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SUMMARY

A broken sample (Degroot, Feder, and Goel, 1971) is a random sample observed for a two-component
random variable (X,Y), but the links (or correspondences) between the X-components and the Y-
components are broken (or missing). This note proposes a method for re-pairing the broken sample,
as well as making inference about the parameter in the model for (X,Y). We also extend the broken
sample formulation to study the situation where the X-components and the Y-components themselves
are subject to missing. A potential area of application is file matching or record linkage, where, for the
purpose of administration or statistical analysis, two files of records that are contaminated by errors and

non-uniqueness need to be linked (or re-paired) such that the linked records are related to identical units.

Some key words: Broken sample; Capture-recapture; File matching; Metropolis-Hastings algorithm,;

MCMC; Re-pairing; Record linkage; Shuffling.
1. INTRODUCTION

The broken sample problem was first studied by Degroot, Feder, and Goel (1971). As a
simple example, they considered pairing the photographs of N movie stars with N photographs
of the same stars taken when they were babies, on the basis of r different facial measurements
on the photograph of every star and s facial measurements on every baby photograph. In
their formulation, the facial measurements on the star photograph and those on the baby
photograph of a randomly selected star are modeled by a two-component random variable
(X,Y), following a joint distribution P(z,y | ), where X is for the star photograph, Y is
for the baby photograph, and # is the parameter. Then the problem is as follows: a random
sample of size N is collected for (X,Y’), but before the sample is observed, the links (or
correspondences) between the X- and Y-components are broken (or missing), what we observe
is a broken sample with B, = {z1,...,zx} and B, = {1, ..., yn}, without any prior information
concerning which z; in B, is originally linked to which y; in B,. The goal is to make inference
about the original links based on the model P(z,y | #), and also to make inference about 6 if

it is unknown.



As mentioned in Degroot, et al. (1971), a more realistic version of this problem is file
matching or record linkage (e.g., Fellegi and Sunter, 1969), where the goal is to pair or link
records in two files, such that the linked records represent identical units. Because a unique
identifier such as social security number is usually not available, and the information in the
records is often contaminated by various sources of errors, such as reporting errors and entry
errors, statistical modeling and methods are needed for file matching. The purposes of file
matching include: 1) Administration, see, e.g., Copas and Hilton (1990), for an immigration
example. 2) Data analysis, where the variables concerned are recorded in two different files.
See Winkler (1991) for a discussion of the analysis of computer linked files. 3) Estimation of
the population size, where the two files can be viewed as two captures, and the matching is
needed to obtain the number of recaptures. See, e.g., Hogan (1992), and Breiman (1994), for
an example concerning the estimation of the population undercounts by the U.S. Bureau of
Census.

Section 2 studies the broken sample problem of Degroot, et al. (1971), and proposes a shuf-
fling algorithm for computation. Section 3 extends the broken sample formulation to address
the more realistic situation of file matching, where each file covers only part of the population.

Finally, Section 4 concludes with some remarks.
2. THE BROKEN SAMPLE PROBLEM
2.1 INFERENCE OF UNKNOWN MATCH AND THE SHUFFLING ALGORITHM

In the broken sample formulation of Degroot, et al. (1971), a mathematical representation
of the unknown links is a one-to-one mapping ¢ from domain dom(¢) = {1, ..., N} onto image
im(¢) = {1,..., N}, such that z; is originally linked to yu; for i € {1,..., N}. We call ¢ a
“match”. Another representation is an N X N permutation matrix M, where M;; = 1 if z; is
linked to y;, and M;; = 0 otherwise.

Given ¢ and @, the conditional distribution of the observed broken sample is
N
=1
Under the permutation matrix representation, it becomes

N N
P(Bs, By | M,0) = [ I Pz, 9; | oM,

i=1j5=1



Let’s first study the inference of ¢ with known 6, i.e., re-pairing the broken sample. This can
be accomplished using a Bayesian method, with a uniform prior distribution over all possible
matches, i.e., P(¢) = 1/N!. This is the only reasonable prior distribution for quantifying our
ignorance of the missing correspondence. It is also justified by the fact that the only way to
produce a broken sample or to make the links missing is to randomly permute the indices of the
components of the original unbroken sample. In this sense, it is more appropriate to consider
¢ as missing data instead of an unknown parameter, and treat the uniform P(¢) as part of the
model. The posterior distribution of ¢ (given ) is

N

i=1
7(¢) can be used to answer questions like what is the best re-pairing of the broken sample, how
likely a pair of components arise from the same unit, what is the most likely Y -component that
is originally linked to an X-component, etc. 7(¢) can be summarized by median and posterior

region if we impose a distance d on the space of matches. The median is given by

Pmed = arg m(gn Ex¢n[d(9, @] = arg m(;n %; d(¢, ¢ )m (),

and the 1 — a posterior region can be summarized by a set {¢ : d(Pmed, ®) < dn} for some
d,,, such that the posterior probability for this set is no less than 1 — a. A typical choice of
d(¢,¢') is the number of mismatches between ¢ and ¢', i.e., d(¢,¢') = >, 6;, where §; = 1
if ¢(i) # ¢'(i), and §; = 0 otherwise. Under this distance, ¢meq is regarded as the optimal
estimate of the true match with minimum expected number of mismatches under the posterior
distribution, and d, provides uncertainty about ¢nq in terms of mismatches. Degroot, et al.
(1971) propose to estimate ¢ using maximum likelihood, which is the Bayesian posterior mode,
or posterior median with 0-1 distance. However, MLE does not address the uncertainty of the
estimated match as well as related questions such as those mentioned above.

An interesting property of this Bayesian procedure is that the posterior statements for ¢
are calibrated with the frequency sampling statements. To be more specific, let R(B;, B,) be
the 1 — a posterior region constructed above, such that P(¢ € R(By, By) | By, By) > 1 — a,
then marginalizing over (B, By) gives P(¢ € R(B;,By)) > 1 — a. Meanwhile, the sampling
coverage probability P(¢ € R(B;, By) | ¢) is constant across all ¢, because different ¢ only give
different permutations of indices, and the posterior inference with the uniform prior distribution
is invariant of the permutation of the indices. This pivotal argument leads to P(¢ € R(B;, By) |

¢) > 1 — a, i.e., the posterior region is also the confidence region.



Handling 7(¢) analytically requires the ability to compute the normalizing constant like
PP Y, P(xi,yg() | 0), which is the permanent of the matrix [P(z;,y; | 6)]nxn. As proved by
Valiant (1979), the computation of permanents is NP-complete, so we have to resort to Markov
chain Monte Carlo (MCMC) for computation. The following is a Metropolis-Hastings type of
algorithm, which we call the shuffling algorithm, for simulating 7(¢).

Shuffling algorithm Start from an arbitrary match. Let ¢; be the current match. Randomly
pick i € {1,..., N} and 7 € {1,..., N}, then there are only two different cases.

1) If j = ¢1(7), stay unchanged.

2) If 7 # ¢1(7), propose a move from ¢ to ¢, where ¢y is different from ¢y only in that
$2(i) = 7 and ¢o(d7'(5)) = ¢1(i). Accept this move with probability Py, 4, = min(1, 7(¢2)/7(¢1)),
where

7r(¢2) P(xiyyj | O)P( 1—1(]')7’%1(1') | 0)

Yo
m(1)  Plxisyeqy | O)P(wymr ;)05 10)
If the move is accepted, change ¢ into ¢9, i.e., the new ¢, after the update is ¢o; otherwise,
stay at ¢1. Repeat this process until convergence.
We call this transition swapping, see Picture 1 for an illustration. Wu (1998) proves that
the algorithm converges in polynomial time. With the ability to simulate 7(¢), the posterior

median and posterior probability region can be approximated.

2.2 INFERENCE OF UNKNOWN PARAMETER

If 6 is unknown and is of interest, Degroot and Goel (1980) propose to estimate 6 by

maximizing the integrated likelihood,

N

é

¢ =1
where ¢ is treated as missing data and is integrated out. Theoretically, this integrated likelihood
can be maximized by the EM algorithm (Dempster, Laird, and Rubin, 1977). Let 8() be the
estimate at the tth iteration, then at the (¢4 1)st iteration, the E-step computes the conditional
expectation of the permutation matrix M = E[M | B;, By, 9], and the M-step find 8¢+1) by

maximizing the complete-data log-likelihood

N N )
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Because M cannot be computed analytically, the Monte Carlo EM of Wei and Tannar (1991)
has to be used, where M is approximated by sampling from P(¢ | Bf,By,H(t)) using the
shuffling algorithm. See Chan and Ledholter (1995) for a discussion of embedding MCMC into
Monte Carlo EM.

A Bayesian approach is to put a prior distribution P(#) on #, and sample 8 and ¢ jointly
from the posterior distribution

N
P(6.0| Bo, B,) o P(0) T] Plaisygqey | 0).

i=1
using the data augmentation algorithm (Tannar and Wong, 1987), which iterates the following
two steps. 1) Shuffling-step: Given the current value of §, update ¢ by a number (e.g., N?) of
swapping transitions, starting from the ¢ generated by the previous iteration. 2) Fitting-step:

Given the current match ¢, draw @ from its conditional posterior distribution by fitting the

model P(z,y | #) under ¢.
2.3 A NUMERICAL EXAMPLE

Degroot and Goel (1980) studied the inference of the correlation coefficient p when the model
P(z,y | 0) is a bivariate normal distribution Ny(p, 3), with = (u, X), and they derived many
interesting theoretical results. In their paper, numerical calculation was done only for small
sample size such as N = 5. Here, we shall illustrate our method by simulating the posterior
distribution of p with a much larger sample size, for example, we take N = 100. We use the
non-informative prior distribution P(p,3) |32[73/2. The fitting-step can be accomplished by
first drawing X from an inverse-Wishart distribution, then drawing g given 3 from a bivariate
normal distribution, and hence p is computed.

We did three experiments with the observed broken sample simulated from a bivariate
normal distribution with px = py = 0, 0% = 0% =1, and p = 0,0.9, and —0.9 respectively.
Figure 1 shows the posterior histograms of p for the three simulated data sets. For large
N, px,pty,0%,0% can be estimated accurately, and the posterior distributions of p exhibit
the properties derived by Degroot and Goel (1980) for the integrated likelihoods of p with
LX, fix,0%, 0% fixed at MLE, e.g., p = 0 is a local minimum, and there is at least one local

maximum in each of (—1,0) and (0, 1).
3. EXTENDED BROKEN SAMPLE FORMULATION AND ALGORITHMS

3.1 EXTENDED BROKEN SAMPLE FORMULATION



Figure 1: Empirical posterior distributions of p approximated by 10,000 draws for the three
simulated data sets with p = 0, .9, and -.9 respectively. The top figure is for p = 0, the middle

one is for p = .9, and the bottom one is for p = —.9.

In file matching, it is almost always the case that each of the two files only covers part of the
underlying population, especially in the capture-recapture estimation of the population size.
Therefore, the model should include not only the mechanism for generating the record values,
but also the mechanism for including the records in the files. So we introduce two inclusion
indicators, U and V', where U is the indicator for X — if U = 1 then X is observed (or included
in the file), otherwise X is missing; V is the indicator for Y with similar interpretation. With
these two indicators, the model becomes P(z,y;u,v | ) with parameter #. This model can be
decomposed into the record generating mechanism and the record inclusion mechanism in the

following two ways

P(m,y;u,v| 0) = uu(u,v| 0) sz|uv($7y| u,v,@) (1)
= Pry(-ray| 0) Puv|$y(u7lv | ;Z‘,y,g). (2)
The notation Py, Pyyjpys Puv, and Py, follows standard interpretations. (2) is more directly

relevant than (1) in the survey context, where the probability for a unit to be included in the
survey can depend on the background variables. If it is reasonable to assume ignorable missing
(Rubin, 1976) or ignorable inclusion, i.e., the inclusion of the records does not depend on the
values of the records, then P(z,y;u,v | ) = Pyy(z,y | 0)Pu(u,v | ). Furthermore, in the

traditional capture-recapture context, U and V are assumed to follow independent Bernoulli



distributions with unknown probabilities.

In the extended broken sample formulation, the data is generated via the following three
steps. 1) A random sample of size N is drawn for the four-component random variable
(X,Y;U,V) ~ P(z,y;u,v | ). 2) If U = 0, then X is discarded, and if V' = 0, then
Y is discarded. 3) The remaining X-components are then randomly shuffled to produce
B, = (21, ---v*rlel)v and the remaining Y-components are randomly shuffled to produce B, =
(Y15, YB,|), With |Bz| < N and |B,| < N being the sizes of B, and B, respectively. We call
those z; the X-records, y; the Y-records, and B, and B, files. The goal is to pair the X-records
in B, to the Y-records in B,, and to draw inference about § and N if they are unknown.

The unknown match can still be represented by a mapping ¢ from {1, ..., |B,|} into {1, ..., | B,|},
such that dom(¢) C {1,...,|B,|}, im(¢) C {1,...,|B,|}, and if ¢ € dom(¢), then z; is originally
linked to yu;); if @ ¢ dom(¢), then the Y-record that is originally linked to z; is missing in
By; and if j ¢ im(¢), then the X-record originally linked to y; is missing in B,. We use |¢| to
denote the number of matched pairs in ¢, i.e., the size of dom(¢) or im(¢).

The distribution of the observed files and the unknown match can be derived as follows.

Given N and 6,

N!
6111 Bl — [$DX( Byl — [$DUN — [Bz| — [B,| + |9])!
X Pu(1,1]6)?P, (1,0 6)Bl=l¢l

X Pu(0,1]6)Bs=19lp, (0,0 g)N-1Bal-IByl+Iel, 3)

P(|Bz|7|By|7 |¢| | IV, 0) =

which is a multinomial distribution on the 2 x 2 table classified by U and V.

Given (|By|, |Byl, ||, N,8), ¢ follows a uniform distribution

P61 1Bl 1B, 161, N.0) = [('ﬁ;') ('@7') |¢|!] . @

Given (|By|,|By|,®, N,0), the conditional distribution of the observed record values is

P(Bx7By | |BI|7 |By|7¢7 */Va 0) = sz|uu(*r27y¢(z) | 17170)
t€dom(¢)
igdom(4) i)

Combining (3), (4), and (5), we have

N! H
P(mi Y N5 1 1|0)
— — ' s Yp(i)r Lo
([\f |B17| |BZ/| + |¢|) 1€dom(¢)

P(B;,B,,¢|6,N) =




t¢dom(¢) Jé¢im(¢)

X Pup(0,0 | 9)N~I1Bal=IByl+lo]

with |B;| < N, |By| < N, and |B;| + |By| — |[¢] < N.

The model P(B;, By, ¢ |8, N) provides a basis for statistical inference, where § and N are
unknown parameters and ¢ the missing data. If the purpose is record linkage, then ¢ is of
major concern. If the purpose is data analysis, then 6 is of main interest. If the purpose is
the capture-recapture estimation of the population size, then N is what we care about (see
Smith, 1991, and the references therein for the capture-recapture model). Because of the
three connected sources of uncertainties in ¢, 8, and N, the most straightforward method for
statistical inference is to put prior distributions on 8 and N, and then use MCMC to simulated

the joint posterior distribution of (¢, 8, N).
3.2 EXTENSION OF ALGORITHMS

Let’s first consider the situation where N and 6 are known, and let 7(¢) be the conditional
distribution of ¢ given B, By, #, and N, which is proportional to P(B;, By,¢ | 8, N). Then
the record linkage can be based on m(¢), which defines a monomer-dimer system (Heilmann and
Lieb, 1972), where a linked pair of records is a dimer, and an unlinked record is a monomer. 7(¢)
can be simulated by the following extended version of the shuffling algorithm, each iteration of
which is described as follows.

The extended shuffling algorithm: Let ¢1 be the current simulated match. Randomly pick
i €{l,...,|Bg|} and j € {1,...,|By|}, then there are five different cases.

1) If i € dom(¢1), 7 € im(¢1), and j # ¢1(¢), then swap.

2) If i € dom(¢1) and j ¢ im(¢1), then propose a move from ¢ to ¢, where ¢; is different
from ¢; only in that im(¢3) = im(¢1) — {¢1(2)} + {j}, and ¢3(i) = j. Accept this move with
probability Py, 4, = min(1,7(¢2)/7(¢1)). We call this transition as X -switching. See Picture
2.

3) If i ¢ dom(¢q) and j € im(¢1 ), then propose a move from ¢ to ¢, where ¢; is different
from ¢1 only in that dom(¢py) = dom(¢1)— {7 (5)}+{i} and ¢o(i) = j. Accept this move with
probability Py, 4, = min(1, 7(¢2)/7(¢1)). We call this transition as Y -switching. See Picture
3.

4) If ¢ ¢ dom(¢1), and j ¢ im(¢q), propose a move from ¢ to ¢z, where ¢y is different
from ¢y only in that dom(¢3) = dom(¢1) + {7}, im(¢2) = im(¢1) + {5}, and ¢2(7) = 7. Accept



this move with probability Py, 4, = min(1, 7(p2)/7(¢h1)). We call this transition as linking. See
Picture 4.

5) If i € dom(¢y), 7 € im(¢y) and j = ¢4(7), and N — |B;| — |By| + |¢| > 1, propose a
move from ¢; to ¢, where ¢, is different from ¢; only in that dom(¢z) = dom(¢1) — {i} and
im(¢2) = im(¢1) — {7}. Accept this move with probability Py, 4, = min(1,7(¢p2)/7(¢1)). We
call this transition as unlinking. See Picture 5.

The algorithm can be summarized as follows. 1) Randomly pick up a pair of records. 2)
Flip the linkage status of this pair, i.e., if they are linked under the current match, unlink them,
otherwise, link them. 3) Make appropriate arrangement if the two records are previously linked
to any other records to make the resulting configuration a legitimate match. 4) Accept this
move with an appropriate probability. The calculation of Py, 4, only involves the records being
picked up, as well as the records they may be currently linked to, and hence is very simple.

If # and N are unknown, which is usually the case, the joint posterior distribution of (6, N, ¢)
can be simulated by an extended version of the shuffling-fitting algorithm, each iteration of
which consists of three steps:

1) Given # and N, shuffling ¢ a number (e.g., |B;| X |By|) of times.

2) Given ¢ and N, draw 6 from its conditional posterior distribution.

3) Given ¢ and #, simulate N by running the Metropolis algorithm a number of steps, where
the proposed move is +1 or -1 with equal probabilities.

See Wu (1998) for a numerical example.
4. CONCLUDING REMARKS

The broken sample formulation studied in this note has the advantage that the three closely
connected themes, record linkage, data analysis, and estimation of the population size are
treated together. In record linkage, the overall match is estimated, therefore, the dependence
among the linkage status of individual pairs is taken into account. Like Degroot, et al. (1971),
this note is only at a theoretical level, and future work is needed to apply the method to real

file matching problems.
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Picture 1: Swap.
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Picture 2: X-switch.
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Picture 3: Y-switch.
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Picture 5: Unlink.
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