Active Basis for Modeling, Learning and
Recognizing Deformable Templates

Ying Nian Wu!, Zhangzhang Si!, Haifeng Gong!?, and Song-Chun Zhu'?

I Department of Statistics, University of California, Los Angeles
2 Lotus Hill Research Institute, Ezhou, China
{ywu, zzsi, hfgong, sczhu}@stat.ucla.edu

Revised September 25, 2008

Abstract

This article proposes an active basis model, a shared sketch algorithm, and a compu-
tational architecture of sum-max maps for representing, learning, and recognizing de-
formable templates. In our generative model, a deformable template is in the form of
an active basis, which consists of a small number of Gabor wavelet elements at selected
locations and orientations. These elements are allowed to slightly perturb their locations
and orientations before they are linearly combined to generate the observed image. The
active basis model, in particular, the locations and the orientations of the basis elements,
can be learned from training images by the shared sketch algorithm. The algorithm se-
lects the elements of the active basis sequentially from a dictionary of Gabor wavelets
at a dense collection of locations and orientations. When an element is selected at each
step, the element is shared by all the training images, and the element is perturbed to
encode or sketch a nearby edge segment in each training image. The recognition of the
deformable template from an image can be accomplished by a computational architec-
ture that alternates the sum maps and the max maps. The computation of the max
maps deforms the active basis to match the image data, and the computation of the sum

maps scores the template matching by the log-likelihood of the deformed active basis.

Keywords: Generative model; Object recognition; Shared sketch algorithm; Sum maps and

max maps; Wavelet sparse coding.

This paper is submitted to the International Journal of Computer Vision (IJCV). A shorter version has
been published in ICCV 2007 [21]. For reproducibility, the matlab/C codes and data used in this paper are

available at www.stat.ucla.edu/~ywu/ActiveBasis.html

1 Introduction

Deformable template [25] is an important element in object recognition [5]. In this article, we
propose a generative model, a model-based algorithm, and a computational architecture for repre-

senting, learning and recognizing deformable templates.

1.1 Form of representation

Figure 1: Active basis. Each basis element is illustrated by a thin ellipsoid at a certain location and
orientation. The upper half shows the perturbation of one basis element. By shifting its location
or orientation or both within a limited range, the basis element (illustrated by a black ellipsoid)

can change to other Gabor wavelet elements (illustrated by the blue ellipsoids).

We call our model the active basis model. An active basis consists of a small number of Gabor
wavelet elements at selected locations and orientations. These elements are allowed to slightly
perturb their locations and orientations before they are linearly combined to generate the observed
image. Figure (1) illustrates the basic idea. The lower half of Figure (1) shows an active basis, where
each element is illustrated by a thin ellipsoid at a certain position and with a certain orientation.
The upper half of Figure (1) illustrates the perturbation of one basis element. Intuitively, each
Gabor wavelet element can be considered a “stroke.” The template is formed by a composition of
a number of strokes. These strokes can be slightly perturbed, so that the template is deformable.

Figure (2) shows a real example. It displays 7 images of cars at the same scale and in the
same pose. These images are defined on a common image lattice, which is the bounding box of the
cars. These images are represented by an active basis consisting of 60 Gabor wavelet elements, as
displayed in the first block of Figure (2). Each wavelet element is represented symbolically by a bar
at the same location and with the same length and orientation as the wavelet element. The length
of each element is about 1/10 of the length of the image patch. These elements do not have much
overlap and are well connected. They form a common template or an average sketch of the training
image patches. The 60 elements of the active basis in the first block of Figure (2) are allowed to

locally change their locations and orientations to code each observed image, as illustrated by the

Figure 2: Active basis formed by 60 Gabor wavelet elements. The first block displays the 60
elements, where each element is represented by a bar. For each of the other 7 blocks, the left plot
is the observed image, and the right plot displays the 60 Gabor wavelet elements resulting from

locally shifting the 60 elements in the first block to fit the corresponding observed image.

remaining 7 blocks of Figure (2). Within each block, the left plot displays the observed car image,
and the right plot displays the 60 Gabor wavelet elements that are actually used for encoding the
corresponding observed image. They form the deformed active basis that sketches the observed

image.

1.2 Scheme of learning

The active basis, in particular, the locations and the orientations of the basis elements, can be
learned from training image patches by the shared sketch algorithm. The algorithm selects the
elements of the active basis sequentially from a dictionary of Gabor wavelets at a dense collection
of locations and orientations. Figure (3) illustrates the selection of three elements by learning from
a sample of training images of cars. When an element is selected, the element is shared by all
the training images in the sense that a perturbed version of this element is added to improve the
encoding of each image. Specifically, the element is perturbed to a location and orientation that
achieves the local maximum response within a small neighborhood of the selected element, that
is, the perturbed version of the selected element seeks to sketch a nearby edge segment in each
training image. For instance, when the green element is selected, it is attracted to the nearby edge
in each training image. The same is true for the red element and the blue element.

For each element, a distribution of filter responses is pooled over all the training images at
the perturbed locations and orientations. The elements are selected in an order according to
the Kullback-Leibler divergence between the pooled distribution (solid curve) and a background
distribution (dotted curve). The background distribution is pooled over natural images. With
proper parametrization, the Kullback-Leibler divergence is equivalent to a pursuit index that drives
the selection of the elements. This index takes the form of the sum of the transformed filtered
responses, summed over all the training images. The transformation is an increasing function that
discounts large filter responses. So the pursuit index can be interpreted as a voting of the training

images, and the index favors the element whose perturbed versions sketch as many edge segments

Figure 3: Shared sketch algorithm. A selected element (colored ellipsoid) is shared by all the train-
ing images. For each image, a perturbed version of the element seeks to sketch a local edge segment
near the element by a local maximization operation. The elements of the active basis are selected
sequentially according to the Kullback-Leibler divergence between the pooled distribution (colored
solid curve) of filter responses and the background distribution (black dotted curve). The diver-
gence can be simplified into a pursuit index, which is the sum of the transformed filter responses.
The sum essentially counts the number of edge segments sketched by the perturbed versions of the

element.

as possible. After an element is selected, its perturbed version explains away a small part of each
training image, and thereby inhibits nearby Gabor wavelet elements from coding the same part of
the image. So the selected elements of the active basis are well spaced, and usually form a clear
template.

The active basis displayed in Figure (2) is learned by the shared sketch algorithm. It is worth
noting that for the last two examples in Figure (2), the strong edges in the background are not
sketched, because these edges are not shared by other examples, and such edges are ignored by the

shared sketch algorithm.

1.3 Architecture of inference

After learning the active basis from training images, the detection and recognition of the deformable
template from a testing image can be accomplished by a computational architecture of sum-max
maps. Figure (4) illustrates this architecture. It starts from convolving the image with Gabor
filters at all the locations and orientations. The filtered images become the first layer of the sum
maps, or SUM1 maps, because each Gabor filter is a local summation operator. In Figure (4),

the thin ellipsoids in the SUM1 maps illustrate the local filtering or summation operation. Then a

SUM2

=3

ﬂpe Filter

MAX1

pEp
>4
H it

R e
e
22

561\5621
30 0%
3 0%

e
¥ o %
% %o %

A

e

Local Maximum Pooling

—— e | | | |\ S S S =
SUMIT —— — | === |/ A7 7 |eee
= L P R eagieteny
e | |\ e | | i

Figure 4: Sum-max maps. The SUM1 maps are obtained by convolving the input image with Gabor
filters at all the locations and orientations. The ellipsoids in the SUM1 maps illustrate the local
filtering or summation operation. The MAX1 maps are obtained by applying a local maximization
operator to the SUM1 maps. The arrows in the MAX1 maps illustrate the perturbations over which
the local maximization is taken. The SUM2 maps are computed by applying a local summation
operator to the MAX1 maps, where the summation is over the elements of the active basis. This
operation computes the log-likelihood of the deformed active basis, and can be interpreted as a

shape filter.

layer of max maps, or MAX1 maps, is computed by applying a local maximization operator to the
SUM1 maps. In Figure (4), the arrows in the MAX1 maps illustrate that the local maximization
is taken over small perturbations of the Gabor wavelets. This local maximization tells us how to
deform the active basis to match the image data.

On top of that, a sum map, or SUM2 map, is computed by applying a local summation operator
to the MAX1 maps. Specifically, we scan the active basis over the whole image lattice, and for
each pixel of the SUM2 map, we compute a weighted sum of the values of the MAX1 maps, where
the summation is over the locations and orientations of the elements of the active basis centered
at this pixel. So this is another layer of filtering operation, and can be considered a shape filter.
It computes the log-likelihood of the deformed active basis. In Figure (4), the car template in the

SUM2 map illustrates the active basis centered at one pixel. We scan this template over all the

pixels to obtain the SUM2 map, which scores the template matching.

The SUM2 map is obtained by a local summation operator of fixed shape. However, because
the local summation is applied to the MAX1 maps, shape deformation is automatically accounted
for, and the template matching score is invariant to shape deformation.

Besides the log-likelihood scoring for template matching, we also develop a non-probabilistic

scoring method based on active correlation between the template and the image.

1.4 Review of literature

Our work cultivates key insights from three major theories on biological and computer vision,
namely, Olshausen and Field’s theory of linear sparse coding using Gabor wavelets [14], Riesenhuber
and Poggio’s theory on local maximum pooling of Gabor filter responses [15], and Viola and Jones’s
theory of adaboost learning [6] using Harr wavelets as weak classifiers [17].

Our active basis model is based on Olshausen and Field’s linear representation. Inspired by
Riesenhuber and Poggio’s operator, we add local perturbations to the basis elements. Motivated
by Viola and Jones’s work, we apply the model to images of object shapes, so that the training
images share the same set of selected elements, which form a common deformable template [25].
This connects Olshausen and Field’s work to shape models such as active contours [11] and active
appearance model [1].

Our algorithmic architecture of sum-max maps is a variation on the theme of Riesenhuber and
Poggio’s cortex-like hierarchical structure of simple and complex cells [15]. See also the recent
work of Mutch and Lowe [13] for further improvement. Our architecture is essentially the same
as Riesenhuber and Poggio’s structure up to the MAX1 maps. However, our operator for com-
puting the SUM2 map for template matching is different from the template matching scheme of
Riesenhuber and Poggio. Our operator is a local summation over highly selected locations and
orientations. Moreover, the computation is not entirely a bottom-up process. After the bottom-up
scoring process, a top-down retrieving process traces the locations and orientations of the perturbed
elements, which form the deformed template that is matched to the input image. Furthermore,
since the local summation is taken over a small number of selected locations and orientations, it
may be more efficient than comparing all the intensities of the MAX1 maps.

Our shared sketch algorithm is similar to the learning scheme of Viola and Jones’s version of
adaboost. However, the algorithm is guided by a generative model, where the selection of the basis
elements is based on explaining away the image data instead of fitting the classification boundary.
Our learning algorithm can be considered a parallel version of the matching pursuit algorithm [12]
where we select the basis elements to simultaneously code all the training images. It can also be
considered a variation of the projection pursuit algorithm for density estimation [7], where we add
to it the local maximization and local inhibition operations of the matching pursuit algorithm. The
exponential family model we adopt is related to the feature induction schemes of Della Piatra et
al. [4] and Zhu et al. [30].

Our work is a continuation of our long term search for generative models and model-based

algorithms [30, 23, 27, 22, 9, 10], as well as our attempt to understand these models within a common
information-theoretical framework [20]. The active basis model can be considered a revision of
our previous model on textons [27]. It can also be viewed as an inhomogeneous version of the
Markov random field model that we previously developed for textures [30], as we show in [20].
More important, the active basis model is a simplest instance of the and-or graph [29] in the
compositional framework [8] that we have been studying. The and-or grammar naturally suggests

that we can further compose multiple active bases to represent more articulate shapes.

2 Representation, Learning, and Inference

This section presents the active basis representation, and describes the shared sketch algorithm
and the sum-max maps with pseudo-codes. We leave theoretical underpinnings and justifications

to the next section.

2.1 Gabor wavelets and sparse coding

A dictionary of Gabor wavelets. A Gabor function [3] is of the form

G(z,y) < exp{~[(x/02)* + (y/oy)?]/2} ™.

We can translate, rotate, and dilate G(x,y) to obtain a general form of Gabor wavelets:

B$7y75,a(x,7 y/) = G(CE/S’ Q/S)/S2v

where

T = (2 —z)cosa— (y —y)sina,
§= (2 —x)sina + (y — y) cosa.

(z,y) is the central position, s is the scale parameter, and « is the orientation. The Gabor wavelets
give good fit to the receptive fields of the simple cells in V1 [3].

The central frequency of By ysa is w = 1/5. By ysa = (Bry,s,a,0,0 Beysa1), where By sq0
is the even-symmetric Gabor cosine component, and By s .1 is the odd-symmetric Gabor sine
component. We always use Gabor wavelets as pairs of cosine and sine components. We normalize
both the Gabor sine and cosine components to have zero mean and unit ¢ norm. For each By y s «,
By ys,0,0 and By y s o1 are orthogonal to each other.

Operation. Let D be the domain of image lattice. The dictionary of Gabor wavelet elements is
Dictionary = {Bg y.s,a, (2, Y, s,)}, where (z,y, s, a) are densely sampled: (z,y) € D with a fine
sub-sampling rate (e.g., every 2 pixels), and « € {ar/A,a =0,...,A—1} (e.g., A =15).

For an image I defined on domain D, the projection coefficient of I onto B, y s o5 or the filter

response is
(L, Byy,s,0m) = E :I(x/7y,)Bw,y,s,am(x,ay/)-
$l y/

We write (I, By y.s.0) = ((I, Ba,y,s,0,0)s (I, Bz y,s,a,1)). The local energy is

|<I7 BZ’,y,S7Oé> ‘2 = <I7 Bx7y757a70>2 + <I7 Bx7y7570571>2'

In the computation of (I, By y s.a); By, is a linear filtering operator, which can serve as edge
detector or local spectral analyzer.
To make filter responses comparable between different training images, we need to normalize

the images. Let
2 2
o°(s) = ID[A Z Z |<Iva,y,s,a>|) (1)

where |D| is the number of pixels in I, and A is the total number of orientations. For each input
image I, we normalize it to I < I/o(s).

Representation. A deeper perspective is offered by the sparse coding theory of Olshausen and
Field [14], where B, , 5. serves as a representational element. Specifically, for an image I, we can

represent it by

n

I=) ¢Bi+U, (2)
i=1

where B; = By, y, s:.0:> Ci are the coefficients, and U is the unexplained residual image. Recall

that each B; is a pair of Gabor cosine and sine components. So B; = (B, Bj1). Accordingly,

¢i = (ci,¢1) and ¢;B; = ¢;0Bi0 + ¢;1Bi 1. The set of Gabor wavelet elements {B;,i = 1,...,n}

are selected from the dictionary. If the {B;,i = 1,...,n} are orthogonal, i.e., if they do not overlap

in spatial domain or frequency domain, then ¢; = (I, B;).

Sparse coding means that for a typical natural image I, we can usually select a small number n
of elements from the dictionary, so that a linear combination of these elements can represent I with
small residual U. Of course, for different images, we usually select different sets of elements. The
wavelet sparse coding representation (2) reduces an image of tens of thousands of pixels to a small
number of wavelet elements or strokes. Using the sparse coding principle, Olshausen and Field
[14] were able to learn from natural image patches a dictionary of wavelet elements that closely

resemble the properties of the receptive fields of the simple cells in V1.

2.2 Representation: active basis model

The sparse coding model (2) is constructed for the whole ensemble of natural images, where for
different I, we may represent them with completely different wavelet elements (B;,i = 1,...,n) with
different n. In the active basis model, we apply the sparse coding model (2) to image ensembles of
various object categories. Then for each category, we require that the images share the same set of
wavelet elements (B;,i = 1,...,n) , and these elements form a common template. However, when
we use (B;,i =1,...,n) to encode each individual image, we allow the template to slightly deform,

by allowing the elements or strokes to perturb their locations and orientations.

Let {L,,,m = 1,..., M} be a set of training image patches defined on a common rectangle lattice
D. We assume that D is the bounding box of the objects in I,,, and these objects are from the
same category and in the same pose. We shall relax this assumption later.

Our method is scale specific. We fix s so that the length of By, s (e.g., 17 pixels) is fixed. It
is possible to learn multiple templates at multiple scales and then combine them.

The active basis model is a composition of strokes that are perturbable:

n

Composition : I, = Z cm,iBm.i + Unm, (3)
i=1

Perturbations : By, ; ~ B;, i =1,...,n, (4)

where B; € Dictionary, B,,; € Dictionary, (¢mi,i = 1,...,n) are the coefficients, and U, is the

unexplained residual image. To define the perturbation B,,; ~ B;, suppose

B; = B»’Ciyymsyai’ (5)
Bm,i = me,i,ym,i,s,am,ia (6)

then By, ; ~ B; if and only if there exists (dp, i, dm i) such that

Tmi = Ti + dm i sin oy, (7)
Ymyi = Yi + dm,i cOS ay, (8)
Qm,i = G + Oy (9)
dm,i € [=b1,b1], Omi € [—b2, ba]. (10)

That is, we allow B; to shift its location along its normal direction, and we also allow B; to shift
its orientation. See Figure (1) for an illustration. We call (dy, ;, dm) the activity or perturbation
of B; in image I,,. b; and by are the bounds for the allowed activities (e.g., by = 6 pixels, and
by = m/15).
In the above notation, the active basis B = (B;,i = 1, ...,n) forms a deformable template. The
deformed active basis is By, = (Bpm,% = 1,...,n) ~ B. See Figure (2) for an illustration.
Because we fix the scale s in the linear representation (3) to (10), the linear superposition
i1 Cm,iBm, i only explains the frequency band of I,,, around the frequency w = 1/s, while leaving
the remaining frequency components to the unexplained U,,. U, can be further explained by

templates at other scales or resolutions.

2.3 Learning: shared sketch algorithm

Given the set of training images {I,,,m = 1, ..., M}, the shared sketch algorithm sequentially selects
B; and perturbs it to By, ; =~ B; to sketch each image I,,. The basic idea is to select those B; so
that its perturbed versions {By,;,m = 1, ..., M} sketch as many edge segments as possible in the

training images {I,,}.

Description of the shared sketch algorithm

Input : Training images {I,,,m = 1,..., M }.

Output : Template B = (B;,i = 1,...,n), and deformed template B, = (B, = 1,...,n) that is
matched to I, for m=1,..., M.

1. Convolution: For each m = 1,...,M, and for each B € Dictionary, compute [L,,, B] =
h(| (T, B)|?). Set i « 1.

2. Local maximization: For each putative candidate B; € Dictionary, do the following: For
each m = 1,..., M, choose the optimal B,,; that maximizes [I,,, By, ;] among all possible
Bm,i ~ Bl

3. Selection: Choose that particular candidate B; whose corresponding 2%21 (I, Bm,i] achieves
the maximum among all possible B; € Dictionary. Record this B; and retrieve the corre-

sponding optimal B,,; ~ B; for m =1, ..., M.

4. Non-maximum suppression: For each m = 1,...,M, if [I,,, By, ;] > 0, then for every B €

Dictionary such that corr(B, By, ;) > ¢, set [L,,, B] < 0.

5. Stop if i = n. Otherwise let i «+ 7 4+ 1, and go back to 2.

In the above description, h() is a monotone increasing (or non-decreasing) transformation that

discounts large value of |(I,,, B)|?. For two Gabor elements Bj and B,
11
corr(By, Bs) = Z <Bl,m,B2,n2>2
m=07n2=0

measures their correlation or overlap in spatial and frequency domains. By and By are orthogonal
as long as they do not overlap in either spatial domain or frequency domain.

See Figure (3) for an illustration of the above algorithm. The algorithm can be considered a
parallel version of edge detection. For a putative B;, the local maximization step seeks to sketch
a local edge segment in image L, by a perturbed version B,,; ~ B;. The selection step seeks to
find B; with the strongest 2%21 (L, Bm,i], which pools the edge strengths from the training images
around B;. After B; is selected, we retrieve the corresponding B, ;, and let B,, ; suppress or inhibit
nearby overlapping Gabor elements B by setting [I,,,, B] < 0. So for each image I,,, the selected
(Bm,i,© =1,...,n) are approximately orthogonal to each other.

The algorithm can learn from a single training image. If M = 1 and if we forbid perturbations
in locations and orientations by setting by = b2 = 0, then the algorithm reduces to usual edge
detection.

Transformation of responses. To understand the transformation h(), let us consider a simplified
discontinuous one: h(r) = 1,5¢, where £ is a threshold for edge detection. More specifically, h(r) = 1
if 7 > ¢, and h(r) = 0 otherwise. Then M | h(r,, ;) simply counts the number of detected edge
segments in the training images {I,,,m = 1,..., M }. That is, we select B; and perturb it to { B, ;},

so that {By,;} sketch as many edge segments as possible.

10

In this article we entertain the following designs of continuous transformations. The learned
templates are not very sensitive to the choice of the transformation.

(1) Sigmoid transformation. The transformation is characterized by a saturation level £ (e.g.,

§=06),

h(r) = sigmoid(r) = ¢ [1—1—@2—2”5 - 1] , (11)

which increases from 0 to &.
(2) Whitening transformation. Let ¢(r) be the marginal distribution of (I, B,y s o) where I is
a random sample from natural images. Let F(t) = q(r > t), i.e., the probability that r > ¢ under

q(r). The non-linear whitening transformation is
h(r) = whiten(r) = —log F'(r). (12)
(3) Thresholding transformation. A crude but simple approximation to whiten(r) is
h(r) = threshold(r) = min(r,T), (13)

where T is a threshold (e.g., T' = 16).
Scoring template matching. Let B = (B;,i = 1,...,n) be the template. For each training image
I,,, the template matching is scored by

n
MATCH(I,, B) =Y (Ai[Ln, Bm,i] — log Z(N\)) - (14)
i=1
i can be calculated directly from Y"M_, [L,,,, By in the selection step. Z() is a non-linear function.
This template matching score is actually a log-likelihood ratio for an exponential family model, and
the weight vector A = (\;,7 = 1,...,n) is estimated by maximum likelihood method. See the next
section for details.

Active correlation. We can also use a linear score for template matching:

n
MATCH(I,,B) = > 6i[Ln, Bpil- (15)
i=1
where h(r) = whiten(r)"/2 or h(r) = threshold(r)/2, and © = (6;,i = 1, ...,n) is a unit vector, with
I©* =37, 67 = 1.
The elements are still selected by the shared sketch algorithm, with the new definition of h().
To estimate ©, we first calculate ; = S"M_ [I,,,, By.i]/M, then we normalize © = (6;,i = 1,...,n)
to be a unit vector.
The template matching score (15) can be considered the active correlation between the template
B and the image I,,,, because B is deformed to By, = (By,i,¢ = 1,...,n) before the inner product
is calculated. We may also consider (15) as the inner product between I,, and the vector V =
10;B;. V is an active vector because B; can be perturbed to B,,; when we correlate V' with
L,.

11

2.4 Inference: sum-max maps

After training the active basis model, specifically, after selecting B = (B; = By, 4, 5,051 = 1,..., 1),
and computing weighting vector A = (A\;,i = 1,....,n) or © = (0;,i =1, ...,n), we can use the trained
model to detect and sketch the template in a testing image.

Let I be a testing image, which is larger than the bounding box of the template B. We assume
that the bounding box of B is centered at origin (z = 0,y = 0). We can scan the template over
image I, and at each position (x,y), we fit the active basis model to the image within the bounding
box centered at (z,y), and calculate the template matching score according to Equation (14) or
(15).

The inference algorithm consists of two processes. The first process is a bottom-up scoring
process, which calculates SUM1, MAX1, SUM2, MAX2 scores consecutively. The following are the
questions that these scores seek to answer:

SUM1 maps: Is there an edge segment at this location and orientation?

MAX1 maps: Is there an edge segment at a nearby location and orientation?

SUM2 map: Is there a certain composition of edge segments that form the template at this
location?

MAX2 score: Is there a certain composition within the whole image?

These maps are soft scores, not hard decisions. They are computed in a bottom-up process,
SUM1 — MAX1 — SUM2 — MAX2.

This is to be followed by a top-down retrieving process, which retrieves the central location of
the template and then retrieves the locations and orientations of the basis elements of the deformed
template. The following are the questions to be answered:

Back to MAX2 score: If there is a template, where is it?

Back to SUM2 map: What are the locations and orientations of the elements of the template
before deformation?

Back to MAX1 maps: What are the nearby locations and orientations that these elements are
perturbed to?

Back to SUM1 maps: What are the coefficients of these perturbed elements?

The top-down retrieving process follows the order of MAX2 — SUM2 — MAX1 — SUMI. The

process detects and deforms the template to interpret the observed image.

Pseudo-code for inference algorithm
Input : Template B = (B; = By, yis,0,:t = 1,...,n), A = (N, i = 1,...,n), and testing image I.

Output : Location (&,) of the detected template, and the deformed template (B, 4, 5.4,:% = 1,...,n)
that is matched to 1.

Up-1 For all (x,y) € D, and for all &, compute the SUM1 maps:

SUMl(xayﬂS:a) - ’<I7Br,y,s,a>‘2~ (16)

12

Up-2 For all (x,y) € D, and for all «, compute the MAX1 maps:

MAX1(z,y,s,a) = max SUMI(z+dsina,y+ dcosa,s,a+9). (17)
d € [=by,b1]
§ € [—ba, bo]

Up-3 For all (x,y) € D, and for all «, compute the SUM2 map:

SUM2(z,y) = Y [Nh(MAX1(2 + @4,y + yi, 5, 03)) — log Z(A;)] . (18)
i=1

Up-4 Compute the MAX2 score: MAX2 = max, , SUM2(z,y).
Down-4 Retrieve (Z,¢) that achieves the maximum in the computation of Up-4.

Down-3 Retrieve (& + x4, ¥ + vi, ;) in the computation of MAX1(z + zi,y + v, s,a4) fori = 1,...,n
in Up-3.

Down-2 Retrieve Z;, 9;, &; for ¢ = 1, ..., n, such that
MAXl(i+xi,§+yi,s,ai) = SUMl(i‘Z‘,Qi,S,OAJi) (19)
in the local maximization operation (17) of Up-2.

Down-1 Retrieve the coefficients in the computation of SUM1(&;, 95, s, &;) for i = 1,...,n in Up-1

Then the Gabor wavelet elements (Bg, g,.5.4,,¢ = 1,...,n) form the deformed template fitted to
image I.

The SUM2 map in Up-3 scores template matching. The computation of SUM2 can be considered
a shape filter for template matching. Like Gabor filters, it is also a local weighted summation
operator. See Figure (4) for an illustration. The shape filter in Up-3 has fixed (x;,y;, aj,i =
1,...,m). But it is computed on the MAX1 maps instead of SUM1 maps, so it is invariant to shape
deformation.

For an input image, we can apply the above algorithm at multiple resolutions of the input
image. Then we can choose the resolution that achieves the maximum MAX2 score as the optimal

resolution.

2.5 Shared sketch algorithm based on sum-max maps

The shared sketch algorithm in Subsection (2.3) can be expressed more precisely in terms of the

sum maps and max maps.

Pseudo-code for shared sketch algorithm

Input : Training images {I,,,m =1,..., M }.

13

Output : Template B = (B; = By, y,,5,00,¢ = 1,...,n), weighting vector A = (\;,i = 1,...,n), and
deformed template B, = (B,,; = B i = 1,...,n) that is matched to I, for
m=1,.., M.

Tm,i,Ym,i,S,0¥m, i)

1. Convolution: For each m = 1,..., M, for all (z,y) € D, and for all , compute the SUM1

maps:

SUM1,,(z,y, s,a) = [(Ln, Bx7y757a>]2. (20)

2. Local maximization: For each m = 1,..., M, for all (z,y) € D, and for all «, compute the

MAXI1 maps:
MAX1,,(z,y,s,a) = max SUMIl,,(z+dsina,y + dcosa, s,a + 6). (21)
d € [=by,b1]
§ € [=b2, bo]

For each m =1, ..., M, set SUM2,,, < 0. Set ¢ «— 1.

3. Selection: Find (z;,%;, o;) by maximizing S"M_| h(MAX1,,(z,v, s, a)) over all (z,y, a).
For each m =1, ..., M, retrieve (Tpm, i, Ym, i, m,i) S0 that
Tm,i = MAle(xu Yiy S, ai) - SUMlm (xm,ia Ymyis S, am,i) (22)
in the local maximization computation in (21). That is, we perturb B; = By, y; 5,0, tO

Bmvi = anL,ivy7n,i737am,i tO ﬁt Im

Compute); from S"M_ | h(MAX1,,(z,y,s,a)). For each m = 1,..., M, compute SUM2,, «—

4. Non-maximum suppression: If ry, ; > 0, then for all those (z, y, @) such that corr(B
Byy.s.a) > €, set SUML,,(z,y,s, o) < 0.

Tm,isYm,irS,0¥m,i)

Re-compute the MAX1 maps according to (21).

5. Stop if i = n. Otherwise let ¢ «+ ¢ + 1, and go back to Step 3.

The above algorithm can be easily mapped to computer code. The following are some remarks
on implementing it.

(1) In updating the SUM1 maps and the MAX1 maps in Step 4, we only need to update the
parts of the maps that are affected.

(2) The correlation corr(B

Y, i i—v). We can store a correlation function C(Az, Ay, Aa) = corr(Byt Az y+Ay,s,a+Aas Bry,s.a)

By ys.a) in Step 4 only depends on (Z,i — &, Ym,i —

Tm,iryYm,i>S,0¥m 4

before we run the algorithm.
(3) After selecting (z;, yi, i), we need to go back to retrieve (&, i, Ym. i, m,i). We can record this

information for every (z,y,«) when performing the local maximization in (21), and then retrieve

14

the information for (x;, y;, ;). If we choose not to store this information beforehand, we can re-do
the local maximization in (21) for (x;,ys, ;) to retrieve (i, Ym.i, Cmi)-

The SUM2,, score evaluates the matching of I,,, to the learned template B according to Equation
(14). The total score 3"M_| SUM2,,, measures the overall alignment of all the training images. This
alignment score is very useful for unsupervised learning, where the objects in the training images
are of unknown locations, scales, and categories. The alignment score Z%zl SUM2,, is the criterion
that determines these hidden variables.

We would like to point out a subtle difference between the computation of SUM2,, in the
learning algorithm and the computation of SUM2 map in the inference algorithm. In the learning
algorithm, there is a non-maximum suppression step, where B,,; suppresses nearby overlapping
elements. This is necessary for selecting the basis elements. In the inference algorithm, we omit
this step for efficiency. This is because the elements selected by the learning algorithm are already
well spaced due to the non-maximum suppression in learning, so there is no much need for non-
maximum suppression in inference. In this paper, we use the inference algorithm for detection.
For classification, we use the learning algorithm where non-maximum suppression is applied. See
Section (4) for details.

3 Theoretical Underpinning

This section presents theoretical underpinnings of the model and the algorithms presented in the
previous section. Readers who are more interested in applications and experiments can jump to

the next section.

3.1 Probability distribution on image intensities

With multiple training images {I,,,m = 1, ..., M'} represented by (3) to (10), we can pool the prob-
ability distribution of {(¢mm,,7 = 1,...,n)} as well as the distribution of {Up,} over m = 1,..., M.
With these two distributions, we can obtain the distribution of I,,,, or more specifically, the distri-
bution of I, given B,,, p(I,, | B;,). The probability density p(I,, | By,) can be used for maximum
likelihood learning of B and {B,,} from training images. It can also be used for finding B,, ~ B
and scoring the template matching in recognition after B is learned from training images.

We first simplify the notation using matrices and vectors. I,,, can be treated as a |D| x 1 column
vector, where |D| is the number of pixels. B = (B;, Bj 1,7 = 1,...,n) can be treated as a |D| x 2n
matrix, where each B; , (n = 0,1) is a |D| x 1 vector. Each B,,, can be treated as a |D| x 2n matrix
in the same way. We can write C' = (¢n,0,¢m1,% = 1,...,n) as a 2n x 1 vector. Thus in matrix
notation, Equation (3) becomes I,,, = B,,Cy, + Upy,.

Linear decomposition. We assume that B,,,C), is the projection of I,,, onto the subspace spanned
by the column vectors of B,,, so Cp, = (B!, B,,) " 'B/ I,,. If B,, is orthogonal, then C,, = B, L.
Up, resides in the |D| — 2n dimensions that are orthogonal to the columns of B,,. There is no loss

of generality in such an assumption, because if Uy, is not orthogonal to B,,,, we can always project

15

Uy, onto B,,, and let B,,C;, absorb this projection. We can write U,, = B,,,C,,, where B,, is a
|D| x (|D] — 2n) matrix whose columns are orthogonal to those of By, and C,, is a (|D| —2n) x 1
vector. Thus I, = B,,C,, + B,,C,,. There is a one-to-one linear mapping between I, and
(Cm, C). By, and Gy, can be made implicit in statistical modeling.

Shape and texture. Now we are ready to specify the probability density p(I,, | By,). For the
linear representation I, = B,,Cpn + BpnCin,

p(Iy | Bm) = p(Cmvém)’Jm’ :P(Cm)P(Cm | Cn)|Iiml, (23)

where |J,,| is the absolute value of the determinant of the Jacobian matrix of the linear transfor-
mation from I, to (Cp,, Cy). p(Cry) is the distribution of the coefficients for coding the foreground
shape, and p(C,, | Cy,) is the distribution of the residual background given the foreground coeffi-
cients.

Let q(I,,) be a reference distribution. We can write ¢(I,) = p(Cin)q(Crn | Cim)|Jm| with the
same Jacobian J,,,. We want to construct p(I,, | By,) by modifying ¢(I,,). Specifically, we assume
that p(Cp, | Cm) = q¢(Cy | Ci), i-e., the conditional distribution of the residual background in
p(Ly,) is assumed to be the same as that in ¢(I,,). Then

p(cm,h ooy Cm,n)
Q(Cm,la sy Cm,n) ’

p(Im | Bi) = q(Inm) =q(Im) (24)
where we substitute p(Cy,) for ¢(Cy,) to construct a density p(I,,) from ¢(I,,).

We assume ¢(L,,,) to be stationary. The following are some choices of ¢(I,,).

(1) White noise distribution. This is the distribution that is often assumed in linear additive
model, and is implicitly assumed in the least squares criterion for model fitting. Under this reference
distribution, ¢(¢m.1, ..., ¢mn) is multivariate Gaussian.

(2) The distribution of natural image patches. This is the distribution that we shall use in this
paper. In particular, we make use of the marginal distribution of filter responses (L, By ys.a) in
natural images. It is a heavy tail distribution that allows occasional strong edges. We do not need
to specify ¢(I,,) beyond this marginal distribution.

(3) The Markov random field distribution that matches the marginal distributions of filter
responses (I, By 4) in natural images. Such a Markov random field model has been developed
by Zhu and Mumford [28]. It is a more explicit form of (2).

(4) The Markov random field distribution that matches the marginal distributions of filter
responses of the observed image 1,,,. Such a model has been developed by Zhu, Wu, and Mumford
[30]. The marginal distributions are pooled from the observed image I,,, over (z,y) € D.

(5) Uniform distribution over the set of images that share certain marginal statistics pooled
over image domain. Such a distribution can be related to the Markov random field model in (4) as
shown in Wu, Zhu, and Liu [23].

The model (24) combines both texture and shape. ¢(I,,) models the background texture, and
B, and p(C),) model the foreground shape. The foreground shape pops out from the background
texture, as modeled by the probability ratio p(C,)/q(Cn).

16

Log-likelihood and Kullback-Leiber divergence. To learn B and {B,, ~ B,m = 1,..., M}, we can

maximize the average log-likelihood

m|B

721 il | B 721 cm71,...,cm7n)' (25)

Cm,la ey Cm,n)

The average log-likelihood converges to KL(p(C,)||q(Crn)) as M — oo, assuming that p(Cy,) can
be consistently estimated from the training images. Here KL(p||q) denotes the Kullback-Leibler
divergence from p to ¢. In order to maximize the log-likelihood, we want to choose B and deform it
to {B,, = B} to maximize KL(p(Cp,)||g(Cp,)), so that we achieve the maximum contrast between
the foreground shape and the background texture. KL(p(Cy,)||¢(Cr,)) also measures the coding
gain achieved by coding C,, by p(C,,) instead of ¢(Cy,), while continuing to code the residual
background by q(Ciy,|Chy).

It is impossible to select B and {B,,} all at once. In the next subsection, we present an

algorithm that sequentially pursues B; and perturbs it to {B,;}.

3.2 Coupling matching pursuit with projection pursuit

In this subsection, we describe a shared matching pursuit process for selecting the basis elements
B = (B;,i = 1,...,n). The process couples matching pursuit [12] with projection pursuit [7]. The
shared sketch learning algorithm is an approximation to it.

The matching pursuit is a process that sequentially adds elements B, ;,% = 1,...,n to improve

the encoding of image I,,. It has the following form:

1. Form=1,... M, set Up, < L,,. Set i « 1.

2. Form=1,...,M, choose By, ;. Let ¢ i = (Unm, Bm.i)-

3. Form =1,..., M, update U,, < Up,— i B i- Represent I, = ¢, 1B 1 +...+Cmi Bini + U,
4. If i = n, stop. Otherwise, set ¢ < i 4+ 1, go back to Step 2.

We need to add the following three steps to the above matching pursuit process.

(1) The selection of By,; given B;. The original matching pursuit algorithm selects By, ; =
argmaxp [(Up, B)|? in Step 2, where the maximization is over all B € Dictionary, so that B,
achieves the best fit to the unexplained residual image U,,. In shared matching pursuit process,
however, the B,,; are constrained to be perturbed versions of a commonly shared B;. Therefore,
for each putative B;, we need to select By, ; = arg maxpap, |(Upn, B)|?.

(2) The updating of p(Ly,). After computing ¢y, ; = (Um, Bm,i) in each iteration ¢, we can pool
a distribution p;(c) over {¢p, i, m = 1,..., M}. We can use such pooled densities p;(c), ..., pn(c) to
construct the density p(L,,).

Specifically, we update p(I,,) sequentially using projection pursuit. Let po(L,) = q(In), i.e.,
the distribution of background texture. After selecting {B,, ;,m = 1,..., M}, we need to update

pi—1(Ln) to pi(Iy). We can apply the density substitution scheme of projection pursuit, and let

17

Pi(Ln) = pic1(Ln)pi(em,i)/qi—1(Cm,i), where ¢;—1(c) is the density of ¢, s = (Up,, Bm,i) under the
current model p;_1(I,,). This density substitution scheme is very similar to the model construction
scheme of Equation (24), except that we use p;—1(L,,) as the current background, and we only
replace the density of ¢y, ; = (U, Bpi) under p;—1(Ly,). ¢mi = (Um, Bm,;) can also be written as
Cmi = <Im,Bmﬂ->, where Bmi can be constructed from By, 1, ..., By i—1 and By, ;. So pi(Ly) is a
legitimate density function.

(3) The selection of B;. We select B; sequentially by the maximum likelihood principle. The in-
crease in the average log-likelihood is -2 _; log[p;(TI,n) /pi—1(Ln)]/M = log[pi(cm.i)/Gi—1(cmi)]/M —
KL(pi(c)||gi—1(c)). So we want to select B; that achieves the maximum KL(p;(c)||gi—1(c)). That is,
KL(pi(c)||gi—1(c)) is the pursuit index that drives the selection of B;. Intuitively, this means that
we want to select B; so that the distribution of the responses of the perturbed versions { B, ; ~ B;}
is most different from what is predicted by the current model p;_;(I,,).

With (1), (2), and (3) incorporated into the matching pursuit process, we will eventually reach
the model p(I,,) = ¢(In) [Ti=1 pi(cm,i)/gi—1(Cm,i). This is an approximation to the model (24) in
the previous subsection. See Figure (3) for an illustration of the shared matching pursuit process.

The computational burden in the shared matching pursuit process lies in the computation of
gi—1(c), which requires Monte Carlo sampling from p;_1(I,,). If we have negative training images
from ¢(1,,,), we can re-weight these negative examples after each iteration, and use these re-weighted

examples as samples from p;_1(I,).

3.3 Shared sketch as an approximation

We can simplify the shared matching pursuit process into a shared sketch process with the following
two approximations.

(1) Non-mazimum suppression. After selecting By, ; and computing ¢, ; = (Up,, By.i), we need
to update Uy, <= Uy, — €m,iBm i, i.e., By, ; explains away part of Uy, or L,,. This can be considered
a soft inhibition. If an element B has a high correlation with B,,;, in other words, if B heavily
overlaps with B,,; in both spatial domain and frequency domain, then such a redundant B can
add little to further explaining I,,, in that after the updating U,, <« U, — ¢m,iBm, |(Upn, B)|?
can be very small. Therefore, we may simply enforce that, for each I,,, the selected elements of
{Bm,,i=1,...,n} do not overlap with each other, or the selected { B, ,i = 1, ...,n} are orthogonal
to each other. Then, after B,,; is selected, we let B,,; suppress any B that overlaps with B, ;.
For such non-overlapping (B i,t = 1,...,n), ¢mi = (Um, Bm.i) = (Im, Bm,i). In practice, we allow
small correlations between the elements (B, ;,7 = 1,...,n).

(2) Background density. The current density p;—1(I,,) results from sequentially updating the
densities of ¢y 1, ..., Cm,i—1, starting from ¢(I,,). If B, ; has no overlap with By, 1, ..., Bm,i—1,
then the distribution of ¢,,; under p;_i(I,,), i.e., ¢i—1(c), can be approximated by ¢(c), which is
the marginal distribution of ¢, ; under ¢(I,,). Because q(I,,) is stationary, ¢(c) is the same for all
Cm,i,t = 1,...,n. Therefore, the pursuit index is KL(p;(c)||¢(c)), where again, p;(c) is the density
pooled over {cp,;,m=1,...,M}.

18

If we stop the process after n iterations, then the resulting model is

pz sz

Zlq Cmyi)

p(Im | Bm) (26)

The pursued model (26) is an approximation to the model (24). ¢(c¢) can be pooled from natural
images before we start the shared sketch process. We do not need negative examples beyond ¢(c).
3.4 Parametrization by exponential family model

Parametric model. We can further simplify the Kullback-Leibler divergence by assuming the fol-

lowing exponential family model:

p(e;) =

Zo7 P} a(e) (27)

where A\ > 0 is the parameter, r = |c[?, and Z()\) = [exp{Ah(r)}q(c)dc = Eqlexp{\h(r)}] is the
normalizing constant. h(r) is an increasing function, so p(c¢; A) puts more probability than ¢(c) on
those ¢ with large r, so model (27) is more encouraging towards large . The above model can be
justified by the maximum entropy principle [4, 30].

Let p(r;A\) and ¢(r) be the densities of » = |c[*> under p(c;\) and ¢(c) respectively, then
p(c;N)/q(e) = p(r;N)/q(r) = exp{Ah(r)}/Z(N\). More specifically, let ¢ = (cg,c1), and let ¢ =
arctan(ci/co) be the local phase, then the conditional distributions of the local phase ¢ given the
local energy r are the same under both p(c; \) and ¢(c).

Estimating p;. We estimate ¢(c¢) by pooling a histogram from natural images. We estimate
pi(c) from {cpi = (Im, Bm,i),m = 1,..., M} by fitting the density p(c; ;) to {cm,}. Specifically,
let us define the mean parameter u(\) = Ex[h(r)] = [h(r) exp{\h(r)}q(r)dr/Z()\), we estimate \;
by matching p(\;) = S M, h(rmi)/M, so that Ay = =Y (XM h(rpm)/M). Ai is the maximum
likelihood estimate that maximizes S M_, log[p(cm.i; Ai)/q(cm,i)] over A; [4]. Thus, we estimate

pi(c) by p(c; Ai i) . R

Selecting B;. The average log-likelihood S~Y_, log[p(cm.i; M)/ q(cm.i)]/M = KL(p(c; Ai)||q(c)).
It is an increasing function of 30, h(ry,;)/M. Therefore, we choose B; and perturb it to { By, ;}
by maximizing the pursuit index S>M_ | h(rp,.,).

Perturbing B; to By, ;. p(c; \;)/q(c) is a monotone increasing function of r = |c|2. This justifies
that, given B;, we should perturb B; to By, ; to maximize |(I,,, By, ;) |2, subject to the approximate
non-overlapping constraint. Such B, ; is the maximum likelihood estimate given B;.

Thus, the estimation of \;, the perturbation of B; to By, ;, and the selection of B; all follow the
maximum likelihood principle.

Template matching score. To score the template matching, we can compute the log-likelihood

ratio
p(Im | Bm) pz Cm 175\
log————% = log
8 Q(Im) H Cm z)
= > [Nhlrma) —log Z(M)] (28)
i=1

19

where p(I,, | By,) is the pursued model (26).

Both log Z(\) and p(\) are one-dimensional functions. We can store their values over a grid of
points, and use nearest neighbor linear interpolation for points in between.

The reader is referred to Wu et al. [20] for an information-theoretical perspective of this model,
as well as its connection with Markov random fields [30] and adaboost [6]. The reader is also

referred to Tu [16] on a generative model constructed from adaboost.

3.5 Transformation of filter responses

The following are explanations why we use the sigmoid and whitening transformations for h(r).

Sigmoid transformation. The saturation in the sigmoid transformation can be justified by
mixture distributions.

Let pon(r) be the density of r = (I, Bg[;,y’s,oé>|2 when the Gabor wavelet B, , s o is on an edge.
Let pog(r) be the density of r when the Gabor wavelet is off the edge. We assume that poy ()
has a much longer tail than pog(r). Let ¢(r) and p;(r) be the densities of r = |c|?> under g(c)
and p;(c) respectively. It is reasonable to assume that q(r) = (1 — po)pog(r) + popon(r), and
pi(r) = (1 — pi)post(r) + piPon(r), that is, both ¢(r) and p;(r) are mixtures of on-distribution and
off-distribution, with p; > pp > 0. As r — oo, log[pi(r)/q(r)] — log(pi/po) > 0, i.e., a positive
constant. So we may assume the following log-linear model log[p;(c)/q(c)] = log[pi(r)/q(r)] =
Aih(r) + constant, where \; > 0, and h(r) reaches a saturation level as r — oo. This justifies the
choice of the sigmoid transformation.

Whitening transformation. The whitening transformation makes ¢(I,,) closer to the white noise
distribution, which is a simpler null hypothesis. It also leads to explicit expressions of p(A) and
log Z(\).

Let F(t) = q(r > t), i.e., the probability that » > ¢t under ¢(r) or ¢(I,). The reason we
call h(r) = —log F(r) the whitening transformation is that Pr(h(r) > t) = Pr(—log F((r) > t) =
Pr(F(r) < e!) = et ie., h(r) follows Exponential distribution with unit expectation. This is
the distribution of r if ¢(I,,) is Gaussian white noise. This is because the local energy 7 is the
sum of the squares of the Gabor sine response and Gabor cosine response, and both of them follow
independent Normal distributions if ¢(I,,) is Gaussian white noise. So their sum of squares follows
a X% distribution, which is the Exponential distribution. The distribution has expectation 1 because
we normalize the image to have unit o(s), see Equation (1).

The whitening transformation changes a long tail distribution ¢(r) to a short tail Exponential
distribution. With the whitening transformation, under p(c; \) of (27), h(r) ~ Exp(1 — A), which
is an Exponential distribution with p(A\) = 1/(1 — ;) and Z(\) = 1/(1 — A;). A; can be estimated
by Ai =1 =M/ S0 h(rmy).

20

3.6 Active mean vector and active correlation

We can replace the log-likelihood score log[p(I,, | By,)/q(L)] in Equation (28) by the correlation
between I,,, and the vector V;,, = Y7, 6; By, 4, which is defined as

n
(Ln|Vin) = >~ Oswhiten(| (L, B i) [?) 2. (29)
i=1

We assume that I,,, is normalized. The reason we use whitening transformation defined by Equation
(12) is that after such a transformation, the distribution of the natural images is closer to white
noise. Geometrically, the white noise distribution is close to the uniform distribution over a high
dimensional sphere. Image patches (after normalization and whitening transformation) from the
same object category form a cluster on this sphere. Such a simple picture makes the concept of
correlation geometrically meaningful. The correlation score (29) can be considered the length that
I,, projects on V,,,. We also filter out the local phase information in (29), because phase is irrelevant
for shape. We call (29) the active correlation between I,,, and the vector V = 1" | 0, B;, because

we perturb V' to V,, in order to best correlate with I,,.
For the training images {I,,,m = 1,..., M}, we want to find the vector V = Y"1, 0; B; that best

correlates with {L,,,m = 1,..., M}, by maximizing the sum of the active correlation scores:

m n M
ST [Vi = V) =>"16; > whiten(|(In, Bmi)|*)"?] . (30)
=1 i=1 m=1

The algorithm for learning B = (B;,i = 1,...,n) and © = (6;,i = 1,...,n) is essentially the same as
the shared sketch algorithm in Subsection (2.5). The resulting V' = >""'_; 6;B; can be consider the
mean shape of {I,,,m = 1,...., M}. We call it the active mean vector. Geometrically, V' points to
the center of the cluster formed by {I,,,m =1,..., M}.

4 Supervised Learning, Detection, and Classification

This section applies the learning and inference algorithms to supervised learning, detection, and

classification.

4.1 Learning with given bounding boxes

In supervised learning, we assume that the training images are defined on the same image lattice
which is the bounding box of the objects in these images.

In the experiments in this article, we hand pick the number of basis elements, n. In prin-
ciple, it can be automatically determined by comparing S>M_, h(r,,;)/M with the average of
h(MAX1,,(z,y,s,«)) in natural images or in the observed image I,,. If the former is no much
greater than the latter, we should stop the algorithm. We also hand pick the resize factor of the
training images. Of course, in each experiment, the same resize factor is applied to all the training

images.

21

Parameter values. The following are the parameter values that we used in all the experiments in
this paper (unless otherwise stated). Size of Gabor wavelets = 17x 17. (z,y) is sub-sampled every 2
pixels. The orientation « takes A = 15 equally spaced angles in [0, 7]. The orthogonality tolerance
is € = .1. The threshold is 7" = 16 in the threshold transformation (13). The saturation level £ = 6
in the sigmoid transformation (11). The shift along the normal direction d,,; € [~b1,b1] = [—6, 6]
pixels. The shift of orientation 6, ; € [—bg,b2] = {—1,0,1} x m/15.

%“:”J

ot ':."‘\
==

Figure 5: Experiment 1.1. The 37 training images are 82 x164. The first block displays the learned
active basis consisting of 60 elements. Each element is symbolized by a bar. The rest of the blocks
display the observed images and the corresponding deformed active bases. The images are displayed

in the descending order of the log-likelihood ratio, which scores the template matching.

OO

GO ED

B0 B4

3

Sy

e X 2
T\ pir o B

SO

GO O

e @;_./b-% B

Figure 6: Experiment 1.2. The 27 images are 180 x 180. Number of elements is 60.

Ezperiment 1. In this experiment, we take h(r) = threshold(r), as defined by Equation (13), so
that there is no need to pool g(r). Other designs of h(r) produce similar results.

In Experiment 1.1, we apply the shared sketch algorithm to a training set of M = 37 car images.
The car images are 82 x 164. Figure (6) displays the results, where n = 60. The first block displays
the learned active basis B = {B;,i = 1, ...,n = 60}, where each B; is represented symbolically by a

bar at the same location and with the same length and orientation as B;. The intensity of the bar

22

that symbolizes B; is the average 2%1:1 h(MAX1,,(x;,yi, s,;)) /M. For the remaining M pairs
of plots, the left plot shows I, and the right plot shows B,, = (B, i,% = 1,...,n). The intensity
of the bar that symbolizes B, ; is the squared root of h(|(Ls, Bmi)|?). These M examples are
arranged in descending order by the SUM2,,, scores output by the algorithm. We can see that all

the examples with non-typical poses are in the lower end.

G

Figure 10: Experiment 1.6. The 11 images are 133 x 140. Number of elements is 50.

23

Figures (6) - (10) display more examples, where the results are obtained by the same algorithm.

Negative experience in Ezperiment 1. This experiment requires that the training images are
roughly aligned and the objects are in the same pose. If this is not the case, our method cannot
learn clean templates. Also, our method does not do well on objects with strong textures, such as
zebras, leopards, tigers, giraffes, etc. The learning algorithm tends to sketch edges in textures.

Later we shall show that our method can be extended so that we can learn from non-aligned

images and find clusters in training images.

4.2 Detection by inference algorithm

This section studies the detection task using the inference algorithm based on sum-max maps.

Figure 11: Experiment 2.1. (a) Testing image. The recognition algorithm is run on 10 resolutions,
from 270 x 360 to 432 x 536. (b) Superposed with sketch of the 60 elements of the deformed active
basis at the optimal resolution 378 x 504. The bounding box of the template is 82 x 164.

Ezperiment 2. Figure (11.a) displays the observed image in Experiment 2.1. The deformable
template is learned in Experiment 1.1. The bounding box is 82 x 164. We run the recognition
algorithm on 10 resolutions of the testing image, from 270 x 360 to 432 x 536. Figure (11.b)
displays the superposed sketch of (B3, 4, 5,4,,% = 1,...,n = 60) at the optimal resolution 378 x 504.

Again, we let h(r) = threshold(r), the same as in Experiment 1.

MAX2 score vs scale

600

Figure 12: Experiment 2.1. (a) MAX2 scores at resolutions 1 to 10. (b) SUM2 map at the optimal

resolution 7.

Figure (12.a) displays the MAX2 scores at the 10 resolutions. The maximum is achieved at the

24

7th resolution. Figure (12.b) displays the SUM2 map at this optimal resolution. Recall that SUM2
is the log of the likelihood ratio. If we use the likelihood ratio, then the value at the maximum of

the SUM2 map far exceeds the values of other pixels.

B g

Figure 13: Experiment 2.1. Negative square root of SUM1 maps at the optimal resolution. There

are 15 orientations.

Figure (13) displays —SUM1(z,y,s,a)"/2. There are 15 orientations, so there are 15 SUM1

maps.
- '- ¥
£ & &3 L33 ¢
” 2 %n R O ORI na et SR
Txe e B A ey
v ;‘-Iliu..t-' J'- ':‘-15 -
S e AL ——gh (LRI o]
» Y,) L LT Vi
e C ST TS X o L A Py PR R
Co% 5 LE¥ ‘i‘.:" e LR a’ii&r'-.\i LG
- . ﬁF. -
b wod oL : D &
[} B Y h Yo 4 sk
« "?\G}‘,\" d '\4‘ 2e LT 4 .'"'"f et S i #
5 s e Ya¥el Ly 1 2 P LES

Figure 14: Experiment 2.1. Negative square root of MAX1 maps at the optimal resolution. There

are 15 orientations.

Figure (14) displays —MAX1(z,y, s, a)'/2. There are 15 MAX1 maps. These MAX1 maps are
blurred versions of the SUM1 maps. They themselves are not very meaningful unless they are
combined into the SUM2 map using the active basis model learned by Experiment 1.

Figure (15.a) displays the observed image in Experiment 2.2. The deformable template is
learned in Experiment 1.2. The bounding box is 180 x 180. We run the recognition algorithm
on 10 resolutions of the testing image, from 320 x 240 to 500 x 375. Figure (15.b) displays the
superposed sketch of (Bg, g,.5.4,,¢ = 1,...,n = 60) at the optimal resolution 400 x 300. Because the
pose of the bike in the testing image is not entirely the same as the poses in the training images,
the sketched bike in Figure (15.b) misses part of the front wheel.

Figure (16) displays the observed image in Experiment 2.3. The deformable template is learned
in Experiment 1.3. The bounding box is 179 x 112. We run the recognition algorithm on 10
resolutions of the testing image, from 192 x 220 to 322 x 368.

Figure (17) displays the superposed sketch at each of the 10 resolutions.

25

Figure 15: Experiment 2.2. (a) Testing image. The algorithm is run on 10 resolutions, from 320 X
240 to 500 x 375. (b) Superposed with sketch of 60 elements of the deformed active basis at the
optimal resolution 400 x 300. The bounding box of the template is 180 x 180.

Figure 17: Experiment 2.3. Superposed sketch of 50 elements of the deformed active basis at each
of the 10 resolutions, from 192 x 220 to 322 x 368. The bounding box is 179 x 112.

Negative experience in Ezperiment 2. Our method can sometimes be distracted by cluttered
edges in the background. We may need to combine templates at multiple resolutions to overcome

this problem.

4.3 Classification by learning algorithm

In this section, we evaluate our method on classification tasks and compare the ROC curves.
Scoring testing images. We learn the active basis B = (B;,i = 1,...,n) and estimate A =

(Niyi=1,...,n) (or ©® = (0;,i = 1,...,n) for active correlation) from the training images. Then for

26

each testing image I,,,, we can compute its score SUM2,,, according to Equation (28). This can be
done using the same algorithm as the shared sketch algorithm in Subsection (2.5), except that we
remove the selection of (z;,y;, ;) and the computation of); in the selection step, because B; and
A\; are already available. We obtain the ROC curves based on SUM2,, scores.

2 HsEs d= FAs
AR LE R8s L8
Mle e Mlla 28 8 8
2 ol 8 lac e
' 2 e 9s e Ble
e PUE pia | D B
AR el 2 AL Rs
el s 8 &8

Figure 18: Experiment 3.1. Results obtained by fitting the active basis model with sigmoid trans-
formation. The saturation level is 6. The 43 images are 127 x 85. The number of basis elements
40.

Ezperiment 3. Figure (18) displays the 43 positive training images in Experiment 3.1. It also
displays the corresponding B,, = (Bp,i,i = 1,....,n), n = 40. The results are obtained with
h(r) = sigmoid(r). The saturation level £ = 6. The ¢(r) is pooled from 157 negative training
images. The bounding boxes of the training images and testing images are all given. The sizes of

the training and testing image patches are all 127 x 85.

o
o]

o
=)}

true positive rate

0.4

o
N

——sigmoid, AUC=0.977
- - - adaboost, AUC=0.936

0 0.2 04 0.6 0.8 1
false positive rate

Figure 19: Experiment 3.1. The solid curve is ROC of active basis model with sigmoid transfor-
mation. The dashed curve is ROC of the adaboost method where the weak classifiers are based on

thresholding the filter responses in SUM1 maps.

We then test on a separate data set with 88 positives and 474 negatives. The solid curve of

Figure (19) is the ROC curve for the active basis model with sigmoid transformation. The AUC

27

(area under curve) is .977.

For comparison, we also display the ROC curve for the adaboost method. The weak classifiers
are obtained by thresholding the filter responses SUM1,,(z,y, s,a) computed in Step 1(a) of the
shared sketch algorithm in Subsection (2.5). The threshold for each weak classifier is selected from
a dense grid of points. We select 80 weak classifiers using the adaboost method. The dashed curve
of Figure (19) is the ROC curve for the adaboost method. The AUC is .936.

We also try another type of weak classifiers, which are based on thresholding the local maxima
of filter responses, i.e., MAX1,,(z,y, s, @) obtained in Step 1(b) of the shared sketch algorithm. We
select 40 weak classifiers using the adaboost method. The AUC is .943. If we increase the number

of weak classifiers, the AUC starts to decrease, suggesting that the classifier starts to overfit.

8 8 I

™~
(a) (b) ()

Figure 20: Experiment 3.1. (a) The template learned by the active basis model. (b) Learned by

the adaboost method. (¢) Learned from tiny training images.

Figure (20.a) displays the template learned by the active basis model. Figure (20.b) displays
the template learned by the adaboost method, where a weak classifier is illustrated by a bar that
symbolizes the corresponding Gabor wavelet.

We also try the active basis model with transholding transformation. The thresholding level is
16. The AUC is .941. The reason that it does not do as well as sigmoid transformation may be due
to the fact that the thresholding level is too high, so that the strong edges in the negative examples
contribute too much to the log-likelihood ratio score SUM2,,. We then try the active basis model
with whitening transformation with ¢(r) or F(r) pooled from negative training images. The AUC
is .965.

We also try active correlation. The AUC for thresholding transformation is .971. The AUC for
whitening transformation is .974. The improvement over log-likelihood may be due to the fact that
we take squared root of whiten(r) in active correlation. This discounts strong edges in negative
examples.

Combining templates at multiple resolutions. A low saturation level in the sigmoid model is
helpful to discount strong edges in the background or in the negative examples. But this may
cause another problem: a large number of weak edges in the cluttered background may collectively
produce high SUM2 score. One way to alleviate this problem is to combine templates at multiple
resolutions, because the weak clutter edges cannot survive long in the scale space [19], so they will
not produce high SUM2 score at lower resolution.

In addition to the template displayed in Figure (18), we learn another template using Gabor
wavelets at a scale twice as large as the original scale. We select n = 20 basis elements at this scale.

Then in testing, we use the sum of the SUM2,,, scores obtained at the two scales. This leads to an

28

AUC = .982.

Adaptive texture background. In scoring a testing image I, the SUMZ2,, is computed by
S log[pi(em.i; Ai)/q(em.i)], according to Equation (28), where g(c) is pooled from natural im-
ages or negative training images. We can change ¢(c) to a background texture model fitted
specifically to I,,. Specifically, for each image IL,,, and for each orientation «, we can fit a
model g (c;Aa) to {(Im, Brys.a), V(x,y) € D}. The distribution ¢, (c; A\s) is again the expo-
nential family model of the form specified by Equation (27). The maximum likelihood estimate
Ao = ,ufl(z(x,y)eD h(|(Im, By y.s.a)|?)/|D]). Then we compute the SUM2,, score by

SUMQm = Z log[pi(cm,i; 5\i)/(b’n(c’rn,i; S\ai)]
=1

n

_ Z:[(j\ih(\(Im,Bm,Mz) —log Z(A:))

_(;\aih(KImvBm,i)’Q) — log Z(;\ai))L (31)

where «; is the orientation of B,, ;. That is, we score the template matching against the adaptive
texture background summarized by ¢, (c; 5\01) The marginal distributions pooled over {(I,,, By y.s.a)s
V(z,y) € D} for different o and s have been used by Zhu, Wu, and Mumford [30] for modeling
textures. This new SUM2,,, score leads to an AUC = .983.

Learning from single training image. We can also train the sigmoid model on a single positive
training image. We use the 13th image in Figure (18). It has a clean background. We set by = by = 0
in learning, that is, we do not allow the B; to perturb. Then we set by and by at their default values
for testing. The AUC is .926.

Learning from tiny images. We can also train the model on tiny images. We zoom out the
positive training images by a factor of 10, so the image size is 12 x 8. In order to learn from such
tiny images, we then zoom in these 12 x 8 images by a factor of 10, so the image size becomes 120
x 80. Then we apply the shared sketch algorithm on these 120 x 80 images. The learned template
is shown in Figure (20.c). Then we test on the testing images, which also go through the same
zooming out and zooming in operations. The AUC is .957.

We also did another experiment on horse images. Figure (21) displays the learning results of
Experiment 3.2. There are 31 positive training examples. They are 150 x 120. The number of basis
elements is n = 40. There are 249 positive testing images. We use the same sets of negative training
and testing images as in Experiment 3.1 (with resizing to match the size of the positive examples).
The AUC scores are as follows: sigmoid = .987, whiten = .982, whiten with active correlation =
.984, threshold = .981, threshold with active correlation = .985, combining two templates = .988,
adaptive texture background = .989, single image learning = .980, tiny image learning = .956,
adaboost method by thresholding the SUM1 maps = .937, adaboost method by thresholding the
MAX1 maps = .957.

We did a third experiment on butterfly images. Figure (22) displays the learning results of
Experiment 3.3. There are 33 positive training examples. They are 150 x 100. The number of

basis elements is n = 40. There are 191 positive testing images. We use the same sets of negative

29

A
- m - Wy
il
et RS

r A
B

%a\

=il

. j;)\:{e oS

Figure 21: Experiment 3.2. The 31 images are 150 x 120. The number of basis elements is 40.

Sk . ASE % E | DG DS
W5 M58 DCT \V-4¢al . 296
VEEE 0G| WG T |98 ES
M?@ ¥ Y(’-'\/GI %@‘D(“ W %\n\'
T3 *@ 7G| o £)(\E‘C TR
G IK ‘:’\»5 sl 12el ' RS

o8 e L Y]
> | N a3 cif'

Figure 22: Experiment 3.3. The 33 images are 150 x 100. The number of basis elements is 40.

training and testing images as in Experiment 3.1. The AUC for sigmoid model is .999. The AUC
for adaboost by thresholding MAX1 maps is .994.

Experiment 3 focuses on the situation where the number of positive training images is relatively
small. Compared to adaboost, the active basis model applies non-maximum suppression instead
of re-weighting before selecting the next basis element. The active basis model does not require
negative examples (except pooling a marginal histogram from natural images). Moreover, the gen-
erative model can be conveniently used for unsupervised learning as we shall show in the following

sections.

4.4 Geometric transformation of template

Given a template B = (B; = By, y,,5,00,1 = 1,...,n), we can transform this template by dilation,
rotation, and changing the aspect ratio. This amounts to simple transformations of (x;,y;, a;,7 =
1,...,n).

Figure (23) shows three examples. The bicycle template is learned in Experiment 1, where we

use the sigmoid transformation. We then transform it into a collection of templates as different

30

Figure 23: Experiment 4.1. (a) The number of elements is 60. The image size is 252 x 320. The
scale factor is 1.4. The rotation is 1 xm/15. The aspect factor is 0.9. (b) The image size is 200 x
250. The scale factor is 1.4. The rotation is 1 xm/15. The aspect factor is 1. (c) The image size is
248 x 232. The scale factor is 1.2. The rotation is -1 x7/15. The aspect factor is 0.6.

scales, orientations, and aspect ratios. After that, we use these templates to detect the objects by
template matching, as in Experiment 2. Finally, we choose the transformed template that gives

the best match, and superpose it on the input image.

Figure 24: Experiment 4.2. (a) The number of elements is 40. The image size is 138 x 168. The
scale factor is 1. The rotation is 0 xm/15. The aspect factor is 0.8. (b) The image size is 192 X
144. The scale factor is 1. The rotation is 4 xm/15. The aspect factor is 1.3.

Figure (24) shows another example with the horse template, learned in Experiment 3.

Negative experience in Experiment 4. We encountered some difficulty with the bicycle template.
When the viewing distance is close, the size of one wheel can be larger than the size of the other
wheel, so a single scale factor does not give very good fit. Also, the frontal wheel may turn to a
different direction than the back wheel.

The above difficulty suggests that we should better split the bicycle template into two part-
templates, and each part-template has its own geometric transformation. We shall study the

composition of multiple part-templates later.

5 Learning from Non-aligned Images

In this section, we study the problem of learning from images where the objects are of unknown

locations and scales.

31

5.1 Image alignment

For the training image patches {I,,,m = 1,..., M } defined on the same bounding box, such as those

in the previous section, we can define their overall alignment by

M
ALIGN(L,,m =1,..,M) = Y MATCH(I,,B), (32)
m=1
where B is the template learned from the image patches, and MATCH(L,,, B) is the template
matching score defined by either (14) for log-likelihood or (15) for active correlation. The com-
putation is carried out by the shared sketch algorithm in Subsection (2.5), and ALIGN(L,,,m =
1,...,.M)= %:1 SUM2,,, where the SUM2,,, scores are output by the algorithm.

When the training images {I,,,m = 1,..., M} are of different sizes, and the objects appear at
different locations in the training images, we need to infer the unknown locations. Let box(x,y) be
the rectangular bounding box of the template centered at (x,y). For an image I, let I[box(z,y)] be
the image patch cropped from the image I within box(x,y). We want to maximize the alignment

score
ALIGN (I, [box(zpm, ym)],m =1, ..., M), (33)

where (2, Ym) is the unknown location of the bounding box in I,,,.
The alignment score can be maximized by a greedy algorithm that iterates the following two
steps:
(1) Supervised learning: Given {(zym, Ym), m = 1, ..., M}, estimate (B, A) from {I,,[box(zm, ym)],
=1,..., M} using the shared sketch algorithm in Subsection (2.5).
(2) Detection: Given (B, A), estimate (z,, ym) from each I, using the inference algorithm in

Subsection (2.4). (%, ym) achieves the maximum of the SUM2 map.

4—4'-

Figure 25: Experiment 5a.1. The bounding box of the first image is given. The size of the bounding

box is 136 x 140. The number of elements in the active basis is 60.

Ezxperiment 5a: In this experiment, we initialize the algorithm by specifying the bounding box
for the first training image. Then we estimate (B, A) from this single image patch. In learning from
the single image patch, we set by = by = 0, that is, we do not allow the elements B; to perturb.
After that, we reset by and by to their default values, and iterate Step (2) and Step (1) described
above.

In Step (2), we search over 9 different resolutions (from 0.8 to 1.2 times the input image size).
We crop I,,[box(zm, ym)] from the optimal resolution.

We run the algorithm for three iterations. Figures (25) - (30) display some examples.

32

Figure 27: Experiment 5a.3. The bounding box is 115 x 161. Number of elements is 50.

ST

Figure 28: Experiment 5a.4. The bounding box is 94 x 99. Number of elements is 30.

Figure 30: Experiment 5a.6. The bounding box is 134 x 148. Number of elements is 60.

Ezxperiment 5b. This experiment is about pairwise alignment, that is, we align two images so
that they overlap on the common parts. We learn a template from the first image with no activity
and without any given bounding box. Then we restore the activity and scan the learned template
on the second image using the inference algorithm as in Experiment 2. When the template is
partially out of the bound of the second image, we set the responses of those elements that are out
of the bound to 0. We scan the template over 7 resolutions of the second image, from .7 to 1.3 times
the size of the input image. At the optimal location and resolution, we deform the template and
sketch the second image. In this experiment, we use active correlation for learning and inference.

Figure (31) displays the pairwise alignment. (a) shows the first image and the template learned
from this image. (b) shows the second image, and the sketch of this image by the learned template,
where the intensities of the elements are proportional to the square roots of the corresponding
responses from the second image. Figure (32) displays the alignment where we switch the order of

the two images.

33

Figure 32: Experiment 5b.2. The number of elements is 50.

Figure (33) displays the result of aligning the first frame of a vide sequence to the 15th frame
of the same sequence. The image sequence is cropped from the PETS 2006 benchmark data and is

to be used again in Experiment 6.

'w/,__‘ B

AT B

(a) (b)

Figure 33: Experiment 5b.3. The number of elements is 80.

Ezxperiment 5c. This is a repetition of Experiment 5a, except that we do not assume that the
bounding box of the object in the first image is given. We simply start from the template learned
from the whole image of the first example. Figure (34) displays two examples. In each example,
the first template is learned from the first image, and the template serves as the initialization of the
algorithm. The second template is produced after 3 iterations of the algorithm used in Experiment
5a. As in the pairwise alignment, we allow the template to be partially out of the bounds of the
images in the detection step.

Negative experience in Erperiments 5a-c. When there are cluttered edges in the background,
the detection step may fail to locate the objects. When the objects have large deformations or pose
changes, the learned template may not be clean, and may fail to sketch the objects in the training
images correctly. In Experiments 5b and 5c, if the objects do not occupy significant portions of the

training images, our method may fail to establish correct alignment.

34

Figure 34: Experiment 5c. In each example, the first template is the starting template. The second
template is learned after 3 iterations. The number of elements of the active basis is 60 in the left

example, and 50 in the right example.

5.2 Learning part-templates

The algorithm in Experiment 5a can be used to learn part-templates from training images. In
Experiment 5d, we start from a large number of patches cropped from the training images, and for
each starting patch, we learn a templates using the same algorithm as in Experiment 5a. Here we
use active correlation instead of the log-likelihood for learning and detection.

Then we select the first K templates with the highest alignment scores. We did not perform
spatial inhibition between the part-templates. After that, we double the sizes of the input images,

and use the same procedure to learn part-templates at a higher resolution.

ot 1 — T

-9 5 -9

s i . = G
- =
8.~ 8 —

Figure 35: Experiment 5d. The top three part-templates. The size of the bounding box is 100 x
100. The number of elements is 40. The allowed activity in location is up to 3 pixels. The allowed

activity in orientation is up to 7/15.

Figure (35) displays the top three part-templates learned from three car images. Because of the
large deformations in these three cars, it is impossible to learn a common template for the whole
cars, but it is still possible to learn meaningful part templates that correspond to frontal, middle
and rear parts of the cars.

Figure (36) displays the top two part-templates learned from these three images after we resize
these images by a factor of 2.

Negative experience in Fxperiment 5d. When the part-template is small relative to the whole
objects, the method often fails to establish correct correspondence among the images.

The above difficulty suggests that we should add constraints for more reliable learning of the
parts. If the bounding boxes are given as in Experiment 1, we can restrict the ranges of movements

of parts in the training images, so that in the detection step, we do not need to search over the

35

®

o B AN S

Figure 36: Experiment 5d. The top two part-templates learned after the sizes of the input images

are doubled. The parameters are the same as in Figure (35)

whole images. If the bounding boxes are not given as in Experiment 5a, we can simultaneously
learn multiple parts while restricting their relative positions, and this is very much like a recursion

of Experiment 5a or 5c.

5.3 Learning moving template from motion sequence

Our method can also be used to learn a moving deformable template from a video sequence. Let
(I;;t =1,..., M) be a sequence of frames of an object shape that is moving at a speed v = (v, vy).
We can estimate v and learn a template of the object shape simultaneously.

At the true speed v = (vy,vy), let ng)(:n,y) = Ii(x + vat,y + vyt), i.e., for frame ¢, we shift
the image lattice back by vt, then the object shapes in {ng),t =1,..., M} will be well aligned. If
we apply the shared sketch algorithm to {J,Ev)}, we shall learn a clean template that has a high
alignment score. We can try all possible v, and choose the v that achieves the maximum alignment

score, i.e., we maximize
ALIGN (Jﬁ”), t=1,.., M) (34)

over v. This is actually a simpler problem than learning from non-aligned images.
Alignment score vs Velocity

580

560

540

520

500

Score

480
460
440

420
-4 35 -3 -25 -2 -15 -1
Velocity

Figure 37: Experiment 6.1. Alignment scores at different speeds of the optimal direction.

In our experiment, we use active correlation to evaluate the alignment score (34). Before com-

puting this score, we need to do background subtraction. First, we compute the background

36

SUMI: SUMlIg(z,y,s, @) = M, SUMIl(x,y,s,a)/M. Then we modify SUMI(x,y,s,a) «
[SUM1(z,y,s,a) — SUM1y(z,y, s,)]+, where [r] = r if r > 0 and [r]y+ = 0 otherwise. For
each v, we compute the alignment score using the background subtracted SUM1 maps.
Ezperiment 6. We learn the moving template from a sequence of 19 frames of size 204 x 258.
The image sequence is cropped from the PETS 2006 benchmark data. We try 5 different directions
vz /vy, and at each direction, we try 7 different speeds. Figure (37) displays the alignment scores

at different speeds of the optimal direction.

oy
2

¥

S SR N

(1) (2) 3) (4) () (6) (7)

Figure 38: Experiment 6.1. Learned templates at different speeds. (4) is the one at the optimal

speed. There are 19 frames of size 204 x 258. Number of elements is 70.

Figure (38) displays the templates learned at different speeds of the optimal direction. Template

(4) is learned at the optimal speed. The number of basis elements is 70.

G NCERNGERGT
#ﬁt\f 7 k\ 7/\ f\‘ T
BN ENENE NS
-

{ I '

1'\&}\ ‘ ,‘\n 7“\ -
4.’] f .‘
Tr\ \T

Figure 39: Experiment 6.1. Learned template and superposed sketch for each frame at the optimal

speed and direction.

Figure (39) displays the learned template and the superposed sketch for each frame at the
optimal speed and direction.

Figure (40) displays results for another example.

The learned templates can be used for tracking. Compared to fully unsupervised learning, it

provides a more reliable way to learn templates and their parts.

6 Clustering and Local Learning

In this section, we study the problem of clustering, where we need to learn multiple templates from

the training sample, which is a mixture of different poses or different categories.

37

Figure 40: Experiment 6.2. Learned template and superposed sketches at the optimal speed. The

image frames are 180 x 186. Number of elements is 80.

6.1 EM and K-mean

Mixture model and EM. Suppose there are K categories, and each category k can be described by
an active basis model B = (Bi(k),i =1,..,n) and AW = ()\(k),z' = 1,..,n). Let p(* be the

(2
probability that a training image I,,, comes from cluster &, k: =1,.,K. SoI, ~ Zk p®EpE) (L, |
(k)

m), i.e., a mixture distribution, where each p*)(L,, | B) is modeled as in Subsection (3.1).
We can learn {p(k BE AR =1, ., K} by the EM algorithm. For each image I,,,, we define
(z,gf),k: = 1,...,K) as an indictor vector, where zgf) = 1 if I,, comes from cluster k, otherwise
(k) —0.
E-step. Foreach m=1,...,M and k =1, ..., K, we impute
27(7,:) _ ptk) exp{SUMQ%C)}

SE | p®) exp{SUM2H}
(k)

This is a soft classification based on the current models of the clusters, where each z;,” becomes a
fraction. The SUM2£,I§) scores are obtained in the M-step.

M-step. For each k = 1, ..., K, we learn B®) and A®*) according to the shared sketch algorithm
in Subsection (2.5). We only need to make the following changes to the original version of the
learning algorithm.

(1) In Step 2(a), we find (z;,¥;, a;) by maximizing SM_, 2n h(MAX1(z,y,s,«)), which is a
weighted sum.

(2) In Step 2(c), we compute A; by

k
M h(rm, Z),2:7(71))
ZM 1 Zm
that is, we match p(\;) to the weighted average.

(3) After we finish the algorithm, we attach a superscript (k) to the resulting SUM2,, and B.
We initialize the algorithm by randomly generating {zﬁ’f)}, and then iterate the M-step and the

A= po (= (35)

E-step. We stop the algorithm after a few iterations. Then we classify I, to the cluster k. that
s (k) _
maximizes zm’ over all k=1,..., K.
Experiment 7. Figure (41.a) displays the learned templates B k =1,...,3 from the mixture
of the three sets of positive training images in Experiment 3. The image size is 120 x 150. For the

head and shoulder images and the butterfly images, we resize them to be 120 x 150. The number

38

Figure 41: Experiment 7.1. Learned templates from the mixture of the three sets of positive
training images in Experiment 3. Image size is 120 x 150. Number of elements in each template is
40. Number of iteration is 4. (a) EM. (b) K-mean.

of elements in each B is 40. We run the EM algorithm for 4 iterations. The EM algorithm can

easily separate the three clusters. Only one error is made, where a horse image is classified as a

(a) (b)

head-shoulder image.

Figure 42: Experiment 7.2. Learned templates for 58 images of horses facing two different directions.
Image size is 120 x 150. Number of elements in each template is 50. (a) EM with 4 iterations. (b)

K-mean with 8 iterations.

Figure (41.a) displays the learned templates B®) k= 1,2 from a mixture of 58 images of horses
facing different directions. The image size is 120 x 150. The number of elements in each B®*) is
50. We run the EM algorithm for 4 iterations. The EM algorithm easily separates the two clusters.

K-mean clustering. We can pose the clustering problem as the following alignment problem:
find {(z,(ylf), k=1,.,K),m=1,.., M} to maximize

K
Y ALIGN (Im, 2 = 1) , (36)
k=1

where ALIGN{I,,, 2B = 1} is the alignment score of the k-th cluster. The computation of the
alignment score also produces the template B®*) for the k-th cluster. If we use active correlation
to learn the template for each cluster and score the multiple alignment within each cluster, then
the learned (B, ©(%)) gives us an active mean vector V) = S 0§k)Bi(k) for each cluster. The
mean vector V(*) points to the center of the k-th cluster. This leads to a K-mean algorithm. It is
a greedy algorithm that maximizes (36), and it iterates the following two steps:

(1) Given {(z,(qf),k: =1,.,K),m = 1,..,M}, estimate the mean vector (B(k),@(k)) from
{Im,zq(ﬁ) =1} foreach k=1,...,. K.

(2) Given {B(k),ﬁ(k) Jk = 1,..., K}, classify each image I,, to a cluster k. that maximizes
(L, | V#p} over all k =1,..., K. Set) = 1, and set 2 =0 for k # k.

The implementation of this K-mean algorithm is similar to the EM algorithm. We only need

to make the following modifications.

39

(1) Change the E-step: we let 27(7?*) = 1 if k, achieves the maximum of SUMQS? among all
k=1,..., K, and we set the the rest of z,(jf) to be 0.

(2) Change the M-step: for each k = 1,..., K, we compute SUM2,, and estimate B and ©
for each cluster k£ using the shared sketch algorithm that maximizes the active correlation. The
algorithm is described in Section (3.6).

Figure (41.b) and Figure (42.b) display the learned templates B*) k = 1, ..., K using K-mean
algorithm. We initialize the algorithm with random {zy(,]f)}.

We also did a third experiment where we mix the positive training examples of head-shoulder
images and negative training examples. The EM and K-mean algorithms can still separate out many
of the positive training examples, although they also mistakenly include some negative examples
into the positive cluster.

Negative experience in Exrperiment 7. When the object shapes of different categories are not
very different, our method often fails to distinguish them if we start from random clustering.

The above difficulty is not caused by the model or the EM or K-mean iteration, but mainly by

the fact that random clustering gives poor initialization.

6.2 Local learning of representative templates

The EM and the K-mean clustering methods assume that the number of clusters is given. They
also assume that the clusters should be distinct from each other. The results of the algorithms seem
to be severely dependent on initialization. To address these problems, we develop a local learning
scheme by modifying the K-mean method in the previous subsection. In this scheme, we learn a
local representative template around each input image, by recruiting a small number of nearest
neighbors. With the local templates and their nearest neighbors, we can then perform trimming
and merging for clustering.

In Experiment 8, we learn local representatives in an ensemble of 123 images of animal heads.
Around each image, we learn a template from this image and its K nearest neighbors, using an
iterative scheme based on the active correlation. Specifically, we first learn a template for this
single image where no activity is allowed. Then using the learned template, we find K nearest
neighbors by active correlation, where activity is restored. After that we re-learn the template
from this image and its K nearest neighbors. The weight for each of the K nearest neighbors is 1,
whereas the weight for this image is pK. In our experiment, K = 5, and p = 1/3. Then again, we
find the K nearest neighbors, and iterate. After learning all the templates, we trim them to satisfy
the constraint that the neighbors of the remaining templates should not overlap (this may be too
aggressive). This leaves 16 templates.

Figure (43) shows the 16 templates obtained by local learning. They are ordered by the align-
ment scores computed from the K nearest neighbors.

Figure (44) shows the top four templates. For each template, we also show its five nearest
neighbors and their sketches.

Figure (45) shows another four templates. Although these templates are less clear and clean

40

\-—-./
I\u-

Vi
ﬁ
\~/
b\
A 15{ f,t)‘ =

Figure 43: Experiment 8. The 16 representative templates locally learned by active correlation.
They are ordered by the total alignment scores. Image size is 100 x 100. Number of elements is
40. Number of iterations is 3 for learning each template. The allowed activity of location is up to
2 pixels. The allowed activity of orientation is up to m/15.

SHE B LR L IEF L I8
G E”FGE@EME“
“ l@lﬁﬁ ﬁ“k”

Figure 44: Experiment 8. The top four templates and their neighbors.

f

/

Figure 45: Experiment 8. Another four templates and their neighbors.

than the top four templates, they still manage to recruit nearest neighbors that are from identical
categories.

We can then use these 16 templates to initialize the K-mean clustering. The results are mean-
ingful. With local learning, we can also perform hierarchical clustering by merging clusters.

Such a local learning scheme identifies local dimensions in the image ensemble. It also furnishes
us with a local metric measured by active correlation. It is unclear whether we could use support

vector machine [2] to select the positive as well as negative templates, and use these support
deformable templates for classification.

41

We have not had much experience with local learning. We tried it on digits, and it produced

meaningful results, although there is some mixing between different categories, such as “4” or “9”.

7 Synthesis by Multi-scale Gabors and DoGs

In most of the experiments so far, we only analyze the images at a single scale. This is sometimes
not enough for detection and classification, where we should learn templates at multiple scales and
combine the template matching scores. For instance, Figure (46) displays the template learned
from the deer images, where the basis elements are twice the size of the elements in Experiment 1.

We can combine these two templates for detection and classification.

Figure 46: The size of the Gabor wavelet elements are twice the size of the elements in Experiment

1. The number of elements is 15.

In computer vision, researchers often distinguish between edges and regions. Actually, these
are two relative concepts in the frequency domain. While edges can be captured by high frequency
Gabor wavelets, the regions can be encoded by low frequency wavelets, including the difference of
Gaussian (DoG) wavelets. To account for both edges and regions, we need to combine Gabor and
DoG wavelet elements at multiple frequency bands.

In Experiment 9, we select the wavelet elements of active basis from a dictionary of Gabor
wavelets and Difference of Gaussian (DoG) wavelets at different scales. We use the same shared
sketch algorithm with sigmoid pursuit index, except that we normalize the filter responses by
marginal variance. After selecting the elements and record their responses, we use matching pursuit
[12] to reconstruct the images. We need to use matching pursuit for reconstruction because the
selected elements are only approximately orthogonal to each other, so the projection coefficients
and the reconstruction coefficients are slightly different. The matching pursuit algorithm computes
the reconstruction coefficients from the project coefficients.

Figure (47) displays the select Gabor and DoG elements. The Gabor elements are illustrated
by bars at different sizes, and the DoG elements are illustrated by circles. The radius of a circle is
about half of that of the blob represented by the corresponding DoG elements. Larger circles are
darker than smaller ones.

Figure (48) displays the reconstructed images. The DoG elements are necessary to account for
the large regional contrasts.

Figures (49) - (52) display more examples. Ideally, the large Gabor elements gauge the breadths
of the edges, while the small Gabor elements gauge the sharpness of the edges. The large DoG

42

Figure 47: Experiment 9.1. The selected Gabor elements (illustrated by bars) at 3 different scales
and the selected DoG elements (illustrated by circles, and larger circles are darker than smaller
ones). The lengths of the Gabor elements are 35, 25, and 17 pixels respectively. The sizes of the
DoG elements are 77 and 55 respectively. The allowed activity of location is 4 pixels for both Gabor

and DoG elements.

Figure 48: Experiment 9.1. The fist block displays all the 50 selected Gabor and DoG elements.
The smaller Gabors are illustrated by darker bars. The remaining blocks display the original images

and the corresponding reconstructed images. The image size is 102 x 100.

Figure 49: Experiment 9.2. The fist block displays all the 50 selected Gabor and DoG elements.
The remaining blocks display the original 95 x 100 images and the corresponding reconstructed

images.
elements gauge the sizes of the regions, which are to be contoured by the Gabor elements. It is

unclear whether we could use large Gabor and DoG elements to substitute the region concepts, so

that we do not have to do image segmentation.

8 Composing Multiple Part-Templates

For articulate objects, we need to represent them as compositions of part-templates at different

locations and resolutions.

43

Figure 50: Experiment 9.4. The fist block displays all the 40 selected Gabor and DoG elements.
The remaining blocks display the 100 x 70 original images and the corresponding reconstructed

images.

Figure 51: Experiment 9.5. The fist block displays all the 40 selected Gabor and DoG elements.

The remaining blocks display the original 100 x 110 images and the corresponding reconstructed

o

Figure 52: Experiment 9.7. The fist block displays all the 50 selected Gabor and DoG elements.

The remaining blocks display the original 100 x 100 images and the corresponding reconstructed

images.

@

images.

8.1 Recursive active basis and recursive sum-max maps

An active basis is a composition of multiple Gabor wavelet elements, where each element is allowed
to shift its location and orientation. We can further compose multiple active bases, where each
active basis serves as a part-template that is allowed to change its overall location, orientation
and scale. We call such a structure a “recursive active basis,” which is a template that consists of
multiple part-templates. The following experiment illustrates the basic idea.

Figure (53.a) displays an image of size 330 x 496. Figure (53.b) displays the superposed sketch.
The template is learned in Experiment 1.2 from the bicycle images. See Figure (6). We split the
bicycle template in Figure (6) horizontally into two part-templates. The bounding box for the

44

Figure 53: Experiment 10.1. (a) Input image of 330 x 496. (b) Superposed sketch. The bounding
box of the front wheel is 112 x 126. The bounding box of the back wheel is 86 x 76. The total

number of elements is 60.

part-template of the front wheel is 112 x 126. The bounding box for the part-template of the
back wheel is 86 x 76. We allow the two part-templates to locally shift horizontally, so these two
part-templates make up a multi-basis. We then fit this multi-basis to the tandem bike in Figure
(53.a) and obtain the sketch in Figure (53.b).

Given the two part-templates, the inference can be accomplished by alternating the sum maps
and max maps as illustrated by Figure (54). Here we have two SUM2 maps, one for each part-
template. On top of each SUM2 map, there is also a MAX2 maps. Then on top of the two MAX2
maps, a SUM3 maps is computed. After that a MAX3 score is obtained. These scores are computed
by a bottom-up process, and they answer the following questions:

SUM2 maps: Is there a part-template at this location?

MAX2 maps: Is there a part-template at a nearby location?

SUMS3 map: Is there a certain composition of part-templates that form the whole template at
this location?

MAXS3 score: Is there a composite template within the whole image?

If there is such a composite template, then a top-down process retrieves the location of the
whole template, and then retrieves the locations of the part-templates, and finally the elements of

the part-templates.

Inference by recursive sum-max maps
Up-1 For j = 1,2, compute SUM2(x, y, j) using the inference algorithm of Subsection (2.4).
Up-2 For all (z,y) and j = 1,2, compute

MAX2(r,y,j) = max_ SUM2(z+Az,y+ Ay, j),j = 1,2 (37)
by < Ay < by

Up-3 For all (x,y) and j = 1,2, compute

2
SUM3(z,y) = > MAX2(x + ;,y + y;)- (38)
j=1

45

S

\
Shape Filter

umM3 @M

MAX2 <—<§—>

\

4_45—()_.

Local Maximum Pooling

SuM2 (?,_

£

[

£

Shape Filters

hh|[FEFHR IR FRE
MAX1 (49 d 49 |4 3 4 30 30 S0eee 1 o
hhplpenleed |[Hiw
Local Maximum Pooling
I
(—— e — | o | |\ S S S ——
sumt Il R R e B
(—— e | | | | S [.

Figure 54: Sum-max maps. A SUM2 map is computed for each part-template. For each SUM?2
map, a MAX2 map is computed by applying a local maximization operator to the SUM2 map.
Then a SUM3 map is computed by summing over the two MAX2 maps. The SUM3 map scores the

template matching, where the template consists of two part-templates that are allowed to locally

shift their locations.

Up-4 Compute MAX3 = max, , SUM3

(z,9).

Down-4 Retrieve (&, ¢) that achieves the maximum in Up-4.

Down-3 Retrieve (& + 2,9 + y;) in Up-3 for j = 1,2.

Down-2 Retrieve (&;,7;) so that

in the local maximization operation (37) in Up-2.

Down-1 Retrieve the perturbed elements of j-th part-template as described the inference algorithm

of Subsection (2.4).

46

In our experiment, in Step Up-2, we take b, = 20 pixels and b, = 4 pixels. Let (z1,y1) and
(z2,y2) be the central positions of the bounding boxes for the two part-templates in the original
template learned from regular bicycles. Assume z1 < x2, we let 21 «— x1 — by, T2 «— 22 + b, and

let the two part-templates shift around the new centers (x1,y;) and (x2,y2).

MAXS3 score vs Split point

240

230

20 40 60 80 100 120 140 160
Split point

Figure 55: Experiment 10.1. MAXS3 scores for different splitting points.

The MAX3 score in Step 4 measures the template matching, or the alignments of the two part-
templates to the images. This MAX3 score can be used to decide where we should split the original
bicycle template. Specifically, we can try different splitting points, and for each splitting point, we
compute the MAX3 score. Figure (55) displays the MAX3 scores for 10 different splitting points.
The result shown in Figure (53.b) is obtained at the splitting point the achieves the maximum
MAX3 score.

Figure 56: Experiment 10.1. The two SUM2 maps for the two part-templates at the optimal
splitting point.

Figure (56) displays the two SUM2 maps for the two part-templates at the optimal splitting

Figure 57: Experiment 10.1. The two MAX2 maps for the two part-templates at the optimal

point.

splitting point.

47

Figure (57) displays the two MAX2 maps for the two part-templates at the optimal splitting

point.

Figure 58: SUM3 map at the optimal splitting point.

Figure (58) displays the SUM3 map at the optimal splitting point.

Figure 59: Experiment 10.1. Superposed sketches obtained by all the splitting points.

Figure (59) displays superposed sketches obtained at all the splitting points.

In this experiment, we set the response of a basis element to 0 if it is outside the boundary
of the image. So the SUM2 maps are of the same size as the original image. If the center of a
part-template is outside the image boundary, we set the responses of all its basis elements to 0. So
the SUM3 map is also of the same size as the original image.

The recursive active basis can be considered a constellation model [18] whose constituent com-
ponents are active basis. The MAX2 and SUM2 maps may have been commonly used in part-based
models. Thanks to the work of Riesenhuber and Poggio [15], we are able to extend the SUM and

MAX operations down to the image intensities.

8.2 Account for large deformations

The recursive active basis and recursive sum-max maps can account for the existence of parts, as
illustrated in Experiment 10.1. They can also be used to deal with large deformations.

Figure (60.a) displays the image of horse that we used in Experiment 4, where we change the
aspect ratio of the horse template to fit this image. From a 2D point of view, this amounts to a large
deformation that cannot be handled by a single-layer active basis model. However, we still can use
the same method in Experiment 10.1 to split the original horse template into two part-templates,
and allow these two part-templates to move relative to each other. Figure (60.b) displays the result
of fitting the recursive active basis at the optimal splitting point. As a comparison, Figure (60.c)
displays the result using the original template. The original template does not fit the rear part of

the horse very well.

48

Figure 60: Experiment 10.2. (a) The observed image. (b) Superposed with sketch where the horse
template is split horizontally into two part-templates. These two part-templates are allowed to
move horizontally up to 10 pixels in each direction. (c) Superposed with sketch using the original
horse template. In other words, the two part-templates are not allowed to move relative to each
other.

Correlated activities. At this point, we would like to discuss the modeling of the perturbations
or activities of the basis elements in the active basis model. For simplicity, we assume that the
perturbations are independent and uniformly distributed within a small range. This leads to the
simple inference algorithm based on the sum-max maps. The computational complexity is linear
in the size of the image.

The recursive active basis can be considered a scheme to account for correlated activities, where
those elements that belong to the same part-template share a common overall movement, in addition
to their perturbations relative to the overall location of the part-template.

The method of Experiment 5 may be used to learn part-templates. We shall report our work

on this issue elsewhere.

9 Discussion

We conclude this article with some comments on our method and a discussion of several related

principles.

9.1 Simplicity

We argue that our method cannot be simpler for the vision tasks that we have studied in this
article. The model is no much more complex than a wavelet expansion, except that we add local
perturbations to the wavelet elements. The learning algorithm is no much more complex than
edge detection, except that we perform it in a parallel fashion on multiple images. The inference
algorithm only involves two consecutive operations on top of Gabor filtering. One is a local max
filtering and the other is a local sum filtering.

For unsupervised learning, such as learning from non-aligned images and local learning of rep-
resentative templates, we exploit the fact that our method can learn from single images, and the
iterative learning procedures only involve an extra step of detection or classification in addition to

the step of supervised learning. It remains to be seen how reliable it is to initialize from single

49

image learning.

The learning and inference algorithms are very easy to program. There are not many sensitive
tuning parameters, although we did tuned a couple of parameters such as the image resize factor and
the number of elements. The data and codes for reproducing the experimental results in this paper
are available from the reproducibility page. We only include some of the positive results in this
paper. To avoid partial reporting, we did summarize our negative experiences in the experiments,
although we did not document them. Because of the simplicity of the method, when things go
wrong, it is often fairly easy to see where is the problem.

Our work is a simple logical consequence if we assume the validity of Olshausen-Field theory for
V1 simple cells [14], and the Riesenhuber-Poggio theory for V1 complex cells [15]. We, of course,
are not in a position to claim any neuroscientific validity of the SUM2 maps in our method. Our
work is also a simple re-tooling of the texton model of Zhu, et al. [27].

In retrospect, we find that the following three principles provide useful insights.

9.2 Sparsity

Olshausen and Field [14] proposed this principle for understanding V1 simple cells, where a typical
natural image can be represented by a linear superposition of a small number of Gabor-like wavelet
elements at different scales, locations, and orientations, plus a small residual image. The reason
for such a sparse representation is that edges are prominent and frequently occurring structures in
natural images.

The active basis model can be considered a further sparsification. The reason is as follows.
In Olshausen-Field representation, each image is encoded by a set of locations, orientations, and
scales of wavelet elements. We can further encode these locations, orientations, and scales by an
even smaller number of templates, each being a composition of locations, orientations, and scales.
The reason for such a sparser representation is that those templates are prominent and frequently
occurring structures in natural images. In Olshausen-Field representation, we need to allow for
small residuals in image intensities. Similarly, in this template representation, we need to allow for
small residuals in locations, orientations, and scales. Such small residuals become the perturbations

in the active basis model, so that the templates are deformable.

9.3 Compositionality

S. Geman et al. [8] proposed this principle for vision. If we want a compositional representation of
image intensities and if we insist on linear representation for simplicity, then it is natural to adopt
wavelet representation because the wavelet elements are localized in both spatial and frequency
domains. The active basis model follows such a compositional scheme.

Zhu and Mumford [29] investigated the and-or graph as a recursive compositional scheme for
vision, where “and” accounts for compositions of constituent elements, while “or” accounts for
variations in the constituent elements. The active basis model is a simplest form of an and-or

graph, where “and” means composition of wavelet elements, and “or” means variations in the

50

locations and orientations of the elements. The and-or graph is a grammar that can be applied
recursively. The recursive active basis follows such a grammar.

The recursive sum-max maps is a variation of the cortex-like structure proposed by Riesenhuber
and Poggio [15]. Tt is a natural hierarchical structure for parsing an image according to the and-
or grammar. The sum maps score the and-compositions, and the max maps account for the
or-variations. After bottom-up scoring for detection and classification, the top-down retrieving
produces the parsing of the image. See also the recent work of L. Zhu et al. [26] on a recursive

compositional scheme.

9.4 Invariance

Riesenhuber and Poggio [15] proposed this principle for V1 complex cells. While the V1 simple cells
capture the essence of the image intensities via Olshausen-Field sparse coding, the local maximiza-
tion operation of the V1 complex cells filters out shape deformations, and makes the subsequent
processing invariant to shape deformations. Of course, invariance here is only approximate.

The Riesenhuber-Poggio scheme compares intensities of the MAX1 maps directly for template
matching. We modified their template matching scheme by a weighted sum of the MAX1 intensities
at highly selected locations and orientations. If the locations and orientations of the selected wavelet
elements are at the centers of the local perturbations that cause shape deformation, then hopefully,
the intensities of the MAX1 maps of these highly selected locations and orientations are more
invariant (and more indicative of the object shapes) than the intensities of other locations and

orientations.

Acknowledgement

We thank Chuck Fleming for earlier collaboration on some of the experiments. We thank Alan
Yuille, Stefano Soatto, Zhuowen Tu, and Leo Zhu for discussions. The work is supported by NSF-
DMS 0707055, NSF-IIS 0713652, ONR N00014-05-01-0543, and Keck foundation. We acknowledge
the use of data sets [24] provided by the Lotus Hill Institute, which is supported by a Chinese
National 863 grant 2006AA01Z121 and an NSFC grant 60728203.

References

[1] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IFEE Transactions on
Pattern Analysis and Machine Intelligence, 23, 681-685, 2001.

[2] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, 20, 273-297, 1995.

[3] J. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized
by two-dimensional visual cortical filters,” Journal of Optical Society of America, 2, 1160-1169, 1985.

[4] S. Della Pietra, V. Della Pietra, and J. Lafferty, “Inducing features of random fields,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19, 380-393, 1997.

o1

[6] M. Fischler and R. Elschlager, “The representation and matching of pictorial structures,” IEEE Trans-
actions on Computers, C-22, 67-92, 1973.

[6] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application
to boosting,” Journal of Computer and System Sciences, 55, 119-139, 1997.

[7] J. H. Friedman, “Exploratory projection pursuit,” Journal of the American Statistical Association, 82,
249-266, 1987.

[8] S. Geman, D. F. Potter, and Z. Chi, “Composition system,” Quarterly of Applied Math, 60, 707-736,
2002.

[9] C. Guo, S. C. Zhu, and Y. N. Wu, “Towards a mathematical theory of primal sketch and sketchability,”
International Conference on Computer Vision, 2, 1228-1235, 2003.

[10] C. Guo, S. C. Zhu, and Y. N. Wu, “Primal sketch: integrating structure and texture,” Computer Vision
and Image Understanding, 106, 5-19, 2007.

[11] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International Journal of
Computer Vision, 1, 321-331, 1988.

[12] S. Mallat and Z. Zhang, “Matching pursuit in a time-frequency dictionary,” IEEE Transactions on
Signal Processing, 41, 3397-415, 1993.

[13] J. Mutch and D. G. Lowe, “Multiclass object recognition with sparse, localized features,” Proceedings

of Computer Vision and Pattern Recognition, 2006.

[14] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a
sparse code for natural images,” Nature, 381, 607-609, 1996.

[15] M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in cortex,” Nature Neuro-
science, 2, 1019-1025, 1999.

[16] Z. Tu, “Learning generative models via discriminative approaches,” Proceedings of IEEE Computer

Vision and Pattern Recognition, 2007.

[17] P. A. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer
Vision, 57, 137-154, 2004.

[18] M. Weber, M. Welling and P. Perona, “Towards automatic discovery of object categories”, Proceedings
of Computer Vision and Pattern Recognition, 2000.

[19] A. Witkin, “Scale-space filtering,” Proceedings of International Joint Conference on Artificial Intelli-
gence, 1983.

[20] Y. N. Wu, C. Guo, S. C. Zhu, “From information scaling of natural images to regimes of statistical
models,” Quarterly of Applied Math, 66, 81-122, 2008.

[21] Y. N. Wu, Z. Si, C. Flemming, and S. C. Zhu, “Active basis as deformable templates,” Proceedings of

International Conference on Computer Vision, 2007.

[22] Y. N. Wu, S. C. Zhu, and C. Guo, “Statistical modeling of texture sketch,” Proceedings of European
Conference of Computer Vision, 2002.

[23] Y. N. Wu, S.C. Zhu, and X. Liu, “Equivalence of Julesz ensemble and FRAME models,” International
Journal of Computer Vision, 38, 245-261, 2000.

52

[24] Z. Yao, X. Yang, and S. C. Zhu, “Introduction to a large scale general purpose groundtruth database:
methodology, annotation tools, and benchmarks,” 6th International Conference on EMMCVPR, 2007.

[25] A. L. Yuille, P. W. Hallinan, and D. S. Cohen, “Feature extraction from faces using deformable tem-
plates,” International Journal of Computer Vision, 8, 99-111, 1992.

[26] L. Zhu, C. Lin, H. Huang, Y. Chen, and A. Yuille, “Unsupervised structure learning: hierarchical recur-
sive composition, suspicious coincidence and competitive exclusion,” Proceedings of Furopean Conference
of Computer Vision, 2008.

[27] S. C. Zhu, C. E. Guo, Y. Z. Wang, and Z. J. Xu, “What are textons,” International Journal of Computer
Vision, 62, 121-143, 2005.

[28] S. C. Zhu and D. B. Mumford, “Prior learning and Gibbs reaction-diffusion,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19, 1236-1250, 1997.

[29] S. C. Zhu and D. B. Mumford, “A stochastic grammar of images,” Foundations and Trends in Computer
Graphics and Vision, 2, 259-362, 2006.

[30] S. C. Zhu, Y. N. Wu, and D. B. Mumford, “Minimax entropy principle and its applications in texture
modeling,” Neural Computation, 9, 1627-1660, 1997.

53

