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Abstract. Textons refer to fundamental micro-structures in natural images (and videos) and are considered as
the atoms of pre-attentive human visual perception (Julesz, 1981). Unfortunately, the word “texton” remains a
vague concept in the literature for lack of a good mathematical model. In this article, we first present a three-level
generative image model for learning textons from texture images. In this model, an image is a superposition of
a number of image bases selected from an over-complete dictionary including various Gabor and Laplacian of
Gaussian functions at various locations, scales, and orientations. These image bases are, in turn, generated by a
smaller number of texton elements, selected from a dictionary of textons. By analogy to the waveform-phoneme-
word hierarchy in speech, the pixel-base-texton hierarchy presents an increasingly abstract visual description and
leads to dimension reduction and variable decoupling. By fitting the generative model to observed images, we can
learn the texton dictionary as parameters of the generative model. Then the paper proceeds to study the geometric,
dynamic, and photometric structures of the texton representation by further extending the generative model to
account for motion and illumination variations. (1) For the geometric structures, a texton consists of a number of
image bases with deformable spatial configurations. The geometric structures are learned from static texture images.
(2) For the dynamic structures, the motion of a texton is characterized by a Markov chain model in time which
sometimes can switch geometric configurations during the movement. We call the moving textons as “motons”. The
dynamic models are learned using the trajectories of the textons inferred from video sequence. (3) For photometric
structures, a texton represents the set of images of a 3D surface element under varying illuminations and is called
a “lighton” in this paper. We adopt an illumination-cone representation where a lighton is a texton triplet. For a
given light source, a lighton image is generated as a linear sum of the three texton bases. We present a sequence
of experiments for learning the geometric, dynamic, and photometric structures from images and videos, and we
also present some comparison studies with K-mean clustering, sparse coding, independent component analysis, and
transformed component analysis. We shall discuss how general textons can be learned from generic natural images.
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1. Introduction

The purpose of vision, biologic and machine, is to com-
pute a hierarchy of increasingly abstract interpretations
of the observed images (or image sequences). There-

fore it is of fundamental importance to know what
are the descriptions used at each level of interpreta-
tion. By analogy to physics concepts, we wonder what
are the visual “electrons”, visual “atoms”, and visual
“molecules” for visual perception. The pursuit of basic
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images and perceptual elements is not just for intellec-
tual curiosity but has important implications in a series
of practical problems. For example,

1. Dimension reduction. Decomposing an image into
its constituent components reduces information re-
dundancy and leads to lower dimensional represen-
tations. As we will show in later examples, an image
of 256 × 256 pixels can be represented by about 500
image bases, which are, in turn, reduced to 50–80
texton elements. The dimension of representation
is thus reduced by about 100 folds. Further reduc-
tions are achieved in motion sequences and lighting
models.

2. Variable decoupling. The decomposed image ele-
ments become more and more independent of each
other and thus are spatially nearly decoupled. This
facilitates image modeling which is necessary for
visual tasks such as segmentation and recognition.

3. Biologic modeling. Micro-structures in natural im-
ages provide ecological clues for understanding the
functions of neurons in early stages of biologic vi-
sion systems (Barlow, 1961; Olshausen and Field,
1997).

In the literature, there are several threads of research
investigating fundamental image structures from differ-
ent perspectives, with many questions left unanswered.

Firstly, in neurophysiology, the cells in the early
visual pathway (retina, LGN, and V1) of primates
are found to compute some basic image structures
at various scales and orientations (Hubel and Wiesel,
1962). This motivated some well-celebrated image
pyramid representations including Laplacian of Gaus-
sians (LoG), Gabor functions, and their variants
(Daugman, 1985; Simoncelli et al., 1992). However,
very little is known about how V1 cells are grouped into

Figure 1. Two typical examples of searching a target element among a number of background distractors. The search time for the left pair
is constant independent of the number of distractors, while it increases linearly with the number of distractors for the right pair. After Julesz
(1981).

larger structures in higher levels (say, V2 and V4). Sim-
ilarly, it is unclear what are the generic image represen-
tations beyond the image pyramids in image analysis.

Secondly, in psychophysics, Julesz (1981) and col-
leagues discovered that pre-attentive vision is sensitive
to some basic image features while ignoring other fea-
tures. His experiments measured the response time of
human subjects in detecting a target element among a
number of distractors in the background. For example,
Fig. 1 shows two pairs of elements in comparison. The
response time for the left pair is instantaneous (100–
200 ms) and independent of the number of distractors.
In contrast, for the right pair the response time increases
linearly with the number of distractors. This discovery
was very important in psychophysics and motivated
Julesz to conjecture a pre-attentive stage that detects
some atomic structures, such as elongated blobs, bars,
crosses, and terminators (Julesz, 1981), which he called
“textons” for the first time.

The early texton studies were limited by their ex-
clusive focus on artificial texture patterns instead of
natural images. It was shown that the perceptual tex-
tons could be adapted through training (Karni and Sagi,
1991). Thus the dictionary of textons must be associ-
ated with or learned from the ensemble of natural im-
ages. Despite the significance of Julesz’s experiments,
there have been no rigorous mathematical definitions
for textons. Later in this paper, we argue that textons
must be defined in the context of a generative model of
images.

Thirdly, in harmonic analysis, one treats images
as 2D functions, then it can be shown that some
classes of functionals (such as Sobolev, Hölder, Besov
spaces) can be decomposed into bases, for example,
Fourier, wavelets (Coifman and Wickerhauser, 1992),
and more recently wedgelets and ridgelets (Donoho
et al., 1998). It was proven that the Fourier, wavelets,
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and ridgelets bases are independent components for
various functional spaces (see Donoho et al. (1998) and
refs therein). But the natural image ensemble is known
to be very different from those classic mathematical
functional spaces.

The fourth perspective, and the most direct attack
to the problem, is the study of natural image statistics
and image component analysis. One important work
is done by Olshausen and Field (1997) who learned
some over-complete image bases from natural image
patches (12 × 12 pixels) with the idea of sparse cod-
ing. In contrast to the orthogonal and complete bases
in Fourier analysis or tight frame in wavelet trans-
forms, the learned bases are highly correlated, and a
given image is coded by a sparse population in the
over-complete dictionary. Added to the sparse coding
idea is independent component analysis (ICA) which
decomposes images as a linear superposition of some
image bases which minimizes some measure of depen-
dence between the coefficients of these bases (Bell and
Sejnowski, 1995). Other interesting work includes
micro-image (3 × 3 pixels) patches by Lee and Mum-
ford who show the 3 × 3 pixel patches form very low
dimensional and tight manifold in the 7-dimensional
sphere (Lee et al., 2000).

In this paper, we start with a three-level generative
image model in Fig. 2. In this model, an image I is
a superposition of a number of image bases selected
from an over-complete dictionary Ψ including various
Gabor and Laplacian of Gaussian bases at various loca-
tions, scales, and orientations. We represent the image
bases as attributed points, and denote them by a base
map B. The base map B is, in turn, generated by a
smaller number of texton elements, denoted by a tex-
ton map T. The texton elements are selected from a

Figure 2. A three-level generative model: an image I (pixels) is a
linear addition of some image bases selected from a base dictionary
Ψ, such as Gabors and Laplacian of Gaussians. The base map is
further generated by a smaller number of textons selected from a
texton dictionary Π. Each texton consists of a number of bases in
certain deformable configurations, for example, star, bird, cheetah
blob, snowflake, bean, etc.

dictionary of textons Π. In this generative model, the
base map B and texton map T are hidden (latent) vari-
ables and the dictionaries Ψ and Π are parameters that
should be learned through fitting the model to observed
images. By analogy to the waveform-phoneme-word
hierarchy in speech, the pixel-base-texton hierarchy
presents an increasingly abstract visual description.
This representation leads to enormous dimension re-
duction and variable decoupling. We conjecture that
for natural images the size of the two dictionaries Ψ
and Π should be in the order of O(10) and O(103)
respectively which are the number of phonemes and
words for most natural languages. Intuitively, textons
are meaningful objects viewed at distance (i.e. small
scale), such as stars, birds, cheetah blobs, snowflakes,
beans, etc. (see Fig. 2).

This generative model extends existing work in the
following aspects. Firstly, it is based on larger images
instead of small image patches and thus accounts for
the inter-relationship of the image components. Sec-
ondly, it no longer assumes independence of image
bases and accounts for some spatial dependence of
bases and larger image structures. Thirdly, it defines
textons formally associated with a generative model,
which is in contrast to some vague concepts in dis-
criminative models.

Then the paper extends the generative model to mo-
tion sequence and lighting variations and studies the
geometric, dynamic, and photometric structures of the
texton representation.

1. For geometric structures, a texton consists of a small
number of image bases with deformable spatial con-
figurations. The geometric structures are learned
from a static texture image with repeated elements.

2. For dynamic structures, the motion of a texton is
charactered by a Markov chain model which may
switch geometric configurations over time. We call
the moving textons as “motons”. The Markov chain
models are learned using the trajectories of the tex-
tons and their constituent image bases are inferred
from the video sequences.

3. For photometric structures, a texton represents a
three-dimensional surface element under varying il-
luminations and is called a “lighton”. A lighton is
a triplet of 2D textons (i.e. it consists of three 2D
textons). For a given light source, a lighton image
is generated as a linear sum of the three textons.

To summarize, if we view a video sequence of
256 × 256 pixels with 256 frames as a point in
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2563-space, then the texton dictionary that we define
above contains lower-dimensional manifolds living in
such space, and corresponds to fundamental structures
in images and videos. These manifolds are specified by
parameters for geometric transforms and deformations,
dynamics, and photometric variabilities.

Before we accept the three-level generative model,
we tried other competitive ideas for defining textons,
such as K-mean clustering (Leung and Malik, 1999)
and transformed component analysis (Frey and Jojic,
1999) on the feature and image patch space. We will
present the results of our early studies for comparison.

The paper is organized as follows. In Section 2, we
briefly review some previous work on learning over-
complete image bases and K-mean clustering with ex-
periments. In Section 3, we report two experiments
on transformed components analysis on the feature
space and image patch space respectively. Section 4
presents the generative model for learning textons from
static images. Section 5 presents the motons which are
learned from image sequences. Section 6 presents the
lightons which are 3D surface elements under vary-
ing illuminations. Section 7 discusses some remaining
issues and future work.

2. Background: Over-Complete Basis
and K-Mean Clustering

In this section, we review two previous studies for com-
puting image components to provide some background
and make comparisons. One is the sparse coding with
over-complete dictionary—a work based on generative
modeling (Olshausen and Field, 1997) and the other is
the K-mean clustering for textons—based on discrim-
inative modeling (Leung and Malik, 1999). The dif-
ferences and relationship between generative and dis-
criminative models are referred to Zhu (2003).

2.1. Sparse Coding with Over-Complete Basis

In image coding, one starts with a dictionary of base
functions

Ψ = {ψ�(u, v), � = 1, . . . , Lψ }.

For example, some commonly used bases are Gabor,
Laplacian-of-Gaussian (LoG), and other wavelet trans-
forms. Let A = (x, y, τ, σ ) denote the translation, ro-
tation and scaling transform of a base function, and

G A � A the orthogonal transform space (group), then
we obtain a set of image bases �,

� = {ψ�(u, v, A) : A = (x, y, τ, σ ) ∈ G A,

� = 1, . . . , Lψ }.

A simple generative image model, adopted in almost
all image coding schemes, assumes that an image I is a
linear superposition of some image bases selected from
� plus a Gaussian noise image n.

I =
nB∑
i

αi · ψi + n, ψi ∈ �, ∀ i, (1)

where nB is the number of bases and αi is the coefficient
of the i-th base ψi .

As � is over-complete,1 the variables (�i , αi , xi , yi ,

τi , σi ) indexing a base ψi are treated as latent (hid-
den) variables and must be inferred probabilistically, in
contrast to deterministic transforms such as the Fourier
transform. All the hidden variables are summarized in
a base map,

B = (nB, {bi = (�i , αi , xi , yi , τi , σi ) :

i = 1, 2, . . . , nB}).

If we view each base ψi as an attributed point with
attributes bi = (�i , αi , xi , yi , τi , σi ), then B is an at-
tributed spatial point process.

In the image coding literature, the bases are assumed
to be independently and identically distributed (iid),
and the locations, scales and orientations are assumed
to be uniformly distributed, so

p(B) = p(nB)
nB∏

i=1

p(bi ), (2)

p(bi ) = p(αi ) · unif(�i ) · unif(xi , yi ) · unif(τi )

· unif(σi ). (3)

It was well-known that responses of image filters
on natural images have high kurtosis histograms. This
means that most of the time the filters have nearly zero
response (i.e. they are silent) and they are activated with
large response occasionally. This leads to the sparse
coding idea by Olshausen and Field (1997).2 For ex-
ample, p(α) is chosen to be a Laplacian distribution, or
a mixture of two Gaussians with σ1 close to zero. For
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all i = 1, . . . , nB ,

p(αi ) ∼ exp{−|αi |/c} or p(αi ) =
2∑

j=1

ω j N (0, σ j ).

In fact, as long as p(α) has high kurtosis, the exact form
of p(α) is not so crucial. For example, one can choose
a mixture of two uniform distributions on a range
[−σ j , σ j ], j = 1, 2 respectively, with σ1 close to zero,

p(αi ) =
2∑

j=1

ω j unif[−σ j , σ j ].

A slight confusion in the literature is that the sparse
coding scheme assumes nB = |�|, i.e. all bases in
the set are “activated”. The prior p(α) is supposed to
suppress most of the activations to zero. It is simple
to prove that this is equivalent to assume p(α) to be
a uniform distribution and put a penalty to the model
complexity, for example p(nB) ∝ e−λnB . So the sparse
coding prior is essentially a model complexity term.

In the above image model, the base map B includes
the hidden variables and the dictionary Ψ are parame-
ters. For example, Olshausen and Field used Lψ = 144
base functions, each being a 12 × 12 matrix. Following
an EM-learning algorithm, they learned Ψ from a large
number of natural image patches. Figure 3 shows some
of the 144 base functions. Such bases capture some im-
age structures and are believed to bear resemblance to
the responses of simple cells in V1 of primates.

Figure 3. Some image bases learned with sparse coding by
Olshausen and Field (1997).

In their experiments, the training images are chopped
into 12 × 12 pixel patches, therefore they didn’t really
inferred the hidden variables for the transformation Ai .
Thus the learned bases are not aligned at centers and
are rather noisy.

2.2. K-Mean Clustering in Feature Space

There is also some effort of computing repeated
image elements by Leung and Malik (1999), who

adopted a discriminative method. Most recently
this method has been extended to textures with
lighting variations and texture surface rendering
(Liu et al., 2001; Dong and Chantler, 2002).

In discriminative method, the base functions are
treated as “filters”. By rotating and scaling these func-
tions, one obtains a set of filters {F1, F2, . . . , Fm},
which are convolved with an input image I at each
location (x, y) ∈ 	 on a lattice 	. We denote all the fil-
ter responses as a set of |	| points in a m-dimensional
feature space,

F = {F(x, y) = (F1 ∗ I(x, y), . . . , Fm ∗ I(x, y)) :

∀(x, y) ∈ 	}.

In comparison to the hidden variable B in the previous
generative model, F is deterministic transforms of the
image I.

If there are local structures occurring repeatedly in
image I, it is reasonable to believe that the vectors in
set F must form clusters. A K-mean clustering algo-
rithm is applied by Leung and Malik, and each cluster
center was said to correspond to a “texton” (Leung and
Malik, 1999). The cluster center can be visualized by
a pseudo-inverse which transfers a feature vector into
an image icon. More precisely, let Fc = ( fc1, . . . , fcm)
be a cluster center, then an image icon φc (say 15 ×
15 pixels) is computed by a least square fit.

φc = arg min
m∑

j=1

(Fj ∗ φc − fcj )
2,

(4)
c = 1, 2, . . . , C.

We implement this work with some minor improve-
ments and some results are shown in Fig. 4 for 49
clusters on four texture images. Clearly, the cluster
centers capture some essential image structures, such
as blobs for the cheetah skin pattern, bars for the
crack and brick pattern, and edge contrasts for the pine
cone.

We have two observations for the two methods pre-
sented above.

Firstly, the two methods have fundamental differ-
ences. In a generative model, an image I is “generated”
in an explicit equation by the addition of a number of
nB bases where nB is usually 100 times smaller than
the number of pixels |	|. This leads to tremendous di-
mension reduction for further image modeling. In con-
trast, in a discriminative model, I is “constrained” by a
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Figure 4. Upper row are four input texture images: cheetah skin, dry cracks, pine cone, and brick. The lower row displays C = 49 cluster
centers arranged in a 7 × 7 mosaic for each image. The images are re-scaled and normalized for display.

set of feature vectors. The feature description is often
100 times larger than the number of pixels! While
both methods may use the same dictionary Ψ, in
the generative model, the base map B is a ran-
dom variable subject to stochastic inference and
therefore the computation of B can be influenced
by other variables in a bottom-up/top-down fash-
ion, i.e. lateral inhibitations in a neuroscience term.
In the discriminative method, the responses of fil-
ters F are extracted from the image in a bottom-up
fashion.

Secondly, the results in Figs. 3 and 4 manifest one
obvious problem that the same image structure appears
many times which are shifted, rotated, or scaled ver-
sions of each other. For the sparse coding scheme, this
is caused by cutting natural images into small train-
ing patches centered at arbitrary locations. While in
the K-mean clustering method, it is caused by extract-
ing a feature vector at every pixel and there was no
interaction or “explaining away” mechanism in this
method.

Figure 5. The transformed component analysis allows translation, rotation, and scaling of local image features or patches.

3. Learning Transformed Components

To remove redundancy among the learned image el-
ements in previous section, one should explicitly
infer the orthogonal transformation A = (x, y, τ, σ )
as hidden (latent) variables and thus image com-
ponents are merged if they are equivalent up to
an orthogonal transform. This is a technique called
transformed component analysis (TCA) by Frey and
Jojic (1999).

Suppose we extract from image I a set of N features
or image patches, γ , each with an unknown transfor-
mation A ∈ G A.

� = {γ j (A j ) : A j = (x j , y j , τ j , σ j ),

j = 1, 2, . . . , N }.

We call � the transformed components of I. In the
following, we present two experiments, filter TCA and
patch TCA, as Fig. 5 illustrates.
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3.1. Transformed Components in Filter Space

In the first case, we compute a feature vector at each
pixel by a number of m filters as in the K-mean clus-
tering method above. Typically we use Laplacian of
Gaussian (LoG), Gabor sine (Gsin) and Gabor co-
sine (Gcos) at 7 scales and 8 orientations. Thus m =
7 + 7 × 8 + 7 × 8 = 119. These filters are arranged in
a cone as shown in Fig. 5(a) We subsample the image
lattice 	 by 4–8 folds, and initialize the N cones at the
subsampled lattice (N = |	|/16 or |	|/64).

Each feature γ j chooses only 2 scales of the filter
cone shown by the bold curves in Fig. 5(a). Thus a
transformed component γ (A) is an 2+2×8+2×8 =
34 dimensional feature vector. The hidden variables
(x j , y j , τ j ) correspond to shift and rotation of the fil-
ter cone, and σ j corresponds to the selection of scales
from the cone (jumping up and down the cone). The
transforms are illustrated by the arrows in Fig. 5.

The movement of the filter cones are guided by the
EM-algorithm to satisfy two constrains. (1) Each cone
moves so that these filter vectors form tighter clusters
by merging redundant clusters which are equivalent up
to orthogonal transforms. (2) Collectively the cones
should cover the entire image otherwise it yields a triv-
ial solution. We form a likelihood probability p(I | �)
by constraints from �.

The results of the computation include a set of trans-
formed components � and C cluster centers. These
cluster centers are again visualized by an image icon
through pseudo-inverse.

Figure 6 shows C = 3 center icons φ1, φ2, φ3 for
the cheetah and crack patterns. The image maps next

Figure 6. The learned basic elements φ1, φ2, φ3 for the two patterns are shown by the small image icons. To the right are label maps associated
with these icons.

to each icon are label maps where the black pixels are
classified to this cluster. Clearly, the three elements are
respectively: φ1—the center of the blobs (or cracks),
φ2—the rim of the blobs (or cracks), and φ3—the back-
ground. In the experiments, the translation of each filter
cone is confined to be within a local area (say 5×5 pix-
els), so that the image lattice is covered by the effective
areas of the cone.

3.2. Transformed Components in the Space
of Image Patches

In a second experiment, we replace the feature repre-
sentation by image windows of 11 × 11 = 121 pix-
els. These windows can be moved within a local area
and can be rotated and scaled as Fig. 5(b) illustrates.
Thus each transformed component γ (A) is a local im-
age patch. Like the TCA in feature space, these lo-
cal patches are transformed to form tight clusters in
the 121-space and the patches collectively cover the
observed image. The learned cluster centers φc, c =
1, . . . , C are the repeating micro image structures.

Figure 7 shows the C = 2 centers for the brick, chee-
tah, and pine cone patterns. The image maps next to
each center element is a set of windows which are trans-
formed versions of the elements. φ1 corresponds to the
blobs, bars, and contrasts for the three patterns respec-
tively. φ2 are for the backgrounds.

In summary, the results in Figs. 6 and 7 present a ma-
jor improvement from those in Figs. 3 and 4, due to the
inference of hidden variables for transforms. However,
there are two main problems.
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Figure 7. The learned image patches (cluster centers) φ1, φ2 for three texture patterns are shown by the small images. To the left are windows
of transformed versions of the image patches associated with these icons.

1. The transformed components {γ j , j = 1, . . . , N }
only pose some constraints on image I. An explicit
generative image model is missing. As a result, the
learned elements φ�, � = 1, . . . , C are contami-
nated by each other, due to overlapping between
adjacent image windows or filter cones (see Fig. 5).

2. There is a lack of variability in the learned im-
age elements. Taking the cheetah skin pattern as
an example, the blobs in the input image display
deformations, whereas the learned elements φ1 are
round-shaped. This is caused by the assumption
of Gaussian distribution for the clusters. In reality,
the clusters have higher order geometric structures
which should be explored effectively.

To resolve these problems, we extend the TCA model
to a three-level generative model. This extension allows
us to explore the geometric, dynamic, and photometric
structures of textons.

4. “Textons”—The Basic Geometric
Elements in Images

4.1. A Three-Level Generative Model

Our comparison study leads us to a three-level gen-
erative model as shown in Fig. 2. In this model, an
image I is generated by a base map B as in image cod-

ing, and the bases are selected from a dictionary Ψ
with some orthogonal transforms. The base map B is,
in turn, generated by a texton map T. The texton el-
ements are selected from a texton dictionary Π with
some orthogonal transforms. Each texton element in T
consists of a few bases with a deformable geometric
configuration. So we have,

T
Π−→ B

Ψ−→ I,

with

Ψ = {ψ�, � = 1, 2, . . . , Lψ }, and

Π = {π�; � = 1, 2, . . . , Lπ }.

By analogy to the waveform-phoneme-word hierarchy
in speech, the pixel-base-texton hierarchy presents an
increasingly abstract visual description. This represen-
tation leads to dimension reduction and the texton el-
ements account for spatial co-occurence of the image
bases.

To clarify terminology, a base function ψ ∈Ψ is like
a mother wavelet and an image base bi in the base map
B is an instance under certain transforms of a base func-
tion. Similarly, a “texton” in a texton dictionary π ∈Π
is a deformable template, while a “texton element” is
an instance in the texton map T which is a transformed
and deformed version of a texton in Π.
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For natural images, it is reasonable guess that the
number of base functions is about |Ψ| = O(10), and
the number of textons is in the order of |Π| = O(103)
for various combinations. Intuitively, textons are mean-
ingful objects viewed at distance (i.e. small scale), such
as stars, birds, cheetah blobs, snowflakes, beans, etc.
(see Fig. 2).

In this paper, we fix the base dictionary to three com-
mon base functions: Laplacian-of-Gaussian, Gabor co-
sine, Gabor sine, i.e.,

Ψ = {ψ1, ψ2, ψ3} = {LoG, Gcos, Gsin}.

These base functions are not enough for patterns like
hair or water, etc. But we fix them for simplicity and fo-
cus on the learning of texton dictionary Π. This paper
is also limited to learning textons for each individual
texture pattern instead of generic natural images, there-
fore |Π| is a small number for each texture.

Before we formulate the problem, we show an ex-
ample of simple star pattern to illustrate the genera-
tive texton model. In Fig. 8, we first show the three
base functions in Ψ (the first row) and their symbolic

Figure 8. Reconstructing a star pattern by two layers of bases. An individual star is decomposed into a LoG base in the upper layer for the
body of the star plus a few other bases (mostly Gcos, Gsin) in the lower layer for the angles.

Figure 9. A texton for the star pattern π consists of a nucleus base (LoG) and five electron bases (Gsin). We show the sketches and the images
for the texton and the six bases.

sketches. Then for an input image, a matching pur-
suit algorithm (Mallat, 1989) is adopted to compute
the base map B in a bottom-up fashion. This base map
will be modified later by stochastic inference. It is gen-
erally observed that the base map B can be divided
into two sub-layers. One sub-layer has relatively large
(“heavy”) coefficients αi and captures some larger im-
age structures. For the star pattern these are the LoG
bases shown in the first column. We show both the sym-
bolic sketch of these LoG bases (above) and the image
generated by these bases (below). The heavy bases are
usually surrounded by a number of “light” bases with
relatively small coefficients αi . We put these secondary
bases in another sub-layer (see the second column of
Fig. 8). When these image bases are superpositioned,
they generate a reconstructed image (see the third col-
umn in Fig. 8). The residues of reconstruction are as-
sumed to be Gaussian noise.

By an analogy to physics model, we call the heavy
bases the “nucleus bases” as they have heavy weights
like protons and neutrons, and the light bases the “elec-
tron bases”. Figure 9 displays an “atomic” model for
the star texton. It is a LoG base surrounded by 5 electron
bases.
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In the rest of this section, we show a statistical for-
mulation and algorithm for inferring the base map
B and the texton map T and learning the texton
dictionary Π.

4.2. Problem Formulation

The three-level generative model is governed by a joint
probability specified with parameters � = (Ψ,Π, κ).

p(I, B, T; �) = p(I | B; Ψ)p(B | T; Π)p(T; κ),

where Ψ and Π are dictionaries for two generating
processes, and p(T; κ) is a descriptive (Gibbs) model
for the spatial distribution of the textons as a stochastic
attributed point process (Guo et al., 2003).

We rewrite the base map as

B = (nB, {bi = (�i , αi , xi , yi , τi , σi ) :

i = 1, 2, . . . , nB}). (5)

Because we assume Gaussian distribution N (0, σ 2
o ) for

the reconstruction residues, we have

p(I | B; Ψ) ∝ exp

{
−

∑
(u,v) ∈ 	

(
I(u, v)

−
nB∑

i=1

αiψ�i
(u, v; xi , yi , τi , σi )

)2
/

2σ 2
o

}
. (6)

The nB bases in base map B are divided into nT + 1
groups (nT < nB).

{bi = (�i , αi , xi , yi , τi , σi ) : i = 1, 2, . . . , nB}
= �0 ∪ �1 ∪ · · · ∪ �nT .

Bases in �0 are “free electrons” which do not belong
to any texton, and are subject to the independent distri-
bution p(b j ) in Eq. (3). Bases in any other class form
a texton element Tj , and the texton map is

T = (nT , {Tj = (� j , α j , x j , y j , τ j , σ j , δ j ) :

j = 1, 2, . . . , nT }).

Each texton element Tj is specified by its type � j , pho-
tometric contrast α j , translation (x j , y j ), rotation τ j ,
scaling σ j and deformation vector δ j . A texton π ∈Π

consists of m image bases with a certain deformable
configuration

π = ((�1, α1, τ1, σ1), (�2, α2, δx2, δy2, δτ2, δσ2), . . . ,

(�m, αm, δxm, δym, δτm, δσm) ).

The (δx, δy, δτ, δσ ) are the relative positions, orienta-
tions and scales.

Therefore, we have

p(B | T; Π) = p(|�0|)
∏

b j ∈ �0

p(b j )
nT∏

c=1

p
(
�c | Tc; π�c

)
.

p(T; κ) is another distribution which accounts for
the number of textons nT and the spatial relationship
among them. It can be a Gibbs model for attributed
point process studied in Guo et al. (2001). For sim-
plicity, we assume the textons are independent at this
moment as a special Gibbs model.

By integrating out the hidden variables,3 we obtain
a likelihood probability for any observable image Iobs,

p(Iobs; �)=
∫

p(Iobs | B; Ψ)p(B | T; Π)p(T;κ) dB dT.

In p(I; �) above, the parameters � (dictionaries,
etc.) characterize the entire image ensemble, like the
vocabulary for English or Chinese languages. In con-
trast, the hidden variables B, T are associated with an
individual image I, and correspond to the parsing tree
in language.

Our goal is to learn the parameters � = (Ψ,Π, κ)
by maximum likelihood estimation, or equivalently
minimizing a Kullback-Leibler divergence between a
underlying probability of images f (I) and p(I; �).

�∗ = (Ψ,Π, κ)∗ = arg min K L( f (I)||p(I; �))

= arg max
∑

m

log p
(
Iobs

m ; �
) + ε. (7)

ε is an approximation error which diminishes as suffi-
cient data are available for training. In practice, ε may
decide the complexity of the models, and thus the num-
ber of base functions Lψ and textons Lπ . For clarity,
we use only one large Iobs for training, because multiple
images can be considered just patches of a larger im-
age. For motion and lighting models in later sections,
Iobs is extended to image sequence and image set with
illumination variations.
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4.3. Stochastic Algorithm—Data-Driven Markov
Chain Monte Carlo

Taking derivative of the log-likelihood with respect to
� and set it to zero,

∂ log p(Iobs; �)

∂�
= 0,

we have by standard techniques,

0 = 1

p(Iobs; �)

∂

∂�

∫
p(Iobs, B, T; �)dB dT (8)

= 1

p(Iobs; �)

∫
∂ log p(Iobs, B, T; �)

∂�

×p(Iobs, B, T; �)dB dT (9)

=
∫

∂ log p(Iobs, B, T; �)

∂�

p(Iobs, B, T; �)

p(Iobs; �)
dB dT

(10)

=
∫ [

∂ log p(Iobs | B; Ψ)

∂Ψ
+ ∂ log p(B | T; Π)

∂Π

+ ∂ log p(T; κ)

∂κ

]
p(B, T | Iobs; �) dB dT. (11)

Solving Eq. (11) needs stochastic algorithms which
go a long way beyond the conventional EM-type algo-
rithms (Dempster et al., 1977). Our objective is to find
globally optimal solutions for Ψ∗,Π∗ while conven-
tional EM is prone to local minima and furthermore the
hidden variables T and B have changing dimensions.
We propose to use the data driven Markov chain Monte
Carlo (DDMCMC) algorithm (Tu and Zhu, 2002).

The algorithm iterates two steps, like EM algorithm.
Step A: Design a Data-Driven Markov chain Monte

Carlo (DDMCMC) sampler to draw samples of the la-
tent variables from the posterior probability for a cur-
rent �,

(
Bsyn

k , Tsyn
k

) ∼ p(B, T | Iobs; �)

∝ p(Iobs | B; Ψ)p(B | T; Π)p(T; κ), k = 1, . . . , K .

The DDMCMC sampling process includes designing
two types of dynamics:

• Reversible jump dynamics for the death/birth of
bases, the switching of base functions (i.e. types),
the grouping and un-grouping of bases in texton el-
ements, etc. The death and birth of bases realize a
stochastic version of the matching pursuit method by
Mallat (1989).

• Stochastic diffusions and Gibbs sampler for adjust-
ing the positions, scales, and orientations of bases
and texton elements.

The main idea of DDMCMC is to use data driven tech-
niques, such as clustering, feature detection, matching
pursuit, to compute heuristics expressed as importance
proposal probabilities q() in the reversible jumps. The
convergence rate of MCMC critically depends on the
importance proposal probabilities q(). Intuitively, the
closer q() approximates p(), the faster the convergence.
The DDMCMC methods have been applied to image,
range, and motion segmentation with very satisfactory
speed in our experiments (Tu and Zhu, 2002).

Step B: Calculate the integration in Eq. (11) (i.e. ex-
pectation with respect to p(B, T | Iobs; �)) by impor-
tance sampling, therefore, the parameters in Ψ,Π are
learned by gradient descent. Let t be the time step and
the λ(t) is the step size at time t .

Ψ(t + 1) = (1 − λ(t))Ψ(t)

+ λ(t)
K∑

k=1

∂ log p
(
Iobs | Bsyn

k ; Ψ
)

∂Ψ

Π(t + 1) = (1 − λ(t))Π(t)

+ λ(t)
K∑

k=1

∂ log p
(
Bsyn

k | Tsyn
k ; Π

)
∂Π

Thus we could select K = 1 if the step size λ(t) is small
enough. This algorithm converges to global maximum
as the following theorem states (Gu and Kong, 1998).

Theorem 1 (Gu and Kong, 1998). Under regularity
conditions on the step size λ(t), i.e.

∞∑
t=1

λ(t) = ∞,

∞∑
t=1

λ(t)2 < ∞,

and other mild conditions on the MCMC transition
kernel and on a deterministic dynamics in the form
of an ordinary differential equation derived from the
algorithm, we have (�(t), ψ(t)) → (�∗, ψ∗) almost
surely, where (�∗, ψ∗) is the globally optimal solution.

Because Ψ and Π have both discrete and continuous
variables, so the computational process consists of two
types of dynamics.

• Reversible jump dynamics for creating/deleting base
functions, adding and removing, splitting or merging
bases in a texton π ∈Π.
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• Stochastic diffusion dynamics and Gibbs sampler for
adjusting the parameters in the base functions and the
texton templates.

4.4. Experiments on Learning Textons from Static
Texture Images

Now we present some experimental results. Given an
input texture image, we fix Ψ to be the three bases,
and run a matching pursuit algorithm for initialization.
We first extract the bases with large coefficients and
treat them as candidates for the nuclei of the texton
elements. Then we add bases with small coefficients
and group them to the nearest nucleus base. This step
is a bottom-up. Then we run the stochastic learning
algorithm which infers the base map and texton map,
and find common spatial structures to form the texton
dictionary Π.

The first example is the star pattern. The base map
from the bottom-up computation is shown in Fig. 8.

Figure 10. The base map (b) of the star pattern becomes regular after the stochastic inference and learning, comparing to the base map in
Fig. 9.

Figure 11. (a) An input image of birds, (b) the base map computed by matching pursuit in a bottom-up step, (c) the reconstructed image from
the base map in (b), (d) the base map after the learning process, (e) the reconstructed image with the base map in (d).

Due to over-complete base representation and the noise
in the image, a star can be reconstructed in various
ways, and these are reflected in the variation of bases
for each texton element. After learning, the inferred
base map is shown in Fig. 10, and each star has nearly
the same structure. The star texton is shown in Fig. 9.
It consists of a LoG base as its “nucleus” and five Gsin
bases as its “electrons”. Our choice of base dictionary
Ψ and additive model has obvious artifacts in recon-
struction around sharp edges which are caused by
occlusion.

In the second example, we show a bird image in
Fig. 11. Again the bottom-up base map in Fig. 11(b) is
improved in Fig. 11(d) after the learning process. Note
that the reconstructed images in Fig. 11(c) and (e) are
more or less the same. This bird image has three textons
for various gestures of the birds. We show π1, π2, π3

and their instances in Fig. 12.
Our third example is a cheetah skin pattern.

Figure 13(b) displays the bottom-up base map, where
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Figure 12. Three textons π1, π2, π3 are learned for the bird image. Each texton has 4 bases. We show the sketches and images for these textons
and bases. The last row shows five instances for each of the three textons.

Figure 13. (a) An input image of cheetah skin, (b) the base map computed by matching pursuit in a bottom-up step, (c) the reconstructed image
from the base map in (b), (d) the base map after the learning process, (e) the reconstructed image with the base map in (d).

Figure 14. Two textons are learned for the cheetah skin pattern. π1 has two LoG bases for the elongated blobs and π2 has one LoG base for
the round blobs. We show 9 instances for π1 and 4 instances for π2.

the white circles are LoG bases that capture the strong
lighting (brightness) as the image is not uniformly
lighted. The inferred bases in Fig. 13(d) are generated
from the texton map with the white LoG base removed.
Two textons are computed and shown in Fig. 14. π1 has
two LoG bases for the elongated blobs and π2 has one
LoG base for the round blobs. We show 9 instances for
π1 and 4 instances for π2.

The fourth example is a heart pattern in Fig. 15. A
heart texton consists of five bases: a LoG base for the

“nucleus” which is added by two LoG plus two Gsin
as “electrons”. The fifth example is an image with four
letters shown in Fig. 16. Only Gsin bases are selected as
“strokes” for the letters. Then four textons are learned
and shown in Fig. 16. These textons correspond to the
four letters.

The last example is a leaf pattern as shown in Fig. 17.
The learned texton has four bases. Ten texton element
instances are shown in Fig. 17(d), which illustrates the
variations of the leaves.
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Figure 15. (a) An input image of heart pattern, (b) the base map after the learning process, (c) the reconstructed image with the base map in
(b) A heart texton π consists of five bases.

Figure 16. (a) An input image with four letters, (b) the base map after the learning process, (c) the reconstructed image with the base map in
(b) Four textons πi , i = 1, 2, 3, 4 are computed with Gcos as the strokes.

5. “Motons”—Textons with Motion Dynamics

In this section, we augment the geometric structures of
textons by studying their dynamic properties in video
sequences. We call the moving textons as “motons”.
Examples include a falling snow flake, or a flying bird
viewed in distance, etc. The modeling of motons origi-
nates from modeling textured motion patterns by Wang
and Zhu (2002, 2004). Generative texton models with
motion dynamics is also used by Li, Wang and Shum
in animating characters (Li et al., 2002).

We start with a generative model for image sequence.
Let I[0,L] denote an image sequence with L + 1

frames, and I(t) a frame at time t ∈ {0, 1, 2, . . . ,L}.
Each frame I(t) is generated by the three-level genera-
tive model in the previous section. Therefore a base
map B(t) is computed from I(t), and the bases in
B(t) are further grouped into a number of texton el-
ements in a texton map T(t). Once these texton ele-
ments and bases are tracked over the image frames,
we obtain a number of “moton elements”. Figure 18
shows a moton element. We call this a “cable” model
where the trajectory of the nucleus base forms the
core and the electronic base trajectories form coil
of the cable through rotation. In practice, the core
of a moton is relatively consistent through its life
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Figure 17. (a) An input image of leaves, (b) the base map after the learning process, (c) the reconstructed image with the base map in (b), (d)
The sketch and image of the learned texton with four bases, and 10 texton element instances.

Figure 18. (a) A linear “cable” Markov chain model for motons.

span, and the number of coil bases may change over
time.

Each moton element has a life-span [tb, td ] ⊂ [0,L]
and we call tb, td the birth and death frames of a tex-
ton respectively. Thus a moton element (“cable”) is
denoted by

C = C[tb, td ] = (T (tb), T (tb + 1), . . . , T (td )), (12)

where T (t) is a 2D texton element at time t . Sometimes,
the moton element may change its texton type over
time, for example in the bird flying example that we
will present shortly.

The moton map M for I[0,L] consists of a number
of nM moton elements (cables),

M = (
nM ,

{
Ci

[
tb
i , td

i

]
, i = 1, 2, . . . , nM

})
.

Figures 20(b) and 23(b) show two examples of M for
the snowing and bird flying sequences, where each tra-
jectory is a moton element. These moton elements are
instances of a moton dictionary,

Ξ = {
ξ� = (

η�
b, η

�
d , η

�
mc

)
, � = 1, 2, . . . , L�

}
.

In the above notation, η�
b, η

�
d are respectively the param-

eters specifying the birth, death probability of a certain
moton � and η�

mc is the parameter for the probability
specifying the motion dynamics.

In summary, we have the following generative model
for a video,

M
Ξ−→ T[0,L]

Π−→ B[0,L]
ψ
−→ I[0,L].

Thus we have a likelihood model for the video
I[0,L],

p(Iobs[0,L]; �)

=
∫ [ L∏

t=0

p(Iobs(t) | B(t); Ψ)p(B(t) | T(t); Π)

]
× p(T[0,L] | M)p(M; Ξ) dM dB dT

For simplicity, we assume M generates T[0,L] as a de-
terministic function. In practice, it is more complicated
due to base occlusions.
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For clarity, we assume only one moton L� = 1 for
a texture motion sequence, and the moton elements are
independent of each other. Therefore the probability
for the moton map is

p(M; Ξ)

= p(nM )
nM∏
i=1

pB
(
Ti

(
tb
i

)
; ηb

)
pD

(
Ti

(
td
i

)
, td

i − tb
i ; ηd

)
× pmc

(
Ti

(
tb
i + 1

) | Ti
(
tb
i

))
×

td
i∏

t=tb
i +2

pmc(Ti (t) | Ti (t − 1), Ti (t − 2); ηmc).

The initial and ending probabilities of the moton ele-
ment are represented by the birth (source) and death
(sink) probability maps pB(), pD(). Such probabilities
account for where the moton elements are likely to
come and leave in the image. For example, Fig. 20(c)
and (d) are the birth and death maps for the snowing
sequence. Dark intensity means high probability. Thus
the algorithm automatically learns that the snowflakes
enter the picture from the upper-right corner and leave
at the bottom-left corner. Similarly, Fig. 23(c) and (d)
show the sources and sinks for the birds. It is quite
sparse due to the small number of birds in the observed
sequence.

The conditional probabilities pmc(Ti, j | Ti, j−1,

Ti, j−2; ηmc) determine the motion dynamics (Markov
chain model) of each type of motons. We use the
conventional second order auto-regression (AR)

Figure 19. An example of snowing sequence. A texton π is learned from a snowing sequence and a variety of snowflake instances at various
scales and orientations are randomly sampled from the template π .

model to fit the motion trajectories, which works
fine for the snow and flying birds. For the flying bird
cable, we have three textons as we discussed in the
last section, and the birds switch among these textons
over time. Thus we adopt a Markov chain model to
switch its status using a 3 × 3 transition probability
matrix. This simple model is shown in Fig. 22. The
AR model parameters and the Markov chain transition
probabilities are included in ηmc.

We demonstrate two examples and more examples
are reported in Wang and Zhu (2004). The first example
is a snowing sequence in Fig. 19. A texton π is learned
and a variety of snowflake instances at various scales
and orientations are randomly sampled from the tem-
plate π . This demonstrates the variability of the snow
texton. The moton elements, their birth/death maps are
shown in Fig. 20.

Figure 21 shows a portion of the bird flying sequence
and its symbolic sketch. We further show the atomic
model for each bird instance in Fig. 21(d). Figure 22
shows the transition of bird texton states: wings up,
gliding, and wings down. Figure 23 displays the mo-
tons, the sources, and the sinks.

6. “Lightons”—Textons Under Varying
Lighting Conditions

The previous two sections discussed the geometric and
dynamic properties of textons (motons). In the gener-
ative models, the photometric property of textons is
represented by a coefficient α for image bases which
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Figure 20. The computed trajectories of snow flakes and the source and sink maps.

Figure 21. An example of bird sequence and the symbolic sketch and atomic models for the bird instances.

Figure 22. The Markov chain model for flying birds which switch
among the three texton states.

Figure 23. The computed trajectories of flying birds and the source and sink maps.

represents the intensity contrast. This is essentially a
two-dimensional representation and is over-simplified
for surfaces with 3D structures. For example, Koen-
derink et al. studied 3D pitted surfaces empiri-
cally. These surfaces have micro-image structures that
change appearance with varying lighting conditions
(Koenderink et al., 1999). In this section, we slightly
extend the generative model to a higher dimension rep-
resentation and account for illumination variations.

Consider a rough 3D surface with unit surface nor-
mal �n(x, y) = (n1, n2, n3)(x, y) and surface albedo
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ρ(x, y), and suppose the surface is illuminated by a
point light source which is at relatively far distance
and comes from direction �S = (s1, s2, s3), then under
Lambertian reflectance model, one arrives at a classic
image model,

I(x, y) = ρ(x, y) < �n(x, y), �S > = s1b1(x, y)

+ s2b2(x, y) + s3b3(x, y),

with bi (x, y) = ρ(x, y)ni (x, y), ∀ i, x, y. Rewrite im-
ages I and bi , i = 1, 2, 3 as long vectors in the 	|-
space, we have a simple additive model,

I = s1b1 + s2b2 + s3b3. (13)

It was known that all images of the surface (from a
fixed view point) under varying illuminations span a 3-
dimensional space (or illumination cone) defined by the
three images (axes of the cone) b1, b2, b3 (Belhumeur
and Kriegman, 1998). Therefore the three axis images
b1, b2, b3 characterize all the images of a 3D surface
under the assumptions made above.

Figure 24. A set of input images for small spheres under varying illuminations. We use 20 images with lighting directions sampled evenly
over the illumination hemisphere. Six of them are shown here.

Figure 25. Three image bases computed by SVD from a set of input images under varying illuminations.

Given a set of images of a 3D surface, one can solve
for the three axis images b1, b2, b3 by uncalibrated
photometric stereo algorithms (Jacobs, 1997; Shashua,
1992) using singular value decomposition (SVD). The
solution is up to a generalized Bas-relief (GBR) trans-
form (Shashua, 1992; Belhumeur et al., 1999).

We show two simple examples in this section to il-
lustrate the ideas. In Fig. 24 we show six images of
a 3D surface (many small spheres) under various illu-
minations. The computed three axis images b1, b2, b3

are shown in Fig. 25 by photometric stereo. Simi-
larly Fig. 26 shows six images of a 3D surface with
beans, and the computed three axis images are shown
in Fig. 27.

Following the additive image model (Eq. (1)), we
decompose the axis images as the sum of a number of
image bases

bi =
nBi∑
j=1

βi jψi j + ni , ψi j ∈ �, i = 1, 2, 3.

So we have three base maps, one for each axis image,

Bi = (
nBi ,

{
ψi j : j = 1, 2, . . . , nBi

})
, for i = 1, 2, 3.
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Figure 26. A set of input images for beans under varying illuminations. We use 20 images with lighting directions sampled evenly over the
illumination hemisphere. Six of them are shown here.

Figure 27. Three image bases computed by SVD from a set of input images under varying illuminations.

The bases in each base map are further grouped into
a number of textons and form three texton maps
(T1, T2, T3).

Because the bases ψi j , i = 1, 2, 3; j = 1, . . . , nBi

are rendered by 3D surface structures, like the beans
and spheres, the textons must be coupled across the
three texton maps. Therefore we define a new element
called “lighton”. A lighton, denoted by ω, is a triplet
of coupled 2D textons—one from each axis image, and
Ω is the set of lightons. Therefore

Ω = {ωk : k = 1, 2, . . . , Lω}, with

ωk = (πk1, πk2, πk3). (14)

Suppose we denote the lighton map by L, then we
have the following generative model of images,

L Ω−→ (T1, T2, T3)
Π−→ (B1, B2, B3)

Ψ−→ (b1, b2, b3)
(s1,s2,s3)−→ I. (15)

In summary, the lighton map L generates three coupled
texton maps (T1, T2, T3) using the lighton dictionary,

which in turn generates three base maps (B1, B2, B3)
using the texton dictionary. The base maps generate the
three axis images (b1, b2, b3) using the base dictionary.
Under a given lighting direction (s1, s2, s3), the axis
images create an image I.

The learning of the lightons follows the same formu-
lation and stochastic algorithm presented for learning
textons and motons. The key difference from previous
models is that the grouping of bases into textons and
orthogonal transforms must be done by coupling the
three axis images.

For clarity of presentation, we present some detailed
analysis in an appendix and explain why the texton
triplet (or lighton) corresponds to fundamental 3D sur-
face structures at various locations, orientations, and
scales. In the following, we show two examples of the
lightons for the sphere and bean images in Figs. 28 and
29 respectively. For the simple case, the algorithm cap-
tures the sphere and bean as repeated elements in the
20 images. Each lighton (sphere or bean) is shown by
the texton triplet (sketch) and three axis image patches
in the top. Then we sample 32 lighting directions in the
illumination sphere (8 angle for 4 directions), and we
have 32 instances of the lightons.
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Figure 28. The lighton for the spheres is a texton triplet (i.e. three
coupled textons). 32 instances are shown under various lighting di-
rections.

Figure 29. The lighton for the beans is a texton triplet (i.e. three
coupled textons). 32 instances are shown under various lighting di-
rections.

7. Discussion

In this paper, we present a series of generative mod-
els and experiments for learning the fundamental im-
age structures from textural images. The results are ex-
pressed in three dictionaries Π,Ξ,Ω for the textons,
motons, and lightons respectively which characterize
the geometric, dynamic and photometric properties of
the basic structures. These concepts are defined as pa-
rameters of the generative image models and thus can
be learned by model fitting.

In future research, we plan to expand the work
to learning the full texton/moton/lighton dictionaries
from generic natural images and videos. The following
problems are currently under investigation.

(1). The base functions Ψ in this paper are limited to
the LoG, Gcos, and Gsin functions, which must

be extended to better account for images, such as,
water, hair, shading (Haddon and Forsyth, 1998).
Some bases must also be global, and form nearly
periodic patterns, for example, the patterns dis-
cussed in Liu and Collins (2000).

(2). The current model works on elements which are
well separable. When severe occlusions present
among elements, then it becomes more difficult to
group the bases into textons. In such case, textons
simply do not exist in free-form. By analogy to
physics, the atoms (textons) exist in the form of
large structure molecules and polymers by sharing
some electrons with each other. This must involve
spatial processes for the base map which is called
the Gestalt fields (Guo et al., 2003).

We show one of most recent results for learning tex-
tons from natural images (Guo et al., 2001) where the
connectivity of textons are included in the model. Fig-
ure 30(a) is an input natural image. We divide the image
lattice into two parts. One has sharp geometric contrast
and is said to be “sketchable”. The other part (rest of
the lattice) is stochastic texture with no distinguish-
able structures and is said to be “non-sketchable”. The
graph structure is computed for the sketchable part and
is shown in Fig. 30(b). We call it the primal sketch
of the image. Each vertex in this graph is associated
with an image primitive in the image dictionary. We
show a subset of the dictionary in Fig. 30(c) where the
primitives are sorted according to their degrees of con-
nectivities: blobs, endpoints, bars, t-junctions and cross
junctions etc. With these primitives we can reconstruct
the sketchable part of the image by generative models.
Then the non-sketchable parts are modeled by texture
models. More details are referred to Guo et al. (2001).
This example shows that we can infer textons in a global
context from natural images.

(3). In mathematical terms, the textons/motons/
lightons are lower dimensional manifolds embed-
ded in extremely high dimensional image (video)
spaces. These manifolds are controlled by the pa-
rameters in the three dictionaries Π,Ξ,Ω. In our
current study, the photometric structures are stud-
ied separately from the geometric and dynamic
properties. But in the real world scene, the three
aspects must be studied jointly, for example, the
flashing light reflected from a swimming pool, etc.

We are studying these problems in ongoing projects.
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Figure 30. Learning 2D textons from natural images by primal sketch. After Guo et al. (2003).

Appendix: Deriving Lightons from 3D
Surface Elements

In this appendix, we briefly show physical meaning of
the lightons and the relationship between the lighton
representation (i.e. texton triplet) and the three dimen-
sional surface elements.

Suppose a 3D textured surface consists of a number
of nL 3D elements, such as the spheres and beans in
Figs. 24 and 26. Many other examples are shown in
Koenderink et al. (1999). The visible surface of the
3D element at unit scale is represented by a height
function ho(u, v) at a 2D domain D0, and it has surface
albedo ρo(u, v). So we have a basic representation of
the element by

(ρo(u, v), ho(u, v)), ∀(u, v) ∈ Do.

It is well known that the height ho(u, v) can also be
represented by the unit surface normal maps

�no(u, v) = (no1(u, v), no2(u, v), no3(u, v))

= (∂ho/∂u, ∂ho/∂v, −1)√
1 + (∂ho/∂u)2 + (∂ho/∂v)2

.

Furthermore, we can present the element by a triplet of
images

(bo1, bo2, bo3)(u, v) = ρo(u, v) · (no1, no2, no3)(u, v).

This is the physical model of the lightons �.
Now suppose the 3D texture surface is generated

by embedding the 3D elements in a 2D flat plane β

at various locations, scales (sizes), and orientations. It
is straight-forward to show that the three axis images
(that span the illumination cone) can be decomposed
into the lightons with orthogonal transforms.

Each surface element L j , j = 1, 2, . . . , nL is a
translated, rotated and scaled version and has domain
D j at the texture plane. We denote the translation by
(x j , y j ), and the rotation (θ j ) and scaling (σ j ) by a 2×2
matrix

A j = 1

σ j

(
cos(θ j ), sin(θ j )

− sin(θ j ), cos(θ j )

)
.

We assume the plane β has constant height µ and
constant albedo ν, thus the 3D texture surface has
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height

h(x, y) =




σ j ho(A j ((x − x j ), (y − y j ))′),
if (x, y) ∈ D j , j = 1, 2, . . . , nL .

µ, else.

with albedo map

ρ(x, y) =




ρo(A j ((x − x j ), (y − y j ))′)
if (x, y) ∈ D j , j = 1, 2, . . . , nL .

ν, else.

The three axis images are

(b1, b2, b3)(x, y)

= ρ(x, y)
(∂h(x, y)/∂x, ∂h(x, y)/∂y, −1)√

1 + (∂h/∂x)2 + (∂h/∂y)2
.

Then it is straight-forward to show that at each domain


b1

b2

b3




(x,y)

=




cos(θ j ), − sin(θ j ), 0

sin(θ j ), cos(θ j ), 0

0 0 1




×




bo1

bo2

bo3




((x−x j ,y−y j )A′
j )

for (x, y) ∈ D j .

This equation shows that the bases and textons in
b1, b2, b3 are coupled, and it is used in clustering the
lightons.

This model will have problem when the 3D elements
occlude each other.
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Notes

1. The number of bases in � is often 100 times larger than the
number of pixels in an image.

2. Note that the filter responses are convolutions of a filter with image
in a deterministic way, and are different from the coefficients of
the bases.

3. Some variables in B, T are discrete, but we write the integration
for notation clarity.
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