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AbstractÐThis article presents a mathematical definition of textureÐthe Julesz ensemble 
�h�, which is the set of all images (defined

on Z2) that share identical statistics h. Then texture modeling is posed as an inverse problem: Given a set of images sampled from an

unknown Julesz ensemble 
�h��, we search for the statistics h� which define the ensemble. A Julesz ensemble 
�h� has an

associated probability distribution q�I; h�, which is uniform over the images in the ensemble and has zero probability outside. In a

companion paper [33], q�I; h� is shown to be the limit distribution of the FRAME (Filter, Random Field, And Minimax Entropy) model

[36], as the image lattice �! Z2. This conclusion establishes the intrinsic link between the scientific definition of texture on Z2 and the

mathematical models of texture on finite lattices. It brings two advantages to computer vision: 1) The engineering practice of

synthesizing texture images by matching statistics has been put on a mathematical foundation. 2) We are released from the burden of

learning the expensive FRAME model in feature pursuit, model selection and texture synthesis. In this paper, an efficient Markov chain

Monte Carlo algorithm is proposed for sampling Julesz ensembles. The algorithm generates random texture images by moving along

the directions of filter coefficients and, thus, extends the traditional single site Gibbs sampler. We also compare four popular statistical

measures in the literature, namely, moments, rectified functions, marginal histograms, and joint histograms of linear filter responses in

terms of their descriptive abilities. Our experiments suggest that a small number of bins in marginal histograms are sufficient for

capturing a variety of texture patterns. We illustrate our theory and algorithm by successfully synthesizing a number of natural textures.

Index TermsÐGibbs ensemble, Julesz ensemble, texture modeling, texture synthesis, Markov chain Monte Carlo.

æ

1 INTRODUCTION AND MOTIVATIONS

IN his seminal paper of 1962 [19], Julesz initiated research
on texture by asking the following fundamental question:

ªWhat features and statistics are characteristic of a texture
pattern, so that texture pairs that share the same features
and statistics cannot be told apart by preattentive human
visual perception?º1

Julesz's question has been the scientific theme in texture
modeling and perception in the last three decades. His
question raised two major challenges. The first is in
psychology and neurobiology: What features and statistics
are the basic elements in human texture perception? The
second lies in mathematics and statistics: Given a set of
consistent statistics, how do we generate random texture
images with identical statistics? In mathematical language,
we should be able to explore the ensemble of texture images that

have exactly the same statistics. The first question cannot be
answered without solving the second one. As Julesz
conjectured [21], the ideal theory of texture should be similar
to the theory of trichromacy, which states that any visible
color is a linear combination of three basic colors: red, green,
and blue. In texture theory, this corresponds to the search for
1) the basic texture statistics and 2) a method for mixing the
exact amount of statistics in a given recipe.

The search for features and statistics has gone a long way
beyond Julesz 2-gon statistics conjecture. Examples include
co-occurrence matrices, run-length statistics [32], sizes and
orientations of various textons [31], cliques in Markov
random fields [8], as well as dozens of other measures. All
these features have rather limited expressive power. A
quantum jump occurred in the 1980s when Gabor filters
[11], filter pyramids, and wavelet transforms [10] were
introduced to image representation. Another advance
occurred in the 1990s when simple statistics, e.g., first and
second order moments, were replaced by histograms (either
marginal or joint) [18], [35], [9], which contain all the higher
order moments.

Research on mathematical methods for rendering texture
pairs with identical statistics has also been extensive in the
literature. The earliest work was task specific. For example,
the ª4-disk methodº was designed for rendering random
texture pairs sharing 2-gon statistics [5]. In computer vision,
manysystematic methods havebeendeveloped.For example:

1. Gagalowicz and Ma [12] used a steepest descent
minimization of the sum of squared errors of
intensity histograms and two-pixel auto-correlation
matrices.
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1. Preattentive vision is referred to some psychophysics
phenomena that early stage visual processing seems to be
accomplished simultaneously (for the entire image indepen-
dent of the number of stimuli) and automatically (without
attention being focused on any one part of the image). See
[30] for a discussion.
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2. Heeger and Bergen [18] used pyramid collapsing to
match marginal histograms of filter responses.

3. Anderson and Langer [2] used steepest descent
method to minimize match errors of rectified
functions.

4. De Bonet and Viola [9] matched full joint histogram
using Markov trees.

5. Portilla and Simoncelli [29] matched various correla-
tions through repeated projections onto statistics
constrained surfaces.

Despite the successes of these methods in texture
synthesis and their computational convenience, the follow-
ing three fundamental questions remain unanswered:

1. What is the mathematical definition of texture
adopted in the above methods? Is it technically
sound to synthesize textures by minimizing statistics
errors, without explicit statistical modeling?

2. How are the above texture synthesis methods
related to the rigorous mathematical models of
textures, for example, Markov random field models
[8] and minimax entropy models [36]?

3. In practice, the above methods for synthesizing
textures do not guarantee a close match of statistics,
nor do they intend to sample the ensemble of images
with identical statistics. Is there a general way of
designing algorithms for efficient statistics matching
and image sampling?

This paper answers problems 1 and 3 and briefly reviews
the answer to question 2. A detailed study of question 2 is
referred to a companion paper [33].

First, we define the Julesz ensemble. Given a set of
statistics h extracted from a set of observed images of a
texture pattern, such as histograms of filter responses, a
Julesz ensemble is defined as the set of all images (defined
on Z2) that share the same statistics as the observed. A
Julesz ensemble, denoted by 
�h�, has an associated
probability distribution q�I; h� which is uniform over the
images in the ensemble and has zero probability outside.
The Julesz ensemble leads to a mathematical definition of
texture. In a companion paper [33], we show that the Julesz
ensemble (or the uniform distribution q�I; h�) is equivalent
to the Gibbs ensemble, and the latter is the limit of a FRAME
(Filter, Random Field, And Minimax Entropy) model p�I;��
as the image lattice goes to infinity. The ensemble
equivalence reveals two significant facts in texture model-
ing and synthesis.

1. On large image lattices, we can draw images from
the Julesz ensemble 
�h� without learning the
expensive FRAME model. These sampled images
are typical of the corresponding Gibbs model p�I;��,
and can be used for texture synthesis, feature
pursuit, and model selection [36].

2. For a large (say, 256� 256 pixels) image sampled
from the Julesz ensemble, any local patch of the
image given its environment follows the FRAME
model derived by the minimax entropy principle.
Thus, the FRAME model is an inevitable model for
textures on finite lattices.

Second, this paper proposes an efficient method for
sampling from the Julesz ensemble by Markov chain Monte

Carlo (MCMC). In the traditional single-site Gibbs sampler
[13], [36], the MCMC transition is designed in the following
way: At each step, a pixel is chosen at random or in a fixed
scan order, and the intensity value of the pixel is updated
according to its conditional distribution given the intensities
of neighboring pixels. Since the filters used in the texture
models are often very large (e.g., 32� 32 pixels), flipping
one pixel at a time has very little effect on the filter
responses. As a result, the single site Gibbs sampler can be
very inefficient, and the formation and change of local
texture features may take a long time.

Motivated by the recent work of Liu and Wu [24] and Liu
and Sabatti [25] (see also, the references therein), we approach
the efficiency problem by designing conditional moves along
the directions of filter coefficients. For a linear filter, the
window function2 spans one dimension in the image space.
Thus, for a set of K filters, we have K axes at each pixel, and
these axes do not have to be orthogonal to each other. We
propose random moves along these axes, and thus, the
proposed moves update large patches of the image so that
local features can be formed and changed quickly. Third, we
compare four popular statistical measures in the literature:
moments, rectified functions, marginal histograms, and joint
histograms of Gabor filter responses. Our experiments show
that moments and rectified functions are not sufficient for
texture modeling. We shall also pursue the minimum set of
statistics that can describe texture patterns; our experiments
demonstrate that a small number of bins in the marginal
histograms are sufficient for capturing a variety texture
patterns, so the full joint histogram appears to be an over-fit.
We demonstrate our theory and algorithm by synthesizing
many natural textures.

The paper is organized as follows: We start with a
discussion of features and statistics in Section 2 which is
followed by a mathematical study of texture modeling in
Section 3. Section 4 shows a group of experiments on texture
synthesis using the Gibbs sampler. Section 5 describes feature
pursuit experiments in selecting the histogram bins and
compares a variety of statistics. Section 6 presents a general-
ized Gibbs sampler for efficient MCMC sampling. Finally, we
conclude the paper with a discussion in Section 7.

2 IMAGE FEATURES AND STATISTICS

To pursue a ªtrichromacyº theory for texture, in this section
we review some important image features and statistics that
have been used in texture modeling.

Let I be an image defined on a finite lattice � � Z2. For
each pixel v � �x; y� 2 �, the intensity value at v is denoted
by I�v� 2 S, with S being a finite interval on the real line or
a finite set of quantized grey levels. We denote by 
� � Sj�j
the space of all images on �.

In modeling homogeneous texture images, we start with
exploring a finite set of statistics of some local image
features. Fig. 1 shows three major categories of image
features studied in the literature.

The first category consists of k-gons proposed by Julesz. A
k-gon is a polygon of k vertices indexed by� � �u1; u2; :::; uk�,
where ui � ��xi;�yi� is the displacement of the ith vertex if
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2. This is called the impulse response in engineering and the receptive
field in neurosciences.



we put the center of the k-gon at the origin. �xi and �yi must
be integers. If we move this k-gon on the lattice, under some
boundary conditions we collect a set of k-tuples

f�I�v� u1�; I�v� u2�; . . . ; I�v� uk��; v 2 �g:
The k-gon statistic is the k-dimensional joint intensity

histogram of these k-tuples and it is also called the co-
occurrence matrix. To be more specific, if we quantize the
intensity value into 1; 2; . . . ; g, then the k-gon statistic of I is
expressed as

h����b1; b2; . . . ; bk; I� � 1

j�j
X
v2�

Yk
i�1

��bi ÿ I�li��v� ui��;

where ��� is the Dirac delta function with unit mass at zero

and zero elsewhere. We assume that boundary conditions are

properly handled (e.g., periodic boundary condition). Fig. 1

displays a set of triangles in the top row. One co-occurrence

matrix is computed for each type of polygon. The k-gon

statistics suffer from the curse of dimensionality for even a

small k. For instance, for k as small as 4, and g � 10, the

dimensionality of a 4-gon statistic is comparable to the size of

the image. Summarizing the image into k-gon statistics can

hardly achieve any data reduction.
The second type of features are the cliques in Markov

random fields (MRF), as shown in the middle row of Fig. 1.
Given a neighborhood system on the lattice �, a clique is a
set of pixels that are neighbors of each other, so a clique is a
special type of k-gon. Let � � �u1; u2; :::; uk�� be the index for
different types of cliques under a neighborhood system.
According to the Hammersley-Clifford theorem [3], a
Markov random field model has the Gibbs form

p�I� � 1

Z
eÿ
P

�

P
v2�

U��I�v�u1�;...;I�v�uk� ��;

where Z is the normalization constant or the partition
function and U� are potential functions of k� variables.
The above Gibbs distribution can be derived from the
maximum entropy principle under the constraints that
p�I� reproduces, on average, the co-occurrence matrices
h����b1; . . . ; bk� ; I�; 8�. Therefore, the Gibbs model integrates all

the co-occurrence matrices for the cliques into a single
probability distribution. See Picard et al. [27] for a related
result. Like k-gon statistics, this general MRF model also
suffers from curse of dimensionality even for small
cliques. The existing MRF texture models are much
simplified in order to reduce the dimensionality of
potential functions, such as in autobinomial models [8],
Gaussian MRF models [6] and �-models [14].

The co-occurrence matrices (or joint intensity histograms)
on the polygons and cliques have been proven inadequate
for describing real world images and irrelevant to biologic
vision systems. In the late 1980s, it was realized that real
world imagery is better represented by spatial/frequency
bases, such as Gabor filters [11], wavelet transforms [10], and
filter pyramids. These filters are often called image features.
Given a set of filters fF ���; � � 1; 2; . . . ; Kg, a subband image
I��� � F ��� � I is computed for each filter F ���.

Thus, the third method in texture analysis extracts
statistics on subband images or pyramid instead of the
intensity image. From a dimension reduction perspective,
the filters characterize local texture features, as a result,
very simple statistics of the subband images can capture
information that would otherwise require k-gon or clique
statistics of very high dimensions.

While Gabor filters are well-grounded in biological
vision [7], very little is known about how visual cortices
pool statistics across images. Fig. 2 displays four popular
choices of statistics in the literature.

1. Moments of a single filter response, e.g., mean and
variance of I��� in Fig. 2a,

h��;1��I� � 1

j�j
X
v2�

I����v�;

h��;2��I� � 1

j�j
X
v2�

�I����v� ÿ h��;1��2:

2. Rectified functions that resemble responses of ªon/
offº cells [2]:

h��;���I� � 1

j�j
X
v2�

R��I����v��;

h��;ÿ��I� � 1

j�j
X
v2�

Rÿ�I����v��;

where the functions R���; Rÿ�� are shown in Fig. 2b.
3. One bin of the empirical histogram of I���,

h����b; I� � 1

j�j
X
v2�

��bÿ I����; 8�;

where ��� is a window function shown in Fig. 2c.
4. One bin of the full joint histogram,

h�b1; b2; :::; bk; I� � 1

j�j
X
v2�

Yk
i�1

��bi ÿ I�i��v��; �1�

where �b1; b2; :::; bk� is the index for one bin in a
k-dimensional histogram in Fig 2d.

Perhaps the most general statistics are the co-occurrence
matrices (histograms) for polygons whose vertices are on
the image pyramid across multiple layers, as displayed in
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Fig. 1. Choices of image features. Top row: various 3-polygons on the

image lattice. Middle row: cliques in Markov random fields. Bottom row:

Gabor filters with cosine (left) and sine (right) components.



Fig. 3. For a k-gon in the image pyramid, a cooccurrence
matrix (or joint histogram) can be computed,

h��;k��b1; b2; :::; bk; I� � 1

j�j
X
v2�

Yk
i�1

��bi ÿ I�li��v� ui��: �2�

In the above definition, � � ��l1; u1�; �l2; u2�; . . . ; �lk; uk�� is

the index for the polygons in the pyramid, where li; ui are

respectively the indexes for the subband and the displace-

ment of the ith vertex of the polygon. It is easy to see all the

traditional co-occurrence matrices and histograms are

special cases of the statistics in (2). For example, it reduces

to the traditional co-occurrence matrix when the pyramid

contains only the intensity image I; it reduces to the full

joint histogram [9] in (1) when the polygon � is a straight

line crossing the pyramid; it captures spatial correlations

[29], such as parallelism, if the polygon has two straight

lines crossing the pyramid as illustrated by the rightmost

polygon in Fig. 3.
Obviously, joint statistics and correlations are useful in

aligning image features crossing spatial and frequency
domains, such as edges and some elaborate details of
texture elements. The question is how far one should

pursue these high order statistics without sophisticated
dimension reduction (such as textons). The complexity of
the statistics are limited by both the computational
complexity and the statistical efficiency in estimating the
model with finite data.

In the literature, Heeger and Bergen made the first attempt

to generate textures using marginal histograms [18] and Zhu

et al. studied a new class of Markov random field model that

can reproduce marginal statistics [36].3 Recently, De Bonet

and Viola [9] and Simoncelli and Portilla [29] have argued

that joint statistics and correlations are needed for synthesiz-

ing some texture patterns. The argument is mainly based on

the fact that matching marginal statistics for the filters of the

steerable pyramid used by Heeger and Bergen [18] cannot

reproduce some texture patterns. This argument is ques-

tionable because computationally, the Heeger and Bergen

algorithm does not guarantee a close match of statistics, nor

is it intended to sample from a texture ensemble. In theory, it

is provable that marginal statistics are sufficient for

reconstructing the full probability distribution of a texture

[36]. Of course, this conclusion does not necessarily prevent

us from using joint statistics or correlations between filter

responses. Then there are two key questions that need to be

studied: 1) What is the minimum set of statistics for defining

a texture pattern? 2) How can we sample textures unbiasedly

from the set of texture images that share identical statistics?

Essentially, we need to make sure that we are not sampling

from a special subset.

3 JULESZ ENSEMBLE AND MCMC SAMPLING OF

TEXTURE

As the second step to pursue the ºtrichromacyº theory of
texture, in this section, we first propose a mathematical
definition of textureÐthe Julesz ensemble, and then we
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Fig. 2. Four choices of statistics in the feature space: (a) Moments, (b) rectified functions for the ªon/offº cells, (c) a bin of the marginal histogram

using rectangle window or Gaussian window, and d) a bin of joint histogram. This figure is generalized from [2].

Fig. 3. The most general statistics are co-occurrence matrices for

polygons in an image pyramid.
3. In FRAME [36], it is straightforward to derive Markov random field

models that match other statistics discussed in this section.



study an algorithm for sampling images from the Julesz
ensemble.

3.1 Julesz EnsembleÐA Mathematical Definition of
Texture

Given a set of K statistics h � fh��� : � � 1; 2; :::; Kg
which have been normalized with respect to the size of
the lattice j�j, an image I is mapped into a point h�I� �
�h�1��I�; . . . ;h�K��I�� in the space of statistics. Let


��h0� � fI : h�I� � h0g
be the set of images sharing the same statistics ho. Then, the
image space 
� is partitioned into equivalence classes


� � [h
��h�:
Due to intensity quantization in finite lattices, we relax

the constraint on statistics and define the image set as


��H� � fI : h�I� 2 Hg;
where H is an open set around h0.


��H� implies a uniform distribution

q�I;H� �
1

j
��H�j for I 2 
��H�;
0 otherwise

�
where j
��H�j is the volume of the set.

Definit ion. Given a se t o f normal ized s ta t i s t i c s
h � fh��� : � � 1; 2; . . . ; Kg, a Julesz ensemble 
�h� is the
limit of 
��H� as �! Z2 andH ! fhg under some boundary
conditions.

A Julesz ensemble 
�h� is a mathematical idealization of


��H� on a large lattice with H close to h. As �! Z2, it

makes sense to let the normalized statistics H ! fhg. We

assume �! Z2 in the sense of van Hove [15], i.e., the ratio

between the size of the boundary and the size of � goes to 0,

j@�j=j�j ! 0. In engineering practice, we often consider a

lattice big enough if j@�j
j�j is very small, e.g., 1=15. Thus, with

a slight abuse of notation and also to avoid technicalities in

dealing with limits, we consider a sufficiently large image

(e.g., 256 � 256 pixels) as an infinite image in the rest of the

paper. See the companion paper [33] for a more careful

treatment.
A Julesz ensemble 
�h� defines a texture pattern on Z2

and it maps textures into the space of feature statistics h. By
analogy to color, as an electromagnetic wave with
wavelength � 2 �400; 700�nm defines an unique visible
color, a statistic value h defines a texture pattern!4 We shall
study the relation between the Julesz ensemble and the
mathematical models of texture in the next section.

A mathematical definition of texture could be different
from a texture category in human texture perception. The
latter has the coarser precision on the statistics h and is
often influenced by experience. For example, Julesz
proposed that texture pairs which are not preattentively
segmentable belong to the same category. Recently, many
groups have reported that texture pairs which are not
preattentively segmentable by naive subjects become

segmentable after practice [22]. This phenomenon is similar
to color perception.

With the mathematical definition of texture, texture

modeling is posed as an inverse problem. Suppose we are

given a set of observed training images


obs � fIobs;1; Iobs;2; :::; Iobs;Mg;
which are sampled from an unknown Julesz ensemble

� � 
�h��. The objective of texture modeling is to search
for the statistics h�.

We first choose a set of K statistics from a dictionary B
discussed in Section 2. We then compute the normalized
statistics over the observed images hobs � �h�1�obs; . . . ;h

�K�
obs �,

with

h
���
obs �

1

M

XM
i�1

h����Iobs;i�; � � 1; 2; :::; K: �3�

Then, we define an ensemble of texture images using hobs,


K;� � fI : D�h����I�;h���obs� � �; 8�g; �4�
where D is some distance, such as the L1 distance for

histograms. If � is large enough to be considered infinite,

we can set � essentially at 0, and we denote the

corresponding 
K;� as 
K . The ensemble 
K implies a

uniform probability distribution q�I; h� over 
K , whose

entropy is log j
K j.
To search for the underlying Julesz ensemble 
�, one can

adopt a pursuit strategy used by Zhu et al. [36]. When k � 0,

we have 
0 � 
�. Suppose at step k, a statistic h is chosen,

then at step k� 1 a statistic h�k�1� is added to have

h� � �h;h�k�1��. h�k�1� is selected for the largest entropy

decrease among all statistics in the dictionary B,

h�k�1� � arg max
�2B
�entropy�q�I; h�� ÿ entropy�q�I; h���

� arg max
�2B
�log j
kj ÿ log j
k�1j�:

�5�

The decrease of entropy is called the information gain of

h�k�1�.
As shown in Fig. 4, as more statistics are added, the

entropy or volume of the Julesz ensemble decreases
monotonically


� � 
0 � 
1 � � � � � 
k � � � � :
Obviously, introducing too many statistics will lead to an

ªover-fit.º In the limit of k!1, 
1 only includes the

observed images in 
obs and their translated versions.
With the observed finite images, the choice of statistics h

and the Julesz ensemble 
�h� is an issue of model

complexity that has been extensively studied in the statistics

literature. In the minimax entropy model [36], [35], an AIC

criterion [1] is adopted for model selection. The intuitive

idea of AIC is simple. With finite images, we should

measure the fluctuation of the new statistics h�k�1� over the

training images in 
obs. Thus when a new statistic is added,

it brings information as well as estimation error. The feature

pursuit process should stop when the estimation error

brought by h�k�1� is larger than its information gain.
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4. We named this ensemble after Julesz to remember his pioneering work
on texture. This does not necessarily mean that Julesz defined texture
pattern with this mathematical formulation.



3.2 The Gibbs Ensemble and Ensemble
Equivalence

To make this paper self-contained, we briefly discuss in this

section the Gibbs ensemble and the equivalence between

the Julesz and Gibbs ensembles. A detailed study is referred

to a companion paper [33].
Given a set of observed images 
obs and the statistics

hobs, another line of research is to pursue probabilistic

texture models, in particular the Gibbs distributions or

Markov Random Field (MRF) models.
One general class of MRF model is the FRAME model

studied by Zhu et al. [35], [36]. The FRAME model derived

from the maximum entropy principle has the Gibbs form

p�I;�� � 1

Z��� expfÿ
XK
��1

< ����;h����I� >g

� 1

Z��� expf< �;h�I� >g:
�6�

The parameters � � ���1�; ��2�; . . . ; ��K�� are Lagrange multi-

pliers. The values of � are determined so that p�I;��
reproduces the observed statistics,

Ep�I;���h����I�� � h
���
obs � � 1; 2; . . . ; K: �7�

The selection of statistics is guided by a minimum

entropy principle.
As the image lattice becomes large enough, the fluctua-

tions of the normalized statistics diminish. Thus as �! Z2,
the FRAME model converges to a limiting random field in the
absence of phase transition. The limiting random field
essentially concentrates all its probability mass uniformly
over a set of images which we call the Gibbs ensemble.5 In a
companion paper [33], we proved that the Gibbs ensemble
given by p�I;�� is equivalent to the Julesz ensemble
specified by q�I; hobs�. The relationship between � and hobs

is expressed in (7). Intuitively, q�I; hobs� is defined by a
ªhardº constraint, while the Gibbs model p�I;�� is defined
by a ªsoftº constraint. Both use the observed statistics hobs,
and the model p�I;�� concentrates on the Julesz ensemble
uniformly as the lattice � gets big enough.

The ensemble equivalence reveals two significant facts in
texture modeling:

1. Given a set of statistics h, we can synthesize typical
texture images of the fitted FRAME model by
sampling from the Julesz ensemble 
�h� without
learning the parameters � in the FRAME model [36].
Thus feature pursuit, model selection, and texture
synthesis can be done effectively with the Julesz
ensemble.

2. For images sampled from a Julesz ensemble, a local
patch of the image given its environment follows the
Gibbs distribution (or FRAME model) derived by the
minimax entropy principle. Therefore, the Gibbs
model p�I;�� provides a parametric form for the
conditional distribution of q�I; h� on small image
patches. p�I;�� should be used for tasks such as
texture classification and segmentation.

The pursuit of Julesz ensembles can also be based on the
minimax entropy principle. First, the definition of 
�h� as
the maximum set of images sharing statistics h is equivalent
to a maximum entropy principle. Second, the pursuit of
statistics in (5) uses a minimum entropy principle. There-
fore, a unifying picture emerges for texture modeling under
the minimax entropy theory.

3.3 Sampling the Julesz Ensemble

Sampling the Julesz ensemble is by no means a trivial task!
As j
K j=j
�j is exponentially small, the Julesz ensemble has
almost zero volume in the image space. Thus rejection
sampling methods are inappropriate and we resort to
Markov chain Monte Carlo methods.

First, we define a function

G�I� � 0; if D�h����I�;h���obs� � �; 8�PK
��1 D�h����I�;h���obs�; otherwise:

(
Then the distribution

q�I; h; T � � 1

Z�T � expfÿG�I�=Tg �8�

goes to a Julesz ensemble 
K , as the temperature T goes to
0. The q�I; h; T � can be sampled by the Gibbs sampler or
other MCMC algorithms.

Algorithm I: Sampling the Julesz Ensemble

Given texture images fIobs;i; i � 1; 2; . . . ;Mg:
Given K statistics (filters) fF �1�; F �2�; . . . ; F �K�g:
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5. In the computation of a feature statistic h�I�, we need to define
boundary conditions so that the filter responses in � are well defined. In
case of phase transition, the limit of a Gibbs distribution is not unique, and
it depends on the boundary conditions. However, the equivalence between
Julesz ensemble and Gibbs ensemble holds even with phase transition. The
study of phase transition is beyond the scope of this paper.

Fig. 4. The volume (or entropy) of Julesz ensemble decreases monotonically with more statistical constraints added.



Compute hobs � fh���obs; � � 1; . . . ; Kg.
Initialize a synthesized image I (e.g., white noise).
T  T0

Repeat
Randomly pick a location v 2 �,

For I�v� 2 S Do
Calculate q�I�v� j I�ÿv�; h; T �.

Randomly draw a new value of I�v� from
q�I�v� j I�ÿv�; h; T �.

Reduce T after each sweep.
Record samples when D�h����I�;h���obs� � � for

� � 1; 2; . . . ; K.
Until enough samples are collected.

In the above algorithm, q�I�v� j I�ÿv�; h; T � is the condi-
tional probability of the pixel value I�v� with intensities for
the rest of the lattice fixed. A sweep flips j�j pixels in a
random visiting scheme or to flip all pixels in a fixed
visiting scheme.

Due to the equivalence between the Julesz ensemble and
the Gibbs ensemble [33], the sampled images from q�I; h�
and those from p�I;�� share the same statistics in that they

produce not only the same statistics in h, but also statistics
extracted by any other filters, linear or nonlinear. It is worth
emphasizing one key concept which has been misunder-
stood in some computer vision work: the Julesz ensemble is
the set of ªtypicalº images for the Gibbs model p�I;��, not
the ªmost probableº images that minimize the Gibbs
potential (or energy) in p�I;��.

One can use Algorithm I for selecting statistics h, as in
[36]. That is, one can pursue new statistics by decreasing the
entropy as measured in (5). An in-depth discussion is
referred to in [33].

4 EXPERIMENT: SAMPLING THE JULESZ ENSEMBLE

In our first set of experiments, we select all 56 linear filters
(Gabor filters at various scales and orientations and small
Laplacian of Gaussian filters) used in [36]. The largest filter
window size is 19� 19 pixels. We choose h to be marginal
histograms of filtered responses and sample the Julesz
ensemble using Algorithm I. Although only a small subset
of filters are often necessary for each texture pattern, we use
a common filter set in this section. We shall discuss statistics
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Fig. 5. Left column: the observed texture images. Right column: the synthesized texture images that share the exact histograms with the observed

for 56 filters.



pursuit issues in Section 5. It is almost impractical to learn a
FRAME model integrating all 56 filters in our previous
work [36]; the computation is much easier using the simpler
but equivalent model q�I; h�.

We run the algorithm over a broad set of texture images
collected from various sources. The results are displayed in
Figs. 5, 6, 7, 8, and 9. The left columns show the observed
textures and the right columns display synthesized images
whose sizes are 256� 256 pixels. For these textures, the
marginal statistics closely match (less than 1 percent error
for each histogram) after about 20 to 100 sweeps, starting
with a temperature T0 � 3. Since the synthesized images are
finite, the matching error � cannot be infinitely small. In
general, we set � / 1

j�j .
These experiments demonstrate that Gabor filters and

marginal histograms are sufficient for capturing a wide
variety of homogeneous texture patterns. For example, the
cloth pattern in the middle row of Fig. 6 has very regular
structures, which are reproduced fairly well in the
synthesized texture image. Also, the crosses in Fig. 8 are
synthesized without the special match filter used in [36].

This demonstrates that Gabor filters at various scales align

up without using the joint histograms explicitly. The

alignment or high order statistics are accounted for through

the interactions of the filters.
Fig. 8 shows a periodic checkerboard pattern and a

cheetah skin pattern. The synthesized checker board is not

strictly periodic, and we believe that this is caused by the

fast annealing process, i.e., the T in Algorithm I decreases

too fast, so that the long range effect does not propagate

across the image before local patterns form. The synthesized

cheetah skin pattern is homogeneous whereas the observed

pattern is not.
Our experiments reveal two problems:

1. The first problem is demonstrated in the two failed
examples in Fig. 9. The observed texture patterns
have large structures whose periods are longer than
the biggest Gabor filter windows in our filter set. As
a result, these periodic patterns are scrambled in the
two synthesized images, while the basic texture
features are well-preserved.
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Fig. 6. Left column: the observed texture images. Right column: the synthesized texture images that share the exact histograms with the observed

for 56 filters.



2. The second problem is with the effectiveness of the

Gibbs sampler. If we scale up the checker board

image so that each square of the check board is 15�
15 pixels in size, then we have to choose filters with

large window sizes. It becomes infeasible to match

the marginal statistics closely using the Gibbs

sampler in Algorithm I, since flipping one pixel at

a time is inefficient for such large patterns. This

suggests that we should search for more efficient

sampling methods that can update large image

patches. We believe that this problem would occur

for other statistics matching methods, such as

steepest descent [12], [2]. The inefficiency of the

Gibbs sampler is also reflected in its slow mixing

rate. After the first image is synthesized, it takes a

long time for the algorithm to generate an image

which is distinct from the first one. That is, the

Markov chain moves very slowly in the Julesz

ensemble. We shall discuss the effectiveness of

sampling in Section 6.2.

5 SEARCHING FOR SUFFICIENT AND EFFICIENT

STATISTICS

In this section we compare various sets of statistics discussed
in Section 2, for their sufficiency in characterizing textures.

First, the full joint histogram defined in (1) appears to be

an over-fit for most of the natural texture patterns. Thus, an

MCMC algorithm matching the joint statistics generates

texture images from a subset of the true Julesz ensemble. Our

argument is based on two observations. 1) Our experiments

partially shown in Section 4 demonstrate the sufficiency of

marginal statistics. 2) Suppose that one uses a modest

number of filters, e.g., 10 filters, and suppose that each filter

response is quantized into 10 bins, then the joint histogram

has 1010 bins. But one often has only a 128� 128 texture

image as training data. There are far too few pixels to

estimate the full joint statistics reliably.
Our conclusion about the sufficiency of marginal statis-

tics should not be overstated. We believe that this conclusion

is only valid for general texture appearance. For example,

one may construct a texture pattern with hundreds of
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human faces as texture elements, where the detailed

alignment of eyes, mouths, and noses are semantically

important. Image features extracted by deformable face

templates will become prominent. Indeed, the statistics

extracted by templates can be considered as the general

statistics extracted by some polygons across the image

pyramid in (2).
In general, it is still possible that joint statistics crossing a

small number of (say, 2 � 3) filters at some bins (see Fig. 2d),

i.e., not the full joint histogram or full co-occurrence

matrices, are important for some image features, especially

for texton patterns with deliberate details. Unfortunately,

the number of combinations of such statistics grows

exponentially in the statistics pursuit procedure. So we

leave this topic for future research.
Second, we have computed the mean and variance for

each of the subband images h��;i�; � � 1; 2 . . . ; K; i � 1; 2. As

one may expect, the image matching the 2K statistics have

noticeable differences from the observed ones. To save

space, we shall not show the synthesized images.

Third, we have also calculated the two rectified functions

h��;��;h��;ÿ�; � � 1; 2 . . . ; K. Although the rectified functions

emphasize the tails of the histograms, which often

correspond to texture features with large filter responses,

the random images from the Julesz ensemble have notice-

able differences from the observed.
Fig. 10 displays an experiment of texture synthesis using

the rectified functions. The observed texture is shown in

Fig. 11a and we match h��;��;h��;ÿ� for all 56 filters used

before. We varied the parameter � in Rÿ; R�, so that 100 � �
percent of the pixels lie between �Rÿ; R��. We display

random examples from the Julesz ensembles with

� � 0:2; 0:8, respectively.
Fourth, we proceed to study statistics which are

simpler than marginal histograms. In particular, we are

interested in knowing how many histogram bins are

necessary for texture synthesis and how the bins are

distributed. We adopt the filter pursuit method devel-

oped by Zhu et al. [36]. There are 56 filters in total and

each histogram has 11 bins except for the intensity filter

that has 8 bins. The algorithm sequentially selects one bin

ZHU ET AL.: EXPLORING TEXTURE ENSEMBLES BY EFFICIENT MARKOV CHAIN MONTE CARLOÐTOWARD A ªTRICHROMACYº THEORY... 563

Fig. 8. Left column: the observed texture images. Right column: the synthesized texture images that share the exact histograms with the observed

for 56 filters.



at a time according to an information criterion.6 Suppose
m bins have been selected, and I is a sample of the
Julesz ensemble matching the m bins, then the informa-
tion in the ith bin of the histogram h��b; I� is measured
by the matching error of this bin in a quadratic form,

d�h����b�� � �h
����b; I� ÿ h

���
obs�b��2

2�2
?

: �9�

In the above equation, �2
? is the variance of h����b�

decorrelated with the previously selected statistics (see the
appendix of [36]). Intuitively, the bigger the difference is,
the more information the bin carries about the texture
pattern. d�h����b�� is a second order Taylor approximation
to the entropy decrease �entropy�h����b�� (see (5)) in the
FRAME models. Because the entropy rate of the Julesz
ensemble is the same as that of the FRAME model,
d�h����b�� also measures the entropy decrease in the Julesz
ensemble. Details about the approximation and the compu-
tation of �2

? can be found in [36]. Since d�h����b�� is always
positive, this means that as more statistics are used, the
model becomes more accurate. This is not true when we
only have finite observations, because we cannot estimate
the observed histograms and variances exactly. Thus, the
information gain d�h����b�� is balanced by a model complex-
ity term that accounts for statistical fluctuations, such as the
AIC criterion discussed in [36].

Because the second order approximation is only good
locally, in the first few pursuit steps, we use the L1 distance
d�h����b�� � jjh����b� ÿ h

���
obs�b�jj1, and then use the quadratic

distance after the sum of the matching errors for all the bins
is below a certain threshold in terms of L1 distance.

Fig. 11 displays one example of bin selection. The left
image is the observed image and it was originally
synthesized by matching the marginal histograms of eight
filters to a real texture pattern. We use this synthesized
image as the observation, since it provides a ground truth
in statistics selection. The right image is a sample from the
Julesz ensemble using 34 bins. The selected bins for six
filters are shown in Fig. 12. The height of each bin reflects
the information gains; the higher bins are more important.
The other two filters are the intensity filter (all eight bins
are chosen) and the rx filter whose bin selection is very
similar to ry.

Our bin pursuit experiments reveal two interesting facts:
First, only a subset of bins are necessary for many textures.
Second, the selected bins are roughly divided into two
categories. One includes the bins near the center of
histograms of some small filters, such as the gradient filters
and Laplacian of Gaussian filters. These central bins enforce
smooth appearances. The other bins are near the two tails of
some large filters, which create image patterns. Such
observations seems to confirm the design of Gibbs reaction-
diffusion equations [37], where the central bins stand for
diffusion effects and the tail bins for reaction effects.

6 DESIGNING EFFICIENT MCMC SAMPLERS

In this section, we study methods for efficient Markov chain
Monte Carlo sampling.

6.1 A Generalized Gibbs Sampler

Improving the efficiency of MCMC has been an important
theme in statistics and many strategies have been proposed
in the literature [16], [17]. However, there are no good
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Fig. 9. Left column: the observed texture images. Right column: the synthesized texture images that share the exact histograms with the observed

for 56 filters. The large periodic patterns are missing in the synthesized images due to the lack of large filters.

6. There is one redundant bin for each histogram.



strategies that are universally applicable, nor is there

currently a satisfactory theory that can guide the search

for better MCMC algorithms. In fact, the design of good

MCMC moves often comes from heuristics of the problem

domain. In this section, we propose a window Gibbs

algorithm for sampling image models. Our algorithm is

motivated by the recent work of Liu and Wu [24] and Liu

and Sabatti [25].
Let I��; t� 2 
� be a 2D image visited by the Markov

chain at time t. For any pixel v 2 �, I�v; t� denotes the

intensity values of the pixel at time t. We observe that the

Gibbs sampler in Algorithm I adopts the following moves

in the image space. At each step t, a pixel v � �x; y� 2 � is

visited with a uniform distribution. Then, it moves the

intensity value at v by �, with � sampled from a

conditional probability.

I��; t�ÿ!I��; t� 1� � I��; t� �� � �v:
�v 2 
� is an image matrix on � which has intensity one at

pixel v and zero everywhere else. It is a Dirac delta function
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Fig. 10. Two sampled texture pattern from the Julesz ensemble matching the rectified functions of 56 filters. (a) � � 0:2 and (b) � � 0:8.

Fig. 11. An example of texture synthesis by a number of bins. (a) The observed image. (b) The sampled image using 34 bins.

Fig. 12. The selected bins for six filter histograms, and the height of each bin reflects the information gain. (a) ry, (b) LG(2) 9� 9 pixels, (c) LG(4)

17� 17 pixels, (d) Gcos�4; 30��; 11� 11 pixels, (e) Gcos�4; 90��; 11� 11 pixels, and (f) Gcos�4; 150��; 11� 11 pixels.



translated to v and represented by a matrix. This algorithm

is often called single-site Gibbs, as it moves along the

dimensions of single pixel intensity.
As �v is an axis in 
�, it is natural to generalize single-site

Gibbs by moving along other axes by the amount of ����,

I��; t�ÿ!I��; t� 1� � I��; t� �����W ���
v ; �10�

In (10), W ���
v is a window function centered at pixel v 2 �,

and for convenience we choose W ��� to be the window of

filter F ��� used for extracting texture features. W ���
v is a 2D

matrix by translating the center of the window W ��� to v and

setting pixels outside the window to zero.
In the new proposed moves, as long as the intensity filter

��� is included as one of the window functions, then one of

the basic move is to flip the intensity at a single pixel. Thus,

the Markov chain will be ergodic and aperiodic and has a

unique invariant distribution on 
�. We call such a

generalized Gibbs sampler the window Gibbs sampler

because it updates pixels within a window along the

direction of the window function.
In the window Gibbs sampler, one sweep visits each

pixel v 2 � once, and at each pixel, a window W ��� is

selected from the set of K filters according to a probability

p���. For example, we compute

p1��� � jjh����I� ÿ h
���
obsjj1PK

��1 jjh����I� ÿ h
���
obsjj1

; � � 1; 2; . . . ; K: �11�

jj � jj1 denotes L1 distance. The filters with large matching
errors have more chance to guide the direction of the move.
Another choice for p��� can be

p2��� � jj log h����I� ÿ log h
���
obsjj1PK

��1 jj log h����I� ÿ log h
���
obsjj1

; �12�

which emphasizes matching the tails of the histogram
h����I�.

Once � is selected, the value of ���� in (10) is sampled
from the conditional distribution

���� � p������ � q�I��; t� �����W ���
v ; h�P

� q�I��; t� ��W
���
v ; h�

:

In the denominator, the summation is over the centers of
bins in the marginal histogram h

���
obs, i.e., we quantize �.

It is interesting to see that the computational complexity
for computing p������ is almost the same as computing
p�I�v�jIÿv� in Algorithm I. In the Appendix, we briefly
discuss the implementation details for computing the
conditional distributions p������.

A move in the window Gibbs algorithm essentially
updates the projection of I along W ���

v , while fixing the
projectionsof Ialong all directions that are orthogonal toW ���

v .
So it is a conditional move or an ordinary Gibbs move seen
from an orthogonal basis with one base vector beingW ���

v .

6.2 Experiment on the Window Gibbs Sampler

This section compares the performance of the window
Gibbs sampler against the single-site Gibbs sampler.

Fig. 13a displays a cheetah skin texture. This image has

been used in Fig. 8, but the image size in this experiment is

four times as large as the one used before. The marginal

histograms of eight filters are chosen as the statistics h. Both

the single-site Gibbs and the window Gibbs algorithms are

simulated with two initial conditions: Iu, a uniform noise

image and Ic, a constant white image. We monitor the total

matching error at each sweep of the Markov chain,

E �
XK
��1

jjh����Isyn� ÿ h
���
obsjj1:

Fig. 13 displays the results for the first 100 sweeps.
Fig. 13b and Fig. 13d are the results of the single site Gibbs
starting from Iu and Ic, respectively. Fig. 13c and Fig. 13e
are the results of the window Gibbs starting from Iu and Ic,
respectively. The change of E is plotted in Fig. 14 against
the number of sweeps. The dash-dotted curve is for the
single site Gibbs starting from Iu and the dotted curve is for
the single site Gibbs starting from Ic. In both cases, the
matching errors remain very high. The two dashed curves
are for the window Gibbs starting from Ic and Iu,
respectively. For the latter two curves, the errors drop
under 0.08. That means less than 1 percent error for each
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Fig. 13. (a) is the observed cheetah skin texture pattern, the image size
of this image is as four times large as the one in Fig. 8. (b) and (d) are
two sampled images using single site Gibbs sampler starting with a
uniform noise image (b) and a constant image (d), respectively. (c) and
(e) are the sampled images using the window Gibbs sampler starting
with the same images as in (b) and (d), respectively.



histogram on average. The one starting from Iu drops faster
than the one from Ic.

We now use another measure to test the effectiveness of

the window Gibbs algorithm. We measure the Euclidean

distance that the Markov chain travels during one sweep,

D�t� �
�������������������������������������������������������������
1

j�j
X
v2�

�I�v; t� ÿ I�v; tÿ j�j��2
s

:

Fig. 15 shows D�t� for the single-site Gibbs (dash-dotted

and dotted curves) and the window Gibbs (solid and

dashed curves) starting from Iu; Ic, respectively.
In summary, the window Gibbs algorithm outperforms

the single-site Gibbs in two aspects: 1) The window Gibbs

can match statistics faster, particularly when statistics of

large features are involved. 2) The window Gibbs moves

faster after statistics matching. Thus, it can render texture

images of different details.
A rigorous theory for why the window Gibbs is more

effective has yet to be found. We only have some intuitive

ideas. We believe that the window functions provide better

directions than the coordinate directions employed by the

single-site Gibbs for sampling q�I; h; T � in two aspects. One

is that it is easier to move towards a mode of q�I; h; T � along

these directions because they lead to substantial changes in

local filter responses, so the local spatial features can be

formed very quickly. The other aspect is that it is easier to

escape from a local mode along these directions, which is

important especially in the low temperature situation. Of

course, it is likely that these two aspects may require the use

of different window functions.

6.3 Discussion of Other MCMC Methods

Equation (10) provides a way to design new families of

Markov chains. We briefly discuss a few issues that are

worth exploring in further research.

1. What is the optimal design for the directions of the
Gibbs sampler? These directions may not have to be
linear and can be any transformation groups [24].

2. In the window Gibbs algorithm, we adopted a
simple heuristic, i.e., the probability p��� for
choosing the directions of moves nonuniformly.
In general, one can choose other nonuniform
probabilities, as well as statistics other than those
used in the Julesz ensemble to drive the Markov
chain. For example, one may select the joint
statistics (histograms) as the proposal probability
q���1�;��2�; :::;��K�� to move the coefficients
jointly. Such moves may be capable of creating
texture elements (or textons) quickly at a location v
because of the alignment of many filters.
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Fig. 15. The averaged intensity differences by MCMC in one sweep (see
text for explanation).

Fig. 14. The statistics matching error in L1 distance summed over eight
filters. The horizontal axis is the number of sweeps in MCMC (see text
for explanation).

Fig. 16. Texture patterns with flows.



7 CONCLUSION

In this paper, each Julesz ensemble on Z2 is defined as a

texture pattern, and texture modeling is posed as an inverse

problem. The remaining difficulty in texture modeling is the

search for efficient statistics that characterize texture

patterns.
Although Section 2 provides a finite set of features and

statistics, selecting the most efficient set of statistics within

this dictionary is tedious. In particular, if we consider the

general joint histogram bins in (10), we face an exponen-

tially combinations. Furthermore, as the filter set is often

over-complete, many different combinations of statistics can

produce similar results.
Many texture patterns contain semantic structures

presented in a hierarchical organization, as discussed in

Marr's primal sketch [26]. For example, Fig. 16 shows three

texture patterns: the hair of a woman, the twig of a tree, and

zebra stripes. In these texture images, the basic texture

elements and their spatial relationships are clearly percei-

vable. Indeed, the perception of these elements plays

important role for precise texture segmentation. We believe

that modeling textures by filters and histograms is only a

first order approximation and further study has to be done

to account for the hierarchical organization of the texture

elements. This implies that we should look for meaningful

features and statistics in a geometric hierarchy outside the

current dictionary.
The study of image ensembles has significant applica-

tions beyond just texture modeling and synthesis. Object

shapes [38] and other image patterns, such as clutter [37],

can also be studied using the concept of ensembles. For

example, Zhu and Mumford [37] studied two ensembles:

tree clutter and images of buildings, and thus, they can

separate the two patterns using Bayesian inference.

Furthermore, the typical images in a given applications

should be studied in order to design efficient algorithms

and to analyze the performance of algorithms. Recently,

Yuille and Coughlan [34] have applied the concept of

ensembles to derive fundamental bounds on road detection.

APPENDIX

COMPUTING THE CONDITIONAL PROBABILITY

This appendix presents the implementation details for
computing the conditional probability p������ in the
window Gibbs sampler.

Suppose that a pixel v 2 � and a filter � are selected at a
certain step of the window Gibbs algorithm. The algorithm
proposes a move

I��; t�ÿ!I��; t� 1� � I��; t� �����W ���
v : �13�

To compute the probability p������, we need to update the
histograms h��� for the subband image I�����; t�; � �
1; 2; ::; K with I��; t� being the state of the Markov chain at
time t.

As shown in Fig. 17, the filter response I����u; t� 1� at
point u 2 � needs to be updated if the window W ���

u

overlaps with W ���
v .

The new response of filter F ��� at u is

I����u; t� 1� � I����u; t� ����� < W ���
v ;W ���

u > :

Therefore, we need to compute the inner products <

W ���
v ;W ���

u > and save them in a table. Thus updating
I����u� has only O�1� complexity.
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