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Project Summary

1. Intellectual merit.

Images of natural scenes are a type of big data that are bewilderingly rich in patterns and
abundantly available. Developing statistical models and associated learning algorithms for natural
images is of fundamental importance for computer vision, and more importantly, the endeavor
has the potential to enrich our treasured collections of statistical models and expand the already
vast reach of statistical methodologies.

The PI proposes to learn compositional sparse coding models for representing natural im-
ages. The proposed models are built upon the original sparse coding framework where there is
a dictionary of basis functions often in the form of localized, elongated and oriented wavelets,
so that each image can be represented by a linear combination of a small number of basis func-
tions automatically selected from the dictionary. In our compositional sparse coding models, the
representational units are groups of basis functions exhibiting recurring compositional patterns
in terms of their spatial arrangements. These compositional patterns can be considered shape
templates. We propose unsupervised methods for learning a dictionary of frequently occurring
templates from training images, so that each image can be represented by a small number of
templates automatically selected from the learned dictionary.

The following are potential contributions of the proposed research. (1) Sparse and symbolic
representation of high-dimensional data. The proposed compositional sparse coding scheme trans-
lates a raw image of a large number of pixel intensities into a small number of templates, thus
generating a symbolic representation of the image data. Such symbolic representations can be
crucial for image understanding and classification. (2) New ground beyond Lasso and group Lasso.
In the p > n regression setting, the sparsity or structured sparsity such as group sparsity enables
us to infer the regression coefficients of the predictor vectors or regressors by Lasso or group Lasso,
assuming that the candidate regressors and the candidate groups are given. The proposed research
goes beyond inferring coefficients. It amounts to learning a dictionary of candidate groups from
the data. It also amounts to selecting the regressors that are not only sparse but also highly
patterned, where the patterns are unknown and are to be learned. (3) New objects in the sparse-
land. In wavelets sparse coding framework (sometimes referred to as sparse-land), the dictionary
of wavelets are often called atoms. The proposed research is to discover composite structures
formed by atoms, which lead to much sparser and more meaningful representations than atomic
decompositions. (4) New hierarchical and spatial models. The proposed models can be viewed as
hierarchical models that seek to model the spatial arrangements of the selected basis functions.

2. Broader itmpacts.

The proposed activities will strengthen the educational and research program in the Depart-
ment of Statistics, UCLA. Topics related to the proposed research can be incorporated into related
graduate courses. The wealth of data and code that have been posted on the reproducibility web-
pages have proven useful for training both undergraduate and graduate students. Such webpages
will continue to be enhanced and developed. The proposed research will support graduate stu-
dents. The proposed activities will provide innovative training by mixing students from different
academic backgrounds, namely, mathematics-statistics and engineering-computer science. The
PI plans to organize workshops to promote generative modeling and learning for vision, and to
facilitate the integration of research themes in statistics, applied mathematics, and computer
science.



1 Introduction

1.1 Motivation and objective

We are living in the exciting era of big data, big not only in the amount of data but also in the
dimensionality and complexity of the data. We statisticians are facing both tremendous challenges
and thrilling opportunities in developing methods and theories for learning from the big data that
arise from different disciplines. One type of big data that are bewilderingly rich in patterns and
abundantly available are images of natural scenes [60]. The objective of the proposed research is to
develop statistical models and associated learning algorithms for representing patterns in natural
images. This endeavor is of fundamental importance for computer vision, more importantly, it
shall also enrich our treasured collections of statistical models and expand the already vast reach
of statistical methodologies.
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Figure 1: Chinese characters evolved from representations of natural images of objects and scenes [40].

In each row, the first block shows a picture of the object, and the rest four blocks display the evolution of
the corresponding Chinese character over time. Left panel: bird, chicken, fish, elephant and goat. Right
panel: sun, moon, water, mountain and wood.

To be more specific, we propose to learn compositional sparse coding models for representing
natural images. As illustrated by Figure 1, the ancient Chinese developed the early form of the
Chinese characters as a coding scheme for representing natural images where each character is a
pictorial description of a pattern. The early pictorial form then gradually evolved into the form
that is in use today. The system of Chinese characters can be considered a compositional sparse
code: each natural image can be described by a small number of characters selected from the
dictionary, and each character is a composition of a small number of strokes (the strokes become
clearer in the more evolved form of the Chinese characters in Figure 1).

(b) ©

Figure 2: The Gabor wavelets are Gaussian modulated sine and cosine waves. They can serve as basis

functions that can be linearly combined to represent natural images. (a) A sample of Gabor wavelets at
different locations, orientations, and scales. (b) A Gabor sine wavelet. (¢) A Gabor cosine wavelet. The
Gabor wavelets can be truncated to have finite support (and length).

The compositional sparse coding models that we propose to develop can be viewed as mathe-
matical realizations of the coding system of the Chinese characters. In our proposed models, each



“stroke” is a linear basis function such as a Gabor wavelet [13] (see Figure 2 for an illustration),
and the images are represented by linear combinations of these basis functions. Each “character”
is a compositional pattern or a shape template formed by a group of selected basis functions.
We propose unsupervised learning methods for learning the frequently occurring templates from
training images, so that each training image can be represented by a small number of templates
automatically selected from the learned dictionary of templates.

Finding sparse representations of high-dimensional data is of fundamental importance for un-
derstanding and analyzing the data. Our proposed compositional sparse coding scheme translates
a raw image of a large number of pixel intensities into a small number of templates, thus facilitat-
ing the signal to symbol transition and giving rise to a symbolic representation of the image data
that is much sparser and more meaningful than the wavelets representation. Our preliminary
experiments show that our method is capable of learning meaningful compositional sparse code.
Experiments also show that the learned templates can be useful for image classification. For
example, they serve as meaningful “visual words” for the so-called “bag-of-words” classification
scheme.

(b) © () (e)

Figure 3: Unsupervised learning of compositional sparse code (a,b,c) and using it for recognition (d,e).

Each Gabor wavelet (17 x 17 pixels in size) is illustrated by a bar with the same location, orientation and
length. (a) Training image of 480 x 768 pixels. (b) Above: 2 compositional patterns (twig and leaf) in the
form of shape templates learned from the training image. The bounding box of each template is 100 x 100
pixels. The numbers of wavelets in the twig and leaf templates are 22 and 40 respectively, and the numbers
are automatically determined. Below: Representing the training image by spatially translated, rotated,
scaled and deformed copies of the 2 templates. (c¢) Superposing the deformed templates on the original
image. Green squared boxes are bounding boxes of the templates. (d) Testing image. (e) Representation
(understanding) of the testing image by the 2 templates.

Figure 3 displays an example from our preliminary experiments. We assume that the dictio-
nary of basis functions is given (this assumption is to be relaxed in the proposed work, where we
propose to learn basis functions as well as their grouping patterns), and they are Gabor wavelets
centered at a dense collection of locations and tuned to a collection of scales and orientations (see
Figure 2). In Figure 3, each Gabor wavelet is illustrated by a bar at the same location and with
the same length and orientation as the corresponding wavelet. The wavelets are well connected
and form clear templates. Figure 3.(a) displays the training image. (b) displays a mini-dictionary
of 2 compositional patterns of wavelets learned from the training image. Each compositional
pattern is a template formed by a group of a small number of wavelets at selected locations and
orientations. The learning is unsupervised in the sense that the image is not labeled or annotated.
The number of templates in the dictionary is automatically determined by a BIC-like criterion.
The 2 templates are displayed in different colors, so that it can be seen clearly how the spatially
translated, rotated, scaled and deformed copies of the 2 templates are used to represent the train-
ing image, as shown in (b). In (c), the templates are overlaid on the original image, where each
green squared box is the bounding box of the template. In our current implementation, we allow
limited amount of overlap between the bounding boxes of the templates. The templates learned
from the training image can be generalized to testing image, as shown in (d) and (e).



Figure 4: Unsupervised learning of 4 compositional patterns (templates) from 20 training images. The
bounding box of each template is 100 x 100.

Figure 4 shows another example from our preliminary experiments, where the learned patterns
repeat across different images.
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Figure 5: (a) An active basis model is a composition of a small number of basis functions, each is a
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Gabor wavelet in our current experiments and is illustrated by a bar with the same location, orientation
and length. Each basis function can perturb its location and orientation. (b) Supervised learning of active
basis model from aligned images. The first row displays the 9 training images. The second row: the first
plot is the nominal template formed by 50 selected basis functions. The rest of the plots are the deformed
templates matched to the images. The third row: the same as the second row, except that the scale of
the Gabor wavelets is about twice as large, and the number of wavelets is 14. The last row displays the
reconstruction of each training image by linear combination of 100 selected and perturbed basis functions
at multiple scales.

We represent each compositional pattern of basis functions by an active basis model developed
by the PI and collaborators [68], while being supported by prior NSF grants. An active basis
model is a composition of a small number of basis functions automatically selected from a given
dictionary. The selected basis functions are allowed to perturb their locations and orientations so
that the linear basis formed by the group of selected basis functions become active and the active
basis can be viewed as a deformable template [2]. Figure 5 illustrates the basic idea of the active
basis model and the supervised learning of the model from aligned images.

1.2 Statistical foundations and contributions

New ground beyond Lasso and group Lasso. Recent years have witnessed an explosion of research
activities on sparsity and structured sparsity [4, 33]. In the p > n regression setting [8], the
most popular tools for variable selection under sparsity or group sparsity are Lasso [62] (see also
[4, 3, 5, 21, 35, 63, 73, 79, 80] etc. for related work on theories and methods) and group Lasso
[70] (see also [4, 74]). Related non-convex methods include SCAD [23] and MCP [72] etc. In
the language of p > n regression, each image can be viewed as a response vector, and each basis
function in the dictionary can be viewed as a predictor vector or a regressor. In Lasso and group
Lasso, the candidate regressors and the candidate groups of regressors are given. In our proposed
work, we seek to learn the candidate groups of regressors from the training data. From a variable



selection perspective, our method amounts to selecting the regressors that are not only sparse but
also highly patterned, where the patterns are unknown and are to be discovered from the data.
Thus the proposed research has the potential to break new ground in the exciting area of sparsity
and structured sparsity.

New objects in sparse-land. The equivalence of Lasso in harmonic analysis and signal process-
ing literature is basis pursuit [10], where the basis functions are often called atoms, and the sparse
coding by the selected basis functions is called atomic decomposition [15, 18]. The basis functions
can either be learned [46, 1] or designed, such as Gabor wavelets [13], edgelets [17], wedgelets [16],
ridgelets [6], curvelets [7], and beamlets [34] etc. This atomic sparse coding framework is some-
times referred to as sparse-land. Our proposed work seeks to learn composite structures formed
by the atoms, following the compositionality principle [27, 77]. These composite structures lead
to much sparser and more meaningful representations than atomic decompositions. If the basis
functions are atoms, then their compositions may be viewed as molecules.

New hierarchical and spatial models. The proposed models can be viewed as hierarchical mod-
els. At the bottom layer, the images are represented by linear combinations of the dictionary
of basis functions. In the literature of Bayesian variable selection [28, 11, 47], the coefficients
are often assumed to be independent super-Gaussian distributions (or mixtures of Gaussian dis-
tributions). Our proposed models correct the independence assumption by modeling the spatial
patterns formed by the basis functions with non-zero coefficients.

Comparison with deep learning. The proposed models (including the multi-layer version in
subsection (4.5)) bear some similarity to deep learning [30], especially those under sparsity con-
straint [36, 39, 61, 71]. The difference is that our method seeks to learn patterned sparsity in the
linear regression. The representational units in our models are sparse compositions of selected
basis functions, where sparsity is directly built into the representational units and is achieved by
a shared variable selection scheme (or a corresponding penalty term as in subsection (4.1)). As a
result, our representational units are more explicit and interpretable, which is more in line with
statistical thinking.

To conclude, nowadays the boundaries between statistics, machine learning and signal analysis
are much more blurred than before, and what the PI proposes to do is really nothing but statistics.

2 Background: sparse coding model and active basis model

This section reviews the original sparse coding model and the active basis model in order to fix
the notation and set the stage for the proposed research.

2.1 Olshausen-Field model: learning the dictionary of regressors

Olshausen and Field [46] proposed that the role of simple cells in primary visual cortex is to
infer sparse representations of natural images. Let {I,,,m = 1,..., M} be a set of training image
patches (e.g. 12 x 12), which are two-dimensional functions defined on a certain image domain.
The Olshausen-Field model seeks to represent these images by

N

Im = Z Cm,iBi + Um7 (1)
=1

where (B;,i = 1,...,N) is a dictionary of basis functions defined on the same domain as I,,,. We
assume that the basis functions are normalized to have unit fo norm. ¢,,; are the coefficients,
and U, is the unexplained residual image. N is often assumed to be greater than the number of
pixels in I;, (e.g. N =2 x 12 x 12), so the dictionary is said to be over-complete or redundant.
The basis functions in this redundant dictionary can afford to be very specific so that the number



of coefficients (¢,,i,7 = 1, ..., N) that are non-zero (or significantly different from zero) is assumed
to be small (e.g., less than 10) for each image I,,,.

The dictionary of basis functions (B;, Vi) can be learned from the training images {I,,,m =
1,..., M} by minimizing

M N N
Z ||Im — ZCW,iBi“2 + )‘ZS(CWJ) (2)
=1

m=1 =1

jointly over (B;, Vi) and (¢, Vm, i), where S() is a sparsity inducing penalty function, and X is
a regularization parameter. Interestingly, the learned (B;) resemble Gabor wavelets in Figure 2!
In the language of regression, I,, is a response vector (e.g., 144-dimensional), and each B; is a
regressor. So (2) enables us to learn a dictionary of candidate regressors from a training sample
of response vectors.

Geometric attributes. One may assume that the basis functions in the dictionary are spatially
translated, rotated and dilated versions of one another [48], so that each B; can be written as
By 5o, where x is the location (a two-dimensional vector), s is the scale, and « is the orientation.
We call such a dictionary self-similar, and we call (z, s, @) the geometric attribute of By s o. Given
the self-similar dictionary (By s.q, V(z, s, «)), with (x, s, a) properly discretized, we seek to encode
I,, by

n
Im = Z cmvinm,ivsm,iyam,i + Um) (3)
=1

where n < N is a small number. (Zp, 4, Sm,i; @mi,% = 1,...,n) form a spatial point process.

2.2 Active basis model for shared sparse coding of aligned image patches

The active basis model was proposed by Wu et al. [68] for modeling deformable templates formed
by basis functions.

Suppose we have a set of training image patches {I,,,m = 1,..., M }. This time we assume
that they are defined on the same bounding box, and the objects in these images come from the
same category. In addition, these objects appear at the same location, scale and orientation, and
in the same pose in the images. See Figure 5 for 9 image patches of deer. We call such image
patches aligned.

The active basis model is of the following form

n

Im - Z cmviBmi‘FAxm,i757ai+Aam,i + Um7 (4)
=1

where B = (B, 5.0,,% = 1,...,n) form the nominal template of an active basis model (sometimes
we simply call B an active basis template). Here we assume that the scale s is fixed and given.
B, = (B:m—i-Aa:m,i,s,ai—s-Aam,iai = 1,...,n) is the deformed version of the nominal template B
for encoding I, where (A, i, Aa,;) are the perturbations of the location and orientation.
The perturbations are introduced to account for shape deformation. Both Az,,; and Aa,,; are
assumed to vary within limited ranges.

In the language of linear regression, the multiple response vectors {I,,} share the common set
of regressors. This is the setting of multi-task learning or support union regression [45, 41, 38|,
except that the regressors are subject to perturbations in their geometric attributes.



2.3 Shared variable selection: least squares setting

Given the dictionary of basis functions (regressors) {By s, V,s,a}, the learning of the active
basis model from the aligned image patches {I,;,} involves the selection of By, s o, and the inference
of its perturbed version By, Az, ;.s,0:+Aay, ; 0 €ach image I;,. So the problem amounts to select
a common set of regressors (up to perturbations) shared by multiple response vectors. We call
the learning as supervised, because the bounding boxes of the objects are given and the images
are aligned. See Figure 5 for an illustration of the learning results.

The shared matching pursuit algorithm is a generalization of matching pursuit [43]. It is a
greedy algorithm that seeks the maximal reduction of the following squared loss in each iteration:

n

M
Z HIm - Z Cmvini+Axm,i787ai+Aam,iH2' (5)
m=1 i=1

[0] Initialize i < 0. For m = 1, ..., M, initialize the residual image U, + I,;,.

1] i < ¢+ 1. Select (z4,q;) = argmaxy o Z%zl maxaAz Aa | (Um., BQHA%S’CHAO[)P, where
maxXAgz A is the local maximum pooling within the small ranges of Az, ; and Aayy, ;.

[2] For m = 1,..., M, given (x;, «;), infer the perturbations by retrieving the arg-max in the
local maximum pooling of step [1]: (Azp i, Atum,i) = argmaxag Aa |(Unm, BiitAz.s.ontna)|?- Let
Cmyi < <Um7 B(LZ’+ALEm’¢,S,a¢+AOLm’¢>7 and let Uy, < Uy, — Cm,in¢+Axm,i,s,ai+Aam,i-

[3] Stop if i = n, else go back to step [1].

The local max pooling in step [1] is hypothesized as the function of complex cells in primary
visual cortex [51].

2.4 Statistical modeling: non-Gaussian exponential family model

Orthogonality. Because of the arg-max explaining-away in step [2], the basis functions selected for
each deformed template B,,, = (Bmi+Amm,i,s,ai+Aam,mi = 1,...,n) usually have little correlation
with each other. For computational and modeling convenience, we may assume that these selected
basis functions are orthogonal to each other, so that the coefficient can be obtained by projection:
cmyi = (Lmy Brit Az i5,05+ Ao ;) We write Cpy = (¢, = 1,...,n). In practice, we allow small
overlap between the selected basis functions in each B,,. The orthogonality assumption shall be
relaxed in the proposed work.

Density substitution. The algorithm guided by (5) implicitly assumes that the residual Uy, is
Gaussian white noise. This assumption can be questionable because the unexplained background
in the image may contain salient structures such as edges. A better assumption is to assume
that U, follows the same distribution as that of natural images. More precisely, the distribution
of I, given the deformed template By, = (By, 1Az, 50 +Aam>? = 1,..,n), i.e., p(In | B,
is obtained by modifying the distribution of natural images ¢(I,,) in such a way that we only
change the distribution of Cp, = (cmi = (I, BritAzy i s,0i4Aam )t = 1,...,n) from ¢(Cy,)
to p(Cy,), while leaving the conditional distribution of Uy, given C,, unchanged. Here p(Cy,)
and ¢(Cy,) are the distributions of C,, under p(I,, | By,) and ¢(I,,) respectively. Specifically,
p(Ln | Bn) = ¢(In)p(Cr)/q(Cry). Such a density substitution scheme was first used in projection
pursuit density estimation [26], see also [50, 37, 78, 67].

For computational simplicity, we further assume that (¢ = (Ln, Beit Az i 5,004 Aam.i)s T =
1,...,n) are independent given B,,,, under both p and ¢, so p(I, | By,) = ¢(In) [Ti=1 pi(em,i)/a(cm.i),
where ¢(c) is assumed to be the same for i = 1,...,n because ¢(1,,) is translation and rotation
invariant. ¢(c) can be pooled from natural images in the form of a heavy-tailed histogram.

Ezxponential family model. For parametric modeling, we assume the following exponential
family model p;(c) = p(c; \;), where p(c; \) = exp{\h(|c|?)}q(c)/Z(N). h(r) is a function of the
response = |c|? that saturates for large . Specifically, we assume that h(r) = £[2/(1 + e=2"/¢) —



1]. Z(X) is the normalizing constant. u(A) = Ex[h(r)] = [ h(r)p(c; AN)de is the mean parameter.
Both Z(\) and p(A) can be computed beforehand from natural images.
The log-likelihood is

M

m=11

AT, Byt A st dai)) — 108 Z(0)] (6)
1

n

2.5 Shared variable selection: maximum likelihood setting

We revise the shared matching algorithm in subsection (2.3) in order to maximize the log-likelihood
(6) instead of minimizing the squared loss (5) as in subsection (2.3).

[0] Initialize i <— 0. For each m, initialize the response maps Ry, (z,®) < (I, By s.q) for all
(z, ).

[1] i i+ 1. Select (z;, ;) = argmax, o >0 maxaz aa b(|Rin(z + Az, o + Aa)|?), where
maxXAgz Aq 1S again local maximum pooling.

[2] For m = 1,..., M, given (z;,a;), infer the perturbations by retrieving the arg-max in the
local maximum pooling of step [1]: (AZy, i, Atuy,;) = arg maxag Aa |Rm(zi + Az, oy + Aa)|?. Let
Cmyi ¢ B (2i+ A%y 4, 0i+Aduy, i), and update Ry, (7, o) < 0if corr(By, s, Beit Avp.i,5,05 - Acm.i) >
2)/M.

e. Then compute ); by solving the maximum likelihood equation p(A\;) = M| h(|em.
[3] Stop if i = n, else go back to step [1].
In step [2], the arg-max basis function inhibits correlated basis functions to enforce the ap-
proximate orthogonality.

3 Proposed model and algorithm, with preliminary results

3.1 Compositional sparse coding model: grouping the regressors

In this subsection, we strive to write down the proposed model in a form that is analogous to the
Olshausen-Field model (3), by using compactified notation.

Compactified notation. As the first step of this exercise of compactification, let us slightly
generalize the active basis model by assuming that the template may appear at location X, in
image I,,, then we can write the representation in the following form:

n
Im = Z CmaiBXm‘f':Er‘rAJJm,i,S,O&i-‘rAam,i + Um = CmBXm + Um, (7)
=1

where By, = (BXm+ri+Arm,i,s,ai+Aam,ia i =1,...,n) is the deformed template spatially translated
to Xon, Cm = (¢myiri = 1,...,n), and Gy, Bx,, is defined to be Y1 ¢ iBX,, toi 4 Avp.i,s,00+Acm.i-
Here we no longer assume that the training images {I,,} are aligned.

By, explains the part of I,,, that is covered by By, . For each image I,, and each X,,, we
can define the log-likelihood ratio:

I.|Bx,, n
II,|Bx,) = 1ogM = Z {)\i max h(|(Tn, Bx,, ot Az.saitna) ) —1og Z(A\)((8)
q(Im) =1 Az, Ao

As the next step of this compactification exercise, in addition to spatial translation and
deformation, we can also rotate and scale the template. So a more general version of (7) is
I, = CnBx,,.s,,,An + Un, where X, is the location, S, is the scale, and A,, is the orientation
of the spatially translated, rotated, scaled and deformed template. The scaling of the template
can be implemented by changing the resolution of the original image. We adopt the convention
that whenever the notation B appears in image representation, it always means the deformed



template, where the perturbations of the basis functions can be inferred by local max pooling.
The log-likelihood ratio I(I,, | Bx,, s,.,,4,,) can be similarly defined as in (8).

Compactified representation. Now suppose we have a dictionary of T active basis templates,
{B(t),t =1,...,T}, where each B® is a type of compositional pattern of basis functions. Then
we can represent the image 1,,, by K,, templates that are spatially translated, rotated, scaled and
deformed copies of these T types of templates in the dictionary:

Km
tm
Im = Z Cm7kBA(XmY,]Z)7Sm,k7Am,k + Um7 (9)
k=1

where each Bg@kﬁmk, A, . 1S obtained by translating the template of type tj, i.e., Bt) to

location X, 1, dilate it to scale S, 1, rotate it to orientation A, s, and deform it to match L.
If the K, templates do not overlap, the log-likelihood is Z%zl Zf:ml {Z(Im ] Bt )} .

Xon kS kA,
In order to control model complexity, we attach a penalty v to each basis functkion kusedk for
representing the image I,,,. 7 can be interpreted as the cost for coding the perturbations of each
basis function from the MDL perspective [52]. It can also be viewed from the BIC perspective
[54] as compensating for the fact that we max out the perturbations instead of integrating them

out. The penalized log-likelihood is

M K
33 M 1 BE s ) =] (10)
m=1k=1

where n() is the number of basis functions in B(Y). The penalty 4 enables us to determine when
to stop the shared matching pursuit algorithm in supervised learning, so that the number of basis
functions in a template can be automatically determined.

Connection with group Lasso. In the representation (9), each Bgt(:i’;) S, ..A, . 1S @&group of basis
functions (or regressors), and the K, groups are to be selected from the collection of groups that
correspond to all possible translated, rotated, scaled and deformed versions of the compositional
patterns in the dictionary. The situation is very similar to that of group Lasso [70], which is also
about selecting groups of variables from all possible candidate groups. Our work goes beyond the
group Lasso scenario in that the collection of groups is unknown, and we learn a dictionary of
compositional patterns of these groups from training images. This dictionary then defines a large
collection of candidate groups by spatial translation, rotation, scaling and deformation.

3.2 Preliminary version of the proposed unsupervised learning algorithm

The preliminary version of our proposed learning algorithm seeks to maximize the log-likelihood
(10). It is an iterative algorithm where each iteration consists of two steps.

Step (I): Group selection — Image encoding by template matching pursuit. Suppose we are
given the current dictionary {B®) ¢t =1, ..., T}. Then for each I,,, the template matching pursuit
process seeks to represent I, by sequentially selecting a small number of templates (groups of
regressors) from the dictionary. Each selection seeks to maximally increase the penalized log-
likelihood (10).

[I.0] Initialize the maps of template matching scores for all (X, S, A,t): Sfl) (X,S,A) « (1L, |
Bg? g.4) — ntYy, This can be accomplished by first rotating the template B® to orientation A,
and then scanning the rotated template over the image zoomed to the resolution that corresponds
to scale S. Initialize k < 1.

[I.1] Select the spatially translated, rotated, scaled and deformed template by finding the

global maximum of the response maps: (X, ks S ks Am k, tm k) = g Maxx s A+ Rg,? (X,S,A).



[I.2] Let the selected arg-max template inhibit overlapping candidate templates. Let D be the
side length of the bounding box of the selected template Bg{" Z)Sm WA, . » then for all (X,S, A t),

if X is within a distance pD from X, ., then set the response Rgn) (X,S,A) « —oo. Currently we
set p = .4, so we allow only limited overlap between the templates. We shall relax this requirement
in the proposed work and pursue more rigorous methods for group selection.

[I.3] Stop if all R(t) (X,S,A,t) <0. Otherwise let k < k + 1, and go to [I.1].

The penalty v enables us to determine when to stop the template matching pursuit process,
so that the number of templates K, for encoding I,,, is automatically determined.

Step (II): Shared variable selection — Dictionary re-learning by shared matching pursuit. For
each t = 1,...,T, we re-learn B® (by selecting a small set of basis functions or regressors) from
all the image patches that are currently covered by B®.

[I1.0] Image patch cropping. For each I,,,, go through all the selected templates {B Xm ’;) S vk}

m kaAm,k ’
that encode I,,. If t,, ;, = t, then crop the image patch of I,, (at the resolution that corresponds
(tm,k)

to Sp k) covered by the bounding box of the template By™ o esSomes A

[I1.1] Template re-learning. Re-learn template B® from all the image patches covered by B(*)
that are cropped in [I1.0], with their bounding boxes aligned. The learning is accomplished by
the shared matching pursuit algorithm of subsection (2.5).

Random initialization. The learning algorithm is initialized by learning each B® from image
patches that are randomly cropped from {I,,,}, so these initial templates are rather meaningless.
Meaningful templates emerge very quickly after a few iterations.

Figure 6 illustrates the learning of the maple leaf template from the training image shown in
Figure 3. Figure 6.(a) traces the template of maple leaf learned over the first 7 iterations of the
learning algorithm. (b) shows the process of shared matching pursuit for learning this template

in the last (10th) iteration, where the constituent basis functions are sequentially added.

AR A AR

Figure 6: (a) Template of leaf learned in the first 7 iterations of the unsupervised learning algorithm. (b)

In each of iteration, the shared matching pursuit process selects the basis functions sequentially to form
each template. The sequence shows the process selecting 1, 3, 5, 10, 20, 30, 40 wavelets to form the leaf
template in the last (10th) iteration.

Dictionary size. In order to determine the number of templates in the dictionary, T, we adopt
an adjusted BIC-like criterion [54, 25]:

Kom ) 1 X M
Z Z 1T | BY s, a) —n99] =5 3 n®log 3 Ko, (11)
m=1k=1 t=1 m=1
where (§ is a ratio that discounts the overlap between the selected templates {B bm, IZ)Sm oA k}

We currently define it as the number of pixels actually covered by the selected templates ‘and the
sum of the numbers of pixels of these templates.

3.3 Preliminary results on unsupervised learning

Figure 7 shows an example of selecting the number of templates T in the dictionary. The first
image is the training image. The remaining four blocks display the learned dictionaries as well as
the representations of the training image using the learned dictionaries. The numbers of templates
in the dictionaries are respectively 1, 2, 3, and 4. Just as in Figures 3 and 6, each basis function
or wavelet is illustrated by a bar at the same location and orientation, and with the same length



(a) BIC = 1386 | (b) BIC = 1951 | (¢) BIC = 1832 | (d) BIC = 1819
Figure 7: The adjusted BIC computed for different numbers of templates (1-4) in the dictionaries. The

size of templates is 100 x 100. The allowed range of scale change is {.8,1,1.2} of the original image. The
templates are allowed full range of rotation. The maximal number of basis functions in each template is
40 and the actual number is automatically determined.

Figure 8: flowers, leaves and ivy wall. Parameters are the same as in Figure 7.

as the corresponding wavelet. All the templates are of the size 100 x 100 pixels. We also display
the adjusted BIC criterion for each learned dictionary. Figures 8 to 10 show more examples of
representing natural images.

Better “words” for classification. The learned templates can serve as the visual words in
the “bag of words” scheme [12] for image classification. Our preliminary results show that the
learned templates achieve better classification performance than the codebooks learned based on
the popular SIFT features [42]. Our current classification results is close to the state of art for
the Caltech 101 data set [24].

More results and details of preliminary experiments can be found in our reproducibility page:
http://www.stat.ucla.edu/~ywu/ABC/ABC.html

4 Planned research activities

We shall continue to experiment with the model and algorithm described in the previous section.
The PI proposes to investigate the following issues. (1) The effect of the penalty term - on
controling the model complexity. (2) Selection of the template size and image resolution, in
addition to the dictionary size. (3) Integration of image segmentation into dictionary learning.

We shall also explore more rigorous learning methods without making simplified assumptions
such as approximate orthogonality of the deformed templates and limited overlap between the
selected templates.

4.1 Planned activity 1: two-way group Lasso for patterned variable selection

An interesting feature of the unsupervised learning algorithm in the previous section is that both
the image encoding step (I) and the dictionary learning step (II) are generalizations of matching
pursuit. In fact, the iterative learning algorithm can be viewed as highly patterned variable
selection, except that the patterns are unknown)
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Figure 10: Horse; cat faces (number of training images is 89).

For simplicity, let us assume that the templates can only spatially translate (without rotation
and dilation). Let us also ignore the perturbations of the basis functions at this stage. Then
according to our compositional sparse coding model, each image I, is a linear combination of K,
templates:

Km Km n(tk)
Z t Z t
k=1 k=1 i=1 Lo

where template k is a spatially translated version of a template of type t; in the dictionary
{B® t = 1,..,T}. Each template B® is a group of n® basis functions (regressors): B(®) =

(Bz(_t) aamt =1, n®). If we spatially translate B®) to location X, then Bg? = (B 0,1 =

Xergt),s,a
1,...,n®). Recall that we fix the scale s.

Compared to the original sparse coding model I, = > ¢, iBy, s.0; + Um, (12) is highly
patterned variable selection: the selected regressors form K, groups that exhibit T" types of
recurring compositional patterns in their spatial arrangements.

We can solve this patterned variable selection problem by a highly stylized Lasso, which we
call two-way group Lasso:

M:

Z Z Z cmtX—i—z:aBX—i-wsaH (13)

t=1 X€Dm (z,a)€Dyg

> lemextaal (14)

1 X€Dp (z,a)€Do

Z mtX—I—za (15)

1X€Dm \ (z,0)€Do

M
\JZ Z C?n,t,X—i—z,a‘ (16)
(z,a)€Dyg

m=1 XEDm

R({cm,t,X-l-cC,a?vmat7X7x7a}) =

3
I

+

3
M=~
MH

1t

3
[

i
M=
M=

1t

M= 1

+ 72

o~
I

1

In (13), D,, is the domain of image lattice of I,,,, which contains the locations of all the candidate
templates (groups). Dy contains all the candidate basis functions (regressors) in each template,
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where each basis function is indexed by its location x and orientation a (scale s is fixed). Dy
is centered at origin. (14) is a generic sparsity term for the selected basis functions. (15) is the
group sparsity that encourages encoding each I,,, by a small number of templates (groups). The
grouping (inside the square root sign) is within the same translated template. (16) is the shared
variable selection sparsity that encourages each template in the dictionary to have a small number
of basis functions. The grouping is across different images and locations that are explained by the
same template in the dictionary. It is multi-task learning or support union regression [45, 41, 38|.

After minimizing R (with vy, 71, 72 carefully tuned), the sparsity pattern caused by (15)
produces encoding of I, by a small number of templates, similar to template matching pursuit.
The sparsity pattern caused by (16) gives us the T' templates in the dictionary, similar to shared
matching pursuit. Of course, in real applications, we shall also add back the rotation and scaling
of the templates, as well as the perturbations of the basis functions.

We shall study the algorithmic issues regarding the minimization of R. By using the squared
loss in (13), we assume Gaussian white noises for U,,. For this assumption to approximately
hold, we need to whiten I, before learning. We shall also consider the non-Gaussian models as
in subsections (2.4) and (2.5).

4.2 Planned activity 2: Bayesian variable selection for patterned sparsity

We shall also study the model (12) in the framework of Bayesian variable selection [28, 11, 47].
)

To that end, we need to define two sets of indicators for variable/group selection. One is 57(2 ¥

for group selection. If 57(7? y = 1, then the template B is active at location X in image I,,.

(t) ) _

Otherwise & (t% y = 0. The other set of indicators is 7z,o for shared variable selection. If 1z o = 1,

m
then the basis function B, g is included in template B®. Otherwise ng(f)a = 0. We still have the

linear regression model as in (13):

T
Im = Z Z Z Cm,t,X—i—az,aBX—i—x,s,a + Um; (17)

t=1 X€Dm (z,0)€Dg
where the coefficient ¢, ¢, x 42, = 0 if either 67(7?){ =0or ng(f)a = 0. Otherwise, if both 552))( =1and
ng(ctzx =1, then the coefficient has a prior distribution ¢, ¢ x 42,0 ~ N(O, 7'2). We assume the white
noise model for residual: U, (x) ~ N(0,0?) i.i.d. The prior distribution for 57(7?  is Bernoulli(py).

The prior distribution for ng(f)a is Bernoulli(pz). The posterior of ((55? X ng(gf)a, Cm,t, X+x,a) Can be

sampled by MCMC. 55? x gives us the image encoding by templates, similar to template matching
(t)

pursuit. 7z o gives us the basis functions in each templates, similar to shared matching pursuit.

We shall study the design of efficient MCMC for Bayesian posterior sampling, for instance,
by modifying the PI's recent work [9]. We shall also study non-Gaussian models for U, and
Cmt, X +az,0 88 in subsections (2.4) and (2.5).

4.3 Planned activity 3: active factor analysis — learning regressors

In the active basis model, we assumed that the dictionary of the candidate basis functions (re-
gressors) is given. The PI proposes to learn basis functions from the training data, and we call it
active factor analysis (or active component analysis).

We first consider the supervised learning of a single active basis model from aligned images.
The model is I, = Y1 ¢ iBi(Ami) + U, where B = (B;,i = 1,...,n) is a set of unknown
basis functions, and B;(A,,;) denotes the basis function obtained by perturbing the location
and orientation of B; by A,,;, which encodes the perturbation of B; in image I, and which is

12



restricted to limited range. We assume locality and sparsity directly: each B; is locally supported
and centered at x;, where (z;,i = 1,...,n) form a regular grid in the image domain, with n small.
We can learn B = (B;) by minimizing Z%:l 1L — 30 miBi(Am ) ||? jointly over (i, Am.i)
and B = (B;). The computational scheme of K-SVD [1] may be employed.

We can also learn a dictionary of active basis models {B(*) = (Bi(t),z' =1,.,n),t=1.,T}
in unsupervised fashion by minimizing

M M T
ZHI Z Z Zcm,t,Xz XAmth 2+VZZ Z
m=1

t=1 XeD,, i=1 m=1t=1 XeD,,

where Bi(t) (X, Apyt,x i) is to spatially translate the i-th unknown basis function in template ¢, i.e.,

Bi(t), to location X and perturb it by A, ; x ;. Again we can treat this problem in the Bayesian
(t)

variable selection framework by introducing the selection indicator 5m7 b%

4.4 Planned activity 4: combining generative and discriminative learning

Tl By R T ORR

,\. P v e \ v g k4

Figure 11: Generative vs discriminative learning. In each block, the template on the left is learned
generatively from positive images by shared matching pursuit. The template on the right is learned
discriminatively from both positive and negative images by Lasso-logistic regression, where each template
consists of selected basis functions with positive coefficients \;.

In supervised learning, we can also train the active basis model, i.e., selecting the basis
functions B = (By, s,a;5% = 1,...,n), by discriminative learning. Let S, be the set of posi-
tive training images, and S_ be the set of negative training images, and let y,, € {+1,—1}
be the class label of image I,,. Then according to the non-Gaussian exponential family model
in subsection (2.4), p(ym | In) follows a logistic regression with coefficients ();) and variables
(maxaz, Aa 2| (Lm, Br;+Azsaitaa)?)). We can select B = (By, 54,) by fitting ¢;-regularized
(Lasso) logistic regression.

Figure 11 displays the templates learned by the shared matching pursuit algorithm (gener-
ative) and the Lasso-logistic regression (discriminative). An interesting observation is that the
generative templates are much cleaner, but the discriminative templates give better classification
performances on testing data.

We shall compare the discriminative and generative learning empirically and theoretically [20].
For instance, we shall examine the performance of discriminative learning in unsupervised setting.
The PI also proposes to combine generative and discriminative learning in supervised setting by
minimizing

R({Az,05 Cmza) = Zlog (1 +exp{— ymz)\ma max h(| (L, w+Awsa+Aa>‘2)

+ Z HI Zcm,x,aBa:+Am,s,a+AaH

meSy Z,o
+ M )‘920,04 + 72 Z C?n,x,a' (19)
meS4

It is again multi-task learning [45, 41, 38]. The last term in (19) ties the variable selection in
discriminative and generative learning. We shall also study this combination in unsupervised
setting.
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4.5 Planned activity 5: hierarchical and spatial modeling

e
Bljo~

Figure 12: Supervised learning of template of tandem bike. We first learn overlapping part-templates,

and then select some of them (with bounding boxes) according to their log-likelihood scores (indexed by
color).

We can also learn multi-layer compositional sparse coding models, where each template is a
deformable composition of part-templates, and each part-template itself is a deformable composi-
tion of a number of basis functions. Figure 12 illustrates the basic idea of supervised learning. We
can combine it with template matching pursuit for unsupervised learning. We can also modify
the two-way group Lasso objective function in subsection (4.1) or the Bayesian variable selection
model in subsection (4.2) for learning hierarchical structures. For structural texture images, such
as brick wall and ivy leaves, we shall also consider modeling the spatial arrangements of the
templates (groups of regressors).

4.6 Planned activity 6: theoretical analysis

We shall study the performance of the two-way group Lasso in subsection (4.1) in terms of
estimation accuracy [3, 5, 73] and more importantly variable selection accuracy [75, 63]. Most
of Lasso analyses in the literature assume independent sub-Gaussian errors. We shall study
dependent super-Gaussian errors, which is a more realistic assumption for Up,.

In a recent paper by Wei Biao Wu and the PI [66], we analyzed the performance of Lasso under
dependent super-Gaussian errors by generalizing the Nagaev inequality [44] to the weighted and
dependent case [65]. The original inequality is as follows. Let X7, ..., X;, be mean 0 independent
random variables, and S, = > i'; X;. Further assume that X; has finite ¢-th moment, i.e.,
1 Xilly = [B(X:|9Y9 < 00, ¢ > 2, for i = 1,...,n. Let pn, = S7 ;1 E(|X;]?). By Corollary 1.7 in
Nagaev (1979) [44], for = > 0, the tail probability

P(|Sn| > 2) < (1+2/q) pnq/z? + 2exp{—cqx2/,un,2}, (20)

where ¢, = 2e79(q + 2)~2. This is a very sharp inequality under polynomial moment condition.
The PI plans to extend (20) to two-dimensional dependent case and use it to analyze the two-way
group Lasso in subsection (4.1).

4.7 Timeline and reproducible research

Year 1: Finish coding and obtain initial experimental results. Year 2: Conduct extensive experi-
ments on large data sets, and apply the learning results to applications such as object detection,
classification, as well as image compression (due to space limit, we have not discussed these ap-
plications in detail, but we will definitely work on them). Year 3: Further extend the proposed
methods and identify more applications, and try to obtain state of art performances.

The PI has been working hard on reproducible research. The reproducibility webpages contain
a wealth of data and code. The PI will continue to adhere to the principle of reproducible research
[19], by posting all the data, code and results on the reproducibility webpages.
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5 Prior NSF support related to this proposal

NSF DMS: Statistical Modeling and Learning in Vision, 07/01/10 - 06/30/13, PI Wu, co-PI Zhu.
Much of our work on active basis model and the preliminary results reported in this proposal
are supported by this grant. The following are specific results. (1) Learning active basis model
for object recognition [68, 55]. (2) Modeling geometric shape motifs and curves by active basis
model [59, 32]. (3) Hybrid image templates that combine sketches and textures [57]. (4) Bayesian
variable selection by stochastic matching pursuit [9]. (5) Learning compositional sparse coding
for natural images [31].

NSF IIS: Learning and Inference in And-Or Graphs for Image Understanding, 08/01/10-07/31/13,
PI Zhu, co-PI Wu. This grant supports work on learning hierarchical models in the form of and-or
graphs and developing inference algorithms. The following are specific results. (1) Bottom-up
and top-down inference processes in and-or graphs [64], as well as fast MCMC algorithms for
computing multiple solutions in graphical models [49]. (2) Learning and-or templates [58] and
animated pose templates [69] for object and action recognition. (3) Image parsing by stochastic
scene grammar [76]. (4) Intractability in motion data [29].

6 Educational activities and broader impacts

The PI is part of the vision group in UCLA Department of Statistics. The other two faculty
members of that group are Song-Chun Zhu and Alan Yuille.

The PI is currently supervising five Ph.D. students. Two of them are working with the PI
directly on the proposed project. They mingle with the large number of students of Zhu and
Yuille. The proposed activities will provide training opportunities for students from different
backgrounds (math-statistics and CS-engineering) to learn, develop and apply modern statistical
methodologies to big data analysis such as vision.

The PI has been teaching the graduate courses STAT 200AB and undergraduate courses STAT
100AB on probability and statistics. The ideas of templates and template matching scores provide
intuitive examples of statistical models and likelihood scores. The PI will continue to channel
the research results obtained under NSF support to his teaching. Zhu has been teaching STAT
232AB (cross-listed as CS262AB) on vision and imaging science. Part of our joint work has been
incorporated into the courses. The proposed research shall help to further enhance these courses.

For the past few years, the PI has participated in the Cross-disciplinary Scholars in Science
and Technology (CSST) program jointly sponsored by UCLA and elite universities in China to
train undergraduate students during their summer visits to UCLA. The PI has worked with
undergraduate students Yulong He (in 2008, now at Georgia Tech), Zhuoliang Kang (in 2009,
supervised by Yuille, now at USC), Ruixun Zhang (2010, now at MIT) and Shuhan Liang (2012,
now a senior in Zhejiang University) on various aspects of the PI’s research supported by NSF.

The PI has been working hard on reproducible research and has released a wealth of data and
code on his reproducible webpages, such as http://www.stat.ucla.edu/~ywu/ActiveBasis.html.
See more on data management plan.

The PI will be organizing a session on statistical modeling and learning in vision in the 2013
Spring Research Conference on Statistics in Industry and Technology, to be held from June 20 to
22, 2013 in UCLA. The PI plans to organize workshops on generative models in vision together
with Zhu, in association with computer vision conferences.

The PI is currently serving as a co-PI in the ONR MURI project: Knowledge Representation,
Reasoning and Learning for Understanding Scenes and Fvents. Led by Zhu, this project involves
researchers from UCLA, Caltech, Berkeley, Stanford, MIT, and Brown. Each year, there is a
meeting in UCLA where the Pls report on their progresses. This provides a good venue to expose
the PI’s research results, in addition to regular publications in journals and conferences.
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