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SUMMARY

The em algorithm and its extensions arc popular tools for modal estimation but are
often criticised for their slow convergence. We propose a new method that can often
make EM much faster. The intuitive idea is to use a ‘covariance adjustment’ to correct the
analysis of the m step, capitalising on extra information captured in the imputed com-
plete data. The way we accomplish this is by parameter expansion; we expand the
complete-data model while preserving the observed-data model and use the expanded
complete-data model to generate M. This parameter-expanded Em, PXx-EMm, algorithm
shares the simplicity and stability of ordinary Em, but has a faster rate of convergence
since its M step performs a more efficient analysis. The px-Em algorithm is illustrated for
the multivariate ¢ distribution, a random effects model, factor analysis, probit regression
and a Poisson imaging model.

Some key words: AECM; Algorithms; Covariance adjustment; ECM; ECME; Factor analysis; Multivariate ¢
distribution; Parameter expansion; Poisson imaging model; Probit regression; Random effects model.

|. INTRODUCTION

The em algorithm (Dempster, Laird & Rubin, 1977) and many of its extensions and
variations, such as the Ecm algorithm (Meng & Rubin, 1993), the EcmE algorithm (Liu
& Rubin, 1994a), the SAGE algorithm (Fessler & Hero, 1994), the AEcwm algorithm (Meng
- & van Dyk, 1997) and efficient augmentation (Meng & van Dyk, 1997), which we shall
generically call Em-type algorithms, are very popular tools for modal inference in a wide
varicety of statistical models in the physical, medical, biological and social sciences. Besides
being conceptually attractive, EM-type algorithms are simple to implement and converge
monotonically in terms of the loglikelihood or log-posterior of the observed-data model,
under very general conditions (Dempster ct al., 1977; Wu, 1983). An often-voiced criticism,
however, is the slow convergence in some situations. We propose a method, called param-
eter expansion, which can often make EM dramatically faster. Our method, px-EM, is based
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on a statistical principle that is different from the principles underlying other Em acceler-
ation methods, such as the variations mentioned above, as well as Aitken acceleration
(Laird, Lange & Stram, 1987), conjugate gradient acceleration (Jamshidian & Jennrich,
1993) and quasi-Newtonian acceleration (Lange, 1995a, b). Besides often achieving signifi-
cant improvements in rates of convergence, key features of px-Em are that (i) it can be
applied to many EM-type algorithms with only simple modifications, and (ii) it maintains
the stability of EM-type algorithms with their monotone convergence.

The underlying statistical principle of PX-EM is to perform a ‘covariance adjustment’ to
correct the M step, capitalising on extra information captured in the imputed complete
data, in a manner analogous to the way a covariance adjustment captures extra infor-
mation in the observed difference in treatment and control group covariate means in a
randomised experiment. More specifically, we find an expanded complete-data model that
has a larger set of parameters, but leads to the original observed-data model with the
original parameters determined from the expanded parameters via a reduction function.
Then PX-EM iteratively maximises the expected loglikelihood of the expanded complete-
data model, with its expanded parameters and corresponding expanded sufficient statistics.
The rate of convergence of PX-EM is at least as fast as the parent EM because its M step
performs a more efficient analysis by fitting the expanded model.

Section 2 illustrates px-EM for the multivariate ¢ distribution. Section 3 provides the
basic theory of px-EM, including its definition, proof of both its monotone convergence
and its superior rate of convergence relative to its parent EM, and an explicit interpretation
of the M-step of PX-EM as covariance adjustment. Section 4 describes more examples,
including a random effects model, factor analysis, probit regression and a Poisson imaging
model. Finally, § 5 concludes with a short discussion.

2. EXAMPLE: MULTIVARIATE t DISTRIBUTION

The multivariate ¢ distribution is a useful model for data analysis, especially for robust
estimation, e.g. Rubin (1983), Lange, Little & Taylor (1989). Let t,(u, ¥, v) denote a
p-dimensional ¢t random variable with centre u, scatter matrix W and known degrees
of freedom v, and let 6=(u, ¥). For observed data Y,,={Y;,..., Yy}, where
Y;|0 ~t,(u, P, v), independently, the maximum likelihood estimate is known to have no
closed form, but the EM algorithm is simple to apply by augmenting Y ., to Y. .=
{(Y1,71),...,(Yy, 7Ty)}. The model for Y., is

Model O: Yilri, 0~ Np(“, \P/Ti)’ (1)
710~ 13/, (2)
v known and positive, with (Y;, 7,), . . ., (Yy, Ty) independent; the 7, . . ., Ty are augmented

weights for the observations, where v controls the uniformity of these weights.
Let 0O = (u®, ¥®) be the parameter estimate at the tth iteration of the EM implemen-
tation generated by Model O. Then, at the (¢ + 1)st iteration, we have the following.

E step. Assuming 0 = 0®, impute the expected values of the weights as a function of
the dimension of Y;, p, the known parameter, v, and the Mahanobis distance between Y,
and its expectation, d(Y, u, ¥) = (Y — u)’'¥ (Y — p):

v+p
v+ d(Y, 40, ¥0)

T?H) = E(7;] O(t), Yous) =

(3)
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M step. Maximise the expected loglikelihood of Model O by weighted least squares,
giving

N N
t+1 +1 t+1
= ey [ § e,
i=1

i=1

1 N
(t+1) _ t+1) Y t+1) Y t+1) 4
N X H ), 4)
Kent, Tyler & Vardi (1994) proposed a modified algorithm, which changes (4) to

N N
lP(t+1)= Z T?+1)(K—,U,(t+1))(1/i—,u(t+1))l Z T?+1).

i=1 i=1

This modification does not change the limit of the algorithm because

N
Y N =1, (5)
i=1
when 6® is its maximum likelihood estimate, Oy g, as proved by Kent et al. (1994). The
modified EM, however, converges faster than the conventional EM, as reported by Kent
et al. (1994), Arslan, Constable & Kent (1995) and Meng & van Dyk (1997), without
incurring any extra computational cost. Meng & van Dyk (1997) also show that this
modified EM is optimal among the EM implementations generated from a class of data
augmentation schemes.
We now derive this modified EM using px-EM. Note that, because v is a fixed constant,
there is no unknown parameter in (2) of Model O. We can, however, expand Model O to

Model X: Y1, © ~N,(uy, ¥, /7:) (6)
7| © ~ ay /v, (7)
v known, with (Y3, 74), ..., (Yy, Ty) independent, which adds an auxiliary scale parameter

o in (7), where ® = (pu,., ¥, «) is identifiable from the complete data. We use the notation
Uy and ¥, because we reserve pu and W for the original parameter, 6 = (y, V). The auxiliary
parameter « is ‘hidden’ at 1 in Model O in that Model X reduces to Model O when
ue=u, ¥Y,=% and a=1. Under Model X, the observed-data model becomes
Y|O® ~t,(uy, ¥y /), independently, in which W, /a corresponds to W, and y, to u; that
is, 0 = R(®) and

(,u, \P) = R{(,u*a lP*a OC)} = (:u*a \P*/O(),

where R is the reduction function from the expanded parameter space to the original
parameter space.

The px-EM algorithm is implemented over the expanded parameter space as follows.
Let @ = (u®, WY, a,) be the estimate of the expanded parameter with o = , from the
tth iteration. Then, by analogy with the E and M steps of Em, at the (¢ + 1)st iteration we
have the following.

PX-E step. Assuming ® = © in Model X, impute the weights as a function of p, v and
the distance between Y; and its expectation:

V+p
v+ d(Y, @, P0/a®)’

D = E(r| 0, Yop,) =

(8)



758 C. Ly, D. B. RuBiN AND Y. N. Wu
PX-M step. Maximise the expected complete-data loglikelihood of Model X, giving

N

N 1 N
pitv =y Tgt+1)}/i/ Y gt D, \P:+1)=N S D(Y; — D) — it vy,
i=1 i=1

i=1 i=

1 N
Qg+ — — Z ,L_gt+1);
i=1
then apply the reduction function R(®) to obtain p* = pl*" and WD = Pe+ /4D,
which are the same as those proposed by Kent et al. (1994).

The statistical principle underlying this PX-EM is to adjust the M step for the observed
deviation between the imputed value of the statistic Y, 7;, which is the sufficient statistic
associated with « under Model X, and its expectation under Model O, which is N. Although
this deviation disappears at Oy, ¢ as shown by (5), this may not be the case before EM
converges, and therefore the M step can be corrected for this observed deviation.

3. BASIC THEORY OF PX-EM
3:1. Notation and background

Let Y, be the set of observed data following the observed-data model p(y,y,|0), with
parameter 6 to be estimated by its maximum likelihood estimate, 6y, ;. When log p(Y,,,|6)
is difficult to maximise over 6 directly, the EM algorithm augments Y, to a set of com-
plete data Y., which can be reduced to Y,,, via a many-to-one mapping p, that is
Yous = P(Yeom), Where Y., follows the complete-data model p(yeom |0).

The Em algorithm maximises logp(y.ys|60) by iteratively maximising the expected
10g p(Vcom | ) using an expectation (E) step and a maximisation (M) step at each iteration.
If 69 is the estimate of 0 at the tth iteration, then, at the (t+ 1)st iteration, the E step
computes the expected loglikelihood of the complete-data model,

Q(0109)=Ey,_, {108 p(Yeom|0)| Yors, 0©},

where Ey___(.|Y,,, 0®) denotes the expectation with respect to the conditional distribution
P(Veom | Yobs> 0). Then the M step finds 0“*V by maximising Q(6]0®) over 6. When
P(Yeom |0) is from an exponential family, the E step computes the conditional expectations
of its sufficient statistics, and the M step fits the complete-data model using these expected
statistics.

Each iteration of EM increases log p(Y,,s|0) because

log p(Yous10) = Q(616“) — H(0]0?),
where
H(O’B(t)) = EYcom {log p(Ycoleobss 9)’ Yobs’ 0(0}:

as a function of 0, is maximised at 6 = 6.

3-2. Formal definition of PX-EM
In all existing EM-type algorithms, the complete-data model p(y,om | 0) and the observed-
data model p(y,ps|0) share the same set of parameters. The px-EM algorithm expands
P(Veom|0) to a larger model, px(yeom|®), with ® = (0,,, «), where 0, plays the same role
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in px(Yeom | ®) that 0 plays in p(yeom|6), and « is the auxiliary parameter whose valuc is
fixed at «, in the original model. Formally, two conditions must be satisfied. First, the
observed-data model is preserved in the sense that, for all ®, there is a common many-
to-one reduction function R, such that Y, | ® ~ p{y.us|0 = R(®)}. Secondly, the complcte-
data model is preserved at the null value of «, o, in the sense that, for all 6,

pX{.VCom|® = (6*3 o‘0)} = p(ycom|0 = 0*)

These conditions imply that if 6, & 6, then ®, + ®,, and that, for all 0, there exists at
least one ® such that Y, |® ~ p{y.,s|0 = R(O)}.

The px-EM algorithm uses px(y..m|®) to generate EM by iteratively maximising the
expected loglikelihood of pyx(y.om|®). Specifically, let @ = (0?, a,) be the estimate of ©
with « = o, from the tth iteration. Then, at the (¢ + 1)st iteration we have the following.

PX-E step. Compute Qx(©]©0®) = Ey__ {10g px(Yeom|©) | Yops, O},

PX-M step. Find ®'*Y = arg maxg Qx(©|O®®); then apply the reduction function R(6)
to obtain 0"V = R(@¢* D),

Each iteration of Px-EM increases log p(Y,,,|0) because, by the definition of parameter
cxpansion, at § = R(®),

log p(Yous10) = Ox(©® | @) — Hy (©|O),
where

Hx(©]|0®Y)=Ey,

com

{10g p(Yeom| Yobs> ©)1Yous, O},

as a function of @, is maximised at ®®. A sequence of ®” generates a sequence of
0® = R(®Y). Therefore we have the following theorem in parallel to the standard results
for EM-type algorithms.

THEOREM 1. The PX-EM algorithm increases the loglikelihood of the observed-data model
at each iteration, that is 10g p(Y,ps| 09 Y) = log p(Yops| 0©) for all t. If log p(Yyps|0) is
bounded, then log p(Y,,,|0®)— L* for some L*.

Since the monotone convergence of EM is maintained, conditions for the convergence
of PX-EM iterates to a stationary point or a local maximum, 0 g, can be obtained following
Wu (1983). As a result of the generality of the above results, parameter expansion can
also be applied to the extensions and variations of the Em algorithm, such as those men-
tioned in § 1. For the multivariate ¢ distribution, for example, the idea underlying ECME
(Liu & Rubin, 1994a, b; 1995) can be applied to Px-EM to update o by maximising the
observed-data loglikelihood, and thereby obtain an even faster converging algorithm.
Morcover, Liu & Rubin (1995) described EM and ECME for the multivariate ¢ with unknown
degrees of freedom and missing values, which can be extended to px-Em with the inclusion
of the scale parameter a. Liu (1997) provides details of these extensions.

When the complete-data models are in the exponential family, the programming for
implementing PX-EM beyond its parent EM algorithm only involves, first, adding to the
original E step the calculation of the expected sufficient statistics related to the expanded
parameterisation, which may have already been done in the original E step, and, secondly,
modifying the maximisation over 6 in the original M step to include maximisation over a,
which is typically simple.
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3-3. Rate of convergence of PX-EM

We now study the rate of convergence of PX-EM generated by p(y.om|®) as compared
to the parent EM generated by p(y..m|6). Since additional arithmetic operations introduced
by parameter expansion are usually minor, the comparison of the rates of convergence
typically corresponds realistically to the comparison of CPU times.

Each iteration of EM defines a mapping M, 6%+ = M(0®), and a Taylor expansion at
Onig gives 09D — 0y r = DM(0® — Oy ), where DM is the gradient of M evaluated at
Ou e and is called the matrix rate of convergence. The largest eigenvalue of DM, r, is
known as the global rate of convergence. The speed matrix is S = I — DM, whose smallest
eigenvalue s =1 —r is called the global speed.

As proved by Dempster et al. (1977), the speed matrix of EM is the matrix fraction of
the observed information, S =i . i, Where

02108 p(Yawel6)
lobs = 69‘69,

is the observed-data information matrix, and

0=0mLE
: : 0% 10g p(Yeom | 0)
lcom =lgg= — Ycom 60 . 601

Yobs9 9}
is the complete-data information matrix.

It is easy to verify that Oy g = (Omig, %) 18 a fixed point of the mapping My induced
by the pX-E and PX-M steps. Here we use the parameterisation ® = (0, «) = (R(0,,, a), &) so
that 0 is the parameter being estimated by the output of each pX-EM iteration. A Taylor
expansion of My at @y i gives @' — @y p = DMy (O — Oy ), where @0 = (00, o).
Similarly to the result of Dempster et al. (1977), it can be shown that, under mild conditions
including I ., >0, DMy=1—1,11,., where I is the identity matrix of appropriate
dimension, and I, and I, are the observed-data information matrix and the complete-
data information matrix for px(y.om |6, @), respectively, i.e.

iobs O icom iGaz
I = 5 Icom = . . )
obs ( 0 0> < Lag laza)

6=06mLE

where
. 0% log px (Yeom | 6, )
log = _EYcom{ ag_a ’ Yobs, Qad ’
« (OMLE»%0)
iaﬂ = i‘;a, and
0% log px(Yoom| 0,
i““ = —Eycom { ggxf oo’ | ) YobS7 97 O(}
0" 0a (OMLE>%0)

For notational convenience, also let v icok =ige! and V,,, = I;.L with

com —
Voo Vo ioo ioa) -
1% _ 00 Oa\ 00 O
com V V - . . s
af aa lap  laa

I/O() = Ucom + %a Va;tl V;o- (9)

so that
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DM. =1 — Vﬂeiobs 0 — I— Vﬂﬂiobs 0
* Vaoiobs 0 ~Vagions 1)’
whence 0D — Oy 5 == (I — Vogions) (0 — Oyp) and, because o = o,

a(t+ D Ko == — aeiobs(em - HMLE)‘ (10)

Thus, the convergence of 0 determines the convergence of PX-EM, and ® has Sy = Vygiops
as its speed matrix. For EMm, the speed matrix is S = vgomiohs- SiNCe Vg = Ueom iN semipositive
definite order, the smallest eigenvalue sy of S is at least as large as the smallest eigenvalue
s of S. Thus, we have Theorem 2.

Therefore, we have

THEOREM 2. Given that PX-EM converges to (Oyrg, %o), and the derivatives and inverses
used in the above derivations exist, sy = s, that is PX-EM dominates EM in global rate of
convergence.

From a Bayesian perspective, the fraction of missing information (Rubin, 1987, pp. 93—4)
is the variance of the parameter 0 given the complete data relative to the variance of 6
given the observed data: Vg, is the complete-data variance of 6 in Px-EM, which is larger
than v, the complete-data variance of 6 in the parent Em. The difference between them,
VooV Vags 1s the extra variance due to the auxiliary parameter o, which reduces the
fraction of missing information and makes PXx-EM faster than EM.

For an original complete-data model, there can be various expansions that lead to
different px-EM implementations. The above derivations suggest that, to generate the
fastest px-EM, we should expand the complete-data model as much as we can, provided
that the extra computational cost is negligible. This conclusion is easy to understand in
light of covariance adjustment since, the more covariates we adjust for, the more efficient
is our analysis, at least in large samples.

3-4. The pX-M step as covariance adjustment

Let 0 be the current estimate of 0 with a® = a,, and let 0¢f P and 0%+ Y be the estimates
of 6 updated by EM and PX-EM, respectively:

9%;’[— D OMLE = (I - vcomiobs)(em - QMLE)a 0()t(+ b OMLE (I com obs)(0 o HMLE)'

Thus, from (9), 04D — 084D = — Vo, Vi Vaplons (0¥ — Oyg), which, from (10), can be
written as

0(}£+1)i9%§;1)+ VbaVa;l(O‘(Hl)_ao)' (11)

Expression (11) justifies an explicit interpretation of PX-EM as covariance adjustment. The
E-steps of both EM and px-gM effectively impute missing data under the wrong model with
0® % Oy 5. The M-step of EM ignores this effect, whereas the M-step of PX-EM uses the extra
parameter o as a covariate: it uses the difference between the imputed value of o and its
true value, a®*Y —a,, and the regression coefficient of 0 on a, V,, V!, to correct the
unadjusted estimate of 0, 0LHY, to produce the adjusted estimate 0%+,

More explicitly, covariance adjustment can be viewed in general as the formulation of
an adjusted estimate of 6, HX, created by adding to a naive estimate of 0, 90, obtained
without the use of the covariate, an adjustment orthogonal to 00 The naive estimate, 00,
can be viewed as the estimate of # obtained when the covariate parameter, a, is fixed at
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its known true value, «,. The adjustment to 00 is the scaled difference between (i) the
estimate, dy, of the covariate parameter, o, obtained jointly with HX and (ii) its true value,
oy. The resulting adjusted estimate is

éx=éo+B(&x—ao). (12)

Since  the naive estimate of 0 and the adjustment are orthogonal, that is
cov{@o, B(dx — o)} =0, treating B as fixed in (12) gives cov{@x, (@x — o)} =
B var(dy — o). If we let Oy = 0% D, 0, =040 and 6y = «0* Y, (12) is identical to (11).

We illustrate the above results with a simple example. Consider the EM generated by
the complete-data model Y,u|(Ymis, 0) ~ N(Ymis, 1) and Y, |0 ~ N(0, 62), where 0 is the
unknown parameter and ¢* > 0 is known. Consider the PX-EM generated by the expanded
model Y,pq|(Ypis, O, 0) ~ N (Y + &, 1) and Y| (0, @) ~ N(0,, 0*), where ® =(0,, &) is
the expanded parameter with o, =0 and the reduction function § = R(®) =0, + o

Yoos |0 ~ N(0,1 4 6%),  Yous|® ~ N(0, + o, 1+ 0°). (13)

The maximum likelihood estimate of 6 is Oy p = Y,,s. Given 0@, the -steps of both EM
and pPx-EM impute Y, = (09 + 62Y,;,)/(1 + ¢2); the M-step of EM gives 045D = ¥,.., that
is OUEY — Oy =09 — 0,,S)/ (1+ 0?), whereas the M-step of PXx-EM gives 04}V =
Y., that is oz“”’ = Yyps — Yois = (Yops — 0)/(1 + ). Thus, with reduction, 0§2+1’ =
O + (@D — o) = Oypp. When o2 == 0, EM is extremely slow, whereas PX-EM converges
in one iteration for all 62> 0. To verify (11), we have

var(0¢?) cov(OLLD, at+ D) o2 0 Voo Voo ?+1 1
cov(a®*D, g¢i) var(a@*D) “\o 1) \w, v,/ \ 1 1)
which gives V,, V! =1, where we note that the naive estimate of 0 and the estimate of a
are orthogonal, as required for the covariance-adjustment interpretation.

4. MORE EXAMPLES
4-1. Random effects model

The random effects, i.e. variance components or repeated measures or mixed, model is
extremely useful in applied statistics. Consider the following general linear mixed model,
e.g. Hartley & Rao (1967), Laird & Ware (1982), Laird et al. (1987).

Model O: Y 10,b;~ X+ Zb;+ e, (14)
bil0 ~ N,(0,'F), e;|0~N(0,0°), b;Le;, (15)
fori=1,..., N, where Y, =(Y;,..., Yy) are the observed scalar responses, X; (p x 1)

and Z;=(Z;,...,Z;) (g x1) are known covariates, f (p x 1) are the fixed effects,
bi=(bis,...,by) (g x 1) are the random effects, b= (by, ..., by) and 0= (B, ¥, 6*). The
joint distribution of (Y}, b;) is

Y, XBl[Z¥Z,+0*> Z¥
~ 1
[bi] NG 0 ][ vz, D (16}

where the row for Y; is the observed-data model.
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The EM algorithm generated by Model O is as follows.

E step. Impute the random effects and their cross-products by regression of b; on Y;,

Y, — XipY
bgtﬂ) = E(b;| Yopss 00)) - (02)(0 + Zyp0z. lP(t)Zi’ an
@) n(t)
D = E(bybi Yo, 0) = B DB Y 4 90— A (18)

(0% +Z¥W9Z,

M step. Let D,=(X}, Y,— Z;b!'*V) be the current data, i.e. covariates and working
response deviations for the ith observation, and let C =Y, E(D;D;|0Y, Y,,,) be the
expected cross-product matrix, which can be calculated according to the results
in the E step. Then (B**Y,(6*)*"Y) can be found from the last column or row of
SWEEP[1,...,p]C, where SWEEP is the sweep operator, e.g. Little & Rubin (1987,
pp. 112-9). Also, update ¥ with

lP(H—l):% i ngﬁ—l). (19)

i=1

Since this implementation is often criticised for its slow convergence, we consider param-
eter expansion for acceleration. Note that, in the above M step, the updated parameter
PE*D is the average of the set of imputed b;b; in (18), and the model covariance between
Y, and b; is fixed at P¢*VZ,. This covariance does not in general reflect the relationship
between the imputed random effects b *» and the known Y;. To adjust for the deviations,
we expand Model O to

q q

Model X: Y@, by~ XiB, + Ziobi+ o= X+ Y Y apZibu+ e, (20)
j=1k=1

bi|®~Nq(0a lP*)a ei|®~N(09 O'i), biJ—eia (21)

with parameter © =(f,, 02, ¥,,, ®); the value of o in the original model is the (g x q)
identity matrix I. Under Model X, we have Y;|® ~ X8, + N(0, Z,a¥,a'Z; + 6%), so 0 is
identified as 0 =(p, 6%, W)= R(®)=(B,, 02, «¥, ). The PX-EM algorithm is as follows.

PX-E step. This is unchanged from EMm.
PX-M step. Write (20) in Model X in the following standard linear regression form:
Y, ~ XB, + {vec(Z;b})}' vec(a) + e;.

Let D,=[X}, {vec(Z;b})}’, Y;] be the current data for the ith observation, and let
C=Y,E(D:D;|®Y, Y,,) be the expected cross-product matrix, which can be calcu-
lated according to the results in the E step. Then B¢*Y, vec(a®*?) and (¢3)**" can
be found from the last column of SWEEP[1,...,p+¢*]C. Also update ¥, as in (19).
Reduction to the original parameters gives B¢*Y=pU*D (¢?) 1+ =(¢2)** and
WD = gt DPEF D F DT

Parameter expansion uses o to collect the information in the extra regression structure,
uses W, to collect the information in the sample covariance matrix of the random effects,
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and then combines the two pieces of information to find the new estimate for ¥. As
suggested by the numerical study to be described, when the residual variance 62 is much
larger than the random effects variability Y, Z;¥Z;/N, the original EM can be extremely
slow, but PX-EM can be very fast.

Alternatively, Meng & van Dyk (1998) propose the following efficient augmentation
scheme, where the ¢; = Chol(W )b, are used as missing data, Chol(.) denotes the Cholesky
decomposition, and the unexpanded complete-data model is

Model U: Y6, ¢;~ X!f + Z; Chol(¥)c; + N(0, 62), (22)
cl0~N,(0,I), &]6~N(0,0%), ¢ Le;. (23)

They report that the EM implementation generated by this model usually, but not always,
converges faster than the one generated by Model O, and the gain can be dramatic when
the residual variance o2 is large. Our PX-EM scheme can also be applied to Model U by
adding an auxiliary covariance matrix parameter in ¢;|0 ~ N,(0, I) and auxiliary param-
eters for the components in the upper triangular part of Chol(¥). The resulting PX-EM is
identical to the implementation generated by Model X. Hence, we expect our PX-EM to
be superior to EM on either Model O or Model U.

Consider the following simple numerical example, where we simulate data with
N=100,p=2,9q=2, X;=(1,i), B'=(0,0), z; ~ N(0, I,), ¥ = I and various values for ¢°.
The starting point is chosen at f'=(0,0), ¥ =1, and ¢* = 10, and the convergence cri-
terion is |0¢*D —0® |, < 107°. Table 1 displays the comparison, in terms of the numbers
of iterations required to converge for various values of o2, for the EM generated by Model O,
EM,, the EM generated by Model U, EMy, and the EM generated by Model X, px-EM. We
report one dataset for each ¢% based on our limited experience, the results change little
for different simulations with the same o2 or for different starting values.

Table 1. Comparison of numbers of iterations to con-
vergence for three algorithms

2

o2 = 2_1 2

o’=% o?=1 o¢?’=1 o*=4 o*=25

Sk

EMq 197 136 243 830 6657 12935
EMy 260 173 239 452 547 466
PX-EM 190 88 59 140 140 93

Table 1 shows that, in these simulations, PX-EM is faster than both EMy and EMg. When
o? is small, PX-EM behaves like EM,,, but EMy is slower than both EMy and Px-EM. When
o2 is large, Px-EM and EMy are much faster than EM,.

The extension to multivariate responses is straightforward. The method of Laird et al.
(1987) for updating f, which is also discussed by Liu & Rubin (1994a,b), can be
incorporated. Also, ECME can be incorporated with an M step that maximises the con-
strained actual likelihood over 62 As is noticed by J. Schafer in an unpublished report,
see also Lindstrom & Bates (1988), this M step has a closed-form solution with the
reparameterisation ¥ = o*®. Some components in the mean parameter of b;|0 ~ N,(0, ¥)
can also be activated depending on {X;, Z;}; such over-parameterisation is related to the
reparameterisation introduced by Gelfand, Sahu & Carlin (1995).

4-2. Factor analysis

Factor analysis is a standard tool in multivariate analysis. It can be viewed as the
normal linear regression analysis of an observed p-dimensional random variable Y on an
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unobserved variable Z consisting of g < p factors that are themselves normal; the key
assumption allowing estimation despite all Z being missing is that the components of Y

are conditionally independent given Z. To be more specific, let Y,,, = {Y;, ..., Yy} be the
observed data, and let Z={Z,, ..., Zy} be the unknown factors; then the complete-data
model is
Model O: Y|Z,0~N,(BZ, %),
ZileNNq(O’ I)a

for i=1,...,N, where  (p xq) is called the factor-loading matrix, I is the (g x q)
identity matrix, £ = Diag(s?, ..., 02) is called the uniquenesses matrix, and 0 =(f, X).
Under Model O, the observed-data model, after integrating out the unobserved factors
{Zi,i=1,...,N}, is Y|B, 2~ N,(0, Bp’+ X). The following is a description of the Em
algorithm generated by Model O; also see Rubin & Thayer (1982). Let

i=1 i=1 i=1
be the three sufficient statistics for the two parameters  and X.

E step. Calculate the expected sufficient statistics
Cg)tz+ D= E(Cyz | Yobsa 0) = nyya sztz+ D= E(sz | Yobsa 0) = ’V/ny'y + Aa

where y and A are the regression coefficients and the residual covariance matrix of Z on
Y given 0®. More precisely, let

B(t)’ O£ xO O’
oM )

be the current variance-covariance matrix of (Y, Z); then y and A are obtained from the
last g columns of SWEEP[1,..., p]B.

M step. Define the cross-product matrix

(t+1)

C=< c, C4% )
+1) +1) J°

C‘y‘z yYooCcery

Then f¢*Y and Z¢*Y are obtained from the last g columns of SWEEP[1, ..., p]C.
Model O can be expanded to
Model X: Yi|Zi, © ~ N,(B,Z:, Z,),
Z;|® ~ N,(0, o),

where © =(f,, o, @), with o being the auxiliary parameter, which has C_, as its natural
sufficient statistic. Under Model X, Y;|® ~ N(0, B, a8, + Z,), so

0=(,X)=(B, Chol(x), Z,).
The px-gM algorithm is as follows.
PX-E step. This is unchanged from EMm.

PX-M step. The computations for f¢* and ¢* Y are the same as those for f¢*V and
D

b p * * . . . .

(¢®)“* Y in the M step of EM, and a“ "D = C¢*?, Reduction to the original parameters gives

E(t+1) — Zg+1), ﬂ(t+1) — ﬁg+1) ChOl(Ot(t+ 1))'
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The idea underlying the px-M step is to adjust the estimation for the deviations between
CYY and its expectation under Model O, I. Model X and its EM implementation were also
considered by Rubin & Thayer (1982), but without the benefit of our general perspective.

In a simple simulation study, we chose p =2, ¢ = 1, with ¥ = I and various f. We started
both the original EM and PXx-EM from the true values of the parameters, with the conver-
gence criterion being || 0¢*Y — 0@ <1071° When f=(1, 1), both algorithms conver-
ged very quickly; 26 iterations for px-EM and 37 iterations for the original EM. When
B =(10,10), px-EM converged in 26 iterations, but the original EM took 1765 iterations.
When f = (100, 100)’, px-EM still converged in only 26 iterations, but the original EM took
151322 iterations. This suggests that the gain can be very large when the magnitude of
the factor loading matrix f is large relative to the magnitude of the uniqueness matrix X,
which is also confirmed by calculations for some simple cases using results in § 3-3. The
PX-EM algorithm can also be applied to accelerate the ECME algorithm for factor analysis
with missing data (Liu & Rubin, 1998).

. 4-:3. Probit regression

Let Y,ps=1{Y;,..., Yy} be the set of observed 0/1 random variables, which follow the
model Y;|0 ~ Bernoulli {®(X;0)}, independently, where X; (p x 1) are the covariates, and
® is the standard normal cumulative distribution function. In the conventional EmM
implementation, Y, is augmented to Y., = {(Y;, Z,), ..., (Yy, Zy)}, which follows

Model C: Y, =sgn(Z,), (24)
Z;|0~X;0+N(0,1), (25)
where sgn(z) =1 if z> 0, and sgn(z) = 0 otherwise.
The following is a description of the EM implementation generated by Model O.
E step. Impute Z; according to a truncated normal;

H® 'H® Y Ya 21 10) : _
Z?+1)=E(Zi|Yobs= 0(1))= Xtet +¢(X10t)/{1 (I)( Xze( )} lf Yl_la
X{09 — p(X;09)/0(— X;00) if =0,

where ¢ is the probability density function of the standard normal distribution.

M step. Regress {Z{!*V,i=1,...,N} on {X;,i=1,..., N} to obtain 8“*V, where the
regression can be accomplished by SWEEP.

Note that only the imputed first-moment statistic 3, Z¢*? is used in EM, because the
residual variance in (25) in Model O is a hidden parameter frozen at 1, but we can activate
the variance structure by the following expanded model:

Model X: Y, =sgn(Z,),
Z,|®~Xi0, + N(0,a?),

where ® =(0,, «*), and the second-moment statistic becomes a sufficient statistic of
Model X. Under Model X, the observed data follow Z;|® ~ Bernoulli {® (X0, /x)}, so
0 =0, /0. The PX-EM algorithm is as follows.

PX-E step. Compute Z{! "V = E{Z;|Yps, @ = (09, «,)} in the same way as in the E step
of the conventional EM described above, and

E(Z}|Yops, ©) = (Z{ VP + 1 = X;09(Z{ D — X[09).
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PX-M step. Let D;,=(X}, Z;), and compute the cross-product matrix of the data D,
C =Y, E(D;D;| Yy, ®®) according to the results in the E step. Then 0¢{*V and (x?)** Y
are obtained from the last column of sSwWegp[1, ..., p]C. Reduction to the original param-
eter gives 00D =9 D/ D,

We use the Kyphosis data in S (Chambers & Hastie, 1992, p. 200) for a numerical
example, where the outcome is the presence or absence of a postoperative deformity and
there are three continuous covariates, Age, Number and Start. We fit a probit model to
this dataset using the original EM and Px-EM starting from all coefficients equal to zero
and with convergence criterion being ||0¢* D —0®| < 1071, It takes the original EM 106
iterations to converge but PX-EM only 63.

Calculations for simple cases suggest that the gain in the rate of convergence for PX-Em
can be significant when the B coefficients are large relative to (X'X)~!. We therefore
simulate a modified dataset, where the covariates remain unchanged but the outcome
variable is simulated by setting the coefficients for intercept, Age, Number and Start at
0,0, 3, —1 respectively. We use 3 and — 1 for the coefficients of Number and Start because
both Number and Start are positive, with the magnitude of the latter three times the
magnitude of the former. The original EM took 173 988 iterations to converge, whereas
PX-EM took only 2301 iterations.

4-4. Poisson imaging model
The EM algorithm has become an important computational method in image reconstruction
problems since Shepp & Vardi (1982), Vardi, Shepp & Kaufman (1985) and Lange & Carson
(1984). Recently, Fessler & Hero (1994) proposed a method to accelerate EM significantly
using efficient data augmentation. The following is a version of the simplified model.
Let Y., = {Y;, ..., Yy} be the observed data, which follow the model Y;|0 ~ Po(k;0 + r;),

independently, for i=1,..., N, where 0 is an unknown positive scalar, and {kq, ..., ky}

and {ry,...,ry} are known positive constants. The conventional EM algorithm augments

Yoo to Yoo ={(Z1, Ry),...,(Zy, Ry)}, where Y, = Z; + R;, and the complete-data model is
Model O: Y=Z,+R;, Z; LR,

Z;|0 ~Po(k;0), R;|0~Po(r),

where Z; can be considered as signal and R; as residual noise.
The Em generated by Model O can often be very slow. For acceleration, Fessler & Hero
(1994) propose the following set of unexpanded complete-data models indexed by a,.

Model U(ay): Y=Z,+R;, Z;LR,
Z;10 ~Po{ki(0+ay)}, R;|0~Po(r;—k;ap),

where a, is a positive constant in [0, min {r;/k;,}]. For fixed a,, Model U(a,) leads to the
following EM implementation.

E step. Fori=1,...,N,
ki(0© + ao)
k0O +r, "
M step. Fit Model U(ay) under the constraint that 0 is positive:

I.V . Z(t+1)
= 1
(A =max<lzzv4k — dg, 0>.
i=1"™

t+1
Z{+y =
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The conventional EM corresponds to a, = 0. Fessler & Hero (1994) show that the rate
of convergence of EM generated by Model U(a,) is a monotone function of a,y, which
achieves its maximum at the largest possible value of a,, min {r;/k;}.

The Em generated by Model U(a,) can be understood as a px-EM. First, we rewrite
Model O as

Model O.1: K=Z,+ Ui+Ri’ Z[_L Ui_LRi,
Z;|0 ~Po(k;0), U;|0~ Po(ka,), R;|0 ~ Po(r; — ayk;),

which is equivalent to Model O in the sense that they lead to identical EM implementations.
However, Model O.1 splits a piece U; from the original residual R; in Model O, thus
allowing us to expand Model O.1 by activating the hidden fixed parameter a, in the model
structure for U;:

MOdel X: Y[=Z[+ Ui+Ri> Z[J_ Ui_LRi,
Z;|0~ Po(kie*), U;|® ~ Po(k;x), R;|® ~Po(r;— aok;),

where © = (0, «); o is the hidden parameter in the original model with sufficient statistic
Y., U, where =0, + a — a,. We therefore have the following PX-EM.

PX-E step. Fori=1,...,N,

® ®
gorn_ K0T gern _ B0
' k0® +r, "0 T ki 0®+r, "
PX-M step. Let
Z—=ZIiV=IZ$"t+1) (7= §V=1U§t+1)
ziv=1 k; ’ ng=1 k;

Then we have that (0$*Y, " V) =(Z, U) if Z+ U — a, > 0; otherwise (0¢* D, a*D) lies
on the line 6, +a«—ay,=0. The reduction to the original parameter gives §¢*1 =
08D 4 ot+ D) g

It is easy to verify that this implementation is equivalent to the one generated by
Model U(a,). Statistically, Px-EM makes use of an auxiliary statistic 2, U; out of the
residuals, and adjusts for the deviation between Y., U™ V/Y. k; and its expectation under
Model O.1, ao. If ao <min {r;/k;}, there is still room for us to split one more piece V;
besides U; from the residual R; for more adjustment. Therefore, the optimal a, is
min {r;/k;}.

5. DiscussioN

When the observed data are augmented to the complete data, the estimation of the
original parameters in the M step is simpler than maximum likelihood estimation from
the observed data. Moreover, this augmentation often provides extra information that
can be used for adjustment to improve the M step estimation. The basic machinery of
PX-EM expands the complete-data model to allow efficient use of the imputed data to find
the maximum likelihood estimate in the observed-data model. The PX-EM algorithm is
simple to design and also simple to program, and maintains the stable convergence of all
EM-type algorithms, often with significantly accelerated speed.
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The Px-EM algorithm is not, however, without its limitations. In some EM implemen-
tations, the best expanded model can be the original EM model itself. For instance, we
have yet to find a parameter expansion scheme for mixture models, e.g. Titterington, Smith
& Makov (1985), which is an important application of EM. Also, finding the parameter
expansion scheme is still a matter of art, just like implementing EM itself. A vague guideline
is to look for hidden mean parameters and scale parameters, but we are unable to provide
a general rule.

Philosophically, our parameter expansion and Meng & van Dyk’s (1997) efficient aug-
mentation are two complementary ideas in the art of implementing EM-type algorithms:
PX-EM works along the analysis dimension, in the sense that the altered maximisation
takes place at each M step, whereas efficient augmentation works along the design dimen-
sion in the sense that an a priori maximisation is used to design a more efficient EMm.
Technically, however, efficient augmentation can often be viewed as a special case of
PX-EM, where the px-M step is performed under the constraint o = f,(6), for some function
findexed by a working parameter a, with both f and a chosen before the algorithm starts.
That is, the reparameterisation in efficient augmentation can often be derived from the
over-parameterisation in PX-EM. Finding optimal f and a is impossible in general because
the fraction of missing information can depend on the unknown maximum likelihood
estimate. In fact, according to the result in § 3-3, the unconstrained Px-M step can always
lead to a faster algorithm than fixing a at any value.

Since the Gibbs sampler and the data augmentation algorithm (Gelfand & Smith, 1990;
Tanner & Wong, 1987) can typically be considered as Bayesian/stochastic versions of
EM-type algorithms, the idea of parameter expansion also applies to them by placing a
prior distribution on the auxiliary parameter a. As established by Liu, Wong & Kong
(1994), the rate of convergence of the data augmentation algorithm can often be character-
ised by the autocorrelation of the simulated parameters, and this autocorrelation is actually
the Bayesian fraction of missing information mentioned in § 3. As a result of the extra
variation brought by the auxiliary parameter, the PX-EM version of the data augmentation
algorithm will have a smaller fraction of missing information, and therefore a smaller
autocorrelation and thus a faster rate of convergence under quite general conditions.
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