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In The Quantum Theory of Fields Nobel Laureate Steven Weinberg com-
bines his exceptional physical insight with his gift for clear exposition to
provide a self-contained, comprehensive, and up-to-date introduction to
guantum field theory. .

Volume IT1 presents a self-coniained, up-to-date and comprehensive
introduction to supersymmetry, a highly active area of theoretical physics
that is likely to be at the center of future progress in the physies of
elemcntary particles and gravitation. The text introduces and explains a
broad range of topics, including supersymmetric algebras, supersymmetric
field theories, extended supersymmetry, supergraphs, non-perturbative
results, theoties of supersymmetry in higher dimensions, and supergravity.
A thorough review is given of the phenomenological implications of
supersymmetry, including theories of both gauge and gravitationally-
mediated supersymmetry breaking. Also provided is an introduction to
mathematical techniques, based on holomorphy and duality, that have
proved so fruitful in recent developments. This book contains much
material not found in other books on supersymmetry, some of it new.
Problems are included at the end of each chapter.

This will be an invaluable reference work for al physicists and mathe-
maticians who use guantuin field theory, as well as a textbook appropriate
to graduate courses.
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Preface To Volume I11

This volume deals with quantum field theories that are governed by
supersymmetry, a symmetry that unites particles of integer and half-integer
spin in common symmetry multiplets. These theories offer a possible way
of solving the ‘*hicrarchy problem,’ the mystery of the enormous ratio of
the Planck mass to the 300 GeV energy scale of clectroweak symmetry
breaking. Supersymmetry also has the quality of uniqueness that we search
for in fundamental physical theories. There is an infinite number of Lie
groups that can be used to combine particles of the same spin in ordinary
symmetry multiplets, but there are only eight kinds of supersymmetry
m four spacetime dimensions, of which only one, the simplest, could be
directly relevant to observed particles.

These are reasons enough to devote this third volume of The Quantum
Theory of Fields to supersymmetry. In addition, the quantum field theories
based on supersymmetry have remarkable properties that are not found
among other field theories: some supersymmelric theorics have couplings
that are not renormalized in any order of perturbation theory; other
theories are finite; and some even allow exact solutiocns. Indeed, much of
the most interesting work in quantum field theory over the past decade
has been in the context of supersymmetry.

Unfortunately, after a quarter century there is no direct evidence for
supersymmetry, as no pair of particles related by a supersymmetry trans-
formation has yet been discovered. There is just one stgnificant piece
of indirect evidence for supersymmetry: the high-energy unification of
the SU(3), SU(2), and U(1) gauge couplings works better with the extra
particles called for by supersymmetry than without them,

Nevertheless, because of the intrinsic attractiveness of supersymmetry
and the possibility it offers of resolving the hierarchy problem, I and
many other physicists are reasonably confident that supersymmetry will be
found to be relevant to the real world, and perhaps soon. Supersymmetry
is a primary target of experiments at high energy planned at existing
accelerators, and at the Large Hadron Collider under construction at the
CERN laboratory.

Xvi



Preface xvii

After a historical introduction in Chapter 24, Chapters 25-27 present
the essential machinery of supersymmetric field theories: the structure of
the supersymmetry algebra and supersymmetry multiplets and the con-
struction of supersymmetric Lagrangians in general, and in particular
for theories of chiral and gauge superfields. Chapter 28 then uses this
machinery (o incorporate supersymmetry in the standard model of elec-
troweak and strong interactions, and reviews experimental difficulties and
opporlunjties. Chapters 29-32 deal with topics that are mathematically
more advanced: non-perturbative results, supergraphs, supergravity, and
supersymmetry in higher dimensions. ' '

I have made the treatment of supersymmetry here as clear and self-
contained as I could. Wherever possibie I take the reader through cal-
culations, rather than just reporting results from the literature. Where
calculations are too lengthy or complicated to be included in a book of
this sort, especially in Chapter 28, T have tried to present simpler versions
that give the reader an idea of the physical issues involved.

I have made a point of including topics here that have generally not been
covered in earlier books, some because they are too new. These include:
the use of holomorphy to study perturbative and non-perturbative radi-
ative corrections; the calculation of central charges; gauge-mediated and
anomaly-mediaied supersymmetry breaking; the Witten index; duality;
ihe Seiberg—Witten calculation of the effective Lagrangian in N = 2 su-
persymmetric gauge theories; supersymmetry breaking by medular fields;
and a first look at the rapidly developing topic of supersymmetry in higher
dimensions, including theories with p-branes.

‘On the other hand, I have shortened the usual treatment of two topics
that seemed to me to have been well covered in earlier books. One of these
is the use of supergraphs. Many of the previous applications of the super-
graph formalism in studying the general structure of radiative corrections
can now be handled more easily by using the arguments of holomorphy
described in Sections 27.6 and 29.3. The other is supergravity. In Sections
31.1-31.5 I have given a detailed and self-contained treatment of super-
gravity in the weak-field limit, which makes it clear why the ingredients of
supergravity theories — the graviton, gravitino, and auxiliary fields — are
what they are, and which allows us to derive some of the most important
results of supergravity theory, including the formula for the gravitino
mass and for the gaugino masses produced by anomaly-mediated super-
symmetry breaking. In Section 31.6 I have outlined the calculations that
generalize supergravity theory to gravitational fields of arbitrary strength,
but these calculations are so lengthy and unlovely that I was content to
quote other sources for the resuits. However, in Section 31.7 1 have given
a fuller than wsual treatment of gravitationally mediated supersymmetry
breaking. I regret that I have not been abie to include exciting work of the
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past decade on supersymmetry related to string theory, but string theory
is beyond the scope of this book, and I did not want 1o report results for
which T had not provided a basis of explanation.

I have given citations both to the classic papers on supersymmetry
and to useful references on topics that are mentioned but not presented
in detail in this book. T did not always know who was responsible for
material presented here, and the mere absence of a citation should not
be taken as a claim that the material presented here is original, but
some of it is. I hope that I have improved on the original literature
or standard textbook treatments in several places, as for instance in
the proof of the Coleman—Mandula theorem; in the treatment of parity
matrices in extended supersymmetry theories; in the inclusion of new soft
supersymmetry-breaking terms in the minimum supersymimetric standard
model; in the derivation of supercurrent sum rules; and in the proof of
the uniqueness of the Seiberg—Witten solution.

[ have also supplied problems for each chapter. Some of these problems
aim simply at providing exercise in the use of techniques described in the
chapter; others are intended to suggest extensions of the resuits of the
chapter to a wider class of theories. '

In teaching a course on supersymmetry, 1 have found that this book
provides enough material for a one-year course for graduate students. I
intended that this bock should be accessible to students who are familiar
with quantum field theory at the level it is presented in the first two
volumes of this treatise. It is not assumed that the reader has gone
through Volumes T and TI, but for the convenience of those fortunate
readers who have done so I use the same notation here, and give cross-
references to material in Volumes I and II wherever appropriate,

L I

I must acknowledge my special intellectual debt to colleagues at the
University of Texas, notably Luis Boya, Phil Candelas, Bryce and Cecile De
Witt, Willy Fischler, Daniel Freed, Joaquim Gomis, Vadim Kaplunovsky,
and especially Jacques Distler. Also, Sally Dawson, Michael Dine, Michael
Duff, Lawrence Hall, Hitoshi Murayama, Joe Polchinski, Edward Witten,
and Brune Zumino gave valuable help with special topics. Jfonathan
Evans read through the manuscript of this volume, and made many
valuable suggestions. Thanks are due to Alyce Wilson, who prepared
the illustrations, to Terry Riley for finding countless books and articles,
and to Jan Duffy for many helps. I am grateful to Maureen Storey of
Cambridge University Press for working to ready this book for publication,
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and especially to my editor, Rufus Neal, for his continued friendly good
advice.

STEVEN WEINBERG
Amnstin, Texas
May, 1999



Notation

The big issue in choosing notation for a book on supersymmetry is whether
tod use a two-component or a four-component notation for spinors. The
standard texts on sitpersymmetry have opted for the two-component Weyl
notation. 1 have chosen instcad to vse the four-component Dirac notation
except in the first stages of constructing the supersymmetry algebra and
multiplets, because I think this will make the book more accessible to those
physicists who work on particle phenomenoclogy and model building. 1t
would be a pity to see the growth of a separate enclave of supersymmetry
specialists, who communicate well with each other but are cut off by their
notation from the larger community of particle theorists,

There is no great difficulty anyway in converting expressions in four-
compenent form inte the two-component formalism., In the representation
of the Dirac matrices used throughout this book, in which y5 is the
diagonal matrix with clements +1, +1, —1, and —1 on the main diagonal,
any four-component Majorana spinor @, (such as the supersymmetry
generator {J,, the superspace coordinate tla, or the superderivative Ly}
may be written in terms of two-component spinor y, as

-(%)

where ¢ is the 2 x 2 antisymmetric matrix with e;; = +1. The two-

tomponent spinor y, is what in other books is often called yw, = ¢, ,

while (ex"), would be called w% A summary of useful properties of

four-compoenent Majorana spinors is given in the appendix to Chapter 26.
Here are some other features of the notation used in this book:

Latin indices i, j, k, and so op generally run over the three spatial
coordinate labels, usually taken as 1, 2, 3. Where specifically indicated,
they run over values 1, 2, 3, 4, with x* = i,

Greek indices g, v, etc, from the middle of the Greek alphabet generally
run over the four spacetime coordinate labels 1, 2, 3, 0, with x° the
time coordinate. Where it is necessary to distinguish between spacetime

XX
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coordinates in a general coordinate system and in a locally inertial system,
indices y, v, etc. are used for the former and g, b, etc. for the latter.

Greek indices «, f§, etc. from the beginning of the Greek alphabet gener-
ally (except in Chapter 24) run over the compenents of four-component
spinars. To avoid ennfusion, I depart here from the conventions of Vol-
ume II, and use upper-case letters 4, B, etc. to label the generators of
a symmetry zlgebra, Components of twe-component spinors are labelled
with ‘indices a, b, etc. In particuiar, four-component supersymmetry gen-
erators are denoted {,, while two-component generators {the bottom two
gomponents of Q,) are called Q,.

Repeated indices are generally summed, unless otherwise indicated.

The spacetime metric n,, is diagonal, with elements 1, = #2y = 133 =
1, noo = —1.

The d’Alembertian is dcﬁrllcdl as O = 582 /ax#8x¥ = V2 — % /?, where
V? is the Laplacian §2/9x'ax’.

The ‘Levi-Civita tensor’ ¢'F? is defined as the totally antisymmetric

quantity with % = 41,

Dirac matrices y, are defined so that y,p» + 3y, = 25, Also, ys =
iyay1yays. and § = iy® = yo. Where explicit matrices are needed, they are
given by the block matrices

D—‘—f 01 = 0 o
¥ = 1 0 ] :I'_ — 0 H]

where 1 is the unit 2 x 2 matrix, 0 is the 2 x 2 matrix with elements zero,
and the components of ¢ are the usual Pauli matrices

0 I 0 —i 1 0
=10} 2T ¢ ) BT 0-4)'

We also frequently make use of the 4 x 4 block matrices

1 0 _le D
?5_0_1: E_Oe:

where ¢ is again the antisymmetric 2 x 2 matrix io;. For instance, our phase

convention for four-component Majorana spinors s may be expressed as
"

§ = —fyses.

The step function 9(s) has the value +1 for s > 0 and 0 for 5§ < Q.

The complex conjugate, transpose, and Hermitian adjoint of a matrix
or vector A4 are denoted A", AT, and AT = A*T, respectively. We use
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an asterisk * for the Hermitian adjoint of an operator or the complex
conjugate of a number, except where a dagger 1 is used for the transpose of
the matrix formed from the Hermitian adjoints of aperators or complex
conjugates of numbers. +H.c. or +cc. at the end of an expression
indicates the addition of the Hermitian adjoint or complex conjugate of
the fc;regoing terms. A bar on a four-component spinor  is defined by
u=uf.

Units are used with /i and the speed of light taken to be unity. Throughout
—e is the rationalized charge of the electron, so that the fine structure
constant is « = e?/4z ~ 1/137. Temperatures are in energy units, with the
Boltzmann constant taken equal to unity.

Numbers in parenthesis at the end of quoted numerical data give the
uncertainty in the last digits of the quoted figure. Where not otherwise
indicated, experimental data are taken from ‘Review of Particle Physics,’
The Particle Data Group, European Physics Journal C 3,1 (1998).
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Historical Introduction

The history of supersymmetry is as peculiar as anything in the history of
science. Suggested in the early 1970s, supersymmetry has been elaborated
since then into a beautiful mathematical formalism that unites particles of
different spin into symmetry muitiplets and has profound implications for
fundamental physics. Yet there is so far not a shred of direct experimental
evidence and only a few bits of indirect evidence that supersymmetry has
anything to do with the reat world. If (as I expect) supersymmetry docs
turn out to be relevant to nature, it will represent a striking success of
purely theoretical insight.

Chapter 25 will begin the construction of supersymmetry theories from
first principles. In the present chapter we shall introduce supersymmetry
along chrenological rather than logical lines.

241 Unconventional Symmetries and ‘No-Go’ Theorems

In the early 1960s the symmetry SU(3) of Gell-Mann and Ne'eman
{discussed in Section 19.7) successfully explained the relations between
various strongly interacting particles of different charge and strangeness
but of the same spin. The idea then grew up that perhaps SU{3) is part of
a larger symmetry, which has the unconventional effect of uniting SU(3)
multiplets of different spin.! There is such an approximate symmetry in the
non-relativistic quark model, under § U(6) transformations on quark spins
and flavors, analogous to an earlier SU(4) symmetry of nuclear physics
that had been introduced in 1937 by Wigner.? As described in detail in
Appendix A of this chapter, this SU(6) symmetry unites the pseudoscalar
meson octet #, X, K, and n, the vector meson octet p, K* K*, and @, and
the vector meson singlet ¢ in a single 35 multiplet, and also unites the
spin 1/2 baryon octet N, T, A, and E with the spin 3/2 baryon decuplet
A, {1385}, E(1530), and £ in a single 56 multiplet. The §U{6} symmetry
scored a number of successes, but it is actually nothing but a consequence
of the approximate spin and flavor independence of forces in the quark

1
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model; the SU(6) Symimetry is somewhat weaker than the assumption of
spin and flavor independence, but, as shown in Appendix A, there is no
evidence that the predictions of SU(6) symmetry are any more accurate
than those of complete spin and flavor independence.

Nevertheless, there were various attempts to generalize the SU(6) sym-
metry of the nou-relativistic quark model to a fully relativistic quantum
theory.® These atiempts all failed, and a number of authors showed under
various restrictive assumptions that this is in fact impossible.* The most
far-reaching theorem of this sort was proved in 1967 by Coleman and
Mandula.®> They adopted reasonable assumpttons about the finiteness of
the number of particle types below any given mass, the existence of scat-
tering at almost all energies, and the analyticity of the §-matrix, and used
them to show that the most general Lie algebra of symmetry operators
that commute with the §-matrix, that take single-particle states into single-
particle states, and that act on multiparticle states as the direct sum of
their action on single-particle states comsists of the generators Py, and J,,
of the Poincaré group, plus ordinary internal symmetry generators that act
on one-particle states with matrices that are diagonal in and independent
of both momentum and spin. We will use this theorem as an essential
ingredient in our analysis of all possible supersymmetry algebras in four
spacetime dimensions in Chapter 25, and in higher spacetime dimensions
in Chapter 32. In Section 32.3 we will consider supersymmetry algebras in
theories that involve extended objects, for which the Coleman-Mandula
theorem does not apply,

Coleman and Mandula’s proof is ingenious and complicated. A version
is presented in Appendix B to this chapter. In the present section we shall
give a very simple purely kinematic proof of one piece of this theorem,
but this piece is enough to show clearly why an unconventional symmetry
like SU(6) is possible in non-relativistic bui not in relativistic theories.
We shall use Lorentz invariance to show that if the Lie algebra of all
Symmetry operators B, that commute with the momentum generators P,
consists of the P, themselves plus the Hermitian generators By of some
finite-parameter semi-simple compact® Lie subalgebra «, then the B,
must be the generators of an ordinary internal symmetry, in the sense
that they act on single-particle states with matrices that are diagonal in
and independent of both momentum and spin. No use {s made in this
theorem of the properties of the § -matrix, of the finiteness of the particle
spectrum, or of assumptions about how the Symmetry generators act on
physical states. The Lie algebra of § U(6) is of course bath semi-simple

* For the definition of semi-simple and compact Lie aigebras, see the footnote in Section
15.2,
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and compact, so this theorem rules out the use of any such sytametry in
relativistic theories to derive relations among particles of different spin.

Here is the proof. Let all symmetry generators that commute with
the four-momentum P, form a Lie algebra spanned by the generators B,.
Consider the effect on these generators of a proper Lorentz transformation
x# — A¥,x", which is represented on Hilbert space by the unitary operator
U(A). It is easy to see that the operator U(A)B,U (A} is a Hermitian
symmetry generator that commuies with A,"P,, so since A," is non-
singular, this operator must commute with Py, and therefore must be a
linear combination of the By:

U(A)B, U {A) = DP(A) B, (24.1.1)
A

with D#,(A) a set of real coefficients that furnish a representation of the
homogeneous Lorentz group

D(A) D(Ay) = DAL A2) . (24.1.2)

Further, the U(A)B,UH{A) satxsf‘y the same commutation relations as the
B,, so the structure constants C! «p Of this Lie algebra are mvariant tensors
in the sense that

Clg=> D¥ (A DF 5(A) DY, (A*'*}ca,ﬁ, . (24.1.3)
o' By’
Contracting this with the corresponding equation for CJ;, we find that
gps = 3 DFp(A) D® s(A) gpsr (24.1.4)
ﬂf&!
where ggs is the Lie algebra metric
gps = Z Cly C35 - (24.1.5)
Because all of these generators commute with P, we have Cﬁﬁ = —{ By =

0,50 gy = e = 0.

We will distinguish the symmetry generators other than the P, by
using subscripts A, B, etc. in place of «, §, etc. Using the vanishing
of Cjly = —Cj, in Eq. (24.1.5) gives g4p = ECDCAC C§p- We as-
sumed that the generators B, span a compact semi-simple Lie algebra,
s0 the matrix g4p is positive-definite. Eqs. (24.1.4) and (24.1.2) show that
the matrices g'/2D{A)g~!/? furnish a real orthogonal and hence unitary
finite-dimensional representation of the homogeneous Lorentz group. But
because the Lorentz group is non-compact, the only such representation
is the trivial one, for which D{A) = 1. {This is the place where relativity
makes all the difference; the semi-simple part of the Galilean group is the
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compact group SU(2), which of course has an infinite number of unitary
finite-dimensionat representations.) With D(A} = I, the generators By
commute with U{A) for all Lorentz transformations AR,

Acting on the state |p, n} of a single stable particle with momentum p#
and spin and species labelled by a discrete index n, an operator like B4
that commutes with P, can only yield a linear combination of such statos

Balp,n) =3~ (ba@)),_ o) . (24.0.6)

H}

The fact that the B4 commute with what we called ‘boosts’ in Section 2.5
implies that the b4(p) are mdependent of momentum, and the fact that
the B4 commute with rotations implies that the b,(p) act as unit matrices
on spin indices, so the B, are the generators of an ordinary internal
symmetry, as was to be proved.

24.2 The Birth of Supersymmetry

If theoretical physics followed logic in its evolution, then after the proof
of the Coleman—Mandula theorem someone seeking exceptions to this
theorem would have noticed that it deals only with transformations that
take bosons into bosons and fermions into fermions and are therefore gen-
erated by operators that satisfy commutation relations rather than anti-
commutation relations. This would have raised the question of whether
a relativistic theory can have symmetries acting non-trivially on particle
spins that take fermions and bosons into each other, and that there-
fore satisfy anticommutation relations rather than commutation relations,
Exploring the possible structure of such a superalgebra along the lines
described in the following chapter, supersymmetry would bave emerged
as the only possibility.

This 1s not what happened. Instead, supersymmetry arose in a series
of articles on string theory and independently in a pair of kttle-noticed
papers, about which more later, none of which show any sign that the
authors were at all concerned with the Coleman-Mandula theorem.

Starting in the late 1960s, the effort to construct S-matrix elements for
strong-interaction processes that would satisfy various theoretical require-
ments led to a new picture of various types of hadrons, as different modes
of vibration of a string® A point on a string labelled by a parameter ¢
will at time ¢ on some fixed clock have spacetime coordinates X¥(g,1), s0
the theory of a string’s motion in d spacetime dimensions may be regarded
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as a two-dimensional field theory with d bosonic fields, with action
B aXY  OX* OXY
I[X] = fdo-/dr - {a{ X7 _ J

dt do o
axX# oxv
_ + ~ il
_T f do f 40 Moy o (242.1)
where T it a constant known as the string tension; u =0, 1, ...,d—1;-

and ¢t are the two-dimensional ‘light-cone’ coordinates ¢t = v + o.
This action can be derived from a more general version, with complete
invariance® under transformations of a pair of ‘worldsheet coordinates’ ¢y

ax* 0X
xp--fd & /Dot g M S (24.2.2)

by passing to a special coordinate system in which the worldsheet metric
gk satisfies the condition

Bt ol — ( P e ) . (24.2.3)

In much the same way that in electrodynamics the problems introduced by
the negative sign of the action for timelike photons are eliminated by the
gauge invariance of the theory, here the problems introduced by the nega-
tive sign of #,,-in Bqs. (24.2.1) and (24.2.2) for ji = v = 0 are eliminated by
the invariance of the action (24.2.2) (for appropriate boundary conditions)
under general transformations of the worldsheet coordinates. In the spe-
cial coordinate system in which the action takes the form (24.2.1), there is
an important remnant of invariance under general worldsheet coordinate
transformations: invariance under the global conformal transformations:

£ fEHe%), (24.2.4)

with f* a pair of independent arbitrary functions.

The particles described by this string theory do not match those seen
in the real world. Ramond’ and Neveu and Schwarz® in 1971, aiming
respectively to introduce particles with half-integer spin or with the quan-
tum numbers of pions, suggested the addition of d fermionic field doublets
vi(s,7) and yh(a,7). Shortly after, Gervais and Sakita® introduced an
action for this theory:

_ 0X* 0X, 4 0 P
I[X, 9] = fdﬂ' fd [ ot Bo- +1w5‘~a—;wzy + i aj‘jtplp} ,
(24.2.5)

' This symmetry is violated by quaninm anomalies, like those discussed in Chapier
22, except in d = 26 spacetime dimensions for the purely bosonic theory, er d = 10
dimensions after the introduction of fermions.
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and noted that conformal invariance could be maintained by extending
the conformal transformations (24.2.4} to act also on the fermion fields

—1/2 =172
daft d
W (dﬁ—+) . wi- () W (2426)

Gervais and Sakita pointed out that, in addition to two-dimensional con-
formal invariance and d-dimensional Lorentz invariance, for appropriate
boundary cenditions this theory has a symmetry under infinitesimal trans-
formations that interchange the bosonic field X# with the fermionic fields

pk:
Ty 0 + -
SWHe*,07) = iT aalo™) 5 —X*o%,07),
Sypli(a™, 07y = iT ay(o™) E%;Xf'{at Y, (24.2.7)
X (e%,07) = af{o ) phla T 67) + (o) pioT, o),

where o and « are a pair of infinitesimal fermionic functions of ¢+
and ¢, respectively, like the Grassmann variables introduced in Section
9.5. This was an example of what has subsequently come to be called
supersymmelry, a symmetry connecting bosons and fermions, but thus
far it was only a symmetry of a two-dimensional field theory, not of a
physical theory in four spacetime dimensions. '

A few years later Wess and Zumino'® referred back to the example of
supersymmetry that had been provided by References 7-9, and commented
that it would be natural to try to extend the idea of supersymmetry to
quantum field theories in four spacetime dimensions. They constructed
several supersymmetric models. The simplest involved a single Majorana
(self-charge-conjugate Dirac) field v, a pair of real scalar and pseudoscalar
bosonic. fields A and B, and a pair of real scalar and pseudoscalar
bosonic auxiliary ficlds F and G, with invariance under the infinitesimal
transformation™

éd = &lp) . 0B = —i (&?5 lp) ,
oy = 6,(A + iysB)y*a + (F — iysGla, (24.2.8)
OF = (ay” apw) , 0G = —i (ci pspH 5#1;3) .

where a is an arbitrary constant infinitesimal Majorana fermion ¢c-number

** The notation for Dirac matrices used here is explained in the Preface and in Section
5.4. The 5 used here (which satisfies 72 = 1) is a [actor of { times that used by Wess
and Zumino, and the covariant conjugate @ of any spinor g is defined here as i times
that of Wess and Zumine. For this reason, some of the phases in Bqs. (24.2.8)-(24.2.10)
are different from those in Reference 10.
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parameter. If we require invariance of the action under these transfor-
mations, then the most general real, Lorentz-invariant, parity-conserving,
rerormalizable Lagrangian density built out of these ingredients is

¥ =—18,40"4 — 18,B "B — ipy'ouy
+4{F* + G*)+m [FA+ GB — Lpy]
+g[F(4? + BY) + 2GAB — (A +iysByy| . (2429)

Since the auxiliary fields F and G enter quadratically, we can derive an
equivalent Lagrangian by setting them egual to the values given by the
field equations

F=—mA—g(A®+ BY), G =-—mB—2gAB . (24.2.10)
The Lagrangian density then becomes
= 10,4244 — 13,B "B — LpyPd,p
- %mz [A% + B?] — impy
—gmA(A* + BY) — 157 (A2 + BY) - gp(A + iysBly . (24.2.11)

This Lagrangian density exhibits relations not only between scalar and
fermion masses, but also between Yukawa interactions and scalar seif-
couplings, which are characteristic of supersymmetric theories. Wess and
Zumine also described supersymmetry transformations and gave a La-
grangian for a supermultiplet containing a vector field. {We shall go into
all this in more detail in Chapter 26.) Finally, in a second paper, Wess
and Zumino!! rtecalled the Coleman-Mandula theorem and traced the
apparent violation of this theorem to the fact that the symmetry genera-
tors here satisfy anticommutation rather than commutation relations. It
was a few more years before Gliozzi, Scherk and Olive!!? showed that it
was possible to construct a superstring theory with spacetime as well as
worldsheet supersymmetry by imposing suitable periodicity conditions on
the fields of the Ramond-Neveu—-Schwarz model.

Unknown to Wess and Zumino, at the time of their first papers on
supersymmetry in four spacetime dimensions this symmeiry had already
appeared in a pair of papers published in the Soviet Union. In 1971
Gol'fand and Likhtman'? had extended the algebra of the Poincaré group
discussed in Section 24 to a superalgebra and used the requirement
of invariance under this superalgebra to construct supersymmetric field
theories in four spacetime dimensions. Their paper though prophetic gave
few details, and was generally ignored until much later. Independently
Volkov and Akulovi? in 1973 discovered what today would be called
spontaneously broken supersymmetry, but they used their formalism to
identify the Goldstone fermion associated with supersymmetry breaking
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with the neutrino, an idea that met with no success. For most theortists,
especially outside the Soviet Union, supersymmetry as a possible symmetry
of nature in four spacetime dimensions began with the 1974 papers of
Wess and Zumino.

Appendix A - SU(6) Symmetry of Non-Relativistic Quark Models

This appendix will describe the way that an SU(6) symmetry that relates
particles of different spin arises in non-relativistic guark models. This has
nothing directly to do with supersymmetry, but it provides the historical
background fer the Coleman-Mandula theorem, which is an essential
input to the construction of general supersymmetry algebras in Sections
25,1 and 31.1.

In general, the Hamiltonian of the non-relativistic quark model could
depend not only on positions and momenta but also on the spin and flavor
operators crf"] and Ag’), where the a-f") {with i = 1, 2, 3) act on the spin
indices of the nth quark as the Pauli matrices o; defined by Eq. (5.4.18),
while the .lf,f}' (with 4 = 1, 2, ..., 8) act on the flavor indices of the
nth quark as the Gell-Mann SU(3) matrices 4, defined by Eq. (19.7.2).
(Where » refers to.an antiquark, o/ and A% act as the matrices —of
and ~A1 of the contragredient representations.) If we were to assume
only that there is no spin-orbit coupling, so that the total orbital angular
momentum L; is separately conserved, then we could conclude only that
the Hamiltonian commutes with the total spin and unitary spin

Si=15"e", Ta= 130, (24.A.1)
[} "

as well as Li On the other hand, if we were to suppose that the
Hamiltonian depends only on quark positions and momenta, and not at
all on spins or quark flavors, then such a Hamiltonian would commute
not only with the fotal orbital angular momentum L, but also with each
of the operators ai["} and ,zﬂ;"’. In between these two extremes there is the
interesting possibility that in addition to commuting with the L;, §;, and

T4, the Hamiltonian also commutes with the operators

Ria= {3 +a" 0, (24.A.2)
n

where the sign is + or — for quarks and antiquarks, respectively.’ The S,
T4, and Ry form the Lie algebra of the group SU(6), with commutation

* The minus sign for antiquarks arises because the terms in Ry for antiquarks must act
on spin"and flavor indices as the matrix —{g; L,)7 = —(—a7) (—A7).
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relations
[S:, 81 =1 ek s [Ta, Tsl = f;fABCTC , S, Td =0,
!
[Si, Rjal =i eipBia, [Ta,Rip] = f;fA'BCRiC . {24A3)
P
[Rai, Rpj] = idy ;f,mc Te+ 2iban »_ € Su + i; eije danc Ruc -
p

Here fipc and dspc are respectively lotally antisymmetric and totally
symmetric numerical coefficients,!* with independent non-vanishing values
eiven by

fin=1, fass = fore = +3/2,
f1a7 = f165 = faa6 = fas7 = faa5 = fane = 1/2,

(24.A.4)

and

dias = dis7 = —dpay = das = dsaa = dyss = —dsge = —dyyr = 1/2,
dits = dazs = diz = —dggs = 1//3, {24.A.5)
daag = dssg = dgs = dyms = —1/(2/3) .

This is the symmetry that remains if we include a spin- and flavor-
dependent two-body interaction in the Hamiltonian that commutes with
R4 as well as with the S; and T4. There are such interactions, given by
linear combinations of two-body operators of the form

HE o [1 +5° gﬁ"}gf'")] [% + 34 15;"’} , (24.A.6)
i A

where the sign & is negative if one of the particles », m is a quark and
the other an antiquark and positive if they are both quarks or both
antiguarks.

Of course, even in the non-relativistic guark model the SU{6) symmetry
is at best approximate. It is broken by spin—orbit and spin—spin forces, and
also by the mass of the s quark, which reduces the flavor § U(3} symmetry
to the SU(2) and U(1) of isospin and hypercharge conservation. If we
avoid the effects of this quark mass difference by restricting ourselves to
hadrons butlt up from the light ¥ and 4 quarks and antiquarks, then the
only non-vanishing 14 matrices are the A, with a = 1, 2, 3 (which for
the 4 and d quarks are given by the Pauli matrices (5.4.18) (that in this
context are conventionally called t,) and Ag (which is just the number
{/./3 for the u and d quarks, and —1/./3 for the & and d antiquarks). The
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interaction (24.A.6) thus becomes

s £l (134 4. 24A7)
i 4

Astde from quark number conservation, the remaining symmetry is then
SU(4), with generators §;, T, and R;; which commute with (24.A.7). This
was proposed by Wigner? in 1937 as a symmetry of nuclear forces, though
of course with protons and neutrons in place of u and 4 quarks. The
interaction (24.A.7) is known in nuclear theory as a Majorana potential
te distinguish it from an interaction that does not depend on spin or
isospin, called a Wigner potential, or an interaction proportional to just
the spin-dependent or just the isospin-dependent factor in (24.A.7), known
respectively as a Bartlett potential and a Heisenberg potential.

It 15 amusing to note that, although in non-relativistic theories there
is no theoretical barrier to symmetries like SU(6) that act on spin as
well as particle type, there never was any experimental evidence for such an
assumed SU(6) symmetry of the non-relativistic quark model that is any bet-
ter satisfied than the assumption of complete spin and flavor independence.
These assumptions are not the same; if the Hamiltonian of a system of
N non-refativistic quarks and/or antiquarks is completely independent of
spin and flavor, then its symmetry is SU(6}Y, not § U(6). For instance,
a two-particle interaction like (24.A.6) and various other multiparticle
interactions break SU(6)Y to SU(6). Of course, all these symmetries are
only approximate anyway. The question is whether SU(6) is less badly
broken than SU(6)"?

This cannot be answered by studying the multiplet that contains the
baryon octet, which consists of the nucleon and hyperons A, %, and E. In
the non-relativistic quark model these particles are mterpreted as bound
states of three quarks with zero orbital angular momentum. Because these
states are color neutral, the wave function is completely antisymmetric
in the suppressed color indices, and therefore it is completely symmetric
under the combined interchange of spin and favor. The baryon octet
would therefore have to be put in the symmetric third-rank tensor rep-
resentation 56 of SU(6), which besides the baryon octet contains a spin
3/2 decuplet, which may be identified as the one consisting of the famous
'3-3" resonance A and the E(1385), 5(1530), and Q particles. (Numbers
in parentheses give masses in MeV, where these are needed to distinguish
the particles from others of the same isospin and sirangeness but lower
mass.) The SU(6) symmetry leads to good predictions for the baryon
magnetic moments: The quark charge operator is g = e(l;/2 -+ 18/2./3),
so if quarks have the magnetic moments 3g/2my of Dirac particles of this
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charge and mass my/3, then the magnetic moment operator is
1 1
i =3uN [ERB + mﬂrs] »

where puy = e/2my iz the nuclear magneton, and R4 is defined by
Eq. (24.A.2}. It is straightforward to calculate the matrix clements of
this symmetry generator between the members of the 56 multiplet, with
the result that the magnetic moments for p, n, A, Zt, =, E=, and Z°
in units of uy are respectively +3, —2, —1, +3, —1, —1, and —2, which
may be compared with the corresponding experimental values +2.79,
—1.91, —0.01, +2.46, —1.16, —0.65, and —1.25. The agreement is fair, and
somewhat better (except for £7) if we take the quark magnetic moment
to be a little tess than 3uy. Because of the symmetry of the three-
quark wave function, nothing new is learned here if we assume that the
Hamiltonian is completely independent of spin and flavor; the states of
zero angular momentum would still have to fall in a multiplet consisting
of 6 x 7x 8/6! = 56 members. In particular, the operator (24.A.6)
has the same value 4 for any state of two quarks that is symmetric
under simultancous interchange of their spins and flavors, whether it is
symmetric both under interchange of spins and interchange of flavors, or
antisymmetric under both interchanges.

In order to decide whether SU(6) is any better than SU{6}?, it is more
usefui to study the mesons, which in the non-relativistic quark model are
interpreted as bound states of a quark and antiguark. If the Hamiltonian
of these states is completely independent of spin and flavor then its
symmetry is SU(6)?, and the meson states fall into its 36-dimensional
(6,6) tepresentation, while for SU(6) symmetry we could only say that the
mesons belong to either of the two representations of SU(6) contained
in 6 x 6: the adjoint representation 35 or the singlet representation. To
be more specific, the 35 consists of an SU(3) singlet with spin § = 1, an
SU(3) octet with S = 0, and an SU(3) octet with § = 1, corresponding to
the SU(6) generators §;, T4, and R; 4, which is split from the ST/(3) singlet
statc with § = 0 by the interaction {24.A.6). Since all these assumptions are
approximate anyway, the question in deciding wheiber SU(6) symmetry s
more accurate than complete spin and flaver independence is whether the
splitting of the ST(3) singlet § = 0 state from the other 35 states of the
same orbital angular momentum is any greater than the splittings within
the 35 supermultiplet.

For orbital angular momentum L = 0 the quark-antiquark states have
negative parity P, and positive or negative charge-conjugation quantum
number C (for self-charge-conjugate states) according to whether the total
spin § is zero or one, respectively. (For an explanation, sce Section 5.5.)
The 35 therefore consists of a singlet with JP¢ = 1, a 0% octet, and
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a 17~ octet, which may be identified respectively as: the ¢{1020); the
pseudoscalar octet n, #, K, and K ; and the vector octet p, e, K*, and K*.
There is also a 0~ SU(3) singlet 4" at 958 MeV, which can be regarded
as the SU(6) singlet. The splitting of this singlet from the particles in
the 35 multiplet is not distinctly greater than the splittings within the 35
multiplet, '

It may be argued that the L = 0 mesons do not provide a good
test of the symmetries of the non-relativistic quark model, because they
include the Goldstone bosons 7, n, K, and K, which become massless
for zero u and d quark masses and are therefore not well described by
this model. Therefore let us consider the quark—-antiquark states with
L = 1. These states have P positive and C positive or negative according
to whether § = 1 or § = 0, so the p-wave 35 consists of: SU(3) singlets
with § = 1 and J?¢ < 0FF, 1t+, 2+ which may be identified as the
fo(1370), the f,(1283), and the f3(1270); an § = 0 1t~ octet identified
as hy(1170), b(1235), K;(1400), and K{{1400); and § = 1 octets: a 0+
octet consisting of fo(980), ap(980), K (1950}, and K5 (1950); a 11+ octet
consisting of £1(1420), a;(1260), K" (1650), and K"(1650); and a 2+ octet
consisting of f3(1430), a3(1320), K} (1980}, and K (1980). In addition to
these 35 x 3 staies, there is a another particle with the right quantum
numbers to be the p-wave SU(6) singlet: the 1%~ isoscalar h:(1380). Of
course, we could interchange the identifications of 2{1170) and h;(1380),
ot identify the SU(3) singlet and octet isoscalar 11~ states as orthogonal
linear combinations of h;(1170) and h(1380). The important point is that
there are two of these 17~ isoscalars, with no indication that one of them,
belonging to an SU(6) singlet, is more strongly split from the particles of
the 35 than the particles of the 35 are split from each other. Here {00,
then, there is no evidence that SU{6) symmetry is any more accurate than
the stronger assumption of complete spin and flavor independence.

Appendix B The Coleman-Mandula Theorem

This appendix provides a proof of the celebrated theorem of Coleman
and Mandula® that the only possible Lie algebra (as opposed to super-
algebra) of symmetry generators consists of the generators P, and J,
of transiations and homogeneous Lorentz fransformations, together with
possible internal symmetry generators, which commute with P, and J,
and act on physical states by multiplying them with spin-independent,
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momentum-independent Hermitian matrices.” By ‘symmetry generators’
here is meant any Hermitian operators; that commute with the S-matrix;
whose commutators are also symmetry generators; which take one-particle
states into one-particle states; and whose action on multiparticle states is
the direct sum of their action on one-particle states (as in Eq. (24.B.1}).
A further technical requirement will be added when needed later. Apart
from the general principles of relativistic quantum mechanics described in
Chapters 2 and 3, the only other assumptions needed in this proof are:

Assumption 1 For any M there are only a finite number of particle types
with mass less than M.

Assumption 2 Any two-particle state undergoes some reaction at almost all
energies (that Is, at all energies except perhaps an isolated set).

Assumption 3 The amplitudes for elastic two-body scattering are analytic
Junctions of the scattering angle at almost all energies and angles.”™

It is not neccessary to assume that the S-matrix is governed by a local
quantum field theory. The proof presented here is somewhat rearranged
and streamlined, and it spells out some steps that Coleman and Mandula
left to the reader.

It is convenient to start by proving this theorem for the subalgebra
congisting of those symmetry generators B, that commute with the four-
momentum operator P,. (This part of the theorem is of some interest
in itself; it rules out symmetries in relativistic theories that act like the
SU(6) symmetry of the non-relativistic quark model.} The action of such

" As we shall see, in theories with only massless particles there is also the possibility
that in addition to the generators P, and J,, there are additional generators D and
K, that fill out the Lie aigebra of the conformal group.’?

** Strictly speaking, this agsumption is not satisfied in theories with infrared divergences
such as quantum electrodynamics, where, as shown in Section 13.3, the S-matrix
clement for any one scattering process involving charged particles actually vanishes,
cxcept for elastic forward scattering. In. Abelian gauge theories like electrodynamics
this problem ¢an be avoided by applying the Coleman-Mandula theorem to the
theory with a fictitions gauge boson mass, and then working only with ‘infrared-safe’
quantities like masses and suitably integrated cross-sections that are finite in the limit
of zero gauge boson mass. There is no problem in non-Abelian gauge theories like
quantum chromodynamics, in which all massless particles are trapped — symmetries
if unbroken would only govern S-matrix elements for gauge-neuntral bound stares,
like the mesens and baryons in quantum chromodynamics. As far as 1 know, the
Coleman—Manduia theorem has not beer proved {for non-Abelian gauge theories with
untrapped massless partices, like quantum chromodynamics with many quark Bavors,
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symmetry generators on multiparticle states is given by

BaJPm: an, ---} =Z(ba(p})m,mlpmr, qh, )
+3° (bald),, Iom, gn, Y (24.B.1)

where m, n, etc. are discrete indices labelling spin z-components and
particle type for particles of a definite mass J—PuPF, and the b,(p) are
finite Hermitian matrices, which define the action of the B, on one-particle
states. :

Now, we can see from Eq. (24.B.1) that the mapping that takes the
By into b,{p) for some fixed p is a homomorphism in the sense that the
commutation relations

[Bx Bgl =i)" ClyB, (24.B.2)
¥

are also satisfied by the Hermitian matrices b.(p):
[balp). bp(p)] = i3~ Cls by (p) . (24.B.3)
¥

A well-known theorem proved in Section 15.2 tells us that any Lie al-
gebra of finite Hermitian matrices like b,(p) must be a direct sum of a
compact semi-simple Lie algebra and U(1) algebras. However, we cannot
immediately apply this result to the operator algebras B, because the
homomorphism between the operators B, and matrices by(p) is not nec-
essarily an isomorphism. For it to be an isomorphism would require also
that whenever >, ¢*b,(p) = 0 for some coefficients ¢* and moementum
p. then 3 c*by(k) = O for ali momenta k, which is equivalent to the
condition 3", c*B, = 0. '

Instead of considering the homomorphism that maps the B, into the
one-particle matrices b,(p), Coleman and Mandula considered the homo-
morphism that maps the B, into the matrices that define the action of B,
on two-particle states with fixed four-moementa p and g:

(tele.d) = (0alD) |, Gint (b)) . (24B4)

The invariance of the §-matrix for the elastic or quasi-elastic scattering of
two particles with four-momenta p and g into two particles with momenta

P’ and ¢', with masses \/—p} p* = /~p, P and Vgt = e gh

yields the condition
bt ¢)S(P' ', q9) = S(P'. 2’50, 0) Bl q) - (24.B.5)

Here S{p/,q’;p,q) is a matrix of the same dimensionality as b(p,q) and
b(p’, '), defined in terms of the connected S-matrix elements S(pm, gn —
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p.'m!',qln!:l by
S(pm,qn— pnl,g'n) = 80+ —p—a) (SW.4sp.0)) ,, - (24BS6)

E}

According to Assumption 2 and the optical theorem (see Section 3.6),
for almost any choice of p and g the elastic scattering amplitude is non-
vanishing in the forward direction, and Assumption 3 then tells us that
the matrix S(p',q’; p, q) is non-singular for almost aH p’ and ¢’ on the same
mass shells and satisfying the conservation condition p'+4' = p+4, so for
almost ali such four-momenta Eq. (24.B.5) is a similarity transformation.

It follows then that if 3_, c*b,{p,q) = 0 for almost any fixed four-
momenta p and g, then 3, ¢*b,(¢/,q") = 0 for almost any four-momenta
¢ and ¢’ on the same mass shells that satisfy p’'+4" = p+¢. Unfortunately,
this does not tell us that 3, ¢*b.(p’) and Y., ¢*hu{(q’} vanish, but only
that these matrices are proportional to the wnit matrix (with opposite
coefficients). To do better, it is necessary to consider not the b,(p) or
ba(p, q), but their traceless parts.

One immediate consequence of Eq. (24.B.5) is that

Trb,(p',q") = Trbu(p,q) - (24.B.7)
With Eq. (24.B.4), this tells us that

Ni(/=ap g tr by{p) + N(/“p, PP trbalg)
= N(/—q, 4") trby(p) + N(y/~pu pPP) trbulq),  (24.B.8)

where N{m) is the multiplicity! of particle types with mass m, and the
lower case t in ‘tr’ indicates a sum over one-particle rather than two-
particle labels. In order for this to be satisfied for almost all mass-shel
four-momenta for which p’ + ¢’ = p + g, it is necessary that the function

-t ba(p)/ N( /=P, P"} be linear' in p:
rbulp) _ _ (24.B.9)

N{\;_Pu P*) — T Bu

with @ independent of p (and of everything else but the displayed indices.)
We may define new symmetry generators by subtracting terms linear in

P These multiplicity factors were not shown explicitly by Coleman and Mandula. They
are needed in justifying a step that Coleman and Mandula made without explanation,
that of defining the symmetry generators Bf with traceless kernels.

tt A copstant term is easily seen to be muled out in Eq. (24.B.9} by the existence of
processes in which the pumber of particles i3 not conserved, processes which ate
inevitable in any relativistic quantum theory satisfying the cluster decomposition
principle. - Even if we considered only two-particle processes and did not use this
argument, a constant term in Eq. (24.B9) would enly amount to a change in the
action of internal symmetries on physical states,
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the momentum operator P,:
B} =B, —al'P,, (24.B.10)

whick according to Eq. (24.B.9) are represented on one-particle states by
the traceless matrices _

(bgfp)) o (ba(p))"," . _tblp) Bt - (24B.11)

N(-.,.F““Pp PF)

Because P, commutes with B, and the unit matrix commutes with every-
thing, the commutators of the B¥ are the same as those of the B,, and the
commutators of the b¥(p) are the same as those of the by(p):

(B, Bf) =13 ClyB, =i > Clg[BF +atP,] . (24.B.12)
¥ ¥
BE), BP0 = i3 Cloby(0) = i3~ Cly () + alip,] . (24.B.13)
¥ ¥

Also, Eq. (24.B.13} and the fact that commutators of the finite matri-

ces b¥{p) have zero tracet imply that PN C;'B aff = 0, and using this in

Eq. (24.B.12) then shows that the B¥ satisfy the same commutation rela-
tions as the B,:

(B, Bf| =iy Cls BY . - (24.B.14)
¥

Because BY is a symmetry generator, the scattering amplitude satisfies

bR gV S a5 q) = S(p ¢ 30, 0) KR (p, q) (24.B.15)

where the b¥{p, g) are the matrices representing the 8% on the two-particle
states

¥ = {pt ' P o
(bu (p,q)) it (b.,{p;l) i O T (ba{q)) . O {24.B.16)
and satisfy the same commutation relations as the B¥: _
[b¥(p.q), b2, )] =i Cl bi(p.q) . (24.B.17)
¥

The advantage of dealing with these two-particle matrices is that, since
S{¢'.4’; p.q) is a non-singular matrix, it follows that if 3", c*b¥(p, q) = 0 for
some fixed mass-shell four-momenta p and ¢, then 37, c*b¥(p', ¢') = 0 for

¥ This is one of the places where we nse Assumption 1, without which commutators
need not have zero trace. Also, at this point it is crucial that we are dealing with
commutation rather than anticommutation relations, since the unit rmatrx dees not
anticommute with other matrices, and anticommutators of finite matrices do not
necessarily have zero trace.
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almost all p’ and g’ on the same respective mass shells with p'+¢" = p+4.
Because we are dealing now with traceless matrices, this {ells us that

S = bi(g) =0. (24.B.18)

We would like to conclude from this that 3=, ¢*b¥(%) = 0 for ail mass-shell
four-momenta k, but so far we have proved only that >, ¢* bﬁ(p’) =0 for
almost all of those p’ for which q’ = p+g —p' as well as p’ is on the mass
sheli (and correspondingly for ¢'.) To get around this limitation, we can
use a trick of Coleman and Mandula, noting that if Eac“bﬁ(p, q) =
then (24.B.18) and (24.B.16) together yield

Y & bkp. g) =0

so that, according to Eq. (24.B.15),
St bitk, p+d —k) =
i 4

.and therefore
S Fbiky=0, {24.B.19)

for almest all mass-shell four-momenta & for which p 4 ¢’ — k is also on
the mass shell, Now, the conditions that ¢’ and p+ q — g’ be on the mass
shell leave two parameters free in ¢, so that we have enough freedom in
choosing ¢’ that the condition that p+ ¢’ —k is on the mass shell leaves us
free to choose k to be anything we like, at least within a finite volume of
momenturn space. This velume can be adjusted to be as large as we like
by taking p and q sufficiently large, so if 3_, c*b¥(p.q) = 0 for some fixed
mass-shell four-momenta p and g then 3, ¢*b¥{(k) = 0 for almost all mass-
sheli four-momenta k. But then if 3_, c®b¥ (ko) & O for some particular
mass-shell four-mementum ko, a scattering process in which particles with
four-momenta kg and & scatter into particles with four-momenta k" and
k" will be forbidden by the symmetry generated by 3_, ¢*B¥ for almost all
k, k', and k", in contradiction with our assumption zbout the analyticity
of the scattering amplitude. We conclude then that if 3, ¢*b¥(p, q} = 0
for some fixed mass-shell four-momenta p and ¢ then ¥, c*b3(k) = 0 for
all k, and therefore ¥, ¢*B¥ = 0, so that the mapping that takes B, into
b¥(p,q) is an isomorphism.

One immediate consequence is that, since the number of independent
matrices b¥(p,q) cannot exceed N( /—p,p") N(,/~4;G"), there can be at
most a finite number of independent symmetry generators B,. As em-
phasized by Coleman and Mandula, in proving their theorem it is not
necessary to make an independent assumption that the symmetry algebra
is finite-dimensional.
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The theorems of Section 15.2 tell us further that a Lie algebra of finite
Hermitian matrices tike d¥(p,q) for fixed p and g is at most the direct
sum of a semi-simple compact Lie algebra and some number of U(1) Lie
algebras. We have seen that this Lie algebra is isomorphic to that of the
symmetry generators BE, so the B must also span the direct sum of at
most a compact semi-simple Lie algebra and U(1) Lie algebras.

Let us first dispose of the U/(1) Lie algebras. For any pair of mass-shell
moementa p and ¢ we can find a Lorentz generator J that leaves both
p and ¢ invariant. (If p and ¢ are lightlike and parallel then take J to
generate rotations around the common direction of p and q. Otherwise,
p + g will be timelike, so we can teke J 1o generate rofations around
the common direction of p and g in the center-of-mass frame in which
p = —q.) We can choose the basis of two-particle states to diagonalize J,
s that

J|pm gn} = o(m, m}{pm, qn} . . (24.B.20)

Now, P, commuies with alI B, and [/, P.] is a linear combination of
componcnts of Py, so P, commutes with all [/, B¥], and therefore the
symmetry generator [J, B ] must be a linear combination of the Bg, which
by definition form a completc set of symmetry generators that commute
with P, More specifically, since the matrices representing a commutator
of ‘;ymmetry generators are necessarily traceless, [J, BF} has to be a linear
combination of the B#. But any /() generator B? (taken Hermitian) in

the algebra of the BE would have to commute with all the Bﬁ, and hence
in particular must commute with [J,Bf}:
8%, 11, Bflj=0.

Talking the expectation value of this double commutator in the two-particle
basis in which J is diagonal, we have

0= Z (o‘(m W) — alm,n)) l(b’* p,q]) : (24.B.21)

"' pan

for any m and n. The indices run over a finite range, so if there were any
o for which there existed an m and »n with o(m,n) = ¢ and an ' and »’

with o(m', 0} & &, with (bf(p, mw mn 3= 0, then there would have to be
a smailest such ¢, in which case the right-hand side of Eq. (24.B.21} for
this m and n would be positive-definite, coniradicting Eq. (24.B.21). We
conclude that {bf (P, @)Yt yun mrust vanish for all m, n, m', and n’ for which
a(m’,n') # o(m, n). Because the algebra of the bf‘(p, 4} is isomorphic to that

of the B?’, this means that each of the [/(1) generators Bf commuies with
J. Since we can choase p+g to be in any timelike direction, it follows that
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each of the U(1) generators Bf commutes with all the generators J,, of the
bomogeneous Lorentz group. The fact that they commute with what we
called “boosts’ in Section 2.5 implies that the {bf{p]),,n,, are independent of
three-momentum, and the fact that they commute with rotations implies
that the (bf{p]),,r,, act as unit matrices on spin indices, so these generators
are the generators of an ordinary internal symmetry.

This leaves the B? that generate a semi-simple compact Lie algebra.
The argument of Section 24.1 (a somewhat more explicii version of the
reasoning given by Coleman and Mandula) tells us that the generators of
the semi-simple compact part of the Lie algebra commute with Lorentz
transformations and, as shown for the U{l)} generators, this means that
they too are the generators of internal symmetries. We have thus shown
that the symmetry generators B, that commute with P, are either internal
symmetry generators or linear combinations of the components of P,
itself.

Next, we must take up the possibility of symmetry generators that do
not commute with the momentum operator. The action of a general
symmetry generator 4, on a one-particle state jpn} of four-momentum p
would be

pLony, (24.B.22)

Ay |p, 1) Z/ fﬂp :c(p P ) ,
where n and »n’ are again discrete indices labelling both spin z-components
and particle types. Of course, the kernel o7,(p’, p) must vanish unless both
p and p’ are on the mass shell. We shall show first that the = o(p', p}

vanishes for any p’ & p.
For this purpose, note that if A, is a symmetry generator, then s0 is

Al = f d'x exp(iP - x) Ay exp(—iP - x) f(x), (24.B.23)

where P, is the four-momentum operator, and f{x) is a function that can
be chosen as we like. Acting on a one-particle state, this gives

AL |p,m) f &y Fo' = p) (e, ) ), (24.B.24)

where f is the Fourier transform
Fk) = f P explix - k) f(x) . (24.B.25)

Suppose that there is some pair of mass-shell four-momenta p and p + A
with A & 0 such that &#(p + A, p) # 0. Generic mass-shell four-momenta
g, p,and ¢ with p’ + ¢’ =p+g wilnothave g+ Aorp +Aorg +A
on the mass shell. If we take f(k) to vanish outside a sufficiently small
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region around A, then Af wilt annihilate all one-particle states with four-
momenta g, p', and ¢', but not the one-particle states with four-momentum
7. 50 such 2 symmetry would forbid any scattering process in which any
particles of momenta p and ¢ go into any particles of momenta p’ and q,
in contradiction with the consequence of Assumptions 2 and 3 that there
is some scatiering at almost all energies and angles.

This result does not mean that any symmetry generator A, must com-
mute with Py, because the kernels o7,(p’, p) may include terms proportional
to derivatives of 5*(p’ — p) as well as terms proportional to §*(p’ — p) it-
self. To deal with this possibility, Coleman and Mandula made the ‘ugly
technical assumption’ that the kernels «/,(p',p) are distributions, which
means that each can contain at most a finite number D, of derivatives
of 3*(p’ — p). To put this another way, each symmetry generator A, is
assumed to act on one-particle states as a polynomial of order D, in the
derivatives d/dp,, with matrix coefficients that at this point are allowed
to depend on momentum and spin. To use the above results for symmetry
generators that commute with the momentum operators, Coleman and
Mandula considered the Dy-fold commutator of momentum operators
with A,

Bét....,t:r,-, - [P_‘HI, [Pm’ L [P#ﬂu,Aa] ] .. ] . (24326)

The matrix clements of the commutators of B ™ with P# between
states with four-momenta p’ and p are proportional to D, + 1 factors of
P’ — p, times a polynomial of order D, in momentum derivatives acting
on 8%(p’ — p), and therefore vanish. Since the generators BS ™ commute
with the mementum operators, according to the results obtained so far
they act on one-particle states with matrices of the form

bﬁlmm“(p) _ bﬁ*‘""“““ 4 a&‘“l"'*‘”“pnl , (24.B.27)

where the b¥1#0x ape momentum-independent traceless Hermitian ma-
trices gencrating an ordinary internal symmetry algebra, and the g2 40
are momentum-independent numerical constants, with both bi*' #% and
az"' P symmetric in the indices py---pp,. Also, even though the A,
do not necessarily commute with P,, they cannot take one-patticle states
off the mass shell, so since Assumption 1 requires that the mass-sguared
operator —P, P* has only discrete eigenvalues, the 4, must commute with
—F, P4 It follows in particular that for D > 1

0= [PHP,, [P*,.. [P, 4,]]...] = 2P, B4 ™ |
so that
0= pmbé,‘""“’*(p) . (24.B.28)
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As long as the theory contains massive particles this must be satisfied for
p in any timelike direction, so for D, = 1

gpl.--”px — 0 . (24.5.29}
and
agplmpbd — _aglﬂ“"uﬂ: . (24.B30)

But for D, > 2 Eq. {24.B.30) together with the symmetry of afft™#?
in the indices gi---pp, would require that ak”' " = 0. (For then

B L
g BETED L pHETTEDs y YWe are left with at most two kinds of non-

vanishing symmetry generator: those with D, = 0, for which the generator
Ay commutes with P, and therefore must be gither an internal symmetry
generator or some linear combination of the Py; and those with Dy = 1,
in which case

[PY, ALl = ab' Py, (24.B.31)

with ¢ some numerical constants antisymmetric in u and v. Eq. (24.B.31}
requires that

Ay =—Lia™J],, +B,, (24.B.32)

where J,, is the generator of proper Lorentz transformations, which
according to Eq. (2.4.13) satisfies {P¥,J??] = —in”?P” + in""PF, and B,
commutes with P,. Since 4, and J,, are symmetry generators, so is
B,, which must therefore be a linear combination of internal symmetry
generators and/or the components of P,,. Eq. (24.B.32) therefore completes
the proof of the Coleman~Mandula theorem.

* ¥ ¥

In theories with only massless particles Eq. (24.B.30) does not necessarily
follow from Eq. (24.B.28); since p,p* = 0, we can also have

A T (24.B.33)

In this case the symmetry algebra consists of internal symmetries plus the
algebra of the conformal group, which is spanned by generators K¥# and
D together with the generators J# and P# of the Poincare group. The
commtutation relations are

[P¥, D] = iP*®, [K#, D] = —iK",
[PH, K*] = 2in™ D + 20" | [K#, K] =0, (24.B34)
[JP7 , K¥] = ighPK® — in"KP | [J?%, D] =0,
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together with the commutation relations (2.4.12)(2.4.14) of the Poincaré
algebra
P[JE, JPT] = gPPJHT _ gHP JYO _ pOB PV 4 T g
i[P*, JFP) = gt P — gt pP ' (24.B.35)
[P*, PP1=0.
The infinitesimal group element
Ul +w,ed,p) =14/ 2W o +iPe’ + 1D +iK,p*  (24.B.36)
induces the infinitesimal spacetime transformation
x# = xF 4 w0 x, +eF + AxF 4 px¥x, — 230t x, . (24.B.37)

These are the most general infinitesimal spacetime' transformations that
leave the light-cone invariant.

Problems

1. Show that the most general symmetry algebra aliowed under the
assumptions of the Coleman-Mandula theorem in the case where
all particles are massless consists of internal symmetry generators
plus either the Poincaré algebra or the conformal algebra (24.B.34),
(24.8.39).

2. Show that the Gervais-Sakita action (24.2.5) is invariant under the
worldsheet supersymmetry transformation (24.2.7).

3. Calculate the change in the Wess—Zumino Lagrangian density (24,2.9)
under the spacetime supersymmetry transformation (24.2.8),
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Supersymmetry Algebras

This chapter will develop the form of the supersymmetry algebra from first
principles, following the treatment of Haag, Lopuszanski, and Sohnius.!
As we shall see, under conditions in which the Coleman-Mandula theorem
applies, this structure is aimost uniquely fixed by the requirements of
Loreniz invariance. The supermultiplet structure of one-particle states
will then be deduced directly from the supersymmetry algebra.

251 Graded Lie Algebras and Graded Parameters

We saw in Section 2.2 how to express any continuous symmetsy trans-
formation in terms of a Lie algebra of linearly independent symmetry
generators ¢, that satisfy commutation relations [fa, ] = i}, Cipte. In
much the same way, supersymmetry is expressed in terms of symmetry
generators ¢, that form a graded Lie algebra,? embodied in commutation
and anticommutation relations of the form

taby — (— 1)ty =1 Y Cipte . (25.1.1)
&

(The summation convention is suspended in this section.) Here 5, for each
a is either +1 or 0 and is known as the grading of the generator ¢,, and
the C¢, are a set of numerical structure constants. Generators ¢, for which
1« = | are called fermionic; the others, for which n, = 0, are called bosonic.
Eq. {25.1.1) provides commutation relations for bosonic operators with
each other and with fermionic operators, but anticommutation relations
for fermionic operators with each other. We will come back soon to the
motivation for Eq. (25.1.1); for the moment we will just take a look at its
consequences for the structure constants.
According to Eq. (25.1.1), the structure constants must satisfy the con-
ditions '
Cip = —(—1)"CE, (25.1.2)

23
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For any operator formed as a functional of field operators, the products
ol two bosonic or two fermionic operators are bosonic, and the products
of a fermionic with a bosonic operator are fermionic, so that

Cap =0 unless #° = y*+ 5 (mod 2) . {25.1.3)

.

Also, for any operator formed in this way, the Hermitian adjoint of a
bosonic or fermionic operater i, respectively, bosonic or fermionic. If the
fz are Hermitian operators, then the structure constanis satisfy a reality
condition

o = —Cf,. (25.1.4)

The structure constants also satisfy a non-linear constraint, which fol-
lows from a super-Jacobi identity

(D™ [{ta to te} + (=1 Lty £}, ) + (15 [[1,, 10}, 25} = 0.
(25.1.5)
Here ‘[...}" denotes a commutator/anticommutator like that appearing
on the left-hand side of Eq. {25.1.1), but here extended to any graded
operators @, ¢, ete.

[0,0°} = 00’ — (—1)710g7g = _ (0@ gy, 0}, (251.6)

it now being understood that any product O = tytpt. -+ of generators is
given a grading #(0) = fa+ s +n:+ -+ (mod 2). (To prove Eq. (25.1.5),
it is sufficient to prove that the cocflicients of t,tt. and t,t.1 vanish, for
then the symmetry of the left-hand side of Eq. (25.1.5} under the cyclic
permutations abe — bea — cab will ensure that the coeficients of alf other
products of generators also vanish. The coefficient ol taipt. in Eq. (25.1.5)
is

(_l)m-fru — (_I)Hq’?h(_l}*lu(*lh-ﬁ-m:l =0

while the coeficient of z,¢.1; is
(=1 (— 1) (— | Ylaliotnc) _ (— 1)l (—] Yt = ()

¥

completing the proof ) By inserting Eq. (25.1.1) in Eq. (25.1.5), we find the
constraint

2 1mCd cs + S (1 i o d(—1pecdics =0, (25.1.7)
d d . d

Of course, in the case where all generators are bosonic Eq, (25.1.5) is the
usual Jacobi identity, and Eg. (25.1.7) is the usual non-linear condition
(2.2.22) on the structure constants,

Eq. (25.1.1) can be taken as our starting point, but it can also be given
a motivation like that given for ordinary Lie algebras in Section 2,2, as
& necessary feature of finite continuous symmetry transformations, The
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difference is that now these transformations depend on continuous graded
parameters. A set of graded c-number parameters can be thought of as
‘numbers,” including Grassmann parameters (see Section 9.5) as well as
ordinary numbers, which satisfy the associative and distributive rules of
arithmetic, but which instead of simply commuting satisfy relations

KOft = (_1)'?::%.350:“ , {25.1.8)

where «®, §9, ... are used to distinguish different values of the ath param-
eter, in' the same way that in vector algebra we might let v* and u* denote
the a-components of different values of some real vector. Again the ath
graded parameter is given a grading #, equal to +1 or 0 when o“ is a
fermionic or bosonic parameter, sespectively. That 1s, these parameters
commute if either is bosonic, and anticommute if both are fermionic.
The product «®8%y°--- of a set of graded parameters is given the grading
Ha+#p+1c+ > (mod 2); that is, such a product is fermionic if it involves
an odd number of fermionic parameters, and is otherwise bosonic. With
this grading, it is easy to see that products of graded parameters satisfy a
commutation or anticommutation rule just like Eq. (25.1.8).

Consider a continuous transformation T(z), given by a formal power
series in the graded parameters x%:

Tl =t + 3t + Y oa'a"tap+ (25.1.9)
i ab
where t;, tu, etc. are a set of o-independent operator coefficients, not
vet assumed to satisfy any algebraic relations like Eq. (25.1.1). Because
the parameters o satisfy Eq. (25.1.8), the coefficients tz... must satisfy
symmetry/antisymmetry conditions, such as

tap = {—1)"Mtp, . (25.1.10)

It is convenient also to assume that the transformation T{f) commutes
with any value o of any graded parameter, in which case the operaior
coefficients in (25.1.9) satisfy the conditions

o8ty = (—1)T e (25.1.11)

Pty = (—1)lalttacty, o (25.1.12)

That is, fp and tp, commute or anticommute with graded parameters as
if they were graded parameters themselves, with grading np and s + .
(mod 2), respectively.

The other constraints on these operators follow from the requirement
that the T{e) form a semi-group; that is, that the product of the operators
for different values ¢ and § of the graded parameters is itself a T-operator

T T = T(f(eB)), (25.1.13)
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where f“(a, 8} is itself a formal power series in the graded parameters.
Because T{0)T{f}= T(f) and T{«}T{0) = T(x), we must have

50,8 = £, 2, 0) = af, (25.1.14)
and therefore the power series expansion for f(x, f) must take the form
Flopy=a+p+3 foafo+ -, (25.1.15}°
ab

where f¢, is a set of ordinary (that is, bosonic) constants, and -
denotes terms of third or higher order in the graded parameters. In order
for f(a,B) to be a graded parameter, it is necessary for each term in
Eq. (25.1.15) to have the same grading, which implies that

foy =0 unless #° =7%+7® (mod 2} . (25.1.16)

Inserting the power series (25.1.9) and (25.1.15) into the product rule
(25.1.13) gives :

E + 30+ 3 ol + o [1+Eﬁ“:a+zﬁ“ﬁi’ta,,+---}
a ab [ ab
=1+ X (B 3 foe B e
¢ ab 3
3 (B Y (B Y+
cd

The coefficients of 1, of, % 2%’ and §?B® match on both sides of this
equation, but the condition that the coefficients of «®f? are the sarne yields
the non-triviai relation

(1) T igby = " fapte + tap H{—E" Wty = fople + 2. (25.1.17)
iy [

(The sign factor on the left-hand side arises from the interchange of ¢,
and f%.) Together with higher-order relations of the same sort, this allows
us to calculate the whole function (25.1.9} if we know the generators t,
and the group-composition function %, §). But for this to be possible,
t, must satisfy a constraint. Using Eq. (25.1.10), the difference or sum of
Eq. (25.1.17) and the same equation with a and b interchanged yvields the
Lie superalgebra relations Eq. (25.1.1), with structure constants given by

§CE, = (—1ytem fo, g€ (25.1.18)

Also, Eq. (25.1.3) follows immediately from Egs. (25.1.16) and {25.1.18).
The complex conjugate a” of an anticommuting c-number « is defined
so that the Hermitian adjoint of the product of o and an arbitrary operator
O is '
(@) = 0"«" . | (25.1.19)
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It follows that products of c-numbers behave the same under complex
conjugation as operators do under Hermitian conjugation:

(@) = f«", (25.1.20)

and that ¢* has the same grading as .

The graded Lie algebras of importance to physics are severely restricted
by spacetime symmetries. We now turn to a consideration of these
restrictions. '

25.2 Supersymmetry Algebras

Consider a general graded Lie algebra of symmetry generators that com-
mute with the S-matrix. If @ is any of the fermionic symmetry generators,
then so will be UY{A)(Q U(A), where U(A) is the quantum mechanical
operator corresponding to an arbitrary homogeneous Lorentz transfor-
mation A¥,. Therefore U~1(A)Q U(A) is a linear combination of the
complete set of fermionic symmetry generators, and hence this set of gen-
erators must furnish a representation of the homogenecus Lorentz group.
The individual generators may therefore be classified according to the
irreducible representation of the homogeneous Lorentz group to which
they belong.

As described in Section 5.6, the representations of the homogeneous
Lorentz group furnished by any set of operators can be specified by giving
their commutation relations with generators A and B, defined by

A= j(T+iK), B=}(J-iK), (25.2.1)

where J and K are the Hermitian generators of rotations and boosts,
respectively. These satisfy the commutation relations

[4i A1 = €A, [By Bl =) eBe, [4n B]=0, (2522)
P %

where #, j, and k run over the values 1, 2, 3, and ¢, is totally antisym-
metric, with 123 = +1. Thus representations of the homogeneous Lorentz
group are labelled, like states with two independent spins, by a pair of
integers or half-integers A and B, with elements of the representation
labelled by a pair of indices @ and b, which run by unit steps from —A4
to +4 and from —B to +B, respectively. More specifically, a set of
(24 + 1)(2B + 1) operators @42 that form an (A, B) representation of the
homogeneous Lorentz group satisfies the commutation relations

(A, Qi) = — 330 023, [B, Qa1 = =33y 0 » (2523)
GJ' -a’
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where JU) is the spin three.vector matrix for angular momentum j:

) g sl f) - ; ; {
(0 £00),, = era TTITTFD . (), =t

From Eg, (25.2.4}, it follows that’
(1" (el g
(1), =07 (3 ) e (25.2.5)

Thus if @/ are a set of operators that transform according to the spin
Jj representation of the rotation group, then so are (—1¥=70/,. Also,
Eq. (25.2.1) shows that A = B. By taking Hermitian adjoints in
Eq. (25.2.3), we see that the Hermitian adjoint Q4F* of operators that
transform according to the (4, B) representation of the homogeneous
Lorentz group are related by a similarity transformation to operators 24
that transform according to the (B, 4) representation:

O = (=1 -1 gBt . (25.2.6)

The Haag-Lopuszanski-Sohnius theorem! states in part that the fermion
symmetry generators can only belong to the (0, 1/2) and (1/2,0) represen-
tations. As we have seen, the Hermitian adjoint of a (0,1/2) or (1/2,0)
operator is a linear combination respectively of (1/2,0) or {0, 1/2) opera-
tors, so the complete set of fermionic symmetry operators may be divided
into (0, 1/2) generators Qg {with the superscript 04 omitted) and their
(1/2,0} Hermitian adjoints Q7,, where a is a spinor index running over the
values +1/2, and r is used to distinguish different twe-component gener-
ators with the same Lorentz transformation properties.”” The theorem
further states that the fermionic generators may be defined so as to satisfy
the anticommutation relations

=

{Qur, Qps} = 28,500, Py, (2527
{Qar ’ Qbs} = &b Lys , ’ {2528]
where P, is the four-momentum operator, the Z,;, = —Z, are bosonic

symmetry generators, and o, and e are the 2 x 2 matrices (with rows and

* We ose an asterisk for the Hermitian adjoint of an operator or the complex conjupate
of a number. The dagger 1 will be used for the transpose of the matrix formed from
the Hermitian adjoints of operators or complex conjugates of numbers.

™ We are using roman instead of italic letters for the two-component Weyl spinors Q,,,
to distinguish them from four-component Dirac spinors that will be introduced later
in this section. There is a notation due¢ to van der Waerden, according to which a
{0,1/2) operator like ( is written with dotted indices, as Q,, while (1/2,0) operators
are written with undotted indices. We will not use this notation here, but will instead
explicitly indicate which two-compenent spinors transform accerding to the (0,1/2)
or (1/2,0} representations of the hemogeneous Lorentz group.
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columns labelled +1/2, —1/2):

01 . 0 —i 1 0
O—I=(1 O)e 0'2:(!- 0 v 3 = 0 ___1)3
1 0y 0 1
““:(0 1)’ "’=(—1 0)'

Finﬁlly, the fermionic generators commute with energy and momentum:
[Py, Qarl = [Py, Q] =0, (25.2.10)

and the Z,; and Z, are a set of central charges of this aigebra, in the
sense that

0= [er > Qat] b [er : Q;;} - [er b Z:ul = [er s Z;]
=2}, Qul = [Z}5, Q) = [Z55. Z,) - (25.2.11)

To prove these results, let us start by considering non-vanishing fermionic
symmetry generators that belong to some (4, B} irreducible representation
of the homogeneous Lorentz group, and that therefore may be labelled
Q48, where a and b run by unit steps from —4 to +4 and from —B to
+B, respectively. As already meniioned, the Hermitian adjoint is related
to operators belonging to the (B, A) representation by Eq. (25.2.6), so the
anticommutator of these operators must take the form

C AtE A+B C D
(OF, 0 =D =" 50 > 3

C=|A—B| D=|4—B{e=—C d=—D
x Cqp(Ceia,—b) Cap{Dd; —a b} X5P ,  (25.2.12)

where Cqz(jo;ab) is the usual Clebsch-Gordan coefficient for coupling
spins A and B to form spin j, and X5P is the (c,d)-component of an
operator that transforms according to the (C,D) representation of the
homogeneous Lorentz group. Using the well-known unitarity properties
of the Clebsch—Cordan coefficients, we may express the operator X5 in
terms of these anticommutators:

A B A B
XF=3 ¥ 3 3 enTiEy
g=—A b=--Rf o'=—4 F¥=—B
x Cap(Ce:a—b) Cap(Dd; —d' D) {Q5, Q31°} . (25.213)

Not all of these operators are necessarily non-zero. But the only non-zero
Clebsch~Gordan coefficients Cypi(jo.ab)for j=oc=A+Band j= —~0 =
A+ B are the ones for a = A, b = B and a = —4, b = —B, respectively,
which both have the value unity, so by taking C =D =c=—-d=A+ B
in Eq. (25.2.13), we find that

A+B, .
XARATE = ()P (4B, 04E%) . (252.14)

(25.2.9)
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This cannot vanish unless 048 ; = 0, which would imply (taking com-
mutators with the ‘lowering’ operators A — id; and ‘raising’ operators
B, +iB;) that all the Q4% vanish. Hence if there are any non-vanishing
(A, B) fermionic generators, then their anticommutators with their adjoints
must at least involve non-zero bosonic symmetry generators belonging to
the (A 4- B, 4 + B) representation.

Now, the Coleman~Mandula theorem tells us that the bosonic symme-
try generators consist of the (1/2,1/2) generators P, of translations, the
(1,0) + (0, 1) generators J,, of proper Lorentz transformations, and per-
haps the (0,0) generators T4 of various internal symmetries. (Recall that
symmetric traceless tensors of rank N transform according to the represen-
tation {N/2, N/2), antisymmetric tensors of rank 2 transform according
to the representation (1,0) + {0, 1), while Dirac fields transform according
to the representation (1/2,0) 4+ (0,1/2).) Hence the fermionic symmetry
generators can only belong fo representations (A4, B) with 4+ B < 1/2.
These operators turn bosons into fermions and vice-versa, so they cannot
be scalars, leaving only the (1/2,0) and (0, 1 /2} representations, as was 1o
be shown. Labelling the linearly independent (0,1/2) fermionic genera-
tors as Qgy, the anticommutator {Qg,Q;,} belongs to the representation
(0,1/2) x (1/2,0) = (1/2,1/2), and therefore must be proportional to the
only {1/2,1/2) bosonic symmetry generator, the momentum four-vector
P,. Lorentz invariance dictates that the form of this relation must be

{Qah Qj.:g} = 2N a::;, Pp » {25215}

where N, is a numerical matrix.

To see this, we use the isomorphism of the Lorentz group {or more
property its covering group) with the group SL(2,C) of two-dimensional
unimodular complex matrices 1, discussed in Section 2.7. The effect of a
Lorentz transformation A¥, on the {0,1/2) fermionic generators is

UMY Qor UiA) = 3 2ap Qur (25.2.16)
b

where A is the Lorentz transformation defined by
Ao, AT =A%0, . (25.2.17)
We can check that Eq. (25.2.16) applies for (0,1/2) operators by noting

that for an infinitesimal Lorentz transformation A¥, = 3%, + w¥, with
Wyy = — Oy, Bq. (25.2.17) is satisfied for

A=14+ %{%ieijka),j-l-wko]ﬁk R
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while' .
UA) =14 Liog J* =1+ {iepwijly — ionK;.

(Repeated latin indices i, j, k are summed over values 1, 2, 3) In this
case, by equating the coefficients of ;; and wj in Eq. (25.2.16), we find
that

[JsQa]=_%Edabe: {K’Qa]=‘%izdabe:
b b

or, equivalently,

B, Q=13 oaQs, [A,Q. =0,
b

which shows that an operator satisfying Eq. (25.2.16) belongs to the (0,1/2)
representation. Now, the o, form a complete set of 2 x 2 matrices, so we
can put the anticommutator {Qg, Q;.} in the form N (o.)a, Where N¥
is some matrix of operators. Eqs. (25.2.16) and {25.2.17) show that these
operators are four-vectors, in the sense that U~ (A)N*U(A) = A*, N7, and
so by the Coleman-Mandula theorem they must be proportional to P¥,
the only four-vector of bosonic symmetry operators. Setting NJ; = 2P¥Ny,
then gives Eq. (25.2.15).

Now we will apply a linear transformation to the Qg to put their
anticommutators in the form (25.2.7). For this purpese, we need to
establish that the matrix N,; is Hermitian and positive-definite. That
it is Hermitian follows immediately by taking the Hermitian adjoint
of Eq. (25.2.15). To sec that it is positive-definite, recall that the Qg
are taken linearly independent, so for any non-zero linear combination
Q = ¥, ds ¢ Qur there must be some state |'¥) that Q does not annihilate.
Taking the expectation value of Eq. (25.2,15) in this state implies that

20| T o Pudady [¥) 3 €063 Ns = (F{Q,QTH¥) > 0.
ak s .

This shows immediately that 37, ¢,¢;Nys cannot vanigh for any ¢, that
are not all zero, so N, is either positive-definite or negative-definite. The
operator 3 {Fu)a PPdad} is positive on the space of physical states with
—P¥P, > 0 and P° > 0, 50 the matrix Nys must be positive-definite. T

1 Here K, is defined as Jo. There was a mistake in the first two printings of Volume I:
K, was defined as J in Sections 2.4, 3.3, and 3.5, but as Jp in Sections 5.6 and 3.9,
with A and B throughout given by Eq. (25.2.1).

 This argument may be turned around. Assuming a supersymmetry with N, positive-
definite, as in Eq. (25.2.7), we can deduce that P° > 0 for all states.” However, this
conclusion is not valid when gravitation is taken into account, and uniess gravitation
is taken into account a shift in the energy of all states by the same amount would
have no physical effects.
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We may now define new fermionic generators

Qly =3 N Qu,

5

for which the anticommutators take the form

{Q;r! Qi:s} = 20;5 ﬂ'ﬁb Py .
From now on we shall assume that the fermionic generators are defined
in this way, and drop the primes, so that Eq. (25.2.7) is satisfied.

Next we must show that the Qg commute with the momentum four-
vector P,. The commutator of a (1/2,1/2) operator like P, with a (0,1/2)
operator like Q can only be a (1/2,0) or (1/2,1) operator, but we have
seen that there are no (1/2,1) symmetry generators, so the commutator

of P, with Q can only be proportional to the (1/2,0) symmetry generator
Q". Lorentz invariance requires this relation to take the form

A 4 Qer] = Z €ac Kys Q;)s » (25.2.18)

where K is a numerical matrix, and .# is the matrix of operators
M =g, PP, - {(23.219)

{The matrix e, is the Clebsch-Gordan coefficient for coupling two spins
1/2 to give zero spin.) It is straightforward then to calculate that

["’ﬁ_%_%: ["ﬁ_..,}—]zr {Q;rs in}]] = —Mﬂ]_%_%(KKt:I” - (25220}
Using Eq. (25.2.7), the left-hand side is a lincar combination of multiple
commutators [Py, [Py, P;l}, all of which vanish, while (.#)_,;5_1,> is non-
zero for generic momenta, so KKT = 0, and therefore K = 0, which
with Eq. (25.2.18) shows that [P,, Q] = 0. The complex conjugate gives
[P Q:] =0, '

Now we can take up the anticommutator of two Qs. The anticomma-
tator of two (0,1/2) symmetry generators must be a linear combination
of (0,1) and (0,0) symmetry generators. The Coleman-Mandula theorem
tells us that the only (0,1) symmetry generators are linear combinations
of the generators J,3 of proper homogeneous Lorentz transformations,
but since the Qs commute with P, so must their anticommutators, and
Eq. {(2.4.13) shows that no linear combination of the J,; commutes with
P,. This leaves just (0,0) operators, which commute with both P, and Jy,.
Lorentz invariance then requires the anticommautators of the Qs with each
other to take the form of Eq. (25.2.8). The internal symmetry generators
Z.; are antisymmetric in r and s because the whole expression must be
symmeiric under interchange of r and a with s and b, and the matrix eg
is antisymmetric in g and b.
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It now only remains to show that the Zs are central charges. It follows

immediately from Eqs. (25.2.8) and (25.2.10) that

[Pu, Z,s] = 0. (25.2.21)
Next consider the generalized Jacobi identity (25.1.5) involving two Qs
and a Q":

0= [{Qan qu}: Q;I] 4 [{Qbh Q:r} ) Qar] + [{Q:ra Qar} ' Qbs] .

Eqs. (25.2.7) and (25.2.10) show that the second and third terms vanish,
80 _

[Zrs, Q) =0. (25.2.22)
Finally, consider the generalized Jacobi identity fora Z,a Q,and a Q":

0 — "[zr.h {Qab Q;u}] + {Q;u- [zrm Qar]} — {Qars {Q;u: zrs]} .

The first and third terms vanish because of Egs. {25.2.21) and (25.2.22),
respectively, so we are left with the second term

{Qhs [Z1s, Qul} = 0. (25.2.23)

Now, [Zre, Qac is 2 (0,1/2) symmetry generator, so it must be a linear
combination of the Qs:

[er: Que) = z Myt Qau - (25.2.24)

Eq. {25.2.23) then reads
ngPyMrszu =0,

for all @, b, r, 5, t, and u. Since the operator o’ P, is not zero, we conclude
that MI’SIH .= 0, 50¢ that
[Z:s, Qa] = 0. - (25.2.25)
Using the anticommutation relation (25.2.8) and its adjoint together with
the commutation relations (25.2.22) and (25.2.25) and their adjoints then
gives
[er ) ZEH] = Ezi‘Sp Zz:{] = [z:_g ) Z;;] - 0 > (25;2.26)
which finishes the proof of Eq. (25.2.11), and with it the proof of the
Haag—Lopuszanski-Sohnius theorem. _
Of course, the fact that the Z,; are central charges of the supersymmetry
algehra does not rule out the possibility that there may be other Abelian or
non-Abelian internal symmetries. Let T, span the complete Lie algebra

of bosonic internal symmetries. Then [Ty, Qu] is a (0,1/2) symmetry
generator, so it must be a linear combination of the Qs:

[Ta. Qar] = =D _(ta)rsQas - (25.2.27)
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From the Jacobi identity for two T's and a Q, we learn that the 4, matrices
furnisk a representation of the internal symmetry algebra

fta, tgl =13 CSptc, (25.2.28)
C

where the coefficients C{y are the structure constants of the internal
symmetry algebra :

[Ta, Tl =iy CSp Tc. (25.2.29)
c

The Z,; will then be central charges not only of the superalgebra con-
sisting of the Qs, Q's, Py, Zs, and Z7s, but also of the larger symmetry
superalgebra that in addition contains all the Ta. To see this, note from
Eqs. (25.2.27) and (25.2.8) that '

[Tas Zesl = = 3 () Zors = 3 (t)sw Zow »
r 5

80 the Z,; form an invarignt Abelian subalgebra of the whole bosonic
symmetry algebra. But recall that in proving the Coleman—-Mandula
theorem we found that the complete Lie algebra of internal bosonic
symmetries, which in our case is spanned by the 7, is isomorphic to
& direct sum of a compact semi-simple Lie algebra and several U(1)
algebras. The only invariant Abelian subalgebras of such a Lie algebra
are spanned by U(1) generators, so the Zs must be U(1) generators, and
hence commute with a]l the T4

Even though the Zs commute with all symmetry generators, they are
not just numbers; they are quantum operators, whose value may vary from
state to state. In fact, the Zs must obviously take the value zero for a
supersymmetric vacuum state, which is annihilated by all supersymmetry
generators, but they need not vanish in general. In Section 27.9 we
will see how the Zs may be calculated in gauge theories with extended
supersymmetry. _

In the absence of central charges, the supersymmetry algebra (25.2.7),
(25.2.8) is invariant under a group U(N) of internal symmetries

Qor = > VisQus (25.2.30)

with Viy an N x N unitary (not necessarily unimodular) matrix, This
is known as R-symmetry. This Symmetry may or may not be a good
symmetry of the action, and if it is then it may be violated by anomalies,
or it may be spontaneously broken, or it may be a good symmetry of
nature.

A supersymmetry algebra where r, 5, efC. run over N > 1 values is
known as an N-extended supersymmeiry. Where there is just one Q, the



25.2 Supersymmetry Algebras 37

condition Z,; = —Z, tells us that the Zs vanish, yielding a simpler form
of the anticommutation relations

[Qa, Q}} =264, Py, (25.2.31)
{Qa, Qp} =0. (25.2.32)

This is known as the case of simple supersymmetry, ot N = 1 super-
symmetry. In this case the R-symmetry transformations are U(1} phase
transformations

Qa — expl(ig) Qa » (25.2.33)

with ¢ a real phase. .

For several purposes it is convenient to combine the (0,1/2) operators
Qar together with (1/2,0) operators, which according to Eq. {25.2.6) may
be taken as e5Q;,, into four-component Majorana spinor generators Qur,
defined as

0, = ( egf ) , (25.2.34)

of more explicitly

er=Q:!,: Q2r=_Q;,.; Q3r=Q%r; Q4’:Q—1Lr‘

b

This is a Majorana spinor in the sense that

r = _ﬁE?SQ: »

where B, e, and ys are 4 x 4 matrices that may be written as the 2 x 2
block matrices:

t=(10) =(02) »=(o2)

(The properties of Majorana spinors are reviewed in the appendix to
Chapter 26.) The form (25.2.34) is chosen in accordance with the usual
notation for the four-component Dirac representation of the homogeneous
Lorentz group, in which according to Eq. (5.4.4) the rotation and boost
generators are represented according to Eqs. (5.4.19) and (5.4.20) by

1 Ta 0 ____f_cn—ﬂ]
simt {0 ai] L A= 2[0 S s
With Eq. (25.2.1), this shows that the operators A and B act only on the
top two and botiom two components of the Dirac spinor, respectively,
which is why we use the (0, 1/2) operators Q.. as the bottom rather than
the top components in Eq. (25.2.34).
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In this four-component notaticn, the fundamental anticommutation
relations (25.2.31) and (25.2.32) for simple supersymmetry read

— —_ T
{g.0} = 2( 63,# e(“*bP "y e ) =—2iP,y*. | {25.2.36)

Our notation for Dirac matrices is reviewed in the Preface to this volume;
here we need only recall that

y“:-—i,f3=—i(0 UOO) y:-—i(.ﬂ ‘5) (25.2.37)

a0 —F

while eaTe = o, esge = oy, and as usual @ = O'g. The presence of
central charges will change this formula in the case of extended super-
symmetry; instead of Eq. {25.2.36), we have

The analysis presented here for the case of four spacetime dimensions
will be repeated, in a somewhat less explicit form, for general spacetime
dimensions in Chapter 32. As we will see there, the supersymmetry
generators always belong to the fundamental spinor representation of the
higher-dimensional Lorentz group, even in theories with extended objects
that allow the construction of bosonic symmetry generators other than
those allowed by the Coleman-Mandula theorem.

* %k

In theories of massless particles that are invariant under the conformal
symmetry algebra (24.B.34)-(24.B.35) there are two additional bosenic
symmetry generators D and K, that can appear on the right-hand side of
the supersymmetry anticommutation relations. These new generators have
the Lorentz transformation properties of,a scalar and a vector, respectively,
just like Z,s and Py, so once again the fermionic generators must belong
to the fundamental (t/2,0) spinor representation of the Lorentz algebra,
and its Hermitian adjoint, the (0,1/2) representation. It is convenient
to classify all generators also according to their commutators with the
dilation generator D'; an operator X is said to have dimensionality a if

[X, D] =iaX . (25.2.39)

Inspection of Eq. (24.B.34) shows that the bosonic symmetry generators
Jw pe K# and D have dimensionalities 0, +1, —1, and 0, respectively.
~ Also, the generators of any Lie group of internal symmetrics have dimen-
sionality 0. The anticommutator of a fermionic generator of dimensionality
a with its adjoint is 2 positive-definite bosonic opetator of dimensionality
%a, so since the only positive-definite bosonic symmetry generators are
linear combinations of the components of Py and K, the only fermionic
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symmetry generators have dimensionalities +1/2 and -1/2. The (0,1/2)
fermionic symmetry generators of dimensionality 1/2 and their adjoints
may again be assembled intc Majorana spinors Qy,, with

{er ’ Qsﬁ'} = _2'-P,u(}"u)uﬁ5rs * {25.2.40)
[Py, @re]l =0, (25.2.41)
(D, @re]l = — 3 Q. (25.2.42)

(Note that central charges are not allowed here, because their dimension-
ality would be 0, not +1.) The commutaters of the K, with the Q]r.JE
are linear combinations of Majorana fermionic symmetry generators of.
which Lorentz invariance allows us to write in the form

KX, Ol =i (r")ep 0l . (25.2.43)

(An arbitrary factor on the right-hand side has been absorbed into the
normalization of Qfﬁ. The phase of the right-hand side is chosen so

that Qfﬁ will satisfy the standard reality condition (26.A.2) for Majorana
spinors.) The Qfﬁ have dimensionality +1/2—1 =—1/2, so

[D, 0%)=+4Qf, . (25.2.44)

Taking the commutator of Eq. (25.2.43) with P* and using the commutator
of K# with P* given by Eq. (24.B.34) gives

[P”, Q1 = —ir")asQrp - (25.2.45)

We see that the Qs and O%s are paired. By taking the commutator of the
anticommutation relation {25.2.40) with K, we find the anticommutators
of the 90¥s and Qs:

{Qm s S_B] = ZID‘SI’S‘S&,E + :-J-J,uvarsf + Orsaaﬁ + O;:(?S}u,ﬂ ’ (25246}

where #% = —i[y*, y*1/4, and O, and O, are Lorentz invariant operators
of zero dimensionality with
Or‘g —_—— 03,- » 0:.3 = ofe G;r . (25247}

Taking the commutator of Eq. (25.2.43) with K, and using the fact that
[Ky,K,] =0, we find that (p*)s1K”, Qyg] is symmetric in # and v, which
with a little algebra tells us that

K", 03] =0. (25.2.48)
Also, taking the commutator of Eq. (25.2.46) with K, gives
{Qﬁ: ' ﬁsﬁ} = +2fKﬁ.(?'u }aﬁérs . (25.249)

Finally, taking the commutator of Eq. (25.2.46} with 0y, shows that Oy and
O}, act as the generators of the R-symmetry group U(N), with the left- and
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right-handed parts of Q,, transforming according to the representations
N and N, respectively, while the P,, K, and D are U(N)-invariant. The
U{N) commutation relations of these generators with each other and with
other generators together with Eqs. (24.B.34), (24.B.35), {25.2.40)—(25.2.49)
and the commutators of J,,, and D with the various generators constitute
the superconformal algebra. One of the outstanding differences between
this algebra and that of ordinary simple or N-extended supersymmetry
is that the U(N} symmetry is not merely an outer automorphism of the
algebra that may or may not be a symmetry of the action — it is a part
of the superconformal algebra, which therefore must be a symmetry of
any action that is supersymmetric and conformally invariant.

253 Space Inversion Properties of Supersymmetry (enerators

In theories that respect the conservation of parity, the result P71Q,P of
acting on the fermionic symmetry generator Qg with the parity operator
P must also be a fermionic symmetry generator. Since J; and K; are
respectively even and odd under space inversion, Eq. (25.2.1) shows that
the effect of acting on A; with the parity operator is

P~l4P =B, . | (25.3.1)

According to Eq. (25.2.3), the definition of Qg as 2 (0,1/2) operator
means that '

[Bi, Qul = =43 (o) Qur,  [di, Qul =0. (25.3.2)
b .

Applying the parity operaior yields
[, P'QuPl = =43 (1) PT'QuP,  [B;, PTQuPl =0, (2533)
b

so P~1Q,, P is a (1/2,0) symmetry generator, and therefore must be a linear
combination of the Q},. According to Eq. (25.2.6), Lorentz invariance
dictates the form of this relation as

P—IQRi’F = E'gars eabQE; 1 (25.3.4)
bs

where & is a numerical matrix, and the matrix ¢ 1s given by Eq. (25.2.9).

We can learn something about the properties of the matrix # by requir-
ing that Eq. (25.3.4) be consistent with the fundamental anticommutation
relation (25.2.7). Eq. (25.3.4) and its adjoint yield

P—l {Qar ’ Q;g}P = Z yrt Eac '?;u €hd {Q.:r » Qdu} .

cdru
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- Inserting Eq. (25.2.7), this becomes

cdiu
But ecTe! = —q; and ese~! = -+ap, while P~IP/P = —P; and P~ PP =
Py, s0 thls reduces to the statement that 2 is unitary

PP =1, (25.3.5)

The matrix & is to some extent arbitrary, because for any set of
fermionic generators (Q,, that satisfies Eqs. (25.3.2) and (23.2.7), we con-
struct another set Q). that also satisfies Eqs. (25.3.2) and (25.2.7) by a
unitary transformation

Q= 2 Urs Qas at =g~ . (25.3.6)
£
so that the parity transformation rule (25.3.4) becomes
PIQP =3 eaQf, (25.3.7)
by
where
P =gy =Pyt (25.3.8)

For simple supersymmetry 2 is just a 1 x 1 phase factor, and Eq. (25.3.4)
reads

PIQP =23 enQ; . (25.3.9)
- _

Combining this with its adjoint gives
PP =—Qa, (23.3.10)

independently of the value chosen for the phase factor 2. This has the
striking consequence that if a boson in a supermultiplet of particles has a
teal intrinsic parity, then the fermions obtained by acting on this boson
state with Q, have imaginary intrinsic parities.

" Because for simple supersymmetry % and 2 are just phase factors, it is
obvious from Eq. (25.3.8) that by a suitable choice of %, the phase factor
# can be made anything we like. [t will be convenient to choose & = +i,
so that Eq. (25.3.7) takes the simple form (now dropping primes)

PlQP=iY" eusQ;. , {25.3.11)
b

Just as for spinor field operators, the representation of space inversion is
simpler if we combine the (0, 1/2) operators Q, and the (1/2,0) operators
Y peq(d;, into the four-component Dirac spinor generator 3, defined by
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Eq. (25.2.34). In these terms, Eq. (25.3.11) and its adjoint read
prlgp =if Q. (25.3.12)

(We are using the qotation for Dirac matrices given in Section 54 and
the Preface to this volume, which gives

01
where 1 and O are understood as 2 X 2 submatrices.)

For extended supersymmetry it is not always possible to choose % 80
that #' is diagonal. However, a theorem in matmix algebra (proved in
Appendix C of Chapter 2} shows that it is possible to choose g so that
@ is block diagonal, in general with some of the matrices on the diagonal
equal to 1 %1 submatrices that can be chosen equal to i (or any other

phase factors we like), and other submatrices on the diagonal given by
7 % 2 maitrices that can be chosen to have the form

( exp(o—ifﬁ) ﬂp((}i(m ) ’

with various phases ¢. Correspondingly, with this choice of # {and now
dropping primes} the two-component Qs are of two types. The Qs of the
first type also satisfy Eq. (253.11):

P QuP =Y, €as Qbr - (25.3.13)
b

The two-component Qs of the second type come in pairs, which wc will
call Qga and Qas2, with the sth pair having the parity transformation rule

PlQuaP=e*Y eaQbas P! Qupa P =79y €ap Qb - (25.3.14)
b b

In particular, we now have
P2QuP? = — & Qast » p2Q,P’ = —¢ Qs (253.15)

This shows that, unless $s = 0 {mod n), it is not possible to form
supersymmetry generators of the first type out of linear combinations of
extended supersymmetry generators of the second type.

{n terms of the four-component spinors {25.2.34), the effect of the parity
operator on extended supersymmetry generators of the first type 18

pig, P =ifQr, (25.3.16)
while for generators of the second type

p-1 0, P = Bs explipsds) Qa2 » p—t 0, P = 75 exp(—iysds) Ost -
(25.3.17)

- ——m-

J i i R

T
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254 Massless Particle Supermultiplets

Supersymmetry requires that the known particles be accompanied in
irreducible representations of the supersymmetry algebra by ‘sparticles’;
bosonic ‘squarks’ and ‘sleptons’ accompanying quarks and leptons, and
fermionic ‘gauginos’ accompanying gauge bosons. None of these sparticles
have been observed, so supersymmetry is certainly broken, with the masses
of the sparticles almost certainly much larger than the quark, lepton, and
gauge boson masses. produced by the spontaneous breakdown of the
electroweak SU(2) x U(1) gauge group, and hence of the same order
of magnitude as the splittings within supermultiplets. Thus it is very
lixely that at energy scales that are large enough so that we can neglect
supersymmetry breaking and these mass splittings, we can also treat the
known quarks, leptons, and gauge bosons and their superpartners as
massless. Therefore we will be specialiy interested in supermultiplets of
massless particles.

Consider a state containing a single massless particle belonging to some
supermultiplet. We obtain the other states in the same supermultiplet
by applying operators Q. andfor Q;, to this state. Since Q, and
Q,, commute with P,, all these states have the same value of the four-
momentum. We will work in a Lorentz frame in which the four-momentum
of these states is p' = p> = 0 and p* = p® = E. With this choice of four-
momentum, we have

o, p* = E(go + 03) = 2E ( ; g ) , (254.1)

which aside from the factor 2£ is the projection matrix onto the subspace
with helicity +1/2. The anticominutation relation (25.2.7) therefore shows
that {Q_; 12 s Q,':'_[ ,‘zyr} gives zero when acting on any state in a super-
multiplet with this momentum, and thus so do Qi) and Q). We
must therefore construct the states of the supermultiplet by acting only
with Q1 2), and Q;l 2y, Furthermore, we are labelling the Qs with their
Jy values, in the sense that

[/3, Qar]l = —aQqr , (254.2)

s0 Qq /2, and QE‘I /2 tespectively lower and raise the helicity by 1/2.

We will first consider the case of simple supersymmetry. Consider a
supermaultiplet with maximum helicity Amax, and let [Anax) be any one-
particle state with this helicity and four-momentum p#. Then

Q;Hmax) =0, (254.3)

while acting on this state with Q;,, gives a state |Anax — 1/2} with helicity
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Amax — 1/2. We will define this state as
[Aoax = 1/2) = (4E) ™2 Qy fhmmax) - (25.4.4)

The fundamental anticommutation relation (25.2.7) together with Eqgs.
(25.4.1) and (25.4.3) shows that this state is normalized in the same way

as [Amax)
{Amax — 1/2Amax — 1/2} = {Amax|Amax) » (25.4.5)

and in particular this state cannot vanish. Eq. (25.2.32} shows that
Q% ;2 =0.s0 acting with Q5 on |Amax — 1/2) gives zero:

Qyldmax — 1/2) = (4E)‘”2Q25 |[Amax} = 0. (25.4.6)

On the other hand, acting with (] 2 on this state gives the state with
which we started. That is,

Q}lmax = 1/2) = (AE)2Q} QylAmax) = (4E)™/HQ} . Q}Hima)
so that Eq. (25.4.1) and the anticommutation relation {25.2.31) yield
Q] lAmax — 1/2) = (4E)'/? | Amas} . (25.4.7)

Thus. the supermuitiplet consists of jtist two states, with helicities Apsy and
Amax — 1/2. In the basis provided by these two states, the operators Q2
and Q] , are represented by the matrices

q%=\/if(? g), 12= 45(83), (25.4.8)
while the operators Q_;,, and Q*, /2 Are represented by zero.

It is worth emphasizing that this is the only kind of massless super-
multiplet in theories with simple supersymmetry, There are no massless
particles that are not accompanied with a superpartner, and none that
have more than one superpartner. Of course, CPT invariance implies that
for every supermultiplet of massless particles of helicities 4 and 4 —1/2
there must be an antimultiplet with helicities —i 4 1/2 and —A. In par-
ticular, a massless particle and antiparticle with helicities -+1/2 and —1/2
must be accompanied by a massless particle and antiparticle either with
helicities +1 and —1 or with helicities both zero.

How might the known quarks, leptons, and gauge bosons fit into this
picture? We will assume that the supersymmetry generator t:ommutcs with
the generators of the SU(3) x SU(2) x U{1) gauge group.” The quarks

*In simple supersymmetry the generator (), must in any case commute with the
SU{3) x SU(2} generators, because semi-simple algebras like SU(3) x SU(2) have no
nofi-trivial one-dimensional representations,
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‘@nd leptons belong to different representations of the gauge group from
the gauge bosons, so they cannot be in the same supermultiplets. We
have te conclude then that in the limit of high energy where SU(2) x U(1)
symmetry breaking may be neglected, the massless quarks and leptons of
gach color and flavor are in supermultiplets with pairs of massless squarks
and slepions of zero helicity and the same color and flavor, while the
massless gauge bosons are accompanied by massless gauginos of helicity
+1/2 comprising an adjoint representation of SU(3) x SU(2} x U(1).

Because gravity exists we know that in addition to the particles of the
standard model there must also exist a massless particle of helicity 1-2, the
graviton. Massless particles with helicity A having |4 > 1/2 must couple
at low momentum to conserved quantities.” Soft massless particles of
helicity -1 can couple to various internal symmetry generators, soft mass-
less particles of helicity -+3/2 ¢an couple to the supersymmetry generators
Qa, and a soft particle of helicity 42 can couple to a single conserved
guantity, the momentum four-vector P, but there are no conserved quan-
tities to which a soft massless particle with |i] > 2 could couple. We
conclude that the graviton cannot be in a supermultiplet with particles of
helicity +5/2, so it must be in a supermultiplet with a massless particle
of helicity £3/2, known as a gravitino, coupied to the supersymmetry
generators themselves. The field theory of this supermultiplet 1s known as
supergravity, and will be discussed in Chapter 31,

Now let us consider the case of extended supersymmetry, with N
supersymmetry generators. We first note that because the Qq_;/, all
give zero when acting on the states of a supermultiplet (including a state
obtained by letting Q2 act on any other state of the multiplet), the
central charges Z,; must also annihilate any state of the multiplet. With
central charges out of the picture, the supersymmetry generators Q2
ail anticommute when acting on a massless particle supermultiplet, so
appiying n of them to a one-particle state of maximum helicity Apn.x and
four-momentum p# gives N!/n!(N — n)! one-particle states of the same
four-momentum and helicity Amay — #/2, forming a rank a antisymmetric
tensor representation of the SU(N) R-symmetry’ (25.2.30). The maximum
value of n that gives a non-zero state is #» = N, so the minimum helicity
in a supermultiplet is given by

Amin = jbmax - Nfz . {25.4.9}

If we wish to exclude massless particle helicities A with |4 > 2, then

** This is discussed for the case of integer helicity in Section 13.1. The argument for
half-integer helicity was given by Grisaru and Pendleton.’

YThe /(1) part of U{N} R-symmetry is often violated by quanturm mechanical
anomalies,
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Amax — Amin < 4, 50 extended supersymmetries are allowed only with
N <8 , '

For N = 8 with helicities with |4] > 2 excluded, there is only one
possible supermultiplet, consisting of: 1 graviton with each helicity +2;
8 gravitinos with each helicity +3/2; 28 gauge bosons with each helicity
+1; 56 fermions with each helicity ++1/2; and 70 bosons with helicity zero.

Compare this with the case N = 7, again excluding helicities with
|A] > 2. Here there are two supermultiplets. One supermultiplet contains:
1 graviton with helicity +2; 7 gravitinos with helicity -+3/2; 21 gauge
bosons with helicity +1; 35 fermions with helicity +1/2; 35 bosons with
helicity zero; 21 fermions with helicity —1/2; 7 gauge bosons with helicity -
—1: and 1 gravitino with helicity —3/2. The other is the CPT-conjugate
supermultiplet, with all helicities reversed. Adding the numbers of particles
in these two supermultiplets, we have I graviton with each helicity +2;
7+ 1 = 8 gravitinos with each helicity £3/2; 21 +7 = 28 gauge bosons
with each helicity +:1; 35+ 21 = 56 fermions with each helicity £1/2; and
35 + 35 = 70 bosons with helicity zero, Extended supergravity theories
with N = 8 and N = 7 thus have precisely the same particle content and
are in fact identical.

On the other hand, extended supergravity theories with N < & have just
N gravitinos of each helicity +3/2 and are therefore alb distinet:: - -

For N < 4 there is also the possibility of global supersymmetry theories,
theories with supermultiplets that do not include gravitons or gravitinos.
For global N = 4 supersymmetry there is just one supermultiplet, contain-
ing: 1 gauge boson of each helicity +4; 4 fermions of each helicity £:1/2;
and 6 bosons of helicity zero. This is equivalent to the global supersym-
metry theory with N = 3, which has two supermultiplets: 1 supermultiplet
with one gauge boson of helicity +1, 3 fermions with helicity +1/2; 3
bosons with helicity zero; and 1 fermion with helicity —1/2; and the other
the CPT conjugate supermultiplet with opposite helicities. Adding the
numbers of particles of each helicity in these two N = 3 supermuliiplets
gives the same particle content as for N = 4 global supersymmetry. The
gauge field theory with N = 4 supersymmetry has remarkable properties,
which will be discussed in Section 27.9.

For N = 2 extended global supersymmetry there are supermultiplets
of two different types, apart from those related by CPT. There are
gauge supermultiplets, each containing one gauge boson of helicity +1,
two fermions of helicity +1/2 forming a doublet under the SU(2) R-
symmetry (25.2.30), and one boson of helicity zero, together with their
CPT-conjugate supermultiplets, with helicities reversed. Together cach
gauge supermultiplet and its antimultiplet contain one gauge boson with
each helicity -+1, an SU(2) doublet of fermions of each helicity +1/2, and
two SU(2) singlet bosons of helicity zero. Then there are hypermultiplets,
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which contain one fermion of each helicity +1/2 and an SU(2) doublet of
bosons of helicity zero, together with its CPT-conjugate. (In quantum field
theory a hypermultiplet cannot be its own antimultiplet, because then the
helicity zero particles would be described by just two real scalar fields,
which cannot form an SU{2) doublet.) Of course, in the real world there
would also have to be a graviton supermultiplet, containing a graviton
of helicity +2, an SU(2) doublet of gravitinos with helicity +3/2, and
one gauge boson with helicity +1, together with their CPT-conjugates,
with opposite helicity. Gauge theories with N = 2 supersymmetry are
constructed in Section 27.9, and explored non-perturbatively in Section
20.5.

The particle content of these supermultipleis reveals a difficulty in
incorporating extended supersymmetry in realistic theories of particles
at accessible energies. In all cases but one, the helicity +1/2 fermions
belong to supermultiplets along with helicity -1 gauge bosons. Gauge
bosons belong to the adjoint representation of the gauge group, so if the
supersymmetry generators are invariant under the gauge group then the
helicity --1/2 fermions must also belong to the adjoint representation,
which is real. This is in conflict with the fact that the known quarks
and leptons belong to a representation of SU(3) x SU(2) x U(}) which is
chiral — that is, for which the helicity 41/2 fermions belong to a complex
representation, which is then necessarily different from the representation
furnished by their CPT-conjugates, the helicity —1 /2 fermions. The one
exception, where helicity +1/2 fermions are not in a supermuitiplet with
gauge bosons, is the N = 2 hypermultiplet discussed above. But in this case
particles of both helicities +-1/2 and —1/2 are in the same supermultiplet,
and therefore must transform the same under any gauge transformations
that leave the supersymmetry generators invariant. They may belong to a
complex representation of this gauge group, but then the CPT-conjugate
of this hypermultiplet belongs to the complex-conjugate representation,
and the fermions of each helicity then belong to the sum of the two
representations, which is real, again in conflict with the chiral nature of
the known quarks and leptons.

In contrast, for simple supersymmetry there are supermultiplets con-
taining just helicity +1/2 and helicity zero, which may be in a complex
representation of the gauge group, distinct from the representation fur-
nished by the CPT-conjugate supermultiplet. Here there is no conflict
with chirality. For this reason, most discussions of supersymmeiry as a
symmetry that remains unbroken at accessible energies have focused on
simple rather than extended supersymmetry.
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255 Massive Particle Supermultiplets

Although the known quarks, leptons, and gauge bosons and their super-
partners may probably be treated as massless at energies where super-
symmetry breaking is negligible, this is not necessarily true for other
particles, including the extra gauge bosons of large mass required by the-
ories that unify the strong and electroweak interactions. Also, ever since
the Wess—Zumino model, massive particle theories have been useful test
cases for studying supersymmetry theories. It will therefore be worthwhile
for us briefly to consider the implications of unbroken supersymmetry for
massive particles,

As in the previous section, we obtain the various one-particle states in
a supermultiplet by acting on any one of them with the operators Q,,
and Qj,, and all of these states have the same four-momentum. Unlike
the case of zero mass, for mass M > 0 we may now take this to be

the four-momentum of a particle at rest, with p' = 0 for i = 1,2,3 and
p° = M. In this frame of reference, we have
oupt = Moy =M ( {1} ? ) : (25.5.1)

Thus, acting on any state | } in a supermultiplet with this four-momentum, -
the anticommuiation relation {25.2.7) yields

{Qar > Q;sH ) =2M 5&{: 51'31 ) . (25-5-2)

In contrast with the case of zero mass, here no component of Qg or Q.
can vanish on the whole multiplet, so we have two sets of raising and
lowering operators: both Q) 2, and Q{"_lmr lower the spin 3-component
by 1/2, while both Q(_1/3, and Qf; ), raise the spin 3-component by 1/2.
However, as we shall see, for extended supersymmetry it is possible for
certain linear combinations of the Os and Qs to vanish.

We will first consider the case of simple supersymmetry. By using
the supersymmetry algebra (25.2.31), (25.2.32), we shall show that the
general massive supermultiplet consists of a particle of spin j+ 1/2, a
pair of particles of spin j, and a particle of spin j — 1/2. Where parity is
conserved, the particles of spin j 4 1/2 have equal intrinsic parity, given
by some phase n, while the two particles of spin j have parities i and
—in. Here j is any integer or half-integer greater than zero. There is also
a collapsed supermultiplet, consisting of two particles of spin zero and a
particle of spin 1/2. When parity is conserved the particles of spin zero
have parities in and —iy, where # is the parity of the particle of spin 1/2.

Here is the proof. We first show that any supermultiplet will contain at
least one spin multiplet of states |j,o} with spin 3-component ¢ running
by unit steps from —j to 4, having the special property that, for all such
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¢ and for a = +1/2,
Qulj o) =0. (25.5.3)

Starting with any non-zero state |y} in the supermultiplet, we can define
non-zero states '

W = { @M)72Qiplw)  Qualw) #0
) Qualy}=0 -

and

") Q_ip2 @'y =0

Because the Q, anticommute, Q;,|y’) = 0, and so Qglp") =0 for a =
+1/2. If any state {") satisfies the condition that Q,jw") = 0, then so does
U(R)jy"}), where (R} is the unitary operator representing an arbitrary
spatial rotation. It follows that the states that satisfy this condition may
be decomposed into complete spin multiplets |f,a}, satisfying condition
(25.5.3). '

Now focus on any one of these spin multiplets satisfying Eq. (25.5.3),
normalized so that _

") = { 2M1/2 Q_y12 ') Qi lv) 0

{js GFIJ)J) - 50'0" . (25.5.4}
For j > 0, by applying the spin 1/2 operators® Q to these states we can
construct states of spin j+ 1/2:

Jt1/2,0) = jt1/2,058,0—-a)Q}lje—a), (2555)

1
M za: Cy ;(
where C;¢(f”,a”; ¢, 0') is the conventional Clebsch-Gordan coefficient for
coupling spins j and j° with 3-components ¢ and ¢’ to make spin j*
with 3-component #”. Using Eqs. (25.5.2)25.5.5) and the orthonormality
properties of the Clebsch—Gordan coefficients, we can show that these
states are properly normalized:

(Jx1/20j£1/2,6") = 8, {11/20jT /2,6y =0, (255.6)

0 none of the states |j + 1/2,0) can vanish. The only exception is for
J =0, in which case of course there is no state |j — 1/2,0). We can
also construct other states by applying twe Q's to |, ). Since each Q]

*Bince Q, transforms under rotations like a field that destroys a particle of spin
1/2 and spin 3component a, it is Q) that transforms like a field that creates
such a particle, and hence transforms like the particle itself. To put this formally,
FQad == 3., 30610 Qn, 80 [J;, Q] = 5, Houke O, which may be compared with
the transformation property of a spin 1/2 particle, J; la} = 3, 1}y, |b).



50 25 Supersymmetry Algebras

anticommutes with itself, the only such non-zero states are formed by
applying the operator Q] HQ"_I n= ~Q,2Q1,>- This operator may be
written as 4e,Q)Q}, which shows that it is rotationally invariant, so this
gives a second spin multiplet with spin j:

- 1 L] L] .
¥ d)b =~ 3 Q]fz Q_1;2|},0') . (25.5.7)

which is distinguished from |j, ¢} by the fact that instead of Eq. (25.5.3),
we have

Qilj.o)f =0. (25.5.8)

Again using Eqs. (25.5.2)-(25.5.4), we find that these are also normalized
states: .

Vol e = bge, U d'lja) =0. (25.5.9)

It is then easy to show that the states constructed so far form a complete
representation of the supersymmetry algebra. The orthonormality prop-
erty of the Clebsch—-Gordan coefficients allows us to rewrite Eq. (25.5.5)
as

Q1 oy =v2M 3 Cipyy (f +1/2,6 +a;a, a) it 1/2,0 +a). (25.5.10)
+
Also, Eq. (25.5.2) shows that, for any state | ) in the supermultiplet,
Qe Q3Q7,] 1) =2M D e Q4 1), (25.5.11)
b

so Egs. {(25.5.7) and (25.5.3) give
Quljvo)? = ea Qi liso)
b

= 2M ?e@ ; Cy (i £1/2.0+b;b,a) £ 1/2,0 +b}.(25512)
From Egs. (25.5.2), (25.5.3), and (25.5.5} we have
Qqlj £ 1/2,6) = Jmc%j(j;t 1/2,0;a,0 —a) 0 —a), (255.13)
while Eqs. (25.5.5), (25.2.31), and (25.5.7) yield
Qulit1/2.0) = V2M 3 ew [it1/2,05b,0-b) lj,o—b)? . (25.5.14)

Egs. (25.5.3), (25.5.8), (25.5.10), and {25.5.12){25.5.14) give the action of
the Qs and Q*s on all the states of the supermultiplet.
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For j = 0 we have the collapsed supermultiplet: Eqs. (25.5.3), (25.5.8),
(25.5.10), and (25.5.12}-(25.5.14) become

Qu[ﬂs{}}:{}r Q;I0,0}b-—-O,

Q10,0 = 2ZM [1/2,a),  Qa)0,00 = VM Ty ew [1/2,b)

Qa11/2,b) = JZM5510,0), Q}11/2,B) = JZMey 10,0) . 25515

Now suppose that parity is conserved. Recall that the phase of the

supersymmetry generator may be chosen so that the action of the parity
operator on these generators is given by Eq. (25.3.13). Then Q; acting on
Plj, o) is a linear combination of the states PQ,{f, #), which vanish, and
since P|j, o} has the same rotation properties as |7, o}?, it must simply be
proportional to it

Pli,a} = —nlj, 0} . (25.5.16)

" Since P is unitary, n is a phase factor, with 3] = 1. A correspond-
ing argument shows that P|f, &} is proportional to |f,¢}. To find the
proportionality coefficient, we note that

Plj, o) = {ZM)_IPQ; Q-% lj, ) = —n(2pM)! Q_y Qi o)?
= —n(2M) Q4 Qy Q; Q"_,:, [jya)y = —nlj,o).

We can then define states of spin j

+ Lore e
oyt = ﬁ(lj,a) +iljo)l), (25.517)
with definite parity .
PIL.o}yE = din|j,e)* . (25.5.18)

Finally, applying the parity operator to Eq. (25.5.5) and using Eqs. (23.3.13)
and (25.5.16) gives

Plit1/2,6) =— ,-(jilﬁ, o;a, 6—a) S ewQplio—a) .
b

i
— 3 C
M za: 1
Eq. (25.5.12) and the orthonormality property of the Clebsch-Gordan
coefficients then yield

Plit1/2,6)=nljt1/2,0), (25.5.19)

as was to be shown.

We now turn bricfly to the case of extended supersymmetry, with N
supersymmetry generators. As mentioned in the previous section, there
can be no massless particle with a non-vanishing eigenvalue for any central
charge. We can go further and show that the eigenvaiues of the central
charge operators sct a lower bound on the mass of any supermultiplet.
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Because the central charges Z,; and Z;, commute with each other and with
P,, one-particle states can be chosen to be eigenstates of all the central
charges as well as of P,, and because the central charges commute with
the Qg and Q;,, all states in a supermultiplet have the same eigenvalues.

To derive an inequality relating the mass M of a supermultiplet and
the eigenvalues of the central charges on this multiplet, we use the anti-
commutation relations (25.2.7) and (25.2.8) to write

Z {(Qar - bz €ab UPSQ;::) ) (Q;r - Z Zac U;;ch) }
= 8NP° —2Tr (Z Ut + Uz*) ’ (25.5.20)

where U, is an arbitrary N x N unifary matrix. The left-hand side is
a positive-definite operator, so by letting this act on the states of the
supermultiplet at rest, we find

1
- f ¥
M > 4NTI(ZU +UZ ) (25.5.21)

where now Z,, denotes the values of the central charges for the super-
multiplet of mass M. The polar decomposition theorem telis us that any
square matrix Z may be written as H V, where T is a positive Hermitian
matrix and ¥V is unitary. We can obtain a useful inequality (which is in
fact optimal} by setting U/ = V, in which case Eq. (25.5.21) becomes

1 1
—_ - ¥
Mz 2NTrH ZNTr NYAVAS (25.5.22)

States for which M equals the minimum value allowed by this inequality
are known as BPS states, by analogy with the Bogomoi'nyi-Prasad-
Sommerfeld magnetic monopole configurations discussed in Section 23.3,
whose mass also equals a lower bound on general monopole masses.
In fact, this is more than an analogy; we will see in Section 27.9 that
the lower bound on monopole masses in gauge theories with extended
supersymmetry is a special case of the lower bound (25.5.22).

As we can see from this derivation of Eq. (25.5.22), for BPS supermulti-
plets the operator Qur = ¥4 €2 UrsQy, gives zero when acting on any state
of a supermultiplet, so there are only N independent helicity-towering op-
erators Q,:l /nr and only N independent helicity-raising operators Qi 1/2r
just as in the case of massless supermultiplets. This leads to smaller
supermultiplets than would be found in the general case.

For instance, for N = 2 supersymmetry the central charge is given by a
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single complex number**

_ 0 VAT
Z = ( 75 0 ) . (25.5.23)
The inequality (25.5.22) here reads
M >1{Z2)/2. (25.5.24)

Where M = |Z12|/2, the helicity contents of the massive particle super-
multiplets are the same as for those of zero mass: there are gauge su-
~permultiplets, consisting of one particle of spin 1, an SU(2) R-symmetry
doublet of spin 1/2, and one particle of spin ¢ (the other helicity zero state
belonging to the spin one particle), and hypermultiplets, consisting of one
particle of spin 1/2 and an SU(2) R-symmetry doublet of spin 0. These
arc sometimes called ‘short’ supermultiplets, to distinguish them from the
larger supermultiplets encountered when M > |Z15]/2.

Problems

1. Find a set of 2 x 2 matrices that form a graded Lie algebra containing
fermionic as well as bosonic generators.

2. Following the approach of Haag, Lopuszanski, and Scohnius, derive
the form of the most general symmetry superalgebra in 2 + 1 space-
time dimensions. (Hint: With the generators of the Lorentz group
in 2 + 1 spacetime dimensions labelled 4; = —iJig, A2 = —iJa,
A; = Jps, the commutation relations of the Poincaré algebra are
[4i ,A;] = i3 €ixAy, so the representations of the homogeneous
Lorentz group in 2 + 1 spacetime dimensions are labelled with a
single positive integer or half-integer A.} Assume that the conditions
for the Coleman—Mandula theorem are satisfied here.

3. Suppose that there were no massless particles with helicity greater
than +3/2 or less than —3/2. Find the most general massless
particle multiplets for N = 6 extended supersymmetry and {using
CPT symmetry) N = 5 extended supersymmetry. What does the
comparison between the particle content you find suggest about
these two extended supersymmetries?

4. What are the possible parities of the particles in the short supermul-
tiplets of extended N = 2 supersymmetry?

** In some articles on N = 2 supersymmetry the central charge Z is what we would call

Z /2.2
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26

Supersymmetric Field Theories

Now we know the structure of the most general supersymmetry algebras,
and we have seen how to work out the implications of this symmetry for
the particle spectrum. In order to learn what supersymmetry has to say
about particle interactions, we need to see how to construct supersymmet-
ric field theories.

Originally the construction of field supermultiplets was dene directly,
by a repeated use of the Jacobi identities, much as in the construction of
supermultiplets of one-particle states in Sections 254 and 23.5. Section
26.1 presents one example of this technique, used here to construct su-
permultiplets containing only scalar and Dirac fields. Fortunately there
is an easier technique, invented by Salam and Strathdee,! in which su-
permultiplets of fields are gathered into ‘superfields,” which depend on
fermionic coordinates as well as on the usual four coordinates of space-
time. Superfields are introduced in Section 26.2, and used to construct
supersymmetric field theories and to study some of their consequences
in Sections 26.3-26.8. This chapter will be concerned only with N = 1
supersymmetry, where the superfield formalism has been chiefly useful. At
the end of the next chapter we will construct theories with N-extended
supersymmetry by imposing the U(N) R-symmetry on theories of N =1
superfields.

26.1 Direct Construction of Field Supermultiplets

To illustrate the direct construction of a field supermultiplet, we will
consider fields that can destroy the particles belonging to the simplest
supermultiplet of arbitrary mass discussed in Section 25.5: two spinless
particles and one particle of spin 1/2. We saw in Eq. (25.5.15) that the
one-particle zero spin state [0,0} is annihilated by the supersymmetry
generator Q, but not by Q, so we would expect the scalar field ¢(x) that
creates this particle from the vacuum (which is assumed to be annihilated
by all supersymmetry generators) to commute with Q, but not with Q.

53
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That s,
[Qa, ¢(x)] =0, (26.1.1)

— 1) eaiQp, p(x)l = La(x) £ 0. - (26.1.2)
b

The antisymmetric 2 X 2 matrix eqp (with €131 /2 = +1) is introduced here
because it is 37, e,4Q; that transforms under the homogeneous Lorentz
group according to the (1/2,0) representation. It follows that #,{x) is a
two-component spinor field that also belongs to the (1/2,0) representation
of the homogeneous Lorentz group.*

From Egs. (26.1.1)+(26.1.2) and the anticommutation relation (25.2.31),
we find

{Qb E] Ea} = _!Z eﬂl_i‘[{Qb ¥ Q.:} + ﬁi"{X]] = Zi(ape)bd [P,u » ¢} L]

and so
{Qu, Lalx)} = —2c ehadudb(x) . (26.1.3)
On the other hand, Eq. (26.1.2) and the anticornmutation relation (25.2.32)

gives

~i)eafQi, L} = (Qf, [QF, 91} = —{Q5, [Q. 61} =13 en{Ql, L)),

$0 3. e.,{Qy, {c} is antisymmetric, and therefore proporticnal to the
antisymmetric 2 X 2 matrix egp: :

{Qy, La(X)} = 28 F(x) . (26.1.4)

Lorentz invariance requires that the coefficient #(x) is a scalar field.

We must now go one step further, and calculate the commutators of the
supersymmetry generators with #(x). Using Eqgs. (26.1.4), (26.1.2), and
(25.2.32), we have :

6&5 [Q; ’ ,ﬁ'] = %I[st {Q;: Cd}] = ‘zl‘l[{Q; s ca}! Q;] = --5“ [Q!:’ 9‘] .
By taking a = b 5 ¢, we find that this commutator vanishes:

QL Fx) =0. (26.L5)

* At this point we are not assuming anything about the masses or interactions of the
particles described by these fields, but it may be noted that, as explained in Section 5.9,
a (1/2,0} free field can create massless particles only of helicity +1/2, in agreement
with the result {25.5.15) that the massless spinless one-particle state [0,0} that is
annihilated by @, is in a supermultiplet with a state of helicity +1/2.
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Finally, using Eqs. (26.1.4), (25.2.31), and (26.1.3}, we have
8 [Qc, F1 = 4lQe, {Q}, La}] = Li{Qc. Q) Lal — $Q%, {Qc. Lo}l
= "_Ufh a,uga + i{o"e)cq [QI: s au‘ﬂ
= — ¥ dula+ Y eba{0¥e)ea Oula -
d

Contracting with ., this becomes _
[Qe, F(x)] = — 3 0% ulalx) - (26.1.6)
a
Eqs. {26.1.1)-(26.1.6) show that the fields éﬁ(x), La(x), and F{x) furnish a

complete representation of the supersymmetry algebra. These fields are not
Hermitian, so their complex conjugates furnish another supermultiplet:

[Qr, ¢ (x)] =0, (26.1.7)

—iY " e[ Qp, ¢TI = L) (26.1.8)
b

(Qr, La(x)} = Aes")andud™ (X)), (26.1.9)

—~i{Qp, {5 (X)} = 26, F"(x}, (26.1.10)

[Qc, #'{(x)] =0, (26.1.11)

[Q, F' ()] =3 ok dula(x). (26.1.12)

We can express these commutation and anticommutation relations as
transformation rales under a supersymmetry transformation, which shifts
any bosonic or fermionic field operator &(x) by the infinitesimal amount

S0(x) = 2—(e;Qa+eaQ;),m(x)] , (26.1.13)

where €, is an infinitesimal fermionic ¢-number spinor. (Because ¢q
and ¢, anticommute with Q, and Q;, the quantity £;Qq + €:Q;, is anti-
Hermitian, so Eq. (26.1.13) gives (50)' = 86"} The commutation and
anticommutation rules (26.1.1}{26.1.6) are equivalent to the transforma-
tion rules

Sp(x)=—i»  eaea{p(x), (26.1.14)
ab

3a(x) = ~23 €} (0¥ edpe Fup(x) — 20 F(x) , (26.1.15)
2]

SF ) =—3 eh ol dLalx) . (26.1.16)
ab

This may be put into a four-component Dirac notation by introducing
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an infinitesimal, Majorana,** four-component, spinor transformation
parameter

= __7 €n
2= :( o ) , (26.1.17)
so that Eq. (26.1.13) becomes '

30(x) = [2Q, O(x)] . (26.1.18)

The transformation rules (26.1.14)~(26.1.16) and their complex conju-
gates may be put into a convenient covariant form by introducing a set
of real basonic fields 4, B, F, and G, defined by

A+1'B=¢ F—iG
2T T m

and a four-component Majorana spinor yp, defined by

=L La

Let’s also recall the relation between the 4 x 4 Dirac matiices and the
2 x 2 matrices o,
0 —i ea;fe
Yu=1 . .
ig, 0

The transformation rules now take the form

=7, (26.1.19)

A =ayp, 0B =—iagysy,
dy = Gu(A + iysByy o+ (F — iys G, (26.1.21)
OF = gyHd,p, 66 = —igysy* d,p

A direct but tedicus calculation shows that this transformation leaves

™ With the phase convention we will be using here, a Majorana four-component spinor
is formed from a (1,/2,0} two-component spinor u, as

(=)

Eq. (26.1.17) fits this definition, with u = —je. Equivalently, a Majerana spinor can be
formed from 2 two-component (0, 1/2} spinor v, as

An example is provided by Eq. {25.2.34). Properties of Majorana spinors are considered
in detail in the appendix to this chapter.
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invariant the action
I = [ d'x {— 10,434 — 10,B "B — Lpyd,p
+ UF? + @)+ m [FA+GB — |Py]
+g[F(4% + BY) + 26GAB — (4 + irsByp| } . (26.1.22)

Egs. {26.1.21) and (26.1.22) agree with the transformation rules (24.2.8)
and Lagrangian density (24.2.9) found in the original work of Wess and
Zumino. In the next three sections we will explore a convenient technique
for checking the supersymmetry of Eq. (26.1.22) and for deriving more
general supersymmetric actions.

Where the fermion field y(x) satisfies the free-field Dirac equation
{y"0, + m}y = 0, these transformation rules show that F +m4 and G+mB
are snvariant, and therefore commute with Q, and Q, and hence also
with P,. This does not prove that F = —mA and G = —mB, but without
changing any of the commutation and anticommutation rules (26.1.1)-
(26.1.6) or transformation rules (26.1.21), we can redefine the fields F and
G by subtracting the constants F+mA and B+mG, respectively, so that the
new fields F and G are given by F = —mA and G = —mB, and therefore
F# = —m¢". This is not true in the presence of interactions, but even in
the interacting case % (x), F(x), and G(x) are typically auxiliary fields that
can be expressed in terms of the other fields of the supermultiplet, as is
the case for the action (26.1.22).

262 General Superfields

It is straightforward to construct supermultiplets of fields by the direct
technique illustrated in the previous-section, but in order to construct
supersymmetric actions we also need to know how te multiply field
supermultiplets to make other supermultiplets. A great deal of work can
be saved by using a formalism invented by Salam and Strathdee,! in which
the fields in any supermultiplet are assembled into a single superfield.
Just as the four-momentum operators P, are defined as the generators
of translations of the ordinary spacetime coordinates x*, the four super-
symmetry generators Q, and Q; may be regarded as the pgenerators of
transtations of four fermionic c-number superspace coordinates, which
anticommute with each other and with fermionic fields but commute with
the x# and all bosonic fields. We aim at constructing Lorentz-invariant La-
grangian densities, se it will be convenient to adopt the four-component
Dirac formalism described in Section 25.2. The supersymmetry gen-
erators are gathered into a four-component Majorana spinor ), and
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correspondingly, the superspace coordinates are gathered into another
four-component Majorana spinor 4,. {Various properties of Majorana
spinors are outlined in the appendix to this chapter.) The supersym-
metry generators have non-vanishing anticommutators, so we cannot take
them as simply proportional to the supercoordinate translation opera-
tors £/00,. Instead, Salam and Strathdee found that the supersymmetry
algebra would be satisfied if we suppose that the commutator or anticom-
mutator of the supersymmetry generator ¢ with any bosonic or fermionic
superfield S{x,#) is

[Q, 8} =i2§, (26.2.1)
where 2 is the superspace differential operator
d 8
R ta_
=g TV g (26.2.2)

{As usual 8 = 8. All derivatives with respect to fermionic c-number
variables should be understood as lefi-derivatives, calculated by moving
the variable to the left of any expression before differentiating with respect
to it.) For Majorana spinors & = §Tyse, with the 4 % 4 matrix ¢ given by
Eq. (26.A.3), so Eq. (26.2.1) may be expressed more explicitly as

d i
3, = X?:{?selw TN + ;vﬁyﬂy R (26.2.3)
Likewise,
2 = ZP: Dy (ys€)yp = b, ;(?s 1M Oy 5 - (26.2.4)
1t is straightforward to calculate that
= é 3]
{2., By} = (s ey s g PR B (26.2.5)

But Eq. (5.4.35) shows that. Yo = —€y,€"", where € is the matrix
¢ = —vs¢, 30 both terms on the right-hand side of Eq. (26.2.5) are equal,
and therefore '

— d
— b 9 .
(9.2} =2t = (26.2.6)
Eqgs. (26.2.6) and (26.2.1) together with the generalized Jacobi identities
(25.1.5) show that
[{Qu: Op}, ST = {24, Bg} § = 29/50,8 = -204[P,, 81, (262.7)

in agreement with the anticommutation relation (25.2.36).
It is often more convenient to express the commutation and anti-
commutation relations {26.2.1) as transformation rules under infinitesimal
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supersymmetry transformations. Combining Eqs. (26.1.18), (26.2.1), and
(26.2.2} shows that a supersymmetry transformation with infinitesimal
Majorana spinor parameter « changes a superfield §(x,8) by an amount

asy\ 08
= (& =—{i— & pH — 2
oS =(&2)§ (ﬂ'. ag)—l-(a'p &) pprl (26.2.8)

Recall that 8/88 here acts on the left of any expression. In particular,
where M is any linear combination of the matrices I, ysyy, and ys for
which 0M#0 does not vanish, we have M9 =8"M &, so

% (DMB) = 2MO . (26.2.9)

The components of ¢ anticommaute, so any product of their components
vanishes if two of them are the same compomnent. But & has only four
components, so any function of @ has a power series that terminates with
its quartic term. Furthermore, as shown in the appendix to this chapter, a
product of two 8s is proportional to a linear combination of (00), (By,ys0),
and (Bys8); a product of three 0s is proportional to (8ys0)0; and a product
of four 8s is proportional to (fys8)?. The most general function of x* and
# may therefore be expressed as

0001 = Co— 1(Brs00) — £ (B950) MG — 5 (20) M0
+ %(E ys 9 0} VA(x) — i(B ys 8) (9 [A{x) + %_ ﬂw(x)])

— %(é ¥s 9)2 (D(x) + %DC(x]) - (26.2.10}

(The terms ‘dew and {0C(x) are separated from i(x) and D{x), respect-
~ jvely, for later convenience.) If S(x,#) is a scalar then C{x), M(x}, N(x),
and D(x) are scalar (or pseudoscalar) fields; w(x) and A(x) are four-
component spinor fields; and V#(x} is a vector field. Also, using the
reality properties of bilinear products of Majorana fields given in the
appendix to this chapter, we see that if $(x,8) is real, then C(x)}, M{x),
N{x), V¥(x), and D(x) are all real, while w(x) and i(x) are Majorana
spinors satisfying the phase convention s” = —feyss.

Now we must work out the supersymmetry transformation properties of
the component fields in Eq. (26.2.10). Applying Eqs. (26.2.8) and (26.2.9)
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to the expansion (26.2.10) gives
- ¢C
48 = (ay"8) o
= 0
+itarso) = i@ (g )

Lo i_ - oM
+ i (Fps) M — 7 (&y*8} (Grsﬁ) Fyo

1 — ~ N

- —_ - I“ il

+ (N 3 (Fy*8) (Bﬂ) o
B Y+ ) (Bren ) 2
i(&ysy, O} V' + Z(crw @) (vaﬁ) e

+2i (8ys€) (D14 + +-deo)) +i (v30) (@l2 + } P))
—i(@y0) (Bys0) (P0u2 + § gl + (By50) (ays0) [D + 10T .

We need to put each term in the standard form of Eq. (26.2.10). For this
purpose, we note that: Eq. (26.A.9) gives

(6 0)(Bysduw) = — H{BO)E Frsw)— HBysy' O)(& Prve) — 1(BysB)(@ doo) ;
Eq. (26.A.16) gives
(@*8)(00) = —(ay*ys8)(Bys) ;
Eg. (26.A.17) gives
@y 0)(Bysy,0) = —(@y"y, 0)(Bysh) ;
Eq. (26.A.9) gives
(@pst)B[A+ § for)) = —%(fiﬂ}{ﬁ?s[»lJr Laol) + LOysy 8)ayali+ § o))
—1(Ors@A + | Fo3]) ;
and Eq. {26.A.19) gives
(@) BysT) B0, + § dew]} = — 1@ Pys[A+ } Fool)(Bys0)? .

Using these relations and rearranging terms in order of increasing numbers
of & factors, we have

08 = i{@ysw) + EEC +iysM + N — iys ¥18)
4 (06) @ysLi+ fool) + 4 (Bys6) (@li+ fol)

+ i (f_)}'s'p“ﬂ) (@, A) + i (5?5}"'3) (&d, w)
+1 (By50) (&l~igM — 5N —id¥ +s(D + 10C))9)

— 4 (Eysﬁ)z (@ysldi + j0a]) ,
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or, using the symmetry pr;apcrty (26.A.7),
58 = ifaysw)+ (31— §C +ivsM + N — ips Pl
— 13 (00) (aysti+ fol) + 4 (Br50) @i+ fol)
+ 11 (Frs70) () + 4i (By52°0) (@2v0)
+1 (Brs8) (BLgM —ys@N —idy Py + (D + 100 )
1 (9p58)2 (ays[fa+ {0w]) .

If we now compare this with the terms up to second order in g in the
expansion (26.2.10), we find the transformation rules:

8C =i (E]}sw) , (26.2.11)
b = (—iys PC — M + iysN+ ¥)a, (26.2.12)
oM = —(a[i+ foi) » (26.2.13)
SN =i (&ys [+ ol , (26.2.14)
8V, = (a9, 2) + (80,) . (26.2.15)

The terms of third and fourth order in & give
510+ 4 fool = 3] —@M —~iys N + 2, Py +iys (D + 40C ) |,
5D + 40C) =i {&ys(2 + {00} -

Combining the latter two transformation rules with the transformation

rules (26.2.11) and (26.2.12) for C and e yields much simpler transforma-
tion rules for 2 and D:

51 = (%[aM v, yﬂ} + iysD) x, (26.2.16)

oD =i(ays #4) - (26.2.17)

It is to achieve this simplification that the terms } Jo and ;0C were
separated from A and D in the expansion (26.2.10).

The whole point of the superfield formalism is to simplify the task of
making supermultiplets out of other supermultiplets. Given two super-
fields §; and S; that both satisfy the transformation rule (26.2.8), their
[product S = 5,5, satisfies

a8 = [(&Q:I, SISQ] = {551}52 +$1(5S2}
= (@2)8:)8: +5: ({a 2)}5, = (29§, (26.2.18)
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and 1s therefore also a superfield. A straightforward calculation using
Eqgs. (26.A.7), (26.A.16), {26.A.18), and (26.A.19} gives its components as

C=0CCy, | (26.2.19)
w = Ciws + Crooy (26.2.20)
M =CiMy+ CM 4+ i (@i ys ) (26.2.21)
N=CN:+CN - @), (26.2.22)
VE = CVE + G %i(cu_ﬁsy”wz) , (26.2.23)
A=Cila + QoA — ey Cy — yPwid € + LiFipscr + L Paysan

+ 3Ny —iysMy) wa + (N2 ~ iysM2) wy (26.2.24)
D= —0,CL0%Cq + C1 Dy + Coll + MMy + NN

~(@T 2 + § sl — (@31t + & foon]) — Vi Vf (26.2.25)

It is trivial that linear combinations of superfields are superfields, in the
same sense, and that spacetime derivatives and complex conjugates of
superfields are superfields. But multiplying a superfield by some function
of 8 or differentiating it with respect to # does not in general yield a
superfield. (For instance, 9 itself is evidently not a superfield, because 8
is a fermionic ¢-number and therefore commutes with &Q, while 20 # 0.)
There is, however, a way of combining a derivative of a superfield with
respect to 0 and multiplying it by a factor & which does yield another

superfield.
Consider the superspace differential operator @, defined by
¢ d
P=—— — “8"““—, 2.2-26
V=g 7 O (26:2.26)
or more explicitly
D, = Z(yge]m, — Z Lo, @ (26.2.27}

The only difference between the deﬁmtmns of & and 2 is a change of sign
of the terms involving the spacetime derivative. In consequence of this
change of sign, in the anticommutator of Py with 2,, instead of getting
two equal terms like those in Eq. (26.2.5} with the same sign, we get them
with opposite signs, so that they cancel;

(Dg, 2.} =0. (26.2.28)
Since o is fermionic, it follows that (&2) commutes with @, so if S(x, #)
is a superfield, then

09258 = —il[(&Q), 25S] = —iDp[(Q)}, 5] = Dp(a2)S = (ED)F,S ,
(26.2.29)
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so that 248 is also a superfietd. Thus an arbitrary polynomial function of
superfields S and their superderivatives @S, #pP,S, €fc. is also a superfield.

1t is not necessary to add here that in constructing a superfield out of
other superfields we can also include their spacetime derivatives, because
these can bec obtained from second superderivatives. Since the only
difference between %@ and Zp is in the sign of the term involving d,, the
anticommutators of the @s are the same as those of the s, except for 2
change of sign:

- P
(22,95} = -2l 55 (26.2.30)
Now let us consider how to construct a supersymmetric action out of
superfields. There is no such thing as a supersymmetric Lagrangian den-
sity, because the anticommutation rclation (26.2.6) shows that if 8. =0
then % must be a constant. Even if the Lagrangian density is not super-
symmetric, the action will still be supersymmetric if 4.£(x) is a derivative,
which would not contribute to & [ % d*x. In general, the Lagrangian den-
sity & can be writlen as a sum of lerms, cach of which js some component
of a superfield that is constructed out of clementary superficlds and their
superderivatives. Inspection of the transformation rules (26.2.11)-{26.2.17)
for the individual components shows that in the absence of any special
conditions on a general superfietd, the enly component of such a super-
field whose variation is a derivative is the D-component. Also, for the
D-component of any superfield to be a scalar, the superficld itself must be
a scatsr. Therefore, unless there are special conditions on the individual
superfields from which the Lagrangian density is constructed, a supersym-
metric action can only be the integral of the D-term of a scalar superfield
Al

I= f dxTAlp . (26.2.31)

But in fact no action of this sort would be physically safisfactory without
special conditions on the superfields from which it is constructed. For
a general superfield S(x,#), the only sort of supersymmetric kinematic
action Ip that is bilinear in § and §° and involves no more than two
derivatives of the component fields is of the form

fooc [dix[s"s],. (262.32)
From Eq. (26.2.25), we see that §° S has the D-component
[s°5] = —8,C" 8" C - H@youm) + H{(@ud) 7o)
+C'D+D°C~ (01) - (1o}
+M"M+N'N—V, V", (26.2.33)
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The terms quadratic in C or @ look promising as the kinematic La-
grangians for massless fields of spins zero and 1 /2; the final three terms
are harmless; but the terms involving D or A have the disastrous effect in
path integrals of constraining € and @ to vanish. Fortunately, as we shall
see in the following section, there are constrained superfields from which
we can construct physically sensible actions. The introduction of these
constrained superfields will also open up ways of constructing supersym-
metric terms in the action that are not the D-components of functions of
superfields.

If parity is conserved, then the space inversion properties of the com-
ponent fields of a superfield will be related by supersymmetry. To
work out this relation, we apply the parity operator P to the com-
mutation/anticoramutation relation (26.2.1) and use the transformation
property (25.3.16) of supersymmetry generators, which gives

i [Q, P15 (x, 8) p} = 2P 'S(x,8)P, (26.2.34)
The solution of Eq. (26.2.34) for a scalar supetfield is of the form
PIS(x, 8)P = 5 $(Apx, —if0)  (26.2.35)

where # is some phase (the intrinsic parity of the superfield) and Apx =
(—x%,+x%). (To check that Eq. (26.2.35) satisfies Eq. (26.2.34), note that
Eq. (26.2.35) gives the lefi-hand side of Eq. (26.2.34) as

. ¢ Ee s a B :
inf (“é{tiﬁﬂ_} + ‘)ﬁ(_rﬁg}ﬁ:)c)_ﬂ) S(Apx,0) = n 28{Apx,—if0),

iIn agreement with what Eq. (26.2.35) gives for the right-hand side of
Eq. (26.2.34)) Using the expansion (26.2.10) in Eq. (26.2.35) then gives
the space inversion properties of the component fields:

PTIC(x)P =5 C(Apx),

P~lwo(x} P = —iy f w(Apx),

P M(x)P = —y M(Apx),

P IN(x)P = g N(Apx), {26.2.36)

PV ) P = —n (Ap ), V" (Apx),

PLAx)P =iy Bi(Apx),

P=1D(x)P = 4 D(Apx) .

* k¥

The general real superfield § involves four real spinless fields C, M, N,
and D, plus one real four-vector field V., for a total of eight independent
bosonic field components. For comparison, there aze two four-compenent
Majorana spinor fields o and 4, also for a total of eight independent
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field components. The equality of the numbers of independent bosonic
and fermionic field components holds in general not only for the un-
constrained general superfield studied in this section, but also for all
superfields obtained from the gemeral superfield by imposing supersym-
metric constraints, such as the chiral and other constrained superfields
discussed in the next section, _

To see this in general, suppose that we have a representation of the
supersymmetry algebra provided by Np linearly independent real bosonic
field operators b,(x) and N linearly independent fermionic field operators
fr(x). We will assume that these ficlds satisfy only non-trivial field equa-
tions, so thal no linear combination of the b, or fr with non-vanishing
coefficients satisfies a homogeneous linear field equation. Consider a real
supersymmetry generator Q(u), defined as

o) = (1g) = (2}, (26.2.37)

where u is some ordinary numerical Majorana spinor {#ot an anticom-
muting c-number). (For extended supersymmetry, in place of @, we could
use any one of the O, say (1) In order for the b, and f; to furnish a
representation of the supersymmetry algebra, we must have

[QG), byl = 1) quld) fr, (26.2.38)
k
{Q), fe} =2 pal@) b, (26.2.39)

for some matrix differential operators ¢(&) and p(d). Taking the anticom-
mutator of Eq. (26.2.38) and the commutator of Eq. {26.2.39) with Q(x)
gives

[0, b} =:Y (4@ p(@))  bm> (262.40)
(0%, 1) =iy (pd)a(@),, fo. (26.241)
¢

The anticommutation relation (25.2.36) or {25.2.38) gives the square of
Qtw) as 3% u) = —iP, (ﬁy“u). Hence the square matrices p{dig(d) and
g{6)p(#) must both be non-singular, because if there were any non-
vanishing coefficients ¢,(@) or di{d) for which 37, ca(@)q(@)p(PN)nm = 0
ot ¥ de(@p(d)g(d)er = O then by, or fi would satisfy the homogeneous
linear field equations

(ﬁy“u) 3,3 cn(@)by =0 or (ﬁy#u) 9 S d@)fx =0,
n k

in contradiction with our assumption that the fields do not satisfy such
field equations. In order for gp to be non-singular we must have Ny > N,
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and in order for pg to be non-singular we must have Np = Ny, so we
can conclude that Ny = Nr. Also the square matrices ¢ and p must both
be non-singular, so the complex conjugate of Eq. (26.2.38) tells us that
f* = g*~'qf, so that the number of independent fermion fields is N
rather than 2Np, and is therefore equal to the number N of independent
boson fields, as was to be shown.

26.3 Chiral and Linear Superfields

In the previous section we found that the presence of D and 2 components
in a general superfield stood in the way of using such superfields in a
physically satisfactory Lagrangian density. Suppose then that we consider
a superfield with

A=D=0. (26.3.1)

Are these conditions preserved by supersymmetry transformations? Ac-
cording to Egs. (26.2.17) and (26.2.16), the condition D = @ is invariant
if A = 0, but the condition A = 0 is only invariant if we also impose the
condition that 8,V, — &,V = 0, which requires that ¥, be a pure gauge:

Vix) = ,Z(x). (26.3.2)

Eq. (26.2.15) shows that, with 2 = 0, this condition ts preserved by
a supersymmetry transformation. We have thus arrived at a reduced
superfield, subject to the constraints {26.3.1) and (26.3.2), with component
fields having the transformation properties

5(3=i(&y5w), (26.3.3)
bw = (—i"ys §C ~ M + iysN +az) %, (26.3.4)
5M=—@wg, (26.3.5)
SN =i (&ys am) , (26.3.6)
3Z = (am}. (26.3.7)

Comparing with Eq. (26.1.21), we see that this is the same as the su-
permultiplet constructed by direct methods in Section 26.1, with the
identifications

C=A, w=—ipsp, M=G, N=-F, Z=B. (263.8)
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A superfield satisfying the conditiens (26.3.1} and (26.3.2) is said to be
chiral.

To distinguish a chiral superfield X (x,#) from the general superfield
S{x,8) of the previous section, we will use 4, B, ¥, G, and y for its
components, instead of C, M, N, Z, and «. By using Eqs. {26.3.1),
(26.3.2), and (26.3.8) in Eq. (26.2.10), we find the form of a general chiral
superfield to be

X{x,8) = A(x)— (9 w(x]) + %(B e)F(x) - %(D ¥s U)G(x)
42 (0757,0) 2Bl + 5 (0350 (D5 ot
—% (095 0)2DA(x) : (26.3.9)

(We could just as well have taken C = —B, w = p, M = —F, N = —Q,
and Z = 4. We make the identifications {26.3.8) because, as we see here,
for a scalar superfield they are consistent with the usual convention that
A and F are scalars while B and G are pseudoscalars.)

The chiral superficld {26.3.9) may be further decomposed, as

X(x,0) = -7 [00x,0) + B, 0)] (26.3.10)
wl"lere

05.0) = 903) ~ 2{0p1 () + #00 (3 (572) 0) 1§ (Brsn.0) 0t

[ay ) ] 2
__ﬁ(aysa) (8 pwex)) — ¢ (8v56) 0900, (263.11)

2)0) - 3 (Brsns) i

C
B(x.6) = §ix) = V2 (Boa)) + F0 (0 {25
50

1 /. 1
+ﬁ(eyﬁﬂ) (B #wr(x) — ?59) Od(x),  (263.12)
with component fields defined by
A+iB (1+y5) F—iG
= , ===y, F="p-, 26.3.
¢ = A 5 N7 (26.3.13)

* Some authors use the term ‘chiral” to deseribe a special case of such superfields,
introduced below, which are here called left-chiral or right-chiral. Cur use here of the
term chiral may at first seem strange, because it has no counterpart for Dirac spinors.
Any Dirac spinot is the sum of Dirac spinors that are left-chiral and right-chiral, in
the sensc that they are respectively propertional to 1+ ys and 1 — ys, so no special
term is needed for such sums of Dirac spinors. In contrast, it is only superficlds
satisfying Eqs. (26.3.1) and (26.3.2} that can be expressed as the sum of a left-chiral
and a right-chiral superfield.



70 26 Supersymmetric Field Theories

~ A—iB _lu—y:,) »  F4iG
=, ={—2p, _- 26.3.14
¢ N VR ( 7 v _ 7 ( }
The component fields of either ® or & furnish complete representations
of the supersymmetry algebra:

Sypr = 28,0 Y* up + J2F oy, (26.3.15)
3F = \2(aL fyr) . (26.3.16)
8¢ = v2(FmwL) | (26.3.17)
Spr = V20,7 ap + 2 F ag , {26.3.18)
8F = 2 (@ Pur) . (26.3.19)
56 = i(aTyr) (26.3.20)

where as usual

B 1+?5) _ 1""?5)
D!L—( 2 X, D:R—( 3 [+ 2

and likewise for 8. A superfield of the form (26.3.11) or (26.3.12) is known
as left-chiral or right-chiral, respectively. In the special case where a chiral
superfield X(x, 8} is real, its left-chiral and right-chiral parts ® and & are
complex conjugates, so that ¢ = ¢*, & = ", and y is a Majorana field.
However, if we do not require X{(x,&) to be real then in general there
is no relation between @ and ®; it is even possible that one of the two
vanishes.

The component fields of the superfield @ include two complex bosonic
components ¢ and %, or four independent real bosonic components,
and one Majorana fermion field v, which has four independent fermionic
components. This is another example of the general result, derived at
the end of the previous section, that any set of fields that furnish a
representation of the supersymmetry algebra must have an equal number
of independent bosonic and fermionic components.

We can use Eqs. (26.A.5), (26.A.17), and (26.A.18) to rewrite Egs. (26.3.11)
and {26.3.12) in a form that clarifies the way that these superfields depend
on &, and Og:

(x,0) = $(x) — VI(Blewe(x)) + Fx)(0fe ), (26321)

B(x,6) = x-) + V2(0Fe wr(x-)) ~ F(x_)(0Fe HR) . (263.22)
where
xf =xtx %(&?5}"”9) =x"+ (H}ey“ﬂ[,) . (26.3.23)
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The expansions of ¢(x,) and ¢{x_) in powers of x* — xk terminate
with quadratic terms, the expansions of wr r(xs) terminate with linear
terms, while the expansions of %(x.) and #(x._) terminate at zeroth
order, because all higher terms make contributions in Eqs. (26.3.21) and
(26.3.21) that contain three or more factors of #; or 8z and therefore
vanish. For the same reason, it is easy to see that any superfield that
depends only on 8 and x"_:_ but not otherwise on 8p must take the form
(26.3.21), and any superficld that depends only on 8g and x£ but not
otherwise on 0 must take the form (26.3.22).

We have seen that for a superfield to be left-chiral or right-chiral is
entirely a matter of what the superfield is allowed to depend on. It follows
immediately that any function of left~chiral superfields (or of right-chiral
superfields ), but not their complex conjugates or spacetime derivatives, is a
left-(or right-)chiral superfield. This can also be shown in a more formal
way. Because @(x, ) depends on 8z only through its dependence on x4,
and ®(x, 8) depends on ;. only through its dependence on x_, they satisfy
the conditions

Drae® =G, B =0, {26.3.24)

where @ and @y, are the right- and left-handed parts of the superderiva-
tive (26.2.26):

— 1— Y5 3 e 0 _ful d
0= |(-52) 9] - ¥ s g = (P 26329

2
L [f1tys - 9 ugy O
Do = [( . )@L - +Zﬁjeaﬁ g ~ 0Nz (26329

for which

Conversely, if a superfield @ satisfies Zg® = O it is left-chiral, and if it
satisfies 2;® = 0 it is right-chiral. Any function f(®) of superfields ¥,
that all satisfy Zgd, == 0 or all satisfy 2, ®, = 0 will satisfy Prf(P) =0
or Pf(®) = 0, and hence be left-chiral or right-chiral, respectively. But
a function of left-chiral and right-chiral superfields is in general not chiral
at all. :

Using the representation (26.3.21) for left-chiral superficlds makes it casy
to work out their multiplication properties. For instance, if ¢ and ¢;
are two left-chiral superfields, then their product & = ©®; is a left-chiral
superfield, with components

¢ =g, (26.3.27)
WL = ¢1yar + ¢2v1L (26.3.28)
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F = 1 Fr+ 01— {plpewa). (26.3.29)

The presence of chiral superfields in a theory opens up an additional
possibility for constructing supersymmetric actions. Inspection of the
transformation rule (26.3.16) shows that a supersymmetry transformation
changes the F-term of a left-chiral superfield @ by a derivative, so that
the integral of the F-term of any left-chiral superfield is supersymmetric.
Thus we can form a supersymmetric action as

I= fd“x [f]f-f—fd“x [f};_+-;—fa‘4x ], . (26.3.30)

where f and K are any left-chiral superficld and general real superfield,
respectively, formed from the elementary superfields.

On what can f and K depend? The function f will be left-chiral 1f it
depends only on left-chiral elementary superfields @y, but not their right-
chiral complex conjugates. On the other hand, the superderivative of a
chiral superfield is not chiral, so we cannot freely include superderivatives
of the @, in f. It is true that, acting on a superfield § that is not left-chiral
(such as one involving complex conjugates of left-chiral superfields), a
pair of right superderivatives gives a left-chiral superfield, because there
are only two independent right superderivatives and they anticommute:

Pro(Prp PR, S) = 0.

However, the #-term of any function f that is constructed in this way
makes a contribution to the action that is the same as that of a D term
of some other composite superfield. Since the s anticommute, the most
general left-chiral superfield formed by acting on a general superfield S
with two ©gs may be expressed in terms of (Zje@g)S. If one of the
left-chiral superfields in the superpotential is of this form, then since each
@g annihilates all the other superfields in the superpotential, we can write
the whole superpotential as [ = (ZRePr)h for some other superfield A
Now,

(2Re @) (0ketr) = —4,

so, apart from spacetime derivatives that do not contribute to the ac-
tion, (@ke@r)h is the coefficient of —(8Feflx)/4 in k. But, again apart
from spacetime derivatives, [f]s is the coefficient of (6]efr) in f, so
[(ZLe@r)H) & equals the coefficient of —(87eflL) (0%ebg)/4 = — (Bys0) /4
in h, and therefore '

f % [(2LeDP Rl = 2 f Px b . (263.31)

Thus we do not need to include terms in f that depend on left-chiral
superfields of the form @pyPg,§ — any such terms will be inchuded
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in the list of all possible D-terms. When f is expressed as a function
* only of elementary left-chiral superfields and not their superderivatives or
spacetime derivatives, it is known as the superpotential.

In contrast, the function K is in general a real scalar function of both
left-chiral superficids @, and their right-chiral complex conjugates @, as
well as their superderivatives and spacetime derivatives, known as the
Kahler potential. (Any right-chiral superfield is the complex conjugate of
a left-chiral superficld, so there is no less of generalily in supposing K
to depend only on left-chiral superficlds and their complex conjugates.)
However, not all Ks obtzined in this way will yield distinct actions. For
one thing, chiral superfields have no D-terms, so two Ks that differ by a
chiral superficld make the same contribution to the action.

- It is also possibie to change the form of K without changing the action
by a partial integration in superspace. The D-term of the superderivative
9,8 of an arbitrary superficld makes ne contributien {o the action because

/ & [F.S]p = 0. (26.3.32)

To see this, recall that

28 7
925 = 3 (%), 35, — ("0 .
B

CC(A_J}CIH

‘SHitES: is.a polynomial at most of fourth order in 8, the first term in 2,8
fi'a polynomial in # at most of third order and therefore cannot have a
‘tion-zero D-term that is not a derivative, while the second term is also a
spacetime derivative, so that its D-term is also a spacetime derivative, and
therefore netther the first nor the second terms in 2,5 can contribute to
the integral in Eq. (26.3.32). Also, the superderivative acts distributively, so
it follows from Eq. {26.3.32) that we can integrate by parts in superspace:
for any two boscomc superfields §; and S,

f 5 [$19,85]p = — / 3% [$:D.811p - (26.3.33)

In Sections 26.4 and 26.8 we will consider in detaif the case where f and
K depend only on elementary superfields, but not their superderivatives
or ordinary derivatives,

We saw in the previous section that in theoties in which parity is
conserved, the cffect of the space inversion operator on a general scalar
superfield is to subject its arguments to the transformations x* — (Ap)*.x"
and # — —Ifif, and perhaps to multiply the superfield by a phase #. Under
these transformations, the arguments xi in Eqgs. (26.3.21) and (26.3.22}
are changed by

= (Apx) £ 1(08ysy“BO) = (Apxz), (263.34)
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while 8, — ~ififg and 8 — —if@;. Thus space inversion takes left-
chiral superfields into right-chiral superfields, and vice-versa. The only
right-handed scalar superfield whose component fields involve creation
and annihilation operators for the same particles that are created and
destroyed by a left-handed scalar superfield @ is & oc ®*, so P QP must
be proportional to ©°. By a suitable choice of phase of @, we can arrange
that this transformation rule reads '

P~1d(x, 6) P = ®"(Apx, —if8). {26.3.35)
In terms of compenent fields, this transformation is

Plg(x)P = ¢"(Apx),
Py (x}P = —ieysfpi(Apx), (263.36)
PlF(x)P = F (Apx).

There is another type of possible symmetry, known as R-sysmmetry, that
ie important in some models of spontaneous supersymmetry breaking
discussed in Section 26.5, and that will also be used in proving no-
" renormalization theorems'in Section 27.6. As mentioned in Section 25.2, in
theories of simple N=1 supersymmetry an R-symmetry is invariance under
a U(1) transformation under which the left-handed components of the
supersymmetry generator (called Q, in Section 25.2) carty a non-vanishing
quantum number, say —1, in which case their adjoints, the right-handed
components of the supersymmetry generator carry the opposite quantum
number +1. Inspection of Eq. (26.2.2) shows that the @ superspace
coordinate has a non-trivial transformation property under R-symmetry
transformations: #, carries R-quanfum number +1 and 8g, which is
proportional to 8}, carries R quantum number —1. In addition, the whole
superfield may be given an R quantum number. If we give a left-chiral
superfield & the R quantum number R, then its scalar component ¢ has
the same R quantum number, while the left-handed spinor component
yr has Ry = Ry - 1, and the auxiliary field # has Ry = Rp —2. In
particular, in order for the superpotential term [ d*x [f]# to conserve R,
the superpotential itself must have Ry = 42, so if f depends on a single
left-chiral superfield @, then it must be proportional to ®¥/%_ To put this
another way, if f(®) is a pure mass term proportional to ®2 then we must
choose Ry = -+1, while if f(®) is a pure interaction term proportional
to @, then we must choose Ry = 2/3. On the other hand, inspection
of Eq. (26.2.10) shows that the D-term of a superfield has the same R
value as the superfield, so in order for the term d*x[¢]p in the action to
conserve R it is only necessary that K have R = 0, which will be the case
if each term in K contains equal numbers of ® and ®° factors, whatever R
value we give to ®. Of course, there is no general reason why R-symmetry
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should be respected by the action, or why it should not be spontancously
broken.

LI 2
There are other ways of constraining superfields, to yield other types
of supermultiplets of fields. Among the more common are the linear

superfieclds. To learn the conditions defining this sort of superfield, we
noie that if § is a general superfield, then we can form a chiral superfield

5 = %(@ @) 5. (26.3.37)

This is a chiral superfield because it can be written as a sum of %(.59 L2:1)8,
which 1s right-chiral, and %(9_?3 2r) S, which is left-chiral. Its components
are given in terms of the components of § by

C'=N, (26.3.38)
w =i+ do, (26.3.39)
M =—3,V*, (26.3.40)
N =D+0OC, (26.3.41)
Vie —,M, (26.3.42)

V=D =0. (26.3.43)

A multiplet § is said to be linear if the superfield §’ defined in this way
vanishes

(@ @) S=0, (26.3.44)
or in terms of its components,
N=M=8,/*=0, l=-—jw, D=-0OC. (26.3.45)

This leaves four independent bosonic fields, C and the three components
of ¥, subject to the condition d,V* = 0, and four independent fermionic
fields, the components of the Majorana four-spinor w. We will see in
Section 26.6 that the current superfields, whose V,-terms are the conserved
currents associated with symmetry transformations, are linear superfields.

264 Renormalizable Theories of Chiral Superfields

We will now work out the details of a general renormalizable theory of
. scalar chiral superfields. This will provide some insight into the impli-
cations of supersymmetry, and the theory we obtain will be part of the
supersymmetric standard mode! to be discussed in Chapter 28.

As discussed in Section 12.2, the Lagrangian density in a renormalizable
theory can coantain only operators with dimensionality {counting powers
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of energy or momentum, with = ¢ = 1) four or less. Eq. (26.2.6) shows
that 2, and hence 8/80, has dimensionality 1/2, so Z, has dimensionality
+1/2, and 8, has dimensionality —1/2. The #- and D-terms of a superfield
S are the coefficients of two or four factors of 8, respectively, so if
the superficld has dimensionality d(S} then its #- and D-terms have
dimensionalities d(#5) = (S) + 1 and d(D%) = 4(§)+ 2. Thus in a
renormalizable theory the functions f and K in Eg. (26.3.30) consist of
operators with dimensionality at most three and two, respectively.

The dimensionality of an elementary scalar superfield ®, is that of an
elementary scalar field, or +1, so in order for each term in the function f
10 have dimensionality three or less, it can contain at most three factors of
&, and/or derivatives 8/8x" and/or pairs of spinor superderivatives 2.
As discussed in the previous section, any left-chiral term in f that involves
superderivatives could be replaced with a term in K, so superderivatives
can be omitted in f. Eq. (26.2.30) shows that spacetime derivatives can
be expressed in terms of superderivatives, so these too can be omitted.
(In any case, Lorentz invariance would rule out terms with one spacetime
derivative, and terms with two detivatives in a renormalizable theory could
involve only one ®, factor, on which these derivatives would have to act,
so such terms would not contribute to the action.) We conclude that f(®)
is at most a cubic polynomial in the @,, without spacetime derivatives or
superderivatives, '

The same dimensional analysis shows that in a renormalizable theory
K -is at most a quadratic function of @, and @}, without derivatives.
But any term in K{{,®") that involves only @, or only @, would be
a chiral superfield, and chiral superfields by definition have nc D-terms,
so [K(®,%)]p receives contributions only from terms in K(®, @") that
involve both @, and @, Thus K{(®,®") must be of the form

K@) =) gum®®n, (26.4.1)
by

with constant coefficients g, forming a Hermitian matrix.

We must now calculate the & - and D-components of f{®)}and K(®,®*),
respectively. To calculate the D-component of K (®,®*}, we note that the
term in @, ®,, of fourth order in 6 1s

58], = L) 65000+ (562)0]
+(Bys0) (w2 0) (Br#d,wm) + (077 v#0) (B )|
4357 (80— 1908) (31 +75)9)

22630 g (Brsna8) (Brsn.0) -
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Using (26.A.18) and (26.A.19) allows us to convert the H dependence of
this expression to an over-all factor (8ys9)%:

[‘IJ:'(D"'] o “% (é}.sa)z [%fﬁ:;'jt;bm + %(D‘i’:n) Pn — (W?'“au th)
+((3;¢W} '}'# th) + 237;-.?” - a#ﬁg"; au‘ﬁmi‘ -

: - 2
The D-term of a superfield is the coefficient of —{(93:56) minus 10
acting on the f-independent term, which for @, ®y is ¢, dm, so

%[K({I)'q)‘]]n = Hzm:gﬂm [— Bty 0" bm + F F
1 1
~3 (!P_nr??“ﬁ,, me) + E(aﬂﬁr:;f) s me)] . (264.2)

If we write @, as a linear combination Y, Ny,®), of new superfields &,
then K (P, @*}) is given in terms of the new superfields by a formula which is
the same as Eq. (26.4.1), except that g, is replaced with g/, = (NTgN)pum.
In order for the kinematic terms for the scalar and spinor fields to have
a sign consistent with the quanium commutation and anticommutation
relations, it is necessary that the Hermitian matrix g.. be positive-definite
and, as shown in Section 12.5, this means that we can choose N 30 that
ghw = Oum. Dropping primes, the term (26.4.2) is now

%[K((D,(D’}]D =3 [,, Qutpn O n + F 1 F x

1y __ le,
— (T auvar) -+ 5 (@D m)] . {2643)
We can still use a unitary transformation to redefine the superfields
without changing the form of Eq. (26.4.3), a freedom we will need to
exercise shortly.

The terms in Eq. (26.4.3) involving ¢, and g, are the correct kinematic
Lagrangians for conventionally normalized complex scalar and Majorana
spiror ficlds. We will rewrite the fermion terms in a more familiar form
after we have had a chance to consider mass terms.

To calculate the % -term of f(®), it is most convenient to use the
representation (26.3.21) of the superfields, and pick out the term of second
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order in 8:

: 6?
HCE? e])]'ﬂi =3 (6Te v} (0Le pmetx) 5—‘—“—%({5{2&2}‘)

XL af’: ;) (6Tetr) -

(We have replaced x,; here with x because the term (Bkey"8.) in Eq.
(26.3.21) vanishes when multiplied by an expression with two @y, factors.)
The ¢ dependence of the first term on the right-hand side can be put into
a standard form by using Eq. (26.A.11) to write®

(9}56 WJHL){HEE thL) = (tp,,TLE (I -;?5) 6‘) (BTE (l ';‘J’S) me)
= _% (RTJnL me) (ﬂze E?L) .

The F-term of any left-chiral superfield is the coefficient of (6]ef;), so
here

[r@)], ——~Z g;f gf;,i (Puzwms) + 3 % ag;f) . (2644)

The complete Lagrangian density is the sum of the terms (26.4.3), (26.4.4),
and the complex conjugate of (26.4.4):

>

_"% (W 748, U’nL) + % ((ﬂuﬁ) P ‘PnL):I

1 — Pf($) &)\ /. .
_Eza¢ 20 ( PnL Y m) Zz(atﬁnaiﬁm) (‘PnL‘PmL)
+¥g€ agé‘f) + Zgr (‘” (‘ﬁ)) . (264.5)

The auxiliary fields &, enter quadratically in the action, with constant
coeflicients for the second-order terms, so they can be eliminated by
setting &, equal to the value at which the Lagrangian density (26.4.5) is
stationary with respect to #, and #7,:

Fp=— (agg?). . {26.4.6}

- a.uqf’; a”‘t’n + g'-:,‘g:n

" Note that {, is the left-handed component of §p,, not P,
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Inserting this in Eq. (26.4.3) gives

&L= E [ - a#¢'; ey, — %(ﬁ }"uau WHL) + %((%ﬁﬁ ' tPnL)]

l i) o 1 () \ 1. *
-3 ; 6,30 ('Pnl:. 'PmL) —3 Z(-—“—a ¢f§im) (!PnL l.UmL)

HmM

(OGN (S
Z( 4 %) - (264.7)

Thus the scalar field potential is V(¢) = £, |9 ($)/0¢nl*.

With the auxiliary fields eliminated in this way, the action is no
longer invariant under under the supersymmetry transformations (26.3.15),
(26.3.17) of the remaining fields y,r, and ¢,:

3pur. = \20uPuy or — /2 (ﬁé’%)‘ o, Opp= \/i(ﬁwu) .

This is because the expression (26.4.6) does not obey the transformation
rule 3F, = f2&L ynr) for F, given by Eq. (26.3.16), but instead

f () _ PR\ oo @) \
(%) ““Z(atﬁuwm) ‘s""’*‘”‘/i%:(amazﬁm) (o) -

m

For the same reason, after eliminating the auxiliary fields the commutators
of the supersymmetry transformations of ¢, and @,z are no longer given
by the supersymmetry anticommutation relations, and in fact do not form
a closed Lie superalgebra, But this is not inconsistent with the existence
of quantum mechanical operators @, that satisfy the anticommutation
relations of supersymmetry. These operators generate supersymmetry
transformations, in the sense that the commutator of —i(&() with any
Heisenberg-picture quantum field ¢, or w.r equals the change in that
field under a supersymmetry transformation with infinitesimal parameter
x. With &, given by Eq. (26.4.6) the commutator of —i{&Q) with #,
is given by 6%, = /2(@L Pyur), because in the Heisenberg picture the
quantum field 1,7 satisfies the field equation derived from the Lagrangian
(26.4.7):

1)\
Ppgr = Zm: (W) PmR
Likewise, the supersymmetry transformations of the quantum fields ¢»,
and .z do form a closed Lie superalgebra when the field equations are
taken into account. Such algebras are often called on-shell. _

The zeroth-order expectation values ¢p9 of the scalar fields ¢, must
be at the maximum of the last term in Eq. {26.4.7). Since this term is
always negative or zero, the maximum will be at spacetime-independent
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field values ¢, at which this term vanishes, so that

21C) =0, (26.4.8)

Obn |gegs
provided of course that a solution of this equation exists. Eq. (26.4.8) not
only maximizes the last term in Eq. (26.4.7) — it is also the condition for
supersymmetry to be unbroken. Invariance of the vacuum under super-
symmetry transformations requires that the vacuum expectation value of
the change in any field under a supersymmetry transformation should
vanish. The change in a bosonic field is a fermionic field, which of course
has zero expectation value anyway, but Eq. (26.3.15} shows that the vac-
uum expectation value of vy, is proportional to the vacuum expectation
value of the auxiliary field #,, which therefore must vanish if supersym-
metry is unbroken. According to Eq. (26.4.6), in zeroth-order perturbation
theory this condition requires that Eq. (26.4.8) must be satisfied. We will
see in Section 27.6 that if Eq. (26.4.8) is safisfied then supersymmetry is
unbroken to all orders ef perturbation theory.

For a single left-chiral scalar superfield @, the fundamental theorem of
algebra tells us that the polynomial df(e)/é¢ always has at least one zero
somewhere in the complex plane. This is not necessarily true when there
is more than one superfield, If we assume that there is a solution ¢hg of
Eq. {26.4.8), we can evaluate the physical degrees of freedom of the theory
by setting

b = B0+ @, (26.4.9)

and expanding in powers of ¢, The masses of the particles of this theory
can be calculated by inspecting the terms of second order in ¢ and ..

Lo=3 {— Oyt 0" pn — %(TDE Y0t ) + %(aﬁ(ﬁml y* tpu)]

_% ;“gnm (ﬁ’nL WmL) - % ; "ﬁ;m (t])ﬂ[. '.D-'r-:L)1l

=5 (4"4) onen, (26.4.10)
M fn
where .# is the symmetric complex matrix
2
My = ( aa fé"’” ) (26.4,11)
¢H ¢’m ¢=¢ﬂ

Now if we redefine the fields by a unitary transformation
= z%m'@; ’ Pt = E UninPmt, » (26.4.12}
m m
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then the free-ficld Lagrangian (26.4.10) will take the same form, but with
A replaced with .#’, where
M = U Y (26.4.13)

According to a theorem of matrix algebra, for ‘any complex symmetric
matrix . it is always possible to find a unitary matrix % such that the
matrix 4 defined by Eq. (26.4.13) is diagonal, with real positive elements

m, on the diagonal. {For future use, we note that &1 # = ¥t #1 4%, s0

the quantities m7 are just the eigenvalues of. the positive Hermitian matrix

A1.#.) Redefining the fields in this way and dropping the primes, the
quadratic part of the Lagrangian is now

Fo=3, [— 0403 9 0n — 3 (B 70 p) + 5 (SulwD) " wuL)}

—% ;mn (‘-J-Jn.{. !an) - % gmn (@nl’. 'PHL)‘
AT (26.4.14)

To put the fermion mass terms in a more familiar form, we introduce
fields y,(x) defined as the Majorana fields whose left-handed components
are Yy{x}. Then, using the symmetry properties (26.A.7) of Majorana
bilinears:

—-%(‘ﬁiv"fﬂn war) + ( O, WaE) v ‘PnL)
=—3 (_ g ( - ) Oupn) + (3;;(%) # (
= -%(W:F“ (1 J;ys) Oy pn) — E(ﬁv“ (
- -*% (#a7*8uvn) »
while the reality properties (26.A.21) give
(@‘HL wnz,) + (%L me). = 2Re (ﬁ (%) wa) = (ﬁﬂpu] :

The complete quadratic Laigrangian is then

FLo=3 [-%rp;@"%nzmﬁfp.}tpn
n

) v)

)

_% (%7 120 vm) — % \ w,,)] . (26.4.15)

The factor 1/2 in the fermion terms is correct because these are Majorana
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fermion fields, while there is no factor 1/2 in the scalar terms because
these are complex scalars, We see that the spinless and spin 1/2 particles
have equal masses m,, as required by the unbroken supersymmetry of the
theory.

The interaction part 2’ of the Lagrangian density is given by the terms
in Eq. (26.4.7) of higher than second order in ¢, and ,. Since the superpo-
tential f(¢po+ @) is being assumed to be a cubic polynomial and staticnary
at g, = 0, with ¢ defined so that the second-order terms are 1 3, m,02,
we may write the superpotential (apart from an inconsequential constant

term) as

f(¢0+¢’)=%Zmuﬁoﬁﬁ-éz_fm%qomrpg. (26.4.16)

nmé

Using this in Eq. (26.4.7) gives the interaction as

; 1 1+
& =—2anm'% (IPm(. 2?5)WJ)

nmé
1 . w {1 —
—5 3 fome @ (th ( 2?5) wz)
) 4
1 [ ] ) 1 ) E ] L]
_5 Z iy fnm!qﬂnqnm@! - 'i Zmn fhmtqoﬂtpmfpi
rrt nmt '
l L] L] L
—Z Z fﬂm&’fnm"r,"(rom @?gl‘pmdpga . (264.1?)
nmd ' £

We see that a knowledge of the masses m, and the “Yukawa’ couplings
Jame of the scalars and fermions is enough to determine all the cubic and
quartic self-couplings of the spinless fields.

As an illustration, consider the case of a single lefi-chiral superfield.
For comparison with earlier results, let us write the single coefficient f in

Eq. (26.4.16} as
f=2/2%1, (26.4.18)
where A is real and « is some real phase. We will also introduce a pair

of real spinless fields A(x) and B(x) by writing the single complex scalar
here as

(26.4.19)

- (AEB) .

The total Lagrangian density is then given by the sum of Eqs. (26.4.15)
and (26.4.17) as

F = —10,A0"A ~ 18,B "B ~ 1m* (4% + BY)
—4(Pr*auw) — tm (pv)
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—AA (W)-— iAB (@?sw)
—mAA(A? + BY) — 143 (A% + B, (26.4.20)

which is the same as the Lagrangian density (24.2.9) originally found by
Wess and Zumino.? It is noteworthy that in this simple case the Lagrangian
turns out to be invariant under a space inversion transformation

A(x} = A(Apx),  B{x}) = —B(Apx), w(x)— ifp(Apx), (264.21)

gven though we did not assume parity conservation in deriving it. The
appearance of parity conservation as an ‘accidental’ symmetry is a familiar
feature of various renormalizable gauge theories (see Sections 12.5 and
18.7) but not of theories involving spinless ficlds, so this is a special
consequence of supersymmetry in the renormalizable theory of a single
scalar superfield. '

26.5 Spontaneons Supersymmetry Breaking in the Tree
Approximation

We saw in the previous section that supcrsymmetry is unbroken (at least
in the tree appreximation) in renormalizable iheories of chiral superfieids
if Eq. {26.4.8} has a solution, that is, if there is a value ¢g of the fields at
which the superpotential f(¢) is stationary:

e WD o
; _ 56n |smn .
There are as many independent variables here as there are equations to
satisfy, so we generally expect there to be solutions of Eq. (26.5.1). In
order for supersymmetry to be spontaneously broken in these theories, it
18 necessary to impose restrictions on the form of the superpotential.

To see how a choice of superpotential may allow supersymmetry to
be spontancously broken, we will consider a generalization of a class of
models due to O'Raifeartaigh.® Suppose that the superpotential is a linear

combination of a set ¥; of left-chiral superfields, with coefficients given by
functions f;(X} of a second set of left-chiral superfields X,,:

J(X.Y)= Z Y fi(X). (26.5.2)

(26_.5.'1)

The conditions for supersymmetry to be unbroken by the values x, and
y: of the scalar components of these superfields are that

af(x, y)

0= 7, =[x}, (26.5.3)
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0= U5 _ S agi? : (26.5.4)

oxy,

Eq. (26.5.4) can always be solved by taking y; = 0, with no effect on the
problem of solving Eq. (26.5.3). On the other hand, if the number of X,
superfields is smaller than the number of ¥; superfields, then Eq. (26.5.3)
imposes more conditions on the x, than there are variables, so without
fine-tuning a solution is impossible, and supersymmetry is broken.

It may appear that the initial assumption (26.5.2) itself represents a
radical form of fine-tuning, but in fact this form can be imposed on
the superpotential by assuming a suitable R-symmetry. As discussed in
Section 26.3, in theories with N = | supersymmetry an R-symmetry is a
U(1) symmetry for which the 0 superspace coordinate has a non-trivial
transformation property. If we assume an R-symmetry for which 8
carries quantum number 41, then the #-term of any superpotential has
a quantum number equal te that of the superpotential itself minus 2, 50
R invariance requires the superpotential itself to have R = 2. We can
therefore impose the structure (26.5.2) by requiring R invariance, with the
Y; and X, superfields given R quantum numbers +2 and 0, respectively.

The scalar fields in this sort of model have a potential

2
dfi(x)
Z Ji %, ’

i

(26.5.5)

Vixy) =3 Ifd0F + 3

The potential is always minimized by choosing the X, {0 minimize the
first term; whatever values this gives the x,, the second term can always
be minimized by taking y; = 0. Whether or not supersymmetry can be
spontaneously broken, these models have the peculiar feature that there
are always directions in the space of the fields in which the minimum
of the potential is flat. Whatever values x,p of the Xn minimize the first
term in Eq. (26.5.5), the second term vanishes not only for y; = 0, but
for any vector y; in a direction orthogonal to all the vectors (v"} =
(Bfi(x)/0xn)}e=y,. If there are Ny superfields X, and Ny superfields ¥;
with Ny > Ny, then the ¢" cannot span the space of the ys, and there
will be at least Ny — Ny of these flat directions. For any non-vanishing
values y; = yy; along any one of these flat directions, the R-symmetry of
the Lagrangian density is spontaneously broken, and the Goldstone boson
field ¢ associated with this global symmetry breakdown corresponds to a
term ¢yp; in the y;.

The simplest example of this class of models is provided by the case
where there is just one X superfield and two Y supetfields. Renormaliz-
ability requites the coefficient functions fi(X) te be quadratic functions of
X, and by taking suitable linear combinations of the Y; and shifting and
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rescaling X we can choose these functions so that _
iiX) =X —a, LX) =X2, (26.5.6)

with an arbitrary constant a. There clearly is no simultaneous solution of
the two equations (26.5.1) unless the superpotential is fine-tuned so that
a = (. The poteritial (26.5.5) here is

Vix,y) = [x* + 1x — al> + y1 + 2xy20% . (26.5.7)

The sum of the first two terms has a unique global minimum xp. The flat
direction here is the one for which y; + 2xpy2 = 0. For a = 0 we have
xg = 0, and the minima of the potential are along the line with y; = 0
and y; arbitrary.

Whatever the reason for a spontaneous breakdown of supersymmetry,
this phenomenon always entails the existence of a massless spin 1/2
particle, the goldstino, analogous to the Goldstone bosons associated
with the spontaneous breakdown of ordinary global symmetries. (The
one exception, discussed in Section 31.3, is that in supergravity theories,
where supersymmetry is a local symmetry, the goldstino appears as the
helicity +1/2 states of a massive particle of spin 3/2, the gravitino.)
In renormalizable theories of chiral superficlds, the trec-approximation
vacuum expectation values ¢, of the scalar fields must be at a minimum
of the potential 3, |df{$}/8pal* in Eq. (26.4.7), so

G Y
nm ={, 2658
Em:uﬂ ( Opm ¢=¢u) —
where '
3f(9)
o = ——— . 26.5.9
A= ), (2639

If Eq. {26.5.1) is not satisfied, then Eq. (26.5.8) tells us that the matnx
H e has at least one eigenvector with eigenvalue zero, so according to
Eq. (26.4.10) there must be at least one linear combination of the spin
1/2 particles described by g, with zero mass. For instance, for the model
defined by Eqs. (26.5.2) and (26.5.6), the matrix .# has the non-vanishing
components

My, = Myx=1, My, = My = 2%0 (26.5.10)

so this matrix has eigenvalues +2xq and 0, with the last eigenvalue cor-
responding to the goldstino mode. In Chapter 29 we will show without
the use of perturbation theory that the spontancous breakdown of super-
symmetry requires the existence of goldstinos, and explore their general
properties.
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26.6 Superspace Integrals, Field Equations, and the Current
Superfield -

The ‘#-terms’ and ‘D-terms’ from which we construct the Lagrangian
density may be expressed as integrals over the superspace coordinates
8« The rules for integrals over fermionic parameters originally given
by Berezin are derived in Section 9.5. Briefly, because the square of
any fermionic parameter vanishes, any function of a set of N fermionic
parameters £, may be expressed as

N
fl&)= (H &n) ¢ + terms with fewer & factors , (26.6.1)

n=1

and its integral over the ¢s is defined simply by

f NefE =c. (26.6.2)

- The coefficient ¢ may itself depend on other unintegrated c-number vari-
ables that anticommute with the ¢s over which we integrate, in which case
it is important to standardize the definition of ¢ by moving all ¢s to the left
of ¢ before integrating over them, as we have done in Eq. (26.6.1). With
this definition, integration over fermionic variables is a linear operation.
It resembles the integral over a real variable in the sense that, since a
shift {, — £, + a, of the variable &, by a constant a, changes the product
[I; ¢n only by terms invelving {ewer ¢ factors, it does not affect the value
of the integral :

f dVEf(E +a) = [ d¥Ef(2). (26.6.3)

Also, as a special case of Eq. (26.6.2), the integral over N fermionic
parameters of a polynomial of order < N vanishes, Integrals over
fermionic and bosonic parameters are strikingly different in the way
they respond to change of variables: for bosonic parameters x, we have
dVx' = Det (9x'/0x) d" x, while for fermionic parameters

AV = [Det(ae' /08 a¢ | (26.6.4)

[n particular, the dimensionality of d¢ is opposite to the dimensionality of
£,

According to Eq. (26.2.10), the D-term of a general superfield S(x, )
(which may be elementary or composite) is equal, up to a derivative term,
to the coefficient of —(fys8)2/4 = —(6T¢f)2/4. Any one of the four s
can be 81, and each possibility gives an equal contribution, so we may
assume that 8y is the left-most, and pick up a factor of 4. Then € must
be the next-to-left-most. Any of the two remaining s may be ¢, and
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sach possibility gives an equal contribution, so we may assume that &5 is
third from the left and pick up a factor of 2, and 84 must then be the
right-most. That is, '

- %'(9?5&}2 =—1x4x2x 0,0-8184 ,

so the coefficient of this function of 8 is —1/2 the integral over 4*6. Since
this is the D-term up to a derivative, we have then

[0 = —% f i f 40 5(x,6) . (26.6.5)

In the same way, using Eq. (26.3.11), we find that the spacetime integral of
the #-term of a general left-chiral superficld ® {again, either elementary
or composite) may be expressed as

f Px [O]5 = % [ Px f 20y, ®(x,8) . (26.6.6)

Since we are now integrating over s, it is convenient to introduce a
delta function, defined as usual by the condition that for an arbitrary
function f()

f B SHE —0)f(6) = £(0). (26.6.7)

According to Eq. (9.5.40), this condition is satisfied by

340" — 6) = (07 — 01)(03 — 02)(05 — 83)(6; — 64)

- 7: (00— 0;)" e (5. - )] [(6= - o) e (0 —03)] - 2668)

The representation of the action as an integral over superspace allows
an easy derivation of the field equations in superfield form. Consider, for
instance, the action for a set of left-chiral scalar superfields @, (which
includes as a special case the general renormalizable theory of left-chiral
superfields ©,):

= % f dx [K(@, 0)]_+2Re f &5 [f(0)]# , (26.69)

with K an arbitrary function of ®, and @, without derivatives, and f
an arbitrary function of @,, also without derivatives. (The motivation
for this form of the action and the expression of the action in terms
of component fiekds is described in Section 26.8.) We cannot derive
correct field equations by simply demanding that this is stationary with
respect to arbitrary variations in @, because the @, are constrained by
the requirement that they satisfy the requirement Dr®n = ¢ for left-
chiral superfields. To make sure that this condition is preserved by any
variation, we can use a trick that will also turn out to be useful in deriving
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superspace Feynman rules in Chapter 30. We write the @, in terms of
porential superfields S,(x,8) as

o, =228, (26.6.10)

from which it follows {using Eq. (26.A.21)) that
®, =238, (26.6.11)
where @3 and 9 are abbreviations for (ZRePR) = —(DrDr) and

(21eD1) = (D1DL), respectively. To see that it is always possible to
find an S, {not necessarily local) that satisfies Eq. (26.6.10), note that for
any left-chiral superfields @, '

25210, = —1600, (26.6.12)
so that Eq. (26.6,10) is satisfied by the solution of
— 1608, = 21 ®, . (26.6.13)

The expression _@fﬁS is left-chira) for any S, so the action must be
stationary with respect to arbitrary variations in the Sn. Using Eq. (26.6.5),
the action may be expressed in terms of the Sy and S as

I= —45 / A% / d*0 K(~%25", 925) + 2Re f d'x [1(@3s)]
(26.6.14)
The variation of the first term under infinitesimal changes 85, in the
n (but not the §;) is easily calculated by an integration by parts in
superspace:

—5:11 f d*x f 40 K(~218", 9%5)
OK(—218", 915)
= — & 85, 24 Ll TR
;/d“ 35, 7% ST

Egs. (26.3.31) and (26.6.5) aflow us to express the variation of the integral
in the superpotential term under infinitesimal changes 45, in the §, as

B 2 f(D)
5fd4x [f@iS}]y _;fd“x [ ODn lg-02
) ) { 3£(0)
_;f"ﬂx [@R( G ®n loagis 53")Lr
_  f(®)
2;/“’{4)‘ [ Oy [p=gis anL

=—.Zu:/d4x/d48%%~:)}

szaias,.J
§ F

6Sn .
®=HLS
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The condition for Eq. (26.6.14) to be stationary with respect to arbitrary
variations in §, is then '
SK(—D}S*, 2%8) _ 4 (@)

@5 :
R 6@%{5;1 d d’n q;.zg.}{s

or in terms of the chiral superfields

SK(D, %) d (D)
2 S
“@R—_am,, = —4 o (26.6.15)
The complex conjugate yields
SK(D, @) EICIAN
2 —
a% 50 4( 5o, ) i {26.6.16)

[t can readily be checked that the components of these equations yield the
field equations for the componeats of ®; and ®,. For instance, recalling
that 2%(6Fellr) = —4, the O-independent part of 2%®;, is 4, while the 0-
independent part of @ f{D®)/0®, is & f(¢)/E ¢a. so the O-independent part
of Eq. (26.6.15) for K = ¥, @@, vields the relation &, = — & f{¢)/0 ¢,
in agreement with Eq. (26.4.6).

As an example of the use of this formalism, let us consider the superfields
to which conserved currenis belong. Suppose that the superpotential and
Kahler potential in the action (26.6.9) are invariant under an infinitesimal
global transformation

Oy =ieY T B, O, =—icy T, (26.6.17)
;] ]

with € a real infinitesimal constant and 5 ,,, a Hermitian matrix, perhaps
part of a Lie algebra of similar transformation matrices. Since the super-
potential depends only on the @, it is automatically also invariant under
the extended transformations -

5Dy == ieAY T ymOm, SO, = —ieA" > T,  (266.18)
] ]

where A(x, @) is a superfield that must be taken left-chiral in order that
the 8@, be left-chiral, but is otherwise unrestricted. On the other hand,
other terms such as the Kahler potential are not in general invariant under
these transformations, because A # A’. For general ficlds the change in
the action must therefore be of the form

51 = ie f ' f FOA-ALF, (26.6.19)

where #(x, 8) is some real superfield, known as the current superfield. But
if the field equations are satisfied then the action is stationary under any
variation in the superfields, so the integral (26.6.19) must vanish for any
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left-chiral superfield A(x, ). Any such A may be put in the form A = %8,
so this means that the current superficld must satisfy

PLF =9 F=0. (26.6.20)

Thal is, & is a linear superfield. As we saw in Section 26.3, this means
that its components satisfy

N =M =V =0, ¥ =—fu’, DM =-0C7. (2662))

This allews us to identify the V-component Vﬁ” as the conserved current
associated with this symmetry. _
For the particular action (26.6.9), the current superfieid takes the form

o, D" .
F = z Mg‘"mq}m = Z Mg"m“cp:n , (26.62_2}
0D, 7"

Nht HHEt

with the equality of these two expressions a consequence of symmetry
under the transformation {26.6.17). Then, using the field equation {26.6.15),

PEE=3 [@}z ﬁ{g};d’ ’] T o = —4Y agg’]g“,,mcpm , (26.6.23)
His n HEt n

which vanishes because of the assumed invariance of the superpotential
under the transformation (26.6.17). In the same way, using the second of
the two expressions for # and the field equation (26.6.16), we find that
%% # =0, thus verifying the conservation condition (26.6.20).

26.7 The Supercurrent

Like any other continuous glebal symmetry, supersymmetry leads to the
existence of a conserved current® The conservation and commutation
properties of the supersymmetry current are operator equations that will
remain valid even when supersymmetry is spontaneously broken, and that
will therefore be useful to us in Chapter 29, when we consider theories
of spontaneous supersymmetry breaking in a non-perturbative context.
Also, the supersymmetry current is related to components of a superfield
known as the supercurrent that will be of fundamental importance in
our treatment of supergravity in Chapter 31.

As we saw in Section 7.3, the existence of an ordinary global symmetry
of the Lagrangian density under an infinitesimal transformation ¥° —»
¥ +eF* (with ¥’ a generic canonical or auxiliary boson or fermion field
and #¢ a function of the canonical and auxiliary fields) leads to the
existence of a current

" 0L (x) s
T < L S O



26.7 The Supercurrent 91

which is conserved for fields satisfying the field equations, and generates
the symmetry in the sense that the canonical commutation relations give

[f dx JO(x), x"[y]} = FNy).

The supersymmetry current requires a somewhat more complicated treat-
ment for two reasons. One is that supersymmetry is only a symmetry of
the action, not of the Lagrangian density or the Lagrangian. Instead, the
variation of the Lagrangian density under an infinitesimal supersymmetry
transformation s a spacetime derivative, which we may write in the form

5 =3 (ad.k4), (26.7.1)
2

with K¥ a four-vector of Majorana spinors. In consequence, the super-
symmetry current is not the usual Noether current, The Noether current
is a four-vector N* of Majorana spinors defined by

& ., -
IR sy = —(a N 26.7.2
;3(3;&"} ' =—(ane), (26.7.2)

whose divergence is given by the Euler-Lagrange equations as

_ A ¥ _ 4 Or%& p
(D!a#NJI) = '—; 6;{5 5;{ - ; Wﬁpéx

=55, (26.7.3)

(Here dg denotes the right partial derivative, defined by moving differen-
tiated fermionic variables to the right before differentiating.) Instead, we
must define the supersymmetry current as

. St= Nt L+ KH#, (26.7.4)
which Eqs. (26.7.1) and (26.7.3) tell us is conserved:
3,8 =0. (26.7.5)

The second complication is that the change dy¢ in a canonical field ¥
under a supersymmetry transformation is not just a function of canon-
ical fields, but also involves their canonical conjugates. For instance,
Eq. (26.3.15) shows that the change in the p-component of a chiral
scalar superfield involves the time derivative of the ¢-component. As
a result the commutator of the Noether charge [4°x N® with a general
canonical field does not give the supersymmetry transformation of that
field, Fortunately, this complication is cancelled by the first complication:
when the commutators of  @*x K° as well as [ d°x N with the fields are
taken into account, the operator {d3xS° does generate supersymmetry
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transformations® in the sense that
[ f Px (259, x'f] — s, (26.7.6)

consistenily with Eqgs. (26.2.1) and (26.2.8).

For example, we may derive an explicit formula for the supersymmeiry
current in the general renormalizable theory of lefi-chiral superfields &,
which can be used to check that it does generate supersymmetry transfor-
mations, in the sense of Eq. {26.7.6). The Lagrangian density (26.4.7) for

" This is a general result for currents constructed in this way. For instance, consider a
Lagrangian L {pot Lagrangian density) that depends on a set of canonical variables "
and their time derivatives 4", with no constraints of any class, In quantum field theery
the label n includes spatial coordinates as well as discrete spin and species labels, and
L= f % %, Our assumption here that the Lagrangian density is invariant up to
spacetime derivatives under some infinitesimal transformation 8 means that L is the
time derivative of some functional F. That is,

Zaqu H+Zaq~ =

Using the cancnical equations of motion, this can be written as a conscr\'anon law
( = 0, where the conserved charge is

oL
g=- q&q +F.

L

In cur case here, @ = f d*x [N® + K"]. We assume the usual unconstrained commu-

tation relations
dL m| :m " | o
[a;,q]~ 16y [q,q]—ﬂ,
and find the commutator
m] _isom &Lﬁéq AF [ W
|- G e ]+ g ]

To evaluate the second and third terms, we note that the second time derivatives g”
appear linearly in the invariance condition, so their coefficients must match: even
without using the equations of motion, we have

Z dL ﬁ'ﬁq oF
agt aqn = aqn .

The second and third terms in the commutator therefors cancel, leaving us with the
desired rcsult

[Q, q"’] =idq"
Taking the time derivative gives also
[Q: ‘l‘m] = ;éq"'

This result has been extended to theories with constraints.”
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this theory may be put in the form

. | 1
& = Z Z [ - a.“qﬁ'u a#"t’n - E(m F#aﬂ ‘PLH) = "2‘ (tP_R; ?'ua# wﬁn)]
+ non-derivative terms. (26.7.7)

Using the transformation rules (26.3.15), (26.3.17), (26.3.18), and (26.3.20)
(with @ = ¢"), the Noeether current defined by Eq. (26.7.2) is

NH = m% S [2 (B B2) war, + 2(0%n) war -+ (Fdn) Y 0nr + (F0) ¥i0uL

~Fn v onr — F, ?'uw:d.] . (26.7.8)

We can calculate the change in the Lagrangian density either directly, of,
more casily, by noting that the changes of D-terms and #-terms under
supersymmetry transformations are given respectively by Eqgs. (26.2.17)
and (26.3.16). Either way, we find that the current K# in Eq. (26.7.1) is

Kt = %zyﬂ[-(amm—(wmw@ + Fu v+ F g

2 (L) oy 42 (%ﬁ?)‘ wnR} . (26.79)

Adding (26.7.8) and (26.7.9) gives the supersymmetry current for this class
of theories

St = \/iz [( by pur +{§a¢';)?“1}’nl.+ (ai;:;) Y ipnr + (ﬁa;n) '.'r"uWP:R] .

" (26.7.10)
It is straightforward then to use the canonical commutation and anti-
commutation relations to verify that [d*x S satisfies the commutation
relations (26.7.6).

There is another definition of symmetry currents, in terms of the re-
sponse of the matter action to a local symmetry transformation, which is
particularly useful when the associated symmetries are ‘gauged,’ as super-
symmetry will be when we turn to supergravity theories in Chapter 31. In
the absence of supergravity fields, the action is not invariant under local
supersymmetry transformations. If we make such a transformation with a
spacetime-dependent parameter x(x), the action will change by an amount
that, in order to vanish when «(x) is constant, must (even when the field
equations are not satisfied) be of the form

51 = — f a*x (0,800 5"(%)) . (26.7.11)

with S#(x) a four-vector of Majorana spinor operator coefficients. This
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does not define S¥(x) uniquely, because when we generalize global super-
symmetry transformations to local transformations, we might in general
give the change &y of a field y under a local supersymmetry transforma-
tion an arbitrary dependence en the derivatives of a(x). There is, however,
one way of defining local supersymmetry transformations that guarantees
that the coefficient $#(x) in Eq. (26.7.11) is the same as the curtent defined
by Eq. (26.7.4), which as we have seen gencrates the symmetry transfor-
mations in the sense of Eq. (26.7.6). It is to specify that derivatives of
w(x) do not appear in the supersymmelry transformation of the canonical or
auxiliary fields y*. For instance, the local versions of the transformation
rules (26.3.15)(26.3.17) for the components of a left-chiral superfield are

Spr(x) = V30,0(x) 7 ar(x) $(x) + V2F (x)ar(x), (26.7.12)
5F () = V() FoLlx) - (26.7.13)

s(x) = 2{oR(0wLL)) - (26.7.14).

Eq. (26.3.2-1) shows that the superfield may be expressed in terms of its
component fields at x%, without derivatives, so the transformation rule for
the superficld may be expressed as

SM(x,0) = (a{x+).@)¢(x,9), o (26.7.15)

where 2 is the operator (26.2.2).

With local supersymmetry transformations defined in this way, the
change of the action that they induce consists of two terms. First,
although the variation in canonical fields under a supersymmetry {rans-
formation does not invoive derivatives of a{x), the variation in derivatives
of canonical fields.does. This produces a change in the Lagrangian density
which is the same as Eq. (26.7.2), except that & is replaced with 6,8:

S0 = — [ &% (0,300 N*(9)).

The second term in the change of the action arises from the fact that the
Lagrangian density is not invariant even under the part of the supersym-
metry transformation that dees not involve derivatives of u(x). According
to Eq. (26.7.1), this produces a change in the actien

8o = f d*x (80x) 2,KH(x)) = - f & (0,60 K*2)) -

Adding 8,1 and 53/ gives a total change in the action of the form {26.7.11),
with $¥(x} given by Eq. (26.7.4), as was to be shown.

Even with this specification of the transformation property of the com-
ponent fields, the supersymmetry current S#(x) is not uniquely specified
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by Eq. (26.7.11}, because we could always introduce a modified current
St = §H 4 8, AP (26.7.16)

where A* = A% is an arbitrary antisymmetric tensor of Majorana spinors.
The term 8, A" is conserved whether or net the field equations are satisfied,
and its time component is a space derivative, so [ d*x 82, = [ d&®x S°,
leaving Eq. (26.7.6) unchanged.

There is in fact a particular choice of A*' with the convenient feature
that y,Shew turns out to be a measure of the violation of scale invariance
by the theory. By using the Dirac equations derived from the Lagrangian
density {26.4.7):

*f(¢) 1(¢)
PPmr. = Z (a¢ma¢n) Pk 5 Pomr = “‘Z (a‘f’ma‘i’n )(zﬁn:£?)

it is straightforward to calculate that

'.V,uS'a = _zﬁz { @((bnwrrﬂ + qf’::w:il.)
Pf9) _o(@)
* (; P ot - o ) P
P($) _,25(9)
(Z P i 00 ) *""“} '

We can eliminate the first term by introducing a modified supersymmetry
current of the general type of Eq. (26.7.16):

Sr‘::w =8 + gh’#s '] Z Oy (¢anR + ¢’;IPHL) , (26.7.18)

for which

&1 ,911(¢)
new = 2\/_2{ (Zé"'&cﬁnfﬂ«ﬁm gtf:f )’\Unl.

0’f(¢) 81 ()
+ (ij Onog30r 2 o6 ) lp,,R}. (26.7.19)

The right-hand side vanishes for a scale-invariant Lagrangian density,
with f(®) a homogeneous polynomial of third order in the @,

We now turn to the supersymmetry transformation property of the
supersymmeiry current. It is straightforward fo check that the current
given by Eqs. (26.7.18) and (26.7.10) is related to the w-component cuf’ of
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a real non-chiral superfield ®, by*’
Sfew = —20%# + 295y @ | (26.7.20)

where
f " ' - - *
O, = 3 ; 40,0,®, — 400,90, + ({.@cb,,)y#(.@m,,))] } (26.7.21)

The superfield ®* is known as the supercurrent.

The supercurrent obeys a conservation law that incorporates the con-
servation of the supersymmetry current (26.7.20) and much else besides,
To derive it, we may use the anticommutation relation {26.2.30) to write!

(2. (21.2:)) = —4 §2,,.
Together with the chirality conditions 25, = Z 0, = 0, this gives
P Y 08,0, 0, 0,0 = — 1Y 6,9(2,.9; )0,~Y(§0}) 2.0,
n n

h

and
VLY (DO 1(@D,)) = 4T (70, 9D, +2 3 90;(51.9,.),
so that the superfield (26.7.21) satisfies
PO = L (Dr®;) (DLBLYRy — 1Y Bz (2091,
" " (26.7.22)

We saw in Section 26.6 that the field equations for the Lagrangian density
(26.4.7) may be expressed in the form

(E@L_@L)tb,, =_4 (ﬁggb))‘ . (26.7.23)

" Here we introduce a notation that will be used extensively in Chapter 31; following
Eq. (26.2.10), the components €3, w®, MY, N5, V5, i5 and DS of an arbitrary
superfield §{x,?)} are defined by the expansion

S0 = €809~ i{B i) - 3 (35.0) M0~ %(gﬂ)NS(x]
45 (857 @) v3co) - i{#7 ) (g [0+ 1 @ws(xj])

2
——%(@}'59) [Dsix)+ %DCS(::]J :

"1t should be noted that &, and @y are the left- and right-handed components of the
covariant adjoint &, rather than the covariant adjoints %, and %2g of 2, and 23,
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Using this in Eq. (26.7.22) gives finally
WP, = -3 Z(.@be)( ) -:Zq: E‘ER( )

_ If (@)
= Lig [Z 0,22 _ 3f(®)} . (26724)

0,
The Hermitian adjoint of Eq. (26.7.24) is

3f {(D}

PPrO, = — < uﬁ [Z O, } (26.7.25)

The sum of this and Eq. (26.7.24) then gives the conservation law

V20, =2X, (26.7.26)
where X is a real chiral superfield given (up to an additive constant) in
this class of theories by

{ ®, m ~3 f(q:)] . (26.7.27)

Although it has been derived here only for renormalizable theories
of chiral superfields, we may expect that the conservation law (26.7.26)
holds more generally, though of course with X not necessarily given by
Eq. {26.7.27), because of the other conservation laws that it incorporates.
{A generalized formula for X will be given in Section 31.4.) To derive these
relatmns we must use Eq. (26.2.10) to express @, in terms of components
CE’ , etc. and use Eq. (26.3.9) to express the chiral superfield X in

terms of components A%, p¥, etc. With the aid of Eqs. (26.A.9), (26.A.16),
(26.A.17), and the Dirac matrix identities

7, ¥°] = — 516”5 [y, 0], (26.7.28)
YO =yt — T PR s 7%y, (26.7.29)
we can then expand both sides of Eq. {26.7.26) in the terms
1, 8, ys0, y'0, ysv'8, ysly",y']0
(). (Bn0). (3rr0).
6 (9?59) , ysb (5'?59) , ¥ (93’59) ,
' ys6 (9?59) . [¥%,7°10 (Bysﬂ) , (é-psa)z .
Matching the coefficients of 1, 8, ys8, '8, ysy*8, ys[y*, ¥*]6, respectively,
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yields the results?’

L | (26.7.30)
FY¥ =3*C®, | (26.7.31)
G¥ = (VO (26.7.32)
duA%X = — N9 (26.7.33)
8.BY = M2, (26.7.34)
0=V — VO + eupd”CO? . (26.7.35)
Matching the coefficients of either (#8) or (@ys®) yields the same result:
0=y*12, (26.7.36)

and matching the coefficients of (Bysy*8) yields the result
~iys[y’, Plw" =220 + 94 [, Plwf . (26.7.37)

From Eqgs. (26.7.30}, (26.7.30), and (26.7.37) we obtain the conservation of
the supersymmetry current (26.7.20):

0 = &Sk, = —20*w? +2 fy*w? (26.7.38)
and a relation among i}? and wf?:
1P == ol +ay'0?. (26.7.39)

Matching the coefficients of 8(fys8) and ys0(Bys) gives relations that
can be obtained by taking the divergence of Eqs. (26.7.34) and (26.7.33},
respectively. Matching the coefficients of p?8(0ys{) gives

0,G¥ = "V + 8*VE — 8,v®4;, (26.7.40)
which, combined with Eq. {(26.7.32), yields the conservation law
8, T =0, (26.7.41)
where T#¥ is the symmetric tensor '
Ty = —41VH — 1V8 + 1, V%, {26.7.42)

Matching the coefficients of yPys6{fys#) gives
0, F* =2D2 + OCY + 608" VO, (26.7.43)
which, with Egs. (26.7.31} and (27.7.35), yields a relation between D}? and
Cco:
i

DR = —0C? +08,0"CP. (26.7.44)

" Note that V) is the V,-component of @,, not the ¥,-component of &,.
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Matching the coefficients of [y, y7]0(8ys0) and (9ys6)? gives results that
already follow from Eq. (26.7.34} and from Eqs. (26.7.38) and (26.7.39),
respectively.

The conserved symmetric tensor T#' may be identified as the energy-
momentum tensor of the system. To check this, we use Eqs. (26.1.18) and
{26.2.12) to write the change in cuf’(x) under a supersymmetry transfor-
mation with infinitesimal parameter « as

S = i [(Q%), 0P| = +i[w?, ()]
= (-——ij}s ﬁCf — ME’ + iyst + " Vﬁ)a :
Egs. {26.7.33)}~(26.7.35) allow us to put this in the form
i{w, 0} = 1 (VS +VE)—0u(BX +454%) —irs JC2 + Leuar" CO° .
In terms of the currents (26.7.20) and {26.7.42), this reads
i{Shews 0} = 29, T + 2(0* — 4 FUB™ + ys4™) — ™3, 8,C5
+2ips( COF —yiy JCP — H13,9°1CD) . (26745)

For p = 0 all the terms on the right except the first are space derivatives,
and therefore vanish when we integrate over space, leaving us with

i{ f Px S0, Q} =2y, f Fx T (26.7.46)

We have defined the supersymmetry current Shw to give [dx S5, = 0,
50 the fundamental anticommutation relation (25.2.36) tells us that

f FxT" =P, (26.7.47)

which, with the conservation condition (26.7.41), allows us to identify TH"
as the energy-momentum tensor.

It is important to note which energy-momentum tensor we have con-
structed in this way. Either directly from Eq. (26.7.21), or by considering
the supersymmetry transformation of the current {26.7.18), we can calcu-
late that the energy-momentum tensor T#" for renormalizable theories of
chiral superfields is

2
T = 5[0 0, + it - 3 a2
+%{ﬂuv|:| — auav) Zn: a2+ (26748)

where the dots denote terms involving fermions, which do not concern
us here. 'We see that the last term, which is related by supersymmetry
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to the correction term in Eq. (26.7.18), has the effect that the energy-
momentum tensor is traceless for the massless free-field theory with no
superpotential in which case U@, = 0. A simple calculation shows that
T# is also traceless more generally for scale-invariant theories, with f{¢)
a homogeneous polynormal of third order in the ¢,.

Supersymmetry also imposes an interesting relation among v10]at1ons
of scale invariance and R conservation. Egs. (26.7.30)-(26.7.32) show that
YuShew = 6y,0%%, *CP, and T#; = 21®#, (which measures the violation
of scale invariance) are proportional to components of a chiral superfield
X, so if any one of these vanishes as an operator equation (that is, not
_just for some particular field configuration), then they all do, In this case,
we can show that C®# js proportional to the current of an R quantum
number. Te see this, note that Eq. (26.2.11) gives

¢ =i (2, @) = i(ars0f)
so that in general
[= Q] = ps? (26.7.49)

We have seen that if C2 is conserved then 7,5% = 0, so that Eq. (26.7.20)
gives S, = —2w8. Settmg o = 0 and integrating over x in Eq. (26.7.49)
then gives

U £x C0® Q] = —1y50. (26.7.50)
We can therefore introduce a current
Rt = 2O {(26.7.51)

which if conserved is the current of a quantum number 2 = [ d°x #° for
which Q; and Qg destroy the values +1 and --1, respectively. Since the
commutator of Qy, with a scalar superfield @ involves a term 2@/88;, this
means that @, carries the 2 value 41, in accord with the usual definition.
A theory in which the superfield X vanishes, or, equivalently, in which
T#y, puS¥, and J,#* all vanish, is invariant under an enlarged set of
supersymmetry transformations, generated by the superconformal algebra
described at the end of Section 25.2.

In scale-invariant theories the value of the # quantum number carried
by various superficlds is fixed by the structure of the Lagrangian. For
instance, in a scale-invariant theory of chiral scalar superfields, the su-
perpotential must be a homogeneous polynomial of third order in the
superfields. The #-term of the superpotential is proportional to the co-
efficient of 04, which has # quantum number 42, so the & quantum
number of the #-term of the superpotential is the 2 quantum number
of the superpotential itself minus two. 2 invariance then requires that
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we give the scalar superfields an & quantum number +2/3, so that the
superpotential will have & quantum number +2, and its % -term will have
2 quantum number zero. That is, the scalar components ¢, have 2 = 2,3
and the spinor components i,y (proportional to the coefficient of 8y in
the superfield) have # = —1/3. This can be verified by calculating the
current #* from the C-term of the supercurrent (26.7.21) for this class of
theories:

Ry = 31[6°0,0 ~ 93,07 — Li (Br,759) (26.7.52)

(The second term contains an extra factor of 1/2 because y is a Majorana
spinor.}

Quantum corrections can introduce viclations of 92 invariance (through

Adler-Bell-Jackiw anomalies) and of scale invariance (through the renor-

malization greup running of the coupling constants) but supersymmetry

confinues to impose a relation between these symmetry violations despite
these corrections.”® We will see an example of this in Section 29.3.

® %k Xk

The conservation condition (26.7.26) does not uriquely determine either
the supercurrent &* or the associated chiral superfield X. In particular,
we may add to ®* a change

AGF = Y  (26.7.53)

with ¥ an arbitrary chiral superfield. The left-hand side of Eq. (26.7.26)
is then changed by

TuPAQF =3 FY
For a left-chiral superfield Y;, the chirality condition 2zY; = 0 and the
anticommeutation relations (126.2.30) give

PP Y = —14 [{QL,@R }-@RL Y
= —% .@Lm[.@g@g) Yo+ Z -@Lﬁ@Ra@Lﬁ' 43
p

The matrix eys in 9?;_3 in the second term on the right of the above
expression may be moved to the final operator @y, so that the chirality
condition and anticommutation relations give

N s PraBrpYr = — ) PrsDPra@ip¥L = APD0YL,
B B

and hence

pDY =3 [2(D2) Y, +2 é@YL} =—12(292}Y,,.
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The same result can be derived in the same way for any right-chiral
superfield, and hence it holds also for an arbltrary sum Y of a left-chiral
and a right-chiral superfield

TuBAOH =3BV = 9(@9)}’ (26.7.54)

This is of the same form as the conservation condition (26.7. 26} with the
associated chiral superfield X changed by the chiral superfield

AX = -1(29)Y . (26.7.55)

Ii is easy to check that the addition of A®* to ©* changes T*® and
St only by space derivatives, and therefore does not change the energy-
momentum four-vector P# or the supercharge Q.

We saw in Section 26.6 that any chiral superfield X may be expressed
in the form X = (#%)S, and hence can be removed by adding a term
of the form {26.7.55) to ®* with ¥ =4S, But in general § and the new
©®# constructed in this way will not be local. This situation is already
familiar from our experience with triangle anomalies, discussed in Chapter
22 — we saw there that, although it is always possible to construct terms
that if added to the Lagrangian density would cancel these anomalies,
in general these terms would not be local, and hence must be excluded
from the Lagrangian density. There are chiral superfields that can be
expressed as (22)S with § local, and that therefore, if present in the
assaciated chiral superfield X, could be eliminated by adding local terms
of the form (26.7.53} to @#, They include, for instance, a term of the
form Re(kéf(®)/o®), with k an arbitrary complex constant, because
the field equations (26.6.15) and {26.6.16) show that (22)Re(k'®) =
4Re(kdf(d)/0®P). But in general the changes in X that can be made in
this way are quite limited.

268 General Kahler Potentials”

There are several circumstances in which it is necessary to consider non-
renormalizable Lagrangian densities of the general form (26.3.30)

& = 2Re [f(0)] ,+ ik, m‘)}u , (26.8.1)

where the superpotential f is an arbitrary function of left-chiral scalar
superfields &, but not their derivatives, and the Kahler potential X is an
arbitrary function of the @, and @} but not their derivatives.

" This section lies somewhat out of the book’s main line of development, and may be
ocmitted in a first reading.
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This situation arises in effective fickd theories whose symmetries rule
out any renormalizable interactions, or in which the rencrmalizable in-
teractions all happen to be small. It is often then possible to calculate
scattering amplitudes at low energy from tree graphs, using a Lagrangian
with the smallest value for some combination of the numbers of deriva-
tives, fermion fields, and any small renormalizable couplings. In Section
19.5 we examined such an effective field theory with no renormalizable
couplings, involving nucleons and soft pions. The dynamically broken
gauge theories discussed in Section 21.4 provide examples of effective field
theories of this sort with small renormalizable couplings. This circum-
stance also arises in supersymmetric theories whose symmetries do not
allow a superpotential, or where the superpotential is for some reason
small. We will encounter an example of this sort when we consider the
extended N = 2 supersymmetric theory of Abelian gauge superfields and
gauge-neutral chiral scalar superfields in Section 29.5. We will show there
that low-energy scattering amplitudes in this theory are generated by tree
graphs using & Lagrangian density of the form (26.8.1), with f = 0 and
K a function only of the &, and @ but no derivatives, plus F-terms
auadratic in gauge superfields. The inclusion of Kahler potentials having
arbitrary dependence on @, and @ but not on their derivatives is partic-
ularly important in effective field theories in which some scalar fields are
of the same order of magnitude as the fundamental energy scale of the
underlying theory, although all other field values and all energies are much
smaller. This will be of interest, for instance, in connection with theories
of gravity-mediated supersymmetry breaking, discussed in Section 31.6,

Let us consider how to express the Lagrangian density (26.8.1) in terms
of component fields. We did not use the assumption that f({) is a cubic
polynomial in deriving Eq. (26.4.4), so this continues to give the #-terms
in the Lagrangian contributed by an arbitrary superpotential. To derive
the D-terms, we note that the term in the Kahler potential of fourth order
in 8 is

K (D, @) =~—é(9}'56‘)22 [aK(¢ #) g, 4 KBS )Dqﬁn]

- | S o9;
T i ) (o) 0
(o) 0 )

+2Re zm%(ezw) (6Tewms) (0Fe0) %}
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+2Re Z il K{¢ ¢’ ( L)_ (EWI’R) (QTSTpﬂ)ap‘i’n

1 O O O]
X LKL (00,) () ) (o)
T4 Z 35§:§¢i 5 Iﬂ(ﬁ{l +75)8) (81 - v5)0)
+%(9}'5y“9) (Bysy76) ; [._ f%&% b
1 EEOO, 0+ LIRS %] |
(26.8.2)

We can again use Eqs. (26.A.18) and {26.A.19) as well as Eq. (26.A.9) to
put the @ dependence of this expression in the form of an over-all factor
(8ys0)%, and find

. Len 32 3K(¢' 9’ ) 1 — 0K(¢,¢")
K[q),q)‘ }gd. = 3(6?58) { 2 Z n - E z agbn Dﬁi}ﬂ

vy SRS (o aw,.L) + (75 vms) — 27,53

FK(p ") .
+2Re Z a(i)" a'?!)m a¢'1 (erlme)ga—f

PK($,9")
[ Opn Db Opy

"Kig ) s __
Z a@n . afﬁ’l 6¢k (!in:nf) (‘PHPIR)

azK(.;b ") FK(9.47}
+Z a¢na¢ a (bﬂaﬁ(pm 22 a¢na¢) }iti)ﬂaﬂtﬁm

; |
__E@;;(‘gﬁ} 2. B4, } | (26.8.3)

To make the reality properties of the fermion kinematic terms transparent,
we can use Eq. (26.A.21) to write

(ﬁ !a‘PmR) = (E_n- ﬁWmL)‘ .

The D-term of K(®,®*) is the coefficient of —(fys0)®/4 minus half
the d’Alembertian of the #-independent term in K(®, @), which is just

~2Re 1 (P wer) 8y m
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K{¢, 9"}, so

%[K(ID,‘IJ']]D =Re fo,,m[— -;-(m F(1+y3hwa)

+§nﬁ:n _”ﬁ;tﬁt'n a#qﬁ';i] :
PK($, 97 .
—Re Z ¢ 3 Ocb 09 (Prwme) 7

3*K(4,47)
{ Gbn 0Om 36,

+- E 6@55;!;151%; ‘];¢k ('PH'J mI) (wk‘PIR) (26.8.4)

where (¢, ¢") is the Kahler metric
K(.¢")

Gom(p, @) = 36, 9o

Note that the constant matrix g,, in Eq. (26.4.2) is replaced here with the
Kahler metric @p,{¢, ¢"). Because the Kahler metric is field-dependent, we
cannot in general make it equal to the unit matrix by a field redefinition,
so the total Lagrangian must be left in the form

+Re Z ('!PTJ}’"WR) Buth

(26.8.5)

& =Re Z@ml— %(w—m #(1 +}'5]1.Dn) + FuF o — Quthn aﬂqﬁ;}

PR
R Fr g g acb,

SK(p, ¢
+Re Z EYNCTRES (wmv‘“wm) Oy n

+1 z TR (. 4) ("w_nWmL) (’-'Pk‘PIR)

(‘PnU’mL)‘?—;

. 3h 3 06 O,
~Re "Zm: aifgil (Trwme) +2Re Z Fy agéf} . (2686)

The bilinear (P, Pysy,) is a total derivative, and could be discarded if
%.m Were a constant, but must be kept for general Kahler potentials. This
result will be extended to include gauge superfields at the end of Section
274,

* ok %

As discussed in Section 19.6, the spontaneous breakdown of a global
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symmetry group G to a subgroup H entails the existence of a set of real
massless Goldstone bosons with scalar fields mg, for which the term in the
Lagrangian with the minimum number of derivatives takes the form

Lo =—  Gilr)dmitn, (26.8.7)
ke

where Gye(r) is the metric of the coset space G/H. (Theories with
Lagrangian densities of this general form are known as nen-linear o-
models) By writing the complex fields ¢ in terms of their real and
imaginary parts, the term — 3, @um($, ¢*)0udpd" ¢y, in the Lagrangian
density (26.8.6) can be put in the form (26.8.7), but the converse is
not generally true: the condition that a set of real coordinates like the
Goldstone boson fields m; can be interpreted as the real and imaginary
parts of a set of complex coordinates like the fields ¢, with the metric
in these coordinates locally given by Eq. (26.8.5) defines what is called
a Kahler manifold."" But it should not be thought that in the common
cases where G/H is not a Kahler manifold, it is impossible for G to
be spontaneously broken to H while keeping supersymmetry unbroken.
What happens in these cases is the appearance of extra massless bosons,

which, together with the Goldstone bosons, do form a Kahler manifold.
This is because the superpotential f{¢) depends on ¢ but not ¢, so
if the whole Lagrangian is invariant under a global symmetry group G
then the superpotential is automatically invariant under a group Ge, the
complexification of G: if G consists of transformations exp(id_ 4 Bata)
with generators t4 and arbitrary real parameters #1,4, then G consists of
transformations expl(i 34 z4t4) with the same generators and arbitrary
complex parameters z4. (For instance, if G is U(n) then Gg is GL{(nC),
the group of all complex non-singular matrices, while if G is SUn)
then Ge is SL{n,C), the group of all complex non-singular matrices with
unit determinant.) Likewise, if some stationary point ¢'% of f{¢} is left
invariant by some subgroup H of G, then it will also be left invariant by a

" The significance of Kahler manifolds in this context was pointed out in an early
paper by Zumino.® Note that it is not necessary for the metric to be expressible in
the form (26.8.5) over the whole manifold with a single Kahler potential K{¢, ¢'); it
is only necessary that the manifold can be covered in finite overlapping patches in
which this holds, with different Kahler potentials in each patch. The simplest example
of a Kahler manifold is the flat complex plane, with Kahler potential z]>. As an
example of a cosst space G/H that is a Kahler manifold, Zumino gave the case where
G = GL{p,C} x GL{(p+4¢,C) and H = GL(p,C}), with p and g arbitrary positive-defimte
integers, and GL(N,C) the group of complex non-singular N x N matrices. The cosct
space G/H here has complex coordinales ¢, that may be taken as the components of
a complex p X (p + g} matrix A, which under G and H undergoes the transformations
A — BAC and A — BA, respectively, where B and C are square non-singular complex
matrices of dimezsionality p and p + ¢, respectively, The Kahler potential in this case
is simply K oc InDet A 4%
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subgroup Hc of G, the complexification of H. Whether or not G/H is a
Kahler mamfold, the complexified coset space G¢/He is always a Kahler
manifold. This follows because G¢/He is a complex submanifold of the
flat complex space of the ¢,, which is a Kahler manifold, and it is a
theorem that any complex submanifeld of a Kahter manifold is a Kahler
manifold. If parameterized by the values of ¢,(z) = [exp(i 4 24140,
the Kahler manifold G¢/He has the metric obtained by embedding it in the
flat complex space of the ¢, usually taken with line element 3, d¢, dep;.
It is true that Ge is not a symmetry of the whole Lagrangian, but the
Goldstone basons associated with the breakdown of G¢ to He are nev-
ertheless exactly massless. This is guaranteed by the non-renormalization
theorem of Section 27.6, or, more simply, by the result of Section 25.4,
that massless spin zero particles must come in pairs that are related by
supersymmetry transformations and that therefore have the same trans-
formation under any global symmetry group G that commutes with super-

symmetry.

Appendix Majorana Spinors

This appendix summarizes some algebraic properties of Majorana spinors
that are needed in dealing with superfields.

Consider a four-component fermianic Majorana spinor s that like Q or
! may be expressed in the form

o ( ‘-’g’ ) , (26.4.1)

where ¢ Is some two-component spinor and e is the 2 x 2 matrix

{0 1N_.
e=| | o =0,

Such a spinor is related to its complex conjugate by

. 0
s = ( . S )s= —Byses, (26.A.2)
where ¢ is the 4 x 4 matrix
' _fe 0
= ( ¢ 0 ) (26.A.3)

and as usual ys5 and § are 4 x 4 matrices

=(50) e=(20).
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with 1 and 0 understood here as 2 x 2 submatrices. Taking the transpose
of Eq. (26.A.2) and multiplying on the right by § gives the equivaient
formula

s=sTf=sTeys. (26.A.4)

The anticommutation of the spinor components limits the variety of
covariants that can be formed from a Majorana spinor. To see this, it
will be convenient first to consider the symmetry properties of bilinear
covariants, which will be of some interest in themselves. For a pair of
Majorana spinors s; and s; and any 4 x4 numerical matrix M, Eq. (26.A.4)
gives

TMsy = sias2pl{eps Mg =—_ 52,518 (€ y5 M)ga
af off
=+ Z s20 518 (M e ps)up = seys) M eys sy ,
ofi
with the minus sign following the second equal sign arising from the

fermionic nature of these spinors. In Section 54 we found that the 16
covariant matrices formed from Dirac matrices satisfy

+EME! M=1, ysvu: 15 .
MT = ’ L , 26.A.5
{ ~EME M=y, lywmnl] 3 )
where ¢ 1s the matrix
—e 0
& = 1of = —eps = ( o0 ) _ (26.A.6)
It follows that
— + (52 M s51) M=1, psyu 75
Ms) = il . 26.A.7
(Sl SZ) { '_'_(52 MSI} M = J}",u: [}'_L!: }’v] ’ ( )
In particular, setting 51 == 52 = s, we find that
BPus =37 [?Ju s ls=10, (26.A.8)

so the only bilinear covariants formed from a single Majorana spinor s
are 58, §ysy, s, and Fyss.

In considering the form of the most general superfields, we need to
have expressions for the products of two or more Majorana spinors. For
two spinors, we recall that any 4 x 4 matrix may be expanded as a sum of
the 16 covariant matrices 1, yy, {yu, 7], ¥5% ¥s. Lorentz invariance tells
us that for the matrix s,5g this expansion must take the form

53 =kg (38) +hy v, 5" s} + k7 [y, W1 G [P, 7] 5)
+kavsya(Sysy! s) + ke ys(Eyss),
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where the ks are constants to be determined. Eq. (26.A.8) shows that we
may take ky = kr = 0. The remaining coeflicients may be calculated by
multiplying on the right with 1, ysy¥, and 95 and taking the trace, which
gives kg = —1/4, ky = +1/4, and kp = —1/4. In this way we find that

s5=—1(F5) 4+ §yspuaGysy?s)— Lvs(5yss). (26.A.9)

By multiplying on the right with —eys and wsing Eq. (26.A.4), we may put
this in the form '

e85 = Hevshag 3 + 4 (74€)ap Gysy*s) + Legp (Byss),  (26.A.10)
or, equivalently,
Sasp = Hershg (sTevs st + L (vuedug (sTey ) + Leag(s'es). (26.A11)

Now consider the product sesgs, of three components of a Majorana
spinor 5. We can divide s into left- and right-handed parts

s=s.+sg, su=1i1+7ps)s, sp= 1 (l—ys)s. (26.A.12)

Each of sy and sp has only two independent components, so since the
square of any fermionic c-number vanishes, we have s;,57451, = 0 and
SRzSrpSRy = 0 for all «, §, and y, and therefore

SuSgSy = SLaSLESRy + SLySRESLy + SRaSLESLy + L — R,

with ‘L « R’ denoting the sum of previous terms with labels L and R
interchanged. To evaluate this expression, we multiply Eq. (26.A.11} by
suitable factors of (1 + y5)/2, and find

stasip = He(1+ys)lap (spese) .

If we now multiply this with sg,, since (s{es,q)s_q? = { we can drop the
label L on the spinors in the bilinear (sTesy):

S1aSrg SRy = Lle(l + ys)lap (sTes) Sky -
The same arguments also yield
SRa SRA 8Ly = %[E(l - }’5}]:1,[! (STf s) Sty -

Adding the sum of these two expressions to the same quantity with y
replaced with « or § yields finally

54855y = ],—(sTes) [euﬁ sy = (€75)ap (¥55)y — €uy 58
Hevshay (v35)p + €y Sa— (evs)gy (15)e] . (26.A.13)

To calculate the products of four Majorana spinor components, we note
that {sTes) contains only terms with two sps or two sgs, S0

(sTes)syss = (s es)[srysrs +sppsLs] -
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Using Eq. (26.A.11) to evaluate the sum in square brackets, and noting
that
(sTes) (s evss) = (sTesc)(shesa) — (shesr)(slesr) =0,
we find that
(sTes)s,55 = Les(sTes)t. (26.A.14)

Multiplying Eq. (26.A.13) with s; therefore yields the result

Lfal 2
Sa8g5y58 = % (s es) [emﬁ €ys — (€7s)ap (€755 — €xy €85
Hers)ay (€155 + €py €05 — (e73)g, (e95)as| . (26.A.15)

Any product of five components of s vanishes, so this completes the list
of formulas for products of components of a Majorana spinor.

We can use these formulas to derive some additional relations that will
be useful in deazling with superfields. By contracting Eq. {26.A.13) with

(eys5)py and (ey,)g,, we find
S (3 .s) = —(¥s5 Shx (3}!5 .s) (26.A.16)
and
5 (s — 3) = —(y, s),,(s yss) : (26.A.17)
From Eqgs. (26.A.16) and (26.A.17) we may dernive ‘Fier2' identities

2 2 2
(§s) = —(’s’; 75 s) , (E V5Yu s) (Ej}s'yv S) = = (E ¥5 s) . {26.A.18)
Also, Eq. (26.A.14} may be put in a covanant form
Zvss)ss=—lys(Fpssl . (26.A.19)

It will also be useful to recoed the reality properties of bilinear products
of Majorana spinors. For any pair of Majorana spinors s, 57 satisfying
the phase convention (26.A.1), Eqs. (26.A.2) and (26.A.4) give

(STMs2) = ~(sleys M 53) = (ST Beys M* feyssa).

{The minus sign in the middle expression arises from reversing the inter-
change of s; and s; that occurs when we take the complex conjugate.) But
Eqs. (5.4.40) and (26.A.6) give ﬁeysy;ﬁeys = Yu, 50

+M M=1, 7, [yu, 7l

AM* = 26.A.20
pers i fes { —M M = p.y5, Vs { )
and therefore
_ . + (5T M 53) M=1,7: [7u. 74
M = - g LA Tu 26.A.21
(51 M 52) { — {51 M s3) M =yups, ¥s ( )
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Finally, we mention that any spinor # may be written in terms of a pair
of Majorana spinhors s4 as

u=s,+is_, (26.A.22)
where
5y = (u — Bevsu® ) §_ = 21 (u + Beysu’ ) {26.A.23)
To check that sy are Majorana spinors satisfying Eq (26.A.2), it is only
necessary to recall that feys is real, and that ( Beys)? = 1.
Problems

1, Using the direct technique of Section 26.1 in the case of N = 2
supersymmetry, find the supersymmetry transformation rules of the
massive field supermultiplet with just one Majorana spinor field and
two complex scalars,

2. Calculate the component fields of a time-reversed superficld
TL18(x, 0T

in terms of the components of the superfieid S(x,8). What sort of
superfield do we get by the time reversal of a left-chiral superfield?
Of a linear superfield?

3. Consider the N = ] supersymmetric theory of a single left-chiral su-
perfield @. In superfield notation, list all the terms of dimensionality
3 involving ® and/or @ that might be added to the Lagranglan
density.

4. Consider the theory of three left-chiral scalar superficlds @y, ®,, and
@, with a conventional kinematic term, and with a superpotential

F(@, @, ®3) = O D] +ng(¢'; —i—a)

where a is 2 non-zero real constant, Show that this is a theory with
spontaneously broken supersymmetry. Find the minimum value of
the potential. Express the field of the goldstino in terms of the
fermionic components of ®;, @y, and ®s.

5. Find all the components of the current superfield for the action
(26.6.9), in terms of the compeonents of the left-chiral superfields @,
and derivatives of the superpotential f and the Kahler potential K.
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6. Check that the supersymmetry current given by Eqgs. (26.7.18) and

Ta.

(26.7.10) is related to the w-component of the superfield (26.7.21) by
Eq. (26.7.20). '
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Supersymmetric Gauge Theories

The successful theories of strong, weak, and electromagnetic interactions
described in the first two volumes are all gauge theories. In order to see
how simple supersymmetry may make contact with reality, we must there-
fore consider how to construct actions that satisfy both supersymmetry
and gauge invariance.!

271 Gauge-Invariant Actions for Chiral Superficlds

Consider a set of Abelian or non-Abelian gauge transformations that leave
the supersymmetry generator @ invariant. (For simple supersymmetry
there is just one Majorana spinor supersymmetry generator, which can
only furnish a trivial representation of any semi-simple gauge group.)
Each component ficld in a supermultiplet must transform in the same
way under such gauge transformations. In particular, for a left-chiral
superfield we have '

Balx) = 3 exp (izrm”(xl)] fmlx),
B m A

nm

TPHL(x] - Z [GXP (IZ tAAA{x))} Pmr{x), (27.1.1)
m A HHL

Fulx) =Y [exp (t > tAAA{x})] Fomlx),
m A nm

where t4 are Hermitian matrices representing the generators of the gauge
algebra, and A4(x) are real functions of x# that parameterize a finite
gauge transformation. {We are using the same notation for gauge trans-
formations as in Section 15.1, except that in order to avoid confusion with
Dirac indices we label the gauge generators and gauge transformation
parameters with the letters 4, B, ete. instead of a, ff, ete)

The left-chiral superfield (26.3.11) involves derivatives of some of
the component fields, so its transformation is more complicated than

113
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Eq. (27.1.1). However, Eq. (26.3.21) shows that the superfield does not
involve derivatives if expressed in terms of &, and the variable x, defined
by Eq. (26.3.23). It therefore has the transformation property

Dplx, §) > Z{exp (:f 3 rAA*‘(x+))] ®,(x, 0) . (27.1.2)
n A i

If a term in the action depends only on left-chiral superfields, and not
their derivatives or complex conjugates, like the term [ d%x [f(D)]¢ in
Eq. (26.3.30), then it (and its complex conjugate) will be invariant under the
local transformation (27.1.2) if it is invariant under global transformations
with A4(x) independent of x¥. The need for introducing gauge fields in
renormalizable theories of chiral superfields arises only in the D-terms,
which involve both @, and ®;. Because the matrices t4 are Hermitian,
the Hermitian adjoint of Eq. (27.1.2) is

Ol(x,0) —» 3 @l (x,0) [exp (—s 3 z,qAA(er)‘)] (27.1.3)
m A

MmN
If it were not for the difference between A(x.)* = A4{x_) and A%(x,),
this. would just say that ®' transforms according to the representation of
the gauge group that is contragredient to the representation furnished by
®, and any function of ® and ®' that is invariant under global gauge
transformations would also be invariant under local gauge transforma-
tions. Because x, and x_ are different, we must introduce a gauge
connettion matrix Iy (x,8), with the transformation property

I'(x,0) — exp (+i 3"t AN () ) T, 0) exp (i 3 taAY(x1)) . (27.14)
. A A

Then by multiplying @7 on the right with I' we obtain a superfield that
transforms as .
[o' ool = 3 [0 010 [exp (15 aatten)]
m A i

(27.1.5)

so that any globally gauge-invariant function constructed from @ and
&'T" (and not their derivatives or complex conjugates) will also be locally
gauge-invariant. One obvious example is the gauge-invariant version
{(®'T'®)p of the D-term in the Lagrangian constructed in Section 26.4.

Any I'(x, 8} that transforms as in Eq. (27.1.4} will allow us to construct
gauge-invariant Lagrangians of chiral superfields. The choice is not
unique; if I' transforms as in"Eq. (27.1.4), and we multiply on the right
with any left-chiral superfield ¥ with the transformation rule

Ti(x,0) — exp (:‘ Z tAAA{er}) Yrix,0) exp (—-iz tAAA(x+)) .
A A
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then we obtain a new gauge connection that also satisfies Eq, (27.1.4).
One simplification is to take I'(x, @) Hermitian: '

Tix, ) = I'(x,8} . (27.1.6)

This is always possible if there is any ['(x,6) that satisfies Eq. (27.1.4),
for then by taking the Hermitian adjoint of Eq. (27.1.4) we easily see
that I''(x,0) transforms in the same way as I'(x,8), so if I'(x,0) is not
Hermitian then we can replace it with its Hermitian part (I' + I't)/2
(or, if that vanishes, by its anti-Hermitian part {I' — I'')/2i) Another
simplification of great physical importance is {o express I'(x,8) in terms
of fields whose gauge transformation properties do not depend on the
specific representation t4 of the gauge algebra under which the chiral
superfield P(x, ) transforms, so that these fields can be used to form
a suitable matrix I'(x,#) for chiral superfields that transform according
to any representation of the gauge group. For this purpose, it is useful
to recall the Baker-Hausdorff formula, which states that, for arbitrary
matrices a and b,

e ¢ =cxp (a+b-+ ilabl + Lo [abll + 4 Bal+---), (27.17)

‘-

where “--' denotes higher-order terms that can be writlen as multiple
commutators of as and bs, like the second- and third-order terms that are
shown expiicitly. Tt follows from this that for any representation of a Lie
algebra, we have

exp (,.Z: fr**x,i) exp (Z; bt4) = exp (; f(a, b) r,l) . (2718)

where
flab)=a® + b1+ 43 C'ped®bC — L ¥ CpcCCppalahE
BC BCDE
—% 3 € COppbPbPaf -, (27.1.9)
BCDE

which depends on the Lie algebra through its structure constants C7g¢,
defined as usual by

g, tcl =) Cpota,
A

but does not depend on the particular representation furnished by the t4.
We will therefore take I'(x, 8) in the form

T(x,8) = exp (mzz ta VA(x, B)) : (27.1.10)
A

where V4(x,0) are a set of real superfields (so that T is Hermitian), not
depending on the representation of the gauge algebra furnished by the .
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We can achieve an important further simplification by noting an addi-
tional symmetry of supersymmmetric gauge theories. If some function of
@ and ®'I is invariant under global gauge transformations, then it will
automatically be invariant not only under the local gange transforma-
tions (27.1.2)-(27.1.4), but aiso under the larger group of extended gauge
transformations

By (x,6) = 3 {cxp (i3 a0, ﬂ))l Dy (x, 0) (27.1.11)
A

LC Ha

and

T'(x, 8} = exp (=13 e, 0)) T(x, 8) exp (+H 3 14 (%,6)°) ,
A A

{27.1.12)
where Q4(x, 8) is an arbitrary left-chiral superfield — that is, an arbitrary
function of #;, as well as x. Under this transformation,

VA(x,0) - VA{x, 0) + %[QA(x,H} — QA(x, 9)*] e, (27.1.13)

where “ -’ denotes terms arising from the commutators in Eq. (27.1.7),
which are of first or higher order in gauge coupling constants, As a
general left-chiral superfield, Q may be written in the form (26.3.11)

Q7 (x,8) = WA(x) — 2 (9 (1 z"’s) wA{x}) +WAx) (é ( L *;’5) 3)
45 (Dysu) 4w () - % (0vs0) (7 2 (522 ) wit)

_% (By36) oW A(x) (27.1.14)

in which W4(x} and #“(x) are arbitrary complex functions of x*, and
we introduced Majorana spinors w(x) defined so that the left-handed
spinor components of the superfields are 1(1 + ys)w?(x). Using the com-
plex conjugation properties {26.A.21) of Majorana bilinears, the complex
conjugate of Eq. (27.1.14) gives

Dx, 0 = WA (x) ~ 2 (‘E’ (%) “""(xJ) +# () (9 (1 ;Ps) B)
_%(J_ﬂ;m#a) @-“W”“(x)é(@}’sﬁ') (9 ) (I —2"’5) w“‘{x})

+é(9—,}59)2m WA (x) . (27.1.15)

We write the real superfields ¥4(x, ) in terms of component fields as in
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Eq. (26.2.10):

VA(x,0) = CA(x) — f(ﬁ ys @4(x)) - %(é vs ﬂ) MA(x) — %(9 3) NA)
+% (Bysv o) viea —i(Bvs6) (é [44(x)+ % @w"(x)])

Y AU B

_E(H”?G) (D (x)+ 50C (x)), (27.116) .
where C4(x), MA(x), N4(x), and V;(x) are all real, and w?(x) and A*(x)
are Majorana spinors. Using Egs. (27.1.14)-(27.1.16) in Eq. (27.1.13),

we find that the component fields of the gauge superfield undergo the
extended gauge transformation

C4x) —» CA) —Im W) 4+,
w?*(x) — ef(x) + %w“‘(x) R

Vi) = Vi) + 8 Re WAx) 4 -,

M*{x} = MAx)—Re #(x)+ -, (27.1.17)

NAx) - NAX) 4+ Im# A (x) + -,

) - M+,

PAx) = DA+,
where again " -+ denotes terms that arise from the structure constants in
Eq. (27.1.9) and that are therefore proportional to one or more factors
of gauge coupling constants. We can use such an extended gauge trans-
formation te put the gauge superfields into a convenient form, known as
Wess-Zumino gauge,! in which

CAx) = wl(x) = M(x) = N4 (x} =0, {27.1.18}

s0 that _
VA(x, §) = %(é ysy* a) Vi) - i(é 7s0) (aﬂf‘(x])
—% (9}3 3)2 DAx). (27.1.19)

To accomplish this to zeroth order in the coupling constants, it is only
necessary to set Im W4(x) = CA(x), wh(x) = —S2o*(x), and #(x) =
MA(x) — iN4x). For Abelian gauge theories, in which the structure
constants vanish, this ends our task. For non-Abelian gauge theories it is
necessary to add terms to Im W4(x), wi(x), and #{x) of first order in
gauge coupling constants to cancel the terms arising from commutators
of zeroth-order terms, then add terms to Im W(x), wi(x), and #4(x)
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of second order in gauge coupling constants to cancel the terms arising
from commutaiors of first-order terms with zeroth-order terms, and so
on. It is not easy to calculate the series of terms in Im W4(x), w(x), and
#4(x) needed to satisfy the gauge conditions (27.1.18) te all orders in
gauge couplings, but there is no need --- the important thing is that it is
possible.

Inspection of the transformation rules (26.2.11)—{26.2.14) shows that the
Wess~Zumino gauge condition (27.1.18) is not invariant under supersym-
metry transformations unless V! = i* = 0, and the condition 24 = 0 is
not supersymmetric unless also D == 0, in which case the whole superfield
vanishes. Onece we adopt Wess-Zumino gauge, the action is no longer
invariant under either general extended gauge transformations or under
supersymmetry, but it is invariant under supersymmetry transformations,
which take us out of Wess—Zumine gauge, followed by suitable extended
gauge transformations that take us back to Wess-Zumino gauge. (We
will go into this explicitly in Section 27.8.} As we shall now sce, it is
also invariant under the ordinary gauge transformations (27.1.2}-(27.1.4),
which preserve Wess—Zumino gauge.

With the gauge superfield satisfying the Wess—Zumino gauge condition
(27.1.18), it becomes relatively easy to calculate its behavior under erdinary
infinitesimal gauge transformations. In this case, Q4(x,) are left-chiral
superfields of the form (26.3.11), but with no yr- or % -components, and
with ¢-components given by real infinitesimal functions A%(x):

| 1/
O (xy) = A (x) + 3 (Bysy.0) A4 (x) - g(ﬁ}’sﬂ)zmr\"(x] . {27.1.20)

To calculate the product of exponentials in the transformation rule {27.1.4),
we use a version of the Baker—Hausdor{f formula:

exp(a)exp(X) exp(h) = exp [X. +Lyx-(b—a)+{LxcothLx) (b+a)+- ] .
(27.1.21)
where g, b, and X are arbitrary matrices, Ly is the operator

Ly-f = {IX, 1], (27.1.22)

and “ - here denotes terms of second and higher order in @ and/or b. In
our case we have

b+a=23%t4ImA%(xy) = -i(f‘s'ysy#e) 3t FAY(),
A A

bea= -4 Y taReA ) = 2 Y4 [0 — £ (Brs0) AR
A -4 '
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. . . _
X==23taV4x,0) =23 ta [5 (@vsv* 8) Vi)
A A

—-E(E ¥s 9) (Eiﬂ(x)) - % (ﬁ ¥s 6‘)2 D*"(x}] .

Now, every term in X involves at least one factor of 9 and at least one
factor of Og, while a + b has just one factor of 8; and one factor of Or.
so we can drop any -terms in Ly cothLy of second or higher order in
Lyx. Since Ly coth Ly is an even function of Ly, this means that we can
replace it with its term of zeroth ordex in Ly, which is just unity. Also,
we may drop the term in b — a proportional to {Ays0)%, since when acted
on by Ly it would yield at least three factors of either &y, or @, Thus the
argument of the exponential on the right-hand side of Eq. (27.1.21) may
be replaced with

X+ \X,b—dl+b+a=—2) 14
A

VA(x,0) + 3 C*pc 8% (%, 0) A%(x)
BC .

+%"(gvsw”)3”aﬁ"-‘(x)} .

Thus for infinitesimal gauge transformations, the transformation rule
(27.1.4) yields

VA(I,B} — VA(X,B] + Z CABC SB{X,E)AC(x] + %f(é}'s'}’ﬂﬂ)ﬂ“A-‘i(‘F] .

o (27.1.23)
It is important to note that under ordinary gauge transformations, a
gauge superfield in Wess—Zumino gauge remains in Wess—Zumino gauge.
In terms of the component fields in Eq. (27.1.19), Eq. (27.1.23} reads

Vix) - ; CAgc V2(x) AC(x) + 8,A7(x) (27.1.24)

(x) = Y Clpe B AC(x), (27.1.25)
8C

pAx) 3 Clpe DP(x)AC(x) . (27.1.26)
BC

We recognize Eq. (27.1.24) as the usual Yang-Mills gauge transformation
rule (15.1.9) of a gauge field, while Eqs. (27.1.25) and (27.1.26) tell us that
the fields A7(x) and D4(x) transform as ‘matter’ fields that belong to the
adjoint representation of the gauge group. The Majorana spinors A% are
known as gaugino fields, while the real scalars D* will turn out to be
another set of auxiliary fields.
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Next we must evaluate the matrix I" that is needed in constructing
gauge-invariant functions of chiral superfields. Because zll terms with

more than four factors of @ vanish, the expansion of the exponential is
very simple in Wess-Zumino gauge:

I'{x, 0) = exp (-—2 > ta VA, 0)
=1 -f(é y;;# 9) %::A VAR)
—-%(9 ys¥*0) (857" 0) AX,;I" t V() VE(x)
+2i (65 0) ZA: tq (é M) + %(9 Vs e)z ; ta DAx).

We can construct a gauge-invariant density by multiplying this on the
right with a column vector of left-chiral superfields of the form (26.3.11):

Dl 0) = $a() = V2{Bonc(9) +#:00 (8 (522 ) 0)
3 (Brs,0) #60x) - 5 (2959) (8 4w

~

1/- 2
—5 (0r50) Du(x),
and multiplying on the left with the column
- - ——— - = ]. -
@l = 430) — VE(F0) + #1) (2 (<52 0)

- (Brsyud) o en(x — % (By50) 2, (wnrlxny6)

-g (By56) O30
The term in this product of fourth order in ¢ is
0718, = 5 #10)"{[#106) + (24)e]
+(ons0){ [ (720) (0m)] + (0700 00
+%(§(1 —5)0} (81 + ys)e) [ﬁ* :a?]
3 (rs7°0) (31°0) 06" 19
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3 % (Bysy*0) (Bysy" 0) Z V;;'{ (6 taoug] = @D q (;,1}
=3 (Bror6) By 0) VRV [0 )

() 52 [(0) 4 ()

~2/2{B750) 3, [(w0) ta (927 8]

hzxf(eysﬂ) [ (A76) 14 (gw)]

+5(#350)’ > Dafe'tas].

%—3
%

in which we use square brackets to indicate scalar products in the flavor
indices »n, m, and continue to use round brackets to indicate scalar producis
in Dirac indices. Just as in Section 26.4, we may use the identities
(26.A.17)(26.A.19) to put all 8 dependence in the form of an over-all
factor (fys0)*:

oral,, - (Bn)'{ - 3[o'00] - §[(04)4
+3lrra)] - 3{(0wD )]
| —% 77| + %[aﬂqs'f o]
S VAt tare] - Lt (646"t 9]
43S VYo s g] 3 Ve [(varan)]
~25 T{(Fes)e] + 5 Sl ()]

+%§D.4 [fﬁ*t»tfi?]} :

The D-term is the coefficient of — i(Pys8)? minus }O0 acting on the -
independent term, which for [@TT'®] is [¢T¢], so
[tp* rq:]D = —2[8,4" 0#4]

~[(wzr ouwe)] + [(@FD1v ve)| +2[#1 7]
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—2f§ VAot e p| + 21'; v [(ampf} tad]
LV (8 atp ] + 2 >V |[(wareaws)]
202 32 (P2 ea 4} ] - 2023 (8T (T e )]
—221): 67 ea0] . A
To see that this is ga:ge-invariam, we note that it may be written as
3167 a], = - i 074
S (o)) + L(@mD )] + [ o]
192 B (1] -2 [0 (Freaw)]
=2 Da[stug], (27.1.27)
where D, is the gaug:invariant derivative (15.1.10):
Dy, = B —i ZA:EA Vitwr, D¢ = 3,0 -i¥ taVig. (27.1.28)

Eq. (27.1.27) is thus a suitable gauge-invariant kinematic Lagrangian
for the scalar and spinor components of a left-chiral superfield, now
supplemented with Yukawa couplings of gaugino fields to the scalar and
spinor components of chiral superfieids as well as terms involving auxiliary
fields #, and D,

27.2  Gauge-Invariant Action for Abelian Gauge Superfields

We must now consider how to construct a gauge-invariant supersymmetric
action for the gauge superfields ¥V*(x,8) that contain the gange fields
Vj{x}. In order to motivate this construction we will first consider the
case of a single Abelian gauge field (dropping the superscript A), and then
refurn to the general case in the next section.

In an Abelian gauge theory like quantum electrodynamics, the gauge-
invariant field constructed from Vu(x) 1s the familiar field-strength tensor

f,uv(x) = a_u Vv(x) — 0y V,u{-x) - (2?21)

The supersymmetry transformation rule for fuv(x) is then given by the
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transformation rule (26.2.15) for ¥,(x) as

5f uy = (ac(aﬂ,, ~ aﬁ#)a) . (27.2.2)
Eq. (26.2.16) gives the transformation rule for i(x) as
82=(—tfuwl*, V1 +iysD)a, (27.2.3)
while Eq. (26.2.17) gives the transformation rule for D(x):
6D =i{ays §4). (27.2.4)

None of this depends on whether or not the superfield S(x) is taken to be
in Wess—Zumino gauge. We see that the ficlds f:(x), A(x), and D(x} form
a complete supersymmeiry multiplet.

It is not hard to construct a suitable kinematic Lagrangian density
for the fields of this supermulsiplet. The only Lorentz-invariant, parity
conserving, and gauge-invariant functions of these fields with dimension-
ality four are f,f*, A pA, and D% We can make V# a conventionally
normalized vector field by taking the coefficient of f,,f** to be —J, so we
may tentatively take the kinematic Lagrangian density as

# gange = — S I*" = C;{(i {M) —epD?,

with coefficients ¢; and c¢p to be determined from the condition that
{2 gaugedd®x is supersymmetric. Using Egs. (27.2.2)~(27.2.4), an infinites-
imal supersymmetry transformation changes the operators in the La-
grangian by

5(fw ™) = 21" (@03~ 1))
5(Apn) = 2(a[+ b, »'1+ivsD] 92) .
SD =12 (&ys az) :

in which we drop derivative terms that do not contribute to the variation
of the action. In order to see how these terms cancel, it is necessary to use
an identity for gamma matrices”

[y#, p*]yP = —29"y" + 2977y — 2ie!"Fyops5 . (27.2.5)

The term —ie¥"? f 1 (% 74750,4) does not contribute 1o [ d*x 8%, because
integrating by parts yields a contribution proportional to €#°J,f .\, which

“*To derive this, nse the fact that any 4 x 4 matrix may be expressed as a linear
combination of the 16 independent covariant matrices described in Sectien 3.4, which
in our case is Jimited by Lorentz invariance and space inversion invariance to the
terms shown here. The coefficients of these terms can be calculated by giving pvp the
values 121 and 123,
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vanishes for an fy, of the form (27.2.1). This identity then allows us to
rewrite the variation of the i-term as.

§(1p1) = —pm O Tudv)A) + 20D (&35 7).

The cancellation of terms proportional to **1 requires that ¢; = 1/2,

while the cancellation of terms proportional ta DA requires that ¢p = —cy,
$0 the supersymmetric Lagrangian density takes the form
L gauge = ~ Sl - %(1 {311) + %Dz . (27.2.6)

This shows that with VA canonically normalized, the field A related to
V# by the transformation rules (27.2.2) and (27.2.3) is also canonically
nermalized,

In addition, for Abelian gauge theories there is a superrenormalizable
term, known as a Fayet-Hiopoulos term:?

Fr=ED, (27.2.7)

with £ an arbitrary constant. Its variation under 2 supersymmetry trans-
formation is shown by Eq. (27.24) to be a derivative, so that it yields
another supersymmetric term in the action. As we will see in Section 27.5,
the presence of such a term can provide a mechanism for the spontaneous
breakdown of supersymmetry.

Both for its own interest and as a tool in constructing supersymmetric
interactions involving the fieids Ffuvs A, and D, it is interesting to ask what
sort of superfield has these as component fields. Somewhat surprisingly,
it turns out to be a spinor superfield W.(x), with component fields (in the
notation of Eq. (26.2.10)) given by

Ciag(x) = Aylx},
@) = H(1"y'€) Siwlx) + (rsedesDIx)
Viawlx) = =16, {vsd(x)) | (272.8)

M(x) = —i (fr54(x) Nio(x) = — (#34x))
Awp(x) = Dig{x) = 0.

* 3
&% o

(The subscript « on these component fields is put inside parentheses to
emphasize that it labels the whole superfield.} It is straightforward to
use Eqs. (27.2.2-(27.2.4) to check directly that the superfield components
given by Eq. {27.2.8) do transform as in Egs. (26.2.11)426.2.17). ,

Inserting the component fields (27.2.8) in Eq. (26.2.10) and using
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Eq. (26.A.5), we find that the superfield W, takes the form
Walx,6) = [l(x)+ 1798 fuw(x) — i950 D(x) — 3 (07e0) Pysilx)
+4(0%eys0) FAx)+ | (07ey"6) 758 x)
— 1{070)ysy"y"y" 0 85 f10(x)

+4i(67e0)y"0 8,D(x) ~ } (GTEH>2D2(J¢) (27.29)

o

As we showed in Section 26.3, a superfield like this with zero A- and D-
components is chiral ~— that is, it is the sum of left-chiral and righi-chiral
supetfields

Wi(x,0) = Wr(x,6)+ Wr(x,0). (27.2.10)
Here the left- and right-chiral superfields are simply the projections of W
on the subspaces with ys = +1 and ys = —1, respectively:

Wie(x,8) = {1+ ys)W(x,8)

= 20(x4) + YO0 Fndna) + (07e0L) Pha(x.) —iBLD(x1),
(27.2.11)

Wrix,0) = (1 —ys)W({x,7)

= Ar(x_) + 19"5*8r frate-) — (8ReOr) PArlx-) —i6rD(x-),
(27.2.12)

with xf given by Eq. {26.3.23).

As we saw in Section 26.3, we can construct suitabie Lagrangian densi-
ties from the # -term of any scalar function of a left-chiral superfield, plus
its Hermitian adjoint. The simpl?st scalar function of the left-chiral super-
field (27.2.11) s 3,5 €up WiraWig. To calculate the F-term, we note that,
when expressed as a function of @y, and x,, the term in Euﬁ cagWiaWig

of second order in @ is

Y s WiaWig| , = (01600 )| — 2(Af{x)e fAr(x)) + D*(0)
o i _

+R (\ﬂl&[j:'#_,d:j)ﬂ’['}*p s '}'U]gL) f_uv (x)fpa(x] .

(The argument of the fields here can be taken as x* rather than x’jr hecause
the difference would vield terms that contain at least three factors of g,
which therefore vanish.) Lorentz invariance together with the fact that
(3[%,¥v15) 2nd (3{p,oyv]yss) vanish for any Majorana fermion s teli us
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that the bilinear (G,[y*, "} [1*, y°]0L} must be proportional to a linear
combination of (0.} (#* 7" — y#y*?) and {OL0r)e"7°, We can find the
coeflicients by giving uvpo the values 1212 or 1230, and in this way we
find that

(Ou b, v 0" v 100} = 4(TL0L) [ — w2 + o ko]
The F-term is the coeflicient of (8.6,), so

[ S earWeaWug] , = —2(T& F3&) = 2 fuwf™ + L# fyuf e + D7
wfi

(27.2.13)
Eq. (26.A.21) shows that (4 @R) is real, while (4 @ysA) is imaginary, so the
real part of Eq. (27.2.13) yields the Lagrangian {27.2.6) for the gauge and
gaugino fields '

1 ' lee oy 1 1
~5Re [ 3 e Wia Ww]g = - (;. pi}— A+ 507 (27.214)
af

The physical significance of the imaginary part will be discussed in a more
general context in the next section.

There is another way to derive the form of the spinor superfield,
which will turn out to provide a more convenient way of deriving the
components of the gauge superfield in non-Abelian gauge theories. A
tedious but straightforward calculation shows that the gauge-invariant
superfield (27.2.9) may be expressed in terms of the gauge superfield
(27.1.16) as

Wi, 0) = %(@Te@)ga V(x,0), (27.2.15)
where 2, is the superderivative introduced in Eqg. (26.2,26):
d 6 d ]
= — [t _— = e — H +
Dy = g(}'ﬁf}mﬂ 305 (7*8)s Gk a8, (70 D

This result might have been obtained (aside from the normalization factor)
by noting that the function (27.2.15) has the desired property of being
a gauge-invariant chiral spinor superfield. First, note that Eq. (27.2.15)
is a superfield, because it is formed by acting on the superfield V with
superderivatives. Also, it fellows from the anticommutation of the %5 that
the product of any three or more 2ys or three or more Jgs vanishes, so
that

(27e2)2 = (@Ee@L)QR + (@%@R)@ L. (27.2.16)

Because DL(DeDL) = Br(FgePr) = 0, the superfield (27.2.15) is chiral,
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with

i i .
Wea(%,0) = 5 (PRePR)D1a Vix,0), Wralx,0) = 2 (F1e@1) @ V(x,0).

(27.2.17)

Finally, we can show that (27.2.15) is invariant under the generalized gauge

transformation (27.1.13), which for a single Abelian gauge superfield is
simply

V(x,8) — V(x,0) + %[Q(x, ) — Q' (x, 9)] ) (27.2.18)

where Q{x,8) is an arbitrary left-chiral superfield. Since 21" = 0, the
change in Wy, is proportional to (2}62r)2 .. But 220 = 0 and

|(@Re2r), Do) = 2 [(1 +v3) #92x], .

so the change in Wi, vanishes. A similar argument shows that W, is also
gauge-invariant. {The work of checking Eq. (27.2.15} is greatly reduced
by using this gauge-invariance property to put ¥{x,#) in Wess-Zumino
gauge.)

The chiral superfields (27.2.11) and (27.2.12) are evidently not of the
mosi general form for left- and right-chiral superfields. To put the con-
straints satisfied by these superfields in a manifestly supersymmetric form,
we note by using the anticommutation relation (26.2.30) that

Eaﬁ@La(@EEE’?R)@Lﬁ =291} (E(l + ¥s) 43) g T («‘@EEQR) (@IE@L)
= eupDre( D1eBL) Dy . (27.2.19)

From Eq. (27.2.17) it follows then that W; and Wy are related by the
constraint

€ P1aWis = expPraWip - (27.2.20)

It is straightforward to show that the most general chiral spinor superfields
satisfying Eq. (27.2.20) are of the form (27.2.11) and (27.2.12), with f
constrained to satisfy the ‘Bianchi’ identities €778, f,, = 0.

27.3 Gaugé—lnvariant Action for General Gaunge Superfields

Our experience in the previous section with supersymmetric Abelian gauge
theories suggests immediately that in a general non-Abelian gauge theory
the kinematic Lagrangian for the fields ¥ (x), A*(x), and D*(x) should
appear as part of the gauge-invariant generalization of Eq. (27.2.6):

Lomuge =13 fawli — 43 (TaPAa}+ 1Y DaDa.  (273.1)
A A A
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We are now using a basis for. the Lie algebra with totally antisymmetric
structure constants, and we are consequently not preserving the distinction
between upper and lower group indices, writing all indices 4, B, etc. as
subscripts. Also, f4,, is the gauge-covariant field-strength tensor

faw =8Vay =8V au+ Y CancVauVe {27.3.2)
.18

and Dy,d is the gauge-covariant derivative of the gaugino field, which in
the adjoint representation is

(Dyd)g = 8uhq + Z CapcVaudc . (27.3.3)
BC

The question is: does Eq. (27.3.1) yield a supersymmetric action?

Since the Lagrangian density (27.3.1) is manifestly gauge-invariant, we
can test whether the action is supersymmetric in any convenient gauge.
To find out whether §.% .. is a derivative at some point X*, it is
convenient to adopt a specific version of Wess—Zumine gauge in which
V4(X) = 0. Then at X the changes in the component fields are given by
Eqgs. (26.2.15)+26.2.17) at x = X as

8Vap = (2yula) (27.3.4)

1
6l = (Efdpv [}_v s ,}],u] + i}'SDA)fx 3 f2735)
6D = i(ays Pha) - (27.3.6)

(We must set x* in these expressions equal to X* gfter calculating the
change under a supersymmetry transformation, not before)) Also, the
non-linear terms in f4" are quadratic in the Vs and therefore at x = X
have zero variation, so at x = X

8fapr = (3 (703 = 1,8)34) (27.3.7)

With one exception, the terms in Eq. (27.3.1) and their transformations
under supersymmetry transformatioas are thus just a number of copies
(labelled by A) of the Abelian theory discussed in the previous section,
and therefore give a supersymmetric action. The one exception that might
disturb the supersymmetry of the action arises from the second term in
the gauge-covariant derivative (27.3.3) of the gaugino field;

Luv=—13 Cugc (ﬂ F’Bic) ) (27.3.8)
ABC
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whose variation at x = X is

§Luv =13 Casc (E(é yﬂ}lc) =—1%" Cusc (E}’p"lC) (50}’”/13) .
ABC

ABC
: (27.3.9)
We can write the product of bilinears on the right-hand side as the sum
of two terms

(ﬂyﬂic) (&?“AB) = Xapc + Yazc,

with

Xapc= 1Y, (H{l + ?5]].’;1’1(3) (55".*‘“(1 + TS)';I-B) )
+

fh

Yase = § - (AL £vshyede ) (000 F vs)in)

s
By using standard Fierz identities and the aniicommutativity of the spinor
fields, we have

(Tall £y5)3,48) (31 Lyshy*he ) = (Tal 2 v9)ralc ) (301 £ 95)72m)
(Tal £yshnis) (30 FyshAc) = (To(L L yshada ) (701 F yshda)

(To derive the first of these relations, we note that {(1Xys)y.le (1 Lys)v¥]sp
may be thought of as the «f matrix element of 4 matrix depending on
& and y, and may therefore be expanded in a linear combination of 4,
y;‘ﬁ, [¥, v%]up, {¥s7*)ug, and (ys)ss. Because of the factors (1 £ys), the enly
term in the expansion is proportional to [{1 X ys)y#}ss. Lorentz invariance
and the presence of the other 1475 factor tell us that this expansion takes
the form

[(1 £ ps)pudoy [(1 £ 95)y¥)ep = k(L L yshpulag[(1 £ v5)p* sy -

To determine the proportionality constant k, we may contract both sides
with (y,}y« and find k = —1. The minus sign is cancelled by a minus sign
arising from the anticommutation of ¢ and & The other Fierz identity
is proved in the same way, except that we also need to use the symmetry
property (26.A.7) for Majorana bilinears.) Hence X 4a¢ 1s symmetric under
interchange of B and C, while Y4zc¢ is symmetric under interchange of 4
and B, Since Cypc is totally antisymmetric, both X,ipc and Yipc make a
vanishing contribution to the sum in Eq. (27.3.9), leaving us 6 %,y = 0,
so that Eq. (27.3.1) gives a supersymmetric action, as was to be shown.
We can understand why Eq. {27.3.1} gives a supersymmetric action by
identifying the superfield that has fi., 44, and D4 as component fields.
Recall that under a generalized gauge transformation, the vector superfield
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V4{x, 0} has the transformation property (27.1.12):

exp (wZZ tq VA(x.H}) — EXp (-:Z taQa(x, 6‘))
A A

X exp (—22 14 VA(x,G}) exp (+iz.¢,,n;l(x, ﬁ‘]) ,(27.3.10)
A A

where Q4(x,0) is a general left-chiral superfield. This is not a gauge-
covariant transformation rule, because £, # 4. To eliminate the factor
involving £, we note that Q7 is a right-chiral superfield, so that 27,0’ -
0, and therefore

exp (—22 fa VA(x,ﬂ)) Dy CXp (+2 > s V,l(x,e))
A A
— exp (—izmgﬁl(x,ﬂ)) exp (—22 ta VA(x,G))
A A
X Dy [exp (—0—2253 Valx, 8)) exp (-f—inAﬂA(x,_ﬂ)) ] . (27311
A A

This is still not gauge-covariant, because the left-superderivative £y, acts
on exp(+i Y. taQa(x, 6)) as well as on exp (+23 4 tq Va(x,8)). This is
eliminated if we follow the lead of the Abelian theory discussed in the
previous section, and define a spinor superfield

2 z t WALZ(JC, 9) = Z Eﬁ}..@}{ﬂﬁ?j{}. {E«Xp (_‘2 E taVa (x, ﬂ))
A By A

X @2 6XP (+2Zm V,{(x,ﬂ)) } . (27.3.12)
A
Because the product of any three gs vanishes, Wy, is left-chiral

DrpWaralx 0)=0, (27.3.13)

and because PppPryPralls o Dpslly = 0, Wy, is gange-covariant in
the sense that, for 2 generalized gauge transformation,

3 ta Waral, 8) — exp (3" £40Qu(x,0)) 3 14 Wara(x, 6)
A A A
X exp (-1—17 E:rAQA(x, 9)) . (27.3.14)
4

Ta calculate the spinor superfield at a point x* = X¥#, we can again
adopt a version of Wess-Zumino gauge in which V4(X) = 0, and after a
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straightforward calculation find that in this gauge
War(X,0) = A(Xs) + 9 0L (8uV a(Xs) = 8,V X4})
+(0Fc00) PAralX.) —iBLDAX ).

Since W,y is gauge-covariant, at a general point in a general gauge it
must have the value

WAL(JC, ﬂ) = A.AL(JC+]+ %?F?vﬂL prv(x_i.)+.(8{€9L)D.J.RA{X+] —iﬂLDA(x.,_).

_ (21.3.15)
From this, we can construct a Lorentz- and gauge-invariant % -term
bilinear in W

_[Zé‘aﬂwALxWALﬁ]% = AZ {— (1; ¢l “'}’s)i,i) — %fflmfﬂv

Axf
i

*3

ewpof 1Y + D3 (27.3.16)

Just as in the previous section, the gauge-invariant Lagrangian (27.3.1) 1s
obtained from the real part of this F-term:

1
— 3 Re[ 3 exs WaraWara] , = Lonuse (27.3.17)

Anf

What about the imaginary part? This is given by

—Im[ZEug WALaWALﬁ}f = ‘*fz (E p}'SAA) -+ %E#VPD' Zfiv flg '
. 4 A

Axf

(27.3.18)
Eq. (26.A.7) and the antisymmetry of the structure constants show that
(Ta Dysha) = 32.(A4#p5L), so the first term is a total derivative, whiie
Eq. {23.5.4) tells us that the second term is a fotal derivative also. In
Abelian gauge theories, this means that a term like (27.3.18) would have
no effect, But as discussed in Sections 23.5 and 23.6, in non-Abelian gauge
theories the existence of instanton solutions allows the density (27.3.18}
to have a non-vanishing integral over spacetime. We therefore must allow
for the possibility of a new term in the Lagrangian density

2

_. g0
Py = wﬁlm[;ﬁeaﬂwmwm}y, (27.3.19)

where @ is a new real parameter, and g is a gauge coupling, which can
be conveniently defined for a simple gavge group so that if ¢4, ¢z, and
te are in the ‘standard’ SU(2) subalgebra of the gauge algebra used in
calculating instanton effects, we have Cpe = g €45c. With this definition
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of the gauge coupling, Eq. (23.5.20) gives for simple gauge groups
f 0 epupe S 1057 = 64nPv /g2, (27.3.20)
A

where v = 0, 41, +2,... is an integer, the winding number, which char-
acterizes the topological class of the gauge field configuration. Thus for
instantons of winding number v, the Lagrangian density 2%y contributes
a phase to path integrals, given by

{exp (i f &' ,g’g)]v — exp(iv8) (27.3.21)

so the effects of ¥y are periodic in @, with period 27,

It is often convenient to absorb a factor g into the gauge field, so that
the structure constants do not depend on g, and instead the Lagrangian
density for the gauge field is multiplied by an over-all factor 1/g%. In
this notation, the complete Lagrangian density for the gauge field may be
written in terms of the rescaled gauge fields and structure constants as -

T
ggaugc + Zp=—Re [% ,%:ﬁf&ﬁ-w"'m WALH]F , (27.3.22)
where t is the compiex coupling parameter
dni 9
PN (27.3.23)
£ 2n

According to Eq. (23.5.19), the contribution of instantons of winding
number v to path integrals is suppressed by a factor exp(—8n2|v|/g?),
which togcther with the factor {27.3.21) yvields an over-all factor

. 8|vl] [ exp(2mivi) v=0
exp {Wﬂ g2 } - { exp{2nivi”) v< 0

(27.3.24)

274 Renormalizable Gauge Theories with Chiral Superfields

We will now put together the picces assembled in the previous three
sections, to construct the most general renormalizable action for chiral su-
perfields interacting with general gauge fields. Adding the terms (27.1.27),
{27.2.7), and (27.3.1) and the superpotential terms in Eq. (26.4.5) gives the
Lagrangian density

1 i
&£ = 5 [{D’r EXp (—ZZA:EAVA) 'T'L) - -2-Re ; (W}LEWAL)F

2
g0
— i EA Im (W}LEWA[_)§
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=~ S DN S — 3 3 (F D) + Y F s

n

Re S 2T (o )+ ome 3 SO 5

Ondpm B = "
—2-/2Im Z(t,q}m (W:Ll)tbm +2/21m > " (tadmn (Wh)fi’;
Anm Anm

. . |
- Z ¢n(tA]nm¢mDA — Z EaDa+ 5 ZDADA
: A

Anm A

! w1 - 329 W e
3 ;f«mf,q —EEA:(AA(DA)A) +mgqm§ FEFe . (2740)

Here f(¢) is the superpotential, a gauge-invariant complex fuaction of ¢,
{but not of ¢;) which the condition of renormalizability requires to be a
cubic polynomial; the £,4 are constants which gauge invariance requires to
vanish except where 4 is a U(1) generator; the gauge-covariant derivatives
are

Dupr=duwr —i9_ taVauyr, (274.2)
A

Dy =8,p—iY taVuuoh, (27.4.3)
A

(Dudla = Buda + D CascVaiic (27.4.4)
BC

and f4,, is the gauge-covariant gauge field-strength tensor

Faw =0 Vay ~ 8 Vau + Y CancVsaVer - (27.4.5)
BC

The auxiliary fields enter quadratically, with field-independent constants
as the coefficients of the second-order term, so they can be eliminated by
setting them equal to the values at which the Lagrangian density is
stationary: '

Fn=—(0($)/304) (27.46)

Da=Ca+Y ¢nltadomGm . (27.4.7)
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Using these back in Eq. (27.4.1), the Lagrangian density becomes
&= - E(D;:ﬁb}; (Dﬁ‘ﬁ]n I

A

‘% Z (W ?“(Duwz,)") + %E ((DM""},, 4 w,m)

221 () 1 21\ .
Za(ﬁaf&tf) ( L€ Wm L)“i”%(atﬁ,,aqu) (‘JJJTL‘-’thL)
of ()

3
+=J 3> (T (o 4t ) — 142 z &r (T4 (C)om wims.)

...E Z (é,‘l + E I'!’):: [IA)nm Qbm) —_ ZfA,uvfﬁv
4 M

1 —
_5 Z (AA fpf'-]ft) 64 2'5'_uvpa E}HW - f27.4.8)
A

Lorentz invariance requires the fields .., 14, and f4,, to have vanish-
ing vacuum expectation values, while the tres-value vacuum expectation
values of the ¢, are at the minimum of the potential

2
s Z(é +Z¢,,(m,.m¢m) . (2749)

This potential is positive, so if there is a set of field values at which V{¢)
vanishes, then this is aufomatically also a minimum of the potential. For
V{¢) to vanish at some field value ¢, = d,p, it is necessary and sufficient
that

Vigy =

of(#)]”
Fop=— =0 27.4.10
and
Do = ‘5,-1 + Z ff):;() ':fel]nm tﬁ’mi) ={. {27-4+1 1)

This in turn is the necessary and sufficient condition for supersymmetry
not to be spontaneously broken, since Eq. (26.3.15} gives {(dyurivac =
\/’_(FH}VAC ar, and Eq. (26.2.16) gives {(dda}vac = i{D4)vac ysa.

It is worth stressing here that spontaneous symmetry breaking is more
difficult for supersymmetry than for other symmetries. For most symme-
tries of the action there will be field configurations at which the sym-
metry is unbroken and the potential is stationary, but the symmetry will
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nevertheless be spontaneously broken if none of these configurations are
minima of the potential. In contrast, any supersymmetric field configura-
tion gives the potential a value of zero, which is necessarily lower than
the value of the potential for any non-supersymmetric configuration, so
the existence of any supersymmetric field configuration insures that super-
symmetry is unbroken. As we will see in Section 27.6, this conclusion goes
beyond the tree approximation used in this section; it is unaffected by
corrections of any finite order in perturbation theory.

It may appear that Eqs. (27.4.10) and (27.4.11) impose too many con-
ditions on the scalar fields to expect a solution, without some fine-tuning
of the superpotential. However, for a gauge group of dimensionality D,
the superpotential f(¢) is subject to the D constraints

3 a—i%(w)m =0, (27.4.12)

for all A and all ¢. Hence if ¢ has N independent components, then the
number of independent conditions {27.4.10} is N - D, while the number of
conditions {27.4.11) is D, so there are just N conditions altogether. With
the number of conditions equal to the number of free variables, it is likely
to find solutions for generic supcrpotentials. In fact, it is more usual to
find sofutions than not. For instance, for chiral scalar superfields in a
non-trivial representation of a semi-simple gauge group we have &4 = Q,
while f(¢) can have no terms linear in the ¢,, so both Eqs. (27.4.10)
and (27.4.11) are satisfied for ¢ = 0. There may be other solutions
of Eqs. (27.4.10) and (27.4.11) whick break the gauge symmetries, but in
such a theory supersymmetry cannot be broken, at least not in the tree
approximation, and, as we shall see in Section 27.6, not in any order of
perturbation theory,

More generally, it 1s easy to see that, even if the gauge group has U{1}
factors and even if the superpotential involves gauge-invariant superfields,
if there exists a set of scalar field values ¢, that satisfy Eq. (27.4.10), then
there is another that satisfies both Eq. (27.4.10} and Eq. (27.4.11}, provided
only that the Fayet-Tliopoulos constants &4 all vanish. To show this, we
note that since the superpotential f{$) does not invelve ¢, it is invariant
not only under ordinary gauge transformations ¢ — expl(i}_, Aats)d
with A, arbitrary real numbers, but also under transformations with Ay
arbitrary complex numbers. Under all these transformations the # -terms
i Eq. (27.4.10) transform linearly, so if ¢o satisfies Eq. (27.4.10), then so
does ¢ = exp(i 324 Aataddbo. On the other hand, the scalar product [¢T¢]

is not invariant under transformations with A4 complex, but [¢* p*]
does remain real and positive for complex Ay, so it is bounded below,

and therefore has a minumum. For &4 = 0, the condition that [¢“T¢“] be
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stationary at this minimum is just that o™ should satisfy Eq. (274.11). We
gee then that in the absence of Fayet-Ilioupoulos D-terms, the question of
whether supersymmetey is unbroken in gauge theories is entirely a matter
of whether the superpotential allows solutions of Eq. (27.4.10). The same
result applies even in non-renormalizable theories.? :

Now let us assume that there is a set of values ¢y at which Vide) =0,
so that supersymmetry is unbroken. The spin O degrees of freedom are
described by a shifted field

@n = Pu — Pno . (27.4.13)

There is then a cross-term between ¢ and the gauge fields, arising from
the first term in Eq. (27.4.1):

25 1m (Bupa (tadbols ) VA
nA

As shown in Section 21.1,'it is always possible 1o eliminate this term by
adopting a ‘unitarity gauge,’ in which ¢, satisfies a constraint that makes
this term vanish:

S 1m (g itagol,) = 0. (27.4.14)

This will have the effect of eliminating the Goldstone bosons associated
with broken gauge symmetries.

We shall now work out the masses of the particles of spin 0, spin
1/2, and spin 1 that arise in this theory if supersymmetry is unbroken,
taking into account the possibility that the gauge symmetries may be
spontaneously broken.

Spin 0

Because 8f($)/0¢n and &4 + S, B (Ladwn O must both vanish at ¢, =
dno, the terms in V{¢) of second order in ¢, = ¢ — ¢ and/or ¢, are of
the form

Vad($) = S A Hmyom + 3 (1490), (ta60) 030

Amm

L3 ) () + 13 (o) (),
(274.15)

where .# is the complex symmetric matrix (26.4.11):

_ (@
Ao = (amaq&m) e
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This can be written as
{ t
Vouad = 3 [ ® J M2 [ ;’; ] : (27.4.16)

where M is the block matrix

[ M+ Y (o) (tado)! > altao)tago)” }

2o altado) (tago)? MM+ T (tado) (tado)T
(27.4.17)
Now we must [ook for the cigenvalues of this mass-squared matrix.
Differentiating Eq. (27.4.12} with respect to ¢, gives

Z aac;;,,fa(im (ta), + ‘m’ ) =0 (27.4.18)

But as we have seen, 8f(¢)/0¢m vanishes at ¢ = ¢y, so by setting ¢ at
this value in Eq. (27.4.18), we find

S M (tadalm = 0. '(2?.4.19)

M =

It follows that
2| tpde ] t tago }
Mﬂ [ :t(tﬂ(.bﬂ)‘ ] - g (¢0[tﬂtﬂ i IB“*A]‘;bU) [ i(tﬂﬁbﬂ]* .
But the vanishing of D4 at ¢ = ¢y and the global gauge invariance of &,
tell us that
(955 [t4, Islsf?c-) =iy Cape (fﬁgfcqf?n) = —f(ﬁf’étﬁn) Y Canclc =0
C C

(27.4.20)
The matrix (27.4.17) therefore has a pair of eigenvectors for each gange
symmetry

u:[ 2_BCBtady ] u=[ 2.g<B tao } (27.421)

3 pcp (tao) — 3 ncn (tago)”
for which
Mu = y*u, Ml =0, (27.4.22)
where u* and ¢4 are any real solutions of the eigenvalue problem’
Y (9biea, ts}do)cn = pPeq (27.4.23)
B

" The presence of a factor 1/2 in Eq. (21.1.17) which does not appear in Eq. (27.4.23) is
due to a difference in the way that the scalar fields are normalized.
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with the exception that if the eigenvalue y? vanishes then 3-p cptado =0,
so that the eigenvectors u and v are absent. The massless particles assoct-
ated with the v eigenvectors are Goldstone bosons, which are eliminated
from the physical spectrum by the unitarity gauge condition (27.4.14). In
addition to these mass eigenstates, there is another set that are orthogonal
1o all the us and vs and that therefore take the form

{
Wi = e ] , (27.4.24)
where
Z(ucﬁo}; n=0. (27.4.25)

Eq. (27.4.19) shows that the space of {s satisfying Eq. (27.4.25) is invariant
under muitiplication with the Hermitian matrix AT 4, so it is spanned
by the eigenvectors of this matrix, satisfying

AT =m (27.4.26)

with m? a set of real positive (or zero) eigenvalues. Eq. (27.4.26) and its
complex conjugate together with Eq. (27.4.25) show that w4 are eigenvec-
tors of M} with eigenvalues m”:

Miwy = miwy. . (27.4.27)

We thus have two self-charge-conjugate spinless bosons of each mass m
satisfying Eq. (27.4.27), and one self-charge-conjugate spinless boson of
each non-zero mass g satisfying Eq. (27.4.23).

Spin 1/2

The fermion masses arise from the non-derivative terms in Eq. (2?48)
that are of second order in the fermion fields v, and A4:

L1y =—3 Z M Wi epmL) i 23 (tadol, (AF4€ wne) +He.
(27.4.28)

We saw in Section 26.4 that if the fermion mass term in the Lagrangian
for a column y of Majorana spinor fields is put in the form

1
#ip =5 (xleMu) + He., (27.4.29)

then the fermion squared masses are the eigenvalues of the Hermitian
matrix MTM. Eq. (27.4.28) gives the elements of the matrix M here as

Mon = Mm s Mug = Map = iUk, Maz=0, (27.430)
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for which, using Eqgs. (27.4.19) and (27.4.20),
(MM = (AT M )n + 23 (abodnltaboly, ,
A

(M Mg = (M ™M)y =0, (27.4.31)
(MM)ap = Adltatade) = (61{ts, ta}do) .
The eigenvectors of the matrix (27.4.30) are of three types. First are those
of the form
z= [ g ] , (27.4.32)

with eigenvalues m?, where {, and m? are any eigenvectors and corre-
sponding eigenvalues of .4 .#. Next are those of the form

g = [ E ] . (27.4.33)
with eigenvalues g, where cz and #° are any eigenvectors and eigenvalues
of the matrix (¢5{tg, t4}¢o). Finally, there are those of the form

h= [ Zp 2ts o ] , (27.4.34)
with eigenvalues u?, where cz and p? are again any eigenvectors and
eigenvalues of the matrix (qﬁg[ta, ti}dp). The only exception is that the
eigenvectors ¢ of this matrix with eigenvalue zero have 3", catago = 0,
corresponding to unbroken symmetries, so that in this case the vector
{27.4.34) vanishes and we have only the eigenvector {27.4.33). Thus there
is one Majorana fermion of each mass m satisfying Eq. (27.4.26), two
Majorana fermions of each non-zero mass u satisfying Eq. (27.4.22), and
one Majorana fermion of zero mass for each unbroken gauge symmetry.

Spin 1

The mass terms in the Lagrangian for the gauge ficlds arise from the part
of the first term in Eq. (27.4.1) that is of second order in the gauge field
Vi

Ly ==Y (tado){tadolnVauVh . {27.4.35)
nd R

Since the fields V4, are real, their mass-squared matrix is the matrix in
Eq. (27.4.23):

()an = (D38, tatdo) . (274.36)
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There is one spin 1 particle of mass p for each eigenvalue u? of the matrix
(27.4.36).

Putting this all together, we see that for each eigenvalue m? of the
matrix .#&".# there are two self-charge-conjugate spinless particles and one
Majorana fermion of mass m; for each non-zero eigenvalue of the matrix
i g there are one self-charge-conjugate spinless boson, two Majorana
fermions, and one self-charge-conjugate spin 1 boson of mass g and for
cach zerc eigenvalue of this matrix there is one Majorana fermion and
one self-charge-conjugate spin 1 boson of zero mass. It is not surprising
that the particle multiplets for each zero or non-zerc mass are just the
same as we found by direct use of the supersymmetry algebra in Sections
254 and 25.5. What is a bit surprising is that the masses of the gauvge
and chiral particles are unaffected by each other. The masses m that are
given by cigenvalues of (.#" )y and the particles with these masses are
just what they would be in a theory of chiral superficlds without gauge
superfields, and the masses p that are given by eigenvalues of pyg and
the particles with these masses are just what they would be in a theory of
gauge superfields with no chiral superfields.

For future use in Section 27.9 we will now apply the method described in
Section 26.7 to construct the supersymmetry current for the supersymmet-
ric gauge Lagrangian (27.4.1). In the gauge used earlier, an infinitesimal
supersymmetry transformation changes V4, 4., and D4 by the amounts
(27.3.4)-(27.3.6). Adding the Nocther supersymmetry current given by
Eq. {26.7.2) for these ficlds to the Noether current for ¢p, w,, and F,
already given in Eq. (26.7.8), with derivatives replaced by gauge-invariant
derivatives, gives the total Nocther supersymmetry current:

1 1.
NE =D fdria—g > fapal?" VWA 5 iy Daysy*ia
A A J
1 '
+ﬁ > [ZID%}" war. + 2 (D*P)n war + (PO ¥R

HPEY P Wur — F n ¥ iPur —~ F v"wna} . (27.437)

This is not the supersymmetry current, because the Lagrangian density is
not invariant under supersymmetry; instead, its change is the derivative

32 = 0,(aK") (27.4.38)
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where"™*

1 I ' L
KH# = 5 i Zépdﬁvapa}'v?SAd + g Z:[,},p’ TU]T#AAI'APG + EI EDA vsy 44
4 A ' 4

—i 3 "t )mmysPH A Pm
Arm

+% Z?'“[-— (D) nr — (p¢}; Yt +§.; War + F 5 Pur
of )y ICINN
+2 (‘gtf,—) oz + 2 (_53—_) wnnJ : (27.4.39)

The first two terms are derived using the identity (27.2.5), Using the same
identity again with Eq. (26.7.4) gives the total supersymmetry curreni:

St = N* 4 K¥
I . L]
= =7 2T 200 P V1 Rt — (s R
A

Amm

+% ; {(p(f)}n Yunr + (p‘f"')r: 7L

+2 (%:fl) Ppur, -+ 2 ("ﬁ‘f))' y“w,m] L (1440)

L

In Section 26.8 we considered a class of supersymmetric theories with
a superpofential f(®) that has an arbitrary dependence on a set of left-
chiral scalar superfields @, but not their derivatives, and with 2 Kahler
potential K(®,®") that has an arbitrary dependence on the ®, and O,
but not their derivatives. We can extend the same considerations to
gauge theories, again with the dependence of the Lagrangian on the chiral
superfields limited only by supersymmetry, but without introducing new
superderivatives or spacetime derivatives. The renormalizable Lagrangian
density is then replaced with

# =3 [K(e, @ exp(=2 3 14¥0)], + 2Re [f(@)],

—%Re 3 [h,m(‘l)) (W,ILEWBL)]f , (27.4.41)
4B

" The casicst way to calcuiate the change in the term [B7 exp(—2 Y 4tV is to
calculate the A-componeant of ©f exp(—2 3444V and use Eq. (26.2.17). In this way
of doing the calculation, the important term on the second line of the right-hand side
of Eq. {27.4.39) arises from the A-component of exp(—2 3 4 taVa).
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where h,5(®} is a new function of the ¥y, but not of the ®; or derivatives.

The chiral gauge and scalar superfields are given by the expansions
(26.3.21) and (27.3.15):

Wap(%,) = Aa(x) + 579" 01 Faptes) + (0Te6L) Plates)
—iflp Dalxy),
@a(x,0) = dulx+) — V2(OFewnilx 1)) + Fules) (0601}

where x is the shifted coordinate (26.3.23). The terms of second order in
@, (and 1ndependent of Bg)in 3 4p hAB{(D}{WALe Wg,) are then

- [E hAB{m}(WATwaﬂL)] =
AB

2
HL

(e&&)%_(ﬂﬁm){ > (whiew ) Zte) ;y,ﬁﬁggﬂ

+(HEEHL) Zk&ﬂ’(‘i’) l - (“1—:; p(l - ?S)AB) - Effl,uvfgv
AB
+£€pvpn' iv ﬂq +DADB]

3 3> ahAB(¢) (0Tewnc) [~(ABoev™s"0u) o + 26 Fhets)]

with all fields now understood to be evaluated at x* rather than x/. (The
first and second terms on the right-hand side are taken from Eqs (26 4.4)
and (27.3.16), respectively.) Also, by writing 8r,0rp as Teua(01ebL), the
third term on the right-hand side can also be expressed as proportional
to (91ef):

(GEEWNL) [(WE)J“"}JVHr,)f;q#p — Zi(mﬂL)] =
%(HEEHL) [(W}:wan;.) - 25(@'1;;,1[‘) DA] )

The #-term is the coefficient of (8] fy), so

“[ZhAB{@)(W}LEWBL)} =
AR 5
Phap(d) 3h,43(¢)]

T _]-_ T
3 () [ 3 (vovm) 335501~ 275

n
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+3_ han(d) { — (TP = y5)A5) — 5faw 5 + geupel 415
AB :

+DADB}

\/_ > chap(@)

4Bn O

The other terms in E‘.q. (274,41} are just given by the gauge-invariant
version of the Lagrangian density (26.8.6). Putting this together gives the
Lagrangian density

[ (W?F?“wnL)fAm + 25(%%1.)13,4] _

& =Re Y Gumid, ¢’} [ — 5 (7% PO+ 35000) + FF5, — Dyt D“qfa;]

PK($, ")
R 2 Bom

oK }
. Re Z G a(‘fmqg‘ﬁ! (Wm}’ﬂw{ﬂ) D#ti’n

&K (4, ¢") __
+ Z < O Ocpm 0] 095, (wnme) (wk’#m)

21(9) 61(9)
R Shdg, (o) PR T Fu T
1

e 32 (Fi) (ron) S50

1 - dhag(P)
—-i Re gt (AAABL)'?H_";T

+RE E hAB(‘I’) [ - (a pABR) prva : E,uvpcrfm
AR

(wnthL)gF,f

Brm

1
—l—EDADB}

37 3 PO (T} s+ 2T 4)

(27.4.42)

One interesting feature of this result is the appearance of a gangino mass
in theories with ¢,-dependent functions h4p{¢), when supersymmetry is
broken by a non-vanishing value of %, This mechanism is used to
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generate gaugino masses in some theories of gravitationally mediated
supersymmetry breaking, discussed in Section 31.7.

275 Supersymmetry Breaking in the Tree Approximation
: Resumed

We saw in the previous section that if the Fayet-Iliopoulos constants £, all
vanish and if there exists a soletion of the equations 2f(¢)/0¢, =0, then
there is also some solution of these equations where the D-components
of the gauge superfields all vanish, so that supersymmetry is unbroken, It
follows that there are only two (non-exclusive) ways that supersymmetry
can be spontaneously broken in the tree approximation in renormalizable
theories of gauge and chiral superfields: the superpotential f(¢) may be
arranged so that there are no solutions of ali the equations 8f(¢)/d¢n =0,
or for gauge groups with U(1) facters there may be Fayet-Iliopoulos terms
in the action.

We have already seen in Section 26.5 how it can happen that there
might not be any value of ¢ for which df(¢$)/d¢, = 0. No change in that
discussion is needed when the chiral superfields interact with gauge fields,
s¢ let’s turn to the other possibility: spontaneous supersymmetry breaking
produced by Fayet-Iliopoufos terms. Since this can only arise for gauge
groups with (1) factors, the simplest case is a theory with a single U{(1)
gauge group. As discussed in Section 22.4, to avoid U{1)}-U(1)-U{1) and
U(1)-graviton-graviton anomalies it is necessary that the sum of the U{1)
quantum numbers of all left-chiral superfields and the sum of their cubes
shoutd vanish. We will consider the simplest possibility: two left-chiral
superfields @4, with U(1) quantum numbers te. (This is a supersymmetric
version of quantum electrodynamics, with the spinor components p._p
and 4y of the two superfields providing the left-handed parts of the
electron field and of its charge conjugate.) The most general U(1)-invariant
superpotential in a renormalizable theory is just f(®) = m®,®_. The
scalar potential (27.4.9) for the scalar components ¢, of these superfields
is then

V(dor o) = mlos P+ md 2+ (£ 4 Mg — o). @751)

Unless the Fayet—-Tliopoulos constant ¢ vanishes, it is evidently not possible
to find a supersymmetric vacuum with ¥ = 0. For ¢ > m?/2¢* or
¢ < —m?/2¢* the potential (27.5.1) has a minimum with either ¢, = 0
and [¢_|> = (262 —m?)/2¢* or ¢ = 0 and |¢ | = (=2e*¢ — m?)/2¢64,
so the U{1)} gauge symmeiry is broken along with supersymmetry. For
ié] < m?/2¢* the minimum of the potential is at ¢y = ¢_ = 0, so
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here the gauge symmeiry is unbroken, There is in general no necessary
connection between the possible breakdown of supersymmetry and of
gauge symmetries.

Whether supersymmetry is spontanecusly broken by the Fayet-ilio-
poulos mechanism discussed here or by the O'Raifeartaigh mechanism of
Section 26.5 or by some combination of the two, supersymmetry leaves a
remnant in the pattern of tree-approximation masses. Inspection of the
Lagrangian {27.4.8) for a general renormalizable supersymmetric theory
of gauge and chiral superfields shows that the spontaneous breakdown

of supersymmetry in this theory produces the following correctians to the
masses calculated in Section 27.4.

Spin 0 Masses

If the #-terms F, = ~~(0f(9}/8¢d,)" do not vanish at the minimum
¢g of the potential, then the terms in the potential of second order in
@n = ¢p — Ppo have additional terms beyond those listed in Eg. (27.4.{5):

unad(ip:' = Z(uﬁ'dﬁ]nmfp;@m + Z (IA(;'JO)H (IA(;bU);(P:I(pm
At Anm
+% Z (IA%);(EA%);‘P”@’“ + % > (‘A%)" (Iatﬁo)mﬁﬂ;@:n ,
Arm

Z: JVnmﬁanpm 2 Z 'ﬁrnm nﬁpn

-+ Z DAO{IA)nmﬂﬂn(Pm ’ (2?-5-2)

Anmi

where .# is again the complex symmetric matrix (26.4.11):

_ { &g
Hom = ('amaqf-m)

A um 15 2 new ingredient

3*f(¢) 5
N o = me (a%acpma@)d’ . (27.53)

and % and D, are again the #-terms and D-terms of the chiral scalar
and gauge supeifields at the minimum of the potential:

af (f.f»"]] "
n L g=pq

g'-nﬁ:_[ P DA[):(:A‘FZ@:;O(IA)anbnﬂ-
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If we write the quadratic part {27.5.2) of the potential in the form (27.4.16):

ez [ 5] [ ]
V —_ 3 M . ]
quad 2[%0 0 @

then, instead of Eq. (27.4.17), we now have the scalar mass matrix
\ [.,#’M{+M’+E,1D,mu B+ AN ]
M@ = »

B+ AN MM A+ Daat]
(27.5.4)

where

A=Y (ado)tado) . B =3 (tado)tado)T.
A A

.Spin 1/2 Masses

The fermion mass matrix M here is given again by Eq. (27.4.30):
Mun = Mo . Mpg = Myn =i\/§(r.4¢'0}:| » Msp=0.

However, now instead of Eq. (27.4.19), the gauge invariance condition
{27.4.18) yields :

S M (i) = 3 F ot dran (27.5.5)

Thus the Hermitian positive matrix whose eigenvalues are the squared
masses of the fermions is given by

(M M = (A M + 2 (L4 0)nladho)
A

(Mt M) = Adbtatado) s (2758

(MTM)y = (MTM) g = iV2Y " F ot -

Spin 1 Masses

The squared masses of the vector bosons are again given by the eigenvalues
of the matrix (27.4.36}:

(P)an = (85 (¢s, taldo) . (@757

With the exception of the D-terms in Eq. (27.5.4), all of the changes in
the mass-squared matrices are in their off-diagonal components. Therefore
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Eqs. (27.5.4), (27.5.6), and (27.5.7) yield particularly snnple results for the
traces of these matrices: for spin 0

TrM§ = 2Te (A" #)+ Try? +23 DaoTrey, (27.5.8)
A

and for spin 1/2
Tr(MYM) = Tr (" 4)+ 2Tr % . (27.5.9)

Stnee the trace is the sum of the cigenvalues we obtain from this a mass
sum rule:

> mass® —2 > mass® 43 Y mass’ = —23 " DyoTreg . (27.5.10)
spin O spin 1/2 spin 1 A

The trace of 14 automatically vanishes unless ¢4 is a U(1) generator, and,
as mentioned in Section 22,4, the trace must also vanish (when iaken over
all left-handed fermions) for U(1) gauge generators to avoid gravitational
contributions to an anomaly that would violate conservation of the U(1)
current. Thus (27.5.10) leads to the simpler result?

> omass’ =2 3 mass’+3 Y mass’ =0, {27.5.11)

spin O apin 142 spin I

Of course, the unbroken conservation of charge, color, and baryon and
lepton numbers prevents the mass mnatrices from having elements linking
particles with different values of these quantum numbers, so all these
results hold separately for each set of conserved quantum numbers.

The sum rule (27.5.11) is often quoted as providing evidence against
models in which supersymmetry is spontaneously broken in the tree ap-
proximation within the minimum supersymmetric extension of the stan-
dard model. We will discuss this aleng with other arguments in Section
28.3.

As already observed in Section 26.5 (and discussed in greater generality
in Sections 29.1 and 29.2), the spontaneous breakdown of supersymmetry
necessarily entails the existence of a massless fermion, the goldstino. For
renormalizable gauge theories in the tree approximation, the goldstine
field g appears as a term in the spinor components v, and 14 of the chiral
and gauge superfields, with coefficients given by

wnL=i\/§ﬁnﬂgL+”°= AAL=DAOgL+'*', (2?512}

where the dots denote terms involving spinor fields of definite non-zero
mass. To check this we have to confirm that (i./2% 4, Do) is an eigenvec-
tor of the fermion mass-squared matrix MTM with eigenvalue zero. For
this purpose we will need to use the condition that the potential (27.4.9)
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is stationary at ¢ = ¢p:

av
- =S M Fun+ 3 Dot - (27.5.13)
ad}" ¢=¢ﬂ m A .

We also need the gauge invariance condition (27.4.12), which at ¢ = ¢
reads .

0

S Fuo(tado)a = 0. (27.5.14)

Combining ¥qs. (27.5.13) and (27.5.14) with Eqs. {27.5.5) and (27.5.6) then
yields

2 S M My F o = V23 DaltaF gl = — > _(M"M)aaDo
] A

A
(27.5.15)
and .
2 S (MM 4nF g = =25 Fn0 (Ctdun Fmo = — 3 (M M)z Dpo .
0] nm B
(27.5.16)
That is, _
Miaf ( Wgﬁ‘* ) ~0, | (27.5.17)
0

as was to be shown.

276 Perturbative Non-Renormalization Theorems

From the beginning, several of the ultraviolet divergences in ordinary
renormalizable quantum field theories were found to be absent in the
supersymmetric versions of these theories. With the development in 1975
of supergraph techniques, in which all particles in each supermultiplet are
considered together, it became possible to show that some radiative correc-
tions are not only finite, but are absent altogether in perturbation theory.’
Supergraphs will be described in detail in Chapter 30, but as it happens
they are not needed to prove the most important non-renormalization the-
orems. This section will give a version of a method developed by Seiberg®
in 1993, which showed how the non-renormalization theorems may be
easily obtained from simple considerations of symmetry and analyticity.
Consider a general renormalizable supersymmetric gauge theory with
a number of left-chiral superfields @, and/or gauge supcrficlds V4. As
mentioned in Section 27.3, if we remove the factor g in the t4 and Cyac
and include it instead in the gauge superfields, then the Lagrangian density
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will be of the form

# = otV @]D } 2Re [f{q:-]}ﬁ + Z:}ER“" [ Y eugWaar w,,ﬁL]g. ,
e (27.6.1)

where the superpotential f(®) is a gauge-invariant cubic polynomial in
the left-chiral superfields, (We are ignoring a possible f-term, which has
no effect in perturbation theory.)

Suppose we impose an ultraviolet cut-off A on the momenta circulat-
ing in loop graphs. As discussed in Section 124, we can find a local
‘Wilsonian® effective Lagrangian density %, that, with this cut-off, gives
precisely the same results as the original Lagrangian density for S-matrix
elemenis of processes at momenta below A. The effective Lagrangian
density has masses and coupling parameters that now depend on 2, and
usually there will be an infinite number of coupling terms in the effective
Lagrangian density, all possible terms aflowed by the symmetries of the
theory. But things are much simpler in supersymmetric theories. The
non-renormalization theorems tell us that, as long as the cut-off preserves
supersymmetry and gauge invariance, to all orders in perturbation theory
the effective Lagrangian will have the structure

Z1 = [i(@,0", v, @]+ 2Re[r(@)]

1
+-—=Re €upt Waar, Waar ’ (27.6.2)
2g? [Aza:ﬁ wff T A A }f -

where o/, is a general Lorentz- and gauge-invariant function; ‘@--~
denotes terms involving superderivatives or spacetime derivatives of the
preceding arguments; and g; is the ore-loop effective gauge coupling,
given by the same formula as the one-loop renormalized gauge coupling
constant

g2 = constant — 2hIn 1, (27.6.3)
where b is the coefficient of g? in the Gell-Mann-Low function f(g),
discussed in Chapter 18. This is for a simple gange group, with a single
gauge coupling, but the extension to a direct product of simple and U{(l)
gauge groups is trivial. Note in particular that the effective superpotential
is not only finite in the limit 1 — oc, but at least in perturbation theory it
contains no terms beyond those in the original superpotential, and there
is no change in the coefficients of the terms it does contain,

To prove this theorem, we shall interpret this theory as a special case
of one with two additional external gauge-invariant left-chiral superfields
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X and Y, with Lagrangian density

¥ = -;—[dﬁ eV @] +2Re |V f@)]  + Re (X3 eapWaar Wap] -

2 Axf

(27.6.4)
This Lagrangian density becomes equal to the original one when the scalar
components x and y of X and Y are given the values x = 1/g” and y = i,
and the spinor and auxiliary components of X and Y are set equal to zero.
Since supersymmetry and gauge invariance are assumed to be preserved
in the cut-off procedure, the effective Lagrangian density in the presence
of these externai superfields must be the sum of the D-term of a general
superficid and the real part of the #-term of a left-chiral superfield:

2% = ot (@0, V, X, XY, Y12 )] +2Re [(®, Wi X, Y)| _,

. (27.6.5)
with «7; and #; both gauge-invariant functions of the displayed argu-
ments. We do not include any superderivatives or spacetime derivatives in
the # -term because, as in Section 26.3, terms involving derivatives of any
of the left-chiral superfields or their adjoints may be rewritten as contri-
butions to [#/4]p. (It is true that Eq. (27.3.12) gives W, itsell in terms of
two %gs acting on a superfield exp(—2V)2 exp(2V), but this superfield
is not gauge-invariant, and we are requiring that .=/, be gauge-invariant.)
The dependence of #; on X and Y is severely limited by two additional
symmetries of the action obtained from the Lagrangian density (27.6.4).
(Both of these symmetries are broken by non-perturbative effects, which
will be considered in Chapter 29.) The first symmetry is a perturbative
U(1) R-symmetry, of the sort discussed in Section 26.3, for which 8y, and
By are given the R values +1 and —I, the superficlds ®, V, and X are
R-neutral, and ¥ has the R value +2. (Recall that f& is the coeflicient
of % in f, so in order for fg to have the R value 0, f must have the
R value 2.) Because Wy is given by two Zgs and one %@ acting on
R-neutral superfields, it has the R value +1. Now, R invariance requires
#,, like the superpotential, to have the R value +2. Tt cannot depend
on any superfields with negative R values, such as adjoints of left-chiral
superfields, because it is holomorphic, so the terms in 4, can only be of
first order in ¥ or of second order in Wy, with coeflficients depending
only on the R-neutral superfields ® and/or X:

BAOWLX, Y=Y [0, X+ > capWar Wapr l14p(0, X) . (27.6.6)
afAl

{Lorentz invariance requires the spinor indices on the Wys to be contracted
with €,5.) The other symmetry is translation of X by an imaginary
numerical constant, X — X +i&, with £ real. This changes the Lagrangian
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density {27.6.4) by an amount proportional to Im 3 4,¢ W sar Wage, which
as we saw in Section 27.3 is a spacetime derivative, and therefore can
have no effect in perturbation theory. This translation symmetry prevenis
X from appearing anywhere in the effective Lagrangian density (27.6.5)
except where it appears in the original Lagrangian density {27.6.4). We
therefore conclude that f; is independent of X, while kjap consists of a
@-independent texm proportional 10 XJ,4s, plus a term that is independent
of X. That is,

BARWLX, V) =Y f1@) + 3 egWaur Wape [C.USABX +JMB(¢)] ,
«fpAB
(27.6.7}
where ¢; is a real cut-off-dependent constant.

The point of introducing the external auxiliary superfields X and Y is
that, by giving them suitable values, we can make use of weak-coupling
approximations to determine the coefficients in Eq. (27.6.7). If we set the
spinor and auxiliary components of X and ¥ equal to zero, and take their
scalar components x and y to approach infinity and zero, respectively,
then the gauge coupling constant vanishes as 1 f\/?c, and all Yukawa and
scalar couplings derived from the superpotential vanish as y. In this limit,
the only graph that contributes to the term in (27.6.7) proportional to ¥
has a single vertex arising from the term 2 Re [Y f(®)]# in Eq. (27.6.4), s0

fa(®) = f(®). (27.6.8)

Also, with ¥ = 0 there is a conservation law which requires every term
in #% to have equal numbers of @s and ®'s, so since ®' cannot occur in
£143, neither can @, Gauge invariance then requires the constant 45 to
be proportional to 48 for a simple group:

£,4 = 048La . 2769

Now, since gauge propagators go as 1/x while pure gauge interactions
go as x and scalar propagators and interactions are x-independent, with
v = 0 the number of powers of x in a diagram with Vy pure gauge boson
vertices, I internal gauge boson lines, and any number of scalar-gauge
boson vertices and scalar propagators is

N, =Vwy—1Iw. (27.6.10)
The number of loops is given by
L=Iw+Ilp—Vw—Voit1l, (27.6.11)

where I is the number of internal @ lines and Vo is the number of &V
interaction vertices. All the ®-F vertices have two & lines attached, so
with no external @ lines o and Ve are equal, and therefore cancel in
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Eq. (27.6.11), so that Eq. (27.6.10} may be written
Ne=1~—1L. (27.6.12)

Thus the coefficient ¢; of X in Eq. (27.6.7) is correctly given by the tree
approximation and is therefore what it was in the original Lagrangian,
simply ¢, = 1, while the coefficient L; of the X -independent term is given
by one-loop diagrarms only. Putting this all together, we have

#% = |ati0,8 V. X, 307, ¥ 2 )], +2RefYf@)]

1 .
+ERG [(X -+ Lj.) Z €28 Waar WA,BL} ) {27.6.13)
A ff F

where L, is the one-loop contribution. Setting ¥ =1 and X = 1/g then
gives Bq. (27.6.2), with g;7 = g™ + L;. As shown in Section 18.3, the
leading order contribution to Adg,/d2 is the same function of g; whatever
renormatization scheme is used to define this coupling, so to one-loop
order we must have

Adgy/di=bg}, (27.6.14)

where b is the same coefficient of g® as in the renormalization group
equation of Gell-Mann and Low. The solution is Eq, (27.6.3), completing
the proof.

In theories with a U{1} gauge superfield V7, the Lagrangian may contain -
a Fayet-Ihiopoulos term (27.2.7);

Fr=¢[n),. (276.15)

It is easy to see that the coefficient & of such a term is not renormalized.”
If the corresponding coefficient £; in the Wilsonian Lagrangian density
did depend on the gauge couplings or the couplings in the superpotential,
then when we replace the original Lagrangian (27.6.1) with a Lagrangian
(27.6.4) involving the external superfields X and Y, this term in the
Wilsonian Lagrangian would be required by supersymmetry to take the
form

= [ax Y, X, Y 1] (27.6.16)

p’
with £; a function with a non-trivial dependence on X and/or ¥ and/or
their adjoints. But such a term would not be gauge-invariant, because,
according to Eq. (27.2.18), a gauge transformation shifts V1 by a chiral
superfield i(Q — £2')/2, and although the D-term of a chiral superfield
vantshes, the product of i —~Q*)/2 and €2 is not chiral for general gauge
transformations if &; has any dependence on other superficlds. There
actually are diagrams that make contributions to ¢; that are independent
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Figuzre 27.1. A one-loop diagram that could be quadratically divergent in theories
with supersymmetry broken by trilinear couplings among scalar fields and their
adjoints. The lines all represent complex scalar fields.

of all coupling constants. For the Lagrangian (27.6.1) there are no faclors
of the gauge coupling g at vertices at which the gauge superfield interacis
with chira] matter, but instead a factor g~ for each gauge propagator, so
4 graph with no internal gauge lines and no self-couplings of the chiral
superfield will have no dependence on coupling constants. The enly such
graphs that contribute to &, are those in which a singie external gauge
line is attached to a chiral loop. (See Figure 27.1.} The contribution of all
such graphs is proportional to the sum of the gauge couplings of all chiral
superfields —~ that is, to the trace of the U(1) gencrator. But as discussed
in Section 22.4, this trace must vanish (if the U() symmetry is unbroken)
in order to avoid gravitational anomalies that violate the conservation of
the U(1) current.

The most important application of these theorems is a corollary, which
tells us that if there is no Fayet-Iliopoulos term and if the superpotential
f(®) allows solutions of the equations df{¢}/é¢n = 0, then supersymmetry
is not broken in any finite order of perturbation theory.

To test this we must examine Lorentz-invariant field configurations,
in which the @, have only constant scalar compoenents ¢, and constant
auxiliary components ., while (in Wess—Zumino gauge) the coefficients
V4 of the gauge generators t4 in the matrix gauge superfield ¥ have only
auxiliary components D 4. Supersymmetry is unbroken if there are values
of ¢, for which &, has no terms of first order in &7, or Dy, in which case
there is sure to be an equilibrium solution with #, = D4 = 0. (In Section
29.2 we will see that this is the sufficient as well as the necessary condition
for supersymmetry to be unbroken.) In the absence of Fayet—Iliopoulos
terms, this will be the case if for all 4

T eKa(. ¢7)

g i, =0 (27.6.17)

i
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and for all n

af(¢)
Fre 0, (27.6.18)
where the effective Kahler potential K (¢, &7} is
Ko, 0" )= (¢, $7,0,0- ), (27.6.19)

with /(. ¢",0,0 ) obtained from «7; by seiting the gauge superfield
and all superderivatives equal to zerc. (With superderivatives required
1o vanish by Lorentz invariance, the only dependence of &#; on V is a
factor exp(—V) following every factor @) We now use a trick that we
have already employed in Section 27.4. If there is any sclution @ of
Eq. (27.6.18), then the gauge symmetry tells us that there is a continuum
of such solutions, with ¢, replaced with

Pulz) = [expli Y taza)] 4, (27.6.20)
A

where (since f depends only on ¢, not ¢*) the z4 are an arbitrary set of
complex parameters. If K;{¢, ¢*) has a stationary point anywhere on the
surface ¢ = ¢(z), then at that point

0=3" m(mmqf)m Bz — Y %ﬂ(u)m;ﬁ;ﬂ 827 . (27.6.21)

nid a(i)" nmA

Since this must be satisfied for all infinitesimal complex 3z 4, the coefficients
of both 6z, and 9z must both vanish, and therefore Eq. (27.6.17) as
well as Eq. (27.6.18) is satisfied at this point. Thus the existence of a
stationary point of K;(¢, ¢} on the surface ¢ = ¢(z) would imply that
supcrsymmetry is unbroken to all orders of perturbation theory. The
zeroth-order Kahler potentiat {¢7¢) is bounded below and goes to infinity
as ¢ — co, so it certainly has a minimum on the surface ¢ = ¢(z), where
of course it is stationary. If there were no flat directions in which K is
constant at this minimum then any sufficiently small perturbation to the
Kabler potentizl might shift the minimum, but would not destroy it. At
the minimum of the Kahler potential on the surface ¢ = ¢(z) there are
flat directions: ordinary global gauge transformations 8¢ = i3, dzat¢h
with z4 real. But these are also flat directions for the perturbation
K; (¢, ¢*) — (¢T9), so there is still a local minimum of K; on the surface
¢ = ¢(z) for any perturbation in at least a finite range, and thus to all
orders in whatever couplings appear in K;{¢, ¢"). As we have seen, this
is a set of scalar field values at which %, = 0 and D4 =0 for all n and
A, which means that supersymmetry is unbroken.

¥ ¥ ¥



27.7 Soft Supersymmetry Breaking i55

These results may be extended to non-renormalizable theories.’ In such
theories the first term [@Te ¥ ®]p in Eq. (27.6.1) is replaced with the
D-term of an arbitrary real gange-invariant scalar function of ot, @, V,
and their superderivatives and spacetime derivatives, while the second and
third terms in Eg. (27.6.1) are replaced with the #-term of an arbitrary
globally gauge-invariani scalar function f{(®, W} of @, and W,. It has been
shown that, to all orders of perturbation theory, the function fi(®, W)
appearing in the #-term of the Wilsonian Lagrangian i3 the same as
F{®@, W), except for the one-loop renormaiization of the term quadratic in
Ww.

277 Soft Supersymmetry Breaking’

We will see in the next chapter that, even if supersymmetry 1s an exact
symmetry of the action, the spontaneous breakdown of supersymmetry
at very high energy can produce superrenormalizable terms that violate
supersymmetry conservation in the effective action that describes physics
at lower energies. These superrenormalizable terms may explain the lack
of supersymmetry observed in phenomena at accessible encrgies. In this
section we will consider the radiative corrections that can be produced by
such supersymmetry-breaking superrenormalizable terms, in part to see
whether this provides a criterion for including or rejecting such terms in
supersymmetric versions of the standard model.

The sign of supersymmetry breaking is the appearance of expectation
values of D-terms of general superficlds or #-terms of chiral superfields.
Any operator €@ in the Lagrangian density that breaks supersymmetry
can be written in a supersymmetric form, as a D-term

el = [z s}p, (27.7.1)

where § is a non-chiral superfield that has @ as its C-term, and Z is
a non-chiral externat superfield whose only non-vanishing component is
(Z]p = €. Some but not all operators €0 that break supersymmetry can
also be written as & -terms,

€0 = [n 0] o (27.12)

or their adjoints, where O is the left-chiral superfield whose & -term is
@ and Q is an external eft-chiral superfield whose only nen-vanishing
component is {Qlg = . We can count the order in € in which a given

* This section lies somewhat out of the book’s main line of development and may be
omitted in a first reading.
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correction to the effective Lagrangian wifl occur by counting the powers
of Z or Q needed to construct this correction in a supersymmetric way.
We will find interesting limitations on the radiative corrections that can
be produced by those interactions that can be written in the form (27.7.2)
as wel! as (27.7.1).

According to the results of the previous section, there are no radiative
corrections to % -terms, so all supersymmetry-breaking radiative correc-
tions to the Wilsonian Lagrangian density must take the form of D-terms.
This theorem does not prevent any given operator from appearing in the
Wilsonian Lagrangian density, because even if an operator €A% cannot
be expressed in the form [Z A]p, where A is the general superfield whose
C-term is AL, yet €2AZ can be expressed in the form

éag:zpwmh. (27.7.3)
But not all operators can.be produced by radiative corrections of first
order in €2 or ', In particular, a function only of the ¢-term of a
left-chiral superfield ®, but not of ¢*, cannot be written as the D-term
of a superfield linear in Q. (Note that [Qk(®)]p is 2 derivative, while
[ O} p = 2[®]4#0h(P)/0¢ is not a function of ¢ alone.) We conclude
then that the supersymmetry-breaking terms in the Wilsonian Lagrangian
that depend on ¢ alone cannot be produced by radiative corrections that are
of first order in supersymmetry-breaking interactions of the form (27.7.2).

This result is significant because the most divergent radiative corrections
are those that are of lowest order in superrenormalizable couplings. To
be more specific, the coefficient of an interaction of dimensicnality %
has dimensionality (in powers of encrgy) 4 — &, so dimensicnal analysis
indicates that the contribution of a set of interactions of dimensionality
di, do, etc. to the coefficient of an interaction of dimensionality 4 can
contain the ultraviolet cut-off to at most a power

p=4—-d—{4~d)~d—dy)— - (27.7.4)

and is therefore finite if p < 0. {This argument ignores possible ultravioiet
divergences in subintegrations: for a thorough treatment of this topic, see
Reference 8.) Superrenormalizable interactions are ‘soft. in the sense that
they reduce the degree of divergence of the graphs in which they appear.
In particular, in a renormalizable theory where all interactions have d; < 4,
and the strictly renormalizable interactions with 4; = 4 are supersymmet-
ric, the contribution of one or more superrenormalizable interactions to
the coefficient of an interaction with d = 4 will always have p <0, soeven
if they are not supersymmetric the superrenormalizable interactions will
not produce supersymmelry-viclating ultraviolet-divergent corrections to
the coeflicients of the supersymmetric d = 4 interactions,
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On the other hand, in such a theory there may be divergent radiative
corrections to the superrenormalizable interactions themseives.? The most
worrisome are quadratic {or higher} divergences, which if cut off at some
high energy scale My may require a fine-tuning of the bare coupling
constants to preserve supersymmetry as a good approximate symmeiry
at energies below My. According to Eq. {27.7.4), in renormalizable
theories where all interactions with d; = 4 are supersymmetric, radiative
corrections can produce quadratic or more highly divergent (p > 2)
supersymmetry-violating operators of dimensionality d only if they involve
insertion of a superrenormalizable supersymmetry-violating interaction of
dimensionality dy > 2 +d. This allows either d = 0 and dy > 2, which
arises only when we calculate the cosmological constant, or d = 1 and
dy = 3, which arises only when we calculate the ‘tadpole’ graphs in
which a scalar field line disappears into the vacuum. The cosmological
constant raises fine-tuning problems for all known theories’® and will
not be considered further here. The tadpole graphs represent aperaters
linear in ¢ or ¢" and, as we have seen, can not be produced to first
order in supersymmetry-violating interactions that can be put in the
form (27.7.2). Such superrenormalizable interactions are therefore ‘soft
in the sense that they do not induce quadratic or higher divergences.
Aleng with the superrenormalizable interactions with d < 2, including
arbitrary quadratic polynomials in ¢ and ¢*, the supersymmetry-breaking
interactions that are soft in this sense include terms of third order in the
¢, which can be expressed as ¢° = Q7] #, and likewise terms of third
order in the ¢°, and also d = 3 gaugino mass terms, which can be written
as [Qe,pW, W]z, but not terms like ¢p29* or ¢¢**, which in general can
produce quadratically divergent tadpole graphs.®

Nevertheless, tadpoles can only arise for scalar fields that are neutral
with respect to all exact symmetries. In theories without such neutral
scalars, like the supersymmetric standard mode! discussed in the next
chapter, all superrenormalizable interactions may be considered to be
soft.

27.8 Another Approach: Gauge-Invariant Supersymmetry
Transformations’

[t is somewhat disturbing that the supersymmetry transformation rules dis-
cussed so far involve ordinary spacetime derivatives, not gauge-invariant

" This section lies somewhat out of the book’s main line of development and may be
omitted in a first reading.
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derivatives. For instance, in a U{1) gauge theory, the transformation of the
component fields of a chiral scalar superfield is given by Eqs. (26.3.15)-
(26.3.17) as

dpr =20,7" ar ¢ + 2F ar.,
87 = 2w pyi) , (27.8.1)

5¢ = V2(wrvr)

One might have thought that in the transformation of a chiral super-
field that carries U{l} charge g, the ordinary spacetime derivatives in
Eq. (27.8.1) should be replaced with gauge-covariant derivatives, given in
terms of the U(1) gauge field V, by

D=3 =gV, (27.8.2)

With such gauge-invariant supersymmetry transformations of the chiral
superfields, one would still attempt to formulate supersymmelry transfor-
mations of the gauge supermultiplet that involve only the physical and
auxiliary fields V,, 4, and D:

SV# = (a'."’ﬂ‘l) 1
o4 = iDysa + % [ap v, y”]a , (278.3)
3D = i(ﬁwg aﬂh) ,

in which ordinary spacetime derivatives appear because the gauge super-
field carries no U(1) charge.

This doesn’t work. The algebra of these transformations does not close:
the commutator of two of the modified supersymmetry transformations
is not a linear combination of bosonic symmetry transformations, such as
spacetime translations and gauge transformations. It follows that it is not
possible to construct a Lagrangian for the chiral and gauge superfields that
would be invariant under these modified supersymmetry transformations,
because if there were such-a Lagrangian then it would have to be also
invartani under the commutators of these transformations, so that these
commutators would have to be bosonic symmetries of the Lagrangian,

In 1973 de Wit and Freedman!! showed that the supersymmetry algebra
could be made to close by modifying the supersymmetry transformation
properties of the chiral superfields not only by changing ordinary deriva-
tives to gauge-invariant derivatives, but by also adding an exira term in
the transformation of the % -component, so that for U(1) gauge theories
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the modified supersymmetry transformation rules read
Sipr. = 2D, py*ar d + 2F o,
3F = Ji(e pws) —2iq¢ (ain) . (2784)
S =2 (ﬁw) .

With this change, they were also able to construct a Lagrangian that is
invariant under the transfermations (27.8.3)-(27.8.4) and that turned out
to be just the one we have found in Sections 27.1 and 27.2.

There is nothing wrong with continuing to use the conventional transfor-
mation rules (27.8.1), so we do not need the de Wit—Freedman formalism
to deal with supersymmetric gauge theories. Nevertheless this formalism
is of some interest, because in supergravity theories the analog of the
conventional formalism is very cumbersome. As described in Chapter 31,
the formalism that has been chiefly used to derive physically interesting
results in supergravity theories follows an approach like that of de Wit and
Freedman, with supersymmetry transformation rules involving covariant
derivatives in place of ordinary derivatives, rather than an approach based
on conventional supersymmetry transformations like these of Eq. (27.8.1).
It is therefore of some interest to understand the relation between the de
Wit-Freedman formalism and the conventional approach in the relatively
simple context of U(1) gauge theory, and in particular to explain the
origin of the extra term in the transformation rule for 4.

In writing supersymmetry transformations (27.8.3) that did not involve
the components C, M, N, or @ of the gauge superfield ¥, de Wit and
Freedman were implicitly adopting the Wess—Zumino gauge discussed in
Section 27.1. But the choice of Wess—Zumine gauge is not invariant under
either the conventional supersymmetry transformations (26.2.11)-(26.2.17)
or the extended gauge transformations (27.1.17), so once we adoept this
gauge both symmetries are lost. We can, however, define a combined
transformation, acting on fields in Wess—Zumino gauge, which consists of
a conventional supersymmetry transformation followed by an extended
gauge transformation that takes us back to Wess—Zumino gauge, This Is
the de Wit—Freedman transformation 5.

To construct ithe de Wit—Freedman transformations in this way, note
that for a gauge superfield that satisfies the Wess—Zumino gauge conditions

** This was not shown explicitly by de Wit and Freedman. But, in fact, although the
point of their paper was to emphasize that the details of the transformations {27.8.3)
and (27.8.4) could be inferred from the requirement of a closed supersymmetry algebra
{(also for non-Abelian gauge theories}, they remarked that they had actually found
these transformations by identifying the fermionic transformations that survive in
Wess—Zumino gauge.
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C =M =N = =0, the transformation rules (26.2.11)-{26.2.14) give
IC=0, dw=F«, 6M= -(a:L) , SN =i (&y:;/l) . {27.8.5)

According to Eqgs. (27.1.17), we can get back to Wess—Zumino gauge by
performing an infinitesimal extended gauge transformation (27.1.13):

Vo vsfe-o), | (27.8.6)
2
where 0 is 2 left-chiral superfield with components
V=0, pR=—2Vag, FO= -—(a[l ——;us),l) . (27.8.7)

According to Eq. {27.1.11), this extended gauge transformation induces
on a chiral superfield of charge g the transformation

Fb=igQd. ' (27.8.8)

Using the multiplication rules (26.3.27}-(26.3.29), the transformation of
the components of D is

8pr =—i2q¢ Vur, |
§'F = 2ige(xzin) — iv2a(3T VL) . (27.8.9)
§'¢ =0,

Adding this to Eq. (27.8.1) and comparing with Eq. (27.8.4) shows that
the de Wit-Freedman transformation is indeed the combination of a con-
* ventional supersymmetry transformation and the corresponding extended
gauge transformation (27.8.8):

30 =50 +5'0. (27.8.10)

279 Gauge Theories with Extended Supersymmetry*

Theories with unbroken extended supersymmetry are not considered to
be good candidates for realistic extensions of the standard model, because
of the non-chirality of particle muitiplets discussed in Section 25.4. Nev-
ertheless gauge theories with extended supersymmetry are worth some
consideration here because they have provided paradigms for the use of
powerful mathematical methods to solve dynamical problems.

There are a number of special formalisms that have been proposed
to construct Lagrangians with N = 2 extended supersymmetry,!? but

* This section lies somewhat cut of the book’s main line of develepment and may be
omitted in a first reading.
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fortunately we can get by with the tools already at hand. Any theory with
N = 2 supersymmetry also has N = 1 supersymmetry, so its Lagrangian
must be a special case of the Lagrangians already considered in this
chapter. To construct a Lagrangian with N = 2 supersymmetry for some
set of the N = 2 supermultipleis of particles constructed in Sections 23.4
and 25.5, -we need only write down the most general Lagrangian with
N = | supersymmetry whose N = 1 supermultiplets contain physical
fields for the particles in the N = 2 supermultiplets, and then impose a
discrete R-symmetry on the Lagrangian: a symmetry that acts differently
on different components of N = 2. supermultiplets, The Lagrangian
density will then be invariant under a second supersymmetry, whose
supermultiplets are given by acting on the supermultiplets of ordinary
N = 1 supersymmetry with the R-symmetry.
Tt will be convenient to choose the discrete R-transformation so that

01— Q2. 0> -0 (279.1)

If the central charge were zero then the supersymmetry algebra would be
invariant under an SU(2) R-symmetry group, which has the transforma-
tion (27.9.1) as one finite element exp(inzy/2), but symmetry under the
discrete symmetry is sufficient for our purposes; so we do not need to
assume a zero central charge. In fact, it will turn out that the Lagrangians
we construct by this method will have an SU(2) R-symmetry, not just
symmetry under the disceete transformation {27.9.1).

Let us first consider the renormalizable theory of the gauge bosons
of a generat gauge group, together with the superpartners required by
N = 2 extended supersymmetry. We saw in Section 25.4 that in N'=2
global supersymmetry theories a massless gauge boson can only belong
to a multiplet also containing a pair of massiess fermions of each helicity
4 1/2 that transform as a doublet under the SU(2) R-symmetry and a pair
of SU(2)-singlet spinless besons, Since N = 2 supersymmetry includes
N = 1 supersymmetry, the renormalizable Lagrangian for this theory
must be a special case of the general renormalizable Lagrangian density
(27.4.1). One featare of this special case is that since the gauge boson
belongs to the adjoint representation of the gauge group, so must also the
fermions and scalar field. Te furnish N = 2 supermultiplets of fields with
the correct particle content, we must have one N = 1 chiral superfield ®4
with component fields ¢4, w4, F 4 (with p, Majorana and ¢4 and F 4
both complex) for each N = 1 gauge multiplet VY, Aa, D4. We impose a
discrete R-symmetry under the transformation

P4 — da, A4 — —pa, (27.9.2)

{with all other fields invariant) because this is the effect of the transforma-
tion (27.9.1). Since a non-trivial superpotential would give 4 interactions
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or mass terms that are absent for 14, the superpotential must vanish. The
Lagrangian (27.4.1) therefore takes the special form

. 1 .
= 3 DYy (D) — 5 3 (Ta (Pvda) + 2 F i F s
A A A
—2/2Re 3 Cuge (1};:4 IPCL) $p

ABC

+i > Capc $pdeDa— E GaDa+3 E DaDy

ABC

9
fol.ut’f“v—“Z(A" (p4A) ) 64 Zsﬂppgz ;

(27.9.3)
where :
(Dypda = 8uwa + ) CapcVapic (27.9.4)
BC
(Dul)a = 8uda + > _ CancVapic, (27.9.5)
BC
(Dudda = duda + Y CascVaude (27.9.6)
BC
and
fAluv = 'a;.tVAv = av VAIH + Z CABC VBFVCv . (2?97]
BC
{Recall that in the adjoint representation {t4)pc = —iCapc, where Canc

is the real structure constant, defined as usual in this book to include
factors of gauge couplings, and taken in a basis in which it is totally
antisymmetric.) The Lagrangian density (27.9.3) has N = 1 supersymmetry
with multiplets ¢a, ¥4, F 4 and VY, A4, D, because it is a speciai case of
Eq. (27.4.1), and it has an SU(2) symmetry relating y4 and A4, including
invariance under the finite SU(2) transformation {27.9.2}, so it also has
a second independent N = 1 supersymmetry with multiplets ¢4, A4, F 4
and V¥4, —ypg4, D4. It therefore satisfies the conditions imposed by N =2
supersymmetry.

We can eliminate the auxiliary fields by setting them equal to the values
at which the Lagrangian density {27.9.3) is stationary:

Faq=0, Dy=—1Y_ Cisctpdc. (27.9.8)
BC

(We are now assuming that the Fayet-Iliopoulos constants £4 all vapish.)
Inserting these values back in Eq. (27.9.3) gives an cquivalent Lagrangian
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density

) )
B Canc (T4 (T2 we) ¢3 - Vigo)

S = A (T 000) + B TS
4 vt 4 3 . A A 642 v po ~ AJa

(27.9.9)

where the potential is
2

_ 2
Vig,¢") = — [E CaBc ¢B¢C] =23 [Z Capc RegpIm d?c]

27 1%¢ 4 LBC
(27.9.10)
This potential has a minimum value of zero, which is reached not only
for ¢4 = 0 but also for any set of ¢s for which 3 g Capc $pibec = 0 for
all A or, in other words, for which '

[t'Reg,t-Im¢] =0,  where I‘UEZIBUB. (279.11)
B

That is, the minimum of the potential is reached for those scalar fields for
which all generators t- Re ¢ and ¢-Im ¢ belong to a Cartan subalgebra of
the full gauge algebra, all of whose generators commute with one another.
Though all such values of ¢ give zero potential, and hence unbroken
N = 2 supersymmetry, they are not physically equivalent, as shown for
instance by the different masses they give the gauge bosons associated
with the breken gauge symmetries,

One remarkable feature of extended supersymmetry is that the central
charges of the supersymmetry algebra in any state can bc calculated
terms of ‘charges’ in that state to which bosonic fields are coupled.”® The
easiest way to do this calculation is to use the transformation properties
under ordinary N = 1 supersymmetry of the extended supersymmetry
currents SH(x) with r = 2,3,...,N to calculate the anticommutators
{Q1a, Sf5(x)}. We can then calculate the central charges from the anti-
commutators

{Q1, Qrp} = [d"x (O, §%(x)} - (27.9.12)

It turns out that the integrand on the right-hand side is a derivative with
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respect to space coordinates, but its integral does not vanish if the states
have fields that do not vanish rapidly as x — o0,

_To see how this works in detail, let's consider the case of N = 2
supersymmetry with an SU(2) gauge symmetry and a single N = 2 gauge
supermultiplet, with no additional matter supermultiplets. The Lagrangian
here is given hy Eq. (27.9.3), with 4, B, and C running over the values I,
2,3, and

Capc = €€aBC , fqa=0. (27.9.13)

(The coupling constant here is denoted e because this is the charge with
which the massfess gauge field of the unbroken U(l) gauge symmetry
interacts.) The usual N == 1 supersymmetry current {distinguished now
with a subscript 1) is given by Eqg. (27.4.40} as

1 *
St =3 Y Fapsly" ¥ I Au — € D easc ysv*ladp e
A ABC

-lr.i > l(pﬁf’)A Yipar + (P )a 'J’PIPAL] . (27.9.14)
V245

We can calculate the second supersymmetry current by subjecting S to
the finite § U/{2) R-symmetry used above, which simply amounts to making
the replacements yp4 —+ A4, A4 — —1p4. This gives

i "
Sf = 2 > Fapab ¥ W wa +e Y ancvsy'pa dp de
A ABC

+-% ; [( Py Aar + (P )a }’#iAL] . (27.9.13)

It wili be enough for our purposes (and somewhat easier) to calculate
only the change in the right-handed part of this current under an N = 1
supersymmetry transformation. After setting the auxiliary fields equal to
their equilibrium values

Fa=0, Dy=—icd espctpde,
BC
we find

‘SS;R = “? Zprcr 7, vl (PP axg
A

—/2e Y eapcyFPd)aardpde — “?fﬁpd{p‘f’]ﬁ}”u[?lp' pall 9

ABC

~2e > espcdpdclPdlayiar + -,

ABC
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where the dots denote terms hilinear in fermion fields, which do not con-
cern us here because we are interested in effects of long range boson fields.
We can combine terms by using the Dirac anticommutation relations and
the identity

[P v, "1+ I, 2" 1[92, %1 = —8p"Pn™ + 8n®#yP + 8ieP7ys
and find _
888 = =22 AN (Dyplazr — N2 P f 40 (D, )t
A A

22 Y eascbipbe (DAPlaur + - |

ABC

In order to write this as a derivative, we need to use the Yang-Mills feld
equations given by Egs. (15.3.6), (15.3.7), and {15.3.9):

D.fY =Jf=e3 eanc((D"$)zdc — $5(D"d)c) .
. BC
fpvpa(vapg)A =40,
These allow us to write 855, as a total derivative
§S£IR = DvX'Iuva N {27.9-‘6}
where

X0 = 2B b — VIS P fapbat e, (279.07)
A A :

with the dots again indicating irrelevant terms involving fermion fields.
Eq. {26.1.18) allows us to write Eq. (27.9.16) as an anticommutation
relation

L—ys
gl v
{Qm,sgﬁ}..:[e( 5 )LﬁD.,X'”. (27.9.18)

Since XM 18 a gauge-invariant quantity, its gauge-covariant derivative
is the same as its ordinary derivative. Also, X*¥ is antisymmetric, so
D, X% = ;X" From Egs. (27.9.12) and (27.9.18), we have at last

{Oke, Orp} = [e (1 ?5)1041 de.- X% (27.9.19)

with the integral taken over a large closed surface enclosing the system
in question, with surface area differential 4S taken normal to the surface.
Comparing this with Eq. (25.2.38) gives the central charge

Zyp=—i f as; X% (279.20)
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If we choose a gauge in which ¢4 (almost everywhere) has only the
constant non-vanishing component @3 = v, then

S fida=—vE, % S f s = 0B, (27.9.21)
A A

where B and B are the electric and magnetic fields associated with the
unbroken U(1) subgroup of the SU(2) gauge group. Therefore the central
charge (27.9.20) here is

Ziy =220 [iq - |, (27.9.22)

where ¢ and # are the electric charge and magnetic monopole moment,
defined by

g = f iS B, M= f ds B . (27.9.23)

As discussed in Section 23.3, this theory, with ST/(2) gauge symmetry
spontaneously broken by the expectation value of an SU{(2) triplet of
scalars, is one in which magnetic monopoles actually do occur.

The application of the results of Section 27.4 to the Lagrangian density
{27.9.3) shows that, after the spontaneous breaking of the SU(2) gauge
symmetry, this theory will contain elementary particles of charge te, zero
magnetic monopole moment, and tree-approximation mass M = \/5 lev|.
Specifically, for each sign of the charge there is one such particle of spin
1, two of them with spin 1/2, and one with spin 0. It is a striking
consequence of the results obtained here that the mass value J2leo| is
exact, being unaffected by either radiative corrections or non-perturbative
effects, provided that the quansity v is defined by Eq. (27.9.22} for the
central charge.l

To see this, note that the massive one-particle states for each sign of
the charge are ‘short’” N = 2 supermultiplets, which, as shown at the end
of Section 25.5, have masses that saturate the lower bound (25.5.24):

M=|Zpl/2. (27.9.24)

Even if we did nof trust the tree approximation to give us the precise
value of the particle masses, we would not expect corrections to this
approximation to turn short multiplets into the full multiplets, with many
more states, that could have larger masses, s0 we can be confident that
Eq. (27.9.24) is exactly valid. For particles with electric charge ¢ = te and
zero magnetic monopole moment, Eq. (27.9.20) gives Z12 = 2 \/2ive, 50
Eq. (27.9.24) tells us that their masses are

M= J2ev|. (27.9.25)

This is the result found in the tree approximation, but now we see¢ that it
15 exact.
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The semi-classical calculations described in Section 23.3 show that
electncal!y neutral magneuc monopoles in this theory have monopole
strengths™*

4
== (27.9.26)
with v the winding number, a positive or negative integer. The formula
(27.9.22} for the central charge together with the inequality (25.5. 24] thus
give a lower bound on the monopole masses

Mz 4“‘1;"" o (27.9.27)

Interestingly, this is the same as the Bogomol'nyi lower bound!* on
monopole energies derived in Section 23.3.7 In fact, the monopole solution
for v = 1 that was described in Section 23.3 saturates this bound. More
generally, the ‘dyons’ of this theory,!® particles with both charge and
magnetic moment, have masses given byl®

M=2p|\/q? + .42, (27.9.28)

which again is the minimum value allowed by Eqs. (25.5.24) and (27.9.20).
Indeed, all of the known particles in this theory have masses given in the
semi-classical limit by Eq. (27.9.28)."7

Returning now to general N = 2 gauge theories, we may also include
additional ‘matter’ fields in the Lagrangian. For simplicity, we will re-
strict ourselves to ‘short’” massive hypermaultiplets (with central charge &
saturating the inequality (25.5.24)), each consisting of a single fermion of
spin 1/2 and an §U(2) doublet of spin O particles, together with distinct
antiparticles. This is the same spin content as is given under N = 1 super-
symmetry by pairs of left-chiral scalar superfields @), and @, together
with their right-chiral adjoints, with the complex scalar field components
¢, .and ¢} and their adjoints forming pairs of SU{2} doublets, and the
spinor fields all §U(2) singlets. (We are using primes and double primes
to distinguish these superfields and their components from &, and its
components.} If some of these hypermultiplets @) and @& are non-neutral

** Note that the magnetic moment .# defined by Eq. (27.9.23) is related to the magnetic
moment g defined in Section 23.3 by & = dng.

" The canonically normalized field with a non—vamshmg vacuum expectation value iy
J2Re ¢y (for real v}, so the quantity (¢} appearing in the Bogomol'nyi inequality

{23.3.19) is /20
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under the gauge group, then a superpotential is allowed, of the form:

1 . J I :
f{@, mf’ m-‘") = 5 Z(SA}HM‘ﬁ:I@Im(DA ‘+’ "i Z lu-nmq):lq)::: . (2?.9.29]
rime

Anm

To the Lagrangian density (27.9.3) we then must add a Lagrangian density
for these hypermultiplets, given by the first eight terms on the nght-hand
side of Eq. (27.4.1), and find a total Lagrangian density

& = =S (Du D e — S (DU IDE I — D (DY (D P4
7] H A
L — ¢ 1 i "
) ; (‘Pi(ﬂw )u) 3 ; (%(Pw )n)
1 f b for
—3 )A: (lPA (ﬂwh) — 3 g (AA (pA)A)
A F A FSF D FyFa
H r A

—Re Y {s4)nmepa (W;E,Etp:::[.) — 22Re Y Cupc (AELEWCL) ¢35

Anm ARC
—Re ) {54l (w;}:&’wu) — Re > (s4)umim (w:};ﬁﬂ’AL)
A Anim
TENACD Y AWMU IR PR NACS AN CH I LA
Anmi Anm ’
+ Re Z(SA]nm(i)Aqb;y:‘i + Rc Z(SA}HM(ﬁA(b:I‘I‘?:I
Anm Anm
+Re 3 (s )am B F 4
Ann °
+Re E Hnmﬁb;ﬁ; + Re Z ﬂnm(f’::;-g; —Re Z;unm (w;TI.Ew::L)
Arm Anm Hm

Tt There still cannot be any terms in the superpotential that are of second ot higher order
in the ®, for the same reason as before: such terms would lead to scalar couplings
or masses for the ., with no corresponding couplings or masses for their § U(2)
partners . Also, there cannot be any term that i3 trilinear in the @ andjor @,
because then the term in Bq. (27.4.1) involving the product of fermion bilincars with
second derivatives of the superpotential would lead to a coupling of the SU(2)-singlet
fermions to SU/(2) doublet fields ¢, or ¢;. Thus the only trilinear interaction terms
in the superpotential must involve one factor of @, and two factors of @, and/or &),
There cannot be any trilinear terms involving a @, and two @5 or two ®)s, because
that would give the SU(2) singlet auxiliary flelds &, an interactien with ST (2)-triplet
products ¢'¢f, or ¢7¢%, and there cannot be any bilinear terms involving two s
or two @s, because that would yield ST{2)-triplet mass terms {y e} of (. T epl).
The only remaining allowed bilinear or trilingar torms are of the form (27.9.29).
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=2 iy $Da = 3 (i amtb $oDa +1 3" Cane $ydbeDa

Anm Anm ABRC

1
“ZfADA'f'iZDADA
A A

1 2p
_Z fol.ﬂ‘r'fﬂv + EgE;r‘jfﬂvpc Zfsv ;c;cr s (2?.9.30)
A A

where the (¢)pm and (¢))nm are the matrices (including coupling constant
factors) representing the gauge group on the left-chiral scalar superfields
P, and @, respectively. The Yukawa couplings between fermions and
scalars have a discrete R-symmetry under the transformation

AdL = =Wat,  WaL =L, @~ B ¢", (27931
provided that

sa=—2/2it,T = 42./2i¢} . (27.9.32)

(Note in particular that Eq. (27.9.32) requires the representations of the
gauge group furnished by @&, and @) to be complex conjugates.) This is
also a symmetry of all the other terms in the Lagrangian density (27.9.30),
except for those involving the auxiliary fields.

It is not possible to extend the symmetry under the transformation
(27.9.31) to the auxiliary fields, but the symmetry appears after the auxil-
fary fields are eliminated.® After setting D, #7, and F equal to values
at which the Lagrangian density is stationary, and combining D- and
& -terms, the Lagrangian density {with s, and t'y given by Eq. (27.9.32),
and {4 taken to vanish) takes the form '

= =3 (Du RD*G ) = 3 (Dud" (D ")y — (D) (D)4

k|

-1 -~ (vipv')) _%Z (F@w" )
35 TP -1 5 (Twa)
1 A
=232 3 mnba (vpewly ) ~ 2V2Re 3" Cane (#irever) @

Anm ARC

 After elimination of the auxiliary fields, the resulting action is invariant under the
original N = 2 supersymmetry transformation only ‘en-shell' — that is, only up to
terms that vanish when the fields satisfy the interacting field equations. This doesn't
burt, because there still are two conserved supersymmetry currents whose integrated
time-components satisfy the N = 2 supersyminetry anticommutation relations when
the fields of which they are composed are required to satisfy the field equations of
the Heisenberg picture. ‘Of-shell’ formulations of ¥ = 2 supersymmetry exist, but are
subject to various complications.!3
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—2/3m 3l (ikevar) — 2721m 3 (€0mdln (vl evar)

Anmr Anmi
IENATD B (A CAT IR LM el ) S A (I T
Arm Anm

1 . g0
3 2 famfd + anemngﬁ;“ A
A A

3 (e Calmmbadh (Bt + 90 )

ABrm
1 - P Wttt ?
—'E; [;'[I!A}ﬂm( i d}m — ¥a¥m )]

1 - *
+5 E CABCCADE‘i'B‘i’C(;"H‘bE_ZZ

> () um P P
ABCDE A | nm

—4Re Sy hund), P — 4R D (L) Pud
104

nm

—2 Y m iy b = 23 i Il (27.9.33)

2

The last five lines on the right-hand side come from the terms in
Eq. (27.9.30) involving auxiliary fields, and now these too are invariant
under the discrete transformation {27.9.31), provided that

[y, 1] = [', 41 =0. (27.9.34)

We can now go a step further and consider the case of N = 4 extended
global supersymmetry. (As remarked in Section 254, N = 3 supersym-
metry is the same as N = 4 supersymmetry.) The only massless multiplets
of N = 4 supersymmetry that do not contain gravitons or 2ravitinos
consist of a single particle of helicity 1, an SU{4) quartet of particles of
helicity 1/2, and an SU(4) sextet of particles of helicity 0, together with
their CPT-conjugates of opposite helicity. There is one such supermul-
tiplet for each generator 1,4 of the gauge group. These particles can be
grouped into supermultiplets of N = 2 supersymmetry: for gach t4 there
is one gauge supermultiplet consisting of one particle of helicity 1, two
particles of helicity £1/2, and one particle of helicity 0, together with
their CPT-conjugates of opposite helicity, plus two hypermultiplets, cach
consisting of one particle of each helicity +1/2 and two particles of helic-
ity 0. The N = 2 gauge superficld consists of an N = I gauge superfield
V4 and a left-chiral scalar superfield @, and its complex conjugate, while
the two N = 2 hypermuitiplets consist of two additional left-chiral scalar
superfields @/, and @ and their complex conjugates.

Since N = 4 supersymmetry includes N = 2 supersymmetry, the
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Lagrangian density after elimination of the auxiliary fields of N =1
supersymmetry'® must be a special case of Eq. (27.9.33), but with the
labels n, m, etc. running over the indices A, B, C, etc. of the adjoint
representation.  Also, the coefficient u,,, in the superpotential (27.9.29)
must vanish here, because otherwise Eg. (27.9.33) would contain terms
quadratic in the fermion fields ¢/, and Y, with no counterpart for their
N = 4 superpartners 44 and w,. Also setting (£ )sc equal to the gener-

ators —i C4pc in the adjoint representation, we find that the Lagrangian
density must take the form

L= =D (D V(D) s = (D" VoD ") 4 — S (D) (D)4
A A A

—

(P - 5 3 (W)
A

=5 ; -
1 . 1 —
-3 ; (w{ﬂwh) ~32 (.1,1 PAa)
—-2./2Re Z Capctha (ngstng) — 2./2Re Z Casc (;LELHPCL) b3
ABC ABC
—~22Re ¥ Capcdly (w?ifwx.) — 2J2ZRe 3" Cupcd (WELEIPAL)
ABC ABC
+2/2Re 3" Cage (w;rx.fiﬂ) 4.5(3 +242Re 3" Case (w;{EiAL)fffé'
ABC ABC
_1 S fawf + 29 Sopree Ly (27.9.35)
4,{ H"‘A_anﬂ"ﬁaddd ' S

where the potential is

V=Y CADECBCE(¢A¢‘B+¢H¢':1) (¢E¢j}'+¢ﬁ. f’)

ABCDE
Z

] LY o
+3 2 30 Canc ¢ o — dhot”)
4 |BC
2
1 » L] !
~3 3" CapcCapedpdbcdnds +23 013" Capcdpdlel . (27.9.36)
ABCDE 4 |BC

With no further constraints needed, this Lagrangian has an SU(4) R-
symmetry, which implies that it is invariant under N = 4 supersymmetry.
To see this, we need to use the Jacobi identity to write the cross-term in
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the second line of the right-hand side of Eq. (27.9.36) in the form

> CancCaneds fﬁ’cﬁrf"f}‘ t=— 3" CapcCapedy ¢pds ¢¢
ABCDE ABCDE

~ 3" CapcCapeds e ¢D

ABCDE

which alfows us to write the potential {27.9.36) in a form symmetric among
the scalars and their adjoints

2
V=313 Cancopdr +Z ZCABCGE’Bﬁf’”' +E Y Cascépdc
4 |BC .‘l A |BC
2z
+3 ZcAachBrﬁ’{-.' +Z S Capcdly ot
A \BC | A [ BC
2
”"E +5 Z > Cupcdpdc
A A | BC
2
+3 Z Zcﬂacd: +%Z > " Capcosdc’ (27.9.37)
A 4 |BC

Now to make the SU(4) symmetry apparent, we introduce an §SU(4)
notation for the fields. We assemble the left-handed fermion fields into an
SU4) vector:

PIAL = PAL,  WodL = AL, WaaL =, WL = Wi . (27.8.38)

In order for the fermion kinematic terms in the Lagrangian density to be
SU(4)-invariant, we then must assemble the right-handed fermion fields
into a contragredient vector:

wle = Yar, Vig =Aar, VIR=Wir. WiR=¥ie. (27939

The Majorana condition on the fermion fields then takes the SU{4)-
invariant form

(wiar) = —Bev'in (27.9.40}

with indices #, j, etc. running over the values 1, 2, 3, 4. In order for the
Yukawa couplings between the fermion and scalar fields to be SU(4)-
invariant, we must give the scalars the transformation properties of an
antisymmetric $U{4) tensor

12_ 13y
¢A! Aa—‘ i:l’ ¢’ ‘“_¢'A=

re - (27.9.41)
"_'“‘Sf’,qs ¢'A =—¢, ., 9”A =ty ,
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which also obeys an SU(4)-invaﬁant reality condition
Loy 1
() = 5 2 €t ¢4 - (27.9.42)
&

The whole Lagrangian density (27.9.35) can then be written in the mani-
festly SU(4)-invariant form

&L= Z(Dm“uw%'fu

Au

; (’P:AL*‘ @'P‘R)A) %E (WLT}'{E(P%L }A)
A

—+/2Re 3 CABCQE’H(W;E!LE"PJCL) -V
ABCij

Z fﬁ#"f 64 2 Cuvpo E fﬁva 5 (27.9.43)

where the potential is

1
Vmgz

Abjkt

3™ Capodiol! (27.9.44)

BC

The potential has a2 minimum value zero, so that supersymmetry is not
broken in this theory. The minimum is reached when the generators
> ata9’ all commute with one another. .

For zero theta angle, the gauge theories with a simple gauge group
and either N = 2 or N = 4 supersymmetry have just a single coupling
constaat, the gauge coupling constant g. Since these theories have N = 1
supersymmetry, thc}r share the property discussed in Section 27.6, that
the only infinity in higher orders of perturbation theory is in a one-loop
correction to this coupling™ The function B(g) in the renormalization
group equation udg/du = f(g) is then given to all orders of perturbation
theory by the one-loop formula (18.7.2), with a suitable correction for the
presence of scalar fields:

g} /1 1
pilg= —2(1261—36 ——-—Cz), , (27.9.45)

¥ The trilinear term in the superpotential (27.9.29) is proportional to the gauge coupling,
and is therefore renormalized. despite the no-renormalization theoremn of Section 27.6,
This is because here we are renormalizing the left-chiral scalar superfields ®,, @/, and
&, as well as the gauge superfield ¥4 so as to keep them canonically normalized. The
bilinear term in Bq. (27.9.29} is renormalized for the same reason.
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where

3" CapcCapp = g*Cidep 5

4B

[Tr (tctp )] Majorana fermions - EEC%.‘SCD ’ {27.9.46)
o2

[Tr (tctp )] complex scalars g Cico -

In general theories with N = 2 supersymmetry we have two Majorana
fermions A4 and w4 in the adjoint representation and H pairs of Ma-
jorana fermions ) and ) whose left- and right-handed parts are in

representations with generators either £ or —r;,T, 80

Cf =2C) +2HC,, (27.9.47)
where C is defined by
Tritpty = g*Cidep (27.9.48)

Also, we have one complex scalar ¢4 in the adjoint representation and H
pairs of complex scalars ¢, and ¢ in representations with generators ¢,

n
T
or —'s", 30

C3=C+2HC . (27.9.49)
The beta function (27.9.45) is therefore

2
Blz) = —Sg? (¢ —HG). (27.9.50)

The case of N = 4 supersymmetry is just the special case with H = 1 pairs
of N =2 hypermultiplets in the adjoint representation, with C} = Cy, so
in this case the beta function vanishes. This is therefore a finite theory,
with no renormalizations at afl.'?

Gauge theories with N = 4 supersymmetry have another remarkable
property, known as duality. This was first conjectured by Montonen
and Olive!” for purely bosonic theories in which a simple gauge group
is spontaneously broken to a U(1) electromagnetic gauge group. They
noticed that semi-classical calculations (of the sort described in Section
23.3) give the mass of particles with charge ¢ = ne and magnetic monopole
moment .# = 4am/e (with n and m integers of any sign) as

M= 2|v (ne + 4’:'")' , (27.9.51)

which is invariant under the transformations

m—n, n— —m, e« drnfe. (27.9.52)
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On this basis, they suggested that the theory with a weak gauge coupling
¢ is fully equivalent to one with a strong gauge coupling 4n/e. Neither
the purely bosonic theory nor the simplest versions of the N = 1 and
N = 2 extended supersymmetry theories really have this property;®® for
one thing, the massive charged elementary vector bosons of the broken
gauge symmetries have spin 1, while all of the monopoles and dyons have
sping 1/2 or Q. {We will see in Section 29.5 that N = 2 theories do have a
duality property of a more subtle sort.} But for N = 4 supersymmetry the
menopole states form multipiets with one particle of spin 1, four particles
of spin 1/2, and two particles of spin 0, just like the elementary particles. 2
Evidence has accumulated® that N = 4 supersymmetric gauge theories are
indeed invariant under the interchange of electric and magnetic quantum
numbers and of e with 4z/e. The equivalence of theories with large and
small coupling constants has become an increasingly important theme in
string theory, but this is bevond the scope of this book.

Problems

1. To second order in gauge coupling constants, calculate the compo-
nents of the superfields 4 that are nesded to put the gauge superfield
V4 in Wess—Zumino gauge by the transformation (27.1.12).

2. Show that the most general chiral spinor superfield W, satisfying the
condition (27.2.20) has components f,, satisfying the homogeneous
Mazxwell equations ¢7°3,f,, = 0. What conditions on the other
components of W, are imposed by Eq. (27.2.20)?

3. Consider a general renormalizable N = 1 supersymmeiric gauge
theory with an SU(2) gauge group and a single chiral superfield
belonging to the 3-vector representation of SU(2), What is the most
general superpotential for this theory? Construct the Lagrangian
density of the whole theory explicitly. Eliminate the auxifiary fields.
Show that supersymmetry is not broken in this theory. What are the
masses of the particles of this theory?

4, Express the gaugino and chiral fermion fields in the supersymmetric
version of quantum electrodynamics described in Section 27.5 in
terms of the goldstino field and other spincr fields of definite mass.

5. Consider the renormalizable N == 2 supersymmetric thecry with an
SU(3) gauge symmetry and no hypermultiplets. What are the values
of the scalar fields for which the potential vanishes? What are the
massless gauge ficlds for non-zero values of these scalars? Calculate



176

10.

27 Supersymmetric Gauge Theories

the central charge in terms of the quantities to which these massless
gauge fields are coupled.
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28

Supersymmetric Versions
of the Standard Model

Physical phenomena at energies accessible in today’s accelerator labora-
tories are accurately described by the standard model, the renormalizable
theory of quarks, leptons, and gauge bosons, governed by the gauge group
SU(3) x SU2) x U(1), described in Sections 18.7 and 21.3. The standard
model is today usually! understood as a low-energy approximation to
some as-yet-unknown fundamental theory in which gravitation appears
unified with the strong and electroweak forces at an energy somewhere
in the range of 10'® to 10'® GeV. This raises the hierarchy problem: what
accounts for the enormous ratio of this fundamental energy scale and the
energy scale 300 GeV that characterizes the standard model?

The strongest theoretical motivation for supersymmetry is that it offers
a hope of solving the hierarchy problem. Quarks, leptons, and gauge
bosons are required by the ST/(3) x SU(2) x U(l) gauge symmetry to
appear with zero masses in the Lagrangian of the standard model, so that
the physical masses of these particles are proportienal to the electroweak
breaking scale, which in turn is proportional to the mass of the scalar
fields responsible for the electroweak symmetry breakdown. The crux of
the hierarchy problem!@ is that the scalar fields, unlike the fermion and
gauge boson fields, are not protected from acquiring large bare masses
by any symmetry of the standard model, so it is difficult to see why their
masses, and hence all other masses, are not in the neighborhood of 1016
to 10!8 GeV,

It has been hoped that this problem could be solved by embedding the
standard model in a supersymmetric theory. If the scalar felds appear
in supermultiplets along with fermions in a chiral representation of some
gauge group, then supersymmetry would require vanishing bare masses
for the scalars as well as the fermions. All the masses of the standard
model would then be tied to the energy scale at which supersymmetry
is broken. The hope of a solution of the hierarchy problem along these
lines has been the single strongest motivation for trying to incorporate
supersymmetry in a realistic theory.
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Unfortunately, none of the new particles required by supersymmetric
theories have been detected, and no entirely satisfactory supersymmetric
version of the standard model has emerged so far. This chapter -will
describe the attempts that have been made in this direction.

28.1 Superfields, Anomalies, and Conservation Laws

In this section we shall attempt te decide at least tentatively what ingre-
dients should appear in a supersymmetric version of the standard model.

None of the quark and lepton fields of the standard model belong to the
adjoint representation of the SU(3) x SU(2) x U{1) gauge group, so they
cannot be the superpartners of known gauge bosons and must therefare
be included in chiral scalar superfields. We will define U;, Dy, U, D, N,
E;, and E; as the left-chiral superficlds whose yp;, components are the left-
handed fields of the quarks of charge 2e¢/3 and —e/3, of the antiquarks
of charge —2e/3 and +e/3, of the leptons of charge 0 and —e, and of the
antileptons of charge +e, respectively, with i a generation label running
over values 1, 2, and 3. (For instance, the spinor components of Uy, Uy,
and Us; are the left-handed fields of the u, ¢, and r quarks, respectively.)
Of these superfields, U; and D; form SU(2) doublets, N; and E; also form
SU(2) doublets, and the others are SU(2) singlets. The quark superfields
form SU(3) triplets and the antiquark superfields form SU(3) antitriplets,
with color indices suppressed, and the leptons and antilepton superfields
are SU(3) singlets. As mentioned earlier, the particles described by the
scalar components of these superfields are known as squarks, antisquarks,
sleptons, and antisleptons. There are also the gauginos, the spin 1/2
superpartners of the gauge bosons of SU(3), SU(2}, and U(1), respectively
known as the gluino, wino, and bino."*

We must also add some mechanism that produces a spontaneous break-
down of SU(2) x U{1) and gives mass to all the quarks and leptons as well
as to the Wt and Z9 The simplest possibility is to suppose the existence

* As discussed in Section 28.3, the energy scale that characterizes supersymmetry break-
ing i expecied to be considerably higher than the = 300 GeV that characterizes
the breaking of SU(2} x U{1), so there is a substantial range of energies in which
supersymmetty but not SIA{2) x U{1) may be considered to be broken. In this range,
the gavginos have masses that are governed by §U{2) »« (1) symmeitry, so the neutral
electiroweak gauginos of definite mass are superpartners of the SU(2) wriplet W0 and
the $U(2) singlet B, known as the neutral wino and the bine, rather than superpartners
of the Z” and the photon. When SE/(2) x U{1) breaking is taken into account there
is a small mixing of the nentral wino and binc.
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of just twe more SU(2) doublets of left-chiral superfields;

HY . HF
Hz( _‘_), H=(2), 28.1.1
1 Hi 2 Hg ( }
which appear in the Lagrangian density in linear combinations of the
SU(3) x SU(2) x U{l)-invariant F-terms:
[{pim - UHT)D) . [(EH - NHT)E] (28.1.2)
and
[(D,-H; - U,-HQ) E{,—] .

with ohvious contractions of color indices. According to Eq. {26.4.24), a
non-vanishing expectation value of the scalar component of H ¥ gives mass
to the charged leptons and charge —e/3 quarks, while a non-vanishing
expectation value of the scalar component of HY gives mass to the charge
+2e/3 quarks. These expectation values of course also give mass to the
W and Z° vector bosons and, since the H; and H; are SU(2) doublets,
we automatically get the same successful results for these masses as found
in Section 21,3, Note that supersymmetry does not allow the complex
conjugates of the H; and H» left-chiral superfields to appear in the
superpotential, so a vacuum expectation value of the scalar component
of HY cannot give masses to the charge +2¢/3 quarks, and a vacuum
eXpectation value of the scalar component of HY cannot give mass to the
charge —e/3 quarks or the charged leptons, which is why both H, and H,
are needed to give masses to all the quarks and leptons. - -

Of course, there might be more than one of the H 1 and/or Hs dou-
blets. Their nurabers are partly constrained by the condition of anomaly
cancellation. We saw in Section 22.4 that the gange symmetries of the
non-stipersymmetric standard model are anomaly-free, as they must be
for quantum mechanical consistency, but now there are additional spinor
fields in the Lagrangian. The gaugino fields don’t create any problems,
because their left-handed components belong to the adjoint representation
of the gauge group, which is real for all gauge groups. The only problem
can arise from the higgsinos — the spin 1/2 components of the superfields
(HY, H') and (H}, HY). The spinor components of each (HY, H{) dou-
blet of superfields produces an SU(2)-SU(2)-U(1) anomaly proportional
to 38y = (48)%( 1g")+{— 1g)2(1g) = 1g%¢’, while the spinor components
of each (H}, H} doublet of superfields produces an SU(2)-§ U{2)-U)
anomaly proportional to 35ty = (1g)%(~1g") + (~ 1g)(— ig) = — ig’g'.
The cancellation of anomalies thus requires an equal number of (HY, H)
and (HY, HY) doublets. In this case, all anomalies cancel, including the
U1)? and U(1)-graviton-graviton anomalies. The next section will give
4n argument that there is in fact just one of each type of doublet.

(28.1.3)
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In a theory constructed along these lines, we have 1o give up one of the
attractive features of the non-supersymmetric standard model, that is, that
it automatically excludes any renormalizable interactions that violate the
conservation of baryon or lepton number. There are several renormalizable
supersymmetric ST{3) x SU{2) x U{1)-invariant F-terms that could be
included in the Lagrangian density that would violate baryon and/ofr
lepton number conservation without violating the SU{3) X SU2) x U(l)
gauge symmetries:

(D, — UiE; ) D), » (BN, - NEE (28.1.4)
and also
[D,-b jﬂk]ST , (28.1.5)

with the three suppressed color indices in Eq. (28.1.3) understood to be
contracted with an antisymmetric e-symbol to give a color singlet. With
all of these interactions present, there would be no clever way to assign
baryon and lepton numbers to the squarks and sleptons that would avoid
an unsuppressed violation of baryon and lepton number conservation. For
instance, the exchange of the scalar boson of the D superfield between
vertices for interactions (28.1.4) and (28.1.5) would lead to the process
urdgtin — g, observed for instance as p — 7% +e*, at a catastrophic rate
that is only suppressed by factors of coupling constants. To avoid ths,
it is necessary to make an independent assumption that would rule out
some or all of the interactions (28.1.4)-(28.1.5).

Note that it is not necessary to rule out all of the interactions (28.1.4)
and {28.1.5). For instance, suppose that we assume only that baryon
number is conserved, with conventional baryon number assignments: the
U, and D; left-chiral superficlds are assigned baryon number +1/3; the
T, and D; are assigned baryon number —1/3; and the L, E, Hj, and
H, alt are assigned baryon nurber 0. This would allow the interactions
(28.1.4) while forbidding the interactions {28.1.5). Despite appearances,
ihe interactions (28.1.4) alone do not violate the conservation of lepton
number, provided the scalar components of the superfields are assigned
appropriate lepton numbers. This can be done by assigning lepton number
0 to the N; and E; superfields, lepton pumber —1 to the U;, Dy, Ui, and
D; superfields, lepton number —2 to the E; superfields, lepton number 0
to the H; and Ha superfields, and lepton numbers —1 and +1 to 81 and
Op, respectively. (Recall that such symmetries, under which @ transforms
non-trivially, are known as Rasymmetries.) Then all quatks and leptons
have conventional lepton numbers: the fermion components vi and &,
which are the coefficients of 01 in N; and E;, have the lepton numbers
0+ 1 = +1; the fermion componenis ziz of the E; superfields have lepton
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numbers —2+1 = —1, and the quarks and antiquarks have lepton numbers
—1 4 1 = 0. The higgsinos (the fermion components of H; and Hz) have
lepton numbers 0 + 1 = +1. On the other hand, the scalar components of
the superficlds have the same lepton numbers as the superfields themselves,
which are unconventional. Further, the % -term of a left-chiral superfield is
the coefficient of 82, so the interactions in Eq. (28.1.4) have lepton numbers
—~14+0—-14+2=0and 0+0—2+42=0; the A, interacticns (28.1.2) have
lepton number —1 +0—1+2 =0 and 0+0—2+2 = 0, respectively;
and the H, interaction (28.1.3) has lepton number —1+0—1+2 =0;
50 none of these interactions violate the conservation of lepton number.
Also, the scalar components of Hy and H, have lepton number 0, so
their vacuum expectation values also do not violate the conservation of
lepton number. With this assignment of lepton numbers, lepton number
conservation rules out any renormalizable interactions that would viclate
baryon number conservation: the interaction (28.1.5) has lepton number
—1—1—1+42=—1, and so is forbidden.

The interactions {28.1.4) would allow an alternative mechanism for
breaking SU(2) x U(1).and giving mass to the charged leptons and charge
—e/3 quarks: the scalar components of the neutrino superfields N; might
have non-vanishing vacuum expectation values. (With the lepton number
assignments of the previous paragraph this expectation value would not
violate lepton number conservation, because these scalar components have
the iepton number of the N; superfields, which is zero.) But we cannot
rely on this mechanism to let us do without the H; superfields altogether,
because we still need the H; interactions (28.1.3) to give mass to the charge
+2e/3 quarks and, as we have seen, the cancellation of anomalies reguires
equal numbers of H; and H superfields.

It is usually assumed instead that some symmetries forbid both interac-
tions (28.1.4) and (28.1.5). Obviously, these symmetries could be baryon
and lepton number conservation, with conventional assignments of these
numbers: U, [ having baryon number B = 1/3 and lepton number
L =0, U, and D; having baryon number B = —1/3 and lepton number
0, N; and E; having lepton number L = +1 and baryon number 0, E
having lepton number —1 and baryon numbet 0, and H{, Hi and Hf, H}
and 8 and Og all having baryon and lepton numbers 0. The same results
apply if we only assume the conservation of certain linear combinations of
baryon and lepton number, such as the anomaly-free combination B — L
discussed in Section 22.4.

There are widespread doubts about whether it is possible to have exact
continuous global symmetries, because in string theory the existence of
any exact continuous symmetry would imply the existence of a massless
spin | particle coupled to the symmetry current, so that the symmetry
would have to be local, not global!® But the interactions {28.1.4) and



184 28 Supersymmetric Standard Models

(28.1.5) may also be banned by assuming a discrete global symmetry,
known as the conservation of R pari:g_.z The R parity is defined to be +1
for quarks, leptons, gauge bosons, and Higgs scalars, and —1 for their
superpartners. This R parity is equal to

Mg = (—DF (=1 &5, | (28.1.6)

where (—1)F is the fermion parity, which is +1 for all bosons and —1
for all fermions. Fermion parity is the same sign as is produced by a
2% rotation, and is therefore always conserved, so if B — L is conserved
then so is R parity.”” It is possible that R parity may be conserved
even if B — L is not, but in fact the interactions (28.1.4) and (28.1.5) are
forbidden by R parity conservation, so as far as renormalizable interactions
are concerned R parity conservation imples the conservation of both
baryon and lepton number. This is not true of the non-renormalizable
supersymmetric interactions that are presumably produced by physical
processes at very high energies. The baryon- and lepton-non-conserving
processes produced by such interactions are discussed in Section 28.7.

All of the new ‘sparticles’ (squarks, sleptons, gauginos, and higgsines)
that are required by supersymmetry theories have negative R parity, so
if R parity is exact and unbroken then the lightest of the new particles
required by supersymmetry must be absolutely stable. All of the other new
particles will then undergo a chain of decays, ultimately yielding ordinary
particles and the lightest new particle.. Much of the phenomenclogy of
various supersymmetry models is governed by the choice of which of the
new particles is the lightest.

With supersymmetry and either R parity or B — L conserved, the most
general renormalizable Lagrangian for the superfields discussed above
consists of the usual gauge-invariant kinematic part for the chiral super-
fields, given by a sum of terms of the form (®* exp{(—V)P)p for each of the
quark, lepton, and Higgs chiral superfields, plus the usual gauge-invariant
kinematic term for the gauge superfields, given by a sum of terms of the
form e,5(W,Wg)s for each of the SU(3), SU(2), and U(1) field strength
superfields, plus the supersymmetric Yukawa couplings, given by a lin-
ear combination of the interactions (28.1.2), (28.1.3), and a new F-term

** The value of {—1)*8-% iz —1 for quark and lepton superfields and +1 for all other
supetfields, so the conservation of R parity is equivalent to invariance undsr a
transformation in which afl quark and lepton superfields change sign with no change
in other superfields. This invariance principle was introduced in Reference 3 in order
to rule out the interactions (28.1.4) and {28.1.5).
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coupling H; and H;:
v =3 [(DEH? - U,-H;)Dj]y + 3k [(EH] - N,-Hf)ﬁj,—]jr
7 :
+3hf [(DiHi" ~ UH) U] -:,u[HZ""H,“ — HYHY| | +He.
’ (28.1.7)

As we will see in Section 28.3, more terms will have to be added to the
Lagrangtan in order to account for supersymmetry breaking.

The coefficient x in Eq. (28.1.7) has the dimensions of mass, and is
the only dimensional parameter that enters in the supersymmetric version
of the standard model Lagrangian. It is somewhat disappointing to find
that this term is still allowed, because it revives the hierarchy problem:
why is p not of order 10'® to 10°®* GeV? The p-term in Eq. {28.1.7)
can be avoided if we assume that lepton number is conserved, with the
unconventional lepton number assignments discussed above that would
allow the interactions (28.1.4} but not the interactions (28.1.5). ln this
case, the p-term carries lepton number +2 and is therefore also forbid-
den. This term can also be forbidden if we assume a U(i} ‘Peccei-Quinn
symmetry,* for which the superfields H; and H, carry equal quantum
pumbers, say +1, while @, and #g are neutral. The interactions (28.1.2)
and (28.1.3) which give mass to the quarks and leptons are then ailowed if,
for instance, we give Peccei-Quinn quantum numbers —1 to the left-chiral
superfields of antisquarks and antisleptons while the lefi-chiral superfields
of squarks and sleptons are taken to be neutral. This choice then also
forbids the dangerous interactions (28.1.4) and (28.1.5). Unfortunately, as
we will see in Section 28.4, the y-term in Eq. (28.1.7) seems to be needed
for phenomenological reasons. The theories of gravity-mediated super-
symmetry breaking discussed in Section 31.7 provide a natural mechanism
for producing a gy-term of an acceptable magnitude.

We can obtain a crude upper bound on the masses of the new parti-
cles by assuming that supersymmetry does solve the hierarchy problem
discussed at the beginning of this chapter. In accord with thc theorem
of Section 27.6, if supersymmetry were unbroken the contribution to the
mass of the scalar component of H; or H> from one-loop diagrams with
an intermediate quark, lepton, W or Z loop would be cancelled by the
corresponding one-loop diagram with an intermediate squark, siepton,
wino, or bino. Therefore with supersymmetry broken the contribution
Sm?, of such diagrams to the squared masses of the Hy and Ha scalars is
a sum of terms of order (%2/8x%)Am?, where ¥, is the Yukawa or gauge
coupling of the Higgs scalar to supermultiplet s, and Am? is the mass-
squared splitting within the supermultiplet. To avoid having to fine-tune
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these corrections, we need dm3 not much larger than the coefficient of
order (300 GeV)* of the term in the standard model Lagrangian density
that gives the observed SU(2)} x U(1) breaking in the tree approximation,
so we will assume that dm% < (1 TeV)?. For instance, the top quark and
squark have couplings to Hs of order unity, so we expect that the splittings
Am? should be less than about 872 TeV?, and hence the masses of the top
squarks should be less than about 10 TeV. We will see in Section 28.4 that
the rates of flavor-changing processes can be brought within experimental
upper bounds by taking the masses of the squarks to be nearly equal, in
which case this can be taken as a rough upper limit on the masses of ali
the squarks. (However it is possible that the rates of these processes may
be suppressed instead by very large masses of the first two generations of
squarks, while the mass of the top squark is below the 10 TeV naturalness
bound.*) The limits set by this sort of argument on the masses of other
particles with R = —1 are somewhat weaker, but at least in the popular
class of models discussed in Section 28.6, none of the masses of these
particles are expected to be much greater than the squark masses, so 10
TeV can be taken as an upper bound on all of them. On the other hand,
the fact that none of these particles have been observed only indicates
that their masses are probably greater than about 100 GeV, so there is an
ample mass range in which they may yet be found.

* & %

If R parity conservation or some other conservation law makes the
lightest of the new particles predicted by supersymmetry stable, then some
of these particles may be left from the early universe. The number density
of these relics can be estimated using techniques that were originally
applied to the cosmic density of massive neutrinos.” To give one example
of this sort of calculation, we shall show that for a broad range of plausible
masses, the new stable particle of supersymmetry theories cannot be a
charged and uncolored particle, like a charged slepton, wino, or higgsino.*

Once the cosmic temperature T (in energy units, with the Boltzmann
constant set equal to unity) drops below the mass m of any stable charged
untrapped particle, their number #R? in a volume R that expands with
the universe is decreased by annihilation at a rate per particle equal to
fign, where 76 is the mean value of the product of the relative velocity
and the annihilation cross-section. That is,

d(rR)
at

= —TFn°R>

50 that

] 1 ‘77
1= (@)o +fm ot (28.1.8)
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where 0 labels the epoch at which T = m. The annihilation process
is exothermic, so D& approaches a constant for v &« 1. Also, ina
radiation-dominated phasc of the cosmic expansion R o« t'/2, so the
integral converges, and gives

), = ) [ i
AnR3 :—-uo_ nR? /o ’ ty Rg(fz’!o)w

i 200 &y
= | — —_— 28.1.9

(HR3)0 * R; ( )
The density ng of baryon number (baryons minus antibaryons) goes as
R3, so this can be rewritten as a formula for the present ratio of new

particles to baryons: _
(n/n8)0 = [(ng/n)o + 256 nagta] " - (28.1.10)

We expect that the ratio (n/ng)o at the time that T drops to a value ~ m
is roughly of order unity, and since in any realistic theory the present ratio
(n/na)e must be much less than unity, we can neglect the first term in the
denominator on the right-hand side of Eq. (28.1.10), and write instead

(n/ngle ~ L (28.1.11)

BT npety
The precise value of 7@ depends on the particle spin and its interactions;

keeping track only of factors of 2z, the particle mass m, and the electric
charge, we can estimate it generally to be of order
9_4-{ ] 1 _3£
2nm? m?’
where 4" is the number of charged particle spin states with mass less than
m, into which this particle may annihilate. Also, the age of the universe
at a temperature Tg = m is fo = m*/mpy, where mpy, 10" GeV, and the
density of baryon number is about 10~? times the photon number density,
which is of order T3, so that ngg = 10~°m?, Putting this together, we find
the present ratic of the new charged parficles to baryons:

06 &= (28.1.12)

Mmoo 108 m{GeV)
mp L.:‘V - A -
These new charged particles would experience the same condensations into
galaxies, stars, and planets as ordinary baryons, so this would be the ratio
observed today on earth. But experiments® that apply mass spectroscopy
to samples of water that have been strongly enriched in heavy water-like
molecules by electrolysis have set limits of about 10~2!sp on the number
density of new charged particles with 6 GeV < m < 330 GeV in terrestrial
matter. Thus, even if 4 is as large as 1000, these measurements decisively
rule out the existence of any new charged unirapped particles in this

(n/ng)y = 1012 {28.1.13)
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mass range in the numbers that would have been left over from the eatly
universe.

On the other hand, neutral untrapped particles would be left in inter-
galactic space. Such particles might well provide the ‘missing mass, that
seems to be necessary to account for the gravitational fieid that governs
the motion of galaxies in clusters of galaxies. One of these possible neutral
partictes is the gravitino, whose cosmological abundance is discussed in
Section 28.3. Ellis er al® have extended cosmoiogical considerations to
all the new particles required by supersymmetry.

28.2 Supersymmetry and Strong-Electroweak Unification

We shall have to defer a detailed assessment of supersymmetric models
of particle physics until we are ready to consider how supersymmetry is
broken. In this section we will consider the quantitative application of
supersymmetey in one context in which the mechanism for the breakdown
of supersymmetry is relatively unimportant, and in which supersymmetry
has scored what so far is its greatest empirical success.

Tf the SU(3) x SU(2) x U(1} gauge group of the strong and electroweak
interactions is embedded in a simple group G that has the known quarks
and leptons {plus perhaps some SU{3} x SU(2} x U{1)-neutral fermions) as
a representation, then, as described in Section 21.5, at energies at or above
the scale My at which G is spontaneously broken, the SUB)YxSU2yxU(1)
coupling constanls will be related by

Sg’2

g =gl= at energies > My . (28.2.1)
At energies far below My, these couplings are seriously affected by renor-
malization corrections. If measured at a scale g < My, the couplings
will have values gf(,u), g% (1), g’z(,u), governed by one-leop rencrmalization
group equations

d , d d
bW =Fi(g W) gt = Ba(ew) . pmst =3 (a)
(28.2.2)
with initial conditions at My satisfying Eq. (28.2.1). In the original use’
of these renormalization group equations, discussed in Section 21.5, the
beta functions were calculated in one-loop order to be
5?13 gi'3

ﬁlﬁ 367[2 s {28,?3)

3 11 n
B = 4% (—-—6— + ?g) , (28.2.4)
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3 11 . -
By = "g?i” (____ + ”_s) , (28.2.5)

where n, is the number of generations of quarks and leptons and the
relatively small contributions of scalar fields are here neglected. Since My
will turn out to be many orders of magnitude larger than the energies
accessible with today’s accelerators, it seems reasonable io suppose that
supersymmetry is unbroken over most of the range below Mx, in which
case all of the new fields discussed in the previous section need to be
included - in calculations of the beta functions in Eq. {(28.2.1). These
new fiekds introduce three major changes in the calculations of the beta
functions:

1. For every gauge boson, there is a Majorana gaugino with the same
SU(3) x SU(2) x U(1) quantum numbers. Eq. (17.5.41) shows that the
ratio of the contribution to the beta function for any gauge coupling of
a Dirac fermion that furnishes a contribution of the gauge group with
generators t4 to the contribution of the corresponding gauge boson 1s
—4(,/11Cy, where according to Eqs. (17.5.33) and (17.5.34) the ratio of
C; and C, is given by:

> " CeapCppa = —(C1/C2)Tr (ictp) - {28.2.6)

AB
For the adjoint representation, {{c)as = iCasc, 50 C = C7, and so a
Dirac fermion in the adjoint representation makes a contribution that is
—4/11 that of the gauge bosons. But the gauginos are Majorana fermions,
so their contribution is —2/11 that of the gauge boson. Thus the term
11/6 and 11/4 in Eqs. {28.2.4) and (28.2.5) are reduced by a factor 9/11
to 9/6 and 9/4, respectively.

2, For every left-handed quark, lepton, antiquark, or antilepton field, there
is a complex scalar field with the same SU(3) x SU{2) x U(l} guantum
numbers. Foilowing the same methoed as in Section 17.5, it is not hard
to calculate that the contribution of a complex scalar field belonging to a
representation of a gauge group with generators {4 to the beta function
for the gauge coupling g; is

;C
[Bi(gi))scalar = i—lgn_?; s {28.2.7)

where Tr(tatg) = g?Cub4z. This is 1/4 the contribution of a Dirac spinor
field in the same representation, given by Eq. (18.7.2), and hence 1 /2
the contribution of each left-handed spinor field (including the complex
conjugates of the right-handed components of the Dirac fields). Thus the
coefficients of ng in Egs. (28.2.3}-(28.2.5) should be increased by a factor
3/2.
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3. The decrease by a factor 9/11 of the negative gauge boson terms in the
beta function and the increase by a factor 3/2 of the positive squark and
slepton terms both Jead to a general decrease in the rate at which the three
gauge coupling constants diverge below My from the ratios (28.2.1). This
will increase our estimate of My, but, as we shall see, in itself it would have
no affect on the prediction of the electroweak mixing parameter sin” 8. But
these changes do enhance the relative contribution of the Higgs scalars,
which was neglected in Eqs. (28.2.3)-(28.2.5), and which is now also
accompanied with the larger contribution of the accompanying higgsinos.
With n, of the superfields (HY, H") or (H,", HY) discussed in the previous
section, the constant Cy; in Eq. (28.2.7) is [(1/2)? + (—1/2)*]n, = ns/2 for
SU(2), and is 2n,(£1/2)* = ny/2 for U(1). According to Eq. (28.2.7), the
scalar components of these superfields make a contribution to $; equal
to nsg”/96n? and a contribution to # also equal to n.g®/96n. As we
have seen, the Majorana higgsinos contribute twice as much to the beta
functions as complex scalars with the same quantum numbers, so the
superfields (HY, Hy) or (H, H]) make a total contribution to #; and
> that is 3/2 the contribution of the Higgs scalars, and hence equal to
nsg?/32xn% and nyg* /3272, respectively.

Making all these changes in the beta functions, we now have

B = f:z (5% + 5;-) , (28.2.8)
By = % (—% + -”2—3 + %) , (28.2.9)
fy= 4%35 (“g_ + "—Lf) . (28.2.10)
The solutions of the renormalization group equations {28.2.2) are then
3’21(;1) - g”(;dx) * % ("5% + %) In (&f;{) ’ (28.2.11)
0~ P tae (3 5 ) (R asan
g?t#) - 33(;4;() * 51? (_z * %) = (%) ' (28.2.13)

It is convenient to take u = mz, so that SU(2) x U(1) can be regarded
as unbroken over almost all of the range of energies in which we use
the formulas (28.2.11)+28.2.13). Using Eq. (28.2.1), the difference between
Eqs. (28.2.12) and (28.2.13) gives

gimz) gimz) 2n? (4 + 8) In ( ) {28.2.14)
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Table 28.1. Values of the electroweak mixing parameter sin’ 8 and unification
mass My given by Eqs. (28.2.17) and (28.2.18), as functions of the number #, of
left-chiral supecfield doublets (HY, Hy) or (HF, HY).

ne  sin’@ My (GeV)
0 0203 8.7 x 1017
2 0.231 2.2 x 10'®
4 0253 L1x10¥

while the difference between Eq. (28.2.12) and 3/3 of Eq. (28.2,11) gives

- ==+ =] ln] —=]. 28.2.15
dlmz)  Sgtmg) 2R\ 2 * 20) ! (mz ) ( :
Eq. (21.3.19) allows us to express the electroweak couplings in terms of
the electroweak mixing angle 6 and the positzon charge ¢:

glmz) = —e(mz)/ sin@ g'(mz) = —e(mz)/cosd. (28.2.16)

We can then solve for the unknowns In{Mx/mz) and sin® @ in terms of
input parameters e{mz) and gs(mz):

_ 18+ 3n, +{’(mz) /g5 (mz))(60 — 2n;)

- 2 .
sin2 0 108 % 6n. (28.2.17)
My [ 8n2 ) (1= (8eXmz)/3gimz)
In (——mz ) = (e2(mz)) ( 18 . (28218)

For ns = 0 Eq. (28.2.17) gives the same result {21.5.15) for sin® 6 as was
originally calculated (ignoring the small contribution of Higgs scalars)
in non-supersymmetric theories, but the value {28.2.18) of In{M x/mz) is
larger than the original resuit {21.5.16) by a factor 11/9, which as we have
seen arises from gaugine contributions to the beta functions.

Using the same input parameters e’(mz)/dn = {(128)~t, pi(mz)/4n =
0.118, mz =91.19 GeV as in Seciion 21.5 now gives the numerical results
shown in Table 28.1. As discussed in the previous section, the necessity of
cancelling anomalies in the electroweak currents requires equal numbers
of (H®, H;") and (H5 , HY) doublets, so we consider only even vaiues of
the number n; of these superfields.

Remarkably, the value n, = 2 for the simplest plausible theory yields a
valueb sin® 8 = 0.231 which is in perfect agreement with the experimentally
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observed value, sin® @ = 0.23. The value of My is 20 times greater’
than calculated in this way in non-supersymmetric theories, leading to a
decrease by a factor 20~% in the rate for proton decay processes like p —
7% +e*, thus removing a conflict with the experimental non-observation of
such processes. (Proten decay is discussed in more detail in Section 28.7.)
This increase in the value of My brings it closer to the energy scale & 1018
GeV at which gravitation has the same strength as other interactions. It
may be that this remaining gap may be fifled by a change in gravitational
interactions at very high energies.”

A value ny = 4 would give a value for sin®4@ in serious disagreement
with experiment, and a value of My low enough to revive the conflict
with expectations for proton decay. This makes a strong case for having
just one of each superfield (HY, H) and (H,, HY).

Unlike the calculated values of sin” @ and My, the calculated value of
the commeon gauge coupling (28.2.1) at My does depend on the number
of generations as well s the number of scalar doublets. With n, = 3 and
ny = X and our previous input parameters, Eq. (28.2.13) gives

g Mx) _ gi(Mx) _ 1
4n dn 175

(28.2.19)

28.3 Where is Supersymmetry Broken?

supersymmetry if valid at all is certainly not apparent in the menu of
known particles, so any consideration of the implications of supersym-
metry at ordinary energies requires us to make some assumption about
the mechanism of supersymmetry breaking. It would be simplest to sup-
pose that supersymmetry is broken like SU{2) x U(1), by effects accurring
in the tree approximation of the supersymmetric standard model. This
possibility may be definitely ruled out.

One argument against a tree-approximation breakdown of supersym-
metry is based on the mass sum rule (27.5.11), which holds separately
for each value of the unbroken conserved quantities color and electric
charge. In the color-triplet sector with electric charge —e/3 the only
known fermions are the d, 5, and & quarks, for which

my+m - mi ~(5GeV)?, (28.3.1)

According to the sum rule, if there are no other fermions with this color
and charge, then the sum of all squared masses for bosons (counting
cach spin state separately}) with the same color and charge must equal
about 2{5 GeV)?, In particular, each of the squarks with this color
and charge must have a mass no greater than 7 GeV. The existence of
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such light squarks is definitely ruted out experimentally; they would have
shown up, for instance, as a contribution to the rate for electron—positron
annihilation into hadrons at energies where this process has been studied
very thoroughly.

This argument couid be invalidated if there were a heavy fourth gen-
eration of quarks. There is another argument, due to Dimopoulos and
Georgi,” which would apply however many heavy quarks there are and
which yields an even stronger upper bound on the mass of the lightest
squark. The unbroken conservation of charge and color tells us that the
only non-zero Dyo-terms in the supersymmetric standard model are for
the generators y of U(1) and £; of SU(2), which we shall call D; and D,,
respectively. The values of these generators are y=-—g'/6 and t; = 4g/2
for the left-handed quarks of charge 2¢/3; y = —g'/6 and 13 = —g/2
for the left-handed quarks of charge —ef3; y =2¢/3 and t; = 0 for the
right-handed quarks of charge 2e/3; and y=—¢'/3 and t3 = 0 for the
right-handed quarks of charge —e/3. Also, the squark fields are color-
triplets, and therefore cannot bave vacuum expectation values. According
to Bq. (27.5.4), the mass-squared matrix of the charge 2e/3 color-triplet
(not antitriplet) squarks is

My My —g' D16+ gD /2 Fu
M =1 ., (28.3.2)
Fu My + 28D /3
while the mass-squared matrix of the charge —e/3 color-triplet squarks is
MpHp —g'D1/6—gDy/2 Fp
M3, = . (28.3.3)
Fp Mp Ay —g'Di /3

Also, Eq. (27.5.6) gives the mass-squared matrices of the quarks of charge
2ef3 and —e/3 here as just J#},.#y and My M#p, respectively, with no
mixing with the gauginos.

Now Iet v, and v; be the normalized eigenvectors of the quark mass-
squared matrices ., and .4} p corresponding to the quarks » and
i of lowest mass, and consider the expectation values of the corresponding
squark mass-squared matrices

t ;
0 2 0 _ .2 28 Dy
[U; ] M{,U{u; ] = 2 (s34
01" -0 _ .2 ED
[ U; } MUD [ U; } =Mmi— ——3— . f2835}

These expectation values are weighted averages of the squared masses of
the squarks of charge 2¢/3 and —e/3, respectively, so at least one squark
of charge 2e/3 must have a squared mass less than m2 + 2¢’D, /3, and
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at least one squark of charge --e/3 must have a squared mass less than
m% — g'D3/3. Thus, depending on the sign of Dy, there must be either a
squark of charge 2e/3 lighter than the u quark, or a squark of charge —e/3
lighter than the d quark.

Needless to say, the existence of a charged color-triplet scalar this light
would radically change strong-interaction phenomenology. Like the u and
d quarks, this colored scalar would appear as an ingredient of hadrons
with a ‘constituent’ mass of a few hundred MeV, which is certainly not
seen. Since this scalar is electrically charged, it would also be created in
pairs in eT—¢~ annihilation at energies above a few hundred MeV, making
a contribution to the annihilation cross-section that would destroy the
excellent agreement between theory and experiment for this cross-section,
Even worse, since the u and d quarks are so light, and Dy is expected to be
of the order of the supersymmetry-breaking scale, Eqs. (28.3.4) and (28.3.5)
indicate that one of the squarks would have a negative squared mass,
meaning that this squark field would have to develop a non-vanishing
expectation value, breaking both color and charge conservation. We are
forced to reject the simple picture of supersymmetry broken spontancously
in the tree approximation in a supersymmetric version of the slandard
model.

One way out of this conclusion would be to add another U(1} gauge
superfield to the theory. 1f all the quark superfields carry the same value g
of this new U(1) generator, then the corresponding D-term D would make
an additive contribution #0 to the right-hand sides of both Egs. (28.3.4)
and (28.3.5). If this term were sufficiently Jarge, then it could give a
large positive value to all of the squark squared masses, avoiding all the
problems mentioned above. But there is no sign of such a new neutral
gauge boson at accessible energies, and in any case we would still have an
upper bound of 7 GeV on the masses of all the squarks of charge —e/3.

It is not necessarily a bad thing that we have to look for the break-
ing of supersymmetry elsewhere than in the tree approximation of the
supersymmetric standard model. If supersymmetry were broken in this
approximation, then the characteristic mass that sets the scale of supet-
symmetry breaking would be some mass parameter in the Lagrangian,
which would in turn set the scale of ali other masses in the standard
model. We would then still be confronted with the hierarchy problem:
why is this mass scale so nmich less than 1016 10!% GeV?

There is one known way 1o explain such farge mass ratios. If supersym-
metry is not spontaneously broken in the tree approximation in whatever
field theory unifies all the interactions at some high mass scale My, then as
shown in Section 27.6, it will not be broken in any order of perturbation
theory. But it can be broken by non-perturbative effects. In particular,
if there is some gauge field with an asymptotically free gauge coupling
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%(u) at renormalization scale g, and if %%(;)/822 is substantially less than
unity for u »« My, then as discussed in Section 18.3, this gauge interaction
will become strong at an energy of order Mg = My exp(—872h/$2(My)),
where b is a number of order unity. It is not necessary for $2(My)/8n
te be very small in order to have My many orders of magnitude less than
My. We will see in Section 29.4 that supersymmetry can indeed be broken
in just this way, by a gauge coupling that has become strong at some
energy My < My. Indeed, this is just what happens to chiral symmetry in
quantum chromodynamics; there is no mystery why the proton mass {or
at least its main part, due to the dynamical breakdown of chiral symmetry,
and not to the tiny masses of the u and 4 quarks) is so much smalfer
than the unification scale My. Alternatively, the forces that are strong
at energy My may produce a potential for scalar fields, whose vacuum
expectation value then breaks supersymmetry.

There are no signs of any new strong interaction of the known quarks
and leptons, so we have to assume that the observed particles of the
standard model are neutral with respect to the strong force that breaks
supersymmetry. Supersymmetry breaking therefore occurs in a ‘hidden
sector’ of particles that do feel this new strong force. The Iemaining ques-
tion, then, is what is the mechanism by which supersymmetry breaking in
this hidden sector is communicated to the krown particles of the standard
model? As we shall see, most of our expectations for the phenomenologi-
cal implications of supersymmetry depend on the answer to this question,
rather than on the details of the breakdown of supersymmetry itself.

Of course, the mechanism for communicating supersymmetry breaking
to observed particles must be some sort of interaction that is felt by these
particles. There are two leading candidates. One mechanism is provided by
the SU(3) x $U(2) x U(1) gauge interactions themselves, to be discussed
in Section 28.6. The other is gravitation, or rather the aunxiliary fields that
are superpartners of the gravitational field, to be discussed in Sections
31.4 and 31.7.

Without going into details here, we can make 2 crude estimate of
the supersymmetry-breaking scale Ms for these two possibilities, For
gauge-mediated supersymmetry breaking, we expect that the mass split-
ting between the observed quarks, leptons, and gauge bosens and their
superpartners would be of order g?/16n% or g2/16a2 or g*/16=> (where
g. g, and g’ are the SU(3), SU(2), and U(1) gauge couplings), depending
on which quantum numbers are carried by the supermultiplet in question.
(This guess is verified in Section 28.6.) Hence if the squarks, sleptons,
and gauginos have masses in the range of 100 GeV to 10 TeV, as argued
at the end of Section 28.1, then the supersymmetry-breaking scale Mg
would be higher by two or three orders of magnitude — say, of order 100
TeV. On the other hand, if it is gravitation that serves as the mediator of
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supersymmetry breaking, then on dimensional grounds we would expect
the mass splittings Anmt between the observed particles and their super-
partners to be of order JGM}, or perhaps of order GMj. (Results of
both sorts will be encountered in models described in Section 31.7.) If the
squarks, sleptons, and gauginos have masses in the range of 100 GeV to
10 TeV, then Ms would be of order 10! GeV for Am ~ /GM}, or 10V
GeV for Am = GM3.

The large difference in estimates of the supersymmetry-breaking scale
Ms for pauge- and gravitation-mediated supersymmetry breaking makes
an important difference in particle phenomenclogy and cosmelogy. As
already mentioned several times, supersymmetry dictates that the graviton
must have a partner of spin 3/2, the gravitino. When supersymmetry is
spontaneousty broken at a scale Mg, the gravitino acquires a mass m, of
order /GM3. (A precise formula will be given in Section 31.3.) For gauge-
mediated supersymmetry breaking, this is very small; if Mg ~ 100 TeV
then m, =~ 1 eV, so the gravitino would be by far the lightest of the new
particles required by supersymmetry — that is, the lightest particle with
negative R parity (28.1.6). On the other hand, for gravitationally mediated
supersymmetry breaking the gravitino mass is just of the same order of
magnitude ./GM? as the mass splitting between known particles and their
superpartners, so the gravitino would have roughly the same mass as the
squarks, sleptons, and gauginos. The gravitino then might or might not
be the lightest particle with negative R parity, but its interactions with
known particles and their superpartners in this case are of gravitational
strength, so that gravitinos would play no direct rele in experiments on
elementary particles.

* ¥ %k

There are limits on the number of gravitinos that could survive from the
big bang, which set useful constraints on the scale My of supersymmetry
breaking. At some point in the distant past the temperature T was
presumably high enough so that even purely gravitational interactions
would have kept gravitinos in thermal equilibrium with other particles,
in which case the number density of gravitinos would have been of the
order of T3, roughly the same as the number density of photons, (We
are using units in which the Boltzmann constant kp as well as & and ¢
are equal to unity.) If gravitinos do not anmihilate or decay, then the
expansion of the universe will lower their number density in the same
way as the number density of photons, so even after the gravitinos go
out of equilibrium they would be present in numbers comparable to those
of photons. More precisely, since the photons but not the gravitinos are
heated by the annihilation of other particles, the number density ngo of
gravitinos at present would be one or two orders of magnitude less than
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the number density n,0 of photons in the cosmic microwave radiation
background. In order for the mass density mgn,p of the gravitinos not to
exceed the upper bound on the cosmic mass density set by the observed
value of the Hubble constant, m, would have to be less® than about 1
keV. As we have seen, this limit is well satisfied in theories of gange-
mediated supersymmetry breaking, where the gravitino is too light for
cosmic gravitinos to contribute appreciably to the mass density of the
universe. Since some of the fields that break supersymmetry in these
theories must interact at least indirectly with the known quark, lepton,
and gauge fields in order for the known particles to show the effects of
supersymmetry breaking, the interactions of the gravitino with the known
particles and their superpartners are suppressed only by powers of gauge
and Yukawa coupling constants, so all the superpartners of the quarks,
leptons, and gauge bosons would decay quickly into these known particles
and gravitinos. Thus these particles also do not provide candidates in
these models for the ‘missing mass’ sought by cosmologists. (It is possible
that conservation laws could keep some particles of the supersymmetry-
breaking sector stable, in which case they couid conceivably serve as the
missing mass.)

On the other hand, for supersymmetry breaking that is gravitationally
mediated, gravitinos are heavy enough to be unstable {though gravitino
annihilation is still negligible), so the above limit need not apply.? We will
see in Section 31.3 that the coupling of the gravitino to other fields is
proportional to /G, so on dimensional grounds the decay rate I, of a
gravitino at rest is roughly of the order of Gmg. This is to be compared
with the rate of expansion of the universe, which at temperature T is of
order \/GT* (We are here ignoring factors of order 10-£00, including
those involving non-gravitational coupling constants and the number of
particle species.} When the cosmic temperature drops to the value T = g
at which gravitinos become non-relativistic, the ratio of their decay rate
to the expansion rate is of order \/Emg = My /Mppanek. < 1, s0 gravitino
decay becomes significant only after this time, when the gravitinos are
highly non-relativistic. As we have seen, their number density will be of
order T, so their energy density will then be of order m, T?, which is
greater than the energy density of order 7% of the photons and other
particles in thermal equilibrium at temperature T, and therefore makes
the dominant contribution te the cosmic gravitational field that governs
the rate of expansion of the universe. The expansion rate under these

conditions is therefore of order /Gm, T3, and gravitino decay becomes

significant when this equals the gravitino decay rate of order Gmg, and
therefore at a temperature
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As we have seen, if these gravitinos did not decay before the present then
their mass had better be less than 1 keV, but they can lead to cosmological
difficulties even if they did decay before now. After they decay, their energy
must go into the energy of photons and other relativistic particles, so the
temperature T, after decay is related to the temperature T, calculated

above by the energy conservation condition mg Tg a T é‘*, and hence
;o elfa 372
T, =G/ "m".

In particular, since T, < my, we have T, » T, If T, were less than
the temperature T, = 0.1 MeV at which cosmological nucleosynthesis
can occur, then gravitinos would still be abundant before nucleosynthesis,
giving a higher energy density and hence a faster expansion, so that there
would be less time for free neutrons to decay before being incorporated
into complex nuclei, and hence more helium would be produced when
nucleosynthesis occurs. Also, the ratio of the photon and baryon densi-
ties would have been subséquently increased by gravitino decay, so this
ratio at the time of nucleosynthesis would have been considerably less
than is usually estimated from the present cosmic microwave background
temperature, and so nuclear reactions would have incorporated neutrons
more completely into helium, and less deuterium would be left today.
The present agreement between theory and observation for the cosmic
helium and deuterium abundances would thus be destroyed. This problem
is avoided if Ty > 0.1 MeV, but it can also be avoided under the much
weaker condition that T; > 0.4 MeV, because then after the gravitinos
decay the temperature would have been high enough to break up the
excess helium and give cosmological nucleosynthesis a fresh start as the
universe recools. This condition requires that m, > 10 TeV, which is just
barely consistent with the upper bound derived in Section 28.1 on the
masses of the superpartners of the known ¢uarks, leptons, and gauge
bosons, which for gravitationally mediated supersymmetry breaking are
of order m,. This limit on m, corresponds to a supersymmetry-breaking

scale Mg > 101 GeV for my = \/GMZ or Mg > 10" GeV for my ~ GM3.

28.4 The Minimal Supersymmetric Standard Model

In the previous section we identified two different ways that the breakdown
of supersymmetry at a high energy scale Mg could be communicated to
the known quarks and leptons: through gauge or gravitational superfields.
The supersymmetry-breaking terms in the resulting low-energy eflective
Lagrangian will then be suppressed by powers of gauge couplings or the
Newton constant. Most of these terms will therefore be rather small,
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with the exception that, along with factors of gauge couplings or the
Newton constant, on dimensional grounds the mass terms and other
superrenormalizable terms in the effective Lagrangian will be proporticnal
to one or more factors of the supersymmetry-breaking scale Ms, which
is quite large compared with known particle masses, We can conclude
then that, to a fair approximation for gauge-mediated supersymmetry
breaking and a very good approximation for gravitationally mediated
supersymmetry breaking, the main effect of supersymmetry breaking will
be in the superrenormalizable terms of the effective Lagrangian of the
supersymmetric standard model. This version of the standard model,'®
which is supersymmetric except for superrenormalizable terms, is usually
known as the minimal supersymmetric standard model.

With R parity or B—L conserved, the most general superrenormalizable
Lagrangian density allowed by SU{3)xSU(2) x U(1) gauge symmetry takes
the form

Psp=- Mf;g(-@?—@j) - ZME}E(@?@J) - ZM%-'T’(@IQ)})
ij i i '
~ YoMty - > MiE(sle))
ij if
-(E Mgluino 13) - (l_z Myino f"-z) — (Z Mlbino ,11)
Y AR KB( 2T e o))~ Y AEKE (LT ek )G
if i

A A CEE AL TR (27 #3)2;
if if
_S CERE{ LT H) 8- 3 Clf (2 )
if if
_ an(;fEem) + He. (28.4.1)

Script letters are used here to denote the scalar components of left-
chiral superfields. Sums over SU(2) and color indices are understood, as
necessary for invariance under SU(3) x SU(2) x U(l), with e the usual
antisymmetric 2 X 2 matrix igz, All coefficients may be complex, and the
gaugino masses may involve terms proportional to the ys as well as the
unit matrix. .

We follow the custom here of writing the coefficients of the terms
involving scalar fields but not their adjoints as equal to the coefficients of
the corresponding supersymmetric #-terms in Eq. {28.1.7) times factors
AD. AP, Af, and B. This is motivated by the consideration that the
smallness of the Yukawa couplings of the light quarks in Eq. (28.1.7)
reflects a number of approximate chiral symmetries that if extended to the



200 28 Supersymmetric Standard Models

whole supermultiplet would also make the corresponding trilinear terms
in Eq. (28.4.1) smali, while the appearance of the u-term in Eq. (28.1.7)
viclates a possible Peccei-Quinn® symmetry that if approximately valid
wouid make both p and By small. Simitar considerations suggest the form
in which we write the coefficients of the terms that involve both scalars
and their complex conjugates. Also, in Section 31.4 we will describe
contributions to Ah and By that really are preportional to h and p,
respectively. However, here we are leaving it an open question whether
the Ah, Ch, and Bu coefficients in Eq. (28.4.1) are necessarily small when
the corresponding h and p coefficients in Eq. (28.1.7) are small.

The Ch-terms in Eq. (28.4.1) have generally been omitted in discussions
of the minimal supersymmetric standard model. This is partly because, as
discussed in Section 27.7, terms like these that invoive the ¢-componenis
of left-chiral scalar superfields and also their complex conjugates can
potentialty produce quadratic divergences and thereby raise fine-tuning
problems. But we saw in Section 27,7 that the quadratic divergences occur
only in ‘tadpole’ graphs in which a scalar field line disappears into the
vacuum, and in the minimum supersymmetric standard model there are no
scalars that are neutral under all gange symmetries, and hence no scalar
tadpoles. The Ch-terms are absent in the theories of gravitationaily medi-
ated sapersymmetry breaking discussed in Section 31.6, and small in the
theories of gauge-mediated supersymmetry breaking described in Section
28.6, but there is no reason to suppose that this will always be the case.

Even though they are not supersymmetric, superrenormalizable in-
teractions like those in Eq. (28.4.1) are shown in Section 27.7 to not
produce supersymmetry-violating ultraviolet-divergent corrections to the
coefficients of the supersymmetric d = 4 inferactions. The condition of
supersymmetry that is imposed on the dimensienless couplings of the min-
imal supersymmetric standard model therefore does not get in the way of
the cancellation of ultraviolet divergences by renormalization of coupling
constants. It was this property, rather than any theory of supersymmetry
breaking in a high energy hidden sector, that motivated the introduction
of the minimal supersymmetric standard model in Reference 10.

The best reason today for studying the implications of the supersym-
metric standard model is that, as already mentioned, theories in which
supersymmetry is spontaneously broken at a high energy scale are natu-
rally described by the minimal supersymmetric standard model at much
lower energies. We can explote the phenomenoiogical implications of the
supersymmetric standard model, and be reasonably confident that the re-
sults will be relevant whatever detailed modet of supersymmetry breaking
and its mediation turns out to be correct.

Even without the Ch-terms, if all of the other coefficients in the
Lagrangian are constrained only by gauge symmetries and R parity
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congervation, the minimal supersymmetric standard model will contain
over 100 free parameters.!! Here ‘minimal’ means nothing more than that
the theory contains only & minimal menu of superfields. Sometimes the
term ‘minirnal supersymmetric standard model’ is reserved for models
that also satisfy restrictions on the coefficients of the superrenormaliz-
able terms, motivated either by some uaderlying theory or by empirical
constraints. For instance, the minimal supersymmetric standard model is
sometimes optimistically assumed to satisfy the universality conditions

5 _ _ _
MES = 030 M0 < M) M3E = o4,
Mygluino = Mwino = Hibino » - (2842)
=Af=af=4, CJ=Cf=cf=0

Often these conditions are imposed at the scale My = 101 GeV of
coupling constant unification, with corrections produced only by the
rencrmalization group flow te lower energies. 'We will not be making
such assumptions here.

In analyzing the phenomenological implications of the minimal super-
symmetric standard model, we must deal not only with the search for
new particles, but also with two classes of severe empirical constraint
on processes involving known particles: the experimental upper bounds
on varicus flavor non-conserving processes, and on vartous modes of CP
nen-conservation.

Flavoer Changing Processes

We saw in Section 21.3 that there is an automatic suppression of flavor-
changing processes like K9-K? oscillations and K% — u*ty~ in the non-
supersymmetric standard model. This is due to the feature of this theory,
that it is only the mass splittings of the quarks that prevent them from
being defined so that each flavor is separately conserved, so the amplitude
of these flavor-changing process must be proportional to several factors
of small quark masses, Also, in this theory lepton flavor is automaticaily
conserved, so that processes like jt — ey are absolutely forbidden. These
satisfactory results are put at risk by the presence of squarks and sleptons
in supersymmetric extensions of the standard model, because there is in
géneral no reason to expect that the squark and slepton mass matrices will
be diagonal in the same basis as the quark and lepton mass mairices. This
does not introduce flavor changing in the interaction of these particles
with gauge bosons, which are flavor-independent, but it can produce
flavor-changing transitions in which squarks or sleptons turn into quarks
or leptons with the emission or absorption of gauginos. Of course, there
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Figure 28.1. A one-loop diagram that can contribute to the AS == 2 effective
interaction (§gy"d )dy,s.) in the supersymmetric standard model, Here solid
lines are guarks; dashed lines are squarks; and combined solid and wavy lines
are giuinos.

is no problem if the squarks and sleptons are degenerate, in which case
their mass matrices are diagonal in any basis.

The most stringent limits on squark mass splittings and/or mixing
angles are set by measurements of K°-K° transitions.’? These transitions
are produced by operators in the effective low-energy Lagrangian density
like (Sgy"ds)Xdyryass), which can be produced by diagrams like Figure
28.1. The superpartners of the quarks d; and s, are in general linear
combinations ¥; Vsi2; and Y; V@, of squarks 2 of definite mass, where
Vi is a 3 x 3 unitary matrix, 30 the two squark propagators in this diagram
contribute a factor '

2_2 Vdilg.:i _ % Z Vdfis} _
k2 MP—de 5 K+ M: —ie

where k is the four-momentum circulating in the loop. Because Vj is
unitary, this vanishes if the three squark masses M; are all equal. If the
squark square masses differ from some common value M, an; by relatively

small amounts AM?Z, then this becomes

4 2
1 - 2

E VaAM ) .

(kz-a-nguarkwfe) ( . VarVs ‘) _

The amplitude for d;5f — spdr has dimensionality mass 2, so after
multipiying by the gluino propagators and four factors of the strong
coupling g, and integrating over k, we must get an amplitude proportional
to

4 2
g .
-ﬁ?’g (Eﬁ: ViV AM?) . o (28.4.3)
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where M is the larger of Miguark and mgyine. This may be compared with
the result for this amplitude in the non-supersymmetric standard model,
which is produced by W exchange, as shown in Figure 28.2. Ignoring the
third generation of quarks, which has only small transition amplitudes to
the first two generations, the amplitudes for d — u, d — ¢, s — u and
s — ¢ by W~ emission are, respectively, cosf,, —sin @, sin ., and cosé,,
where 0, is the Cabibbo angle defined in Section 21.3. Hence in place of
the squark propagaters here we have the quark propagators

ik +m, B K+ m, )
nd—ie R+mi—ie)

sinfl, cosf, (

and in place of the strong coupling gg'here we have the SU(2) coupling
g Thus in the non-supersymmetric standard model the amplitude for
dr 31 —» 5pdy, is proportional to

g% sin? 8, cos? 8, 2
4 ( - mu) H
My

(28.4.4)

with a proportionality coefficient of the same order as that in Eq. (28.4.3).
With a plausible guess on how to calculate the KK transition amplitude
from the amplitude for d;57 — spdr, the amplitude corresponding to
Figure 28.2 is known to give a result in goed agreement with experiment.
(Indeed, Gailtard and Lee'? used this calculation to predict that m, = 1.5
GeV, before the ¢ quark was discovered.) It therefore seems reasonable
to require that the sguark exchange result (28.4.3) should be less than the
quark exchange result {28.4.4), This yields the condition

JAM?
Z: VaVa—pn
I

Taking g?/4n = 0.036, g2/4n = 0.118, sin8, = 0.22, my = 80.4 GeV,
m. = 1.5 GeV, and m, < m,., we find

CAM}
Zi Vii Vﬂ“ﬁ"zi-

The squark masses are unlikely to be much less than mgins, 50 We can
conclude that either the squark masses are split by no more than about
one part in 10°, or the non-diagonal terms of the mixing matrix Py are less
than about 1073, or the squarks are heavier than about 10 TeV, or we have
some combination of nearly degenerate squarks, nearly zero mixing angles,
and heavy squarks. In itself, this result only constraing the superpartners
2; of the lefi-handed quarks of charge —e/3, but similar limits on the
masses and mixing angles of the 2; squarks can be obtained by considering
the amplitude for dpix — sgdr. We can also obtain somewhat weaker

g? sinf, cos @, (m; —mIM
g2 my

(28.4.5)

< 1.5 x 1073 x (M/100 GeV) . {28.4.6)
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Figure 28.2. A one-loop diagram that can contribute to the AS = 2 effective
interaction {s.y"d; }(d,y,5.) in both the supersymmetric and non-sipersymimetric
standard models. Here solid lines are quarks and wavy lines are W+ bosons.

limits on the masses and mixing angles of the %, squarks by considering
the amplitudes produced by wino exchange rather than gluine exchange,
It should be noted, however, that these arguments put no constraints
on the differences between the masses of squarks of different charge, or
on the differences between the masses of the superpartners 2; and 2; of
left-handed quarks and antiquarks.

Just as for the squarks, the sleptons of definite mass are expected to
be non-diagonal linear combinations of the superpartners of the leptons.
This leads to the decay process p2 — ¢ + y through diagrams like Figure
28.3. The experimental upper bound 4.9 x 10~'! on the branching ratio of
this process then sets a limit of about 10~% on the fractional mass splitting
of sleptons of the same charge but different generations for generic mixing
angles, or on the mixing angles for non-degenerate sleptons.!

Attempts have been made to explain the degeneracy of the squarks
and sleptons in terms of a gauge symmetry connecting the different
generations.™ In Section 28.6 we will describe an approach to super-
symmetry brezking in which this degeneracy appears without needing to

impose such symmetries.

CP violation

The second important class of constraint provided by experimental infor-
mation about known particles has to do with CP-violating effects, such
as the electric dipole moments of the neutron and efectron.!'S In Section
21.3 we saw that these effects are rather weak in the non-supersymmetric
standard model with only one scalar doublet, apart from a potential
problem with the parameter @ of quantum chremodynamics, discussed in
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bino, wine®

Figure 28.3. One-loop diagrams for the process u — e +7. Here solid lines are
leptons; dashed lines are sleptons; combined solid and wavy lines are gauginos;
and wavy lines are photons.

Section 23.6. This is because all CP-violating phases in the mass matrix
of quarks and leptons and their interaction with gauge bosons could be
absorbed into the definition of the quark and lepton fields if there were
only two generations of quarks and leptons, and although there is a third
generation, its mixing with the first two generations is (for mysterious
reasons) quite weak. (This argument does not apply to processes that
directly involve quarks of the third generation, such as B°~B mixing, to
be measured in the planned ‘B factories.) The electric dipole moment of
the neutron in this simple non-supersymmetric version of the standard
model is consequently expected!® to be less than about 107%¥ ¢ cm, well
below the experimental upper bound, 6.3 x 1072 ¢ cm. 19

Tn contrast, the over 100 parameters of the minimum supersymmetric
standard model in its most general form involve dozens of CP-violating
relative phases. After integrating out the heavy superpartners of the
known particles, these phases produce a number of CP-violating effec-
tive interactions to be added to the Lagrangian of the standard model.
Those of minimum dimensionality, which on dimensional grounds are
likely to be the most important, include electric dipole moments of the
quarks and leptons,!” similar CP-violating ‘chromoelectric’ dipole moments
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Figure 28.4. A one-loop diagram for the chromoelectric dipele moment of the a
or & quarks. Here solid lines are quarks; dashed lines are squarks; combined solid
and wavy lines are gluinos; and the wavy line is a gluon. The X represents the
insertion of a bilinear interaction arising from a trilinear scalar field interaction
combined with the spontaneous breakdown of SU(2) x U/(1). There are also
diagrams in which the gluon line is attached to one of the internal squark lines
instead of to the gluino line..

contributing to the interactions of gluons with quarks,'® a CP-violating
purely gluonic interaction,'® and a CP-violating interaction of the lightest
Higgs scalar with leptons.? _

To take one example, consider the quark chromoelectric dipole mo-
ments, which in some models make the largest contribution to the electric
dipole moment of the neutron, The CP-violating chromoelectric dipole
moment operator 18 (Gys[y,, 1wlia q}f%" (where g is a u or d color-triplet
quark field, %" is the SU(3) field-strength tensor, and A, are the 3 x 3
generators of SU(3)). Since ys[y,, yv] has matrix elements only between
gL and gr or between gr and gqp, in order for a one-loop graphs to
contribute to the chromoelectric dipole moment an external left-handed u
or 4 quark line must emit an internat gluino line and turn into a % or &
squark line, which next turns into a #* or 2" squark line, and then into a
right-handed # or d quark line by absorbing the internal gluino line, with
the external gluon line attached either to the internal gluine line or to one
of the internal squark lines. (See Figure 28.4,)

To calculate this, we need to know the mixing of the scalar compo-
nents %; (or 2;) of the left-chiral quark superfields {; with the complex
conjugates @’; (or @'}-) of the scalar components of the left-chiral anti-

quark supetfields U; (or Dj), produced by the spontaneous breakdown of
SU(2) x U(1), and represented by the X in Figure 284, Part of this mix-
ing arises from a contribution of the supersymmetric & -term interaction
(28.1.7) to the last term in Eq. (26.4.7):

Lare = | A+ w2+ @847
i : ij
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There is also a contribution from the A- and C-terms in Eq. (28.4.1):
Lo =~ 2 MDD — ALY + P Y]
i
= LM [Af #Y 1 CY #Y| —He  (2848)
if :
Replacing the neutral Higgs scalar fields with their expectation values

gives the quadratic terms

Zo3 = —2Re 3 mitA; (1 cotf + AY + Y cot p)
' i .
—2Re ¥ ml2,3, (,u' (tan 8)" + A% ~ C2 (tan ,B}') . (2849} -
if

where mf] = (#'Dh and mf) = —{#Nh)} are the mass matrices of the
quarks of charge 2e/3 and —e/3, and
tanf = {#P/ (D" (28.4.10)

Neglecting Cabibbo mixing, and for definiteness taking the As and Cs
diagonal, Figure 28.4 makes contributions to the chromoelectric dipole
moment of the u and d quarks of the form

3
d = £ 1m m, AT (g miging)] (284.11)
g ,
de = 16:12 Im [md AdI(mg,m@, mg]uinn}] . (28.4.12)

where
A= +Cheotf +A,, A=~ Ca)tan B)* + 4y, (28.4.13)

and I is a complicated dimensionless function of its arguments arising
from the integration over the virtual four-momentum. For ma = my and
the gluino field defined to make Maluine 85 Well as ma real, the function J
takes the form

ma .
I(m.QQ mﬂamgluino) = m;ﬂm{: "T (___2_3]_1_{1%2__) 1 (28.414}
My~ Maling
where?! _
4 1+z 11
{4, T3, 2 311,
J(z)HZ( z +32 +z)ln( - )+22 32 (28.4.15)

The hard part of this sort of calculation always lies in estimating the
contribution of an operator like the chromoelectric dipole interaction
to hadronic matrix elements such as the electric dipole moment of the
neutron. We can aanticipate that there will be renormalization group



208 28 Supersymmetric Standard Models

corrections required because this operator is to be used at energies of
the order of the neutron mass, rather than the masses of the squarks
and gluino. More important is simply getting dimensional factors and
factors of 4x right. For this purpose, it is usual to use a counting rule??
known as ‘naive dimensional analysis.’ A connected graph with V; vertices
of type i and ! internal lines will have a number L of loops given by
L=1-3%Vi+1 H there are N; lines attached to a vertex of type i and
N external lines of the whole graph, then 27 + N = 3, ViN,, so

N N;
L=1—5+;Vf(7—1).

We expect a factor of order 1/16x? for each loop, so the coefficient of
an operator @ in the low-energy effective Lagrangian with N field factors
will contain an over-all factor

(4my¥ =2 T (4m)C—80%:
i

If the operator ¢ has dimensionality d and the interactions @; of type §
have dimensionality d;, then the coefficient of @ will have dimensionality
4—d—73 (4 —ds), so this coefficient will also have a factor M*—4 [T, M4,
where M is some scale that is typical of hadronic physics, such as the
nucleon mass or the energy 2nF, ~ 1200 MeV, where the low-energy
expansions discussed in Section 19.5 begin to break down. Finally, the
contribution to the coefficient of @ from some graph will of course be
propoertional to the couplings of all the operators &, associated with the
vertices in the graph. These remarks can be conveniently summarized
by defining a ‘reduced coupling’: the reduced coupling associated with
any operator & having N; field factors, dimensionality d;, and coupling
constant g; is

g;‘eduuml — 'gl_(q_n)z‘—Ni MP—4 (28.4.18)

The above estimates suggest the rule of naive dimensional analysis: the
reduced coupling of any operator @ in the effective hadronic Lagrangian is
roughly equal to the product of the reduced couplings of the interactions
that contribute to this effective coupling.

The neutron electric dipole moment is the coefficient of an operator with
one photon and two neutron fields and dimensionality 5, so its reduced
coupling is Md?/4dn. Likewise, the quark chromoelectric magnetic moment
has reduced coupling Mdg f4m. In addition to one factor of this reduced
coupling, the reduced coupling of the neutron electric dipole operator
must have a factor of the reduced coupling e/4n of the electromagnetic
coupling and an indeterminate number of factors of the reduced strong
coupling go/4x, which at the low-energy scale M are not very different
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from unity and will be ignored. Taking the d quark contribution as
representative of the contributions of both u and d quarks, the resuit then
is that '

. edff‘" 83 3 '
d~ ot me (2] Im [mdAd]I(m_@,mé,mg]umo). (28.4.17)

Further simplifying by setting mguine = gy = mg, so that J = 7/18, and
taking g2/4xn at the scale of squark and gluino masses {0 have the same
value 0.12 as at mz, and jmy] = 7 MeV, we have then

) : 3
| ~ 0.5 x 1075 ¢om Aal[sin el X (100GeV)

3 (28.4.18)
mgluino
where @ is the phase of 47, with the convention that the gluino, quark,
and squark masses are taken real. The contribution of the electric dipole
moment of the quark is somewhat larger, while the contiribution of the
purely gluonic CP-odd operator is considerably smailer.?

To avoid conflict with the experimental upper bound of 0.97 x10~% ¢
cm, either the phases associated with CP violation in the supersymmetric
standard model must be less than about 1072, or some of the new particles
of this model must be heavier than about 1 TeV. Simitar conclusions have
been reached from calculations of the electric dipole moments of atoms
and molecules.?®* Even more stringent conditions on CP-violating phases
have been derived?® by considering the contribution of Figure 28.1 to
the one precisely measured CP-violating effect, the imaginary part of the
amplitude for K°-K° oscillation.

28.5 The Sector of Zero Baryon and Lepton Number

Despite the large number of parameters of the supersymmetric standard
model, in some contexts it is surprisingly predictive. This is true in
particular when we consider the scalar fields whose vacuum expectation
values spontaneously break the SU(2) x U(1} gauge symmetry. In this
section we will consider these scalars, along with other fields of zero
baryon and lepton number: neutral scalars odd under charge conjugation,
charged scalars, and the fermionic superpartners of these scalars and of
the W= and Z©,

It is a crucial requirement for supersymmetric versions of the standard
model that they should contain scalar doublet ‘Higgs’ superfields with the
right mass and interaction parameters to account for the breakdown of the
SU(2) x U{1) gauge group of the electromagnetic and weak interactions.
We saw in Section 28.1 that at least two left-chiral scalar doublets are
needed to give mass to the quarks of both charge 2¢/3 and —e/3 and
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the charged leptons, while we found in Section 28.2 that two doublets are
just what is needed to bring the SU(3), SU(2), and U(1) gauge couplings
together at some very high energy. We have therefore assumed that there
are two left-chiral scalar SU(2) doublets

() me(l) e

These have SU(2) and U(}) D-terms (27.4.7) given (assuming zero Fayet—
lliopoulos constant &yq)) by o

D = %(3@’}‘ i)+ %(x; 1), (28.5.2)
D, = g f{aﬁ’l) — %(af’;af‘g) , (28.5.3)

where 7 are the scalar components of the superfield doublets £ 2
and v, are the Pauli matrices, with t2 = 1. As shown ir Eq. (27.4.9), in
renormalizabie theories this gives the D-term contribution to the scalar
field potential

Vp = %132 + éDf,
2 2
= %2 [(sﬂmﬂl) + (fﬁ%%)] + 5; [(ﬁ}m) - (x;fz)] _

(28.5.4) .
This can be put in a more convenient form by using the relation
(Die - (Ehey = 28,;81s — Sirdij . (28.5.5)

(To prove this, use rotational invariance to show that 0;;0ks may be
expressed as a linear combination of () « () ; and di8y;, and calculate
the coefficients by taking traces on the indices i, f and i,¢.} In this way,
we may rewrite the D-term part of the scalar field potential as

o = £ |(#19¢3)

2 1.0 . z
+g_i8§_[(,;ﬂm)_(w;;ﬁ)] . (285.6)

As mentioned in Section 28.1, there is just one possible renormalizable
term in the superpotential for these two left-chiral doublets, of the form

S, ) = u(H] el , (28.5.7)

where i is a constant with the dimensions of a mass and ¢ is the anti-
symmetric matrix ir;. According to Eq. (27.4.9), this gives an additional
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contribution to the scalar field potential

' Af (), #7) |2 Of (), #2))?
V=2 s _+Z’a£b

= {u? {(f;fm) + (#gm)} . (28.5.8)

For 4 # 0 the potential Vp + ¥y evidently has a minimum value of
zero, réached at the unique point o) = #, = 0. With just these -
terms in the potential, SU(2) x U(1) as well as supersymmetry is not
spontaneously broken. (The case # = 0 is not much better; there is
a continuous infinity of vacuum states with supersymmetry unbroken
and with SU(2) x U(1) broken down to electromagnetic gauge invariance
with all possible strengths, including zero.) This is one more example
of the general difficulty, already seen in Section 283, of formulating
realistic theories in which supersymmetry is spentaneously broken within
the standard model.

Under the assumption of the previous section that supersymmetry is-
violated in the effective Lagrangian only by superrencrmalizable terms,
the most general such supersymmetry-breaking term involving the scalar
doublets is of the form .

Vi = w3 (]} + 1 (#1#2) + Re {Bu (f?efz)} ,

where m} and m} are real parameters {not necessarily positive) and By is
a parameter of arbitrary phase. We will adjust the over-glf phase of the
superficlds H, and H; so that By is real and positive, and so

Vo = e} ()1 +m3 (#1962) + BuRe (#Tets). (2859
The total scalar potential in the tree approximation is then
V=Vp+V,+ Vn
2
- E; ? N gzg'mi’z {(f}fm) - (.;fg.;ﬁ)}
ot < 16P) (A1) + (] + 1) (o200
+BuRe (x’]fe;ﬁ) . (28.5.10)

(i)

Note in particular that u?, m{, and m% only appear in the combinations
w4+ |42 and 12 + Jul?. -

There i3 one condition on the supersymmetry-breaking parametcrs.m,?,
derived from the requirement that the potential should be bounded below.
For scalar fields going to infinity in generic directions, the potential is
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dominated by the quartic terms Vp, which are positive. There are special
directions in which ¥ vanishes: those for which (up to an SU(2) x U(1)
gauge transformation)

w=(8). w=(3).

with d) an arbitrary complex gquantity. For such directions, V = {2|,u|2
m +m2]|¢|2 Bud?, so (since Bu has been defined to be posmve) in order
for this not to go to —oo as ¢ — oo, it is necessary that

2k +md = By (28.5.11)

We wish to look for a minimum of the potential at which electromag-
netic gauge invariance is not broken, so let us consider the behavier of
the potential as a function of the neutral scalar fields, with the charged
scalar fields set equal to zero. In this case Eq. (28.5.10) gives the potential
of the neutral scalars as

T 1 P R Y
+md + |2} |3~ B Re (#0#8) (28.5.12)

To find a stationary point, we expand ¥N around the constant values
H? = vy, writing

A =v+o;. (28.5.13)
To second order in the ¢, Eq. (28.5.12) gives
2 2
+ * »
Vaiaa = 525012 — i) [2Re (ol o1 —v32) + [en * = [P
Z 2 .
+ . . 12 .
+E=E [Re(wior —v302)] + (i + 1u?) (2Revigr +104[2)

+(m3 + i) (2Revy g2 + lp2”) — BuRe (0192 + 0201 + 0102)
+constant . (28.5.14)

For the v; to be equilibrium values of the fields, the térms of first order in
the ¢; must vanish _
2 o
g 2 AR =
7 (ot — Il )ef — 5By = 0, (285.15)

(1 + 1o + &

i2
.1
£ (joaf?* — tor o3 — =Byuvy = 0. (28.516)

(1 + 1o + 8

Without changing the over-all phase of the ¢;, we may adjust their relative
phases so that »; is real. Then Eqs. {28.5.15) and (28.5.16) show that v; is
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also real, so that these equations become

Z 2 .
2 2 g-tg e, oy 1 -
{m} + )0, + 7 (vl——vz)v[ 5Bu =0, (28517)
2 2
2 2 g+gra 2 1 —
(v + 1Yoz + 5= (o —of)o2— 5Bum =0 (8518)

These conditions may be used to express the mass parameters in the
potential in terms of the convenient quantities

tanfl = v2/vy , (28.5.19)
= g + &M (o] +o3), (28.5.20)
and
my =20ul? +m +mi. (28.5.21)

(The parameter mz is the mass of the Z vector boson.". We will soon
see that my is the mass of one of the physical scalars.) Multiplying
Egs. {28.5.17) and {28.5.18), respectively, by v2 and » and taking the sum
and difference gives

By =mysin2f (28.5.22)
and '
2 2 2 2
my —m; = —(m3 +mz)cos2f, (28.5.23)
which with Eq. (28.5.21) yields
mi+ul = i~ Lomh+m%) cos 28, mi+ipl? = 1md+ (e +md) cos2B.
(28.5.24)

With linear terms cancelling, the quadratic part {28.5.14) of the neutral

scalar potential may then be written
2z 2

+ + 2
Vﬂuad_g g” (f-’1"*f’z)[|§91|2 I§02l2] g 2g [Re(l’:fp:*vwz)}.

+(m1 + 1} o1l + (m3 + |u*) l@2l* ~ BuRe (tmfpz) =+ constant

. | ,
i cos 28 [1¢1* = 92l ] + m [Refcos fpy — sin foo)]

+ 3 (191 + fal?) — 1 + ) cos 28 (|1 * — 1]

umﬁ sin2f Re ((01*]92) + constant . (28.5.25)

" There is a difference of a factor of 2 between the formulas for m% given by Eqs, (28.5.20)
and (21.3.30), due to the tact that the scalar ficlds are normalized differently here and
in Section 21,3,
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We see from Eq. (28.5.25) that the real and imaginary parts of the P
are decoupled. (This is because the potential (28.5.12) is invariant under
a charge conjugation or CP transformation @; — ¢;.) The mass-squared
matrix of the imaginary parts of the ¢; is :

(%mﬁ(lﬂcos.’!ﬂ] {Emi sin2f8 )
M =
Imegp

tm?d sin 28 imf (1 + cos28)

(28.5.26)

The determinant vanishes, so one eigenvalue is zero, and the other equals
the trace, which is just m}. The zero-mass scalar is of course the neutral
Goldstone boson associated with the spontancous breakdown of SU{2) x
U{1) to eleciromagnetic gange invariance, and as discussed in Chapter 21
it is eliminated by the Higgs mechanism. As promised, m, is the mass of
one of the physical scalars, the non-Goldstone boson with G negative. This
shows that for the field value @; = 1; to be at least 2 local minimum of
the potential, the parameter m3 defined by Eq. (28.5.21) must be positive.
The condition (28.5.11) for good behavior at large field strengths shows
that Eq. (28.5.22) has a solution here for 8 in the range 0 < B<n/2

In particular, if By =0 and 0 < § < n/2, then Eq. (28.5.22) shows that
mg4 = 0. In this case, the particle 4 is the Goldstone boson of a U{l)
Peceei-Quinn symmetry? of the potential (28.5.12) under an squal phase
change of #9 and 59, which for v, # 0 and v # 0 is spontaneousty
broken without leaving any combination of this and the electroweak U{1}
symmetry unbroken. This is the original version of the axion,?® which
as we saw in Section 23.6 acquires only a small mass from the Yukawa
interactions of the scalars with the quarks and is experimentally ruled out.
Thus we can conclude that Bu definitely does not vanish.

The elements of the mass-squared matrix for the real scalars are given
by Eq. (28.5.25) as

(M )it = bmy{1 ~cos28) + m (1 + cos2f),
(M )12 = (MEc ,)o1 = — im? + m3) sin 28, (28.5.27)
(M ,)22 = im%(1 + cos28) + tmb (1 - cos 2f).

Solving the secular equation gives the eigenvalues

1
mly = i[m.i + i /(e + md P — i, cos? 2{3] , (28.5.28)

!
i = 5 [y — (2 2 — amim cos? 28] . (28.5.29)

To calculate the masses of the charged scalars, we evaluate the potential
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¥ with the neutral scalars set equal to their vacuum expectation values:

m=(;;;l_), m:(ﬁf). | (28.5.30)

Using this in Eq. {28.5.10} then gives the quadrauc part of the charged
scalar potcntla.l

. : g?+g7? -
Vs = 1!?2(35"1} +ort| +ET 5w} - b (e — 1)
+(m% +ONET P+ Ond + DT+ BuT T (28531)

Using Eqs. {28.5.22) and (28.5.24), this may be written

Vaind = fm’ép + )T — cos28) + 1 (1 + cos 26)
+2sin 28067 73] , (28.5.32)
where mw is the charged gauge boson mass:
1
2 L2l 2
mly = 58 (jaf +leal?) (28.5.33)
The charged scalar mass matrix is then

I 1—cos2f  sin2p
3 1. 2 2
M= 2(mW ) ( sin2f 4+ cos2f ) ‘ (28.5.34)
This has determinant zero, so it has one eigenvalue equal to zero and the
other eigenvalue equal to the trace

mh = myy +my . (28.5.3%)

The zero-mass charged scalar is of course the other Goldstone boson
associated with the spontaneous breakdown of SU{2) x U(1). and like
the neutral Goldstone boson found earlier it is eliminated by the Higgs
mechanism.

Even without knowing the parameters my and f, these results tell us
a lot about the refative magnitudes of the scalar boson masses. We can
rewrite Eqgs. (28.5.28) and {28.5.29) in the form

1
mi = 5 [mﬁ +m% + \/(mﬁ —mZ)? + dmim sin® 2,3] , (28.5.36)

it = % [+ = \fm%, — L2 + i sin® 26] . (28.537)

We see that the heavier neutral scalar mass my is larger than the larger
of mz and my, while the lighter neutral scalar mass my, is smaller than the
smaller of mz and my4. If the large ratio of top to bottom quark masses
is due to a large ratio vz/v; = tan § of scalar field vacuum expectation
values, rather than a large ratio of Yukawa couplings, then we expect
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B to be near n/2, in which case these inequalities become approximate
equalities. Further, Eq. (28.5.35) shows that the charged scalar mass is
greater than both m4 and my. }

These results are quantitatively modified by various radiative corrections
within the standard model (as opposed to radiative effects that produce
the input parameters m? in theories of gauge-mediated supersymmetry
breaking). The most important corrections arise from the presence in the
scalar potential ¥ of terms arising from graphs consisting of a single loop
of top or bottom quarks interacting any number of times with external
scalar field lines. This is because the top and bottom quarks have by
far the strongest couplings to #; and #, respectively. (It is prudent
to include bottom as well as top quark loops here because, as mentioned
above, the larger mass of the top quark may be due to a large ratio v2/vy,
rather than to a large ratio of Yukawa couplings, but even in this case we
will see that the dominant corrections are due to top quark loops.)

Let us first consider the neutral scalars, at least one of which would
be lighter than the Z boson in the absence of radiative corrections, The
effect of these tep and bottom loops is to contribute a term of form
U #37) + Un(|5#77) to PN, We will absorb any terms in Uy, or U, that
are linear in |3#9|? — v} or |9 — o2 into the input parameters m? and
m3, so that

Univ}) = Uie3) = 0. (28.5.38)

Our earlier results (28.5.24) and (28.5.22) for #? + |uf?, m + |uf? and By
are then unchanged. Also, the mass matrix for the C-odd neutral scalars
is still given by Eq. (28.5.26). On the other hand, the elements of the
mass-squared matrix for the C-even neutral scalars are now given by

(MRe it = imA(1 —cos2f) 4 Imd(1 + cos28) + Ay,
(Mﬁwhz = (Mﬁw)zl = — i(m% + m%)sin28, {28.5.39)
{Mﬁw)zz = 1m4(I +cos28) + Im5(1 —cos28) + A, ,
where
Ap = 203U (0}), Ac = 203 Ul(vd). (28.5.40)

The solutions of the secular equation are then

!
m%,z-z—[mﬁ—km%-hﬁpkab

+\/((mﬁ —mL)cos2f + A, — A;,)z + (mf, +m§_~)2 sin? 2ﬁ‘J ,
(28.5.41)
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|
mﬁ:i\'mi+m%+.ﬂ.,+ﬂb

—\/@mﬁ —_m%)c:os 28+ A, — Ab)z + (mfi + m%)z Sinz'zﬁJ .

(28.5.42)

In considering searches for these particles, it is important to note that the
light Higgs mass mj increases as the unknown mass m, increases, reaching .
a finite upper bound for m4q — oo

my < mylmgq — o) = m3 cos® 28 + A,sin® f+ Aycos? B (28.543)

To calculate A, and A;, we recall from Section 16.2 that the potentials
[7y and U; are given by

2
Up(|#°0) = —mos |1, 9 llbf?i 31 8.5.44
A(E 1 )"_T@l b 1‘ in 72 —3 + linear terms, (28.5.44)
2
3 4 |A£3fgl 3 -
W2y T = = 2 :
U(1#9%) = =g |4t] |Into - — 5| + lineer terms , (28.5.45)

St

where 1; = m;/v; and A, = my, /vy are the Yukawa couplings of the top and
bottom quarks; My and M, are the masses of the stop and sbottom (the
scalar superpariners of the top and bottom quarks); these masses and the -
terms —3/2 inside the square brackets are chosen to satisfy the condition
that supersymmetry-breaking corrections due to stop and sbottom loops
would cancel the corrections due to top and bottom loops if the masses
were equal; and the ‘linear terms’ are linear in J#5% or |72, with
coefficients adjusted to satisfy Eq. (28.5.38). (The factor 3 takes account
of the three quark colors.) Then Eq. (28.5.40) gives

| 3 4.2 ibv% 3\/§mg Gr Mzb
—=— ] = 1 s 28.5.46
Bp = g fel v I (Ms?b 2nlcos?f m; ]’ ( )
3 A 3./2m? Gy M?
= —_"_|1 4 21 i I t 1 st 28.5.
A prel ozt (M_f:'! 2n?sin® B N\ ) (28.547)

where Gy = 1.17 x 10~° GeV 2 is the Fermi coupling constant, given by
Eq. {21.3.34) as Gr = g?/4.2my. Taking m), = 4.3 GeV, m, = 180 GeV,
My ~ Mg ~ 1 TeV, and mz = 91.2 GeV gives Ap ~ 1.1 x 107°mZ / cos? §
and A; ~ L1m3/ sin? . We see that even if tan 8 is as large as m/my, the
top-quark correction A, will still be much larger than A,.
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The effect of A, is to increase both mg and my,. Taking this and other
radiative corrections into account,® for tanf > 10 the upper bound
(28.5.43) on the lightest neutral scalar mass is raised by radiative correc-
tions from just below mz to between 100 GeV and 110 GeV for stop
masses between 300 GeV and 1 TeV. For comparison, an experimental
lower bound?’ of 62.5 GeV on mp, My, and my is set by the absence of an
hA4 or HA final state in ete™ collisions at 130 to 172 GeV. Also, calcula-
tions of radiative corrections involving Higgs scalars are consistent with
precision measurements of electroweak phenomena for my, in the range™
of 27 to 140 GeV.

Radiative corrections are less important for the charged scalars. Since
the attachment of charged scalar lines allows transitions between top and
bottom quarks, the correction to the scalar field potential here takes a
more general form, constrained by SU(2) x U(1) to be

AV = UL, K1), #Lo,, #1o#y, #Tes#y).  (28.5.48)

(Quark loops do not actually produce any dependence on #Te#,.) Every
appearance of a #'| or 5 doublet is accompanied with a factor 4, or i,
respectively, so terms involving 3 will be suppressed, as we have already
seen in calculating the neutral scalar masses. To a good approximation,
then, the correction to the effective potential is of the form

AV = U(#1#7,0,0,0) = Ulloz + @2 + |#57,0,0,0). (28.549)

By going back to the case where the charged fields vanish, we see that the
function U must be just the same as what was earlier called U,. Any terms
in U of first order in an expansion in powers of |1y + @] + J.?ﬁ";lg — v%
would simply serve to redefine the constant mf, and are eliminated by the
convention {28.5.38). Terms in U of second order in v + @gf2 + 152 —p?
are genuine radiative corrections, but although they contain terms of
second order in |p;|? which do affect the neutral scalar masses, they
contain no terms of second order in |35 |* which could shift the non-
Goldstone charged scalar mass, Fortunately, radiative corrections are not
needed to avoid a conflict with experiment, because in the absence of an
upper bound on my there is no theoretical upper bound on the charged
scalar mass (28.5.35). An experimental lower bound?® Mme = 59 GeV is
provided by the non-observation of the process ete™ — #+#~ at 181 to
184 GeV. There is a much more stringent lower bound on mc provided by
the rate of the process b — sy (measured in decays like B — K*y), which
can oceur by transitions to an intermediate 2~ or # ¢ state, with the
photon radiated from the virtual quark or s#~. The present agreement
between theory and experiment for this process sets a lower bound?® of
about 150 GeV on m¢ (and higher for tan § < 1). Using Eqg. (28.5.33), this
gives an important lower bound my > 125 GeV.
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There are two conditions on the masses m} that must be satisfied
by any model of supersymmetry breaking in order to give a successful
account of electroweak symmetry breaking. One of them is provided by
the requirement that the potenual is bounded below, which as we have
seen requires that

20’ + mi +mj > By

Since By is defined to be positive, this ensures that the C-odd neutral
scalar squared mass {28.5.21) is positive. The other condition is provided
by Egs. (28.5.22) and {28.5.24), which for arbitrary values of § require that

4(m? + ) (3 + 1) < (Bp)? . (28.5.50)

We can easily see from Eq. (28.5.10) that this condition ensures that the
matrix of second derivatives of the potential has a negative eigenvalue at
K =y =0, so this SU(2) x U(l)-invanant point is one of unstable
equilibrium, and therefore SU(2) x U{1) must be spontaneously broken.
If 8 is very near n/2, then Eq. (28.524) tells us that this condition is
satisfied by baving m? + |u|? positive and mZ + |u|? negative. As we will
see in the next section, the renormalization group flow of the parameters
in the scalar field Lagrangian provides a mechanism for driving m3 + [ui*
negative.

Even with a minimal set of superfields, in supersymmetry theories there
are several pairs of particles with different SU{(2) x U(1) transformation
properties, but the same charge, color, and baryon and lepton number,
which become mixed when SU(2) x U(1) is spontaneously broken. We
have already seen an example of this in the previous section, in which we
had to deal with the mixing of the scalar superpartners of the lefi-handed
quarks with the complex conjugates of the scalar superpartners of the
left-handed antiquarks. A similar mixing occurs between the higgsinos
and gauginos, both charged and neutral; the particles of definite mass
are not higgsinos or gauginos, but mixtures known as. chargiros and
neutralings. Let us consider the charginos, which provide a useful bound
on u. According to Eq, (27.4.8), there are off-diagonal supersymmetric
mass terms in the Lagrangian density

~Re [u(helty) + iy cos B (wETehy) + i By sin (wfTehiy )]

To this, we should add a term for the wino mass generated by gauge
interactions with the supersymmetry-breaking sector

—Myino RE (wfrewz) .

The squared chargino masses are then the eigenvalues of the matrx
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.,#'1-,#(:, where

: Myi iZmy sin A
Mo = wino ) 28.5.51
¢ ( iﬁmw cos f} i ) ( 3D
These two eigenvalues are
1
mghargino =3 [m%vino + 2y + ha? + ((m-.zvma e |10 + Ay cos® 28

+4m%l" (m\.zvinu + [#|2 — 2myinoRe psin 2,8]) Uz] . (28.5.52)

We expect the wino mass Myine to be much larger than myw. If it is also
much larger than ly|, then the heavier chargino is mostly a wino, with
INASs Myino, While the lightest chargino is mostly a higgsino, with mass
|#|- In any case, |u| is greater than the lightest chargine mass, which the
-non-appearance of gauginos in ¢™—¢™ annihitation tells us is greater than
about 60 GeV, and probably greater than my. The search for neutralinos
in e*-¢~ annihilation has set a lower bound of 27 GeV on the mass of
the lightest neutralino. 2%

28.6 Gauge Mediation of Supersymmetry Breaking

In this section we will consider the possibility that the breakdown of super-
symmetry is transmifted to the known particles through interactions of the
ordinary SU(3) x $U(2) x U{1) gauge bosons and their superpartners.®
It 1s assumed here that supersymmetry is dynamically broken in a sec.
tor of superfields, not including the superfields of the observed quarks
and leptons, and that some of the chiral superfields in the symmetry-
breaking sector, known as the messenger superfields, have non-vanishing
SU(3) x SU(2} x U(1} quantum numbers, In order for the messenger
particles to be able to get large (say, of order I TeV) masses without
breaking SU(3) x SU(2) x U(1), it is necessary for them to furnish a
real (or pseudoreal) representation of SU(3) x SU(2) x U(1}, which au-
tomatically also means that they do not intreduce any new anomalies.
Although most treatments of gauge-mediated supersymmetry breaking in
the literature alse make specific assumptions about the interactions of the
messenger superfields with the other superfields responsible for supersym-
metry breaking, the most important predictions of this class of theories in
fact do not depend on these assumptions. We shall therefore put off as-
suming anything about the interactions of the messenger superficlds with
the other superfields of the symmetry-breaking sector, We will; however,
make another assumption about the SU(3)x SU(2)x U(1) properties of the
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Figure 28.5. A diagram of the sort that introduces a breakdown of supersym-
metry into the propagator of the gauge superfields. Here wavy lines are any
compenent fields of the gauge superfields; solid lines are component fields
of the messenger superfields; and dotted lines are component fields of the
SU(3) x SU{2} x U(1)-neutral superficlds of the supersymmetry-breaking sector.

messenger superfields, which has a sirong phenomenological motivation.
In order for the messenger particles not té interfere with the unification
of couplings discussed in Section 28.2, we assume that they have the same
ratios for the total traces of all squared SU{(3) x SU(2) x U(1) gauge
generators as the ordinary quarks and leptons. This condition will auto-
matically be satisfied if the messenger superfields (together perhaps with
some SU{3) x SU(2) x U{1}-neutral chiral superfields} furnish a complete
representation of some simple group ( that contains SU3)x SU(2)x U(1),
of which the quarks and leptons (again, together perhaps with some
SU(3) x SU2} x U(l)-neutral chiral superfieids) alse form a complete
representation. (For.instance, these left-chiral superfields might form N
SU{(2) singlet SU(3) triplets with charge ¢/3 and N SU{2) doublet SU(3)
singlets with charges 0 and —e, which together form N representations §
of SU(5), together with an equal number of left-chirai superfields in the
complex-conjugate representations of SU(3) x SU(2) x U{1), which form
N representations §.) However, for our present purposes we will neither
need to assume that G is an actual symmetry group of the theory, nor
adopt any particular choice of G or of the representations furnished by
the messenger particles.

This interaction of the messenger superfields both with the other chiral
and/or gauge superfields of the supersymmetry-breaking sector and with
the SU(3) x SU(2) x U(1) gauge superfields can be expected to produce
a breakdown of supersymmetry in the propagators of the component
fields of the SU{3) x SU(2) x U(1) gauge superfields. To lowest order
in the SU(3)} x SU(2) x U(1) couplings, the leading contribution to the
propagators comes from the diagram shown in Figure 28.5, in which a
pair of gauge, gaugine, or auxiliary D-field lines is attached to a loop
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of messenger fields, which also may have any number of interactions
with SU(3) x SU(2) x U(1)-peutral fields of the supersymmetry-breaking
sector. The supersymmetry-breaking corrections A, to the propagators of
the gauge supetfields (with i = 1, 2, 3 for SU(3), SU(2), and U(1), and
¢ = V, 1, D labelling the different components of each gauge superfield)
therefore have the forms

&SC(q} = (g:?fflsﬂz) Z T_’-nncn(q}-,
Azelq) = (g7/1677) Y Taallen(q) , (28.6.1)
Ardg) = (g7/1671) 3 Tillenlq) »

where n labels the different messenger superfields; Mgy are more-or-
less complicated functions of the four-momentum gq; Ta, and T2, are the
traces of the squares of any. generator of § U(3) and SU2), respectively, in
the representations furnished by the nth messenger superfield (normalized
so that in the defining representations Ty = Ty = 1/2}); and Th, is the
sum of the squares of the electroweak hypercharges of the nth messenger
superfield. One immediate consequence is that the gauginos acquire masses
of the same form:

Myluino = (gfflﬁﬂz) Z T3nMgn »
Myino = {32/1632] Z TonMgn (28.6.2)
Mine = (g°2/1677) Y TinMga .

where the M,, are masses that characterize the different messenger su-
perfields. As already mentioned, in order to preserve the unification of
couplings at very high energy we assume that the sums of the T, have the
same ratios as for the observed quarks and leptons:

S Tw=> Tu= SAT/5=T. (28.6.3)

The breakdewn of supersymmetry in these propagators is then com-
municated to the squarks and sleptons of the supersymmetric stan-
dard model through the diagrams shown in Figure 28.6, in which an

* Recall that the bino is the superpartoer of the U(1) gange field B, that appears in
the Lagrangian of the standard model, We are not yet taking SU{2} x U{(1} breaking
into account, so the gaugine, squark, and slepton masses calculated here should be
understood as parameters appeating in the SU(3) x SU(2} x U{l)-invariant effective
Lagraagian of the standard mode.
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Figure 28.6, Diagrams that communicate supersymmetry breaking to the squarks
and sleptons. Here dashed lines are squarks or sleptons; wavy lines are SU(3) x
SU{2) x U(1) gauge bosons or auxiliary I} fields; solid lings are quarks or leptens;
combined solid and wavy lines are SU(3) xS U{2)x U(1} gauginos; and the squares
represent insertions of the supersymmetry-breaking propagator correction shown
in Figure 28.5.

SU(3) x SU(2) x U(1) gauge boson or gaugino or auxiliary D field is
emitted and reabsorbed by the squark or slepton. ‘We are calculating the
effective low-energy theory in which STU(3) x SU(2) x U{1)}-breaking is not
yet taken into account, so there is no mixing among the SU(3), SU(2),
and U(1) propagators, and each propagator acts like a unit matrix on the
gauge indices. Thus the squared mass given to any squark or slepton will
be proportional to a sum over the squares of all the SU(3) x SU{2) x U(1)
generators (including coupling constants) in the representation furnished
by that squark or slepton. The sums of the squared SU(2) and SU(3)
generators in the defining representations are '
3 2 2 ) 3 2

Z(Sﬂ'afz) 33%"' ' Z(gslafz) =%'1,

a=] : m=1
where o, are the Pauli isospin matrices (5.4.18) and 2, are the Gell-Mann
matrices {19.7.2). For U(1) the generator is just the weak hypercharge
{21.3,7), including a factor g’. The squared squark and slepton masses
therefore have the forms -

[ 2 2 2
4 32 3 32 i 2 g-'Z
o 212 E] ol - T
Mo 2§;MS,, 3(167:2) T3”+4(16n2 T2”+(6) t62) "
4 2 3?2 N2 L o2 P
3 __ A Es & g
MU“ZZR:MS" 3(161;2) T3"+(3) 2] T

2 » 14 & ’ 1N g7 i
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y " 3 gl 2 1 2 g-'l 2
ML =2 E M > (—‘) T2 + (_) (_'_) Tl »
— 14 16n2 A2/ \ 162 "
5 y g;z 2
ME :2 Eﬂ Msn (_161'[2) T]ﬂ,

where O, U, D, L, and E are the scalar superpartners of the left-handed
quark doublets, the left-handed antiquarks of charge —2¢/3 and +e/3, the
left-handed lepton doublets, and the left-handed charged antileptons, and
M,, are some new masses that characterize the nth messenger superfields.
(The factor 2 is extracted from M2, for future convenience.) The squark
and slepton masses that are produced in this way are automatically the
same in all three generations, thus avoiding the problem with flavor-
changing processes discussed in Section 28.4.

We expect all My, and M,, to be roughly of the same order of magni-
tude, so that the gluino and squarks will have comparable masses, while
the wino, bino, and sleptons wiil be much lighter, with masses suppressed
by squares of electroweak coupling constants.

We can go considerably further than this with some reasonable dynam-
ical assumptions. Suppose that the effects of supersymmetry breaking on
the messenger superfields may be modeled by including these superfields
along with a set of SU(3) x S U{(2} x U(1)-neutral chiral superfields S, {not
necessarily all distinct) in a superpotential

f((ps &’1 5) = Z AnSn q}ﬂ&)n s (28.6.5)

where @, and ®, are left-chiral messenger superfields in complex-conjugate
representations of ST/(3} x SU(2) x U(1) and A, are a sect of coupling
coefficients. (Here and below we suppress the SU(3) x §U(2) indices that
are summed over in calculating scalar products like @,®,.) The superfields
S, are supposed to have non-vanishing vacuum expectation values &, and
&, for their scalar and auxiliary components, respectively. It is the non-
zero values of %, that in these models introduce supersymmetry breaking
in the masses of the @, and ®, particles. Section 26.4 shows that, with
gauge couplings neglected, the squared masses of the spintor components
of &, (and &,) are the eigenvalues of the matrix .#}.4,, with .#, defined
by Eq. (26.4.11), which gives

0 A9
““”"‘(Aﬂyn 0 )

so that the messenger fermions have masses |4,%y|. To find the mass
terms for the scalar components ¢, and ¢, of the &, and @, s_upcrﬁelds,
. we note that integrating out the auxiliary fields of the @, and @, yields a
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potential

E%

R

5 .
= z Mnyn|2 [M’nlg + If??nlz} ’

+ !- a
Z, Odu
to which we now must add the contribution of the auxiliary component
of the S,, given by the second term of Eq. (26.4.4) as:

2Re Y [.J. F W] ~2Re 3 [f,, Antonbn| -

The complex scalar fields of definite mass are then (¢, + e @¢,)//2,
where oy, is the phase of 1,#,, with squared masses [4,5]* + |1, 5 4l.
{Note that this pattern, of a pair of complex scalars with squared masses
equidistant above and below a Majorana fermion squared mass, is just
what we would expect from the sum rule (27.5.11).) Since these squared
masses must be positive, it follows that

|F | < |20l . (28.6.6)

The gaugino masses in models based on Eq. {28.6.5} are given by
diagrams of the form shown in Figure 28.5, but now with just a single
loop, not including what are shown as dotted lines in Figure 28.5. A
detailed calculation gives the coefficients My, in Eq. (28.6.2) as®!

EN ( |5 )
M, = i 28.6.7
o= 2.1 8 L i7F (28.67)
where
g = 5 [(1+x]1n{1+x}+(1-—x)ln(1—x}]
x2  xt x5
=1t ettt (28.6.8)

The masses of the squarks and sleptons are given by the diagrams of Figure
8.6, which now involve just two loops. Another detailed calculation gives
the mass parameters M2, in Eq. (28.6.4) as®!

2 P ( L | ) X
Mo = (o i) - (2869)
where
F4+x ) x 1. 2x
fix)= 3 [ln(l—f*x)“lez(l_i_x)+EL12(1+x)] + x - —x

b g 319

6, ...
36° 450" 11760~ T (28.6.10}
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with Li; the dilogarithm
kY pa—
Lis(x) = — [o !-Iﬁi—tldt. | (28.6.11)

In particular, if (as is usvally assumed) the various S, are all the same,
and if |F| < 4,[\#)? for alt n, then { and g in Eqs. (28.6.9) and (28.6.7)
may be set equal to 1, so that

Mg = Mgy =|F|/|F|=M. {28.6.12)
Using Eq. (28.6.3), we can express the gangino masses (28.6.2) as

Miwine = (22/167)TM |
mpine = (3/3)(g"/162)TM , (28.6.13)
Mghine = (ggflﬁﬂz}TM .

while the squared squark and slepton masses (28.6.4) become

i 2 2 2
4( g 3{ g° 5 /71N2 { g7
2 _ 217 1 o5 20 B __ i
Mg =2TM" |3 (16::2) T3 (161:2 3 (6) 16n2 } |’

M2 = 2T M? 3( &
T

o=

S P AN T AT I CA Y
M2 =2TM 5(1 67[2) +3(=3) (&) | - (28.6.14)
2

M} =2TM?

There is no special reason to expect that |F! < |4:,#}%, but this assump-
tion is not actually very restrictive, because Eq. (28.6.6) already requires
that |F] < |4,]|#1%, and it turns out that the functions f(x) and g(x) do
not differ much from enity for x < I unless x is very close to 1.

The extreme simplicity of the results (28.6.13) and (28.6.14) has been
explained by Giudice and Rattazzi®? by using Seiberg’s arguments of
holomorphy,®? described in Section 27.6. Suppose we introduce a supes-
potential for the messenger superficlds like (28.6.5), but with a single
external singlet superfield §:

F8,0) =83 2, Oy®y . {28.6.15)
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Among other effects the kinematic term for the gauge superfield ¥; (with
i =3,2,1 for SU(3), SU(2), and U(1)) in the Wilsonian effective La-
grangian at a renormalization scale g will now take the form

PLoaugen = Re | D NS, 00> (Wirwewp Wirg) | (28.6.16) ~
i aff F

with some functions Ni(8, 1) replacing the factors 1/2g?(1) in Eq. (27.3.22).
(The #-term is dropped here because it has no effect in perturbation theory.
A sum is implied over indices on Wir, that label different members of
the adjoint representations of SU(3} and SU(2), which are not explicitly
shown.) The gauge coupling constant is now given by setting the superfield
S equal to the expectation value & of its scalar component

1
2glip)

Also, recalling that Wi, = Air + O(8) and using Eq. (27.2.11), the terms
in the Lagrangian density (28.6.16) of second order in the gaugino fields
are, up to derivative terms,

—23" Re [N .0 (T fhir) + IS, 0w (AL eu )| -

= Ni(Z.p) . (28.6.17)

This gives the gaugino masses

[Ni(S, #)]#
NS, 1)

Now let us consider the behavior of Ni{#, u) as a function of a real positive
4, with the phases of the messenger superfields adjusted so that all 4,
are real and positive. Suppose we fix the values of the gauge couplings
gi(p) at some scale u = K above all the messenger particle masses. Taking
account of the change in the constants & in the renormalization group
equations udg;(¢)/dy = b.-gf’ as g passes through the various messenger
masses, the solution of this equation when i is below all the messenger
particle masses takes the form

1 1 M M i
= —2"In (—’) — 25" 1n (_E) — = 2610 (——) ,
g gEK) K M) My

where we label the messenger particles so that their masses M, = 4,5
satisfy

meilp) = = g7 |NUS. w5 - (28.6.18)

Mi>M;> > My,

and bg”} is calculated taking account only of particles with masses less
than M,. Since all M, are proportional to &, we see that N{, ;1) has the



228 28 Supersymmetric Standard Models
& dependence _
Ni( &, ) = =B In ¥ + &-independent terms, (28.6.19)

where bPeesensr = p0 — pif ) is the contribution to b; of all the messenger
superfields. According to Eq. (27.945) (with Cij = 0 and cl=ch =
En TI.H]! this iS

me: er 1
byt = 1y Zﬂ: Tin - (28.6.20)

Since NS, &) is required by supersymmetry to be a holomorphic function
of S, we see that

1 .
NS, ) = —1¢3 S Tinln§ + S-independent terms . (28.6.21)
[ 24

Expanding around § = &, to first order in F we have [In¥ls = F/F
and so Eq. (28.6.18) gives the gaugino masses

2
g; (1)
mgi(.u) = 1602 E Tiy
[

z
“r

(28.6.22)

Using Eq. (28.6.3), we see that this is the same as our previous result
(28.6.13). Eq. (28.6.14) for the squark and slepton masses was obtained by
Giudice and Rattazzi in a similar way, by studying the kinematic terms
for the quark and lepton superfields instead of the gauge superfields.

Incidentally, Eqgs. (28.6.13) and (28.6.14) could be obtained (in general
with different values of M in Eq. (28.6.13) and Eq. (28.6.14)) without a
specific dynamical assumption like Eq. (28.6.5), if we supposed that the
supersymmetry-breaking sector respected invariance under some grand
unified group G that had both the known quarks and leptons and the
messenger ficlds as complete representations. In this case the coefficients
M,y and My, in Egs. {28.6.2) and (28.6.4) would have values M,(d) and
M(d), respectively, that depend only on the irreducible representation d
of G to which the nth messenger fields belong, The sums of Ty over n
belonging to any irreducible representation d of G have the same ratios
as the sums in Eq. (28.63), 50 Spes T = kiT(d), where ky = k2 = 1,
ki = 5/3, and therefore

S TaMgn =9 My{d) Y T =hiMy
r d

ned

where My = 33 Mo(d)T (d). Likewise
S TaM =Y MAA)S . T = kM,
H d

ned
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where M? = 3", M}(d)T(d). Eqgs. (28.6.2) and (28.6.4) would then yield
Egs. (28. 6. 13) and {28.6.14), except with M, in place of TM and M? in

place of 2T M2, But the assumption that Mglrt and Mg, respect invariance
uider & is implausible if the messenger mass scale is far below the grand
unified scale, since whatever we assume about a grand unified gauge
group, the SU(3) x §U(2) x U(1) gauge interactions would make coupling
constants like 4, run differently for @, with different SU(3)x SU(2) x U(1)
quantum numbers in the same representation of the grand unified group.

These results are subject to various radiative corrections, of which the -
most important is that we must use values of g, g, and g’ renormalized at
a scale comparable to the mass being calculated. Indeed, the gaugine mass
ratios given in Eq. (28.6. 13} could also be derived under quite different
assumptions: that all gaugino masses are equal at the grand unification
~ scale where the coupling constants are related by g2 = g? = 5¢2/3 and
become different at lower energies as described by the renormalization
group equaftions.

For an illustrative example of numerical results, suppose that the mes-
senger superfields form an SU{2) singlet SU(3) triplet with charge /3
and an SU(2) doublet SU(3) singlet with charges 0 and —e, together
with left-chiral superfields in the complex-conjugate representations of
SU(3)x SU(2) x U(1). Then, as already mentioned, Eq. (28.6.3) is satisfied
with T = 2 x 1/2 = 1, so by using the correct values of the gauge cou-
plings, the masses of the squarks, gluino, L sleptons, wine, E sleptons, and
bino are calculated to be in the ratios™ 11.6 :; 7.0 1125 2 . 1.1 :: 1.0
In larger representations of G we could have T » 1, in which case the
gluino would be the heaviest of these particles, and the sleptons the lightest
ones.

There are also radiative corrections aside from the running of the gauge
couplings. According to one calculation, in the model with an SU{2)
singlet SU(3) triplet with charge e/3 and an SU(2) doublet SU(3) singlet
with charges 0 and —e, together with left-chiral superfields in the complex-
conjugate representations of SU(3) x SU{2) x U{1), radiative corrections
give the ratios of the masses of the squarks, gluino, L sleptons, wino, E
sleptons, and bino as 9.3 :: 6.4 :: 2.6 :: 1.9 1 1.35 :: 1.0.

As we saw in the previous section, the wino and bino may mix with
the charged and neutral higgsinos, so the wino and bino masses that
have been calculated here must be regarded as inputs to a calculation of
physical masses of mixtures known as charginos and neutralines, rather
than physical masses themselves.

Now we shall consider the masses of the Higgs scalars in these models.
If we were to consider only the two-loop diagrams by which these scalars
get masses through gauge interactions with the supersymmetry-breaking
sector, then since (apart from signs) they have the same SU(3) x SU(2) x
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/(1) quantum numbers as the left-handed lepton doublets, their masses
would be given by a formula like the fourth of Eqs. (28.6.4)

2 ’ 2
[m%]lloup = [m3]2 loop = My

2 2 ¥ P 2 2
Ak BN+ (DY () Tl . 28623
g 4\ 16z 3} \len

If this were the whole story, then it would be impossible to meet the
condition for SU(2) x U(1) breaking found in the previous section that
(unless tan § is very close to unity) one of m? + |y and m} + |g)? must
be negative. Fortunately, the large masses of the top quark and squark
produce a negative contribution to m} that leads naturally to a sponta--
neous breakdown of electroweak symmetry, The couplings of the Higgs
doublets to the third-generation quark superficlds are described by the
superpotential

f3rd Een — 'ib (H;TEQ) B +.4 (HEEQ) T, (28624)

where @ is the SU(2) quark doublet left-chiral superfield (T, B), while T
and B are the left-chiral superfields of the left-handed top and bottom
antiquarks, and A, and A4, are the Yukawa couplings, related to the ¢ and
b quark masses by m, = 4,v; and mp = Ayp;. The last term of Eq. (26.4.1
then gives the terms in the potential involving an interaction between the
squark fields and Higgs fields as

Vi = |87 B+ 2887 | + |ho 08+ e 7|

- 0 |2
HiB—HT|,  (28625)

Hal | #59 — wr | + |1, ’

where script letters denote the scalar field components of superfields. The
squark loop contributions to the potential of #; and #; are then

yuarkloop _ 30 ooty [zmbﬁ(x;fxl) + 2|.1,|2(.;f§f2)] . (28626)

where (&) is the vacuum expectation value of the product of any
one of the squark fields and its complex conjugate at the same spacetime
point. (In taking this to be the same for all squark types, we are here
using Eq. (28.6.4), which tells us that the squark masses Mp do not vary
much among 7, &, 7, and # squarks. The factor 3 in Eq. (28.6.26) takes
account of the three colors of each squark type.) The vacuum expectation
value {&F"} is given in lowest order by

"o . =i d*p
(FF)y = {F(x)F (X))vac = Gy f M i (28.6.27)
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This of course is divergent, but the contribution to supersymmetry-
breaking coeflicients would be cancelled by quark loops if the squarks
had the zero bare mass of the quarks, so the effect of quark loops is to
subtract from (28.6.27) the same expression with Mg replaced with zero,
which with a Wick rotation becomes

M3i 4
. Q P
T~ (2m)* f (p? + M} — ie}(p? —ie)
= — Mé sz iy o~ — Mé In ,ﬂ..f_z
B T +M} T 16x? M3 )

We have inserted an ultraviolet cut-off at the messenger mass M, because
at momenta above M the squark mass must be replaced with a momentum-
dependent mass, which goes to the supersymmetric value zero at very high
momenta. Making this substitution in Eq. (28.6.26) gives a net contribution
to the potential due to squark and quark loops:

2
IM3

3oop _

in ( —@—2) [zu,,ﬁ(.#}m) + 2|Af|2(9f;w2)J

W3

. (28.6.28)
{This is a three-Joop contribution, because the squared squark masses are
given by two-leop diagrams, There are also terms in the potential that are
quadratic in both the Higgs and squark supeifields, arising from products
of the Higgs and squark terms in the squares of the SU(2) x U(1) gauge
field D-components. These do not make a three-loop contribution to the
Higgs masses because the sum of each SU (2) x U(1} quantum number of
the squarks vanishes, so that their contributions to the § U(2)x U(1) gauge
field D-components have zero vacuem cxpectation value.) Comparing Eq.
(28.6.28) with Eq. (28.5.9) and adding the two-loop contribution (28.6.23)
to the masses, we see then that

3M3E1A,12 M2
mfﬂ_vMi-—-—ggnz——ln ) (28.6.29)
3MBIA . f M2
mi o~ MZ — 3?:2: In ) (28.6.30)

Using Eq. (28.6.14) and |&| = m./v; = m{2./3G)"/2/ sin §, we may write
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(28.6.30) as

2 2
3 g2 5 gﬂ
2 . 1= =
my = 2TM {4 (16:12) 12 (15:::1
2 o2 \?
_Ji(?F;:f &\, ( _3____) . (2863D)
alsin® § \ 16n? 8T (g#/ 1627}

For T = 1, g2/4n = 0.118, g?/4n = 0.0340, g /4n = 0.0101, and m, = 130
GeV, this is

(28.6.32)

o M2 {1_ ,3-261 ,

sin” f
which is negative for all values of 8, thus providing a natural mechanism
for the spontancous breaking of the electroweak gauge symmetry. Also,
MZE = (091 x 10~")M?/8n?.- Unless tan § is huge, we have |dp| < 14, so
Eq. (28.6.27) gives

mi o~ Mi . (28.6.33)

The aspect of electroweak phenomenology for which the predictions of
gauge-mediated supersymmetry models are most uncertain and unsatis-
factory has to do with the parameter g in the supersymmetry-preserving
term u[(H]eHz)]# and the related supersymmetry-breaking term By in
the Lagrangian density. These are related because the interactions of
the Higgs superfields with the gauge, lepton, and quark superfields are
invariant under a symmetry

Hy -~ 9Hy, Hy — eH,,
Q — e, Vi - Vi, (28.6.34)
DD, -0,

which in the absence of a superpotential term p{H[eH,) would forbid
radiative corrections from producing a term By Re (#7] es#;) in the scalar
field potential,

It is not possible for By to vanish because then Eq. (28.5.22) and the
fact that (as we have seen} mq # 0 would imply that sin 28 = 0, or in other
words either vy = 0 or v3 = 0, which would imply that either all the charge
—e/3 quarks and charged lepfons are massless or all the charge +2¢/3
quarks are massless. (If By == 0 and p = 0 then this problem persists to all
orders, because the appearance of non-zero vacuum expectation values for
both vy and v2 would imply that symmetry under any combination of the
transformation (28.6.34) and electroweak /(1) gauge transformations is
spontaneously broken, so the C-cdd neutral scalar would be a Goldstone
boson with my4 = 0.) It is natural to try to account for a non-zero value
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of By as a radiative correction in a theory in which symmetry under the
transformation (28.6.34) is explicitly broken by a supersymmetric term
ul(HleH3)l# in the Lagrangian density. This gives a very small value
of Bu at the messenger scale,3* although renormalization group effects
greatly increase By at lower encrgies.  According to Eq. (28.5.22), a
relatively small By would fit well with the idea that the large mass of

The trouble is that the appearance of a non-zero value of {t resurrecis
the hierarchy probiem that Supersymmetry was supposed fo solve: instead
of asking why the Higgs mass terms in the Lagrangian density are so
much smaller than the Planck mass or the mass at which gauge couplings
are unified, we now have to ask why g is this smalf?

The hierarchy problem would be put to rest if the Higgs superfields
interact with the SUpersymmetry-breaking sector in such a way that a
term u((HT eH))) s is forbidden by some symmetry, but appears when that
symmetry is Spentaneously broken. A massless Goldstone boson may be
avoided if the Symmetry is discrete rather thap continuous. The simplest
possibility is simply to extend the symmetry “transformation (28.6.34) to
include a transformation

S — e leg
which would allow a term in the superpotential of the form
NS(# ests) .

B =|1#]|, u=1s .

This would result in B having a very large |A'-independent valye M, given
by (28.6.12), which is greater by a factor of order (g2/167)! ~ 100 than
the squark or gluino masses, But then, since Eqgs. (28.6.32) and (28.6.33)
give m? + m3 < 0, the stability condition (28.5.11) would require that
lul = M/2, and hence Eq. (28.5.22) would require that m, is also much
greater than the squark and slepton masses. This is Tuled out by the
relation (28.5.23) and the estimates (28.6.33) and (28.6.32) of mj and m?
unless tan £ is very close to unity.

We will see in Section 31.6 that theories of gravity-mediated super-
Symimetry breaking naturally yield acceptable values of Bu and g Such
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theories are characterized by a very high energy scale of supersymmetry
breaking, in various versions of order either 10!! GeV ar 10'? GeV. There
have been several suggestions®® on ways to obtain acceptable values of
By and p in theories in which supersymmetry is broken at retatively low
energy, such as theories of gauge-mediated supersymmetry breaking, but
none of them is particularly competling. Also, since we do not know
where ¢ comes from, we do not have any reason to suppose that it is
real, so theories of gauge-mediated supersymmetry breaking are at risk of
vielding too much CP violation, just as in the more general framework of
Section 28.4. '

Like the scalar squared masses mf and m%, the parameters A;; and
Cy; in Eq. (28.4.1} are given by two-loop diagrams. However, they have
the dimensions of mass rather than mass squared, and they are much less
than the scalar and gaugino masses, so they make a relatively unimportant
contribution to supersymmetry breaking,

As in any model with supersymmetry broken at energies much less
than 10'® GeV, the lightest R-odd particle in all models based on gauge-
mediated supersymmetry breaking is the gravitino. As we will see in
Section 31.3, the gravitino mass is of the order of /G times the squared
energy F characteristic of supersymmetry breaking, defined so that the
vacuum energy is F2/2. Where supersymmetry is broken by the #-
terms & o of the SU(3) x SU(2) x U{(l)neutral chiral superfields S,, we
have F? = 3", 1#.0/2. If there are no large dimensionless quantities in
the Lagrangian for the S,, then squark masses in this model are of the
order of g2/F/16a® = 1072,/F, so in order for this to be less than the
naturalness bound of 10% GeV, we must have /F < 10% GeV, which gives
a gravitino mass less than | keV. Gravitational couplings are so weak at
accessible energies that it is only the helicity 41/2 states of the gravitino
that can actually be produced, and these behave just like goldstino states.
As shown by Eq. (27.5.12), in the models discussed here the goldstino
field appears with coefficient i\/24, in the fermionic component , of
8n. Goldstinos are emitted in the decay of the R-odd sparticles into the
corresponding R-even particles of the standard model through radiative
corrections, with goldstinos emerging from vertices connecting internal
vn and &, lines. According to Eq. (29.2.10), the goldstino emission
amplitudes are inversely proportional to F, which makes these decays
comparatively slow, although perhaps fast enough to be observed.

Because the decay of R-odd particles into goldstinos is slow, it is
phenomenologically important in these models to identify the next-to-
lightest R-odd particle, into which all the heavier R-odd particles will decay
before it in turn decays into a goldstino. As we have seen, the next-to-
lightest R-odd particle is usuaily a slepton, wino, or bino. (It is possibie in
models with a messenger superfield having the same 8§ U(3) x SU(2) x U(1)
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Quantum numbers as the Higgs doublets that the mixing between these
superfields would fower the mass of the doublet messengers so much that
the lightest R-odd particle would be the gluino,**%) Detailed caloulations
including the effects of SU{2) x U(1) breaking indicate that here is a large
region of parameter space in which the next-to-lightest R-odd particle is
one of the two tau sleptons.3%

287 Baryﬁn and Lepton Non-Conservation

The extra particles in supersymmetric models provide several new mech-
anisms for baryon and lepton non-conservation. We saw in Section 28.1
that there are various baryon- and lepton-number non-conserving super-
symmetric operators (28.1.2) and (28.1.3) of dimensionality four that can
be included in a renormalizable SU(3) x SU(2) x U(1)-invariant theory
and that would lead to processes like proton decay at a catastrophic
rate. These terms can be excluded from the Lagrangian by imposing
R parity conservation (or, equivalently, invariance under a change of
sign of all quark and lepton chiral superfields) but this does not exclude
various SU(3) x SU(2) x U(1)-invariant but baryon- and lepton-number
non-conserving operators of dimensionality d > 4. As discussed in Sec-
tion 21.3, if there is an underlying mechanism for baryon and lepton
non-conservation characterized by some high mass scale M, then these
operators will appear in the effective Lagrangian of the standard model
with coefficients proportional to M*—4. With only the fields of the non-
supersymmetric standard model, operators that can violate baryon con-
servation have a minimum dimensionality six,*® and thug give baryon
non-conserving amplitudes proportional to M~2. The new fields required
by supersymmetry lead to two important changes in estimates of baryon
Bon-conserving processes like proton and bound neutron decay. As we
saw In Section 28.2, the change in the renormalization group equations
gives larger estimates of M, which decreases the effect of the dimension
8ix operators. At the same time, these new fields allow the construction of
ew operators of dimensienality five, which give baryon nofN-conserving
amplitudes proportienal to M~! and are therefore likely to make the
dominant contribution to proton and bound neutron decay.”

The supersymmetric operators of dimensionality five that can be formed
out of chiral superfields (generically called @) are of the forms (D" OP)p
and (POPD)g, and their compiex conjugates. (We do not consider
opcrators that include derivatives or gauge fields, because they do not
offer any additional possibility of baryon or lepton non-conservation.) In
the notation of Section 28.1, the SU(3) x 8U(2) x U{1)-invariant operators
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Figure 28.7. A diagram that can produce a four-fermion interaction among
quarks and/or leptons that violates barvor and lepton number conservation.
Here solid lines are quarks and/or leptons; dashed lines are squarks and/or
sleptons; the combined solid and wavy line is a gaugino; and the dot is a vertex
arising directly from the #-term interactions (28.7.3).

of dimensionality five that also conserve R parity are
(LLH2Ha)w , (28.7.1)

(LEH3)p, (@DH))p, (QUHY)p, (QOUD)», (QULE)s, (2872)
and
(QQQL)# , (UUDE)#, (28.7.3)

with obvious contraction of indices as dictated by SU(3) and SU(2) con-
servation. The interaction (28.7.1) is the supersymmetric version of the
dimensionality five operator which would provide small neutrino masses
in some theories.*® The interactions (28.7.2) only provide small corrections
to processes that already occur in the renormalizable terms of the super-
symmetric standard model. It is the interactions (28.7.3) that provide new
mechanisms for baryon as well as lepton non-conservation.

According to Eq. (264.4), the quarks and leptons enter in the inter-
actions (28.7.3} through terms involving a pair of quark and/or lepton
fields and a pair of squark and/or slepton fields. In order to gener-
ate reactions among quarks and leptons alone, it is necessary for the
pair of squarks and/or sleptons to be converted into a pair of quarks
and/or leptons by exchanging a gaugino in the one-loop diagram shown
in Figure 28,7. This will produce effective four-fermion gqg¢ interac-
tions with d = 6 among three quarks and a lepton. The coupling g
of these interactions will be proportional to the square of the gauge
coupling g or g’ or g, of the gaugino, to the supersymmetry-breaking
mass of the gaugino, to the inverse square .of the larger of the gaugino
and squark or slepton masses (which is needed to give a coupling of
the right dimensionality), and to a factor of order 1/8%? from the loop
integration.
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It might be thought that the greater strength of the gluino coupling
would make gluino exchange the dominant contribution to g¢. (Indeed, in
gauge-mediated supersymmetry-breaking theories, for moderate values of
the trace (28.6.3) and with g =~ g/, Egs, {28.6.13)-(28.6.14) give

2
Mgluino = Mgquark ~ T:IEM- s
_ 2
Muying &= Mglepton &= Mhing = WM- s

where M. is a mass characterizing the messenger sector. Therefore in
such theories individual gluino exchange diagrams give contributions
proportional to gf/mgluino, while wino or bino exchange (or, more pre-
cisely, chargino or neutralino exchange) makes a contribution propor-

tional to g*Muine/MEyan. Which is smaller by a factor roughly equal to

mwimgz,!mglugmgf 2 g*/9%) However, there is a cancellation among the
diagrams for gluino exchange that strongly suppresses their contribution.
This was originally shown using a Fierz identity among four-fermion
operators,® but the same result can be obtained with no equaticns at
all. To conserve color, the coefficients of the operators (@QQL)# and
(UUDE)# must be totally antisymmetric in the colors of the three quark
or antiquark superfields, and since these superfields are bosonic, they must
then also be antisymmetric in their flavors as well. Gluino interactions
are flavor-independent, so if we can neglect the flavor dependence of the
squark masses then the coefficients of the four-fermion d = 6 operators
will also be totally antisymmetric in flavor as well as color. Fermi statis-
tics then requires the coefficients of these operators to be also totally
antisymmetric in the spin indices of the quark or antiguark fields. But
the three quark or antiquark fields in the 4 = 6 operators derived by
gaugino exchange from QQQLg or (DUDE)# are all left-handed and
therefore have only two independent spin indices, so no ¢oefficient can be
antisymmetric in all three spins. The contribution of gluino exchange to
the d = 6 operators would therefore vanish if the squark masses were all
equal and so this ¢ontribution is suppressed by the fractional differences
among the masses of the different squarks. According to Eq. {28.6.4), in
theories of gauge-mediated supersymmetry breaking the fractional diffex-
ences between the U and D squark masses are of order g% /g%, so gluino
exchange between the antisquarks in the ([UDE)g operator generates a
dimension six four-fermion operator with a coefficient of the same order as
that generated by bino exchange. However, since gluinos conserve flavor
this operator like the (U UDE)# operator must be totally antisymmetric
in antiquark flavors, so that it must involve ¢ or ¢ quarks and therefore
cannot contribute directly to proton or bound neutron decay. On the other
hand, Eq. (28.6.4) indicates that the fractional mass differences among the
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Q quarks of different flavors is much less than of order g*/g%, so that
gluino exchange between the squarks in the (QQQL)s operator makes
a contribution to gs that is much smaller than wino or bino exchange.
We conclude that at least in the theories of gauge-mediated supersym-
metry breaking, gluino exchange makes a smaller contribution to proton
or bound neutron decay than wino or bino exchange. In other models
gluino exchange may make a contribution comparable to that of other
processes. 40 '

For g = g’ and mtyino = Mpine, the contribution of wino or bino exchange
to the dimension six operators is of order

2 .
£ 85 Mwino | (28.7.4)

2ppal *
&n msquark

g =

where g5 is a typical value of the couplings of the effective d = 5 interac-
tions (28.7.3). If the wino and squark masses have the same ratio (g2/g?)
as in theories of gauge-mediated supersymmetry breaking, then this gives

g’es
26 = e — (28.7.5)
The four-fermion gggs-terms of dimensionality six in the effective La-
grangian are the same as those that had been supposed to generate
processes like proton decay in non-supersymmetric theories.*® They pro-
duce proton and bound neutron decay at a rate which on dimensional
grounds must be of the form

Tn=cymyg, (28.7.6)

where ¢y is a pure number that must be calculated by non-perturbative
calculations in quantum chromodynamics. Much work has gone into these
calculations, with results! generally in the range cy = 3 x 10~3£07,

To estimate g5, we note that it is not possible to produce #-terms like
(28.7.3) that involve only left-chiral superfields by the tree-approximation
exchange of gauge supermultiplets, which always interact with both left-
chiral supetfields and their right-chiral complex conjugates. Thus the
interactions (28.7.3) arise in the tree approximation only from the ex-
change of particles of chiral superfields, and therefore gs is of the order
of g%-/M%, where gy is a typical baryon and lepton non-conserving cou-
pling of some superheavy left-chiral superfield of mass Mt to the quark
and lepton superfields. To produce the interactions (28.7.3), these super-
heavy particles must be color triplets or antitriplets, and SU(2) triplets
or singlets. Whatever gauge group unifies the strong and electroweak
interactions presumably dictates some relation between the interactions of
the superheavy color triplet T and the familiar color singlet H; and H,.
Then gr will be of the same order as the Yukawa coupling constants in
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the interactions (28.1.2) and (28.1.3) that give mass to the known quarks
and leptons, and which are equal to quark or lepton masses divided by
the vacuum expectation values of order G;l" ? ~ 300 GeV of HY or #L.
We therefore take

GF m}

: Mr ~
where my; is some iypical quark or lepton mass. We have scen that
the dimension five operators are antisymmeiric in quark flavors, so as a -
compromise between the masses of the s quark and the u or d quarks,
we will take m; = 30 MeV. Combining Eqs. {28.7.5)-(28.7.7) and taking
Mt = 2 x 10'® GeV (as suggested by the results of Section 28.2), ey =
0.003, g2/4n = 0.118, g2/4n = 1/(0.23 x 137), and msquark = t TeV, we find
a proton {or bound neutron) lifetime I';' of about 2 x 10°! years.** This is
not very different from experimental lower bounds on the partial lifetimes
of what are expected to be the leading modes of proton decay, variously
quoted as ranging from 10?! to 5 x 10°% years. At the time of writing
the most siringent bounds are set by the non-observation of proton decay
in the large Super Kamiokande neuttino detector in Japan:** the partial
lifetimes for the decays p — e¥7® and p — K * are greater than 2.1 x 10
years and 5.5 x 10%? years, respectively. There is an uncertainty of a factor
of at least 100 in the above estimate of the theoretical lifetime from the
uncertainty in the squark mass alone, so it is too soon to say that there
is any discrepancy between experiment and theoretical expectations. On
the other hand, supersymmetry raises the possibility that baryon non-
conservation may be discovered soon.

We can also say a little on general grounds about the expected branching
ratios for various proton and bound neutron decay modes. As we have
mentioned, the dimension five operators (28.7.3) must be totally anti-
symmetric in the flavor of the quark superfields, so the oniy operators
that concern us here are of the forms (U;D;DyN;)#. (D;U;UrEs)s#, and
(D07, 0k Er) s, where i, j, k. £ are generation indices, and in each case j +k.
The exchange of neutral winos or binos then produces d = 6 four-fermion
operators of the forms w;d;dyve, diujupe,, and ajﬁjﬁkég, with j # k and i
and # arbitrary, while charged wino exchange produces the same four-
fermion operators with i # j and k and ¢ arbitrary. The only quarks light
enough to be involved in proton decay are u, s, and d; ignoring all the
others and the small mixing angles in the third generation, we have

gs & (28.7.7)

u.=u, d=dcosl+ssinf., dy=—dsind.+scosb,,

where 0, is the Cabibbo angle, while wua, u3, and d3 can be ignored.
The four-fermion operators that can be produced by wino or bino ex-
change and can contribute to proton or bound neutron decay thus are
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udsv, cos(20.), uddve sin(20.), uuses cos 8., and uu d e, sin f., plus oth-
ers with quarks and leptons replaced with antiquarks and antileptons.
All other things being equal, the dominant decay modes are therefore
p — K*%, n— K%, p - K%*, and p — K%, while the rates for the
decay modes p — 1%, n— 7%, p — al*, p - 2%yt and n - et are
suppressed by factors sin? 0, = 0.05, though also enhanced somewhat by
the greater phase space available.

These considerations do not lead to definite predictions of branching
ratios, because in addition to ali the factors mentioned above, the coef-
ficients generically called gs of the operators (28.7.3) may have a strong
dependence on the superfield flavors appearing in these operators. To
go further, one needs a specific theory for the generation of the dimen-
sion five operators. Most of the authors of Reference 42 concluded on
the basis of a supersymmetric version of SU(S) theories that proton and
bound neutron decay would be dominated by the processes p K*y
and n — K%, but for a model based on SO(10) charged lepton modes
can become prominent* Also, in some medels higgsino exchange can
compete with wino and bino exchange, ! increasing the rate of p — K77,
It seems a good idea in searches for baryon non-conservation to keep an
open mind as to the decay modes to be expected in proton or bound
neuiron decay.

Of course, it is possible that ali of these baryon nON-CONServing processes
are prohibited by some sort of conservation law. As mentioned in Section
28.1, string theory argues against baryon conservation being a fundamental
global continuous symmetry, but the baryon non-conserving operators
(28.7.3) may be forbidden by a Z3 multiplicative symmetry known as
baryon parity,*s under which the Q superfield is neutral; the Hy and
D superfields are multiplied by the phase exp(in/3), and the L, H,, U,
and E superfields are multiplied by the opposite phase exp{—iz/3). This
symmetry is designed to allow the fundamental Yukawa couplings (28.1.2)
and (28.1.3) as well as the p-term (28.5.7) and the lepton non-conserving
terms (28.1.4) and (28.7.1), but it rules out the dimension four baryon non-
conserving term (28.1.5) and the dimension five baryon non-conserving
terms (28.7.3). This symmetry is spontaneously broken by the appearance
of vacuum expectation values of #9 and #% (and perhaps the sneutrino
fields "), and with no conservation law for R parity, there would be
nothing to keep the lightest supersymmetric particle stable.

Problems

1. Suppose that the interactions (28.1.4) and (28.1.5) were actually
present in the Lagrangian of a supersymmetric version of the
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standard model. Make a rough estimate of how heavy the squarks
and sleptons would have 1o be to avoid a conflict with experimental
bounds on the proton lifetime.

Suppose that the typical mass m of the gauginos, higgsinos, squarks
and sleptons is very much larger than mz. Give the renormalization

_ group equations for the running gauge couplings at energies both

above and below m. Use the results, together with the unification
assumption employed in Section 28.2, to give formulas for sin® @ and
the unification scale M in terms of m, myz, e(mz), g;{mz), and n;.
How large could m be without v1olat1ng experimental bounds on
sin @ and M?

. Give formulas for the couplings of the quarks and leptons to the

lightest CP-even neutral scalar particle in the minimum supersym-
metric standard model in terms of the parameters my, mz, §, Gy,
and the quark and lepton masses.

Use holomorphy arguments to derive the one-loop formula for the
gluino mass in a theory of gauge-mediated supersymmetry breaking,
in which the messenger superfields ®, and ®, get their masses
from a term 3, 2,5,(®,®,) in the superpotential, in terms of the
expectation values &, and £, of the ¢- and F-compoenents of the
singlet superficlds S,, in the limit where |F,| < || 5 /%.

Taking account of the possibility of a small flavor dependence

. of squark masses, estimate the gluino exchange contribution to

1.

tet

baryon and lepton non-conserving four-fermion interactions among
the quarks and leptons. Set an upper bound on these contributions,
using the bound on squark mass splittings from the rate of K% -» X’
conversion.
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29
Beyond Perturbation Theory

Most of the implications of supersymmetry discussed so far have been
inferred with the use of perturbation theory. In this chapter we shall
consider some results that apply even when non-perturbative effects are
taken into account. '

29.1  General Aspects of Supersymmetry Breaking

Supersymmetry is not observed in the spectrum of known particles, so
it must be broken, We saw in the previous chapter that supersymmetry
breaking in the tree approximation of the standard model is experimen-
tally ruled out, and that the large disparity between the electrowealk
breaking scale and the Planck or grand unification scales suggests that
supersymmetry is likely to be broken when some running gauge coupling
becomes strong. Tt is therefore essential for us to explore spontaneous
supersymmetry breaking without using perturbation theory.

We saw in Section 26.7 that the supersymmetry of the action implies the
existence of a supersymmetry current $%{x). This current is a Majorana
spinor in the sense of Eq. (26.A.1):

SH(xY = —PyseSH(x) ; . (29.1.1)
it is conserved,
(:’fHSE(x) ={; (29.1.2)

and the integral of its time component s the supersymimetry generator

/ Px S =05, (29.1.3)

for which the commutator of —i(zQ} with any operator gives the change
of that operator under a supersymmetry transformation with infinitesimal
Majorana spinor parameter .

243



29.1 General Aspects of Supersymmetry Breaking 249

The arguments that led to these results relied on the supersymmetry
of the action; nothing depended on whether or not supersymmetry is
spontaneously broken, except perhaps for the assumption that the integral
(29.1.3) exists. In fact this assumption may be violated in theories with
massless fermions, which can have long range effects (o1, equivalently,
poles at zero four-momentum) that would make this integrat not converge.
We will see here that such massless fermions are necessary consequences of
supersymmetry breaking. In order to avoid the issue of the convergence of
this integral even in theories with massless fermions, it is very convenient
to work in a space of finite volume V. We can do this while maintaining
translation: invariance by imposing periodic boundary conditions: all fields
are assumed to be unaffected by translations of any spatial coordinate x*
by an amount V173,

The existence of an operator @, that induces supersymmetric transfor-
mations on quantum fields would allow us to derive all the conseguences of
supersymmetry, provided that there exists a supersymmetric vacuum state
[VAC) of zero three-momentum from which multiparticle states may be
constructed by acting with field operators. But if {VAC) is supersymmetric
in the sense that Q| VAC) = 0, then it follows from the anticommutation
relation (25.2.36) that this state has zero energy as well as zero momen-
tum. Conversely, by taking the vacuum expectation value of the positive
operator (returning for a moment to two-component notation) {Q,, Q:}.
we see that if the vacuum has zero energy then it must be annihilated
by Qg and ()}, and hence be supersymmetric, while if it is not su persym-
metric then its energy must be positive-definite. The question of whether
supersymmetry is or is not spontaneously broken is thus entirely a question
of whether the vacuum has a positive-definite or a zero energy.

The same reasoning led Witten to the conclusion that extended super-
symmetry with N > 1 two-component spinor generators Q,, and their
adjoints cannot be spontaneously broken to extended supersymmetry
with fewer generators or to simple supersymmetry, because if any onc of
the generators does not annihilate the vacuum then the vacuum energy
cannot vanish, and it follows from this that none of the generators can
annihilate the vacoum.! Usually the energy of the vacuum state appears
as an ill-defined additive constant in the energies of all states, but here this
constant is given a meaning by the appearance of the energy-momentum
four-vector in the anticommutation relations of supersymmetry. One of
the advantages of working in a finite volume is that it makes it meaningful
to talk about the total energy of the vacuum.

Hughes, Liu, and Polchinski have pointed out that there are theories
that exhibit a sort of partly broken supersymmetry.'® These theories do
not have a supersymmetry algebra of the sort described in Chapter 25.
fnstead, they have an algebra of currents, based on anticommutation
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selations like Eq. (26.7.45):
fd3x {Spﬂ(x) s S‘;,IU(}")} = —2 61‘3?1-'8’“(}’) + 21‘?'ucrs »

where @** is an energy-momenium (ensor satisfying the conservation
condition 8,8 =0, and Cr 1s 2 new ingredient, a constant, For N =1
this constant could be regarded as a term —4**C in ®#*, but this is not
possible for extended supersymmetry unless Cyps 0 drs, which need not be
the case. This algebra is not ruled out by the Haag-Lopuszanski-Sohnius
theorem proved in Section 25.2 because it could not be a symmetry of
the S-matrix. It is true that spontancously broken symmeiries are never
symmetries of the S-matrix, but they are usually assumed to be based
on algebras or superalgebras that could be symmetries of the S-matrix
in some phases of some theories. With C,, not proportional to s, the
superalgebra of currents is one that could not generate a symmetry of
the S-matrix in any phase of any theory. Here we will only consider
superalgebras of the sofl described in Chapter 25, to which Witten’s
argument does apply. '

Another advantage of working in a finite volume is that ali states
become discrete and normalizable. An immediate consequence of the
fact that 0, commutes with P, is that any state of non-zero energy Is
paired with another state of the same energy and momentum but opposite
statistics. To see this, note that for any three-momentum p we may find 2
two-component spinor 1, such that 32, wioa pup =0 and 37, |ug? = 1.
(For p in the 3-direction, take u = (1,1)/+/2. For p in any other direction,
apply to this u the spin 1/2 representation of the rotation that takes
the 3-direction into the direction of p.} Then, within the space with
fous-momentum p¥, the anticommutation relations (25.2.31) and (25.2.32)
give '

Q=7 (29.1.4)

where ({p) is the Hermitian hinear combination of supersymmetry gener-
ators:

Qp) = #sQa+ D12 Qi - (29.1.5)

Acting with Q(p) on any normalized state |X) with four-momentum p*
and p0 > 0, .we get another normalized state 1Y) = Q(p)iX}/ /1" with
opposite statistics and the same four-momentum. Furthermore, |X} is
the only state related to |Y) in this way, because if [Y} = Q(p)|X}/ Vi
then, according to Eq. (29.1.4), |X Y = Q(pIY)/ VP°. The multiplicity of
supersymmetry generators and of spin states will usually cause these pairs
of fermionic and bosonic states to be joined by other pairs, all with the
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same four-momentum, but for the moment it is enough to know that all
states of non-zero energy may at least be grouped in these pairs.

When supersymmetry is broken we do not expect states with a definite
number of particles to form supermultiplets with other states of opposite
statistics and with the same four-momentum and the same number of
particles. The pairing of slates then requires the existence of a massless
fermion, so that an n-particle state can be paired with a state of the
same energy and momentum but opposite statistics, consisting of the
same n particles together with a massless fermion of zero energy and
momentum. This massless fermion is known as a goldstino. To be more
precise, any n-particle state is accompanied with two states of the same
energy and momentum and opposite statistics, containing an additional
zero-momentum goldstino of spin up or down, and with another state
of the same energy and momentum and the same statistics, containing
two additional zero-momentum goldstinos of opposite spin. In particular,
when supersymmetry is spontaneously broken the vacuum state has non-
zZero energy, so it must be paired with a fermionic state of the same energy
and zero momentum; more precisely, the vacuum and the state containing
two zero-momentum goldstinos are paired with the two states of a single
zero-momentum goldstno. It is only when supersymmetry is unbroken
that there is a state of zero energy, the vacuum, that can be unpaired.

The pairing of states of non-zero energy provides a valuable diagnostic
tool that can in some cases tell us that supersymmetry is not spontaneously
broken, even where perturbation theory is not adequate to answer this
question. When all interactions are weak, we can rely on perturbation
theory to give us a gualitative picture of the spectrum. If it turns out that
in the tree approximatien there are n vacuum states with zero energy, and
no massless fermions, then we can be confident that for weak coupling
there are ne zero-energy fermionic states with which we could pair the n
vacuum states, so these unpaired states would have to have precisely zero
energy. Then, as we increase the strength of the couplings or vary the
parameters of the theory in any other way, states may move from positive
1o zera energy or vice-versa, but they will generally not suddenly appear
or disappear. (There is an exception for changes in the parameters that
change the asymptotic behavior of the Lagrangian for large fields: as we
will shortly see, this can produce or destroy states.) Because each state of
non-zero energy is always paired with another of opposite statistics, they
can only make the transition from zero to non-zero energy or vice-versa in
such pairs, so the number of bosonic zero-energy states minus the number
of fermionic zero-energy states does not change as the parameters of the
theory are varied, as long as the large-field behavior of the Lagrangian is
not changed. This difference is known as the Witten index.? Formally, this
index is Tr{—1)¥, where F is the fermion number; the pairing of states
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discussed earlier insures that this trace can receive no contribution from
states of non-zero energy. If the Witten index is non-zero then there must
be some states of zero energy, and so supersymmetry cannot be broken. In
particular, in a theory where the tree approximation gives n zero-energy
vacuum states and no zero-energy fermions, the Witten index is n for weak
coupling, where the tree appreximation can be trusted to give a qualitative
picture of the spectrum, and the index remains equal to n as the strength
of the coupling is increased, so we can be certain that higher-order effects
or even non-perturbative effects do not break supersymmetry.

As an example of the use of the Witten index, consider the Wess-Zumino
theory of a single chiral superfield with a cubic polynomial superpotential
of the form (26.4.16):

fl¢) = tnl¢® + (e, |

where ¢ is the complex scalar field component of the superfield. We saw
in Section 26.4 that this mode! does not exhibit supersymmetry breaking
in the tree approximation, but what about higher orders of perturbation
theory, and what about non-perturbative effects? Perturbation theory
gives a good approximation to the energy spectrum when m is large and
g is small; it tells us that in this case there are two bosonic states near
zero energy, corresponding to the solutions ¢ = 0 and ¢ = —2m? /g of
the equation 8f(¢)/é¢ = 0, and no fermionic states near zero energy,
the lowest-energy fermionic state is a zero-momentum one-fermion state
of energy near |m|. In typical scalar field theories we would not expect
the two bosonic states to have precisely zero energy; even though each
has zero energy in the tree approximation, higher-order effects (including
tunneling through the barrier between ¢ =0 and ¢ = —2m*/g) would be
expected to mix them and shift their energies away from zero. (It is only
in the limit of infinite volume that this barrier becomes impassable.) But
in supersymmetric theories these states must have precisely zero energy,
because there is no low-energy fermion state with which they could be
paired. Thus for m large and g small the Witten index is 2. Because
the Witten index is invarsant under changes in the parameters of the
theory, the Witten index remains equal to 2 even when g is large, where
perturbation theory breaks down, and even when m vanishes, where the
two potential wells merge. (It is not easy to calculate the Witien index
directly in this case, because of the presence in the tree approximation of
massless bosons as well as massless fermions.) Since the Witten index is
not zero, supersymmetry remains strictly unbroken in the Wess-Zumino
model, whatever the values of its parameters.

The same arguments can generally be used in theories with several
chiral scalar superfields to show that the Witten index is positive, and that
supersymmetry is therefore not spontaneously broken. The (’Raifeartaigh
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models discussed in Section 26.5 are an exception, because there are flat
directions in which the potential remains constant as the fields go to
infinity, rather than growing as some power of the fields. These models
provide a good illustration of the fact that although the Witten index
must be zero for supersymmetry to be broken, a zero Witten index does
not necessarily imply that supersymmetry is broken. For instance, if we
write the superpotential used as an illustration in Section 26.5 in terms of
canonically normalized superfields, then it takes the form

fIX, Y, Y2) = mY1(X —a) + gY2 X7,
with arbitrary parameters m, g, and a. The potential is then
U(x, y5. y2) = (glPIx]* + [m[*x — al® + fmy; + 2gxy2|%,

with lower-case letters denoting the scalar componenis of the left-chiral
superfields. For m and a4 non-zero and g small, perturbation theory gives
a good estimate of the spectrum, and tells us that there is a minimum of
the potential near x = a — 2/g|*|a|%/|m|*> with my, + 2xy2 = 0, at which
the vacunm energy is approximately equal to |ga?|?V. Since this encrgy
appears as an additive constant in all states, there are no zero-energy
states, and the Witten index vanishes. The matrix .# of second derivatives
of the superpotential (with rows and columns labelled in the order x, i,
y2} is here

2gy; m 2gx
A= m 0 0
2gx 0 0

This has an eigenvector (0, 2gx, —m) with eigenvalue zero, 5o there is a
massless fermion here; this is the goldstino associated with the breaking of
supersymmetry. The fermionic state degenerate with the vacuum consists
of a single goldstino of zero energy and momentum. (Once again, there
are two vacuum-energy fermionic states, with opposite orientations for
the goldstine spin, and two vacuum-energy bosonic states: the vacuum,
and a state containing two goldstinos with oppeosite spin.) Now, as a — 0
supersymmetry may become unbroken {and we shall see later that it does),
but the Witten index must remain 0; in this case the massless fermion is
no longer a goldstino, but continuity demands that its mass remains zero,
s0 it remains paired with the vacuoum state. This of course is a general
feature of theories in which supersymmetry is restored at isolated values
of the parameters; continuity demands that the massless fermion that
plays the role of the goldstino when supersymmetry is broken remains
massless (though no longer a goldstino) at the value of the parameters
where supersymmetry is restored, so that the vacuum remains paired with
the massless fermion state, and the Witien index remains zero.
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This model provides a good illustration of why we had to qualify
the statement that the Witten index does not change when we vary
the parameters of a supersymmetric theory, with the proviso that the
parameters must not be changed in such a way as to alter the asymptotic
behavior of the Lagrangian density for large fields. Suppose we unflatten
the flat direction in this medel by adding a small term to the superpotential,
so that it now reads

X, YL Y2) = mY (X —a)+gaX? + 1e(YE + Y,

where € is 2 small mass parameter. Now there are two solutions of the
conditions for supersymmetry to be preserved:

_of _of _ef
_ﬁxﬂayi_ﬂyz‘

At these solutions, x is at one of the roots of the quadratic equation
2¢2%? + m(x —a) = 0, while y; and y; are of order I/e: y; = —m(x —a)/e
and p» = —gx?/e. We see that the reason that the Witten index can
change from @ to 2 when we turn on the small parameter ¢ is that two
new minima of the potential come in from infinite field values.

In deciding whether or not supersymmetry is broken in theories with 2
vanishing Witten index, it is often useful to use conservation laws to limit
the pairings that may occur, and to define a new sort of index. If K is a
quantum operator that commutes with the supersymmetry generators Q,
(and hence alse with the Hamiltonian), then all states of non-zerc energy
that have a definite value for K are paired with states of opposite statistics
and the same energy and momentum and the same value of K. Also, not
only is the Witten index Tr{—1}¥ independent of the parameters of the
theory (as iong as they are not varied in a way that varies the large-
field asymptotic behavior of the Lagrangian) — so also is the weighted
Witten index, given by Trg(K)(—1)¥, where g{K) is an arbitrary function
of the conserved quantity. To use the conservation law in this way,
it is not necessary that it be unbroken when the volume V becomes
infinite; it is only necessary that K commute with the supersymmetry
generators.

In diagnosing the possibilities of supersymmetry breaking, it is some-
times helpful to work with a linear combination of weighted Witten indices
for a number of different conserved quantities. In particular, consider the
quantity '

Wy = ZTr{h{—l)F} , (29.1.6)

he=i2
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with the sum running over all elements of some symmetry group G. (For
compact continuous groups, this sum should be interpreted as an integral
over the group volume, with a suitable invariant measure.) Within any
irreducible representation other than the identity, the ‘characters’ Trk add
up to zero when summed over a finite or compact group, so

We=> N(fi(-1y, (29.1.7)
!

where N(f) is the number of times that the identity representation of G
appears among states with fermion number f. In other words, W is just
the Witten index, but evaluated using only G-invariant states. As long as
G is conserved, Wg temains independent of the parameters of the theory,
and if non-zero indicates that supersymmetry is unbroken.

Conservation laws will be used in this way in Section 29.4 to study the
spontaneous breaking of supersymmetry in gauge theories, but a simpler
{though academic) example is provided by the O'Raifeartaigh-style model
discussed earlier, only now with the parameter a set equal to zero. The
superpotential here is

JX, Y, V) =mV X +g¥aX2, (29.1.8)
yielding a tree-approximation potential
U, p1, y2) = ImP|x? + [glP1x]* + mys + 2gxyal? . (29.1.9)

We know that the Witten index vanishes here, because we have seen that
it vanished for a # 0, but is supersymmetry broken? With a = 0, there
are now field values with x = y; = 0 where the potential vanishes in
the tree approximation, but how can we tell whether effects of higher
order in g or even non-perturbative effects give the corresponding states a
small energy? To answer this, we note that this superpotential (and hence
the Lagrangtan density) is invariant under a discrete symmetry K, under

which the superfields are transformed by '

KXK' =iX, KYiKl'=-i¥;, KVKi=-Y,. (29.L10)

(Note that this symmetry is violated by the term —ma¥; in the original
superpotential, so none of the resulis obtained using K will apply to
that superpotential.) Since the potential vanishes for x = y; = 0 and y;
arbitrary, for small g we may use perturbation theory to tell us that for
each y there is a bosonic vacuum state near zero energy. For yo = 0 this
vacuum is even under K. For any non-zero value of |y;| we can take linear
combinations of the two zero-energy states with ya == lys|, of which one
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will be even under K and the other odd. As we have seen, there is also
a massless fermion here, the fermionic component of ¥, but this fermion
is odd under K, so it cannot be paired with the even vacuum states. The
only other fermions in the theory have tres-approximation masses {m|, so
for stnall g they can’t be paired with the even vacuum states either. We
conclude then that for small g the even vacuum states must have precisely
zero energy, and supersymmetry is unbroken. It is net easy to calculate
the weighted Witten index here, because there are an infinite number of
bosonic zero-energy states that are even under K, consisting of either
zero or two Y;-fermions with zero momentum plus any even number of
zero-momentum Y bosons, but it is clear that TrK(—)F > 0, and since
this is independent of g (as long as g # 0), supersymmetry cannot be
broken for any finite g.

29.2 Supersymmetry Current Sum Rules

We now turn to sum rules that yield exact quantitative relations between
the vacuum energy and parameters describing the strength of supersym-
metry breaking.

Let us again start by assuming that the world is placed in a box of
volume V, with periadic boundary conditions to preserve translation in-
variance. The vacuum expectation value of the anticommutation relations
(25.2.36) may then be expressed as a sum over discrete states | X, Box):

| )X: (VAC‘Qa
+3(VAC

= -2(vf},, (vaclprvacy,  (@o21)

X, Box ){ VAC| Q4| X, Box )’

X, Box)(VAC‘Q; X,Box)

s

with the label ‘Box’ indicating that the states are normalized to have
Kronecker dettas rather than delta functions as their scalar products.
Setting f = «, summing over o and using Eq. (25.2.37) gives

2

X

<VAC 2

—4 (VAC|P°|VAC> . (29.2.2)

0./ X, Box>

Because J, commutes with the four-momentum, it is only states with zero
three-momentum and the same energy as the vacuum that can contribute
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to this sum. To find the volume dependence of the matrix elements
that do contribute in Eq. (29.2.2), we note that a box-normalized state
|X, Box} containing Ny particles is related according to Eq. (3.4.3) to the
corresponding continuum-normalized state |X) by

|X, Box> = ((2np’ /V)N"”r 2‘X> . (29.2.3)

For states with px = 0, the spatial integral of the supersymmetry current
time-component S0 gives another factor of V, so we conclude that for
box-normalized states with py =0

<VAC

Q.

X,Bmc> - (zn)mrﬂVl-er”(mc\sf(oﬂx) . (29.24)

Since invariance under 2zn-rotations does not allow X to be a zero-particle
state, the dominant terms in Eq. (29.2.2) when ¥ — oo will be those from
one-particle states. In this limit, Eq. (29.2.2) becomes

(27)* E-“’)KVACISO{C](O]P{)]z = 4 pyac , (29.2.5)
X

where pyac is the vacsum energy density
pvac = (VAC|P°|VAC> /v, {29.2.6)

and the superscript (0) indicates that the sum in Eq. (29.2.5) runs only
over one-particle states with zero four-momentum. These of course are
the two helicity states of the goldstino,

We see again from Eq. (29.2.5) that if the vacuum energy density
does not vanish then the vacuum is not invariant under supersymmetry
transformations, but is rather transformed into one-goldstine states. Con-
versely, Eq. (29.2.2) shows that if the vacuum is not invariant under
supersymmetry then according to Eq. (29.2.2) its energy in a finite box
cannot vanish, although it is conceivable that supersymmetry transforma-
tions might take the vacuum only into multiparticle states, in which case
the vacuum energy density would vanish in the limit of large volume.

To evaluate the one-goldstine contribution in Eq. (29.2.5), we use
Lorentz invariance to write the matrix element of the supersymmetry cur-
rent between the vacuum and a one_-goldstino state |p, ¢}, with momentum
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p and helicity 4, in the form”

(VAC|SF(O]‘E 1) = (o)~ 32 [(L‘E)ﬁ) (};F‘F + ip#p,)

+ (1 “2”"5) (vF* + I'p“F")] u(p,2) , (29.2.7)

where w(p, 1) are the coefficient functions for a massless Dirac field intro-
duced in Section 5.5, and F and F’ are unknown constants. The matrix
element (29.2.7) satisfies a conservation condition p,{ VAC|s* (U}|p, Ay=0

because u(p, 4) satisfies the momentum-space Dirac equation (5.5.42) for
zero mass, and p* is on the light-cone, The sum over helicities gives

>_ulp, Dup,A) = ~ip/2p°.
A

(The Dirac spinot u(p, A} for a massless particle of momentum p and spin
A is not well defined for p — 0, but there is no problem if we regard the
sum over X in Eq. (29.2.5) as a sum over helicities for a small momentum
p of fixed direction.) After a straightforward calculation, we then have

] ’1“ - sll 1“—"
4ﬂVAc=Tr{(F +T5+F 2}’5)}’0 2;‘605{1,0)1(}; +?5+F J’s)}’

2 2 2
and therefore
pvac = |FI*/2. . (29.2.8)

An alternative proof of this formula wiil be given at the end of this section,

" Lorentz invariance alone would yield this formula with independent coefficients F;,
Fi and Fr, Fp for the matrices proportional to (1 -+ y5}/2 and (1 — v5)/2, respectively,
It is CPY invariance that imposes the relations Fr = F and F} = F';. To see this, we
must use the CPT-transformation properties of the supersymmetry current

CPT S(xICPT)™ = —ps§¥(-x)" = —FeSH(x)
{sec Section 5.8) and of the one-particle states
GPT|p, 4} = x:ip, —4)

with y, a phase factor that depends on how we define the relative phases of the helicity
states. We also need the reality properties of the coefficient functions w(p, A). These are
related to those of the cne-particle states by the definition

{VAClwpren(x)lp. 4} = (27) " exp(ip - x}u(p, 1) ,
where pran(x) is 2 renormalized Majorana field, with CPT-transformation property
CPT wrentx) (CPT)™! = 35 pren(—x)" = B epren(—x) .

which yields u{p,d) = y} feu'(p,—A} Dutting this together with the CPT-trans-
formation properties of the supersymmetry current and one-particle states yieids the
relations Fr = F] and Fp = F'},
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The parameter F plays much the same role in the interactions of soft
goldstinos as does the parameter F; (introduced in Section 19.4) in the
interactions of soft pions. The matrix element of the supersymmetry
current between any two states X and ¥ may be split into terms that
“have a one-goldstino pole at p* = () in the momentum transfer p = py—py
and terms that do not have this pole

) brF P+ (S5 i }

(X)SH0)Y) = {(

* (:.t;;) MX = Y +8) + (XISONY Jno pore » (29.2.9)

where #M(X — Y + g) is the amplitude for emitting a goldstine with
four-momentum p and Dirac wave function u, and the subscript ‘no pole’
denotes the terms in the matrix element that do not have the one-goldstino
pole in the four-momentum p. The conservation of the current S* tells
us that this vanishes if contracted with p,, so in the limit p* — 0 the
goldstino emission amplitude is**

M - ¥ )= < { () + () X1SO1Y oo e
{29.2.10)
There is another sum rule that provides an alternative proof of the
existence of goldstinos when supersymmetry is spontaneously broken, and
that also relates the parameter f and the vacuum energy density to the
D-terms and % -terms that characterize the strength of supersymmetry
breaking. (This use of a sum rule is analogous to the second proof in
Section 19.2 of the existence of Goldstene bosons when ordinary symme-
tries are spentaneously broken.) To derive this sum rule, we will now give
up the device of a finite volume, and instead aveid the question of the
convergence of the integral (29.1.3) by working with a local conseguence
of the supersymmetry of the action

[(3°00)a), 2w n)] = [(25°,0), 2ty )] = 8= — gz + .
(29.2.11)

" The amplitude {X|3#(0)]Y }no pole May bave poles that go as 1/p-k as p* — O they
would not arise from the goldstino prepagator, which is explicitly excluded in this
matrix element, but rather from other particle propagators produced by the insertion
of the supersymmetry current in external lines of mementum k of the process X — Y.
In the limit p* — 0, the contribution of these poles in Eq. (29.2.10) would dominate the
amplitudes for emission or absorption of soft goldstinos. But for such poles to arise,
the goldstino would have to be emitted in a transition between a pair of degenerate
particles of opposite statistics, which are not likely to appear in theoriss in which
supersymmetry is spontanecusly broken. The interactions of soft goldstinos differ in
this respect from the interactions of soft pions, photons, or gravitons.
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where x{x) is an arbitrary fermionic or bosonic field, dx(x) ts the change
in y(x) induced by the supersymmeiry transformation with infinitesimal
parameter o that leaves the action invariant, and the dots denote terms
involving derivatives of §°(x —¥). Let us consider the vacuum expectation
value of the anticommutator of an arbitrary left-handed spinor field
wL{x} with the covariant conjugate S#(y) of the supersymmetry current.
By summing over a complete set | X} of intermediate states {including
integration over particle momenta), this vacuum expectation value may
be put in the form

(ncl{oute. GVac) = [ ere? [+t
(29.2.12)
where

Glyip) =5 6%~ pX)(VAC{wu(oﬂx) (X|S§(0)|VAC} . (292.13)
~ .

Glslp) = ; 5%(p — px)<VAc[Sg(0]]}:> <X‘tpm(0]]VAC> . (29.2.14)

Lorentz invariance requires that the matrices G*(p) and G*(p) must take
the forms:

o) = 00 (—52) [?“G‘”(—pZH #G(~p)
GOt pi-.u*‘Gﬂ‘”{-pz)} (29.2.15)
and
&) = 66") (57 [yﬂé“’wzw PG (—p?)
G- pP)t .!‘)’”f?“”(—pz)] . (29.2.16)

The right-hand sides of Egs. (29.2.15) and (29.2.16) are unaffected if we
replace —p? with m?, multiply by a factor 5{(p* + m?), and integrate over
m?. In this way, Eq. (29.2.12) becomes

(n) (VAC|{pr(x), 3} [VAC) = (1 ”5) fo ® dm? l}r“Gm(mZ}

2

— P8GO (m?) — i2* GV ) — i Py GYm?) | Ar(x — y,m)
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LHysN 1 0 o | as, 2 222 an (32
+(52 fc_ dm? [P GOy ~ 9o+ 5D ) — i0r GOy

—i aw*‘é“”fm%] Aply — x,m), (29.2.17)
where A (x,m) is the standard function
A, m) = (20)~ f d'p 0"V 5(6” + m?) explip - x) (29.2.18)

Causality requires that the anticommutator on the left-hand side of
Eq. (29.2.17) should vanish for spacelike separations x — y. For such
separations, A (x — y,m) is an even function of x — ¥, so Eq. {29.2.17)
vanishes for all spacelike separations if and only if

GUm?) = —GWm?), Gm) = Gy,
G(3)(m2} — +G[3}(m2] ] G{4](m2) - +("'}(4){m2} ,
so that for general x — p, Eq. (29.2.17) now reads

(29.2.19)

(2n}‘3<VACI{tpL(x}, S‘“(y)HVAC> = fo " dnr? [G“}(mzjy“ — GW(m?) por

—iGP(m)3# — iGH(m?) apﬂ] Alx — y,m) (1 27’5) ) (29.2.20)

where, as usual,
Ax—ypmy = Ay (x —y,m)— Ay — x,m) (29.2.21)

We next impose the supersymmetry current conservation condition {29.1.2),
which {because OA = m?A) vields

GOm?) = m*GP (),  m2GV(m?) = —m2GH(m?) . (29.2.22)

Finally, we must relate these spectral functions to the breaking of super-
symmetry. Recall that for x® = y°,

ﬂ{x—}’sosm)=0, A{X—“}',O,mlz _'153(7(_"}"}
Setting x® = y% = and p = 0 in Eq. (29.2.20) thus vields

(VAC{pux0), 8%y.0}[VAC) = @2m)6%(x - ) ( _l-i-T}'s )
X -/Om am?* [G(S)(mz) + Gf“}(m?-}] . (29.2.23)

Contracting on the right with an infinitesimal Majorana fermionic super-
symmetry transformation parameter @ and using Eq. (29.2.11) then gives

i(é!pL>VAC=(2n)3 (Ujﬁ)a fc_ ” d? [Gf3’(m'-’-)+cﬁ4l{m2)] . (29.2.24)



262 - 29 Bevond Perturbation Theory

But Eq. (29.2.22) shows that the integrand of the integral over m? in

Eq. (29.2.24) vanishes, except perhaps at m? = 0, so we can conclude that

G m?) + Gy = S(mDF (29.2.25)
with a constant coefficient ¥ given by
;r(aw)w = (27) %4y . (29.2.26)

As we saw in Sections 26.4 and 27.4, a breakdown of supersymmetry is
signaled by the appearance of vacuum expectation values of the changes
d1p under supersymmetry transformations of on¢ or more spinor fields .
Egs. (29.2.25) and (29.2.26) show that for any such spinor field, the spectral
function G¥(m?) + GW(m?) has a delta function singularity at m? = (),
which could only arise from the appearance of a massless one-particle
state |g) in the sums over states in Egs. (29.2.13) and/or (29.2,14). For
the matrix elements (VAC|w|g} or {g|ly|VAC) not to vanish, this massless
particle must have spin 1/2. This is the goldstino.

Now let’s calculate the contribution of a one-goldstino state |p, A with
momentum p and helicity 4 to the spectral functions G (m?). Lorentz
invariance tells us that the matrix element of a general fermion field (not
just the renormalized goldstino field) in Eq. (29.2.13) takes the form!

1 1+ ¥s . (l - Vs )]
= ——= i
pi) = g [V (57) + v (55| e )
(29.2.27)
where N is a constant, characterizing the particular fermion field. Also,

the delta function in Eq. (292.13) is
54(1” — pg) = 2p05(p2]9{P0}53(p —Pg)-
Together with Eq. (29.2.7), this yields

0], = g (457) o007 e < v

with the subscript 1 indicating the one-goldstino contribution. Comparing
this with Eq. (29.2.15} shows that

{G(l}(mzj] — i(2n) 3 NF'3(m?), [G(4>(m2)] — (2n) NF&(m?),
! ! (29.2.28)

(VAC'w(G}

[Gm(mz)h = [G(S}(mz)L =0.

t Again, Lorentz invariance would allow independent coefficients Ny and Np for {1 +¥s)
and (1—ys}, respectively. Using the CPT transformaticn of the one-particle state and the
reality property of the coefficient functions diseussed in the first footnote of this section,
and the CPT transformation of a general fermion field, CPTy(x)}{CPT)~! = Bep(—x),
we find that Ny = Ng.
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Thus Eqs. (29.2.25) and (29.2.26) yield |
i(éwL>VAC = NFa . (29.2.29)

Evidently if the change in any fermion field under a supersymmetry
transformation has a non-zero vacuum expectation value then the N-
factor for that field cannot vanish, so there must be a one-goldstino state
that contribufes to these spectral functions.

To be a little more specific, recall that the fermionic components ., of
a left-chiral scalar superfield ®;, obey the supersymmetry transformation
rule (26.3.15):

SYrn = 28,00y ar + 2F n ey, (29.2.30)

while Eq. {27.3.5) gives the supersymmetry transformation of the gaugino
fields as

52 = (4fauw v, 73 + iysDa)a. (29.2.31)

Hence the N-factors in the matrix elements of the y, and A4 between the
vacuum znd a one-goldstino state are given by

Ny = iF 1 2{#,) Ny = -F—'(D,,)mc . {29.2.32)

Let us see how the results (29.2.32) arise in the tree approximation. For
a renormalizable theory of gauge and chiral superfields, Eq. (27.4.30) gives
the left-handed part of the fermion mass matrix as

- _{ Pfé)
Mﬂm - (3¢H5¢M)¢=¢U L]

Mg = May = ix2(tago)y,  Map=0.

The vacuﬁm fields ¢no are at a minimum of the potential given by
Eq. (27.4.9), so

0= (6;’;:#))0 _ g My P o + ; (¢g‘,;,1)np,m , (29.2.34)

where the #s and Ds are given by Egs. (27.4.6) and (27.4.7)
Fo=—(01($)/0ta) »  Da=Ca+ 3 GMiadndm.,

vac”’

(29.2.33)

and the subscript O indicates that we are to set ¢, = ¢p. Furthermore,
the gauge invariance of the superpoiential requires that

S 7, (w); =0, (29.2.35)
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for all values of ¢. Therefore the left-handed quark mass matrix M has
an ¢igenvector v with Mv == 0, where

Un = J2Fno , b4 =iD40 . (29.2.36)

Thus in the tree approximation, if we expand the left-handed fermion fields
in renormalized fields for particles of definite mass, then the coefficients
of the gravitino field in g, and in A4y are proportional to /2%, and
iD 40, 1espectively, in agreement with Eq. {29.2.32).

If we normalize the spinor fields v, and A4 so that the matrix con-
necting these fields to the renormalized ficlds of particles of definite mass
is unitary, then :

SN Y I =1, (29.2.37)
A

f

so Eq. (29.2.32) gives the non-perturbative result

|Ff? = 2? Kg">mcr +§ ‘(D">VAC

2
| (29.2.38)
The result (29.2.38) for |F|? allows us to express the vacuum expectation

density (29.2.8) in terms of the vacuum expectation values of auxiliary
fields :

PVAC = ; |<§">\mc‘2 + % ; KD“’>VAC|2 - (29.2.39)

This is the non-perturbative generalization of the zeroth-order result
(27.4.9). It confirms a result used in Section 27.6, that the conditions
(Fn) = (D4} = 0 are sufficient as well as necessary for supersymmetry to
be unbroken. '

* & %

It 15 instructive to see how Eq. (29.2.8) can be derived without the device
of a finite volume. For this purpose, consider the vacuum expectation value
of the anticommutator of two supersymmetry currents. By using Lorentz
invariance and the vanishing of anticommutators at spacelike separations
in the same way as in the previous section, we find

(VAC|{s*(0), 8" (1)} |[VAC) = —i f dm? [Hm(mzjy‘"@" + H 22y 0

+Hm(m2) doka’ + H("'}(mz} én*” + H(Sl(mz}e“”p&gyp Alx —y, mz]
o+ (29.2.40)
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where _

[ ax 80 = p){vaclszoi|x) (x|SO VAC) = HO—ppp

+ HO—p*yy' p* — HO=p") ppp” + H %) g

+ HO(—p e iy + - {29.2.41)
and the dots in Eqs. (29.2.40) and (29.2.41) denote a lincar combination
of the other independent Dirac covariant matrices 1, ys, ¥5¥s, and [vo, 7],
which will not concern us here. The Majorana nature of the currents

together with Eq. (26.A.20) tell us that the spectral functions H® are all
real, and the conservation of the supersymmetry currents dictate that

HO () = HP(m?) = —m® H¥ ) — HO(m?) (29.2.42)

and.
mHYm?) =0 . (29.2.43)
Setting = v = 0 and x¥ = y® in Eq. (29.2.40), integrating over %, and
using Eq. (29.2.42) then gives
(vac|{. 30} [VAC) = (2x)°8 f dnd [HO (%) + HO )
+m? H(31{m2)+m41{m2}} +--=(22)p f dm? H“?(mi]}m . (29.244)
To evaluate this anticommutator, we first write it as
{0,800} =—2in, T () + -+, (29.2.45)

where T (x) is some tensor operator and the dots again denote some lin-
gar combination of the other independent Dirac covariants. The Majorana
character of @ and §# tells us that T#"(x) is Hermitian; the conservation
of the supersymmetry current telis us that it is conserved, in the sense that

8,TH =0, (29.2.46)

and the anticommutation relation (25.2.36) tells us that
/ Bx THO(x) — P& (29.2.47)

These preperties allow us to identify T#* as the energy-momentum tensor.
It is not in general equal to the symmetric energy-momentum fensor @
discussed in Section 7.4, but Eq. (29.2.47) shows that the energy density T®
can differ from @% only by spatial derivative terms that cannot contribute
in states of zero three-momentum, so the vacuum energy density is given
by

PYAC = (mc\ TleAC> ; (29.2.48)
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Thus Egs. (29.2:44) and (20.2.45) yield
2pvac = (21) f dm? HO(m) . (29.2.49)

But Eq. (29.2.43) tells us that H(”[mz) vanishes except perhaps at m* =0,

' 'H“l(mz} = 2(2n)"‘35(m2)pmc . | (29.2.50)

Thus we ‘see again that a non-vanjshing vacuum energy density entails
the existence of a massless fermion, the goldstino. Using Eq. (20.2.7),
a- straightforward calculation of the one-goldstino contribution to the
spectrdl functions yields

HOm?) = (2n)~28(m?) |F 2. | (29.2.51)

Comparing this with Eq. (29.2.50) gives our previous result (29 2.8) for
the vacuum energy dcnsn}r

293 Non-Perturbative Corrections to the Superpotential

We saw in Section 27.6 that the superpotential in general supersymmetric
theories of gauge and chiral superfields is not renormalized to any finite
order of perturbation theory, so that if supersymmetry is not broken in
the tree approximation then it can only be broken by non-perturbative
cotrections to the Wilsonian effective Lagrangian. We now take up a
general analysis of these corrections. These were thoroughly studied in a
series of papers by Affleck, Davis, Dine, and Seiberg in the early 1980s,’
with special attention to the case of supersymmetric versions of quantum
chromodynamics with arbitrary numbers of colors and flavors. Here we
will present a somewhat simplified analysis of general supersymmetric
gauge theories, based on the more recent holomerphy arguments of
Seiberg® already used in Section 27.7.

To study non-perturbative effects, we shall here again consider a generat
renormalizable supersymmnetric theory, but now including a possible 8-
term in the Lagrangian density

_V T
F = [(DT 2 (I}L) +2Re I:‘}"("Iﬁ‘f)]f + Re l-s-;; E exp WaaL WAgL] ,
Adﬁ F

(29.3.1}

where the superpotential f(®) is a gauge-invariant cubic polynomial in
the left-chiral superficids and 7 is the parameter (27.3.23):

drni 0
T=—F+

¥ 2932
. { )
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As in Section 27.6, we intreduce a pair of gauge-invariant left-chiral
external superfields, now called ¥ and T, and replace the Lagrangian
density with

% = [(I)‘f’ e {D]D + 2 Re [Yf{ﬂ)]}sr + Re Ii% Z €20 WaaL WA‘,QL] .
Azf F
(29.3.3)
This becomes the same as (29.3.1) when we set the spinor and auxiliary
components of ¥ and T equal to zero, and take their scalar components
as y = 1 and t == 1, respectively. Non-perturbative effects will in general
invalidate both of the two symmetries on which the analysis of Section
27.6 was based. The translation operation, which in our present notation
is T -+ T + ¢ with real &, is not a symmetry because 34 €up0f f5° can
have a non-vanishing integral over spacetime. The original R invariance
{with T and Y having R values 0 and +2) is not a symmetry because
the anomaly discussed in Chapter 22 gives the R-current a non-vanishing
divergence. With 9;, and 8z having R = +1 and R = —1, respectively, and
V4 and ®, R-neutral, the fermion fields A4z and ¢, have R = 41 and
- R = —1, respectively, so Eq. {22.2.26) here gives

1
Oulh = —g55(C1~ C2) 3 empal {77 (29.3.4)
A
where C| and C; are the constants defined in Eqs. (17.5.33) and (17.5.34):
Z CacpCep = C1 648, Tritate} = C2daz, (29.3.5)
D

with the trace taken over all species of left-chiral superfield.” For instance,
in the generalized supersymmetric version of quantum chromodynamics
studied in Reference 3, with gauge group SU{N,) and Ny pairs of left-
chiral quark superfields @, and @, in the defining representation and its
complex conjugate, these constants have values given by Egq. (17.5.35)
(with ny = 2Ny) as

Although T translation and R invariance are invalidated by non-
perturbative effects, there 13 a remaining symmetry which is almost as

* A factor 32 instead of 16 appears in the denominator in Eq. (29.3.4) because gauginos
do not have distinct antiparticles, and we are now counting antiparticles separately
from particles in taking the trace in Eq. (29.3.5). Also, we are now adopting the
convention, described at the end of Section 27.3, of including a gauge coupling factor
in the gauge fields and not in structure constants and the matrix generators 4. The
gauge generators are thus normalized so that for ty4, tg, and tc in the standard SU(2)
subalgebra of the gauge algebra, the structure constant is Cyne = Eape.
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powerful. Consider a general R transformation
8, — 90, Po®, Vao Vs, ¥ ey, (29.3.6)

with arbitrary real p. This leaves the T-independent terms of the La-
grangian density {20.3.3) invariant, but according to Eq. (29.3.4), quantum
effects violate this symmetry, just as if there were a term A2 in the
Lagrangian density with a transformation

1
AL A%~ 5(Ci - Cy) %‘lema e,

Recalling Eq. (27.3.18), this is cancelled if we give T' a transformation
T — T +(Ci—Co/n. (29.3.7)

Because Wi,y has R = 2, the whole theory including non-perturbative ef-
fects is invariant under the combined transformations (29.3.6) and (29.3.7).
In particular, the superfield exp(2iaT), which for T =1« is periodic in 8,
has R = 2(Cy — C3}.

We again introduce an ultraviolet cut-off, and consider the effective
‘Wilsonian® Lagrangian

£ = [yt v, 7. TY, Y2 )],

T _
o O apWaraWarg + BuO, W, T, Y)| (29.3.8)
Qi o .

with &, and 9@, both gauge-invariant functions of the displayed argu-
ments. The term proportional to T has been separated from the function
8, in order that the translation (29.3.7) of T should continue to cancel the
anomaly in the R transformation (29.3.6). Invariance under the combined
transformation (29.3.6), (29.3.7) then tefls us that terms in the function
@, must be proportional to powers of exp (2ixT), which have definite R
values,

Furthermore, it is only positive powers of exp (2in T} that may appear in
4,. According to Eq. (27.3.24), it is only instantons with positive winding
number v = 0 that can make contributions to the effective Lagrangian
that are holomorphic in T rather than T~, and these give rise to factors
exp (Ziny T). Maore generally, for T = 7 any power exp (2ian T) will depend
on the gauge coupling through a factor exp(—8xna/g?), so that 4 must
be positive in order for non-perturbative cffects to be suppressed for
small g. In consequence, non-perturbative effects enter in .,Sf’f threugh
operators exp(2izaT) that have positive-definite, zero, or negative-definite
values of R, depending on whether Cp > Cp, € = C, or Cy < Co
(In the generalized supersymmetric version of quantum chromedynamics

+2Re [
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described above, this corresponds to N, > N¢, No = Ny, and N, < Ny,
respectively.) We shall now consider each of these cases.

C] > Cq

Here the powers exp (2ianT) with a > 0 have positive-definite values of R,
given by Eq. (29.3.7) as R = 2(C; — C3)a. Lorentz invariance tells us that
if any term in #; contains a factor Wy, then it must contain at least iwo
of them, so the only ways to construct terms in &, with R = 2 is to have
two Ws and no dependence on ¥ or 7, or one ¥ and no dependence on
W or T, or one factor of exp(2in T /(C; — C3)) and no dependence on W
or ¥;

2inT
By=Y UD+ Y €xpWaur Waps £245(®) + exp (
w«fAB Ci- ¢

) v (D).

{20.3.9)
Because f;(®) does not depend on Y or T, it can only be the tree-
approximation superpotential

Fi{®@) = f(®), (29.3.10)

just as in perturbation theory. Likewise, because £;.45(®) does not depend
on ¥ or T it must have equal numbers of ®s and ®'s, so since it does
not depend on ®F it cannot depend on @ either. Gauge invariance then
requires (for a simple gauge group) that £;45(®) is proportional to 845,
and since it does not depend on T or Y, the power-counting argument
of Section 27.6 shows that the coefficient of 5,45 can only be the one-loop
contributton to the running inverse-square Wilsonian gauge coupling.

To be more explicit about the running gauge coupling, recall that in
non-supersymmetric gauge theories with fermions, Eq. (18.7.2) gives the
one-loop renormalization group equation as

dg, 13
ﬁ = bgﬁ N (29+3.11)
with
1 /711 H

with the coefficient of C taken as —1/6 rather than —1/3 because we
are now counting the left-chiral states of antifermions separately from the
left-chiral states of particles. As we have seen in Section 28.2, the effect of
gauginos is to multiply the Cj-term by a factor 9/11, while the effect of
the scalar components of the left-chiral superfields (such as squarks and
sleptons) is to multiply the Cs-term by a factor 3/2, so in supersymmetric



270 29 Beyond Perturbation Theory

theories Eq. (29.3.12) becomes instead
1

=—-——(3C; - () .. (29.3.13)
: 1672
The solution of Eq. (29.3.11} for the running gauge coupling is then
' 3C,-C 2
-2 2 1 2 -
gt =g+ =2 ( K) , (29.3.14)

where K is an ultraviolet cut-off, introduced to give meaning to the
otherwise ultraviolet-divergent bare gauge coupling g.

To summarize the results so far, setting T = rand ¥ = 1, the Wilsonian
effective Lagrangian for C| > C; takes the form

. T
R - {.ﬂf’l(‘b,(bf, V,r,t,%2 - }L) + 2Re lg—;;fﬁﬁwAaLWAﬁLJ
_ Ao F
2int;
+2 Re [f(D)]# + exp & C ) [va(®)] s (29.3.15)
: 2
where
ani 8
Ti= E‘ + E . (29.3.16]

We have been able to replace © with 7; in the exponential in the last
term in Eq. (29.3.15), because the difference is a constant times 1n A, which
yields a power of A that can be absorbed into the definition of vy
Non-perturbative effects have now been isolated in the last term in
Eq. (29.3.15). This term can be generated by instantons of winding
number v > 0if C; — C; = 1/v. {In general C; — C; is a rational number.
For the generalized supersymmetric version of quanium chromodynamics,
C; — C3 = N, — Ny is an integer, so the condition C; — C; = 1/v requires
that N. = Ny — 1, and then only v = | instantons contribute. Detailed
calculations® in this model show that instantons actually do make such
contributions,) Whether or not it is instantons that generate the non-
perturbative contribution #;(®), we can determine its form by considering
the non-anomalous symmetries of the theory. Since this function is
independent of ¥, it can be evaluated as if ¥ = 0, so it shares all the
non-anomalous symmetries of the first term in Eq. (29.3.1). These include
the gange symmetry itself and a global symmetry under [, S$U(n(d)),
where d labels the different irreducible representations of the gauge group
furnished by the left-chiral superfields, and n(d) is the number of times
representation d occurs. (For instance, in generalized supersymmetric
quantum chromodynamics 4 takes two values, labelling the N, and N,
representations of SU(N,), and n(N:) = n(N,} = Ny.) Let us label the

Os as ®Y where 2 is a gauge index, and i is a ‘flavor’ index, labelling

ai »
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the n(d) different ®s that transform under the gauge group according to
the representatlon d. The only way to construct a function of the ®¥s
that is invariant under the global symmetry group [I,SU(n(d)) is as a
product of ®s, with the sa(d) flavor indices contracted for each ¢ with
the antisymmetric SU(n(d)) tensor ¢, i, and with the gauge indices
contracted with constant tensors of the gauge group. (For instance,
for generalized supersymmetric quantum chromodynamics, v; must be a
function of the sole invariant

I . D= Det[jzggigﬂj .
o

which is non-zero only for N, = Ny.)

In addition to the anomaly-free S U{n(d)) flavor symmetries, there is also
a Uy(1) symmetry for each of the irreducible representations d furnished
by the @s, with all iIla,J for a given d undergoing the transformation

QU el (29.3.17)

This symmetry is anomalous, with the effects of the anomaly the same as
if the Lagrangian underwent the change
n(d)C.
#~e-T0 9 ot LT 91 (293.18)
where Cyy4 is the contrlbutmn to C; of any one left-chiral scalar superfield

belonging to the irreducible representation 4 of the gauge group. The
symmetry 15 restored if we give T the transformation property

T—-T+4 H{d)ngipd/'ﬁ' . {29.3.19)

Since v;(®) is accompanied in Eq. (29.3.9) by a factor exp(2iz T /(Cy —Ca)).
which undergoes the transformation

2inT ‘i‘Zf"(d)Czd(Dd) (2 )
exp (Cl — Cz) — ];Iexp (W x| a—g ) (29.3.20)

we conclude that for each representation d of the gauge group furnished
hy the left-chiral scalars, vi(®) must be a homogeneous function of the
(Dm of negative order —2n{d)C24/(C, — C;). (For instance, in generalized
supersymmetric quantum chromodynamics we have two irreducible repre-
sentations of SU(N,), the defining and antidefining representations, each
with n(d) = Ny and Cyq = 1/2, 50 »; is a homogeneous function of order
—Ny/(N. — Ny) in the ¢ belonging to the defining representation and of
the same order in the @ belonging to the antidefining representation, Thus
it must be proportional to D~1/™=¥)) where D is the determinant intro-
duced earlier) In general C; = 37, n{d}Czd, so v{P) is a homogeneous
function of all the ®s, of order —2C, /(C; — C3).
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This result satisfies an important consistency check. Recali from Section
27.4 that any superpotential has dimensionality +3 (counting powers of
mass, with A = ¢ = 1), while the scalar superfields ® like ordinary scalar
fields have dimensionality +1, so the ®-dependent part of v; must appear
with a coefficient of dimensionality

20, 3¢, —-(
Ci—C C—GC

This coefficient does not depend on the gauge coupling or on any of the
couplings or masses in the superpotential, and because we have replaced
the bare coupling g with g; in the second term of Eq. {29.3.11) it cannot
depend on the ultraviolet cut-off K used to define g either, so it can only
depend on A. Therefore

(@) = AP C=Cl iy | (29.3.21)

3+

where H(®) is a homogeneous function of order —2n(d)Ca/{C1 — C2) in
the @s that belong to each represeatation 4 of the gauge group and is
independent of any parameters of the theory. We can rewrite Eq. (29.3.14)
in the form

A ¢

Ty = A B S (—) +— (29.3.22)

2n A 2’

where A is an energy parameter that characterizes the running gauge
coupling, like the A = 200 MeV of quantum chromodynamics. Thus the
last term in Eq. (29.3.15) is

2int;, _ i (30 —CH(C1~Ca)
exp (C1 — Cz) v (D) = exp (Cl — Cz) A H(ZL-B -

The whole effective superpotential, including the non-perturbative contribu-
tion (29.3.23), is therefore independent of the floating cut-off .

The function H{®) is homogeneous and of negative order in @, so in
the absence of a bare superpotential the potential is positive-definite at
finite vaiues of the scalar fields and vanishes only at infinite field values.
In such a theory, there is no stable vacuum state, and the question of
supersymmetry breaking is moet. The vacuum may be stabilized by adding
a suitable bare superpotential. For instance, in generalized supersymmetric
quantum chromodynamics with Ny < N, the only renormalizable bare
superpetential is a sum of mass terms

f1g.0) = E mr‘j_Q_at Qaj - (29.3.24)

ija

To seck a supersymmetric vacuum state, we need first of all to find what
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scalar components g, and g satisfy Eq. (27.4.11), which here reads

Y daltdapdhi — Y Failta)ab@pi =0, (29.3.25)

abi abi
for all generators t4 of SU(N.). The gauge interactiens (but not the
superpotential) are invariant under simultaneous S U{N,) transformations
on the color indices a of both g, and §,;; under independent S U{Ny) and
SU(Ny) transformations on the flavor indices i of gz and g, respectively,
and under a U(1} transformation of both g4 and g,; by opposite phases.
Using these symmetries, it is possible to put the general solution of these
conditions in the form

= u.—éa} ﬂng
Qo = Tus = { o L= (29.3.26)
where the u; are complex numbers with the same phase. {Here is the
proof. The SU(N,) generators t4 span the space of all traceless Hermitian
matrices, so Eq. (29.3.25) is equivalent to the requirement that

> alni— Y Gl = kb (29.3.27)
i i

for some constant k. By a combined color and flavor transformation
g — UgV with U and V unitary and unimodular, we can put the matrix
q in the diagonal form (29.3.26), and by a unimodular change of phase of
the diagonal elements we can arrange that they all have the same phase.
Then Eq. {29.3.27) becomes

v uz — k)8 a = Ny
;‘-L:E‘ﬂ:i"“{ E‘;{Sab ) a> N

The conditions for & > Ny show that k < 0. If ¥ were non-zero, then the
4o would furnish N, non-zero orthogonal vectors with Ny components,
which is impossible for Ny < N, so k = 0. We can then put the g, in the
diagonal form {29.3,26} by a series of unitary flavor transformations: first
rotate §y; into the 1-direction; then keeping the 1-direction fixed, rotate
in the space perpendicular to this direction to put g,; in the 2-direction;
and so en; and then perform a unimedelar phase transformation so that
all diagonal elements have the same phase. Eq. (29.3.27) then shows that
the absolute values of the diagonal elements of g4 and 7, are equal, and
by a non-anomalous opposite phase change of g, and §; we can arrange
that their common phases are equal, as was to be proved.)
The function H in Eq. (29.3.23) is here

Hig,q) = # [Dety 3 guyy] T _ g ne TN 99.3.8)
)
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where # is a purely numerical constant. {Detailed calculations show that
F =2for Ny=2and N, =3) Adding the terms (29.3.23) and {29.3.24),
the complete effective superpotential is now

frotal(@. G} = A [H ue] et + Z s (29.3.29)

where

A = & exp (L) ABNN/WN—=Ny) (29.3.30)
N.— Ny

and the m; are the diagonal elements of the mass matrix that results

when the original mass matrix is subjected to the SU(Ny) x SU(Ny)

transformation used to put the scalars in the form (29.3.26). The condition

(27.4.10), that fiowi(q, 7) should be stationary, has the solution

t—Ny /N, —1/N.
1 A f
2 l i .
Y m; (Nc —N ) ( i m-’) . (29-3‘31]

Because we have put the scalar fields in a basis in which the t#; have a
common phase, the m; must also have a common phase in this basis.
But the common phase of the u is not unique — the I/N. powers
in Eq. (29.3.31) tell us that the solution is undetermined by a factor
exp(2inn/N,), with n an integer ranging from 0 to N, — 1. (The two
signs of w; for a given u? are physically equivalent, because the whole
theory is invariant under a non-anomalous symmetry with g4 ™ i
and g, — € "gu) The fact that there are N, physically inequivalent
solutions wiil furn up again in our discussion of the Witten index in the
next section.

Ci=0

This case is of some interest because, as we saw in Eqg. {27.9.3), the
simplest N = 2 supersymmetric Yang-Mills theory, when written in terms
of N = 1 superfields, contains a-single left-chiral superficld in the adjoint
representation, for which™ of course Cy=C1.

For C, = C; the function exp(2inT) has R = 0, so that its appearance
n .ﬁ""f is not restricted by R invariance. The general form of the F-term

** Note that here C; refers to the representation of the gauge group furnished by the
chiral superfields, so it is the same as the guantity C? in Section 27.9, which refers to
the representation furnished by complex scalars, but half of C{, which refers to the
representation furnished by all spinor fields, including the gauginos.
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in ﬂ’f is given here by Eq. (29.3.9), but with the last term absent: '

By = Y f1(@,expRin TN + > cupWane Wapn £245(P, expi2inT)) .
afAB

. _ - {29.3.32)
Because f) may depend on T, we cannot now conclude. that it is equal
to the bare superpotential, but only that it depends linearly on whatever
coupling coeflicients and masses appear linearly in the bare superpoten-
tial. In particular, if there is no superpotential to begin with, ther none is
generated by non-perturbative effects. '

To go further, we need to make use of the anomalous chiral symmetry
under a U(1} transformation of all the @,. In order for the whole theory
to be invariant under this symmetry, it is necessary to introduce a separafe
external left-chiral superfield Y, for the terms in the bare superpotential
of order r in the ®,. Then the theory is invariant under the combined
transformations '

®, — 7D, , T—T+Cwp/n, Y, > e 'Y, . (29.3.33)

This symmetry tells us that-a term in & that is of order A, in the coefli-
cients of the term in the superpotential of order r in @ and proportional
to exp(2ain T} must be of an order A47g in @, given by

N = S A —2Ca. (29.3.34)

r

The coefficients £14p of the terms in @, that are quadratic in W
are shown in Eaq. (29.3.32) to be independent of the parameters in the
superpotential for Cy = s, so in this case Eq. (29.3.34) becomes

Ao = —2Caa. (29.3.35)

Thus there can be no terms in £;4p of positive order in the @, and any
term in ¢,4p that is independent of the @, must be independent of T.
These B-independent terms in £,4p are therefore again just the one-loop
contribution te the running coupling parameter ;.

The effective superpotential is shown by Eq. {29.3.32) to be linear in the
parameters in the superpotential, so all of its terms have just one A4, = 1
and the others zero. For such a term Eq. (29.3.34) gives

Ae=r—20a. (29.3.36)

A term in the effective superpotential with 4p powers of @ can therefore
only arise from terms in the bare superpotential with r = A powers
of ®. The terms with r = .#"¢ have a = 0, so they are given by the
tree approximation as just the bare superpotential. The only other terms
are non-perturbative corrections with r = #. Such a non-perturbative
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term, of a given order in the ®s, can only arise from terms in the bare
superpotential of higher orderin the ®s.

C, <G

Here the R vatue 2(C; — Ca) of exp(2inT) is negative, so positive powers
of exp(2izT) can compensate for the positive R values of ¥ and W,, and
#; may herefore contain terms of arbitrary order in Y and W, Using
the chiral symmetry condition (29.3.34) and the R invariance condition

2= N +2> N, —=2a(C— (1), (29.3.37)

we can, however, set limits on the structure of terms of a given order Ag
in the ®s. Egs. (29.3.34) and (29.3.37) have a trivial solution with A", =1
for r = A, A, = 0 for other values of r, and a = A"y = 0] this solution
just represents the presence in &, of the original bare superpotential, with
no radiative corrections. If there is no superpotential to begin with,
then A", = O for all #, so Eq. {29.3.35) does not allow any terms in the
Wilsonian Lagrangian with 4w = 0, and so no superpotential can be
generated. (In the supersymmetric version of guantum chromodynamics
this conclusion is usually derived by noting that there is no possible term in
the superpotential that would be consistent with ail symmetries, but as we
have now seen, the conclusion is much more general) For renormatizable
asymptotically free theories there is a useful limit on the structure of -
independent terms in #;. The condition of renormalizability teils us that
A, =0 for r > 3, so by subtracting 2/3 of Eq. (29.3.34} from Eq. (29.3.37)
we find

2= %.x‘/”m + 4w+ 24 (C; - %Cz) . (29.3.38)

Asymptotic freedom requires that 3C; > s, so for A =10 (or A ¢ >0
each term on the right-hand side is positive. It follows that we can have
no ®-independent terms of higher than second order in W, and these
terms are also independent of T, so they again represent the one-loop
contribution to the running coupling parameter 7;. But for C; < C; there
is no general prohibition against terms of second or higher order in W
and negative order in 9. :

294 Sopersymmetry Breaking in Gange Theories

We now turn to a question of great physical interest: in what gauge
theories is supersymmetry spontaneously broken?



29.4 Supersymmetry Breaking in Gauge Theories 277

Let us start with an Abelian gauge theory, the supersymmetric version of
quantum electredynamics described in Section 27.5. This is a U(1) gauge
theory with two chiral superfields @, carrying U({1) quantum numbers
+e, and superpotential f(®) = m®_ O, We saw in Section 27.5 that
supersymmetry is broken in the tree approximation if we include a Fayet-
lliopoulos term [V]p in the Lagrangian density, so the Witten index is
zero for £ # 0 and small e, and hence also for all values of e and ¢,
including ¢ = 0. Is supersymmetry unbroken for & = 07 It is unbroken in
the tree approximation, but how can we tell if higher-order corrections or
non-perturbative effects give the vacuum a finite energy in this case?

To answer this we shall use a symmetry principle of the theory for
¢ = 0, in the way that was described in general terms in Section 29.1. The
symmetry here is charge conjugation: the whole Lagrangian density is
invariant under the charge conjugation transformation of the chiral and
gauge superfields:

cOc' =@z, covel=-V. (29.4.1)

There is a massless fermion in the tree approximation, the photino, but if
we take the vacuum to be even under C then the one-photino state is odd
under C, so these states are not related to each other by multiplication with
the supersymmetry generator. The chiral fermion here has mass m in the
treg approXimation, so for small e it is not paired with the vacuum either.
With no fermionic state available to pair with, the vacuum state must
have strictly zero energy, at least for e small enough so that perturbation
theory gives a good quatitative picture of the spectrum. As we saw in
Section 29.1, the zerc energy of the vacuum implies that supersymmetry
is not broken. Likewise, the photino must be strictly massless, since it has
no bosonic state with which to pair,

Now, what about values of e that are so large that perturbation theory
cannot be trusted at all? The Witten index itself is no help here, because
it vanishes, Instead, let us consider the weighted Witten index, Tr C(—1)F.
We have seen that for small ¢ and & = 0 the vacuum has zero energy, and
there are also two Zero-energy states containing a zero-momentum photino
of spin up or down, and a bosonic zero-energy state containing two zero-
momenium photinos of opposite spin. The vacuum makes a contribution
+1 to TrC{—1)F; the two one-photino states make a contribution +2
(because both C and {(—1)F are —1); and the two-photino state makes a
contribution +1, giving a weighted Witten index TrC(—1)F = 4. This is
mdependent of the value of e, so even for strong couplings the weighted
Witten index is 4, and so supersymmetry is not broken.

There is a complication here.? In counting zero-momentum states in the
tree approximaticn, we have not considered the zero-momentum compo-
nents of the gauge field V,(x). A constant term in Vp(x) is no problem,
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because it can be removed by a gauge transformation
Vilx) — Vilx) + ayﬁ(x) , (29.4.2)

with gauge parameter A{x) proportional to x*. On the other hand, we
cannot simply remove a constant term in V;(x), because this would require
a paunge transformation with A(x) proporticnal to x!, which would conflict
with the assumed periodicity of the fields under translations by the box
dimension L = V"*/3, In the particular model under consideration here all
fields have charges e or zerc, so this periodicity is preserved if we limit
ourselves to a lattice of gauge transformations with

A{x) = -EE > otixt (29.4.3)
i

where £; are three positive or negative integers. Therefore although we
cannet remove the zero-momentum components of Vi{x) by a gauge
transformation, we can freely shift them by amounts 2nf;fel. The tree-
approxtmation Lagrangian (not Lagrangian density) for the x'independent
part of V, in a gauge with ¥y = 0 is simply —{L° "(8o¥.)%, so the
Hamiltonian is +1L73 ¥7,(m)?, where #; is the canonical conjugate to V;:
m; = L33 V;. The wave function W(V) for this field is then just like that
of a free particle of unit mass in three dimensions, in a box of linear
dimensions 27 /eL with periodic boundary conditions. The wave functions
of definite energy are proporticnal to exp(ik - V), with energy k?/2L3, and
k; = el.¢;] with £; integers. There is a unique zero-energy state of this fiefd,
with k; = 0 and with a normalized wave function equal to the constant
(eL/2x)2. Because this state is unique, our counting of zero-energy states
is unaffected by the gauge degree of freedom, and the weighted Witten
index is indeed 4. )

Now let us consider the theory of a simple non-Abelian gauge superfield,
without chiral superfields. Witten’s 1982 paper? on the Witten index
presented an argument that for such theories this index is r 41 (or possibly
—r—1), where r is the rank of the gauge group, the maximum number of
commuting generators. In 1997 he found a correction to this calculation,’
with the result that for the classical unitary, orthogonal, and symplectic
groups the index is a Casimir invariant C;, which for the unitary and -
symplectic groups is indeed equal to r + 1, but for the orthogonal groups
O(N) with N > 7 and the exceptional groups takes a different value. In
general, this Casimir invatiant is defined by Eq. (17.5.33):

Y CacoCaep = §2Cidaz, (29.4.4)
co

where g is a coupling constant, whose definition can be made unambiguous
by specifying that when the generators ¢4, tg, and tc are restricted to the
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three generators of the sstandard’ SU{(2) subalgebra that was used in the
calculation of instanton effects in Section 23.5, the structure constani is
simply gespc. For the classical groups, we have

{ N SU(N}
Cy = { N-2 SO(N) far N>3 . (29.4.5)
N+1 USp(2N)

For SU(N) the rank is r = N — 1, while for USp(2N) itis r = N, so in
both cases r + 1 = Cp. But SO(N) with N > 6 has rank r = (N—-1)/2=
(Cy+1)/2 for N odd and r = N/2 = (€1 4+2)/2 for N even, and the index
is €y, not r + 1. Of course, this does not affect the main conclusion that,
since the Witten index is not zero, supersymmetry is not spontaneously
broken. Kac and Smilga showed in 1999 that the index is also equal to
C, for exceptional groups.” We shall calculate the Witten index here only
for SU(N) and USp(2ZN) supersymmetric gauge theories with no chiral
superfields, but in the course of this calculation we will also see why the
orthogonal and exceptional groups present special difficulties.

The general strategy of this calculation is the same as for the Abelian
theories considered previously. We first examine the states of zero energy,
10 see if there are any that cannot be paired by action of the supersymmetry
generator. If there are, then as long as the coupling is weak enough so that
the tree approximation gives a good qualitative picture of the spectrum,
we know that these unpaired staies really have precisely zero energy.
We can then find some non-zero weighted Witten index, which will be
constant even for stronger couplings, and conclude that supersymmetry is
not broken for any coupling strength.

There is another complication here, that did not enter in the earlier
example of an Abelian theory with charged chiral superfields. As usually
formulated, general renormalizable theories of gauge bosons and gauginos
with no chiral superfields do not contain any dimensionless parameters at
all, so that there is no coupling parameter that can be adjusted to make the
couplings.weak, Instead we have a running coupling constant, depending
on the ratio of the energy to a characteristic energy scale A, like the scale
A =~ 200 MeV for quantum chromodynamics discussed in Section 18.7.
For non-Abelian theories the gauge coupling constant becomes strong at
energies below A, however weak it may be at higher energics. But here
we are working in a box of volume 1.3, which provides an infrared cut-off
at an energy ~ i/L, that is normally lacking in theories with unbroken
gauge symmetries. When we speak of a weakly coupled gauge theory,
it should be understood that we mean one with a coupling that is small
down to energies of order 1/L. In this case, it is essential to be able to
argue that supersymmetry is broken for strong as well as weak couplings,
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in order to be able to draw any conclusions at all about the realistic limit
of infinite volume. '

We will work in temporal gauge, where V9 = 0. The Lagrangian density
(27.3.1) is then

=13 fhi— 1Y (GoVa) - 1> (ZA '[ﬂ‘l].‘l) +13°D%, (2946)
A A

Al A

where, in temporal gauge,

faij=0Vaj—0;Vai+>_ CapcVaiVe;, (29.4.7)
BC
(Dif)a = 8ida + Y CapcVaide : (29.4.8)
BC
{Dod}a = Boda - (29.4.9)

(As usual, the gauge coupling constant or constanis are included as factors
in the structure constants Cype.) Without chiral superfields, there is no
other dependence on the auxiliary field D4; since it enters quadratically,
it may be put equal to the value at which the Lagrangian is stationary,
Dy = 0, and ignored from now on. Retaining only the x-independent
maodes, the effective Lagrangian becomes :

dex P = L3{—- % 3 (Z CABCVBEVCj)Z - % Z{ﬁoVAi}z
BC

Afj Al

I . .
~3 Z P («TA ?EVBE‘J»C) - %Z*Ayoaﬁ‘l-‘i] . {294.10)
ABCi A

The Hamiltonian is then
3 2 13 ~

H= % Zﬂﬁﬁ“% 3 (ZCABCVB:'VCJ') +% > CABC(AA YiVBfic) '

Al 7 dij BC ABCi
(294.11)

where mq = L33V, is the canonical conjugate to V.
The gauge field configurations with zero energy in the tree approxima-
tion are those for which 3 gz~ Capc VeV ;=0 for all 4, #, and j. This

condition is always satisfied if Vp; vanishes for all i except where fp is
in a Cartan subalgebra of the gauge Lie algebra.”® For the unitary and

* A Cartan subalgebra is any subalgebra spanned by r-independent gencrators ¢, that
commute with one another, that is, for which C, .4 vanishes for all 15 when £, and
ty are in the Cartan subalgebra, where r is the raok, the maximum number of such
generators. For instance, for the SU(3} symmetry of strong interactions discussed in
Section 19.7, the rank is v = 2, and the Cartan subalgebra can be taken to consist
of the third component of isospin 3 and the hypereharge t;, which act on the light
guarks with the commuting matrices denoted 4y and A; in Eq. (19.7.2).
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symplectic groups and their direct products this is the only way that it
can be satisfied. The same is trze for the orthogonal gauge algebras O(N)
with N < 6, which are all equivalent to symplectic and/or unitary Lie
algebras (see the Appendix to Chapter 15}, but not for orthogonal gauge
algebras O(N) with N = 7, which is why Witten’s original calculation
needed correction for this case.

In the rest of this caiculation we will only consider gauge algebras like
the symplectic and unitary algebras for which the condition of zero energy
in the tree approximation does require the Vg to vanish for all i except
where tp is in a Cartan subalgebra of the gauge Lie algebra. With al}
Vai = 0 except for the Vy; for which ¢, is in the Cartan subalgebra, the
zero-energy modes of the fermion field are those also with 44 = 0, except
for the Ay for which 1 is in the Cartan subalgebra.

Now we must count these states. The eigenvalues of the ¢t in any
representation of a semi-simple Lie algebra are quantized, so by gauge
transformations ail values of the non-zero gauge fields V., are equivalent
to values in a finite box with periodic boundary conditions. The quanti-
zation of these modes is just like that carried out for the gauge field in
the U(1) model considered above, so the zero-energy state of these fields
is again unique, with a constant wave functicn in the box.

The multiplicity of states with zero energy in the tree approximation
comes entirely from the fermion degrees of freedom. It is convenient
to use & two-component notation, in which instead of a four-component
Majorana field Ay, for each generator of the Cartan subalgebra, we
have two left-handed fields A, with @ = +1/2, and their right-handed
Hermitian adjoints 1,,; .. These gaugino fields satisfy the canonical
anticommutation relations

{’ﬂw‘Las }'.'QLB} = Oy @0ap
and
{ig'La, iﬂLb} = { vt L A@Lb} 0.

By operating on an arbitrary state vector with as many factors of Ay, as
necessary, we can construct a state vecter |0} which is annihilated by all
A« La- The general zero-energy state vector is then a linear combination
of products of the 2, _ acting on [0}.

To see which of these states may be paired with each other by the action
of the supersymmetry generator, we must take account of a symmetry of
the theory. The zero-energy condition, that the gauge and gaugino fields
lie only in directions corresponding to the Cartan subalgebra, is invariant
under the subgroup of the original gauge group consisting of elements h
that leaves this subalgebra invariant, that is, for which h—1¢t 4k is a linear
combination of the t5. These form a finite group, known as the Wey!
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group. For instance, in the defining representation of SU(N) the Weyl
group consists of permutations of the N coordinale axes, together with
multiplication by a phase necded to make the transformations unimodular.
These can be represented by products of the finite gauge transformations
Wi, ) = explino(ij}/2) = io(ij) with { ¥ j that permute the ith and
jth coordinate axes, where a(ij} is the U(N) generator with [e(iiy =
[6(i}}; = 1, and with all other clements zero. These transformations
induce orthogonal transformations in the space spanned by the diagonal
traceless Hermitian matrices ¢y that generate the Cartan subalgebra in
the adjoint representation. For instance, for the group SU(2) we can take
the Cartan subalgebra to consist of just ts, and the Weyl group then
consists of the unit element and a single non-trivial gauge transformation
W(1,2} = ie{1,2) = iy, for which W=, W = —t3. For SU(3) the
Cartan subalgebra has the two generators 43 and Ag, and the Weyl group
consists of the six gauge transformations 1, W(l,2), W(23], Wil,3),
W(1,2)W(2,3), and W(2,3)W(1,2), which generate rotations by multiples
of 60° in the space spanned by 3 and t3.

Assuming the vacuum 1o be invariant under the Weyl group, it can
be paired by action of the supersymmetry generators only with other
states that are invariant under the Weyl group."® This may or may not
include the previously constructed zero-energy state |0}. The condition
that the state |0} be annihilated by all Ay, is obviously invariant under
the Weyl group, so if it is unique this state must furnish a one-dimensional
representation of the Weyl group. The Weyl group always acts on the
generators of the Cartan subalgebra by orthogonal transformations, so
there are two such representations: the invariant representation, in which
cach Weyl transformation is represented by unity, and the pseudoinvariant
representation, in which each Weyl transformation is represented by the
determinant of its action on the generators of the Cartan subalgebra.

Let us first consider the case where [0} is invariant under the Weyl group.
Obviously no linear combination of the one-fermion states As 1 ol0) can
be invariant under the Weyl group. There is just one Weyl-invariant linear
combination of the two-fermion states; it is of the form U0}, where

U= e AyrahuLs- (29.4.12)
abof

(The spin indices @ and b are contracted with the antisymmetric tensor €.
defined by Eq. {25.2.9), because the anticommutation relations make the

“Witten remarked that physical states are necessarily Weyl-invariant, but we will
nol need to go inte this bere, becavse the Weyl invariance of the vacuum and of
ihe supersymmeliry generators means that only Weyl-invariant states are relevant to
spontaneous supersymmetry breaking, '
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product A% ; ;A% 1, antisymmetric in a and b} There are various Weyl-
invariant linear combinations of products of three or more generators of
the Cartan subalgebra, but the anticommutation of the 4%, , makes all of
them vanish! except for powers of U. Also, in the product of more than
r of the Us some of the A, , would have io appear twice, so Urtt =0,
We conclude then that the Weyl-invariant states are limited to the r +1
states

10y, U10), U0}, ..., U0} . (294.13)

These are all bosonic states, and there are no fermionic states with zero
energy in the tree approximation with which they could be paired, so for
sufficiently weak coupling these states must have precisely zero energy, and
supersymmetry is unbroken. Also, the Weyl-invariant Witten index here is
r + 1, and this is independent of the coupling strength, so stipersymmelry
is not spontaneously broken whatever the strength of the gauge coupling.

In the case where the state |0} is pseudoinvariant, the only Weyl-
invariant states are of the form

S ewa-Ayratzes 10 (29.4.14)
ﬂlg’ .

T To see this for SU(N), note that each generalor Ly of its Cartan subalgebra may
be writien as a lingar combination s = z‘cm?‘f of generaters T; of the Cartan
subalgebra of U{N), with the enly non-zero slement of each T7 being (T} = 1 (with
indices not summed). In order for the £,y 10 be traceless, we must have 3, Cai = 0.
Since the fields A7, , transform under the Weyl group like the t, it follows that for
a function > ., dya-dy tahmrs - tobe Weyi-invariant, the coefficients dy.g.. must
take the form ;

dog. = zﬂm catj - Dhi s
i

where the Dy;.. are invariant tensors, in the sense that for any vectors i, vy 6lC,
the function Diwv,...) = E”_,, D we;. .. is invariant under permutations of the
cootdinate axes. The most general such function is a hnear combination of products
of the function :

Six, y, 2, ...) =Zx,—y;z,--- ,

!

with arguments x, y, 2, ... taken as various subsets of the u, v, ¢tc. But because
3, can =0, in our case the sum of the components of each vector vanishes, 80 Diu) =
S(w) = 0; Dlu,v) is proporticnal to S(u,o}; Diy, ¢, w) is proportional to S(u,v,w);
D(w.v,w,x) is a linear combination of S(u,o,w,x), S(u,1)S{w,x), S, w)S(v,x} and
S(x,%)S(r,w); and so on. The imporiant point is that, gven though the function
Dfsi,v,...) may not be symmetric in its arguments {because different products of 58
may appear with different coeflicients), the functions S(w,v,...) are symmetric. In our
case, the vectors are the anticommuting quantities u(a), = E o e LaC e for which the
only non-vanishing 8 function is S(u(1/2)u(—1,/2)). With a suitable normalization of
the penerators, this is the operator U.
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where €y g is the totally anlisymmetric tensor of rank r. This is
completely symmetric among the 4, b, ..., so each state is characterized by
the number of these indices that are +1/2 rather than —1/2, a number
that can take any value from 0 to r, so the number of independent states
“is r + 1. Depending on whether r is even or odd, these states are either all
bosonic or all fermionic, so the Witten index here is 4-(r + 1), and again
supersymmetry is not spontaneously broken.

There is an interesting relation between the value of the Witlen index
obtained here and ideas of how certain global symmetries become broken.
The Lagrangian for a supersymmetric gauge theory is invariant under the
transformations of a global U(1} ‘R-symmetry, which change the left- and
right-handed parts of the gaugino fields by opposite phases:

dar > €924z, dag = € Aar, {(29.4.15)

with ¢ an arbitrary real constant phase. The conservation of the current
J# associated with this symmetry is violated by an anomaly

1

Ouls == 33,2

Z CACD Csen fﬁv fgg Epvpr » [29416)
ABCE

where as usual ¢,,, is the totally antisymmetric quantity with €12 = 1.

{This is obtained from Eq. {22.2.24) by taking the gauge group generators
t4 as (t4)pc = —iCapc, because the gauginos are in the adjoint represen-
tation of the gauge group, and by multiplying the anomaly with a factor
1/2, because the gauginos do not have distinct antiparticles.) With the
definition of the gauge coupling specified above, Eq. (23.5.20) gives the
integral of the product of ficld strengths in the ancmaly as

€1y per qux Zfﬁ“ fl" = 543;2-,4/32 , (29.4.17}
4

where the ‘winding number’ v is an integer characterizing the topological
class to which the gauge field belongs. Putting together Egs. (29.4.4),
(29.4.16), and (29.4.17), we see that an jnstanton of winding number v
induces a change in R = [d*x J? given by

AR = f $x 308 = —2C; | (29.4.18)

That is, the effective action contains terms {3 45 A4 £.ada £ 6€as)“t and its
integer powers that, instead of being invariant under the R-symmetry
transformations (29.4.15), are transformed by integer powers of the phase
exp(2ipCy). Thus instantens invalidate invariance under the general U(1)
R-transformation (29.4.15), reducing it to the group Zyc, of transforma-
tions {29.4.15) with ¢ an integer multiple of n/C;. We might expect
that the growth of the gauge coupling at low energy would lead (as in
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quantum chromodynamics) to the appearance of vacuum expectation val-
ues for gaugino bilinears, which would mean that the discrete symmetry
group Zjc, is spontaneously broken to its Z» subgroup, generated by a
simple sign change of the gaugino multiplet. Then there would be C;
zero-energy states |n), given by acting on any one vacuum state |X} with
the elements exp(intR/Ci) of Zsc,, with » running only over the values
0, 1, ...,C;y — 1 because we treat as equivalent any pair of states that
differ only by action of the generator exp{izR) of Z;. Since |X) can only
be a linear combination of states with even values of R, we can form
{1 states with all values 2% = 0, 2,...,2C, — 2 of R by taking the linear
combinations

In particular, for SU(N) and USp(2N} these states are the same as the
Weyl-invariant states encountered in the calculation of the Witien index
in the case where the state |0} is R-invariant, and Weyl-invariant rather
than pseudoinvariant. The operator U defined by Eq. {29.4.12) has R = 2,
so there are r + 1 = C states U”|0) with R = 2n running from zero to
2r = 2C) — 2. More generally, the presence of C; zero-energy states with
the same statistics helps to explain why the Witten index is equal to +C
for the exceptional and orthogonal as well as the unitary and symplectic
groups.

The fact that the Witten index is non-vanishing for all pure gauge
supersymmetric theories means that to find examples of spontaneous
supersymmetry breaking we must add chiral superfields te the theory.
It does not help to add massive chiral superfields to the theory, since
for weak coupling the introduction of massive fields does not change
the menu of zero-energy states. We have already seen an example of
this: the work of Affleck, Dine, and Seiberg reviewed in Section 29.3
showed that an SU(N,) gauge theory with Ny < N, left-chiral superfields
Qs in the defining representation of SU(N.) and an equal number of
left-chiral superfields @, in the complex conjugate representation, with
a mass term 3 . mi0 0,5, has N. zero-energy bosonic states and no
zero-gnergy fermionic states. (This is one case where the Witten index is
not left unchanged when a mass terms vanishes, because this mass term
is the term in the superpotential of highest order in the superfields, so
that a vanishing mass changes the behavior of the superpotential for large
superfields. In fact, Eq. {29.3.31) shows that as the masses go to zero the
scalar field values in the state of zero energy go to infinity.)

. On the other hand, there is no difficulty in finding theories with left-
chiral superfields subject to a symmetry that keeps them massless, in
which supersymmetry is dynamically broken. For instance, consider an
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SU(N.) gauge theory with Ny left-chiral superfields Q,; and Ny left-chiral
superfields {J,; again in the N and N, representations of the gauge group,
but now also with Ny left-chiral superfields L; that are neutral under the
gauge group SU(N,). Assume a global (or weakly coupled local) SU(Ny)
symmetry, acting on the ‘flavor’ i indices of the Qs and the Ls but not
the s, which among other things forbids a mass term linking the s and
Os. We take Q4 and L; in the representations Ny and Ny of SU(Ny),
respectively, while the Os are taken to be SU(Ny) singlets. The only
renormalizable superpotential is then of the form

fQ.Q.L) =3 9,0,Qula, (29.4.19)
ija

where the %; are a set of coupling constants, which by an SU(Ny)
rotation may be chosen to have only one non-vanishing component, say
the one with j = Ny, which can also be chosen to be positive. (This is a
generalization of a model tréated by Affleck, Dine, and Seiberg,? in which
they took N. = 3 and N; = 2.) The gauge-neutral superficlds L; have no
effect on the non-perturbative terms in the effective superpotential, so we
can use the result of Section 29.3, that for N, > N/ the gauge interactions
yield a total effective superpotential :
}—lf(N._»--Nf)

foal Q.G L) = 3 70,/ Quili + # [Dety 3 CuiQa ,
ija : d

' (29.4.20)

with & a constani. In order for supersymmetry to be unbroken it is

necessary {though not sufficient) that the scalar components ¢aj, g, and

£; of the chiral superfields satisfy the condition @f (g, q,£)/0¢: = 0, s0

that, for all |,

N %G00 =0 (29.421)
Ja
But this tells us that the matrix 37, 4,;4. has a zero eigenvalue, and there-
fore has zero determinant, so this is a singular point of the superpotential
(29.4.20), at which it is impossible for &fiota1/0gar OF @ftotal/ 844 to vanish.
Supersymmetry is therefore necessarily broken in this class of models.

For instance, Affleck, Dine, and Seiberg® found the non-vanishing scalar
components g, §,;. and of the superfields @y, @y, L; at the minimum
of the potential in their model with N, = 3 and Ny = 2 to be at the values

g =175 = 1286 (A /29)'7
g = Gz = 1.249 (4 /29)7, (294.22)

¢1=/al, — a3,
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where the vacﬁum energy density is
| pyac = 3.593 (16910 /W7 ' (29.4.23)

Also, & = 2A7 for 8 = 0.

The fact that supersymmetry is spontaneously broken in this case en-
courages us to think that it will be broken by strong gauge forces in a wide
range of asymptotically free gauge theories, and thus lends legitimacy to
the speculations about supersymmetry breaking in Section 28.3.

29,5 The Seiberg—Witten Solution®

It often happens that the tree-approximation potential in a supersymmetric
theory will take the value zero for a continuous range of scalar field values.
(For one example, see Eq. (29.1.9).) In this case the theory has a number
of scalar excitations with zero mass in the tree approximation, which
since supersymmetry is unbroken must be accompanied with suitable
fermionic superpartners. At low energies the theory will then be described
by a family of supersymmetric effective Lagrangians, whose members are
parameterized by one or more moduli, the scalar expectation values in the
underlying theory. Quantum effects in the underlying theory can modify
the dependence of the effective Lagrangian on these moduli, and even
alter the topology of the space of moduli®

In one of the most striking accomplishments of the 1990s i super-
symmetry theory, Seiberg and Witten!® were able to calculate the exact
dependence of the low-energy effective Lagrangian on a modular param-
eter in gauge theories with N = 2 supersymmetry. The ideas behind this
calculation can be made apparent by running through only the simplest
special case, that of an SU(2) gauge theory with N = 2 supersymmeiry
and no additional matter hypermultiplets.

We saw in Section 27.9 that the Lagrangian density for this theory is
given after elimination of the auxiliary ficlds by

£ = Z}f [— > (Du)y (DFPa — % > (w{th)
A P

ARC

. 1
~2./2Re >  eanc (iz,; Efpc:L) $p — r S Fawfy
A

* This section lies somewhat out of the book's main line of development and may be
omitted in a first reading.
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b2 =

T ) ﬂ [ *
Z (AA [p"l)f'l)] + 647[25#\'{’1‘3 fod ﬂ - V(¢?¢ ) »
A A .
(29.5.1)

where A, B, and C now run over the vahues 1, 2, and 3. We have now
rescaled all the fields by multiplying each of them by a factor ¢, so that e
does not appear in the covariant derivatives:

(Dup)a = dupa + 3 eaBcVauwe » (29.5.2)

BC
(Dpl)s = Bl + Y €ac VBpAc (29.5.3)

BC

(Dub)a = Suba + > €ascVaudc » (29.5.4)

BC
Faw = 8uVay — BV + 2 €ancVauVer {29.5.5)

BC
and the potential is
2
Vig,¢") =23 |Y esncRegplmog| . (29.5.6)
A LBC

This potential takes the value zero for a family of scalar field expectation
values, which (up to a gauge transformation) may be parameterized as

¢1=¢2=0, ¢1=a, (29.5.7)

with a a complex parameter, known ag the vacuum modulus. This vacuum
expectation value gives masses 2|a| to the vector fields Vi, and V3, the
gauginos A and Ay, the chiral fermions y; and 3, and the scalars ¢ and
&2, leaving Vi, 43, w3, and 93 =a afl massless.

Taking account only of these zero-mass modes (and dropping the sub-
script 3), the tree approximation gives the effective low-energy theory as
simply the free-field theory with Lagrangian density

S = [—(aga}' @)~ 5w (7))

i 1 /= 8
"'Zf,uvf‘w — i("l (pi))‘J + @{fe;:vpofmfpd ¥ (2958}

with fu = 8V — &V Indeed, any renormalizable theory of a single
gauge boson and its gauge-neutral N = 2 superpartners must be a free-
field theory, because N = 2 supersymmetry does not allow a superpotential
- for this theory.
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But this is not the whole story. In integrating out the massive degrees of
freedom in this theory, quantum corrections produce non-renormalizable
interaction terms in the low-energy effective field theory. We can classify
the interactions and Feynman diagrams containing them that predominate
at low energy by the same sort of counting of powers of energy that
we used in dealing with low-momentum pions and nucleons in Section
19,5 When we use the effective Lagrangian perturbatively to calculate
low-energy scatiering amplitudes, the number v of powers of energy
contributed by a connected graph with L loops, f; external fermion lines,
{y internal boson {a or V) lines, I, internal auxiliary field lines, and V;
vertices of each type i, is

v=4L+ Y Vidi— 2y —1Ig, (29.5.9)
i

where d; is the number of derivatives in the interaction of type . (Internal
auxiliary field lines do not contribute in Eq. (29.5.9) because their propa-
gators are independent of momentum.) These quantities are subject to the
topological relations

L=I+Ij+I,—Y Vi+1i, (29.5.10)
i

and
UptEy =3 Vib, 2UrE =Y Vifi, 2UetEa=) Vi, (29.511)
i i i

where Ep, Ef, and E, are the numbers of external boson, fermion, and
auxiliary field lines, and by, fi, and g; are the numbers of boson, fermion,
and auxiliary fields in interactions of type i. We can therefore write the
number of powers of energy as

v=S"Vidi+ ifita—2)+2L— By —2E, +2. (29.5.12)

According to Eqgs. (26.8.4) and (27.4.42), both the D-term of a function
of lefi-chiral scalar N = 1 superfields and their adjoints and the # -term
of a pair of N = 1 gauge superfields W, times an arbitrary function of
N = 1 left-chiral scalar superfields have d;+ ! fi+a; = 2, while adding any
additional W, factors or superderivatives @, would give di+ ;fi+a > 2, 80
in our case supersymmetry rules out any interactions with d;+ § fi+a; less
than 2. The dominant coniribution to low-energy scattering amplitudes is
thus given by the tree approximation {L = 0), calculated with an effective
Lagrangian containing only tecms with d; + 1f; + & = 2, which takes the
general form discussed in Section 27.4:

Lo = %[K((D,tb'}]b - %Rc {T(ap) (W,Tewf,)}ﬁ : (29.5.13)
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Eq. (27.4.42) then gfvcs the Lagrangian in terms of component fields as

FK ,a i/ .
T;{%‘;il—)[—i(zp s?lp) + !.?’|2mapa6"a}

%%%? (vec) (wor)

+iRe { (72 (wes) d?;gaj} - %Re {(’_u‘*)ﬁ di{:ﬂ]}

+Re {:r(a}[— %(I F1—75)2) %f,.vf“”

P o

+§fepwf S Ll %DE] }
+5j—jRe {dr:;ga) [_(IyﬂvaL)fpv + 2i(IwL)DJ} . (29.5.14)

In order to implement N = 2 supersymmetry, we now want to impose
invariance under the discrete R-symmetry transformation (27.9.2):

P — A, A —qp, (29.5.15)

with ¢ and ¥, unchanged. The condition that the coefficients of (T )
and (4 ¢4) should be equal is

d*K(a,a")
dada*

The right-hand side is the sum of a function of a and a function of a’, so
9K /0%ad%a" = 0, and therefore the term quartic in w, which would have
had no counterpart for A, is absent. By an integration by parts, the term
iRe{T{a)(X Pysi)} may be replaced with ——él}e {{(Ay*ysA)8, T(a)}. The
conditton that the coefficients of (Fp*ysyp) and (4y#ys4) should be equal is
then satisfied if

= Re T(a). - (29.5.16)

i 1 8K
4 wl = Eﬁza@a’a"‘a’

which is also an automatic consequence of Eq. (29.5.16). According to
Eq. (26.A.7), the terms proportional to f,,,(Aly%, y"]w) and f,.(A[v%,7"]vsw)
ar¢ automatically invariant under the transformation (29.5.15), as are also
the terms proportional to (A4 {PFywr) and its adjoint. On the other hand,
the invariance of the terms proportional to (Ap)D and (Aysw}D requires
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that we extend the transformation (29.5.15) so that
D——D, ' (29.5.17)

which also leaves the term %Dl invariant. Finally, Eq. (29.5.16) tells us that

the coefficients of (Py )& " and (14y)F are equal, so the transformation
(29.5.15) must also be extended so that

F o F, (29.5.18)

which also leaves the term |Z|? invariant. We conclude then that the con-
dision (29.5.16) ensures that the whole action derived from Egq. (29.5.14)
is invariant under the combined transformation (29.5.13), (29.5.17), and
(29.5.18). Since the Lagrangian is invariant under N = 1 supersymumetry
with a lefi-chiral scatar supermultiplet {a, p, ¥} and 2 gauge supermul-
tiplet (¥, 4, D), it is also invarjant under a second supersymmetry with
a left-chiral scalar supermultiplet (g, 4, #°) and a gauge supermultiplet
{Vy, —p, —D). Eq. (29.5.16) is therefore enough to ensure that the action
obtained from Eq. (29.5.13) or (29.5.14) is invariant {without imposing the
field equations) under N = 2 supersymmetry.
The general solution of Eq. (29.5.16) can be expressed as**

T(a) = @) K{a,a") = Im {“‘M“}} C (29.5.19)

dni da 4n

with h a function of g alone. In terms of A, the Lagrangian density
(29.5.14) now reads

#= '&%Im{ [52] [~ 5@ #—vstw) - S (1a —y90)
—dadta’ + \FIP + %Dz — ;11 [ + %iempaf‘“‘f"”]}
+$Im{ [%} - % (wwe) 7" - %(IAL)? + % i (Tyr)D

_g (I?“?"qu)fm} }

gt { “Z’;(;” (742) (w;,)} . (29.5.20)

This is invariant under an SU(2) R-symmetry, under which {1, 1) trans-
éorms as a doublet and (Im %, Re#, D//2) as a triplet. The discrete

** The factor 1/4xi is inclnded in order to simplify the duality transformation introduced
telow. Seiberg and Witten introduced a function #{a) (not related to the auxiliary
field #), known as the prepotential, for which k(a} = dF (a)/da.
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transformation (29.5.15), (29.5.17), and (29.5.18) is a finite element of this
SU(2) group: 2 rotation of n radians around the 2-axis.
Comparing Egs. (29.5.8) and (29.5.20), we see that in the free approxi-
mation
dni 8
h(ahree = {— + :—Z—E-] a.

el

- (28.5.21)

The achievement of Seiberg and Witten was to calculate h{g) exactly.

The first step in this calculation is to recognize that there are various
linear transformations on a and dh(a)/da that give physically equivalent
theorics. This is because of a remarkable property of the low-energy
effective theory, related to the duality property discussed briefly in Section
27.9. To demonstrate this property, et us return to the Lagrangian density
(29.5.13) expressed in terms of N = 1 superfields, now using the refations
(29.5.19) required by N = 2 supersymmetry

Po = éxm [ hi@)] - %Im [ () (wiewp)| . (29522)

In path integrals the spinor field-strength superfield Wy, is constrained
by the supersymmetric extension (27.2.20) of the homogeneous Maxwell
gquations:

Re (@EewL) ~0. (29.5.23)
This is usually imposed by requiring that Wy, take the form (27.2.15)
Wi, = i(.@‘}e.@g) aLV, (29.5.24)

where V is an unrestricted real superfietd. Instead, we can implement
the condition (29.5.23) by introducing a Lagrange multiplier term in the
action _

Aleg = 8—1nRe f d*x [!‘f (_@EEWL)]D : (29.5.25)

where ¥ is an unrestricted real superfield. {The numerical factor 1/8x
serves to fix the normalization of ¥ in a way we shall find convenient
later.} Then in path integrals we can integrate over both ¥V and Wi,
with no restrictions on either except that ¥ is a real superfield and Wy
is a left-handed spinor superfield satisfying the left-chirality condition
DreWip = 0. Integrating by parts in superspace allows us to write the
new term in the action as

Afog = — %Re [ d*x [((@Lr"f}TEWL)]D : (29.5.26)
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or, using Eq. (26.3.31) and the fact that Wy is lefi-chiral,
i 3T
= f Px [(WLEWL)]y] , (29.5.27)

where W is defined in terms of ¥ by the same relation that previously
gave W in lerms of V;

Al = Re

Wy = ﬁ(@ﬁe%)@ﬁ . (29.5.28)

But now we are integrating over W; with no such constraint, with an
action that is quadratic in Wy

Lg + A}cﬁ =Im fd"x [——% h’({b] (WEEWL) - % (WEEWL)]-F

1 .
+g-Im f dtx [fp h((D}] . (29.5.29)
This integration is done by setting W, equal to the value where the action
is stationary in Wy :
Wy,
Wy =— ) (29.5.30}

and the whole effective action becomes

.1 ot 1 .
g =+ 5-Tm fd“x [h—,@ (WLEWL)L + g-Im fd“x [o"k@)], -
_ {29.5.31)
Now, if we define a new lefi-chiral scalar superficld and a new & function
® = h(P), ) =—a, (29.5.32)
then
dh dh db 4o 9 (29.5.33)

b dd ~  gdao -
so the action (29.5.31) may be written as

Fop = — —8-1;1-1111 f dx [F(@® (Wlew)], + E-%Im f & [87®))
_ (29.5.34)
From the method by which we have derived it, we know that the theory
based on this effective action is equivalent to the original effective field
theory, so the N = 2 effective field theory with scalar field value a and h
function h{a) is physically equivalent to one with scalar field value' ap =

" The subscript I stands for ‘dual and of course has nothing to do with the D-term of
a superfield.
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h(e) and h function kiap) = —a. This is the version of duality that applies
in the present context. _

There is another transformation of the function k{(®) that also yields
an equivalent Lagrangtan {now with no change in ® or W) and can
he combined with the transformaticn (29.5.32) to give a larger group of
duality transformations. Suppose we shift h{®) by a linear term with a
real coefficient:

h('{I}) — @)+ b, (29.3.35)

where b is a real constant. Then the first term in the effective Lagrangian
density (29.5.22) is shifted by &Im {[®"®]p}/8x, which vanishes since the
D-term of @*® is real. The change in the effective Lagrangian density
(29.5.22) is therefore given by the shift in the second term

b
Fent — Lo — Im [(WEewy)] | (29.5.36)
or, according to Eq. (27.2.13),
N S|
Lo — Lo — 5 [; (2852) + 3677 fy fp,} : (29:537)

The first term in the brackets on the right-hand side is a spacetime
derivative, and therefore does not affect the effective action. The sec-
ond term in the brackets can also be written as a spacetime derivative
{1/2)8,(e""# A, f ,s) wherever f,, can be written as J,4, —dyA,. However,
as discussed in Section 23.3, the gauge transformation that we used to put
¢4 inthe 3-direction must be singular somewhere, so we cannot write f,,
everywhere in terms of a single A,. In consequence, physical quantities
can be affected by a term in the action of the form

- 5'4%*2 f X B9 f o (29.5.38)

in particular, Witten!! has shown that, in the theory of magnetic monc-
poles described in Section 23.3, the electric charge of a magnelic monopole
with minimum monopole moment in the presence of such a term is ef/2x.
But, as mentioned in Secticn 27.9, in this theory there are also dyons,
particles with both magnetic monopole moments and charges given by
any integer multiple of e, so the whole pattern of monopole and dyon
charges is periodic in & with period 2x. In fact, all physical quantities have
this pericdicity, because the 8 of the low-energy effective theory is inherited
from the 0 appearing in the Lagrangian density {29.5.1) of the undexrlying
theory (note Bgq. (29.5.21)), and we have seen in Section 23.5 that all
physical quantities are periedic in this 8. According to Eq. (29.5.37), the
transformation {29.5.35) changes & by 2ab, and therefore with b equal to
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an arbitrary positive or negative integer it yields an equivalent eflective
action.

This sort of transformation is closely related 1o an exact invariance
of the underlying theory. The Lagrangian (29.5.1) is invariant under a
continuous R-symmetry, under which

9}'_ - exp(inc]HL . WAL - exp(:’a] WAL ) d},gg -— exp{Z:a ‘DA (29 5. 39)

This symmetry is broken by an anomaly: both 1, and w,; have R
quantum numbers +1, and of course A4z and 4 have R quantum
numbers —1, so according to Egs. (23.5.21) and (23.5.23), the measure in
the integral over fermion ficlds changes under the transformation (29.5.39)
by a factor exp(2iaNv), where v is an integer, the winding number of the
vector field configuration, and N is defined by

1
Tr (tAtB) = ENCSAB .

(The factor exp(2ixNv} is the same as given in Section 23.5, even though
here we have two fields w4 and 14 in the same representation of the gauge
group, because these are Majorana fields, in contrast with the Dirac
fields used in Section 23.5.} The generators here are {t4}pe = —ic nc, 50
N = 4, and therefore the measure remains invariant when exp(8in} = 1.
In other words, the continuous R-symmetry is broken by instantons to a
Zg subgroup, generated by the transformation

VAL = ivaL, Aar o ikan, da—ida. (29.5.40)

This symmetry then must carry over to the effective low-energy theory.
However, it does not tell us that the effective Lagrangian (29.5.20) is
invariant under the discrete transformation (29.5.40), which would require
that —ih(ia) = h(a) for all a. This condition is satisfied by the tree
approximation (29.5.21), but (as we will see) it is violated even in one-
loop order. The Zg R-symmetry is realized in the effective theory by the
condition that the effective theory with k function —ih(ia) is equivalent
to one with A function h(a). That is, —ik(ia) must be related to h{a) by
some combination of the transfonnatmns (29.5.32) and (29.5.35), with b
an integer.

We have seen that the physical significance of the theory is left un-
changed by two sorts of transformation; the transformation ® — ® = h{®)
and k(@) — (D) = — @, which can be written as

( h(?;}) ) - ( —01 [1} ) ( ;,{%) ) . (29.5.41)

and the transformations A(®) — @) + bd, ® — @, which can be written



256 29 Beyond Perturbation Theory

( hg)b) ) - ( - ) ( hﬁ’m ) : (29.5.42)

- where b is an arbitrary integer. By combining these transformations, we
can make generalized duality transformations

( fﬁb) ) - ( el ) ( h?:D] ) ’ (29.5.43)

where n, m, k, and I are any integers satisfying the condition that the
matrix in Eq. (29.5.43) should, like those in Eqs. (29.5.41) and (29.542),
have unit determinant:

das

il —pikeo= 1. (29.5.44)

These transformations therefore form the group § L(2,Z)

The physical significance of the duality transformation can be brought
forward by considering the central charge of the N = 2 supersymimetry
algebra. As shown in Section 25.5, the eigenvalue Z; of this central charge
in any one-particle state sets a lower hound M = |Z;|/2 on the mass
of the state, a bound that is reached for particles that belong to ‘short’
supermultiplets. We saw in Section 27.9 that Z 17 is given in the underlying
SU(2) gauge theory with N = 2 supersymmetry by Eq. (27.9.22):

Z1p = 220 [ig — H1,

where ¢ and # are the charge and magnetic moment of the particle, and v
is the vacuum expectation value of the conventionally normalized neutral
scalar field. In the notation used in the present section, we have absorbed
a factor e into the normalization of the field @, so here we have

Zig = 2:2alig — #/e. (29.5.45)

This theory contains particles like the massive elementary scalars, spinors,
and vector bosons, which have charge ¢ and zero magnetic monopoele
moment, so such particles are eigenstates of Z12 with eigenvalue

Z;:%arged elementary -7 ﬁia . {29_5. 46)

As we have seen, the theory with scalar field a and h function h(a) is
equivalent to one with scalar field na +m h(2) and h function k a + 1 h(a).
Therefore for all integers » and m the theory with scalar field @ and k
function h{a) must also contain a particle that looks like a massive particle
of charge e and zero magnetic moment in the version of the theory with
scalar field na + mh(a) and k function ka + Ih(a), and that therefore has a
central charge

Zp =22i[na+m ha)] - (29.5.47)
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Comparing this with Eq. (29.5.45), we see that, in the version of this
theory with scalar field @ and A function h(a), this particle appears as one
with a charge g and a magnetic menopole moment .# given by

g/e=n+mRel[h(a)/a] . e =mlm[h(a}/a] . (29.5.48)

This is a dyon, with both charge and magnetic monopole moment. Note
that the formula (29.5.48) for the charge of this particle bears out Witten's
earlier result about the charge of magnetic monopoles: adding a term ba
to the function k(a) changes the chdrge: of a monopele with m =t by an
amount be = eAd/2n.

Using the tree-approximation result {29.5.21) for h(a) in Eq. (29.5.48)
shows that in this approximation the magnetic monopole moments in
this theory are multiples of a value 4n/e. This is the same as the mag-
netic monopole moment derived in Section 23.3 (recall that the magnetic
monopole moment g used there is .4 /4n), but this is a semi-classical re-
sult, subject to quantum corrections. Note that the duality transformation
(29.5.41) with n =0 and m = 1 takes an elementary particle with charge e
and magnetic monopole moment zero into a non-elementary particle with
magnetic monopole moment Im [h(a)/q], which in the tree approximation
18 4 /e.

The beta function for the electric charge in the underlying N = 2
supersymmetric SU(2) gauge theory is given perturbatively by the one-
loop result Eq. (27.9.50), with the first Casimir invariant taken now as
€y = 2e and the number of hypermultiplets set at H = 0:

23

Bperurbative(2) = e (29.5.49)

We here take @ as the renormalization scale, so the running charge e(a)
satisfies

a;—ae{a] =B (e(a}) . ©(29.5.50)

Using the perturbation theory formula (29.5.49), this gives

1
[9_2(9)]p¢rturbaﬁve =30 In (%) . (29.5.51)

where A is an integration constant. In the formalism we are adopting
here, with a factor ¢ absorbed into the definition of the gauge field, the
quantity e *(a) appears as the coefficient #'(a)/4xi of the term — [, f*
in the low-energy effective Lagrangian {29.5.20), so the function k(a) is
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given in perturbation theory by

{h(a)] perrurbative = %:_ [‘1 In (%) - ‘1} = dria [[e—z(a)]ptfmrbative - #} :
(29.5.52)

This is a good approximation? for sufficiently large values of |a}, where
Eq. (29.5.51) gives a small value of e(a). In this case, Eq. (29.5.48) gives
the magnetic monopole moment of monopoles and dyons as

- 1
vﬁpenurbative/-e =4dnma [[‘? 2"(f“)]p::rl:l.lrbativ..'e - '2‘1;5 s (29.5.53)

where m is an arbitrary integer. Note that this is not the same as would be
found by simply replacing e with the running charge e{e} on the right-hand
side of the semi-classical formula .# /e = 4nm/e”.

For sufficiently large values of |a|, Eq. (29.5.52) also satisfies a necessary
consistency condition: the coefficient Im k'(a}/4n of the kinematic terms
— Y F), — (A @A), —8,a’0"a and — }f,, f** must be positive. The same
condition tells us also that Eq. (29.5.52) cannot be a good approximation
for all values of a, because it gives a negative value for Im#'(a) for |4
sufficiently small.

Eq. (29.5.52) shows that if a is carried counterclockwise around a circle
with a large value of jaj, where perturbation theory is valid, then h(a) is
shifted by —4a. This tells us that h(a) must have one or more singularities
at finite values of a. ' :

We can easily rule out the possibility that h(a) has just one singularity,
because this would make it impossible to satisfy the condition that A'(a)
should have a positive imaginary part for all non-singular values of g,
which as we have seen is necessary for the positivity of the coefficients
of the kinematic terms in the effective Lagrangian. A single singularity
would have to be at ¢ = 0, because the Zg-symmetry tells us that if k(a) is
singular at a then it is also singular at ia. The function h(a) - hperrarbative{@)
would then be analytic except at infinity and perhaps at a = 0, but this
function vanishes as |a| — o, and in particular does not change when
carried around a circle at large @, so it could at most be a polynomial
in 1/a, with no constant term. If the polynomial does not vanish, then
K{a) goes as some negative power of ¢ as @ — 0, which would not

t The additive constant nesded in integrating K(a) bas no effect on the low-energy
effective action derived from Eqg. (29.5.22}, because [@*]p is a derivative. This constant
can be fixed by reference to the Zy-symmetry discussed earlier. Eq. (29.5.52) satisfles
—ih(ia) = k{a)- 1, which is a special case witk b = —1 of the transformations {2%.5.35)
that leave the physical significance of the theory unchanged. This would not be the
case if we had added a constant to Eq. {29.5.52).

t There ate non-perturbative contributions'? to f{e), arising from instantons, but these
vanish rapidly for e — G
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have a positive imaginary part, while if the polynomial did vanish then
K(a} would be equal 10 Ay ibarive(@)s whu:h also does not have positive
imaginary part for ¢ — Q.

In studying the singularity structure of k(a), it is helpful to keep track of
duahity by treating a and ap = h(a) in the same way, expressing them both
as functions of some complex variable «. Seiberg and W1tten tock u to
be the expectation value of the gauge-invariant quantity 1 52,4 ¢apa. This
changes sign under the Zz transformations ¢4 — *igq, and of course
under this transformation a = ¢; — 1ia, so

a(—u) = *ialw). (29.5.54)

The sign here has no physical significance because a and —a are related
by a finite SU(2) gauge transformation. (Where necessary it can be made
definite by adopting the convention that the upper and lower signs apply
if Reu > 0 or Reu < 0, respectively.) We can trust perturbation theory
for large values of |al, so for |u| — o0

a— J2u, au—r—[\/“— ln( ) 24/2u } {29.5.55)

Note that when u is taken counterclockwise around a circle at a fixed large
value of |u|, the logarithm In(2t/A?) is shifted by 2in, while /21 changes
sign, so the changes in ¢ and ap are given by a monedromy matrix:

( c:; ) — ( _21 ,?1 ) ( :::;. ) ‘ (29.5.56)

The functions a{t#) and ap{u) must therefore have two or more singu-
larities at finite values u, of u, such that the combined effect of going
counterclockwise around each singulanty is the same as (29.5.56),

Let us consider the possibility that there are just two singularities. {This
was shown te be the case in the second Seiberg—Witten paper of Reference
10} Under the Zg-symmetry that takes a4 — iaq we have u — —u, so
the singularities must be at a pair of u values uy and —ug. Going from
a non-singular base point P in the » plane counterclockwise around the
singularity at +ug all the way back to P should yield an equivalent theory.
Therefore it must take the form of a duality transformation, in general
depending on P, in which the vector («, ap) is multiplied with an SL(2, Z)
monodromy matrix My, as in Eq. (29.5.43). The counterclockwise contour
around the circle with fixed large ¥ can be deformed into a contour that
starts at P and goes counterclockwise back to P around —ug and then
counterclockwise back to P around +ug. (See Figure 29.1.} Since this
deformation cannot change the integral, the product of the monodromy
maltrices in this order (reading from right to left) must be equal to the
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Figure 29.1. Deformation of a contour that circles the complex u plane ¢counter-
clockwise at large |u| into a contour that starts al a base point P, circles the
singularity at u = —up counterclockwise back to P, and then circles the singularity
at u = -y counterclockwise back to P.

matrix in Eq. (29.5.56):

MM = My = ( 7 %) (29.5.57)

Singularities occur when @ and ap take values at which some particle
has zero mass. For instance, the singularity at @ = 0 in the perturbative
formula (29.5.52) for h{a} occurs because this is the value of a at which
elementary charged particles become massless in perturbation theory. We
have already ruled out the possibility of a single singularity at a = 0, s0
the singularities at tup must arise from the vanishing of the mass of some
other particles.

The most striking part of the Seiberg—Witten calculation was their
realization that these particles are among the non-elementary magnetic
monopoles or dyons found in the underlying S U(2} supersymmetric theory.
Semi-classical calculations of the sort done in Section 23.3 show that the
stable monopoles and dyons have magnetic quantum number m = +1 and
any integer electric quantum number n, and belong to hypermultiplets,
ecach consisting of a pair of Majorana spinors and a pair of complex
scalars. These are ‘short’ multiplets, with a mass given by the BPS value,
which according to Eqs. (27.9.24) and (29.5.47) is

M = |Zpa)/2 = V| Na+ ha) [ , (29.5.58)

where N = +n. The easiest way to calculate what happens when this mass
goes to zero i3 to consider the more familiar problem of what happens
when the mass of a hypermultiplet of ordinary charged particles goes to
zero, and then use duality to switch to the case of ‘a light monopole. The
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beta function for the U(1) gauge coupling is given here by Eq. {27.9.45)
with €} =0, C2 Ci=2s0

Bie) = +

The solution of the renormalization group equation is then

1 a
o2
(a) = dn? o (constant) '

As we saw 1n deriving Eq. (29.5.52), this gives
H(a)=dnie (a) = - -l (—a_) :

m constant
Because this gives a value of e¥(a) that is positive and small for ¢ — 0, this
would be a reliable result if the theory really contained a hypermultiplet of
ordinary charged particles whose mass goes to zero in this limit. Instead,
we are assuming that there is a hypermultiplet of monopoles or dyons
whose mass goes to zero; to deal with this case, we can apply the duality
transformation (29.5.43) that takes a into Na 4 h(a)

( W) ) - ( ag,) ) = ( R ) ( Ha) ) . (29559)

We conclude that when u approaches a point up where & = Na+h(a) — 0,
we have

dha i (ﬁ-i——‘) : {29.5.60)
da n constant
or, in other words,
da i ha)+ Na
d(h(a) + Na) -+ 7 fn ( constant ) ' (29.5.61)

The solution is

M@) , (29.5.62)

alu) = a + %(h(u) + Na{w)) In ( A
where @y and Ay are integration constants. We are also assuming that
h+ Na — 0 for u — 1y, so we can write the leading term as

hlu) + Na(u) = co{u — up) . (29.5.63)
Thus qu. (29.5.62) has the leading term

a(u) — ag + LEQ(“ — 1) In (@X;—‘f"—)) . (29.5.64)

When we take u counterclockwise all the way around a circle surround-
ing ug there is no change in A(a} + Na, but a is shifted by —2(h{a) + Na),
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$0 the monodromy matrix for this singularity is

[ 1-2N -2
M+=( N7 1+2N). (29.5.65)

Likewise, if the singularity at —uy is associated with the vanishing mass
of a monopole or dyon with magnetic quantum number +'1 {the prime
distinguishing this sign from that for.ug) and electric quantum number »/,
then at this singelarity h{u} + N'a(u) — 0, and -

h(u) + N’a(u))

Ay !
where N = +'n’ and af, and A{ are new integration constants. The leading
terms are

a - dy+ ;i—(h{u} + N'a()) In ( (29.5.66)

hu) + N'a(uy — cf(u+uy) , {29.5.67)
& dy+ D 4 uo)n -‘i(l'-f—”‘ﬂ . (29.5.68)
‘J'E Af
The monedromy matrix for this singularity is
1—2N -2
M_ = ( AN 14N ) . (29.5.69)

It is straightforward then to see that the condition (29.5.57) on these
matrices i1s satisfied if and only if

N = N—1. (29.5.70)

It makes no difference what value we take for N, because we can shift it
by an even integer 2M by going around the circle at infinity M times, and
we can shift it by unity by reflecting # «— —u. Seiberg and Witten chose
to take N =0, so that N = —1. Then for u — ug

h(t) — colu— uo) , (29.5.71)
alt) — do + (4 — ) In (“ ““") , (29.5.72)

4 f\.[}

and for u —» —uy
h(s) — a(u) — chin +up) , (29.5.73)
., ich #+ tip

alu) = g5+ —2(u+ wo)In - . (29.5.74)

s Ag

We now impose the unbroken Zg-symmetry condition (29.5.54), We can
calculate a(u) for 4 — —up by writing it as —ia(—u} and using Eq. (29.5.72).
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Then for u — —up

a{u) — —iap + % In (:c——-—-——ﬂ(;: uﬂ)) .
Comparing this with Eq. (29.5.74), we see that ¢}, = icp, so Eq. (29.5.73)

hecomes, for u — —uy,

(29.5.75)

() — a(u) — fco (1 -+ Ho) - (29.5.76)

The field g is defined to include a factor of the gauge coupling e, which
can be given any value by an appropriate choice of the renormalization
point at which e is evaluated. Seiberg and Witten chose to define the
scale of a and u (keeping u = a%/2 at infinity) so that ug = 1; that is,
© the singularities are at u = 1. With this convention, they obtained the
solutions (defined in the complex plane cut from ~1 to +1)

1 —
asw(u) = {—z—f_idx Y f_;: , (29.577)
- 2 " - '
hsw(u) = ‘-ni ﬁ dx 1!;‘2 _"1 . (29.5.78)

The mathematical methods originally used to obtain these results are
beyond the scope of this book, but fortunately it is not difficult after the
fact to check that they are correct.

First, we can check that asw(u} and hgw(1) have a singular behavior
near u = +1 of the same form (29.5.71), (29.5.72), (29.5.75), and (29.5.76)
as the true solution. For « — 1, Bq. {29.5.77) gives

. (u)qii-fl dx +u—1 i dx
SW ot fx 1 2r J-y N/(I—x](u-—x)
__f_+u—11n u—1
ﬁ 2 3+u—-2ﬁ~,f1+u
4 u—1
- In (4(u-—1]). (29.5.79)

Also, Eq. (29.5.78) gives

. R
hgw(u)—rifl dx o = ‘(”2 b (29.5.80)

Egs. (29.5.79) and (29.5.80} agree with our previous results (29.5.71) and
(29.5.72), with ¢ = i and ap = 4/ /r. Eaq. (29.5.77) satisfies the Zg
reflection property (29.5.54), s0 agw(u) automatically has the behavior
(29.5.75) for u — —1, and (with due regard to the signs of square roots .
dictated by the cut from # = —1 to u = 1) it follows directly from
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Eqgs. (29.5.77) and (29.5.78) that hgw{u) — asw(u} is proportional to u + 1
for u near —1. :

Now since agw(u) and hsw(u) have the same singularity structure at
u —» +1 as a(u) and h(u), they have the same monodromy (Eqs. (29.5.59)
and (29.5.69) with N = 0 and N’ = —1): as u circles the point +1, we

have :
asw _,,. g -1 agw
( hsw ) ( -1 0 ) ( hsw ) ’ (295.81)
while as u circles the point —1,
asw 3 =2 asw
( hsw ) - ( 2 -1 ) ( hsw ) ) (29.5.82)
Let us now consider the quantity
F{u) = a(whsw(u) — asw(t)h(y) . (29.5.83)

This is an SL(2,Z) invariant, so it has trivial monedromy: it returns to
the same value when u circles either +1 or —1. The only finite singularities
in a(u), h(u), asw(u), or hsw{z) are the logarithmic singularities at £1, but
since f(u) has trivial monodromy it does not have these singularities, and
it is therefore analytic at all finite points.

To evaluate the entire function f(u), let’s first check that the leading
terms in the asymptotic behavior of the functions agw(t) and hsw{u) are
the same as those of a(u} and h(1), respectively. For u — oo, Eq. (29.5.77)
gives

1
aswiu) — % /_ 1 \/idj_xi = Ju, (29.5.84)

while Eq. (29.5.78) gives

i 2u
T

hswiu) —

¥ dx iJ2
f: — Julnu, (29.5.85)
This is the same as the leading behavior (29.5.55) of a(u) and A{n).

This in itself only shows that f(u)/ulnu — 0O for 4 — co. But note that
the reflection symmetry (29.5.54) for a(y) and its counterpart for agw(u)
tell us that the next-to-leading terms in both functions are of order . /ii/u’.
Also, the next-to-leading terms in h(u) and hsw(u) are of order  Jfu. It
follows that we can calculate the leading term in the asymptotic behavior
of f(u) by setting a(u) = agw(n) = \/2_11, so that f(u) = O(u) for u — oo
Since f(#) is an entire function, this means that f(u) is linear in u. But
f{u) vanishes at u = +1, where h(u} and hgw(u) are O{u—1), and f(1) also
vanishes at 4 = —1, where a(u) — A{u) and asw(u) — hgwi(u) are Ofu —1),
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so it must vanish everywhere. We conclude then that
asw() _ hswiu)

) = ) = g(u). (29.5.86)
Now we must consider the properties of the function g(u}. Because hswi{u)
and h(u) are analytic at all finite points except u = —1, and asw(u}—hsw{u}

and a{u) — h(u) are analytic at all finite points except # = +1, it follows
that g{u) (which can also be written as [agw(u) — hgw (u)]/ [au) — h(n)]) is
analytic everywhere. (There are no zeroes of a(u) or h(u) at u ¥+ +1, ket
alone zeroes of both, because a zero of a(u) or h{n) would be associated
with a point where a charged particle or monopole mass vanishes, which
has been assumed to be not the case for any u # +1.} Also, the fact that
the leading terms in the asymptotic behavior for 4 — co of the functions
aswlu)} and hsw(u) are the same as those of a(t) and h(u), respectively,
means that g(u) — 1 for « — co. It follows then that the entire funcnon
g(u) must equal unity for all 4, and therefore

a(u) = asw(u),  h(w) = hsw(u}, (29.5.87)

as was to be sho_wn.

Problems

1. What is the Witten index of the model in Problem 4 of Chapter 26 for
a # 07 For a = 07 Can supersymmetry be broken by higher-order
effects in this model for a = 0?7 Explain.

2. Consider the renormalizable supersymmetric theory with SO(N,)
gauge symmetry and Ny left-chiral scalar superfields @, in the N-
vector representation. What can you say about the structure of
the non-perturbative Wilsonian Lagrangian density when the bare
superpotential vanishes? What if there is a bare superpotential
Zn (Dﬂq)ﬂ?

3. In the theory with Lagrangian density (29.5.22), what is the relation
between the component fields of the spinor field strength superfield
W, and its dual W,?
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30
Supergraphs

The introduction of Feynman graphs in the late 1940s provided the
enormous advantage of preserving manifest Lorentz invariance at every
stage of perturbative calculations. For this purpose it was necessary that
the exchange of all spin states of any virtual particle should be described
by a single propagator. Fortunately, it has become possible to go a step
further, and develop a supergraph formalism, in which supersymmetry as
well as Lorentz invariance is kept manifest at every stage.! To de so, it
is necessary to describe the exchange of all the particles described by a
given superfield by a single superpropagator.

There is a problem here in that the left-chiral superfields ® over which
we integrate are subject to a differential constraint, 2z® = 0, This is
analogous to the problem in electrodynamics that the field-strength tensor
is subject o a differential constraint, the homogeneous Maxwell equation.
In electrodynamics this problem is dealt with by expressing the field-
strength tensor in terms of a vector potential, and doing path integrals
over the vector potential instead of the field strength tensor. In much the
same way, here we will impose the lefi-chiral constraint by expressing left-
chiral superficlds in terms of potential superfields, over which we integrate
in path integrals. In this formalism we encounier problems like those
produced by gauge invariance in electrodynamics, and deal with them i
much the same way.

The most important resuit to come out of the supergraph formalism
was the non-renormalization theorem for the superpotentiai.® We have
already proved this theorem in Section 27.6, using a much easier indirect
technique developed by Seiberg, which can be extended also to describe
non-perturbative effects. Nevertheless, it is interesting to see how these
surprising cancellations of renormalization effects occur in actual pertur-
bative calculations.
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30.1 Potential Superfields

Consider a theory of left-chiral superfields @,(x,8) and their complex
conjugates, but for simplicity without gauge superfields. All of the vacuum
expectation values of time-ordered products of component fields may be
calculated from vacuum expectiation values of the time-ordered products
of these superfields. We might try to calculate these from the path-integral
formula :

<T{¢'m{x1,91)= Dy (x2, 82), - }> = f !H d‘l’n(x,ﬂ]] exp (”[‘I’})

n,x, 0 :

X Py (x1, 01} Qpy{x2, 60) -+, (30.1.1)

where I[d] is the action
1] = 312- f d'x[ 37 @,(x, 0)0,(x,6)] +2Re f dx[f@)] . (3012)

(The factor 1/2 is introduced in the first term, as in Eq. (26.4.3), to give
the component fields of ® a conventional normalization.} But we cannot
simply read off the supergraph Feynman rules from Eq. (30.1.1), because
the functional integral over the superfields @, must be constrained to
satisfy the left-chiral condition Zg®, == 0.

This is analogous to a similar problem in electrodynamics. As discussed
i Section 12.3, at energies below the electron mass the interactions of soft
photons with each other are described by an effective action of the form:

Iff]= ”%/‘ﬂx {fﬂ\’f“v +cl(f.ﬂ"flw)2 + cl(fs:v.ﬂafwfpa)zjl .

But we cannot read off the Feynman rules from this formula without
taking into account the fact that the path integral is constrained by the
homogenecus Maxwell equations

a_uf!"p'['a\’fp}.l"'apfpv =0.

As everyone knows, we deal with this constraint by introducing a four-
vector potential A,, with f,, = 2,4, — 8,4,, so that the constraint is
automatically satisfied, and integrate over 4,(x), not f,{x).

In the same way, we may adopt a trick already used in Section 26.6
te derive the field equations for superfields, and introduce a non-chiral
potential superfield S,{x, #), with

D, = G%8S,, {30.1.3)
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where
9% =3 e PraPrp (30.1.4)
uff

so that ®, automatically satisfies the left-chiral constraint, 2g,®, = 0. In
place of Eq. (30.1.1), we then have the path-integral formula

<T{¢n.(x1,91), ‘Dn:(xz,ﬂz)."'}> =/ [H dsn(x,a}] exp (i1[2%5))

nx, 0

X DgSa, (31, 1) Do Sy (X2, 82) - . (30.1.5)

In expressing the action {30.1.2) in terms of S,, we may recall that the
D-term of a superderivative does not contribute to the action, s0 we may
shift the operator (%) = @} acting on S, in the first term of Eq. (30.1.2)
to act insiead on S, which gives

1[@%8] = % f d'x {Z S P2 DL

4 2Re f d'x [f(@29)] , - (30.0L6)
D

The %% operator in any one of the factors @38 in any term in f(D%S)
may be taken to act on the whole term, since &g gives zero when acting
on any other factor of 9% in that term. In this way, we may write

f(P%S) = 2% F(S), (30.1.7)

where f(5).is obtained from f (2%8) by omitting any one operator 2% in
each term. For instance, for a single type of superfield, if f{dy =%, ",
then

)= 8@’

Using Eqs. (30.1.6), (30.1.7), and (26.3.31), we may put the whole action
in the form of a D-term

1 -

2oy = f g * 2 4

HEENEE f d'x E,,: [SHQ?L@RS.,]D +2Re f dx [f(S)]D. (30.1.8)
Eq. (26.6.5) shows that this may also be written as a superspace integral;

1[%3S] =—% [ Ay f 10 35, D4, — Re f i f FOFES) .
" | (30.1.9)

This is the action we will use in the path-integral derivation of the
supergraph formalism.
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30.2 Superpropagaters

Usually the propagator can be obtained directly from the part of the
action of second ordér in the fields. If we write this quadratic part for
a complex field ¢ (where i is a compound index including spacetime
coordinates as well as spin and species labels) in the form

Louaal9] = —>_ Dy ¢; . . (30.2.1)
ij

with I;; Hermitian, then as explained in Section 9.4 the propagator is
simply A = D~!. The problem with this arises when the quadratic part of
the action is invariant under a (linearized) gauge transformation

¢ — ¢+ &is {30.2.2)
for some class of “vectors’ &, In this case we have _
3Dy =0, (30.2.3)
i

and we clearly cannot invert the ‘matrix’ Dy In electrodynamics the
problem arises because the Lagrangian density is invariant under a gauge
teansformation A, — A, + 8,A. We have this problem here too: since the
action is actually a functional of 2%S, and not of 5, itself, it is invariant
under the transformation '

Sy -+ Sp+ZrXs, (30.2.4)

for any superfields X,

In the electrodynamics of charged particles the problems introduced by
gauge invariance are typically handled by choosing a gauge, for instance
by the Faddeev-Popov—de Witt method described in Section 15.5. But the
problems raised here by invariance under the transformation (30.2.2) are
much more like the problems of the effective field theory of photons at
energies below the threshold for producing charged particles, where the
theory is gauge-invariant simply because the action only involves gauge-
invariant fields. In soch theories there is a simpler eption. In addition to
the eigenvector & of Dy; with eigenvalue zero (taken for simplicity to be
in a unique direction) we can find a sct of orthonormal eigenvectors ty;
with eigenvalues d, # 0

ZD;_; Uyj = dy thy » }:u:juv;i = By s Z”;in =0, (30.2.5
4 i :

We can introduce a new set of integration variables ¢’ and ¢}

di=& &+ Plun. (30.2.6)
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The sort of integral encountered in Feynman diagram calculations of
quantum expectation values may then be written

/ [ﬂ dé d-:p."] explilaualdl}ga 61 = F [ b a4

X / {Hd‘.ﬁ’fv dd”;‘] exp {_izdﬂ‘t’:lz} [‘i’réa +Z¢;“vaj|

x {cﬁ’équﬁLuva} e, (30.2.7)

where # is the Jacobian of the transformation (30.2.6). The integral over
¢' and ¢ is of course ill defined, because they do not appear in the
argument of the exponential. But this doesn’t matter if the action only
involves gauge-invariant fields, because then g, Pp, elc. will be contracted
with ‘currents” Ja, Jy, etc. for which

S &ada=0. (30.2.8)

We may thus write Eq. (30.2.7) as

Ji [[[ d, dqﬁ?} cxplilnaldl}pa - 337 =6 [ [H d¢id¢:‘]
X EXp {"'iz dv|¢“2} l:z: ﬁb{;uva] T ‘:Z ‘ﬁi”vb‘l e
+ §-terms , (30.2.9)

where ‘¢-terms’ denotes terms proportional to one or more factors of a,
&p, etc., which vanish when contracted with Js satisfying Eq. (30.2.8), and
& is the infinite constant # [ d¢’. The integral over the ¢, then gives

[[Hd¢id¢:] 3xp{ifquad[¢]}¢a"'¢;"*oc Z [_fﬁab]"'

pairings
+ {-terms , : (30.2.10)
where the sum over pairings is over ail ways of pairing indices on the s
with indices on the ¢"s, and Ag is the propagator

Bap =3 (30.2.11)
¥ v

Instead of actually evaluating the sum (30.2.11), we can use its defining
property that '

EDQCAC!} == Z Hya u:b = Hﬂb » {30.2.12}
< ¥ .
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with TI the projection operator on the space orthogonai to &:
m =11, Ié=0. {30.2.13)

The solution of Eq. (30.2.12) is unique only up to {-terms, but these do
not matter if the Belds ¢; appear in the action only in gauge-invariant
combinations.

For instance, in electrodynamics, we can write the kinematic part of the
action as

i 1
Iquad[A] = _E[d4x fluvfm = +§fd4x A‘H(Dﬁ; ~6Ha”)Av .

The differential operator —Dcﬁ; + 3%d, is not invertible, because it has a
zero eigenvalue with eigenvectors of the form &# = 0FA. The projection
matrix onto the space orthogonal to these vectors is

M, (3,9} = 8,7 — 8,8"0718% (x — ),

where 013%x — y) is any solution of the equation O[O
5%(x — y). The defining equation for the propagator is

(06 + 8,0 )AL (x,9) =TT, (%,3) »

x -y =

with the solution
A, y) = Oy Ap(x — y) + 8,0 -terms ,

where Ap(x — y) is the usual Feynman propagator (6.2.16), satisfying
OAp(x — y) = —8%x — y). (The factor 1/2 in the action does not appear
in the defining equation for the propagator here because A, is a real
field. The origin of the —ie in the denominator of the Fourier integral in
Eq. {6.2.16) is explained in the path-integral formalism in Section 9.2.}

Inspection of the first term in Eq. (30.1.9) shows that the defining
equation for the superpropagator of the potential superfields is

L

4
where 2 is a superspace differential operator satisfying the conditions for
a projection operator '

gt G AS (x,0;x,0) = P5*(x — x4 — 6')om (30.2.14)

Pr=2, PIr=0, (30.2.15)
and §%(0 — &) is the fermionic delta functicn introduced in Eq. (26.6.8).
The solution is
_
~ 160

(It is obvious that #@r = 0. To check that #2 = &, we need to
use (26.6.12), which shows that 2%%79% = 160%%.) The solutien of

P Gt G5 . - (30.2.16)
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Eq. (30.2:14) is
f
Ao, 8%, 0) = — 788 (x — x)8%(0 — 6)5m

- %ap{x — )68 — §)um + Dretorms .
(302.17)

This is the superpropagator for a line created by a potential superfield
§7{x',8") and destroyed by a potential superfield §,(x,8), which we must -
use in evaluating supergraphs for the action (30.1.9). To make contact
with ordinary propagators, it is also of some interest to consider the
superpropagator of the line created by a left-chiral superfield @,(x',8)
and destroyed by a left-chiral superfield ®@,(x, #). These chiral superfields
are obtained by operating on S,(x,6) with %% and on S,(x',8) with

@’i- = @'?, so the propagator for the left-chiral superfields is
1
A (x,8;x',0) = E@i@fiap(x ~ X160 —6') Sum - (30.2.18)

For instance, the term in the superpropagator of zeroth order in 8 and
’ perprop:
& is

D A — 1 _a_ 20 0 N2 NyoRden Y
[a,,,,,{x,o,x,ﬁ}h:g:g = Z(aﬂﬁ) ('.ae_L) Ap(x — %) 848 — &) Sy -
(30.2.19)
To evaluate this, we recall Eq. (26.6.8) for the fermionic deita function:
l f ¥
50 — 8) = 7 (0 — 01)7e(@ — 0)) ((6r — R0 — 0}

from which we find (8/00R)Y(2/86} %8 —6") = 4. Eq. (30.2.19) therefore
yields

[80,(x,0;%, o) spoa = AFG =¥ b, (30.2.20)
which is just the usual propagator for the scalar components of the
- superfield.

. 30.3 Calculations with Supergraphs

We now consider how to use the resulis of the previous sections to calcu-
late the quantum effective action T'[S,S5°] for a set of classical potential
superfieids S,(x, 0) and their adjoints. Following the prescription discussed
in Section 16.1, this may be defined in terms of a sum over all connected
one-particle-irreducible supergraphs, consisting of vertices to which are at-
tached directed internal and external lines. For each external line of type »



314 30 Supergraphs

ending or beginning in a vertex labelled x, 8, we include 2 c-number factor
S.(x, 8) or §,{x,8), respectively (but no propagator). A vertex labelled x, ¢
with N incoming or N outgoing lines labelled ny, n,,...,ny yields a factor
equal to i times the coefficient of the §:852 - - - Sy term in the superpotential
f(8) or times the complex conjugate of this coefficient, respectively. An
internal line of any type coming out of a vertex labelled x, # and going into
a vertex Jabelled x',# vyields a propagator factor, given by Eqs. (30.2.10)
and {30.2.17} as

- 1"54(9 —8) Ap(x — ). (30.3.1)

In addition, as shown by Eq. (30.1.7), a superderivative 2% acts on the
propagators or external line S-factors of all but one of the internal or
external lines coming into any vertex, and a superderivative .@i acts on the
propagators or external-line S*-factors of all but one of the lines coming
out of any vertex. The product of these factors must be integrated over
all xs and Os: the quantum effective action is the sum of these integrals
for all one-particle-irreductble graphs.

By integrating by parts in superspace, the _02}% and/or .@i operators
accompanying any one propagator (say, one that connects vertices labelled
x,8 and x', &) may be moved to other propagators or external line factors.
This leaves the factor contributed by this internal line proportional to a
factor §4(0—#"). Integrating over &' then eliminates this delta function, and
lets us replace 6 with @ everywhere else. {In cases where several internal
lines connect the same pair of vertices, we need to use the property of
fermionic delta functions that [64(8 — 8)]? = 0.) Continuing in this way,
we wind up with a single four-dimensional 6 integral, with all s acting
on the external line factors S, and S,,. That is, though not usunally local
in spatial coordinates, I'[S, 8"] is local in the fermionic coordinates.

The structure of this functional is governed by its invariance under
the ‘gauge’ transformations (30.2.4). This tells us that every one of the
external line factors S, or S must be acted on by an operator @} or
94, respectively, with two possible exceptions. The exceptions are that
a term with only incoming or only cutgoing external lines, in which all
but one of the externat line factors S, or S, are acted on by 2% or %7,
respectively, and by no other superderivatives, is still invariant under the
transformation {30.2.4), even though it cannot be expressed as a four-
dimensional @-integral of a functional only of the ®, and/or @ alene.
This is because the change in such an amplitude under this transformation
could only come from the change in the external line factor S, or S that is
not acted on by an operator @% or 22, and this change is eliminated if we
use integtation by parts to move one of the other %% or 2% operators to
act on it. As we saw in Section 30.1, such a term in I'[S, §*] is the #-term
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of a functional of the @, or of the ;. and thus makes a correction to the
superpotential or to its complex conjugate. Aside from these exceptions,
every term in I'[S, §°] may be written as a four-dimensional G-integral of
a functional only of the @, and/or ®}, and therefore makes a correction
to the D-term part of the effective action.

Also note that a term in the quantum effective action in which all but one
of the external line factors S, or S, Is acted on by 2% or 92, respectively,
and also by additional 2% or @} operators (such as in combinations like
PRPLDESy or D]DEDES,) may also be written by integration by parts
as a ferm in which one of the extra %% or %% acts on the previously
undifferentiated external line S, or ! factor. Such & term may therefore
be expressed as a four-dimensional G-integral of a functional only of the
©, and/or @, and therefore just makes another correclion to the D-term
part of the action. The only terms in I'{S,§"] that cannot be written in
this way are those that have E incoming external lines and only E — 1
operators $% operating on the Sy external line factors, or E* incoming
external lines and only E* — 1 operators 9} operating on the 8, external
line factors. We can therefore tell whether a supergraph can make a
contribution to the superpotential or its adjoint by simply counting the
number of 2% or 2% operators contributed by the supergraph to the
corresponding term in I'[S,5"].

Let us count these superderivatives. Consider a connected graph with:
V. vertices with » lines coming in: ¥, vertices with n lines going out; [
internal lines; E external incoming lines; and E* external outgoing lines.
These numbers are related by

I+E=3"n¥,, I+E =3 "ny,. (30.3.2)
H H
The total numbers of 2% and 9% operators are then
Np= Y Valn— 1) =1 4+E V=LV +E-1, (30.3.3)
H
and
NL=Y Vin—D)=I+4+E —V'=L{+V+E 1, (30.3.4)
"

where V = 37V, is the total number of vertices with incoming lines;
V' = 3.V, is the total number of vertices with outgoing lines; and
L=1—V—V¥" 41 is the number of loops. We see that a graph with any
loops will have Ng = E and Ny, > E*, so that there are at least enough
D% operators to convert all S, into ®, = 2%8, and its detivatives, and
enough %% operators to convert all S, into @y = 2257 and its derivatives,
Any graph with loops thus yields only a contribution to the Jour-dimensional
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O-imtegral — in other words the D-term — of a functional of the left-chiral
superfields @, and their adjoints.

The only way to obtain a contribution to an #-term or its adjoint is
to have just Ng = £ — 1 operators 2% or just N = E* — 1 operators 9%,
respectively. According to Egs. (30.3.3) and (30.3.4), such a graph would
have L =0 and V' =0 or ¥ = {, respectively. In other words, since we
are considering only one-particle-irreducible graphs, we can only get an
#-term from a graph with a single vertex with incoming lines, and we can
only get its adjoint from a grapk with a single vertex with outgoing lines.
This contribution is nothing but the integrated & -term of the original
superpotential, or its adjoint. Thus we see again that there is no finite or
infinite renormalization of % -terms to any order of perturbation theory.

Problems

1. Use Eq. (30.2.18) to calculate the propagators of the spinor and
auxiliary components cof a chiral superfield.

2. Consider a supersymmetric theory of a single left-chiral superfieid
@, with Lagrangian density

F = % [tl)'tl)}u + 2Re (g{msly) )

with ¢ an arbitrary complex constant. Use the supergraph formalism
to calculate the one-loop contribution to the quantum effective action.
Express the answer as an integral over coordinates and aver a single
Grassman ¢ootdinate 4.

3. What is the superpropagator for a gauge superfield V(x,8) in 2
supersymmetric Abelian gauge theory with kinematic term (27.3.17)?
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31
Supergravity

Gravity exists, so if there is any truth to supersymmetry then any realistic
supersymmetry theory must eventually be enlarged to a supersymmetric
theory of matter and gravitation, known as supergravizy. Supersymmetry
without supergravity is not an option, though it may be a good approxi-
mation at energies far below the Planck scale.

There are iwo lsading approaches to the construction of the theory
of supergravity. First, supergravity can be presented as a theory of
curved superspace.! This approach is analogous to the development of
supersymmetric gauge theories in Sections 27.1-27.3; the gravitational
field appears as a component of a superfield with unphysical as well as
physical components, like the unphysical C, M, N, and @ components
of the gauge superfield ¥. The task of deriving the full non-linear
supergravity theory in this way is forbiddingly complicated, and so far
has not been freed of steps that are apparently arbitrary. At one point or
another in the derivation, it has been necessary simply to state that some
set of constraints on the graviton superfield are the proper ones to adopt.

Here we will follow a second approach that is less elegant but more
I:r‘ﬁ.nspar:ent.2 In our discussion here, we begin in Sections 31.1-31.5 with
the case where the gravitational field is weak,? analyzing supergravity by
the same flat-space superfield methods that we used in Chapters 26 and 27
to study ordinary supersymmetry theories. In this way we can identify the
physical compenents of the gravitational superfield (including auxiliary
fields analogous to the D-component of the gauge superfield V) The weak-
field approximation will allow us to obtain some of the most important
consequences of supergravity theory, including the general formula for the
gravitino mass in Section 31.3 and the results for gaugino masses and the
A and B parameters given by anomaly-mediated supersymmetry breaking
in Section 314, ]

In Section 31.6 we add terms of higher order in G to the supersym-
metry transformation rules for the physical fields and to the Lagrangian
that describes their interactions, subject to the condition that the super-
symmetry transformations and general coordinate transformations form

318
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a closed algebra, and that the Lagrangian is invariant under these trans-
formations. This approach is in some respects analogous to the treatment
of supersymmetric gauge theories in Section 27.8; we work only with the
physical components of the gravitational superfield, and obtain transfor-
mation rules that involve covariant rather than ordinary derivatives. This
is the approach that has been used in deriving the most important appli-
cation of supergravity theory beyond the weak-field approximation: the
derivation of the low-energy effective Lagrangian in theories of gravita-
tionally mediated supersymmetry breaking. This application is the subject
of Section 31.7. :

31.1 The Metric Superfield

Supergravity necessarily involves spinor as well as tensor fields, so we
will have to describe gravitational fields in terms of a vierbein (or tetrad)
ey(x) rather than a metric, which is related to the vierbein by

() = tap € {x) ¥ (x} . (31.1.1)

The indices p, v, etc. label general coordinates, while indices a. b, etc.
label coordinates in a locally inertial coordinate system, with #,;, the
usual diagonal matrix with elements 41, 41, +1, —1. In the vierbein
formalism, the action must be supposed to be invariant under two different
sorts of symmetry transformations: general coordinate transformations
x* — x(x}, under which the vierbein e%,(x) is transformed into e (x),
where

g ¢ x4
€%u(x") = Eerd v(X), _ (31.1.2)
and local Lorentz transformations, under which
e (x) ~» A%(x) ebu(x), (31.1.3)
with A% (x} an arbitrary real matrix subject to the constraints -
Hap A% c(X)A® 4{%) = Hea . (31.1.4)

An elementary review of this formalism is given in the appendix to this
chapter.

A weak gravitational field is one for which the vierbein is close to the
unit matrix. In such a field, the vierbein may conveniently be written as

(%) = 0% + 21 §%u(x) , (31.1.5)

where ¢?,(x) is small. As we shall see in Section 31.2, if ¢%, is to be a
conventionally normalized field, then the constant x should be expressed in
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terms of Newton's constant G by k = /82G. The closeness of the vierbein
to the unit matrix is preserved by a small coordinate transformation

xf — x4 £H(x), (31.1.6)
and alsc by small local Lorentz transformations
A%y(x) = 8 + @"(x) , (31.17)

where &#{x) and w%(x) are of the same order as ¢"4(x), and wap(x) =
Hac p(X) is constrained by Eq. {(31.14) to satisfy

gh{x) = — Wpa(X) . {31.1.8)
The combined transformations (31.1.2} and (31.1.3) then become
1 [ 8u(x)
Q‘JW(X} - ‘t’;w(x} +- j}_c [— aiv + wm(x]] . (31.1.9)

We are now dropping the distinction between general coordinate indices
, v, ete. and local Lorentz coordinate indices a, B, etc., and raising and
lowering atl indices with #* and #,. In terms of the metric (31.1.1), the
weak field assumption (31.1.5) becomes

Zav(X) =ty + 26 M (X) (31.1.10)
with
. huv(x] = ¢uv{x) + ¢vu[x} 1 {(31.1.11)
while the transformation law (31.1.9) reads

1 [& BE,
-4 [0+

By use of the supersymmeiry algebra we showed in Section 25.4 that the
graviton has a fermionic superpartner, the gravitino, with helicities +3/2.
We saw in Section 5.9 that a self-charge-conjugate massless particle with
helicities +1 can only have low-energy interactions if described by a real
field A,(x) whose interactions are invariant under a gauge transformation
Ay(x) — Au(x)+0,A(x). In the same way, a self-charge-conjugate massless
particle with helicities 4+3/2 can only have low-energy interactions if it is
described by a Majorana field y,{x) with an extra vector index- p, with
invariance under a gauge transformation

(X} = pul(x) + 2p(x) , (31.1.13)

where p(x) is an arbitrary Majorana field.** We need now to consider
how fields ¢,,(x) and ,(x) with these transformation properties can be
put into a superfield.

We found in Section 27.1 that a gauge field V,(x) can be regarded as the
¥,-component, defined in Eq. (26.2.10) as the coefficient of i(Bysy,0)/2, of

(31.1.12)
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a real scalar superfield ¥V (x, 8). Similarly, we would like to incorporate the
vierbein ficld ¢,v(x) and the gravitino field w,(x) into a vector superfield
Hy(x,8), known as the metric superfield. The question is: how are ¢y (x)
and y,(x) related to the components of this superfield?

To address this question, note that supersymmetry requires the ‘gauge’
transformations (31.1.9) and {31.1.13) to be special cases of a transforma-
tion of the whole metric superfieid

Hg[x,ﬂ) — Ho(x, )+ A,(x, 0). {31.1.14)

Furthermore, a weak gravitational field h,, interacts with an energy-
momentum tensor T#* which as we found in Section 26.7 is a linear
combination of components of a real vector superfield ¥, so we expect
the interaction of the whole superfield H, with matter to take the form

Tint —zxfd4 H,0"] . (31.1.15)

{Later in this section we will confirm the correctness of the coeflicient 2x,
with ©* normalized as in Section 26.7.) The supercurrent &* was shown
in Section 26.7 to satisfy the conservation conditions

e, =2X, (31.1.16)

where X is a real chiral scalar superfield (the sum of a left-chiral scalar
superfield and its complex conjugate) and & is the four-component su-
perderivative (26.2.26). It follows that this interaction is invariant under a
transformation of the form (31.1.14), with A, of the form

A, = (F7,3), (31.147)

where Z(x,#) is a superfield subject to the manifestly supersymmetric
condition

(22) (9=) =90. (31.1.18)

This can be seen by recalling from Section 26.7 that the chirality condition
on X allows us to write it in the form

= (@_@)n, (31.1.19)
with €2 in general a non-local superfield. From Eq. (31.1.16) we then find

f [@“(_@yﬂE)]D = _f [((QGP)T“E)]D = _f [([@X)E)]D
=+f [¢ @9 9}3)}9=0,

so that the interaction (31.1.15) is invariant under the transformation
H,— H,+ (_@yn.ﬂ} (We can also obtain the same result without using the
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representation (31.1.19) for X, by noting from Eq. (26.2.25) that the D-term
of the product of a chiral superfield like X which satisfies Eqgs. (26.3.1)
and (26.3.2) and a linear superfield like {2%) whmh satisﬁes Eq. (26.3.45)
is a spacetime derivative.)

At the end of this section we shall show that Eqs. (31.1.17) and (31.1.18}
yield conditions on the components of the superfield A,:

Vi (x) + Vax) = a”’f + ag‘i:) — 2:?“?-‘%?—) , (31.1.20)
MB(x) — LypPAS(x) — Ly @ wi(x) = d,x(x), (3L.1.21)
— 1" 93, VA (x) = D%(x) + 8787 CH(x) , (31.1.22)
My (x) = 0*NR(x) = (31.1.23)

with v,(x) a real vector field, and y(x) a Majorana spinor field. {(Here we
introduce a notation that will be used throughout this chapter; following
Eq. (26.3.9), the components C3, @S, M5, N5, V5, 15, and D% of an
arbitrary superfield S(x, ) are defined by the expansion

S(x,0) = C5{x) — i(é ps 00 (x)) — %(é ¥s e)MS{x} - %(é a)NS(x)

+%' (Bysv" ) V500 —i(F50) (a [450) +-% aws(x)])

L/, 2 1
_1(9 75 9) (Ds(x) + i[:u:"S[x]) . (31.1.24)
Also, ¥ ,,(x) is the V,-component of A,.) This leads us to define the fields
br() = VEG) — i VI iz, (31.1.25)
i) = A x) — P B (%) — Indol(x),  (311.26)
bo(x) = DFe(x) + L™ a, Vi(xy+ 807 Cfl(x}. (31.1.27)

(As discussed in Section 31.3, the factor 1/2 introduced on the left-hand
side of Eq. (31.1.26) will give the field y, a conventicnal normaliza-
tion.} From Eqgs. (31.1.20) and (31.1.21) it follows that the transformation
{31.1.14) induces on ¢y, (x) and ,{x} the gauge transformations (31.1.9}
and (31.1.13), with

dv, Oy

$u=—2K0y, Wy = x{—é-;;- p

SV V], w=2r, (31128
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while Eq. (31.1.22) shows that b,(x) is invariant. Also, Eq. (31.1.23) shows
that the transformation (31.1.14} induces shifts of M f (x) and Nf {x} that
leave invariant the fields

s = o*MA(x), p="Nx). (31.1.29)

Finally, since CR(x), V5 (x) — Vi (x), and w4(x) are uncenstrained by
supersymmetry, the transformation (31.1.14) aliows us to make the com-
ponents CH (x), VE(x)—~VH(x) = ¢, —d and o) (x) anything we like. In
particular, in analogy with the Wess—Zumino gauge for gauge superfields
discussed in Section 27.1, we can take C}(x), V{(x)— VE(x) = ¢u — Py
and wf{x] all to vanish. The fields h,,(x) and y,(x) are identified by
their transformation properties as the fields of the graviton and gray-
itino, respectively, while b,(x), s(x), and p(x) are auxiliary fields* that
are important in understanding the coupling of the graviton superfield to
matter,

Incidentally, note that the number of independent componenis of the
symmetric tensor hy, modulo the gauge transformations (31.1.12) is 10 —
4 = 6, which with the auxiliary fields s, p, and b, gives a total of 646 = 12
independent physical bosonic fields, while the number of independent
physical components of the Majorana spinor field y, modulo the gavge
transformations {31.1.13} is 16 — 4 = 12. This satisfies the condition,
discussed at the end of Section 26.2, that in any supermultiplet of ficlds
that furnishes a representation of the supersymmetry algebra, there must
be equal numbers of independent bosonic and fermionic field components.

Let us now return to the interaction of matter and gravitation. In
general, the integrated D-term of the product of two superfields ® and
H, is given by Eq. (26.2.23) as '

ffr*x AR [d"‘x {_—aﬁc”ﬂaﬂcf +CHop® 4 pHe c®
— (@ 12 + 4 #of]) — ("7 + 18"7 floy)
+MHEe MO NHo NS _ pHiKe V,ﬁ] . (31.1.30)

Using Eqs. (31.1.25)-(31.1.27), we may express V1,
tively in terms of ¢y, y,, and b,, and find

T = 26 j d'x [0 H,|

[t lcﬂo [0C2 —,0°C9 + D8] +b7CP

i H
Ay, and D, respec-
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@ [~19= porf + 0v7wf]) — (97 0f) + (87 yor*0f)
+MHME 4 NHNE
+ 1o 8.CP — ¢t [Vﬁ — i V® PPH . {31.1.31)
We saw in Section 26.7 that the conservation condition (31.1.16) yields
conditions (26.7.44), {26.7.39), and (26.7.35):
Dp = —0C2 +8,0°C ,
’i? = @w? ‘+‘av3’pmf’ y
0 = Vﬁ - Vfﬂ +€#ppgaacap »
which respectively tell us that the coefficients in Eq. (31.1.31) of CHe,
of @#°, and of the antisymmetric part of ¢*" all vanish. Also, we may
write the remaining terms of Eq. (31.1.31) in terms of the supersymmetry

current {26.7.20), the energy-momentum tensor (26.7.42), the #-current
{26.7.51):

SH = . 28% + 29¥9¥ w? ,

Ty = =iV, — VS +9,,V8
RE = 2C0H )
and densities .# and .4 defined by
® 2
M, =ao,#, N, = 8,4, (31.1.32)
and given by Eqs. (26.7.33) and (26.7.34) as:
' N =—A% 4 =BY, (31.1.33)

where X is the real chiral superfield appearing on the right-hand side of
the conservation equation (31.1.16). (A label ‘new’ on the supersymmetry
current will be understood in this chapter.) The first-order interaction
between matter and the components of the metric superfield is then

2xfd4x (0 1], = [ dx [Re67 + 1570, — 25— 20 p+ TRy
_ (31.1.34)
We note that the gravitino field interacts with the supersymmetry current,
in much the same way as the gravitational field interacts with the energy-
momentum tensor. :
We can now check the constant factor appearing in this interaction, The
usunal definition of T#" is that the variation of the matter action under a
change gy, in the metric is®

1
8y = 7 /d“x DetgTH égy, .
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The interaction between matter and a weak gravitational field given by
Ea. (31.1.10) is then :

xfd“’x TH{x} h(x) 5
which agrees with the hy,-dependent part of Eq. (31.1.34), thus confirming
the normalization of the interaction (31.1.15).

%k k¥

We shall now check that Eqgs. (31.1.17) and (31.1.18) yield the conditions
(30.1.20)~(30.1.23). The superfield Y = (@a) has the components

Ccl = —i’[‘r{emg) ,
o = —ips JC= + M® — tysN=+ J=,
MY = —Tr{eysd™),
NY = iTr{ei®),
VT = —Tr(epshy A%} — Tr(eys [y A14%),
¥ = — PME —iys N= —ips(D= +DC%) — 8, VEY,
DY = iTr(e §45) + iTr(e0n®),
and the condition (31.1.18) yields
MY =NT =DV 4OCT =¥ =T+ do’ =0.

The vanishing of MY and N7 tells us that 4% is a linear combination of
the form

Be = fupt + gaysy' ki U] (31.1.35)
The vanishing of 3 V) and DY + OCY then implies that
Buff = 8. = 0. (31.1.36)
Also, the vanishing of AT+ do¥ yields
DF = %?5 [y*, JIVE. (31.1.37)
The components of Au(x, 0} are
Ch=iTr (eysyue™)., (31.1.38)
w8 = i PyuC + ysy, M= — iyuN® + 177 WV (31.1.39)
M4 =—Tr (e7,A%), (31.1.40)
N& =iTr (e757.4%) , (31.1.41)
va =Tt (7, AZ) — 1Te (e [y, Fl7ae™), (31.1.42)

A =ys @ruME +i pNE — iy, (D= +0C) + ysyad’ VE, (31.143)
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Dh=iTr(e Fps3,AZ) + iD Tt (eys7,0%) . (31.1.44)
The syfmetric part of Eq. (31.1.42) gives condition (31.1.20), with '
vy =—Tr (e}r#ma) + constant . (31.1.45}

A linear combination of Egs. (31.1.39) and (31.1.43) yields condition
(31.1.21), with

y = 2ysM® + 2i N® 4 constant . (31.1.46)

We then use the antisymmetric part of Eg (31.1.42), together with
Eqgs. (31.1.37), (31.1.38), and the identities

[y, )’p]’.‘:’_u - [}';u ?p]'}’v = 20 ety — zﬂvp?,u + Zievppﬂ. TS'}'A ’

€7 [y, , yul = 2ivsl*, 71

and find the condition (31.1.22}. Finally, Eqgs. (31.1.40) and (31.1.41} along
with Egs. (31.1.35) and (31.1.36) yield the condition (31.1.23).

31,2 The Gravitational Action

To find a suitable gravitational action, we must construct a superfield that
is invariant under the generalized gauge transformation H, — H,+ A,
As a starting point, we recall that the field b, defined by Eq. (3t.1.27) is
invariant under this transformation. By making guccessive supersymmeiry
{ransformations we can see that b, is the C-component of an ‘Einstein’
supetfield E,, whose components are

CE=b,, (31.2.1)
wy = %Lp - %?_u?va . (31.2.2)
My = 3,5, Ny =0, (31.2.3)
Vi = —%Ew + %n,wE"p + %eww,a"bp , (31.2.4)
AE = ay’ ol — Py (31.2.5)
DE = 8,0"by — Dby, (31.2.6)

where Ey, is the linearized Einstein tensor
1

Ep ==
HY 3

8yt — M O M8 PRy ) (31.27)

(80,13 + Oy — B8 izs
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and
L\l‘ = ievpxp ?5 ]Jﬂ apclpp N I (31.2-8)

which will be shown in Section 31.3 to be the left-hand side of the wave
equation for a free massless field of spin 3/2. For instance, by applying
the supersymmetry transformation rules (26.2.11), (26.2.15), and (26.2.17)
for C#, V¥, and D¥ 10 Egs. (31.2.1) and (31.1.27) we find

SCET = i (ays [PATC — Lie™ ysy, 048 + 07 "wfl]) .

Comparison of this with the transformation rule (26.2.11) for C& shows
that

WF =AM 4T oy, B 4 0Ol
We can use Eq. (31.1.26) to express A7 in terms of p, and o] :
A =y — 190 — 12070
and find that wf may be written in terms of v, alone

0F =Fips — 0a7"yp — Licvumays Y 97 .

Using the identity

Hue?d — Hpd¥v = I-E,uivp}’ﬂ’p - %i])_u'}’a faivpj’s']’p ,

we find Eq. (31.2.2) for wf. Continuing in the same way gives the other
formulas {31.2.3)-(31.2.6) for the components of E, and confirms that
these components make up a real superfield.

We can now form a quadratic action for the metric superfield that is in-
variant under both supersymmetry and the extended gauge transformation
H, — H, + A,, by taking the Lagrangian density as

Lp = {(EH) | = Bl — 4P Lt — 457+ P = bub®) . (3129)

The factor 4/3 is chosen to give the kinematic Lagrangian for the graviton
field a conventional sign and normalization: apart from terms involving
0khy, or B4, it is a sum of Klein—Gordon Lagrangians for the components
of hy,. The normalization of the gravitino field is discussed in the next
section.

To see that the first two terms in the final expression in Eq. (31.2.9) are
invariant under the gauge transformations (31.1.12) and (3i.1.13), we note
that E,, and L, are manifestly invariant under these transformations,
and that the action is symmetric between the two factors of h, or p,
appearing in these terms. The absence in Eq. (31.2.9) of derivatives of s,
p, and b, shows that these are auxiliary fields. The field equations make
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them vanish for pure gravitation, but not when gravitation is coupled to
matter. ,

Before taking up the coupling of matter and gravitation, let us pause
to consider what value we should give the normalization constant x
in Eqgs. (31.1.5) and (31.1.10). The Einstein-Hilbert action for a pure
gravitational field is '

1 4
Ion = o fd x JZR, (31.2.10)

where G is the Newton constant of gravitation, g{x) is the determinant
of the metric tensor g, (x), and R(x) is the curvature scalar calculated
-from gu,(x). To calculate Igr for a weak gravitational field with g, =
v + 2xchy,, we may recalt that for arbitrary variations dguv(x) in the
gravitational field® '

1 1
— T L 1
Slor = 1z fmx N {R 58 R} 88 » (31.2.11)

where R**(x) is the Ricci tensor calculated from gy {x). For a weak field
with guy = te + 2xh,y, the Ricci tensor is?

R¥Y — x(uhﬂ" — OO — 8,07 M + aﬁavhig) , (31.212)
so for weak fields
RM - 1ghR = 2kEM (31.2.13)
and therefore Eq. (31.2.10) gives '

Sloi = 4—% [dtx Ev o, .

On the other hand, taking account of the symmetry of [d*x Ey h®
beiween the two factors of h it contains, we have

afd“x EM by, = zfd“x E™ Sk .

In order for the term E,, & in Eq. (31.2.9) to give the usual gravitationat
Lagrangian density, it is therefore necessary to take

K= /872G . (31.2.14)

Let’s now combine the Einstein Lagrangian density (31.2.9) with the
interaction (31.1.34) between gravitation and matter and with the matter
Lagrangian & s, to form a total Lagrangian density:

L = Fyy+ Enh® — 9L — 45+ 1° — b)
P[4 + 157po — M5 — A p + 4T hax] . (31213
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The field equations for the auxiliary fields give
s=—0H/8, p=-—-0kA/8, by=—0xR,[16. (31.2.16)

Using this to eliminate the auxiliary fields, the Lagrangian density (31.2.15)
now gives

L= Lo+ Enb — LpLF + I M+ NP~ 1R, R
+ 1x8%1pg + KT By . (31217

The sources of the fields », and hy, are of order x, so we can regard
these fields as being of thlS order, which makes all terms in Eq. (31.2.17)
beyond % of order 2.

In the vacuum enly the scalar fields s and p can have tree-approxima-
fion expectation values, giving the vacuum an energy density, to order
G:

prac = ~ZLvac = —Luvac — (A + A (31.2.18)

The negative sign of the term in the vacuum energy density of first order
in G is a characteristic difference between theories of supergravity and
ordinary supersymmetry.

For instance, in the theory of a single left-chiral superfield ¢ with
superpoiential f(@), the zeroth-order vacuum energy is —Fpvac =
df($)/dpi?, while Egs. (31.1.33) and (26.7.27) give

11 df(d)
Hih =3 [p 3f(¢>)]

so to first order in &, the total vacuum energy is

_ | @ _8aG |, di() :
prac =[5 =5 |65 —31@)

where ¢ is the scalar component of ®. This is for the definition of the
metric for which the energy-momentum tensor is given by Eq. (26.7.42),
so that in particular T*; vanishes for f = 0. For other definitions the
vacuum energy would be changed by terms of order §zGl¢| 2| df ()/dd|.
However, this ambiguity is unimportant in calculating the minimum value
of the vacuum energy. Inspection of Eq. (31.2.19) shows that if f{¢) is
stationary at some point ¢y, then prac has a local minimum for (¢ — ¢y
and |df /d¢| of first order in G, and at any such point the vacuum energy
to first order in < is

) (31.2.19)

prac = —24nG|f($o)i? . (31.2.20)

There is an algebraic reason why vacuum states with unbroken super-
symmetry in supergravity theories cannot have positive energy density.
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The solutions of the Einstein field equations for a uniform non-zere vac-
uum energy density gy take the form of a de Sitter space for py > 0 and
anti-de Sitter space for py < 0. These spaces may be described as the
surfaces

2 i’ =R, (31.2.21)
in a quasi-Euclidean five-dimensional space with line clement
ds® = pux#x’ & dxi, (31.2.22)

with the upper sign for de Sitter space and the lower sign for anti-de
Sitter space. The spacetime symmetry of these spaces is no longer the
Poincaré group consisting of translations and Lorentz trinsformations,
but instead O(4, 1) for de Sitter space and 0(3,2) for anti-de Sitter space,
where O(n,m) is the group of linear transformations that leave invariant
a diagonal metric with n positive and m negative clements on the main
diagonal. The supersymmetry that is unbroken in theories with a de Sitter
or anti-de Sitter vacuum state therefore has the simple group O{4,1) or
0(3,2), tespectively, as its spacetime symmetry. Nahm’ has cataloged
all supersymmetries with simple spacetime symmetries. There are simple
0(3,2) supersymmetries, as well as N-extended 0(3,2) supersymmetries,
but for O(4,1) there is only an N = 2 supersymmetry. We have been
considering N = I supergravity theories here, so they can have vacuum
states with unbroken supersymmetry and py < 0, which gives 0(3,2)
spacetime symmetry, but not with unbroken supersymmetry and py > 0,
which would give 0(4, 1) spacetime symmetty.

The possibility of vacuum field configurations with negative energy
density may seem at first sight to threaten the stability of our universe.
It is common for f(¢) to have several stationary points, at which it takes
different values. Even if we fine-tune the parameters in f(¢} so that f(#)
vanishes at one of these stationary points, accounting for the observed
nearly flat space of our universe, any other stationary point with a non-
2610 value of f(¢) will yield a lower vacuum energy, raising the possibility
of a collapse to a state of negative energy density, with a metric that
would have to be of the ‘anti-de Sitter” form rather than flat.

Fortunately, the value (31.2.20) is just barely insufficient to compensate
for the positive energy that has to go into, surface tension in making a
bubble of anti-de Sitter space, so that the transition from ordinary flat
space is not actually favored energetically. Coleman and de Luccia® have
applied the equations of general relativity to a bubble of negative internal
energy density —e and positive surface tension § in a flat space of energy
density zero, and have shown that any such bubble that does not entail
gravitational singularities will have positive energy if

e < 6nGS2. (31.2.23)
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The surface tension is the energy per area in the bubble surface, given to
zeroth order in G by the integral of the energy density through the bubble

wall:
e 1, (dfe)?
Si —j;_ dr U-a}— —da,—' ] s (31.2.24)

with r_ and r,. taken just inside and just outside the bubble wall. This

can be rewritten as
e e, rar@y| .dg df($)

where ¢ is an arbitrary phase factor with [{] = 1. The integral in the
second term is trivial: since we assume that ¢(r4) is at a value where f(9)
is stationary and vanishes, while ¢(r_}) is at some value ¢p where f{g) is
stationary but non-zero, the integral is

o de df(9)

ar ————— = — .
[ T = 1)

To maximize this term, we take & = f(do)/If{do)l, and obtain the
inequality’

2,
+

81 = 2if(¢o)l , (31.2.25)

with equality attained only if (as is usual) there is a solution of the dif-
ferential equation dop/dr = —E(df /dp) with the appropriate boundary
conditions. The inequality (31.2.23) is thus satisfied if the internal en-
ergy density is not Jess than —24rG|f (¢o)i%, which is precisely the value
(31.2.20). This calculation leaves open the possibility of an instability of
fiat space due to radiative corrections, but the reader need not worry: it
has been proved that in supergravity theories in which there is 2 vacuum
field configuration with zero vacuum energy, the energy of any disturbance

- -

in the fields which is limited to a finite region is positive."

* ¥ ¥

Eq. {26.7.48) shows that the energy-momentum tensor for a set of
feft-chiral scalar superfields @, contains a term

ATH = %(n""m — af‘a") > I¢pal® - (31.2.26)

Integrating by parts, the corresponding interaction xhy, ATH makes a
contribution to the action of the form

b ¥ 1
3 [ (070 - 20 Y = RO Il 01227
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where RV is the curvature scalar in linear approximation. This is
added to the usual Einstein-Hilbert action — /gR/2x? (which appears
in Eq. (31.2.17) as the term E, W) and has the effect of replacing the
coefficient of this term with '
11 , 1 2 )
e S e [ 1= . 2,
32 T g il =5 ( 5 216l (312.28)

In order to restore the usual constant of gravitation, we can subject the
metric {o a Weyl transformation, replacing the vierbein &%, with

: _
. K
&, = eﬂﬁ\l 1— 5 > Il (31.2.29)
n
That is, we replace the metric g,, with
- i? 2
B =|1—7 S ignl* ] g s (31.2.30)
' "
or for weak ficlds
~ K .
By = by — 2 STl e - (31.2.31)
H

The weak field Einstein tensor (31.2.7) for the new metric is

" 1 ” " -~ - -
Bo=3 (0u0ui3 + Oy — 8,8y — 3,63, — i DRV + N3R35
K
= Epp — ¢ (30 =1 0) 2100l (31.232)
I

The sum of the Einstein term in the original action and the term (31.2.27)
is then

v K v ¥V T Uy
f d'x [hmE’* +3 il (0 — " )h,,.l - f ' [h,,,.E”

2
+ ’,‘—2 (au > 1¢n|2) (a” > |¢n12) ] , (31.2.33)

so the effective gravitational constant is now actually constant. This
redefinition of the metric also produces a change in the poiential. The
original Lagrangian density contains a term —e Y., |8f(¢)/8¢s|?, which in
terms of the new vierbein reads

~e Y |05 (9)/3¢al> = —2_ 10f(¢)/ 0l

22
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With the new definition of the metric, the potential (31.2.19) is therefore
replaced with

p) 2 2
e = 5| LB -1 a gl - 3f(¢)’
N2 3 (|

The new term does not change the value of pyac at its stationary point
to order 2, so no change is needed in our previous discussion of vacuum
stability.

31.3 The Gravitino

In this section we will use the weak field formalism developed in Sections
31.1-31.3 to derive some propetties of the gravitino. In particular, by
using an argument of continuity as G — 0 we shall obtain a formula for
the gravitino mass when supersymmetry is spontancousty broken that is
valid to first order in G but to all orders in all other interactions. (The
original derivation of this formula will be given in Section 31.6.)

First we must verify that the term — !§,L* in Eq. (31.2.9) is the correct
free-field Lagrangian for a massless self-charge-conjugate particle of spin
3/2. The time-honored approach to the construction of suitable free-field
Lagrangians for particles with spin is to guess at the Lagrangian and then
check that it gives a physically satisfactory field equation and propagator.
This has led to some uncertainty for particles of spin 3/2 — for instance,
what is usually called the Rarita—Schwinger Lagrangian in papers on
supersymmetry is not the Lagrangian originally proposed by Rarita and
Schwinger.!! Here we shall follow an approach in the spirit of Section
6.2 we will first derive the propagator from the requirements of Loreniz
invariance for a massive particle of spin 3/2 and then invert it to find
the Lagrangian. We work here with massive gravitinos for the sake of
simplicity and because in the real world we must take account of the
breakdown of supersymmetry, but we will be able to apply the results
obtained in this way to the case of massless gravitinos by noiing that
supersymmetry current conservation makes the zero-mass singularities in
the propagator inconsequential.

A spinor field p# with an extra vector index belongs to the {(1,0) +
(0, 1] x ({, 1} representation of the homogeneous Lorentz group. To
isolate the (1, 1)-+(1,1) parts of the free field, we impose the irreducibility
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condition
yup? =0, (31.3.1)
Rotational invariance and Eqg. (31.3.1) tell us that the matrix elements

of this field between the vacuum and a massive spin 3/2 particte of
momentum q = 0 and spin z-component s will satisfy the conditions

{Olw°(O)s) =0 (31.3.2)
and
3/2 _ : .
3™ {0lw'(0)s) (Ol (05" oc &y — vivs s (31.3.3)
s=—3/1

with a coefficient that may depend on the rotationally invariant matrix
§ = iy°. With the usual Dirac convention that B0l (0)]s) = {01y (0)s)
(chosen to simplify the space inversion property of the field) and a con-
ventional choice of normalization of the f = +1 component analogous t0

Eq. (5.5.23), Eq. (31.3.3) may be written

3/2
3 01pH0)is) Ol (O)ls) = (2} (1;;3 ) 65 — fvary} . 3134)
se=—342

It follows that the momentum-space propagator for a spin 3/2 particle of
mass m, takes the form '

P (q)

AMY(G) = ————,
@ g>+mg —ie

(31.3.5)
where P#(q) is a Lorentz-covariant polynomial in the four-vector g,
subject to the conditions that for g = ¢ and q° = my, we have

PY = (1—';-‘—3) [&ii - %m;] ., PU=pUV_p®=0. (3136
Apart from possible terms that vanish on the mass shell (and whose effect
therefore would be the same as direct current—current interactions) the
unigue covariant function with this limit is

Bg¥\ s . 1 g\, 4"
P¥(q) = (r;‘“"' + angﬁ_) (—14 + mg)—g (’y“ - ti—g) (:g + mg) (-y“ — :a;)
(31.3.7)
(The difference between Eq. (31.3.7) and any other covariant function
with the limit (31.3.6) would be a covariant function whose components
all vanish for q = 0 and q° = m, and hence vanish everywhere on the
mass shell.) The free-field Lagrangian density is then of the form

2y == }(#" Dul-i0)¥") . (3138)
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where
A™(g) Dyalq) = 8% (3139
A tedipus but siraightforward calculation gives
Dya{g) = —€ypuaa vs ¥ @ — 3ig [, 74l (31.3.10}
so that the Lagrangian density (31.3.8) is
o= 4™ (ysyudeva) + bmg (B 175 7] va).  (3L3.110)

For mg = 0 this result verifies that the term — 3, 1" in Eq. (31.2.9} is the
cortect conventionally normalized free-field Lagrangian for a massless self-
charge-conjugate particle of spin 3/2. In the limit m; — {0 the propagator
given by Eqs. (31.3.5) and (31.37) is singular (which just reflects the
impossibility shown in Section 5.9 of forming a (1, D+ (4, 1) field from
the creation and annihilation operators for a massless particle of helicity
4+3/2), but the terms in Eq. (31.3.7) for P#(q) that blow up for m, — 0
are ail proporiional to ¢* and/or ¢*, and hence give no contribution when
the current with which 1, interacts is conserved.

As a further check on the validity of the Lagrangian density (31.3.11),
including the peculiar-looking mass term, we note that it yields a field
gquation

—ie sy, B + dmg [y, ¥ 1w = 0. (31.312)
Taking the divergence of this equation yields the result that
(7, 7" Twa=0.

Also, contracting Eq. (31.3.12) with y, shows that

P’ oc By pyp, By oo £, 9 Twa =0,

so that the irreducibility condition (31.3.1) is satisfied for free fields (though
not necessarily when interactions are taken into account). From these two
results there follows another irreducibility condition

gt = U@, patyt = i[F. vly' = 0.

Using these irreducibility results allows the field equation (31.3.12) to be
put in the form of a Dirac equation

(7+m) v =0, (31.3.13)

which among other things shows that this is the free field of a particle of
mass mg.

We will now consider the effects in supergravity theories of a sponta-
neous breakdown of supersymmetry. Broken global supersymmetry entails
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the existence of a massless particle of spin 1/2, the goldstino, but in su-
pergravity theories the goldstino field y can be eliminated by a gauge
transformation y, — y, —8,y. Since the gauge is then fixed by the condi-
tion that the goldstino field is eliminated in this way, gauge mvariance no
longer keeps the grav1tmo massless, and it acquires a mass (to be denoted
m, from now on), in much the same way as we saw in Section 21.3 that the
vector bosons W and ZY get masses from the spontaneous breakdown
of the SU(2) x U(1l} gauge symmetry of the electroweak interactions.

As discussed at the beginning of Chapter 28, if supersymmetry Is
relevant at all to accessible phenomena then the characteristic energy
scale at which it is broken must be much less than the Planck mass. In
this case we may use a continuity argument to give a universal formula
for the gravitino mass m,. According to Eq. (31.1.34), the gravitino field
wu couples to the supersymmetry current S¥ with a coupling constant
zrc = L./8xnG, so the exchange of a virtual graviuno of four-momentum
gina transﬁmn A+B—~C+D contributes to the invariant amplitude a
term

M(A+ B — C 4 D)= ;(8=G) (C18,14)n A (g3 (DIS,|B)x ,  (31.3.14)

where the subscript N indicates that the one-goldstino pole at ¢* = 0
has been removed from the matrix element of the supersymmetry current.
For a supersymmetry-breaking scale sufficiently small compared with the
Planck mass, there will be a range of momentum transfers that are much
larger than the gravitino mass but much less than the Planck mass. For
such momenta, the matrix element is dominated by the I fm terms in the
propagator numerator (31.3.7)
S —2i dq¥'q”
M(4+ B — C + D) — {8rG)1{C|S,|4}n (W) (DIS,|Bn .

’ (31.3.15)
But for sufficiently farge Planck mass the coupling of the gravitino becomes
negligible, and the matrix element must be the same as would have been

produced by goldstmo exchange in a theory without gravitinos. According
to Eq. (29.2.10), this is

M(A+B — C+ D) — {CiS,J)x (E‘i) ( . ) (DIS, B}y , (31.3.16)

where F is the parameter characterizing the strength of supersymmetry
breaking (here taken real), defined so that the vacuum energy density is
F2/2. In order for Egs. (31.3.15) and (31.3.16) to agree, the gravitino mass
must have the value

4w G F2
T

g = (31.3.17)



31.4 Anomaly-Mediated Supersymmetry Breaking 337

This formula is valid only to lowest order in GF2, but to all orders (and
even non-perturbatively) in the non-gravitational interactions responsible
for the sponianeous breakdown of supersymmetry. '

Tt is convenient for some purposes to express mg in terms of the
expectation values {s) and {p} of the spinless auxiliary gravitational fields.
Note that for the vacuum state to have zero spacetime curvature, the
vacuum energy density F2/2 of matter fields must be balanced by the
negative vacuum energy of gravitation and its interaction with the hidden
sector fields, which is given in terms of {s} and {p) by Eqs. (31.2.18) and
(31.2.16) as —(4/3)((s}* + {p}*), s0

F22 = (473048 + (). (31.3.18)
We can therefore write Eq. (31.3.17) as

my = %’E 2+ (). (31.3.19)

It is sometimes convenient to introduce a complex gravitino mass, defined
as

g = o5 () +i60)) (313.20)

whose absolute magnitude is the physical gravitino mass (31.3.19).

31.4 Anomaly-Mediated Supersymmetry Breaking

In Section 28.3 the possibility was raised that supersymmetry may be
broken in some sort of hidden sector of superfields that do not carry
the SU(3) x SU(2) x U(1) quantum numbers of the standard modei, and
communicated to observable particles gravitationally. In this section we
will deal with one class of supersymmetry-breaking effects in the mini-
muem supersymmetric standard model, those of first order in x = /8nG.
This includes the gaugine masses and the parameters A and B in the
Lagrangian density (28.4.1). Other supersymmetry-breaking effects such
as squark and slepton squared masses are of second order in x, and will
be taken up in Section 31.7, when we consider gravity-mediated super-
symmetry breaking using the general supergravity formalism described in
Section 31.6. :

We can find the effects of gravity-mediated supersymmetry breaking to
first order in x by simply replacing the component fields of the gravi-
tational supermultiplet in the interaction {31.1.34) with their expectation
values. The only ones of these component fields that can acquire non-
vanishing vacuum expectation values from the spontancous breakdown
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of supersymmetry in a hidden sector of matter superfields are the spin-
less auxiliary fields s and p, so with Eq. {31.1.33) this gives a first-order
supersymmetry-breaking interaction

P = 26 [~ A¥(p) + BY()] = 31m [ ¥ +iB%)], (3141

where #, is the complex gravitino mass (31.3.20), and 4% and BX are the
A- and B-components of the real chiral scale-non-invariance superfield X
discussed in Section 26.7.

We showed in Section 26.7 that, for a renormalizable theory of left-
chiral superfields @, with superpotential f(®), the X superfield is given
by

Z«b af () l : (31.4.2)

This can be put in a form that allows an immediate extension to more
general theories by writing the coupling parameters of the superpotential
it terms of dimensicnless parameters and a parameter . with the dimen-
sions of mass. Since the superpotential has the dimensions of (mass)®, we
have

af (©) + Zm af (‘I’) =3 f(®). (314.3)
Therefore Eq. (31.4.2) may be written
2 af ()
X =3Im [ W] . (31.4.4)

This formula can be generalized to give the contribution to X of the
scale dependence of any sort of #-term in the Lagrangian. A-term
2Re[f(D, W)]s in the Lagrangian makes a contnhuuon to X given by
the obvious generalization of Bq. (31.4.4):

2 ef (@, W)
{(There is also a contribution to X from any mass scale dependence in the

D-terms in the Lagrangian.) Comparing Eq. (31.4.5) with Egs. (26.3.10)
and (26.3.13), we see that
2.# a [f{ ] _ 2.#3f(¢, )
’ =0 3 o
There will then be a supersymmetry—breakmg ferm in the effective La-
grangian of first order in x, given by Egs. (31.4.1) and (31.4.6) as

Y = 2Re[“'mJ , (31.4.7)

AY +iBX = (31.4.6)

o4
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Eq. (31.4.7) applies not only for terms in the Lagrangian with explicit
scale dependence, but also for the scale dependence of coupling constants
described by the renormalization group.!'® This scale dependence arises
from the quantum mechanical anomaly that gives a nop-zero value to the
trace of the energy-momentum tensor and also to the divergence of the
R-current, so the observable supersymmetry-breaking effects that arise in
this way are said to be anomaly-mediated.

Consider in particular the kinematic term & gauge for renormalizable
supersymmetric gauge theories, given by Eqgs. (27.3.22) and (27.3.23) as

i
£ Auft

This does not depend explicitly on any mass scale, but the coupling

constant g has the familiar dependence on a renormalization scale 4,

given by the renormalization group equation

A _ (o). (149)

Then Eq. (31.4.7) shows that the gauge Lagrangian (31.4.8) yields a
supersymmetry-breaking term in the Lagrangian

flg) o
'g'[g{a}uge = ——%Re fitg Azﬁ ExphaLedarp| (31.4.10)
" §

where Aur. is the left-handed part of the gaugino field, normalized like
W i, by multiplication with the gauge coupling g, so that g does not appear
in the structure constants or the interaction of the gauge superfield with
quark superfields. Taking account of this normalization convention, the
gaugino mass equals g? times the absolute value of the coefficient of

L ¥ 4up Capraratarg, OF

hig)
g

In this formula Mgaugine and g are cut-off-dependent bare parameters in
the Lagrangian, governed by Wilsonian renormalization group equations.
In Section 27.6 we saw that f(g) arises purely from one-loop diagrams, so
that f(g) = bg®, with b a constant, and therefore

Mgangine = Mg 15187 . (31.4.12)

The physical mass of the gaugino differs from Eq. (31.4.12) by corrections
of higher order in g but, since we know that gauginos must be much
teavier than the characteristic scale of quantum chromodynamics, these
corrections are small for the gluino as well as for the wino and bino.

. (31.4.11)

Mgangino = Mg
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Supersymmetry does not allow any explicitly scale-dependent terms in
the Lagrangian for the gluon and quark superfields, so, with electroweak
interactions neglected, Eq. (31.4.12) gives the only contribution of order
k to the gluino mass. For three quark generations, Eq. (28.2.10) gives
b= —3g3/16m2. Taking g2/4n = 0.118, Eq. (31.4.12) gives the gluino mass
as

2
Pighuine = ifé% =28 x 107 2m, . (314.13)
On the other hand, there is a scale-dependent interaction in the La-
grangian for the Higgs superfields, produced by the p-term —u(H] eHy) in
Eq. (28.1.7), so there is a term in the Lagrangian given by Eq. (31.4.7) as
2Re [ﬁe;p(.ﬁ}e.}f 1)]. Comparing with the Bu-term in Eq. (28.4.1), we sce
that this gives

B = -t} . (31.4.14)

With three generations of quarks and lepton superfields and one pair
of Higgs doublet superfields Hy and Hz, Egs. (28.2.8) and (28.2.9) give
b = t1/16x% for the U(1) gauge coupling g’ and b = 1/16a% for the
SU(2) gauge coupling g. Taking g/4z = 0.0102 and g?/4n = 0.0338,
Eq. (31.4.11) would give masses 8.9 x 107>my and 2.7 x 10~*m, for the
bino and wino, respectively. However, the bino and wine masses also re-
ceive contributions of order g’2mg/16x° and g*my /16n%, respectively, from
diagrams in which the bino or wino is attached to a higgs-higgsino locp,
with supersymmetry breaking introduced by the term 2Re {7, (A TeH 1))

in the Lagrangian density. This gives the bine and wino masses!!?

_ _gﬂmg N #2

Mying = —1'6' 2 11—f (m—"’i ’ (3‘.4.15)

" __gfﬂs_l_-f »  (314.16)
/o = 16“2 m?q ' T

where my is the pseudoscalar particle mass defined by Eq. {28.5.21), and

2xinx

The implications of these results will be considered further in Section 31.7.

Finally, there is a scale-dependent field-renormalization factor Z, mul-
tiplying the kinematic Lagrangian density [®le Y ®,]p for any left-chiral
superfield @,, This can be moved from the kinematic D-terms to the
superpotential F-terms by absorbing a factor 2.',1 /2 in ®,. The Yukawa
couplings kg (such as the Af, hjj and Y in Eq. (28.1.7)) in the tri-
linear superpotential terms 3., hry@ @D, are then multipied with a

factor Z; 2z Z.Z,_ 172 that depends on the cut-off #. According to

(31.4.17)
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Eq. (314.7), the interaction %V will then make a contribution to the
Lagrangian density: :

'?E}I)Jkawa = "_EZ?mRe [ﬁl;hrrr¢r¢s¢f1 , (31.4.18)
rsi
where
_ 2 Inhpg(H)
Pest = - ___8,#
| dInZ(&) 1 dNZ(A) 1 3InZ(A)
__ L onZ{#) 1 OnZdH) = 0MET) (314
o Y i Ly v R M V" (31.4.19)
We see that the coefficients A%, 42, and A[} in Eq. (28.1.7) are given by!tb
&1n hg

N » -
Aij:ﬁig'}'f}'=mg.ﬂ A

where N = E, D, or U. This gives A} and A7 of order g2m, /8x%, while
AE is of order gZm, /8n” or g'tm, /847,

{31.4.20)

315 Local Supersymmetry Transformations

As a last step before considering the effects of higher order in G on
supersymmetry transformation rules, we will now complete our discussion
of the transformation rules of the physical components of the graviton
superfield H, and other superfields to lowest order in G.

Let us first note the form that these transformation rules take when
expressed in terms of the physical fields By, Wy, by, 5, and pin a “Wess—
Zumino' gauge in which

Cl=oll =V V=0 (31.5.1)

Using the identification (31.1.25)-(31.1.27), (31.1.29), and (31.1.11) of the
physical fields with components of the superfield H,, together with the
general transformation rules (26.2.11)~(26.2.17) and the ‘gauge’ conditions
(31.5.1), we find the fransformation rules

By = (Bl + 1004l - (31.52)
S = |4, v Bk + 3ukti+ 2iyshy— Hyapeys b

+ipes = s, (31.5.3)

5s=i(an: L), (31.54)

dp=— i—f(& Y5¥i LA) , (31.5.5)
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5b, = 5;(&;,5 Lp) - gi(a«;mym,) : (31.5.6)
where L, is given by Eq. (31.2.8):
L= i e pspy Byt

This transformation shifts the components Cf , wf , and V;f, —-_V,’f: away
from zero, by the amounts

sCH =0, dwf =Viy«, (3L.5.7)
B[V~ Vil = (& [ —naf) . (31.5.8)

We can then return to the gauge satisfying Eq. (31.5.1) by making a
suitable gauge transformation H, — H, + A, where A, is a superfield of
the form (31.1.17), {33.1.18), with components

Ch=0, wf=—Viye, (31.5.9)
Vl:::i - V;ﬁ = (ﬁ [Tvlf - Tpif]) . (31.5.10)

So far, this has been for global supersymmetry transformations, with o
an infinitesimal constant Majorana spinor. At least in lowest order, this
symmetry can be easily extended to local supersymmetry transformations,
with #(x) given an arbitrary dependence on x¥. According to Eq. {26,7.11),
under such a transformation the matter action undergoes the change

5 f dx Py = — f dx (5(x) 8pex)) (315.11)

Inspection of Eq. (31.2.17) shows that this change in the action is cancelied
if we add an inhemogeneous term (2/x)8,a{x) to the right-hand side of
Eq. {31.5.3), so that the change in the gravitino field is now

Spu(x) = (2/)8u00x) + | 1", v'] Balun () + 0l 4x) + 2195 Bul)
~ By s B0 + Bste) — 3ins ()| lx) . (315.12)

It is useful to rewrite Eq. (31.5.12) in a form that makes the general-
ization to general coordinates more transparent. First, we note that the
term 8,070 on the right-hand side of Eq. (31.5.12) may be eliminated by
replacing the parameter «(x} with

& = (Detg)a =~ o+ Lxhhie. (31.5.13)
Dropping the tilde, to zeroth order in « Eq. (31.5.12) then becomes
51pulx) = R/)8,06x) + [ 11" 5 v¥] Danlx) + 275 bylx)
— 3yprs OO+ 3ys00) — Fivups p(x)]alx) . (3L5.14)
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We can express this in terms of the covariant denivative of «(x), which in
general coordinates takes the form ,

Du(x) = B,0(%) + i Fpe 0l () alx), (31.5.15)

where #p, is the matrix (54.6) representing the generator of Lorentz
transformations in the Dirac representation

YL
=g o, (315.16)
and m}}“{x) is the spin connection,
wht =eb e gt =i g T, e gt (31.5.17)

& xH
Using the weak field approximations (31.1.5), (31.1.10}, and {31.1.11),
together with the gauge condition ¢,, = ¢, and in this approximation
again ignoring the difference between local Lorentz indices g, b, etc. and
spacetime indices u, v, etc., this gives

Dye(x) ~ 2ue(x) + S [y, vM Dih(%) . (31.5.18}

Thus the local supersymmetry transformation rufe (31.5.12) may be written
Syulx) = (2/x)Dyalx) + [Zi ¥ bu(x) — $ivuyers b7(x)
+ 39500 = Tinasp(o)alx) (31.5.19)

We see that in Wess—~-Zumino gauge the derivatives in the supersymmetry
transformation become covariant demvatives. In this sense, the approach
outlined here is similar to the de Wit-Freedman approach to supersym-
metric gauge theories, described in Section 27.8.

The transformation p,(x) = wu(x) + (2/x)8,a{x) is a gauge transfor-
mation of the same type as Eq. (31.1.13), so it leaves the zeroth-order
gravitino action —! [ d%x(p, L*) invariant. The whole action obtained
from the Lagrangian density (31.2.15} is therefore invariant to order zero
in x under the local supersymmetry transformations (31.5.2), (31.5.4)}
{31.5.6}, (31.5.12) (or {31.5.19)) and matier superfield transformations like
{26.7.15). We conclude that the combination of gravitation and supersym-
metry automatically leads to local supersymmetry.

31.6 Supergravity to All Orders

Although the action derived from the Lagrangian density (31.2.15) is
invariant to zeroth order in x = /BaG under the local supersymmetry
transformations constructed in Sections 26.7 and 31.3, it is not invariant
to first order in x, because the interaction of matter with the gravitational
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supermultiplet introduces terms of order k in 0,5% To make possible the
invariance of the full action, we will have to add terms of higher order in
k to the Lagrangian and to the supersymmetry transformation rules for
the components of both the matter and the gravitational supermultiplets.
This can be done by first adding terms of higher order in x to the
transformation rules, chosen so that these transformations form a closed
algebra along with local Lorentz transformations and general coordinate
transformations, and then adding terms to the action to make it invariant
under all these transformations.

This is a fong and tedious process. Here we shall give only the results,?
and then turn in the next section to what has been their most important
application. The local supersymmetry transformation of the vierbein,
gravitino field, and auxiliary fields takes the form:

5ey = (av'w,) . (31.6.1)
Gy = (2/6)Dpe + 2175 (by — yuppdf o+ dyu(s —ipsp)a, (31.6.2)
1 K
= — | ¥ M I - L Y __ ¥
Os =1 (“?FL ) +3 (a [iysb" —sy* —ipysy ]wv) , (31.6.3)
e ._i b H E = ¥ ' ¥ ¥
ap == (Zysval#) + 5 (21t +isvsy" —pv'Iev) . (3164)
i/ _—
0by = de (a?5 (Lp = u¥p LP}) + 3 by (a: }!"tpp)
K e K _
AL (“WS‘S — #ysp) “) — L o’ (rxvsv"w") . (3L65)
Here Dy, is again the covariant derivative given by (31.5.15) and (31.5.16):
| Du=0u+ e, vl 0 (31.6.6)

but now with the spin connection including terms bilinear in the gravitino
field

w:b = "6ty g
+§; [erf’lr (tf)uy“tp“) +e",,ebp (ai;”yﬁtp-") Y (@#ybw")] .(31.6.71)
Also, L¥ is the covariant version of the Rarita-Schwinger operator (31.2.8)
L = iysy Doy e™t | : (31.6.8)

¥ 18 defined in terms of the usunal Dirac matrices y, as
Yo=Y, (31.6.9)

and e is here the determinant of the vierbein

e=+/Detg. (31.6.10)
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It is easy to see that these transformation rules reduce in the weak field
limit to Egs. (31.5.2), (31.5.19), and (31.5.4)-(31.5.6).

The action for pure supergravity that is invariant under these trans-
formations, and that reduces to the form (31.2.9) in the weak field limit,
is :

e 1 4e
. Isugra = fddx [_E?R — —2-(@,1 L“) - (s2 + p? -—b.ub“)] s
(3L.6.11)
where R is the curvature scalar, calculated using the spin connection
(31.6.7). In the absence of matter, the action would be stationary for
s=p=b, =0, leaving vs with the simpler action

e 1
- _f p_Z{p. L*
Isucra ._./d‘*x { 2K2R Z(WL )] -

The transformation of matter fields is also now more complicated. For
the components of a general scalar supermultiplet, these are

5C = i{ayso), (31.6.12)
S = [—iys BC — M +ipsN+ Fle, (31.6.13)
M = — (& [A-+ gam]) + %f (& [s—iysp+iys §] m) . {316.14)

N
6N = i (s [ o)) + 5= (als — fysp 135 Blys ), G1619)

8Va = (mrad) + (a2a0) + g (als—ivsp+ivs Flva w), (316.16)

5= —31s*, P} aFa +D 754, (31.6.17)
5D =i (ays @) , - {31.6.18)
where the covariant derivatives here are
" e
2,C = & {a,,c > (@us m)] , (31.6.19)

1
Doty = 24" [Bpw + wa‘b e, vl —ixb,ps@
K -
—3 (V —iysgC— M+ i}JsN) IP,,;] , (31.6.20)
|
Gl = e 0,0+ g e, mb
. K ix
+'-’Cbp?5;'|«+§[']"b: el WuFbe — —“?sDtpﬂ]., (31.6.21)

2
F,, = ed'ey’ [anvv + %6,4 (. w) - ;(% - A)] _ae b, (31.622)
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with ¥, = %, Ve The rules for multiplying general scalar multiplets are
the same as Eqgs. (26.2.19)-(26.2.25), except that &, is everywhere replaced
with @,, so that the components of a supermultiplet S = §;8; are

C=CC, (31.6.23)
w = Cran + Cao , ' (31.6.24)
M = G My + CoMy + b (@1yso2) (31.6.25)
N =N+ CNy ~ § (@12 (31.6.26)
Ve =CVE+ CoVf — gs(m—{ysyﬂwg) : (31.6.27)

A= Cris 4 Cody — 17701 2,0 — 7°022.C1 + §i Jiyson
+ i Vaysawg + Ny — iysMD s+ §(N2— iysMa)wq (31.6.28)
= —P,C F°Cy + C1D1 + C2D1 + M M3 + N1N2

—(@i Va2t 1 Zenl) — (@ (o + § Ponl) = ViaVE . (1629)

Just as in flat space, there are supersymmetric constraints that can
be imposed on these generat supermultiplets, One such constraint is
reality. Inspection of Eqs. (31.6.12)-(31.6.22} together with Eqgs. (26.A.20)-
{26.A.21) shows that if C, M, N, V,, D, w, and i form a supermultiplet S,
then C*, M*, N°, V., D", Beysw’, and Peysd” are also the components of
a supermultiplet, called S*. In particular, a real supermultiplet is one with
§ = §*, so that C, M, N, V,, and D are real and o and A1 are Majorana
SPINOLS.

We can also impose a supersymmetric condition of chirality. Suppose
we set

A=0, D=0, Vit+i(po)=azZ, (31.6.30)

for some field Z. Then Eq. (31.6.22) gives Fgy = 0, so Eq. (31.6.17) shows
that 64 = 0, while Eq. (31.6.21) gives @4 = 0, so Eq. (31.6.18) shows
that 8D = 0. The conditions 4 = D = 0 are therefore preserved by local
supersymmetry transformations. With a little more work one can show
that

s v+ ix(po)| =0 (iw), (31.631)

so the remaining condition, that V, + ix (ﬁ;u w} is a spacetime gradient,
is also supersymmetric. A supermultiplet of component fields satisfying
Eq. (31.6.30) is said to be chiral. Just as in the case of global super-
symmetry, the components of a chiral sepermultiplet are conventionaily
renamed as A, B, y, F, and G, defined by

C=4, o = —iys|, M=G, N =-F, Z =B. (31.632)
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A chiral supermultiplet is real if 4, B, F, and G arc real and p is a
Majorana spinor. Such a real chiral supermultiplet can be written as the
sum of a left-chiral supermultiplet @, with components conventionally
defined by

A+iB (1+y5) F—iG
=""_" = ., F=——, 31.6.33
NG YL 2 v V2 (3 )

and its complex conjugate, a right-chiral supermultiplet. From these defini-
tions and Eqgs. (31.6.12)-(31.6.15) and (31.6.31) we see that the components
of a left-chiral supermultiplet have the transformation properties

S = /2 (a w) . (31.6.34)
sy = VI@Plm ~ v (Puwr)or + V2F o, (31635)
SF = ﬁ(a gan.) — 2?” (a: [s — ip — HﬂwL) : (31.6.36)

with @,y given by Egs. (31.6.20) and (31.6.32). The rules for multiply-
ing left-chiral supermultiplets ate the same as the corresponding rules
{26.3.27}426.3.29) in the case of global supersymmetry: The product of
left-chiral supermultiplets ®; and @, is a lef t-chiral supermultiplet denoted
@D, with compenents '

¢ = P12, (31.637)
pr = P12+ Pa¥iL {31.6.38)
F =1 Fr+ 02 F 1 — (wﬁfm) . (31.6.39)

Now we must consider how to construct actions that are invariant
under local supersymmetry transformations as weli as general coordinate
transformations and local Lorentz transformations. Egs. {(31.6.18) and
(31.6.21) show that the change under & supersymmetry transformation
of the D-component of a general supermultiplet § is no longer simply a
spacetime derivative, so the integral of such a D-component is not suitable
as a term in the action. Instead, from an arbitrary superfield § we can
form a density whose integzal is supersymimnetric

i 4
[Slp =« [DS — I—;(lﬁ*‘}wsls) + —35 [—sNS + pMS — V)]
; ?
iK — K _
-3 (5¥s L)~ R (@pvewe)

K2 oo (=5 \fr 2ic?
“?E“‘w (wsu?a)(wp?rtp,u).l ——3'-03 Psucra » (31.6.40)
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where Zsucra is the supergravity Lagrangian density in Eq. (31.6.11):

€ 1 de
=B — o, L*Y — — " e b hH

Zsucra = —55R =5 (Pul )= 5 (P +p —bub J. (Le4D
Likewise, Eqs. (31.6.36) and (31.6.20) show that the change under a super-
symmetry transformation of the & -component of a left-chiral superfield
X is not a spacetime derivative, so terms must be added to this #-term
to form a density whose integral is supersymmetric:

2
K ¢_ K- g
[X]5 =e P’X + =Byl ) + 5 (Barl, v Iovg) ¥

;)

k(s — ip)t;bl} ) (31.6.42)

There are some supermultiplets of special physical interest. One is the
real non-chiral supermultiplet 1 whose only non-zero component is C = 1.
According to Eq. (31.6.40), this supermultiplet has :

2kt
[1]p = —“?)——';?SUGRA , (31.6.43)

0 this gives nothing new. _

A more interesting example is provided by a left-chiral supermultiplet I
whose only non-zero component is ¢ = 1. According to Eq. (31.6.42), this
supermultiplet has

Z
Re[l]s = e {%(@p[y#, ¥l ) +4rcs] : (31.6.44)

If a term ¢ [ d*x Re[I]# appears in the Lagrangian density with a real
coefficient ¢, then the sum of this term and the supergravity action (31.6.11}
is stationary with respect to variation of auxiliary ficlds at

s=3ck/2, p=>b'=20, (31.6.45)

so that after eliminating the auxiliary fields, the action will contain a
cosmological constant term

Ixe? f d*xe, (31.6.46)

corresponding to 2 vacuum energy density —3x?c® Such a term is
needed to keep the vacuum state Lorentz-invariant when supersymmetry
is spontaneously broken; to cancel the positive vacuum energy density
F?/2 associated with supersymmetry breaking, we must take

3xie? = F12. (31.6.47)
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Looking back at Eq. (31.6.44) and comparing with Eq. (31.3.11), we see
that this gives a gravitino mass®? '

e exl Fx _ 4nG F?
13 Jg 13 ’
in agreement with our previous result (31.3.17).
As an illusiration of the use of these formulas that will also provide
results needed in the next section, let us calculate the bosonic part of the
Lagrangian density”

& = PLsuora + K@, )p + 2Re [[(@)]F » (31.6.49)

where #sugra is here the bosonic part of the supergravity Lagrangian
density (31.6.41), K{(®,&") is a real function of a set of left-chiral super-
multiplets @, and their complex conjugates, and f(P) is a function of the
@, alone. The purely bosonic terms in the multiplication rules (31.6.23),
(31.6.25)+31.6.27), and (31.6.29) are the same as in global supersymmmetry,
so we can use either these rufes or the superspace formalism of Chapter 26
to calculate that the supermultiplet K(®,®°) has the bosonic components

(31.6.48)

cK =K(p.¢"), (31.6.50)

MK =—2Im ) (95_‘%9_)%) +00, (31.6.51)

NK = 2Re (i‘%}‘ﬂfn) e, (31.6.52)

VK =2Im ¥ (ﬁﬁé—f}f;—)am) b (31.6.53)
2 .

pf =2 Zm %&%—)(—g” Oyn dvbn+ Fn sr;t) -0, (31.6.54)

where the dots indicate terms involving fermion fields. Also, the rules
(31.6.37){31.6.39) for multiplying left-chiral supermultiplets are the same
as those in global supersymmetry, so weé can use either these rules or
the superfield formalism of Chapter 26 to calculate that the left-chiral
-supermultiplet f(®@) has the bosonic components

& =1, _ (31.6.55)
;< 0f(9)
F _zn) 5%, Py, (31.6.56)

*Often the term #sucra 15 omitted, with the supergravity Lagrangian introduced
instead by including a constaat term ~3/i in K{p,¢"). We will not follow this
practice; here, with a conventional normalization of the scalar Relds, the term in
K{$,¢") of leading order in K is 3o Il
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with dots again indicating terms involving fermions. Inserting these results
into Eqs. (31.640) and (31.642) then gives the bosonic terms of the
Lagrangian density (31.6.49) as

de

2
-?bnsonic = [*%R - "'?T (32 + P2 = bﬂb'u)] [1 - %K(‘i’: ¢’. ]]

aZK{(’b f,b ] Iy * -
e X g ogr (Bt = FaF )

4PCE oK (¢,
et

+2eRe (Z 5/ (qﬁ]ﬁ + 2ils — ip) f(q.’:}) . (3L65T)

(#uls + ip) + 80,0 )

dbn

Now we must eliminate the auxiliary fields by setting them at values
where the Lagrangian densify is stationary.” This gives the auxiliary
fields

2 N K - T3
5?":% (@ l)mnﬁff’;a( ke ( l)k"a‘ﬁt‘ (E) +3-f)

_Z(g*l) (a%) , (31.6.58)

K - AN '
s—ip= g (—;j (§ i)kJBT;‘- (a?k) +3f ) , (31.6.59)
by = m (Z #qﬁ,,) , (31.6.60)
where

P A - -1y 0K 8K
N“"‘"?K*‘é“g(@ )kc‘g@;arbi

and %(¢, ¢") is the Kahler metric

FK($97) (31.6.61)

gnm(ﬁbp '?5‘) = ﬁ¢n Bt;b"

* Though this procedure is generally followed, it is not strictly correct, for even though
the Lagrangian density is quadratic in the auxiliary fields, the coefficients of the terms
of second order in the auxiliary fields are not Geld-independent. In consequence,
in deing the path integration over auxiliary fields we encounter determinants of
the coefficients of the guadratic terms, which are equivalent to adding terms to the
Lagrangian proportional to 5*0) = (2r)~* [ d*k 1. Such terms can be eliminated by

using dimensional regularization, for which f dkl=0
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Using this in Eq, {31.6.57) gives the bosonic Lagrangian

2
€ K v .
P bosonic = — Z%EER l:l — TK] - E G g8 a;¢¢nav¢m
nm

K2 o of K :
iy Z(y I)nm&Tfmaqb- =3
€FC2

3N
SR (X gy In (350 o
EZ( )mmm(a‘i). (31.6.62)

As already noted in the weak field case in Section 31.2, the Lagrangian
density (31.6.62) has the uncomfortable feature that the Einstein-Hilbert
term —eR/2x? is multiplied with a factor (1 — k*K{¢, ¢*)/3), so that the
effective gravitational constant varies from point to point in spacetime.

To remedy this, we perform a Weyl transformation, defining 4 new metric
by

B = (1=K°K/3) g - (31.6.63)

The Einstein Lagrangian density is given in terms of the new metric by

2 -1 2 2
eg"’ Ry = (1 - %K) gg" (fi'm + §a,tln (1 — ”—)av in (1 — "‘-3_)) ,

where va is the curvature tensor caleulated using a metrw g 1n place of

2, and & = /Detg. A straightforward calculation then gives the bosonic
Lagrangian (31.6.62) as

2 .
Phosonic = — E'E'z'gm R#-.r

. . 2 N7 sk

2 2 -2
+k:_ I—K—K dK dk
3 3 Oy Oy,

21 K2\ 72 _ éf oK
+3‘E(‘*“3"K) N o

nm 3w O,

-2
—2 (1_";1() Z(@*l)maqﬁm (;{i) . (31664

mn

The Weyl transformation has not only removed the factor (1 — k2K /3)
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from t_ﬁe- Einstein—-Hilbert term; it has also eliminated terms proportional
to 8,¢n 0y and 8,6, 8, ¢y,

This result may be further simplified by introducing a modified Kahler
potential d(¢, ¢*) in place of K{g, "), which we define by

2 2
K k<d
1 - K =exp (*""3_) . (31.6.65)
We also introduce a new metric on the scalar field space
3%

8mn = 55 o - (31.6.66)

The reciprocals of the new and old metrics are related by

Yo Bl g (2d/8b,) (8 0dby,)
— (2 /3) Yo n Bk (B[ D) (04 /O}) |

The bosonic Lagrangian density (31.6.64) now takes the simpler form

é 5 . . .
Lrosonic =~ 528" Ry 28" ) gun0,dulutb —2V . (31667)
.

2
— - K
G = exp(i*d/3) {gﬂf +31

where V (o, ¢") is the potential

V = exp(xk*d) [Z Bron Lo Ly — 362 | f|2] {31.6.68)
am .
and
_of | ..0d
Lm = E&;‘ + K fé'a . (31.66’9)

The potential {31.6.68) has an obvious stationary point at field strengths
satisfying the condition L, = 0. However, as we found in the weak field
case, at this point the vacuum energy in general takes the negative value
—3x2|f|2. To have the stationary point L,, = 0 give a solution with flat
space, it is necessary that both f{¢) and 8f(¢)/d¢, should vanish at these
field values. Inspection of Egs. (31.6.58) and (31.6.59) shows that the
scalar auxiliary fields #,, s, and p vansh for such field values, so that
the vacuum expectation values of the variations (31.6.2} and (31.6.35) of
the gravitine and chiral spinor fields under global supersymmetry trans-
formations with constant « vanish, Thus a vacuum field value for which
f(¢) and &f(¢)/3¢, all vanish is one for which global supersymmetry
is unbroken in the classical limit. In the next section we shall consider
vacuum configurations in which supersymmetry is broken.

We will not show it here, but the additional terms in the bosonic
Lagrangian required by the inclusion of gauge superfields are unaffected
by gravitation, aside from an over-all determinantal factor & and metric
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factors needed to raise and lower indices. After elimination of auxiliary
fields and 2 Weyl transformation, the complete bosonic Lagrangian for a
theory with gauge as well as chiral and gravitational superfields is

1 "
vﬁabo-sonic:f'E = - E;:‘j'RFp - Eganpff’nDu@ﬁm - %Z Re fAB F_ﬁlpFBm
AB

=13 Imfus Fprfaf‘“'"‘“ V. (31.6.70)
Here D, F fv, and t4 denote the gauge-covariant derivatives, the field-
strength tensors, and the representatives of the gauge generators on the
chiral scalar superfields, using the notation described in Section 15.1; f4p
15 an independent holomoerphic function of the ¢,; all spacetime indices
are taised and lowered with &, ; and the potential ¥ now takes the form

V = exp(ic’d) {E gLy — 3 ?szf|2]

+ RB EfAB (E adjn(rd]nm‘ﬁm) (Z (fB‘.’kIﬁbi') . f31.6.71)

The form (31.6.’1’1) of the bosonic potential is simple enough to make
it apparent that terms in J that depend only on ¢, or only on ¢, may be
traded for corrections to the superpotential, Specifically, if we write

d(p,¢") = d($, ")+ ald) + (), (D) = F($)exp (—Pa(p)
(31.6.72)
with g{¢) an arbitrary holomorphic function satisfying the gauge invari-
ance condition

da(p) _
; 6¢:,. “A)nm‘i’m = 09

then the potential (31.6.71) takes the same form in terms of d and f as it
did in terms of d and f. With a suitable redefinition of the superpotential,
we can then eliminate any terms in the power series expansion of d{g, ¢*)
that depend conly on ¢, or only on ;. With this uanderstanding, the
icading term in the power series expansion of (¢, ") (now dropping the
tilde) is of the form >, dum@a¢,. By a suitable linear transformation of
the superﬁelds we can then make the matrix dy, equal ta dy,, so that the
power series expansion of d(¢, ¢°) begins

G, ¢ =D 1¢al (31.6.73)

and the power series expansion of the metric (31.6.66) begins
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Inspection of the second term on the right-hand side of Eq. (31.6.67) shows
that the scalar fields defined in this way are canonically normalized.

The fermion terms are much more complicated. Here we will quote
only the terms quadratic in the gaugino fields

1 o
g(g?ugmo’{'g = _E Re ZfAB (AAE{LB)

+= exp{xzdﬁ JRe 573 gL (%‘3) (T4s) , (316.75)

mre AB 0¢n
with L, given by Eq. (31.6.69). We see that if the gauge fields are
canonically normalized, then the constant term in the expansion of the
function f4p in powers of the scalar fields is d45. and then the gaugino
fields A4 are also ganonically normalized.

* ¥ &

Instead of moving all the holomorphic terms in d(¢,¢"} and their
complex conjugates into the superpotential, we can use the transformation
(31.6.72) to make the new superpotential f{¢) equal to a constant, which
can be chosen to be equal to unity, by taking a(¢) = —x~21n f(¢). The
potential then depends only on the function

D ¢") = dd b ) + 2k Re Inf(#),  (31676)

“and takes the form

V = exp(x*?) [fcdzg;,,l (é%%) (g‘i)' — 3x2]

L
+ Re Zf,w ( gf IA]nmcﬁm) (Z (tg}kjgﬁ;) (31.6.77)

Also, the metric (31.6.66) for the scalar fields may be writien
¥z
5 3,

Although we have not shown it here, the symmetry that allows us to
replace the Kahler potential and superpotential with the single function
B(¢, ¢") also aflows us to make this replacement in the whele Lagrangian,
including all terms involving fermions and gauge fields.

There is an interesting class of ‘no-scale’ theories,!* in which the po-
tential V' vanishes for all values of ¢,,. For instance, this is the case for a
single gauge-neutral chiral scalar superfield, with

= 3%k 2In (h@) + h{¢)') ) (31.6.79)

(31.6.78)
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where h{¢) is an arbitrary function of ¢. But there is no known principle
that would require 2 to take this form.

31.7 Gravity-Mediated Supersymmetry Breaking

We now take up again the problem of supersymmetry breaking. As
discussed at the beginning of Chapter 28, if supersymmetry is to be of use
in solving the hierarchy problem — that is, in understanding the large ratio
of the Planck mass mp = 1/./8zG to the mass scale of observed particles
—- then supersymmetry must be unbroken at the Planck scale, and broken
spontaneously only at some much lower mass scate. The only plausible
mechanism known that would naturally produce a very large ratio of
mass scales is the non-perturbative effect of asymptotically free gauge
interactions. If these interactions are moderately weak at the Planck scale
then their slow growth with decreasing energy will make them become
strong at a much lower scale A < my. The known elementary particles
do not feel such strong forces, so whatever supersymmetry breakdown is
produced directly or indirectly by these strong gauge interactions must
be communicated 1o the observed particles by some interaction in which
they do participate.

In Section 28.3 we noted two possible mechanisms for communicating
the breakdown of supersymmetry to observable particles. One mechanism,
gauge-mediated supersymmetry breaking, was discussed in detail in Sec-
tion 28.6. We are now ready to consider the other mechanism, mediation
of supersymmetry breaking by effects of gravitational strength.

In the early 1980s, when gravitation was first considered as the mediator
of supersymmetry breaking,' it was generally assumed that the super-
potential consisted of two terms: a function f(®) of various left-chiral
superfields ®, of an observable sector, including ali the superfields of ob-
servable particles, plus a function f(Z) of various left-chiral superfields Z,
of a hidden sector,)” all of which are neutral under the SUB)xSU2}x U(1)
gauge group of the standard model. Further, the superpotential of the
hidden sector was assumed to take the form

}2) = EF(Z) (31.7.1)

where ¢ is some mass that is much less than the Planck mass, and F(xZ)
is a power series in xZ with coefficients of order unity. The assumptien
that the total superpotential should be a sum f(®) + f(Z) is somewhat
arbitrary but, as we shall see, it is not difficuit to think of reasons why
this should be at least approximately true. A more serious criticism of
this approach is that it did not offer any hape of solving the hierarchy
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problem; the energy ¢ was simply assumed to be much less than the
Planck mass.

After the development of these first models of gravity-mediated super-
symmetry breaking there appeated other models in which the hierarchy
of energy scales is explained naturally, in terms of the slow growth with
decreasing energy of a gauge coupling which becomes streng at an energy
A <« mp. These models come in two versions that are distinguished by
different assumptions regarding the source of supersymmeiry breaking. As
we shall see, in both versions the squarks and sleptons get supersymmetry-
breaking masses of the order of the gravitino mass m,, but they differ in
the formula for my; in the first version mg kA2, while in the second
version m, = x?A3, giving A = 10!} GeV and A = 10% GeV, respectively.
The two versions will turn out also to differ in the formulas for other soft
supersymmetry-breaking parameters, including By, the A-parameters, and
the gauginc masses,

First Version'¢

In: this version of gravity-mediated supersymmetry breaking it is assumed
that the superfields of the theory fall into {two sectors:

Observable Sector: These are the superfields of the minimum supersym-
metric standard model; the SU(3) x SU(2) x U(1) gauge superfields to~
gether with the quark, antiquark, lepton, antilepton, and Higgs left-chiral
superfields which we will generically call @,.

Hidden Sector: These arc gauge superfields of an asymptotically free
gauge interaction that becomes strong at an intermediate energy scale A
with mw <€ A < mp|, together with lefi-chiral superficlds Z, that feel this
gauge interaction.

The Z; must be assumed to be neutral under the SU(3) x SU(2) x U(1)
gauge group, since otherwise we would be back in the case of gauge-
mediated supersymmetry breaking. Also, we know enough about the
observable sector to be sure that its chiral superfields do not feel the
gauge interactions of the hidden sector.

In otder naturally to have the renormalizable part of the total superpo-
tential of the form F(®) + f(Z), we can assume that the symmetries that
survive below the Planck scale include a group Gy (which may be part of
the gauge group of the hidden sector}), under which all of the fields of the
observable sector and none of the fields of the hidden sector are invariant,
and a group Go (which may be part of the SU(3) x SU(2) x U(1) gauge
group of the observable sector), under which all of the fields of the hidden
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sector and none of the fields of the observable sector are invariant. In this
case if any observable sector fields appear in a term of the superpotential
then there must be at least twe of them, and also if any hidden sector fields
appear in a term of the superpotential then there must be at least two of
thern, so there can be no term in a cubic polynomial superpotential that
involves both hidden and observable sector fieids. This argument leaves
open the possibility of non-renormalizable terms in the superpotential
that involve two or more factors of both hidden and observable sector
superfields, a possibility to which we will return later. Of course, we are
assuming that the strong interactions of the hidden sector produce ad-
ditional non-perturbative terms in the total hidden sector superpotential
f(Z), but these too depend only on the hidden sector superfields.

Assuming then that the superpotential takes the form f(P) + f(2),

the potential of the scalar components of these superfields is given by
Eq. (31.6.71) as

r-e| S (e Do) (B e+ )

e 5¢r a'-f)r 'aqﬁs atﬁ&
(A . w ddN[OF . 5., wddY
+2Re 3 g (a¢,+“ ff+f}5£) (a_a“ U+f}a—2k)

~

o fF o s AN, s, g 0dY
+%gkt (aJHC (f+f]§;;) (‘a‘a“‘x (f‘f‘f)é‘z“;)
—3%? |f+ﬂz]

ad od )
+%Rﬂ ;f;}% (; Eé;(rai)k!z!) (; a{fﬁ)mzn)

| dd ad
+=Re i ( ——{ta)rs ,) ( —(t8)u ) : 31.7.2
3Re 3211b | X 55, (0t ) | 2 g, (o (3172)
In writing the terms arising from gauge interactions, we are assuming here
that there is no mixing of the gauge bosons of the hidden and observable
sectors — that is, f73 vanishes for any pair of gauge generators t4 and
tp, for which ¢4 acts non-trivially on the ¢, and tp acts non-triviaily on
the zi, or vice-versa.

We are interested in exploring a region of field space where the scalar
fields z, of the hidden sector are of order A, the variable part of the
superpotential f{z) of the hidden sector is of order A’ and, on dimensional
grounds, 87 /dz; is of ordet A2, We will leave the magnitude of the constant
part of f open for the moment; as we shall see, we must inctude a constant



358 31 Supergravity

term in f that is much larger thar A? in order to cancel the cosmological
constant.

We further define the region of field space to be explored as one in
which the fields ¢, of the observable sector are of order xA? because, as
we shall sce, this is the characteristic mass scale arising in the observable
sector from gravitational effects of supersymmetry breaking in the hidden
sector. The observable sector superpotentlal {(¢) for fields of order xAZ
is assumed to be of order K*A%, and its derivatives 2f(¢)/d¢, are taken
to be of order x*A?,

In consequence of the definition of the superpotential and the scalar
fields discussed at the end of the previous section, and the symmetry
Gy % Go assumed above, the modified Kahler potential takes the form'

dig.§",2,27) = Z 1 + Z |z* + O(x%2"2%)

+0[K1z' )+ 0(x2232) + 062 9" 222 + O (K2 p™22" 2)
+0(x%2" 2 ¢%) + O(1P2* 20%) + O(k? " pz%)

+0(x z'2¢> ¢)+ 0(x2¢-z-¢.z) + 0§ 2¢%)

FO(PD DY) + OUP P gy + -+, (31.7.3)

with dots indicating terms of higher order. The metric (31.6.66) then has
components

85 == Opg + 00?2y + O(xzz'z] + 0(x%z"z2)

FOUP PN + O™ + OGP PY + - (31.7.4)
g = S + O(1228) + O{k*2™%) + 022" 2)
+0(* %) + 0GP + O ) + -, (31.7.5)

gk = g = 02 ¢2") + 02 dz) + 022" ) + O(k*¢° ) + -+ . (31.7.6)

(The characteristic energy scale in 4 is assumed to be 1/k, because d is the
modified Kahler potential produced by unknown dynamical effects at the
Planck scale, in contrast with f, which gets its structure from dynamical
effects of the strong gauge couplings at scale A} The g.; and gy are
generically of order unity, while the mixed components g, and g, are of
order of x?(kAHA = k3A* <« 1. It follows that the same is also true of
the components of g=1: (g™1),; and (g~")x; are generically of order unity,
while the {g~ 1), and (g™1), are of order of K’A% < 1.

It follows from these estimates that unless cancellations intervene the
dominant terms in the potential (31.7.2) will be at least of order A%, and

* 8By O(k?2"z%) is meant a term of the form x° ),  CiinZy 2] ZnZs With constant
cosflicients Cie of otder unity, and likewise for the other terms in Egs. {31.7.3)-
(31.7.6).
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take the form

-

of

|2
0zg

Vine =3

k

~ 32 |;”f° , (31.77)

with /° the constant term in J, which will be needed to cancel the vacuum
energy. We assume that supersymmetry is spontaneously broken in the
* hidden sector, which requires that there is a point z at which 7 [8f/dz|*
is at least a local minimum, but not zero. Then in order to cancel the
vacuum energy to this order, we must take

=~ 0
s pf - x| (2)

k

the superscript 0 on the right-hand side indicating that the quantity is
to be evaluated at z = z%, Hence f° must be given an anomalously
large value, of order A%/xk. This is a more extreme fine tuning than will
turn out to be necessary in the second version of gravitationally mediated
supersymmetry breaking but, in the absence of a real understanding of the
cosmological constant, some fine tuning will be necessary in any theory
of supersymmetry breaking.

We can calculate the supersymmetry-breaking parameter F in our for-
mula (31.3.17} for the gravitimo mass by setting the vacunm energy density
F2/2 equal to the flat-space value 52, [(8F /0z¢)%|2. The gravitino mass is
then given by Egs. (31.3.17) and (31.7.8} as

1 aF )"
w12

k
This is of the same order = kA? as the scalar fields of the observable
sector.

Now let us turn to the terms in Eq. (31.7.2) that do depend on the
observable sector scalars ¢,. We are considering field values for which
the usual supersymmetric term 3, |8f/d¢,|? is of order m? =~ *A8, so0
we have to collect all ¢-dependent terms in Eq. (31.7.2} of this order or
greater. Let us look in turn at each of the six lines on the right-hand side
of Eq. (31.7.2).

The leading terin in kX + f)0d/0, is k2J0¢", which like 3f /8¢, is
of order x*(A?/x)(xA?) = x?A%, while other terms in x*(f + f)od/d¢, are
much smaller. To leading order we can approximate exp(x®d} by unity
and g;! by 8, so in this order the first line of Bq. (31.7.2) gives

af 2
2 3,

2
: (31.7.8)

2

(31.7.9}

.

+ 1 f0;
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This is of the desired order x*A%, so it is not necessary to consider
higher-order corrections.

The leading term in'g%I is of order xk*A’; thé leading term in 4§ /dz
is of order A?, while ¥*(f + f)8d/0z, is smaller, of order xA%: and
we have seen that the leading term in df/d¢, + «3(f + f)9d/6¢, is of
order x?A%, so the term on the second line of Eq. (31.7.2) is of order
(1P AN A% AY) = x5 A, which may be neglected in comparison with the
terms in Eq. (31.7.2) of order x*A%.

The leading terms in the third and fourth lines of Eq. (31.7.2) are of
order A% but these are independent of ¢,. There is a ¢ dependence
coming from the terms on the third line involving f; the leading terms of
this sort are 2x*Re [f 37 z;(0f /62 )], which are of order x*A% < x*AS,
and hence may be neglected. Also, there is a ¢ dependence arising from
the terms on the fourth line of Eq. (31.7.2) involving f. The leading terms
of this sort are

I—fnczRe [F7%]

which are of order k2 (xA2PA2/ic = k*A3. The factor exp{x?d) contains
¢-dependent terms of order k?(xA?)?, but these multiply a potential
whose leading terms (31.7.7) have been adjusted to cancel to order A%,
so the ¢-dependent terms arising from this source are much less than of
order k*A%, There is one other type of ¢-dependent term, arising from
the ¢-dependent terms in g5;'. According to Egs. (31.7.4)~(31.7.6), these
terms may be written as x%u (4, ¢*), with uy a homogeneous quadratic
polynomial in ¢, and ¢; with coefficients of order unity. These give rise
to a ¢-dependent term in the third line of Eq. (31.7.2), of the form

.y 0 - (e
2 . af af
K %:sz(tﬁ',ti’ }(azk) (az,) '
which is of order x2(kA2)2AY = k*AS.

The leading ¢-~dependent term in the fifth line of Eq. (31.7.2) arises
either from x%¢? terms in f7l, with both ds given by their leading-
order terms, of order z°z, or from terms in one of the ds with two
factors of x, two factors of ¢ and/or &', and two factors of z and/or
z', with f4p and the other 4 given by their leading-order terms, of
order 1 and z°z respectively. Both types of ¢-dependent term make a
contribution of order k2 (xA?A* = x*A®, so higher-order terms may be
neglected.

The leading term in the sixth line of Eq. (31.7.2) arises from the leading
term in f;}, whick is of order unity, and the leading ¢-dependent terms
in d, which are of order ¢°¢. This makes a contribution to the potential
of order (kA?)*, so here too higher-order terms may be neglected.
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The potential (31.7.2) also contains ¢-independent terms of order k2AS,
x*A¥, and so on. The terms of order k*A% may be cancelled and the terms
of order k*A® can be given an arbitrary value ¢ by making a small shift
of the constant term in f(z) away from the value given by Eq. (31.7.8).

Putting these results together, 10 order k*A® ~ m} the potential of the
observable sector is now

#2791 — oRe [1(67]

2

o7 = 3 1

1 .
+§ Z Z ‘pr(fﬁl )rs¢s
A rs
+Q(d )+ ¥, (31.7.10)

where Q(¢, ¢') is a quadratic polynomial in ¢ and/or ¢* with coefficients
of order k’A* =~ m;, which arises from the ¢-dependent terms in gg;!
on the third line of Eq. (31.7.2) and from the ¢-dependent terms in f7}
and d on the fifth line of Eq. (31.7.2). We have normalized the gauge
superfields so that f45 = 845 when all scalar fields vanish. (There i3 also
a ¢ dependence arising from a ¢-dependent shift in the equilibrium value
of the hidden sector scalars zx, but this shift is at most of order (kA2)}*/A%,
and since (31.7.7) is supposed to be stationary at z = z0 this shift enters
quadratically in the effective potential of the observable sector fields, and
may therefore be neglected.) The constant € may be chosen so that the
value of this potential at its minimum is zero.

Finally, let us return to the non-renormalizable terms in the superpo-
tential. As already mentioned, the leading ®-dependent terms of this sort
may be expected to be of order k®*Z2. When the hidden sector super-
fields Z; are set equal to their equilibrium values z these terms become
a second-order polynomial in the @, with coefficients of order xAZ. Thus
to leading order, we can fake account of these non-renormalizable terms
by simply including a quadratic polynomial function of the ®, in the
superpotential, with coefficients of order kA% = my.

In this way theories of gravity-mediated supersymmetry breaking avoid
the problem of the p-term, discussed in Sections 28.1 and 28.5. Recall
that the SU(3) x SU(2) x U(1) symmetry of the standard model allows
a single superrenormalizable term in the superpotential of the minimal
supersymmetric standard model, a term u(H[eHz). In order to explain
in a natural way why the coefficient x is not of the order of the Planck
mass, it is necessary to impose some sort of symmetry, like the ‘Peccei—
Quinn’ symmetry discussed in connection with strong CP violation in
Section 23.6, under which the product (HfeH;) is not neutral. But a
p-term with g of the same order m, as other supersymmetry-breaking




362 31 Supergravity

masses was found phenomenologically necessary in Section 28.5. Such a
term can arise naturally from the breaking of the Peccel-Quinn symmetry
by the vacuum expectation vaiue of the hidden sector fields,* if the
superpotential contains a non-renormalizable term in which (H[ eHy)
appears multiplied with two powers of the hidden sector fields zx, with a
coefficient of order x.

We assume then that the effective superpotential f($) consists of a
homogencous polynomial f($) of third order in the fields ¢,, with
coefficients very roughly of order unity, plus a j-term that takes the form
of a homogeneous polynomial f® () of second order in the fields &r,
with coefficients of order m, & kA2 The potential (31.7.10) then becomes

2

2
Vo4 = L[ L] 4330 | T diand
r r ,_13 rs
" 2 Re [ftz){¢)}-u—] +K4|}G|221¢r|2

+Q(d, )+ € . (31.7.11)

The terms on the first line of the right-hand side give a Spersymmetric
potential, while the terms on the second and third lines represent a
soft breaking of supersymmetry. With f© = A?/x and (8 102)° = A%,
the dimensional constants in the soft supersymmetry-breaking terms in
Eq. (31.7.10) are all powers of kA2 =z m,, s0 that this is where we expect to
find the expectation values of the observable sector scalar fields, justifying
our choice of this as the region of field space to explore.

Setting kA? equal to a typical mass ~ 1 TeV in the effective Lagrangian
of the supersymmetric standard model, we now find A ~ 104 GeV, It
is mildly encouraging that, as discussed in Section 23.6, the spontaneous
breakdown of the Peccei-Quinn symmetry at a scale A = 10'" GeV is
just what is needed to resolve the strong CP problem with a symmetry-
breaking scale in the window from 10'° GeV to 10!2 GeV allowed by
astronomical observations. :

Comparing the potential with the scalar field terms in the Lagrangian
density (28.4.1) of the minimum supersymmetric standard model, we see
that this version of gravity-mediated supersymmetry breaking predicts that
supersymmetry is broken only by soft scalar mass terms with coefficients

“This is known as the GindiceMasiero mechanism'”. It is ofien described in terms of
non-renormalizable holomorphic and anttholomorphic terms in the modified Kahler
potential d but, as discussed at the end of the previous section, any such ferms can be
traded for holemorpbic factors in the suparpotential. Here we have defined d to not
contain holomorphic and antiholomorphic terms, and with this definition the p-term
can only arise from non-renormalizable terms in the superpotential.
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(including By) of order mﬁ. To leading order in kA, the coefficients A4 and
C of trilinear supersymmetry-breaking terms vanish.

One serious problem with these results is that there is no reason why
the quadratic polynomial Q(, ¢} in Eq. (31.7.11) should respect the
degeneracy among squark masses and among slepton masses discussed
in Section 284, that would avoid unobserved flavor-changing processes.
However, the fourth term in Eq. (31.7.}1) for the potential makes an
additional contribution *|f°? = x?A* to scalar squared masses that is
the same for all scalars, so the constraints imposed by experimental upper
bounds on flavor-changing processes might be satisfied if the coefficients in
(¢, ¢") (which arise from termns on the third and fifth lines of Eq. (31.7.2))
happen to be small compared with ©ZA%.

We would have an interesting relation among the parameters of the min-
imum supersymmetric standard model if it were really true that Q(¢, ¢*)
could be neglected. Taking the quadratic part f® of the superpotential as
u(qb edn), the coefficient By in Eq. (28.4.1) would be given by the second
term of Eq. (31.7.11) as By = —x2uf®", so

1Bl = &|f% = m,,

in agreement with Eq. (31.4,13). Also, all the squark and slepton masses
M; would be given by the third term in Eq, (31.7.11) as x?]f9), and so we
would have the new relation

|B| = M; . (31.7.12)

With all squark and slepton masses equal, there would be no inconsistency
with limits on flavor-changing processes. Furthermore, with O neglected
there would be otnly one complex parameter f° in the supersymmetry-
breaking part of the potential (31.7.11), which can be chosen to be real
by a redefinition of the over-all phase of the superpotential, so now the
supersymmefry-breaking part of the potential would introduce no new
violation of CP invariance. But there is no known reason why @ should
be small.

Another serious problem with this version of gravitationaily-mediated
supersymmetry breaking is that it does not yield sufficiently large gaugino
masses.'® According to Eq. (31.6.75), the mass matrix of the SU(3) x
SU(2) x U(1) gauginos is given in the tree approximation by

mas = oxp(24/2) lg Ly (Zey, (311,13

M
where he_re @y Tuns over all the scalar fields ¢, and z, on which {45 may
depend, with gyar and Ly given by Egs. (31.6.66) and (31.6.69). According
to the estimates we have made here, ¥’d = O(x?A%) < 1; L; = O(A2)
while ., is much smaller; and gﬁ‘ is of order unity. Also, we assume that
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Sfap is a term of order unity pius a term of order x? times a bilinear in
scalar fields and their complex conjugates, so 8f4p,/8z; is of order K2A.
This gives gaugino masses of order A? x x?A. This is much smaller than
the gravitino mass m, = kA% (which sets the scale of the supersymmetry-
breaking terms in the potential (31.7.11) of the observable sector scalar
fields) by a factor of order kA ~ 1077, 50 if the scalar masses produced
by supersymmetry breaking are of order 1 TeV, then the gaugino masses
wiil be of order 100 keV, which is far too ow to be consistent with the
fact that gauginos have not yet been observed.

There are several ways that this problem might be avoided. One is
to include gauge-singlet scalar fields among the z; of the hidden sector,
which can appear linéarly in fqp.° In this case df,5/8z; will be of
order x rather than x?A, yielding gaugino masses of order kA2, which
is comparable to the squark and slepton masses. One {rouble with this
approach is that the inclusion of scalars that are neutral with respect to
all gauge groups would make it no longer natural for the renormalizable
part of the superpotential to take the form f(¢) + 7(z).

Even without gauge singlets, there are one-loop contributions to the
gluino, wino, and bino masses (and 1o the A-parameters), calculated in
Section 31.4. For instance, if we take m, at the largest value =~ 10 TeV
allowed by the ‘naturalness’ bound discussed in Section 28.1, then with
g2/4n = 0.118, Bq. {31.4.13) would give a gluino mass 3glnig/16n? = 280
GeV, which is certainly high enough to allow the gluino to have escaped
detection. The bino and wino masses depend on the unknown ratio of
the i parameter and the pseudoscalar Higgs mass m4. Taking this ratio
equal te unity and m, < 10 TeV, Eqs. (31.4.15) and (31.4.16) would give
Mying = 9g7°mg /167 < 73 GeV and Mo = g'mg/16n? < 27 GeV.1%
This bound on the wino mass is in conflict with the fact that wino pairs
have not been seen at LEP in et-e~ collisions at an energy sufficiently
high to produce W bhoson pairs, so that myme > miy. In order to avoid
this contradiction it would be necessary!!? either to take m, > 30 TeV,
which is awkward from the point of view of naturalness, or p2/m% > 8,
In any case, this model has the general consequence that the gauginos are
much lighter than the squarks and sleptons.

If the polynomial Q(¢, 9"} can be neglected then, as shown in Section
31.4, the A-parameters are also given by one-loop corrections, These are of
order gfm, /16n? for squarks and gZm, /1672 or g mg /1672 for sleptons.

Second Version®

This version of gravity-mediated supersymmetry breaking has an observ-
able sector with chiral superfields ®, and a hidden sector with chiral
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superfields Z,, just as in the first version. The difference is that super-
symmetry is now assumed to be noi spontaneously broken in the hidden
sector. Instead, the gauge couplings of the hidden sector, which become
strong at an energy A < mp), produce a non-perturbative superpotential
for the scalar fields of a third sector of superfields, the modular superfields.
In various theories such as modern superstring theories there are extra
dimensions that are not observed because they have been ‘rolled up’ into
a tiny compact manifold, with size roughly of the order of k. Typically
some of the parameters that are needed to describe this compact manifold
are not fixed in any order of perturbation theory. The values of these pa-
rameters may vary from point to point in four-dimensional spacetime and
appear at energies far below the Planck scale k! as gauge-invariant scalar
fields y,, known as modular fields. (The indices a, b, etc. here of course
have nothing to do with the local Lorentz frame indices used in Section
31.6.) Assuming that supersymmetry is not broken in the compactification
of the extra dimensions, these fields must be accompanied by fermionic
superpariners and auxiliary fields, which together form gauge-invariant
left-chiral modular superficlds Y, and their adjoints.’

Just below the compaciification scale we have a supersymmetric theory
with a superpotential that can depend on all the superfields, but in which
x is the only dimensional parameter. The circumstance that the y; are not
fixed in perturbation theory typically arises because the compactification
does not result in any superpotential for the modular superfields Y; alone.
As we saw in Section 28.1, the SU(3) x SU(2) x U(l) gauge symmetries
rule out any terms in the superpotential with just one or two factors of
observable sector superfields, except for a possible term bilinear in the
Higgs superfields H; and Hy. We will again assume that this bilinear
term in the bare superpotential is either accidentally absent (in which
case it does not appear in any order of perturbation theory), or is ruled
out by some symmetry, such as the ‘Peccei-Quinn’ symmetry discussed in
connection with strong CP viclation in Section 23.6. The gauge symmetry
of the hidden sector rules out any terms in the superpoteniial with just
one factor of the Zg, and we shall assume that either accident or some
symmetry (perhaps the same Peccei-Quinn symmetry) aiso rules out terms
with two factors of the Zg.

The bare superpotential therefore takes the form

fbarc(q): Y)Z) = Zfrsf(xy)q)r(psd)r + ka!m(KY]ZkZIZm 2 AR
a (31.7.14)

t Of course, modular fields may exist even under the assumptions of the first version of
gravity-mediated supersymmetry breaking, but because of the smaller value of A in
that case the couplings of the modular fields are toc weak to be of interest there.



366 31 Supergravity

where frg and fu, are power series in their arguments with cocflicients
roughly of order unity, and the dots indicate terms involving n > 3 factors
of the ®s and Zs, as well as any number of factors of «¥,, suppressed by
factors proportional to k"3,

We assume that non-perturbative effects in the hidden sector such as
‘gaugino condensation’ {the appearance of expectation values of bilinear
functions of gaugino fields) without themselves breaking supersymmetry
produce a superpotential for the modular superfields. Since A is the only
scale in the problem (aside from gravitational effects suppressed by factors
of kA), this superpotential would have to be of the form

F(Y)y = A%F(ey). (31.7.15)

Such terms can also be produced by expectation values of the scalar
components of the Z superfields in the Z3 term in Eq. (31.7.14). At the
same time, the replacement of the Z, by the expectation values of their
scalar components in the non-renormalizable terms indicated by dots in
Eq. (31.7.14) will produce additional ®-dependent terms in the effective
superpotential, about which more later. The superpotential (31.7.15) is of
the form (31.7.1) originally assumed in theories of gravitationally mediated
supersymmetry breaking, but with ¢ now identified as the intermediate
scale A at which the gauge interactions of the hidden sector become
strong,

It is plausible that the superpotential (31.7.15) can lead to supersyms-
metry breaking by the appearance of #-terms for the modular chiral
superfields. For the moment, let’s ignore the other superfields, leaving the
justification for later. The potential for the modular scalars is given by
Egs. (31.6.68) and (31.6.69) as

P(r.y") = exp (x22(y.1") [Z[g“‘fy.y‘)iabia{y}ib{yr - 3rc2|?(y)|2] ,

b
) ’ (31.7.16)
where 4(y, y”) is the Kahler 4 function with the scalar components of the
Zi and @, neglected, and

. 3%d '
By = oo (31.7.17)
. Af  ,a0d
L,=—- — : .
0= g TET (31.7.18)

We are assuming here that V has a stationary point, labelled with a
superscript 0, where L0 = 0, so that supersymmetry is broken, but that
V9 is very small, so that it can be cancelled by terms arising from the
observable sector, leaving us with a flat spacetime, Since f is of the
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form (31.7.15) and 4 equals k2 times a power series inl Ky, and xy;
with coefficients of order unity, the whole potential is of the form kZA®
times a power series in K¥a and xy:, again with coefficients of order unity.
The orders of magnitude of the various ingredients in the potential are
therefore

W=0™, 10 =0(AY), =003
P10 = oA, % =o0(1).

With the modular and hidden sector fields fixed at their expectation
yalues, the superpotential of the observable sector is now of the form

FO0) = 3 s @5+ 3 B PP (31.7.20)
rs

rat

" (31.7.19)

where g 18 frse(icyoh which is assumed to be roughly of order unity, plus
terms suppressed by powers of kA. The dots here denote terms with more
than three factors of @ that are suppressed by additional factors of x®.
The coefficient j; arises from the non-renormalizable terms denoted by
dots in Eq. (31.7.14); if it comes from a term with n > 1 factors of Zs as
well as two factors of ®s, then it has an arder of magnitude

s = O TAM) (31.7.21)

We shall see that the desired order of magnitude of g 18 mg = 0(2AY),
which would come from a 1erm with n = 3 factors of Zs.

The supersymmetry breaking in the modular sector will be transmit-
ted to the observable sector by effects of the gravitational field and 1ts
superpartners. Eq: (3 1.6.68) gives the potential of the observable sector as

- 0 - '
Vo =@ [Z[g"‘*]m (ﬂ +12(f + f°)%—r) (E‘% + 1 + f"}-gg;;)

o 0r
+2Re E:[g{l N ("é% + K2 (f +j’°)gi}) Lr
P alsE — 3¢+ |
ab

+iRe S (E O it S B ), (3LT22)
2 AB rs Ocpr tu 0%t

with the superscript zero again indicating that the modular and hidden
sector scalar fields are fixed at their equilibrium values. (This will be
reconsidered later.) Note that, although Eq. (31.7.22) involves terms like
iﬂ that arise in the modular sector, there are no ierms here that refer
explicitly to the hidden sector. This is because in this version of gravity-
mediated supersymmetry breaking, supersymmetry is assumed not to be



368 31 Supergravity

broken in this sector, so that LY = 0, and DY = 0 for any gauge field that
interacts with the hidden sector fields. )

We are interested in exploring 2 region of field space in which the
observable sector fields are of order k2A3, because, as we shall see, this is
the characteristic mass arising in the observable sector from gravitational
effects of supersymmetry breaking in the hidden sector. According to
Eq. (31.6.48) and our estimate f » A%, this is also the order of magnitude
of the gravitino mass m,:

o e A
MgNKA.

In order to calculate the potential for fields of this order, we note that
the Kahler 4 function for the observable and modular scalar fields takes
the form

dp, 4", 3,y ) = 2d(ky, ky") + 3§ i Ay, k3

+ D e By, 1) + 3 Gl Brlep iy )+, (317.23)
rs rs

where 4, Ars, and By; are power serigs in their arguments with coefficients
of order unity, and the dots indicate terms with n > 2 factors of ¢
and/or ¢", suppressed by factors x*2. According to Eq. (31.6.72), we can
remove any holomorphic term in d along with its complex conjugate by
multiplying the total superpotential by a suitable holomorphic facter, In
particular, by multiplying the total superpotential with a factor exp[r2d° +
K* 3. B ¢rs], we can arrange that the transformed 4 function has

=0, B' =0. {31.7.24)

We shall assume that this has been done. Note that, because the total
superpotential contains a constant term f° of order A3, while B® was
of order unity, this transformation generates a term in the superpotential
that is quadratic in ¢,, making a contribution to its coefficient Hrs Of order
K2A%, of the same order as ¢ and my.

There can be another contribution to this coefficient of the same order
of magnitude, arising from terms in the superpotential with # > 1 factors
of ¥s as well as two factors of ®s. Eq. (31.7.21) tells us that, in order
for the contribution to the u,, coefficients from this also to be of order
kA%, we must have n = 3. We can arrange that this is allowed, while
terms with two factors of ®s and »# = 2 factors of ¥s are forbidden,
by giving H, and Hy Peccei-Quinn quantum numbers 41 and the Ys
quantum numbers —2/3. The breaking of this Peccei—Quinn symmetry by
the vacuum expectation values of the ¥, then produces an axion.

With g, of order x*A3, both the bilinear and trilinear terms in the
superpotential of the observable sector are of order x®A%. The usuzl
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supersymmetric potential term 3, |37 /9¢,|* is then of order k*A'Z, so we
have to collect all terms in Eq. (31.7.22} of this order or greaier.

With ¢, of order ¥*A” and y, fixed at its equilibrium value y? =~ x~!
Eq. (31.7.23) gives

g2 =A% + 0(x’AY), (31.7.2%)
0 ¢
o _f &% 82, &’ B, )
Bab ( ) Z¢r¢s ( a )’;) ‘+‘¥¢r¢'s (Byaﬁyg
2
+Z¢r¢s ( 25

94 .
= T (33;") +ORAS) =gl (31.7.27
o

) + O(x5A%), (31.7.26)

where the zero superscript again indicates that the p, are fixed at their
equilibrium values y2. We will subject the observable-sector superfields
@, and the modular superfields Z, to separate lincar transformations,
designed so that

2“ 0
AL =65, (m-‘?—d—-) = . (31.7.28)
dya0yy,

With the metric {31.7.25)-(31.7.27) given by the unit matrix plus terms
that are much less than unity, it is easy to calculate the inverse:

gr ' =8+ 00PN, (31.7.29)
P4, \° 0By, \°
N Cr S S WA (Y
2
—Z ér s ( 75, ) + 0(x5A%), (31.7.30)
b
g = ¢ (%) +0(Ay =071 (31731
a - & ay; ar

In particular, our assumption about the form of the functions A, and By,
gives the order-of-magnitude estimates

521‘1” 0 2 azBTS 0 pl (aAJ'S) 0
= () * * =0 ] ” = Ok ’
(3}?“3}‘;) () dyaly, () dy; a1 ?(3)2)

so that, for ¢, = O(x2A3),
[30 _l]rs = 0(1) s [gD ul]ab = 0(1) B [30 _I]ra - O{FC3A3) . (31733)



370 31 Supergravity

Further,
f = 0(¢%) = 0(’A%), ; q': = 0(¢?) = 0(x*A%), (31.7.34)
and
o _ O(d) = O(K2AY) O (31.7.35)
oy ' o

With f° of order A%, the quantities x2(f + f°)0d/8¢, in Eq. (31.7.22} are
dominated by x?f%¢?, which is of order x2 x A x «?A? = «K*AS. This is
of the same order of magnitude as éf/8¢,, so in leading order we must
keep both terms: :

@f 2 19 af 250 4 446

-+ —— 4K = ((x"A"). 31.7.36
R N P R A S PRI RED
In this approximation, and with g8~ replaced by its dominant term &,
the first term in the square brackets in Eq. (31.7.22} is already of the
desired order x8A1%, so we may use these approximations to write

- f 2 0 f 2 adﬁ
e ‘lm(fmr U+f)a¢r)(a¢s (f+f"]a¢s)

=35+ g

The second term in the square brackets in Eq. (31.7.22) is of order
AT x k*AS x kA = kAL, s0 we may evaluate it using only leading
terms and find

2Re 318" (aqf +#(f + ) M,)iﬂ‘

~ —2Re Z¢s (?i‘__) [af + 1230 ¢,] 800, (31738
vz iy
The third and fourth terms in the square brackets in Eq. (31.7.22) are
individually of order x*AS, but are assumed nearly to cancel, so nen-
leading terms must be included in evaluating their contribution to the
quantity in square brackets. One contribution comes from the terms in
Eq. (31.7.30) for g%~! that are of second order in ¢ and/for ¢”; this
contribution is of order ?¢? x (xA*)?, which is of order ¥8A!2. Another
non-cancelling contribution to the potential from the last term in square
brackets in Eq, (31.7.22) comes from the interference between f and _)"‘J
which makes a contribution of order k2$3A?, which is also of order k8A12,
There is also a constant contribution % from a possible failure of the last
two terms in the square brackets in Eq. (31.7.22) to cancel when ¢, = 0;

(31.7.37)
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to aveid a large cosmologlcal constant, we shall have to assume that ¢ is
aiso of order x8A2. (This is an unnatural fine-tuning, which so far has
been necessary in any theory that avoids a huge cosmological constant.)
Putting these estimates together, to order x®A'? the last two terms in the
square brackets in Eq. {31.7.22) are

a
Z[g LY sszf+f°| ~~Z[¢,¢; (—ﬁi)

abrs ay “ay B

0
82B,; By \ |s0s0. 2 40w
+by : V2979 — 6x°Re +%.
¢¢'s-( J’b) + ¢ (5ya5yb) ] b G

(31.7.39)

All these terms are of the desired order x3A!%, while Eq. (31.7.24) gives

K1 = O(2¢?) = O(xBAS), so we can ignore the factor exp(x*d®) in
Eq. {31.7.22). Finally, the gauge terms on the last line of Eq. {31.7.22) are
of order ¢* = O(k®A'%), so these can be cvaluated using the leading term

¢: in 8d°/0¢y.

Putting this all together, the complete scalar potential of the observable
sector to order x®Al? is

f 230 '2
E‘i_h‘f ¢'r

—2Re Eq’)s (6‘4”)0 [ +&*f0 ri’?] Ly

Q
5}1,-3 aBrS
_a;:,-s [¢r¢s (ayaﬁy ) + fibr';bs (—a}'aay;)

a
e aB:s FOF0. e
+¢'r¢s (a_yaay; ) } Lng - 6K2Re (f fﬂ )

+%Re >l (,V_j ¢:(r,4}nd$s) (Z qb:(rs)mcm) +% .(31.740)
AB rs Nt

The potentlal (31.7.40) of the observable sector scalar fields takes the
form assumed in the minimal supersymmetric standard models discussed
in Section 28.4: it is the sum of a supersymmetric term Vyysy and a soft
supersymmetry-breaking term Vo

Vo = Vausy + Vsoft (31.7.41)
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The supersymmetric term is, as usual,
of 1 10 . .
Vsusy = E | +5Re ZUAB] E¢r(td)rs¢s Z ¢’t{fﬂ)ru¢u
F a¢ 2 AB F3 iu
o {31.7.42)
and the soft suparsymmetry breaking term here is

Vsonm.’lxReZ( 36 ) 4|f0‘ Zl¢r

—2Re Eqﬁs (a,;;) [ aai, + 120 ¢,} -

1]
._E [‘ﬁ'f‘i’s ( dAys ) +¢r¢'s( aBrs')

abrs ay a ay &

LS aBr‘s FOrde 20
+rd: ( ayﬂay;) }Lg.i*g —6PRe(f O )+ €. (31.7.43)

With f(¢) given by Eq. (31.7.20), this takes the form
soﬁ = Z M 5¢r¢g + 2Re Z N s¢’r¢'s + 2Re ZArst¢r¢s¢r +% ,

rst

(31.7.44)
where
. R EY RN 524, \° 4 0s
2 _ 4 Z o 2 0 14 (]o ry D30
MPS =K Ifol 51‘3 2x"Re [f g ( aya) } Eb (ayaay;) LaL »
(31.7.45)

. BANC ..,
N2 = 2K .ursfu “_Zﬂrr( ) a zz.uts( ir) 0
2
-Z( 7 B ) LoD, (31.7.46)

6}&:5)’5

aAur a/lus at‘iut FO=
Arg = Z l:( y: ) + + ( ay; ) Zure + (5]1; ) gurs} L.

(31.7.47)

and

Our previous order-of-magnitude estimates give
ME=0*A%),  NE=0('A%), 4. =006AY). (31749

Together with our estimates g, = O(l) and g, = O(x*A3) for the
constants in Ve, this shows that if the potential has a stationary point at
some ¢J # 0, then ¢ = O(k2A3), justifying our decision to explore fields of
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this order. For an equilibrium value of the ¢, of this order, the equilibrium
value of the various terms in the potential is O(¢*) = O(x3A™2), so this
is the order of magnitude of the constant € that is needed to cancel the
vacuum energy.

In order for the characteristic mass x*A* in the minimal supersymmetric
standard model to be of order I TeV we need A a 10!* GeV, If it is a
Peccei-Quinn symmetry that forbids a term in the bare superpotential
with two superfield factors each from the observable and hidden SeCtors,
as suggested above, then vacuum expectation values of the hidden sector
scalars will break this symmetry, with a symmetry-breaking scale {called
M in Section 23.6) of order 10'* GeV, and an axion mass which is then
given by Eq. (23.6.26) as of order 107 eV. This value for the symmetry-
breaking scale is somewhat above the upper bound of 102 GeV quoted
in Section 23.6, but given the uncertainty of cosmological arguments, this
contradiction is not decisive.

Before considering further physical implications of these results, let’s
pause to reconsider a short-cut that we took in deriving them. In caiculat-
ing the potential for the observable sector scalars ¢y, we fixed the modular
fields at the equilibrium values p? that they would have in the absence of
the observable sector fields ¢,. Instead, we ought to set the modular fields
at their equilibrium values y,(¢) for the actual values of the ¢,, by finding
the stationary point of the potential

Vtolal(*?f"s '%'b*,y,}") = f’}[}’:}'.) + VU{GEE'"}”‘,J’)J") L] (31'?4":’)

and only thcq\ seek an equilibrium value for the ¢,. Since Vy is much
smaller than V' for fields of interest, the equilibrium value of y, can be
written as

Yal$, &%)y = ¥3 + Svul$, 67, (31.7.50)
where 0 is at the minimum of ¥(y, y*) and
a2y 4 Vo
e By S gy = 200 31.7.51
2 Fraw Zb: 6383, 0 T By, CL3D

The secend derivatives of P are of order x? x (kA% = x*AS, while the
first derivatives of Vp are of order x x k8A2 = ¥%A12, 50 the 8y, are of
order k°A® The change in the potential due to this ¢-dependent shift
in the equilibrium values of the y, is quadratic in the 8y, and 3y}, with
coeflicients given by second derivatives of ¥ with respect to y, and/or y;,
and is therefore of order

(KSA6]2 X K2 % {KA3)2.= a8 ]

which is less than the potential we have calculated by a factor (xA)® < 1.
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Without further assumptions regarding the functions A.(y,¥') and

B.{y,v"), we can learn nothing whatever from Eqgs. (31.7.43)-(31.747)
about the precise values of the coefficients M7, Nz, and A,y in the soft
supersymmetry-breaking potential (31.7.44). The only definite prediction
that emerges from these results is that the coefficients Cj; in the soft
supersymmetry-breaking Lagrangian (28.4.1) are all negligible, as has
generally been assumed anyway.

The greatest problem presented by the results (31.7.44)-(31.7.48) is that
without further assumptions they do not insure the degeneracy of squark
masses and of slepton masses that would avoid the quark and lepton
flavor-changing processes discussed in Section 28.4. The ¢,¢-terms in the
soft supersymmetry-breaking potential {31.7.44} and in the superpotential
{31.7.20) are not aliowed by SU(3) x SU(2) x U(1) to depend on anything
but the Higgs scalars, so they cannot lead to flavor-changing processes.
The problem therefore arises only from the fact that the coefficients M2,
and A,s in Eq. (31.7.44) may not conserve flavor in the same basis as the
Yukawa couplings g,-,. One way to avoid this problem is te assume that for
some reason the functions A.(y, ¥*) happen to depend only weakly on the
Va and y;, so that Eq. (31.745) gives M2 o 8,5 and Eq. (31.7.47) makes
Ary (and hence the A;; coefficients in Eq. (28.4.1)) anomalously small.
Another possibility is that, although not slowly varying, for some reason
the whole function A4,(y,v™) (or at least its first and second derivatives
at y, = y1) is proportional to 3,;. In this case, Eq. (31.7.45) again gives
M2 o 8,5, and now Eq. (31.7.47) gives trilinear couplings A,y o€ g, SO
that the A;; coefficients in Eq. {28.4.1} would be all equal®!

We must also check the gaugino masses produced by this version
of gravitationally mediated supersymmetry breaking. According to Eq.
(31.6.75), the mass matrix of the SU(3} x SU(2) x U(1) gauginos is given
in general by

man = exp(d/2) Yl L G (317.52)
NM doae

where @y here runs over all the fields on which f4z may depend, with gy p
and Ly given by Eqs. (31.6.66) and (31.6.69), According to the estimates
we have made here, 1K2d < 1; L, = O(kA’) for the modular fields y, and
is much smaller for the other fields; and g;&’ =~ .. Also, we assume that
f4p is & power series in xy with coefficients of order unity, so &f4g/dy,
is of order x. The gaugino masses (31.7.52) are therefore of order x?A°,
which is the same as the order of magnitude of the scalar masses and
expectation values, and hence is likely to be large enough to avoid conflict
with observation. The one-loop corrections considered in Section 31.4 are
much smaller here, and do not need to be taken into account.



Appendix The Vierbein Formalism 375

In summary, the first version of gravity-mediated supersymmetry break-
ing has the advantage of giving an axion mass that is within cosmological
bounds, while the second version has the advantage of giving the gauginos
masses that are comparable to the masses of the squarks and sleptons.
Both versions of gravity-mediated supersymmetry breaking have an ad-
vantage over theories of gauge-mediated supersymmetry breaking: they
naturally give u-terms of the experimentally necessary order of magnitude.
On the other hand, theories of gauge-mediated supersymmetry breaking
have the advantage of naturally yielding generation-independent squark
and slepton masses.

Theories with either version of gravity-mediated supersymmetry break-
ing may naturally entail the existence of stowly decaying superheavy
particles, which could have interesting astrophysical effects.?? It is plausi-
ble that the gauge interactions of the hidden sector that become strong
at energy A can bind composite particles with masses of order A. These
superheavy particles may be long-lived if their decay is forbidden by
accidental symmetries of the renormalizable part of the hidden sector
Lagrangian and only occurs through non-renormalizable terms in the
Lagrangian, which are suppressed by factors of xA.

E Appendix The Vierbein Formalism

The familiar formulation of gravity in terms of a metric tensor g is
adequate for theories with matter fields restricted to scalars, vectors, and
tensors, but not for supergravity, where spinors are an indispensable ingre-
dient. Unlike vectors and tensors, spinors have a Lorentz transformation
rule that has no natural generalization to arbitrary coordinate systems.
Instead, to deal with spinors, we have to introduce systems of coordinates
Eix)witha=10,1,2,3 that are locally inertial at any given point X in
an arbitrary coordinate system. The Principle of Equivalence tells us that
gravitation has no effect in these locally inertial coordinates, so the action
may then be expressed in terms of matter fields like spinors, vectors, etc.
that are defined in these locally inertial frames, as well as the vierbein,
which agises from the transformation between the locally inertial and
general coordinates

a8y (x)

: 3LAL
porl I ( )

e (X)=

The action will be invariant under general coordinate transformations
W — x™ and local Lorentz transformations é* — &' = A% (x)EY with
A% (X)AL 4{x)n a5 = 5ea. The definition {31.A.1) of the vierbein shows that,
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under general coordinate transformations x — x’, it transforms as
»

Fil r a a
e%,(x) = &, (x') = E’rxi""e S (%), (31.A2)

while, under a local Lorentz transformation £%(x) — A%,(x)&b (x), it trans-
forms as

eu(x} = A%(x)e’uix) . (31.A.3)

For instance, theories of pure gravitation may be expressed in terms
of a field that is invariant under local Lorentz transformations and that
transforms as a tensor under general coordinate transformations, the
metric

2o = € e’y Map (3L.A4)

Vectors may be regarded cither as quantities ¥4 that transform as vectors
under local Lorentz transformations

V4(x) = A%(x)V?(x) (31.A.5)

but as scalars under general coordinate transformations, or as quantities
v# that transform as scalars under local Lorentz transformations but as
vectors under general coordinate transformations, the two being related
by '

Ve =",

But the supergravity action also involves spinor fields, which necessarily
transform like scalars under general coordinate transformations but as
spinors under local Lorentz transformations

W2{x) = Dog(A{x)hpg(x), (31.A.6)

where D5(A) is the spinor representation of the homogeneous Lorentz
group.

Because the Lorentz transformations in Egs. (31.A.5) and (31.A.6) de-
pend on the coordinate x*, the spacetime derivative of a quantity like
Vé(x} or tp.(x) is not just another quantity that transforms in the same
way under local Lorentz transformations and as a covariant vector un-
der general coordinate transformations. For instance, the derivative of
Eq. (31.A.6) gives the local Lorentz transformation rule

Oy = Dyg(A) {@ﬂuw + [D_I(A:Iﬂ#D{A}}ﬁ?lp},} .

To cancel the second term in the brackets on the right-hand side we
introduce a connection matrix £, with the local Lorentz transformation

propetty _
Q, — DAXYD(A) - (3,D(A))D7\(A) (3LA.T)
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and define a covariant derivative

Dy =80+ Quyp (31.A.8)
which transforms under local Lorentz transformations like y itself:
2up — DIA)2yy . (31.A9)

Also, Q, must transform like a covariant vector under general coordinate
transformations, so that &, will give a covariant vector when acting on a
coordinate scalar. In order that &, should give a tensor with one extra
tower index when acting on a tensor, it must be supplemented with the
usual affine connection term. For instance, when acting on the gravitino
field 1p,, the covariant derivative is defined as

Dy = Wor + Qutpy = Oy — Th v+ Qe - (31.A.10)

Egs. (31.A.8»(31.A.10) apply not only for spinors, but for fields that
transform under local Lorentz transformations according to arbitrary
representations D(A} of the Lorentz group. The matrix Q, depends on
this representation, but in any representation it can be written in the form

[2)apix) = %i[fablxﬁw;”(x} . (3LA.11)

where ¢, are the matrices representing the geperators of the homo-
geneous Lorentz group in the representation furnished by the fields in
question:

iLfa, Fedl = Noc Fad — Nae Fod + Mod Fea — NadFcb {31.A.12)

and wﬁ" is a represenfation-independent field known as the spin connection
that transforms as a covariant vector under general coordinate transfor-
mations. To satisfy the inhomogeneous local Loreniz transformation rule
{31.A.7) we can take

mﬁb - gv‘leavebﬁ;# * (31'A.13)

with the semi-colon again denoting an ordinary covariant derivative,
constructed using the affine connection l"ﬁv. (This is antisymmetric in a
and b because Eq. (31.A.4) gives g"e%e’; = #, a quantity with vanishing
covariant derivative.) This is ‘not the unique spin-connection for which
Eq. (31.A.7) is satisfied; to it, we can add any field that is a covariant
vector under general coordinate transformations and a tensor under local
Lorentz transformations, a freedom of some importance in supergravity
theories. '

For any choice of spin connection there is a corresponding curvature
tensor. From Eq. (31.A.7) it is straightforward to show that the quantity
8,82, — 8,8, + [©,,€,] transforms homogenecusly under local Lorentz
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transformations

Oyl — 3,2, + [Q,, 2] — D(A) (3,0, — 3.2, + (0. Q1) D~HA).
- (31L.A.14)
Using Eqgs. (31.A.11} and (31.A.12), this matrix can be expressed as

08 — 0,50 + [, Q] = 1i R, (31.A.15)
where
Riw™ = 8,0 — 80P + 0% a, b — 0%w, b (31.A.16)

From Eq. (3II.A.14) it follows that R,,® transforms as a tensor under
local Lorentz transformations

Ry™ — DAY DA 4R . (LAY

It also obviously transforms as a tensor under general coordinate trans-
formations

oxf Ox® .

b
Ry — Bk B e (3L.A.18)
We can therefore form a coordinate tensor of fourth rank by writing
Ry = e, et Ry . (31.A.19)

The tensor R,** constructed in this way is the Riemann—Christoffel
curvature tensor corresponding to the particular spin connection .

Problems

1. Derive formulas (31.2.3}-(31.2.6) for components of the Finstein
superfield.

2. Suppose that supersymmetry is unbroken. Show how to calculate
the amplitude for emission of a gravitino of very low energy in a
general scattering process in terms of the amplitude for this process
without the gravitino.

3. Check that the supergravity action (31.6.11) is invariant under the
local supersymmetry transformations (31.6.1){31.6.6) to all orders
in G.

4. Calculate the change of the generalized D-component (31.6.40) under
a general local supersymmetry transformation.

3. Calculate the fermionic part of the Lagrangian density (31.6.49),
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6. Consider the theory of a single chiral scalar superfield @ interacting

3a.

7a,

10.

with supergravity, with modified Kahier potential d(®,@7) = @°®
and superpotential f(®) = M*(@ +§), where M and f§ ate constants.
Find a value of § for which the classical field equations have a
solution with flat spacetime. What is the value of ¢ for this solution?
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32

Supersymmetry Algebras
in Higher Dimensions

Ever since the ground-breaking work of Kaluza! and Klein,? theorists have
from time to time tried to formulate a more nearly fundamental physical
theory in spacetimes of higher than four dimensions. This approach
was revived in superstring theories, which take their simplest form in
10 spacetime dimensions.> Moare recently, it has been suggested that the
various versions of string theory may be unified in a theory known as M
theory, which in one limit is approximately described by supergravity in
I1 spacetime dimensions.* In this chapter we shall catalog the different
lypes of supersymmetry algebra possible in higher dimensions, and use
them to classify supermultiplets of particles.

321  General Supersymmetry Algebras

Our analysis of the general supersymmetry algebra in higher dimensions
will follow the same logical cutline as the work of Haag, Lopuszanski,
and Sohntus® on supersymmetry algebras in four spacetime dimensions,
described in Section 25.2. The proof of the Coleman—Mandunla theorem in
the appendix of Chapter 24 makes it clear that the list of possible bosonic
symmetiry generators is essentially the same in d > 2 spacetime dimensions
as in four spacetime dimensions; in an S-matrix theory of particles, there
are only the momentum d-vector P¥, a Lorentz generator J* = —jw
(with 2 and v here running over the values 1,2,...,d—1,0), and various
Lorentz scalar ‘charges.’ (In some theorics there are topologically stable
extended objects such as closed strings, membranes, etc, in addition
to particles, which make possible other conserved quantities, to which
we will return in Section 32.3.) The anticommutators of the fermionic
Symmetry generators with each other are bosonic symmetry generators,
and therefore must be a linear combination of PrOJ® and various
conserved scalars. This puts severe limits on the Lorentz transformation
properties of the fermionic generators, and on the superalgebra to which
they belong.

382
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We will first prove that the general fermionic symmetry generator must
transform according to the fundamental spinor representations of the
Lorentz group, which are reviewed in the appendix to this chapter, and
not in higher spinor representations, such those obtained by adding vector
indices to a spinor. As we saw in Section 25.2, the proof for d = 4 by
Haag, Lopuszanski, and Sohnius made use of the isomorphism of S0{4)
to SU(2) x §U(2), which has no analog in higher dimensions. Here we
will use an argument of Nahm,® which is actually somewhat simpler and
applies in any number of dimensions.

Since the Lorentz transform of any fermionic symmetry generator is
anather fermionic symmetry generator, the fermionic symmetry generators
furnish a representation of the homogeneous Loreniz group O(d — 1,4d)
(or, strictly speaking, of its covering group Spin(d — 1, 1}). Assuming that
there are at most a finite number of fermionic symmetry generators, they
must transform according to a finite-dimensional representation of the
homogeneous Lorentz group. All of these representations can be obtained
from the finite-dimensional unitary representations of the corresponding
orthogonal group O(d) (actually Spin(d)} by setting x? = ix?, So let us
first consider the transformation of the fermionic generators under O(d).
For & even or odd, we can find d/2 or (4 < 1)/2 Lorentz generators Jy,
Ja3, Jys,..., which afl commute with each other, and classify fermionic
generators Q according 1o the values o41, 023, ... that they destroy:

Va1, @} = —on1Q, i, Q] = —o3Q, [Jas, Q] = —ous@, ... .
: (32.1.1)
Since the finite-dimensional representations of ({d) are all unitary, the g
are all real.
Let us focus on one of these guantum numbers, a4 = w and refer to
any fermionic or bosonic operator O as having weight w if

Jar, Ol =—wO, . (32.1.2)
or, in terms of the Minkowski component Jo; = iJa,
[Jo1, O] = ~iw Q. {32.1.3)

The reason for concenirating on this particular quantum number is that
it has the special property of being the same for an operator and its Her-
mitian adjoint. This is because Jy) must be represented on Hilbert space
(though not on field variables or symmetry generators) by a Hermitian
operator, so that (remembering that w is real) the Hermitian adjoint of
Eq. (32.1.3) is '

- [Jor, O7) = +iw0" | (32.1.4)

so O° has the same weight as 0.
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Now consider the anticommutator {0.0°) of any fermionic symmetry
generator O with its Hermitian adjoint, According to the Coleman—
Mandula theorem, it is at most a linear combination of Py, Jv, and
scalars. To calculate the weights of the components of P, we recall the
commutation relation (2.4.13) :

i[P_m Jpa] = HupPo — ?F,uapp .

which shows that Py + P, has weight w = 41, while the other components
Py, Py, ..., Py all have weight zero. In the same way, the commutation
relation (2.4.12) of the Jw with each other show that Joi + Ji; with
=23 ...d- I have weight w = +1, the Ji; with both i and j between
2 and d — 1 have weight zero, Jio has weight zero, and of course all
scalars have weight zero. We conclude then that all bosonic symmetry
generators have weight +1 or 0 and the anticommutator {Q, Q*} must be
a linear combination of operators with such weights. If O has weight w
then {Q, 0"} has weight 2w, and it is manifestly non-zero for any non-zero
@, so each fermionic generator can oaly have weight +1/2. (Weight zero
is excluded by the connection between spin and statistics — fermionic
operators can only be constructed from odd numbers of operators with
half-integer weights.) Going back to the Euclidean formalism, since the
commutators of the particular O(d) generator Jor with all generators Q in a
representation of O(d) are given by Eq.(32.1.2) withw = +1/2, and there is
nothing special about the 01 plane, O{d) invariance requires that the same
is true for all O(d) generators Jij, so that all the gs in Eq. (32.1.1) are +1/2.
The only irreducible representations of the homogeneous Lorentz group
with all os equal to +1/2 are the fundamental Spinor representations, so
@ must belong to some direct sum of these representations.

We can also use this approach to show that the fermionic generators
¢ all commute with the d-momentum Fy. For this purpose, note that the
double commutator of 2 momentum operator Py £ Py of weight +1 with
any fermionic generator O would have weight either 15/2 if Q has weight
+1/2 or weight +3/2 if Q has weight F1/2, and since we have found
that there are no fermionic symmetry generators of weight +3/2 or +5/2,
these double commutators must all vanish-

[Fot P, [Py +PLQ) =0.
It fotlows then that
[Po £ Pr, [Po £ Pi {Q, Q"] = —2{0s, @i},
where
Qe =[Pt P,Q].
Now, {Q,Q"} is at most a linear combination of Js, Ps, and scalar
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symmetry generators. The commutators of Py + P| with the Ps and scalar
symmetry generafors vanish, while the commutators of Py + P, with the
Js are linear combinations of Ps, which commute with the other Py + Py,
so the double commutator {Py + Py, [Py & Py, {Q,0*}]] must vanish and
therefore {@4,Q%} = 0, which implies that Q4 = 0. Since alf members of
the representation of the Lorentz group provided by the Os thus commute
with Py and Py, Lorentz invariance implies that all Qs commute with all
Ps, as was to be shown.

There is an important corollary that since the Lorentz generators Juy
do not commute with the momentum operators, they cannot appear on
the right-hand side of the anticommutation relations. For the moment let
us label the Qs as @, where n runs over the labels for the different (not
necessarily inequivalent) irreducible spinor representations among the s,
now including their adjoints 7, and also over the index labelling members
of these representations. The genera! anticommutation relation is then of
the form '

{On, Om} =T0aPut+ Zpm (32.1.5)

where the I', are c-number coefficients 2nd the Z,,, are conserved scalar
symmetry generators, which commute with the P, and J,,. We now want
to show that the Z,, are central charges of the supersymmetry algebra —
that is, that they commute with the @, and each other as well as with the
Py and J,, and all other symmetry generators.

To prove this for d > 4, note that for a given Z,, to be non-zero, since
it is a scalar all of the o3 in Eq, {32.1.1) must be opposite for Q, and Q.
Consider another fermionic symmetry generator ¢, for which the as of
Eq. (32.1.1) are not all the same as those of either Q, or Q... (For d > 4
there is always such a Q, in each set of Qs forming an irreducible spinor
representation of O(d).) We apply the super-Tacobi identity

[Qrﬁ’: {Qm; Qn};[ + [Qm, {Qns Qt’}] + [Qn » {Qr.’s Qm}] =0. {32-1-6)

The anticommutators {Q,, Qs} and {Q;, Q,,} are operators that have
some ¢§ non-zero, so they can only be linear combinations of Ps rather
than Zs, and so must commute with all Os. This leaves just

0=1{0s, {Om, Cu}] = [Qs, Zpmal . (32.1.7

Thus in each set of Qs forming an irreducible spinor representation of
O(d) there is at least one that commutes with the given Z,,,. But Z,,, is
a Lorentz scalar, so it must then commute with all @s. It follows then
immediately from Eq. (32.1.5) that they also commute with each other.
The fermionic generators must form a representation (perhaps trivial)
of the algebra .« consisting of all scalar bosonic symmetry generators.
It follows then by precisely the same argument used in Section 25.2 that
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the central charges Z,, furnish an invariant Abelian subalgebra of o
The Coleman-Mandula theorem tells us that & must be a direct sum
of a compact semi-simple Lie algebra, which by definition contains no
invariant Abelian subalgebras, together with U(1) generators, so the 7,
must be U(1} generators, which commute with all other bosonic symmetry
generators, not just with each other.

To obtain more detailed information about the structure of the anti-
commutation relations (32.1.5), we must be more specific about the
Lorentz transformation and reality properties of the fermionic symme-
iry generators ¢),. These are very different for spacetimes of even and odd
dimensionality.

Odd Dimensionality

The appendix to this chapter shows that for odd spacetime dimensions d
there is just one fundamental spinor representation of the Lorentz algebra,
by matrices #,, given in terms of Dirac matrices by Eq. {32.A.2), so we
must label the fermionic generators as Q,,, where o is a 2@ 1/2.yalued
Dirac index, and r = 1, 2, ..., N labels different spinors in the case of N-
extended supersymmetry. With this notation, the Lorentz transformation
properties of the Qs imply that

[Jpv ' Qar] = Z(f,uv)aﬂ Qﬁr s . (3218)
8

s0 that the anticommutators of these generators have the transformation
rule

[J:uv P {er P Qﬂ's}] = _E(f_uv]ac&{Q&r , Qﬁs} - Z(afyv)ﬁﬁ{gmr » Qﬁ‘_g} .
& B

Recalling the Lorentz transformation rule (2.4.13) for the momentum
operator P, we sce that the matrix I'X, and the operator Z,, in Eq. (32.1.5)
(with Dirac indices now suppressed) must satisfy the conditions

f_uv(r}l)rs + (rljrsff;v =—i (r_u}rsnv.l + f(l—‘\r]mffﬂi s (3219)
Fuwnles+Zrs Iy =0. (32.1.10)

But Eq. (32.A.38) gives £, = —%7' 7 ,,%, s0 Egs. (32.1.9) and (32.1.10)
may be expressed as the requirement that (Ty)rs%~! satisfies the same
commutation relation (32.A.32) with ¢ wv as y,, while Z, %! commutes
with #,,. For odd d the matrices satisfying these conditions are unique
up to multiplication with constants, so we can conclude that

Thrps == i grs (7 @) (32.1.11)
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and
zurﬂs = (gaﬂ Zrs s (32.1.12)

with the factor i inserted in Eq. (32.1.11) for later convenience. With Dirac
indices suppressed, the anticommutation relations (32.1.5} now read

(0, 0 =igy* €PL+ 26 . (32.1.13)

Both I'% ;. and Z, p; are symmetric under interchange of o and r with
§ and s, while Egs. (32.A.30) and (32.A.31) (with d = 2n + 1) show that:
+*4¢ is symmetric and € is symmetric for d = 1 (mod 8); y*¢ is symmetric
and % is antisymmetric for d = 3 (mod 8); ¥'¢ is antisymmetric and ¥
is antisymmetric for 4 = 5 {mod 8); and y*¢ is antisymmetric and ¥ is
symmetric for d = 7 (mod 8). It follows that: g, is symmetric and z,, is
symmetric for d = 1 (mod B8); g, is symmetric and z, is antisymmetric
for 4 = 3 {mod R); gy is antisymmetric and z,; is antisymmetric for d =1
(mod 8): and g is antisymmetric and 2z, is symmetric for d = 1 (mod 8).

The complex conjugate of the matrices #,, is given by Eq. (32.A.37).
By taking the Hermitian adjoint of Eq. (32.1.8), we see that > ¢(¥5).aQp,
has the same Lorentz transformation properties as any s, and therefore
must be a linear combination of them

Z{(gﬁ)uﬁgér = Z ‘Sprsers - {32.1.14)
i £

Taking the Hermitian adjoint of this equation and using Eqs. (32.A.28)
and {32.A.29) with d = 2r + 1 yields

FF (=11,  a=(d—1d—3)/8. (32.1.15)

For d = 1 (mod 8) and d = 3 (mod 8) ihe spinor representation of the
Lorentz algebra is real, and we can choose a basis for the fermionic
generators such that & = 1. In contrast, for d = 5 (mod 8) and d =7
(mod 8) the spinor representation of the Lorentz algebra is pseudoreal,
and it is evidently impossibie to choose a basis with & o 1. By taking
the determinant of Eq. (32.1.15), we see that in this case Det(~1) > 0, so
for d = 5 (mod 8) and d = 7 (mod §) there must be an even number N of
fermionic generators. In this case we can choose a basis in which & =1,
where 2 is the real antisymmetric block-diagonal matrix

e ¢ 0 -
0 e 0O - _{ 01 :
Q=1 430 ¢ - |’ €= ( _1 0) . (32.1.16)

We can deduce the reality and positivity properties of g.s and z,. by
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uging Eq. (32.1.14) to rewrite the anticommutation relation (32.1.13) as
{0, Q1) = e s B (4B PA + (25T),5(48) ™ .

Egs. (32.A.12), (32.A.16), and (32.A.30) with d = 2n-+1 show that T = —8
and €FT1 = (=1)ld-Did+L/B .y o

{Q:, Q) = —(—1)W-1ia+1y8 [f(g?_‘-‘)rmﬂP* +SMp)] . (2117)

Recalling that yo = i, we note that the operator matrix —iy;8 P* is
positive, and positive-definite aside from the vacuum state. By consid-
ering a state of sufficiently large momentum so that the central charge
term in Eq. (32.1.17) may be neglected, we conclude that the matrix
(—1)=DEDEg T is positive and Hermitian, Then considering arbitrary
momenta, we also find that the array of operators (z%7),, is Hermitian.
(For non-zero central charges there is a lower bound on the mass, analo-
gous to Eq. (25.5.22), which will not be given here.) From the Hermiticity
of 2T we have

gl = FTleoT — (1P e s, (32.1.18)

We are now in a position by an appropriate choice of basis to put the
anticommutation refations in a convenient canonical form.

For d = [ (mod 8) we have g and z symmetric and (—~1)* = +1, so if
we choose a basis in which & = 1 then g is real and the individual z,, are
Hermitian operators. We may introduce new Qs without changing & = 1
by muitiplying the old Qs by any real matrix ., with the result that g is
changed to &g/, Since g is a positive matrix for d = 1 (mod 8), by a
well-known theorem® we may choose & to make g = 1.

For d = 3 {mod 8) we have g symmetric, z antisymmetric, and (—1)? =
+1, so if we choose a basis in which % == 1 then g is real and the
individual z,; are anti-Hermitian operators. As in the case of d = 1 (mod
8), we may further adapt the basis so that g = 1.

For d = 5 (mod 8} we have g antisymmetric, so, with the choice & = Q,
Eq. (32.1.18) reads g" = —gQ, where Q is the standard antisynimetric
matrix (32.1.16). Here we may introduce new Qs while keeping & = ()
by multiplying the old ones by any matrix # with #* = —Q®Q, with the
effect that g is changed to @g#". Since (—1)° = -1, gQ is positive, and
so in this way we may arrange that g = —Q. Also, z is antisymmetric and
z( 1s Hermitian, so z* = -Q:zQ. .

For d = 7 (mod 8) we again have g antisymmetric, but now (—1)? = +1,
s¢ by the same method as for 4 = 5 (mod 8), we may choose a basis in
which g = +0Q. Also, z is now symmetric and z€Q is again Hermitian, so
now z" = 4z,
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Even Dimensionality

The appendix to this chapter shows that for even spacetime dimensions
4 there are two inequivalent fundamental spinor representations of the
Lorentz algebra by matrices j}v given in terms of Dirac matrices by
Egs. {32.A.22), (32.A.2), and (32.A.17). Therefore here we must label the
fermionic generators as Q% where « is a 2/?-valued Dirac index, r labels
different Qs belonging to equivalent representations of the Lorentz algebra
in the case of extended supersymmetry, and

S asidep O = £ 05, (32.1.19)

B
where y44) = i1y - - - y4_170. With this notation, the Lorentz transfor-

mation properties of the Qs imply that
Ugr» Q51 == (S5 )us Qi » (32.1.20)
B

where #% are the matrices (32.A.22). Taking account of Eq. (32.1.19) and

the relation € 'y41%¢ = (—1)%?y4,1, the same arguments that gave the
anticommutation relations {32.1.13) for odd 4 now give

{Q? , f[_l]d("l T} — Ig;%; (Li_i},@_i-_]) :}jﬂ réx Pj_ , (3‘2.i2])
2 1+
(gf, QT = o (——'{iﬂ) €. (32.1.22)

Egs. (32.A.30) and (32.A.31) show that ¥y* is symmetric for d = 0 (mod
8) and d = 2 (mod 8) and antisymmetric for d = 4 (mod 8} and d==6
(mod 8), while ¥ is symmetric for d = ¢ (mod 8} and d = 6 {mod 8) and
antisymmetric for d = 2 (mod 8) and 4 = 4 (mod 8). Hence Eq. (32.1.21)
requires the symmetry properties

Fl- 12 d = 0,2 (mod 8
gE=4 B e 2 (mod 8) (32.1.23)
—gsr d = 4,6 (de 8)
while Eq. {32.1.22) requires that
-l d = 0,6
=g e +6 (mod 8) (32.1.24)
—Zz d=2.4{mod 8)

In particular, zE is symmetric for d = 0 (mod 8), g* is symmetric for d =2
(mod 8), z* is antisymmetric for d = 4 (mod 8), and g* is antisymmetric
for d = 6 (mod 8).

Taking the Hermitian adjoint of Eq. (32.1.20) and using Eq. (32.A.25)
shows that €80L" has the same Lorentz transformation properties as the
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operators QF"* and is thereforé a linear combination of them:

CpOF =D sE QI (32.1.25)

Taking the Hermitian adjeint of this equation and using Egs. (32.A.28)
and (32.A.29) with d = 2n gives

g =M ya g a=dd—2)/8. (32.1.26)

For d = 0 (mod 8) and d = 4 (mod 8) Eq. (32.1.25) relates one irreducible
representation to another, and we may choose bases in which %t = 1
for d = 0 (mod 8) and ¥% = +1 for d = 4 (mod 8). For d = 2 (mod 8)
Eq. (32.1.25) relates real representations to themselves, and we may choose
bases with ¥+ = 1. For d = 6 (mod 8) Eq. (32.1.25) relates pseudoreal
representations to themselves; the determinant of Eq. (32.1.26) shows that
there must be an even number of @* and an even number (not necessarily
the same!) of Q~, and we may choose bases with &t = (%, where Q+
ar¢ standard real antisymmetric matrices of the form (32.1.16).

We can deduce the reality and positivity properties of g% and the reality
properties of z¥ by using Eq. (32.1.25) to rewrite the anticommutation
relations (32.1.21) and (32.1.22) in the form

(07 031 = (FEE ) g rwep ™ (g2 ) L G2a20)
{0F, f*}=(1—$¥ﬂ) if(%ﬂﬂ)T_l(ziy:FT)m. (32.1.28)

We again use the relations ¢%7~! = (—1)4@+2/8 3T — _g and 5o = iB,
and conclude that (—1)4+2/8g25r3T is Hermitian and positive, while
(z*# ) = z79*T, For d = 0 (mod 8) we can adopt a basis with
FE =1, gt =1, and z*" = z~; for d = 2 (mod 8) we can adopt a basis
with #% = 1, g% = —1, and z* = z~; for d = 4 (mod 8) we can adopt
a basis with #* = +1, g* = F1, and z*" = —z~; and for d = 6 (mod 8)
we can adopt a basis with % = OF, o+ = QF and (ztQ) = 0+,

To summarize, in appropriate bases the anticommutation refations and
reality and symmetry conditions are as follows:®

d =0 (mod 8)
{07, Q7 T} =idy (l—igﬂ-) yYeP;, (32.1.29)
{QF, 0T} =22 (I—-i;ﬂ) €, (32.1.30) -

$pOF =0f, E=z=(). (32.1.31)
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d =1 {mod 8}
{Qr ’ QI} = fars’.lf'J1 € P+ 259,

%,ﬁQ: = Qr s Zpy = Zgp = z:s .
d = 2 (mod 8)

(OF. 07"y = —iv (FE) ) i

2
1+
(0F. 0F Ty =2t (Pl ),
3

EBRQFT =0F,  zh=zf =—2f.
d =3 (mod 8)
{0, 05} =i6.y € P+ 2,9,
€BO; =0, Zps = —2g = —z .
d =4 (mod 8) |

T —_. 1+
(07, QF Ty = Fion (=2]41) pam,

(0r, 057 = (1) o,

e

w

d =5 (mod 8)
{Qr: Q.;r} = “iﬂrs}’i@Pi+zrx%?s

gﬂQ: = Zﬂmgs s Zrs = —ZIy, Z. = —2z{) .
p .

d =6 (mod 8)

ot (1E '
(0, 02Ty = i (FE1E) ey,

(0F, 0T} = o (~E1t) g,

M

(32.1.32)

(32.1.33)

(32.1.34)

(32.1.35)

(32.1.36)

(32.1.37)

(32.1.38)

(32.1.39)

(32,1.40)

(32.1.41)

(32.1.42)

(32.1.43)

(32.1.44)

(32.1.45)
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CHOT =3 050F,  oF - QfEqF =T (32.1.46)
£
d =7 (mod 8)
{0r 0} = i0* 4P +5,%, (32.1.47)
RO =3 00, zm=zg, 2 =400, (32.1.48)
F

Inspection of these anticommutation relations reveals that in the ab-
sence of central charges they are invariant under groups of linear trans-
formations on the fermionic generators, of the form @, — 37, VO for d
odd and QFf — 57 VFQL for d even. In order to preserve the relations
(32.1.29)432.1.48) it is necessary that the Vs should satisfy the conditions:

d=0and d =4 (mod 8)
VEpPFT =1 | v =yt (32.1.49}

d=1and d =3 (mod 8)

viTe=1, Vr=V, (32.1.50)
d = 2 (mod 8)
VEyET g vyt =yt (32.1.51)
d = 5 (mod §)
ravt =g, V=0V, (32.1.52)
d =6 {mod 8)
PEVET =1,y = _pEpigr {32.1.53)
d =17 (mod 8)
vartT=q, v =_qvQ. (32.1.54)
These matrices form the groups:
d=0and d = 4 (mod 8) UiN) .
d=1andd=3 (mod 8) O(N) .
d =2 (mod 8) O(N+) X O(N_} .
d=5and d =7 (mod 8) USp(N} Neven .

d = 6 (mod 8) USp(Ny)x USp(N_) N even .
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Here N is the number of fundamental spinor representations among the
@s for d odd and the number of fundamental spinor representations of
each chirality among the Qs for d = 0 (mod 8) and d = 4 (mod 8). For
d= 2 (mod 8) and d = 6 (mod 8) the numbers of fundamental spinor
representations among the Qs need not be the same for each chirality, and
so these are denoted N, and N_.

32.2 Massless Multiplets

We wiil now consider how the supersymmetry algebras constructed in
the previous section may be used to construct supermultiplets of massless
particle states in d > 4 spacetime dimensions. The momentura operator
P# commutes with all fermionic symmetry generators, so we can work
in the one-particle subspace of Hilbert space where P# has a definite
lightlike eigenvector p*, which may be taken in a direction with p! = p°
and all other spatial components of p# zero.- Just as in the case of
four spacetime dimensions, discussed in Section 2.5, these one-particle
states are classified according to the finite-dimensional representations
they provide of the little group, the subgroup of the homogeneous Lorentz
group that leaves p¥ invariant. The little group contains combined boosts
along directions perpendicular to p and rotations in planes in which p
lies, such as the transformations (2.5.6) for four spacetime dimensions,
but these form an invariant Abelian subgroup and therefore in a finite-
dimensional representation must be represented by the unit operator. With
this subgroup omitted, the reduced little group in d dimensions is O(d —2),
consisting of rotations in planes orthogonal to p. We therefore classify
massless particle states according to the representations they provide of
0(d — 2} and of the automorphism groups described at the end of the
previous sectton.

These representations are more complicated than those we have dealt
with in four spacetime dimensions, where the reduced little group is 02}
and the representations are one-dimensional, characterized by a single
number, the helicity. Nevertheless it is useful to label the representa-
tions of the reduced little group O(d — 2) with a ‘spin,’ defined as the
maximum absolute value of the eigenvalue of any generator Ji; in the
representation.

It is widely believed that there are no consistent quantem field theories
involving massless particles with spin greater than 2. Tt is known’ that
soft masstess particles with spin j > 1/2 can only interact with conserved
currents carrying spin j. For j = 1 these are the currents of ordinary
conserved scalars, like electric charge; for j = 3/2 they are the one or
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more supercurrents associated with supersymmetry; for j = 2 there is a
single corrent, the energy-momentum tensor; but for j > 5/2 there is no
conserved current with which a soft massless particle could interact. We
may derive stringent limits on the dimensions in which supersymmetry
is possible by adopting a prohibition against there being more than one
type of massless particle of spin 2, or any massless particles whatever of
spin greater than 2,

Let us return for a moment to the classification of operators used in
Section 32.1, according to a weight equal fo the value of the O{d) generator
Jg1 that they destroy. (Recall that Jy = iJy.) The fermionic supersym-
metry generaiors have weights 1/2 and —1/2, so the anticommutator of
any of these generators with its Hermitian adjoint can only have weight
+1 or —1, respectively, and therefore must be respectively proportional 1o
the operator P? + P! or P® — P1, But we are working in a subspace of
Hilbert space in which the operator PO — P! vanishes, so in this subspace
the fermicnic supersymmetry generators of weight —1/2 all vanish, To
classify the one-particle states we therefore have available just half of the
supersymmetry generators, the 2"~! generators with weight o5 = +1/2.

We can {urther divide the remaining supersymmetry generators into two
classes, those in which 623 = 1/2 or o33 = —1/2 as well as o1 = +1/2.
Since the operator P°+ P! has a3 = 0, the fermionic supersymmetry gen-
erators of each class anticommute with each other, though not necessarily
with their adjoints or with generators of the other class.

Now consider a representation of the little group O(d—2) with spin j, and
consider any state |4} that is an eigenstate of Jo3 with eigenvalue 1 > 0
and is annihilated by all supersymmetry generators with g3 = —1/2.
{Any state that has the maximum eigenvalue j for Jy; is of this type,
but in general there may be other such states) - We may form states
with Jo3 = A —k/2 by acting on |4} with &k fermionic generators having
o731 = +1/2 as well as o5y = +1/2. (Et can be shown that none of these
states vanishes, because acting on them with the adjoints of &k of these
fermionic generators gives back the state |1}.) If there is a total of 4
fermionic supersymmetry generators of all types, then there are .4#/4 of
them with o33 = +1/2 and 641 = +1/2, and since these operators all
anticommute the number of states formed in this way with Jy3 = A —£&/2
will be given by the binomial coefficient

( “’? 4 ) , (322.1)

which when summed from k = 0 to the maximum value k = A"/4 gives
a total of 2#/* components. The minimum eigenvalue of J;3 obtained in .
this way is A — .47/8, reached by multiplying the state |1} by k = 47/¢ ;
supersymmetry generators. Taking A = j, we see that to avoid having ;
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eigenvalues of Jy; greater than 42 or less than —2, we must have j=2
and j—.A47/8 = —2, which requires a total number of fermionic generators
A" no greater than 32.

Further, for 47 = 32 supersymmetry generators there can be at most
a single supermultiplet of massless particies formed in this way by acting
on the state |2) with products of supersymmetry generators having o3 =
+1/2 and o4 = +1/2. These states have eigenvalues for any generator
of the little group running in steps of 1/2 from —2 to +2. It is only for
A" < 32 that there can be ‘matter’ supermultiplets, supermultiplets that
do not contain the graviton.

A single fundamental spinor representation in 2n or 21 + 1 dimensions
has 2% components, so in order to have no more than 32 fermionic
generaters we must have » < 5. The spacetime dimensionality can thus
be no larger than ¢ = 11 and in this case must have N = 1. Supergravity
in 11 dimensions is of special interest, because it may be the ‘low-energy’
timit of a fundamental theory known as M theory,® which is also believed
to yield various string theories in other limits. We will now work out the
spin content of N = I supersymmetry in d = 11 dimensions in detail, as
an example of how this can be done by enlightened connting.

We can construct all the states of the massless multiplet for d = 11 by
acting on an eigenstate |2} of Jy3 having eigenvalue 2 with products of
k=0,1,...,8 supersymmetry generators having ¢33 = +1/2 and ¢2_1 3, =
+1/2. According to Eq. (32.2.1), we obtain one state each with Ja3 =42,
eight states each with J53 = 43/2, twenty-eight states-each with Jar = +1,
fifty-six states each with Ju3 = +1/2, and seventy states with Jy3 = 0.

For d = 11 the spin 2 graviton representation of the little group (9}
is a symmetric traceless tensor with 9 x 10/2 — 1 = 44 independent
components: there is one 2 +1i3, 2 +i3 component with J3; = +2: seven
21 i3, k components with Jy3 = +1; and twenty-eight k, £ components
with J23 = 0. (Here k and ¢ run over the seven values 4, 5, . » 10. We do
not count the 2 4 i3, 2 — {3 component because it is related to the k, ¢
components by the tracelessness condition in this representation.)

There is also a single spin 3/2 gravitino representation. This consists of
a spinor y; with an extra nine-vector index i, subject to an irreducibility
condition §7;yp; = O which excludes spin 1/2 components, and so has
9 x 16 — 16 = 128 independent components.

By subtracting the number of components with each value of Jx
contained in the graviton and gravitino states from those formed acting
on |2) with supersymmetry generators, we see that we need one or more
additional states having a total of 28 - 7 = 21 components with Jy; = +1
and 70 — 28 = 42 components with J; = 0, The only representations of
orthogonal groups that have no eigenvalues of Ji;s other than +1 and 0
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are the antisymmetric tensors. An antisymmetric tensor T;, .., of rank p
in nine dimensions has

( ; ) components Ty, .-g, with J23 =0,
. ‘}l i
( p—1 ) components Tziii,-«, With Jo3 =41,

( p 1 2 ) components T2ij32-53ky-k, With Jo3 =0,

where ky,...,ky tun over the seven values 4,5, ..., 0. For ((9) the only
independent antisymmetric tensors are of rank p =0, 1, 2, 3, and 4. The
antisymmetric tensor of rank 4 has 35 components with J23 = X1, which
is more than needed, so it must be excluded. Any combination of p =0,
p =1, and p = 2 tensors with the twenty-one needed components with
J21 = +1 would have too many components with Jo3 = 0 (147 for 21 one-
forms and no two-forms; 120 for 14 one-forms and 1 two-forms; 53 for 7
one-forms and 2 two-forms; and 66 for no one-forms and 3 two-forms),
so we must include at least one three-form. The antisymmetric tensor with
rank p = 3 has just 21 components with J;3 = 11 and 42 componenis
with Jo3 = 0, which is just what is needed. We conclude that the unigue
massless particle multiplet for N = 1 supersymmetry in d = 11 contains a
" graviton, a gravitino, and a particle whose states transform under the little
group as a single antisymmeiric tensor of rank 3.

There is a richer variety of possibilities for 4 = 10. Here there are two
ways to have .4” = 32 generators: the fermionic generators can comprise
two 16-component Weyl spinors of the same chirality, with an actomor-
phism group 0(2), or two of opposite chirality, with no automorphism
group. For 4 = 10 it is also possible to have a single Weyl fermionic
generator, with just 4" = 16 independent components. These three pos-
sibilities play an important role in modern superstring theories — they
represent the massless particle spectrum of three kinds of superstring:
type IIA for 16 generators of each chirality; type IIB for 32 generators of
the same chirality; and the heterotic superstring for 16 generators of just
one chirality.

The type IIA case of 4 = 10 and opposite chirality is just like the
case of d = 11, except that the irreducible representations of the little
group O(9) for d = 11 break up into separate irreducible representations
of the little gronp O(R) for d = 10. Thus the ((2) graviton multiplet is
decomposed into an O(8) graviton with 8 x 9/2 — 1 = 33 components, an
O(®) vector with 8 components, and a scalar with I component; the 0(9)
gravitino multiplet is decomposed into O(8) gravitinos of each chirality
with (16 x 8 — 16)/2 = 56 components each and O(8) spinors of each
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chirality with 8 components each; and the Q(9) three-form is decomposed
into a O(8) three-form with 56 components and an 0(8) two-form with
28 components.

In the type IIB case of d = 10 with N, = 2 and N_ = 0 we must
classify states according to the representation of the little group (8) and
a quantum number g that labels the representations of the automorphism
group O{2), under which the sipersymmetry generators transform as a
2-vector. Since there is only one graviton, it must have g = 0. Acting
on these states with a supersymmetry generator gives two gravitinos with
g = +I and 56 components each: acting with another supersymmetry
generator gives 2 two-form tensors with ¢ = 42 and 28 components each;
acting with another supersymmetry generator gives 2 Weyl spinors with
g = 13 and 8 components each; and acting with another supersymmetry
generator gives 2 scalars with g = 44 together with a self-dual four-form
with ¢ = 0 and 35 components,

In the heterotic case of d = 10 with a single Weyl fermionic genera-
tor there are just .#° = 16 independent components. In this case there
is a graviton supermultiplet consisting of a graviton transforming under
{8) as a symmetric traceless tensor with 35 independent components;
a gravitino with 56 independent components; an {8} two-form with 28
independent components; a Weyl spinor with 8 components; and a scalar.
(This graviton supermultiplet is constructed by acting with supersymmetry
generators on one state [2), six states {1}, and one state |0}, giving alto-
gether § x 2% = 128 = 35+ 56 +28 1+ 841 components.) Here we also have
the possibility of gauge supermultiplets that contain no particles having
values greater than 1 or less than —1 for the eigenvalue of any J, ;. These
gauge supermultiplets are formed by acting with supersymmetry genera-
tors on a state [1), and contain one gauge particle belonging to the vector
representation of ©(8), with 8 components, and one particle transforming
as a fundamental Weyl spinor of 0(8), also with 8 components.

32.3 p-Branes

In some theories in addition to particles there are stable extended objects,
either of infinite extent or stabilized by ‘wrapping’ around a topologically
non-trivial spacetime. The study of supersymmetry and supergravity in
higher-dimensional theories of this sort has opened up remarkable oppor-
tunities for the construction of string theories and supersymmetric field
theories in lower-dimensional spacetime and for the proof of equivalencies
among these theories,** which are beyond the scope of this book. The fea-
ture of these extended objects that concerns us here is that they can CAfTy
conserved bosonic quantities other than those allowed by the Coleman—
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Mandula theorem. These new conserved quantities may appear on the
right-hand side of the anticommutation relations of supersymmetry, along
with the momentum operater and ordinary conserved quantities.”

In the cases that have been studied so far, the new conserved bosonic
quantities are all forms — antisymmetric tensors. For instance, an object
of spatial dimensionality p (known as a ‘p-brane’) in a spacetime of
dimensionality 4 is described by specifying the 4 spacetime coordinates
x*{g,t) (generally in overlapping patches covering the ohject) as functions
of the time ¢ and of a set of p coordinates ¢" that parameterize positions
on this object. If the manifold x* = x*{z, 1) at a given time is topologically
non-trivial, in the sense that it cannot be continucusly deformed to a
single point, then it may have a non-vanishing value for the topologically
invariant integral’

Ry f do' do? - - do? ZP: Ep: v Zp: NG

ri=1rs=1 rp=1
Ox*1 (s, 1) OxF(a,1)  Oxt(0,1)
pyes py e (32.3.1)

The invariance of such integrals under small changes in the functions
x*{z,t) shows in particular that they are invariant under spacetime trans-
lations, and hence may appear along with P¥ and central charges on
the right-hand side of the anticommutation relations for the supersym-
metry generators.® The calculation of the coefficients of such tensors
on the right-hand side of the anticommutation relations is analogous to
the Olive—Witten calculation of the scalar central charge Z,; in N = 2
supersymmetry theories in four spacetime dimensions, discussed in Section
27.9. We will make no attempt in this section to evaluate these coefficients
or to survey the other non-topelogical p-forms that may appear in the
anticommutation relations,’! but will simply consider the effects on the
supersymmetry algebra of including conserved antisymmetric tensors that
commute with the momentum operators.

* Te see that this integral is topologically invariant, note that the effect of an infinitesimal
change dx''(o,t} in the function x*{g, t} is to change [*1#2"% by the amount

P P

STHE I — E Zi v i/dal dat - da? 3% [E" r3ry

A=l rpml el rp=l

don den Boret o dgran da'e

fxrl Az St Sxhn dxtirt1 a.).""’}

which vanishes when the integral is taken over a compact manifold. It also vanishes
if the integral is over all &, provided éx"(a,t) is constrained to vanish rapidly when
¢ = an,



32.3 p-Branes 399

It is important that this possibility does not affect the key result that
the supersymmetry generators always belong to the fundamental spinor
representations of the Lorentz group. This is because a totally antisym-
metric tensor in Euclidean coordinates can have at most one spacetime
index equal to 1 and at most one spacetime index equal to d, and therefore
its ‘weight’ defined by Eq. (32.1.2) can only be 1 or 0. Just as before, this
means that the weight of a supersymmetry generator can only be +1/2;
Lorentz invariance then implies that all the gs defined by Eq. (32.1.1)
are £:1/2, which is only possible if the supersymmetry generators belong
to a fundamental spinor representation of O(d — 1, 1). Also, because the
new terms in the anticommutators of supersymmetry generators commute
with momentum, the same argument that was given in Section 32.1 shows
again that the supersymmetry generators also commute with momentum.

Loreniz invariance tells us that for non-zero values of the p-form
‘charges,’ the anticommutation relations (32.1.13) and (32.5.21(32.1.22)
can only take the forms (in the same notation as in Section 32.1):

d odd
(0. 00} =g 8Ps+ 3 2" Py o9, % {32.3.2)
g

d even

1 Ty |
(07, @77y - (1)

X gy EP+ Y A Ry 8, (3233)
odd p
— 1742 li]’d i
(0F, g Ty = (L)
3 Z zg].ﬂz-.-up i?#l?”#? . ?#pg , (3234}
even p

(Recall that & appears in the anticommutation relations because j};, =
—¢ g w%; the QF are supersymmetry generators in the case of even d
for which y;110F = 4. 0F; and € 1y41% = (—1)*2y,4,1.) For even d we
have

E.“J.PE'"PJ}).“I-P}II [ }‘ﬂp oC }’d‘l‘lj’.ﬂp.}.l?ﬂp.‘_z P ]"Hﬂ' ,

while for 4 add

A P P T Vg Vopr ~ " Vi -
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Thus p-branes and d — p branes make the same contributions in Egs.
(32.3.1)~(32.3.3) for any.d, so that we can restrict p to run only over values
from 0 to d/2 for d even and from 0 to (d — 1)/2 for d odd.

The symmetry of anticommutators is reflected in symmetry conditions
on the p-brane central charges zZ in Eqs. (32.3.2)-(32.3.4). Eqgs. (32.A.15)
and {32.A.,30) give

a = {-1"¢"'y,%, @ = (— 1)t (32.3.5)

for both d = 2» and 4 = 2n+ 1. These give the antisymmetrized products
i Vs " Ya, the symmetry property

T
Voo Ty yﬂp]qg' — (_I)Pn(_l)n[n+l]r'2 [}J[ﬂp?ﬁp_t .. .},m]:g]

T
= (—1)PP(— 1) 2( ypto—1)/2 [}’Lu.l’m i, .?#P]fg] _
(32.3.6)

It follows immediately that for odd d,
257 = (PO e ke (323.7)

while for even d,- _
Zf;ﬂz'"upi = (_I)Dn(__l)H(H-H}/z(_I)P':P"llﬁz\;‘;]ﬂzm#p(_l]n[__l}pj:l: . (3238)

Consider for instance the important case of N = 1 supersymmetry in
d = 11 spacetime dimensions, which is one version of the popular M-
theory generalization of string theories. Eq. (32.3.8) shows that the single
p-form central charge z#1#2"# vanishes unless

— (=1P(—1PP B2 = 4 (323.9)

which is satisfied only for p equal to 1, 2, and 5. The value p=11Is
realized by the momentum operator itself, which arises from particles as
well as extended objects. The other possibilities, p=2and p =35, arise
in theories with 2-branes and 5-branes, respectively. Note that there can
be no other independent tensor central charges, such as a 1-form arising
ftom 1-branes, because the number of independent components in P# and
in a 2-form and a S5-form is

1 1
11+( A )+( ) )=528,

while the number of independent components in an anticommutator of
two 32-component fundamental spinors is 32 x 33/2 = 528.

Just as the O-form electric charge is the source of a 1-form gauge field
Ayu(x}, s0 also a p-form conserved quantity z#1#2"% may serve as the source
of a p + 1-form gauge field Ay ;. ,, Of the sort discussed in Section 8.8,
In fact, such gauge fields do appear in supergravity theories. For instance,
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as remarked in the previous section, the N = 1 supergravity theory in
d = 11 spacetime dimensions includes a massless particle whose states are
in the 3-form representation of the O(9) little group, and therefore must
be described by a 3-form gauge field Apvp(x). The study of solutions of
this supergravity theory shows that there are two-branes'? that indeed
do provide sources for Auwp(x). Also, as noted in Section 8.8, this gauge
theory is equivalent to one with a (d~p—2=6)-form gauge field, which
can have the 5-form z9Bs a5 a source, and there are indeed 5-brane
solutions which provide such sources for this 6-form gauge field.’ The
N = 1 eleven-dimensional supersymmetry algebra does in fact receive
contributions from these 2-branes and 5-branes,!!

Appendix  Spinors in Higher Dimensions

This appendix describes the fundamenta] spinor representations of the Lie
algebra of the Lorentz group O(d — 1, 1) in any number 4 of spacetime
dimenstons. These are obtained from the corresponding Clifford alge-
bra, consisting of an irreducible set of finite matrices Yu that satisfy the
anticommutation relations

{Yu, v} =204, (32.A.1)
where #,, is diagonal, with elements +1 on the diagonal except for
noo = —1, where x0 is the time-component. From these we ean construct
matrices

1
j;n-l = EI:[?_ua }'v] = _fvlu ' (32A2)

that satisfy the commutation relations (2.4.12} of the Lorentz group gen-
erators

i[fﬂv’jpa‘] = Mvpf po ~— '?#pfw ~NouF pv + Hov P pu - (32.A.3)

As we will see, although Eq. (32.A.2) always gives a representation of the
Loreniz algebra, it is not always an irreducible representation.

We must now distinguish between the cases of even and odd dimen-
sionality.

Even Dimensions: d = 25

To construct a convenijent specific representation for the gamma matrices
in d = 2n dimensions, we introduce n matrices

1
= (;,:_2,,__1 + im) u=1,2..n, (32.A.4)
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and take yy,..., y2, a8 Hermitian, it being undetstood that as usual

Yon = ~Iyy . (32.A.5)
These have the anticommutation relations
fay, al} =8, , {ay,a} ={a},al} =0. (32.A.6)

We introduce a vector {0} in the representation space of the ys, defined by
the condition

all0y =0, (32.A.7)
and define the basis vectors
st 82 -+ 50) = ai'ay - el |0) . (32.A.8)

Because a2 = 0, the operator a, raises the value of Sy to +1if s, =0 and
annihilates the vector if 5, = +1 {as well as yielding a sign (—1)° where
§ = 3, .5%) so all s, take only the values 0 and +1, and the vectors
therefore span a space of dimensionality 2%, Tn this basis, the matrices ay
take the form

-1 0 -1 0 01
au=( . 1)@,...@( . 1)‘3’(0 0)®1-.-®1, (32.A.9)

with the last 2 x 2 matrix in the uth place. Taking the Hermitian and
anti-Hermitian parts then gives the gamma matrices

-1 0 -1 0 01 -
']JZu——l""( 0 1)@“@( 0 I)®(l 0)@1--°®1,(32.A.1(}}

~1 0 ~1 0 0 —i
m=( . 1)@---@( o 1)®(f o )®l-+-®1.(32,A.11)

(Note that this does mot give the same representation of the gamma
matrices in four spacetime dimensions as was introduced in Section 54,
and has been used throughout this book.)

The representation (32.A.10)-(32.A.11) gives the Euclidean s the simple
reality and symmetry properties

< T ¥i foriodd
Vi =0 _{ —; forieven ° (32.A.12)

where i=1, 2, ..., 2n. This can be expressed as a similarity relation
8 = (19 = (~1)"y;, (32.A.13)
where % 1s the matrix
€ =174y . (32.A.14)
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Taking account of the factor —i in Eq, (32.A.5), we can write this in terms
of Minkowskian components as

Vy = —ByaB = —(—1)"(E ' yu(€B), (32.A.15)
where
B=vym=—ly. (32.A.16)

In any even dimension we may define a matrix y2,4, that plays a role
simtlar to that of ys in four dimensions. We take

Pansl =T 71727 Yon - (32.A.17)
The phase here is chosen so that
Ve = 1. (32.A.18)

From the anticommutation relations {32.A.1}, it follows immediately that
Vant Anticommutes with the other gamma matrices

{Yontts P =0 foru=1,2,...,2n=-10. (32.A.19)
It is straightforward to check that ys, is real and symmetric

Pher1 = Vierl = Vaust = Yantt - (32.A.20)

From Eq. (32.A.19) we see that y;,4; commutes with the generators
(32.A.2) of the O(2n— 1,1) algebra;

[Y2n+1, £l =0, (32.A.21)

so that the #,. cannot furnish an irreducible representation of the algebra
of O(2n — 1,1). Instead, we may define a pair of “Weyl" irreducible
representations by projecting cut the subspaces with yz2,41 = +1:

1+ 72m
=g, (_______—- ;2 *‘) : (32.A.22)

From Eq. (32.A.15) and the relation (€)' 92,41€8 = —(—1)"y2n41 we find
that the complex conjugate and transpose of the Weyl Lorentz generators
are :

(ALY =—&p ' g5V #p), (32.A.23)

(FE)T = —g i gt-lrg (32.A.24)

Hence, for »n even, the Weyl irreducible representations are equivalent to
complex conjugates of each other, while for n odd each is equivalent to its
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own complex conjugate.” For # odd, we still have to decide whether the
Weyl representations are real, which would mean that there is a matrix %
such that

—(PILFTYY = pE o, (32.A.25)

ot pseudoreal, in which case there is no such %, Using Eq. (32.A.23), the
condition (32.A.25) may be written as the requirement that &~ %*(¥8)!
commuies with ali j} Since the matrices # t form an irreducible set,

this would require that $—1.%°($8)"! be proportional to the unit matrix

€8 =aF 15", (32.A.26)
with x some constant. For this to be possible, we must have
EH(ER) = |of* - 1. (32.A.27)
But €S = yyy4 - - y2n-2. and since all y; with i even are imaginary, we have
CHEH) = (—1)" pwya- - y2n-2)? = (1) 1, (32.A.28)
where
a=m—-1+n—20++1=nn—1),2. (32.A.29)

Hence the Weyl representations can only be real for n = 1 (mod 4) and
must be pseudoreal for # = 3 (mod 4).
We also note for use in Section 32.1 that

@ o (1%, T — (_l}n(n+llp"2cg , gl - (_1)"["—I}f2¢€ ’

(32.A.30)
and therefore Eq. (32.A.13) gives
(@yn)’ = (=1 Diigy, - (32A31)
The v, form a vector, in the sense that
L# es ¥0] = —Huttyp + irvityp » (32.A.32)
and they have normai parity, in the sense that
BroB=+y, Bfup=-p for i=1 ..., 2n—1. (32.A.33)

The anticommutation relation (32.A.1) prevents us from constructing new
tensors by taking symmetric products of ys, but it allows us to construct

" We say that one representation of the Lorentz algebra by matrices %, (such as #,,

or j o 9T F 1) is the complex conjugate of another 1epresentation by matrices %, if

&\, = —%,. The miavs sign is included because the matrices that n:present clements

of the Lorentz greup in the neighborhood of the identity are of the form 1+ o,
with " real infinitesimals.
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antisymmetric tensors of rank up to 2a

Pl """ Vel » (32.A.34)

where the square brackets indicate antisymmetrization, and p < 2n. Each
has a number of independent spacetime components given by the binomial

coefficient ( L;" ), $0 the total number of matrices of this type is

3 ( v ) =2 (32.4.35)

p=0
None of these vanishes (as can be seen by calculating their squares) and
they all have different Lorentz and/or parity transformation rules and are
therefore linearly independent,.so any 2" x 2" matrix may be written as a
linear combination of the 22" antisymmetric tensors (32.A.34).

0Odd Dimensions: d =2n+1

Now let us consider an odd spacetime dimensionality d = 2n 4+ 1. We
can easily find a set of 2n 4 1 Dirac »n x n matrices safisfying the
anticommutation relations (32.A.1); we simply use the same Yu with
#=1,2,...2n—1,0 as for d = 2n, and add the matrix y,+; defined by
Eq. (32.A.17). According to Egs. (32.A.18) and (32.A.19) these gamma ma-
trices satisfy the anticommutation relations (32.A.1), with z and v running
over the values 1, 2, ..., Zn — 1, 0, 2n+ 1, and again yo = iyon.

Unlike the case of even dimensionality, we cannot here find any non-
trivial matrix that commutes with all the Lorentz generators, because
Eqgs. (32.A.17) and (32.A.18) show that the product of the 2n + 1 gamma
matrices is trivial:

VI¥2 YoV =1 " 1. {32.A.36)

The Lorentz generators (32.A.2) with x4 and v running over the values
1,2,...,2n—1,0,2n + 1 therefore furnish an irreducible representation
of the Lorentz group by themselves. To test their reality properties,
we note that ya,4q is real and symmetric and satisfies (€8) yni198 =
—(—=1)"pam41, 50 Eq. (32.A.15) applies for p = 2n <+ 1 as well as for
g=12 ..., 2n—1,0 The Lorentz generators therefore satisfy

P =—@) " £ 6B, (32.A.37)

F o =—¢"5,%, (32.A.38)

so in each odd dimension the fundamental spinor representation is either
real or pseudoreal. Exactly the same argument as in the case where d = 2n
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tells us that the spinor representations for d = 2n+ 1 are again real or
pseudoreal according to whether the sign (—1)? in Eq. (32.A.28) is positive
or negative, and thereforé according to Eq. {32.A.29) they are real for
# =0 (mod 4) and n = 1 {mod 4) and pseudoreal for n = 2 (mod 4) and
n =3 (mod 4).

We can again construct antisymmetric tensors (32.A.34), now of rank r
up to 2n+ 1, but only half of these are independent, because they obey
relations

e Yy ) 00 PUTIYET - ptinni] (32.A.39)

with #2801 ag ygual totally antisymmetric, {For d = 2n no such rela-
tions are possible, because the left- and right-hand sides of Eq. (32.A.39)
have opposite parity, but this argument does not apply for d = 2n + |,
where /14274241 hag even spatial parity.) The total number of independent
matrices of the form (32.A.34) is now given by

i( ] ) =2, (32.A.40)

p=0 P

S0 any 2n x 2n matrix may be written as a linear combination of the 1+ 1
independent antisymmetric tensors (32.A.34) with 0 < p<n+l.

Finally, we note that for either d = 2n or d = 2n + 1, the d—1,1)
Dirac and Lorentz algebras are related to the corresponding O{(d)} algebras
by setting

Y = —iyg Fim=~ifp, (32.A.41}
so that
{vi. vt =26y, (32.A.42)
and
1
Fij = gl vl =S, (32.A.43)

with i and j running from 1 to d. It follows from Eq. (32.A.42) that for
i # j. #% = 1/4, so the eigenvalues of each S are limited to +1/2. To
be more specific, in the fundamental spinor representation the generators
of the Cartan subalgebra are represented by

1 . 1
Fou-12u = E[au, @] = a,a, — 3 (32.A.44)
for which the basis vectors (32.A.8) are eigenvectors, with

HF2u12u]81 83 ‘Sn> = (Su - %) |.91 52 "'Sn) : (32.A.45)
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The difference between dimensionalities d = 2n and d = 2n + | is that
for d = 2n we have two fundamental spinor representations in which the
eigenvalue (—2d1)(—2072) - - (—20y) of Y2441 18 constrained to be +1 or -1,
while for d = 2n + 1 there is one fundamental spinor representation with
no such limitation on the &,.

It was the limitation of the eigenvalues of each #y; to +1/2 that in
Section 32.1 identified the fundamental spinor representations as the only
possible representations of the Lorentz algebra that could be furnished
by fermionic symmetry generators. Indeed, from this condition we could
have inferred that the O{d) generators may be represented in a basis of
the form (32.A.8), with s, = o, + 1/2, and carried out the derivations of
this appendix in reverse order, using Eqs. (32.A41-(32.A.7) (along with
Eq. (32.A.17) for 4 odd) to express the Lorentz generators in terms of a
set of y, satisfying the anticommutation relations (32.A.1).

Problems

1. Classify the massless particle multiplets for each allowed kind of
supersymmetry in six spacetime dimensions, when all central charges
vanish.

2. Suppose that it were possible to have massless particles for all spins
up to j == 3, but no higher. Taking into account the faci that
massless particles of spin 2 do exist, what is the maximum gpacetime
dimensionality in which supersymmetry is possible? What is the
maximum number of supersymmetry generators for each allowed
value of the spacetime dimensionality?

3. Consider types IIA and IIB supersymmetry in ten spacetime dimen-
sions. Assume that only scalar central charges appear in the extended
supersymmeiry anticommutation relations. Find a lower bound on
particle masses in terms of these central charges. Describe the ‘BPS’
massive particle multiplets allowed for particles whose masses are at
this lower bound.
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