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Exact inference using belief propagation.

The need for approximation.

Empirical success of loopy BP (and some
failures).

T heoretical results on loopy BP.

Beyond ordinary BP.



Graphical Models

Bayes nets Markov Nets
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Nodes: random variables.

Edges: probabilistic constraints between
variables.



Inference in Graphical Models
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1. Marginals. Find P(X; = x;|Y).

2. MAP assign. Find {z}} such that
P({X; =z}}|Y) is max.

3. MM assign. Find {z;} such that
P(X; = x7|Y) is max for each 1.

4. Likelihood. Calculate P(Y).



The forward-backward
algorithm for HMMs
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Belief Propagation for
undirected trees
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Input: Graph, W;i(z;,x;), Wiz, yi).

Define:
m;;(z;) message that X; sends to Xj;.

b;(x;) “belief” at node Xj;.

Iterate:
myi(x;) o) Wiz, z;)WV;(z;) 11 mp; (T;)
finally:

bi(x;) —a ][ myila;)



BP Dynamics:

myi(x;) < o) Wiz, z;)WV;(z;) 11 mp; (T;)

A parallel message-passing algorithm.

e Every node sends a probability density to
its neighbors.

e Mmessage to neighbor depends on
messages received from all the other
neighbors



BP Dynamics
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BP Dynamics:
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A parallel message-passing algorithm.

e Every node sends a probability density to
its neighbors.

e Mmessage to neighbor depends on
messages received from all the other
neighbors



BP Dynamics
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myi(x;) < o) Wiz, z;)WV;(z;) 11 mp; (T;)

A parallel message-passing algorithm.

e Every node sends a probability density to
its neighbors.

e Mmessage to neighbor depends on
messages received from all the other
neighbors



Numerical Example:
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Numerical Example (cont):
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Numerical Example (cont):
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Numerical Example (cont):
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Belief propagation in directed
polytrees

Many equivalent formulations (Including: Kim
and Pearl 83, Jensen 94, Shafer and Shenoy 90,
Aji and McEliece 97, Frey et al 97).

Equivalent to converting to undirected graph and
running undirected BP.
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Belief propagation in directed

polytrees
Wyae(za,z6) = P(xglrs)
W74(z5,23,24) = P(aglad,23)
Wor(zp,25,23) = 6(zn — x5)
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Example:

1:Earthquake,2:Burglary,3:Radio,4:Alarm.
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Numerical example (cont)
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Explaining away
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Q: How is this related to
Pearl’s algorithm?

0900

A: it's exactly the samel!
m122(x2) = A(z2).

mi124(zq) = m(x4)



Two variants of belief
propagation

Sum-Product algorithm (a.k.a belief update)

mi(z;) < o) Wiz, z;)WV;(z;) 11 mp; (T;)

Max-Product algorithm (a.k.a belief revision,
Viterbi algorithm, Dawid’s algorithm)

mij(x;) < amaxW;;(z;, ;) W;(xz;) 11 mp; (T;)
’ XkEN(XZ)\XJ



Belief Propagation in trees
29D

When the graph is a tree (Pearl 86):

e both algorithms converge in finite time.

e at convergence: b;(z;) = P(X; = x;|Y)

e Mmax-product assignment
(z7 = maxg, b;(x;) after convergence)
gives MAP assignment.

e sum-product assignment
(z7 = maxg, b;(x;) after convergence)
gives MM assignment.



Exact inference in arbitrary
graphical model

i
L

e Convert graph to an equivalent tree.

e run BP on the tree.



Converting arbitrary graph to a
tree

N
w
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e Clustering (e.g. Pearl 86).

e Junction tree (e.g. Lauritzen 96)

e Bucket tree (e.g. Dechter 97)

Optimal conversion NP hard.



T he need for approximate
iInference

We can do exact inference in any graphical model
by converting to a tree and running BP, but:

e Complexity of BP is exponential in the
size of the nodes *.

e In most real world applications, node size
In equivalent tree is huge.

x some exceptions: noisy or CPTs, Gaussian
CPTs.



Example: image analysis

We want to classify pixels in an aerial photo as
vegetation or not.

At each pixel we have color measurements and a

prior that nearby pixels tend to have the same
label.

Goal: calculate probability that a pixel is
vegetation given measurements.



Example: LDPC Error
correcting codes

Low power wireless communication = noise. We
use codewords in which subsets of the bits are
constrained to have zero parity.

Goal: calculate probability that a bit is a one.



T he computational bottleneck

Assume the image size is 256x256 then exactly
calculating the probability that a pixel is
vegetation takes order 2256 operations.

Similar numbers for exact inference in LDPCs.



Approximate inference in
graphical models

e Monte-Carlo methods (e.g. Geman and
Geman 84)

e Variational (“mean-field”) approaches
(e.g. Geiger and Girosi 91, Jordan et al.

98)

e “loopy”’ Dbelief propagation.



Loopy Belief propagation iIn
directed graphs

Convert graph to pairwise undirected graph.

Iterate, loopy BP equation:

myi(x) oY Wiz, z;)WV;(z;) 11 My (T;)




Loopy belief propagation

“When loops are present, the network is no
longer singly connected and local propagation
schemes will invariably run into trouble ... If we
ignore the existence of loops and permit the
nodes to continue communicating with each
other as if the network were singly connected,
messages may circulate indefinitely around the
loops and the process may not converge to a
stable equilibrium ... (even if it does) this
asymptotic equilibrium is not coherent, in the
sense that it does not represent the posterior
probabilities of all nodes of the network” (Pearl
1988, p. 195)



Empirical successes of loopy
propagation

Gallager 63. Berrou at el. 93. Error
correcting codes.

Freeman and Pasztor 98, Saund 98.
Image understanding.

Shazeer et al. 99. Automatic crossword
puzzle solution.

Murphy et al. 99. Medical diagnosis.
Frey 99. Factor analysis.
Fridman and Mumford 99. Ising model.

Frey 2001. Phase Unwrapping.



Error-correcting codes

X; are bits. Original bits plus redundant “check”
bits. Y; are these bits sent over a noisy channel.

We want to design a code that:
e Ccan be decoded in reasonable time.

e the probability of error is as low as
possible (Shannon’s limit).



Turbo decoding algorithim
message 1

= Decoder 1

Decoder 2 (=

message 2

“A genuine and perhaps historic breakthrough”

“the most exciting and potentially important
development in coding theory in many years”
(McEleice et al 95)



Turbo decoding is belief
propagation

message 1

.,@é}@.

message 2

(McEliece et al 97, Wiberg 96). Belief
propagation is not supposed to work in this case.



Example: image analysis

We want to classify pixels in an aerial photo as
vegetation or not.

At each pixel we have color measurements and a

prior that nearby pixels tend to have the same
label.

Goal: calculate probability that a pixel is
vegetation given measurements.



approximate inference results
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QMR network

b5 fic

approx. 600 diseases and 4000 symptoms.



QMR results
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case 32 works but case 46 does not converge.

(Murphy, Weiss and Jordan 99)



Failures of loopy BP
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Two major failure modes:

e Beliefs oscillate wildly with iteration
(more common).

e Beliefs converge to poor approximations.



Heuristics for avoiding
oscillations

myi(x;) oY Wiz, z;)WV;(z;) 11 mp; (T;)

e Asynchronous update.

e Damping.

mg; = am%l-d + (1 — a)m;5"



Analysis of loopy BP

We now understand behavior of loopy BP in:

e Single-loop graphs. Convergence proof.
Correctness of decision. (Weiss 97, Aji,
Horn, and McElice 98, Forney et al 938).

e Gaussian graphs with arbitrary topology.
Convergence conditions. Correctness of
means. (Weiss and Freeman 99,
Rusmevichientong and Van Roy 99).

e Mmax-product in arbitrary graphs.
semi-optimality of decision. (Weiss and
Freeman 00)

e Average performance for LDPCs
(Richardson and Urbanke 99)



Main idea of proof.:

belief propagation performs exact inference in
unwrapped graph. (cf. "computation tree”
Gallager 63).

unwrapped graph has same local topology as
loopy graph (universal covering).



After 4 iterations




Variational Interpertation:

For a graphical model of arbitrary toplogy and
potentials the sum-product algorithm can only
converge to local stationary points of the Bethe

free energy:

Fﬂ({szabz}) — _Z Z bzg(xzax]) lnwm(mzax])

1) LisLy

_Zzb (z;) In;(x;)
+Z Z bz](xzax])lnbw(xzax])

1] LisTy

— Z(Qi - 1) Z b;(x;) Inb;(z;)

where b;;(x;, ;) is joint belief of z;,z;,q; is degree
of node .

Yedidia J.S., Freeman W.T. and Weiss Y.
“Generalized Belief Propagation” NIPS 2000.



Bethe free energy in directed
graphs

BP can be used to calculate b(x;, Par(x;)) by
multiplying incoming messages and local
evidence. Denote f; = (z;, Par(x;)) * ith family”.

Claim: {b;(x;)},{b(f;)} fixed-points of BP if and
only if constrained stationary points of:

Fg = —> > b(f;)InP(xi|Par(x;))
v
— Z Z b(x;) In P(y;|x;)

+ z z b(£) Inb(£)
— Z(Qz - 1) Z b(z;) Inb(x;)

where g; number of families that node x; Is in.
Constraints: family beliefs marginalize down to
singleton beliefs.



Sketch of proof

Introduce Lagrange multipliers that enforce
marginalization constraints. Differentiate
Lagrangian with respect to beliefs and Lagrange
multipliers and set equal to zero. Resulting
equations are equivalent to BP update rules with
messages being logarithms of Lagrange
multipliers (up to coordinate transformation). O



Free energies

FUU@D = =% @) In Pla,y) + Y b(e) nb(a)
= — Z b(x)In P(zx|ly) + Z b(x)Inb(x)
+ n P(y)

Fg = =3 > b(fi)In P(xi|Par(z;))
—ig:b(xi) In P(y;|x;)
+i§:b(fi) Inb(f)

- 2::(;: - 1) ; b(x;) In b(x;)

If graph is a tree, F = FB



Example derivation

P(x,y) = P(z2|r1)P(x3|z2)P(y1|1)P(y2|72)

The average energy is >, b(x) In P(x,y) =:
=Y b(z) (In P(z2|z1) + In P(z3]z0) - - )
= Z b(x1o)In P(xo|x1) + Z b(z23) In P(z3|72)

1o L23

+> b(z1) In P(y1lz1) + ) b(z2) In P(yz|z2)



Example derivation

D @

P(z,y) = P(z2|x1) P(z3]|z2) P(y1]|z1) P(y2|72)
we can restrict search to b(x) that obey Markov
properties:

b(r) = b(xy1,x2)b(x3|x2)
_ b(zy,22)b(22,23)
b(z2)

The negative entropy is >, b(x) Inb(x) =:

. N b(z1,r2)b(z2, 3)
= 2 ) I )
= b(z12) Inb(z12) + > b(z23) Inb(z23)

T12 L23

— > b(x2) Inb(zp)



Implications

Existence of fixed-point for arbitrary
graph.

Connection with variational approaches.
MF free energy is Bethe free energy
where family beliefs factorizes into
product of singleton beliefs.

Other ways of finding fixed-points are
legitimate.

Gives method for computing P(y).



Beyond the Bethe
approximation

In the Bethe approximation, the energy is exact
and the entropy is approximated as a sum of

simpler entropies minus “double-counted’ single
entropies.

Hg = H(x12) + H(x13) + H(z234)
—H(z1) — H(z2) — H(z3)

a better approximation is:

Hyg = H(x12) + H(xz13) + H(z234)
—H(1) — H(z23)



Kikuchi approximations to
entropy

Approximate the entropy as sums of smaller
region entropies weighted appropriately so that
each node is counted exactly once.

When regions are large enough, this becomes
exact.



Examples of Kikuchi entropies

HB =
= H(x1245) + H(x2356) + H(xa578) + H(r5689)
—H(xzp) — H(zg) — H(xzg) — H(xz4) — 3H(z5)



Examples of Kikuchi entropies

Hp =
= H(x1245) + H(x2356) + H(xa578) + H(r5689)
—H(x25) — H(xs6) — H(xs8) — H(x4)



Examples of Kikuchi entropies

Hy =
= H(z1245) + H(w2356) + H(x4578) + H(z5689)
—H(z25) — H(zs6) — H(wsg) — H(w45)
+H (z5)



Minimizing Kikuchi free energy

e T he Kikuchi free energy is the Bethe
energy minus the Kikuchi entropy.

e We have developed Generalized Belief
Propagation algorithms that minimize
Kikuchi free energies.

e Complexity is exponential in the size of
regions.

e Sometimes, much better approximation
with slight increase in complexity.



GBP Algorithms

e Many algorithms for a given free energy.
Depends on how you write Lagrange
multipliers.

e One algorithm: cluster nodes and run
ordinary BP on clustered graph with
additional update rule in certain graphs.

e \We have only begun to explore the space
of algorithms and energies.



Bethe approximation

Hﬁ —
H(x1245) + H(x2356) + H(x4578) + H(x5689)
—H(x2) — H(xg) — H(xg) — H(x4) — 3H(x5)

exact 0.1202 0.1814 0.1155 0.1778 0.8128
approx 0.1206 0.1409 0.1158 0.1391 0.9301



One Kikuchi approximation

Hp =
H(x1245) + H(x2356) + H(x4578) + H(25689)
—H(x25) — H(xs6) — H(xs58) — H(x4)

exact 0.1202 0.1814 0.1155 0.1778 0.8128
approx 8 0.1206 0.1409 0.1158 0.1391 0.9301
approx K1 0.1189 0.1537 0.1135 0.1861 0.8419



A better Kikuchi approximation

H(x1245) + H(x2356) + H(z4578) + H(x5689)
—H(x25) — H(xs6) — H(x58) — H(x45)
+H(x5)

exact
approx (3
approx K1
approx Ko

0.1202
0.1206
0.1189
0.1227

0.13814
0.1409
0.1537
0.1731

0.1155
0.1158
0.1135
0.1177

0.1778
0.1391
0.1861
0.1742

0.8128
0.9301
0.8419
0.8216



A better Kikuchi approximation

One new message:

—1/2
ms 45(x4, 25) = mys5(zs) L/



Comparison on error-correcting
codes
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Conclusions

The need for approximate inference.

loopy belief propagation. Was not
supposed to work but dramatic empirical
results — turbo codes.

Theory of loopy BP: unwrapped tree and
Bethe free energy.

Kikuchi free energies extend Bethe. Can
be minimized by generalized BP
algorithms.

Simple, universally applicable
approximate inference algorithms.



