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Abstract

In the past thirty years, research on textures has been pursued along two different lines.
The first line of research, pioneered by Julesz (1962), seeks essential ingredients in terms
of features and statistics in human texture perception. This leads us to a mathematical
definition of textures in terms of Julesz ensembles[26]. A Julesz ensemble is a set of
images that share the same value of some basic feature statistics. Images in the Julesz
ensemble are defined on a large image lattice (a mathematical idealization being Z?) so
that exact constraint on feature statistics makes sense. The second line of research studies
Markov random field (MRF) models that characterize texture patterns on finite (or small)
image lattice in a statistical way. This leads us to a general class of MRF models called
FRAME (Filter, Random field, And Maximum Entropy)[27]. In this article, we bridge the
two lines of research by the fundamental principle of equivalence of ensembles in statistical
mechanics (Gibbs, 1902). We show that 1). As the size of the image lattice goes to infinity,
a FRAME model concentrates its probability mass uniformly on a corresponding Julesz
ensemble. Therefore, the Julesz ensemble characterizes the global statistical property of
the FRAME model; 2). For a large image randomly sampled from a Julesz ensemble,
any local patch of the image given its environment follows the conditional distribution
specified by a corresponding FRAME model. Therefore, the FRAME model describes
the local statistical property of the Julesz ensemble, and is an inevitable texture model
on finite (or small) lattice if texture perception is decided by feature statistics. The key
to derive these results is the large deviation estimate of the volume of (or the number
of images in) the Julesz ensemble, which we call the entropy function. Studying the
equivalence of ensembles provides deep insights into questions such as the origin of MRF
models, typical images of statistical models, and error rates in various texture related
vision tasks[25]. The second thrust of this paper is to study texture distance based on
the texture models of both small and large lattice systems. We attempt to explain the
asymmetry phenomenon observed in texture “pop-out” experiments by the asymmetry
of Kullback-Leibler divergence. Our results generalize the traditional signal detection
theory[8] for distance measures from iid cases to random fields. Our theories are verified
by two groups of computer simulation experiments.

Key Words: entropy functions, equivalence of ensembles, FRAME models, Julesz
ensembles, Kullback-Leibler divergence, large deviation, Markov random fields.



1 Motivation and introduction

Recently there is a resurgent interest in texture' research inspired by the artful work
of (Heeger and Bergen,1995)[10]. A unified texture theory is emerging after nearly four
decades of intensive research in computer vision and psychophysics following the philo-
sophical theme erected in (Julesz, 1962)[11]. For the past few years, the authors, together
with Mumford, have studied the texture phenomena from a mathematical perspective
(Zhu, Wu, and Mumford 1997, Zhu, Liu and Wu, 1999)[27, 26]. Our general goal is to
pursue a mathematically sound theory, which can provide self-consistent answers to the
following three fundamental questions.

Question I: What is a mathematical definition of texture?

This question has been considered extremely difficult because of the overwhelming
diversity of texture patterns and their underlying rendering mechanisms in nature. It
turns out that the answer to this question becomes possible once we possess the right
perspective and the right tools. Before we approach this question, let’s take a look at
color theory.

First, optics defines color as an electro-magnetic wave. A visible color is uniquely
identified by its wave length A € [400, 700]nm. Second, trichromacy theory states that
any visible color is a linear combination of three basic colors: red, green, and blue. One
may ask: if we are lucky enough to have a texture theory that is as clean as color theory,
then what is the quantity that defines textures uniquely? And what are the basic elements
that can generate textures in combination?

Texture is different from color in that it is a spatial phenomenon. A texture definition
cannot be based on a single pixel, and one has to deal with spatial statistics averaged over
the image. Thus a major theme of texture research is to seek the essential ingredients
in terms of features and statistics. The objective is to find feature statistics that are the
bases for human texture perception. Typical choices of feature statistics include Julesz’s
2-gon statistics[11], co-occurrence matrices[6], statistics of texton attributes[24], Fourier
transforms[16], rectified functions[17], histograms of Gabor filter responses[10, 27, 4], and
correlations of filter responses[21]. To verify the sufficiency of these texture statistics, this
research theme also searches for mathematical tools and algorithms that can synthesize
texture images that have prescribed statistics. One of our early paper[26] provides a
detailed account for the achievements along this research line.

To obtain a quantity that can uniquely identify textures, one needs to define textures on

!Throughout the paper, our discussion is focused on homogeneous texture patterns on a 2D plane, and

we do not discuss texture deformation on 3D surface.



an infinite lattice Z? as a mathematical idealization, where effects of boundary conditions?

and statistical fluctuations vanish. Therefore the entire image space is partitioned into
equivalent classes, within each class all images have identical statistics. We call each
equivalent class a Julesz ensemble. Like wave length A for color, a value of feature statistics
defines a texture type on Z2. To study the statistical properties of Julesz ensembles, we
attach to each Julesz ensemble a uniform counting measure, or a uniform probability
distribution.

When we move from Z? to finite lattice, the texture statistics of different Julesz en-
sembles (or equivalence classes) start to overlap due to statistical fluctuations. As the
lattice gets smaller, e.g., in an extreme case the lattice consists of only one pixel, it be-
comes harder to classify a texture, and boundary condition assumes a more important role.
Therefore, on finite lattice, texture is best represented by a conditional probability distri-
bution rather than an equivalence class. Very often one calls the conditional probability
distribution a texture model. Now we naturally come to the second question below.
Question II: What is a legitimate texture model on a finite lattice that is consistent with
the texture definition on Z*?

The second major theme of texture research is to pursue statistical models to character-
ize textures on finite lattice, driven by computer vision tasks such as texture segmentation
and classification. Among the studied texture models, Markov random field models, or
equivalently the Gibbs distributions, are the most popular and elegant ones. Influential
work includes (Besag 1974)[2] and (Cross and Jain 1983)[3]. Recently, a paper by (Zhu,
Wu, and Mumford, 1997) has shown that the MRF models can be unified under a mini-
max entropy learning principle[27]. Given the statistics used in the texture definition, a
FRAME (Filter, Random field, And Maximum Entropy) model can be derived as a Gibbs
distribution or an exponential family model[27] whose parameters are adjusted in such a
way that the expectation of the texture statistics under the Gibbs distribution equal to a
prescribed value. The advantage of the FRAME model is that the conditional distribution
of any local patch of the image given its environment can be easily specified because of the
Markov property. A detailed account for the FRAME model and the minimax entropy
principle in selecting statistics is referred to an early paper (Zhu, Wu, and Mumford,
1997)[27].

The theories and methods developed in the two research themes are very different from
each other, and thus a crucial question remains unanswered: Are the FRAME models

consistent with the texture definition in terms of Julesz ensembles?

2We shall discuss phase transition in a later section.



In this article, we unify the two research themes by showing the equivalence between the
Julesz ensembles and the FRAME models, using the fundamental principle of equivalence
of ensembles in statistical mechanics. The equivalence reveals two interesting facts in

texture research.

e For a large image randomly sampled from a Julesz ensemble, any local patch of
the image given its environment follows the conditional distribution specified by a
corresponding FRAME model. Therefore the FRAME model describes the local
statistical property of the Julesz ensemble, and is an inevitable texture model on

finite (or small) lattice if texture perception is decided by feature statistics.

e As the image lattice goes to Z2, a FRAME model concentrates all its probability

mass uniformly over a Julesz ensemble (in the absence of phase transition).

The key to the equivalence of ensembles is the large deviation estimate of the volume
of the Julesz ensemble (or the number of images in the Julesz ensemble), and we call this
estimate the entropy function. The ensemble equivalence provides insights into several
basic questions in texture study, such as the origin of the MRF models, typical images of
a statistical model, and texture distance measures.

Question III: What is a legitimate texture distance measure?

In computer vision, the distance between two texture images are often defined based
on the difference of their feature statistics (see [1, 23] and references therein). These mea-
sures are practically very effective and useful, but lose their elegance by ignoring important
factors such as the dependence between elements in the feature statistics, boundary con-
ditions, and the effects of lattice sizes.

The second thrust of this paper is to study a legitimate texture distance based on
the texture models of both small and large lattice systems. We generalize the traditional
distance measures, such as Kullback-Leibler divergence, to random fields. In particular we
attempt to explain the asymmetry property observed in texture “pop-out” experiments
by the calculation of Kullback-Leibler divergence.

In this paper, our theories on ensemble equivalence and texture distance are ver-
ified by two groups of experiments. The first experiment simulates two Monte Carlo
Markov chains, one sampling the Julesz ensemble, and the other sampling the correspond-
ing FRAME model. Both chains synthesize typical texture images that have similar visual
appearances. The second experiment computes the distance of texture pairs, and demon-
strates the asymmetry in texture distance.

The paper is organized as follows. Section (2) explains some background concepts,

such as type, ensemble, entropy function, and equivalence between Julesz ensembles and
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FRAME models using a simple iid example. Section (3) briefly reviews the Julesz en-
sembles and FRAME models. Then section (4) proves the equivalence between Julesz
ensembles and FRAME models. Some experiments are shown in section (5) to demon-
strate the equivalence. Section (6) reviews some important mathematical results and
briefly discusses phase transition. Then we study texture distance in section (7) with
experiments in section (7.2). Finally we discuss some related issues in section (8).
Throughout this article, we concentrate on understanding basic ideas and important

insights while taking a relaxed attitude towards mathematical rigor.

2 Background I: the basic concepts

In this section, we introduce the basic concepts, such as type, ensemble, entropy function,
typical images, and equivalence of ensembles, using a simple image model where the pixel

intensities are independently and identically distributed (iid).

2.1 Type, ensemble, and entropy function

Let I be an image defined on a finite lattice A C Z2, and the intensity at pixel v € A is
denoted by I(v) € G = {1,2,...,g}. Thus 2, = GIA| is the space of images on A, with |A|
being the number of pixels in A.

1). The FRAME model for iid images. We consider a simple image model where
pixel intensities are independently and identically distributed according to a probability
distribution p = (p1, ...,pg), >_; i = 1. The distribution of I can be written as a FRAME

model

g
p:6) =[] prey = [ = exp{<logp, HD) >} = exp{~ < ,HD >}, (1)
vEA i=1

where H(I) = (Hi(I),..., Hy(I)) is the unnormalized intensity histogram of I, i.e., H; is
the number of pixels whose intensities equal to i. § = —(log p1, ...,log py) is the parameter
of p(I; B) — a special case of the FRAME model.

). Type. Tet h(T) = (b (D), .., hy (D)) = (H\ (1)/|A], ., Hy(D)/|A]) = H(T)/|A] be the
normalized intensity histogram. We call h(I) the type of image I, and it is the sufficient

statistics for model p(I; 8). That is, images of the same type receive the same probabilities
from p(I; G).



3). Equivalent class. Let Q5 (h) be the set of images defined on A with h(I) = h 3,
ie.,, Qa(h) = {I: h(I) = h}. Then the image space is partitioned into equivalence classes

Qp = UpQa(h).

As shown in figure 1, each equivalence class Q2 (h) is mapped into one type h on a simplex

— a plane defined by hy +--- 4+ hy =1 and h; > 0,Vi in a g-dimensional space.

* h
partition of image space probability simplex:
hy+ -+ hg=1

Figure 1: The partition of image space into equivalence classes, where each class corre-

sponds to a type h on the probability simplex.

4). The Julesz ensemble for iid images. The hard constraint in defining the equivalence
class Q4 (k) makes sense only in the limit as A — Z2, where statistical fluctuations vanish.
Therefore, we may attempt to define the Julesz ensemble as the limit of Q4 (h) as A — Z2,
or even more directly, as the set of images I defined on Z2 with h(I) = h.

Unfortunately, the above“definitions” are not mathematically well-defined. Instead,
we need to define the Julesz ensemble in a slightly indirect way. First, we associate each
equivalence class 2, (h) a probability distribution ¢(I; h), which is uniform over Q4 (h) and
vanishes outside. Then, the Julesz ensemble of type h is defined to be the limit of ¢(I;h)
as A — Z2.

For finite A, the equivalence class Q4 (h) may be empty because |A|h may not be a
vector of integers. Thus, to be more rigorous, we should replace h by a small set H around
h, and let M goes to h as A — Z2. For simplicity, however, we shall neglect this minor
complication and simply treat |A|h as a vector of integers.

The uniform distribution ¢(I; h) only serves as a counting measure of the equivalence
class Q4 (h), i.e., all the images in Q4 (h) are counted equally. Therefore, any probability
statement under the uniform distribution ¢(I; h) is equivalent to a statistical or frequency

statement of images in Q4 (h). For example, the probability that image I has a certain

3We hope that the notation h(I) = h will not confuse the reader. The h on the left is a function of I

for extracting statistics, while the h on the right is a specific value of the statistics.



property under ¢(I;h) can be interpreted as the frequency or the proportion of images
in Q4 (h) that have this property. The limit of ¢(I; h) thus essentially defines a counting
measure of the set of infinitely large images (defined on Z?) with histogram h. With a
little abuse of language, we sometimes also call the equivalence class Q4 (h) defined on a
large lattice A a Julesz ensemble, and it is always helpful to imagine a Julesz ensemble as
such an equivalence class if the reader finds the limit of probability measures too abstract.

5). Entropy function. We are interested in computing the volume of the Julesz en-
semble Q4 (h), i.e., the number of images in Q4 (h). We denote this volume by |Qx(h)|.

Clearly
|A]!
1 (hal ADY

Using the Stirling formula, it can be easily shown that

1Q4(R)| =

A

1 1
lim —log|Qx(h)] = lim —log ——
i=1 ([ A])!

A—Z2 |A| A—Z2 |A|
g
= — Z h;log h; = entropy(h).
=1
Thus for large enough lattice, the volume of 4 (h) is said to be in the order of entropy(h),

ie.,
|QA(h) | ~ e|A\entropy(h) .

For notational simplicity, we denote the entropy function by s(h) = entropy(h).

6). Probability rate function. Now we are ready to compute the total probability
mass that p(I;3) assigns to an equivalence class Q4 (h). We denote this probability by
p(24(h); B). Because images in Q4 (h) all receive equal probabilities, it can be shown that

1

g
g, 3708 P(OA():8) = g, oo og(1n (1) [ M)
=1

I
A—Z2 A Az

g9 h'z
= =) hilog— = —KL(h[|p),
i=1 pi

where KL(h||p) denotes the Kullback-Leibler distance from h to p. KL(h||p) > 0 for all A
and p, with equality holds when h = p.

Thus, on a large enough lattice, the total probability mass of an equivalence class
Qa(h) is said to be in the order of —KL(h||p), i.e.,

p(Qa(h); B) ~ e INELGID), 2)

The —KL(h||p) is the probability rate function of h under model p, and is denoted by
sp(h) = —KL(h[|p).



Having introduced the basic concepts, we now explain the basic ideas of ensemble

equivalence in the next two subsections by going both directions from one to the other.

2.2 From a FRAME model to a Julesz ensemble on infinite lattice

A simple fact will be repeatedly used in this paper. To see this fact, let’s consider the

57 and the other is e3”. Consider

following example. Suppose we have two terms, one is e
their sum e + e3". As n — 0o, the sum €% + €3 is dominated by €%, and the order of
this sum is still 5, i.e., lim, % log(e®™ +€3") = 5. This means that for the sum of many
terms, the term with the largest exponential order dominates the sum, and the order of
the sum is the largest order among the individual terms.

Now let’s study the limit of the FRAME model p(I; 3) as A — Z2. According to (2),
the probability that p(I; ) assigns to the equivalence class Q4 (h) is of the exponential
order sg(h) = —KL(h||p), which, as a function of type h, achieves the maximum 0 at
hs« = p. Thus, the equivalence class Q4 (hs) eventually absorbs all the probability mass of
p(I; 3) as A — Z2, and for other h # p, the probability that Q4 (h) receives goes to 0 at
an exponential rate sg(h) = —KL(h||p) < 0. Because p(I; ) assigns equal probabilities
to images in the same equivalence class, p(I; §) will eventually concentrate its probability
mass uniformly on Qp(hy), and therefore become a Julesz ensemble of type h, = p.

For statistics h(I), the h, can be called the typical value of h(I) under the model p(I; 3)
because images with h, absorb all the probability mass of p(I; 8) on large lattice. In other
words, if we sample from p(I;3) on large lattice, we will almost always get an image of
type h.. Therefore, as far as statistics A(I) is concerned, images in Q4 (hs) can be called
typical images.

It is important to distinguish between typical images and most likely images. To see
this point, let’s consider the following example. Suppose among p1,...,pg, P < 1 is the
largest probability. Consider one extreme type h, with h,, =1, and h; = 0,Vi # m. Then
the image in this Q4 (h) is the most likely image under model p(I; 3), i.e., it receives the
highest probability. However, Q4 (k) has only one constant image, and the probability
that p(I; ) assigns to this Q4 (h) is essentially zero for large lattice. In other words, when
sampling from the model p(I; 3) on large lattice, we will almost never get the most likely
images, instead, we will almost always get the typical images (or most common images).

Therefore, it is the typical images that a statistical model is intended to characterize.



2.3 From a Julesz ensemble to a FRAME model on finite lattice

In this section, we tight up the notation a little bit. We use I, to denote the image defined
on lattice A, and we use I, to denote the image patch defined on Ay C A. For a fixed type
h of feature statistics, consider the uniform distribution ¢(I;h) on Q4 (h). Under ¢(I;h),
the distribution of I,, denoted by g(Ia,;h), is well defined.* Notice that the rest of the
image I/5, influences I, through a global constraint h(I5) = h. We shall show that if
we fix Ag and let A — Z2, then ¢(I5,;h) goes to the FRAME model (see equation (1))
with p = h.
The number of images in Qx(h) is
|A]!

= A Ay

We fix I, and calculate the number of images in 24 (h) whose image value (i.e., intensities)
on Ay is I,. Clearly, for every such image, its image value on the rest of the lattice A/A,
Le., In/n,, must satisfy

H(Iz/ny) = BIA] — H(Ly,),

where H(Iz,) = |Ao|h(Ia,) is the unnormalized histogram of Ip,, and H(I,/,,) is the
unnormalized histogram of I /5,. Therefore

h|A| — H(I
Ta/no € QA/Ao(W)-

So the number of such images is [Q4 /5, ((h|A| — H(Ia,))/|A/Aol)|- Thus,
12100 (R
2 (R)]
(IA] = [Ao])!/ TTEZy (Rl Al — Hi(T,))!
[AJY/ L= (hal A
i1 (Rl A (Ri|A] = 1)...(Ri|A] — Hi(Ta,) +1)
[AJ(JA] = 1)-..(JA] = [Ao[ + 1)
izt hi(hi — 1/|A])...(hi — (Hi(Ip,) — 1)/|A])
(1 = 1/[A])...(1 = (JAo] = 1)/|A])

9
— H hf{i(IAO) as |A| — oc.

=1

Q(IAO; h) =

Therefore, the distribution of I, is the FRAME model (see equation (1)) with p = h

under the Julesz ensemble of type h.

“In the iid case, ¢(Iay; h) is both the marginal distribution and the conditional distribution of ¢(I; h),

while in random fields, we only consider the conditional distribution.



The above calculation can be interpreted in a non-probabilistic way, i.e., ¢(Iry;h) is
the frequency or the proportion of images in Q4 (h) (on large A) whose patches on Ay are
I,,. In other words, if we look at all the images in the Julesz ensemble through Ag, then
we will find a collection of image patches on Ay, and the distribution of this collection
is described by the FRAME model. Under the hard constraint on h(I,), h(I,,) can still

take any possible values.

3 Background II: Julesz ensembles and FRAME models for
textures

For this paper to be self-contained, we briefly describe the Julesz ensembles and FRAME

models for textures.

3.1 Julesz ensembles — a mathematical definition of textures

To study real world textures, one needs to characterize the dependency between pixels by
extracting spatial features and calculating some statistics averaged over the image. One
main theme of texture research is to seek the essential ingredients in terms of features
and statistics h(I), which are the bases for human texture perception. From now on, we
use the bold font h to denote statistics of image features. Recently, the search for h has
converged to marginal histograms of Gabor filter responses. We believe that some bins of
joint statistics may also be important as long as we can keep the model complexity under
check.

Given K Gabor filters {F(l), o FE )} as feature detectors, we convolve the filters with
the image I to obtain the subband filtered images {I(V, ... 1K)} where I¥) = F(k) & T,
Let h¥) be the normalized intensity histogram of I®)| then the feature statistics h collects

the normalized histograms of these K subband images,

We use H(I) = (HW(T), ..., HX)(I)) to denote the unnormalized histograms. We assume
that boundary conditions are properly handled (e.g., periodic boundary condition). It
should be noted that the conclusions of this paper hold as long as h(I) can be expressed as
spatial averages of local image features. The marginal histograms of Gabor filter responses
are only special cases.

Given statistics h(I), one can partition the image space Q2 into equivalence classes
Qa(h) = {I : h(I) = h}, as we did for the iid case. For finite A, the exact constraint

10



h(I) = h may not be satisfied, so we relax this constraint, and replace Q25 (h) by
QpA(H) ={I:h(I) € H}

with 1 being a small set around h. Then we can define the uniform counting measure or

the uniform probability distribution on Q4 (#) as

oL H) = 1/|Qa(H)|, if I e Qp(H), 3)

0, otherwise,

where |Q4(#)| is the volume of or the number of images in Q) (). Now we can define
the Julesz ensemble as follows.

Definition Given a set of feature statistics h(I) = (R)(T), ..., KK (T)), a Julesz ensemble
of type h is a limit of q(I;H) as A — Z? and H — h with some boundary condition.’

As in the iid example, the Julesz ensemble is defined mathematically as the limit of a
uniform counting measure. It is always helpful to imagine the Julesz ensemble of type h
as the image set Q4 (h) on a large A. Also, in the later calculation, we shall often ignore
the minor complication that the constraint h(I) = h may not be exactly satisfied, and
shall simply take # to be h.

With Julesz ensembles, we are ready to give a mathematical definition for textures.
Definition A texture pattern is a Julesz ensemble defined by a type h of the feature
statistics h(I).

Just as the wavelength X identifies a color, the type h defines a texture. One of our
early paper[26] provides a detailed account for the definition of Julesz ensembles and

Markov chain Monte Carlo algorithms for exploring the Julesz ensembles.

3.2 The FRAME models

While a texture is uniquely identifiable by type h on Z2, on finite lattice the texture
statistics of different Julesz ensembles overlap due to statistical fluctuations, and boundary
condition plays an important role. Therefore, on finite lattice, texture is best represented
by a conditional probability distribution. Very often one calls the conditional probability
distribution a texture model.

Among the studied texture models, Markov random field models, or equivalently the

Gibbs distributions, are the most popular and elegant ones. Recently, (Zhu, Wu, and

SWe assume A — Z? in the sense of van Hove, i.e., the ratio between the boundary and the size of A

goes to 0.
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Mumford, 1997) [27] proposed a class of MRF models called FRAME (Filter, Random
field, And Maximum Entropy). The basic idea is as follows.
Given statistics h(I) used in the texture definition, we want a model p(I) so that it

has the expected statistics h, i.e.,
E,[h(I)] = h.

This is a “soft” constraint in comparison with the Julesz ensemble because it only requires
that the statistics are matched on average.

Then a maximum entropy distribution, called FRAME, is selected among all distri-
butions that satisfy the constraint. The distribution assumes the following exponential

form

p(LB) = exp{— < B,H(I) >}, (4)

1
Zx(B)
where B is the parameter of the model and Zx(8) is the normalizing constant. The
parameter 3 is solved from the constraint E,r,5 [h(I)] = h. p(I; 8) unifies existing MRF
texture models, which are different only in their definitions of feature statistics h(I). A
detailed account of the FRAME models and the minimax entropy principle in selecting
statistics h(I) is referred to an early paper (Zhu, Wu, and Mumford, 1997)[27].

Unlike the Julesz ensembles, the FRAME models assign probabilities to all the images
defined on A. Although the FRAME models are less straightforward than the Julesz
ensembles, they are much more analytically tractable due to the Markov property. That
is, for any Ag C A, the conditional distribution of I, given the rest of the image I /5, only
depends on the intensities of the neighboring pixels I5a,, where 0Aq collects all the pixels
around A( that can be covered by the same filters as the pixels in Ag. The conditional

probability is

P(Iag | In/ng; B) = (I, | Tong; B) =

7 P <A H(L[ony) >,

where H(Ix,|Isa,) collects the unnormalized histograms by filtering inside Ag UJAy. Note
that this conditional distribution is still of the FRAME form with parameter 8, indicating
that the FRAME model gives a consistent specification of all the conditional distributions

of image patches.

12



4 Equivalence between Julesz ensembles and FRAME mod-
els

In this section, we unify the two research themes by showing the equivalence between the
Julesz ensembles and the FRAME models, using the fundamental principle of equivalence

of ensembles in statistical mechanics.

4.1 Physics background

In statistical mechanics, there are two major models for physical systems with a large
number of degrees of freedom. One is called the “micro-canonical” ensemble, which is
the ensemble of all the possible states of a physical system with a fixed energy. The
micro-canonical ensemble is used to model a physical system in thermal isolation, i.e., it
does not exchange heat with the environment and therefore has a constant energy. When
such a system reaches equilibrium, its state is supposed to follow a uniform distribution
over the micro-canonical ensemble. The other important model is the Gibbs distribu-
tion, or the “canonical ensemble”. It is used to model a physical system in thermal
equilibrium with an environment of a fixed temperature. As to the equivalence between
micro-canonical and canonical ensembles, Gibbs (1902) argued that: 1) If a large physi-
cal system is micro-canonically distributed, i.e., following a uniform distribution over the
states with a constant energy, then any small part of it follows a Gibbs distribution. 2) A
Gibbs distribution for a large physical system is essentially micro-canonically distributed.
Gibbs (1902) also proposed other arguments to justify the Gibbs distribution. If we re-
place the energy of the physical system by the feature statistics of the texture image, then
we can identify the micro-canonical ensembles with the Julesz ensembles, and the Gibbs
distributions or the canonical ensembles with the FRAME models. So the equivalence
between the Julesz ensembles and the FRAME models follow directly from the principle
of equivalence of ensembles in statistical mechanics.

Since Gibbs’ time, many proofs have been given to the equivalence of ensembles. Re-
cently, Lewis, Pfister, and Sullivan (1995) gave a rigorous proof of the equivalence for
lattice systems under very general conditions. However, modern rigorous treatments with
large deviation technicalities tend to be too complicated and unapproachable for com-
puter scientists. In this article, therefore, we concentrate on understanding basic ideas
and important insights in the context of texture modeling while taking a relaxed attitude
towards mathematical rigor. Readers interested in rigorous formalisms are referred to

Lewis, Pfister, and Sullivan (1995) and the references therein.
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4.2 From the Julesz ensemble to the FRAME model

In this subsection, we derive the local Markov property of the Julesz ensemble, which
is globally defined by type h. This derivation is adapted from traditional argument in

statistical physics. It is not as rigorous as modern treatments, but is much more revealing.

No

INo

A1

Figure 2: The lattices system: Ag is the local patch, and dA¢ is the MRF boundary of Aq.

Both are inside a fixed lattice A;, and the image lattice A goes to Z2.

Suppose the feature statistics is h(I) where I is defined on A. For a fixed value of
feature statistics h, consider the image set Qa(h) = {I : h(I) = h} and the associate
uniform distribution ¢(I;h). First, we fix Ay C A, and then fix Ag C A1, as shown in
figure 2. We are interested in the conditional distribution of the local patch I, given
its local environment I, /5, under the model q(I;h) as A — Z2. We assume that Ag is
sufficiently smaller than A; so that the neighborhood of Ay, dAg, is contained in A;.

Let Hyo = H(I,|I54,) be the unnormalized statistics computed for I, where filtering
takes place within Ag U 0Ag. Let Hgy be the statistics computed by filtering inside the
fixed environment A;/Ag. Let A_; = A/A; be the big patch outside of A;. Then the
statistics computed for A_; is h|A| — Hy — Hy;. Let h_ = (h|A| — Hy1)/|A—1]|, then the
normalized statistics for A_; is h_ —Hy/|A_|.

For a fixed I,,, the number of images in 24 (h) with such a patch I, and its local
environment Iy, /5, is [Q2a_, (h— —Ho/|A_1])|. Therefore the conditional probability, as a
function of I,,, is
H,

q(Ing | Ia;/ag 1) o< (24 (B — ‘A_1|)|-

Unlike the iid case, the about volume cannot be computed analytically. However, the

volume |24 (h)| still shares the same asymptotic behavior as in the iid case, namely,

1
lim — log|Q4(h h
ATy og |24 (h)[ = s(h),
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where s(h) is a concave entropy function of h.

Like the iid case, in the above derivation, we ignore the minor technical complication
that Q4 (h) may be empty because the exact constraint may not be satisfied on finite
lattice. A more careful treatment is to replace h by a small set H around h, and let
H — has A — Z2 Let Qy(H) = {I: h(I) € H}, then we have the following

Proposition 1 The limit
log QA (H) = s(H)

1
lim —

A—Z2 |A]
exists. Let s(h) = limy_,n s(#H), then s(h) is concave, and s(H) = suppcy s(h).

See Lanford (1973) for a detailed analysis of the above result. The s(h) is a measure of
the volume of the Julesz ensemble of type h. It defines the randomness of the texture
appearance of type h. The exponential order of |Q4(#H)| is the same as the order of the
most random equivalence class. For example, if Qp(H) = Qy, then the order is decided
by the equivalent class of images whose intensities are uniformly distributed.

With such an estimate, we are ready to compute the conditional probability. Note
that the conditional distribution, q(Ia, | In,/,,h), as a function of I5,, is decided only
by Hy, which is the sufficient statistics. Therefore, we only need to trace Hy while leaving

other terms as constants. For large A, a Taylor expansion at h_ gives

H
log (I, | IAl/Aoah) = constant + log |Qx_, (h_ — \A_01|)|
H
= constant + [A_;|s(h_ — |A—0|)
-1
1

= constant— < s'(h_),Hy > 4o

Assuming the entropy function s(h) has continuous derivative at h, and let 8 = s'(h),
then, as A — Z2, h_ — h, and s’(h_) — B. Therefore,

log q(In, | Iz, /aq-h) —  constant— < s'(h), Hp >

= constant— < 3, Hg >,

80

ﬁ exp{— < B,H(Ir, | Toa,) >},

which is exactly the Markov property specified by the FRAME model. This derivation

Q(IAO | IA1/A07h) -

shows that local computation using the FRAME model is justified under the Julesz en-
semble. It also reveals an important relationship, i.e., the parameter 8 can be identified

as the derivative of the entropy function s(h), 8 = ¢'(h).
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4.3 From the FRAME model to the Julesz ensemble

In this subsection, we study the statistical properties of the FRAME models as A — Z2.
Consider the FRAME model

p(I; B) =

75 Il < A.B(D >}

which assigns equal probabilities to images in Q4 (h). The probability that p(I; 3) assigns
to Qa(h) is

P(OAB):B) = =5 exp{-|A] < B.1 >} (b))

The asymptotic behavior of this probability is

. 1
sp(b) = D, o5

. 1
=~ <Bh>ts(h) - lim o logZ0(6).

log p(Q4(h); B)

For the last term, we have

Proposition 2 The limit

p(B) = lim -

log Z
o A7 lo8 A(B)

exists and is independent of the boundary condition. p(B) is conver.

The p(B) is called pressure in physics. See Griffiths and Ruelle (1971) for a rigorous
analysis of the pressure function.

Therefore, we have

Proposition 3 For Q,(h), the probability rate function sg(h) of the FRAME model
p(L; B) is

() = lim, 108 p((1): ) = 5(1) < B b > —p(B).

Then the probability mass that p(I; 3) puts on Q4 (h) has an exponential order
p(1 € Q4 (h); B) ~ s, (5)

sg(h) <0 for any h and B, otherwise the probability will go unbounded.
Therefore, p(I; B3) eventually concentrates on Qp(h,) with

h, = arg max sg(h) = argm&x{s(h) — < B,h>—p(B)}.

Moreover, the maximum of sg(h), i.e., sg(h,), should be 0. Otherwise, if sg(h,) < 0, then
the total probability on 25 goes to zero, because h belongs to a compact set. So we have

the following
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Theorem 1 If there is a unique h, where sg(h) achieves its mazimum 0, then p(I; B)
eventually concentrates on h, as A — Z2. Therefore the FRAME model p(I; B) goes to a
Julesz ensemble of type h.. Moreover, if s(h) is differentiable at h,, then s'(h,) = 8.

The uniqueness of h, holds under the condition that there is no phase transition at 3.
The above analysis establishes a one to one correspondence between 8 and h, on large
lattice in the absence of phase transition.

sg(h) can be identified with —KL(A||p) in the iid case, following the proposition below.

Proposition 4 Suppose two FRAME models pa = p(I;B4) and pp = p(I;Bp) concen-
trate on h 4 and hp respectively. Then,

1
= lim — KL = — h
K(ppllpa) = lim, A (pBllpa) = —sp4(h),
where kl(pp||lpa) denotes the Kullback-Leibler divergence rate (per pizel).

[Proof] By definition, we have

o 1 p(L Bp)
lim — log KL = lim — logE,,[log =5’
ag. ] s KLslipa) = lig, \AI 8 Epsllo8 T B,),
Z(B4)
— lim —1lo hp > — h
Aww 7By <Ptz T <Prhe>

= <Buhp>—<PBghp>+p(B4) —p(Bp)
= —s(hp)+ < Ba,hp > +p(B4) = —sp5,(hB).

The last step follows from the fact that sg,(hp) = s(hp)— < Bp,hp > —p(Bp) = 0.
The above conclusion provides an intuitive explanation for equation (5). The proba-
bility mass of p(I;3) on class Q4 (h) decreases exponentially in an order that is equal to

the KL-divergence rate between the two models specified by h and 8.

4.4 Typical versus non-typical images in a Julesz ensemble

In this section, we discuss typical and non-typical images in a Julesz ensemble.

Consider a Julesz ensemble Q4 (h) of type h. Images in Qa(h) all share the same
statistics of type h, however, they may differ in terms of other statistical properties.
Suppose we introduce an arbitrary new statistics 2(®)(I) which measures additional image
features (e.g., marginal histogram of a new Gabor filter). Then, images in Q4 (h) may
differ in their 2(O)(T). This suggests that we can partition Q(h) into finer equivalence

classes (or sub-classes) according to h(0)(I), i.e.,

Qa(h) = Uy Q4 (h, h0),
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where

QA (h, h) = {I: h(I) = h, KO(1) = O},
Now let’s study the volumes of these finer Julesz ensembles. Let

1
s(h, K@) = lim —
A—Z2

z2 A

be the entropy function of the subclass Q4 (h, h(o)). For a fixed h, if there is a unique h£0

log | (h, h(V)]

)

such that s(h, h(?)) achieves its maximum as a function of A(?) then the volume |24 (h)|
is dominated by the volume |4 (h, h&o))|, and

s(h) = s(h, h"),
because the order of the sum equals to the largest order among individual terms.

Proposition 5 For a fized h, if there is a unique th’) that mazimizes s(h, h(o)) as a
function of KO, then the Julesz ensemble of type h concentrates on hsﬁo), i.e., almost all
the images in the Julesz ensemble of type h have statistics h(®) (I) = h&o). We call hgﬁo)
typical value of h(o)(I) for the Julesz ensemble of type h.

Therefore, the Julesz ensemble of type h is essentially the Julesz ensemble of type (h, hgo)).
All images in the other sub-classes are non-typical and have zero probability mass as
A — Z2. The uniqueness of h&o) holds in the absence of phase transition.

Because h(0) (I) is arbitrary, we can let it collect as many statistical properties as
possible. The above proposition then tells us that almost all the images in the same

&0) and therefore the same

Julesz ensemble share the same typical statistical properties h
typical visual appearance. As a result, if we can sample just one typical image from 24 (h)
on large lattice, then we should be able to tell the visual appearances of almost all the
images in 4 (h). Obtaining a typical image can be accomplished by sampling from ¢(I; h),
i.e., the uniform distribution over Q4 (h), or sampling from the corresponding FRAME
model p(I;3). See the next section for some experiments. The non-typical subclasses
include images such as human faces and office scenes, which may not be considered as

texture in perception.

5 Equivalence of ensembles: experiments and its signifi-
cance

In this section, we demonstrate some experimental results on sampling the Julesz en-
sembles and their corresponding FRAME models, and discuss practical implications of

ensemble equivalence in modeling visual patterns beyond textures.
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Figure 3: For each row, the left image is observed as the training image, the middle image
is a typical sample from the Julesz ensemble, and the right image is a typical sample from

the corresponding FRAME model.
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Figure 4: For each row, the left image is observed as the training image, the middle image
is a typical sample from the Julesz ensemble, and the right image is a typical sample from

the corresponding FRAME model.
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We conduct our experiments on a set of 20 texture images, five of which are shown in
figures 3 and 4. For ease of computation, these images are quantized into 8 gray levels
only. We do not implement the filter pursuit process used in our early work[27]. Instead
we fix a set of 34 filters for all 20 images: one for intensity, four gradient filters for the
horizontal and vertical directions, five Laplacian of Gaussian filters at various scales, and
24 Gabor filters at 4 scale and six different orientations. The statistics h(I) collects the
histograms of the 34 filters.

For each of the 20 images, we simulate three Monte Carlo Markov Chains (MCMC)
for stochastic sampling.

MCMC I: it starts from a white noise image, and samples from the uniform distri-
bution ¢(I;hos) using a simple annealing precess, where hyps = h(ILyps) is the type of the
observed image. This process simulates typical images from the Julesz ensemble of type
hgps. A detailed account is given in [26].

MCMC II: it simulates an inhomogeneous Markov chain to learn the parameters 3
in the FRAME model p(I; B) from the observed statistics hops, as is discussed in our early
work[27].

MCMC III: it starts from a white noise image, and simulates a homogeneous Markov
chain sampling from the model p(I; 3) learned using MCMC II. This process synthesizes
typical images from the FRAME model, which, as we have shown, is equivalent to the
Julesz ensemble on large image lattice.

MCMC I and MCMC III provide two different ways to explore the typical images of
the Julesz ensemble of type hyps. It is worth mentioning that the convergence of MCMC
IIT is practically much slower and harder than that of MCMC II.

The results of MCMC I and III are shown in the middle and right columns of figures 3
and 4 respectively. The visual similarity of their appearances demonstrates that both the
Julesz ensemble and the FRAME model focus on the same set of typical images that share
identical statistical properties subject to minor statistical fluctuations on finite lattice.

The ensemble equivalence has a broad implication for modeling general visual patterns
beyond textures, for example, shapes, flow patterns, speech signals and natural languages.

Figure 5 summarizes a unified paradigm for modeling general visual patterns using
feature statistics from a dictionary shown on the right side. Given a natural pattern
generated by some unknown stochastic process, we have as observation a set of samples,
such as a set of images. The natural process is shown by the dotted lines. The goal is
to characterize these samples in computer applications. There are two methodologies as
shown by the two paths in figure 5. The solid line (path 1) represents the research theme

that pursues a Gibbs model based on a minimax entropy learning scheme[27]. The dashed
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Figure 5: A global picture for theories of stochastic modeling.

line (path 2) represents the research theme that seeks the definition of the pattern on large
lattice systems, i.e. the Julesz ensemble. Both the Gibbs model and the Julesz ensemble
are verified through stochastic sampling using Markov chain Monte Carlo as a general
engine. The two lines are connected by the equivalence of ensembles.

Practically, the ensemble equivalence enables us to utilize the advantages of both
methodologies. Path 2 is more effective for model verification and model selection, since
it does not have to learn the expensive Gibbs model explicitly. Path 1 is useful for local
computation in vision tasks, such as image segmentation and discrimination.

Conceptually, the unification helps us link mathematical concepts such as probability
models and entropy in finite lattice systems to intuitive concepts such as ensembles and
volumes on large lattice systems.

In a broader sense, figure 5 represents a self-consistent paradigm based on the phi-
losophy dated back to (Julesz, 1962)[11]: perception is a process that computes essential
features and statistics. In recent papers, this paradigm has been applied to modeling other

visual patterns, such as 2D object shapes[29] and generic images and clutter[28].

6 Geometric interpretation and phase transition

In this section, we review the geometric interpretation of the relationship between s(h)

and p(B), and discuss phase transition briefly.
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So far, we have introduced three important concepts in the limit A — Z2.

1. Given statistics h and its Julesz ensemble Q4 (h), we have the entropy function s(h)
that is the exponential order of the volume of Q2 (h),

s(h) = lim 1

log |24 (h)|.
Jim 7 Tog 24 ()

2. Given parameters 8 and its FRAME model p(I; 3), we have the pressure function
p(B) that is the exponential order of the partition function Z(3),

p(B) = lim -

log Z .
A, A8 A(B)

3. The probability rate function sg(h) links 8 and h. sg(h) is the exponential order of
the probability mass that p(I;3) assigns to Qx (h),

C1
sp(h) = lim o log p(I € Q4 (h); B)

= s(h)— <B,h> —p(B).

When sg(h) achieves its maximum zero, we have the relationship between h and 3.
Definition If sg(h) = 0, i.e., s(h)— < B,h > —p(B) = 0, then B and h are said to
correspond to each other.

P
® y =<B,h>+ Pp)

y=<h g Y )
' ®,
B

Figure 6: Convex conjugate between p(8) and s(h). a) The tangent p'(8,) = hg and all
planes are below p(8B;). b) The tangent s'(hg) = B, and all planes are above s(hy).

From the definition, one can derive the interesting geometric relationship between 3

and h as displayed in figure 6.
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Proposition 6 If B, and hy correspond to each other, and if p(B) is differentiable at By,
then

s'(hg) = By, and p'(By) = ho.

That is, 8, is the tangent of s(h) at h = hy and hy is the tangent of p(3) at 8 = 3.
Furthermore, because p(3) is convex, all the planes p = s(h)— < 8,h > are below the

pOiIlt (IBOap(ﬂO))’ i'e'7
p(IBO) > S(h)— < 1807h > VhaV:BO

In a similar way, because s(h) is concave, all the planes s = p(8) + < 8,hg > are above
(ho, s(ho))
S(hO) < p(IB) + < h07,3 > VIBth(Ja

This is formally expressed by the following proposition, illustrated in Figure 6. It holds

even when p(f3,) is not differentiable.

Proposition 7 s(h) and p(8) are convex conjugates, i.e.,

p(B) = max {s(h) — < B,h >}, (6)
s(h) = min {p(F) + < B, h >}. (7)

If one of (6) and (7) is true, then the other must be true.

The equalities in (6) and (7) holds when 8 and h correspond to each other. See Lanford
(1973) for a detailed analysis.

The differentiability of p(8) at B, determines whether there is a phase transition at
Bo- Recall that

Although p(B) as the limit of log Zx(8)/|A| always exists, it may not be differentiable at
By, indicating that a phase transition occurs at 8. So Eg,[h(I)] may go to multiple limits
under different boundary conditions. Meanwhile, the probability rate function sg,(h) or
s(h) — < By,h > may achieve its maximum at multiple h. Because s(h) is a concave
function, this can happen only when s(h) is not strictly concave, i.e., s(h) has a linear
piece. Figure 7 illustrates the concept. In a), a cusp appears at point 3, so the convex
function p(B) can be above multiple planes at 3. In b), there is a flat linear piece in s(h)
so that many h share the same tangent 3.

If there is a phase transition at 3, then when we sample from the FRAME model
p(I; By) on a large lattice, we may get images of different statistical properties h(I) and
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Pp)

¢ P(Bd

Figure 7: a). If p(B) is not differentiable at 8 = 3, a phase transition occurs, and there
exists a convex set of expected statistics h, as shown by the interval [h;,hy]. b). The

entropy function s(h) has a constant tangent 3, over a set of h.

therefore different visual appearances if we use different boundary conditions. This indi-
cates that the effect of boundary conditions does not vanish on large lattice.

If for an hy, the corresponding 3, leads to a phase transition, then when we sam-
ple from ¢(I;h), i.e., the uniform distribution over Q4 (h) on a large lattice, we may
get images consisting of several large pieces of different statistical properties (and visual
appearances), and each piece can arise from the FRAME model p(I; 3,) under suitable
boundary conditions. See Martin-Lof (1979) for a more discussion.

In our experiments, we have not captured a definitive phase transition phenomenon

described above. We will leave this issue for future investigation.

7 Measure of texture distance and asymmetry

In this section, we study model-based texture distance that extends the traditional signal

detection theory[8] from iid signals to random fields.

7.1 Distance measure on random fields

In search of texture statistics h(I) to which pre-attentive vision is sensitive, psychophysi-

cists use texture discrimination experiments to see how effortlessly a foreground texture
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patch B can “pop out” from a background texture A and vice versa.

One widely observed phenomenon in the pop-out experiments is asymmetry. For ex-
ample, it is easier for a moving dot to pop out from a background of static dots than
for a static dot to pop out from a background of moving dots. A curve pops out easily
from a background of straight lines, whereas it is harder to detect a straight line from
a background of curves. The perceptual distances between two texture images are also
found to be asymmetrical (see [20] and references therein).

This asymmetry can be explained by the asymmetry of the Kullback-Leibler distance
between the statistical models of the two signals. In the case where elements in each
signal, such as moving dots, are independently Gaussian distributed, this KL.-divergence is
reduced to the Mahalanobis distance[22] or signal to noise ratio (SNR) in traditional signal
detection theory[8]. To our knowledge, there has been no rigorous work for computing
distance for signals that are not independently distributed, such as textures on random
fields.

The basic scenario is as follows. A background of texture A defined on a large lattice
A is generated from a FRAME model p(I;34). Within the background, a small patch
I, of texture B with Ay C A is generated from a model p(I;Bz). There are two ways
to generate B in A. One is to generate the foreground patch I,, from the conditional
distribution p(Ia,|Ir/py; Bp) With Iy p, ~ p(Ia/a,;84) being the boundary condition.
The other method crops a patch I, from Iy ~ p(I;Bp), and pastes it to the background
of texture A by occlusion, so I, is generated from the marginal distribution of p(I; 8p)
with the boundary condition integrated out according to p(I; 85). The second case often
generates sharp edges, which constitute a strong artificial cue for discrimination, thus we
only discuss the first case where the background is used as the boundary condition.

We formulate the problem in a Bayesian inference framework. The easiness of pop-out

is measured by the ratio of the posterior probabilities of pop-out versus no pop-out.

Pr(pop-out|I
T(IA) (P P | A)

Pr(no pop-out|I,)
Pr(pop-out)  Pr(I,|pop-out)

Pr(no pop-out) Pr(I|no pop-out)
Pr(pop-out) p(Ia/a;B4)P(IaelIa e BB)
Pr(no pop-out) p(Ir;B4) ’
Pr(pop-out) p(Iay|Tor.; Bp)
Pr(no pop-out) p(Iay|Taae; Ba)’

Ia/no ~ P(Xa/ng; Ba),

where Pr(pop-out) and Pr(no pop-out) are prior probabilities of pop-out and no pop-out
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respectively. Therefore, the log of posterior ratio

p(Ias|Tony; BB) +log Pr(pop-out)

(I Tong; B a) Pr(no pop-out)

logr(Ix) = log

is decided by the first term with fixed prior probabilities. In the following, we assume

Pr(pop-out) = Pr(no pop-out), so the second term in the above vanishes. Averaging over

Iro ~ P(IaoTa/ng; Bp) and Iy py ~ p(In/a;B.4), the easiness of pop-out is

Map = EP(IA/AO iBa) {EP(IAO 1ToryiB ) [logr(Ia)]} (8)
)1y ng:8 1) TEL(P (a0 [Tor03 BB)[[P(LaoTone; B 4)) }- (9)

The larger M 4p is, the easier for patch B to pop out from background A.

Given B4 and By, Map only depends on the shape of the foreground patch Ay. We
now briefly study the behavior of M p when Ag is sufficiently large such that the effect
of the boundary condition diminishes. Let hy and hp be the statistics corresponding to
B 4 and Bp respectively. We have

In. -
By 108,108 212 523
log Zx,(B4) + [Ao| < By hp > —log Zay(Bp) — [Ao| < Bp,hp >
~ [Aol{p(Ba)+ <Bahp > —p(Bp)+ <Py hp >}
= —|Aolsp,(hp) = [Ao|kl(psllpa) = —logp(I € Qa,(hB); Ba)-

Q

Map

Q

p(I € Qp,(hp); B 4) measures how likely a texture patch of type A has typical statistics
hp of texture B. If this probability is large, then the background A is very distracting,
and it is hard for B to pop out.

From the above derivation, for large patch Ag, Map increases in proportion to |Ag|
with a rate —sg,(hp) > 0, which is the Kullback-Leibler divergence rate. Because
kl(pg||pa) # kl(pa||pg) in general, Map # Mpga, which leads to the asymmetry in pop-
out easiness. Also, for large lattice, the task of texture discrimination becomes trivial,
that is, the foreground texture must pop out effortlessly unless kl(pg||pa) = 0. This is why
psychologists can use pop-out experiments to test what kind of h(I) are essential in the

pre-attentive visual processing stage.

7.2 Experiments on texture distance

The KL-divergence rate between two FRAME models are not analytically computable, so

we seek numerical approximation.
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First, we synthesize a large image I4 ~ p(I;84). Then we dig a number of N holes
in I4, each hole has m x m pixels. We denote by A,, the lattice for m x m pixels, and
we label the boundary images for each hole as I( R ,4 =1,...,N. They are typical samples
from p(I/a,,;84)- Then within each hole, we sample L patches from p(Ix,, |IE§); Bg), and
we denote these L patches by Ig’j) for j = 1,...,L. Then we can approximate the M 4p
for the foreground of shape A,, by Monte Carlo integration,

(m) _
Myp = E (IA/Am ;,BA {E P(Ir i loAm B )[IOgr(IA)]}
1

N (w (Z
NSLH pI‘”’|IA,ﬂ )’

(
1L & 208,84 )
— _ZZ SACPA < B, — B HIGT L) >
=1j= Z(IA ) )

In practice, we set L = 100 and N = 200. The key difficulty is to compute the ratio
2(1).8.1)/ 213 B).

We estimate the ratio by importance sampling[19]. We choose an intermediate model
B, between B4 and Bp, for example, B, = (B4 + Bp)/2, and generate I( ) ,stnn)1 from
p(IAm|IA ;Bo), and then compute the ratio as

Z(B4)  Xi, exp{— <Ba,H(Iy,) >}
Z(Bg) EIAW exp{— < Bp, H(14,,) >}
Y1y, exp{— <B4 — Bo, H(Ir,,) >}p(Ia,, [Toa,.; Bo)

14, exp{— < Bp — Bo, H(Ix,,) >}p(Ia,, [ToA,,; Bo)
nexp{— < Ba—Bo, HIY ) >}
Yi—iexp{— < Bp — By, H (I(Z ) }

For small hole size m, e.g., m < 40, the model p(I4,, ;B,) has enough overlap with

Q

Q

p(Ip,,;84) and p(I4,,; Bg). Thus we can obtain reasonable approximations.
Given the distance computed for small lattices of m x m pixels, we compute Mg as

Mup ~ |A0| MATB)

Figure 8 shows a pair of images 14 and Ip. We synthesize three images for A inside
B with Ag = 32 x 32, 64 x 64, and 96 x 96 pixels respectively. In comparison we also
synthesize three images for texture B in A. The estimated divergence Mfﬁ? and M 1(3721) are
plotted in figure 9. The KL-divergence rates per pixel are also plotted in the same figure.

We observed that the KL-divergence rate per pixel become almost a constant as the
patch size increases. This indicates that the computed distance is a valid estimation.
M gjx) > MgmB), indicating that A in B should be easier to discriminate than B in A.

It would be interesting to compare the numbers with human perception.
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Figure 8: Pop-out experiments with different foreground patch sizes. The size of the whole
images is 256 x256. a). Texture A. b). Texture B. ¢)-e). A in B with |[Ag| = 32x 32,64 x 64,
and 96 x 96 pixels respectively. f)-g). B in A with |Ag| = 32 x 32,64 x 64, and 96 x 96

pixels respectively.
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Figure 9: Estimated KL-divergence MX]';) for the image pair shown in figure 8 plotted
against the hole size m?. a). The dashed curves is M](;Z): texture A in texture B, and the
solid curves is MXZ,): B in A. b). The average KL-divergence per pixel -3 M gz) (dashed)

and L MUY (solid).
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8 Discussion — remaining issues

This paper and two of our previous papers[27, 26] study texture phenomena from a math-
ematical perspective. The proposed paradigm (see figure 5) is quite powerful judged from
the recent successes of texture synthesis experiments by ourselves[27, 26] and others[10,
4, 21]. In the following, we pose two major questions and challenges which may lead to
further development of texture research.

Question 1. What if texture perception is not bottom-up computation?

The texture theory (both definition and model) is self-consistent and mathematically
sound. This theory is built on the philosophy expressed implicitly in the fundamental
question asked by Julesz[12]:

what features and statistics are characteristic of a texture pattern, so that
texture pairs that share the same features and statistics cannot be told apart

by pre-attentive human visual perception?

Two important assumptions are implied in Julesz’s question. One is that textures are
“subjective” notion defined by a particular visual system, such as pre-attentive vision. The
other assumption is that this notion is determined by computing a set of feature statistics.
Thus by definition, statistics are extracted deterministically in a bottom-up process. In
other words, these statistics are considered as attributes of the observed texture images.
This notion is also adopted in recent work on extracting textons[14]. However, if these
assumptions are not exactly right, then we may have to investigate texture models of other
forms.

Question 2. What are the other factors in texture perception?

Textures should also be studied for attentive vision in a broad context of visual per-
ception, and many other factors may influence our perception of textures. As in color
perception, one needs to study texture categorization and mental dimensions in human
texture perception. We notice that some interesting non-metric scaling techniques such
as multi-dimensional scaling[23] and trajectory mapping[20] have been used in some ex-
ploratory studies.

We leave these questions for future investigation.
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Footnotes:

1. Throughout the paper, our discussion is focused on homogeneous texture patterns
on a 2D plane, and we do not discuss texture deformation on 3D surface.

2. We shall discuss phase transition in a later section.

3. We hope that the notation h(I) = h will not confuse the reader. The h on the left
is a function of I for extracting statistics, while the h on the right is a specific value of the
statistics.

4. In the iid case, q(Iry;h) is both the marginal distribution and the conditional
distribution of ¢(I; k), while in random fields, we only consider the conditional distribution.

5. We assume A — Z? in the sense of van Hove, i.e., the ratio between the boundary

and the size of A goes to 0.
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Figure captions:

Figl: The partition of image space into equivalence classes, where each class corre-
sponds to a type h on the probability simplex.

Fig2: The lattices system: Ag is the local patch, and 0Aq is the MRF boundary of Aq.
Both are inside a fixed lattice A1, and the image lattice A goes to Z2.

Fig3: For each row, the left image is observed as the training image, the middle image
is a typical sample from the Julesz ensemble, and the right image is a typical sample from
the corresponding FRAME model.

Fig4: For each row, the left image is observed as the training image, the middle image
is a typical sample from the Julesz ensemble, and the right image is a typical sample from
the corresponding FRAME model.

Figh: A global picture for theories of stochastic modeling.

Fig6: Convex conjugate between p(8) and s(h). a) The tangent p'(8,) = ho and all
planes are below p(8;). b) The tangent s'(hg) = B, and all planes are above s(hy).

Fig7: a). If p(B) is not differentiable at B = 3, a phase transition occurs, and there
exists a convex set of expected statistics h, as shown by the interval [h;,hy]. b). The
entropy function s(h) has a constant tangent B3, over a set of h.

Fig8: Pop-out experiments with different foreground patch sizes. The size of the whole
images is 256 x256. a). Texture A. b). Texture B. c)-e). A in B with |Ag| = 32x 32,64 x64,
and 96 x 96 pixels respectively. f)-g). B in A with |Ag| = 32 x 32,64 x 64, and 96 x 96
pixels respectively.

Fig9: Estimated KL-divergence MgmB) for the image pair shown in figure 8 plotted
against the hole size m?. a). The dashed curves is M gz): texture A in texture B, and the
solid curves is MXZ,): B in A. b). The average KL-divergence per pixel - M gz) (dashed)
and M3 (solid).
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