gauge-invariant” approach and carry the various invariances

with us throughout the computation44

We turn to the details. Let Vn be the space of Hermitian n × n
matrices, then the distribution µMn

of a GUE matrix Mn is a abso-

lutely continuous probability measure on Vn, which can be written

using the definition of GUE as

µMn = Cn(
∏

1≤i<j≤n

e−|ξij |
2

)(
∏

1≤i≤n

e−|ξii|
2/2) dMn

where dMn is Lebesgue measure on V , ξij are the coordinates of Mn,

and Cn is a normalisation constant (the exact value of which depends

44For a comparison of the two approaches, see [Ta2009b, §1.4].
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on how one normalises Lebesgue measure on V ). We can express this

more compactly as

µMn = Cne
− tr(M2

n)/2 dMn.

Expressed this way, it is clear that the GUE ensemble is invariant

under conjugations Mn 7→ UMnU
−1 by any unitary matrix.

Let D be the diagonal matrix whose entries λ1 ≥ . . . ≥ λn are the

eigenvalues of Mn in descending order. Then we have Mn = UDU−1

for some unitary matrix U ∈ U(n). The matirx U is not uniquely

determined; if R is diagonal unitary matrix, then R commutes with

D, and so one can freely replace U with UR. On the other hand, if the

eigenvalues of M are simple, then the diagonal matrices are the only

matrices that commute with D, and so this freedom to right-multiply

U by diagonal unitaries is the only failure of uniqueness here. And in

any case, from the unitary invariance of GUE, we see that even after

conditioning on D, we may assume without loss of generality that U

is drawn from the invariant Haar measure on U(n). In particular, U

and D can be taken to be independent.

Fix a diagonal matrix D0 = diag(λ0
1, . . . , λ

0
n) for some λ0

1 > . . . >

λ0
n, let ε > 0 be extremely small, and let us compute the probability

(2.128) P(‖Mn −D0‖F ≤ ε)

that Mn lies within ε of D0 in the Frobenius norm(2.64). On the one

hand, the probability density of Mn is proportional to

e− tr(D2
0)/2 = e−|λ

0|2/2

near D0 (where we write λ0 := (λ0
1, . . . , λ

0
n)) and the volume of a ball

of radius ε in the n2-dimensional space Vn is proportional to εn
2

, so

(2.128) is equal to

(2.129) (C ′n + o(1))εn
2

e− tr(D2
0)/2

for some constant C ′n > 0 depending only on n, where o(1) goes

to zero as ε → 0 (keeping n and D0 fixed). On the other hand, if

‖Mn − D0‖F ≤ ε, then by the Weyl inequality (1.54) (or Weilandt-

Hoffman inequality (1.64)) we have D = D0 +O(ε) (we allow implied

constants here to depend on n and on D0). This implies UDU−1 =

D + O(ε), thus UD − DU = O(ε). As a consequence we see that
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the off-diagonal elements of U are of size O(ε). We can thus use the

inverse function theorem in this local region of parameter space and

make the ansatz45

D = D0 + εE; U = exp(εS)R

where E is a bounded diagonal matrix, R is a diagonal unitary matrix,

and S is a bounded skew-adjoint matrix with zero diagonal. Note that

the map (R,S) 7→ exp(εS)R has a non-degenerate Jacobian, so the

inverse function theorem applies to uniquely specify R,S (and thus

E) from U,D in this local region of parameter space.

Conversely, if D,U take the above form, then we can Taylor ex-

pand and conclude that

Mn = UDU∗ = D0 + εE + ε(SD0 −D0S) +O(ε2)

and so

‖Mn −D0‖F = ε‖E + (SD0 −D0S)‖F +O(ε2).

We can thus bound (2.128) from above and below by expressions of

the form

(2.130) P(‖E + (SD0 −D0S)‖F ≤ 1 +O(ε)).

As U is distributed using Haar measure on U(n), S is (locally) dis-

tributed using εn
2−n times a constant multiple of Lebesgue measure

on the spaceW of skew-adjoint matrices with zero diagonal, which has

dimension n2−n. Meanwhile, E is distributed using (ρn(λ0)+o(1))εn

times Lebesgue measure on the space of diagonal elements. Thus we

can rewrite (2.130) as

C ′′nε
n2

(ρn(λ0) + o(1))

∫ ∫
‖E+(SD0−D0S)‖F≤1+O(ε)

dEdS

where dE and dS denote Lebesgue measure and C ′′n > 0 depends only

on n.

Observe that the map S 7→ SD0 − D0S dilates the (complex-

valued) ij entry of S by λ0
j − λ0

i , and so the Jacobian of this map is

45Note here the emergence of the freedom to right-multiply U by diagonal
unitaries.
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1≤i<j≤n |λ0

j − λ0
i |2 = |∆n(λ0)|2. Applying the change of variables,

we can express the above as

C ′′nε
n2 ρn(λ0) + o(1)

|∆n(λ0)|2

∫ ∫
‖E+S‖F≤1+O(ε)

dEdS.

The integral here is of the form C ′′′n + O(ε) for some other constant

C ′′′n > 0. Comparing this formula with (2.129) we see that

ρn(λ0) + o(1) = C ′′′′n e−|λ
0|2/2∆n(λ0)|2 + o(1)

for yet another constant C ′′′′n > 0. Sending ε→ 0 we recover an exact

formula

ρn(λ) + o(1) = C ′′′′n e−|λ|
2/2|∆n(λ)|2

when λ is simple. Since almost all Hermitian matrices have simple

spectrum (see Exercise 1.3.10), this gives the full spectral distribution

of GUE, except for the issue of the unspecified constant.

Remark 2.6.1. In principle, this method should also recover the ex-

plicit normalising constant 1
(2π)n/2

in (2.127), but to do this it appears

one needs to understand the volume of the fundamental domain of

U(n) with respect to the logarithm map, or equivalently to under-

stand the volume of the unit ball of Hermitian matrices in the oper-

ator norm. I do not know of a simple way to compute this quantity

(though it can be inferred from (2.127) and the above analysis). One

can also recover the normalising constant through the machinery of

determinantal processes, see below.

Remark 2.6.2. The above computation can be generalised to other

U(n)-conjugation-invariant ensembles Mn whose probability distribu-

tion is of the form

µMn
= Cne

− trV (Mn) dMn

for some potential function V : R → R (where we use the spectral

theorem to define V (Mn)), yielding a density function for the spec-

trum of the form

ρn(λ) = C ′ne
−
∑n
j=1 V (λj)|∆n(λ)|2.

Given suitable regularity conditions on V , one can then generalise

many of the arguments in these notes to such ensembles. See [De1999]

for details.
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2.6.2. The spectrum of gaussian matrices. The above method

also works for gaussian matrices G, as was first observed by Dyson

(though the final formula was first obtained by Ginibre, using a dif-

ferent method). Here, the density function is given by

(2.131) Cne
− tr(GG∗)dG = Cne

−‖G‖2F dG

where Cn > 0 is a constant and dG is Lebesgue measure on the space

Mn(C) of all complex n × n matrices. This is invariant under both

left and right multiplication by unitary matrices, so in particular is

invariant under unitary conjugations as before.

This matrix G has n complex (generalised) eigenvalues σ(G) =

{λ1, . . . , λn}, which are usually distinct:

Exercise 2.6.1. Let n ≥ 2. Show that the space of matrices in

Mn(C) with a repeated eigenvalue has codimension 2.

Unlike the Hermitian situation, though, there is no natural way

to order these n complex eigenvalues. We will thus consider all n! pos-

sible permutations at once, and define the spectral density function

ρn(λ1, . . . , λn) of G by duality and the formula∫
Cn

F (λ)ρn(λ) dλ := E
∑

{λ1,...,λn}=σ(G)

F (λ1, . . . , λn)

for all test functions F . By the Riesz representation theorem, this

uniquely defines ρn (as a distribution, at least), although the total

mass of ρn is n! rather than 1 due to the ambiguity in the spectrum.

Now we compute ρn (up to constants). In the Hermitian case,

the key was to use the factorisation Mn = UDU−1. This particu-

lar factorisation is of course unavailable in the non-Hermitian case.

However, if the non-Hermitian matrix G has simple spectrum, it can

always be factored instead as G = UTU−1, where U is unitary and T

is upper triangular. Indeed, if one applies the Gram-Schmidt process

to the eigenvectors of G and uses the resulting orthonormal basis to

form U , one easily verifies the desired factorisation. Note that the

eigenvalues of G are the same as those of T , which in turn are just

the diagonal entries of T .

Exercise 2.6.2. Show that this factorisation is also available when

there are repeated eigenvalues. (Hint: use the Jordan normal form.)
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To use this factorisation, we first have to understand how unique

it is, at least in the generic case when there are no repeated eigenval-

ues. As noted above, if G = UTU−1, then the diagonal entries of T

form the same set as the eigenvalues of G. We have the freedom to

conjugate T by a permutation matrix P to obtain P−1TP , and right-

multiply U by P to counterbalance this conjugation; this permutes

the diagonal entries of T around in any one of n! combinations.

Now suppose we fix the diagonal λ1, . . . , λn of T , which amounts

to picking an ordering of the n eigenvalues of G. The eigenvalues of

T are λ1, . . . , λn, and furthermore for each 1 ≤ j ≤ n, the eigenvector

of T associated to λj lies in the span of the last n−j+1 basis vectors

ej , . . . , en of Cn, with a non-zero ej coefficient (as can be seen by

Gaussian elimination or Cramer’s rule). As G = UTU−1 with U

unitary, we conclude that for each 1 ≤ j ≤ n, the jth column of

U lies in the span of the eigenvectors associated to λj , . . . , λn. As

these columns are orthonormal, they must thus arise from applying

the Gram-Schmidt process to these eigenvectors (as discussed earlier).

This argument also shows that once the diagonal entries λ1, . . . , λn
of T are fixed, each column of U is determined up to rotation by a

unit phase. In other words, the only remaining freedom is to replace

U by UR for some unit diagonal matrix R, and then to replace T by

R−1TR to counterbalance this change of U .

To summarise, the factorisation G = UTU−1 is unique up to

right-multiplying U by permutation matrices and diagonal unitary

matrices (which together generate the Weyl group of the unitary

group U(n)), and then conjugating T by the same matrix. Given

a matrix G, we may apply these symmetries randomly, ending up

with a random factorisation UTU−1 such that the distribution of T

is invariant under conjugation by permutation matrices and diago-

nal unitary matrices. Also, since G is itself invariant under unitary

conjugations, we may also assume that U is distributed uniformly

according to the Haar measure of U(n), and independently of T .

To summarise, the gaussian matrix ensemble G can almost surely

be factorised as UTU−1, where T = (tij)1≤i≤j≤n is an upper-triangular
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matrix distributed according to some distribution

ψ((tij)1≤i≤j≤n)
∏

1≤i≤j≤n

dtij

which is invariant with respect to conjugating T by permutation ma-

trices or diagonal unitary matrices, and U is uniformly distributed

according to the Haar measure of U(n), independently of T .

Now let T0 = (t0ij)1≤i≤j≤n be an upper triangular matrix with

complex entries whose entries t011, . . . , t
0
nn ∈ C are distinct. As in the

previous section, we consider the probability

(2.132) P(‖G− T0‖F ≤ ε).

On the one hand, since the space Mn(C) of complex n × n matrices

has 2n2 real dimensions, we see from (2.131) that this expression is

equal to

(2.133) (C ′n + o(1))e−‖T0‖2F ε2n2

for some constant C ′n > 0.

Now we compute (2.132) using the factorisation G = UTU−1.

Suppose that ‖G− T0‖F ≤ ε, so G = T0 +O(ε) As the eigenvalues of

T0 are t011, . . . , t
0
nn, which are assumed to be distinct, we see (from the

inverse function theorem) that for ε small enough, G has eigenvalues

t011 + O(ε), . . . , t0nn + O(ε). Thus the diagonal entries of T are some

permutation of t011 + O(ε), . . . , t0nn + O(ε). As we are assuming the

distribution of T to be invariant under conjugation by permutation

matrices, all permutations here are equally likely, so with probabil-

ity46 1/n!, we may assume that the diagonal entries of T are given by

t011 +O(ε), . . . , t0nn +O(ε) in that order.

Let u0
1, . . . , u

0
n be eigenvector of T0 associated to t011, . . . , t

0
nn, then

the Gram-Schmidt process applied to u1, . . . , un (starting at u0
n and

working backwards to u0
1) gives the standard basis e1, . . . , en (in re-

verse order). By the inverse function theorem, we thus see that

we have eigenvectors u1 = u0
1 + O(ε), . . . , un = u0

n + O(ε) of G,

which when the Gram-Schmidt process is applied, gives a perturba-

tion e1+O(ε), . . . , en+O(ε) in reverse order. This gives a factorisation

46The factor of 1/n! will eventually be absorbed into one of the unspecified
constants.
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G = UTU−1 in which U = I +O(ε), and hence T = T0 +O(ε). This

is however not the most general factorisation available, even after fix-

ing the diagonal entries of T , due to the freedom to right-multiply U

by diagonal unitary matrices R. We thus see that the correct ansatz

here is to have

U = R+O(ε); T = R−1T0R+O(ε)

for some diagonal unitary matrix R.

In analogy with the GUE case, we can use the inverse function

theorem make the more precise ansatz

U = exp(εS)R; T = R−1(T0 + εE)R

where S is skew-Hermitian with zero diagonal and size O(1), R is diag-

onal unitary, and E is an upper triangular matrix of size O(1). From

the invariance U 7→ UR;T 7→ R−1TR we see that R is distributed

uniformly across all diagonal unitaries. Meanwhile, from the unitary

conjugation invariance, S is distributed according to a constant mul-

tiple of εn
2−n times Lebesgue measure dS on the n2 − n-dimensional

space of skew Hermitian matrices with zero diagonal; and from the

definition of ψ, E is distributed according to a constant multiple of

the measure

(1 + o(1))εn
2+nψ(T0) dE,

where dE is Lebesgue measure on the n2 + n-dimensional space of

upper-triangular matrices. Furthermore, the invariances ensure that

the random variables S,R,E are distributed independently. Finally,

we have

G = UTU−1 = exp(εS)(T0 + εE) exp(−εS).

Thus we may rewrite (2.132) as

(2.134)

(C ′′nψ(T0) + o(1))ε2n2

∫ ∫
‖ exp(εS)(T0+εE) exp(−εS)−T0‖F≤ε

dSdE

for some C ′′n > 0 (the R integration being absorbable into this con-

stant C ′′n). We can Taylor expand

exp(εS)(T0 + εE) exp(−εS) = T0 + ε(E + ST0 − T0S) +O(ε2)
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and so we can bound (2.134) above and below by expressions of the

form

(C ′′nψ(T0) + o(1))ε2n2

∫ ∫
‖E+ST0−T0S‖F≤1+O(ε)

dSdE.

The Lebesgue measure dE is invariant under translations by upper

triangular matrices, so we may rewrite the above expression as

(2.135) (C ′′nψ(T0) + o(1))ε2n2

∫ ∫
‖E+π(ST0−T0S)‖F≤1+O(ε)

dSdE,

where π(ST0 − T0S) is the strictly lower triangular component of

ST0 − T0S.

The next step is to make the (linear) change of variables V :=

π(ST0 − T0S). We check dimensions: S ranges in the space S of

skew-adjoint Hermitian matrices with zero diagonal, which has di-

mension (n2 − n)/2, as does the space of strictly lower-triangular

matrices, which is where V ranges. So we can in principle make this

change of variables, but we first have to compute the Jacobian of the

transformation (and check that it is non-zero). For this, we switch

to coordinates. Write S = (sij)1≤i,j≤n and V = (vij)1≤j<i≤n. In

coordinates, the equation V = π(ST0 − T0S) becomes

vij =

j∑
k=1

sikt
0
kj −

n∑
k=i

t0ikskj

or equivalently

vij = (t0jj − t0ii)sij +

j−1∑
k=1

t0kjsik −
n∑

k=i+1

t0ikskj .

Thus for instance

vn1 = (t011 − t0nn)sn1

vn2 = (t022 − t0nn)sn2 + t012sn1

v(n−1)1 = (t011 − t0(n−1)(n−1))s(n−1)1 − t0(n−1)nsn1

vn3 = (t033 − t0nn)sn3 + t013sn1 + t023sn2

v(n−1)2 = (t022 − t0(n−1)(n−1))s(n−1)2 + t012s(n−1)1 − t0(n−1)nsn2

v(n−2)1 = (t011 − t0(n−2)(n−2))s(n−2)1 − t0(n−2)(n−1)s(n−1)1 − t0(n−2)nsn1
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etc. We then observe that the transformation matrix from sn1, sn2, s(n−1)1, . . .

to vn1, vn2, v(n−1)1, . . . is triangular, with diagonal entries given by

t0jj − t0ii for 1 ≤ j < i ≤ n. The Jacobian of the (complex-linear) map

S 7→ V is thus given by

|
∏

1≤j<i≤n

t0jj − t0ii|2 = |∆(t011, . . . , t
0
nn)|2

which is non-zero by the hypothesis that the t11
0 , . . . , t

nn
0 are distinct.

We may thus rewrite (2.135) as

C ′′nψ(T0) + o(1)

|∆(t011, . . . , t
0
nn)|2

ε2n2

∫ ∫
‖E+V ‖F≤1+O(ε)

dSdV

where dV is Lebesgue measure on strictly lower-triangular matrices.

The integral here is equal to C ′′′n +O(ε) for some constant C ′′′n . Com-

paring this with (2.132), cancelling the factor of ε2n2

, and sending

ε→ 0, we obtain the formula

ψ((t0ij)1≤i≤j≤n) = C ′′′′n |∆(t011, . . . , t
0
nn)|2e−‖T0‖2F

for some constant C ′′′′n > 0. We can expand

e−‖T0‖2F =
∏

1≤i≤j≤n

e−|t
0
ij |

2

.

If we integrate out the off-diagonal variables t0ij for 1 ≤ i < j ≤ n, we

see that the density function for the diagonal entries (λ1, . . . , λn) of

T is proportional to

|∆(λ1, . . . , λn)|2e−
∑n
j=1 |λj |

2

.

Since these entries are a random permutation of the eigenvalues of G,

we conclude the Ginibre formula

(2.136) ρn(λ1, . . . , λn) = cn|∆(λ1, . . . , λn)|2e−
∑n
j=1 |λj |

2

for the joint density of the eigenvalues of a gaussian random matrix,

where cn > 0 is a constant.

Remark 2.6.3. Given that (2.127) can be derived using Dyson Brow-

nian motion, it is natural to ask whether (2.136) can be derived by a

similar method. It seems that in order to do this, one needs to con-

sider a Dyson-like process not just on the eigenvalues λ1, . . . , λn, but

on the entire triangular matrix T (or more precisely, on the moduli
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space formed by quotienting out the action of conjugation by uni-

tary diagonal matrices). Unfortunately the computations seem to get

somewhat complicated, and we do not present them here.

2.6.3. Mean field approximation. We can use the formula (2.127)

for the joint distribution to heuristically derive the semicircular law,

as follows.

It is intuitively plausible that the spectrum (λ1, . . . , λn) should

concentrate in regions in which ρn(λ1, . . . , λn) is as large as possible.

So it is now natural to ask how to optimise this function. Note that

the expression in (2.127) is non-negative, and vanishes whenever two

of the λi collide, or when one or more of the λi go off to infinity, so a

maximum should exist away from these degenerate situations.

We may take logarithms and write

(2.137) − log ρn(λ1, . . . , λn) =

n∑
j=1

1

2
|λj |2 +

∑∑
i 6=j

log
1

|λi − λj |
+C

where C = Cn is a constant whose exact value is not of importance

to us. From a mathematical physics perspective, one can interpret

(2.137) as a Hamiltonian for n particles at positions λ1, . . . , λn, sub-

ject to a confining harmonic potential (these are the 1
2 |λj |

2 terms)

and a repulsive logarithmic potential between particles (these are the
1

|λi−λj | terms).

Our objective is now to find a distribution of λ1, . . . , λn that

minimises this expression.

We know from previous notes that the λi should be have mag-

nitude O(
√
n). Let us then heuristically make a mean field approxima-

tion, in that we approximate the discrete spectral measure 1
n

∑n
j=1 δλj/

√
n

by a continuous47 probability measure ρ(x) dx. Then we can heuris-

tically approximate (2.137) as

n2

(∫
R

1

2
x2ρ(x) dx+

∫
R

∫
R

log
1

|x− y|
ρ(x)ρ(y) dxdy

)
+ C ′n

47Secretly, we know from the semicircular law that we should be able to take
ρ = 1

2π (4− x2)2+, but pretend that we do not know this fact yet.
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and so we expect the distribution ρ to minimise the functional

(2.138)

∫
R

1

2
x2ρ(x) dx+

∫
R

∫
R

log
1

|x− y|
ρ(x)ρ(y) dxdy.

One can compute the Euler-Lagrange equations of this functional:

Exercise 2.6.3. Working formally, and assuming that ρ is a proba-

bility measure that minimises (2.138), argue that

1

2
x2 + 2

∫
R

log
1

|x− y|
ρ(y) dy = C

for some constant C and all x in the support of ρ. For all x outside

of the support, establish the inequality

1

2
x2 + 2

∫
R

log
1

|x− y|
ρ(y) dy ≥ C.

There are various ways we can solve this equation for ρ; we sketch

here a complex-analytic method. Differentiating in x, we formally

obtain

x− 2p.v.

∫
R

1

x− y
ρ(y) dy = 0

on the support of ρ. But recall that if we let

s(z) :=

∫
R

1

y − z
ρ(y) dy

be the Stieltjes transform of the probability measure ρ(x) dx, then

we have

Im(s(x+ i0+)) = πρ(x)

and

Re(s(x+ i0+)) = −p.v.
∫
R

1

x− y
ρ(y) dy.

We conclude that

(x+ 2 Re(s(x+ i0+))Im(s(x+ i0+))) = 0

for all x, which we rearrange as

Im(s2(x+ i0+) + xs(x+ i0+)) = 0.

This makes the function f(z) = s2(z) + zs(z) entire (it is analytic in

the upper half-plane, obeys the symmetry f(z) = f(z), and has no

jump across the real line). On the other hand, as s(z) = −1+o(1)
z as
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z → ∞, f goes to −1 at infinity. Applying Liouville’s theorem, we

conclude that f is constant, thus we have the familiar equation

s2 + zs = −1

which can then be solved to obtain the semicircular law as in Section

2.4.

Remark 2.6.4. Recall from Section 3.1 that Dyson Brownian motion

can be used to derive the formula (2.127). One can then interpret

the Dyson Brownian motion proof of the semicircular law for GUE

in Section 2.4 as a rigorous formalisation of the above mean field

approximation heuristic argument.

One can perform a similar heuristic analysis for the spectral mea-

sure µG of a random gaussian matrix, giving a description of the

limiting density:

Exercise 2.6.4. Using heuristic arguments similar to those above,

argue that µG should be close to a continuous probability distribution

ρ(z) dz obeying the equation

|z|2 +

∫
C

log
1

|z − w|
ρ(w) dw = C

on the support of ρ, for some constant C, with the inequality

(2.139) |z|2 +

∫
C

log
1

|z − w|
ρ(w) dw ≥ C.

Using the Newton potential 1
2π log |z| for the fundamental solution of

the two-dimensional Laplacian −∂2
x − ∂2

y , conclude (non-rigorously)

that ρ is equal to 1
π on its support.

Also argue that ρ should be rotationally symmetric. Use (2.139)

and Green’s formula to argue why the support of ρ should be simply

connected, and then conclude (again non-rigorously) the circular law

(2.140) µG ≈
1

π
1|z|≤1 dz.

We will see more rigorous derivations of the circular law later in

this text.
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2.6.4. Determinantal form of the GUE spectral distribution.

In a previous section, we showed (up to constants) that the density

function ρn(λ1, . . . , λn) for the eigenvalues λ1 ≥ . . . ≥ λn of GUE was

given by the formula (2.127).

As is well known, the Vandermonde determinant ∆(λ1, . . . , λn)

that appears in (2.127) can be expressed up to sign as a determinant

of an n × n matrix, namely the matrix (λj−1
i )1≤i,j≤n. Indeed, this

determinant is clearly a polynomial of degree n(n−1)/2 in λ1, . . . , λn
which vanishes whenever two of the λi agree, and the claim then

follows from the factor theorem (and inspecting a single coefficient of

the Vandermonde determinant, e.g. the
∏n
j=1 λ

j−1
j coefficient, to get

the sign).

We can square the above fact (or more precisely, multiply the

above matrix matrix by its adjoint) and conclude that |∆(λ1, . . . , λn)|2
is the determinant of the matrix

(

n−1∑
k=0

λki λ
k
j )1≤i,j≤n.

More generally, if P0(x), . . . , Pn−1(x) are any sequence of polynomials,

in which Pi(x) has degree i, then we see from row operations that the

determinant of

(Pj−1(λi))1≤i,j≤n

is a non-zero constant multiple of ∆(λ1, . . . , λn) (with the constant

depending on the leading coefficients of the Pi), and so the determi-

nant of

(

n−1∑
k=0

Pk(λi)Pk(λj))1≤i,j≤n

is a non-zero constant multiple of |∆(λ1, . . . , λn)|2. Comparing this

with (2.127), we obtain the formula

ρn(λ) = C det(

n−1∑
k=0

Pk(λi)e
−λ2

i /4Pk(λj)e
−λ2

j/4)1≤i,j≤n

for some non-zero constant C.

This formula is valid for any choice of polynomials Pi of de-

gree i. But the formula is particularly useful when we set Pi equal
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to the (normalised) Hermite polynomials, defined48 by applying the

Gram-Schmidt process in L2(R) to the polynomials xie−x
2/4 for i =

0, . . . , n− 1 to yield Pi(x)e−x
2/4. In that case, the expression

(2.141) Kn(x, y) :=

n−1∑
k=0

Pk(x)e−x
2/4Pk(y)e−y

2/4

becomes the integral kernel of the orthogonal projection πVn operator

in L2(R) to the span of the xie−x
2/4, thus

πVnf(x) =

∫
R

Kn(x, y)f(y) dy

for all f ∈ L2(R), and so ρn(λ) is now a constant multiple of

det(Kn(λi, λj))1≤i,j≤n.

The reason for working with orthogonal polynomials is that we

have the trace identity

(2.142)

∫
R

Kn(x, x) dx = tr(πVn) = n

and the reproducing formula

(2.143) Kn(x, y) =

∫
R

Kn(x, z)Kn(z, y) dz

which reflects the identity πVn = π2
Vn

. These two formulae have an

important consequence:

Lemma 2.6.5 (Determinantal integration formula). Let Kn : R ×
R→ R be any symmetric rapidly decreasing function obeying (2.142),

(2.143). Then for any k ≥ 0, one has

(2.144)∫
R

det(Kn(λi, λj))1≤i,j≤k+1 dλk+1 = (n− k) det(Kn(λi, λj))1≤i,j≤k.

Remark 2.6.6. This remarkable identity is part of the beautiful

algebraic theory of determinantal processes, which is discussed further

in [Ta2010b, §2.6].

48Equivalently, the Pi are the orthogonal polynomials associated to the measure

e−x
2/2 dx.
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Proof. We induct on k. When k = 0 this is just (2.142). Now assume

that k ≥ 1 and that the claim has already been proven for k − 1.

We apply cofactor expansion to the bottom row of the determinant

det(Kn(λi, λj))1≤i,j≤k+1. This gives a principal term

(2.145) det(Kn(λi, λj))1≤i,j≤kKn(λk+1, λk+1)

plus a sum of k additional terms, the lth term of which is of the form

(2.146) (−1)k+1−lKn(λl, λk+1) det(Kn(λi, λj))1≤i≤k;1≤j≤k+1;j 6=l.

Using (2.142), the principal term (2.145) gives a contribution of n det(Kn(λi, λj))1≤i,j≤k
to (2.144). For each nonprincipal term (2.146), we use the multilin-

earity of the determinant to absorb the Kn(λl, λk+1) term into the

j = k + 1 column of the matrix. Using (2.143), we thus see that the

contribution of (2.146) to (2.144) can be simplified as

(−1)k+1−l det((Kn(λi, λj))1≤i≤k;1≤j≤k;j 6=l, (Kn(λi, λl))1≤i≤k)

which after row exchange, simplifies to −det(Kn(λi, λj))1≤i,j≤k. The

claim follows. �

In particular, if we iterate the above lemma using the Fubini-

Tonelli theorem, we see that∫
Rn

det(Kn(λi, λj))1≤i,j≤n dλ1 . . . dλn = n!.

On the other hand, if we extend the probability density function

ρn(λ1, . . . , λn) symmetrically from the Weyl chamber Rn
≥ to all of

Rn, its integral is also n!. Since det(Kn(λi, λj))1≤i,j≤n is clearly sym-

metric in the λ1, . . . , λn, we can thus compare constants and conclude

the Gaudin-Mehta formula[MeGa1960]

ρn(λ1, . . . , λn) = det(Kn(λi, λj))1≤i,j≤n.

More generally, if we define ρk : Rk → R+ to be the function

(2.147) ρk(λ1, . . . , λk) = det(Kn(λi, λj))1≤i,j≤k,

then the above formula shows that ρk is the k-point correlation func-

tion for the spectrum, in the sense that

(2.148)

∫
Rk

ρk(λ1, . . . , λk)F (λ1, . . . , λk) dλ1 . . . dλk
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= E
∑

1≤i1<...<ik≤n

F (λi1(Mn), . . . , λik(Mn))

for any test function F : Rk → C supported in the region {(x1, . . . , xk) :

x1 ≤ . . . ≤ xk}.
In particular, if we set k = 1, we obtain the explicit formula

EµMn
=

1

n
Kn(x, x) dx

for the expected empirical spectral measure of Mn. Equivalently after

renormalising by
√
n, we have

(2.149) EµMn/
√
n =

1

n1/2
Kn(
√
nx,
√
nx) dx.

It is thus of interest to understand the kernel Kn better.

To do this, we begin by recalling that the functions Pi(x)e−x
2/4

were obtained from xie−x
2/4 by the Gram-Schmidt process. In partic-

ular, each Pi(x)e−x
2/4 is orthogonal to the xje−x

2/4 for all 0 ≤ j < i.

This implies that xPi(x)e−x
2/4 is orthogonal to xje−x

2/4 for 0 ≤ j <
i − 1. On the other hand, xPi(x) is a polynomial of degree i + 1, so

xPi(x)e−x
2/4 must lie in the span of xje−x

2/4 for 0 ≤ j ≤ i+1. Com-

bining the two facts, we see that xPi must be a linear combination of

Pi−1, Pi, Pi+1, with the Pi+1 coefficient being non-trivial. We rewrite

this fact in the form

(2.150) Pi+1(x) = (aix+ bi)Pi(x)− ciPi−1(x)

for some real numbers ai, bi, ci (with c0 = 0). Taking inner products

with Pi+1 and Pi−1 we see that

(2.151)

∫
R

xPi(x)Pi+1(x)e−x
2/2 dx =

1

ai

and ∫
R

xPi(x)Pi−1(x)e−x
2/2 dx =

ci
ai

and so

(2.152) ci :=
ai
ai−1

(with the convention a−1 =∞).
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We will continue the computation of ai, bi, ci later. For now, we

we pick two distinct real numbers x, y and consider the Wronskian-

type expression

Pi+1(x)Pi(y)− Pi(x)Pi+1(y).

Using (2.150), (2.152), we can write this as

ai(x− y)Pi(x)Pi(y) +
ai
ai−1

(Pi−1(x)Pi(y)− Pi(x)Pi−1(y))

or in other words

Pi(x)Pi(y) =
Pi+1(x)Pi(y)− Pi(x)Pi+1(y)

ai(x− y)

− Pi(x)Pi−1(y)− Pi−1(x)Pi(y)

ai−1(x− y)
.

We telescope this and obtain the Christoffel-Darboux formula for the

kernel (2.141):

(2.153) Kn(x, y) =
Pn(x)Pn−1(y)− Pn−1(x)Pn(y)

an−1(x− y)
e−(x2+y2)/4.

Sending y → x using L’Hôpital’s rule, we obtain in particular that

(2.154) Kn(x, x) =
1

an−1
(P ′n(x)Pn−1(x)− P ′n−1(x)Pn(x))e−x

2/2.

Inserting this into (2.149), we see that if we want to understand

the expected spectral measure of GUE, we should understand the

asymptotic behaviour of Pn and the associated constants an. For

this, we need to exploit the specific properties of the gaussian weight

e−x
2/2. In particular, we have the identity

(2.155) xe−x
2/2 = − d

dx
e−x

2/2

so upon integrating (2.151) by parts, we have∫
R

(P ′i (x)Pi+1(x) + Pi(x)P ′i+1(x))e−x
2/2 dx =

1

ai
.

As P ′i has degree at most i − 1, the first term vanishes by the or-

thonormal nature of the Pi(x)e−x
2/4, thus

(2.156)

∫
R

Pi(x)P ′i+1(x)e−x
2/2 dx =

1

ai
.
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To compute this, let us denote the leading coefficient of Pi as ki. Then

P ′i+1 is equal to (i+1)ki+1

ki
Pi plus lower-order terms, and so we have

(i+ 1)ki+1

ki
=

1

ai
.

On the other hand, by inspecting the xi+1 coefficient of (2.150) we

have

ki+1 = aiki.

Combining the two formulae (and making the sign convention that

the ki are always positive), we see that

ai =
1√
i+ 1

and

ki+1 =
ki√
i+ 1

.

Meanwhile, a direct computation shows that P0(x) = k0 = 1
(2π)1/4

,

and thus by induction

ki :=
1

(2π)1/4
√
i!
.

A similar method lets us compute the bi. Indeed, taking inner prod-

ucts of (2.150) with Pi(x)e−x
2/2 and using orthonormality we have

bi = −ai
∫
R

xPi(x)2e−x
2/2 dx

which upon integrating by parts using (2.155) gives

bi = −2ai

∫
R

Pi(x)P ′i (x)e−x
2/2 dx.

As P ′i is of degree strictly less than i, the integral vanishes by or-

thonormality, thus bi = 0. The identity (2.150) thus becomes Hermite

recurrence relation

(2.157) Pi+1(x) =
1√
i+ 1

xPi(x)−
√
i√

i+ 1
Pi−1(x).

Another recurrence relation arises by considering the integral∫
R

Pj(x)P ′i+1(x)e−x
2/2 dx.
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On the one hand, as P ′i+1 has degree at most i, this integral vanishes

if j > i by orthonormality. On the other hand, integrating by parts

using (2.155), we can write the integral as∫
R

(xPj − P ′j)(x)Pi+1(x)e−x
2/2 dx.

If j < i, then xPj−P ′j has degree less than i+1, so the integral again

vanishes. Thus the integral is non-vanishing only when j = i. Using

(2.156), we conclude that

(2.158) P ′i+1 =
1

ai
Pi =

√
i+ 1Pi.

We can combine (2.158) with (2.157) to obtain the formula

d

dx
(e−x

2/2Pi(x)) = −
√
i+ 1e−x

2/2Pi+1(x),

which together with the initial condition P0 = 1
(2π)1/4

gives the ex-

plicit representation

(2.159) Pn(x) :=
(−1)n

(2π)1/4
√
n!
ex

2/2 d
n

dxn
e−x

2/2

for the Hermite polynomials. Thus, for instance, at x = 0 one sees

from Taylor expansion that

(2.160) Pn(0) =
(−1)n/2

√
n!

(2π)1/42n/2(n/2)!
; P ′n(0) = 0

when n is even, and

(2.161) Pn(0) = 0; P ′n(0) =
(−1)(n+1)/2(n+ 1)

√
n!

(2π)1/42(n+1)/2((n+ 1)/2)!

when n is odd.

In principle, the formula (2.159), together with (2.154), gives us

an explicit description of the kernel Kn(x, x) (and thus of EµMn/
√
n,

by (2.149)). However, to understand the asymptotic behaviour as

n → ∞, we would have to understand the asymptotic behaviour

of dn

dxn e
−x2/2 as n → ∞, which is not immediately discernable by

inspection. However, one can obtain such asymptotics by a variety

of means. We give two such methods here: a method based on ODE

analysis, and a complex-analytic method, based on the method of

steepest descent.
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We begin with the ODE method. Combining (2.157) with (2.158)

we see that each polynomial Pm obeys the Hermite differential equa-

tion

P ′′m(x)− xP ′m(x) +mPm(x) = 0.

If we look instead at the Hermite functions φm(x) := Pm(x)e−x
2/4,

we obtain the differential equation

Lφm(x) = (m+
1

2
)φm

where L is the harmonic oscillator operator

Lφ := −φ′′ + x2

4
φ.

Note that the self-adjointness of L here is consistent with the orthog-

onal nature of the φm.

Exercise 2.6.5. Use (2.141), (2.154), (2.159), (2.157), (2.158) to

establish the identities

Kn(x, x) =

n−1∑
j=0

φj(x)2

= φ′n(x)2 + (n− x2

4
)φn(x)2

and thus by (2.149)

EµMn/
√
n =

1√
n

n−1∑
j=0

φj(
√
nx)2 dx

= [
1√
n
φ′n(
√
nx)2 +

√
n(1− x2

4
)φn(
√
nx)2] dx.

It is thus natural to look at the rescaled functions

φ̃m(x) :=
√
nφm(

√
nx)

which are orthonormal in L2(R) and solve the equation

L1/
√
nφ̃m(x) =

m+ 1/2

n
φ̃m

where Lh is the semiclassical harmonic oscillator operator

Lhφ := −h2φ′′ +
x2

4
φ,
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thus

EµMn/
√
n =

1

n

n−1∑
j=0

φ̃j(x)2 dx =

(2.162) = [
1

n
φ̃′n(x)2 + (1− x2

4
)φ̃n(x)2] dx.

The projection πVn is then the spectral projection operator of

L1/
√
n to [0, 1]. According to semi-classical analysis, with h being

interpreted as analogous to Planck’s constant, the operator Lh has

symbol p2 + x2

4 , where p := −ih d
dx is the momentum operator, so the

projection πVn is a projection to the region {(x, p) : p2 + x2

4 ≤ 1}
of phase space, or equivalently to the region {(x, p) : |p| < (4 −
x2)

1/2
+ }. In the semi-classical limit h→ 0, we thus expect the diagonal

Kn(x, x) of the normalised projection h2πVn to be proportional to

the projection of this region to the x variable, i.e. proportional to

(4−x2)
1/2
+ . We are thus led to the semicircular law via semi-classical

analysis.

It is possible to make the above argument rigorous, but this would

require developing the theory of microlocal analysis, which would be

overkill given that we are just dealing with an ODE rather than a

PDE here (and an extremely classical ODE at that); but see Section

3.3. We instead use a more basic semiclassical approximation, the

WKB approximation, which we will make rigorous using the classical

method of variation of parameters (one could also proceed using the

closely related Prüfer transformation, which we will not detail here).

We study the eigenfunction equation

Lhφ = λφ

where we think of h > 0 as being small, and λ as being close to 1.

We rewrite this as

(2.163) φ′′ = − 1

h2
k(x)2φ

where k(x) :=
√
λ− x2/4, where we will only work in the “classical”

region x2/4 < λ (so k(x) > 0) for now.

Recall that the general solution to the constant coefficient ODE

φ′′ = − 1
h2 k

2φ is given by φ(x) = Aeikx/h + Be−ikx/h. Inspired by
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this, we make the ansatz

φ(x) = A(x)eiΨ(x)/h +B(x)e−iΨ(x)/h

where Ψ(x) :=
∫ x

0
k(y) dy is the antiderivative of k. Differentiating

this, we have

φ′(x) =
ik(x)

h
(A(x)eiΨ(x)/h −B(x)e−iΨ(x)/h)

+A′(x)eiΨ(x)/h +B′(x)e−iΨ(x)/h.

Because we are representing a single function φ by two functions

A,B, we have the freedom to place an additional constraint on A,B.

Following the usual variation of parameters strategy, we will use this

freedom to eliminate the last two terms in the expansion of φ, thus

(2.164) A′(x)eiΨ(x)/h +B′(x)e−iΨ(x)/h = 0.

We can now differentiate again and obtain

φ′′(x) = −k(x)2

h2
φ(x) +

ik′(x)

h
(A(x)eiΨ(x)/h −B(x)e−iΨ(x)/h)

+
ik(x)

h
(A′(x)eiΨ(x)/h −B′(x)e−iΨ(x)/h).

Comparing this with (2.163) we see that

A′(x)eiΨ(x)/h−B′(x)e−iΨ(x)/h = −k
′(x)

k(x)
(A(x)eiΨ(x)/h−B(x)e−iΨ(x)/h).

Combining this with (2.164), we obtain equations of motion for A and

B:

A′(x) = − k
′(x)

2k(x)
A(x) +

k′(x)

2k(x)
B(x)e−2iΨ(x)/h

B′(x) = − k
′(x)

2k(x)
B(x) +

k′(x)

2k(x)
A(x)e2iΨ(x)/h.

We can simplify this using the integrating factor substitution

A(x) = k(x)−1/2a(x); B(x) = k(x)−1/2b(x)

to obtain

(2.165) a′(x) =
k′(x)

2k(x)
b(x)e−2iΨ(x)/h;

(2.166) b′(x) =
k′(x)

2k(x)
a(x)e2iΨ(x)/h.
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The point of doing all these transformations is that the role of the h

parameter no longer manifests itself through amplitude factors, and

instead only is present in a phase factor. In particular, we have

a′, b′ = O(|a|+ |b|)

on any compact interval I in the interior of the classical region x2/4 <

λ (where we allow implied constants to depend on I), which by Gron-

wall’s inequality gives the bounds

a′(x), b′(x), a(x), b(x) = O(|a(0)|+ |b(0)|)

on this interval I. We can then insert these bounds into (2.165),

(2.166) again and integrate by parts (taking advantage of the non-

stationary nature of Ψ) to obtain the improved bounds49

(2.167)

a(x) = a(0)+O(h(|a(0)|+|b(0)|)); b(x) = b(0)+O(h(|a(0)|+|b(0)|))

on this interval. This is already enough to get the asymptotics that

we need:

Exercise 2.6.6. Use (2.162) to show that on any compact interval I

in (−2, 2), the density of EµMn/
√
n is given by

(|a|2(x) + |b|2(x))(
√

1− x2/4 + o(1)) +O(|a(x)||b(x)|)

where a, b are as above with λ = 1 + 1
2n and h = 1

n . Combining

this with (2.167), (2.160), (2.161), and Stirling’s formula, conclude

that EµMn/
√
n converges in the vague topology to the semicircular

law 1
2π (4 − x2)

1/2
+ dx. (Note that once one gets convergence inside

(−2, 2), the convergence outside of [−2, 2] can be obtained for free

since µMn/
√
n and 1

2π (4− x2)
1/2
+ dx are both probability measures.)

We now sketch out the approach using the method of steepest

descent . The starting point is the Fourier inversion formula

e−x
2/2 =

1√
2π

∫
R

eitxe−t
2/2 dt

which upon repeated differentiation gives

dn

dxn
e−x

2/2 =
in√
2π

∫
R

tneitxe−t
2/2 dt

49More precise asymptotic expansions can be obtained by iterating this procedure,
but we will not need them here.



242 2. Random matrices

and thus by (2.159)

Pn(x) =
(−i)n

(2π)3/4
√
n!

∫
R

tne−(t−ix)2/2 dt

and thus

φ̃n(x) =
(−i)n

(2π)3/4
√
n!
n(n+1)/2

∫
R

enφ(t) dt

where

φ(t) := log t− (t− ix)2/2− x2/4

where we use a suitable branch of the complex logarithm to handle

the case of negative t.

The idea of the principle of steepest descent is to shift the contour

of integration to where the real part of φ(z) is as small as possible.

For this, it turns out that the stationary points of φ(z) play a crucial

role. A brief calculation using the quadratic formula shows that there

are two such stationary points, at

z =
ix±

√
4− x2

2
.

When |x| < 2, φ is purely imaginary at these stationary points, while

for |x| > 2 the real part of φ is negative at both points. One then

draws a contour through these two stationary points in such a way

that near each such point, the imaginary part of φ(z) is kept fixed,

which keeps oscillation to a minimum and allows the real part to decay

as steeply as possible (which explains the name of the method). After

a certain tedious amount of computation, one obtains the same type

of asymptotics for φ̃n that were obtained by the ODE method when

|x| < 2 (and exponentially decaying estimates for |x| > 2).

Exercise 2.6.7. Let f : C → C, g : C → C be functions which are

analytic near a complex number z0, with f ′(z0) = 0 and f ′′(z0) 6= 0.

Let ε > 0 be a small number, and let γ be the line segment {z0 + tv :

−ε < t < ε}, where v is a complex phase such that f ′′(z0)v2 is a

negative real. Show that for ε sufficiently small, one has∫
γ

eλf(z)g(z) dz = (1 + o(1))

√
2πv√

f ′′(z0)λ
eλf(z0)g(z0)
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as λ→ +∞. This is the basic estimate behind the method of steepest

descent; readers who are also familiar with the method of stationary

phase may see a close parallel.

Remark 2.6.7. The method of steepest descent requires an explicit

representation of the orthogonal polynomials as contour integrals, and

as such is largely restricted to the classical orthogonal polynomials

(such as the Hermite polynomials). However, there is a non-linear

generalisation of the method of steepest descent developed by Deift

and Zhou, in which one solves a matrix Riemann-Hilbert problem

rather than a contour integral; see [De1999] for details. Using these

sorts of tools, one can generalise much of the above theory to the spec-

tral distribution of U(n)-conjugation-invariant discussed in Remark

2.6.2, with the theory of Hermite polynomials being replaced by the

more general theory of orthogonal polynomials; this is discussed in

[De1999] or [DeGi2007].

The computations performed above for the diagonal kernelKn(x, x)

can be summarised by the asymptotic

Kn(
√
nx,
√
nx) =

√
n(ρsc(x) + o(1))

whenever x ∈ R is fixed and n → ∞, and ρsc(x) := 1
2π (4 − x2)

1/2
+ is

the semicircular law distribution. It is reasonably straightforward to

generalise these asymptotics to the off-diagonal case as well, obtaining

the more general result

(2.168)

Kn(
√
nx+

y1√
nρsc(x)

,
√
nx+

y2√
nρsc(x)

) =
√
n(ρsc(x)K(y1, y2)+o(1))

for fixed x ∈ (−2, 2) and y1, y2 ∈ R, where K is the Dyson sine kernel

K(y1, y2) :=
sin(π(y1 − y2)

π(y1 − y2)
.

In the language of semi-classical analysis, what is going on here is

that the rescaling in the left-hand side of (2.168) is transforming the

phase space region {(x, p) : p2+ x2

4 ≤ 1} to the region {(x, p) : |p| ≤ 1}
in the limit n → ∞, and the projection to the latter region is given

by the Dyson sine kernel. A formal proof of (2.168) can be given

by using either the ODE method or the steepest descent method

to obtain asymptotics for Hermite polynomials, and thence (via the
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Christoffel-Darboux formula) to asymptotics for Kn; we do not give

the details here, but see for instance [AnGuZi2010].

From (2.168) and (2.147), (2.148) we obtain the asymptotic for-

mula

E
∑

1≤i1<...<ik≤n

F (
√
nρsc(x)(λi1(Mn)−

√
nx), . . . ,

√
nρsc(x)(λik(Mn)−

√
nx))

→
∫
Rk

F (y1, . . . , yk) det(K(yi, yj))1≤i,j≤k dy1 . . . dyk

for the local statistics of eigenvalues. By means of further algebraic

manipulations (using the general theory of determinantal processes),

this allows one to control such quantities as the distribution of eigen-

value gaps near
√
nx, normalised at the scale 1√

nρsc(x)
, which is the

average size of these gaps as predicted by the semicircular law. For in-

stance, for any s0 > 0, one can show (basically by the above formulae

combined with the inclusion-exclusion principle) that the proportion

of eigenvalues λi with normalised gap
√
nλi+1−λi
ρsc(ti/n) less than s0 con-

verges as n → ∞ to
∫ s0

0
d2

ds2 det(1 − K)L2[0,s] ds, where tc ∈ [−2, 2]

is defined by the formula
∫ tc
−2
ρsc(x) dx = c, and K is the integral

operator with kernel K(x, y) (this operator can be verified to be trace

class, so the determinant can be defined in a Fredholm sense). See

for instance50 [Me2004].

Remark 2.6.8. One can also analyse the distribution of the eigenval-

ues at the edge of the spectrum, i.e. close to ±2
√
n. This ultimately

hinges on understanding the behaviour of the projection πVn near the

corners (0,±2) of the phase space region Ω = {(p, x) : p2+ x2

4 ≤ 1}, or

of the Hermite polynomials Pn(x) for x close to ±2
√
n. For instance,

by using steepest descent methods, one can show that

n1/12φn(2
√
n+

x

n1/6
)→ Ai(x)

as n→∞ for any fixed x, y, where Ai is the Airy function

Ai(x) :=
1

π

∫ ∞
0

cos(
t3

3
+ tx) dt.

50A finitary version of this inclusion-exclusion argument can also be found at
[Ta2010b, §2.6].
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This asymptotic and the Christoffel-Darboux formula then gives the

asymptotic

(2.169) n1/6Kn(2
√
n+

x

n1/6
, 2
√
n+

y

n1/6
)→ KAi(x, y)

for any fixed x, y, where KAi is the Airy kernel

KAi(x, y) :=
Ai(x) Ai′(y)−Ai′(x) Ai(y)

x− y
.

This then gives an asymptotic description of the largest eigenvalues

of a GUE matrix, which cluster in the region 2
√
n + O(n1/6). For

instance, one can use the above asymptotics to show that the largest

eigenvalue λ1 of a GUE matrix obeys the Tracy-Widom law

P(
λ1 − 2

√
n

n1/6
< t)→ det(1−A)L2[0,t]

for any fixed t, where A is the integral operator with kernel KAi. See

[AnGuZi2010] and Section 3.3 for further discussion.

2.6.5. Determinantal form of the gaussian matrix distribu-

tion. One can perform an analogous analysis of the joint distribu-

tion function (2.136) of gaussian random matrices. Indeed, given any

family P0, . . . , Pn−1(z) of polynomials, with each Pi of degree i, much

the same arguments as before show that (2.136) is equal to a constant

multiple of

det(

n−1∑
k=0

Pk(λi)e
−|λi|2/2Pk(λj)e

−|λj |2/2)1≤i,j≤n.

One can then select Pk(z)e−|z|
2/2 to be orthonormal in L2(C). Actu-

ally in this case, the polynomials are very simple, being given explic-

itly by the formula

Pk(z) :=
1√
πk!

zk.

Exercise 2.6.8. Verify that the Pk(z)e−|z|
2/2 are indeed orthonor-

mal, and then conclude that (2.136) is equal to det(Kn(λi, λj))1≤i,j≤n,

where

Kn(z, w) :=
1

π
e−(|z|2+|w|2)/2

n−1∑
k=0

(zw)k

k!
.
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Conclude further that them-point correlation functions ρm(z1, . . . , zm)

are given as

ρm(z1, . . . , zm) = det(Kn(zi, zj))1≤i,j≤m.

Exercise 2.6.9. Show that as n→∞, one has

nKn(
√
nz,
√
nz) =

1

π
1|z|≤1 + o(1)

and deduce that the expected spectral measure EµG/
√
n converges

vaguely to the circular measure µc := 1
π1|z|≤1 dz; this is a special

case of the circular law.

Exercise 2.6.10. For any |z| < 1 and w1, w2 ∈ C, show that

nKn(
√
n(z + w1),

√
n(z + w2)) =

1

π
exp(−|w1 − w2|2/2) + o(1)

as n→∞. This formula (in principle, at least) describes the asymp-

totic local m-point correlation functions of the spectrum of gaussian

matrices.

Remark 2.6.9. One can use the above formulae as the starting point

for many other computations on the spectrum of random gaussian ma-

trices; to give just one example, one can show that expected number

of eigenvalues which are real is of the order of
√
n (see [Ed1996] for

more precise results of this nature). It remains a challenge to extend

these results to more general ensembles than the gaussian ensemble.

2.7. The least singular value

Now we turn attention to another important spectral statistic, the

least singular value σn(M) of an n×n matrix M (or, more generally,

the least non-trivial singular value σp(M) of a n × p matrix with

p ≤ n). This quantity controls the invertibility of M . Indeed, M is

invertible precisely when σn(M) is non-zero, and the operator norm

‖M−1‖op ofM−1 is given by 1/σn(M). This quantity is also related to

the condition number σ1(M)/σn(M) = ‖M‖op‖M−1‖op of M , which

is of importance in numerical linear algebra. As we shall see in the

next set of notes, the least singular value of M (and more generally, of

the shifts 1√
n
M−zI for complex z) will be of importance in rigorously

establishing the circular law for iid random matrices M , as it plays
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a key role in computing the Stieltjes transform 1
n tr( 1√

n
M − zI)−1 of

such matrices, which as we have already seen is a powerful tool in

understanding the spectra of random matrices.

The least singular value

σn(M) = inf
‖x‖=1

‖Mx‖,

which sits at the “hard edge” of the spectrum, bears a superficial

similarity to the operator norm

‖M‖op = σ1(M) = sup
‖x‖=1

‖Mx‖

at the “soft edge” of the spectrum, that was discussed back in Section

2.3, so one may at first think that the methods that were effective

in controlling the latter, namely the epsilon-net argument and the

moment method, would also work to control the former. The epsilon-

net method does indeed have some effectiveness when dealing with

rectangular matrices (in which the spectrum stays well away from

zero), but the situation becomes more delicate for square matrices;

it can control some “low entropy” portions of the infimum that arise

from “structured” or “compressible” choices of x, but are not able to

control the “generic” or “incompressible” choices of x, for which new

arguments will be needed. As for the moment method, this can give

the coarse order of magnitude (for instance, for rectangular matrices

with p = yn for 0 < y < 1, it gives an upper bound of (1−√y+o(1))n

for the singular value with high probability, thanks to the Marchenko-

Pastur law), but again this method begins to break down for square

matrices, although one can make some partial headway by considering

negative moments such as trM−2, though these are more difficult to

compute than positive moments trMk.

So one needs to supplement these existing methods with addi-

tional tools. It turns out that the key issue is to understand the

distance between one of the n rows X1, . . . , Xn ∈ Cn of the matrix

M , and the hyperplane spanned by the other n − 1 rows. The rea-

son for this is as follows. First suppose that σn(M) = 0, so that M

is non-invertible, and there is a linear dependence between the rows

X1, . . . , Xn. Thus, one of the Xi will lie in the hyperplane spanned

by the other rows, and so one of the distances mentioned above will
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vanish; in fact, one expects many of the n distances to vanish. Con-

versely, whenever one of these distances vanishes, one has a linear

dependence, and so σn(M) = 0.

More generally, if the least singular value σn(M) is small, one

generically expects many of these n distances to be small also, and

conversely. Thus, control of the least singular value is morally equiv-

alent to control of the distance between a row Xi and the hyperplane

spanned by the other rows. This latter quantity is basically the dot

product of Xi with a unit normal ni of this hyperplane.

When working with random matrices with jointly independent

coefficients, we have the crucial property that the unit normal ni
(which depends on all the rows other than Xi) is independent of Xi,

so even after conditioning ni to be fixed, the entries of Xi remain

independent. As such, the dot product Xi · ni is a familiar scalar

random walk, and can be controlled by a number of tools, most no-

tably Littlewood-Offord theorems and the Berry-Esséen central limit

theorem. As it turns out, this type of control works well except in

some rare cases in which the normal ni is “compressible” or otherwise

highly structured; but epsilon-net arguments can be used to dispose

of these cases51.

These methods rely quite strongly on the joint independence on

all the entries; it remains a challenge to extend them to more general

settings. Even for Wigner matrices, the methods run into difficulty

because of the non-independence of some of the entries (although it

turns out one can understand the least singular value in such cases

by rather different methods).

To simplify the exposition, we shall focus primarily on just one

specific ensemble of random matrices, the Bernoulli ensemble M =

(ξij)1≤i,j≤n of random sign matrices, where ξij = ±1 are independent

Bernoulli signs. However, the results can extend to more general

classes of random matrices, with the main requirement being that

the coefficients are jointly independent.

51This general strategy was first developed for the technically simpler singular-
ity problem in [Ko1967], and then extended to the least singular value problem in
[Ru2008].
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2.7.1. The epsilon-net argument. We begin by using the epsilon

net argument to establish a lower bound in the rectangular case, first

established in [LiPaRuTo2005]:

Theorem 2.7.1 (Lower bound). Let M = (ξij)1≤i≤p;1≤j≤n be an n×
p Bernoulli matrix, where 1p ≤ (1− δ)n for some δ > 0 (independent

of n). Then with exponentially high probability (i.e. 1− O(e−cn) for

some c > 0), one has σp(M) ≥ c
√
n, where c > 0 depends only on δ.

This should be compared with the upper bound established in

Section 2.3, which asserts that

(2.170) ‖M‖op = σ1(M) ≤ C
√
n

holds with overwhelming probability for some absolute constant C

(indeed, one can take any C > 2 here).

We use the epsilon net argument introduced in Section 2.3, but

with a smaller value of ε > 0 than used for the largest singular value.

We write

σp(M) = inf
x∈Cp:‖x‖=1

‖Mx‖.

Taking Σ to be a maximal ε-net of the unit sphere in Cp, with ε > 0

to be chosen later, we have that

σp(M) ≥ inf
x∈Σ
‖Mx‖ − ε‖M‖op

and thus by (2.170), we have with overwhelming probability that

σp(M) ≥ inf
x∈Σ
‖Mx‖ − Cε

√
n,

and so it suffices to show that

P( inf
x∈Σ
‖Mx‖ ≤ 2Cε

√
n)

is exponentially small in n. From the union bound, we can upper

bound this by ∑
x∈Σ

P(‖Mx‖ ≤ 2Cε
√
n).

From the volume packing argument we have

(2.171) |Σ| ≤ O(1/ε)p ≤ O(1/ε)(1−δ)n.

So we need to upper bound, for each x ∈ Σ, the probability

P(‖Mx‖ ≤ 2Cε
√
n).
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If we let Y1, . . . , Yn ∈ Cp be the rows of M , we can write this as

P(

n∑
j=1

|Yj · x|2 ≤ 4C2ε2n).

By Markov’s inequality(1.14), the only way that this event can hold

is if we have

|Yj · x|2 ≤ 8C2ε2

for at least n/2 values of j. We do not know in advance what the set

of j is for which this event holds. But the number of possible values

of such sets of j is at most 2n. Applying the union bound (and paying

the entropy cost of 2n) and using symmetry, we may thus bound the

above probability by52

≤ 2nP(|Yj · x|2 ≤ 8C2ε2 for 1 ≤ j ≤ n/2).

Now observe that the random variables Yj · x are independent, and

so we can bound this expression by

≤ 2nP(|Y · x| ≤
√

8Cε)n/2

where Y = (ξ1, . . . , ξn) is a random vector of iid Bernoulli signs.

We write x = (x1, . . . , xn), so that Y · x is a random walk

Y · x = ξ1x1 + . . .+ ξnxn.

To understand this walk, we apply (a slight variant) of the Berry-

Esséen theorem from Section 2.2:

Exercise 2.7.1. Show53 that

sup
t

P(|Y · x− t| ≤ r)� r

‖x‖2
+

1

‖x‖3
n∑
j=1

|xj |3

for any r > 0 and any non-zero x. (Hint: first normalise ‖x‖ = 1,

then adapt the proof of the Berry-Esséen theorem.)

Conclude in particular that if∑
j:|xj |≤ε100

|xj |2 ≥ ε10

52We will take n to be even for sake of notation, although it makes little essential
difference.

53Actually, for the purposes of this section, it would suffice to establish
a weaker form of the Berry-Esséen theorem with

∑3
j=1 |xj |

3/‖x‖3 replaced by

(
∑3
j=1 |xj |

3/‖x‖3)c for any fixed c > 0.
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(say) then

sup
t

P(|Y · x− t| ≤
√

8Cε)� ε.

(Hint: condition out all the xj with |xj | > 1/2.)

Let us temporarily call x incompressible if∑
j:|xj |≤ε100

|xj |2 < ε10

and compressible otherwise. If we only look at the incompressible

elements of Σ, we can now bound

P(‖Mx‖ ≤ 2Cε
√
n)� O(ε)n,

and comparing this against the entropy cost (2.171) we obtain an

acceptable contribution for ε small enough (here we are crucially using

the rectangular condition p ≤ (1− δ)n).

It remains to deal with the compressible vectors. Observe that

such vectors lie within ε of a sparse unit vector which is only sup-

ported in at most ε−200 positions. The ε-entropy of these sparse

vectors (i.e. the number of balls of radius ε needed to cover this

space) can easily be computed to be of polynomial size O(nOε(1)) in

n. Meanwhile, we have the following crude bound:

Exercise 2.7.2. For any unit vector x, show that

P(|Y · x| ≤ κ) ≤ 1− κ

for κ > 0 small enough. (Hint: Use the Paley-Zygmund inequality,

Exercise 1.1.9. Bounds on higher moments on |Y ·x| can be obtained

for instance using Hoeffding’s inequality, or by direct computation.)

Use this to show that

P(‖Mx‖ ≤ 2Cε
√
n)� exp(−cn)

for all such x and ε sufficiently small, with c > 0 independent of ε

and n.

Thus the compressible vectors give a net contribution ofO(nOε(1))×
exp(−cn), which is acceptable. This concludes the proof of Theorem

2.7.1.
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2.7.2. Singularity probability. Now we turn to square Bernoulli

matrices M = (ξij)1≤i,j≤n. Before we investigate the size of the least

singular value, we first tackle the easier problem of bounding the

singularity probability

P(σn(M) = 0),

i.e. the probability that M is not invertible. The problem of comput-

ing this probability exactly is still not completely settled. Since M is

singular whenever the first two rows (say) are identical, we obtain a

lower bound

P(σn(M) = 0) ≥ 1

2n
,

and it is conjectured that this bound is essentially tight in the sense

that

P(σn(M) = 0) = (
1

2
+ o(1))n,

but this remains open; the best bound currently is [BoVuWo2010],

and gives

P(σn(M) = 0) ≤ (
1√
2

+ o(1))n.

We will not prove this bound here, but content ourselves with a weaker

bound, essentially due to Komlós[Ko1967]:

Proposition 2.7.2. We have P(σn(M) = 0)� 1/n1/2.

To show this, we need the following combinatorial fact, due to

Erdös[Er1945]:

Proposition 2.7.3 (Erdös Littlewood-Offord theorem). Let x =

(x1, . . . , xn) be a vector with at least k nonzero entries, and let Y =

(ξ1, . . . , ξn) be a random vector of iid Bernoulli signs. Then P(Y ·x =

0)� k−1/2.

Proof. By taking real and imaginary parts we may assume that x

is real. By eliminating zero coefficients of x we may assume that

k = n; reflecting we may then assume that all the xi are positive.

Observe that the set of Y = (ξ1, . . . , ξn) ∈ {−1, 1}n with Y · x = 0

forms an antichain54 in {−1, 1}n with the product partial ordering.

54An antichain in a partially ordered set X is a subset S of X such that no two
elements in S are comparable in the order. The product partial ordering on {−1, 1}n
is defined by requiring (x1, . . . , xn) ≤ (y1, . . . , yn) iff xi ≤ yi for all i. Sperner’s
theorem asserts that all anti-chains in {−1, 1}n have cardinality at most

( n
bn/2c

)
.
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The claim now easily follows from Sperner’s theorem and Stirling’s

formula (Section 1.2). �

Note that we also have the obvious bound

(2.172) P(Y · x = 0) ≤ 1/2

for any non-zero x.

Now we prove the theorem. In analogy with the arguments of

Section 2.7, we write

P(σn(M) = 0) = P(Mx = 0 for some nonzero x ∈ Cn)

(actually we can take x ∈ Rn since M is real). We divide into com-

pressible and incompressible vectors as before, but our definition of

compressibility and incompressibility is slightly different now. Also,

one has to do a certain amount of technical maneuvering in order to

preserve the crucial independence between rows and columns.

Namely, we pick an ε > 0 and call x compressible if it is supported

on at most εn coordinates, and incompressible otherwise.

Let us first consider the contribution of the event that Mx = 0

for some nonzero compressible x. Pick an x with this property which

is as sparse as possible, say k sparse for some 1 ≤ k < εn. Let us

temporarily fix k. By paying an entropy cost of bεnc
(
n
k

)
, we may

assume that it is the first k entries that are non-zero for some 1 ≤
k ≤ εn. This implies that the first k columns Y1, . . . , Yk of M have a

linear dependence given by x; by minimality, Y1, . . . , Yk−1 are linearly

independent. Thus, x is uniquely determined (up to scalar multiples)

by Y1, . . . , Yk. Furthermore, as the n×k matrix formed by Y1, . . . , Yk
has rank k−1, there is some k×k minor which already determines x up

to constants; by paying another entropy cost of
(
n
k

)
, we may assume

that it is the top left minor which does this. In particular, we can

now use the first k rows X1, . . . , Xk to determine x up to constants.

But the remaining n−k rows are independent of X1, . . . , Xk and still

need to be orthogonal to x; by Proposition 2.7.3, this happens with

probability at most O(
√
k)−(n−k), giving a total cost of∑

1≤k≤εn

(
n

k

)2

O(
√
k)−(n−k),



254 2. Random matrices

which by Stirling’s formula (Section 1.2) is acceptable (in fact this

gives an exponentially small contribution).

The same argument gives that the event that y∗M = 0 for some

nonzero compressible y also has exponentially small probability. The

only remaining event to control is the event that Mx = 0 for some

incompressible x, but that Mz 6= 0 and y∗M 6= 0 for all nonzero

compressible z, y. Call this event E.

Since Mx = 0 for some incompressible x, we see that for at least

εn values of k ∈ {1, . . . , n}, the row Xk lies in the vector space Vk
spanned by the remaining n− 1 rows of M . Let Ek denote the event

that E holds, and that Xk lies in Vk; then we see from double counting

that

P(E) ≤ 1

εn

n∑
k=1

P(Ek).

By symmetry, we thus have

P(E) ≤ 1

ε
P(En).

To compute P(En), we freeze X1, . . . , Xn−1 consider a normal vector

x to Vn−1; note that we can select x depending only on X1, . . . , Xn−1.

We may assume that an incompressible normal vector exists, since

otherwise the event En would be empty. We make the crucial ob-

servation that Xn is still independent of x. By Proposition 2.7.3, we

thus see that the conditional probability that Xn · x = 0, for fixed

X1, . . . , Xn−1, is Oε(n
−1/2). We thus see that P(E) �ε 1/n1/2, and

the claim follows.

Remark 2.7.4. Further progress has been made on this problem

by a finer analysis of the concentration probability P(Y · x = 0),

and in particular in classifying those x for which this concentra-

tion probability is large (this is known as the inverse Littlewood-

Offord problem). Important breakthroughs in this direction were

made by Halász[Ha1977] (introducing Fourier-analytic tools) and

by Kahn, Komlós, and Szemerédi[KaKoSz1995] (introducing an ef-

ficient “swapping” argument). In [TaVu2007] tools from additive

combinatorics (such as Freiman’s theorem) were introduced to ob-

tain further improvements, leading eventually to the results from

[BoVuWo2010] mentioned earlier.
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2.7.3. Lower bound for the least singular value. Now we re-

turn to the least singular value σn(M) of an iid Bernoulli matrix,

and establish a lower bound. Given that there are n singular values

between 0 and σ1(M), which is typically of size O(
√
n), one expects

the least singular value to be of size about 1/
√
n on the average. An-

other argument supporting this heuristic scomes from the following

identity:

Exercise 2.7.3 (Negative second moment identity). Let M be an

invertible n × n matrix, let X1, . . . , Xn be the rows of M , and let

R1, . . . , Rn be the columns of M−1. For each 1 ≤ i ≤ n, let Vi be the

hyperplane spanned by all the rows X1, . . . , Xn other than Xi. Show

that ‖Ri‖ = dist(Xi, Vi)
−1 and

∑n
i=1 σi(M)−2 =

∑n
i=1 dist(Xi, Vi)

2.

From Talagrand’s inequality (Theorem 2.1.13), we expect each

dist(Xi, Vi) to be of size O(1) on the average, which suggests that∑n
i=1 σi(M)−2 = O(n); this is consistent with the heuristic that the

eigenvalues σi(M) should be roughly evenly spaced in the interval

[0, 2
√
n] (so that σn−i(M) should be about (i+ 1)/

√
n).

Now we give a rigorous lower bound:

Theorem 2.7.5 (Lower tail estimate for the least singular value).

For any λ > 0, one has

P(σn(M) ≤ λ/
√
n)� oλ→0(1) + on→∞;λ(1)

where oε→0(1) goes to zero as λ→ 0 uniformly in n, and on→∞;λ(1)

goes to zero as n→∞ for each fixed λ.

This is a weaker form of a result of Rudelson and Vershynin[RuVe2008]

(which obtains a bound of the form O(λ) + O(cn) for some c < 1),

which builds upon the earlier works [Ru2008], [TaVu2009], which

obtained variants of the above result.

The scale 1/
√
n that we are working at here is too fine to use

epsilon net arguments (unless one has a lot of control on the en-

tropy, which can be obtained in some cases thanks to powerful inverse

Littlewood-Offord theorems, but is difficult to obtain in general.) We

can prove this theorem along similar lines to the arguments in the

previous section; we sketch the method as follows. We can take λ to
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be small. We write the probability to be estimated as

P(‖Mx‖ ≤ λ/
√
n for some unit vector x ∈ Cn).

We can assume that ‖M‖op ≤ C
√
n for some absolute constant C, as

the event that this fails has exponentially small probability.

We pick an ε > 0 (not depending on λ) to be chosen later. We call

a unit vector x ∈ Cn compressible if x lies within a distance ε of a εn-

sparse vector. Let us first dispose of the case in which ‖Mx‖ ≤ λ
√
n

for some compressible x. By paying an entropy cost of
(
n
bεnc

)
, we may

assume that x is within ε of a vector y supported in the first bεnc
coordinates. Using the operator norm bound on M and the triangle

inequality, we conclude that

‖My‖ ≤ (λ+ Cε)
√
n.

Since y has norm comparable to 1, this implies that the least singular

value of the first bεnc columns of M is O((λ+ ε)
√
n). But by Theo-

rem 2.7.1, this occurs with probability O(exp(−cn)) (if λ, ε are small

enough). So the total probability of the compressible event is at most(
n
bεnc

)
O(exp(−cn)), which is acceptable if ε is small enough.

Thus we may assume now that ‖Mx‖ > λ/
√
n for all compressible

unit vectors x; we may similarly assume that ‖y∗M‖ > λ/
√
n for

all compressible unit vectors y. Indeed, we may also assume that

‖y∗Mi‖ > λ/
√
n for every i, where Mi is M with the ith column

removed.

The remaining case is if ‖Mx‖ ≤ λ/
√
n for some incompressible

x. Let us call this event E. Write x = (x1, . . . , xn), and let Y1, . . . , Yn
be the column of M , thus

‖x1Y1 + . . .+ xnYn‖ ≤ λ/
√
n.

Letting Wi be the subspace spanned by all the Y1, . . . , Yn except for

Yi, we conclude upon projecting to the orthogonal complement of Wi

that

|xi|dist(Yi,Wi) ≤ λ/
√
n

for all i (compare with Exercise 2.7.3). On the other hand, since x

is incompressible, we see that |xi| ≥ ε/
√
n for at least εn values of i,
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and thus

(2.173) dist(Yi,Wi) ≤ λ/ε.

for at least εn values of i. If we let Ei be the event that E and (2.173)

both hold, we thus have from double-counting that

P(E) ≤ 1

εn

n∑
i=1

P(Ei)

and thus by symmetry

P(E) ≤ 1

ε
P(En)

(say). However, if En holds, then setting y to be a unit normal vector

to Wi (which is necessarily incompressible, by the hypothesis on Mi),

we have

|Yi · y| ≤ λ/ε.
Again, the crucial point is that Yi and y are independent. The incom-

pressibility of y, combined with a Berry-Esséen type theorem, then

gives

Exercise 2.7.4. Show that

P(|Yi · y| ≤ λ/ε)� ε2

(say) if λ is sufficiently small depending on ε, and n is sufficiently

large depending on ε.

This gives a bound of O(ε) for P(E) if λ is small enough depend-

ing on ε, and n is large enough; this gives the claim.

Remark 2.7.6. A variant of these arguments, based on inverse Littlewood-

Offord theorems rather than the Berry-Esséen theorem, gives the vari-

ant estimate

(2.174) σn(
1√
n
Mn − zI) ≥ n−A

with high probability for some A > 0, and any z of polynomial size

in n. There are several results of this type, with overlapping ranges of

generality (and various values ofA) [GoTi2007, PaZh2010, TaVu2008],

and the exponent A is known to degrade if one has too few moment

assumptions on the underlying random matrix M . This type of result
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(with an unspecified A) is important for the circular law, discussed

in the next set of lectures.

2.7.4. Upper bound for the least singular value. One can com-

plement the lower tail estimate with an upper tail estimate:

Theorem 2.7.7 (Upper tail estimate for the least singular value).

For any λ > 0, one has

(2.175) P(σn(M) ≥ λ/
√
n)� oλ→∞(1) + on→∞;λ(1).

We prove this using an argument of Rudelson and Vershynin[RuVe2009].

Suppose that σn(M) > λ/
√
n, then

(2.176) ‖y∗M−1‖ ≤
√
n‖y‖/λ

for all y.

Next, let X1, . . . , Xn be the rows of M , and let R1, . . . , Rn be

the columns of M−1, thus R1, . . . , Rn is a dual basis for X1, . . . , Xn.

From (2.176) we have

n∑
i=1

|y ·Ri|2 ≤ n‖y‖2/λ2.

We apply this with y equal toXn−πn(Xn), where πn is the orthogonal

projection to the space Vn−1 spanned by X1, . . . , Xn−1. On the one

hand, we have

‖y‖2 = dist(Xn, Vn−1)2

and on the other hand we have for any 1 ≤ i < n that

y ·Ri = −πn(Xn) ·Ri = −Xn · πn(Ri)

and so

(2.177)

n−1∑
i=1

|Xn · πn(Ri)|2 ≤ n dist(Xn, Vn−1)2/λ2.

If (2.177) holds, then |Xn · πn(Ri)|2 = O(dist(Xn, Vn−1)2/λ2) for at

least half of the i, so the probability in (2.175) can be bounded by

� 1

n

n−1∑
i=1

P(|Xn · πn(Ri)|2 = O(dist(Xn, Vn−1)2/λ2))
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which by symmetry can be bounded by

� P(|Xn · πn(R1)|2 = O(dist(Xn, Vn−1)2/λ2)).

Let ε > 0 be a small quantity to be chosen later. From Talagrand’s

inequality (Theorem 2.1.13) we know that dist(Xn, Vn−1) = Oε(1)

with probability 1−O(ε), so we obtain a bound of

� P(Xn · πn(R1) = Oε(1/λ)) +O(ε).

Now a key point is that the vectors πn(R1), . . . , πn(Rn−1) depend

only on X1, . . . , Xn−1 and not on Xn; indeed, they are the dual basis

for X1, . . . , Xn−1 in Vn−1. Thus, after conditioning X1, . . . , Xn−1

and thus πn(R1) to be fixed, Xn is still a Bernoulli random vector.

Applying a Berry-Esséen inequality, we obtain a bound of O(ε) for the

conditional probability that Xn · πn(R1) = Oε(1/λ) for λ sufficiently

small depending on ε, unless πn(R1) is compressible (in the sense that,

say, it is within ε of an εn-sparse vector). But this latter possibility

can be controlled (with exponentially small probability) by the same

type of arguments as before; we omit the details.

2.7.5. Asymptotic for the least singular value. The distribu-

tion of singular values of a gaussian random matrix can be computed

explicitly by techniques similar to those employed in Section 2.6. In

particular, if M is a real gaussian matrix (with all entries iid with dis-

tribution N(0, 1)R), it was shown in [Ed1988] that
√
nσn(M) con-

verges in distribution to the distribution µE := 1+
√
x

2
√
x
e−x/2−

√
x dx

as n → ∞. It turns out that this result can be extended to other

ensembles with the same mean and variance. In particular, we have

the following result from [TaVu2010]:

Theorem 2.7.8. If M is an iid Bernoulli matrix, then
√
nσn(M)

also converges in distribution to µE as n → ∞. (In fact there is a

polynomial rate of convergence.)

This should be compared with Theorems 2.7.5, 2.7.7, which show

that
√
nσn(M) have a tight sequence of distributions in (0,+∞). The

arguments from [TaVu2010] thus provide an alternate proof of these

two theorems.



260 2. Random matrices

The arguments in [TaVu2010] do not establish the limit µE di-

rectly, but instead use the result of [Ed1988] as a black box, focusing

instead on establishing the universality of the limiting distribution of√
nσn(M), and in particular that this limiting distribution is the same

whether one has a Bernoulli ensemble or a gaussian ensemble.

The arguments are somewhat technical and we will not present

them in full here, but instead give a sketch of the key ideas.

In previous sections we have already seen the close relationship

between the least singular value σn(M), and the distances dist(Xi, Vi)

between a row Xi of M and the hyperplane Vi spanned by the other

n−1 rows. It is not hard to use the above machinery to show that as

n → ∞, dist(Xi, Vi) converges in distribution to the absolute value

|N(0, 1)R| of a Gaussian regardless of the underlying distribution of

the coefficients of M (i.e. it is asymptotically universal). The ba-

sic point is that one can write dist(Xi, Vi) as |Xi · ni| where ni is

a unit normal of Vi (we will assume here that M is non-singular,

which by previous arguments is true asymptotically almost surely).

The previous machinery lets us show that ni is incompressible with

high probability, and then claim then follows from the Berry-Esséen

theorem.

Unfortunately, despite the presence of suggestive relationships

such as Exercise 2.7.3, the asymptotic universality of the distances

dist(Xi, Vi) does not directly imply asymptotic universality of the

least singular value. However, it turns out that one can obtain a

higher-dimensional version of the universality of the scalar quantities

dist(Xi, Vi), as follows. For any small k (say, 1 ≤ k ≤ nc for some

small c > 0) and any distinct i1, . . . , ik ∈ {1, . . . , n}, a modification

of the above argument shows that the covariance matrix

(2.178) (π(Xia) · π(Xib))1≤a,b≤k

of the orthogonal projections π(Xi1), . . . , π(Xik) of the k rowsXi1 , . . . , Xik

to the complement V ⊥i1,...,ik of the space Vi1,...,ik spanned by the other

n − k rows of M , is also universal, converging in distribution to the

covariance55 matrix (Ga ·Gb)1≤a,b≤k of k iid gaussians Ga ≡ N(0, 1)R
(note that the convergence of dist(Xi, Vi) to |N(0, 1)R| is the k = 1

55These covariance matrix distributions are also known as Wishart distributions.
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case of this claim). The key point is that one can show that the

complement V ⊥i1,...,ik is usually “incompressible” in a certain technical

sense, which implies that the projections π(Xia) behave like iid gaus-

sians on that projection thanks to a multidimensional Berry-Esséen

theorem.

On the other hand, the covariance matrix (2.178) is closely related

to the inverse matrix M−1:

Exercise 2.7.5. Show that (2.178) is also equal to A∗A, where A is

the n× k matrix formed from the i1, . . . , ik columns of M−1.

In particular, this shows that the singular values of k randomly

selected columns of M−1 have a universal distribution.

Recall our goal is to show that
√
nσn(M) has an asymptotically

universal distribution, which is equivalent to asking that 1√
n
‖M−1‖op

has an asymptotically universal distribution. The goal is then to

extract the operator norm of M−1 from looking at a random n × k
minor B of this matrix. This comes from the following application of

the second moment method:

Exercise 2.7.6. Let A be an n×n matrix with columns R1, . . . , Rn,

and let B be the n × k matrix formed by taking k of the columns

R1, . . . , Rn at random. Show that

E‖A∗A− n

k
B∗B‖2F ≤

n

k

n∑
k=1

‖Rk‖4,

where ‖‖F is the Frobenius norm(2.64).

Recall from Exercise 2.7.3 that ‖Rk‖ = 1/dist(Xk, Vk), so we

expect each ‖Rk‖ to have magnitude about O(1). This, together

with the Wielandt-Hoeffman inequality (1.67) means that we expect

σ1((M−1)∗(M−1)) = σn(M)−2 to differ byO(n2/k) from n
kσ1(B∗B) =

n
kσ1(B)2. In principle, this gives us asymptotic universality on

√
nσn(M)

from the already established universality of B.

There is one technical obstacle remaining, however: while we

know that each dist(Xk, Vk) is distributed like a Gaussian, so that

each individual Rk is going to be of size O(1) with reasonably good

probability, in order for the above exercise to be useful, one needs to
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bound all of the Rk simultaneously with high probability. A naive

application of the union bound leads to terrible results here. Fortu-

nately, there is a strong correlation between the Rk: they tend to be

large together or small together, or equivalently that the distances

dist(Xk, Vk) tend to be small together or large together. Here is one

indication of this:

Lemma 2.7.9. For any 1 ≤ k < i ≤ n, one has

dist(Xi, Vi) ≥
‖πi(Xi)‖

1 +
∑k
j=1

‖πi(Xj)‖
‖πi(Xi)‖ dist(Xj ,Vj)

,

where πi is the orthogonal projection onto the space spanned by X1, . . . , Xk, Xi.

Proof. We may relabel so that i = k+ 1; then projecting everything

by πi we may assume that n = k + 1. Our goal is now to show that

dist(Xn, Vn−1) ≥ ‖Xn‖
1 +

∑n−1
j=1

‖Xj‖
‖Xn‖ dist(Xj ,Vj)

.

Recall that R1, . . . , Rn is a dual basis to X1, . . . , Xn. This implies in

particular that

x =

n∑
j=1

(x ·Xj)Rj

for any vector x; applying this to Xn we obtain

Xn = ‖Xn‖2Rn +

n−1∑
j=1

(Xj ·Xn)Rj

and hence by the triangle inequality

‖Xn‖2‖Rn‖ ≤ ‖Xn‖+

n−1∑
j=1

‖Xj‖‖Xn‖‖Rj‖.

Using the fact that ‖Rj‖ = 1/dist(Xj , Rj), the claim follows. �

In practice, once k gets moderately large (e.g. k = nc for some

small c > 0), one can control the expressions ‖πi(Xj)‖ appearing here

by Talagrand’s inequality (Theorem 2.1.13), and so this inequality

tells us that once dist(Xj , Vj) is bounded away from zero for j =

1, . . . , k, it is bounded away from zero for all other k also. This turns

out to be enough to get enough uniform control on the Rj to make
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Exercise 2.7.6 useful, and ultimately to complete the proof of Theorem

2.7.8.

2.8. The circular law

In this section, we leave the realm of self-adjoint matrix ensembles,

such as Wigner random matrices, and consider instead the simplest

examples of non-self-adjoint ensembles, namely the iid matrix ensem-

bles.

The basic result in this area is

Theorem 2.8.1 (Circular law). Let Mn be an n×n iid matrix, whose

entries ξij, 1 ≤ i, j ≤ n are iid with a fixed (complex) distribution

ξij ≡ ξ of mean zero and variance one. Then the spectral measure

µ 1√
n
Mn

converges both in probability and almost surely to the circular

law µcirc := 1
π1|x|2+|y|2≤1 dxdy, where x, y are the real and imaginary

coordinates of the complex plane.

This theorem has a long history; it is analogous to the semicir-

cular law, but the non-Hermitian nature of the matrices makes the

spectrum so unstable that key techniques that are used in the semi-

circular case, such as truncation and the moment method, no longer

work; significant new ideas are required. In the case of random gauss-

ian matrices, this result was established by Mehta[Me2004] (in the

complex case) and by Edelman[Ed1996] (in the real case), as was

sketched out in Section 2.6. In 1984, Girko[Gi1984] laid out a general

strategy for establishing the result for non-gaussian matrices, which

formed the base of all future work on the subject; however, a key in-

gredient in the argument, namely a bound on the least singular value

of shifts 1√
n
Mn − zI, was not fully justified at the time. A rigorous

proof of the circular law was then established by Bai[Ba1997], assum-

ing additional moment and boundedness conditions on the individual

entries. These additional conditions were then slowly removed in a

sequence of papers [GoTi2007, Gi2004, PaZh2010, TaVu2008],

with the last moment condition being removed in [TaVuKr2010].

At present, the known methods used to establish the circular law

for general ensembles rely very heavily on the joint independence of
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all the entries. It is a key challenge to see how to weaken this joint

independence assumption.

2.8.1. Spectral instability. One of the basic difficulties present in

the non-Hermitian case is spectral instability : small perturbations in

a large matrix can lead to large fluctuations in the spectrum. In

order for any sort of analytic technique to be effective, this type of

instability must somehow be precluded.

The canonical example of spectral instability comes from perturb-

ing the right shift matrix

U0 :=


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


to the matrix

Uε :=


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

ε 0 0 . . . 0


for some ε > 0.

The matrix U0 is nilpotent: Un0 = 0. Its characteristic polynomial

is (−λ)n, and it thus has n repeated eigenvalues at the origin. In

contrast, Uε obeys the equation Unε = εI, its characteristic polynomial

is (−λ)n − ε(−1)n, and it thus has n eigenvalues at the nth roots

ε1/ne2πij/n, j = 0, . . . , n− 1 of ε. Thus, even for exponentially small

values of ε, say ε = 2−n, the eigenvalues for Uε can be quite far from

the eigenvalues of U0, and can wander all over the unit disk. This is in

sharp contrast with the Hermitian case, where eigenvalue inequalities

such as the Weyl inequalities (1.63) or Wielandt-Hoffman inequalities

(1.67) ensure stability of the spectrum.

One can explain the problem in terms of pseudospectrum56. The

only spectrum of U is at the origin, so the resolvents (U − zI)−1 of

U are finite for all non-zero z. However, while these resolvents are

56The pseudospectrum of an operator T is the set of complex numbers z for which
the operator norm ‖(T − zI)−1‖op is either infinite, or larger than a fixed threshold
1/ε.
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finite, they can be extremely large. Indeed, from the nilpotent nature

of U0 we have the Neumann series

(U0 − zI)−1 = −1

z
− U0

z2
− . . .− Un−1

0

zn

so for |z| < 1 we see that the resolvent has size roughly |z|−n, which is

exponentially large in the interior of the unit disk. This exponentially

large size of resolvent is consistent with the exponential instability of

the spectrum:

Exercise 2.8.1. Let M be a square matrix, and let z be a complex

number. Show that ‖(M − zI)−1‖op ≥ R if and only if there exists a

perturbation M +E of M with ‖E‖op ≤ 1/R such that M +E has z

as an eigenvalue.

This already hints strongly that if one wants to rigorously prove

control on the spectrum of M near z, one needs some sort of upper

bound on ‖(M − zI)−1‖op, or equivalently one needs some sort of

lower bound on the least singular value σn(M − zI) of M − zI.

Without such a bound, though, the instability precludes the di-

rect use of the truncation method, which was so useful in the Her-

mitian case. In particular, there is no obvious way to reduce the

proof of the circular law to the case of bounded coefficients, in con-

trast to the semicircular law where this reduction follows easily from

the Wielandt-Hoffman inequality (see Section 2.4). Instead, we must

continue working with unbounded random variables throughout the

argument (unless, of course, one makes an additional decay hypothe-

sis, such as assuming certain moments are finite; this helps explain the

presence of such moment conditions in many papers on the circular

law).

2.8.2. Incompleteness of the moment method. In the Hermit-

ian case, the moments

1

n
tr(

1√
n
M)k =

∫
R

xk dµ 1√
nMn

(x)

of a matrix can be used (in principle) to understand the distribution

µ 1√
nMn

completely (at least, when the measure µ 1√
nMn

has sufficient
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decay at infinity. This is ultimately because the space of real poly-

nomials P (x) is dense in various function spaces (the Weierstrass

approximation theorem).

In the non-Hermitian case, the spectral measure µ 1√
nMn

is now

supported on the complex plane rather than the real line. One still

has the formula
1

n
tr(

1√
n
M)k =

∫
R

zk dµ 1√
nMn

(z)

but it is much less useful now, because the space of complex polyno-

mials P (z) no longer has any good density properties57. In particular,

the moments no longer uniquely determine the spectral measure.

This can be illustrated with the shift examples given above. It is

easy to see that U and Uε have vanishing moments up to (n − 1)th

order, i.e.
1

n
tr(

1√
n
U)k =

1

n
tr(

1√
n
Uε)

k = 0

for k = 1, . . . , n− 1. Thus we have∫
R

zk dµ 1√
nU

(z) =

∫
R

zk dµ 1√
nUε

(z) = 0

for k = 1, . . . , n − 1. Despite this enormous number of matching

moments, the spectral measures µ 1√
nU

and µ 1√
nUε

are vastly different;

the former is a Dirac mass at the origin, while the latter can be

arbitrarily close to the unit circle. Indeed, even if we set all moments

equal to zero, ∫
R

zk dµ = 0

for k = 1, 2, . . ., then there are an uncountable number of possible

(continuous) probability measures that could still be the (asymptotic)

spectral measure µ: for instance, any measure which is rotationally

symmetric around the origin would obey these conditions.

If one could somehow control the mixed moments∫
R

zkzl dµ 1√
n
Mn

(z) =
1

n

n∑
j=1

(
1√
n
λj(Mn))k(

1√
n
λj(Mn))l

57For instance, the uniform closure of the space of polynomials on the unit disk
is not the space of continuous functions, but rather the space of holomorphic functions
that are continuous on the closed unit disk.
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of the spectral measure, then this problem would be resolved, and one

could use the moment method to reconstruct the spectral measure

accurately. However, there does not appear to be any obvious way

to compute this quantity; the obvious guess of 1
n tr( 1√

n
Mn)k( 1√

n
M∗n)l

works when the matrix Mn is normal, as Mn and M∗n then share the

same basis of eigenvectors, but generically one does not expect these

matrices to be normal.

Remark 2.8.2. The failure of the moment method to control the

spectral measure is consistent with the instability of spectral mea-

sure with respect to perturbations, because moments are stable with

respect to perturbations.

Exercise 2.8.2. Let k ≥ 1 be an integer, and let Mn be an iid matrix

whose entries have a fixed distribution ξ with mean zero, variance 1,

and with kth moment finite. Show that 1
n tr( 1√

n
Mn)k converges to

zero as n→∞ in expectation, in probability, and in the almost sure

sense. Thus we see that
∫
R
zk dµ 1√

nMn

(z) converges to zero in these

three senses also. This is of course consistent with the circular law,

but does not come close to establishing that law, for the reasons given

above.

The failure of the moment method also shows that methods of free

probability (Section 2.5) do not work directly. For instance, observe

that for fixed ε, U0 and Uε (in the noncommutative probability space

(Matn(C), 1
n tr)) both converge in the sense of ∗-moments as n→∞

to that of the right shift operator on `2(Z) (with the trace τ(T ) =

〈e0, T e0〉, with e0 being the Kronecker delta at 0); but the spectral

measures of U0 and Uε are different. Thus the spectral measure cannot

be read off directly from the free probability limit.

2.8.3. The logarithmic potential. With the moment method out

of consideration, attention naturally turns to the Stieltjes transform

sn(z) =
1

n
tr(

1√
n
Mn − zI)−1 =

∫
C

dµ 1√
n
Mn

(w)

w − z
.

Even though the measure µ 1√
n
Mn

is now supported on C rather than

R, the Stieltjes transform is still well-defined. The Plemelj formula

for reconstructing spectral measure from the Stieltjes transform that
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was used in previous notes is no longer applicable, but there are other

formulae one can use instead, in particular one has

Exercise 2.8.3. Show that

µ 1√
n
Mn

=
1

π
∂z̄sn(z)

in the sense of distributions, where

∂z̄ :=
1

2
(
∂

∂x
+ i

∂

∂y
)

is the Cauchy-Riemann operator.

One can control the Stieltjes transform quite effectively away from

the origin. Indeed, for iid matrices with subgaussian entries, one can

show (using the methods from Section 2.3) that the operator norm

of 1√
n
Mn is 1 + o(1) almost surely; this, combined with (2.8.2) and

Laurent expansion, tells us that sn(z) almost surely converges to−1/z

locally uniformly in the region {z : |z| > 1}, and that the spectral

measure µ 1√
n
Mn

converges almost surely to zero in this region (which

can of course also be deduced directly from the operator norm bound).

This is of course consistent with the circular law, but is not sufficient

to prove it (for instance, the above information is also consistent

with the scenario in which the spectral measure collapses towards the

origin). One also needs to control the Stieltjes transform inside the

disk {z : |z| ≤ 1} in order to fully control the spectral measure.

For this, existing methods (such as predecessor comparison) are

not particularly effective (mainly because of the spectral instability,

and also because of the lack of analyticity in the interior of the spec-

trum). Instead, one proceeds by relating the Stieltjes transform to

the logarithmic potential

fn(z) :=

∫
C

log |w − z|dµ 1√
n
Mn

(w).

It is easy to see that sn(z) is essentially the (distributional) gradient

of fn(z):

sn(z) = (− ∂

∂x
+ i

∂

∂y
)fn(z),
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and thus gn is related to the spectral measure by the distributional

formula58

(2.179) µ 1√
n
Mn

=
1

2π
∆fn

where ∆ := ∂2

∂x2 + ∂2

∂y2 is the Laplacian.

In analogy to previous continuity theorems, we have

Theorem 2.8.3 (Logarithmic potential continuity theorem). Let Mn

be a sequence of random matrices, and suppose that for almost every

complex number z, fn(z) converges almost surely (resp. in probability)

to

f(z) :=

∫
C

log |z − w|dµ(w)

for some probability measure µ. Then µ 1√
n
Mn

converges almost surely

(resp. in probability) to µ in the vague topology.

Proof. We prove the almost sure version of this theorem, and leave

the convergence in probability version as an exercise.

On any bounded set K in the complex plane, the functions log | ·
−w| lie in L2(K) uniformly in w. From Minkowski’s integral in-

equality, we conclude that the fn and f are uniformly bounded in

L2(K). On the other hand, almost surely the fn converge pointwise

to f . From the dominated convergence theorem this implies that

min(|fn − f |,M) converges in L1(K) to zero for any M ; using the

uniform bound in L2(K) to compare min(|fn − f |,M) with |fn − f |
and then sending M → ∞, we conclude that fn converges to f in

L1(K). In particular, fn converges to f in the sense of distribu-

tions; taking distributional Laplacians using (2.179) we obtain the

claim. �

Exercise 2.8.4. Establish the convergence in probability version of

Theorem 2.8.3.

Thus, the task of establishing the circular law then reduces to

showing, for almost every z, that the logarithmic potential fn(z) con-

verges (in probability or almost surely) to the right limit f(z).

58This formula just reflects the fact that 1
2π log |z| is the Newtonian potential in

two dimensions.
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Observe that the logarithmic potential

fn(z) =
1

n

n∑
j=1

log |λj(Mn)√
n
− z|

can be rewritten as a log-determinant:

fn(z) =
1

n
log |det(

1√
n
Mn − zI)|.

To compute this determinant, we recall that the determinant of a

matrix A is not only the product of its eigenvalues, but also has a

magnitude equal to the product of its singular values:

|detA| =
n∏
j=1

σj(A) =

n∏
j=1

λj(A
∗A)1/2

and thus

fn(z) =
1

2

∫ ∞
0

log x dνn,z(x)

where dνn,z is the spectral measure of the matrix ( 1√
n
Mn−zI)∗( 1√

n
Mn−

zI).

The advantage of working with this spectral measure, as opposed

to the original spectral measure µ 1√
n
Mn

, is that the matrix ( 1√
n
Mn−

zI)∗( 1√
n
Mn− zI) is self-adjoint, and so methods such as the moment

method or free probability can now be safely applied to compute

the limiting spectral distribution. Indeed, Girko[Gi1984] established

that for almost every z, νn,z converged both in probability and almost

surely to an explicit (though slightly complicated) limiting measure

νz in the vague topology. Formally, this implied that fn(z) would

converge pointwise (almost surely and in probability) to

1

2

∫ ∞
0

log x dνz(x).

A lengthy but straightforward computation then showed that this

expression was indeed the logarithmic potential f(z) of the circular

measure µcirc, so that the circular law would then follow from the

logarithmic potential continuity theorem.

Unfortunately, the vague convergence of νn,z to νz only allows

one to deduce the convergence of
∫∞

0
F (x) dνn,z to

∫∞
0
F (x) dνz for
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F continuous and compactly supported. Unfortunately, log x has sin-

gularities at zero and at infinity, and so the convergence∫ ∞
0

log x dνn,z(x)→
∫ ∞

0

log x dνz(x)

can fail if the spectral measure νn,z sends too much of its mass to

zero or to infinity.

The latter scenario can be easily excluded, either by using oper-

ator norm bounds on Mn (when one has enough moment conditions)

or even just the Frobenius norm bounds (which require no moment

conditions beyond the unit variance). The real difficulty is with pre-

venting mass from going to the origin.

The approach of Bai[Ba1997] proceeded in two steps. Firstly, he

established a polynomial lower bound

σn(
1√
n
Mn − zI) ≥ n−C

asymptotically almost surely for the least singular value of 1√
n
Mn −

zI. This has the effect of capping off the log x integrand to be

of size O(log n). Next, by using Stieltjes transform methods, the

convergence of νn,z to νz in an appropriate metric (e.g. the Levi

distance metric) was shown to be polynomially fast, so that the

distance decayed like O(n−c) for some c > 0. The O(n−c) gain

can safely absorb the O(log n) loss, and this leads to a proof of

the circular law assuming enough boundedness and continuity hy-

potheses to ensure the least singular value bound and the conver-

gence rate. This basic paradigm was also followed by later works

[GoTi2007, PaZh2010, TaVu2008], with the main new ingredient

being the advances in the understanding of the least singular value

(Section 2.7).

Unfortunately, to get the polynomial convergence rate, one needs

some moment conditions beyond the zero mean and unit variance

rate (e.g. finite 2 + ηth moment for some η > 0). In my paper with

Vu and Krishnapur, we used the additional tool of the Talagrand

concentration inequality (Theorem 2.1.13) to eliminate the need for

the polynomial convergence. Intuitively, the point is that only a small

fraction of the singular values of 1√
n
Mn−zI are going to be as small as
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n−c; most will be much larger than this, and so the O(log n) bound is

only going to be needed for a small fraction of the measure. To make

this rigorous, it turns out to be convenient to work with a slightly

different formula for the determinant magnitude |det(A)| of a square

matrix than the product of the eigenvalues, namely the base-times-

height formula

|det(A)| =
n∏
j=1

dist(Xj , Vj)

where Xj is the jth row and Vj is the span of X1, . . . , Xj−1.

Exercise 2.8.5. Establish the inequality

n∏
j=n+1−m

σj(A) ≤
m∏
j=1

dist(Xj , Vj) ≤
m∏
j=1

σj(A)

for any 1 ≤ m ≤ n. (Hint: the middle product is the product of

the singular values of the first m rows of A, and so one should try to

use the Cauchy interlacing inequality for singular values, see Section

1.3.3.) Thus we see that dist(Xj , Vj) is a variant of σj(A).

The least singular value bounds, translated in this language (with

A := 1√
n
Mn − zI), tell us that dist(Xj , Vj) ≥ n−C with high proba-

bility; this lets ignore the most dangerous values of j, namely those

j that are equal to n − O(n0.99) (say). For low values of j, say

j ≤ (1 − δ)n for some small δ, one can use the moment method

to get a good lower bound for the distances and the singular values,

to the extent that the logarithmic singularity of log x no longer causes

difficulty in this regime; the limit of this contribution can then be seen

by moment method or Stieltjes transform techniques to be universal

in the sense that it does not depend on the precise distribution of the

components of Mn. In the medium regime (1− δ)n < j < n− n0.99,

one can use Talagrand’s inequality (Theorem 2.1.13) to show that

dist(Xj , Vj) has magnitude about
√
n− j, giving rise to a net con-

tribution to fn(z) of the form 1
n

∑
(1−δ)n<j<n−n0.99 O(log

√
n− j),

which is small. Putting all this together, one can show that fn(z)

converges to a universal limit as n→∞ (independent of the compo-

nent distributions); see [TaVuKr2010] for details. As a consequence,

once the circular law is established for one class of iid matrices, such
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as the complex gaussian random matrix ensemble, it automatically

holds for all other ensembles also.

2.8.4. Brown measure. We mentioned earlier that due to eigen-

value instability (or equivalently, due to the least singular value of

shifts possibly going to zero), the moment method (and thus, by ex-

tension, free probability) was not sufficient by itself to compute the

asymptotic spectral measure of non-Hermitian matrices in the large n

limit. However, this method can be used to give a heuristic prediction

as to what that measure is, known as the Brown measure[Br1986].

While Brown measure is not always the limiting spectral measure of

a sequence of matrices, it turns out in practice that this measure can

(with some effort) be shown to be the limiting spectral measure in

key cases. As Brown measure can be computed (again, after some ef-

fort) in many cases, this gives a general strategy towards computing

asymptotic spectral measure for various ensembles.

To define Brown measure, we use the language of free probabil-

ity (Section 2.5). Let u be a bounded element (not necessarily self-

adjoint) of a non-commutative probability space (A, τ), which we will

assume to be tracial. To derive Brown measure, we mimic the Girko

strategy used for the circular law. Firstly, for each complex number

z, we let νz be the spectral measure of the non-negative self-adjoint

element (u− z)∗(u− z).
Exercise 2.8.6. Verify that the spectral measure of a positive ele-

ment u∗u is automatically supported on the non-negative real axis.

(Hint: Show that τ(P (u∗u)u∗uP (u∗u)) ≥ 0 for any real polynomial

P , and use the spectral theorem.)

By the above exercise, νz is a compactly supported probability

measure on [0,+∞). We then define the logarithmic potential f(z)

by the formula

f(z) =
1

2

∫ ∞
0

log x dνz(x).

Note that f may equal −∞ at some points.

To understand this determinant, we introduce the regularised de-

terminant

fε(z) :=
1

2

∫ ∞
0

log(ε+ x) dνz(x)
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for ε > 0. From the monotone convergence theorem we see that fε(z)

decreases pointwise to f(z) as ε→ 0.

We now invoke the Gelfand-Naimark theorem (Exercise 2.5.10)

and embed59 A into the space of bounded operators on L2(τ), so that

we may now obtain a functional calculus. Then we can write

fε(z) =
1

2
τ(log(ε+ (u− z)∗(u− z))).

One can compute the first variation of fε:

Exercise 2.8.7. Let ε > 0. Show that the function fε is continuously

differentiable with

∂xfε(z) = −Re τ((ε+ (u− z)∗(u− z))−1(u− z))

and

∂yfε(z) = −Imτ((ε+ (u− z)∗(u− z))−1(u− z)).

Then, one can compute the second variation at, say, the origin:

Exercise 2.8.8. Let ε > 0. Show that the function fε is twice

continuously differentiable with

∂xxfε(0) = Re τ((ε+ u∗u)−1 − (ε+ u∗u)−1(u+ u∗)(ε+ u∗u)−1u)

and

∂yyfε(0) = Re τ((ε+ u∗u)−1 − (ε+ u∗u)−1(u∗ − u)(ε+ u∗u)−1u).

We conclude in particular that

∆fε(0) = 2 Re τ((ε+ u∗u)−1 − (ε+ u∗u)−1u∗(ε+ u∗u)−1u)

or equivalently

∆fε(0) = 2(‖(ε+u∗u)−1/2‖2L2(τ)−‖(ε+u
∗u)−1/2u(ε+u∗u)−1/2‖2L2(τ)).

Exercise 2.8.9. Show that

‖(ε+ u∗u)−1/2u(ε+ u∗u)−1/2‖L2(τ) ≤ ‖(ε+ u∗u)−1/2‖L2(τ).

(Hint: Adapt the proof of Lemma 2.5.13.)

59If τ is not faithful, this embedding need not be injective, but this will not be
an issue in what follows.
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We conclude that ∆fε is non-negative at zero. Translating u by

any complex number we see that ∆fε is non-negative everywhere,

that is to say that fε is subharmonic. Taking limits we see that f is

subharmonic also; thus if we define the Brown measure µ = µu of u

as

µ :=
1

2π
∆f

(cf. (2.179)) then µ is a non-negative measure.

Exercise 2.8.10. Show that for |z| > ρ(u) := ρ(u∗u)1/2, f is contin-

uously differentiable with

∂xf(z) = −Re τ((u− z)−1)

and

∂yf(z) = Imτ((u− z)−1)

and conclude that f is harmonic in this region; thus Brown measure

is supported in the disk {z : |z| ≤ ρ(u)}. Using Green’s theorem,

conclude also that Brown measure is a probability measure.

Exercise 2.8.11. In a finite-dimensional non-commutative probabil-

ity space (Matn(C), 1
n tr), show that Brown measure is the same as

spectral measure.

Exercise 2.8.12. In a commutative probability space (L∞(Ω),E),

show that Brown measure is the same as the probability distribution.

Exercise 2.8.13. If u is the left shift on `2(Z) (with the trace τ(T ) :=

〈Te0, e0〉), show that the Brown measure of u is the uniform measure

on the unit circle {z ∈ C : |z| = 1}.

This last exercise illustrates the limitations of Brown measure for

understanding asymptotic spectral measure. The shift U0 and the

perturbed shift Uε introduced in previous sections both converge in

the sense of ∗-moments as n → ∞ (holding ε fixed) to the left shift

u. For non-zero ε, the spectral measure of Uε does indeed converge

to the Brown measure of u, but for ε = 0 this is not the case. This

illustrates a more general principle60, that Brown measure is the right

60See [Sn2002] for a precise formulation of this heuristic, using gaussian
regularisation.
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asymptotic limit for “generic” matrices, but not for exceptional ma-

trices.

The machinery used to establish the circular law in full generality

can be used to show that Brown measure is the correct asymptotic

spectral limit for other models:

Theorem 2.8.4. Let Mn be a sequence of random matrices whose en-

tries are joint independent and with all moments uniformly bounded,

with variance uniformly bounded from below, and which converges in

the sense of ∗-moments to an element u of a non-commutative prob-

ability space. Then the spectral measure µ 1√
n
Mn

converges almost

surely and in probability to the Brown measure of u.

This theorem is essentially [TaVuKr2010, Theorem 1.20]. The

main ingredients are those mentioned earlier, namely a polynomial

lower bound on the least singular value, and the use of Talagrand’s

inequality (Theorem 2.1.13) to control medium singular values (or

medium codimension distances to subspaces). Of the two ingredients,

the former is more crucial, and is much more heavily dependent at

present on the joint independence hypothesis; it would be of interest

to see how to obtain lower bounds on the least singular value in more

general settings.



Chapter 3

Related articles

277



278 3. Related articles

3.1. Brownian motion and Dyson Brownian
motion

One theme in this text will be the central nature played by the gauss-

ian random variables X ≡ N(µ, σ2). Gaussians have an incredibly

rich algebraic structure, and many results about general random vari-

ables can be established by first using this structure to verify the re-

sult for gaussians, and then using universality techniques (such as the

Lindeberg exchange strategy) to extend the results to more general

variables.

One way to exploit this algebraic structure is to continuously

deform the variance t := σ2 from an initial variance of zero (so that

the random variable is deterministic) to some final level T . We would

like to use this to give a continuous family t 7→ Xt of random variables

Xt ≡ N(µ, t) as t (viewed as a “time” parameter) runs from 0 to T .

At present, we have not completely specified what Xt should

be, because we have only described the individual distribution Xt ≡
N(µ, t) of each Xt, and not the joint distribution. However, there is

a very natural way to specify a joint distribution of this type, known

as Brownian motion. In this sectionwe lay the necessary probability

theory foundations to set up this motion, and indicate its connection

with the heat equation, the central limit theorem, and the Ornstein-

Uhlenbeck process. This is the beginning of stochastic calculus, which

we will not develop fully here.

We will begin with one-dimensional Brownian motion, but it is

a simple matter to extend the process to higher dimensions. In par-

ticular, we can define Brownian motion on vector spaces of matrices,

such as the space of n× n Hermitian matrices. This process is equi-

variant with respect to conjugation by unitary matrices, and so we

can quotient out by this conjugation and obtain a new process on the

quotient space, or in other words on the spectrum of n×n Hermitian

matrices. This process is called Dyson Brownian motion, and turns

out to have a simple description in terms of ordinary Brownian mo-

tion; it will play a key role in several of the subsequent notes in this

course.
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3.1.1. Formal construction of Brownian motion. We begin with

constructing one-dimensional Brownian motion. We shall model this

motion using the machinery of Wiener processes:

Definition 3.1.1 (Wiener process). Let µ ∈ R, and let Σ ⊂ [0,+∞)

be a set of times containing 0. A (one-dimensional) Wiener process

on Σ with initial position µ is a collection (Xt)t∈Σ of real random

variables Xt for each time t ∈ Σ, with the following properties:

(i) X0 = µ.

(ii) Almost surely, the map t 7→ Xt is a continuous function on

Σ.

(iii) For every 0 ≤ t− < t+ in Σ, the increment Xt+−Xt− has the

distribution ofN(0, t+−t−)R. (In particular, Xt ≡ N(µ, t)R
for every t > 0.)

(iv) For every t0 ≤ t1 ≤ . . . ≤ tn in Σ, the increments Xti−Xti−1

for i = 1, . . . , n are jointly independent.

If Σ is discrete, we say that (Xt)t∈Σ is a discrete Wiener process; if

Σ = [0,+∞) then we say that (Xt)t∈Σ is a continuous Wiener process.

Remark 3.1.2. Collections of random variables (Xt)t∈Σ, where Σ is

a set of times, will be referred to as stochastic processes, thus Wiener

processes are a (very) special type of stochastic process.

Remark 3.1.3. In the case of discrete Wiener processes, the conti-

nuity requirement (ii) is automatic. For continuous Wiener processes,

there is a minor technical issue: the event that t 7→ Xt is continu-

ous need not be a measurable event (one has to take uncountable

intersections to define this event). Because of this, we interpret (ii)

by saying that there exists a measurable event of probability 1, such

that t 7→ Xt is continuous on all of this event, while also allowing

for the possibility that t 7→ Xt could also sometimes be continuous

outside of this event also. One can view the collection (Xt)t∈Σ as a

single random variable, taking values in the product space RΣ (with

the product σ-algebra, of course).

Remark 3.1.4. One can clearly normalise the initial position µ of a

Wiener process to be zero by replacing Xt with Xt − µ for each t.
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We shall abuse notation somewhat and identify continuous Wiener

processes with Brownian motion in our informal discussion, although

technically the former is merely a model for the latter. To empha-

sise this link with Brownian motion, we shall often denote continuous

Wiener processes as (Bt)t∈[0,+∞) rather than (Xt)t∈[0,+∞).

It is not yet obvious that Wiener processes exist, and to what

extent they are unique. The situation is easily clarified though for

discrete processes:

Proposition 3.1.5 (Discrete Brownian motion). Let Σ be a discrete

subset of [0,+∞) containing 0, and let µ ∈ R. Then (after extending

the sample space if necessary) there exists a Wiener process (Xt)t∈Σ

with base point µ. Furthermore, any other Wiener process (X ′t)t∈Σ

with base point µ has the same distribution as µ.

Proof. As Σ is discrete and contains 0, we can write it as {t0, t1, t2, . . .}
for some

0 = t0 < t1 < t2 < . . . .

Let (dXi)
∞
i=1 be a collection of jointly independent random variables

with dXi ≡ N(0, ti − ti−1)R (the existence of such a collection, after

extending the sample space, is guaranteed by Exercise 1.1.20). If we

then set

Xti := µ+ dX1 + . . .+ dXi

for all i = 0, 1, 2, . . ., then one easily verifies (using Exercise 2.1.9)

that (Xt)t∈Σ is a Wiener process.

Conversely, if (X ′t)t∈Σ is a Wiener process, and we define dX ′i :=

X ′i − X ′i−1 for i = 1, 2, . . ., then from the definition of a Wiener

process we see that the dX ′i have distribution N(0, ti − ti−1)R and

are jointly independent (i.e. any finite subcollection of the dX ′i are

jointly independent). This implies for any finite n that the random

variables (dXi)
n
i=1 and (dX ′i)

n
i=1 have the same distribution, and thus

(Xt)t∈Σ′ and (X ′t)t∈Σ′ have the same distribution for any finite subset

Σ′ of Σ. From the construction of the product σ-algebra we conclude

that (Xt)t∈Σ and (X ′t)t∈Σ have the same distribution, as required. �

Now we pass from the discrete case to the continuous case.
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Proposition 3.1.6 (Continuous Brownian motion). Let µ ∈ R.

Then (after extending the sample space if necessary) there exists a

Wiener process (Xt)t∈[0,+∞) with base point µ. Furthermore, any

other Wiener process (X ′t)t∈[0,+∞) with base point µ has the same

distribution as µ.

Proof. The uniqueness claim follows by the same argument used to

prove the uniqueness component of Proposition 3.1.5, so we just prove

existence here. The iterative construction we give here is somewhat

analogous to that used to create self-similar fractals, such as the Koch

snowflake. (Indeed, Brownian motion can be viewed as a probabilistic

analogue of a self-similar fractal.)

The idea is to create a sequence of increasingly fine discrete Brow-

nian motions, and then to take a limit. Proposition 3.1.5 allows one

to create each individual discrete Brownian motion, but the key is to

couple these discrete processes together in a consistent manner.

Here’s how. We start with a discrete Wiener process (Xt)t∈N on

the natural numbers N = {0, 1, 2 . . .} with initial position µ, which

exists by Proposition 3.1.5. We now extend this process to the denser

set of times 1
2N := { 1

2n : n ∈ N} by setting

Xt+ 1
2

:=
Xt +Xt+1

2
+ Yt,0

for t = 0, 1, 2, . . ., where (Yt,0)t∈N are iid copies of N(0, 1/4)R, which

are jointly independent of the (Xt)t∈N. It is a routine matter to use

Exercise 2.1.9 to show that this creates a discrete Wiener process

(Xt)t∈ 1
2N

on 1
2N which extends the previous process.

Next, we extend the process further to the denser set of times
1
4N by defining

Xt+ 1
4

:=
Xt +Xt+1/2

2
+ Yt,1

where (Yt,1)t∈ 1
2N

are iid copies of N(0, 1/8)R, jointly independent of

(Xt)t∈ 1
2N

. Again, it is a routine matter to show that this creates a

discrete Wiener process (Xt)t∈ 1
4N

on 1
4N.
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Iterating this procedure a countable number1 of times, we obtain

a collection of discrete Wiener processes (Xt)t∈ 1

2k
N for k = 0, 1, 2, . . .

which are consistent with each other, in the sense that the earlier

processes in this collection are restrictions of later ones.

Now we establish a Hölder continuity property. Let θ be any

exponent between 0 and 1/2, and let T > 0 be finite. Observe that

for any k = 0, 1, . . . and any j ∈ N, we have X(j+1)/2k − Xj/2k ≡
N(0, 1/2k)R and hence (by the subgaussian nature of the normal

distribution)

P(|X(j+1)/2k −Xj/2k | ≥ 2−kθ) ≤ C exp(−c2k(1−2θ))

for some absolute constants C, c. The right-hand side is summable

as j, k run over N subject to the constraint j/2k ≤ T . Thus, by the

Borel-Cantelli lemma, for each fixed T , we almost surely have that

|X(j+1)/2k −Xj/2k | ≤ 2−kθ

for all but finitely many j, k ∈ N with j/2k ≤ T . In particular,

this implies that for each fixed T , the function t 7→ Xt is almost

surely Hölder continuous2 of exponent θ on the dyadic rationals j/2k

in [0, T ], and thus (by the countable union bound) is almost surely

locally Hölder continuous of exponent θ on the dyadic rationals in

[0,+∞). In particular, they are almost surely locally uniformly con-

tinuous on this domain.

As the dyadic rationals are dense in [0,+∞), we can thus almost

surely3 extend t 7→ Xt uniquely to a continuous function on all of

[0,+∞). Note that if tn is any sequence in [0,+∞) converging to

t, then Xtn converges almost surely to Xt, and thus also converges

in probability and in distribution. Similarly for differences such as

Xt+,n − Xt−,n . Using this, we easily verify that (Xt)t∈[0,+∞) is a

continuous Wiener process, as required. �

1This requires a countable number of extensions of the underlying sample space,
but one can capture all of these extensions into a single extension via the machinery of
inverse limits of probability spaces; it is also not difficult to manually build a single
extension sufficient for performing all the above constructions.

2In other words, there exists a constant CT such that |Xs −Xt| ≤ CT |s− t|θ for
all s, t ∈ [0, T ].

3On the remaining probability zero event, we extend t 7→ Xt in some arbitrary
measurable fashion.
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Remark 3.1.7. One could also have used the Kolmogorov extension

theorem (see e.g. [Ta2011]) to establish the limit.

Exercise 3.1.1. Let (Xt)t∈[0,+∞) be a continuous Wiener process.

We have already seen that if 0 < θ < 1/2, that the map t 7→ Xt is

almost surely Hölder continuous of order θ. Show that if 1/2 ≤ θ ≤ 1,

then the map t 7→ Xt is almost surely not Hölder continuous of order

θ.

Show also that the map t 7→ Xt is almost surely nowhere differ-

entiable. Thus, Brownian motion provides a (probabilistic) example

of a continuous function which is nowhere differentiable.

Remark 3.1.8. In the above constructions, the initial position µ

of the Wiener process was deterministic. However, one can easily

construct Wiener processes in which the initial position X0 is itself a

random variable. Indeed, one can simply set

Xt := X0 +Bt

where (Bt)t∈[0,+∞) is a continuous Wiener process with initial po-

sition 0 which is independent of X0. Then we see that Xt obeys

properties (ii), (iii), (iv) of Definition 3.1.1, but the distribution of

Xt is no longer N(µ, t)R, but is instead the convolution of the law of

X0, and the law of N(0, t)R.

3.1.2. Connection with random walks. We saw how to construct

Brownian motion as a limit of discrete Wiener processes, which were

partial sums of independent gaussian random variables. The central

limit theorem (see Section 2.2) allows one to interpret Brownian mo-

tion in terms of limits of partial sums of more general independent

random variables, otherwise known as (independent) random walks.

Definition 3.1.9 (Random walk). Let ∆X be a real random variable,

let µ ∈ R be an initial position, and let ∆t > 0 be a time step. We

define a discrete random walk with initial position µ, time step ∆t and

step distribution ∆X (or µ∆X) to be a process (Xt)t∈∆t·N defined by

Xn∆t := µ+

n∑
i=1

∆Xi∆t

where (∆Xi∆t)
∞
i=1 are iid copies of ∆X.
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Example 3.1.10. From the proof of Proposition 3.1.5, we see that

a discrete Wiener process on ∆t ·N with initial position µ is nothing

more than a discrete random walk with step distribution ofN(0,∆t)R.

Another basic example is simple random walk, in which ∆X is equal

to (∆t)1/2 times a signed Bernoulli variable, thus we have X(n+1)∆t =

Xn∆t± (∆t)1/2, where the signs ± are unbiased and are jointly inde-

pendent in n.

Exercise 3.1.2 (Central limit theorem). Let X be a real random

variable with mean zero and variance 1, and let µ ∈ R. For each

∆t > 0, let (X
(∆t)
t )t∈[0,+∞) be a process formed by starting with

a random walk (X
(∆t)
t )t∈∆t·N with initial position µ, time step ∆t,

and step distribution (∆t)1/2X, and then extending to other times in

[0,+∞), in a piecewise linear fashion, thus

X
(∆t)
(n+θ)∆t := (1− θ)X(∆t)

n∆t + θX
(∆t)
(n+1)∆t

for all n ∈ N and 0 < θ < 1. Show that as ∆t → 0, the pro-

cess (X
(∆t)
t )t∈[0,+∞) converges in distribution to a continuous Wiener

process with initial position µ. (Hint: from the Riesz representation

theorem (or the Kolmogorov extension theorem), it suffices to estab-

lish this convergence for every finite set of times in [0,+∞). Now use

the central limit theorem; treating the piecewise linear modifications

to the process as an error term.)

3.1.3. Connection with the heat equation. Let (Bt)t∈[0,+∞) be

a Wiener process with base point µ, and let F : R→ R be a smooth

function with all derivatives bounded. Then, for each time t, the ran-

dom variable F (Bt) is bounded and thus has an expectation EF (Bt).

From the almost sure continuity of Bt and the dominated convergence

theorem we see that the map t 7→ EF (Bt) is continuous. In fact it is

differentiable, and obeys the following differential equation:

Lemma 3.1.11 (Equation of motion). For all times t ≥ 0, we have

d

dt
EF (Bt) =

1

2
EFxx(Bt)

where Fxx is the second derivative of F . In particular, t 7→ EF (Bt) is

continuously differentiable (because the right-hand side is continuous).
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Proof. We work from first principles. It suffices to show for fixed

t ≥ 0, that

EF (Bt+dt) = EF (Bt) +
1

2
dtEFxx(Bt) + o(dt)

as dt→ 0. We shall establish this just for non-negative dt; the claim

for negative dt (which only needs to be considered for t > 0) is similar

and is left as an exercise.

Write dBt := Bt+dt−Bt. From Taylor expansion and the bounded

third derivative of F , we have

(3.1) F (Bt+dt) = F (Bt)+Fx(Bt)dBt+
1

2
Fxx(Bt)|dBt|2 +O(|dBt|3).

We take expectations. Since dBt ≡ N(0, dt)R, we have E|dBt|3 =

O((dt)3/2), so in particular

EF (Bt+dt) = EF (Bt) + EFx(Bt)dBt +
1

2
EFxx(Bt)|dBt|2 + o(dt).

Now observe that dBt is independent of Bt, and has mean zero and

variance dt. The claim follows. �

Exercise 3.1.3. Complete the proof of the lemma by considering

negative values of dt. (Hint: one has to exercise caution because dBt
is not independent of Bt in this case. However, it will be indepen-

dent of Bt+dt. Also, use the fact that EFx(Bt) and EFxx(Bt) are

continuous in t. Alternatively, one can deduce the formula for the

left-derivative from that of the right-derivative via a careful applica-

tion of the fundamental theorem of calculus, paying close attention

to the hypotheses of that theorem.)

Remark 3.1.12. In the language of Ito calculus, we can write (3.1)

as

(3.2) dF (Bt) = Fx(Bt)dBt +
1

2
Fxx(Bt)dt.

Here, dF (Bt) := F (Bt+dt)− F (Bt), and dt should either be thought

of as being infinitesimal, or being very small, though in the latter case

the equation (3.2) should not be viewed as being exact, but instead

only being true up to errors of mean o(dt) and third moment O(dt3).

This is a special case of Ito’s formula. It should be compared against

the chain rule

dF (Xt) = Fx(Xt)dXt
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when t 7→ Xt is a smooth process. The non-smooth nature of Brow-

nian motion causes the quadratic term in the Taylor expansion to be

non-negligible, which explains4 the additional term in (3.2), although

the Hölder continuity of this motion is sufficient to still be able to

ignore terms that are of cubic order or higher.

Let ρ(t, x) dx be the probability density function of Bt; by inspec-

tion of the normal distribution, this is a smooth function for t > 0,

but is a Dirac mass at µ at time t = 0. By definition of density

function,

EF (Bt) =

∫
R

F (x)ρ(t, x) dx

for any Schwartz function F . Applying Lemma 3.1.11 and integrating

by parts, we see that

(3.3) ∂tρ =
1

2
∂xxρ

in the sense of (tempered) distributions (see e.g. [Ta2010, §1.13]).

In other words, ρ is a (tempered distributional) solution to the heat

equation (3.3). Indeed, since ρ is the Dirac mass at µ at time t = 0,

ρ for later times t is the fundamental solution of that equation from

initial position µ.

From the theory of PDE one can solve5 the (distributional) heat

equation with this initial data to obtain the unique solution

ρ(t, x) =
1√
2πt

e−|x−µ|
2/2t.

Of course, this is also the density function of N(µ, t)R, which is (un-

surprisingly) consistent with the fact that Bt ≡ N(µ, t). Thus we see

why the normal distribution of the central limit theorem involves the

same type of functions (i.e. gaussians) as the fundamental solution

of the heat equation. Indeed, one can use this argument to heuristi-

cally derive the central limit theorem from the fundamental solution

of the heat equation (cf. Section 2.2.7), although the derivation is

4In this spirit, one can summarise (the differential side of) Ito calculus informally

by the heuristic equations dBt = O((dt)1/2) and |dBt|2 = dt, with the understanding
that all terms that are o(dt) are discarded.

5See for instance [Ta2010, §1.12].
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only heuristic because one first needs to know that some limiting

distribution already exists (in the spirit of Exercise 3.1.2).

Remark 3.1.13. Because we considered a Wiener process with a de-

terministic initial position µ, the density function ρ was a Dirac mass

at time t = 0. However, one can run exactly the same arguments for

Wiener processes with stochastic initial position (see Remark 3.1.8),

and one will still obtain the same heat equation (3.1.8), but now with

a more general initial condition.

We have related one-dimensional Brownian motion to the one-

dimensional heat equation, but there is no difficulty establishing a

similar relationship in higher dimensions. In a vector space Rn, de-

fine a (continuous) Wiener process (Xt)t∈[0,+∞) in Rn with an ini-

tial position µ = (µ1, . . . , µn) ∈ Rn to be a process whose compo-

nents (Xt,i)t∈[0,+∞) for i = 1, . . . , n are independent Wiener pro-

cesses with initial position µi. It is easy to see that such processes

exist, are unique in distribution, and obey the same sort of properties

as in Definition 3.1.1, but with the one-dimensional gaussian distribu-

tion N(µ, σ2)R replaced by the n-dimensional analogue N(µ, σ2I)Rn ,

which is given by the density function

1

(2πσ)n/2
e−|x−µ|

2/σ2

dx

where dx is now Lebesgue measure on Rn.

Exercise 3.1.4. If (Bt)t∈[0,+∞) is an n-dimensional continuous Wiener

process, show that

d

dt
EF (Bt) =

1

2
E(∆F )(Bt)

whenever F : Rn → R is smooth with all derivatives bounded, where

∆F :=

n∑
i=1

∂2

∂x2
i

F

is the Laplacian of F . Conclude in particular that the density function

ρ(t, x) dx of Bt obeys the (distributional) heat equation

∂tρ =
1

2
∆ρ.
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A simple but fundamental observation is that n-dimensional Brow-

nian motion is rotation-invariant: more precisely, if (Xt)t∈[0,+∞) is an

n-dimensional Wiener process with initial position 0, and U ∈ O(n)

is any orthogonal transformation on Rn, then (UXt)t∈[0,+∞) is an-

other Wiener process with initial position 0, and thus has the same

distribution:

(3.4) (UXt)t∈[0,+∞) ≡ (Xt)t∈[0,+∞).

This is ultimately because the n-dimensional normal distributions

N(0, σ2I)Rn are manifestly rotation-invariant (see Exercise 2.2.13).

Remark 3.1.14. One can also relate variable-coefficient heat equa-

tions to variable-coefficient Brownian motion (Xt)t∈[0,+∞), in which

the variance of an increment dXt is now only proportional to dt for

infinitesimal dt rather than being equal to dt, with the constant of

proportionality allowed to depend on the time t and on the position

Xt. One can also add drift terms by allowing the increment dXt to

have a non-zero mean (which is also proportional to dt). This can be

accomplished through the machinery of stochastic calculus, which we

will not discuss in detail in these notes. In a similar fashion, one can

construct Brownian motion (and heat equations) on manifolds or on

domains with boundary, though we will not discuss this topic here.

Exercise 3.1.5. Let X1 be a real random variable of mean zero and

variance 1. Define a stochastic process (Xt)t∈[0,+∞) by the formula

Xt := e−t(X1 +Be2t−1)

where (Bt)t∈[0,+∞) is a Wiener process with initial position zero that

is independent of X1. This process is known as an Ornstein-Uhlenbeck

process.

• Show that each Xt has mean zero and variance 1.

• Show that Xt converges in distribution to N(0, 1)R as t →
∞.

• If F : R→ R is smooth with all derivatives bounded, show

that
d

dt
EF (Xt) = ELF (Xt)
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where L is the Ornstein-Uhlenbeck operator

LF := Fxx − xFx.

Conclude that the density function ρ(t, x) of Xt obeys (in a

distributional sense, at least) the Ornstein-Uhlenbeck equa-

tion

∂tρ = L∗ρ

where the adjoint operator L∗ is given by

L∗ρ := ρxx + ∂x(xρ).

• Show that the only probability density function ρ for which

L∗ρ = 0 is the Gaussian 1√
2π
e−x

2/2 dx; furthermore, show

that Re〈ρ, L∗ρ〉L2(R) ≤ 0 for all probability density func-

tions ρ in the Schwartz space with mean zero and variance

1. Discuss how this fact relates to the preceding two parts

of this exercise.

Remark 3.1.15. The heat kernel 1
(
√

2πt)d
e−|x−µ|

2/2t in d dimensions

is absolutely integrable in time away from the initial time t = 0 for

dimensions d ≥ 3, but becomes divergent in dimension 1 and (just

barely) divergent for d = 2. This causes the qualitative behaviour of

Brownian motion Bt in Rd to be rather different in the two regimes.

For instance, in dimensions d ≥ 3 Brownian motion is transient ; al-

most surely one has Bt → ∞ as t → ∞. But in dimension d = 1

Brownian motion is recurrent : for each x0 ∈ R, one almost surely

has Bt = x0 for infinitely many t. In the critical dimension d = 2,

Brownian motion turns out to not be recurrent, but is instead neigh-

bourhood recurrent : almost surely, Bt revisits every neighbourhood

of x0 at arbitrarily large times, but does not visit x0 itself for any

positive time t. The study of Brownian motion and its relatives is

in fact a huge and active area of study in modern probability theory,

but will not be discussed in this course.

3.1.4. Dyson Brownian motion. The space V of n×n Hermitian

matrices can be viewed as a real vector space of dimension n2 using

the Frobenius norm

A 7→ tr(A2)1/2 =

n∑
i=1

a2
ii + 2

∑
1≤i<j≤n

Re(aij)
2 + Im(aij)

2
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where aij are the coefficients of A. One can then identify V explicitly

with Rn2

via the identification

(aij)1≤i,j≤n ≡ ((aii)
n
i=1, (

√
2Re(aij),

√
2Im(aij))1≤i<j≤n).

Now that one has this indentification, for each Hermitian matrix

A0 ∈ V (deterministic or stochastic) we can define a Wiener pro-

cess (At)t∈[0,+∞) on V with initial position A0. By construction,

we see that t 7→ At is almost surely continuous, and each increment

At+−At− is equal to (t+−t−)1/2 times a matrix drawn from the gauss-

ian unitary ensemble (GUE), with disjoint increments being jointly

independent. In particular, the diagonal entries of At+ − At− have

distribution N(0, t+ − t−)R, and the off-diagonal entries have distri-

bution N(0, t+ − t−)C.

Given any Hermitian matrixA, one can form the spectrum (λ1(A), . . . , λn(A)),

which lies in the Weyl chamber Rn
≥ := {(λ1, . . . , λn) ∈ Rn : λ1 ≥

. . . ≥ λn}. Taking the spectrum of the Wiener process (At)t∈[0,+∞),

we obtain a process

(λ1(At), . . . , λn(At))t∈[0,+∞)

in the Weyl cone. We abbreviate λi(At) as λi.

For t > 0, we see that At is absolutely continuously distributed

in V . In particular, since almost every Hermitian matrix has simple

spectrum, we see that At has almost surely simple spectrum for t > 0.

(The same is true for t = 0 if we assume that A0 also has an absolutely

continuous distribution.)

OK

The stochastic dynamics of this evolution can be described by

Dyson Brownian motion[Dy1962]:

Theorem 3.1.16 (Dyson Brownian motion). Let t > 0, and let dt >

0, and let λ1, . . . , λn be as above. Then we have

(3.5) dλi = dBi +
∑

1≤j≤n:j 6=i

dt

λi − λj
+ . . .

for all 1 ≤ i ≤ n, where dλi := λi(At+dt)− λi(At), and dB1, . . . , dBn
are iid copies of N(0, dt)R which are jointly independent of (At′)t′∈[0,t],
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and the error term . . . has mean o(dt) and third moment O(dt3) in

the limit dt→ 0 (holding t and n fixed).

Using the language of Ito calculus, one usually views dt as infin-

itesimal and drops the . . . error, thus giving the elegant formula

dλi = dBi +
∑

1≤j≤n:j 6=i

dt

λi − λj

that shows that the eigenvalues λi evolve by Brownian motion, com-

bined with a deterministic repulsion force that repels nearby eigen-

values from each other with a strength inversely proportional to the

separation. One can extend the theorem to the t = 0 case by a limiting

argument provided that A0 has an absolutely continuous distribution.

Note that the decay rate of the error . . . can depend on n, so it is not

safe to let n go off to infinity while holding dt fixed. However, it is

safe to let dt go to zero first, and then send n off to infinity6.

Proof. Fix t. We can write At+dt = At + (dt)1/2G, where G is

independent7 of At and has the GUE distribution. We now condition

At to be fixed, and establish (3.5) for almost every fixed choice of At;

the general claim then follows upon undoing the conditioning (and

applying the dominated convergence theorem). Due to independence,

observe that G continues to have the GUE distribution even after

conditioning At to be fixed.

Almost surely, At has simple spectrum; so we may assume that

the fixed choice of At has simple spectrum also. The eigenvalues λi
now vary smoothly near t, so we may Taylor expand

λi(At+dt) = λi + (dt)1/2∇Gλi +
1

2
dt∇2

Gλi +O((dt)3/2‖G‖3)

for sufficiently small dt, where ∇G is directional differentiation in

the G direction, and the implied constants in the O() notation can

depend on At and n. In particular, we do not care what norm is used

to measure G in.

6It is also possible, by being more explicit with the error terms, to work with dt
being a specific negative power of n; see [TaVu2009b].

7Strictly speaking, G depends on dt, but this dependence will not concern us.
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As G has the GUE distribution, the expectation and variance

of ‖G‖3 is bounded (possibly with constant depending on n), so the

error here has mean o(dt) and third moment O(dt3). We thus have

dλi = (dt)1/2∇Gλi +
1

2
dt∇2

Gλi + . . . .

Next, from the first and second Hadamard variation formulae (1.72),

(1.73) we have

∇Gλi = u∗iGui

and

∇2
Gλi = 2

∑
i 6=j

|u∗jGui|2

λi − λj

where u1, . . . , un are an orthonormal eigenbasis for At, and thus

dλi = (dt)1/2u∗iGui + dt
∑
i 6=j

|u∗jGui|2

λi − λj
+ . . . .

Now we take advantage of the unitary invariance of the Gaussian

unitary ensemble (that is, that UGU∗ ≡ G for all unitary matrices G;

this is easiest to see by noting that the probability density function

of G is proportional to exp(−‖G‖2F /2)). From this invariance, we

can assume without loss of generality that u1, . . . , un is the standard

orthonormal basis of Cn, so that we now have

dλi = (dt)1/2ξii + dt
∑
i 6=j

|ξij |2

λi − λj
+ . . .

where ξij are the coefficients of G. But the ξii are iid copies of

N(0, 1)R, and the ξij are iid copies of N(0, 1)C, and the claim fol-

lows (note that dt
∑
i 6=j

|ξij |2−1
λi−λj has mean zero and third moment

O(dt3).) �

Remark 3.1.17. Interestingly, one can interpret Dyson Brownian

motion in a different way, namely as the motion of n independent

Wiener processes λi(t) after one conditions the λi to be non-intersecting

for all time; see [Gr1999]. It is intuitively reasonable that this con-

ditioning would cause a repulsion effect, though we do not know of

a simple heuristic reason why this conditioning should end up giving

the specific repulsion force present in (3.5).
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In the previous section, we saw how a Wiener process led to

a PDE (the heat flow equation) that could be used to derive the

probability density function for each component Xt of that process.

We can do the same thing here:

Exercise 3.1.6. Let λ1, . . . , λn be as above. Let F : Rn → R be a

smooth function with bounded derivatives. Show that for any t ≥ 0,

one has

∂tEF (λ1, . . . , λn) = ED∗F (λ1, . . . , λn)

where D∗ is the adjoint Dyson operator

D∗F :=
1

2

n∑
i=1

∂2
λiF +

∑
1≤i,j≤n:i6=j

∂λiF

λi − λj
.

If we let ρ : [0,+∞) ×Rn
≥ → R denote the density function ρ(t, ·) :

Rn
≥ → R of (λ1(t), . . . , λn(t)) at time t ∈ [0,+∞), deduce the Dyson

partial differential equation

(3.6) ∂tρ = Dρ

(in the sense of distributions, at least, and on the interior of Rn
≥),

where D is the Dyson operator

(3.7) Dρ :=
1

2

n∑
i=1

∂2
λiρ−

∑
1≤i,j≤n:i6=j

∂λi

(
ρ

λi − λj

)
.

The Dyson partial differential equation (3.6) looks a bit compli-

cated, but it can be simplified (formally, at least) by introducing the

Vandermonde determinant

(3.8) ∆n(λ1, . . . , λn) :=
∏

1≤i<j≤n

(λi − λj).

Exercise 3.1.7. Show that (3.8) is the determinant of the matrix

(λj−1
i )1≤i,j≤n, and is also the sum

∑
σ∈Sn sgn(σ)

∏n
i=1 λ

i−1
σ(i).

Note that this determinant is non-zero on the interior of the Weyl

chamber Rn
≥. The significance of this determinant for us lies in the

identity

(3.9) ∂λi∆n =
∑

1≤j≤n:i6=j

∆n

λi − λj
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which can be used to cancel off the second term in (3.7). Indeed, we

have

Exercise 3.1.8. Let ρ be a smooth solution to (3.6) in the interior

of Rn
≥, and write

(3.10) ρ = ∆nu

in this interior. Show that u obeys the linear heat equation

∂tu =
1

2

n∑
i=1

∂2
λiu

in the interior of Rn
≥. (Hint: You may need to exploit the identity

1
(a−b)(a−c) + 1

(b−a)(b−c) + 1
(c−a)(c−b) = 0 for distinct a, b, c. Equivalently,

you may need to first establish that the Vandermonde determinant is

a harmonic function.)

Let ρ be the density function of the (λ1, . . . , λn), as in (3.1.6).

Recall that the Wiener random matrix At has a smooth distribution

in the space V of Hermitian matrices, while the space of matrices in V

with non-simple spectrum has codimension 3 by Exercise 1.3.10. On

the other hand, the non-simple spectrum only has codimension 1 in

the Weyl chamber (being the boundary of this cone). Because of this,

we see that ρ vanishes to at least second order on the boundary of

this cone (with correspondingly higher vanishing on higher codimen-

sion facets of this boundary). Thus, the function u in Exercise 3.1.8

vanishes to first order on this boundary (again with correspondingly

higher vanishing on higher codimension facets). Thus, if we extend ρ

symmetrically across the cone to all of Rn, and extend the function

u antisymmetrically, then the equation (3.6) and the factorisation

(3.10) extend (in the distributional sense) to all of Rn. Extending

(3.1.8) to this domain (and being somewhat careful with various is-

sues involving distributions), we now see that u obeys the linear heat

equation on all of Rn.

Now suppose that the initial matrix A0 had a deterministic spec-

trum ν = (ν1, . . . , νn), which to avoid technicalities we will assume to

be in the interior of the Weyl chamber (the boundary case then being

obtainable by a limiting argument). Then ρ is initially the Dirac delta
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function at ν, extended symmetrically. Hence, u is initially 1
∆n(ν)

times the Dirac delta function at ν, extended antisymmetrically:

u(0, λ) =
1

∆n(ν)

∑
σ∈Sn

sgn(σ)δλ−σ(ν).

Using the fundamental solution for the heat equation in n dimensions,

we conclude that

u(t, λ) =
1

(2πt)n/2

∑
σ∈Sn

sgn(σ)e−|λ−σ(ν)|2/2t.

By the Leibniz formula for determinants

det((aij)1≤i,j≤n) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aiσ(i),

we can express the sum here as a determinant of the matrix

(e−(λi−νj)2/2t)1≤i,j≤n.

Applying (3.10), we conclude

Theorem 3.1.18 (Johansson formula). Let A0 be a Hermitian ma-

trix with simple spectrum ν = (ν1, . . . , νn), let t > 0, and let At =

A0 + t1/2G where G is drawn from GUE. Then the spectrum λ =

(λ1, . . . , λn) of At has probability density function

(3.11) ρ(t, λ) =
1

(2πt)n/2
∆n(λ)

∆n(ν)
det(e−(λi−νj)2/2t)1≤i,j≤n

on Rn
≥.

This formula is given explicitly in [Jo2001], who cites [BrHi1996]

as inspiration. (One can also check by hand that (3.11) satisfies the

Dyson equation (3.6).)

We will be particularly interested in the case when A0 = 0 and

t = 1, so that we are studying the probability density function of the

eigenvalues (λ1(G), . . . , λn(G)) of a GUE matrix G. The Johansson

formula does not directly apply here, because ν is vanishing. However,

we can investigate the limit of (3.11) in the limit as ν → 0 inside

the Weyl chamber; the Lipschitz nature of the eigenvalue operations

A 7→ λi(A) (from the Weyl inequalities) tell us that if (3.11) converges
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locally uniformly as ν → 0 for λ in the interior of Rn
≥, then the limit

will indeed8 be the probability density function for ν = 0.

Exercise 3.1.9. Show that as ν → 0, we have the identities

det(e−(λi−νj)2/2)1≤i,j≤n = e−|λ|
2/2e−|ν|

2/2 det(eλiνj )1≤i,j≤n

and

det(eλiνj )1≤i,j≤n =
1

1! . . . n!
∆n(λ)∆n(ν) + o(∆n(ν))

locally uniformly in λ. (Hint: for the second identity, use Taylor

expansion and the Leibniz formula for determinants, noting the left-

hand side vanishes whenever ∆n(ν) vanishes and so can be treated

by the (smooth) factor theorem.)

From the above exercise, we conclude the fundamental Ginibre

formula[Gi1965]

(3.12) ρ(λ) =
1

(2π)n/21! . . . n!
e−|λ|

2/2|∆n(λ)|2

for the density function for the spectrum (λ1(G), . . . , λn(G)) of a GUE

matrix G.

This formula can be derived by a variety of other means; we

sketch one such way below.

Exercise 3.1.10. For this exercise, assume that it is known that

(3.12) is indeed a probability distribution on the Weyl chamber Rn
≥ (if

not, one would have to replace the constant (2π)n/2 by an unspecified

normalisation factor depending only on n). Let D = diag(λ1, . . . , λn)

be drawn at random using the distribution (3.12), and let U be drawn

at random from Haar measure on U(n). Show that the probability

density function of UDU∗ at a matrix A with simple spectrum is

equal to cne
−‖A‖2F /2 for some constant cn > 0. (Hint : use unitary

invariance to reduce to the case when A is diagonal. Now take a small

ε and consider what U and D must be in order for UDU∗ to lie within

ε of A in the Frobenius norm, performing first order calculations only

(i.e. linearising and ignoring all terms of order o(ε)).)

8Note from continuity that the density function cannot assign any mass to the
boundary of the Weyl chamber, and in fact must vanish to at least second order by
the previous discussion.
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Conclude that (3.12) must be the probability density function of

the spectrum of a GUE matrix.

Exercise 3.1.11. Verify by hand that the self-similar extension

ρ(t, x) := t−n
2/2ρ(x/

√
t)

of the function (3.12) obeys the Dyson PDE (3.6). Why is this consis-

tent with (3.12) being the density function for the spectrum of GUE?

Remark 3.1.19. Similar explicit formulae exist for other invariant

ensembles, such as the gaussian orthogonal ensemble GOE and the

gaussian symplectic ensemble GSE. One can also replace the exponent

in density functions such as e−‖A‖
2
F /2 with more general expressions

than quadratic expressions of A. We will however not detail these

formulae in this course (with the exception of the spectral distribution

law for random iid gaussian matrices, which we will discuss in a later

set of notes).

3.2. The Golden-Thompson inequality

Let A,B be two Hermitian n×n matrices. When A and B commute,

we have the identity

eA+B = eAeB .

When A and B do not commute, the situation is more complicated;

we have the Baker-Campbell-Hausdorff formula

eA+B = eAeBe−
1
2 [A,B] . . .

where the infinite product here is explicit but very messy. On the

other hand, taking determinants we still have the identity

det(eA+B) = det(eAeB).

An identity in a somewhat similar spirit (which Percy Deift has half-

jokingly termed “the most important identity in mathematics”) is the

formula

(3.13) det(1 +AB) = det(1 +BA)

whenever A,B are n × k and k × n matrices respectively (or more

generally, A and B could be linear operators with sufficiently good
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spectral properties that make both sides equal). Note that the left-

hand side is an n×n determinant, while the right-hand side is a k×k
determinant; this formula is particularly useful when computing de-

terminants of large matrices (or of operators), as one can often use it

to transform such determinants into much smaller determinants. In

particular, the asymptotic behaviour of n×n determinants as n→∞
can be converted via this formula to determinants of a fixed size (inde-

pendent of n), which is often a more favourable situation to analyse.

Unsurprisingly, this trick is particularly useful for understanding the

asymptotic behaviour of determinantal processes.

There are many ways to prove (3.13). One is to observe first

that when A,B are invertible square matrices of the same size, that

1 +BA and 1 +AB are conjugate to each other and thus clearly have

the same determinant; a density argument then removes the invert-

ibility hypothesis, and a padding-by-zeroes argument then extends

the square case to the rectangular case. Another is to proceed via the

spectral theorem, noting that AB and BA have the same non-zero

eigenvalues.

By rescaling, one obtains the variant identity

det(z +AB) = zn−k det(z +BA)

which essentially relates the characteristic polynomial of AB with

that of BA. When n = k, a comparison of coefficients this al-

ready gives important basic identities such as tr(AB) = tr(BA) and

det(AB) = det(BA); when n is larger than k, an inspection of the

zn−k coefficient similarly gives the Cauchy-Binet formula

(3.14) det(BA) =
∑

S∈([n]
k )

det(AS×[k]) det(B[k]×S)

where S ranges over all k-element subsets of [n] := {1, . . . , n}, AS×[k]

is the k × k minor of A coming from the rows S, and B[k]×S is sim-

ilarly the k × k minor coming from the columns S. Unsurprisingly,

the Cauchy-Binet formula is also quite useful when performing com-

putations on determinantal processes.
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There is another very nice relationship between eA+B and eAeB ,

namely the Golden-Thompson inequality [Go1965, Th1965]

(3.15) tr(eA+B) ≤ tr(eAeB).

The remarkable thing about this inequality is that no commutativity

hypotheses whatsoever on the matrices A,B are required. Note that

the right-hand side can be rearranged using the cyclic property of

trace as tr(eB/2eAeB/2); the expression inside the trace is positive

definite so the right-hand side is positive9.

To get a sense of how delicate the Golden-Thompson inequality

is, let us expand both sides to fourth order in A,B. The left-hand

side expands as

tr 1 + tr(A+B) +
1

2
tr(A2 +AB +BA+B2) +

1

6
tr(A+B)3

+
1

24
tr(A+B)4 + . . .

while the right-hand side expands as

tr 1 + tr(A+B) +
1

2
tr(A2 + 2AB +B2)

+
1

6
tr(A3 + 3A2B + 3AB2 +B3)

+
1

24
tr(A4 + 4A3B + 6A2B2 + 4AB3 +B4) + . . .

Using the cyclic property of trace tr(AB) = tr(BA), one can verify

that all terms up to third order agree. Turning to the fourth order

terms, one sees after expanding out (A+B)4 and using the cyclic prop-

erty of trace as much as possible, we see that the fourth order terms

almost agree, but the left-hand side contains a term 1
12 tr(ABAB)

whose counterpart on the right-hand side is 1
12 tr(ABBA). The dif-

ference between the two can be factorised (again using the cyclic

property of trace) as − 1
24 tr[A,B]2. Since [A,B] := AB − BA is

skew-Hermitian, −[A,B]2 is positive definite, and so we have proven

the Golden-Thompson inequality to fourth order10.

9In contrast, the obvious extension of the Golden-Thompson inequality to three
or more Hermitian matrices fails dramatically; there is no reason why expressions such

as tr(eAeBeC) need to be positive or even real.
10One could also have used the Cauchy-Schwarz inequality for the Frobenius norm

to establish this; see below.
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Intuitively, the Golden-Thompson inequality is asserting that in-

teractions between a pair A,B of non-commuting Hermitian matrices

are strongest when cross-interactions are kept to a minimum, so that

all the A factors lie on one side of a product and all the B factors lie

on the other. Indeed, this theme will be running through the proof

of this inequality, to which we now turn.

The proof of the Golden-Thompson inequality relies on the some-

what magical power of the tensor power trick (see [Ta2008, §1.9]).

For any even integer p = 2, 4, 6, . . . and any n × n matrix A (not

necessarily Hermitian), we define the p-Schatten norm ‖A‖p of A by

the formula11

‖A‖p := (tr(AA∗)p/2)1/p.

This norm can be viewed as a non-commutative analogue of the `p

norm; indeed, the p-Schatten norm of a diagonal matrix is just the

`p norm of the coefficients.

Note that the 2-Schatten norm

‖A‖2 := (tr(AA∗))1/2

is the Hilbert space norm associated to the Frobenius inner product

(or Hilbert-Schmidt inner product)

〈A,B〉 := tr(AB∗).

This is clearly a non-negative Hermitian inner product, so by the

Cauchy-Schwarz inequality we conclude that

| tr(A1A
∗
2)| ≤ ‖A1‖2‖A2‖2

for any n × n matrices A1, A2. As ‖A2‖2 = ‖A∗2‖2, we conclude in

particular that

| tr(A1A2)| ≤ ‖A1‖2‖A2‖2
We can iterate this and establish the non-commutative Hölder

inequality

(3.16) | tr(A1A2 . . . Ap)| ≤ ‖A1‖p‖A2‖p . . . ‖Ap‖p
whenever p = 2, 4, 8, . . . is an even power of 2 (compare with Exercise

1.3.9). Indeed, we induct on p, the case p = 2 already having been

11This formula in fact defines a norm for any p ≥ 1; see Exercise 1.3.22(vi).
However, we will only need the even integer case here.
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established. If p ≥ 4 is a power of 2, then by the induction hypothesis

(grouping A1 . . . Ap into p/2 pairs) we can bound

(3.17) | tr(A1A2 . . . Ap)| ≤ ‖A1A2‖p/2‖A3A4‖p/2 . . . ‖Ap−1Ap‖p/2.

On the other hand, we may expand

‖A1A2‖p/2p/2 = trA1A2A
∗
2A
∗
1 . . . A1A2A

∗
2A
∗
1.

We use the cyclic property of trace to move the rightmost A∗1 factor to

the left. Applying the induction hypothesis again, we conclude that

‖A1A2‖p/2p/2 ≤ ‖A
∗
1A1‖p/2‖A2A

∗
2‖p/2 . . . ‖A∗1A1‖p/2‖A2A

∗
2‖p/2.

But from the cyclic property of trace again, we have ‖A∗1A1‖p/2 =

‖A1‖2p and ‖A2A
∗
2‖p/2 = ‖A2‖2p. We conclude that

‖A1A2‖p/2 ≤ ‖A1‖p‖A2‖p

and similarly for ‖A3A4‖p/2, etc. Inserting this into (3.17) we obtain

(3.16).

Remark 3.2.1. Though we will not need to do so here, it is inter-

esting to note that one can use the tensor power trick to amplify

(3.16) for p equal to a power of two, to obtain (3.16) for all positive

integers p, at least when the Ai are all Hermitian (again, compare

with Exercise 1.3.9). Indeed, pick a large integer m and let N be

the integer part of 2m/p. Then expand the left-hand side of (3.16)

as tr(A
1/N
1 . . . A

1/N
1 A

1/N
2 . . . A

1/N
p . . . A

1/N
p ) and apply (3.16) with p

replaced by 2m to bound this by ‖A1/N
1 ‖N2m . . . ‖A

1/N
p ‖N2m‖1‖

2m−pN
2m .

Sending m → ∞ (noting that 2m = (1 + o(1))Np) we obtain the

claim.

Specialising (3.16) to the case where A1 = . . . = Ap = AB for

some Hermitian matrices A,B, we conclude that

tr((AB)p) ≤ ‖AB‖pp
and hence by cyclic permutation

tr((AB)p) ≤ tr((A2B2)p/2)

for any p = 2, 4, . . .. Iterating this we conclude that

(3.18) tr((AB)p) ≤ tr(ApBp).
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Applying this with A,B replaced by eA/p and eB/p respectively, we

obtain

tr((eA/peB/p)p) ≤ tr(eAeB).

Now we send p → ∞. Since eA/p = 1 + A/p + O(1/p2) and eB/p =

1 + B/p + O(1/p2), we have eA/peB/p = e(A+B)/p+O(1/p2), and so

the left-hand side is tr(eA+B+O(1/p)); taking the limit as p → ∞ we

obtain the Golden-Thompson inequality12

If we stop the iteration at an earlier point, then the same argu-

ment gives the inequality

‖eA+B‖p ≤ ‖eAeB‖p

for p = 2, 4, 8, . . . a power of two; one can view the original Golden-

Thompson inequality as the p = 1 endpoint of this case in some

sense13. In the limit p → ∞, we obtain in particular the operator

norm inequality

(3.19) ‖eA+B‖op ≤ ‖eAeB‖op

This inequality has a nice consequence:

Corollary 3.2.2. Let A,B be Hermitian matrices. If eA ≤ eB (i.e.

eB − eA is positive semi-definite), then A ≤ B.

Proof. Since eA ≤ eB , we have 〈eAx, x〉 ≤ 〈eBx, x〉 for all vectors

x, or in other words ‖eA/2x‖ ≤ ‖eB/2x‖ for all x. This implies that

eA/2e−B/2 is a contraction, i.e. ‖eA/2e−B/2‖op ≤ 1. By (3.19), we

conclude that ‖e(A−B)/2‖op ≤ 1, thus (A − B)/2 ≤ 0, and the claim

follows. �

Exercise 3.2.1. Reverse the above argument and conclude that (3.2.2)

is in fact equivalent to (3.19).

It is remarkably tricky to try to prove Corollary 3.2.2 directly.

Here is a somewhat messy proof. By the fundamental theorem of

calculus, it suffices to show that whenever A(t) is a Hermitian ma-

trix depending smoothly on a real parameter with d
dte

A(t) ≥ 0, then

12See also [Ve2008] for a slight variant of this proof.
13In fact, the Golden-Thompson inequality is true in any operator norm; see

[Bh1997, Theorem 9.3.7].
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d
dtA(t) ≥ 0. Indeed, Corollary 3.2.2 follows from this claim by setting

A(t) := log(eA + t(eB − eA)) and concluding that A(1) ≥ A(0).

To obtain this claim, we use the Duhamel formula

d

dt
eA(t) =

∫ 1

0

e(1−s)A(t)(
d

dt
A(t))esA(t) ds.

This formula can be proven by Taylor expansion, or by carefully ap-

proximating eA(t) by (1 +A(t)/N)N ; alternatively, one can integrate

the identity

∂

∂s
(e−sA(t) ∂

∂t
esA(t)) = e−sA(t)(

∂

∂t
A(t))esA(t)

which follows from the product rule and by interchanging the s and t

derivatives at a key juncture. We rearrange the Duhamel formula as

d

dt
eA(t) = eA(t)/2(

∫ 1/2

−1/2

esA(t)(
d

dt
A(t))e−sA(t) ds)eA(t)/2.

Using the basic identity eABe−A = ead(A)B, we thus have

d

dt
eA(t) = eA(t)/2[(

∫ 1/2

−1/2

es ad(A(t)) ds)(
d

dt
A(t))]eA(t)/2;

formally evaluating the integral, we obtain

d

dt
eA(t) = eA(t)/2[

sinh(ad(A(t))/2)

ad(A(t))/2
(
d

dt
A(t))]eA(t)/2,

and thus

d

dt
A(t) =

ad(A(t))/2

sinh(ad(A(t))/2)
(e−A(t)/2(

d

dt
eA(t))e−A(t)/2).

As d
dte

A(t) was positive semi-definite by hypothesis, e−A(t)/2( ddte
A(t))e−A(t)/2

is also. It thus suffices to show that for any Hermitian A, the operator
ad(A)

sinh(ad(A)) preserves the property of being semi-definite.

Note that for any real ξ, the operator e2πiξ ad(A) maps a posi-

tive semi-definite matrix B to another positive semi-definite matrix,

namely e2πiξABe−2πiξA. By the Fourier inversion formula, it thus suf-

fices to show that the kernel F (x) := x
sinh(x) is positive semi-definite in

the sense that it has non-negative Fourier transform (this is a special

case of Bochner’s theorem). But a routine (but somewhat tedious)

application of contour integration shows that the Fourier transform
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F̂ (ξ) =
∫
R
e−2πixξF (x) dx is given by the formula F̂ (ξ) = 1

8 cosh2(π2ξ)
,

and the claim follows.

Because of the Golden-Thompson inequality, many applications

of the exponential moment method in commutative probability theory

can be extended without difficulty to the non-commutative case, as

was observed in [AhWi2002]. For instance, consider (a special case

of) the Chernoff inequality

P(X1 + . . .+XN ≥ λ) ≤ max(e−λ
2/4, e−λσ/2)

for any λ > 0, where X1, . . . , Xn ≡ X are iid scalar random variables

taking values in [−1, 1] of mean zero and with total variance σ2 (i.e.

each factor has variance σ2/N). We briefly recall the standard proof

of this inequality from Section 2.1. We first use Markov’s inequality

to obtain

P(X1 + . . .+XN ≥ λ) ≤ e−tλEet(X1+...+XN )

for some parameter t > 0 to be optimised later. In the scalar case,

we can factor et(X1+...+XN ) as etX1 . . . etXN and then use the iid hy-

pothesis to write the right-hand side as

e−tλ(EetX)N .

An elementary Taylor series computation then reveals the bound

EetX ≤ exp(t2σ2/N) when 0 ≤ t ≤ 1; inserting this bound and

optimising in t we obtain the claim.

Now suppose that X1, . . . , Xn ≡ X are iid d × d Hermitian ma-

trices. One can try to adapt the above method to control the size of

the sum X1 + . . .+XN . The key point is then to bound expressions

such as

E tr et(X1+...+XN ).

As X1, . . . , XN need not commute, we cannot separate the product

completely. But by Golden-Thompson, we can bound this expression

by

E tr et(X1+...+XN−1)etXn

which by independence we can then factorise as

tr(Eet(X1+...+XN−1))(EetXn).
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As the matrices involved are positive definite, we can then take out

the final factor in operator norm:

‖EetXn‖op tr Eet(X1+...+XN−1).

Iterating this procedure, we can eventually obtain the bound

E tr et(X1+...+XN ) ≤ ‖EetX‖Nop.

Combining this with the rest of the Chernoff inequality argument, we

can establish a matrix generalisation

P(‖X1 + . . .+XN‖op ≥ λ) ≤ nmax(e−λ
2/4, e−λσ/2)

of the Chernoff inequality, under the assumption that the X1, . . . , XN

are iid with mean zero, have operator norm bounded by 1, and have

total variance
∑n
i=1 ‖EX2

i ‖op equal to σ2; see for instance [Ve2008]

for details.

Further discussion of the use of the Golden-Thompson inequality

and its variants to non-commutative Chernoff-type inequalities can

be found in [Gr2009], [Ve2008], [Tr2010]. It seems that the use of

this inequality may be quite useful in simplifying the proofs of several

of the basic estimates in this subject.

3.3. The Dyson and Airy kernels of GUE via
semiclassical analysis

Let n be a large integer, and let Mn be the Gaussian Unitary En-

semble (GUE), i.e. the random Hermitian matrix with probability

distribution

Cne
− tr(M2

n)/2dMn

where dMn is a Haar measure on Hermitian matrices and Cn is

the normalisation constant required to make the distribution of unit

mass. The eigenvalues λ1 < . . . < λn of this matrix are then a

coupled family of n real random variables. For any 1 ≤ k ≤ n, we

can define the k-point correlation function ρk(x1, . . . , xk) to be the

unique symmetric measure on Rk such that∫
Rk

F (x1, . . . , xk)ρk(x1, . . . , xk) = E
∑

1≤i1<...<ik≤n

F (λi1 , . . . , λik).
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A standard computation (given for instance in Section 2.6 gives the

Ginibre formula[Gi1965]

ρn(x1, . . . , xn) = C ′n(
∏

1≤i<j≤n

|xi − xj |2)e−
∑n
j=1 |xj |

2/2.

for the n-point correlation function, where C ′n is another normali-

sation constant. Using Vandermonde determinants, one can rewrite

this expression in determinantal form as

ρn(x1, . . . , xn) = C ′′n det(Kn(xi, xj))1≤i,j≤n

where the kernel Kn is given by

Kn(x, y) :=

n−1∑
k=0

φk(x)φk(y)

where φk(x) := Pk(x)e−x
2/4 and P0, P1, . . . are the (L2-normalised)

Hermite polynomials (thus the φk are an orthonormal family, with

each Pk being a polynomial of degree k). Integrating out one or more

of the variables, one is led to the Gaudin-Mehta formula14

(3.20) ρk(x1, . . . , xk) = det(Kn(xi, xj))1≤i,j≤k.

Again, see Section 2.6 for details.

The functions φk(x) can be viewed as an orthonormal basis of

eigenfunctions for the harmonic oscillator operator

Lφ := (− d2

dx2
+
x2

4
)φ;

indeed it is a classical fact that

Lφk = (k +
1

2
)φk.

As such, the kernel Kn can be viewed as the integral kernel of the

spectral projection operator 1(−∞,n+ 1
2 ](L).

From (3.20) we see that the fine-scale structure of the eigenvalues

of GUE are controlled by the asymptotics of Kn as n→∞. The two

main asymptotics of interest are given by the following lemmas:

14In particular, the normalisation constant C′′n in the previous formula turns out
to simply be equal to 1.
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Lemma 3.3.1 (Asymptotics of Kn in the bulk). Let x0 ∈ (−2, 2),

and let ρsc(x0) := 1
2π (4−x2

0)
1/2
+ be the semicircular law density at x0.

Then, we have

Kn(x0

√
n+

y√
nρsc(x0)

, x0

√
n+

z√
nρsc(x0)

)

→ sin(π(y − z))
π(y − z)

(3.21)

as n → ∞ for any fixed y, z ∈ R (removing the singularity at y = z

in the usual manner).

Lemma 3.3.2 (Asymptotics of Kn at the edge). We have

Kn(2
√
n+

y

n1/6
, 2
√
n+

z

n1/6
)

→ Ai(y) Ai′(z)−Ai′(y) Ai(z)

y − z

(3.22)

as n→∞ for any fixed y, z ∈ R, where Ai is the Airy function

Ai(x) :=
1

π

∫ ∞
0

cos(
t3

3
+ tx) dt

and again removing the singularity at y = z in the usual manner.

The proof of these asymptotics usually proceeds via computing

the asymptotics of Hermite polynomials, together with the Christoffel-

Darboux formula; this is for instance the approach taken in Section

2.6. However, there is a slightly different approach that is closer in

spirit to the methods of semi-classical analysis. For sake of complete-

ness, we will discuss this approach here, although to focus on the

main ideas, the derivation will not be completely rigorous15.

3.3.1. The bulk asymptotics. We begin with the bulk asymp-

totics, Lemma 3.3.1. Fix x0 in the bulk region (−2, 2). Applying the

change of variables

x = x0

√
n+

y√
nρsc(x0)

15In particular, we will ignore issues such as convegence of integrals or of opera-
tors, or (removable) singularities in kernels caused by zeroes in the denominator. For
a rigorous approach to these asymptotics in the discrete setting, see [Ol2008].



308 3. Related articles

we see that the harmonic oscillator L becomes

−nρsc(x0)2 d
2

dy2
+

1

4
(x0

√
n+

y√
nρsc(x0)

)2

Since Kn is the integral kernel of the spectral projection to the region

L ≤ n+ 1
2 , we conclude that the left-hand side of (3.21) (as a function

of y, z) is the integral kernel of the spectral projection to the region

−nρsc(x0)2 d
2

dy2
+

1

4
(x0

√
n+

y√
nρsc(x0)

)2 ≤ n+
1

2
.

Isolating out the top order terms in n, we can rearrange this as

− d2

dy2
≤ π2 + o(1).

Thus, in the limit n→∞, we expect (heuristically, at least) that

the left-hand side of (3.21) to converge as n → ∞ to the integral

kernel of the spectral projection to the region

− d2

dy2
≤ π2.

Introducing the Fourier dual variable ξ to y, as manifested by the

Fourier transform

f̂(ξ) =

∫
R

e−2πiξyf(y) dy

and its inverse

F̌ (y) =

∫
R

e2πiξyF (ξ) dξ,

then we (heuristically) have d
dy = 2πiξ, and so we are now projecting

to the region

(3.23) |ξ|2 ≤ 1/4,

i.e. we are restricting the Fourier variable to the interval [−1/2, 1/2].

Back in physical space, the associated projection P thus takes the
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form

Pf(y) =

∫
[−1/2,1/2]

e2πiξy f̂(ξ) dξ

=

∫
R

∫
[−1/2,1/2]

e2πiξye−2πiξz dξf(z) dz

=

∫
R

sin(π(y − z))
y − z

f(z) dz

and the claim follows.

Remark 3.3.3. From a semiclassical perspective, the original spec-

tral projection L ≤ n+ 1
2 can be expressed in phase space (using the

dual frequency variable η to x) as the ellipse

(3.24) 4π2η2 +
x2

4
≤ n+

1

2

which after the indicated change of variables becomes the elongated

ellipse

ξ2 +
1

2nρsc(x0)(4− x2
0)
y +

1

4n2ρsc(x0)2(4− x2
0)
y2

≤ 1

4
+

1

2n(4− x2
0)

which converges (in some suitably weak sense) to the strip (3.23) as

n→∞.

3.3.2. The edge asymptotics. A similar (heuristic) argument gives

the edge asymptotics, Lemma 3.3.2. Starting with the change of vari-

ables

x = 2
√
n+

y

n1/6

the harmonic oscillator L now becomes

−n1/3 d
2

dy2
+

1

4
(2
√
n+

y

n1/6
)2.

Thus, the left-hand side of (3.22) becomes the kernel of the spectral

projection to the region

−n1/3 d
2

dy2
+

1

4
(2
√
n+

y

n1/6
)2 ≤ n+

1

2
.
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Expanding out, computing all terms of size n1/3 or larger, and rear-

ranging, this (heuristically) becomes

− d2

dy2
+ y ≤ o(1)

and so, heuristically at least, we expect (3.22) to converge to the

kernel of the projection to the region

(3.25) − d2

dy2
+ y ≤ 0.

To compute this, we again pass to the Fourier variable ξ, converting

the above to

4π2ξ2 +
1

2πi

d

dξ
≤ 0

using the usual Fourier-analytic correspondences between multiplica-

tion and differentiation. If we then use the integrating factor trans-

formation

F (ξ) 7→ e8π3iξ3/3F (ξ)

we can convert the above region to

1

2πi

d

dξ
≤ 0

which on undoing the Fourier transformation becomes

y ≤ 0,

and the spectral projection operation for this is simply the spatial

multiplier 1(−∞,0]. Thus, informally at least, we see that the spectral

projection P to the region (3.25) is given by the formula

P = M−11(−∞,0]M

where the Fourier multiplier M is given by the formula

M̂f(ξ) := e8π3iξ3/3f̂(ξ).
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In other words (ignoring issues about convergence of the integrals),

Mf(y) =

∫
R

(

∫
R

e2πiyξe8π3iξ3/3e−2πizξ dξ)f(z) dz

= 2

∫
R

(

∫ ∞
0

cos(2π(y − z)ξ + 8π3ξ3/3) dξ)f(z) dz

=
1

π

∫
R

(

∫ ∞
0

cos(t(y − z) + t3/3) dt)f(z) dz

=

∫
R

Ai(y − z)f(z) dz

and similarly

M−1f(z) =

∫
R

Ai(y − z)f(y) dy

(this reflects the unitary nature of M). We thus see (formally, at

least) that

Pf(y) =

∫
R

(

∫
(−∞,0]

Ai(y − w) Ai(z − w) dw)f(z) dz.

To simplify this expression we perform some computations closely

related to the ones above. From the Fourier representation

Ai(y) =
1

π

∫ ∞
0

cos(ty + t3/3) dt

=

∫
R

e2πiyξe8πiξ3/3 dξ

we see that

Âi(ξ) = e8π3iξ3/3

which means that

(4π2ξ2 +
1

2πi

d

dξ
)Âi(ξ) = 0

and thus

(− d2

dy2
+ y) Ai(y) = 0,

thus Ai obeys the Airy equation

Ai′′(y) = yAi(y).

Using this, one soon computes that

d

dw

Ai(y − w) Ai′(z − w)−Ai′(y − w) Ai(z − w)

y − z
= Ai(y−w) Ai(z−w).
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Also, stationary phase asymptotics tell us that Ai(y) decays exponen-

tially fast as y → +∞, and hence Ai(y−w) decays exponentially fast

as w → −∞ for fixed y; similarly for Ai′(z−w),Ai′(y−w),Ai(z−w).

From the fundamental theorem of calculus, we conclude that∫
(−∞,0]

Ai(y − w) Ai(z − w) dw =
Ai(y) Ai′(z)−Ai′(y) Ai(z)

y − z
,

(this is a continuous analogue of the Christoffel-Darboux formula),

and the claim follows.

Remark 3.3.4. As in the bulk case, one can take a semi-classical

analysis perspective and track what is going on in phase space. With

the scaling we have selected, the ellipse (3.24) has become

4π2n1/3ξ2 +
(2
√
n+ y/n1/6)2

4
≤ n+

1

2
,

which we can rearrange as the eccentric ellipse

4π2ξ2 + y ≤ 1

2n1/3
− y2

4n2/3

which is converging as n→∞ to the parabolic region

4π2ξ2 + y ≤ 0

which can then be shifted to the half-plane y ≤ 0 by the parabolic

shear transformation (y, ξ) 7→ (y + 4π2ξ2, ξ), which is the canonical

relation of the Fourier multiplier M . (The rapid decay of the kernel

Ai of M at +∞ is then reflected in the fact that this transformation

only shears to the right and not the left.)

Remark 3.3.5. Presumably one should also be able to apply the

same heuristics to other invariant ensembles, such as those given by

probability distributions of the form

Cne
− tr(P (Mn))dMn

for some potential function P . Certainly one can soon get to an

orthogonal polynomial formulation of the determinantal kernel for

such ensembles, but I do not know if the projection operators for

such kernels can be viewed as spectral projections to a phase space

region as was the case for GUE. But if one could do this, this would

provide a heuristic explanation as to the universality phenomenon
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for such ensembles, as Taylor expansion shows that all (reasonably

smooth) regions of phase space converge to universal limits (such as a

strip or paraboloid) after rescaling around either a non-critical point

or a critical point of the region with the appropriate normalisation.

3.4. The mesoscopic structure of GUE
eigenvalues

In this section we give a heuristic model of the mesoscopic structure of

the eigenvalues λ1 ≤ . . . ≤ λn of the n×n Gaussian Unitary Ensemble

(GUE), where n is a large integer. From Section 2.6, the probability

density of these eigenvalues is given by the Ginibre distribution

1

Zn
e−H(λ) dλ

where dλ = dλ1 . . . dλn is Lebesgue measure on the Weyl chamber

{(λ1, . . . , λn) ∈ Rn : λ1 ≤ . . . ≤ λn}, Zn is a constant, and the

Hamiltonian H is given by the formula

H(λ1, . . . , λn) :=

n∑
j=1

λ2
j

2
− 2

∑
1≤i<j≤n

log |λi − λj |.

As we saw in Section 2.4, at the macroscopic scale of
√
n, the eigen-

values λj are distributed according to the Wigner semicircle law

ρsc(x) :=
1

2π
(4− x2)

1/2
+ .

Indeed, if one defines the classical location γcl
i of the ith eigenvalue to

be the unique solution in [−2
√
n, 2
√
n] to the equation∫ γcl

i /
√
n

−2
√
n

ρsc(x) dx =
i

n

then it is known that the random variable λi is quite close to γcl
i . In-

deed, a result of Gustavsson[Gu2005] shows that, in the bulk region

when εn < i < (1− ε)n for some fixed ε > 0, λi is distributed asymp-

totically as a gaussian random variable with mean γcl
i and variance√

logn
π × 1√

nρsc(γcl
i )

. Note that from the semicircular law, the factor
1√

nρsc(γcl
i )

is the mean eigenvalue spacing.
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At the other extreme, at the microscopic scale of the mean eigen-

value spacing (which is comparable to 1/
√
n in the bulk, but can be

as large as n−1/6 at the edge), the eigenvalues are asymptotically dis-

tributed with respect to a special determinantal point process, namely

the Dyson sine process in the bulk (and the Airy process on the edge),

as discussed in Section 3.3.

We now focus on the mesoscopic structure of the eigenvalues,

in which one involves scales that are intermediate between the mi-

croscopic scale 1/
√
n and the macroscopic scale

√
n, for instance in

correlating the eigenvalues λi and λj in the regime |i − j| ∼ nθ for

some 0 < θ < 1. Here, there is a surprising phenomenon; there is

quite a long-range correlation between such eigenvalues. The results

from [Gu2005] shows that both λi and λj behave asymptotically like

gaussian random variables, but a further result from the same paper

shows that the correlation between these two random variables is as-

ymptotic to 1− θ (in the bulk, at least); thus, for instance, adjacent

eigenvalues λi+1 and λi are almost perfectly correlated (which makes

sense, as their spacing is much less than either of their standard de-

viations), but that even very distant eigenvalues, such as λn/4 and

λ3n/4, have a correlation comparable to 1/ log n. One way to get a

sense of this is to look at the trace

λ1 + . . .+ λn.

This is also the sum of the diagonal entries of a GUE matrix, and is

thus normally distributed with a variance of n. In contrast, each of

the λi (in the bulk, at least) has a variance comparable to log n/n.

In order for these two facts to be consistent, the average correlation

between pairs of eigenvalues then has to be of the order of 1/ log n.

In this section we will a heuristic way to see this correlation,

based on Taylor expansion of the convex Hamiltonian H(λ) around

the minimum γ, which gives a conceptual probabilistic model for the

mesoscopic structure of the GUE eigenvalues. While this heuristic

is in no way rigorous, it does seem to explain many of the features

currently known or conjectured about GUE, and looks likely to extend

also to other models.
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3.4.1. Fekete points. It is easy to see that the Hamiltonian H(λ)

is convex in the Weyl chamber, and goes to infinity on the boundary

of this chamber, so it must have a unique minimum, at a set of points

γ = (γ1, . . . , γn) known as the Fekete points. At the minimum, we

have ∇H(γ) = 0, which expands to become the set of conditions

(3.26) γj − 2
∑
i 6=j

1

γj − γi
= 0

for all 1 ≤ j ≤ n. To solve these conditions, we introduce the monic

degree n polynomial

P (x) :=

n∏
i=1

(x− γi).

Differentiating this polynomial, we observe that

(3.27) P ′(x) = P (x)

n∑
i=1

1

x− γi

and

P ′′(x) = P (x)
∑

1≤i,j≤n:i 6=j

1

x− γi
1

x− γj
.

Using the identity

1

x− γi
1

x− γj
=

1

x− γi
1

γi − γj
+

1

x− γj
1

γj − γi
followed by (3.26), we can rearrange this as

P ′′(x) = P (x)
∑

1≤i≤n:i 6=j

γi
x− γi

.

Comparing this with (3.27), we conclude that

P ′′(x) = xP ′(x)− nP (x),

or in other words that P is the nth Hermite polyomial

P (x) = Hn(x) := (−1)nex
2/2 d

dx2
e−x

2/2.

Thus the Fekete points γi are nothing more than the zeroes of the nth

Hermite polynomial.
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Heuristically, one can study these zeroes by looking at the func-

tion

φ(x) := P (x)e−x
2/4

which solves the eigenfunction equation

φ′′(x) + (n− x2

4
)φ(x) = 0.

Comparing this equation with the harmonic oscillator equation φ′′(x)+

k2φ(x) = 0, which has plane wave solutions φ(x) = A cos(kx + θ)

for k2 positive and exponentially decaying solutions for k2 nega-

tive, we are led (heuristically, at least) to conclude that φ is concen-

trated in the region where n − x2

4 is positive (i.e. inside the interval

[−2
√
n, 2
√
n]) and will oscillate at frequency roughly

√
n− x2

4 inside

this region. As such, we expect the Fekete points γi to obey the

same spacing law as the classical locations γcl
i ; indeed it is possible

to show that γi = γcl
i + O(1/

√
n) in the bulk (with some standard

modifications at the edge). In particular, we have the heuristic

(3.28) γi − γj ≈ (i− j)/
√
n

for i, j in the bulk.

Remark 3.4.1. If one works with the circular unitary ensemble

(CUE) instead of the GUE, in which Mn is drawn from the uni-

tary n × n matrices using Haar measure, the Fekete points become

equally spaced around the unit circle, so that this heuristic essentially

becomes exact.

3.4.2. Taylor expansion. Now we expand around the Fekete points

by making the ansatz

λi = γi + xi,

thus the results of [Gu2005] predict that each xi is normally dis-

tributed with standard deviation O(
√

log n/
√
n) (in the bulk). We

Taylor expand

H(λ) = H(γ) +∇H(γ)(x) +
1

2
∇2H(γ)(x, x) + . . . .

We heuristically drop the cubic and higher order terms. The constant

term H(γ) can be absorbed into the partition constant Zn, while the
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linear term vanishes by the property ∇H(γ) of the Fekete points. We

are thus lead to a quadratic (i.e. gaussian) model

1

Z ′n
e−

1
2∇

2H(γ)(x,x) dx

for the probability distribution of the shifts xi, where Z ′n is the ap-

propriate normalisation constant.

Direct computation allows us to expand the quadratic form 1
2∇

2H(γ)

as

1

2
∇2H(γ)(x, x) =

n∑
j=1

x2
j

2
+

∑
1≤i<j≤n

(xi − xj)2

(γi − γj)2
.

The Taylor expansion is not particularly accurate when j and i are

too close, say j = i+O(logO(1) n), but we will ignore this issue as it

should only affect the microscopic behaviour rather than the meso-

scopic behaviour. This models the xi as (coupled) gaussian random

variables whose covariance matrix can in principle be explicitly com-

puted by inverting the matrix of the quadratic form. Instead of doing

this precisely, we shall instead work heuristically (and somewhat inac-

curately) by re-expressing the quadratic form in the Haar basis. For

simplicity, let us assume that n is a power of 2. Then the Haar basis

consists of the basis vector

ψ0 :=
1√
n

(1, . . . , 1)

together with the basis vectors

ψI :=
1√
|I|

(1Il − 1Ir )

for every discrete dyadic interval I ⊂ {1, . . . , n} of length between 2

and n, where Il and Ir are the left and right halves of I, and 1Il ,

1Ir ∈ Rn are the vectors that are one on Il, Ir respectively and zero

elsewhere. These form an orthonormal basis of Rn, thus we can write

x = ξ0ψ0 +
∑
I

ξIψI

for some coefficients ξ0, ξI .
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From orthonormality we have

n∑
j=1

x2
j

2
= ξ2

0 +
∑
I

ξ2
I

and we have ∑
1≤i<j≤n

(xi − xj)2

(γi − γj)2
=
∑
I,J

ξIξJcI,J

where the matrix coefficients cI,J are given by

cI,J :=
∑

1≤i<j≤n

(ψI(i)− ψI(j))(ψJ(i)− ψJ(j))

(γi − γj)2
.

A standard heuristic wavelet computation using (3.28) suggests that

cI,J is small unless I and J are actually equal, in which case one has

cI,I ∼
n

|I|

(in the bulk, at least). Actually, the decay of the cI,J away from the

diagonal I = J is not so large, because the Haar wavelets ψI have

poor moment and regularity properties. But one could in principle

use much smoother and much more balanced wavelets, in which case

the decay should be much faster.

This suggests that the GUE distribution could be modeled by the

distribution

(3.29)
1

Z ′n
e−ξ

2
0/2e−C

∑
I
n
|I| ξ

2
Idξ

for some absolute constant C; thus we may model ξ0 ≡ N(0, 1) and

ξI ≡ C ′
√
|I|
√
ngI for some iid gaussians gI ≡ N(0, 1) independent of

ξ0. We then have as a model

xi =
ξ0√
n

+
C ′√
n

∑
I

(1Il(i)− 1Ir (i))gI

for the fluctuations of the eigenvalues (in the bulk, at least), leading

of course to the model

(3.30) λi = γi +
ξ0√
n

+
C ′√
n

∑
I

(1Il(i)− 1Ir (i))gI
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for the fluctuations themselves. This model does not capture the

microscopic behaviour of the eigenvalues such as the sine kernel (in-

deed, as noted before, the contribution of the very short I (which

corresponds to very small values of |j − i|) is inaccurate), but ap-

pears to be a good model to describe the mesoscopic behaviour. For

instance, observe that for each i there are ∼ log n independent nor-

malised gaussians in the above sum, and so this model is consistent

with the result of Gustavsson that each λi is gaussian with standard

deviation ∼
√

logn√
n

. Also, if |i − j| ∼ nθ, then the expansions (3.30)

of λi, λj share about (1 − θ) log n of the log n terms in the sum in

common, which is consistent with the further result of Gustavsson

that the correlation between such eigenvalues is comparable to 1− θ.
If one looks at the gap λi+1 − λi using (3.30) (and replacing the

Haar cutoff 1Il(i)− 1Ir (i) by something smoother for the purposes of

computing the gap), one is led to a heuristic of the form

λi+1 − λi =
1

ρsc(γi/
√
n)

1√
n

+
C ′√
n

∑
I

(1Il(i)− 1Ir (i))
gI
|I|
.

The dominant terms here are the first term and the contribution of

the very short intervals I. At present, this model cannot be accurate,

because it predicts that the gap can sometimes be negative; the con-

tribution of the very short intervals must instead be replaced some

other model that gives sine process behaviour, but we do not know

of an easy way to set up a plausible such model.

On the other hand, the model suggests that the gaps are largely

decoupled from each other, and have gaussian tails. Standard heuris-

tics then suggest that of the ∼ n gaps in the bulk, the largest one

should be comparable to
√

logn
n , which was indeed established re-

cently in [BeBo2010].

Given any probability measure µ = ρ dx on Rn (or on the Weyl

chamber) with a smooth nonzero density, one can can create an as-

sociated heat flow on other smooth probability measures f dx by

performing gradient flow with respect to the Dirichlet form

D(f dx) :=
1

2

∫
Rn

|∇f
ρ
|2 dµ.
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Using the ansatz (3.29), this flow decouples into a system of indepen-

dent Ornstein-Uhlenbeck processes

dξ0 = −ξ0dt+ dW0

and

dgI = C ′′
n

|I|
(−gIdt+ dWI)

where dW0, dWI are independent Wiener processes (i.e. Brownian

motion). This is a toy model for the Dyson Brownian motion (see

Section 3.1). In this model, we see that the mixing time for each

gI is O(|I|/n); thus, the large-scale variables (gI for large I) evolve

very slowly by Dyson Brownian motion, taking as long as O(1) to

reach equilibrium, while the fine scale modes (gI for small I) can

achieve equilibrium in as brief a time as O(1/n), with the interme-

diate modes taking an intermediate amount of time to reach equilib-

rium. It is precisely this picture that underlies the Erdos-Schlein-Yau

approach[ErScYa2009] to universality for Wigner matrices via the

local equilibrium flow, in which the measure (3.29) is given an ad-

ditional (artificial) weight, roughly of the shape e−n
1−ε(ξ20+

∑
I ξ

2
I ), in

order to make equilibrium achieved globally in just time O(n1−ε),

leading to a local log-Sobolev type inequality that ensures conver-

gence of the local statistics once one controls a Dirichlet form con-

nected to the local equilibrium measure; and then one can use the

localisation of eigenvalues provided by a local semicircle law to con-

trol that Dirichlet form in turn for measures that have undergone

Dyson Brownian motion.
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a random ±1-matrix is singular, J. Amer. Math. Soc. 8 (1995), no. 1,
223240.



324 Bibliography

[KeVa2007] J. Keller, J. Vanden-Broeck, Stirling’s formula derived simply,
arXiv:0711.4412

[Kh2009] O. Khorunzhiy, High Moments of Large Wigner Random Matri-
ces and Asymptotic Properties of the Spectral Norm, preprint.

[Klyachko] A. Klyachko, Stable bundles, representation theory and Hermit-
ian operators, Selecta Math. (N.S.) 4 (1998), no. 3, 419-445.

[KnTa2001] A. Knutson, T. Tao, Honeycombs and sums of Hermitian ma-
trices, Notices Amer. Math. Soc. 48 (2001), no. 2, 175-186.

[KnTaWo2004] A. Knutson, T. Tao, C. Woodward, The honeycomb
model of GLn(C) tensor products. II. Puzzles determine facets of the
Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), no. 1, 19-
48.

[Ko1967] J. Komlós, On the determinant of (0,1) matrices, Studia Sci.
Math. Hungar 2 (1967), 7-21.

[KuNi2006] L. Kuipers; H. Niederreiter, Uniform Distribution of Se-
quences, Dover Publishing, 2006.

[La2005] R. Lata la, Some estimates of norms of random matrices, Proc.
Amer. Math. Soc. 133 (2005), no. 5, 1273-1282.

[Le2001] M. Ledoux, The concentration of measure phenomenon, Mathe-
matical Surveys and Monographs, 89. American Mathematical Society,
Providence, RI, 2001.

[Le1995] M. Ledoux, On Talagrand’s deviation inequalities for product
measures, ESAIM Probab. Statist. 1 (1995/97), 63-87.

[Li1922] J.W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in
der Wahscheinlichkeitsrechnung, Math. Zeit. 15 (1922), pp. 211225.

[LiPaRuTo2005] A. E. Litvak, A. Pajor, M. Rudelson, N. Tomczak-
Jaegermann, Smallest singular value of random matrices and geometry
of random polytopes, Adv. Math. 195 (2005), no. 2, 491-523.

[Me2004] M. Meckes, Concentration of norms and eigenvalues of random
matrices, J. Funct. Anal. 211 (2004), no. 2, 508-524.

[Me2004] M. Mehta, Random matrices. Third edition. Pure and Applied
Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amster-
dam, 2004.

[MeGa1960] M. L. Mehta, M. Gaudin, On the density of eigenvalues of a
random matrix, Nuclear Phys. 18 (1960) 420-427.

[Ol2008] G. Olshanski, Difference operators and determinantal point pro-
cesses, preprint.

[PaZh2010] G. Pan, W. Zhou, Circular law, extreme singular values and
potential theory, J. Multivariate Anal. 101 (2010), no. 3, 645-656.



Bibliography 325
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[Pe2009] S. Péché, Universality results for the largest eigenvalues of some
sample covariance matrix ensembles, Probab. Theory Related Fields
143 (2009), no. 3-4, 481-516.
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harmonic oscillator, 238, 306

heat equation, 286

Herbst’s argument, 92

Herglotz function, 171

Herglotz representation theorem,
171

Hermite differential equation, 238

Hermite polynomial, 232, 306, 315

Hermite recurrence relation, 236

high probability, 7

Hilbert-Schmidt inner product, 300

Hilbert-Schmidt norm, 55, 135

hodograph transform, 183

Hoeffding’s inequality, 74

Hoeffding’s lemma, 72

Horn’s conjecture, 46

iid matrices, 124
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incompressible, 251, 253

independence, 23

indicator function, 9

inner product, 194

inverse Littlewood-Offord problem,
254

inverse moment problem, 107

Ito calculus, 285

Ito’s formula, 285

Jensen’s inequality, 21

Johansson formula, 295

joint distribution, 22

joint independence, 23

Ky Fan inequality, 47

Lévy’s continuity theorem, 99, 100

Lagrange multiplier, 48

Laplace’s method, 44

large deviation inequality, 20, 66,
71

law, 12

law of large numbers (strong), 79

law of large numbers (weak), 78

least singular value, 246

Leibniz formula for determinants,
295

Lidskii inequality, 54

Lindeberg condition, 102

Lindeberg trick, 111

Lindskii inequality, 53

linearity of convergence, 95

linearity of expectation, 16

log-Sobolev inequality, 89

logarithmic potential, 268

logarithmic potential continuity
theorem, 269

Markov inequality, 16

McDiarmid’s inequality, 82

mean field approximation, 228

measurable space, 8

median, 21

method of stationary phase, 44

method of steepest descent, 241

moment, 17

moment map, 52

moment method, 106, 136

negative moment, 18

negative second moment identity,
255

neighbourhood recurrence, 289

Neumann series, 195, 265

Newton potential, 230

Newtonian potential, 269

non-commutative Hölder

inequality, 55, 300

non-commutative probability
space, 191, 201

non-negativity, 194

normal distribution, 14

normal matrix, 62

nuclear norm, 55

operator norm, 125

Ornstein-Uhlenbeck equation, 289

Ornstein-Uhlenbeck operator, 123

Ornstein-Uhlenbeck process, 123,

288

orthogonal polynomials, 232

overwhelming probability, 7

pairwise independence, 23

Paley-Zygmund inequality, 21

partial flag, 52

partial trace, 50

permutahedron, 51

Poisson distribution, 13

Poisson kernel, 171

polynomial rate, 180

predecessor comparison, 172

principal minor, 59

probabilistic way of thinking, 4

probability density function, 14

probability distribution, 12

probability measure, 3

probability space, 3

Prokhorov’s theorem, 39

pseudospectrum, 264

pushforward, 12

random matrices, 11

random sign matrices, 124

random variable, 8

Rayleigh quotient, 50

recurrence, 289

resolvent, 18, 169
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Riemann-Lebesgue lemma, 98

sample space, 3

scalar random variable, 10

scale invariance, 95

Schatten norm, 55, 63, 300

Schubert variety, 52

Schur complement, 174

Schur-Horn inequality, 51

Schur-Horn theorem, 51

second moment method, 20, 68

semi-classical analysis, 239

semicircular element, 205

singular value decomposition, 60

singular vector, 60

singularity probability, 252

spectral instability, 264

spectral measure, 199

spectral projection, 49, 57

spectral theorem, 46, 48, 199

spectral theory, 190

spectrum, 46

Sperner’s theorem, 253

Stein continuity theorem, 116

Stein transform, 117

Stieltjes continuity theorem, 171

Stieltjes transform, 169, 195, 212

Stirling’s formula, 41

stochastic calculus, 278, 288

stochastic process, 279

sub-exponential tail, 18

subgaussian, 18

symmetric Bernoulli ensemble, 125

symmetric Wigner ensembles, 125

symmetrisation argument, 131

Talagrand concentration inequality,
86

tensor power trick, 300

tensorisation, 83

tight sequence of distributions, 38

trace axiom, 201

trace class, 55

Tracy-Widom law, 126, 159, 245

transience, 289

trapezoid rule, 42

tree, 144

truncation argument, 96, 165

truncation method, 77

undoing a conditioning, 29

uniform distribution, 14
union bound, 5, 7, 18

Vandermonde determinant, 218,
231, 293

variance, 20

von Neumann algebra, 203

Weyl chamber, 290

Weyl group, 223
Weyl inequality, 47, 54

Wielandt minimax formula, 52

Wielandt-Hoffman inequality, 54
Wiener process, 279

Wigner ensemble, 125

Wigner semicircular law, 162
Wishart distribution, 260

zeroth moment, 18
zeroth moment method, 6, 67


