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Parameter Expansion for Data Augmentation

Jun S. Liu and Ying Nian Wu

Viewing the observed data of a statistical model as incomplete and augmenting its missing parts are useful for clarifying concepts
and central to the invention of two well-known statistical algorithms: expectation-maximization (EM) and data augmentation.
Recently, Liu, Rubin, and Wu demonstrated that expanding the parameter space along with augmenting the missing data is
useful for accelerating iterative computation in an EM algorithm. The main purpose of this article is to rigorously define a
parameter expanded data augmentation (PX-DA) algorithm and to study its theoretical properties. The PX-DA is a special way
of using auxiliary variables to accelerate Gibbs sampling algorithms and is closely related to reparameterization techniques. We
obtain theoretical results concerning the convergence rate of the PX-DA algorithm and the choice of prior for the expansion
parameter. To understand the role of the expansion parameter, we establish a new theory for iterative conditional sampling under
the transformation group formulation, which generalizes the standard Gibbs sampler. Using the new theory, we show that the
PX-DA algorithm with a Haar measure prior (often improper) for the expansion parameter is always proper and is optimal among
a class of such algorithms including reparameterization.

KEY WORDS: Auxiliary variable; EM algorithm; Gibbs sampler; Group of transformations; Haar measure; Locally compact

group; Markov chain Monte Carlo; Maximal correlation; Overparameterization; Rate of convergence; Reparam-

eterization.

1. INTRODUCTION

The incomplete-data formulation is fundamental in Ru-
bin’s (1978) causal inference model and is also key to both
the expectation-maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977) and the data augmentation (DA) al-
gorithm (Tanner and Wong 1987). In this formulation, the
set of observed data is augmented to a set of “completed
data” that typically follows a simpler model. Computation
of the maximum likelihood estimates or the posteriors is ac-
complished by iterating between imputing the missing data
and fitting the complete-data model. Recently, Liu, Rubin,
and Wu (1998) noticed that along with imputing the missing
data, which simplifies computation at the expense of itera-
tions, expanding the parameter space for the complete-data
model can be a useful technique for accelerating the conver-
gence of the EM algorithm. More precisely, they observed
that with the imputed missing data, some extra parame-
ters can often be introduced without distorting the original
observed-data model. A more precise definition appears in
Section 3. In this case, the EM algorithm can be imple-
mented for the expanded model (the PX-EM algorithm),
and it converges with a monotone increase in observed-
data likelihood. Liu et al. (1998) showed both empirically
and theoretically that the PX-EM algorithm can often yield
significant acceleration over the ordinary EM algorithm. As
a precursor to the PX-EM algorithm, Meng and van Dyk
(1997) proposed efficient augmentation that instead of find-
ing an overparameterization as with the PX-EM algorithm
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identifies an optimal reparameterization among a class of
reparameterizations indexed by a working parameter.

Because the DA algorithm, or the more general Gibbs
sampling algorithms (Gelfand and Smith 1990), can be
viewed as stochastic generalizations of the EM-type algo-
rithms, it has been widely speculated that overparameteriza-
tion (or auxiliary variable) and reparameterization (or effi-
cient augmentation) methods should be similarly useful for
designing more efficient stochastic algorithms. In fact, some
efforts along this line have been made (see Meng and van
Dyk 1997 and the discussions therein). Although success
stories of using auxiliary variables in Markov chain Monte
Carlo (MCMC) abound (see, e.g., Higdon 1998), theory in-
dicates that extreme care must be taken to design a useful
method (Geyer 1992; Liu 1994).

Following the parameter expansion idea, in this article
we define a parameter-expanded data augmentation (PX-
DA) algorithm. We explore the relationship between the
PX-DA algorithm and overparameterization, reparameteri-
zation, and group of transformations. In proving optimality
properties of the PX-DA algorithm, we establish a new the-
ory of iterative conditional sampling. In particular, we show
that a Gibbs-like step can be generalized as movement along
an orbit of a transformation group acting on the space of
interest. An explicit formula for drawing an element from
the group, conditional on the current state, is given so that
the target distribution of interest is invariant under such
moves.

To illustrate the main benefits and important issues, Sec-
tion 2 works through an intentionally simple example that
nevertheless conveys most of the relevant ideas. Section 3
defines a general PX-DA algorithm and shows that repa-
rameterization can often be viewed as a special PX-DA al-
gorithm. This connection helps us prove an optimality result
in Section 5. Section 4 introduces the data-transformation
concept in a MCMC sampler and shows that any PX-
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DA algorithm in which the expansion parameter indexes
a data-transformation mechanism and has an independent
prior converges no slower than the ordinary DA algo-
rithm. Section 5 establishes a new theory that generalizes
the regular Gibbs sampler, studies the use of Haar priors
in the PX-DA algorithm, and investigates why such pri-
ors should be used. Connections between our results and
fiducial distribution, maximal ancillary, and noninformative
prior are noted. Section 6 gives a numerical example to il-
lustrate the methodology, and Section 7 concludes with a
discussion.

2. A SIMPLE EXAMPLE

To illustrate basic ideas of the PX-DA algorithm, we con-
sider the complete-data model

y|0,z ~N(0 + z,1), z|6 ~ N(0, D), (1)

where 6 is an unknown parameter and D is a known con-
stant. In this model y is the observed data and z is missing.
Hence the observed-data model is y|6 ~ N(0,1 + D). This
example can be viewed as a special case of the random-
effects model. The observed data y and missing data z are
multidimensional random variables in general, but are kept
as one-dimensional in this simple example. With a flat prior
on 6, the posterior distribution of 6 is N(y, 1 + D).

Let us treat this example as a missing-data problem in
which one uses the DA algorithm to iterate between the
two conditional draws

y—60 1
20,y N(1+D—1’1+D—1>

and
Oly,z ~ N(y —z,1) (2)

for simulating the posterior distribution of # given y. Liu,
Wong, and Kong (1994, 1995) derived that the conver-
gence rate (i.e., the second-largest eigenvalue of the in-
duced Markov chain transition operator) of any DA scheme
is equal to the square of the maximal correlation between
z and 0, which in this case (i.e., with normality) happens
to be the absolute value of the lag-1 autocorrelation of
the draws of @ at stationarity. This rate (the larger its
value, the slower the chain converges) can be computed
as

E(var(fly, z)|y) 1

o= var(fly) 1+ D%
The rate ro also corresponds to the Bayesian fraction of
missing information of Rubin (1987).

It is seen from the ordinary DA iterations (2) that forc-
ing z to have mean O causes relatively high “association”
between ¢ and z and slows down the algorithm. We can
overparameterize (1) to get

y|0,a,w ~N(O —a+w,1), wl|0,a ~N(a, D). (3)

This expanded complete-data model preserves the observed-
data model y|f,a ~ N(¢,1 + D) but has an expansion pa-
rameter « identifiable only from the complete data (y, w).
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We call such a parameterization “overcentering.” When «
is fixed at 0, the expanded model (3) reduces to the original
model (1).

To implement a DA algorithm for the expanded model,
we need to assign a prior for «. For now we use a proper
prior, a ~ N(0, B), which is independent of the prior of 4.
Then we have the following PX-DA algorithm:

1. Draw (w,a) conditional on (6,y); that is, draw
ald,y ~ N(0, B) and draw

y—0 1
~ N .
w0, o,y <1+D—1 +a,1+D_1)

2. Draw (0, «) conditional on (y,w); that is, draw

| N Bw 1
ay,w B+D B-L1 D!

and draw 0|y, w,a ~ N(y —w + «, 1).

Because « is sampled in both of the foregoing steps, if
we look only at  and w, the procedure is mathematically
equivalent to a collapsed sampler (Liu 1994) with « inte-
grated out from the joint posterior distribution. The only
reason for carrying « in the procedure is to simplify com-
putation. The rate of convergence of this PX-DA algorithm
is
E(var(0ly, w))

Tpx =

var(fy)
_ D—(B'4+D)! 1
n 1+ D -~ 14DV

Thus the new algorithm is never slower than the ordinary
DA algorithm for (1).

As B — oo, the rate 7, goes to 0, meaning that the
algorithm converges in one iteration. It is easy to check that
as B — oo, the algorithm is still well defined by its limiting
one-iteration transition despite the fact that the prior for o
is improper. Computationally, this limiting transition can
be realized by expressing the two steps of the PX-DA as
a random mapping dependent of B and then letting B go
to infinity. More precisely, if one starts at 6o, then step 1
corresponds to setting a = VBZ,

73
+VBZ + ——e,
YT VIT DT

_y—0
VeI DT

and the new 6 drawn at step 2 is

D y —bo Z
—y— VBZ) + —22
b=y B+D{1+D—1Jr v 1+D—1}

1
T At g

where 71,75, and Z3 are independent standard Gaussian
random variables. Hence as B — oo, the limiting transi-
tionis 1 = y ++1+DZ3 ~ N(y,1 + D). In Section
4.3 we show that this limiting argument is generally ap-
plicable.
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3. THE PARAMETER-EXPANDED
DATA AUGMENTATION
3.1 A Formal Definition

For the rest of the article, we let y be the observed
data, z be the missing data in the original model, and 6
be the parameter of interest. We use the generic notation
f to denote the probability densities related to the orig-
inal model in a standard DA implementation. For exam-
ple, f(y,z|0) represents the complete-data model, f(y|¢)
is the observed-data model, f(6) denotes the prior, and
fly,z) = [ f(y,z|0)f(0) df is the marginal distribution of
the complete data. We use p for distributions related to the
expanded model in the PX-DA framework.

The DA algorithm (Tanner and Wong 1987) is as
follows:

1. Draw z ~ f(z|0,y) « f(y,z|9).
2. Draw 0 ~ f(0|z7Y) X f(Y»Z|9)f(9)

Suppose that we can find a hidden identifiable parame-
ter o in the complete-data model f(y,z|¢). Then we can
expand this model to a larger model, p(y, w|6, ), that pre-
serves the observed-data model f(y|0). Mathematically, this
means that the probability distribution p(y, w|6, ) satisfies

/ ply, w0, 0) dw = £(y]0).

We call o an expansion parameter throughout. For nota-
tional clarity, here we use w instead of z to denote the
missing data under the expanded model. To implement the
DA algorithm for the expanded model, we need to give a
joint prior distribution p(6, «). It is straightforward to prove
the following.

Proposition 1. The posterior distribution of # is the
same for both models if and only if the marginal prior
distribution for 6 from p(f, ) agrees with f(6); that is,
p(6ly) = f(6ly) if and only if [ p(0,a)da = f(6).

Therefore, we need only specify the conditional prior dis-
tribution p(«|6) while maintaining the marginal prior for ¢
at f(6). It is clear that given 6 and y, the posterior distribu-
tion of «, p(aly,d), remains p(«|f), because « is not iden-
tifiable from y. For the time being, we assume that p(a|0)
is a proper probability distribution. The PX-DA algorithm
can then be defined as iterating the following steps:

1. Draw (o, w) jointly from their conditional distribution
given (y, 6). This can be achieved by first drawing « from
p(a|f), and then drawing w according to

W|ya 07 a ~ p(Ya W|07 a)'
2. Draw (6, ) jointly according to

0,aly,w ~ p(y,wl|f,a)p(alf) f(6).

Mathematically, this algorithm iteratively draws w con-
ditional on 6 and y, and then draws 6 conditional on w
and y, with « marginalized out in both steps. So the con-
vergence of this scheme to its target distribution follows
directly from standard Markov chain theory (see, e.g., Liu
et al. 1995). In Section 4 we identify two conditions under
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which the PX-DA algorithm can be shown to be superior
to the DA algorithm. In Section 5 we show that assigning a
Haar invariant prior to « is optimal under fairly reasonable
conditions.

3.2 Degenerate Priors and Reparameterization

Because p(y,w|f,«) is an extension of f(y,z|d), one
often can find a constant ay,; such that f(y,z|0) =
p(y, 2|0, anun); that is, the expansion parameter « is hid-
den at ayy in the original model. Therefore, if we let
p(a|f) = bq,,,, then the corresponding PX-DA algorithm
reduces to the original DA algorithm for f(y,z|@). For the
simple example in Section 2, we have ay,; = 0.

If p(alf) = da(9) (ie., « = A(6), for some function A),
then the corresponding PX-DA algorithm becomes the DA
algorithm for p(y,w|8, A()), which interestingly can be
viewed as a reparameterization of f(y,z|#). Consider the
example in Section 2. By letting p(«|6) = dg, we obtain the
following recentering parameterization (Gelfand, Sahu, and
Carlin 1995):

y|0,w ~ N(w, 1), w0 ~ N(0, D). 4)
The DA algorithm for (4) has a rate of convergence r1 =
1/(1 + D). Thus when D > 1, this algorithm converges
faster than under the original parameterization, whereas
when D < 1, the resulting algorithm is slower.

We now consider the problem of searching for the best
degenerate prior p(a|f) = d4(g) S0 as to induce an optimal
reparameterization. For simplicity, we let D = 1 and con-
sider only the class of scalar functions {A(f) = A9, A €
R'}. Then for a fixed A, the corresponding reparameteri-
zation (which we call partial centering) is

y|0,w ~N((1 - A)0 +w,1), w0 ~N(46,1). (5)
Model (5) leads to a DA algorithm with a rate of conver-
gence r(A) = 1 — 1/(2(4% + (1 — A)?)), which achieves
minimum O at A = .5. Therefore, the prior p(alf) = 0g/2
leads to a PX-DA algorithm that converges in one iteration.

Finding the optimal parameterization in (5) among all
those indexed by A is essentially the idea of efficient aug-
mentation of Meng and van Dyk (1997), which has a
broader statistical meaning as augmenting the least amount
of missing information. It is interesting to realize that ef-
ficient augmentation is technically a special PX-DA algo-
rithm where one wants to find a degenerate prior of the form
p(alf) = d4(9) to make the dependence between the miss-
ing data and @ as small as possible. Because the set of all
A(0) is too large to optimize over, it must be parameterized
[e.g., A(6) = Af] with the aid of intuition. An alternative
strategy, which we explore in this article, is to go to the
other extreme; that is, to make « and 6 independent a priori
and let the imputed data decide « at each iteration. Note
that the noninformative prior p(«|f) = 1 in the simple ex-
ample also leads to a PX-DA algorithm converging in one
iteration. Section 5 gives a theoretical reason why it is gen-
erally favorable to use an invariant prior for «. In the next
section we show that together with a data transformation
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mechanism, the independent prior of « always leads to a
PX-DA algorithm with improved rate of convergence.

4. DATA TRANSFORMATION AND
CONVERGENCE PROPERTIES

4.1 Parameter Expansion by Data Transformation

It is often the case that the expansion parameter o cor-
responds to a transformation of the missing data z. Thus
adjusting a can be intuitively understood as “analyzing”
the missing data. Condition (a) as follows is fundamental
in understanding the role of the expansion parameter. With
Conditions (a) and (b), we can prove that the PX-DA algo-
rithm outperforms the DA algorithm.

Condition (a). The parameter « indexes a ‘“data-
transformation” mechanism with z = ¢,(w). That is, for
any fixed a, the function ¢, induces a one-to-one and differ-
entiable mapping (or, a C* diffeomorphism) between z and
w, and w plays the role of missing data in the new scheme.
In other words, for any fixed value of «, the original model
f(y,z|0) determines the expanded model p(y, w|0, @) in the
following way:

p(y,W|9aa) = f(Yata(W)|0)|Ja(w)|,

where J,,(w) = det{0t,(w)/Ow} is the Jacobian term eval-
uated at w.

Condition (b). Parameters o and 6 are independent a
priori; that is, p(a|0) = po(c).

Under these two conditions, the PX-DA algorithm be-
comes

Scheme 1:

1. Draw z ~ f(z|0,y),a ~ po(a), and compute w =
to ' (2).

2. Draw (0,«) jointly according to 6,aly,w ~

f (¥, ta(w)]0)|Ja(w)|po(a) f(0).

In many Bayesian computation problems, the marginal
distribution of the complete data, f(y,z) = [ f(y,z|0)f(0)
df can be obtained in closed form. Then step 2 of Scheme
1 can sometimes be accomplished by first drawing « from
[aly, w] < f(y,ta(W))|Jo(W)|po(a) (its marginal posterior
distribution), and then drawing 6 conditional on . In this
case, Scheme 1 can be rewritten as a minor modification of
the DA algorithm:

Scheme 1.1

1. Draw z ~ f(z|0,y), in the same way as the DA algo-
rithm.

2. Draw ag ~ po(e), and compute w = ¢,!(z). Draw
a; ~ [aly,w] x f(y,ta(W))|Ja(W)|po(e). Compute z’' =
tas (51 (2).

3. Draw 0 ~ f(0]y,2’), in the same way as the DA algo-
rithm.

Compared to the DA algorithm, Scheme 1.1 adjusts the
missing data, from z to z’, through using a set of trans-
formations before the next 6 is drawn. The convergence of
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Scheme 1.1 follows from the convergence of the general
PX-DA algorithm. Moreover, as a result of the following
theorem, step 2 of Scheme 1.1 leaves f(z|y) invariant.

Theorem 1. Suppose that (a) the random variable z ~
7(z); (b) {ta: o € A} is a set of transformations on z; and
(c) a probability measure poy(«) can be defined on A. Let g
be a random draw from the prior po(c) and let w = ¢, (z).
If

ay ~ m(alw) oc m(ta(W))|Ja(w)[po(a),
then 2z’ = t,, (w) follows the distribution 7.

Proof. Consider the joint distribution of « and w,
pla, w) = po(a)m(ta(W))|Ja(w), (©)

under which the marginal distribution of « is po(a) and
to(w) ~ m. Therefore, if ap ~ po(a) and z ~ m, then
w = t,.(z) must follow the marginal distribution of w
under (6). Because the new o is drawn from the conditional
distribution of « given w, under (6), we easily see that the
joint distribution of («1, w) must be the same as (6). Hence
z' = t,, (W) follows the distribution 7.

If we let 7(z) = f(z|y) in Theorem 1, then it is clear
that step 2 of Scheme 1.1 leaves f(z|y) invariant. Gen-
erally speaking, Theorem 1 provides a recipe for con-
ducting a move, which leaves 7 invariant, along the trace
S = {ta(2z),a € A} of a set of transformations.

4.2 Rate of Convergence

Theorem 2. Suppose that Conditions (a) and (b) hold.
Then Scheme 1.1, or, equivalently, Scheme 1, converges no
slower than the DA algorithm defined in Section 3.1.

Proof. The movement in one PX-DA iteration can be
represented by a simple directed graph (or conditional in-
dependence graph),

Oota = 2 — 7 — Onew,

whereas the DA iteration can be represented as 0,9 — z —
Onew- The conditional independence between 2’ and 6,4 is a
consequence of step 2 of Scheme 1.1. To prove the theorem,
we need only show that the complete-data variance of h(6)
given z in the PX-DA algorithm is no smaller than that
in the DA algorithm for any square-integrable functions h.
(This is because that the convergence rate of a DA algorithm
is completely characterized by the infimum of this variance,
with the infimum over all mean 0 and variance 1 functions;
see Liu et al. 1994.)

The intuition behind this is that the extra variation caused
by adjusting z to z' makes § move more freely under the
PX-DA algorithm. In the following, the subscript “DA” in-
dicates the probability transition under the DA algorithm,
the subscript “PX-DA” indicates that under the PX-DA al-
gorithm, and the subscript “f” indicates distribution (or
joint distribution) induced by the original model f(y, z, ).

Because Scheme 1.1 and the DA algorithm produce the
same joint distribution for (6, z) (on convergence), we have
for all h(9), square-integrable functions with respect to
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f(Oly) that
Val‘px_DA{h(a)} = varDA{h(G)} = Val‘f{h(e)}.

Furthermore, the conditional variance of # under the PX-
DA algorithm satisfies

Epx_palvarpx_pa{h(0)|z}]
= Ey[Epx_palvars{h(0)|z'}|z]
+ varpx—pa [Er{h(0)|2'}|z]]
= Ej[vary{h(0)|z'}] + Ey[varpx_palEf{h(0)|2'}|2]]
> Ey[vary{h(0)|z}].

The second equality holds because the relationship between
# and z’ in the PX-DA algorithm is induced by the sampling
of § from f(f|y,z’). On the other hand, Liu et al. (1994)
showed that for the DA algorithm,

Epa[varpa{h(0)|z}] = Ey[vars{h(0)|z}].

Thus the desired result follows from theorem 3.2 of Liu et
al. (1994).

Remark 1. It is clear from the proof that the comparison
remains valid if step 2 of Scheme 1.1 is generalized to any
adjustment of z to z’ that is independent of 6,4 and leaves
the marginal distribution of z invariant.

Remark 2. Conditions (a) and (b) are both important
in the derivation of Theorem 2 and can be satisfied by all
of the examples of Liu et al. (1998). For condition (b), we
have seen in Section 3.2 that the dependent (degenerate)
prior po(a) = 04(¢) can lead to a PX-DA algorithm with a
slower rate of convergence than the original DA algorithm.

For condition (a), consider the parameter expansion
scheme

ylw] =N(@+w,1+a), w~N(©,D-a),

where « is between [—1, D). This scheme does not admit
a data-transformation mechanism. It is obvious that if and
only if & = D, the corresponding DA algorithm converges
in one iteration. Therefore, unless po(«) is a point mass on
D, the PX-DA algorithm is always slower than the ordinary
DA algorithm with « fixed at D.

Remark 3. A variation of Scheme 1, which we call the
conditional PX-DA algorithm, is to let oy be the same as o
drawn in the previous iteration instead of a new draw from
its prior. That is, this scheme iterates between sampling w
given (0, a,y) and sampling (9, o) given (w,y). Although
the conditional PX-DA algorithm shares the same lag-1 au-
tocorrelation for 8 with the PX-DA algorithm, it is less effi-
cient than the PX-DA algorithm because of the comparison
theorem of Liu et al. (1994). Furthermore, the conditional
PX-DA algorithm can sometimes be inferior to the ordi-
nary DA algorithm. Take the example in Section 2. If step
1 of drawing « from N(0, B) had been skipped, then the
convergence rate of the scheme would have been

E(var(wly, o, 0)) (1+DH~"

—1— —1-
"2 var(wly) B+D
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which is always greater than (1 + D~1)~! provided that
B > 0. Hence the conditional PX-DA algorithm is slower
than the ordinary DA algorithm in this case.

4.3 A Limiting Procedure for Using Improper Priors

The use of an independent prior for « can be intuitively
understood as letting the imputed data, z, decide which
transformation (i.e., ) to use during the iterative compu-
tation. This suggests that one may want to use a very dif-
fused prior for «, which often corresponds to an improper
prior. In this case Scheme 1 cannot be implemented, be-
cause sampling from po () (step 2) is no longer feasible. If
the improper prior is the limit of a sequence of proper pri-
ors, then we can use the following result to realize a PX-DA
algorithm.

To fix notation, let pg(c) be a proper prior for o with
hyperparameter B, and suppose that pp(a) converges to
an improper prior pe(c) as B — Bs,. Let Kp(z'|z) be
the transition induced by step 2 of Scheme 1.1. If a lim-
iting version of step 2 exists as B — B, then a limiting
PX-DA algorithm exists, and it should still have a better
performance than the DA algorithm.

Theorem 3. Suppose that Kp(z'|z) — Ko(2'|z) as
B — By for almost all z, where K, (z'|z) is a proper
probability transition function. Then a limiting PX-DA al-
gorithm can be implemented as draw z ~ f(z|y,6), draw
z' ~ K (2'|z), and draw 6 ~ f(0|y,z’). This limiting PX-
DA still converges to the target distribution.

Proof. This is a consequence of the following lemma.

Lemma 1. Suppose that Kp(z,y) is a sequence of
probability transition functions, all having = (z) as invari-
ant distribution. If K (z,y) = limp,p, Kp(z,y) is a
proper transition function, then  is an invariant distribution
of K.

Proof. Because [7(z)Kp(z,y)dr = 7(y) as., by Fa-
tou’s lemma we have

/W(x)Koo(x,y) dx=/B
< lim

< Jtim [ 7(@)Ka(o,)do = (y),

lim w(z)Kp(z,y)dz

— B

Y.

Because [ [7(z)Koo(z,y)dzdy = [7(y)dy = 1, we have
that [ 7(2)Ke(2,y)de = n(y) as.

Deriving the computer code for K, (z'|z) often involves
only simple algebra.

5. GROUP STRUCTURE AND HAAR PRIOR FOR
THE EXPANSION PARAMETER

5.1 Locally Compact Group and the Haar Measure

More specific results can be obtained if the set of the
transformations {¢,, o € A} is endowed with a finer struc-
ture; that is, if it forms a locally compact group. We show
here that if the prior of « corresponds to a Haar measure,
whether it is a proper probability distribution or not, there
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is always a well-defined PX-DA algorithm that is optimal
in terms of the convergence rate.

More formally, a set .4 is called a group with respect to
an operation “” if (a) for all o, 0’ € A, -’ € A; (b) there
is an identity element e € A so that «-e = e-a = a, for all
a € A; and (c) for all 8 € A, we can find a unique 5~! € A
so that 3-371 = 7' . 3 = e. We assume that the set of
transformations {t,,« € A} has the same group structure
as Aj; that is, t.(z) = z, and for all a, o’ € A,t,(to(2)) =
to-or (z). We call A a locally compact group or topological
group if topologically A is a locally compact space and
operations (a,3) — «a -3 and a — «~! are continuous
(Rao 1987). If the operations are analytic (i.e., in C*°), then
A is called a Lie group. Group A is automatically a locally
compact group if it is finite.

For any measurable subset B C A and element o € A,
the notation B« defines a subset of A resulting from “act-
ing” on every element of B by «ag. A right Haar measure
H(da) on A is defined as a measure that is invariant under
the group acting on the right; that is, it satisfies

H(B) = /B (da) = [ H(aa)

= H(B-ao), Vag € A,

and for all measurable subset B C .A. One can similarly de-
fine a left Haar measure. Under mild conditions, the right
(or left) Haar measure is unique up to a positive multi-
plicative constant (Rao 1987). Saying that A is unimodular
means that its right Haar measure is also a left Haar mea-
sure. When A is compact (e.g., a finite group) or abelian
(ie., -8 = B - a; e.g., the translation and scale groups),
one can show that its right Haar measure is unimodular
(see Rao 1987, prop. 4, p. 498). Otherwise, the right and
left Haar measures may differ by a modular function.

If A is a compact group, then its unimodular Haar mea-
sure is the uniform probability measure. If A is the trans-
lation group (e.g., t»(z) = z + « as in the overcentering
parameterization), then the unimodular Haar measure for
« is simply the Lebesgue measure. If 4 is a scale group
[i.e., for scalar a,t,(z) = «az) as in the probit regression
example in Sec. 6], then the Haar measure for « is propor-
tional to |a|~!da. If A is the group of nonsingular k£ x k
matrices, then the unimodular Haar measure is || "*da. In
the following, we assume that a density H (<) exists for the
unimodular Haar measure with respect to the Lebesgue or
counting measure; that is, H(da) = H(a)da.

5.2 The Parameter-Expanded Data Augmentation
Algorithm With the Haar Prior

Here we show that if the prior distribution of « is a uni-
modular Haar measure, then the following PX-DA scheme
is always proper. We show its optimality in Section 5.4.
Scheme 2:

1. Draw z ~ f(z|6,y), the same as in the DA algorithm.
2. Draw (6,a) jointly according to 6,aly,z ~
f(y,ta(2)]0)|Jo(2)|H (do) f(); that is, draw from the pos-
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terior distribution of the parameters in the expanded
model.

The only difference between Scheme 2 and the DA algo-
rithm is that step 2 of Scheme 2 draws from the posterior
of (A, ) in the expanded model, with a Haar prior on «.
Compared with Scheme 1.1, Scheme 2 essentially fixes g
at anyy = e instead of drawing it from po(de). Modeling
Scheme 1.1, we rewrite Scheme 2 to conform with the or-
dinary DA algorithm:

Scheme 2.1

1. Draw z ~ f(z|0,y).

2. Draw a ~ plaly,z) o f(y,ta(2))|Ja(z)|H (do).
Compute z' = t,(z).

3. Draw 0 ~ f(0]y,2’).

As in Scheme 1.1, step 2 of Scheme 2.1 defines a tran-
sition from z to z’. We show that this step not only leaves
the distribution f(z|y) invariant, but also produces some
optimality properties.

Let Z be the space of z. For a given z, the set {¢,(z):
a € A} C Z is called an orbit. Formally, we say that z
and z’' lie on the same orbit if and only if there exists a
unique « € A, such that z’ = ¢,(z). Different orbits do not
intersect, and the space Z can be partitioned into the union
of all of the orbits, each of which has the same structure
as A. To illustrate, consider the following examples. For
Example A, let z = (21,22) € R? and A = {« € R:
to(z) = (21 + a, 22 + ) }. Figure 1(a) shows a set of orbits
for this translation group. For Example B, let z = (21, 22) €
R%and A = {a > 0: to(z) = (az1, az2)}. Figure 1(b) shows
a set of orbits for this scale group.

Suppose that this set of orbits can be represented by a
smooth cross-section @ (Wijsman 1966), which is defined
as a subset of Z that intersects with (almost) every orbit ex-
actly once. In Example A, a cross-section is Q = {(z1, z2):
z1 = 0}. In Example B, a cross-section is Q = {(z1, 22):
22 4+ 22 = 1}. When A is finite or a compact Lie group,
the existence of a smooth Q has been established (see Wi-
jsman 1966 for references). Palais (1961) provided results
on the existence of Q when A is not compact.

With the cross-section Q, any z € Z can be described
by its orbit » € Q and its position 5 € A on the orbit.
Step 2 of Scheme 2.1 effectively generates a new position
conditional on the orbit. To prove its properness, we need
the following.

Condition (c). The transformation group A is locally
compact and has a unimodular Haar measure H(«)da.
There exists a smooth cross-section @ C Z, and the map-
ping Z: Z(B3,r) = tg(r) for A x Q — Z is one-to-one and
continuously differentiable; that is, a diffeomorphism.

In all of the specific cases considered in this article,
such as the translation and scale groups, the existence of
a smooth Q and the diffeomorphism Z can be easily veri-
fied. Under the mapping Z, we have for all z € Z a new
parameterization: there exists (3, ), such that z = Z(3, ),
where r indicates the orbit on which z lies and § indicates
its position on r. A simple property of this diffeomorphism
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Figure 1. The Set of Orbits in R? for (a) the Translation Group and (b) the Scale Group.

is that for all & € A and z = Z(3,r),

ta(z) = ta(Z2(B,7)) = Z(a - B,7). o)
Based on this formulation, we can describe Scheme 2.1 by
Ooa = (B,7) = (B',7) = bnew, ®)
where ' = o - .
Lemma 2. Let
1 (@) = 02, )/ H(de) = 20008

and K, (r) = 8Z(a,r)/8r. Under Condition (c), the diffeo-
morphism Z satisfies

[Ir(e), Ka(r)] = Ja(Z(e,7))[Ir(€), Ke(r)].

Proof. Because of left invariance of H(da), we have
I.(a:B) = 0Z(a-B,r)/H(dB). By differentiating both sides
of (7) with respect to 3, we have

Jo(Z(B, 7)1 (B) = I(a - B).

Differentiating both sides of (7) with respect to r gives rise
to

Ja(Z(B,7))Kp(r) = Ko.p(r).
The result then follows by letting 5 =e.

Theorem 4. Let 7 be an arbitrary probability measure
on Z, and suppose that Condition (c) holds. For z € Z, we
let

m@=/ﬂm®NMﬂW@ﬂ ©)

Then g(z) < oo. If we write z = Z(3, r) and let o be drawn

from
m(a|z) = 7(ta(2))|Ja(2)|H (de)/ 9(2), (10)

then « - 8 follows distribution ., the conditional distribu-
tion of position G given orbit r induced by 7, and « - 8 is
independent of 3 conditional on r. If z ~ m, then 2’ = t,(z)
follows .

Proof. From Lemma 2, the joint distribution of («,r)
induced by 7 is

m(a,7) = m(Z(, 7)) Ja(Z(e, )| I (€), Ke(r) || H (dex)r,

where ||I,(e), K.(r)| is the absolute value of the determi-
nant of [I,.(e), K¢(r)]. The marginal distribution of r is then

11 (€), Ke(r)[|A(r),
where
h(r) = /W(Z(a,r))ua(Z(e,7‘))|H(da) < 0.
The conditional distribution for the position is then
() = m(Z(a,7))|Ja(Z (e, 7)) H (der) /A (r).
Because J,.g(z) = Ja(ts(z))Js(z) for any o, 3 € A, and

H(do) is a Haar measure, we have
s (2D
e

9(z)

[ wz(a-5.0)

k)
= Ts@(em)]
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and

7(ta(2))|Ja(2)| H(da)/g(2)
= m(tap(Z(e,m))|Jap(Z(e, 7)) H(da - §)/h(r).

Hence « - 3 follows the conditional distribution 7, and is
independent of §. As in the regular Gibbs sampler, ¢, (z) =
Z(a - B,r) must follow 7 provided that z ~ .

Corollary 1.  Step 2 of Scheme 2.1 (i.e., the complete-
data posterior of «) is always proper and it leaves f(z|y)
invariant. Thus Scheme 2.1 or, equivalently, Scheme 2 con-
verges to the target distribution of interest.

Proof. Let w(z) = f(z|y) in Theorem 4.

5.3 Some Remarks

Remark 4. A key assumption in proving Theorem 4 is
the existence of a smooth cross-section and the diffeomor-
phism Z. In practice, we need not know what they are and
often do not need to check on their existence; if the finite-
ness of (9) can be established by other means, then we can
prove the invariance without using the change-of-variable
technique used here. In particular, we can establish that for
any measurable function h, E h(t,(z)) = E.h(z). Direct
examination also reveals that (10) is invariant along the
orbit of z; that is, if z; = ¢g,(z) for some f; € A and
a1 ~ w(a|z1), then t,,(z1) has the same distribution as
to(z), with o ~ 7(a|z). The only important formula from a
practitioner’s standpoint is (10). Recently, Liu and Sabatti
(1999) extended the invariance result of Theorem 4 to the
case when H(d«) is only a left Haar measure.

Remark 5. Theorem 4 shows that using a Haar mea-
sure enables us to generate a 3’ = « - § conditionally inde-
pendent of § with given orbit information. Mathematically,
this means that the position variable is integrated out of the
sampler. Hence, Scheme 2.1 actually induces a collapsed
diagram compared to (8):

(11)

eold - T = enew'

Remark 6. The invariance property explored in this the-
orem has a close relationship with work by Bondar (1972,
1976), Fraser (1961), and Wijsman (1966) on structural
distribution, fiducial inference, and maximal invariance. In
fact, Bondar (1972) proved a very similar theorem under
the condition that J,(z) is independent of z. Their results
do not require that the Haar measure be unimodular. As
mentioned in Remark 4, the invariance result of Theorem
4 also holds when H(d«) is not unimodular.

Remark 7. Consider the parametric family P =
{pa(z) = 7(ta(2))|Ja(z)|: « € A}, where 7 is a known
base distribution. Of interest is the inference on a with an
observation z. A natural pivotal quantity is ¢,(z), whose
distribution is 7. When the space of z has the identical
group structure as .A, the fiducial distribution of « derived
by Fraser (1961) is equivalent to (10). With the same set-
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ting, the maximal ancillary statistic is the orbit of z. Thus
the inference of « conditional on maximal ancillary (Pitman
estimator) is equivalent to (10).

Remark 8. With the foregoing parametric family set-
ting, the noninformative nature of H(da) can be seen in
light of Theorem 4. If z is an observation from the base
distribution 7 and « is drawn from the posterior (10), then
the fact that ¢,(z) follows 7 can be interpreted as that using
H(da) as a prior does not “disturb” the base distribution a
posteriori. No other prior can achieve this.

5.4 Optimality of the Haar Measure in the Parameter-
Expanded Data Augmentation Algorithm

With Conditions (a) and (c) [e.g., z = Z(3,r)], we can
rewrite the original model as

[f(2,0ly)dzdf = g(B,r,0)drdH (dp), (12)

where ¢ denotes the density after transformation. The ex-
panded model can be rewritten as

(2,0, aly)dzddH (da)
= gla-B,r,0)p(al0)H(do) H(dB)dbdr, (13)

where p(«|f) is the conditional prior density of « with re-
spect to the Haar measure H(da). As a consequence, the
PX-DA algorithm induces the iteration between the condi-
tional draws «, 3,7|6 and «, 8|8, r under the joint distribu-
tion (13), which is mathematically equivalent to iterating
between the conditional draws 3, 7|6 and 0|3, r (with « in-
tegrated out) in (13). In comparison, the DA algorithm in-
duces the same iteration based on (12). Note that (12) and
(13) have the same marginal distribution for (r,8) condi-
tional on y. The difference between the two algorithms is
only in the conditional distribution of (£, ) given 6.

If we let p(«|@) = 1, then Theorem 4 shows that the new
position 3’ = «-f is independent of 3 given r. Thus the PX-
DA algorithm with a Haar measure prior on « effectively
induces the iteration between drawing |0 and drawing 6|r,
with both « and 3 integrated out from (13). In this sense,
parameter expansion is doing exactly efficient augmenta-
tion, where only the orbit of the missing data is augmented.
Based on the collapsing theorem of Liu (1994), we have the
following theorem.

Theorem 5. Under Conditions (a) and (c), Scheme 2
is as good as or better than any PX-DA algorithm with
a proper prior p(«|f)H (da) (with respect to the Lebesgue
measure) on the expansion parameter. Here H(da) is the
Haar measure.

Remark 9. This result holds for all nonnegative and
nondegenerate functions p(«|6) that, when combined with
H(do), give rise to a proper prior with respect to the
Lebesgue measure. But the theorem does not directly ap-
ply if p(a|f)H(d«) is improper. In the situation when
p(a|0)H (da) can be expressed as the limit of a sequence of
proper priors, the approach of Section 4.3 can be taken to
show that the Haar measure is still optimal. It remains un-
clear, however, what a “cleaner” PX-DA algorithm would
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be in this case. The following result is a special case of the
theorem, but we provide a different proof.

Corollary 2. Scheme 2, or, equivalently, Scheme 2.1,
converges no slower than Scheme 1 or, equivalently,
Scheme 1.1.

Proof.  For any integrable function h(6), we let s(z’) =
E;{h(0)|z'}. Then, according to the proof of Theorem 2,
we need only compare Ey[varpx_pa{s(z’)|z}] under the
two schemes.

Let Ki(z'|z) be the transition induced by step 2 of
Scheme 1.1, and let K»(z'|z) be that for Scheme 2.1, which
is determined by (10). From Theorem 1, K; is invariant
with respect to 7. Because K; samples along the orbit of
z, it must also leave the conditional distribution invariant;
that is, [ K1(z"|2')K2(2'|z) dz’ = K5(z"|z). Consequently,

Eylvark,{s(z')}]

Ey|vark,{s(z")}]

BBk, [vark, {s(2")|2'}] + vark, [Ex, {s(z")|z'}]
Eylvark, {s(z")|z'}] = E¢[vark,{s(z')|z}].
Because reparameterization often corresponds to using a

degenerate prior p(a) = 64(9) in the PX-DA, we have the
following result.

v

Corollary 3. Under Conditions (a) and (c), Scheme 2 is
as good as or better than any reparameterization scheme that
can be formulated as a PX-DA algorithm with degenerate
prior.

Although using the Haar invariant prior for « in the PX-
DA is optimal under Conditions (a) and (c), the resulting
scheme may be difficult to implement. Moreover, A some-
times may not induce a data-transformation mechanism or
have a group structure. The use of a proper prior, p(«|6),
and the limiting argument in Section 4.3 is still valuable in
these occasions.

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.00.204 06 0.8 1.0

0 100 200 300 400 0

Figure 2. Autocorrelation Functions for DA (Solid Lines) and PX-DA
(Dashed Lines) With Various Values of B1: (a) B1 = 1; (b) B1 = 2; (¢)
B1=4;(d)B1 =8
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6. A NUMERICAL EXAMPLE: PROBIT REGRESSION

Lety = (y1,...,yn) be a set of iid binary observations
from the probit model

Y;|60 ~ Bernoulli{®(X/0)},

where X;(p x 1) are the covariates, 6 is the unknown regres-
sion coefficient, and @ is the standard Gaussian cumulative
distribution function. Of interest is the posterior distribution
of 6 under, say, a flat prior. A popular way to ease compu-
tation is to introduce a complete-data model in which a set
of latent variables, z1, ..., z,, is augmented so that

[=:16] = N(X/6,1)
and

y; = sgn(z;),

where sgn(z) = 1 if z > 0 and sgn(z) = 0 otherwise. The
standard DA algorithm iterates the following steps:

1. Draw from [z;|y;,6]. That is, z; ~ N(X/6,1) subject
to z; > 0if y; = 1, and z; ~ N(X/6,1) subject to z; < 0 for
¥ = 0. . .

2. Draw [0|z;] = N(0,V), where § = (3, X;X))~!
>, Xiziand V = (3, X, X})~'. Both d and V can be com-
puted using the SWEEP operator (see, e.g., Little and Rubin
1987).

The complete-data model can be expanded by introducing
an expansion parameter o for residual variance, which is
originally fixed at 1:

[wl6) = N(X[6ar, 0?)
and

y; = sgn(w;).
It is clear that this model can be derived by using the group
of scale transformation z = t,(w) = (w1/a,...,w,/q).
The corresponding Haar measure is H(da) = a~lda.
Scheme 2 has the same first step as in the standard DA,
but with slightly different later steps:

2. Draw &2 ~ RSS/x2, where RSS = (2 — X!6)?,
which is a by-product of the SWEEP operator, provided
that we have computed >, 22.

3. Draw 6 ~ N(6/&, V).

If we put an inverse gamma prior distribution on o>—that
is, a? ~ by/gamma(ag), where ag and by are two positive
constants—then Scheme 1 is identical to Scheme 2 except
that the second step is changed to

« Draw o2 ~ bg/gamma(ag). Then draw a2 ~ (by +
a2RSS/2)/gamma(ag + n/2). Compute 42 = o?/ad
= (gamma(ag) + RSS/2)/gamma(ag + n/2).

As ag — 0, Scheme 1 converges to Scheme 2.

We took n = 100 and X; = (1,z;)’, with z; generated
from N(0, 1). The y; were generated from Bernoulli(® (5,
+ fiz;)) with the true values By = 0 and 1 = 1,2,4,8.
We implemented both the DA algorithm and Scheme 2.
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Figure 2 shows the autocorrelation functions of the draws
of 3, for both algorithms under different true values for
(B1. It is clear that as the real value for [3; increases, the
improvement of the PX-DA algorithm over the DA algo-
rithm becomes more significant. Or, to put it another way,
the PX-DA algorithm is not significantly slowed by the in-
creased value of 51, whereas the DA algorithm is. This phe-
nomenon can be understood as follows. For the DA algo-
rithm, var(f|y,z) = (3, X;X])~!, whereas for the PX-DA
algorithm,

-1
var(ly,z) = (Z XJ({) + E[06'var(x»)/RSS]

-1
~ (Z Xp({) + 600’ /2n,

which increases with 6. What we observed in Figure 2 can
be understood from the fact that the sample autocorrela-
tion is determined by 1 — E{var(f|y,z)|y}/var(fly) (Liu
et al. 1994). The comparison in the rates of convergence
should reflect the comparison in real computing time, be-
cause implementation of the PX-DA algorithm needs only
negligible computing overhead in comparison to the DA
algorithm.

7. DISCUSSION

Similarities and differences between this article and the
work of Meng and van Dyk (1999a) should be noted. On one
hand, both articles target overparameterization and repa-
rameterization methods for speeding up the Gibbs sampler,
with ideas originating from recent development in the EM
algorithm. Both intend to identify useful rules in guiding the
use of such methods and to study their theoretical proper-
ties. On the other hand, we concentrate more on the PX-DA
algorithm under general settings and on the identification
of general conditions necessary for the PX-DA algorithm
to be optimal among a class of similar ones, whereas Meng
and van Dyk focus more on interesting cases and statistical
insights derived from them. Moreover, we present a differ-
ent viewpoint of some issues concerning the relationship
between reparameterization and overparameterization, the
use of the PX-DA versus the conditional PX-DA (called
Scheme 2 by Meng and van Dyk), and the justification for
using an improper prior on the expansion parameter. Liu
(1998) recently presented a covariance adjustment method
where “adjustment mapping” plays the role of the expanded
parameter in our setting.

The expansion parameter in the PX-DA algorithm plays
a different role than the working parameter in Meng and
van Dyk’s (1997) efficient data augmentation, because the
expansion parameter is inferred along with the PX-DA it-
eration instead of being fixed at an optimal value (see also
Green 1997). It is conceivable, however, that a working
parameter could be introduced to index a transformation
group to help find a good parameter expansion scheme (van
Dyk 1998).
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A subtle point relates the PX-DA algorithm to auxiliary
variable techniques. In our case, of interest is the posterior
distribution of 6 [i.e., f(f]y)], whereas the posterior dis-
tribution of the augmented missing data can be arbitrarily
distorted. Introduction of « actually makes the joint (pos-
terior) distribution of (6, w) differ from that of (9, z). This
special feature distinguishes the PX-DA algorithm from the
usual auxiliary variable techniques in which the introduc-
tion of a new parameter does not change the previous joint
distribution.

The implication of Theorems 1 and 4 goes beyond the
PX-DA algorithm described in this article. In particular,
both theorems can be viewed as a generalization of the
Gibbs sampler—because every Gibbs sampling move can be
viewed as a transformation acting on the current state. Some
conditional sampling rules for choosing one among a set of
possible transformations is given by the theorems, which
are especially useful when one envisions certain favorable
directions to move along in the space. Liu and Sabatti (1998,
1999) have presented general ways of using the theorems,
together with the Metropolis—Hastings steps, to accelerate
a MCMC algorithm.

Although we have shown only one real example, we
would like to assure the reader that the PX-DA algorithm
can be implemented for all the models of Liu et al. (1998)
in parallel with their PX-EM implementations. In particu-
lar, the optimality result for using the Haar prior applies to
the multivariate ¢ model (Meng and van Dyk 1999a), probit
regression models, and random-effects models. An interest-
ing situation arises from a random-effects model example
of Meng and van Dyk (1999b) where they want to draw
from an affine transformation group, say A = {(a1,as):
(o1,0)z = a1 + agz}. In this case the group element
(o1, 2) can be sampled by imposing a left-Haar mea-
sure prior on it, |ag|~2da;day (Liu and Sabatti 1999). This
choice is equivalent to the right-Haar prior of Meng and Van
Dyk (1999b), who used a slightly different definition for the
affine transformation. When the implementation of step 2
of the PX-DA algorithm is difficult, a Metropolis—Hastings
step can be added. (Some caveats are discussed in Liu and
Sabatti 1999.) Alternatively, one can reduce computational
complexity by restricting o on a finite subgroup or subset
of A in which an exhaustive search can be conducted.

In summary, we have formally defined the PX-DA algo-
rithm when a proper prior for the expansion parameter « is
used and its generalized versions under limiting improper
priors or Haar invariant priors. We have further identified
some conditions under which the PX-DA algorithm can be
guaranteed to outperform the ordinary DA algorithm. We
have shown that using a Haar invariant prior for the ex-
pansion parameter is optimal among a class of such algo-
rithms. In particular, we find Condition (a) for the corre-
spondence between the expansion parameter « and a data-
transformation mechanism constructive. Liu et al. (1998)
and Meng and van Dyk (1999) provide further practical ad-
vice on the search for a good parameter expansion scheme.

[Received September 1997. Revised April 1999.]
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