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Summary. ChIP-chip (or ChIP-on-chip) is a technology for isolation and identification of genomic sites
occupied by specific DNA-binding proteins in living cells. The ChIP-chip signals can be obtained over the
whole genome by tiling arrays, where a peak shape is generally observed around a protein-binding site. In
this article, we describe the ChIP-chip process and present a probability model for ChIP-chip data. We then
propose a model-based method for recognizing the peak shapes for the purpose of detecting protein-binding
sites. We also investigate the issue of bandwidth in nonparametric kernel smoothing method.
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1. Introduction
ChIP-chip, also known as ChIP-on-chip or genome-wide loca-
tion analysis (e.g., Ren et al., 2000), is a technology for isolat-
ing genomic sites occupied by specific DNA-binding proteins
in living cells. This technology can be used to annotate func-
tional elements in genomes, such as promoters, enhancers,
repressor elements, and insulators, by mapping the locations
of protein markers associated with these sites.

In the term “ChIP-chip,” “ChIP” stands for “chromatin
immunoprecipitation,” which is a technology for isolating
DNA fragments that are bound by specific DNA-binding
proteins. “Chip” refers to the DNA microarray technology
(Lockhart et al. 1996) for measuring the concentrations of
these DNA fragments. The DNA microarray probes can tile
the whole genome, so that the ChIP-chip data can be ob-
tained over the whole genome in the form of a one-dimensional
series of signals, where a peak shape is generally present
around a protein-binding site. Therefore, the protein-binding
sites can be located by recognizing the peak shapes in the
signals.

For the purpose of peak recognition, it is desirable to
develop mathematical models for the ChIP-chip data. The
model is probabilistic in nature, because the chromatin im-
munoprecipitation process involves cutting the long genomic
sequences into small DNA fragments by sonication, and this
process is a stochastic one. In this article, we derive the func-
tional forms of the ChIP-chip data under simple probabilistic
assumptions about this process.

After studying the probability model of ChIP-chip data,
we describe a model-based method for recognizing the peak
shapes for the purpose of pinpointing protein-binding sites.

We then illustrate our method using data obtained by Kim
et al. (2005).

2. ChIP-chip Data
This section gives a description of the ChIP-chip process,
which is illustrated in Figure 1.

Step 1: Let proteins bind to DNA: bound transcription fac-
tors and other DNA-associated proteins are cross-linked to
DNA with formaldehyde.

Step 2: Chop the DNA sequences into small fragments: son-
ication is used to break genomic DNA sequences into small
DNA fragments while the transcription factors are still bound
to DNA. Therefore, among all the chopped DNA fragments,
some are bound by proteins, and the rest are not.

Step 3: Isolate the DNA fragments bound by proteins by
chromatin immunoprecipitation (ChIP). For instance, in Kim
et al. (2005), an antibody specifically recognizing a compo-
nent of the preinitiation complex, the TAF1 subunit of the
general transcription factor IID (TFIID), is added and used
to immunoprecipitate DNA fragments corresponding to the
promoter regions bound by TAF1.

Step 4: Cross-linking between DNA and protein is reversed
and DNA is released, amplified by ligation-mediated poly-
merase (LM-PCR) chain reaction and labeled with a fluores-
cent dye (Cy5). At the same time, a sample of DNA, which
is not enriched by the above immunoprecipitation process, is
also amplified by LM-PCR and labeled with another fluores-
cent dye (Cy3).

Step 5: Both IP-enriched and -unenriched DNA pools of la-
beled DNA are hybridized to the same high-density oligonu-
cleotide arrays (chip). The microarray is then scanned and

C© 2007, The International Biometric Society 787



788 Biometrics, September 2007

Figure 1. Illustration of ChIP-chip process.

two images corresponding to Cy5 (TAF1 IP) and Cy3 (con-
trol), respectively, are extracted.

Intensity-dependent Loess (Dudoit et al., 2000) can be used
to normalize the resulting signal values for both images. Me-
dian filtering (window size = 3 probes) can be applied to
smooth the log(Cy5/Cy3) data.

3. Probability Modeling
In this section, we derive probability models for ChIP-chip
data.

3.1 ChIP Process
Genome and binding sites: The protein-binding sites (such

as promoters) on the genome can be idealized as a set of points
on the real line. Let us denote the locations of these binding
sites by their coordinates B1, B2, . . . ,BM . The total number
M of binding sites and their coordinates are unknown, and
are to be inferred from the ChIP-chip data.

Protein binding: In the ChIP-chip experiment, the proteins
are bound to the binding sites. For a genome sequence, let
pm be the probability that the binding site m is bound by a
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protein. The binding at different binding sites is assumed to
be independent of each other.

Sonication: The sonication process chops the genome se-
quences into short DNA fragments. Each fragment is an in-
terval on the real line. For a genome sequence, the set of cut
points is randomly distributed.

A simple probability model is the Poisson point process,
which has the following assumptions: (1) the probability that
a cut point occurs in a small interval (x, x + Δx) is λ(x)Δx,
where λ(x) is the intensity function measuring how dense the
cut points are around x. 1/λ(x) can be considered the expected
length of the intervals between two consecutive cut points
around x. (2) For nonoverlapping intervals, what is happening
in one interval is independent of what is happening in the
other interval.

Immunoprecipitation: For each protein bound to a binding
site, the probability that it is recognized and bound by the
antibody is α. For a DNA fragment to be immunoprecipitated,
it must contain at least one binding site that is bound by the
protein, which must in turn be recognized and bound by the
antibody. We call such a binding site a “good binding site.”
The probability that Bm is a good binding site is pmα = qm .
A DNA fragment that contains at least one good binding site
is called a “good fragment.”

Tiling array of probes: At each location x, the array signal
measured by a probe at x is denoted by Y(x) = log(Cy5/Cy3).
It measures the relative abundance of ChIP fragments that
contain x.

The actual binding sites are generally several base pairs
(bp) long, and the probes can be as long as 50 bp. Here we
mathematically idealize them as dimensionless points on the
real line for simplicity.

3.2 Probability Model
Consider a random genome sequence. The ChIP process pro-
duces from this genome sequence a collection of nonoverlap-
ping good fragments. These good fragments only cover part
of the whole genome. For any location x, let p(x) be the prob-
ability that x is covered by a good fragment. In the experi-
ment, there are a large number of genome sequences, and p(x)
manifests itself as the concentration of good fragments cover-
ing x. So log p(x) can be considered the theoretical prediction
of the signal value measured by probe x. In the following, we
calculate p(x) under various scenarios. In order to make this
subsection easy to follow by interested biologists, we add some
nonrigorous elementary steps in the derivations.

A key observation is: for x to be covered by a good fragment,
a necessary and sufficient condition is that there is no cut
point between x and at least one good binding site.

One binding site scenario: Let us first consider the simplest
scenario where there is only one binding site at the origin of
the real line. Then,

p(x) = Pr(0 is a good binding site and no cut point

between 0 and x)

= q × Pr(no cut in (0, x)),

where q is the probability that 0 is a good binding site, i.e., it
is bound by a protein, which is in turn bound by the antibody.
Without loss of generality, let us assume that x > 0.

To calculate Pr(no cut ∈ (0, x)), we can divide the inter-
val (0, x) into a large number of small bins, (0, Δx), (Δx,
2Δx), . . . , (iΔx, (i + 1)Δx), . . . , ((n − 1)Δx, nΔx), where
Δx = x/n. Let xi = iΔx. According to the Poisson
assumption,

log Pr(no cut ∈ (0, x)) =

n∑
i=1

log(1 − λ(xi)Δx)

→ −
∫ x

0

λ(s)ds, as n → ∞. (1)

The last step follows the Taylor expansion: log(1−λ(xi )
Δx)= −λ(xi ) Δx + o(Δx), with o(Δx) being a term that
decreases to 0 faster than 1/n as n → ∞. Thus,

log p(x) = log q −
∫ x

0

λ(s)ds, for x > 0.

If we assume λ(x) = a for x > 0, then log p(x) = c −
ax , for x > 0,where c = log q. Similarly for x ≤ 0, if we assume
λ(x) = b, then log p(x) = c + bx, for x ≤ 0. We can combine
the two equations for x > 0 and x ≤ 0 into one equation,

log p(x) = c − b [−x]+ − a [x]+, (2)

where [x]+ = x if x > 0, and [x]+ = 0 otherwise.
Equation (2) has a triangle shape peaked at 0, and is the

basis for our model-based peak recognition method. However,
this model assumes that there is only one binding site. For real
data, the above model is true only around a local neighbor-
hood of a binding site, where the effects from other binding
sites can be neglected. In the following, we study the situa-
tion where there is more than one binding site, in order to
understand how different binding sites affect each other.

Two binding sites scenario: Suppose there are two binding
sites B1 and B2. Let us assume that B1 < B2. Let q1 and q2 be
the probabilities that they are good binding sites, respectively.
For x ∈ (B1, B2), p(x) is influenced by both B1 and B2.

p(x) = Pr(B1 is good and no cut ∈ (B1, x) or B2 is

good and no cut ∈ (x, B2))

= q1 exp

{
−

∫ x

B1

λ(s)ds

}
+ q2 exp

{
−

∫ B2

x

λ(s)ds

}

− q1q2 exp

{
−

∫ B2

B1

λ(s)ds

}
, (3)

where the last step follows the same logic as equation (1).
If B1 and B2 are far away from each other, and if x is close to

B1, then the last two terms in equation (3) can be neglected,
and we will obtain an approximated equation that is in the
same form as (2) in the one binding site scenario.

General scenario: Now we are ready to derive the formula
for the general scenario where there are M binding sites
B1, . . . ,BM . For notational convenience, we also add B0 =
−∞, and BM+1 = ∞, with q0 = qM+1 = 0. For x ∈ (Bm ,
Bm+1),
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p(x) = Pr(no cut ∈ (x, nearest good binding site to the left)
or no cut ∈ (x, nearest good binding site to the
right))

= pL(x) + pR(x) − pL(x)pR(x), (4)

where

pL(x) = Pr(no cut∈ (x, nearest good binding site to the left))

=
m∑
i=0

Pr(nearest good binding site to the left is Bi and

no cut ∈ (Bi, x))

=
m∑
i=0

[
m∏

j=i+1

(1 − qj)

]
qi exp

{
−

∫ x

Bi

λ(s)ds

}
. (5)

pR(x) = Pr(no cut ∈ (x, nearest good binding site to
the right))

=

M+1∑
i=m+1

[
i−1∏

j=m+1

(1 − qj)

]
qi exp

{
−

∫ Bi

x

λ(s)ds

}
.

(6)

With equations (5) and (6), p(x) can be calculated according
to equation (4).

From the above analysis, we can see that the triangle shape
fits the data only within a local range around a true binding
site. So in the data analysis, we fit a truncated triangle shape
model whose range is adaptively determined.

3.3 Chip Measurement
The “chip” step of the ChIP-chip process measures log p(x).
The Cy5 measures the abundance of DNA fragments in the
IP-enriched DNA pool, and Cy3 measures the abundance of
DNA fragments in the unenriched DNA pool. For a DNA
fragment containing probe x, the hybridization strength, i.e.,
the probability that it will be hybridized by the probe x,
can depend on x. By calculating Y(x)= log(Cy5/Cy3), this
dependence is cancelled out. We simply assume that the
observational errors are additive and follow a stationary
Gaussian process.

4. Model Fitting and Peak Recognition
The previous section shows that a binding site causes an ap-
proximately truncated triangle shape for the signals of the
probes around this binding site. In this section, we propose
a model-based method to recognize these shapes. After find-
ing these truncated triangle shapes, including their positions
and ranges, we can pool the probe signals within the range
of each identified shape to test against the background noise
hypothesis, to decide whether these signals are caused by a
true binding site.

4.1 Fit Truncated Triangle Shape Model
The truncated triangle shape model is attempted to fit the
data around each probe, and the positions and ranges of the
shapes are identified by the best-fitted models.

Let x0 denote the genomic coordinate of a probe. We fit
the model within a window around x0. Let L be the number
of probes to the left of x0 within the window. Let R be the
number of probes to the right of x0 within the window. Let

us denote the genomic coordinates of the probes to the left
of x0 by (x−L, . . . , x−1), and the coordinates of the probes to
the right of x0 by (x1, . . . , xR). Let the signals measured by
these probes be (y−L, . . . , y−1, y0, y1, . . . , yR). We then fit the
following multiple regression model,

yi = c − b[x0 − xi]
+ − a[xi − x0]

+ + εi, −L ≤ i ≤ R, (7)

where a ≥ 0 and b ≥ 0. We fit this model by constrained least
squares method. Let Y = (yi )

R
i=−L, and X = (1, − [x0 −

xi ]
+, − [xi − x0]

+)R
i=−L. Then the least squares estimates

of the coefficients are (ĉ, b̃, ã)′ = (X ′X)−1X ′Y . To satisfy the
positivity constraints, we let â = [ã]+ and b̂ = [b̃]+. Because
of DNA packaging and interactions with histones etc., there
is reason to believe that the chopping rates around differ-
ent binding sites may be different during the sonication step.
Therefore, we assume that each peak has its own slopes a and
b.

Let Ŷ = X(ĉ, b̂, â)′. We calculate the residual variance σ̂2 =
‖Y − Ŷ ‖2/(L + R + 1 − d), where d is the number of regres-
sion coefficients. If both L and R are nonzero, then d = 3. If
L = 0 or R = 0, then d = 2.

The residual variance σ̂2 is used for identifying the peak
positions as well as the ranges L and R. It is not used for
testing the significance of the peaks. Specifically, model (7)
is correct under the following two assumptions: (1) x0 is a
true binding site, and (2) λ(s) is constant within [−L, 0) and
(0, R], respectively. If either assumption is incorrect, then
model (7) is incorrect, and the residual variance σ̂2 will include
the contribution from model bias. Therefore, a true binding
site can be detected by the local minimum of the fitted σ̂2.

To be more specific, for any x0 and L, R, let the signal yi =
f(xi ) + εi. f(x) is a truncated triangle shape peaked at x0

if and only if assumptions (1) and (2) hold. If x0 is not a
true binding site, then f(x) will not be a truncated triangle
shape peaked at x0. Instead, it will be a triangle peaked at
a binding site other than x0. Let f = (f(xi ))

R
i=−L and ε =

(εi)
R
i=−L. We can write Y = f + ε. Let H = X(X ′X)−1X ′ be

the projection matrix, and let Ŷ = HY, f̂ = Hf , and ε̂ = Hε
be, respectively, the projections of Y, f and ε onto the space
spanned by X. Then E‖Y − Ŷ ‖2 = ‖f − f̂‖2 + E‖ε − ε̂‖2, be-
cause E[ε] = 0. If assumptions (1) and (2) hold, then f(xi ) =
c − b [x0 − xi ]

+ − a [xi − x0]
+, so ‖f − f̂‖2 = 0. If we shift x0

from the true binding site while keeping L and R fixed, then
‖f − f̂‖2 > 0. Assuming that εi come from a stationary pro-
cess, and assuming that the probes are equally spaced, then
E‖ε − ε̂‖2 remains unchanged under the shifting, because X
remains the same. Therefore, E‖Y − Ŷ ‖2 or E(σ̂2) is a local
minimum relative to the shifting operation if assumptions (1)
and (2) hold. This fact does not depend on the assumption
that εi are uncorrelated. Therefore, we may use the residual
variance σ̂2 to identify the locations of the binding sites.

We also use the residual variance σ̂2 to determine the ranges
L and R of the truncated triangle shape. If εi is uncorre-
lated with constant marginal variance σ2, then under assump-
tion (1), E(σ̂2) = σ2 for any L and R that satisfy assumption
(2). If L or R is too large for assumption (2) to be true because
of the effects from nearby binding sites, then E(σ̂2) > σ2.
In practice, we choose L and R that give us minimum σ̂2

among all the allowable combinations of L and R. This is a
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conservative choice. L and R determine the range of a fitted
triangle shape, so that we can pool the signals within this
range and use their average to test against the background
hypothesis. For a peak shape caused by a true binding site,
the conservative choice of L and R already enables us to in-
clude the strong signals around the binding site. Even though
the conservative choice of L and R may fail to include the rel-
atively weak signals of the probes that are near the two ends
of the true triangle shape, we will not lose much power in
testing against the background hypothesis. At the same time,
if x0 is not a true binding site, then such a choice of L and
R will prevent us from pooling signals that may be caused
by nearby binding sites, so that we will not declare too many
false positives.

If εi is stationary but not uncorrelated, with marginal
variance σ2, then under assumptions (1) and (2), E‖ε −
ε̂‖2 = E‖ε‖2 − E‖ε̂‖2 = (L + R + 1 − tr(HΣ))σ2, where Σ =
E(εε′)/σ2 is the correlation matrix of ε. E(σ̂2) = σ2(L + R +
1 − tr(HΣ))/(L + R + 1 − d), which depends on L and R, and
which is not an unbiased estimate of the marginal variance σ2.
In this situation, we continue to choose L and R with mini-
mum σ̂2. A simulation study in Section 5.3 suggests that this
choice still produces sensible results.

Sometimes, ChIP-chip may produce an enriched region as
a plateau of high values instead of a peak. In this case, our
method can still detect such a region, because the truncated
triangle shape model can fit such plateau shapes with very flat
slopes. Occasionally, some probes may fail to function nor-
mally during the ChIP-chip experiment. Such dysfunctional
probes may produce overly small or large signals. The trun-
cated triangle shape model enables us to detect and remove
such probes as outliers.

4.2 Peak Recognition Algorithm
(i) Identify all the local maximum probes in the data. A

probe is a local maximum probe if its signal is greater
than all the signals within k bp away (k is a parameter
that is prespecified and the default value is 200).

(ii) As a starting point, pick the probe with the largest signal
among all the local maximum probes.

(iii) At the current probe x, fit the triangle shape model as
described above, for all combinations of (L, R), where
both L and R are chosen within a range from the smallest
allowable value to the largest allowable value (these two
values are prespecified, and the default numbers are 300
bp and 1500 bp, respectively). Then choose the (L, R)
that gives the smallest residual variance σ̂2. We call (x −
L, x + R) the range of this probe x, and σ̂2 the residual
variance of x.

(iv) Repeat the above model-fitting procedure for the neigh-
bors of this current local maximum probe. For each
neighboring probe x, obtain its range and residual vari-
ance as described in Step iii. Then, among the current lo-
cal maximum probe and its neighbors, choose the probe
with the smallest residual variance to identify the best-
fitted triangle shape. We mark this probe as a potential
binding site.

(v) For any local maximum probe other than the above
marked probe within the range of this best-fitted triangle
shape, we compare the fitted value of the best-fitted tri-

angle and the fitted value of the triangle centered at this
local maximum probe. If the difference between the two
fitted values at this local maximum probe is less than
a threshold (which is a factor times the standard devia-
tion of the residuals of the best-fitted triangle, and the
default factor is 1.5), then this local maximum probe is
said to be explained by the best-fitted triangle and it is
marked as nonpeak.

(vi) Among all the local maximum probes still not marked,
choose the local maximum probe with the largest signal.
Then go back to Step iii. Stop the algorithm if all the
local maxima are marked.

4.3 Peak Testing
For a potential binding site x, suppose the truncated triangle
shape fitted at x covers n probes. Let Y 1, Y 2, . . . ,Yn be the
signals of these n probes, which can be considered the sig-
nals caused by the potential binding site x. We want to test
whether x is a real binding site by pooling these n probes. We
use the following test statistic: Ȳn =

∑n

i=1 Yi/
√

n. A similar
method is proposed by Buck, Nobel, and Lieb (2005).

If Y1, . . . ,Yn are not caused by a binding site, they should
be pure noises, which can be modeled by a stationary process.
This process is not independent white noise, because there are
autocorrelations between nearby probes. We may assume that
Yi is correlated with its neighbors Yj with |Pj − Pi | ≤ m (Pj

and Pi are the genomic positions of Yj and Yi , respectively).
Then,

Var(Ȳn) = Var

(
1√
n

n∑
i=1

Yi

)

=
1

n

∑
i,j

Cov(Yi, Yj) =
1

n

∑
|Pi−Pj |≤m

Cov(Yi, Yj)

≈ Var(Yi)

⎛
⎝1 +

∑
|Pj−Pi|≤m,i
=j

Cov(Yi, Yj)/Var(Yi)

⎞
⎠

= γ2(1 + f),

where γ2 is the marginal variance Var(Yi ), and f is the
autocorrelation factor. Both can be estimated from the data.
Specifically, we can first calculate the marginal standard devi-
ation of the whole sequence of signals. Then we remove those
signals that are above a threshold (default value is 2.5 times
the marginal standard deviation). After that we estimate γ2

and f based on the remaining signals. Because the true peak
shapes only occupy small portions of the whole sequence, and
the vast majority of the signals are background noises, such
a procedure gives reasonable estimates of γ2 and f.

We calculate the p-value by comparing the observed Ȳn

with N(0, γ2(1 + f)). The normal distribution can be justified
by the central limit theorem. We can trim the insignificant
peak shapes by thresholding the p-value (the default threshold
is 1%).

5. Software, Results, and Related Issues
5.1 Software
A software named Mpeak has been developed for model-
based peak recognition (as well as multiresolution peak
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Figure 2. Top row: original data. Middle row: fitted data. Bottom row: peak positions.

tree representation to be described in Section 6). The
software and the source code are free to download from
www.stat.ucla.edu/∼zmdl/mpeak. The algorithm takes less
than 1 minute to analyze a genome long sequence on a regular
PC.

5.2 Results on Real Data
Kim et al. (2005) conducted a ChIP-chip experiment for iden-
tifying the promoter regions in the entire human genome.
They used probes of 50 bp to tile the nonrepetitive sequence
of the whole human genome. The spacing between two adja-
cent probes was 100 bp. Antibodies targeting four different
proteins, i.e., the TAF1 subunit of the transcription factor
IID (TFIID), RNA polymerase II (RNAP), localized acety-
lated histone H3 (AcH3), and methylated histone H3 lysine
residue 4 (MeH3K4), as used to immunoprecipitate DNA seg-
ments bound by the proteins in the human primary fibroblast
IMR90 cells. Meanwhile, a control pool of DNA segments was
added and dyed with a different color. The log ratio of the
signals for the two fluorescent dyes was extracted, displayed
by the SignalMap software of NimbleGen company (Madi-
son, Wisconsin), and analyzed by our algorithm. The reader
is referred to Kim et al. (2005) for biological discoveries and
validations.

Figure 2 shows some examples of model fitting. The plot
on the top shows the observed signals. The plot in the mid-
dle shows the signals produced by the fitted triangle shape
models. The plot on the bottom shows the probes that are

considered the potential binding sites. Among all the detected
peaks in this data set, the mean of the R2 statistics is 0.82,
with a standard deviation 0.22 (model-based outlier removal
is performed before computing R2).

As to the ranges covered by the fitted triangle shapes, the
mean is 918 bp, and the standard deviation is 416 bp. The
minimum allowable value of L and R is set at the default value
300 bp.

5.3 Simulation Study: Autocorrelation and Minimum Range
To examine the issues of autocorrelation and the minimum
allowable value of L and R, which determines the resolution
of the algorithm, we conduct a simulation study. We generate
a long sequence of signals, with 120 enriched regions, sep-
arated by background signals. In each enriched region, there
are two peak shapes that are close to each other. The distance
between the two peak probes (i.e., the two binding sites) in
each region is set at 700 bp. The left and right ranges of the
peak shapes are both 300 bp. The true signal values of the two
peak probes are either 2 or 2.5. The shape of a peak can be
either triangular or double exponential. For triangular shape,
the true signal values of the probes fall linearly from the value
of the peak probe to 0 at the two ends of the range. For dou-
ble exponential shape, the true signal values of the probes
fall exponentially from the value of the peak probe to 0.01 at
the two ends of the range. The distance between consecutive
probes can be 30, 50, and 100 bp. Therefore, there are 2 peak
values × 2 shapes × 3 spacings = 12 types of regions. For
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Table 1
Results of Mpeak on simulated data

Minimum No. of regions No. of regions No. of regions No. of regions No. of false
allowable 1 peak 2 peaks >2 peaks no peak peaks in

ρ range detected detected detected detected background

0 100 6 108 6 0 64
300 13 107 0 0 38
500 24 93 0 3 24

0.2 100 12 103 4 1 49
300 10 106 2 2 32
500 23 88 0 9 17

0.5 100 19 92 6 3 34
300 28 84 3 5 49
500 38 66 0 16 34

There are 120 enriched regions separated by background signals. Each enriched region has two peaks. The
observational errors and background data follow a first order autoregressive model. The autocorrelation ρ
takes values in {0, 0.2, 0.5}.

each type of region, we simulate 10 replicates. So there are a
total of 120 regions, with 240 peaks.

The additive observational errors and background signals
are assumed to follow a stationary Gaussian autoregres-
sive process, εi = ρεi−1 +

√
1 − ρ2δi, where δi ∼ N(0, 0.52)

independently. The marginal standard deviation of this au-
toregressive process is 0.5. Between every two consecutive
enriched regions, there are 1000 probes whose signals follow
the background noise model.

Such twin peaks shapes can arise in the situation where
two modified histone-binding sites exist in proximity around
a promotor. Such shapes can be interesting to biologists and
it is important to resolve the two peaks.

Table 1 shows the results of Mpeak under different
autocorrelations with different minimum allowable values for
R and L. The threshold for p-value is set at a default value
1%. When the minimum value of R and L is 100, there are
slightly more false positives, and slightly fewer false negatives.
When the minimum value of L and R is 500, the minimum
total range R + L is 500 × 2 = 1000, which is greater than
the distance between the two peak probes, which is 700. In

Table 2
Results of kernel smoothing on simulated data

Half No of regions No of regions No of regions No of regions No of false
window 1 peak 2 peaks >2 peaks no peak peaks in

ρ size detected detected detected detected background

0 100 0 117 3 0 600
300 0 55 65 0 409
500 57 56 7 0 433

0.2 100 1 114 5 0 1127
300 5 67 48 0 913
500 54 53 13 0 919

0.5 100 0 119 1 0 1974
300 5 66 49 0 1874
500 68 41 11 0 1892

There are 120 enriched regions separated by background signals. Each enriched region has two peaks. The
observational errors and background data follow a first-order autoregressive model. The autocorrelation ρ
takes values in {0, 0.2, 0.5}.

this case, Mpeak still shows reasonable performance. As to the
autocorrelation, even when it is as high as 0.5, Mpeak still per-
forms reasonably. Results in Table 1 are to be compared with
results in Table 2 in the next section.

6. Kernel Smoothing and Multiresolution Peaks
As a nonparametric alternative to the model-based peak de-
tection method, one can convolve the probe signals with a
smoothing kernel function, such as uniform or Gaussian den-
sity function. Then one can identify the local maxima of the
smoothed signals, and test the significance of these local max-
ima against a background model. Such methods have been
proposed by Glynn et al. (2004) and Buck et al. (2005). The
ChIPOTle software of Buck et al. (2005) uses a uniform kernel
function and assumes Gaussian white noise for background
signals.

Table 2 shows the results of kernel smoothing using
ChIPOTle on the same simulated data as described in Sec-
tion 5.3, where the half-window size takes values in {100, 300,
500}. The threshold for p-value is set at default value 1%, the
same as Mpeak.



794 Biometrics, September 2007

Figure 3. Multiresolution peak-tree. (a) Signals. (b) The trajectories of the local maxima over scales.

The smoothing method appears to be sensitive to the choice
of bandwidth or window size. When the half window size is
100, it performs well, although there are more false positives
in the background. If we increase the bandwidth to 300, the
method often identifies more than two peaks in an enriched
region. At a half window size 500, the method often identifies
only one peak in an enriched region, and the identified peak
actually corresponds to the valley, because kernel smoothing
does not recognize the local shape. This is also the reason
that it declares more false positives in the background than
Mpeak, which fits fewer triangle shapes than the number of
local maxima identified by smoothing. Also, the smoothing
method such as ChIPOTle assumes white noise background,
so that it can declare more false positives in the background
when the autocorrelation is high.

To further illustrate the issue of bandwidth, we borrow
the insight from the scale space theory (Witkin, 1984) in
computer vision. We convolve the original signal Y(x) with
Gaussian kernel Gs(x) for the whole range of standard devia-
tions or scales s ∈ [smin, smax] (the default range is [50, 700] in
our implementation). For each s, we identify the local max-
ima of Y (x) ∗ Gs(x). If we plot each local maximum as a
point in the joint space of (x, s), then we get the trajecto-
ries of these local maxima across scales. See Figure 3 for an

illustration. Clearly, a local maximum exists within a range of
scales, and two neighboring local maxima can merge into one
local maximum if we keep increasing the scale s. This leads to
a tree structure for organizing the multiresolution local max-
ima. This further illustrates the need for adaptive bandwidth
selection. In particular, for two neighboring local maxima that
are to be merged into a single maximum at scale s, we need
to decide whether the local data should be described by two
local maxima at scales below s, or be described by one single
maximum at scales above s. We will investigate this issue in
future work. We believe this will lead to a useful alternative
to our model-based method.

Mpeak performs adaptive scale selection by fitting the trun-
cated triangle shapes for all the allowable combinations of R
and L.

While there is a bandwidth selection problem with the non-
parametric smoothing method, if the peaks are well separated
relative to the bandwidth, the smoothing method generally
works well.

7. Replicates
The ChIP-chip experiments can be replicated to produce mul-
tiple sequences of signals. To analyze such replicated data,
one simple method is to take the average of the replicates,
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Figure 4. Replicates. The first and third rows are observed data for two replicates. The second and fourth rows are fitted
shapes. The bottom row displays the positions of peaks.

and run Mpeak on the averaged signals. Another method is
to run Mpeak on each replicate, and then merge the results.
A more principled method is as follows. Around each probe
position, and for each pair of (L, R), we fit a separate trian-
gle shape model for each replicate, where each fitted triangle
has its own intercept and slopes. Then we average the resid-
ual variances obtained from all the replicates. After that, we
use the averaged residual variances to identify the positions
and ranges of the potential binding sites, following the same
scheme as described in Section 4.2.

Figure 4 illustrates the method using real data. The first
and third rows are observed data for two replicates. The sec-
ond and fourth rows are fitted shapes. The bottom row dis-
plays the positions of peaks.

We would also like to refer the reader to Li, Meyer, and Liu
(2005) and Ji and Wong (2005) for analyzing replicate data.
Both methods require replicates to estimate the variance of
the signal intensity of each probe position across different ex-
periment conditions. Li, Meyer, and Liu (2005) estimates the
probability of a probe belonging to an enriched region using
a hidden Markov model and averages the probability over the
replicates. Li, Meyer, and Liu (2005) uses a t-test-like probe-
level statistic to identify probes that are statistically different

in different experiment conditions. Unlike our method, these
two methods identify enriched regions instead of pinpointing
the peaks in the signals.

8. Discussion
In the future work, we need to extend the model by relaxing
assumptions such as the Poisson distribution of the cut points
and the additive errors in the probe signals. We should also
further develop both model-based method and nonparamet-
ric methods. In particular, in the model-based method, the
model should be able to account for more complex shapes. In
the nonparametric method, we should develop an automatic
bandwidth selection method for peak finding.
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