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Abstract

This article proposes a statistical model for image
patches of object shapes, in the form of additive composi-
tion of a set of linear bases selected from a large dictionary,
such as Gabor wavelets at different locations, orientations
and scales. The model has the following three features in
terms of the selected bases. Sparsity: only a small number
of salient bases should be selected to represent any image
patch with small error. Commonality: the selected bases
for image patches of the same object category should be
as common as possible, so that these image patches can be
modelled by shared bases. Shiftability: the shared bases
are allowed to locally shift their locations, orientationsand
scales within limited range to represent each individual im-
age patch of an object category. This model can be used to
select the bases and learn their compositions for a training
sample of image patches. The computation can be accom-
plished using what we call the shared sketch by shiftable
bases. We show several experiments to illustrate the model
and the algorithm.

1. Introduction

1.1. Motivation and foundation

Pattern theory as advocated by Grenander [2] and Mum-
ford [5] postulates a generative model in the form ofp(W |
Θ) andp(I | W,Θ), whereI is the image data,W is the
interpretation ofI in terms of what is where, andΘ denotes
parameters (including structural parameters) in the model.
Θ can be learned from training images (with or without the
correspondingW ). With the learnedΘ, computingW for a
given imageI can be guided byp(W | I,Θ), which tells us
what value ofW gives the most plausible explanation ofI.

A number of generative models for various vision tasks
have been proposed in the literature. However, unlike the
HMM in speech recognition, there has not been a generic
modelling scheme that can serve as the common foundation
for different vision tasks. Instead, it is often preferred to
targetp(W | I,Θ) directly in supervised training, without

modellingp(W | Θ) andp(I | W,Θ) explicitly, especially
whenW is simple, such asW ∈ {face, non-face} in face
detection.

While methods targetingp(W | I,Θ) directly have had
considerable successes, it is still desirable to have an im-
age model withp(I | W,Θ). Even though such a genera-
tive model may not synthesize realisticI or provide efficient
compression ofI, it can still provide a context for explain-
ing the image data so that theexplain-away competitioncan
be carried out to select the most plausible interpretation of
a single image, or to discover the most plausible interpreta-
tion of a set of images for unsupervised learning.

In our opinion, the image model that comes the closest to
being the foundation for further developments is the sparse
coding model of Olshausen and Field [6], which is a simple
linear additive model that is built directly on the raw image
intensities. The model is of the formI =

∑

i ciΓi+ǫ, where
{Γi, i = 1, ..., N} is a dictionary of linear bases,ci are their
coefficients, andǫ is the error. The size of the dictionaryN
can be many folds larger than the dimensionality ofI. The
key principle issparsity. That is, for each typical natural
imageI, only a small number ofci should be significantly
different from 0, or in other words, only a small number of
bases should be selected from{Γi}, in order to representI
with small errorǫ. Formally, one can express the sparsity
principle by a regularity function of{ci} such asl1 norm
that encourages sparsity, or by assuming that{ci} follow
some probability distribution that concentrates most of its
probability mass around 0, but has heavy tails to account
for occasionally large values [3]. Olshausen and Field [6]
were able to learn a dictionary of localized, elongate and
orientated linear bases from natural image patches using
this model. These bases resemble Gabor wavelets. Given
a dictionary of linear bases, the matching pursuit algorithm
of Mallat and Zhang [4] can be used to sequentially select a
small number of bases for representing an input image.

Sparsity principle is important for modelling purpose,
because it is easier to model low-dimensional structures
than high-dimensional ones. However, sparsity alone is
clearly inadequate for modelling image patches of different
object categories. In this article, we add two more features
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to the linear sparse coding model, and develop a statistical
model for image patches of objects.

1.2. Commonality and shiftability

The two additional features are commonality and shifta-
bility.

1) Commonality. For image patches of each category,
we want the bases selected for these image patches to be
as common as possible, so that these image patches can
be modelled by shared bases. In terms of probability mod-
elling, we want each selected base to have a very high prob-
ability to be turned on. Of course, for different object cate-
gories, it is preferred that they do not share many common
bases. This feature was inspired by the work of Viola and
Jones [8] on adaboost method for classification. The weak
classifiers selected by their method are in the form of pro-
jecting the image patches onto Harr bases and thresholding
the projection coefficients. The selected Harr bases are used
to characterize all the images, and they are selected to max-
imally tell the face images apart from non-face images. Our
method can be consider a generative version of this scheme,
where the shared bases are selected to maximally explain all
the input image patches. Our method can be easily extended
to modelling multiple object categories in either supervised
or unsupervised learning, where each category has its own
shared set of common bases.

2) Shiftability. Deformation is common in object shapes,
even within the same object category and the same pose.
The selected bases at fixed locations, orientations and scales
may not give optimal representations to all the image
patches, even they are reasonably well aligned. To account
for deformation, we must allow the shared bases to shift
their locations, orientations and scales within limited range
when representing each individual image patch. This fea-
ture was inspired by the work of Riesenhuber and T. Pog-
gio [7] on HMAX model, which is a hierarchical bottom-
up model for object recognition. In their model, the com-
plex cells in V1 are assumed to compute the local maxima
of Gabor filter responses relative to the shift of locations
and scales. Such a maximum pooling mechanism makes
the responses of the complex cells invariant to limited de-
formation as well as changes in scale and pose etc. In
our method, this maximum pooling is incorporated in our
shared sketch algorithm for fitting multiple training images
simultaneously, where the shared bases can shift to the max-
imally tuned locations, orientations and scales in represent-
ing each individual image patch.

Figure1 illustrates commonality and shiftability. There
are three82 × 164 training image patches of cars. The
dictionary of linear bases are Gabor wavelets at 12 differ-
ent orientations with a fixed scale. These Gabor wavelets
can be centered at any pixel within the domain of the im-
age patches. In this figure, each Gabor wavelet is repre-

sented symbolically by a bar of the same position, orienta-
tion and length. In the first row, the left figure displays all
the 61 selected bases. The right figure displays the bases
that are shared by all the three images. The selected Ga-
bor wavelets have little overlaps between them and they are
well connected, so the symbolic representation is essentially
a “sketch” or a line-drawing of the input images. The right
figure in the first row can be considered the common sketch
“averaged” over all the three training images. Clearly, most
of the selected bases displayed in the left figure of the first
row are common to all the three images.

For the rest three rows, the left figure displays the in-
put training image, and the right figure displays the bases
that are actually used to represent the input image on the
left. Most of these bases are shifted versions of the shared
bases displayed in the right figure of the first row. Clearly,
these shared bases can shift their locations and orientations
to represent each individual image.

Figure 1. Top row: the left figure displays all the 61 selected bases,
the right figure displays the bases shared by all the three images.
2nd to 4th rows: the left figure displays the82 × 164 training
image, and the right displays the bases used for representing the
image on the left. A Gabor wavelet is represented symbolically by
a bar at the same location, with the same orientation and length.

It is worth noting that the first training image has strong
edges in the background. However, these edges are not
shared by the other two images. So no Gabor wavelets are
selected to represent them. Also, the car in the second im-
age has a moderately different pose than the other two cars.
But it can still be represented by the shared bases after shift-
ing. Figure2 shows another example for three training im-
ages of horses.

The rest of the article is organized as follows. Section 2
gives the technical details of the model and the algorithm.
Section 3 describes a number of experiments. Section 4
concludes with a brief discussion.
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Figure 2. The size of the training images is118 × 157. 67 bases
are selected in total. See the caption of Figure1 for explanation.

2. Model and Algorithm

2.1. Gabor bases: edges and spectrum

A Gabor function [1] is of the following form:

G(x) =
1

2πσ1σ2

exp{−1

2
(
x2

1

σ2
1

+
x2

2

σ2
2

)}eix1 , (1)

wherex = (x1, x2) ∈ R
2, andi =

√
−1. We can translate,

rotate, and dilate the functionG(x) of (1) to obtain a general
form of Gabor wavelets:Gy,s,θ(x) = G(x̃/s)/s2, where
x̃ = (x̃1, x̃2), x̃1 = (x1 − y1) cos θ − (x2 − y2) sin θ, x̃2 =
(x1 − y1) sin θ + (x2 − y2) cos θ. The central frequency of
Gy,s,θ is (cos θ/s, sin θ/s).

For an imageI(x), the projection coefficient ofI onto
Gy,s,θ or the filter response isry,s,θ = 〈I, Gy,s,θ〉 =
∫

I(x)Gy,s,θ(x)dx. The local energy|ry,s,θ|2 is large if
there is an edge or bar structure aty with scales and orien-
tationθ. The marginal average of local energyE[|ry,s,θ|2]
within an image region estimates the average power spec-
trum around the central frequency ofGy,s,θ.

2.2. Model: composing shared and shiftable bases

To model a sample of training images{Im,m =
1, ...,M}, we can select a small set of bases{Bk, k =
1, ...,K} from a large dictionary{Γi, i = 1, ..., N}, such as
Gabor bases at different locations, orientations and scales,
K ≪ N . In order to represent each imageIm using the se-
lected bases{Bk}, we need to define two sets of variables
to account for commonality and shiftability.

Representing commonality: αm = (αm,k, k = 1, ...,K).
αm,k = 1, if Bk is used to representIm, i.e.,Bk is turned
on forIm. αm,k = 0, if Bk is not used to representIm, i.e.,
Bk is turned off forIm.

Representing shiftability: δm = (δm,k, k = 1, ...,K).
δm,k is defined only ifαm,k = 1, and it denotes the shifting

of Bk in location, orientation and scale in representingIm.
As to the range ofδm,k, the baseBk can shift its location
along its normal direction within a range of a small number
of pixels, and for each shifted location, the base can also
shift its orientation within a small range of angles. We may
also allow the base to change its scale. For notational con-
venience, we may simply denoteBk+δm,k

as the base that
is actually used to representIm.

Representing linear composition: given {Bk} and
{αm, δm},

Im =
∑

αm,k=1

ck,mBk+δm,k
+ ǫ. (2)

Let cm = (cm,k, k = 1, ...,K). In order to model{Im}, we
need to select{Bk}, and model{αm, δm, cm}.

Let’s start from the simplest possible model, and then
generalize it later on.

Modelling commonality: αm,k ∼ Bernoulli (a) indepen-
dently acrossk = 1, ...,K, wherea is the probability that
Bk is turned on forIm. a can be close to 1.

Modelling shiftability: [δm,k|αm,k = 1] follows a uni-
form distribution over∆. ∆ denotes the allowed range of
shift.

Modelling orthogonal composition: We assume that the
bases{Bk+δm,k

, αm,k = 1} that are used to representIm

have little overlap in spatial domain, or if they do overlap
in spatial domain, they have little overlap in frequency do-
main, i.e., in orientation and scale. Thus they have little
correlations between themselves, and we may assume that
these bases are orthogonal to each other.

For clarity, we use matrix notation in what follows. Sup-
poseIm is defined on a latticeD with |D| pixels. We can
vectorizeIm as a|D| × 1 vector. For every Gabor basis
Γi in the dictionary{Γi, i = 1, ..., N}, we can vecotrize it
according to the same order of vectorization. We normalize
everyΓi to have unitl2 norm, so‖Γi‖2 = 1. We normalize
eachIm to have unit marginal variance, so‖Im‖2 = |D|.
This is a sensible thing to do to filter out the effect of overall
lighting variation.

LetBm = (Bk+δm,k
, αm,k = 1), i.e.,Bm is a|D|×Km

matrix whose columns areBk+δm,k
with αm,k = 1, where

Km =
∑

k αm,k. Note thatBm is completely determined
byαm, δm, and vice versa. LetRm = B

′
mIm be theKm×1

vector of projection coefficients or filter responses ofIm on
the basesBk+δm,k

that are used to representIm.
Let B̄m be an|D| × (|D| −Km) matrix whose columns

are orthonormal and also orthogonal to all the column of
Bm. The columns of̄Bm are the residual dimensions, and
R̄m = B̄

′
mIm are the residual error.‖R̄m‖2 = |D| −

‖Rm‖2.
We model the components ofRm to have independent

uniform distributions over[r0, r0 + b], wherer0 is a thresh-
old for the bases to be turned on. GivenRm, R̄m have uni-

3
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form distribution over the sphereΩ = {R̄m : ‖R̄m‖2 =
|D| − ‖Rm‖2}, sop(R̄m | Rm) = 1/|Ω|. According to the
equipartition principle in information theory, if|D| − Km

is large, this uniform distribution is equivalent to assum-
ing that the components of̄Rm follows N(0, σ2

m) indepen-
dently, whereσ2

m = (|D| − ‖R′
m‖2)/(|D| − Km).

The distributionp(Im | Bm)dIm = p(Rm)p(R̄m |
Rm)dRmdR̄m. The dimensions are matched, and the Ja-
cobian is 1 because of the orthogonality. Moreover,

log p(R̄m | Rm) = −1

2
(|D| − Km) log(2πeσ2

m).

If |D| is much large than bothKm and‖Rm‖2, which is the
case in object recognition whereIm can be a large image,
and Bm only models a small patch of it, against a large
background inIm of unit marginal variance, then

−(|D| − Km) log(σ2
m) ≈ ‖Rm‖2.

Likelihood function: Let B = (Bk, k = 1, ...,K) denote
all the selected bases. Assuming the above approximation
to be exact, then the joint distribution is:

p(Im,Bm | B) =
1

2
‖Rm‖2 + λKm,

where

λ = log(a/(1 − a)) − [log(|∆|b) − log(2πe)/2],

where the first term is the award for commonality, and the
second term is the cost for coding the shift and coefficient
of a selected base versus leaving it to residual dimensions.

p(Im | B) can be obtained by integrating outαm andδm.
Using

∑

m log p(Im | B) as the likelihood, we can learn
B from a sample of training images{Im,m = 1, ...,M}
of a certain object category. After learningB, we can use
p(I | B) to get the likelihood that a testing imageI belongs
to the same category.

Usually,p(Im,Bm | B) is highly peaked, so that we can
estimateαm andδm accurately at their posterior modes that
maximizesp(Im,Bm | B). Sop(Im | B) can be approxi-
mated byp(Im,Bm | B) by plugging in estimatedBm.

2.3. Algorithm: shared sketch by shiftable bases

We develop a shared sketch algorithm for selecting bases
B and their shifted versions{Bm}. Similar to the match-
ing pursuit algorithm of Mallat and Zhang [4], the shared
sketch algorithm is a greedy one. At each step, it selects a
base from the dictionary, and attempt its shifted versions on
all the input images simultaneously. If a shifted version is
used to represent an image, then this shifted version inhibits
all the other overlapping bases from representing the same
image. For two basesΓi andΓj , they are not overlapping

if their correlation〈Γi,Γj〉 is below a predefined threshold
(e.g., .01).

The following is a detailed description of the algorithm.
We use the notationi to label the bases in the dictionary
{Γi, i = 1, ..., N}, and we usek to label the selected bases
{Bk, k = 1, ...,K}. i andk run through two distinct sets.

Step 0:Initialization and thresholding. For i = 1 to N ,
for m = 1 to M , computerm,i = 〈Im,Γi〉. If |rm,i| < r0,
setrm,i = 0. Let k = 1.

Step 1:Attempt shared shiftable fitting for all candidate
bases. For i = 1 to N , for m = 1 to M , do the following.
For δm,i ∈ ∆, if all rm,i+δm,i

= 0, setαm,i = 0. Other-

wise, letδ̂m,i be the one with the maximumrm,i+δm,i
, and

setαm,i = 1.
Step 2:Select the best fitting base for shared sketch. For

i = 1 to N , compute

Li =
1

M

∑

m:αm,i=1

[

1

2
r2

m,i+δ̂m,i
+ λ

]

.

Let j be the base such thatLj ≥ Li for i = 1, ..., N . Then
let Bk = Γj . Form = 1 to M , if αm,j = 1, let αm,k = 1,
let δm,k = δ̂m,j , and letrm,k = rm,j+δ̂m,j

(note thatk and
j belong to two distinct sets).

Step 3:Inhibit overlapping bases. For m = 1 to M , if
αm,k = 1, do the following. Fori = 1 to N , if Γi overlaps
with Bk+δm,k

= Γm,j+δ̂m,j
, setrm,i = 0.

Step 4:Stopping criterion. If Lj is below a pre-defined
threshold, then letK = k, stop. Otherwise, letk = k + 1,
and go back to Step 1.

The threshold onLj corresponds to a prior distribution
onK, which prefers small value.

2.4. Nonorthogonality and scale-specific sketch

Before going to experimental results, we would like to
explain two important issues.

Nonorthogonality: For nonorthogonalBm, let Rm =
B

′
mIm be theKm × 1 vector of projection coefficients.

The projection ofIm on the subspace spanned by the bases
in Bm is Jm = Bm(B′

mBm)−1Rm = BmCm. Jm

is the reconstructed image withCm being theKm × 1
vector of least squares reconstruction coefficients,Cm =
(B′

mBm)−1Rm. ‖Jm‖2 = R′
m(B′

mBm)−1Rm.
Let R̄m = B̄mIm. Recall thatB̄m consists of orthonor-

mal columns that are orthogonal to the bases inB. Given
Rm, R̄m have uniform distribution over the sphereΩ =
{R̄m : ‖R̄m‖2 = |D| − ‖Jm‖2}, which is equivalent to
independentN(0, σ2

m), with σ2
m = (|D| − ‖J′

m‖2)/(|D| −
Km). Then

p(Im | Bm) = f(Rm)f(R̄m | Rm)|det(B′
mBm)|1/2,

wheref(Rm) is the distribution of the responsesRm, and

4
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|det(B′
mB)|1/2 is the Jacobian of the linear change of vari-

able(R′
m, R̄′

m)′ = (Bm, B̄m)′Im. Thus

p(Im,Bm | B) = λKm +

1

2

[

R′
m(B′

mBm)−1Rm + log |det(B′
mBm)|

]

.

This can be used to modify the shared sketch algorithm.
When attempting to add a new baseΓi to Bm in the algo-
rithm, and compute the changes inR′

m(B′
mBm)−1Rm and

det(B′
mBm), we can perform a Gram-Schmidt orthogonal-

ization ofΓi byBm. This step can be naturally incorporated
into the shared sketch algorithm as a form of soft inhibition
that replaces the hard inhibition in the Step 3 of the original
algorithm.

Scale-specific sketch:In a given image, different pat-
terns may appear at different scales, and these patterns may
be organized into hierarchical whole-part relationships.It
is therefore desirable to perform separate sketches at dif-
ferent scale ranges or frequency bands, and then orga-
nize them into hierarchical relationships, instead of per-
forming a single sketch using Gabor bases across all the
scales. LetF be the range of frequencies covered by the
Gabor bases within a relatively narrow range of scales.
Then these Gabor bases are trying to fit the band-pass im-
age within the frequency bandF . Specifically, letIm =
∑

ω Îm(ω) exp(iωx), where Îm is the discrete Fourier
transform ofIm. Then these Gabor bases are trying to fit
Im(F ) =

∑

|ω|∈F Îm(ω) exp(iωx), while neglecting all
the rest of the frequency components outsideF .

Recall that we normalize the input imageIm to unit
marginal variance. That is, for an inputIm, we compute
S2 = ‖Im‖2/|D|, and then changeIm to Im/S. This
amounts to normalizingrm,i = 〈Im,Γi〉/S. Because the
band-passIm(F ) is the image that is being fitted, it is more
reasonable to normalizeIm(F ). Specifically,S2(F ) =

‖Im(F )‖2/|D| =
∑

|ω|∈F |Îm(ω)|2/|F |, where|F | is the
number of frequency components inF , andS2(F ) is the
average spectrum ofIm within F . So we should normalize
rm,i = 〈Im,Γi〉/S(F ). The average spectrumS(F ) can
be estimated by the average of{|〈Im,Γi〉|2} for all those
candidatesΓi within this frequency bandF .

In this band-pass setting, the dimensionality ofIm(F )

is |F | with its |F | Fourier componentŝIm(ω). After pro-
jecting Im onto the selected orthogonal basesBm to get
Rm = B

′
mIm, there are|F | − Km dimensions left for

B̄m, andR̄m = B̄
′
mI belongs to the sphereΩ = {R̄m :

‖R̄m‖2 = |F | − ‖Rm‖2}. The argument in the previous
subsection still follows through.

3. Experiments

4. Discussion
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