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Abstract

This article identifies a scale manifestative concept in
low-level vision, which we call Witkin range of phase con-
gruency, and proposes a simple method for calculating this
image feature. This concept is similar to the range of stabil-
ity in Witkin’s scale space filtering, but we define it in terms
of the phase congruency among Gabor-type wavelets of dif-
ferent frequencies. The Witkin range of phase congruency
leads to a representational and computational scheme for
combining image information from multiple scales. In par-
ticular, it adds two new dimensions to the traditional edge
representation produced by Canny edge detector, namely,
the width and sharpness of the edge point. As a result, it
combines the edge representation and region representation
into an edged-region representation. In addition, this con-
cept unifies two ubiquitous classes of visual phenomena,
namely, geometric structures and stochastic textures, in a
scale manifestative framework, which can account for the
continuous transition from structures to textures in the pro-
cess of image scaling or zooming. We illustrate our method
by a number of experiments on natural images.

1. Introduction

Scale is one of the most important issue in vision. Visual
phenomena in natural scenes can appear at a wide range
of scales in images, because of the variabilities in object
sizes, viewing distances, and camera resolution. Therefore,
a meaningful interpretation of a natural image must be ei-
ther scale invariant or scale manifestative. “Scale invariant”
means that the interpretation will stay invariant under image
scaling. “Scale manifestative” means that the interpretation
has explicit scale parameters that follow simple and explicit
transformations under image scaling.

There have been a number of multi-scale theories in vi-
sion, most notably, the scale space theory [21, 8] and the
multi-resolution wavelet analysis [11]. It has been a com-
mon sense that we need to combine information from mul-
tiple scales, mainly because some visual phenomena such
as edges can persist over a range of scales.

The scale persistency has long been observed. For in-
stance, Marr [12] proposed the “coincidence assumption,”
which holds that only those features that spatially coin-
cident at all scales are meaningful. Witkin, in his paper
on scale space filtering [21], investigated the persistency
of local maxima of Gaussian derivatives of 1D signal over
scales, and explicitly identified the stability ranges of these
local maxima in scale space. These ranges can then be
translated into flat intervals as basic elements for represent-
ing the 1D signal. Witkin’s idea has been extended to 2D
by Lindeberg [8, 9] and other researchers. But the behavior
of the maxima of Gaussian derivatives in 2D is much more
complicated than 1D, so that tracing maxima in 2D can be
difficult.

Parallel to scale space theory, the coincidence over scales
has been extensively studied in the context of phase con-
gruency of Fourier transform or Gabor wavelet transform.
Morrone et al. [14] observed that image features appear at
locations where the Fourier components of the image at dif-
ferent frequencies are maximally in phase. A phase congru-
ency function is defined to measure the agreement among
the phases at each position, and this function turns out to be
equal to the local energy of the image [19, 16]. Kovesi [6]
developed a computational method for phase congruency
feature detection in 2D image, using log-Gabor wavelets to
compute local phases and energies. The phase congruency
function is defined on each pixel. Unlike Witkin’s scale
space filtering, it does not involve tracing over scales or fre-
quencies, and is therefore simpler to implement in 2D.

The phase congruency function is elegant in terms of its
relationship with image energy. However, it is not scale
manifestative, in the sense that it does not tell us the range
of frequencies over which the phases are congruent. In this
paper, we introduce Witkin’s idea of range of stability to
the framework of phase congruency, and replace the phase
congruency function by the phase congruency range or what
we call Witkin range.

The Witkin range gives us a more informative descrip-
tion of image features. For instance, for an image structure
such as an edge, the Witkin range can be translated into geo-
metric scale parameters of the cross-section profile perpen-
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dicular to the edge elongation. In particular, the high fre-
quency end of the Witkin range tells us the sharpness of the
transition of the image intensity across the edge, whereas
the low frequency end of the Witkin range tells us the width
or breadth of the two flat regions on the two sides of the
edge. In other words, the Witkin range enables us to not
only detect the edge curves, but also recognize the edged-
regions, so that we can form a representation that combines
both edge-based concept and region-based concept.

In natural scenes, there are two ubiquitous classes of vi-
sual phenomena. One is geometric structures that can be
represented by lines and regions. The other is stochastic tex-
tures that are often characterized by some feature statistics.
Although these two types of patterns often appear distinc-
tively different, they are actually intrinsically connected:
the same group of objects can be perceived as either ge-
ometric structures or stochastic textures depending on the
viewing distance and camera resolution. Due to this scal-
ing connection, it is natural to believe that the visual sys-
tem must estimate scale parameters explicitly, and trace the
change of the scale parameters over the image scaling pro-
cess that can be caused by the change of viewing distance.
We shall show that the Witkin range provides us with cru-
cial scale information for describing large scale geometric
structures and small scale stochastic textures.

The Witkin range of phase congruency can be useful for
edge representation, edge-based object recognition, track-
ing and matching, and texture recognition. It also sheds
light on low-level vision theories such as sparse coding,
meaningful alignment, and natural image statistics.

2. Background

2.1. Witkin stability range

A key motivation for Witkin [21] to propose his theory of
scale space filtering is to combine visual information across
different scales. In particular, he studied the stability of the
spatial locations of local maxima of Gaussian derivatives of
the image data over scales.

See Fig.1 for an example. A 1D signal is taken from
a slice of the image in Fig.1.a. Let’s denote this 1D sig-
nal byu(x). Let Gσ(x) be a Gaussian kernel function (or
density function) centered at 0 with standard deviationσ.
Let uσ = u ∗ Gσ be the convolution ofu(x) with Gσ(x).
Fig. 1.c displaysuσ(x) for a sample of scalesσ > 0. For
eachuσ(x), we can find the local maxima of its first deriva-
tive ∂uσ(x)/∂x, or the zero-crossings of its second deriva-
tive ∂2uσ(x)/∂x2. Fig.1.b plots the contours of these zero-
crossings in the scale space. Clearly, the zero-crossings per-
sist over a range of scales, until two zero-crossings merge
into a singular point. The range of persistence or stabil-
ity depends on the widths of the underlying intervals. As a
matter of fact, one can recover these intervals based on the

Figure 1. (a) A 1D signal is obtained as a horizontal slice of the
toaster image. (b) The contour plot of the zero-crossings of the
second derivatives in the joint spatial-scale domain. (c) The 1D
signal at multiple resolutions, obtained by convolving the signal
with Gaussian kernels and sub-sampling the signal.

stability ranges.
Lindeberg [8, 9] applied similar ideas to 2D images. But

the behavior of the maxima of Gaussian derivatives in 2D is
much more complicated than 1D, so that tracing maxima in
2D can be difficult.

2.2. Phase congruency function

In contrast to the scale space filtering based on local
derivative operators, the phase congruency theory started
from global Fourier transform. Morrone et al. [14] observed
that for a signalu(x), the feature points correspond to those
points where the Fourier waves at different frequencies have
congruent phases. Specifically, let

u(x) =

∫
A(ω) cos(ωx + φω)dω (1)

be the Fourier representation ofu(x). The phase of fre-
quencyω at a pointx is ωx + φω mod2π. Thosex where
ωx + φω are congruent acrossω are considered feature
points. For instance, the top plot of Fig.2 shows a pe-
riodic step function. The bottom plot displays several of
its Fourier componentsA(ω) cos(ωx + φω) (see eqn. (1)).
Clearly, the edge points and the center points of the inter-
vals correspond to those points where the Fourier waves of
different frequencies are in phase.

A phase congruency function is defined as follows:

ϕ(x) = max
φ∈[0,2π]

∫
A(ω) cos(ωx + φω − φ)Ĝ(ω)dω∫

A(ω)Ĝ(ω)dω
, (2)

whereĜ(ω) is a window function in the frequency domain,
e.g., a Gaussian kernel around a certain central frequency.
Suppose the maximum is achieved atφ = φ̄(x). φ̄(x) may
be interpreted as the average phase across the frequencies

2
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Figure 2. A periodic step function and its several Fourier com-
ponents. The waves at different frequencies are in phase at edge
points and the center points of the intervals.

covered by the windoŵG(ω), andϕ(x) measures the vari-
ation of phases within this window.

The phase congruency function (2) has an elegant con-
nection with the local energy [19]. Specifically, let

G ∗ u(x) =

∫
Ĝ(ω)A(ω) exp{i(ωx + φω)}dω,

where G is the complex filter, which consists of a pair
of filters of quadrature phase, whose Fourier transform is
Ĝ(ω). Thenϕ(x) = |G ∗ u(x)| is the local energy, and
φ̄(x) = arg[G ∗ u(x)] is the local phase. So the points of
maximum phase congruency correspond to points of maxi-
mum local energy.

Kevosi [6] defines a phase congruency function by pool-
ing the information from a bank of log-Gabor filters at dif-
ferent scales and orientations, in the same spirit as function
(2). Unlike scale space filtering, the phase congruency func-
tion is defined for each pixel without tracing local maxima.

2.3. Gabor filters and edge detection

A biologically motivated class of image elements are Ga-
bor wavelets [2], which are rotated, dilated, and translated
copies of the following Gaussian modulated sine and cosine
waves [7]

G(x) ∝ exp{−
1

8
(4x2

1 + x2
2)}(e

iκx1 − eκ2/2), (3)

wherex = (x1, x2). Let’s denote a rotated, dilated, and
translated copy of (3) by Gx,ω,θ, wherex is the center,ω
is the frequency of the sine and cosine waves, andθ is the
orientation. We normalize the Gabor wavelets over scale so
thatGx,sω,θ = sGx,ω,θ, in order to maintain

〈f,Gx,ω,θ〉 = 〈fs, Gx,sω,θ〉, (4)

wherefs(x) = f(sx) is the scaled version off . The Gabor
filters can be replaced by other zero-mean filter pairs that
form Hilbert transforms of each other.

The Gabor filters can be used as edge detectors [20].
For the dictionary of Gabor elements{Gx,ω,θ}, at each fre-
quencyω, and at each pixelx, we find the optimal orienta-
tion θ̂ = arg maxθ |〈u,Gx,ω,θ〉|

2, where|〈u,Gx,ω,θ〉|
2 =

〈u,G
(0)
x,ω,θ〉

2 + 〈u,G
(1)
x,ω,θ〉

2, with G
(0)
x,ω,θ and G

(1)
x,ω,θ be-

ing cosine and sine components ofGx,ω,θ respectively,
and 〈〉 denoting inner product. Let̂A = |〈u,Gx,ω,θ̂〉|,

φ̂ = arctan[〈u,G
(0)

x,ω,θ̂
〉/〈u,G

(1)

x,ω,θ̂
〉] be the magnitude (or

energy) and phase at the maximal orientation respectively.
We can write

[∇ωu](x) = (Aω(x), θω(x), φω(x)) = (Â, θ̂, φ̂) (5)

as a generalized version of the ubiquitous gradient operator
∇u.

A point (x, ω) is an edge-ridge point if

Aω(x) ≥ Aω(x + t(sin θω(x), cos θω(x))), |t| < d, (6)

i.e., Aω(x) is maximal along the normal direction of the
orientationθω(x) within a neighborhood of length2d [1].
Edges and ridges can be discriminated by the corresponding
phases [20].

3. Witkin range of phase congruency

In this section, we explain the basic idea of the Witkin
range. We also explain that it can be translated into an
edged-region representation of the image. After that, we
give a precise definition of the Witkin range, and illustrate
the edged-region representation by some examples.

3.1. Edged-region representation

Fig. 3 illustrates a fundamental observation. The plot
on top shows a horizontal slice of an image of vertical bar
u(x). The second and the third plots display the magni-
tude and phase of∇ωu(x) on this slice, where each curve
corresponds to a frequencyω. It is evident that an edge-
ridge pointx (i.e., a local maximum in magnitude curves)
can exist over a range of frequencies(ω0(x), ω1(x)), and
within this range, the phase and orientation of∇ωu(x) re-
mains constant forω ∈ (ω0(x), ω1(x)). For edge points, the
magnitude of∇ωu(x) also remains constant (subject to dis-
cretization error). In the bottom plot of Fig.3, we trace the
two edge points over scales ∝ 1/ω. At a certain frequency
or scale, the two edge points merge into a ridge point.

Here comes the foundation of this paper: for an edge
pointx, the rangeω ∈ (ω0(x), ω1(x)) in frequency domain
can be translated into spatial domain parameters about the
cross-section profile of the edge. Specifically, the profile of
an edge is along the direction that is perpendicular to the
edge elongation, and it can be modeled by a step function
blurred by a Gaussian kernel [3], whose bandwidth reflects
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Figure 3. Constancy of positions and phases of local energy max-
ima across frequencies. The top plot depicts a horizontal slice of
an image of a vertical bar. The next two plots show local energy
and phase, where each curve corresponds to a frequency. The bot-
tom plot shows that the maxima corresponding to two edge points
merge into one ridge point over frequencies or scales.

(a) input image (b) edged-regions (c) ridged-region

Figure 4. Image interpretation by edged- and ridged- regions.

(a) input image (b) edged-regions

Figure 5. Edged-region representation.

the sharpness of the edge. For the Witkin range, the high
frequency endω1(x) tells us how sharp the intensity transi-
tion is across the edge. The low frequency endω0(x) tells
us how wide the two flat pieces of the step function can
extend. Asx runs on the one dimensional edge curve, the
resulting cross-section profile sweeps an edged-region with
the edge curve being the mid-axis.

See Fig.4 and Fig.5 for illustrations of edged-region

representation. An edged-region is composed of two seg-
ments of smooth sub-regions, colored by grey and green
respectively in the above two figures. The two sub-regions
are separated by an edge curve. The widths or breadths of
the two sub-regions are decided by the low frequency end
ω0(x) of the Witkin range. The sharpness of the segmenta-
tion is decided by the high frequency endω1(x). That is, by
combining the Gabor edge information across frequencies,
we essentially perform a local image segmentation, where
the Gabor filters at different frequencies explore the two
sub-regions being segmented by the edge. This enables us
to not only detect the edge, but also recognize the edged-
region. The edged-region representation combines both the
edge concept and the region concept, which are two most
prominent representations in low- and mid- level vision.

Viewed in frequency domain, an edged-region is a com-
position of Gabor wavelets across the Witkin range of fre-
quencies, or an edged-region spans a range of frequencies.

The Witkin range transforms in a simple way during the
scaling process. When we zoom out the image by a factor of
s, the Witkin range(ω0, ω1) will be scaled to(sω0, sω1). So
the edged-region becomes thinner and sharper by a factor of
s.

An interesting observation is that, due to finite resolution
of the image, the Witkin range(sω0, sω1) will eventually go
beyond the frequency limit of the camera resolution ass in-
creases, and the edged-region will be shredded and leaked
out. This can explain the transition from geometric struc-
tures to stochastic textures, as we will study later.

3.2. Definition of Witkin range of phase congruency

In 2D images, tracing the edge points can be difficult.
Recall that the phase congruency function (2) is defined for
each pixel without tracing. Similarly, we can also define the
Witkin range of phase congruency without tracing the edge
point. The following is our version of definition.

The Witkin range is defined on scale-maximum edge
points. An edge point(x̂, ω̂) is a scale-maximum edge point
if 1) (x̂, ω̂) is an edge point at frequencŷω in the sense of
inequality (6); 2) it is also a local maxima in scale or fre-
quency domain:

Aω̂(x̂) ≥ Aω(x̂), ∀ω ∈ (ω̂ − δ, ω̂ + δ), (7)

i.e., a small neighborhood of̂ω. 3) Its phaseφω̂(x̂) is dom-
inated by sine component of the Gabor filter. The scale-
maximum edge points transform in a simple way during
image scaling.

For a scale-maximum edge point(x̂, ω̂), we define its
Witkin range(ω0, ω1) as a continuous range of frequencies
ω aroundω̂ so that∇ωu(x̂) has almost constant magnitude,
phase and orientation. Specifically, let

Ω = {ω : ∇ωu(x̂) ∈ ∂(∇ω̂u(x̂))}, (8)
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where∂(∇ω̂u(x̂)) is a small neighborhood of∇ω̂u(x̂). Re-
call that∇ωu(x) = [Aω(x), θω(x), φω(x)], i.e., magnitude
(energy), orientation, and phase, see eqn. (5). In our imple-
mentation,∇ωu(x̂) ∈ ∂(∇ω̂u(x̂)) if

Aω(x̂)/Aω̂(x̂) ≥ fA,

|θω(x̂) − θω̂(x̂)| ≤ ǫθ,

|φω(x̂) − φω̂(x̂)| ≤ ǫφ, (9)

that is, the magnitudeAω(x̂) should be within a factor (e.g.,
fA = .8) of Aω̂(x̂), the orientation and phase should be
close to those of(ω̂, x̂) (e.g.,ǫθ = π/12, andǫφ = π/6).
Then

ω0 = max{ω ≤ ω̂, ω /∈ Ω},

ω1 = min{ω ≥ ω̂, ω /∈ Ω}. (10)

We can translate(ω0, ω1) to Witkin width s0 ∝ 1/ω0, and
Witkin sharpnesss1 ∝ 1/ω1. The proportion factor can
be chosen so that when applied to a bar structure with two
parallel edges (see Fig.3), the Witkin width should agree
with the half-width of the bar. It is clear that this proportion
factor depends onfA, ǫθ, andǫφ in (9).

Our definition of Witkin width generalizes the traditional
definition of width for bar structures to any geometric struc-
tures. For instance, Fig.6 shows the edged-region plots of
a triangle and a circle. Here we only plot the darker sub-
region of the edged-region. Specifically, at each edge point
x̂, we plot a black bar (1 pixel wide) of lengths0, i.e., the
Witkin width of this edge point. The bar is perpendicular
to the edge elongation, and extends to the darker segment
of the edged-region. Then the bars for all the edge points
make up the darker sub-region of the edged-region.

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 6. Edged-region representations of triangle and circle. Only
the dark sides of the edges are plotted.

Fig. 7, Fig. 8, and Fig.9 show the edge-region repre-
sentations of three natural scene images. Note that in our

implementation, there is an upper bound on the scale of
the Gabor filters (or equivalently, a lower bound on the fre-
quency), so there is an upper bound on Witkin width. That is
why at some points, the Witkin edges are not wide enough.

50 100 150 200 250 300 350 400 450 500 550
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Figure 7. A natural scene image and its edged-region representa-
tion.

The above definition of Witkin range is clearly scale
manifestative. If we scale the image by a factor, then the
Witkin width and sharpness should scale in the same way,
as long as they are above the camera resolution.

50 100 150 200 250 300

0

50

100

150

200

250

Figure 8. A natural scene image and its edged-region representa-
tion.

3.3. Ridged-region representation

The top plot of Fig.3 displays the cross-section profile
of a bar structure. A key point is that a bar structure is
not only described by the width of the central flat interval,
but also the widths of two flat wings on the two sides of
the central interval. So a ridged-region should have three
segments, corresponding to the central piece and the two
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Figure 9. A natural scene image and its edged-region representa-
tion.

wings respectively. For an ridge point, we can also define
a Witkin range that can be translated to the width of the
central piece and the width of the two flat wings. Due to
space limit, we shall not elaborate on this. We just want
to point out that the width of the central piece is intimately
related to the Witkin width of the two parallel edges of the
bar structure. But the Witkin width of an edge is a far more
general definition, because many edges are not edges of a
bar structure. For instance, the base line of the triangle in
Fig. 4, or the edge on the circle in Fig6, or the shorter side
of a rectangle.

The width of the edge structure and the width of the two
flat wings of the bar structure go beyond the important work
of Lindeberg on scale selection for edges and bars [10]. It
appears that Lindeberg’s scales correspond to the sharpness
of the edge and the width of the central piece of the bar.

4. Unifying structures and textures

Geometric structures and stochastic textures are often
treated separately in computer vision. Structures are usu-
ally obtained by edge detection and image segmentation,
while textures are mostly characterized by feature statistics
such as histograms of filter responses [4]. However, struc-
tures and textures are intrinsically connected by image scal-
ing. Fig.10displays a sequence of images of an ivy wall of

leaves taken at increasingly far distances. At near distance,
the geometric shapes of individual leaves are perceptible.
But as the viewing distance increases, the image becomes
more complex and the individual shapes become impercep-
tible, and the image can only be described by a collective
texture summary.

Figure 10. A sequence of ivy wall images taken at increasingly far
distances.
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Figure 11. Conditional expectations of Witkin width, sharpness,
and range over scale. Plain curve shows starting scale or Witkin
sharpness, circled curve shows ending scale or Witkin width, and
crossed curve shows the difference between starting and ending
scales, or the size of Witkin range. Each plot is conditioned on an
interval of magnitudes of scale-maximum edge points. The mag-
nitudes of the plots are in increasing order from left to right.

This suggests that geometric structures and stochastic
textures should be treated in a unified framework. The dis-
tinction between structures and textures is an artificial one,
because the transition from structures to textures is a con-
tinuous process caused by the continuous image scaling or
zooming. It is therefore desirable to have a scale manifesta-
tive quantity to trace this transition.

It has been a mystery how human being perceives the
wide variety of texture patterns. Julesz [5], in his study of
human texture perception over nearly three decades, pro-
posed two famous conjectures. The first conjecture is about
texture statistics, and Julesz proposed co-occurrence statis-
tics of image intensities. The second conjecture is about
textons, which are considered as basic elements for texture
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perception. We believe that image scaling holds the secret
to this puzzle, and scale manifestative quantities must be a
crucial ingredient in texture perception.

This can be seen even more evidently in Fig.12, where
the texture surfaces of flower leaves and pebbles are slant
surfaces that appear in perspective. Clearly, our perception
of the texture surfaces is not homogenous and we perceive
a gradual change over distance.

The Witkin range of phase congruency can be used to
trace the transition from structure to texture, as well as the
change of texture information over distance.

We pool the following scale manifestative texture statis-
tics. Let (x̂, ω̂) be a randomly selected scale-maximum
edge point. LetA be the magnitude of∇ω̂u(x̂). Let (s1, s0)
be its Witkin sharpness and width defined in previous sec-
tion. We experiment with the following three statistical
properties.E[s0|A], E[s1|A], andE[s0 − s1|A], that is, the
conditional expectations of Witkin sharpness, width, and
range. These three statistics can be estimated as follows.
We divide the range ofA into several intervals. We collect
the scale-maximum edge points whose magnitudes fall into
each interval, and then estimate the conditional expectations
for this interval by corresponding averages.

Fig. 11 shows the change of conditional expectations
over the scaling process. We choose 8 images of the ivy
wall taken at increasingly far distances. We divide the mag-
nitudes of scale-maximum edge points into three intervals.
In Fig. 11, the three plots correspond to the three intervals
of magnitudes in increasing order, from left to right. We can
see that as the viewing distance increases, the Witkin width,
sharpness and range decrease in general.

These plots also trace the transition from structures to
textons and texture statistics. At near distance, we see rel-
atively large edged-regions. As the distance increases, the
edged-regions become smaller. This roughly correspond to
the texton regime in Julesz’s second conjecture. If the view-
ing distance increases still further, the edged-regions will
be smaller than the pixel resolution, and they will be shred-
ded and leaked out. Then there are no significant align-
ments among filter responses, and we may just pool some
marginal statistics from the filter responses [4], since the
joint patterns have been largely destroyed by image scaling.
This roughly corresponds to the regime of texture statistics
in Julesz’s first conjecture.

The Witkin width also indicates the size of the neighbor-
hood that we should use to pool the texture statistics. The
larger the Witkin width, the larger the local window should
be for spatial pooling.

The above statistics are also crucial for perceiving slant
surfaces such as those in Fig.12. Fig. 13 show the change
of conditional expectations of Witkin width, sharpness, and
range over vertical axis of the two images. It is possible that
such statistics can be used for re-constructing 3D informa-

Figure 12. Slant texture surfaces of flower leaves and stones.

0 2 4 6
0

2

4

6

8 starting scale
ending scale
scale range

0 2 4 6
1

1.5

2

2.5

3

3.5 starting scale
ending scale
scale range

0 2 4 6
1

1.2

1.4

1.6

1.8 starting scale
ending scale
scale range

0 2 4 6
0

5

10

15 starting scale
ending scale
scale range

0 2 4 6
0

2

4

6

8

10 starting scale
ending scale
scale range

0 2 4 6
0

2

4

6

8 starting scale
ending scale
scale range

Figure 13. Conditional expectations of Witkin width, sharpness
and range over the vertical axis in the two images in Fig12.

tion of slant texture surfaces.

5. Discussion

5.1. Contributions and open ends

The following are contributions of this article.
1) Identify and define the Witkin range for phase con-

gruency, as a substitute for scale space tracing and phase
congruency function.

2) Define the Witkin width of edge point, and propose
the edged-region (as well as ridged-region) representation
that combines both edge concept and region concept.

3) Study geometric structures and stochastic textures in
a unified scale manifestative framework, and define a set of
scale manifestative texture statistics.

The following are two major open ends of our work.
1) The current version of Witkin range may not be the-

oretically or empirically superior to other possible alterna-
tives. We hope this work will stimulate more researchers to
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experiment with this concept and search for better versions.
2) There are other image structures such as roofs, ramps,

as well as topological structures such as corners and junc-
tions. The geometric scale parameters of these structures
should also be estimated based on similar ideas.

5.2. Potential applications

1) Edge feature. Our method is not in competition with
Canny [1] or other edge detection methods. Instead, it
equips each edge point with two important scale parame-
ters, namely, sharpness and width.

2) Edge-based object recognition. For instance, for an
object like a tree, the Witkin width is useful for identifying
tree trunk, branches and twigs, without resorting to sophis-
ticated region-based analysis.

3) Tracking and matching. In real life, objects can
change distances from the viewer rapidly, e.g., a ball is com-
ing, a dog is running away, or the scene outside the window
of a moving train. The changes of Witkin ranges help us
perceive the change of viewing distances.

4) Texture recognition and shape from texture.

5.3. Connections to other vision theories

1) Sparse coding. Olshausen and Field [15] proposed
sparse coding as a strategy for V1. Our work suggests
that the sparse coding elements are compositions of phase-
congruent Gabor wavelets or edged-regions.

2) Meaningful alignment. Moisan, Desolneux, and
Morel [13] proposed meaningful alignment as a statistical
principle for perceptual grouping. Our work can be consid-
ered as identifying meaningful alignment over scales or in
frequency domain.

3) Natural image statistics. Portilla and Simoncelli [17]
proposed a class of joint statistics of filter responses to char-
acterize texture patterns. The Witkin range can be consid-
ered a scale explicit characterization of the joint distribu-
tion. Ruderman and Bialek [18] studied the scaling of im-
age statistics of natural scenes. The Witkin range statistics
are worth of being investigated.
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