
Describe the major findings resulting from
these activities

During the past year, we have been focusing on further developing the active basis model for visual
patterns. We shall briefly review the model, and then we shall report our major findings.

1 The active basis model

Figure 1: The active basis model. Each basis element is illustrated by a thin ellipsoid. Each element of the
template is allowed to perturb its location and orientation to sketch the image.

The active basis model can be written in the following compact form,

Im =

n∑
i=1

cm,iBxi+∆xm,i,s,αi+∆αm,i + Um, m = 1, ...,M, (1)

where {Im,m = 1, ...,M} is a set of training images. The objects in these images are assumed to
come from the same category and in the same pose, and they appear at the same location, scale and
orientation in the training images. Such images are said to be aligned, and the learning in this setting
is called supervised learning. Each Im is represented by a linear superposition of a set of basis ele-
ments that are perturbed versions of (Bxi,s,αi , i = 1, ..., n), where each Bxi,s,αi is a localized, elongated
and oriented Gabor wavelet element localized at location xi, scale s and orientation αi. For each im-
age Im, Bxi,s,αi is perturbed to Bxi+∆xm,i,s,αi+∆αm,i to account for shape deformation, where ∆xm,i

and ∆αm,i are perturbations or activities in location and orientation respectively. cm,i is the coefficient
of the perturbed basis element, and Um is the unexplained residual image. The set of basis elements
B = (Bxi,s,αi , i = 1, ..., n) are selected from a dictionary of Gabor wavelets. B can be considered a
deformable template, and Bm = (Bxi+∆xm,i,s,αi+∆αm,i , i = 1, ..., n) is the deformed template for repre-
senting Im. We assume that the scale s is fixed and known.

Figure (1) illustrates the model, where each Gabor wavelet element Bxi,s,αi is illustrated by a thin
ellipsoid, which is allowed to perturb its location and orientation. For statistical modeling, we assume
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(cm,i, i = 1, ..., n) and Um follow certain non-Gaussian distributions. The distribution of Im given Bm is
in the form of an exponential family model.

The learning involves selecting (Bxi,s,αi , i = 1, ..., n), or more specifically ((xi, αi), i = 1, ..., n), to
form the template B. The learning also involves estimating the parameters in the exponential family model.
The learning is based on maximum likelihood. After learning the template, we can use the learned model
to detect objects in testing images by likelihood-based template matching. This is often called inference in
machine learning literature.

In both learning and inference, we need to estimate the perturbations or activities in location and orien-
tation (∆xm,i,∆αm,i), which are treated as hidden variables. Given the template B, they can be inferred
by a local maximization operation.

2 Learning with unknown locations, scales, orientations and left-right flips

We have generalized the learning algorithm for the situation where the objects may appear at different
locations, scales, orientations and left-right flips in the training images. Such images are often called non-
aligned. We can extend the basic model (1) to model non-aligned images. For simplicity, suppose only the
location of the object is unknown, then the model is of the following form:

Im =
n∑
i=1

cm,iBx(m)+xi+∆xm,i,s,αi+∆αm,i
+ Um, m = 1, ...,M, (2)

where x(m) is the unknown location of the object in image Im. Model (2) can be further extended to
incorporate other unknown variables.

The learning can be accomplished by a EM-like algorithm, which iterates the following two steps: (1)
Given the current template, infer the unknown location, scale, orientation and left-right flip of the object
in each training image. This enables us to align the images. (2) Given the inferred locations, scales, etc.,
re-learn the model using the basic learning algorithm from the aligned images.

This is a continuation of our work presented in our Statistical Science paper. In comparison to our
previous work which allows unknown locations and scales of the objects, we now also allow the objects to
appear at unknown orientations and left-right flips. We have done extensive experiments with the current
learning algorithm. As a matter of fact, we have built a small library of more than 130 templates learned
from non-aligned training images.

Figures (2), (3) and (4) show some of the examples of learning man-made objects, animals and birds,
and leaves and flowers. Our experiments show that the model is capable of representing many natural or
man-made objects.

The following webpage contains the code and data for this project:

http://www.stat.ucla.edu/∼ywu/AB/templates.html
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Figure 2: Learning from non-aligned images. In each row, the first plot shows the learned template, where
each basis element is illustrated by a bar. The remaining plots show a few of the training images accompa-
nied by the deformed templates that are matched to them.

Figure 3: Learning from non-aligned images. In each row, the first plot shows the learned template, where
each basis element is illustrated by a bar. The remaining plots show a few of the training images accompa-
nied by the deformed templates that are matched to them.
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Figure 4: Learning from non-aligned images. In each row, the first plot shows the learned template, where
each basis element is illustrated by a bar. The remaining plots show a few of the training images accompa-
nied by the deformed templates that are matched to them.
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3 Discriminative adjustment by regularized logistic regression

The active basis model is a generative model, where the selected and perturbed basis elements seek to explain
the training images. One can also selected the basis elements by discriminative approach such as adaboost,
by bringing in negative examples. We have compared the behaviors of the generative and discriminative
learning.

Figure 5: Discriminative versus generative learning. For each of the two experiments on bear and cat, the
first plot shows the template learned by discriminative approach. The second by generative approach. The
third by generative approach that allows the local shift of the template in location, scale and orientation. The
discriminative approach requires thousands of negative examples. The generative approach does not require
negative examples.

As is shown in Figure (5), the templates learned by the generative approach tend to be cleaner than those
obtained by the discriminative approach, especially if we allow the local shift of the template in generative
learning using the method in section 2. The generative approach does not require negative examples, and
is therefore much faster than the discriminative approach. For this reason, the local shift of the template
is difficult to implement in adaboost, which is much more time-consuming than learning the active basis
model.

Given the deformed template Bm, the distribution of Im in the active basis model is in the form of
an exponential family model, relative to a reference distribution which is assumed to be the distribution
of natural images. If we treat the reference distribution as the distribution of negative examples, then the
exponential family model leads to a logistic regression model for predicting class label. Therefore, given
Bm, we can re-estimate the parameters of the exponential family model by fitting a logistic regression, and
this amounts to maximizing the partial likelihood instead of the full likelihood. The partial likelihood is less
efficient than the full likelihood, but it is more immune to model misspecification. Such a discriminative
adjustment leads to better classification performance on testing data.

In order to avoid overfitting, we introduce a `2 penalty term to regularize the logistic regression. We can
also use SVM for discriminative adjustment.

Figure (6) illustrates the performance of discriminative adjustment on a head-shoulder data set. The `2
regularized logistic regression improves the classification performance of the original active basis model. It
performs better than SVM and adaboost in terms of discriminative adjustment.

The following webpage contains the code and data for this project:

http://www.stat.ucla.edu/∼ywu/AB/ABEXP12.html
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Figure 6: Adjusting the active basis model by discriminative methods on a head-shoulder data set. The
curves are the testing AUC (area under curve) scores of the ROC curves.

4 Hierarchical active basis

Recall that an active basis model can be written in the following form

Im =
n∑
i=1

cm,iBxi+∆xm,i,s,αi+∆αm,i + Um = CmBm + Um, (3)

where Bm is a deformed template that is composed of Gabor wavelet elements. We can further generalize
the model to

Im =

K∑
k=1

Cm,kBXk+∆Xm,k,Sk+∆Sm,k,Ak+∆Am,k
+ Um, (4)

which is a composition of K deformable templates, each of which can be considered a part-template that
can shift from its nominal overall location Xk, scale Sk and orientation Ak. Model (4) has a similar form
to the basic model (3). Model (4) is a hierarchical model with two layers of movements: the movements of
parts and the movements of the Gabor wavelet elements of the parts. Such a hierarchical active basis model
is more flexible for modeling large deformations or articulations.

Figure (7) illustrates the basic idea. We can learn the part-templates such as ears, eyes, etc., and allow
these part-templates to move relative to each other. Such extra flexibility allows the hierarchical active basis
model to account for large deformations, as shown in the six examples in Figure (7). The learning of the
part-templates is based on the method in section 2.

Figures (8) and (9) show two experiments where the learned hierarchical active basis models are matched
to the testing images. The squared blocks are the part-templates, which are allowed to move relative to each
other.
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Figure 7: Learning part-templates from training images. The plot on top shows the learned part-templates.
The color illustrates the log-likelihood scores (blue means low, and red means high). The remaining plots
display some of the training images and the matched templates. By allowing the movements of part-
templates, the hierarchical active basis model is more capable of capturing large deformations than the
basic model.

Figure 8: Matching the learned hierarchical active basis model to testing images. Each squared block is a
part-template that is allowed to change its overall location, scale and orientation.
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Figure 9: Matching the learned hierarchical active basis model to testing images. Each squared block is a
part-template that is allowed to change its overall location, scale and orientation.

The following webpage contains the code and data for this project:

http://www.stat.ucla.edu/∼ywu/AB/ABEXP15.html

5 Image representation by active primitives

In the hierarchical active basis model (4), the part-templates can also be designed to be simple geometric
primitives such as corners, line segments and arc segments.

Figure (10) illustrates the basic idea of our recent work, which seeks to represent an image by simple
geometric primitives that can deform. This leads to more compact representation than wavelets.

The paper is to appear in the proceedings of 2011 International Conference on Computer Vision.
The following webpage contains the code and data for this project:

http://www.stat.ucla.edu/∼wzhu/projects/AMSA/page11061601/index.html

6 Model-based clustering

Recently, we have been focusing on model-based clustering and codebook learning. Finding clusters in the
training data is an important problem in unsupervised learning. The active basis model, which is a generative
model, can be naturally used for model-based clustering. We only need to assume the following model

Im =
n∑
i=1

cm,iB
(k)

x(m)+xi+∆xm,i,s,αi+∆αm,i
+ Um, m = 1, ...,M, (5)

where B(k) is the template of category k. We can estimate the set of templates {B(k), k = 1, ...,K} by
fitting a mixture model using a EM-like algorithm.

Figure (11) shows two experiments. In the first row, our method is able to identify the six clusters in
the training images which mix six categories of animal heads. In the second row, our method successfully
identifies the heads of two types of birds. In model fitting, we allow the templates to shift locally, using the
method described in section 2.
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Corner Primitives 

Arc Primitives 

Gabor Primitives 

Figure 10: An image is represented by a small number of active corner and arc primitives. Left: Original
Image. Middle: Selected corner primitives, where a corner is illustrated by the red arm and the green arm.
For clarity of illustration, the red and green arms do not cover the whole extents of the two arc primitives
of a corner. Right: Sketch the image by deforming the active primitives. Bottom: The primitives and their
compositional relations.

Figure 11: Finding clusters in images of animals and birds by fitting the mixture model using EM-like
algorithm initialized by random clustering. First row: rabbit, cat, cow, deer, wolf, bear. Second row: pigeon,
duck.
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Figure 12: Finding clusters of different views, poses and subcategories within the same category by fit-
ting the mixture model using EM-like algorithm initialized by random clustering: different views of cars,
different poses of horses, different types of cows, different types of rabbits, different views of lions.

Our algorithm starts from random clustering. The convergence of the EM-like algorithm is very fast. In
order to avoid being trapped by local modes, we re-start the algorithm multiple times, and choose the result
that attains the highest likelihood.

It is also important to find clusters within the same category, because objects within the same category
may appear at different poses and views, or there may be subcategories within the same category. Figure
(12) illustrates some examples, where our method is capable of finding different views of the cars, different
poses of the horses (here we show 6 out of 10 poses), different subcategories of cows and rabbits, and
different views of lion heads.

The following webpage contains the code and data for this project:

http://www.stat.ucla.edu/∼ywu/AB/ABEXP17.html

7 Unsupervised learning of codebooks of visual words

The ultimate goal of our research is the unsupervised learning of codebooks of part-templates, or what
can be intuitively called “visual words.” This is perhaps the most fundamental issue in vision, and such
unsupervised learning is what a generative model such as the active basis model is called for. In order to
achieve this goal, we need to scale up the method in section 6. We have done some preliminary experiments,
where we crop a large number of overlapping patches from training images and find clusters in these image
patches using the method in section 6. Figure (13) displays the codebooks learned from some data sets.

We are now pursuing a more rigorous learning scheme that fits the following model

I =
K∑
k=1

CkB
(tk)
Xk,Sk,Ak

+ U, (6)

where {B(t), t = 1, ..., T} is a codebook of part-templates. We believe that this project will shed light on
the neurons of the V2 area of the visual cortex. The learned codebooks can also be used for classification.
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Figure 13: Learning codebooks of visual words from training images. The first row is the codebook learned
from face images. The second row is the codebook learned from horse images. The third row is the codebook
learned from a mixture of horse and face images.
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The following webpage contains the code and data for this project:

http://www.cs.ucla.edu/∼yihong/ABM.html

8 Incorporating texture statistics

We have extended the active basis model to incorporate texture statistics. We have also studied the modeling
of motion sequences based on both sketches and textures.

The following webpage contains the code and data for this project:

http://www.stat.ucla.edu/∼zzsi/mixed template.html

Reproducibility

The code and data sets for reproducing most of the above findings can be downloaded at

http://www.stat.ucla.edu/˜ywu/AB/ActiveBasisMarkII.html

http://www.stat.ucla.edu/˜zzsi/hab/hab_changelog.html

http://www.cs.ucla.edu/˜yihong/ABM.html

http://www.stat.ucla.edu/˜wzhu/projects/AMSA/page11061601/index.html

http://www.stat.ucla.edu/˜zzsi/mixed_template.html
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