
Describe the major findings resulting from
these activities

During the past year, our work has been focused on the active basis model and its layered
hierarchical extensions. We have made interesting progresses. We shall first remind the reviewer
the basic idea of the active basis model. Then we shall report our major findings.

(a) (b)

Figure 1: (a) An active basis template B = (Bxi,s,αi , i = 1, ..., n) of a deer, where each Gabor
wavelet element Bxi,s,αi is illustrated by an elongated ellipsoid. An element Bxi,s,αi (black ellipsoid)
can slightly shift its location and orientation and change to Bxi+∆xm,i,s,αi+∆αm,i (blue ellipsoids)
for coding image Im. (b) The elements of the active basis B are shared by all the training images
{Im,m = 1, ...,M} of deer, subject to local perturbations or activities (∆xm,i, ∆αm,i, i = 1, ..., n)
that deform the active basis template B. The elements are selected in the order of the Kullback-
Leibler divergence between the foreground distribution pi of the Gabor filter responses pooled from
training images of deer, and the background distribution q pooled from the two natural images of
rural and urban scenes.

The active basis model is based on the following linear regression model,

Im =
n∑

i=1

cm,iBxi+∆xm,i,s,αi+∆αm,i + Um, m = 1, ...,M, (1)

where {Im,m = 1, ..., M} is a set of training images, initially assumed to come from the same object
category at the same scale and pose. Each Im is represented as a linear superposition of a set of
basis elements that are perturbed versions of (Bxi,s,αi , i = 1, ..., n), where each Bxi,s,αi is a localized,
elongated and oriented Gabor wavelet element localized at location xi, scale s, and orientation αi.
For each image Im, Bxi,s,αi is perturbed to Bxi+∆xm,i,s,αi+∆αm,i to account for shape deformation.
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cm,i is the coefficient of the perturbed basis element, and Um is the unexplained residual image. The
set of basis elements B = (Bxi,s,αi , i = 1, ..., n) are selected from a dictionary of Gabor wavelets. B
can be considered a deformable template.

For statistical modeling, we put non-Gaussian probability distributions on cm,i and Um, and we
put uniform distributions on the activities of the basis elements (∆xm,i, ∆αm,i, i = 1, ..., n), where
the activities are assumed to be restricted within a local range. Figure (1) illustrates the active
basis model and the scheme for learning the model by selecting the basis elements.

We can generalize the model to incorporate Gabor wavelets at multiple scales s. We can also fit
the model to training images {Im} where the objects may appear at different locations and scales
in the training images.

1 Mixture of active basis models

The training images may be a mixture of different categories or poses, so we should learn multiple
active basis models from the training images while separating them into different clusters. We can
fit a mixture of active basis models by the EM algorithm, where the M-step learns different active
basis templates for different clusters based on the E-step soft classification. This is an example of
the so-called unsupervised learning.

Figure 2: Fitting mixture model by EM. In the templates, each selected Gabor wavelet element is
depicted by a bar at the same location, orientation and scale as the element. Number of images:
Cat-cattle-wolf-bear: 320. Horse: 188. Fashion: 57.

Figure 3: EM mixture. Top row is overall clustering: fitting a mixture model to 500 MNIST images,
with the number of clusters set at 10. Bottom row is within digit clustering: fitting a mixture model
to 100 or 200 MNIST images from each digit category. Number of clusters is set at 2.

We continue to work on the EM algorithm for mixture model, and our experiments suggest that
it is possible to learn multiple active basis templates from training images in an unsupervised man-
ner. Figures (2) and (3) display some examples of EM clustering, initialized by random clustering.
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It is interesting to see that our method can separate the handwritten digits images of the 10 digits.
We are currently working on scaling up the experiments.

2 Comparing generative and discriminative approaches

The active basis model can be learned from roughly aligned images. Figure (4) displays the learned
templates from various training sets.

Figure 4: Active basis template (left) and adaboost template (right). Number of elements, number
of positives, and number of negatives: Car: 60, 37, 1065. Fashion: 50, 15, 1147. Deer: 50, 9, 1138.
Horse: 40, 280, 1511. Cat: 60, 89, 1493. Wolf: 60, 53, 1493. Butterfly: 50, 223, 1004. Cow: 40,
12, 1241.

One can also train the model discriminatively using the adaboost method with weak classifiers
based on thresholding the local maxima of the filter responses, where the threshold is to be selected
at each step of adaboost from a grid of 50 equally spaced values. Figure (4) displays the adaboost
templates alongside the active basis templates. For each experiment, both templates are learned
from the same positive training set with the same number of elements and under the same parameter
setting.

The learning of active basis template does not require negative training images, except a one-
dimensional marginal histogram pooled from two background images. It is therefore much faster
than adaboost. The 1000+ negative image patches for training adaboost templates are randomly
cropped from more than 200 large natural images at multiple resolutions. The adaboost learning
is initialized from balanced weights, i.e., the total weights for positive images and negative images
are both 1/2.

In general, the active basis template is cleaner than the adaboost template. The active basis
model is a generative model based on a linear additive structure. Adaboost is a discriminative
method. In the adaboost mehtod, once a basis element Bi is selected, the training examples are re-
weighed to neutralize Bi. In contrast, in the active basis model, once a basis element Bi is selected,
the residual images Um is updated to Um ← Um − cm,iBxi+∆xm,i,s,αi+∆αm,i , in order to neutralize
Bi. We implemented an approximated version of this updating. In the generative learning of the
active basis template, there is no re-weighing of the training examples, and therefore, there is no
loss of effective training examples.
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Figure 5: Recursive sum-max maps. The SUM2 maps score the matching of the shape motifs.
The MAX2 maps are obtained by local maximum pooling of the SUM2 maps. The SUM3 map
scores the matching of the shape script template.

We are currently working on a theoretical investigation of this issue. The active basis model is
a very good example for revealing the difference between generative approach and discriminative
approach, which is a fundamental problem in machine learning.

3 Shape script model

The wavelet representations take advantage of the fact that natural images or images of geometric
shapes mostly contain edges at different scales. The question is: What is beyond these wavelet
elements? In an analogy to language, if these elements are “letters,” then what are the “words” so
that these “words” lead to even sparser representations?

We propose a shape script model as a highly sparse and symbolic representation of images
based on elementary geometric shapes or shape motifs, such as line and curve segments, parallel
bars, angles and corners, and ellipsoids. These shape motifs may change their overall geometric
attributes to account for large scale shape deformation. Each shape motif can be represented by
an active basis model, so that the shape motif can deform to fit the image data.

Recall that an active basis model can be written in the following form

Im =
n∑

i=1

cm,iBxm,i,s,αm,i + Um = CmBm + Um,

where Bm is a deformed template that is composed of Gabor wavelet elements. The shape script
model is a hierarchical recursion of the above model. It is a composition of K shape motifs which
are themselves active basis models:

Im =
K∑

k=1

Cm,kB(tk)
xm,k,sm,k,ρm,k,αm,k

+ Um, (2)
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where tk is the type of the k-th shape motif (e.g., ellipsoid, angle, parallel bars, etc.), which
is endowed with hyper-parameters, such as the overall location x, scale s, aspect ratio ρ and
orientation α. Similar to the active basis, we may allow perturbations of these hyper-parameters,
and the perturbations can be quite large because the sizes of the shape motifs are much larger than
the Gabor wavelets. Such perturbations cause global deformations of the shape motifs, so that the
model is capable of representing large deformations and articulations of object shapes. In addition,
on top of the hyper-parameters, we also allow perturbations of the location, scale, and orientation
parameters of the Gabor elements that belong to each shape motif. This causes local deformations
of shape motifs. So model (3) is a recursive compositional model.

Figure 6: Detecting the objects in the testing images using the designed shape script template.

We can illustrate shape script by a simple experiment of detecting egrets from testing images.
We design the shape script template for egrets. The detection process is illustrated in Figure (5)
where the shape script template consists of four shape motifs: one ellipsoid for the body, two
parallel bars for the neck, and one angle for the beak.

In the current implementation, we assume the following model for each testing image I:

I =
K∑

k=1

CkB
(tk)
x+xk+∆xk,sk+∆sk,ρk+∆ρk,αk+∆αk

+ U,

where K = 4 is the number of shape motifs, tk ∈ { ellipsoid, parallel bars, angle } indexes the
type of motif k, (xk, sk, ρk, αk) are the location, scale, aspect ratio, and orientation of the k-th
shape motif. In this experiment, we design the shape script template by giving the values of the
parameters of the four shape motifs. Given the shape script, we will estimate x, the location of
the object in the testing image I, as well as the deformation of the template, i.e., (∆xk, ∆sk, ∆ρk,
∆αk, k = 1, ..., K).

The log-likelihood of x is computed by

l(x) =
K∑

k=1

max
(∆x,∆s,∆ρ,∆α)

[I,B(tk)
x+xk+∆x,sk+∆s,ρk+∆ρ,αk+∆α], (3)
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where [I,B(tk)
x+xk+∆x,sk+∆s,ρk+∆ρ,αk+∆α] is the log-likelihood resulting from matching shape motif k.

Equation (3) can be implemented by a recursive structure of sum-max maps illustrated in
Figure (5). In this recursive cortex-like structure, the SUM2 maps score the matching of the shape
motifs. The MAX2 maps compute the local maxima of the SUM2 maps. The local maximization
computation estimates the shape deformation (∆xk, ∆sk, ∆ρk, ∆αk, k = 1, ...,K). The SUM3
map scores the overall matching of the shape script template. After detecting the overall location
of the object, a top-down process then retrieves the arg-max of the local maximization computation
in MAX2 and MAX1, so that we can deform the shape script template to sketch the image.

Figure (6) displays some examples of detecting egrets by the designed shape script template
using the recursive sum-max maps. For each testing image, we superpose the deformed template
obtained by the aforementioned top-down retrieval process, where the deformation involves chang-
ing the parameters of the shape motifs as well as the parameters of the Gabor wavelet elements of
the shape motifs. Because we allow big changes in the parameters of the shape motifs, the shape
script model can account for large deformations, articulations, and pose changes. The SUM3 scores
of the detected objects are generally higher than those of natural background images.

We are currently working on designing a dictionary of shape motifs, and learning the shape
script templates from training images by selecting the shape motifs from the dictionary.

The shape script model is a layered hierarchical extension of the active basis model. The SUM2
maps may correspond to the functions of neurons in V2 area of the visual cortex. The shape script
model may well be the next step beyond wavelet representations.

The shape script model also reveals a general principle for layered hierarchical model for visual
cortex. The basic idea is that after we obtain a sparse coding of the original data, we need
to continue to pursue further sparse coding of the attributes of the sparse coding elements. This
naturally leads to a higher layer of sparse coding. The residuals in coding the attributes correspond
to the activities in the active basis model. This suggests that active basis model may be an inevitable
building block in a hierarchical representation of natural images.

4 Active plates model

Besides the shape script model, we have also worked on another layered hierarchical extension of
the active basis model. We call this model the active plates model. In this model, each template is a
composition of a number of partial templates or plates. These partial templates or plates are allowed
to shift their overall locations, scales and orientations to account for large shape deformation. Each
partial template or plate is represented by an active basis model to account for more local shape
deformation. The partial templates can be learned from training images. Currently we allow the
partial templates to have some overlap with each other, so that this redundant representation is
immune to occlusions.

Figure (7) illustrates the basic idea. The plot on the left displays an array of partial templates
learned from the images of cat heads, where each learned partial template carries a log-likelihood
score. The plot on the right displays some of the training images and their sketches by the active
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Figure 7: Active plates model. Left: the learned partial templates with their log-likelihood scores.
Right: some training images and the matched templates.

plates model. It is clear that the active plates model is flexible enough to account for shape
deformations in this example.

We are currently working on unsupervised learning of a dictionary of partial templates from
non-aligned training images. The learned partial templates can then be composed into active plates
models.

In addition to the above findings, the PI and collaborators have worked on a stochastic matching
pursuit algorithm for variable selection in linear regression. The co-PI (Zhu) and a student (Hu,
W.) have extended the active basis model to learning three-dimensional templates. The co-PI (Zhu)
and another student (Wu, T.) have also studied the bottom-up and top-down inference processes,
which are partially based on the active basis models.

5 Reproducibility

The code and data sets for reproducing the above findings can be downloaded at

http://www.stat.ucla.edu/~ywu/AB/ActiveBasisMarkII.html
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