Visual Learning By Integrating Descriptive and Generative Methods

Cheng-en Guo, Song-Chun Zhu

Ohio State University
{cguo, szhu}@cis.ohio-state.edu

Abstract !

This paper presents a mathematical framework for
visual learning that integrates two popular statistical
learning paradigms in the literature: I). Descriptive
learning, such as Markov random fields and minimaz
entropy learning, and II). Generative learning, such as
PCA, ICA, TCA, image coding and HMM. We apply
this integrated learning framework to texton modeling,
and we assume that an observed texture image is gen-
erated by multiple layers of hidden stochastic “texton
processes” with each texton being a window function,
like a mini-template or ¢ wavelet, under affine trans-
formations. The spatial arrangements of the textons
are characterized by minimaz entropy models. The tez-
ton processes generate images by occlusion or linear
addition. Thus given a raw input image, the learn-
ing framework achieves four goals: i). Computing the
appearance of the textons. i4i). Inferring the hidden
stochastic texton processes. iii). Learning Gibbs mod-
els for each texton process. and iv). Verifying the
learnt textons and Gibbs models through random sam-
pling and texture synthesis. The integrated framework
subsumes the minimaz entropy learning paradigm and
creates a richer class of probability models for visual
patterns, which are suited for middle level vision repre-
sentations. Furthermore we show that the integration
of descriptive and generative methods yields a natural
and general framework of visual learning. We demon-
strate the proposed framework and algorithms on many
real images.

1 Introduction

In Bayesian statistical image analysis, an important
task is to learn probabilistic models that characterize
visual patterns in real images. Existing methods for
learning statistical models are generally divided into
two categories. In this paper, we call one the descrip-
tive method and the other generative method.

I). Descriptive method characterizes visual patterns
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by imposing statistical constraints and thus learns
models at a “signal” level. This includes Markov ran-
dom fields, minimax entropy learning(13], deformable
models. For example, recent work on texture mod-
eling fall in this category[13, 11]. These models are
built on pixel intensities through complex interactions
between image features, which are often reflected by
complicated Gibbs potential functions. The shortcom-
ing is that they do not capture high level semantics in
the patterns. For example, a Gibbs model of texture
can realize a cheetah skin pattern but it does not have
explicit notion of individual blobs.

IT). In contrast to descriptive method, generative
method infers hidden causes (or semantics) from raw
signals, and thus can learns hierarchical models. Ex-
amples of generative method are principle compo-
nent analysis (PCA), independent component analysis
(ICA), transformed component analysis (TCA)[2], im-
age coding[9], and hidden Markov models (HMM). As

_a recent review paper[10] pointed out, existing genera-
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tive models mentioned above suffer from the simplified
assumption that hidden variables are independent and
identically distributed. Therefore they are not pow-
erful enough to model realistic visual patterns. For
example, an image coding model cannot synthesize a
texture patterns through random sampling.

In this paper, we present a visual learning paradigm
that integrates both descriptive and generative meth-
ods and we apply this learning paradigm to modeling
texton patterns.

In early vision, a fundamental observation, dated
back to Marr’s primal sketch[8], is that natural visual
patterns consist of multiple layers of stochastic pro-
cesses. An example is shown in Fig. 1.a. When we
look at this pattern, we perceive not only ‘the texture
“impression” and pixels but also the repeated elements
for the ivy and bricks. In psychology, basic texture el-
ements are called “texton” or “texel” vaguely[5], and a
precise mathematical definition has yet to be found. In
this paper, we propose to study a multiple layer gener-
ative model as Fig. 1 illustrates. It has three stochastic
processes — two for the ivy and brick patterns respec-



tively with two distinct “textons” and the third for
noise process. The stochastic processes are hidden and
the image is the only observable signal.

a). A visual pattern

I(T\V)

b). A generative model with three layers

Figure 1: ¥, is a texton window function, T; is a texton
process with texton elements ¥;, and I(T;;;),7 = 1,2
are texton images.

Given an input image, the integrated learning frame-
work achieves the following four objectives.

1. Learning the texton for each stochastic process. A
texton is a represented as a window function, like
a mini-template or wavelets.

. Inferring the hidden stochastic processes each be-
ing a spatial pattern with a number of textons sub-
ject to affine transformations.

. Learning minimax entropy models for the hidden
processes.

. Verifying the learnt textons and generative models
through random sampling.

Furthermore we observed for hidden layers if there
is no further hidden layer behind, the hidden variables
must be characterized by the descriptive method, i.e.
the minimax entropy models. Thus descriptive models
are precursors of generative models, and Learning pro-
cess evolves by discovering hidden causes. So the two
learning paradigms must be integrated.
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The integrated learning framework makes three in-
teresting contributions to visual learning. 1). It sub-
sumes the minimax entropy learning paradigm by ex-
tending from pixels to textons and creates a richer class
of probability models for visual patterns. It is easy to
show that existing texture models are special cases of
this model where the textons are single pixels. 2). It
introduces the minimax entropy learning paradigm for
modeling hidden variables in generative models, and
thus subsumes and extends existing generative mod-
els such as PCA, ICA, and TCAJ[2]. 3). It can auto-
matically learn textons from images as the transformed
components under the generative model. Our work is
different from [6, 7] which used the clustering method
in feature spaces of filter response. As a result, texton
elements at various translations, rotations and scales
are treated as distinct textons{7]. We demonstrate the
proposed framework and algorithms on a number of
real images.

2 Background on Visual Learning

Given a set of observable
signals § = {Igb®, I%s, ..., I%*}. Without loss of gener-
ality, we assume the observable signals are raw images.
The goal of visual learning is to estimate a probabilis-
tic model p(I) from S so that p(I) approaches the un-
derlying frequency f(I), which governs the ensemble
of signals in an application, in terms of minimizing a
Kullback-Leibler divergence K L(f(I){|p(I)) between f
and p. This leads to the standard maximum likelihood
estimator (MLE).

M
t = i D||p(I)) = obsy,
p* = arg min KL(f(D)||p(1)) arg;}gg}g;logp(lz )

(1)
2, is the family of distributions where p* is searched
for. One general procedure is to search for p in a se-
quence of nested probability families,

QWCC--CU—- Q> f

k indexes the dimensionality of the space, for example,
k could be the number of free parameters in a model.
As k increases, the probability family should be general
enough to contain the true distribution f(I).

There are only two choices of families 2, in the lit-
erature and both are general enough for approximating
any distributions f(I).

The first choice is the exponential family of models,
which is derived by descriptive method, and has deep
root in statistical mechanics. A descriptive method
extracts a set of K features as deterministic trans-
forms, and computes the statistics for these features
across images in S. The statistics are denoted by



¢;(I),j = 1,2,...,K. Then it constructs a model p
through imposing descriptive constraints so that p re-
produces the observed statistics while having maxi-
mum entropy. This leads to the following Gibbs form
with 8 = (61, ..., Bk ) are the parameters for the model,

1

K
P(;B) = 75y op{- > Bid;M}.
j=1

The descriptive learning method augments the dimen-
sion of the space 2, by increasing the number of fea-
ture statistics and generating a sequence of exponential
families,

Qf{codc.-0k - Q.

This family includes all the MRF and minimax entropy
models for texture[13].

The second choice is the mizture family of models,
which is derived from integration or summation over
some hidden variables W = (wy, wa, ..., wg).

k
p(1;0) = [+ [ oL, wa, . we; ©) [ .
=1

In this way, we assume that there exists a joint prob-
ability distribution f(I, W), and that W generates I
and W should be inferred from I, instead of being
computed as deterministic transforms. The generative
method incrementally adds hidden variables to aug-
ment the space 2, and thus generates a sequence of
mixture families,

Mcc.--c—-Q,3f.

For example, in PCA and image coding[9], a simply
generative model is an addition of some window func-
tions ¥;,72 = 1,2, ..., M, such as over-complete wavelet
bases, eigen vectors plus an iid Gaussian noise process
n.

K
I= Z a;V;+n; o~ p(a) Yi.
i=1

In this example, the parameters are the K bases (or
eigen vectors) © = {¥y,..., ¥} and the hidden vari-
ables are the K coefliciencies of bases (or eigen vectors)
plus the noise W = (aq,as, ..., ax, n).

The forms of a mixture model p(I; ©) are decided
by the distribution of the hidden variables W. The
latter must be from descriptive families. However, in
the literature, hidden variables a;,7 = 1,2,..., K are
assumed to be iid Gaussian or Laplacian distributed.
Thus the concept of descriptive models are trivialized.

In the following section, we study a learning
paradigm that integrates both families and some in-
teresting relationships are revealed.
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3 An IntegratedsLearning Framework
3.1 A generative model of texture

In this section, we study a multi-layer generative
model as Fig 1.b shows. We assume that a texture
image I is generated by L layers of stochastic processes
while each layer consists of a finite number of distinct
elements, called “textons”, which are image patches
transformed from one square image template ¥;. The
jth texton in layer i is represented by six transform
variables on the template ¥; as

Tij = (245, Yij> 035, Tij, 0> Aij),

where (z;7,y;;) represents the texton center location.
o3 is the scale of the size, 7;; is called “shear” com-
pressing the width of the texton, 6;; is the orientation,
and A;; denotes photometric transforms such as light-
ing variability. The transformation operator on Tj; is
denoted by G[T;;]. The pixel domain in which the tex-
ton Ty covers is denoted as D;; = D[T;;]. Thus the
image patch Ip,; of a texton Tj; is derived by

Ip, =G[Ty] 0¥,
where ® denotes the transformation operation. Texton

examples at different scales, shears, and orientations
are shown in Fig. 2.

). Template ¥ ©).12%120=0.8 c). 12%6 0=08 ). 12% 0=0.8
15%15 0=1.0 7=1.0 =00 7=0.5 §=0° 0.5 §=30°
7=1.0 8=0°

Figure 2: Texton examples at different scales, shears,
and orientations.

We define all textons in layer ¢ as a “texton map”
T; = (ni, {Tij,j = 1...n:}),i=1... L,

where n; is the number of textons in layer 1.

In each layer, the texton map T; and the template
¥; generate an image I; = I(T;; ¥;) deterministically.
If several textons overlap at site (z,y) in I;, the pixel
value is averaged as

Z;Ilzl 6((I,y) € Dij)ID.‘j (‘le)
Yiti8((x,y) € Dy)

where 6(e) = 1if e is true, otherwise §(¢) = 0. In image
I;, pixels not covered by the textons are transparent.

Ii(zvy) =



Then the final image I is generated by the following
model as

I=1(T1;; %) @ T2;92) @ --@ I(Tr; ¥L) + n. (2)

The symbol @ denotes occlusion or linear addition, i.e.
I; @1, means I; occludes I. In this generative model,
the hidden variables are

T = (La{(Tndz) 1= 1!27""1‘}) ll),

where d; indexes the order (or relative depth) of the
i-th layer. n is the noise process. The pixel value at
site (z,y) in the image I is the same as the top layer
image at that point, while uncovered pixels are only
modeled by noises.

To simplify computation, we assume that L = 2
and the two stochastic layers, called “background” and
“foreground”, are independent of each other. We find
that this assumption holds true for most of the texture
patterns. Otherwise one has to implement a jump pro-

cess in Markov chain Monte Carlo to infer L. Thus we

obtain a likelihood model for image I.

p(I;0) = / p(I|T; W)p(T; B)dT

2
- / P(ITs, Ta; ) [ [ (T53 8,)dT1dT2dddrddz, (3)
i=1
where © = (¥, 8) with ¥ = (¥, ¥,) being texton tem-
plates and 8 = (8, 3,) the parameters in the Gibbs
models for texton processes, and dy and d» denote the
layer order (background or foreground). The model
p(I|Ty, T2; ¥) is simply Gaussian distributed as

— |1 — (T, To; ©)||?
202 ’
(4)
where I(Ty, Ty; ¥) is the reconstructed image from the
hidden layers without noise(see eq. (2)). p(Ts; 83;),t =
1, 2 are also exponential models which characterize the
spatial relationships through a set of feature statistics.
The details are discussed in the next subsection.
3.2 A descriptive model of texton map

The construction of descriptive model for tex-
ton maps follows the minimax entropy learning
paradigm[13]. We only briefly discuss it and refer to a
companion paper for detailed study[14].

For a given texton map T; with n; elements, we
first define some neighborhood structures for each tex-
ton, and measure a set of features which characterize
important spatial relationship between each elements
in a local neighborhood. For example, the orienta-
tion and scale of a single texton, the distance and

p(I°%%) T, Ty ¥) o exp
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relative orientations and sizes of two neighboring tex-
tons. We then calculate the histograms of these fea-
tures H;(T;),7=1,2,..., K.

A Gibbs (maximum entropy) model is then obtained
by descriptive method[13],

1

K
Zg) PP = 32 < By, Hy(T) >},

i=1

(T 8;) =

In p(T;;8;), Bio controls the density of textons n; on
a given unit area, and f;;,7 = 1,2,..., K are vector
valued Lagrange multipliers.

p(Ti; B8;) governs a texton ensemble which corre-
sponds to a so-called grand-canonical ensemble in sta-
tistical mechanics. It can be simulated by a Markov
chain Monte Carlo algorithm which utilizes Gibbs sam-
pler for the position, scale, shear, and orientation of the
textons and also reversible jumps[3] which simulate the
death/birth of textons. The selection of important fea-
tures is done by the minimum entropy principle[13].

Of course, the entire descriptive learning is an ML-
estimator that maximizes the log-likelihood by steepest
ascent,

log p(Ts; B:)
0B,
3.3 The Integrated Learning Paradigm

To learn a generative model p(I;®) in eq. (3), we
follow the ML-estimate in eq. (1).

* = arg max log p(Ts; 8,); =0. (5)

o = x log p(I°*; ©).
arg max og p(I°*%; ©)

Note that © characterizes the visual pattern and
the whole ensemble governed by p(I, T; ©), while T is
associated with only an image instance I.

To maximize the log-likelihood, we take the deriva-
tive with respect to ©, and set it to zero. Let T =
(Tl ) T2)7

dlog p(I°**; ©)
00

_ / dlog p(I°, T; ©)
- 00

_ / [8 log p(1°P$|T; &)

p(T[I°%; ©)dT

2

>

=1

dlog p(Ty; B;)
0B,

]

B
p(T|I°*; ©) dT

8log p(I°>| T; ¥)
BY7

2

2

i=1

= Epriro)

9B,

(6)

Olog p(T; B;)

I



In the literature, there are two well-known meth-
ods for solving the above equations. One is the EM
algorithm(1], and the other is data augmentation[12].
We propose to use a stochastic gradient algorithm(4]
which is more effective than the EM-algorithm and
data augmentation.

A Stochastic Gradient Algorithm

Step 0. Initialize the hidden layers T and the tem-
plates ¥ from I°P using a data driven (clustering)
method discussed in the next section. Set 8 = 0.

Step I Given current © = (¥, ), it samples typi-
cal texton maps from the posterior probability TSV =
(TP, T, d1,da) ~ p(TII°%;©). This is the Bayes
perceptual inference. The sampling process is realized
by a Monte Carlo Markov chain which simulates a ran-
dom walk with two types of dynamics.

e l.a). A diffusion dynemics realized by a Gibbs
sampler — sampling (relaxing) the transform
group for each texton. For example, move textons
in locations, scale and rotate them etc.

Lb). A jump-dynamics — adding or removing a
texton (death/birth) by reversible jumps[3] using
Metropolis-Hastings method. Also the layer order
dy and dy are sampled between background and
foreground.

Step II. We treat TY™ as “observation”, and esti-
mate the integration in eq. (6) by importance sampling.
Thus we have

2

+>

=1

We learn © = (¥, 3) the texton and Gibbs model
respectively by gradient ascent in two steps.

9log p(I°>*|T; ¥)
£

9log p(Ti; By) _

9B, 0

e Il.a). Computing the texton templates ¥ by max-
imizing log p(I°®|T5™; ¥), and this is often done
by regression. In our experiment, each texton is
represented by a 15 x 15 window with 225 un-
knowns. Also each point in the window could
be transparent, and thus the shape of the texton
could change during the learning process.

II.b). Computing 8;,7 = 1,2 by maximizing
log p(T:¥"; B,). This is exactly the maximum en-
tropy learning process in descriptive method (see

eq. (5)).

The algorithm iterates steps I and II. If the learning
rate in steps I1.a and ILb is slow enough, the expecta-
tion is estimated by importance sampling through sam-
ples TS over time. It has been proved in statistics[4]

that such algorithm converges to the optimal © if the
step size in step II satisfies some mild conditions.

In summary, we feel that the following observations
are especially revealing.

1. Descriptive models and descriptive method are
inherent part (Step IL.b) in generative models and gen-
erative method. Existing generative models, such as
image coding have weak (iid) descriptive models in-
stead of the Gibbs model and this limits their expres-
sive power.

2. Bayesian vision inference is a sub-task (step I) of
generative learning.

3.4 Initialization by Data Clustering

Both the hidden texton maps T = (T, T2) and the
texton templates ¥ = (¥, ¥s) need to be initialized
in order to start the bootstrap procedure in the pre-
vious section. In this section, we present a stochastic
algorithm to obtain the initial T° and ¥° by decou-
pling some variables with two simplifications from the
model in eq. (3).

Firstly, we decouple the texton elements in the prior
p(T;; B;). In the two texton maps T and Ty, n; +ny
is fixed to an excessive number, thus we don’t need
to simulate the death-birth process. B, and B, are
set to be 0, therefore p(T;; ;) becomes a uniform dis-
tribution and all texton elements are decoupled from
interactions.

Secondly, we further decouple the texton elements in
the likelihood p(I°%|T; ¥). Instead of using the image
generating model in eq. (2) which implicitly imposes
couplings between texton elements through eq. (4), we

"adopt a constraint-based model
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2 n;

p(IPPIT, ©) ocexp{=)_ > 15 ~CITy;]0¥?/20%),

i=1 j=1
(M
where I‘j)b; is the image patch of the domain D;; in the
observed image. For pixels in I°% not covered by any
textons, a uniform distribution is assumed to introduce
a penalty.

So far all the textons are decoupled of each other by
simplifying the generative model of eq. (3) to eq. (7)
without the integration of T. Consequentially the
searching problem of T® and ¥° turns into a conven-
tional clustering issue.

We start with random texton maps and the algo-
rithm iterates the following two steps. I). Given ¥,
and ¥,, it runs a Gibbs sampler to change each texton
T;; respectively, by moving, rotating, scaling the rect-
angle, and changing the cluster into which each texton
falls according to the simplified model of eq. (7). Thus
the texton windows intend to cover the entire observed
image, and at the same time try to form tight clusters



around ¥. II). Given T; and T, it updates the texton
¥, and ¥, by averaging as

i

1727

G Ty o1%:, i
J=1

where G™1 [T,-j] is the inverse transformation. The layer
order d; and ds are not needed for the simplified model.

This initialization algorithm for computing (T, ¥9)
resembles transformed component analysis (TCA). It is
also inspired by a clustering algorithm by (Leung and
Malik, 1999)[7}, which did not engage hidden variables,
and thus compute a variety of textons ¥ at different
scale and orientations. We also experimented with rep-
resenting the texton template ¥ by a set of Gabor bases
instead of a 15 x 15 window. However, the results were
not as encouraging in some textures.

4 Experiments

a). Input image

o) vy

). Reconstructed image

Figure 3: Result of the initial clustering algorithm.

Experiment I: Initialization by TCA. Fig. 3 shows an
experiment on the initialization algorithm for a crack
pattern. 1055 textons are used with the template size of
15 x 15. The number of textons is as twice as necessary
to cover the whole image. In optimizing the likelihood
in eq. (7), an annealing scheme is utilized with the
temperature decreasing from 4 to 0.5. The sampling
process converged to a result shown in Fig. 3.

Fig. 3.a is the input image; Figs 3.b and Figs 3.d
are the texton maps T; and T, of two clusters respec-
tively. Fig. 3.c and Fig. 3.e are the cluster centers ¥,
and ¥, shown by rectangles respectively. Fig. 3.f is
the reconstructed image. The results demonstrate that
the clustering method provides a rough but reasonable
starting solution for generative modeling.
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b), Background textons T

e ey

o8

d). Forground textons T,

B). Reconstructed image &) wa
-

Figure 4: Generative model learning result for the
crack image. a) input image, b) and d) are background
and foreground textons discovered by the generative
model, ¢) and e) are the templates for the generative
model, f) is the reconstructed image from the genera-
tive model.

Ezperiment II: Integrated Learning

Fig. 4 shows the result for the crack image obtained
by the stochastic gradient algorithm, following the ini-
tial solution shown in Fig. 3. It took about 80 iter-
ations of the two steps. Fig. 4.b and Fig. 4.d are the
background and foreground texton maps T; and T re-
spectively. Fig. 4.c and Fig. 4.e are the learned textons
U, ¥, respectively. Fig. 4.f is the reconstructed image
from learned textons and templates. Compared to the
results in Fig. 3, the results in Fig. 4 have more precise
texton maps and texton templates due to an accurate
generative model. The foreground texton ¥, is a bar,
and one pixel at corner of the left-top is transparent.

The integrated learning results for a cheetah skin
image are shown in Fig. 5. It can be seen that in the
foreground template, the surround pixels are learned as
being transparent and the blob is exactly computed as
the texton. Fig. 7-are the results for a brick image. No
point in the template is transparent for the gap lines
between bricks. We refer to our web site for a long
report and more results.

Experiment III: Random texture sampling and syn-
thesis.

After the parameters ¥ and 3 of a generative model
are discovered for a type of texture images, new random
samples could be drawn from the generative model.
This proceeds in three steps: Firstly, texton maps
are sampled from the Gibbs models p(T;;8,) and
p(T2; B,) respectively. Secondly, background and fore-



Figure 5: Generative model learning result for a chee-
tah skin image. The notations are the same as in Fig. 4.

B

- i,
b

). v2

d). Forground textons T,

K it
). Reconstructed image

Figure 6: Generative model learning result for a crack
image. The notations are the same as in Fig. 4.

a). Input image

f) Reconstructed image

Figure 7: Generative model learning result for a brick
image. The notations are the same as in Fig. 4.

ground images are synthesized from the texton maps
and texton templates. Thirdly, the final image is gen-
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erated by combining these two images according the
occlusion model. Fig 8 and Fig. 9 are two examples
of the two layered model synthesis for the cheetah skin
pattern. The templates used here are the learned re-
sults in Fig 5.

¥1 A £}
¢). Templates

i

d). layerI (T}, v))

e) fayer IL I(Ty, vy)

). Synthesized image

Figure 8: An example of a randomly synthesized chee-
tah skin image. a) and b) are the background and
foreground texton maps sampled from p(T;; 8;); d) and
e) are synthesized background and foreground images
from the texton map and templates in ¢); f) is the final
random synthesized image from the generative model.

¥ ¥2

¢). Templates
g

;‘

‘O’ .og' ,l
). layer II KT, vy)

d). layer 1T I(Ty, vy)

Figure 9: Second example of a randomly synthesized
cheetah skin image. Notations are the same as in Fig. 8.

Figure 11 shows texture synthesis for the crack pat-
tern computed in Figure 6. Figure 11 displays texture
synthesis for the brick pattern in Figure 7. Note that,
in these texture synthesis experiments, the Markov
chain operates with meaningful image elements instead
of pixels. The lighting condition is not considered in
current experiments. For some texture images, e.g. the
cheetah skin image, the lighting globally changes. How-
ever, such information is lost in the generative model
results. Future experiments will pay attention to this
issue.
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a). Sampled texton map T1 b). Sampled texton map T2
P ;} i },:14. z
'*«‘..; N
XN
(E.3 - i
Trr s

d). layerI I(T,, y,) e). layer II I(T,, vy) f). Synthesized image

Figure 10: An example of a randomly synthesized crack
image. Notations are the same as in Fig. 8.

b). gampled te)‘aton mame2
" - 5 = y

*

e). layer IT I(T,, wy)

TR A

d). layer I I(T,. v

f). Synthesized image

Figure 11: An example of a randomly synthesized brick
image. Notations are the same as in Fig. 8.

5 Discussion

The generative method has advantages over previous
descriptive method with Markov random fields on pixel
intensities.

I). In representation: The neighborhood in the tex-
ton map are much smaller than the pixel neighbor-
hood in previous descriptive model [13]. The gener-
ative method captures more semantically meaningful
features on the texton map.

II). In computation: The Markov chain operat-
ing in the texton map can move blobs according to
affine transforms and can add or delete a blob through
death/birth dynamics, and thus is much more effec-
tive than the Markov chain used in traditional Markov
random fields which flips one pixel intensity at a time.

Furthermore we show that the integration of descrip-
tive and generative methods is a natural and inevitable
path for visual learning. We argue that a vision sys-
tem should evolve by progressively replacing descrip-
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tive models with generative models, which realizes a
transition from empirical and statistical models to phys-
ical and semantical models. The work presented in this
paper provides a step towards this goal.
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