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Preface

The unifying theme, which the reader will encounter in different guises throughout
the book, is the interplay between noncommutative geometry and number theory,
the latter especially in its manifestation through the theory of motives. For us, this
interwoven texture of noncommutative spaces and motives will become a tool in the
exploration of two spaces, whose role is central to many developments of modern
mathematics and physics:

e Space-time

e The set of prime numbers
One may be tempted to think that, looking from the vantage point of those who
sit atop the vast edifice of our accumulated knowledge of such topics as space and
numbers, we ought to know a great deal about these two spaces. However, there
are two fundamental problems whose difficulty is a clear reminder of our limited
knowledge, and whose solution would require a more sophisticated understanding
than the one currently within our immediate grasp:

e The construction of a theory of quantum gravity (QG)
e The Riemann hypothesis (RH)

The purpose of this book is to explain the relevance of noncommutative geometry
(NCG) in dealing with these two problems. Quite surprisingly, in so doing we shall
discover that there are deep analogies between these two problems which, if properly
exploited, are likely to enhance our grasp of both of them.

Although the book is perhaps more aimed at mathematicians than at physicists,
or perhaps precisely for that reason, we choose to begin our account in Chapter 1
squarely on the physics side. The chapter is dedicated to discussing two main topics:

e Renormalization
e The Standard Model of high energy physics

We try to introduce the material as much as possible in a self-contained way, tak-
ing into consideration the fact that a significant number of mathematicians do not
necessarily have quantum field theory and particle physics as part of their cultural
background. Thus, the first half of the chapter is dedicated to giving a detailed
account of perturbative quantum field theory, presented in a manner that, we hope,
is palatable to the mathematician’s taste. In particular, we discuss basic tools,
such as the effective action and the perturbative expansion in Feynman graphs, as
well as the regularization procedures used to evaluate the corresponding Feynman
integrals. In particular, we concentrate on the procedure known as “dimensional
regularization”, both because of its being the one most commonly used in the actual
calculations of particle physics, and because of the fact that it admits a very nice
and conceptually simple interpretation in terms of noncommutative geometry, as we
will come to see towards the end of the chapter. In this first half of Chapter 1 we

9



PREFACE 10

give a new perspective on perturbative quantum field theory, which gives a clear
mathematical interpretation to the renormalization procedure used by physicists to
extract finite values from the divergent expressions obtained from the evaluations
of the integrals associated to Feynman diagrams. This viewpoint is based on the
Connes—Kreimer theory and then on more recent results by the authors.
Throughout this discussion, we always assume that we work with the procedure
known in physics as “dimensional regularization and minimal substraction”. The
basic result of the Connes—Kreimer theory is then to show that the renormalization
procedure corresponds exactly to the Birkhoff factorization of a loop v(z) € G
associated to the unrenormalized theory evaluated in complex dimension D — z,
where D is the dimension of space-time and z # 0 is the complex parameter used
in dimensional regularization. The group G is defined through its Hopf algebra
of coordinates, which is the Hopf algebra of Feynman graphs of the theory. The
Birkhoff factorization of the loop gives a canonical way of removing the singularity
at z = 0 and obtaining the required finite result for the physical observables. This
gives renormalization a clear and well defined conceptual meaning.
The Birkhoff factorization of loops is a central tool in the construction of solutions
to the “Riemann-Hilbert problem”, which consists of finding a differential equation
with prescribed monodromy. With time, out of this original problem a whole area
of mathematics developed, under the name of “Riemann—Hilbert correspondence”.
Broadly speaking, this denotes a way of encoding objects of differential geometric
nature, such as differential systems with specified types of singularities, in terms of
group representations. In its most general form, the Riemann-Hilbert correspon-
dence is formulated as an equivalence of categories between the two sides. It relies
on the “Tannakian formalism” to reconstruct the group from its category of repre-
sentations. We give a general overview of all these notions, including the formalism
of Tannakian categories and its application to differential systems and differential
Galois theory.
The main new result of the first part of Chapter 1 is the explicit identification of the
Riemann-Hilbert correspondence secretly present in perturbative renormalization.
At the geometric level, the relevant category is that of equisingular flat vector bun-
dles. These are vector bundles over a base space B which is a principal G,,(C) = C*-
bundle

Gn(C)—-B = A
over an infinitesimal disk A. From the physical point of view, the complex number
z # 0 in the base space A is the parameter of dimensional regularization, while the
parameter in the fiber is of the form hu?, where & is the Planck constant and u
is a unit of mass. These vector bundles are endowed with a flat connection in the
complement of the fiber over 0 € A. The fiberwise action of G,,(C) = C* is given by
ha%. The equisingularity of the flat connection is a mathematical translation of the
independence (in the minimal subtraction scheme) of the counterterms on the unit
of mass p. It means that the singularity of the connection, restricted to a section
z € A o(z) € B of the bundle B, only depends upon the value ¢(0) of the section.
We show that the category of equisingular flat vector bundles is a Tannakian cate-
gory and we identify explicitly the corresponding group (more precisely, affine group
scheme) that encodes, through its category of finite dimensional linear representa-
tions, the Riemann-Hilbert correspondence underlying perturbative renormalization.
This is a very specific proalgebraic group of the form U* = U x (,,,, whose unipotent
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part U is associated to the free graded Lie algebra
f(172737"').

with one generator in each degree. We show that this group acts as a universal
symmetry group of all renormalizable theories and has the properties of the “Cosmic
Galois group” conjectured by Cartier. In many ways this group should be considered
as the proper mathematical incarnation of the renormalization group whose role, as
a group encoding the ambiguity inherent to the renormalization process in quantum
field theory, is similar to that of the Galois group in number theory.

We conclude the first part of Chapter 1 with a very brief introduction to the theory of
motives initiated by Grothendieck. We draw some parallels between the Tannakian
formalism used in differential Galois theory and in particular in our formulation
of perturbative renormalization and the same formalism in the context of motivic
Galois groups. In particular we signal the fact that the group U* also appears (albeit
via a non-canonical identification) as a motivic Galois group in the theory of mixed
Tate motives. This “motivic nature” of the renormalization group remains to be
fully understood.

While the discussion in the first part of Chapter 1 applies to arbitrary renormalizable
theories, the second part of this chapter is concerned with the theory which, as of
the writing of this book, represents the best of our current knowledge of particle
physics: the Standard Model. This part is based on joint work of the authors with
Ali Chamseddine.

Our main purpose in the second part of Chapter 1 is to show that the intricate La-
grangian of the Standard Model minimally coupled to gravity, where we incorporate
the terms that account for recent findings in neutrino physics, can be completely
derived from very simple mathematical data. The procedure involves a modification
of the usual notion of space-time geometry using the formalism of noncommutative
geometry.

Again we do not assume that the reader has any familiarity with particle physics, so
we begin this second part of Chapter 1 by reviewing the fundamental facts about the
physics of the standard model and its coupling with gravity, in a formulation which is
as close as possible to that of the physics literature. A main point that it is important
to stress here is the fact that the standard model, in all its complexity, was built
over the years as a result of a continuing dialogue between theory and experiment.
The result is striking in its depth and complexity: even just the typesetting of the
Lagrangian is in itself a time-consuming task.

After this introductory part, we proceed to give a brief description of the main
tools of noncommutative geometry that will be relevant to our approach. They in-
clude cyclic and Hochschild cohomologies and the basic paradigm of spectral triples
(A,H,D). An important new feature of such geometries, which is absent in the
commutative case, is the existence of inner fluctuations of the metric. At the level
of symmetries, these correspond to the subgroup of inner automorphisms, a nor-
mal subgroup of the group of automorphisms which is non-trivial precisely in the
noncommutative case.

We then begin the discussion of our model. This can be thought of as a form of
unification, based on the symplectic unitary group in Hilbert space, rather than
on finite dimensional Lie groups. The internal symmetries are unified with the
gravitational ones. They all arise as automorphisms of the noncommutative algebra
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of coordinates on a product of an ordinary Riemannian spin manifold M by a finite
noncommutative space F'. One striking feature that emerges from the computations
is the fact that, while the metric dimension of F' is zero, its K-theoretic dimension
(in real K-theory) is equal to 6 modulo 8.

A long detailed computation then shows how the Lagrangian of the Standard Model
minimally coupled with gravity is obtained naturally (in Euclidean form) from spec-
tral invariants of the inner fluctuations of the product metric on M x F'.

This model provides specific values of some of the parameters of the Standard Model
at unification scale, and one obtains physical predictions by running them down to
ordinary scales through the renormalization group, using the Wilsonian approach.
In particular, we find that the arbitrary parameters of the Standard Model, as
well as those of gravity, acquire a clear geometric meaning in this model, in terms
of moduli spaces of Dirac operators on the noncommutative geometry and of the
asymptotic expansion of the corresponding spectral action functional. Among the
physical predictions are relations between some of the parameters of the Standard
Model, such as the merging of the coupling constants and a relation between the
fermion and boson masses at unification.

Finally, in the last section of Chapter 1, we come to another application of non-
commutative geometry to quantum field theory, which brings us back to the initial
discussion of perturbative renormalization and dimensional regularization. We con-
struct natural noncommutative spaces X, of dimension a complex number z, where
the dimension here is meant in the sense of the dimension spectrum of spectral triples.
In this way, we find a concrete geometric meaning for the dimensional regularization
procedure.

We show that the algebraic rules due to 't Hooft—Veltman and Breitenlohner—-Maison
on how to handle chiral anomalies using the dimensional regularization procedure
are obtained, as far as one loop fermionic graphs are concerned, using the inner
fluctuations of the metric in the product by the spaces X,. This fits with the similar
procedure used to produce the Standard Model Lagrangian from a product of an
ordinary geometry by the finite geometry F' and establishes a relation between chiral
anomalies, computed using dimensional regularization, and the local index formula
in NCG.

Towards the end of Chapter 1, one is also offered a first glance at the problem posed
by a functional integral formulation of quantum gravity. We return only at the very
end of the book to the problem of constructing a meaningful theory of quantum
gravity, building on the experience we gain along the way through the analysis of
quantum statistical mechanical systems arising from number theory, in relation to
the statistics of primes and the Riemann zeta function. These topics form the second
part of the book, to which we now turn.

The theme of Chapter 2 is the Riemann zeta function and its zeros. Our main
purpose in this part of the book is to describe a spectral realization of the zeros
as an absorption spectrum and to give an interpretation as a trace formula of the
Riemann—Weil explicit formula relating the statistics of primes to the zeros of zeta.
The role of noncommutative geometry in this chapter is twofold.

In the first place, the space on which the trace formula takes place is a noncommuta-
tive space. It is obtained as the quotient of the adeles Ag by the action of non-zero
rational numbers by multiplication. Even though the resulting space X = Ag/Q*
is well defined set-theoretically, it should be thought of as a noncommutative space,
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because the ergodicity of the action of Q* on Ag prevents one from constructing
measurable functions on the quotient X, as we show in Chapter 3. In particular,
the construction of function spaces on X is done by homological methods using
coinvariants. This will only acquire a full conceptual meaning in Chapter 4, using
cyclic cohomology and the natural noncommutative algebra of coordinates on X.
The space X can be approximated by simpler spaces Xg obtained by restriction to
finite sets S of places of Q. We use this simplified setup to obtain the relation with
the Riemann—Weil explicit formula. The main point is that, even though the space
X is in essence a product of terms corresponding to the various places, the trace of
the action of the group of ideéle classes becomes a sum of such contributions. It is in
the proof of this key additivity property that we use another tool of noncommutative
geometry: the quantized calculus.

In the simplest instance, the interpretation of the Riemann—Weil explicit formula as
a trace formula gives an interpretation as symplectic volume in phase space for the
main term of the Riemann counting function for the asymptotic expansion of the
number of non-trivial zeros of zeta of imaginary part less than FE. We show that a
full quantum mechanical computation then gives the complete formula.

We end Chapter 2 by showing how this general picture and methods extend to the
zeta functions of arithmetic varieties, leading to a Lefschetz formula for the local L-
factors associated by Serre to the Archimedean places of a number field. The Serre
formula describes the Archimedean factors as products of shifted Gamma functions
with the shifts and the exponents depending on Hodge numbers. We derive this
formula directly from a Lefschetz trace formula for the action of the Weil group on
a bundle with base the complex line or the quaternions (for a real place) and with
fiber the Hodge realization of the variety.

The origin of the relation described above between the Riemann zeta function and
noncommutative geometry can be traced to the work of Bost—Connes. This consists
of the construction, using Hecke algebras, of a quantum statistical mechanical system
whose partition function is the Riemann zeta function and which exhibits a surpris-
ing relation with the class field theory of the field Q. Namely, the system admits as a
natural symmetry group the group of idele classes of Q modulo the connected com-
ponent of the identity. This symmetry of the system is spontaneously broken at the
critical temperature given by the pole of the partition function. Below this temper-
ature, the various phases of the system are parameterized by embeddings Q¢ — C
of the cyclotomic extension Q¥ of Q. These different phases are described in terms
of extremal KMSg states, where 3 = % is the inverse temperature. Moreover, an-
other important aspect of this construction is the existence of a natural algebra of
“rational observables” of this quantum statistical mechanical system. This allows
one to define in a conceptual manner an action of the Galois group Gal(Q%/Q)
on the phases of the system at zero temperature, merely by acting on the values
of the states on the rational observables, values which turn out to provide a set of
generators for Q% the maximal abelian extension of Q.

Our main purpose in Chapter 3 is to present extensions of this relation between
number theory and quantum statistical mechanics to more involved examples than
the case of rational numbers. In particular we focus on two cases. The first cor-
responds to replacing the role of the group GL; in the Bost—Connes (BC) system
with GLg. This yields an interesting non-abelian case, which is related to the Galois
theory of the field of modular functions. The second is a closely related case of
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abelian class field theory, where the field Q is replaced by an imaginary quadratic
extension. The results concerning these two quantum statistical mechanical systems
are based, respectively, on work of the authors and on a collaboration of the authors
with Niranjan Ramachandran.

We approach these topics by first providing a reinterpretation of the BC system in
terms of geometric objects. These are the Q-lattices, i.e. pairs (A, ¢) of a lattice
A C R™ (a cocompact free abelian subgroup of R" of rank n) together with a
homomorphism of abelian groups

¢:Q"/7" — QA/A.
Two Q-lattices are commensurable if and only if
@Al = @AQ and (251 = ¢35 mod A1+ As.

Let £,, denote the set of commensurability classes of n-dimensional Q-lattices. Even
in the simplest one-dimensional case (n = 1) the space £, is a noncommutative
space. In fact in the one-dimensional case it is closely related to the adele class
space X = Ag/Q* discussed in Chapter 2.

We first construct a canonical isomorphism of the algebra of the BC system with the
algebra of noncommutative coordinates on the quotient of £ by the scaling action of
R% . Following Weil’s analogy between trigonometric and elliptic functions, we then
show that the trigonometric analogue of the Eisenstein series generate, together with
the commensurability with division points, the arithmetic subalgebra of “rational
observables” of the BC system. This opens the way to the higher dimensional case
and much of Chapter 3 is devoted to the extension of these results to the two-
dimensional case.

The system for the GLgy case is more involved, both at the quantum statistical
level, where there are two phase transitions and no equilibrium state above a certain
temperature, and at the number theoretic level, where the cyclotomic field Q¢ is
replaced by the modular field.

We end Chapter 3 with the description of our joint results with Ramachandran on the
extension of the BC system to imaginary quadratic fields. This is based on replacing
the notion of Q-lattices with an analogous notion of 1-dimensional K-lattices, with
K the imaginary quadratic extension of Q. The relation between commensurability
of 1-dimensional K-lattices and of the underlying 2-dimensional Q-lattices gives the
relation between the quantum statistical mechanical system for imaginary quadratic
fields and the GLga-system. This yields the relation between the quantum statistical
mechanics of K-lattices and the explicit class field theory of imaginary quadratic
fields.

Underlying our presentation of the main topics of Chapter 3 there is a unifying
theme. Namely, the three different cases of quantum statistical mechanical systems
that we present in detail all fit into a similar general picture, where an ordinary
moduli space is recovered as the set of classical points (zero temperature states) of
a noncommutative space with a natural time evolution. In the setting of Chapter 3
the classical spaces are Shimura varieties, which can be thought of as moduli spaces
of motives. This general picture will provide a motivating analogy for our discussion
of the quantum gravity problem at the end of the book.

The spectral realization of zeros of zeta and L-functions described in Chapter 2 is
based on the action of the idele class group on the noncommutative space X of adeles
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classes. Nevertheless, the construction, as we describe it in Chapter 2, makes little
use of the formalism of noncommutative geometry and no direct use of the crossed
product algebra A describing the quotient of adeéles by the multiplicative group Q.
In Chapter 4, the last chapter of the book, we return to this theme. Our main
purpose is to show that the spectral realization described in Chapter 2 acquires
cohomological meaning, provided that one reinterprets the construction in terms of
the crossed product algebra A and cyclic cohomology. This chapter is based on our
joint work with Caterina Consani.

We begin the chapter by explaining how to reinterpret the entire construction of
Chapter 2 in “motivic” terms using

e An extension of the notion of Artin motives to suitable projective limits,
which we call endomotives.

e The category of cyclic modules as a linearization of the category of non-
commutative algebras and correspondences.

e An analogue of the action of the Frobenius on ¢-adic cohomology, based on
a thermodynamical procedure, which we call distillation.

The construction of an appropriate “motivic cohomology” with a “Frobenius” action
of R for endomotives is obtained through a very general procedure. It consists of
three basic steps, starting from the data of a noncommutative algebra A and a state
. One considers the time evolution o, € Aut A, for ¢ € R, naturally associated to
the state ¢.
The first step is what we refer to as cooling. One considers the space &g of extremal
KMSg states, for 3 greater than critical. Assuming these states are of type I, one
obtains a morphism

TiAX,R— S(E xRY) @ LY,
where A is a dense subalgebra of a C*-algebra A, and where £ denotes the ideal of
trace class operators. In fact, one considers this morphism restricted to the kernel
of the canonical trace 7 on A x, R.
The second step is distillation, by which we mean the following. One constructs a
cyclic module D(A, ¢) which consists of the cokernel of the cyclic morphism given
by the composition of 7 with the trace Tr: £! — C.
The third step is then the dual action. Namely, one looks at the spectrum of the
canonical action of R on the cyclic homology

HCo(D(A, ¢)).

This procedure is quite general and it applies to a large class of data (A, ), pro-
ducing spectral realizations of zeros of L-functions. It gives a representation of
the multiplicative group R%} which combines with the natural representation of the
Galois group G when applied to the noncommutative space (analytic endomotive)
associated to an (algebraic) endomotive.

In the particular case of the endomotive associated to the BC system, the resulting
representation of G x R* gives the spectral realization of the zeros of the Riemann
zeta function and of the Artin L-functions for abelian characters of G. One sees in
this example that this construction plays a role analogous to the action of the Weil
group on the f-adic cohomology. It gives a functor from the category of endomotives
to the category of representations of the group G' x R* . Here we think of the action
of R% as a “Frobenius in characteristic zero”, hence of G x RY as the corresponding
WEeil group.
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We also show that the “dualization” step, i.e. the transition from A to A x, R, is a
very good analog in the case of number fields of what happens for a function field K
in passing to the extension K ®p, IF‘q. In fact, in the case of positive characteristic,
the unramified extensions K ®p, Fyn, combined with the notion of places, yield
the points C (Fq) over Fq of the underlying curve. This has a good parallel in the
theory of factors and this analogy plays an important role in developing a setting
in noncommutative geometry that parallels the algebro-geometric framework that
Weil used in his proof of RH for function fields.

We end the number theoretic part of the book by a dictionary between Weil’s
proof and the framework of noncommutative geometry, leaving open the problem of
completing the translation and understanding the noncommutative geometry of the
“arithmetic site”.

We end the book by coming back to the construction of a theory of quantum gravity.
Our approach here starts by developing an analogy between the electroweak phase
transition in the Standard Model and the phase transitions in the quantum statistical
mechanical systems described in Chapter 3. Through this analogy a consistent
picture emerges which makes it possible to define a natural candidate for the algebra
of observables of quantum gravity and to conjecture an extension of the electroweak
phase transition to the full gravitational sector, in which the geometry of space-
time emerges through a symmetry breaking mechanism and a cooling process. As
a witness to the unity of the book, it is the construction of the correct category of
correspondences which, as in Grothendieck’s theory of motives, remains the main
challenge for further progress on both QG and RH.
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CHAPTER 1

Quantum fields, noncommutative spaces, and motives

1. Introduction

The main goal of Chapter one is to unveil the mathematical conceptual meaning of
some of the sophisticated computations performed by physicists in the domain of
particle physics. It is divided into two parts dealing, respectively, with

(1) Renormalization
(2) The Standard Model

We try to keep close contact with the way the computations are actually performed
by physicists and to bridge the gap between, on the one hand, the lessons physicists
learned from their constant dialogue with experimental results and, on the other
hand, with the elaborate mathematical concepts involved in allowing one to under-
stand the meaning of these computations (if any). The bare data we start with are,
respectively,

e Computations of cross sections and scattering amplitudes from the per-
turbative expansion of the Feynman integral using renormalized values of
Feynman graphs in the dimensional regularization and minimal subtraction
scheme.

e The detailed expression of the full Standard Model Lagrangian with neu-
trino mixing, the see-saw mechanism and coupling to gravity.

We start the chapter with a presentation of quantum field theory (QFT) that ought
to be understandable to mathematicians. In particular we recall in §2.1] the La-
grangian and Hamiltonian formalisms of classical mechanics and explain in §2.2
how the Lagrangian formulation of quantum field theory leads to Feynman’s path
integral. The path integral prescription is ambiguous (even ignoring all the diver-
gence problems) and the removal of the ambiguity by Feynman’s ie trick can only
be properly understood after an excursion into the Hamiltonian formulation and
canonical quantization. We do this in §2.3 where we base the discussion on the
three main physical properties of a quantum field theory, which are

e Causality

e Positivity of energy

o Unitarity
We discuss the simplest example of QFT in §2.4: it is the free bosonic field on the
space-time

X=RxS*

with the Lorentz metric. This gives a good occasion to describe this basic example of
algebraic quantum field theory, and to explain what are the vacuum states and the

temperature states which fulfill the KMSgz condition relative to the Heisenberg time
evolution. Even though algebraic quantum field theory is an interesting formalism

17
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involving deep mathematical structures such as von Neumann algebras it falls short
of what is essential to our purpose: concrete physics computations. It is, however,
essential in clarifying the conceptual meaning of the boundary conditions on Green’s
functions by clearly separating the kinematical relations from the construction of the
vacuum states. We turn to the Green’s functions in §2.5/ and give their formal per-
turbative expansion in terms of free fields as the Gell-Mann—Low formula. We then
show in §2.6/ how Wick rotation allows one to encompass Feynman’s ie prescription
for how to go around the pole of the propagator in the analytic continuation to
imaginary time. We give all the details on that point since it removes the first am-
biguity in the perturbative computation of the functional integral and shows from
the start the merit of the Euclidean formulation.

The Feynman graphs are dealt with in §3. We start with a detailed account of a
concrete example in §3.1 and show how the various pairings coming from the inte-
gration by parts under a Gaussian are labeled by graphs and yield integrals. The
simplest graphs, such as self-energy graphs, give rise to integrals which diverge when
an ultraviolet cutoff is removed so that one is confronted with the problem of renor-
malization. The physics origin of the problem was already understood by Green in
1830 and we explain the computation of the self-energy in hydrodynamics in §3.2 as
a first example of mass renormalization. We then use the analogy between hydro-
dynamics and electromagnetism to explain how the crucial distinction between the
bare parameters and the observed ones makes it possible to eliminate the divergence
of the simplest self-energy graph by adding counterterms to the Lagrangian. We
give a precise mathematical definition of Feynman graphs and of the rules which
associate a formal integral to a graph in §3.3. We then describe the standard pro-
cedures that allow one to simplify the combinatorics of the Feynman graphs. First,
by taking the logarithm of the partition function with a source term one reduces to
connected graphs (§3.4). Then after applying the Legendre transform one obtains
the effective action. Both the action’s role as the basic unknown of QFT and its
expansion in terms of one-particle irreducible (1PI) graphs is explained in §3.5.
With this tool at hand we come to a precise definition of the physical parameters,
such as the mass, and observables, such as the scattering matrix, in terms of the
effective action in §3.6. Finally we describe the physical ideas of mass, field strength
and coupling constant renormalization in §3.7.

In §4] we recall the basic dimensional regularization and minimal subtraction pro-
cedures (DimReg+MS). We begin with the very simple example of the self-energy
graph for the scalar ¢3 theory. We show explicitly, in this example, how to implement
the dimensional regularization of the divergent integral using Schwinger parameters
and the formal rules for Gaussian integration in a complexified dimension D — z.
We then discuss the existence of an analytic continuation of the Feynman integrals
to a meromorphic function on the complex plane. We prove in Theorem [1.9/ that the
dimensionally regularized unrenormalized values U*(I'(p1,...,pn)) have the prop-
erty that their Taylor coefficients at p = 0 admit a meromorphic continuation to the
whole complex plane z € C. In §5.1] we show a simple example of a subdivergence
for a 1PI (one-particle irreducible) graph of the massless ¢ theory in dimension 6.
This example shows the need, in addition to the regularization scheme (here Dim-
Reg+MS), for a renormalization procedure that accounts for the combinatorics of
nested subdivergences.
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In 85, we introduce the Bogoliubov—Parasiuk—Hepp—Zimmermann renormalization
(BPHZ) procedure. This takes care of eliminating the divergences step by step
in the perturbative expansion, by repeatedly adjusting the bare parameters in the
Lagrangian by suitable counterterms that cancel the divergences. The BPHZ pro-
cedure also takes care of the problem of non-local counterterms associated to sub-
divergences. We show this in detail in an explicit example in §5.1. We also explain
the role of the external structure of Feynman graphs. The counting of the degree of
divergence is described in §5.2. The BPHZ preparation of Feynman graphs and the
extraction of the renormalized value and the inductive definition of the counterterms
are discussed in §5.3.

In §6.1 we give some mathematical background on commutative Hopf algebras and
affine group schemes, while in §16.2 we introduce the Connes—Kreimer Hopf algebra
of Feynman graphs, first only in its discrete combinatorial version. Then in §6.3/ we
refine the construction, by taking also into account the external structure. Theorem
1.39 gives the recursive formula of Connes—Kreimer for the Birkhoff factorization in
a graded connected Hopf algebra, which gives a clear conceptual interpretation to
the BPHZ procedure, when applied to the Hopf algebra of Feynman graphs.

In §6.5 we recall another result of the Connes—Kreimer theory, relating the affine
group scheme of the Hopf algebra of Feynman graphs, called the group of dif-
feographisms of the physical theory, to formal diffeomorphisms of the coupling con-
stants of the theory. We explain in §6.6 the dependence of the U*(I'(p1,...,pn)) on
a mass parameter pu and how to recover in the Connes—Kreimer theory the notion
of renormalization group lifted to the level of the group of diffeographisms, with the
B-function given by an element in the corresponding Lie algebra.

This singles out the data of perturbative renormalization as describing a certain class
of loops in the affine group scheme of diffeographisms, satisfying some conditions
on the dependence on the mass parameter p, with the renormalization procedure
consisting of their Birkhoff factorization.

We give in §7 a reinterpretation of these data in terms of a Riemann—Hilbert cor-
respondence. We begin in §7.1/ with the expression of the counterterms as a “time-
ordered exponential” (iterated integral). We then introduce in §7.2/ the notion of
flat equisingular connection, which reformulates geometrically the conditions satis-
fied by the class of loops corresponding to the data of perturbative renormalization.
The corresponding equivariant principal bundles are described in §7.3.

In §7.4] we recall some general facts about Tannakian categories, the Tannakian
formalism, and representations of affine group schemes. In §7.5/ we show how this
formalism is variously used in the context of differential Galois theory to classify
categories of differential systems with prescribed singularities through the Riemann—
Hilbert correspondence, a broad generalization of the original Riemann—Hilbert
problem on the reconstruction of differential equations from their monodromy rep-
resentations.

In §7.6/ we apply this general strategy to the case of renormalization. We introduce
a category of flat equisingular vector bundles, and we obtain in Theorem [1.100 an
identification with the category Repy- of finite-dimensional linear representations of
the affine group scheme U* = U x G, with Hopf algebra Hy := U(F(1,2,3,---)e)"
where F(1,2,3,---)e is the free graded Lie algebra with one generator e_,, in each
degree n > 0.
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In §8 we give a brief introduction to the theory of motives, which plays a role in many
different ways throughout the book. In particular we mention the fact that the affine
group scheme U* also has an incarnation as a motivic Galois group for a category of
mixed Tate motives. Of the general aspects of the theory of motives, we recall briefly
the general interpretation as a universal cohomology theory, the construction of the
category of pure motives, the role of algebraic cycles and equivalence relations, the
relation to zeta functions (which plays an important role in Chapter 2), the Weil
conjectures and the Grothendieck standard conjectures, the role of the Tannakian
formalism and motivic Galois groups, the special case of Artin motives (which plays
a role in Chapter 4), mixed motives and, in particular, the mixed Tate motives that
seem to be deeply related to quantum field theory and their relation to mixed Hodge
structures.

This completes the first part of Chapter 1. In the second part of the chapter we
deal with the Standard Model of elementary particle physics and an approach to a
simple mathematical understanding of its structure via noncommutative geometry.
The second part of Chapter 1 follows closely our joint work with Chamseddine [52],
which is based on the model introduced by Connes in [73], as well as on the previous
work of Chamseddine and Connes on the spectral action [45], [46], [47].

Since we do not assume that the reader has much familiarity with particle physics,
we begin §9 by giving a brief overview of the Standard Model. We introduce the
various parameters, the particles and interactions, symmetries in §§9.1, [9.2] 9.3 and
we reproduce in full in §9.4] the very complicated expression of the Lagrangian.
We discuss in §9.5 other aspects, such as the ghost terms and gauge fixing, that
become relevant at the quantum rather than the semi-classical level. In § 9.6
we distinguish between the minimal Standard Model, which has only left-handed
massless neutrinos, and the extension that is required in order to account for the
experimental evidence of neutrino mixing. We describe in §9.6.2 the corresponding
modifications of the Lagrangian. In §§9.7 and 9.8 we describe the Lagrangian that
gives the Standard Model minimally coupled to gravity, where the gravity part can
be considered as an effective field theory by including higher-derivative terms.

The problem of realizing the symmetries of particle interactions as diffeomorphisms
(pure gravity) on a suitable space suggests the idea that noncommutative geometry,
where inner symmetries are naturally present, should provide the correct framework.
We discuss this in §9.9.

In §10/ we then recall the main notions of (metric) noncommutative geometry devel-
oped by Connes, based on the structure of spectral triple that generalizes Riemannian
geometry to the noncommutative setting. We introduce spectral geometry in §10.1}
we recall the definition and basic properties of spectral triples in §10.2, including
the real part defined in §10.3. We recall some well known facts on Hochschild and
cyclic cohomology in §10.4. The local index formula of Connes—Moscovici is re-
called briefly in §10.5. The Yang—Mills and Chern—Simons actions are described in
terms of Hochschild cohomology in §10.6/ and §10.7 following work of Chamseddine—
Connes.

The important notion of inner fluctuations of the metric associated to self-Morita
equivalences of a noncommutative space is discussed in §10.8.

In §11/we introduce the spectral action principle of Chamseddine-Connes. This plays
a crucial role in recovering the Standard Model Lagrangian from noncommutative
geometry and is one of the main tools in metric noncommutative geometry. A careful
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discussion of the terms arising in the asymptotic expansion of the spectral action
functional is given in §§11.1, 11.2, 11.3/using Seeley—DeWitt coefficients and Gilkey’s
theorem.

In §11.4' we recall a result of [46] that illustrates how to recover the Einstein—Yang—
Mills action from the spectral action on the very simple noncommutative space given
by the product of an ordinary 4-manifold by a noncommutative space described by
the algebra My(C) of N x N matrices.

We then analyze the terms that appear in the asymptotic expansion of the spec-
tral action in §11.5/ and their behavior under inner fluctuations of the metric. We
also recall briefly in §11.6/ the modification of the spectral action by a dilaton field
introduced by Chamseddine and Connes in [47].

In §12 we begin the discussion of the noncommutative geometry of the Standard
Model, following [52]. We introduce in §13 a finite noncommutative geometry F,
derived from the basic input of the model, which is the finite-dimensional associative
algebra C @ H @& H & M3(C), with H the real division algebra of quaternions. We
explain how to construct canonically an odd spin representation Hp of this algebra
and, upon imposing a very natural condition on possible Dirac operators for this
geometry, we identify in §13.1/ a maximal subalgebra compatible with the existence
of Dirac operators with the required properties. The subalgebra is of the form

Ap=CoHea Ms;(C) c CoHoHae M;(C).

In §13.2 we identify the bimodule Hr with the fermions of the Standard Model (after
fixing the number of generations N = 3) and we show in §13.3/that this identification
is dictated by the fact that it reproduces the correct values of the hypercharges.

In §§13.4 and [13.5/ we give a complete classification for the possible Dirac operators
for this finite geometry and we describe their moduli space, which gives a geometric
interpretation for the Yukawa parameters of the Standard Model. The intersection
pairing of the finite geometry is analyzed in §13.6, using the fact that the metric and
KO-dimensions are not the same, the first being zero and the second being equal to
6 modulo 8.

We then consider in §14 the product M x F' of an ordinary compact spin 4-manifold
with the finite noncommutative geometry introduced previously, described as a cup
product of spectral triples. We identify the real part of the product geometry in
§14.1.

The bosons of the Standard Model, including the Higgs field, are obtained as inner
fluctuations of the metric on the product geometry in §15, with the discrete part
giving the Higgs analyzed in §15.2/ and the gauge bosons in §15.4.

The main computation that shows how to recover the Standard Model Lagrangian,
including mixing and Majorana mass terms for neutrinos, minimally coupled to
gravity, is carried out in §16/ by breaking down the Lagrangian in several steps and
relating the resulting terms to the terms in the asymptotic expansion of the spectral
action functional

To(/(D/A)) + 5 (79, D),

with the additional fermionic term (Jt, D). In particular, we explain in §§16.2 and
16.3 how the fermionic term gives rise to a Pfaffian which takes care of the “fermion
doubling problem” of [210] by taking the square root of a determinant. Among
the physical consequences of deriving the Lagrangian from the spectral action, and
making the “big desert” hypothesis, we find in § [17.2/ the merging of the coupling
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constants at unification, in the form of the relation g = g3 = 1/5/3 g1 typical of the
grand unified theories. We also find in §§17.4] and [17.6/ a simple quadratic relation
between the masses of quarks and leptons and the W-mass at unification, compatible
with the known physics at ordinary energies. In §17.5 and §17.10l we show that this
model also provides a see-saw mechanism that accounts for the observed smallness
of neutrino masses, and a prediction of a heavy Higgs mass at around 168 GeV. The
gravitational terms are discussed in §17.11] and the geometric interpretation of the
free parameters of the Standard Model is summarized in §17.12.

In §18 we outline a possible functional integral formulation in the context of spectral
geometry. We briefly explain a more conceptual path to the algebra Ap and its
representation given in [49], [50] based on the classification of irreducible finite
geometries of K O-dimension 6 modulo 8. This quickly leads to the algebra My (H)®
M, (C) with a non-trivial grading on M (H) and to its natural representation, playing
the role of the above odd-spin representation. The same mechanism, coming from
the order one condition, then reduces to the subalgebra

We also show that the use of the larger algebra restores Poincaré duality.

In the remaining part of Chapter 1, in §19 we return to the dimensional regular-
ization procedure described in the first part of the chapter in the context of the
Connes—Kreimer theory. Here we give the construction, using spectral triples, of a
noncommutative space X, whose dimension (in the sense of the dimension spectrum
of a spectral triple) consists of a complex number z, and we reinterpret geometrically
the DimReg procedure, as far as one-loop fermionic graphs are concerned, as taking
the cup product of the spectral triple associated to an ordinary manifold of integer
dimension D with this noncommutative space. In Chapter 2 we return to discuss
this construction and we give an arithmetic model of a noncommutative space X,
of dimension z. We show in §19.1 and following that the construction of X, is com-
patible with the Breitenlohner—Maison prescription for treating ~s in the context of
DimReg. We continue with the discussion of anomalies, by introducing chiral gauge
transformations in §19.3, and discussing the finiteness of the anomalous graphs in
§19.4. We treat explicitly the simplest cases of anomalous graphs in §19.5/ and we
relate anomalous graphs in dimension 2 and the local index cocycle in §19.6.

2. Basics of perturbative QFT

Quantum field theory is the most accurate source of predictions about the world of
elementary particles. At the theoretical level, it is full of subtleties and ingenious
procedures that extract finite and experimentally testable values from formal series
of divergent integrals. The development of this theory, which achieved the unifi-
cation of two fundamental revolutions of early twentieth century physics, special
relativity and quantum mechanics, traces its origins to two crucial developments that
took place in the late 1920s. The quantization of the electromagnetic field by Born,
Heisenberg, and Jordan in 1925 explained Einstein’s fluctuation  formula for the
electromagnetic radiation in a cavity. It was soon followed by Dirac’s foundational
paper [119] of 1927 which performed the first quantum electrodynamics calculation
and explained Einstein’s ansatz for the probabilities of spontaneous and induced
transitions in an atom. The second crucial development is Dirac’s relativistic wave
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equation for the electron which gave the spin, the magnetic moment, the fine struc-
ture of the atomic spectra and predicted the positron. The advent of quantum field
theory provided a formalism in which particles and fields are treated on an equal
footing. This is crucial in order to describe phenomena involving the interaction of
radiation and matter, as well as all the particle physics events involving collisions,
where typically the number of particles is not preserved. In such events, in fact,
particles are created and annihilated, via the conversion of energy into mass and
vice versa. This is a typically relativistic phenomenon that cannot be accounted for
simply by the use of quantum mechanics.

The problem of divergences in quantum field theory manifested itself very early, in
computing the self-energy of the interaction of a charged point particle with its own
electromagnetic field. It became clear in the early stages of development of the the-
ory that the problem of divergences was a substantial difficulty that systematically
plagued the calculations. Typically, the problem arises from the fact that, at very
high energies, there is an increasingly large number of virtual states to sum over, so
that the resulting series are divergent. The fact that, for a “renormalizable” theory,
one can cure these infinities is a manifestation of the idea that the corresponding
physical processes are insensitive to the virtual states that live above a certain energy
scale.

2.1. Lagrangian and Hamiltonian formalisms.

We recall for convenience the relation between the Lagrangian and Hamiltonian
formulations of classical mechanics.
Lagrange’s equations
d (0L oL
(1.1) — | = |—-—=—=0
dt an qu

follow from the stationary value of the action integral

(1.2) S = /L(q,q)dt.

The simplest example of a Lagrangian is of the form

(13) Lig.d) = ymd® - V(a)

where V(¢) is a potential function.

The Lagrangian L(q,¢) is a function on the tangent space T'C' of the configuration
space C. The Hamiltonian is a function on the cotangent space T*C obtained as
the Legendre transform of L. Thus at a given point ¢ € C one considers the map A
from the tangent space T,C to the cotangent space T;/C' defined by differentiating
the restriction of L to T,C. The differential 9; L is a linear form on 7;C and hence
an element of 7;C', thus

(1.4) Ad) = 9 L(g,d) € T;C.

The inverse correspondence A~! from the cotangent space T;C to the tangent space
T,C is obtained by assigning to p € T;'C the values of ¢ € T;C for which the
following expression is stationary in ¢,

(1.5) G—pq— L(g,q) -
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There is no guarantee that A is invertible. When it is one gets a function, the
Hamiltonian, on T;C' defined by

(1.6) H(p,q) = pA'(p) — L(g,\"'(p)), VpeT;C.

In other words the Hamiltonian is given by the value of (1.5) at the (unique by
hypothesis) stationary point.

One can now apply the same Legendre transformation to the Hamiltonian, i.e. con-
sider the map X' from the cotangent space T, ; C to the tangent space T;C defined
by differentiating the restriction of H to T;C. In fact one has N = A1, Indeed,
when we differentiate (1.6) with respect to p the stationarity condition (1.5) shows
that the only contribution is the coefficient A~!(p) of p in the first term.

In other words the relation between the Lagrangian and the Hamiltonian is sym-
metric; each is the Legendre transform of the other. Notice also that the important
expression is L dt, which can be written in the form

(1.7) L(q,q)dt = pdg— Hdt

which already brings in the Lorentz signature.

For functions on the cotangent space T*C the Poisson bracket is defined by

where the pairings take place as above between the tangent and cotangent spaces
at the same point. The equations of motion (I.1) in Hamiltonian form just give the
evolution of any function f on the cotangent space T*C),

d

1.9 — f={H,

(19) & f = {11}

In particular H itself is a constant of the motion, which is the energy of the system.
One has to take care of overall signs (which were unimportant insofar as the equa-
tions of motion were concerned) since stability of a system means that the energy
is bounded below. For the simplest Lagrangians such as (1.3) the Hamiltonian is
simply

p2
(1.10) H(p,q)= 5+ V()

and the sign of the potential function is the opposite one of the one it had in the
Lagrangian.

One also needs to pay attention to “units”. We use the speed of light as a conversion
factor from time to length and thus set ¢ = 1. Thus length and time are on the same
scale T (i.e. they have the same physical dimensions). Similarly, masses, energies
and momenta are on the same scale E. Both the Lagrangian L and the Hamiltonian
have physical dimension E. The action (1.2) has physical dimension F - T, which is
quantized in units of A. One could set &z = 1 but it is useful to keep track of powers
of h in the perturbative expansions in QFT.
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2.2. Lagrangian and the Feynman integral.

A quantum field theory in dimension D (one usually assumes D = 4, but we will
see a significant example with D = 6) is specified by assigning a classical action
functional

(1.11) 56)= [ £@)ds,

where ¢ is a classical field and the Lagrangian density is of the form
1 m?

(1.12) L(¢) = 5(3@2 - ¢* — Lint(6).

Here we write (0¢)? = (0p¢)? — ZV¢O(OV¢)2, with Lorentzian signature, i.e.
(09)* = ¢ 0, D0

where
1 0 0 0
0 -1 0 0
(1.13) 0" wo=ra=| 0 0 1 o
0 O 0 -1

The first two terms

m2
(114) £o(8) = 5(06) — 75

give the free field part of the Lagrangian, while the remaining term Lin(¢) is the
interaction part, which is usually assumed to be a polynomial in the field ¢.

In terms of physical units, since we observed that (1.11)) has the physical dimensions
E - T, we see from (1.12) that, when setting & = 1, the field ¢ is expressed in
physical units of E(P~2/2_ We say in this case simply that the field ¢ has physical
dimension D/2 — 1. Similarly, one can deduce from (1.12) the physical dimensions
of the coupling constants that appear in the term Ly (o).

DEFINITION 1.1. A theory T is specified by assigning the data of a Lagrangian density
(L.12) and a positive integer D, the dimension.

A classical observable is a function O(¢) of the classical fields. One can define the
quantum expectation value of a classical observable by the expression

: S()

(1.15) (©) = N / 0(¢) e g,

where N is a normalization factor,
1)
N7 = / e h D).

Notice that the (Feynman) integral here has only a formal meaning, since the “mea-
sure” D[¢] is typically not well defined mathematically. However, this suffices in the
case where the space of classical fields ¢ is a linear space, in order to define without
difficulty the terms in the perturbative expansion, which make the renormalization
problem manifest.

Notice also how the expression (1.15) formally resembles the averages that are used in
computing observables and correlation functions in statistical mechanics, except for
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the important difference that here, in the transition from “classical field theory” to
“quantum field theory”, one replaces the classical notion of probabilities by complex-
valued probability amplitudes and asserts that the probability amplitude of a classical
field configuration ¢ is given by the formula of Dirac and Feynman

(1.16) exp (z S?) ;

where S(¢) is the classical action (1.11) and £ is the unit of action, so that i.S(¢)/h
is a dimensionless quantity.

2.3. The Hamiltonian and canonical quantization.

In classical field theory the configuration space C is the space of fields ¢(z7) viewed
as functions on “space” (one uses traditionally the Greek indices for space-time
variables with 2 = ¢ and Latin indices for the space variables). A space-time field
o(xH) is viewed as a trajectory in C'

t— q(t) = ¢(t,e) € C.

The classical action (1.2)) is of the form

sww:/L@@wﬁ

where L(q, ¢) is of the form (1.3). The kinetic term is given by the functional

/¢ le

on TC, where we use the linearity of C' to identify it with its tangent space at a
given point. The potential V' is given by the function

2
Vo) = [ (5008 + 5+ Linle)) a7
on C' and the Hamiltonian is
(1.17) H(m, ¢) = / <1 2 + 1(ajgb)%r mz¢2+£im(¢)> dP 1z
2 2 2

Canonical quantization replaces ¢(x) and m(x) by noncommuting variables ¢(z) and
7(x) which for a simple scalar bosonic field as above fulfill the canonical commuta-
tion relations

(1.18) [(2),d(y)] =0, [7(2),7(y)] =0, [F(2),d(y)] = —ihd(x—y).
One then defines the quantum field gZ;(t, x) at the formal level by the basic formula

(1.19) 3ty 2) = et ga) et
where H stands for the evaluation of the function H (7, ¢) of (1.17) on the noncom-

muting variables ¢(z) and 7 (). This is a highly ambiguous and ill-defined element
of the algebra A generated by these variables. What matters is the one-parameter

group
(1.20) oi(T) = et it
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giving the time evolution of observable quantities. Once one has succeeded in mak-
ing sense of this group the main problem is to classify the vacuum states, i.e. the
representations p of the algebra A in a Hilbert space H such that

e p is an irreducible representation
e There exists a positive unbounded operator H in H such that
plan(T)) = " p(T)e "1 VT € A

e There exists a unique eigenvector |0) € H, such that H|0) = 0 and the
subspace p(A)|0) C H is dense in ‘H

Such representations are characterized by the positive linear functional on A:

¢(T) = (0] p(T)[0)
whose main property is to be a pure state and to fulfill the following limiting case

of the Kubo-Martin-Schwinger (KMS) condition (which will play a crucial role in
Chapter 3 below):

e For bounded observables a,b € A the correlation function

F(t) = ¢(ao(b))
is the boundary value of a bounded holomorphic function F'(z) in the upper
half-plane.

In practice it is very hard to make sense of the one-parameter group o; and then to
classify the vacuum states. It is nevertheless quite important to keep in mind that
there are two separate steps that need to be taken in order to obtain a quantum
field theory:

e The definition of the observables and the dynamics.
e The construction and classification of vacuum states.

The three main physical properties of a quantum field theory are
e Causality
e Positivity of energy
e Unitarity
The first two are already incompatible in quantum mechanics [130].
Causality is a property of the dynamics; its best formulation says that (for bosonic
fields) the quantum fields commute at space-like separation,

(1.21) [6(2), d(y)] =0, V(z,y), (z—y)*<0,
where two points x,%y of space-time are space-like separated iff (z — %)? < 0 in the

metric (1.13).
Unitarity is equivalent to the property of the vacuum state that

(1.22) Y(a*a) >0, Vae A

The positivity of energy is the positivity (which we discussed above) of the operator
H in the representation associated to the vacuum states.

In order to get “numbers” one bypasses the analytic difficulties of the above frame-
work by working with the Feynman path integral formalism and in perturbation
theory. It is in the latter framework that the problem of renormalization manifests
itself in the simplest manner.
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2.4. The simplest example.

Let us consider the simplest field theory, namely the free massive scalar field ¢ on
the space-time

X =RxS!
with the Lorentz metric.

The scalar field ¢ is a real-valued function on X governed by the Lagrangian

£6) = 5 (09)? — (219)* — m® 6?)

where 0y = 0/0t is the time derivative (¢t € R) and 01 = 9/0z is the spatial deriv-
ative, where the space is here compact and one-dimensional. The action functional

is given by
/E @) dxdt = /L(t) dt

L(t>:/51 (;@)2 50107 _”j¢z) ds

Thus, at the classical level, one is dealing with a mechanical system with infinitely
many degrees of freedom, whose configuration space C' is the space of real-valued
functions on S'. The Hamiltonian of this classical mechanical system is the func-
tional on the cotangent space T*C' given by

Hom) = 5 [ (50 + (@0(a))* + m?6?(a) o

where one uses the linear structure of C to identify T*C with C' x C*, and where
one views the field 7 as an element of C* in the form

¢ — ¢(z) m(x)dx € C.
S1

As a classical mechanical system the above is the same as a countable collection of
uncoupled harmonic oscillators. Indeed, one can take as coordinates in C' (resp. C*)
the Fourier components ¢, = [, ¢(x) e *** dx (resp. m), which are subject only
to the reality condition

b r=¢, VKEZ (resp. m_j =Tp).

Thus, both spaces C' and T*C are infinite products of finite-dimensional spaces and
the Hamiltonian H is an inﬁnite sum

H = z: (me7r + (K2 + m?)prey,) -
keZ

The quantization of a single harmonic oscillator, say a system with configuration
space R and Hamiltonian (p + w?q?), is given by the simple rule

[ )Q] = —ih.

This quantizes the values of the energy, as one sees from the equality (up to a shift
h
of )
1
H = 5(;02 + w?¢®) = hwa'a
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FIGURE 1. Space-like separated regions O and O, in space-time
cylinder

where the annihilation operator a and its adjoint, the creation operator a*, obey the
commutation relation

[a,a*] = 1.

The terminology here comes from Dirac’s theory of emission and absorption of pho-
tons [119]. These two equations completely describe the quantum system. Its
representation in L?(R), given by the equality

(3

is, up to unitary equivalence, its only irreducible representation. The (unique up to
phase) normalized vector 2 such that a2 = 0 is called the vacuum vector.

The reality condition ¢_;, = ¢, shows that for & > 0, the pair {—k, k} yields a pair
of harmonic oscillators, whose quantization yields a pair of creation operators ay,
a* ;. The algebra of observables of the quantized field has the following presentation.
It is generated by ay and aj, k € Z, with relations

lak,ap] =1 VkeZ
[ag,ar) =0, [ag,a;] =0 Vk # L.
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The Hamiltonian is given by the derivation corresponding to the formal sum
(1.23) Hy = hwpapar with wy = k2 +m?.
keZ

The “vacuum representation” which corresponds to the vacuum state, which is the
infinite tensor product of the vacuum states, is given by the Hilbert space

Hy= ) (Hr, %)

kEZ
and the tensor product representation of the algebra.

Equivalently, one can describe this infinite tensor product as the Hilbert space
L?(C,du) where 1 is a Gaussian measure on C' (cf. [145]).

The spectrum of the quantum field Hamiltonian Hj acting in H; is now
Spec Hp, = {Z nghwy | ng € N}.

Quantum field theory reconciles positivity of energy (i.e. the fact that Hy is a positive
operator in Hy) with causality, which means that we have commutation at space-like
separation for functions of the quantum field ¢(t,z) = e o ¢(0,2) e~#Hv_ with

$(0,z) = Z (ak etk 4 qx e_i’m) (2wi) Y2,
keZ
This commutation of ¢(t,x) with ¢(s,y) for (t,x) and (s,y) space-like separated in
the space-time X = R x S! is easy to check directly. First, the operators <Z>( f) =
[ f(=) #(0, ) dx, f € C®(S'), commute with each other, using wy = w_;. Next,
with o; the automorphisms given by time evolution

O_t — 67:tHb () e—itHb’

one computes [0:d(f), d(g)], for f,g € C°(S'), and finds a scalar multiple of the
identity, where the scalar is

/ (. 0)f (2)g(y) didy,

where

c(z,y,t) = Z e~ h(z—y) (e_i“”“t - ei“”“t) w,;l =c(x —y,t)
k
with ¢ satisfying the Klein-Gordon equation

(05 — 0 +m®)c=0
with initial conditions ¢(x,0) = 0 and % c(xz,0) = A do(x) with X #£ 0.
It then follows from elementary properties of the wave equation that c(z, 15)~ vanishes
if (z,t) is space-like separated from (0,0), hence that the quantum field ¢ satisfies

causality. The classification of vacuum states is simple in this free case and one has
the following result (cf. [182]).

a) The representation in Hy is the unique vacuum representation. The quan-
tum fields ¢ are represented by operator-valued distributions.
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b) Let O be a local region (i.e. a bounded open set) in X and U(O) be the
von Neumann algebra in H; generated by bounded functions of the ¢(f)
with Supp(f) € O. Then, when O; and Oy are space-like separated, one
has

U(Ol) - U(OQ)/,
where U(O2)" is the commutant of the von Neumann algebra U(Os).
c¢) For all 3 > 0 one has Tr(e ##b) < oo and the map
as sla) = Z7 Tr(ae PH) | with Z = Tr(e P ),

defines a state on the algebra of observables, which fulfills the KMSg con-
dition relative to o;. (See Chapter 3 below for a detailed discussion of the
KMSg3 condition.)

The von Neumann algebras U(QO) of local observables are an essential part of the
algebraic formulation of quantum field theory (cf. [182]). The finiteness of the trace
Tr(e P Hv) < oo follows from the convergence of the infinite product

_ 1
Tr(e ﬁHb) - H 1 — e Bwk
keZ

while the free energy log Z is given by

(1.24) logZ = — Z log(1 — e Pwr).
keZ

2.5. Green’s functions.

Once a vacuum state has been constructed, one way to describe the corresponding
quantum field theory ¢(x) is by means of the time-ordered Green’s functions

(1.25) Gn(z1,...,xn) = (0T ¢(21) ... d(xn)]0),

where 0 is the vacuum state, and the time-ordering symbol T means that the (;E(xj)’s
are written in order of increasing time from right to left. Typically, from the Green’s
functions one can recover all the experimentally relevant data, such as the cross
sections of the particle collisions.

In the functional integral formalism as in (1.15), the Green’s functions can be com-
puted by Feynman’s formula as an “integral over histories”

- S(¢)
(1.26) Gn(z1,...,zN) = ./\/'/eZ o ¢(xr) - d(zn) D[],
where the factor N ensures the normalization of the vacuum state
(1.27) (0]0)y=1.

This means that, if one could ignore the issue of renormalization, which we will
discuss later, then the functional integral (1.26) would be easy to compute in per-
turbation theory, i.e. by treating the term Lin; in (1.12) as a perturbation of (1.14).
The action functional (1.11) correspondingly splits as the sum of two terms

(1.28) S(¢) = 50(¢) + Sins (),

where the free action Sy generates an “imaginary Gaussian” measure
(1.29) dp = exp (i So(¢)) D[¢],
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where we have set A = 1.

The series expansion of the Green’s functions can then be written in the form
Gn(z1,...,xN) = (Z?LO:() % f¢($1) o d(xN) Sing(0)" d,u)
o0 n n —1
(0o & [ Sin(d)™ dp)

or equivalently in terms of the Green’s functions for the free field qu as the Gell-
Mann-Low formula

(1.30)

Gn(z1,...,2N) =
(131) (520 55 J(O1Tdm (1) - drlaw) 1, L) 10) T, dy
(S50 B JCOIT TT Lune(w) | 0) T )

2.6. Wick rotation and Euclidean Green’s functions.

Even for the simplest case of the two-point Green’s function of the free field 45 F some
care is required in order to get the right answer. Indeed, in terms of (1.30) the only
non-zero term is for n = 0 which gives, with the normalization factor Aj of the free
Gaussian,

(1.32) GE(z,y) = No / 6(2)(y) exp (i So(6)) Dlg].

As a function of the classical field ¢, the expression ¢(z)¢(y) only depends upon the
two-dimensional projection of ¢ but one cannot yet use the factorization property
of the Gaussian integral since Sy(¢) involves the derivatives of ¢. In fact So(¢) is
diagonal in terms of the Fourier transform qg(p),

(1.33) d(p) = / b(z) e dP,
where it becomes
(1.3 50(6) = 2m) ™ [ 5%~ m®) d(p)d(—p) .

The reality condition for ¢(z) shows that the ¢(p) are not independent variables but
fulfill the condition

(1.35) é(—p) = o(p).
Then one uses the Fourier inversion formula
(1.36) o) = (200 [ o)y

and applies integration by parts under the Gaussian to get
No [ ¢(p1) $(p2) exp (i So()) D[¢)]
=i (2m)P 8(p1 + p2) (p] — m?) "

At the formal level, this integration by parts is obtained from the following simple
manipulations. One lets V' be a finite-dimensional real vector space with @ € V*®@V*

(1.37)
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a non-degenerate quadratic form. The inverse of () is simply obtained from the
canonical identification V* ® V* ~ Hom(V, V*) as

Hom(V,V*) 3 Q — Q! € Hom(V*,V).

The invertibility and the symmetry of @ show that, for any linear form L € V* on
V', one has

1
anl(L) 5 Q - L .
The integration by parts formula is then obtained from

/ P(X)L(X) exp <—Q(2X)> D[X] =

—/P(X)f?@—l(m <9XP <_Q(2X>>) PXI=

[ 20wy exo (-2 ppx.

This gives
J POO LX) exp (- 949) DLx] =

J 011y (P(X)) exp (—%) DIX].

Thus, (1.37) reduces the computation of the two-point Green’s function (1.32) to
the integral

(1.39) GE(x,y) = i(QTF)D/

The presence of the oscillatory term e~ (*=%) takes good care of the issue of con-
vergence for large p. The reason why care is needed is the singularity at p?> = m?
which makes the meaning of (1.39) ambiguous.

The right answer is easy to compute for the explicit example of subsection 2.4, where
one gets by direct computation

(1.40) (0] @r(t,0)pr(s,9)|0) = 3 (2up) " B~ (=)o),
k€EZ

(1.38)

tip-(z—y)
e
5 de.
P> —m

where, as in (1.23), the frequency wy, is the positive square root of k? 4+ m?.

LEMMA 1.2. Let u > 0 and w > 0 be positive real numbers. Then one has
+ipu

e
lim | dp=
e—0+ Jp p° — w* + i€ 1w

eipu
F(w) = B— dp

2 _ 2
p?—w
defines a holomorphic function of w in the half-plane ¥(w) < 0. For a > 0 one has
F(—ia) = T e™", hence

—iuw
e .

PROOF. The integral

F(w) = T e”  VYweC with ¥(w)<0.
iw

Using this as a formula for the square root of w? — ie near w one gets the desired
result. g
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This makes it possible to rewrite (1.40) using Dyson’s time-ordered Green’s function,
in the form

(1.41) (0| T or(t,x)pr(s,y)|0) = Z/ k;

(z—y)—ko(t—s))

k
—m2 40
where the limit for ¢ — 0 is understood. The role of the time ordering 7" is simply in
order to ensure (t — s) > 0. Thus, more generally, the prescription due to Feynman
for the removal of the singularity (or on how to go around the pole) in the integral
(1.39) consists of defining it as

F _ -D D
(1.42) G5 (z,y) = i (2m) / o B d”p.

This prescription embodies the physical conditions fulfilled by the free field theory
and makes it possible to start the perturbation theory. It is important to be able
to formulate it at a more conceptual level and this is done by the Wick rotation
to imaginary time. The Green’s functions (1.25) then appear as the distributional
boundary values of the Schwinger functions Sy (z1,...,2nx). These are complex
analytic functions of the complexified time parameters z; of z; = (2;,v;). They are
defined in the cone

(1.43) 21 < Tz <o < Sy

The relevance of the Schwinger functions Sy (z1,...,zy) comes from the positivity
of the Hamiltonian H and the formal equality

Sn(@1,.. an) = (0] g(vr) e =T Gluy ) el GV H ()] 0).

In particular, for N = 2, the ambiguity in the definition of the Green’s function of
the free field is uniquely resolved in terms of the corresponding Schwinger function.
The existence of the two-point Schwinger function

(1.44) (0]d(vr1)e*H §(v2)]0), Sz2>0

is a limit case (at zero temperature) of the Kubo-Martin—Schwinger (KMS) condi-
tion which plays a central role in Chapter 3 of this book.

To perform the computation one works directly with purely imaginary time. Thus,
one lets 7 = it and one expresses the Schwinger functions in the form

SE(¢E>

(1.45) Sn(z1,...,xN) = N/QSE(zl)qu(xN) DloE],

where A is the normalization factor

le/ o E(¢E) [¢E]

and where the Euclidean action functional

(1.46) SE (¢E) :/ﬁE (¢E) le'

is given by the Lagrangian density

1 m?
(1.47) Lg (¢p) = i(ﬁqu)Q + 5 ¢52E + Lint(PE) -
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The integration variables ¢p are classical Fuclidean fields and one uses the (posi-
tive) Euclidean metric g"” = 6" to compute (9¢)? = ¢"*0,$0,¢. The Euclidean
functional integral

(1.48) O)p= N / O(ép) e 5 Dlog)

for an observable O(¢g) (a function of the classical Euclidean fields) is identical to
the expectation value of a classical statistical mechanical system and this gives a far-
reaching correspondence between Euclidean field theory and statistical mechanics
(I145)).

Notice that the change of sign of the potential terms of the Lagrangian in the
transition from Minkowski space-time to Euclidean space-time is the same as in
the transition (1.7) from the Lagrangian to the Hamiltonian. In particular, one
keeps track of the basic positivity properties of the latter, the measure du of (1.29)
becomes a true Gaussian measure after the Wick rotation to Euclidean signature,
and the singularity of the propagator (cf. (1.39)) has now disappeared.

The series expansion of the Euclidean Green’s functions takes the form

SN(Z‘l, e ,$N) =
(1.49) (020 S [ om(@1) -+ Su(@n) Sme(@r)" dp)
(S0 S T Selop) dn)

3. Feynman diagrams

The various terms
(1.50) [ o). 6(ox) (Sue())"

of the expansion (1.30)) are integrals of polynomials with respect to a Gaussian
measure dp. When these are computed using integration by parts, the process
generates a large number of terms. The combinatorial data labeling these terms
are conveniently encoded by graphs I', known as Feynman graphs. Each graph
determines the terms that appear in the calculation of the corresponding integral.

The class of graphs that label terms in this procedure depends on the nature of the
terms in the Lagrangian density of the theory. For example, the possible valences of
vertices in the graphs correspond to the monomials in the Lagrangian density: the
quadratic terms give rise to vertices of valence two, while, for instance, the presence
of a term g¢3 in the interaction Lagrangian L, means that there will be vertices of
valence three in the graphs.

The physical intuition behind Feynman diagrams is that each graph represents a
possible event where particles are exchanged, created and annihilated. For example,
the lower part of the graph depicted in Figure 2/shows an electron releasing a photon,
which in turn creates a pair consisting of a particle and antiparticle (an electron and
a positron). These are then annihilated releasing a photon that is finally absorbed
by an electron. Diagrams of increasing complexity enumerate more complicated
possible interactions.
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FIGURE 2. An example of a Feynman diagram

The particles that are involved in the intermediate processes are “virtual” particles
which differ notably from real particles in that their energy-momentum vectors p no
longer satisfy the “on-shell” condition

(1.51) pP=m? pp>0

and the integration process involves all “virtual” particles including those of negative
energy.

3.1. The simplest case.

In order to understand how Feynman graphs label the various terms of the pertur-
bative expansion, let us take the simplest interaction term, namely a monomial of
the form ¢3, so that the Lagrangian is given by

2
2_m

2 g 3
AT

(1.52) £(6) = 5(09) g

where g is the coupling constant.

The first non-trivial correction to the Euclidean two-point function comes from the
term in (1.49) of the form

(153) / 65(21) d5(x2) Sue(62)? dp,
where, by construction, we have
Sie(dp) = § [ oh(x)dPx
= (2m) P4 [ (k1) d(ka)d(ka)d (k1 + ko + ks) [ dPk;.

The simple mnemonic, in order to keep track of the powers of 2w, is to attach a
factor of (2)~P to each momentum integration d”k and a factor of (27)” to each
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FIGURE 3. Vacuum bubble

o-function. Using
ou(ay) = (2m) 7 [ v Py

the problem is then reduced, up to an overall factor and to the product
(2m)P6 (k1 + k2 + k3)d(q1 + g2 + g3),

to computing the integral

~ ~ A~ ~

(1.54) / $(p1)S(p2) (k1) (k2) b(ks)(a1)(42)(g)

which is the integral of a polynomial of degree 8 under a Gaussian. To compute
it, one just needs to apply (1.38)) four times, contracting pairwise the factors of the
monomial. This generates 7 x 5 x 3 = 105 terms. Each of the contractions takes
place between pairs of factors of the form ¢(f1) (f2) and delivers a delta-function

(27T)D 5(51 + 62)
in the sum of the momenta /¢; involved, and a “propagator”, i.e. a factor of
1
2 + m?’
where £ = ¢; and the choice of j is irrelevant since the propagator is an even function
of the momentum. R
The terms where ¢(p) is paired with ¢(—p) are not relevant, since they get canceled

by the denominator of (1.49). It is nevertheless worthwhile to see what they look
like. This means computing the degree-six expression

(2m)2P 8 (k1 + ko + k3)d(q1 + g2 + g3) / o (k1) d(k2) d(ks) d(q1) d(g2) d(a3) dp.

(1.55)

In any of the 15 possible pairings, at least one of the gZA)(k) will get paired with one
of the gﬁ(q) There are then two possible cases:
e Only one of the ¢(k) is paired with one of the ¢(g);
e The three ¢(k) are paired with the three ¢(q).
An example of the first case is given by the pairings
ki —ky, ks—aq, ¢ g.
There are 9 such pairings. An example of the second case (which yields 6 pairings)
is given by
ki —aq, koe——gq, ks gs.
These two possibilities are represented pictorially by the vacuum bubble diagrams of
Figures 3}, [4.
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i
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FIGURE 4. Vacuum bubble

)a®

FI1GURE 5. Tadpole

@

FIGURE 6. Double tadpole

In the other terms, Athe fz}ctorsA of q@{p) aI}d
the monomial ¢(k1) ¢(k2) ¢(ks) d(q1) ¢(q2) é(q

cases:

$(—p) get paired with the terms of
3). Thus, there are again two distinct

e The terms é(p) and qg(—p) get paired with terms of the same group;
e The terms ¢(p) and ¢(—p) get paired with terms of two different groups
(i.e. with a k and a q).

These cases are represented pictorially by the diagrams of Figure 5 for the first case,
and Figure |6/ and Figure [7 for the second case. The latter, in fact, splits into two
subcases according to the pairings of the remaining terms in the two groups.

The presence of the J-functions (i.e. momentum conservation) shows that in all the
tadpole graphs the momentum k flowing through the single line is zero (i.e. there is
an overall factor of 6(k)). The contributions of all these diagrams can be eliminated
by the following a priori requirement on the vacuum state:

(1.56) (0]¢(z)]0) = 0.
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FIGURE 7. Self-energy graph

This condition is satisfied in the free field case and one requires that it continues to
hold in the perturbative case (tadpole vanishing condition).

Thus, we focus on the only remaining graph, that is, the self-energy graph of Figure
7. It corresponds to one of the 36 pairings of the form

p1e— ki, p2e—q, ke+—q, k3 g

Each of the edges delivers a propagator. Thus, the external lines (called external
legs of the graph) each give rise to a term in (p? +m?)~!. This means that we get an
overall factor of (p? +m?)~2. Notice then that the J-functions occurring from the
contractions and from the overall factor §(kj + ko +k3)d(q1 + g2+ ¢3) do not uniquely
determine the momenta k; and ¢; from the value of p. Indeed, there is one law of
conservation of momentum per vertex of the graph and one free momentum variable
for each internal line. However, the obtained linear relations are not independent.
They leave one momentum variable k undetermined, so that the flow of momenta
through the diagram is given by

p+k

k

Including the J-functions and the coupling constant, the contribution of the self-
energy graph is then given by

1 1 1 1 1
1.57 ~¢%6 / d’k.
(1.57) 27 (p1+p2)p%+m2p§—|—m2 k2 +m? (p1 + k)? +m?

Notice here that there are 36 pairings giving the same graph and the factor of (%)2
in front of g2 cancels this numerical factor.

Thus, we see that in dimension D = 4 the problem of divergences shows up when
one wants to integrate the contributions for the different values of k as required in
computing (1.53)). In the expression (1.57) large values of the Euclidean momentum
k contribute disproportionate amounts to the self-energy and if one integrates only
over momenta k with ||k|| < A where A > 0 is a cutoff parameter, one obtains

1 1
(1.58) / d*k ~ 2n%log A
k<A k2 + m? (p1+k)2+m2 ’
which diverges when the cutoff is removed, i.e. for A — oo. It would then appear at
first sight that the theory does not make sense, since it delivers divergent answers.
This type of problem arose in the early 1930’s, when Oppenheimer, starting from
Dirac’s theory, computed the second-order correction corresponding to the emission
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FI1GURE 8. Self-energy graph in QED

and absorption of a virtual photon by an electron, as in Figure |8, and concluded
that self-energy effects generate an infinite displacement of the spectral lines. The
physics resolution of this type of problems is called renormalization.

3.2. The origins of renormalization.

The idea of renormalization goes back to the mid-nineteenth century, long before the
advent of quantum field theory. At the time, the problem that motivated Green to
introduce a form of renormalization was the motion of bodies in fluids [150]. It was
observed that, due to the interaction with the surrounding field of water, a moving
object still obeys the usual physical rules, like Newton’s law F' = ma, but with the
mass m no longer given by the “bare” mass mg of the body, but by a corrected
“physical” mass m = mg + dm.

More precisely, this statement holds for a spherical object B immersed in a perfect
incompressible fluid with constant density p. When B is moving at a speed v,
say along the z-axis, it imparts a speed distribution X to the fluid surrounding B
which can be computed, in the moving frame of B, as the gradient vector field of
the solution h of the Laplace equation in the complement of B whose gradient is
tangent to 0B. Thus one has

X =Vh, with Ah=0.
This solution is given in terms of the first spherical harmonics and is of the form
v
2
in the moving frame where B is the ball of radius one centered at 0. Thus, with

respect to the fluid, the vector field is Y = Vh — (0,0,v) and its kinetic energy
density is easily computed to be

h(z,y,z) = (rf?’ +2)z, where r? =2+ y2 + 22,

1 v? 2?4 y? 422
E =—p|Y|?=—~ ——F——p.
(@,y,2) =5 PlIYI"= 3 i

The energy of the fluid disturbance is then the integral

E(z,y, z) dedydz = \pv?
Bec
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FIGURE 9. Self-energy of an immersed ball

in the complement B¢ of B. An easy direct computation shows that one has

1 1
No==-M, Ipov?= ZMvz,

4
where M is the mass of the fluid contained in the volume of the ball B. As shown
by Green [150], this implies that the inertial mass m that appears in Newton’s law
of motion for the ball B undergoes, by the mere presence of the surrounding fluid,
a “renormalization”
mob—>m:m0+(5m:mo+?.

The striking fact is that this effect is felt even at zero speed and it modifies the
initial acceleration of the moving ball.

An amusing example of what this means in very concrete terms is given in Sidney
Coleman’s course on quantum field theory [59]. Namely, one considers what will be
the initial acceleration of a ping-pong ball immersed in water, subject to the usual
Archimedes law. If one simply applies Newton’s law with the bare mass of the ball,
one finds an unrealistically high value for the acceleration (something of the order
of 11g), while if one corrects the value of the mass as observed by Green, where
dm = M/2 is half of the mass of the water contained in the volume of the ball, then
Archimedes law —(M — mg)g = ma yields a more realistic value of the acceleration
of the order of 2g. (The ball has a mass of my = 2.7 grams and a diameter of 4
centimeters, readers not versed in the metric system can make a conversion to their
favorite units.)
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The additional inertial mass dm = m — myg accounts for the interaction of the body
with the surrounding field of water. In this classical setup with bodies moving
in fluids, clearly both m and mg are experimentally measurable. However, if the
interaction could not be turned off by removing the body from the fluid, there would
be no way to measure the bare mass mg, and m would remain the only physically
observable mass.

The analogy between hydrodynamics and electromagnetism led in steps, through the
work of Thomson, Lorentz, Kramers, et al. (cf. [125]), , to the crucial distinction
between the bare parameters, such as mg, which enter the field-theoretic equations,
and the observed parameters, such as the inertial mass m. Since it is not possible
to isolate an electron from the surrounding electromagnetic field, in quantum field
theory the bare parameters are not physical observables.

Around 1947, motivated by the experimental findings of spectroscopy about the fine
structure of spectra, physicists were able to exploit the distinction between these two
notions of mass (bare and observed), and similar distinctions for the charge and field
strength, in order to eliminate the unwanted infinities associated to the pointwise
nature of the electron. This marked the beginning of renormalization techniques in
quantum field theory. We refer the interested reader to [125] for a detailed account
of the historical developments of the subject.

In the example of §3.1 above, one uses the aforementioned distinction so as to cancel
the second-order self-energy divergence in the following way. One takes the freedom
to shift the bare mass parameter m? which appears in the Lagrangian by an amount
dm? which depends on the cutoff parameter A. This results in a new term

(1.59) 5S(bm) = — (5m / 62 (

in the Euclidean action. Considering this term as part of the interaction Sy, one
obtains a corresponding term in the perturbative expansion (1.49) of the Euclidean
two-point function, of the form

(1.60) - /¢E(9€1) op(z2) 05(dE) dut

Using (1.59), one obtains

(1.61) — 58(6p) = %m (2m)" /¢ (1) B(ks) 6(kn + ko) T[ 'k

Thus, we get the additional term

(162) 5 omP(A) (2m) " 8k + o) ([ 61) Bp) dl0n) (k) ) [ s,

which is the integral of a polynomial of degree 4 under a Gaussian. When we
apply (1.38), the terms in which the p; get paired together only contribute to the
normalization factor and are canceled out. Thus, we just get the two terms in which
p1 is paired with one of the k;. These are represented by the graph of Figure 10/ and
their values add up to

1 1
p?+m? p+m?’

(1.63) om2(A) (2m)* 6(p1 + p2)
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F1GURE 10. Tree level counterterm graph

This shows that the choice
(1.64) om?(A) = —(2m)"* 7% g% log A,

cancels the divergence coming from the second-order self-energy graph. In other
words, one can take advantage of the unphysical nature of the bare parameters to
ask them to conspire so that they cancel the divergences. This is a very tricky process
since a counterterm such as (1.64) will now generate many other new terms in the
perturbative expansion and it is not clear at all how to organize the elimination
of the unwanted infinities. After clarifying what is meant by a Feynman graph
(subsection 3.3) we describe the first step, which is to reduce the zoo of graphs that
are physically relevant and this is done in terms of generating functions and the
effective action (subsection [3.5)).

3.3. Feynman graphs and rules.

As explained in §3.1above, the various terms of the perturbative expansion of Euclid-
ean Green’s functions (1.49) are labeled by graphs which encode in a visual manner
all the possible pairings in the integration by parts under the Gaussian. Thus, at
the formal level, one has

V) (p1, -, i(z1prtetoN PN dp;
(1.65) SN(xl,...,xN):Z/ ( )(1;1@) PN) ifarpitt )1;[(271:)17,

where we need to give precise meaning to the terms
e I' (Feynman graph)
e V(I')(p1,-..,pn) (unrenormalized value of the graph)
e o(I") (symmetry factor).

Graphs: A Feynman graph T is given by a finite set T'©) of vertices and a finite
set T of oriented edges. (The oriented edges are also called lines. We are dealing
here, for simplicity, with a single scalar field and do not have to distinguish among
several propagators.) The sets of vertices and edges are endowed with a collection
of maps 0;, for j € {0,1} and ¢. Here

(1.66) 9; :TW 1Oy {1,2,... N}

is the map that assigns to each line the two vertices (corresponding to the two
cases j € {0,1}) of its boundary. Let I denote the collection of monomials in the
interaction Lagrangian Lins. Then the map ¢ is given by

(1.67) 07O 1,

It assigns to each vertex a monomial in the interaction Lagrangian L. One requires
that the degree of the monomial is the valence of the vertex, i.e. that

(1.68) deg1(v) = #9; (v) + #07 (v), Yo e,
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One also requires that there are N external lines labeled by {1,2,...,N}. The
labelling is by the vertex in {1,2,..., N} and one assumes that

(1.69) #05 (v) +#07 (v) =1, Ywe{l,2,...,N}.
The set of external lines is
(1.70) Tl = U071 1,2,...,N} c T

and its complement Fl(;t) c '™ is the set of internal lines.
The geometric realization of a graph is the one-dimensional space

(1.71) T =T x [0,1]Us TO U{1,2,...,N})

obtained by gluing the endpoints of the lines using the maps 0;. The graph is planar
when it can be represented by a planar picture. It can always be represented by
a spatial picture, hence by a planar projection with a finite numbers of crossings
(usually indicated by a broken line, so as not to be confused with vertices).

Graphs from pairings: We write the decomposition of the interaction Lagrangian
Lint into a sum of monomials as Ling = mer M. We then look at the contribution
to the perturbative expansmn (1.49) coming from terms of the form

(1.72) /¢>p1 - o(ow) [T My du,

JjeX
where X is a finite set mapping to I, by X > j — M, € I. Each monomial of the
form

—z
M= ar ¢E($)d
yields, as in §3.1, a product

(1.73) 2(2m)P 50> ki) ] o(k:)

where we omit the integral in k;.

The derivative interaction term = (d¢g(x))? delivers a quadratic term
dk1dko
(om0

Notice that in the original Lagrangian this term is not an interaction term, but later
on, in the process of wave function renormalization, one needs to add such a term
and view it as part of the interaction.

(1.74) 2(2m)P 8(ky + ko) k2 H(K1) (k)

The terms (1.72) generate graphs I' from the pairings in the integration by parts in

d;
(1.75) / 1) -+ dow) TT TT ok

JEX i=1

For each such graph I' the set of vertices is I'®) = X and the map ¢ is the obvious
one which, to each element j € X, assigns the monomial M;. Thus, each monomial
determines a vertex with a number of half-lines equal to its degree, and a pairing in
the integration by parts (1.75) corresponds to a way of matching these half-lines. In
(1.75)) the k;(7) denote the momentum variables carried by the half-lines associated
to the monomial M. Thus, we see that each such pairing in (1.75) determines in
this way a graph I', where the set r® of edges is the set of the coupled pairs. For
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FIGURE 11. Self-energy graph in ¢*

each such pair we make an arbitrary choice of orientation. The map 0 in (1.71) is
obtained by taking the image of the two elements of the pair under the map

pe {12, N}, ki(j)—jeX=T0,

Edges where two p;, say p1 and pgo, are paired together correspond to the simplest
kind of graph. It splits off as a connected component and its contribution is of the
form

(1.76) (2m)” 8(p1 + p2) (T +m?) ™"

Edges where one p; is paired with one of the k; are external. Each p; appears once
and only once among the pairs, hence (1.69) holds. For each j € X, each of the
k;(j) appears exactly once in one of the pairs and (1.68)) holds.

Notice that the two endpoints of an edge may well be the same, as in the tadpole
graph of Figure5. In the ¢3 theory this only occurs for tadpole graphs, but in other
theories it occurs in more important graphs. For instance, in the case of the ¢*
theory this happens in the self-energy graph of Figure [11.

Feynman rules: Now that we know how to assign a graph to a pairing we can write
down the Feynman rules which give the contribution of the pairing. For the moment,
we ignore the combinatorial factor that accounts for the number of occurrences of
the same graph from different pairings, which we describe later.

The Feynman rules assign:

1) To each external line ¢ € ) o propagator

ext

1

TmE i€ 0(()

2) To each internal line ¢ € Fl(it) a momentum variable k = k, and a propagator

1 dPk

k2 +m? (2m)P
3) To each vertex v with ¢(v) = 5 ¢% a momentum conservation

22m)Po( Y ke— > ki)

o (£)=v 01(0)=v
4) To each vertex v with ¢(v) = =2 (9¢g)? a term
2@m)P RS> ke— Y ko).
Oo(f)=v o1(0)=v
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In the last term the variable k is any of the ky involved in the momentum conservation
(there are just two of them by (1.68)).

Unrenormalized values: The unrenormalized value V' (I')(p1, . .., pn) of the graph
is the multiple integral obtained from the product of the four types of terms described
above, assigned to I' by the Feynman rules. It factorizes as a product

(1.77) v =] v

over the connected components I'; of (the geometric realization of) I". In particular,
it always contains an overall factor of the form

(1.78) e(T) = eTo),

where, for a connected graph, one lets
1.79
(1.79) e(I') Z pj) H 2 T mz

where p; are the momentum variables assagned to the external lines and we assume
for simplicity that all external lines are inward oriented. This can always be done,
except when there is a single line, in which case one uses (1.76)).

For a connected graph with N external legs, the number of free integration variables
in the multiple integral V/(I") is

(1.80) L) = #0W — u1© 4 9

int
i.e. the number of internal lines minus the number of vertices plus one, which is the
same thing as the first Betti number b1 (|T'|) of the geometric realization of T'.

Symmetry factors: Let us determine the numerical factor in the contribution of

(1.72) of the form
(_nl,) / $(p1) -+ dlow) [ M;du.

JjEX
—z
The cardinality of X is n. We write each monomial in the form M = a QS%, so that

the minus signs cancel and we can ignore them. We also write the term [] jex M;

in the form

[T M= H M,

JjeEX
where > n, = n occurs with a multiplicity n! /11 n.! from the binomial expansion
of (3°; M)™. This gives an overall denominator 6 =[] n,! [ (d,!)™, where d, is the
order of the corresponding monomial M.
One sees that 4 is the order of the group A of permutations of the terms ¢(k;(j)) in
(1.75) that respect the map X — I. In particular, this group A acts on the pairings
and the orbit A(7) of a given pairing gives all pairings of the same type.
Thus, we see that the symmetry factor is given by the cardinality of the isotropy
group
(1.81) o(I') =#{g € Alg(r) ==}

Since the construction of the graph I' from the pairing 7 is natural, the isotropy
group is the group of automorphisms of the graph, so that

(1.82) () = #Aut(T).
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It accounts for repetitions, as usual in combinatorics. Notice that we do not take
into account the orientation of the edges, i.e. we do not consider two graphs which
only differ by a choice of orientations of their edges as distinct.

3.4. Connected Green’s functions.

There are standard procedures that allow one to simplify the combinatorics of the
Feynman graphs. First, one can combine the Green’s functions (1.25) in a single
generating function. This takes the form of a Fourier transform

Z(J) = N [exp (i£9529) Dlg)

= Z?VO:O%fJ(xl)---J(xN)GN(xl,...,xN)dacl---de,

where the source J is an element of the linear space dual to that of the classical
fields ¢, with (J, ¢) = [ J(x)¢(x)dz.

The first simplification of the class of graphs that need to be considered is obtained
by passing to the logarithm of Z(J),

W) = log(2(J))

(1.83)

(1.84) = e J(.%'l)"-J(.Q?N)G]\Lc(l'l,...,.%'N)dxl'--dl‘N.
This is the generating function for the connected Green’s functions G .. This means
that, at the formal combinatorial level, the perturbative expansion

GN(.IZl, e ,a:N) =

(1.85) V) (P13 PN) oy prttanepn) TT P
> [ 11

21\ D
Lam

of the original Green’s functions (i.e. the Minkowski space analogue of (1.65)) is over
all graphs (including the non-connected ones). By taking the log and passing to the

expression W (J) in (1.84), one simply drops from the counting all the disconnected
graphs, so that

GN7C(J}1, . ,l’N) =

(1.86) Z /V(P)(il(,r) . ,pN) ei(xl'p1+"‘+50N~pN) H dpj
J

I" connected (27T)D
At the same time, dividing by the normalization factor N in (1.83) eliminates all
the “vacuum bubbles”, that is, all the graphs that do not have any external legs.
The number L of loops in a connected graph determines the power AF~! of the
unit of action that multiplies the corresponding term, so that (1.84) has the form
of a semiclassical expansion. Indeed, if we keep track of the powers of A in the
perturbative expansion, we see that each propagator contributes one factor of A
(since it is the inverse of the free part of the action) and each interaction term a
factor of A~'. Thus, each connected graph I" with N external legs inherits a factor
of RNHLI)=1  The source J appears in the action with a coefficient of A~!, hence
we are left with a factor of A£( =1 for the contribution of each graph to W (.J).
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In a similar manner, the generating function of Euclidean Green’s functions is given

by
Z(Jg) =

S(¢r)—{JE ) _

=1
Z ]\”/JE(il) JE(xN) SN(xl,.. . ,:EN) dl‘l ~--d$N,
N=0""

where the source Jg is an element of the linear space dual to that of the Euclidean
classical fields ¢g. The generating function for the connected Euclidean Green’s
functions is of the form

W(Jg) =log(Z(JE)) =

(1.88) 4
Z ]V'/JE(xl)"'JE(xN)SN,c(-TlaH-aSUN) dl‘l '--d:L‘N,
N=0"~

and is similar to the free energy of a statistical mechanical system in the presence
of the source Jg.

Suppose given a formal expansion in terms of connected graphs and symmetry factors

(1.89) W= > o

I connected

The relations that give the equality

(1.90) M= Z(%)
T

with the sum over all (not necessarily connected) graphs, are of the form
(1.91) V(I1UTy) = V() V(Ty), with o(T) =]]n! [[e@)™

where the I'; are the distinct graphs that appear as components of I' and the n; are
the multiplicities of their occurrences.

Using this general principle one obtains

(1.92) W) =logZ(Tp) = S DU
I" connected g (F)
where
(1.93) V(D)(J) = ]\%/f(pl) () V(T (p1, -, pN)) 1;[ (;f;D .

3.5. The effective action and one-particle irreducible graphs.

There is then a second key simplification of the combinatorics of graphs which makes
it possible to reduce the computations to connected graphs which are one-particle
irreducible (1PI).

DEFINITION 1.3. Let I' be a connected Feynman graph of a given QFT. Then T is a
one-particle irreducible (1PI) graph if the following holds.
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00

FIGURE 12. One-particle reducible graph

(1) T is not a tree.
(2) T' cannot be disconnected by cutting a single edge.

Since in the following we work mostly in the Euclidean case, we drop the distinction
between ¢ and ¢ and we simply write ¢ for the scalar field in the Euclidean theory.

The second simplification we now introduce is achieved by passing to the effective
action Seg(¢). We describe it in the Euclidean context. There are similar formulas
(with suitable powers of ) in the Minkowski signature. By definition, Seg(¢g) is
the Legendre transform of W (Jg), namely it is defined by

(1.94) Seti (¢) = (&, Jm) = W(JB)sp=1(0);

where Jg is chosen so that the functional (variational) derivative dW/6J of W
with respect to J at Jg is equal to ¢ (i.e. so that the right-hand side of (1.94)
is stationary). Such a Jg can be uniquely determined in perturbation theory. In
the case of free fields, with S(¢) = So(¢), the effective action is the same as the
original action, with the possible addition of an irrelevant constant. In the general
case, where an interaction term Siy(¢) is present in the action, the effective action
Set(¢) is a non-linear functional of the classical fields, which constitutes the basic
unknown in a given quantum field theory.

The key result on the effective action is that it can be computed by dropping all
graphs that can be disconnected by the removal of one edge, as in the case illustrated
in Figure 12, where the shaded areas are a shorthand notation for an arbitrary
graph with the specified external leg structure. One can reduce in this way the
combinatorics of graphs and restrict attention to 1PI graphs only. The individual
contribution of 1PI graphs to the non-linear functional Seg(¢) can be spelled out
very concretely as follows. Up to a sign and a symmetry factor (Theorem [1.5) the
contribution to the effective action of the 1PI graph I is of the form (cf. (1.93))

1 - - dp;
199 OO =7 [ 9005 UTen-o0) [ 55
J J
Here N is the number of external legs of the graph I', while qAﬁ denotes the Fourier
transform of ¢ (we are integrating in momentum space). Formula (1.95) should
be understood as the pairing of the distribution U(I'(py,...,pn)) with the Fourier
transforms gZ)(pz) The distribution U(I'(p1,...,pnN)) is in fact given by a smooth
function of the external momenta p; and is specified by the Feynman rules of the

theory. The U(I'(p1,...,pn)) is referred to as the unrenormalized value of the graph
I" with assigned external momenta (p1,...,pn).
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F1GURE 13. Connected graph with two external legs

DEFINITION 1.4. Let T be a 1PI graph. Its unrenormalized value, denoted by U (T (p1, ...

is given by V(T') with external propagators and 0-function removed, so that
(1.96) VI (p1,-..,pn)) = () UX(p1,-- -, PN))-
It is only defined for 3 ;pj =0and it is of the general form

(1.97) U (p1,...,pN)) = /Ip(kl,...kL,pl,...pN)del'--de‘L,
where L = by (|T']) is the loop number of the graph (the first Betti number) and the
ki € RP, with i = 1,..., L, are momentum variables assigned to the internal edges.

THEOREM 1.5. The effective action is given by the formal series
Um)(¢)
1.98 Se = S(p) — —
I'e 1Pl
PRrOOF. If we keep explicit count of the powers of A, then (1.98) becomes

Sa(6) _ 5@0) 1 5 @)

h h I'e 1Pl o(T)

where the loop number L(T") of 1PI graphs is > 1 since we excluded tree graphs.
Thus, the effective action Seg(¢) encodes the quantum corrections to the original
action. Its knowledge makes it possible to calculate Green’s functions in a direct
manner. Namely, one obtains the same answer by computing at tree level with the
effective action Seﬁr(qzﬁ) as by computing the full perturbative expansion with the
original action S(¢

(1.99) N/ 5O D) = N P(¢) e %@ Dlg|.

tree—level

To compute the right-hand side one isolates the quadratic part of the functional
Sef(¢) and then applies perturbation theory, but one drops all non-tree graphs.
The basic facts that show how this works are the following.

a) Let I" be a connected graph with two external legs. Then one can write I'
uniquely as a tree graph with interaction vertices given by 1PI graphs II
with two external legs.

b) The sum of the contributions of all the connected graphs as above is given
by

= o(I) P2+ m2— ZH U(pﬁ p))

,PN))7
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Fi1cURE 14. Connected graph with three external legs

The reason to drop the external momenta in the definition 1.4/ of U(II) can be
understood very simply from the evaluation of V(I'(p, —p)) for a graph of the form
II*II%---x1II as in Figure 13, where x here denotes the concatenation product. Such
a graph gives, up to symmetry factors, the expression

V(L(p, —p)) = (p* +m*) "7 U (L(p, —p))".
Summing the geometric series (allowing for different choices of II) gives the required
equality b). Extending a) to connected graphs with an arbitrary number of external

legs as shown in the case of graphs with three external legs in Figure (14! proves
(1.99).

This suffices to prove Theorem [1.5. Indeed, computing the functional integral in the
right-hand side of (1.99) at tree-level, means that one just applies the stationary
phase method to the functional integral with the amplitude

(1.101) exp (_SeffT@>

when the parameter T' (which has nothing to do with %) tends to 0. We know from
(1.99) that this yields the same result as the full calculation of the integrals with
respect to the original Euclidean action (1.45).

Introducing a source term J implies that W (J) is the Legendre transform of Seg (o)
and, by reciprocity of the Legendre transform, that Theorem [1.5 holds. O

The computation of the non-linear functional of classical fields given by the effective
action is the basic first problem in QFT. If one knows the effective action, one
can obtain from it all the Green’s functions by tree level calculations, applying the
stationary phase approximation. This makes it possible to compute the physical
observables such as the S-matrix elements.
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3.6. Physically observable parameters.

The main idea of the renormalization process is the distinction between the bare
parameters that enter in the Lagrangian and the physically observable parameters.
As a prerequisite to understanding renormalization one needs to define the physically
observable parameters. This is done in terms of the effective action in a way that
makes it possible to compute them in a direct manner. We explain briefly how.

Physical mass: The notions of particle and of mass in QFT are understood through
the classification of irreducible representations of the Poincaré group. In the case at
hand of a scalar field ¢, the spin vanishes and the relevant irreducible representations
are induced from the mass-shell orbits of the Lorentz group acting on momentum
space. For each p > 0 one lets H,, be the Hilbert space of square-integrable functions
on the mass shell k2 = u?, kg > 0, and defines an irreducible representation of the
Poincaré group. In the free quantum field theory the particle description is in terms
of the Fock space

o0
(1.102) Fn = EP S"Hum,

n=0
where S™H is the n-th symmetric tensor power of the one-particle Hilbert space H.,.
The natural action of the Poincaré group on the Fock space is no longer irreducible
and decomposes as an integral of irreducible ones with a discrete part where the
mass m appears as the smallest eigenvalue with a mass gap. Still in the case of
the free field, one can compute the mass m by looking at the connected Minkowski
space Green’s functions. Since there is no interaction, the only connected graph is
the trivial two-point graph and the only non-zero connected Green’s function is the
two-point function given by (1.42)

| | »
G o1, w3) = / ﬁ Jitei—aa)p 47D

(1.103) —m2 + e (2m)D

= Ay(z1 — 29, m?).

In the general interacting case one has the Kallen-Lehmann spectral decomposition
which asserts the existence of a positive density o(u) for u > mihys such that:
Z71 Gy e(wr,22) = Ay(xr —22,m2) )

(1.104) o0
+ / Ay (1 — x9,u) o(u) du

m2

phys

where the normalization factor Z is described in more detail in (1.109) below. The
formula (1.104) shows that the physical mass mphys can be read off from the pole
structure of the Fourier transform of the connected Minkowski space Green’s function
Ga .. It has an isolated simple pole at p? = mf)hys, which signals the presence of a
particle of mass myys and makes it possible to apply scattering theory.
Now by Theorem (1.5) we know that Gg . is given by the tree-level calculation
using the effective action. In fact, (1.100) gives for the (Fourier transform of) the
Euclidean connected two-point function the formula

1
p*+m? =3 U(l(p, —p))/o(IT)

(1.105) Sa.e(p) =
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This shows that the physical mass mppys can be computed in perturbation theory
by solving the equation

U(II(p, —p
(1.106) P>+ m?— Z W =0 for p®= —mghys.
I

The expression
(1.107) mp?) =3 U(I(p, —p))

is called the self-energy.

Physical field and scattering matrix: The presence of the normalization factor
Z in the Kéllen-Lehmann formula (1.104) can be eliminated by a rescaling of the
quantum field ¢. One simply defines

(1.108) ¢ = 27124,

The factor Z is the residue

(1.109) Z =Resp_ 2 S2,¢(p)
phys

of (1.105)) at the pole p? = —m?2, .

The basic formula which makes contact with experiments is the scattering formula
of Lehmann—-Symanzik—Zimmermann (LSZ), which gives the scattering matrix S in
the form

(k1y ... ks|S — Ukst1,. .. k) =

(1.110) , N
irz-r/ Hj(kj — mphys) Gn(=ki,...,—ks, ksi1,.. . ky).

This says that a matrix element in S — 1 is a momentum space Green’s function
(here in Minkowski space), with external propagators removed, rescaled by a suitable
power of the residue of the propagator at the square of the physical mass.

Effective coupling constant: The knowledge of the scattering matrix makes it
possible to determine the strength of the coupling, by looking at the matrix elements
involving r = 3 particles. Consider the ¢® theory with Euclidean Lagrangian

1 2 m® 2 4.3
(1.111) £(9) = 5(00) + 597 — 4%,

where we change the sign of the coupling constant to eliminate the minus signs in
the perturbative expansion. One defines the effective coupling constant from the
cubic term in the effective action as in the LSZ formula (1.110)), using the overall
factor of Z~"/2. This gives

_ U(r(0,0,0))
1.11 — 773/2 B E))
(1.112) geft = Z g+ > - ,

where the sum is over all 1PI graphs with three external lines, each with a zero
momentum.
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3.7. The physics idea of renormalization.

The rule is that one computes physical quantities in terms of the observable para-
meters such as the physical mass, not the bare parameters such as the bare mass.
The main point is not that of getting finite quantities (any regularization procedure
does that), but to eliminate the regularization parameters (such as the parameter
A in the cutoff) by a suitable addition of counterterms to the original Lagrangian.
The main requirements on the counterterms are the following:

e Locality: they are polynomials in the fields and their derivatives.
e Finiteness: The number of monomials in the Lagrangian remains finite after
the introduction of all the necessary counterterms.

The reason for the finiteness requirement is that each new counterterm leaves behind
a free parameter of the theory (for instance the physical mass). There is no way such
a parameter can be fixed other than by its experimental value, hence one gets not a
single theory but a family of theories parameterized by as many free parameters as
the counterterms added to the Lagrangian. Since a theory with an infinite number
of free parameters has virtually no predictive power (it can always accommodate any
new experimental result) the finiteness of the number of counterterms is required.

We now explain more carefully the meaning of the three types of counterterms
needed to renormalize the theory in the above generic example, namely

e Mass counterterm (renormalization)
e Field strength counterterm (renormalization)
e Coupling constant counterterm (renormalization)

Mass renormalization: Let us consider the simple example of the self-energy
graph (1.57) for D = 4. We write its contribution to the self-energy (1.107). It is
given by

1 1 1
1.113 (p?) = g% (2 —4/ d*k.
( ) (r°) 29 (2) k2 +m? ((p+ k)2 +m?)

In physics, the idea of how to handle this divergent expression is to distinguish
between physical and non-physical mass parameters. On the one hand we have the
bare mass parameter

mg = bare mass,

which specifies the mass term in the Lagrangian. It is the parameter that appears
in the term %mgng in the Euclidean Lagrangian. On the other hand, one has the
measured experimental mass mpnys, Which arises as the position of the pole in the
full propagator, i.e. as the zero of its inverse

p?4+m? —T(p*) =0 for p* = —mghys.

Let m = mypys denote the physical mass. After introducing a cutoff parameter A
one writes

mg = m? — dm2(A).
In this way one views the term —dm? (A)%2 as an interaction term in the Lagrangian.
Thus, one does perturbation theory with the free part given by the (Euclidean)
propagator (p>+m?)~! and one determines §m? in perturbation theory as a function
of a regularization parameter, such as a cutoff A, in such a way that it cancels the
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divergence but does not spoil the location of the pole, so that the self-energy II
satisfies the renormalization condition

(1.114) II(—m?) = 0.

The interaction term —6m2%2 contributes by the tree graph of Figure 10 to the
self-energy. This contributes an additional term of m? to the self-energy. Thus, at
this order it is easy to solve (1.114)). Namely, one takes

om? = —TI(—m?).
Thus, at order g2 in the perturbation theory, the renormalized self-energy is of the
form
(1.115) en(p?) = T(p?) — T(=m?).

This is now a finite quantity, which can be computed using any regularization method
such as a cutoff, giving the answer

g° /1 (a:(l—a:)p2—|—m2)dx.
0

1.116 Myen (p?) =
( ) en(P7) 3272 m2(1+x — 22)

Besides the mass counterterm, there are two other types of counterterms, allowing
for the renormalization of the field strength and the coupling constants.

Field strength renormalization: We saw in the Lehmann—Symanzik—Zimmermann
scattering formula (1.110) that the residue of the two-point connected Green’s func-
tion at the pole enters explicitly in the expression for the scattering matrix, so that
the physical field ¢’ is related to the bare field ¢ by equation (1.108). The change

of variable formula ¢ — Z%2 ¢’ in the Euclidean functional integral

N [exp(=S(¢)) ¢(x1) - - ¢p(an)D¢] =
(1.117)
ZNEN' [exp(=S5(2'2 ¢')) ¢/ (21) -+ ¢/ (an) D[]

shows that the distinction between the physical field and the bare field makes it
possible to modify the kinetic term in the Lagrangian. When expressed in terms of
¢', this takes the form

1
L= 5z(a¢/)2 4.

Writing Z = 1 — §Z(A), one then chooses the field strength counterterm 0Z(A) in
such a way that the residue at the pole remains equal to 1. In terms of the self-energy
this means that the derivative vanishes at —m?, i.e. that

(1.118) Oll(—m?) = 0.

In the example above only a finite field strength renormalization is required to com-
pensate for the contribution of (1.116) to the self-energy. Notice that, since (1.115))
is a shift by an additive constant, the finiteness of the field strength renormalization
in this example comes from the absence of a momentum dependence in the diver-
gence of the integral (1.113). If we look at the same ¢3 theory in dimension D = 6,
then the divergence of the integral (1.113) is not canceled by the mass counterterm
alone. However, one can replace (1.115) by

(1.119) yen(p?) = T(p?) — TI(—m?) + I'(—m?) (p* — m?),
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F1GURE 15. Graph with three external legs

where II is the derivative of II with respect to p?. Exactly as for mass renormaliza-
tion, one then computes the counterterm 67 (A) using the renormalization condition
(1.118).

Coupling constant renormalization: In the same ¢? theory in dimension D = 6
the graph of Figure 15/ is 1PI and gives a contribution of the form

3 _6 1 1 1 6

(1.120) g (2m) /k2+m2 LR m? (q—Rrame "

The distinction between the bare coupling constant and the effective coupling con-
stant of (1.112)) gives us the freedom to write the bare coupling in the form g + dg
and to introduce the counterterm dg. The last renormalization prescription is that
the effective coupling (1.112)) is fixed by its experimental value. The full (Euclidean)
Lagrangian with the counterterms now takes the form

m? — dm? ¢2_g+5g
2 6

(1.121) Lp= %(8@1))2(1 —0Z) + < .

The renormalization scheme described above is called the mass-shell scheme and is
the scheme which is easiest to interpret in physics terms. One computes physically
observable quantities such as the S-matrix elements not in terms of the bare para-
meters but in terms of the physical parameters, which in the example are the mass,
field strength and coupling constant. This is done by computing the bare parameters
as formal power series in the coupling so that the renormalization conditions such
as (1.114) and (1.118) are fulfilled while the effective coupling constant is held fixed
at its observed value.

4. Dimensional regularization

As we saw above, the cutoff method and the mass-shell scheme allow for a natural
explanation of the basic physics content of renormalization. However, in general
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one needs more refined reqularization procedures for the integrals involved in the ex-
pression of the U(I'(p1,...,pn)), which do not break Lorentz invariance. Moreover,
renormalization schemes which are compatible with the massless case are needed
in general. We use the reqularization scheme known as Dimensional reqularization
(DimReg), for the reason that, when combined with Minimal Subtraction (MS), it is
the most widely used renormalization scheme in explicit perturbative calculations in
quantum field theory and elementary particle physics. The method was developed
by ‘t Hooft and Veltman [169], with the aim of treating perturbative calculations
involving nonabelian gauge theories, theories with fermions, and anomalies. As
we explain in Section (19 of this Chapter, DimReg also turns out to be very closely
related to noncommutative geometry.

Before giving a general definition, we explain what it means to apply DimReg in the
simple example of the self-energy graph (1.57). Its contribution as a 1PI graph is
given (up to g* (2m)~") by

p+k

1 1
1.122 k — DE.
( ) /k2+m2 ((p+k)2+m2)d h

In fact, recall that for 1PI graphs one does not have a contribution from the external
propagators (cf. (1.96)).

One first introduces the Schwinger parameters. These replace each propagator of
the form % by fooo e~*Pds, introducing in this way an additional parameter s that
will then be eliminated by integration. This means, in the case of (1.122), that we
use the simple identity

1 1
E2+m? (p+k)2+m

One diagonalizes the quadratic form —@Q(k) in the exponential, which is then written
as

—Q(k) = =X ((k+zp)* + ((x — 2*)p* +m?)), with s=(1—2)\ and t =z \.

Thus, after changing the order of integration, one obtains a Gaussian integral in
dimension D in the variable ¢ = k + xp, of the form

(1.124) /e_)‘q2 dPq = aP/2\=P/2.

(1123) — / 6—8(k2+m2)—t((p+k)2+m2) ds dt.
>0, t>0

In this way we have rewritten the unrenormalized value U(I") of the graph (1.122)
in dimension D in the form

(1.125) / / (z—a)p+Am? >/ e dPg Nd) da

_ 7.[_D/Q / / )\(a) z2 p 24 A m? )>\_D/2)\d/\dl'

(1.126) = 7P2r(2 - D/2) / ((z — 22)p? + m*)P/272 da.
0
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The remaining integral can be computed in terms of hypergeometric functions. We
do not need to write it out explicitly, since what matters here is the fact that the
divergence of the integral (1.122) is now attributed to the presence of a pole of the
Gamma function I'(2 — D/2) at a point D € 4 + 2N. Moreover, all the terms that
appear in the expression (1.126) now continue to make sense when the integer D is
replaced by a complex number D — z € C, with z in a small disk A C C centered
at zero. Notice also that, in (1.126), the coefficient of the pole of I'(2 — D/2) at
D € 4+ 2N is a polynomial in p, hence its Fourier transform is a local term.

This example exhibits all the characteristics of the DimReg method. In general, the
main idea is to use the basic formula (1.124) to define the meaning of the integral
when D is no longer an integer.

More precisely, according to the Feynman rules, the expression It of (1.97) is typi-
cally of the form

_ P(k,p)
[L; Fj(k,p)* +m3’
with K = (k1,...,kz) and p = (p1,...,pn). Here P is a polynomial, and the Fj,

j=1,...,L+ N are linear forms on RETN_ It is better to be more specific. In all
cases of interest the Fjj(k,p) turn out to be of the form

(1.128) Fi(k,p) =Y aji(55)i + > bje (s)es
i ¢

(1.127) Ir(k)

where the coefficients are integers. We use the same formula when the x; = (k;);
and the p; = (p;)¢ are no longer scalars but elements of a fixed Euclidean space £
of dimension D. We use the notation v? for the square of the Euclidean norm of an
element v € E. Thus Fj(k, p)? is now a quadratic form on EL+N and can be written
using an orthogonal basis e, of E' as the sum of the D expressions

(1.129) Fi(r,p)” = Y (er 0 Fy(r,p))?,

T

where e, is viewed as a linear form on E so that each e, o Fj(k,p) is a linear form
on ELHN,

To compute the integral associated to (1.127) one uses the Schwinger parameters as
before, rewriting the integral (1.97) in the form

/ P(k,p) (/ o~ 2t (Fj(k.p)?+m3) dt> dPrk,

with dPx = dPky ---dPky, and dt = Hj dt;, integrated over ¢t; > 0. Formally, one
permutes the order of integration and sets the above equal to

/(eZtﬂ'm?/P(m,p)e‘ztiFj(”’p)2an> dt.

One then treats the integral in d”x as a Gaussian integral. One writes
ST 4E (s, = Ap()(a) + S0 tF(s(0),p)?, with g =~ s(0)
where the quadratic form Ag(t) on E” is given by

(1.130) Ap(t)(q) = Y t;Fj(g,0)
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and the minimum x(¢) of Y t;Fj(k,p)? depends rationally on ¢.

In fact, by construction x(t) is of the form A(t)~'4(t,p), where £(t,p) is a bilinear
function of ¢ and p. After a change of variables k +— ¢ = k — k(t) one is left with
the integral of a polynomial in ¢ with respect to the Gaussian e~ 42")(@) gPg,
Using integration by parts (1.38), the only integration in d”q to be performed is
that of the Gaussian, which gives

/ e~ ArM@ gDy — 7ID/2 qet(A(t)) P72,

where A(t) is the quadratic form (1.130) but in the one-dimensional case. This
means that one uses formula (1.130) to define the quadratic form A(t) on R”. One
checks that one gets the correct result using (1.129).

Both the integration by parts and the dependence x(t) = A(t)~*4(t) introduce de-
nominators, given by powers of det(A(t)). Thus, the end result is an integral of the
form

(1.131) WLD/Q/e_ztjm?_z“F"(“(t)”’)Z f(p,t) det(A(t)) P2 at,

where f depends polynomially on ¢ and p.

The integral obtained in this way is divergent, because of the singularity coming
from the zeros of the polynomial Q(t) = det(A(t)), but all the terms that appear in
(1.131) now make sense when D is continued to D — z € C.

Thus, we have formally obtained an integral in dimension D — z which replaces the
integral (1.97). Namely, we have

UZ(F(pl’ s 7pN)) =
(1.132) /IF(kh ckpypr, - pN)dP Ry dP TR =
/e_thm?_thFﬂ'(”(t)’p)2f(p,t) det(A(t))_(D_z)/2_” dt,

with the last line obtained as we just described. The integral is convergent when
the real part of z is sufficiently large.

We now discuss the existence of a meromorphic continuation to the complex plane.
The mathematical treatment, cf. e.g. [128] is based on the following result of Bern-
stein [17], applied to the polynomial det(A(t)).

LEMMA 1.6. Let Q(t) be a polynomial in n variables. There exists a polynomial
q(D) and a polynomial differential operator L(D) in n variables, whose coefficients
are polynomials in D, such that

L(D)Q P = ¢(D)Q P71, vD.

PROOF. We first give a proof in the “generic” case, i.e. assuming that the hy-
persurface Q = 0 is smooth. In that case, by Hilbert’s Nullstellensatz, the ideal
generated by the polynomial () and its first derivatives 9;@Q) contains the constant
polynomial 1. Thus, one can find polynomials A and A; such that

AQ+D A4;0,Q=1.
J
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One just lets
D Z D

In the general case ([17]) one considers the space P of expressions of the form
p(t, D) Q~P/>~% where p(t, D) is a polynomial in ¢ whose coefficients are rational
functions of D. It is a D-module, i.e. a module over the ring of differential operators
P(t,0,D) whose coefficients are polynomials in ¢ and rational functions of D. The
main point is to show that, as a D-module, P is finitely generated. It follows that
the increasing filtration F; by the submodules generated by Q /2~ is stationary,
hence

QfD/kafl — P(t,a, D) QfD/2fk
for suitable choices of k and P. It remains to show that P is finitely generated and
this is done using the filtration

P = {p(t, D) Q" P/*"™ | degp < m(deg Q + 1)},

which is compatible with the natural filtration of the ring of differential operators
and whose growth

dim P, ~ (deg @ + 1)" m"
is slow enough to show that P is finitely generated (cf. [17]). O

Using Lemma (1.6 together with integration by parts and induction on the number
of variables t;, one can prove the following statement (cf. [128]).

LEMMA 1.7. Let g be a smooth function of rapid decay defined for t; > 0, whose
derivatives are of rapid decay; then the integral

.g)= [ anQu

extends meromorphically to the whole complex plane.

PROOF. Indeed, integration by parts gives

(1.133) I(D+2,9) = a(D)~ I(D, L(D)" g) + C(D),
where L(D)* is the adjoint of L(D) and C(D) is a boundary term which is mero-
morphic by the induction hypothesis. [

The problem is that, when one wants to apply this lemma to an expression of the
form (1.132), the function which plays the role of g is given by

(1.134) g(p,t) = e BT RLEEOD p(p p),

This function, while of rapid decay along with its derivatives for ¢ large, is not
smooth for ¢ — 0. It is bounded and has a finite limit but its higher derivatives
are in general not bounded and blow up by a negative power of det(A(t)) so that
there is no guarantee that integration by parts improves the domain of convergence.
This seems to be a major difficulty, also witnessed in the notation of [128] by the
presence of the term —tr(C B (t)) in equation (34) of [128].

The problem disappears, however, if we look at the Taylor coefficients of the expan-
sion of g at p = 0. Indeed, we have the following result.
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LEMMA 1.8. Let

g(p,t) = galt) p”

be the Taylor expansion of g(p,t) at p = 0. Then all the functions g (t) are of the
form Q(t)~1*lhy, where hy, fulfills the hypothesis of Lemma [1.7.

PROOF. We just need to understand the behavior of the Taylor expansion at
p = 0 of the expression

b(t’p) EY-S Zg thj(K)(t,p),p)Z e ea(t7p)’

where x(t, p) is the point where the function x — > t;Fj(k, p)? reaches its mini-
mum. For p = 0 this point is x(¢,0) = 0 so that a(t,0) = 0. Thus, each term in
the Taylor expansion of b(t,p) at p = 0 is a polynomial in the terms of the Taylor
expansion of a(t,p) at p = 0. Moreover, (t,p) is of the form A(t)~14(¢,p) where
((t,p) is linear in both ¢ and p. This shows that, up to a power of Q(t) = det(A(t)),
all the terms in the Taylor expansion of both a(t,p) and b(¢,p) at p = 0 are just
polynomials in ¢. O

To summarize, we have obtained the following result.

THEOREM 1.9. The Taylor coefficients at p =0 of U*(T'(p1,...,pN)) admit a mero-
morphic continuation to the whole complex plane z € C.

The Laurent series expansion in the variable z around z = 0 for the Taylor coefficients
at p = 0 of the expression U*(I'(p1,...,pn)) serves as the basis for the minimal
subtraction scheme which will be used in conjunction with DimReg in the next
section.

DEFINITION 1.10. Let L(z) be the Laurent series in z. Let T(L(z)) denote its polar

part. Minimal subtraction (MS) applied to L(z) consists of the removal of the polar
part L(z) — T(L(z)).

In particular, one can apply this subtraction of the polar part to the Laurent se-
ries obtained by Theorem [1.9 for the Taylor coefficients at p = 0 of the expression
U*(T'(p1,...,pn)) of the unrenormalized values of Feynman graphs in dimensional
regularization. In the following, with a commonly used abuse of terminology, we
often refer loosely to the Laurent series expansion of U*(I'(p1,...,pn)). It is under-
stood that what we actually refer to is the result of Theorem [1.9 above.

It is important to remark at this point that, while subtraction of the pole part
plays a key role in the minimal subtraction scheme, it is not sufficient to achieve
renormalization. As we discuss in detail in Section 5 below, when the Feynman
graphs become more complicated than our basic example (1.122), one encounters the
problem of subdivergences and of the presence of non-local terms in the coefficients
of the Laurent expansion. We shall see in the coming sections why this is a problem
and how a renormalization procedure takes care of it.

Moreover, and this will play an important role later (cf. §6.6 below), expressions such
as (1.132) have a physical dimension which depends on the parameter z. Indeed, at
least at the formal level, the integrand d”~#k has the physical dimension of a mass
to the power D — z. Since minimal subtraction involves subtracting the results for
different values of z it is necessary to rescale them so that their physical dimensions
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no longer depend upon z. This is done by introducing an additional parameter g,
which has the physical units of a mass, and defining

Ui(T(p1,--.,pN)) =
f[p(kl, ceey k‘L,pl, R ,pN)/,LZL dDizkl cee desz'

This dependence on the mass (energy) scale plays an important role in renormaliza-
tion.

(1.135)

For example, consider the case of the graph (1.122) in dimension D = 6. After
dimensional regularization, one finds (cf. [62] p.173, where the symmetry factor
o(I') = 2 is also included) that the unrenormalized value is given by

Ui(T(p)) =

(1.136)
WF (4m) 32 @2 T (2/2 — 1) [ (0% (x — 22) +m2) /2 d.

Before we begin discussing the issue of renormalization more closely, we should
make a further remark about the geometry underlying the DimReg procedure. In
fact, in setting (1.132)) to be the “integral in dimension D — 2", we have not actually
made any attempt to define a space whose dimension is a complex number. In the
physics literature, one takes (1.132)) to be just a formal definition and regards the
“complexified dimension” merely as a tool to perform calculations. In §19| of this
Chapter we will see that there is more to DimReg than just a formal procedure.
In fact, we will show a natural way to make sense of an actual space of dimension
D — z, using noncommutative geometry.

5. The graph by graph method of
Bogoliubov—Parasiuk—Hepp—Zimmermann

The basic idea of renormalization is that one eliminates the divergences step by
step in the perturbative expansion by repeatedly adjusting the bare parameters in
the Lagrangian so as to cancel the divergences. In the mass-shell scheme explained
above this is achieved by setting the physical parameters, such as the mass or the
coupling constant, to their observed values. This procedure quickly becomes very
cumbersome and simpler renormalization schemes have been introduced in order
to handle complicated theories such as the gauge theories involved in the Stan-
dard Model. Thus, in a chosen regularization scheme (for us DimReg+MS), one
introduces a dependence on the regularization parameter (here the complex variable
z) in the terms of the Lagrangian. One then adjusts the dependence of the bare
parameters on z term by term in the perturbative expansion.

Let us consider, as a sufficiently generic example, a theory with Euclidean La-
grangian

1 m? g
(1.137) £(6) = 5 (06 + 5-* — 267,
where, as before, we changed the sign of the coupling constant to minimize the
number of minus signs in the perturbative expansion.
We modify the parameters by introducing counterterms of the form

(1.138) %(8¢)2(1 _57(2) + (W) e (nggg(,z)) .
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FIGURE 16. Subdivergence

These counterterms are divergent for z — 0.

The main idea of the Bogoliubov—Parasiuk method is to write each counterterm

itself as an infinite series
C*(I)
C(Z) - Z (T(F) 9
1PI

whose terms are labeled by suitable 1PI graphs I' of the theory, while the value of
the counterterm C*(I') is determined by a recursive procedure.

A theory is said to be renormalizable if it is possible to eliminate all divergences at
all orders in the perturbative expansion by such a recursive procedure. The series of
successive corrections to the bare parameters is typically itself divergent, but here
one uses essentially the fact that the bare parameters in the Lagrangian are not
physical observables that have to be finite, hence they can be modified in this way.

As we have seen, in order to be able to eliminate the divergences by adjusting
the terms in the Lagrangian, it is necessary that the coefficients of the divergence
in U*(I'(p1,...,pN)) be given by local terms, i.e. by a polynomial in the external
momenta p;, as only this type of term appears in the Lagrangian.

This is a necessary, not a sufficient condition, as one can see by considering the
example of the integral (1.122) in different dimensions D € 4+2N. The coefficient of
the pole is local, but for D = 8 it is of degree 4 and the theory is not renormalizable,
since there is no term in the Lagrangian that would cancel it, while for D = 6 the
pole coefficient has degree 2 and there are terms in the original Lagrangian £ that
can be used to eliminate the divergence by introducing suitable counterterms 6.7(z)
and dm?(z).

As we mentioned in Section 4] above, the problem of non-local counterterms arises
in conjunction with the presence of subdivergences in the Feynman graphs. We now
show how this happens in a simple example.

5.1. The simplest example of subdivergence.

Let us consider the 1PI graph I' (of the ¢ theory) of Figure [16. To simplify the
computation we work in the massless D = 6 case. Notice, however, that the general
result of Theorem [1.9 above on the Taylor expansion at p = 0 works in the massive

case. One has (up to a factor g*u??)

(1.139) U(T(p, —p)) = (27) 2" / % (k1p>2 (k+1£)2 éldeede.
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We already computed the inner integral in £ and, disregarding the infrared divergence
and setting m = 0 in (1.126)), we get a multiplicative factor of

11 !
1.140 = dPl = kP42 T(2 - D)2 / —23)P22 gy,
) [ APETE=Dp) [ @t s
One has . )
_ I'(D/2-1)
_ 22\D/2-2 g _
/0 (x — %) x T(D—2)
whose poles at D/2 — 1 € —N correspond to infrared divergences due to m = 0.
Thus, after the integration in ¢ we are left with an integral which, up to the T’
factors and powers of m, is of the form
1
I= / KPR ———— dPk.
) (k—p)?
Writing then
o0
2Pt =T -D/2)™ / e3P gt
0

one gets
2

I=T@4-D/2)" / etk —ta(k=p)? {3=DI2 gy gty qP .

With ¢; = As, ta = A(1 — s), one has
tE +ty(k—p2 =X+ A(s—s°)p*, with ¢=k—(1—s)p.

Integration in dPq gives
I=T(4—D/2) xD/2 / e M =5 \3=D 3-D/2 ) 47 ds.

Integration in A then gives the term I'(5 — D)((s — s?)p?)”~> and the remaining
integration in s gives I'(D — 4)I'(D/2 — 1)['(3D/2 — 5)~!. Thus, one gets (up to a
factor g*u??)

re-2yrE -1)°rG-D)r(D - 4)

D(D=2)0(4 = F)T(3 - 5)

This gives a double pole at D = 6 coming from the factors I'(2 — %)I‘(S - D). If

we expand in z at dimension 6 — z and reinstate the p dependence, the result comes
from the expansion

(1.141) UL (p,—p)) = (4m)~ " (")

- (=2)"
(0 /1?)% = D log"(p* /).
This contributes to the coefficient of % by the non-polynomial term

1
(1.142) —g* (4n)~S 15 p? (log(p®/u?) + constant).

The Fourier transform of the operator of multiplication by p? log(p?/u?) is a non-
local operator and no local counterterm in the Lagrangian can cancel this type of
“non-local” divergence.

The conceptual origin of this type of non-polynomial term in the divergence can
be understood by differentiating with respect to the external momentum p. In the
case of the simple graph (1.122), differentiation with respect to p raises the term
(p + k)2 + m? in the denominator to higher powers, hence it quickly improves the



5. BPHZ METHOD 65

convergence of the integral (1.122). This shows that the divergence is a polynomial
in p. In the case discussed above, the part of the integral (1.139) which involves

1 1
1.14 -
(1.143) / (k+0)2 02

is independent of p and, irrespective of the repeated applications of J,, it creates a
term in % in the overall integral. Using (1.140), one sees that in dimension 6 — z the
coefficient of % in this term is given by

1 1 1 1

1.144 —— —dPr~ 3K =

(1.144) /(k+e)2z2 37
and is local.
In other words, the effect of the subdivergence corresponding to the subgraph v C T’
is to add a divergent contribution to the integral (1.139). Regardless of the numerical
coefficients involved in (1.139), this amounts to replacing the contribution of the
expression (1.143) by the right-hand side of (1.144). Its effect on (1.139) is then the
term

1 1 1 1

1.145 om) 2P / — (== k? 2) dPk,

(1.145) e B Ll
which promotes the finite part of the graph (1.122)

1 1 1 1 1
/ 3 md[)k = 7§7r3p2 . + 6773;02 log p? + constant

to a divergence and yields the non-local term (1.142).

We need to understand what happens in the method of differentiation with respect
to the external momentum p after the replacement

1 1 1 1 1 1
1.14 gD S gPry St
(1.146) /(k+€)2 2l “’/(kw)z gt gk

The right-hand side is no longer divergent and is of the order of k? log k2. This shows
that, if we make the change (1.146)) in the integral (1.139) and then differentiate
enough times with respect to the external momentum p, we get a convergent integral.
In other words, the correction (1.146) is good enough to restore the locality of the
terms in the pole part.

The replacement (1.146) is expressed by the formula
(1.147) R(T) = U(T) + C()U(T/)

where v C I is the divergent subgraph (Figure 16) and where the counterterm C(vy)
is given by the opposite of the pole part

(1.148) Cly) = =TUM))

The remaining graph I'/ is obtained by contracting 7 to a single vertex. In (1.147)
and in the following, we write U(I") as a shorthand for U(T'(p1,...,pn)) where the
external momenta p; determine the external structure.

This preparation of the graph I' by addition of counterterms corresponding to the
subdivergence suffices to restore the locality of the divergence. In this simple mass-
less example only one type of counterterm, namely the field strength counterterm,
arises from subdivergences with two external lines. In the presence of a non-zero
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mass term there will also be a mass counterterm and we need to explain how (1.147)
gets modified.

The contribution (1.140) becomes

/ 1 L o,
(k+024+m? 2+m?

(1.149)
w2212 - D/2)/1((x — )k + m?)P22 .
0

Notice that the coefficients of k? and m? in the divergence

1
(1.150) (com? + c1k?) 2

in dimension D = 6— z are different, cg # c1, so that the corresponding counterterms
need to be treated separately.

Thus, in order to prepare the graph I' of Figure [16/ in the massive case we need to
modify (1.147) to the expression

(1.151) R(T) = U(T) 4+ C(v0)U(T/v0)) + C(ya)UT /7)),

where now the additional index j = 0,1 in ~(;) makes it possible to keep track of
the distinction between the coefficients of k? and m? in the following way.

First, as explained in the discussion of the Feynman rules, we associate vertices of
graphs to all the terms in the Lagrangian, including the kinetic term %(8@2 and
the mass term %m2¢2. Both of these vertices are of valence 2 (i.e. they correspond
to quadratic terms), hence one needs a notation to distinguish between them, which
we do by adding an index j at the vertex, with j = 0 for the mass term and j = 1
for the kinetic term. Thus, we get three types of vertices:

e Three-leg vertex i associated to the ¢3 term in the Lagrangian
0 .
e Two-leg vertex —s— associated to the term ¢?.

1
e Two-leg vertex —»— associated to the term (9¢)>2.

When we evaluate a graph with such vertices we apply the Feynman rules with the
coefficients corresponding to the terms of the initial Lagrangian as follows. The
kinetic term gives a k2, where k is the momentum flowing through the vertex, and
the mass term gives an m?2. This is coherent with the overall homogeneity and the
fact that, in the massless case, no mass counterterm is needed (in D = 6).

The role of the index j in the subgraphs 7(;) comes from their external structure
determined by the external momenta p; in U(T'(p1, ..., pn)). The pole part (1.148) of
this evaluation will (after preparation of 7) give a polynomial of the form com?+c; k>
in terms of the external momentum k. We specify the external structure of 7(;) so
that the evaluation of the graph with that structure gives the coefficient ¢;. The
coefficient ¢ is simply obtained by taking the external momenta to vanish and
multiplying the result by m ™2 so that the external structure corresponds to the
distribution m 2§, that is, to

(1.152) oo(f) := m™28(f).
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FIGURE 17. Preparation
The coefficient ¢; is obtained by differentiating with respect to k2 i.e. by considering
the distribution
d? 0?

1.153 = (=54 = —f(k .

Thus, in (1.151) the notation ;) denotes the graph v with external structure o;.

Thus, the behavior of the counterterms C(7) is the reason why, when dealing with
the external structure, one needs to assign two different distributions (1.152) and
(1.153) that distinguish the vertices of valence two that come from the mass and
from the kinetic terms in the free part of the Lagrangian.

In fact, as we just saw, the problem is that such a counterterm is not a scalar function
but a combination cym?+c1k?. Thus, one needs to separate the counterterms C (V)
using any two distributions o;, ¢ = 0,1 with the property that

(1.154) 00 (com2 + clkz) =cp, O1 (com2 + clk‘2) =c.
Our choice (1.152), (1.153) clearly satisfies this requirement.

In the case of a massless theory, one does not take k% = 0 as in (1.152) and (1.153),
to avoid a possible pole at k = 0 due to infrared divergences. The same procedure
applies to give the counterterms, even though the finite part has a singularity.

Finally, notice that it is natural to take linear combinations of the values U(I'(p1,...,pN))
of a graph. The first example is the formula (1.95) which governs the contribution
of I' to the effective action.

5.2. Superficial degree of divergence.

One can get a rough idea of the behavior of the integral associated to a graph in D
dimensions just by power counting, i.e. by assigning to each internal line a degree —2
corresponding to the homogeneity degree of the propagator, and to each integration
variable a degree D. Thus, if we let

(1.155) T=#TY vV=¢1r©® and 1-V=1L-1,

int
we get, by definition, the superficial degree of divergence
(1.156) deg(T") := —2I + DL.

When this degree is strictly negative it indicates that the only reason for a divergence
of the graph comes from the presence of subdivergences.
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Let us consider the ¢3 theory and compute this degree of graphs. We ignore the
two-point vertices since they can only improve the convergence of the integral and
also do not change the physical dimension of the result. Consider the set of pairs

(1.157) {(s,0) eTO x T | 5 € 7}
Counting its cardinality using the two projections, one gets
(1.158) 3V=2I+N,

where NV is the number of external legs. It then follows that the degree of divergence
can be expressed as

(1.159) deg(T') = 6 — 2N + (D — 6)L.

This shows that the origin of the subdivergences is in subgraphs whose number of
external legs is N = 2 or N = 3 (recall that tadpole graphs with N = 1 are excluded,
cf. (1.56)).

5.3. Subdivergences and preparation.

The renormalization procedure is designed to solve two types of problems:

o Organize the subdivergences: when applying the regularization procedure
to an unrenormalized value U(I") one should be able to assume that all
subgraphs v C IT" such that U(v) is itself divergent have already been reg-
ularized.

o FEliminate the non-local terms: The problem of non-local terms in the coef-
ficients of the divergences of U(I") arises in conjunction with the problem of
subdivergences. The renormalization procedure should ensure that, when
the latter is properly handled, one obtains only local terms as coefficients
of the divergences.

A renormalization procedure that takes care of both problems was developed by
Bogoliubov and Parasiuk [26] [27] and later refined by Hepp and Zimmermann
[166], [306]. It is generally referred to as the BPHZ procedure.

We fix a renormalizable theory 7, and let J be the set of all monomials of the
Lagrangian. It contains as a subset the set I of monomials of the interaction La-
grangian used in the definition of Feynman graphs as the target of the map (1.67).

The definition of Feynman graphs extends with no change to graphs with vertices
in J rather than I.

DEFINITION 1.11. Eztended Feynman graphs are defined as in §3.3 above, with the
map (1.67) replaced by

(1.160) L:TO g,
subject to the same valence condition of (1.68).

We let Graph(7) be the set of extended Feynman graphs for the theory 7. The
condition to be a graph in the sense of §3.3|is simply the requirement that the range
of the map ¢ of (1.160) is contained in I C J.
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wp

FIGURE 18. Graph I'y¢ in ¢*, v = {k, ¢}

FIGURE 19. Subgraph of I

Let I" be a graph of this theory. We need to specify what we mean by a subgraph
of I and to concentrate on subgraphs that are responsible for subdivergences.

Let I' € Graph(7'), and consider a pair (v, x) where v C Fl(it) is a subset of the set of

internal lines of I" and x is a map from the set of connected components of |y| C |T'|
to the set J of monomials in the Lagrangian. For each connected component of ||

let v; C 'Y be the corresponding subset of edges and § = 4; be the graph, called a

int
component of v, defined as follows.

e The set of internal lines is 51(53 = .

e The set of vertices is 6 = 'O N |;|.

e The set of external lines at a vertex v is the disjoint union of the 8]-_1(1)) N9,
with the maps 0; as in (1.66)).

e The maps 0; and ¢ of (1.66) and (1.67) are defined by restriction of the
corresponding maps for I'.

It is important to define the set of external lines as a disjoint union. This is illustrated
in the example of Figure 24/ (in the case of the ¢* theory), where we take as the
subgraph 7 the subset of internal lines marked by the labels {2,3}. It may happen
that the graph 4 has more lines than I'. This is shown in the example of the graph
I' of Figure 18 (again for the ¢* theory), where we take for v any subset v C Fl(it)
consisting of two elements. One obtains the graph 74 of Figure 19, which has 4

external lines and a total of six edges, while the original graph has only five.

Notice that, even though the ; are disjoint by construction, the components 7; need
not be. In fact, they may have external edges in common. One can see this in the
example of Figure 21.

Let (7, x) be as above. We let I'/~ be the contracted graph obtained from the graph
I by collapsing each component ~; of |y| to a single vertex v;. In other words, the
contracted graph is obtained in the following way.

DEFINITION 1.12. The contracted graph T'/~y has the following description.
e The set of internal lines is th) \ 7.
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FIGURE 20. Components of |v|

I’
,Y:,Y' U,YH

Y ' Y "
FIGURE 21. Components of v € V(T')

o The set of vertices is the disjoint union of the set T(O\ |y| and the set of
connected components of |7y|.

e The set of external lines is the same as that of T'.

o The maps 0; are defined by restriction of the corresponding maps for .

e The map ¢ is given by restriction on F(O)\M and by x on the set of connected
components of |v|.

For instance, in the example of Figure 19 above, the contracted graph I'/~ is given
by Figure 22.

REMARK 1.13. It is not true in general that the construction of Definition 1.12| gives
a graph which is also a Feynman graph of the theory, since the condition (1.68) is a
strong restriction when applied to the vertices of I'/~ coming from the components
v;. Indeed, what this condition means is that, for each such component, the number
of external lines of 4; is the degree of x(7;).

For instance, in the case of the ¢3 theory, this means that the number of external
lines of 4; is < 3. For example, the subset v of curved internal edges in Figure 23
does not qualify, since ¥ has 4 external lines, so that the contracted graph would in
fact be the ¢* graph of Figure 22 which does not exist in ¢ theory.
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FIGURE 22. The contracted graph It/ in ¢*

F1Gure 23. For v ={1,2,3,4}, 4 has 4 external lines

Thus, taking all this into account, we can now introduce the appropriate notion of
subgraphs of a theory 7 in the following way.

DEFINITION 1.14. Let I' € Graph(7); a subgraph of ' is a pair (v, x) such that

(1) The components of v are 1PI graphs.
(2) '/~ € Graph(7)
We let V(') denote the set of (not necessarily connected) subgraphs of T', with v # T".

An example of the list of elements of V(I') with the corresponding 4 and I'/7v is
given for a ¢ graph with three loops in Figure 25.

The subgraphs of Definition [1.14! and the corresponding contracted graphs satisfy
the following general properties.

PROPOSITION 1.15. 1) Condition (2) of Definition/1.14 holds if and only if, for every
component y; of v, the degree of x(v;) is equal to the number of external lines of 7;.
2) If T is connected so is I'/~.

3) Assume (1) of Definition[1.14. Then I" is a 1PI graph if and only if '/~ is 1PI.

PROOF. 1) One needs to check that I'/v fulfills the condition of (1.68) at each

vertex. For vertices v that are not in ||, the adjacent lines are not in -y, hence the
condition follows since ¢(v) is the same as for I'. For a vertex v corresponding to a
component 7; of 7, the valence in I'/~ is the number of external lines of 7;, while
by definition we have ¢(v) = x(7;), so that the equivalence of the first statement
follows.
Notice that, even if the component ~; has only one vertex, the vertex of the graph
7; is not necessarily of the same valence. This can be seen by considering the two
subgraphs (remember that one needs to specify x so that there are two choices) of
Figure 24 associated to the single line labeled 1. The original interaction vertex
becomes a self-energy vertex.
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FIGURE 24. Two subgraphs correspond to {1} and one to {2, 3} in ¢*

2) There is a natural continuous surjection
(1.161) 7w |T| — [T/~|

from the geometric realization of T" to that of I'/v. Indeed, the latter is obtained by
collapsing closed subsets to points. Thus, both 2) and the similar implication in 3)
follow, since the image of a connected set by a continuous map is connected.

3) Let us prove the converse in 3). We need to show that, if we insert at a vertex
v of a 1PI graph I'y another 1PI graph I'y with the right valence, we obtain a 1PI
graph. Indeed, if one removes a line of the subgraph I's, the latter remains connected
and all its vertices are connected together. If one removes a line of I'y the result
is the remaining connected graph with I'y inserted at a vertex, and this again is a
connected graph. O

BPHZ procedure: We now describe the BPHZ procedure. One begins with a given
Feynman graph I' of the theory and performs the inductive Bogoliubov—Parasiuk
preparation. This replaces the unrenormalized value U(F) with the formal expression

(1.162) R(T) + Y C(NUT/y),
~yeV(T)

with V(I') as in Definition [1.14.
The counterterms C(7) in (1.162) are defined inductively, by setting

(1.163) o) =-T(RT) =-T (UT Z CHUT/y) |,
~yeV (T

where T" denotes the projection onto the pole part of the Laurent series in the variable
z of DimReg. When 7 is a union of different connected components, v = vy U- - -U~;.,
the counterterm is multiplicative,

(1.164) Clv)=CO) - Cn),

with 4 the component graphs defined above (cf. [62] §5.3.3, p.105).

One defines then the renormalized value to be

(1.165) R(T) =R()+C(T) =U(T) Z C(HY)U(T /v),
~yeV(T

where, as before, we have suppressed the explicit dependence on external momenta
for simplicity of notation.
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FIGURE 25. Subgraphs and the contracted graphs

By the results of the previous sections, the expressions (1.162), (1.163), (1.165) are
Laurent series in the variable z of DimReg, with the renormalized value R(I") regular
at z = 0 by construction (subtraction of the pole part).

REMARK 1.16. The external structure is defined for the component graphs by choos-
ing distributions o, for ¢ € J, which form a basis dual to the basis of monomials in
the Lagrangian.

The only thing that matters is that we get the correct value of the counterterm,
viewed as a function of the external momenta, when we sum all terms with the same
number of external legs. Thus, in the ¢ theory we have, for any two-leg graph,

(1.166) C(7)(p) = m*C(y©) + P> Clya))-

We also need to be more specific about the way the Feynman rules are extended to
the graphs of Definition 1.11. Namely, we need to extend the Feynman rules to cover
the vertices in J \ I, i.e. those vertices that do not belong to the original interaction
Lagrangian and are used to handle the mass or field strength counterterms. The
monomials in J \ I correspond to the free part of the Euclidean action, hence they
consist of terms of the form $(9¢)? or m?¢*. We need to take into account an
overall minus sign for the counterterms. In fact, these appear typically as —C(v)(p)
in the Euclidean action. This means that, for each such vertex in J \ I, we apply
the rules of §3.3| corresponding to the monomials —%m2q§2 and —%(8¢)2. Thus, the
vertices marked with xg) give the product of m? by a d-function and the vertices
marked with x ;) give the product of k% (where k is the running momentum) by
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a o-function. This has the advantage of minimizing the number of minus signs.
Moreover, it also has the effect of dropping the new vertices entirely in the case of
a massless theory. One should remember that only the product of the counterterms
by these vertex contributions is relevant, so that one has the freedom of multiplying
one by X\ and the other by A~!. It is convenient to use from the start the negative
sign for interaction terms (such as the term — %(;53) so that the minus sign of the
counterterms is automatic for the monomials in I and the external structure of
the component graphs is the evaluation at zero external momenta divided by the
coupling constant.

The main result of [26], [166], [306] is the fact that this procedure takes care of both
the problem of organizing subdivergences and of eliminating non-local terms. It is

clear by construction that it accounts for subdivergences. Moreover, the following
holds.

THEOREM 1.17. (BPHZ) 1) The coefficients of the pole part of the prepared graph
R(T") are given by local terms.
2) The perturbative expansion of the functional integral with Euclidean Lagrangian

r
(1.167) Lp— > o)
uroncr g

gives the renormalized value of the theory.

To be more specific, in the case of the ¢? theory, the above series takes the form

C(T(0)
o(T')

2

Hi- s S oo + - D
O O

o

o

- % 1+ ZF? ¢37
X

where in each case the graphs involved are those with ¢«(T'©)) C I.

Several of the following sections in this chapter are dedicated to explaining the rich
mathematical structure that lies hidden behind the BPHZ formulae (1.162), (1.163)),
(1.165). Our presentation is based on the work of Connes—Kreimer [82], [83] and of
the authors [87], [89].

6. The Connes—Kreimer theory of perturbative renormalization

The Connes—Kreimer (CK) theory provides a conceptual understanding of the BPHZ
procedure in terms of the Birkhoff factorization of loops in a pro-unipotent complex
Lie group associated to a commutative Hopf algebra of Feynman graphs. The main
points, which we discuss in detail in the rest of this section, are summarized as
follows.

e The Hopf algebra H of Feynman graphs.

e The BPHZ procedure as a Birkhoff factorization in the Lie group G(C) =
Hom(H,C).

e The action of G(C) on the coupling constants of the theory, through formal
diffeomorphisms.
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e The renormalization group as a l-parameter subgroup of G(C).

We begin by recalling some general facts about commutative Hopf algebras and
affine group schemes. We then present the construction of the Hopf algebra H(7)
of Feynman graphs of a renormalizable quantum field theory 7.

6.1. Commutative Hopf algebras and affine group schemes.

The theory of affine group schemes is developed in SGA 3 [115]. Whereas affine
schemes are dual to commutative algebras, affine group schemes are dual to commu-
tative Hopf algebras (for an introductory text see also [291]). We recall here some
basic facts that we need later.

DEFINITION 1.18. Let k be a field of characteristic zero. A commutative Hopf algebra
H over k is a commutative algebra with unit over k, endowed with a (not necessarily
cocommutative) coproduct A : H — H®yH, a counit ¢ : H — k, which are k-algebra
morphisms and an antipode S : H — H which is a k-algebra antihomomorphism.
These satisfy the “co-rules”

(A®id)A = (id® A)A H—-HerH&,H,
(1.168) (id®@e)A =id = (e ®id)A :H—H,
m(id® S)A=m(S®id)A=1e :H—H,

where we use m to denote multiplication in H.

Suppose given a commutative Hopf algebra H as above. There is an associated
covariant functor G from the category Ay of unital k-algebras to the category G of
groups. It assigns to a unital k-algebra A the group

(1.169) G(A) = Homy, (H, A).

Thus, elements of the group G(A) are k-algebra homomorphisms

¢ H—A, oy =0y, Ye,yeH, o¢(1)=1.
The product in G(A) is dual to the coproduct of H, that is,

(1.170) P1 x P2 (2) = (1 ® 2, A(z)).

Similarly, the inverse and the unit of G(A) are determined by the antipode and the
co-unit of H. The co-rules imply that these operations define a group structure on
G(A). The functor G is an affine group scheme.

One can give the following general definition.

DEFINITION 1.19. An affine group scheme G is a covariant representable functor
from the category of commutative algebras over k to the category of groups.

In fact, the functor G of (1.169) is certainly representable (by H) and, conversely,
any covariant representable functor from the category of commutative algebras over
k to groups is an affine group scheme G, represented by a commutative Hopf algebra,
uniquely determined up to canonical isomorphism (cf. e.g. [291]).

Here are some simple examples of affine group schemes.

e The additive group G = G, corresponds to the Hopf algebra H = k[t] with
coproduct A(t) =t®@1+1®t.
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e The multiplicative group G = G,, is the affine group scheme obtained from
the Hopf algebra H = k[t,t 1] with coproduct A(t) =t ®t.

e The group of roots of unity u, is the kernel of the homomorphism G,, —
Gy, given by raising to the n-th power. It corresponds to the Hopf algebra
H = k[t]/(t" —1).

e The affine group scheme G = GL,, corresponds to the Hopf algebra

H = klzij, tlij=1,..n/(det(x; )t — 1),
with coproduct A(z; ;) = >, ik @ T j.

The latter example is quite general. In fact, if H is finitely generated as an algebra
over k, then the corresponding affine group scheme G is a linear algebraic group
over k, and can be embedded as a Zariski closed subset in some GL,,.

More generally, we have the following result (cf. e.g. [232] Proposition 4.13 and
[291]).

LEMMA 1.20. Let H be a commutative positively graded connected Hopf algebra.
There exists a family H; C 'H, i € I, indexed by a partially ordered set, where the
H; are finitely generated algebras over k satisfying the following properties:

(1) A(H;) C H; @ Hy, foralli € T.

(2) S(H;) C H,, forallieT.

(3) Foralli,j € Z, there exists a k € T such that H;UH; C Hy, and H = U;H;.
Then the affine group scheme G of H is of the form
(1.171) G =limG;,
where the G; are the linear algebraic groups dual to H;.

Thus, in general, such an affine group scheme is a projective limit of unipotent linear
algebraic groups G;, we say that G is a pro-unipotent affine group scheme.

Recall that an element X in a Hopf algebra H is said to be group-like if A(X) =
X ® X and is said to be primitive if A(X) = X ® 1 +1® X. If G denotes the
affine group scheme of a commutative Hopf algebra H, then a group-like element
X € 'H determines a homomorphism G — G,,, which, at the level of Hopf algebras,
is given by ¢ : k[t,t71] — H with ¢(t) = X. Similarly, a primitive element X € H
corresponds to a homomorphism G — G,.

There is a notion of Lie algebra for an affine group scheme. It is also defined as a
functor.

DEFINITION 1.21. The Lie algebra of an affine group scheme G is a covariant functor
g = Lie G from the category Ay of commutative k-algebras to the category Ly of Lie
algebras over k,

(1.172) A — g(A),
where g(A) is the Lie algebra of linear maps L : H — A satisfying
(1.173) LIXY)=L(X)e(Y)+ e(X)L(Y), VX, YeH,

where € s the counit of H.
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The Lie bracket of two elements in g(A) is given by
(1.174) [Lh LQ](X) = <L1 ® Loy —LQ®L1,A(X)>.

Normally, the datum Lie G of the Lie algebra is not sufficient to reconstruct the affine
group scheme G. One can see this already in the simplest case: the affine group
schemes G,,, and G, have the same Lie algebra. There is, however, a particular class
of cases in which the knowledge of the Lie algebra is sufficient to reconstruct the Hopf
algebra. This follows from the Milnor-Moore Theorem [232] Theorem 5.18, which
asserts that a primitively generated Hopf algebra over a field k of characteristic zero
is the enveloping algebra of the Lie algebra of primitive elements.

Recall that, given a graded connected Hopf algebra H, one obtains a dual Hopf
algebra H" by reversing all the arrows. More precisely we assume that the graded
pieces H,, are finite-dimensional k-vector spaces, and we define H" as the graded
dual of H, i.e. an element of H" is a finite linear combination of homogeneous linear
forms on H. Tt follows from [232] Proposition 3.1, that H" is a graded Hopf algebra,
and also that the bidual (H")V is canonically isomorphic to H. We can now state
the following corollary of the Milnor—-Moore Theorem:

THEOREM 1.22. Let H be a commutative Hopf algebra over a field k of characteristic
zero. Assume that H is positively graded and connected, H = ®p>0Hn, with Ho = k,
and that the graded pieces H,, are finite-dimensional k-vector spaces. Let H" be the
dual Hopf algebra and let L denote the Lie algebra of primitive elements in HY.
Then there is a canonical isomorphism of Hopf algebras

(1.175) H=U(L)Y,

where U(L) is the universal enveloping algebra of L. Moreover, L = Lie G(k) as a
graded Lie algebra.

PROOF. Let HY be the graded dual of H. By [232] Corollary 4.18, H" is prim-
itively generated. Thus the Milnor—-Moore Theorem ([232] Theorem 5.18) shows
that HY = U(L). The result follows from the isomorphism H = (HY)V. O

REMARK 1.23. Note that without the finiteness hypothesis, the dual H" of a Hopf
algebra H is ill defined since, if one considers arbitrary linear forms L on H, there is
no guarantee that the functional X ® Y +— L(XY') can be expressed as a finite linear
combination of simple tensors Ly ® Lo. This difficulty disappears if one restricts to
linear forms for which this finiteness holds (at any level), and this is automatic for
primitive elements, as they fulfill by hypothesis the equality

LIXY)=L(X)e(Y) + e(X)L(Y), VX,Y eH.

REMARK 1.24. In our set-up we are only considering Hopf algebras which are com-
mutative rather than “graded-commutative” as in [232]. This should not create
confusion since one can multiply the grading by 2 to apply the results of [232]. In
fact, in our setting one should really think of the grading as being an even grading:
this will become clearer in comparison with the Lie algebras of motivic Galois groups
of mixed Tate motives (see Section [§), where the grading corresponds to the weight
filtration, which is naturally parameterized by even integers. A reason for regarding
the grading by number of internal lines of graphs (cf. Proposition [1.30 below) as an
even grading comes from the fact that it is customary in physics to think of internal
lines of graphs as a pair of half-lines, see for instance [170], [19]. In fact we saw
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in §3.1/ that the graphs are obtained from pairings of half-lines. Thus the grading
is actually given by the number of half-lines that contribute to the internal lines of
the graph. In the mathematical literature, this formulation of graphs in terms of
collections of half-lines was variously used (cf. [189], [142]).

The result of Theorem [1.22] can also be used to obtain an explicit description of the
Lie algebra of an affine group scheme G, using the primitive elements in the dual
Hopf algebra. This is the form in which it is used in the Connes-Kreimer theory.

LEMMA 1.25. Let H be a commutative graded connected Hopf algebra, H = ®p>0Hr,.
There is an action of the multiplicative group G,, on H and an associated semidirect
product of affine group schemes G* = G x Gyy,.

PROOF. Let Y denote the generator of the grading, namely the linear operator
on H that satisfies Y(X) = nX for all X € H,. This defines an action of the
multiplicative group G,, on H by setting, for all u € G,,,

(1.176) u (X)) = u"X VX €H,.
Thus, we can consider the affine group scheme obtained as the semidirect product
(1.177) G*" =G % Gy,

and we have a corresponding homomorphism G* — G,,. The action (1.176) is also
defined on the dual Hopf algebra H". One then obtains an explicit description of
the Lie algebra of G* in terms of the Lie algebra of G. Namely, the Lie algebra of
G™ has an additional generator Zj such that

(1.178) [Zo, X] =Y (X) VX €LieG.

6.2. The Hopf algebra of Feynman graphs: discrete part.

The first main step of the CK theory is to associate to a given renormalizable
quantum field theory 7 a Hopf algebra H(7) over k = C, where the coproduct
reflects the combinatorics of the BPHZ preparation formula (1.162). In this section
we describe a simplified version of the Hopf algebra of Feynman graphs (the “discrete
part”) where we only consider graphs responsible for divergences. We discuss in §6.3
the full Hopf algebra of Feynman graphs, where we take into account arbitrary 1PI
graphs. We let as above J denote the set of all monomials in the Lagrangian.

DEFINITION 1.26. For a given renormalizable quantum field theory T, the discrete
Hopf algebra of Feynman graphs H(7) is the free commutative algebra over C gen-
erated by pairs (I',w) with T' € Graph(7) a 1PI graph, and w € J a monomial
with degree equal to the number of external lines of I'. The coproduct is defined on
generators as

(1.179) AD)=T@l+1aT+ Y y&I/y
yeV(I')

where the set V(I') is as in Definition 1.14.
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Notice that by construction the meaning of v in (1.179) is the product of the com-
ponents 4; where each is endowed with the element x(v;) € J. In other words,

v = TG x(0))-

The external lines of I'/vy are the same as for I', hence in (1.179) the notation I'/~
stands for the pair (I'/v,w) with the same w as for T.

Notice how H(7) is strongly dependent on the physical theory 7', both in the gen-
erators and in the structure of the coproduct, where the class of subgraphs V(I")
also depends on 7. We see in §7.6 below that there is a universal Hopf algebra
that relates naturally to all the H(7) and encodes the renormalization procedure
canonically for all the physical theories.

THEOREM 1.27. ([82]) The commutative algebra of Definition 1.26) with the coprod-
uct (L.179) is a Hopf algebra H(T).

PROOF. Let us prove that A is coassociative, i.e. that
(1.180) (A®id)A=(G1Id®A)A.

Since both sides of (1.180) are algebra homomorphisms from H to H@ HQH, it will
be enough to check that they give the same result on 1PI graphs I'. It is suitable to

enlarge the definition of V(T') to V(I') which includes the cases v = () and v = )

int’

allowing the graphs 4 or I'/y to be empty, in which case we represent them by the
symbol 1 € H(7T). We write

(1.181) y=xTeyeVI)
and
S 1
(1.182) y<TeyeVT),y£TW.
With this notation, the coproduct of I' takes the form
(1.183) AT =) 3&T/y,
y=r

where by definition 7 is given by the product of its components

(1.184) =11 %
Applying A ® id on both sides of (1.183) we get
(1.185) (A®id)AT =Y Ay®T/y.
y=T
Since A is a homomorphism, one has
AGF) = 1T 26Gy.
Using (1.183), this can be written as
(1.186) AF) =D Ao/,
=5
where the notation < has been extended to non-connected graphs. What matters
here is that a subgraph of 7 is given by a collection of subgraphs of its components,

with the limit cases in V allowed. Since things happen independently in each com-
ponent, the product of the sums is equal to the sum of the products and one gets
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(1.186)). We can think of 4/ as a collection of subsets 75- of the sets of internal lines
of the components ;. Thus, we can view the union of the 7;- as a subset 7' of the
set of internal lines of I'. Let us check that, for v/ C v, we have

(1.187) v eV() &) eV(F;), Vi
Here, for each component ; of 7, one lets %- = 7;N7'. First, a connected component

d of o/ is contained in one (and only one) of the ;. Let us show that the graph § is
the same relative to ; or to I'. Its set of internal lines is ¢ in both cases. Its set of
vertices is the set of vertices of |§|, which does not change in passing from 7; to I'.
The set of external lines at a vertex v is the disjoint union of the d;*(v) N §°. One
has to show that this is unchanged in passing from 7; to I'. Since a line £ of I" such
that 0; £ = v is a line of 7;, one gets the result. It follows that the graph 4 does not
depend on whether it is taken relative to 4; or to I' and we can now write

(1.188) (Agid)AT= Y Fo@3/y T/,
v =2y=T

where the parameters v and 7/ vary among the subsets of th) that fulfill

(1.189) yeV), 4 ey, 4 Cn.
We can write (using (1.183))) the coproduct of I' as
(1.190) AT = > §aT/y,

v =T
hence
(1.191) (doA)AT = > 5@ A(I/Y).

y'=r

Thus, to prove (1.180) it suffices to show that, for fixed 7/ € V(I'), one has
(1.192) AT/HY)= > /Y eT/y

=T, yDy

We let I" = T'/+' be the contracted graph. The set of internal lines of I" is the
complement of 4" in Fl(it)

the map v — p(v) =" = ~v\7'. One has (using (1.183)),
(1.193) AT = Y '/

,y//_< 1"/

Thus, subsets v D v’ correspond to subsets of (T” )(1) by

int

It remains to show that the map p fulfills

(1.194) y=Tepy) =T, 3/7 =p(), T/y=T"/p().

We take a subset v D 7/ and we let
(1.195) 7|0 — |/

be the continuous surjection of (1.161). It is not injective but, if 7(x) = 7(y), then
x and y are in the same connected component of |7/|. Since we have 4" C =, each
connected component of |y/| is inside a component of |y|. Thus, if 7(z) = 7(y), then
they are in the same connected component of |y|. We let v; be the components of
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FIGURE 26. The pair ' C v, components ¢ of 4/ are the darker ones

~. The argument above shows that the 7(|v;|) are disjoint. The lines of 7(|y;|) are
labelled by the complement 7 = ~;\7’ of v/ N~; in 7;. Thus, 7/ is a connected
component of |[y”|, where p(y) =+" =~\v.

Conversely, every connected component |77| of [7"| is obtained in this way and its
inverse image 7r_1(|7;-’ |) is connected and is a component |v;| of |y|. The correspond-
ing graph #; is obtained by inserting at some vertices of ’Nyj’»' the corresponding 1PI
graphs associated to the components of 4'. This operation preserves the property of
being 1PI by Proposition [1.15. Moreover, the collapsed graph of a 1PI graph is still
1PI. This makes it possible to check, using Definition 1.14, that v < T' < p(v) < T".
Moreover, the connected components of || and |y”| correspond bijectively under 7.
For each component ~; of v, one has 7;/v" = 4/ with +/ = ~;\7/. To check this one
needs to show that the external lines correspond. This follows from the equality
y=7uy"

One then needs to show that IV /+” = T'/~, that is, that (I'/4')/y” = I'/~. In both
() Let us look

int *
at vertices. The set of vertices of I'/v is the disjoint union of F(O)\fy with the set
of connected components v; of 4. In other words, it is the quotient of I'® by the
identification of vertices in the same component ~; of 7. In the same way the set of
vertices of (I'/+')/~" is obtained as a quotient of I'®), One first identifies vertices in
the same component of 4" and then of 4”. Under the above correspondence between
components 7; of v and components of 7, one gets the desired identification of the
sets of vertices. The external legs are unaltered in the collapsing process, hence one

gets I'/v =T"/p(v) as required.

cases the set of internal lines is the complement of v =+"U+” in T

We have neglected to take the map y into account in the above discussion and we
explain how to handle it now. Indeed, a subgraph is not just given as a subset

v C Fl(nlt) but it also consists of the datum of a map x from the set of connected
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components of |y| to J. All the sums considered here above involve summations
over compatible choices of x. Thus, in (1.188) one has to sum over all choices of
a x for v and a x| for the 7, C ~;, where the v; are the components of 4. The
only requirement is that, if 4/ = ~;, then x;(77) = x(7). In any case, giving x and
the family y/ is the same as giving a x’ for the subset 7/ C Fi(it), and a " for the
subgraph /4" of IV. Thus, the sums involved in (1.188) and (1.191) give the same

result.

This ends the proof of the coassociativity. One still needs to show the existence of
the antipode for H(7"). This can be obtained ([82]) by an inductive procedure. In
fact, this follows from the existence (cf. Proposition 1.30) of gradings of H(7) given
by maps from Graph(7') to N* such that

(1.196) > (i) +6(T/y) =6(I), Vye V(D).

This implies that, for a monomial X € H(7), the coproduct A(X) can be written
in the form

(1.197) AX)=X@l+1eX+) X' ®X”

where the terms X’ and X" are of strictly lower degree in the chosen grading satis-
fying (1.196). The equation m(S ® 1)A = £1 can then be solved inductively for the
antipode S using the formula

(1.198) S(X)=-X-> S(X)Xx".

g

It is useful to see the Hopf algebra of Definition[1.26/in the simplest concrete example.
As we did previously, we often use as an example the theory 7 = gbg, which has the
Lagrangian density (1.137) in dimension D = 6. This example is not very physical,
both because of the dimension and because the potential does not have a stable
equilibrium. However, it is a very convenient example, because it is sufficiently
easy (a scalar theory with a very simple potential) and at the same time sufficiently
generic from the point of view of renormalization (it is not super-renormalizable).

In this case, the conditions on the class of subgraphs V(I") of Definition 1.14/ can be
rephrased as follows. A subgraph v C T" in V(I') is a non-trivial (non-empty as well
as its complement) subset v C Fl(it) such that the components ~; of v are 1PI graphs
with two or three external lines, together with a choice of index x(v;) € {0,1} for
each component with two external lines. By Proposition 1.15 the graph I'/~ is a
1PI graph. The map x is used to give a label € {0,1} to the two-point vertices of

the contracted graph. Thus the above general discussion agrees with that of [82].

The following are examples of an explicit calculation of the coproduct for graphs I'
of the ¢ theory, taken from [82)].

ACO)=-0O-0l+10-(-
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AD)=-D-0l+10 D+
2~ & O

A
0
A
¢

+—Q—®—Q—

(@)

As one can see clearly in the examples above, the coproduct has an interesting
property of “linearity on the right”, which is expressed more precisely in the following
result.

PROPOSITION 1.28. ([82]) Let Hy be the linear subspace of H generated by 1 and by
the 1PI graphs. Then, for all T" € H1, the coproduct satisfies

A(F) cH®H.

We have introduced the Hopf algebra H(7") in Definition 1.26 as a Hopf algebra over
C. However, for possible arithmetic applications, it is useful to know that, in fact,
the Hopf algebras of Feynman graphs can be defined over Q.

REMARK 1.29. The definition of the coproduct and antipode in Definition [1.26 con-
tinue to make sense if we consider H(T) be be the free commutative algebra over Q
generated by the 1PI graphs.

We now discuss several natural gradings of the Hopf algebra H (7).

PROPOSITION 1.30. The Hopf algebra H(T ) is graded by the loop number, deg(I') =
b1(I"), extended by

(1.199) deg(l'y---T) = Z deg(T';) and deg(l) =0.
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It also has a grading by the line number

(1.200) ury =414 and oJJT) =3 ar)).
J J

The grading by line number has the property that the graded components of H(T)
are finite-dimensional.

ProOF. For any subgraph v € V(I'), one has
(1.201) UT) =D ly) + 4T /),

since the set of internal lines of I'/+y is the complement of 7 in Fl(ét) while the internal

lines of the components are the disjoint subsets ;. There are only finitely many
graphs with a given number of internal lines. This gives the required finiteness for
the dimensions of the graded components. Let us check that the prescription

(1.202) v@) =#TO 1 and o(J]T)) =D o))

J
defines another possible grading on H(7). We need to show that

(1.203) o(D) = 3" () + o /).

i
The graph I'/~ is obtained by collapsing each of the connected components 7; to a
single vertex, i.e. by replacing the v(5;) + 1 vertices of 7; with a single vertex. Thus,
(1.203)) follows. Since both ¢ and v are gradings so is their difference ¢ — v, which
gives the grading by loop number b;. U

Notice that, with respect to the grading v by number of vertices (1.202), the Hopf
algebra H(7) is in general not connected, i.e. in general the degree-zero component
of H(7) is not just a copy of the field of scalars. One can see this in the example of
the ¢* graph of Figure 22.

With the grading given by the loop number, the Hopf algebra H(7) is graded con-
nected, namely 'H = @®,,>0Hy,, with Hy = C. However, with respect to this choice of
grading, the graded components H,, are in general not finite-dimensional. In fact,
one can insert two-point vertices without changing the loop number.

The graded components H,, are finite-dimensional for the grading ¢ of Proposition
1.30 associated to the counting of the number of internal lines, as shown above.
Moreover, for this grading the Hopf algebra is connected, i.e. Hy = C.

Thus, as in Lemma [1.20, we have a corresponding affine group scheme that is a
projective limit of linear algebraic groups. The affine group scheme is prounipotent,
since H is positively graded connected.

DEFINITION 1.31. The group of diffeographisms Difg(7") of a renormalizable theory
T is the pro-unipotent affine group scheme of the Hopf algebra H(T) of Feynman
graphs.

The terminology “diffeographisms” is motivated by another result of the CK theory,
which we discuss in §6.5 below, according to which Difg(7") acts on the coupling
constants of the theory through formal diffeomorphisms tangent to the identity.

The Lie algebra of Difg(7) is identified in [82] using the Milnor-Moore theorem
(Theorem [1.22).
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Fieure 27. The value U(I'(p1,...,pn)) depends on the incoming
momenta.

THEOREM 1.32. ([82]) The Lie algebra Lie Difg(7) has a canonical linear basis given
by pairs (I'yw) consisting of a 1PI graph I' and an element w € J with degree the
number of external lines of I'. The Lie bracket is given by

(1.204) (C,w), (M w)] = > (oI w)— Y (MoyT,w)

v, v(v)=w’ v u(v)=w

where T o, I denotes the graph obtained by inserting I in T at the vertex v of T.

The Lie bracket is uniquely defined from the Milnor-Moore Theorem. In general
the notation I' o, I is ambiguous since there may be several ways of inserting I in
I" at the vertex v due to the ordering of the external legs, and one has to take into
account the corresponding combinatorial factor. We refer to [277] for the needed
precise discussion of this point.

REMARK 1.33. The Hopf algebra H(7) simplifies even further when we take the
massless case of the ¢3 theory in D = 6 dimensions (which is consistent in dimension
6). In that case the monomials in the Lagrangian are distinguished by their degrees
and one can drop the w as well as the maps ¢ and x of the above discussion. Moreover
there is no need to introduce the new vertices X ;) since the only relevant one, namely
X(1), brings in a k? which yields the same result as if one eliminates the new vertex
altogether (the resulting loss of a propagator is compensated for exactly by the
removal of the k? vertex). The grading by loop number is now finite in each degree
and the counting ¢ of the number of internal lines is no longer a grading.

6.3. The Hopf algebra of Feynman graphs: full structure.

So far, we have not been taking into account the fact that Feynman graphs have
an external structure, I'(p1,...,pn) (cf. Figure 27). We now describe the full Hopf
algebra of Feynman graphs, following [82].

We need to input the external data in the structure of the algebra. For a Feynman
graph I' of the theory with N external legs, we define the set

(1.205) Er = {(pi)i:l,...,N ; Z pi = 0}
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of possible external momenta subject to the conservation law. Consider then the
space of smooth functions C*°(Er) and let C7*°(Er) denote the space of distribu-
tions dual to C*°(Er).

DEFINITION 1.34. An external structure on a Feynman graph T with N external legs
is a distribution o € CZ7*°(Er).

It is often sufficient to consider distributions o : C*°(Er) — C that are d-functions.
However, this is in general not enough. In fact, one should keep in mind the non-
linear dependence of U(I'(py,...,pn)) on the external momenta.

We choose a set of distributions o,, indexed by the elements ¢ € J, so that the o,
form a dual basis to the basis of monomials in the full Lagrangian, i.e. they fulfill
the analog of (1.166)).

We then consider the disjoint union F := UrFEr, over 1PI graphs I' and the corre-
sponding direct sum of the spaces of distributions C;*°(Er), which we denote by

Ce*(E) = @rC. ™ (Er).
We obtain the following description of the full Hopf algebra of Feynman graphs.

DEFINITION 1.35. For a given renormalizable quantum field theory 7T , the full Hopf
algebra of Feynman graphs H(7) is the symmetric algebra on the linear space of

distributions C_>°(E),
(1.206) H(T) = Sym(C,*®(E)).
The coproduct on H(T) is defined on generators (I, o), with T' a 1PI graph of T and
o € C_°(Er), by the formula
(1.207) AT, 0)=T0)@1+10([0)+ Y (7,040 @ ([/7,0).
yev(T)

In the formula (1.207), the subgraphs v belong to the class V(I") of Definition [1.14.
The notation (7, 0y(4)) is a shorthand for

H (Fis Ox())

where the product is over the components of v and y is the map from the set of
components of v to J of Definition 1.14. The contracted graph I'/y has the same
external lines as the graph I' so that one can endow it with the external structure
.

The proof that Definition 1.35 indeed gives a Hopf algebra, cf. [82], is a direct
extension of the above proof of Theorem [1.27.

The full Hopf algebra H(7) also has an associated affine group scheme Iif/g(’f ).

The relation of Difg(7") to the group of diffeographisms Difg(7") of the discrete Hopf
algebra H(7) is through a semidirect product

(1.208) Difg(7) = Difg,,(T) x Difg(7T),

where Difg,, (7') is abelian. This can be seen at the level of the Lie algebra.
Consider the linear space

(1.209) L= C™(E),
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with F := UrEr, the disjoint union over 1PI graphs I'. We denote an element of £
as a family L = (f1) with fI' € C°°(Er), indexed by 1PI graphs I'. An element L
in £ determines a linear form Z;, on the Hopf algebra H(7 ), which is non-zero only

for elements of
Co™(E) € Sym(C;(E))

[

and pairs as follows with the generators (I, o),
(1.210) (Z1,(T,0)) == o(fY),

where fT is the component in C*°(Er) of L. The form Z, : H(T) — C satisfies the
condition (1.173))

Zi(XY) = Zp(X)e(Y) +e(X)Z(Y), ¥X,Y € H(T),

hence it defines an element in Lie ]if/g(’f ). The bracket then corresponds to the
commutator [Z,, Zy,] = Zr, * Zr, — Z1, * Z1,, where the product is obtained by
transposing the coproduct of H(7T),

<ZL1 * 2Ly, (F,U)> = <ZL1 ® ZszA(Fva»'

When we evaluate [Zr,,, Zr,] on (I',0) the only terms of (1.207) which contribute
are those coming from subgraphs v € V(I') which have only one component. For
such subgraphs v € V(') the map x is just an element w € J whose degree is the
number of external lines of 4. One gets

(Z0,, Ze), (Too)y = Y ow(f)olhy) = oulf) a(fi)

YEV(T), w

One then has a description of the Lie algebra Lie ]if/g(:]' ), identified with the Lie
algebra of primitive elements in the dual Hopf algebra H(7)V.

PROPOSITION 1.36. The Lie algebra Lieﬁﬁ%(T} is the linear space L of (1.209)
endowed with the Lie bracket

(1.211) LiLof = Y ul B — oulfy) 117

vEV(T), w
where L; = (f]F)

The Lie algebra Lie DAlf/g(T) is the semidirect product of an abelian Lie algebra L,y
with the Lie algebra Lie Difg(7). Elements L = (f') of the abelian subalgebra L.,
are characterized by the condition

(1.212) L=(fY) e Ly = ou(f)=0, YwelJ

for any graph v whose number of external lines is the degree of w € J. We refer the
reader to [82] for more details.
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6.4. BPHZ as a Birkhoff factorization.

We now come to the main result of the CK theory of perturbative renormalization.
We begin by describing the Birkhoff factorization of loops.

DEFINITION 1.37. Let C' = OA denote a circle around the point z =0 € C, with A
a small disk centered at z = 0. We denote by Cy the two components of P*(C)\ C,
with 0 € Cy and co € C_. Let G(C) be a connected complex Lie group. Given a
smooth loop v : C — G(C), we say that v admits a Birkhoff factorization if it can
be written as a product

(1.213) 7(2) =7-(2) 114 (2), V2 €O,

where the vy are boundary values of holomorphic functions v+ : Cx — G(C), with
7-(00) = 1.

In general, not all loops admit a Birkhoff factorization. This can be seen in the
classical case of loops in GL,(C). In this case, the factorization problem is closely
related to the classification of holomorphic bundles on P*(C). In fact, a loop 7 :
C — GLy(C) has in general a factorization of the form

(1.214) 1(z) =7-(2) 7T A(2) 74 (2),

where 4 are boundary values of holomorphic maps 74 : C+ — GL,(C), v—(o0) = 1,
while the middle term X is a homomorphism of S' to the subgroup of diagonal
matrices in GL,(C),

(1.215) Az) = . ;

with integers k; as exponents. The holomorphic maps ~+ give the local frames
for a trivialization of the restrictions to the open sets C4 of a holomorphic vector
bundle E on P!(C). The bundle E is obtained by gluing these trivializations using
the transition function A : C'— GL,,(C). This recovers in terms of factorizations of
loops (cf. [248]) the Grothendieck decomposition [153] of E as a sum of line bundles

(1.216) E=L1® - ®L,,

with Chern classes ¢1(L;) = k;. Up to a permutation of the indices this decompo-
sition is unique and the integers k; give a complete invariant of the holomorphic
vector bundle E.

We are interested in the case when A is an infinitesimal disk around z = 0 and C
an infinitesimal loop. In this case, we can translate the formulation of the Birkhoff
factorization (1.213) into the language of affine group schemes.

We assume that the Lie group G(C) is the set of complex points of the affine group
scheme G of a commutative Hopf algebra H over C. Namely, we have G(C) =
Hom 4. (H, C). We denote by

(1.217) K =C({z}) =C{z}[z}]



6. THE CONNES-KREIMER THEORY 89

FiGure 28. Birkhoff decomposition

the field of convergent Laurent series, that is, germs of meromorphic functions at the
origin. We regard K as a unital commutative C-algebra, and consider the K-points
of G,

(1.218) G(K) = Hom, (M, K).

We can think of elements in G(K) as describing loops v(z) on an infinitesimal circle
(or an infinitesimal punctured disk A*) around z = 0. Similarly, consider

(1.219) O =C{z},

the ring of convergent power series, or germs of holomorphic functions at z = 0.
Again, we can consider the corresponding group

(1.220) G(0) = Homu.(H, O),

which describes loops «y(z) that extend holomorphically to z = 0. Finally, we con-
sider the ring

(1.221) Q=2"'C[z7Y], and the unital ring Q= C[z71],
and the group
(1.222) G(Q) = Homy, (H, Q).

We can impose a normalization condition corresponding to y_(oco) = 1 for an element
¢ € G(Q), by requiring that e_ o ¢ = €, where £_ is the augmentation in the ring Q
and ¢ is the counit of the Hopf algebra H.

In terms of these data, we restate the Birkhoff factorization problem of Definition
1.37 in the following form.

DEFINITION 1.38. An element ¢ € G(K) admits a Birkhoff factorization if it can be
written as a product

(1.223) 6= (¢ 08)*d,

with ¢, € G(O) and ¢_ € G(Q) satisfying e_ o p_ = e, and with S the antipode of
H.
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The following result of [82] shows that, in the case of interest for renormalization, i.e.
when G is the pro-unipotent affine group scheme of a graded connected commutative
Hopf algebra H, all loops admit a Birkhoff factorization. In fact, this is not only an
existence result, but it provides an explicit recursive formula for the factorization.

THEOREM 1.39. ([82]) Let H be a positively graded connected commutative Hopf
algebra, H = @p>oHy, with Hy = C. Then every element ¢ € G(K) = Hom4.(H, K)
admits a unique Birkhoff factorization, as in (1.223). The factorization is given
recursively by the identities

(1.224) é_(X) = ( )+ > oo (X)p(X" )

where T is the projection on the pole part of the Laurent series, and

(1.225) $+(X) = (X )+ o (XNB(X),

where, for X € H,, the X' and X" are the lower degree terms that appear in the
coproduct

(1.226) AX)=X®l+1oX+) X' X"

PRrROOF. We reproduce here the proof from [82]. The augmentation e vanishes
on H, for n > 0, so that the augmentation ideal of H, namely H~ = Kere, is the
direct sum of the H,, for n > 0. For X € H,, the coproduct A(X) can be written
as a linear combination of tensor products X’ ® X” of homogeneous elements. The
equalities

(Id®e)oA=1d, (¢®Id)oA=1d
show that A(X) is of the form (1.226).
One needs to show that the map ¢_ : H — K defined by (1.224) is indeed a
homomorphism. The main point is to show, by induction, that it is multiplicative.
For all X, Y of positive degrees deg X > 0, degY > 0 one has
AXY)=XYR1+10 XY+ XY +Y X+ XY @Y"+

1.227
( ) Y/ ®Xyl/ +X/Y ®XI/ +X/ ®X”Y +lel ®X//Y//.

Thus, we obtain the following expression for ¢_(XY):

¢ (XY) = —T(¢(XY)) = T(¢—(X) p(Y) + ¢ (Y) (X) +
(1.228) P (XY) p(Y") + o (Y') p(XY") 4+ ¢ (X'Y) ¢(X")
+ - (X) 9(X"Y) + ¢ (X'Y) 9(X"YT)) .
Now we use the fact that ¢ is a homomorphism and the induction hypothesis that
¢_ is multipicative, ¢_(AB) = ¢_(A) ¢p_(B), for deg A + deg B < deg X + degY’.

(Notice that this is automatic if deg A = 0 or deg B = 0 since the algebra is connected
and ¢_(1) = 1 so that there is no problem in starting the induction.) We then rewrite



6. THE CONNES-KREIMER THEORY 91

(1.228)) as
P (XY) = (¢(X)¢( )+ 0-(X) o(Y)
¢ (V) ¢(X) + o (X) ¢ (Y') 6(Y")
(1.229) O (Y) ¢(X) o(Y") + 6 (X") ¢ (V) p(X")
¢ (X') o(X") $(Y)
- (X) o (Y") p(X") (Y")) .

We need to compare this with ¢_( )o—(Y). We can compute the latter using the
fact that the operator of projection onto the polar part satisfies the relation

(1.230) T(f)T(h)==T(fh)+T(T(f)h) +T(fT(h)).
By applying (1.230)) to

f=0(X)+o-(X)o(X") and h=¢(Y)+o-(Y)d(Y"),
we obtain

6-(X)6-(¥) =
=7 (000 + 9-(X) 6(X") (6(1) + 6-(7) o) )
#T(T(0X) + 6-(X) 6(X") (9Y) + - (V) 60"
+7((600) + 0- (X SN T(0) + 0-(7) 6(4) ).

Using the fact that T'(f) = —¢_(X), T'(h) = —¢_(Y), we can then rewrite (1.231))
in the form

(1.231)

Y) =
BY) + 6 (X)) (X" (1)
Do) 4o (X 6(X") - (1) 604
@) + 0 (1) 61"

((00x) + o- (00X 0-(1)).

Finally, we compare (1.229) with (1.232). Both expressions contain eight terms of
the form —7'(a) and one can check that they match in pairs. This proves that ¢_
defined by the recursive formula (1.224) is indeed an algebra homomorphism. It is
then clear that the ¢ defined by (1.225) is also an algebra homomorphism, since
both ¢ and ¢_ are. It is clear by construction that ¢_ € G(Q) since it is a polar part,
and that ¢ € G(O). It is also easy to check that one has ¢4 = ¢_ x ¢, since one can
see the right-hand side of (1.225) as the pairing (¢— ® ¢, A(X)) = o_x ¢ (X). O

X)é_
(ot
(X)6-(v
(o

(x

o ( (
T )
(1.232) +¢
~T(¢_(X
-7

One can then apply the result of Theorem [1.39 to the specific case of the Hopf
algebra of Feynman graphs. One finds that the formulae (1.224) and (1.225) for the
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recursive Birkhoff factorization of loops in the group of diffeographisms are exactly
the recursive formulae of the BPHZ renormalization procedure.

THEOREM 1.40. ([82]) Let T be a renormalizable theory and H(T) the Hopf algebra
of Feynman graphs, with the grading by loop number. Then the formulae (1.224) and
(1.225) for the Birkhoff factorization of loops ¢ € Difg(T)(K) = Hom 4, (H(7), K)
are given, respectively, by the formulae (1.163) and (1.165) of the BPHZ perturbative
renormalization.

PrROOF. Consider the data U*(I'(p1,...,pn)) of the unrenormalized values of
Feynman graphs, regularized by applying DimReg. We can view U as a homomor-
phism U : H(7) — K, which assigns to a generator (I',o) of H(7) the Laurent
series

(1.233) h(z) = (o, U*(L'(p1, -, pN)))-

Here we view U*(I'(p1,...,pN)) = f2(p1,...,pN) as a family of smooth functions
f. € C°(Er), with z € A* varying in an infinitesimal punctured disk around z = 0.
Thus, we can pair the distribution o with f, and obtain h(z) = (o, f,) € K = C({z}).

It is then clear that, upon setting ¢ = C' and ¢+ = R one can identify the formulae
(1.163) and (1.165) with (1.224) and (1.225). O

Notice that it is fine here to consider the grading by loop number because for the
inductive procedure connectedness of the Hopf algebra suffices and one does not
need it to be finite-dimensional in each degree.

We can express the result of Theorem [1.40 in terms of loops v. We say that the
data U*(I'(p1,...,pn)) define a loop v(z) in the pro-unipotent Lie group of complex

points of Difg(7"). This loop has a Birkhoff factorization

Y(2) = 7-(2) "4 (2),
where the “negative piece” v_(z) gives the counterterms and the “positive part”
~v+(z) gives the renormalized value as the evaluation v (0).

We now restrict attention to the discrete Hopf algebra H(7") for the simple reason
that the non-trivial counterterms in the full Hopf algebra already come from the
Birkhoff factorization of the restriction to H(7). In fact, notice that terms of the
form
(77 O-x('y)) ® (F/'% U)

in the coproduct formula of the full Hopf algebra H(7T) are identified with elements
in H(7) through the choice of the dual basis o,. Thus, if one knows the value of the
restriction of v_(z) to H(7 ), the renormalized value of an arbitrary graph does not
require the computation of any new counterterm. It is obtained, after preparation
by the known counterterms (from H(7)), by a simple subtraction of the pole part
(which is non-zero only if the degree of divergence is positive).

THEOREM 1.41. Let T be a renormalizable theory and H(T ) the discrete Hopf algebra
of Feynman graphs, with its affine group scheme Difg(7T). Then the formulae (1.224))
and (1.225) for the Birkhoff factorization of loops applied to the homomorphism U
give respectively the counterterms and the renormalized value for the theory T' with
new interaction vertices associated to monomials of the non-interacting part of the
Lagrangian of T .
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ProoOF. We let as above J be the set of all monomials in the Lagrangian of
7 and [ the set of interaction monomials. For the graphs I' € Graph7 such that
(I') C I the statement follows from Proposition [1.40.

The formulae (1.224) and (1.225) depend upon the definition of subgraphs of the
theory, through the fact that they involve the coproduct in the Hopf algebra. We
need to show that our definition of subgraphs has the right properties so that (1.224)
and (1.225) give the renormalization of the extended Feynman graphs of the theory
(as in Definition [1.11) with +(I'(©)) C J, viewing these graphs as Feynman graphs of
the new theory 7.

The main point is that the new theory is still renormalizable and does not require
any new type of counterterms in order to be renormalized. This is proved using
dimensional analysis. When all the physical dimensions of coupling constants are
positive one gets a finite number of possible counterterms (cf. [62] §3.3.3).

For instance, in the theory ¢ in dimension D the field ¢ has physical dimension
D/2—1 and the coupling constant g has physical dimension 3— D/2 (cf. §2.2 above).
As long as D < 6, the theory is renormalizable and it remains such with the new

. 0 1 .
vertices and . Moreover, when we renormalize a graph of that new

theory, we do not introduce new counterterms. The three types of counterterms
needed are already present from 7.

Now start from I' € Graph(7') and view it as a graph of the new theory 7”. Then, in
order to renormalize it, we first prepare it by adding the counterterms corresponding
to the subdivergences. We know that the only subgraphs responsible for subdiver-
gences of I have at most three external legs (in general they belong to the set J),
hence they correspond to subgraphs in the sense of Definition [1.14 for the theory
T. According to this definition, we use already all the elements of J as labels for
the connected components of the subgraphs. This means that, when we collect the
terms, we get the prepared graph as if we were applying BPHZ for the new theory
T’. One then proceeds by induction to show that in (1.224) we get the counterterm
for T as if we were applying BPHZ for the new theory 7’. The same holds for the
renormalized value. It is crucial, in doing this, that we did not need to add new
vertices since the propagator of the new theory remains the same. O

6.5. Diffeographisms and diffeomorphisms.

Another important result of the CK theory, which we discuss in this section, shows
that the group of diffeographisms of a renormalizable theory 7 maps to the group
of formal diffeomorphisms tangent to the identity of the space of coupling constants
of the theory.

More precisely, for a renormalizable theory 7, consider the complex vector space V/
with a basis labeled by the coupling constants. We let Diff (V') be the group of formal
diffeomorphisms of V' tangent to the identity at 0 € V and Hqig(V) be its Hopf
algebra. We work over the ground field C. There is a Hopf algebra homomorphism
O : Haig(V) — H(T) and a dual group homomorphism Difg(7) — Diff(V'). This
map to formal diffeomorphisms explains the terminology “diffeographisms” for the
group scheme Difg(7).

The map P is constructed by assigning to the coefficients of the expansion of formal
diffeomorphisms the coefficients in H(7) of the expansion of the effective coupling
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constants of the theory as formal power series in the bare coupling constants. It is
not immediate to show that @ is indeed a Hopf algebra homomorphism ([83]).

We state this result more precisely in the simplest case where 7 is the massless qbg,
where there is only one coupling constant, and one can write a completely explicit
formula for the map ®.

PROPOSITION 1.42. ([83]) Let T be the massless ¢3 theory and let Haig(C) be the
Hopf algebra of formal diffeomorphisms of C tangent to the identity. Then the
following holds.

(1) The effective coupling constant has a power series expansion of the form

20+1

g+ E g L
o(T)
X

(1.234) Goft =

3/2°

r
1 Z g%m
O

where the coefficients are elements in the Hopf algebra H(T ), with o(T") the
symmetry factor of the graph as in (1.98).

(2) The expansion (1.234) induces a Hopf algebra homomorphism ® : Haig(C) —
H(PE) with ®(a,) = .

The expansion (1.234) is obtained by considering the effect of adjusting the coupling
constants in the Lagrangian

1 2 9.3
£(6) = 506 - Lo
of the massless ¢ theory by

g+9dg 3
6 ¢

The correction 3(9¢)?(1 — §Z) can be absorbed in a rescaling ¢ — ¢(1 — 62)1/2 so
that one obtains

5001201~ 62) -

S06)° — g +09)(1 —62)"7 6"
The counterterms responsible for the term 6Z come from all the graphs with two
external legs, while the counterterms involved in the term dg come from graphs
with three external legs (cf. the BPHZ formulae (1.162), (1.163), (1.165)), hence the
explicit form of the expansion (1.234).
The Hopf algebra Hgig(C) of formal diffeomorphisms of C tangent to the identity
has generators the coordinates a,, of

plx) =z 4+ an(p)a",
n>2
for ¢ a formal diffeomorphism satisfying ¢(0) = 0 and ¢'(0) = id. The coproduct
A(ay) is given by
(A(an), p1 ® p2) = an(p2 0 ¢1).
One obtains an algebra homomorphism ® : Hgig(C) — H(¢3) by setting ®(a,) = an,
where the o, € H(¢?) are the coefficients of the series gef = g+ ,,59 On, g", Which
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satisfy ag, = 0. We refer the reader to [83] §4 for the proof that the algebra
homomorphism ® is also comultiplicative.

The fact that there is a group representation Difg(7) — Diff(V) means that it
is possible to lift at the level of diffeographisms various aspects of the theory of
renormalization. We will see in §6.6 below that the beta function and the action
of the renormalization group can be formulated naturally at the level of the group
scheme of diffeographisms.

This result was generalized from the case of massless ¢ theory to other theories by
Cartier and by Krajewski.

6.6. The renormalization group.

Recall how we remarked in §4/ that, in fact, the regularized unrenormalized values

U*(T(p1,---,pN))

depend on an additional mass parameter p, as in (1.135). This induces a corre-
sponding dependence on the parameter p of the loop 7,(z) that encodes the un-
renormalized values as in Proposition [1.40. For a graph I' with loop number L
this dependence is simply given by a multiplicative factor of x** when working in
dimension D — z. In the example of the theory 7 = gbg, this dependence on p is
described explicitly in terms of the Feynman rules in [87] §2.7. Our convention here
agrees with that of [87] on the relevant Hopf algebra of graphs with two or three
external legs, which are the only ones with non-zero counterterms. We discuss here
two general properties of 7,(2); see Propositions [1.43 and [1.44 below.

Consider the 1-parameter group of automorphisms
(1.235) 0, € Aut(Difg(7)), VteC

implementing the grading by loop number, namely, with infinitesimal generator
d

(1.236) T Ot |t=0 =Y

given by the grading operator

(1.237) Y(X)=nX, VXeH(T),

so that

(1.238) 0,(X)=e"X, VX eH/(T),teC.

We let the grading 0; act by automorphisms of both H = H(7') and the dual algebra
HY so that

(1.239) 0s(u),z) = (u,04(z)), Ve cH, VuecH".

We obtain the following result about the dependence of v,(z) on the parameter p.
PROPOSITION 1.43. ([83]) Let v,(2) be the loop in the pro-unipotent Lie group of
diffeographisms that encodes the regularized unrenormalized values U (T"). Let 0; be

the 1-parameter family of automorphisms (1.235). Then, for all t € R and for all
z € A*, the loop v,(2) satisfies the scaling property

(1'240) Vet,u(z) = etz(lyu(z))'
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PROOF. Since both sides of (1.240) are homomorphisms from H to K it is enough
to check the equality on the generators I' and one can use (1.239). It corresponds
to the fact that the dependence on p in the unrenormalized value of the graph I'
(1.135) is through a power p*’, with L the loop number L = by(T"), which comes
from formally replacing the integration variables d”k by u*d”~?k in the “integration
in dimension D — 2” of (1.132). O

The following result ([62], §5.8 and §7.1) will play a very important role in §7 below.

PROPOSITION 1.44. ([83]) Let ~,(2) be the loop in the pro-unipotent Lie group of
diffeographisms that encodes the reqularized unrenormalized values Ui(F). Let

Yu(2) = W (2) M (2)
be the Birkhoff factorization of Theorem|1.39. Then the negative part of the Birkhoff
factorization is independent of the mass parameter p,

(1.241) 8(17“_ (2)=0.

PROOF. Let us give the proof in some detail. First notice that we are dealing
with general graphs with vertices in J, rather than the restricted graphs with vertices
in I. By Theorem [1.41, when evaluated on a graph I' € Graph7, the negative
part 7, (z) of the Birkhoff factorization is the same as the counterterms of that
graph in the BPHZ procedure of the new theory 7’ with the new vertices labeled
by monomials in J \ I. Notice that these new vertices have coupling constants of
positive physical dimension (in the sense of §2.2/ above), which are independent of
. Thus, we are reduced to the analysis of the u-dependence for counterterms in a
renormalizable theory (with couplings of physical dimensions > 0). The proof that
the counterterms are independent of u is done in three steps, as follows.

e The counterterms depend in a polynomial manner on the mass parameters
of the theory (u not included).

e Only powers of log 1 can appear in the counterterms.

e By dimensional analysis the counterterms do not depend on u.

We refer to [62] §5.8.1 for the proof of the first statement. It is based on repeated
differentiation with respect to these parameters and an inductive argument assuming
that the counterterms for the subdivergences are already polynomial. This behavior
is specific to DimReg and MS and would not apply, for instance, in the mass-shell
renormalization scheme.

That only powers of log u can appear in the counterterms follows again by an in-
ductive argument since the counterterms are obtained by extracting the pole part
of an expression with new dependence in u of the form p** which one expands in
powers of z and log .

The argument of a log is necessarily dimensionless since when we apply the minimal
subtraction we are subtracting quantities which have the same dimension. Thus the
massive parameter p can only appear in the form of products of log(p?/u?) or of
log(M?/1?), where M is a mass parameter of the theory. However, we know from
the discussion above that momenta p or such mass parameters can only appear as
polynomials, hence such expressions of logarithmic form are excluded and p cannot
appear in the counterterms. O
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DEFINITION 1.45. In the following, let G(C) be the pro-unipotent affine group scheme
associated to a positively graded connected commutative Hopf algebra M. Let L(G(C), u)
denote the space of G(C)-valued loops 7v,(2), defined on an infinitesimal punctured
disk z € A* around the origin, and satisfying the scaling condition (1.240) and the
property (1.241) that the negative part of the unique Birkhoff factorization of ~,(z)

is independent of u.

The results discussed in the rest of this section apply to any v, € L(G(C), 1), hence
in particular to the case when G(C) is the group of complex points of Difg(7") and
Yu(2) encodes the regularized unrenormalized values U (I") of the theory.

DEFINITION 1.46. Suppose given v,(z) € L(G(C), ). The residue is defined as
0 1

1.242 Res._gn = — [ L~ (= .

(242) st (31&7 <u>>u0

The corresponding beta function is then given by
(1.243) 8 :=Y Res~,
where Y is the grading operator (1.237).

Since (1.242) depends only on ~v_, the residue is independent of p by Proposition
1.44. The beta function 3 of (1.243)) is an element in the Lie algebra Lie G.

The renormalization group is obtained as a l-parameter subgroup F; of G(C) as
follows.

PROPOSITION 1.47. ([83]) Suppose given v,(z) € L(G(C), ). Then the following
properties hold.

(1) The loop v—(2) 04, (v—(2)~1) is regular at z = 0.
(2) The limit
(1.244) F = lim v (2) - (v-(2) )
defines a 1-parameter subgroup of G(C). Viewed as a homomorphism
F; € I‘IOH]A(C (H, (C),

it has the property that Fy(X) is polynomial in t, for all X € H.

(3) The infinitesimal generator of Fy is the beta function (1.243).

(4) Let 7,+(z) be the positive part of the Birkhoff factorization of vu(z). It
satisfies

(1.245) Yetu+ (0) = Fyy,+(0), VEeR.

PROOF. (1) Since vy_(z) is the negative part in the Birkhoff factorization of v, ()

and of 0. (74(2)) = Ve-t,(2), the elements y_(2) 7,(2) and y(z) := 7 (2) 012 (7u(2))
are regular at z = 0. It follows that 0;.(y(2)) = 0:2(v-(2)) yu(2) is regular at z = 0,
hence so is the ratio

1=(2) (7= (2) 1) = (7= (2) u(2)) (O (7-(2)) vu(2))
(2) Thus, for any t € R, the limit
(1.246) lim (y-(2) b1=(v-(2)7), X)

exists, for any X € H. Here we view the element v_(z) 0. (7_(2)"!) of G(C) as a
homomorphism H — C.
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The 1-parameter family 6; of automorphisms of G (cf. (1.235)) also acts as auto-
morphisms of the Hopf algebra H, satisfying by definition

(1.247) Or(7), X) = (1,0,(X)), VX eH, VyeGC).
Thus, for X € H, we obtain
(1.248) (V= (2) Oz (7=(2)71), X) = (1= (2) T @ 7-(2) 7, (S ® br2) A(X)) -

Upon writing the coproduct as a sum of homogeneous elements

AX) =) X ® X,

we obtain (1.248) as a sum of terms of the form

1219) (S X) O (0 X =i (1) (1),

for polynomials Py, P,. We know, by the existence of the limit (1.246), that the sum
of these terms is holomorphic at z = 0. Thus, by expanding €*** in a Taylor series,
we obtain that

(F, X) = lim (v (2) 0is(1-(2) 1), X)

is a polynomial in ¢.

To see that F; is a one-parameter subgroup of G(C), we endow G(C) with the
topology of pointwise convergence

(1.250) Y —y it (e, X)) — (1,X), VX eH.
The fact that G(C) is a topological group follows from the equality

(v X) =D (X)) (7 X))

and similarly for the inverse. Using (1.247) and the definition of F; we have
(1.251) lim 0.z (v-(2) 0= (y-(2) 1)) = B,

hence we obtain
Fsyp = il_r% 7—(z) 9(8+t)2 (’Y— (Z)_l)

= lim 7 (2) 0 (1= (2)71) 0z (7-(2) b1z (7-(2) 1)) = Fs
so that Fsi, = FsFy, for all s,t € R.
(3) This will follow from Lemma [1.48| cf. Corollary [1.49 below.
(4) The value ,f (0) is the regular value of 7_(2) 7,(2) at z = 0. Similarly, W;M(O) is

the regular value of v_(2) 0.(vu(2)), or equivalently of 0_;.(v—(2)) v.(2), at z = 0.
We know that the ratio satisfies

0 (v ()7 ()" = F
when z — 0, hence we obtain the result. O
We conclude this section by the following result of [83], which will be the starting

point for the main topic of the next Section, the Riemann—Hilbert correspondence
underlying perturbative renormalization.
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LEMMA 1.48. Suppose given v, (z) € L(G(C), ) and let v_(2) be the negative piece
of the Birkhoff factorization, which can be written as

< 4

(1.252) v (z)"' =1 +;z”’

with coefficients d, € HY. Then the coefficients d,, satisfy the relations

(1.253) Y (dns1t) = dn %Ft\tzo Vn>1, and Y(d)= %Ft\tzo.
ProoF. We first show that, for all X € H, we have

(1.254) (4 Rlico, X) = lm =(y_(2) ©7-(2)7 (S © Y) ACX))

We know from (1.248)) and (1.244)) that, for z — 0, we have

(1.255) (- (2) T @7 (2)7L, (S © 04s) ACX)) — (Fy, X).

We denote by E the expression on the left-hand side of (1.255). We know by (1.249)
that it is a finite sum = = Y Py(27!) e, where the P}, are polynomials. As before,
we can replace the exponentials e¥** by their Taylor expansions up to some order N
in z and obtain polynomials in ¢ with coefficients that are Laurent series in z. Since
we know the expression is regular at z = 0 for any value of ¢, these polynomials
have, in fact, coefficients that are regular at z = 0, i.e. that are polynomials in z.
Thus, the left-hand side of (1.255) is a uniform family of holomorphic functions of
t, for t varying in a disk around t = 0. The derivative ;= at ¢ = 0 converges to
Ot (Fy, X)|t=0 when z — 0, so that we have
d

(1.256) 2(y-(2) T oy_(2) L (S®Y)A(X)) — <£Ft’t:0a X).

Notice then that the function
(1.257) 2 2 (1o (2) L@y (2) 7L (S @ Y) AX))

is holomorphic for z € C\{0} and extends holomorphically to z = oo € P;(C),
since v_(o0) = 1, so that Y (y_(o0)) = 0 (see (1.259)). Moreover, by the previous
argument, it is also holomorphic at z = 0, which implies that it is a constant. This
gives, for all X € H,

1 ,d

(1-(2) T @r-(2) 7L (S®Y)AX)) = - (G Fili=0, X)),
which is equivalent to
(1-(2) Y (7-(2)7), X) = — (— Fifi=0, X).
z dt

Thus, one obtains the identity

_ 1 4 d
(1.258) Y(y-(2)71) = 2 y-(2)7"! %Ft’tzo-
Using (1.252)), one obtains

- o~ Y (dn)

1.2 Y(y-(2)"Y) =
(1.259) - =Y
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and .
1 L, d 1d dy, d
—-v- —Fili=0 = — — Fi|e= — —F|i=0-
e (2) T tle=0 T t‘tfo‘i‘gzn_H a tlt=0
These identities applied to the two sides of (1.258)) yield the desired relations (1.253).

0

COROLLARY 1.49. The beta function defined in (1.243) of Definition [1.46 is the
nfinitesimal generator of the renormalization group F; of Proposition|1.47, namely

d
1.2 —Fi|i—0 = .
(1.260) g Ftl=0 =10

ProOOF. It is sufficient to see that in the equation (1.253) we have Y(d;) =
%Ft\tzo and that d; is by construction the residue Res,—gy. The minus sign in
(1.242) accounts for the use of y_(z) instead of its inverse y_(z)~'. Thus, by (1.243)
we have Y (dy) = 3, which gives (1.260). O

7. Renormalization and the Riemann—Hilbert correspondence

“La parenté de plus en plus manifeste entre le groupe de Grothendieck—
Teichmaller d’une part, et le groupe de remormalisation de la Théorie
Quantique des Champs n’est sans doute que la premiére manifestation
d’un groupe de symétrie des constantes fondamentales de la physique,
une espéce de groupe de Galois cosmique!”

Pierre Cartier, [42]

In this passage, written in 2000, Cartier conjectured the existence of a hidden group
of symmetries, closely related in structure to certain arithmetic Galois groups, and
acting on the constants of physical theories in a way related to the action of the
renormalization group.

In this section, which is based on the result of our work [87], [89], we verify this
conjecture, by identifying Cartier’s “cosmic Galois group” as a universal group of
symmetries that organizes the structure of the divergences in perturbative quantum
field theory. We show that the group can also be realized as a motivic Galois group,
and has therefore precisely the type of arithmetic nature expected by Cartier.

This group acts on the constants of physical theories. In fact, it maps to the group of
diffeographisms of any given renormalizable theory by a representation determined
by the beta function of the theory. Therefore, it also maps to the group of formal
diffeomorphisms of the coupling constants by the results of §6.5 above.

We will also see that the renormalization group sits naturally as a 1l-parameter
subgroup of this universal group and this provides an interpretation of the renor-
malization group as Galois symmetries.

The main steps, which we are going to discuss in detail in the rest of this section,
are summarized as follows.

The data of counterterms as iterated integrals (Gross—'t Hooft relations).

A geometric formulation: flat equisingular connections.

The local Riemann—Hilbert correspondence: differential Galois group through
the Tannakian formalism.

The universal singular frame and universal symmetries.
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7.1. Counterterms and time-ordered exponentials.

The first result we describe here (Theorem [1.58 below) is a refinement of Theorem
2 of [83], which proved the analog in the context of the CK theory of a well known
result of D. Gross ([151] §4.5) and 't Hooft (unpublished). The latter states that
the counterterms in perturbative renormalization only depend on the beta function
of the theory (Gross—'t Hooft relations).

We first need to discuss the mathematical formulation of the time-ordered exponen-
tial.

We assume that H = ®,>0H,, is a positively graded connected commutative Hopf
algebra over C, with G its affine group scheme. We have g = Lie G as in Definition
1.21. When the H,, are finite-dimensional vector spaces, the Lie algebra g is related
to the dual Hopf algebra H" as in Theorem [1.22.

Let H be a Lie group and t — «(t) a smooth map from the interval [a, b] to the Lie
algebra of H.

Dyson’s time-ordered exponential Tels @Mt ig 3 notation for the parallel transport
in the trivial H-principal bundle [a, b] x H with the left action of H, endowed with
the connection associated to the 1-form «(t) dt with values in the Lie algebra of H.

In other words h(u) = Tela @®dt ¢ H is the solution of the differential equation
(1.261) dh(u) = h(u) a(u)du, h(a)=1.

dt

A mathematical definition can be given as an iterated integral. This type of formal-
ism was developed in the topological context in [55], [56] (Chen’s iterated integral)
and in the operator algebra context in [3] (Araki’s expansional). We give here a
formulation adapted to the context of affine group schemes.

DEFINITION 1.50. Given a g(C)-valued smooth function «(t), with t € [a,b] C R,
the time-ordered exponential (also called the expansional) is defined as

[e.e]

(1.262) Tels a®dt .— 1 4 Z/ a(sy) - asp) dsi---dsp,
— Ja<si<<sa<b

with the product taken in HY, and with 1 € H" the unit corresponding to the counit
€ of H.

One has the following result, which in particular shows that the expansional only
depends on the 1-form «(t)dt.

PROPOSITION 1.51. The time-ordered exponential (1.262) satisfies the following prop-

erties:

(1) When paired with any X € H the sum (1.262) is finite.

(2) The iterated integral (1.262) defines an element of G(C).

(3) The expansional (1.262) is the value g(b) of the unique solution g(t) € G(C)
with initial condition g(a) = 1 of the differential equation

(1.263) dg(t) = g(t) a(t)dt.
(4) The iterated integral is multiplicative over the sum of paths:

(1.264) Tels a)ydt — [y alt)dt o fi a(t)dt
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(5) Letp : G(C) — H be a homomorphism to a Lie group H; then p(Tef: alt)dty
is the parallel transport in the principal bundle [a,b] x H endowed with the
connection associated to the 1-form p(«(t))dt.

(6) The inverse in G(C) of the element (1.262) is of the form

(1.265) (Teff a(t) dt)*l S ff a(t) dt’
with

o0

(1.266) Tels adt .= 1 + Z/ a(sy) - as1) dsi---dsp .
1 Ja<s1<<sp<b

PROOF. (1) The elements «a(t) € g(C), viewed as linear forms on H, vanish on
any element of degree 0. Thus, for X € H of degree n, one has

(a(s1) - a(sm), X) =0 Vm >n,
so that
(1.267) (Tela @Bt X

is a finite sum.
(2) First notice that (1.267) satisfies

(1.268) Bp(Tele @) ds X} = (Tela @95 (1), X).

In fact, differentiating each term in the finite sum (1.267) in the variable ¢ amounts
to fixing the last integration variable s, =t in

/ (a(s1) -+ a(sy), X) dsy---dspy.
a<s1<--<sp <t

In order to show that (1.262)) defines an element in G(C), we need to check that for
all XY e H,

(1.269) (Tele ®)ds XY} = (Tela s x) (Tela @(5)ds vy,

We show this for homogeneous X and Y, by induction on the sum of their degrees.
Using (1.268), we write

8 (Tela @) ds XYYy = (Tela ®&)ds o (1), X V)
= (Tela @45 @ (1), A(X) A(Y)) .
We then write the coproduct in the form
AX)=X1)@Xp=X01+10X+> X' oX"

where only terms of lower degree appear in the last sum. Using the derivation
property (1.173) of a(t) € g(C), one gets that it pairs trivially with all the products
X(2) Y(2) except when Y(9) =1 or X(3) = 1. This gives

t t
O; (Telo @4 X V) = (Telo 9% X4y V) (a(t), X))

+ (Tele a@ds X Y1)} (alt), Vi) -
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We can then apply the induction hypothesis and obtain
o, <T€f; a(s)dsty> =0, ((Tefat a(s) dS,X)) <T€f¢$ a(s) dS,Y>
H(Tela @) ds x g, (<Tef§ a(s) ds,y>) .
If we denote
F(t) = (Tela @ x ) — (Tela @(ds xy (Tela () ds v
we obtain 0;F(t) = 0, for all . Thus, since for t = a we clearly have F(a) = 0, we
obtain (1.269).

(3) This then follows immediately from (1.268).

(4) The property (1.264) follows from (3), since both sides satisfy equation (1.263))
and agree for ¢ = b, hence they are equal.

(5) This follows from (3) and (1.261)).

(6) Notice that one can apply the notion of expansional to the opposite algebra.
This amounts to reversing the order of the terms. Thus, (1.262) gets replaced by
(1.266). As in (3) above, one gets that, for ¢ > 0, the expression g(t) = T'elo a(w) du
is the unique solution to the ODE

(1.270) dg(t) = a(t) g(t) dt .
This shows that the inverse of a time-ordered exponential with 7' is given by the
time-ordered exponential with 77, which gives (1.265). O

Consider now an open domain 2 C R? and, for (s,t) € Q, let

(1.271) w = a(s,t)ds + n(s,t)dt
be a flat g(C)-valued connection. The flatness condition means that we have
(1.272) Osn— Ora+ [a,n] = 0.

The time-ordered exponential satisfies the following property

PROPOSITION 1.52. Let @ be a flat g(C)-valued connection on 2 C R? as above, and
let v : [0,1] — Q be a path in Q. Then the time-ordered exponential Telo v'= only
depends on the homotopy class [7y] of paths with endpoints a = ~v(0) and b = ~(1).
This follows from Proposition [1.51, using the fact that G(C) is a projective limit of
Lie groups.

Recall that a differential field (X, J) is a field K endowed with a derivation satisfying
0(f+h)=20(f)+d(h) and 6(fh) = fé(h) + 0(f)h, for all f,h € K. The field of
constants is the subfield {f € K|o(f) = 0}.

DEFINITION 1.53. Let (K, 0) be a differential field with differentiation f — f' = 6(f)
and with field of constants C. The logarithmic derivative on the group G(K) =
Homy.(H, K) is given by

(1.273) D(g):=g "¢ c9(K), VgeG(K),
where ¢’ = 6(g) is the linear map ¢' : H — K,
g(X)=0(g9(X)), VXeH.
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It is not hard to check that (1.273) indeed defines an element in g(K). In fact,
D(g) : H — K is the linear map

(D(9), X) =g '» ¢ (X) = (¢ ® ¢, AX)
and this satisfies

(D(g), XY) = (D(g), X)e(Y) + £(X) (D(g).Y), VX,Y €H.

In the following, we assume that K = C({z}), the differential field of convergent

Laurent series, as in (1.217), with 6(f) = %f. Later, we will also consider the case

where K = C((z)) = C[[2]][z7!] is the field of formal Laurent series.

LEMMA 1.54. Let H = ®p>0Hn be a positively graded connected commutative Hopf
algebra over C, with G its affine group scheme. Let H(i) C H be an increasing
sequence of finitely generated commutative Hopf subalgebras, with H = UH(i).

The affine group scheme G is the projective limit (L171) of the linear algebraic
groups G dual to the finitely generated commutative Hopf subalgebras H(i) C H.
Suppose given an element w € g(K), for K = C({z}).

(1) There is a well defined monodromy representation
(2) The condition of trivial monodromy M (w) = 1 is well defined in G(C).

PRrOOF. (1) For w € g(K), and a fixed G;, consider the corresponding element
w; € g;(K) obtained by restriction to H(i) C H. Since H(7) is finitely generated,
w; depends on only finitely many elements in K, hence there is a radius p; > 0 such
that all these finitely many Laurent series elements converge in a punctured disk A
of this radius around z = 0. Thus, we can choose a base point z; € A}. Composing
with the evaluation f — f(z) for z € A} we get a flat g;(C)-valued connection
wi = wi(z)dz on Af. For any smooth path ~ : [0,1] — A} the expression

(1.274) Mi(w)(7) := Telo 7% € G4(C)

is well defined. By Proposition [1.52/ and the flatness of the connection w;, viewed as
a connection in two real variables, (1.274) depends only on the homotopy class of the
loop 7 in A} with v(0) = v(1) = 2;. Thus, it defines a monodromy representation

(1.275) Mz(w) . 7T1(Az<, ZZ) — Gl((C)

(2) By construction, the conjugacy class of M; does not depend on the choice of the
base point. When passing to the projective limit, one has to take care of the change
of base points, but the condition of trivial monodromy

(1.276) Mw)=1& Mj(w)=1, Vi
is well defined at the level of the projective limit G of the groups G;.
O

The monodromy encodes the obstruction to the existence of solutions to the differ-
ential equation D(g) = w, for g € g(K).

EXAMPLE 1.55. Let G, be the additive group. Let as above K = C({z}) with 6(f) =
%f. One has Go(K) = K, D(f) = §(f) = f', and the residue of w € K is a
non-trivial obstruction to the existence of solutions of the equation D(f) = w.
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The following result shows that the monodromy is in fact the only obstruction.

PROPOSITION 1.56. Let H = @©,>0H, be a positively graded connected commutative
Hopf algebra over C, with G its affine group scheme. Suppose given w € g(K)
with trivial monodromy, M(w) = 1. Then there exists a solution g € G(K) of the
equation

(1.277) D(g) = w.

PROOF. We view, as above, G as the projective limit of the G; and use the same
notations as above. We treat the case of a fixed G; first. We let

(1.278) gi(2) = Tel= |

where by the right-hand side we mean the time-ordered exponential Tedo 7" for any
smooth path in A} from the base point z; to z. The condition of trivial monodromy
ensures that the result does not depend on the choice of the path . Let H(i) be as
in Lemma 1.54. One needs to show that, for any X € H(i) C H, the evaluation

hi(z) = {gi(2), X)

is a convergent Laurent series in A}. By construction the same property holds for
w;(z). Moreover, by Proposition1.51/ (1) we know that, when pairing with X € H (i)
only finitely many terms of the infinite sum (1.262) defining g;(z) contribute. Thus,
it follows that z™Vi h;(2) is bounded in A}, for sufficiently large NN;. Moreover, by
(1.263)) of Proposition [1.51, with 20 = 0; + i0s and z = t + is, we obtain 0h; = 0,
which gives h; € K. Thus ¢; € G;(K).

Finally (1.263)) of Proposition 1.51 shows that g; € G;(K) is a solution of

Given two solutions g and h of (1.279), one gets that g h~! satisfies D(gh™!) = 0.
Thus since the field of constants of K is C, it follows that there exists an element
a € G;(C) such that g = ah. Now since the H(i) C H are Hopf subalgebras of H,
the canonical projection

pi : Git1(C) — Gi(C)
is surjective. Thus, in order to pass to the projective limit, one constructs by induc-
tion a projective system of solutions g; € G;(K), where one modifies the solution in

Gi+1(K) by left multiplication by an element of G;1(C) so that it projects onto g;.
O

EXAMPLE 1.57. It is crucial in Proposition [1.56/ to assume that H is positively
graded connected. Let G, be the multiplicative group. Let as above K = C({z})
with 0(f) = d%f. One has G, (K) = K*, D(f) = f~Y6(f), and with @ = Z% e K
the equation D(f) = w has trivial monodromy with formal solution given by

flz)= eV
but no solution in G, (K) = K*.
With these general results about time-ordered exponentials in place, we come to

the Gross—'t Hooft relations. In our context, the fact that the counterterms in
perturbative renormalization depend only on the beta function is a consequence of
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the following explicit form of the negative piece of the Birkhoff factorization as a
time-ordered exponential.

THEOREM 1.58. Suppose given v,(z) € L(G(C), ). Then the negative piece y—_(z)
of the Birkhoff factorization has the explicit form
(1.280) v_(z) = Te = Jo~ 0-e(A)dt,

PROOF. We write 7_(2)"! = 14+ 3% % a5 in (1.252) of Lemma 1.48. To

n=1 zn»
obtain the result we first show that the coefficients d,, are given by the formula (cf.
[83])

(1.281) dn—/> (D (B) 0 (5) i

To check this, notice first that, for n = 1, the expression (1.281) reduces to

(1.282) dy = /OOO 0_,(3) ds.

This follows from the equality
(1.283) Y H(X) = / 0_o(X)ds,
0

for all X € H with e(X) = 0, where ¢ is the counit of H. In fact, given a and o' in
HY satisfying o/ = Y () and (o, 1) = (a/,1) = 0, the identity (1.283) implies

o= / 0_s(a')ds.
0

This gives (1.282) when applied to § = Y (d;) of Corollary [1.49. The general formula
(1.281)) then follows by induction, applying the relations between the coefficients d,,
proved in Lemma [1.48 and the fact that the 1-parameter family 6, generated by the
grading of H also acts as automorphisms of H".

To get (1.280) from (1.281)), we use (6) of Proposition 1.51. Using (1.281) we get
,Y_(z)—l _ T'ei Joo 0-s(B)ds
and the required equality (1.280) follows from (1.265). O

REMARK 1.59. One does not have to worry about the convergence issue in dealing
with the iterated integrals (1.281) in (1.280).

In fact, when evaluating (1.281) on elements X € H, one obtains for (d,,X) the
expression

/ </6 R 67 9751 (X(l)) ® 0782 (X(Q)) Q---® Q,Sn (X(n))>dsl T dsna
81228,20

where we used the notation
AP =Y Xy @ X9 @ @ Xy

The convergence of the iterated integral is exponential. In fact, we have the estimate
(B,0-s(X(5))) = O(e™®) for s — +oo. If X is homogeneous of degree deg(x) and
if n > deg(z), then at least one of the X(; has degree 0, and (3,0_s(X(;))) = 0 so
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that (d,, X) vanishes. This implies that, when pairing v_(z)~! with X € H, only
finitely many terms contribute to

[e.9]

(-2 X)) =e(X)+ ) Zin (dn, X) .
n=1

This remark will be useful when we compare the non-formal case, where K = C({z}),
with the formal case, where K = C((z)) (cf. §7.6 below).

7.2. Flat equisingular connections.

The main advantage of introducing the formalism of time-ordered exponentials as
iterated integrals, as in Definition [1.50, is their property of being characterized as
solutions of a differential equation (1.263)), as in Proposition 1.51. In fact, this makes
it possible to translate data described by time-ordered exponentials into a class of
differential equations.

Following this idea, we obtain in this section a geometric characterization of the
divergences in renormalizable quantum field theory, in terms of a suitable class of
differential systems.

As a first step, we give a more precise characterization of the class L(G(C), u) of
loops ~,(z) satisfying the two conditions (1.240) and (1.241), as in Definition [1.45.

For instance, given any loop 7reg(2) which is regular at z = 0, one can easily obtain
an element v, € L(G(C), ) by setting 7, (2) = 0.10g u(Vreg(2)). The following result
shows that the only remaining piece of data that is necessary, in order to specify
completely the loops that belong to the class L(G(C), i1), is the choice of an element
0 in the Lie algebra of the affine group scheme G.

THEOREM 1.60. Suppose given a loop 7,(z) in the class L(G(C), p). Then the fol-
lowing properties hold.

(1) The loop v,(z) has the form

—zlogp 0

(1.284) ’Yu(Z) = Te_% > «(8) dt ezlogu('yreg(z))a

for a unique B € g(C), with Yreg(2) a loop regular at z = 0.
(2) The Birkhoff factorization of ~,(z) has the form

—zlo,
(1.285) Tut (z) = Tez Jo 0 0O 9210gu(%eg(2)) )

v_(z) = Te = Jo 0-B)dt

(3) Conversely, given an element 3 € g(C) and a regular loop Yreg(2), the
expression (1.284) gives an element v, € L(G(C), ).

ProoOF. (1) Let 7,(z) be aloop in L(G(C), ), with Birkhoff factorization -, (z) =
v-(2)"'4,+(2). Consider the loop

(1.286) au(2) 1= 02105 (- (2) 7).
This satisfies the scaling property (1.240) by construction,
(1.287) Qes 1 (2) = Osz(au(2)).

Consider the ratio a,(2)"1~,(2). This still satisfies the scaling property (1.240).
Moreover, the loop a,(2)~!7,(2) is regular at z = 0. In fact, this holds for u =1
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and hence all values of p by the scaling property (1.240). Thus, it can be written in
the form

(1.288) au(z)il ’Yu(z) = ezlogu(’yreg(z))a

with vreg(2) a regular loop.
Notice then that, using (1.286) and (1.280) of Theorem [1.58, we obtain

oo

(1.289) au(z) ! = Te ™ I 2 0gp 0O 8,
Thus, using (1.264), we obtain (1.284).
(2) Given v, € L(G(C), u), we write it in the form (1.284) as above. Thus, we have
()™ = G togu (g (2)) 71T Ftam PO,
We write the second term, using (1.264), as the product
Te 1 2 t0g s 0-t(B)dt p =2 [ 0_4(8) dt.
Thus, we have obtained the expression
(2™ = O togp(reg(2)) 71 T = e OOz,

where y_(z) is a regular function of 1/z with v_(co) = 1. We then need to check
the regularity at z = 0 of the remaining part

1 p—=zlo
Te™ = fo e 0-+(8) dt@zlog,u(')’reg(z))'

It is enough to show that we have

(1.290) lim Te = Jo = 0-(B)dt — 58,
Z—
To see this we take the straight path from 0 to —sz in the form n(u) = —szu for

u € [0,1] and write
Te~ % Jo 0B dt _ e fy alu)du

where the form a(u)du is the pullback by 7 of the form —2 6_,(8) dt. So far both
s and z are fixed. One has

a(u) du = —% Osou(B) (—s2) du = $05.,(0) du

This gives
Te—: Jo 7 0—(B)dt _ s Jo Os=u(B) du

which converges when z — 0 to e*’. We then obtain the Birkhoff factorization in
the form (1.285).

(3) Given a choice of an element 5 € g(C) and a regular loop reg(2), the expression
(1.284)) satisfies the scaling property (1.240) by construction. The formula (1.285) for
the Birkhoff factorization also shows clearly that the negative piece is independent
of pu so that (1.241) is also satisfied, hence v, € L(G(C), p). O

In the rest of this section, we use the classification result of Theorem [1.60, together
with the properties of the time-ordered exponential, to give a geometric reformula-
tion of the class L(G(C), ) in terms of a class of differential systems associated to
a family of singular flat connections.
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We introduce some notation. Let (K, J) be a differential field with field of constants
C. We will assume K = C({z}) with §(f) = f’. We have O = C{z}, the subring of
convergent power series as in (1.219).

We denote by Q'(g) the space of 1-forms on K with values in g. These are all of the
form A(z)dz for some A € g(K). The differential

d:K— Q!
is given by df = 6(f)dz = &L dz.
The logarithmic derivative D on G(K), as in (1.273) of Definition [1.53, induces an
operator (which, with a slight abuse of notation, we still call D)

(1.291) D:G(K)— QY g), Df=f"tdf.
This satisfies the property
(1.292) D(fh) = Dh+h~'Df h.

One can then consider differential equations of the form
(1.293) Df=w
for w € Q'(g).

We can think of the element @ € Q!(g) as a connection on the trivial principal
G-bundle over an infinitesimal punctured disk A* around z = 0. In fact, a connec-
tion on the trivial principal G-bundle A* x G is specified by the restriction of the
connection form to A* x 1, i.e. by a g-valued 1-form w on A*, which is the same as
an element in Q'(g). We use the principal bundle point of view in §7.3 below. For
the moment, we simply define a connection as a g-valued 1-form w.

We then have the following natural equivalence relation for connections @ € Q'(g).

DEFINITION 1.61. Two connections w and @' are equivalent iff they are gauge con-
jugate by an element regular at z =0, i.e.

(1.294) w' = Dh+h'wh, with heGO).

As in Lemma 1.54, the condition of trivial monodromy M (w) = 1 is well defined and
it ensures the existence of solutions to (1.293). Suppose given a solution f € G(K)
to (1.293). We know, by the same argument as used in Theorem 1.39, that loops
f € G(K) have a unique Birkhoff factorization

(1.295) f=F"

with fi € G(O) and f_ € G(Q) satisfying e_ o f_ = ¢ as in Definition [1.38.
The following result then explains in more detail the meaning of the equivalence
relation of Definition [1.61L

PROPOSITION 1.62. Suppose given two connections w and @' in Q(g) with trivial
monodromy. Then w and w' are equivalent, in the sense of (1.294), iff there exist
solutions to the corresponding equations (1.293) that have the same negative pieces

of the Birkhoff factorization,
(1.296) @~ = 7=

-

for some f% and f= in G(K) satisfying D(f®) = w and D(f®) = ='.
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ProoF. By Lemma [1.54, we know that there exist solutions, since the mon-
odromy is trivial. We first show that w is equivalent to the 1-form D((fZ)~1). We
have f% = (f¥)~! f¥, hence the product rule (1.292) gives the required equiva-
lence, since f7 € G(O). This shows that, if f& = f=" for some choices of solutions,
then w and @’ are equivalent.

Conversely, assume that @ and @’ are equivalent, i.e. @’ = Dh + h~'w h. We take
a solution f® and let f® be given by

J= = h,
for the above h € G(0). It follows from (1.292) that D(f®') = @’. The uniqueness
of the Birkhoff factorization then gives f% = f='. U

DEFINITION 1.63. Two elements f; of G(K) have the same singularity iff
(1.297) it f2 € GO)

Equivalently this means that the negative parts of their Birkhoff decompositions are
the same.

From the point of view of renormalization, introducing the equivalence relation of
Definitions [1.61 and [1.63/ means that one is interested in retaining only the informa-
tion on the behavior of the divergences, which is encoded in the counterterms given
by the negative piece v_(z) of the Birkhoff factorization of Proposition [1.40.

In order to make this geometric setting suitable to treat the data of perturbative
renormalization, i.e. the class of loops L(G(C), i), we need to account for the mass
parameter p in the geometry.

This can be done by considering a principal G,,(C) = C*-bundle B,
(1.298) Gn— B 5 A,

over the infinitesimal disk A. We let P = B x G be the trivial principal G-bundle
over the base space B.

We denote by V the fiber over z = 0,
V=n"'({0}) C B,
and by B its complement
B=B\V CB.
We also fix a base point yg € V. We let PY = B? x G denote the restriction to B°
of the bundle P.

REMARK 1.64. The physical meaning of these data is the following. In the case of a
renormalizable theory 7, the group scheme is G = Difg(7). The disk A corresponds
to the complexified dimension z € A of DimReg. The principal bundle B over A
encodes all the possible choices of normalization for the “integral in dimension D —z”
of (1.135), hence it accounts for the presence of the mass parameter . The choice
of a base point yy € V corresponds to fixing the value of the Planck constant A. One
needs to be careful and refrain from considering the fiber 7=({z}) C B as the set
of possible values of p. It is rather the set of possible values of p? h. In fact in all
the above discussion we restricted to p € R% and the fact that logu makes sense
did play a role. The role of the choice of a unit of mass i is the same as the choice
of a section o : A — B (up to order one).
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We have an action of G, on B, which we write as
b u(b), YueG,(C)=Cr.

Since the affine group scheme G is dual to a graded Hopf algebra H = ®,>0H,, we
also have an action of G,, on G, as in Lemma [1.25, induced by the action u" of
(1.176) on the Hopf algebra, where Y is the grading operator on H. We denote the
action of G,, on G also by u", as the meaning is clear. Thus, we have a G,,-action
on P = B x G given by

(1.299) u(b, g) = (u(b),u¥ (g)), VYué€G,y,.

We explain in §7.3| below how this action, which as such is not given by automor-
phisms of a G-bundle, in fact comes from a G,,-equivariant principal bundle over
B.

We now introduce the class of connections that will be our main object of interest,
as they encode geometrically the properties of the class of loops L(G(C), ).

DEFINITION 1.65. We say that a flat connection @ on P is equisingular iff w is
Gm-tnvariant and for any solution v, Dy = w, the restrictions of v to sections
o: A — B with 0(0) = yo have the same singularity.

We can fix a choice of a (non-canonical) regular section o : A — B of the fibration
(1.298), with o(0) = yo. Then the first condition of Definition [1.65 can be written
in the form

(1.300) w(z,u)) =u¥ (w(z,v)), Yue G,

with v = (0(2),¢), for z € A and g € G.

The second condition states that, if o1 and oy are two sections of B as above, with
01(0) = Yo = 02(0), then

(1.301) a1 (7) ~ o3(7);

that is, the pullbacks of v by these sections are equivalent on A* x G, through the
equivalence (1.297) of Definition 1.63. This means that o7 (y) and o5(y) have the
same singularity at the origin z = 0, hence the use of the term “equisingular” for
w. (cf. Figure 29.)

The meaning of this condition is that the pullbacks of a solution have the same
negative pieces of the Birkhoff factorization, independent of the choice of the section
and hence of the parameter pu, in our physical interpretation of the geometric data.
In the proof of Theorem [1.67 below, we will see much more precisely this relation
between equisingular connections and loops in L(G(C), u).

We introduce the following notion of equivalence for connections on PP,
DEFINITION 1.66. Two connections w and @' on P° are equivalent iff

(1.302) w' = Dh+ h™twh,

with h o G-valued Gy, -invariant map regqular in B.

We again fix a choice of a (non-canonical) regular section o : A — B, with o(0) = yp.

For simplicity of notation, we write A x G,, for the base space, identified with B
through the trivialization given by the section o.
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F1GURE 29. Equisingular connections have the property that, when
approaching the singular fiber, the type of singularity of o*v, for
D~ = w, does not depend on the section o along which one restricts
v, but only on the value of the section at z = 0.

The main result of this section is the following classification of flat equisingular
connections.

THEOREM 1.67. Consider the space P = B x G as above. There is a bijective
correspondence between equivalence classes of flat equisingular G-connections w on
PY and elements 3 € g(C), with the following properties:

(1) Given a flat equisingular connection w, there is a unique 3 € g(C) such
that @w ~ D~ for

(1.303) y(z,v) =Te = Jo v (¥ %,

with the integral performed on the straight path v = tv, t € [0, 1].
(2) This correspondence is independent of the choice of a local regular section
o: A — B with o(0) = yo.

PROOF. (1) We show that, for a given flat equisingular G-connection w, there
exists a unique element 3 € g(C) such that w is equivalent, in the sense of Definition
1.66, to the flat equisingular connection D7y, with v(z,v) as in (1.303).

This will be achieved in three main steps. We first need to prove the vanishing
of the monodromies Ma~(w) and Mc+(w) associated to the two generators of the
fundamental group 1 (B). This is necessary to ensure the existence of a solution to
the equation Dy = w. The next step is to get around the problem of the choice of the
base point. This will be done by showing that an invariant connection automatically
extends to the product A* x C while the restriction to A* x {0} vanishes. Thus
one can take arbitrarily a base point in A* x {0} and get a canonical formula for
solutions corresponding to such a specific choice of base point. We then use the
equisingularity condition and apply the result of Theorem [1.60| to the restriction of
~ to a section of B over A.
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Using the trivialization given by o : A — B, we can write the connection w on P°
in terms of g(C)-valued 1-forms on B as

d
w = A(z,v)dz + B(z,v) —U,
v

where A(z,v) and B(z,v) are g-valued functions and %” is the fundamental 1-form
of the principal C*-bundle B.

By the first condition (1.300) of equisingularity, we have
w(z,uv) = v’ (w(z,0)),

which shows that the coefficients A and B of w are determined by their restriction
to v = 1. Thus, we can write w as
du

(1.304) w(z,u) = uY(a(z))dz + uY(b(z)) "

for some a,b € g(K).
The flatness condition means that these coefficients satisfy

(1.305) % —Y(a) + [a,b] = 0.

The positivity of the integral grading ¥ on H shows that the connection w extends
to a flat connection on the product A* x C. Indeed for any element a € g(K) and
X € 'H the function

u (u” (a), X)

is a polynomial P(u) with P(0) = 0. This shows that the term uY (b) %“ in (1.304) is
regular at u = 0. Moreover the restriction of the connection w to A* x {0} is equal
to zero, since uY (a) = 0 for u = 0.

Consider then the monodromy My, 1c+(w@) for a fixed value 2o € A*. This is
trivial, because the connection w extends to the simply connected domain {zy} x C.

Notice that here we are only working with an infinitesimal disk A, while the argu-
ment given above works for a disk of finite radius, but in fact we can proceed as
in Lemma [1.54), writing the group scheme G as an inverse limit of G; with finite-
dimensional H(i). We can compute the monodromy My, 1, c+(w) at this finite level
Gy, with z9 € A7, using the argument above. We can then use the fact that the
vanishing of the monodromy is a well defined condition in the projective limit.

Consider the monodromy Ma«y (,}(@). Notice that we can choose to compute this
monodromy for the value v = 0, but the restriction of the connection to A* x {0} is
identically equal to 0, so this monodromy also vanishes.

We have shown that the connection w has trivial monodromy along the two gener-
ators of m1(BY) = Z2. Thus, we know that the equation Dy = w admits solutions,
and in fact we can write explicitly a solution as in Proposition [1.56), taking as the
base point (z9,0) € A* x {0}. Namely, we consider a path in A* x {0} from (zp,0)
to (z,0) and then the straight path (z,tv), ¢t € [0,1]. By Proposition 1.52, this gives
a solution of the form

(1306) ")/(2;7 Q}) e TefoU UY(b(Z)) % ,
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with b(z) as in (1.304) and with the integral performed on the straight path u = tv,
for ¢t € [0,1].

Notice that we have constructed an invariant solution of the equation Dy = w, i.e.
one has
(1.307) Yz, wu) = w¥y(z,u).

It is not true in general that an invariant connection on an equivariant bundle admits
invariant solutions, precisely because of the problem of the choice of an invariant base
point. This problem is dealt with above by the choice of a base point in A* x {0}.

Let v(z) = v(z,v)|y=1. By construction 7(z) satisfies

(1.308) Y(z,u) = u¥ y(2).

Since 7(z,v) is a solution of Dy = w, the loop v(z) also satisfies
(1.309) Y(2)tdy(2) = a(z)dz  and  y(2)"'YA(z) = b(z).

Let us denote by o the section o5(z) = (2, e%?), for z € A. The restriction of (1.308])
to the section o4 can be written in the form

(1.310) vs(2) = Os:7(2).

The second condition (1.301)) of equisingularity for o implies that the negative parts
of the Birkhoff factorization vs(2) = v, (2) " tye+ (2) satisfy

(1.311) (z) = 0.

87'75*
s

It is immediate to compare (1.310) and (1.311) with the conditions (1.240) and
(1.241)) of Definition 1.45. Thus, in particular, we have obtained that a flat equi-
singular connection w on PY determines a loop 7s(z) in the class L(G(C), u), for
w=e".

We can then apply the classification result for loops in L(G(C), u1), proved in Theo-
rem 1.60. We obtain that there exists a unique element 3 € g(C) and a regular loop
Yreg (%) such that

(1.312) Az 1) = Tem s J 0O e 2).
We obtain from (1.312) the expression

(1.313) Y(z0) = oY (Tems Jm =Bty Y (3 (2)).

Y

Since v* is an automorphism, we also have

(1.314) oY (Te~ Joo 0-t(B)dty — =3 J7 ¥ (B) 4

)

with the second integral taken on the straight path u = tv, for t € [0, 1]. Thus, we
can write (1.313)) as

(1.315) Y(z,0) = (Te™2 B O5) 0¥ (y0g(2),
Thus, using h = v (Y4eg(2)) as the regular loop realizing the equivalence (1.302), we
obtain, as stated, the equivalence of flat equisingular connections

@~ D(Te = Jo w9 %),
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We now need to understand how the class of the solution (1.313) depends upon
B € g. Consider an equivalence @’ = Dh + h~'wh, with h a G-valued G,,-invariant
map regular in B, as in Definition [1.66. Since h is G,,-invariant one has h(z,u) =
uY (h(z,1) and since we are dealing with group elements it extends regularly to
h(z,0) = 1. Thus both the solutions v; and the map h are normalized to be 1 on
A* x {0} and the equivalence generates a relation between invariant solutions of the
form

(1.316) Y2(2,u) = vz, u) h(z,w),

with h regular. Thus, for j = 1,2, the loops
’Yj(za 1) = Tefi [ 6_4(8;)dt

will have the same negative pieces of the Birkhoff factorization, v;- = 75-. This
implies 1 = 2, by the equality of the residues at z = 0.

Finally, suppose given an element 3 € g(C) and consider the loop

(1.317) Y(z,v) = Te = Jo v (B %,

We need to show that w = D~ is equisingular. The equivariance condition (1.300)
is satisfied by construction since + is invariant. To see that the second condition
(1.301) is also satisfied, we first note that it is enough to check it for one solution
~ of the equation Dy = w. Indeed, any other solution is of the form +' = g~ with
g € G(C). The relation between the negative parts of the Birkhoff decompositions
is the conjugacy by g and this preserves the equisingularity condition. Thus we just
need to check the latter on the solution v of the form (1.317). We let v(z) € C* be
a regular function of z € A, with v(0) = 1 and consider the section v(z)o(z) instead
of the chosen trivialization o(z). The restriction of the solution + to this section is
given by the G(C)-valued loop

1 po(2) UY(,B) du

(1.318) yo(z) = Te = Jo

Then the Birkhoff factorization v,(z) = v,- (2) "'7,+ (2) is given by
(1319) 7 (2)7' =Te 2 b D% and  qpe(e) = Tet 70O
In fact, we have

(1.320) () = (Te*% I mm%) (Te% () uY(ﬂ)%”>7

where the first term in the product is a regular function of z~! and gives a polynomial
in z~! when paired with any element of H, while the second term is a regular function
of z, as one can see using the Taylor expansion of v(z) at z = 0, with v(0) = 1.

(2) This last argument, which we used to prove the equisingularity of D+, describes
explicitly the effect of changing the choice of the trivialization ¢ : A — B by a factor
given by a regular function v(z) € C*. Thus, the same argument also gives us as a
consequence the independence of the the choice of the trivialization of B.

O

We have the following result, which follows from the previous argument.
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COROLLARY 1.68. Let w be a flat equisingular connection. Suppose given two such
choices of trivialization o : A — B, with 09 = a0y, for some az) € C* regular at
z =0 with o(0) = 1. Then the regular values Yreg(Y0); of solutions of the differential
systems associated to the connections o (w) are related by

(1321) 'Yreg(yO)Q = eisﬁ fyreg(yO)ly
with (
do(z)
5T dz =0

REMARK 1.69. In the physics context, the relation (1.321) expresses the ambiguity
inherent in the renormalization group action as coming from the fact that there is
no preferred choice of a local regular section o of B.

We have obtained, by Theorem [1.67 and Theorem [1.60, an explicit correspondence
between the data vy_(z) for loops 7,(z) in L(G(C), 1) and equivalence classes of
flat equisingular connections. In particular, in the physically relevant case where
G = Difg(7), this makes it possible to encode geometrically the data of the coun-
terterms (the divergences) of the renormalizable theory 7 as a class of equisingular
flat connections over the space P described above.

7.3. Equivariant principal bundles and the group G* = G x G,,.

The formalism of the above discussion was based on g(C)-valued differential forms on
the base space B. We now relate more precisely this discussion with connections on
Gm-equivariant principal bundles over B. This will involve the affine group scheme
G* = G « G, of Lemma 1.25.

To fix the notation, we recall that, given a principal bundle
(1.322) m:P— B, with PxH—P, (&h)— Rp(§) =¢Eh,

with structure group H acting on the right, a connection is specified by a 1-form «
on P with values in the Lie algebra h of H and such that

(1.323) |-y =h7'dh, with Rj(e) = (Ada™")(a),

where the Maurer-Cartan form h~'dh makes sense in the fibers 7=1(b) ~ H inde-
pendently of the choice of a base point. Given a section £ : B — P and a connection
on P with connection form «, the pullback w = V(§) = £*(«) is a 1-form on B with
values in the Lie algebra . For any smooth map k£ from B to H, one has

(1.324) V(Ek) =k tdk+ V(€ k.

In particular, the knowledge of the 1-form w = V() = £*(a) uniquely determines
the connection V. Moreover, if we fix the section £ and the connection V, then
looking for a flat section n = £ k, with Vn = 0, is the same thing as trying to find a
smooth map k from B to H such that

(1.325) Etdk+ k(€ k= 0.
Equivalently, in terms of h = k=1 and @ = V(£), it means solving the equation

(1.326) htdh = w.
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Let now H; C H be a closed subgroup that acts on the base B. We consider the
trivial H-principal bundle

(1.327) P=BxH, with Ru(b,h)= (bha), VYbeB, heH, acH.

PROPOSITION 1.70. 1) The action
(1.328) hi (b,h) = (h1b,h1 h)

of Hy on P turns this H -principal bundle into an Hi-equivariant H-principal bundle.
2) Let V be a connection on P, and w = V (&), where & is the section £(b) = (b, 1).
Then, for any hy € Hy, the pull-back V' of the connection ¥V by the action of hy on
P is the connection given by

(1.329) w' = V(&) = h{' hi(w) hy.

PROOF. 1) One needs to check that the projection 7 is equivariant, which is
clear, and that the left action of h; commutes with the right action of the group H,
which is also clear.

2) Let a be the connection 1-form of the connection V. Let hy € H;. By construc-
tion the connection 1-form o’ of the pullback V' is the pullback of a by the left
multiplication L of (1.328). Thus, we obtain

V() =&"(d) = &(L* (@) = (Lo &) (a).
One has
Lo&(b) = (h1b,hy) = Ry, €(h1b), Vbe B.
By (1.323) R} (o) = (Ad hi1)(a), which gives the required equality (1.329). O

PROPOSITION 1.71. 1) A connection V on P is Hy-invariant iff w = V& satisfies
the condition

(1.330) hi(w) = hywhy', Vhi € H;.
2) Let v be a smooth map from B to H such that
(1.331) y(h1b) = hyy(b)hyt, Vhy € Hy.

then the gauge equivalence
(1.332) ww =y tdy+ v oy
preserves the Hy-invariance of connections.

ProoF. 1) This follows from (1.329).
2) Let us assume that w fulfills (1.330). We show that @’ also does. One has

hi(v twy) = k() hi(@) hi(y) = iy ey byt
and since dh; = 0 one has
hi(ytdy) = hiy tdy by,

so that the required invariance follows. O
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We now specialize Propositions [1.70 and [1.71! to the subgroup
leGmCHZG*ZGXGm

and to connections with values in the Lie subalgebra

(1.333) g = Lie(G) C g* = Lie(G")

The adjoint action of the subgroup Hy = G,, gives the grading «* on g = Lie(G).

A comment about notation: since we are interested in the relative situation of the

inclusion B® C B, we adopt the notation X° to denote the restriction to B =

B\ V C B of an object X (bundle, connection, section, etc) defined on B. In

particular we let P = B x G* be the trivial principal G*-bundle over the base space
B, and PV its restriction to B = B\ V C B,

(1.334) P’ =B x G*
We have the following result.

PROPOSITION 1.72. Let G,, — B — A denote the Gy, (C) = C*-bundle over the
infinitesimal disk A of (1.298). We let P = BxG* be the trivial principal G*-bundle

over the base space B.
1) The action

(1.335) u (b, k) = (ub,uk)

of G, on P turns this G*-principal bundle into a G, -equivariant G*-principal bun-
dle.
2) Let £(b) = (b,1). Then the map

(1.336) V- V(€)

is an isomorphism between g-valued G, -invariant connections on P° and g-valued
connections on BY fulfilling (1.300).
3) Let v be a regular map from B to G such that

(1.337) y(ub) = uy(d)u™t, Yu€G,,.
Then the transformation L., given by L. (b, k) = (b,~(b)k), is an automorphism of

the G, -equivariant G*-principal bundle P.
4) The gauge equivalence of connections under the automorphisms L~ corresponds

under the isomorphism (1.336) to the equivalence of Definition 1.66.

PROOF. 1) The construction of the G,,-equivariant G*-principal bundle follows
from Proposition [1.70.
2) The invariance condition on connections given by (1.300) is identical to (1.330).
3) By construction L., is an automorphism of G*-principal bundle. Condition (1.337)
means that it commutes with the action of G,,.
4) Let a be the connection form of the first connection. The connection form of
the transformed connection is L3 (a), so that the actions on sections are related by
V'=VoL,. Then @' =V'(§) = V(7) where 3(b) = (b, v(b)). Thus, we write

w =~y ldy+ v wy.

The invariance condition on gauge equivalences given by (1.337) is identical to the
one used for the equivalence of equisingular connections in Definition [1.66. O



7. RENORMALIZATION AND THE RIEMANN-HILBERT CORRESPONDENCE 119

It is important to understand geometrically the meaning of the restriction to g-
valued connections in part 2) of Proposition 1.71 and to maps to G (instead of G*)
in part 3) of the same proposition. In both cases one needs to express the triviality
of the image under the canonical morphism

(1.338) €: G =G %Gy — Gy

We let 6(15) be the G,,-equivariant G,,-principal bundle obtained from P and the
homomorphism e. We denote by ¢ the bundle map ¢ : P — ¢(P).

LEMMA 1.73. 1) A connection V on PO s g-valued iff it is compatible through € with
the trivial connection on €(P), i.e. iff (V) = d.

2) Suppose given an invariant flat connection V on P with ¢(V) = d as above.
For any section n with Vn = 0, consider the unique bundle isomorphism between
the restrictions of P° to sections o : A — B with c(0) = yo, determined by the
trivialisation n. For such an invariant flat connection V, consider the corresponding
V (&), defined as in (1.336). This V(&) is equisingular iff the bundle isomorphism
defined by n is regular on A.

3) An invariant bundle automorphism of the Gy, -equivariant G*-principal bundle P

comes from a map v as in (1.337) iff it induces the identity automorphism on e(P).

PROOF. 1) The compatibility with the trivial connection means that the image
by € of horizontal vectors is horizontal. Let £(b) = (b,1) and w = V(§). The
compatibility holds iff €(cw(X)) = 0 for every tangent vector, i.e. iff zo, which is a
priori g*-valued, is in fact g-valued.

2) Let w = V(). A solution y(z,v) € G of the equation Dy = w gives a flat section
n(b) = (b, y~1(b)) of P°. Let oj : A — B with ¢;(0) = yo. The bundle isomorphism
between the J;‘lf’o, associated to the trivialisation 7, is given by left multiplication
by a map z — k(z) € G*, such that

k(2)y Ho1(2)) = 77 o2(2)), Vze A
Thus, one has k = o3(v) ' o}(y) and k is regular iff the 07(7) have the same
singularity.
This shows that, if a flat section n for V fulfills the condition of the second state-
ment of the lemma, then w = V() is equisingular. Conversely, if w = V(&) is
equisingular, then we get a flat section n of PY which fulfills the condition of 2) of
the lemma.
In fact, any other flat section is of the form 7' = ng for some g € G*(C), and this does
not alter the regularity of the bundle isomorphism associated to the trivialization.
3) A bundle automorphism is given by the left multiplication by a map v from B
to G*. It is invariant iff (1.337) holds, and it induces the identity automorphism iff
e€oy = 1. This means that v takes values in G = Kere. U

DEFINITION 1.74. We say that V is equisingular when it fulfills the hypothesis of 2)
of Lemma 1.73l.

Thus, we have translated into this more geometric language the notion of equisin-
gular connection of Definition [1.65.

We remarked in the proof of Theorem [1.67/ that the flat invariant connections ex-
tend automatically to the “compactification” of the base B obtained by passing
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from C* to C. We now state this result in more geometric terms. We define the
“compactification” of the base B as

(1.339) B =B xg, G,.

This is still a G,,-space, since one has a natural action of G,, on the right, but it is
no longer a principal G,,-bundle, since this action admits a whole set of fixed points
given by

(1.340) Bgx =B XGm {O} CcCB=B XGm Gq.

As above, we use the notation X° to indicate the restriction of a bundle X to BP.

LEMMA 1.75. 1) The bundle P extends canonically to a G, -equivariant G*-principal
bundle E on B.

2) Any invariant connection ¥V on P° with (V) = d extends canonically to an
mvariant connection V. on E. The restriction of V to Bgy is the trivial connection
d.

3) An invariant bundle automorphism v of the Gy, -equivariant G*-principal bundle
P with e(y) = 1 extends to an invariant bundle automorphism ofB whose restriction
to Bgyx s the identity.

PROOF. 1) Let P be the trivial G*-principal bundle P = B x G*. Since the

action of G,, on B extends canonically to an action on B we can apply Proposition
1.70/ 1) and get the required G,,-equivariant G*-principal bundle.
2) Let us show that the differential form @ = V¢ on BY, where ¢ is the section
£(b) = (b, 1), extends to B® by continuity. This extension then uniquely determines
the extension of V as a connection on P°. We use a (non-canonical) trivialization of
B as a G,-principal bundle, and write B = A X G,,. The condition (V) = d shows
that the form w takes values in the Lie subalgebra g C g*, where gx = Lie(G™).
Thus, it is of the form

w = a(z,v)dz + b(z,v) %,

where a(z,v) and b(z, v) are g-valued functions and dy—” is the fundamental 1-form of
the principal C*-bundle B. The invariance condition means that

a(z,uwv) = u¥ a(z,v), b(z,uv) = u¥ b(z,v), VYu € G,(C).
Thus, the strict positivity of the grading Y on g shows that a(z,v) dz extends by 0

for v = 0 and that u¥ b(z,1)L extends by continuity to B® (with a not necessarily

zero value at u = 0) so that b(z,v) %” extends to BY.
3) The invariant bundle automorphism is given by left multiplication L by v(z,v) €
G fulfilling

Y(z,uww) = u¥y(z,0), Yu € Gp(C).
Since the grading is strictly positive on the kernel of the augmentation ideal of

the Hopf algebra of the affine group scheme G, one gets that uY v(z, 1) extends by
continuity to y(z,0) = 1. O

REMARK 1.76. In the physics interpretation of Remark [1.64) the fiber
7 '{z}))c B
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over z is the set of possible values of p* h. Thus the compactification B corresponds
then to adding the classical limit & = 0.

7.4. Tannakian categories and affine group schemes.

In the previous sections we have translated the data of perturbative renormaliza-
tion from loops to equisingular flat connections. This makes it possible to use the
Riemann—Hilbert correspondence and classify the equisingular flat connections in
terms of representation theoretic data.

We begin by recalling some general facts about the Tannakian formalism. This
gives a very general setting in which a given set of data with suitable properties
(a neutral Tannakian category) can be shown to be equivalent to the category of
finite-dimensional linear representations of an affine group scheme.

An abelian category is a category to which the usual tools of homological algebra
apply. This is made precise by the following definition (cf. e.g. [139], §2.2).

DEFINITION 1.77. A category C is an abelian category if the following axioms are
satisfied.

e For any X, Y € Obj(C), the set Home(X,Y) is an abelian group, with
respect to which the composition of morphisms is bi-additive.

o There is an object 0 € Obj(C) such that Home(0,0) is the trivial group.

e There are finite products and coproducts, namely, for each X, X' € Obj(C)
there exists a Y € Obj(C) and morphisms

xLAylx wd xPByRx,
with hi fi = 1x, hafo = 1x/, hafi =0 = hifa, fiha + fahe = 1y.
e For any X, Y € Obj(C), every morphism f : X — Y has a canonical
decomposition
KExiLr1ly &K,
where joi = f, with K = Ker(f), K" = Coker(f), and I = Coker(k) =
Ker(c).
We need to consider more structure, in order to arrive at something that has the

right properties to compare with the category of representations of an affine group
scheme.

DEFINITION 1.78. A category C is k-linear for a field k if, for any X, Y € Obj(C), the
set Home(X,Y') is a k-vector space. A tensor category over k is a k-linear category
C, endowed with a bi-functor @ : C x C — C and a distinguished object 1 € Obj(C)
satisfying the following property:
e There are functorial isomorphisms
axyz XY ®Z) - (X®Y)®~Z
cxy XY =YX
Ix: X®1—-X and rx:1X — X.

One assumes coherence in the form of triangle, pentagon and hexagon re-
lations ([260], [2]) and also the commutativity property that cy x = cy'y .

A rigid tensor category is a tensor category C over k with a duality V : C — C°P,
satisfying the following properties:
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e For any X € Obj(C) the functor — @ XV is left adjoint to — @ X and the
functor XV ® — is right adjoint to X ® —.
o There is an evaluation morphism € : X ® XV — 1 and a unit morphism
§:1— XV®X satisfying (e®1)o(1®6) =1x and (1®€)o(d®1) =1xv.
One assumes that End(1) = k.

REMARK 1.79. There is a well-defined notion of dimension for objects in a rigid
tensor category, with values in k = End(1), given by dim(X) := Tr(lx) = €o
CxV X © é.

We follow here the terminology of [106] p.165. Elsewhere in the literature the same
quantity Tr(1x) is referred to as the Euler characteristic. The reason for considering
it a “dimension” lies in the result recalled in Remark [1.82 below. For the relation
in the motivic context of this notion to the usual Euler characteristic and its effect
on the Tannakian property of the category of pure motives see [2].

Recall also the following properties of functors.

DEFINITION 1.80. A functor w : C — C' is faithful if, for all X,Y € Obj(C), the
mapping
(1.341) w : Home(X,Y) — Homer (w(X), w(Y))

is injective. If C and C' are k-linear categories, a functor w is additive if (1.341) is
a k-linear map. An additive functor w is exact if, for any exact sequence 0 — X —
Y — Z — 0 in C, the corresponding sequence 0 — w(X) — w(Y) — w(Z) — 0 in
C' is also exact. A functor w:C — C' between k-linear tensor categories is a tensor
functor if there are functorial isomorphisms 11 : w(1) — 1 and

Xy WX ®Y) = wX)®w®).

We further enrich the structure of a rigid tensor category by mapping it to a category
of vector spaces through a fiber functor. This is the extra piece of structure that
will make it possible to recover the affine group scheme from the category.

DEFINITION 1.81. Let C be a k-linear rigid abelian tensor category. Let Vecty denote
the category of finite-dimensional vector spaces over a field K. A fiber functor is an
exact faithful tensor functor w : C — Vectyg. A k-linear rigid abelian tensor category
C is a Tannakian category if it admits a fiber functor w : C — Vectg, with K an
extension of the field k. The category C is a neutral Tannakian category if K = k.

REMARK 1.82. Deligne showed in [106] that a rigid abelian tensor category C over
a field k of characteristic zero is a Tannakian category if and only if the dimensions
dim(X) € End(1) = k are non-negative integers for all objects X € Obj(C) (cf.
Remark 1.79).

The main example of a neutral Tannakian category is the category Rep of finite-
dimensional linear representations of an affine group scheme G over k, with fiber
functor the forgetful functor to vector spaces. The point of the Tannakian formalism
is that all neutral Tannakian categories are of the form Rep.

Suppose given a neutral Tannakian category C, with fiber functor w : C — Vecty.
To see that there is an associated affine group scheme, consider first the group G(k)
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of automorphisms of w, i.e. invertible natural transformations that are compatible
with all the structure on the category C. If K is an extension of k, then there is an
induced functor wg : C — Vectg by wi (X) = w(X)®; K and one can associate to it
the group G(K). Similarly, one can make sense of G(A) for A a unital commutative
k-algebra and check that one obtains in this way a covariant representable functor
to groups G : A — G, i.e. an affine group scheme.

We have the following result ([260], [114]).

THEOREM 1.83. Let C be a neutral Tannakian category, with fiber functor w : C —
Vecty,. Let G = Aut®(w) be the affine group scheme of automorphisms of the fiber
functor. Then w induces an equivalence of rigid tensor categories

w:C — Repg.

The affine group scheme G is determined by the pair (C,w), but when no confusion
can arise as to the fiber functor w, we simply refer to G as the Galois group of C.

REMARK 1.84. If C' C C is a subcategory of a neutral Tannakian category C,
which inherits from C the structure of neutral Tannakian category, then there is
a corresponding homomorphism of group schemes G — G', where C = Repq and

C, = RepG/ .

The properties of the affine group scheme G reflect the properties of the neutral
Tannakian category C. We mention one property that will play a role in §8 below.

A k-linear abelian category C is semi-simple if there exists A C Obj(C) such that
all objects X in A are simple (namely Hom(X, X) ~ k), with Hom(X,Y) = 0 for
X #Y in A, and such that every object of C is isomorphic to a direct sum of objects
in A. A linear algebraic group over a field of characteristic zero is reductive if every
finite-dimensional linear representation is a direct sum of irreducibles. An affine
group scheme is pro-reductive if it is a projective limit of reductive linear algebraic
groups. These properties are related as follows.

REMARK 1.85. Let G be the affine group scheme G = Aut®(w) of a neutral Tan-
nakian category C with fiber functor w. Then G is pro-reductive if and only if the
category is semi-simple.

We look at a concrete case, to illustrate the result of Theorem 1.83. Consider
the category Repy of finite dimensional complex linear representations of a group
H. This is a neutral Tannakian category with fiber functor the forgetful functor
to Vecte. Theorem [1.83 then shows that there exists an affine group scheme G,
dual to a commutative Hopf algebra H over C, such that the fiber functor gives an
equivalence of categories Repy = Repy. This G is called the algebraic hull of H
and can be quite non-trivial even in very simple cases. For instance, consider the
following example (cf. [284]).

ExXAMPLE 1.86. Consider the group H = Z. In this case Repy = Repg, where G is
the affine group scheme dual to the Hopf algebra H = Cle(q),t], for q € C/Z, with
the relations e(q1 + q2) = e(q1)e(q2) and the coproduct A(e(q)) = e(q) ® e(q) and
A)=t®1+1®¢t.



7. RENORMALIZATION AND THE RIEMANN-HILBERT CORRESPONDENCE 124

The Tannakian formalism was initially proposed by Grothendieck as a “linear ver-
sion” of the theory of fundamental groups. The main idea is that the group of
symmetries (fundamental group in the case of covering spaces, Galois group in the
case of algebraic equations) always arises as the group of automorphisms of a fiber
functor. In the theory of (profinite) fundamental groups, one considers a functor
w from a certain category of finite étale covers to the category of finite sets. The
profinite group G = Aut(w) of automorphisms of this functor determines an equiva-
lence between the category of covers and that of finite G-sets. (The reader interested
in seeing more about the case of fundamental groups should look at SGA1 [154].)
The Tannakian formalism was then developed by Saavedra [260] and Deligne-Milne
[114] (cf. also the more recent [106]). The fiber functor w with values in vector
spaces can be thought of as a “linear version” of the case with values in finite sets,
and the affine group scheme G' = Aut®(w) plays the role of the Galois group (or the
fundamental group) in this setting.

In a very different context, a philosophy very similar to the Tannakian formalism can
be found in results by Doplicher and Roberts [124], obtained with operator algebra
techniques in the context of algebraic quantum field theory. There one recovers a
global compact gauge group G from its category of finite-dimensional continuous
unitary representations. This category is characterized as a monoidal C*-category
whose objects are endomorphisms of certain unital C*-algebras and whose mor-
phisms are intertwining operators between these endomorphisms. A characterization
in terms of integer dimensions similar to the one found by Deligne for Tannakian
categories also holds in this context (cf. Remark [1.82)).

7.5. Differential Galois theory and the local Riemann—Hilbert corre-
spondence.

For our purposes, we are interested in the Tannakian formalism applied to categories
of differential systems, where it has a fundamental role in the context of differential
Galois theory and the (local) Riemann—Hilbert correspondence (cf. [222], [285]).

We recall briefly, in the rest of this section, some general facts about differential
Galois theory and the Riemann—Hilbert correspondence, before analyzing the case
of equisingular connections in the next section.

Differential Galois theory was discovered by Picard and Vessiot at the beginning
of the twentieth century, but it remained for a long time a quite intractable prob-
lem to compute the differential Galois group of a given differential equation. All
results were confined to the regular singular case, in which it is the Zariski closure
of the representation of monodromy, by an old result of Schlesinger. This situation
has changed drastically since the work of Deligne, Malgrange, Ramis and Ecalle.
In short, Martinet and Ramis discovered a natural generalization of the notion of
monodromy that plays in the local analysis of irregular singularities the same role
as monodromy does in the regular case.

The fundamental result is that an irregular singular differential equation generates
a representation of the wild fundamental group,

i GL,(C)

and this representation classifies the equation up to gauge equivalence. Moreover
the differential Galois group of the differential equation is the Zariski closure of the



7. RENORMALIZATION AND THE RIEMANN-HILBERT CORRESPONDENCE 125

image of {4 in GL,(C). This holds both in the local and the global case and
extends to the irregular case the classical (i.e. regular-singular) Riemann-Hilbert
correspondence.

Regular linear differential equation Representation of
D modulo gauge equivalence in GL,,(C)
Galg (D) Zariski closure of Im 7
Linear differential equation Representation of 7r}'id
D modulo gauge equivalence in GL,,(C)
Galg (D) Zariski closure of Im 7}ild

In the usual setting of differential Galois theory (see e.g. [285]), one considers a
differential field (K, d) with field of constants C. The two main cases for the local
theory are the formal theory where K = C((z)) and the non-formal theory where
K =C({z}).

A system of ordinary differential equations of the form

(1.342) 0(u) = Au,

with A = (ai;) an n x n matrix, determines a differential module with V" = K"
and the connection V given by V(e;) = — > aj;ej, with the e; a basis of V over K.
The equation (1.342) is then equivalent to the condition V() _, use;) = 0. A linear
differential equation

n
(1.343) Df=0, with D=Ya;¢
§=0
of order n determines a system, using the companion matrix of the polynomial
expression of D.

In general, an equation of the form (1.342) will have at most n solutions in K
that are linearly independent over the field of constants, but in general it might
not have a full set of solutions in K. In that case, one can consider the Picard—
Vessiot extension of K determined by (1.342)). This is the smallest differential field
extension E of K (the derivation of E restricts to that of K), with the same field
of constants, such that (1.342) has a set of n independent solutions in E. The fact
that the field of constants is algebraically closed ensures the existence of Picard—
Vessiot extensions. The differential Galois group of the equation (1.342) is the group
G(E/K) of differential automorphisms of the Picard—Vessiot extension E of (1.342)
that fix K. Its action on a system of n independent solutions in F determines a
natural faithful representation of G(EF/K) in GL,(C) and its image is an algebraic
subgroup of GL,(C).
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To understand the meaning of the differential Galois group let us mention two very
simple examples and a general result on the solvability of equations.

ExaMPLE 1.87. Let a € K be an element which does not belong to the image of 6.
Then adjoining the primitive of a, that is, a solution of the inhomogeneous equation
d(f) = a, can be described through the system given by the matrix

0 —a
[0,
The Picard-Vessiot extension E is given as the differential field E = K(f) obtained
by adjoining a formal primitive f of a to K. Since a ¢ Imo one checks that f is

transcendental over K. The differential Galois group is the group G(E/K) = G4(C)
acting by f— f+c.

In general, it is quite useful, in order to determine the Picard—Vessiot extension F,
to know that it is obtained as the field of quotients of the Picard—Vessiot ring R of
the differential system (1.342). This is characterized as follows.

e R is a differential algebra;

e R has no non-trivial differential ideal;

e There exists F' € GL,,(R), such that F' + A F = 0;
e R is generated by the coefficients of F'.

ExaAMPLE 1.88. For given a € K, consider the equation
d(u) = au.

Let R = K[u,u™"] be obtained by adjoining to K a formal solution and its inverse.
If a is such that R has no non-trivial differential ideal, then R is the Picard—Vessiot
ring, and the Picard—Vessiot extension E is the field of quotients. In that case the
differential Galois group is the group G(E/K) = G, (C) acting by u — Au. In
general, the differential Galois group is a subgroup of G, (C).

The significance of the differential Galois group is that it makes it possible to recog-
nize whether a given equation is solvable by the elementary steps described in Ex-
amples [1.87 and [1.88. One has the following general result:

THEOREM 1.89. The following conditions are equivalent for a linear differential equa-
tion D.
(i) The equation is solvable by repeated applications of the following steps:

e Adjunction of primitives (example(1.87);
e Adjunction of exponentials of primitives (example 1.88);
e Finite algebraic extensions.

(ii) The connected component (for the Zariski topology) of the identity in the differ-
ential Galois group is solvable.

It is quite difficult to compute a differential Galois group in general, but since it is
the Zariski closure of the image of the wild fundamental group, the key tool is the
Riemann-Hilbert correspondence.

In order to understand the Riemann-Hilbert correspondence in the general local
case, we now come to the Tannakian formalism. We first introduce the category of
differential modules.
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DEFINITION 1.90. Let (K,0) be a differential field with C as field of constants. The
category Dy of differential modules over K has as objects pairs (V,V) of a vector
space V € Obj(Vk) and a connection, namely a C-linear map V : V. — V satisfying
V(fv) =0(f)v+ fV(v), for all f € K and all v € V. A morphism between objects
(V1, V1) and (Vo,V2) is a K-linear map T : Vi — Va satisfying Voo T =T o V;.

The category D of differential modules over K of Definition 1.90) is a C-linear rigid
tensor category, with the tensor product

(V17V1) & (VQ,VQ) = (V1 RV, Vil+1® VQ)

and with (V,;V)V the K-linear dual of V' with the induced connection. One can
check that the functor to vector spaces over C that assigns to a module (V, V) its
solution space KerV is a fiber functor. Thus, Theorem [1.83 shows that there is an
affine group scheme G and an equivalence of categories D = Repg.

In the formal case K = C((z)), the affine group scheme G is a semidirect product
G =T X Z of the Ramis exponential torus 7 by the algebraic hull of Z. The Ramis
exponential torus corresponds to the symmetries which multiply by a non-zero scalar

P(zil/”) P(z’l/”)

e — Ape ., with Apip, = Ap Ap,

the formal exponentials of a polynomial in 271/, where v is a ramification index.
This torus is then of the form 7 = Hom(B,C*), where B = U,enB,, for B, =
z~1/¥C[z~/¥]. In the non-formal case K = C({z}), the Galois group is given by the
Ramis wild fundamental group. This has additional generators, which depend upon
resummation of divergent series and are related to the Stokes phenomenon. We will
not discuss this further here. We refer the interested reader to [222] and [285] for
a more detailed treatment of both the formal and the non-formal case.

It is useful to remark, however, that there are suitable classes of differential systems
for which the Stokes phenomena are not present, hence the differential Galois group
is the same in the formal and in the non-formal setting (cf. e.g. Proposition 3.40 of
[285]).

One recovers the differential Galois group of a single equation by considering the
affine group scheme associated to the Tannakian subcategory of Dy generated by
the differential module associated to the equation.

Similarly, one can restrict to particular Tannakian subcategories of D and identify
them with categories of representations of affine group schemes. All these results
can be seen as a particular case of the Riemann—Hilbert correspondence, which is
broadly meant as an equivalence of categories between the analytic datum of certain
equivalence classes of differential systems and a representation theoretic datum.

An important case is related to Hilbert’s 21st problem, or the Riemann-Hilbert
problem for regular—singular equations. For simplicity, we discuss here only the
local case of equations over an infinitesimal disk A C C around the origin. We refer
the reader to [105] for a more general treatment.

EXAMPLE 1.91. Let (K,9) be the differential field K = C((z)) with 6(f) = f'. A
differential equation (1.342) is regular-singular if there exists an invertible matrix
T with coefficients in K such that T~*AT — T='5(T) = B/z, where B is a matriz
with coefficients in C[[z]]. The Tannakian subcategory D} of Dk generated by the
regular-singular equations is equivalent to Repy, where Z is the algebraic hull of Z
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as in FExample [1.86. This corresponds to the fact that a regular singular equation is
determined by its monodromy representation, where Z = w1 (A*).

Deligne proved in [105] a much stronger form of the regular-singular Riemann—
Hilbert correspondence, where instead of the simple local case of the infinitesimal
disk one considers the general global case of a complement of divisors in an algebraic
variety. In this case it is still true that the category of regular-singular differential
systems is equivalent to the category of finite-dimensional linear representations of
the fundamental group. This type of global regular-singular Riemann—Hilbert cor-
respondence admits further generalizations, in the form of an equivalence of derived
categories between regular holonomic D-modules and perverse sheaves. We refer the
reader to a short survey of this more general viewpoint given in §8 of [139].

Here we are interested specifically in identifying the Riemann—Hilbert correspon-
dence for the equivalence classes of flat equisingular connections of §7.2. This case
differs from the usual setting recalled here in the following ways.

e Our base space is not just the disk A but the C*-fibration B over A, so we
leave the category Dy of differential systems of Definition [1.90.

e The equivalence relation on connections that we consider is through gauge
transformations regular at z = 0.

e The equisingular connections are not regular-singular, hence we need to
work in the setting of the “irregular” Riemann—Hilbert correspondence,
where one allows for an arbitrary degree of irregularity, as in the case of
Dy above.

e The Galois group will be the same in both the formal and the non-formal
setting.

Recall that we already know from the proof of Theorem [1.67/ that flat equisingular
connections have trivial monodromy, so that the representation theoretic datum that
classifies them is certainly not a monodromy representation. We see that the Galois
group has a structure similar to the Ramis exponential torus.

We discuss all this in detail in the next section.
7.6. Universal Hopf algebra and the Riemann—Hilbert correspondence.

The main result of this section is the Riemann—Hilbert correspondence underlying
the theory of perturbative renormalization. This will identify a universal affine
group scheme U* that governs the structure of the divergences of all renormalizable
theories and which has the type of properties that Cartier envisioned for his “cosmic
Galois group”.

We begin by constructing a category of flat equisingular vector bundles. We will
then see how it relates to the flat equisingular connections for a particular choice of
the pro-unipotent affine group scheme G.

We first introduce the notion of a W-connection on a filtered vector bundle. As
above we let B C B be the complement of the fiber over z = 0 € A for the space
B of (1.298)).
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DEFINITION 1.92. Let (E, W) be a filtered vector bundle over B, with an increasing
filtration W—""Y(E) C W™"(E) and a given trivialization of the associated graded

GrtW(E) =W (E)/W " YE).

n

A W -connection on E is a connection V on the vector bundle E° = E|go, with the
following properties :
(1) The connection V is compatible with the filtration, i.e. it restricts to all the
W—(EY).
(2) The connection V induces the trivial connection on the associated graded
Gr"(E).
Two W -connections V; on E° are W -equivalent iff there exists an automorphism T
of E, preserving the filtration, that induces the identity on Gr" (E) and conjugates
the connections, T oV1=VooT.

We reformulate conditions (1.300) and (1.301) of equisingularity in this context.
Let V be a finite-dimensional Z-graded vector space V = @,z V,, and consider the
trivial vector bundle £ = B x V. We view it as a G,,-equivariant filtered vector

bundle (E, W), with W the weight filtration
(1.344) W=(V) = &mznVins
and the Gy,-action induced by the grading of V.

DEFINITION 1.93. A flat W-connection V on E is equisingular if it is G, -invariant
and for any fundamental system of solutions of Vi = 0 the associated isomorphism
between restrictions of E to sections o : A — B with o(0) = yg is regular.

We construct a category & of flat equisingular vector bundles as follows.

DEFINITION 1.94. The objects Obj(E) are given by data © = [V,V]. Here V is a
finite-dimensional Z-graded vector space and V is an equisingular W -connection on
the filtered bundle E° = BY x V. The brackets [V, V] mean taking the W -equivalence
class of the connection V. The data (E,V) are a flat equisingular vector bundle.

The morphisms Homg (0, 0") are linear maps T : V. — V' that are compatible with
the grading and satisfy the following condition. Consider on the bundle (E' & E)*

the W -connection
v, — v 0
'=\o v

and the W -connection Va, which is the conjugate of V1 by the unipotent matrix

(1.345) ((1) f) .

Then the requirement for a morphism T € Homg(©,0’) is that these two W -
connections are W -equivalent on B,

\% TV -V'T AVA()
wow we (T TTLV) Le (D)

It is worth explaining why it is necessary to use the direct sum E’ @ E and the
matrices in condition (1.346) for the definition of morphisms. This is related to the
fact that we are dealing with filtered spaces. The problem is that the category of
filtered vector spaces, with morphisms that are linear maps respecting the filtration,
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is not an abelian category. In fact, suppose given a linear map f : V — V' of filtered
vector spaces, such that f(W~"(V)) C W~"(V’). In general, there is no relation
between the restriction to the image of f of the filtration of V' and the filtration
on the quotient of V' by Ker(f), while in an abelian category one would expect an
isomorphism between V/Ker(f) and Im(f). Thus, we have to refine our class of
morphisms to one for which this property is satisfied.

We first explain the relation of Definition [1.94 to the equivalence classes of flat
equisingular G-connections considered in Sections 7.2/ and 7.3l

LEMMA 1.95. Let G be the affine group scheme dual to a graded connected Hopf
algebra ' H = @®p>0Hy, with finite-dimensional Hy,, as in §7.2. Let w be a flat
equisingular connection as in Definition [1.65. Let £ : G — GL(V) be a finite-
dimensional linear graded representation of G. Then the data (w,§) determine an
element © € Obj(£). Equivalent w determine the same ©.

PRrROOF. Notice that a graded representation of the pro-unipotent G in V' can
be described equivalently as a graded representation of the Lie algebra g = Lie G in
V. Since the Lie algebra g is positively graded, both representations are compatible
with the weight filtration W™"(V') = @5, Vi,. The induced representation on the
associated graded Gr)Y (V) = W—(V)/W~""Y(V) is the identity. We let £* : G* —
GL(V) be the natural extension of { to G* = G x G, which when restricted to
G is the grading of V. Consider the vector bundle E on B associated to the
trivial principal G*-bundle P by the representation £*. The connection w is a flat
equisingular G-connection in the sense of Definition [1.65 and by Lemma [1.73| it
gives a flat equisingular connection on the G*-bundle PY of (1.334). It induces a
connection V on E° = E|po, which using Lemma 1.73 is a flat equisingular W-
connection in the sense of Definition [1.93. If @ and @’ are flat equisingular G-
connection on P° that are equivalent as in Definition [1.66, then the corresponding
W-connections V and V' are W-equivalent. O

Thus, the category £ of flat equisingular vector bundles of Definition [1.94 provides
a universal setting where equivalence classes of flat equisingular G-connections for
varying G can be analyzed simultaneously. We will see later how we recover the
classes of flat equisingular connections for a particular G from the general case.

We first analyze the main properties of the category £. We begin by introducing
the affine group scheme U* and the universal singular frame ~y.

DEFINITION 1.96. Let Ly = F(1,2,3,---)e denote the free graded Lie algebra gen-
erated by elements e_,, of degree n, for each n > 0. Consider the Hopf algebra

(1.347) Hy = U(F(1,2,3,-)a)",

which is the graded dual of the universal enveloping algebra of Ly. We denote by U
the affine group scheme associated to the commutative Hopf algebra Hy, and by U*
the semidirect product U* = U x G,,, with the action given by the grading.

As an algebra Hy is isomorphic to the linear space of noncommutative polynomials
in variables f,, n € N, with the shuffle product.
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The sum
(1.348) e= > e,
1

defines an element of the Lie algebra Ly of U. Since U is by construction a pro-
unipotent affine group scheme we can lift e to a morphism

(1.349) rg : G, — U,

of affine group schemes from the additive group G, to U. This morphism will play
an important role from the point of view of renormalization. In fact, we will see
in Theorem [1.106/ that it gives a universal and canonical lift of the renormalization

group.

DEFINITION 1.97. The universal singular frame is the loop in the pro-unipotent Lie
group U(C) given by the formula

(1.350) yu(z,v) = Te = Jo v (@)%,
We can compute explicitly the coefficients of the universal singular frame as follows.

PROPOSITION 1.98. The universal singular frame is given by

_ €—k1€—ky " C—k, > ki ,—n
1.351 —2,0) = E vtz
( ) Yu( ) n>0k_>0/€1(k31+k2)"'(kl+k2+“‘+kn)
Z g

PRrROOF. Using (1.348)) and (1.262), we obtain that the coefficient of e_j e _g, - - e_g
is given by the expression

pXki / shlo . gfn=l gs) .. ds,, .
0<s1< <8 <1

This yields the desired result. O

n

REMARK 1.99. Notice that the coefficients of yu(z,v) are all rational numbers. More-
over, the coefficients of (1.351)) are the same coefficients that appear in the local index
formula of [92].

The main result of this section, which gives the Riemann—Hilbert correspondence
for the category of flat equisingular bundles, is the following theorem.

THEOREM 1.100. Let £ be the category of equisingular flat bundles of Definition
1.94. Let w : £ — Vectc be the functor defined by w(©) =V, for © = [V, V].
Then & is a neutral Tannakian category with fiber functor w and is equivalent to the
category of representations Repys of the affine group scheme U* of Definition 1.96.

PRrROOF. We prove this result in several steps. Let V be a finite-dimensional
graded vector space over a field k. (Here we work with £ = C, but see Corollary
1.105/ below.) Let Gy (k) denote the group of linear transformations S C End(V)
compatible with the weight filtration,

(1.352) SW_, (V) Cc W_,(V),
and inducing the identity on the associated graded

(1.353) Slgw = 1.
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The unipotent algebraic group Gy is (non-canonically) isomorphic to the unipotent
group of upper triangular matrices. Its Lie algebra is then identified with strictly
upper triangular matrices. We then have a direct translation between W-connections
and G-valued connections.

PROPOSITION 1.101. Let (E, V) be a flat equisingular vector bundle, with E = Bx V.
Then the following holds.

(1) The connection V defines a flat equisingular Gy -valued connection w, for
Gy as above.

(2) All flat equisingular Gy -valued connections are obtained in this way.

(3) This bijection preserves equivalence, namely equivalent flat equisingular
Gy -valued connections correspond to the same object © = [V, V] of £.

PROOF. Since W-connections are compatible with the filtration and trivial on
the associated graded, they are obtained by adding a Lie Gy -valued 1-form w to the
trivial connection. Similarly, W-equivalence is given by the equivalence of Definition
1.66. O

LEMMA 1.102. (1) Let © = [V, V] be an object of £. There exists a unique
representation p = po of U* in V' such that the restriction to G,, C U* s
the grading and

(1.354) Dp(y) =V,

where vy s the universal singular frame.

(2) Given a representation p : U* — GL(V'), there exists a connection V on
E° = BY x V, unique up to equivalence, such that [V,V] is an object in £
and V satisfies (1.354).

PROOF. Let Gy be defined as above. By Proposition [1.101, we know that V
defines a flat equisingular Gy -valued connection ww. Then, using (1.303) of Theorem
1.67, we know that we have an equivalence

w~D <Te_% fo “Y(ﬂ)%u> ,

for a unique element 3 € Lie Gyy. We can decompose the element 3 into homoge-
neous components for the action of the grading, 8 = ), with Y (8,) = nf,.
Thus, the element  (and the grading) uniquely determine a representation p of U*
in Gy, where p(e_,,) = (,. This representation satisfies (1.354)) by construction.
Conversely, given a representation p of U*, we consider the grading associated to the
restriction to G,, and let

f}/(z’ U) = Tefi f(;] uY (p(e)) dTu

The flat equisingular connection Dy determines a W-connection V on the vector
bundle E° with the desired properties. O

We will see in Theorem [1.106/ below that the construction of representations of U in
Gy used in the proof of Lemma [1.102 above holds in general and provides the way
to recover classes of flat equisingular connections for a given pro-unipotent affine
group scheme G from the data of the category £. We now continue with the proof
of Theorem [1.100.



7. RENORMALIZATION AND THE RIEMANN-HILBERT CORRESPONDENCE 133

LEMMA 1.103. Let © = [V, V] be an object in E. Then the following holds.

(1) For any S € Aut(V) compatible with the grading, SV S™1 is an equisingular
connection.
(2) The representation pg of Lemma 1.102 satisfies

Plo,svs—] =S pw S
(3) The equisingular connections V and SV S~ are equivalent if and only if
[p(E,v), 5] = 0.

PROOF. (1) The equisingularity condition is satisfied. In fact, the G,,-invariance
follows from the compatibility with the grading and the restriction to a section
o : A — B satisfies

c*(SV S =85*(V)S,
so that the second condition for equisingularity is also satisfied.

(2) The second statement follows from Lemma/1.102 and the compatibility of S with
the grading. In fact, we have, for an element § € Lie Gy,

STe_% o u¥ (B) dT:L S_l = Te_é fo “Y(Sﬁs_l)dﬁu‘

(3) The third statement follows immediately from the second, since equivalence
corresponds to having the same 3 € Lie Gy, by Theorem [1.67. O

PROPOSITION 1.104. Let © = [V, V] and ©' = [V, V'] be objects of E. Let T : V —
V' be a linear map compatible with the grading. Then the following two conditions
are equivalent:

(1) T € Homg(©,0");
(2) Tpre = per T.
PROOF. Let S € Aut(E’ @ E) be the unipotent automorphism of (1.345). By

construction, S is an automorphism of E' @ F, compatible with the grading. By (3)
of the previous Lemma, we have

vV 0 _ VvV 0
s(%v)s (% ¢)
60 _ g0
<06)S‘S<Oﬁ>'

This holds if and only if /T = Tf. O

if and only if

To complete the proof of Theorem 1.100, we check that the functor Repy. — & given
by p+— Dp(yy) is compatible with the tensor structure. In £ this is given by
V,V)o (V,V)=VeV Val+l1aV).
This is compatible with the W-equivalence and with the condition of equisingularity
of the connections. The compatibility of p — Dp(vyy) with tensor products then
follows from the formula
Te—* Jo v’ (B14105) ¢ _ =1 J§ v () % g Te—t Jo v (8) 4
On morphisms, it is sufficient to check the compatibility on 1 ® T"and T' ® 1.

We have shown that the tensor category £ is equivalent to the category Repys of
finite-dimensional representations of U*. The fact that U* = Aut®(w) then follows,
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since the fiber functor w becomes through this equivalence the forgetful functor that

assigns to a representation the underlying vector space.
O

COROLLARY 1.105. The category £ can also be defined over the field k = Q and the
equivalence of rigid k-linear tensor categories proved in Theorem 1.100 still holds for

k=Q.

PROOF. In the case where k = QQ, we work in the formal setting with the dif-
ferential field K = Q((z)). We still consider the same geometric setting as before,
where the infinitesimal disk A = Spec(K). All the arguments still go through. In
fact, notice that (1.273) gives a rational expression for the operator D. This, to-
gether with the fact that the coefficients of the universal singular frame in (1.351)
are rational, implies that we can work with a rational V. O

In particular, Corollary (1.105) also shows that for the category of flat equisingular
bundles the formal and the nonformal theory give the same Galois group U*. This
reflects the fact that, due to the pro-unipotent nature of the affine group scheme,
our arguments usually depend upon only finitely many terms in an infinite sum, cf.
Remark [1.59.

In the rational case, we can define, for each n € Z, an object Q(n) of the category &
of equisingular flat vector bundles where V is given by a one-dimensional Q-vector
space placed in degree n, and V is the trivial connection on the associated vector
bundle F over B. Then the fiber functor takes the form w = ® w,, with

(1.355) wn(0©) = Hom(Q(n),Gr" (©)).

We now return to discuss the physical significance of the result of Theorem [1.100/ and
the role of the affine group scheme U* in perturbative renormalization. The following
result shows how U* is related to the pro-unipotent affine group scheme G. In
particular, this holds in the case where G = Difg(7) is the group of diffeographisms
of a renormalizable theory.

THEOREM 1.106. Let G be a pro-unipotent affine group dual to a graded connected
commutative Hopf algebra H = @,>0Hy,, with finite-dimensional H,,. Then the
following properties hold.

(1) There exists a canonical bijection between equivalence classes of flat equisin-
gular connections on P° and graded representations U — G, or equivalently
representations

(1.356) p:U" = G* =G x Gy,

which are the identity on G,,.

(2) The universal singular frame vy provides universal counterterms. Namely,
gwen a loop vy, € L(G(C), ), the universal singular frame maps to y_(z)
under the representation p of (1.350).

(3) The renormalization group F; in G(C) described in Proposition|1.47 is ob-
tained as the composite p org, with p as in (1.356) and rg : G, — U as in
(1.349).
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PROOF. (1) Theorem 1.67 shows that the equivalence classes of flat equisingular
connections are parameterized by the elements § € Lie G. We then proceed as we
did in the proof of Lemma 1.102. The positivity and integrality of the grading make
it possible to write § as an infinite formal sum

(1.357) B=>" B,
1

where, for each n, [3, is homogeneous of degree n for the grading, i.e. Y (53,) = nf,.
Assigning  and the action of the grading on it is the same as giving a collection
of homogeneous elements [, that fulfill no restriction besides Y (5,) = nfB,. In
particular, there is no condition on their Lie brackets. Thus, assigning such data is
the same as giving a graded homomorphism from the affine group scheme U to G,
i.e. a p as in (1.3506).

(2) This follows from Theorem [1.58, since we have

=1 rv du
plyw)(z,v) = Te= Jo v (O

(3) By Corollary [1.49 we know that [ is the infinitesimal generator of F} O

COROLLARY 1.107. The affine group scheme U acts on the coupling constants of
physical theories, through the representation (1.356) to the group of diffeographisms
Difg(7) and then applying Proposition [1.42! to obtain

(1.358) U — Difg(7) — Diff.

Thus, the affine group scheme U has the right properties that Cartier expected for
his “cosmic Galois group”. In §8 we will also discuss the arithmetic nature of U and
its relation to motivic Galois groups. Note that, while the morphism Difg(7") — Diff
is defined over Q the morphism U — Difg(7) in (1.358) is only defined over C since
it is associated to an equisingular connection with complex coeflicients. In the dual
map of Hopf algebras, the image of the generators I' will have coeflicients with
respect to the generators of Hy that are transcendental numbers obtained from the
residues of the graphs.

The map (1.356]) can be seen as a map of Galois groups, from the Galois group of the
Tannakian category & to that of the Tannakian subcategory generated by the flat
equisingular vector bundles that come from flat equisingular G-connections on PY.
In general, for a given quantum field theory 7 the subcategory E7 of € given by flat
equisingular vector bundles coming from 7 will differ from £. The corresponding
affine group scheme plays the same role as the Galois group of a given differential
equation does with respect to the universal group. Thus it is natural to define the
Galois group of 7 as follows, with

(1.359) Gal(T)* = Gal(T) % Gyp.

DEFINITION 1.108. Let T be a given renormalizable quantum field theory. We define
the Galois group Gal (7)* as the affine group scheme associated to the subcategory
Er of flat equisingular vector bundles coming from T. We let Gal (7T) be the graded
affine group scheme kernel of the canonical morphism Gal (7)* — Gy,.
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Since we are dealing with a subcategory of £, one has a natural surjection
(1.360) U — Gal(T)

and the group homomorphism p : U — G of (1.356) with G = Difg(7) factors
through Gal(7") by (1.360). When there are no divergences in the theory one has
Gal (7)) = {1} and this can happen even though Difg(7) is quite large. It is of course
desirable to find in our framework an analogue of Theorem [1.89 on the resolution of
equations.

PrROPOSITION 1.109. Let T be a given remormalizable quantum field theory.
1) The theory T is finite iff its Galois group is trivial, that is Gal (7)) = {1}.
2) If the theory T is super-renormalizable, its Galois group Gal (7T') is finite-dimensional.

PrOOF. 1) If the theory is finite then there are no divergences and 5 = 0 so
that the image of U in G = Difg(7) is trivial. The converse also holds, since the
divergences are determined by the residues and hence by 3.

2) By definition (cf. [62] §5.7.3) a theory is super-renormalizable iff only a finite
number of graphs need overall counterterms. The prototypical example is 7 = qﬁi.
It then follows that only a finite number of homogeneous components (3 are non-zero
so that the Lie algebra of Gal (7)) is finite-dimensional. O

In particular, Lie Gal(7") is the Lie subalgebra of Lie Difg(7") generated by the 3.

8. Motives in a nutshell

In this section we give a brief overview of Grothendieck’s theory of motives. The
theory is vast and one can easily get into very hard technical aspects, but we will
only give an impressionistic sketch, and focus on those aspects that are of direct
relevance to the interaction with noncommutative geometry and quantum physics.
For the reader who might be interested in a more detailed treatment of the subject,
we recommend the recent book by Yves André [2], and the two AMS volumes of the
1991 Seattle conference (cf. [173]).

8.1. Algebraic varieties and motives.

We describe in this section those aspects of the theory of algebraic varieties that
contributed to the formulation of Grothendieck’s original idea of a theory of motives.

8.1.1. Cohomology theories. With the development of étale cohomology of alge-
braic varieties, one finds that there are several different viable cohomology theories
one can associate to an algebraic variety. Moreover, these theories are related by
specific comparison isomorphisms.

If X is a smooth projective algebraic variety over a field k, then for a given separable
closure k%P and for X the variety over k*P obtained by extension of scalars, one
can define the f-adic étale cohomology

(1.361) H (X, Q)

whenever / is prime to the characteristic of k. These are finite-dimensional Q,-vector
spaces, which satisfy all the desirable properties of a cohomology theory: Poincaré
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duality, Kiinneth formula, Lefschetz formula. Moreover, the spaces HY (X, Qy) carry
a representation of the absolute Galois group Gal(k/k).

In the case where the field k is of characteristic zero, one can also define de Rham
cohomology groups

(1.362) Hig(X, k) = H' (% ),

which are finite-dimensional filtered k-vector spaces. These are constructed by tak-
ing the hypercohomology of the algebraic de Rham complex (% Ik

If the field k£ can be embedded in C, then the choice of such an embedding o : k — C
determines another cohomology theory, the Betti cohomology

(1.363) HE(X,Q) := H'(X(C),Q)
is the singular cohomology of X (C). These are finite-dimensional Q-vector spaces.
They have the property that the C-vector space Hj (X, Q)®gC is bigraded (it carries
a Hodge structure)

HE(X,Q) ®g C = @ptqmi HPY.
There are interesting isomorphisms relating these cohomology theories. The period
isomorphism relates Betti and de Rham cohomology

(1.364) HE(X,Q) ®g C ~ Hip(X, k) @ C.

The matrix realizing the period isomorphism is the period matrix.
The comparison isomorphisms relate étale and Betti cohomology by

(1.365) HE(X,Q) @g Qr ~ Hi (X, Q).

In positive characteristic and for a (perfect) field k, one can also consider crystalline
cohomology. This gives a functor from varieties over k to graded W (k)-algebras that
are finitely generated as W (k)-modules. Here W (k) is the ring of Witt vectors of k.
Again there is a comparison isomorphism, which states that if X /k lifts to a smooth
X /W (k) then crystalline and de Rham cohomology agree

(1.366) Hrys(X/k) = Hag (X /W (k) = H' Q3 - 1)-

One can see a very simple example of these different cohomologies by looking at
H?(P!). This particular cohomology will play a role below, when we talk about
Tate motives. One has the following (]2], p.29)

e HZ(P', Q) = Homg, (@n wen, Qp) (étale): iy, is the group of m-th roots
of unity. (See [228] example 16.3).

e H2. (P! k) = k (de Rham) with the filtration F* with F<? =0 and F>° =
k

. H]%(Pl,@) = 51-Q (Betti).

2w
. ngys(IF’l) = W (k)[1/p] (crystalline in characteristic p).
One can abstract from these cases (de Rham, étale, Betti, crystalline) the desirable
properties of a “good” cohomology theory of algebraic varieties. This leads to the

notion of Weil cohomology.

A Weil cohomology H* is a contravariant functor from the category V(k) of smooth
projective varieties over a field k (or from the category of smooth projective schemes)
to the category GrVect(K) of graded vector spaces over a field K of characteristic
zero. The required properties for a Weil cohomology are summarized as follows.
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e The vector spaces H'(X) are finite-dimensional in each degree i, with
H(X) =0 unless 0 <i < 2dim X.

e Poincaré duality holds, namely for each X € Obj(V(k)) there is an iso-
morphism H24™X(X) ~ K and a nondegenerate bilinear pairing (z,y) —

(2,9),
(1.367) HI(X) x g?dmX—i(x) 5 K.

e The Kiinneth formula holds: the projections m; : X1 x Xo — X, fori =1, 2,
induce an isomorphism

(1.368) H*(X %, Y) ~ H*(X) ®x H*(Y).

e If C*(X) denotes the abelian group of algebraic cycles (linear combinations
of irreducible closed subvarieties) in X of codimension i, there is a cycle
map

(1.369) vy CH(X) — H%(X)

which satisfies functoriality properties under pullback (and pushforwards
by Poincaré duality), has the multiplicative property

WAy (Z X W) =75(2) © (W)
and is normalized by the condition that 7, is the inclusion Z C K.

e Weak and hard Lefschetz conditions are satisfied. Namely if W is a smooth
hyperplane section of X and ¢ : W — X is the inclusion then the induced
map ¢* : H(X) — H'(W) is an isomorphism for i < dim X — 2 and is
injective for ¢ = dim X — 1. This is the weak Lefschetz condition, while
hard Lefschetz states that there are isomorphisms

(1.370) L dimX=i) gy 2 gRdimX—ixy)
for all ¢+ < dim X, where £ is the Lefschetz operator
L:H(X)— HY(X), L(z)=zUyx(W).

The classical cohomology theories mentioned above (Betti, de Rham, étale, crys-
talline) are Weil cohomologies. For example, consider the case of a field &k of charac-
teristic zero. Betti cohomology is a Weil cohomology because singular cohomology
for varieties over C is a Weil cohomology. By results of Grothendieck, Artin, and
finally Deligne’s proof of the hard Lefschetz properties, it is known that étale coho-
mology is a Weil cohomology.

Notice that the existence of the cycle map (1.369) for a Weil cohomology implies
that there is always a part of the cohomology (the image of the cycle map) that is
realized by algebraic cycles. In particular, this shows that correspondences given by
algebraic cycles in the product of two varieties determine morphisms of any Weil
cohomology through the cycle map. This is the key to defining morphisms in the
category of motives. In general, one has very little explicit knowledge of which
part of a given cohomology theory lies in the image of the cycle map (the Hodge
conjecture being an example of this type of question).

The natural question prompted by the existence of so many different cohomology
theories of algebraic varieties and of comparison isomorphisms between them is
to understand what type of information can be transferred from one cohomology
theory to another. The fundamental idea of motives is the existence of a universal



8. MOTIVES IN A NUTSHELL 139

cohomology theory for algebraic varieties, with values not in vector spaces but in a
suitable Q-linear semi-simple monoidal category (see below), which maps to all the
“reasonable” cohomology theories (i.e. to all Weil cohomologies). A cohomological
invariant is motivic if it exists at this universal level and it manifests itself in the
various cohomologies through suitable realization functors.

8.1.2. Algebraic cycles. The fundamental step in constructing such a universal
cohomology theory is a “linearization” of the category of algebraic varieties. This is
achieved by replacing the usual notion of morphisms of varieties by a larger class of
morphisms given by correspondences realized by algebraic cycles in the product.
Let V(k) be the category of smooth projective algebraic varieties over a field k. It
is not an additive category, but it can be embedded in an additive category with
the same objects and with morphisms given by formal linear combinations (with
coefficients in Z or in Q) of algebraic cycles in the product X x Y of codimension
equal to the dimension of X.

Thus, a correspondence Z is of the form Z = ). n;Z;, where the Z; are irreducible
algebraic subvarieties of X x Y of the prescribed codimension. We denote the re-
sulting abelian group (or Q-vector space) by C%(X,Y)z (or C°(X,Y)g).

Notice that, as in the case of a cohomology theory, we are constructing a con-
travariant functor from varieties to motives, so that the abelian group C°(X,Y)z of
algebraic cycles in X X Y corresponds to maps from Y to X, hence the condition
of the codimension being equal to dim X. A morphism of varieties f : ¥ — X
determines a morphism in this generalized sense by taking the (transpose of the)
graph T(f)! C X x Y.

In order to have both a well defined composition and reasonably sized spaces of
morphisms, one needs to consider morphisms as defined by algebraic cycles modulo
a certain equivalence relation. For the purposes of enumerative algebraic geometry,
it suffices to consider cycles up to the numerical equivalence relation. This states
that two cycles Z1, Zo € C%(X,Y) are equivalent, Z1 ~pum Z2, iff the intersection
numbers

(1.371) Z1 o/ = ZQ o/

are the same, for any Z a subvariety of complementary dimension. The intersection
number is defined by linearity: if Z; = zj ni;Z;j then Z; ¢ Z = Zj nijZij ® Z.

The category of numerical effective motives M (k) is the pseudo-abelian envelope

(the minimal pseudo-abelian category spanned by an additive category, it also called
the Karoubian envelope) of the category generated by the algebraic varieties with
morphisms C%(X,Y)gnum = C°(X,Y)q/ ~num. More precisely, this means that the
objects of M (k) are pairs (X, p) of X € Obj(V(k)) and p a projector, that is, an
endomorphism
p € C°X, X)g.num

satisfying p?> = p (in the numerical equivalence relation). Morphisms between two
such objects are of the form

(1372) HomMgﬁm(k)((va)a (Y7 q)) =4go° CO(X7 Y)Q,num op.

An important result of Jannsen [174] shows that the category MST (k) is a semi-

simple abelian category. It is endowed with a monoidal structure induced by the
Cartesian product of varieties.
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Another notation for elements (X, p) in the category M (k) is ph(X). In partic-
ular, one often writes h*(X) for an element (X, p?) in M (k) that maps to H*(X)
in the realization in a Weil cohomology (cf. § 8.2.4] below on the standard conjec-
tures). The decomposition H*(X) = @;H'(X) as a graded vector space corresponds
to the fact that an algebraic variety has an additive decomposition in the category
of motives of the form h(X) = @;h*(X). In this sense, motives can be thought of as
“direct summands of algebraic varieties”. One says that the motive hi(X) is pure
of weight 7.

One can consider other choices of the equivalence relation on algebraic cycles. One
choice is rational equivalence. In this case one says that Z; ~yat Zs if they can
be transformed one into the other by a sequence of deformations parameterized by
the projective line P'. The group of algebraic cycles modulo rational equivalence is
the Chow group A*(X). One denotes the resulting vector space of correspondences
by C°(X, Y)grat and one obtains in this way a category of effective Chow motives
MR (k) as above, by replacing ~pum with ~p.. As we discuss below, these categories
have different properties when one changes the choice of the equivalence relation.
Another important equivalence relation on algebraic cycles is the homological rela-
tion. This depends upon the choice of a Weil cohomology H*. As we have seen,
such a cohomology comes endowed with a cycle map % : AY(X) — H?(X)(i). We
say that an algebraic cycle Z € C°(X,Y) is homologically trivial if its image under
the cycle map is trivial, 7(Z) = 0. One denotes the resulting equivalence relation
by ~H_hom, OF ~hom When the choice of H* is understood. One can then define a
category of effective motives up to homological equivalence M‘ffofm(k) as above.

The rational equivalence relation is the finest among those mentioned, while the
numerical is the coarsest. It is part of the standard conjectures (which we discuss
briefly later in this section) that the numerical and the homological equivalence rela-
tions are expected to coincide. In particular the homological relation is independent
of the choice of the Weil cohomology.

We denote by C"(X, Y )q the vector space of algebraic cycles of codimension dim X +
r. The composition law for correspondences given by algebraic cycles is defined using
the intersection product. For Z € C%(Xj, X3) and W € C°(X5, X3) one defines the
composition as

(1.373) WoZ = (mi3)« (1122 @ m33 W) ,

where 7;; : X1 X Xo x X3 — X; x X are the projections. The law (1.373) induces
an associative composition product

0: O"(X1, Xa2)gn~ X C°(X2, X3)g~ — O (X1, X3)0,~
for any of the equivalence relations mentioned above.

8.1.3. Zeta functions. Another important input that contributed to the origin
of motives is the question of counting points of varieties over finite fields, and gen-
eralizations in terms of L-functions of varieties.

Given a variety X defined over a finite field IF, with ¢ = p® for a prime p, one wants
to count points of X over the fields Fyn. It is natural to introduce a generating
function for the numbers N,, = #X (F;») in the form

N,

(1.374) log Zx (t) = th”
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The numbers N,, have an interpretation as intersection numbers of the diagonal in
X x X with the correspondence given by the graph of the n-th power Fr% of the
Frobenius endomorphism induced by the transformation x — x¢ on the algebra of
functions on X. Thus, the question of computing such intersection numbers can be
seen as a question naturally formulated in a category of motives up to numerical
equivalence.

In the topological context, the question of counting the number of isolated fixed
points of a map (intersections of the graph with the diagonal) can be treated effi-
ciently using the Lefschetz fixed point formula, which turns it onto a cohomological
formulation

(1.375) #Fix(f) = 3 (— 1) TR(f | HY(X)).

7
where f*|H!(X) is the action of the induced map on cohomology.
André Weil pioneered the use of this method in the case of the counting of points
X (Fgn). In fact, if one has a suitable cohomology theory H* for algebraic varieties
over finite fields for which a version of the Lefschetz fixed point formula applies, then
one can reformulate the counting of N, = #X (F4») in terms of a Lefschetz formula
for the Frobenius endomorphism

(1.376) No =) (Z1)Te((Fr)*|H (X)),
so that the zeta function Zx(t) can be expressed in the form
2dim X ' »
(1.377) Zx(t)= [[ det(t—tFry|H (X))
i=0

A first glimpse of why the decomposition as a product over the odd or even cohomol-
ogy groups H*(X) of the zeta function can be thought of as a motivic phenomenon
comes from the very simple formula

#P'(Fy) =1+q+q" +--+4",
which can be seen as a manifestation of the fact that the variety P has a decom-
position in the category of motives of the form

hPY=1®LoL?’®---®L",

where 1, also denoted by Q(0), is the motive of a point, and L is the Lefschetz
motive, which is also denoted by Q(—1). It is the motive L = h%(P!). Thus, one
thinks in general of the product decomposition of (1.377) as a motivic decomposition

2dim X ‘ -
Zx(t)= [ e (),
1=0

into L-factors L(h*(X),t) associated to the motives h?(X).

This approach and this class of zeta functions was then extended to define L-
functions for smooth projective varieties over number fields, which can be thought of
as a far-reaching generalization of the simplest example, the Riemann zeta function

(1.378) () =JJ=p"

p
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This can be thought of as the L-function of the zero-dimensional variety SpecZ.
More generally, suppose that X is an algebraic variety defined over a number field
K. Then the associated Hasse-Weil L-function is given in the form

(1.379) L(X,s) = [ L(H(X),s) D"

Each L-function L(H*(X),s) in turn can be written as an Euler product over the
finite places of K,

(1.380) LH(X),s)= ][] LeoH(X),s),
p€Spec(Ok)

where the Euler factor L,(H*(X), s) is associated to the reduction of X modulo the
prime @ in the following way.

In general, for K a global field and K, the local field given by the completion in
the valuation associated to a non-Archimedean place v of K, the Galois group G, =
Gal(K5P /K), for KiyP a separable closure, contains the inertia subgroup

I, = Gal(KSP /K"),

with K the maximal unramified extension of K, in K5®. If the residue field k, is
a finite field, then the quotient G, /I, has a canonical generator given by the Frobe-
nius. Given a vector space V with a representation of G, the Frobenius induces
an automorphism of the inertia invariants V!*. The inverse of this automorphism
is called the geometric Frobenius acting on V. In particular, for X, a smooth
projective variety over K,, one has an induced geometric Frobenius on the inertia
invariants of the f-adic étale cohomology of X, = X, xg, Ky’ with ¢ prime to the
characteristic of k,.

The local Euler factor L,(H'(X),s) is of the form

(1.381) Ly(H'(X),s) = det(1 — Frin(p) ™| H'(X,, Q)%) ™,

where n(p) = #k,, is the cardinality of the residue field at p and F' 7 is the induced
geometric Frobenius. (See [265] for more details.)

An important advantage of passing from the combined L-function (1.379) to a single
factor L(H*(X),s) is that one avoids the problem of infinitely many poles arising
from the zeros of the factors in the denominator. Moreover, at least conjecturally,
the L(H'(X), s) are expected to have a nice functional equation, when one completes
the product (1.380) with a suitable contribution from the Archimedean places of K,
as described in [265]. We return at the end of Chapter 2 of this book to discuss the
Archimedean local factors of the L-functions of motives from the point of view of
noncommutative geometry.

8.1.4. The Weil conjectures. An aspect of the theory of zeta functions of alge-
braic varieties that had a very important historical role in the development of the
idea of motives was a set of conjectures on the properties of the zeta functions of
(1.374) and (1.377), partly modeled on the Riemann zeta function. These are the
WEeil conjectures, which were initially proved by Weil in the case of curves over finite
fields and later in complete generality, for any nonsingular projective variety over
a finite field, by Deligne in [110], after important contributions of Grothendieck,
Dwork, Artin, that obtained a proof of the first and second of the Weil conjectures.
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The first conjecture predicts that the zeta function Zx () is a rational function of ¢,
so that one can write
2dim X

Zx(t)= ] Put),
=0
with the Py(t) polynomials of the form

(1.382) Py(t) = [J(1 = A1),

with )\ the eigenvalues of the Frobenius on H*(X) as in (1.377). The second
conjecture predicts a functional equation for Zx (t), where for ¢ = ¢* one has

(1.383) Zx (g~ ImX+9)y = 4 x(XO)(—stdim X/2) 7. (=),

with x(X) = A eA the self intersection of the diagonal, i.e. the Euler characteristic.
Finally, the third conjecture, which is the most difficult, is the analog of the Riemann
Hypothesis and gives a constraint on the position of the zeros of the factors Py(t).
Namely, the conjecture predicts that, setting ¢ = ¢—*, the zeros of P, lie on the line
R(s) = ¢/2. This can be equivalently stated as the condition that the eigenvalues
A¢j are of absolute value

(1.384) IAej| = ¢"/%.

8.1.5. Jacobians. Another fundamental ingredient that played a role in the de-
velopment of the theory of motives is the geometry of algebraic curves and their
Jacobians. It was again André Weil who proposed to use the Jacobian J(C') of a
smooth projective curve C as a geometric replacement for the cohomology H'(C, Q).
In fact, prior to the general development of étale cohomology, the fact that the Ja-
cobian admits a purely algebraic construction provided one with a good cohomology
theory for curves over any field of definition. This was especially useful in studying
the properties of the zeta function of a curve over a finite field, which is the direct
analog of the Riemann zeta function in the case of a function field (the latter being
the field of functions of a smooth projective curve over a finite field).

In motivic terms this property of the Jacobian is expressed by the identification

(1.385) Hom et (1), (h'(C), ' (C")) = Hom(J(C), J(C")) ® Q.

This means that it makes sense to think of J(C) as the motive h'(C), so that the
additive decomposition of a smooth projective curve in terms of motives takes the
form

hMC)=1aJ(C)a® L.

In higher dimension, for a smooth projective variety X, a good generalization of
the Jacobian is provided by the Albanese and Picard varieties Alb(X) and Pic(X).
These also admit a purely algebraic construction, they are dual abelian varieties and
both are isomorphic to the Jacobian in the case of curves (see e.g. [249] for a survey
of their role in the theory of motives).
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8.1.6. Galois theory. Classical Galois theory has also been absorbed into the
theory of motives, as the particular case of Artin motives, which we discuss in more
detail below. In this case, the main idea is that the theory of motives gives a
“linearization” of the theory of varieties. In particular, the case of Galois theory
arises by considering the case of zero-dimensional smooth projective varieties (i.e.
finite sets of points). The Grothendieck—Galois correspondence states that there is
an equivalence of categories between the category VO(k) of zero-dimensional smooth
projective varieties over k and the category of finite sets with a continuous action
of Gal(k*P/k), with k%P a separable closure of k. The functor that realizes the
equivalence of categories is given by taking the set of algebraic points of a variety

X i X(k5P).

The theory of Artin motives provides a linearization of the Grothendieck—Galois
correspondence in the following way. One obtains an equivalence of categories be-
tween the category AM;, (also denoted by M 4.1in(k)) of Artin motives over k with
Q-coefficients and the category of finite-dimensional Q-linear representations Repg
of G = Gal(k*?/k). The category AMy is the subcategory of MST (k) generated
by the zero-dimensional objects.

In this way Galois theory becomes the first instance of an application of the Tan-
nakian formalism to motives, with the Galois group Gal(k*P/k) as the motivic
Galois group of the Tannakian category of Artin motives. In this case the functor
that realizes the equivalence of categories is the fiber functor

X > QX

8.1.7. Modular forms. The theory of motives has important connections with
automorphic forms, most notably through some aspects of the Langlands program.
We are not going to touch on this aspect at all, and in fact we will only encounter
elliptic modular forms in Chapter 3. It is at least worth mentioning that one can
associate motives to elliptic modular forms (i.e. modular forms for congruence sub-
groups of SLg(Z)), using the geometry of Kuga—Sato varieties or of the moduli space
of stable curves of genus one with marked points (these constructions were obtained,
respectively, in [261] and [101]).

8.2. Pure motives.

The history of motives began in the early sixties, when Grothendieck envisioned
the whole idea of the existence of a theory of motives underlying the different co-
homology theories of algebraic varieties. Although Grothendieck himself did not
write about it at the time, the first important paper describing the fundamental
steps in the construction of a category of pure motives and its properties appeared
shortly afterwards, written by Manin [213]. This seminal paper contained the first
new result in algebraic geometry obtained as a direct consequence of the theory of
motives, namely a proof of the Weil conjecture for the zeta function of a unirational
projective 3-fold over a finite field. Even though eventually Deligne’s proof of the
WEeil conjectures in full generality did not use directly the theory of motives, this
result provided convincing evidence for the original vision of Grothendieck that the
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motivic formalism was to provide the deep rationale underlying the Weil conjec-
tures as well as a wider set of conjectural properties of algebraic cycles, still largely
unexplored today, collectively known as the “standard conjectures” (see below).
After this initial development, the progress of the theory of motives was somewhat
slow. The crucial difficulty lies in the fact that not enough is known in general about
algebraic cycles in smooth projective varieties.

For the theory of pure motives, we refer the interested reader to the very nice survey
by Serre [264], as well as to the references [2], [108], [155], [174], [186], [213],
[236].

8.2.1. A Tannakian category.

We have already mentioned the category M (k) for various possible equivalence
relations on algebraic cycles. In particular, MSE (k) is by [174] an abelian category.
The monoidal structure induced by the product of varieties can be improved to the
structure of a rigid tensor category, if one formally inverts the Lefschetz motive L.
One introduces in this way additional objects, the Tate motives, with Q(1) = L~}
and Q(n +m) ~ Q(n) ® Q(m). This makes it possible to define the duality which
is part of the rigid tensor structure.

More precisely, one enlarges the category M (k) to a category Mpum(k) where
the objects are of the form (X,p,n), with (X,p) as before and n € Z, and the

morphisms are given by
(1.386) Hom g, (6) (X2 0), (Y, 4,m)) = ¢ 0 C"7( X, Y )num,g © P,

where C™™"(X,Y )num,@ denotes the Q-vector space of algebraic cycles in X x Y
of codimension equal to dim X + m — n modulo numerical equivalence. One often
writes an object M = (X, p,n) with the notation M = ph(X)(n), where (n) stands
for the Tate twist ®Q(n). One finds the old M (k) embedded as a subcategory

with objects (X, p,0), and the new objects are obtained by adding the Tate motives.
The tensor product is of the form

(X,p,n) ® (Y,q,m) = (X xY,p®gq,n+m)
and the duality is given by
(X,p,n)Y = (X,pt,dimX —n),

with p! the transpose. This satisfies the properties of a rigid tensor category. The
subcategory M (k) is not stable under duality.

num
Mpum (k) is called the category of pure motives over k, with the numerical equiva-
lence.

One can define in a similar way categories M. (k), for other equivalence relations,
obtained from the corresponding M (k) by adding the Tate motives. However, the
result of Jannsen [174] shows that only in the case of the numerical equivalence is
M (k) a semi-simple abelian category.

Having a category of pure motives My, (k) that is a semi-simple abelian category
with a rigid tensor structure, one can look for the existence of fiber functors that
will make it into a Tannakian category.

A result of Deligne [106] (cf. Remark [1.82) shows that if C is an abelian category

over a field K of characteristic zero with a rigid tensor structure and such that
End(1) = K, then C is Tannakian if and only if for all X € Obj(C) the trace takes
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values Tr(l1x) € N. This immediately shows that the tensor structure described
above has to be modified if one wants to obtain a Tannakian category. In fact, with
the above structure one would obtain Tr(1x) = x(X) € Z. This can be remedied by
changing the tensor product structure, by replacing the commutativity axiom with
a graded commutative version, by which the natural isomorphism of M ® N and
N ® N is twisted by a sign (—1)¥, for M and N respectively of weight i and j.
The standard conjectures (of which more below) imply that Myum(k) = Mpom (k).
With the modification to the tensor product structure mentioned above, one obtains
that this category is a Tannakian category. The realization to the Weil cohomology
H*, say Betti cohomology, gives a fiber functor

w : Mpom (k) — Vectg

which on M = h*(X) gives w(M) = H5(X, Q). Tensoring with a Tate motive Q(n)
translates into the Tate twist by (27i)".

Thus, provided the standard conjectures hold, the category Myum(k) = Mpom (k)
is a neutral Tannakian category. We write just M(k), as we are going to restrict
to just this equivalence relation. Since it is semi-simple, the identity component
of its motivic Galois group Gmet(M(k)) is a pro-reductive group. Let C C M(k)
be a full subcategory which is stable under tensor product, duality, and such that
subobjects or quotients of objects of C are objects of C. Then C inherits the structure
of Tannakian category and there is a corresponding morphism

(1.387) Grnot (M(E)) — Gt (C).

For instance, one can consider the Tannakian subcategory 7 M (k) of M(k) gener-
ated by the Tate motives. This is the category of pure Tate motives. Its motivic
Galois group is just the multiplicative group G,,. This gives an induced morphism

(1.388) £ Gumot(M(K)) — G

The fact that the realization H* is compatible with the Z-grading also gives a mor-
phism w : Gy, — Gmot (M (k)) with the property that t o w = —2 € End(G,,) = Z,
since Q(1) is of weight —2, being the inverse of h2(P1).

A more general example of the morphism (1.387) is obtained by considering the
subcategory M(M) of M generated by a single object M. Then the identity com-
ponent of the reductive group Guot(M(M)) is the Mumford-Tate group of M. For
example, suppose that M = (F,1,0) is an elliptic curve E. Then in the case with-
out complex multiplication the Mumford—Tate group is GLy while if £ has complex
multiplication by an imaginary quadratic field K then the Mumford—Tate group is
the algebraic torus given by viewing K* as an algebraic torus over Q. The case of
Tate motives corresponds to the fact that the Mumford-Tate group of Q(1) is Gyy,.
For more information on motivic Galois groups, we refer the reader to [265], [2].

8.2.2. Artin motives. Another important example of a Tannakian subcategory of
the category M (k) is the category AM (k) of Artin motives. This is the subcategory
generated by objects M = (X, p,0), where X is a zero-dimensional algebraic variety.

Since one is only dealing with zero-dimensional varieties, all the equivalence relations
on algebraic cycles in the product are trivial, so that it does not matter in which
M. (k) one views Artin motives. Moreover, one does not need to add the Tate
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motives to have duality, nor does one need any modification in the commutativity
axiom of the tensor product.
Artin motives form an abelian category, and in fact a neutral Tannakian category,
with the fiber functor

w(X) = Q¥*P) = HY(X, Q).

As we mentioned above the motivic Galois group is in this case

(1.389) Gmot (AM(k)) = Gal(k*P k),
with a morphism
(1.390) a : Gpot(M(k)) — Gal(K*P /k).

As discussed above, Artin motives provide a linear version of the correspondence of
Grothendieck—Galois and the identification (1.389) gives an interpretation of motivic
Galois groups as a powerful generalization of ordinary Galois groups.

8.2.3. Motives with coefficients. We have so far considered the category M. (k)
of pure motives as a Q-linear category. One can also consider categories of pure
motives with coefficients in a field E of characteristic zero, which we denote by
M. (k)g. This can be described as the (pseudo)abelian envelope of the additive
category generated by Obj(M . (k)) with morphisms

(1391) HomMN(k)E(M,N) = HomMN(k)(M, N) R E.

Notice that, having modified the morphisms, one in general will have to add new
objects to still have a (pseudo)abelian category.

Notice that the notion of motives with coefficients that we use here is compatible
with another, apparently different, notion which is often adopted in the literature. In
fact, in the case where the field of definition & of the motives is of characteristic zero
and E is a finite extension of k, one can say (cf. [283] and [109] §2.1) that a motive
M has coefficients in E if there is a homomorphism E — End(M). This description is
compatible with defining, as we did above, M. (k)g as the smallest (pseudo)abelian
category containing the pure motives over k with morphisms (1.391). This is shown
in [109] §2.1: first notice that, for k of characteristic zero and E a finite extension of
k, one can associate to a motive M over k an element of M. (k)g by taking M & E,
with the obvious E-module structure. If M is endowed with a map E — End(M),
then the corresponding object in M. (k)g is the range of the projector onto the
largest direct summand on which the two structures of E-module agree.

Notice that, whereas for a finite extension E one has in this way two notions of
“motives with coefficients” that agree by the argument above, only the definition of
M (k)g as the smallest (pseudo)abelian category containing the pure motives over
k with morphisms (1.391) continues to make sense when E is an arbitrary field of
characteristic zero. In particular, it can be used to define M. (k)c. This observation
will be useful in the last chapter of this book, when we discuss an interplay between
Artin motives and noncommutative spaces described by C*-algebras.

8.2.4. Grothendieck’s standard conjectures. As a way to approach the Weil con-
jectures, Grothendieck formulated in [155] a set of conjectures on algebraic cycles,
called the “standard conjectures”, which are basic to the theory of motives and im-
ply the Weil conjectures (see [155], [185]). While the latter were proved by Deligne
using a different method, the standard conjectures remain unproven, except for spe-
cial cases. In subsequent developments of the theory of motives people adapted to
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work conditionally or to establish unconditional results that bypass the standard
conjectures, but this set of conjectures remains a fundamental unsolved problem in
the theory.

o Lefschetz type: Given a Weil cohomology H*, the Lefschetz isomorphisms
(1.370) determine a Lefschetz involution on @®; , H*(X)(r) given by £dim X~
for i < dim X and £~ X for i > dim X. The conjecture states that this
involution is realized by an algebraic cycle with Q-coefficients.

e Hodge type: The Hodge involution is obtained by modifying the Lefschetz
involution by a factor on each primitive component of the cohomology (cf.
e.g. [2] §5). The conjecture states that the Hodge involution determines a
positive definite quadratic form on the space C(X )nom,q of algebraic cycles,
with values in Q.

e Kiinneth type: The projectors H*(X) — H'(X) are realized by algebraic
cycles, i.e. by idempotents p* € C°(X, X )hom,Q-

® ~pum=~hom: Numerical and homological equivalences coincide (with ra-
tional coefficients).

For varieties over a field k of characteristic zero, the first conjecture (of Lefschetz
type) implies all the others. In general, Lefschetz implies Kiinneth and Lefschetz
with Hodge imply all the others ([2] p. 59). A lot is known in specific cases, for
example in the case of abelian varieties [185].

8.3. Mixed motives.

When, along with smooth projective varieties, one wants to consider more general
classes of varieties and schemes, one leaves the theory of pure motives for the much
more mysterious world of mized motives. At first, and especially thinking in terms
of zeta functions, it would seem that one can treat more general varieties by still
working with pure motives but considering the associated Grothendieck group. As
we discuss below, this is in fact not sufficient as it does not take into account a very
important feature of mixed motives: the presence of nontrivial extensions of pure
motives. This can be already appreciated by looking at the most concrete example
of mixed motives, which is provided by the 1-motives. The problem of construct-
ing categories of mixed motives, which continue to have the right properties of a
“universal cohomology theory” for algebraic varieties, is an extremely challenging
task. Recent results such as [288], [208], [162] produced good categories of mixed
motives, but these are still in general very difficult objects to deal with. We refer
the reader to Bloch’s lectures [21] for an overview of mixed motives.

8.3.1. The Grothendieck group of varieties. Given an algebraic variety X over a
field of characteristic zero (where Hironaka’s resolution of singularities holds), one
can always write such X as a disjoint union of X; — D;, where the X; are smooth
projective and the D; are lower dimensional. Thus, inductively on the dimension, one
can assign to X a virtual object [X] in a Grothendieck group of algebraic varieties
[(X] = >_,[Yi] — >_,[Z;] where the Y; and Z; are smooth projective varieties.

More precisely, the Grothendieck group Ko(V(k)) of varieties over k is the quotient
of the free abelian group generated by symbols [X] by the scissor-congruence relation

(1.392) (X]=[Y]+[X\Y],
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for any closed subvariety Y C X, and the isomorphism relation
(1.393) [X]=[Y], if X ~Y are k-isomorphic.

It has a product given by [X][Y] = [X x; Y]. One writes L = [A!] for the class of
the affine line. This corresponds to the Lefschetz motive.

It is also possible to consider the Grothendieck group of the category of pure motives
M. (k). The Grothendieck group Ko(C) of an abelian category C is defined by
first considering the free abelian group generated by the isomorphism classes [M]
of objects M € Obj(C) (assuming this is a set), and then imposing the following
relations. For any exact sequence 0 — M — M’ — M” — 0 one has a relation
(M) = [M] + [M7].

There is a homomorphism Ky(V(k)) — Ko(M~(k)), which extends to a homo-
morphism Ko(V(k))[L™!] — Ko(M(k)). The image of the class [X] of a smooth
projective variety X is the class of the pure motive h(X) = (X, 1,0). The image of
L = [A] is the class of the Lefschetz motive.

The zeta functions can be lifted to the level of the Grothendieck group. For example,
in the case of a finite field k£ = F, one can write (1.374) equivalently as

(1.394) Zx(t) = exp <Z #XSF‘J”) t”) =) #5"(X)(F) 1"

n>0

where s"(X) denotes the n-th symmetric power of X. This leads to Kapranov’s
formulation of a zeta function

(1.395) Zx(t) = [s"(X)|t"

n>0
for an arbitrary field k, with values in the Grothendieck group from which the
ordinary one is obtained in the case k = F, by applying a “counting of points” ho-
momorphism from Ko(V(k)). One has Zpi (t) = (1 —¢)71(1—[Al]¢t)~!. Kontsevich’s
theory of motivic integration also lives naturally in (a completion of ) Ko(V(k))[L™1].

While working with “virtual pure motives” in the Grothendieck group suffices for
some purposes, if one wants a theory that satisfies the main requirements of a
category of motives, including providing a universal cohomology theory (via the
Ext functors), working with the Grothendieck group is not sufficient.

8.3.2. I-motives. A first concrete example of mixed motives is given by the 1-
motives. Deligne introduced 1-motives in [111] as geometries underlying certain
classes of mixed Hodge structures. They can be thought of as a special case of
mixed motives, just as Jacobians and abelian varieties provide a good class of
pure motives. They exhibit the main properties one expects for mixed motives,
namely: they have a weight filtration whose graded pieces are pure motives and,
when considered over C, they give rise to mixed Hodge structures.

A semi-abelian variety is an extension (in the category of algebraic groups) of an
abelian variety A by an algebraic torus 7. While abelian varieties are projective—
hence they live in the category of pure motives—algebraic tori are affine varieties.
Moreover, the fact that we are considering non-trivial extensions reveals that one
is leaving the world of pure motives for mixed motives. A 1-motive M over k is a
complex of the form [A % G], where A is a finitely generated torsion free abelian
group and G is a semi-abelian variety. The map u is a homomorphism u : A —
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G(k). A morphism of 1-motives M, M’ is a commutative diagram relating the two
complexes defining M and M’. One needs to invert isogenies to have an abelian
category. Duality on 1-motives combines Pontrjagin duality and duality of abelian
varieties. The weight filtration on a 1-motive M has W_sM =0, W_oM = [0 — T,
W_1 = [0 — G], Wy = M with respective quotients T', A, and A. The category of
1-motives contains the category of Artin motives: these are identified with objects
M =[A —0].

Deligne conjectured in [111] that there are purely algebraic constructions for cer-
tain 1-motives arising from the mixed Hodge structure on H"(X,Z(1)) of a complex
algebraic variety X. This generalizes the fact that Jacobians, Albanese and Pi-
card varieties admit algebraic constructions. The conjecture was recently proved by
Ramachandran in [250].

8.3.3. Categories of mired motives. More generally, instead of working over a
field k, one can consider a category Mpix(S) of motives (or “motivic sheaves”) over
a scheme S. In this case, the functors above are natural in S and to a map of schemes
f: 81 — Sy there correspond functors f*, f, f', fi, behaving like the corresponding
functors of sheaves.

At present there is not yet a general construction of such a category of mixed mo-
tives Mpix(S). There are, however, constructions of a triangulated tensor category
DM(S), which has the right properties to be the bounded derived category of the
category of mixed motives. The constructions of DM(S) of [208] and [288] are
known to be equivalent. Other constructions are given in [162] and in unpublished
work by Nori.

In general, given a construction of a triangulated tensor category, one can extract
from it an abelian category by considering the heart of a t-structure. A caveat with
this procedure is that it is not always the case that the given triangulated tensor
category is in fact the bounded derived category of the heart of a t-structure.

The available constructions, in any case, are obtained via this general procedure of
t-structures which can be summarized as follows. A triangulated category D is an
additive category with an automorphism 7" and a family of distinguished triangles
X =Y — Z — T(X), satisfying suitable axioms (which we do not recall here).
A t-structure consists of two full subcategories D=Y and D=°. We use the notation
D=" = D20 —p] and D=" = D=[—n], with X[n] = T"(X) and f[n] = T"(f). One
assumes the following properties: D=1 C D=0 and D2! ¢ D20, for all X € D=0
and all Y € D=1 one has Homp(X,Y) = 0; for all Y € D there exists a distinguished
triangle as above with X € D= and Z € DZ!. The heart of the t-structure is the
full subcategory D° = D=0 N D29 It is an abelian category.

We have seen that, in the theory of pure motives, one can associate to a smooth pro-
jective algebraic variety X over a field k& a motivic decomposition @;h*(X) (assuming
the standard conjecture of Kiinneth type), where the h?(X) are objects of M. (k).
In this way, one views pure motives as a universal cohomology theory for smooth
projective algebraic varieties. Moreover, the motivic cohomology h(X) = @;h{(X)
has the property that, for any given Weil cohomology theory H* there is a realization
functor Ry satisfying H'(X) = Ry h*(X).

On the category Mpix(k) of mixed motives one expects to have absolute cohomology
groups (cf. [108]) given by

(1.396) ibs(M) = Exth () (1, M).

abs
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for M a motive. Here the Ext’ are taken in the triangulated category DM(S) whose
heart is the category Mpix(S) of mixed motives. For a variety X the absolute
cohomology would then be obtained from the motivic cohomology via a spectral
sequence with

(1.397) By = Hy, (h(X)) = HY 0 (X).

8.3.4. Mized Tate motives. The triangulated category of mized Tate motives
DT M(S) is then defined as the full triangulated subcategory of DM(S) generated
by the Tate objects. It is possible to define on it a t-structure whose heart gives a
category of mixed Tate motives 7 Mpix(S), provided the Beilinson—Soulé vanishing
conjecture holds, namely when

(1.398) Hom’ (Q(0),Q(n)) =0, forn >0,5 <O0.

where Hom’ (M, N) = Hom(M, N[j]). The conjecture (1.398) is known to hold in
the case of kK = K a number field (see [207]), where one has

(1.399) Extp i) (Q(0), Q(n)) = Kon—1(K) ® Q

and Ext%M(K) (Q(0),Q(n)) = 0. Here Ky,_1(K) is Quillen’s higher algebraic K-
theory (cf. [208] Appendix B). Thus, in this case it is possible to extract from
the triangulated tensor category a Tannakian category 7 Mpyix(K) of mixed Tate
motives, with fiber functor w to Z-graded Q-vector spaces, M +— w(M) = @pwn (M)
with

(1.400) wp (M) = Hom(Q(n), Gr?,, (M)),

where Gr¥, (M) = W_9,(M)/W_3(,41)(M) is the graded structure associated to
the finite increasing weight filtration W.

As an example, the mixed Tate motives that correspond to extensions in
1
EXtDM(K) (Q(0),Q(1))

are the Kiimmer motives. These are a particular case of 1-motives, of the form
M =7 5% G, with u(1) = q € K*.

The motivic Galois group of the category 7 Mp,ix(K) is then an extension G =
U % Gy, where the reductive piece is G, as in the case of pure Tate motives, while
U is prounipotent. By the results of Goncharov and Deligne-Goncharov (see [146],
[113]), it is known that the pro-unipotent affine group scheme U corresponds to a
graded Lie algebra Lie (U) that is free with one generator in each odd degree n < —3.

8.3.5. Mized Tate motives and the “cosmic Galois group”. A description of the
category 7 Mpix(S) in terms of algebraic K-theory is also possible in the case where
the scheme S is the set of V-integers Oy of a number field K, for V' a set of finite
places of K. In this case, objects of 7 Mpix(Oy) are mixed Tate motives over K
that are unramified at each finite place v ¢ V. For T Mp,ix(Oy) we have

Koy 1(K)®Q n>2
(1.401) Extpai0,)(Q(0),Q(n)) = § O ©Q n=1
0 n < 0.
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and EXt%M(OV) (Q(0),Q(n)) = 0. In fact, the difference between the Ext in 7 Mp,ix(Oy)
of (1.401) and the Ext in 7 Mpix(K) of (1.399) is

Ext'(Q(0), Q(1)),

which is finite-dimensional in (1.401) and infinite-dimensional in (1.399). The cat-
egory T Muyix(Oy ) is also a neutral Tannakian category, and the fiber functor de-
termines an equivalence of categories between 7 Myix(Oy) and finite-dimensional
linear representations of an affine group scheme of the form U xG,,, with U prounipo-
tent. The Lie algebra Lie(U) is freely generated by a set of homogeneous generators
in degree n identified with a basis of the dual of Ext!(Q(0),Q(n)) (cf. Prop. 2.3 of
[113]). There is however no canonical identification between Lie(U) and the free Lie
algebra generated by the graded vector space ®Ext!(Q(0),Q(n))".

We mention the following case, which will be the one most relevant in the context
of perturbative renormalization.

ProrosiTION 1.110. ([113], [146]) Consider the scheme Sy = Spec O[1/N] for
k = Q({n) the cyclotomic field of level N and O its ring of integers. For N = 3
or 4, the motivic Galois group of the category T Muix(SNn) is of the form U x G,
where the Lie algebra Lie(U) is (noncanonically) isomorphic to the free graded Lie
algebra with one generator e, in each degree n < —1.

The reason why this result is relevant to our discussion of renormalization is the fol-
lowing result, which immediately follows from the description of the “cosmic Galois
group” U*.

COROLLARY 1.111. There is an equivalence of categories between the neutral Tan-
nakian category of flat equisingular vector bundles and T Muix(Sn) for N = 3 or 4.

REMARK 1.112. Notice that in the case of mixed Tate motives, the grading is induced
by the weight filtration on the mixed Tate motives. The latter is indexed by even
integers. Thus, for a mixed Tate motive M one has w,(M) as in (1.400). The
free graded Lie algebra generated by the elements of Ext!(Q(0),Q(1)) is obtained
by considering the classes of the extensions of Gr, by Grty, ), as in [113], p.5.
Thus, we are in fact working with Lie algebras and commutative Hopf algebras (even
grading) and not with corresponding graded-commutative objects. This should be
compared with our choice of even grading for the Hopf algebra of Feynman graphs,
Remark [1.24.

8.4. Mixed Hodge structures.

Another important aspect of the theory of motives is its relation to Hodge theory.
Motives are often constructed as geometries underlying certain Hodge structures (see
e.g. the case of 1-motives mentioned above). Pure and mixed Hodge structures nat-
urally arise in many contexts: on the cohomology of algebraic varieties, on rational
homotopy groups, on the complexes of vanishing cycles. We recall here some general
facts about mixed Hodge structure and we point out a structural analogy between
the resulting Tannakian formalism and the one we encountered in the context of
equisingular connections arising from perturbative renormalization. This analogy
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will be useful in Chapter 2, when we discuss the Archimedean local factors of the
completed Hasse—Weil zeta function in the context of noncommutative geometry.

We recall some facts about mixed Hodge structures, following [274]. A Q-mixed
Hodge structure (Q-MHS) consists of the data M = (V, W,, F'*) of a finite-dimensional
Q-vector space, with an increasing filtration W.V (weight filtration) and a decreasing
filtration F"V¢ for Vo =V ®g C (the Hodge filtration), satisfying

(1.402) gtV Ve = FPerV Ve @ Frp+igrV g,

where F" is the complex conjugate of F" with respect to Vg C V. The condition
(1.402) is equivalent to a Hodge decomposition

(1.403) gry Ve = Dptg=n V",
with
(1.404) VP4 = FPer )V Ve N Fagr), Ve

The Hodge structure (V, W,, F'®) is pure of weight n if W,, =V and W,,_; = 0. An
example of pure Hodge structure of weight —2n is the Tate Hodge structure with
V = (27)"Q.

A morphism M; — My of Q-MHS is a linear map ¢ : Vi — V5 such that ¢(WyVy) C
W Va and ¢(FPV) c) C FPV; c. Tensoring of Q-MHS is also defined, by considering
Vi ®q Ve with filtrations W, (Vi ®q V) = Ziﬂ-:m Wi(Vi) ®g W;(V2) and FP(V; ®q
Va) =3 smp " (Vi) ®c ' (Va,c). The Tate Hodge structure defines, by tensoring,
a Tate twist on the category of Q-MHS.

A Q-mixed Hodge structure M = (V, W,, F'*) is mized Tate if

grgZM = ®Q(—p), and gr%,lM = 0.
If M is a mixed Hodge-Tate structure over @QQ, then one has an associated pe-
riod matrix obtained as follows (cf. §2 of [147]). One has an isomorphism V¢ =
®pFPVe N Wa, Ve and canonical maps FPVe N W, Ve 3 grgg(VQ) ®g C. This gives
an isomorphism Sy : @pgr%(\/@) ®g C — V. A splitting of the weight filtration
also gives an isomorphism Sy : @pgrgg(VQ) ®qg C — V. The composite S;I%F o Sw
is the period map. A choice of basis of grg‘;V@ determines the corresponding period
matrix, whose entries are periods of rational algebraic differential forms over relative
cycles on mixed Tate motives. Thus, the period matrix defined in this way gives

the comparison isomorphism between Betti and de Rham cohomology in the mixed
case.

For example, for the Kiimmer motive [Z % G,,] with u(1) = ¢ one has a period

matrix of the form
1 logg
271 27 .
0 1

One can in fact specify a mixed Hodge—Tate structure by assigning the period matrix.
An example is given by the families My (z) (variations of mixed Hodge structures)
associated to the polylogarithms

Lig(z) = ) -
n=1

‘ N
3

N
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with matrices of the form (cf. [23])

1 0 0 0 0

—Lii(2) 271 0 0 0

(1.405) —Lip(z) 2milogz  (2mi)? 0 0
0

“Lig(z) 2022 (972 logz  (2mi)®

One can similarly define real mixed Hodge structures R-MHS, by the same proce-
dure, replacing Q with R. More generally, one can consider mixed Hodge struc-
tures of the form (A, W,, F*) with A an object in an abelian category, endowed
with an increasing filtration W.A and decreasing filtrations F'A and F"A with
griperl grV' A = 0 except when n = p + q.

Thus, one can consider the category of vector spaces over the field & endowed
with filtrations W,, F'® and F* as above. We assume that k is of characteristic
zero. Notice that, in this case, there are two natural choices of a fiber functor
to vector spaces, one is the forgetful functor w(V,W,, F*) = V and the other is
ww (V, We, F*) = gt (V) = @,gr’V (V). These two fiber functors are isomorphic
through the identification V = gr'V' (V) induced by the Hodge filtration F'*. Namely,
upon writing gr'V' (V) as in (1.403) with VP4 as in (1.404), one can show that there
is an isomorphism ar between (V, W,, F*) and (gr'V(V)), W, F}3,), induced by iso-
morphisms of the VP¢ with

VED = (Wyprg VEFP) N | (Wpag N FY) + > (Wppgos N FIT)
i>0

This isomorphism ap induces the isomorphism of the fiber functors. There is a
similar isomorphism obtained using the opposite filtration F® and we write e =
apaf,l. This automorphism defines a 1-parameter subgroup of the motivic Galois
group of the Tannakian category of mixed Hodge structures and, as we see below,
it plays exactly the same role as the generator of the renormalization group in the
case of perturbative renormalization.

Deligne shows in [107] that the category of k-vector spaces with filtrations W, F'®
and F'* as above is a neutral Tannakian category. The Galois group of the Tannakian
category is of the form

(1.406) Guns = Unmns X (G X Giy),

where Uppg is a pro-unipotent affine group scheme. This is dual to the commutative
Hopf algebra Hy,,,, = U(Lmus)Y, where the Lie algebra Lyps has generators
e_n,—m of bi-degree (n,m), for each pair of integers n,m € N = Z-y. The action of
G X Gy, is related to the bigrading in the form

Gm X G, 3 (u,v) : £ — u "™,
for £ € Lyns of bidegree (n,m). The element d = apay' is obtained as d =
exp(e) with e = Y e_n _m. This is clearly the analog of the generator of the
renormalization group e =) e_, in the case of the “cosmic Galois group”.
This applies in particular to the case of real mixed Hodge structures, though not

to the case of rational mixed Hodge structures. In fact, for Q-MHS the decreasing
Hodge filtration is only a filtration of the complexified V. In the case of R-MHS the
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general result above specializes to give the Galois group Gr_mmus as the real part
of Gyus with respect to the complex conjugation that maps (u,v) € Gy, X Gy, to
(v,u) and the generator e_, _p, to —e_p, _p.

It is worth mentioning the fact that, for mixed Tate motives over a number field
the functor to mixed Hodge structures is faithful and exact. This follows from
Proposition 2.14 of [113], upon realizing 7 M p,ix(K) as a subcategory of Voevod-
sky’s category [288]. The key point is the result, already mentioned in §§8.3.4/ and
8.3.5/ above, on the injectivity of the regulator map on the Beilinson—-Soulé vanish-
ing conjecture for K-theory, which is known to hold for number fields by Borel’s
computation of their K-groups, cf. [207].

8.5. Tate motives, periods, and quantum fields.

The fact that the identification of Lie(U) of Proposition [1.110 with the free graded
Lie algebra Lie(U) with generators {e, : n < —1} is non-canonical means that the
result of Corollary [1.111] only provides an abstract identification. One would like to
have a much more concrete relation between the data of perturbative renormalization
and mixed Tate motives.

In fact, there are strong reasons to believe that there should be such a relation
between Feynman integrals and mixed Tate motives. We summarize a few facts,
conjectures, and results that help in clarifying this general picture.

e The extensive computations of Broadhurst and Kreimer [35] show that
multiple zeta values appear as residues of Feynman graphs.

e Multiple zeta values are periods of mixed Tate motives. There are different
ways in which one can concretely realize multiple zeta values as periods. For
example, Goncharov and Manin gave a realization by constructing explicit
mixed Tate motives obtained from the moduli spaces ﬂgm of genus zero
curves with marked points [148]. Goncharov conjectured that the periods of
mixed Tate motives over Z are exactly the elements of M ZV[1/2mi], where
MZV denotes the Q-vector space MZV C R generated by the multiple
zeta values (which is in fact a Q-algebra).

e The result of Belkale and Brosnan [14] seems to point to a problem in the
expectation that residues of Feynman graphs should be periods of mixed
Tate motives. In fact, they show that certain varieties constructed from
graphs, on which it is natural to interpret the residues of Feynman in-
tegrals as periods, are very general in the sense that they generate the
Grothendieck ring of motives. However, more recent results of Bloch, Es-
nault and Kreimer [25] show, for certain classes of graphs, that the Feyn-
man integral, expressed as a period through the Schwinger parameteriza-
tion, comes from a piece of the cohomology of the graph variety that is
actually mixed Tate. This seems to suggest that, although these varieties
can give rise to motives that are not mixed Tate, the motivic piece that
corresponds to the period relevant for Feynman integrals is still mixed Tate.
Recently [24], Bloch proposed a lifting at the motivic level of the Connes-
Kreimer Hopf algebra.

e Kreimer showed in [190] that the period matrix (1.405) of the mixed
Hodge—Tate structures associated to the polylogarithms can be seen as
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solutions of a Dyson—Schwinger equation, which reveals many of the fun-
damental structures of renormalization in quantum field theory.

e The technique of renormalization by Birkhoff factorization developed in
the Connes—Kreimer theory has been successfully applied to the theory of
multiple zeta values in [158] and [212].

Understanding the precise relation between residues of Feynman integrals and mixed
Tate motives remains a question of crucial importance. There are two main obstacles
in using the result of Proposition 1.110 and Corollary [1.111] to obtain an explicit
identification of the category of flat equisingular vector bundles and a category of
mixed Tate motives.

The first problem comes from the fact that, if the homomorphism dual to the ho-
momorphism (1.356) of Theorem 1.106/ and Corollary 1.107, mapping U — Difg(7),
were coming from a Hopf algebra homomorphism H(7) — Hmot, With Hmet the
Hopf algebra dual to the motive Galois group of mixed Tate motives, then this ho-
momorphism would have to map primitive graphs in H(7) (i.e. Feynman graphs
that are free of subdivergences) to primitive elements in Hpyot. However, the results
of [35] indicate the existence of primitive graphs whose residues are multiple zeta
values that do not correspond to primitive elements in Hy,ot. Also notice that the
morphism (1.3506) is defined over C but not over Q, precisely because of the presence
of transcendental numbers coming from the residues of graphs.

The second problem lies in the fact that the category of flat equisingular vector
bundles is constructed out of irregular-singular connections, while mixed Hodge
structures will only arise from regular-singular ones.

This shows that, if Theorem [1.106 and Proposition [1.110l suggest the existence of a
direct relation between flat equisingular vector bundles and mixed Tate motives, this
relation is more subtle than one might at first imagine. A promising approach ap-
pears to be that of approximating irregular-singular connections by regular-singular
ones through the phenomenon of “confluence”, and then relate the regular-singular
differential systems to mixed Hodge structures, hence to mixed Tate motives.

9. The Standard Model of elementary particles

The Standard Model of elementary particle physics is a comprehensive description,
based on quantum field theory, of all known elementary particles and their elec-
troweak and strong interactions, in the energy range up to hundreds of GeV (equiv-
alently, a scale of distances down to the order of 107!6 centimeters). From the
physical point of view, it is an extremely sophisticated theoretical model, which has
been tested experimentally to very high precision and accounts better than any other
known theory for all known phenomena involving elementary particles. Several at-
tempts have been made at cracking the Standard Model, in the hope of observing
new physics beyond what the model accounts for, but at the time of writing (when
the new Large Hadron Collider at CERN is still to become operational) no new phe-
nomena in the world of high energy physics beyond the Standard Model have yet
been observed, with the important exception of neutrino mixing (cf. §9.6) to which
we dedicate special attention in our treatment (cf. §13 below) which will include a
model of neutrino mixing with the see-saw mechanism.

Mathematicians may not have much familiarity with the theory of elementary parti-
cle physics and with the remarkable conceptual edifice that is the Standard Model.
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(There are notable exceptions, see for instance the very interesting book [188].) Thus,
we attempt to summarize in this section some of the main aspects of the Standard
Model. The section can be skipped by the reader who is impatient to jump directly
to a more mathematical formulation, but we believe that it is important to give at
least a brief overview of some very basic aspects of the physical theory. Our presen-
tation is necessarily brief and somewhat sketchy. For the reader who wishes to learn
more about the physics of the Standard Model, there is a wealth of good references
available on the subject. Some that we found very useful are [123], [177], [268],
[234].

Our main purpose is to show that the full Lagrangian of the Standard Model min-
imally coupled to gravity, in a version that accounts for neutrino mixing, can be
derived entirely from a very simple mathematical input, using the tools of noncom-
mutative geometry. This will hopefully contribute to providing a clearer conceptual
understanding of the wealth of information contained in the Standard Model, in a
form which is both palatable to mathematicians and that at the same time can be
used to derive specific physical predictions and computations. This was shown in
recent work of the authors and Ali Chamseddine [52], using techniques of noncom-
mutative geometry previously developed by Connes and Chamseddine-Connes (cf.
[70], [45], [46], [47], [48]). This part of the book is based on [52].

The Standard Model comprises two classes of elementary particles: the fermions
are the basic constituents of matter, while the bosons transmit the interactions.
Fermions are further subdivided into two classes: leptons and quarks. The fermi-
ons experience electroweak and strong interactions though only the quarks interact
through the strong force.

An aspect of the Standard Model that appears somewhat mysterious is the presence
of three generations of fermions. While the fact that there is an equal number of
generations of leptons and quarks can be explained in terms of anomaly cancellation,
there is no explanation within the Standard Model that would fix the number of
generations.

The Standard Model, in its minimal form, which does not include gravity nor ac-
counts for the phenomenon of neutrino mixing, depends upon 19 parameters. These
are not predicted by the model. They are the following;:

3 charged lepton masses

6 quark masses

3 gauge coupling constants

3 quark mixing angles

1 complex phase

1 Higgs mass

1 coupling constant for the quartic interaction of the Higgs
1 QCD vacuum angle

As we discuss in §9.6 below, the observed phenomenon of neutrino mixing is not
acccounted for in the original “minimal” standard model and therefore represents
the first observed “physics beyond the Standard Model”. We discuss the necessary
modification to the Standard Model Lagrangian that accounts for the experimental
results on neutrino mixing. As we see in §9.6/ below, this requires introducing,
in addition to the three charged lepton masses, 18 additional real parameters that
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correspond to the Dirac and Majorana mass parameters for neutrinos and the angles
and phase of the mixing matrix for leptons.

In the case of the Standard Model minimally coupled to gravity, one also has in the
Lagrangian the gravitational parameters, which we discuss separately in §9.7 below.

We are going to explain in more detail the role and meaning of all these parameters.
In fact, in our model they will all acquire geometric significance and we will be able
to derive some relations between them as part of the predictive power of the model.

9.1. Particles and interactions.

Besides electromagnetism, the forces accounted for by the Standard Model are the
weak and the strong force. The weak force is responsible for the phenomenon known
as neutron (-decay, n — per, whereby a neutron is transformed into a proton, while
emitting an electron and an anti-neutrino. This type of phenomenon would not be
accounted for by just the theory of electromagnetism. The strong (or nuclear) force
is responsible for the fact that atomic nuclei hold together despite the mutual electric
repulsion of the protons. It is the elementary constituents of protons and neutrons,
namely the quarks, that interact through the strong force. The charge of quarks,
with respect to the strong force, is called the color charge. Quarks combine to form
composite particles called hadrons (of which the proton and neutron are the two
best known examples). There are gauge bosons in the Standard Model associated
to each of the interactions. The photon is the gauge boson of the electromagnetic
force. It is massless and has spin 1. The massive electroweak gauge bosons are the
W= and Z° particles. They also have spin 1. For the strong interaction there are
eight gauge bosons, the gluons. They are massless and of spin 1.

The fermions in the Standard Model consist of three generations of leptons and
quarks. The first generation has as leptons the electron, which is massive and elec-
trically charged, and the left-handed neutrino v.. The quarks in the first generation
are the up and down quarks. The second generation consists of the muon and the
neutrino v, as leptons and the charmed and strange quarks, and the third genera-
tion consists of the leptons 7 and the corresponding neutrino v, and of the top and
bottom quarks. For each particle there is a corresponding antiparticle. The proper-
ties are similar across families: the leptons e, u, and 7 are massive and electrically
charged, the neutrinos v, v, and v, are neutral, and are assumed to be massless in
the minimal Standard Model. The quarks are massive (with a very broad spectrum
of masses) and electrically charged. The quarks also carry a color charge for the
strong force.

All electrically charged particles feel the electromagnetic force, all quarks and lep-
tons are subject to the weak interaction, as are the massive gauge bosons of the
electroweak force. As we see below, the presence of self-interactions for the gauge
bosons depends on the fact that the weak force, unlike electromagnetism, is a non-
abelian gauge theory. All quarks and gluons interact through the strong force.
Again, the strong force is a nonabelian gauge theory.

REMARK 1.113. A comment about notation: in the rest of this chapter we follow
standard conventions about notation that are in use in the physics literature, for in-
stance with respect to summation over repeated indices and the raising and lowering
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of indices. A possible source of confusion is the use of the notation 1. In Minkowski
space, if a fermion 1) is represented by a column vector, one has 1) = 1/*yq where g is
a Dirac matrix. Hence this use of the notation 1) should not be confused with the or-
dinary use of the bar notation as complex conjugation, which also occurs frequently
in what follows. We hope that the context will clarify the use of the notation.

9.2. Symmetries.

Symmetries play a fundamental role in the Standard Model of elementary particles.
There are discrete symmetries, and Lie group symmetries. The discrete symmetries
are the CPT symmetries, C for charge, P for parity, and T for time. In terms of the
~ matrices, the parity, time reversal, and charge conjugation operators are given on
fermions 1 as

P 1/1(@ x) = ’Y%(tv —x),
(1.407) T :p(t, ) — iyty3ep(—t, x),
C:(t,x) — iy P(t, z).

In the case of electromagnetism, the action on the corresponding boson, the photon,
is of the form

P ARt x) — Aut, —x),
(1.408) T:AMt,x) — Au(—t,x),
C: AP(t,z) — —AP(t, z).

The full Standard Model is invariant under the combined C'PT transformation.
However, unlike electromagnetism and the strong interactions (away from certain
special values of quark mixing angles), the electroweak interactions do not preserve
the individual C, P and T symmetries. This is related to the fact that, on chiral
fermions, parity exchanges right and left chiralities, hence processes which differen-
tiate between different chiralities violate parity.

Among Lie group symmetries there are abelian and nonabelian gauge symmetries.
In QED the abelian gauge symmetries corresponding to the group U(1) on fermions
and bosons are of the form

(1.409) W(t, o) > exp(iN(t, z)) Y(t,x),  Au(t,x) — A,(t,2) — e L9\ (t, ),

with e the charge, and v = exp(i)) a local gauge transformation.

There are nonabelian gauge symmetries by the Lie group SU(3) in the theory of
strong interactions. The quarks 1);, with color index j = 1,2, 3, form a 3-dimensional
irreducible representation of SU(3), and so do the antiquarks zﬁj. The gluons AZ,
with color index ¢ = 1,...,8, form an 8-dimensional irreducible representation of
SU(3) which is the adjoint representation. Local gauge transformations U then act
by

(1.410) YUy, A, —UAU T +ig UG U,

with g the coupling constant.

The U(1) and SU(3) gauge symmetries are full symmetries of the Lagrangian. In

particular, this means that there are no mass terms for the U(1) gauge fields and
the gluons.
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When weak interactions are considered then SU(2) gauge symmetry also plays a role.
This is denoted SU(2), and is called the weak isospin symmetry. It is related to phe-
nomena like nuclear #-decay involving charged weak currents. Here the asymmetry
between left and right chirality appears. In fact, in the “minimal Standard Model”
the left-handed fermions form weak isodoublets while the right-handed fermions form
weak isosinglet. This means that the leptons and quarks are arranged as

VL
EL - < e ) y €ER,
(1.411) ;
qL:(d)’ uR, dg.

Here we are considering just the minimal case, where there are no right-handed
neutrinos. We return later to a detailed discussion of the necessary extensions of
the Standard Model that include right-handed neutrinos v, see §9.6, and how they
fit in our model, in §13 and following.

Associated to the fermions arranged as in (1.411) as eigenvectors under the repre-
sentation of SU(2) x U(1) there are corresponding hypercharges

(1.412) }/[ = Y(KL), K] = Y(qL), Yu = Y(UR), Yd = Y(dR), }/e = Y(BR).

These are related to the electric charges Qe and the quantum numbers I37, of the
SU(2)r, representation (i.e. the third generator in the Lie algebra of the weak isospin
group) by a linear relation

1
(1.413) Qem = 5V + Iy

There are relations among the hypercharges, which are obtained by imposing anom-
aly cancellations. These are of the form

1

(1414) 2 =Y, +Ys Yo=-3Y, 6Y, —3Y2 — 3V} +2v7 - Y2 =0.
The values of the hypercharges are given by

1 4 2
(1415)  Yi=-l Ye= -2, Y=o Y= Ya= o

We discuss, in §13.3| below, how we derive these values for the hypercharges as a
consequence of the mathematical model we construct.

A note of warning about conventions. There are other conventions in the physics
literature that have the hypercharge equations set to 3Y,+Y, =0, 2Y,+Y,+Y; =0
and 6Y(]3 +3Y2 + 3V} + 2Y? + Y2 = 0 with hypercharges differing from (1.415) by
Y. =2,Y,=—-4/3 and Y; = 2/3. We strictly follow the convention of (1.414) and
(1415).

We return to the discussion of anomalies from a more mathematical perspective
later in this chapter; see §19.4 [19.5.

A very important aspect of the theory of the Standard Model is the phenomenon of
spontaneous symmetry breaking involving the SU(2)z x U(1)y symmetries, which
leaves only a resulting U(1)en unbroken. The Higgs fields are responsible for the
symmetry breaking. In fact, the Higgs potential is of the form

(1.416) V(H) = —p2[H> + \H|
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The equation for extrema H(—pu?+2\H|?) = 0 yields the possible expectation values
H = 0 and |[H|? = v?/2 with the nonzero order parameter v = y/u?/\. Imposing this
second possibility as a constraint, the original SU(2)7, x U(1) symmetry is reduced to
a remaining U(1) symmetry. The constraint preserves electric charge conservation.
The energy scale v is obtained from experiments and governs all the values of the
masses.

9.3. Quark mixing: the CKM matrix.

When one accounts for the presence of N generations of matter (N = 3 experimen-
tally), one sees that in the part Lg¢ of the Standard Model Lagrangian (written in
full in §9.4] below, cf. (1.442)) responsible for the coupling of Higgs and fermions,
the coupling matrix is not diagonal. That is, the fields are not mass eigenstates.
One can transform to mass eigenstates through unitary transformations S} and S,‘%.
The expression for the quark charged weak currents then involves the quark mizing
matriz (or Cabibbo—Kobayashi-Maskawa matrix), which is a product of these uni-
tary matrices C = S¥*S%. In fact, the usual convention in writing the Lagrangian of
the Standard Model (cf. §9.4 below) is, instead of using the matrices S* and S¢ for
both up and down quarks, to have the up quarks in diagonal form while the mixing
matrix C appears in the down quarks. We are assuming all neutrino masses are zero
for the moment, so that we only have the mixing in the quark sector.

For 2 generations, the matrix C depends on just the Cabibbo angle

(1.417) C = ( cosf. sind, >

—sinf,. cosf,

while for 3 generations it has the more complicated form

Cud Cus Cub
(1.418) C=| Cu C. Cu
Cia Cis Cy

Here the entries depend on 3 angles 61,602,603 and a complex phase 4, through the
expression

1 —51C3 —S5153
(1.419) C = | sico cieoc3 — s9sges  c1cos3 + saczes |
5182 C182¢3 + C2S3€5  C15283 — C2C3€5

for ¢; = cos0;, s; = sinb;, and es = exp(id). These parameters can be determined
experimentally from weak decays and deep inelastic neutrino scatterings. Recent
measurements of the entries of the CKM matrix have been carried out in experiments
at Fermilab, in agreement with the predictions of the Standard Model, see [44].

9.4. The Standard Model Lagrangian.

In its most explicit form, the Lagrangian density of the minimal Standard Model is
given by the somewhat uninspiring expression (cf. [286]):

Lsy = —350,9%0,9% — 9s f*°0,909095 — 192 F % gbgtgigs — W FOW, —
MPWIEW, = 50,230, 2, — 57 MPZ) 7)) — 50,400, Ay —igew (0 Z)(W, W, =W, ) —
0 - - 0 - - ; -
Z,,(W;iywf —- W, aVKV,j) Jr_zu(w_jaywﬁ —W; ayzvj)) —igsu (_8,,AN(+WJWV _
WIW,) = A (WFo,Wr —Wio,W,) + A W oW, — W, 0,W,)) -
SPEWIW o WIW, + S*WIW, WIEW, + g2 (ZOW,FZOW, — ZSZOW, W) +
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22 (AW AW, — A AWIW) + P swew (A Z8(WiEW, — WHW,) —
24, ZaW W) = 50, HOWH — 5miy H? = 0,6 0,6 = M?¢7 ¢~ — 50,6°0,6° — 2;2 M?¢0¢0~
By (24 + 2201 4 L(H2 4 909" + 20 7)) + 224 (H? + Hg0¢ + 2H ¢~ ) —
s9’an ( + () +4(¢T o7 )2+ 4(Q°) 20T T +AHP T 6T +2(4°) H?) — gMW i W, H —
390 ZpZ0H — 5ig (Wi (090,07 — ¢670,¢%) = W, (6°0,0T — ¢79,0")) +
%9 (W+(Ha;4¢7 o 6HH) + W,; (H6u¢+ - ¢+a;tH)) + %Q%ZO(H@@O - 92508 H) -
192 MZO(WiEd™ — Wi ¢t) + igsu MAL(Wi ¢~ — Wi ¢t) — ig 152 20(¢+ 0,6~ —
¢~ 0udT) +igswAu(¢T 00T — 67 0u0T) — JPWIW (H? +(6°)* + 20107 ) —
§9°F 207y (H? + (¢°)% +2(2s3, — 1)%¢% ¢~ ) -3 28“’ = Zp° (Wi~ + W oh) —
Lig?se ZOH (W, ¢~ — Wi ¢™) + Sg2su A, g (Wio™ + W# 6) + LigZs, A, H(WHg™ —
W ¢t)—g? 22 (2}, —1) Z) Aot d~ —g%sh, AuAud™ o +5igs N (@7 v qf ) gji— e (0 +m)er
PO~ (7(’)+m Juy —d} (y0+mY)d} +igs, Ay (—(EM"er) + 2 (a}yru)) — 3 (d}y*d}))+
1= Zp (7 T+ AP + (A, — 1 — 7)) + (v (555 — 1 =2")d}) + (@iy*(1 -
S50 10N} + S EWi (P (1+97)ed) + (@7 (1 +9°)Onedf)) +
Wi (( B+ + <dﬁcw 1+9%)u)) +
45 (—t (7 ( —72)eN) + (L + 7)) — 4% (H(@ ) +id"(*y7e)) +
iz " (~m(@} Cae(1 = 9°)d5) +m))(a ACM(l +9°)d )) +
b (md<dkcin<1 +70)u) = i@ 0L (1= ) — § 5 H(@u)) -
% (d;‘dg\) 29 m“(bo(ukf}ﬁu)‘) g%(]ﬁ%dﬁ"ﬁd?‘) + Geo2ge +gsf“b°3uGaGbgﬁ +
XH(0? = M)X* 4 X7(0% = M?)X ™ + X0(0? — 25) X0+ YOV +ige, Wi (9, X°X~ —
O XTXO) +igsuy W0, YX™ — 0, XTY) +ige, W, (0, X~ X0 -8, X°XT) +
igsuW, (0, XY =0,V XT) +ige, Z5(0, X T X+ — 0, X~ X7) +igs, A (0, X T X+ —
0,X-X") = lgM (X+X+H X X"H+ %XOXOH) n
120 igM (X+XO¢T — X~ X09) + 5ight (XX ¢+ — XOX+¢~) +
ngsw (X°X~¢T — XOXT¢7) + Jig (XTXF¢0 — X~ X~¢°) .

Here the notation is as follows.

Gauge bosons: A, let, Zg, 9y

Quarks: u] , d;’”, collectively denoted gj'.

Leptons: e”, v*

Higgs ﬁelds: H, §°, ¢, ¢~

Masses: m/;, mg, mf, my (Higgs mass) and M (mass of the W)
¢y and s,,: cosine and sine of the weak mixing angle 6,

C\x: Cabibbo-Kobayashi— Maskawa mixing matrix

Coupling constants: g (with a = s2,g%/(47) the fine structure constant) g
2

(coupling of the strong force), oy = 4%3 (Higgs scattering parameter)
O tadpole constant

fa%: structure constants of the Lie algebra of SU(3)

Af;t Gell-Mann matrices (1.421)

Ghosts: G*, X%, X, X—, Y

The choice of gauge fixing is the Feynman gauge for all gauge fields except
the SU(2) ones and the Feynman—"t Hooft gauge (cf. §9.5/ below) for the

SU(2) gauge fields.



9. THE STANDARD MODEL OF ELEMENTARY PARTICLES 163

For quarks ¢7, the index r is the generation (flavor) index. Thus, for example, when
we write u” with x = 2, this stands for the charmed quark. The index j is the color
index.
In the case of leptons, again k is the generation index, so that, for example e for
k = 2 is the muon and v* the corresponding neutrino. In the minimal Standard
Model one assumes that the neutrinos v only appear in their left-handed chirality
vi and are massless. This hypothesis will be modified in the actual model we work
with.
The coupling constants are expressed also in the form ¢; = gtan(6,) (electromag-
netic coupling), g2 = ¢g (weak coupling) and g3 = g5 (strong coupling). One corre-
spondingly defines
_ 9; 2
(1.420) a; = ==, where ey = s;,02
47
is the fine structure constant.
The structure constants ¢, with the indices a,b,c = 1,...,8, of the Lie algebra of
SU(3) satisfy the relations
[gaygb] = ifabcga

where the g, are the generators of the Lie algebra. The f*¢ are completely anti-
symmetric in the three indices and are specified by the values

P23 o pUT _ p165 _ 246 _ 257 _ g376 _ 1 pA58 _ 4678 _ /3

The Gell-Mann matrices give the fundamental representation of the Lie algebra of
SU(3) in traceless 3 x 3 matrices. They are defined as follows.

DEFINITION 1.114. The Gell-Mann matrices Aj; are given by

010 0 i 0
Ajj = L0 0|, A= —i 0 0 |,

000 0 00

1 0 0 00 1
M= 10 -10 ], ;= 000 ],

0 0 0 1 00

(1.421) ,

00 —i 000
A = 00 0 |, A= 00 1|,

i 0 010

00 10 0
N= 00 —i M= L[lo1 o0
iJ L]

0 i 0 ‘/500—2

The matrices (1.421)) are self-adjoint and satisfy the relation

(1.422) Tr(\*\°) = 259

with 6% the Kronecker delta.

Here we have chosen to write the Standard Model Lagrangian exactly as given in
Veltman’s book [286], including the somewhat unusual choice of gauge fixing, with
the Feynman gauge replaced by the Feynman—"t Hooft gauge for the SU(2) gauge

fields (see the discussion in §9.5). The reason for maintaining the same notation
and conventions of [286] is that this is a standard reference in the physics literature
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for the full Lagrangian of the Standard Model. In the course of developing our
mathematical model in the coming sections, we will also translate the notations
from the physical ones to those of noncommutative geometry.

One of our goals in this chapter is to arrive at a conceptually clean mathematical
understanding of these data, which makes it possible to recover the full complexity
of the expression above starting from very simple principles and as small as possible
an input of data. This will be achieved through the spectral action principle for a
noncommutative spectral geometry (A, H, D) (cf. §11). In fact, we not only recover
the original Standard Model, but we can directly deal with the refined form that
incorporates neutrino masses and mixing as well as the see-saw phenomenon (cf.

1234] §7.2.4).

For the moment, we just introduce some notation, in order to write the expression
above in a more concise way. The terms of Lg)s can be grouped together in six
different types, so that we can write the Lagrangian more synthetically as

(1.423) Lsy =Ly+ Loy + Ly +Lyr+Lip+ Lyhosts-

The term L, denotes the pure gauge boson part, where we write g for the spin-1
bosons, that is, the eight gluons g, the photon A, and the intermediate bosons
Wiﬁ and Zg. The term L,y gives the minimal coupling of the spin-1 bosons with
the Higgs fields, namely the spin-0 bosons H, ¢°, ¢, ¢~. The term Lp contains
the quartic Higgs self-interaction. In addition to the coupling constants for the
gauge fields, the fermion kinetic term L, contains the coupling of fermions with
the gauge bosons which involves the hypercharges Y7, Y. The term L contains
the Yukawa coupling of the Higgs fields with the fermions. In these two terms f
stands for the spin-1/2 fermions, namely all quarks uy, dj, with the upper generation
index and the lower color index, and leptons e”, v* with the upper generation index.
We then have the remaning term Lgposs, Which contains the kinetic terms of the
Faddeev-Popov ghosts G*, X%, Xt X~ and Y, as well as their interactions with
the gauge and Higgs fields. All these ghost terms are gathered at the end of the
long explicit formula for Lg3;. They have the important property that they can be
obtained canonically from the other five terms Ly + Loy + Ly + Lgp + Liy, using
the general technique of gauge fixing, which we explain briefly in §9.5/ below. The
difference between the Feynman and Feynman—"t Hooft gauge in the gauge fixing is
also discussed in §9.5/ below. The gauge fixing term Lgy is then combined with the
kinetic terms for the gauge fields.

9.5. Quantum level: anomalies, ghosts, gauge fixing.

Up to now we have only introduced the Standard Model at the classical level. How-
ever, to make computations that can be experimentally tested one needs not only
the tree level approximation but one needs to incorporate the quantum corrections
coming from the higher order terms, namely from Feynman diagrams with loops. It
is computationally very challenging to perform such calculations, even for a small
number of loops. It is in this context that the general tools of perturbative quan-
tum field theory and the theory of renormalization discussed earlier in this chapter
become very significant.
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The Feynman rules for QED assign the fermion and photon propagators, and the
contribution of one type of interaction vertex, which corresponds to the triangle ver-
tex of the fermion photon interaction. The Feynman rules for QCD assign the quark,
gluon, and ghost propagators and the contributions of various types of interaction
vertices: the triangle vertices corresponding to a three-gluon vertex, a quark-gluon
vertex, or a ghost-gluon vertex, and a valence four four-gluon vertex. In the elec-
troweak case, the Feynman rules are still more complicated and they involve more
propagators and interaction vertices: the propagators associated to the Z and W
bosons, to the charged Higgs, vertices of fermion-boson interaction, etc (see e.g.
[167]). In our discussion we will only encounter explicit quantum correction calcu-
lations when we use the renormalization group equation and the corresponding beta
functions at one or two loops to obtain predictions at ordinary energies from the
relations that can be derived in our model at unification energies, see §17.2, §17.6,
§17.10.

An interesting phenomenon that appears when one considers higher order corrections
is that certain apparent symmetries of the Lagrangian turn out not to be symmetries
of the theory. This is due to the presence of anomalies. The typical case, which we
return to discuss from the point of view of noncommutative geometry later in this
chapter, is the azial U(1) symmetry. The QCD Lagrangian (if quarks were massless)
would have a symmetry

(1.424) Y +— exp(—ifys) 1.

However, this symmetry does not survive at the quantum level due to anomalies.
Anomalies can be thought of as a problem with change of variable in path integrals,
by the effect of which what is classically a conserved current (by Noether’s theorem)
associated to the symmetry is no longer divergence-free due to quantum corrections.
The divergence free condition for the classical Noether current is reformulated in
terms of Ward identities between Green’s functions.

In general the Ward identities determine relations between the Green’s functions
arising from symmetries of the Lagrangian. These influence the renormalizabil-
ity of theories with nontrivial symmetries, by ensuring cancellations of divergences
between different sectors of the theory. There is a very interesting and subtle in-
terplay between symmetries, Ward identities, and perturbative renormalization, see
e.g. [60]. We discussed in the previous part of this chapter a mathematical formula-
tion of perturbative renormalization based on Hopf algebras, Birkhoff factorization,
equisingular connections and affine group schemes. The compatibility of the Connes—
Kreimer theory and this general formalism with gauge transformations and Ward
identities was recently proved by van Suijlekom for QED in [277] and in the more
general case of nonabelian gauge theories in [278]. A subtle point is that the Ward
identities can be affected by higher order corrections, which can generate anomalous
terms. In gauge theories, the problem arises primarily from fermions coupling to
gauge fields, as in the Adler-Bell-Jackiw (ABJ) anomaly which manifests itself in
the renormalization of 1-loop diagrams (triangle fermion loops).

In the DimReg regularization scheme, the ABJ anomaly is closely related to the
problem of defining 5 for complex dimensions (cf. [176]). We discuss later how this
can be formulated in the context of noncommutative geometry, in §19/ below.

In the case of electroweak interactions where the vector boson associated to the
weak interaction acquires mass through the Higgs mechanism, renormalizability is
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achieved by showing that the theory is obtained via a formal transformation of the
fields from a renormalizable gauge theory (the latter can have non-physical particles
that may spoil unitarity, cf. [168]). For such a formal transformation to be possible,
one needs to be able to renormalize the gauge theory in a gauge invariant way. This
can be spoiled by the presence of the ABJ anomaly, as shown in [152]. Namely, in
the case of interactions involving the Noether current of the classical axial symme-
try (1.424), at the level of 1-loop quantum corrections, triangular diagrams do not
preserve the current conservation that exists at the tree level. Unless the anomalies
cancel out the theory ceases to be renormalizable. The cancellation of anomalies
gives an important constraint on the theory. The question of constructing gauge
theories that are free of anomalies, both for electroweak and strong interactions,
was considered in [141], where conditions are given on which gauge groups and rep-
resentations will satisfy the vanishing of the ABJ anomaly for triangle diagrams.

In the case of gauge theories, the Ward identities (or Slavnov—Taylor identities) are
related to the symmetries by Becchi-Rouet-Stora (BRS) gauge transformations. For
instance, in the SU(2) case, the Lagrangian

1 _ _
(1.425) L= = Fi U 4 i Dy — map,

with Dyip = (9, — igAlT*)¢ and Ff, = 9,A% — 9, A% + ge™ AL A¢, is invariant

under local gauge transformations

(1.426) op = —iT0"p and  GA% = 0P A — g1 0,0

One considers the additional gauge fixing term and Faddeev—Popov ghost terms,

which give the resulting Lagrangian

(1427) Z =L+ £ﬁx + £ghost7

where

Lax = 52(0,4%)2

(1.428) : ,2’5( )
['ghost = Zcza'u(&zbau - geabcAZ)Cba

with ¢ the ghost field.

In the case described above of the Standard Model Lagrangian, the gauge is chosen
to be the Feynman gauge, which is as in (1.428) with £ = 1, for all the gauge fields
except for the SU(2) gauge fields. One advantage of the choice £ = 1 is that the
kinetic terms for the gauge fields in (1.425) are simply given by

]' a a
(1.429) — SOu AL DA,

The gauge chosen for the SU(2) gauge field W/ in the Standard Model is the
Feynman—"t Hooft gauge, of the form

1
(1.430) Lax = = C*,  with C,= —0,W!+ M, ¢,

Here M, is the mass of the massive vector boson W,. The change of variables from
the isospin indices W, ¢, to the standard (Z, W*), (¢°, ) notation is given by

0 _ + _ Wi—iWs — _ Wi+iWs
Z — W() B W — \/i 3 W - \/i bl

= ¢y, o= ¢1\—/%¢>2 . ¢ = ¢>1j}%¢2 )

(1.431)
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Thus, one can expand the gauge fixing term in the form

Lix= —5(0,W4) — 262 M?¢0¢0 — M?¢t ¢~
+ M(i(bO@MZg + o GMWJ + ¢+8#le).

We separate the terms of this expansion as

(1.433) Loy = L feyn + LhE + Leross,

where the cross terms form the last group.

(1.432)

The ghost terms were gathered at the end of the formula for the full Lagrangian in
the form
»Cghost = éa?QGa + gsfabcauéaqbgz
+XH0? - M)XT + X (0 - M?) X~
+X0(9? — 22)X0 + VoY

+zgcwW+( 9, XX~ — 9 L XTX0)
+igsy,W (8 YX~ -0 X+Y)
+ige, W, (8 X-X%—-9,XXT)
+igs, W, (8 XY -0 YX*)

(1.434) —I—ingZdu( XtXxX+t_9 X_’ X)
—H’gswA (8 XtTXt-9,X"X7)
—LgMm (X+X+H + XX H + FXOX°H)

+12ij igM (Xt X% — X~ X%")

+5igM (XOX ¢t — XOXT¢7)

+igM sy, (XOX o — X'OX*(b*)

+3igM (XTXT¢? — X~ X ¢9) .
We ignore them in the analysis of the Lagrangian, since they are obtained in a
systematic manner from the other terms. The appearance of the Feynman gauge
fixing terms Lg, will hardly be noticeable, since in the Feynman gauge they are
almost invisible, by just changing the summation on indices in the gauge kinetic
terms. On the contrary, the appearance of the Feynman—"t Hooft gauge fixing terms
will be quite noticeable. In fact, after an integration by parts, this gauge fixing
amounts to replacing

g M09 — Mo
i.e. replacing a minimal coupling term by a mass term for the Goldstone boson
components of the Higgs field.

The resulting action functional is no longer gauge invariant, but is invariant under
the BRS generalized gauge transformations. These are transformations of the form
(1.426)), where 6% is a specific type of gauge function of the form

(1.436) 0 = —gwo”,
where w is a spacetime-independent anticommuting Grafimann variable and o® is

the imaginary component of the ghost field, written in the form ¢, = (pq +i04)/V/2.
The BRS transformations also act on the ghost field as

1.437 op" = —iwd" A} /€ and b0 = —gweeab /2.
(1.437)

1
(1.435) M (;Zgau¢0 +Wiou™ + W, 0.0%) —
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9.6. Massive neutrinos.

A first step beyond the physics of the Standard Model is needed in order to account
for neutrino masses. Experimental evidence for neutrino masses comes from neutrino
oscillations. The phenomenon is observed in atmospheric neutrinos produced by
the interaction of cosmic ray protons with atomic nuclei in the upper atmosphere.
These interactions produce electron and muon neutrinos. The experimental count
of the ratio of these two types of neutrinos however is not in agreement with the
expected ratio. This is understood as a sign of the presence of oscillations between
the different flavors, i.e. the presence of mass eigenstates that are a superposition
of muon and electron types. In fact, if neutrinos are no longer assumed to be
massless, then, just as in the case of quark mixing, the mass eigenstates will be a
mixture of the three generations v, v, v;. This is neutrino mizing and, as in the
case of the CKM matrix for quarks, it is governed by a neutrino mixing matrix,
the PMNS (Pontecorvo-Maki-Nakagawa—Sakata) matrix. Neutrino oscillations are
seen as the experimental signature of the presence of neutrino mixing. Another
evidence for neutrino oscillations comes from the so-called “solar neutrino puzzle”,
by which the amount of solar neutrinos detected on Earth appeared to be in defect
of the theoretical models for solar emission, until it was found that a fraction of
the electron neutrinos emitted by the Sun seems to convert into other flavors before
reaching the Earth. For a detailed discussion of experimental evidence of neutrino
masses and its theoretical implications, see [234].

In the “minimal Standard Model”, as we have seen above, neutrinos are mass-
less. The observations of neutrino oscillations therefore represent the first source
of evidence of physics beyond the Standard Model. There are various models
that extend the minimal Standard Model we discussed above and account for neu-
trino mixing. Most require expanding the field content of the minimal Standard
Model. This is the case, for instance, in the so called Left-Right symmetric models,
where the group SU(2)r, x U(1)y of the electroweak theory is replaced by the larger
SU(2)r, x SU(2)g x U(1)p—r, and the relation (1.413)) is replaced by

B-L
(1.438) Q=1+ r+ :

The Higgs sector also changes in general in such models (cf. [234], §7 and §8). The
model that we obtain from the mathematical input we describe in section §13/ below
is in fact the minimal extension of the Standard Model that incorporates neutrino
mixing and has a see-saw mechanism (see §17.5 below) that accounts for the fact
that the observed bounds on neutrino masses makes them so much lighter than the
charged fermions.

In this type of model neutrino masses are incorporated by changing the fermionic
content of the minimal Standard Model by adding right-handed neutrinos. This
brings about a necessary discussion on the description of neutrinos as Dirac or
Majorana fermions.

9.6.1. Dirac and Majorana fermions.

For the moment we assume that we work in Minkowski space. Suppose given a
fermion v, of left-handed chirality, i.e. such that %(1 +95)¢r = ¥, where %(1 +95)
and %(1 — 75) are the chirality projections. Let ¥r denote the image of ¢;, under
the composite CPT symmetry of (1.407), that is, the right-handed state of the
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antiparticle. Similarly, one has states ¢r and &L. If the fermion is charged, then
&R and 1pr have opposite charge and same helicity. In particular, if the fermion
1) is a massive particle, hence it moves at speeds strictly smaller than the speed of
light, a boosted observer that overtakes the velocity of a particle ¥, will then see a
right-handed object, but with the same charge. In the absence of charge, however,
one has the possibility of identifying the states @@R and ¥g and similarly the states
1, and QﬁL. Spinors for which this identification holds are called Majorana spinors.
If one does not have this identification, one talks about Dirac spinors. These have
twice as many degrees of freedom as Majorana spinors.

In the minimal Standard Model, the left-handed neutrinos v, are relativistic parti-
cles, that is, being massless they move at light speed. In this case, it makes no sense
to talk about the possibility of a different chirality seen by a boosted observer. One
says that the vp of the minimal Standard Model are Weyl spinors.

In extensions of the Standard Model where neutrinos have masses, one needs to
consider also the right-handed state vp seen by a boosted observer and similarly
one has the 7, and D states. Since neutrinos do not have charge, it is possible to
either consider these as different states, or identify vy, = 0, and vg = Dg, so that
neutrinos are their own antiparticles. It is this description of neutrinos as Majorana
spinors that will appear naturally in our model.

Our model will be derived after a Wick rotation to Euclidean signature. It is well
known that, unlike Dirac spinors, Majorana spinors do not have a Euclidean ver-
sion. This seems to pose a serious problem with the picture we just described for
massive neutrinos. However, as we discuss in detail in §16.2 below, we can use a
formalism based on the Pfaffian and Grafimann variables to provide a substitute for
the formalism of Majorana spinors in the Euclidean setup. This role of the Pfaffian
is quite well known in the physics literature; see for instance [171], [184], [238].
For Majorana spinors, the mass terms in the Lagrangian can be written in the form
(cf. [234], §4.5)

1 - - 1 _—
(1.439) 3 AZ UYALS YRR + 5 ; YALS VkR-

Here S is a symmetric matrix. In particular, in the special case where this matrix

is of the form
(VA
SH)\ - < T 0 ) Y

one can identify a pair of Majorana spinors with a Dirac spinor and obtain a Dirac
mass term. In the general form, where S, also has a diagonal part, we will see
that the relative size of the terms in the matrix & will be the source of the see-saw
mechanism (see §17.5 below).

One sometimes refers to the off-diagonal part of Sy, as the Dirac mass terms and
to the diagonal part as the Majorana mass terms. For a pair ¢ and x of Majorana
fermions, the Dirac mass terms correspond to cross terms of the form 7% ¥ g and
T)’(LqﬁR and Hermitian conjugate, while the Majorana mass terms correspond to
cross terms involving ’(ZL@/A}R and yYrxgr. We see in the next subsection how such
terms appear in the modified Standard Model Lagrangian.
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9.6.2. The modified Standard Model Lagrangian.

We now describe more precisely the modification to the Standard Model Lagrangian
of §9.4/that will be relevant to our setting and which incorporates massive neutrinos,
the Pontecorvo-Maki—-Nakagawa—Sakata (PMNS) mixing matrix, and the Majorana
mass term for neutrinos.

The terms of the original Lagrangian of §9.4 that need to be modified are those of
the form

— Mo
i 7+ (pAh 5) A
(1.440) 22[% (:7 (1+75)6A)
: z\ngu (" (1 ++°)?)

+5 82 (—t (P (1= 7)) + 67 (1 + 7))

This part of the Lagrangian is replaced by the terms

— (40 +mpy)v*
;ngJ (7 (1 + %) CIP yse®)
+55Wi (@ ( B CIepl (1 4+ )
(1.441) QMwb* (=mE(PACIP (1 = 4%)e) + mp (P C'P . (1 + 7)e”))
s (MA@ (1 97)0%) = mi (] (1= 7))
—%%H(ﬂ ) 197” (Z)O(V)\,Y5V)\)
— 1 ME (1 —%)0, — *V,\MR (1 =750

while all the remaining terms of the Lagrangian of §9.4/ are unchanged.

In (1.441) the matrix Cf\e,f is the analog for leptons of the CKM mixing matrix for
quarks, namely the PMNS matrix. The last term is the Majorana mass term with
matrix M ﬁ.

Notice that, for simplicity, we used in (1.441) the same convention for leptons as the
one usually adopted for quarks. Namely, we wrote the “up particles” in diagonal
form and the “down particles” with the mixing matrix. In the lepton sectors the
role of the “up particles” is taken by the neutrinos and that of the “down particles”
by the charged leptons. The convention we follow is different from the one usually
adopted in the literature on neutrino physics, where it is more natural to have the
mixing matrix C'P for the neutrinos, since this plays a crucial role in the theoretical
description of neutrino oscillations (cf. e.g. [234] §11.3). It is convenient here to
adopt the convention as in (1.441) for the reason that it allows us to write the
Majorana mass matrix M /{i in a simpler form.

In the following, when we write Lgas we mean the Standard Model Lagrangian with
the terms (1.440) replaced by those of (1.441)).

REMARK 1.115. To avoid confusing notation, we will reserve the notation Lg3; and
Lry, Lgr for the terms of the full Lagrangian that include the extra terms (1.441)
for mixing and Majorana masses for neutrinos, while when we want to refer to the
corresponding terms (1.423)) for the minimal Standard Model Lagrangian of §9.4,

with the terms (1.440) instead of (1.441), we denote them by L2 and %‘;}, g}in,
etc.



9. THE STANDARD MODEL OF ELEMENTARY PARTICLES 171

We write here in detail the various terms of (1.423) for the case with neutrino mixing.
We return to discuss each of these terms in §17/ below, where we show how to recover
each part of the Lagrangian from our noncommutative geometry model.

Yukawa coupling of Higgs and fermions:

(1.442) Lyf =

—Pmv —erm et — 713\ miu} —d}m d;‘ +
s (TP =7)et) + 67 (@1 + 7)) — §5F (H(@e?) +ig°(e°e)) +
Sl (—mB(@ Canl(1 = 22)d5) + md (@ Con(1+ 7)) ) +
TR (md<d*cin<1 +97)u) = mi( @)1 - 7)) - §
de H(d/\dA) Zéqm qu(u)\,ySu)\) Zg md ¢O(d>\ 5d
= f¢+( (7 CePy(1 — 7P)e >+my< s (1 +7%)e")) +
o (M) (14 7)) — mﬁ(ékclephu — W) = §RH

%%(ﬁo(zf‘ffﬁ‘) DA Mﬁ (1 -0, — %DA Mﬁ(l — ¥5) .

Notice that we have grouped the Majorana mass terms inside the Ly ¢ part of the
Lagrangian, as well as the Dirac mass terms —z*m)a?, for z € {v,e,u,d}. The
reason will be clear in §17/below where we derive the various terms of the Lagrangian.

Gauge-fermion couplings:

(1.443) ng =

Ligs N (@7 7q7) gt — 8 (70)er — POt — @ (v0)u} — &} (70)d} +
igswdy (—(e9eY) + H(@yu)) - %@-wd?)) + 2L Z{(P (L4 7)) +
(@ (4ss, — 1= 7P)er) + (v (585, — 1= 7°)d)) + (3" (1 — §s2, + 97 )uj)} +
Wit (W14 97)Credy) + 5 W (J;cmm +9%)u) +

AW (P (14 72)CPe®) + S5 W (e Clerlian (14 47)Y))

Notice that we have split each term of the form —z*(yd + m})z?

in Lgp, for
r € {v,e,u,d}, into a term —z*m)a?

in Ly and a term —z M0z in Lys.
Higgs self-coupling:

(1.444) Ly =

—§miH? = By (B + BLH 4 J(H? + 0090 +26767)) + D0, -
gon M (H3 + He"¢" +2HoT¢™) —
g9%an (H* + (¢)' +4(¢T¢7)% + 4(¢°)%0T ¢~ + 4H?¢ ¢~ +2(¢°)°H?) .
Self-coupling of the gauge fields:
(1.445) L, =
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—30,900u95 — 95 f 0,90 0095 — 1921 f % gbgtglal — W FO,W, —
MPWEW, = 50,230, 2)) — 557 MPZ)Z)) — 50, Au0u Ay — igew (0 Z3 (Wi W, —
W) - ZBEW;%W,;?— W,;a,,Wg) + gﬁ(W;@W,a— W;auwp) -
ig95w (O Au(WIW, = WSIW,) = A, (Wro,W, — W 0,W,5) + A (W oW, —
W, 0,W.H) = 52 WIW WIW, + 3 WIW, WiEW, + g*c (Z0W,F Z0W, —
ZOZOWIW) + g st (AW IEAW, — ALAWIW, ) + g% swew(A Z)(WEW, —

WIW.) =24, Z5W,W,).

Notice that here we are using the Feynman gauge fixing for all the gauge fields. For
the transition between the Feynman—'t Hooft gauge of the Lagrangian written as in
§9.4 (as in [286]) and the Feynman gauge see the discussion in §9.5 above.

Minimal coupling of the Higgs fields:
(1.446) Li, =
~50uHOH — 0,¢™ 0™ — 50u0°0,¢° — gMW W H — 392 Z)Z)H —

) 519 (Wi (¢"0,0™ — ¢~ 0,0°) — W, (¢°0,0T - di* ) +
39 (WiH(HOup™ — ¢~ 0,H) + W, (HOu¢™ — 670, H)) + 59 Z0(HOu¢°— %0, H) —
. 32 _ — . — — . —_ 02 —
ige MZY(W,F ¢~ — W oh) +igsy MA,(Wie™ — W, ¢%) —igio2e Z0(¢+ 0,0~ —

¢~ 00" +igswAu (T O™ — ¢ 0u0T) — 1PWLIW, (H? +(6°)° + 2017 ) —

82 — —
§9° =z 207, (fl2 +(¢")2 +2(2s7, — 1)1 97 ) — 39222 Z00O(Wf o™ + W, o) —
59?22 Z0H(W,F ¢~ — W 6%) + 59750 Aud®(W,So™ + W, oh) +

%iQQSwAuH(WJQb_ - W;:¢+) - 92%(261211 - 1)Z2A,u¢+¢_ - QZS%UAMAN¢+¢_ +

M (L 208,0° + Wio,6™ + W, 0,0").

Cw

9.7. The Standard Model minimally coupled to gravity.

The minimal Standard Model, as well as the extension by the terms (1.441) with
neutrino masses, do not include gravity. The model we are going to discuss is a
further generalization, which is usually referred to as the Standard Model minimally
coupled to gravity.

Let us first recall a few things about gravity. At the classical level, gravity is de-
scribed by the theory of General Relativity. The dynamics is described by the
Einstein field equation (cf. Weinberg [299] 7.1.13)

1
(1.447) R, — §ng —Aeg = 871G T},

where we set the speed of light to ¢ = 1, g, is the metric tensor with Lorentzian
signature (—,+,+,+), Ty is the energy-momentum tensor and G is Newton’s grav-
itational constant.

The Riemann curvature tensor is given by

(1.448) R, =019, — 0,1, +T7 T —T0 17
with the Christoffel symbols

1
(1~449) Fi\w = ig)\ﬁ (augfw + 8Vgnu - angul/) .
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The tensors R, and R are given by

(1.450) Ry = R\,
and
(1.451) R=R,,g".

Notice that the above sign convention for the curvature tensor (1.448)) is such that
R is equal to —2K for the 2-sphere with Gaussian curvature K. We follow [203]
and use the term Ricci and scalar curvature for the tensors —R,,, and —R.

Notice that Wald ([290] 4.3.21) has the opposite sign convention for the Riemann
tensor with respect to the one we are following here, which is the one of [299].
The left-hand side of the Einstein equation (1.447) can be explained by considering
the most general type of tensor

Suu = a19uv + G’QRMV + CL3RQW7

with a; € R, and imposing that it satisfies the same condition 9*S,, = 0 as the
energy-momentum tensor, for which one knows that 0#T),, = 0.

The left-hand side of Einstein field equations (1.447) can be obtained from the
Einstein—Hilbert action

1

1.452 S = Rdv + 2A d

(1.452) en(o) = oo ([ Raveon. [ av),
with dv = \/§d4az. This has Lagrangian density

1 2A

1.453 Lpn = R .

(1.453) FH = 626" T T62G
The term 126/7\TCG v is the cosmological term in the Einstein-Hilbert action.

It is important to keep track of all the sign conventions. Notice in particular that
the sign in front of A, is the same as that of the Rg,, term.

DEFINITION 1.116. The Lagrangian density for the Standard Model minimally cou-
pled to gravity is then simply of the form

(1.454) L=Lgy~+ Lsnm.

To understand why this is a good choice of Lagrangian for the minimal coupling of
matter and gravity, we review briefly the argument given in §12 of [299].

In §9.4/and 9.6.2 we have considered the Standard Model Lagrangian (or its modifica-
tion) in flat Minkowski space. One can, in fact, write the corresponding Lagrangian
in any assigned Lorentzian metric g,,. The expression becomes correspondingly
more complicated, as the explicit expression of the metric tensor appears in all the
inner products and pairings involved (physically, in all the raising and lowering of
indices). In (1.454) one should think of the Standard Model Lagrangian as written
with respect to a Lorentzian metric g,,,,, for which the Einstein—Hilbert Lagrangian
density is also computed.

Let Sgps be the action corresponding to the Lagrangian density Lgps. Then the
corresponding energy-momentum tensor is obtained ([299] §12.2) by considering
the “functional derivative”, i.e. the first variation 6Sgy; of the functional Sgps with
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respect to g, and writing it as a linear functional of the infinitesimal ég,, in the
form

1
(1.455) 8Ssn = 3 / T §g, /g d*z,

The expression (1.455) defines the energy-momentum tensor T#. The vanishing of
0Ssns is a generally covariant condition, since Sgps is a scalar. Thus, one has the
condition dSgps = 0, which gives the energy-momentum conservation.

Thus, this shows that the Lagrangian density (1.454) is the correct choice that
accounts for the effects of gravitation on matter and of the mass contribution of
matter to the gravitational field. In fact (cf. [299] §12.4), the variation ¢S for the
total action with density (1.454) takes the form

1 1
—_ | V1 74 _ Ny v 4
5= forca /(R 59" R = Acg™ +8nGT")ogu \/gd'x + 0S5,

so that the stationarity condition corresponds to the Einstein field equations (1.447)
with the energy-momentum tensor.

It is convenient, in order to use the formalism of spectral triples in noncommutative
geometry (which we introduce in §10.1 below), to work with Euclidean instead of
Lorentzian signature. Here one has to be careful in spelling out precisely the con-
ventions about signs. Passing to Euclidean signature amounts to performing a Wick
rotation to imaginary time, i.e. replacing time by the change of coordinates t — it.
What really matters as far as signs are concerned for the Euclidean action functional
for gravity is that the kinetic terms have the correct positive sign to ensure that the
functional is bounded below. It is well known that such positivity is spoiled by
the scalar Weyl mode ([165]). Thus, one has to ensure that all other terms get a
positive sign. To get some familiarity with this action functional we perform the
simple computation of the kinetic terms explicitly (cf. [131] equation 4.1.4).

Let M = R* = V, with the metric Guv = Ouw + €, Where € € C°(M, S?2V) is a
smooth map to symmetric real 4-matrices. Let dv = \/§d4x, with g = det g,

ProOPOSITION 1.117. The second variation around flat space of the functional

1
(1.456) S(g) = 6nC /MRdv,

1s given by the quadratic form associated with the translation invariant second order
operator with symbol given, up to the factor 16mG, by

(1L457)  (0(€)(0)€) = {(TH() ~ (Tre) € + J(Tr(e)et, &) — (e6, )

The operator o(&) (£ # 0) has a four-dimensional kernel, one negative eigenvalue
and its restriction to the subspace {e|Tr(e) = (e£,£)} is positive.

PRrOOF. For the fully covariant components of the Riemann tensor (cf. [299]
Equation 6.6.2), one has the expression

R)\/J,I/Ii = %(gku,ﬁ,u + Ixpu v = Guukd — g/@)\,,uz/)
g (0T = DL,

where we use the standard abbreviation gy, ., = 0x0u grv-

(1.458)
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As above let € € C°°(M, S?V) be a smooth map to symmetric real 4-matrices, for
M =R* = V. We just need to compute the terms of order two in € in the expression

R\/G= g™ ¢"" Ry (det gu) /2

The term g,y (I'],1'%,, — I'],,'7,) is of order two in ¢, hence it just contributes by
A
o 6MN5UU(FZAFZH - FZAFZV) = F?/VIWLM - ]‘—WI]//LF?Z/M
This gives
% ((—€vwin + 2€q0) (=€ + 2€nu,p)

— (—€vpn + €+ Enpw) (—€vpn + € + Enpw))-

To get the contribution of these terms to o(§) one just replaces each €,,, by €., &,.
This gives

(1459)  ~DTHE)E 4 (TroP & — Tr(e)(et,€) + 5 (e, e€).

The term %(gAV’W + Grp v — Guvr — Grau) is of order one in € and it combines
with the terms of order one in € in the product g™ g"* (det gm,)l/ 2. These give
—Ox €ur — Exv Opur + % Tr(e) 0xp 0. The contributions of these terms to the symbol
give

(1.460) 13(62)52-—»é'(IT€)2§2-+»g'IT(e)<ef,§>-— 2 (€€, €€).

Adding the contributions (1.459) and (1.460) one gets (1.457).

The kernel of o(&) is the four-dimensional space of symmetric matrices of the form

e = [m) &l +1€)(nl,
with n € V. 0

This shows that, after adding the gauge fixing term (cf. [131] equation 3.7.9)
(1.461) Slte— 5T
. 5lle = 5Tre)]”,

which corresponds to the harmonic gauge Az = 0, the restriction of the kinetic
terms to the subspace of “unimodular gravity” given by the condition Tr(e) = 0
is positive definite. Indeed, the gauge fixing term restricted to the unimodular
subspace is simply %(e{, e€). It adds to the symbol o(§) to give %Tr(eQ) on that
subspace.

Notice that positivity fails unless one adds the gauge fixing term. This suggests
that one should perform the Euclidean functional integral by integrating first over
the space of metrics g,,, with a fixed volume element w = \/§d4x. The next step is
then to perform the functional integration not only over all volume forms on a fixed
background manifold M, but also over all manifolds. As we see below in §18| the
two pieces of data given by the manifold M and the volume form w merge together
in a single datum in the framework of noncommutative geometry, where a refined
incarnation of the volume form as a Hochschild cycle also contains the required
information for the reconstruction of the manifold.
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REMARK 1.118. Under a rescaling of the metric by a positive scalar function €2, i.e.
for the new metric G, = 0?2 Juv, the scalar curvature transforms as

(1.462) R(G)=Q2R(g) +6eQ2AQ,

where the sign € = +1 depends on the convention in the definition of the scalar
curvature (one has e = 1 with the above convention). To obtain the physical sign
of the Euclidean action of gravity ([165] §15.4) what matters is that the kinetic
terms for {2 appear with a negative sign in the action, i.e. that one gets the term
QAQ (coming from (Q73AN)VG) with a positive sign. One then takes for g the flat
metric and Q = (14 £ p?)~! which (for K > 0) gives the round sphere. At the origin
p = 0 one gets A = —2K and thus the physical sign of the Euclidean action gives a
negative contribution for the sphere. This agrees with Proposition [1.117 since with
our convention R is negative for the sphere.

9.8. Higher derivative terms in gravity.

It is well known that gravity as a field theory is a nonrenormalizable theory. How-
ever, at sufficiently low energies (which include the unification energy at which our
model is considered) it can be treated using an “effective field theory” approach
that separates out the low energy quantum corrections from the troublesome high
energy terms. In the effective field theory approach (see e.g. [122]), one considers a
Lagrangian that, in addition to the usual Einstein—Hilbert part (1.453)), also involves
higher derivative terms. These higher derivative terms have no effect at low energies,
but become dominant at higher energies and in fact are sufficient to correct for the
non-renormalizability problem, as shown in [275].

The first type of Euclidean higher derivative terms that are usually considered are
those that come from invariant expresssions that are quadratic in the curvature, cf.
[275]. The general form of these terms is ([122], [58])

1 w 6
1.463 / <C 5 CHP7 — — R% 4 E) gd'z.
( ) M 27,’ Hvp 377 n f

Here C\ppoe CHP9 is the square of the Weyl curvature tensor and F is a topological
term (cf. (1.599) (1.600) below) that integrates to the Euler characteristic

1
— E gd*z.
327'['2 /M \/§ v

In §11.4] and §16.1 below we show that higher derivative terms appear naturally
in the Lagrangian obtained from the expansion of the spectral action functional
described in §11] below. We return in §17.11] below to discuss the running of the
parameters 7, w and 6 in (1.463) under the renormalization group equation and
their role in our model of matter coupled to gravity. The theory is only an effective
theory whose validity, in particular for the gravitational sector, is limited to energies
up to the unification scale. Its breakdown as a fundamental theory is witnessed by
the various poles of the running couplings when extended beyond the Planck mass
as well as the presence of a tachyon pole in the propagator for gravitons.

(1.464) X(M) =
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9.9. Symmetries as diffeomorphisms.

We now describe a very basic reason that justifies the transition from commutative
to noncommutative geometry.

An aspect of gravity that one would like to carry over to the theory of elementary
particles is its geometrization, achieved by General Relativity. This manifests itself
through the fact that the group of symmetries of gravity is given by diffeomorphisms
of the underlying differentiable manifold structure of spacetime.

The scenario one can envision is a complete geometrization of the Standard Model
coupled to gravity. This means turning the whole coupled theory into pure gravity
on a suitable space. Now, this does not seem possible at first. The group of gauge
invariance for the Einstein action Spy = [ EEH\/§d4x is the group Diff (M) of
diffeomorphisms of the manifold M and the gauge invariance of the action is simply
the manifestation of its geometric nature. However, the full group U of invariance
of the action given by the Lagrangian (1.454) is richer than the group Diff(M) of
diffeomorphisms of the manifold M, since one needs to include the group Ggas of
gauge transformations of the matter sector Sgp = [ Loum \/§d4x. By construction,
the group Ggps is a group of maps from M to the small gauge group G = U(1) x
SU(2) x SU(3). The group Diff(M) acts on Ggps by transformations of the base.
This gives the whole group of gauge symmetries U of (1.454) (prior to symmetry
breaking) the structure of a semidirect product

(1.465) U = Gsn » Diff (M).

The traditional approach to account for the structure (1.465) of the gauge symme-
tries, is to postulate the existence of a bundle structure over space-time M, with
an action of (1.465) by bundle automorphisms. This requires an a priori distinction
of certain directions in the total space as the fiber direction, with the distinction
between base and fiber preserved by the symmetries. This is a natural develop-
ment of the Kaluza—Klein approach to electromagnetism. Rather than following
along these lines, it would seem more natural to identify a space X whose group of
diffeomorphisms is directly of the form (1.465).

This search is bound to fail if one expects to find the space X among ordinary
manifolds. In fact, a well known mathematical result due to W. Thurston, D. Epstein
and J. Mather (cf. [223]) shows that the connected component of the identity in
Diff (X) is always a simple group (see [223] for the precise statement). This rules
out the possibility of a semidirect product structure as that of (1.465).

However, noncommutative spaces of the simplest kind readily give the answer, mod-
ulo a few subtle points. To understand what happens, notice that, for ordinary
manifolds, the algebraic object corresponding to a diffeomorphism is just an auto-
morphism a € Aut(A) of the algebra of coordinates. When an algebra is noncom-
mutative, it admits “trivial” automorphisms, called inner and given by the formula

afr) =uzu™', VrcA,

with u an invertible element of A. When A is an involutive algebra the element
u is taken to be unitary (i.e. satisfying uu* = u*u = 1) so that « preserves the
involution. Moreover, inner automorphisms form a subgroup

Inn(A) C Aut(A)

which is always a normal subgroup of Aut(A).
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Let us consider the simplest example, where the algebra
A= C>(M, M,(C)) = C*(M) ® My,(C)

consists of smooth maps from a manifold M to the algebra M, (C) of n x n matrices.
One then shows that the group Inn(A) in that case is locally isomorphic to the
group G of smooth maps from M to the small gauge group G = PSU(n) (quotient
of SU(n) by its center) and that the general exact sequence

1 — Inn(A) — Aut(A) — Out(A) — 1

becomes identical to the exact sequence governing the structure of the group U,
namely
1—-G—U—Diff(M) — 1.

It is quite striking that the terminology “internal symmetries” used in physics agrees
so well with the mathematical one of “inner automorphisms”. In the general case,
only automorphisms that are unitarily implemented in Hilbert space will be relevant
but, modulo this subtlety, one can see at once from the example above the advantage
of treating noncommutative spaces on the same footing as the ordinary ones.

In the specific case of the Standard Model, we prove in §13.3, §15.1 and (1) of
Theorem [1.217 below that indeed the noncommutative space that we introduce as
the input data of the model will yield the correct symmetry group U of the form
(1.465).

The next step now is to give a brief introduction to the notion of metric on a
noncommutative space and the so called “spectral paradigm” of noncommutative
geometry.

10. The framework of (metric) noncommutative geometry

We explained in §9.9 above why it is natural to extend the framework of geometry
to “spaces” whose algebra of coordinates is no longer commutative. Such spaces
appeared naturally very early in the development of quantum physics, with Heisen-
berg’s formulation of matrix mechanics.

The extension of our basic geometric notions from ordinary manifolds to the new
class of noncommutative spaces is a fundamental aspect of noncommutative geom-
etry. An essential step is to adapt the notion of metric, i.e. the Riemannian para-
digm of geometry, to the noncommutative situation. From the standpoint of physics,
adopting a pragmatic point of view, we are looking for a notion of metric geometry
which has the following properties.

e It contains the Riemannian paradigm (M, g,,) as a special case.

e It does not require the commutativity of coordinates.

e It contains spaces X, of complex dimension z suitable for the DimReg
procedure.

e It provides a way of expressing the full Standard Model coupled to Einstein
gravity as pure gravity on a modified space-time geometry.

e It allows for quantum corrections to the geometry.

We describe below a new paradigm which fulfills all of the above requirements.
(Checking that the requirement about the Standard Model is satisfied will be our
main task in the rest of this chapter.)
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Since this paradigm is spectral, it is worthwhile to mention briefly that such spectral
notions already play a key role in physics, in particular thanks to the development
of the laser, in the concrete measurements of distances. In fact, the actual definition
of the unit of length m in the metric system is as a specific fraction %% ~
30.6633... of the wave length of the radiation coming from the transition between
two hyperfine levels of the Cesium 133 atom. Indeed the speed of light is fixed once
and for all at the value of

¢ = 299792458 m/s

and the second s, which is the unit of time, is defined as the time taken by 9192631770
periods of the above radiation. In adopting this prescription, one is assuming im-
plicitly that, as a consequence of relativity, ¢ does not depend upon the frequency of
the light, a property that is the object of crucial experimental probing. The choice
of Cesium is of course rather arbitrary and might eventually [28] be replaced by
Hydrogen, which is more canonical and more abundant in the universe.

It is natural to adapt the basic paradigm of geometry to the new standard of length.
We explain briefly below that this is indeed achieved by noncommutative geometry,
which shows moreover how geometric spaces emerge naturally from purely spectral
data.

10.1. Spectral geometry.

The Riemannian paradigm is based on the Taylor expansion in local coordinates a*
of the square of the line element, in the form

1.466 ds? = g, da* dz¥
m

and the measurement of the distance d(z,y) between two points is given by the
geodesic formula

(1.467) d(z,y) = inf/ ds
v

where the infimum is taken over all paths from x to y.

In noncommutative geometry the first basic change of paradigm has to do with the
classical notion of a “real variable”, which one would normally describe as a real-
valued function f on a set X, i.e. as a map f: X — R. In fact, quantum mechanics
provides a very convenient substitute. It is given by a self-adjoint operator H on
Hilbert space. Notice that the choice of Hilbert space H is irrelevant here, since all
separable infinite-dimensional Hilbert spaces are isomorphic. All the usual attributes
of real variables such as their range, the number of times a real number is attained
as a value of the variable, etc, have a perfect analogue in the quantum mechanical
setting. The range is the spectrum of the operator H, and the spectral multiplicity
n(\) gives the number of times a real value A € R is achieved.

As in the classical framework, a space X is described by the corresponding alge-
bra A of coordinates, which is now concretely represented as operators on a fixed
Hilbert space H. Real coordinates are represented by self-adjoint operators and it
is important to understand from the start how an ordinary “space” emerges from
their joint spectrum when they happen to commute. Thus, there is no need to start
from a set X as all the needed information is contained in the algebra of operators.
What is surprising in the new set-up is that it gives a natural home for “infinitesi-
mals”. Indeed, it is perfectly possible for an operator to be “smaller than e for any
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€’ without being zero. This happens when the norm of the restriction of the opera-
tor to subspaces of finite codimension tends to zero when these subspaces decrease
(under the natural filtration by inclusion).

Space X Algebra A
Real variable Self-adjoint
xH operator H
Infinitesimal Compact
dx operator €

Integral of |fe = Coefficient of
infinitesimal | log(A) in Try(e)

Line element ds = Fermion

/9w dxtdz” propagator

The corresponding operators are called “compact” and they share with naive infin-
itesimals all the expected algebraic properties (cf. [68], Chapter IV). Indeed, they
form a two-sided ideal K of the algebra of bounded operators on H and the only
property of the naive infinitesimal calculus that needs to be dropped is commuta-
tivity.

It is important to explain what is gained by dropping such a useful rule as commuta-
tivity. We explain this point for a specific infinitesimal, namely the “line element” ds
which defines the geometry through the measurement of distances. If an infinitesimal
commutes with a variable with connected range it follows that the corresponding
variable x takes on a specific value. In particular with z* the coordinates and as-
suming that they commute with each other and with the line element, the latter is
forced to be “localized” somewhere, which is very inconvenient. When the hypoth-
esis of commutativity is dropped it is no longer the case that the line element ds
needs to be localized and in fact it is precisely the lack of commutation of ds with
the coordinates that makes it possible to measure distances.

Thus, in noncommutative geometry the basic classical formula (1.467) is replaced
by the following

(1.468) d(z,y) = sup{|f(z) = f(y)| : fe A, [[D,fll <1},

where D is the inverse of the line element ds. We explain how one can replace
(1.467) with (1.468) in Proposition 1.119 below.

Notice that one should not confuse the “line element” ds with the unit of length.
In the classical framework, the latter allows one to give a numerical value to the
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distance between nearby points in the form (1.466). Multiplying the unit of length
by a scalar A, one divides the line element ds by A, since ds is measured by its ratio
to the unit of length.

To pass from the classical Riemannian framework to the above operator theoretic
one, the key ingredient is the Dirac operator (or Atiyah—Singer operator cf. [203])
associated to a spin structure on a compact Riemannian manifold M. One lets H =
L?(M, S) be the Hilbert space of square integrable sections of the spinor bundle and
one represents the algebra A of functions on M by simple multiplication operators

(f&)(x) = f(x)&(x), VfeC™(M) and V¢ e L*(M,S).

One then checks directly that the computation of distances using (1.468) gives the
same answer as the classical formula (1.467), in the following way.

PropoSITION 1.119. Let D = @,, be the Dirac operator on a Riemannian spin
manifold M and let H = L*(M, S) be the Hilbert space of square integrable spinors,
with the algebra C°°(M) acting on H as multiplication operators.
(1) The following conditions for f € C*°(M,R) are equivalent:
a) [[[@y, I <1
b) V(A <1
c) |f(x)— fly)| < d(x,y), where d(z,y) is the geodesic distance (1.467).
(2) For complex valued functions f € C*°(M), one has a) = b = c).
(3) The geodesic distance is given by (1.468)).

PRrOOF. (1) The operator [@,,, f] is Clifford multiplication by the gradient V(f)
of f, and the equivalence of the first two conditions follows since the operator norm
is the supremum of ||V (f)||. Integrating the Schwartz inequality |df| < ||V (f)||||dz]]
along a geodesic gives the implication b) = ¢). The implication ¢) = b) follows
choosing y* = a# + €0, f.

(2) In normal coordinates, for a, € C, the norm of the Clifford multiplication a =
> auy* is the square root of the norm of a*a = ) a,a,+b where b = ZWAV aya,yHy”
has vanishing trace, thus the norm of a is larger than /) a,a,. Applying this to
a, = O,f gives the first implication. Integrating the Schwartz inequality |df| <
IV(f)]llldz|| along a geodesic gives the implication b) = ¢).

(3) One uses the function p — d(p, x) to show the remaining inequality not directly
implied by (2). O

More generally, a refined notion of geometry (suitable in particular to deal with
spaces whose coordinates do not commute) is obtained, as in the case of the distance
described above, by focusing not on the traditional g,, but on the Dirac operator D.
This way of defining a geometry by specifying the Dirac operator is meaningful both
in mathematical terms (where the Dirac operator specifies the fundamental class in
K O-homology) and in physics terms (where, modulo a chiral gauge transformation,
the Dirac operator is the inverse of the Euclidean propagator of fermions).

The traditional notions of geometry all have natural analogs in the spectral frame-
work. Some of these analogs are summarized in the table below and we refer to [68]
for more details.
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Geodesic equation %}Et) = 1 |D|y(t)
Geodesic Flow ett 1Pl
Geodesic distance | d(z,y) = sup |f(x) = f(y)]
feAD,fllI<1
Volume form + f |ds|™
Einstein action + f |ds|™2

10.2. Spectral triples.

A (metric) noncommutative geometry is given by a spectral triple (A, H, D) in the
following sense.

DEFINITION 1.120. A spectral triple (A, H, D) is given by an involutive unital algebra
A represented as operators on a Hilbert space H and a self-adjoint operator D with
compact resolvent such that all commutators [D,a] are bounded for a € A.

In addition to the definition above, one introduces the following notions.

DEFINITION 1.121. A spectral triple is even if the Hilbert space H is endowed with
a Z/2- grading vy which commutes with any a € A and anticommutes with D.

DEFINITION 1.122. A spectral triple is finitely summable when the resolvent of D
has characteristic values p, = O(n™%), for some a > 0.

In general, the compact operators T whose characteristic values fulfill the condition
iy, = O(n~%) play the same role as the infinitesimals of order « in the traditional
calculus.

One can introduce a first notion of dimension for spectral triples, which is the metric
dimension and is determined by the rate of growth of the eigenvalues of the Dirac
operator.

DEFINITION 1.123. A finitely summable spectral triple is of metric dimension m if
the line element ds = D' is of order 1/m.

In this sense spectral triples that are not finitely summable represent infinite-dimensional
geometries. There are other, more refined notions of dimension for spectral triples.

In fact, a more refined notion of dimension for a noncommutative geometry is not
given by a single number, but by a spectrum (a subset of the complex plane), the
dimension spectrum (cf. [92]). This is the subset II of the complex plane C where the
spectral functions (the zeta functions associated to the elements of the algebra and
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the Dirac operator) acquire singularities. This notion is made precise in Definition
1.133| below. We are also going to make use of another notion of dimension for
noncommutative geometries, which is defined modulo 8 and is related to the KO-
homology class (cf. Definition 1.124 below).

Under the hypothesis that the dimension spectrum is simple, i.e. that the spectral
functions have at most simple poles, the residue at the pole defines a far reaching
extension (cf. [92]) of the fundamental integral in noncommutative geometry given
by the Dixmier trace (cf. [68]). This extends the Wodzicki residue from pseudodif-
ferential operators on a manifold to the general framework of spectral triples, and
gives meaning to -f T in that context. It is simply given by

(1.469) ][T — Res,_o T (T |D| ).

We recall these notions in more detail in §10.5/ Theorem [1.134.

For our purposes, we need to discuss a further refinement of the notion of spectral
triple, which is given by an additional real structure. This will play a fundamental
role in the case of the Standard Model minimally coupled to gravity. The notion of
real structure (cf. [69]) on a spectral triple (A, H, D) is intimately related to real
K-homology (cf. [8]) and the properties of the charge conjugation operator.

DEFINITION 1.124. A real structure of KO-dimension n € 7/8 on a spectral triple
(A, H, D) is an antilinear isometry J : H — H, with the property that

(1.470) J?=¢, JD=¢DJ, and Jy=¢e"vJ (even case).

The numbers e,¢',e” € {—1,1} are a function of n mod 8 given by

Inf[0 1 2 38 4 5 6 7]
e[1 1 -1 -1 -1 -1 1 1
g1 -1 1 1 1 -1 11
e’ |1 ~1 1 —1

Moreover, the action of A satisfies the commutation rule

(1.471) [a,0°] =0 Va,be€ A,
where
(1.472) W=JbJ ! Wbe A,

and the operator D satisfies the order one condition
(1.473) ([D,a],b’]=0  Va,be A.

A spectral triple (A, H, D) endowed with a real structure J is called a real spectral
triple.

10.3. The real part of a real spectral triple.

We now show that a noncommutative geometry described by a real spectral triple
(A, H, D, J), in the sense of Definition [1.124 above, gives rise to an associated com-
mutative real geometry (As, H, D), which we refer to as the real part of the spectral
triple.
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PROPOSITION 1.125. Let (A, H, D) be a real spectral triple in the sense of Definition
1.12j. Then the following holds.

(1) The equality
(1.474) Ary={aec Al aJ = Ja}
defines an involutive commutative real subalgebra of the center of A.
(2) (Ay, H,D) is a real spectral triple as in Definition [1.124.

(3) Any a € Ay commutes with the algebra generated by the sums Y a;[D, b;]
for a;, b; in A.

PROOF. (1) By construction A is a real subalgebra of A. Since J is isometric
one has (JaJ 1)* = Ja*J~! for all a. Thus if a € Ay, one has JaJ ! = a and
Ja*J~ ' = a*, so that a* € Ay. Let us show that A is contained in the center of
A. For a € Aj and b € A one has [b,a’] = 0 from (1.471). But a® = Ja*J ! = a*,
so that we get [b,a*] = 0.

(2) The statement follows from the fact that Ay is a subalgebra of A. Notice that
the result continues to hold for the complex algebra A; ®r C generated by A;.

(3) The order one condition (1.473) shows that [D,b] commutes with (a*)°, hence
with a since (a*)? = a as we saw above. O

Notice that, while the real part A is contained in the center Z(A) of A, it can in
general be smaller.

10.4. Hochschild and cyclic cohomology.

Given any (in general noncommutative) associative algebra A over C, its cyclic
cohomology HC*(A) is the cohomology of the complex (C},b), where C{ is the
space of (n + 1)-linear functionals ¢ on A such that

(1.475) ola',...,a" ad%) = (=1)" ¢(d°,...,a") Va' € A
and where b is the Hochschild coboundary map given by
(bo) (a°,...,a") = Z(—l)j wa®,...,d a1, a™h
=0
(1.476) + (=D a0, ..., a").

For A = C one gets HC*"(A) = C and HC?""(A) = 0.

We refer the reader to [68] Chapter III.1.« for the main properties of this cohomology
theory for algebras. Here we just recall briefly some basic notation which will be
needed later.

The Hochschild cohomology HH*(.A) is the cohomology of the complex (C™,b),
where one lets C™ be the linear space of (n + 1)-multilinear forms on A. By con-
struction any cyclic cocycle is in particular a Hochschild cocycle and one gets a
forgetful map I : HC* — HH*.

The notions recalled in the following definition are quite useful in order to clarify the
geometric significance of the basic operations, such as the map B, the cup product
@ # 1 in cyclic cohomology, and the periodicity operator S obtained from the cup
product by the generator of HC?(C).
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DEFINITION 1.126. a) A cycle of dimension n is a triple (Q, d, f), where ) =
ToSY is a graded algebra over C, d is a graded derivation of degree 1 such
that d> =0, and [ : Q" — C is a closed graded trace on <.
b) Let A be an algebra over C. Then a cycle over A is given by a cycle (Q, d, f)
and a homomorphism p : A — Q.

A cycle of dimension n over A is essentially determined by its character, i.e. by the
(n + 1)-linear functional 7 of the form

(1.477)  7(d°,...,a") = /p(ao) d(p(at)) d(p(a?))---d(p(a™)) Va’ € A.
Functionals obtained in this way are exactly the elements of Kerb N C¥.

Given two cycles Q and ' of dimension n, their sum Q @ ' is defined as the direct
sum of the two differential graded algebras, with [(w,w’) = [w+ [w’. Given cycles
Q and Q' of dimensions n and n/, their tensor product 7 = Q ® €' is the cycle of
dimension n + n/, which, as a differential graded algebra, is the tensor product of
(Q,d) and (@, d’), with

(1.478) /(w@w/) _ (—1)""’/w /w/ Vwe, o e,

One defines in the corresponding ways the notions of direct sum and tensor product
of cycles over A and the tensor product induces a corresponding cup product ¢ # 1
on cyclic cocycles. To express cyclic cocycles as characters of cycles one needs to
use the universal differential algebra Q*(.A) constructed as follows.

ProroSITION 1.127. Let A be a unital algebra over C.

1) Let Q'(A) be the linear space A @c A, where A = A/C is the quotient of
A by C1. Then the equalities

z(a®@by=ra®@by —rab®y

do=1®a€c Q' (A) Vac A,
for any a,b,x,y € A, define the structure of an A-bimodule on Q(A) and
a derivation d : A — Q(A).
2) Let € be an A-bimodule and 6 : A — &£ a derivation with §(1) = 0. Then
there exists a bimodule morphism p : QY (A) — € such that § = pod.

We refer the reader to [68] Chapter III for a proof. Proposition [1.127 shows that
we can think of (Q'(A), d) as the universal derivation of A in an A-bimodule. Any
element of Q!(A) is a linear combination of elements a db for a, b € A and one has
dl =0.

The universal differential graded algebra Q*(.A) is obtained by letting

Q"(A) = QY A) @4 QY (A) @4 04 Q(A)

be the n-fold tensor product of the bimodule Q!(A), while the differential d : A —
Q!(A) extends uniquely to a square-zero graded derivation of that tensor algebra.
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Any element of Q"(A) is a linear combination of elements a’da’ - - - da™ with o’/ € A.
The product in Q* (A) is glven by

(1.479) (a®da’ - - - da™)(a" T da™t? - - - da™)

Z ~1)"a%a' - d(a?a?Tt) - - - da™da™ T - - - da™

+ (=1)"aatda®- - - da™.
This rule follows from the requirements that Q*(A) is a right A-module and the
derivation property d(ab) = da b+ a db.

The cyclic cocycles are exactly the characters of cycles over the algebra A. Namely,
we have the following result (cf. [68] Chapter III).

PROPOSITION 1.128. Let 7 be an (n+ 1)-linear functional on A. Then the following
conditions are equivalent.

1) There is an n-dimensional cycle (0, d, [) and a homomorphism p : A — QF
such that

7(d®,...,a") = /p(ao) d(p(at))---d(p(a™) Vd°,...,a" € A.
2) There exists a closed graded trace T of dimension n on Q*(AT) such that
7(d®,...,a") =7(a%a' - -da™)  Vd°,...,a" € A.

3) One has 7(a',...,a" a) = (=1)" 7(a°,...,a") and

Z(—l)i (@, ..., aa", . a™) + (=)™ 7@ a0, .. a") =0
i=0
for any a,...,a"t! € A.
In the second statement we denote by AT the algebra of pairs (a,\) with a € A,
A € C and product
(a,\) - (', \) = (ad' + Xa’ + Na, \\).
By construction AT is unital. One needs A™" to handle cyclic cocycles which are not

normalized, in the sense of the following definition.

DEFINITION 1.129. A Hochschild cochain @ on a unital algebra, is normalized if
(1.480) 0d®,...,a") =0, if3Ij#0, o =1

It is especially useful to consider the following example.

EXAMPLE 1.130. The simplest example is the generator of HC?(C). The corre-
sponding cycle (in the sense of Definition 1.126) is given by the differential algebra

D generated by a projection e with e? = e. The two-dimensional graded trace is
given by

(1.481) / edede = 2mi.

The map p from C to D defining the cycle is given by p(1) = e. The cup product
of cycles induces a cup product in cyclic cohomology (cf. [68]) and the cup product
by the generator of HC?(C) defines the periodicity map S.



10. THE FRAMEWORK OF (METRIC) NONCOMMUTATIVE GEOMETRY 187

B ﬂcn‘
C) c’ b
C3
C2
b\ C”
I\
“B C7 g
> >
C o n
B4 b ¢
> ClO

F1cure 30. The (b, B) bicomplex

Let A be a unital algebra. One lets C" be the linear space of normalized (n + 1)-
multilinear forms on \A. The Hochschild coboundary operator (1.476) preserves the
normalization, namely one has

b- Qn N Qn+1-

A normalized Hochschild cochain ¢ of dimension n on an algebra A defines (cf. [68])
a functional on the universal n-forms Q"(A) by the equality

(1.482) / apday -+ dan, = p(ag, ai,...,an).
®
When ¢ is a Hochschild cocycle one has, using (1.479) and (1.476),

(1.483) / aw = / wa, Vae A
© ©
The boundary operator By defined by

(1484') BO SO(QO’ ety anil) = (p(l? (ZO, cty anil) - (_1)71 QO(CLO, s 7an717 1)
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restricts on normalized cochains as

(1485) (BOSD)(G(L Ay, - - 7an—1) = QO(].,CL(), ay, - - 7an—1) .

It is defined in such a way that one has

(1.486) /¢ dw = /BW w.

The operators b, B are given by (1.476) and B = ABy, where

n—1
(1.487) (Ap)(a®,....a" )y =D (1) Wp(ad o/ el
0
satisfy b> = B? = 0 and bB = —Bb. Periodic cyclic cohomology, which is the

inductive limit of the HC™(A) under the periodicity map S, admits an equivalent
description as the cohomology of the (b, B) bicomplex.

We have reported here only the basic definitions and statements about cyclic coho-
mology without proof. We refer the reader to [68] and [67] for detailed proofs of
the basic properties of cyclic cohomology, including an explanation of the meaning
of the operator

B:HH"(A) — HC™(A)

in terms of the cobordism of cycles (Theorem 3.21 of [68]), as well as a proof of the
fundamental exact sequence recalled in the following result of [67].

THEOREM 1.131. The triangle

HC*(A)

relating Hochschild and cyclic cohomologies is exact.

10.5. The local index cocycle.

We now recall briefly the local index formula in the context of noncommutative
geometry [92]. We discuss it in the even case.

Let (A, H,D) be a finitely summable even spectral triple. The analogue of the
geodesic flow is given by the one-parameter group of automorphisms of £(H),

(1.488) t — Fy(T) = Pl e=#IDI

DEFINITION 1.132. We say that an operator T on H is smooth if the above map is
smooth, i.e. if it belongs to C*° (R, L(H)). We also define

(1.489) OP° :={T € L(H)| T is smooth} .

We say that the spectral triple (A, H, D) is regular if it satisfies the condition
(1.490) a and [D,a] € OP°, Vac A.
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Notice that the algebra A is not assumed to be a C*-algebra in general i.e. it is not
norm closed. At the C*-algebra level what really matters is that the subalgebra of
elements that fulfill (1.490) be norm dense.

As we already mentioned, in the context of spectral triples the usual notion of
dimension of a space is replaced by the dimension spectrum. To define it one lets B
denote the algebra generated by 6%(a) and 6¥([D, a)), for a € A, with

(1.491) 5() = [|DI, T
the derivation that generates the geodesic flow. By construction the functions,
(1.492) G(z) =Tr(b|D|7%), R(z)>m, beB,

are analytic. Here m denotes the crude notion of dimension given by the degree of
summability of the spectral triple as in Definition [1.123.

DEFINITION 1.133. Let (A, H, D) be a finitely summable reqular spectral triple.

e The dimension spectrum is the subset II of {z € C,R(z) > 0} of singulari-
ties of the analytic functions (y(2) for b € B.

o We say that the dimension spectrum is simple when the functions (1.492)
have at most simple poles.

In order to state the local index theorem it is important to note that one can, by a
finite rank perturbation, assume the invertibility of D without changing the index
pairing ([68] IV-1-7). One simply replaces (A, H, D) by (A, H, D) where

(1.493) H=HokerD, D=D+€eR, ¢#0
where the action of A is extended to H by 0 on ker D and the finite rank operator R
is 0 on the orthogonal complement of ker D C H and is ( (1) (1) ) on the remaining

subspace ker D & ker D C H. The grading v is extended to ker D by —+ so that it
anticommutes with D.

The local index theorem is the following result (cf. [92]).

THEOREM 1.134. Let (A, H, D) be a regular finitely summable, even spectral triple
with simple dimension spectrum. The following holds.

o The equality
(1.494) ][P := Res,—o Tr (P|D|™%)

defines a trace on the algebra generated by A, [D, A] and |D|?, with z € C.
o Assumingfya =0 for all a € A, the formula

(1.495) #o(a) = lim Tr(ya e 'P%), Va € A,

defines a linear form pg on A.
e Forn >0 an even integer, there is only a finite number of non-zero terms
m

(1.496) on(a’, ... a") = ch,k][y a’[D, a1 . [D,a") k) | D]~ 21
k
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for alla? € A. Here we are using the notation TF) = V5 (T) with V(T) =
D?*T—TD?. The summation index k is a multi-indez with |k| = ki+. . .+ky,
and the coefficients cy 1. are given by the formulae

(=) I ([k[ +n/2)
2 kl!...k‘n!(kl+1)...(k1+k2+...+kn+n).

o The expression (1.496) defines the even components (¢n)n=0.2,... of a cocycle
in the (b, B)-bicomplex of A.

e The pairing of the cyclic cohomology class (p,) € HC*(A) with Ky(A)
gives the Fredholm index of D with coefficients in Ko(A).

We refer the reader to [92] for the proof of this main theorem and the detailed
regularity assumptions. In comparing the notation above and that of [92], notice
that the trace 7o of Proposition I1.1 of [92] is 1.

One of the ingredients in the proof of Theorem [1.134] will be quite useful below and
we recall it here (cf. [92]). For any r € R, one lets

(1.498) OP" ={T; |D|”™"T € OP"}.

In general we work with operators that all make sense as acting in H> = N Dom DY,
Also we work modulo operators of large negative order, i.e. mod OP~" for large N.
We let D(A) be the algebra generated by A and D considered as acting in H*°. The
main point is to show that one obtains an algebra by considering operators of the
following form,

(1.497) o

DEFINITION 1.135. Let (A, H, D) be a finitely summable reqular spectral triple. An
operator P acting in H™> is pseudodifferential iff for any N it can be written in the
form

(1.499) P=TD? modOP™, TecD(A)

The following key lemma [92] shows that such operators form an algebra.

LEMMA 1.136. Let T € OP° and n € N.
(1) V(T) € OP"
(2) D2T =Y ((-1)*V¥(T) D?72 + R, with

(1.500) R, = (-1)""' D2y t(T) D=2 c OP~" 73,
PRrROOF. 1) The equality

(1.501) IDITID| ™ =T+ B(T), B(T)=6(T) D],

shows that for T € OP° one has

(1.502) D>TD2=T+23(T)+ B*T) € OFP.

Similarly one has,

(1.503) D2TD*cOP°.

This shows that in the definition of OP* one can put |D|™® on either side.

To prove 1) we just need to check that V(7)) € OP! and then proceed by induction.
We have V(T) = D?T — TD? = (D?*TD~2 -T)D? = (28(T) + p*T))D? =
20 (T) |D| + 6*(T),

(1.504) V(T) =26 (T) |D| + 6*(T),
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which belongs to OP?.

2) For n = 0 the statement follows from
(1.505) D2T=TD?-D2V(T)D 2

Next assume we have proved the result for (n — 1). To get it for n we must show
that

(=1)"Vv™(T) D22 4 (—1)"F D2yt (1) D22
(1.506) =(-1)"D2V™(T)D*".
Multiplying by D?" on the right, with 77 = (—1)" V"*(T'), we need to show that
T"D?2?-D?*V(T')D*=D?*T,
which is (1.505). O

COROLLARY 1.137. Let (A, H, D) be a finitely summable reqular spectral triple. The
pseudodifferential operators form an algebra of operators acting in H* = NDom D .

10.6. Positivity in Hochschild cohomology and Yang-Mills action.

Let 7 be a Hochschild 4-cocycle on an algebra A. Let Q'(A) be given by Proposition
1.127. The Yang-Mills action is given by

(1.507) Y M, (A) = /(dA+A2)2, VA € Q'(A),

T

where the integration [ is defined as in (1.482).
The action (1.507) is automatically gauge invariant under the gauge transformations

(1.508) A—y(A)=udu" +uAu*, Vue A, uwu" =u"u=1

In fact, F(A) = dA + A? transforms covariantly, that is, according to F(v,(A)) =
uF(A)u*.

This action functional and its precise relation with the usual Yang—Mills functional

is discussed at length in [68] Chapter VI.

Positivity in Hochschild cohomology was defined in [76] for even-dimensional Hochschild
cocycles 7 € Z?"(A) as the condition

(1.509) / ww* >0, YweQ

where the adjoint w* is defined by
(1.510) (apday ---day)* = (—1)"da;, --- dajay, Vaj€ A

It then follows easily (cf. [68] Chapter VI) that the Yang-Mills action functional
satisfies the following.

PROPOSITION 1.138. Let T be a positive Hochschild 4-cocycle on an algebra A. Then
YM,(A) >0, YVAecQ!.
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One can find in [68] Chapter VI examples of positive Hochschild cocycles associated
to spectral triples. We now describe a variant of these examples which plays a
basic role in the computation of the variation of the spectral action under inner
fluctuations as we see in §11.5/ below. We let 7 be the representation of 2* given by

m(a®dat - --da™) = a° [D,a']--- [D,a"]

We assume that the regular spectral triple (A, H, D) is of dimension 4 and has
simple dimension spectrum (the result extends without the last hypothesis using
the Dixmier trace [68] instead of the residue).

LEMMA 1.139. The equality

(1.511) 7+ (a®,at,a? a®, a*) =

- ][ao([DQaal] [D’a2] - [Daal] [D2>a2]) ([D27a3] [D,CL4] - [Dva3] [D27a4]) D_G

defines a positive Hochschild cocycle on A. Let F' be the sign of D and let w; € 02,
Then one has

(1.512) / wiwy = ][(Fw(wl)F—W(wl))(Fw(wg)F—w(wg))D_4.

PROOF. By construction 74 is a Hochschild cocycle. The right hand side of
(1.512)) fulfills (1.509), since for 2-forms one has 7(w*) = (w(w))*. Thus, it is enough

to prove (1.512). By bilinearity we can assume that w; = a’da'da® and wy =

da3da*b. Moreover, since [F,b] is of the same order as D~!, we can absorb b in a?,

i.e. we assume b = 1. Let us show that, modulo bounded operators, we have
[D,m(w1)] = a([D?a'][D,a’] - [D,a] [D?,a?).
Indeed, the left-hand side is
[D,a"][D,a'][D,a? +a°(D[D,a']+ [D,a'|D)[D,a?]
—a®[D,a')(D[D,a?] + [D,a% D)
= [D,ad"|[D,a"][D,a?] +a°(|D? a'][D,a?] — [D,a'][D?,a?)).
Moreover, modulo bounded operators, one has
[D,w(w)] = [F,w(w)] [D] + F D], w(w)] ~ [F,w(w)][D].
This gives
[ wrwa= — [iFn)] DI (P xw2)] D D
T+

. ][[F, w(w1)] [F. m(ws)] D

Using F2 = 1 one then obtains (1.512). O
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10.7. Cyclic cohomology and Chern-Simons action.

We now discuss briefly the invariance of the Chern-Simons action associated to a
cyclic 3-cocycle on an algebra. An early instance of this action in terms of cyclic
cohomology can be found in [300]. It is not in general invariant under gauge trans-
formations but one has the following more subtle invariance.

PrOPOSITION 1.140. Let v be a cyclic 3-cocycle on A. The functional

(1513) CSy(A) = /
P

transforms under the gauge action v, (A) = uwdu* +u Au* as

AdA+§A3, Ae !

(1.514) CSyln(A)) = O5y(A) + 5 (6,
where (1, u) is the pairing between HC3(A) and K1(A).
PrOOF. Let A" =7, (A4) = udu* +uAu*. One has
dA" = dudu® + du Au* + wdAu* — v Adu®,

A dA" = vdu* dudu* + wdu* du Av* + vdu* udAu* — uwdu* u Adu*
+uAu dudu* +uAu* duAu* +uAdAu" —u A% du*.
Thus, using the graded trace property of | > one gets

/(A’dA’— AdA) =
P

/ (vdu* dudu* + du*du A — du*udu*u A
P
+utdudu*u A+ du*udA+ u*duA? — du*u A?).

/du*udA: —/du*duA,
P P

Using

this gives

/(A’dA’— AdA) = /(udu*dudu*+2u*dudu*uA+2u*duA2).
% %
Next one has

/(A’3—A3>=/<<udu*>3+ 3(udu™)? w A + 3udu® uA®u).
P P

Since du*u = —u* du, the terms in A% cancel in the variation of C'Sy. Similarly,
one has du* udu*u = —u* dudu®u so that the terms in A also cancel. Thus, one
obtains

2
CSu(va(A)) = CSy(A) = /w (s dudu® + - (udu”)*).
One has (udu*)? = —udu* du du* which gives the required result. g
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10.8. Inner fluctuations of the metric.

Exactly as the inner automorphisms of a noncommutative space correspond to the
internal symmetries of physics (see §9.9), the metric of a noncommutative space
admits natural inner fluctuations. These give rise to a natural foliation of the space
of metrics. In the case of the Standard Model minimally coupled to gravity, we show
in §15.2] and §15.4) below that the inner fluctuations of noncommutative geometry
correspond to the gauge bosons other than the graviton.

The inner fluctuations in noncommutative geometry are generated by the existence

of Morita equivalences (cf. [254]). Given an algebra A, a Morita equivalent algebra
B is the algebra of endomorphisms of a finite projective (right) module & over A,

(1.515) B = End4(€)

If A acts on the Hilbert space H, then B acts in a natural manner on the tensor
product

(1.516) H = E®AH,

which is a Hilbert space, provided that £ is endowed with a Hermitian structure
given by an A-valued positive sesquilinear form on £ satisfying the same rules as an
inner product.
Defining the analogue D’ of the operator D for (B,H’) requires the choice of a
Hermitian connection V on £. In fact, one would at first think of replacing D by
the operator

D'(¢@n) = ¢ Dn,
but this is not compatible with the tensor product over A, since in general the oper-
ator D does not commute with elements of .A. One needs to introduce a connection
to correct for this problem.
A connection is a linear map V: & — £ @4 Q%) satisfying the Leibniz rule

V(a)=(V€a+E@da, VEEE, ac A,
with da = [D, a] and with
(1.517) Op ={>_a;[D,b;] |a;, b € A}.

J

Notice that Qb is by construction a bimodule over 4. One then defines the new
Dirac operator D’ as
(1.518) D'(¢®@n) = @ Dn+ (VE)n.
This combination is well defined as an operator on H' = £ ® 4 H.

Any algebra A is in particular Morita equivalent to itself (with £ = A). When one
applies the construction of the new Dirac operator D’ of (1.518)) in this special case,

one gets the inner deformations of the spectral geometry. These replace the operator
D by

(1.519) DD+ A

where A = A* is an arbitrary selfadjoint element of Q1.

This discussion on the inner fluctuations of the metric adapts to the presence of the
additional structure given by the charge conjugation operator (real structure) as in
Definition [1.124. A key role of the real structure J is in defining the adjoint action
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of the unitary group U of the algebra A on the Hilbert space H. In fact, one defines
a right A-module structure on H by
(1.520) Eb=10¢, YeEeH, beA

The unitary group of the algebra A then acts by the “adjoint representation” in H
in the form

(1.521) EeEH—-Aduw){=ulu™, VEEH, ue A, w =uu=1,
and the perturbation (1.519) gets replaced by
(1.522) D— D+ A+¢e JAT Y,

where &’ is specified by the table of Definition [1.124.
The following result describes the relation between the adjoint action of the unitary
group of the algebra A and the gauge potentials A € Q}, with A = A*.

PROPOSITION 1.141. Let (A, H, D) be a real spectral triple with antilinear isometry
J fulfilling (1.472) and (1.473). Then for any gauge potential A € O}, with A = A*
and any unitary u € A, one has

Ad(u)(D+ A+¢€ JAT HAA(u*) = D + yu(A) + & Jyu(A)J 7,
where
Yu(A) = u[D,u*] + uAu.
PROOF. Let U = Ad(u). One has U = uv = vu, where v = JuJ~!. Thus,
UDU* = u(vDv*)u* = u(D + v[D,v*])u*
= uDu*+v[D,v*| = D + u[D,u*] + v[D,v*],
where we used (1.472) and (1.473). We have
v[D,v*] = JuJ D, Ju*J Y = ' Ju[D,u*] T .
Similarly, we have UAU* = uAu* and UJ A J~'U* = JuAu* J~ 1. g

The next proposition shows that inner fluctuations of inner fluctuations are inner
fluctuations.

PROPOSITION 1.142. 1) Let (A, H, D) be a spectral triple and let D' = D + A, for
some A € QlD with A = A*. Then, for any B € Q}), with B = B*, one has

(1.523) D+B=D+A, A=A+BecQ}

2) Let (A, H, D) be a real spectral triple with antilinear isometry J fulfilling (1.472)
and (LA73). Let A € QY with A= A* and let D' = D+ A+¢&' JAJL. Then, for
any B € QL, with B = B*, one has

(1.524) D'+B+eJBI =D+ A+ JAT T, A=A+BeQ

PROOF. To check 1) it is enough to show that Q}), C Qb. By construction,
elements of Ok, are linear combinations of a[D’,b], for a, b € A. In fact, we have
alD',b] = a[D,b] + a[A, b] € QL since Q4 is a bimodule over A.

Similarly, to check 2) one has to show that QID, C QL. For a, b € A one has
a[D',b] = a[D,b] + alA,b] + &’ a[JAT 1, b], but then we have [JAJ ! b] = 0, using
(1.472) and (1.473). Thus, the inclusion QL, C QL follows as above. O
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It is important to consider the inner fluctuations D — D + A + ¢’ JAJ ! as being
obtained in two stages

(1) DD+ A

(2) D+ A— D+ A+ JAJ?
In fact, the resulting operator D + A + &’ JAJ ! is the most general operator D’
obtained from inner fluctuations relative to A and then relative to A° = JAJ !,
with the property that D’ fulfills the same commutation relation

JD'J 7t =¢£'D
with J as the original D. In this way one can extend many results valid for inner

fluctuations of the form D — D + A to the more sophisticated ones of the form
(1.522).

REMARK 1.143. Notice that, although transitive, the relation “D’ is an inner fluctu-
ation of D” is not symmetric. In fact, one can construct simple examples where the
operator 0 is obtained as inner fluctuation of a non-zero D. This relation is similar
to the relation obtained from a singular foliation, such as the foliation associated to
a flow with singularities given by the fixed points. We see in §15.2 below a concrete
example of such a singularity, in the case of the Higgs mechanism in the Standard
Model, cf. Remark [1.203.

11. The spectral action principle

We give in this section an account of the joint work of the first author with A. Chamsed-
dine on the spectral action principle [45], [46], [47], [48]. This will be the main tool
we use in the following sections to recover the Lagrangian of the Standard Model
minimally coupled to gravity from a simple noncommutative geometry.

The starting point to motivate the spectral action is a discussion of observables in
gravity. By the principle of gauge invariance, the only quantities which have a
chance to be observables in gravity are those which are invariant under the gauge
group i.e. the group of diffeomorphisms of the space-time M. Assuming first that
we deal with a classical manifold, one can form a number of such invariants (under
suitable convergence conditions) as integrals of the form

(1.525) / F(K)/gd'z
M

where F(K) is a scalar invariant function of the Riemann curvature K.

The scalar curvature is one example of such a function but there are many others.
We refer to [143] for other more complicated examples of such invariants, where
those of the form (1.525) appear as the single integral observables, i.e. those which
add up when evaluated on the direct sum of geometric spaces.

While in principle a quantity like (1.525) is observable, it is in practice almost
impossible to evaluate, since it involves the knowledge of the entire space-time and
is in that way highly non-localized. On the other hand, spectral data are available
in localized form anywhere and are (asymptotically) of the form (1.525) when they
are of the additive form

(1.526) Te(f(D/A)),
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where D is the Dirac operator and f is a positive even function of the real variable
while the parameter A fixes the mass scale. The data of spectral lines are intimately
related to the Dirac Hamiltonian, hence to the geometry of “space”.

The spectral action principle asserts that (1.526)) is the fundamental action functional
S that can be used both at the classical level to compare different geometric spaces
and at the quantum level in the functional integral formulation, after Wick rotation
to Euclidean signature.

In the following, we work under the assumption that we have an asymptotic expan-
sion

(1.527) Trace (e_tD2) ~ Z ag t* (t —0)

The absence of a log(t) in the expansion corresponds to the dimension spectrum
being simple. Notice that this assumption is not always satisfied. For instance, it is
known to fail in the case of manifolds with conical singularities (cf. [206]).

Under the above assumption, the detailed form of the even function f in (1.526) is
largely irrelevant because of the known simple relation between the heat expansion
and residues which we now recall ([304]). The (-function is defined by

(1.528) (p(s) = Tr(|D|™®) =Tr (A™*/?), A=D2.

This only makes sense if D is invertible but this hypothesis is harmless since one
can replace D by D + eP where P is the orthogonal projection on ker D to make it
invertible and then eliminate € by taking the limit when ¢ — 0. Equivalently one
restricts to the orthogonal complement of the finite dimensional subspace ker D C H
so that (1.528) makes sense. The relation between the asymptotic expansion (1.527)
and the (-function is given by:

LEMMA 1.144. e A non-zero term a, with o < 0 gives a pole of (p at —2«
with
2a
(1.529) Ress——2q (p(s) = ﬁ
e The absence of logt terms gives reqularity at O for (p with

(1.530) (p(0) +dimker D = qaq.

PRrROOF. For the positive operator A = D? one has

1 oo
(1.531) ID|™5 = A™%/2 = 5/ e A2 gy,
I (3) Jo

Replacing Trace (e *2) by a, t* and using

1
/ ta+s/2—1 dt — (O[+ 5/2)—1

0
one gets the first statement. The second follows from the equivalence
1 S
——~=, s§—0
rG 2

so that only the pole part at s = 0 of

/ Tr(e ) ¢5/271 dt
0
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contributes to the value (p(0). This pole part is given by

! 2
ao/ t8/2_1 dt = apg—
0 S

so that one gets (1.530). This holds when D is invertible and in the general case the
addition of eP amounts to the replacement

¢p(0) — ¢p(0) + dimker D.
[l

THEOREM 1.145. Let (A, H, D) be a spectral triple fulfilling (1.527). Then the spec-
tral action (1.526) can be expanded in powers of the scale A in the form

(532)  TUD/MA) ~ Y fad” fIDI 4 SO0+
pBeTIl

with the summation over the dimension spectrum 1. Here the function f only ap-
pears through the scalars

(1.533) fs = /OOO f(v)v® L dv.

The terms involving negative powers of A involve the full Taylor expansion of f at

0.

PRrOOF. Consider a test function k(u) which is given as a simple superposition
of exponentials as a Laplace transform

(1.534) k(u):/ e " h(s)ds.
0
We can write formally
(1.535) k(tA) = / e h(s)ds
0
and
(1.536) Trace (k(tA)) ~ Y aqt° / s h(s)ds.
0

For v < 0 one has,

1 /OO —sv —a—1

s = e v N do
I'(=a) Jo
and - ) -
s h(s ds:/ k(v)v™* tdv
| s nsas = s [T k)

so that

1 o

Trace (k(tA)) ~ Z Ress_gaCD(s)/ E(v) v~ do t©
2 0
a<0

(1.537) + ¢p(0)k(0) + ...

Thus, with f even as in (1.532), we write f(u) = k(u?) and obtain (1.532) using
/ k(v) o3>V dy = / fw) w1 du,

0 0
for = —2a € 1II. O

N
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The above gives a formal proof of the asymptotic expansion of the spectral action
functional. For a more detailed analysis of the actual expansion, we refer the reader
to the book [132].

The term in A* in the spectral action (1.532) is proportional tof ds* which, in the 4-
dimensional case, gives a cosmological term. As we see later, the natural constraint
in the set-up of the functional integral will provide a homological meaning to this
term cf. equation (1.874) below.

The term in A? in the spectral action (1.532) is proportional to  ds* which, in the
usual 4-dimensional Riemannian case (cf. [179]), gives the Einstein-Hilbert action
functional with the physical sign for the Euclidean functional integral, provided the
moment fo > 0 (which is the case if f is a positive function). This term will be
analysed in the general case in §11.1/ below.

The term in A° in the spectral action (1.532) yields the Yang-Mills action for the
gauge fields corresponding to the internal degrees of freedom of the metric. This
result will be obtained first by a direct computation in §11.4 using the Seeley—
DeWitt coefficients 11.2. 'We then explain (§11.5) in the general framework that
under a simple hypothesis of vanishing of the tadpole (which holds in the usual
Riemannian case) the variation under inner fluctuations of the scale-independent
part of the spectral action can be expressed as the sum of a Yang—Mills action and
a Chern—Simons action.

In particular, it is convenient to introduce the following notation.

DEFINITION 1.146. The tadpole term of order A® is the term linear in A € QE mn
the A part of the expansion (1.532) of the spectral action.

The vanishing of all these tadpole terms indicates that a given geometry (A, H, D) is
a critical point for the spectral action. In general, one can impose weaker conditions
of vanishing of tadpole terms, as we will see in the case of the Higgs mechanism in
the Standard Model.

11.1. Terms in A? in the spectral action and scalar curvature.

Throughout this section we let (A, H, D) be a regular spectral triple with simple
dimension spectrum and with metric dimension 4.

DEFINITION 1.147. The scalar curvature of (A, H, D) is the functional given by
(1.538) R(a) = ][aD2, Va € A.

The terminology is motivated by the following result of [179].

THEOREM 1.148. In the case of four-dimensional Riemannian spin manifolds M,
the functional R is given by

(1.539) RU) =~ [ Fa)sla) Vad's

where s = —R s the scalar curvature.
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PROOF. By definition the scalar curvature s at a point x € M is, up to sign,
twice the trace of the Riemann curvature tensor viewed as an endomorphism of
AT, (M) and is positive for the sphere. (With the sign convention for the curvature
tensor used by Milnor [230] p. 51, one gets a plus sign.) When acting on 1-forms
the formula for the curvature is Vyx Vy w — Vy Vxw — Vix yjw, cf. Wald [290]
p- 36-40.

Our chosen normalization for the Riemann curvature tensor (1.448)) is the same as
Gilkey ([144] §2.3) and Lawson-Michelsohn ([203], Proposition 4.6). It reads

(1.540) R(X,Y)Z =VxVyZ-VyVxZ—-Vxy Z

Following Lawson-Michelsohn [203], both the Ricci curvature and the scalar curva-
ture have the usual sign (positive for spheres), thanks to the minus signs in equations
8.10 and 8.17 of [203]. We follow the same convention and we define the scalar cur-
vature by setting

(1.541) s=—R.

As already mentioned, Gilkey [144] uses the same convention (1.540) for R as
Lawson-Michelsohn, but defines the scalar curvature as % of the above s. With
our convention, s is the term which appears in the Lichnerowicz formula (cf. [203]
Theorem 8.8)

1
(1.542) D? =V*V + 19

The formula (1.542) decomposes the operator P = D? in the canonical form of [144]
Lemma 4.8.1. The operators of [144] are Py = V*V and E = —1 s, where s is as
in (1.541) above.

By Theorem 4.8.16 of [144] the coefficient ag in the heat expansion of P is given by

1
(1.543) ag(x, D?) = (47) > Tr <—6Rijz’j + E) )

where the trace is taken in the spinor space, hence it multiplies the scalar value by
4. With the notations of [144], one has R;j; = —s, so that (1.543)) gives in front of
s the coefficient

1 1 1
A xdx (2 —2) = — .
Um) = xdx (5P = "m
By (1.529) there is an additional factor of 2 in the relation with the residue, and we
get (1.539). O

In particular, we see that, when written with the notation (1.451)), equation (1.539)
becomes of the form

(1.544) R() = 513 [ H@) R Vg

which has the correct sign for the Euclidean functional integral as explained in
Proposition [1.117.

Notice that, if one had chosen the scalar Laplacian instead of the square of the Dirac
operator, one would have obtained the wrong sign in front of the scalar curvature.

We now investigate, in the general case, the stability of the scalar curvature as
defined by (1.538) under inner fluctuations of the metric of the form D +— D + A
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with A = A* € QL. The coefficient of A2, given by f(D + A)72, has a priori an A
dependence. If we write (D + A)? = D? + X, we obtain

(1.545) ][ (D+ A)~ ][D 2= ][DZXD2+ ][D2XD2XD2,

where X = DA + AD + A? has order one, so that the other terms vanish. We can
rewrite this as

(1.546) _ ][<DA+AD)D4+ ][(DAJrAD ][A2D 1

We now analyse these various terms.
The first term we meet in (1.546) with a coefficient —2 is

(1.547) ][AD 3

This is the A? dependent linear piece in the spectral action, i.e. the tadpole term of
order A? in the sense of Definition [1.146.

LEMMA 1.149. The term (1.547) vanishes in the case of a Riemannian spin manifold
M.

PROOF. In terms of local coordinates o* the Dirac operator is of the form
D= @ M = \/ZVM VZ
where V* is the spin connection. The elements of 2}, are the sections of the bundle
End(S) coming from Clifford multiplication y(w) by 1-forms w € C*(M,T*M).
Thus A is of the form A = ~(w). The total symbol of the operator D=3 is of the
form
o(D)(,€) = 0-5(2,) + 7—4(2,€) +

where o_,(z,&) € End(S;) is an endomorphism of the fiber S, of the spinor bundle.
The total symbol of a product of pseudodifferential operators is given by (cf. [144]

§1.2)

(_i)lal « o’
(1.548) o, €) =D 080 (2,€) 9009 (, ).
This shows that the symbol of order —4 of A D73 is y(w)o_4(x,&) and the residue

is of the form
7Z AD 3 = I w z)) dv

where b(x) € End(S;) is obtained by integrating o_4(z,&) over the unit sphere
of the cotangent space T(M) and dv is the Riemannian volume form on M. By
construction one has b € C°°(M,End(S)) and to compute b(x) one can use normal
coordinates at z. In these coordinates the total symbol of D at x is /=1~y §u and
the symbol of order —5 of D~ vanishes (cf. [179]). Thus using (1.548) one gets
o_4(x,&) =0 and b(z) = 0. O

Since (1.547) is the A? dependent linear piece in the spectral action, if we expand
at an extremum of the spectral action which is independent of A, it is natural to
assume that (1.547) vanishes, namely that we have

(1.549) ][ AD3 =0 VAecQh.
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There are however very interesting situations, such as the Higgs case, where the
extremum depends upon A.

Under the hypothesis of vanishing of the order A? tadpole term, we have the following
result.

LEMMA 1.150. If (1.549) holds, then one has
][[D,a][D,b]ds4:—][a[D2,b]ds4 Va,be A.

ProoF. By (1.549) and using the identity
Da[D,b+ a[D,b] D = [D,a][D,b] + a[D?, 0]
one obtains
][ (Da[D,b] +a[D,b] D) D~ = 0.
O

Let us now assume also the condition that the functional playing the role of the
scalar curvature is a trace, namely

(1.550) R(a) = ][ ads® is a trace on A.

We then have the following result.
LEMMA 1.151. Assuming (1.549) (1.550), one has

][ [D?,a][D? b] ds® = ][ [D,a][D,b] ds* Va,be A.

PROOF. One has R(ab) = R(ba) by hypothesis. Moreover, using the trace
property of f, one has

(1.551) R(ba) = ][baD_2 = ][aD—2bD2D—2.
Thus, we get
(1.552) ][ aD2[D?*0)D?*=0 Vabc A.

By Lemma [1.150/ one has

][ D724 [D? b D72 = ][a[DQ,b] ds* = — ][ [D,a][D,b] ds*.
Substracting this from (1.552) we get
(1.553) ][ [D,a][D,b]ds* = ][ la, D72|[D?,b] D2,
On the other hand we have
(1.554) [a,D7% = D7%[D? a] D72.

Now D=2[D?,a] D=2 [D? b] D2 is of order —4 and we can permute the D=2 freely
so that we get the statement. O
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COROLLARY 1.152. Assuming (1.549) and (1.550), for a®,a',a® € A, one has
][ a® [D,a|[D, a*] ds* = ][ a®[D?,a'][D?, a%] ds® .
PRrROOF. Let
(ag,a1) = ][[D,ao][D,al] ds*
Plao, ar) = ][[DQ,ao][DQ,al] s
We compute the Hochschild coboundary of ¢ and ¢ as
¢(apa, az) — p(ag, araz) + p(azao, ar)
H(@D,ar)lD.cs] + [D.ac) s (D, a2)) = (Dsao] a1 [D,

+ [D, (10] [D, CLl] (12) + (CLQ [D, ao] [D, a1] + [D, ag] ap [D, (11])} d84.

Since we can permute freely with ds* we get

(1.555) (by)(ag,ar,az) =2 ][ ao [D, a1][D, az] ds*

The same argument gives

(1.556) (b0 (a0, ar, as) = 2 ][ a0 [D2, a1][D?, az] ds®

By Lemma [1.151 one has ¢ = ¢ and the conclusion follows. |

We can now show the following result on the dependence of the term
][ (D + A)2

PROPOSITION 1.153. Assuming (1.549) and (1.550), one has the following proper-
ties.

on the inner fluctuations.

o The term (D + A)~2 is independent of A.
o The functional R is unchanged by the inner fluctuation D — D + A.

Proor. By (1.545) and (1.546) one has

(1.557) ][ (D+ A)~ ][ D?

= —][(DA+AD)D‘ + ][(DA+AD ][AQD‘

The first term in the right-hand side vanishes by (1.549).
Now, for A=), a; [D, b;], one has

(1.558) DA+AD =Y a;[D*,b]+ ) [D,a][D, by,

where the second term is of lower order. It follows then from Corollary [1.152 that

(1559) ][ (DAl + AlD)(DAQ + AQD) d$6 = ][ Al Ay d84,
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for any A, Ay € Qb. Indeed, it is enough to check this on A; = ay [D,b;] and
Ay = ag [D, by]. By (1.558)), the left-hand side gives

1 1
FarlDhbilaa (D2 ] ds® = ban,bras,ba) — 5 bilasb,a, b

1 1
= 3 bp(ar, brag, by) — 3 bp(aiby, az, by)

- ][ ax [D, ba] a3 [D, bo) ds".

which is indeed equal to the right-hand side.

Taking A1 = As = A we see that the last two terms of (1.557) add up to zero and
we get the first statement.

For the second statement, using the invariance of  one gets

][x(D +A)? - ][xD2 = - ][mD2(DA+AD) D2
+ / z(DA+ AD)>D™®
(1.560) — ][xA2 D% VzeA.
Now in (1.559) we can replace A; by xA; to get
(1.561) ][ x(DA; + A1D)(DAy + AyD) ds® = ][ x Ay Agdst.
This shows that the last two terms of (1.560) cancel. To prove the vanishing of the
first term of the right-hand side in (1.560), we can assume that A = a[D,b]. One
has DA + AD = a[D?,b] + [D, a][D,b] and
][a:D‘Q(DA+AD) D72 = ][:z:D_Qa[D2,b] D2+ ][ID_2 [D,a][D,b] D2,
Now, by Corollary [1.152), the last term is
][x [D,a][D,b] D™ = ][x (D% a)[D?,b) D6

One has

][:L'D_2 a[D* b D% = ][an—2 [D?,b] D2

— ][xD2 [D?,a) D72 [D? b D~ 2.
The first term in the right-hand side vanishes by (1.550)), while the second is
— ][x[DQ,a][DQ,b] ds®

and cancels the above. U

We have thus shown that the scalar curvature is insensitive to inner fluctuation of
the metric. Notice, however, that this property depends crucially on the assumption
of the tadpole vanishing (1.549).
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11.2. Seeley—DeWitt coefficients and Gilkey’s theorem.

Let (A, H,D) be a noncommutative geometry described by a spectral triple. We
apply to the square D? of the Dirac operator the standard local formulae for the heat
expansion (see [144] §4.8). We begin by recalling briefly the statement of Gilkey’s
Theorem ([144] Theorem 4.8.16).

One starts with a compact Riemannian manifold M of dimension m, with metric
g and one lets V be a vector bundle on M and P a differential operator acting on
sections of V' and with leading symbol given by the metric tensor. Thus, locally one
has

(1.562) P =—(g"I10,0, + A*0, + B),

where g"” plays the role of the inverse metric, I is the identity matrix, and A* and
B are endomorphisms of the bundle V.

The Seeley-DeWitt coefficients are the terms a,(z, P) in the heat expansion, which
is of the form

(1.563) Tre P~y 1727 / an(z, P) dv(z),
n>0 M
where m is the dimension of the manifold and dv(zx) = \/det g, (x) d™ x, with g,
the metric on M.
By Lemma 4.8.1 of [144], the operator P is uniquely written in the form
(1.564) P=V'V-E
where V is a connection on V, with V*V the connection Laplacian, and E is an
endomorphism of V.

Let T, be the Christoffel symbols of the Levi-Civita connection of the metric g.
We set

(1.565) 7= g"1%,,.

The explicit formulae for the connection V and the endomorphism E are then of
the form

(1.566) V=0 + w,
1
(1.567) W), = 3 Guv (A + T -id),
with id the identity endomorphism of V', and
(1.568) E =B —g" (0w, +w,w, —Th, w).
One lets €2 be the curvature of the connection V so that (cf. [144] Lemma 4.8.1)
(1.569) Qv = 0wy, — Oy W), + [wy,, wy].
We denote multiple covariant differentiation as in [144] Lemma 2.4.3, by
(1.570) B =V, VIE.

The Seeley-DeWitt coefficients a,(P) vanish for odd values of n. The first three
an’s for n even have the following explicit form in terms of the Riemann curvature
tensor R, the curvature 2 of the connection V and the endomorphism F.
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THEOREM 1.154. [144] One has :
(1.571) ap(z,P) = (4m)"™2Tr(id)

(1.572) ax(z,P) = (47)"™?Tr <—§id+E>

1
(1.573) as(z,P) = (477)*7”/2%%(—12}%;““ +5R* — 2R, R

+ 2Ruups R"P7 — 60 RE +180 E* + 60 B, *
+ 309, Q).

REMARK 1.155. Notice that in Theorem 1.15] the endomorphism E only appears
through the expressions

(1.574) Tr (—]g’ id + E) and Tr ((_1; id + E)2>
and the boundary term Tr(E; ).

11.3. The generalized Lichnerowicz formula.

Let M be a compact Riemannian spin manifold of dimension m, S the spinor bundle
with the canonical Riemannian connection Vg. Let V' be a Hermitian vector bundle
over M with a compatible connection Vy. One lets @y, be the Dirac operator on
S ® V endowed with the tensor product connection ([203] Proposition 5.10)

(1.575) V(E®v)= (Vs§) ®v+ £ (Vy).
Let then Ry be the bundle endomorphism of the bundle S ® V' defined by
1 m
(1.576) Ry(§®v)= 5 > (8@ (R(V)jv)
o k=1

where R(V) is the curvature tensor of the bundle V.
One then has the following result (|[203] Theorem 8.17).

THEOREM 1.156. let s be the scalar curvature of M as in (1.541). Then the Dirac
operator @, satisfies

1
(1.577) P2 =V*V+ 15+ By,
where V*V is the connection Laplacian of S Q@ V.

Notice that all three terms on the right-hand side of (1.577) are self-adjoint operators
by construction. In particular Ry is self-adjoint. One can write Ry in the form

(1.578) Ry = Z Vi © R(V)jk,
j<k

where the terms in the sum are pairwise orthogonal for the natural inner product on
the Clifford algebra induced by the Hilbert-Schmidt inner product (A4, B) = Tr(A*B)
in the spin representation. Notice that here R(V') is antisymmetric and the ~;, v
anticommute. Note also that the different sign convention for the square of ~-
matrices used in [203] introduces an overall sign which will not matter since the
heat expansion only involves the Hilbert-Schmidt norm square of the terms (1.578).
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11.4. The Einstein—Yang—Mills system.

In this section we describe a result of [46], §2, which illustrates the properties and
the role of the spectral action functional in the simplest possible noncommutative
modification of an ordinary 4-dimensional manifold, namely the noncommutative
geometry obtained by replacing the algebra C'°°(M) of smooth functions on M by
the tensor product

(1.579) A =C>®(M)® My(C),

with My (C) the algebra of complex N x N matrices. The spectral triple is obtained
by tensoring the Dirac spectral triple (C*°(M), L?>(M,S),#,,) with the spectral
triple for My (C) given by the left action of My (C) on the Hilbert space of N x
N matrices endowed with the Hilbert-Schmidt norm, and with the trivial Dirac
operator D = 0. The real structure is given by the adjoint operation T +— T™ on
matrices, while Jj; denotes the real structure on (C*(M), L?(M, S),d,,) given by
the charge conjugation operator.

Thus, the product geometry is of the form

o A=C>(M, My(C))

o H=L*M,S)® My(C)
e JERT)=JyéT*

e D=@,,®1

e 7Y=L

We compare the spectral action functional with the action for an SU(N) Yang-Mills
theory coupled to fermions in the adjoint representation and to Einstein gravity.

We begin by computing the inner fluctuations of the metric for the product geometry
(A, H, D) described above.
The Dirac operator @, is of the form

(1.580) Py = V-1 V5.

Here V?® is the spin connection which we express in a vierbein e. Namely, the
vierbein e} is defined by the relation

(1.581) Guw = €5€%0a,

so that v, = ey, satisfy the anticommutation {ya,v} = 28ap. One sets
1

(1.582) Yab = 7 [Yas 0)-

They satisfy

[Yaby Yed) = OcbVad — ScaYod — OdbVac + OdaVoe
and define the spinor representation of the Lie algebra 0(4). The spin connection is
then of the form

1
(1.583) Vs =0+ iwﬁ”m.

The expressions of the form

Z a; D, bj] with a;,b; € A
J

give all operators of the form
A= A,
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where the A, € C*(M, My(C)) are arbitrary. The self-adjoint condition A = A*
for gauge potentials is equivalent to A, = Ay, i.e. to A, € C*°(M, MN(C))sa, the
self-adjoint elements of the algebra A. Here the A, are acting by left multiplication
on H = L?(M,S)® My(C).

It is convenient for the following to introduce the related notation

(1.584) A, :=—vV—-1ladA,.

We also denote by w,, the spin-connection on M as in (1.583), with
1
(1.585) wy = = Wi g

Notice that the inner product in H is given fiberwise using the Hilbert-Schmidt norm
on matrices, i.e. by

() = /M Te(E(2)n(2))Vad'e,

ignoring the spinor index for simplicity. One checks directly that, for X € C*°(M, My (C)),
the adjoint of left multiplication by X is left multiplication by X*.

We can then prove the following result on the product geometry
(C*(M, My(C)), L*(M, S) ® Mn(C), @), ®1).

PROPOSITION 1.157. Let (A, H, D) be the product geometry described above.
(1) The inner fluctuations of the metric are parameterized by an SU(N) Yang-

Mills field A.
(2) The operator Dy = D + A+ JAJ* is given by
(1.586) Dy=vV-1e 7" (Op+wy) @12 +1® A,) ,

with A, as in (1.584).
(3) The coupling of the Yang-Mills field A with the fermions is:

Proor. (1) We already saw that the gauge potentials are given by A = A,~*
with A, € C®(M, Mn(C))sa (the self-adjoint elements in the algebra), acting by
left multiplication. In dimension 4 one has ([132] 5.24)

(1.588) Ty Jaf = —y*.

Moreover, the action of J on matrices being given by T' — T, it transforms the
operator of left multiplication by X € C*°(M, My(C)) into the right multiplication
by X*. Thus, this shows that

A+ JAJ" = A" ad A,.

Notice that the formula Dy = D 4+ A+ JAJ* eliminates the U(1) part of A, even
though one starts with a U(IV) gauge potential. Thus, it is natural to impose the
“unimodularity” condition

(1.589) Tr(A) = 0.

(2) This follows from the same computation above.

(3) We obtained indeed the correct adjoint action on fermions. Notice also that in
order to formulate the Euclidean functional integral one considers the ¢, € H as
independent variables [61]. O
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Recall that the Yang-Mills action is of the form

(1.590) SYM(A) = le/M EYM(A), with ,CYM(A) = TI‘(F,“,F/W).

The following result of [45] gives the explicit form of the spectral action for the
product geometry (C°(M,My(C)),L*(M,S) ® My(C),d,; ® 1), which recovers
the Einstein—Yang—Mills system.

THEOREM 1.158. For the product geometry (A, H, D) described above, the spectral
action is given by

1
(1.591) B(D/A) ~ o [ Ll A) Vad's,
™ JM
where L(gu, A) is the Lagrangian of the Einstein—Yang-Mills system given by
L(guws A) = 2N? A 1 + B2 A2 f R+ @ Ly (A)

N2 £(0)
80

(1.592)
Crreo,

C;wpa

modulo topological and boundary terms.

Proo¥r. Using (1.577) and (1.578)), we get

1
(1.593) —E = Zs®1N2+ny“7”®FW
p<v
1
(1.594) Qo = 7 R gy @ Lye +ids @ Fuy

where the first term in the formula for €, is coming from the curvature of the spin
connection, which is expressed in terms of the Riemann tensor R and the v matrices.
Also F),, is the curvature of the connection A, obtained from A, after passing to
the adjoint representation as in (1.584).

We can now use Theorem [1.154/ to get the first Seeley-DeWitt coefficients. Neglect-
ing boundary terms, we obtain

N? 4
GO(P) = m \/gd x

M
N? N?
P e B —— 4 = 4
a>(P) 487r2/MS\/§dx 487?2/MR\/§CZ:E
1 § 2 Qv Uy po 4
aP) = 1 '731(;0 | (BR? = 8 B = TRyupo R77) Vg d's

1 =ur
+ 2471_2/M TY(FHZ,F“ )\/§d4$

Here N2 = dim My(C). Notice that here the a,(P) are as in (1.563). These
correspond to the coefficients a,, of (1.527) with o = (n —m)/2.
To obtain the coefficient ﬁ of the Yang-Mills action with Lagrangian

(1.595) Lym(A) = Tr(F, F™) >0,

notice that there are two different contributions coming from Theorem [1.154. The
contribution of the term 180E? is obtained from the trace of E? which is positive
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since F is Hermitian by construction. The various terms of (1.593) are pairwise
orthogonal in the Hilbert-Schmidt inner product, hence the trace of E? is the sum

2 2
(1.596) Tr(E?) = NT R*+4) Te(F,F") = NT R? 4 2Tx(F,, F"),
p<v
where the 4 comes from the dimension of spinors, and the last sum is over all indices
puv. The contribution of the term 30€2,, Q*" is obtained from the trace of €2, Q*”.
Using again the orthogonality in the Hilbert-Schmidt inner product, one sees that
the latter is given by

N? o
(1.597) T (Qpw Q) = = RO ROy — ATe(F, F™),
where the minus sign comes from our notation FWF“ Y = —F,, F},, and the 4 comes,

as above, from the dimension of the spinor bundle. This shows that the overall
coefficient for Tr(F,, F'") in ay is
1 1 1

In (1.596) and (1.597) notice that we have
1 1
ZRZZZ/Yab = 5 Z RZ?/Yaba
a<b
and Tr(v,) = 4 so that we have
AN b pab _ N b pab
D RLBL = )RR
a<b a,b

where in (1.597), as usual, we do not write explicitly the sum over repeated indices.

The contributions of the Riemann tensor are collected in the form

oy N4 (5R? — 2R, RM 4 2Ry p RMP°

(1.598) —60R1R + 180:5 R? — 30(3 R%, Rab))

= iy N% (5R? — 8Ryu R™ — TRyupe RMP).

Notice the factor & in (%Rfﬁj RZ’Z’,) in (1.598). This comes from the computation of
the trace Tr(,, ). In fact, one rewrites (1.594) as

1 .
Qw/ = 5 Z Rfub/ Yab @ L2 + idg ® Fum
a<b
so that the contribution of the Riemann tensor to Tr(£2,, Q) is of the form

1 b b
- R® R,

1
2 b b _ 2
~N® 4SRRI = N4 o R

a<b

Since we are working in dimension four, we have a relation between the Pontrjagin
class and the three possible curvature squared terms, of the form

R*R* = Rypo R"" — 4R, R* + R%.
Here the term

1
(1.599) R'R* = """ cagys R R
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is the form that integrates to the Euler characteristic

1 * % 4

Moreover, we can change the expression for a4(P) in terms of C),, s instead of R, 0,
where

1
(1-601) C,uupo = Ruupa - (gu[pRl/|0'] - gu[pRM\a}) + g(gup 9Gvo — Guo gup)R

is the Weyl tensor. Using the identity
1
Ryvpo RIPT = C;wpa CH P 4 2R, R — §R27

we can recast the contribution of the Riemann tensor to a4(P) into the alternative
form

N2 1 11
—— [ (== Chupo C"™P° + ——R*R*) \Jg d'x.
16772/( 20 ~HP +3g B Vedz

This ends the proof of (1.592). O

Notice that (1.592) has the correct factor of 2 in the cosmological term because of
the definition of fy, cf. (1.533).

We see in particular that the Yang-Mills terms appear additively in the action
(1.592). We explain in §11.5/ below that this is in fact a general phenomenon that
occurs in the framework of noncommutative geometry.

11.5. Scale independent terms in the spectral action.

In this section we consider the term in A, i.e. the A-independent term in the spectral
action and its behavior under inner fluctuations of the metric.

As explained above the gauge potentials make good sense in the framework of non-
commutative geometry and come from the inner fluctuations of the metric. This
gives meaning to the Feynman graphs all of whose internal lines are fermionic lines,
such as the triangle graph of Figure [32.

In the work [48] of Chamseddine—Connes, it is shown how the spectral action behaves
under the inner fluctuations. We recall here the main results of [48] in the following
form.

e In the case of a spectral triple (A, H, D) with simple dimension spectrum
consisting of the positive integers < 4, the variation under inner fluctuations
of the A%-term in the spectral action gives the local counterterms for the
fermionic graphs

(0+al0) = o (0) = —fAD7 4 f(ap71)?
~4 frap e+ fap iy

e Under the hypothesis of vanishing of the A°-tadpole term, i.e. of the tadpole
graph of Figure [31), the variation (1.602) is the sum of a Yang—Mills action
and a Chern—Simons action relative to a cyclic 3-cocycle on the algebra A.

(1.602)

More precisely, one has the following result (cf. [48]).



11. THE SPECTRAL ACTION PRINCIPLE 212

Ficure 31. The tadpole graph.

THEOREM 1.159. Let A be a gauge potential for a noncommutative geometry (A, H, D)
with simple dimension spectrum consisting of positive integers.
(1) The function (p+a(s) extends to a meromorphic function with at most

simple poles, which is reqular at s = 0.
(2) One has

(L603)  Gpea(®) = o(0) = — flog1+ 40 = 3 5L fapy.

We refer the reader to [48] for the detailed computations that give the proof of
Theorem 1.159.

REMARK 1.160. In the paper [47] the only hypothesis used is that both D and D+ A
are invertible operators and one can always reduce to this case by adding € to D.
Notice that, even in the interpolation D? 4+ ¢tX of Lemma 2.3 of [47] one does not
use anything else, since writing D? +tX = (1 — t)D? + t(D + A)? shows that one
has a uniform lower bound. To define the (-function in the presence of zero modes,
one can take the limit of the {-functions for D + € for ¢ — 0. This gives the right
limit that counts the zero modes as in Lemma [1.144] above. The main formula of
Theorem [1.159 for the variation of zeta in terms of residues remains unaltered.

We now restrict to the case of metric dimension < 4 and we make the tadpole
vanishing hypothesis (cf. Figure [31))

(1.604) ][a[D,b] D'=0, Va,beA.

By Theorem [1.159 this condition is equivalent to the vanishing of the first order
variation of the A-independent part of the spectral action under inner fluctuations,
and is therefore a natural hypothesis.

Recall that, by Definition (1.123), the hypothesis of metric dimension < 4 means
that

(1.605) D' e Lo

i.e. that the operator D~! is an infinitesimal of order 1 (cf. [68]).

The functional

(1.606) 7o(a’,at,a? a® a*) = ][ao [D,a') D7D, a® D7D, a®] D7 [D,a*)| D!
is then a Hochschild cocycle and is given as a Dixmier trace of infinitesimals of order
one.

We introduce the notation
(1.607) ala)=DaD™!' Vac A
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FiGUrE 32. The triangle graph.

Notice that in general a(a) ¢ A. One has
a(ab) = a(a) a(b) a,be A
We then have the following result of [48].

THEOREM 1.161. Let (A, H, D) be a spectral triple as in Theorem1.159. Under the
tadpole vanishing hypothesis (1.604) the following holds.
(1) v =p+ %B()T() s a cyclic 3-cocycle given by
1

(1.608) w(ag, ai,as, CL3) = 2][(a(a0) al a(ag) az — ao a(al) as a(ag)),

with a(z) = Doz D71,
(2) For any A € QL one has

1

(1.609) - ][log(l + AD™) = i/ (dA + A?)? — 3 /w(AdA + %Ai”).

Combining this result with Theorem [1.159 one obtains the following result.

COROLLARY 1.162. In dimension 4, the variation under inner fluctuations of the
A-independent terms of the spectral action is given by

1 1

Cora0) = o0) = [ @A+ 427 /w (AdA + > 4%,

This is the sum of the Yang-Mills action described in §10.6 relative to the Hochschild
4-cocycle o with the Chern-Simons action of §10.7, relative to the cyclic 3-cocycle

.

Notice that there is still some freedom in the choice of the cocycles 7y and ¥ involved
in Theorem [1.161. Indeed, let B = A By be the fundamental boundary operator in
cyclic cohomology, as discussed in §10.4 above. One has then the following result
(cf. [48]).
PROPOSITION 1.163. Let (A, H, D) be a geometry as above.

(1) Theorem (1.161) still holds after replacing 19 — 1o+ p and ¥ — ¢ + %Bop,

for any Hochschild 4-cocycle p such that Bop is already cyclic, i.e. such that
A Bop =1 BQ pP-
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(2) If the cocycle v is in the image of B, i.e. if ¢ € B(Z*(A, A*)), then one
can eliminate Y by a redefinition of 19.

The following lemma shows that “generically” one expects that indeed the cocycle
1 is in the image of B.

LEMMA 1.164. Let 1) be the cyclic 3-cocycle of Theorem|1.161. Then its pairing with
the K1-group vanishes identically, namely

(Y,uy =0, Vue K;(A)
PRrROOF. The lemma follows directly from Proposition [1.140. O
In particular, the cocycle 1 is in the image of B in the case when (A, H, D) is the

spectral triple associated to a compact spin Riemannian 4-manifold.

To be more explicit, one defines in general a Hochschild cocycle p by
—6p(a® al,a? a0ty = ][ a’[D?,a'] (D%, a?][D,a?] [D,a*] D76
— ][ a®[D,a'] [D? a* [D? a®] [D,a*] D76
4 ][ (D, "] (D, a?] [D%a%] [D?,a"] D¢
- ][ a®[D?,a'][D,a?] [D,a®] [D? a*] D7C.

and one checks that Byp is already cyclic.
One then has the following result of [48].

PROPOSITION 1.165. Let (A, H,D) be the spectral triple associated to a compact
spin Riemannian 4-manifold M. Then 1 + %ng = 0 and the Hochschild cocycle
T = To + p s positive and given explicitly by

1

(1.610) 7(a®, at, a?, a®, a4) = —— (a®da* A da?, da® A da®).
37'['2 M

Here we use the inner product on 2-forms associated to the conformal structure of

M. One has, equivalently,
/ (w,w'y = / wAxw'.
M M

Notice that the minus sign in (1.610) is crucial to ensure the positivity of 7. Indeed,
with the notations of §10.6/ the adjoint of a 2-form is given by (1.510), so that the
skew-symmetry of forms introduces an additional minus sign. In fact, the proof of
Proposition [1.165/ given in [48] gives a direct relation between 7 and the positive
cocycle of (1.511)).

One can then check that Theorem [1.161 provides another computation of the inner
fluctuation of the spectral action in the Riemannian case and gives the additive
contribution

1 i 4

of Theorem [1.158.
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11.6. Spectral action with dilaton.

Another striking property of the scale independent terms in the spectral action is
their conformal invariance. Indeed, it is known for instance that the Weyl action is
conformally invariant

(1.611) / Cuvpo (G) CHP7 (G) VG d'z = / Cuvpo (9) C*7 (9) Vg d'z ,
where G is the rescaled metric (often called the Einstein metric)

(1.612) G = e g G =g

and ¢ a dilaton field.

In [47] Chamseddine and Connes showed that the arbitrary mass scale A in the
spectral action can be made dynamical by introducing a scaling dilaton field. We
report here briefly on the formulation and properties of the spectral action with
dilaton field, following [47].

In its simplest form, as we have seen, the spectral action is a counting of the number
of eigenvalues A of D such that |[A\] < A. This is the case when one takes f in (1.526])
to be a cutoff function.

The basic idea of [47] is to “localize” this counting by replacing

(1.613) N(A) = dim{D? < A%} — N(p) = dim{D? < p?},

where p = e?, with ¢ the dilaton field, and dim{D? < p?} is the number of negative
modes of the operator D? — p?id.

One can see the immediate advantage of this localization in the non-compact case,
i.e. when the geometric space one is dealing with is non-compact. Dealing with
such spaces requires a minor extension of the formalism of spectral triples given in
Definition [1.120] above.

DEFINITION 1.166. A noncompact spectral geometry (A, H, D) consists of a non-
unital algebra A acting as bounded operators on a Hilbert space H, with a self-
adjoint operator D, such that [D,a] is bounded for all a € A. The operator D has
the property that a(D — \)~! is compact for all a € A and X ¢ Spec(D). The
sign, real structure, and other properties are defined as in the compact case, after
adjoining a unit to the algebra.

In such non-compact cases, the compact resolvent property of the Dirac operator D
now only holds after multiplication by elements of A, thus the spectrum of D can be
continuous and one can have N(A) = co. It is then natural to modify the definition
of the spectral action by choosing the function p to be compactly supported so that
one has N(p) < oo.

The main result of [47] is that the spectral action with dilaton is given by the
spectral action (without dilaton) applied to the Einstein metric (1.612), with the
addition of a kinetic term for the dilaton.

When one applies the same technique to the case of the Standard Model (as analyzed
in [47)), one finds that in that case one needs to rescale not only the metric (1.612)
but also the Higgs field by

(1.614) H=e%h.
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At the level of the Dirac operator, the transition to the new metric corresponds to
the transformation

(1.615) D — e 92De /2.

The appearance of the kinetic term for the dilaton can be understood in the general
framework of Definition [1.147 of the scalar curvature in noncommutative geometry,
from the difference between (e~%/2 D e=%/2)? and e=% D? e~ ?.

Indeed, as in [47] Appendix C, the next proposition shows that the shift to the

FEinstein metric and the appearance of the kinetic term for the dilaton hold quite
generally.

PROPOSITION 1.167. Let (A, H, D) be a spectral triple, reqular with simple dimension
spectrum, of metric dimension 4. Let p = e® with ¢ = ¢* in the center of A.
(1) (A,;H, Dy = e~?/2 D e=??) is a spectral triple and its residue functional is
the same as for (A,’H, D).
(2) Assuming conditions (1.549) and (1.550) of §11.1, the scalar curvature
functionals R and Ry of the two spectral triples are related by

1
(1.616) Ry(a) = Rlae®®) + 3 ][ [D, ae?][D, e?] D74,
(3) With the hypothesis of (2) and with p = e®, the coefficient of %A2 in the
expansion of N(Ap) is the sum of the scalar curvature Ry(1) with the
(positive) kinetic term

5 } D aPD

PROOF. 1) The first assertion is straightforward, since ¢ = ¢* is in the center
of A. To prove that the residues agree is quite technical and we restrict to the case
of ordinary pseudodifferential operators on a manifold where it follows from [304].

2) For a € A, one has

(1.617) ][ a(e”®2De )72 = ][ ae? D7 te? D!
and
(1.618) D le? =Dt — DD, e’ DL

This makes it possible to write (1.617) in the form

(1.619) ][ a(e ®?De?/?)72 = ][ ae** D72 — ][ ae® D7LD, ] D72
Then, using (1.618) again, one obtains

—][ae¢D_l[D, e?)D7? = —][ae¢[D, e?|D3

(1.620)
—][D—l[D, ae®| D7D, e?| D72

The first of the two terms vanishes by the tadpole condition (1.549). Using D[D, z|+
[D,2]D = [D? x] and [D,z]D~! = —D7'[D,z] + D7'[D? z]D~! for z = ae?, we
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can write the term

T=— ][ae¢ [D, e’ D3 — ][D_l D, ae®] D71 [D, e?] D2
on the right-hand side of (1.620) in the form
(1.621) T = ][ (D, ae?][D, e?] D™ — ][ D72[D? ae®] D7D, e’ D72
Consider now the expression

S = ][ D72[D? ae®] D' D, ¢®] D72

We show that

(1.622) §=3 ][ (D%, ae?][D?, e?] D75,

To see this, notice that the commutator of D with [D?, a e?] is equal to [D?, [D, ae?]]
and has order 1 so that, moving D to the left and using the trace property of the

residue, one gets
1
5= ][ (D%, ae?] D(D[D, e’] + [D, e’] D) D~

and one obtains (1.622)). Summarizing, we have obtained the equality
Ry(a) = ][ae2¢D_2 + ][[D, ae’][D, e?] D4
—;][[DZ, 0] (D2, ¢¥] DS,

Thus, by Lemma [1.151 one gets (1.616).

3) The condition D? < AQp2 means that e ?D%e~? < AZ. Notice that one cannot
use a strict cutoff function such as the characteristic function of an interval and it
should be replaced by an approximation by a smooth cutoff. We ignore this subtlety.
We are interested in comparing the coefficients of A% in the heat expansions with
t = A2 of e?D%e % and Di. This amounts to comparing the residues of their
inverses. By 2) we have

Fleenre ) =Ry~ § f DD

Since the operator [D, p| is anti-Hermitian we then get 3). O

(1.623)

12. Noncommutative geometry and the Standard Model

It is well known that it is possible to infer the Minkowski space geometry under-
lying special relativity from experimental evidence associated to Maxwell’s theory
of electromagnetism. In fact, the Maxwell equations are intrinsically relativistic.
This geometry is then extended to the Lorentzian manifolds of general relativity.
From the particle physics viewpoint, the Lagrangian of electromagnetism is just a
very small part of the full Standard Model Lagrangian, as one can see easily from
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the explicit expression given in §9.4/ and §9.6.2/ above. Thus, it is natural to won-
der whether the transition from the Lagrangian of electrodynamics to the Standard
Model can be understood as a further refinement of the geometry of spacetime.
We approach this question using the tools we introduced above, namely

e Noncommutative geometry
e The spectral action principle

As we have seen, noncommutative geometry makes it possible to consider spaces
which are more general than ordinary manifolds. This gives us more freedom to
obtain a suitable geometric setting that accounts for the additional terms in the
Lagrangian.

It is worth pointing out again, as we mentioned in §9.9, the difference between
the approach we intend to follow and the usual geometric formulation in terms of
bundles. The usual formulation maintains an a priori distinction between gravity
and the other forces, while we seek a geometric formulation for the full theory of
the Standard Model minimally coupled to gravity and with neutrino mixing which
reduces it to pure gravity on a “refined spacetime”. This in particular means that
the symmetries will be the (analog of the) diffeomorphism group on the resulting
space and not bundle homomorphisms that are a priori required to preserve the
fibered structure.

We work in Euclidean rather than Lorentz signature, leaving as an important prob-
lem the Wick rotation back to the Minkowski signature. For a formulation in
Minkowski signature see [13].

The idea of interpreting the Lagrangian of the Standard Model in terms of noncom-
mutative geometry goes back a good twenty years (Connes [68], [70], see also [85],
[181], [180]). The origin of this interpretation of the Standard Model in terms of
noncommutative geometry lies in the extension of the Yang-Mills functional to the
algebraic framework of noncommutative geometry (cf. [68], [96]). The color degrees
of freedom were still added somewhat artificially in the early models (cf. [68]) and
the action functional was obtained by analogy with the classical gauge theories. In
particular it did not incorporate gravity. The work [70] already shows most of the
main points we are going to discuss below, such as the fact that the fermions of
the Standard Model provide the Hilbert space H of a spectral triple for a suitable
algebra A, while the bosons arise naturally as inner fluctuations of the correspond-
ing Dirac operator D. As we are going to see in the following sections, the spectral
geometry (A, H, D) is, in these models, a product of an ordinary geometry by a
“finite” noncommutative space (Ap, Hr, Dr). Besides a Z/2 grading v this spectral
triple has a crucial piece of structure: a real structure as in Definition [1.124.

The work of Chamseddine—Connes in [45], [46] and the results of [70] show how to
incorporate the color naturally and, more importantly, how to obtain the bosonic
part of the Standard Model action coupled to Einstein gravity from the very general
spectral action principle discussed in §11. In fact, the main result of [45], [46] is that,
when applied to the inner fluctuations of a product geometry of the form M x F' the
spectral action gives the Standard Model coupled to gravity in the Euclidean form.
As explained above the spectral action principle gives a simple prescription to define
an action functional and applies in full generality, so that the action can be evaluated
on all noncommutative geometries. It is in essence a purely gravitational action.
Since it only depends upon the spectrum of the line element i.e. the inverse of the
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Dirac operator. In physics terms, modulo a chiral gauge transformation, the Dirac
operator is the inverse of the Euclidean propagator of fermions. The spectral action
principle then asserts that D is all that is needed to define the bosonic part of the
action.

Moreover, since disjoint unions of spaces correspond to direct sums of the Dirac
operators, a simple additivity requirement for the action functional shows that it
has to be of the form

(1.624) S = Tr(f(D/A)),

where f is an even function of the real variable and A a parameter fixing the mass
scale. In fact, as we saw in §11, the choice of the test function f plays only a small
role. In fact, when the action S is expanded in inverse powers of A, it depends on
the first momenta [ f(u) u*~1 du and on the Taylor expansion of f at 0.

The spectral action functional admits a huge invariance group, namely the group U
of unitary operators on the Hilbert space H which preserve the additional structures
given by the Z/2-grading v and the real structure J i.e. such that

(1.625) vuvr=v'U=1, UJ=JU, Uy=~U

That the gravitational Einstein action appears naturally in the expansion of S is
reminiscent of the idea of induced gravity, but the spectral action in fact recovers
the full bosonic sector.

We have already seen in §11.4 that the product geometry of a Riemannian spin
4-manifold by the simplest noncommutative geometry

(Mn(C), Mn(C),0)

gives the SU(N) Yang-Mills gauge theory minimally coupled to gravity, with fermi-
ons in the adjoint representation. The inner fluctuations (taking the real structure
J into account) give the gauge bosons and the spectral action gives the required
Lagrangian, with the correct signs required for the Euclidean functional integral.
The theory obtained in this way is, however, massless and the key missing step
is the Brout—Englert—Higgs mechanism of spontaneous symmetry breaking, which
generates masses without spoiling the renormalizability of the theory. We refer
to [60] for the detailed description of the Higgs mechanism and the specific role
of the Goldstone bosons. The lack of a simple geometric interpretation of the new
terms added to the Lagrangian to generate the masses leads to many theoretical
speculations denying any fundamental significance to the Higgs particle. As we see
below, noncommutative geometry indeed provides a simple geometric interpretation
of the new terms. The geometry is again a product geometry of a Riemannian spin
four-manifold by a finite geometry F' but the latter will be more subtle than the
case of (My(C), My(C),0).

For the noncommutative geometry F' used in [46] to obtain the Standard Model
coupled to gravity, all the ingredients are finite-dimensional. The algebra Ap =
Cae H e M3(C) (ie. the direct sum of the algebras C of complex numbers, H of
quaternions, and M3(C) of 3 x 3 matrices) encodes the gauge group. The Hilbert
space Hp is of dimension 90 and encodes the elementary quarks and leptons. The
operator Df encodes those free parameters of the Standard Model related to the
Yukawa couplings.
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For M the spectral triple is given by the representation of the algebra of smooth
functions acting by multiplication in the Hilbert space L?(M, S) of square integrable
spinors, the grading is given by ~5 and the real structure Jys is given by charge
conjugation.

While it did achieve the purpose of deriving the Standard Model action from simple
geometric principles, the work [46], [70] was incomplete in the following ways.

(1) The finite geometry F' was put in “by hand”, with no conceptual under-
standing of the representation of Ag in Hp nor of the possible choices of
the operator Dp.

(2) There is a fermion doubling problem (cf. [210]) in the fermionic part of the
action.

(3) This formulation does not incorporate the neutrino mixing and see-saw
mechanism for neutrino masses.

We present here a new formulation, based on the recent work [73], [52], which
provides a solution for these three problems (the first only partly, but the full solution
([49], [50]) will be explained briefly in §18.3). In terms of noncommutative geometry,
the main new point is that, when dealing with noncommutative spaces one should
keep the distinction between the following two notions of dimension.

e The metric dimension
e The KO-dimension.

The metric dimension manifests itself through the dimension spectrum and its upper
bound as discussed in §10. In the model we consider below, the metric dimension
of the product geometry is 4, the same as the ordinary space-time manifold, i.e. the
metric dimension of the finite noncommutative geometry F' is zero, as is guaranteed
by the finite dimensionality of both Agr and Hp.

The KO-dimension is only well defined modulo 8 and it takes into account both the
7 /2-grading 7 of H as well as the real structure J (cf. §10.8)). The real surprise is that
in order for things to work we have to set up the real structure of the finite geometry
F so that its KO-dimension is equal to 6. It is only thanks to this that the fermion
doubling problem pointed out in [210] can be successfully handled. Moreover this
will give rise to a geometry that automatically generates through the spectral action
the full Standard Model minimally coupled to gravity, including neutrino mixing
and the see-saw mechanism.

As a result, we see that the K O-dimension of the product space M x F' is in fact
equal to 10 ~ 2 modulo 8. In particular, looking back at the table of Definition
1.124, we get that the antilinear isometry J fulfills J> = —1. Thus, the above
unitary group U of (1.625) is now related to the symplectic group preserving the
quaternionic structure associated to J, where the quaternion j in the traditional
basis of H over R, given by (i, 7, k), acts in H by the operator .J.

The fact of having a space of dimension 10 is reminiscent of the models of string
theory, with the finite noncommutative geometry F' as a replacement for the Calabi-
Yau fibers that are at the core of string theory. This 6-dimensional noncommutative
geometry can perhaps be realized as a low energy truncation of the type of compact
fibers of string theory models, as considered for instance in [135]. On the other hand,
the KO-dimension 10 is also 2 modulo 8, which may be related to the observations
of [202] about gravity.
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13. The finite noncommutative geometry

Our approach to the Standard Model is based on the idea of providing only a very
simple mathematical input, a fairly natural choice of a finite-dimensional algebra,
and then deriving from that input alone the full complexity of the Standard Model
Lagrangian coupled to gravity by applying the formalism of noncommutative geom-
etry and the spectral action.

Input Machinery Output
noncommutative geometry Standard Model
algebra Arr spectral triples with neutrino mixing
spectral action principle coupled to gravity

Our initial input is what we refer to as the “left—right symmetric algebra”. Notice
that the model we are going to derive to account for massive neutrinos and neutrino
oscillations is not a left—right symmetric model, as pointed out already in §9.6/above.
In fact, as we see below in §13.1, a mathematical mechanism will select a subalge-
bra of the left-right symmetric algebra, which breaks the left—right symmetry and
provides the actual algebra Ag that will appear in the spectral triple.

We shall explain later in §18.3 how the classification of the finite noncommutative
geometries of K O-dimension 6 leads more conceptually to the same result.

DEFINITION 1.168. The left-right symmetric algebra Apgr is the involutive finite-
dimensional algebra

(1.626) Arr i =Cao Hp @ Hr @ M3(C).

Here Hy, and Hg are two copies of the real algebra H of quaternions, with the indices
L, R for bookkeeping. The involution is given by

(1.627) (X gz, qr,m)* == (N, qz, Gr, m"),
where ¢ — ¢ denotes the involution on the algebra of quaternions. The complex

subalgebra C @ M3(C) is referred to as the integer spin part and the real subalgebra
Hy @ Hg as the half-integer spin part of Arg.

We recall for later use that the algebra H of quaternions has a basis {1,i0%}, where
c® are the Pauli matrices

L (01 s (0 —i s (1 0
(1.628) a—<1 o>’ 0_<i 0), 0—<0 _1>~

It is important to stress here that the main advantage of working with associative
algebras as opposed to the more common use of Lie algebras in physics is that the
representation theory is much more restrictive. In particular, a finite-dimensional
algebra has only a finite number of irreducible representations, hence a canonical
representation in their sum. Thus, having only specified the datum of the algebra, in
our case the left-right symmetric algebra of Definition [1.168|, one obtains canonically
an associated bimodule, which we now describe in the case of interest to us.

We begin by introducing the adjoint action of an algebra A on a A-bimodule M.
DEFINITION 1.169. Let M be a bimodule over an involutive algebra A. For u € A
unitary, i.e. such that uu* = u*u =1, one defines Ad(u) by Ad(u)§ = uéu*, for all
e M.
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In the specific case of the left-right symmetric algebra Arg, we also introduce the
notion of odd bimodule. This corresponds to “half-integer spin” representations.

DEFINITION 1.170. Let M be an Apg-bimodule. Then M is odd iff the adjoint
action (as in Definition1.169) of the element s = (1, —1,—1,1) fulfills Ad(s) = —1.

We give a description of odd bimodules in terms of a complex algebra obtained from
Arr and its opposite algebra.

LEMMA 1.171. Let AOLR denote the opposite algebra of Apr and let B = (Apg ®r
AOLR)p denote the reduction of Apr ®r AOLR by the projection

p= %(1—8@80).
Then B is an algebra over C isomorphic to the direct sum of four copies of the
algebra My(C) @& Mg(C).
PROOF. By construction, the algebra B is of the form
(1.629) B = (H; ®Hg) ®r (C® M3(C))° @ (C® M3(C)) ®r (Hy @ Hpg)°.
Thus, the result follows from the isomorphisms
(1.630) Her C= My(C) and H®g M;3(C)= Ms(C).
O

The algebras My (C) and H are isomorphic to their opposite algebras, respectively
by m + m! for matrices and ¢ — ¢ for quaternions. We use this anti-isomorphism
to obtain a representation ¥ of the opposite algebra AOL p from a representation 7
of Arr. We then have the following description of odd bimodules.

LEMMA 1.172. Let B = (ArLr ®r AOLR)p be as in Lemma [1.171. Then, any odd
bimodule M for Arr is a representation of B.

PROOF. The statement follows directly from the action of
s=(1,-1,-1,1)
in Definition [1.170. O

We adopt here the physicists’s convention and we denote an irreducible representa-
tion by its dimension in boldface.

DEFINITION 1.173. Let 3 denote the 3-dimensional irreducible representation of the
algebra M3(C) and 3° that of the opposite algebra. Let 1 and 1° denote respectively
the 1-dimensional irreducible representation of C and its opposite, and 2 and 2° the
2-dimensional irreducible representation of the algebra H and of its opposite. One
writes 25, and 2 to distinguish between Hj, and Hg.

Since B = (ALr ®r A% ), is an algebra over C, we restrict ourselves to considering
those odd bimodules M that are complex representations of B. We then introduce
the notion of contragredient bimodule.

DEFINITION 1.174. The contragredient bimodule M° of an Arg-bimodule M is the
complex conjugate space

(1.631) MO ={E; e M}, afb=b"€a*, Va,bec Arg.
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As explained above, it is now natural to consider the representation of the algebra
Arr on the bimodule M g, obtained as the direct sum of all inequivalent irreducible
odd Ay g-bimodules. Notice that the reason for working with bimodules instead of
just left or right modules is that we are going to construct a spectral triple endowed
with a real structure and the condition (1.471) related to the involution J of the
real structure by (1.472)) signals the presence of a bimodule structure. We describe
more explicitly the bimodule Mpg.

PrROPOSITION 1.175. Let Mp be the direct sum of all inequivalent irreducible odd
A1 r-bimodules.

e The dimension of the complex vector space Mg is 32.

o The App-bimodule Mp = E @ EY is the direct sum of the bimodule
(1.632) E=2,21"02r01°02, 23 @2z 3°

with its contragredient E°.
o The Apr-bimodule Mg is isomorphic to the contragredient bimodule MOF
by the antilinear isometry Jp given by

(1.633) Jr(€,n) = 0,8, Y, ne&
e One has
(1.634) Jp=1, &b=Jpb*Jp&, VEEMp,be Apr

PrOOF. The first two statements follow from the structure of the algebra B
described in Lemma [1.171. In fact, the complex algebra My (C) admits only one
irreducible representation and the latter has dimension N. Thus, the sum of the
irreducible representations of B is given by

(1.635) 2,132z 2102, 2302230122 ©0122%0322) 3229,

of dimension 4 x 2 + 4 x 6 = 32. Notice then that, by construction, Mg is the
direct sum £ @ &Y of the bimodule (1.632) with its contragredient, and that the map
(1.633) gives the required antilinear isometry. Notice, moreover, that (1.634) follows
from (1.631)). O

In addition to the anti-involution Jr of (1.633) we have a natural grading given as
follows.

COROLLARY 1.176. Let yr be the Z/2-grading on Mg defined by
(1.636) yr=c¢— Jpedp, with ¢=(0,1,—1,0) € App,
where Jp is as in (1.633). The pair (Jp,vr) satisfies

(1.637) Jt=1 and Jpyp=—"rJp.

In particular, the relations (1.637) imply that the KO-dimension of the finite geom-
etry is equal to 6 mod 8.

ProoF. This follows directly from the definition of Jr in (1.633). The table of
Definition [1.124/ shows that the signs in the relations (1.637) can only happen in the
case of KO-dimension 6 modulo 8. g
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The fact that the algebra Arpg is a natural choice of input for our model can be
justified as follows. The algebras Hj @ Hpr and Ms(C) are closely related since they
have the same complexification. Thus the algebra Ay of (1.626) is strikingly close
to the truncation @©3_; M,,(C) of the group ring of SU(2). In particular, the element
of the group ring corresponding to the kernel of the covering SU(2) — SO(3) is the
element s = (1,—1,—1,1) € Arp that we considered in Definition 1.170), where the
action of s in an irreducible representation is +1 according to the parity of the spin,
consistently with our notion of odd bimodule in Definition [1.170. The relation to the
group ring of SU(2) suggests possible connections with the theory of quantum groups
at roots of unity (cf. e.g. [54] §11 and §9.3.C). We shall give in §18.3/ a completely
different conceptual explanation for taking as an input, instead of Ay g, the algebra
My(H) & M4(C) which leads, by the order one condition of §13.1, to exactly the
same finite noncommutative geometry F.

In the following section we construct a finite spectral triple, starting from the rep-
resentation of Ayr on a bimodule which is a direct sum

(1.638) Hp = MEN

of N copies of Mp. The number N will be identified with the number of particle
generations in the Standard Model, and we take in fact N = 3, so that Hpr has
dimension 96. At this point the choice of N = 3 is an extra input, which is not
deduced from our initial input Ay g.

13.1. The subalgebra and the order one condition.
As we explain in §13.2 below, the two terms in the decomposition
(1.639) Mp=Ea&°

of Proposition [1.175/ correspond in the physical interpretation to particles and an-
tiparticles for the fermions of the Standard Model. One can see from the explicit
form of the representation that the action of the algebra Ay g preserves the splitting
(1.639) and J simply interchanges £ with its contragredient £°. Thus, the construc-
tion so far never mixes the sectors £ and £°. The important part of the geometry
that contains some nontrivial intertwining of these spaces will be encoded in the
Dirac operator of the finite spectral triple. The very natural requirement that the
Dirac operator indeed has nontrivial “off-diagonal pieces” that intertwine the £ and
EY will select a maximal subalgebra of A p.

To see this, we consider as in (1.638) the module Hp = ME?. This inherits induced
Jr and yp operators from those on M defined by (1.633) and (1.636).

DEFINITION 1.177. We set

(1.640) Hy=EoEdE, Hp=Eaa,
so that we have

(1.641) Hr ZHfEBHf.

The following simple observation shows that, indeed, the action of Ajpr preserves
the matter/antimatter splitting of Hp induced by (1.639).
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LEMMA 1.178. The left action of ALr splits as the sum of a representation ™ on Hjy
and a representation @ on Hy.

These representations of Apr are disjoint, i.e. they have no equivalent subrepresen-
tations.

PRroOOF. This follows directly from the explicit description of the bimodule Mg
as in Proposition [1.175. [l

It is important, in the context of noncommutative geometry and spectral triples, to
think of the data A and D of the algebra and the Dirac operator as a coupled system,
which one solves for pairs of A and D satisfying certain natural properties. In our
setting, as we mentioned above, we want the Dirac operator to intertwine the spaces
Hy and Hy while satisfying the compatibility with the algebra, i.e. the order one
condition (1.473), which is the only compatibility condition in the finite-dimensional
case, the bounded commutators condition being automatically satisfied. The next
Lemma gives a description of the conditions on the pair of A C Apgr and D that
fulfill these requirements. For any operator T' : Hy — Hy we let

(1.642) A(T)={be ALr | ()T = Tr(b), ' (b*)T = Tn(b*)}.
It is by construction an involutive unital subalgebra of Apg.

LEMMA 1.179. Let A C Apgr be an involutive unital subalgebra of Arr. Then the
following properties hold.

(1) If the restrictions of m and @’ to A are disjoint, then there is no off-diagonal
Dirac operator for A.

(2) If there exists an off-diagonal Dirac operator for A, then there exists a pair
e, € of minimal projections in the commutants of m(Arr) and ©'(ALgr) and
an operator T such that €Te =T # 0 and A C A(T).

PROOF. 1) First the order one condition shows that [D, a’] cannot have an off-
diagonal part since it is in the commutant of A. Conjugating by J shows that [D, a
cannot have an off-diagonal part. Thus the off-diagonal part Dyg of D commutes
with A i.e. [Dog,a] = 0, and Dyg = 0 since there are no intertwining operators.

2) By 1) the restrictions of m and 7’ to A are not disjoint and there exists a non-zero
operator T such that A C A(T). For any elements z, 2’ of the commutants of 7 and
7', one has

A(T) C A(2'Tx)
since 7'(b)T = Tw(b) implies 7/ (b)2'Tx = 'Txmw(b). Taking a partition of unity by
minimal projections there exists a pair e, ¢’ of minimal projections in the commutants
of m and 7’ such that ¢/Te # 0 so that one can assume ¢'Te =T # 0. O

In particular, Lemma [1.179 shows that fixing A = Apr precludes the existence of
operators D in Hp that fulfill the order one condition (1.473)) and intertwine the
subspaces Hy and H.

The existence of such operators D intertwining Hy and Hy is restored by passing to
a unique subalgebra of maximal dimension in Ayg, as the following result shows.

ProrosiTION 1.180. Up to an automorphism of Arg, there exists a unique invo-
lutive subalgebra Ap C Apr of mazximal dimension admitting off-diagonal Dirac
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operators, namely operators that intertwine the subspaces Hy and Hjy of Hp. The
subalgebra is given by

(1.643) Ap={(\,qe,A\,m) | A€ C, qp € H, m e M3(C)} ~Co He M3(C).

Proor. Let A C Apg be an involutive unital subalgebra. If it admits an off-
diagonal Dirac, then by Lemma [1.179/it is contained in a subalgebra A(T') with the
support of T' contained in a minimal projection of the commutant of 7(Argr) and
the range of T' contained in the range of a minimal projection of the commutant of
™ ,(AL R)-

This reduces the argument to two cases, where the representation  is the irreducible
representation of H on C? and 7’ is either the representation of C on C or the
irreducible representation of M3(C) on C3.

In the first case the support E of T is one-dimensional. The commutation relation
(1.642) defines the subalgebra A(T') from the condition AT¢ = T¢¢, for all £ € E,
which implies A\{ — g€ = 0. Thus, in this case the algebra A(T) is the pullback of

(1.644) {(\g) eCOH| g€ =AE, VEeE)

under the projection on C @ H from Apgr. The algebra (1.644) is the graph of an
embedding of C in H. Such an embedding is unique up to inner automorphisms of
H. In fact, the embedding is determined by the image of ¢ € C and all elements in
H satisfying 22 = —1 are conjugate.

The corresponding subalgebra Ap C Apg is of real codimension 4. Up to the
exchange of the two copies of H it is given by (1.643)).

In the second case the operator T' has at most two-dimensional range R(T"). This
range is invariant under the action 7’ of the subalgebra A and so is its orthogonal
complement since A is involutive. Thus, in all cases the M3(C)-part of the subalgebra
is contained in the algebra of 2 @ 1 block diagonal 3 x 3 matrices, which is of real
codimension 8 in M3(C). Hence A is of codimension at least 8 > 4 in Arp.

The actual existence of Dirac operators for the subalgebra (1.643)) with off-diagonal
terms follows from Theorem [1.187 below, which gives the complete classification of
all Dirac operators compatible with the data

(Ar,HFr, Jr,VF).

13.2. The bimodule Hr and fermions.

We introduce a more explicit notation for the elements of the bimodule Hg, which
we can then relate explicitly to the fermions of the Standard Model through the
assignment of hypercharges in §13.3/ below.

As before, we denote by 2 the 2-dimensional irreducible representation of the algebra
H of quaternions of the form

(1.645) ( hy ’ )

with o, 8 € C.
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DEFINITION 1.181. Let |T) and ||) be the basis of the irreducible representation 2 of
H of (1.645) for which the action of A € C C H is diagonal with eigenvalues \ on
1) and X on ||). Let u = (uj), and @ = (u;), with j = 1,2,3 the color index, denote
the elements

(1.646) weH03°c203% and we3x1)c3w2°

One writes |T])r or |Tl)r to distinguish the Hy, and Hp cases and correspondingly
writes ur, and ug for the elements in |T)r ® 3° and |1)gr ® 3° in € and d, and dg
for the elements in ||)p @ 3° and ||)gr ® 8% in €. Similarly for ur, ur, dr,, and dg
in E°. For A\=1,..., N the generation index, one lets ué, uj\%, dy, dy, 712, ﬂj\%, d},
d} be the corresponding elements in (€ ® £%) ® CN.

Let then v and e denote the elements

(1.647) veMel1l®c201’ awd re1e|))c1e2Y,

(1.648) ec|)®1°c291’ and ec1@ll)c1e2’

As above one writes vy, VR, UL, Ur, and er, €r, €1, €r, to distinguish between Hy,
and Hpg, with an additional generation index A =1,..., N, so that one has eé, Vé,
ey Uhs €1, U}, En, Uy in (E® E%) ® CN.

Upon writing the bimodule M as M = £ @& £°, with € as in (1.632), and setting
N = 3, we obtain in this way a description of elements of Hp as combinations of
elements of the form

A A A A
uL: d ) U'Ra dR7
ay, dy, uy, dy,

A A A A

vp, €1, Vg, €p;

SA SA SA
vy, €1, Vg, €g

(1.649)

Physically, the ui, d%, uj\%, dj\%, ﬂ%, Jﬁ, ﬂf‘{, Jj\% describe particles and antiparticles
in the quark sector

(1.650) (223’0223 @3®2) 93x2%) ®C

with both possible chiralities. The e%, 1/2, ej\%, 1/1’\%, éi, Dﬁ, éj\%, Dg describe particles
and antiparticles in the lepton sector

(1.651) (29102 21"9122) &1 2%) @ C?

where we allow for right-handed neutrinos V})% as well as their antiparticles, unlike
the minimal Standard Model, which only allows for one chirality. Notice that, in
the lepton sector, the neutrinos V%, VI)%, Di, 91)% play the role of the “up particles”
and the charged leptons e]—}, ej}%, é%, é)}‘2 of the “down particles” in the quark sector.
This gives a description of the elements of the bimodule Hg in terms of the fermions

of the Standard Model (with right-handed neutrinos) in the following form.
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A=1 A=2 A=3
u%, uj\_—i up quark charm quark top quark
ﬂ%, ﬁ)ﬁz up anti-quark charm anti-quark top anti-quark
A A
g_ L g R ~ down quark strange quark bottom qpark
7, dp own anti-quark strange anti-quark | bottom anti-quark
1/2, Vj\z electron neutrino muon neutrino T neutrino
17%, ’71')% electron anti-neutrino | muon anti-neutrino | 7 anti-neutrino
e%, e}% electron muon T
éj:\, é}% positron anti-muon anti-7

Notice that, in choosing the basis of fermions there is an ambiguity on whether one
multiplies by the mixing matrix for the down particles. This point will be discussed
more explicitly in §17 below, see (1.795).

We can then describe more explicitly the action of Ar on Hp in terms of the fermi-
ons. We use the notation fr, fr, fr, fr for any of the elements of the form (1.649)
and we say that f or f is a quark if it is as in the first two lines of (1.649) and that
it is a lepton if it is as in the last two lines of (1.649).

Let a = (\,¢,m) € Ap, with A € C, ¢ = a+ $j € H and m € M3(C). We let ¢!
denote the transpose of the matrix (1.645) of the representation 2 of H. We also
denote by ¢(\) the embedding C C H given by aw = A and 3 = 0 and we denote by
q(\)! = q(\) the corresponding (diagonal) matrix as in (1.645). Then we have the
following description of the action of Ar on Hp.

LeEMMA 1.182. The action of a € Ap on Hy is given by

a ur \ 4 uL _ auL—BdL
dr )~ T\ a4 \ Pur+ady )’

()= (i) - (),
(1.652) _
1.652 a<Z§>: ( > =<35LL;§Z>

a<:2>: ()( ) :<AA§§>

The action of a € Ap on Hy is given by

af =\f when f is a lepton,
(1.653) _ _
af=mf when f is a quark.

Here the 3 x 3 matriz m is acting on the color index of quarks.

PROOF. The result follows directly from the explicit description of the bimodule
Mp as in (1.635), after adopting the notation of Definition [1.181. Note that, since
we describe the action on basis vectors rather than on coordinates we used the
transposed matrices in (1.652)). O

Notice how, unlike in the case of the miminal Standard Model, the presence of
right-handed neutrinos makes the action on H; symmetric in the quark and lepton
sectors.
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The involution (1.633) of the real structure takes the form

(1.654) TeQ N i+ > wiF) =D i+ Nl
and the grading (1.636)) is given by
(1.655) vefr = fu, rfr=—fr wrfL=—fu, Yrfr= IR

This sign convention for the grading agrees with that of [286], while for instance
[234] follows the opposite sign convention.

13.3. Unimodularity and hypercharges.

We need to justify the identification made in the previous section between the el-
ements of Hr and the fermions. We do this by showing in this section that this
identification gives the correct symmetries of the Standard Model and assigns the
correct values of the hypercharges to fermions.

In general one has the following notion.

DEFINITION 1.183. The unitary group of an involutive algebra A is given by
(1.656) UA) ={ue A|uwu* =u"u=1}.

In our context, we can define the special unitary group SU(A) C U(A) as follows.
DEFINITION 1.184. Let SU(AFR) be the subgroup of U(AF) defined by

(1.657) SU(Ar) = {u € U(AF) | det(u) = 1},

where det(u) is the determinant of the action of u on Hp.

The following result describes the group SU(AF) and its adjoint action.
PROPOSITION 1.185. (1) The group SU(AF) is of the form

(1.658) SU(Ar) ~ U(1) x SU(2) x SU(3),

modulo a finite abelian group.

(2) The adjoint action of the U(1) factor is given by multiplication of the basis
vectors in Hy by powers of A € U(1), where the powers are given by the
following list.

Mme1® |Hhel® Ne3® ||)e3°

(1.659) 2, -1 ~1

Lol
Wl

4 2

(3) The adjoint action of the SU(2) factor is trivial on the right handed particle
sector and is the representation 2 on the left-handed particle sector.

(4) The adjoint action of the SU(3) factor is trivial on the lepton particle sector
and is the color action on the quark particle sector.

PROOF. (1) Let u = (A\,q,m) € U(Ap). The determinant of the action of u
on the subspace Hy is equal to 1 by construction, since a unitary quaternion has
determinant 1. Thus, det(u) is the determinant of the action 7'(u) on Hy. This
representation is given by 4 x 3 = 12 copies of the irreducible representations 1 of
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C and 3 of M3(C), where the 4 is from 29 @& 2%, and the 3 is the additional overall
multiplicity of the representation given by the number N = 3 of generations.
Thus, we have

det(u) = A2 det(m)*2.

Thus, SU(AF) is the product of the group SU(2), which is the unitary group of H,
by the fibered product G = U(1) x12 U(3) of pairs (A\,m) € U(1) x U(3), such that
A2 det(m)!? = 1.

One has an exact sequence

(1.660) 1—pu3—U1)xSUB) = GL upp—1,

where ppn is the group of roots of unity of order N and the maps are as follows.
The last map p is given by u(A,m) = A det(m). By definition of G, the image of
the map p is the group w12 of 12th roots of unity. The kernel of p is the subgroup
Gy C G of pairs (A\,m) € U(1) x U(3) such that A det(m) = 1.

The map U(1) x SU(3) — G is given by (A\,m) — (A3, A1 m). Its image is Go. Its
kernel is the subgroup of U(1) x SU(3) of pairs (A, A 13) where A € u3 is a cube root
of 1 and 13 is the identity 3 x 3 matrix.

Thus we obtain an exact sequence of the form

(1.661) 1 — pg — U(1) x SU(2) x SU(3) — SU(Ap) — p1z — 1.

(2) Up to a finite abelian group, the U(1) factor of SU(AF) is the subgroup of
elements of SU(AF) of the form u(\) = (A, 1, A"1/?13), where A € C, with |\ = 1.
We ignore the ambiguity in the cube root.

Let us compute the action of Ad(u()\)). One has Ad(u) = u(u*)? = ub® with
b=(\1,\/313).

This gives the required table as in (1.659)) for the restriction to the multiples of the
left action 2. In fact, the left action of u is trivial there.

The right action of b = (X, 1, A\1/313) is by X on the multiples of 1° and by )\1/31§ on
multiples of 3°,

For the restriction to the multiples of the left action 2p one needs to take into
account the left action of u. This acts by A on |) and A on [|). This adds a +1
according to whether the arrow points up or down.

(3) We identify the SU(2) factor with elements of the form u = (1, ¢, 1) where ¢ is
a unitary quaternion. On the particle sector the left action of u is by g on the left-
handed part and trivial on the right-handed part. The right action i.e. the action
of JuJ ™! is trivial. Thus the adjoint action uJuJ ! is 2 on left-handed and 1 on
right handed (for the particle sector).

(4) We identify the SU(3) factor with elements of the form w = (1,1,v) where
v € SU(3) and o is the complex conjugate. On the particle sector the left action of
w is trivial and the right action JuJ ! is trivial on leptons and is the representation
3 on the quark sector. O

Notice how the finite groups p3 and 19 in the exact sequence (1.661) are of different
nature from the physical viewpoint, the first arising from the center of the color U(3),
while the second (u12) depends upon the presence of three generations.

The result of Proposition [1.185! gives the correct physical assignment of the hyper-
charges as in (1.415) for all the fermions of the Standard Model, since we have proved
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that, for u(\) = (X, 1, \"1/313), we have
Ad(u(N)(er) = Mer, Ad(u(N)(er) =Aer, Ad(u(N)(vr) = Avg

which gives the hypercharges Yy and Y, of (1.415) and for the quarks one gets the
correct values for Y, and Yy and Y, of (1.415) from the action of Ad(u) = ub®, with
b= (X, 1,\/313), where the 5° multiplies all the terms by A'/3 so that one obtains
Y,=1+1/3=4/3,YVy=—1+1/3=-2/3 and Y, = 0+ 1/3 = 1/3. The fact
that we obtain the correct physical hypercharges justifies our identification of the
elements of Hr with the fermions discussed in §13.2 above.

Thus, the conclusion up to this point is that, through the initial input of the algebra
Arr we have derived from simple principles the bimodule My (hence H g under the
assumption of N = 3 generations) and the algebra Ap. We have further derived from
this setting the symmetries of the Standard Model and obtained the correct fermionic
content, with the respective hypercharges. Thus, fermions and hypercharges are a
first output we obtain from our initial choice of the algebra. We continue now with
the remaining part of the structure, which is the Dirac operator of the finite geometry
Hr.

13.4. The classification of Dirac operators.

We give a classification of Dirac operators Dp for the pair (Ap, Hr). Instead of
giving a complete classification, we restrict to those self-adjoint operators Dg on
‘Hr which, in addition to satisfying the compatibility with Ag given by the order
one condition (1.473), also have the additional property that they commute with
the subalgebra Cr C Af defined by

(1.662) Cp = {(\,),0),) € Cl.

The physical reason for imposing this condition is that the commutation relation
of the Dirac operator D with the algebra Cr ensures that the photon remains
massless. This will be seen more clearly when we discuss how to recover the bosons
of the Standard Model from the inner fluctuations of the product geometry in §15.2
and §15.4] below.

We introduce some preliminary notation that will be useful for the classification
result in Theorem [1.187 below.

Consider operators on Hp of the form

(1.663) D(T) = (; g) ,
where the linear map S is written in the form
(1.664) S =5 ®(S;®13),
with
(1.665) Sp:2r1°92, 01 -2, 21°@ 2, ®1°,
represented by a matrix of the form

0O o0 7T 0

T

(1.666) ss=|v. 0 o ¢ |

0 Y. 0 O
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while
(1.667) S, ®13:2r23° @2, 23" - 2,23 @2, 23,
with S; represented by a matrix of the form
0 0 75 0
(L668) s=lg v o
0 Tqg 0 O

Here the T,, T., T, T4 and their adjoints are N x N matrices, with N = 3 the
number of generations, while 13 in (1.664) is the identity 3 x 3 matrix on the color
indices. Similarly, the component T is a linear map defined by setting

(1.669) T:Mre1°—>1®[Nr,  T(vr) = Trog,

with Tr an N x N matrix (with N = 3 generations) and such that

Trpors =0
on the complement of
(1.670) Er=Nr®1° C Hp.

In (1.663), T* denotes the adjoint of T and S = Sy & (13 ® S;) the corresponding
action on Hj by the complex conjugate matrices.

We now see that this apparently very special class of operators in fact gives us the
general form of Dirac operators for the finite geometry.

In order to proceed to the classification, we first prove the following preliminary
result, which determines the commutant A% of Ap in Hp.

LEMMA 1.186. Consider an operator P on Hp = Hy @ Hpf, which can always be
written in the form

Py Pro
1.671 P = .
( ) (P21 P22>

Then P belongs to the commutant, P € A’, iff the following conditions are satisfied.

o Py : Hy — Hy is block diagonal, with three blocks in My2(C), Mq2(C), and
12 ® M12(C), corresponding to the subspaces where the action of (X, q,m)
is by A € C, A € C and q € H, respectively.

e P Hy— Hy has support in 1® 2% S ) 2% and range in [1Yr @ 1° @ |1
YR ® 30,

® Po1:Hy — Hj has support in [1)r ® 1°0 1) r @ 3% and range in 1 ® 2% @
1®2%,.

® Py Hy— Hj is of the form

(1.672) Py = Pg ) (13 X Pq),

with
Pile (20 92%) — 1@ (29 @2%)

3o P1:3® (2 ¢2%) - 3x (2 & 2%).
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Proor. The action of Ap on Hrp = H; @ Hj is of the form

(1.673) (W(A’g e w’(A,Oq, m))

On the subspace Hy and in the decomposition on the basis [T)r, ||)r, |T)r, and |]) 1,
of 27 and 2g, one has

(1.674) (A, q,m) = ® L1z,

O OO >
o o o

|
w2
Ql o o

where 12 = dim(1° @ 38°) x N with N = 3. Since (1.673) is diagonal the condition
P e Al is expressed independently on the matrix elements P;;.

Let us consider first the case of the element P;;. This must commute with operators
of the form 7(\, g, m) ® 112 with 7 as in (1.674), and 12 the unit matrix in a twelve-
dimensional space. This means that the matrix of Pj; is block diagonal with three
blocks in M;2(C), M12(C), and 19 ® M;2(C), corresponding to the subspaces where
(A, q,m) acts by A, A and q.

We consider next the case of Pas. The action of (A, ¢, m) € A in the subspace H¢
is given by multiplication by A or by m. Thus, the only condition on Pso is that it
is an operator of the form (1.672).

The off-diagonal terms Pj and P must intertwine the actions of (A, ¢,m) € Ap in
Hy and 'H F- However, the actions of ¢ or m are disjoint in these two spaces, while
only the action by A occurs in both. The subspace of H; on which (X, q,m) acts
by Ais |Nr®1°® |T)g ® 3", The subspace of Hjy on which (), g,m) acts by A is
1® 2% e1® 2%. Thus, the conclusion follows from the intertwining condition. [J

We then obtain the classification of Dirac operators.

THEOREM 1.187. (1) Let D be a Dirac operator for (Ar,Hp,Jr,vr). Then

there exist 3 x 3 matrices Y, Yy, T4, Ty, and a symmetric 3 X 3 matriz
YR, such that D is of the form D = D(Y) as in (1.663).

(2) All operators D(Y) as in (1.663) with the matriz Tr of (1.669) symmetric
are Dirac operators for the data (Ap, Hp, Jr,VF).

(3) Two operators D(Y) and D(Y') are conjugate by a unitary operator com-
muting with Ap, vyr and Jg iff there exists unitary matrices V; and W;
such that

T =TV, T, =V, Vy,
(1.675) T, =WiY W3, T, =WT, W5,
T =V TRVS.
PrOOF. We first check (2), i.e. we show that operators of the form D(Y) are

Dirac operators provided Yg is symmetric. Let us first consider the off-diagonal
part of D(T) in (1.663). This is of the form

0Ty
Yp 0 )
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Anticommutation with vz holds, since the operator vg restricted to the space Er ®
JrpER, with Eg as in (1.670)), is of the form

(v 1)

Moreover, the off-diagonal part of D(Y) commutes with Jp iff

(1.676) (TrE) = TRE, V&,
i.e. iff TR is a symmetric matrix. The order one condition is automatically satisfied,
since the commutator with elements of Ag vanishes identically.

We can now consider the diagonal part

(v 5)

of D(Y). It commutes with Jr and anticommutes with yr by construction. It is
then sufficient to check the commutation with Cr C Ap and the order one condition
on the subspace H;. Since S exactly commutes with the action of AL, the order
one condition follows. In fact, for any b € Ap, the action of b° commutes with any
operator of the form (1.672). This yields the order one condition, since P = [S, w(a)]
is of this form. The action of Ap on the subspace Hp is given by (1.674) and one
checks that m(\, A,0) commutes with S, since the matrix of S has no non-zero
element intertwining the |1) and the ||) subspaces.

We now show (1), i.e. that all Dirac operators are indeed of the form D(Y). Let D
be a Dirac operator. Since D is self-adjoint and commutes with J it is of the form

S T
p=(r %)
with T = T* symmetric.

Consider the element v = (—1,1,1) € Ap. One has
(1.677) Y& = v, VEE Hf.

Notice that this equality fails on H.

The anticommutation of D with v implies that D = —1 v [D, vp]. Notice that vp
is given by a diagonal matrix of the form

_(9 0
w= (b %)

1 1
S =5 9189l =5 vlS,0.

Thus, using (1.677), we get

The action of v in Hp is given by a diagonal matrix (1.673), hence v [S, v] coincides
with the Aj; block of the matrix of A = v[D,v].

Thus, the order one condition implies that S commutes with all operators b°, hence
that it is of the form (1.664).

The anticommutation with vr and the commutation with Cp then imply that the
self-adjoint matrix S can be written in the form of (1.666) and (1.668).
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It remains to determine the form of the matrix 7. The conditions on the off-diagonal
elements of a matrix
p_ (Pn P12>
Py Py

ensuring that P belongs to the commutant of AOF = JrpAfp Jp, are the following.

e P, has support in 1 @ [1)% @3 ® [1)% and range in 2, ® 1° ¢ 25 ® 1°.

e P, has support in 27, ® 1° ® 2z ® 1° and range in 1 ® \T>% D3R |T>OR.
This follows from Lemma 1.186) using Jg.
Consider then the element e = (0,1,0) in Ap. One has 7'(e) = 0 and =w(e) is the
projection onto the eigenspace yp = 1 in Hp. Thus, since [D,e] belongs to the
commutant of A% = JpAp Jr by the order one condition, one gets that 7/(e)T —
Tr(e) = —Tr(e) has support in 2, ® 19 ® 2z ® 1° and range in 1® |N% &3 @ 1)%.
In particular v = 1 on the range.
Thus, the anticommutation with v shows that the support of T'w(e) is in the
eigenspace vp = —1, so that T'w(e) = 0.
Consider then the element e3 = (0,0,1) € Ap. Let us show that Te} = 0. By
Definitions [1.120! and [1.124, a Dirac operator is a self-adjoint operator D in Hpg
commuting with Jp, Cp, anticommuting with vr and fulfilling the order one con-
dition [[D,a],b°] = 0 for any a,b € Ar. Thus, T commutes with the actions of
v(A) = (M A, 0) € Ap and of Jpv(A\)Jz' = v(A\)?. Thus, it commutes with eJ. The
action of eg on H;y is the projection onto the subspace e ® 3% The action of eg on
H is zero. Thus, [T, eg] =T eg is the restriction of T to the subspace  ® 3°. Since
[T,el] = 0 we get Ted = 0. We have shown that the support of T is contained in
2r ® 10, Since T is symmetric, i.e. T = T*, the range of T is contained in 1 ® 2%.
The left and right actions of (), g,m) on these two subspaces coincide with the left
and right actions of v(\). Thus, we get that T commutes with Ap and A%. Thus,
by Lemma [1.186, it has support in |T)g ® 1° and range in 1 ® [1)%.
This means that T is given by a symmetric 3 x 3 matrix T, and the operator D is
of the form D = D(Y).

3) By Lemma [1.186, the commutant of the algebra generated by Ap and A% is the
algebra of matrices
P Prp
P—
<P21 P
such that

e P, has support in 1 ® [1)% and range in [1)g ® 1°.
e P has support in [1)g ® 1° and range in 1 ® |1)%.
e P;; is of the form

Py = Pj; & (P}, ®13)

where
a
) PJ (1) aO 0
0 0 1,®P3)

for j=1,2 and fora=/{or a =q.
A unitary operator U acting on Hp commuting with Ap and J is in the commutant
of the algebra generated by Ap and .A%. If it commutes with v, then the off-
diagonal elements U;; vanish, since yp = —1 on |T)g ® 1° and 77 = 1 on 1 ® |1)%.
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Thus, U is determined by the six 3 x 3 matrices Uf(k). In fact, since it commutes
with Jp, one has U§ (k) = U{ (k). One checks that conjugating by U gives part (3)
of the theorem. O

Notice that it is crucial in order to have the term Y g in the Dirac operator D that
v gives opposite signs to the corresponding chiralities for particles and antipar-
ticles, i.e. that it anticommutes rather than commutes with the real structure Jg.
This anticommutation is, as we observed before, the sign that the K O-dimension is
different from the metric dimension and is 6 instead of 0 modulo 8. Physically, the
term Y g is the one that gives the Majorana mass term for neutrinos and accounts
for the see-saw mechanism for neutrino masses, as we discuss in §17.5.

A first consequence of physical significance that one can derive from the classifica-
tion result of Theorem [1.187) is that, in our model, color is unbroken, which is in
agreement with the physics of the Standard Model. This is a direct consequence of
the fact that all Dirac operators D for the finite geometry (Ap, Hr, Jr,yr) are of
the form (1.663), with the S term of the form (1.664), with the part of S acting on
the quark sector of the form S; ® 13, with the identity matrix on the color indices.

In terms of the general form of Dirac operators described in Theorem [1.187 above,
we can also characterize the subalgebra Ap of the left-right symmetric algebra A g
that was our initial input through the following result.

COROLLARY 1.188. Let D%H denote the off-diagonal part of a Dirac operator Dp =
D(Y) as in (1.663), with the term Tr # 0. Then the algebra Ap C ALg is charac-
terized by the property

(1.678) Ap ={a e Arr | [D¥,a] = 0}.

PrROOF. Let a = (A, qr,qr,m) € Argr. Let Dp be an operator of the form
Dp = D(Y) as in (1.663). By construction DS has support in Er @ JpEg. The
action of @ on Jp ER is given by multiplication by A. The commutation [D%ﬁ, al =0
shows that this action must agree with the action of @ on Er. The latter is given
by multiplication by a quaternion qr = o + 3j

avRp = aVvR — BGR,

where we identify the basis with the fermions as in §13.2. Thus, [DY, a] = 0 implies
that 8 = 0 and o« = A, hence that gg = A and a € Ap. Since we already saw that
[D%ff, a] = 0 for all a € Ar we have obtained the required equality. O

Physically, the result of Corollary [1.188 means that the presence of a non-zero Ma-
jorana mass term Y for the neutrinos does not generate new boson fields. This
will be clearer in §15.2] where we show how the Higgs bosons arise from the inner
fluctuations of the metric.

We now describe geometrically the moduli space of Dirac operators D, using the
classification of Theorem [1.187.

13.5. Moduli space of Dirac operators and Yukawa parameters.

We introduce the following notation.



13. THE FINITE NONCOMMUTATIVE GEOMETRY 237

DEFINITION 1.189. Let C, denote the moduli space of pairs of invertible 3 x3 matrices
(Y4, Yy) modulo the equivalence relation

(1.679) L=Wi Y Wi, T =Wy T, Wi,

where the W; are unitary matrices. Let C; denote the moduli space of triplets of 3 x 3
matrices (Ye, Ty, Tr), with Yr symmetric, modulo the equivalence relation

(1.680) Y=V TV Y, =T,V
and
(1.681) h=Vo YR Vy.

We also need the following preliminary results that will be used in Proposition [1.192
to give an explicit description of the moduli space of Dirac operators Dpg.

LEMMA 1.190. Consider a fized basis for the space Hp as in §13.2. Fach equivalence
class of pairs of 3 x 3 matrices under the relation (1.679) contains a pair (L4, y,)
where Y, is diagonal in the given basis and has positive entries, while Y 4 is positive

and of the form C6,C*, with 6| diagonal and C € SU(3).

PROOF. We can use the freedom to choose Ws and W3 to make T, positive and
diagonal and the freedom to choose W; to make T, positive.
The eigenvalues are the characteristic values (i.e. the eigenvalues of the absolute
value in the polar decomposition) of T, and Y, and are invariants of the pair.
Thus, we can find diagonal matrices d; and §; and a unitary matrix C' such that

(1.682) Tu = 6T and Td = Cdl c*.
Since multiplying C by a scalar does not affect the result, we can assume that
det(C) = 1. O

Thus, C' € SU(3) depends a priori upon 8 real parameters. However, only the double
coset of C' modulo the diagonal subgroup N' C SU(3) matters, by the following result.

LEMMA 1.191. Suppose given a fized pair of diagonal matrices 61 and §) with positive
and distinct eigenvalues. Let N C SU(3) denote the subgroup of diagonal matrices.
Suppose given two matrices C and C" in SU(3) and consider the corresponding pairs
as in Lemma1.191 of the form

(1.683) (61,C8,C*), (6;,C"6,C™).

The pairs in (1.683) are equivalent iff there exists diagonal unitary matrices A, B €
N such that

(1.684) AC = C'B.
Proor. For AC = C'B one has
(1.685) (Ad1 A*, ACS,C* A*) = (84,C' B B*C"™) = (61, C'5,C"),

since A and B are unitary and diagonal, hence the two pairs are equivalent. Con-
versely, with W; as in (1.679) one gets Wi = W3 from the uniqueness of the polar
decomposition

6 = (WiWy) (Ws0, W3).
Similarly, one obtains Wy = W3. Thus, W3 = W is diagonal and we get

W Cs,C*W* = C'5,C",
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so that WC = C’'B for some diagonal matrix B. Since W and B have the same
determinant one can assume that they both belong to N. O

We then have the following explicit description of the moduli space of Dirac operators
Dp.

PRrROPOSITION 1.192. In the case of N = 3 generations, the moduli space of Dirac
operators Dp for the geometry (Ap, Hr, Jp,vr) is the real 31-dimensional space

(1.686) Cy x Cy.
The space Cq is of real dimension 10 and given by the double coset space
(1.687) Cq = (U(3) x U(3))\(GL3(C) x GL3(C))/U(3),

where U(3) acts diagonally on the right. The space Cy is of real dimension 21 and
fibers over Cy, with generic fiber the quotient of symmetric complex 3 X 3 matrices
by U(1). In fact, Cy is given by the quotient

(1.688) Ce = (U(3) x U3))\(GL3(C) x GL3(C) x §)/U(3),

with S the space of symmetric complex 3 x 3 matrices. The action of U(3) x U(3) on
the left in (1.688) is given by left multiplication on GL3(C) x GL3(C) and by (1.681)
on S§. The action of U(3) on the right in (1.688) is trivial on S and by diagonal
right multiplication on GL3(C) x GL3(C).

Proor. By Lemma [1.190/ we see that the real dimension of the moduli space C,
is 3+ 344 = 10, where the 34 3 comes from the eigenvalues and the 4 = 8 — 4 from
the double coset space of C’s in SU(3) modulo N as in Lemma [1.191. One way to
parameterize the representatives of the double cosets of the matrix C' is by means
of three angles ; and a phase 0, in the form (1.419) where ¢; = cosb;, s; = sin6;,
and es = exp(id). One has by construction the factorization

(1.689) C = R23(02) d(0) R12(61) R23(—03)
where R;;(6) is the rotation of angle ¢ in the ij-plane and d(§) the diagonal matrix
1 0 0
dé)=( 01 0
00 —e

The identification of C, with the double coset (1.687) follows from the explicit form
of the equivalence relation (1.679).

Consider then the moduli space Cy. By construction one has a natural surjective
map

(1.690) m:Cp—

given by forgetting the T term. The generic fiber of 7 is the space of symmetric
complex 3 x 3 matrices modulo the action of a complex scalar A of absolute value
one given by

(1.691) Tr— N Tg.
The (real) dimension of the fiber is 12 — 1 = 11. The total real dimension of the

moduli space Cy is then 21. The identification with the space (1.688) again follows
from the explicit form of the equivalence relation (1.679) together with (1.680).
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It then follows from Theorem [1.187 and the results above on C;, and C, that the
total moduli space of Dirac operators Dp is the product C; x C4, which is of real
dimension 31. O

The 31 real parameters of (1.686) account for all the Yukawa parameters in the
Standard Model with neutrino mixing and Majorana mass terms. In fact, the para-
meters in C, correspond to the masses of the quarks and the quark mixing angles
of the CKM matrix, while the additional parameters of Cp give the lepton masses,
the angles of the PMNS mixing matrix and the Majorana mass terms for neutrinos.

This gives a clear geometric meaning to the Yukawa parameters as the choice of a
point in Cp x Cy, i.e. of a Dirac operator D for the finite geometry (Ap, Hp, Jr, 7).
It is interesting to notice that the space C; x C; admits interesting compactifications,
possibly including something akin to the noncommutative compactifications of the
modular curves considered in [77] and [219]. We return to this observation at the
very end of the book when spectral correspondences between different geometries are
introduced in the attempt to illustrate a parallel between the problem of quantum
gravity and the noncommutative compactifications that we present in Chapter 3 in
the number theoretic context related to the Riemann zeta function.

13.6. The intersection pairing of the finite geometry.

The fact that, from the point of view of K O-homology, the dimension of the finite
geometry (Ap, Hr, D) is equal to 6 modulo 8 implies that the intersection pairing
is skew-symmetric. It is given explicitly as follows.

PROPOSITION 1.193. The expression

(1.692) (e, f) = Tr(yre JrfT5")

defines an antisymmetric bilinear pairing on Ko(Ar) x Ko(Ar). The group Ko(Ar)
is the free abelian group generated by the classes of e; = (1,0,0), ex = (0,1,0) and
f3=1(0,0, f), where f € M3(C) is a minimal idempotent.

PRrROOF. The pairing (1.692) is obtained from the composition of the natural
map

K()(.AF) X Ko(.AF) — Ko(.AF X .A%)
with the graded trace Tr(vp -). Since Jp anticommutes with g, one checks that
(f.e) = Tr(ypflredi') = =Tr(yrJ5' fpe)
= —Tr(yrerfJg') = —(e f),

i.e. that the pairing is antisymmetric.

By construction, Ap is the direct sum of the field C, the division algebra H and the
algebra M3(C). The latter is Morita equivalent to C. The projections e; = (1,0, 0),
ez = (0,1,0) and f3 = (0,0, f) are the three minimal idempotents in Ap. O

DEFINITION 1.194. Let Hpy and Hrq be given by
(1.693) Hrr =2, 01°02z01°0102) e12%
and

(1.694) Hr, =203 02,23 0322) ¢3 2.



13. THE FINITE NONCOMMUTATIVE GEOMETRY 240

By construction, the K O-homology class (Hr,vr, Jr) given by the representation
of Ap on Hp with the Z/2-grading vr and the real structure Jr splits as a direct
sum of two pieces, corresponding respectively to leptons and quarks.

ProrosITION 1.195. (1) The representation of the algebra generated by (Ap, D, Jp,Vr)
on Hp splits as a direct sum of two subrepresentations
(1.695) Hr =Hre® Hrg,

with Hre and Hrq as in Definition |1.19).

(2) In the generic case where the matrices Y, Te, Ty, Tq and Tg in Dp have
distinct eigenvalues, each of these subrepresentations is irreducible.

(3) In the basis (e1, e, f3) the pairing (1.692) is given by

0 20 0 0 2
(1.696) (=] -2 0 0 and (Y= 0 0 =2 |,
0 00 —2 2 0

up to an overall multiplicity given by a factor of N = 3 that corresponds to
the number of generations.

PROOF. (1) By construction, the action of Ap in Hp is block diagonal in the
decomposition Hr = Hr¢ ® Hr,g. Both the actions of Jr and of yr are also block
diagonal. Theorem [1.187 shows that Dp is also block diagonal, since it is of the
form D = D(Y).

(2) It is enough to show that a unitary operator that commutes with Ap, vp, Jp
and Dp is a scalar. Let us start with Hg 4. By (3) of Theorem 1.187, such a unitary
operator is given by three unitary matrices W; € M3(C) such that

Yo=WiYaWs, Yy=WoT, Wi

We can assume that both T, and T4 are positive and that T, is diagonal, by Lemma
1.190.
The uniqueness of the polar decomposition then shows that

Ty = (W1W§‘) (WgTdWJ) = W1W§‘ =1 and Wgwag =7,

Thus, we get W7 = Wy = W3. Since generically all the eigenvalues of T, or Ty
are distinct, we get that the matrices W; are diagonal in the basis of eigenvectors
of the matrices Y,, and T,4. However, generically these bases are distinct, hence we
conclude that W; = 1 for all j. The same result holds “a fortiori” for Hr, where
the conditions imposed by (3) of Theorem [1.187 are in fact stronger.

(3) One computes the pairing directly using the definition of yp. On Hp, the
subalgebra M3(C) acts by zero which explains why the last line and columns of the
pairing matrix vanish. By antisymmetry one just needs to evaluate

(e1,€2) = —(ez,€1) = —Tr(yp ey Jper Ji') = —Tr(ype) =2 x 3,

where 3 is the number of generations. In fact, by the explicit form (1.652) of the
action of the algebra on leptons and quarks one sees that ey acts by zero except on
the piece 27 ® 19 of Hpe where it acts as the identity. On Hp, the same pair gives
(e1,e2) = 0, since now the right action of e; is zero on Hy. In the same way one
gets (f3,e2) = 2 x 3. Finally one has, by the same argument,

(e1, f3) = Tr(yrer Jpf3Jpt) = 2 x 3.
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An antisymmetric 3 X 3 matrix is automatically degenerate since its determinant
vanishes. The following result shows that one can still obtain a nondegenerate
bilinear map with values not in R but in R2. This corresponds to the fact that the
KO-homology is not singly generated as a module over Ky, but it is generated by
two elements.

COROLLARY 1.196. The pairing Ko(Ar) ® Ko(Ar) — R® R given by
(1.697) () F = (0D ()
1s non-degenerate.

PROOF. We need to check that, for any e in Ko(Ar) there exists an f € Ko(Ar)
such that (e, f)r # (0,0). This can be seen by the explicit form of (-,-), and (-, -),
in (1.696). 0

14. The product geometry
In the previous section we described the finite geometry
F= (AFaHFaDFaJFa’yF)-

We recovered the fermions of the Standard Model with the correct hypercharge as-
signment and gave a geometric interpretation for the Yukawa parameters (including
the Majorana mass terms for neutrinos) using the classification of Dirac operators
Dp. Now we consider the product of the finite noncommutative geometry F' with the
spectral triple associated to the commutative geometry of a compact 4-dimensional
Riemannian spin manifold of space-time (in Euclidean signature).

Recall that, for M a compact spin 4-manifold, the associated spectral triple is
given by (C*(M),L*(M,S),d,,), where L?(M, S) is the space of square integrable
spinors, with smooth functions in C°°(M) acting as multiplication operators, and
with ¢@,, the Dirac operator. The grading ~s is given by the chirality operator,
which is usually denoted by 75 in the 4-dimensional case. The operator Jy; that
gives the real structure is the charge conjugation operator (cf. (1.407)). We refer to
[132] for a detailed treatment of spectral triples associated to Riemannian manifolds.

Suppose given two real spectral triples
(Al,Hl,Dl,Jl,’Yl) and (AQ?H27D27J2772)a

where the first is of KO-dimension 4 modulo & and the second is of K O-dimension
6 modulo 8. Then the product geometry is a real spectral triple

(1698) (AaHaDa Ja V) — (AlaHlyDla Jl,’Yl) & (AQ)H27D27 ‘]2772)
with

A=A A3, H=Hi1®Hs, D=D1®1+v ® D,
(1.699)

T=n®y2, J=40J.

The resulting geometry (A, H, D, J,7) is of KO-dimension 10 = 2 modulo 8. Notice
that it matters here that J; commutes with ~;, in order to check that J commutes
with D. One checks that the order one condition is fulfilled by D if it is fulfilled by
both Dy and Ds. We refer to §9.5 of [132] for a thorough discussion of the notions
of KO-dimension and products of spectral triples.
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DEFINITION 1.197. The product M X F' of a compact spin 4-manifold with the finite
noncommutative geometry F' is the real spectral triple

(A7H7D7J77>:
(COO(M)7L2(M7S)7@M5JM5’Y5)®(AF5HF7DF5JF77F)
defined as in (1.699).

(1.700)

14.1. The real part of the product geometry.

As in Proposition [1.125/ of §10.2, we can associate to a real spectral triple the com-
mutative geometry given by its real part. In the case of the product geometry M x F'
of Definition 1.197 we obtain the following results.

LEMMA 1.198. Let F be the finite noncommutative geometry
F = (AF7HF7DF7JF7FYF)

and let M x F be the product with a spin 4-manifold as in Definition |1.197. Then
the following holds.

e The real part of F' is given by

(1.701) (Ap)j, =R={(A,\A)|XeR} C Ap.
o The real part Aj = C>®°(M, Ar) o1, of the product geometry M x F' is
(1.702) Ay =C*(M,R).

PROOF. Let a = (A, q,m) € Ap. Then, if a commutes with Jp, its action in
H; C Hp coincides with the right action of a*. When considering the action on
Hpy, this implies that A\ = A and that the action of the quaternion ¢ € H coincides
with that of A. Thus, one has ¢ = A € R. When looking at the action on Hr4, one
obtains similarly that m = A. The same proof applies to C*°(M, Ar). O

The above result shows that the real part of the product geometry only sees the
ordinary 4-dimensional commutative space-time M as a real manifold.

15. Bosons as inner fluctuations

In this section we show how to obtain the bosons of the Standard Model, with
the correct quantum numbers, as inner fluctuations of the metric for the product
geometry M x F.

We begin by showing that, as remarked in §9.9, the symmetries of the geometry
M x F recover the group of local gauge transformations of the Standard Model prior
to symmetry breaking, that is, the semidirect product Ggys x Diff (M) of (1.465),
with Gepr = U(1) x SU(2) x SU(3).

We then compute the inner fluctuations of the metric for M x F. We separate the
computation into two parts. In fact, consider elements of the form A =" a;[D, a}],
with a;, a} € A. Since the Dirac operator for the product geometry is of the form D =
71y @1+75® Dy, the elements A as above correspondingly decompose as a sum of two
terms A = A1) 4 A(10) (notation not to be confused with a Hodge decomposition).
We first consider the “discrete part” A(®1) coming from commutators with 5 ® Dp
and then the “continuous part” AM% coming from @ v @ 1. We show that the first
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part generates the Higgs field, while the second part produces all the other bosons
for the Standard Model.

15.1. The local gauge transformations.

The following result shows how to recover the local gauge symmetries of the Standard
Model minimally coupled to gravity from the group

C*°(M,SU(AF))
of symmetries of the product geometry M x F.

PROPOSITION 1.199. Let (A, H, D) be the real spectral triple associated to M x F'.

o Let U be a unitary operator on 'H, which commutes with v and J, and such
that U AU* = A. Then there exists a unique diffeomorphism ¢ € Diff (M)
such that

(1.703) UfU*=Ffop VYfeAy

e Let U be a unitary operator as above, such that the associated diffeomor-
phism is trivial, ¢ = id. Then, possibly after passing to a finite abelian cover
of M, there exists a unitary uw € C°(M,SU(AF)) such that U Ad(u)* € C,
where C is the commutant of the algebra of operators on H generated by A
and JAJ L.

PrROOF. We refer to [204] for finer points concerning the lifting of diffeomor-
phisms preserving the given spin structure.
The first statement follows from the functoriality of the construction of the subal-
gebra A; and the classical result that automorphisms of the algebra C>°(M,R) are
given by composition with a diffeomorphism of M.

Let us prove the second statement. One has H = L?(M,S) ® Hp = L*(M,S ®
Hp). Since ¢ = id, we know by (1.703) that U commutes with the algebra A; =
C*°(M,R). This shows that U is given by an endomorphism = — U(z) of the vector
bundle S ® Hr on M. Since U commutes with .J, the unitary U(z) commutes with
Jr ® Jp, where J, is the restriction of Jj; to the fiber.

The equality U AU* = A shows that, for all x € M, one has

(1.704) U(z) (id ® Ap) U*(z) = id ® Ap .

Here we identify Ar with a subalgebra of operators on S ® Hp, through the algebra
homomorphism 7 — id ® T'.

Let a be an arbitrary automorphism of Ag. The center of Ag contains three minimal
idempotents and the corresponding reduced algebras C, H, M;3(C) are pairwise non-
isomorphic. Thus « preserves these three idempotents and is determined by its
restriction to the corresponding reduced algebras C, H, M3(C). In particular, such
an automorphism will act on the subalgebra C either as the identity or as complex
conjugation.

Now consider the automorphism «, of Ap determined by (1.704). It is unitarily
implemented by (1.704). The action of C C Ap on S®H is not unitarily equivalent
to its composition with complex conjugation. This can be seen from the fact that,
in this representation, the dimension of the space on which C acts by A is larger
than that of the space on which it acts by A. It then follows that the restriction of
g to C C Ap has to be the identity automorphism.
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Similarly, the restriction of o, to M3(C) C Ap is given by an inner automorphism of
the form f +— vy f v}, where v, € SU(3) is only determined modulo the center Zs ~
w3 of SU(3). The restriction of o, to H C Ap is given by an inner automorphism
of the form f — ¢, f ¢}, where g, € SU(2) is only determined modulo the center
ZQ ~ U2 of SU(Q)

Thus, upon passing to the finite abelian cover M of M corresponding to the mor-
phism 71 (M) — Zayx Zs ~ ug, one gets a unitary element u = (1, ¢,v) € C°(M,SU(AF))
such that a(f) = Ad(u) fAd(u)* for all f € C*°(M, Ar). Replacing U by U Ad(u)*
one can then assume that U commutes with all f € C*°(M, Ar). The commutation
with J still holds, so that we obtain U Ad(u)* € C, with C the commutant of the
algebra of operators on H generated by A and JAJ!. O

15.2. Discrete part of the inner fluctuations and the Higgs field.

At a point z € M consider elements a;(z) = (\i, ¢, m;) and a(z) = (X, ¢}, m}) in
Apr. We introduce the notation

(1.705) 1= Ni(aj=X), ©2=> \if

(L706)  @h = ai(X—al) + BB, b =Y (e + BN~ al)),
where we used the notation (1.645) for quaternions.

ProprosiTION 1.200. At a point x € M one obtains on the subspace corresponding
to Hy C Hp the expression

(1.707) > ailys ® Dp, af)(w)ln, =75 @ (AP + ALD),
The term Ago’l) is defined on the Hpg part and is of the form
o) ([ 0 X
(1.708) AL = < 0 e,
with

Trpr  Yieo / Yoo  Yaph
1.709 X = ufl Ly d X = 1 P2 )
(1.709) ( —Yipy Yip )0 ~Tu@hy Yap

The term Aéo’l) is defined on the Hpy part and is of the form

0,1 0 Y
(1.710) ALY = (Y, 0 )
with
Tho1r Thps > / ( Ty Yegh )
1.711 Y = Y vr and Y' = - i ,
(L.711) ( —Top2 Yion T,y Yedh

with the ¢ as in (1.705) and (1.706).

PROOF. The result follows by a direct computation. O
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Notice that, according to Corollary 1.188 above, the off-diagonal part of D, which
involves T g, does not contribute to the inner fluctuations, since it exactly commutes
with the algebra Ap. Since the action of Arp on ‘H 7 exactly commutes with Dp, it

does not contribute to A1), This means, as remarked after Corollary 1.188 that
the presence of the Majorana mass term Y g does not generate new boson fields.

We now give the following parameterization of the discrete part A1) of the inner
fluctuations, which will be useful in the physical interpretation as Higgs bosons.

PROPOSITION 1.201. Let AV be the discrete part of the inner fluctuations of the
product geometry M x F', as in Proposition [1.200 above.

(1) The inner fluctuations AOYD gre parameterized by an arbitrary quaternion-
valued function

(1712) H e COO(M7H)7 with  H = P11+ (PQja fOT‘ P1,¥2 € COO(Ma C)

(2) The second line of the 2 x 2 matriz X in (1.709) is obtained from the first
line upon replacing Y, with T4 and changing

(1.713) Hw— jH=:H.

PROOF. (1) First one checks that there are no linear relations between the four
terms (1.705) and (1.706). We consider a single term a[Dp,a’]. Taking a = (), 0, 0)
and o' = (),0,0) gives

pr=-A and @y =) =¢h =0
Taking a = (),0,0) and @’ = (0,5 (', 0) gives

p1 =X and @1 =¢| =¢p=0.
Similarly, taking a = (0,a,0) and a’ = (X, 0,0) gives

cp’lza/\’ and @1:@2:@’2:0.
Taking a = (0,5 3,0) and o’ = (X, 0,0) gives

g =L0N and @1 =@ =) =0.

This shows that the vector space Qg’l) of linear combinations Y, a;[Dp,a}] is the

(2
space of pairs of quaternion-valued functions ¢(z) and ¢'(x).
The self-adjoint condition A = A* is equivalent to ¢’ = ¢* and we see that the
discrete part A(%) is exactly given by a single quaternion-valued function H (x) e H
for z € M.
(2) The transition is given by (@1, p2) — (—@2, @1), which corresponds to the mul-
tiplication of H = ¢1 + 2 j by j on the left. g

REMARK 1.202. The property in (2) of Proposition [1.201 shows that the role of H
in the coupling of the up-part is related to its role in the coupling of the down-part
by the replacement H — jH. From the physics viewpoint this shows that one needs
to change the hypercharge of the Higgs doublet to its opposite in order to couple
it to the up quark, as is known in the extension of the Glashow—Weinberg—Salam
model from leptons to quarks.

REMARK 1.203. In particular, the result of Proposition [1.2000 shows that, in the
case of a Dirac operator D = D(Y) where the term Yr = 0, the operator D is
equivalent to D = 0 up to inner fluctuations. This shows an example of the general
fact mentioned in Remark [1.143l
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Notice that the notation we use here differs from that of [45]. The Higgs doublet
denoted by H in [45] is in our notation the doublet H of (1.713)) above. This is
especially relevant in the calculations of §16.1 below.

15.3. Powers of D(O:1),

For later purposes, we compute here the trace of powers of the perturbed Dirac
operator

(1.714) DOY .— D4 A0 4 720D 5

PROPOSITION 1.204. The traces of the second and fourth powers of DOV are given
by the formulae

(1.715) Tr(DOY)2) =4a 1l + H> +2¢
and
(1.716) Te(DOVYY) =4b)|1 + HI* +2d+8e|l + H|?,

where H is as in Proposition 1201 and the coefficients a, b, ¢, d, e are of the form
a= Tr(Y;Y, + YT +3(T3T, + YY)
b= Tr((T;Ty)? + (TiYe)? +3(T;Tu)? + 3(T5Ta)?)
(1.717) c= Tr(THTR)
d= Te((THTR))
e= Tr(YRYRY;Y,).

Proor. We first show that for the restriction Déo’l) to the subspace Hr, C Hp
we have

(1.718) Tr(DY)?) = 121 + H* Te(Y5 Yo + TiYa)
and
(1.719) Tr(DPD)Y) = 121 + H* Te((T5Y0)? + (T5La)?).

Notice that the left-hand side of (1.718) is obtained from 2Tr((A((10’1))2), after re-
placing H by 1+ H to take into account the presence of the operator Dy = D|y Pt
The product X X*, for X as in (1.709)), is given by the diagonal matrix

X X* — TZTU (901@1 + 902@2) 0
0 YT (p101 + p202)

TeY 0
— 2 u-u
= A ( 0 T;‘;Td>‘
One has Tr((AgO’l))Q) =3Tr(XX* + X*X) = 6 Tr(XX*). This gives the equality
(L.718). Similarly, one has Tr((AL™M)4) = 3 Tr((XX*)2 4+ (X*X)?) = 6 Tr((XX*)?),
which gives the identity (1.719).

We then show that, for the restriction Déo’l) of DOV to the subspace Hpe C Hr
we have

(1.721) Tr((D"Y)?) = 4[1+ HP Te(TEY, + YET.) + 2 Te(T5 ),

(1.720)
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and

(1.722) Te(DOV)) = 41+ HI* Te((T37,)2 + (T3Te)?) + 2 Te((YETR)?)
| +8 |1+ H2Te(YHYTRYSY,).

Consider the decomposition of Hpy into the eight subspaces of the form

(IMr©1% & [Hhre1® & Mol &  [)re1°
& 19Nr @ 1Q|Dr @® 101 & 1®|))®C3.

In this decomposition, we can write the operator Déo’l) as the matrix

0 0 Tro1 Yoo Tk 0 0 0
0 0 —Yips Tipy 0 0 0 0

T,01 —Yepo 0 0 0 0 0 0

T,02 Yepr 0 0 0 0 0 0

Tr 0 0 0 0 0 Yie1 Tige |7

0 0 0 0 0 0 ~Tip2 Tigr
0 0 0 0 Too1 —Yepo 0 0
0 0 0 0 Yoo  Yepr 0 0

where YT denotes the complex conjugate matrix.

The only matrix elements of the square of Déo’l) involving T or TF, are collected

in the matrix

S11 0 0 0 0 0 TeYipr YRY:po

0 0 0 0 0 0 0 0

0 0 0 0 YT, Ther O 0 0

0 0 0 0 YT, Thps O 0 0

0 0 T;ﬂ“igpl TRT;(,OQ 555 0 0 0

0 0 0 0 0 0 0 0
YT, Trpr O 0 0 0 0 0 0
YT, Trps O 0 0 0 0 0 0

where

S = ETR + T;TV’HP, Sss = TiTV’HP + TRT*R

This shows that, for Tr((DéO’l))2), one only gets two additional terms involving Y r

and each of them gives Tr(YrY7}). The trace Tr((DéO’l))‘l) is the Hilbert-Schmidt

norm squared of (Déo’l))Q. We just need to add to the terms coming from the

same computation in (1.718) the contribution of the terms involving Tx. The term
Sy1 contributes (after replacing H +— 1+ H) by 2|1 + H? Tr(YEYRrYEY,) and
Tr((YHYR)?). The term Sss gives a similar contribution. All the other terms give
simple additive contributions. One gets the result using

TI'(TVTRTET;) = TI‘( ETRT;TV),

which follows, using complex conjugation, from the fact that Tp is a symmetric
matrix, so that Tp = T%. O
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15.4. Continuous part of the inner fluctuations and gauge bosons.

Let us now consider the A1) part of the inner fluctuations of the product geometry
M x F. We show that it gives the gauge bosons of the Standard Model coupled to
the correct values of the hypercharges.

PRroroOSITION 1.205. Consider inner fluctuations of the form

(1.723) ATD =N "a,(dy @ 1,4,

with a; = (N, gi,mi), a; = (N, g6, m}) elements of A= C*°(M, Ar). The expression

(2

(1.723) determines the following data.
(1) AU(Q) gauge field

(1.724) A=) Nid)

(2) An SU(2) gauge field
(1.725) Q=Yg

(3) A U(3) gauge field
(1.726) Vi =>"m;dm;.

PRrOOF. For (1) notice that we have two expressions to compute, since there are
two different actions of A\(z) on L?(M,S), given respectively by

(1.727) (@) = Az)&(z)  and  €&(z) — A(z) &(@).
For the first action in (1.727), one finds using (1.580), that the expression

A= N[y ©1,N]
is of the form
A=vV=1) NN =A™
It is self-adjoint when the scalar functions

Ap = V=1 Xidu\;

are real-valued.
It follows then that the second action in (1.727) is given by

Z Ny @ 1L,N] = \/TIZ NONAH = — Ayt

Thus, we see that, even though we have two representations of the A(x), these
generate only one U(1) gauge potential.

For (2) notice that the action of quaternions H can be represented in the form

(1.728) q=fo+ Y ifac®, with fo,fo € C¥(M,R),

where 0® are the Pauli matrices (1.628)) and i = v/—1.
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The Pauli matrices are self-adjoint, hence the terms of the form

fO[aM ® 1’ ZféO’a]

are also self-adjoint.
The elements {1,i0%} form a basis for the algebra H of quaternions. Thus, since
the elements of this basis commute with @,,, one can rewrite

Zqi[@M ®1,¢] = foldy @1, fi] + D fald@y ®1,ifl0”],

where all the f and f’ are real-valued functions. Thus, the self-adjoint part of this
expression is given by

Q=) faldy ®1,if10],

which is an SU(2) gauge field.

For (3), the result follows as a special case of the computation of expressions of the
form

A= "aidy ®1,d]], with a;,a; € C®(M, My(C)).

One obtains Clifford multiplication by all matrix-valued 1-forms on M in this man-
ner. The self-adjointness condition A = A* then reduces them to taking values in
the Lie algebra of U(N), by setting A = ¢T" and using the identification

LieU(N) = {T € My(C)| T* = —T}.

We introduce the notation

(1.729) Ay = % B,

for the U(1) gauge potential of Proposition1.205. Physically it gives the generator of
hypercharge, not to be confused with the electromagnetic vector potential. Similarly,
we denote the SU(2) gauge field of Proposition 1.205 by the notation

92
(1.730) Q=QuY, where Q,= EWEUQ'
Using (1.580), we see that this corresponds to the covariant derivative

i o __«
(1.731) Op = 52 Wyio®.

We now explain how to reduce the gauge field V' of (1.726) to the Lie subalgebra
Lie SU(3) of Lie U(3). We consider the following analogue of Definition [1.184! of the
unimodular subgroup SU(Ap).

DEFINITION 1.206. A gauge potential A is “unimodular” if Tr(A) = 0.

We can now parameterize the unimodular gauge potentials and their adjoint action,
i.e. the combinations of the form A + JAJ L.

ProprosIiTION 1.207. (1) The unimodular gauge potentials are parameterized by
a U(1) gauge field B, an SU(2) gauge field W and an SU(3) gauge field V.
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(2) The adjoint action A+JAJ~! on Hy is obtained by replacing 0, by O, +A,
where

(1.732) Ay = (A% @A) ® 13,

where the 13 is for the N = 3 generations, and A}, and Af; are given re-
spectively by

(1.733) '
—2gB,®13 0 0
AZ = 0 %ngH ® 13 ' 0
0 0 (—%ggWﬁO’a— %ngH®12>®13
+ L@ (—30ViN),
0 0 0
(1.734) Al =1 0 igB, 0 ,

0 0 (—%ggWﬁ“aa + %ngu ® 19)

where in (1.733) and (1.734) the o® are the Pauli matrices (1.628) and the
A" are the Gell-Mann matrices (1.421)).

PrOOF. 1) The action of A on the subspace Hy is of the form

A O 0 0
0 —-A O 0
0 0 Qu Q2
0 0 Q2 Q2

on leptons and quarks, with A and @ as in Proposition [1.205} cf. (1.729) and (1.730)
above.

Thus, (1.735) is traceless, since @ is traceless as a linear combination of the Pauli
matrices. The action of A on the subspace Hy is given by A on the subspace of
leptons and by V'’ on the space of quarks. One has 4 leptons and 4 quarks per
generation because of the two possible chiralities, while the color index is taken care
of by V'. Thus, the unimodularity condition means that we have

3-4-(A+Tr(V") =0.

(1.735)

Thus, we can write V' as a sum of the form

A0 O
1 1
(1.736) v’:-v-g 0 A O :—V—§A13,
0 0 A

where V is traceless, i.e. it is an SU(3) gauge potential.

2) Since the charge conjugation antilinear operator Jy; commutes with ¢@,,, it an-
ticommutes with the -, and the conjugation by J introduces an additional minus
sign in the gauge potentials. The computation of A + JAJ ! gives, on quarks and
leptons respectively, the matrices

A=V 0 0 0
0 —A-V 0 0
0 0 Qu -V’ Q12

0 0 Q21 Qa2 — V'
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0 0 0 0
0 —2A 0 0
0 0 Qu-—-A Q12

0 0 Q21 Q2 — A

Thus, using (1.736), we obtain for the (1,0)-part of the inner fluctuation A+ JAJ~*
of the metric the matrices

%A +V 0 0 0
0 —ZA4+V 0 0
1.737 3 )
( ) 0 0 Qu+iA+V Q12
0 0 Q21 Qu+ A+ V
0 O 0 0
0 —2A 0 0
(1.738) 0 0 Qu-A Q2
0 0 Qa  Qn—A
This completes the proof. O

Notice that one can see from the entries of the matrices (1.737) and (1.738) that
the gauge bosons are coupled to the correct hypercharges. In fact, we recover the
correct values as in (1.659) (cf. also (1.415)).

15.5. Independence of the boson fields.

It remains to show that the fields H = @1 + 2 j of Proposition [1.201 and B, W, V'
of Proposition [1.207 are independent.

PROPOSITION 1.208. The unimodular inner fluctuations of the metric are parame-
terized by independent fields p1, w2, B, W, V', as in Propositions 1.201 and|1.207.

PrOOF. Let Z be the real vector bundle over M, with fiber at z
CoCaoT,MaT;M ®LieSU(2)® T, M ® Lie SU(3).

By construction the inner fluctuations are sections of the bundle Z.

The space of sections S obtained from inner fluctuations is in fact not just a linear
space over R, but also a module over the algebra C°°(M,R) which is the real part
of C*°(M,Ar) as in Lemma [1.198. Indeed, the inner fluctuations are obtained as
expressions of the form A =", a; [D,a}]. One has to check that left multiplication
by f € C*°(M,R) does not alter the self-adjointness condition A = A*. This follows
from Proposition 1.125, since we are replacing a; by fa;, where f commutes with
A and is real so that f = f*.

To show that S = C*°(M, Z) it is enough to know that one can find sections in
S that span the full vector space Z, at any given point x € M. Then C*°(M,R)-
linearity shows that the same sections continue to span the nearby fibers. Using a
partition of unity one can then express any global section of Z as an element of S.
Choose first the elements a;(y) = (N, ¢i,mi), ai(y) = (N, ¢}, m}) independent of
y € N(z) in a neighborhood of z. Using Proposition [1.201, one knows that H(z)
can be an arbitrary element of H, while B(z), W(x),V(x) all vanish because they
are differential expressions in the a;.
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The independence of A, ¢ and m in the formulae (1.724), (1.725), (1.726) implies
that one can construct arbitrary B(z), W(zx), V(z) in the form ), a;[D, af]. These,
however, will not suffice to give an arbitary value for ¢ and @9, but this can be
corrected by adding an element of the form described above, with vanishing B, W,
and V. g

15.6. The Dirac operator and its square.

We now consider the full (perturbed) Dirac operator D4, where the original Dirac
operator D = @J,, ® 1 + 75 ® Dp of the product geometry is twisted by an inner
fluctuation. The operator D 4 is of the form

where DOV is given by (1.714) and D10 is of the form,
(1.740) DU = V=19 (V] + Ag),

where V* is the spin connection (cf. (1.580)). The gauge potential A, splits as a
direct sum in the decomposition associated to Hp = Hy @ Hy and its restriction to
Hy is given by the expression as in Proposition 1.207.

We also consider the operator D124. To write the components in a convenient notation,
we introduce the following.

DEFINITION 1.209. For ¢ = (¢1,p2) as in §15.2 above and My, Ms a pair of 3 x 3
matrices, we set

0 0 M1 Mg
0 0 —M35 @2 M35 @1
1.741 T(My, My, @) = . 2 2
( ) (M, Mo, ) Mipr —Mo 0 0
Myigs My 0 0

We also define

M(SO) = T(TU7 Tda SD) ® 13 @ T(Tllv Te: 90)
(1.742)
®T(TU7 Td? 90) ® 13 @ T(TV7 T€7 (10)

By construction, M(y) is self-adjoint and one has

(1.743) Tr(M(¢)?2) = 4aol?,

where the coefficient a is as in (1.717).

We then have the following result that gives the explicit form of the operator D%.
LEMMA 1.210. The square of D4 is given by

(1.744) Dy =V'V-E,

where V*V is the connection Laplacian for the connection

(1.745) V=V+A

and the endomorphism E is given by

1 . 5 )
(L746)  —E=gs®id+ Y " @Fu i7" @ M(Dup) +1a® (D)7,

p<v
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where s = —R is the scalar curvature and H = @1+ pa2j as above, with ¢ = (¢1,p2).
Here F,,, is the curvature of the connection A and ¢ = (p1,92) is a row vector.
The term D, in (1.746) is of the form

7 7
(1.747) Dyup = 0up + EQQW;?%O o — ing“ ®.

PROOF. By construction DY anticommutes with 5. Thus, one has
D% = (DY) 4+ 1, ® (D)2 — 45 [D', 1, @ D*1].
The last term is of the form
(DY, 13 D) = V=" (V5 + Ay), 14 © DV,

Using (1.583), one can replace V3, by 0, without changing the result. In order to
compute the commutator [A,, D% notice first that the off-diagonal term of D%!
does not contribute, since the corresponding matrix elements of Aﬁ are zero. Thus,
it is enough to compute the commutator of the following matrix W:

—iqB, 0 0 0
0 igB 0 0
1.748 2 " ; ; )
(1.748) 0 0 WP (W)
0 0 —5g(W)+iWp) $92W3
with a matrix of the form T'(M;, Ma, ¢) as in (1.741). One gets
(1.749) (W, T(My, My, )] = T(My, Ma, x),
where
1 1
(1.750) (x1,Xx2) = —5913u(801,¢2) + 592W,? (p1,p2) 0.

16. The spectral action and the Standard Model Lagrangian

In this section we compute explicitly the expansion of Theorem [1.145 for the spectral
action for the product geometry M x F. We then show how to modify the spectral
action functional to include the fermionic action and how this can be done in such
a way as to solve the fermion doubling problem and obtain the correct counting of
the fermionic degrees of freedom through the use of Pfaffians as a replacement for
the formulation of Majorana fermions in the Euclidean setting. As in the previous
sections, we follow closely [52].

16.1. The asymptotic expansion of the spectral action on M x F.

The main result of this section is Theorem [1.212/ below which computes the explicit
form of Theorem [1.145/in the case of the spectral action associated to the product
geometry M x F.

We first recall the notation we have been using in the previous sections. We let
fr with £ = 0,...,4 be the momenta (1.533) of the test function f in the spectral
action functional (1.526). As in §9.8, we let C\,,-C""*” be the square of the Weyl
curvature tensor and we let R*R* be the form (1.599) that integrates to the Euler

characteristic as in (1.600). We let GLV, F,, By denote, respectively, the curvatures
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associated to the SU(3), SU(2) and U(1) gauge fields of §15.4. Let {a,b,c,d, e} be
the coefficients as in (1.717) and let D, ¢ be the expression defined in (1.747).

We prove a preliminary lemma, which will be useful in applying Gilkey’s theorem
(cf. Theorem [1.154 above) to the proof of Theorem 1.212] below.

LEMMA 1.211. Consider the expression

E'=-8id+F=
(1.751) R Lo )
({5id =14 @ (D¥1)?) = 3 o, Y9 @ Fpy +iv5 7" @ M(Dy, )
and let
f2 2 fO /N2

(1.752) Y= 87r2A Tr(E') + 327T2Tr((E) ).
One obtains

4

Yo f2 A2R_ f2 A2TI“((DO’1)2)—|— %Tr(M(DNSD)Q)

fo 0,1\2\2 Jo fniatd
1. Jo (2 po IO T, ).
(1.753) + g3 r((12 ( 7))+ 152 TELEFT)

PROOF. The contribution of Tr(E’) is only coming from the first term of (1.751),
since the trace of the two others vanlshes due to the Clifford algebra terms. The
coefficient of fQ *Ris equal to g ﬁ x 4 x 96 = 4. To get the contribution of
Tr((E")?), notlce that the three terms of the sum (1.751) are pairwise orthogonal
in the Clifford algebra, so that the trace of the square is just the sum of the three
contributions from each of these terms. Again the factor of 4 comes from the di-
mension of spinors and the summation on all indices uv gives a factor of two in the

denominator for - & O
167

We then obtain the following result.

THEOREM 1.212. The expansion of Theorem|1.145 applied to the spectral action for
the product geometry M x F gives a functvjonal S of the form

1
S = p(48f4A4 f2A20+ /fd4

96 fo A* — foc 4
(1.754) +247T2/R\/§dx
fO / 11 * % uvpo 4
+ 1022 (6 R'R" — 3Clype C )Vgd 'z
—2a faA® + e
v 2Rl [l g
Jo
+ 5.2 a|D#<p|2\/§d4x

fo

1014 — 5 —uv
+ QfOQ/(g%GLVG”“rg%F,%F“ "+ 591 B B") Vad's

2 [t vadta,
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PROOF. We prove the result using (1.744) and Gilkey’s theorem [1.154 to com-
pute the spectral action. By remark [1.155 the relevant term is —%R + & which is
the sum (1.751) and we need to compute the sum (1.752). By Lemma [1.211 above,
we know that this is of the form (1.753). Notice also that the curvature €, of the
connection V is independent of the additional term D1,

We subdivide the proof into checking the different terms that arise from the as-
ymptotic formula of Theorem [1.145 applied to the spectral action of the product
geometry:

e Cosmological terms

e Riemannian curvature terms

e Higgs minimal coupling

e Higgs mass terms

e Higgs quartic potential

e Yang—Mills terms

Cosmological terms. The presence of the additional off-diagonal term in the Dirac
operator of the finite geometry adds two contributions to the cosmological term of
§11.4. Thus, while the dimension N = 96 contributes by the term

48
— faA? d*
7_[_2 f4 /M \/§ z,
we get the additional coefficients
f2 * c f2
—;AZTT( rYR) :—?AQ,

which are obtained from the second term of (1.753) using (1.715). Finally, we also
get
f 0 2 df 0
RTF(( rYR)7) = Ar2’
which comes from the fifth term in (1.753)). Thus, the cosmological term gives

(1.755) %(48 faAY = fo A2 Te(YHEYTR) + %ﬂ((rgm)?)) /M Vadiz.

Riemann curvature terms. we obtain the terms involving the Riemann curvature
tensor from the spectral action as in §11.4L Thus, one has in this way a contribution
of the form

1 3
(1.756) — | AN R— = foCu C"*)/gd's.
71'2 M 10
One also has a topological term, which, ignoring boundary terms, is of the form

* * d .
607T2/MRR Vod'x

There is then an additional contribution from the fourth term of (1.753). Using
(1.715), this gives

(1.757)

fo fo 9 fo
A8 72 T e Rl My

For a physical explanation of the term R |¢|? see [131] equation 10.3.3.

(1.758) RTx((D"V)?) =

cR.
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Higgs minimal coupling. These terms are given by
Jo
8 2
where we used (1.743) and (1.753).

Higgs mass terms. There are two contributions with opposite signs. Using (1.715),
one sees that the second term in (1.753) gives a term

(1.759) TH(M(D, 9)?) = 5% alDugl,

2f2 40 2

On the other hand, using (1.716), we obtain from the fourth term in (1.753) the
additional term

fo e fo
Thus, combining (1.760) and (1.761), one obtains a Higgs mass term of the form
1
(1.762) —(-2af; A + e fo)lol?.

Higgs quartic potential. The only contribution, in this case, comes from the
fourth term in (1.753), i.e. from the term

Jfo

0,1\4
S a2 Tr((D™)%).
Using (1.716)), this gives the term
fO 4
1. — .
(1.763) L blel

Yang—Mills terms. For the Yang—Mills terms the computation is the same as in
§11.4. In particular, by the same argument given in §11.4 we obtain the coefficient

2122 in front of the trace of the square of the curvature.

The term Gﬁw G"", which corresponds to the gluons, has an additional coefficient 3 x
4x2 = 24; since there are three generations, 4 quarks per generation (ug, dr,ur,dr),
and a factor of two coming from the matter and anti-matter sectors Hy and Hj.
Thus, because of the presence of the coefficient %, we get

fo g3 fo g3 aioa

472 42 T T
where we use the property (1.422) for the Gell-Mann matrices.
For the weak interaction bosons W the argument is similar and one gets an addi-
tional coefficient 3x 4 x2 = 24, here 3 is the number of generations, 4 = 3+1 accounts
for the three colors of quarks and one of leptons per isodoublet and per generation
(ur, = (uj)r,dr, = (dj)1, v, er), and the factor of 2 corresponds to the matter and
anti-matter sectors Hy and Hj;. Thus, using the property Tr(oq0p) = 204 of the
Pauli matrices, we obtain the similar term

fo 95 TRV fo g% —uv fo 93 =pv
12 Tr(Fu F7) =2 12 PP, = 52 Fi, Fy
Finally, for the hypercharge generator B, we obtain the additional coefficient

(1.764) 2 X <<(§)2 + (%)2 + 2(;))2) x 34 (22 + 2)) x 3 = 80,

2
v 09 i MY
Tr(G G = 2 5 G Gl
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which comes from the hypercharges as in Proposition [1.207, see (1.737) and (1.738).
This gives an additional coefficient of % in the corresponding term

10 fo 9% o104 5 fo 9% UV
3 4n2? By B ~ 3 2n2 By B
This completes the proof of Theorem [1.212. O

16.2. Fermionic action and Pfaffian.

The spectral action functional (1.526) applied to the operator D4 with inner fluc-
tuations, as considered above, accounts for the bosonic part of the action. We now
explain how one obtains the fermionic part.

The K O-dimension of the finite space F' is 6 € Z/8, hence the KO-dimension of the
product geometry M x F' (for M a spin 4-manifold) is now 2 € Z/8. This means
that, according to Definition 1.124, the commutation rules between D, J and - are
of the form

(1.765) J?=—1, JD=DJ, and Jy=—~vJ.

We let HT denote the even part of the Hilbert space H, namely
(1.766) HE={¢eH|v¢{=¢)

The commutation relations (1.765) yield a natural construction of an antisymmetric
bilinear form on H ™, in the following way.

PROPOSITION 1.213. Let (A, H, D, J,~) be a real even spectral triple of KO-dimension
2 € 7Z/8. Let HY C'H be the even part as in (1.766). Then the following hold.

(1) The expression
(1.767) Ap(¢,6) = (J¢,DE), V& eHT

defines an antisymmetric bilinear form on Ht = {£ e H, v& = &}.
(2) The trilinear pairing (1.767) between D, & and &' is gauge invariant under
the adjoint action of the unitary group of A, namely

(1.768)  Ap(€,€) = Ap, (Ad(w)e, Ad(w)E),  with Dy = Ad(w) D Ad(u").

PROOF. (1) We use an inner product which is antilinear in the first variable.
Thus, since J is antilinear, 2 is a bilinear form. Let us check that 2 is antisymmetric.
One has

Q[D(f,fl) = <J£7D£/> = _<J£7J2D£,>

= —(JD¢,¢ =—(DJE,E)

= —(J¢, Dg,
where we used the unitarity of J, i.e. the equality
(1.769) (JEJIn)=(n.&), VE&neN.

Finally, one can restrict the antisymmetric form Ap to H™ without automatically
getting zero, since one has

~JD = JD~.
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(2) Let us check that Ad(u) commutes with J. By definition Ad(u) = u (u*)? =
wJuJ 1. Thus, we have
JAd(u) = JuJuJ ' = wJuJJ ' = wJu = Ad(u) J,

where we used the commutation of v with JuJ. Since Ad(u) is unitary, one gets

(1.768). O

DEFINITION 1.214. The Pfaffian of an antisymmetric bilinear form 2 is expressed
in terms of the functional integral involving anticommuting “classical fermions” (cf.
[251], §5.1). At the formal level, this means that we write

(1.770) Pf() = / e~ 220 pIE].
We define
(1.771) My ={E]€ent)

to be the space of classical fermions (Grafmann variables) corresponding to H' of
(1.766)).

Notice that 2(£,§) = 0 when applied to vectors &, while 91(5 ) é) = 0 when applied
to anticommuting Grafimann variables &.

ExaMPLE 1.215. As the simplest example let us consider a two-dimensional vector
space I with basis e; and the antisymmetric bilinear form

A, €) = a(6162 — &¢1)

For £, anticommuting with &, using the basic rule

/ §jdéj =1
(cf. [251], §5.1), one obtains
/ e %O DI = / 188 461 déy = a.
In order to incorporate the fermionic part in the action, we consider, instead of the

spectral action functional (1.526)), the following modification.

DEFINITION 1.216. Suppose given a real even spectral triple (A, H, D, J,~) of KO-
dimension 2 mod 8. For such a spectral triple the spectral action functional with
fermions is the functional

(1772) Te(f(Da/A)) + 5 (JE DaE).

where §~ € 'H:? and D 4 is the Dirac operator with the unimodular inner fluctuations
A.

Notice how the action functional (1.772)) depends explicitly on all the data (A, H, D, J, )
of the spectral triple. It is the functional (1.772) that recovers the full Lagrangian
of the Standard Model minimally coupled to gravity.
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16.3. Fermion doubling, Pfaffian and Majorana fermions.

The use of the Pfaffian as a square root of the determinant solves the fermion
doubling problem in the previous formulations of the Standard Model via noncom-
mutative geometry, which was pointed out in [210]. The solution obtained by a
better choice of the K O-dimension of the space F' and hence of M x F' is related to
the point made in [149].

The point about the “fermion doubling problem” is that, if one introduces fermions
in the spectral action using the pairing (¥, D4v) instead of the pairing (Jt), D 41))
that we introduced in the previous section, one obtains a number of fermion degrees
of freedom that is equal to four times what it should be. The reason is that one
includes one Dirac fermion for each of the chiral degrees of freedom L and R as well
as the mirror fermion in Hj for each fermion in Hy.

The advantage of working with (.J U, D A'l;> is that, when considering the functional
integral for the action functional (1.772)), this has the effect of dividing by 4 the
number of degrees of freedom by taking a fourth root of a determinant.

In fact, by Proposition 1.213 we are dealing with an antisymmetric bilinear form
and the functional integral involving anticommuting GraBmann variables delivers
the Pfaffian, which takes care of a square root. Again by Proposition [1.213, we
can restrict the functional integration to the chiral subspace 'H;Ll of (1.771), hence
gaining another factor of two.

To be more explicit, we spell out in detail what happens. Consider the case of the
quarks. With the basis qr,qr,qr,qr in ‘Hp, in the reduction to Hy we write a
generic vector as

(1.773) (=¢L®qL+ErR®qr+NR® 4L + 1L @ R,

where the subscripts L and R indicate the chirality of the usual spinors &,7 €
L?(M, S). Similarly, one has

(1.774) JC¢ = Tné © qr + Inép @ Gr + Junr @ qr + Jumg, @ qr
and
("= @y 1) = Py Iy, @ aL+ Py Jukr © Qg
+ Par Jung © qr + Por Ty, @ qr.

Thus, since the operator @,, Jy; anticommutes with 5 in L2(M, S), we see that the
vector ¢” still belongs to H, i.e. it is of the form (1.773). One gets then

(@@ 1) I C) = (Dag Im€Lsmr) + (Dag T ne)
+ (Dag Iy SL) + (Do Inanig, Er)-
Upon writing spinors in the form & = &1, + &R, the right-hand side can be written as
(L.777) (P ©1)TC,C) = Doy Tna€om) + Dy Tarnl ).

This is an antisymmetric bilinear form in L2(M, S) @ L*(M, S). Indeed if ¢/ = (,
ie. £ = ¢ and 1/ = 1 one has

(1.778) (Dor Im&sm) = —(Dpr T, §),

since Jy; commutes with ¢,, and has square —1.

(1.775)

(1.776)
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Notice that it is because of (1.778) that one needs the factor % in front of the
fermionic action in (1.772), since in the Dirac sector the same expression repeats
itself twice.

At the level of the fermionic functional integral the classical fermions & and 7 anti-
commute. Thus, up to the factor 2 taken care of by the % in front of the fermionic
term, one gets

[ el ond pigDig,

where ¢ and 7] are independent anticommuting variables, with the same notation as
in (L.771).

This coincides with the prescription for the Euclidean functional integral given in
[61] (see “The use of instantons”, §5.2) when using Jys to identify L?(M,S) with
its dual.

The Dirac Yukawa terms simply replace @,, ® 1 in the expression above by an
operator of the form

¢M®1+75®T7

where T' = T'(z) acts as a matrix-valued function on the bundle S ® Hp.
By construction, T' preserves Hy and anticommutes with yp. Thus, one gets an
equation of the form

(e 1) = T Jué ®qr+ T2 IuéR ® qL
+ T3Junp @ qr + Ty Jumy, @ qr,

where the T} are endomorphisms of the spinor bundle commuting with the 5 matrix.
In particular, the result is a vector in H™. Thus, one gets

(s T)JC Q) = (Tv Im&r,ne) + (To Im&p MR)
+ (T3 Iung: &r) + (Ta Inmy,, €L)-

The expression (1.777) remains valid for the Dirac operator with Yukawa couplings,
with the Jy/& and Jyn' on the left paired with the n and &, respectively. Thus, the
Pfaffian of the corresponding classical fermions as Grafimann variables delivers the
determinant of the Dirac operator.

(1.779)

We now come to the contribution of the piece of the operator D which, in the
subspace Vg, VR, is of the form
0 Ty
=(r, )

where Y is a symmetric matrix in the flavor space, as in (1.669). We use (1.773))
and (1.774), replacing quarks by leptons, and we assume to simplify that the matrix
TR is diagonal. We denote the corresponding diagonal values by vgr. We have

(=& QUL +ERPUR+NR A VL +1L VR

J¢ = Tuér @ v+ Juér @ vr + Jumr @ v + Junp, @ v
so that
(150 T)J ¢ =v0rIMER @ vR + Y50RIMNL ® VR

(1.780) (50T)JC,¢) = vrR(vsIMmER, Er) + OR(VsIMN R NR)
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The only effect of the 75 is an overall sign. The charge conjugation operator Jys
is now playing a key role in the terms (1.780), where it defines an antisymmetric
bilinear form on spinors of a given chirality (here right-handed ones). For the de-
tailed treatment of these Majorana terms in Minkowski signature we refer to the
independent work of John Barrett [13].

Thus, in the Majorana sector we get a factor % in front of the kinetic term. This
corresponds to equation (4.20) of [234]. For the treatment of Majorana fermions in
Euclidean functional integrals and the use of Pfaffians see e.g. [171], [238].

Notice that solving the fermion doubling problem using the pairing (Ji), D)) in
the functional (1.772) instead of (1), D 41) is possible only because in this model the
K O-dimension of the geometry M x F'is 2 mod 8 instead of 4 mod 8 as in [70].
In Minkowskian signature, a similar solution of the fermion doubling problem was
given in [13].

17. The Standard Model Lagrangian from the spectral action

In this section we show, following [52], how to recover the Standard Model La-
grangian of §9.4, with the modified terms of §9.6.2 that account for the mixing
matrix and the Majorana mass terms for neutrinos, from the asymptotic expansion
of the spectral action functional for the product geometry M x F'.

By covariance, if we want to show that the spectral action naturally recovers the
Lagrangian for matter minimally coupled with gravity, i.e. with the Standard Model
Lagrangian on a curved (Euclidean) spacetime, it is sufficient to check that we obtain
the full Standard Model Lagrangian in flat spacetime, which is (up to switching back
to Minkowskian signature) the Lagrangian considered in §9.4 and §9.6.2. Thus, for
the rest of this section, in the explicit computation of the Lagrangian, we restrict to
the flat case only.

The main theorem of this section is the following result.

THEOREM 1.217. Let M be a compact Riemannian spin 4-manifold and F' the finite
noncommutative geometry of KO-dimension 6 described above. Let M X F be the
product geometry.

(1) The unimodular subgroup of the unitary group acting by the adjoint repre-
sentation Ad(u) on H is the group of gauge transformations of SM.

(2) The unimodular inner fluctuations of the metric give the gauge bosons of
SM.

(3) The action of the full Standard Model (with neutrino mizing and see-saw
mechanism) minimally coupled to Einstein gravity in Fuclidean form is
given by the action functional (1.772) of Definition [1.216.

PROOF. (1) and (2) follow from the results of §15.1 and §15.2/ and [15.4 above.

(3) We subdivide the proof of the theorem into various subsections, where we ob-
tain from the action functional (1.772) the various parts of the Standard Model
Lagrangian as in (1.423).

Yukawa coupling Lp s as in (1.442)

Gauge fermion couplings Ly as in (1.443)

Higgs self-coupling L as in (1.444)

Self-coupling of gauge fields £, as in (1.445)
Minimal coupling of Higgs fields Ly, as in (1.446)
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We begin by a convenient reformulation of the asymptotic expansion of the spectral
action on M x F obtained in Theorem [1.212.

17.1. Change of variables in the asymptotic formula and unification.

We first perform a trivial rescaling of the Higgs field ¢ so that kinetic terms are
normalized. To normalize the Higgs fields kinetic energy we have to rescale ¢ to

(1.781) H= (;Tfoga,

so that the kinetic term becomes
1
(1.782) / §|DMH\2 Vadiz.
M

We now introduce a relation between the parameters of the model. This corresponds
to the relation between the coupling constants at unification, which is common to
all the grand unified theories. = The relation we impose here is dictated by the
normalization of the kinetic terms that we discuss in detail in Lemma [1.228 below.
Namely, we impose a relation between the coupling constants g1, g2, g3 and the
coefficient fy, of the form

g3fo 1 2

)
(1.783) 52 =1 and g¢2=g5 = 391

LEMMA 1.218. Under the change of variable (1.781) and with the condition (1.783),
the bosonic action (1.754) takes the form

S= [, (2;21% + 0Chupo CHP7 4 4o + T R* R*
0
(1.784) + 16, & 4+ tre P 4 1B, BY

T+ YDHE - g2HP - RIHP + A0|H|4)¢§d4x7

where
1 _ 96faA2—foc
K3 1272
np= 28 e
ao = _1?6{?2
(1.785) n= Lh
Y= HA8f1At — faA?c+ L)
= fL
b= 15

ProoF. This follows directly from Theorem 1.212), using (1.781) and (1.783). O

Imposing the condition (1.783) has the effect of replacing the term

o _ 5 _
Qf%g(g%GLVGW + g Fo, P+ gg%BWBW)
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of Theorem [1.212 with the normalized expression

ZGLVGHVL + 4F5VFMVQ + iBuVEMV7
which will match the gauge bosons self-interaction terms of the Standard Model
Lagrangian (cf. Lemma [1.228 below). The fact of imposing (1.783) means that
the action functional (1. 784) is considered as the bare action at unification scale
A, i.e. where the merging g3 = 92 = 5g1 /3 of the coupling constants supposedly
takes place. The relation g3 = g3 = 59%/3 coincides with that obtained in grand
unification theories (cf. [53] and [234] §9). We recall briefly in §17.2l below how the
unification scale is computed.

COROLLARY 1.219. The change of notations (1.781) for the Higgs fields can be re-
formulated in the form

1.786 =Y _(14+¢)=(—+H—i¢°, —iv2¢™).
(1.756) St = )
PrOOF. As in §9.4, we let g denote the weak coupling constant g = go, with

a = s2,g%/(47) the fine structure constant, and we let M denote the mass of the W.
\/af by 1 ﬁ n

The result then follows using (1.783)) to replace R

In particular, the change of variables (1.786) sets the the mass M of the W to be

(1.787) oM = \[

with @ as in (1.717). The vacuum expectation value of the Higgs field is

2M

17.2. Coupling constants at unification.

As in (1.420), we set a; = g?/(4n), with aem = s2,a2 the fine structure constant, for
Sw = sin(fy,). The infrared value is aep ~ 1/137.036, but it is running as a function
of the energy and increases to the value aem(Myz) = 1/128.09 already, at the energy
Mz ~ 91.188 GeV.

Assuming the “big desert” hypothesis, i.e. the absence of “new physics” (save for
the Higgs) between current energy scales and unification, the running of the three
couplings «; is known. It is obtained via the renormalization group equation that
we discussed in the first part of this chapter (see §6.6)).

Considering only 1-loop corrections, the beta function (cf. Definition 1.46 and Corol-
lary [1.49) is given by ([187], [4])

41 19

(1.789) By = (A7) "%b; g}, with b= (g’—g

7_7)7
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so that ([256]) the renormalization group equation is then of the form

_ _ 41 A
(1790) O[l 1(A) = Oél 1(MZ) — m log E
_ _ 19 A
ay a) = ay L(My) + Tom log i,
42 A
—1 -1
A) = M — log —
oz (A) ag Z)+127r og M,

where My is the mass of the Z° vector boson.

Notice that at 1-loop order the renormalization group equations for the coupling
constants g; are uncoupled from the other parameters of the Standard Model, but
this is no longer the case when higher loop corrections are considered. For the
explicit form of the beta function and renormalization group equation for 2-loop
corrections see [4].

It is known that the predicted unification of the coupling constants does not hold
exactly, which points to the existence of new physics, in contrast with the “big
desert” hypothesis. Thus, one should bear in mind that the model discussed here is
only approximate, in the same sense in which the prediction of all the grand unified
theories that the coupling constants meet at the common value g% = g2 = 5g3/3 is
known to be incompatible with the “big desert” hypothesis.

In fact, if one considers the actual experimental values, one has

(1.791) 9g1(Mz) =0.3575, ga(Mz) =0.6514, g3(Mz) = 1.221,
one obtains the values
(1.792) Otl(Mz) = 0.0101, OéQ(MZ) = 0.0337, Oég(Mz) = 0.1186.

If one uses these values and runs the equation (1.790) one finds that the graphs
of the running of the three constants «; do not meet exactly, hence they do not
specify a unique unification energy (cf. Figure 33/ where the horizontal axis labels
the logarithm in base 10 of the scale measured in GeV).

17.3. The coupling of fermions.

We now discuss how to obtain the parts Ly and Lgr as in (1.442) and (1.443) of
the Standard Model Lagrangian. We first discuss the case of the minimal Standard
Model with rﬁ‘]? and g}in and then we show how to obtain the remaning terms for
neutrino mixing and Majorana mass terms (see Lemma [1.221 below).

In the case of the minimal Standard Model, we have
(1.793) W=
—&*tm) et —ﬂj)‘mf;ug\ - @mfl‘d? +
05 (—0T (1= 7)) + 7@ (L7 — §57 (HEe) + il e) +
ig__ gt (—mg(ﬂ?CM(l — 7)) + md (@ Cra(1 + 75)d§)) +

2MV/2
i a I K K(d K mj _
31VE (mﬁ(d?(]in(l + 7)) = miE(dCL (1= 77)u) )> — §5HH (wuy) —

A _ . A . A _
V@) + $H @) - $HPE )
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Couplings
0.06 |-
r - 5/3 aq
L — @
0.05
| — (1'3

0.04
0.03

0.02 |

| . . . . | , . . . I . . Ioglo(u/GeV)

F1GURE 33. The running of the three couplings.

The matrix C), is the CKM mixing matrix for quarks. It also enters the Lagrangian
in the two gauge coupling terms where the down and up fermions are involved
together in the expression

(1.794) o=

3igs M (@747 g8 — @ (70)er — PO — @ (yO)u) — d)(70)d) +
igswdy (—(@9#eX) + 3@ud) = Jdyd))) + 25 2 (1 + 7)) +
(B (452, — 1= %)et) + (A} (5% — 1 = 7°)d}) + (w3 (1 — 582 + 77 u))} +
S Wi (P27 + (@914 77)Oned)) +
Wi (@971 497+ (d5CH (14 77))

Since the matrix C), is unitary the quadratic expressions in d? are unchanged by
the change of variables given by

(1795) d)\j = C)\n 5 CZ/\j = C)\K d - C);A d;

and in this way one can eliminate C) in g;}n.

The term E}in, which we now consider written in the new variables of (1.795),
contains the kinetic terms of the fermions and their couplings to the various gauge
fields. In the SU(3) case the coupling is simply given by the term

1. 0J (=0 o

5195 A (@747 ) g,
with A the Gell-Mann matrices of (1.421) and gs = g3 the strong coupling. The
coupling has a more complicated form in the case of the (A4, W=, 79 fields. This
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involves, in particular, the hypercharges Y7, and Yy assigned to the different fermions,
quarks and leptons, and depending upon their chirality.

Recall here that the electromagnetic charge Qe is related to the hypercharges Y7,
and Yg by the relations
(1796) 2Qem =Yr and 2Qem =Y+ 2131,

where I3y, is the third generator of the weak isospin group SU(2), as in (1.413). Thus,
from the values of the hypercharges Y = Y7, of §9.2/and §13.3, one sees that for Qem
one gets (for both right and left components) % and —% for u and d, respectively,
and 0 and —1 for v and e, respectively.

In order to relate the expressions E%m and Emm of (1.793) and (1.794) to the spectral
action functional (1.772)), we first prove the follovvlng result.

LEMMA 1.220. After the change of basis (1.795) on the down quarks, the following
holds.

(1) The terms ﬁmm are of the form

min 3 Y . A
qf = = Z[fL'VM(a,u - Zg W,ua - /?LB” - Zg/IEqub)fL
f
= .Y .
(1.797) + T (O — ig' = By~ ig" M Vi) I
for both quarks and leptons, with W = %W“? W, = %W“Q and
g’ = g tan(fy) , 9" =gs,
(1.798)
B, = chM—stB , Wiz = sw A+ chB
(2) The terms Eﬁlj? are given, with the notation (1.741), by
(1.799) 0= —FTO.KM™ @) f = fT(Ku, Ka, ) f
where
2M
(1.800) pr="F H—i¢% g = —ivV2¢"
and
(K)o = o5me o).
(1.801) (K)o = 55rmud],

(Ka)pp = 55mAC,n85CH,.

PRrROOF. (1) In Minkowski space a quark ¢ is represented by a column vector
and one has the relation

(1.802) a=4q"%

between ¢ and ¢g. Thus, g and ¢ have opposite chirality.

Since the «* switch the chirality to its opposite and all the terms in (1.794) involve
the v, they can be separated as a sum of terms only involving fr, and fr, and terms
only involving fr and fr. Since we are considering only the minimal Standard
Model, the neutrinos v* only appear as left-handed, i.e. as through the combination

(1 —|—’y5)1/A
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The last two lines of (1.794) correspond to the terms in ig"—;WMa for the off-diagonal
Pauli matrices o1 = 0%|4=1, 092 = 0%|q=2. The first line of (1.794) corresponds to
the gluons and the kinetic terms. The terms involving the gluons gj; in (1.794) give
the strong coupling constant ¢” = g5 = g3. The second and third lines of (1.794)
use the electromagnetic field A, which is related to the U(1) gauge field B,, by

(1.803) 9 sw (A — tan(6w) Z)) = ¢ By.
This gives (notice the sign — x — = + in (1.797)) the terms (cf. (1.796))

Y; 2
(1.804) ig/ 5" By = 1950 Ay Qem — 1922 70 Qe

Cw
for the right-handed part, while on the left-handed sector one has
Y, o
Qem = ?L + ?3

where the third Pauli matrix o3 := 0%|,=3 corresponds to the generator I3;, of the
isospin SU(2), as in (1.796)). The diagonal terms

. 03 YL
zg?Wug + zg/7BM
for the left-handed part are then of the form
ig%5 W3 + 19Sw(Ay — tan(Gw)ZB)(Qem — %) =
. . 2 . .
195w A Qem — zgi—zZSQem + (1gWy3 —igsw(Ay — tan(@w)ZS))%.
The relation
(1.805) (igWyis — ig s (A, — tan(8,) Z0)) = = Z§
w
then determines W3 as a function of A, and ZS, in the form
— s (4, — tan(0) 2°9) + ~ 20
WH3_SW( M tan( ’LU) u)+c o
w

which is more conveniently written as

(1.806) Wys = sw Ay + cw Zy).
The diagonal terms for the left-handed sector can then be written in the form
. .52 7 o
(1.807) 195w Ay Qe — 19 2 20 Qem + 2 2072,
Cw Cw 2

This agrees with the factor 4% multiplying (1 ++°) in (1.794). The term (1 + ~)
is twice the projection on the left-handed particles. This accounts for one factor of
2, while the other one comes from the denominator in %}.
The term
i
T IR+ + (@ (457, — 1= 7))
w
is fine. In fact, the neutrino has no electromagnetic charge, so that the terms with

Qem in (1.807) do not contribute, while one gets the term —ig Z% Zg Qem for the
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electron. The different signs of the (1 ++°) term come from the fact that the left-
handed neutrino corresponds to the +1 component of 3 and the left-handed electron
to the —1 component of 3. The other two terms

zg 4 _ 8
ZA(@ (555 = 1= 1)) + (@ (~ 553 + 1477}

4dcy
also match (1.807) correctly. In fact, the electromagnetic charge of the down quark
is —% and it has 03 = —1, while for the up quark the electromagnetic charge is %
and o3 = 1.

(2) Recall that by (1.802) g and ¢ have opposite chiralities. Thus, when we spell out
the various terms in terms of the chiral components, we always get combinations of
the form ¢y, X qr or gr X qr.

We first look at the lepton sector. This gives

9 mf( ¢t (ML —2")eN) + o (N1 + 7))
~§% (H(@) +id" (@)
The terms in € X e are of two types. The first gives
gH gH

—€ m)‘e/\ —|—

—&m) (1 —I—m) et =—e} m) (1+m)e§—e>j‘%m)‘(1+m)e%.
The second type gives
A A A
gme . _ gme . _ gmg . _
Sl @) = S i (@per) — 510" (@her)
Thus, they combine together using the complex field
(1.808) Yy = H —i¢?
to give
g1 g1
_ 14271 _ 1427
ehmd (14 L) ek — ehm? (14 £ ).

Since we are dealing only with the minimal Standard Model, the terms where both
e and v appear involve only vy, hence only er. The fields ¢T are complex fields that
are complex conjugates of each other. We let

(1.809) Yo = —iV2¢7.
The contribution of the terms involving both e and v is then of the form
A A 9P2y g2 wg

Notice that the field ¢ = (¢1,12), with ¥; and 99 as in (1.808) and (1.809) differs
from the 1 of (1.786)) by a factor 2M/g.

Let T'(My, M2, ¢) be defined as in (1.741). Combining the above, we see that we
can express the terms of the lepton sector in L‘ﬁ{}‘}l in the form

_ : 2 M
(1.810) — fTO,KM™, ¢) f, @o1=1v1+ 0 2= P2,

where K™ is the diagonal matrix with diagonal entries the 547 mp, as in (1.801).

We now consider the quark sector of LEIJ? This consists of the terms
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S U US> WP )
ujmyug —dimgd; +

50" (—mE@ O = 7)) + M@ OnelL +77)d5) ) +
i - 7. K K( 7 K my —
i (mé‘(d?CiH(l + 7)) — mE( O (1 — A7)t )) S T
m)\ — i m/\ _ i m)\ _
§arH () d}) + 4 5 (@ uy) — 4 51 e0(d)y°d)).

We write it in terms of the dy; given by (1.795) instead of the d;‘. The terms of the
form @ X u are

A : A
A A, A_gm XA My 0=\ 5 A

They are similar to the terms in € X e for the leptons but with an opposite sign in
front of ¢°. Thus, if we let K, be the diagonal matrix with diagonal entries the

7 m?, we get the terms depending on ¢ and K, in the expression
(1.811) — fT(Ky, Ka, ) f,

where K, remains to be determined.
There are two other terms involving the m]), which are directly written in terms of
the dy;. They are of the form

ig
2MA2

T (@} (149)dyy) —

1T O mii(dj (1 = 7)),

This is the same as

7 A2 A a gt
—dyjp my (m) ujp — Wipmy (5~
which corresponds to the other terms involving K, in (1.811).

The remaining terms are
igmy

1.812) —d>m)d) +
( ) J d “j 2M\/§

(—¢™ (@ Cr(1 = 7°)d5) + ¢~ (D}CL, (1 +77)u))

—Qﬂé(H(d*d%) + i ¢ (dy}y°d))).
2 M 77 J J

Except for the transition to the the dy;, these terms are the same as for the lepton
sector. Thus, we define the matrix K, in such a way that it satisfies

— — A g —

djr K3 djr + dyir Kjl " dyr = M d; my ;.
We can just take the positive matrix obtained as the conjugate

g K
(1.813) (Ka)up = mmé‘cu,\@\ .lp

as in (1.801).

The only terms that remain to be understood are then the cross terms (with up and
down quarks) in (1.812)). It might seem at first that one recognizes the expression for
dyj = Cxe d;f‘, but this is not the case. In fact, the summation index x also appears
elsewhere, namely in mJ. One has

g 9
g1 O s = S miCr 0 Clydpj = (Kad);.
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Thus, the cross terms in (1.812) can be written in the form

j§<¢+ (@Y1 — %)) + & (g (L4 AP)u)).

Thus, we get the complete expression (1.811). O

Now we consider the case of the Lagrangian Lgy; with the additional terms for
neutrino mixing and Majorana mass terms. The following result shows how to
modify Lemma [1.220 to account for these additional terms.

LEMMA 1.221. The neutrino masses and mixing are obtained in two additional steps.
The first is the replacement

T(07 Kénina SO) = T(Kl/7 K€7 SO),
where the K™ of (1.801) is replaced by

!
(1.814) (Ke)aw = 2M miC\ P60 (C'P)],
while K, is the neutrino Dirac mass matrix
(1.815) (Ky)an = ﬁmﬁdﬁ.
The second step is the addition of the Majorana mass term
1 . 1- -
(1.816) Linass = =7 7x ME (1 -~%)p, — 1N ME (14,

PROOF. After performing the inverse of the change of variables (1.795) for the
leptons, using the matrix C'P instead of the CKM matrix, the new Dirac Yukawa
coupling terms for the leptons imply the replacement of

A
Qme( AN ~0/\5)\>
_9Me (g
5 (e'e?) +ip-(e*y’e?)
by the terms
g )\H(/\/\) gméH(éAe,\)Jr@ v 40 (5> 5V,\)_LgmA¢(-,\ 5e))
oM 2 M 2 M K 2 M K

and of the terms

2’%}( 6T (1= )e) + 67 (@ 1+ )

0" (AL = M) + (ORI 7)er) ) +

6™ (AN + 7)) = mi(E (C1oP)], (1= 47)))

The structure we obtain in the lepton sector is now identical to that of the quark
sector. The result then follows from Lemma [1.220.

The Majorana mass terms are of the form (1.816), where the coefficient % instead of

% comes from the fact that (1 —~°) is twice the chiral projection on the R-chirality.

The mass matrix M is a symmetric 3 x 3 matrix in the flavor space. O



17. THE STANDARD MODEL LAGRANGIAN FROM THE SPECTRAL ACTION 271

In order to compare the expressions for Ly and L,f obtained from Lemma [1.220
and Lemma [1.221] with the fermionic part of the functional (1.772)) of Definition
1.216, we still need to discuss the effect of passing from the Minkowskian to the
Euclidean formulation.

The Lagrangian Lg)s is written in Lorentzian signature. In order to understand the
Fuclidean version of the action considered above, we start by treating the simpler
case of the free Dirac field.

The action for a free Dirac field is given in Minkowski space by the action functional
associated to the Lagrangian

(1.817) —uyou —umu.

In Euclidean space the action functional becomes instead of the form (cf. [61], “The
use of instantons”, §5.2)

(1.818) S = — /q/‘; (iy* 9, — im) ¢ d*x,

where the symbols ¢ and 1) now stand for classical fermions, i.e. independent anti-
commuting Grafimann variables.
Notice that, in (1.818), the gamma matrices v* are self-adjoint and the presence of
i = v/—1 in the mass term is crucial to ensure that the Euclidean propagator is of
the form

p+im

P2+ m2

Back to our case, consider the Dirac operator D4 that incorporates the inner fluc-
tuations. Recall that D4 is given by the sum of two terms

where DOV is given by (1.714) and D0 is of the form
(1.820) DO = \/ZTAM(VE + Ay),

where V¥ is the spin connection (cf. (1.580)), while the A, are as in Proposition
1.207.

We have the following result, which relates the bilinear form (J¢', (D(l’o) +1®
DOD)E) for the operator D10 4+ i @ DO which corresponds as in (1.818) and
(1.817) above to what we obtained in Lemma(1.220, and the bilinear form (Jv’, D 41))
for the Dirac operator D4 of (1.772).

LeEMMA 1.222. The unitary operator

U=¢e1"g1
commutes with A and v. One has JU = U*J and
(1.821) UDsU = D0 g pOD),

PROOF. Since 5 anticommutes with the v, one has D(1:0) 15 — =i D(,0).
Moreover
U (v5 @ DOVYU = (y5¢3%) @ DOV = @ DO
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The result of Lemma [1.222 can be restated as the equality of antisymmetric bilinear
forms

(1.822) (JUE, DAUE) = (JE, (DM 1 i@ DO)g),

17.4. The mass relation at unification.

Notice that in (1.784) the matrices Y,, T4, T, and T, are only relevant up to an
overall scale. In fact, they only enter in the coupling of the Higgs with fermions and,
because of the rescaling (1.781), only through the terms

T

(1.823) ky = L T,
a fo

for © € {v,e,u,d}. The k, are dimensionless matrices by construction. In fact, the
coefficient
(1.824) a=Te(Y; YT, + LY +3(Y; Yy + Y5 a))

of (1.717) has the physical dimension of a (mass)2.

We then conclude the discussion of the Ly and L, terms by the following result.

PROPOSITION 1.223. The terms Lyy and Ly5 of the Standard Model Lagrangian are
obtained from the functional (1.772) after identifying the (K, )up, (Ke)ups (Ku)up
and (Kgq)u, of (1.815) and (1.801), respectively, with the ky, ke, ku, kq of (1.823)
and the mass matriz M of (1.816) with the Tg.

ProOF. This follows directly by combining the results of Lemma [1.220, Lemma
1.221, and Lemma [1.222 above. U

There is an interesting direct consequence of the identification of the k, of (1.823)
with the K, of (1.815) and (1.801), which provides a physical prediction of the
model.

LEMMA 1.224. The mass matrices of (1.826)) satisfy the constraint
(1.825) > (mE)? + (m?)? + 3 (m3)? + 3 (m3)* = 8 M?,

(e

where the sum is over generations.

PROOF. It might seem at first sight that one can simply use the identification
g

9
(ki)or = oaf ™ b Cy (5ZCP,€
- 9 K
(ko = 5o m o
g e e
(ke)mf = mmucéfé,ﬁ(cl p)

imposed by Proposition [1.223| as a way to define the matrices k, but this overlooks
the fact that (1.823) and the form (1.824) of the coefficient a imply the constraint

(1.827) Tr(kXk, + kike + 3(kiky + kika)) = 247,

where we use (1.783) to replace 7}—(2) by 2¢%. Using (1.826), we then obtain the
constraint (1.825), where summation is performed with respect to the flavor index
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o. Notice that ¢? appears in the same way on both sides and drops out of the
equation. O

We discuss the physical interpretation of the imposition of this constraint at unifi-
cation scale.

The relation (1.825) means that, at unification scale where our model is considered,
there is a simple relation between the masses of quarks and leptons and the mass of
the W boson, which is expressed as a quadratic polynomial with integer coefficients.

We need to check that, when running down to ordinary energies the values of the
masses through the renormalization group equation, the prediction made by (1.825))
is compatible with the known physics of the Standard Model.

In order to do that, we first need to discuss another aspect of our model, which is
related to the presence of the T term in the Dirac operator of the finite geometry,
which accounts for the Majorana mass terms of Lgp;.

17.5. The see-saw mechanism.

In models of neutrino physics where neutrinos are described by Majorana fermions,
the smallness of neutrino masses is explained through what is called the “see-saw
mechanism”. In fact, as we explained briefly in §9.6.1l above, the relative size of the
terms in the matrix S,y of (1.439) for Majorana fermions can be used to make one
particle mass very small at the expense of having another one with very large mass
(see e.g. §7.2.4 and §8.2.1 of [234]).

In our model, as we saw in Lemma 1.221 and Proposition [1.223/ above, the Majorana
mass terms are accounted for by the presence of the T p term in the Dirac operator of
the finite noncommutative geometry F'. We now show how this provides the desired
see-saw mechanism.

LEMMA 1.225. Let D = D(Y) be as in (1.663). The restriction of D(Y) to the
subspace of Hp with basis the (vr,vr, VR, V1) is given by a matriz of the form

0 M; Mg 0
M, 0 0 0
Mg 0 0 M

0 0 M, O

(1.828)

where M,, = %KV with K, as in (1.815) and Mp is the matriz M,ﬁ\ of the Majorana
mass term (1.816).

PROOF. This is simply rephrasing the explicit form of the Dirac operator D(T)
of §13.4L In fact, we know by Proposition [1.223] that the matrix M,g\ is identified
with the symmetric matrix T in D(Y), while the term M, = %K,, is nothing but
the term Y,, by (1.815) together with the fact that, by Proposition 1.223, K, is
identified with the &, of (1.823), and we have the relation 2M = \/a/2 of (1.787),
with a as in (1.824) from the change of variables (1.786) in the Higgs field. O

The largest eigenvalue of Mp is set to the order of the unification scale by the
equations of motion of the spectral action as in the following result.
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LEMMA 1.226. Assume that the matriz Mg is a multiple of a fixed matriz kg, i.e.
1s of the form Mg = xkgr. In flat space, and assuming that the Higgs vacuum ez-
pectation value is negligible with respect to unification scale, the equations of motion
of the spectral action fix x to be either x =0 (unstable) or satisfying

22 2 fa A2 Tr(k}*_—ikR).
JoTr((kRkR)?)
PROOF. The value of x is fixed by the equations of motion of the spectral action

(1.830) OuTr(f(Da/N)) =0,

(1.829)

with u = 2.

One can see from (1.717) that x only appears in the coefficients ¢, d, and e. In
the variation (1.830), the terms in the spectral action (1.754) of Theorem [1.212
containing the coefficient ¢ and e produce linear terms in 22, proportional to the
scalar curvature R and the square |¢|? of the Higgs vacuum expectation value, and
an additional linear term coming from the cosmological term. The cosmological term
also contains the coefficient d, which depends quadratically on z2. In flat space, and
under the assumption that |p|? is sufficiently small, (1.830) then corresponds to
minimizing the cosmological term.

This gives

Jo

(1.831)  Ou(—foA2c+ TD=0 c= 22 Tr(kpkg), d=aTr((kkkr)?).

Thus, we get Mp = xkr with z satisfying (1.829). In other words we see that
2 fa A% khkp Tr(kgkr)
fo Tr((kRkr)?)

(1.832) M Mp =

O

Notice that the Dirac mass M, is of the order of the Fermi energy v = 2M/g of
(1.788) and hence much smaller. This relative size of the terms in (1.828)) is what
allows for a see-saw mechanism to take place.

To see this more in detail, we simplify the model to the case of N = 1 generations.
In this case, the eigenvalues of the matrix (1.828) are of the form

1
(1.833) 5 <iMR +/ M2+ 4v2> ,

where v is the Higgs vacuum (1.788) and My is here just a scalar (since N = 1),
which is of the order of A by the result of Lemma 1.226, see (1.832)).

The formula (1.833) means that we have two eigenvalues very close to £Mp and
two others very close to :I:”—QR, while, for N = 1 generation, the determinant of the
matrix (1.828) is equal to | M, |* ~ v

The see-saw mechanism in particular implies that, while the neutrino masses remain
small, they can nonetheless have a large Yukawa coupling. Typical estimates for the

large masses of the right-handed neutrinos i.e. the eigenvalues (mpg), of Mg are
given (cf. [234]) by

(1.834) (mgp)1 > 107GeV , (mpg)2 > 102GeV, (mp)s > 105GeV .
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The case that is especially important for explicit calculations is the T neutrino, which
will have the largest corresponding Yukawa coupling term, of the same order as that
of the top quark. This introduces important corrections to the minimal Standard
Model calculations where one would normally assume that the top quark Yukawa
coupling is the dominating term.

17.6. The mass relation and the top quark mass.

We now check that the mass relation (1.825) at unification is compatible with the
values at ordinary energies.
One comment about notation: there are two conventions in the physics literature
on the normalization factor for the Higgs field.

(1) In Veltman [286] the kinetic term has a factor of 3

(2) In Mohapatra—Pal it has a factor of 1 (cf. [234] equation (1.43))

One passes from one to the other by

1
(1.835) Pmp =

ﬁ Pvelt

We adopt the second convention (which is the same convention used in [45]). Thus,
we define the Yukawa couplings in the following way.

DEFINITION 1.227. For v = 2M

ation index and x € {u,d,v,e} by the relation

v
1.836 —y? =m?,
( ) N

where the mg are defined as in (1.826).

we define the matrices y, = (y2) with o the gener-

The mass of the top quark is governed by the top quark Yukawa coupling y; = yJ (¢)
with ¢ = 3 by the equation

1 2M 1
1.837 Miop(t) = —=—— Yt = —= V Yy,
( ) top(t) V2 g Yi /2 Ye
where v = 2M is the vacuum expectation value of the Higgs field. The running of

the top quark Yukawa coupling y; = yJ(t), with ¢ = 3, is governed by equation
(1.843).

As in [4], we denote by Y2(.S) the combination

(1.838) Ya(S) = (W9)* + (19)* + 3 (y5)* + 3 (y5)?
In these terms the mass constraint (1.825) reads as
(1.839) Y2(S) = 4%,
ie. as
2
v
(1.840) 5 2 W)+ (W) +3 (D +3wd)* = 20°0%,

with v = % the vacuum expectation value of the Higgs, as above.

Assume that the relation (1.840) holds at a unification scale A of 10!7 GeV, neglect-
ing the discrepancy of Figure 33 and assuming the exact relation (1.783) between
the coupling constants.
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10g;0(1/GeV)

F1GURE 34. The running of the top quark Yukawa coupling.

In the first approximation, as is usually done in the context of the minimal Standard
Model, one can choose to neglect all the Yukawa couplings other than that of the
top quark, that is, y9, with o = 3. This yields an approximate form of (1.825) given
by

(1.841) for o =3.

- 2
Yu = \/g 9,
We consider the Yukawa couplings (y?) as depending on the energy scale through
their renormalization group equation (cf. [4], [43], [244]). We set

(1.842) t=log(-2-) and p= Mgz

Mz

We consider in particular the top quark case yJ(t) for 0 = 3. The running of the
top quark Yukawa coupling y; = y(t), with o = 3, is governed by the differential
equation (cf. [268] equation (2.143) and equation (A9) of [4])

dy 1 9
(1.843) ~ = Te2 (22/? —(agi +bg3 +cai) yt> :
with 17 9
be) = (-, -,8).
(CL, 70) (12’4’8)

The value of g at a unification scale of 10'7 GeV is ~ 0.517. Thus, (1.841) gives the
simplified relation

2
1.844 = = g~0597, for t~ 34.6.
( ) w= "9
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Thus, in first approximation, numerical integration of the differential equation (1.843])
with the boundary condition (1.844)) gives the value at ordinary energies yo ~ 1.102,
which means a top quark mass of the order of %yo v~ 173.683 yo GeV. This is not
in good agreement with the physical value. However, our assumption that the top
quark Yukawa coupling is the only dominant term in (1.840) would only be justified
in the minimal Standard Model. In our model with neutrino mixing and the Ma-
jorana mass term, the see-saw mechanism discussed in §17.5 above implies that the
Yukawa coupling term for the 7 neutrino is also of the same order of magnitude as
that of the top quark, hence it introduces a visible correction to (1.844)
In fact, although the known upper bound on the mass of the 7 neutrino is only of
the order of (cf. [234])

m,, < 18.2 MeV,
which corresponds to the small eigenvalue of (1.833)), the see-saw mechanism allows
for a large Yukawa coupling term yJ, with o = 3 by the relation (1.833) and (1.834),
which turns out to be comparable to that of the top quark. We can then make the
simplifying assumption that, at unification, the Yukawa coupling yJ, with ¢ = 3 for
the 7 neutrino to be the same as the y7, with 0 = 3 of the top quark.
When we take into account the contribution of the Yukawa coupling of the 7 neutrino
in this way, this introduces in (1.844) a correction factor of /3/4. In fact, for
x = yo(t) and yp = yg(t), with o = 3, we now have

4
(1.845) Yo(8) ~ 7 + 3y ~ §-3yf=4y?:‘yt~g

This replaces the initial value (1.844) of y; by ¥ ~ 0.516 and has (Figure 34) the
effect of lowering the value of yy to yo ~ 1.04, which yields an acceptable value for
the top quark mass.

17.7. The self-interaction of the gauge bosons.

We now consider the self-interaction terms £, for the gauge fields, as in (1.445) and
we show that they can be written as a sum
(1.846) Ly= L7 + LM+ Lieyn
of terms of the following form.
(1) L£3'**° consists of the mass terms for the W and the Z°.
(2) LYM consists of the Yang-Mills interaction —§ F%, /" for the gauge fields
B, W3, gy
(3) Lgeyn are the Feynman gauge fixing terms for all the gauge fields.

LEMMA 1.228. One has

1 1 1

2717+ 17— 270 0 2
(1.847)  Lg= MWW, — 2z M4z~ Fp, Fi¥ — 5 > 0,692
a H

PROOF. It is enough to show that the expression

—0,Wro,w, —O%ay(cw Z0 + sw Ap)0y(cw Z) + s Ay) —igew(0, Zy(W W, —
WiIw.,) - zZy(Wrow, — W, o,Wr)+ Z)(W oW, — W, 0,W)) -
195w 0y Ay(WiW, = WIW,) — A, (W oW, =W, o,W,) + Au(W,o,W,, —
W, 0,W;H)) — L WiEWr W)W, + LW W, WiEw, + 2 (Z0WF 20w, —
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ZBZngW;) + g%i(AMWJAVW; - AMAHOW;WV_) + gQchw(AMZB(WJW; -
WJW#’) — QAMZHWJW;)

coincides with the Yang-Mills action of the SU(2) gauge field.
In fact, the kinetic terms will then combine with those of the B-field, namely
1
~50u(=su Z) + cw Ap) Oy (—sw Z)) + cuw Ay).

One can rewrite the expression above in terms of W3 = s, A, + ¢y Zg. This gives
—O,WFO,W, — 30,W,30,Wyu3 —ig(0, W3 (W I W, — IA/;W;) —Wos(WFo,W, —
W,;lal,Wj) + Wuis(Wio,W, =W, 0,W,5H) — 5*WIW, Wiw, +
SPWIW,WEW, + g2 (WsWEW,s W, — WsWsWiIw, ).

Using W, = % and W = %, one checks that it coincides with the

Yang-Mills action functional —3 Ff, F4"” of the SU(2) gauge field W,;.
More precisely, let

V=08, — z’%wgaa.
One then has
[V, V,] = —ig(auwg — 9, WH)o, + (—ig)Q(Wgwgab Ge— WWioe o).

Using o, 0. — 0. 0y = 21 €gp¢ 04, this gives

(1.848) i, = 0,Wy — 0,Wh 4 g eqpe WSWY.
One then checks directly that the above expression coincides with
1 1
(1.849) - F Bl — 52(2 W2,
a  p

Notice tha